
Continuing Geological-Geochemical Assessment of the Lake View Mineral Claims, Tenure Nos. 408341 and 408342, located 59°38' North, 133°27' W On NTS 104N063, Atlin MD., BC

By

Clive Aspinall, M.Sc., P.Eng Pillman Hill, Atlin, BC. V0W1A0

Claim tags: Lake View 1=1209660 Lake View 2 = 1209670

Mineral Notice of Work: #05-0101403-0922. Non-Mechanical Work Dates: Start 25 June 2005 End 25 October 2006

Report: 25th January 2006

Gold Commissioner's Office VANCOUVER, B.C.

Executive Summary

During the summer of 2005 a total of five days were spent sampling and geological mapping a NE trending quartz vein system located on Lake View 1 and 2 mineral claims, located between Birch Creek and Boulder Creek.

Table of Contents

· 、

Executive summary	page 2
Table of Contents	1
1.0 Introduction	4
1.2 Objectives	4
1.3 Location and Access	4
1.4 Legal Property Description and Ownership	4
1.5 Property History	5
1.6 Physiography	5
1.7 Climate and Vegetation	6
1.8 Legal and Cultural	6
1.9 Exploration	7
1.10 Acknowledgments	7
2.0 General Geology	8
2.1 Description of Rocks	9
2.3 Mineral Deposit & Occurrence	11
3.0 Exploration Survey carried out in 2005	12
3.1 Geochemical Prospecting carried out in 2005	12
4.0 Discussion and Conclusions	14
5.0 Recommendations	14
References Appendices	
Statement of Cost Qualifications of Writer Records of Ownership Notices of Work Geochemical Data	
Figures 1 2	after Page

Figures 1, 2	after Page 4
Figure 3	after Page 12

1.0 Introduction

On 25th February 2004 Clive Aspinall of Atlin staked Lakeview 1 & 2 mineral claims consisting of 18 units each to give a total of 36 units held.

During the summer of 2005 a total of five days were spent sampling and geological mapping a NE trending quartz vein located between Birch Creek and Boulder Creek in the southern sector of the claim group, or the Pine Creek valley slopes within the group.

1.2 Objectives

The objective of staking the Lakeview 1 &2 mineral claims was to continue evaluating the geochemical signature and mineralization of a quartz vein system extending for 2.3 Kilometres NE across the claims, concentrating in the Lake View Adit and White Star adit zones.

1.3 Location and Access

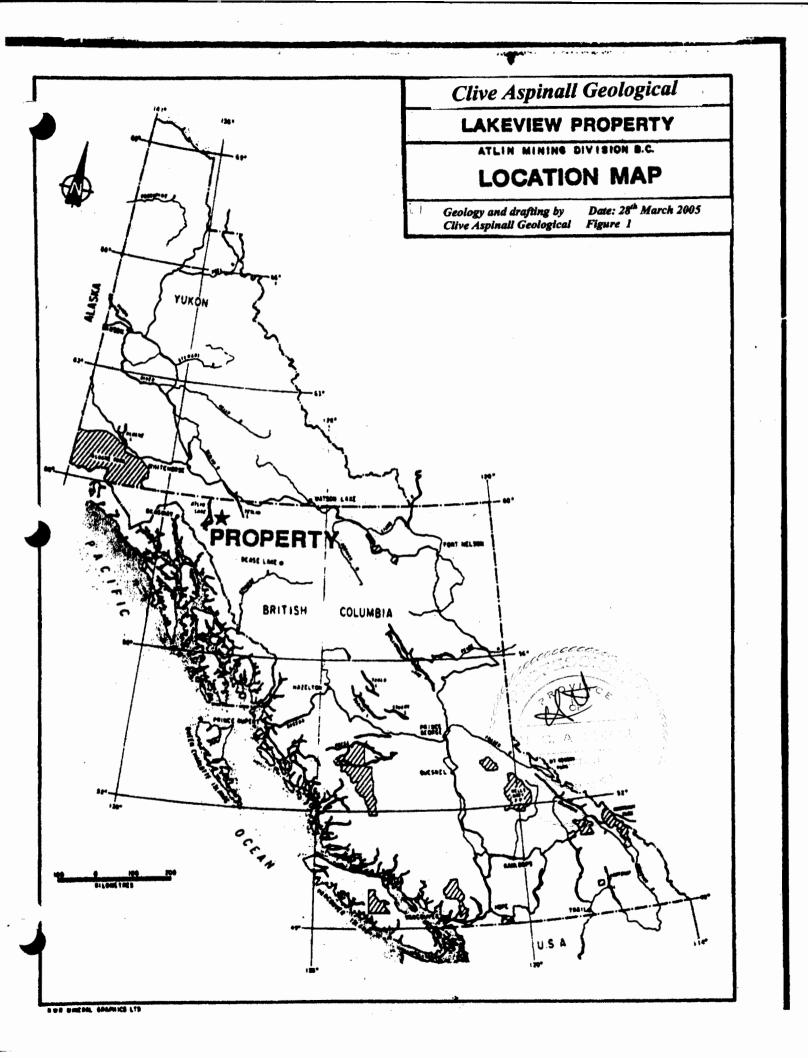
The LCP of Lake View claims claims are located in NW British Columbia, within the Atlin Mining District at:

Lakeview 1: Northing 6612932 Easting 0586949

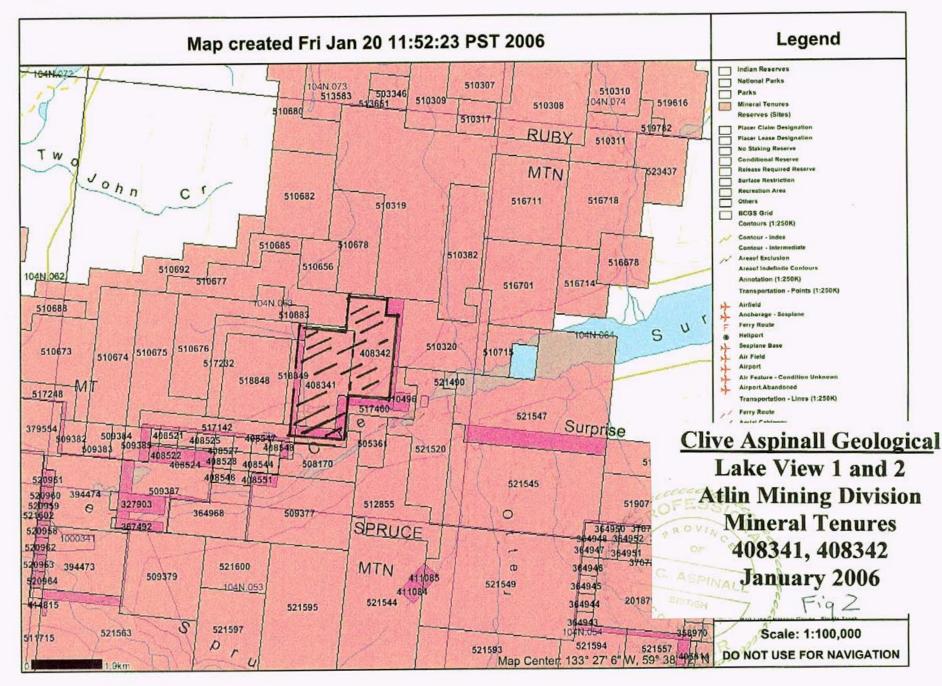
Lakeview 2: Northing 6613891 Easting: 0588154

In degree-minute coordinates, the central part of the property is located at 59° 38.886' north, 133°26.686 west.

Access to the vein system on the Lakeview claims are easily gained from the community of Atlin, a direct distance of 16 kilometres easterly from that community.


1.4 Description and Ownership

Details of legal status are given in Table 1 below


Table 1. Legal Status of Lakeview claims

Claim Name	Tenure	Date staked	Units	Word, De in 2005	ine New Good to	Ownership
Lakeview 1	408341	25 th Februa 2004	ary 18	Yes	25 th February 2007	100%: N.C. Aspinall. FMC 101024
Lakeview 2	408342	25th Februa 2004	ary 18	Yes	25 th February 2007	100%: N.C. Aspinall. FMC 101024

Work carried out in 2005 is being applied to keep the above claims in good standing to 25th February 2007.

U

0

1.5 Property History:

Atlin became known as a productive Canadian placer gold camp in the year 1898, after the discoveries of Miller and Mclaren, who first found gold in paying quantities¹. This placer gold was found initially on Pine Creek and later its tributaries, Spruce, Otter, Ruby, Boulder and Birch creeks.

During 1899, quartz claims or hard rock mineral claims were also staked in the Atlin region. These included claims with²:

- 1. Gold-tellurium quartz veins
- 2. Gold-silver quartz veins
- 3. Cupriferous silver-gold veins
- 4. Silver-lead veins
- 5. Antimony veins

One of the prime hard rock target areas was the gold-tellurium quartz veins on the east side of the Taku Arm, which became known as the Engineer Mine.

Besides other hard rock properties, a number of hard rock claims were staked on Boulder Mountain, between Birch and Boulder Creeks. Prospects staked include the Lake View and White Star group, and were intent on the exploration of the very same NE striking quartz vein referred to above. This quartz vein was found to host to occasional pyrite, galena and traces of gold.

Over time, a 58 foot adit was driven on the White Star group, and a 150 foot adit in addition to two shafts of 35 and 27 feet at the Lake View adit.

A few samples were reported as assaying \$100 and \$300 per ton, a few even more, but generally it was reported these were exceptions, and values of less than \$10 per ton were more realistic³. However, at today's prices the latter would be in the range of \$225 per ton.

In 1981 Yukon Revenue Mines Ltd, based in Whitehorse YT, staked these prospects and carried out a geological survey, including access and trail for 4-wheel drive vehicles to these adits.

Work done by Yukon Revenue reported visible gold at some localities, primarily at the Lake View adit, but generally values are assumed to have been low. In 2004 the writer contacted Ron Granger, (now retired in Kelowna, BC) the explorationist in charge of the survey during 1981, and he also implied results were not encouraging from the Boulder Mountain property.

¹ Geological Survey Branch, Paper No. 26, 1910.

² Ibid.,

³ Geological Survey Branch, Paper No. 26, 1910.

The Yukon Revenue work prompted Cream Silver Ltd, followed by Homestake to carry out work in the Atlin area in 1986. Cream Silver drilled the quartz veins on Boulder Mountain, and intersected 0.592 oz/ton gold over 4 feet⁴.

Cream Silver drilled 15 holes totaling 5,258 feet, and records show most of the quartz vein intersections as being less than 0.015 oz/ton gold. Silver assayed a little better, ranging between 0.2 ppm Ag to 9.2 ppm Ag, with anomalous sections between 11.4 ppm to 156 ppm Ag. These sections total 10 feet of non-contiguous sections⁵.

Cream Silver also carried out airborne electo-magnetic surveys as well as ground IP, which assisted in locating the drilling targets.

Homestake staked considerable areas in the Atlin region, and within the Pine Creek valley concentrated on a listwanite geological model. They drilled the present Muskox Yellow Jacket property on Pine Creek and values of 0.5 oz/ton gold are reported over sections of 10 feet or better, in 1987⁶. These gold values are reported to come from quartz stock-works of with up to 0.5% pyrite in a carbonatized talcose ultramafic.

In 2004 the Lakeview claims were observed to have lapsed, so the writer immediately staked the area. At the same time were on the ground hoping to claim the area also, primarily due to the publicity Muskox Minerals Ltd was getting in re-drilling the Yellow Jacket property.

1.6 Physiography

The Atlin region lies east of the Coast Range Mountains approximately 140 kilometres east of Juneau Alaska. The community of Atlin is situating on the east Shore of Atlin Lake, just north of Pine Creek, at an elevation of 2190 feet, (670m) ASL.

The topography on the east side of Atlin Lake is significantly different from the Coastal ranges, and consists of gentler rounded mountains with a relief in the Atlin area approximating 1,000 metres.

Relief on the Lakeview claims ranges from 1000 metres to 1500 metres, with low lying areas being in the Pine Creek valley.

1.7 Climate and Vegetation

The climate of the Atlin area has witnessed some changes over the past ten years. Falls are mild, extending from September to December, with some -40° F below days during January, otherwise are mild.

Snows usually have been coming late, arriving to stay in December and last until April. Atlin Lake freezes over for shorter periods than previously, staring from early January and breaks up in early May. The lake has open areas in some locations, and can be thin where major creeks flow in to the lake, such as in Pine Creek Bay.

⁴ Assessment Report 15,686.

⁵ Ibid.,

⁶ Ibid

Spring weather is fine, but some summers have been wet, and seem to be influenced by coastal patterns.

Predominantly tree line is around 1100 metres and vegetation above that elevation is essentially open and alpine in nature. At 1000 metre elevation in the Pine Creek valley, there is a low lying flat area, some of which is swampy bordering the north side of Pine Creek.

1.8 Legal and Cultural

The Atlin area is traditionally territory of the Taku River Tlingit. There are a reported 500 Taku River Tlingit, of whom 130 live in the Atlin area. The other 370 are reported to be "outside" this traditional territory in order to find work.

Members of the Taku River Tlingit have worked for the writer in mineral exploration in the past, and make excellent field personnel. Non-aboriginals in Atlin also make excellent field workers, many of whom have advanced first aid training, heavy equipment expertise, and a good knowledge of exploration and mining.

1.9 Exploration

Objectives in 2004 concentrated in reconnaissance mapping and geochemical sampling the NE quartz vein system on the Lakeview property, as well as identifying associated minerals with the veins system, geology and alteration, and presenting in a 1:5000 scale map.

This work was carried out over five days by the writer between 25th June 2004 and 25th October 2004.

Outside the Lakeview claim area, the NE Quartz vein system was traced and projected for a possible 9.2 kilometres from the White Star adit to the head of Boulder Creek at the Black Diamond mine, then eastwards across the Ruby Creek valley to mountain slopes on the east side of that valley.

This gives the potential total length of the NE quartz vein a distance of 11.5 kilomtres, as well as a variable change of mineral regimen along trend, and suggesting relatively younger age than originally thought, Ref: Figure 3.

Survey techniques essentially consisted of geological observations and the collecting of rock and soil samples.

Four soil samples, three rock, and one tailings samples were sent to Eco-Tech Laboratory Ltd, 10041 Drive, and Kamloops, BC. V6C 6T4 for analysis.

1.10 Acknowledgments

I would like to thank the youthful Rizki Formulantono, who visiting Atlin from West Java, volunteered to assist the writer carrying out the 2004 assessment work on the Lakeview claims.

