DIAMOND DRILL REPORT on the CASSIAR PROJECT

(Chiera, Zone, Bev, Alta, Pit, Bunny, Pinks, Ever, Ready, Volt and Ohms claims)

NTS: 104P/4 and 5

Latitude: 59°16' N

Longitude: 129°50' W

Liard Mining Division, British Columbia

Work performed between September 2 and 27, 2005

Owner/Operator

Eveready Resources Corporation 2616 - 126 Avenue SW Calgary, Alberta T2W 3V6

By Jean Pautler, P. Geo. JP Exploration Services Inc. 103-108 Elliott St. Whitehorse, Yukon Y1A 6C4

January, 2006

SUMMARY:

The 3266 ha Cassiar Project, NTS map sheets 104 P/4 and 5, is located in the Liard Mining Division immediately south of the former Cassiar townsite in northwestern British Columbia, 480 km by road north of the port at Stewart. The property is situated with a latitude and longitude of 59°16' N and 129°50' W. Good infrastructure exists to and on the property, with highway access, an airstrip and a network of roads and trails. The property is owned and operated by Eveready Resources Corporation Calgary, Alberta.

Geologically the Cassiar Project area is centrally underlain by carbonate and fine clastic strata of the Precambrian to Paleozoic Cassiar Terrane, overlain by the Paleozoic Sylvester Allochthon in the southeastern property area and intruded by the late Cretaceous aged Cassiar Stock in the western property area.

The Cassiar Project covers three known deposits with published resources and seven additional Minfile occurrences as well as numerous showings. The deposits include the porphyry molybdenum **Storie or Casmo Moly deposit** with an unclassified resource by Shell Canada Resources Limited in 1981 of **100.5 million tonnes of 0.129 % MoS**₂ **(0.077% Mo) mineable by open pit using a cut-off grade of 0.07% MoS**₂. Shell reported that the deposit is open to the east, north and west and the favourable geophysics from the main zone extends 400m easterly to the intrusive contact.

The other two deposits are **silver-lead-zinc-gold replacements** that include the **Magno deposit** with an indicated and inferred resource of 446,684 tonnes of 141.7 g/t Ag, 4.84% Pb and 4.59% Zn from three zones and the **Middle D deposit** containing a drill indicated resource of 90,000 tonnes of 70 g/t Ag, 3.3% Pb and 6.3% Zn. Most of the work was carried out between 1968 and 1978 by Consolidated Coast Silver Ltd. Gold is present and was calculated in the Magno East resource estimate as 1 g/t with higher values up to 9 g/t Au from the D Zones. Geologically and geochemically the deposits are similar to the **Silvertip deposit**, which contains a resource of 2.57 million tonnes of 325 g/t Ag, 6.4% Pb, 8.8% Zn and 0.63 g/t Au and lies 120 km north-northwest along trend of the Cassiar Project.

The Cassiar Project also includes the **Lang Creek** probable Cypress type **volcanogenic massive sulphide** prospect where a 27,000 tonne lens grading 1.52% Cu and 0.9% Zn was outlined by Cominco in 1961. Subsequent sampling indicated significant precious metal enrichment.

The **2005 program** consisted of 927m of diamond drilling in seven holes, with minor property scale rock geochemical sampling, designed to follow-up anomalous results from the 2003 trenching program on the Magno North and Granite Creek replacement showings. One reconnaissance stepout hole was drilled on the Lang Creek volcanogenic massive sulphide showing.

The drill program on the Magno North zone, tested by DDH CA05-1 to –3, intersected significant proximal dolomite alteration within favourable stratigraphy. A more extensive mineralized body could be present down dip near the area tested by DDH CA05-2, which contained the greatest extent of proximal dolomite alteration.

The Granite Creek prospect, exposed in Trench 03-7 for 10m, was traced an additional 40m along strike to the southeast by DDH CA05-4. The zone remains open to the northwest to the contact with the Cassiar Stock and at depth in the vicinity of the original showing.

To date, fifteen significant silver-lead-zinc-gold replacement showings have been located and/or discovered over a 1.5 km wide by 4 km strike extent indicating excellent potential to significantly increase the resource on the Magno and Middle D deposits. Additional potential also exists within the deposits.

The large scale stepout hole (DDH CA05-7), down dip and down plunge of the 27,000 tonne Lang Creek volcanogenic massive sulphide lens, was not successful in intersecting the massive sulphide horizon. The hole intersected significant alteration and minor chalcopyrite, and it is possible that the target could still be at depth, due to fault offset(s). Future drilling should concentrate further to the west of the faults encountered in DDH CA05-7.

Several untested conductive zones are reported northeast of the Lang Creek prospect from previous work. Exploration along strike of the Lang Creek prospect is warranted due to the presence of other volcanogenic massive sulphide showings (Troutline Creek and Cassiar Pit) along strike to the north.

An airborne geophysical survey (magnetic, electromagnetic - HLEM and VLF) would be beneficial across the property, since the replacement and VMS styles of mineralization are magnetic, the volcanogenic massive sulphide mineralization, conductive and the VLF would detect the faults that control mineralization.

TABLE OF CONTENTS

Page

SUMMARY		i
1.0		1
2.0	LOCATION AND ACCESS	2
3.0	LEGAL DESCRIPTION	2
4.0	PHYSIOGRAPHY	4
5.0	HISTORY	4
6.0	2005 WORK	5
7.0	GEOLOGY 7.1 Regional 7.2 Property 7.3 Mineralization	5 7
8.0	GEOCHEMISTRY 8.1 Procedure 8.2 Results and Interpretation	11
9.0	DIAMOND DRILLING 9.1 Procedure 9.2 Results and Interpretation	13
10.0	CONCLUSIONS	23
11.0	RECOMMENDATIONS	23

APPENDICES

Appendix	I	Selected References

- Appendix II Statement of Claims
- Appendix III Drill Logs
- Appendix IV Geotechnical Data (core recovery, rock quality and box ends)
- Appendix V Geochemical Procedure and Results
- Appendix VI Statement of Expenditures
- Appendix VII Statement of Qualifications

LIST OF FIGURES

Figure 1	Location Map	Page
Figure 2	Claim Map	3
Figure 3	Regional Setting	6
Figure 4	Regional Geology	7
Figure 4	Property Geology	9
Figure 6	Mineralization	
Figure 7	D Zone Detail	12
Figure 8	Magno North And Granite Creek Detail	14
Figure 9	Lang Creek Detail	14
Figure 10	Section through DDH CA05-1	15
Figure 11	Section through DDH CA05-2	
Figure 12	Section through DDH CA05-3	17
Figure 13	Section through DDH CA05-4 and -5	19
Figure 14	Section through DDH CA05-6	
Figure 15	Section through DDH CA05-7	22

LIST OF TABLES

Table 1	Summary of claims	3
Table 2	Table of occurrences	11
Table 3	2005 sample descriptions and select results	12
Table 4	Drill hole specifications	13
Table 5	Significant intersections in DDH CA05-4	18
Table 6	Anomalous intersections in DDH CA05-6	20
Table 7	Significant intersections from Granite Creek showing	21

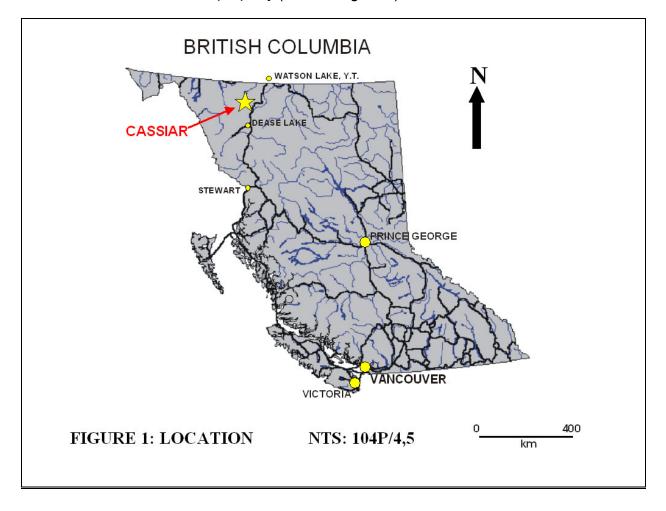
1.0 INTRODUCTION (Figure 2)

The Cassiar Project covers three known deposits with published resources and seven additional Minfile occurrences as well as numerous showings. The deposits include the porphyry molybdenum **Storie or Casmo Moly Deposit** (Minfile 104P 069) with an unclassified resource of 100.5 million tonnes of 0.129 % MoS₂ (0.077% Mo) using a cut-off grade of 0.07% MoS₂ and mineable by open pit (*Blommer and Gourlay, 1980*). The most recent work and resource calculation was completed by Shell Canada Resources Ltd. in 1981. The deposit was considered open to the east, north and west.

The other two deposits are silver-lead-zinc replacements that include the **Magno Deposit** (Minfile 104P 006) with an indicated and inferred resource of 446,684 tonnes of 141.7 g/t Ag, 4.84% Pb and 4.59% Zn from three zones and the **Middle D Deposit** (Minfile 104P 080) containing a drill indicated resource of 90,000 tonnes of 70 g/t Ag, 3.3% Pb and 6.3% Zn (*BC Minfile, 2005*). Most of the work was carried out between 1968 and 1978 by Consolidated Coast Silver Ltd.

The Cassiar Project also includes the **Lang Creek** probable Cypress type volcanogenic massive sulphide showing (Minfile 104P 008) where a 27,000 tonne lens grading 1.52% Cu and 0.9% Zn was outlined by Cominco in 1961 (BC Minfile, 2005). Subsequent sampling indicated significant precious metal enrichment, returning 1.8% Cu, 0.8% Zn, 36 g/t Ag, 1.7 g/t Au over 1m (*Panteleyev, 1978*).

Eveready Resources Corporation acquired the property between 1997-2002 and has concentrated on compiling the available data, locating and evaluating the known showings, road and adit rehabilitation to ensure access, and the delineation of new zones of mineralization that could significantly increase the known resources.


New zones of molybdenum mineralization have been located up to 1 km to the east and 3 km to the north of the Storie Moly deposit, fifteen significant silver-lead-zinc-gold replacement showings have been located and/or discovered over a 1.5 km wide by 4 km strike extent (indicating excellent potential to significantly increase the resource on the Magno and Middle D replacement zones) and the Lang Creek showing has been located, significant base and precious metal results verified and potential along strike demonstrated.

This report documents the results of a seven hole, 927m diamond drill program, with minor property scale rock geochemical sampling, completed on the Cassiar Project by Eveready Resources Corporation in 2005. The program was designed to follow-up anomalous results from the 2003 trenching program on the Magno North and Granite Creek showings. One reconnaissance stepout hole was drilled on the Lang Creek volcanogenic massive sulphide prospect.

2.0 LOCATION AND ACCESS (Figure 1)

The Cassiar Project, NTS map sheets 104P/4 and 5 and BCGS maps 104P 021 and 022, is located immediately south of the Cassiar townsite, 125 km north of Dease Lake, British Columbia, 145 km south of Watson Lake, Yukon Territory and 480 km from the port at Stewart, British Columbia. The property is situated in the Liard Mining Division with a latitude and longitude of 59°16' N and 129°50' W.

The property is accessible by paved highway to the townsite of Cassiar, which is equipped with an airstrip and pay telephone. Room and board is available. A network of roads and trails crosses the property (*refer to Figure 2*).

3.0 LEGAL DESCRIPTION (Figure 2)

The Cassiar Project Claim Group consists of 128 contiguous units in 14 claims and one Mineral Tenure Online (MTO) claim, covering an area of 3,266 hectares. The property is 100% owned, subject to net smelter returns, and operated by Eveready Resources Corporation of Calgary, Alberta. A detailed statement of claims is shown in Appendix II with pertinent claim data summarized in Table 1 below:

Claim Name	Tenure No.	Units	Issue Date	Expiry Date
CHIERA 1 TO 20	221627	20	March 31, 1975	November 30, 2012*
ZONE 1 TO 4	221628	4	April 4, 1975	November 30, 2012*
BEV 1 TO 20	221696	20	February 28, 1977	November 30, 2012*
ALTA 1	221819	2	May 31, 1979	November 30, 2015*
PIT NO. 1	227706	1	April 9, 1973	November 30, 2012*
PIT NO. 2	227707	1	April 9, 1973	November 30, 2012*
BUNNY	370621	16	July 28, 1999	November 30, 2010*
PINKS	370622	20	July 28, 1999	November 30, 2010*
READY	395420	20	August 5, 2002	August 5, 2014*
EVER 1-4	395423-426	4	August 5, 2002	August 5, 2014*
VOLT	399119	20	December 31, 2002	December 31, 2011*
OHMS	513558	MTO	May 29, 2005	May 29, 2006
TOTAL		128		

 Table 1: Summary of Claims

* expiry date based on acceptance of this report for assessment MTO: Mineral Tenure Online

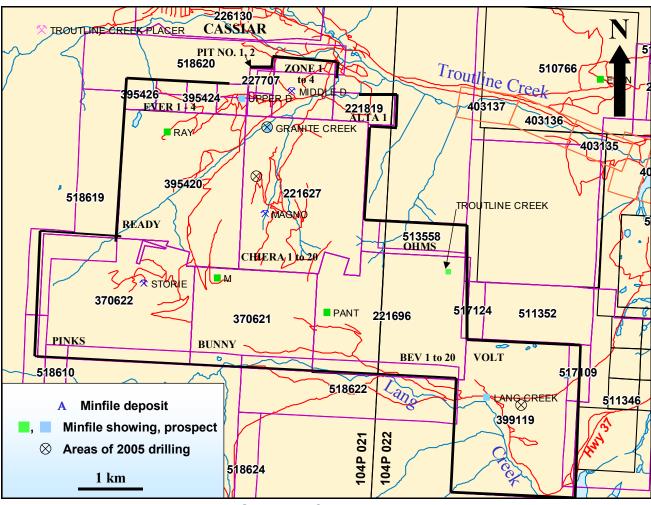


FIGURE 2: CLAIM MAP

4.0 PHYSIOGRAPHY

The Cassiar property is situated south of Troutline Creek and just east of the 1981m Limestone Peak within the rugged Stikine Ranges of the Cassiar Mountains. The area was affected by both continental and alpine glaciation with northwesterly trending ice flow directions. Elevations on the property range from less than 1000m on the Volt claims, in the southeastern property area, to 2060m on the western Ready claim. Most of the property lies above treeline with thick spruce, alder and willow at the lower elevations. There is good bedrock exposure above treeline, which lies at approximately 1400 to 1500m. Due to high snowfall the optimum months for field exploration are late July to mid September.

5.0 HISTORY

- 1922 discovery of Pb, Zn, Ag mineralization on the property
- 1953 21 tonnes shipped from the **Magno** zone
- 1955 Silver Standard completed trenching and drilled 9 holes on **replacements**
- 1959-61 geophysics and 671m of diamond drilling in 12 holes by Cominco on Lang Creek
- 1964-8 6799m in 48 diamond drill holes and 100m in 10 RC holes by Casmo Mining (New Jersey Zinc) on **Storie Moly**
- 1971 Levana completed 964m of diamond drilling in 4 holes on Storie Moly
- 1968-75,8 Cons. Coast Silver completed airborne and ground magnetic surveys, 666m of underground development (2 adits on Magno West), 621m of underground drilling, 50 surface holes on Magno, D and M zones and in 1971 produced 12 tonnes of 132 g/t Ag, 4.5% Pb and 5.6% Zn from the Magno zone
- 1976 geophysics, 1638m of diamond drilling and trenching by Balfour Mining Ltd. on the **Magno** zone
- 1979-81 Shell completed mapping, geophysics, geochemistry and 895m of diamond drilling in 8 holes (**Pant** -2, **Granite Creek**-2, **Tremolite** -1) and 8094m of diamond drilling on **Storie Moly**
- 1995 Pacific Bay Minerals completed geochemistry and 1 RC drill hole (Lower D zone)

1997-2002 - acquisition by Eveready Resources Corporation

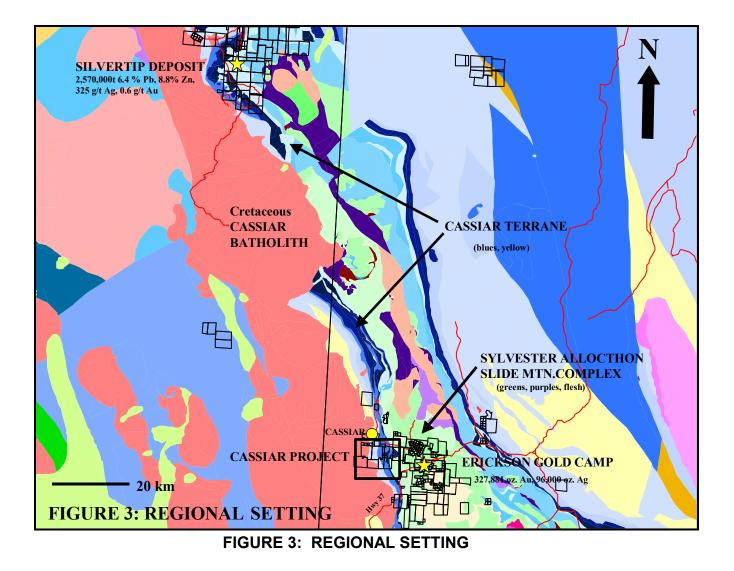
- 1998 mapping, trenching, 1817m of diamond drilling in 8 holes on **Magno** zone
- 2002 compilation of available data, evaluation of known showings, geological mapping, prospecting and geochemical sampling
- 2003 evaluation of Lang Creek, Pant and Ray showings, reconnaissance magnetic survey over Magno North, Hill 1818, Waterfall, Granite Creek zones, follow-up excavator trenching, road and adit rehabilitation
- evaluation of Lower D zone, detailed examination of Lang Creek, tracing of Pant North zone along strike and evaluation of molybdenum potential to east of Storie Moly deposit and north of the Ray showing

6.0 2005 WORK

A total of 21 man-days were spent on the Cassiar claims between September 2 and 27, 2005. Work consisted of 927m of diamond drilling in seven holes, with minor property scale rock geochemical sampling.

Control was provided by 1:20,000 based TRIM topographic maps, hipchain, compass, altimeter and GPS.

7.0 GEOLOGY


7.1 Regional (Figures 3 and 4)

The Cassiar Project area is underlain by platformal carbonate and clastic metasedimentary rocks of the Precambrian to Paleozoic Cassiar Terrane, intruded in the west by the mid Cretaceous Cassiar Batholith and flanked to the east by the Paleozoic to Mesozoic Sylvester Allochthon, a klippe of Slide Mountain Terrane marine volcano-sedimentary and ultramafic rocks preserved within the core of the McDame anticlinorium.

The oldest rocks on the property are those of the Cassiar Terrane, displaced North American continental margin carbonate and clastic stratigraphy of Proterozoic to Early Mississippian age. The Cassiar Terrane hosts several lead-zinc-silver±gold replacement and tungsten-molybdenum-copper-lead-zinc skarn occurrences, both on the property and along trend. Most notably, the Silvertip (Midway) lead-zinc-silver-gold replacement deposit, with a resource of 2.57 million tonnes of 325 g/t Ag, 6.4% Pb, 8.8% Zn and 0.63 g/t Au, lies 120 km north-northwest of Cassiar along trend (*see Figure 3*).

To the east, the Cassiar Terrane is structurally overlain by Early Mississippian to Late Triassic rocks of the Sylvester Allochthon, which consist of marginal basin and arc volcano-sedimentary sequences and ultramafite-gabbro complexes, *(Nelson and Bradford, 1989)*. The Sylvester Allochthon hosts the gold-bearing quartz veins of the Erickson Gold Camp (approximately 7 km east of the Cassiar Project area), which produced 327,881 ounces of gold and 96,045 ounces of silver from 1939 to 1999 (see *Figure 3*). The Cassiar asbestos deposits are hosted by ultramafic rocks within the Sylvester Allochthon.

There is also excellent potential for volcanogenic massive sulfide deposits within the Sylvester Allochthon. A volcanogenic massive sulfide (VMS) Minfile occurrence (104P 008) is known in the southeast property area (*Figures 4 and 5*) and a small, apparently strataform, massive sulfide occurrence was discovered by the British Columbia Geological Survey within the Cassiar Asbestos pit (104P 005) approximately 13 km to the north (*Nelson and Bradford, 1989*). A Minfile copper showing (Troutline Ck), possibly misplotted, may also occur within the Sylvester Allochthon (*Figure 5*). Very little work, and virtually no recent work, has been undertaken in this highly prospective VMS environment.

In the property area the Cassiar Terrane is intruded by a 7 km by 30 km long stock referred to as the Cassiar or Troutline Creek Stock, a Late Cretaceous aged (73 Ma) quartz monzonite stock that intrudes along the eastern margin of the mid Cretaceous aged (102 Ma) Cassiar Batholith (*Panteleyev, 1978 - see Figure 4*).

Porphyry molybdenum, \pm tin-tungsten, mineralization appears to be associated with the Cassiar Stock, and associated quartz feldspar porphyry bodies, in a 10 km long northerly trending belt from Cassiar Moly (south of Lang Creek) past the Storie Moly Deposit to the Ray showing, the latter two occurrences located on the property (*Figure 4*).

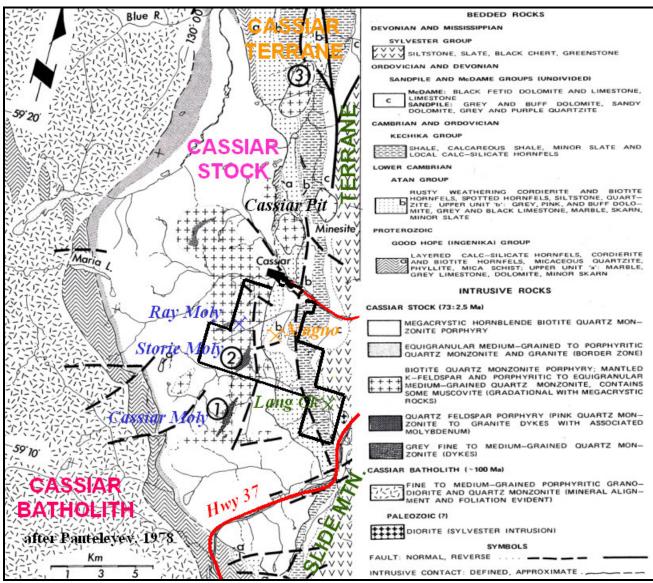


FIGURE 4: REGIONAL GEOLOGY

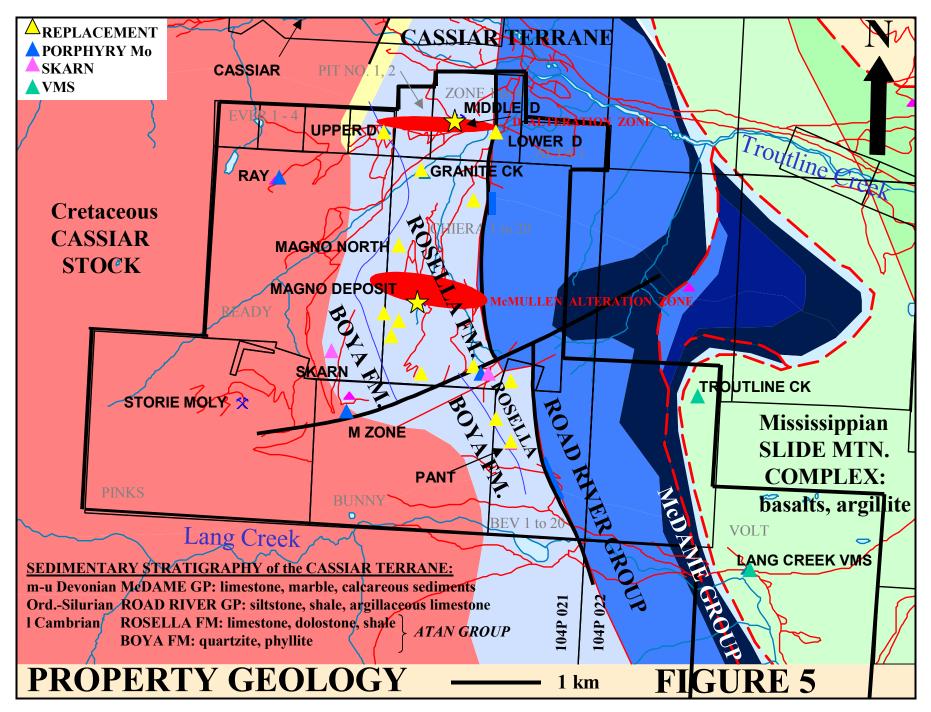
7.2 **Property** (Figures 4 and 5)

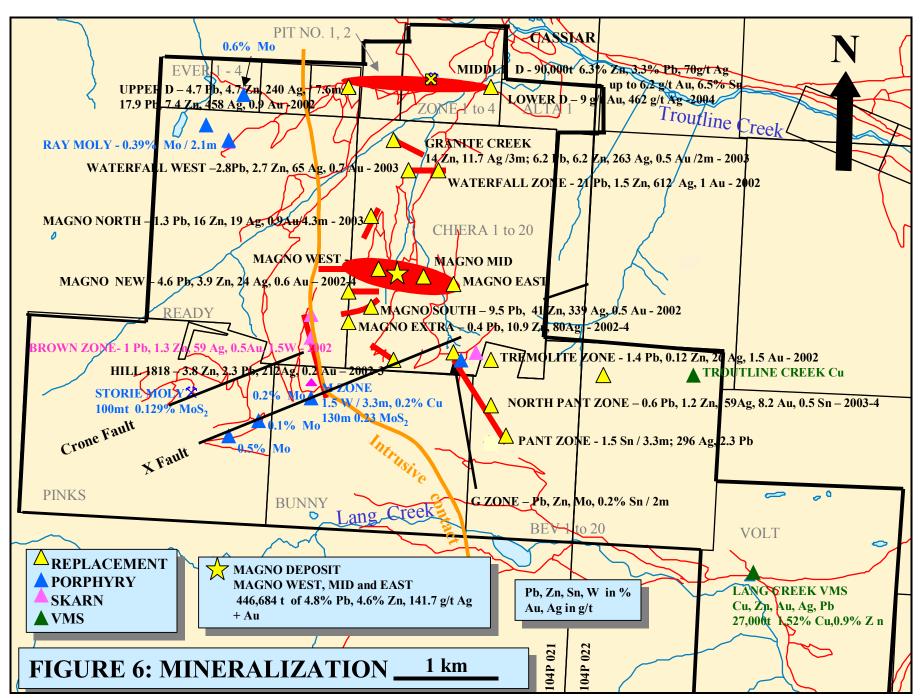
The central portion of the property is underlain by carbonate and clastic stratigraphy of the Cassiar Terrane. The major units are summarized as follows:

mid Devonian	M ^c Dame Group	limestone and dolostone
Ordovician – Silurian	Road River Group	siltstone, graphitic slate, argillaceous limestone
Cambrian	Rosella Formation Boya Formation	limestone, dolostone and shale quartzite and phyllite

The replacement mineralization on the property is hosted by carbonate strata of the Cambrian aged Rosella Formation (the carbonate member of the Atan Group), which represents the lowermost carbonate member of the Cassiar Terrane *(Figure 5)*. Mineralization at the Silvertip Deposit is hosted by the Devonian aged McDame Limestone, higher up within the Cassiar Terrane stratigraphy.

