REPORT

ON THE

8

.ren.et

2005 DIAMOND DRILLING PROGRAM

INDATA PROPERTY OMINECA MINING DIVISION, BC.

WITH RECOMMENDATIONS FOR CONTINUING EXPLORATION

NTS: 093N034 093N044 Latitude 55degrees 23' N, Longitude 125degrees 19' W (centre)

Aberdeen International Inc.

Eastfield Resources Ltd.

by

J.W. (Bill) Morton, P.Geo

December 30, 2005

TABLE OF CONTENTS

48.5

pth-

<u>.</u>**

ps.

. مي

100

	PAGE
1.) SUMMARY:	1
2.) LOCATION MAP	1
3.) PROPERTY DESCRIPTION AND LOCATION:	2
4.) ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY	3
5.) HISTORY:	3
6.) CLAIM MAP	4
7.) GEOLOGICAL SETTING	5
8.) DEPOSIT TYPES	8
9.) MINERALIZATION	9
10.) EXPLORATION	10
11.) REGIONAL GEOLOGY MAP	11
12.) PROPERTY SCALE GEOLOGY	12
13.) DRILLING	15
14.) DRILL HOLE LOCATION MAP	20
15.) COST STATEMENT	21
16.) DISCUSSION, INTERPRETATION AND CONCLUSIONS	22
17.) AUTHOR QUALIFICATIONS	24
18.) REFERENCES	25
2005 DRILL LOGS (2005-01 & 2005-02)	APPENDIX
2005 ANALYTICAL CERTIFICATES	APPENDIX
DRILL HOLE LOCATION MAP (EXPANDED)	FOLDER

1. SUMMARY

The Indata property is located approximately 130 kilometres to the northwest of Fort St. James in central British Columbia. Indata is situated in a complex geological setting adjacent to a major terrane bounding fault named the Pinchi Fault. Sever styles of mineralization have been discovered on the property including gold-silver mesothermal veins and porphyry style copper (gold) (molybdenum) mineralization hosted in mafic volcanic rocks and granodiorite dominant intrusions. In recent times exploration efforts have focused on porphyry style mineralization on the east side of Albert Lake.

In 2005 two diamond drill holes totaling 251 metres of diamond drilling were completed in the Albert Lake Copper target.

2. LOCATION MAP

3. PROPERTY DESCRIPTION AND LOCATION:

Claim Name	Record #	Area (hectares)	Expiry Date
Indata 2	239379	375	Oct 18, 08
Indata 3	240192	500	Oct 18, 08
Schnapps 1	238722	500	Oct 18, 08
Schnapps 2	238723	500	Nov 14, 08
Schnapps 3	238859	200	Oct 20, 08
Schnapps 4	238860	250	Oct 18, 08
Schnapps 5	238893	100	Oct 18, 08
Schnapps 6	362575	25	Oct 20, 08
IN-6	362576	25	Oct 20, 08
IN-7	362577	25	Oct 20, 08
IN-8	362578	25	Oct 20, 08
IN-9	362579	25	Oct 20, 08
IN-10	362582	25	Oct 20, 08
IN-11	362583	25	Oct 20, 08
Indata 1	504289	441	Jan 19, 06
Indata 4	504293	147	Jan 19, 06

Mineral Claims of the Indata Property

Total area 2,988 hectares

The Indata Mineral Property is located within the Omineca Mining Division of British Columbia.

An agreement between Eastfield Resources Ltd. and Castillian Resources Corp. and Aberdeen International Inc. provides Castillian/Aberdeen the right to earn a 65% interest in the property by completing exploration expenditures totaling 1,000,000 before the 2008 anniversary date. Some cash and or share compensation to Eastfield is also required. Eastfield currently owns an 85% participating interest in the Indata property with Imperial Metals Corporation owning the remaining 15% participating interest. Imperial Metals Corporation has not participated in exploration programs in recent years and is expected to continue diluting its participating interest in the property.

There are no environmental or aboritional issues know to the author specific to the Indata property other than those that pertain to the Province of British Columbia in its generality. On June 28, 1999 the Government of British Columbia issued a news release recognizing the importance and significance of the "mineral resource" of the Indata property and confirming its commitment to allow any future mining activity to take place. Required exploration permits issued by the BC Ministry of Energy and Mines and required tree cutting permits issued by the BC Ministry of Forests were applied for and granted early in 2005.

4.

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Indata property is located 130 kilometres to the northwest of Fort St. James, British Columbia (Figure 1), within the Omineca Mining Division (NTS 93N/6W at Latitude 55 degrees 23 minutes N, Longitude 125 degrees 19 minutes W). Access to the property is from Fort St. James via the Leo Creek Forestry Road to near Tchentlo Lake and thence on a road built by Eastfield Resources Ltd., to the northern part of the property. This road was built to Ministry of Forests logging road standards and provides good access for trucks and heavy machinery such as drill rigs and bulldozers. Away from this road access within the property boundaries is on foot only except for a few areas where helicopter landing sites have been prepared.

The Indata property covers an upland area between Indata Lake to the east and Albert Lake to the west (Figure 2). Whereas the central part of the property is of relatively low relief, the topography slopes steeply down towards Albert and Indata Lakes. The area is covered by thick spruce, balsam and pine, in places of commercial grade, although low lying areas are usually swampy with a dense cover of alder and poplar. Elevations on the claims range from 1,000 metres (3,280 feet) to 1,290 metres (4,230 feet).

The Indata claims occur within a continental cool temperate climatic zone typified by moderate warm moist summers and cold winters. Permanent snow is usually on the ground from the middle of November until the beginning of May and can accumulate up 11/2 metres in depth.

The nearest BC Hydro Power grid is located approximately 60 kilometres to the south. The relatively flat to rolling nature of the landscape would offer numerous options for the construction of surface facilities and tailings impoundment sites and numerous sources of water are readily available.

5. HISTORY:

Exploration of the property began as recently as 1984 by Imperial Metals Corporation after staking part of the area during regional exploration of the Pinchi Fault zone. Following initial soil sampling and the staking of additional claims, a four hole diamond drilling program was completed by Imperial to explore at depth copper mineralization seen in outcrop near the northeast side of Albert Lake. This program resulted in the discovery of low grade chalcopyrite – pyrite mineralization (0.1%-0. 2% copper) to depths of less than 100 metres from the surface. In 1986 Eastfield Resources Ltd. entered into a joint venture with Imperial and undertook a

Indata Property Claims Disposition and Topography contour interval : 50 metres

E

[

[

[

Figure 2

program of grid establishment, soil sampling and hand trenching and geophysical surveying, followed by diamond drilling in 1987, 1988 and 1989 and trenching with a bulldozer-mounted backhoe in 1989. The drilling programs resulted in the discovery of polymetallic quartz and quartz-carbonate veins with elevated precious metal values (commonly in the range of several hundred per billion gold to 6 g/tonne with the most significant intercept being 47 grams/tonne gold over 4 metres). These polymetallic veins, which generally strike north and dip to the east, are commonly enveloped by a zone of silicification in volcanic rocks and a thickening-downwards zone of talc-magnesite alteration in ultramafic rocks.

In 1995, after construction of a road through the southern part of the Indata property, built to standards for log haulage, a trenching program was completed adjacent to the northeastern part of Albert Lake, over the copper zone previously defined by soil sampling. One of these trenches (Trench 7) returned analyses which averaged 0.36% copper over a length of 75 metres.

In 1996 Clear Creek Resources Limited carried out a small diamond drilling program in the area of anomalous copper in soils adjacent to the northeastern part of Albert Lake. Results of this program confirmed the existence of subsurface copper mineralization indicated by the results of Imperial Metals Corporation's 1985 drilling but, in this area, of low grade (0.1% - 0.2%) over downhole lengths of up to 100 metres. However, this program was preliminary only and tested only a very small part of the area covered by anomalous soil copper geochemistry.

A 1998 drilling program by Clear Creek Resources Ltd. confirmed and exceeded the 1996 drilling results and also established the presence of an unexposed altered granodiorite stock with copper mineralization adjacent to the eastern edge of Albert Lake. During road construction at that time silicified volcanic rocks were exposed in a road cut in the southern part of the existing grid. Grab samples showed the presence of copper sulfides along with enriched gold, demonstrating for the first time an association of copper and gold at Indata. Ten samples, somewhat grab sample in type, from this new showing returned an average value of 1.04% copper and 388 ppb gold.

A 2003 program of linecutting, soil sampling and induced polarization surveying included 11.2 line kilometres of induced polarization survey and 16 line kilometers of soil grid expansions. Expansions to the known extend of the porphyry copper (gold-molybdenum) target were derived from this work.

In 2005, two holes were drilled. The first hole, 2005-01 was designed to test below the level reached in drill hole 1988-04 which had returned 145.4 metres grading 0.20% copper including 24.1 metres grading 0.37%. Unfortunately significant drilling difficulties were encountered and hole 2005-01 was abandoned at a depth of 99.1 metres which is approximately 50 metres short of the top of the target. The second hole, 2005-03, was drilled approximately 1400 metres to the south of 2005-01 and encountered

narrow intervals of sub-economic copper mineralization. Hole 2005-02, located close to 2005-03 was also abandoned shortly after being collared due to drilling difficulties.

7. GEOLOGICAL SETTING

Regional Geology

The Indata property lies near the contact of two major terranes of the Canadian Cordillera, the Quesnel Terrane to the east and the Cache Creek Terrane to the west. The contact between these terranes is marked by the Pinchi Fault Zone, a high angle reverse fault of regional extent (Figure 3), and associated splay faults. Cache Creek strata to the west have been thrust over Takla strata to the east. The Quesnel Terrane consists of mafic to intermediate volcanic rocks of the Upper Triassic – Lower Jurassic Takla Group intruded by a composite batholith, the Hogem Batholith with intrusive phases, which range in age from Lower Jurassic to Cretaceous.

The Cache Creek Terrane in the region comprises mainly argillaceous metasedimentary rocks intruded by diorite to granodiorite plutons which may be part of the, pre-Triassic age or Lower Cretaceous age and by small ultramafic stocks. Some of these latter intrusions may be of ophiolitic origin. A northwest-striking fault bounded block adjacent to the Quesnel Terrane is underlain largely by limestone within which a sliver of mafic and intermediate volcanic rocks is preserved. Both the limestone and volcanic rocks are considered here to be part of the Cache Creek Group but the evidence for this is equivocal as similar strata occur within the Takla Group elsewhere in the region. However, metamorphic grade of the Takla Group volcanic rocks is rarely higher than zeolite facies of regional metamorphism while that of the volcanic rocks underlying the Indata property is of greenschist grade, suggesting that these strata are of Cache Creek affinity, not Takla Group. This having been said the proximity of the Indata claims to a major thrust fault may locally have raised the metamorphic grade.

The dominant structural style of the Takla Group is that of extensional faulting, mainly to the northwest. In general Takla Group rocks are tilted but not folded. In contrast, strata of the Cache Creek Group have been folded and metamorphosed to lower to middle greenschist facies and, in argillaceous rocks, preserve a penetrative deformational fabric. However, extensional faults are also common within the Cache Creek Group and probably represent the effects of post-collision uplift. In addition to high angle extensional faults, thrust faults are inferred within the Cache Creek Group.

Property Geology

Lithologies

The Indata property is underlain by two main supracrustal assemblages, i) limestone with minor intercalated shale and ii) andesitic volcanic rocks that were deposited under marine conditions. Limestone crops out as prominent hills and bluffs in the northern, western and southern parts of the area. Although generally massive, in places bedding is defined by thin shaley partings and by intraformational limestone conglomerate. Breccias formed by carbonate dissolution are displayed within a karst topography in the southwestern part of the Indata property area. A middle Permian foraminiferra assemblage has been collected from limestone of the Cache Creek Group to the west of the Indata property (Armstrong, 1946). Volcanic rocks underlying the Indata property are of andesitic composition and can be subdivided into two broad units. In the western part of the property volcanic rocks consist of pillow lava, pillow breccia, coarse tuff breccia and fine-grained crystal lithic tuff. The dominant mafic mineral in these rocks is amphibole, now represented by tremolite/actinolite but was probably hornblende prior to alteration.

The second volcanic unit consists of massive to poorly bedded volcanic tuff with variable amounts of amphibole phenocrysts. Although commonly poorly bedded, bedding planes and fining upwards sequences can be recognized in places.

Intrusive rocks recognized on the Indata property range in composition from ultramafic to granite and underlie the central part of the property area. Hornblende diorite occurs as a pluton which extends along part of the eastern side of the central part of the property and as dykes. The bulk of this pluton has a fine to medium-grained hypidiomorphic granular texture although both marginal phases of the pluton and the dykes are porphyritic. A small part of the pluton is of quartz diorite composition although primary quartz is generally absent. While diorite dykes are common within the volcanic rocks of the property, no diorite intrusions have been observed within the limestone unit, suggesting that the diorite and volcanic rocks are of similar age and are either older than the massive limestone or that the limestone is allochthonous with respect to the volcanics and was emplaced adjacent to the volcanic strata after volcanism and plutonism had ceased.

Intruding both volcanic rocks and diorite are ultramafic bodies, serpentinized to varying degrees but which preserve textures suggesting that the original rock was peridotite and pyroxenite. Cross fibre chrysotile veins and veinlets occur throughout these bodies. To the south of Radio Lake (Figure 4) a differentiated ultramafic-mafic intrusion occurs, consisting of a coarse-grained clinopyroxenite core, surrounded by peridotite and, in turn, enclosed by medium to coarse-grained hornblende clinopyroxene gabbro. The youngest intrusive rocks of the Indata property consist of medium to coarse-grained grey and reddish grey biotite quartz monzonite and granite (Figure 4). Whereas all other intrusive rocks in the area have been emplaced only into volcanic strata, this unit also intrudes limestone of the Cache Creek Group.

A large part of the Indata property is covered by glacial and fluvioglacial deposits although drilling indicates that this cover is generally no more than a few metres thick, even in low lying areas such as adjacent to Albert Lake.

Structure and Metamorphism

The area covered by the Indata property can be divided into two structural domains, i) that area underlain by carbonate rocks which is characterized by concentric folds and the development of a penetrative fabric in finer grained clastic interbeds and ii) that area underlain by volcanic strata which has undergone brittle deformation only. Contacts between carbonate and volcanic strata are obscured by young cover but are inferred to be northwesterly-striking faults. Drilling and geological mapping in the central part of the Indata property has indicated the presence of a number of westerly-striking faults which show normal displacements of a few metres to a few tens of metres.

Carbonate rocks have generally been recrystallized with the common development of sparry calcite while fine grained clastic interbeds display a greenschist facies mineral assemblage. The assemblage actinolite/tremolite – chlorite – epidote within the matrix of volcanic rocks also suggests the attainment of greenschist grade of regional metamorphism in these strata.

8. DEPOSIT TYPES

Known mineral occurrences within the Cache Creek of the region includes epithermal mercury mineralization in carbonate rocks such as occurs at the former producing Bralorne-Takla Mercury and Pinchi and several varieties of copper-molybdenum porphyry occurrences and at least one carbonate hosted zinc, copper and precious metal rich skarn. Results recently published at the Lustdust skarn system, located to the north of the Indata claims and currently being explored by Alpha Gold Corp., include 0.80% copper and 0.67g/tonne gold over 59 metres and 2.19% copper and 24.04 g/tonne gold over 15 metres. The Mac porphyry molybdenum occurrence, located approximately 50 kilometres southwest of the Indata property, discovered in 1982 by Rio Algom Exploration Inc. represents a recently discovered porphyry style of mineralization. Significant molybdenum mineralization at the Mac property is hosted in an Upper Jurassic to Lower Cretaceous granite stock hosted in greenstone, argillite and chert of the Cache Creek Group. Sulphide mineralogy is simple and consists of molybdenite with minor pyrite and local chalcopyrite occurring along the selvages of quartz stockworks best developed near the margins of the stock. "Homestake"-style gold mineralization is yet another type of mineralization occurring in the Cache Creek

Terrane. Examples occur at the Snowbird deposit located near Fort St. James to the south of the Indata region, at Mt. Sir Sidney Williams to the north of Indata and at Indata itself. Arsenopyrite-stibnite-chalcopyrite-pyrite veins with enriched precious metals occur at these occurrences at or near the contact of mafic and ultramafic rocks.

9. MINERALIZATION

Known mineral occurrences within the region also reflect the environment in which these occurrences are found. Within the Takla Group mineral deposits tend to be associated with intermediate and felsic intrusions and are commonly gold-enriched copper porphyries. Porphyry-style mineralization also occurs within the Cache Creek Group but is more often associated with accessory molybdenum than accessory gold. The Indata property is at the contact that separates Takla Group rocks from Cache Creek group rocks. Juxtapositioning of fault slices along this contact make it feasible for either style of mineralization to occur here.

