

eliice

November 14, 2005

Table of Contents

Page

1.0	Introduction	1											
2.0	Property Description and Location	3 3											
3.0	Access, Climate, Infrastructure, Physiography												
4.0	History and Previous Work	5											
5.0	Regional Geology	7											
	5.1 Stratigraphy	8											
	5.2 Intrusive Rocks	9											
	5.3 Structure	9											
6.0	2005 Exploration Program	10											
	6.1 Property Geology	11											
	6.1.1 Alteration and Mineralization	13											
6.2	Geochemical Results	15											
	6.2.1 Gold Geochemistry	15											
	6.2.2 Silver Geochemistry	16											
	6.2.3 Copper Geochemistry	16											
	6.2.4 Lead Geochemistry	17											
	6.2.5 Zinc Geochemistry	17											
	6.2.6 Barium Geochemistry	17											
	6.2.7 Arsenic Geochemistry	18											
7.0	Mineralization Summary	18											
8.0	2005 Geophysics	19											
9.0	Conclusions	21											
10.0	Recommendations	21											

List of Figures

after Page

Figure 1	Project Location Map	1
Figure 2	Claim Location Map	2
Figure 3	Historical Work	6
Figure 4	Regional Geology	7
Figure 5	Property Geology	11
Figure 6	Geophysical Compilation	11
Figure 7	2005 Rock Geochemistry; Sample Locations	15
Figure 8	2005 Rock Geochemistry; Gold ppb	15
Figure 8 B	2004-2005 Geochem Compilation; Au ppb	15
Figure 8 C	Alunite Ridge-BS Zone Gold Geochemistry	15
Figure 8 D	QtzBS-Alexandra-Sofia Gold Geochemistry	15
Figure 9	2005 Rock Geochemistry; Silver ppm	16
Figure 9 B	2004-2005 Geochem Compilation; Ag ppm	16
Figure 10	2005 Rock Geochemistry; Copper ppm	16
Figure 10 B	2004-2005 Geochem Compilation; Cu ppm	16
Figure 11	2005 Rock Geochemistry; Lead ppm	17

Figure 11 B	2004-2005 Geochem Compilation; Pb ppm	17
Figure 12	2005 Rock Geochemistry; Zinc ppm	17
Figure 12 B	2004-2005 Geochem Compilation; Zn ppm	17
Figure 13	2005 Rock Geochemistry; Barium ppm	17
Figure 13 B	2004-2005 Geochem Compilation; Ba ppm	17
Figure 14	2005 Rock Geochemistry; Arsenic ppm	17
Figure 14 B	2004-2005 Geochem Compilation; As ppm	17
Figure 15	2005 Filtered Chargeability, Sofia Property	20
Figure 16	2005 Stacked Chargeability, Sofia Property	20
Figure 17	2005 Filtered Resestivity, Sofia Property	20
Figure 18	2006 Work Proposal	22

List of Tables

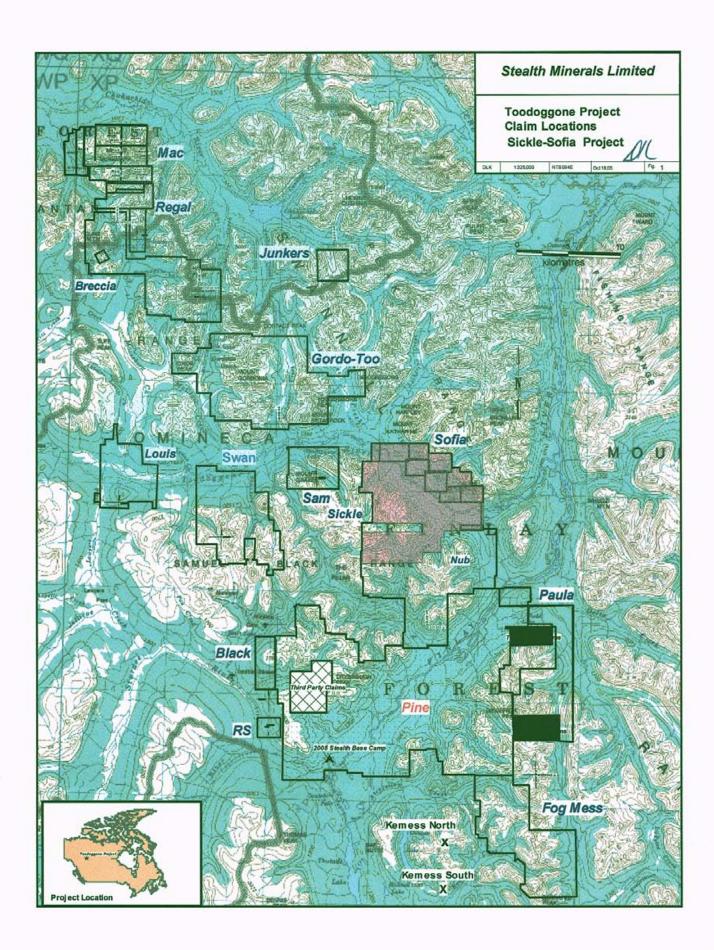
After Page

Table I	Geochemical Highlights	 1
Table II	Sickle Property; Claim Status	 3
Table III	Sickle Property Historical Work	 6
Table IV	2004 Rock Sample Descriptions	 15

List of Appendices

Appendix I	2005 Rock Assay Certificates

- Appendix II 2005 Statement of Expenditures Appendix III Recommendations; Cost Estimate Appendix IV Statement of Qualifications
- Appendix V References



1.0 Introduction

The Sickle-Sofia prospect is one of 10 properties explored as part of the 2005 program by Stealth Minerals on its Toodoggone Project. The Toodoggone Project is located in north central British Columbia approximately 430 kilometers northwest of Prince George (Figure 1). Stealth Minerals and its wholly owned subsidiary Cascadero Copper control 305 mineral claims covering 109,605 ha in the Toodoggone District, Omineca Mining Division, which in part adjoins Northgate Mineral's Kemess copper-gold open pit mine property to the south and to the west.

The subject of this report, the Sickle-Sofia area, consists of 25 contiguous mineral claims containing covering 9077.6 hectares. Exploration over the past three field seasons has identified six areas of interest on the property. Two have potential to host large-scale bulk mineable copper gold porphyry style mineralization, the others are low and high sulphidation epithermal precious meal epigenetic deposits related to the underlying mineralized intrusive. High grade epithermal veins (North Vein) and the Sofia IP chargeability geophysical anomalies are new 2005 developments.

During the 2005 season, a total of 97 rock samples from outcrop and float were taken. High grade results are tabulated in Table 1. Geological mapping was conducted at a field scale of 1:10,000 in the Sickle, Alexandra, BS, Sofia areas. A total 23.6 line kilometers of grid was cut on the area as part of a larger grid which continued south onto the Nub area. A total of 17 line kilometers of 200 m spaced lines were geophysically surveyed by IP chargeability/resistivety and magnetics. A total of 129 person days was spent in the field on these claims between June 18th and August 18th 2005. The property is prospective for further discoveries. These showings each require a follow-up exploration program that includes further geophysics and initial core drilling.

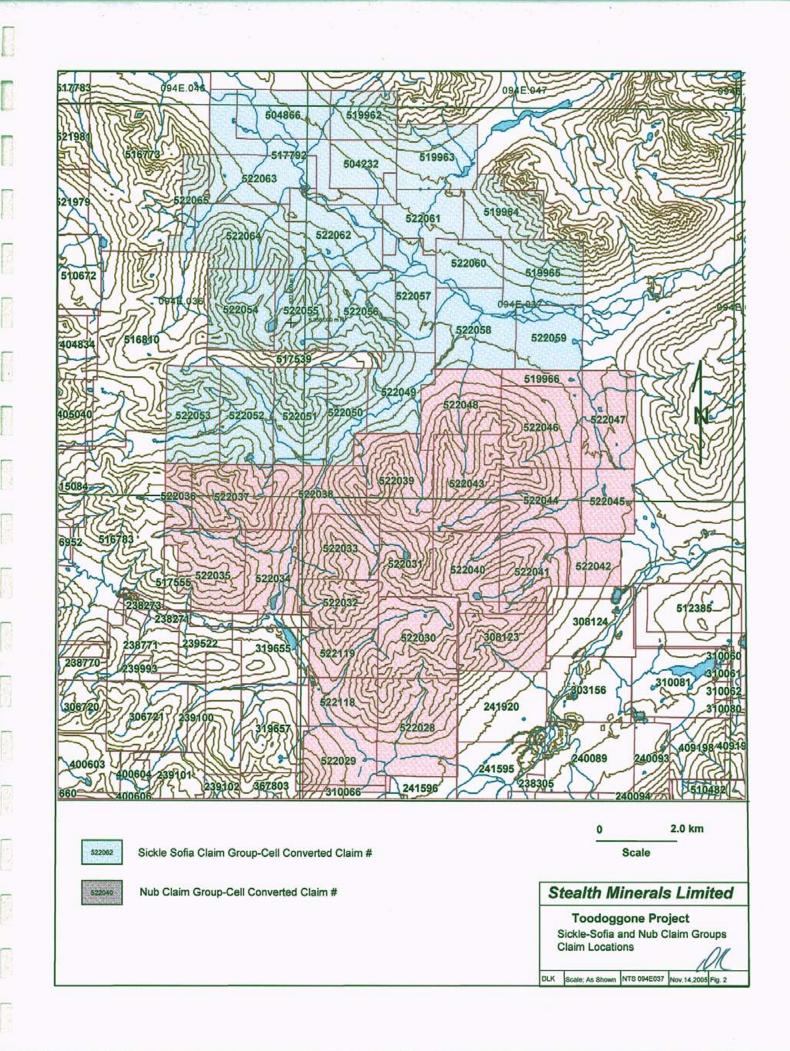
Table I

Rock 25.8 g/tn
25.8 g/tn
847 g/tn
2.33%
1.27 %
0.51%
+10,000 ppm
+1 0,000 ppm

2005 Geochemical Highlights

On the Sickle project, epithermal low-sulphidation vein systems have been identified at Quartz Lake (A-E Veins), Quartz Ridge, Griz Bowl, Sickle Bowl. Porphyry style copper and gold mineralization has been identified at Alexandra and Sofia. During the 2005 season, further prospecting and mapping located the Alunite Ridge North high sulphidation gold showing adjacent to the BS gold geochemical anomaly and the high grade low sulphidation North Vein. Further mapping at the Sofia has increased the understanding of the system in that the potassically altered monzonite is overlain by a secondary biotite altered mafic volcanic, tentatively assigned to the Triassic Takla formation. Five events of crosscutting quartz, quartz-magnetite, quartz-chalcopyrite and pyrite-sericite stockwork veins cut both packages. This is the same lithological and alteration assemblage as seen at Kerness South Mine.

Toodoggone District lies within the eastern margin of the Intermontane Tectonic Belt in the Stikinia and in part, the Quesnellia Terrane. These Terranes consist mainly of island-arc


volcanic, plutonic and sedimentary rocks of Late Triassic to Early Jurassic age with a Lower Permian-aged basement represented by the Asitka Group. Granitoid members of the Jurassic Black Lake Intrusive suite have intruded the Triassic and older rocks and are coeval with the Jurassic volcanic rocks. Regional north-northwest trending high-angle normal and strike-slip faults cut through the Toodoggone Project area and conjugate high-angle faults cut and displace northwest trending structures, and may control in part, intrusive and hydrothermal activity.

2.0 Property Description and Location

The Sickle property is extends 9 km southwest from the confluence of Jock Creek and the Toodoggone River of and 13 kilometres along the Toodoggone River just east to Toodoggone Lake. The closest road access is 1.0 km from the southern border of the JC 14 claim via the Baker mine road, east from Sturdee strip to the Canasil Resources Brenda Camp The claims are 40 air kilometres due north of the Kemess Mine property (Figure 1). The Sickle property is located in the Omineca Mining Division UTM NAD 83 Zone 9-6, centered at 6,356,900 metres north and 632,400 metres east on map sheets 094E027, 37, and 38. The property includes the Kevin 1-2, JC 1-4, JC 7-13, Sofia, Sofia 2-10 and Nub 20, 21 mineral claims (Fig. 2, Table 2). The property consists of 25 contiguous mineral claims containing 9077.6ha. The claims have not been legally surveyed. The claims are owned 100% by Stealth Minerals subject to a 3% net smelter return royalty, 1/3rd of which can be purchased for \$2 million, in favor of Electrum Resource Corp. The claims were converted to cell claims Nov. 6, 2005.

3.0 Access, Climate, Infrastructure, Physiography

Stealth Mineral's main exploration camp is at the junction of the Finlay and Firesteel Rivers. The camp is accessible by way of the all-weather Omineca Resource Road 410 kilometres north of Windy Point, B.C to the Kemess Mine turn-off, then approximately 22 kilometers northwest on summer access road. Travel time from Prince George is approximately 10 hours, or 7 hours from Windy Point or Mackenzie. Access to the Sickle Property is via helicopter north from the Stealth camp, a distance of 25 kilometres,

Table II

SICKLE GROUP Stealth Minerals Limited

Tenure Number	Claim Name	Area (HA)	Good To Date	Map Number
504232	Sofia 3	244.202	2006/JAN/18	094E037
504866	SOFIA 4	366.182	2006/JAN/26	094E036
517792	SOFIA 5	418.614	2006/JUL/15	094E036
519962	SOFIA 6	261.556	2006/SEP/14	094E037
519963	SOFIA 7	418.599	2006/SEP/14	094E037
519964	SOFIA 8	348.966	2006/SEP/14	094E037
519965	SOFIA 9	418.937	2006/SEP/14	094E037
519966	SOFIA 10	104.812	2006/SEP/14	094E037
522049	JC 13	366.898	2009/MAR/31	094E037
522050	JC 4	279.590	2009/MAR/31	094E037
522051	JC 3	419.399	2009/MAR/31	094E036
522052	JC 7	419.401	2009/MAR/31	094E036
522053	JC 8	419.397	2009/MAR/31	094E036
522054	JC 9	436.538	2009/MAR/31	094E036
522055	JC 1	349.229	2009/MAR/31	094E037
522056	JC 2	436.533	2009/MAR/31	094E037
522057	JC 12	366.635	2009/MAR/31	094E037
522058	NUB 20	506.416	2007/MAR/31	094E037
522059	NUB 21	349.273	2007/MAR/31	094E037
522060	SOFIA 2	261.818	2007/JUL/27	094E037
522061	SOFIA	331.535	2007/JUL/03	094E037
522062	JC 11	523,558	2009/MAR/31	094E036
522063	KEVIN 1	383.795	2009/MAR/31	094E036
522064	JC 10	471.214	2009/MAR/31	094E036
522065	KEVIN 2	174.483	2009/MAR/31	094E036
25 Claims		9077.580 H	lectares	1

which represents a 15 to 20 minute helicopter flight. The southwestern boundary of the Sickle property is about 1.0 kilometres east of the Brenda property road via Sturdee Airstrip and Shasta Mine roads. Future road access could be developed to the Sickle claims via this route or by an additional 18 kilometre road extension to the east from the existing road at the Electrum prospect on the (affiliated) Cascadero Copper Corp claims, along the northwest side of the Finlay River corridor. Airstrips are in place at the Kemess South Mine and Sturdee Valley approximately 20 and 30 kilometres south and north, respectively of the Stealth camp. The Kemess Mine is connected to the BC provincial electric power grid.

A new access road connecting the Omineca Resource Road to the deep-sea port of Stewart is proposed, which would reduce transportation costs associated with development and operation of new mining ventures in the Toodoggone. Dominant economic products from the Toodoggone district have been gold and silver in dore, and more recently copper and gold in concentrate.

Topography on the Sickle claims is generally moderate with a large area of glacio-fluvial gravel deposits along the west side of the Toodoggone River. Highly altered rocks are generally soft and rounded ridges prevail. The western area of the Sickle area is steep and cliff forming as the rocks change to unaltered to propyllitized welded ignimbrites. Elevations range from 1150 m in stream valleys along Jock Creek to 2000m on Qtz Peak, just west of the camp at Quartz Lake. Slopes above tree line at 1500 m are scree and talus covered, sparsely vegetated by grasses and sedges with willows in avalanche chutes. No glaciers or permanent snowfields exist on the claims. Lower slopes to the northeast are forested with balsam at higher elevations and pine-spruce forest, with local areas of swamp at lower levels. Seasonal temperatures vary from -35° C in winter to 30° C during the 4 months of summer. The mean daily temperatures for July and January are approximately 14°C and -15°C, respectively. Precipitation between 50 and 75 centimetres occurs annually, with most during the winter months resulting in a snow cover of approximately 2 metres. The optimal time for surface exploration on the property is between June and October.

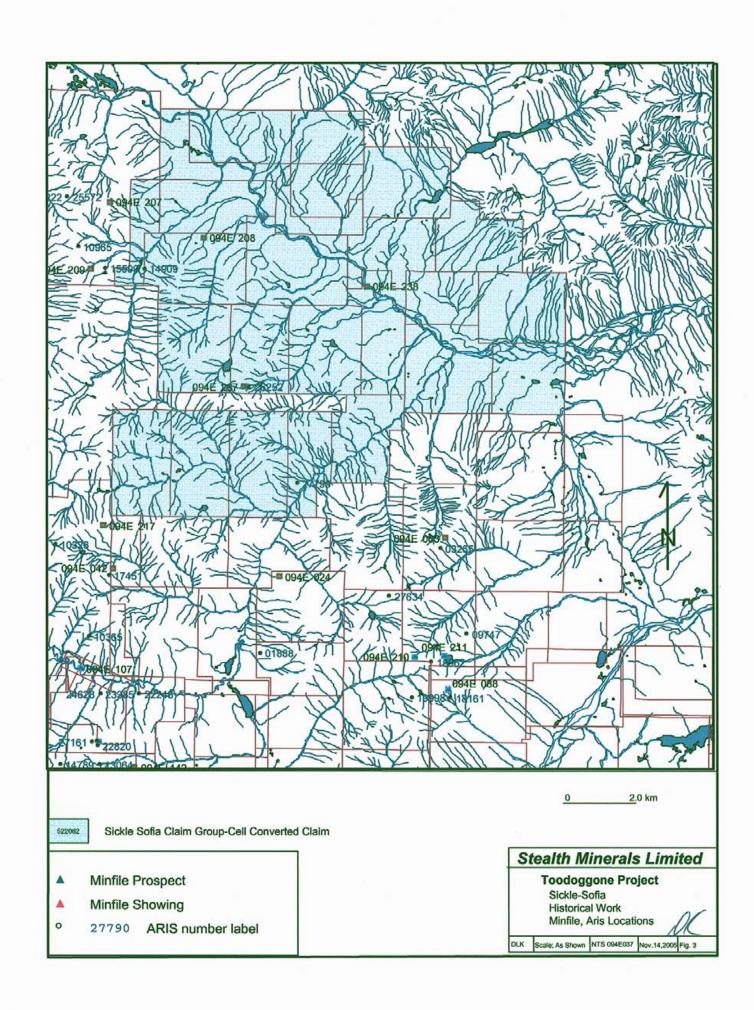
4.0 History and Previous Work

The Sickle Property is located in the central portion of Stealth Mineral's Toodoggone Project. Figure 3 shows the locations of the recorded historical assessment reports and Minfile occurrences within the claim group. Table III lists the reports and summarizes past work on Figure 3. As shown, the claims were actively explored in the 1980s by several operators when the district was explored for its epithermal gold and silver potential following production decisions on three gold-silver mines in the Toodoggone District (Baker, Lawyers, and Shasta). Porphyry exploration began in the late 1960s.

Stealth Minerals Sickle-Sofia 2005

During the late 1960s major companies such as Comino recognized the Toodoggone as an under explored copper-gold porphyry district. They were exploring for bulk mining opportunities similar to those porphyry deposits discovered and being prepared for production in the central interior of the province. Initial prospecting and mapping was completed in the Black Lake, Shasta, Pine, Kemess North, Brenda and Sickle areas during this time. Three Minfile showings exist on the Sickle properties ranging from hydrothermal stockwork and breccias to epithermal-hydrothermal veins and porphyry deposits, two which have been located by Stealth in the last two years. In the early 1980s, Peralto Resources and Skylark Resources conducted geological and geochemical work on the Kevin, Pil-Lar and Chess Prospects located on the Sickle and BeeGee property. In the 1999 Electrum Resources conducted a geochemical program and in 2000 Stealth Mining Corporation carried out prospecting on the JC 1-2 claims. Stealth Mining Corp. discovered quartz and quartz-carbonate veins ranging from 0.5-50 cm in width with variable concentrations of chalcopyrite, sphalerite and galena. A silicified, quartz-carbonate-pyrite flooded shear 1.0-2.0 meters wide and 25 meters long returned 396ppb gold and 4.0gpt silver. The Griz Vein, a structure which trends approximately 155/70 and is between 50-100cm wide and 100-150m long returned 5.78% lead, 14.93% zinc, 2,226.1 gpt silver and 7.99 gpt gold (Assessment Report #26252).

Interest in the JC claims and the Griz bowl area started in 1997 when Stealth staked the drainage basin covering an anomalous Government RGS silt sample. Minor follow-up



work over the next few years located high grade silver float in the basin. In 2003 Stealth Minerals Ltd. prospecting efforts discovered the Sickle Creek prospect. Further work late in 2003 located the Sickle, Griz and Quartz Lake Veins. The Sickle Creek prospect (Minfile 094E 237) is a series of high-grade gold and silver epithermal veins hosted by felsic volcanic flows and tuffs. The epithermal system is over 5 kilometres in strike length consisting of quartz stockwork, silica flooding and sulphides in wall rock and veins. The A, B and C veins at Quartz Lake average 12 m in with and were partially drill tested in 23 drill holes in 4 zones by Stealth in 2004. Native silver and visible gold was seen in the core. Assayed wall rock samples from the Sickle Creek prospect recovered up to 0.72gpt gold, 307 gpt silver, 0.30% copper, 0.22% lead and 0.08% zinc. Sampled vein material assayed up to 78.8 gpt gold, 2,060 gpt silver, 0.51% copper, 11.4% lead and 10.5% zinc.