I also which to acknowledge Ronald Granger for his assistance sending me his hand drafted maps he used when investigating the property for Yukon Revenue Ltd.

2.0 General Geology

According to the records⁷, J.C. Gwilliam was one of the first government geologists to report on the Atlin district in the years 1899-1900. At that that time Atlin was primarily a placer mining camp, and evidently hard rock gold mining data from the Imperial claim at Monroe Mountain north of Pine Creek and other areas were not included. At the same time, a BC government geologist included a report on the Atlin district for the BC Department of mines.⁸

In 1910 D.D Cairnes⁹ carried out work in portions of the Atlin district with the objective to gain an estimate of the hard rock deposits in the district, primarily coal and various other mineral prospects. In addition, Cairnes carried out a geological and topographical survey around Taku Arm, and the upper end of Atlin Lake and parts of the Southwestern region.

In 1950, S.S Holland investigated the production of placer gold in the Atlin camp for the BC Geological Branch, and then geological mapping of the Atlin area began in earnest in 1951 to 1955 by J.D Aitkin under the auspices of the Geological Survey of Canada.¹⁰ Between 1966-1968 J.W.D Monger, also of the Geological Survey, selectively mapped the Atlin area and published his findings in GSC paper 74-47. Other Geological Survey geologists who later investigated the Atlin area were Bruce Ballantyne and Mackinnon.¹¹

In the late 1980's geologists of the BC Geological branch commenced annual studies in the Atlin area, and these geologists include Mary Anne Bloodgood and others, C.H Ash and others, Patrick J. Sack, as well as M.G Mihalynuk an others. These studies continue to the present time.

The general geology described herein is taken directly from Patrick J. Sack and Mihalynuk¹².

"The Atlin placer camp is located in the northwest corner of the northern Cache Creek Terrane. In northwestern BC, the Cache Creek Terrane consists largely of an accreted complex of oceanic sedimentary strata of Missippian to Jurassic age, (Monger, 1975; Mihalynuk, 1999) and ophiolitic rocks of Late Permian to Triassic age. Cache Creek strata were deformed and amalgamated to the ancestral continental margin between 174 and 172 Ma (Middle Jurassic) and were intruded by post collisional Middle Jurassic plutons, (Mihalynuk et al., in press?) and younger Cretaceous and Tertiary Felsic intrusions, (Mihalynuk, et al., 1992)."

⁷ Summary Report of the Geological Survey, 1910.

⁸ Rebertson, W.F. 1898, BC Dep.Mines.

⁹ Ibid.

¹⁰ Memoir 307, Atlin Map Area, British Columbia

¹¹ Geological Assoc. Canada, 1986.

¹² Proximal gold-cassiterite nuggets and composition of the Feather Creek placer gravels: clues to a lode source near Atlin, BC. 2003?

"Near the town site of Atlin, remnant ocean crust and upper mantle is referred to as the "Atlin Ophiolitic Assemblage" and is interpreted by Ash (2001) to have been thrust over the pelagic meta-sedimentary rocks and referred to as the "Atlin Accretionary Complex", (ibid). Which is the dominated lithology to the east? North of Atlin, both mantle and dismembered ophiolite are intruded by Fourth of July Batholith (172 Ma) and, further to the northeast, by the surprise Lake Batholith, (84-80 Ma; Mihalynuk et al, 1992; 2003a) According to Minefiles, rocks on the Lakeview property consists of intermediate to basic volcanic rocks of the Lower Mississippian to Middle Pennsylvanian Nakina Formation of the Mississippian to Triassic Cache Creek Group (Complex?). This package is composed of olivine-bearing basalts and andesite under varying degrees of silicification.

These rocks are in close contact with ultramafic rocks of the "Atlin Ophiolitic Assemblage" mentioned above, and overlain by cherts, argillites, and lime-stones of the Upper Mississippian to Upper Pennsylvanian Kedahda Formation of the Cache Creek Group.

Fresh ultramafic rocks appear as peridotite but they are often highly serpentinized and talc-altered. The occurrence comprises quartz-calcite veins hosted in silici- fied and carbonate altered "listwanitic" zones within the andesite. In the altered wall- rock, pyrite, mariposite, ankerite, chromite, and magnetite occur as disseminated grains.

Field work completed in 2004 includes field observations of in-situ rocks, reconnaissance geological, mapping of a selected area, collection of rocks and soils for geochemical analysis, and field observations of mineralization.

2.1 Description of Rocks

Rocks found within the Lakeview property are similar to those found on the Imperial Property 13 kilometres to the west, on Monroe Mountain¹³.

Main rock types include two types. The first are metamorphosed andesine/basalts, chert, argillite and tuffs and reported gabbroic rocks (7), essentially undifferentiated for mapping purposes. The second type are carbonatized ultramafics, ultramafics, peridotites and serpentinites (9 a, c), In some localities alteration of these rocks is associated with a dominant SW trending fault system, a possible splay fault to the Pine Creek Fault.

Metamorphosed andesine basalts on the weathered surface show rusty weathered alteration where quartz veining is present. This rusty alteration is due in part to locally moderate carbonization and weathering of disseminated pyrite. However, where this alteration is present, distinguishing carbonate metamorphosed andesine basalt from carbonatized ultramafiscs is challenging.

Unaltered fresh samples of andesine basalt are grey and massive; grey in colour, and hard. Under the hand lens fresh samples are assumed to be dominated by plagioclase and probable actinolite in moderately to strongly varying proportions. In out crop where stock work quartz veins are present, disseminated pyrite is hosted along the vein-host rock boundaries. Structurally, these rocks bedding cleavages striking NE and dipping 80

¹³ Aspinall, (2004) Assessment Report, Imperial mineral claim.

Banded cherts are present, black to dark grey in colour, aphanitic in texture, and invariably associated with bedded dark grey to black argillites.

Photograph 1. Quartz Vein outcrop, White Star Adit. Photograph by Clive Aspinall, 2005

The ultramafic rocks include silica-carbonated dunite, locally with fuchsite alteration, and surface manganese staining. They also consist of serpenitite, peridotite. Also present are mafic dykes that have undergone varying intensities of carbonatization as well as serpentinization.

Also, altered ultramafic rocks which invariably host scattered clusters of chromite (altered to pyrite and locally magnetite) are present. These rocks locally are associated with magnesite, ankerite, dolomite, calcite, and quartz.

In certain localities, these ultramafic rocks show a strongly elongated texture. Also locally, in areas of assumed faulting, minor patches of fuchsite are in part associated with chromite and in part associated with quartz.

Alteration of the ultramafic rocks is generally present where faulting or quartz veining is present. Visually, dominant alteration is carbonatization, evident by its orange-brown colour. Fuchite is erratically present with this type of alteration; sometimes it occurs within the ultramafics and other times associated with the quartz vein material.

Structurally, the ultramafic rocks lie within the northwestern and western part of the map area, and the andesine basalts/chert argillite suite of rocks within the east and northeast sector of the map area, Ref; Plate 1. These two suites of rocks are separated by a dominant NE striking fault and then a NW striking fault, which bounds the ultramafics.

2.2 Mineral Deposits & Occurrences

Creeks located east of Atlin are known for the discovery of placer gold since 1898. Significantly, these creeks are proximal to Atlins Ophiolitic Assemblage. In 1950 it was reported by Holland ¹⁴ that production from the above creeks to 1946 was 634,147 ounces. These creeks are itemized in Table 2

Creek Name	Ounces of Gold Produced 1898-
	1946
Spruce Creek	262.603
Pine Creek	138,144
Boulder Creek	67,811
Ruby Creek	55,272
Mckee Creek	46,953
Otter Creek	20,113
Wright Creek	14,729
Birch Creek	12,898
All others, (21 Creeks)	15,624

Table 2.	Gold Pro	duction from	Atlin (Creeks.	1898-1946
----------	----------	--------------	---------	---------	-----------

On Boulder Creek, placer miners in 1903 also found placer wolframite and placer tin. This lead to the discovery of the Black Diamond mine, from which wolframite was handcobbed towards the end of World War II.

The Adanac molybdenum porphyry deposit near Atlin is located 4 kilometres north of the Lakeveiw Property. This deposit was discovered in 1905. It was noted by J.D Aitkin in Memoir 307, and "re-discovered" by Ed Mueller of Adanac Exploration and Mining Ltd, and Clive Aspinall of Canadian Johns-Manville Company Limited in 1966-67.

It was explored extensively between 1967-1981 by these companies, by Kerr Addison Ltd, and others.

In 1981, Placer Development Limited reported an "undiluted mineable mineral reserve" of 151 971 000 tonnes grading 0.063% Mo at a cutoff grade of 0.04% Mo and a strip ratio of 1.5:1.

The property was allowed to lapse, and exploration and feasibility studies were reactivated in 2004 by Adanac Moly Corp.

3.0 Exploration Surveys Carried out in 2005

Two lineaments strike across the property; one at 35°NE and a second at 330° NW.

The 35° NE lineament was given the most attention during this survey as the Lake View quartz vein, maybe part of, or the result of the 35°NE lineament, refer figure 3.

¹⁴ Holland, S.S., 1950.

This quartz vein system in the region of the Lake View adit is composite of two major milky quartz veins, each up to 1 metre wide, associated with erratic quartz stockworks of veins ranging between 2 cm -5 cm.

The portal to the Lake View Adit was not located, and is believed bull-dozed over and sealed with overburden.

The walls adjacent to these narrow quartz veins host disseminated pyrite, while the thicker veins lack pyrite but host arsenopyrite, occasional traces galena mineralization, and traces malachite.

At the White Star adit, approximately 1 km NW of the Lake View Adit, the quartz vein on surface is up to 2 metres wide.

It is partially covered with overburden, so could be thicker. No attempt was made to venture into the White Star adit as since the portal was partly sealed with overburden, and a miner's lamp or a flash light would have essential.

Photograph 2 Quartz spoils from white Star Adit, With view of West end Surprise Lake in distance. Photograph by Clive Aspinall, 2005.

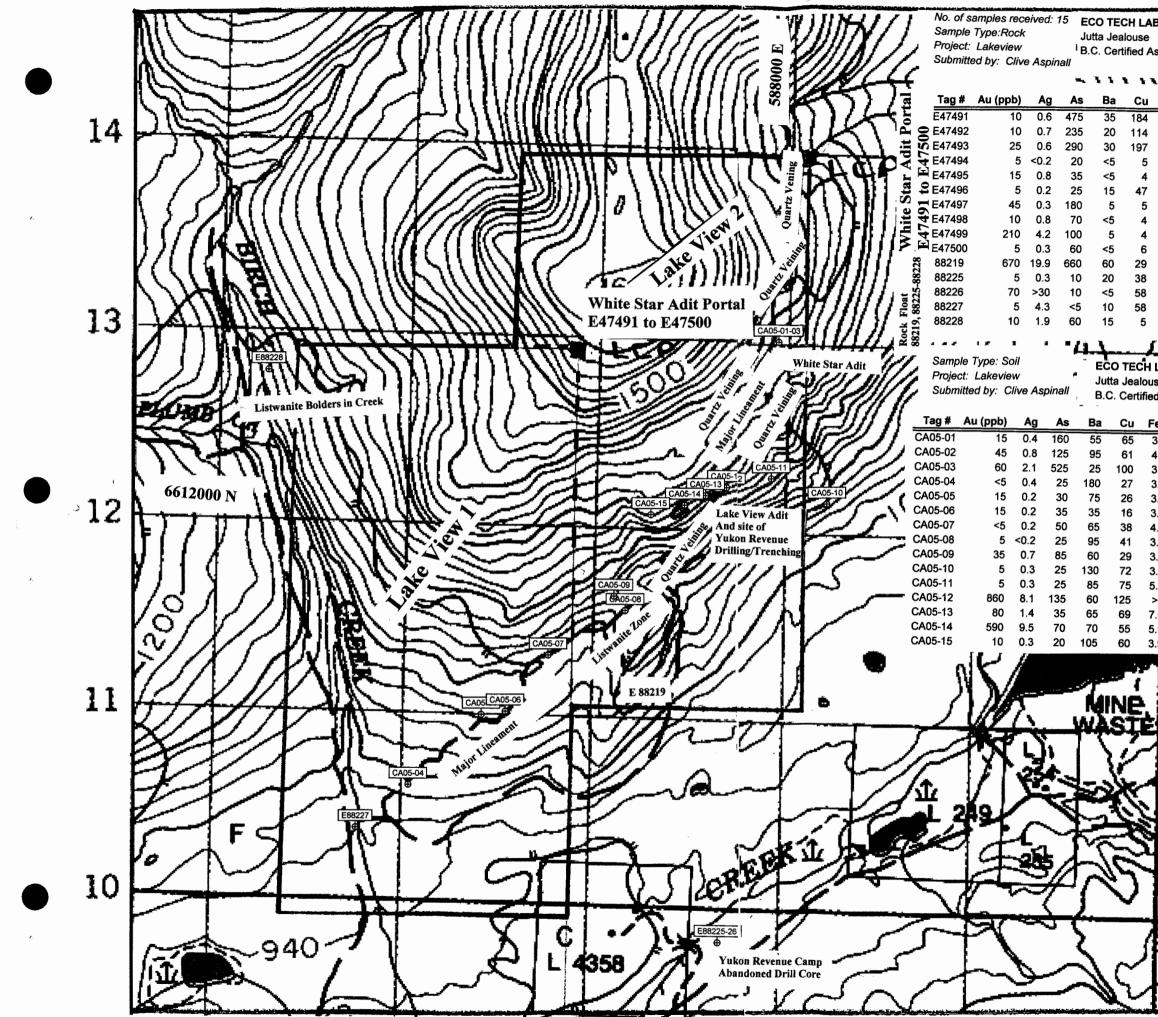
Within the Lakeview Property, the quartz vein system consists of white milky quartz, with sporadic traces of pyrite and arsenopyrite and occasionally traces of galena. This mineralization occurs along vein rims, and is sometimes associated with a fushite looking mineral.

Within the host rock bordering the vein walls, sometimes disseminated pyrite is present. In many cases weathered pyrite has oxidized parts of the wall rock and quartz vein rims. Where the vein system intrudes ultramfic rock, brown-orange brown carbonatization alteration is prevalent.

Where the 35°NE lineament intersects the 330° NW lineament, a listwanite section is present within the west side of the former, and this too host traces of sulphides and fuchsite.

3.1 Geochemical Prospecting in 2005

During 2005, five days were spent on the Lakeview Property primarily making observations and collecting 30 samples, (15 soils, 15 rock tailing spoils and float).


These samples were collected along the quartz vein system and the 35°NE lineament, and their projections. Refer Figure 3.

