

Ministry of Energy & Mines Energy & Minerals Division Geological Survey Branch

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT [type of survey(s)] Drilling Asses	sment Report, Pearson Property, B.C. TOTAL COST \$261,463.40
AUTHOR(S) George Owsiacki, P.Geo.	SIGNATURE(S) George Owsiacki
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S) <u>MX-1610131, 16101</u> STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(S)	
4046369 / August 24, 2005	
PROPERTY NAME Pearson Project	
CLAIM NAME(S) (on which work was done) <u>Mineral Tenure Numbers</u>	<u>508577, 508712, 408828 (Nose), 361465 (Galleon 50)</u>
COMMODITIES SOUGHT Fe, Au, Cu	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN 092C 022, 2	3, 91, 90
MINING DIVISION Victoria	NTS 092C/9,10,15; 092C.068, 69, 59, 78, 77, 67
LATITUDE48 ⁰ 39'" LONGITUI	DE124024'" (at centre of work)
OWNER(S)	
1) Emerald Fields Resource Corporation	2)
MAILING ADDRESS	
1546 Pine Portage Road, Kenora, Ontario P9N 2K2	
OPERATOR(S) [who paid for the work]	
1) same as above	_2)
MAILING ADDRESS	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure	
diorite, limestone, marble, Middle-Upper Triassic Quatsino Fm. (Vanco	
magnetite, pyrrhotite, pyrite, chalcopyrite, garnet-pyroxence skarn, Fe s	skarn

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS 27246, 27280, 27517, 5029

TYPE OF WORK IN	EXTENT OF WORK		PROJECT COSTS
THIS REPORT	(IN METRIC UNITS)	ON WHICH CLAIMS	APPORTIONED
GEOLOGICAL (scale, area)			(incl. support)
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL			
(number of samples analysed for)		
Soil			
Silt			
Rock			
Other			
DRILLING			
(total metres; number of holes, size)		
Core711.4 m; 7;	NQ	508577, 508712, 408828, 361465	226,276.60
Non-core			
RELATED TECHNICAL			
Sampling/assaying	89		4491.04
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY/PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Road, local access (kilometres	s)/trail 3.7 km	508577, 508712, 408828, 361465	30,695.76
	,		
<u> </u>			261,463,40

Drilling Assessment Report

Pearson Project, British Columbia

Victoria Mining Division NTS Mapsheets: 092C/09,10,15 TRIM Mapsheets: 092C.068,069,059,078,077,067 Latitude: 48°39' N Longitude: 124°24' W UTM: 5389495 N, 396886 E, Zone 10

OWNER/OPERATOR: EMERALD FIELDS RESOURCE CORPORATION 1546 Pine Portage Road Kenora, Ontario P9N 2K2

AUTHOR: George Owsiacki, P.Geo.

DATE: August 31st, 2005

TABLE OF CONTENTS

1.0	SUMM	1ARY	1
2.0	INTRO	DUCTION AND TERMS OF REFERENCE	2
3.0	DISCI	AIMER	2
4.0	Propi	ERTY DESCRIPTION AND LOCATION	2
5.0	ACCE	SSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND	
	PHYS	OGRAPHY	5
6.0	HISTO	DRY	8
7.0	GEOL	OGICAL SETTING	
	7.1	Regional Scale	
	7.2	Local Scale	
8.0	Depo	SIT TYPES	13
9.0	MINE	RALIZATION	15
	9.1	Bugaboo Creek Area	
	9.2	Renfrew Creek Area	16
10.0	EXPLO	DRATION	
11.0	Drili	ING	
	11.1	Bugaboo Creek Area	25
	11.2	Renfrew Creek Area	
12.0	SAMP	LING METHOD AND APPROACH	
13.0	SAMP	LE PREPARATION, ANALYSES AND SECURITY	44
14.0	Data	VERIFICATION	44
15.0	Adja	CENT PROPERTIES	44
16.0	INTER	PRETATION AND CONCLUSIONS	45
17.0	Reco	MMENDATIONS	47
18.0	Refei	RENCES	
19.0	STATI	EMENT OF COSTS	
20.0	STATI	EMENT OF QUALIFICATIONS	54
		George Owsiacki, P.Geo	
		Garry Payie, P.Geo.	55
		Dan Hora, P.Geo.	56

FIGURES

Figure 1	Location Map, Pearson Project
Figure 2	Mineral Claims Map4
Figure 3	Bugaboo and Reko Deposits Work Area Location Map11
Figure 4	Regional Geology Map12
Figure 5	MINFILE Occurrences
Figure 6	Bugaboo Creek Area Drillhole Location Map21
Figure 7	Reko 10 DDH 1 and 2 Drillhole Location Map22
Figure 8	Reko 10 DDH 3 Drillhole Location Map23
Figure 9	Marble DDH 1 Drillhole Location Map24
Figure 10	Daniel DDH 1 Drillhole Section
Figure 11	Daniel DDH 1 Drillhole Sample Locations27
Figure 12	Conqueror DDH 1 Drillhole Section
Figure 13	Conqueror DDH 1 Drillhole Sample Locations
Figure 14	David DDH 1 Drillhole Section
Figure 15	David DDH 1 Drillhole Sample Locations
Figure 16	Reko 10 DDH 1 Drillhole Section
Figure 17	Reko 10 DDH 1 Drillhole Sample Locations
Figure 18	Reko 10 DDH 1, 2 Drillhole Location and Magnetic Survey Line Map35
Figure 19	Reko 10 DDH 2 Drillhole Section
Figure 20	Reko 10 DDH 2 Drillhole Sample Locations
Figure 21	Reko 10 DDH 3 Drillhole Location Map
Figure 22	Reko 10 DDH 3 Drillhole Section
Figure 23	Reko 10 DDH 3 Drillhole Sample Locations
Figure 24	Marble DDH 1 Drillhole Location Map41
Figure 25	Marble DDH 1 Drillhole Section
Figure 26	Marble DDH 1 Drillhole Sample Locations
Figure 27	Location Map of Bugaboo Creek Area and Adjacent Showings46

TABLES

Table 1	Claims Under Option	.6
Table 2	Claims Owned by Emerald Fields Resource Corporation	.7
Table 3	Drilling History of the Bugaboo and Reko Deposits	.20
Table 4	Summary of Spring 2005 Drill Program	.20

APPENDICES

Appendix A	Drill Logs
Appendix B	ALS Chemex Analytical Certificates
Appendix C	ALS Chemex Sample Preparation and Analytical Procedures
Appendix D	MINFILE Master Reports

1.0 SUMMARY

Emerald Fields Resource Corporation contracted Total Earth Science Services to supervise a diamond drilling program in the spring of 2005 and to prepare an Assessment Report for the Pearson Project claim group located on Vancouver Island. This report summarizes the drilling carried out and describes economically significant iron (magnetite) skarn mineral zones.

George Owsiacki, P.Geo., of Total Earth Science Services served as the independent Qualified Person responsible for preparing the Assessment Report and was on the property from April to May, 2005 during the drilling program.

Seven thin-wall NQ diamond-drill holes, totalling 711.4 metres, were drilled on the Daniel, Conqueror, David and Reko magnetite showings between April and May, 2005. The results of the spring 2005 drill program has established high iron grades of the Bugaboo magnetite deposits and the economic viability of the Bugaboo and Reko deposits should be further evaluated. One drillhole on the Daniel deposit intersected massive magnetite 21.97 metres thick averaging 57.55% total iron; a drillhole on the Conqueror deposit intersected 25.04 metres of massive magnetite averaging 61.22% total iron.

The Pearson Project claim group is located 107 kilometres west-northwest of Victoria on Vancouver Island, British Columbia. The property consists of 86 mineral claims totalling 33,202 hectares, held by Emerald Fields Resource Corporation. Access to the property is via the Gordon River Main and Granite Main logging roads about 10 kilometres from the community of Port Renfrew, British Columbia. An excellent network of secondary logging roads provide access to most of the property.

The Pearson property hosts the Bugaboo and Reko deposits in the Bugaboo Creek and Renfrew Creek areas, respectively. The Bugaboo and Reko deposits can be classified as calcic iron skarns or contact metasomatic iron deposits. Massive magnetite mineralization is generally developed near marble and diorite and associated with pyroxene +/- garnet skarn. Previously unrecognized and undocumented ultramafic rocks have recently been discovered on the Pearson property and could be a significant indicator for the ultramafic-related suite of ore deposits, namely tholeiitic intrusion-hosted nickel-copper that may contain platinum group elements. The project property may also require further assessment to evaluate the potential for iron oxide copper-gold (IOCG) deposit types.

Geological data for the Pearson project are mostly sourced from work performed between 1957-60, 1971-1974, and 2003-04. Exploration drilling was first carried out on the Bugaboo deposits in 1957, and on the Reko deposits in 1971. Emerald Fields conducted drilling in 2003 on a portion of the Reko deposits, and in the spring of 2005 on parts of the Bugaboo and Reko deposits.

Based on the potential for discovery of additional magnetite mineralization and expanding the dimensions of known deposits, testing newly discovered showings, investigating the potential of nickel-copper +/- platinum group elements mineralization related to ultramafic

rocks, and assessing the iron oxide copper-gold (IOCG) potential, a 2-phase program of airborne magnetic surveying, ground magnetometer surveying, core drilling, geological mapping and sampling is recommended.

Phase 1 recommendations include an airborne magnetic survey covering 5000 line kilometres and 2000 metres of core drilling with a proposed budget of \$562,500. Contingent on results from phase 1, a second phase that includes approximately 2000 metres of core drilling and ground magnetic survey is recommended with an estimated budget for phase 2 of \$530,500.

2.0 INTRODUCTION AND TERMS OF REFERENCE

In March of 2005 Mr. Perry Heatherington, Chief Operating Officer of Emerald Fields Resource Corporation, requested that the author review all relevant information on the Pearson Project claims which covers the historic Reko and Bugaboo magnetite deposits and to supervise a diamond drill program scheduled for the spring of 2005. The proposed drilling program was to accurately re-locate and expand the dimensions of the magnetite orebodies that were worked on in the late 1950s and early 1970s, test newly discovered zones of massive magnetite, and qualify targets for future mineral exploration and development. The work also involved the preparation of an Assessment Report to fulfill work requirements on the subject property. George Owsiacki, P.Geo., served as the independent Qualified Person responsible for preparing the report and was present on the property during the drilling program from April to May, 2005.

3.0 DISCLAIMER

This report is based in part on documents and technical reports prepared by various authors and the portions of this report that provide that information are referenced. The documents and technical reports were used to compile the Pearson property history and geology. The main historic reports that the author relied upon to write this report are Menzies and Nicolls (1960), Roscoe (1973), Young and Uglow (1926) and Eastwood (1974) and are listed in Section 18.0.

4.0 **PROPERTY DESCRIPTION AND LOCATION**

The Pearson Project claim group is situated in the Victoria Mining Division on Vancouver Island, 107 kilometres west-northwest of Victoria, British Columbia and 10 kilometres north of the community of Port Renfrew (Figure 1). The claims are located on NTS mapsheets 092C/09,10,15 (TRIM mapsheets 092C.068,069,059,078,077,067) at a latitude of 48°39' N and longitude 124°24' W (Figure 2). Access to the claims is via Highway 14 to the community of Port Renfrew and thence by an excellent network of active and non-active logging roads.

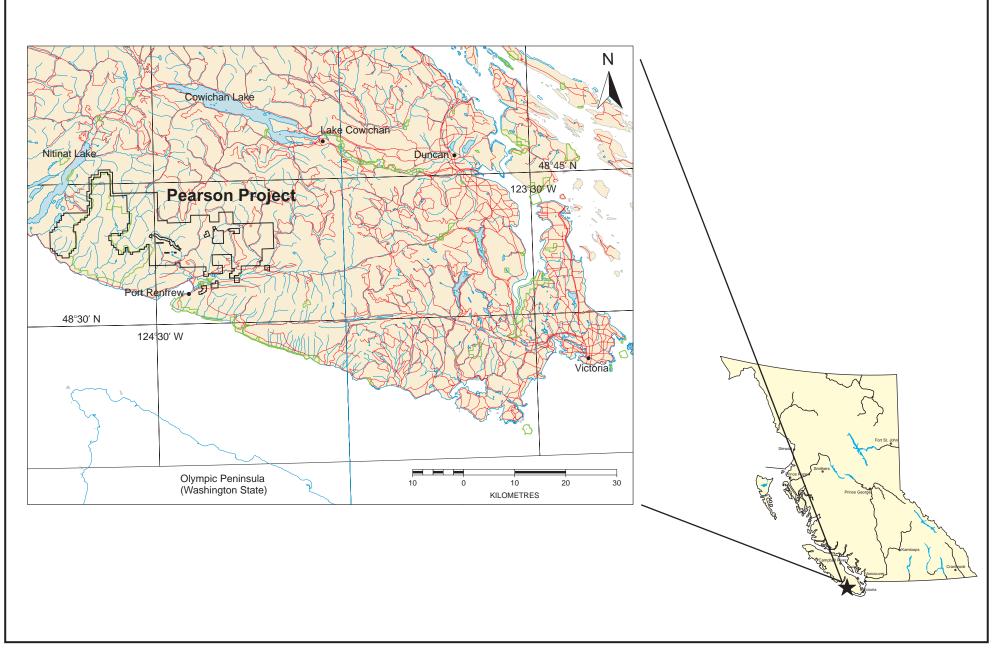


Figure 1. Location Map, Pearson Project.

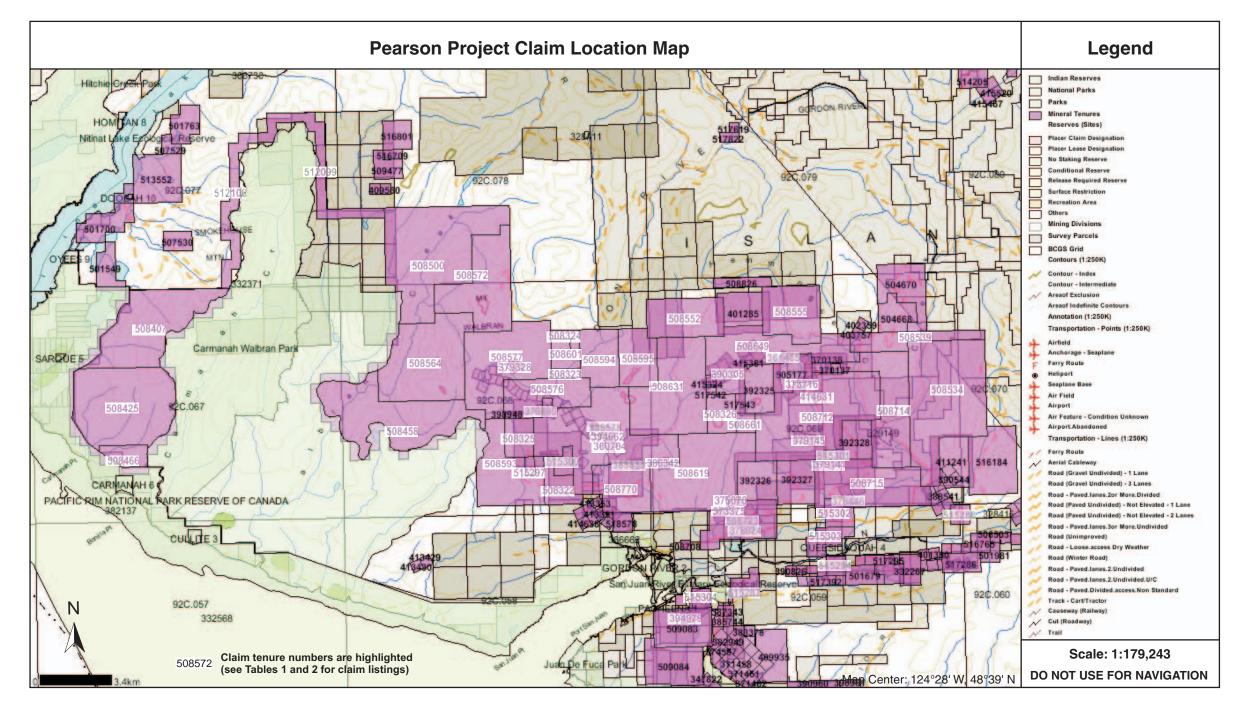


Figure 2. Mineral Claims Map.

The Pearson property consists of an irregularly-shaped block of 86 contiguous claims, totalling 33,202.76 hectares. The claim block extends about 30 kilometres in an east-west direction and 8 kilometres north-south. In 2002, Emerald Fields entered an option agreement with Gary Pearson of Port Renfrew concerning claims in the area. Table 1 lists 52 claims totalling 2111.07 hectares that are held under option, and Table 2 lists 37 claims totalling 32,851.8 hectares that are 100% owned by Emerald Fields Resource Corporation.

The Pearson property has not been legally surveyed. The author is not aware of any planned or existing land use that would adversely affect development of mineral resources on the Pearson property. On March 31, 2005, Emerald Fields Resource Corporation obtained a permit from the Ministry of Energy and Mines (pursuant to Section 10 of the Mines Act) to carry out core drilling. Emerald Fields Resource Corporation has received permit numbers MX-1610131 and MX-1610150 in order to commence a program of core drilling on the subject property.

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Pearson property is generally in moderately rugged and steep terrain about 10 kilometres north of the coastal community of Port Renfrew. Topography consists of regions of protruding and steeply sloped bluffs incised by numerous, north and northwest trending creeks and rivers (e.g. Gordon River, Renfrew Creek, Hemmingsen Creek). Elevations range from 200 to 1100 metres above sea level. The property is located within an exceptionally wet and mild rainforest climate region with cool summers and mild winters. In Port Renfrew there is an average of approximately 12 days of snowfall and only 15 days of snow cover over the year but at higher elevations regular winter snow conditions exist. Mean average daily temperatures range from a low of 3.2°C in January to 14.9°C in August. The area receives an impressive amount of rain, with a mean total rainfall of 64.1 mm in July, and 561.8 mm in November. The annual average total for rainfall is 3.6 metres. Fieldwork can be performed year round except at higher elevations where winter conditions prevail.

Access to and on the property is excellent using an expansive and well developed network of logging roads. Other than road access, there is no significant infrastructure on the property. The community of Port Renfrew, population 180, is 10 kilometres south of the property and is a source for fuel, groceries, accommodation, etc. Port Renfrew is accessed by a 1³/₄ hour drive via Highway 14 from Victoria in the southeast or by all-weather logging roads from Lake Cowichan and Duncan in the northeast.

Table 1. Claims Under Option.