The Black Showing (Minfile 94E 042) and the Lar showing (Minfile 94E 217), are both located on the western boundary of the BeeGee property. The Black showing consists of chalcopyrite and sphalerite mineralization, hosted in an argillic alteration zone along an east-trending ridge. Disseminated pyrite, ranges from 3 to 5 per cent. In 1988, Skylark Resources Ltd. examined the previously documented Black showing and analysis was done on several samples taken from along an east-trending ridge, approximately 600 to 750 metres to the east of the Black showing. The best results assayed 3.3 gpt silver and 0.022 gpt gold. Several other samples analyzed 1.8 and 1.9 gpt silver (Assessment Report #17451). The Lar showing consists of an argillic alteration zone, 150 metres long by 50 metres wide, on an east-west trending ridge. Numerous quartz veins with limonite were sampled. These randomly oriented veins ranged from 2 to 4 centimetres wide. The best samples yielded 4.4 gpt silver, 0.03 gpt gold, 0.57% lead, 0.025% zinc and 0.019% copper. Another sample assayed 5.6 gpt silver. (Assessment Report #17451).

In 2003 prospecting by Stealth Minerals Ltd. uncovered an amethyst-quartz breccia zone on the BeeGee property which assayed up to 3.07 g/tn gold.

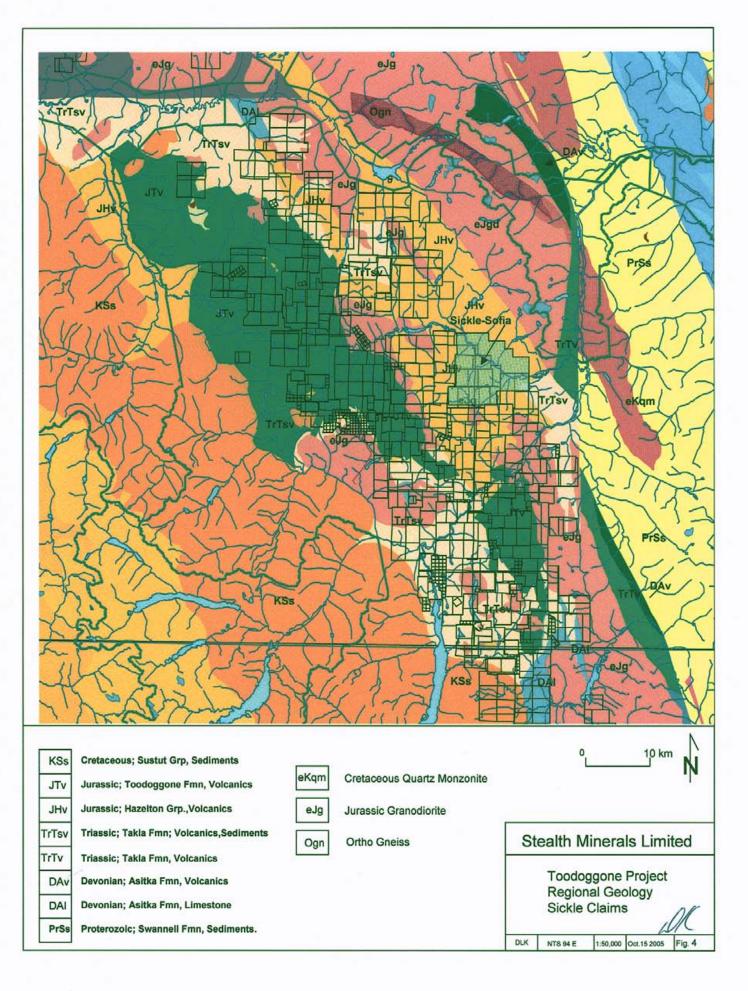
6

Stealth Minerals Limited

Table III: Historical Work on Sickle and BeeGee Property

ł

Aris Rpt #	Year	Property	Operator	Author	Title	Work Type	Minfile No	CostYr5
1688	1969	Pil	Cominco Ltd	Cooke, D.L.	Geological Report on the Pli Claim Group, Jock Creek, BC	Geological		\$1,280.00
15599	1986	Kevin	Peralto Resources Co	Sorbara, J.P.; Steele J.P.		Geochemical, Gological, Geophysical		\$48,695.00
17451			Skylark Resources Ltd		Geological, Geochemical Report on the Pil and Lar Claims	Geochemical, Geological	094E042	\$4,249.00
18535			Peralto Resources Co	Duro, A.J.	Geochemical Report on the Chess Property	Geochemical		\$16,971.45
26252			Stealth Mining Corp.		Assessment Report on the JC Property	Prospecting		\$14,657.00
26222		Spruce	Electrum Resource Co	Ronning P.A.	1999 Exploration Program on the Spruce Property	Geochemical	094E209, 207	
27790	2004	Sickle-BG	Stealth Minerals	Kuran.DL	Geolog., Geochem, Diamond Drilling Report	Geol,Geochem,DDh		\$1,145,515.00
1						Total of Expenditures		\$1,231,367.45
Minfile #	Names	Status	Commodities	Deposit Type	Comments	Location	Mining Division	
94E 042	Black; Lar; Pil	Showing	Cu Zn	Hydorthermal vein	chalcopyrite, sphalerite in argillic altered zone; 3.3gpt Ag, 0.022gpt Au	6352338N 628754E	Omenica	
094E 207	Knight, Chess, Ke	Showing	Cu Ag Pb	Epi Vein	cm-2m quartz veins with galena, bante, malachite; 4.8gpt Ag, 5.01%Pb, 0.77%Cu	6361915N 628253E	Omineca	
	Kevin,Chess, Knig	Showing	Ag	Hydrothermal Breccia	Two one-meter chip samples 4.9gpt Ag; 0.09%Ba and 10.1gpt Ag; 0.14%Ba	6361095N 630702E	Omineca	
094E 217	Lar	Showing	Pb, Ag, Cu, Zn	Epi Vein	Qtz vein 4.4gpt Ag, 0.03gpt Au	6353443N 628451E	Omineca	
		Showing		Stockwork, hydrothermal	four stockwork zones; 4.4gpt Ag; 0.219gpt Au	6360138N 627840E	Omenica	
		Showing			Epi Vn with 78.8gpt Au; 2060gpt Ag; 0.51%Cu; 11.4%Pb; 10.5% Zn	6357225N 631917E	Omenica	
94E 238	Sofia	Showing	Au Cu	Porph	40m x 10m monz. quartz-mag-pyrite-chalcopyrite stockwork; 0.22gpt Au, 0.05% Cu	6360009N 634963E	Omenica	


As part of a 2003 Private-Public-Partnership (PPP) with the Government's of Canada and BC, the Sickle claims were flown as part of a multi-parameter helicopter-borne geophysical survey, which data are now publicly available on the MapPlace website. Several high-total potassium anomalies and thorium-potassium ratio lows were detected. Prior to the 2004 Stealth exploration program no drilling had been completed on the Sickle property. Historically, there has been in the order of \$1,231,300 spent on the claims. No mining activity has occurred on the claims. No mineral resource or reserve exists on the claims.

5.0 Regional Geology

The Toodoggone District lies within the eastern margin of the Intermontane Tectonic Belt, which consists of four unique Terranes. The project area lays within the Stikinia and, in part the Quesnellia Terranes. The Stikinia and Quesnellia Terranes consist mainly of island-arc volcanic, plutonic and sedimentary rocks of late Triassic to early Jurassic age with a Lower Permian aged basement represented by the Asitka Group (Diakow and Metcalfe, 1997). To the east, older metamorphosed Precambrian and younger strata (clastic and chemical sedimentary rocks) of the Cassiar Terrane (Omineca Belt) are separated from the Intermontane Belt by a regional system of trans-current faults (Diakow, Panteleyev and Schroeter, 1993). The Toodoggone regional geology is shown in Figure 4, as displayed from the BCDM website MapPlace. Figure 4 also shows the location of current mineral claims in the district.

The Toodoggone District consists of a series of northwest trending volcanic belts some 90 kilometres long and 40 kilometres wide. The stratigraphy is fairly monoclinal with generally northwest striking, shallowly west-dipping upright stratigraphy and therefore youngs to the west. The large-scale northwest trending faults generally parallel the long axis of the district and illustrate the basic fabric of the accreting terrains and its internal evolution. The northwest trend is common to the stratigraphy, plutonism and major mineralizing events and therefore implies major crustal activity along this trend. Overlying younger stratigraphic intervals, such as the Sustut Group of conglomerates

and sediments, covered the earlier mineralized and altered Jurassic volcanics and plutons, therefore protecting them from deeper erosion and glaciation. This resulted in the preservation of complete mineralized and altered sequences ranging from the causative copper-gold porphyry systems up through the undeformed stratigraphy, which hosts the upwardly evolving low-to-high sulphidation epithermal systems with their attendant clay-rich alteration caps still intact.

5.1 Stratigraphy

Lithologies in the Toodoggone area are Permian to Cretaceous in age comprised, from oldest to youngest as follows: Asitka Group, Stuhini Group, Toodoggone Formation and Sustut Group (Diakow and Metcalfe, 1997). Lower Permian aged rocks of the Asitka Group consist of andesite, dacite and rhyolite volcanic rocks with locally prominent sections of inter-bedded marine sedimentary rocks consisting of limestone and chert at the top of the section (Diakow, personal communication, 2003). These rocks may reflect a submergent island arc sequence.

Upper Triassic rocks of Stuhini Group (also referred to as Takla Group) unconformably overlie the Asitka Group. Stuhini Group rocks are more widespread and characterized by clinopyroxene-bearing basalt, andesite, and associated epiclastic rocks, and locally appear similar to Paleozoic rocks. These rocks may reflect an emergent submarine to sub-aerial island arc sequence. Locally, Lower Jurassic Toodoggone Formation (Hazelton Group) volcanic fragmental rocks of dacite-andesite composition lie in nonerosional, gently dipping unconformity with Stuhini Group rocks. Minor basalt lava flows and rare rhyolite flows and breccia occur in the Toodoggone Formation (Diakow, personal communication, 2004). Bi-modal volcanism is associated with low-sulphidation epithermal gold and silver deposits on a worldwide scale; however, its relationship with the Toodoggone epithermal deposits remains unclear. The Upper Cretaceous Sustut Group consists of conglomerates, sandstones and siltstones with minor felsic tuff and occurs in unconformable contact with Takla (Stuhini) and Hazelton Group rocks.

5.2 Intrusive Rocks

The early-middle Jurassic Black Lake Intrusive suite of calc-alkaline plutons is apparently coeval with the Toodoggone Formation volcanic rocks and with the development of an elongated volcano-tectonic depression that is richly endowed with numerous precious and base metal occurrences (Diakow and Metcalfe, 1997). The composite Black Lake Intrusive suite is generally medium grained and grades from granodiorite to quartz monzonite. This intrusive suite includes the Black Lake pluton (granodiorite to quartz monzonite), Jock Creek pluton (quartz monzonite, diorite), Giegerich and Duncan Lake plutons (hornblende-biotite granodiorite, monzonite, guartz monzonite, quartz diorite) and the Sovereign pluton (quartz-hornblende-biotitegranodiorite to tonalite). Dykes and dyke swarms of quartz monzonite are locally proximal to and associated with copper-gold mineralization as at the Brenda occurrence and with epithermal or transitional precious metal vein occurrences as at Northwest Breccia. These dyke sets usually follow the northwest trending structural breaks that trace several of the mineralizing events within the Toodoggone Camp. Dykes and sills of trachyandesite to latite and minor basalt cut previous lithologies. Late Triassic Alaskatype ultramafic intrusions are regionally mapped east of Kemess North with other possible occurrences southwest of the Mex prospect (Cascadero Copper) and on the Pil prospect to the northwest. Mapping by Stealth and the BCDM in 2004 outlined a new plutonic body of mainly quartz monzonite that's upper contact dips shallowly westward beneath the overlying Triassic to Jurassic stratigraphy and extends from the Findlay River area in the southeast part of Nub Mountain, north to the north end of the Kevin claims. Exposures are visible all along the northeast trending section of Jock Creek, hence the local nomenclature of the Jock Creek Pluton that is part of the Black Lake Plutonic suite.

5.3 Structure

A system of high-angle normal and possibly contraction faults that trend from 120° to 150° occur locally with secondary faults trending from 20° to 40° and 60° to 80°. These

Stealth Minerals Sickle-Sofia 2005 structures may impart primary control of high-level co-magmatic plutons and deposition of the coeval Toodoggone Formation rocks.

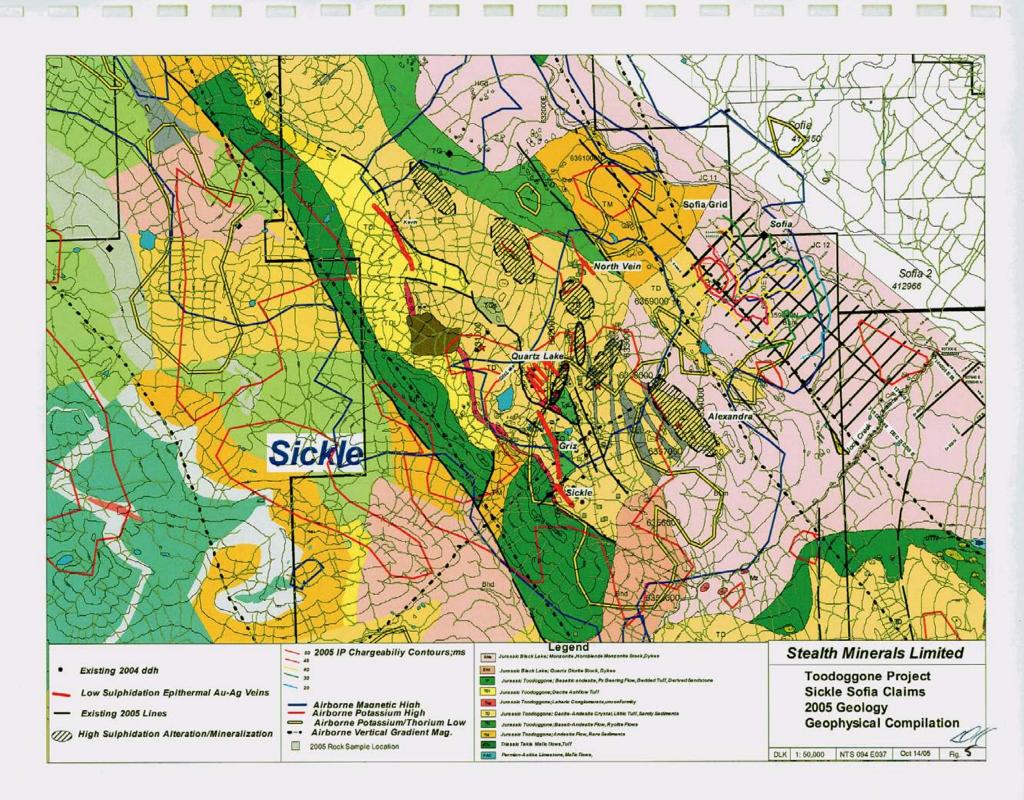
Regional-scale northwest trending structures include the Saunders, Wrich, Black and Pil faults that cut the Toodoggone District and occur over distances of more than 80 kilometres. Parallel faults also display dip-slip movement, locally placing Stuhini Group in contact with Toodoggone Formation rocks as at Kemess North (Diakow, 1997) and Asitka Group rocks adjacent to intrusive plutons.

North-easterly trending high-angle faults cut and displace northwest trending structures, tilting and rotating monoclinal strata (Diakow, 1986). The presence of high-level epithermal mineralization at Goat, Wrich Hill and the Electrum prospects (Cascadero Copper) at substantially lower elevations to the north, may suggest a post-mineral, north side down displacement along a northeast trending fault system in the Finlay River valley (Blann, 2001). North trending, right-lateral strike-slip faults are prominent along the eastern margin of the Giegerich Pluton and are Cretaceous and early Tertiary in age. These faults may cut Toodoggone aged and older rocks to the west.

6.0 2005 Exploration Program

Following the successful 2003-2004 exploration effort on the Sickle Sofia areas, a groundbased exploration program was designed and implemented via daily helicopter support from the main Stealth base camp 25 kilometres south. Follow up mapping and prospecting was completed on the Alunite Ridge, BS, and Alexandra and Sofia targets. A geophysical survey consisting of IP chargeability-resistively and magnetics on 200 m spaced cut lines and 50 m stations was completed on the overburden covered westward continuation of the Sofia Showing west of the Toodoggone river. The survey covered a 1.5×3.0 km area located north of Jock Creek and west of the Toodoggone River.

Rock samples were taken as float and grab or chip samples from outcrop over a described width and placed in a plastic sample bag along with a unique paper assay tag numbered sequentially. The sample site was flagged for re-location and the tag number

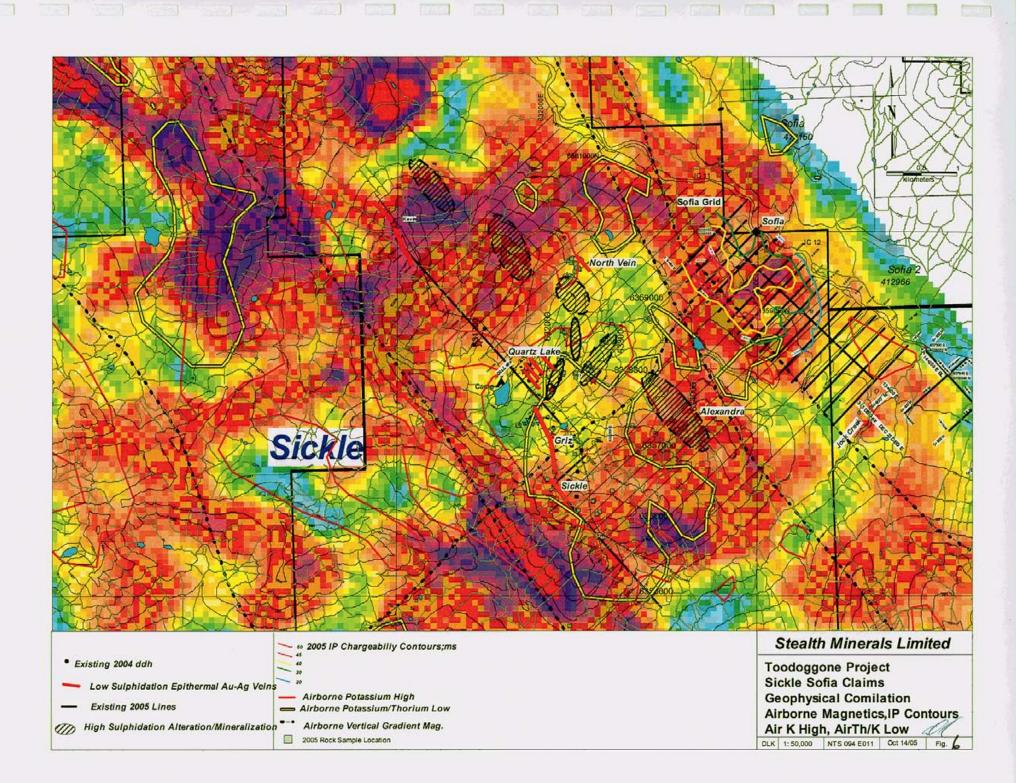

recorded on colored flagging tape at the site. A representative hand sample was also taken and retained at the main camp as a further check when an assay for that sample was received. Sample descriptions and abbreviated assay results are found in Table IV with assay certificates for rock assays in Appendix I.

Geochemical analysis was completed by Eco Tech Labs in Kamloops, BC. Analysis for gold in rock chips was by 30 gram (one assay ton sample) fire assay followed by atomic absorption reading finish. This technique was chosen to produce a reliable and comparable gold assay. Silver and the values of 29 other elements were determined by analyzing a 0.5 gram sample by dissolving it in aqua regia and determinations read via ICP-MS technology. Standards and duplicates were inserted at the lab and any deviation from acceptable analytical error resulted in the whole batch being re-assayed from a new split.

6.1 Property Geology

During 2005, the Sickle claim group was mapped and prospected at a reconnaissance scale of 1:10,000 in the field by Stealth Minerals staff. Figure 5 shows the distribution of lithological units, mineral showings, high and low sulphidation systems identified to date and the location of the 2005 IP anomaly in contoured millivolts/second and an interpreted outline of the 2003 airborne geophysical anomalies. The geology was mapped based upon formational and internal stratigraphic members, if of significant size, as well as an emphasis on mineralized trends, alteration and structures as indicated by previous field work and assay data received from 2004 soil and rock geochemistry. Rock geochemical samples for assay were taken as float and outcrop grab samples or outcrop chip samples with a representative hand sample taken and retained at camp for review when assay analyses were returned.

As seen on Figure 5, the general stratigraphy is westerly dipping and younging with the oldest Jurassic and Triassic volcanics along the eastern quadrant. The Triassic Takla formation, exposed over a small are at the Sofia outcrop consists of green marine andesite to basalt flows characterized by augite phenocrysts and felted feldspar. This



Stealth Minerals Sickle-Sofia 2005 stratigraphy is also in contact with the quartz monzonite over much of its lower contact. The rocks have undergone moderate propylitic alteration with abundant fine secondary biotite as a potassic alteration phase.

The Jurassic Toodoggone formation is represented by several mapable units consisting of a lower (TM) unit consisting of andesite flows and rare tuffs. This is overlain by the TQ member consisting of mafic lows and tuff with rhyolite flows and sills/dykes indicating a bimodal cycle of volcanism. The TD member is a thick section of intercalated andesite flows and crystal/lithic tuffs with minor intercalated coarse derived sediments. Overlying the TD unit is a relatively thin (Tcg) member representing an erosional event or a volcanic hiatus as 2-4 m sintery mudstone pools are located at the top of this horizon. The vast majority of the epithermal mineralization and alteration occurs in rocks underlying this unit stratigraphically and may have extrusive/mineralization timing implications. Overlying the unconformity is a thick, partially welded cliff forming dacite ignimbrite ash flow member (TDl, Mt. graves, TG unit in the BCGS nomenclature). The top of the local stratigraphy is a thick mafic flow and derived sediment member containing pyroxene crystals and resembles the Takla rocks.