It should be noted that rock samples E47491-E47500 are essentially quartz vein f samples taken randomly from the spoil dumps outside the adit's portal.

Sample 88219 is a listwanite float sample from the general area where the two mentioned lineaments intersect. Samples 88255 and 88256 are abandoned drill cores taken from the 1980 Yukon Revenue Ltd camp site, the latter sample hosting molybdenum, and sample 88258 is a silicified listwanite boulder fragment collected from boulder Creek

Au						Fe	Mg	2022022000									
Tag #	(ppb)	Ag	As	Ba	Cu	%	%	Mn	Mo.	Ni	Pb	Sb	Sn	Zn			
CA05-																	
01	15	0.4	160	55	65	3.84	1.42	341	<1	256	24	<5	<20	47			
CA05-												_					
02	45	0.8	125	95	61	4.14	1.36	858	<1	355	45	<5	<20	59			
CA05-			505	05	400		0.05	1000				40	-00				
03	60	2.1	525	25	100	3.33	2.35	1283	<1	1168	94	10	<20	62			
CA05- 04	<5	0.4	25	180	27	3.54	1.75	774	<1	478	16	<5	<20	47			
CA05-	~0	0.4	25	100	21	5.54	1.75	114	~,	4/0	10	~0	~20	47			
05	15	0.2	30	75	26	3.79	4.13	652	<1	726	12	10	<20	27			
CA05-		0.2		10	20	0.70		OOL	•	120	•		-20				
06	15	0.2	35	35	16	3.50	5.76	526	<1	1280	4	15	<20	3			
CA05-																	
07	<5	0.2	50	65	38	4.19	3.51	649	<1	813	24	5	<20	28			
CA05-																	
08	5	<0.2	25	95	41	3.78	3.21	667	<1	520	12	10	<20	34			
CA05-				~~	~~		~ . ~					40		05			
09	35	0.7	85	60	29	3.18	3.12	529	<1	761	10	10	<20	25			
CA05- 10	5	0.3	25	130	72	3.73	1,70	765	<1	333	16	<5	<20	53			
CA05-	5	0.3	20	150	12	a.ra	1.70	703	~1	333	10	~0	~20	- 33			
11	5	0.3	25	85	75	5.64	1.60	1324	2	209	18	<5	<20	55			
CA05-	Ŭ	0.0	20	00		0.01	1.00	1024	-	200			-20				
12	860	8,1	135	60	125	>10	0.70	1249	9	79	22	<5	<20	86			
CA05-																	
13	80	1.4	35	65	69	7.60	0.86	1410	5	83	16	<5	<20	67			
CA05-																	
14	590	9.5	70	70	55	5.99	0.93	1049	4	59	16	<5	<20	71			
CA05-																	
15	10	0.3	20	105	60	3.92	1.04	1122	1	98	16	<5	<20	65			