The Rosella Formation is underlain by interbedded quartzite and phyllite of the Boya Formation, also of Cambrian age, to the west and lies in fault contact (along the Marble Creek Fault) with siltstone, graphitic slate and argillaceous limestone of the younger, Ordovician to Silurian, Road River Group to the east. The McDame Limestone overlies the Road River Group in the eastern property area (*Figure 5*).


In the southeastern property area the Mississippian to Triassic Sylvester Allochthon structurally overlies the Cassiar Terrane, where it hosts Cypress type copper-zinc-silver-gold volcanogenic massive sulphide style mineralization (*Figures 4 and 5*). The rocks primarily consist of basaltic volcanic rocks, fine clastic sedimentary rocks and chert. The contact with the Cassiar Terrane stratigraphy is defined by a major thrust fault.


In the western property area the Cassiar Terrane is intruded by the multiphase Cassiar Stock of quartz monzonite composition (*Figure 4*). At least four discrete phases have been recognized including a quartz feldspar porphyry phase. At the Storie Moly Deposit the quartz feldspar porphyry occurs as a number of up to 60m wide sheet-like intrusions (*Panteleyev, 1979*). Porphyry molybdenum, \pm tin-tungsten, mineralization appears to be associated with late phases of the Cassiar Stock, a medium grained quartz monzonite and associated quartz feldspar porphyry core (*Saydam, 1983*).

All the above units are intruded by mafic and felsic dykes. Basalt dykes appear to have a spatial association and possible genetic relationship to the replacement mineralization on the property.

7.3 Mineralization (Figure 6)

Four distinct types of mineralization are exposed on the property, porphyry molybdenum, silver-lead-zinc-(gold) replacement, Cypress type precious metal enriched volcanogenic massive sulphide and skarn. All mineralization types except for the skarn have significant economic potential. The known deposits, mineralized zones and significant results have been plotted on Figure 6 and are summarized in Table 2 on page 11. For a more thorough description of the individual showings refer to Pautler, 2005 and Bloomer, 1980a.

1	1

Name	Minfile No.	Class	Summary
Porphyry Mo			
STORIE	104P 069	deposit	100.5 mt of 0.129 % MoS ₂ (0.077% Mo) mineable by open pit (Shell, 1981); open to the east, north and west
RAY	104P 040	showing	0.39% Mo over 2.1m from pegmatite (confirmed in 2003); 2.5 km N of STORIE, 1 DDH
M ZONE	104P 037	showing	4 DDH (Coast Silver), 1 with 0.23% MoS ₂ over 130m??, not confirmed but moly in area
Replacement	Ag-Pb-Zn	(Au-Cu)	(listed from north to south)
MIDDLE D	104P 080	deposit	90,000 tonnes of 70 g/t Ag, 3.3% Pb and 6.3% Zn (blind discovery targeting float; 6.5% Sn /0.9m (Shell); 6.2 g/t Au (2002)
UPPER D	104P 044	prospect	240 g/t Ag, 4.7% Pb and 4.7% Zn over 7.6m from drilling; 5 holes drilled by Coast Silver
Lower D		showing	pyrrhotite lenses intersected in drilling and Au associated with pyrrhotite at Middle D zone; 6 drill holes; no exposure; 9 g/t Au, 462 g/t Ag in float 2004
GRANITE CREEK	104P 081	prospect	263 g/t Ag, 6.2% Pb, 6.2% Zn, 0.5 g/t Au over 2m (2003 trenching); trends 135°/70°NE 2 DDH by Shell in wrong direction - 1 returned 14% Zn, 11.7 g/t Ag over 3m; open along strike to SE and at depth
Waterfall		showing	65 g/t Ag, 2.8 % Pb, 2.7% Zn and 0.7 g/t Au in ferricrete (Trench 03-5, 2003), local up ice source, possible 200m+ strike extent
Magno North		showing	450m N of MAGNO, traced 100m NE along strike, open to NE and at depth; 2003 trenching 1.3 % Pb, 16% Zn, 19 g/t Ag, 0.9 g/t Au /4.3m; 820 g/t Ag, 28% Pb, 6.2% Zn /1.2m
MAGNO	104P 006	deposit	446,684t of 141.7 g/t Ag, 4.84% Pb, 4.59% Zn from 3 zones (West, Mid, East); 2 adits Upper Adit – 554 g/t Ag, 18% Pb, 5.8% Zn, 0.2 g/t Au/ 14.5m (2004)
Magno New		showing	24 g/t Ag, 4.6% Pb, 3.9% Zn, 0.6 g/t Au (2002); traced 300m along WSW strike
Magno South		showing	300m south of MAGNO, traced 400m; 339 g/t Ag, 9.5% Pb, 41% Zn, 0.5 g/t Au (1998, 2004)
Magno Extra		showing	80 g/t Ag, 0.4% Pb, 10.9% Zn, 0.3 g/t Au (2003-4)
Hill 1818		showing	trends 120°, traced 230m; values up to 212 g/t Ag, 2.3% Pb, 3.8% Zn, 0.2 g/t Au from oxidized felsenmeer (2003)
Tremolite		showing	26 g/t Ag, 1.4% Pb, 0.12% Zn and 1.5 g/t Au; felsenmeer over 150X100m (2002)
G Zone		showing	pyrrhotite-pyrite-magnetite body, trace sphalerite intersected in drilling (total 4 DDH-Shell)
Pant North		showing	surface samples up to 8.2 g/t Au, 91 g/t Ag, 1.24% Zn, 0.6% Pb, 0.5% Sn (2003-2004) NNW trending zone traced for 300m, avg. width 2m
PANT	104P 082	showing	2 DDH by Shell, 1980 - 296 g/t Ag, 2.3% Pb over 0.4m in DH80-6; 1.5% Sn over 3.3m (1978)
Cypress VMS	Cu-Zn	(Au-Ag)	
LANG CREEK	104P 008	prospect	27,000t of 1.52% Cu, 0.9 % Zn (12 DDH - Cominco 1961) 1.8% Cu, 0.1% Pb, 0.8% Zn, 36 g/t Ag, 1.7 g/t Au / 1m (Panteleyev, 1978)
TROUTLINE CREEK	104P 050	showing	probable location of GSC Cu showing; identified in 2004 in similar setting to LANG CREEK, 2 km to NNW
Skarn			
Brown Zone		showing	probable 700m long, 5m+ wide NNW trending zone, continues to skarn at M ZONE; max: 1.5% W, 0.05% Sn, 0.5 g/t Au, 59 g/t Ag, 1 % Pb, 1.3% Zn, 0.2% Cu in 2002

BCGS Minfile occurrences are capitalized.

8.0 GEOCHEMISTRY (Figure 7)

8.1 Procedure

Two additional rock samples were collected from the property in 2005 from new float occurrences not previously investigated within the D Alteration Zone.

The samples were placed in clear plastic sample bags, numbered, secured in the field and sent to Eco Tech Laboratory, Kamloops, British Columbia. Analysis and procedures are outlined under the "Diamond Drilling" section of this report. Lab procedures and results are outlined in Appendix V.

The rock samples consisted of chip samples across float boulders of sulphide mineralization and altered zones. Sample locations and select results are plotted on Figure 7. Sample descriptions with select results are listed in Table 3 below.

8.2 Results and Interpretation

						i			i	
SAMPLE		NAD 83	ZONE 9			Au	Ag	As	Zn	Pb
No.	AREA	EASTING	NORTHING	TYPE	DESCRIPTION	ppb	ppm	ppm	%	%
54226	Lower D	453000	6570680	float	quartz-sericite-pyrite altered quartz monzonite	<5	1.3	5		
54227	below Middle D	452889 452859	6571244 6571270	float	sphalerite and arsenopyrite rich boulders	785	2.9	>10,000	1.69	
Sample #1	east of Middle D	452800	6571003	float	galena, sphalerite bearing angular boulders	1080	1100	1195	1.67	25.4

 Table 3: 2005 sample descriptions and select results

A 50 cm angular float boulder of altered quartz monzonite (sample 54226) from the Lower D Zone did not return anomalous results. Intrusive rocks have not previously been uncovered in this area. The boulder could be of local glacial origin or may indicate dykes or apophyses of the Cassiar Stock through this area.

The location of Sample #1 from 2004 was found to have been collected from the east of the Middle D deposit and may indicate a greater extent or possibly may have been transported from the deposit. Additional float boulders, containing sphalerite and arsenopyrite, were found below the Middle D deposit (sample 54227). The Middle D zone was initially discovered by drilling an area of sulphide bearing float boulders.

9.0 DIAMOND DRILLING (Figures 8-15, Table 4)

9.1 Procedure

A total of 927m of diamond drilling in seven holes was completed on the Cassiar Project during the 2005 drill program to follow-up anomalous results from the 2003 trenching program on the Magno North (DDH CA05-1 to –3) and Granite Creek showings (DDH CA05-4 to –6). One reconnaissance stepout hole was drilled on the Lang Creek volcanogenic massive sulphide showing (DDH CA05-7). Drilling was carried out between September 2 and 27, 2005 by DJ Drilling (2004) Ltd. of Watson Lake, Yukon Territory. A skid mounted 38 core drill with NQ wireline tools was utilized.

A total of 23 samples of core were split in half at the Cassiar townsite by the author and placed in clear plastic sample bags, numbered and secured in the field. Samples were personally delivered to Greyhound in Whitehorse and sent directly to Eco Tech Laboratory of Kamloops, British Columbia for preparation and analysis. Standard quality control procedures involving duplicate analyses and the analysis of standards was completed by the lab.

All samples were analyzed for Al, Sb, As, Ba, Bi, Cd, Ca, Cr, Co, Cu, Fe, La, Pb, Mg, Mn, Mo, Na, Ni, P, Ag, Sr, Ti, Sn, W, U, V, Y and Zn using a 28 element ICP package which involves a nitric-aqua regia digestion. Gold was analyzed by fire assay with an atomic absorption finish. Values greater than 30 ppm Ag and >10,000 ppm Zn were assayed by acid digestion with an atomic absorption finish. Lab procedures and complete results are outlined in Appendix V.

Drill hole specifications are summarized in Table 4 and drill hole locations are shown on Figures 8 and 9. Drill logs are included in Appendix III with geotechnical data, including core recovery, rock quality and box ends, in Appendix IV. Core recovery averaged 94%. Cross sections with significant results are shown in Figures 10-15. The core is stored at the arena at the former Cassiar townsite. The old Lang Creek camp and core were located at 6566221m N, 455819m E, UTM co-ordinates, Nad 83, Zone 9. The core was not intact and no split sections were observed in the debris on the ground. Core consists of interbedded argillite and greenstone, which is consistent with the footwall of the massive sulphide horizon.

Hole	UTM Nad 83,	Zone 9	Elev.	Az.	Dip	Depth	Sample	No. of
No.	Northing	Easting	(m)	(°)	(°)	(m)	Numbers	Samples
CA 05-01	6569663	452264	1540	313	-45	141.7		
CA 05-02	6569746	452303	1520	305	-50	83.8		
CA 05-03	6569748	452298	1520	253	-45	89.9		
CA 05-04	6570440	452338	1250	219	-45	63.7	54203-212	10
CA 05-05	6570440	452338	1250	219	-80	81.4	54213	1
CA 05-06	6570440	452338	1250	185	-44	102.1	54214-16	3
CA 05-07	6566092	456688	1040	232	-65	364.55	54217-25	9
TOTAL:						927.05		23

 Table 4: Drill hole specifications

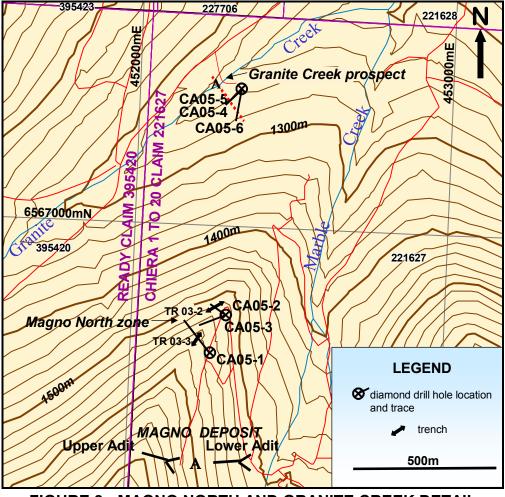


FIGURE 8: MAGNO NORTH AND GRANITE CREEK DETAIL

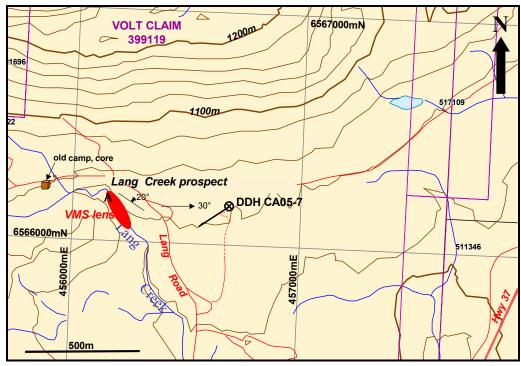
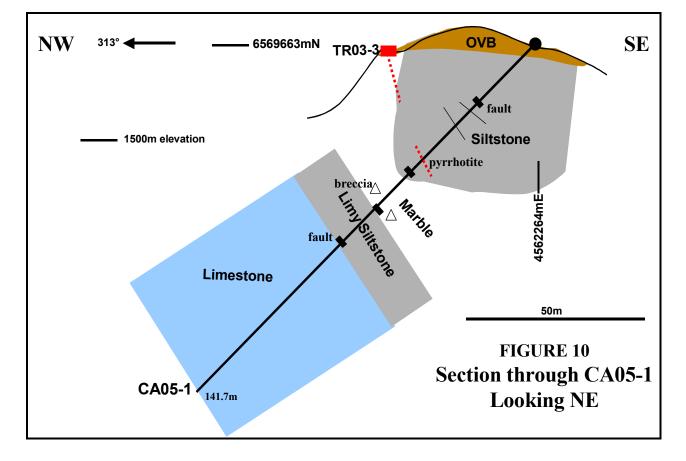


FIGURE 9: LANG CREEK DETAIL

14

9.2 Results


A brief description of each of the drill holes follows, including a summary of results.

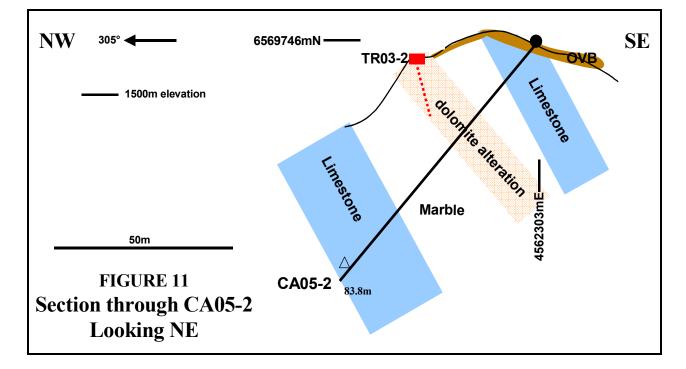
DDH CA05-1 (Figure 10)

DDH CA05-1 targeted the down dip extent of a 035° trending mineralized zone, grading 820g/t Ag, 28% Pb and 6.2% Zn over 1.2m, exposed in Trench 03-3 and the southwestern down dip extent of mineralization, trending 060° and grading 1.3 % Pb, 16% Zn, 19.3 g/t Ag, 0.9 g/t Au over 4.3m, exposed in Trench 03-2 both within the Magno North zone, 450m north of the Magno deposit.

The hole intersected siltstone from the top of the hole to 49.8m, underlain by marble to 68.0m, limy siltstone from 68.0 to 85.5m, and dark and light blue grey limestone units to the end of the hole at 141.7m. Bedding appears to dip moderately to the east. Faults were encountered at 22-23m, 47m, 66-68m and 79-83m. The lithology is consistent with the Rosella Formation.

The siltstone horizon is more fractured with local pyrrhotite rich beds (up to 5% pyrrhotite) over a few cm between 34.6 and 39.7m. This may represent the down dip extent of the mineralized zone in Trench 03-3 (*see Figure 10*), but is poorly developed due to the presence of a siltstone lens down dip, not a favourable host rock like the marble and limestone horizons that predominate in the Rosella Formation. Folding or faulting may have locally thickened the siltstone horizon in this area.

A significant fault zone was intersected around 66m with ghost brecciation in the marble above it and moderate to strong fracturing with numerous gouge zones in the siltstone below it, extending from 64 to 85.5m. This fault may have offset the mineralized zone from Trench 03-2.


No significant mineralization was intersected in CA05-1.

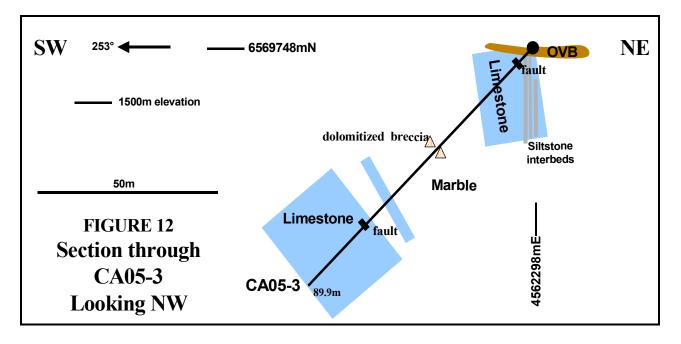
DDH CA05-2 (Figure 11)

DDH CA05-2 targeted the down dip extent of a 060° trending mineralized zone, grading 1.3 % Pb, 16% Zn, 19.3 g/t Ag, 0.9 g/t Au over 4.3m, exposed in Trench 03-2 within the Magno North zone, 100m north-northeast of DDH CA05-1.

The hole intersected limestone, with lesser marble interbeds, from the top of the hole to 15.2m, underlain by predominantly marble to 57.15m. Blue-grey limestone was intersected from 57.15 to the end of the hole at 83.8m. The siltstone lens or block intersected in DDH CA05-1 and significant faults were not encountered in DDH CA05-2. A limestone breccia was intersected near the bottom of the hole.

The marble unit is dolomitized from 24.1 to 37.1m, suggesting proximity to mineralization.

No significant mineralization was intersected.


DDH CA05-3 (Figure 12)

DDH CA05-3 tested for the down dip extent of mineralization, targeted in DDH CA05-1 and -2, between Trenches 03-2 and –3, from the same pad as DDH CA05-2.

The hole intersected interbedded limestone and siltstone from the top of the hole to 6.6m, underlain by limestone to 23.9m. Marble was intersected from 23.9 to 57.2m, and from 63.7 to 67.2m. Blue-grey limestone was intersected from 57.2 to 63.7 and 67.2m to the end of the hole at 89.9m. The bedding appears to be fairly steep in the top of the hole, grading to more moderate dips throughout most of the hole.

A fault was intersected at the base of the interbedded limestone and siltstone at 6.6m, which may explain the uncharacteristically large intersection of siltstone in DDH CA05-1 (fault thickening). Faults were intersected at the base of the siltstone unit and a major fault zone at the base of the limy siltstone unit in DDH CA05-1. Another fault zone occurs between 69 and 74m in DDH CA05-3.

Dolomitized limestone clasts, up to 5 cm in size, occur within the marble from 41.1 to 41.5m with manganese alteration in the hanging wall. Dolomitization, and associated manganese alteration, is commonly associated with mineralization and may indicate proximity to the mineralized zone, possibly along strike.

No significant mineralization was intersected.

MAGNO NORTH ZONE

The pyrrhotite rich beds within the siltstone in DDH CA05-1, the dolomite alteration in DDH CA05-2 and the dolomitized breccia in DDH CA05-3 all appear to correlate with the extension of the mineralization exposed in Trenches 03-2 and 03-3. It is possible that the mineralization exposed on surface at the Magno North zone is fracture related, associated with a pre-mineral fault that resulted in the thickened section of siltstone in DDH CA05-1 and the steeper bedding in the top of DDH CA05-3. A more extensive mineralized body could be present down dip of the fractures, proximal to the area tested by DDH CA05-2, which contained the greatest extent of proximal dolomite alteration.

DDH CA05-4 (Figure 13)

DDH CA05-4 targeted the Granite Creek showing, located between the Magno and Middle D deposits, 40m along strike to the southeast and 40m down dip of mineralization, trending 135°/70°NE, exposed in Trench 03-7, which graded 6.2% Pb, 6.2% Zn, 263 g/t Ag, 0.5 g/t Au over 2m.

Hornfelsed siltstone was intersected from the top of the hole to 10.0m, primarily followed by grey limestone, with lesser marble beds, to 43.9m. Marble was intersected from 43.9 to 60.95m, with limestone to the end of the hole at 63.7m.

The hole intersected a 0.7m interval of massive sulphide, consisting of 80% pyrrhotite, 10% pyrite, almost 5% sphalerite and minor galena and chalcopyrite at 36m.

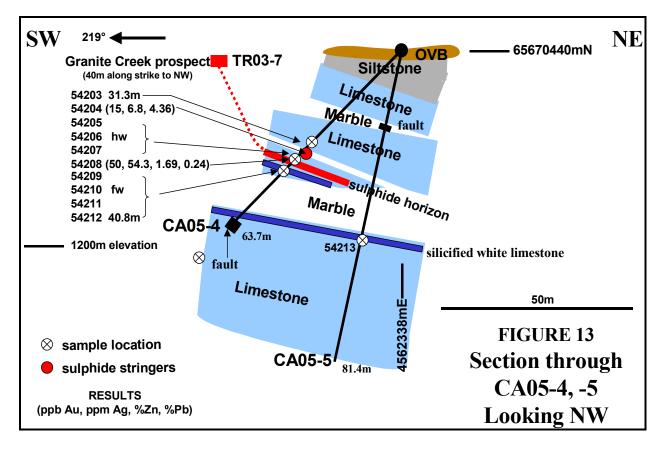
Alteration consists of chlorite within the hanging wall of the sulphide zone with sulphide stringers, consisting of pyrite, sphalerite and trace galena, hosted by a narrow 0.95m wide marble bed (sample 54204). Dolomite alteration is directly associated with the massive sulphide zone (sample 54208). The direct footwall consists of a white, pyritic (3%) limestone, followed by strongly silicified limestone with 1% pyrite. This is followed by a variably silicified, dolomitized and limonitic limestone from 38.15 to 43.9m.

White, silicified limestone similar to that in the footwall of the mineralized zone was intersected from 60.95 to 62.6m that was thought to represent proximity to a fold repetition of the massive sulphide zone or to a second mineralized horizon. This was followed by highly fractured and rubbly limestone with marble beds, possibly broken due to proximity to a fault. The hole was terminated at 63.7m due to technical difficulties in drilling.

Sample	From	То	Interval	Aq	Zn	Pb	Cu	Au	
No.	(m)	(m)	(m)	(g/t)	(%)	(%)	(ppm)	(ppb)	Comments
54204	31.95	32.25	0.3	6.8	4.36		150	15	stringer zone
54208	35.65	36.35	0.7	54.3	1.69	0.24	668	50	massive pyrrhotite

 Table 5: Significant intersections in DDH CA05-4

DDH CA05-5 (Figure 13)

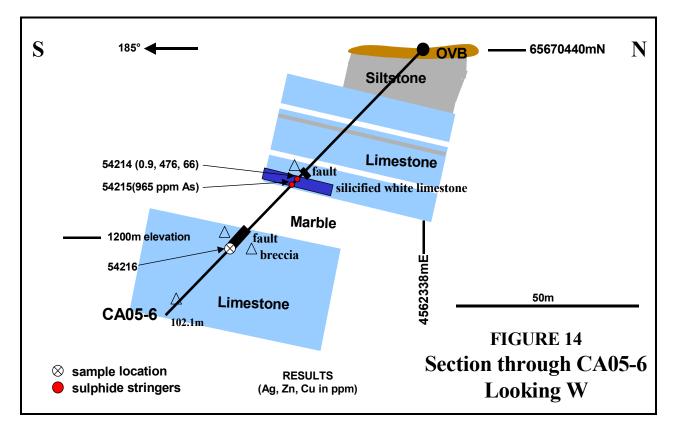

DDH CA05-5 targeted the down dip extension of mineralization intersected in DDH CA05-4.

Hornfelsed siltstone was intersected from the top of the hole to 10.2m, primarily followed by grey limestone, with a minor marble bed, to 32.7m. Marble was intersected from 32.7m to 53.85m, with limestone to the end of the hole at 81.4m. The stratigraphy corresponds to that in DDH CA05-4 and indicates a relatively flat to gentle dip. A major fault zone was intersected from 19.9 to 21.2m. The fault may correlate with a fault encountered at the bottom of DDH CA05-4.

White silicified marble, similar to the white limestone in the footwall of the mineralized zone, was intersected from 52.2 to 53.85m and appears to correlate to the lower white

silicified limestone in DDH CA05-4. The silicified unit was followed by almost 30m of unaltered limestone. The alteration may occur proximal to mineralization as seen in the upper part of DDH CA05-4, suggesting a mineralized horizon is present along strike.

No significant mineralization was intersected.


DDH CA05-6 (Figure 14)

DDH CA05-6 targeted the extension of mineralization intersected in DDH CA05-4, approximately 40m along strike to the southeast.

Hornfelsed siltstone with minor limestone interbeds, was intersected from the top of the hole to 17.5m, underlain by grey limestone, with a minor siltstone bed and minor marble beds, to 61.9m. Marble was intersected from 61.9m to 78.65m, with limestone to the end of the hole at 102.1m. The stratigraphy corresponds to that in DDH CA05-4 and -5 and indicates a relatively flat to gentle dip. A major fault zone, with associated brecciation, was intersected from 78.65 to 87.6m. The fault may correlate with a fault encountered at the bottom of DDH CA05-4 and top of DDH CA05-5. Another fault was encountered at 56.2 to 56.4m.

White, silicified limestone similar to that in the footwall of the mineralized zone in DDH CA05-4 was intersected from 54.1 to 61.9m, with chlorite alteration in the hanging wall. Minor sulphide stringers were hosted by the silicified limestone and limestone breccia. A higher concentration of stringers (with 5% total sulphides) was present between 54.1 to

55.5m with pyrite-pyrrhotite-sphalerite stringers (sample 54214) and between 59.4 to 61.0m with pyrite-arsenopyrite stringers and fine disseminations (sample 54215).

No significant mineralization was intersected but the stringer zone within the silicified limestone unit, which appears to occur proximal to mineralization, was anomalous in zinc, copper, silver and magnesium. Magnesium is enhanced in the footwall of the mineralization in DDH CA05-4 and depleted within the mineralized zone itself (see *Appendix V*). The anomalous results are tabulated below and shown in Figure 14.

