

Toodoggone Lake Area NTS (94E-034)

British Columbia

FOR

Stealth Minerals Limited Suite 301-260 West Esplanade, North Vancouver, BC Canada, V7M 3G7

By

April Barrios and David L. Kuran, P. Geo. Kuran Exploration Ltd. Maple Ridge, BC

December 8, 2005

....

. .

. ..

_

Table of Contents

Page

1

1.0	Introduction	i
2.0	Property Description and Location	2
3.0	Access, Climate, Infrastructure, Physiography	2
4.0	History and Previous Work	4
5.0	Regional Geology	4
	5.1 Stratigraphy	5
	5.2 Intrusive Rocks	6
	5.3 Structure	7
6.0	2005 Exploration Program	7
	6.1 Property Geology	9
	6.2 Geochemistry and Mineralization	12
	6.2.1 Gold Geochemistry	12
	6.2.2 Silver Geochemistry	13
	6.2.3 Copper Geochemistry	14
	6.2.4 Lead Geochemistry	14
	6.2.5 Zinc Geochemistry	14
7.0	Summary and Conclusion	14
8.0	Recommendations	15

List of Figures

after Page

Figure 1	Project Location Map	 1
Figure 2	Claim Location Map	2
Figure 3	Historical Work	 4
Figure 4	Regional Geology	 7
Figure 5	Rock sample Location	 12
Figure 6	Gold Geochemistry	 12
Figure 7	Silver Geochemistry	14
Figure 8	Copper Geochemistry	 14
Figure 9	Lead Geochemistry	 14
Figure 10	Zinc Geochemistry	 14
Figure 11	Gordo Property Geology 1:40,000	 15

سمج

•---

<u>___</u>

......

...

.

List of Tables

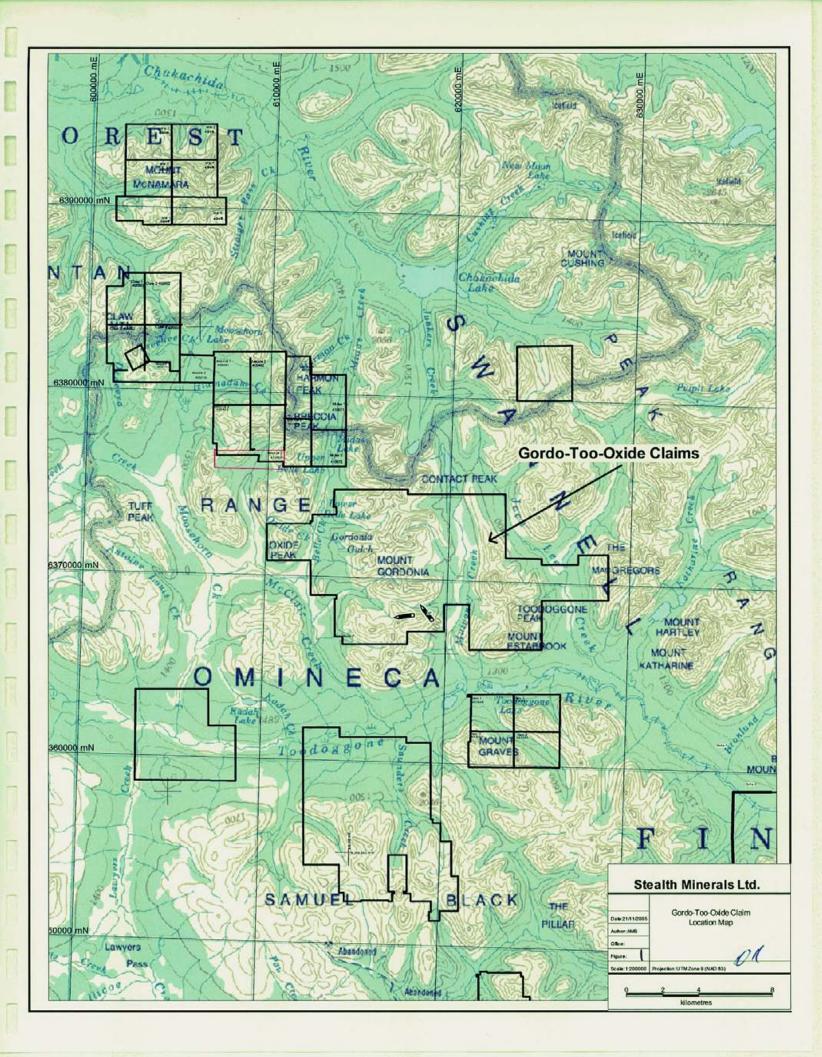
After Page

Table I	Geochemical Highlights	1
Table II	Gordo Property; Claim Status	2
Table III	Historical Work	4
Table IV	2005 Rock Sample Descriptions	11

List of Appendices

- Appendix I2005 Statement of ExpendituresAppendix II2005 Rock Assay Certificates
- Appendix IV Recommendations: Cost Estimate
- Appendix V Statement of Qualifications
- Appendix VI References

1.0 Introduction


The Gordo-Too-Oxide Group Claims are one of 9 properties explored as part of the 2005 program by Stealth Minerals on its Toodoggone Project. The Toodoggone Project is located in north central British Columbia approximately 430 kilometres northwest of Prince George (Figure 1). Stealth Minerals controls 172 mineral claims (69143.023 hectares) in the Toodoggone District, Omineca Mining Division.

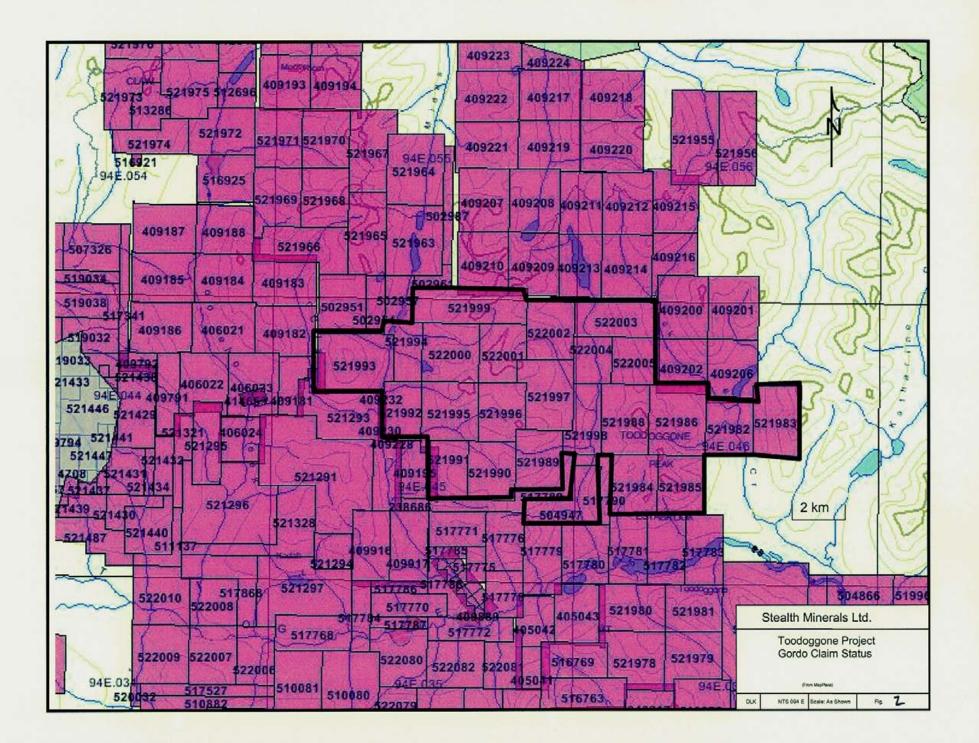
The subject of this report, the Gordo-Too-Oxide Group claims, consists of 24 contiguous mineral claims containing 10879.047 hectares. Stealth Minerals Limited holds a 100% interest in the Gordo Group of Claims. The claims were staked by Stealth in the fall of 2003 as part of a regional land acquisition project based on identified favourable geology, mineral exploration history and RGS anomalies. The claims were covered by part of the 2003 regional airborne geophysical survey release completed by a Private-Public Partnership between Stealth Minerals, the GSC and the BC Government. The Survey highlighted several areas of strong potassic alteration and magnetic features.

Element	Rock Sample #	Rock Value	
Gold	84641	13.0gpt	
Silver	64342	145.0 gpt	
Copper	64340	7.74%	
Lead	64345	6.01%	
Zinc	64345	5.17%	
		ĺ	

Table I: 2005 Geochemical Highlights

During the 2005 field season five days was spent on the Gordo Claim Group from (Aug 4-Aug. 15, 2005), prospectors collected 54 surface rock samples.

The Toodoggone district lies within the eastern margin of the Intermontane Tectonic Belt in the Stikinia and in part, the Quesnellia Terrane. These Terranes consist mainly of island-arc volcanic, plutonic and sedimentary rocks of Late Triassic to Early Jurassic age with a Lower Permian aged basement represented by the Asitka Group. Granitoid members of the Jurassic Black Lake Intrusive Suite have intruded the Triassic and older rocks and are coeval with the Jurassic Volcanic rocks. Regional north-northwest trending high-angle normal and strike -slip faults cut through the Toodoggone Project area and conjugate high-angle faults cut and displace northwest trending structures, and may control in part, intrusive and hydrothermal activity.


1.0 Property Description and Location

The Gordo property is located immediately north of the Toodoggone River, 10 km NE of Toodoggone Lake (Figure 1). These claims are only accessibly by helicopter. The Gordo Group Claims located in the Omineca Mining Division are centered at UTM NAD 83 Zone 9 6,371,500 m North and 618,000m East on map sheets 94E.045, 46.

The property consists of 24 mineral claims containing 10879.047 hectares (Figure 2). The Claims have not been legally surveyed. Gordo claim information is given in Table II. The claims are owned 100% by Stealth Minerals. No drilling has been completed and no mineral reserves have been calculated.

2.0 Access, Climate, Infrastructure, Physiography

Access to a new Stealth Minerals main exploration camp at the junction of the Finlay River and Firesteel River is currently accessed by the all-weather Omineca Resource Access Road, approximately 410 kilometres north of Windy Point, B.C., to the Kemess Mine gate, and approximately 22 kilometres of summer access road to the camp. Travel time from Prince George is approximately 10 hours, or 7 hours from Mackenzie. The Gordo Property is only accessible by helicopter. The distance from the Stealth camp to the claims is 50 km NW, or a 50 minute flight. A new 8 person temporary camp was constructed during the 2004 season on the Gordo property. There is no road access to

Stealth Minerals Ltd.

Table II: Gordo-Too-Oxide Claim Status

Tenure Number	Claim Name	Area (HA)	Good To Date	Map Number
522000	GORDO 1	521,947	2006/SEP/25	094E045
522001	GORDO 2	400.157	2006/SEP/25	094E045
521995	GORDO 3	539.659	2006/SEP/25	094E045
521996	GORDO 4	417.797	2006/SEP/25	094E045
522002	GORDO 5	434.862	2006/SEP/25	094E045
521997	GORDO 6	556.967	2006/SEP/25	094E045
521991	GORDO 7	348.362	2007/SEP/25	094E045
521990	GORDO 8	435.458	2007/SEP/25	094E045
521989	GORDO 9	435.410	2007/SEP/25	094E045
521999	GORDO #10	626.052	2007/SEP/25	094E045
504947	Gordo 11	435.588	2006/JAN/26	094E045
521993	OXIDE 1	678.593	2006/SEP/25	094E045
521994	OXIDE 2	278.365	2006/SEP/25	094E045
521992	OXIDE 3	348.159	2006/SEP/25	094E045
521988	TOO 1	522.276	2006/SEP/25	094E046
521986	TOO 2	626.732	2006/SEP/25	094E046
521984	TOO 3	435.507	2006/SEP/25	094E046
521985	TOO 4	435.507	2006/SEP/25	094E046
521982	TOO 5	435.244	2007/SEP/25	094E046
521983	TOO 6	522.257	2007/SEP/25	094E046
522003	TOO 7	469.587	2007/SEP/25	094E045
522004	TOO 8	278.386	2007/SEP/25	094E046
522005	TOO 9	347.983	2007/SEP/25	094E046
521998	TOO 10	348.192	2007/SEP/25	094E046
24 Claims		10879.047	Hectares	