Table 3. Soil samples form Lake View 1 & 2 Mineral Claims

uFe % Mg %MnMoNiPbSbZn4 4.15 2.75 1168 <1 968 16 <5 40 4 3.29 2.14 565 <1 437 24 <5 42 7 4.89 2.34 1439 <1 624 18 <5 47 5 0.34 0.01 44 <1 17 2 <5 3 4 0.54 0.49 99 <1 44 40 <5 8 7 1.78 1.25 104 <1 69 14 <5 31 5 1.55 2.90 554 <1 225 20 15 18 4 0.92 0.89 129 <1 89 56 5 22 4 0.87 1.04 234 <1 145 80 10 151 6 $0.55 < 0.01$ 200 <1 30 12 <5 3 9 >10 4.59 622 3 414 34 <5 61 8 1.45 0.09 142 4 7 10 <5 261 8 $0.46 < 0.01$ 862 32 5 8660 30 24			-													
PASSBUT TABLE TO THE ACT OF THE	AE	OR	AT	OR	YL	TD.	1					-	7,	-		
$\frac{v}{J^2} = \frac{v}{4} \frac{v}{4} \frac{w}{16} \frac{w}{4} \frac{w}{168} \frac{v}{5} \frac{v}{1} \frac{w}{968} \frac{v}{16} \frac{v}{5} \frac{v}{40} \frac{v}{4} \frac{v}{3.29} \frac{v}{2.14} \frac{v}{565} \frac{v}{51} \frac{v}{457} \frac{v}{4.56} \frac{v}{42} \frac{v}{57} \frac{v}{4.589} \frac{v}{2.34} \frac{v}{1439} \frac{v}{51} \frac{v}{624} \frac{v}{18} \frac{v}{55} \frac{v}{47} \frac{v}{5} \frac{v}{3} \frac{v}{4} \frac{v}{54} \frac{v}{49} \frac{v}{9} \frac{v}{14} \frac{v}{41} \frac{v}{55} \frac{v}{25} \frac{v}{25} \frac{v}{25} \frac{v}{56} \frac{v}{5} \frac{v}{22} \frac{v}{5} \frac{v}{580} \frac{v}{59} \frac{v}{129} \frac{v}{44} \frac{v}{51} \frac{v}{125} \frac{v}{25} \frac{v}{25} \frac{v}{25} \frac{v}{56} \frac{v}{5} \frac{v}{22} \frac{v}{5} \frac{v}{56} \frac{v}{51} \frac{v}{135} \frac{v}{51} $	se						\sim	<u> </u>	<u>_</u>		-	L	~	-		
$\frac{v}{4} \frac{Fe & Wg & Mn & Mo & Ni & Pb & Sb & Zn}{4}$ $\frac{4}{4.15} \frac{2.75}{2.75} \frac{1168}{1565} \frac{<1}{<1} \frac{968}{97} \frac{16}{16} \frac{<5}{<5} \frac{20}{40}$ $\frac{4}{3.29} \frac{2.14}{2.14} \frac{565}{565} \frac{<1}{<1} \frac{437}{437} \frac{24}{24} \frac{<5}{5} \frac{42}{42}$ $\frac{7}{4.89} \frac{2.34}{2.34} \frac{1439}{1439} \frac{<1}{<1} \frac{6924}{2.20} \frac{18}{18} \frac{<5}{5} \frac{47}{47}$ $\frac{5}{5} \frac{0.34}{0.01} \frac{0.01}{44} \frac{41}{<1} \frac{17}{12} \frac{2.5}{20} \frac{15}{18}$ $\frac{10.92}{4} \frac{0.92}{0.89} \frac{0.99}{129} \frac{<1}{<1} \frac{89}{89} \frac{56}{5} \frac{5}{5} \frac{22}{22}$ $\frac{4}{20.87} \frac{10.4}{10.4} \frac{234}{234} \frac{<1}{<1} \frac{145}{145} \frac{80}{80} \frac{10}{10} \frac{151}{15}$ $\frac{5}{6} \frac{0.55}{0.01} \frac{200}{20} \frac{<1}{30} \frac{3}{12} \frac{<5}{5} \frac{3}{20} \frac{24}{25}$ $\frac{6}{5} \frac{0.56}{20} \frac{<1}{20} \frac{3}{21} \frac{41}{43} \frac{34}{45} \frac{<5}{51} \frac{51}{15}$ $\frac{11}{5} \frac{0.46}{0.01} \frac{862}{82} \frac{32}{2} \frac{5}{5} \frac{8660}{800} \frac{30}{24}$ $\frac{11}{5} \frac{0.46}{0.01} \frac{862}{82} \frac{32}{2} \frac{5}{5} \frac{8660}{860} \frac{30}{24}$ $\frac{11}{5} \frac{1.27}{2.29} \frac{87}{87} \frac{1}{48} \frac{14}{45} \frac{<5}{51} \frac{11}{5}$ $\frac{11}{5} \frac{1.26}{2.29} \frac{87}{74} \frac{48}{4} \frac{14}{45} \frac{<5}{51} \frac{11}{5}$ $\frac{11}{5} \frac{1.28}{2.1} \frac{1119}{74} \frac{1}{1573} \frac{4}{25} \frac{5}{20} \frac{27}{29}$ $\frac{7}{3.50} \frac{5.76}{5.76} \frac{526}{5.26} \frac{<1}{1280} \frac{4}{4} \frac{15}{20} \frac{<20}{27}$ $\frac{3.18}{3.12} \frac{529}{57} \frac{<1}{761} \frac{726}{12} \frac{10}{10} \frac{<20}{20} \frac{34}{23}$ $\frac{3.18}{3.12} \frac{529}{529} \frac{<1}{51} \frac{761}{333} \frac{16}{16} \frac{<5}{520} \frac{<20}{71}$ $\frac{7}{3.99} \frac{13}{1.13} \frac{1049}{2} \frac{4}{59} \frac{59}{16} \frac{<5}{520} \frac{67}{57}$ $\frac{51}{3.99} \frac{1049}{149} \frac{4}{59} \frac{59}{16} \frac{16}{5} \frac{<20}{20} \frac{67}{7}$ $\frac{7}{3.99} \frac{1.13}{1.90} \frac{10.92}{10.94} \frac{4}{59} \frac{59}{16} \frac{16}{5} \frac{<20}{20} \frac{67}{7}$ $\frac{7}{3.99} \frac{1.13}{1.90} \frac{10.94}{12} \frac{4}{19} \frac{59}{16} \frac{16}{5} \frac{<20}{20} \frac{67}{7}$ $\frac{7}{3.99} \frac{1.13}{1.90} \frac{10.94}{12} \frac{4}{59} \frac{59}{16} \frac{16}{5} \frac{<20}{20} \frac{67}{7}$ $\frac{7}{3.99} \frac{1.30}{1.90} \frac{10.94}{4} \frac{59}{59} \frac{16}{5} \frac{<20}{20} \frac{67}{7}$ $\frac{7}{3.99} \frac{1.30}{1.90} \frac{10.94}{12} \frac{4}{59} \frac{59}{16} \frac{5}{5} \frac{<20}{20} \frac{67}{7}$ $\frac{7}{3.99} \frac{10.94}{13} \frac{4}{59} \frac{59}{16} \frac{<5}{5} \frac{<20}{20} \frac{67}{7}$ $\frac{7}{3.99} \frac{10.9}{1$	i As	say	er				\mathbf{N}	Ń			-			5		
$\frac{v}{4} \frac{Fe & Wg & Mn & Mo & Ni & Pb & Sb & Zn}{4}$ $\frac{4}{4.15} \frac{2.75}{2.75} \frac{1168}{1565} \frac{<1}{<1} \frac{968}{97} \frac{16}{16} \frac{<5}{<5} \frac{20}{40}$ $\frac{4}{3.29} \frac{2.14}{2.14} \frac{565}{565} \frac{<1}{<1} \frac{437}{437} \frac{24}{24} \frac{<5}{5} \frac{42}{42}$ $\frac{7}{4.89} \frac{2.34}{2.34} \frac{1439}{1439} \frac{<1}{<1} \frac{6924}{2.20} \frac{18}{18} \frac{<5}{5} \frac{47}{47}$ $\frac{5}{5} \frac{0.34}{0.01} \frac{0.01}{44} \frac{41}{<1} \frac{17}{12} \frac{2.5}{20} \frac{15}{18}$ $\frac{10.92}{4} \frac{0.92}{0.89} \frac{0.99}{129} \frac{<1}{<1} \frac{89}{89} \frac{56}{5} \frac{5}{5} \frac{22}{22}$ $\frac{4}{20.87} \frac{10.4}{10.4} \frac{234}{234} \frac{<1}{<1} \frac{145}{145} \frac{80}{80} \frac{10}{10} \frac{151}{15}$ $\frac{5}{6} \frac{0.55}{0.01} \frac{200}{20} \frac{<1}{30} \frac{3}{12} \frac{<5}{5} \frac{3}{20} \frac{24}{25}$ $\frac{6}{5} \frac{0.56}{20} \frac{<1}{20} \frac{3}{21} \frac{41}{43} \frac{34}{45} \frac{<5}{51} \frac{51}{15}$ $\frac{11}{5} \frac{0.46}{0.01} \frac{862}{82} \frac{32}{2} \frac{5}{5} \frac{8660}{800} \frac{30}{24}$ $\frac{11}{5} \frac{0.46}{0.01} \frac{862}{82} \frac{32}{2} \frac{5}{5} \frac{8660}{860} \frac{30}{24}$ $\frac{11}{5} \frac{1.27}{2.29} \frac{87}{87} \frac{1}{48} \frac{14}{45} \frac{<5}{51} \frac{11}{5}$ $\frac{11}{5} \frac{1.26}{2.29} \frac{87}{74} \frac{48}{4} \frac{14}{45} \frac{<5}{51} \frac{11}{5}$ $\frac{11}{5} \frac{1.28}{2.1} \frac{1119}{74} \frac{1}{1573} \frac{4}{25} \frac{5}{20} \frac{27}{29}$ $\frac{7}{3.50} \frac{5.76}{5.76} \frac{526}{5.26} \frac{<1}{1280} \frac{4}{4} \frac{15}{20} \frac{<20}{27}$ $\frac{3.18}{3.12} \frac{529}{57} \frac{<1}{761} \frac{726}{12} \frac{10}{10} \frac{<20}{20} \frac{34}{23}$ $\frac{3.18}{3.12} \frac{529}{529} \frac{<1}{51} \frac{761}{333} \frac{16}{16} \frac{<5}{520} \frac{<20}{71}$ $\frac{7}{3.99} \frac{13}{1.13} \frac{1049}{2} \frac{4}{59} \frac{59}{16} \frac{<5}{520} \frac{67}{57}$ $\frac{51}{3.99} \frac{1049}{149} \frac{4}{59} \frac{59}{16} \frac{16}{5} \frac{<20}{20} \frac{67}{7}$ $\frac{7}{3.99} \frac{1.13}{1.90} \frac{10.92}{10.94} \frac{4}{59} \frac{59}{16} \frac{16}{5} \frac{<20}{20} \frac{67}{7}$ $\frac{7}{3.99} \frac{1.13}{1.90} \frac{10.94}{12} \frac{4}{19} \frac{59}{16} \frac{16}{5} \frac{<20}{20} \frac{67}{7}$ $\frac{7}{3.99} \frac{1.13}{1.90} \frac{10.94}{12} \frac{4}{59} \frac{59}{16} \frac{16}{5} \frac{<20}{20} \frac{67}{7}$ $\frac{7}{3.99} \frac{1.30}{1.90} \frac{10.94}{4} \frac{59}{59} \frac{16}{5} \frac{<20}{20} \frac{67}{7}$ $\frac{7}{3.99} \frac{1.30}{1.90} \frac{10.94}{12} \frac{4}{59} \frac{59}{16} \frac{5}{5} \frac{<20}{20} \frac{67}{7}$ $\frac{7}{3.99} \frac{10.94}{13} \frac{4}{59} \frac{59}{16} \frac{<5}{5} \frac{<20}{20} \frac{67}{7}$ $\frac{7}{3.99} \frac{10.9}{1$							11			<u>س</u>	7			4		
$\frac{4}{4} \frac{4.15}{2.75} \frac{2.75}{1168} \frac{116}{55} \frac{11}{4} \frac{437}{329} \frac{24}{24} \frac{55}{54} \frac{42}{42}$ 7 4.89 2.34 1439 c1 624 18 c5 47 5 0.34 0.01 44 c1 17 2 c5 3 4 0.54 0.49 99 c1 44 40 c5 8 7 1.78 1.25 104 c1 69 14 c5 31 5 1.55 2.90 554 c1 225 20 15 18 6 0.55 0.01 200 c1 30 12 c5 3 9 >10 4.59 622 3 414 34 c5 61 8 1.45 0.09 142 4 7 10 c5 261 8 0.46 0.01 862 32 5 8660 30 24 8 1.72 0.29 87 c1 48 14 c5 11 5 4.21 >10 1119 c1 1573 4 25 10 HLABORATORY LTD. OUSE fied Assayer Fe % Mg % Mn Mo Ni Pb Sb Sn Zn 7 3.84 142 341 c1 256 24 c5 c20 47 3.34 142 341 c1 256 24 c5 c20 59 3.33 2.35 1283 c1 1168 94 10 c20 62 3.54 1.75 774 c1 478 16 c5 c20 27 3.50 5.76 526 c1 1280 4 15 c20 3 4.19 3.51 649 c1 813 24 5 c20 34 3.18 3.12 529 c1 761 10 10 c20 25 3.73 1.70 765 c1 333 16 c5 c20 59 3.73 2.1667 c1 220 12 10 c20 34 3.18 3.12 529 c1 761 10 10 c20 25 3.73 1.70 765 c1 333 16 c5 c20 57 3.73 1.70 765 c1 333 16 c5 c20 67 3.73 1.70 765 c1 333 16 c5 c20 67 3.73 1.70 765 c1 333 16 c5 c20 57 3.73 1.70 765 c1 333 16 c5 c20 57 3.73 1.70 765 c1 333 16 c5 c20 67 3.73 1.70 765 c1 333 16 c5 c20 57 3.73 1.70 765 c1 333 16 c5 c20 67 3.73 1.70 765 c1 333 16 c5 c20 67 3.73 1.70 765 c1 333 16 c5 c20 67 3.73 1.70 765 c1 330 16 c5 c20 67 3.73 1.70 765 c1 330 16 c5 c20 67 3.99 0.93 1049 4 59 16 c5 c20 67 3.99 0.93 1049 14 59 16 c5 c20 67 3.99 0.93 1049 14 59 16 c5 c20 67 3.99 0.93 1049 14 59 16 c5 c20 67 3.99 104 1122 1 98 16 c5 c20 67 3.99 104 1122 1 98 16 c5 c20 67 3.99 0.93 1049 4 59 16 c5 c20 67 3.90 0.86 1410 5 83 16 c5 c20 67 3.90 0.86	1 1	1	k 1	1	۲1	۹	11	X	_	11			-	1		
$\frac{4}{4} \frac{4.15}{2.75} \frac{2.75}{1168} \frac{116}{55} \frac{11}{4} \frac{437}{329} \frac{24}{24} \frac{55}{54} \frac{42}{42}$ 7 4.89 2.34 1439 c1 624 18 c5 47 5 0.34 0.01 44 c1 17 2 c5 3 4 0.54 0.49 99 c1 44 40 c5 8 7 1.78 1.25 104 c1 69 14 c5 31 5 1.55 2.90 554 c1 225 20 15 18 6 0.55 0.01 200 c1 30 12 c5 3 9 >10 4.59 622 3 414 34 c5 61 8 1.45 0.09 142 4 7 10 c5 261 8 0.46 0.01 862 32 5 8660 30 24 8 1.72 0.29 87 c1 48 14 c5 11 5 4.21 >10 1119 c1 1573 4 25 10 HLABORATORY LTD. OUSE fied Assayer Fe % Mg % Mn Mo Ni Pb Sb Sn Zn 7 3.84 142 341 c1 256 24 c5 c20 47 3.34 142 341 c1 256 24 c5 c20 59 3.33 2.35 1283 c1 1168 94 10 c20 62 3.54 1.75 774 c1 478 16 c5 c20 27 3.50 5.76 526 c1 1280 4 15 c20 3 4.19 3.51 649 c1 813 24 5 c20 34 3.18 3.12 529 c1 761 10 10 c20 25 3.73 1.70 765 c1 333 16 c5 c20 59 3.73 2.1667 c1 220 12 10 c20 34 3.18 3.12 529 c1 761 10 10 c20 25 3.73 1.70 765 c1 333 16 c5 c20 57 3.73 1.70 765 c1 333 16 c5 c20 67 3.73 1.70 765 c1 333 16 c5 c20 67 3.73 1.70 765 c1 333 16 c5 c20 57 3.73 1.70 765 c1 333 16 c5 c20 57 3.73 1.70 765 c1 333 16 c5 c20 67 3.73 1.70 765 c1 333 16 c5 c20 57 3.73 1.70 765 c1 333 16 c5 c20 67 3.73 1.70 765 c1 333 16 c5 c20 67 3.73 1.70 765 c1 333 16 c5 c20 67 3.73 1.70 765 c1 330 16 c5 c20 67 3.73 1.70 765 c1 330 16 c5 c20 67 3.99 0.93 1049 4 59 16 c5 c20 67 3.99 0.93 1049 14 59 16 c5 c20 67 3.99 0.93 1049 14 59 16 c5 c20 67 3.99 0.93 1049 14 59 16 c5 c20 67 3.99 104 1122 1 98 16 c5 c20 67 3.99 104 1122 1 98 16 c5 c20 67 3.99 0.93 1049 4 59 16 c5 c20 67 3.90 0.86 1410 5 83 16 c5 c20 67 3.90 0.86		Fe	%	Ma	%	м	n M	•	Ni		Ph	Sh		7n		Ĺ
4 329 2.14 565 <1 437 24 <5 42 7 4.89 2.34 1439 <1 624 18 <5 47 5 0.34 0.01 44 <1 17 2 <5 3 4 0.54 0.49 99 <1 44 40 <5 8 7 1.78 1.25 104 <1 69 14 <5 31 5 1.55 2.90 554 <1 225 20 15 18 4 0.92 0.89 129 <1 89 56 5 22 4 0.87 1.04 234 <1 145 80 10 151 6 0.55 0.01 200 <1 30 12 <5 3 9 >10 4.59 622 32 5 8660 30 24 8 1.45 0.09 142 4 7 10 <5 261 8 0.46 0.01 862 32 5 8660 30 24 8 1.45 0.09 142 4 7 10 <5 261 8 0.46 0.01 862 32 5 8660 30 24 8 1.45 0.09 142 4 7 10 <5 261 8 0.46 0.01 119 <1 1573 4 25 10 HLABORATORY LTD. OUSE fied Assayer Fe'X Mg' Mn Mo Ni Pb Sb Sn Zn 3.34 1.42 341 <1 256 24 <5 20 47 3.34 1.42 341 <1 256 24 <5 20 47 3.34 1.42 341 <1 256 24 <5 20 47 3.35 2.57 526 <1 1280 4 15 20 3 3.34 1.42 341 <1 250 12 10 20 27 3.50 5.76 526 <1 1280 4 15 20 3 3.78 3.21 667 <1 520 12 10 20 27 3.50 5.76 526 <1 1280 4 15 20 3 3.78 3.21 667 <1 520 12 10 20 27 3.50 5.76 526 <1 333 16 <5 20 55 3.78 3.21 667 <1 520 12 10 20 27 3.50 5.76 526 <1 333 16 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 65 5.90 0.93 1049 4 59 16 <5 20 65 5.90 0.93 1049 4 59 16 <5 20 65 5.90 0.93 1049 4 59 16 <5 20 65 5.90 0.93 1049 4 59 16 <5 20 65 5.90 0.93 1049 4 59 16 <5 20 65 5.90 0.93 1049 4 59 16 <5 20 65 5.90 0.93 1049 4 59 16 <5 20 65 5.90 0.93 1049 4 59 16 <5 20 65 5.90 0.97 1.90 1119 5.90 1.90 1.90 1.90 1.90	_	_	_	_	_	_		·	· .			_	_	_	R	
7 4.89 2.34 1439 <1 624 18 <5 47 5 0.34 0.01 44 <1 17 2 <5 3 4 0.54 0.49 99 <1 44 40 <5 8 7 1.78 1.25 104 <1 69 14 <5 31 5 1.55 2.90 554 <1 225 20 15 18 4 0.92 0.89 129 <1 89 56 5 22 4 0.87 1.04 234 <1 145 80 10 151 6 0.55 <0.01 200 <1 30 12 <5 3 9 >10 4.59 622 3 414 34 <5 61 8 1.45 0.09 142 4 7 10 <5 261 8 0.46 <0.01 862 32 5 8660 30 24 8 1.72 0.29 87 <1 48 14 <5 11 5 4.21 >10 1119 <1 1573 4 25 10 HLABORATORILTD. OUSE fied Assayer Fe' X ug' X Mn Mo Ni Pb Sb Sn Zn 77 3.54 142 341 <1 56 26 24 <5 <20 47 3.54 142 341 <1 256 24 5 <20 47 3.54 142 341 <1 56 25 <1 21 0 <20 27 3.50 5.76 526 <1 1280 4 15 <20 3 4.19 3.51 649 <1 813 24 5 <20 28 3.78 3.21 667 <1 520 12 10 <20 3 3.49 3.51 649 <1 813 24 5 <20 28 3.78 3.21 667 <1 520 12 10 <20 3 3.18 3.12 529 <1 761 10 10 20 25 3.73 1.70 765 <1 333 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.90 0.91 1040 122 1 98 16 <5 <20 67 5.90 0.91 1040 122 1 98 16 <5 <20 67 5.90 0.92 104 1122 1 98 16 <5 <20 67 5.90 0.90 1049 4 59 16 <5 <20 67 5.90 0.90 1049 4 59 16 <5 <20 67 5.90 0.90 1049 4 59 16 <5 <20 67 5.90 0.90 1049 4 59 16 <5 <20 67 5.90 0.90 1049 4 59 16 <5 <20 67 5.90															20	ſ
5 0.34 0.01 44 <1 17 2 <5 3 4 0.54 0.49 99 <1 44 40 <5 8 7 1.78 1.25 104 <1 69 14 <5 31 5 1.55 2.90 554 <1 225 20 15 18 4 0.92 0.89 129 <1 89 56 5 22 4 0.87 1.04 234 <1 145 80 10 151 6 0.55 0.01 200 <1 30 12 <5 1 8 0.46 0.01 862 32 5 8660 30 24 8 1.72 0.29 87 <1 48 14 <5 11 5 4.21 >10 1119 <1 1573 4 25 10 HLABORATORYLTD. Ouse fied Assayer $\frac{F \sqrt{8} \sqrt{9}}{1.25 2}$ $\frac{Mn}{80}$ $\frac{Ni}{125}$ $\frac{Pb}{45}$ $\frac{Sn}{20}$ $\frac{Zn}{47}$ 3.33 2.35 1283 <1 1168 94 10 <20 62 3.54 1.75 774 <1 478 16 <5 20 47 3.39 4.136 652 <1 726 12 10 <20 27 3.50 5.76 526 <1 1280 4 15 <20 3 4.19 3.51 649 <1 813 24 5 <20 47 3.79 4.13 652 <1 726 12 10 <20 27 3.79 1.13 652 <1 726 12 10 <20 34 3.78 3.21 667 <1 520 12 10 20 34 3.78 3.21 667 <1 520 12 10 20 34 3.78 1.70 765 <1 333 16 <5 <20 53 5.64 1.60 1324 2 209 18 <5 <20 65 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 53 5.64 1.60 1324 2 209 18 <5 <20 65 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 53 5.64 1.60 1324 2 209 18 <5 <20 65 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 53 5.64 1.60 1324 2 209 18 <5 <20 65 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 65 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 65 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 65 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 65 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 65 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 65 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 65 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 71 3.92 1.04 1122 1 98 16 <5 <20 65 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 65 >10 0.70 1249 9 79 22 <5 <0 86 7.60 0.86 1410 5 83 16 <5 <20 65 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 65 >10 0.70 1249 9 79 22 <5 <0 86 7.60 0.86 1410 5 83 16 <5 <20 65 >10 0.70 1249 9 79 22 <5 <0 86 $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $$															1	
4 0.54 0.49 99 <1 44 40 <5 8 7 1.78 1.25 104 <1 69 14 <5 31 5 1.55 2.90 554 <1 225 20 15 18 4 0.92 0.89 129 <1 89 56 5 22 4 0.87 1.04 234 <1 145 80 10 151 6 0.55 0.01 200 <1 30 12 <5 3 9 >10 4.59 622 33 414 34 <5 61 8 1.45 0.09 142 4 7 10 <5 261 8 0.46 <0.01 862 32 5 8660 30 24 8 1.72 0.29 87 <1 48 14 <5 11 5 4.21 >10 1119 <1 1573 4 25 10 H LABORATORY LTD. Oue fied Assayer $\frac{7}{3.84} 1.42 341 <1 256 24 <5 <20 47 4.14 1.36 858 <1 355 45 <5 <20 59 3.33 2.35 1283 <1 1168 94 10 <20 62 3.34 1.42 341 <1 256 12 10 <20 27 3.54 1.57 774 <1 478 16 <5 <20 47 3.19 3.51 669 <1 813 24 5 <20 28 3.78 3.21 667 <1 520 12 10 <20 27 3.54 1.50 775 <1 333 16 <5 <20 53 5.44 1.60 1324 2 209 18 <5 <20 53 5.44 1.60 1324 2 209 18 <5 <20 55 5.44 1.60 1324 2 209 18 <5 <20 55 5.44 1.60 1324 2 209 18 <5 <20 55 5.44 1.60 1324 2 209 18 <5 <20 55 5.44 1.60 1324 2 209 18 <5 <20 55 5.44 1.60 1324 2 209 18 <5 <20 65 7.60 0.86 1410 5 83 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 65 7.69 0.91 1122 1 98 16 <5 <20 65 7.69 0.92 104 1122 1 98 16 <5 <20 65 7.69 0.93 1049 4 59 16 <5 <20 65 7.69 0.93 1049 4 59 16 <5 <20 65 7.69 0.93 1049 4 59 16 <5 <20 65 7.69 0.93 1049 4 59 16 <5 <20 65 7.69 0.93 1049 4 59 16 <5 <20 65 7.69 0.93 1049 4 59 16 <5 <20 65 7.69 0.93 1049 4 59 16 <5 <20 65 7.69 0.93 1049 4 59 16 <5 <20 65 7.99 0.93 1049 4 59 16 <5 <20 65 7.99 0.93 1049 4 59 16 <5 <20 65 7.99 0.93 1049 4 59 16 <5 <20 65 7.99 0.93 1049 4 59 16 <5 <20 65 7.99 0.93 1049 4 59 16 <5 <20 65 7.99 0.93 1049 4 59 16 <5 <20 65 7.99 0.93 1049 4 59 16 <5 <20 65 7.99 0.93 1049 4 59 16 <5 <20 65 7.99 0.93 1049 4 59 16 <5 <20 65 7.99 0.93 1049 4 59 16 <5 <20 65 7.99 0.93 1049 4 59 16 <5 <20 65 7.99 0.93 1049 4 59 16 <5 <20 65 7.99 0.93 1049 4 59 16 <5 <20 65 7.99 0.93 1049 4 59 16 <5 <20 65 7.99 0.93 1049 4 59 16 <5 <20 65 7.99 0.93 1049 4 59 16 <5 20 65 7.99 0.93 1049 4 59 16 <5 20 65 7.99 0.93 1049 4 59 16 <5 20 65 7.99 0.90 7.90 7.90 7.90 7.90 7.90 7.90 $															2	
7 1.78 1.25 104 <1 69 14 <5 31 5 1.55 2.90 554 <1 225 20 15 18 4 0.92 0.89 129 <1 89 56 5 22 4 0.87 1.04 234 <1 145 80 10 151 6 0.55 <0.01 200 <1 30 12 <5 3 9 >10 4.59 622 3 414 34 <5 61 8 1.45 0.09 142 4 7 10 <5 261 8 0.46 <0.01 862 32 5 8660 30 24 8 1.72 0.29 87 <1 48 14 <5 11 5 4.21 >10 1119 <1 1573 4 25 10 H LABORATORY LTD. Ouse fied Assayer $Fe \frac{4}{9} \frac{Mn}{12} \frac{Mo}{11} \frac{Ni}{1256} \frac{24}{24} \frac{5}{5} \frac{220}{20} \frac{47}{47}$ 3.84 1.42 341 <1 256 24 $\frac{5}{45} \frac{220}{5} \frac{47}{57}$ 3.35 5.76 526 <1 1280 4 15 $\frac{20}{20} \frac{27}{27}$ 3.50 5.76 526 <1 1280 4 15 $\frac{20}{20} \frac{27}{27}$ 3.78 3.21 667 <1 520 12 10 $\frac{20}{27} \frac{27}{3}$ 4.19 3.51 649 <1 813 24 5 $\frac{20}{20} \frac{27}{3}$ 3.78 3.21 667 <1 520 12 10 $\frac{20}{20} \frac{27}{3}$ 3.78 3.21 667 <1 520 12 10 $\frac{20}{20} \frac{27}{3}$ 3.78 3.21 667 <1 520 12 10 $\frac{20}{20} \frac{27}{3}$ 3.78 3.21 667 <1 323 16 $\frac{65}{5} \frac{20}{20} \frac{50}{5}$ >10 0.70 1249 9 79 22 <5 $\frac{20}{20} \frac{67}{5}$ >10 0.70 1249 9 79 22 <5 $\frac{20}{20} \frac{67}{5}$ >10 0.70 1249 9 79 22 $\frac{5}{20} \frac{20}{67}$ 7.60 0.86 1410 5 83 16 $\frac{5}{5} \frac{20}{20} \frac{67}{5}$ >10 0.70 1249 9 79 22 $\frac{5}{20} \frac{20}{20} \frac{67}{5}$ >10 0.70 1240 9 79 22 $\frac{5}{20} \frac{20}{20} \frac{67}{5}$ >10 0.86 1410 5 83 16 $\frac{5}{20} \frac{20}{5}$ $\frac{5}{10} \frac{10}{10} \frac{10}{10} \frac{5}{20} \frac{10}{20} \frac{10}{10} \frac{10}{10} \frac{10}{20} $															5	
5 1.55 2.90 554 <1 225 20 15 18 4 0.92 0.89 129 <1 89 56 5 22 4 0.87 1.04 234 <1 145 80 10 151 6 0.55 0.01 200 <1 30 12 <5 3 9 >10 4.59 622 3 414 34 <5 61 8 1.45 0.09 142 4 7 10 <5 261 8 0.46 0.01 862 32 5 8660 30 24 8 1.72 0.29 87 <1 48 14 <5 11 5 4.21 >10 1119 <1 1573 4 25 10 HLABORATORY LTD. OUSE fied Assayer $Fe \frac{5}{4} \frac{Wg}{2} \frac{Wn}{2} \frac{Mn}{2} \frac{Mo}{2} \frac{Ni}{2} \frac{Ni}{$	7										_				-	1.1