Mineralization and Hydrothermal Alteration

The Indata property covers a number of metallic mineral occurrences which may be divided into two main types, I) pyrite-arsenopyrite-stibnite-chalcopyrite mineralization in quartz and quartz-carbonate veins, commonly with elevated precious metal contents and ii) disseminated and fracture controlled chalcopyrite-pyrite-pyrrhotite mineralization of porphyry-type within a granodiorite stock and enclosing volcanic rocks.

Polymetallic veins have been recognized in the central part of the property (Figure 5) within andesitic volcanic rocks and serpentinized ultramafics. Where drilled, the veins generally occupy a northerly-striking fault zone dipping shallowly to the east and which, in ultramafic rocks, shows intense carbonate and talc alteration ranging in width from a few metre to over 50 metres in deeper and more easterly parts of the fault. Proximal to the veins in volcanic rocks, especially adjacent to ultramafic contacts, alteration is dominated by silicification and the formation of quartz-carbonate veinlets but silicification is not common within ultramafic rocks.

Disseminated and fracture controlled pyrite-chalcopyrite-pyrrhotite mineralization occurs in a zone extending along the northeastern side of Albert Lake for several kilometres where it coincides with a well defined induced polarization anomaly. The relationship between this style of mineralization and the polymetallic veins has yet to be established although it is possible that the polymetallic vein mineralization represents an outer zone to a central, copper-dominated part of the same hydrothermal system. Hydrothermal alteration related to this zone of copper mineralization appears to be that of a

9

propylitic mineral assemblage although, because the volcanic rocks hosting this mineralization appear to have been metamorphosed to greenschist grade of regional metamorphism, it is difficult to distinguish between pervasive propylitization and the matamorphic greenschist mineral assemblage. Because of poor outcrop and the paucity of drilling within the copper zone and in areas away from the polymetallic veins, a regional hydrothermal zonation has not been adequately interpreted within the Indata property.

10. EXPLORATION

General Statement

Unlike many mineralized areas of British Columbia which have a long history of prospecting and exploration, mineralization of the Indata property was not discovered until 1984 following regional exploration along the Pinchi Fault system. At that time initial work was undertaken to define the zone of copper mineralization adjacent to Albert Lake in the western part of the property. The polymetallic veins remained undetected until a zone of limonitic soil to the east of the copper zone was sampled and found to be extremely anomalous in arsenic. Subsequent trenching and diamond drilling in 1987 resulted in the recognition of the polymetallic vein system.

Exploration of the Indata property has been concentrated in the central part of the property, in the area of known mineralization. Recent construction of a road through the property will facilitate exploration in those areas which have yet to be intensively explored. From 1984, when metallic mineralization was first discovered on the Indata property, to the present time 2,651 metres of trenching (43 trenches) and 6,257.8 metres of diamond drilling (66 holes) have been completed. In addition, approximately 42 line kilometres of induced polarization, ground magnetic and EM16 (VLF-EM) electromagnetic surveying, 100 line kilometres of soil sampling, geological mapping of about 10 km² and prospecting have been carried out. Total exploration expenditure amounts to approximately \$1,900,000.

1983 – 1990 Exploration

In 1983 Imperial Metals Corporation ("Imperial") staked the Schnapps 1 and Schnapps 2 claims during regional exploration of the Pinchi Fault zone, to cover an inferred splay of the Pinchi Fault. In 1984 Imperial staked additional claims following the release of geochemical data by the B.C. Ministry of Mines which indicated anomalous copper, silver and mercury in a stream sediment sample collected from a channel draining Radio Lake At this time Imperial also conducted a preliminary soil sampling program of which results indicated the presence of anomalous copper in soils to the north and east of Albert Lake.

Generalized Geological Setting of the Indata Property.

Ξ

12. I

F

PROPERTY SCALE GEOLOGY

Generalized Geological Interpretation of the Indata Property FIGURE 4 This program was followed in 1985 by additional soil sampling, six line kilometres of induced polarization surveying and the drilling of four diamond drill holes totaling 231 metres. Holes 85-1 and 85-2 intersected copper mineralization in amounts of about 0.1% - 0.2% in the area where anomalous copper in soils had been determined previously.

In 1986 Eastfield Resources Ltd. entered into a joint venture with Imperial and assumed operatorship of the project. Eastfield expanded the soil geochemical and geophysical coverage and carried out limited hand trenching. Soil sampling carried out by Eastfield extended the copper anomaly adjacent to Albert Lake and established several areas of anomalous arsenic in soils to the east of the copper anomaly in the central northern part of the property. The grid was also extended to as far as 30+00 north although limited work as been carried out in this area. Geophysical surveying of the Indata property during this period consisted of VLF-EM, magnetometer and induced polarization surveying. Anomalous VLF-EM results generally reflect topography and interpreted bedrock response from this survey is equivocal. Magnetic surveying (total field) defined ultramafic bodies extremely well, especially those serpentinized intrusions as magnetic formation is a product of serpentinization. Induced polarization surveying (time domain pole – dipole method) carried out by Eastfield also outlined the ultramafic bodies where, in this case, the chargeability response appears to be related to magnetite, not sulfide, content. In addition, a moderate to high chargeability response is evident along the western side of a zone of anomalous copper in soils and which subsequent drilling in 1996 suggested that it reflects disseminated and fracture controlled sulfide mineralization.

In 1987 Eastfield undertook a six-hole diamond-drilling program (306 metres) in an area in which anomalous arsenic, silver and gold were detected in soils. This drilling program intersected quartz – sulfide veins with significant gold values in places (up to 0.32 oz/ton over 1.2 metres) and silver in amounts typically between one and three ounces per ton. Sulfide minerals were mainly pyrite, arsenopyrite, stibnite and chalcopyrite in a gangue of quartz and carbonate.

Additional drilling was conducted on this vein system in 1988 and 1989 returning values as high as 47.260 g/tonne (1.38 ounces per ton) gold over an interval of four metres (a true width of 3.5 metres) in drill hole 88-I-11. Values in other holes ranged from several hundred to several thousand parts per billion. Interestingly, silver values obtained from samples collected from the 1988 and 1989 drilling programs were generally much lower than those obtained from the 1987 program excepting hole 89-6 which returned a 3.2 m intercept of 354.1 g/t silver (10.33 oz/ton).

In 1989, 42 trenches, totaling 2,211 metres, were excavated in areas of anomalous soil geochemistry, using a Caterpillar D3 bulldozer with a backhoe attachment. In most cases the geochemical

anomalies were found to be caused by sulfide mineralization with elevated precious metals in quartz veins similar to the ones which had been intersected in drill holes.

Vein-hosted mineralization defined during this program has been traced over a strike length of about 900 metres to date with individual vein segments varying from 50 metres to over 300 metres in length bounded by westerly-striking extensional faults. Average vein width is about two metres but varies from less than 0.5 metres to a maximum determined so far of 5.6 metres.

As well as drilling and trenching, geological mapping at a scale of 1:2000 was carried out over the northern two thirds of the property (excluding the Indata 1 claim and most of the Schnapps 2 and 5 claims and prospecting was undertaken over the northern part of the property. This latter work indicated the presence of anomalous copper and gold in "grab" samples of rocks collected to the north of Albert.

In 1990 the Indata property was covered by an airborne magnetic survey flown at 200 metre line spacings in an east-west direction.

1995-1996 Exploration

Following the period 1983 – 1989, no further exploration of the Indata property was undertaken until 1995 when a program of trenching the copper zone (now referred to as the "Lake Zone") to the north and east of Albert Lake was undertaken. This program was facilitated by the construction of 17 kilometres of road from the Tchentlo Lake forestry road in the south, allowing an excavator to be transported to the northern part of the Indata property. Results of this program included 0.36% copper over a length of 75 metres (Trench 7).

In 1996 Clear Creek Resources Ltd. optioned the Indata property from and financed the drilling of nine diamond drill holes, totaling 650.8 metres, which were attempted in, and adjacent to, the Lake Zone; three of these holes were not completed owing to difficult drilling conditions. Three holes were completed in the area of Trench 7 (holes 96-I-1, 2 and 3) while three were collared from a drill pad constructed about 300 metres to the southeast (holes 96-I-4, 5 and 9). Holes 96-I-6, 7 and 8 were not completed. Locations of these drill holes are shown in Figure 5. Table 2 lists the significant results of this program.

From this limited frilling program low grade copper mineralization was confirmed in the Lake Zone but by no means was the program sufficient to fully evaluate this zone. Drill holes 96-I-4, 5 and 9 intersected altered dykes of dioritic composition cutting andesitic volcanic rocks in which chalcopyrite and possibly chalcocite suggesting that a high level magmatic system may be defined in the poorly exposed area adjacent to the eastern side of Albert Lake.

1998 Exploration

Clear Creek Resources Ltd. undertook additional diamond drilling in 1998. This drilling was mainly carried out to the west of the 1996 drilling on the western end of the grid adjacent to the northern

part of Albert Lake although one hole (I998-10) was attempted on the southwestern part of the Indata grid in the area of amagnetic anomaly indicated in the 1990 airborne survey. Whereas drill holes completed in 1996 were mainly in volcanic rocks, the westernmost holes of the 1998 drilling program intersected both volcanic and granodiorite intrusive rocks. The best intersection of this program was hole I998-4 which intersected 150.3m of 0.16% copper, the bottom 29.2m of this hole graded 0.35% copper. In addition to the diamond drilling program, during construction of an access road in the extreme south of the grid area, copper mineralization was discovered in altered volcanic rocks exposed in a road cut. Fourteen "grab" samples collected from this area confirmed the existence of copper (<0.01% to 6.7%) as well as anomalous gold (<0.1 gram/tonne to 1.7 grams/tonne).

2003 Exploration

Sixteen (16) kilometres of grid was established and cut from which 11.2 kilometres of induced polarization survey was run. Soil sampling was completed on the 16-kilometre grid on a 50-metre sample spacing. In all 304 soil samples were collected and analyzed using multi-element techniques plus gold. Data from the 2003 program was then compiled with data originating from programs undertaken on the property by Imperial Metals Corporation in 1984 and 1985, Eastfield Resources Ltd. in 1987, 88, 89, and 1995 and Clear Creek Resources Ltd. in 1996 and 1998.

2005 Exploration

Two holes were completed. The first hole, 2005-01 was designed to test below the level reached in drill hole 1988-04 which had returned 145.4 metres grading 0.20% copper including 24.1 metres grading 0.37%. Unfortunately significant drilling difficulties were encountered and hole 2005-01 was abandoned at a depth of 99.1 metres which is approximately 50 metres short of the top of the target. The second hole, 2005-03, was drilled approximately 1400 metres to the south of 2005-01 and encountered narrow intervals of anomalous copper mineralization. Hole 2005-02, located close to 2005-03 was also abandoned shortly after being collared due to drilling difficulties.

13. DRILLING

Helicopter supported drill programs have completed on the Indata property in 1985, 1987, 1988 and 1989 and bulldozer supported programs in 1996 and 1998. A total of 67 drill holes have been completed. A listing of significant results is as follows:

Year	DDH	Depth	Dip	Azimuth	Coordinates	From	То	Length	Au	Ag	Cu
		m	Deg.	Deg.		m	m	m	(ppb)	(ppm)	(%)
1985	85-1	63.1	-45	060	350N/400W	1.9	7.1	6.2			0.15
	<u> </u>	<u> </u>		<u> </u>		21.1	27.0	6.9			0.11
					<u> </u>	37.0	46.3	9.3			0.20
						48.5	50.3	1.8	· · ·		0.15
1985	85-1	63.1	-45	060	350N/400W	1.9	7.1	6.2			0.15
	-			<u> </u>		37.0	46.3	9.3			0.20
						48.5	50.3	1.8			0.15
				<u> </u>		57.1	63.1	5.6			0.22
	85-2	76.8	-45	090	345N/350W	12.2	14.7	2.5			0.10
		[42.7	45.3	2.5			0.62
	85-3	57.0	-45	090	050S/150E		No	Intercept			
	85-4	33.5	-45	090	047N/343E		No	Intercept			
1987	87-I-1	50.6	-45	295	075N/425E	18.9	20.7	1.8	1320	0.2	<0.05
						23.8	26.2	2.4	1647	55.2	0.28
						26.2	27.4	1.2	500	41.8	0.31
						27.4	29.9	2.5	1805	114.4	0.44
	87-I-2	46.6	-90		075N/425E		No	Intercept			
	87-1-3	52.7	-45	325	075N/425E	24.1	28.3	4.2	3245	126.6	0.32
	87-1-4	53.6	-45	265	075N/425E	24.2	26.2	2.0	1496	124.4	0.31
						27.7	28.3	0.6	950	51.3	0.19
						29.9	31.1	1.2	9835	51.4	0.51
	87-I-5	54.3	-45	295	050S/440E	42.5	44.5	2.0	1209	104.5	0.85
						44.5	45.7	1.2	5000	56.2	0.35
						45.7	46.6	0.9	510	48.1	0.30
	87-I-6	47.5	-90		050S/440E	41.9	44.5	2.6	761	52.9	0.51
1988	88-I-1	51.5	-45	270	025N/422E	31.7	33.2	1.5	309	69.9	0.22
	88-1-2	54.6	-90		025N/425E	33.5	35.0	1.5	310	49.2	0.12
	88-I-3	79.6	-45	270	100S/422E		No	Intercept			_
	88-1-4	21.6	-90		100S/423E		No	Intercept			
	88-I-5	84.4	-65	270	100S/423E	37.0	38.0	1.0	443	21.6	0.13
						40.0	41.0	1.0	524	0.1	<0.05
	88-I-6	114.0	-45	270	150N/449E		No	Intercept			
	88-I-7	110.3	-56	260	350N/417E	48.5	49.0	0.5	1020	1.3	0.14
	88-1-8	150.0	-75	260	350N/419E	41.5	42.0	0.5	3845	1.3	0.11

Year	DDH	Depth	Dip	Azimuth	Coordinates	From	To	Length	Au	Ag	Cu
		m	Deg.	Deg.		m	m	m	(ppb)	(ppm)	(%)
	88-I- 9	122.2	-46	270	400N/449E	44.8	45.3	0.5	320	1.3	0.06
						55.5	56.5	1.0	548	1.9	0.16
				-		58.5	59.5	1.0	3922	1.7	0.13
						59.5	60.5	1.0	347	1.6	0.16
	88-I-10	128.6	-65	270	400N/450E	53.0	53.5	0.5	2605	2.8	0.06
						53.5	54.5	1.0	470	6.0	0.43
						55.0	55.5	0.5	2875	1.1	0.08
1	+					56.0	58.0	2.0	677	0.7	0.09
l	88-I-11	103.0	-90		400N/451E	66.0	67.0	1.0	6150	4.0	0.43
		··· -				76.0	80.0	4.0	47260	2.0	< 0.05
	88-1-12	85.3	-45	270	450N/431E	54.0	54.5	0.5	653	5.9	0.08
						61.1	61.6	0.5	462	1.9	0.15
	1 1					64.3	65.0	0.7	372	1.7	0.19
	88-I-13	81.4	-90		450N/436E		No	Intercept			
	88-I-14	91.7	-45	270	510N/495E	59.5	60.3	0.8	358	21.6	1.32
	88-I-15	110.0	-45	270	550N/481E	20.4	21.4	1.0	494	0.9	0.05
						81.0	83.0	2.0	1355	2.9	0.11
	88-I-16	119.2	-45	290	700S/200E		No	Intercept			
	88-I-17	61.3	-45	290	605S/269E		No	Intercept			
	88-I-18	60.4	-75	290	605S/270E		No	Intercept			
	88-I-19	76.5	-45	290	470S/395E	26.0	26.7	0.7	420	9.2	0.17
	88-I-20	67.4	-45	240	808N/247E		No	Intercept			
	88-I-21	111.6	-45	270	150N/525E	81.8	82.3	0.5	270	34.3	0.10
	88-I-22	137.5	-55	265	062N/485E	57.7	59.1	1.4	1229	42.9	0.25
	88-I-23	76.5	-45	290	620S/307E	32.7	33.1	0.4	585	41	<0.05
1989	89-I-1	122.2	-90		402S/503E	33.9	34.1	0.3	2157	15.5	0.78
						106.0	107.0	1.0	576	1.4	<0.05
	89-1-2	103.9	-60	270	600N/480E	93.8	95.0	1.2	559	1.6	<0.05
	89-1-3	110.0	-90		600N/480E		No	Intercept			
	89-I-4	152.7	-90		404N/553E		No	Intercept			
	89-I-5	154.2	-90		468N/580E		No	Intercept			
	89-I-6	140.5	-60	270	468N/580E	19.6	22.8	3.2	10	354.1	0.12
	89-I-7	183.2	-90		417N/350E	110.4	112.4	2.0	1335	1.7	0.12
						138.8	139.4	0.6	988		0.98