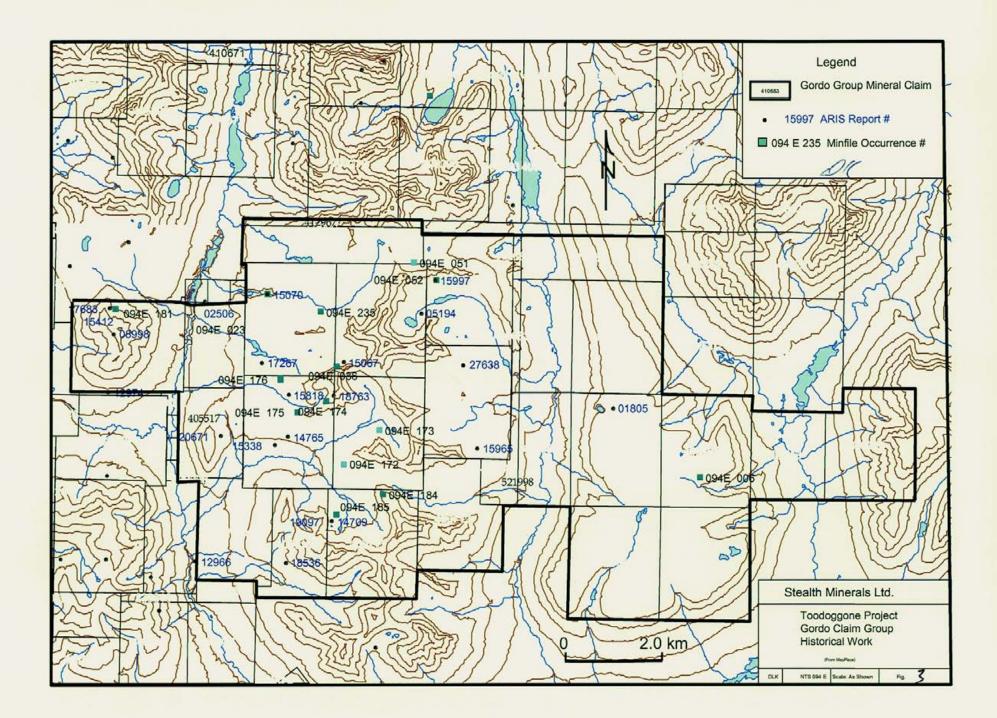
the Gordo property. The nearest road access is 10 km east from the Al property (deactivated) access road via the Moosehorn Creek valley to the east side of the Oxide claims. Airstrips are in place at the Kemess South Mine and Sturdee Valley approximately 20 and 30 kilometres south and north, respectively of the Stealth camp. Float plane access to Toodoggone Lake, 10 km south of the claims.

A new access road connecting with the deep-sea port of Stewart is proposed, and would significantly reduce future costs associated with development and operation of new mining ventures in the Toodoggone. Dominant economic products from the Toodoggone district are gold and silver, and more recently copper-gold concentrate.

The geomorphic form of the Gordo-Too-Oxide claim area is represented by three steepsided, block like mountain ranges centered on Oxide Peak on the Oxide claims, Mt Gordonia on the Gordo claims and Toodoggone Peak on the Too claims (Figure 1). Elevation ranges from 1300m a.s.l in the valley bottoms to 2200m a.s.l on Mt Gordonia. These highlands are separated by low broad glacial valleys of Bell Creek and Mulvaney Creek. In general each mountain block is separated from the other blocks by linear, flat to gently undulating valley of less than 1 km to greater than 3 km in width. The width of these valleys are usually devoid of outcrop and filled with glacial outwash. These valleys are likely following the trace of through-going faults as they are also seen as geophysical vertical gradient magnetic features.

Seasonal temperatures vary from -35° C in winter and over 30° during the 4 months of summer. The mean daily temperatures for July and January are approximately 14° C and -15° to -20° C, respectively. Precipitation between 50 and 75 centimetres occurs annually, with most during the winter months as snow cover of approximately 2 meters.

The optimal time for surface exploration on the Gordo property is between mid-late June and early October.



4.0 History and Previous Work

The Gordo claims are located in the Northern Area of the Stealth Minerals Limited exploration lands. Table III lists the reports and summarizes past work. Figure 3 locates historical mineral occurrences and the location of associated assessment reports documenting the work. As shown, the claims have had considerable exploration effort with a non adjusted best estimate of expenditures at some \$325,213.00. The work in the area started in the late 1960's with the first push to locate copper porphyry deposits. Later in the late 1970's and 1980's the focus was on epithermal precious metal style mineralization prompted by the exploration successes which had led to modest production from the Shasta, Baker, Lawyers and Al deposits. Currently the Shasta is in limited seasonal production from open cut mining with milling completed at the Baker mill. Kemess South mine is the largest producer in the area treating some 50,000 tonnes per day from a large open pit gold/copper porphyry mine and milling complex. Concentrate from Kemess is trucked via the regional access Omineca Resource road to Mackenzie B.C. for further rail transport to eastern Canadian smelting operations. Previously, the present Gordo claim group was held by different parties who conducted brief geochemical, geological or airborne geophysical surveys to satisfy assessment requirements with no larger or consistent plan in place. The area has not been mapped by a government geological survey since 1968. No drilling has ever been undertaken on the claims. Historically the highest gold value recorded on the claims was 18.5 g/tn Au from the HD showing (94E 235). During Stealth Minerals 2004 field season on the Gordo claim area 164 prospector samples were collected and assayed. The 2004 Stealth effort resulted in significantly higher gold values than historical values (Assessment report # 27638).

5.0 Regional Geology

The Toodoggone project and the Gordo Group area lies within the eastern margin of the Intermontane Tectonic Belt. The Intermontane Belt is made up of four unique Terranes and the project areas lay within the Stikinia and, in part the Quesnellia Terranes. The

Contraction (Contraction)

ENTER ENTER

Line-

Stealth Minerals Ltd. Table III: Historical Gordo Minfile and Assessment work

Aris Rpt #			Operator	Author			Minfile No	CostYr\$
1805		Garnet	Quebec Cartier Mines	Reeve, A.		Geo		\$1,300.00
2506	1970	Lower	Red Rock Mines	McKelvie, D.	Geophysical Report on the Ed 1-14, EHL 1-12 and Belle 1-42 Mineral Claim	Geophys		\$6,900.00
5194	1974	Gord	Union Miniere Expl. & Mining		Geological, geochemical and geophysical report on the Goro claim group, Contract Peak, Toodoggo		Pysical	\$8,400.00
8998		Oxicle	Serem	Vulmiri, M.; Crawford, S.		Geoch, Geo		\$2,089.00
12974	1984	Kidview	Newmont Ex. Of Canada	Kowall, C.		Geoch, Geo		\$8,856.00
14765	1986	Joanna	Int. Damascus Res.	Bell, M.		Geoch		\$10,187.00
15067	1986	Joanna	Armor Development Corp.	Bell, M.			094E 036	\$17,111.00
15070	1986	Magic	Island Canyon Mines Inc.	Bell, M.		Geoch	094E 023	\$15,107.00
15338	1986	Joanna	Int. Damascus Res.	Sorbara, J.; Steele, J.		Geoch, Geo, Geophys		\$21,764.00
15412	1986	Amethyst Valley	Geostar Mining Corp.	Yeager, David A.; Ikona, Cl		Geoch		Same as 24930
15818			Armor Development Corp.	Sorbara, J.; Steele, J.			094E 036	\$5,000.00
15965	1987			Bell, M.		Geophys		\$25,180.00
15997	1987			Cukor, V.; Pezzot, T.			094E 051, 052	\$14,265.00
17267						Geophys	094E 036	\$5,850.00
17683			Shayna Resources Ltd.			Geoch, Geo, Geophys		Same as 24930
18763		Joanna	Ashworth			Geoch	094E 034	\$8,000.00
19907	1989	Faicon A	Multinational Resources Inc.	Delancey, P.	Mineral Claims Rock Sampling and Hand Trenching on the Peregrine and Falcon A	Prospecting		\$12,667.00
							094E 172, 173,	
							174, 175, 176,	
20671		Joanna	Cons. Harlin Res		Data Compilation Report for 1985, 1986, and 1988 Exploration Programs, Joanna IV Claim Group an			\$48,500.00
24930	1997	Oxide Peak	Matrix Energy Inc.	Mark, D.	Geophysical Report on the Oxide Peak Property	Geoch, Geo, Geophys,		\$25,372.00
							094E 023, 172,	
							175, 235, 063,	
							173, 177, 052,	
27638	2004	Gordo	Stealth Minerals Ltd	Kuran, D.; Barrios A.	Prospecting Report on the Gordo - Too Claims	Geoch	174, 181	\$88,665.00
						Tot	al Expendature	\$325,213.00
			Commodities		Comments	Location	Mining Division	i
			Cu, Ag				Omineca	
	Ed, Ed 12, Ed		Cu				Omineca	
	Gord 18, Gord		Ag, Zn, Pb, Cu	Vein			Omineca	
	Gord 9, Gord,		Ag, Pb, Zn, Cu				Omineca	
	Joanna Gold,		Au, Ag, Cu				Omineca	
	Joanna JD, Jo		Au, Ag, Cu				Omineca	
	Joanna East, 4		Au, Ag, Cu				Omineca	
	Joanna West,		Au, Ag, Cu				Omineca	
	Gulch West, J		Au, Ag, Cu				Omineca	
	Oxide Peak		Ag, Au, Pb, Za, Cu, Mo				Omineca	
	Falcon A1, Fa		Cu, Ag				Omineca	
	Falcon A2, Fa		Ag, Au, Pb, Zn, Cu				Omineca	
094E 235	JD-Hairy, Hair	Showing	Au, Ag	Epi Vein	Qtz vein; 18.5gpt Au, 143.2gpt Ag	6372796N 615478E	Omineca	

Stikinia and Quesnellia Terranes consist mainly of island-arc volcanic, plutonic and sedimentary rocks of Late Triassic to Early Jurassic age with a Lower Permian basement represented by the Asitka Group (Diakow and Metcalfe, 1997). To the east older metamorphosed Precambrian and younger strata (clastic and chemical sedimentary rocks) of the Cassiar Terrane (Omineca Belt) is separated from the Intermontane Belt by a regional system of transcurrent faults (Diakow, Pantelevev and Schroeter, 1993). The Toodoggone regional geology is shown on Figure 4, being taken from the BCDM web site MapPlace. As seen, the Toodoggone area consists of a series on NW trending volcanic belts some 90 km long and 40 km wide. The stratigraphy is fairly monoclinal with generally NW striking shallowly west dipping upright stratigraphy and therefore youngs to the west. This NW trend is common to the faulting, stratigraphy, plutonism, major mineralizing events. Accreting of terrains parallel to this lineation implies major crustal activity along this trend. Overlying younger stratigraphic intervals such as the Sustut Group of conglomerates and sediments covered the then mineralized and altered Jurassic volcanics and plutons, thereby protecting them from erosion and glaciations. This results in whole mineralizing sequences ranging from the causative gold-copper porphyry systems up through the undeformed stratigraphy which hosts the upwardly evolving low to high sulphidation epithermal systems with their attendant clay rich alteration caps still intact

5.1 Stratigraphy

Lithologies in the Toodoggone area are Permian to Cretaceous in age and are comprised, in order from oldest to youngest, of Asitka Group, Stuhini Group, Toodoggone Formation and Sustut Group (Diakow and Metcalfe, 1997).

Lower Permian aged rocks of the Asitka Group consist of andesite, dacite and rhyolite volcanic rocks with locally prominent sections of inter-bedded marine sedimentary rocks consisting of limestone and chert at the top of the section (Diakow, pers comm., 2003). These rocks may reflect a submergent island arc sequence.

Upper Triassic rocks of the Stuhini Group (also referred to as Takla Group) unconformably overlie the Asitka Group. Stuhini Group rocks are more widespread and characterized by clinopyroxene-bearing basalt, andesite, and associated epiclastic rocks, and locally appear similar to Paleozoic rocks. These rocks may reflect an emergent submarine to sub aerial island arc sequence.

Locally, Lower Jurassic Toodoggone Formation (Hazelton Group) volcanic fragmental rocks of dacite-andesite composition lie in non-erosional, gently dipping unconformity with Stuhini Group rocks. Minor basalt lava flows and rare rhyolite flows and breccias occur in the Toodoggone Formation (Diakow, 2004 pers. comm.). Bi-modal volcanism is associated with low-sulphidation epithermal gold-silver deposits on a worldwide scale; however it's relationship with the Toodoggone epithermal deposits remains unclear.