Mapping by Stealth staff and by the BCDM (Diakow and Nixon, personal communication, 2004) confirmed the presence of a large shallowly west dipping quartz monzonite stock that has been assigned to the Black Lake group of intrusions of early Jurassic age. These stocks intrude up to and roof in the upper Takla group and are coeval and co-generative with the overlying Toodoggone Formation volcanic rocks. This newly mapped intrusive is exposed in a crescent pattern around the south east and north margins of the Nub Mountain Massif and is variably exposed over a 18 kilometre strike length. The stock dips gently to the west and probably underlies the remaining roof volcanic rocks at increasing depths to the west. The stock consists of fine to medium grained hornblende bearing quartz monzonite and contains diorite to quartz diorite phases. It is well exposed west of the Finlay River and along the Jock Creek valley continuously from its confluence with the Toodoggone River upstream to the northwest

corner of the claims. Along the west side of the Finlay River this quartz monzonite intrusion hosts the Pine North, Ryan Creek (Cascadero Copper) and Pine West (Stealth Minerals) copper-gold porphyry systems and possibly the Pine deposit (Cascadero Copper) on the south side of the Finlay River indicating that this is a regionally extensive mineralized and mineralizing intrusive event.

A magnetite bearing phase of this stock hosts the Sofia gold-copper porphyry style mineralization and is felt to generate the precious metal bearing low and high sulphidation epithermal mineralization identified within the overlying volcanic rocks. Hornblende phyric monzonite and latite dykes are seen to trend northwesterly and occupy syn-post volcanic faults on which the last motion is normal with east side down. These faults appear to control the long axis of the high sulphidation alteration (Alexandra, BS, and Alunite Ridge) but also have been reactivated to cut the earlier alunite alteration and provide a structural focus for the younger low sulphidation quartz-adularia vein systems such as Quartz Lake, Griz, Sickle and North veins.

Figure 6 shows the 2003 airborne total field magnetics with 2005 IP chargeability anomaly, high and low sulphidation systems and airborne radiometric anomaly outlines. As seen, the total field magnetics outlines a 6.0 km circular feature with a magnetic low area in the core This magnetic low corresponds to the potassic high(red line) and may represent magnetic destruction by potassic alteration. The volcanic stratigraphy at Sickle is fairly thin and the resultant magnetic doughnut may indicate a magnetic phase of the Jock Creek stock. The Sofia and Alexandra areas are located in what appears to be circular sub features around the rim of the main anomaly.

6.1.1 Alteration and Mineralization

As seen on Figures 5 and 6, the alteration-epithermal alteration and mineralization consists of two superimposed systems. Initial dates on the alunite within the alunite, pyrophylite, illite, barite high sulphidation suite, as confirmed by Pima Analysis in 2004, are the same as the Jock Creek pluton which hosts porphyry style gold and copper mineralization. The BS gold geochemical anomaly was identified within the advanced

argillic alteration zone. Gold in soils along a 550 m length of a soil line (2004) sampled at 50 m spacing average 300 ppb Au ranging up to 1000 ppb Au in soil (by 30gram FA). Prospecting extended the massive alunite replacement alteration a further 200 m north along strike from Alunite Ridge which hosts the BS soil anomaly. At the base of the alunite layer, semi oxidized tetrahedrite and possibly enargite with associated arsenic oxide were located near a 770 ppb Au soil anomaly. Rock samples returned up to 1.6 gpt Au and 847 g/t silver with +10000 ppm arsenic and +10,000 ppm antimony. The zone is offset by 50 m across a northwest trending normal fault. Northeast of the fault the alunite alteration contains a high proportion of barite and silica and contains gold values of up to 1.1 gpt Au. These normal faults are related to the low sulphidation veins as seen at Quartz Lake which are wide, northwest trending banded quartz/carbonate veins. A further 250m north, outcrop and subcropping low sulphidation style sugary, low sulphide veins and blocks up to 1.5 m in size were located. This North Vein can be traced for 250 m along strike. Assay values for the six samples along the vein returned 3.26 gptAu-20.6 gpt Ag, 12.8 gpt Au-169 gpt Ag, 14.8gpt Au-241 gpt Ag, 20.2 gpt Au-286gpt Ag and 25.8 gpt Au-234 gpt Ag/0.7 m is the furthest southeast sample before talus covers the rock.

The high sulphidation alteration has been tentatively dated at 196.2 Ma, the same as the underlying Jurassic Jock Creek Pluton which hosts the gold-copper porphyry style mineralization at the Sofia mineral occurrence located a further 2.4 km east. The quartz-carbonate-adularia veins at Quartz Lake have been tentatively dated at 192.0 Ma being over 4 million years younger and cross cutting the advance argillic alteration of the high-sulphidation system linked to the intrusive. The Alunite Ridge- BS area is located 2.5 km northwest along trend from the Alexandra gold-copper soil anomaly

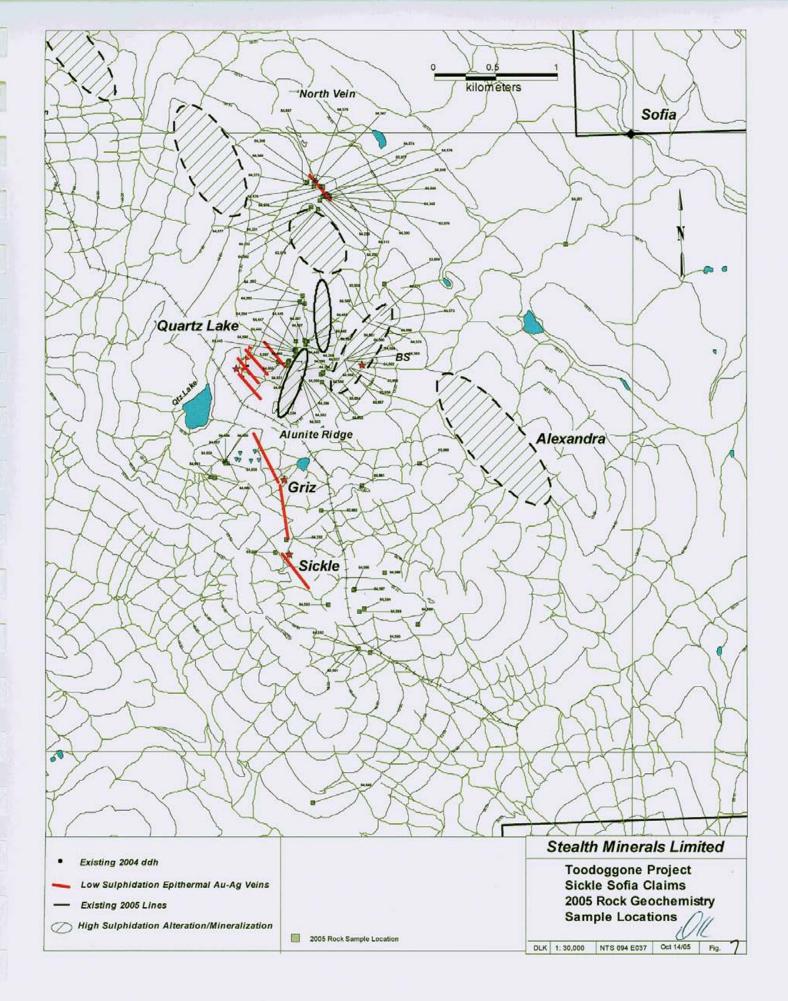
Structural reconstruction places the North Vein roughly 150m lower in the system than the Quartz Lake veins and they show significantly higher gold values which indicate deeper drilling on the 14 m wide Quartz Lake veins may be warranted.

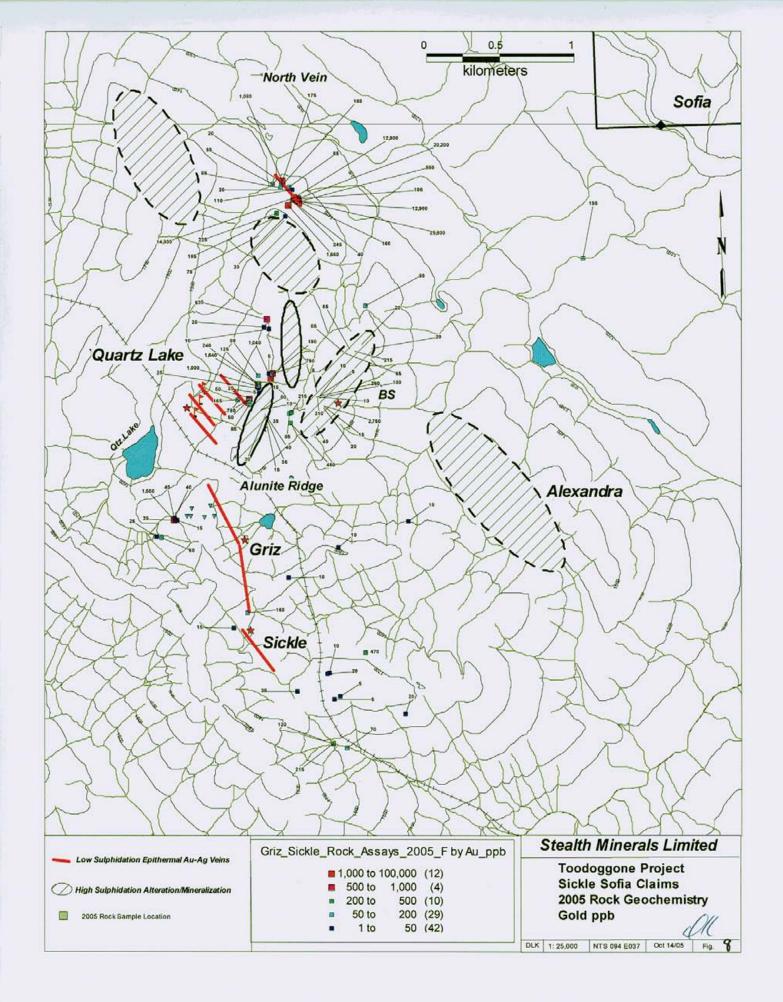
6.2 Geochemical Results

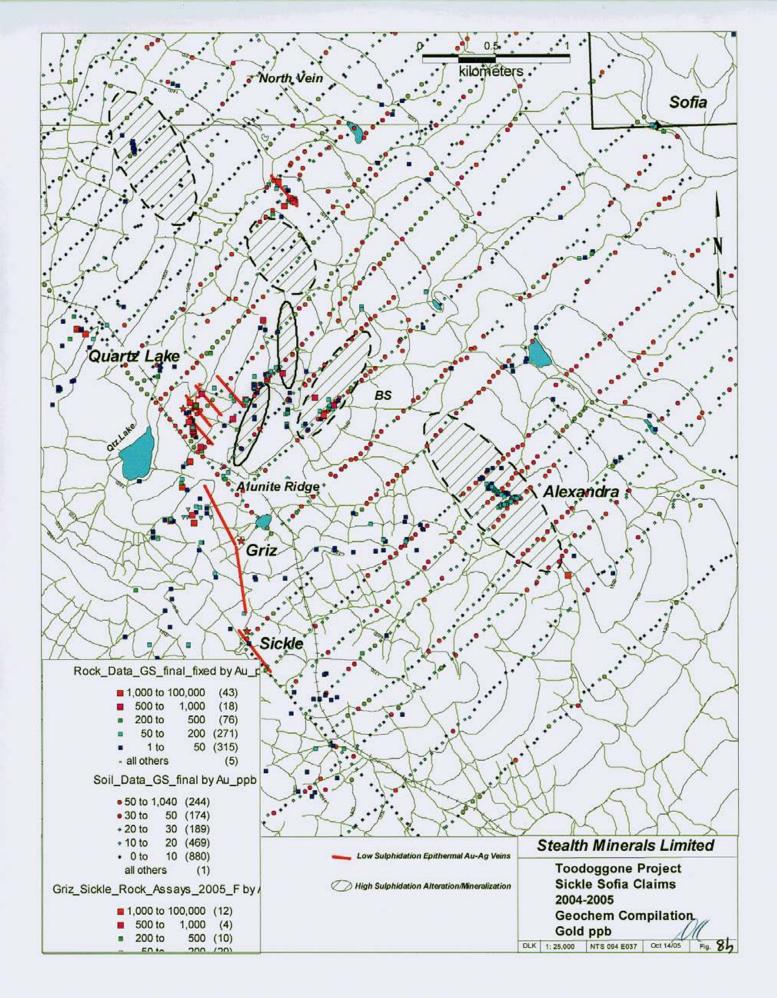
Figure 7 shows the location of the 2005 Sickle rock sample tag locations corresponding to the tag numbers in Table IV, rock sample descriptions. The maps are thematic maps for each selected element on a topographic base and alteration backgrounds. The top value is the top 10% of the population for that element. The "B" version accompanying each thematic map is geochemical compilation from 2004 and 2005 data for each element. Gold shows more detailed areas such as North Vein with a geological background.

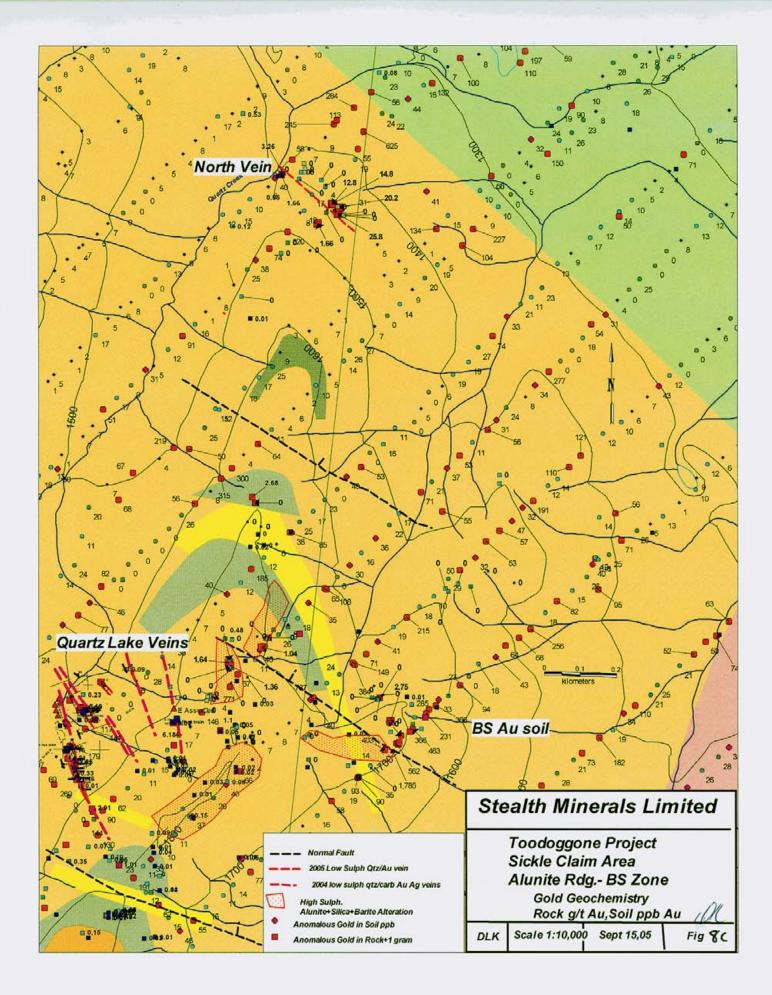
6.2.1 Gold Geochemistry

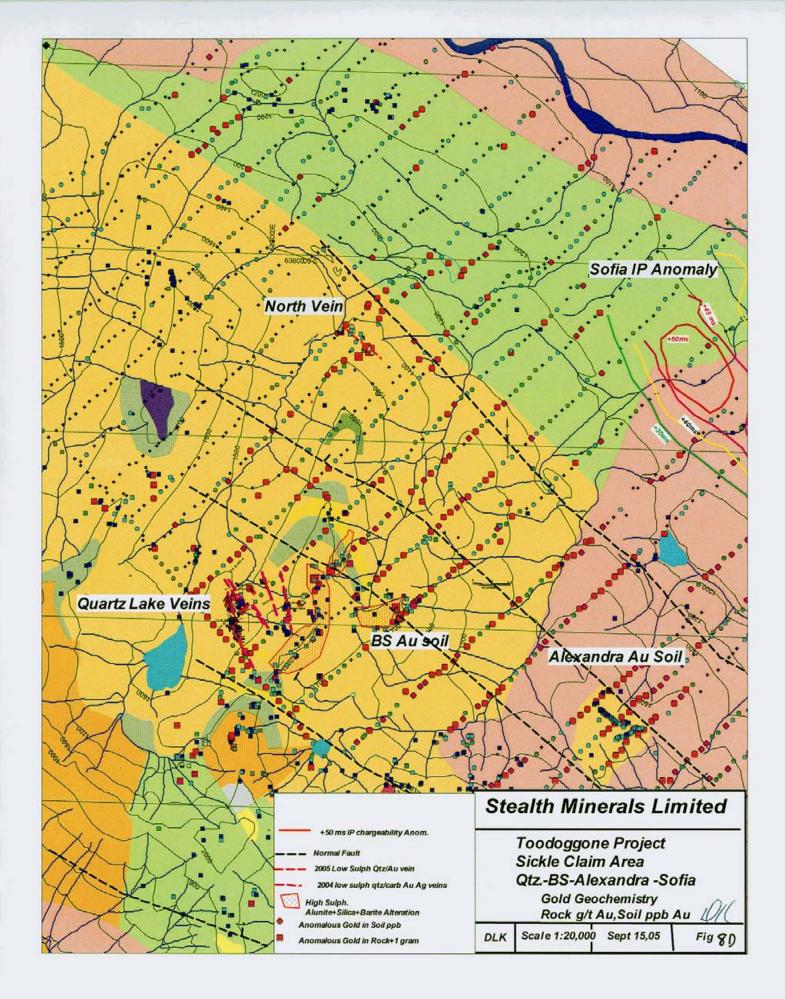
Gold-in-rock geochemistry is shown on Figures 8, with gold-in-rocks and 2004 soils on Figures 8B, 8C, 8D. Gold-in-rock has an anomalous >90% threshold at 1000 ppb and range from 10 ppb to 25.8 g/tn. There are two areas with highly anomalous concentrations of gold values based on the 2005 results; North Vein and North Alunite Ridge. The North Vein was initially identified by a 3.2 gram/tn Au value from quartz float located in 2003. Follow up in 2005 confirmed the float and further subcrop samples are in place, indicating a separate vein and that the original samples did not come down valley ice direction from the Quartz Lake A-C veins. This North Vein can be traced for 250 m along strike. Assay values for the six samples along the vein returned 3.26 gptAu-20.6 gpt Ag, 12.8 gpt Au-169 gpt Ag, 14.8gpt Au-241 gpt Ag, 20.2 gpt Au-286gpt Ag and 25.8 gpt Au-234 gpt Ag/0.7 m is the furthest southeast sample before talus covers the rock. The North Alunite Ridge high sulphidation mineralization is lower in gold, up to 1.6 gpt. North of the northwest trending dyke-filled fault that teminates the North Alunite showing, the alunite –barite-silica replacement zone is down-dropped by 50 m. Here the flat lying, stratigraphic parallel zone is up to 8 m thick before trending under cover and returned up to 1.04 g/tn Au with low silver values. The BS soil anomaly turned up several narrow quartz sulphide veins in place and in float but the area of the main soil anomaly is overlain by at least 2 m of talus and rubble precluding further prospecting. The BS soil anomaly appears to be in the same stratigraphic position as the