4 0.92 0.89 129 <1 89 56 5 22 4 0.87 1.04 224 <1 145 80 10 151 6 0.55 <0.01 200 <1 30 12 <5 3 9 >10 4.59 622 3 414 34 <5 61 8 1.45 0.09 142 4 7 10 <5 261 8 0.46 <0.01 862 32 5 8660 30 24 8 1.72 0.29 87 <1 48 14 <5 11 5 4.21 >10 1119 <1 1573 4 25 10 H LABORATORY LTD. Ouse fied Assayer $Fe \frac{4}{8} \frac{14}{2} \frac{341}{341} <1 256 24 <5 20 47 1.14 1.36 858 <1 355 45 <5 20 59 3.33 2.35 1283 <1 1168 94 10 20 62 3.54 1.75 774 <1 478 16 <5 20 47 3.59 4.13 652 <1 726 12 10 20 27 3.50 5.76 526 <1 1280 4 15 20 3 4.19 3.51 649 <1 813 24 5 20 28 3.78 4.13 652 <1 726 12 10 20 27 3.50 5.76 526 <1 1280 4 15 20 3 4.19 3.51 649 <1 813 24 5 20 28 3.78 1.10 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.64 1.60 1324 2 209 18 <5 20 55 5.01 0.70 1249 9 79 22 <5 20 86 7.60 0.86 1410 5 83 16 <5 20 67 5.99 0.93 1049 4 59 16 <5 20 71 3.92 1.04 1122 1 98 16 <5 20 65 Clive Asptnall Geological Lake View L and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3$	5															ţ,
4 0.87 1.04 234 <1 145 80 10 151 6 0.55 <0.01 200 <1 30 12 <5 3 9 >10 4.59 622 3 414 34 <5 61 8 1.45 0.09 142 4 7 10 <5 261 8 0.46 <0.01 862 32 5 8660 30 24 8 1.72 0.29 87 <1 48 14 <5 11 5 4.21 >10 1119 <1 1573 4 25 10 HLABORATORY LTD. OUSE fied Assayer $Fe \frac{24 g 2}{5} \frac{Mn}{M0} \frac{Mo}{Ni} \frac{Pb}{Sb} \frac{Sn}{Sn} \frac{Zn}{2n}$ 3.84 1.42 341 <1 256 24 <5 <20 47 3.84 1.42 341 <1 256 24 <5 <20 47 3.54 1.75 774 <1 478 16 <5 <20 47 3.50 5.76 526 <1 1280 4 15 <20 3 4.19 3.51 649 <1 813 24 5 <20 28 3.78 3.21 667 <1 520 12 10 <20 34 3.18 3.21 667 <1 520 12 10 <20 34 3.18 3.21 667 <1 520 12 10 <20 34 3.18 3.12 657 <1 333 16 <5 <20 55 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 71 3.99 1.04 1122 1 98 16 <5 <20 71 3.99 1.04 1122 1 98 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 1 5 83 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 65 Fig 3.80 Scale 1:20,000 January 2006 Fig 3.80 5.97 0.97 5.97 5.97 5.97 5.97 5.97 5.97 5.97 5	4															
9 >10 4.59 622 3 414 34 <5 61 8 1.45 0.09 142 4 7 10 <5 261 8 0.46 <0.01 862 32 5 8660 30 24 8 1.72 0.29 87 <1 48 14 <5 11 5 4.21 >10 1119 <1 1573 4 25 10 HLABORATORY LTD. Ouse fied Assayer $Fe \frac{5}{4} \frac{Wg \frac{5}{2}}{Mn} \frac{Mo}{10} \frac{Ni}{256} \frac{Pb}{24} \frac{5}{5} \frac{50}{20} \frac{47}{47}$ 3.84 1.42 341 <1 256 24 <5 <20 47 3.34 1.42 341 <1 726 12 10 <20 27 3.54 1.75 774 <1 478 16 <5 <20 47 3.59 5.76 526 <1 1280 4 15 <20 3 4.19 3.51 649 <1 813 24 5 <20 28 3.78 3.21 667 <1 520 12 10 <20 34 3.18 3.12 529 <1 761 10 10 <20 25 3.73 1.70 765 <1 333 16 <5 <20 55 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 65 Clive Aspinal Geological Lake View I and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3	4	0.	87	1.(04	234	+ <	1	145		80					
$\frac{8}{8} 1.45 0.09 142 4 7 10 <5 201 8 0.46 <0.01 862 32 5 8660 30 24 8 1.72 0.29 87 <1 48 14 <5 11 5 4.21 >10 1119 <1 1573 4 25 10 HLABORATORY LTD. OUSE field Assayer \frac{Fe % Wg %}{1.42 341} <1 256 24 <5 <20 47 3.84 1.42 341 <1 256 24 <5 <20 47 3.33 2.35 1283 <1 1168 94 10 <20 62 3.54 1.75 774 <1 478 16 <5 <20 3 4.19 3.51 649 <1 813 24 5 <20 28 3.78 3.21 667 <1 520 12 10 <20 27 3.50 5.76 526 <1 1280 4 15 <20 3 4.19 3.51 649 <1 813 24 5 <20 28 3.78 3.21 667 <1 520 12 10 <20 25 3.78 3.21 667 <1 520 12 10 <20 34 3.18 3.12 529 <1 761 10 10 <20 25 3.73 1.70 765 <1 333 16 <5 <20 53 5.64 1.60 1324 2 209 18 <5 <20 53 5.64 1.60 1324 2 209 18 <5 <20 53 5.64 1.60 1324 2 209 18 <5 <20 65 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 65 Clive Aspinal Geological Lake View I and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3$	6	0.	55	<0.0	01	200) <	1	30		12	<5		3		Į.
$\frac{8}{5} 0.46 < 0.01 \\ 862 \\ 32 \\ 5 \\ 4.21 > 10 \\ 1119 \\ <1 \\ 1573 \\ 4 \\ 25 \\ 10 \\ \hline 1119 \\ <1 \\ 1573 \\ 4 \\ 25 \\ 10 \\ \hline 1119 \\ <1 \\ 1573 \\ 4 \\ 25 \\ 10 \\ \hline 1119 \\ <1 \\ 1573 \\ 4 \\ 25 \\ 10 \\ \hline 1119 \\ <1 \\ 1573 \\ 4 \\ 25 \\ 10 \\ \hline 1119 \\ <1 \\ 1573 \\ 4 \\ 25 \\ 10 \\ \hline 1119 \\ <1 \\ 1573 \\ 4 \\ 25 \\ 10 \\ \hline 1119 \\ <1 \\ 1573 \\ 4 \\ 4 \\ 25 \\ 10 \\ \hline 1119 \\ <1 \\ 1573 \\ 4 \\ 4 \\ 25 \\ 10 \\ 10 \\ 20 \\ 27 \\ 3.54 \\ 1.5 \\ 714 \\ 1168 \\ 94 \\ 10 \\ 20 \\ 62 \\ 27 \\ 3.54 \\ 1.5 \\ 714 \\ 1168 \\ 94 \\ 10 \\ 20 \\ 62 \\ 27 \\ 3.54 \\ 1.5 \\ 710 \\ 10 \\ 20 \\ 27 \\ 3.54 \\ 1.5 \\ 710 \\ 132 \\ 10 \\ 20 \\ 27 \\ 3.50 \\ 5.76 \\ 526 \\ 11 \\ 10 \\ 10 \\ 20 \\ 27 \\ 3.50 \\ 5.76 \\ 526 \\ 11 \\ 10 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 64 \\ 16 \\ 520 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 64 \\ 16 \\ 520 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 64 \\ 16 \\ 520 \\ 20 \\ 33 \\ 1049 \\ 4 \\ 59 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 33 \\ 10 \\ 20 \\ 33 \\ 10 \\ 20 \\ 33 \\ 10 \\ 20 \\ 33 \\ 10 \\ 20 \\ 33 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 33 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 10 \\ 20 \\ 33 \\ 10 \\ 20 \\ 27 \\ 3.51 \\ 20 \\ 33 \\ 10 \\ 20 \\ 33 \\ 10 \\ 20 \\ 27 \\ 33 \\ 10 \\ 20 \\ 33 \\ 10 \\ 20 \\ 27 \\ 33 \\ 10 \\ 20 \\ 33 \\ 10 \\ 20 \\ 33 \\ 10 \\ 20 \\ 27 \\ 33 \\ 10 \\ 20 \\ 33 \\ 10 \\ 20 \\ 33 \\ 10 \\ 20 \\ 27 \\ 33 \\ 10 \\ 20 \\ 33 \\ 10 \\ 20 \\ 27 \\ 33 \\ 10 \\ 20 \\ 20 \\ 27 \\ 33 \\ 10 \\ 20 \\ 20 \\ 27 \\ 33 \\ 10 \\ 20 \\ 20 \\ 27 \\ 33 \\ 10 \\ 20 \\ 20 \\ 33 \\ 31 \\ 10 \\ 20 \\ 20 \\ 20 \\ 20 \\ 33 \\ 31 \\ 10 \\ 20 \\ 20 \\ 20 \\ 20 \\ 33 \\ 31 \\ 10 \\ 20 \\ 20 \\ 20 \\ 20 \\ 33 \\ 31 \\ 10 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 2$	9	>	10	4.	59	622	2	3	414		34	<5	6	61	· .	Ē
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8								7		10	<5	26	61		
5 421 >10 1119 <1 1573 4 25 10 H LABORATORY LTD. Ouse fied Assayer $Fe \frac{5}{90} \frac{Wg}{5} \frac{Wn}{10} \frac{Wo}{5} \frac{Ni}{255} \frac{Pb}{24} \frac{S}{5} \frac{Sn}{20} \frac{Zn}{47}$ $3.84 1.42 341 \frac{1}{256} \frac{1}{255} \frac{24}{45} \frac{5}{5} \frac{200}{47}$ $3.33 2.35 1283 \frac{1}{1168} \frac{94}{10} \frac{10}{200} \frac{200}{27}$ $3.54 1.75 774 \frac{1}{4} \frac{478}{16} \frac{16}{5} \frac{5}{5} \frac{200}{28}$ $3.79 4.13 652 \frac{1}{1280} \frac{726}{11} \frac{120}{10} \frac{200}{20} \frac{27}{3}$ $3.19 3.51 649 \frac{1}{183} \frac{813}{24} \frac{2}{5} \frac{200}{28} \frac{3}{18} \frac{3.12}{3.12} \frac{529}{29} \frac{1}{1761} \frac{761}{10} \frac{10}{10} \frac{200}{225} \frac{23}{53} \frac{170}{75} \frac{765}{1} \frac{1333}{10} \frac{16}{5} \frac{5}{5} \frac{200}{65} \frac{65}{5} \frac{56}{54} \frac{1120}{12} \frac{9}{16} \frac{15}{5} \frac{200}{20} \frac{65}{5} \frac{1120}{5} \frac{1410}{5} \frac{5}{33} \frac{16}{16} \frac{5}{5} \frac{200}{20} \frac{67}{5} \frac{5}{59} \frac{10}{9} \frac{10}{9} \frac{10}{9} \frac{9}{9} \frac{9}{9} \frac{22}{2} \frac{5}{5} \frac{20}{20} \frac{86}{6} \frac{1}{750} \frac{16}{20} \frac{15}{9} \frac{16}{5} \frac{5}{20} \frac{57}{11} \frac{5}{3} \frac{10}{9} \frac{10}{9} \frac{1122}{1} \frac{9}{9} \frac{16}{16} \frac{5}{5} \frac{200}{20} \frac{67}{5} \frac{5}{5} \frac{5}{5} \frac{1120}{5} \frac{10}{5} \frac{10}{5$	8								5			30	2	24	- I	ŧ
H LABORATORY LTD. OUSE fied Assayer $\frac{5 \times 40}{3.84}$ $\frac{14}{1.42}$ $\frac{341}{3.11}$ $\frac{1}{256}$ $\frac{26}{24}$ $\frac{4}{55}$ $\frac{5}{200}$ $\frac{47}{47}$ $\frac{3.84}{4.142}$ $\frac{341}{3.41}$ $\frac{1}{3.55}$ $\frac{256}{45}$ $\frac{24}{55}$ $\frac{5}{200}$ $\frac{47}{47}$ $\frac{3.38}{4.162}$ $\frac{11233}{5.5}$ $\frac{1}{455}$ $\frac{155}{45}$ $\frac{5}{5}$ $\frac{200}{28}$ $\frac{3.54}{3.55}$ $\frac{175}{774}$ $\frac{17}{4}$ $\frac{478}{48}$ $\frac{16}{6}$ $\frac{5}{5}$ $\frac{200}{28}$ $\frac{3.54}{3.75}$ $\frac{175}{774}$ $\frac{1726}{12}$ $\frac{12}{10}$ $\frac{200}{24}$ $\frac{3.55}{3.56}$ $\frac{526}{5.26}$ $\frac{1}{1280}$ $\frac{4}{4}$ $\frac{15}{5}$ $\frac{200}{28}$ $\frac{3.78}{3.21}$ $\frac{667}{67}$ $\frac{1}{520}$ $\frac{12}{10}$ $\frac{10}{20}$ $\frac{23}{28}$ $\frac{3.78}{3.73}$ $\frac{3.21}{1067}$ $\frac{667}{1}$ $\frac{520}{12}$ $\frac{10}{10}$ $\frac{10}{20}$ $\frac{25}{53}$ $\frac{5.44}{1.60}$ $\frac{1324}{22}$ $\frac{2}{209}$ $\frac{18}{18}$ $\frac{5}{5}$ $\frac{200}{55}$ $\frac{510}{700}$ $\frac{0.86}{1410}$ $\frac{140}{5}$ $\frac{83}{33}$ $\frac{16}{16}$ $\frac{5}{5}$ $\frac{200}{20}$ $\frac{67}{5}$ $\frac{7.60}{5.99}$ $\frac{0.93}{1049}$ $\frac{4}{4}$ $\frac{59}{59}$ $\frac{16}{16}$ $\frac{5}{5}$ $\frac{20}{20}$ $\frac{67}{5}$ $\frac{510}{3.04}$ $\frac{1122}{1}$ $\frac{1}{98}$ $\frac{16}{16}$ $\frac{5}{5}$ $\frac{20}{20}$ $\frac{67}{5}$ $\frac{510}{5}$ $\frac{11220}{104}$ $\frac{1122}{1}$ $\frac{1}{98}$ $\frac{16}{16}$ $\frac{5}{5}$ $\frac{200}{20}$ $\frac{61}{5}$ $\frac{1120}{5}$ $\frac{11220}{104}$ $\frac{1122}{1}$ $\frac{1}{98}$ $\frac{16}{16}$ $\frac{5}{5}$ $\frac{200}{20}$ $\frac{61}{5}$ $\frac{1120}{5}$ $\frac{1120}{104}$ $\frac{1122}{1}$ $\frac{1}{98}$ $\frac{16}{16}$ $\frac{5}{5}$ $\frac{200}{20}$ $\frac{61}{5}$ $\frac{1120}{5}$ $\frac{1120}{5}$ $\frac{1120}{5}$ $\frac{1}{5}$	8															ţ.
bouse fied Assayer $\frac{Fe \% Mg \%}{100} \frac{Mn}{100} \frac{Mo}{100} \frac{Ni}{256} \frac{Pb}{24} \frac{Sb}{5} \frac{Sn}{24} \frac{Zn}{45} \frac{Zn}{50} \frac{2}{4} \frac{S}{5} \frac{Sn}{20} \frac{Zn}{47} \frac{Sn}{414} \frac{1}{136} \frac{Sn}{268} \frac{Sn}{51} \frac{Zn}{416} \frac{Sn}{55} \frac{Sn}{45} \frac{Sn}{55} \frac{Zn}{45} \frac{Sn}{55} \frac{Zn}{416} \frac{Sn}{20} \frac{Zn}{47} \frac{Sn}{333} \frac{2}{325} \frac{1283}{1283} \frac{Sn}{41168} \frac{Sn}{410} \frac{Sn}{20} \frac{Cn}{20} \frac{2}{27} \frac{Sn}{359} \frac{Sn}{576} \frac{Sn}{526} \frac{Sn}{51} \frac{1280}{4116} \frac{4}{15} \frac{Sn}{520} \frac{Sn}{20} \frac{2}{28} \frac{Sn}{378} \frac{Sn}{321} \frac{667}{657} \frac{Sn}{520} \frac{12}{10} \frac{Sn}{10} \frac{Sn}{10} \frac{Sn}{10} \frac{Sn}{25} \frac{Sn}{516} $	5	4.2	21	>1	10	1119) <	1	1573		4	25	1	0		Ê.
bouse fied Assayer $\frac{Fe \% Mg \%}{100} \frac{Mn}{100} \frac{Mo}{100} \frac{Ni}{256} \frac{Pb}{24} \frac{Sb}{5} \frac{Sn}{24} \frac{Zn}{45} \frac{Zn}{50} \frac{2}{4} \frac{S}{5} \frac{Sn}{20} \frac{Zn}{47} \frac{Sn}{414} \frac{1}{136} \frac{Sn}{268} \frac{Sn}{51} \frac{Zn}{416} \frac{Sn}{55} \frac{Sn}{45} \frac{Sn}{55} \frac{Zn}{45} \frac{Sn}{55} \frac{Zn}{416} \frac{Sn}{20} \frac{Zn}{47} \frac{Sn}{333} \frac{2}{325} \frac{1283}{1283} \frac{Sn}{41168} \frac{Sn}{410} \frac{Sn}{20} \frac{Cn}{20} \frac{2}{27} \frac{Sn}{359} \frac{Sn}{576} \frac{Sn}{526} \frac{Sn}{51} \frac{1280}{4116} \frac{4}{15} \frac{Sn}{520} \frac{Sn}{20} \frac{2}{28} \frac{Sn}{378} \frac{Sn}{321} \frac{667}{657} \frac{Sn}{520} \frac{12}{10} \frac{Sn}{10} \frac{Sn}{10} \frac{Sn}{10} \frac{Sn}{25} \frac{Sn}{516} $	ſ				4	-	-	-			T	7	,	<u> </u>	~	
bouse fied Assayer $\frac{Fe \% Mg \%}{100} \frac{Mn}{100} \frac{Mo}{100} \frac{Ni}{256} \frac{Pb}{24} \frac{Sb}{5} \frac{Sn}{24} \frac{Zn}{45} \frac{Zn}{50} \frac{2}{4} \frac{S}{5} \frac{Sn}{20} \frac{Zn}{47} \frac{Sn}{414} \frac{1}{136} \frac{Sn}{268} \frac{Sn}{51} \frac{Zn}{416} \frac{Sn}{55} \frac{Sn}{45} \frac{Sn}{55} \frac{Zn}{45} \frac{Sn}{55} \frac{Zn}{416} \frac{Sn}{20} \frac{Zn}{47} \frac{Sn}{333} \frac{2}{325} \frac{1283}{1283} \frac{Sn}{41168} \frac{Sn}{410} \frac{Sn}{20} \frac{Cn}{20} \frac{2}{27} \frac{Sn}{359} \frac{Sn}{576} \frac{Sn}{526} \frac{Sn}{51} \frac{1280}{4116} \frac{4}{15} \frac{Sn}{520} \frac{Sn}{20} \frac{2}{28} \frac{Sn}{378} \frac{Sn}{321} \frac{667}{657} \frac{Sn}{520} \frac{12}{10} \frac{Sn}{10} \frac{Sn}{10} \frac{Sn}{10} \frac{Sn}{25} \frac{Sn}{516} $	-			.		5		***			4			7		Ę.
Fe 4/4 Ug % Mn Mo Ni Pb Sb Sn Zn 3.84 1.42 341 <1 256 24 <5 <20 47 4.14 1.36 858 <1 355 45 <5 <20 59 3.33 2.35 1283 <1 1168 94 10 <20 62 3.54 1.75 774 <1 478 16 <5 <20 47 3.79 4.13 652 <1 726 12 10 <20 27 3.50 5.76 526 <1 1280 4 15 <20 3 4.19 3.51 649 <1 813 24 5 <20 28 3.73 1.70 765 <1 333 16 <5 <20 53 5.64 1.60 1324 2 209 18 <5 <20 65 >10 0.70 1249 9 79 22 <5 <20 6			OF	κAT	OR	Y LT	D.				I		1			ļ.
Fe % Mg % Mn Mo Ni Pb Sb Sn Zn 3.84 1.42 341 <1 256 24 <5 <20 47 4.14 1.36 858 <1 355 45 <5 <20 47 3.33 2.35 1283 <1 1168 94 10 <20 62 3.54 1.75 774 <1 478 16 <5 <20 47 3.79 4.13 652 <1 726 12 10 <20 27 3.50 5.76 526 <1 1280 4 15 <20 3 4.19 3.51 649 <1 813 24 5 <20 28 3.78 3.21 667 <1 520 12 10 <20 25 3.73 1.07 765 <1 333 16 <5 <20 65 >10 0.70 1249 9 79 22 <5 <20<			~ ~ `					_			E					1
3.84 1.42 341 <1 256 24 25 <20 47 4.14 1.36 858 <1 355 45 <5 <20 62 3.33 2.35 1283 <1 1168 94 10 <20 62 3.54 1.75 774 <1 478 16 <5 <20 47 3.79 4.13 652 <1 726 12 10 <20 27 3.50 5.76 526 <1 1280 4 15 <20 3 4.19 3.51 649 <1 813 24 5 <20 28 3.78 3.21 667 <1 520 12 10 <20 25 3.73 1.70 765 <1 333 16 <5 <20 55 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16< <5 <20 </th <th>neu</th> <th>I AS</th> <th>say</th> <th>/er</th> <th></th> <th></th> <th>2</th> <th></th> <th>90</th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th>	neu	I AS	say	/er			2		90		1					
3.84 1.42 341 <1 256 24 25 <20 47 4.14 1.36 858 <1 355 45 <5 <20 62 3.33 2.35 1283 <1 1168 94 10 <20 62 3.54 1.75 774 <1 478 16 <5 <20 47 3.79 4.13 652 <1 726 12 10 <20 27 3.50 5.76 526 <1 1280 4 15 <20 3 4.19 3.51 649 <1 813 24 5 <20 28 3.78 3.21 667 <1 520 12 10 <20 25 3.73 1.70 765 <1 333 16 <5 <20 55 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16< <5 <20 </th <th>Fe</th> <th>*%</th> <th>٧a</th> <th>%</th> <th>,</th> <th>in</th> <th>Мо</th> <th></th> <th>Ni</th> <th>РЬ</th> <th>5</th> <th>h</th> <th><u>en</u></th> <th>7n</th> <th></th> <th></th>	Fe	* %	٧a	%	,	i n	Мо		Ni	РЬ	5	h	<u>en</u>	7 n		
4.14 1.36 858 <1 355 45 <5 20 59 3.33 2.35 1283 <1 1168 94 10 <20 62 3.54 1.75 774 <1 478 16 <5 <20 47 3.79 4.13 652 <1 726 12 10 <20 27 3.50 5.76 526 <1 1280 4 15 <20 3 4.19 3.51 649 <1 813 24 5 <20 28 3.78 3.21 667 <1 520 12 10 <20 34 3.18 3.12 529 <1 761 10 10 <20 25 5.64 1.60 1324 2 209 18 <5 <20 55 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 65 Clive Aspinall Geological Lake View L and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 $Fig 3$		-	-	=			-	_	-	_		_	_	_		ŧ.
3.33 2.35 1283 <1 1168 94 10 <20 62 3.54 1.75 774 <1 478 16 <5 <20 47 3.79 4.13 652 <1 726 12 10 <20 27 3.50 5.76 526 <1 1280 4 15 <20 3 4.19 3.51 649 <1 813 24 5 <20 28 3.78 3.21 667 <1 520 12 10 <20 34 3.18 3.12 529 <1 761 10 10 <20 25 3.73 1.70 765 <1 333 16 <5 <20 55 5.64 1.60 1324 2 209 18 <5 <20 55 5.64 1.60 1324 2 209 18 <5 <20 65 7.60 0.86 1410 5 83 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 71 3.92 1.04 1122 1 98 16 <5 <20 65 Clive Aspinall Geological Lake View L and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3																
3.54 1.75 774 <1 478 16 <5 <20 47 3.79 4.13 652 <1 726 12 10 <20 27 3.50 5.76 526 <1 1280 4 15 <20 3 4.19 3.51 649 <1 813 24 5 <20 28 3.78 3.21 667 <1 520 12 10 <20 34 3.18 3.12 529 <1 761 10 10 <20 25 3.73 1.70 765 <1 333 16 <5 <20 55 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 71 3.92 1.04 1122 1 98 16 <5 <20 65 Clive Aspinall Geological Lake View Land 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3																i.
3.79 4.13 652 <1 726 12 10 <20 27 3.50 5.76 526 <1 1280 4 15 <20 3 4.19 3.51 649 <1 813 24 5 <20 28 3.78 3.21 667 <1 520 12 10 <20 34 3.18 3.12 529 <1 761 10 10 <20 25 3.73 1.70 765 <1 333 16 <5 <20 55 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 65 Clive Aspinall Geological Lake View 1 and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3																
3.50 5.76 526 <1 1280 4 15 <20 3 4.19 3.51 649 <1 813 24 5 <20 28 3.78 3.21 667 <1 520 12 10 <20 34 3.18 3.12 529 <1 761 10 10 <20 25 3.73 1.70 765 <1 333 16 <5 <20 55 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 65																1.1
4.19 3.51 649 <1 813 24 5 <20 28 3.78 3.21 667 <1 520 12 10 <20 34 3.18 3.12 529 <1 761 10 10 <20 25 3.73 1.70 765 <1 333 16 <5 <20 55 5.64 1.60 1324 2 209 18 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 65	3.	.50	5.	76	5	26									1997 - A.S.	4
3.78 3.21 667 <1 520 12 10 <20 34 3.18 3.12 529 <1 761 10 10 <20 25 3.73 1.70 765 <1 333 16 <5 <20 55 5.64 1.60 1324 2 209 18 <5 <20 55 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 65	4.	19	3.	51			<1									
3.18 3.12 529 <1 761 10 10 <20 25 3.73 1.70 765 <1 333 16 <5 <20 53 5.64 1.60 1324 2 209 18 <5 <20 55 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 65	3.	78	3.2	21	6	67	<1		520							
3.73 1.70 765 <1 333 16 <5 <20 53 5.64 1.60 1324 2 209 18 <5 <20 55 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 65 Clive Aspinall Geological Lake View 1 and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3			3.1	12	52	29	<1	7	761	10	10					
5.64 1.60 1324 2 209 18 <5 <20 55 >10 0.70 1249 9 79 22 <5 <20 86 7.60 0.86 1410 5 83 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 71 3.92 1.04 1122 1 98 16 <5 <20 65					76	55	<1	:	333	16	<5			53		
7.60 0.86 1410 5 83 16 <5 <20 67 5.99 0.93 1049 4 59 16 <5 <20 71 3.92 1.04 1122 1 98 16 <5 <20 65 Clive Aspinall Geological Lake View 1 and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3								2		18	<5	; ·	<20	55		
5.99 0.93 1049 4 59 16 <5 <20 71 3.92 1.04 1122 1 98 16 <5 <20 65 Clive Aspinall Geological Lake View 1 and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3											<5			86		
3.92 1.04 1122 1 98 16 <5 <20 65 Clive Aspinall Geological Lake View 1 and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3						-					-			67	-	
Clive Aspinall Geological Lake View 1 and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3							•									1. T. P.
Lake View 1 and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3	э.	92	1.0	/4	112		1		98	16	<5		<20	65	-	
Lake View 1 and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3	2	r		-	Ð,				/	_	1		•	1		
Lake View 1 and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3		Į	4	Ľ	ø		ىنى.				1		,	and the second s	~	i
Lake View 1 and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3	. 1	[_	1	5	7	-	and the second s	0		r .	F		~)	
Lake View 1 and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3		[5	P.	1	レ			1			1			فسيس		1
Lake View 1 and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3		Ļí	-	, 1	<u> </u>				4		1	1				ŧ –
Lake View 1 and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3		Ľ	1	2	Y				تسبيهم			10	ie ie star	1		
Lake View 1 and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3	*)	المرا	1		1	~	J				1	• •	
Lake View 1 and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3		1		1	$\left\{ \right\}$	\mathbf{z}		r			C	1		1.	-	
Lake View 1 and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3						л.				Q->;		P.O	£,	C.		Į.
Lake View 1 and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3	N	2	•			i ×7		~	- ju		È	۲.	07 1			1.
Lake View 1 and 2 Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3			1			11	c A	S	biu:	44	-6	re	010	g	ca	
Atlin Mining Division Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3	9	F.)					La	ke	Vi	A	10	. A	4	>	·	5
Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3	ч									14		all EV	ษ น	1	7	e ê
Locations Geochemical Sampling and Results Scale 1:20,000 January 2006 Fig 3	-		7			A	tlin	I	din	ing	G	Dįv	isi			n. N
Sampling and Results Scale 1:20,000 January 2006 Fig 3	}	5				Lo	C 21	io	ne	52	\sum	°L	UM			<u>,</u>
Scale 1:20,000 January 2006 Fig 3							Cal	UL.	112	J.C	er,	h é	HH	ca	1. di	
Scale 1:20,000 January 2006 Fig 3						Sa	m	pli	ing	and		Re	SH	te	r.	
January 2006 19 3	1		1				-									
	ł						2	Ca		:2	U,	90	U	1	~ `	2
	1						.]	a	ทแด	rv	21) N A	5		119	0
										J	<i>4</i> 0		,		•••	
Land Market Land	1		,			•	~ ~	1	110				r .		ſ	
		L		نتحا		-	wash	1		-	inter a	ul.				1