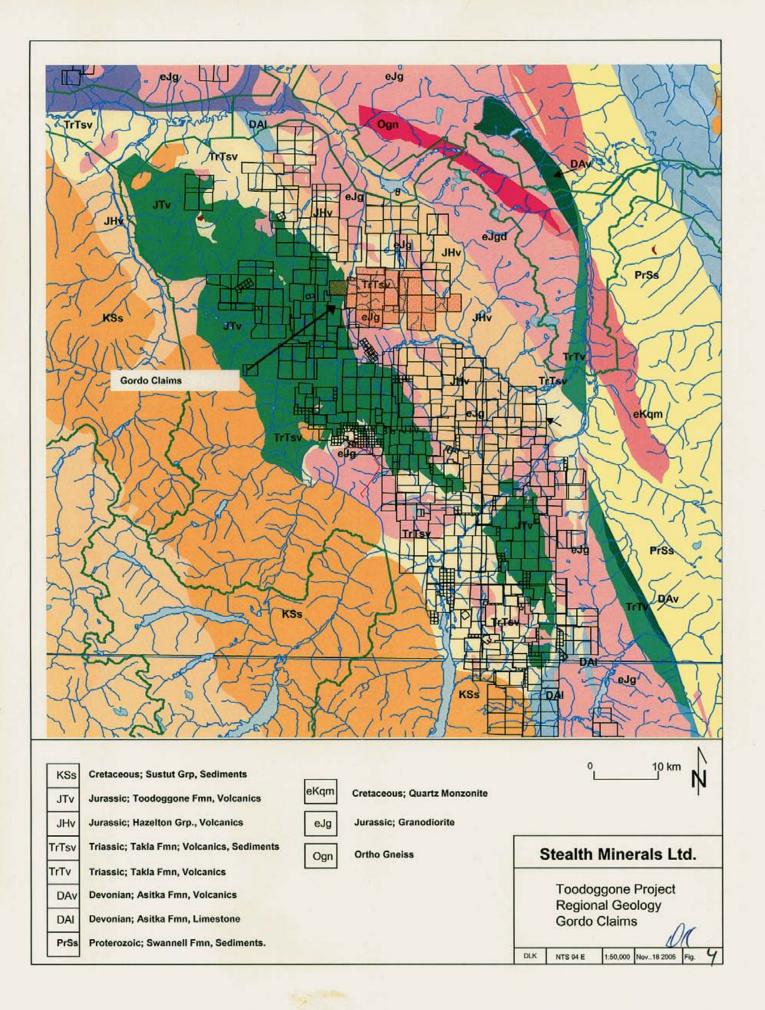
Upper Cretaceous Sustut Group consists of conglomerates, sandstones and siltstones with minor felsic tuff, and occurs in unconformable contact with Takla/Stuhini and Hazelton Group rocks.

5.2 Intrusive Rocks

Early-middle Jurassic Black Lake Intrusive Suite calc-alkaline plutons are apparently coeval with the Toodoggone Formation volcanic rocks and development of an elongated volcano-tectonic depression that is endowed with numerous precious metal-bearing occurrences (Diakow and Metcalfe, 1997). The composite Black Lake Intrusive Suite is generally medium grained and grades from granodiorite to quartz monzonite. This intrusive suite includes the Black Lake pluton (granodiorite to quartz monzonite), Jock Creek pluton (hornblende monzonite, diorite), Geigerich/Duncan Lake plutons (hornblende-biotite granodiorite, monzonite, quartz monzonite, quartz diorite) and Sovereign pluton (quartz-hornblende-biotite-granodiorite/tonalite). Dykes and dyke swarms of quartz monzonite are locally proximal to and associated with copper-gold mineralization as at the Brenda occurrence. These dyke sets characteristically follow the NW trending structural breaks that trace several of the mineralizing events within the

Toodoggone Camp. Dikes and sills of trachyandesite to latite and minor basalt cut previous lithology. Late Triassic Alaska-type ultramafic intrusions were regionally mapped east of Kemess North and possible occurrences southwest of the Mex prospect (Cascadero Copper), and on the Pil prospects northwest of the main Stealth Camp.

5.3 Structure


A system of high-angle normal and possibly contraction faults trend between 120 degrees and 150 degrees in azimuth and occurs locally with secondary faults trending from 20 to 40 degrees, and 60 to 80 degrees in azimuth. These structures may impart primary control the high-level co-magmatic plutons and deposition of the Toodoggone Formation rocks.

Regional-scale, northwest trending structures include the Saunders, Wrich, Black and Pil faults that cut the Toodoggone Project area, and occur over a distances of more than 80 kilometres. Parallel faults also display dip-slip movement, locally placing Stuhini Group in contact with Toodoggone Formation as at Kemess North (Diakow, 1997) and Asitka Group rocks adjacent to intrusive plutons.

Northeasterly trending high angle faults cut and displace northwest trending structures, tilting and rotating monoclinal strata (Diakow, 1986). The presence of high level epithermal mineralization at Goat-Wrich Hill, and again at the Electrum prospect at substantially lower elevations in the north, may suggest a post-mineral, north side down displacement along a northeast trending fault system in the Finlay River valley (Blann, 2004). North trending, right-lateral strike slip faults are prominent along the eastern margin of the Geigerich Pluton, and are Cretaceous and Early Tertiary in age; these faults may cut Toodoggone aged and older rocks to the west.

6.0 2005 Exploration Program

The 2005 field program completed on the Gordo Group claims by Stealth Minerals consisted, sampling by five prospectors and mapping by two geologists. A statement of

(

expenditures for the 2005 field program is found in Appendix I indicating exploration costs of \$27,374. Two geologists and 5 prospectors expended 5 days between Aug 4. and Aug. 15, 2005 on the Gordo Property. The work was completed from a temporary tent camp located on the lake in the southwest portion of Gordo 1 claim in Gordonia Gulch. Traverses were by foot from camp or by daily setout by helicopter base in the main Stealth camp on the Finlay River.

A total of 54 surface rock samples were taken as float or outcrop samples so as to represent the mineralization encountered during each traverse. Each sample was placed in a plastic sample bag with a unique assay tag number. The sample site was flagged with the corresponding assay sample tag number and the location recorded by hand held GPS units. A representative hand sample was also taken and retained at the main camp as a further record for when an assay for that sample was received. Figures 5 shows sample and tag number locations for rock samples taken in 2005.

Geochemical analysis was completed by Echotec Laboratories of Kamloops BC. Analysis for gold in rock chips was by 30gram (one assay ton sample) fire assay followed by atomic absorption reading finish. This technique was chosen to produce a reliable gold assay value. Silver and 29 other elements were determined by analyzing a 0.5 gram sample through dissolution in aquaregia and determinations read via ICP technology. Standards and duplicates were inserted at the lab and any deviation from acceptable analytical error resulted in the whole batch being re-assayed from a new split.

The assayed rock geochemical results for Au, Ag, Cu, Pb and Zn assays are shown in Figures 6-10. Sample descriptions and abbreviated assay results are found in Table IV and rock assay certificates in Appendix II.

6.1 Property Geology

The Gordo Claims were mapped at 1:10,000 scale by Stealth Minerals geologists and by BCDM geologist Larry Diakow. The area covered by the Too claims were not mapped by Stealth geologists however conversations with Larry Diakow provided information regarding the geology on the Too Claims.

Figure 11 shows the geology and structure of the area mapped in 2005. The oldest unit in the Toodoggone is the Permian Asitka Group, which includes limestones, cherts and limy siltstones and mudstones. There are also Permian lapilli tuffs, porphyritic andesite and dacitic lava flows which form as pendants adjacent to the Duncan Plutons (referenced from BCGS Geology legend). There were no Permian units identified on the Gordo Claims. Asitka limestones were mapped 3km north of the Gordo Claims (Diakow 2005, pers. comm.), and there are limestones 3km northeast of the oxide peak, which continue onto Stealth's Breccia Claims.

Stratagraphically above the Permian Group is the upper Triassic Takla group. Takla rocks are primarily identified by plagioclase and augite basalt porphyry flows, fine-grained-aphanitic green/grey volcanic flows, and rare limestone lenses. This unit is represented as **uTTv** in Figure 11. Takla volcanics cover a large portion of the Gordo and Too properties. Majority of the rocks along the western claim boundary were fine-grained Takla andesitic-basalt flows. These rocks were often weakly-moderately propylitically altered.

There is also a sediment package (**uTTs**) in the Takla group; light-dark green coloured sandstone and siltstones which are well sorted with occasional augite and plagioclase crystals. Both volcanic and sedimentary Takla rocks were identified on the Gordo property. A two kilometre long exposure of green Takla siltstones and mudstones located in the southern part of the Gordo property measured up to 200-250m thick with individual beds up to 2m thick. Bedding measurements from these sediments strike generally NW between 290° and 310° and dip shallowly to the NE between 19 and 25°. The eastern portion of the ridge however, has a significantly different bedding; striking

STEATH MUREANS

Gordo2005 Report

north at 003° to 010° dipping 50°-60°. The sediments on the eastern part of this ridge are believed to be part of the Junkers Member Toodoggone rocks (**TJs**).

Marker beds in the lower Jurassic Toodoggone rocks are essential in determining the stratigraphy to which a rock type belongs. The most significant marker bed is the Graves member ash flow tuff (TG). The Graves member ash flow tuff (pyroclastic) is identified by up to 40% lithic fragments including the diagnostic pink aphanitic rhyo-dacitic fragments and biotite-hornblende-bearing granitic fragments. Plagioclase with rare quartz and biotite comprise the matrix of the Graves member. Welded sections in the Graves member occur in selective locations. Welding of the Graves Member was noted in particular on the ridge south of Crater Lake (Figure 11). Welding through this section was primarily identified by elongated cavities in the rock where welded fragments have since been eroded. Fragments in the Graves Member on a large portion of the Gordo Claim area were difficult to see on fresh surfaces. Fragments in these areas were easier to make out on weathered surfaces and adjacent float samples. There is also a fragmental ash flow tuff (pyroclastic) as part of the Junkers Member (**TJp**). This fragmental rock is a matrix supported ash flow with subangular-subrounded clasts typically >64mm and up to 80cm. All clasts are crowded, fine-medium grained plagioclase basalts. The feldspars have a distinguishing 'platy' appearance. Distinguishing between these two ash flows is important in order to correctly stratagraphically identify rocks units.

The Junkers Member includes the ash flow tuff (TJp); a debris flow conglomerate unit (TJcg); tuffaceous sandstones and interbedded siltstones/mudstones (TJs); andesite flows \pm pyroxene \pm quartz (TJa) and rhyolite-rhyo-dacite flows (TJr). Mount Gordonia located east of the Gordo Camp provides an excellent stratigraphic section of the Junkers Member rocks. The lower most unit is a rare quartz-phyric andesite flow TJa(q) (Figure 13) which lies above the Triassic Takla volcanics. Above this unit are the Junkers pyroclastic (TJp) unit interbedded with sandstones (TJs) denoted in this case as (TJsp). The conglomerate unit (lahar?) lies above the pyroclastic/sediment unit and is between 10 and 15 meters thick. This unit has an oxidized red muddy matrix with subangular to rounded boulders of monolithic medium grained andesite porphyry (BCGS Geology

legend). Coarse bladed feldspar lavas (basaltic-andesitic in composition) with a characteristic red oxidation including liesegang rings, and oxidized pyroxenes are found above the conglomerate unit (Diakow 2005, pers. comm.). The above Junkers Member units are shallowly dipping (20-25°) towards the N-NW. The upper most unit on Mount Gordonia are Graves Member ash flow tuffs- up to 70m thick.

Junkers Member andesite lava flows (TJa) located in the southeast portion of the Gordo Claims are characterized by their grey-green to hematite-red oxidized groundmass, up to 30% subhedral plagioclase between 2 and 5mm and up to 3-5% subvitreous clinopyroxene phenocrysts. Lower Jurassic Pillar Member andesite lava flows (TPv) have a similar composition to the TJa lava flows, therefore marker beds such as the Graves Member are important in deciding which andesite lava flow belongs to which group.

In one location south of Crater lake were Pillar Member sandstones (TPs) above Pillar andesite flows (Figure 11).

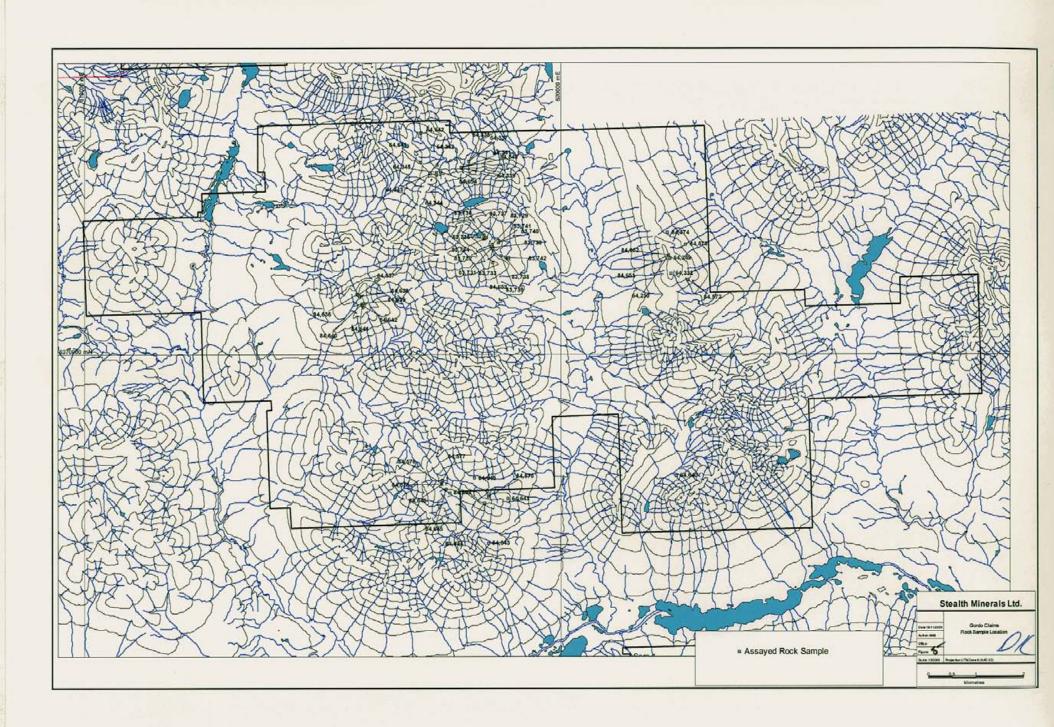
A quartz-monzonite body intruding into Takla volcanics in the southern portion of the property is shown in Figure 11. This Black Lake type (**BLqm**) intrusive was described as an equigranular quartz-monzonite, identified by 70% coarse-grained anhedral sub-porphyritic plagioclase and interstitial k-spar; 5-20% fine-coarse grained euhedral-anhedral hornblende; 10-15% fine-medium quartz; trace of biotite, magnetite and titanite (sphene). Black Lake Intrusives are of early Jurassic age. The quartz monzonite mapped in the southern section of the Gordo property looks as if it is pinched out. It is likely that this intrusive is connected to a quartz monzonite intrusive located immediately south of the Toodoggone River. No other intrusives were mapped on the Gordo property.