Tenure Number	Claim Name	Owner Client No.	Map Number	Good To Date	Mining Division	Area (Ha)
358261	GALLEON 8	120955 (100%)	092C068	2006/AUG/09	VICTORIA	25.0
360704	GALLEON 8-3	120955 (100%)	092C068	2006/NOV/22	VICTORIA	25.0
361465	GALLEON 50	120955 (100%)	092C069	2007/FEB/20	VICTORIA	25.0
368279	GALLEON 4B	120955 (100%)	092C059	2006/FEB/20	VICTORIA	25.0
370610	GALLEON 53	120955 (100%)	092C069	2006/JUN/27	VICTORIA	25.0
373375	GALLEON 70	120955 (100%)	092C069	2005/AUG/27	VICTORIA	25.0
373376	GALLEON 71	120955 (100%)	092C069	2005/AUG/27	VICTORIA	25.0
373716	GALLEON 57	120955 (100%)	092C069	2006/JUN/27	VICTORIA	25.0
374247	GALLEON 80	120955 (100%)	092C059	2006/JUN/27	VICTORIA	25.0
374409	OBIN	120955 (100%)	092C059	2006/JUN/27	VICTORIA	25.0
374714	DAN 1	120955 (100%)	092C069	2006/JUN/27	VICTORIA	25.0
375070	DAN 4	120955 (100%)	092C069	2006/JUN/27	VICTORIA	25.0
378446	JAN 8	120955 (100%)	092C069	2005/AUG/27	VICTORIA	25.0
378447	JACK	120955 (100%)	092C069	2005/AUG/27	VICTORIA	25.0
378824	DAN 9	120955 (100%)	092C059	2005/AUG/27	VICTORIA	25.0
378825	DAN 10	120955 (100%)	092C059	2005/AUG/27	VICTORIA	25.0
378826	DAN 11	120955 (100%)	092C059	2005/AUG/27	VICTORIA	25.0
379141	ABBEY	120955 (100%)	092C069	2006/JUN/27	VICTORIA	25.0
379142	PACMIST 4	120955 (100%)	092C069	2006/JUN/27	VICTORIA	25.0
379144	GHOST	120955 (100%)	092C069	2006/JUN/27	VICTORIA	25.0
379145	PACMIST 3	120955 (100%)	092C069	2006/JUN/27	VICTORIA	25.0
379146	OUTHOUSE	120955 (100%)	092C069	2006/JUN/27	VICTORIA	25.0
379328	PRINCESS	120955 (100%)	092C068	2005/AUG/27	VICTORIA	25.0
379889	PRINCESS 2	120955 (100%)	092C068	2006/JUN/27	VICTORIA	25.0
379890	ROCCOD	120955 (100%)	092C068	2006/JUN/27	VICTORIA	25.0
381142	TIMBER	120955 (100%)	092C069	2006/JUN/27	VICTORIA	25.0
381143	JAY JAY	120955 (100%)	092C069	2006/JUN/27	VICTORIA	25.0
385855	WHISTLE 1	120955 (100%)	092C068	2006/JUN/27	VICTORIA	25.0
386342	WHISTLE 2	120955 (100%)	092C069	2006/JUN/27	VICTORIA	25.0
390305	COHO 2	120955 (100%)	092C069	2005/AUG/27	VICTORIA	25.0
390306	COHO 3	120955 (100%)	092C069	2005/AUG/27	VICTORIA	25.0
390462	COHO #4	120955 (100%)	092C069	2005/AUG/27	VICTORIA	25.0
390463	COHO #5	120955 (100%)	092C069	2005/AUG/27	VICTORIA	25.0
390464	COHO #6	120955 (100%)	092C069	2005/AUG/27	VICTORIA	25.0
394662	GALLEON 8-2	120955 (100%)	092C068	2006/JUN/25	VICTORIA	25.0
394977	SNUG	120955 (100%)	092C059	2006/JUL/17	VICTORIA	25.0
394978	HARBOUR	120955 (100%)	092C059	2006/JUL/17	VICTORIA	25.0
394979	FIFTY-FIVE	120955 (100%)	092C059	2006/JUL/17	VICTORIA	25.0
395160	KAREN 1	120955 (100%)	092C050	2006/JUL/04	VICTORIA	25.0
414631	GALLEON 54	120955 (100%)	092C069	2006/OCT/08	VICTORIA	25.0
515286		120955 (100%)	092C059	2006/JUN/27	VICTORIA	85.447
515287		120955 (100%)	092C059	2005/OCT/15	VICTORIA	149.616
515294		120955 (100%)	092C059	2005/AUG/27	VICTORIA	85.482
515295		120955 (100%)	092C050	2005/OCT/04	VICTORIA	64.27
515296		120955 (100%)	092C069	2005/AUG/27	VICTORIA	21.337
515297		120955 (100%)	092C068	2005/AUG/27	VICTORIA	42.704
515299		120955 (100%)	092C068	2006/DEC/02	VICTORIA	21.346
515300		120955 (100%)	092C068	2006/JUN/27	VICTORIA	106.757
515301		120955 (100%)	092C069	2006/JUN/27	VICTORIA	42.701
515302		120955 (100%)	092C059	2006/JUN/27	VICTORIA	192.251
515303		120955 (100%)	092C059	2006/JUL/17	VICTORIA	213.658
515304		120955 (100%)	092C059	2005/OCT/01	VICTORIA	85.503

* Note that the Karen 1 claim, and claim tenures 515286, 515287, 515295, 515304, 368279, 394977, 394978 and 394979 are not contiguous with the main claim block.

Table 2. Claims Owned By Emerald Fields Resource Corporation.

Tenure Number	Claim Name	Owner Client No.	Map Number	Good To Date	Mining Division	Area (Ha)
408828	NOSE	145301 (100%)	092C069	2006/MAR/16	VICTORIA	25.0
409241	NOSE 2	145301 (100%)	092C069	2006/MAR/24	VICTORIA	25.0
508322	RENFREW 1	145301 (100%)	092C068	2006/MAR/07	VICTORIA	256.267
508323	RENFREW 2	145301 (100%)	092C068	2006/MAR/07	VICTORIA	64.006
508324	RENFREW 3	145301 (100%)	092C068	2006/MAR/07	VICTORIA	85.316
508325	RENFREW 4	145301 (100%)	092C068	2006/MAR/07	VICTORIA	256.16
508326	RENFREW 5	145301 (100%)	092C069	2006/MAR/07	VICTORIA	256.116
508407		145301 (100%)	092C067	2005/NOV/24	VICTORIA	1578.087
508425		145301 (100%)	092C067	2005/NOV/23	VICTORIA	1878.076
508458		145301 (100%)	092C068	2005/NOV/12	VICTORIA	1899.543
508466		145301 (100%)	092C067	2005/NOV/21	VICTORIA	277.562
508500		145301 (100%)	092C068	2005/NOV/16	VICTORIA	2110.044
508534		145301 (100%)	092C069	2005/NOV/17	VICTORIA	1984.778
508539		145301 (100%)	092C069	2005/NOV/18	VICTORIA	426.622
508552		145301 (100%)	092C069	2005/NOV/17	VICTORIA	682.423
508555		145301 (100%)	092C069	2005/NOV/17	VICTORIA	703.73
508564		145301 (100%)	092C068	2005/NOV/14	VICTORIA	1535.985
508572		145301 (100%)	092C068	2005/NOV/16	VICTORIA	1129.941
508576		145301 (100%)	092C068	2006/JUN/27	VICTORIA	640.18
508577		145301 (100%)	092C068	2006/JUN/27	VICTORIA	1344.008
508578		145301 (100%)	092C068	2005/AUG/27	VICTORIA	1771.778
508593		145301 (100%)	092C068	2005/AUG/27	VICTORIA	939.522
508594		145301 (100%)	092C068	2005/AUG/27	VICTORIA	490.651
508595		145301 (100%)	092C068	2006/JUN/27	VICTORIA	490.656
508601		145301 (100%)	092C068	2005/NOV/18	VICTORIA	170.658
508619		145301 (100%)	092C069	2006/JUN/27	VICTORIA	1452.035
508631		145301 (100%)	092C069	2005/AUG/27	VICTORIA	1387.024
508649		145301 (100%)	092C069	2005/AUG/27	VICTORIA	1151.952
508661		145301 (100%)	092C069	2005/AUG/27	VICTORIA	85.379
508712		145301 (100%)	092C069	2006/JUN/27	VICTORIA	1814.207
508714		145301 (100%)	092C069	2005/AUG/27	VICTORIA	1003.116
508715		145301 (100%)	092C069	2005/AUG/27	VICTORIA	1067.809
508723		145301 (100%)	092C069	2005/AUG/27	VICTORIA	619.513
508756		145301 (100%)	092C050	2005/AUG/27	VICTORIA	1670.837
508770		145301 (100%)	092C068	2005/AUG/27	VICTORIA	597.964
512099	RENFREW 6	145301 (100%)	092C077	2006/MAY/05	VICTORIA	532.441
512106	RENFEW 7	145301 (100%)	092C077	2006/MAY/05	VICTORIA	447.399

Reverted Crown-grant Lot 170 (David) Mapsheet 092C.068 Reverted Crown-grant Lot 171 (Cyrus) Mapsheet 092C.068 Reverted Crown-grant Lot 172 (Conqueror) Mapsheet 092C.068 Reverted Crown-grant Lot 173 (Daniel) Mapsheet 092C.068 Reverted Crown-grant Lot 207 (Elijah) Mapsheet 092C.068 Reverted Crown-grant Lot 208 (Benjamin Fr.) Mapsheet 092C.068

* Note that claim tenure 508756 is not contiguous with the main claim block.

6.0 HISTORY

The Pearson property covers an area 30 kilometres long in an east-west direction and 10 kilometres in a north-south direction and contains numerous mineral occurrences as documented in the British Columbia mineral inventory database, MINFILE. The most significant of these are the Bugaboo iron (magnetite) skarn deposits in the western portion of the claim block near the headwaters of Bugaboo Creek, and the Reko iron (magnetite) skarn deposits in the eastern portion of the claim block along Renfrew Creek. Both the Bugaboo and Reko deposits contain historic reserves.

The two Bugaboo deposits are called Conqueror and Daniel (MINFILE 092C 022); the David (MINFILE 092C 023) and Elijah (MINFILE 092C 024) magnetite showings occur close by. Other magnetite showings in this area, but not covered by the property claims, are the Sirdar (MINFILE 092C 025), Baden Powell (MINFILE 092C 027) and Rose (MINFILE 092C 030). In the eastern portion of the claim block, the main Reko magnetite deposits are the Reko 10 (MINFILE 092C 091) and Reko 3 (MINFILE 092C 090). See Appendix D for MINFILE descriptions and reports.

The Conqueror showing was originally staked by R. Elliot of Port Renfrew in 1898 but the claims lapsed and four of them were relocated as the Conqueror group in 1899 and Crown granted in 1905. This new group, which also covered the Daniel showing, was owned by Messrs. McGregor, Cathcart and Parsell. The development work, carried out during the period 1900-07, consisted of two opencuts, and a tunnel 4.3 metres long, in solid magnetite, driven from a point 2.4 metres above Bugaboo Creek.

No further work was done on the property until 1957 when two x-ray drillholes (both stopped in overburden) totalling 25.6 metres was completed on the Daniel, and nine x-ray drillholes totalling 273.7 metres completed on the Conqueror. In 1959, Noranda Exploration Company, Limited optioned 7 Crown-granted claims and fractions from H.W. Cathcart of Victoria covering the Conqueror and Daniel showings. A 30-metre grid survey, as well as dip needle and magnetometer surveys were completed. Thirteen EX diamond-drill holes totalling 880.6 metres was completed on the Daniel claim and 15 EX drillholes totalling 1118.3 metres on the Conqueror. In 1960, an additional 15 AX drillholes totalling 987.2 metres was completed on the Daniel and 7 AX drillholes totalling 894.6 metres on the Conqueror to confirm the ore reserves and grades indicated by earlier work and to show sufficient additional tonnage to justify a mining operation. Noranda also completed a report on proposed breakwater requirements adjacent to a deep-sea dock for Port of San Juan and a laboratory test on Conqueror mine run ore at the Noranda Concentrator Experimental Laboratory.

Noranda reports indicated reserves for the Daniel (open pit) as 1,537,534 tonnes at an average grade of 55.67% iron and 3.61% sulphur. Indicated reserves for the Conqueror (underground) are 1,069,471 tonnes at an average grade of 54.31% iron and 2.21% sulphur. Probable reserves for the Daniel are 508,883 tonnes (no grades given). Probable reserves for the Conqueror are 453,550 tonnes, and possible reserves 798,565 tonnes (no grades given). Combined indicated and probable ore for both deposits total 3,569,438 tonnes (no grades

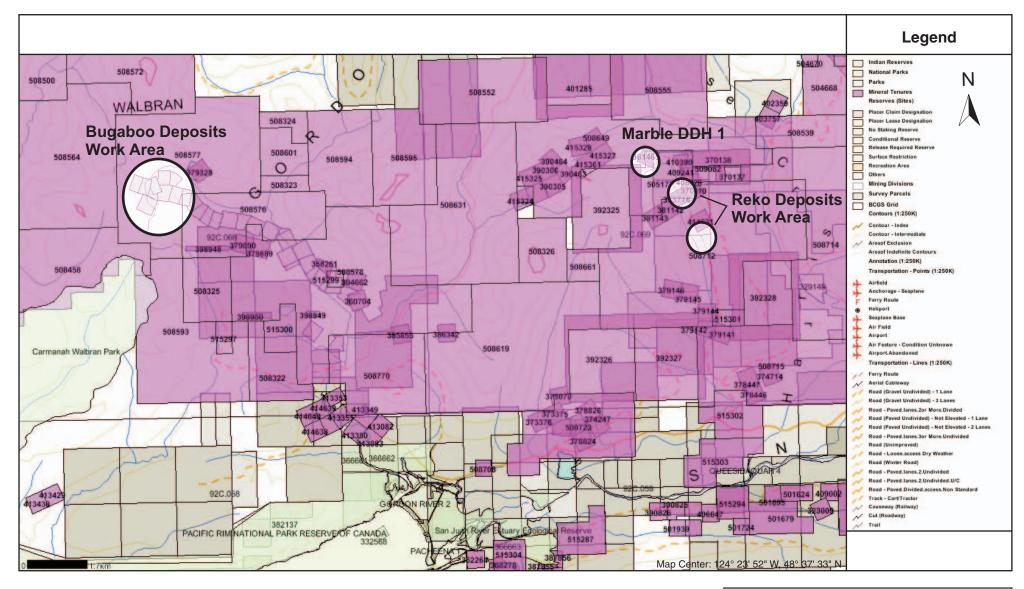
given). Combined indicated, probable and possible reserves for both deposits total 4,367,686 tonnes (no grades given). Refer to the 1960 Final Report by M.M. Menzies and O.W. Nicolls. It should be noted that the report by Menzies and Nicolls does not contain detailed drill logs, drillhole location maps or drill sections of the deposits reported on. Emerald Fields Resource Corporation has not been able to obtain enough of the original data and has not done the work necessary to verify the classification of a resource or reserve and is not treating the historical estimates as fulfilling the requirements of Sections 1.3 and 1.4 of National Instrument 43-101.

In the eastern portion of the claim block bulldozing and blasting by B.C. Forest Products road-building crews during the summer of 1970 uncovered showings of magnetite and sulphides near the upper reaches of Renfrew Creek (Reko showings). The Reko 1-6 claims were staked on these showings in July 1970 by Mr. M. Levasseur. Sampling of the exposed mineralization was subsequently carried out. Levasseur and associates incorporated Reako Explorations Ltd. in July 1971. Further staking in 1971-72 expanded the property to 66 claims. Exploration work during 1971 included x-ray diamond drilling totalling 37 metres in 6 holes and a limited magnetometer survey. During 1972-73, work included geological mapping, magnetometer surveys over 120 line-kilometres, an electromagnetic survey over 80 line-kilometres, an induced potential survey over 19 line-kilometres, trenching, and 5300 metres of diamond drilling in 100 holes on Reko 3, 4, 9, 10 and 42. The adjoining Kestrel 1-15 claims were purchased from M. Dickens of Savona in January 1974. Work during the year included 89 metres of diamond drilling in 6 holes on Reko 37. Drilling in 1972 on the South Pit B zone indicated a magnetite-bearing zone 94 metres long, over 30 metres wide and up to 50 metres deep. The average grade indicated by the core assay was 22.28% iron. In 1973-74, R.L. Roscoe estimated 1,111,242 tonnes in five combined zones (Zone 1, 2, 3, 5, 8) without specifying grades. South Pit B zone (or Zone 2) contains 970,597 tonnes. Emerald Fields Resource Corporation has not been able to obtain enough of the original data and has not done the work necessary to verify the classification of a resource or reserve and is not treating the historical estimates as fulfilling the requirements of Sections 1.3 and 1.4 of National Instrument 43-101.

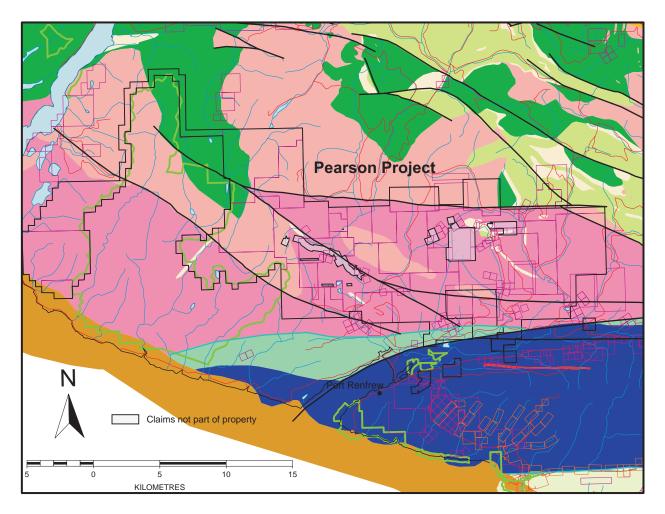
No further work was reported on until Emerald Fields entered an option agreement with Gary Pearson of Port Renfrew on June 14, 2002 and also began staking claims in the area. In May 2003, Discovery Consultants completed geological, geochemical and geophysical surveys on behalf of Emerald Fields and Gary Pearson over parts of the property. Work comprised geological mapping, rock, heavy mineral and stream sediment sampling, petrographic work, and orientation VLF-EM and magnetometer surveys. In April 2004, Emerald Fields completed 7 BQ diamond-drill holes totalling 326 metres in the eastern portion of the claim block, namely on some of the Reko showings. Emerald Fields staked additional claims in November 2004 and early 2005. Between April to May 2005, a diamond drill program of 7 TWNQ drillholes totalling 711.4 metres was completed on parts of the Reko, Conqueror, Daniel and David magnetite showings and was supervised by George Owsiacki, P.Geo. (author of this Assessment Report) and Garry Payie, P.Geo., of Total Earth Science Services. This work is summarized in Section 11.0 of this report.

7.0 GEOLOGICAL SETTING

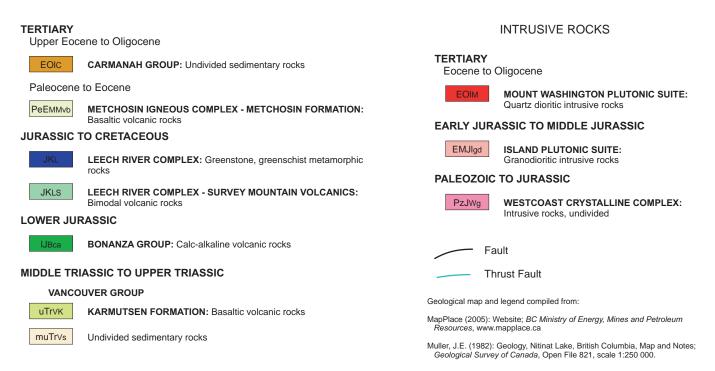
Much of the information in this section has been sourced from Geological Survey of Canada Open File 821 (Muller, 1982), Assessment Reports 5029, 25877, 27246, 27280, 27517, and by the author's own observations during the supervision of the drill program on which this report is based. The property is large, extending almost 30 kilometres east-west and 10 kilometres north-south, and encompasses two significantly mineralized areas. Magnetite deposits occur in the Bugaboo Creek area in the west part of the property, and in the Renfrew Creek area 15 kilometres east (Figure 3).


7.1 Regional Scale

The Port Renfrew area and beyond was mapped in 1982 by J.E. Muller of the Geological Survey of Canada. The property lies in the Insular Tectonic Belt where three distinct terranes occur. In the north are Paleozoic to Mesozoic rocks of the Wrangell Terrane consisting of Lower Jurassic Bonanza Group calc-alkaline and volcanic rocks, Middle to Upper Triassic Vancouver Group basaltic volcanic rocks and limestones, Early to Middle Jurassic Island Plutonic Suite quartz monzonitic to granodiorite intrusive rocks, and Paleozoic to Jurassic Westcoast Crystalline Complex dioritic intrusive rocks. Younger sedimentary and volcanic rocks of the Pacific Rim Terrane are thrust beneath the southern and western edges of the Wrangellia rocks along the San Juan and Survey Mountain faults. The San Juan Fault extends from near Port Renfrew to beyond Cobble Hill and for much of its length separates Pacific Rim Terrane from Wrangellia. Pacific Rim Terrane rocks consist of Jurassic to Cretaceous Leech River Complex greenstone, greenschist metamorphic rocks, sedimentary rocks and bimodal volcanic rocks. In the south, just below the property boundary, Crescent Terrane basaltic volcanic rocks belonging to the Paleocene to Eocene Metchosin Igneous Complex are emplaced beside and beneath the Pacific Rim Terrane along the Leech River Fault. Sedimentary rocks of the Upper Eocene to Oligocene Carmanah Group accumulated on the Crescent and Pacific Rim terranes. Numerous north-northwest and east-west faults transect the property (Figure 4).