	1 44 1								
Sample	From	То	Interval	Aq	Zn	Cu	As	Ma	
No.	(m)	(m)	(m)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	Comments
54214	54.1	55.5	1.4	0.9	476	66	,	>10	stringer zone
54215	59.4	61.0	1.6				965	>10	stringer zone

Table 6:	Anomalous	intersections	in	DDH CA05-6
----------	-----------	---------------	----	------------

GRANITE CREEK PROSPECT

The Granite Creek prospect was originally discovered by Shell in 1979 returning 57 g/t Ag, 1.4% Pb, 0.63% Zn and 1.0 g/t Au with 1.2% Sn over 1m (*Bloomer, 1980a*) and drilled with 2 holes in 1980, assuming a northerly trend for the zone (*Bloomer, 1980c*). Trenching in 2003 (Trench 03-7) exposed the mineralized zone for 10m, indicating a trend of 135°/70°NE (*Pautler, 2004*). In the Shell drilling DH 80-1 was terminated before intersecting the projected northwestern extent of the mineralized zone due to the azimuth of the hole. In addition, the alteration in the bottom of the hole suggests

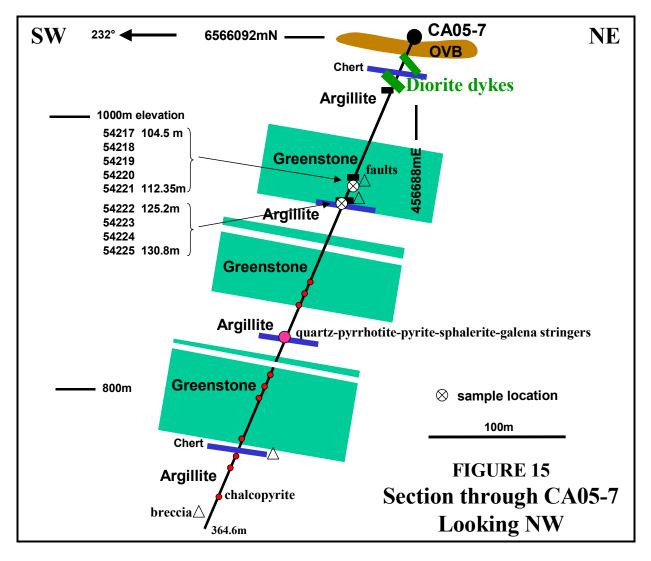
proximity to the mineralized horizon. DH 80-2 was directed at the Granite Creek showing and intersected the mineralized zone.

In the current drilling, the zone was traced an additional 40m along strike to the southeast. Significant intersections from the Granite Creek prospect are summarized in Table 7 below. The zone remains open to the northwest to the contact with the Cassiar Stock and at depth in the vicinity of the original showing.

		U U							•
DDH	From	To	Interval	Ag (a/t)	Zn	Pb	Cu (nnm)	Au (mmh)	Commonto
No.	(m)	(m)	(m)	(g/t)	(%)	(%)	(ppm)	(ppb)	Comments
1979	surface	showing	1.0	57	0.63	1.4	(1.2 %Sn)	1.0 g/t	massive pyrrhotite
DH 80-2	17.7	22.3	3.0	12	14	0.1	(.03 %Sn)		massive pyrrhotite
TR 03-7	surface		2.0	263	6.2	6.2		0.5 g/t	massive pyrrhotite
CA05-4	31.95	32.25	0.3	6.8	4.36		150	15	stringer zone
CA05-4	35.65	36.35	0.7	54.3	1.69	0.24	668	50	massive pyrrhotite

Table 7: Significant intersections from Granite Creek showing

DDH CA05-7 (Figure 15)


DDH CA05-7 targeted the down dip and down plunge extension of the 27,000 tonne Lang Creek volcanogenic massive sulphide lens, which graded 1.52% Cu and 0.9% Zn with significant precious metal enrichment. Mineralization trends 300°/20°E and plunges 30°E.

The hole intersected predominantly argillite \pm cherty interbeds from the top of the hole to 78.8m, intruded by diorite from 13.7 to 17.8m and 33.3 to 40.1m. Three main greenstone horizons were encountered, from 78.8 to 125.2m, 149.5 to 201.7m (with an argillite interbed from 156.45 to 163.7m) and 243.7 to 307.1m. The greenstone horizons are separated by intervals of argillite \pm chert that continue to the end of the hole at 364.55m, at which point the hole was terminated due to technical difficulties (stuck drill rods). The footwall interbedded greenstone/argillite unit was not encountered.

Extensive sericite-carbonate and sericite-chlorite alteration are evident within the greenstone horizons with minor pyrite and pyrrhotite. Chalcopyrite occurs in trace amounts as disseminations and fracture fillings primarily within the greenstone, generally below 175m, but also within the lower argillite unit accompanied by pyrrhotite within breccia fragments. Minor sulphide stringers (pyrrhotite-pyrite-sphalerite-galena) occur within the argillite between 222 and 242m.

The hole intersected cherty, possible exhalite horizons, extensive alteration and trace chalcopyrite and sphalerite as disseminations and minor stringers but no significant massive sulphide horizon. Pyritized silicified breccia, apparently related to a fault zone, was intersected from 104.5 to 112.35m and from 125.2 to 130.8m.

No significant mineralization was intersected.

LANG CREEK PROSPECT

The **Lang Creek** volcanogenic massive sulfide (VMS) prospect, consisting of a 300°/20°E trending zone of pyrrhotite, chalcopyrite and sphalerite, hosted by pyritic argillite at the contact with greenstone, was originally drilled by Cominco in 1961, from which a 27,000 tonne lens grading 1.52% Cu and 0.9% Zn was outlined. The surface exposure was subsequently sampled by the British Columbia Geological Survey and found to be enriched in precious metals with the following results reported, 1.8% Cu, 0.1% Pb, 0.8% Zn, 36 g/t Ag and 1.7 g/t Au over 1m (*Panteleyev, 1978*). The showing was accessed in 2004 yielding results of 2.6% Cu, 1.48% Zn, 31 g/t Ag and 0.8 g/t Au over 2.1m.

DDH CA05-7 constituted a reconnaissance stepout hole, down dip and down plunge of the 27,000 tonne Lang Creek volcanogenic massive sulphide lens, targeting a larger body. The hole intersected significant alteration and minor chalcopyrite, but did not intersect the footwall interbedded greenstone/argillite unit of the massive sulphide horizon. It is possible that the target could still be at depth, due to fault offset(s).

10.0 CONCLUSIONS

No significant mineralization was intersected in the drill program on the Magno North zone (DDH CA05-1 to-3), although significant dolomite alteration within favourable stratigraphy occurs in DDH CA05-2 and, to a lesser degree, in DDH CA05-3. It is possible that the mineralization exposed on surface at the Magno North zone is fracture related, associated with a pre-mineral fault that resulted in the thickened section of siltstone in DDH CA05-1, not a favourable host. A more extensive mineralized body could be present down dip near the area tested by DDH CA05-2, which contained the greatest extent of proximal dolomite alteration.

The Granite Creek prospect, exposed in Trench 03-7 for 10m, was traced an additional 40m along strike to the southeast by DDH CA05-4. The zone remains open to the northwest to the contact with the Cassiar Stock and at depth in the vicinity of the original showing.

To date, fifteen significant silver-lead-zinc-gold replacement showings have been located and/or discovered over a 1.5 km wide by 4 km strike extent indicating excellent potential to significantly increase the resource on the Magno and Middle D deposits. Additional potential also exists within the deposits as previously indicated (see Pautler, 2004 and 2005).

The large scale stepout hole (DDH CA05-7), down dip and down plunge of the 27,000 tonne Lang Creek volcanogenic massive sulphide lens, was not successful in intersecting the massive sulphide horizon. The hole intersected significant alteration and minor chalcopyrite, but did not intersect the footwall interbedded greenstone/argillite unit of the massive sulphide horizon. It is possible that the target could still be at depth, due to fault offset(s). Future drilling should concentrate further to the west of the faults encountered in DDH CA05-7.

Potential also exists along strike of the Lang Creek volcanogenic massive sulfide showing as demonstrated by the probable relocation of the Troutline Creek copper occurrence and the confirmation of VMS style mineralization at the Cassiar Pit in 2004, within the same geological environment as the Lang Creek showing, 2 km and 13 km, respectively, along strike to the north.

11.0 RECOMMENDATIONS

A helicopter supported airborne geophysical survey (magnetic, electromagnetic - HLEM and VLF) would be beneficial across the property, since the replacement and volcanogenic massive sulfide (VMS) styles of mineralization are magnetic, the VMS mineralization, conductive and the VLF would detect the faults that control mineralization. Approximate cost of the survey at 100m line spacings would be \$55,000.00.

Several untested conductive zones are reported northeast of the Lang Creek prospect from previous work. Exploration along strike of the Lang Creek prospect is warranted due to the presence of other VMS showings (Troutline Creek and Cassiar Pit) along strike to the north.

APPENDIX I

Selected References

- Abbott, G. (1983): Silver-bearing veins and replacement deposits of the Rancheria District. In Yukon Geology and Exploration 1983, p34-44. DIAND.
- Allen, E. J. and Iliffe, M.J. (1998): Geology and resources of the Cassiar Project areas, Cassiar, British Columbia. Report for Eveready Resources Corp.
- Bloomer, C.J. (1981): Cassiar Project 3191P. geological, drilling and geochemical assessment report. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 9548.

(1980b): Cassiar Project, 1980 - assessment report. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 9262.

(1980a): Cassiar Project – 3991P, 1979 report. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 7912.

Bloomer, C.J. and Gourlay (1980): 1980 Casmo Project, 3091T, assessment report. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 9215.

British Columbia Minfile, (2004): 104P 4,5. Ministry of Energy and Mines.

Cukor, V. (1976): Magno, Jean Group. report on diamond drilling; British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 6084, for Balfour Mining Ltd.

(1975): Magno Group; report on geological survey. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 5578, for Balfour Mining Ltd.

(1975): Magno Group; progress report underground drilling program. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 5713, for Balfour Mining Ltd.

- Gabrielse, H. (1963): McDame Map-Area, Cassiar District, British Columbia. Geological Survey of Canada, Memoir 319.
- Knutson, R.A. (1959): A report on the airborne electromagnetic, magnetic and ground geological surveys on the Vines Claim Groups, Liard Mining Division, Cassiar, British Columbia. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 285. (Lang Ck).
- Minister of Mines (1961): Annual Report of the Ministry of Mines, British Columbia 1961, p 7. (Lang Ck).

- Moyle, F. (1996): Geological, geochemical and diamond drilling report on the Storie Silver Property. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 24707, for Pacific Bay Minerals Ltd.
- Nelson, J.L. and Bradford, J.A. (1993). Geology of the Midway-Cassiar Area, northern British Columbia (104O, 104P). British Columbia Geological Survey Branch, Bulletin 83.

(1989): Geology and mineral deposits of the Cassiar and McDame Map Areas, British Columbia (104P/3,5). British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1988, Paper 1989-1.

- Nikols, D. and Hoffman, G. L. (1999): 1998 Cassiar exploration report: southern block. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report, for Eveready Resources Corp.
- Pautler, J.M. (2005): 2004 geological and geochemical report on the Cassiar Project. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report, for Eveready Resources Corp.

(2004): 2003 geological, geochemical and trenching report on the Cassiar Project. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report, for Eveready Resources Corp.

(2003): 2002 geological and geochemical report on the Cassiar Project. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report, for Eveready Resources Corp.

Panteleyev, A. (1979): Cassiar Map Area (104/P). In Geological Fieldwork, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1979-1, pp 80-88.

(1978): Cassiar Map Area (104/P). In Geological Fieldwork, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1978-1, pp 51-60.

- Saydam, A.S. (1983) Ground geophysical investigations over the Casmo molybdenum deposit. CIMM V76, N.852, pp 80-88.
- Sevensma, P. H. (1968): Ray Group, Chapparel Mines Ltd. British Columbia Energy, Mines and Petroleum Resources Paper.
- Smitheringale, W. G. (1980): Preliminary report on the 1980 Casmo geological mapping program. Private report for Shell Canada, in British Columbia MEMPR Assessment Report 9215.

(1980): 1979 exploration program, Casmo Property, Cassiar, British Columbia. British Columbia Ministry of Energy Mines and Petroleum Resources Assessment Report 7978.

APPENDIX II

Statement of Claims

(http://www.mtonline.gov.bc.ca)

Tenure No.	Claim Name	Units	Owner	Map No.	Good To Date	Area (ha)
221627	CHIERA 1 TO 20	20	140972 (100%)	104P021	2012/NOV/30	500.0
221628	ZONE 1 TO 4	4	140972 (100%)	104P021	2012/NOV/30	100.0
221696	BEV 1 TO 20	20	140972 (100%)	104P021	2012/NOV/30	500.0
221819	ALTA 1	2	140972 (100%)	104P021	2015/NOV/30	50.0
227706	PIT NO. 1	1	140972 (100%)	104P021	2012/NOV/30	25.0
227707	PIT NO. 2	1	140972 (100%)	104P021	2012/NOV/30	25.0
370621	BUNNY	16	140972 (100%)	104P021	2010/NOV/30	400.0
370622	PINKS	20	140972 (100%)	104P021	2010/NOV/30	500.0
395420	READY	20	140972 (100%)	104P021	2014/AUG/05	500.0
395423	EVER 1	1	140972 (100%)	104P021	2014/AUG/05	25.0
395424	EVER 2	1	140972 (100%)	104P021	2014/AUG/05	25.0
395425	EVER 3	1	140972 (100%)	104P021	2014/AUG/05	25.0
395426	EVER 4	1	140972 (100%)	104P021	2014/AUG/05	25.0
399119	VOLT	20	140972 (100%)	104P022	2011/DEC/31	500.0
513558	OHMS	MTO	140972 (100%)	104P	2006/MAY/29	66.202
TOTAL		128				3,266.202

Owner Number 140972: Eveready Resources Corp. MTO: Mineral Tenure Online

APPENDIX III

Drill Logs

HOLE NUMBER: CA05-01

Nad 83

6569663 452264 1540m Zone 9

AZ:

PAGE	1	OF	8
------	---	----	---

<u>-45 DEPTH: 141.7m</u>

PROJECT NAME:	CASSIAR	UTM:
HOLE:	CA05-01	
FINAL DEPTH:	141.7m	Northing:
DATE START:	4-Sep-05	Easting:
FINISH DATE:	6-Sep-05	Elev.
LOGGED BY:	J. Pautler	
CORE SIZE:	NQ	
DRILLING COMPANY:	DJ Drilling Ltd.	

DOWNHOLE SURVE	Y:	ACID TEST
AZIMUTH:	DIP:	DEPTH: (m)
	-43	141.7

<u>313</u> DIP:

PURPOSE: To test dip extent of 035 zone exposed in Tr 03-3 and southwestern down dip extent of 060 trending mineralized zone exposed in Trench 03-2, at Magno North Zone.

SUMMARY: No mineralization was intersected.

PROBLEMS: Hydraulic line blew and repaired.

SAMPLE NUMBERS: No samples

ASSAY CERTIFICATES:

NA

DEPTH	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	E DATA	A
(metres)	phic		E	Veins &	Angle		MINERALS			-
m To	Log		C.	Fractures			%	Sample	From	Тс
3.05	CAGING	->SILTSTONE, dank grey-black	%					No.		
5-49,8		dark anew - black line anained		al ± dl	05.40.	m-ssil = wdw	tr dissen			
		I weak ling SILTSTONE, massue		Strs ±	25	-pervasive sili	04			
		of chlorite) up to Icm company 0.6-		84		with pachty	. (
		of chlorite) up to Icm company 0.6-		11		del alt.n				
		OFTER <1% offerhite indistinct clots			perv. actinelite					
		of colcite, overall 1-7% whe calcite				•				
	-	tace fore dissen pyrite occ miror	-							
	_	tace fine dissen pyrite occ miror								
	-	py in cal-che studyers, med-"sil-pervasi - Tesshand in more fractived zones	ve							_
	-	- less hand in more tractilled zones		-						_
	-	@ 3.7-6.8- highly fractured @ osca with cal-che as free coatings	_	fres	05					_
	-	with cal-che as tre coatings								
	-		_	-						_
	-	@ 15.0- 26.2 - moderate to chighly								_
	-	fractured prinerily @ 05°CA -10°CA	-	H	20-25,41					-
	-	Dwith whe cal t cho t tr py in fres @ 22.2-22.35 - FLT	_		35° -	4. 4.0	-0			_
	-	(2) 2 2 2 2 3 5 1 - FLT		FLT	25 "	IS Che,	5% py as			-
	-	zone with in day goinge, more cal					aggregates			-
	-	@ 22.35-25.9 - limonitic	-	- 0 1	00 10 1	wMinonite	in FLT			
	-	fres wident - abuptly starts @		fres	05-10 1	mfres		ks .		
		22.35 m directly after fault resulting		col stra		ontris				-
	-	in slightly lighter => med grey- provin	-	COR STRS.	20					-
	1	a sugary lighter => wea gray - brown	-	bedding	80-900					
	1	evident. (22.8- 5 cm gray	1	FLT	600					-
	1	strong along and and along	-	gange	60					-
	1	strong clay goinge med ney colour	-	9-3-		± vw lim on				-
	1	a everelly thickly bedded to massive with	-			fres				-
		Jecolly this bedded zones over 30-60				Tres.				-
	1	con intervals (= 100 beds) in fractured		fres	10 20,40					-
		the month of the many in tracting			, , , , , , , , , , , , , , , , , , , ,					
	-				-	12				-

Ν

EPTH	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	E DATA	A
(metres)	phic		E	Veins &	Angle		MINERALS			
m To	Log		C.	Fractures			%	Sample	From	То
			%					No.		
5-49.8	(- 34.6 - 39.7 - mederately fractured		cel stre	20.10	w im onfres	+1-2 10 00			
ntid)		with strong cal strs from 386-					- 1			
		39.3 m local beds with 5 % po over few cm.								
	(-from 39.7-49.8 nove strongly		cal-lim	20,10	whim onfres				
		fractured with Vuggy zone @ 40.0-		Strs fres	1	-m lim-invags				
_		fractured with Viggy zone (2 40.0- 1401 m with rusty open vigs (lim after py) and lim with cal. in strs				0				
44.8 NB 20	- 11	py) and lin with cal. in strs								
	- rubbly sections from 43.3 - 73.7,									
	1 11	44.8 - 146.9 and 48.1 - 49.8	_							
-		a 46.4 m- tewcm clay jonge		FLT						
		THE Instrable aven als ender the				1.1.1				
		mineralized zone in RS (3) surger								-
	1									-
8 68.0	1	MARBIE: while to light area style marked		CNT	650					-
	1	white to light grey massive, med.			0.0					_
1]	to locally coarsely crystalline marple		0					1	
]	to linestone very consepent								
		CALT 7 me CERSEL XLing Los 150								
19.8 68.0 MARBLE: white to light grey, style narked CNT 65° White to light grey, style narked CNT 65° White to light grey style narked CNT 65° White to light grey style narked to locally coarsely icrystalline marble. to linestone, very completent CNT zone coarsely kine for iSm irregular dk grey to black style marks due to grephiliz partings, some II bidding 6 54.7 m -55.4 white creany										
		marks due to graphitic saitings								
	-	some Il bedding		bedding	080°					
		@ 54. In - 55.4 white clamy		0						
		marble with demnant grey 1st ghosts to 5-7cm, ww lim on fres		fres	10-20	+v~lim				
		5-tem vw lim on Fres	-		11-1-					_
	-	© 59.2-59.4 creany col. marble	_	CNTS	45,65					-
		Cection A dial A C h		C	000.					
		€ 20° LCR - 1-2 cm	-	fres w offset	20					
		Quinter - 1-2 cm	-	00						
	1	CA of declive by w. liny (STS) sillistone.								
		1) the service in the start start in	-							_

DEPTH Gra-		DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPLE DATA		
and the second se	phic		E	Veins &	Angle		MINERALS			
m To	Log		C.	Fractures			%	Sample	From	Te
			%					No.		
.8 68.0		MARBLE, white - light grey, stylo marked. overall pytchy texture - patchy								
(contid)		overall patchy texture - patchy								
		rexlization but also appears to								
		be remnant ghost precig from								
		clasts generally 0.5-1cm size, occasionally to 3cm.								
100		occasionally to 3cm.								_
		@ 64-65m Vuggy zone with mun che on fres and tremolite		fres	10-20	+ wchl.				_
		minor che on fris and tremolite								_
		on fres								_
and the second		- Occasional che. sts fragment 1-20	m						_	_
	-	size		0		1				-
		- from 65.5 - 68.0m - moderately	-	Fres	05-10	+ w-m/in +w-moll				-
		fractured due to Fault with lim and cal. coating fress				· windle				-
		(fractures)		CNT=	0.0					-
		@ 66.5 - 66.0 - interbed of		bedding	50					
		black + white stuged thin bedded		1						-
		(1-2cm beds) limestone								-
		Q hhom - 5 cm main		FLT	500					-
		clay hault a proce with another		P-1						
		freene of a Lef and Markle								
		@ 66.05 - 68.0m - stronger				mEhl. wlim				
	1	che altin in Marble, strong				(have , when				
		clay hault gone with angula freements of I stand Marble @ 46.05 - 68.0m - strongen Che altin in Marble, strong fracturing, che on fractures + minor lim and along bedding plans								
		Vim and along bedding planes								
		lower CNT proken - FLT		CNT	45-80%	A7				
			1		1					

DEPT	Ή	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	E DATA	A
(met	res)	phic		E	Veins &	Angle		MINERALS			
om	То	Log		C.	Fractures			%	Sample	From	T
		1	and the second	%					No.		
8.0 -	85.5		LIMY SILTSTONE , dont any black				W-m pervasi	e 1% oy			
	1		to accenish-same as at 3.65-49.8m				w -m pervasis silin.	- I - I - J			
	1	1	LIMY SILTSTONE, dark grey-black to greenish-same as at 3.65-49.8m 5-10 6 Wealcite stringers, med well		cal strs	20-25,					
	10		fractured due to pault zone.			40,70					
			a 68.0 - 68.8 m - 70 10 of interval			rave 05-1	0				
			@ 68.0 - 68.8 m - 70 10 of interval		FLT	200	tclay				
	20		is dark - med gray clay gauge with aneular wall rock phagments		gouge		/				
			with angular well rock flagments								_
		-	up to 12m size alrened @ 20°1CA some gauge up to 6 cm wide along 45° pres.		fres,	45					
- 10	1		some gauge up to 6 cm wide along	_	Jone						_
-	the come		45° fires.	-							
-	1.1.4	-	-overall 1 5% cal strs.	_		11 - 0					-
X			@ 71.5 m - dark grey clay gonge with angular clasts as above		FLT gouge	40 °					-
-			with angular clasts as above	_	Jodit						
		1	0737 - 10 010 0	_		40 ?					
		1	@ 73.7m - 10cm clay gouge - after 77.0m - more Jos-10° fres	_	gorge.	05-10	1.7				
			mind themselfe on fres and in		TYCS	05.70					
		1	throughout unit -> themelinitized								
	11.45	1	silty linestone.								
	1.1		@ 78.2- 9 cal - che - them - clay gove	TA.	fre	05					
	Belle		fre esconeosca followed log		11			6.a.			61
	1		local prensiation								
	1.201		@ 79.4m - 3 cm dk gred day gove		gange	20	\				
1		1.1.1	@ 80.6-80.8- s-i had grey		aquee	80°					
1.14	i dite .	11.7	day - w chel gouge with 1-2% py		0.0						
125	12 June		day - w chil gorge with 1-2" py and strong 10 cm fre zone @ 4 5"		fre zone	450		6			
K					Jone	*					
1	medi		@ 821-82.4m store m-dk grey fault gove @ 35° CA with argular of forgs.	-	FIt gouge	35					
	3.13	1	gove @ 35° CA with argular ik trags.	-	fres	35					-
	12	Anra.	0 0	-	-						

СЛ

PTH Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	E DATA	
netres) phic		E	Veins &	Angle		MINERALS			
To Log		C.	Fractures			%	Sample	From	To
		%					No.		
85.5	WLIMY STS -					El an			
mtid)	- @ 853-5- CNT 70000 is					3-5%			
	variably bleached + pyritized with			1		17			
	clasts of LST entrely pyritized with some pink, whit, cream col. LST			3.4					
	some pink, whit, cream col. LST								
	Lai dark CAT is broken		CNT	80°					
5 108.2	Blue-grey LIMESTONE fine grained					1% 00			
	thin (Icm) to med (30cm) to thickly added	4	bending rear CNT	45		to 92.6m			
	generally overall a sin cal shingers		NEALCNT						
	The on loave -sil alvelopment in								_
_	Dands up to 5 cm generally within I'm of contact with brownish gat, and fine offwhite kleached. 1st in		bedding	60°			-		_
	I'm of contact with brownish got.		~				-		_
	and time officite Reached. 1st in								
	Dahoo								_
_	-overall fairly competent - good drilling,								_
	more thinly bedded somes have dark tim	2 9~	aired				-		-
	graphitic lot as interbeds within same	-	Free						-
	blue gray unit po astistis and dissem.		fres. with offset	05-15					-
	Time officer evident, weak local	-	and post				-		-
	becgistion + some relation of								
	angular clasts.	-							-
	@ 88.7-89.0 - minor yellouich -		Pare	10-15	wlim?				-
	orange limonite? on 10-15° fres		tres	10-13	wim.				-
	@ 92.6 - 94.5M - BRECCIA ZONE								-
	with calcife spiteers veris, by								
	commonly clast supported but also								-
	calcite matrix and we marble								-
	lacence to the Fire and at Some	Gol	ding						-
	fragment to 7 cm evident, some	101	- d						-
	bedd muterk brecciation, off set along 15-35 fres		fres						-
	There is the state of the state		1103			1			_

σ

DEPTH Gr	a- DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	EDATA	A
(metres) ph	c	E	Veins &	Angle		MINERALS			
om To Lo	g	C.	Fractures	ACA		%	Sample	From	T
	park	%					No.		
55 108.2	Blue-grey LIMESTONE, laminated.								
(on tid)	@ 95.5-96.0 - minor bx, sol	ne							5
			-7-						
	0 prod 95.8 - 97.5 - 05° pic filling		1						
	with chlorite - cal.								
	- from 97.5 - 108 2 - Hi to med		bedding	70°		trpy			
	bedding blue grey LIMESTONE typic	ly				1 ,			
	with Icm beds light new with 2/c	and i				The second se			
	bedaling blue grey LIMESTONE typic with Icm beds light grey with 210 beds of Ak-grey bene to black								
									1
	@ 104.4 - 106.3 - lighter grey		100						
	colour due to fewer dank sitte beds, locally discontinuous more calci	1							
	beds locally discontinuous more rale	in	-						
	mich bedo >> rodo			-					
			Bedding	80°					
	CNT 11 bedding		CNT	80°					
8.2 141.7	Light grey - blue the to mederate laminated medium grained on crystalline linestone LIMESTO	140		1					
	laminated medium grained or	1	1 100						
	crystalline linestone LIMESTO	NE	1 Manuel						_
	-lightbeds are more calcic of & 101	m							
	to 10 cm width with darken						3.		
	very competent, locally nor le	20							
	-very competent, locally more c.a								
	very light grey marble beds								_
	5-15col width with stylolites								
					1				
	@ 108.2 - 109.5 - 5-1010 cal str	ingers							
	to stringer stuk. with disruption	0	bedding	700					_
	weak offset of bids, minor bree	ciation	fres 21	55					
			UMISET						
	@ 111.3 bedding starts to steepen @ 112.6 bedding continues to steepe		bedding	50°					

Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	EDATA	A
phic		E	Veins &	Angle		MINERALS			
Log			Fractures			%	Sample	From	To
		%					No.		
F)	light blue-gray LIMESTONE @ 113.m - bedding 40° - overall vw tracturing treal stre								
)	0 @ 113 m - bedding 40" -		bedding	40					
	- overall vie tracturing track strs		frest	10-15					
	@ 117 m - bedding variations		bedding	55					
	@ iaim)		"7	700					
	@ 125		11	55					
	@ 126 ·		11	40					
	QIAT		14	60					
	@ 129		11	45					
	@ 130		11	40					
	© 131 - bedding 30, @ 132 = 20 @ 132.6 - 138.1m - very light grey rearsely xLine merble interval with minor silty interbeds -		11	30+3	LD				
	@ 137.6 - 138.1m - Very light grey		CNT	20.	±vtr lim.	tr py			
	Coarsely XLine merhes interval		bedaire	20-25					
	with himor silty interbeds -)						
	with = Ich siltier bedo, more		tempstys	40-50					
	with 2 Ich siltier beder, minor								
	calcite stry + minor py > lim					6			
			LONT	30					
	from 138.1 - 141 7 EOH - bedding @ 10°ACA monor fres @ 10°U =		beddive	10 0					
	@ 10°1CA more fres @ 10° UE		fres J	10					
	Cal		cal strs						
4									
	4-1-								
1									

PAGE	1	OF	7	

PROJECT NAME:	CASSIAR	UTM:	Nad 83	Zone 9	AZ: <u>305</u>	DIP: <u>-50</u>	DEPTH:	<u>83.8m</u>
HOLE:	CA05-02							
FINAL DEPTH:	83.8m	Northing:	6569746		DOWNHOLE S	URVEY:	ACID TEST	
DATE START:	6-Sep-05	Easting:	452303		AZIMUTH:	DIP:	DEPTH:	(m)
FINISH DATE:	7-Sep-05	Elev.	1520m			-48	83	3.8
LOGGED BY:	J. Pautler							
CORE SIZE:	NQ							
DRILLING COMPANY:	DJ Drilling Ltd.							