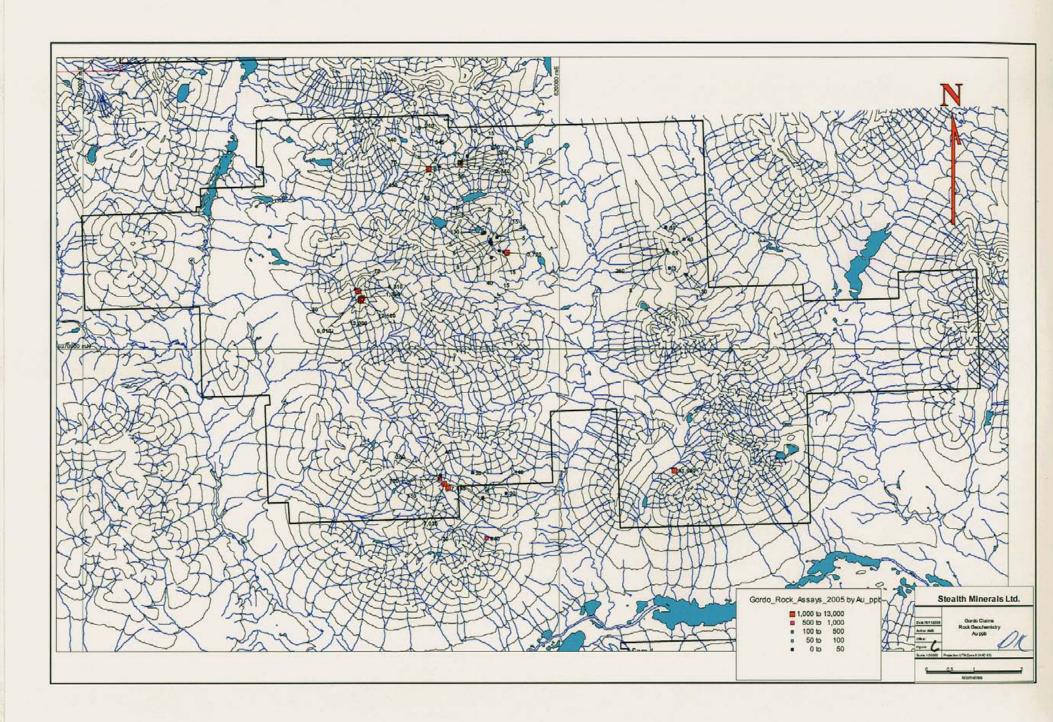
Detailed mapping has not been completed on the Too or Oxide Claims by Stealth Mineral Geologists. Geological observations made in 2004 suggest the Too claims are underlain by Toodoggone Group volcanic rocks comprised mainly of reddish fine lapilli tuff and include feldspar porphyry, rhyo-dacite flows and polylithic volcanic conglomerate. An

STEALTH MINERALS LTD. Table III: 2005 Abbreviated Gordo Rock Descriptions and Assay results

ID Sample #	UTM E	UTM N	Area	Spl Type	Lngth	Rock Туре	Colour	Text 1	Text 2	Altn 1	Occur	Min/%	Att Type		Comments	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ан ррь
	618063	6374061	Gordo	c	0.4m	ÇİZ	Ìwh	vug i	Ъх	lim, wĸ	wethered	1 Cpy, 2 py			1 5x.5x 5m qtz boulder. Cog toothed vuggy white qtz	2	1679	4	16	0.7	15
DC 64338	618062	6374061	Gorco	f		qiz	lwh	vug	box work	lim	pe∿	3 Py			Vuggy white cits. Increasing amount of gits float in this area.	3	87	6		0.5	10
	617924	6373909	Gorca	c		qtz vn		VUG 0		lim si	perv	20 Coy, 15 Py			Average width of this vein is 0.2m with a 10 m exposed strike in bluff face		3640C	2		21.3	2380
	617908	6373922	Gorco	c	0.04m	qtz vn	wh			lim, si		30 Cpy 4 Py	vein	042/ 80	High grade splay to previous vein, 3 m strike length @ NW edge to zone.	13	77400			21.5	570
	617908	6373922	Gorco	¢		siliceous and	wh-gr			lim, si,		5 Cpy, ma-			Siriceous zone in FW to vein	3	3940C			71	370
	617401	6373981	Goreo	í.			jwh	l i	bid	lim		4 Ga, 3a			Melon sized float, in talus train. Probable source is gossan in bluffs above		203	6260		145 C	345
	617256	6373788	Gorco	<u>s</u>		bleacheo 1			fg	lim, wk		1 Py			Acid bleached, weakly silicaous volc. Sample is on the SW edge of gossa	3	187			47.3	1430
	617388	6373770	Gorco	c	0 35m	t	lgr	fg	vug	5,8 <u>2</u>		3 ga, 1 Py			3x0 75m wk carbigossan in unaltered on tuff	1	155			11.9	85
	617390	6373812	Goreo	f	l I	t	der	t	bx	s ,calci	perv	10 Ga			qtz- caro breccia 20x15x10cm float, 15m below previous sample. Higher	1	68	60100		44.3	75
GS 84653	618567	6371924	Gordo	с	1m [qtz	wt	fg	bx	рцv	diss	py1			SC,most by weathered out. Lots of by weathered out.	4	9	12		0.3	40
GS 84654	617478	6373934	Goreo	c	1m [1	fit bx	bh yo	bx					sd	248/88	20-25 cm wice about 3m in length	14	230			1.4	35
LA 84636	615726	6371255	Gordo	c	15 c~ -	Qtz	1				٧P			360		1	21	22		03	30
LA 84637	615745	6371246	Gorda	Ġ	10 cm -	Qtz	i.								mal bante	21	4616			61	70
LA 84638	615780	6371220	Gorda	f		Otz					VI				py s/c talus	12	400	24		8.8	6310
LA 84839	615868	6371074	Gordo	С	40 cm (Qtz	bh				Vî.				ру сру	93	3492	48		5.1	1360
	615622	6371059	Gordo	Ċ.	30 c~		bh				vń				mai	42	6872			27.5	6010
LA 84641	615634	6371032	Gorao	c	90 c~	Qtz	bn				vń			340	27	42	1287			13.6	13000
LA 84642	615839	6371021	Goraa	¢	12 c~	Qtz	bh				vn			340	ργ.	27	2360			6.2	12100
LA 84643	618483	6366031	Gordo	с	90 c~ (Qlz	wt				vn				nd suiphides	1	16			03	840
LA 84644	617669	6367087	Gordo	f		Qtz	bh				vn				py.cpy talus	55	2566			56	7650
LA 84645	617587	6367166	Gordo	f							vn				mail coy by	157	9883	652		21.8	7030
LA 84646	617503	6367273	Gordo	ç	4 cm	Qiz					٧ſ			140	smali gtz vh, py mal	560	2709			6.2	110
PS 64641	617058	6374033	Go	c	1.5 m	clastic volo.	(gn	mg		py.arg	Qz vnis	5-10 oy	240/45 \	W	py zone and 10-15 cm Qu	10	110	126	236	11.9	140
PS 64642	617065	6374638	Go	c	.75 m (c astic volc.	wh.yo	mq		py arg	Qz vnis	5-10 oy	240/45 N	W	3 parallet s i py	14	50	308	102	14.6	210
PS 64643	618888	6366967	Go,SE	c	.5 m i	dio	gn	ma	sik	prop	Qz stk	tr py			weak stk-while chald. Oz vn s	1	16	24	127	0.5	30
PS 64644	618392	6366880	Go.SE	T		?	lgn	mg		prop		10-hem trimal	230/ mod	: NW	small pieces f- not found in dutorops above	11	1036	214		24.1	3C
PS 64645	618186	6367403	Go.SE	c	.8 m	volc.	wh	mq		prop	ę				white Qz,calc v .5-1 m	1	6	14	145	0.2	30
RB 83729	618550	6372301	Gorco Ea	chip	3m		gn wt	msv	vn		vń	tr py	sd	342/80	qtz vn in gn volc w/qtz eyes or shards	1	9	8	18	0.2	5
RB 83730	618565	6372242	Gordo Ea	chip	2.3m		gn	msv	sik		stk		trendi	180	gtzistk in gnivolc, pkik-spar	1	7	16	87	0.2	5
RB 83731	618552	6372237	Gordo Ea	chip	1.3m		ign	msv	stik		stk		trend	180	same stx as 730- cont of chip	1	3	18	93	0.2	ō
RB 83732	618542	6372250	Gordo Ea	chip	2m		ផ្លា	mav	sik		stk		trend	180	same as 730-731 cont of chip	4	6	12	53	0.2	ō
RB 83733	618572	6372219	Gorco Ea	chip	3m		(gn	msv	sik		stk				gtz stk in s I cified vn	3	8	20	17	0.2	ō
RB 83734	618390	6372423	Gorco Ea	ch p	1.6m		owt	msv	VII		vň		trend	330	3m + vh while diz	1	6	8	<u>5</u> 9	0.2	ő
RB 83735	518408	6372443	Goreo Ea		1.25m		wt	msv	VII		vń	tricpy	trend	330	wnite gtz vn. Tricpy, mal, py	11	1506	1 C	29	1.0	130
RB 83736	618387	6372508	Gordo Ea	ch p	4m		wt	msv	va		vr	tricpy	sđ	310/85	wt gtz with tricpy and mail	37	532	34	100	0.7	5C
RB 83737	618431	6372458	Goreo Ea	ch p	2.45m		iwt	msv	VI		٧r			-	4m qtz vr	3	7	12	43	0.2	5
	618638	6372047	Gorco Ea		1.6m		ibn	msv	vn		vn	ga 1			rusty volc w gtz. Occasional gal, dpy and py	1	569		5096	5.7	15
	618746	6372069	Gorco Ea				bn	msv	vn		γn	ga 1			rusty voic wigtz. Occasional gal, cpy and py	1	98	2310		1.7	15
	61869C	6372353	Goreo Ea				ign	mşv	vп		٧r	ga 5			high grade fit prox(?) qtz, gal .pv	1	178	37000	17200	25,8	25
	618689		Gorco Ea			atz			vn		vn	cpv 1			prox. Fit w/ cpy and mail	3	6572	128	401	7.2	15
	618895	6372032	Gorco Ea			alz			vn		٧r	py1			rusty so giz, leached py	2	16	78		4.6	3720
	618473		Gorco S.			Qtz		x	VUQ	ΡY		05				85	1144	136	1065	31.4	140
TP 84576	617502	6367284	Gorco S.			Qtz	wt	x	_	gal					Quartz vein,malachite,chalcopyrite,galena and pyrite	239	17300			59.7	350
	817516	6367353	Goreo S.			Qtz			perv	chi			···		Chlorite and hematite alteration quartz vein with malachite, cha.copyrite	5	2949			1.1	40
	617499	6367270	Gorco S.			Qtz				chi			15 cm	345-20	Vein chip sample with azurite, malachite, cha-copyrite	8	7019	384	1052	11.6	720
DC 64332	622323			<u>د</u>	0.05m	t			VI	ba	VE				Massive bante vein at the top of ndge.	1	217	24	6	G.2	5
GS 64249	622292	6372021		ů OC	40cm	atz vn		fg				1 cpy,mai			wk az and coy seems imatic	1	2772	28	4	11.B	55
GS 64250	622268			0C		20000		ima i		ec					footwall rk of gtz vn. fxl;	1	582			2.1	5
GS 84651	622268			00		olz			frac		frac	tricovimai			v fractured and min occuring along fracs	1	4685		2	22.9	260
GS 84652	622268			OC OC		utz		fg			wk diss	т сру па			20 m from last sample up the gully	1	230		2	C.9	
PS 64640	622420			1		takla volc		ma			calc vnis	cpy py hem			banded vn cov.ov.hem 20 %, prob. Smail	82	3:47			39.2	
TP 84572	622675			4		Otz			diss	¢ν	5212 7713	0.5			Shicified guartz stockwork, disseminated pyrite and chalcopyrite	1	\$47		1	C 6	
TP 84573	622673	6372313		4		Qtz				chi		0.0			Chlorite alteration guartz stockwork pyrite malachile	1	1355	4	0	4.6	
TP 84574	622242			4		Otz				ov.					Quartz breccia stockwork.cisseminatec.pvnte	<u>├ · · · ·</u>	422		2	1.2	
·F [042/4	022242	06/2600	100	11	lu menuel	-U14	17 1	A	0135	FY					Abdur proceia aldonada, ciaso i laide parka		422	, "J	L	1.2	1 35

equigranular monzo-diorite was mapped on the Too claims by BCGS geologists. This intrusive body is in the order of 2km wide and 3km long.