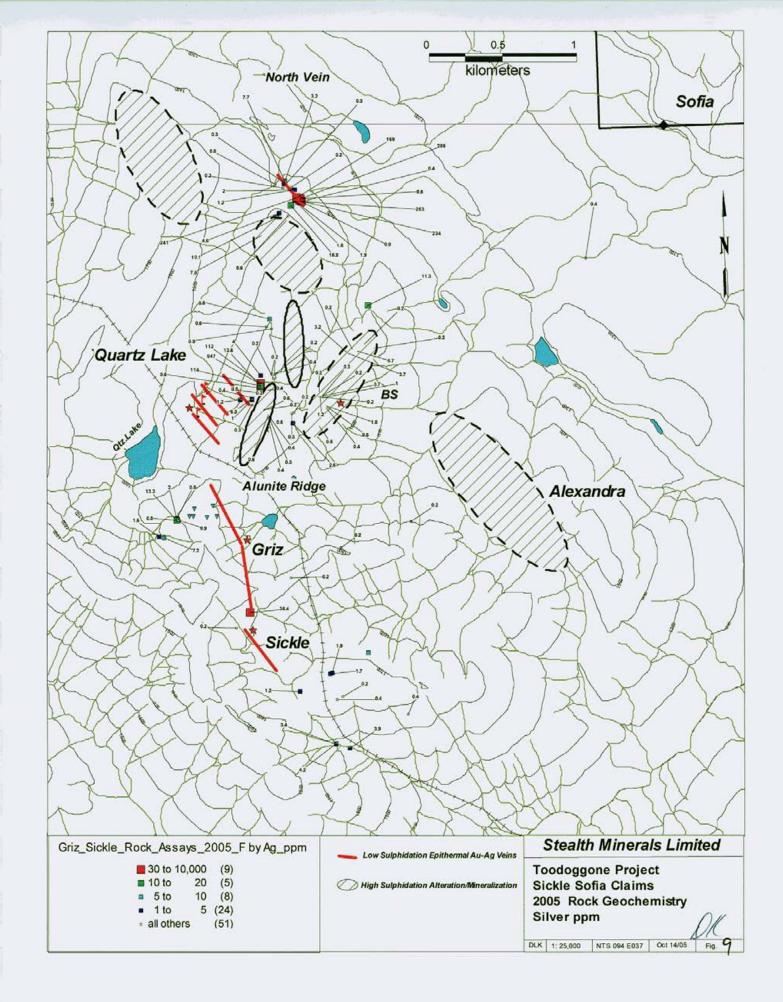

Table IV 2005 Rock Descriptions

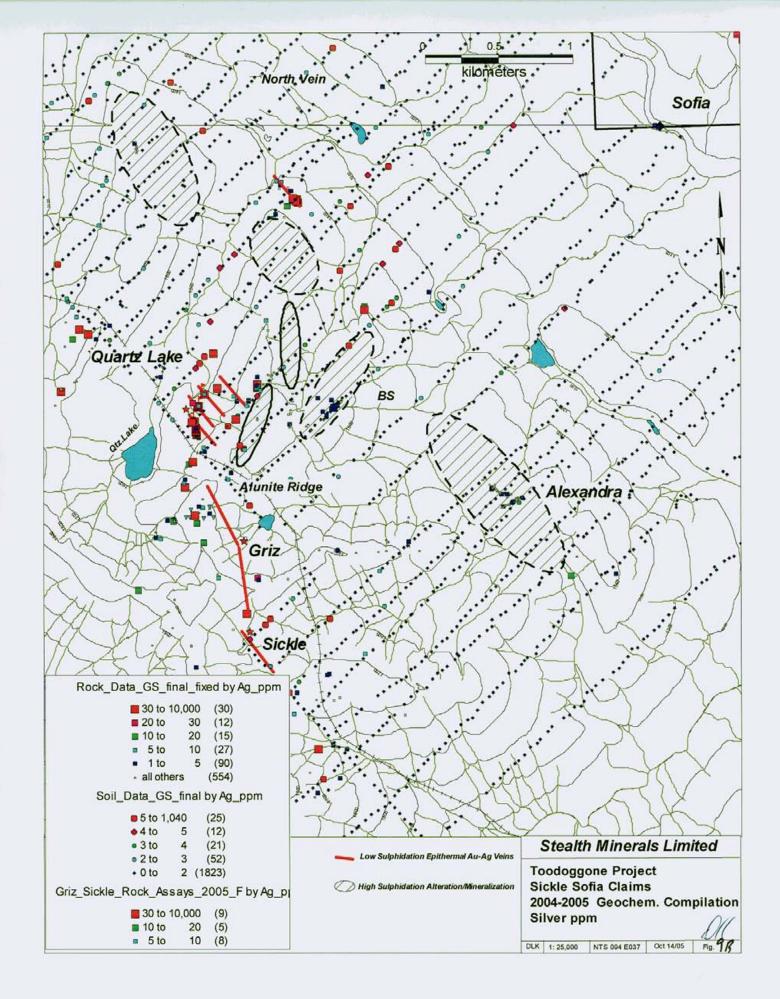

ID Sample Dave 5007 DC 84284 DC 64285 DC 64285 DC 64287		UTM N 6368147		Spi Type	Lngth	Rock Type	Colour	Text 1	Text 2	Altn 1	Occur	Min/%	Atl Type	Mages.	Common the second	Mo ppm	Сиррт	Pb ppm	7.000	As nom	As ppm	Au pab	Sh nom	Bappin Agg/tonne	Augustane
DC 84284 DC 64285 DC 64286	632273	6368147	0.9							1					Comments	no ppm			E. PPM	of here	Co plan		op ppm	and the set of the second	
DC 64285			V 0	a		aunite	wh	mass	ts	alu	rr ass	grtetign			víg disa grevýsue aulphini mas <u>a aunita</u>	9	47	76	14	1.2	10	165	5	1510	
DC 64286	444474	6358078	Sickle	f		çtz ,	W Or		bd	si .	Vnis				Sugary white gray siz with remanent banding, trifs grey-black sulphide	3	7	8	2	3.2	6	10	6	00	
	5322/3	6358075	Sickle	1		çiz .	W Or		yug 🛛	sı	perv				Sugary orange stained giz with brighter blebs of redder material	7	10	1 8	.1	2.6	5	80	5	955	
DC 64287	632296	6368044	Sickle	(ciz	Qr	bz	fst						Qtz breccia, brittle with pervaleive manganese on fractures	·2	55	38	.5	0.4	5	40	5	400 .	L
1 · · · · · · · · · · · · · · · · · · ·	632322	6358320	Sickle	<u>د</u>	3.5m	xt .	GY Gr	1		<u>si</u>	pery .	5 la disa. f	Pv .		Silicecus, Chlorite alt, 1, ff with diss Pv.	4	11	ş	.99	3,2	5	5	5	.90	
DC 64288	632336	6358292	Sickle	f		Barite	W	Msv							A; top of talus, 3 large massive bante boulders		1	4	1	3.2	5	1040	5	1650	1.04
DC 64292	532180	6356710	Sickle	c _	3.05	stz vn	wн	bx	yya	lim l	**	7 CPY	νп ;	330/52	Small vein NW. Sickle bowl.	• •	53	·40	,114	38.4	10	160	6	235 38.4	
DC 54312	632478	6359491	Sickle	Ċ		qtzvn	wh-gn	þx		calcite		SPy			çtz-calcite -breccia boulder (.4x.4.x.3π). Minor chlorite in çarb.	2	66	624	1357	1.9	10	40	5	45	-
DC 64346	632413	6359605	Sickle		ç	1.5m	x	lgink	b×	\$DX	s). minor	mis	Tr Py		3.5ct.5xt.5m Boulder. Reworked volc. Clastic with gtz bx and chalcedonic vnts		16	20	46	0.3	10	20	5	··•0 ,	
DC (64347	632414	6359595	Sickle		c	3.4m	x	l pink	ng	stx	SI. THERE I	vnis	Tr Py		Taken in 3.5m stockwork on south face of same boulder as above.	i	9	:2	29	0.3	35	185	5	60	
DC 164348	632526	6359484	Sickle		c	0.3m	x	pink an	ma	stx	ا نو	vnis	Tr Py		White grey chalcedonic gtz: Strong stockwork throughout	2	7	28	25	253.0	25	12900	5	40 .253	12.9
DC (64349	532348	6359602	Sickle		f		k	pink an	bx	stx	si.	vnia			30x40x20 taoular boulder, 15m upsigge from creek. Vuggy gtz ax in Toodogonne tuff	;	1	6	; ;31	0.6	16	95	5	55	
DC (64350	632525	6359461	Sickle		e	1. 0 m	alun	wn-yo	bx	lim	fai	Tr Py	57.	350/48	Taken al base of O/c in snear zone, rubbly taxture.	3	43	58	2	J.8	15	160	5	1220	
DC 1	632197	6358157	Sickle	ç	1.5m	ສະບາ	wh-ye			lim	fct				Next sample apove previous, no visible su phides	5	22	80	з	0.4	15	50	5	1075	
DG 2	532199	6358158	Sickle	•	1.5m	∎u∏	wh-ye			lim	fct				Next semple apove previous, no visible su phides.	2	14	78	1	0.2	26	6	6	.6.2	
Gary 64443		6358226		oc		Fxt		vua		el					alun, pyrophyolite?	4	319	172	2'	a 6	350	25	380	265	
Gary 64444		6358248				Fxt	àn	DK		si	Der .	ma 10			mal, azunte, ba, along smel, shear	15		74	106	847.0	1640	1640	10000	65 847	1.64
Gary .64445		6356312		r		Fx:	an	stk		a	sik				gtz stx with ep alt in fxt	1	19	10	49	4.0	10	80	6	.00	
Gary 64446		6366206		orao		Fx:	vo	NUG		si					v wiggy. Py been weathered out	84	420	78	23	0.4	515	15	260	3'0	
Gery .64447		5358254				Fx:		vua.fa		si, akun		ma.tet.asc			In sumphick, small lenge. Continues to the South.	2	3295	110		112.0	2065	240	3000	·50 112	
Gary 64448		6358192		· ·		Fx;	wtyo .			si, akun		asov. tet			right below 771ppb gold sol	4	23	47	3	0.5	5	25	5	55	
Gary 84449		6358319				Fx:		vuq.fq		si pa alun	nw l	aalena?			anangite? Or Galena	3	3	16		0.4	15	790	30	1050	
Gary 64450		6356317				Fx:		vuq.fq		si,ce,alun	~	galena?			energite?. Or Gelena	57	6	18	2	0.2	70	190	5	8.2	
Gary :64201		6369104		<u>.</u>		Fx:	w	4000.19				mag 3			almost like sits. Omm vojs of meg	3	126	s	a 1	0. <u>2</u> 0.4	5	155		210	
	i	5358534		<u>uc ,</u>		0.1z	gn 	atk		<u>9',897</u>	v/115				annas me av. sinn was sinna amail 1cm gtz sik vns		e		20	4.4 1.e	<u>د</u>	~	<u>د</u>	.40	
i i		6358688			100cm by Bor;			fa		8	<u>-</u>				ama rom grzise, vis some hem staning as wei	20	47	70	23	5.6	an.	635		305	
							wt .	19. 1.			<u>vn</u>					22 22	й т	44	25	0.0 1 9	<u>а</u> и с	000		355	
Gary 64204 Gary 164205	1	6358622			45cm by Bom		¥1.	<u>10</u>			<u>vn .</u>	PY 1			chalcedonic banding along edges		9	44	<u>4</u> 2	0.9	9	10	а с	45	
		6356609			30 by 40cm			ía		si, mn	<u>vn</u>				ernethvat		39	<u>2</u> 312	3	42	9 10	19	-	25	
Gary 64229		6369487		c across f;		CC with Si		<u>yug</u>		60,6i	vn j	τργ.			float boulder 15 upslope from Pais 64577. Much do, 1-2mm attz ynis	2	14		509	1.0		245	-	25	
Gery 64230		6359458						frac		<u>9</u> 1		upy 			Looks very similar to Pals 64577 and 64578 DC trinks its hhhbotttt.	<u>2</u>	14	<u>:u</u>	19 54	18.8	10	1660	2	25 • 20	1.66
Gary 64231	1	6359403		r				VUg		<u>m-1,cc</u>		no vis min			Nice vug fexture with carb, rivuca	6	\$	-6	:	4.6	10	225	\$		
Garv 64232		6369371				Qiz			crystallin	si	dies	galena.cpy	(.sph		fleck of galena with opy in it. Found another piece of Fost a bill bloger 30cm away. Look	15	121	·0000	5152	12.1	<u> </u>	185	<u> </u>	20	
Gery 84655		6357346		•		qtz stx	pk,gtz			gi					Rooded all calcut by chaic 1mm chaic vins. Daves vn	3	14	•4	39	3.5	5	40	5	55	<u>├</u>
Gary 84656		6357346		c	5m	qtz	q17 ,	<u>.19</u>		si,eduleria	wk dias		<u>sd</u>		All doglooth qiz, starting to see adularia along edges of qiz vns Daves vn	6	6	6	.8	2.0	5	45	5	45	\vdash
Garv 84657		6357333		¢		alz	qiz	fa	WK YUR	si,adularia			sd		Bending of gtz on edges and wk vugs Daves vn	6	4.	6	.1	13.3	5	1550	5	30	1.55
Gery 84656		6357334		•	'm	q12 .	q12 .	fg		si.adularia			ed		60 om of chip in olz vri end læst 40.in sik. Trace caro Daves vn	1	16	24	40	0.9	6	16	5	65	├ ──-}
Gary 84659	631688	6357335	Sickler C	c	·m	gtz	qtz	stk		si,edujeria			ad	216/61	40 percent gtz and rest flos o flow. Adulana right above in gtz Daves vn	1	19	24	56	5.5	10	25	5	50	<u> </u>
Gary	631599	6357216	Sickle(C)	'	'm	atz sik	alz	ox 🛛		si,carb	wk diss	2 cpy.sph.	and acanth	ite	v ox stz reheated by earb and allica. Veloanic tuff brecciated pieces have min pv and m	it 1	174	228	190	72	5	60	5	10	İ
Gary 8465'		6357219	SicklerO	f	30bv15bv20 c	gtz bx	pk.gtz	ex.		s i		рү2 сру'і			previous sample 151528. Fo anex minera in plaasy otz, mayb some adulana	4	283	64	83	16	10	25	ō	40	\vdash
Mike 63853	632472	6357989	Sicilde	œ		fat	gr 🛛	ma		61	perv	ρy 2			neer normal fault zone	2	37	24	49	2.6	15	450	5	295	
Mike 63854	632646	5357971	Sickle	t		ʻxt	wi	'a		5I	sth				Sistk with sild field walrock	6	28	416	1126	0.6	55	40	5	:70	<u> </u>
Mike 63855	632595	5358103	Sickle	¢¢	05	**	ar	' a		chisi.	perv	руЗ			py may be associated with a viria	16	29	298	16	1,8	10	2750	ō	·320	2.75
Mike 63856	632700	6356102	Sickle	×		5d	wt	ʻa		si elun	perv				ledge or fertilion vem	1	94	5688	1568	56	6	15	ō	6.0	

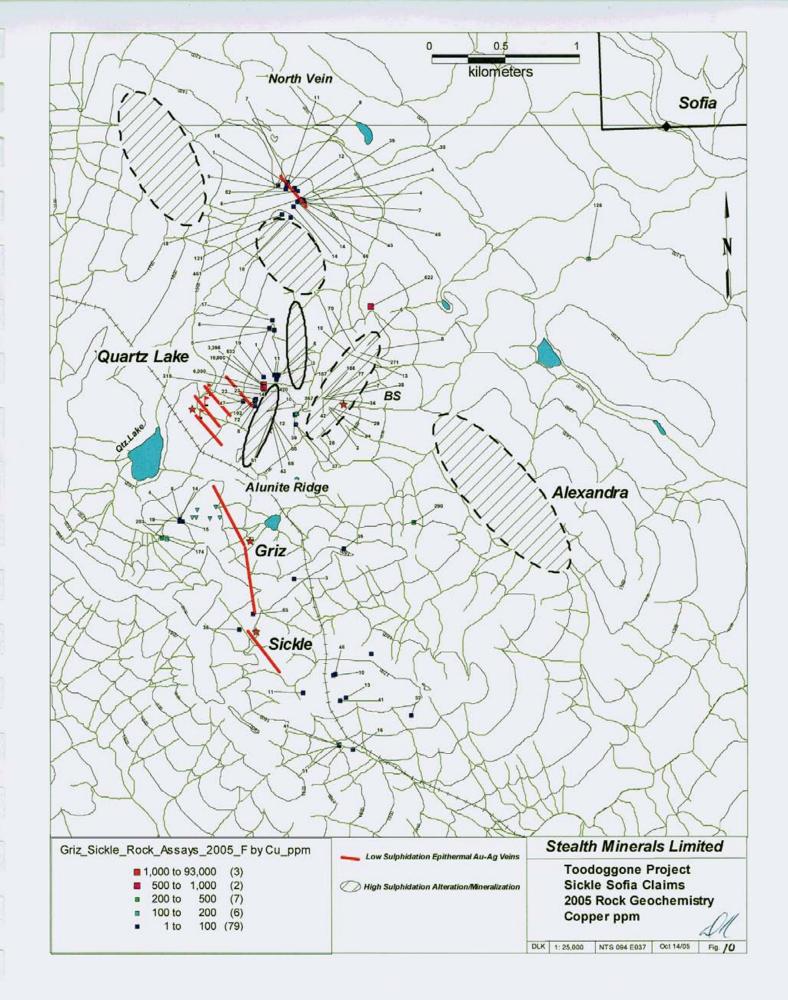

Table IV 2005 Rock Descriptions

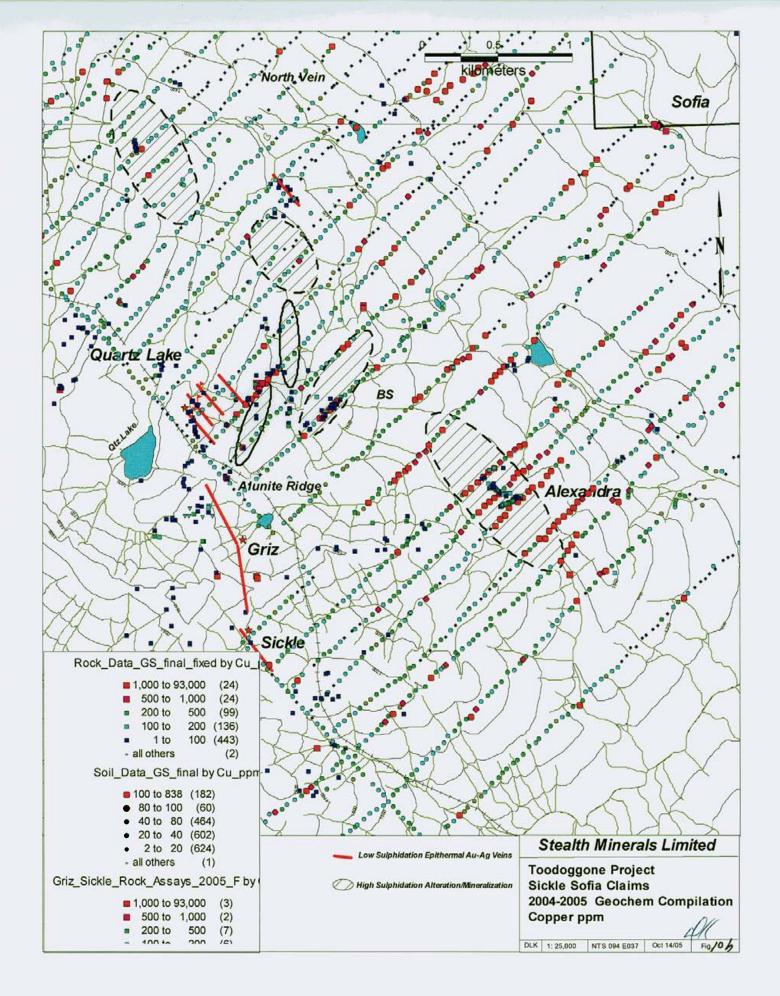

<u></u>	e - m e le ri	lumur	UTM N /		1	4	Rock Type	A . J	T.u.s. d	T 7	a 10- 1	Oneur	Lin W	Att Type	Li ante	Comments				T	4.0			-	Pe	g g/tonne	
	53857	UTM E	8358092 S		SPI Type		HOCK TYPE		Text1 map		alakun ba		py on sch			0.5 m wide vein	a pam	iou ppm	14		A9 PPm 04	AS ppm	20	¥appm r	1150	eg g/tonne	AU gronne
	53858 63858		6358483 8		<u>өс</u>		¥11	¥6	1042		aiskun ba		DY CIT SOIL			specks of Ag subhoasits		20	67		0.2	3	20 es	2 e	375		
			6356763 3			10cm	100 V70	wtra)	ioz bx.st	<u> </u>		bx.sl	The bar			similar to A vein?	1	1	644		11.3	20	99. 55	۵ «	25		
			6357329				vri fxt	with a literation of the second se	67.54		chi, si, ba		py 1. trop			atz-be-by veintets in childt	<u></u>	290	12		0.2		10	2. Z	200		
Vike	63861		6357148				Net vn	90			chi si ba		64 . 4 G	, 		gtz-ba veinlets in strongly chloritized fxt	1		50		0.2		10	5	1175		
Vike			6356950			<u>30cm</u>	Net 1	un l	la.	fault zon		perv				fault-related all alum alteration grades into all py		122	22		0.2		10	5	40		
24			6356032				2		94 Fa	fet			Wm .		<u></u>		12	65	18		0.3	_	35	<u>к</u>	500		
20			6358033				2	wh 1	61	6-P		av.	lim .						18		0.4		15	5	955		
			6368031				2		61	fet		av.	line .				20	51	44		0.6	· · · · ·	30		505		
2	54555		6356059				2	wet i	ía.	YUGS			liarry, but			fa dk gy miden/ biotones	8	12	10		Q.6		35		1040		
Pal	64556		6358051				2	wh	la la	fet		qi20 s	lina .		_		14	39					85		245		
			6356060				2	wh l	ta.	fet		atzbx	Kita .				41	367	30		0.2		215	5	285		
Pa	64556		6356163				·	wh I	fa	VUR		av			_	dk mineral doba	5	7	22		37	5	260	5	1390		
Pal	54559		6358183					an	ma ma		orgo	atz.be	τov				8	42	114	390	12	45	310	5	779		
	54560		6358174					an	ma			atz.ba				minor as in waas	3	77	1494		02	5	5	5	190		
Pa	54561		6356171						mg		0000	av	tim.			large pieces on take, minor be	17	109	22		03	35	10	5	330		
Pal	64562		6358182						ma			gy.be	14m			mana.aer	5	36	135	1087	0.2	10	10	5	360		
			6358160						me		0000	₫¥	1 dise py			Maga State	9	35	388	787	1.0		100	5	175		
Pa			6358197						ma		prop	av	T CEV			tarce block, few specks cpy	3	167	12		0.2	5	5	5	535		
Pat	64565		6359250			140cm		vo.bri.wt					maxi 1			sheered el ba cerb	6	461	64	53	7.8	385	75	300	1230		
			6358240			<u>,</u>		gn.yo				Qu	BROY 1			15cm mai scorodite high grade	46	6090	68	10	114.0	10000		10000		14	136
	54567		6358235			315cm		gn.yo	6a	lct		Qu	asov 1			chip from ohl voic across structure	5	532	52	18	13.6	835	125	1045	940		
	54568		6358478			<u></u>		et,bri	ka .		arg, alun	bx			-	fault by with some si	19	271	160	119			215	5	165		
			6358488			_		wt,5n	fa			Qz Ba	trov			much mang here	7	15	14	150	3.2		55	5	1425		
	B4570		6358461		a			wt.bn	ka			Q2 Ba				upelope from 569	52	13	92	165	37	10	65	5	1105		
	54571		6358519		a			wt.bn	ha	let.		กม				no vila sulicitides	2	6	A	25	0.2	5	20	5	295		
	64572		6358490		1				ma	millior vu		-	DY 1			si akun? Maybe so	1	5	12	6	0.2		20	5	80		
	84573		6359576		f		2	we	ta			σv					1	2	18	30	0.3	10	85	5	35		
	84574		6359577		+		Tde vote	w9	fn		0000	av				some caic mang proximal- vn ikaly bends 330	1	12	4	33	0.2	10	85	5	<u>40</u>		
Pet	84575		6359559		1		Tog vote	-	fa	sl¥		T.					1	8	4	23	1.2	10	110	5	40		
	64576		6359563		ſ			w	fa	stx	chi, mana	stz oc vn	57			cato	3	52	172	304	2.0	10	20	5	80		
	64577	632494	6359610	SS BS	I	· · · · ·		wien.	fc.six	stik	chi, mang	atz	py dik mén			minor grey py fa min in la atz	1	18	38	67	241.0	5	14800			241	14.8
	64578		6359501		1				lg, six		chi, mang	44	py dik min			to py and to gy dots in to gtz	1	30	83	102	286.0	5	20200	5	65	256	20,2
Pat	64579	632404	6356596	38.89	r			wi.ov	fa .	#\$K	chi, mang	atz				big boulder	76	11	176	7	3.2	5	175	5	45		
Pat	64583	632520	6356184	3	T		x-fuff	willon	fa	r el	Li.	atz	py 2				3	11	30	81	1.2	5	35	0	120		£ .
Pat	64584	532815	6356151	s	r		x-luft	bn,yo	mg	fcl			Dv 5				1	13	14	27	0.2	5	5	5	45		
Pat	64585	632773	6356127	38	.		x-huff	яv	fg	fel	si						1	41	108	706	0.4	5	5	5	30		(
Pat	64588	632740	6356308		1		x-luff	wt	hg	vug	erg el	atz					14	48.	20	43	1,9	5	10	5	345		
	64587	632725	6356299		1		Qu	wl	h	STR MUS		व्रंच	pylia .			open vuggy gtz br	2	10	70	35	1.7	10	20	5	15		
Pet	64588			s	11	L	xttxtt	9Y	fg	101	ei.	atz	DV.	1		diss is py by on fot operate ba	142	37	54	4	8.3	15	470	5	180		L
Pat	64589	633255		GS	I		xt	bn .	mg .	stik		atz	PV.CPV.60	ņ			1	32	150	205	0.4	5	20	5	225		
	64590	632962	6355803		1		¢	wt	mg		wk prop	atz oc vn					26 .	18	3596	38	3.9	10	70	5	215		ł
	64561	632767			1	<u> </u>	ļ	wt	ma	etk vug			disa py	ļ	L	many similar pieces in this area	23	31	105	14	4.2	10	215	5	55		
	84592	632768	6366830		1			*1	7710	tet atz		CET CC M				difi than most fit	17	41	120		3.4	5	120	5	30		
	64545		8354589		1			an.av	ma	ath:	prop		tr py	— —		······································	1	7	12		0.6	10	20	-	65		
	64647		5359619		t		lda x lufí		ma	ette	ргор		tr py	1	L		<u> </u>	1.	8		7.7	10	1080	5	20		1.08
	64548		6359481		¢ .	1.25 m	tdg x tuff			50 <u>4</u>	si	Q.,	tr py	l	<u> </u>	chip of several ton anoular boulder	1	4	4.	12	5.4	5	555	5.	25		
Pat	64549		5359503		1.		tolg a tufi		mg	lict	¥I	Qu	tz.py	i	L	lim on fol	1	4	18	25	0.6	5	105	5	75		
Pat	64850		5358152		¢	2 1 m			mg		atun ail	<u> </u>	tr.hem	 .		lower level of abunite	14	102	184	8	6.3	40	760	5	1520		
Pat	64861		6358143		c	2.6 m	tolg voic	wh,or	mg	L	alun, sil		tr hem			1.2 m bottem, 1.4 m no sample, 1.4 m top	20	72	94		1.0	10	50	5	1320		L
Pat	64652		6358115		r	L	tolg voic	wh,or	mg	L—	alun, sil		tr hem			prev patches, porb, Hem some silica	2	9	24		0.3	5	85	5	1195		
Terry	63976		6366486		Chip	70 cm	qiz ze	Wh	ia	nd	S I		0.05		<u> </u>	Sticified quartz/dark suiphides	1	40	36	52	234	10	25800	5			25.8
	63977		6359510			50 cm		Wh	ka	Pd	SI		0.05	L		Skickled quartz/dark subhides	2	35	30	42	169 .	5	12600			169	12.8
Тептү	53975		6356382		FL	1	Vol	Gy	¢9	re:	51	l		I	L	Silicified alteration pyrits, boxwork, veinlets	3	18	14	55	05	5	20	5	60		


Sicila 2005 Report









Stealth Minerals Sickle-Sofia 2005

Alunite Ridge mineralization; under the pervasive replacement style alunite alteration that appears to have replaced a specific coarse grained volcanic fragmental unit. As seen in Figures 8B-D the gold in soil data correlates well with the located gold in rocks and indicates further veins may be found down slope from the North vein and between the BS and North vein.