To test down dip extent of 060 trending mineralized zone, exposed in Trench 03-2, at Magno North Zone. PURPOSE:

No mineralization was intersected. SUMMARY:

SAMPLE NUMBERS:

No samples

ASSAY CERTIFICATES: NA

EPTH Gra	DESCRIPTION	R	STRUCTU	JRE	ALTERATION	METALLIC	SAMPL	E DATA	4
(metres) phi		E				MINERALS			
m To Log		C.	Fractures			%	Sample	From	To
		%					No.		
1.5	CRSING								
- 15.2	light blue - grey LIMESTONE with minor MAR	BLO	E						-
1 Barris B	-interbeds. top In			-		1º10 py			
6	-interbeds. top in very rubbly poor recovery; finely lamonated with ~ 1 cm bedo med-	_	hedding	70		/			
	burneted with a icm beds med-	_					-		
	finely XLine pyrite in socal cite stra	YENS					-		
	and as pine languations - discontin	icop,					1		-
	along bedding calcite stringers 1-27	D	col strs	10-20,35			-		-
	bunched with a rem been medi- finely XLine- pyrite in social cite strin and as pine laminations - discontin along bedding calcite stringers 1-2% @ 10-20 and 35°1CA								-
		-				1 0/000			
	consely xine marble introl = po					P			
	along Alties Passingtions some remove	+ bed	ulina						
	along siltier laninetions, some remness 207.1-10cm whe Mb bed. or c.		cal vn	450					
	Xine calcite vein @ 45°1CA								
-	@9.0-10.1 - coarse x Line very light grey Marble bed	-				-	-	-	-
	@9.0-10.1 - coarse x Line Very								-
	light grey Marble been	+							-
			-		m lim	1º10 py			-
	@ 10.9-11.1 - med grey-green mod fractured silts tone bed fine grain				w che.	1.009			
	Twith elimonitic fractures with some	-561			wind.				
	With unnerine factures with some	-							
	@ 11.3-11.4-block LST with 2010 Py a	SSUC	with cal.	blebs.		2º10 PY			
	@ 11.4-12.7 - cal stringen stockword	-	cul strs	10-207	d				
	10 210 cal stringers 10-20 and along		bedding						
	hedding mine ankente unor red)			4	-0-		
	limonited in stringers (after on?)					9	and a second		
	Dimonited in stringers (after py?) @ 12.7-15.2m typical blue-grey purimeted thinly bedded lst. with m					1-2% py	10		-
	pringhed thinly bedded lest. with my	~ ×	cal strs			1	1		-
	by along laninations discontinuous dig	somi	dated an	d		-		-	

DEPT	н	Gra-	DESCRIPTION	R	STRUCTU	JRE	ALTERATION	METALLIC	SAMPL	E DATA	1
(met	res)	phic		E	Veins &	Angle		MINERALS			
rom	To	Log		C.	Fractures			%	Sample	From	Т
				%					No.		_
52	19.5		CONTACT ZONE between blue grey Is miniported LST and light grey - while - MARBLE whit -from 15.2 - 16.75 - light grey marble, coarsely XLine, with 5t-locm		CNT	70		Etr py			
		1	lamitated LST and light arey - while -		bedding	11		./		-	
		1	MARBLE wit		- 0						
]	-from 15.2-16.75- light grey								
			marble, coarsely xLine, with st-locm								
			integals of Jaminated blue-grey LST								
			integals of laminated blue-grey LST	P							
			ay in LST sections								
			-from 16.75 - 19.5 - dominately	-							-
_		-	light grey to white coarsely XLine marker with thisilty Lat CK Icm beds)	-							
_		-	MARBLE with #silty Lat (<< 1cm beds)	-							-
		-	evident from 18.75 to 19.2m ± week	-						-	-
_		-	breceiation? or fragmentation of Marble beds to subrounded clasts						-		
			Marble beds tas subrounded clasts	-					-		
		-	industily LST matrix I stylolites.		CNT	60°					
		-		-	CNI	60					
2 10	24.1	1	while to be the an ARRIE books	-			± w-m dol.				
(.)	27.1	1	White to light grey MARBLE, locally delemitized to rose colour (fizzes				- 00 m alor.				
-		1	with 10% Hele when scratched) minor	1							
		1	stylolikes in marble; dolomitication						-		
		1	locally currents proments up to					di.			
-		1	Tea of white marke					- 16			
		1			CNT	400					
41	37.1		Rose coloured DOLOMITE - dolomitized		che		m-s dol.				
			MARBLE with minor rempart with		Star 18						-
1			marble undolong fized sections; occasione	0		1			-		-
			vues with mat lin watings on calcite							-	-
			Vies with mat line watings on calcule, minor Zebra textured zones with light	tim	tions few n	m scale)				-
			line delle ile se histo monto (5-10 cm)						_		-
			(after sulfide).		fres	20°		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			

ω

1	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	E DAT	A
es)	phic		E	Veins &	Angle		MINERALS			
Го	Log		C.	Fractures			%	Sample	From	T
			%					No.		
37.1		Rose DOLOMITE ALTIN				M-5 dolomite				
·d)		I weak miner pecilly precipied								
1		zones - rehealed								
		@ 32.6m = 36.9m - mod - highly		fres	05-15					
		Instined with slack syndusite and Insign shedochrosite crystals (XLS)								
		Union rhedochrosite crystals (XLS)								
_		accopional reddish oxid fres (after								
		sulfde?)								
		probable dolomitic alteration								
		associated with mineralized zone		-						
		(proximal altin to mixeralization)								
		- irregular nine procession from		CNT	80					
_	-	36.8-37.1 m @ CNT with clask								
		Def whe mb and DOL in darker gray								
_		LUST matrix much a 10" matrix. " CNT	_							
_		15 irregular.	-	- 12 A. C.						
21		light to - 11								
3.1	-	MIXEN Blog MARBLE with 10-60cm					<1º10 py			
		intervals of med blue - grey laning: (LST) LIMETONE + Mistyle 17 tes in	ed.				<1º10 pb			
-		(LST) LIMESTONE, I"Stylolites in				1.0				
		mapple and interbed of dolonitized				+w-m dol.				
		1st grow 41.1 - 41.3 m - rose color	red	CNTS	80					
		more fractured in DOL -mod fres		fres	200	1 Second				
		otherwise Marble - Grey LST is	1	400	. 0					
		very competent: minor dissen py, po		10 10	Totali	A C.ST				-
		generally in LST sections some						-		
		patchy incomplexization > may ble	-	beddity	0					
_		patchy incorrection => may be		CNT	85					-
				CNI	as	113		-		-
			-							

EPTH Gra-	DESCRIPTION	R	STRUCT	JRE	ALTERATION	METALLIC	SAMPL	EDATA	4
(metres) phic		E	Veins &	Angle		MINERALS			
m To Log		C.	Fractures			%	Sample	From	Т
	×	%					No.		
3.1 57.15	white MARBLE - light grey to write, generally white in Ante of rome with grey near CNTS; coally XLine, minor styloliks and office								
	accurally white in anthe of rome								
	with prey near CNTS; coarsely								
	XLine minor stylolites and office								
	coloured discontinuous lamage and								
	some distinct lamual up to								
	some distinct laminae up to 1.5 cm wide between 43.1 - 47.0 m and most common from 46.5 -							1.000	
	and most common from 46.5 -								
	47.0m								
	43.1-47.0 light gray overall cloy. with py + po in minor darker pay to greenish bands					<1 % py+po			
	with an ere in any darker see					1 oppipe			
	to areauch have								
	470 @ 46.5-47.0 siltstone bands.								
	Olive green colores up to 1.5 cm								
	will be an disse you but								
	with Bo by dissen thought total 2: 10 py po in section -sillet laminae 70°CA					2 to py + po			
-	total is rypoin section		bedding	70"		0 10 pg 1 po			
2	- sing incharge 10 (h		- Chaing	10					
	47.0-52.5- white marble minor					L<1" Npy, po			
	dissont lawing up to le	-				14 to 50			
	discing with a 20 and 1 1 1/1/165					VIII SP			-
	the an type the style style ites	-							-
	with py po = v. Fr. spratter.	-			+1 1.	1 1 10			-
	discont lamine up to ten mon discont lamine up to ten mon of divists with py po. and dark styleliks' with py po = v. tr. sphalerite. 52.5 - 57.15 - light grey - white patchy marble, incompletely rethized with remain ghost blue grey LST patches = tr py po	-	free	200	= tr limer fres	Tr py, po			-
	parting marple in completing re ruited	-	TYCS	70	Tres	-			
_	with remain ghost bene grey LST	-							-
	patones : tr py po	-					-		
		-				-			
		-		0					
	-ripup structures - sept sed deformation at CAT 11 bedding	-	LONT	13			-		
	at CNT " bedding	-				-	-		
	V								_

С

ENO. CA		R	STRUCTU	JRE	ALTERATION	METALLIC	SAMPL	E DATA	4
etres) phic		E	Veins &	Angle		MINERALS			
To Log		C.	Fractures			%	Sample	From	To
LUG		%					No.		_
5 83.8	Fine dark blue-grey laminated LIMEST	10	NE			2-3°10 py +po	-		
EOH	areall this to very thinks bedded.					,			
E	with 2-3% py and pot as regrapates and disserving trong provehout especially in darker bands ± minor disont, laminer of pol								
	and disseminetron provehout especially								
	in darker bando + mor discont, laminate of pol								
	from 57.15-60.9- Coninently v. thinly								
	bedded dark LST with minor interbed.		bedding	70°					
	of lighter-dart ney leve med XLine		1						
	white led fostiliterous LST in beds								
	few cm 40 30 cm vide; fossils are				-				-
	+ an + and : an agenerally in lighter lands								_
	± po ± py; po generally in lighter lands		CNT	60					
	from 60.9 - 64.0 - BRECCIA ZONE		fres		+ vwlim on				
	-has about like bread texture		20		fres				
	due to partial rexcitation?		1. 19 1	1					
	dasts to 5-10 cm, subargular to		-						
	Supported agnerally in darken								
	Subrounded generally in darken matrix, but also darken frags-							-	
	more angular, in lighter gray matrix								
	t co and the second sec		CNT	600					
	- minor slickensided fromfaces @ 50		fres	50°					
and the second	- Zone dominated by light gy retuized + ffs LS	T.	Slick.	6					
	- from 64.0 - 64.4 - mod. to highly			346	+ welay, lim	2		-	
	practiced with minin clay gauge, lim		fres	100	11				
	0 - from H. 4 - 83.8 - dark plue grey		1			2-3% 27,00		-	
-	0 - from 64.4 - 83.8 - dark blue grey fine laminated LIMESTONE - dark w	ter	1			114			
	bands interbedded with ned grey	-	1						
	and XIDA LIMESTONE GOD POODLY ICHO								
	med the LIMESTONE generally Ich Scale to occ 10-15 cm lighter bands		beddite	75-85					
	@ 67.3- 5- and @ 67.9-68.)						
	mod fred zones and @ 76.1 - 76.0		fres	100	1 Wimonfres				
	Thank bit. Inter man of hard the		I calley						

EPTH Gra	- DESCRIPTION	R	STRUCTU	JRE	ALTERATION	METALLIC	SAMPL	EDATA	Ą
metres) ph	c	E	Veins &	Angle		MINERALS			
m To Lo		C.	Fractures			%	Sample	From	To
		%					No.		
15 83.8	Fine dark laminated L1	NESTONE				2-3%000,04			
+id) EOH	= DO at CNT of BY ZONE		CNT	80°					
7	@ 79.6-80.2 -	BRECCIA				21º10,04,00			
	Fine dark laminated LII -po at CNT of BX Zone @ 79.6-80.2 - Zone with Subangu lighter net ix: grades Supported to matri centre, clasts genero locally larger,	lan clasts of				17.5			
	leaster gray med &c	he LST in U		. der					
	darker matix; grades	from clast		al-ye				-	
	Supported to matri	x supported in			-	1		-	_
	centre, clasts genere	lly 1 - 3 m,		on a P		1			
	locally larger,		CNT	55"					
			1				-		
									-
									-
	119.								
				-					
				_					
		and the second se	-				-	-	

J

Zone 9

HOLE NUMBER: CA05-03

	PAGE	1	OF	10
--	------	---	----	----

PROJECT NAME:	CASSIAR	UTM:
HOLE:	CA05-03	
FINAL DEPTH:	89.9m	Northin
DATE START:	8-Sep-05	Easting
FINISH DATE:	9-Sep-05	Elev.
LOGGED BY:	J. Pautler	
CORE SIZE:	NQ	
DRILLING COMPANY:	DJ Drilling Ltd.	

thing: 6569748 ting: 452298 v. 1520m

Nad 83

AZ: <u>253</u>	DIP:	<u>-45</u>	DEPTH:	<u>89.9 m</u>	

DOWNHOLE SURVEY: ACID TEST

AZIMUTH:	DIP:	DEPTH: (m)
	-45	89.9

PURPOSE: To test for possible mineralization at Magno North Zone between Trenches 03-2 and 03-3.

SUMMARY: No mineralization was intersected.

SAMPLE NUMBERS:

No samples

ASSAY CERTIFICATES: NA

DEPTH	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	EDATA	A
(metres)	phic		E	Veins &	Angle		MINERALS			
om To	Log		C.	Fractures			%	Sample	From	To
	_		%					No.		
3.0	5	CASING								
0- 1	-		1			calc silicate.	10,			
.05 6.1	-	moderate (10-20cm) to thinly bedde	a			bio hfs.	1	-		-
	_	(Acm) ned grey LIMESTONE and brown SIGTSTONE with 30 10		-		± well	trpy			-
	_	alle cilicate bande slight so to	4	beddine	350	- with				
	_	calc silicate bands light pint +		+ banding in c-sip	16	1 700 2				
		STS is surplish frown due	Fu l	in c-sip						
		stis is purplish brown due bighte hothfelsing, minor cal-ik	0	cal stra	200	± .				
		shippers)'								
	_	Shippins 0)' @ 6.6m - 3cm limonific day	jouge	FLT	150	+ w lim, clay				
	_		9 9	Jonje						
.6 9.	1	Lamingted med X Line gray-blue is bedaty 1-200 minor marble inter - well fractured and broken pro due to fault above	T							-
	-	bedaine 1-200 minor marble infer	Gers							-
	-	- well prochered and proper pri	06-							-
	_	-								
1.9 13.	5	- med. Kine light grey to rose Coloriled LIMESTONE; grey interbeds from 10-30 cm wide		fres	50,65	whim	trpy			
		Colouled LIMESTONE; gray inferbeds		-			•)			
		from 10-30 cm wide		bedding	45					_
	-	- minor limic frees and vugs								
		V		CNT	450		-1°C			_
3,5 23	.9	-med Xine grey LIMESTONE medgy c -minor Silty bells dive coloured 210	den	6		± which on fres	w. py		-	-
	-	-mor silty belds dive lotaved 210	-m	fres	15-20	twell on				-
	_	with py; weak- ned- practiced with occ minor clary anye or fres.	FA .	cal stre	10-15"	fres				-
	-	all many and the product of the		Cas sens	10-13	TYES				-
		and zebra textures								
		-minor cal strs and whe mark	10	bedding	550	UPHOLE				
		interbeds below 22.6m		1		KAR				
		4		CNT	450	() mb				

DEPTH Gra-	DESCRIPTION	R	STRUCT	JRE	ALTERATION	METALLIC	SAMPL	E DATA	A
(metres) phic		E	Veins &	Angle		MINERALS			
om To Log		C.	Fractures			%	Sample	From	To
		%			1		No.		
3.9 57.2	Aline trose coloured MARBLE coarsely	2			tw Mn, lim	tto po			
'	Kline. I rose colour due to Mn				near ton.	ttrpo trpy			
0 2	- generally massive minor tr. so in this darker	and	y basedo	-fewm	n wide	. /			
	a 20.9 - 15 cm rement thulu	1	beddine	550					
	bedded (icm) med-dk gy LST		0						
	10/01/00								
	- Marble grades gray in colour								
	-Marble grades grey in colour after 38.0m nore lealaant LST		bedding	50°					
	0 @ 41.1 - 41.5 - fragments to 5 cm of		-		dol. Clask				
	10050 coloured dolomitized Dimestoke								
	(proximal altin to mineralization. @ 44.0-44.3-mino limic fres		2	1.1					
	@ 44.0-44.3- minor limic fres		20, 45	fres	Iwlim.				
	- py po increases & within greiper intervals @ 53.5-54.4- Jamina ted blue grey					= up to 1%			
	@ 53.5-54.4- Janina tel blue - grey					PY, Po			
	LIMESTONE interval		heddirg	50°					
	@ 54.4- 55.6- white marble interval.)						
	CNT 11 bidding		CNT	600				_	
					0	9			
7.2 63.7	BLUE - GREY LIMESTONE lamonted					1-3 "10 py + po			
	mile bedded - lew con scale with					more postay			
10 million (1997)	min inthats to 30cm of white					1 1/			
	marble - weak preceretion for 15 cm		bedding	70°	1				
	QUENT		J						
	I weat when wigh , v more cal stre		calsfrs	20°					_
	minerly disrupted larges, eslictersided								
	Survaces.								_
	-fare occ sitty laminas near LCNT		LONT	85	and the second				_
3.7 67.2	med x ine white marble I silty laminal grading	-				1-2%			-
211 10 1104	to 5 to silty caminations up to Icm in		bedding	80"		1-2%po, py			-
	to D to Silly lambardes up to form in)	-	pealarity	00					-
	bottom Socn. locally intertedded with an 45T								

EPTH	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	EDATA	A
(metres)	phic		E	Veins &	Angle		MINERALS			
m To	Log		C.	Fractures			%	Sample	From	T
			%					No.		
		dark		CNT	700					
2 89.9]	Laminakedplue-grey LIMESTONE					1% potpy			
]	generally thinly bedded fire grained.					1			
EOH		Righter grey 157 inferbeds, occasional	_							
		thicker (to 30cm) dark blue grey 1.5T					1			
		LST beds up to 30-40 cm when deform	ho	h						_
		evident, folding disruption of lamonae + v bx	iabi	on						
		py. po as dissen tupl. calcified fossils	_	-				-		
		@ 68.8 - 70.9 - well fractured zone	_	fres	15-20	±wlim.	-			
		+ cal strs slickensites + lepionite	_			Care State			-	_
		@ 73.6m - Han clay gove, with mad procharing from 73 74.7 in minor Cal, lin on frus.		FLT gange	08	twim		-		
		proming from 13 FT. FM, moor		fres	10.20		-			
		V Cal, lin entres.		tres	10-20					
		@ 84.7 = 85.4 - med. fractured I cal								
										-
	1	stys, minor gonge.		CNT	600					
	1	@ 87.3-89.2 lighter arey weakly					10-			
]	@ 87.3-89.2 lighter grey weakly preciated texture subrounded -		fres	100					
]	Subanular fragments, locally fossilferous.								
		fosilkerous.								
					_	1		110		_
		@ 89.2- 89.9 EOH - laminated						1		
		dark gray-blue LST with light and dark gray claminations =1 to	-						100	
		and dank grey claminghing <1 to	-						-40	
	-	4 cm beds.	-							
			-							
								-	-	

UTM:

PAGE 1 OF 8

PROJECT NAME:	CASSIAR
HOLE:	CA05-04
FINAL DEPTH:	89.9m
DATE START:	10-Sep-05
FINISH DATE:	11-Sep-05
LOGGED BY:	J. Pautler
CORE SIZE:	NQ
DRILLING COMPANY:	DJ Drilling Ltd.

Northing:	6570440
Easting:	452338
Elev.	1250m

Nad 83

Zone 9

DOWNHOLE SU	JRVEY: ACID	TEST
AZIMUTH:	DIP:	DEPTH: (m)
	-44	89.9

AZ: 225 DIP: -45 DEPTH: 89.9m

PURPOSE: To test for southeastern strike extension of Granite Creek mineralization as exposed in Trench 03-7, which graded 263g/t Ag, 6.2% Pb, 6.2% Zn, 0.5 g/t Au over 2m.

SUMMARY: Intersected massive pyrrhotite, pyrite, sphalerite mineralization at 36m.

SAMPLE NUMBERS: 54203-212 10 samples

ASSAY CERTIFICATES: AK 2005-1363

DEP	TH	Gra-	DESCRIPTION	R	STRUCT	JRE	ALTERATION	METALLIC	SAMPL	E DATA	A
(me	etres)	phic		E	Veins &	Angle		MINERALS			
rom	To	Log		С.	Fractures			%	Sample	From	To
		1		%					No.		
)	3.05		CASING								
								1			-
.05	10.0		Hounfelsed light purplish brown SILTSTO (STS) with maintelbed's of gray LIMESTO Brotife Hounfels to Dwest Calc silico	NE			honnfelsed	2%000			
			(STS) with minterbeds of gray LIMESTO.	NE			w calcuit.	trpy.			
			Brotife Hornfels to Dweak Calc Silica	k				. /			
			development, this-mod bedding (few con-leco Lot interbeds generally few con)	bedding.	650					
			Lot interbeds generally few cm	1	0				_		
				-							
			Po in mod. calle introbed s in STS and in strs		strs	65,50	20				
	-	1	@ 69-10.0 more and thicken		1. 1. 2.						
	-	-	Ned gray LST beds 10-50 cm wide LST is used grained to fine massive, I fossiliterous with local "preciation								
			LST is lined grained to fine massive,				•			100	
			I fossiliterous with local "preciation	n							
-		-	milor discont. I faminations of po.						-		_
_		-		-	CNT	60°					
0.0	11.2	-	Light grey LST, weak bedding-moderate	14 +1	rick (10cm)		2º10 po			
_			Addisiliferations with po repeticing shells @ 10.1m viggy alake and f.g. py-5%00 -grades danker grey within 20 cm	·	bedding 2cm	60"	-	<1º10 py	-		
_	-	-	shells @ 10.1m vigy calcile and fig py -5%	ver	2 cm			. ,	_		
_	-	-	-grades danker grey within 20 cm	-			and the second second				_
		-	of four CNT	-	LONT	75°	1	and the second s	-		_
		-	U	-							
.2.	17.35		dank grey LST disrupted remport bedding fossils evident, generally	-				1-2 00			-
_	-	-	bedding, tossils evident, generally	-	1 1 1		and the second second	=1% py	-		
	R	-	mod - thick beds, weak bedding wident po generally in darker bands as dissen and fine discont. Jaminae		bedding cal sta	650		Ad			
		-	po generally in darker bands as	-	cal stil	10-25,40	2	A CONSTRUCTION OF A			
_	-	-	dissemant fine discont. aminae	-						_	
_	-	-	Lesp near contact with lighter gy Lest beds, more dissen and degregate py.	-			12.00	A COL			
	-	-	LST beds, minn dissen and depresale py.	-			11-1 (1.11)	The second	-	2	
	-	-		-	0.5			1.00			
_	-	-	Slightly irreg. CNT, Jenerally II bedding.	-	CNT	60-70					-
			generally bedding.					Net 1			8

DEPTH	Gra-	DESCRIPTION	R	STRUCTU	JRE	ALTERATION	METALLIC	SAMPL	E DATA	4
(metres)	phic		E	Veins &	Angle		MINERALS			
om To	Log		С.	Fractures			%	Sample	From	T
			%					No.		
+35 22.3		white med to coarsely XLine MARBLE with many frequents of may LST to 18.4 mand possiliflatus					2°10 ру			
		with many freenents of many LST					1 00			
		to 18.4 mand possiliperous					. /			
		La real as really and an and an								
-		replacing shells, occasional py dot								
		up to 2 cm in size, minor po along	_							
		replacing shells, occasional py clot up to 2 cm in size, mino po along Mins of fragments, 18.4-0 20.9 m - white fairly								
		18.4 - 20.9 m - white fairly								
		massive and rel. homogeneous Marble	_							-
						1.10				-
		20.9-22.3 - non to w. calc.		tedding	A	VW hfs.	-			-
		elight brownish siltstone interbeds		Bading	55	0	-			-
		in MARBLE Vweekly housfelsed, with 3'lopo along law and as agenergetes. upp @ beddify UNTS; STS beds 3cm	-							-
		Stopp along law and to aggregate.								-
		to soch wide								-
		- accasional bands of py up to								
	1	a sch in Marble. Opg up to								
1	1	CISCIA IN PROVINCE								
	1									
1.3 31.3		Med gray LIMESTONE wy light gray					3º10 PY			
		Med gray LIMESTONE wy light gray bedge of UMESTONE up to 5 cm wide. Occasional while marble bed to 5 cm					1-2 00			
		accasional white marble bed to som								
		-py along laminations and as adarage tep esp. in darker bands								
		adereater esp. in darker bards					-			
		ESpot along darken laminations			_		4			_
			_		-					_
		@ 29.5- grades slightly	_							-
		darker mey- blue with note	_		0		-			
		darker pey-blue with note darker 1-st laminations = Laminated	-	bedding	-65			-		-
		man - dark bistery LIMESTONE		2						