Oxide Peak is an oxidized gossanous mountain located on the west side of Bell Creek (Figures 1, 11). Observations in 2004 (Assessment report 27638) suggest that the lithology of Oxide Peak is mainly Toodoggone volcanics separated by a major east-west structure along Oxide Creek. Lithologies on the north side of Oxide Creek are believed to be Takla and Asitka volcanics.


6.2 Geochemistry and Mineralization

Stealth Minerals 2004 exploration program saw 627 assayed rock sample off the Gordo-Too-Oxide claims (Assessment Report 27638). The focus for the 2005 prospecting program was to follow up on areas of anomalous copper and gold; 54 rock samples were collected this season. Figures 5 shows the location and sample number of assayed rock samples. Figures 6-10 show the interpreted display for Au, Ag, Cu, Pb, and Zn analysis as elemental thematic plots created in MapInfo. Rock descriptions and partial assays are in Table III. The other 25 elements are available in Appendix II; Rock Assay Certificates.

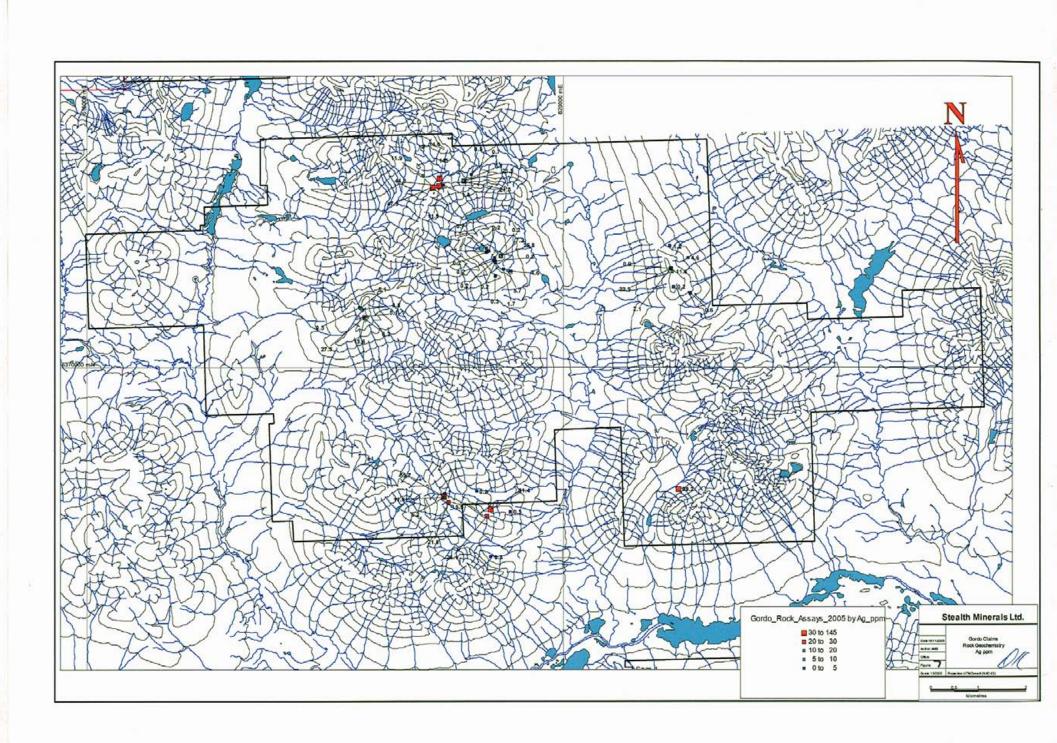
6.2.1 Gold Geochemistry

Gold geochemistry is summarized in Figure 6, which shows the top 10% gold values at >1g/tn Au. Quartz veins with up to 2% pyrite trending 320° to 340° on Mount Gordonia recovered up to 13g/tn Au, from a 90cm chip sample. Other chip samples along this vein recovered 1.4g/t Au, 6.0g/t Au, and 12.1g/t Au respectively. The vein can be traced over 400 m strike length. Assessment Report 20671 suggests that the quartz veins and zones of silicification along the Mount Gordonia ridge are associated with the numerous north to northwest trending steeply dipping faults that cross the ridge.

(Care) Elling (Care)

1000

02.1


Quartz vein float samples taken from a valley 800m east of Crater Lake in 2004 recovered up to 2g/th Au. Follow-up chip sampling this season over three 3-4m wide veins recovered values up to 0.01g/th Au and 0.1% Cu (sample # 83735). A 4m chip sample across a massive white quartz vein with 2% pyrite recovered 0.05% Cu. The veins in this valley trended northwest between 310° and 330°. Subcrop sample 83742 described as a rusty quartz vein with 1% pyrite and pyrite leaching recovered 3g/th Au from the same valley as the 3-4m wide quartz veins.

On the Too claims a float sample from near Estabrook Creek on the north side of Mount Estabrook assayed 11.6g/tn Au from a quartz vein with 1% pyrite. This sample was described as a banded quartz-carbonate vein with chalcopyrite, pyrite and up to 20% hematite hosted in Takla andesite flows. No other samples from the Too Claims assayed significant gold values.

6.2.2 Silver Geochemistry

Figure 7 shows thematic silver values with the top 10 % at >30g/tn Ag. The highest silver value recovered was from float sample #64342 which recovered 145g/tn Ag, located in the northern part of the Gordo Claims. This rock was described as a limonite altered quartz-carbonate vein, with 4% galena. Two other samples from the same area recovered 47.3g/tn Ag and 44.3gpt Ag. This area was well prospected and recovered 10 samples >100g/tn Ag during the 2004 field season. Two vuggy limonitic quartz float samples from a northwest trending ridge along the southern Gordo Claim boundary recovered 59.7g/tn Ag and 31.4g/tn Ag respectively. This ridge was mapped as Junkers Member andesite flows (TJa) with 2-3 northeast trending shears. Quartz material 0.1m-0.5m wide was noted along these shear zones.

Silver has a 0.011 correlation coefficient with gold for 2005 samples and 0.22 correlation coefficient combined 2004 and 2005 samples.

1

-

ter al

2.27

176.1

100

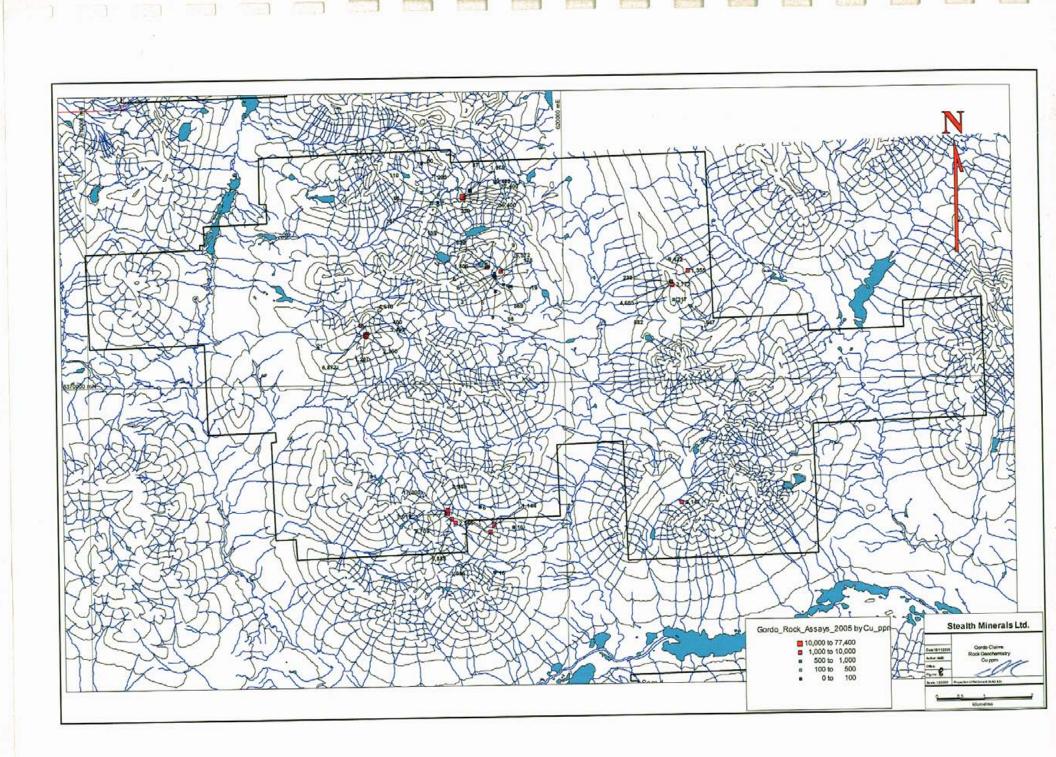
STUT

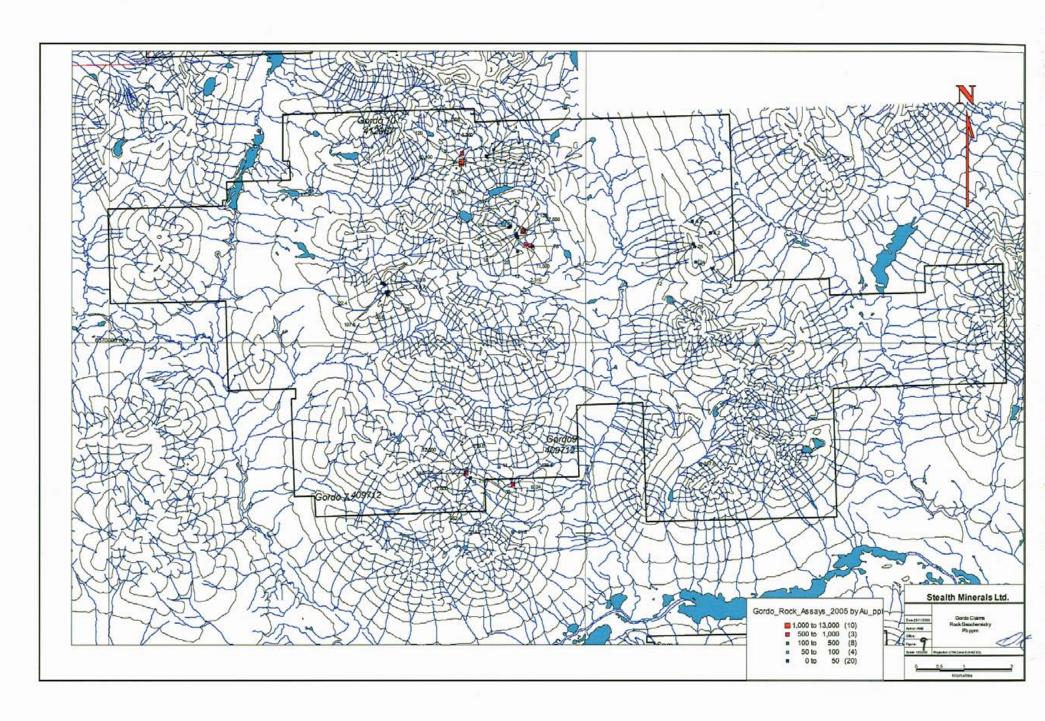
....