Previously un-mapped ultramafic rocks have recently been discovered and identified on the property and are variously comprised of peridotite, serpentinized peridotite, gabbro, pyroxenite and hornblendite.

7.2 Local Scale


The Conqueror, Daniel, David and Reko iron (magnetite) skarn deposit areas have been variously described by Menzies and Nicolls (1960), Young and Uglow (1926), Roscoe (1973), Eastwood (1974) and McKinley (2003) where the following information has been taken. The British Columbia mineral inventory database, MINFILE, documents the showings as follows: Bugaboo, 092C 022; David, 092C 023; and Reko, 092C 090, 91, 110, 146. See Appendix D for MINFILE geological reports.

Total Earth Science Services			
Emerald Fields Resource Corporation			
Pearson Project Bugaboo and Reko Deposits Work Area Location Map			
Location: Port Renfre	W	Mining Divisio	^{n:} Victoria
Datum: NAD 83		2C.068, 069 8, 059	UTM Zone: 10
Date: August 12, 2005	Drawn By: G	0	Figure: 3

GEOLOGICAL LEGEND

Figure 4. Regional Geology Map.

Bugaboo Creek Area

The Bugaboo Creek area in the western portion of the claim block contains four well exposed, partly developed iron (magnetite) skarn deposits: Conqueror-Daniel, David, Sirdar and Baden Powell. The Conqueror-Daniel and David deposits are on the property while the Sirdar and Baden Powell are located 680 metres and 1500 metres southeast, respectively and are not part of the subject property. The Conqueror-Daniel and David area is underlain by a dioritic intrusion possibly of the Westcoast Crystalline Complex and limestone of the Upper Triassic Quatsino Formation (Vancouver Group). The bodies of limestone appear to be completely surrounded by dioritic intrusive rocks and could be considered roof pendants. The magnetite showings are aligned in a northwest-southeast trending line that appears to parallel a regional northwest trending fault structure along Bugaboo Creek (Figure 3).

Generally, the Conqueror, Daniel and David magnetite bodies occur within zones of pyroxene-garnet skarn formed along the contact of fine to medium-grained diorite and limestone. The magnetite occurs as large, irregular, fine grained massive bodies surrounded by recrystallized limestone (marble) and dioritic intrusive rocks cut by plagioclase porphyritic dikes. A detailed description of the mineralization is provided in Section 9.0.

Renfrew Creek Area

The Renfrew Creek area in the eastern portion of the claim block, located about 15 kilometres east of the Bugaboo Creek area, is generally underlain by dioritic rocks of the Westcoast Crystalline Complex in contact along irregular boundaries with limestone probably belonging to the Upper Triassic Quatsino Formation (Vancouver Group). The massive limestone bodies strike in a general north-northwest direction, and where bedding is evident, dip at various angles to the north and south. The limestone varies from dark grey to blue to white and in some localities has been altered to marble. Most limestone bodies have been successively intruded by andesitic (greenstone) and fine-grained diorite dikes. The dioritic rocks include fine grained, mafic rich and leucocratic diorite, medium to coarse-grained quartz diorite, and quartz diorite breccia containing fragments of fine-grained mafic diorite. The breccia locally grades to massive diorite. A set of long, narrow, fine grained grey dikes strike consistently at 020 degrees, transect all other rocks, and probably follow late fractures.

Massive iron (magnetite) skarn deposits are developed near diorite and recrystallized limestone (marble) contacts and along zones of garnet-pyroxene skarn. The magnetite occurs as large fine to coarse grained massive bodies bounded by marble and/or diorite. A detailed description of the mineralization is provided in Section 9.0.

8.0 **DEPOSIT TYPES**

The Bugaboo and Reko deposits can be classified as calcic iron skarns or contact metasomatic iron deposits. Commodities and byproducts related to this type of deposit are magnetite (iron), copper, silver, gold and cobalt. Typically magnetite-dominant mineralization is genetically associated with a skarn gangue. The tectonic setting of calcic iron skarns are intra and non-intraoceanic island arcs and rifted continental margins. The age

of mineralization can be of any age, mainly Mesozoic to Cenozoic and are typically Early to mid-Jurassic in British Columbia. Deposit-type classification description is taken from G.E. Ray (1995) in '*Fe Skarns, in Selected British Columbia Mineral Deposit Profiles, Volume 1 - Metallics and Coal, Open File 1995-20*' and is reproduced below.

The host and associated rock types are iron-rich, silica-poor intrusions derived from primitive oceanic crust. Typically, large to small stocks and dikes of gabbro to syenite (mostly gabbrodiorite) intrudes limestone, calcareous clastic sedimentary rocks, tuffs or mafic volcanics at a high to intermediate structural level. The deposit form is variable and includes stratiform orebodies, vertical pipes, fault-controlled sheets, massive lenses or veins, and irregular ore zones along intrusive margins.

Igneous textures prevail in endoskarn (skarn formed by replacement of intrusive or other aluminous silicate rock). Coarse to fine grained, massive granoblastic to mineralogically layered textures are evident in exoskarn (skarn formed by replacement of limestone or dolomite). Some hornfelsic textures may also be developed. Magnetite varies from massive to disseminated to veins. Exoskarn alteration is high iron, low manganese, diopside-hedenbergite clinopyroxene and grossular-andradite garnet, \pm epidote \pm apatite. Late stage amphibole \pm chlorite \pm ilvaite \pm epidote \pm scapolite \pm albite \pm K-feldspar. Endoskarn alteration comprises sodium silicates \pm garnet \pm pyroxene \pm epidote \pm scapolite.

Principal and subordinate ore mineralogy can comprise magnetite \pm chalcopyrite \pm pyrite \pm cobaltite \pm pyrrhotite \pm arsenopyrite \pm sphalerite \pm galena \pm molybdenite \pm bornite \pm hematite \pm martite \pm gold. Rarely, can contain tellurobismuthite \pm fluorite \pm scheelite.

Ore controls are stratigraphic and structural: close proximity to contacts between intrusions and carbonate sequences, volcanics or calcareous tuffs and sediments. Fracture zones near igneous contacts can also be important. Some associated deposit types can be copper porphyries, copper and lead-zinc skarns or small lead-zinc veins.

In calcic iron skarns, early magnetite is locally intergrown with, or cut by, garnet and magnesian silicates. Some of these skarns contain relatively small pockets of pyrrhotite-pyrite mineralization that postdate the magnetite; this mineralization can be gold-rich. Over 90% of the 146 iron skarn occurrences in British Columbia lie within the Wrangell Terrane of the Insular Belt. The majority of these form where Early to mid-Jurassic dioritic plutons intrude Late Triassic limestones.

Exploration guides for calcic iron skarns are geochemical signatures exhibiting enrichment in iron, copper, cobalt, gold, nickel, arsenic and chromium. Overall copper and gold grades are low (<0.2% Cu and 0.5 g/t Au). Geophysical signatures are strong positive magnetic, electromagnetic and induced polarization anomalies. Other exploration guides for iron skarn development are magnetite-rich float, and exploration in the Wrangell Terrane near the upper and lower contacts of the Upper Triassic Quatsino Formation limestone (or equivalent units).

Economic factors are grade and tonnage where grades are typically 40% to 50% iron. Worldwide, calcic iron skarns range from 3 to 150 million tonnes. In British Columbia, they

reach 20 million tonnes and average approximately 4 million tonnes mined ore. Nearly 90% of British Columbia's historic iron production was from skarns.

Previously unrecognized and undocumented ultramafic rocks have been recently discovered (McKinley, 2003) on the Pearson property and could be a significant indicator for the ultramafic-related suite of ore deposits, namely tholeiitic intrusion-hosted nickel-copper that may contain platinum group elements (PGE). Gabbro and hornblende gabbro with significant copper, nickel, cobalt, platinum and palladium values were identified on the Ebb showing in the eastern part of the property in the vicinity of Fairy Creek, north of Fairy Lake (Tavela, 1980).

The Pearson property may also require assessment to evaluate the potential for iron oxide copper-gold (IOCG) deposit types.

9.0 MINERALIZATION

9.1 Bugaboo Creek Area

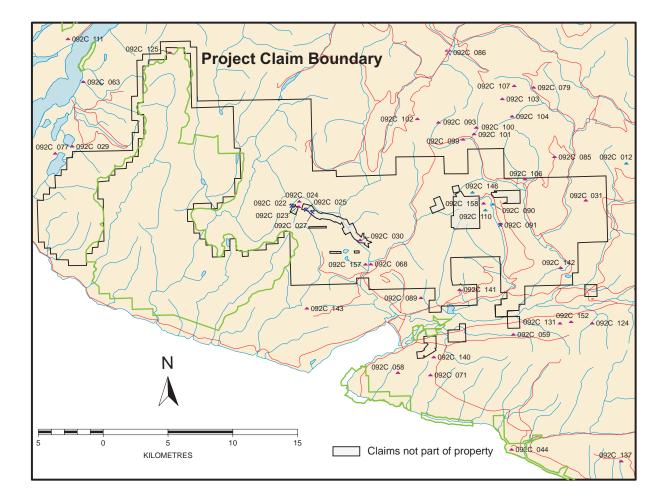
The original Conqueror discovery showing is a solid mass of magnetite about 10 metres thick exposed in the canyon of Bugaboo Creek, over which the creek forms a waterfall. The massive magnetite occurs within and near zones of pyroxene-garnet skarn formed along the contact of fine-grained diorite and limestone. The magnetite occurs as large, irregular massive bodies surrounded by recrystallized limestone (marble) and dioritic intrusive rocks cut by plagioclase porphyritic dikes.

The skarn appears to be of two phases. The first is an older garnet-epidote assemblage found only as a remnant within the massive magnetite; the second is the later pyroxene skarn that surrounds the magnetite body. Actinolite is a minor constituent in the zone of alteration. The magnetite is fine grained and massive with pyrrhotite finely disseminated throughout and may have formed contemporaneously. Actinolite is also a minor accessory mineral within the magnetite. Late sulphide veinlets, mainly pyrite and chalcopyrite, cut the magnetite body.

Diamond drilling between 1957-60 indicates that the Conqueror orebody strikes northwesterly and, on the surface, is divided into 'West' and 'East' pipe-like orebodies. Conqueror 'East' plunges steeply westerly while Conqueror 'West' appears to dip steeply to the south. The 1957 drilling suggests a steep southerly dip to the 'West' orebody. If subsequent drilling substantiates this southerly dip then both bodies must join at depth as both are open and very strong at the greatest depths yet drilled (Menzies and Nicolls, 1960).

The structure of the Conqueror may be likened to a 'Y' lying in a northwesterly striking plane dipping roughly 75 degrees southwesterly. Conqueror 'East' is then represented by the easterly striking arm, Conqueror 'West' by the northerly striking arm, and the neck, 137 metres in depth, indicating the point of junction. The stem represents a possible continuation to still greater depths of the unified orebodies. The primary ore control may be a tightly

folded syncline of limestone with its axis striking southwesterly and plunging steeply in the same direction. If this is the case, the emplacement of magnetite in the limbs of the syncline was controlled by a cross-cutting structure have the attitude of the 'Y' described above (Menzies and Nicolls, 1960). Indicated reserves are 1,069,471 tonnes grading 54.31% iron and 2.21% sulphur. There are additional probable reserves of 453,550 tonnes and possible reserves of 798,565 tonnes (grades not given). The steeply plunging, pipe-like orebodies lend themselves to economical underground mining (Menzies and Nicolls, 1960). The reserve estimates are assumed to not comply with Sections 1.3 and 1.4 of National Instrument 43-101.


The Daniel magnetite orebody is located about 250 metres northwest of the Conqueror orebody and resembles a flattened cylinder with its axis oriented north-northeast and plunging about 20 degrees to the north. The magnetite is similar to that of the Conqueror with pyrite and pyrrhotite occurring in roughly equal proportions but with no conspicuous actinolite. Late pyrite and chalcopyrite veinlets cut the magnetite. Indicated reserves at the Daniel are 1,537,534 tonnes at an average grade of 55.67% iron and 3.61% sulphur. There are additional probable reserves of 508,883 tonnes (grades not given). The reserves are amenable for open pit mining methods (Menzies and Nicolls, 1960). The reserve estimates are assumed to not comply with Sections 1.3 and 1.4 of National Instrument 43-101.

The David magnetite showing is about 300 metres southeast of the Conqueror orebody. All three showings, Daniel, Conqueror and David, are on the same northwest-southeast trend. The Sirdar and Baden Powell showings (not part of the subject property) are also on the same trend. The David is a massive, irregular body of fine to medium grained magnetite bounded by pyroxene-garnet skarn, marble and altered diorite. The magnetite is relatively free of sulphides and appears sheeted in the roadcut exposure.

The recently exposed Lorimer Creek showing (not tested during the 2005 field program) is located about 4 kilometres southeast of, and on trend with the Conqueror-Daniel deposits. The showing is exposed in a logging roadcut and is about 10 metres long and consists of a massive, fine to medium grained magnetite body lying beneath marble and locally developed pyroxene skarn. The overlying marble has an undulating and abrupt contact with the magnetite. In 2004, a grab sample of the massive magnetite mineralization taken by Emerald Fields assayed 45.6% iron, 0.6% copper and 192 ppb gold. A fine grained, dark mafic rock (diabase) occurs nearby and hosts two parallel magnetite-pyrite-pyrrhotite veins from 15 to 40 centimetres wide. In 2004, a grab sample taken from one of the veins by Emerald Fields assayed 44.3% iron, 1.01% copper and 177 ppb gold.

9.2 Renfrew Creek Area

A total of 11 magnetite skarn zones have been described by Roscoe (1973) in the Renfrew Creek area and documented in the British Columbia provincial mineral inventory database, MINFILE, as Reko 10 (092C 091), Reko 3 (092C 090), Reko 38 (092C 110) and Reko North (092C 146). See Figure 5 for MINFILE locations and Appendix D for MINFILE geological reports. Only those zones containing historic reserves or which have been tested by the 2005 drill program are discussed below.

MINFILE OCCURRENCES

092C 012 Red Dog 092C 022 Bugaboo 092C 023 David 092C 024 Elijah 092C 025 Sirdar 092C 027 Baden Powell 092C 027 Baden Powell 092C 029 Tide 092C 030 Rose 092C 031 Tally 092C 058 Kinsley 092C 058 Kinsley 092C 068 Alfreda 092C 071 Spanish 092C 077 Ebb 1-12 092C 079 Nan 092C 085 Harris Creek 092C 085 Harris Creek 092C 086 Gordon River 092C 090 Reko 3 092C 091 Reko 10 092C 093 Dore 30	$\begin{array}{c} 092C & 099\\ 092C & 100\\ 092C & 101\\ 092C & 102\\ 092C & 103\\ 092C & 104\\ 092C & 106\\ 092C & 106\\ 092C & 106\\ 092C & 107\\ 092C & 110\\ 092C & 111\\ 092C & 124\\ 092C & 124\\ 092C & 125\\ 092C & 125\\ 092C & 137\\ 092C & 137\\ 092C & 141\\ 092C & 142\\ 092C & 142\\ 092C & 143\\ 092C & 143\\ 092C & 143\\ 092C & 146\\ 092C & 152\\ 092C & 157\\ 092C & 158\\ \end{array}$	Dore 52 Dore 99 Dore 97 TL 5798 Polly DL Dore 162 Harris Reko 38 Fitinat Gad Lori 3 x 3 Ren Murton Ebb Lizard Rat Reko North New World Slate Baird Creek Marble Hemm
--	--	---

MINFILE Status

- ☆ Developed Prospect
- X Past Producer
- Prospect
- Showing

Figure 5. MINFILE occurrences.

The South Pit A zone or Zone 1 (092C 091) showing is exposed for a length of 12 metres and a width of 4.5 metres in an old logging roadcut. It consists of massive, fine to mediumgrained magnetite with up to 30% pyrrhotite and small blebs, minute veinlets and fine disseminations of chalcopyrite and pyrite. The magnetite is in contact with marble; fine grained, dark mafic diorite occurs 10 metres away. Roscoe (1973) estimated 41,046 tonnes of magnetite without specifying grades. The reserve estimates are assumed to not comply with Sections 1.3 and 1.4 of National Instrument 43-101. In a 1975 George Cross News Letter, reference is made to this showing where magnetite is exposed in two areas 61 metres apart and when checked by magnetometer indicated an anomaly enclosing both exposures. The showing was partially tested in the 2005 drill program.

The South Pit B zone or Zone 2 (092C 091) is located 215 metres southwest of Zone 1 near a bridge crossing Renfrew Creek. The showing originally showed only a few outcrops of garnetite and silicified rock. It produced a strong magnetic anomaly and was systemically drilled; a trench was bulldozed 76 metres northeast of the bridge, exposing magnetite in garnetite. A drillhole in the centre of the zone intersected thinly to thickly disseminated magnetite in epidote-pyroxene-garnet skarn from 2.4 to 20.4 metres depth and sporadically from 20.4 to 25.3 metres. Pyrite and chalcopyrite occur locally (Eastwood, 1974). Roscoe (1973) estimates 970,597 tonnes of ore without specifying grades. The reserve estimates are assumed to not comply with Sections 1.3 and 1.4 of National Instrument 43-101. Two drillholes were put down in this zone in 2004 by Emerald Fields Resource Corporation (see Assessment Report 27517). This zone was not tested during the 2005 drill program.

South Pit C zone or Zone 3 (092C 091) is located about 425 metres northwest of Zone 2. The zone is not exposed and is known only from the drilling of a magnetic anomaly. A drillhole inclined 45 degrees to the west put down on the centre of the zone intersected magnetite, pyrrhotite and pyrite as disseminations, veins and veinlets in skarn from 18.9 to 23.8 metres. Below 24 metres the rock is predominantly diorite (Eastwood, 1974). Roscoe (1973) estimated 31,839 tonnes of ore without specifying grades. The reserve estimates are assumed to not comply with Sections 1.3 and 1.4 of National Instrument 43-101. This zone was not tested during the 2005 drill program.

Zone 7 or Pope's Nose zone (092C 090) is located 1.4 kilometres north of Zone 2 (South Pit B zone). The showing originally consisted of two small exposures of massive pyrrhotite containing networks of chalcopyrite. Emerald Fields opened up the road exposure and tested the zone with four drillholes in 2004 (see Assessment Report 27517). The zone is now 17.5 metres long and comprises massive magnetite bounded by garnet-pyroxene skarn and diorite. The magnetite contains significant pyrite and pyrrhotite with chalcopyrite. The zone was not tested during the 2005 drill program.

Zone 8 or North Pit zone (092C 090) is also known as the Road zone and is located 190 metres north of Zone 7 or Pope's Nose zone. It consisted of numerous small exposures of magnetite and skarn but has recently been developed as one continuous cut along a logging road. The width of exposed magnetite is now about 4 metres wide and is in contact with fine-grained diorite and pyroxene-garnet skarn. Drilling in 1973 was not extended far enough to delimit the zone. A vertical drillhole toward the southwest side of the zone

intersected massive and near-massive magnetite from 2.7 to 9.7 metres cut by 2.4 metres of very weakly mineralized skarn. Pyrite occurs in minor amounts. Roscoe (1973) estimated 33,063 tonnes of ore without specifying grades. The reserve estimates are assumed to not comply with Sections 1.3 and 1.4 of National Instrument 43-101. This zone was partially tested during the 2005 drill program.