DEPTH	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPI	E DAT	ΓA .	
	phic		E	Veins &	Angle		MINERALS				
om To	Log		C.	Fractures			%	Sample	From	То	Leng
1.1			%		_			No.			m
2.3 31.3		Med Grey LST. med to derk									
		29.3-31.3 - Lamine ted blue-year									-
		LIMESTONE							-		-
		CNT 11 bedding.	-	CNTE				-			-
		@ 29.1-29.35 - bed of laminate	1	bedding	55		2-30004	-			-
		intertedded med grey LST with	_				1 "10 84				
		light brownish houselved STS					tr sp, ga	-			+
		(Siltstone) pe along lahirations	-				-	-			+
		discontinuous in STS interbeds		cal-sx	400		-				+
		- mor ral - strs with trace Sphalerite, galena @		Strs	40						
		- offset few cm along bedding		2						+	-
		2000 set then an along bedaing								-	-
		planes		CNT	650						-
1.3 32.25	+	med YLine WHITE MARBLE				w-mchl.		54203	31.3	31.95	0.65
11.2	1	25cm @ CNT - STS Prayments		calstra	55°	wanted.					
P	1	25cm @ CNT - STS fragments, angular to 5-7cm. po in STS									
]	cauld Marble, aminations in STS									
		The Marke with py up to 5 10									
		The Marble with any up the 5 10									
		trace segregates of sphalerike (dk by to black) in marble de on fris at	own								-
40		to black) in marble che on fres as	2				1			-	-
		as patchezin markle.						-			-
		-guidational CNT with incruise in sx strs		CNT	55	5.1.4		121-1	2:00	22200	
		@ 31.95-32.25 - Marke with	-		11	m ^{-s} chl.	10 10 SX	54204	31.75	32.25	0, 5
		m-s chi on firs and in strs and as patches, 10 10 sulfide (Sx) in	-	sx strs		5	7%004	-			-
		as patches, 10 10 sulfide (SX) in	-	bedding	65		3% sphal	-			-
		zone with py 27 sp 27 ga as					tr. ja	-			+
		zone with py 27 sp 27 ga 20 strs, py also along bedding and as patchy aggregates									
		as pateny aggregate		OUT	1.0				-		-
			_	CNT	60						

H O	Gra-	DESCRIPTION	R	STRUCTU	JRE	ALTERATION	METALLIC	SAMPL	EDAT	A	
res)	phic		E	Veins &	Angle		MINERALS				
To	Log		C.	Fractures			%	Sample	From	То	Leng
			%					No.			m
8.15		Mad. aren LIMESTONE as at					trpy, po	54205	32.25	33.65	11.4
		Med. grey LIMESTONE as at 22.3-29.3 - med and darker grey					1 / / .		-1	7,4,5	
		interbeds with week remport						-			
		bedding some disruption of largos.		1.1.1.							-
		massive sections minor VI weal		cal strs	55						-
		stra	-			1.0				3.00.00	-
		as above with 40 "10 white Marble	93			S. chl.	2-3%000	57206	33.65	35.05	1.
		as above with 4010 white marble		In Is	40°		2°10 py				+
		beds 15-20cm wide I strong chlorite		bainding	40		tr sp.				+
		alt'n as patches along from and as spirgers @ 33.8 m - 3 cm bard									+
		of dasker LST with 3-4"10 pe;	-			-	-		13		+
_		of darker 157 with 3-4 10 po							-		1
-		po as lam, dissem aggregates and in stra, py stra, I tr. sphaleite.									+
		strs, py strs, 2 tr. sponoux.									1
_		@ 35.05 - 35.65 Hw of mineral	1.71	d		m-s dl.	1º10 py, po	54207	35.05	35.65	0.
		zore - Lamieted light - dark crey		hedding	570		1 1111	1			
		Lore - Lamieted light - dark grey LST variebly cheorite altered									
		-we by intron @ CNT - offset alone 35° fred (im)		CNT	600						
	*	@ 35.65-36.35 Massive SULFIDE	E.			s. dol.	80%0 00	54208	35.65	36.35	0,
		with 80% pp, 10% py (py most common in upper 15 cm, 5% + sphel					10 "10 py 5 Sp				-
		common in upper 15 cm, 5 10 + sphal						1.0			-
		brown - black colour (most abundant					tr cp, ga	-			-
		near u and & CNTS for 10-15 cm,									+
		generally as wisps through po in	-					-			+
		appendly as wisps through po in Bentre trace of as stringers in po and = 5% obx clasts - angular	-				-				+
		of yellowish dolomite (decomitized				-	-	-		-	+
		of yellowsh accomite (accomite leg	-				-				+
		(sp), trace galena		LENT	70°						1
			-	CUVI	10						+

С

DEPTH	Gra-	DESCRIPTION	R	STRUCT	JRE	ALTERATION	METALLIC	SAMPL	EDAT	A	
(metres)	phic		E	Veins &	Angle		MINERALS				
rom To	Log		C.	Fractures			%	Sample	From	To	Leng
	1		%					No.			m
		@ 36.35-37.25 - FOOTWALL of	89					54209	36.35	37.25	0.8
]	to white LST with 3000 gy as								-	
		to white LST with 3010 py as									-
		stringers, aggregates primarily in lighter white LST minor bo to sphalente.						-			-
1.5	-	white LST, minor po to sphalente.			0				-	-	-
	-	maderately bedded 3cm to 20cm beds. - tr rhodochtrasite.		bedding CNT	70°						-
	-	-tr choad consiste.	-	CNT	70"	S Silv Prod	10,	0.0	2200	38.15	-
	-	@ 37.25-38.15 - med gray LST fairly massive 3-5% cal strs.	-	cal strs	30.8	S. Silicified	110 py	210	37.25	30.13	+
	1	fizzes when Scratched	-	Cay strs	20.		1				-
		+ 1 ZZO WALK SCATCHED									-
				CNT	70°						
38.15 43.9	1	ALTERED LIMESTONE - Variably				m-s s:1.		1.1.1.	1.1.1.1.1	100.00	
]	silicified and delemitized LST				w-m dol.					
		fire grained to apparitie				Im-Slim.					
			-					-		20.0	-
1000	-	from 38.15 - 39.2 - strongly silicity	d.			s. sil	3 % 10 py	211	38.15	39.2	-
	-	crackled ferture to weakly by inter fizzes when scratched, fine py filling spaces bu fragment in by a filling also py stres moderate practing	-					-			-
	1 /	tizzes when scrattered, fine py tilling						-			-
	1	spaces bow programment in belated tons		fres	10-20						1
	1	@ W- 20° ACA		TICS	1000						-
	1										
31	1	from 39.2 - 40.8 - patchy silicitud				m-s sil	2-30/000	212	39.2	40.8	
/		to delomiti ind fight oney to white. LST, M-S lim on facs and outwards				vid-m dol	trasey				
		LST. M-S lim on presand outwards				m-s lim	. 1				
		the to lace the actual Some of the sol	+			1					-
	-	Let patches - up to len. (239.3 - aspy -cal stringer @ 10°M py strings company # > lim. cal the fillings and strs # py -moderately fractured @ 40.1 - stronge fre - FLT?			(1)					-	-
		@ 39.3 - aspy -cal stringer (& 10 ch	-	str.	10						-
		py strings compan I -> (im.			2.20116	-					-
		Ical the fillings and strs Ipy		fres, stre	20,50,45						-

DEPTH	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	EDATA	A
(metres)	phic		E	Veins &	Angle		MINERALS			
om To	Log		C.	Fractures			%	Sample	From	To
	1		%					No.		
		@ 40.8 - 42.2 - less limonitic			-	Iwim	1-2°10.04.			
	1	andre less silicified satches				msil	10.41			
	1	grading less scilicified patchy white Sight gray to creany coldiner texture shows patch, propable				w-m dol				
	1	fexture shows batch propable		1.0						
]	remnant precision to v decreages			1. M.					
]	remnant preceretion +py aggregates		cal strs	10-20				1.1	
		Tones			40.					
			8							
		@ 42.2 - 43.9 light creamy				wohol	<1º10 QY			
		patchy dolonitized limestone				± w sil	. /			
		cal strs and paches, minor lim. on fres w precedion, w vygs cal strs, patches				Vw box				
		on fres w precession w 1495								
		cal strs, patches								
				CNT	700					-
120			_							
13.9 58.9	-	White Marble coarsely XLine.					tr py			
	-	massive.	_				, ,			
		@ 46.3 - 46.75 - patches - remnant interbeds of med gray LST primarily from 46.3 - 46.45 Jew man py ± hem strs ± v tr sp. Vague cNT @ 53.2 - 53.85 - light opeyish Markle 559 - 564 - weak from here		CNT	60°	2	- %	-		
		(a) 46.5 - T6. 15 - particles -	-			7	3%0 py,	-		-
	1	remant interbeas of med gray								
	1	LST primaryly from 76.3 46.75	-	sktrs	600		vtr sp.			
		Joen man py I have strs I v tr sp.	-	CNT	55					
		0 520 53 05- 0. 11 mil		CNT	22					-
		the is so it - 30.03 sight oneyish				·			-	
	1	@ 55.9 - 56.4 - Weak fracture.	-	Arcs	15-20				-	
	1	Light han 10	-	CNT	60"					
89 59.85		Grey Marple massive with			00		1			
1 31.07	1	11-10 mg, blo 115 593-5985				1	trpy			
	1	white marble from 59.3-59.85 59.4-59.8-w.frcs		fres	15-20					
	1			CNT	50					
	-			Civi	- 20,			1		

 $\overline{}$

EPTH	1	Gra-	DESCRIPTION	R	STRUCT	JRE	ALTERATION	METALLIC	SAMPL	E DAT	4
(metre	es)	phic		E	Veins &	Angle		MINERALS			
m T	0	Log		С.	Fractures	14		%	Sample	From	
				%					No.		
.85 6	0.95		Med grey V. coarsely Mega XLine								
			MARBLE / O								
_											-
			CNT - broken.								-
95-1	62.6	-	White strongly silicified is -possible field repetition of zone above in FOOTWALL	Γ.			S.Sil, tr lim				-
			-possible fold repetition of								-
-			zone above in FOOTWALL	70							-
			nineralized zone. fine string of pyrite trace (in on fres.) - Wely broken zone.	cro	fres	35 10					
		1	- Welly proken zone.		The second	3,10					
		1	broken CNT		CNT	80?					
.6 6	63.7		Med grey LIMESTONE, Mino C. Malble interbeds - poor recover broken, ground core	3				tr py			
-		-	mable interpeds - poor recover	1,				. /			-
- 10	SOH.		broken, ground core								-
											-
											-
-			UB and Daras - midalet	_							
-		1	AlB problems - mislatch								
		1									
		1									
_	_			_							
-	_			_					-		-
-		-				-			-		-
-											-
-	-	1									-
	-							1	-		-

PAGE 1 OF 4

PROJECT NAME:	CASSIAR	UTM:	Nad 83	Zone 9	AZ: <u>219</u>	_DIP: <u>-80</u>	
HOLE:	CA05-05						
FINAL DEPTH:	81.4m	Northing:	6570440		DOWNHOLE SU	IRVEY: ACIE) TEST
DATE START:	11-Sep-05	Easting:	452338		AZIMUTH:	DIP:	DEPTH: (m)
FINISH DATE:	12-Sep-05	Elev.	1250m			-79	100
LOGGED BY:	J. Pautler						
CORE SIZE:	NQ						
DRILLING COMPANY:	DJ Drilling Ltd.						

PURPOSE: To test for dip extension of mineralization intersected in DDH CA05-04.

SUMMARY: No mineralization was intersected.

SAMPLE NUMBERS: 54213 silicified, pyritic marble

ASSAY CERTIFICATES: AK 2005-1363

DEPTH	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	E DATA	4
(metres)	phic		E	Veins &	Angle		MINERALS			
om To	Log		C.	Fractures			%	Sample	From	То
		4	%					No.		
3.05	-	CASING	_							
5 10.2.		Hornfelsed SILTSTONE, weak calc silicate development, istopey LST beds up to 10 cm STS is light brownish - pink - beigg fire - medlerekly bedded	-			m hounfelsing	301000			
		silicate development, istery LST				w calcsil. I wchl	1º10 py			
		beds up to 10 cm	-0.014			Iwchl	/			
		fire - notherakly bedded	greg	bedding	60 270					
]		-	5						
		a 7-7.3m - mid grey fossilite	rous							
		2.65-10.2m - weak dul. alt					-4º10 Q0,			
		with 4-5% pp. + 2ºlopy	~				7.004			
				CNT.	55°					
.2 18.4		medium grey, minor fossils ± Prepla	ced			twich!	1-310 04			
		with pd 1	-	4.11	1.03		<td></td> <td></td> <td></td>			
		bedo to io - 20 cm. ± py aggregates - med calcite stringens to offset by 15-20 fires		bedding	60					
		hed to 10 - 20 cm. I ny agarenates								
		- mad calcite stringers togget by		calstro						
		15-20 fres 0 12 + by	_	fres	15-20					
		E che in fres and patchy alty in Marble, and outwards from fres.		w offset						
		Some patchy ell with it grey								
		107								
	1	altin envelope 1-1.5 cm wide.		frc	05					
]	cal, by surrounded by bleach	d						×	
		altin envelope 1-1.5 cm wide.			-					
	-	- GIDAGA MAARA GURAR IST HE HALL	2	banding	60					
1		t discontinuous, some office - along	-	banding fress	15-20			-		
		15-20° TICS 00	-	offset						_
	1			00-		1				

DEPTH	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	E DATA	A
	phic		E	Veins &	Angle		MINERALS			
	Log	4	C.	Fractures			%	Sample	From	To
	5		%					No.		
8.4 19.9		white MARBLE, medium XLine.								
		messive, trpy tr lim on rave		fres	15-20,50	Iuwlim	trpy			
		massive, trpy, tr lim on save			'		** F /			
Sec.		T								
00 010			-				0.0	-		
9.9 21.2		FAULT ZONE in marble unit	-	FIT	40 50 50	-	3º10 py	11-11		
		Main part of FAULY from.		FLT gouge.	70 30 55	sclaymeth.				
		and on chlorik scalconome with	-			s clayment.				
		nain part of FAULT from. 20,2-20,9 with 3% py and m chlork, scalcanons with light pink altered margins								
				pystra	30,45					
	14			11			6			
1.2 26.30		Medium grey LIMESTONE similar to 10.2-18.4 with minor intervals of white Marble up to 0.6 m wide.	_				<1º10 py			-
1.00		to 10.2 - 10.4	1	had to	00					-
		with myor intitues of white	-	bedding	50					-
		Warbee. up to b. om where.								
6.3 32.7		Dark grey fine LIMESTONE Nod and chart grey bedo mod - third bedded. some blownish 5. calc intervalo.		bedding	50-6	Vad	2-3 % py			_
		wed and deart grey beds mod - third	4	0			1-21000			-
		bedded, some bhownish s. cale	1						-	-
		intervalo.	-							-
		py + po do lamin darker tombedo	-							
-		LENT 11 bedding	-	LONT	700					
2.7-		White coarsely xute marke.		- CI-	10	tuwlim	trpy			
150.9		massive								
		@ 36.9-37.1- munor chloritic		fres	45-50°	± w chl				
3.15		fres tey								
-		0 38.7-1 39.6- fres @ 1 voggy t		fres	10-20					
		WIIM, PY.						-		

DEPTH Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	E DAT	A	
(metres) phic		E	Veins &	Angle		MINERALS				
om To Log		C.	Fractures			%	Sample	From	То	Lengt
	MARBLE	%					No.			m
17	@ 39.6-53.85 - occasional									
50.9	Vicent grey bed and acc frequent of -calc -> LST									
entid	-calc -> LST 0000	-								
0.9 52.2	the second secon									
J. Said	med grey LST with minor Marble		hadding	55						
	-generally fairly massive		energy	27						1
	Jere any party parties									
						10000				
2 53.85	white Marble, variably sixid				tw-msil.	2-3°10 py		1		1 -
	-speckled with py in centre of intrical for 60cm in bands to 50 CA - as dison.	-			w-msil.	4º10 py	54213	524	53.4	1.0
	lor boom in bands to 50° lt A - as		py taids	500	- Its still	1 17				
	dissem.		71							
3.85 81.4	medogrey ist with interbeds of danken grey LST - med to think bedded generally 3.5cm douber beds with 0.5-1cm douter beds.					1-2"10 py				
	danken grey LST - wed to thinky	-		0		. [-			-
EOH	bedded generally 3.5cm dighter	-	bedding	650	-					-
	minor white Marble interbed.	-	5				-	-		+
	minor white marble interbea.	-								+
_	disconte la dissen aggregation	-	heddin	t. 0.0						-
	-miron py an doven, aggregates + discont. l'amipae along pedding @ 73.4-73.8- w. fries with cal		bedding colstra	05-15						
			in fres	• • •						
	(2 75.3-78.2- w-mederakly preceived with subangular dask of lapher gray LST in slightly dayter arey LST.									
	lighter gray LST in slightly dayter									
	ghey LST.		reddily	55°				-		-
	"after TE.2 - darker \$57 bids more		0							-
	Common that above a 20-25°10 EOH.	-					-			
	EUH.	-								-

PAGE 1 OF 6

PROJECT NAME:	CASSIAR	UTM:	Nad 83	Zone 9	AZ: <u>185</u>	_DIP: <u>-44</u>	
HOLE:	CA05-06						
FINAL DEPTH:	102.1m	Northing:	6570440		DOWNHOLE SU	RVEY: ACI	D TEST
DATE START:	12-Sep-05	Easting:	452338		AZIMUTH:	DIP:	DEPTH: (m)
FINISH DATE:	14-Sep-05	Elev.	1250m			-44	102.1m
LOGGED BY:	J. Pautler						
CORE SIZE:	NQ						
DRILLING COMPANY:	DJ Drilling Ltd.						

PURPOSE: To test for southeast strike extension of mineralization intersected in DDH CA05-04.

SUMMARY: Intersected minor sulfide stringers in silicified limestone and limestone breccia.

SAMPLE NUMBERS: 54214-16

ASSAY CERTIFICATES: AK 2005-1363

DEP'	TH	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	EDAT	A
(me	tres)	phic		E	Veins &	Angle		MINERALS			
rom	To	Log		C.	Fractures			%	Sample	From	To
				%					No.		
0	3.05		CASING								
.05	17 6			-				01.			
.05	17.5		Hornfelsed SILTSTONE with LST interbeds & fossil ferous LST	-	1 11	11.00	W-m hornfels	3 10 00			-
	-		Interbado 3 possil, ferous 2ST	-	bedd ing	45	±wahl		-		
			- brownish pink to tan coloured fine STS with pink to oney UST interbeds few on the 15 cm	-							
			Dist silver pine to grey	-	col strs						
-			width ; proken down to 6.0m	-	± po		tw lim on fres				
			wair proken carown to been	-			The firm on tres			-	
-		1	dissen + discont lamina hons along	-							
			bedding.							-	
		1	grey forssiliferous LST. with 1 to po					1 % 00			
			grey bossiliferous LST. with 100 00					1 ipe			
			110								
70	200		1. 1. 10. 1	-				1			
1.5	28.9		Medium blue-grey LIMESTONE	-				1-2%000	-		
			Medium blue-grey LIMESTONE minor possils replaced by cal, po minor black stylliks C 16.6 = 16.75 fault - utgoing	-				<1 py			-
-			a 16 5 - 11 75 to At a tag								-
			Coros and and a grage								
		1	weakly bedded with darken grey - black		bedding	40°.35°					
			mlerbeas		bedding cal strs	20"					
			@ 22.2 - cal strs + weak by								
			0 202100								
_			26.3-27.5 - w-mod fres ± with calcite.		fre	05-10				23.4	
_			I with calcite.	-						31	
~ ~	2:05			-	SNT	35°		4			
8.7	31.25		white grey splotchy manble.	-				1'10 00			
-	-		coarsely xcine.	-		- 0		«1º10 py			
-				-	bedding LCNT	50°		1			
-					CNT	30					-

EPTH	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	EDAT	Α
(metres)	phic		E	Veins &	Angle		MINERALS		199	1.5
m To	Log		C.	Fractures			%	Sample	From	To
			%			795	1. 1.	No.	1 she	
25 32.5		Grey LST. Medium grey this bedded - grades chloribic from 31.8- 32.5		bedding	40"	mche	1-2%po 1°10 py			- 10
		- grades chloritic from 31.8-)			1%0 04			
		32.5					. /			
				CNT	20 "	1 21				
1.5 34.3		SILTSTONE tan to light green		0.01	0-	w-mchl.	3-5º1000 1º1004			
		mad-well fractured and broken		fres	10		1'10 04			
		SILTSTONE tan to light green med-well fractured and broken ± chl along frics. ± slickensides = py					. /			
.3 50.8				-			1ºpy			2.0
47.		Med. grey LST to light grey LST minor white LST interbears up to per wide. some + cutting cal		beddir	35		1 port			
		Den wide. some teuthre cal		cal strs	60°3	L bedding.			- 1	
		strs		Frest	6005	3				
				oppset						
				fres w/	80°	and the second				
_		b fris cal	_	offset						
		- moderate and that the theory		Const	05-15					-
		- moderate gres I cal t py t uggy.	-	Pres	03-15					
	×		-				± 3% 5×			
		A 41 - 41.3m fine stringers of by sa sp 30-50 in white O ist to marble beds.		sx strs bedding fres?	30-50.60	0				
		OLST to marble beds.		hedding	25+40	· · · · · · · · · · · · · · · · · · ·	py, ga, sp as strs			
		@ +3.1-44.8- mod-well fractured.		fres 7	05-15					
-		t w yorge		FIT J						
7.0 50.8			-				10.			-
1.0 50.0		Lapinetic med-dk blue-grey LIMESTONE thinly bedded some marble beals to	5	bedding	-0°		1%, py, po		-	-
7				bedang	20					-
		loca. Junior fine dessen py po & discon lamitations.	L							-
del		Panitations.								
S				LCNT	35			10		

DEPTH Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	EDAT	Ą	
(metres) phic		E	Veins &	Angle		MINERALS				
rom To Log		С.	Fractures			%	Sample	From	То	Leng
		%					No.		<u></u>	m
50.8 52.75	white marble & eighter gray				± vwchl.	<1º10py				
	patches massive ? ?!	_				• /				-
	patous massive of py	-								-
		-	CNT	25-30						-
52.75 53.6	Grey LIMESTONE with cal strs + UNLEB	-	0.1							-
	tunles	-	cal strs	10-25		-			10	-
		-	CNT	45					-	-
36 54.1	while I IMESTONE DATTHY with OF	-	CNI	TS	mdl.	1-2%000		10		-
20 - 11	white LIMESTONE patchy with it gray - graenish LST patches				in cor.	1 a ropo				
			CNT	27 .					1	
54.1 61.9	white Silicified LST fine ground mod hardness 3.5 but Daloedn't			,	msil	2-3º10py,po = vtr sp.			64	
	mod hardness 3.5 but Dolvedn't	1				= Vtr sp.				
	lizz. fine pt po ± v tv sp as Ostripeus, crackled textul, nod. b	-	SX strs	40-55					_	-
	Ustringers, crackled textul, mod. b	noken	-			-0	Claul	el()	FFF	110
	- higher sx and sx strs from 54.1-35.	5	0.1-			50/087+00	54214	54.1	22.2	1.7
	-higher 5x and 5x strs from 54.1-55. -from 55.5-56.6 - minor Marble		CNT	50		wth sp	-			+
	Section 2 10 10 10-15 minde	100				-				
	Sections up to 10-15cm wide. -from 55.7-61.7 - more broken	-			1.					
	with Dinky-manish oxide on fres									
	with pinky-orangish oxide on fres from 56 - 58.2m									
	Main FLT? @ 56. 2-56.4	1 al	FLT				12			
	from 56 - 58.2m Main FLT? @ 56. 2-56.4 -from 59.4-61 - light grey color due to more fin Sulfides	-		1		2-3% py <1°10 aspy	54215	59.4	61.	1.6
	due to more fin sulpdes.	100	5× strs			<1°ivaspy				-
1.0 20.2	de a Ma	-	CNT	600					_	-
61-9 78.65	white marble coarsely xine.	-				trpy				-
		-	fre	20°					-	-
	12 66.7 - weak fre i gorge	-		40,15-20						-
	three with the sites	-	Lac MS	10,00 20						-

DEPTH	Gra-	DESCRIPTION	R	STRUCT	JRE	ALTERATION	METALLIC	SAMPL	EDAT	A	
(metres)	phic		E	Veins &	Angle		MINERALS				
rom To	Log		C.	Fractures			%	Sample	From	To	Leng
			%		- le u			No.	1		m
1.9 78.65		white MARBLE									
contid		-from 35.3 in downhole to 78.65									
		anaphitic partings at various angles									
		graphitic partings at various angles To 77.9 - 78.68 - minor clasts of									
		lower pressia whit up to 7 cm in									
		Size: Some vose col. Markle ->							-		_
		alteration autwards from glic partices.									-
		0 90 . 0		-	1100						-
				CNT	45		11 6				-
78,65 79.5		LIMESTONE BRECCIA					4270 194	-			-
		- overall dank gray colorer with black graphitic matrix						-			-
		black graphitic matrix		1.05	115						
		-80% dents - angular to subangular less subrounded, 0.5 cm to 5 cm Si Ze, average size 1-2 cm; rere white to rose coloring marble dest.		weak full	45						-
		less subrounded, beschito 5 cm	-								-
		Size average sice 1 ocm, ren						-			+
		white to rose cotoured while dest.									-
		-appears to be structural precia-									-
		reament to principal core interior		CNT	55						-
79.5 1021		Medium blue-grey LIMESTONE with.		Cier	- 2.2		1-210 py			-	-
10 10001		20% while marble interbeds.					12 FY				1
Gow		maderately bedded, fin - med grand									
		with coarse white sharble inferbeds		bedding	30 "						
		(thick beds) some folding evident some)						10	
		(thick beds) some folding evident some lamin hed zones with dark gley erem beds.									
		@ 79.75 - 80.2 - Hic fault zone		FLT	45						
				gorge							
		@ 86.5- 87.6 - bx zone but much		CNT	25		3-5%024				
		less bred than 78.65 - 79.5 with fire					/				
		by vitring fragments					3-5-10 07	54216	88.3	89.8	1.5
		1 300.		14			. /	-			

EPTH		DESCRIPTION	R	STRUCTURE		ALTERATION	METALLIC	SAMPLE DATA			
(metres)	phic		E	Veins &	Angle		MINERALS				
m To	Log		C.	Fractures			%	Sample	From	Т	
			%					No.			
1.5 102.1		Meditivery LIMESTONE, Marble beds									
contd.		& CNT with Mb pyritized over 1-2 cm. @ 89.8-91.9- white to locally		CNT	200		(10-15"10py) 1 10 py				
		@ 89.8. 91.9 - white to locally	_				110 94				
		bed locally bugg with calcite XLS' in vugs mill a fire dissem.									
		bed locally overy with calcite									
		XLS in vugs 194. as fine dissem.									
-		0 111		CIVIT	20					-	
		@ 91.9-93.9 - preculation in grey		bx	10-20"		3 10 84			_	
		LST. with locally by rimming clasts.					1	-			
		clasts up to 10 cm - minor dark gy-black						-		_	
		@ 91.9-93.4 - brecciation in ney LST. with locally by rimming clasts. clasts up to 10cm - minor dark gy-black matrix - glic cement.								_	
		a 100-1-101.4 - weak breccia		bx	10-200						
	-	Zone, no dark cement								-	
								-		-	
-								-	-	_	
								1		-	
-										-	
								-		-	
KON								-		-	
VION											
V										-	
-			-					-		-	
-			-				-	-			
			-							-	
_										-	
-											
										-	
										-	

PAGE 1 OF 18

PROJECT NAME:	CASSIAR	UTM:	Nad 83	Zone 9	AZ: 235	DIP: _ <u>-65</u>	
HOLE:	CA05-07						
FINAL DEPTH:	364.55m	Northing:	6566092		DOWNHOLE	SURVEY: AC	ID TEST
DATE START:	17-Sep-05	Easting:	456688		AZIMUTH:	DIP:	DEPTH: (m)
FINISH DATE:	25-Sep-05	Elev.	1040m			-57	203
LOGGED BY:	J. Pautler						364.55
CORE SIZE:	NQ						
DRILLING COMPANY:	DJ Drilling Ltd.						