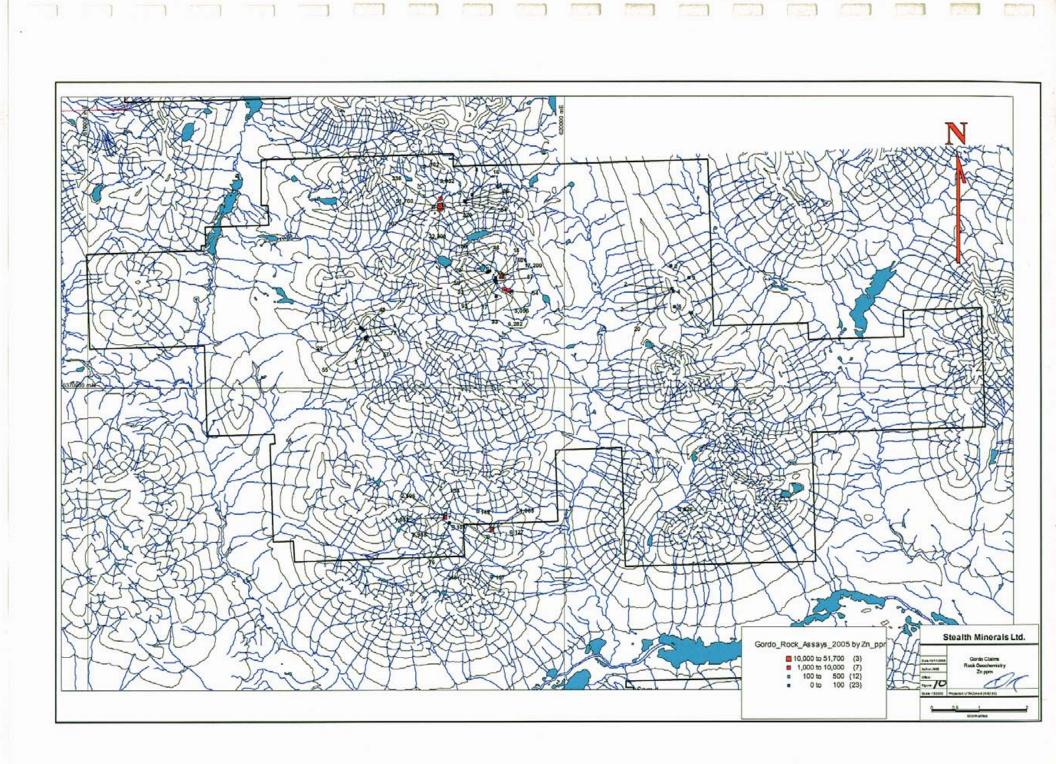
Gordo2005 Report

6.2.3 Copper Geochemistry

Figure 8 shows copper geochemistry anomalous values between 1% Cu and 7.7% Cu. Three samples from a 2m long vuggy quartz vein, located in the northern part of the Gordo claims recovered 3.7% Cu, 3.6% Cu and 7.7% Cu respectively. Chip samples across the 1m wide vein on Mount Gordonia which recovered elevated gold values also recovered high copper values. Copper values ranged from 0.1% Cu to 0.69% Cu. Chip samples through 3-4m wide quartz veins mentioned in section 6.2.1 recovered up to 0.1% Cu.


Four samples from the elongated northeast trending ridge on the Too Claims assayed between 0.1% and 0.4% Cu. These samples were from quartz vein material with chalcopyrite and trace malachite.


6.2.4 Lead and Zinc Geochemistry

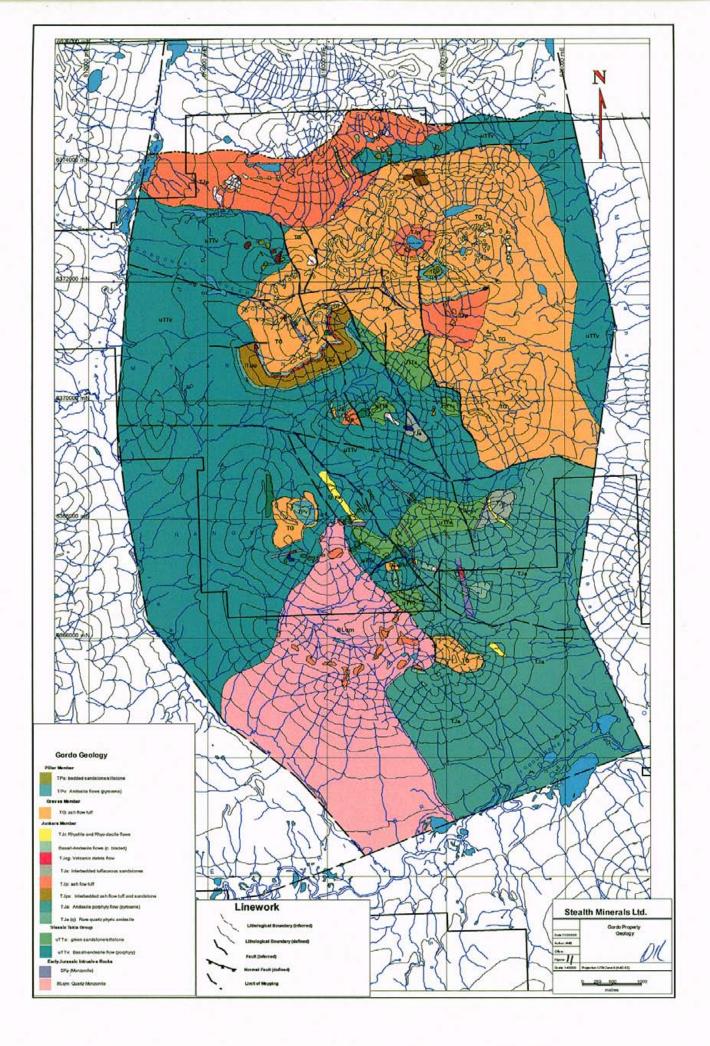

Lead and Zinc values are shown in Figures 9 and 10 respectively. Anomalous values for both lead and zinc were >1%. There is a 0.93 correlation coefficient between lead and zinc for 2005 assay samples and a 0.82 correlation coefficient for both 2004 and 2005 rock samples. The highest lead and zinc values are near the Cu, Ag, Pb, Zn minfile prospect 094E 051 (Figure 3). This gossanous minfile occurrence has chalcopyrite, galena and sphalerite in quartz veins.

7.0 Summary and Conclusions

The Gordo property was one of 8 properties explored by Stealth Minerals during the 2005 field season. Field work on the Gordo-Too-Oxide claim group was focused on follow-up prospecting from the 2004 season and on geological mapping. A total of 54 rock samples were taken over a 5 day period. Chip sampling on veins located on Mount Gordonia returned up to 13 g/tn Au, 27.5g/t Ag and 0.6% Cu. These veins strike north-northwest

1000

Carbon Carbon


and are most likely related to faults trending in the same direction. Follow-up work on 2004 quartz vein samples in the southern portion of the claim, recovered float and grab samples of similar quartz vein material with values up to 7g/tn Au 59.7g/tn Ag and 1.7% Cu. Mapping the ridge above where the majority of the samples came from showed several quartz-carbonate veins 10-50cm wide associated with faulting and shearing.

The east-west trending ridge north of 'Crater Lake' (includes minfile # 94E 052) has recovered significant gold, silver and copper values in both the 2004 and 2005 seasons. Gossans on this ridge with vuggy quartz and barite recovered up to 5.7g/tn Au and 312g/tn Ag from 2004 prospecting. Copper values further east from the gossanous zone recovered values up to 7.7% Cu.

Geological mapping on the Gordo Claims provided an understanding of stratigraphic sections north of the Toodoggone River. The area mapped was located between major north-south faults in the Mclair Creek to Belle Lakes on the west and Mulvaney Creek drainage to the east. The identification of indicator beds such as the Graves Member while mapping is important for determining stratigraphic relations. Mapping also constrained the boundary of the intrusive quartz monzonite in the southern portion of the Gordo claims.

8.0 Recommendations

Based upon the results from the 2004 and 2005 field seasons further exploration work is warranted and recommended. This work should include further detailed field mapping concentrating on areas with favourable geochemical results. Chip or channel sampling must be done through the hanging-wall and footwall adjacent to the veins proper in order to determine whether or not there is significant grade over thickness on the Mount Gordonia veins. Soil sampling at lower elevations where outcrop is scarce would increase the chances of outlining any potential targets. Hand or blast trenching on outcropping or subcropping mineralization should be done to define structural and/or lithological

controls of the mineralization and to determine a grade and thickness to aid in decisions as determining drill targets. Costs for such a program are outlined in Appendix III.

April Barrios (GIT)

Appendix I:

2005 Statement of Expenditures

NUNTHLY	ACCRUALS WORKSHEET										Balance
Category	Account Description	Rate	4-Aug	12-Aug	13-Aug	14-Aug	15-Aug	 		days	Dalarice
Salaries										ŀ	l
	Dave Kuran Sr. Geo	600			1	1			_	2.5	
	Ron Bilquist Prosp.	425		1	1	1	1			4.5	
	Terry Pidwerbeski Prosp.	250		1	1	1	1			4.5	
	Don Coolidge Prosp.	300		1	1	1	1			4.5	
	Garry Sidhu Geo	250		1	1	1	1			4.5	
	Pat Suratt Prosp.	300		1	1	1	1			4.5	
	Les Allen Prosp	300	0.5	1	1	1	1			4.5] 135
Consultant										ļ	
	Geological									1	
									•		
Inalysis, A											
	Geochem Analysis & Assay	22	10	10	10	8			•	48	1
	Metallurgical Testwork]	1
	Other Lab/Sample Prep	· · · · · · · · · ·							•	l .	
	L	1					: • •		÷		
ield/Cam		:			ļļ				, t		· • · · ·
	Field Supplies	400							i t	1	. 40
	Camp Costs	100		6	7	7	7		-	29.5	
	Camp Construction	500			ļļ		, ,		ļ	1	50
	Mob Prorated				ļ		ļ] .	•
					L I					ļ	
Surface W]			ļ	
	Linecutting, Site Prep	1								Ι	
	Trenching/Pitting	i								I	
nvironme	nt/Reclamation	Į į			-						1
	Permitting	Ì	!				[ĺ	• • • •	
	Reclamation	Ì	:				T I				1
		İ. İ.	1							1	-
Property M	aintenance	† ·			i ·					1	
	Staking	t ·							ľ	İ	
	Land Surveying	† ·								t	•
	Option, Acquisition Pmts						1 '			t	•
	Claim Holding Costs	+ · ·	· ·	•			· ·			• • •	1
		+	:		; †				t	÷ .	† ·
ravel	•····· · · · · · · · · · · · · · · · ·	+····			t †		1		İ	+	t
	Lodging	•			• • •	•	t · ·		1	• •	t
	Meals, Groceries	•	1	• ····• •· ··· ·						•	
	Airfare	: 1200			+ : 				ļ	2	240
					;					i –	1
Fransporta	tion/Air Support				+ 		1		•		ł
	Vehicle Lease/Rental	150			† ···		1		••••••••••••••••••••••••••••••••••••••	4	60
	Vehicle Mntce, Operating Exp				† 1		• ·		1 1	·····'	† · · · · · · · · · · · · · · · · · · ·
	Helicopter	900	1	1.8	1.9	1.2	2.8		ł	9	783
	Helicopter - Fuel	1	··· ···						+		1
		1	i -		•··· •		+		+ • • • • •		
Support Ad	ı tivities	1	i -		•		† - †		t	• • •	ł
- abbour of	Communication	25	1		·		† †		÷ :	† 1	1 2
	Maps/Pubs/Photos/Reports	1 23	•		·		<u>†</u>		•	† '	
	Freight/Shipping	100	• · - ··-····		r i		4		•	1 1	10
	. roiding ou hhund	1.00	ł · ·				•••••		• • • • • • •	+· - '	, .r.
Other A&G) 6/Management Fee	+ ···				· ·	•- · ·		t	t	t
	Legal	t	ł	· -	· · ·	· · ·	;- ·· · ·		· ·	ł	t
	Rent - Office, Storage	t	t	ł			1	ł	1	+ • •	1
· •	Management Fees	1	ł							ŀ	ł
	Insurance	ł	ł		ļ l		i .			1	1
	report	600	ļ.,				i .			3	180
		000	ļ .		!			ļ		i s	100
	contingency	ł									1 1 07070
	TOTAL COSTS:	}	•		i		·		Į .	ļ	27373
	Req cost	.	•	ļ				-	1		2644
	From Pac	ļ					.		•		•
	To Pac	ļ					1		4		. 794
	Total Filed	1									. ////
		4	•								

Appendix II:

2005 Rock Assay Certificates

05-C ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Stealth Minerals

301 - 260 Esplanade North Vancouver, BC V7M 3G7 Attention: Bill McWilliams

No. of samples received: 34 Sample Type: Rock Submitted by: R. Foster Project #: Gordo