	Au					Fe	Ma						
Tag#	(ppb)	Ag	As	Ba	Cu	%	<u>%</u>	Mn	Mo	Ni	Pb	Sb	Zn
E47491	10	0.6	475	35	184	4.15	2.75	1168	<1	968	16	<5	40
E47492	10	0.7	235	20	114	3.29	2.14	565	<1	437	24	<5	42
E47493	25	0.6	290	30	197	4.89	2.34	1439	<1	624	18	<5	47
E47494	5	<0.2	20	<5	5	0.34	0.01	44	<1	17	2	<5	3
E47495	15	0.8	35	<5	4	0.54	0.49	99	<1	44	40	<5	8
E47496	5	0.2	25	15	47	1.78	1.25	104	<1	69	14	<5	31
E47497	45	0.3	180	5	5	1.55	2.90	554	<1	225	20	15	18
E47498	10	0.8	70	<5	4	0.92	0.89	129	<1	89	56	5	22
E47499	210	4.2	100	5	4	0.87	1.04	234	<1	145	80	10	151
E47500	5	0.3	60	<5	6	0.55	<0.01	200	<1	30	12	<5	3
88219	670	19.9	660	60	29	>10	4,59	622	3	414	34	<5	61
88225	5	0.3	10	20	38	1.45	0.09	142	4	7	10	<5	261
88226	70	>30	10	<5	58	0.46	<0.01	862	32	5	8660	30	24
88227	5	4.3	<5	10	58	1.72	0.29	87	<1	48	14	<5	11
88228	10	1.9	60	15	5	4.21	>10	1119	<1	1573	4	25	10