PURPOSE: To test for down dip and down plunge extent of Lang Creek VMS Showing.

SUMMARY:Pyritized silicified breccia intersected from 104.5 to 112.35 and 125.2 to 130.8m.Exhalite horizons, extensive alteration and trace chalcopyrite, sphalerite intersected but no significant massive sulfide horizon.

PROBLEMS: Transmission problems, replaced; rods stuck at 364.55m, shut down hole.

SAMPLE NUMBERS:54217-259 samplesASSAY CERTIFICATES:AK 2005-1363

DEPTH		Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPLE DATA		
(me	tres)	phic		E	Veins &	Angle		MINERALS			
rom	To	Log		C.	Fractures			%	Sample	From	To
		1:500		%					No.		
0	3.05	000	CASING								
				_							
3.05	13.7	OVE		_		-			-		-
_		00,	Otz MONZ. blds, lesser m. grained								-
_		000	GDi and Qtz menz, more GST								
_	Dio	000	(greenstone) and Diorite, pare ARGULITE with "pyritic laminee as bids to cobbles and pebbles								-
	pro.	XXI	ARGILLITE with pyric laminae as	-	-						-
-	•	14	blas to cobbies the peoples	-	The second						
31	17.8		DIORITE - green coloured medium				N propyl.	2 0000			-
12.1	1110	1	agained district of contract marks			2° no	popys.	2 10 04			
-		ARG	grained divite cheartized mapics, I'w epidate with ser - gtz in fin strayers. ; dissens and stringers of			3.0		trace cp			
			Stravers, " dissens and stringers of					F			
			py, pe - grades med grained after 16.0m		12 12						
	-				CNT	50					
7.8	20.8	+++	Light greenish-grey(chert				wahl.	<1º10 py			5
	Die	XX	Light greenish-grey (chert) with del stiingers = cal = grephite		de - cal	20-30,			1		
		Vt+			strs	.65					
		X	-battom 15cm appears chilled -CNT is faulted with preciation along 10-15 fre, young cal-strs		barding	80°					-
			- CNT is faulted with presciation	-	FLT	10-15°	tw sil				-
	-	-	along 10-150 fre, yound cal strs		cal stra	- 11					-
- 0	00.05	ARG		-				7 - 4			
20.8	22.85		AFGILLITE black applanite I crackled zenes, cal strs.					3-51004	-		
-			craceled zones, col strs.						-		-
	GST.	JJJ	@ 21.2-2315 - highly - mad fractured	-	fres	10°				-	
		- V	FLT CAT		CNT	20					-
1985	25.3	-	Interbedded ARG + CHERT	-	foln	40"	-near alt car	1-2 1000			
22.07	27.1	1	I weak breezisting cal strivelya	-	bedding	60 0	-near ft our	17			
-		1	some offset along 45° fris		frest	45 -	with offset				
-		1	and allower and the two		CNT	65	00				
		- 70	22								

DEPT	PTH Gra- DESCRIPTION		DESCRIPTION	R	STRUCTURE		ALTERATION	M	ETALLIC	SAMPL	EDAT	Ą
(met	res)	phic		E	Veins &	Angle		MI	NERALS			
=rom	То	Log		C.	Fractures				%	Sample	From	To
		11500		%						No.		
25.3	29.25		Light greenish - grey chert? Jocal wk by along largers.				w chl.	<1	Pio py			
	1	-	local wk br alere largers.		fres	05-10		Γ.	. /			
		1 1	on as dissen and flore bedding		bedding							
	78	1	-cal strs especially in wk bred zones @ 27.2-27.55m		al stre	10-20						
		VV	- Zones @ 27.2- 27.55m		brzone	20,55						
	_	.V.,	minor offset along 10" fres									_
0.00	222	VV		-								
29.25	37.5	V.V	ARGILLITE, black, aplantic grading = werkly cherty with 40% greenish-grey chert zones up to 35cm wide.	-				4/	upy+po	-		
	-	V	-weaking cherty with 40 is		1.11.	12		-				
		VV	greenish-grey chest zones up to		bedding	80-85		-			-	
		VV	- Some weit set disruption of leds;		1			-			-	2
		-	generally thin bedded 1-few con scale		and the second s			-				
		V	gerating this pinning i few em sour		CNT	75						
33.3	40.1	VV	DIORITE MARRIE MARI MALINS - 7 chl			12	michel -carb	K	1 10104			-
	1 1	VV	DIORITE moren M.g. wafies -> chl. 10-15cm upper chilled margin.				altin ± ser					
	N. Ball		Carpoologie in a school Trace		cal strs	15-20"	±w-m clay					
	Ser	VV	probably related to carb alter				alto of fops					
		VV.	•				0 1					
		VY	(a 38.9-39.3 - minor breccigtion		bx zone	10-20"						
		VV	with che-catcite fulled fires									
		V									-	
I.a.	- 0	VVV		-	CNT	50°		-				
10.1	50.9	VV	ARGILLITE, black to med grey		bedding	80°		1.01	0 104			
6.33		VV	appenitic, thinly bedded. some folding		J			1-2	2%000	3		
		AA	buildent, occasional up to 1. stem					-				_
-		AA	po rich zone 11 bedding much					-	-	-		
1994		A	py faminal aisten and along	-				-				
V			O from 41 - 45.4 - more frachmed with									-
		1.1.	by about frees and minor gayse @ 44.6m	-	FUT	15 80	ton clay	-		1 12 1		
		- 14	ind word they would drade to liber		Judge	12,00	I'm cary	-				

DEPTH	Gra-	DESCRIPTION	R	STRUCT	JRE	ALTERATION	METALLIC	SAMPL	E DATA	Ą
(metres)	phic		E	Veins &	Angle		MINERALS			
rom To	Log		C.	Fractures			%	Sample	From	Тс
			%					No.		
0,1 50.0	1 ~ ~	ARGILLITE								
Contid		@ \$7.9 - Limestone bed a over		bedding	80 ?					
		10 cm interbedded in ARG.		,						
150	-									
	VVV	@ 50.0 - 50.4 - FAYLT ZONE		FLT	10?					
	L'IL V	after clay gorge rubbly 10 zon FLTgerge God CNTT Interbedded black- grey ARGILLITE/STS - this bedded with local folding					_			
	VUVI	10 Zan FLTgenge G CNTI	-	CNT & FLTS Bedding	80°					
0.9 55.1		Interbedded black- aney ARGILLITE/STS		gouge.		± w chl				
		- this bedded with local folding		bedding	80"					
		and disruption of bedding		5						_
		-minor all altin demerally along								
-	LVV	fractures (fres)								
	LU	C 52 L D C C C C C C C C C C C C C C C C C C		1.5	500	5				
	-	@ 53.1 - 10 cm fault goge with precising tron - fine rock frags		FLT	30		THE .			
	VVV		-	- 0	-					
		@54.9 - 10 can gren day failt	-	FLT	20"					-
	- V V	astri to an gras any propi	_	FUL	~~					
		gange.		CNT	750	1.				1
55.1 57.	7.00	CREENCTANE allowed into had dod				mchl+w-m				
	4000	with med-dark man APGUINTE		hadding	75-80	Sericit, carb				
	V	12 70°/ light green chlinite - carb-s	21	Jan J		Jan and , conce				
	VV	alty beds with this cal strs.		cal strs	10-20					
	1 V	bleached appearance ares due to sert			60-75					
	VV.	carb altin. five apic I cal stra								
	VV	and tweak precision.								
				CNT	75					
7.7 58.	1	ARGILLITE I cherty; medium								
20	2.1	bluich - grey beds neebedded with		bedding						
		ARGILLITE ± chenty; medium bluish - grey beds nterbedded with danker grey to black angillite.		0						
		0,		CNT	400					

PTH	Gra-	DESCRIPTION	R	STRUCT		ALTERATION	the second s	SAMPL	EDAT	Ą
netres)	phic		Е	Veins &	Angle		MINERALS			
n To	Log		_	Fractures			%	Sample	From	
	1:500	210m	%					No.		
78.8	-	ARGILLITE black, aphanitic, thinly bedded with cherty interbed and med grey SILSTONE interbedo ± cal strs. ± Tpy					1-2% py			
-		thinly bedded with cherty interbed	6	bedding	75-40		7			_
-	1	and ned arey SILSTONE interbedo		5						_
-	-	= cal strs. = 1py		cal stra	35-40				-	-
-	-			0	11					-
-	-	from 61 - 66.1 - neoengiely to	-	fres	16-05					-
1	-	from 61-66.9- noolengtely to highly fractured			50					
	1			FLT	100					
	1	followed by interself calcite		gonge	10					
	1	@ 67.4 - Icm gauge (clay, gt) followed by inknoly calcite Stringened ARG to 68.9 m		calstr s	tuk 5.5	S				
		. 8			270	5°				
	1-F			pyic fres						
	1420	the second secon	_	bedding	55-75					
245	*	@ 70.4m -beddy disruit due to fault?		bedaing FLT	15-200				_	
575	VVV	@ 70.8m FLT garge - day - gf-cal extensive total. shuk to 71.8m I		FLT	250				_	
-		extensive "cal stuk to 71.8m -	_							-
	170	Division LST intubeds. @ 75.5-77.4 Fault-highly broken core, mina gauge.		0 7						┝
-		to 13.5-11.1 Fault-highly		gauge?	35-40"	1			-	\vdash
	CVV	Startin core, miner youge								\vdash
		@78.2-78.8- Two call area				= mserterb	- and			F
	TI	@ 78.2-78.8- Two pale green greenstone (GST) bedo in ARG or 1st 4cm bed @ 30"1CA		gst beds	30.52	with			14	
		in 1st 4cm bed @ 30"1CA								
	VV	ad 19600 Lid B 50 55 ACA		1						
	V,	with introal banding @ 25°CA mapics -7 chl.								
	V.	mapics -7 chl.		1						
-	LU.L	0	-			1				
-	100		-			1				-
-	1, 1			1000						-
-	120	2.80m	-	100						

С

EPTH	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	E DAT/	A
(metres)	phic		E	Veins &	Angle	1.2	MINERALS			
m To	Log		C.	Fractures			%	Sample	From	To
	1:500	280	%			1		No.		
8 96.3		Greenstone / pale green due to				mser wcars?	41% 24			
	1	Lerv. serich zahon and possible	7,			where ± tale	19000			
	1	Piv carb altin but overall not				onfres	as dissem.			
1	1	Calcareous except for moderate								
	1.0	colorite shapen inder on firsting	grace	a						
	101	mina interbeds of black ARG.	ip							
	VVV	to loca wide Cirtuflow seding	unt)	interbeds	50,65	-70°				
		with acc. "bx intion -> flow top	11			the second second				-
	V_20	@ 83.5 toos possibly & downhole	27	5			-			
	00	Prom 85-90 - bedding fairly consist @ 87.8 - 89.7 - more fine and intribeds (i	ent	bedding	75-70	·				_
307		@ 87.8 - 89.7 - more fine any intribeds (i	nterflo	(?)	1					_
	20	@ 90.1- fine anygdules presen	F							_
		possible flow/pillow pops with to	ps T							_
	-2-	from 90.1 - 94.0 crackiled poss	ible							-
315	52	flow top with dark agulaceou	0							-
CHT	-27	Augus irrenear, weak preciation	m	Cal stro	. 150					-
CHTY	1	318 00 to lem	S	CERSINS	13	10		-		
ARC		typ to lear		CNT	80°					-
.3		GREENSTONE - POSSible separate		, vivi	00	vwser uche	510.00			
99.7	-	AREENSIONE POSSIBLE Separate	+1:	alunda.	+ Pma	cal strs	1 199,00			-
11.1		blow with angillite interflow sed.	ZY	1 abunar	N pine	car strs				
1	1	- aster is darken green less server			100					
		-several cal unlets to 3 cm (a 91				1. X.				
		from 96.6-100.2 - more un			100	m ser wehl.				
17		textured pale green m series	Le	-						
	1	alfered GST flow								
		C. C		CNT	650					1
		and the second se								

σ

DEPTH Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	EDAT	A	
(metres) phic		E	Veins &	Angle		MINERALS				
om To Log		C.	Fractures	to CA		%	Sample	From	То	Ler
		%		1			No.			r
9.7 104.5	Light grew to Paren-greenish fine				5 carb mser	3-510 PY				
	Light grey to paren-greenish fin		1		wchl.	1 º10 po				
	CREENSTONE, Fical filled anygdul	20				'		_		
	the dissem py + bo and it o	cc.								
	pro sturgers	-		0						-
	all stres common espe 20%	A	calstr.	200						-
	la	-	-							+
14.5 110.5	CREAT IN GST	e1.	1 0			50,	54217	Inde	1015	\vdash
1.5 /10.5	BRECCIA UNIT - pale greyish-tan - it lightenish up to 5-10cm of	TVG	grinal.		tw-m sil	5º10 py	2701	101.5	100.5	1
	2-02 area GST lan of allered		111	1	(asp)	1 1000				T
	GST? liny GST from above.				Casi					t
	abundant 'cal str's and inlets-	PY	cal unlet	x 20°						
	averall crackled appearance byt locally 10% angrilaceous matrix and locally 5° cal matrix; ± gtz strs, patch	1								
	locally 10% angellaceous matrix									
	and locally scal matrix: ± gtz strs, patch.	sil	ELT			22				
	@ 1067-107.101 108.1-108.35-1	LT	gaze	15-203	30		54218	106.5	108.35	-
_	- py E po as discen and stringer some replacing claster throughout beck - minor fuchsite through by unit	-						-		-
	some replacing claster throughout sect	in		-			54219	100 25	1.0.1	+
	- myor fuchsite though by UNIT	-	FLT	20°			PTAT	100.35	107.6	+
	(a) 10th gric wohlic		garge	20						⊢
	fault govel - from 209.6 - 110.5 more	-	20			70 1094	54220	1091	110 5	t
	heardly pyrihzed (prob. due to	-				12 1041	1000	101.0	110.5	t
	Rout pyra con provide to									T
	-O		CNT	75						
10.5 112.35	Altered and Crackled GREENSTONE				MSer 3	50004	54221	110.5	11235	1
	with preciation along 10°1CA fre fulled with dark amorphous silica		fres	10 "	winsil	1/				
1	fulled with dark amorphous silica	-						Se o	-	
	land while gtz-carbonate	-		- 0						-
	Py strs, five dissen py		LONT	200				1		

DEPTH	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	EDAT	A
(metres)	phic		E	Veins &	Angle		MINERALS			
om To	Log		C.	Fractures			%	Sample	From	To
			%					No.		
2.35 114.7		GREENSTONE, weak crackling,		16		mser.	3 py			
		dark ancillacerus - silica - and				wsil	• /			
		interstitial to GST frags. pelo green to V. weak tan		cal strs	10-20	wearb?				
		pelo green to V. weak tan		0.	45					
		local preciation - could be								
		related to FLT above or								
		resemples interflow sediment to								
		precessed flowtop.				6				
		breccrated flow top. weak borne bidding and argiller	ous	beddity	70?	A				
		seperations.		,						
				CNT	70°			1.1		-
4.7 123.6		Pale neerish sericite altered GREENSTONE, l.g., some cal strs & unlets, che Ostrs, patches.	2			mser	1-31007			
		GREENSTONE, f.g., some cal				wchl.	/			
		strs + unlets, del Usars, patches.		cal strs	20,60 -7	5	and it with			
							-	-		-
		@ 119.1- 119.5- musor by ichon					1	-	-	-
		(possible from top) and adjacent					-			
		(possible from top) and adjacent anygolodordal texture. - grades more pyritic W (p 122.1 - 122.6 - minor preculation.	-							-
		-grades more pyritic V	-					-		-
		Q122.1-122.10 - minor preciation.								-
					-					-
3.6 125.2	1.1.1	Carsus 1			-					-
2.6 123.2		GREENSTONE as at 112.35-114.7				mser w carb?	3010 04	-		-
	-	pale greenish - ton crackled. to weakly precised zones more call strs than 114.7-123.6 normal ser alt d GST.				w cars r				-
		to weakly bucking the wind - 1221		calstra	most					-
2		nove cal'stro than 117. 123.6		Cuy Str's	mosto					-
		normal sha ali a ast.		CNT	70 "			-		-
4				CNT	FU		-			-
-							-	-		-
			-		-					-
	-							-		

DEPTH Gra-	DESCRIPTION	R	STRUCT	JRE	ALTERATION	METALLIC	SAMPL	EDAT	A	
(metres) phic		E	Veins &	Angle		MINERALS				
om To Log			Fractures			%	Sample	From	То	Lengt
		%				1 1 -	No.			m
25.2 130.8	BRECCIA ZONE				mser, wche	5.py	54222	125.2	126.8	1.6
	Colour but madauk grey for top				woard	. /			-	-
	colour but madaik grey for top			_	w-msil.			-	-	-
	30cm; clasts to locm but				(asp)					-
	commonly 1-3cm, gtz carbonate						7.72	1050	128.4	
	commenty 1-3cm, gtz carbonate comment = py alos py disserier host rack and replacing clasts, also						125	120.5	129.4	1.4
	hostrock and replacing dents, also						724	1284	130.0	1.6
	py strs. painty hard - similar to 104.5-110.5						201	1-0-1	1.00.0	1.0
	Ubit harder.	-								100
			CNT	60				1		
	@ 130.6-130.8- angillaceous by		1	1	mser, s carb	1010 10 94	225	130.0	130.8	0.8
	- black and and calcareous cement	2			wil, wche	1				
	0	200	CNT	75				_		3
2.8 147.4	Med blue-grey to black ARCIILIT. ± locally cherty by as dissen. - some folding evident bedding	E	1		Vivide.	1-290py				1
	I locally cherty, by as dissen.		1			1 poil				-
	- some folding evident bedding	-	bodding	. 15		20				-
	convery around 75° locally 55 @134.1 - 5 - abundant cal strs		cal stra	14.00		140				-
	(2134.1-13- abundant cal strs		Car sars	10,00		(4º10 py) iscally		-		-
	and more py					iscurry			1.1	
	@ 140.3 - 141.8 - FLT ZONE					1	1			-
	with poor recovery rubbly core									
	+ day- ghic gover more cal shs.									
	I day- gfic goinge more cal sho. in dayler ARG zone (less									
	(ongetent).							and has	-	
	competent). 147.1-147.8 cal str at 10°		CNT	75				10		
+7.4 149.5	Palo a very CHERT? hand appanitio	-	Calstr	100	w-msil?					
	but only locally with concordal				wicht					
19	yric at CNT btw ARG+GST									-
	Gossibly SILicified, minn ARG bed 6 cm wide		ARG bed	60°						

PTH	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	E DAT/	A
netres)	phic	2	E	Veins &	Angle		MINERALS			
n To	Log		C.	Fractures	1CA		%	Sample	From	
			%					No.		
4149.5		CHERT contid.								
ontd		149.35 - cal-py stringers fros 149.45- sil. weakly brid		cal strs	100					
		149.45- sil. weakly bred		fres						
		LONT with dissen po.								
				CNT	75.					
5 156.4	5	pale green Sericite altered GREENSTON	Ē			mser	1-3 py = 1 20			
						wichl.	-1 20			-
		from 149.5-150.5.								-
		al strs for Im below CNT		strs	10-150				<u> </u>	-
_		cal stro for Im below CNT		6						-
_		@ 150.1 & weakly breached		bedding	75	11.11				⊢
_		and silid ARG with py strs	-	Pystr	10, 10	S. sil locally		-		-
		Jon 15cm @ 1520-10cm ARG-CHT bed	-	0.5	800					-
		@ 1520-room Arch-CHT bed	-	= beddy						-
-		@ 155.9-156.45 - preacidted	-			M-SSer	-			-
		a top allead lacare 1 the call	3			warb				
_	2-	with tan altered fragment to calc +10 cm size in chloritic groundmess CNT is disrupted due to above	-			wall.				
	5	CNT is disputed due to a first		CNT	45					
		By zone otherwise bedding 80%CA		- NI						
								1		
						-				
45 163.7	-	ARGILLITE Meday and black this - medrally bedded ARG.	_				1º10 py	-		
*		this - medna kly bedded ARG.			75-80°		1			
		py as cubes initial disser		locally	"folded					-
		1 @ 156.6 - 157 - minor older	_	to	600					
		deported gy gtz veins up to	_							
_		Adv con Widel in ARG.	_							-
_		Den gray CHT clasts. D- mita interbedded volc GST to	-							-
		V- mila inteledded voic GST to	-		0.00			-		-
		157.5m; week L. chilled CNT for 10-15 cm > TOPS V	_	LONT	85					

DEPTH	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	EDATA	A
(metres)	phic	1	Е	Veins &	Angle		MINERALS			
rom To	Log		C.	Fractures		and a shirt of	%	Sample	From	To
			%					No.		
3.7 171.4		Pale green serick aftered				MSEN	<1% P4			
		GREENSTONE with minon				w che	1			
100		ARG interbods generally up to 10 cm wide = with GST clests		beddog	75-80					
		10cm wide I with GST clasts)						
Selet .		hew mon to Icm see, locally								
and an		Unore ser altid GST, some gtz calcite stringers and valots		tr-						
6		calcite stringers and valets			10 -20					
	1	@ 166.1-5- more freed-more FLT wkgong from 170.4-171.4 - grade more tage alth - sep. +?	e	FLT goge	75'					-
		from 170.4-111.4 - grades more	_							
	38	tar alth - ser +?		0						-
- 1	-			CNIT	85		10			-
71.4 172.2	P	ARGILLITE - black aplanitic	_				1%py po dissentine			-
	124	propable inter from sediment.			7.0	-	lamiral			-
		- py as minor dissen and few		LONT	10		Luni			-
		and commetions minor crackling	_	bx	110 00	Iwsil inby		-		-
		w byiation in centre, the cal strad		bx	45-50	- wsil inby				-
12.25 201.3		pale green service altered GREENSTO	.17			m Ser	1 1			
10.00 201.9	T I	pale your service at mig greensto	NE			uche	+r cp. to Y	. %		-
		172.25-176.4- weak crackled				±trep.	tr cp. to /	10		-
		leitung il no Cilling his proillain		ord	-	I w talc on				
		How with intilling by arguitation	is :	PKA .		fres.				
		F Cherry Flow For the person								
		texture with infilling by angillaccon + chlorik - flow top?? minor chl - cal stringers 176.4-180.5 more homogeneous	-						-	
1. 1. 1. 1. 1.		cole asses GET occasivel week		ogtz-cal-ch	1 250	45				
	1	pele green GST occasional weak by ration @ 176.8- 20cm zone		O'C'C' CH	22-					
	1	with vague 'shost-life' dam								
	1	alfred closts to 1-2 cm	1		1					
	1	a 180,5 = 1837, coortelad when				197				
	1	- flow top with moch and are.		cal stra	10-20			1.1		
	1	matrix to class	1 2							
		I Marti & to clauses	-				1			-

EPTH	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	EDAT	A
(metres)	phic		E	Veins &	Angle		MINERALS			
m To	Log		C.	Fractures			%	Sample	From	Т
			%					No.		
2.25 201.7		pale green ser. alt of GST								
confid		-passible pillows from 184 to								-
		187.7 or even further?? 25-300m								-
		-occ wt brighton (volcanic); argillacur	0						-	-
		sed + chloritic intersticies lague anya								-
_		tups & ??? Vague.								-
		ep as dissen noted @ 178.5, 183.5	-						-	+
_		6.126.7 and 190. 191.3 194 196.0, 196. 198 - as dissem in intristitices	-						-	-
_		Bedding and 170. 191.3 194 196. 176.	-					+		+
_		The - the wissen in interstitues								-
		and firs and in rack 11 bedang though bedang not well developed.								-
		67 in Boxes 31-33, 34 top 35.							1	-
				CNT						
01.7 243.7		ARGILLITE block appenitic tof.	9.	med-dk i	grey		1 py, 1 po			
	A	Ra interbedded of thinky to thinky	2		1		. 11 .			-
		ledded (generally = 1cm)	_						-	-
		_ 201.7-203.1 - I see altid GST	-	bedding	75-85	±w-mser		-		-
		(pale green) interbedded with ang.	-	5		± w che				-
		(citin - iucan) bedo.	-			11			-	-
		(21 cm - 10 cm) beds. (205.9-206.6m- pale green GIST bed with minon ARG.	-			п			-	+
		@ 208, 5-206.7 - minor flt		FLT						+
		(3 200, 3 - 200, 1 - Marol +1+	-	gouge	85			+		+
		genge alone bidding planes 208.1 - 2 can clay of gouge 208.2 - 208.7 pale green GST		1.	75		(2000)			-
		@ 208.2 - 208.7 200 0000 GST	6	d CNT		+w-mser, chl	nen fl+)	1		1
		@ 209-212.4 - fractured ZUNE/FLT	100	LENT		, , , , , , , , , , , , , , , , , , , ,				+
		In APG - sear Lipton + Dault amile		gtz-cal.	10,30,50	+ five cal stra				-
		agne ally alm bedding rednes - assess	14	FLTT		0		1		1
1.55		C 212. 2m- 10cm clay-graphik gorye	1	garge				-		-