Zone 5 or Northwest zone (092C 110) is located about 715 metres west-southwest of Zone 7 (Pope's Nose zone). The original showing was partly exposed in bulldozer strippings and one small outcrop and consists of a mixture of magnetite and sulphide minerals in skarn. A 1973 drillhole inclined 45 degrees to the west near the north end of the zone intersected abundant magnetite with lesser amounts of chalcopyrite, pyrrhotite and pyrite from 0.6 to 7.9 metres cut by a 1.5 metre diorite dike. From 20.4 to 26.5 metres the core is mostly massive pyrrhotite, containing lenses and blebs of chalcopyrite (Eastwood, 1974). Roscoe (1973) estimated 34,696 tonnes of ore without specifying grades. The reserve estimates are assumed to not comply with Sections 1.3 and 1.4 of National Instrument 43-101. This zone was not tested during the 2005 drill program.

In one locality, a logging roadcut exposes about 150 metres of a limestone unit that contains a section of marble comprised of medium to coarse-grained calcite crystals. Bedding in nearby massive limestone strikes 110 degrees, dipping 80 degrees southwest. The marble section varies from dark grey to blue-white to bright white colour and is free of impurities. There are some greenstone dikes that cut the section further along the outcrop. One drillhole from the 2005 drilling program tested the calcium carbonate quality for commercial industrial applications.

10.0 EXPLORATION

Historic exploration efforts (especially in the Noranda (1957-60) and Reako Explorations Ltd. (1972-73) campaigns) have focused on defining the deposits in the Bugaboo and Renfrew creeks areas and are detailed in Section 6.0. The 2005 drilling program by Emerald Fields served a combination of purposes: to validate historic drilling, to infill historic drilling as needed, to evaluate the potential at depth and at the fringes of the deposits, to expand the dimensions of the known zones, and to accurately re-locate deposits where necessary. Ongoing exploration, consisting primarily of an airborne magnetic survey and diamond drilling will continue to test for expanding mineralization along strike and at depth, test newly discovered showings, and assess select magnetic anomalies from previous surveys in combination with those from the current airborne program.

11.0 DRILLING

As detailed in Section 6.0, the Bugaboo and Reko deposits have undergone several drilling campaigns by Noranda Exploration Company, Limited and Reako Explorations Ltd., respectively. All holes were diamond-drill holes. Table 3 lists the work done by each company. Unfortunately, much of the original data for the historic drilling are not available.

There is core available from Emerald Fields drilling campaign in 2004 and is located at the fish plant adjacent the new Port Renfrew Hotel in the community of Port Renfrew, British Columbia. In the course of exploration in 2005, drill core from Noranda's drilling campaign (1957-60) was located but the core stand is collapsed and the core and core boxes have dislodged. The core boxes are still identifiable by metal tags.

Company	Deposit	Year	Drillholes	(m)
Noranda Expl. Co. Ltd.	Daniel	1957 to 1960	30	1893.4
Noranda Expl. Co. Ltd.	Conqueror	1957 to 1960	31	2286.6
Reako Explorations Ltd.	Reko	1971 to 1974	112	5427.2
Emerald Fields Res. Corp.	Reko	2004	6	204

Table 3. Drilling History of the Bugaboo and Reko Deposits

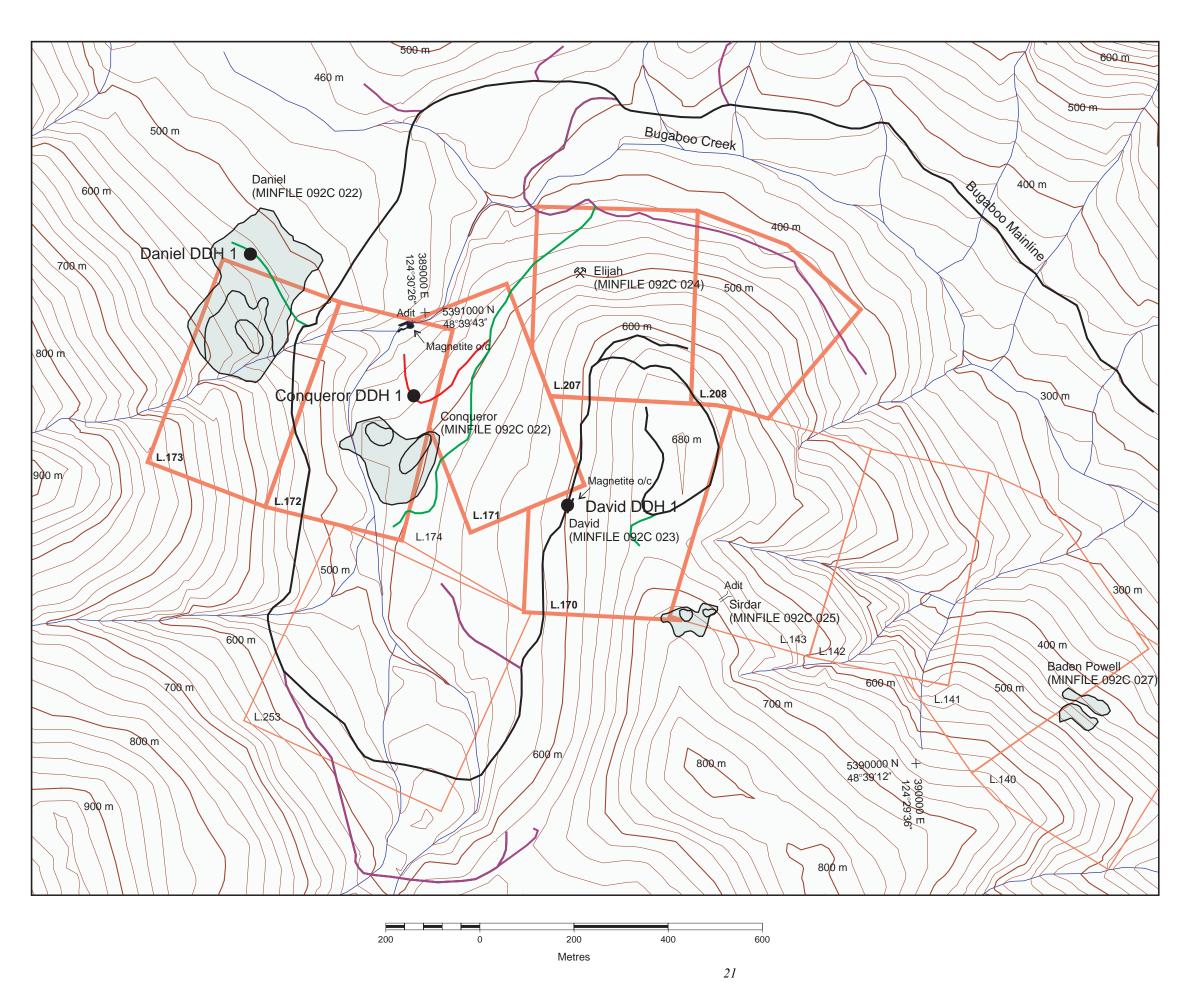

Between April and May of 2005, a diamond drilling program was completed on behalf of Emerald Fields Resource Corporation and is the subject of this Assessment Report (Table 4). Full Force Diamond Drilling Ltd. of Peachland, British Columbia completed 7 thin-wall NQ (TWNQ) diameter drillholes totalling 711.4 metres (see Figure 3). Approximately 3.7 kilometres of road clearing and new drill road was completed (see Figures 6, 7 and 9). Three holes were on the David, Daniel and Conqueror showings (Figure 6), three holes on the Reko showings (Figures 7 and 8), and one hole tested for commercial grade limestone (Figure 9). Core recoveries averaged 92% for Daniel DDH 1, 98% for Conqueror DDH 1, 94% for David DDH 1, 92% for Reko 10 DDH 1, 92% for Reko 10 DDH 3, and 97% for Marble DDH 1 (see Appendix A). Drilling was conducted on claim tenure numbers 508577, 508712, 408828 (Nose) and 361465 (Galleon 50).

 Table 4. Summary of Spring 2005 Drill Program

Hole No.	Azimuth/Dip	Coordinates (UTM)	Total Depth (m)
Daniel DDH 1	/-90	5391125N / 388623E	178
Conqueror DDH 1	/-90	5390824N / 388973E	181.66
David DDH 1	119/-60	5390589N / 389291E	77.42
Reko 10 DDH 1	215/-60	5388653N / 404879E	38.4
Reko 10 DDH 2	210/-60	5388556N / 404900E	38.4
Reko 10 DDH 3	190/-60	5390079N / 404342E	24.08
Marble DDH 1	020/-60	5390902N / 403261E	173.43

Drillhole logs are included in Appendix A and assay data are included in Appendix B. The author observed the drilling and core handling procedures employed for the 2005 spring program, and is of the opinion that they were standard in the industry. The core was logged by the author and Garry Payie, P.Geo. Dan Hora, P.Geo., an industrial minerals specialist, assisted in logging one drillhole (Marble DDH 1) that tested for commercial grade limestone.

All core sample intervals were sawn in half with half sent to ALS Chemex in North Vancouver, British Columbia and the other half left in the core box. A total of 89 samples were taken for analysis. The core is stored outside at the fish plant adjacent to the new Port Renfrew Hotel in the community of Port Renfrew, British Columbia. Refer to Sections 12.0 and 13.0 for sampling methodology and procedures.

MINFILE Occurrences

092C 022 Conqueror 092C 023 David 092C 024 Elijah 092C 025 Sirdar 092C 027 Baden Powell

Crown Grants reverted to Emerald Fields

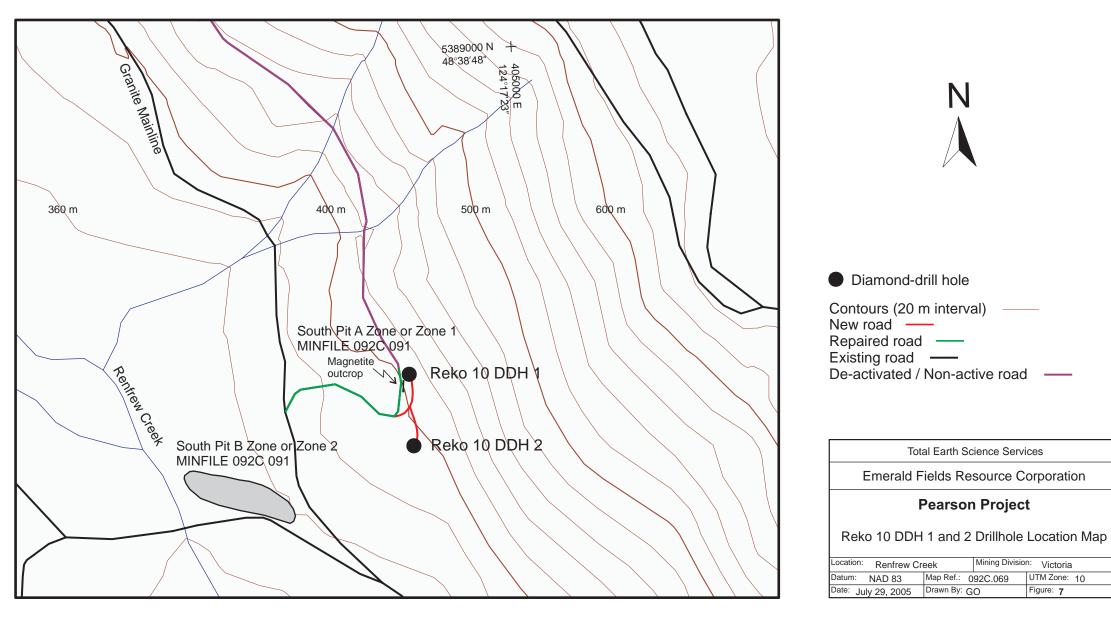
L.170 David L.171 Cyrus L.172 Conqueror L.173 Daniel L.207 Elijah L.208 Benjamin Fr. Crown Grants not held by Emerald Fields

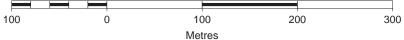
L.140 Little Bobs L.141 Baden Powell L.142 Gen. White

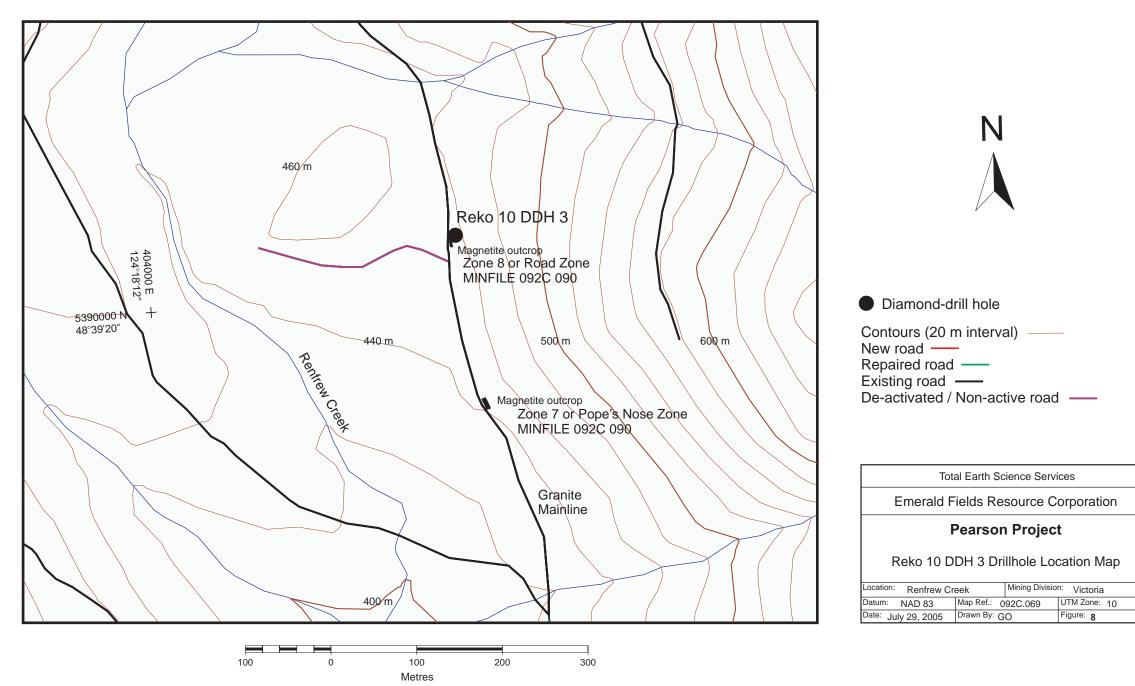
- L.143 Sirdar
- L.174 Jennie Fr.
- L.253 Jacob

Drilled magnetite deposits and roughly estimated preliminary pit areas from Noranda report sketch map (1960).

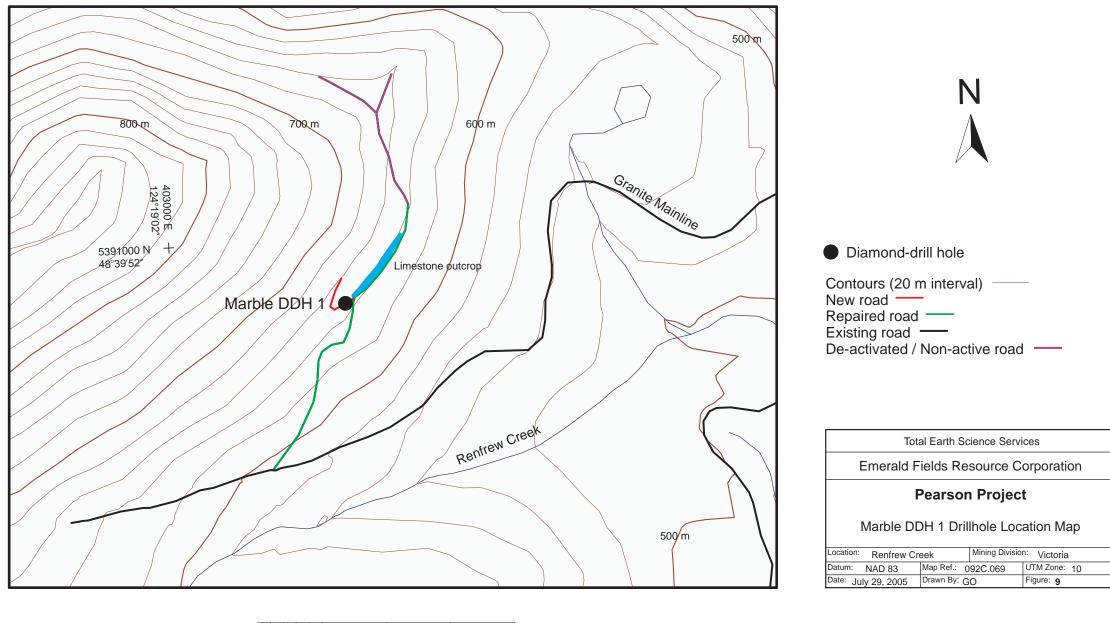
Contours (20 m interval) —	
New road —	
Repaired road —	
Existing road —	
De-activated / Non-active road	
Diamond-drill hole	

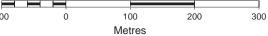

Total Earth Science Services


Emerald Fields Resource Corporation

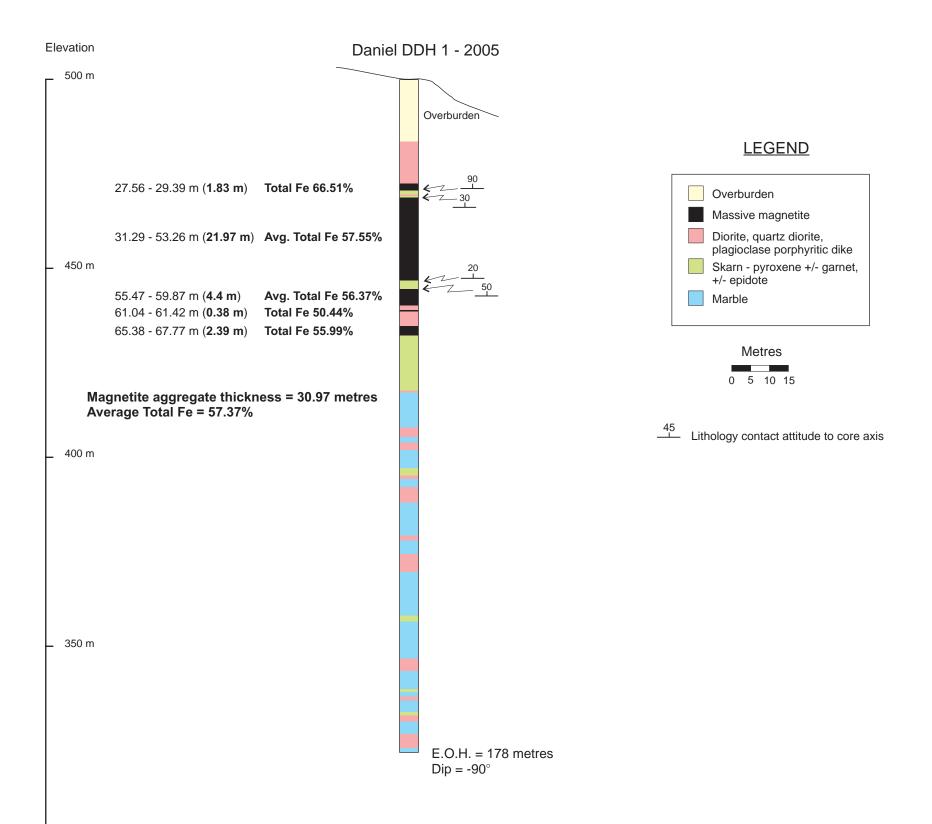

Pearson Project

Bugaboo Creek Area Drillhole Location Map


Location: Bugaboo Creek		Mining Division: Victoria	
Datum: NAD 83	Map Ref.: 0	92C.068	UTM Zone: 10
Date: July 5, 2005	Drawn By: G	0	Figure: 6



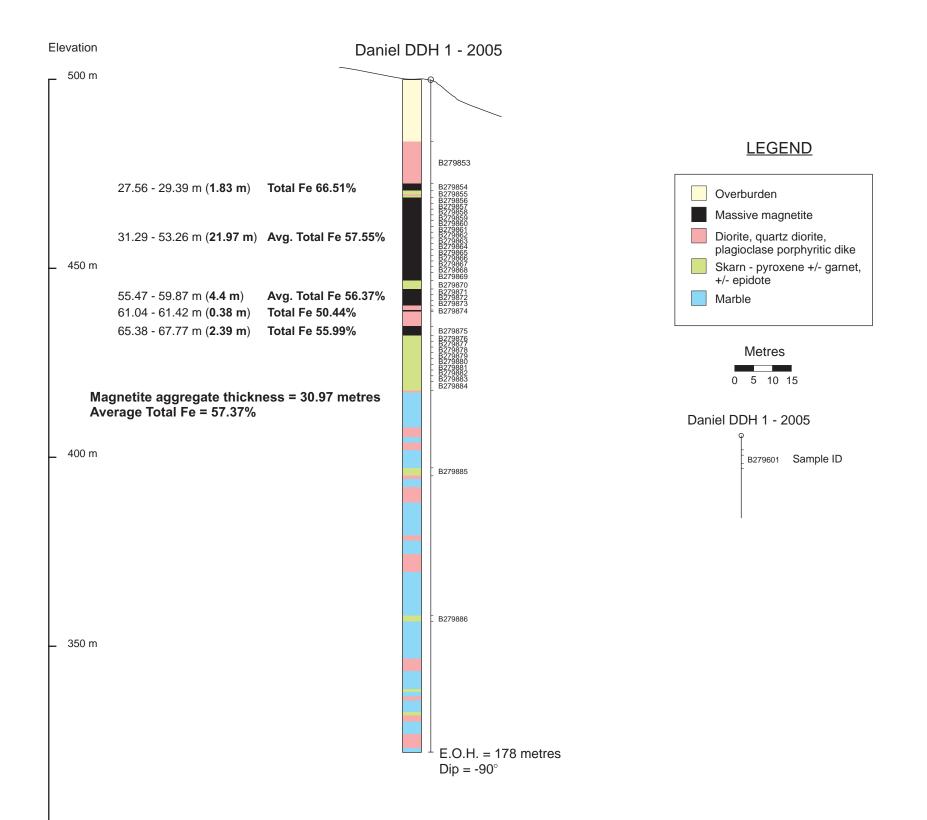
The spring 2005 drill program successfully located the Daniel and Conqueror orebodies, validated the depth and width of mineralization, and expanded the dimension of the Conqueror deposit. The drillhole on the David showing indicates that the massive magnetite as exposed in the roadcut does not appear to continue under the road and downhill but remains untested upslope. The two drillholes on the Zone 1 (South Pit A) showing confirmed the width of mineralization but testing upslope and along strike remains. The drillhole on the Zone 8 (North Pit) showing indicates that the massive magnetite in the roadcut does not appear to continue under the road but remains untested upslope and along strike. The one drillhole that tested a limestone outcrop intersected sufficiently clean white marble acceptable for industrial use over several separate core segments, but cannot be considered as a potentially economic target because of narrow widths at depth and contamination due to numerous greenstone dikes and skarn sections.