 Table 4. Rock float and adit spoil samples form Lake View 1 & 2

 Mineral Claims

Further details of analyses are located in the appendices.

4.0 Discussion and Conclusions

Atlin placer prospectors in discussions with Ron Granger who evaluated the Lake View property for Yukon Revenue during the 1980s, Ron is reported to have said he believed the quartz veins on the Lake View claim were related to the quartz veins directly across Pine Creek valley, on upper Snake Creek.

This proposal was checked out in 2005. The quartz vein system on upper Snake Creek is associated with a north trending listwanite zone, and does not lie on strike with the Lake View quartz veins, and is concluded as separate system.

5.0 Recommendations

It is recommended mapping and geochemical sampling be continued along strike of the Lakeview quartz vein system. In addition, is recommended geochemical sampling be made along the 35° NE and 330° NW fault systems.

<u>N. Clive Aspinall. M.Sc., P.Eng</u> Geologist

References.

Aitkin, J. D., (1958) Atlin Map Area, BC. Geological Survey of Canada, Memoir 307

Aspinall, NC. (1002). Assessment Report Covering preliminary geological investigations for jade and serpentines on and around the Imperial mineral claim, (12 Units), tenure number 379554, Monroe Mt., Located in the Atlin Mining Division, British Columbia, Canada.

Aspinall, NC. (2004). Assessment Report Covering Preliminary Geological Investigations on Altered Ultramafic and Volcanic Rocks on the Imperial Mineral Claim, (12 Units), Tenure Number 379554, Monroe Mountain in the Atlin Mining Division, British Columbia, Canada.

Cairnes, D.D. (1910). Portions of the Atlin District, B.C.Sessional Paper No 26.Geological Survey Branch. Department of Mines, Ottawa.

Dandy, Linda, (1987). Diamond Drilling Report on the Lakeview Property, Atlin Mining Division, NTS 104 N/11W. Mark Management. Assessment Report 15,686.

Holland, S.S., (1950). Placer Gold Production of British Columbia. B.C Ministry of Energy, Petroleum Resources, Bulletin 28, pp.89.

Robertson, W.F. (1899). Cassiar district; In Annual Report of the Minister of Mines, 1898, BC Department of Mines, pp 985-991.

McIvor, Duncan (1988) Summary Report: geological mapping and lithological sampling Programs on the Lear Property, (West Claim Group). Atlin Mining Division, British Columbia. Assessment Report # 17,495.

Monger J.W.H. (1975). The Upper Paleozoic rocks of the Atlin Terrane, northwest British Columbia and South Central Yukon, GSC Paper 74-7.

Sack, Patrick, J and Mihalynuk, Mitchel, G., (2003?). Proximal gold-cassiterite nuggets and composition of Feather Creek placer gravels; clues to a lode source near Atlin, B.C.

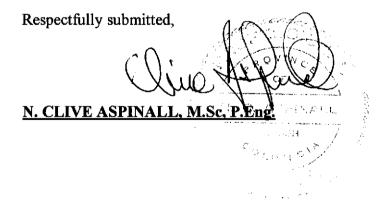
Souther, J.G., (1971). Geology and mineral Deposits of Tulsequah Map Area, British Columbia. Geological Survey of Canada, Memoir 362.

Appendices 1

Statement of Costs. Lakeview 1 &2 Mineral Claims, Year 2005

Field Work. Wages 1) Fees; geologist 4 days @ \$500.00 per day	\$2000.00
Rental of Equipment GPS, and other Field Equipment, 4 days at \$10.00	\$40.00
Personal Transportation 1) Suburban 4 days at \$50 per day, plus fuel Analyses of Samples 30 samples, plus shipping	\$200.00. \$725.00
Report Preparation, including drafting 2 days at \$500.00 per days Production, colour Total Amount	\$1000.00 \$40.00 \$4,005.00

Appendices 2


Qualifications of writer:

I, N. Clive ASPINALL, of Pullman Hill, the community of Atlin, British Columbia, and Whitehorse Y.T do hereby certify that:

- I am a geologist with offices at the above address
- I am a graduate of McGill University, Montreal, Quebec, with B. Sc degree in Geology (1964), and a Masters degree (1987) from the Camborne School of Mines, Cornwall, England, in Mining Geology.
- I am registered member of the Associations of Professional Engineers in the province of British Columbia.
- I have practiced mineral exploration for 47 years, in countries such as Libya, Saudi Arabia, North Yemen, Morocco, Indonesia, Mexico, Peru, USA, and in the provinces and territories of Canada.
- At the time of writing this report, I am the registered owner (100%) of the current Lakeview 1 and 2 mineral claims described herein.
- I completed the geological Investigations as summarized in this report

I am author of report titled: Continuing Geological-Geochemical Assessment of the Lake View Mineral Claims, Tenure Nos. 408341 and 408342, located 59°38' North, 133°27' W NTS 104N063, Atlin MD., BC. Dated 25th January 2006

Signed and sealed in Vancouver BC. On the 25th January 2006

<u>Appendices 3</u>

Records of Ownership

<u>Appendices 4</u>

-				
0 F			s, Energy and Minerals Division — Mineral Titles Branch	
F		DILIMBIA REC	ORD OF 4 POST CLAIM	
c		Mine	eral Tenure Act, Section 27	
E	Minin	g Division ATLIN	Tenure Number <u>408341</u>	
ž		There -	TERAJARI 257001	
E	THIS AREA	Gold Commissioner	Date of Record	
A	PPLICATION	1. N. C. ASPINALL	AGENT FOR DELF	
T	ORECORD	Name of Locator	Name(s)	
	A	Box 22 Pillman Hill	Address	
	4 POST	ATLIN, B.C.	4	
	CLAIM	VOWIAO 250-651	1000	
		Postal Code Telephone	Postal Code Telephone	
			Client Number(s)	
_		hereby apply for a record of a 4 post claim for the loc	cation as outlined on the attached copy of mineral titles reference	
		map number(s)04N063	, in the ATLIN Mining Division.	
	ACCESS		lude reference to roads, trails, topographic features, permanent	
A		DUE TO HEAVY SNOW	AND IN PART MOUNTAINOUS	
ACCORNO		Conditions ACCESS	AND STAXING WAS 34	'
S		HELICOPTER UTILI	ZINC CREMIN IT GR	
		FOR POSITIONING	ALL POSTS AND ID POSTS	
		GPS Co-ordinates taken of posts: Yes	(continue description on reverse No If yes, complete information chart on reverse	•
78		ely fastened the metal identification tag embossed	IDENTIFICATION POSTS NOT PLACED	-
1	AL COP	RNER POST" to the legal corner post (or witness pressed this information on the tag:	were	
T		LEGAL CORNER POST		
A G		TAG NO. 209660	because	
L	CLAIM NAME	LAXE VIEW 1		
N F	LOCATOR	N.C. ASPINALL	* If a witness post was placed for the legal corner post:	
O R	FMC No.	101024	Bearing from witness post to true position of legal corner post	
M A T	AGENT FOR	JELF	is degrees,	
1	FMC No.		at a distance of metres.	
0 N	DATE COMM	NENCED 25 Feb 2004	Bearing from identification post to witness post is	
	TIME	11.00 AM	degrees, at a distance of metres.	
	DATE COMP	LETED 25m Feb 2004	NOTE: Legal corner post can be witnessed only if it was not	
	TIME	6.00PM	feasible to place any posts.	
		NUMBER OF CLAIM UNITS	Lbg2111	
	N	<u>s 6 e w 3</u>	- TUODY BECEVED	
A U	l have complied	with all the terms and conditions of the Mineral Tenure Act an	d Regulation pertaining to DI	
U Z X	corner post and	4 post claims and have attached a plan of the location on which j all other corner posts (and witness and identification posts if a bion survival attaches is the identical information that Limoressia	pplicable) are indicated.	
Ŵ	the applicable p	ation supplied above is the identical information that I impressed post when I located this claim, and this information is true and c	orrect. Not an orriging negative	
. •		$\Omega \cdot \Omega \cap (\Lambda)$	TRANS # //	
6 E M		(the trined)		
¥ 11.2		Signature of Locator	RECORDING STAMP	
ŗ	12/04/05		MTL 103 REV. 00/0	
· ·	12/94/05			

.