-

Year	DDH	Depth	Dip	Azimuth	Coordinates	From	То	Length	Au	Ag	Cu
		m	Deg.	Deg.		m	m	m	(ppb)	(ppm)	(%)
	89-I-8	138.6	-60	270	417N/349E	106.1	107.0	0.9	653	1.1	0.07
						125.1	126.1	1.0	872	0.2	
	89-I- 9	209.1	-90		290N/550E	133.9	134.2	0.3	429	1.3	0.11
						159.4	160.1	0.7	1903	7.2	0.11
						161.6	162.4	0.8	4837	3.1	0.23
						172.2	172.7	0.5	7209	6.7	0.67
	89-I-10	283.2	-60	295	505S/322E	188.0	200.8	12.8	269	0.2	<0.05
	89-1-11	91.7	-90		505S/322E	48.8	49.8	1.	138	10.5	<0.05
	89-I-12	175.6	-60	270	402N/503E	98.0	99.0	1.0	331	28.4	<0.05
						102.7	104.4	1.7	1825	23.3	<0.05
	89-I-13	152.7	-62	230	398N/505E	92.7	93.7	1.0	261	0.5	0.06
						108.2	109.3	1.1	5162	1.3	<0.05
1996	96-I-1	108.8	-60	048	255N/420W	11.3	108.8	97.5	<100	<0.2	0.12
						11.3	57.3	46.0	<100	<0.2	0.17
			1			87.3	108.8	21.5	<100	<0.2	0.15
	96-I-2	151.5	-60	045	350N/380W	3.0	151.5	148.5	<100	<0.2	0.09
						17.0	38.0	21.0	<100	<0.2	0.13
	96-1-3	73.2	-50	315	350N/450W	5.2	73.2	68	<100	<0.2	0.10
						17.0	38.0	21.0	<100	<0.2	0.23
	96-1-4	78.6	-45	060	100N/025W	8.2	78.6	70.4	<100	<0.2	0.09
						14.0	43.6	29.6	<100	<0.2	0.15
	96-I-5	84.2	-75	060	100N/025W	6.1	54.0	47.9	<100	<0.2	0.10
	96-I-6	26.5	-47	090	015N/100E		No	Intercept			
	96-I-7	26.5	-50	120	015N/100E		No	Intercept			
	96-I-8	17.7	-50	060	015N/100E		No	Intercept			
	96-I-9	83.8	-60	120	100N/025W	11.2	48.0	36.8	<100	<0.2	0.09
1998	98-1	96.3	-60	090	150N/450W	18.0	58.2	40.2			0.09
	98-2	27.2	-60	090	300N/625W		No	Intercept			
	98-2A	42.4	-70	060	300N/613W	30.5	36.5	6.0			0.13
	98-3	80.5	-60	060	500N/525W		No	Intercept			
	98-4	162.5	-60	090	350N/525W	12.2	157.4	145.4			0.20
						133.3	157.4.5	24.1			0.37

.....

· ,. .

•

Year	DDH	Depth	Dip	Azimuth	Coordinates	From	To	Length	Au	Ag	Cu
		m	Deg.	Deg.		m	m	m	(ppb)	(ppm)	(%)
	98-5	64.0	-70	235	1000N/510W	15.0	18.0	3.0			0.12
	98-6	99.4	-90		180N/120E		Not	Sampled			
	98-7	88.4	-90		050N/160E		No	Intercept			
	98-8	77.4	-60	270	050N/125W		No	Intercept			
·	98-9	149.4	-60	105	320N/563W	29.2	87.5	58.3			0.23
	98-10	67.1	-90		1980S/100E		No	Intercept			
2005	05-01	99.1	-60	090							526
											p.p.m
	05-02				abandoned						
	05-03	154	-45	115		18.4	30.8	12.4			0.12

14.) DRILL HOLE LOCATION MAP

ł

12

6

Geology of the central part of the Indata property and locations of dril lholes and trenches.

15. COST STATEMENT

.

.....

.

1.4

Item / Unit	Cost	
Jay Page, JP	\$575	
George Charbonneau, GC	\$310	
Accommodation, per man day	\$10	
Food and Consumables, per man day	\$25	
Radios, each, per day	\$10	
Chainsaw rental, per day	\$10	
Pickup truck rental, per day	\$8 5	
ATV Rental, each per Day	\$60	
Bulldozer, per hour	\$6 5	
Analytical Costs, each, per sample	\$30	
Drill cost per metre	\$125	
Period June 3-June 13, days	11	
Persons code	JP, GC	
Number persons on payroll	2	
Number persons requiring room and board	5	
Persons costs		\$9,735
Room and board costs		\$1,925
Truck Rental, number units, cost	1	\$935
ATV Rental, number of units, cost	2	\$1,320
Period June 12-20, days	9	
Drilling Completed (this period), Metres	100	
Persons code	JP, GC	
Persons costs		\$7,965
Room and board costs		\$1,575
Truck Rental, number units, cost	1	\$540
ATV Rental, number of units, cost	2	\$1,080
Bulldozer, hours, cost	100	\$8,500
Drilling, cost, metres completed	100	\$12,500
Analyticval Cost Portion Completed		\$1,000
Drill Mob, Contractor Charges		\$2,000
Period June 21-23, days	3	
Drilling Completed (this period), Metres	50	
Room and board costs		\$315
ATV Rental, number of units, cost	1	\$180
Bulldozer, hours, cost	20	\$1,300
Drilling, cost, metres completed	50	\$6,250
Analytical Cost (Portion Completed)		\$500
Period June 24 - July 5, days	12	
Drilling Completed (this period), Metres	110	
Persons code	JP, GC	
Persons costs		\$10,620

Room and board costs		\$2,100
Truck Rental, number units, cost	1	\$1,020
ATV Rental, number of units, cost	2	\$1,440
Bulldozer, hours, cost	30	\$1,950
Drilling, cost, metres completed	110	\$13,750
Analytical Cost (Portion Completed)		\$1,100
Reporting Total		<u>\$3,000</u> \$92,600

16. DISCUSSION, INTERPRETATION AND CONCLUSIONS

Given the current high level of interest by senior gold companies and by the investing public it may be timely to return the exploration focus at the Indata to gold. In 1988 and 1989 drill results as high as 47.260 g/tonne (1.38 ounces per ton) gold over an interval of four metres were obtained while many intercepts in other holes ranged from several hundred to several thousand parts per billion. Interestingly, the sixth hole of the 1998 program, hole 89-6 returned a 3.2 m intercept of 354.1 g/t silver (10.33 oz/ton).

New polymetallic exposures exposed by construction of the access road in 1994 have yet to be investigated.

Soil arsenic analyses obtained in the 2003 soil survey, completed to expand the grid coverage to the north of Albert Lake have not yet been followed up. Soil arsenic values range as high as 1,146 ppm and antimony to 183 ppm. A number of clusters of higher range arsenic and antimony values, with occasional bismuth values, were obtained. These results suggest that new precious metal vein exposures similar to what has been previously discovered on the property further to the east (example hole 88-11 with 4 metres grading 47.26 g/t gold).

A review of the best defined anomalies from the 2003 survey is as follows:

1.) Line 1700N a very strong coincident arsenic and antimony response extends from 650W to 750W. This response is centred on a chargeability anomaly at depth adjacent to resistivity break, centred at 650W that dips to the east. A similar resistivity response occurs on line 1600N at 525W implying a trend of 125 degrees. This trend intersects an arsenic anomaly again on line 1500N at 300W giving a potential 500 metre strike length to this target (an alternate [comparable] resistivity break occurs on line 1600N at 675W implying a more southerly strike direction. An elevated response of 23.1ppb gold occurs on line 1700N at 700W while an anomalous molybdenum value of 10.5 ppm, an anomalous uranium value of 8.9 ppm and an anomalous selenium value of 16.6 ppm occur on this line at 650W.

2. A strong soil arsenic response between 350W and 400W on line 1000N appears to reoccur on line 900N between 250W and 350W. A second soil arsenic antimony anomaly occurs on Line 900N between 500N and 750W.

3. A single station soil arsenic anomaly of 714.4 associated with a soil bismuth value of 13.5 ppm at station 550E on line 11S may continue through to a second single station anomaly at station 550E on line 12S implying a probable north-south trending vein.

Induced polarization surveying at Indata were completed in 1985 by Imperial Metals Corporation and in 1987, 1988 and 1989 by Eastfield Resources Ltd. and by Castillian and Eastfield in 2003. A review of results includes the following:

1. Precious metal veins, which typically contain 5 to 10% sulphide, often produce a discrete high chargeability response several times the background response.

2. Porphyry style mineralization containing several per cent combined chalcopyrite, pyrrhotite and pyrite generally produce a moderate to high chargeability response typically 11/2 to 2 times the background response.

3. Abrupt changes in the resistivity response often indicate contacts that are often fault contacts and are therefore possible locations for polymetallic precious metal veins.

A review of the results of the 2003 survey includes the following observations:

L1700N; a surface chargeability high, centred between 675W and 750W, increases with depth towards the east. A resistivity high appears at deeper separations eastward between 500W and 600W.

L1600N; a weak surface chargeability response, centred between 650W and 750W, increases towards the east at deeper separations. It occurs coincident with a resistivity break centred at surface at 500W apparently increasing at deeper separations to the east.

L1500N; a weak surface chargeability response increases at deeper separations, centred between 650W and 750W. It occurs coincident with resistivity break centred at surface at 500W increasing to the east. the east. L1400N; a surface chareability high centred between 525W and 750W decreases with deeper separations while a resistivity high centred between 450W to 550W increases with deeper separations towards the east. L1300N; a weak surface chargeability response increases at deeper separations, centred between 550W and 650W. It occurs coincident with a resistivity break that appears to dip to the east.

L1200N; a weak surface chargeability response, centred at 550W occurs coincident with resistivity break.

L1100N; a strong chargeability response projecting to surface at 650W trends east at deeper separations. It occurs coincident with resistivity break with the higher responses trending to the east at deeper separations. L1000N; a strong chargeability response projecting to surface at 650W trends east at deeper separations. It occurs coincident with resistivity break with the higher responses trending to the east at deeper separations. It occurs coincident with resistivity break with the higher responses trending to the east at deeper separations.

L900N; a weak chargeability response at surface becomes distinctly strong at depth with a centre at 600W. It occurs with a resistivity break with the higher responses trending to the east at deeper separations. L800N; a weak chargeability response at surface, with a centre at 600W, becomes distinctly stronger at depth. It occurs with a resistivity break with the higher responses trending to the east at deeper separations. L700N; a weak chargeability response at surface becomes distinctly strong at depth with a centre at 600W. It occurs with a resistivity break with the higher responses trending to the east at deeper separations. L700N; a weak chargeability response at surface becomes distinctly strong at depth with a centre at 600W. It occurs with a resistivity break with the higher responses trending to the east at deeper separations. L600N; a resistivity break projecting to surface at 550W with the higher responses trending to the east. L500N; a chargeability response at surface from the eastern boundary of the grid as far west as 550W increases in strength towards the west at deeper separations.

L400N; a chargeability response decreases slightly west of 550W. It tends to increase slightly at depth towards the west at deeper separations. A very low resistivity response is evident west of 700W possibly indicative of limestone or granodiorite bedrock.

Finally a review of drilling completed in 1988 and 1989 indicates while a significant amount of drilling was completed to follow up the 4 metres grading 47.26 g/t gold encountered in hole 88-11 it was all predicated on an north-south trending structure. A review of the drill hole location map indicates that the assumed north-south trending structure has here been offset by an east-west trending structure which has never been followed up. Additionally almost all of the drill gold intercepts obtained by Eastfield in 1988 and 1989 remain along the north-south trend have never been tested down dip.

17. AUTHOR QUALIFICATION

I, J.W. Morton am a graduate of Carleton University Ottawa with a B.Sc. (1972) in Geology and a graduate of the University of British Columbia with a M. Sc. (1976) in Graduate Studies.

I, J.W Morton have been a member of the Association of Professional Engineers and Geoscientists of the Province of BC (P.Geo.) since 1991.

I, J.W. Morton have practiced my profession since graduation throughout Western Canada, the Western USA and Mexico.

I, J.W Morton supervised the work outlined in this report.

Signed this 30 day of December, 2005

18. REFERENCES

Armstrong, J.E., 1946: Takla, Cassiar District, British Columbia. Map 844A, 1 inch to 4 Miles, Canada Department of Mines and Resources.

Ash, C.H and Arksey, R.L, 1990: The Listwanite Gold Association in British Columbia; in Geological Fieldwork 1989, B.C. Ministry of Energy Mines and Petroleum Resources, Paper 1990-1, p. 359-364.

Bailey, D.G., Garratt, G.L. and Morton, J.W., 1989: Summary of the Indata Project, Mincord Exploration Consultants Ltd., Report to Eastfield Resources Ltd.

Bailey, D.G., May, 2003: Castillian Resources Corp., The Indata Property, Omineca Mining Division, BC.

Fugro Airborne Surveys, October 2000: Digital Archive of Indata Lake Survey, date flown 1990.

Monger, J.W.H., 1977: Upper Paleozoic Rocks of the Western Cordillera and their bearing on Cordilleran Evolution; Canadian Journal of Earth Science, volume 14(8), p.1832-1859.

Morton, J.W., 1996: Report on Geochemical Till Sampling and Trenching Program on the Indata Property, Mincord Exploration Consultants Ltd., Report to Eastfield Resources Ltd.

Morton, J.W., 2004: Report on 2003 field work completed on the Indata Property, Report to Eastfield Resources Ltd and Castillian Resource Corp., filed with the BC Ministry of Energy and Mines for Assessment Work requirements.

Nixon, G.T. and Hammack, J.L., 1991: Metallogony of Ultramafic-mafic rocks in British Columbia with Emphasis on Platinum Group Elements; in Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, B.C. Ministry of Energy Mines and Petroleum Resources, Paper 1991-4, P.125-158 Scott, A., 1989: Induced Polarization/Resistivity Surveys, Indata Property, Scott Geophysics Ltd., Report to Eastfield Resources Ltd.

,

Scott, A., 2003: logistical Report on Induced Polarization/Resistivity Surveys, Indata Property, Scott Geophysics Ltd., Report to Castillian Resources Corp. and Eastfield Resources Ltd.

Schiarizza, P. and MacIntyre, D., 1999: Geology of the Babine Lake – Takla Lake Area, Central British Columbia, B.C. Minstry of Energy and Mines, Geological Fieldwork, Paper 1999-1, p. 33-68

Yorston, R., 1998: Assessment Report, Diamond Drilling on the Indata Property, Omineca Mining Division, Guinet Management, Report for Clear Creek Resources Ltd.