11.1 Bugaboo Creek Area

One vertical drillhole (Daniel DDH 1) was centred on highly anomalous magnetic readings from an orientation survey line that was completed over a part of the projected Daniel deposit outline taken from a sketch map in the Noranda report by Menzies and Nicolls (1960). The drillhole intersected five zones of massive magnetite mineralization between 27.56 to 67.77 metres depth enclosed by diorite, marble and pyroxene-garnet skarn. Overall aggregate magnetite thickness is 30.97 metres averaging 57.37% total iron. The magnetite intersections from top to bottom are as follows: 1.83 metres grading 66.51% total iron, 21.97 metres averaging 57.55% total iron, 4.4 metres averaging 56.37% total iron, 0.38 metre grading 50.44% total iron and 2.39 metres grading 55.99% total iron (Figures 10 and 11).

One vertical drillhole (Conqueror DDH 1) was centred on highly anomalous magnetic readings from an orientation survey line that was completed over a part of the projected Conqueror deposit outline taken from a sketch map in the Noranda report by Menzies and Nicolls (1960). The drillhole collared directly into 12.36 metres of massive magnetite mineralization under 7.32 metres of overburden. The drillhole intersected six zones of massive magnetite mineralization between 7.32 to 82.45 metres depth enclosed by marble and pyroxene-garnet skarn. Overall aggregate magnetite thickness is 42.27 metres averaging 59.2% total iron. The magnetite intersections from top to bottom are as follows: 12.36 metres averaging 62.23% total iron, 0.91 metre grading 60.74% total iron, 1.27 metres grading 55.42% total iron, 25.04 metres averaging 61.22% total iron, 0.48 metre grading 57.06% total iron and 2.21 metres grading 58.56% total iron (Figures 12 and 13). The drillhole is located between the original discovery showing of magnetite in Bugaboo Creek to the north, and the main Conqueror deposit outline to the south (Figure 6). This indicates excellent potential to expand the dimensions of the known deposit towards the drillhole.

An inclined drillhole (-60 degrees) tested the downdip extension of the David magnetite showing along a logging roadcut. The hole intersected massive marble cut by a plagioclase porphyritic dike and did not intersect the massive magnetite mineralization as evidenced in outcrop (Figures 14 and 15). The results indicate that the magnetite mineralization does not appear to continue downslope under the road towards the Conqueror orebody. Drilling is required upslope from the showing to test for continuity and extension.


Section Facing Azimuth 295 degrees

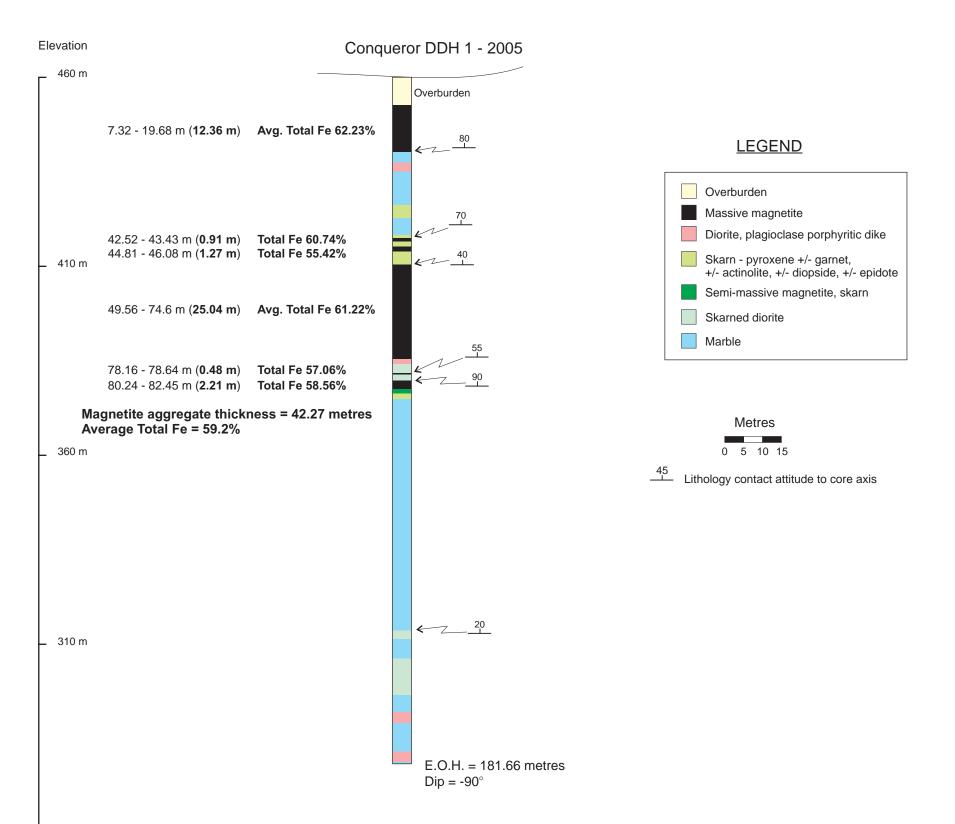
_____ 300 m

Total Earth Science Services			
Emerald Fields Resource Corporation			
Pearson Project			
Daniel DDH 1 - 2005 Drillhole Section			
Location: Bugaboo Creek		Mining Division: Victoria	
Datum: NAD 83	-	92C.068	UTM Zone: 10
Date: July 27, 2005	Drawn By: GO		Figure: 10

Section Facing Azimuth 295 degrees

_____ 300 m

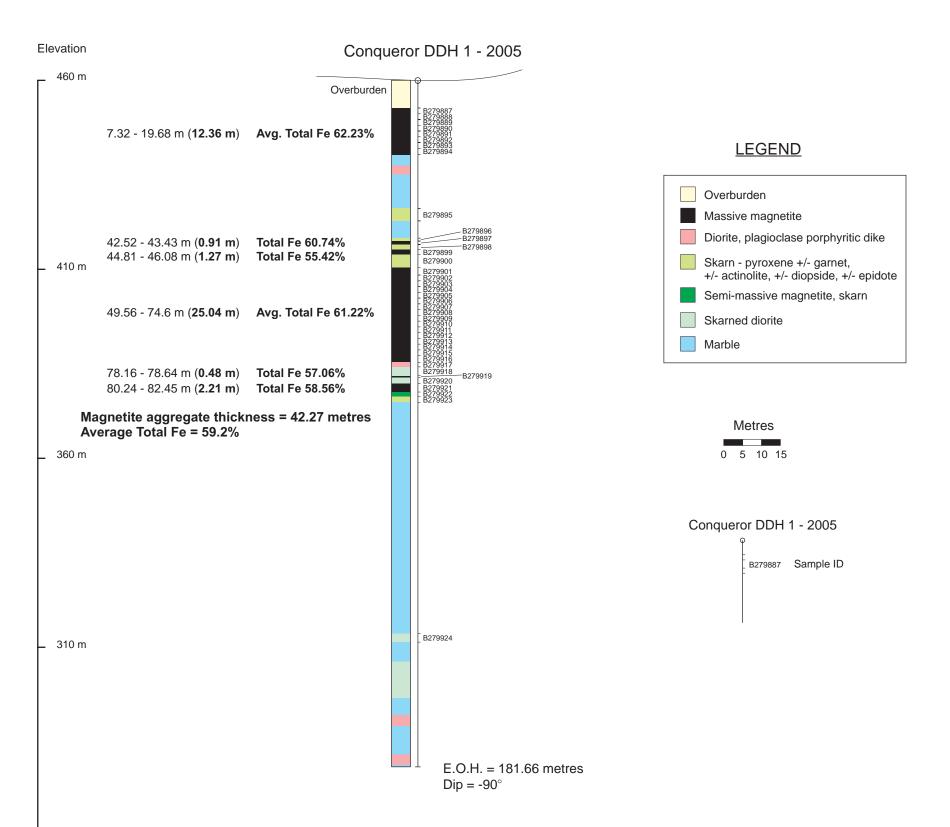
Total Earth Science Services


Emerald Fields Resource Corporation

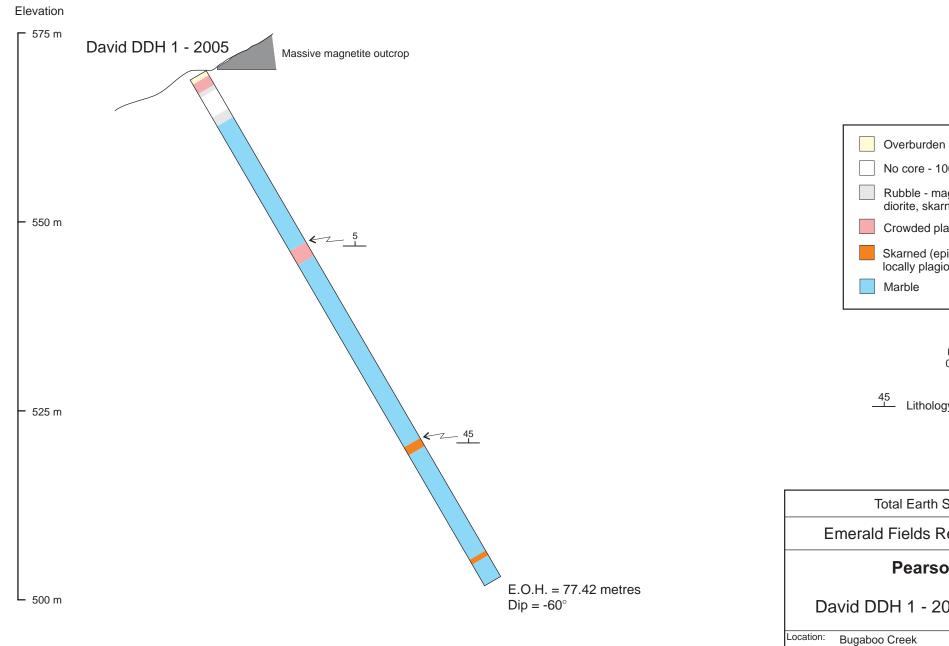
Pearson Project

Daniel DDH 1 - 2005 Drillhole Section Sample Location Map

Location: Bugaboo Creek		Mining Division: Victoria	
Datum: NAD 83	Map Ref.: 0	92C.068	UTM Zone: 10
Date: July 27, 2005	Drawn By: G	0	Figure: 11


Section Facing Azimuth 270 degrees

260 m


Total Earth Science Services			
Emerald Fields Resource Corporation			
Pearson Project			
Conqueror DDH 1 - 2005 Drillhole Section			
Location: Bugaboo Creek		Mining Division: Victoria	
Datum: NAD 83	-	92C.068	UTM Zone: 10
Date: July 28, 2005	Drawn By: GO		Figure: 12

Section Facing Azimuth 270 degrees

260 m

Total Earth Science Services			
Emerald Fields Resource Corporation			
Pearson Project			
Conqueror DDH 1 - 2005 Drillhole Section Sample Location Map			
Location: Bugaboo Creek		Mining Division: Victoria	
Datum: NAD 83	-	92C.068	UTM Zone: 10
Date: July 28, 2005	Drawn By: GO		Figure: 13

Section Facing Azimuth 030 degrees

<u>LEGEND</u>

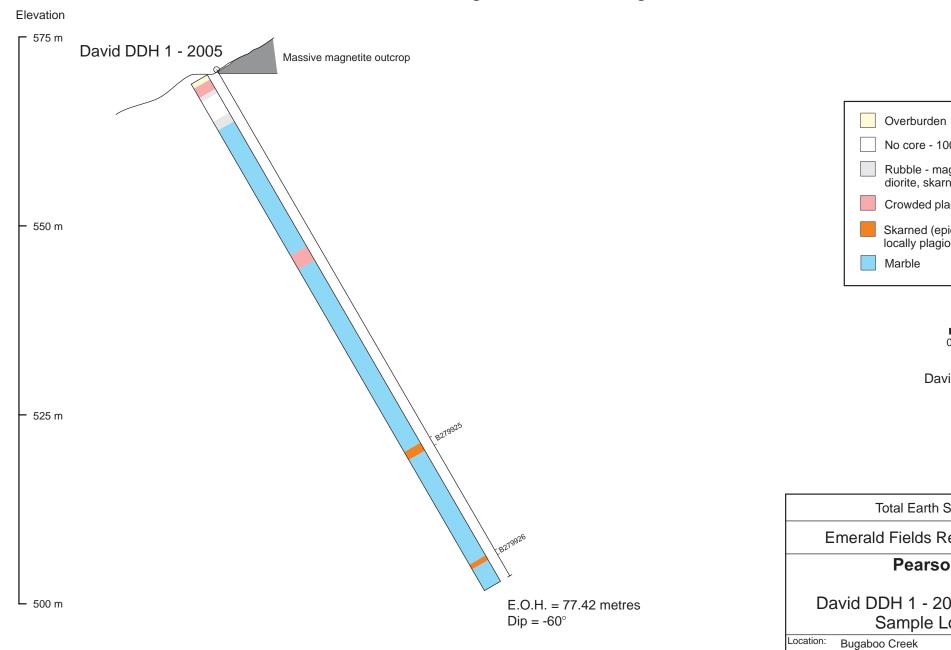
No core - 100% loss

Rubble - magnetite, plagioclase porphyritic diorite, skarned diorite material

Crowded plagioclase porphyritic diorite dike

Skarned (epidote +/- garnet) diorite dike, locally plagioclase porphyritic

45 Lithology contact attitude to core axis


Total Earth Science Services

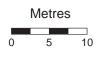
Emerald Fields Resource Corporation

Pearson Project

David DDH 1 - 2005 Drillhole Section

Location: Bugaboo C	reek	Mining Divisio	^{n:} Victoria
Datum: NAD 83	Map Ref.: 0	92C.068	UTM Zone: 10
Date: July 29, 2005	Drawn By: G	0	Figure: 14

Section Facing Azimuth 030 degrees


<u>LEGEND</u>

No core - 100% loss

Rubble - magnetite, plagioclase porphyritic diorite, skarned diorite material

Crowded plagioclase porphyritic diorite dike

Skarned (epidote +/- garnet) diorite dike, locally plagioclase porphyritic

David DDH 1 - 2005

B279925 Sample ID

Total Earth Science Services

Emerald Fields Resource Corporation

Pearson Project

David DDH 1 - 2005 Drillhole Section Sample Location Map

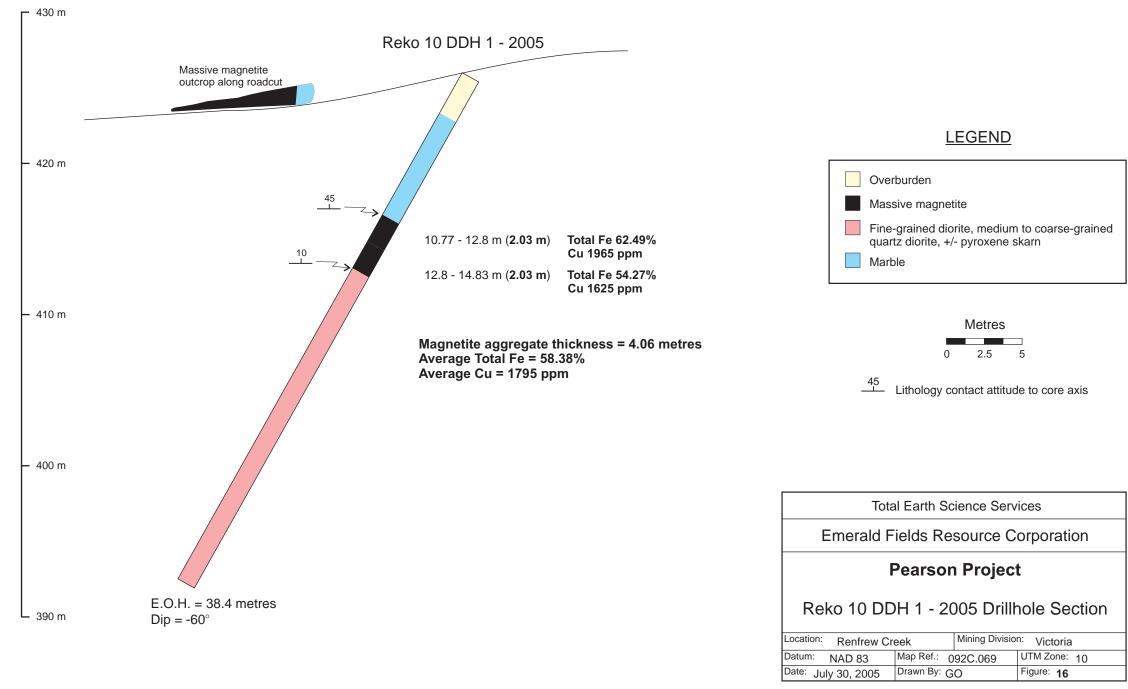
Location: Bugaboo Ci	reek	Mining Division	^{n:} Victoria
Datum: NAD 83	Map Ref.: 0	92C.068	UTM Zone: 10
Date: July 29, 2005	Drawn By: G	0	Figure: 15

11.2 Renfrew Creek Area

Two shallow inclined drillholes (both -60 degrees) were completed on the Reko Zone 1 (South Pit A) magnetite showing (Figure 7). The first hole (Reko 10 DDH 1) intersected 4.06 metres of massive magnetite mineralization between 10.77 to 14.83 metres depth enclosed by marble and diorite. The magnetite averaged 58.38% total iron and 1795 ppm copper (Figures 16 and 17). The second hole (Reko 10 DDH 2), about 70 metres along strike and to the south of the showing, was located on an anomalous magnetic survey orientation line (Figure 18). The hole did not intersect a significant amount of massive magnetite but a suite of dioritic rocks containing garnet-pyroxene skarn over 2.06 metres thick hosts a small zone (0.6 metre) of magnetite mineralization (Figures 19 and 20). Further testing is required north of the Zone 1 showing along strike, and to also check the relationship of mineralization to Zone 2 (South Pit B) located about 180 metres southwest of Zone 1.