6.2.2 Silver Geochemistry

Figure 9, 9B show 2005 silver values with rock chip assays and the corresponding soil coverage from. The main cluster of silver-in-rock anomalies are in the North end of Alunite Ridge in the high sulphidation area and in the North Vein. Silver values range from 0.2 ppm to 847 ppm at the north alunite ridge area. This high silver is from material mineralized by tetrahedrite, although badly weathered to scorodite and antimony oxides. The arsenic and antimony are both +10,000 ppm. Other samples from this showing returned 13.6, 112 and 114 ppm Ag with associated As and Sb, indicating further tetrahedrite content. At the north vein the low sulphide silica-chalcedonic silica vein returned 20.6, 169, 241, 286 and 234 ppm Ag from the five highest samples. The veins are low sulphide with minor specs of fine grey material. Sample **#** 63859 (11.4 ppm Ag, 55 ppb Au) was taken near a 2004 rock sample which is described as a basemetal bearing quartz-barite vein that returned 197 ppm Ag and 157 ppb Au. This vein is along strike 850 m to the southeast of the North vein and may indicate a 1.0 km potential to the North Vein.

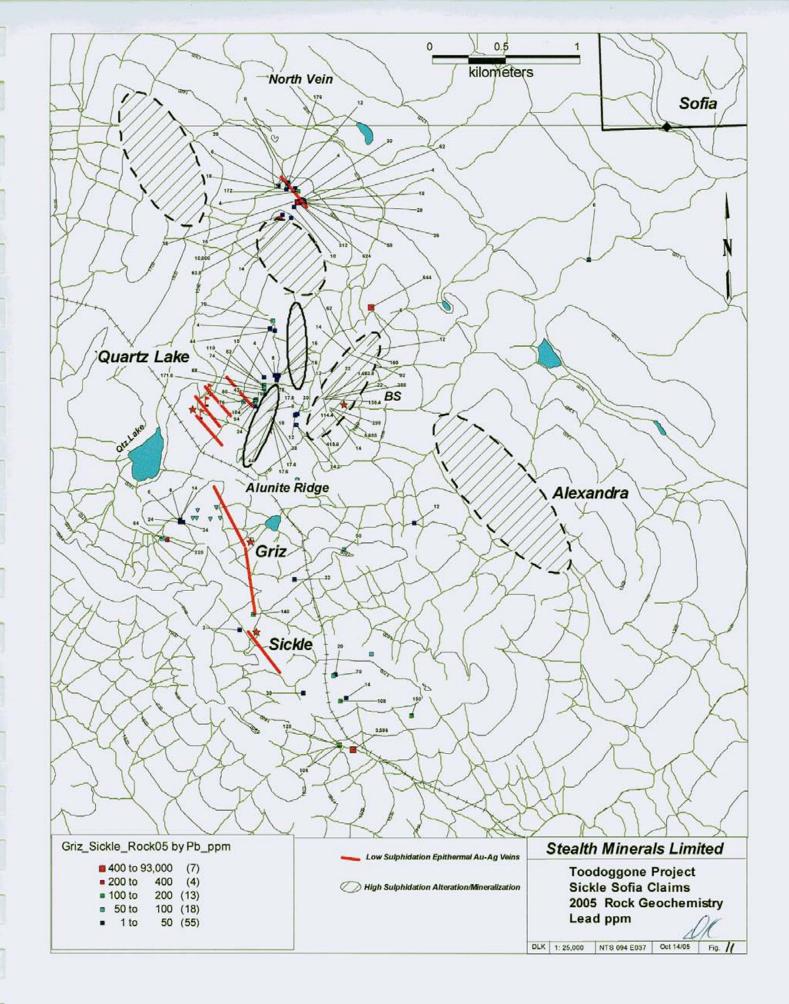
6.2.3 Copper Geochemistry

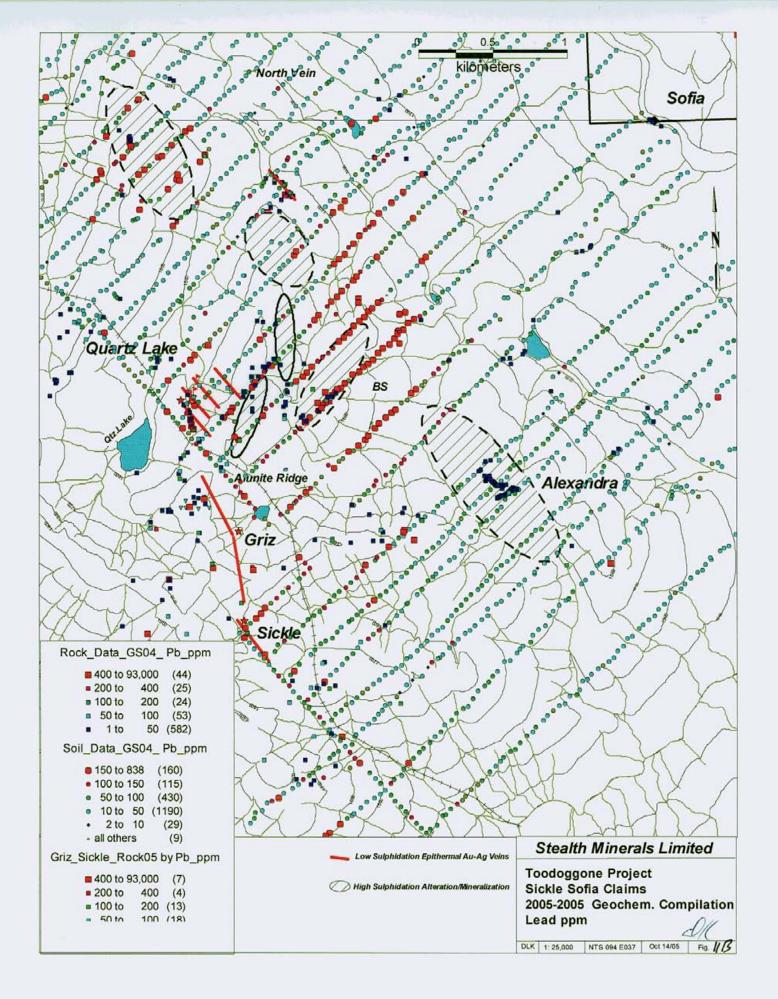
Copper-in-2005 rock values are shown on Figure 10 and 10B showing the associated 2004 soil values. Copper-in-rock for the 2005 samples is fairly low except for the tetrahedrite bearing samples from the Alunite North Ridge showing where values returned range up to 2.3 % Cu with high As, Sb, and Bi. The North Vein is very low in copper and the potential southeast strike extension carried 633 ppm Cu. On Figure 10B, the soil values indicate a large anomaly associated with the North Alunite Ridge

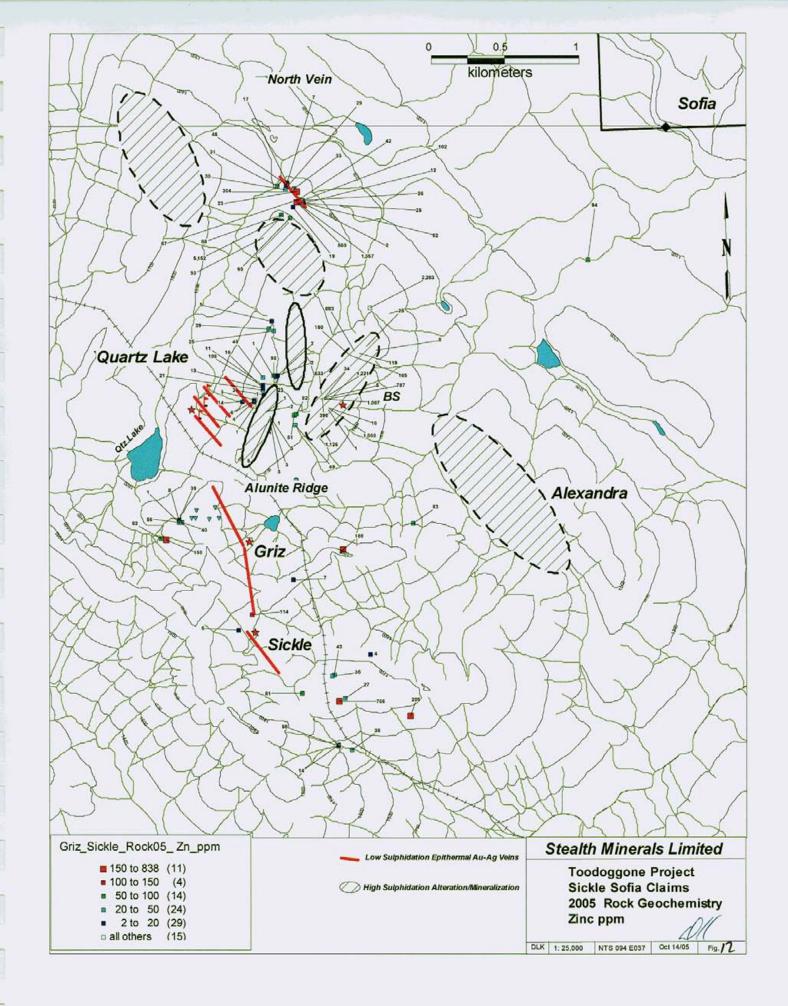
Stealth Minerals Sickle-Sofia 2005

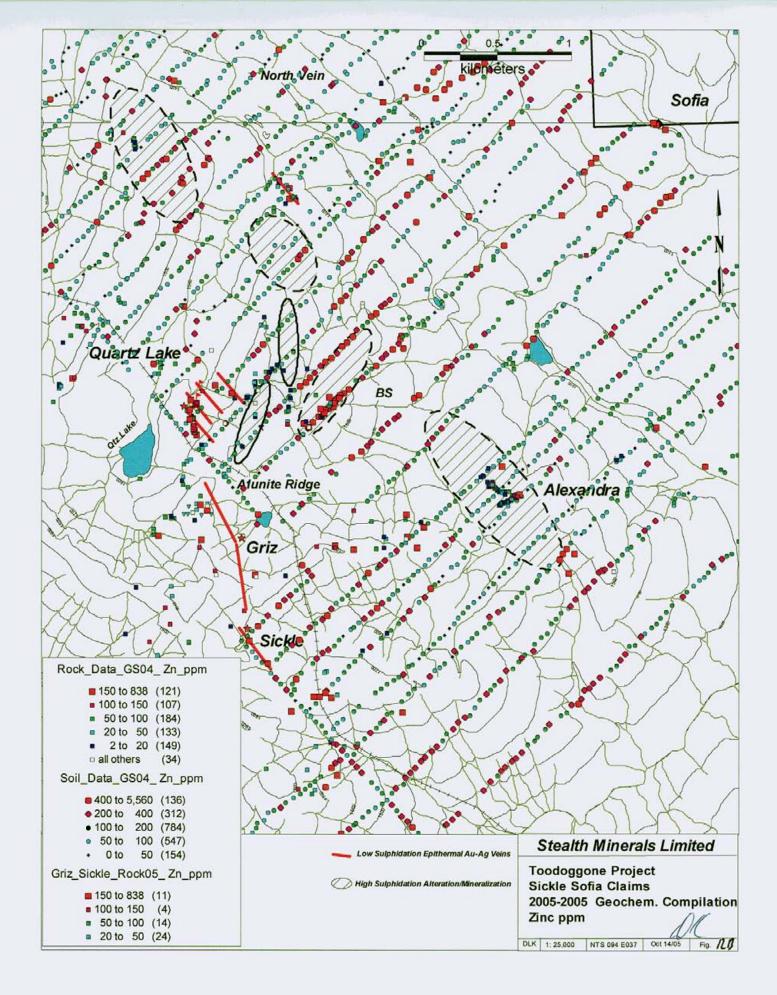
showing, spotty copper associated with the BS gold soil anomaly and with the Alexandra gold-copper soil anomaly. The 300 m x 250 m 2004 copper soil anomaly ranging up to 427 ppm Cu located 2.3 km northeast of the North Vein and 800 m northwest of the 2005 IP chargeability anomaly may indicate a continuation of the Sofia porphyry style copper-gold mineralization into this area.

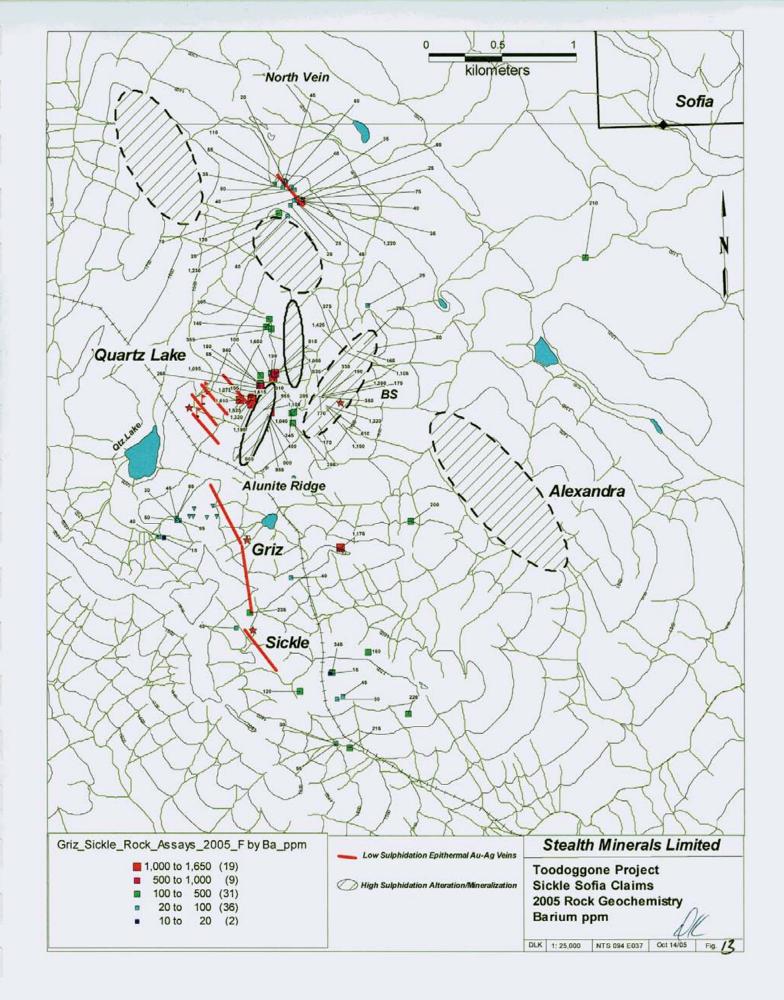
6.2.4 Lead Geochemistry

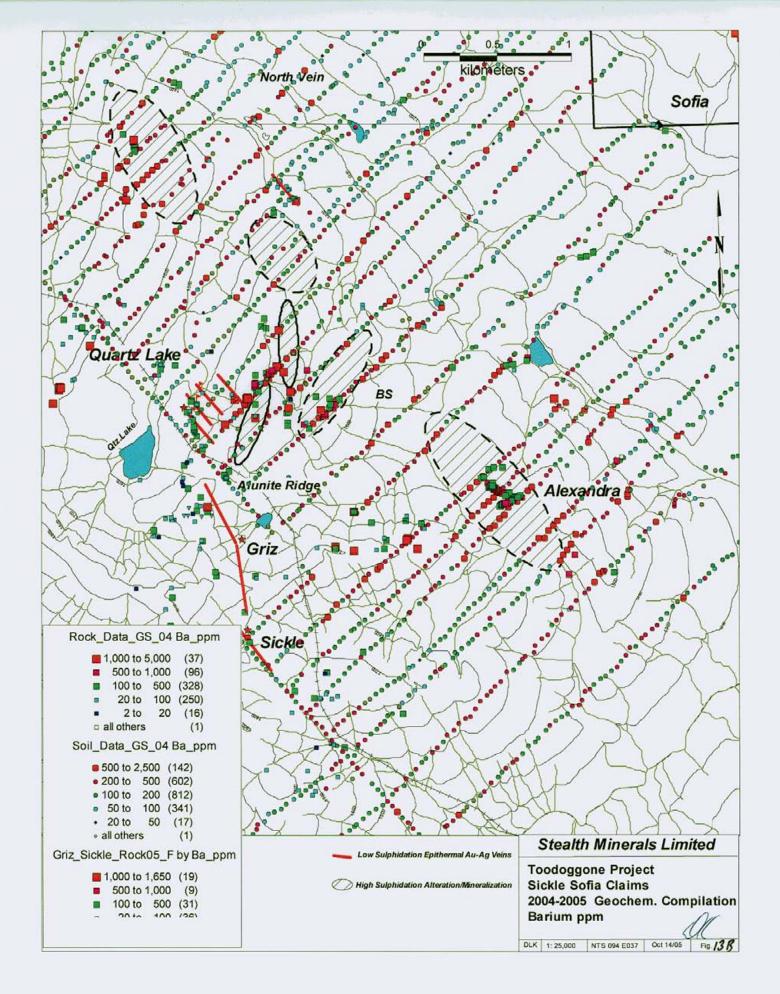

The 2005 lead-in-rock data is shown on Figure 11 and soil-rock compilation in Figure 11 B. Anomalous lead in rock is confined to one sample of 624 ppm in the North Vein and +10,000 ppm (1.27% Pb) from a base metal vein upslope from there. This vein may correlate with other base metal veins in the BS soil anomaly that returned up to 5,688 ppm Pb. The anomalous area containing the +150 ppm Pb population in the soil map indicates a large anomaly continuing from the BS and down slope to down slope of the North Vein outlining a 1.2x 0.5 km prospective area. Another Pb soil anomaly of 1.0x 0.5 km dimensions is located 800 m west of the North Vein in another high sulphidation alteration area which may therefore also be overprinted by low sulphidation style mineralization. Lead values are also associated with the Quartz Lake A and B veins.