EPTH	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	E DATA	Ą
(metres)	phic		E	Veins &	Angle		MINERALS			
m To	Log		C.	Fractures			%	Sample	From	Т
	1 D.		%					No.		
17 243.7	5.1	ARGILLITE (Contrd)								
confid	1	@ 215.2 Fault gave 2 cm	2	ghye	85					
		\$ 215.2 Fault gave 2 cm from 215.2 - 218.9 - 5 % gtz-carb		00						
		stratunets and fine cal stra		1						
		possiply due to Pault med highly for	al	fres	65-85		9			
		@ 2189 - Ich gene		FLT	650					
		@ 2189 - 1 ch genge 219 4 - 2 cm genge		gorge.	5.4					
		after 222m- culfide contert			1		2-3 po,			
		increases, as disseminations and discont	-				ZPY = SP.	gor		
	42	laminar (potpy) and occasional	_				in the second se			1
		(pc, pr, sp and)					1. St. 199			
_	-	0 @ 223.4m - gtz - Sx stringer	1	atz-sx D Str	15"					
		(pe, py, sp, ge) = cherty zones (plack chert)	-	0 str	1.00	and the second s				
		+ cherty zones (black chert)	4	-					_	
		a KELII 221.4 Annor clay -	1				ASC I			
		I barlt gorge along beddig I b 228. E- 9 - fault gorge			80-85					_
		Or to 228.8 9 - fault goinge	-	11	65-80					_
	-	0 029 7 0 20 5	_		14.1					-
		@ 229.7 m - 238.5 - FLT ZONE	-			12				_
_	100	highly broken with 25% gouge "						124.4		
		and rubble tones								_
20.0		0 211.2 1	80.01		11.0				185	-
R	1.000	@ 241.3 pg sh		py str	400		x	1	7	-
~	-	CNT Il bedding	1	CNT	750	2.1				
1		chur the beauting			- 63	and the second				-
13.7.307.1		Pale green sericite altered GST.		do stra	irreg	miser, wich!			_	
		/	1	us m		In the party.				-
16 250.4	6	@ 246 - 250. 4- Taterbed of		ONT	75? -	- bicker	2 py, 1 po			
1		Light Tay Ara to chuch and the Use		bedding	75-85	-wchl	17.10	1		
		Light Joy Arg to cherry angille Un for 1.5m followed by Darkin gray - black	- /	2		and the			_	
		ARGILLITE	in the		1000	1000				-

EPTH Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	E DATA		
(metres) phic		Е	Veins &	Angle		MINERALS				Τ
m To Log		C.	Fractures		and the second second	%	Sample	From	To	
		%					No.			
3.7	GST pale green.									
control						1				
+6 250.4)	ARGILLITE - CHERT		Mr. S.							
contid	milled rock - 4 cm - L eNT with GST is fault CNT		FLT	55		204 100				
	milled rock - 4 cm					• 1				
	- LENT with GST is fault CNT	-	LENT	55 °						_
	with gouge - few cm. U	-							_	_
		-								_
0.4 256.1)	GIT pale green as above from	1				1 1 4, 1 00			_	_
	243.7-240, more Avg, cht loveds (fewca	2				VV fir op			_	-
	GST pale green as above from 243.7-246.; none Avg, cat beds (fewer at top - Miller ARG with minor GST interbeds from 252.6-253.8 m	-		-		2 04, 1 00			_	-
	GST interbedes from 232,6 - 233.8 m	-								-
		-	CNT	500						-
6.1 2621)	black ARGILLITE with more a	-	-101	30		7-3111/100			-	-
	Sina GREENSTONE : Laborda +	-				2-304 1 po	1		-	-
	discontinuous, weak by interesting with an class + v heak - few man gorge zones along beddars planes (a 261.8-262.1 ~ = gorge zones	501	GST =1	cmsize.		2008.000				-
	+ v weak - feweren gove zones	(-
	alon bedding planes		bedding	60-75						-
	a 261.8-262.1 ~ I gouge zones		aFLTE	55						
		-	KENT	650						
2.1 307.1)	@ 262.1-307.1 pale green servicitie GST from 262.1-262.7m - weak gracklind				w-m ser with	104,100 a	sdisse	m,strs		
Y	from 262,1-262.7m - weak crackled				w-m ser with	Evtrop -	Dom	e		
	texture with angillaceors infilling. minor gtz carls stringers & argill. ofter 267.6- start to see defigerential altin with paler			1		assuce with	angil	Va work		
	mina gtz carls stringers + angill.		stra	10-20	the second second	pertings	0			
	after 267,6- start to see				1	. 0				
	deliperential altin with paler		1.20			1				
11 24	or slightly darker pale green host What and slightly	3								
	in shightly darken pale green									ĺ
	hest and slightly	con	iser a	nan	d than a	bove he	m 2	62.1-	267	į
100	V Wa AN	5	but stil	1 Prin	a grained to .	0				1

EPTH	Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	E DAT	A
(metres)	phic		E	Veins &	Angle		MINERALS			
m To	Log		С.	Fractures		1.0	%	Sample	From	To
			%					No.		
2.1 307.1		Pale guen sericitic GREENSTONE @ 276.2.7 DOSSible			1.11		100,00			
		Pillow bx or flow? top. PO277.75-278-3 white gtz			1		tr cp			
		sitter be a flow? top.					17%			
		@ 279.75-378-3 white gtz		gtzuns	550	1.	13			
		white 2,7,3 cm wide		0			-			_
			-				1200			
_		-some ayillaceous zones - few cm wide @ 285 - 285.3 - weak Crackling -								
		@ 285-285.3- weak Chackling -	-				-			
-		alow top be ::								
	110	Q 285.9 - 286.9 - angillaceous interstitic	ees							-
		to what be to mached texture	-		1			-		-
		with more pew an of cherty	-	beddily?	60°CA					
		sed at extra end @ O word with	-				-			-
	4	a 287.3- 288 Ustory	-	fres	15 90		200.0			
	*	practing	-	tres	13-45			-		
		NB cp noted ptw 281-285.	-							
		(Rourse 49-ED)					N.			
		(292 8- 20cm Week the	-			+m-s sil.	2.0		-	
	100	@ 292.8- 20 cm black cherty bed (sil'd Arg?) with 2% opy @ 293.5-294.2m - highly fre				- m-s 211.	ZPY			
		Q 2 93 5- 294 2 m - backly Pro		fres	15-25					-
	1.1	QEDIS -IL- might fre		Ins	+ 45					
	1.1	@ 294.6-295.9 - Warke of ula		CNT	70		2.00,104			
	200	@ 294.6 - 295.9 - blacky cherty ARG with lenge dests of sic	1		lec. 50		apo, epy			
		GST = bxad locally 50" BRG/GST		ONT	609	and the second second				1
P		CUTS		6						
		@ 300.5- mind clay gover	10	FLT	400	1000				
		© 300.5- mind clay gouge @ 300.55 - 15 cm whither - carb Veir with any along u for and bxed LCNT	1	WENT.	65					
		veir with one above ucht and								1352
		bxed LCNT								-
		@ 300.4-								

PTH Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	EDATA	Ą
metres) phic		E	Veins &	Angle		MINERALS			
n To Log	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C.	Fractures			%	Sample	From	Т
		%					No.		
1 307.1	pale green sericitic GST \$ 300.6-305.7m- Crackled			1		104,00			
	6 300,6-305.7m- Crackled					Vtrcp		1	14
	La land developed and the illes								
	bx?? cp noted @ 304.7m with po in intersticies she frags. cNT fairly sharp black ARGILLITE BRECCIA and ARG			1					
	with po in intersticies the frags.								
	CNT fairly sharp		CNT	60	C. Barris				
1.1 314.5	black ARGILLITE BRECCIA and ARG			9	2.2.	2 py, 1-2 po			
	ACG BX to 313.8					11/ 1			
	strongly beed with light gray			100		1			
_	strongen back with light pay lim 450 clasts appula to subrounded chenty clasts, give 1 gtz-canb	1	1			he have			
1000	cherty cleats, give 1 gtz-canb	/	unlets	45°			-		
	stringers + valets to 0 1.5cm							-	
	Some phyphotically folded strs.				101		-		_
	mino gave dong Usedding		bedding	75-85	a state				_
	- by is mathing supported 12030% clasts	-	,			1	-		
	-GST clasts extend for 1.5m	-				-			
	grading to more any dasts.	-							1
		-						-	_
	(0 313.8 - 314.5 - budded ARG	-	-		1		-	-	-
_	(0 313.8 - 314.5 - biddid ARG					-			
- 1	with py + po as laminations + disconfirmous.							-	
	discontinuous.	-	0	700					_
5 318.0	AUTON OF ALTON AUTON OT		CNT	10					
\$ 510.0	tinht pare greenish - grey criect - SIS			-	mser well	2º10 fine py			
	Tangallar Estain ATT. 1575	-		40,60-65	msm. work	2 10 this py			
	the and st attacted for these of labor	Prese la		70,60.05					-
	Light pale greenish - grey CHERT-STS (Exhalite) CHT. / STS Cresenvies GST winn) - cherky bard and Ser alt of sts [chert/sts in terbols 1-3 cm beds.		CNT	70					-
0 364.55	black ARGALLITE/CHERT - exhabite		Civ I	10	I w-m sil	2-300			
	very hard ARG interbedded	-	bolding	75-85		1-204			
	with black CHERT - alker 317.6	->	il	500		tapy			
	i were cher cher a de si le	1 6		30		no cp.			_

EPTH Gra-	DESCRIPTION	R	STRUCT	URE	ALTERATION	METALLIC	SAMPL	E DAT	A
metres) phic		Е	Veins &	Angle		MINERALS			
m To Log		C.	Fractures		3	%	Sample	From	To
		%					No.		
3.0364.55	black ARG + CHERT + proceia - quite he from 321.5-325- Arg by with clasts of ang, chert and greenstone	no	silice	ouo	± wm sil.	po3 2py tr cp			1
5	from 321,5-325- Arg by		1	S		trcp			-
	with clasts of any chert and		bedding	65-75		/		1	
	greenstone o')						
	- co generally with vo.		locally.						2 1
	ARGILLITE, LESS CHERT @ 327 ->		bedding	15-20					
	@ 327.4-364.55 bred with I wint	1)						
	po repl. clasts & tr cp. @ 330.4 - 332.2 - Fault Zore								
	@ 330.4 - 332.2 - Fault Zore					1			
	- Kieply frachund, cal sturgens + flandt gouge 2324-337 ->								1
	+ flault gouge		gonze	650					-
	@ 334- 337	-	toin	50-40°					
	321- STT Roliphon variable				16				
	200 - 50		0	0.0					-
	@ 341.1-342.8 - fresmoderate	-	forces	10-200	-				-
	@ 344>	_	feen	70-80	A:				
	0 3110 2 11 - ANI /- 1- 1-	-	gitzvin	100					-
	@ 348.3 4 - White gt ver	-	Oliver	60°					
	@ 352.8 larger clasts of aley	-	gorge.	10	and the second	-		1 1 1	-
	Co 35 and larger class of gray, ft		foln	50 0	-				
	-some rotation of class indent.	3	FULA	30	13 N				-6.9
	cleasts 5-10cm - to 356,7 +	-			10				
	after 356.7 - still be put more	-			ALC: NOTE NO				-
	influbeds of grey STS mad to	-				0			
1	thicky ledded beds to 30 cm.	-							
	milling hand - han @ 3584		folin a	Elo"					15
	changes to 50° - 2 @ 358.7 >		foln	500	1.20				
	@ 355.2 minor gonge		o mui	700	1.1.1				2
	to service a forge		gorge	1	1				
- 11									
100 T.S.		-			201 1		-		-

EPTH		DESCRIPTION	R	STRUCT		ALTERATION	METALLIC	SAMPL	E DATA	A
metres)	phic		E	Veins &	Angle		MINERALS			
n To	Log		-	Fractures		-	%	Sample	From	Т
21.45	-	black tRG/CHT (control).	%				2-300	No.		-
364.55 contid)		REACK REFERENCE (CONTION)	_	gtz vei	75/10		1-204			
EDH		calcife, -10 can wide with frags inclustors of hest rock - but give true width 12 km		giz via	13/10		Vtc. cp			
		inclusions. To hest rock - but ous	10	along C	A for :	BOCM	1			
		@ 360.4m - gtz-carb ver		gtiva	400					
-		true width izikm.	-	0						-
-		interbedo + bred no GST Unements of SX clasts. 0 361,2m-10 cm gtz-carb ven		1. 1.1	75-0-	-	1	-		-
		ihraemente m sx clasts	-	bedding	13 00		-			-
		@ 361,2m- 10 cm gtz-oarb vein		gti vn	75 40°	2				
100		-	1	0	41					
		NB Rodn shuck @ 364.55 =;	7.	shut	down	hole				
		Recovery attempt	_					-		-
-		Recovery attempt	-				-	-		-
			-			1				
	1									
			-							
						1				-
						1				⊢
_							-			⊢
			-							
						Sec. No.				-
_	10									
-			-							-
			-							-
			-					-		-
							1			-

APPENDIX IV

Geotechnical Data

(Core Recovery, Rock Quality and Box Ends)

Core Recovery and Rock Quality

ole No:	CA 05-	01			Project :	CASSIAR
Drill Ir	nterval		Core Rec	overy	RQD	
From	То	Length	Measured	% Recovery	Measured	RQD
0.00	3.05	3.05	0.00	0.00	0.00	0.00
3.05	4.60	1.55	1.40	90.32	0.00	0.00
4.60	6.10	1.50	1.50	100.00	0.39	26.00
6.10	7.60	1.50	1.50	100.00	0.44	29.33
7.60	10.65	3.05	3.05	100.00	1.75	57.38
10.65	13.70	3.05	3.02	99.02	2.38	78.03
13.70	15.55	1.85	1.80	97.30	1.01	54.59
15.55	16.75	1.20	1.20	100.00	0.65	54.17
16.75	19.80	3.05	2.84	93.11	0.33	10.82
19.80	22.85	3.05	2.36	77.38	0.38	12.46
22.85	25.90	3.05	2.97	97.38	0.80	26.23
25.90	28.95	3.05	2.79	91.48	1.40	45.90
28.95	32.00	3.05	2.91	95.41	2.13	69.84
32.00	35.05	3.05	3.05	100.00	2.01	65.90
35.05	38.10	3.05	3.05	100.00	0.98	32.13
38.10	39.90	1.80	1.66	92.22	0.97	53.89
39.90	42.05	2.15	2.18	101.40	0.40	18.60
42.05	44.20	2.15	1.98	92.09	0.46	21.40
44.20	46.90	2.70	2.45	90.74	0.11	4.07
46.90	49.20	2.30	1.65	71.74	0.34	14.78
49.20	50.30	1.10	1.00	90.91	0.51	46.36
50.30	53.35	3.05	2.05	67.21	2.83	92.79
53.35	56.40	3.05	3.05	100.00	2.28	74.75
56.40	59.40	3.00	3.00	100.00	2.96	98.67
59.40	62.50	3.10	3.04	98.06	2.67	86.13
62.50	65.50	3.00	3.00	100.00	2.95	98.33
65.50	67.35	1.85	1.82	98.38	0.43	23.24
67.35	68.60	1.25	1.03	82.40	0.19	15.20
68.60	71.60	3.00	2.05	68.33	0.40	13.33
71.60	72.85	1.25	0.80	64.00	0.13	10.40
72.85	74.70	1.85	1.31	70.81	0.13	7.03
74.70	75.60	0.90	0.80	88.89	0.16	17.78
75.60	77.70	2.10	2.05	97.62	0.36	17.14
77.70	80.80	3.10	2.60	83.87	1.25	40.32
80.80	83.80	3.00	2.70	90.00	0.40	13.33
83.80	86.85	3.05	2.73	89.51	1.70	55.74
86.85	89.90	3.05	2.99	98.03	2.00	65.57
89.90	92.95	3.05	3.05	100.00	2.65	86.89
92.95	96.00	3.05	2.95	96.72	1.80	59.02
96.00	99.05	3.05	3.05	100.00	2.25	73.77
99.05	102.10	3.05	3.05	100.00	2.30	75.41
102.10	105.15	3.05	3.05	100.00	2.73	89.51
105.15	108.20	3.05	3.05	100.00	2.10	68.85
108.20	111.25	3.05	3.05	100.00	2.12	69.51
111.25	114.30	3.05	3.05	100.00	2.75	90.16
114.30	117.35	3.05	3.05	100.00	2.60	85.25
117.35	120.40	3.05	3.05	100.00	2.80	91.80
120.40	123.45	3.05	3.05	100.00	2.30	75.41
123.45	126.50	3.05	3.05	100.00	2.88	94.43
126.50	129.55	3.05	3.05	100.00	2.45	80.33
129.55	132.60	3.05	3.05	100.00	2.80	91.80
132.60	135.60	3.00	3.00	100.00	2.20	73.33
135.60	136.85	1.25	1.15	92.00	0.90	72.00
136.85	138.70	1.85	1.85	100.00	1.16	62.70
138.70	141.70	3.00	3.00	100.00	2.50	83.33
	EOH		AVG.	93.82	AVG.	53.24

e No:	CA 05	-02			Project :	CASSI
Drill In	terval		Core Reco	e Recovery RQ		
From	То	Length	Measured	% Recovery	Measured	RQD
0.00	1.50	1.50	0.00	0.00	0.00	0.00
1.50	3.05	1.55	0.85	54.84	0.18	11.61
3.05	4.60	1.55	1.50	96.77	0.81	52.26
4.60	7.60	3.00	3.00	100.00	2.75	91.67
7.60	10.65	3.05	3.05	100.00	2.60	85.25
10.65	13.70	3.05	2.96	97.05	2.20	72.13
13.70	16.75	3.05	2.95	96.72	1.30	42.62
16.75	19.80	3.05	3.00	98.36	2.60	85.25
19.80	22.85	3.05	3.05	100.00	2.70	88.52
22.85	25.90	3.05	3.05	100.00	2.70	88.52
25.90	28.95	3.05	3.00	98.36	2.15	70.49
28.95	32.00	3.05	2.95	96.72	1.50	49.18
32.00	35.05	3.05	2.70	88.52	0.82	26.89
35.05	38.10	3.05	2.50	81.97	0.65	21.31
38.10	41.15	3.05	3.05	100.00	2.40	78.69
41.15	44.20	3.05	3.05	100.00	2.20	72.13
44.20	47.25	3.05	3.05	100.00	2.77	90.82
47.25	50.30	3.05	3.05	100.00	3.05	100.00
50.30	53.35	3.05	2.98	97.70	2.70	88.52
53.35	56.40	3.05	3.00	98.36	2.84	93.11
56.40	59.40	3.00	3.00	100.00	2.46	82.00
59.40	62.50	3.10	3.05	98.39	2.55	82.26
62.50	65.50	3.00	2.65	88.33	1.75	58.33
65.50	68.00	2.50	2.45	98.00	1.57	62.80
68.00	71.20	3.20	3.00	93.75	2.87	89.69
71.20	74.40	3.20	3.05	95.31	2.88	90.00
74.40	77.50	3.10	3.10	100.00	2.13	68.71
77.50	80.45	2.95	2.95	100.00	2.62	88.81
80.45	83.80	3.35	3.35	100.00	2.05	61.19
	EOH		AVG.	95.68	AVG.	71.17

Hole No:	CA 05	-03			Project :	CASSIAR
Drill Int	erval		Core Recov	verv	RQD	
From	То	Length	Measured	% Recovery	Measured	RQD
0.00	3.05	3.05	0.00	0.00	0.00	0.00
3.05	3.95	0.90	0.85	94.44	0.50	55.56
3.95	6.40	2.45	2.27	92.65	1.61	65.71
6.40	7.60	1.20	0.88	73.33	0.24	20.00
7.60	9.90	2.30	0.98	42.61	0.11	4.78
9.90	10.65	0.75	0.70	93.33	0.57	76.00
10.65	13.70	3.05	2.98	97.70	2.57	84.26
13.70	16.75	3.05	2.83	92.79	1.47	48.20
16.75	19.65	2.90	2.40	82.76	1.70	58.62
19.65	22.70	3.05	2.78	91.15	1.25	40.98
22.70	23.00	0.30	0.30	100.00	0.19	63.33
23.00	25.90	2.90	2.90	100.00	2.47	85.17
25.90	28.95	3.05	2.96	97.05	2.25	73.77
28.95	32.00	3.05	2.95	96.72	2.10	68.85
32.00	35.05	3.05	3.05	100.00	2.84	93.11
35.05	38.10	3.05	2.94	96.39	1.96	64.26
38.10	41.15	3.05	3.00	98.36	2.60	85.25
41.15	44.20	3.05	3.05	100.00	2.55	83.61
44.20	47.25	3.05	3.05	100.00	2.30	75.41
47.25	50.30	3.05	3.00	98.36	2.83	92.79
50.30	53.35	3.05	3.05	100.00	2.41	79.02
53.35	56.40	3.05	3.03	99.34	2.81	92.13
56.40	59.40	3.00	3.00	100.00	2.37	79.00
59.40	62.50	3.10	3.06	98.71	2.68	86.45
62.50	65.50	3.00	3.00	100.00	2.67	89.00
65.50	68.60	3.10	3.05	98.39	2.71	87.42
68.60	70.85	2.25	1.93	85.78	0.65	28.89
70.85	73.90	3.05	2.99	98.03	1.96	64.26
73.90	74.70	0.80	0.60	75.00	0.34	42.50
74.70	77.70	3.00	3.00	100.00	2.43	81.00
77.70	80.80	3.10	2.90	93.55	2.35	75.81
80.80	83.80	3.00	2.96	98.67	2.73	91.00
83.80	85.30	1.50	1.38	92.00	0.73	48.67
85.30	86.85	1.55	1.55	100.00	1.04	67.10
86.85	89.90	3.05	2.92	95.74	1.40	45.90
	EOH		AVG.	93.61	AVG.	67.58

Core Recovery and Rock Quality

Hole No:	CA	A O5-04	-	-	Project :	CASSIAR
Drill Inte	rval		Core	Recoverv	ROD	
From	То	Length	Measured	% Recovery	Measured	RQD
0.00	3.05	3.05	0.00	0.00	0.00	0.00
3.05	4.60	1.55	1.10	70.97	0.12	7.74
4.60	6.40	1.80	1.60	88.89	0.90	50.00
6.40	7.60	1.20	1.20	100.00	0.80	66.67
7.60	10.65	3.05	2.78	91.15	1.53	50.16
10.65	13.70	3.05	3.03	99.34	2.60	85.25
13.70	16.75	3.05	2.80	91.80	1.92	62.95
16.75	19.80	3.05	2.88	94.43	2.08	68.20
19.80	22.85	3.05	2.99	98.03	2.71	88.85
22.85	26.00	3.15	2.83	89.84	2.04	64.76
26.00	27.60	1.60	1.43	89.37	0.45	28.13
27.60	28.95	1.35	1.25	92.59	0.89	65.93
28.95	32.00	3.05	3.05	100.00	2.75	90.16
32.00	35.05	3.05	2.95	96.72	2.18	71.48
35.05	38.10	3.05	2.97	97.38	2.04	66.89
38.10	41.15	3.05	3.05	100.00	1.98	64.92
41.15	44.20	3.05	3.05	100.00	2.54	83.28
44.20	47.25	3.05	3.05	100.00	2.40	78.69
47.25	50.25	3.00	3.00	100.00	2.92	97.33
50.25	53.30	3.05	2.90	95.08	2.45	80.33
53.30	56.40	3.10	3.00	96.77	2.35	75.81
56.40	59.40	3.00	3.00	100.00	2.60	86.67
59.40	62.50	3.10	2.12	68.39	1.57	50.65
62.50	63.70	1.20	1.00	83.33	0.11	9.17
	FOH		۵VG	93.22	AVG	64 96

Core Recovery and Rock Quality

Hole No:	CA	05-05			Project :	CASSIAR
Drill Inter	rval		Core	Recoverv	ROD	
From	То	Length	Measured	% Recovery	Measured	ROD
0.00	3.05	3.05	0.00	0.00	0.00	0.00
3.05	5.20	2.15	1.37	63.72	0.22	10.23
5.20	8.20	3.00	2.50	83.33	0.80	26.67
8.20	11.30	3.10	1.97	63.55	0.87	28.06
11.30	12.20	0.90	0.67	74.44	0.36	40.00
12.20	14.30	2.10	1.95	92.86	1.93	91.90
14.30	17.40	3.10	3.08	99.35	2.98	96.13
17.40	19.95	2.55	2.31	90.59	1.32	51.76
19.95	23.15	3.20	2.66	83.13	1.40	43.75
23.15	26.35	3.20	2.30	71.87	1.51	47.19
26.35	29.55	3.20	2.91	90.94	2.68	83.75
29.55	32.60	3.05	2.93	96.07	2.87	94.10
32.60	35.65	3.05	2.86	93.77	2.34	76.72
35.65	38.70	3.05	2.95	96.72	2.63	86.23
38.70	41.75	3.05	3.04	99.67	2.51	82.30
41.75	44.80	3.05	3.05	100.00	2.39	78.36
44.80	47.85	3.05	3.02	99.02	2.85	93.44
47.85	50.90	3.05	3.05	100.00	2.30	75.41
50.90	52.40	1.50	1.43	95.33	0.66	44.00
52.40	53.95	1.55	1.44	92.90	0.61	39.35
53.95	57.00	3.05	3.01	98.69	1.22	40.00
57.00	60.05	3.05	3.05	100.00	2.61	85.57
60.05	63.10	3.05	3.05	100.00	2.90	95.08
63.10	66.15	3.05	2.98	97.70	2.30	75.41
66.15	69.20	3.05	3.03	90.59	2.63	64.58
69.20	72.20	3.00	3.00	100.00	2.43	81.00
72.20	75.30	3.10	3.02	97.42	2.40	77.42
75.30	78.30	3.00	3.00	93.96	2.89	71.46
78.30	81.40	3.10	2.93	94.52	2.37	76.45
	EOH		AVG.	91.43	AVG.	66.30