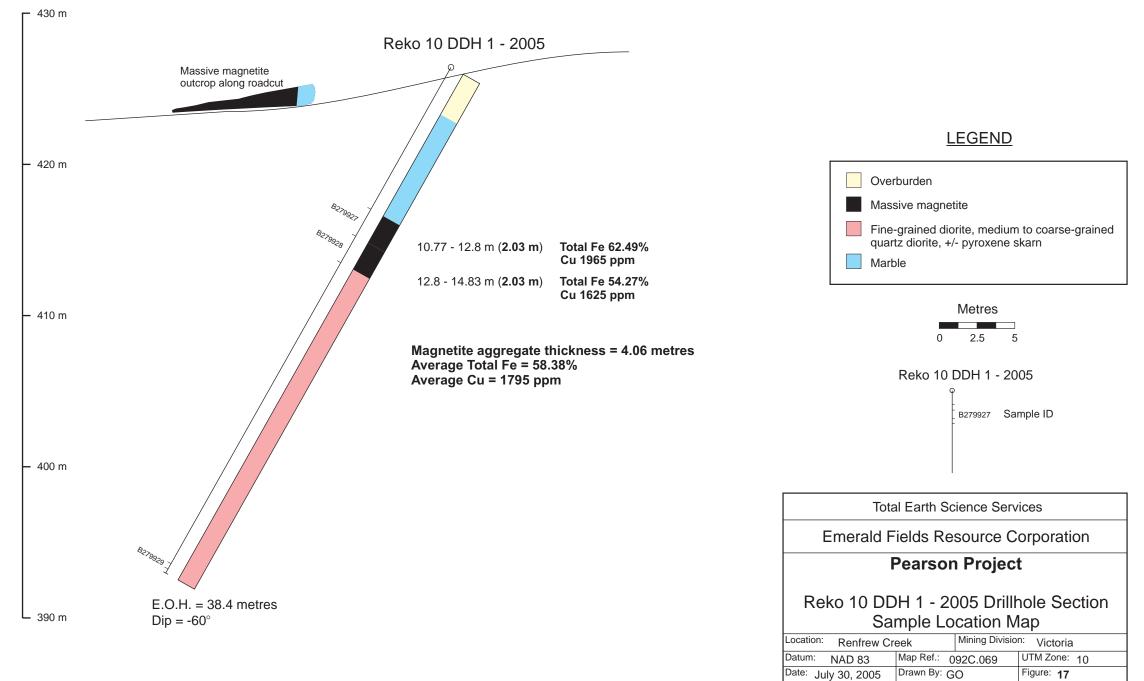
One shallow inclined hole (-60 degrees) was completed on the Zone 8 (North Pit or Road zone) showing (Figure 21). The hole (Reko 10 DDH 3) was sited to test the width of a massive magnetite body exposed in a roadcut. The hole intersected a large zone of garnet-pyroxene skarn and diorite and may indicate a locally developed lens of magnetite (Figures 22 and 23). Further testing may be required to check the relationship of mineralization with that of the Zone 7 (Pope's Nose) showing about 200 metres south and along trend with Zone 8.

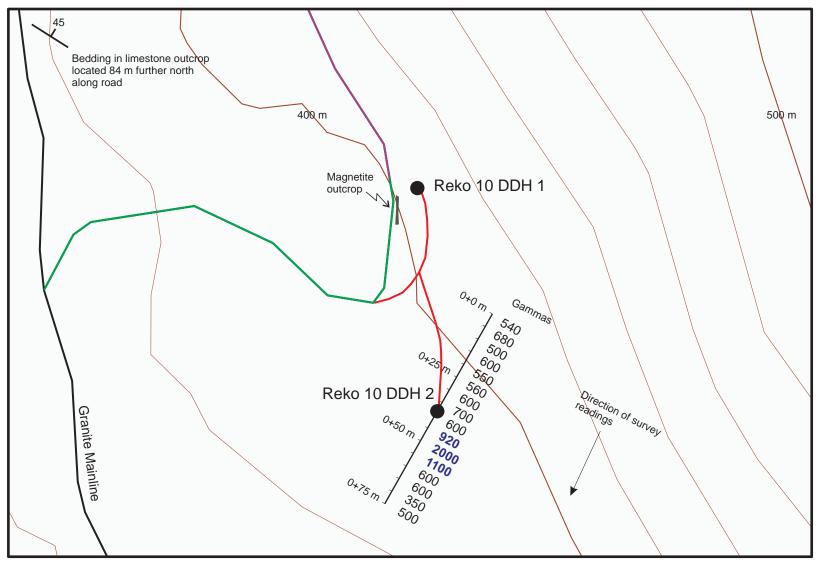
Marble DDH 1, inclined at -60 degrees, was completed to test the quality and extent of a white, coarse-grained marble unit for commercial industrial mineral applications (Figure 24). The limestone outcrop varies from grey, to blue-white to bright white and contains a section of marble comprised of medium to coarse-grained calcite crystals. The drillhole was stepped back from the outcrop to test the downdip extension and quality of the marble (Figures 25 and 26). Dan Hora, P.Geo., an industrial minerals specialist, assisted in assessing and logging the drillhole. The drillhole revealed a high level of contamination by silicate rocks with numerous segments of a fine-grained greenstone, probably andesitic in composition, from few centimetres thick to sections up to 15 metres long. The greenstone is frequently accompanied by a garnet-epidote skarn. There are also substantial intersections of siliceous feldspar porphyry. In conclusion, sufficiently clean white limestone for industrial use occurs in core segments 5.41 to 22.96 metres, 39.93 to 47.68 metres and 149.2 to 158.19 metres but this cannot be considered as a potentially economic target due to narrow widths and a high level of contamination of other rock units.

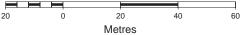

There are numerous other exposures of limestone and marble throughout the property area and consideration should be given to them after initial rock sampling, analysis and geological evaluation.

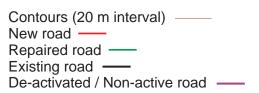
12.0 SAMPLING METHOD AND APPROACH

In the spring 2005 drill program a total of 89 samples were taken for analysis. In practice, the drill core was sawn using a tile-cutting table saw fitted with an appropriate cutting blade.

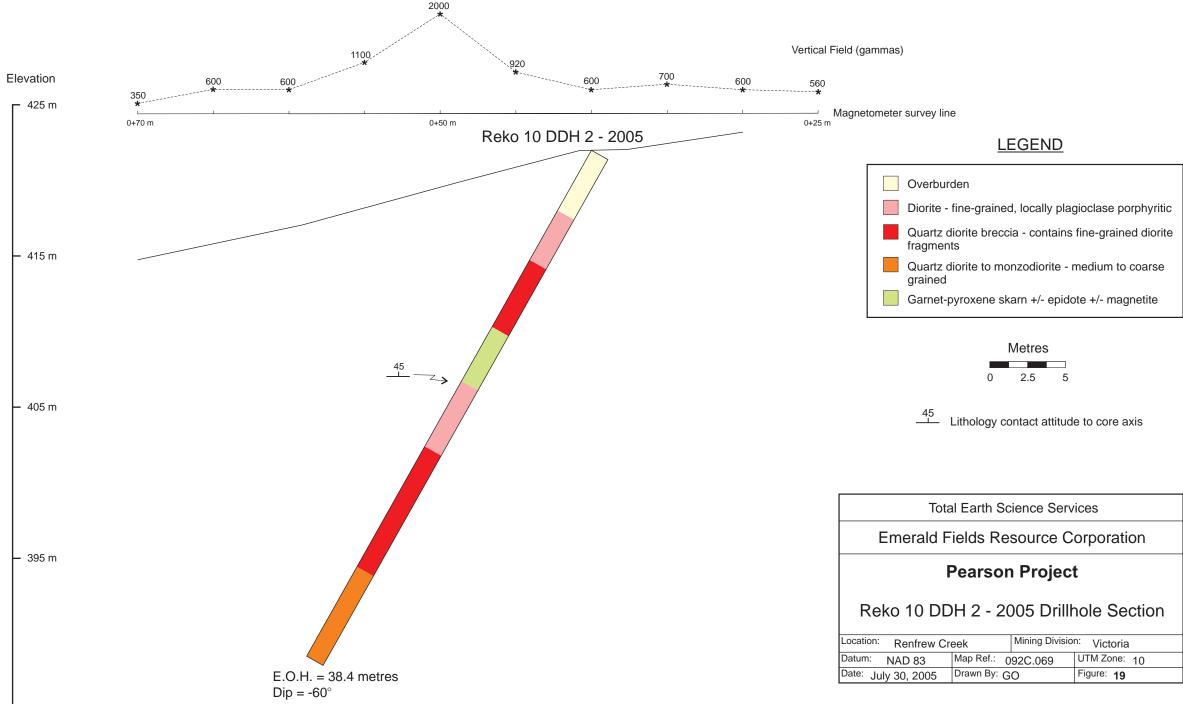

Elevation


Section Facing Azimuth 305 degrees

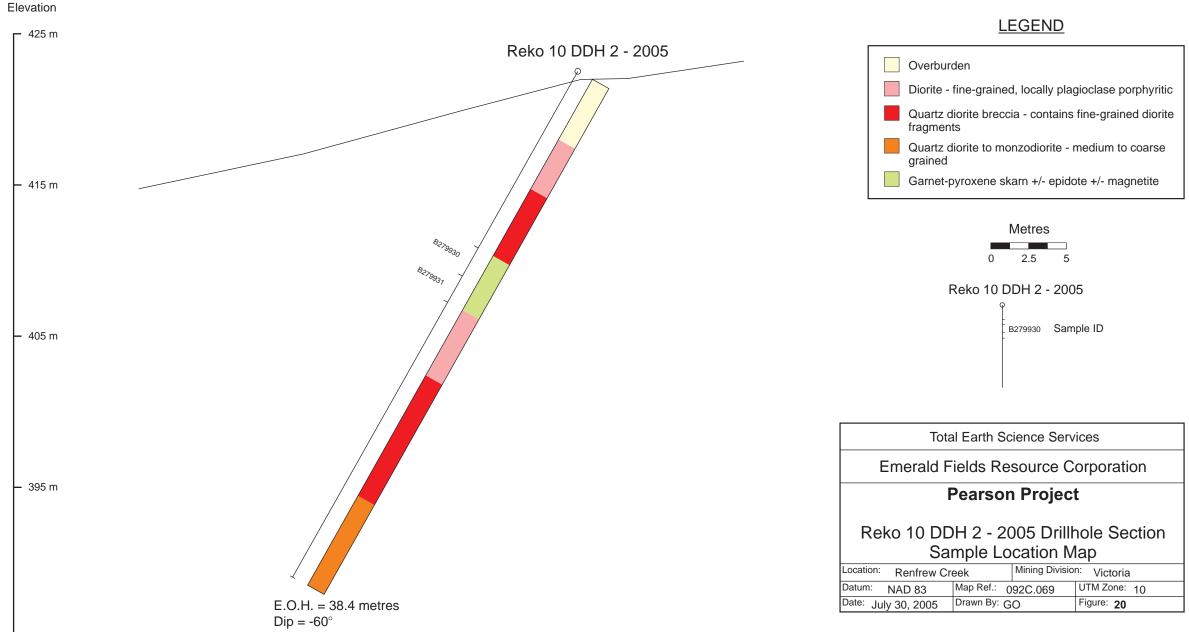


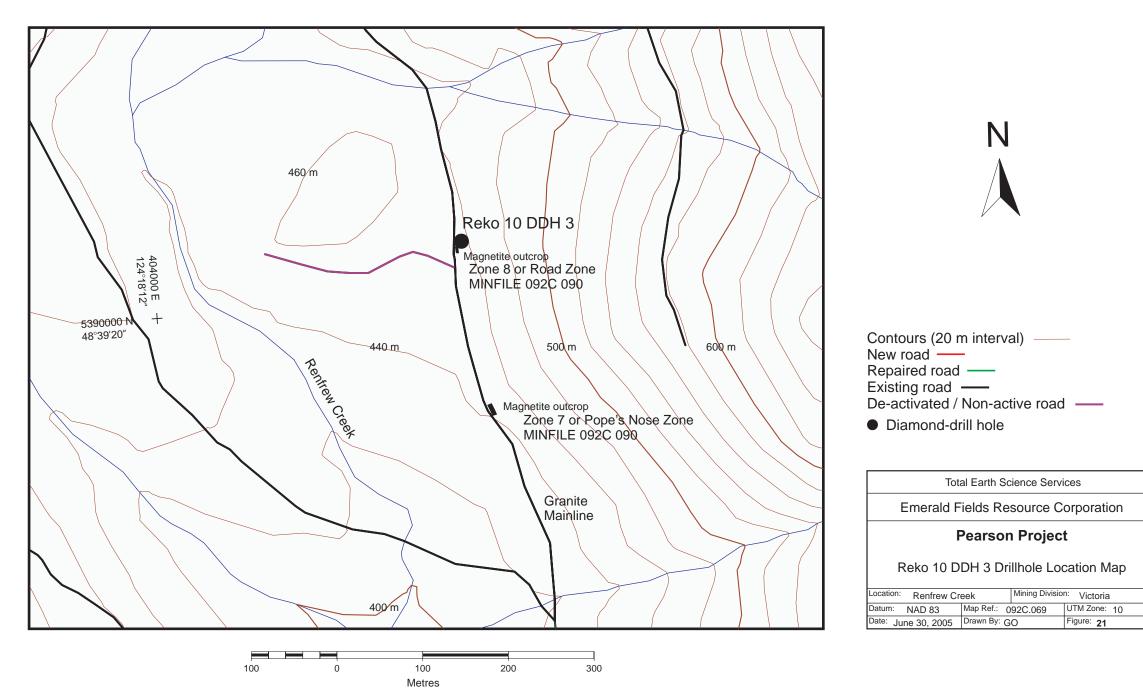

Elevation

Section Facing Azimuth 305 degrees

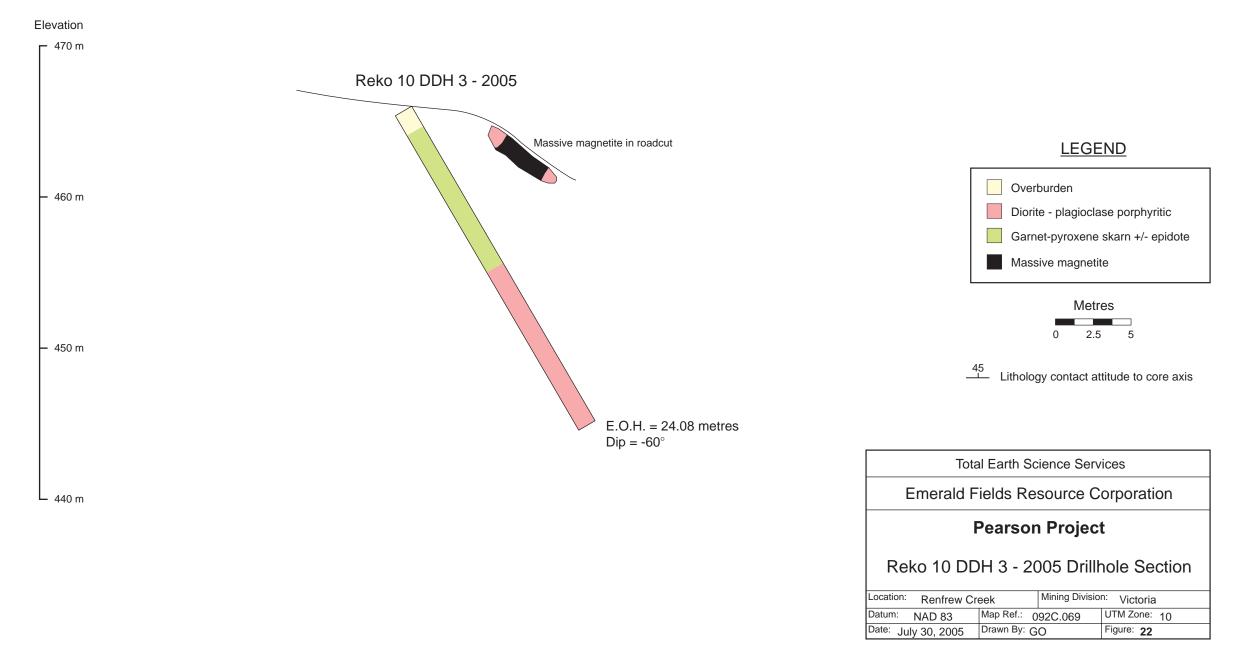

Instrument: Vertical Field Fluxgate Magnetometer Component measured: Vertical Field (gammas)

Ν

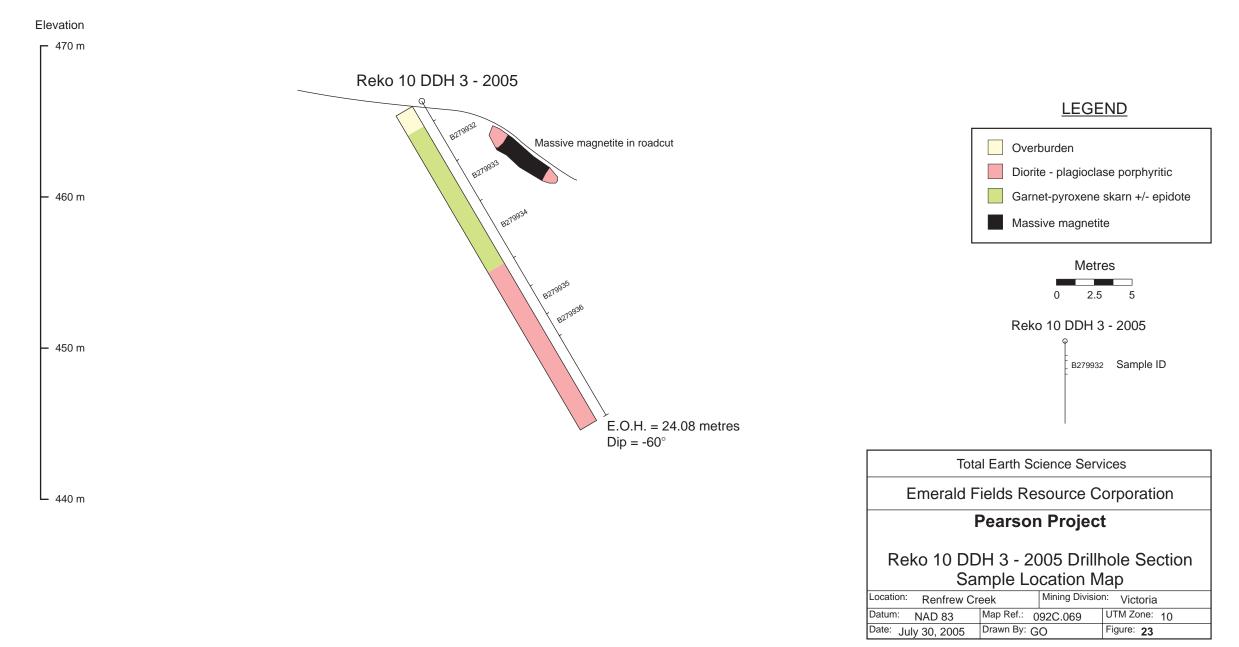

Total Earth Science Services Emerald Fields Resource Corporation Pearson Project Reko 10 DDH 1 and 2 Drillhole Location and Magnetic Survey Line Map