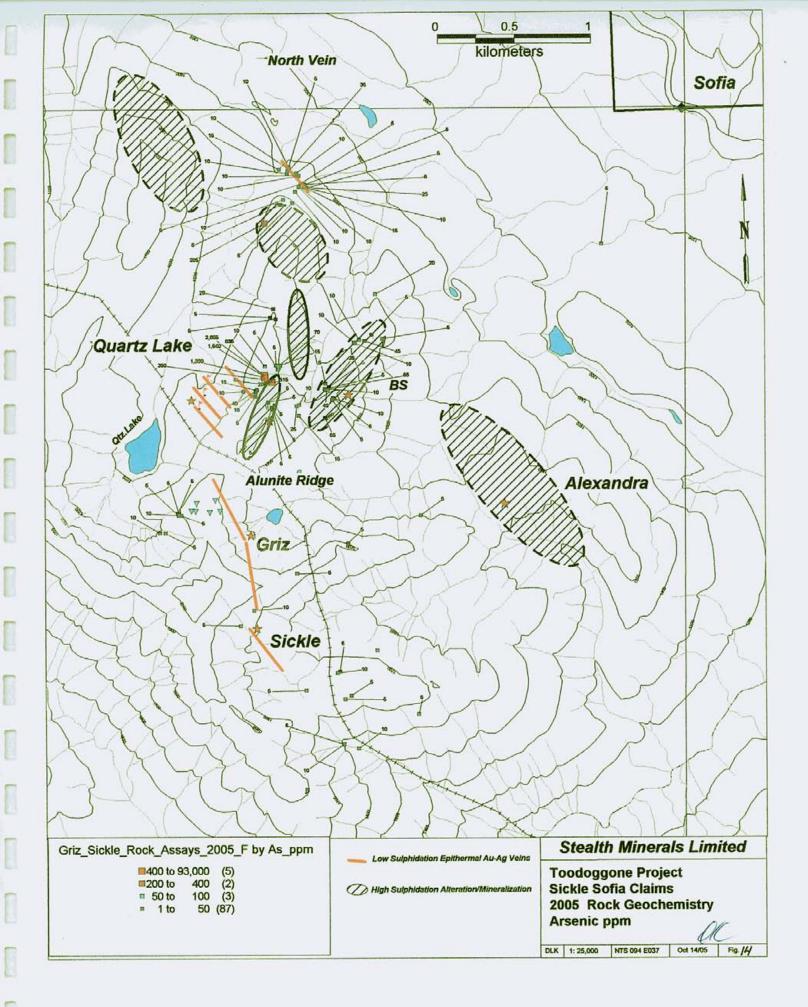

6.2.5 Zinc Geochemistry

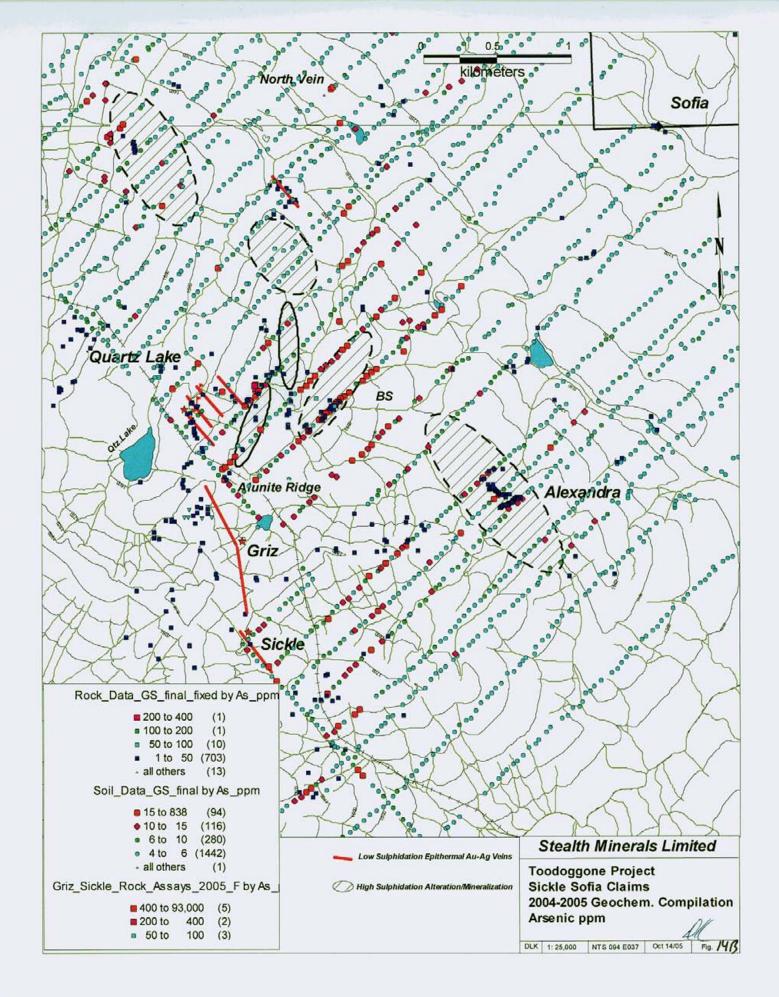

Zinc in 2005 rocks is shown on Figure 12, with rock-soil compilation in 12 B. The zinc values correlate very well with the lead geochemistry and outline the same features. Zinc values in 2005 rocks range up to 5162 ppm in the vein upslope from the North vein and 2203 ppm from the southeast potential extension of the North Vein. 2004 zinc in soils outlines similar features as the lead.


6.2.6 Barium Geochemistry


As seen in Figure 13 for 2005 rock and 13 B for rock- soil compilation. Barium values in rock range up to 1650 ppm with 19 out of the 96 samples above the 1000 ppm anomalous







Stealth Minerals Sickle-Sofia 2005 value. The barium rock and soil values outline the high sulphidation alteration and mineralization. One value of 1220 ppm Ba was returned from the North Vein.

6.2.7 Arsenic Geochemistry

As seen in Figure 14, 14 B arsenic values for rocks are very restricted in their distribution being located at the site of the tetrahedrite mineralization at the Alunite North Ridge location. Values exceed +10,000 ppm As, as well as in Sb. The As soil compilation map indicates a high As soil anomaly associated with the BS gold soil zone and continues in the same position as the lead and to a lesser degree the zinc soil anomalies. The As values tend to be correlative with the high sulphidation style alteration and mineralization.

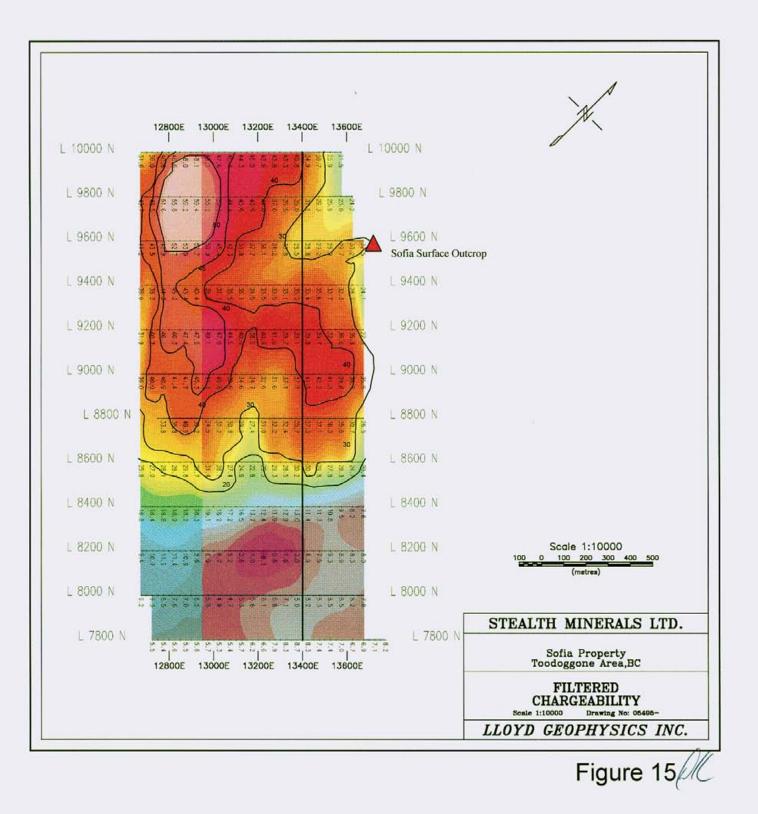
7.0 Mineralization Summary

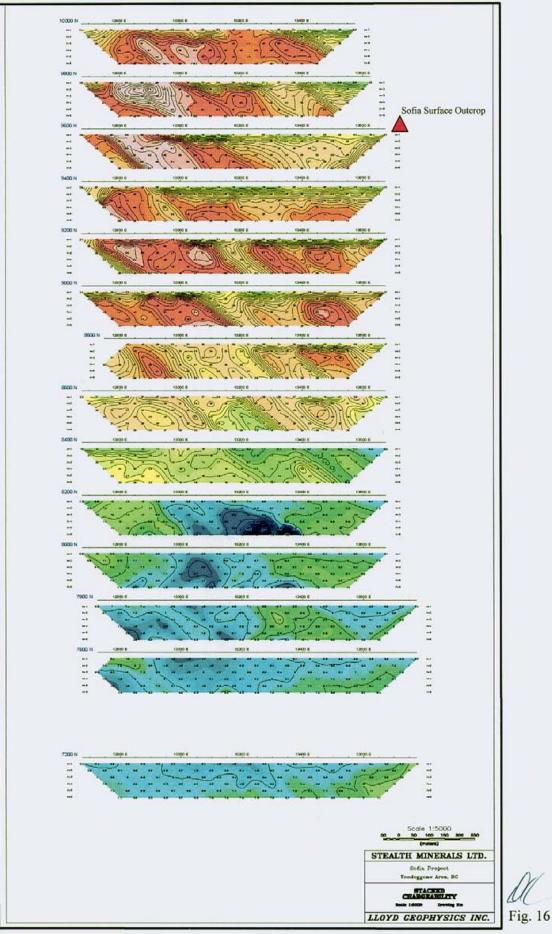
Mineralization on the Sickle Sofia target has been identified as to fall into three related mineral and alteration styles and or models. Initially the porphyry style copper -goldmagnetite mineralization is hosted within the Jurassic monzonite Jock Creek pluton. To date, only one outcrop hosts this style of five events of stockwork veining cutting potassic alteration of the stock and intruded Takla volcanics. Coeval with the porphyry system and possibly focusing on multiple openings of dilatational tectonics driven normal faulting and cutting a portion of the overlying Toodoggone group of volcanics is a low sulphidation style of mineralization and alteration. This second stage mineralization is widespread and is conspicuous in its alteration gossans and alunite, illite, pyrophylite clay assemblage associated with barite-quartz gold ,silver, arsenic and antimony. This stage II assemblage seems to follow large scale northwesterly trending corridors that extend up to 16 km to the southeast of the Sickle at Nub West. The BS, Alunite Ridge and Alexandra targets are examples of this style of mineralization. Preliminary dates indicate that the quartz-adularia -carbonate gold silver low sulphidation style veins with carbonate associations at higher elevations and without at lower correspond to the Quartz Lake A-D veins, Griz, Sickle, Quartz Basin and North Vein are some 4 .2 million years younger, taking advantage of the normal

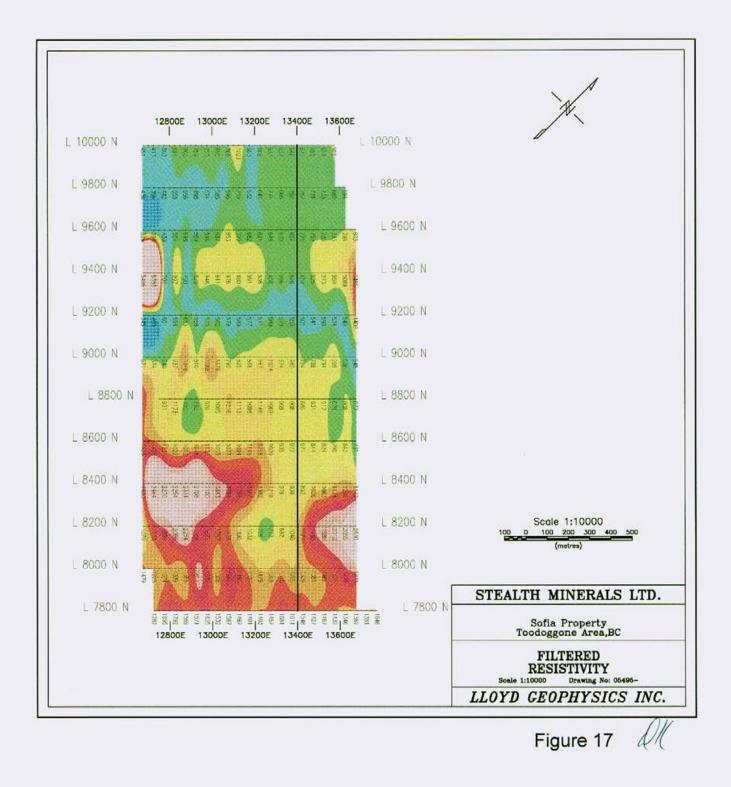
Stealth Minerals Sickle-Sofia 2005 fault zones and therefore appear to spatially overprint the earlier high sulphidation style of mineralization.. The North Vein may represent a lower portion of the system as it is lower in carbonate content and higher in gold. This later style of veins is felt to have formed late in the intrusive/extrusive magmatic events of this part of the Toodoggone.

8.0 2005 Geophysics

In 2004, a new outcrop of porphyry style quartz-chalcopyrite-magnetite mineralization hosted by potassically altered Jurassic monzonite and Triassic mafic volcanic was located on the western bank of the Toodoggone River (Sofia Showing, Minfile#94E 238). The area is flat to undulating and covered by 3-15 m of glacio-fluvial sand and gravel at the 1100 to 1150 m elevation level. Rare outcrops west of the river indicated that similarly altered and mineralized porphyry continued at least 2 km to the west. To follow up on this discovery in 2005, a grid corresponding in coordinates system and orientations to the 2004 soil grid was cut between June 28 and July 5, 2005. A total of 23 km of 200m spaced cross lines and a base line with 50 m stations was cut from the river westward, covering a 1.5 km wide by 3.0 km long portion of the overburden covered porphyry potential. A line cutting crew from Ft. St. James was utilized. The geophysical contract was completed by Lloyd Geophysical of Vancouver who is very experienced in completing IP and ground magnetic surveys in the district. A total of 17 line kilometres of IP chargeability/resistivity and magnetics were completed between July 13 and 22, 2005. The Geophysical Report by Lloyd Geophysics on the Sofia area is an addendum to this report.


Figure 6 shows the position of the contoured IP chargeability with respect to the 2003 airborne total field magnetic and outlined radiometric anomalies. As seen the IP chargeability anomaly is located on the eastern outer portion of a 6 km diameter circular magnetic feature. This large feature shows a magnetic depleted core which corresponds to potassium highs and Th/K low and geologically hosts the majority of the local high and low sulphidation epithermal mineralization and alteration located to date. The IP high also correlates to a 3 km diameter sub feature within the outer ring of the airborne magnetic feature. Figure 15 shows a plan map of the colored IP chargeability with


19



contour outlines. A seen the > 30 millisecond chargeability anomaly essentially fills the northern 2/3 of the grid and is larger than the survey and therefore the survey as conducted could not determine the extent of the > 30 ms values. The location of the Sofia surface showing is plotted for reference. The survey was read from east to west so the area under the showing was just at the detection limit of the survey and is showing an increase in chargeability. To survey this area, the grid will have to be extended east of the river. The high area in the northwestern portion of the grid (+50 ms contour) is roughly 400 m by 300 m and is open as the 2005 survey did not extend further north. A seen on Figure 5, the 2005 grid extended to the mapped limits of the porphyry which is shallowly overlain by potassically altered volcanic rocks. The mineralized porphyry system may continue north under this lithologic cover. Figure 16 is an isometric view of stacked IP chargeability pseudo sections. A seen the whole of the northern 2/3 of the survey is a highly chargeable area showing several individual large scale internal features. Figure 17 is a plan map of the resistivity, essentially the inverse of chargeability. It shows the southern 1/3 of the survey to be highly resistive and very low in chargeability. On surface geological observations reveal the outcrops along Jock Creek and the southern portion of the Toodoggone River between Jock and the Sofia outcrop to contain numerous high grade copper gold veins (up to 33 gpt Au, 2004) but are hosted within a weakly altered monzonite. It appears that the porphyry style mineralization correlates with the potassic and magnetic features evident from the 2003 airborne surveys. John Lloyd of Lloyd Geophysics, as quoted from the report on the survey says "Based on the geophysical data discussed in this report, the surveys have outlined a very strong IP chargeability anomaly with a significant magnetic overprint. This anomaly, which overlies approximately 50 percent of the survey area, is about 1,400 metres long and 1,000 metres wide. Furthermore it remains open to the northwest, the northeast and the southwest, and also has a strong depth component. Since this anomaly is underlain by rocks of the Jock Creek quartz monzonite pluton, it has been interpreted to indicate the presence of a strong sulphide system with the potential to host a significant gold-copper porphyry deposit."

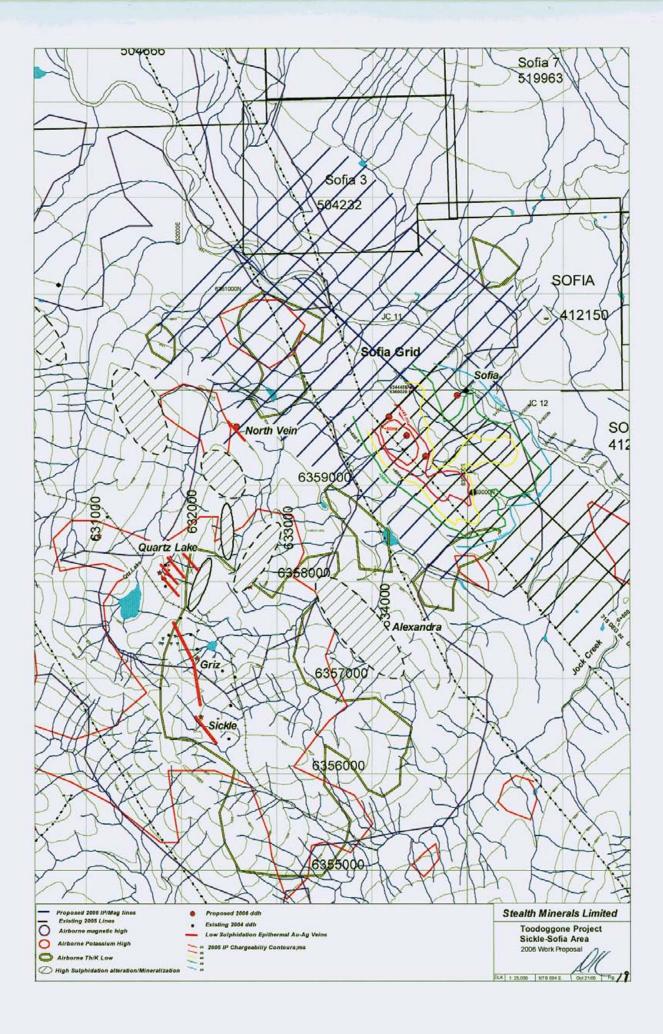
Stealth Minerals Sickle-Sofia 2005

9.0 Conclusions

The Sickle-Sofia geological area is underlain by Triassic and Jurassic marine and subareal volcanics and Jurassic plutonic rocks. In the district, the plutonic rocks of identical composition and alteration assemblages host world class gold-copper porphyry systems such as being currently mined 40 km to the south at the Northgate Exploration Kemess South Mine. Historically high grade gold and silver have been mined at small to medium scale operations in the western section of the Toodoggone magmatic belt. The Sickle –Sofia target is located on the eastern margin of this belt and the full volcanic section is preserved and exposed. Three related styles of mineralization are preserved and have been documented on the claims including gold-copper kspar quartzmagnetite porphyry style, coeval high sulphidation alunite-pyrophyllite Au, Ag, As, Sb, Ba, Si epithermal precious metal systems and superimposed younger high grade precious metal low sulphidation quartz adularia systems. Rarely in the western cordillera of North America are these three related systems preserved from erosion in the geological record at the same place and allow the intact section to be explored. Geological, geochemical and geophysical surveys completed to date indicate a high potential for further exploration to discover a potentially economic grade /size deposit within any of the three classes of mineralization present on the Sickle-Sofia claims. A further integrated geophysical, geological and diamond drilling exploration program is therefore warranted and recommended for the Sickle-Sofia target area on the Stealth Minerals Limited Toodoggone area claims.

10.0 Recommendations

To further explore the Sickle Sofia area, a continuation and expansion of the 2005 geophysical grid/survey is recommended. A further 40 line km of grid and geophysics is recommended to expand the grid/survey to the northwest, north and northeast across the river. Further geological mapping and trenching is recommended between the Alunite Ridge North Zone and the North Vein. The North Vein should be trenched by hand/blasting to determine structural controls, width and detail channel sample results


21

Stealth Minerals Sickle-Sofia 2005

prior to diamond drilling. Helicopter supported diamond drilling is recommended for the existing Sophia porphyry target as outlined by the 2005 geophysical survey. Diamond drilling is recommended for the Alexandra copper-gold alteration zone to test for continuity and association with the underlying intrusive system. The location of these activities is plotted on Figure 18. Cost for the Phase I program is estimated to be CDN \$690,000 and is detailed in Appendix IV.

Appendix I

.