Values i	n ppm unless	otherwise n	eportec	1																					nitted b		Foster	•		
Et #.	Tag #	Au(ppb)			As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI					· ·	<u>t #: Goro</u>					·
1	83729	5						0.24				9																	_	
2	83730	5						0.24			_			-				0.03			_	_						<10	-	
3	83731	5	<0.2	_				0.89	<1		46							0.04				-								
4	83732	5	<0.2					0.32	<1		90	5		<u> </u>		_		0.04												
5	83733		-		<u> </u>			0.26	<1		75						4							5	-			<10	5	53
6	83734	5	_	÷				0.60	<1		93	6 6				168	3	0.03		60			_	7				<10	6	17
7	83735	130					_	2.46	<1		90			<u> </u>			1	<0.01				_					-	<10	4	59
8	83736	50			_			1.93	<1	6	90	1506		<u> </u>	<u></u>	921	11	<0.01	_	÷ •	<u> </u>		_	34					10	29
9	83737	5		-	-			0.44	<1		- 94 89	532		_				<0.01						24		the second second		_ <10	8	
10	83738	15					-	0.44	56		57		0.89	_		543	3	<0.01						10				<10	5	
11	83739	15					_	0.96			_	569	2.30				<1	<0.01				<5		54		<10		10	14	5096
12	83740	25							62		62	98				2416	<1	<0.01				<5		49		<10	20	10	14	6282
13	83741	15						0.27	180		63	178		**			<1	<0.01				<5		28		<10	12	30	<1	>10000
14	83742	>1000						1.01	4	5	96	6572				720	3	<0.01	-			<5		12			5	<10	3	
15	64249	55			·			0.07	<1		113	19	4.25			111	2	<0.01				<5		3		<10	3	<10	<1	
16	64250	5						0.06	<1		116	2772	0.51			36	<1	<0.01				\$		8		<10		<10	<1	4
17	64251	260						6.49	<1		35	582	1.56			1482	<1	0.02				<5		42		<10	37	<10	10	20
18	64252			<u> </u>				0.84	<1		120	4685	0.44			96		<0.01				<5	<20	9	<0.01	<10	6	<10	<1	2
19	64253	40 5						0.96	<1		138	230	0.26			112	<1	<0.01						5	<0.01	<10	1	<10	1	20 2 2
20	64254	35						0.81	<1		78	9				578	4	<0.01				<5	<20	7	<0.01	<10	6	<10		
21	64332	5						0.27	<1		18	230	>10				14	0.01		1580		<5		25	0.11	<10	55	<10	-1	
22	64333	60						0.06	<1		50	217	0.32	_		29	<1	<0.01		40		<5		280	<0.01	<10	6	<10	<1	6
22	64334	25						3.40	5	•=	41	>10000	2.96	_			12	<0.01				<5	<20	145	0.07	<10	23	<10	2	
24	64335	535						1.23	<1		77	7097	2.33			742	2	<0.01				<5		16	<0.01	<10	8	<10	6	
25	64336	120						0.14	1		78	>10000	>10			158	10	<0.01			430	<5	<20	2	<0.01	<10	6	<10	<1	
26	64337	120		÷				2.78	<1	9	67	838	3.10			1074	38	<0.01		750		<5		38	<0.01	<10	23	<10	10	
27	64338	10						1.16	<1		141	1679	2.39			419	2	< 0.01		90		<5	<20	5	<0.01	<10	5	<10	4	16
28	64339	>1000	21.3					0.03	<1		153	87	2.32		0.01	61	3	< 0.01	5					<1	<0.01	<10	4	<10	<1	
29	64340	570						0.28	<1	162	117	>10000	>10			174	9	<0.01	7	<10		<5		6	0.02	<10	4	<10	<1	34
30	64341	370						0.03	1	162	93	>10000	>10			604	13	<0.01	7	>10000	<2	<5		<1	<0.01	<10	14	<10	<1	
31	64342	345							<1	14	121	>10000	5.66			457	3	<0.01	6	<10		<5		8	0.03	<10	21	<10	<1	49
32	64343	>1000	_					0.32	71	7	67	203	2.98	-	0.04	244	1	<0.01	4	330		<5		138	0.01	<10	5	<10	<1	3932
33	64344	85						0.06	<1	5	98	187	2.46			35	3	<0.01	3		648	<5		6	0.02	<10	8	<10	<1	107
34	64345	75						1.52	393		86	155	2.44	-	0.11	849	<1	<0.01		_	>10000	<5		27	<0.01	<10	8	50	<1	>10000
		···· ···		0.57	210		~>	5.00	949	9	34	68	3.18	<10	0.68	4479	<1	<0.01	5	290	>10000	<5	<20	119	<0.01	<10	17	120	<1	>10000
OC DAT	<u> </u>		ļ			ļ																								
Resplit:									1		-															\vdash		{	\rightarrow	
1	83729	5	<0.2	0.19	<5	190	<5	0.26	<1	<1	71	7	0.30	<10	0.02	235	<1	0.03	2	70	10	<	<20	5	<0.01	<10	1	<10	7	22
Repeat:		<u> </u>		<u> </u>]																					+	¥
1	83729	<5						0.24	<1	<1	69	9	0.30		0.03	257	<1	0.03	2	70	8	<5	<20	7	<0.01	<10		<10	- 8	18
10	83738	20	5.7	0.85	5	65	<5	0.79	55	7	57	551	2.26	<10	0.21	1803	<1	<0.01	2	1010	>10000	<5	<20	48	0.13	_	22	10	14	5116
17	64251	255	<u> </u>					[_						
19	64253	30	0.3	0.23	15	90	<5	0.82	<1	4	80	9	1.41	<10	0.06	582	4	<0.01	2	230	10	<5	<20	7	<0.01	<10	6	<10	3	31
24	64335	500]]															,				 H	
29	64340	535		L																										
30	64341	370		<u> </u>			┝━━╇																				-+			
31	64342	345		<u> </u>			⊢∔.				ſ																			
Standard	<u> </u>						\square																···				- 1	+	-+	
OXF41	 	790											_										1					t	\rightarrow	
OXF41		790									I.																	+	\rightarrow	
GEO '05	ł		1.5	1.37	60	155	<5	1.32	<1	16	57	86	3.64	<10	0.72	551	<1	0.03	29	650	22	<5	<20	56	0.11	<10	70	<10	9	74
																												-10		/4

JJ/ga df/1198

XLS/05

ECO TECH LABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

21-Oct-05

ECO TECH LABORATORY LTD. 10041 Dailas Drive KAMLOOPS, B.C. V2C 6T4 Phone: 250-573-5700

Fax : 250-573-4557

.

Stealth Minerals

301 - 260 Esplanade North Vancouver, BC V7M 3G7 Attention: Bill McWilliams

No. of samples received:24 Sample Type: Rock Submitted by:Dave Kuran Proiect #:Gordo-Too

Tag # 84572 84573 84574 84575 84576	Au ppb <5 40 <5	Ag 0.6	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr											011	0.1	0	T: #/	11	V	W		Z	
84573 84574 84575	40		A 20				- OG /e	Շսլ	[UT UT	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	<u> </u>		88	t	L_4	
84574 84575			0.20	<5	650	<5	1.16	<1	<1	93	547	0.48	<10	0.02	148	1	0.06	2	220	2	<5	<20]	16	<0.01	<10	11	<10	2		
84575	7 5	4.6	0.24	5	115	<5	1.82	<1	1	44	1355	0.63	<10	0.05	282	4	0.02	2	130	4	<5	<20]	10	<0.01	<10	16	<10	4		
	~>	1.2	0.10	<5	25	<5	0.50	<1	<1	136	422	0.33	<10	<0.01	78	<1	<0.01	3	20	4	<5	<20	<1	<0.01	<10	5	<10	<1		
84576	140	>30	0.14	25	45	<5	0.02	8	4	83	1144	7.30	<10	<0.01	96	85	<0.01	3	<10	136	<5	<20	<1	0.01	<10	26	<10	<1	10	
04070	350	>30	0.29	30	45	<5	0.19	11	8	78	>10000	2.79	<10	0.14	504	239	<0.01	2	<10	>10000	<5	<20]	50	0.02	<10	16]	<10	<1	25	
84577	40	1.1	1.06	20	50	<5	0.13	<1	20	67	2949	3.70	<10	0.82	1112	5	0.01	8	270	220	<5	<20]	2	<0.01	<10	48	<10	<1	1	
84578	720	11.6	0.69	<5	25	<5	0.87	15	7	74	7019	2.33	<10	0.47	959	8	0.02	4	50	384	<5	<20	4	0.01	<10	26	<10	22	10	
84636	<5	0.3	0.50	5	50	<5	0.53	<1	3	106	21	1.07	<10	0.20	349	1	<0.01	4	150	22	<5	<20	2	<0.01	<10	10	<10	8		
84637	70	6.1	0.54	5	285	<5	0.06	<1	6	154	4616	2.29	<10	0.35	407	21	<0.01	8	<10	84	<5	<20	2	0.02	<10	35	<10	<1] •	
84638	>1000	8.8	0.05	25	35	70	<0.01	<1	2	134	400	2.14	<10	<0.01	26	12	<0.01	4	110	24	<5	<20	2	<0.01	<10	5	<10	<1		
84639	>1000	5.1	1.59	50	130	<5	0.45	<1	14	71	3492	6.81	<10	0.50	674	93	0.03	5	470	48	<5	<20	43	0.05	<10	78	<10	<1		
84640	>1000	27.5	0.99	55	145	<5	0.15	<1	17	81	6872	8.56	<10	0.41	366	42	0.01	5	20	108	<5	<20	46	0.03	<10	60	<10	<1		
84641	>1000	13.6	0.19	65	60	<5	0.07	<1	5	120	1287	5.11	<10	<0.01	41	42	0.01	4	250	34	<5	<20	19	0.02	<10	30	<10	<1		
84642	>1000	6.2	0.89	120	160	<5	0.08	<1	14	113	2360	5.93	<10	0.34	417	27	0.02	6	210	26	<5	<20	23	0.05	<10	50	<10	<1		
84643	840	0.3	0.26	<5	15	<5	4.61	1	1	111	16	0.52	<10	0.20	1591	<1	<0.01	3	50	62	5	<20	40	0.01	<10	11	<10	2	1	
84644	>1000	5.6	0.12	10	70	120	0.24	1	1	142	2566	1.29	<10	0.02	135	55	0.02	4	<10	210	<5	<20	2	<0.01	<10	4	<10	<1	1	
84645	>1000	21.8	0.45	<5	85	<5	0.02	<1	7	116	9883	5.11	<10	0.12	207	157	0.01	6	<10	652	<5	<20	16	0.01	<10	24	<10	<1		
84646	110	6.2	0.48	10	350	<5	0.10	8	2	109	2709	1.50	<10	0.23	437	560	0.03	3	150	>10000	<5	<20	20	0.02	<10	16	<10	3	29	
64640	>1000	>30	0.16	220	55	<5	6.95	23	39	57	3147	6.95	<10	0.03	2883	82	<0.01	9	<10	318	<5	<20	18	0.01	<10	14	<10	3	8	
64641	140	11.9	0.71	200	40	<5	0.41	2	22	41	110	5.13	<10	0.24	661	10	0.03	3	980	126	<5	<20	15	0.12	<10	42	<10	2	2	
64642	210	14.6	0.36	285	70	<5	0.08	<1	3	71	50	2.26	<10	0.12	91	14	0.01	3	420	308	<5	<20	32	0.02	<10	12	<10	<1	[1	
64643	<5	0.5	1.25	10	75	<5	0.53	<1	12	73	16	2.57	<10	0.89	916	<1	0.03	5	620	24	<5	<20	43	0.09	<10	47	<10	8	1:	
64644	<5	24.1	0.75	<5	75	<5	0.31	1	14	96	1036	>10	<10	0.42	2262	11	<0.01	5	10	214	<5	<20	8	0.02	<10	58	<10	<1	34	
64645	<5	<0.2	0.75	10	25	<5	4.30	<1	5	62	6	0.99	<10	0.59	1328	<1	0.02	2	460	14	10	<20	78	0.09	<10	32	<10	11	[1-	
																					I]				
																					I					[
84572		0.6	0.18	5	650	<5	1.22	<1	<1	72	55 3	0.47	<10	0.02	153	<1	0.05	2	250	2	<5	<20	16	<0.01	<10	11	<10	2		
						$ \rightarrow $																							┝──	
84572		0.6	0.20	<5	670	<5	1 15	1	- 21	94	546	0.47	<10	0.02	147	<1	0.06	3	230	2	<5	<20	14	<0.01	<10	11	<10	2	<u> </u>	
84638		9.1		30		65	<0.01	<1	2	128	392	2.06	<10	<0.02	25	12	<0.00			26	<5	<20	5	<0.01	<10	4	<10	<1		
																								 _					 	
		1.5	1.42	60	160	<5	1.32	<1	19	58	86	3.73	<10	0.76	562	<1	0.02	29	680	22	<5	<20	54	0.11	<10	70	<10	10		
	84578 84636 84637 84638 84639 84640 84641 84642 84644 84644 84644 84645 84644 84645 84644 64642 64642 64643 64642 64643 64645 84572	84578 720 84636 <5	84578 720 11.6 84636 <5	84578 720 11.6 0.69 84636 <5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	84578 720 11.6 0.69 <5 25 <5 84636 <5	84578 720 11.6 0.69 <5 25 <5 0.87 84636 <5	84578 720 11.6 0.69 <5 25 <5 0.87 15 84636 <5	84578 720 11.6 0.69 <5 25 <5 0.87 15 7 84636 <5	84578 720 11.6 0.69 <5 25 <5 0.87 15 7 74 84636 <5	84578 720 11.6 0.69 <5 25 <5 0.87 15 7 74 7019 84636 <5	84578 720 11.6 0.69 <5 25 <5 0.87 15 7 74 7019 2.33 84636 <5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	84578 720 11.6 0.69 <5 25 <5 0.87 15 7 74 7019 2.33 <10 0.47 959 8 0.02 4 50 84636 <5	84578 720 11.6 0.69 <5 25 <5 0.87 15 7 74 7019 2.33 <10 0.47 959 8 0.02 4 50 384 84636 <5	24578 720 11.6 0.69 <5 25 <5 0.87 15 7 74 7019 2.33 <10 0.47 959 8 0.02 4 50 384 <5 284536 <5 0.3 <5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 10 2.33 <10 0.20 349 <1 <0.01 4 150 22 <5 84637 70 6.1 0.54 5 0.55 0.5 0.15 <1 2 134 400 2.14 <10 <0.01 24 10 84 0.65 25 25 15 <5 0.45 <11 11 11 <0.05 674 39 0.03 5 470 48 <5 84640 >1000 13.6 0.19 65 60 <5 0.07 <1 5 120 1287 5.11 <10 <0.01 41 42 20.01 44 250 344 <5	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24578 720 11.6 0.69 <5 25 <5 0.87 16 7 74 7019 2.33 <10 0.47 959 8 0.02 4 50 384 <5 <20 4 284636 <5 0.3 0.55 50 <5 0.53 <1 3 106 21 107 <10 0.20 349 <1 <0.01 4 150 22 <5 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <20 2 <th< td=""><td>94578 720 11.6 0.68 <5 25 <5 0.87 15 7 74 7019 2.33 <10 0.47 959 8 0.02 4 50 384 <5 <20 4 0.01 94636 <5</td> 0.3 0.50 5 50 <50</th<>	94578 720 11.6 0.68 <5 25 <5 0.87 15 7 74 7019 2.33 <10 0.47 959 8 0.02 4 50 384 <5 <20 4 0.01 94636 <5	94578 720 116 0.69 <5 25 <5 0.87 15 7 70 10 2.33 <10 0.47 959 8 0.02 4 50 384 <5 <20 4 0.01 < < 94636 <5	<0.01	94578 720 11.6 0.89 25 25 25 74 7019 2.33 <10 0.47 959 8 0.02 4 50 384 <5 <20 4 0.01 <10 266 94636 0.61 0.54 5 25 <5 0.06 <1 61 154 44616 2.29 <10 0.35 407 21 <0.01 4 100 24 <5 <20 2 <0.01 <10 384 <5 <20 2 <0.01 <10 384 <10 2.33 <10 <0.05 84 <10 2.4 <5 <20 2 <0.01 <10 384 <10 33 <10 2.33 <10 35 <10 384 <10 52 <10 12 134 <10 12 134 <10 2.20 12 12 128 13 <10 <0.05 138 <10 10 24 <0.05 <10 20 23 <0.05 <	98578 720 11.6 0.69 25 5 0.87 15 7 74 7019 2.33 100 0.47 989 8 0.02 4 150 22 < 0.01 <	98578 720 118 0.66 2 5 7 74 701 2.33 <10 0.47 959 8 0.02 4 50 384 <5 <20 4 0.01 <10 21 107 <10 0.20 349 <1 <0.02 4 50 284 <0.01 <10 10 0.10 <10 2 <0.01 <10 0.20 349 <1 <0.02 4 510 22 <0.01 <10 0.02 <10 21 <0.01 <10 24 <0.01 24 <0.01 24 <0.01 24 <0.01 24 <0.01 24 <0.01 24 <0.01 24 <0.01 24 <0.01 24 <0.01 24 <0.01 24 <0.01 24 <0.01 24 <0.01 24 <0.01 24 <0.01 24 <0.01 24 25 20 20 20 23 20.02 40 0.02 41 10 20.02 410 41 210