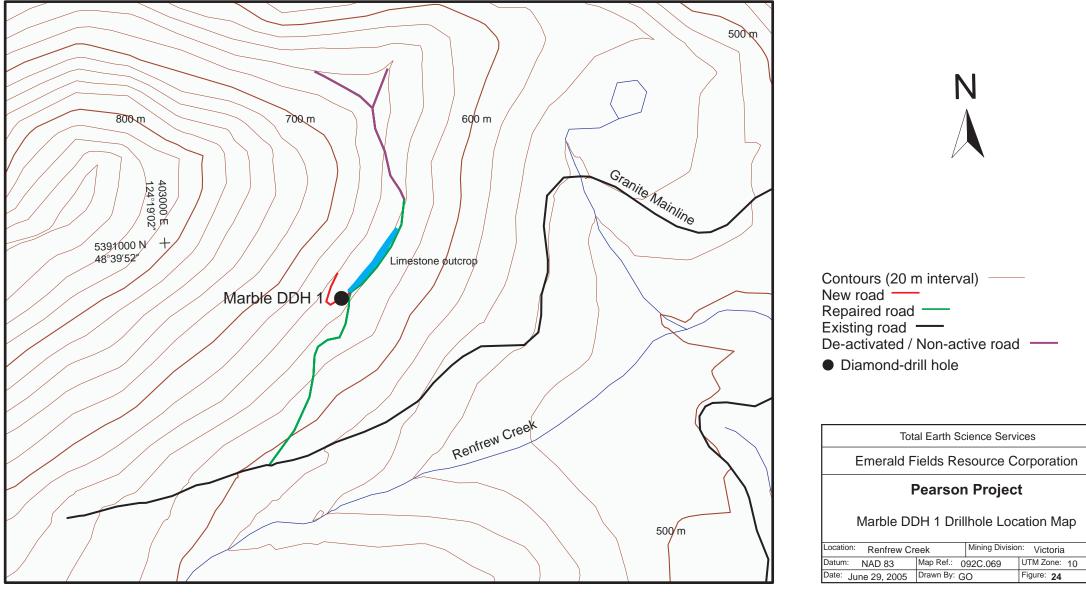

Location:	Renfrew Cr	eek	Mining Division: Victoria			
Datum:	NAD 83	Map Ref.: 0	92C.069	UTM Zone:	10	
Date: Ju	ne 29, 2005	Drawn By: G	0	Figure: 18		

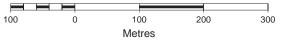
Section Facing Azimuth 305 degrees



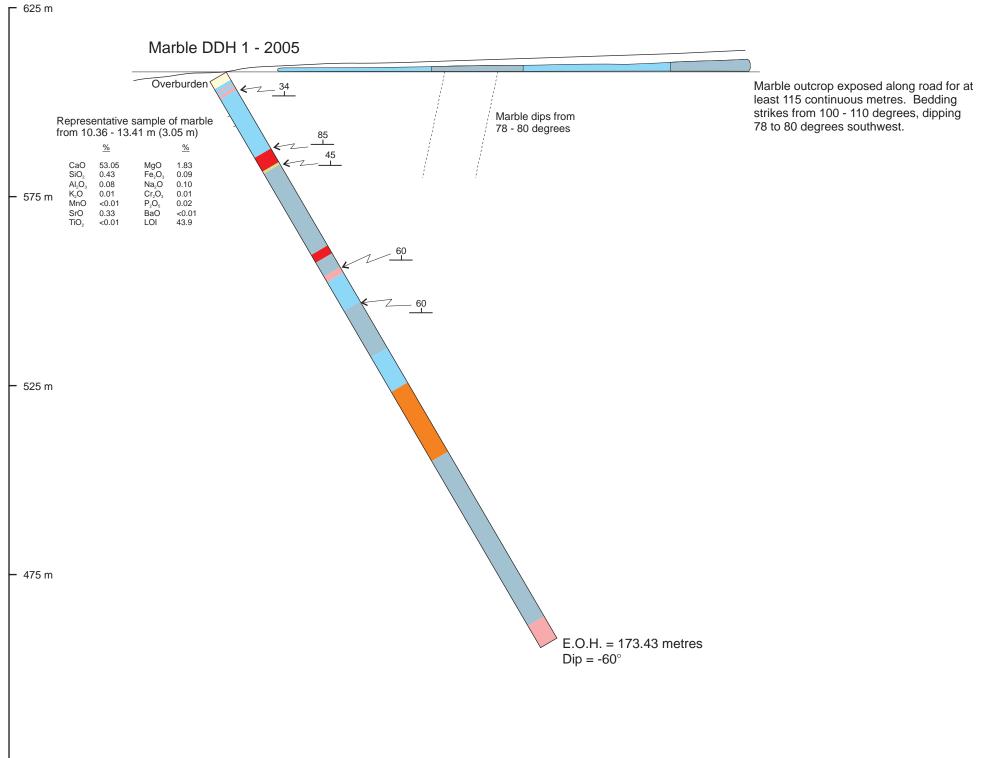
Section Facing Azimuth 305 degrees






Section Facing Azimuth 100 degrees

Section Facing Azimuth 100 degrees



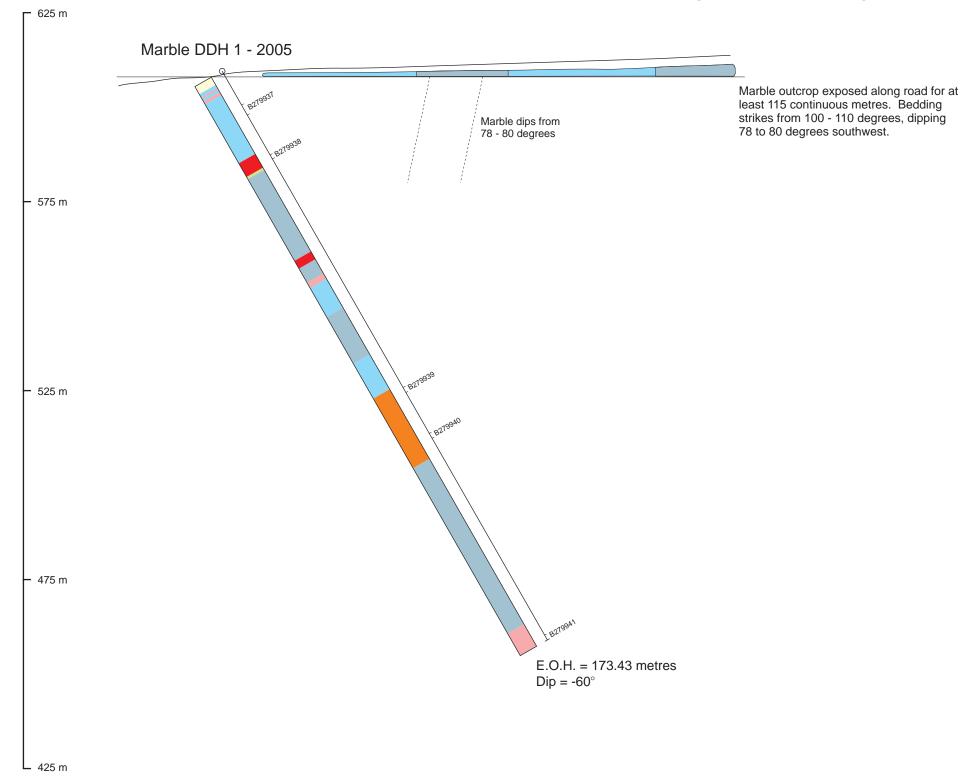
Total Earth Science Services						
Emerald Fields Resource Corporation						
Pearson Project						
Marble DDH 1 Drillhole Location Map						
Location: Renfrew Creek Mining Division: Victoria						
Datum: NAD 83	Map Ref.: 0	92C.069	UTM Zone: 10			

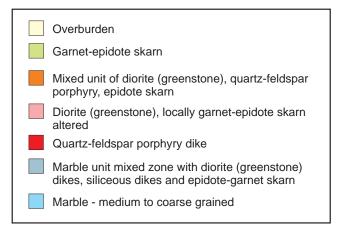
Elevation

425 m

LEGEND

Overburden
Garnet-epidote skarn
Mixed unit of diorite (greenstone), quartz-feldspar porphyry, epidote skarn
Diorite (greenstone), locally garnet-epidote skarn altered
Quartz-feldspar porphyry dike
Marble unit mixed zone with diorite (greenstone) dikes, siliceous dikes and epidote-garnet skarn
Marble - medium to coarse grained




Lithology contact attitude to core axis

Total Earth Science Services							
Emerald Fields Resource Corporation							
I	Pearson Project						
Marble DDH 1 - 2005 Drillhole Section							
Location: Renfrew Creek Mining Division: Victoria							
Datum: NAD 83	Map Ref.: C	92C.069	UTM Zone: 10				
Date: July 29, 2005	Drawn By: GO Figure: 25						

Elevation

<u>LEGEND</u>

Marble DDH 1 - 2005

B279837 Sample ID

Total Earth Science Services							
Emerald Fields Resource Corporation							
I	Pearson Project						
Marble DDH 1 - 2005 Drillhole Section Sample Location Map							
Location: Renfrew Creek Mining Division: Victoria							
Datum: NAD 83	Map Ref.: 0	Map Ref.: 092C.069 UTM Zone: 10					
Date: July 29, 2005	Drawn By: G	Drawn By: GO Figure: 26					

In each case, half the core was returned to the box and half was bagged for shipment to ALS Chemex in North Vancouver, British Columbia. The core boxes were placed on pallets, covered and stored near the fish plant adjacent to the new Port Renfrew Hotel in the community of Port Renfrew, British Columbia. The author and Garry Payie, P.Geo. were responsible for sawing and all sample preparation. In the author's opinion the sampling procedures are consistent with accepted industry practice. Where massive magnetite mineralization was intersected, core samples were generally 1.5 metre continuous lengths.

See Appendix B for ALS Chemex Analytical Certificates.

13.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

In the spring 2005 drill program the author and Garry Payie, P.Geo. sawed, prepared, sampled and shipped all core. The sawn, half-core samples were placed in labeled plastic sample bags and then into labeled rice-sacks and shipped to ALS Chemex in North Vancouver, British Columbia. Analytical procedures used were Au 30g FA-AA finish, 47 element four acid ICP-MS, Total Fe in Concentrates and Total Sulphur (Leco). See Appendix C for ALS Chemex Sample Preparation and Analytical Procedures.

Drill core samples taken by the author and Garry Payie, P.Geo. on the Pearson project claim group (Spring 2005 Drill Program) were not handled or tampered with by anyone. The samples were prepared using standard analytical procedures by ALS Chemex Laboratories in North Vancouver, British Columbia. All pulps are in paid storage after 90 days.

14.0 DATA VERIFICATION

ALS Chemex performs internal quality control by performing routine check analysis on random samples to verify data. The author did not include duplicate and/or blank samples in the shipments sent in for geochemical analysis of core samples. The intent was to identify weak, moderate or strong areas of metallic mineralization and perform follow-up exploration and drilling in the most prospective areas.

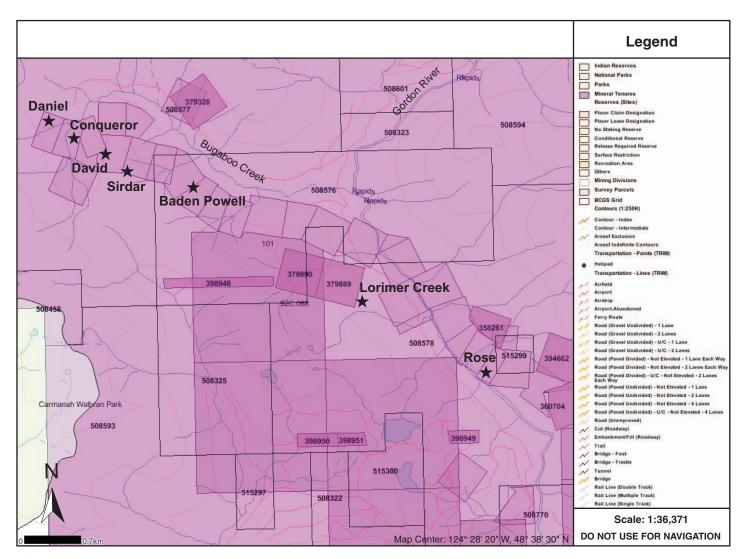
Generally, the results indicate that the assay data are accurate, precise, free from contamination, and in control.

15.0 ADJACENT PROPERTIES

The Bugaboo and Reko deposits occur within the Pearson Project claim group. The author is aware of other adjacent properties to the Bugaboo deposits that contain similar mineralization. Namely, these are the Sirdar located 625 metres southeast of the Conqueror orebody, the Baden Powell located 1.5 kilometres southeast of the Conqueror orebody, and the Rose located 5.7 kilometres southeast of the Conqueror orebody. It is recognized by the author that the Daniel, Conqueror, David, Sirdar, Baden Powell and Rose magnetite showings share the same northwest-southeast trend (Figure 27).

The Baden Powell, Sirdar and Rose showings have been described in depth by Young and Uglow in Geological Survey of Canada Economic Geology Report No. 3 (1926). Development reported by Young and Uglow on the Sirdar deposit comprised two shallow trench-like cuts, stripping and a tunnel 31 metres long crosscutting the deposit. Development on the Baden Powell deposit consisted of two tunnels, 15 metres apart vertically, and a number of shallow opencuts and strippings. The upper tunnel is 33 metres long, and the lower one is 34 metres long. Development on the Rose consisted of a 91 metre shaft with three crosscut drifts at the 30, 61 and 91 metre levels. The upper drift was 12 metres long, and the two lower drifts were 5.5 metres long. At the time of development these properties were controlled by the Gordon River Iron Ore Company.

In 2004, a grab sample by Emerald Fields from an exposure of massive magnetite above an old shaft on the Rose showing assayed 61.6% iron. The Rose showing is not part of Emerald Fields claim holdings but the showing is located 1.7 kilometres southeast of the Lorimer showing and along trend with the Bugaboo Creek deposits (Figure 27).


The British Columbia mineral inventory database, MINFILE, lists these showings as 092C 027 (Baden Powell), 092C 025 (Sirdar), and 092C 030 (Rose). Refer to Appendix D for MINFILE geological reports.

16.0 INTERPRETATION AND CONCLUSIONS

The Pearson Project claim group hosts significant high-grade iron skarn deposits which have excellent potential for expansion. The Bugaboo and Reko magnetite deposits, and adjoining areas, are the focus of future exploration and development. Newly discovered magnetite showings and magnetic anomalies remain to be tested. The potential for nickel-copper +/- platinum group element mineralization related to ultramafic intrusions is demonstrated by the presence of ultramafic rocks (McKinley and Gilmour, 2003). Further assessment is required to examine the iron oxide copper-gold (IOCG) potential.

There are abundant exposures of limestone and marble throughout the large project area and consideration should be given to them for potential sources of white calcium carbonate product for commercial industrial use.

The spring 2005 drill program has met the objective to accurately re-locate and expand the dimensions of the magnetite orebodies that were worked on in the late 1950s and early 1970s. The drilling also confirmed and established the high iron grades of the Daniel and Conqueror deposits, and qualified targets for future mineral exploration and development.

★ Magnetite showing

Figure 27. Location map of Bugaboo Creek area and adjacent showings.

17.0 RECOMMENDATIONS

The economic viability of the Bugaboo and Reko magnetite deposits should be evaluated. Based on the potential for discovery of additional magnetite mineralization and expanding the dimensions of known deposits, investigating the potential of nickel-copper +/- platinum group element mineralization related to ultramafic rocks, and assessing the possibility of iron oxide copper-gold (IOCG) deposit-type potential, a 2-phase program of airborne magnetic surveying, ground magnetometer surveying, core drilling, geological mapping and geochemical sampling is recommended.

PHASE 1

An airborne magnetic survey covering 5000 line kilometres is recommended to cover the expansive Pearson Project property. Diamond drilling amounting to at least 2000 metres is recommended to expand and define dimensions of known deposits and test newly discovered zones. Geological mapping and sampling is also recommended to follow-up on the potential for nickel-copper +/- platinum group element mineralization.

PHASE 2

Contingent on the results of phase 1 airborne magnetic survey and drilling, follow-up grid magnetometer surveying is required to further define existing and new targets and anomalies and additional drilling is recommended to test them. The total diamond drilling in phase 2 should amount to at least 2000 metres. Additional geological mapping and sampling may be required to assess new deposit type modeling.

PROPOSED BUDGET - PHASE 1

Item	Description	Amount (Cdn\$)
Personnel:		
Geologists (x2)	50 days x \$500/day	25,000
	50 days x \$500/day	25,000
Equipment, saws, field supplies		2000
Drilling, includes road	2000 metres @ \$175/metre	350,000
work, site preparation and related costs		
and related costs		
Accommodation, food, travel	100 man-days	12,000
fuel, rental vehicle, etc.		
Airborne magnetometer survey	5000 line km @ \$20/km	100,000
Analytical - core and rock	400 samples @ \$40/sample	16,000
samples		
Communication – telephone,		2500
fax, mobile/satellite phone		
Report and drafting		10,000
		10,000
Filing Fees		20,000
Total		562,500

Total Phase 1 = \$ 562,500

PROPOSED BUDGET - PHASE 2

Item	Description	Amount (Cdn\$)
Personnel: Geologists (x2)	50 days x \$500/day 50 days x \$500/day	25,000 25,000
Equipment, saws, field supplies		2000
Drilling, includes road work, site preparation and related costs	2000 metres @ \$175/metre	350,000
Accommodation, food, travel fuel, rental vehicle, etc.	100 man-days	12,000
Ground magnetometer survey	300 line kilometres @ \$250/km	75,000
Analytical - core and rock samples	400 samples @ \$40/sample	16,000
Communication – telephone, fax, mobile/satellite phone		2500
Report and drafting		10,000
Filing Fees		13,000
Total		530,500

Total Phase 2 = \$ 530,500

TOTAL PHASE 1 AND 2 = \$ 1,093,000

In the author's opinion, the proposed recommendations are warranted as envisaged, and phase 1 and 2 should be completed within the calendar years of 2005 and 2006.

18.0 REFERENCES

- Eastwood, G.E.P. (1974): Reko Property Description; *British Columbia Ministry of Energy, Mines and Petroleum Resources*, Geology, Exploration and Mining in British Columbia, pp. 166-170.
- Eastwood, G.E.P. (1977): Notes, maps and sketches; *British Columbia Ministry of Energy, Mines and Petroleum Resources Library*, Property File – 092C 090.
- George Cross News Letter (1972-73, 1975): No. 147,235, 1972, No. 20,21,26,43,69,117, 143,148,212, 1973, No. 207, 1975; *British Columbia Ministry of Energy, Mines and Petroleum Resources Library*, Property File 092C 090.
- McKinley, S. and Gilmour, W.R. (2003): Geological, Geochemical and Geophysical Assessment Report on the Pearson Property; *British Columbia Ministry of Energy, Mines and Petroleum Resources*, Assessment Report 27246, 136 pp.
- McKinley, S. (2003): Geological Description of Port Renfrew, B.C. Ni-PGE Property; British Columbia Ministry of Energy, Mines and Petroleum Resources Library, Property File – 092C 025.
- McKinley, S. and Gilmour, W.R. (2003): Geochemical Report on the Karen Property; *British Columbia Ministry of Energy, Mines and Petroleum Resources*, Assessment Report 27280, 136 pp.
- Menzies, M.M. and Nicolls, O.W. (1960): Final Report for 1960 on the Port Renfrew Iron Property, Noranda Exploration Company, Limited and International Iron Mines Ltd.; *British Columbia Ministry of Energy, Mines and Petroleum Resources Library*, Property File - 092C 022.
- Mowatt, A. (2004): Diamond Drill and Geological Assessment Report; *British Columbia Ministry of Energy, Mines and Petroleum Resources*, Assessment Report 27517, 101 pp.
- Muller, J.E. (1982): Geology, Nitinat Lake, British Columbia, Map and Notes; *Geological Survey of Canada*, Open File 821, scale 1:250 000.
- Ray, G.E. (1995): Fe Skarns, in Selected British Columbia Mineral Deposit Profiles,
 Volume 1 Metallics and Coal, Lefebure, D.V. and Ray, G.E., Editors; *British Columbia Ministry of Employment and Investment*, Open File 1995-20, pages 63-65.
- Roscoe, R.L. (1972): Report on the Renfrew Creek Claim Group, Port San Juan Area, January 21, 1972 in Prospectus, Reako Explorations Ltd., April 12 1972; *British Columbia Ministry of Energy, Mines and Petroleum Resources Library*, Property File – 092C 091.