Mincord Exploration Consultants Ltd. Diamond Drill Log

Page: 1 of 3

7

1

1

1246345395395346393	araasaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa		autopenennensesterennen	******************************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	******	*****	***********	82828888888888888888888888888888888888	*************		*************	***********	***********	**********	<i>236</i> 8888422249	*********	******	***************	************	*********
Proper	ty:	INDATA		Interv	al: 0 to 9	99.06 metres	6			Depth (m)	ACID TES Dip Mea:	STS s. DipC	or.		Sta	rt Date:	June	14, 2005	5			
DDH:		2005-I-1		Core Siz	e: NQ			_	Γ	62.79	66	60			Cor	npletion	June	24, 2005	5			
Grid Co	ord:	350N 575V	/	Azimu	th: 090			_							Log	ged By:	Jay V	V. Page				
Section	1:			Inclinatio	on:										Dat	e logged	June	17 - 25,	2005			
NOTES	Drillh	ole was locate	d 50 metres @	270 degrees fro	m DDH 9	8-4. GPS I	VAD83	locatio	on using	a hand-	held etre	x GPS	s 10U 0	350945	6141188	(7 metre	s accu	racy qu	oted).	Azmuth	was	
determir	ned by	compass usin	g 22 degrees ea	st declination.	Water line	length was	s 600 fe	eet. Ti	he diamo	ond drill	used wa	s a skid-	mounte	d Long	Year 38 o	wned by	Phil's	Drilling L	Ltd. of	f 100 Mile	House	,
BC. Fir.	st run v	vas calculateo	by drillers to be	6 feet based o	n a 13 fooi	t core barre	l minus	s 7 fee	t from th	e groun	d surface	e to the t	op of the	e head ii	n the dow	n positio	n, subs	sequent	runs	were num	bered i	in
"6's", co	nversi	on to metric wa	as carried out by	the geology cr	ew. The L ad and the	Fillers expe	erience	a cons ned at	aa ne m	alπicuit otros (3	y setting 25 foot)	casing i offer off	nrougn : amots to	sanay ia comoni	iyers ano t and tri₌ci	DIOKEII (ne the l	grounu, hole fai	inua co led Ann	orovim	ipuon was nately 40 k	s nigri. Saas of	F
bentonit	e mud	were consum	ed while setting	casing and cori	na. After i	cementina t	he drill	ers we	ere unab	le to ren	nove the	casing a	and it wa	as left in	the hole.	Core wa	as logg	ed prior	to sp	litting. Av	erage	
recover	y was 6	52.2%.										0					00	·	•	Ū.	•	
			AND ADDRESS OF A DECK	AND NOT THE REAL PROPERTY OF A DESCRIPTION OF A DESCRIPTI	*********			RANK BARRAN									NNN PERSONAL		RAND SEALE	NDS. 1997 Stations	121.9 <u>1</u> .988878888	eren and
PRIN	IARY UN			SAMP					RATION (re	eplacement		QTZ-CAP			CV Ch PV	RES Pr. Co			ED (LYSIS	Mo
From (m)	12 06		TEN: Casing way	a sample # From	44' and lat	er extended	to 60'	due to	$\frac{p}{n}$	round co	nditions	Coars	e clastic	conalo	merate ar	nd aranit	e nehh	les reco	vered	from this	interva	
Ŭ	12.90	were not sa	npled.	S milliony Set to				uue n	, poor gr	ound oc	nanono.	Couro	s olaollo,	, congioi		a grann	o p 0 0 0					
12.06	18 53				Imdy) Alt	ered high-l	level ha	asic int	trusive la	cally sh	owina w	all devel	oned bre	eccia tex	dures M	oderate	nervas	ive chlo	rite-tre	emolite all	eration	 7
12.90	40.00	obscures fin	e textural inform	ation. Epidote	spots to 1	-2 cm are c	ommor	n. Silic	cification	. along v	vith disse	eminated	d pvrite.	pyrrhoti	te and cha	alcopyrit	e are ir	nitially w	eak b	ut strengti	hen wit	th
		depth. Frac	tures commonly	contain coating	s of limon	ite. Breccia	a fragm	ients a	ire angui	lar to su	b-rounde	d, up to	3 cm in	diamete	er and are	often in	distinct	from th	e hos	ting rock.	This ur	nit is
		weak to mo	lerately magneti	c. Medium grey	' in colour.																	
		BZ 12	2.96 16.00	50501 12.	96 16.00	3.04 Im	dx	2 2	2 3		1		F	2	1	·· · ·	1	1		46	5.0	0.2
.		BZ 1	24 18.18	50502 16.	00 18.18	2.18 Im	dx i	2 3	33	÷ •				2	1	• •	2	2		215	5.3	1.1
		18.18 - 33.6	4 Core develops	a darker colou	r at 18.18	and becom	ies mor	re silic	eous. Ini	itially an	1 Norphous	silica re	placeme	ents are	limited to	short in	tervals	10 - 20) cm a	pproxima	tely ev	ery
		50 cm but w	ithin several run	s it is pervasive	. Biotite is	s apparent i	in breco	cia frag	gments.	Sulphide	e conteni	t (pyrrho	tite and	chalcop	yrite) app	ear to in	crease	with inte	ensity	of siliceo	usness	3.
1																						
		QV 20	0.07 20.12	50503 18.	18 21.00) 2.82 Im	dx 2	2 2 2	22	3	2	2		2			2 1	2 1		130	2.8	0.1
			•	50504 21.	00 24.00) 3.00 lm	dx 2	2 3 2	2 2	4	2	3 1 1	2 2	1	1	1	2 2	2 1	1	98	1.2	0.8
		QV 20	6.75 26.76 3	5 50505 24.	00 27.00	3.00 Im	dx	1 2 .	33	4	2	2 1	22	1	1	1	2 2	2		299	6.4	0.1
 .				50506 27	00 29.05	5 2 05 Im	dx	1 2	3 1	5	3	2 1 1	2 1	1			2 3	2	· · · · -	71	0.5	0.7
		···· • • • • • •		50507 29	05 32.00	2 95 Im	dv -	1 2	2	5	2	3	32	3		1 1	4	3		513	10.6	0.2
				50508 32	00 33.64	1 1 64 Im	dv I	2 2	3	5	2	3 1	· · · - ·	–	2	••••			+	1807	68.9	07
	• • • •	22.64 24.2	1 Intoncoly corb	1 50508 SZ.		ving fault zo	no In	cludas	fragme	nts of at	- 1 -	Conta	cts are s	 somewh:	at irregula	r and bl	l Jocky bi	it avera	ae 30	dearees t	o CA	0.7
		Carbonate v	einina within zor	ne is commonly	at 10 - 20) dearees to	, CA.	ciuues	aginei		ove and	Conta			al mogula	r and br		n avoia	90 00	uog.000 (0 0/ 0	
	•••••	E7 3	2 64 34 34 3	50509 33	64 34 34	1 0 70 F	7	·····	5	2	· · 1	5		E S	2		1		T	190	7.5	0.1
		12.3		50511 34	31 35 36	1 02 lm	- I	· · +	2	5		3 1	2 2			2 1	2	2		711	15.8	0.8
	••••••	25 26 26 1	0 Corbonato an	d clay altered fa	ult zone	Upper cont	ant is a	brunt	- hut brok	en lowe	r contaci	t is grad	ational	Granhit	ic narting	within t	1 . ~ he inte	nselv ca	arbona	ate-clav a	Itered	
		section is al	30 degrees to 0	A.	un zone.	opper com	au 13 a	brupt	out brok	017, 10470	1 001100	io grad	allonal	Grapina	io parange	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
				50540 25	26 26 10	0.74 5	-		5	2	· • 1	1 5	Ţ	I	3 2		1	т. ; т. ;	· I	628	73	0
····	· · · ·	26 10 20 0	0.30 30.10 30	alay altored int	onval from	36 10 27	<u>-</u>	nainda	or of sam	2 Inle inter	val ie eik		nd dark	Coloure	d		. I .		l.	020	7.5	U .
	:	30.10-39.0	o bieacrieu ario	uay-altereu Int		JU. 10 - 37.	<i></i>	naniue	a ui salli		vai is sili		inu uaik		u.		1		r			
				50513 36.	10 39.00) 2.90 Im	dx i	22	224	4 2	3	3 3 2	22		2		2 2	2		1232	21.0	0.1

Alteration and mineralization intensity is averaged over sample interval and based on a scale of 1 to 5 in which 1 represents a trace amount, 2 is weak, 3 is moderate, 4 is strong and 5 is very strong and pervasive.

Page: 2 of 3

\$

1

Mincord Exploration Consultants Ltd. Diamond Drill Log

PR	MARY UN	IIT	S	TRUCTURE			SAMPLE I	NTERVAL	S	LITH	****	ALTEF	NOITAS	l (repl	acemen	t)	QTZ	CARB V	EINS	C	RY FR	ACTUR	ES	DI	SSEMINA	TED	ANA	LYSIS	
From (m)	To (m)	Notes	Code From	n (m) To (m)	° CA	Sample #	From (m)	To (m)	Interval	Code	Kf Bi	At Ep	Ch (Ca Si	Cy Se	e Mg	Si Ca	a Py Pr	Ср	Lm He	Cy Ch	Py P	г Ср	Py P	r Cp As	Mo	Cu (ppm)	ı (ppb M	О ррп
		39.0	0 The bre	ecciated c	haract	er of the o	core has	weake	ned an	d muci alu ai	h of th	nis roc	ck no	w ap	pears	to be b	oroken d min	by a ve	eining oonvrit	event.	The	rock (continu	ies to rhotite	be the s	same ii aaloonu	ntermediate vrito is notr	e to bas	SIC
		Pat	isive aeso chv. brow	cribed abo m fine-dra	ined h	inceous ir intite is m	itervais a iore pror	are mor ninent h	e suon elow 4	91y 1111 5 00	ierail.	eu w	ш ру	01110	ine, pj	nite an	u min	Ji Chai	соруш	e. A t		/ennet	о ру	monie	anu u	laicopy	nite is note	ju al 41	.40.
		· i · · · ·	лу, ыом Г	n, mic gru				40.00	2 00	0.00.	2						r		····					1		· · 1	620	116	0.0
		· • · · · -				50514	39.00	42.00	3.00	imax	3	2 2	2			3			,		4			110		.	000	50	0.2
	<u></u>		FT 44.	04 44.14	4	50515	42.00	45.00	3.00	Imdx	1	23		32	2	1	2 3	1		+	12	1		1 2	<u> </u>		203	5.3	0.5
	•	-	QV 44.	30 44.3	1 35																			Ì-			·		
			BZ 45.	40 47.1	0	50516	45.00	48.53	3.53	Imdx	4	22	2 1	3	: 	2	1 3			1	2 2	2		3	3 2	.	373	6.8	0.1
48.53	50.48	FAU	JLT ZONI	E (FZ): Sa	mple i	nterval in	cludes b	leacheo	and c	lay-cai	rbona	te alte	ered I	nang	ing an	d foot	vall. (Contact	s at 30) degre	es to	CA.							
			FZ 48.	53 50.2	7 30	50517	48.53	50.48	1.95	FZ			2	5	4	i	5				4 4			1			67	3.1	0.2
50.48	72.62	INT	RUSIVE		(ld): /	Altered in	trusive a	ppears	to be n	nore b	asic ti	han a	bove,	prol	bable	diorite.	Mediι	ım-graii	ned, m	edium	grey	, quar	tz pool	r and s	showing	j perva	isive actinc	olite-	
		trer	nolite chlo	orite altera	tion. F	Patchy, bi	it locally	intense	brown	biotite	e alter	ation.	Dor	nina	nt sulp	ohide is	pyrrh	otite in	dry fra	ctures	and	as mo	derate	ly stro	ong diss	emina	tions. A sh	ort inte	rval
		of b	reccia be	tween 65.	77 and	1 66.15 cc	ontains r	ounded	clasts	of sub	-porp	hyritic	diori	te ar	nd a si	rongly	biotite	alterec	l matri	x .				- -					
- ·			BZ 50.	92 53.6	5	50518	50.48	53.65	3.17	ld	1	33	3 4	2	1	2	2 5	; .		1	24			1			101	1.3	0.4
		•	QV 52.	.00 52.0	1 25																								
			QV 54	25 54.2	6 25	50519	53.65	56.70	3.05	ld	2	33	3 3	2		3	3 5	5		2				1 3	3 2		155	0.5	2.3
• • • •		•	QV 54	.85 54.8	6 35								· · · ·										A						
		i	QV 59	.10 59.1	1 45	50520	56.70	59.37	2.67	ld	4	4 4	13	1		2	2 2	2		2	1 2	4 4	t	2 4	1 1		396	1.9	0.3
	4					50521	59.37	62.13	2.76	ld	4	4 3	∃່∃່	1 1	:	1	1 3	}		1	1 2	2 4	 !	2 4	‡ 1		756	6.0	0.3
		·· •		· · · · · · · ·		50522	62.13	65.00	2.87	ld	4	4 3	3 3	1 1	····	1	1 2	2			1 3	4		2 3	3	· ·	247	2.0	1.1
	• • • • •	-	BX 65	77 66 1	5	50523	65.00	68.00	3.00	Id	3	33	3 3	2	.÷	2	4	 t			·· ·	1	н н. Н н	2 3	3		257	2.2	0.2
	÷ ·	68	00 - 72 62	2 Brown b	iotite f	orms stre	aks that	are mo	deratel	v maq	netic	and h	ave a	asso	ciated	dissen	ו ninated	d altera	tion en	velop	əs su	qqesti	ng tha	t boitit	e, magr	netite a	and pyrite a	are all p	art
		of t	he same a	alteration	event.					, ,													0					-	
			BC 69	53 69.8	8 40	50524	68.00	71 00	3 00	Id	4	2 3	3.3	1 2	, ,	3	4	1		[``	1 2	4	 f	2 3	3 1	l	419	4.8	0.9
	<u>.</u>				• ••	50525	71.00	72 62	1.62	Id	4	2 3	3 3	21				3			1 2		3	2	· }		1099	5.4	0.3
72 62	74 50	FΔ		E (E7): a 1	Fault zo	ne marke	d hv a 7	one of	strong	carbor	l nate-c	lav-ch	lorite	alte	red ro	ck and	l . °	nted by	, carbo	nate	Cont	ains w	isov a	raphit	e partin	as.	1		
12.02					0		70.60	74 50	4 00				E	E	2		1 4			I				2		y =-	1201	82	15
74 50	04.00	·		.62 74.5	0 - 22au	50520	12.02	74.50	1.00			rnhu	o ritio ti	J	Z n (ldn	Stror			hlorite	actin	olito t	ramol	ito alto	ration	Cuth		arous carbo	onate	1.5
74.50	81.08	- IN I	I	- DIORITE	= (10). 1	Allered In						лрпу				J. 3001	ig pen T		JIIOIILE			, ,				/ nume	1 224	0.7	05
						50527	/4.55	//.50	2.95	lap	2	3	4-	2		'	4	+ 2			23		, , , , , , , , , , , , , , , , , , , ,		2 1	!	221	0.7	0.0
						50528	77.50	81.08	3.58	lap	2	, 3 ,		3	1	1	4	+ 1	<u>.</u>	l :	73		\$ 2 <u>.</u>	1 4	2 1	24	1995	17.7	0.4
81.08	86.75	5 FA	ULT ZON	E (FZ): A	repeat	ing series	s of fract	ure zon	es, fau	t goug	e and	carb	onate	e cen	nenteo	Droke	n rock	((Ia), Ie	aving	a mes	s or p	ooriy	recove	rea ru	DDIE. S	strong (Unionte-cai	nonale	-Clay
			FZ 81	.08 86.7	'5	50529	81.08	86.75	5.67	FZ	2	3 5	55	4	l :		£	5 1		1	35	1		1	3 1		1069	9.1	0.6
86.75	99.06	6 IN 7	RUSIVE	MONZO-I		TE TO DI	ORITE ('Imd): li roo of n	nitial sti otoooid	rong c	hlorite	e-carb	onate	e-cla	y alter	ation d	ies ou	t after 9	72.66. Irainad	Relati	vely l lith /	arge p vi se 7	Seudo 5 into	morpl	ns of fin a altera	e, brov	vn biotite n nvelones o	nay repi of biotite	lace
1		for	priiboies l m a patch	io i ciii. I work natte	nis su am tha	ggesis so t vields a	breccia-	like anr	olassio Dearand	e in w	hich f	he fin	e-are	s a c ained	l biotiti	e forms	the n	natrix.	aneu	ρισιοι	iui. <i>F</i>	11 00.7	Jinter	35011	iy allere	11011-01	ri Giopea U	, biolite	
	±		F7 87	50 87 G	0	50531	86 75	90.22	3 47	Imd	3		4	2	2			1		I	3 4	· -··		2	2 1		426	1.4	0.7
			E7 00	145 07.3	6	50532	90.22	92.66	2 44	Imd	1	2	5	3:1	-	1	1 4	1		1 ;	3 4		+		3 1	•	347	1.9	0.1
1			112.90	.40 92.0	0	1 00002	30.22	32.00	2.74	1"""	1 7	-		0.1			<u></u>	•	100 C								i		

Page: 3 of 3

1. **1**. 1.