Core Recovery	and Rock	Quality
---------------	----------	---------

Hole No:	CA 05-0	6			Project :	CASSIAR
Drill Inte	erval		Core Recov	ery	RQD	
From	То	Length	Measured	% Recovery	Measured	RQD
0.00	3.05	3.05	0.00	0.00	0.00	0.00
3.05	4.60	1.55	1.20	77.42	0.11	7.10
4.60	7.60	3.00	2.77	92.33	1.72	57.33
7.60	10.65	3.05	2.95	96.72	2.22	72.79
10.65	13.70	3.05	2.92	95.74	2.28	74.75
13.70	15.40	1.70	1.70	100.00	1.10	64.71
15.40	16.75	1.35	1.29	95.56	0.87	64.44
16.75	18.45	1.70	1.70	100.00	1.70	100.00
18.45	19.80	1.35	1.07	79.26	0.77	57.04
19.80	22.85	3.05	3.05	100.00	2.69	88.20
22.85	25.90	3.05	3.05	100.00	2.78	91.15
25.90	28.95	3.05	2.75	90.16	2.13	69.84
28.95	32.00	3.05	2.97	97.38	2.97	97.38
32.00	35.05	3.05	2.37	77.70	0.89	29.18
35.05	38.10	3.05	3.05	100.00	2.45	80.33
38.10	41.15	3.05	2.88	94.43	1.67	54.75
41.15	44.20	3.05	3.05	100.00	1.83	60.00
44.20	47.25	3.05	3.05	100.00	1.72	56.39
47.25	50.30	3.05	2.85	93.44	2.23	73.11
50.30	53.35	3.05	2.94	96.39	2.54	83.28
53.35	56.40	3.05	3.05	100.00	1.66	54.43
56.40	59.40	3.00	2.99	99.67	1.07	35.67
59.40	62.50	3.10	2.97	95.81	1.75	56.45
62.50	65.50	3.00	3.00	100.00	2.35	78.33
65.50	68.60	3.10	2.94	94.84	1.68	54.19
68.60	71.60	3.00	2.98	99.33	2.62	87.33
71.60	74.70	3.10	3.07	99.03	2.60	83.87
74.70	77.70	3.00	2.94	98.00	2.82	94.00
77.70	80.80	3.10	3.05	98.39	2.24	72.26
80.80	83.80	3.00	3.00	100.00	2.51	83.67
83.80	86.85	3.05	3.05	100.00	2.87	94.10
86.85	89.90	3.05	3.05	100.00	2.77	90.82
89.90	92.95	3.05	3.05	100.00	2.56	83.93
92.95	96.00	3.05	3.05	100.00	2.50	81.97
96.00	99.05	3.05	3.05	100.00	2.45	80.33
99.05	102.10	3.05	2.87	94.10	2.40	78.69
	EOH		AVG.	93.49	AVG.	69.22

Core Recovery and Rock Quality

lole No:	CA 05-0	7			Project :	CASSIAF
Drill Inte	erval		Core Recove	ry	RQD	
From	То	Length	Measured	% Recovery	Measured	RQD
0.00	3.05	3.05	0.00	0.00	0.00	0.00
3.05	7.90	4.85				
7.90	11.00	3.10				
11.00	13.70	2.70				
13.70	15.25	1.55	1.45	93.55	1.17	75.48
15.25	17.05	1.80	1.89	105.00	1.75	97.22
17.05	18.30	1.25	1.05	84.00	0.51	40.80
18.30	20.10	1.80	1.64	91.11	1.15	63.89
20.10	23.15	3.05	3.05	100.00	1.72	56.39
23.15	26.20	3.05	3.01	98.69	1.65	54.10
26.20	29.25	3.05	2.99	98.03	1.20	39.34
29.25	32.30	3.05	3.00	98.36	1.10	36.07
32.30	34.60	2.30	2.30	100.00	1.45	63.04
34.60	35.35	0.75	0.77	102.67	0.68	90.67
35.35	37.95	2.60	2.55	98.08	1.99	76.54
37.95	38.40	0.45	0.45	100.00	0.24	53.33
38.40	41.45	3.05	2.87	94.10	1.45	47.54
41.45	44.50	3.05	2.45	80.33	0.00	0.00
44.50	47.55	3.05	3.05	100.00	0.98	32.13
47.55	50.60	3.05	2.93	96.07	1.62	53.11
50.60	53.65	3.05	3.01	98.69	0.63	20.66
53.65	56.70	3.05	2.90	95.08	1.74	57.05
56.70	59.75	3.05	3.05	100.00	1.54	50.49
59.75	62.80	3.05	3.05	100.00	1.18	38.69
62.80	65.90	3.10	2.90	93.55	0.75	24.19
65.90	68.90	3.00	3.00	100.00	1.89	63.00
68.90	71.90	3.00	2.97	99.00	1.61	53.67
71.90	75.00	3.10	3.08	99.35	2.03	65.48
75.00	77.40	2.40	1.30	54.17	0.33	13.75
77.40	78.00	0.60	0.59	98.33	0.43	71.67
78.00	81.10	3.10	2.95	95.16	1.67	53.87
81.10	84.10	3.00	2.91	97.00	1.62	54.00
84.10	87.20	3.10	3.04	98.06	2.33	75.16
87.20	89.75	2.55	2.41	94.51	1.37	53.73
89.75	90.20	0.45	0.44	97.78	0.31	68.89
90.20	93.25	3.05	2.99	98.03	2.67	87.54
93.25	96.30	3.05	3.05	100.00	2.41	79.02
96.30	99.05	2.75	2.52	91.64	1.27	46.18
99.05	102.10	3.05	3.05	100.00	1.41	46.23
102.10	105.15	3.05	3.05	100.00	2.11	69.18

From	То	Length	Measured	% Recovery	Measured	RQD
105.15	108.35	3.20	3.05	95.31	2.04	63.75
108.35	111.40	3.05	3.02	99.02	2.19	71.80
111.40	114.45	3.05	3.02	99.02	2.43	79.67
114.45	117.65	3.20	3.05	95.31	1.72	53.75
117.65	120.70	3.05	3.04	99.67	1.60	52.46
120.70	123.60	2.90	2.90	100.00	2.68	92.41
123.60	126.80	3.20	3.20	100.00	2.59	80.94
126.80	129.85	3.05	3.05	100.00	2.47	80.98
129.85	132.90	3.05	3.01	98.69	1.96	64.26
132.90	135.95	3.05	2.78	91.15	0.83	27.21
135.95	139.00	3.05	2.42	79.34	1.01	33.11
139.00	142.05	3.05	1.90	62.30	0.11	3.61
142.05	145.10	3.05	2.85	93.44	0.92	30.16
145.10	148.15	3.05	2.97	97.38	1.09	35.74
148.15	151.20	3.05	2.89	94.75	1.77	58.03
151.20	154.20	3.00	2.93	97.67	2.43	81.00
154.20	157.30	3.10	3.02	97.42	2.28	73.55
157.30	160.30	3.00	2.75	91.67	0.62	20.67
160.30	163.40	3.10	3.00	96.77	1.05	33.87
163.40	166.40	3.00	3.05	101.67	2.39	79.67
166.40	169.45	3.05	2.68	87.87	1.70	55.74
169.45	172.50	3.05	2.60	85.25	0.29	9.51
172.50	175.55	3.05	2.87	94.10	1.38	45.25
175.55	178.60	3.05	3.03	99.34	2.07	67.87
178.60	181.65	3.05	3.05	100.00	2.18	71.48
181.65	184.70	3.05	3.05	100.00	2.30	75.41
184.70	187.75	3.05	3.05	100.00	2.76	90.49
187.75	190.80	3.05	3.05	100.00	2.76	90.49
190.80	193.85	3.05	3.05	100.00	2.75	90.16
193.85	196.90	3.05	3.05	100.00	2.96	97.05
196.90	199.95	3.05	3.05	100.00	3.05	100.00
199.95	203.00	3.05	3.03	99.34	2.45	80.33
203.00	206.05	3.05	2.86	93.77	1.04	34.10
206.05	209.10	3.05	2.86	93.77	0.41	13.44
209.10	212.15	3.05	2.67	87.54	0.20	6.56
212.15	215.20	3.05	2.94	96.39	1.23	40.33
215.20	218.25	3.05	3.00	98.36	1.25	40.98
218.25	221.30	3.05	2.90	95.08	1.40	45.90
221.30	224.35	3.05	2.97	97.38	0.22	7.21
224.35	227.40	3.05	1.75	57.38	0.00	0.00
227.40	230.40	3.00	2.60	86.67	0.00	0.00
230.40	233.50	3.10	2.17	70.00	0.11	3.55
233.50	236.50	3.00	0.80	26.67	0.11	3.67
236.50	239.60	3.10	2.68	86.45	0.62	20.00

F	т.	1	Management	0/ Data 200	Manageral	DOD
From	То	Length	Measured	% Recovery	Measured	RQD
239.60	242.60	3.00	2.90	96.67	0.37	12.33
242.60	245.65	3.05	2.93	96.07	0.73	23.93
245.65	248.70	3.05	2.71	88.85	1.00	32.79
248.70	251.75	3.05	3.03	99.34	0.56	18.36
251.75	254.80	3.05	3.05	100.00	1.22	40.00
254.80	257.85	3.05	3.03	99.34	1.23	40.33
257.85	260.90	3.05	2.92	95.74	0.94	30.82
260.90	263.95	3.05	3.05	100.00	1.71	56.07
263.95	267.00	3.05	3.05	100.00	1.62	53.11
267.00	270.05	3.05	3.01	98.69	2.14	70.16
270.05	273.10	3.05	3.03	99.34	1.71	56.07
273.10	276.15	3.05	3.05	100.00	1.81	59.34
276.15	279.20	3.05	3.01	98.69	1.96	64.26
279.20	282.25	3.05	3.05	100.00	1.54	50.49
282.25	285.30	3.05	3.03	99.34	2.59	84.92
285.30	288.35	3.05	3.05	100.00	1.63	53.44
288.35	291.40	3.05	3.05	100.00	1.61	52.79
291.40	294.45	3.05	2.90	95.08	1.51	49.51
294.45	297.50	3.05	2.97	97.38	2.34	76.72
297.50	300.55	3.05	2.98	97.70	1.92	62.95
300.55	303.60	3.05	3.05	100.00	1.70	55.74
303.60	306.60	3.00	2.89	96.33	2.09	69.67
306.60	309.70	3.10	2.98	96.13	1.81	58.39
309.70	312.70	3.00	2.83	94.33	0.47	15.67
312.70	315.80	3.10	3.00	96.77	1.12	36.13
315.80	317.90	2.10	2.10	100.00	0.83	39.52
317.90	318.80	0.90	0.81	90.00	0.00	0.00
318.80	321.85	3.05	2.82	92.46	0.87	28.52
321.85	324.90	3.05	3.05	100.00	1.27	41.64
324.90	327.95	3.05	3.04	99.67	2.09	68.52
327.95	331.00	3.05	2.86	93.77	1.23	40.33
331.00	334.05	3.05	3.03	99.34	1.05	34.43
334.05	337.10	3.05	3.05	100.00	2.38	78.03
337.10	340.15	3.05	3.05	100.00	2.42	79.34
340.15	343.20	3.05	2.91	95.41	1.72	56.39
343.20	346.25	3.05	2.99	98.03	1.20	39.34
346.25	349.30	3.05	3.01	98.69	0.97	31.80
349.30	352.35	3.05	2.95	96.72	1.83	60.00
352.35	355.40	3.05	2.99	98.03	1.91	62.62
355.40	358.45	3.05	2.96	97.05	1.71	56.07
358.45	361.50	3.05	3.05	100.00	1.88	61.64
361.50	364.55	3.05	2.91	95.41	0.86	28.20
	EOH	0.00	AVG.	95.05	AVG.	50.89

Proiect: CASSIAR

BOX ENDS

Hole No: CA 05-1										
Box No.	Drill Int	terval								
	From	То								
1	3.05	8								
2	8	13.55								
3	13.55	18.8								
4	18.8	24.1								
5	24.1	29.2								
6	29.2	34.8								
7	34.8	39.9								
8	39.9	44.8								
9	44.8	50.3								
10	50.3	56.2								
11	56.2	62.15								
12	62.15	67.7								
13	67.7	73.3								
14	73.3	78.7								
15	78.7	84.5								
16	84.5	90.4								
17	90.4	96								
18	96	101.75								
19	101.75	107.4								
20	107.4	112.9								
21	112.9	118.7								
22	118.7	124.65								
23	124.65	130.6								
24	130.6	135.95								
25	135.95	141.7								
		EOH								

Hole	CA 05-3								
Box No.	Drill Interval								
	From	То							
1	3.05	9.7							
2	9.7	15.6							
3	15.6	21.7							
4	21.7	27.1							
5	27.1	32.8							
6	32.8	38.4							
7	38.4	44.1							
8	44.1	49.6							
9	49.6	55.3							
10	55.3	60.85							
11	60.85	66.65							
12	66.65	72.3							
13	72.3	78							
14	78	83.9							
15	83.9	89.9							
		EOH							

Hole	CA	05-5
Box No.	Drill I	nterval
	From	То
1	3.05	8.75
2	8.75	14.4
3	14.4	21.2
4	21.2	28.1
5	28.1	33.75
6	33.75	39.45
7	39.45	44.95
8	44.95	50.9
9	50.9	56.5
10	56.5	62.2
11	62.2	67.6
12	67.6	73.1
13	73.1	78.5
14	78.5	81.4
		EOH

Hole No:	CA 05-2	
Box No.	Drill Inte	erval
	From	То
1	3.05	7.6
2	7.6	13.4
3	13.4	18.75
4	18.75	24.5
5	24.5	30.1
6	30.1	35.25
7	35.25	40.7
8	40.7	46.6
9	46.6	52.4
10	52.4	58.3
11	58.3	64.2
12	64.2	70.1
13	70.1	76.05
14	76.05	81.5
15	81.5	83.8
		EOH

Hole No:	CA 05-4	
Box No.	Drill Interv	val
	From	То
1	3.05	8.7
2	8.7	14.1
3	14.1	20
4	20	26
5	26	31.85
6	31.85	37.7
7	37.7	43.05
8	43.05	48.2
9	48.2	54
10	54	59.6
11	59.6	63.7
		EOH

Hole No:	CA 05-6	
Box No.	Drill In	tornial
DUX NU.		
	From	То
1	3.05	8.8
2	8.8	14.7
3	14.7	20.5
4	20.5	26.15
5	26.15	32
6	32	37.1
7	37.1	42.7
8	42.7	47.25
9	47.25	52.7
10	52.7	57.7
11	57.7	62.7
12	62.7	68.2
13	68.2	73.85
14	73.85	79.75
15	79.75	85.4
16	85.4	91.2
17	91.2	96.8
18	96.8	102.1
		EOH

Hole No:	CA 05-7	
Box No.	Drill Inte	erval
	From	То
1	3.05	16
2	16	21.2
3	21.2	26.5
4	26.5	32.1
5	32.1	37.5
6	37.5	42.45
7	42.45	48.4
8	48.4	53.5
9	53.5	58.75
10	58.75	63.8
11	63.8	69
12	69	73.3
13	73.3	80.4
14	80.4	86.1
15	86.1	91.6
16	91.6	97.1
17	97.1	102.3
18	102.3	107.7
19	107.7	113.2
20	113.2	118.5
21	118.5	124.1
22	124.1	129.75
23	129.75	134.95
24	134.95	140.6
25	140.6	146
26	146	151.5
27	151.5	157.2
28	157.2	162.6
29	162.6	168.3
30	168.3	173.35
31	173.35	180
32	180	185.5
33	185.5	191.2

BOX ENDS

Box No.	Drill I	nterval
	From	То
34	191.2	196.9
35	196.9	202.8
36	202.8	208.3
37	208.3	214.2
38	214.2	219.6
39	219.6	225.1
40	225.1	231.6
41	231.6	239.3
42	239.3	244.5
43	244.5	250
44	182.65	255.4
45	255.4	260.85
46	260.85	266.2
47	266.2	272
48	272	277.5
49	277.5	283
50	283	288.35
51	288.35	293.7
52	293.7	299.6
53	299.6	304.8
54	304.8	310.3
55	310.3	315.8
56	315.8	321
57	321	326.8
58	326.8	331.9
59	331.9	337.4
60	337.4	343.05
61	343.05	349
62	349	354.1
63	354.1	359.5
64	359.5	364.5
		EOH

APPENDIX V

Geochemical Procedure and Results

Analytical Procedure - Assessment Report

GEOCHEMICAL GOLD ANALYSIS

Samples are catalogued and dried. Soils are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Samples unable to produce adequate minus 80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stage crushed to minus 10 mesh and a 250 gram subsample is pulverized on a ring mill pulverizer to -140 mesh. The subsample is rolled, homogenized and bagged in a prenumbered bag.

The sample is weighed to 10/15/30 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Over-range values for rocks are re-analyzed using gold assay methods.

Appropriate reference materials accompany the samples through the process allowing for quality control assessment. Results are entered and printed along with quality control data (repeats and standards). The data is faxed and/or mailed to the client.

ANALYTICAL METHOD FOR GOLD ASSAY

Samples are sorted and dried (if necessary). The samples are crushed through a jaw crusher and cone or roll crusher to -10 mesh. The sample is split through a Jones riffle until a -250 gram subsample is achieved. The subsample is pulverized in a ring & puck pulverizer to 95% - 140 mesh. The sample is rolled to homogenize.

A 1/2 or 1.0 A.T. sample size is fire assayed using appropriate fluxes. The resultant dore bead is parted and then digested with aqua regia and then analyzed on a Perkin Elmer AA instrument.

Appropriate standards and repeat sample (Quality Control components) accompany the samples on the data sheet.

K:methods/methauas K:Methods/geoauana

Analytical Procedure Assessment Report

MULTI ELEMENT ICP ANALYSIS

Samples are catalogued and dried. Soil samples are screened to obtain a -80 mesh sample. Samples unable to produce adequate -80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stage crushed to minus 10 mesh and pulverized on a ring mill pulverizer to minus 140 mesh, rolled and homogenized.

A 0.5 gram sample is digested with aqua regia which contains beryllium which acts as an internal standard. The sample is analyzed on a Jarrell Ash ICP unit.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client.

BASE METAL ASSAYS (Ag,Cu,Pb,Zn)

Samples are catalogued and dried. Rock samples are 2 stage crushed followed by pulverizing a 250 gram subsample. The subsample is rolled and homogenized and bagged in a prenumbered bag.

A suitable sample weight is digested with aqua regia. The sample is allowed to cool, bulked up to a suitable volume and analyzed by an atomic absorption instrument, to .01 % detection limit.

Appropriate certified reference materials accompany the samples through the process providing accurate quality control.

Result data is entered along with standards and repeat values and are faxed and/or mailed to the client.

K:Methods/methicp

CERTIFICATE OF ASSAY AS 2005-1363

EVEREADY RESOURCES LTD.

2616-126TH AVE. S.W. CALGARY, ALBERTA T2W 3V6 10-Nov-05

ATTENTION: RICHARD FISCHER

No. of samples received: 25 Sample Type: Core/Rock **Project #: Cassiar** Samples submitted by: Jean Pautler

		Ag	Ag	Zn	
<u>ET #.</u>	Tag #	(g/t)	<u>(oz/t)</u>	(%)	
2	54204			4.36	
6	54208	54.3	1.58	3.12	
25	54227 Rock			1.69	
<u>QC DATA:</u> Repeat:	_				
2	54204			4.36	
Standard: PB106		58.9		0.84	

JJ/kk XLS/05 **ECO TECH LABORATORY LTD.** Jutta Jealouse B.C. Certified Assayer ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

Au

ICP CERTIFICATE OF ANALYSIS AK 2005-1363

EVEREADY RESOURCES LTD. 2616-126TH AVE. S.W. CALGARY, ALBERTA T2W 3V6

ATTENTION: RICHARD FISCHER

No. of samples received: 25 Sample Type: Core/Rock **Project #: Cassiar** Samples submitted by: Jean Pautler

Et #.	Tag #	(ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb Sn	Sr	Ti %	U	v	w	Υ	Zn
1	54203	5	0.8	1.63	50	10	10	1.32	<1	3	34	12	2.38	<10	1.58	1682	<1	<0.01	6	400	20	<5 <20	389	< 0.01	<10	19	<10	6	42
2	54204	15	6.8	1.06	50	5	40	5.89	302	2	132	150	>10	<10	3.94	3693	2	<0.01	3	300	36	20 20	153	0.03	<10	13	<10	4 >1	10000
3	54205	5	0.7	0.45	20	5	<5	1.36	<1	<1	6	2	0.34	<10	1.14	664	<1	<0.01	1	110	8	<5 <20	597	0.01	<10	4	<10	5	9
4	54206	<5	0.7	0.90	5	10	5	1.32	<1	2	11	7	0.89	<10	1.54	968	1	0.01	2	260	10	<5 <20	558	0.02	<10	7	<10	6	55
5	54207	<5	0.5	1.02	5	5	10	1.34	<1	2	17	8	1.53	<10	2.18	1031	4	<0.01	3	480	16	<5 <20	397	0.02	<10	10	<10	11	18
						_				_																			
6	54208		>30	0.03		<5	160	0.52				668	>10		0.09	1408		0.0.				<5 <20		< 0.01					10000
7	54209	<5	0.8	0.11	95	<5	5	1.34	1	<1	9	6	1.08		2.96	2313		<0.01		70	8	• =•		<0.01		-	<10	8	50
8	54210	<5	0.6	0.07	20	<5	<5	>10	<1	<1	5	1	0.61			2445				80	8			<0.01			<10	5	16
9	54211	5	0.8	0.04	640	<5	5	>10	5		13	4	2.02		>10	4951	<1		-	50	68			<0.01		-	<10	6	115
10	54212	5	0.9	0.01	4860	5	10	>10	39	<1	15	8	2.12	<10	>10	4130	<1	0.01	<1	<10	60	<5 <20	73	<0.01	<10	2	<10	4	49
11	54213	5	0.5	0.03	25	<5	5	>10	<1	<1	5	<1	0.73	<10	8.03	253	1	<0.01	<1	30	4	<5 <20	271	<0.01	<10	1	<10	1	3
12	54214	5	0.9	0.11	45	<5	10	>10	3	<1	17	66	2.39		>10	5077		< 0.01	3	90		<5 <20		< 0.01		4	<10	5	476
13	54215	10	0.3	< 0.01	965	<5	<5	>10	7	<1	5	<1	0.68	<10	>10	1380	<1	< 0.01	<1	<10	6	<5 <20	108	< 0.01	<10	2	<10	2	16
14	54216	5	0.5	0.25	10	<5	5	1.36	<1	<1	4	3	0.37		0.35	183	<1	< 0.01	1	50		<5 <20				_	<10	4	1
15	54217	70	0.4	0.69	565	25	15	5.60	4	32	76	36	5.57		2.59	1214	<1	0.03	53	240		<5 <20					<10		45
16	54218	50	0.6	1.69	590	20	20	5.13	5	38	112	55	6.98	<10	2.88	1407	<1	0.02	62	460	18	5 <20	114	0.02	<10	65	<10	12	49
17	54219	130	0.7	0.85	740	20	15	6.49	6	35	69	21	6.10	<10	1.79	1602	<1	0.03	45	200	14	<5 <20	147	<0.01	<10	37	<10	13	28
18	54220	115	0.3	0.59	500	30	10	5.70	4	28	77	7	5.18	<10	2.70	1425	<1	0.03	36	120	12	<5 <20	207	<0.01	<10	38	<10	12	11
19	54221	110	0.6	0.24	505	35	15	5.64	4	28	66	17	5.37	<10	3.69	1542	<1	0.02	35	90	8	<5 <20	278	<0.01	<10	51	<10	11	22
20	54222	65	0.7	0.92	420	30	15	5.62	3	38	71	45	6.10	<10	4.00	1887	<1	0.03	43	210	10	<5 <20	275	<0.01	<10	89	<10	9	65
21	54223	90	0.5	0.32	480	35	15	6.41	4	32	60	30			3.28	1552	<1	0.03	37	60	8	<5 <20	384	<0.01	<10	47	<10	9	27
22	54224	85	0.5	0.82	575	30	15	5.09	5	44	65	52	5.76	<10	2.98	2136	<1	0.03	69	90	10	<5 <20	204	<0.01	<10	43	<10	9	51
23	54225	50	0.5	0.73	280	40	10	6.81	2	28	73	41	4.99	<10	3.34	3788	1	0.02	48	60	14	<5 <20	251	<0.01	<10	55	<10	9	42
24	54226 r	<5	1.3	0.54	5	30	20	0.45	<1	3	92	116	3.26	20	0.06	93	4	0.01	8	990	28	<5 <20	6	<0.01	<10	4	<10	18	45
25	54227 R	785	2.9	0.26 >	>10000	<5	65	0.48	377	8	219	448	>10	<10	0.15	3156	3	<0.01	25	150	118	70 <20	13	0.01	<10	5	<10	3 >1	10000

2

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2005-1363

EVEREADY RESOURCES LTD.

Et #.	Tag #	u(ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb Sn	Sr	Ti %	U	V	W	Υ	Zn
QC DA	Γ <u>Α:</u>																												
Repeat																													
1	54203	5	0.7	1.85	60	15	5	1.36	<1	4	37	13	2.58	<10	1.73	1808	<1	<0.01	7	450	24	<5 <20	414	0.01	<10	20	<10	7	49
10	54212	5	1.0	0.01	4775	<5	10	>10	40	<1	15	7	2.09	<10	>10	4046	1	0.01	<1	<10	60	<5 <20	73	<0.01	<10	2	<10	3	49
19	54221	110	0.6	0.24	475	35	5	5.40	<1	29	53	20	5.87	<10	3.73	1312	1	0.01	30	80	6	5 <20	268	<0.01	<10	46	<10	<1	29
25	54227 F	र 800																											
Resplit : 1	54203	5	0.8	1.89	80	15	10	1.42	2	4	39	14	2.75	<10	1.78	1753	<1	<0.01	10	460	26	5 <20	423	0.01	<10	21	<10	6	68
Standa OXF41 GEO '05		810	1.8	1.39	60	140	<5	1.37	<1	58	60	83	3.62	<10	0.74	367	<1	0.01	21	660	20	<5 <20	54	0.11	<10	69	<10	10	74

JJ/kk/ga df/1357b/1421 XLS/05 cc: Jean Pautler ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

APPENDIX VI - Statement of Expenditures

Wages:	J. Pa	utler	21 da	ys @ 500.00/day	\$10,500.00	
				Total: 21 man-days	5	\$ 10,500.00
Geochemis	try:	25 rocks 4 rock assay	'S	Au, ICP Ag/ Zn		
				Total:		584.30
Shipping:			Greyt	nound		108.16
Drilling:			DJ Dril	ling (2004)Ltd.		107,000.37
Equipment	Rental	: Truck	20 da	ays @ 50./day		1,000.00
Meals and A	Accom	modation:	130 n	nan-days @120.00/mo	d	15,600.00
Field Suppli	ies:			plitting supplies) s @ 15.00/md		315.00
Gas:						318.48
Maps, Prints	250.00					
Report & Dr	<u>\$ 4,000.00</u>					
GRAND TO	TAL:					\$ 139,676.31

APPENDIX VII

STATEMENT OF QUALIFICATION

I, Jean Marie Pautler, do hereby certify that:

I am a geologist with more than twenty-five years of experience in the Canadian Cordillera.

I am a graduate of Laurentian University, Sudbury, Ontario with an Honours B.Sc. degree in geology (May, 1980).

I am a Professional Geoscientist, registered in the province of British Columbia.

I supervised and implemented the 2005 drill program on the Cassiar Project between September 2 and 27, 2005.

I have no direct or indirect interest in the Cassiar Project, which is the subject of this report.

Jean Pautler, P.Geo. JP Exploration Services Inc.