2005 Rock Assay Certificates

	A		•	+	·+	+	,		+- :								· · ·											<u> </u>	
	CH LABORA	TORY LTD.		,						CP CER	TIFICA	TE OF	ANAL	YSIS A	K 2005-1	199		.		·					Mineral				·
	OPS, B.C.	•	• ••				~~									,		·	+						0 Esplar				
2C 6T4		•						•			· · · •	1		· · · •				•—— — •	····			· ·		7M 3G	ancouv	я, вс			·
	ite en ser		·			+		+								;		•••••	·+-				•*•	- 141 - 00					
		•				1												•+-			· •	·	A	ttentic	n: Bill i	McWillia	ams	·	- +-
	J																												
	250-573-5700							÷										·										<u> </u>	
ax :2	250-573-4557	•			•			+	i-	·				+		·· •											07		
	+	·	··	+					i-				·								····				amples r Type: R		: 27	_	
	•	•		•			+							• • •		•		t · ·							ed by: D				
alues i	in ppm unles	s otherwise	reported	1				•			· •									·					#: Sickle		•		
	·						•				+																		
Et #.	Tag#	Au(ppb)	0.0	Al %	Aş	Ba	81	Ca %	Cd	Co	Cr	C 0	E		Ma %			Na %	N.I.	P		en -	- .	e.,	T: 0/	u.	- v		····y
4	5007	165	Ag 1.2	0.43	10	1610	<5		<1	<1	36		Fe %	<u>La</u> <10:	Mg %	<u>Mn</u> 10	9	<u> </u>	Ni <1	50	Pb 76	Sb <5	<u>Sn</u>	Sr 57	Ti %			W	
2	63886	105	<0.2	1.44	<	145	<5		<1	7	30	29	2.81	<10	0.98	670	9	0.03	1	540	48	<5	<20	20	<0.01	<10 <10	15 56	<10 <10	<1 6
3	63887	135	0.3	0.20	<5	50	<5	1.54	<1	9	53		3.73	<10	0.08	643	2			470	2	<5	<20	16	0.02	<10	172	<10	6
4	DC001	50	0.4	0.34	15	1075	<5		<1	<1	46		0.36	<10	<0.01	15	5		1	100	80	5	<20	56	<0.01	<10	14	<10	<1
5	DC002	<5	0.2	0.46	20	1615	<5	<0.01	<1	<1	64		0.35	<10	<0.01	11	2	<0.01	<1	90	78	5	<20	66	<0.01	<10	16	<10	<1
6	84655	40	0.5	0.82	5	55	<5	0.10	<1	4	84	14	1.66	<10	0.69	733	3			210	14	<5	<20	1	<0.01	<10	29	<10	2
7	84656	45	2.0	0.21	<5!	45	<5	0.01	<1	1	99	6	0.84	<10	0.08	132	6			110	6	<5	<20	3	<0.01	<10	7	<10	<1
8	84657	>1000	13.3	0.13	<5	30	<5		<1	<1	121		0.60	<10	<0.01	28	6		2	140	6	<5	<20	5	<0.01	<10	5	<10	<1
9	84658	15	0.9	0.99	<5	65	<5		<1	5	83		2.06	<10	0.92	1104	<1			250	24	<5	<20	5	<0.01	<10	44	<10	. 2
10 11	84659 84660	25 60	0.5	1.36	10	50	<5	0.09		7:	58	19	2.68	<10	1.20	1191	1			380	24	<5	<20	- <1	0.02	<10	67	<10	5
12	84661	25	1.6	0.26	<5 10	_ <u>10</u>	<u><5</u> <5	7.01	2	<1 4	100 93		0.49	<u>10</u>	0.38	<u>842</u> 453	<1 4		1	20 170	228i 64	<5 <5	<20 <20	86 16	<0.01	<10 <10	<u>13</u> 9	<10	- 7
13	64378	<	0.2	1.19	<5	95	<5	0.26	<1		- 5 5 - 61		2.22	<10	0.10	616				520	20	<5	<20	13	0.01	<10	64	<10	
14	64379	10	0.5	0.54	60	30	<5	>10	<1	7	47		2.35	<10	0.44	1114	<1			440	4	<5	<20	85	0.01	<10	114	<10	10
15	64646	20	0.6	0.56	10	65	<5	0.30	<1	4	92		1.61	<10	0.42	604	<1			280	12	<5	<20	5	<0.01	<10	32	<10	3
16	64647	>1000	7.7	0.33	10	20	<5	0.05	<1	2	105	7	1.05	<10	0.23	214	<1	<0.01		140	8	<5	<20	<1	<0.01	<10	23	<10.	<1
17	64648	555	6.4	0.15	5	25	<5	0.01	<1	2	112		1.05	<10	0.02	141	<1	0.01	1	180	4	<5	<20	<1	<0.01	<10	13	<10	<1
18	64649	105	0.6	0.49	<5	75	<5		<1	1	60		1.31	<10	0.54	385	<1			280	18	<5	<20	9	0.07	<10	17	<10	2
19	64650	780	6.3	0.25	40	1520	<5	<0.01	<1	<1.	61		1.03	<10	<0.01	18	14			130	184	<5	<20	77	<0.01	<10	11	<10	<1
20 21	64651 64652	50 85	1.0	0.26	10	1320	<u></u>	<0.01	<1	<1	54	72	1.04	<10 <10	<0.01	11	20			110	94	<5	<20	63	<0.01	<10	12	<10	<1
22	64224	5	1.8	0.27	5 <5	1195 55	<u><</u>	<0.01 0.49	<1 <1	37	48		0.36	<10	<0.01 0.54	9 234	2 36		< <u>1</u> 7	40 530	24 6	5	<20 <20	49 65	<0.01 0.12	<10 <10	8 69	<10 <10	<1 <1
23	64346	20	0.3	0.95	10	110	<5	0.16	<1	6.	60		2.12	<10	0.64	550	<1	0.03		390	20	<5	<20	12	0.08	<10	48	<10	
24	64347	185	0.3	0.73	35	60	<5	0.13	<1	5	77		1.82	<10	0.49	408	<1			410	12	<5	<20	3	0.07	⁻ <10	49	<10	5
25	64348	>1000	>30	0.19	25	40	<5	0.20	<1	4	111		0.85	<10	0.06	202	2			150	28	<5	<20	9	<0.01	<10	11	<10	6
26	64349	95	0.6	0.72	15	55	<5	0.32	<1	5	82	<1	2.03	<10.	0.51	433	<1	0.01	1	310	6	<5	<20	7	<0.01	<10	58	<10	1
27	64350	160	0.8	0.16	15	1220	<5	<0.01	<1	<1	46	43	0.44	<10	<0.01	10	3	<0.01	<1	80	58	5	<20	44	<0.01	<10	11	<10	<1
	A.	·					··													····						· +-			i
	<u> </u>	·· ··	·				•						•	· · •	· · ·					<u> </u>	····- +	•	٠	•-					÷
esplit:	<u>.</u>	•		+	+		•		• •			····-+-		-		i		•	·- ·	••	· · · -	•		•					'
1	5007	115	1.1	0.33	10	1560	<5	<0.01	<1	<1	35	46	0.40	<10	<0.01	5	8	<0.01	<1	40	62	<5	<20	51	<0.01	<10	12	<10	<1
																										÷		+	
epeat:																									•				
1 10	5007 84659	<u>160</u> 35	1.1	0.40	10	1520;	- <5	<0.01	< <u>1</u> : <1	<1 8	35 57		0.40	<10	<0.01	4175		<0.01	<1	50	68	<5	<20	52	<0.01	<10	14	<10	<1
10	64659	760	0.5	1.34	10	50	<5	0.08	\$1	0	57	19	2.66	<10	1.19	1175	<1	0.01	3	360	24	<5	<20	1	0.02	<10	66	<10	6
19	64650	780			+	-							+		1	-						٠				<u> </u>			
				•	·	· ·				· ·		•						·····	• • •			•		•		•			
tandar				·		· · · · ·		_														· · •	·····			··· ·····		·	+
EO 105	• -		1.5	1.53	55	165	<5	1.30	<1	19	58	89	3.62	<10	0.80	556	<1	0.03	29	590	22	<5	<20	55	0.09	<10	73	<10	10
(F41	:	800			· · ·															• •			+	•	÷	··		<u> </u>	
	÷					+	٠	•	•	:		•		· · · •-	+	· ··· •·			· · · ·			• •					<u>·</u>		
	•	·				i		· · ·					•			+									• •	··· _			
	• ·	• • •			:	+-	·	•	•	•	· ·	-						•			· •	·	·	+	·	· ·			•
		· · · · · · · · · · · · · · · · · · ·			••																·					••••			
																													· ·
	•· ·	. 4	•	4-	+-											-								. <u> </u>					
· · · · -	•	·	iiiiiii			•	!		+···	+												÷				+			• -
													~		•	-		•	•	· •	÷				•	+		<u> </u>	
	•	• • • • • •		·	•		;	~ • •				· .	· · +		·														····•
	•	• •	•	· · ·		····				•	•	•	:	•							E		CHLAP	ORAT	ORY LT	D.			
	•	• • • • • • • • • • • • • • • •		·				•			· · •	•	†	·· · •	•	· •	•					tta Jea				<i>_</i>	•		
kk/ga		•																					tified As	sayer			· ···•		
191a													- · · •										1	•	- •				

CERTIFICATE OF ASSAY AK 2005 - 1199

Stealth 310 - 260 W. Esplanade North Vancouver, BC V7M 3G7

7-Oct-05

Attention: Bill McWilliams

No. of samples received: 27 Sample Type: Rock Submitted by: D. Kuran Project #: Sickle, Louis

ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	
8	84657	1.55	0.045			
16	64647	1.08	0.031			
25	64348	12.9	0.376	253	7.38	
QC DATA Repeat: 25	New York Control of Co	12.9	0.376	251	7.32	
<i>Standard</i> SN16 PB106	:	8.68	0.253	60.1	1.75	

JJ/kk XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

	5-Aug-05	ļ	ļ					[,																		1	
ECO TE	CH LABORA	TORY LTD	<u> </u> }					!	j	ICP C	ERTI	FICATE (OF AN	ALYS	is ak	2005-76	54							Steal	th	ļ	ł	ļ	i
	alias Drive DPS, B.C.	1				-	-																		260 W Vance			Í	
V2C 6T4		····-·	† ···			- 1			·							· •		t · · ·						V7M		· · · · · · ·			•
Phone: 2	50-573-5700	l	I		 				•										·· ·•	• •		• •		Atten	tion: 6	Bill Mc	Willian	ท่	
		L	·	-														···· -·-·								•		!	† i
Fax : 2	50-573-4557		· ·																+			· ··· ·		Ναο	f samp	es reci	eived:	53	
													 					•				• • •		Samp	le Typ	Rock	(] [-
Values in	n ppm unless	otherwise	e repon	ted					+												·				nitted by ct Nam				
										.								•				1							1
Et #.	Tag # 64214	Au (ppb) 95	Ag 0.3	AI %	As 10	B a 60	B I 15	Ca %	Cd <1	Co 21	Cr 82	Cu 58	Fe %	_	Mg %	Mn 151	Mo 29	Na %	NI 8	P 380	Pb 6	Sb <5	Sn <20		TI %	U <10	v 111	W	Y Zn <1 23
2	64215	45	<0.2	1.13	20	35	_<5	0.58	<1	22	27	54	5.49	<10	0.97	199	<1	0.09	3	1240	8	<5	<20	35	0.12	<10	110	<10	4 21
4	64216 64217	20 10	<0.2 5.3	0.84 0.17	5 5	100 <5	10 <5	>10 0.10	1 <1	18 5	16 125	14 5169	7.78 2.14	f †	2.55 0.11	2373 83	5 1	0.03	3	570 <10	6 <2	• •	<20 <20		<0.01 0.02	<10 <10		<10 <10	9 <u>60</u> 964
5	64218 64219	<5 10	0.5	0.14	<5 5	<5 25	<5 <5	0.08	<1 2	2 17	160 69	607 1698	0.54	<10 <10	0.12	98 616	2 <1	<0.01 0.06	4 5	<10 710	<2 10		<20 <20	3 43	<0.01 0.09	<10 <10		<10 <10	<1 31 3 221
7	64220	20	16.9	1,18	10	70	<5	0.34	<1	47	115	>10000	7.86	<10	0.59	830	197	<0.01	5	<10	<2	<5	<20	66	0.04	<10	49	<10	<1 95
8	64221 64222	25 5	<u>16.5</u> 5.4	1.21 0.65	10 5	80 85	<5 <5	0.33	1 <1	56 24	63 135	>10000 3354	6.66 2.85	<10 <10	0.78 0.35	879 441		<0.01 <0.01	4	<10 <10	<2 4	<5 <5	<20 <20	36 41	0.06 0.02	<10 <10			<1 117 <1 54
10	64223 64225	120 35	10.7	0.69	5	60 10	<5 <5	1.49 0.79	2 <1	16 5	92 89	>10000 8652	2.71 1.75	<10 <10	0.14 0.19	371 222	1026 2	• •	3 12	<10 250	<2 <2		<20 <20	165 134	0.03 0.07	<10 <10			<1 35 <1 11
12	64226	105	12.6	1.12	10	10	_ < 5	1.03	<1	12	94	>10000	1.67	<10	0.82	385	<1	0.01	21	670	<2	10	<20	94	0.13	<10	76	<10	<137
13 14	64227 64228	5 90	<0.2 4.5	1.06 1.26	<5 10	15 25	<5 <5	0.84 1.79	<1 8	17 15	36 80	164 2623	3.96 3.74	<10 <10	0.32 0.75	144 841	<1 7	0.20	13 7	570 260	8 14	<5 <5	<20 <20	33 74	0.17 0.14	<10 <10		<10 <10	4 18 <1 451
15 16	64229 64230	245 >1000	1.6 16.8	0.36	10 10	25 25	<5 <5	8.30 0.05	5 <1	2 2	58 152	14 14	0.93	<10 <10	0.29 <0.01	1255 200		<0.01 <0.01	2	160 90	312 10		<20 <20	119 3	0.02 <0.01	<10 <10		<10 <10	1 509 2 19
17	64231	225	4.6	0.42	10	120	<5	0.06	<1	1	92	5	1.07	<10	0.32	746	6	0.02	2	90	16	<5	<20	<1	<0.01	<10	11	<10	<1 58
18	64232 64233	185 5	<u>10.1</u> <0.2	0.01	<5 5	20 10	<5 <5	0.19	93 <1	<1 2	190 135	121 19	0.25	<10 <10	<0.01 0.18	_ 202 166		<0.01 <0.01	4.5	20 40	>10000 60		<20 <20	21	<0.01 0.02	<10 <10	<1 16		<1,5152 <1,18
20	64300 64301	<u>55</u> 70	0.3	1.28 0.11	15 <5	25 25	<5 <5	0.71	<1 <1	37 26	139 134	401 107	6.97 5.29	<10 <10	1.44	237 33	5 5	•• •	14 9	410 <10	40		<20 <20	18 5	0.06 0.02	<10 <10			<1 47 <1 5
22	64302	50	<0.2	0.70	15	30	<5∐	0.44	<1	32	66	144	6.58	<10	0.50	85	<1	0.08	18	690	. 14	<5	<20	29	0.15	<10	81	<10	<1 17
23 24	64303 64304	140 15	0.8	0.74 1.50	20 15	55 <5	20 <5	0.04	<1 <1	- <u>11</u> - 17	48 109	145 2916	>10 2.06		0.40	116 440	23 <1		5 30	740 1690	14	• •	<20 <20	- 4 78	<0.01 0.12	<10 <10		<10 <10	<1 30 2 51
25 26	64305 64306	10 65	5.8 10.2	0.88 0.88	10 10	25 <5	<5 <5	2.31	<1 <1	13 4	125 88	>10000	3.44 1.08	<10 <10	0.66	483 132	<1	0.04	13 4	50 80	<2 <2	• •	<20 <20	53 126	0.15 0.13	<10 <10			<1 40
27	64307	25	0.9	0.51	25	45	<5	1.20	1	41	124	7930	2.14	<10	0.15	1212	5	<0.01	21	480	<2	<5	<20	10	0.10	<10	21	<10	16 57
28	64308 64309	25 20	<0.2 2.6	1.78 1.95	10 10	35 15	<5 <5	0.81	<1 <1	20 23	95 81	2462 6987	4.46 4.41	<10 <10	1.60 1.90	699 849	<1 <1	• • • •	37 28	1900 1950		• •	<20 <20	49 20	0.14	<10 <10		<10 <10	3 70 <1 114
30	64310 64311	45 30	14.7 10.0	1.45 1.44	10 10	25 25	<5 <5	1.50	<1 <1	16 19	80 74	>10000 7998	2.75 3.46	<10 <10	1.20 1.51	542 731	<1 <1		33 30	2950 2610	<2 <2		<20 <20	85 49	0.12 0.12	<10 <10	*	<10 <10	9 62 <1 75
32	64312	40	1.9	0.51	10	45	<5	3.85	11	3	90	66	1.64	<10	0.41	1682	2	<0.01	1	210	624	<5	<20	45	0.03	<10	17	<10	2 1357
33 34	63870 63963	65 20	<0.2 <0.2	1.25 1.11	15 5	65 55	<5 <5	0.10	1 <1	19 4	21 79	409	>10 2.75		0.59 0.75	144 853	<u>11</u> 2		14	1760 710	10 12	I I	<20 <20	22 46	0.03	<10 <10	1	<10 <10	<1 43 4 99
35	63964 63965	20 5	<0.2	1.55 2.09	15 5	5 35	<5 <5	0.75	<1 <1	17	103 49	52 291	4.32		1.51	596 1836	<1 <1		23 24	1920 2560	12			45 22	0.17	<10 <10		<10 <10	3 87 4 158
37	63966	5	<0.2	1.01	10	<5	<5	1.67	<1	6	75	23	1.23	<10	0.14	157	<1	0.03	6	2100	8	<5	<20	152	0.11	<10	55	<10	58
38	63967 63968	50 10	0.9	1.30 0.68	10 15	20 20	<5 <5	1.50	<1 <1	12 6	91 120	1264 1088	1.75 1.78	+	0.67	360 435	<1 6	• • • •	14 16	930 190	8	i "I	<20 <20	148 29	0.18	<10 <10		<10 <10	3 28 6 79
40	63969 63970	25 5	9.9 <0.2	2.20 1.54	15 10	20 10	<5 <5	0.82	<1 <1	25 20	112 111	8240 375		<10 <10	2.12	1047	<1 <1	•		1510 1430	<2 10	-		46 67	0.16	<10 <10		<10 <10	<1 135 <1 70
42	63971	45	11.5	0.87	25	25	<5	0.22	<1	55	147	>10000	7.97	<10	0.72	450	49	<0.01	28	<10	<2	<5	<20	2	0.03	<10	38	<10	<1 58
43	63972 63973	245 5	1.6	0.04	55 20	25 20	15 <5	0.01	<1 <1	76 26	138 93	86 1016		<10 <10	<0.01 2.16	19 741		<0.01 0.02		<10 910	6 10	<5 10		<1 43	<0.01 0.19	<10 <10		<10 <10	
45	63974 63975	<u>55</u> 10	5.4 <0.2	0.53	20 <5	50 85	<5 <5	0.45	<1 <1	- 8 10	137 58	6795 108		<10 <10	0.27 0.53	377 241	42 <1	<0.01 0.07	10 10	<10 830	4	<5 <5		13 34				<10 <10	5 79 <1 63 4 28
47	63976	>1000	>30	0.09	10	35	<5	0.10	<1	2	143	46	0.72	<10	<0.01	247	<1	<0.01	3	80	36	<5	<20	2	< 0.01	<10	8	<10	<1 52
48 49	63977 63978	_>1000 20	>30 0.6	0.07	5 5	35 60	<5 <5	0.05	<1 <1	1 3	171 49	35 18	1.80	<10 <10	0.01	301 359	3	4	4	50 360	14		<20	8		<10 <10	10	<10	<1 52 <1 42 8 65 14 13
50	63979 63980	30 10	0.2 <0.2	0.35	35 <5	<5 65	<5 <5	>10 0.40	<1 <1	3	48	31 64		<10 <10	0.30	2178 214	<1 <1	<0.01 0.05	4	80 550	<2 6	10 <5		474 18	0.02 0.07	<10 <10		<10 <10	14 13 6 24
52 53	64368 64369	15 5	<0.2 3.9	0.53	<5 <5	30 40	<5 <5	0.18	<1 <1	6 3	67 86	23 104	2.70	<10 <10	0.22	185 496	24 9	0.06	2	340 380	6	<5 <5	<20	29		<10 <10		<10	
C DAT							· ·						,		_0.00			0.00					-20	13	0.00	- 10	•••		
Resplit:	· ·	+				•														•		! +				··	+		
1	64214 63965	100 10	0.3 <0.2	0.54		50		0.03	<1	21	80	57			0.40	158	28			400		<5		10				<10	
36 Report	00900	10	-0.2	2.04	15	30		2.10	<1 	17	44	278	4,41	× 10	_1.51	1782	<1	0.04	22	2520	<u>14</u>	<5	<20	19	0.10	<10	811	<10	5 153
Repeat:	64214	100	0.3	0.53		55	10		<1	21	84	62		<10		152	29		6	380		<5				<10	112		
10 15	64223 64229	100 250	10.6	0.76	10	70	<5	1.59	2	16	95	>10000	2.79	<10	0.14	381	1039	<0.01	4	<10	2	<5	<20	167	0.03	<10	28	<10	<1 38
16	64230	>1000			_	+									احد م	•*	·· 					1							
19 36	64233 63965	10 10	<0.2 <0.2	0.31	5 15	35	<5 <5	0.18	<1 <1	3 17	141 49	20 287		<10 <10		168 1780	<1 <1	<0.01 0.04	6 22	40 2440		<5 <5		22 21		<10 <10	+	<10 <10	<1 17 5 152
43	63972	250			-	•		ļ	ł	ļ				[
Standard GEO '05		130	1.5	1.39	65	145	<5	1.24	<1	19	58	86	3.45	<10	0.70	535	<1	0.03	25	560	20	<5	<20	56	0.10	<10	70	<10	8 73
1950 00		1.30	1.5	1.39	00	140	~3	1.24		19		00	3.43	~ 10	0.70		<1 	0.03	40	500	20	`	~20	36	0.10	101	10	~ 10	8 73
							Í	ļ										-	\vdash									ł	
JJ/bs df/764	·····						ļ			<u> </u>						· · ·									TECH Jealou:			RYLT	D.
XLS/05		-		· -		•		i 1			••••	L				•		i .	· · ·	• • •		· ·			Jealou: Certifie		yer		j .

. .