Mincord Exploration Consultants Ltd. Diamond Drill Log

PRIN	IARY UNI	T	*1.2833.844	STRU	CTURE			SAMPLE	INTERVAL	S	LITH	iidiikeed Di	ALTE	ERATIO	N (repi	lacemer	nt)	QTZ	-CARE	B VEINS	DF		TURES	DI	SSEMIN	ATED	AN	ALYSIS	222438 <u>8</u> 83333
From (m)	To (m)	Notes	Code	From (m)	To (m)	°CA	Sample #	From (m)	To (m)	Interval	Code	Kf E	Bi At E	Ep Ch	Ca S	i Cy S	e Mg	Si Ca	Py F	Pr Cp	Lm He C	y Ch P	y Pr Cp	Py Pi	r Cp As	s Mo	Cu (ppm A	u (ppb l	Vio ppm
			ΒZ	94.47	95.39)	50533	92.66	95.39	2.73	Imd	4	12	4	2 2		2	4		1	1	2 2		3	1		284	3.8	0.3
		Note	e: bet	ween 94	4.47 - 9	96.32 i	s a zone	of broke	n rubble	e identi	fied b	y the	driller	rs as '	"cave	d". A	t 95.39	a bit o	f qua	artz vein	materia	l in the	rubble m	narks th	e beg	inning d	of an increa	ase in 🗆	
		silici	ificati	on and i	is proba	ably a	minor fai	ult.																					
		95.3	19 - 9	9.06 Mo	onzonite	e varyi	ing to mo	nzo-dior	ite (Imd): Dark	grey	to aln	nost b	lack v	vith p	batchy	disser	ninatio	ns of	pyrrhot	ite and d	chalcop	oyrite whi	ch are a	also pi	resent	in dry fract	ures.	
		Vari	able,	fine-gra	ined, b	prown	biotite rej	placeme	nts form	i a spo	tted p	atterr	n and	сотр	rise	10-20	% of th	e core.	Silic	cified (al	morphou	ıs silica	a replace	ment) i	nterva	ls con	tain approx	imately	/ 1%
		com	bine	a tinely d	aissem	inated	pyrrnotit	e and cr	паксору	<i>пе</i>	г	T					• •	11.12			I .			т.".	· _ · ; ·		т	·	
· · · · · · ·		••	QV	95.39	95.40	,	50534	95.39	99.06	3.67	Ima	4	13	3	2 4			1 3		÷		2 2	2 2	4	3	. i	442	5.7	0.6
			ΒZ	95.40	96.32	2		1			1			· · · · · · ·			1	l	L.										
99.06		EOF	-				- · · · · ·																				.		
										1																			
				-																									
	- · · · - ····								• ·-			l	• •				* · ·	* *									1		
				-					r -			•	• •		· · · · ·	•••••		t	+ +- 						·			•	
• · • · · ·		•••		-				•		• • • • • • • • • • • • • • • • • • • •		•	• •		+		· • • •		·									• •	
· · · · ·		÷ · · · ·						•	• •	•				+		• •					- · ·		· · · · · ·	÷ ;	··· +	+			
		•		.	.			· · · ·		•••••••••••	ł				- }	(1, 2)	· · · ·	+ + -		1.		•		1	· · ·			•	
<u> </u>		÷						• • • •		·	<u> </u> .		• • •						· •	· · · + · ·		• +		1		÷.	· ·	+	
·		-	ł							. <u>i</u>	 .				;	÷ .		l :	÷- ÷				÷						
						4		÷		÷																, :		:	
			-																								ļ .		
										1				ļ.															
													:	L															
															-												I		
			1										• •									• •				÷ · · · ·		*	
									•	• • • • •	-			· •									1		· ·	•			
		÷	i				-			•	-	· ·	• •	• • •					÷			• •			· •		:		
		•	-	••••	*	• •	-				+		• • • •				• •					· · · · · ·		- ·	• •	•	- · ·		
		- - -			÷						-								- · ·	• •		· ·			· ·		ł;		
		:		•	•						-						• •	L.	. .			• • • •				÷			
			ļ	·····							+										- 1. - 1.1.	·•··· •-·				÷ •	4 . 4		
				<u>+</u>	<u>.</u>						ļ			; ;		. :									• ÷			÷	
	L				• · · · · ·		 			• • • • •		L		, 		. :			ļ		l						ļ l		
			 						• • • • • • • • • • • • • • • • • • • •	- i	<u> </u>											 					<u> </u>		
						:									1		:											I	
		-																		• •									

Mincord Exploration Consultants Ltd. Diamond Drill Log

Proper	rtv:	INDAT	Ą			1	nterval	0 to 15	3.92 me	tres				Onert	A (m)	CID TE	57S	Die Car			ar - raja (raj -	Start D)ate:	Jun	28 2	005			
DDH-		2005-1-	3			Cc	re Size:	NO				-		15	24	53	1	46	1			Compl	etion	July	4, 200	 95			
Grid C	ord:		•			A	zimuth:	115		<u> </u>		-		150	88	51		44	1			Logge	d By:	Jay	W. Pac	ge			
Sectio	n:					Inc	lination:	-45				_]			Date lo	gged	Jun	e 29 to	July 5,	2005		
NOTES	: Drittho	ole was lo	cated 25	metres @	115	degrees	from DD	H 05-1-2.	GPS I	VAD8	3 loca	tion us	ing a	hand-l	ield el	trex G	PSI	s 10U	03516	46 613	99703) (9 me	tres a	ccura	CY QU	oted).	Azimuth w	as	
determ	ined to b	e 105 de	grees by	compass ((usinį	g 22 degi	ees Eas	t as the c	leclinati	on), b	out wh	en usin	ng a G	SPS the	azim	uth w	as d	etermi	ined to	be 115	degn	es. W	ater l	ne le	ngth w	vas 100	00 feet. Th	e diam	ond
drill use	ed was a	skid-mol	unted Lor	ng Year 38	own	ed by Ph	il's Drillin	ng Ltd. of	100 Mil	e Ho	use, E	C. Firs	st run	was ca	alculat	ed by	(drill	ers to	be 5 fe	et base	d on	a 13 fo	ot cor	e bar	rel mir	nus 8 fe	eet from the	e groun	đ
sunace	to the to	op of the i	nead in tr Indias a L	ie down po ast resort t	ositio the hi	n, subsec Na was fi	quent rur. ri-coned :	to 41 fee	umpere Lusion '	:a in 'H" c≤	55,0	onvers	300 IC 1-COD	o metric e hit m	: was i	came d op '	ю ои 'N" с	t DY IN asina	e geoii The ir	ifial ca	W. I.N. mnle i	e Drille Manate	ers exp vrial fri	oene: om 0	ncea a to 12 ¹	imculty 50 met	rsetting ca	sing ri malei	rial
capture	d by the	casing w	/hen it wa	s re-insert	ted w	ith a casi	ng shoe.	The cas	sing wa	s left i	in the	hole. (Core v	was log	ged p	nior te	o spli	itting,	Avera	e reco	very w	as 83.	6%.						
PRI	MARY UNIT	\$201944415474 	STRU	CTURE		2143209999934	SAMPLE	INTERVALS	9 19 0 1-1994	LITH		ALTER		(replacer	nti tran nénť)		QTZ	-CARB	VEINS	D	RY FRA	CTURES	er 1088 100	DI	SSEMIN	ATED	AN	ALYSIS	
From (m)	To (m)	Notes Code	From (m)	To (m)	°CA	Sample #	From (m)	To (m)	Interval	Code	Kf 8	i Al Ep	Ch C	a SiC)	Se	Mg	Si Ca	Py P	Cp As	Lm He	Cy Ch	Py Pr	Ср	Py P	Cp As	s Mo	Cu (ppm)	u (ppbł	10 ppm
0	0.00	OVERB	URDEN:	Thin vene	er of	overburd	len was :	scraped o	off by C	at wh	en dri	ll site w	as pr	repared	l. Cas	ing w	as s	et to 4	3 feet.)
0.00	58.40	INTRUS	SIVE DIO	RITE (Id):	Mea	lium-grair	ned, med	lium-colo	ured, ci	hlorite	e-epid	ote-ma	gnetit	te alter	əd, hig	ih-lev	el ba	isic int	rusive.	Moder	ately i	magne	tic. P.	atchy	areas	of diss	seminated	oyrrhoti	te
		and pyr	ite with m	inor blebs vicev stree	of ch	alcopyrit mogodi	e. Thin d	carbonate m wido v	e veinle: which av	ts to 1	1 mm	are con	nmon	n and g where to	enerai the co	lly on maav	ente:	d at le:	ss than Is blobs	30 deg	prees te agr	to CA. Lobalo	Sma	i, intr to 3	noupe mm	t spots	of epidote	are h the cr	
		cutting i	nagnetite	-epidote a	ltera	tion.	(C 10 5 m	an white P	vinçii ai	¢ con	unon.	y perpe	5116166	unan 10	are 60		is. <i>n</i>	icguia	1 DieDa	or pyn		Charce	opyna	.05	11111 a	10 0330	Delated With	i lite ch	033-
		0.00 - 1	2.50 This	interval w	as tri	-coned a	nd the sa	ample is a	of mate	rial th	at cav	ed sub	seau	ent to t	he witi	hdrav	val o	f the tr	i-cone	and wh	ile the	casin	g was	set					
1		BZ	0.00	12.50	1	50537	0.00	12.50	12.50	lid	1	· · 3	4			3	4	2		31	1		-	2			136	1.3	1.1
	•	BZ	14.40	14.60		50538	12.50	15.20	2.70	Id	1	· '3	4	• •		3	4	2		3 1	1	•		2		• •	196	0.5	0.2
		·		• • • • •	.	50539	15.20	18.40	3.20	id	· ·	4	4	• •	•	3	.3	1			2	2	2	3	3		1546	47.4	0.8
	•	18.40 -	18.97 Qu	artz veinin	l Ig ani	d minor e	pidote-ci	hlorite alt	ered wa	ill-roc	∣ k.Ve	ining in	ciude	es quar	tz, car	tona	te ve	inlets,	marip	l osite, ci	ubic p	yrite ar	nd wis	- py gr	aphite	(?) pa	rtings.		
		lov	18.40	18.97	- 	50540	18.40	18.97	0.57	lov	1.	5	3		•	1	53	4		· 1	2			2			501	22.3	0.6
	•				·	50541	18.97	22.00	3.03	1d	2 2	2 3	32	2	• •	1	3 3	3	2 2	2	2	2	1	2	2	•	1736	22.3	0.9
	•	: los	23 37	23.52	·	50542	22.00	25.00	3.00	Id	1 · ·	2	4	• •	• •	2	3 2	2	3	2	2	2	1	2	2	• •	951	14.0	0.7
·		BZ	25.00	25.30		50543	25.00	27.20	2 20	Id	2	3	4 4	4 2	2	· -	3 5	2	• •	· · - ·	2	2 2		2	1	• •	557	20.4	0.7
	•	00	26.26	26.87	45	•		•			1	· · ·			· ·	·	•	• - •	• •			· · · ·			• •	· ·	1		
					· · -	50544	27.20	30.00	2.80	Id	1	2	4 3	3 1	1		2 4	2	1		2	2	1	2	1	•	267	11.6	0.4
ł	•			•		50545	30.00	32.40	2.40	Id	1 ·		4 2	2	• •	•	.3	3	•	1 ·	2	3	3	3	1	• •	158	5.2	0.8
		32.75 -	44.95 An	interval of	l f larg	e blotche	s of epid	ote and d	ross-cu	itting	ı grey d	uartz v	ein-e	pidote-	sulphi	de al	terəti	on the	t cuts	core at	high a	ngles	to CA	gen	erally i	n the n	ange of 70	to 90	
		degree	s to CA.	Sulphides	(pyril	le with les	sser chal	copyrite)	found a	s ble	bs in	veining	and a	as diss	emina	tions	in 1	- 2 cm	wide a	lteratio	n env	elopes	. Pyri	te +/-	pyrrho	otite as	fine disse	minatio	ns
		elsewh	ere. Core	is dark gr	rey ai	na very h	ard sugg	esting so	ome deg	ree c	f am	orphou:	s silic	a repla	cemei	nt. S	trong	ily ma	gnetic .	and ove	erall, r	nuch m	nore s	rong	ly mine	eralizeo	d (although	patchy)
		With Chi	асоруте	ulen plev	iousij	yseenur	uns noie	·. · ·		1	1			. · .		- 1							. ·				1	·	
1						50546	32.40	35.55	3 15	1đ	2	2.4	. 3 2	2.4		3	2 1	.2.			. 2	3.	3	3	.2		198	21.3	3.3
		1				50547	35.58	38.55	2.97	ld	1.2	2.4	3 3	34		4	3 1	, 2 ,	2			. 4	2	3	.3		227	3.1	1.3
						50548	38,55	41.52	2 97	Id		4	.2.2	2.4.		4	4 2	.3	4 1			3	2	3	. 3		446	12.3	1.4
		BZ	43.10	43.70		50549	41.52	44.95	3 43	ld	2	1.4	. 2 .	.4	•	. 3	4 3	. 3	3 1			. 3	3	3	. 3		416	14.2	1.0
					.	50551	44.95	47.24	2 29	id	3	2	. 2 .	. 5		2	3 2	2				. 3	2	2	. 2 .		126	2.4	1.3
1		BZ	47.24	48.50		50552	47.24	50.29	3.05	ld	1	. 3	<u>,</u> 4	3		1	3 1	2	1			2		3			48	0.7	3.7
Ļ		52.40 -	Slickensi	des, noteo	in a	gypsum-	chlorite d	coating, r	ake at 4	is deg	grees	on 10 c	legre	e to C/	tracti	ure fa	ices.			1				r'.			1		
		BZ	52.40	. 53.00		50553	50.29	. 53.34	3.05	ld	2	3.2	.2.	. 4 .			3 1	2		.	2	3	2	4			170	1.4	1.8
		BZ	55.73	. 56.28		50554	53.34	55.20	1.86	lď		12	5.	. 3		1	3_2	2			2	. ³	2	2			410	9.4	0.6
		QV	55.04	55.05	45			··		ł	. .									Ļ			. <u>.</u> .				ļ		
		55.20 -	58,40 A :	subtle chai	nge i hasir	n texture into sive	to a coai hut stro	rser grain na altera	Size, a tion obs	long v	with a	n increa anv tevi	ase in humes	i brown	biotite	e alte	ratio	n of a .	mafic r	nneral	(an ai	nphibo	le?) y	ields	a wea	k spot	ed appear	ance. A	fost
		intery a	Construction		Dasic		55 00			Lu	ι 1					. 1				i		. <u>.</u> .	~	1.			1 20		~ ~
-	- 60.40		ALTOUR			50555	55.20	58.40	320	I Id		7 2	4 -21 -	2		. 1	2 1	2	7	1500 (2 millod		2	 	in fra-	monte	1 39	2.3	
58.40	00.42	and ave	arage abr	v∈ contali out 5 mm ii	ning i n size	mervals e. Brecci	ui tine br a mav or	eccia (10) ossibly in	y. riign clude si	nevel ome r	มสรณ อนกต่	d quar	cr)in tz-eve	es to 1	with S 2 mm	Str	si sni ona i	un me chlorite	nvars (-epidn	te-biofi	timeo le alte	ration (of son	necci ne fra	a iragi gment	taenis ts. No	sulphides	r, noau noted.	ıy,
		Interrup	oted by si	iceous zor	nes v	with irregu	ilar quart	z veins w	hich ind	lude	quart	z crysta	is to	6 mm.	Conta	cts a	opea	r grad	ational	but are	too b	roken	to det	ermir	ie with	any co	onfidence.		
1		•	-			5																							