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

JJ/ga df/1333 XLS/05 Stealth

310 - 260 W. Esplanade North Vancouver, BC V7M 3G7 21-Oct-05

Attention: Bill McWilliams

No. of samples received: 24 Sample type: Rock **Project #: GORDO-TOO Shipment #: n/a** Samples Submitted by: Dave Kuran

		Au	Au	Ag	Ag	Cu	Pb
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/ť)	(%)	(%)
1	84572	< 0.03	<0.001				
2	84573	0.04	0.001				
3	84574	<0.03	<0.001				
4	84575	0.14	0.004	31.4	0.92		
5	84576	0.35	0.010	59.7	1.74	1.73	1.26
6	84577	0.04	0.001				
7	84578	0.72	0.021				
8	84636	<0.03	<0.001				
9	84637	0.07	0.002				
10	84638	6.31	0.184				
11	84639	1.36	0.040				
12	84640	6.01	0.175				
13	84641	13.0	0.379				
14	84642	12.1	0.353				
15	84643	0.84	0.024				
16	84644	7.65	0.223				
17	84645	7.03	0.205				
18	84646	0.11	0.003				1.76
19	64640	11.6	0.338	39.2	1.14		
20	64641	0.14	0.004				
21	64642	0.21	0.006				
22	64643	<0.03	<0.001				
23	64644	<0.03	<0.001				
24	64645	< 0.03	<0.001				

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

Stealth AK5-1327

21-Oct-05

ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	Cu (%)	Pb (%)	
	. ug #			(9,4)	(02/9	(76)	(/0)	
QC DATA:								
Repeat:								
1	84572	0.05	0.001					
4	84575			31.4	0.92			
10	84638	6.46	0.188					
12	84640	5.85	0.171					
13	84641	12.8	0.373					
14	84642	12.1	0.353					
16	84644	7.54	0.220					
17	84645	7.27	0.212					
19	64640	11.6	0.338					
Resplit:								
1	84572	<0.03	<0.001					
Standard:								
OX140		1.86	0.054					
SN16		8.62	0.251					
PB106				57.6	1.68	0.62	0.52	

JJ/ga XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2005-1198

Stealth 310 - 260 W. Esplanade North Vancouver, BC V7M 3G7

06-Oct-05

Attention: Bill McWilliams

1

1

[

No. of samples received: 34 Sample type: Rock **Project #: Gordo Shipment #: n/a** Samples Submitted by: R. Foster

		Au	Au	Ag	Ag	Cu	Pb	Zn
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)	(%)
10	83738						1.15	
12	83740						3.70	1.72
14	83742	3.72	0.108					
22	64333					1.14		
24	64335			48.7	1.42	10.4		
28	64339	2.38	0.069			3.65		
29	64340					7.74		
30	64341					3.94		
31	64342			145	4.23			
32	64343	1.43	0.042	47.3	1.38			
33	64344						1.51	2.24
34	64345			44.3	1.29		6.01	5.17
QC DATA								
Repeat:	-							
10	83738						1.15	
Standard	-							
Pb106				57.3	1.67	0.62	0.52	0.84
Cu 106				136	3.97	1.42		
OXF41		0.79	0.023					

JJ/ga XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

Appendix III:

Recommendations: Cost Estimate

STEALTH MINERALS LTD. Appendix III: Estimated Costs for 2006 work on Gordo Claims

di se

0

F

A	В	C	Q	R
	erals Ltd; Gordo 200	6 Cost Estim	ate	
2				
3 Gordo 2006				
4				
5 Category	Account Description	\$ Rate	days/hr/unit	\$ Balance
6				
7 Salaries	Project geo	600	2	
8	Senior geo	350		\$ 1,750
9	geo	275		\$ 1,375
10	prosp2/tech	250		\$ 1,250
11	Cook	300	5	\$ 1,500
12		_		
13 Analysis, Assay	rock goodham	20	250	\$ 5,000
15	rock geochem	18	600	
16	silt/soil geochem	18	600	
17 Field/Camp	Core			\$ -
18	Field Supplies		500	\$ 500
19	Camp Costs	75	80	and the second se
20	Camp Costs	/5	500	\$ 6,000
21	Expediting	1	250	
22	Expediting		200	\$ 200
23 Surface Work				
24	Linecutting, Site Prep			
25	Trenching/Pitting	200	30	\$ 6,000
26	Diamond drilling	200	50	\$ -
27	Road Building			\$ -
28 Travel	Road Dunding			-
29	Lodging	100	5	\$ 500
30	Meals, Groceries	40	25	
31	Airfare	700		\$ 3,500
32	Allaro	100		• 0,000
33 geophysics		-		\$ -
34				\$ -
35				s -
36 Transportation/Air	Support			
37	Vehicle Lease/Rental			\$ -
38	Vehicle Qaud			s -
39	Helicopter	1000	15	
40 Support Activities				
41	Communication	25	5	\$ 125
42	Maps/Pubs/Photos/Reports			\$ 300
43	Freight/Shipping	800	1	\$ 800
44 Other A&G/Manage				
45	Legal			
46	Rent - Office, Storage			\$ -
47	report			\$ 7,000
48	contingency			\$ 5,000
49				
50	TOTAL COSTS:			\$ 69,350
51				
52 Pase II Drilling	Diamond Drilling	2000	200	\$ 400,000
53				Part Part Part Part Part Part Part Part
54				
55 TOTAL:				\$ 469,350
56				
57				A
58				7
59				
60	-	-		
61				

Appendix IV:

.

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, David L. Kuran of 25630 Bosonworth Avenue in the Municipality of Maple Ridge in the Province of British Columbia, certify that:

- 1) I am a graduate of the University of Manitoba (1978) and hold a B. Sc. Degree in Geology.
- 2) I am a self-employed Consulting Geologist.
- 3) I am a registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia, Canada, Registration # 19142.
- 4) I am a Fellow in the Geological Association of Canada.
- 5) I have been employed in my profession as Geologist continuously since graduation by various mining companies and consulting firms in Canada, USA, Mexico, Argentina and Europe.
- 6) This report are based upon data collected during field work completed on the Stealth Minerals Toodoggone claims, including theGordoProperty in the Omineca Mining Division during 2005 by D.L Kuran and others, and a thorough research of available information, and personal experience in the district.
- 7) I hold no interest in the Toodoggone Project Claims. I hold an Employees Option to Purchase shares in Stealth Minerals Limited.

Dated this 30 th day of November, 2005 at Maple Ridge BC, Canada.

STATEMENT OF QUALIFICATIONS

I, April M. Barrios of 1550 Fremont Place Victoria, in the Province of British Columbia, certify that:

- 1) I am a graduate of the University of Victoria (2004) and hold a B. Sc. Degree in Earth and Ocean Science.
- 2) I am a self-employed Consulting Geologist.
- 3) I have been employed in my profession as Geologist continuously since graduation, and worked periodically in geology while attending University.
- 4) This report is based upon data collected during field work completed on the Stealth Minerals Toodoggone claims, including the Gordo Property in the Omenica/Liard Mining Divisions during 2005 by A. M. Barrios and others under my supervision, and a thorough research of available information, and personal experience in the district.
- 5) I hold no interest in the Toodoggone Project Claims. I hold an Employees Option to Purchase shares in Stealth Minerals Limited.

Dated this 4 th day of December, 2005 at Victoria BC, Canada.

Apri Bans.

April M.Barrios.

Appendix V:

References

List of References

Blann, D.E., Kuran. D.L. 2004. Prospecting, Geological, Geophysical, Geochemical, Trenching and Diamond Drilling Report on the Pine Property, Finlay River, Toodoggone, British Columbia. Prepared for Stealth Minerals Limited.

Diakow, L.J. and Metcalfe, P. 1997. Geology of the Swannell Ranges in the Vicinity of the Kemess Copper Gold Porphyry Deposit, Attycelley Creck (NTS 94E/2), Toodoggone River Map Area. British Columbia Geological Survey Branch. Geological Fieldwork 1996, Paper 1997-1, 101-115.

Diakow, L.J., Panteleyev, A., and Schroeter, T.G. 1993. Geology of the Early Jurassic Toodoggone Formation and Gold-Silver Deposits in the Toodoggone River Map Area, Northern British Columbia. B.C. Ministry of Energy Mines and Petroleum Resources, Bulletin 86, 72 pages.

Kuran, D., Barrios, A., 2004. Prospecting Report on the Gordo - Too Claims (Assessment Report 27638)

Government of British Columbia, Ministry of Energy and Mines, MapPlace website http://www.em.gov.bc.ca/mining/Geolsurv/MapPlace/default.htm

R.B.K. Shives, J.M Carson, K.L. Ford, P.B. Holman, L. Diakow: Toodoggone MultiSensor Geophysical Survey ,Open File 2004-8 Helicopter-borne gamma ray spectrometric and magnetic total field geophysical survey, Toodoggone Area, British Columbia.(Parts of NTS 94D/15, E/2,3,6,7,10,11)

Thompson, A.J.B, Thompson J.F.H, 1996. Atlas of Alteration, Geological Association of Canada, Mineral Deposits Division.

BCGS geo legend