		CERT	IFICATE	OF ASS	AY AK	2005-764			
	1								••
Stealth Mir									· 0.40m 0
	V. Esplanad couver, BC								9-Aug-0
V7M 3G7		! •						7	• •
1111001		1	•					1	•
Attention:	Bill McWill	iam	• • • •					•	
· •	1		•						
	• •		••••					1	.:
• • • •	l		•					l l	•
	ples receive	d. 53	. .						,
Sample Typ]	•					-	•
	by: Dave Ki		t		·				ł
FIUJECLIVAL	ne: Paula, l		Au	Au	Ag	Ag	Cu	Pb	t
ET #.	Tag #		(g/t)	(oz/t)	(g/t)		(%)		
7	64220	 	(8,4	(02/7)	(814)	(02)()	1.76		
8	64221	_	ł			• •	2.44		· · ··
10	64223					• • •	1.66	•	
12	64226	-	ł			•	1.04		
16	64230		1.66	0.048	} ÷	• •		• •	
18	64232	ł		0.0.0				1.27	•
25	64305	1 1	1		•		1.49		
26	64306	4 1			•		1.85		
30	64310	*· · · ·	†		•		1.46	• •	Ť
42	63971	• · ·	† · · ·				2.84		ľ
47	63976	•	25.8	0.752	234	6.82			
48	63977	• -	12.8	0.373	169	4.93			
-	İ	•							
QC DATA:]								Ī
Repeat:	1	•				1			
7	64220						1.73	· t	
		l							
Standard:								· ·	
Cu106	ļ			L	136		1.43		
Pb106	ļ .				58.9	1.72	0.62	0.52	
SH13			1.33	0.039	• · · · · • • • • •	ļ		·	
	- 								
	ļ				•				
	ļ	4 4				FA0 750	1 4 8 4 8 4 7		
11/22			ļ		ł	ECO TECH	LABORAT		
JJ/ga	ļ	i				Jutta Jealou			
XLS/05	1	!				B.C. Certifie	ea Assayer		

18-Jul-05	,			— . —			· · · · · ·	÷ ,		· · · · · · · · · · · · · · · · · · ·	_ ,
ECO TECH LABORATOR	NÝ LTO.	·· · ·	······	ICP CERTIFICATE OF ANA	LYSIS AK 2005-667		• · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		lth Minerals - 260 W Esplanade	
KAMLOOPS, B.C. V2C 6T4			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Nort	h Vancouver, BC	
Phone: 250-573-5700	• • • •		·····				· · · · · · · · · · · · · · · · · · ·	++		ntion: Bill McWilliams	
		• • •					• • • • • • • • • • • • • • • • • • • •	• • • • •			··· • ·
Fax 250-573-4557	· · · · · · · · · · · · · · · · · · ·			· · · ·		÷	••• •		No.	of samples received:48	
										ple Type: Rock mitted by:Deve Kuran	
Values in ppm unless of	verwise reported						• • • • • • • • • • • • • • •	•	Proj	eci #:Nub/Sickle	
Et#. Tag#		Al % As Ba				n Mg%, Mn			Sb Sn	SrTi%U	<u>v w y z</u>
1 64448 2 64449	790 0.4	0.20 <5 155 0.04 15 1050	<5 <0.01	<1 <1 73 <1 <1 87	23 0.89 <1 3 0.25 <1	0 <0.01 23	3 <0.01 1	60 42 30 16	<u><5</u> <20 30 <20	19 <0.01 <10 201 <0.01 <10	18 <10 <1 2 <10 <1
3 64450 4 64201	156 0.4	0.18 70 815 1.63 <5 210	<5 0.71		5 1 33 <1 26 6 90 <1	0 1.20 537	3 0.07 11		<5 <20 <5 <20	67 <0.01 <10 32 0.07 <10	10 <10 <1 : 120 <10 27 9
5 64202 6 64203	635 8.8	0.33 5 140 0.07 20 305	<5 0.02		6 <u>1 12 <1</u> 17 <u>1 25 <1</u>	0 <0.01 73	72 <0.01 8	<u>330</u> 4 180, 70	<5 <20 <5 <20	4 <0.01 <10 7 <0.01 <10	7 <10 4 21 3 <10 2
7 84204 8 64205	15 0.2	0.21 <5 355 0.13 <5 45	<5 0.01		5 0.84 <1 35 0.53 <1	0 0.05 142	<1 <0.01 4	120, 44 20 <2	<5. <20 <5. <20	7 <0.01 <10 1 <0.01 <10	<u>3 <10 2 20</u> <u>5 <10 <1 1</u>
9 64289 10 64290	10 <0.2	0.41 50 20 0.41 10 45	<5 0.02	<1 6 62 <1 7 83	7 3.94 <1 8 3.66 <1	0 0.22 185	<1 0.07 2	20 418 220 70	<5 <20 <5 <20	16 <0.01 <10 6 0.13 <10	<u>12 <10 <1</u> <u>29 <10 4 11</u> 57 540 55
11 64291 12 64292 13 64566	160 >30	0.47 40 75 0.18 10 235	<5 0 10	<1 2 187	69 >10 <1 53 2.46 <1 90 1.83 <1	0 <0.01 61	11 <0.01 3	260 <2 750 140	<5 <20 <5 <20 >10000 <20	3 0.01 <10 6 0.02 <10 58 <0.01 <10	17 <10 <1 1 2 <10 <1 11 7 <10 <1 11
13 64566 14 64567 15 64568	125 13.6	0.10 >10000 1095 0.28 835 940 0.41 45 165	315 <0.01	<1 <1 120 5	90 1.83 <1 32 1.89 <1 71 >10 <1	0 <0.01 79	5 <0.01 3	<10 68 110 52 1470 160	>10000 <20 1045 <20 <5 <20	58 <0.01 <10 49 <0.01	7 <10 <1 10 19 <10 <1 10 22 <10 <1 111
16 64569 17 64570	55 3.2	0.41 45 105 0.18 10 1425 0.13 10 1105	<5 0.02	<1 <1 155	18 1.09 <1 13 1.04 <1	0 0 01 100	7 <0.01 2	350 14 240 92	<5 <20	24 <0.01 <10 18 <0.01 <10	<u>4 <10 12 15</u> 3 <10 4 16
18 64571 19 64572	20 0.2	0.22 5 295	<5 <0.01	<1 <1 141 <1 <1 120	6 0.98 <1 5 0.31 <1	0 <0.01 32	2 0.01 3	150 6 70 12	<5 <20 <5 <20	20 <0.01 <10 39 <0.01 <10	7 <10 2 22 5 <10 <1 1
20 64573 21 64574	85 0.3	0.19 10 35	<5 0.01	<1 2 167	<u>9 0.91 <1</u> 12 1.56 <1	0 0 09 158	1 <0.01 4	140 18 230 4	<5 <20 <5 <20	2 <0.01 <10 2 <0.01 <10	10 <10 <1 34 39 <10 2 3
22 64575 23 64576	110 12 20 2.0	0.38 10 40 0.42 10 80	<5 0.07 <5 2.00	<1 3 168 2 3 91	6 1.33 <1 52 1.86 <1	0 0.23 324 0 0.37 1591	<1 0.01 4 3 <0.01 2	160 4 230 172	<5 <20 <5 <20	2 <0.01 <10 12 0.04 <10	<u>27 <10 1 2</u> 14 <10 4 30
24 64577 25 64578	>1000 >30	0 07 <5 70 0 12 5 65	<5 0.24	<1 1 183 1 3 147	18 0.63 <1 30 1.06 <1			50 38 130 62	<5 <20 <5 <20	2 <0.01 <10 3 <0.01 <10	4 <10 <1 6 9 <10 2 10
26 64579 27 64580	20 14	0 07 <5 45 0 32 <5 1125	<5 0.04	<1 <1 98	11 0.68 <1 21 1.54 <1	0 0.07 117	1 0 02 3	90 176 230 14	<5 <20 <5 <20	5 <0.01 <10 39 0.02 <10	3 <10 <1 21 <10 <1 10
28 64581 29 64582	5 10	034 <5 15 107 15 20	<5 6.58	<1 16 72 8	35 0.87 <1 56 3.92 <1	0 0.40 883	<1 <0.01 9	<10 184 1350 4	<5 <20 <5 <20	8 0.01 <10 144 0.09 <10	43 <10 <1 3 59 <10 9 2
30 64583 31 64584	<5 0.2	0 32 <6 120 0.55 5 45	<5 0.05	<1 6 80	11 1.47 <1 13 2.75 <1	0 0.29 441	1 0.06 9	460 30 260 14	<5 <20 <5 <20	8 0.04 <10 13 0.09 <10	14 <10 3 8 45 <10 2 2
32 64585 33 64586	10 1.9	0.99 <5 30 0.20 <5 345	<5 <0.01	<1 <1 76	41 3.87 <1 48 2.10 <1	0 <0.01 43	14 <0.01 3	720 108 300 20	<5 <20 <5 <20	13 0.09 <10 10 0.02 <10	<u>55 <10 10 70</u> 7 <10 <1 4
34 64587 35 64203 36 64589	470 8.3	0.10 10 15 0.05 15 160 0.44 5 225	<5 0.01	<1 1 123	10 0.97 <1 37 1.71 <1 32 2.09 <1	0 <0.01 21	142 <0.01 3	110 70 100 54 380 150	<5 <20 <5 <20 <5 <20	1 0.02 <10 152 <0.01 <10 15 0.06 <10	5 <10 <1 3 2 <10 2 4 49 <10 2 20
37 64590	70 3.9	0.13 10 215	<5 1.76	<1 2 140	32 2.09 <1 18 0.70 <1 31 1.55 <1	0 0.01 799	26 <0.01 4	380 150 230 3596 170 106	<5 <20	11 <0.01 <10	4 <10 2 3
38 64591 39 64592 40 63859	120 3.4	0.10 10 55 0.16 5 30 0.17 20 25	<5 4.81	<1 4 97	41 1.90 <1 22 0.73 <1	0 <0.01 533	7 <0.01 3	510 120	<5 <20 <5 <20 <5 <20	<1 <0.01 <10 38 <0.01 <10 197 0.01 <10	3 <10 <1 14 5 <10 2 5 14 <10 10 220
41 63860 42 63861	10 0.2	0.39 <5 200 1.18 5 1175	<5 0.79	<1 2 93 2	90 0.86 <1 38 2.72 1	0 0.10 778	2 <0.01 3	180 12	<5 <20 <5 <20 <5 <20	10 <0.01 <10 203 0.01 <10	4 <10 11 8 24 <10 23 18
43 63862 44 63863	10 0.2	0.17 <5 40 0.87 <5 510	<5 0.03	<1 <1 57	3 0.42 <1 28 3.64 <1	0 <0.0130	2 <0.01 1	120 22	<5 <20 <5 <20	1 0.01 <10 30 0.01 <10	3 <10 2 54 <10 20 11
45 63864 48 63865	45 0.3	1.05 <5 1305 1.25 <5 245	<5 2.02	<1 <1 27 4	36 4.48 <1 52 5.11 <1	0 0.38 1708	3 0.01 <1	850 4	<5 <20	60 <0.01 <10 93 <0.01 <10	46 <10 14 14 31 <10 <1 23
47 63868 48 63858	10 <0.2	1.09 5 395 1.37 10 375		<1 5 51	7 3.26 <1 70 4.41 <1	0 0.68 1307	2 0.03 2	790 6 740 62	<5 <20 <5 <20 <5 <20	33 0.01 <10 8 0.01 <10	49 <10 18 13 76 <10 14 88
			· · · · · · · · · · · · · · · · · · ·				· · ·				
C DATA:	- • · •	• • •	· · ·			+	• • • •	• • •	• • •	··· •·· ··· ··· ··· ··· ··· ···	· · · ·
Resplit: 1 64448 36 64589		0.25 5 185		<1 <1 97 <1 2 107	22 0.93 <1 30 1.96 <1			60 42 380 146	<5 <20 <5 <20	20 <0.01 <10 12 0.08 <10	18 <10 <1 48 <10 2 19
36 64589 Repost:	20 0.4	3.42 3 173	<5 0.08					· · · · · · · ·			
1 <u>64448</u> 2 <u>64449</u>	35 0.5 820	0.21 5 160	<5 <0.01	<176	23 0.91 <1	0 [°] <0.01 15	5 <0.01 1	60 44	<5 <20	18 <0.01 <10	19 <10 <1
3 64450 6 64203	175	• •	· · · · ·	· · · · · · · · · · · · · · · · · · ·		· · ·		· · · · · · · · · · · · · · · · · · ·			
10 64290 19 64572	10 <0.2 15 <0.2	0.40 10 45 0.27 <5 80	5 0.02 <5 <0.01	<1 7 83 <1 <1 121	8 3.65 <1 5 0.30 <1	0 0.21 190 0 <0.01 29		230 70 80 12	<5 <20 <5 <20	5 0 13 <10 39 <0 01 <10	28 <10 4 20 5 <10 <1 1
36 64589	520 20 0.5	0.43 5 210			31 2.09 <1			380 152		14 0.06 <10	
35 64591 46 63865	230 490			· · · · · · · · · · · · · · · · · · ·	· · ·			• • •	• •		• • • • • • • • •
Standerd:	135 1.6	· · · · · · · · · · · · · · · · · · ·	+	<1 19 58				620 22		E4 0.11	78 <10 0 7
GEO '05 GEO '05	135 15	1.31 60 140 1.25 60 135	<5 1.32 <5 1.28		84 3.75 <1 86 3.67 <1	0 0.69 571 0 0.66 558	<1 0.02 25 <1 0.02 24	620 20 600 20	<5 <20	54 0 11 <10 56 0 10 <10	76 <10 8 7 74 <10 9 7
	· · · · · · · · · · · · · · · · · · ·					•	· · · · ·	·	+		
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					
					• - • -	÷	· · · ·				
						· · · ·					
		· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · ·	JL	CO TECH LABORATOR	Y LTD.	• • • •
JJ/ga 19567				+ +	-+··		······	. <u>.</u>	C. Certified Assayer		· · · · · · · · · · · · · · · · · · ·
XLS/05		· · ·		· · · · · · · · · · · · · · · · · · ·		Fage		·		· · · · · · · · · · · · · · · · · · ·	

· · · ·		CERT	IFICATE	OF AS	SAY AK	2005-66	7		
Stealth Min	erals	 		• · · · · ·-·					
310 - 260 W		e .		• • •				18-Jui-05	
North Vanc									
V7M 3G7	•			- -		-			
Attention:	Bill McWill	iams							
									-
No. of samp	les receive	d: 48						Ī	
Sample type	e: Rock]	
Project #: N		-							
Shipment #						[l .	
Samples Su	bmitted by:	Dave Kuran				•			
						- 	•		
			Au	Au	Ag		L.	i 1	
ET #.	Tag #		(g/t)	(oz/t)	(g/t)			!	
12	64292				38.4				
13	64566		1.36	La a a a a a a a a a a a a a a a a a a		3.33			
24	64577		14.8	0.43	241	7.03		1	
25	64578		20.2	0.59	286	8.34		Ī	
			9 		,				
QC DATA:									
Repeat:									
12	64292				38.1	1.11			
								•	
Standard:									
Cu106			• •		134	1			
Pb 106			*		59.8	1.74			
SH13			1.31	0.04					
			· · · · · · ·			• ·			
	_		,]	
		, , , , ,	, 		 	•			•
						•			•
]				 	 .				
			 	· · · · · · · · · · · · · · · · · · ·	 	ECO TECH		ORY LTD.	
JJ/ga		! 				Jutta Jealou			
XLS/05		l l				B.C. Certifie	ed Assayer		

Appendix II

2005 Statement of Expenditures

Page 1

EXPLORA	TION Sickle property	1	T			
	ACCRUALS WORKSHEET	1			1 · · · ·	
June 18-Au	ug 18, 2005	İ		Balance	1	
	Account Description	Rate	days			
		† ·	1 F			
Salaries		İ				
	D. Kuran Project Geo	600	0 7	4200		
	Mike Roberts Sr. Geo	350	j 12	4200		
	Garry Sidhu Geo	. 250	j <mark>∫ 15</mark>	3750		
	Don Coolidge Prosp.	· 300) [†] 10	3000		
	Pat Suratt Prosp.	350	13	4550		
	Terry Pidwerbesky Prosp.	250	2	500		
ł		:	1	0		
Consultant	is	•	ţ	0		
1	Geological	;	ţ	0	4 · · · · · · · · ·	t · · ·
ł	g	*	ţ	0	-	
Analysis, A	i Assav	1	t	0	1	
	Geochem Analysis & Assay	22	2 96	2112	•	÷
	Metallurgical Testwork	1		0	•	•
	Other Lab/Sample Prep	ł	ł	ő	+	•
• ·			ł	ŏ	-	•
Field/Cam		ł	ł	i o		i .
Field/Camp		ł	ł	300	•	•
}	Field Supplies	7.	400	+	• •	
•	Camp Costs	75	129	+	ŧ	
k -	Camp Construction	-		0	1	-
{ .	Expediting	300	5		ł	
	l .	1		0	ł	
Surface W				0	+	
	Linecutting, Site Prep	23.6	· · · · · · · · · · · · · · · · · · ·	28320	ļ	
	Linecutting mandays	; 3 0	1	ļ	ļ	
	Geophysics IP	់ 17	1	30600	ļ	
	IP Mandays	: 40		0	ļ	
Environme	nt/Reclamation	1		0	ļ	
	Permitting			0		
	Reclamation	.]		. 0		
				. 0		
Property M	laintenance		1	. 0	1	
1	Staking			0	i .	
	Land Surveying			0		
	Option, Acquisition Pmts	Ĭ		0	I	
	Claim Holding Costs	I		0	Ī	
[+		0		
Travel	• • • • • • • • • • • • • • • • • • • •	T	1	0		1
1	Lodging	1 Contraction		0	t	1
	Meals, Groceries	1	· ·	0	t	
	Airfare	. 5	1,200	6000	ţ	† · · ·
	·······		······································	0		
Transporta	tion/Air Support	1		· · · · õ		
	Vehicle Lease/Rental	200) 4	t	i	•- · ····
	Vehicle Mntce, Operating Exp		· · · · ·	0	• -	4
ł	Helicopter	850	55	1 •	t	+ ·
{	Helicopter - Fuel		·. ··	0100	ł	+ ·
{	Theircopter - I dei	ł	:	0	ł	ł
Sunnort A		ł		0	ł	
Support Ac			5 50	1		.
	Communication	15	່ວບ	750	+	+
	Maps/Pubs/Photos/Reports			500	4	
	Freight/Shipping	. 3	3 150	+ ·	ļ	+
	<u></u>		•	0	ļ	Ļ
Other A&G	Management Fee			0	-	
	Legal	1		0	1	
l.	Rent - Office, Storage			0	,	
	Management Fees			0		
l	Insurance	1		0		
1	report	600) 7	4200		
[contingency	I		0	_	['
ſ	TOTAL COSTS:	1	T	152157	111	T
	· · · ·	1	1	1		1
1	†	1	1	† .	\mathcal{N}	1
	*					

Appendix III

Recommendations; Cost Estimate

Stealth Minerals Limited

2006 Sickle-Sofia Exploration Cost Estimate

	SHEET (Sickle-Sofia Surface)			
	month \$ CDN	i		
Category	Account Description	Site Cost	units	total
Salaries		ļ .		
Contractors	Geological	Į.		ŧ ··
	Project Geo	600	35	21000
	Geol.	325		9750
	Jr Geo	250	30	7500
	Core Tech	175	30	5250
	Cook	200	35	70,00
	Bull Cock	175		6125
	camp mgr	200		7000
Geophysics		ļ.,	-	
	Ground 1P/Mag	1700		68000
	L	1 .		
Dritting	Surface	100	1800	180000
	Casing	•		
	Mob/Demob		10,000	
	moving			• • • •
	tests		100	. 1200
	standby time	•		
	Mud, Supplies	,	50000	•
	Pad Building	200	5	•
	fuel	1 1.1	7500	8250
	Core boxes	i ·	·····	j
Analysis, Ass	T · · ·	j · · · ·		
	Geochem Analysis & Assay		2000	46000
	Metallurgical Testwork	i	· ··· -	
	ICP Semale chicolog	1 -		1
	Sample shipping	τ,	1500	1500
Field/Camp	Field Supplies/saw biades/gen		3000	3000
	(Grocerles		3000	0
	Propane	i	ь. I	
	Camp Costs(50/man/day)	75	530	39750
-	Camp Construction	2000		2000
Surface Work	camp construction			
	line cutting	1000	40	40000
	Trenching/Pitting		-	40000
	Road upgrade/construction			† - ``
Environment/f		t		t
	Base Line Studies			1
	Permitting	Ĭ	•	Ī
	Reclamation	2000	i	2000
Property Main		1	i	t L
	Staking			1 0
	Land Surveying	1		
	Option, Acquisition Pmts	j		
	Claim Holding Costs			1100
Travel				
	Lodging	100	10	1000
	Meets, Grocerles	15	20	300
	Airfare	1200		7200
	Taxi, Car Rent, Mileage		•	ļ
	Truck Gas/oil	1	•	500
Transportation	n/Air Support	1	I	!
	Vehicle Lease/Rental	200	31	5200
	Vehicle Mntce, Operating Exp		500	500
	Helicopter wet	1000	100	100,000
	Helicopter - Fuel	1		
Support Activi	itles		!	l
	Communication	25	35	875
	Maps/Pubs/Photos/Reports	1	2000	2000
	Drafting	;	-	: 0
	Office Supplies		500	•
	Freight	. 1.1	3000	<u>33</u> 00
	ļ	<u>. </u>	L	1
	Logal	,	L · · ·	ļ¢
	Business Meeting, Entertain	•	ļ	t c
	Dues, Memberships	:	ļ	i c
	Prof Ed, Seminars, Conventions		ļ	i c
	Rent - Office, Storage	·	ļ	c
	Management Fees	ł	ļ	ļ. (
i-	Office Equipment	1		(
	Computer Equipment	1		. (
,	Insurance	ł		
r	Allocated Admin	}	i	40000
	Miscellaneous A&G	1		1
	TOTAL COSTS:	;	1	; 689400
	101712 000101	1		***************************************

Appendix IV

Certificate of Qualifications

.

STATEMENT OF QUALIFICATIONS

I, David L. Kuran of 25630 Bosonworth Avenue in the Municipality of Maple Ridge in the Province of British Columbia, certify that:

- 1) I am a graduate of the University of Manitoba (1978) and hold a B. Sc. Degree in Geology.
- 2) I am a self-employed Consulting Geologist.
- 3) I am a registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia, Canada, Registration # 19142.
- 4) I am a Fellow in the Geological Association of Canada.
- 5) I have been employed in my profession as Geologist continuously since graduation by various mining companies and consulting firms in Canada, USA, Mexico, Europe and Argentina.
- 6) This report are based upon data collected during field work completed on the Stealth Minerals Toodoggone claims, including the Sickle-Sofia Property in the Omineca Mining Division during 2005 by D.L Kuran and others, and a thorough research of available information, and personal experience in the district.
- 7) I hold no interest in the Toodoggone Project Claims. I hold an Employees Option to Purchase shares in Stealth Minerals Limited.

Dated this 14 th day of November, 2005 at Maple Ridge BC, Canada.

Appendix V

-

References

.

List of References

Kuran D.L., Geological, Geochemical and Diamond Drilling Report on the Sickle-Property, April 15, 2005. Assessment Report (Arsis# 27790) prepared for Stealth Minerals Limited.

Blann, D.E., Kuran. D.L. 2004. Prospecting, Geological, Geophysical, Geochemical, Trenching and Diamond Drilling Report on the Pine Property, Finlay River, Toodoggone, British Columbia. Prepared for Stealth Minerals Limited.

Diakow, L.J. and Metcalfe, P. 1997. Geology of the Swannell Ranges in the Vicinity of the Kemess Copper Gold Porphyry Deposit, Attycelley Creek (NTS 94E/2), Toodoggone River Map Area. British Columbia Geological Survey Branch. Geological Fieldwork 1996, Paper 1997-1, 101-115.

Diakow, L.J., Panteleyev, A., and Schroeter, T.G. 1993. Geology of the Early Jurassic Toodoggone Formation and Gold-Silver Deposits in the Toodoggone River Map Area, Northern British Columbia. B.C. Ministry of Energy Mines and Petroleum Resources, Bulletin 86, 72 pages.

Government of British Columbia, Ministry of Energy and Mines, MapPlace website