Page: 1 of 3

ł

· · ·

Mincord Exploration Consultants Ltd. Diamond Drill Log

200								ereza po e post		1					1.1.81	67-63-61	c. *	12 144.00	- Misseeries		1993 - Sec. 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1 1995 -	<u></u>	50.00 (L.S.).				
From (m)		Notes	Code Error (m)		Serrole II	SAMPLE I	To (m)	internet	Com		ALTE	RATIO	N (repl	lacement) i Cu So			-CARB	VEINS		FRACTL	RES	DIS	SEMINA	TED	ANA	LYSIS	
			87 58.40	60.42	50556	59.40	60 47	2.02	1000			2 4	24 3	cy se			<u>a ry ra</u>	CP AS	ст не су	ChiPy	н ср	My M	Cp As	MO	Cu (ppm µ u	i (ppb#	AO ppm
60.40	152.00	14/7	BZ 56.40	00.42	1 30336	30.40	00.42	2.02		1		34	3]	2,2	2		L	2		1			18	0.5	0.8
60.42	153.92	nv i alth	RUSIVE DIC	IRTIE (IOX): Bi	asic intrusi	ve as des	scribed a	bove w	nn sn mont	onin	tervai.	s of we	eakiy	/ develo	ped fi	ne pre	eccia a	s note	d betwee	n 58.40	- 60.42.	Poss	ibly na	mow o	ross-cutting	g dyke:	s
			ough consact	S are inverent.		onte anen	abon obs	scures	nosit	, ,	iy iex	wes.										_					ļ
Į					50557	60.42	63.40	2.98	ldx			23	3		1	21	2			23	1	2	1		27	0.5	0.2
					50558	63.40	65.53	2.13	ldx	1		23	3		2	2 1	1			2 3	1	2	1		36	0.5	0.4
					50559	65.53	68.58	3.05	İdx	11	· · ·	33	3		1	21	. 1	•	•••	23	1	2	1	• • •	18	05	04
		68	20 Fine-grain	ed. high-level.	basic intri	isive (Id)	as descr	ibed ab	ove.	The v	veakl	v deve	- Ione	d breck	ia-like	featu	ires ab	ove ha	ve died r			J ~	•		i 💞.	0.0	×.,
		· '1		, <u>,</u>	50560	6868	71.62	2.05	1	12.4						مناه					· ~	1			1 40	• • •	
			· ·		50500	7.00	77.03			°.'		<u> </u>	. 4			3 2	- !			. 2.4.	, 2	3			40	0.5	0.1
					50561	/1.63	/4.68	. 3.05	ю			33	3	·		2 2	. 1 .			.2.5.	3	3			136	2.9	1.1
			QV 77.12	77.13 80	50562	74.68	77.7 2	. 3.04	ld		'	2 3	2			3 2	2			2 4	2 1	3			50	0.7	1.0
					50563	77.72	80.12	2.40	id			33	2			22	1			23	2	2			63	0.5	0.3
1					50564	80.12	82.86	2.74	id	1 2	2	2 3	3			3 2	• ·					1			ľ		1
		82	86 Basic intr.	isive becoming	lighter gr	ey coloun	ed than a	above,	1 mm	, grain	-size,	actino	olite a	alteratio	n incr	' easing	a in int	ensity.	Intervals	of and	st-like fir	t ne bred	cia as	descr	ibed above	Grac	tes in
		and	l out so perha	aps more of an	intrusive l	breccia, o	r a weak	ly deve	loped	alter	ed po	rphyry	<i>i</i> .			-		•									
		' I			50565	82.86	85.62	2.76		1	, , , ,	2 2	2	• •	•	2 1						1.				0 E	~ .
1.				• •	50555	02.00	00.02	2.70		. '		~ ~			•	2 /	• • •	• •		~ ~ ~		2 .			10	0.5	0.7
					50500	05.02	88.60	2.98		۱	4	34	د ،]	13	1	_ · .		. 2					11	0.5	0.5
		00.	oo breccia na	is died out. Co	nunuing ri T	eoium-gr	ey colou	rea, tini	e-grai. s	nea c I	iasic i	ntrusn	ve. v	veakiy	devek	ppea	patchy	tine, t	lack blob	te.					,		
					50567	88.60	91.45	2.86	ld	1 2	2	2 4	3		1	3	1								17	0.5	0.7
					50568	91.46	94.30	2.84	ld		2	24	3		3	2 1	2		-	1		2	1		12	0.5	0.2
		94.	30 Beginning	g of occasional	thin (3 - 1	0 cm) cro	ss-cuttin	g band	s of e	bidote	and	K feid	spar	with m	inor qi	uartz v	ins a	nd fine	stringers	of ma	netite	Dissen	ninated	d pyrite	e and chalc	opyrite	,
		min	eralization fo	rms alteration	envelopes	associat	ed with ti	he epid	ote k-	felds	oar afi	teratio	n an	d pyrite	is occ	asion	ally fu	nd as b	lebs in th	ie mino	r quartz	veining	, This	core :	is very silice	eous	
		(rep	placements),	dark grey in co	lour and p	proved to	be difficu	ilt to spi	lit. r																_		
					50569	94.30	97.24	2.94	lđ	4 4	13	45	5		2	3	23	2		2	2	2	2		74	1.5	0.8
					50571	97.24	100.41	3.17	Id	2 4	3	24	4		1	3	3	2	• • •	2	1	2	1	• •	22	0.5	0.2
			•		50572	100.41	103.38	2.97	Id	2 4	2	33	4	• • •	1	2	2	1	· _ ·	2	1	3	1	•	39	11	07
i				• •	50573	103 38	105 43	2.05	Id .	23	2	3 3	4		2	ď	3	1			2	2	2		45	10	0.1
· ·				• •	50574	105 43	107.54		14	2						1.0	٠. ١		• ·	·			. <u>.</u>		t in	1.V	0.5
		107	54. 114 35			volnina :	Jonn wit	2.11 h.como		2 9	, <u> </u>	2 3		C	1	14 <u>2</u>					2 . 	13	1		40	0.5	0.5
-		mo.	derate clav a	A zone of fine	nse qualiz i of the co	ntacts of i	the bleer	n sume chad an	10000 035 2/	n can ma ch:	uona:	e vest t bloc	urg. ku ar	riom i nd aver	09.00 200 1/	10 1 1 2. 15	0.92 (r. deami	ie veini	ng is acc	ompan bod int	ea by ve	ery stro	ing per	vasive	Dieaching	and /~~~~	.
		mic	a) succesting	a verv basic i	niain.				583 0	e ane	<i></i>	1 0100	ny ai	iu aven	age n		uegree	-5 10 0	n. Dieac	neu ma	rivala IId	ive ma	ny net	aks on	nanposite (carom	e
- ·	• • - •	. 1	01/ 107.54	100.85	60575	107.54	100 85	2 24	Ida	1	,	1 2	<u>,</u> ,			A . 4	~	2					· · ·	• •		۰. ۲	
		-	01 100.05	103.00	50575	107.04	105.00	2.31	iua 	2 3		, <u>2</u>	23	. .				2 .	2	! .		7	. <u>.</u>		50	0.5	0,1
		.	QV 109.85	110.92	50576	109.85	110.92	. 1.07	lda .	2 2	· .	2	3_3	. 4		5 3	. 1 .		3	2 .	1	2	1.		67	2.7	0.9
			QV 110.92	114.35	50577	110.92	114.35	3.43	Ida	4 4	۱.	3 4	1 3		1	4 1	1			2		2	1		12	5.1	2.2
					50578	114.35	116.98	2.63	ld	3 3	3.	34	3		1	31	3	1		3	1	3	1		53	0.8	0.4
		116	.98 - 118.00	A short interva	l of very s	trong biot	ite altera	tion (5)	with c	lisser	ninate	ed pyn	ite ar	nd acco	mpan	ying c	hlorite	-actino	lite altera	tion.		•					- 1
1 '		<u> </u>			50579	116.98	118.00	1.02	Ida	1 5	4	5			· 1							4	1	•	62	0.5	0.1
		118	.00 - 120.40	Core alternate	s betweer	n modera:	telv chloi	rite-acti	nolite	ı alteri	ed dio	rite an	d str	ona bio	tite-al	tered i	diorite					1 ·	· ·			0.0	<u> </u>
		1	1		50580	119.00	120.40	2.40	14	ا د ا		2 1	2			2						ام ^ا	,	•	1 10	~ F	
		120	40 A metum		light grou	110.00	120.40	2.40		2.4			ے۔		_ _{_{1}}	2						ľ .	· · · ·		42	0.5	0.7
		120	40 A retuin	io inte-granieo,	ignt-grey	o media	m-grey t	Joioarea	a basi	C HRA 1	usive	descri	bea	above.								. .					
		. 1			50581	120.40	123.65	3.25	ld .	3 3	3	3_3_	3		_ 2	2	3	1		3	2	3	2		43	0.5	0.2
		_			50582	123.65	126.49	2.84	ld		4	33	2		2	1				1		2			37	0.5	0.4
					50583	126.49	129.16	2.67	ld	2	4	33	2		2	1				1		2			29	0.5	1.7
		129	.16 Beginnir	ng of an interva	l with an ii	ncrease ir	n quartz	veining,	silicif	icatio	n, pai	tcny e	pidol	e-potas	sium	feldsp	ar ban	ds and	dark bio	tite-rich	sections	5.	•	:			
			FZ 129.16	129.25	50584	129.16	132.59	3.43	ld	3 3	3	34	23		1	4 2	2	1		3	1	3	1	···	97	26	10
		••••	OV 129.25	129 40				•		[. "		·			· · ·	· · -	· - ·	· · ·	· ·	· • • •		 · · ·	••••		1		
· ·					50585	132 60	136 64	3.06	14	1.		2 E						·	• •			.				<u>.</u>	
				• •	50505	132.39	133.04			- ⁴		3 D	: 3	,		3 1		· ·			. 1 .	3.	<u>.</u>		63	0.5	0.2
i .		.			50586	135.64	138.68	3.04	Iđ	Ļ_3	3	24	् 3			2 1	. ² .				·- · ·	3	2		70	0.5	0.6
					50587	138.68	142.35	3.67	ld	4	2	34	4			3 1	2					3	2		45	0.5	0.8

Page: 2 of 3

Afteration and mineralization intensity is averaged over the sample interval and is based on a scale of 1 to 5 in which 1 represents a trace amount, 2 is weak, 3 is moderate, 4 is strong and 5 is very strong and pervasive

Page: 3 of 3

.

Mincord Exploration Consultants Ltd. Diamond Drill Log

PRIMARY UNI	ARY UNIT STRUCTURE					SAMPLE	INTERVALS	ini na met	LITH	<u></u>	AL1	ERATI	ON (rep	daceme	nt)	- 41- 1	QTZ	Z-CAR	B VEINS		DR	Y FRA	CTURE	ES		DISSE	MINATE	D	ANA	LYSIS	
From (m) Ta (m)	Notes	Code	From (m)	To (m) ° CA	Sample #	From (m)	Ta (m)	interval	Code	KI E	3i At	Ep Cl	Ca S	si cy s	Se	Mg	Si Ca	a Py i	Pr Cp A	sLn	He C	y Ch I	Py Pr	Ср	Py	Pr C	p As Ma	0	Си (ррт)	і (ррі Мо	ρρт
	14:	2.35 -	144.15 A	K-feldspard	yke along	with a m	ilky-white	quartz	vein	and s	ilicifi	ed wa	ill roc	k					,												
		QV.	142.91	142.97 60	50588	142.35	144.15	1.80	KD	5 2	2	1 2		4		. 1	3								4				80	0.5 5	0
		ΒZ	142.97	144.15																											
	14	1.28 -	144.44 5	Slickensides re	ecorded i	n pyrite s	treaks on	5 degr	ree to	CA fi	actu	res ra	ke 35	5 degn	ees.	_				_											
		FΖ	144.15	144.90	50589	144.15	148.80	4.65	id	3 :	2 2	1 4		4		2	3	3		1			2		3		?	1	119	0.5 0).7
	14	9.48 -	151.92 Å	short interva	l of intens	e quartz	veining ai	nd silici	ificatio	n.																					
	•	QV .	148.48	151.92	50591	148.48	151.92	3.44	QV			2	•	5 ່			5	3	1				2		1				122	1.9 6	.0
	15	1.92 /	A return to	the altered b	asic intru	sive but v	vith many	quartz	veins	. No	sulpi	hides	noted	ź.																	
					50592	151.92	153.92	2.00	ld	1 :	3	2 5		4			4			I									10	0.5 3	.4
153.9	EC	н			-		•		•	•										•											
	·				[• ·							1								·			1
					İ		-			· ·	•					Ì		•		1			•				• •	<u> </u>	-		
	•	· ·			İ				1				• ·			÷		· ·	• •	1	•		•		ĺ			Í			ĺ
		İ.					•			1						Ì		• •		1				• •	1			İ	-		
· · ·					1				İ.	1	•	• •	• •		•	Ì		•									• •	÷		•	1
		ĺ			1		•	•			•	• •	• •	• •	•	· 1										• •	• •	· 1	•		- 1
	•	1		- ·	t		•		1	1	•	• •												• •	1	• •		· 1		• • • •	1
		1		•			1		1	1	•		• •								•							. 1			1
	•	1					•	•		·		• •		• •	•									• •	1	• •					
		i '			1					· ·						1	•	• •	• •	1				•	1	• •					
· ·	•	ĺ			İ						•	· •	• •			Ì	•	• •							Ť.			1		• •	
		i .				•	•	•	1	1		• •		•		· 1		•	• •		• •			• •		• •		· 1	-		1
·		1			t		•		İ	1						1					•				İ		• •	Ì	•		1
	-	†			1	•	•			1		•				÷		•	• •		• •	• •		• •	1			·			1
				•	Ì	•	•	•	1	1						1					•			• •••				·			
				• •	i i		•		1	1			• •	• •						Ì				• •		• •	• •	· 1			
·					1		-		1	1					·	·	•	• •	• •	I	• •			• •	1						
							• • •		1							÷.		• •		ĺ				• •				·		•	
				•	1								• •							1					1			Ċ			
	•	1			1				İ.	Ì										1											
		1		•	1					i		•	• •			· 1				1			•								1
					- ·				1	1	•	• •				÷				1								ĺ	•		1
								•											• •						1			·			1
· ·					ľ					1		• •				•								•	Ì	•		Ċ			
		1			1			•		1						• •		• •	• •		•			• •	İ				-		
		1				•		•							•	•	•	• •	• •		• •	• •		• •							
		f			i			•							•		•	• •	• •		• •				Ī		• •	. 1			
		t				-	•		1					• •		·					· ·	• •		• •	1			÷	•		
· ·	•	1			1		•		I	1	•	• •			-					1					1		• •	<u> </u>	•	-	
		1						-	t							•		• •							1	• •	• •	· 1			
1 · · ·	•			•	1		-			1		•	• •							1							• •	·			1
1 ·		1			1				1	1		• •	• •					• •		1										•	- 1

-	i 🗛 📕	77.4	n		Ξ.	4	-	6	-	-		-		2		~	γ.			~		-	-	,
х.	÷.	<u> </u>		×1.	14	14	÷.	н.	4	- 2-	1.	. A.	24	2022	÷ 1	1.1	୍ର.	- 0	ú.	-0	- 222	÷.,	600	
	- E C	FS	O	£7.	ч	o	U	1	- 1	А	$\boldsymbol{\alpha}$	С	r	ee		LT	16	- 6	ч.	ċ.	c	o	12	

LTL.