O F F I C	k co	RITISH LUMBIA Ministry of Energy and Mines, Energy and Mine RECORD OF 4 PC Mineral Tenure Act	DST CLAIM Section 27
E	Mining	Division ATLIN Tenure Numb	per 408342
S E	DO NOT WRITE THIS AREA	IN Date of Reco	ord FEBRUARY 25, 2004
	PPLICATION O RECORD A	1. N.C. ASPINALL AGENT FOR Name of Locator Box 22 Pillman Hill Road	SELF Name(s) Address
	4 POST CLAIM	ATLIN, B.C. VOWIAD 250-651-000 Postal Code 101024	Postal Code Telephone
		hereby apply for a record of a 4 post claim for the location as outlined on map number(s)	ATLIN Mining Division.
ACCHINN	ACCESS	Describe how you gained access to the location; include reference to roa- landmarks and a description of the legal corner post location. DUE TO HEAVY SNOW AN CONDUTIONS ACCESS WAS FROM ALLIN, A GARMANNE WAS USED FOR ALL POS	BY HELICOPTER
-	J .GAL COR	GPS Co-ordinates taken of posts: Yes Ves No I If yes, c	(continue description reverse) omplete information chart on reverse NPOSTS NOT PLACED
T A G I	CLAIM NAME	LEGAL CORNER POST TAG No. 209670 because LAKE VIEW 2	
FORM	LOCATOR FMC No.		t was placed for the legal corner post: ness post to true position of legal corner post
Ă	AGENT FOR		degrees, metres.
O N	FMC No. DATE COMMI TIME DATE COMPL TIME	ENCED <u>25FEB 2004</u> Bearing from ide <u>12.17 PM</u> degrees, at a dis ETED <u>25FEB 2004</u> NOTE: Legal cor	entification post to witness post is
<u></u>	N	NUMBER OF CLAIM UNITS 40834	2 MECELVED COVERNMENT AGENT ATELN ZCAL
ACKZO¥	the location of 4 comer post and The tag informa	I with all the terms and conditions of the <i>Mineral Tenure Act</i> and Regulation pertaining post claims and have attached a plan of the location on which the positions of the leg all other corner posts (and witness and identification posts if applicable) are indicated tion supplied above is the identical information that I impressed upon the tag affixed to ost when I located this claim, and this information is true and correct.	nto for 500x° al star 272.4 Not all organizations
.GEMENT	<u> </u>	Signature of Locator	RECORDING STAMP

_

Clive Aspinall Geological

From:<MT.online@gov.bc.ca>To:<krakatoa@northwestel.net>Sent:Tuesday, December 13, 2005 3:56 PMSubject:Mineral Titles Online, Transaction event, Email confirmation, Event # 4058855, Work Type: T

Event Number: 4058855 Event Type: Exploration and Development Work / Expiry Date Change

Work Type Code: T

Required Work Amount: 3600.00

Total Work Amount: 4000.00

Total Amount Paid: 360.0

PAC Name: N.C. ASPINALL

PAC Debit: 0.00

Tenure Number: 408342 Tenure Type: M Tenure Subtype: C Claim Name: LAKE VIEW 2 Old Good To Date: 2006/FEB/25 New Good To Date: 2007/FEB/25 Tenure Required Work Amount: 1800.00 Tenure Submission Fee: 180.00

Tenure Number: 408341 Tenure Type: M Tenure Subtype: C Claim Name: LAKE VIEW 1 Old Good To Date: 2006/FEB/25 New Good To Date: 2007/FEB/25 Tenure Required Work Amount: 1800.00 Tenure Submission Fee: 180.00

Server Name: PRODUCTION

Notice of Work

Appendices 5

September 22, 2005

File No. 14675-20 Mine No. 0101403

Clive Aspinall PO Box 22 Atlin BC VOW 1A0

Dear: Clive Aspinall:

RE: Lake View Mineral Property Atlin Mining Division

Your Notice of Work dated August 23, 2005 on the above-mentioned Mineral property has been received and reviewed pursuant to Section 10 of the Mines Act.

Since the proposed disturbance is non-mechanical, a *Mines Act* permit will not be required for this particular program. If at a later date a camp and/or mechanical disturbances are required as part of your exploration program(s), then a new Notice of Work for a *Mines Act* permit must be applied for at the appropriate Ministry of Energy, Mines & Petroleum Resources.

You are authorized to proceed with the proposed exploration program under #05-0101403-0922.

If you have any questions, please call (250-847-7383).

Yours truly

D. W. Elyma, P. Eng. Inspector of Mines Northwest Region

Ministry of Energy, Mines & Petroleum Resources Mining Division

Mailing Address: Bag 5000, Smithers BC V0J 2N0 Telephone: (250) 847-7383 Facsimile: (250) 847-7603 Location: 3793 Alfred Avenue Smithers BC V0J 2N0 Geochemical analyses

Ľ

1-Nov-05 ECO TECH LABE ATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700

Fax : 250-573-4557

ICP CERTIFICATE OF NALYSIS AK 2005-1391

Clive Aspinall Clogical Pillman Hill - Box 22 Atlin, BC V0W 1A0

Attention: Clive Aspinal

No. of samples received: 15 Sample Type: Soil Project: Lakeview Submitted by: Clive Aspinall

Values in ppm unless otherwise reported

Et #.	Tag #	Au (ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	CA05-01	15	0.4	1.50	160	55	5	0.06	<1	26	320	65	3.84	<10	1.42	341	<1	0.03	256	550	24	<5	<20	7	0.01	<10	73	<10	4	47
2	CA05-02	45	0.8	1.59	125	95	<5	0.17	<1	36	246	61	4.14	<10	1.36	858	<1	0.02	355	510	45		<20	5	0.03		82	<10	6	59
3	CA05-03	60	2.1	1.03		25	<5	1.48	2	87	342	100	3.33	<10		1283	<1		1168	140	94	10	<20	55	< 0.01		48	<10	3	62
4	CA05-04	<5	0.4	1.33	25	180	<5	0.20	<1	37	193	27	3.54	<10	1.75	774	<1	0.01	478	530	16	-	<20	12	0.04	. –	60	<10	6	47
5	CA05-05	15	0.2		30	75	10	0.42	<1	45	311	26	3.79	<10	4.13	652	<1	0.02	726	410	12	10	<20	11	0.03		69	<10	4	27
6	CA05-06	15	0.2	0.40	35	35	<5	0.14	<1	57	599	16	3,50	<10	5.76	526	<1	<0.01	1280	120	4	15	<20	<1	<0.01	<10	24	<10	<1	3
7	CA05-07	<5	0.2	1.32	50	65	<5	0.31	<1	50	350	38	4.19	<10	3.51	649	<1	0.01	813	150	24		<20	6	0.04		74	<10	4	28
8	CA05-08	5		1.30	25	95	<5	0.31	<1	39	251	41	3.78	<10	3.21	667	<1	0.02	520	310	12		<20	8	0.04		78	<10	6	34
9	CA05-09	35		0.85	85	60	5	0.48	<1	41	266	29	3.18	<10	3.12	529	<1	0.02	761	380	10		<20	7	0.02		56	<10	4	25
10	CA05-10	5	0.3		25	130	<5	0.59	<1	35	191		3.73		1.70		<1	0.02	333	400	16		<20	13	0.05		76	<10	9	53
11	CA05-11	5	0.3	1.83	25	85	5	0.45	<1	41	175	75	5.64	<10	1.60	1324	2	0.01	209	390	18	<5	<20	6	0.05	<10	121	<10	9	55
12	CA05-12	860		1.12	135	60	15	0.68	2	46	50	125	>10			1249		< 0.01	79	480	22		<20	š	0.01		84	<10	19	86
13	CA05-13	80	1.4		35	65	10	0.46	<1	42	89	69	7.60	<10		1410	5	0.01	83	600	16		<20	ğ	0.03		109	<10	4	67
14	CA05-14	590	9.5		70	70	<5	1.77	1	34	47	55	5.99			1049	-	<0.01	59	340	16		<20	22	0.02		82	<10	<1	71
15	CA05-15	10	0.3		20	105	<5	0.93	<1	29	90	60	3.92		1.04		1	0.02	98	830	16		<20	16	0.02		98	<10	6	65
Repeat:			~ ~	4 50	476			a a=		~~		~ 4										_		_					_	
1	CA05-01	15		1.52	175	50	<5	0.07	<1	26	296	64	3.63	<10	1.35	369		< 0.01	256	610	30		<20	7	0.01		73	<10	5	49
10	CA05-10	5	0.3	1.50	25	125	<5	0.58	<1	35	185	72	3.78	<10	1.72	762	<1	0.02	322	420	16	<5	<20	11	0.05	<10	78	<10	9	52
Standar	d:																													
SH13		1320																												
GEO'05			1.5	1.30	60	135	<5	1.21	<1	15	51	79	3.39	<10	0.73	537	<1	0.02	26	580	18	<i>7</i> 5	D	20	Q 07		73	<10	7	66
JJ/ga df/1392 XLS/05																				(\checkmark	utta J	ertifie	ise	ORATO ayer	DRY L	.TD.			

1-Nov-05 ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

Clive Aspinall Geogleal Pillman Hill - Box 22 **Atlin, BC** VOW 1A0

Attention: Clive Aspinall

No. of samples received: 15 Sample Type:Rock Project: Lakeview Submitted by: Clive Aspinall

LABORATØRY LTD.

ECO TEOF

kitta Jealouse

B.C. Certified Assayer

Et #.	Tag #	Au (ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	, υ	v	w	Y	Zn
1	E47491	10	0.6	1.65	475	35	<5	0.11	<1	70	906	184	4.15	<10	2.75	1168	<1	<0.01	968	20	16	<5	<20	6	<0.01	<10	64	<10	2	40
2	E47492	10	0.7	1.50	235	20	<5	0.01	<1	28	572	114	3.29	<10	2.14	565	<1	<0.01	437	20	24	<5	<20	<1	<0.01	<10	73	<10	<1	42
3	E47493	25	0.6	1.60	290	30	<5	0.02	<1	36	869	197	4.89	<10	2.34	1439	<1	<0.01	624	20	18	<5	<20	<1	<0.01	<10	82	<10	8	47
4	E47494	5	<0.2	0.01	20	<5	<5	0.02	<1	1	178	5	0.34	<10	0.01	44	<1	<0.01	17	<10	2	<5	<20	<1	<0.01	<10	<1	<10	<1	3
5	E47495	15	0.8	0.23	35	<5	<5	0.42	<1	3	215	4	0.54	<10	0.49	99	<1	<0.01	44	<10	40	<5	<20	12	<0.01	<10	9	<10	<1	8
6	E47496	5	0.2	1.06	25	15	<5	0.08	<1	7	151	47	1.78	<10	1.25	104	<1	0.02	69	400	14	<5	<20	4	<0.01	<10	59	<10	<1	31
7	E47497	45		0.34	180	5	5	4.89	<1	13	382	5	1.55	<10	2.90			< 0.01	225	20	20		<20		<0.01		20	<10	2	18
8	E47498	10	0.8	0.51	70	<5	5	0.41	<1	7	224	4	0.92	<10	0.89	129		< 0.01	89	10	56		<20		<0.01		20	<10	<1	22
9	E47499	210		0.34	100	5	5	1.01	6	8	273	4	0.87	<10	1.04	234		<0.01	145	<10	80		<20		< 0.01		15	<10	<1	151
10	E47500	5		0.02	60	<5	<5	<0.01	<1	2	182	6	0.55		<0.01	200		<0.01	30	<10	12		<20		<0.01			<10	<1	3
11	88219	670	19.9	3.71	660	60	15	0.70	<1	50	991	29	>10	<10	4.59	622	3	<0.01	414	130	34	<5	<20	9	<0.01	<10	157	<10	<1	61
12	88225	5		0.56	10	20	<5	0.32	<1	2	78	38	1.45	40	0.09	142	4		7	80	10		<20		< 0.01		5	<10	-	261
13	88226	70		0.02	10		1975	0.01	4	<1	196	58	0.46		< 0.01	862		<0.01	5		8660		<20	<1			<1	<10	4	24
14	88227	5		0.53	<5	10	<5	0.53	<1	20	104	58	1.72	<10	0.29	87	<1		48	440	14		<20	5		<10	38	<10	9	11
15	88228	10		0.02	60	15	15	1.55	<1	85	91	5	4.21	<10		1119	-	<0.01			4		<20	165			6	<10	<1	10
<u>QC DAT/</u> Repeat:	<u>A:</u>																													
1	E47491	15	0.6	1.62	465	30	<5	0.11	<1	69	908	171	4.03	<10	2.68	1125	<1	<0.01	938	30	20	<5	<20	4	<0.01	<10	63	<10	<1	43
9	E47499	220	0.0		100	00		0.11	.,	00	000		4.00	-10	2.00	1120		-0.01	550	50	20	-0	-20	-	-0.01	-10	00	~10		40
10	E47500	220	03	0.02	55	<5	<5	<0.01	<1	2	189	6	0.56	<10	0.02	206	<1	<0.01	31	<10	12	<5	<20	د1	<0.01	<10	2	<10	1	2
11	88219	700	0.0	0.02	00	-0	-0	-0.01		Z	100	Ŭ	0.00	10	0,02	200	- 1	-0.01	01	-10	12	-0	~20	~1	-0.01	10	2	~10		2
Resplit:																														
1 1	E47491	15	0.6	2.03	505	40	<5	0.12	<1	82	1054	215	4.94	<10	3.33	1491	<1	<0.01	1124	40	22	<5	<20	2	<0.01	<10	79	<10	<1	51
Standard SH13	f:	1310																												
GEO'05		1010	1.5	1.44	60	145	<5	1.27	<1	19	59	86	3.56	<10	0.75	543	<1	0.03	29	620	22	<5	<20	54	0.10	<10	71	<10	10	72
																						[$\left(\right)$		æĹ)			

JJ/ga df/1392 XLS/05

Page 1