034 E. RADIINGO OF. VANLOUVER DC VOA IR6 GEOCHEMICAL ANALYSIS CERTIFICATE

Phune (60+1 433-3108 FAX (004) 25-1716

Mincord Exploration Consultants Ltd. PROJECT INDATA File # A503346 Page 1

	<u> (1855)</u> 4	<u>. 19</u> 48			Codel	91040000																		<u>.</u>	22.25	<u>6.9394</u>				<u></u>	83 N S	
SAMPLE	но	Cu	Pb	Ζn	Ag	NS (lo ₩n	Fe	As	U	Au Tì	s Sr	DD	Sb	81	v c	a P	La	Cr	Mg	8a Ti	в,	l Na	ĸ	¥	Hg	Sc 11	s	Ga	Se Au**	Sample	
	ррт	ppm	ppm	ppm j	ppn	ppm pc	om opm	x	ppn p	xpm i	ppb ppr	а рра	ppra	ppm	ppm p	ppm	1 1	ppm	ppm	X p	ppm 👔	ppm	1 I	t	ppm	ρρπ p	pm ppm	r	ppm p	¢m gm/mt	kg	
50501	.2	46.2	13.9	23	.1	21.2 7.	4 204	1.39	6.2	.1	5.0 .1	52	<.1	.2	.1	98-1.7	.010 , 7	1	112.0	. 88	83 .025	1 3.	52 .446	.02	.1	.01 4	.9 <.1	<.05	61	.1 .01	4.18	
50502	1.1	214.8	1.3	29	.1	21.4 11.	6 305	2.04	.8	.1	5.3 .1	36	.1	<.1	<1 1	128 .9	7 .014	1	61.0 1	.24	27 .025	12.	.258	.02	.1	.01 6	.2 <.1	. 13	6	.9 <.01	4.52	
50503	.1	129.8	3.9	25 ·	<.1	38.2 9.	0 311	1.51	1.7	.1	2.8 <,1	32	.1	<.1	<.1	89 1.3	7 .010	1	127.1.1	.18	28 .021	<1 2.	54 . 373	.02	. 4	.01 5	.6 <.1	<.05	5 <	.5 .01	5.85	
50504	. 8	97.7	1.2	26 ·	<.1	24.5 10.	.5 295	2.03	.6	.1	1.2 <.1	38	<.1	<.1	<.1	124 1.5	6 .012	1	88.31	. 11	16 .028	1 2.5	.383	.02	<.1	.01 5	.9 <.1	.07	6	.6 <.01	5.83	
50505	.1	29 9.0	1.7	23	,1	24.3 10	.8 220	1.77	.6	.1	6.4 <.1	34	.1	<.1	< 1	124 1.2	3 .011	1	97.8	.96	23 .033	<1 2,	53 .350	.04	.8 <	.01 5	.7 <.1	.11	6	.6 .01	7.12	
50506	.7	71.4	1.0	17 ·	<.1	32.7 12.	0 224	2.03	<.5	.1	<,5 <.1	61	<.1	<.1	<.1	119 2.1	9 .010	1	103.8	.87	12 .027	<} 3.	518	.03	.1	.01 6	.0 <.1	. 19	71	.2 <.01	4.98	
50507	.2	512.9	.8	33	.1	50.8 19.	.6 410	3.26	<.5	.1 1	9.6 <.1	39	.1	۲.۱	.1	178 1.5	4 .011	1	159.9 1	.52	20 .022	1 3.	3 .349	.04	.6	.02 10	.2 <.1	.43	7 2	.1 .02	4.25	
50508	.1	1806.5	.6	46	.3	49.4 25.	.0 437	4.04	1.2	.1 6	8.9 <.1	29	.3	.1	.1 1	191 1.0	0 .010	<1	145.1 1	.51	18 .018	22.	8 .162	.03	.1	.11 10	.0 <.1	.65	74	.2 .05	4.18	
58509	.1	190.2	.5	61 ·	<.1	33.4 20.	1 1401	4.30	2.8	4.1	7.5 <.1	17	.1	.1	.1	74 2.4	5 .004	<1	29.2 3	.87	13<.001	1.	.081	.04	.6	. 32 19	.6 <.1	. 19	1	.7 .02	1.53	
50510 (pulp)	27.9	>10000	9.0	91 3	2.3 10	68.0 28.	7 1086	9.69	8.8	.1 71	9.4 .8	3 49	.2	3.1	.7	53 1.5	2 .057	31	368.6	. 75	21 .003	5.4	.031	.43	2.5 1	1.02 4	.3 .1	3.02	4 15	.6 .93	•	
									-		- • •																					
50511	.8	711.2	.6	50	.1	30.0 21.	8 /45	4.01	.9	.1 1	5.8 .	1 15		.1	.1	184 .4	5 .010	1	53.6 2	.02	14 .009	/ 1.4	53 .082	.02	.1	.31 14	.0 <.1	.35	5 2	2.3 .02	1,85	
50512	.1	628.1	.8	71	.1	44.4 25.	9 1236	5.44 1	1/8.4	(.) 	/.3 <.!	1 17	1.	.3		74 Z.3	2 .001	<1	24.13	.44	13<.001	1.1	087	.03	.6 4	1.28 20	.2 <.1	2.00	12	2.5 .01	1.68	
50513	.1	1231.7	, O	57	.1	41.2 30.	.9 9/0	0.03	10.4	5.1 Z	1.0 5.1	1 14		.1	.1.	192 .7	1 .005		127 0 1	.03	12 .004	02.	10 .082	.05	.1	.44 1/		.8/		1.3 .03	6.65	
50514	.4	51/.5	./	29	.1	44.7 20.	2 642	3.33			1.0 ×.1	1 2/) 9E	.2	•.s 16.2		101 1.1	2 .023	: -1	227.91	. 20	24 006	7 2 1	10.211	οų. α α	./	.00 0	.4 1 .1	.53	/ J 5	10. C.I	2.70 E 92	
20212	.5	202.0	./	70 .	s.1	25.7 10.	. C 093	3.17	17.1		5.3 <.	1 35	. 1	15.3	<.I .	133 2.1	3 .005		04.3 1	.00	34 .000	12.	0 .100	.09	.1	. 21 14	.0 .1	.00	2	.9 .01	5.03	
50516	1	373 0	12	19	د ۲	25 8 14	4 330	2 83	6	1	6.8 <	67	< 1	,	< 1	153 1 9	5 009	1	109 4 1	24	19 014	23	4 249	04	4	03 5	9 < 1	17	, ,	2 01	5 81	
58517	.7	66.6	.5	42 .	<1	30.2 13	5 1289	2.82	2.0	.1	3.1 <.	 . 33	<1	<1	<.1	95 7.1	3 .005	<1	34.1.2	16	3<.001	<11.	7 .054	.03	.2	.03 22	.4 <.1	.12	3 4	.5 .01	1.76	
50518	4	100.9	7	23	<1	32 1 14	2 669	3.51	<.5	6.1	1.3 <	58	<.1	<.1	<1	136 2.8	3 .019	1	118.9.2	.21	9.008	64.	2 159	.02	.3	.01 11	2 < 1	32	7.	.5 <.01	5.86	
58519	23	154.7	9	17	< 1	43 7 17	3 453	3.72	<.5 <	.1	.5 <	86	<.1	<.1	<1	14B 4.4	7.008	1	138.0 1	.73	8 .010	14.	10 . 289	.02	<.1	.01 9	.5 < 1	1.83	8 1	.0 <.01	6.22	
50520	.3	396.3	.,	22	.1	21.8 24	.5 515	4.58	<.5	-1	1.9 <	1 35	<.1	<.1	.1	154 1.8	7 .013	<1	42.9 2	.00	33 .030	23.	3 .192	.16	1.1	.01 13	.0 <.1	1.68	7 4	.0 .01	4.48	
RE 50520	.3	391.5	.6	23	.1	21.9 24	7 508	4.51	<.5	c.1	1.5 <.1	36	.1	<.1	.1	153 1.8	6 .014	<1	43.3 1	. 97	33 .031	33.	3.199	.17	1.0	.01 13	.3 <.1	1.68	74	.0 <.01		
RRE 50520	1.1	389.7	.7	23	.1	21.8 25	.1 514	4.62	<.5	c. }	2.3 <.:	1 37	<.1	<.1	.1	157 1.9	3 .014	<]	42.6 2	.04	34 .031	23.	. 198	.17	.1	.01 13	.6 .1	1.69	7 3	.9 .01		
50521	.3	756.0	.5	20	.1 1	.04.4 40.	4 229	3.59	<.5	()	6.0 <.:	1 23	.1	<.1	.1	109 1.2	4 .011	<1	187.0 1	. 48	31 .031	5 2.	9 . 269	.16	.8	.01 6	.3 .1	1.56	64	.3 .01	5.97	
50522	1.1	247.3	.7	15	<.1	60.4 18.	.9 254	2.99	<.5	.1	2.0 <.)	26	<.1	<.1	<.1	147 1.3	5 .012	1	146.1 1	. 63	36 .032	23,	. 272	. 17	<.1	.01 7	.3.1	.46	21	.6 .01	6.83	
50523	. Z	257.1	.6	- n	<.1	22.9 14.	6 206	3.26	<.5	.1	2.2 <.	L 53	<.1	<.1	<.1	171 1.6	3 .012	1	53.71	. 26	27 .035	73.	3 . 338	.17	.8	.01 6	.0 <.1	. 45	8 1	.5 <.01	4.52	
50524	.9	419.2	.9	18	.1	40.9 20.	.8 326	3.98	<.5 ا	()	4.8 <.:	1 63	. i	.1	.1 :	167 2.4	7 .014	1	128,4 1	.71	24 .027	34,	55 . 341	.11	<.1	.03 8	.2 .1	. 80	9 3	3. 2 .01	7.06	
50525	.3	1098.9	1.1	21	.1	51.7 30.	.9 375	4,76	<.5	c. 1	5.4 <.	1 59	. 2	.1	.1	173 2.0	9 .014	1	162.6 1	.85	17 .023	34.	12 .384	.08	.6	08 10	.1 <.1	1.52	87	10. 01	3,21	
50526	1.5	1300.5	.5	42	.2 1	.00.2 31	9 1024	5.04	108.6	<.1	8.2 <.	1 50	.3	73.8	.1	84 6.4	5 .004	<1	130.0 2	.01	2<.001	3 2.	3 .053	.03	.2 19	9.80 15	.5 <.1	2.10	4 5	5.3 .01	4,58	
50527	. 5	221.2	.4	25 ·	<.1 i	.51.1 20.	.6 528	3.01	.6	٤.1	.7 <.	1 56	٢.1	.3	<.1	76 2.2	8 .008	1	171.6 2	. 32	10 .002	83.	95 .095	.05	. 2	.11 8	.6 <.1	.32	7	.2 <.03	5.63	
50528	.4	1994.7	.3	34	.4 1	86.8 39.	.4 620	4.51	<.5 ·	<.1 1	7.7 <.	1 44	. 3	.9	.1	103 1.6	1 .010	1	217.1 3	.27	9 .005	74.	24 .105	.05	<.1	.22 9	.3 <.1	1.37	8 (5.6 .04	3.94	
																													_			
50529	. 6	1068.5	.)	20	.1	66.6 44.	.4 326	4.48	<.5	<.1	9.1 <.	1 40	<,1	.1	.1	130 1.0	2 .009	1	97.9 2	2.08	24 .016	73.	14 .092	. 10	.7	.03 7	.3 <.1	1.98	7 3	.9 .01	4.36	
50530 (pulp)	27.9	>10000	9.1	91	2.3 10	54.8 28.	.8 1101	9.90	8.9	.1 79	9.4	9 51	.2	2.9	.7	52 1.5	5 .058	31	353.9	.79	21 .003	9.	37 .031	.45	2.4	1.10 4	.4 .1	3.16	4 16	5,1 .91	•	
50531	.)	426.4	,4	- 14	<.1	83,0 22.	.4 200	2.38	<.5 ·	<.1	1.4 <.	1 51	<.1	.1	.1	92 1.2	4 .010	1	120.1 1	.42	47 .018	53.	31 .192	. 12	.1	.01 5	.0 <.1	1.27	6 3	3.0 .01	3.14	
50532	<.1	347.0	.5	25	<.1 1	09.5 21	6 307	1.90	<.5	<.1	1.9 <.	1 42	< 1	<.1	<.1	63 1.6	5.010	1	173.5 2	2.17	42 .008	63.	96 . 188	. 10	.2	.01 4	.3 .1	.89	7 1	2.0 .01	2.84	
STANDARD DS6/AU-1	11.8	123.9	30.0	148	.3	25.1 10.	.7 713	2.89	21.1	5.3 4	3.6 3.	1 39	6.1	3.0	4.9	57.8	7 .078	16	189.0	.58 1	174 .086	19 1.	95 .075	. 16	3.0	.23 3	.6 1.7	<.05	6 4	1.6 3.45		

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILI AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. - SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. ply 25/05 Data A, FA DATE RECEIVED: JUL 12 2005 DATE REPORT MAILED:. Clatence

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Mincord Exploration Consultants Ltd. PROJECT INDATA FILE # A503346 Page 2

L																																					R,
	SAMPLE	Mo	Cu	Pb	Zn	Aq	Ni	Co	Min	Fe	As	U	Au	Th	Sr Cd	i Sb	81	v	Ca	P	i a	C.r	Ma	Ra	Ti	8 A	Na Na	r	Lt .	<u>но</u>	~	T1	- · ·	C 3 S	o Aut+	Samo	
		ppm	ppm	: ppm	ppm	ppm	ppm	ppm	ppm	ĩ	ppm p) DDm	ppb g	pm p	рт ррт) ppm	ppm	ppm	1	z	 DD/11	DOM	*	DOM	1 1	20070		1	000	10000	000	000	1 1	00 00	റ വസ്ണി	Jang	10 X
													·· ·												- 1				PP	μγ	pp						
i i i i i i i i i i i i i i i i i i i	50533	.3	284.2	1.4	13	<.1	64.5	12.5	239	1.50	2.5	.3	3.8	.1	34 < 1	.2	2.5	62	2.15	.009	1	179 0	1.60	22 (107	5 3 39	1 400	04		2 01	4 9	e 1	5.4	6	٥ ۵ı		E C
	50534	.6	442.0	1.6	20	1	52.6	13.4	143	1.44	<.5	1	5.7 <	1	39 < 1	< 1	1	79	1 07	013	î	99.8	1 69	48 (122	226	1 330	.07		- 01	3.2	~ 1	25	، ن د ۱	, 10. 2 01	•. 	33 80
	50554	6	67 4	6	13	1	40.5	12.5	178	2 65	1 8	-	11.		11 < 1	1 3		87	72	088	-1	70.9	1.05	16 1	322	32.0	· .330	.07			5.2	r 	.20	5 I. 2 4	/ .VI	3. 0	00 77
	DE 54635	 £	66.1	4	12		40.5	12.6	193	2 11	1.0	,			11 -, 1 11 1	1.0	 2	0.0		.000	-1	70.0	. 74	15.0	100	2 1.30	. 156	.04	1.3		5.2	<.1 	. 22	3 5.	5 <.01	۷.,	35
	NE 30033	.0	69 6	 2	13	.1	20.0	12.0	105	2.11	1.5	. 2	., .	.1	1. 14 و م 19	3.4	.5	04 02	. 14	.000	~1	70.4	.97	19.1	22	2 1.4	1.158	.04	1.3 *	.01	5.1	<.1	. 24	3 <.	5 .01		•
	KKC 30333	. 6	00.0	.0	15	.1	27.0	12.3	100	C.12	1.9	. 1	9.7 -			1.2	.0	¢ε	.76	.008	.1	11.7	1.01	13 .1	22	2 1.48	1.150	.04	./	.01	5.3	<.1	. 22	3 <,	5 .01		•
	58536	٩	53 3	. 1 2	15	د ۱	101 A	13 R	122	1.64	۰.	c 1	36.	1	7 < 1	6	,	47	66	ônt.	-1	201 R	1 66	10 0		11 1 5	. 167			. 61	• •		05	• •	c - ^^	•	D 0
ſ	56537	11	135.8		28	< 1	34 3	11 3	115	2 12		2	1.1.4	1	10 < 1	17	2	103	.00	611	-1 - -1	63.3	69	7 6	126	2 3 1.5	157	,04 03	.1 .	10.0	3.1 E E	2.1 2	17	3 .	5 .01	2.	00 72
	50539		195 6		17		135.2	18.9	167	2 67		·			16 < 1			00	- 92	009	· .	225.6	1 17		110	01.0	100	.03		.01	3.3 A 4	~	13	3 ×.	ער ב זער ב	د. م	30 61
	50530		1546.4		-21		93.5	26.1	222	3.05	<u>د د</u>		7.4 4	,	15 2			117	1 12	007		177 7	1 64	6.0	110	1 1 70	133	.03	~	.01	7.0	×.4	. 14 E 2	ч. г.	/ ~.U2		79 79
	50540		501.0	26.1	48	.5	149 0 1	25.1.1	419	4 91 2	J 67	1 2	2 2 4	1	35 0	1.0	12.4	91 10	0.05	.007	-1	174.0	2 74	0.1 Ar 6	101	E 41	9 . 110 9 . 610	.03	1 0 C	. 02.1	1.3	×.4 ·	. 32	0 J.	5 .00 5 .04	3.	72
	30340		241.4	LV. 1	-•		1.0.0			1.04 6	•.•			••		1.0	16.4	41	v.v	.002	-1	134.5	J./4	46	61	5.4	, 010	.04	0.5	.05 1	.3.3	. 1 1	. 47	21.	5 .U9		00
	50541	9	1736.0	1.2	34	.4	84.3	25.7	464	3.71	2.2 •	< 1 2	2.3 <	1	13 .4	10	2	133	1 41	608	<1	148 5	2 59	7 (111	4 1 73	PRR C	68	1	01.7	16 4	2	52	4 10	3 02		66
	50542	,	951.2	1	15	1	45.6	17 1	199	3 19	< 5 4	(1)	40 <	1	14 1	4	1	162	1 18	008	<1	85.6	1 00	12 1	377	3 1 83	7 719	.05	~ 1	.01	0 C		22	- 10. - A	5 .02 6 Л3		00 07
	50543	7	557 1	,	23	,	191 2 3	30.2	551	4 32	15.4		144	1	20 1		1	126	3 36	006	- - 1	271 1	3 24	11 0	107	5173	0.070	- 05	 5	.04	17.0	~ 1	75	4 7	, vo		97 95
	50544		267 4		26	,	163 3 3	27 4	623	3 76	A.	1 7	164		23 1			112	3 68	005	-1	408 3	3 25	11	na	7 2 16	1 120	-05		.02 1		~ 1	.23	4 <u>2</u> .	2 .04		99 99
	50545		158.4		10	,	27 3	12.6	183	3 29	- 5 - 4		5.2 4	1	15 e 1		.0	161	79	011	~	26.7	9.23	2 1	25	<1 2.40 <1 3.00	3 315	.03	.0		76	~.1	16	0 I.	2.02 6.01	. J.	00 00
		.0	199.4		10	- 4	20.0		100 .	0.20		•••	J.L -	••	101	.1	• 4	101	.70	.011	-1	35.7	.02	3.0	23	~1 1.00	,115	.02	·	.01	7.0	`. !	. 15	4 2.	0 .01	4.	00
	50546	33	197 9	29	10	1	49.6	15.0	158	2.54	<.5	.1 2	1.3 <		28 < 3	.6	.1	104	1 07	007	<1	56 6	91	9 (23	<117	1 163	04	164	6 01	5 7	< 1	26	5)	2 02	5	79
1	50547	13	227 3	2	14	.1	38.2	19.4	195	3.45	<.5 <	<1	3.1 <	1	37 < 1	.7	.5	159	1.25	009	<1	82.8	1 23	10.01	28	<1 2 12	7 168	05	2	01	81	< 1	11	51	8 < 01	6	67
	50548	1.4	445 8	. 10	13	1	45.8	19 6	148	2 95	< 5 •		23 <	1	22 1	7	1	147	92	010	0	123 3	1 02	10 0	21	<110	> 174	06			6.4	- 1 - 1	36	6 2	6 02	6	35
	50549	3.0	416.3	< 1	15	1	55.7	15 7	188	2 34	< 5	1 1	4 2 <	1	24 1	4	1	133	92	011	<1	88.0	1 05	9 1	24	2 3 5/	1 145	05	1.0	2-01	6.9	< 1	27	4 2	1 D2	م	49
	50550 (pulp)	28.7	>10000	10.2	101	2.2 1	028.1	29.91	112 1	1.30	9.6	2 56	5.7 1	.0	54 .2	3.4	.8	54	1.64	063	3 1	385.0	.78	23 .0	03	9 91	031	47	2.5 1	09	49	1 3	33	3 16	8 93	.	-
																																		• •••	•		
	50551	1.3	126.3	<.1	11	<.1	49.8	19.4	184	1.98	.7 <	<.1	2.4 <	.1	7 <.1	.8	.1	89	.88	.011	<1	87.8	.98	в.0	20	<1 1.03	.115	.04	<.1 <	.01	7.2	<.1	.37	3.	8 <.01	4.	63
	50552	3.7	48.2	.3	12	<.}	55.3	11.8	164	1.73	.5 •	c.1	.7 <	.1	12 <.1	.6	<.1	63	.79	.009	<1	119.0	1.18	5.0	16	<1 1.35	5.134	.02	.4 -	- 01	5.1	<.1	12	3 <	5 <.01	4	21
	50553	1.8	170.1	.1	9	.1	33.1	22.7	194	2.62	<.5	.1	1.4 <	.1	15 < 1	.6	.1	84	1.11	.012	4	65.2	.90	n.0	23	2 1.40	. 192	.06	1.0	.02	7.8	<.1	.83	4 2.	7 < 01	5.	95
	50554	.6	410.2	18.0	19	.1	145.3 3	21.7	211 ;	2.57	<.5 <	<. 1	9.4 <	.)	14 .1	.7	.1	74	. 88 .	.011	<1	231.8	2.21	11.0	19	2 2.05	.085	.05	.1	.01	6.6	<.1	. 24	5 1.	1 .02	4.	28
	50555	.8	39.2	.3	12	<.1	42.7	16.Z	217	2.77 7	2.8 <	<.1	z.3 <	.1	8 <.1	3.5	.1	82	.90	.009	4	103.6	1.27	25 .0	24	3 1.18	.076	15	.1	.01	8.5	1	.87	3 1.	9 < 01	3	63
						-																			-												
	50556	.8	17.7	.1	15	<.1	89.8	16.0	267	1.98	3.3 <	-1	<,5 <	.1	11 <.1	.5	<.1	60 1	1.54	.006	<1	237.2	1.86	15.0	09	<1 1.56	. 123	.06	.2	.01	8.8	< 1 <	. 05	3 <.	5 <.01	4.	93
	50557	.2	26.7	<.}	,	<.1	28.3	8.3	102	1.32	1.3 •	. 1	<.5 <	.1	17 <.1	1.7	.1	61	.90	.008	<1	66.2	.65	8.0	14	31.2	. 176	.03	< 1	.01	4.4	< 1	10	3 <	5 < 01	4	78
	50558	.4	36.4	<.1	8	<.1	40.9	11.3	110	1.35	.8 4	(1	<,5 <	.1	9 < 1	1.3	<.1	60	.68	.009	<1	84.0	.71	8.0	21	<1.95	.158	.06	<.1 <	.01	4.4	<)	20	2 <	5 <.01	4	36
	\$0559	.4	18.0	.3	7	<.1	42.8	9.1	143	1.32	1.9 •	<.1	<.5 <	.1	23 < 1	.9	<.1	51 1	1.08	.008	<1	90.1	.98	10 .0	15	<1 1.54	1.170	.05	.6	.01	4.7	<.1	.07	3 <.	5 <.01	7.	85
	50560	3	39.B	< 1	10	<.1	93.4	15.0	242	2.02	2.2 •	< <u>1</u>	<.5 <	1	12 <.1	.4	<.1	52	1.23	.008	4	159.0	1.55	30.0	11	<1 1.51	129	.04	<.1	.01	7.4	< 1	.19	3 <	5 < 01	5	96
												-									_				-					•-							
	50561	1.1	136.2	<.1	8	<.1	84.9	18.3	123	1.93	2.6	c.3	2.9 <	.1	10 <.1	.7	.1	56	. 59	.010	<1	85,6	.81	7.0	17	<1,95	. 126	.04	<.}	.01	5.0	<.1	. 60	z .	6 <.01	6.	81
	50562	1.0	49.8	.1	6	<.1	31.4 1	11.7	104	1.32	<.5 <	۰.1	.7 <	.1	4 <.1	.6	<.1	47	. 45	.010	<1	30.9	.56	7.0	21	<1.64	100	.05	.1 •	.01	4.8	<.1	.21	1 <	5 < 01	5.	81
	50563	2.0	111.8	<.1	8	.1	29.3	15.6	138 :	2.24	.6 •	<.1	1.4 <	.1	5 < 1	.1	.1	111	.58	.013	<1	49.7	.68	5.0	24	<] .80	.091	.05	л	.01	5.4	<.1	4]	2.	5 .02	4.	96
	50564	.3	62.6	.1	9	<.1	47.2	12.3	124	1.52	.5 •	<.1	<.5 <	.1	12 < 1	1.4	.6	59	.73	808	<1	103.0	.82	п.	22	<11.14	. 125	.12	.3 <	.01	3.3	<.1	.17	3 <.	5 .01	6.	82
	STANDARD DS6/AU 1	11.3	118.2	29.9	145	.2	24.9	10.4	589	2.85 2	D.8 6	5.6 4	7.9 Z	.9	37 6.1	3.1	4.9	55	.83	.077	14	185.5	.57	171 .0	82	17 1.85	074	. 15	3.2	.24	3.4	1.6 <	.05	64.	3 3.38		
													_																								

Sample type: DRILL CORE RISO. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

Mincord Exploration Consultants Ltd. PROJECT INDATA FILE # A503346 Page 3

																												_							_			
	SAMPLE	Мо	Cu	Pb	Zn Ag	7 N	1 Co) Mn	Fe	As	U	Au	Th	Sr	Cđ	Sb I	31	v c	a F	> La	(Cr M	g Ba	a ĭ1	8	AI	Na	ĸ	¥	Hg	Sc	n	S	Ga	Se Ai	u** Sa	anole	
		ppm	ppm	ррт	pom opr	п рр	m ppm	n ppm	t	p pm	ррт	ppb	opm (ppra j	рра	ppri pr	on p	pm	* *	t ppm	p:	pm :	t ppr	m 1	ppm	1	I	1	ppm	ppm	ppm	ppm	1	ppm (xxm gm.	/mt	kg	
																																		-				
	50565	. 1	17.5	3.9	18 . 1	42.	6 8.7	122	1.28	.7	<.1	<.5	<.1	14	.1	1.0 <	1	68.8	800, 0	3 <1	125	.9 1.0	4 54	4 .021	1	1.11	.173	.04	.3	.01	3.5	<.1 <	<.05	3 •	<.5 <	.01	6.81	
	50566	.5	11.2	2.4	10 <.1	32.	3 10.2	123	1.56	.8	<.1	<.5	<.1	39	<.1	1.1 <	1	79 .9	5 .008	3 4	100	.4 .7	3 30	0 .019	3	1.13	. 138	.04	<.] <	:.01	4.0	<.1	.08	3 •	¢.5 <	.01	5.79	
	50567	.7	16.6	1.3	9 <.1	29.	8 8.4	116	1.72	.6	<.1	<.5	<.1	4 •	<.1	.7 <	1 1	.01 .4	4 .009	9 <1	103	.6.6	7 18	8 .023	1	.51	.096	.07	.1	.01	3.6	<.1 <	<.05	2 •	r.5	.03	7.32	
	50568	.2	12.1	1.2	9 <.1	23.	2 8.3	111	1.60	.6	<.1	<.5	<.1	3 •	<.1	.9 <	.1	95.4	4 .010) <1	70.	.1 .5	B 19	9 .025	2	. 45	.098	.03	.5	.01	4.0	<.1	. 06	2 •	<.5 <	.01	6.88	
	50569	.8	74.1	1.0	10 <.1	17.	5 10.4	151	2,23	.1	.1	1.5	<.1	55 ·	<.1	.6 <	.1 1	12 1.3	7 .017	/ <1	32.	.7 .51	6 13	3 .048	1	1.53	.140	.03	.1	.01	4.2	<.1	.11	5 •	<.5 <	.01	5.31	
	5/1570 (mile)	75 6	10000	٥ د	96 2 3	1006	^ 	1119	19 67	0 1		n2 N	۵	50	,	• •			c 0(1		1200			7 002	10		011											
	50570 (0310)	20.0	21.2	3.0	20 2.4	2000.	0 20.7 0 0 5	1210	1 57	2.5	.10	~ 5	- 1	20		د د د ع	.o	04 1.0 P2 6	000. 0	 1	1390.		,	.003	10	. 80	122	.44	2.4 1		4.0	.13	3.29	4 10		.93		
	50571	. 2	20.0	.3	0 - 1	37.	0 9.5	120	2.33		~ 1	11.	~ 1	6 .	• · I		.1	02 .J	5.000 5.000	,	60. 62	.9 .7	/ <u>-</u>	C 070		./1	.126	30.	.0	- 01	4.4	<.1 < 1	10	~		.01	0.53	
	50572		30.9 AC 0		10 < 1	27	9 10.3 9 12 7	155	2 62	2.5	~ 1	1.1	 e 1	19	- 1 - 1	.3 ~.	 1 1	E0 .4	5 .012 A 010	1 21	92. A1	.144 7 E	4 10 N	0.UZ7	1	.40	121	.03	1.1	.01	3.7	~ 1	. 10			.01	1.31	
	54578	 5	45.0	.0	10 ×.1	27.	1 14 0	154	1 06	6	~.1	2.5	 < 1	10	1 - 1	.,	1 1		4 .010 6 .010	1	E1	.) .5: 2 6		1,000 7 077	1	.04 EE	. 121	.03	1.2	.01	4.0	~ 1	- 10	2		.01	5.20	
	50574		40.4		0		1 14.0	134	2.90	.•									0.014	• •	51.	.5 .0	, ,	/ .UZJ		. 33		.05	.1	.01	4.5	~.1	. 24	2		. 01	9.30	
	58575	.1	50.4	.2	18 <.3	58.	2 20.6	530	3,07	<.5	.1	<.5	.1	17 •	۲.۱	.6	1 1	11 2.1	7 .021	1	94.	.8 2.03	28	B .016	3	1.15	.112	.03	.3	.02 /	2.6	<.1	.21	4.	<.5 <	.01	3.51	
	50576	.9	66.9	.6	24 .1	93.	3 23.9	755	3.53	2.4	<.1	2.7	<.i	46 ·	<.1	1.5 <	1	80 4.8	7 .010) <1	94.	8 2.8	8 10	0<.001	5	.79	.057	.,06	.2	.07 /	17.7	<.1	. 19	2	<.5 <	.01	3.78	
	50577	2.2	11.6	.4	21 <.1	97.	0 21.5	578	3.34	.5	<.1	5.1	<.1	17 •	<.1	.5 <	.1 1	32 3.3	6 .011	l <1	187.	3 2.4	B 17	7 .008	4	2.01	.085	.04	.2	.01 /	16.6	<.1 <	<.05	4 -	<.5 <	.01	8.51	
	50578	.4	52.3	.3	12 <.1	53.	6 12.2	209	1,50	.6	<.1	.8	<.1	17 .	٢,1	2.9	1	48 1.0	1 .006	5 <1	123.	6 1.2	7 24	4 .012	2	1.13	. 126	.04	.1	.01	6.0	<.1 <	<.05	2 .	<.5 <	.01	5.98	
	50579	.1	62.3	1.1	22 .1	104.	1 20.7	336	2.59	1.2	1.2	<.5	6.1	129	.1	.6	3	79 2.8	4 .345	5 45	102	.0 1.8	5 126	5 .154	1	2.09	. 279	.08	.4	.01	6.9	<.1	. 16	5 •	c.5 <	.01	2.48	
	RE 50579	.2	61.4	1.0	20 . 1	106.	2 21.6	341	2.64	1.3	1.2	<.5	6.4 1	134 -	<.1	.7	.3	80 2.8	9.354	43	100.	9 1.8	8 132	2.157	1	2.13	. 278	.08	.3	.01	7.2	<.1	. 17	5 •	<.5 <	.01	-	
	RRE 50579	.3	61.6	.9	22 .1	105.0	0 20.7	339	2.67	1.0	1.2	<.5	6.5	133	.1	.7	3	79 2.9	0.364	i 45	97.	8 1.8	5 133	3 .157	2	2.13	. 287	. 88	. 2	.02	6.7	<.1	. 17	5	.5 <	.01		
	50580	.7	42.2	.7	7 <.1	26.4	4 12.2	106	2.28	.6	<.1	<.5 ·	<.1	14 -	<.1	.6 <	1 1	.26 .6	4 .015	5 1	46	.7 .5	7 23	3 .028	</td <td>.94</td> <td>.136</td> <td>.03</td> <td>.1</td> <td>.01</td> <td>4.3</td> <td><.1</td> <td>. 23</td> <td>3.</td> <td><.s <</td> <td>.01</td> <td>6.87</td> <td></td>	.94	.136	.03	.1	.01	4.3	<.1	. 23	3.	<.s <	.01	6.87	
	50581	.2	42.9	.6	6.1	20.3	3 10.9	138	2.30	<.5	<.1	<.5	<.1	28 ·	۲.>	.7	3 1	.38 .9	5 .013	3 <1	33.	.9 .4	79	9 .027	3	1.10	. 134	.02	1.3	.01	4.7	<.1	. 14	4 .	<.5 <	.01	6.74	
· ·	50582	.4	36.9	.1	8 <.3	78.	1 16.4	185	2.30	<.5	<.1 -	<.5	<.1	7 •	<.1	.9	1	95 .9	3 .009	€> <1	131.	.3 1.00	94	4 .018	2	. 99	. 122	.03	.1	.01	5.9	<.1	. 16	3 -	<.5 <	.01	7.93	
									• ••					•								• • •																
	50583	1.7	28.7	<.1	10 <.1	64.3	8 14.2	200	2.12	./ .	<.1	<,5	<.1 - 1		5.1 	.5 1.		14 1.4	0.009		128.	.0 1.2	, i	4 .016	1	1.12	. 119	.03	.4	.01	1.4	<.1	.13	3 •	<.5 <	.01	6.15	
	50584	1.9	9/.4	.3	14 .1	65.	3 18.2	323	3.13	<.5	<.1	2.6	<.1 	20	s.1 	.6 14.	. 1	.26 1,7	9 .016		121.	.7 1.4		4 .U4Z	3	1.54	. 109	.03	.3	.01	8.8	<.1	. 28	5	.5 <	.01	1.23	
	50585	.2	62.5	.4	10 .1	51.	/ 10.8	201	2.66		<.1	<,5	<. I		• •	1.0 . F	./ 1	.04 .8	/ .014		12.	.2		3 .030	1	.69	.073	.03	1.0	.01	1.4	-1	. 33	3		.91	6.85	
	50586	.6	69.5	.1	/ <.	27.5	5 10.2	127	1.52	1.5	<,I	<.5	<.1 		5.8 	.5 .	1	4¥ .5	9 .VIZ	{ <1	63.	1,1	5 4 	4 .025		.52	.085	.04	. 1	.01	4.7	<.1	. 25	2 4	<.5 <	.01	6.75	
	50587	.8	44.5	. 1	10 <.1	26.0	6 13.7	215	2.00	<.5	<.1	<.5	<.1	y .	•.1	./ 8	8 1	40 .9	9 .011	1 <1	49.	.3 .9.	3 5	5 .025	1	.91	.097	-04	.1	.01	8.7	<.1	. 19	3,	<.5 <	.61	8.85	
	50588	5.0	80,4	.5	16 <.1	32.0	0 19.2	598	3.71	.7	<.1	<.5	<.1	18 -	۲.۱	.8	1 1	30 3.3	8 .013	3 1	52.	.9 1.7:	3 е	5 .012	2	1.63	.048	.03	.9	.01 :	20.0	<.1	. 38	5 -	<,5 <	.01	2.95	
	50589	.1	119.3	.2	6 <.1	28.4	4 34.9	132	2.19	<.5	<.1	<.5	<.3	7.	<.1	1.5 .	1 1	.05 .5	6 .011	া	30.	3 .69	9 5	5 .024	1	. 66	.090	.03	.1	.01	6.2	<.1	.43	2	.6 <	.01	9.57	
	50590 (pulp)	26.6	>10000	9.1	93 2.7	913.	6 27.0	1113 1	10.54	8.5	.1.7	40.1	.9	52	.3	3.9	7	52 1.6	2 .057	3	1255.	.3 .70	5 31	1 .003	8	.91	.028	.42	2.2)	1.04	4.5	.1 3	3.20	3 1	5.Z	.94		
	50591	6.0	122.0	.5	18 .1	48.	1 18.1	435	3.95	6.3	<.1	1.9	<.1	12 •	<.1	2.9	1	81 1.7	8 .015	5 1	46.	4 1.4	9 13	3 .005	3	.83	.057	.05	1.2	.06 /	17.0	-1	.46	3	.6 <	.01	6.25	
	50592	3.4	9.5	<.1	9 <.1	54,	8 10.0	256	1.54	<.5	<.1	<.5	<.1	13	s.1	.4 <	1	57 1.2	3 .009	¢ <1	86.	.7 1.19	98	B .013	1	1.04	. 150	.03	<.1 <	£.01	7.0	<.1 <	<.05	z ·	<.5 <	.01	4.72	
	STANDARO DS6/AU-1	11.4	124.4	29.7	145 .3	25.	5 10.6	731	2.86	21.2	6.8	41.4	3.1	38 (5.0	3.1 5.	1	58.8	8 .081	15	187.	.9 .5	9 172	2 .084	18	1.96	.075	. 16	3.2	.24	3.5	1.7 <	<.05	6 (4.1 3	.40	-	

Sample type: ORILL CORE RISO. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Geology of the central part of the Indata property and locations of drillholes and trenches.