- Roscoe, R.L. (1973): Diamond Drilling Report on the Reko 38, Granite Creek, Port Renfrew Area; *British Columbia Ministry of Energy, Mines and Petroleum Resources*, Assessment Report 5029, 32 pp.
- Tavela, M. (1980): Report on Exploration Ebb Claims; *British Columbia Ministry of Energy, Mines and Petroleum Resources*, Assessment Report 8278, 39 pp.
- Young, G.A. and Uglow, W.L. (1926): The Iron Ores of Canada, Volume 1, British Columbia and Yukon; *Geological Survey of Canada*, Economic Geology Series No.3, pp. 167-191.

19.0 STATEMENT OF COSTS

PEARSON PROJECT PROPERTY Statement of Costs - 2005

Work Program – April to June, 2005

1. Professional Services

G. Owsiacki, P.Geo. Planning, supervision, data compilation 72 days @ \$500/day Report writing 3 days @ \$500/day	36,000.00 1500.00	
G. Payie, P.Geo. Planning, supervision, data compilation 43 days @ \$500/day	21,500.00	
D. Hora, P.Geo. Consulting 2 days @ \$800/day	1600.00	60,600.00
2. Field Personnel		
P. Heatherington (Chief Operating Officer) Planning, supervision 39 days @ \$500/day	19,500.00	
G. Pearson (Prospector) Assistant 25 days @ \$350/day	8750.00	28,250.00
3. Expenses		
Diamond Drilling (711 metres; 7 thin-wall NQ holes) Full Force Diamond Drilling Ltd. (Apr.18 – May 24, 2005)	91,603.01	
Drilling Support Aggressive Excavating Ltd. a) Hitachi EX 200 Excavator b) Cat 320C Excavator c) Low bed rental d) Kenworth (900) Truck e) Travel time – operator	7612.50 17,103.26 1955.00 1445.00 2580.00	

Rocky Point Metalcraft Ltd.		
a) Water Truck Rental	1000.00	
b) Low bed rental	1545.00	
Analysis		
ALS Chemex		
89 core samples: sample prep and analysis	4039.04	
Phones/mobile	1122.28	
Field supplies, photocopying, maps,	1857.83	
Shipping, bus, Purolator, Canada Post	755.32	
Lodging and meals (Westcoast Trail Motel)	6077.30	
		138,695.54
4. Transportation		
4x4 Truck rental	3369.03	
Mileage (7410 km @ 45^{e} /km)	3334.50	
Fuels	1534.32	
Truck repairs	648.52	
Airfares	1262.09	
		10,148.46
Sut	o-total	237,694.00
Emerald Fields Resource Corporation administrative costs @ 1	0%	23,769.40
Total Program Costs		<u> </u>

Total Program Costs

\$261,463.40

20.0 STATEMENT OF QUALIFICATIONS

I, George Owsiacki, of 1350 Kristine Rae Lane, Victoria, British Columbia, V8Z 7L1 am a self-employed Professional Geoscientist and do hereby certify that:

- 1. I graduated with an Honours Bachelor of Science degree in Geology from Queen's University, Kingston, Ontario in 1981.
- 2. I am registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 3. I have worked as a geologist for twenty-four years since my graduation from university.
- I am responsible for all sections of the Assessment Report titled Drilling Assessment Report – Pearson Project, British Columbia and dated August 31st, 2005. I visited the property from April to June, 2005.
- 5. I have not had prior involvement with the property that is the subject of the Assessment Report.

Dated this 31st day of August 2005.

George Owsiacki, P.Geo.

I, Garry Payie, of 3714 Raymond Street South, Victoria, British Columbia, V8Z 4K1 am a self-employed Professional Geoscientist and do hereby certify that:

- 1. I graduated with a Bachelor of Science degree in Geological Sciences from University of British Columbia in 1983.
- 2. I am registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 3. I have worked as a geologist for twenty-two years since my graduation from university.
- I am responsible for logging core as indicated in the report titled Drilling Assessment Report – Pearson Project, British Columbia and dated August 31st, 2005. I visited the property from April to May, 2005.
- 5. I have not had prior involvement with the property that is the subject of the Assessment Report.

Dated this 31st day of July 2005.

"Garry Payie"

Garry Payie, P.Geo.

I, Zdenek D. Hora, P.Geo., of Victoria, British Columbia, do hereby certify that:

I am a Consulting Geologist and Registered Professional Geoscientist in British Columbia and previously in Alberta, residing at 3657 Doncaster Drive, Victoria, BC, V8P 3W8.

I graduated from Charles University of Prague, Czechoslovakia with a M.Sc. Degree in Economic Geology and Mineralogy in 1958. Since graduation, I have been continuously practicing my profession in Europe and overseas, and since 1971 in Canada, namely in Quebec, Alberta, the N.W.T. and British Columbia. My work has largely been focused on the geology, exploration and evaluation of industrial minerals deposits. From 1978 to 1984, I was the Industrial Minerals Specialist for the British Columbia Ministry of Energy, Mines and Petroleum Resources. From 1984 to 1999, I acted as the Program Manager for industrial minerals inventory and market studies in the province. Since my retirement in 1999 I am consulting in the field of industrial minerals – property assessment and evaluation, tenure aspect of industrial minerals in B.C. and its historical development, aggregate prospecting and deposit models for a wide range of industrial minerals. My professional activities included teaching industrial minerals courses (i.e. University of Victoria -- Economic Geology; B.C. Ministry of Energy, Mines and Petroleum Resources, B.C. and Yukon Chamber of Mines, and Geological Association of Canada – Courses for Prospectors). From 1995 to 2000, I was part of the CIM Standing Committee on Reserve Definitions representing the CIM Industrial Minerals Division. I am presently a Consulting Geologist and have been so since June, 1999. As a result of my experience and qualifications, I am a Oualified Person as defined in National Instrument 43-101.

I have not received, nor do I expect to receive any interest, directly or indirectly, in the properties in Port Renfrew area on Vancouver Island.

The information on white limestone is based on my two visits to the property and a detailed description of the core.

Dated in the City of Victoria, British Columbia this 31st day of July, 2005.

"Dan Hora"

Qualified Person

Z.D. Hora, M.Sc., P.Geo., Consulting Geologist Tel.: 250-721-3728 Email: <u>zdhora@telus.net</u>

APPENDIX A

DRILL LOGS

Emerald Fields Res.

Hole No.: Daniel DDH 1-2005

Sheet No. 1 of 17

Location: Bugaboo Creek Date Collared: May 9, 2005 Date Completed: May 15, 2005 Bearing: --Northing: 5391125Dip: -90 degreesEasting: 388623Depth: 178 metresElevation: 501 metres

 Property:
 Port Renfrew
 Drill:
 Full Force Drilling

 Core Size:
 TWNQ
 Logged By:
 G. Payie and G. Owsiacki

 Other:
 No dip test
 Date:
 May 26, 2005

Rock Type and Textures	Alteration	Graphic Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
OVB 9.45 measured metres of material in 16.46 drilled metres.				0 16.46				Not sampled	
Medium grained leucocratic quartz diorite. Quartz, plagioclase and 5- 10% mafics (hornblende). Non magnetic. Fractures are typically hairline but quartz-bearing fractures are up to 3 or 4 mm thick.	Mild pervasive propylitic (chlorite- epidote) alteration.			27.56	fractures.	From 16.46 m - 21.03 m, breccia fragments (dark green and aphanitic). Quartz- filled fractures with fine epidote and pyrite cut breccia fragments.		16.46 - 19.51 m (3 m)	Fe (%) 3.0 S (%) 0.29 Cu (ppm) 89.7 Au (ppb) 141 Ag (ppm) 3.18
Massive magnetite ore. Fine-grained magnetite. Pyrrhotite up to 5% occurs interstitially within the magnetite and as wisps. Coarser sections of pyrite noted locally over 10 centimetres. Pyrite cubes up to 1 mm occur. This interval is competent.		contact 90°		29.39		The angle of the contact of the ore zone with the skarn zone below (at 29.39 m is 90 degrees to core axis (ca).		B279854 27.56 - 29.39 m (1.8 m)	Total Fe (%) 66.51 Total S (%) 3.70 Cu (ppm) 715

Emerald Fields Res.		Hole No.	Danie	el DDH 1-	2005		Sheet No. 2 o 17			
Rock Type and Textures	Alteration	Graphic	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Massive reddish garnet skarn with minor chlorite and epidote. Many fractures (less than or equal to 1 mm) containing pyrite. One quartz veinlet is about 2 mm thick.	Skarn. Siliceous throughout.		cont 90°	act	29.39	Pyrite occurs along fractures (less than or equal to 1 mm). Less than 1 per cent pyrite throughout.			B279855 29.39 - 31.29 n (1.9 m)	Fe (%) 15.75 S (%) 0.49 h Cu (ppm) 245 Ag (ppm) 2.52
		contact			30.53					
Plagioclase porphyritic dike. Aphanitic groundmass, black and mafic. Cut by quartz veinlets.						Very sparse flecks of disseminated pyrite.	Contact of fault gouge at 30.84 m.			
-	0	contact 40°			30.84					
Top of interval is magnetite gouge over 7.6 cm at 40 degrees. Below this to 31.29 m is massive garnet skarn with lesser chlorite. Some siliceous sections occur.	Skarn. Siliceous throughout.					Sparse pyrite as blebs, <0.5%.				
		contact 30°			31.29				•	
Massive magnetite from 31.29 m to 53.26 m The upper contact is marked by blebs of fine disseminated pyrite. Fine interstitial pyrrhotite throughout. Some blebs of pyrrhotite locally. Rare fragments of diorite noted (up to 1 cm.). This interval is 90-95% fine- grained black magnetite.						Pyrite occurs along hairlin Occasional pyrite occurs interstitially to magnetite. along thin hairline fractur 5 and 10% of interval is p is less than 1%.	with pyrrhotite locally, Chalcopyrite occurs es (<1mm). Between		B279856 31.29 - 32.82 n (1.5 m)	Total Fe (%) 55.94 Total S (%) 3.80 n Cu (ppm) 798

Emerald Fields Res.		Hole No. Dar	niel DDH 1	-2005		Sheet No. 3 of 17			
Rock Type and Textures	Alteration	Graphic Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Massive magnetite ore as above. At 33.53 m is a thin dike (3.2 cm thick) of diorite occurs at 45 degrees to c.a.				32.82	As above with respect to pyrrhotite, chalcopyrite and pyrite.			B279857 32.82 - 34.34 m (1.5 m)	Total Fe (%) 57.74 Total S (%) 3.40 Cu (ppm) 811
Massive magnetite ore as above. At 35.05 m is another 5 cm dikelet with amorphous contact at 60 degrees.				34.34	As above. Still with cpy in fractures.			B279858 34.34 - 35.86 m (1.5 m)	Total Fe (%) 63.66 Total S (%) 3.69 Cu (ppm) 789
Massive magnetite ore as described above. Some white carbonate occurs along fractures				35.86	Same as in previous sections.	Fracture running up core at 0 degrees to c.a. with py and cpy		B279859 35.86 - 37.39 m (1.5 m)	Total Fe (%) 61.76 Total S (%) 3.23 Cu (ppm) 720
As above.				37.39	As above.	As above. Several		B279860	Total Fe (%) 62.03
				38,91		pyrite-filled fractures occur at 45 degrees. Also there are several fractures at 45 degrees with carbonate and epidote.		37.39 - 38.91 m (1.5 m)	Total S (%) 3.69 Cu (ppm) 637

Emerald Fields Res.	Hole No. Danie	el DDH 1-	2005		Sheet No. 4 of 17					
Rock Type and Textures	Alteration	Graphic Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results	
Massive magnetite ore as above.				38.91	One pyrite-pyrrhotite veinlet ≤ 3 mm at 39.47 m			B279861 38.91 - 40.44 m (1.5 m)	Total Fe (%) 64.15 Total S (%) 3.67 Cu (ppm) 495	
Massive magnetite ore as above.				41.96	Massive magnetite with pyrrhotite, pyrite and chalcopyrite as described above.			B279862 40.44 - 41.96 m (1.5 m)	Total Fe (%) 66.22 Total S (%) 3.81 Cu (ppm) 735	
Massive magnetite ore as above. At 42.14 m is a fragment (5 cm) of dioritic rock. The bottom 0.3 m of interval is broken.				43.48	As above. One small section of pyrrhotite along or within a diorite dikelet/fragment over 5 cm.			B279863 41.96 - 43.48 m (1.5 m)	Total Fe (%) 57.10 Total S (%) 4.26 Cu (ppm) 1190	
Massive magnetite ore as above.				45.01	As in previous intervals.			B279864 43.48 - 45.01 m (1.5 m)	Total Fe (%) 61.22 Total S (%) 3.65 Cu (ppm) 720	

Emerald Fields Res.	Hole No. D	Danie	I DDH 1-	2005	-	Sheet No. 5 of 17				
Rock Type and Textures	Alteration	Graphic L	og	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Massive magnetite ore - as above.	Epidote-chlorite veining at about 45.72 m along core axis.					Magnetite, pyrrhotite, pyrite and chalcopyrite occurring as in above intervals.			B279865 45.01 - 46.53 m (1.5 m)	Total Fe (%) 56.53 Total S (%) 3.76 Cu (ppm) 1340
Massive magnetite ore - as described above.					46.53	As above.			B279866 46.53 - 48.06 m (1.5 m)	Total Fe (%) 48.70 Total S (%) 3.81 Cu (ppm) 823
Massive magnetite ore - as described above.					48.06	As above. A good example of a pyritic vein (at 48.46 m) with associated greenish mineral (not chlorite or epidote) - probably actinolite. The vein is about 10 to 15 degrees from c.a.			B279867 48.06 - 49.58 m (1.5 m)	
Massive magnetite ore - as described above.					51.1	as above	Fractures at 0 and 90 degrees. Zero angle fractures are cutting the 90 degree pyritic fractures. Some of the 90 degree veins are offset (up to 1 mm) by the 0 degree veins.		B279868 49.58 - 51.10 m (1.5 m)	Total Fe (%) 57.04 Total S (%) 4.92 Cu (ppm) 1370

Emerald Fields Res.		Hole No. Da	aniel DDH 1	-2005					
Rock Type and Textures	Alteration	Graphic Lo	og Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Massive magnetite ore as described above.		contact			At 51.21 m, 1.3 cm of chalcopyrite then 17.8 cm of massive pyrhotite grading into magnetite. The cpy-pyrhotite contact is roughly 90 degrees. The magnetite-pyrhotite contact undulates around 55 degrees. Contact with skarn below at 53.26 m			B279869 51.1 - 53.26 m (2.1 m)	Total Fe (%) 56.31 Total S (%) 6.30 Cu (ppm) 1275
Skarn dominated by green mineral. Chlorite or possibly actinolite. Lesser garnet occurs. Occasional fragments of magnetite in skarn. Microfractured throughout. Not very competent.	Siliceous.	contact 50° -			Occasional magnetite and blebs of pyrite and pyrrhotite. Crystals of pyrite noted.			B279870 53.26 - 55.47 m (2.2 m)	Fe (%) 14.85 S (%) 3.25 Cu (ppm) 1315
Massive magnetite from 55.47 m to 59.87 m Much more pyrrhotite and pyrite throughout occurring interstitially, as blebs and as veins up to 1 cm thick. Occasional fracture with white carbonate at 45 to 60 degrees.				55.47	Pyrrhotite, pyrite, and chalcopyrite at contact zone for 5 cm then into massive magnetite.			B279871 55.47 - 57 m (1.5 m)	Total Fe (%) 59.15 Total S (%) 5.16 Cu (ppm) 1115
Massive magnetite ore zone as above.				58.52				B279872 57 - 58.52 m (1.5 m)	Total Fe (%) 62.87 Total S (%) 3.59 Cu (ppm) 1135

Emerald Fields Res.		Hole No. Dani	el DDH 1-	2005		Sheet No. 7 of 17				
Rock Type and Textures	Alteration	Graphic Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results	
Massive magnetite zone as above. From 58.62 m to 58.83 m the zone contains fragments of diorite. The matrix around the fragments is the fine-grained massive magnetite. The diorite fragments vary up to 5 cm. Up to 20% of the interval consists of dioritic fragments.				58.52 59.87	Pyritic fractures cut through the dioritic fragments. A lot more disseminated pyrite than previous interval. One vein with chalcopyrite at 20 degrees.			B279873 58.52 - 59.87 m (1.35 m)	Total Fe (%) 47.09 Total S (%) 5.22 Cu (ppm) 1170	
Diorite - fine-grained green and chloritic. Cut by thin quartz veinlets up 1 mm.				61.04	Very sparse disseminated pyrite. One 8 centimetre zone of magnetite ore at 60.05 m.			Not sampled		
Massive magnetite over 0.38 m.				61.42	Abundant pyrrhotite up to 7.6 cm in two seams. Pyrite in veins as crystals up to 3 mm. These veins are typically 0 degrees to core axis. Pyrite vein cuts pyrrhotite section. No visible chalcopyrite.			B279874 61.04 - 61.42 m (0.38 m)	Total Fe (%) 50.44 Total S (%) 9.13 Cu (ppm) 601	
Diorite zone. Fine grained and chloritic. Broken up from 63.4 m to 64.62 m and more chloritic.				65.38	From 64.01 m to 64.62 m is a zone of coarse crystalline pyrite in veins at 0 to 30 to core axis.			Not sampled		

Emerald Fields Res.		Hole No. Dani	el DDH 1-	2005		Sheet No. 8 of 17			
Rock Type and Textures	Alteration	Graphic Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Massive magnetite ore zone. Accompanied by pyrrhotite, pyrite and rare chalcopyrite.					Pyrrhotite occurs interstitially and as blebs and seams. Between 15 and 20% pyrrhotite throughout. Cpy along thin fractures which cut the magnetite and skarn.			B279875 65.38 - 67.77 m (2.39 m)	Total Fe (%) 55.99 Total S (%) 5.03 Cu (ppm) 936
Skarn unit from 67.77 m to 82.3 m This 1.5 m interval is about 80 to 90% green (non chlorite/epidote) indicating pyroxene (diopside) dominates over garnet.					Disseminated and blebs of magnetite throughout this 1.5 m interval along with associated pyrrhotite. Blebs and splotches of pyrite occur also. Fractures with pyrite cut everything.			B279876 67.77 - 69.29 m (1.5 m)	Fe (%) 20.6 S (%) 1.18 Cu (ppm) 877
Skarn as above.					As above but with one bleb of cpy noted and cpy along one hairline fracture noted. Pyrite cubes along fractures.			B279877 69.29 - 70.82 m (1.5 m)	Fe (%) 23.4 S (%) 3.71 Cu (ppm) 1550
Skam as above.					As in last two intervals but magnetite is much less from 71.17 m on down. That is, there areas some discontinuous seams of magnetite but the disseminated interstitial magnetite is gone or almost gone.			B279878 70.82 - 72.34 m (1.5 m)	Fe (%) 13.0 S (%) 0.83 Cu (ppm) 547

	Alteration	Graphic	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)		Selected Analytical
Skam as above but garnet is increasing to almost 30 to 40 per cent in bottom 0.6 m of interval.					72.34	At 72.36 m to 72.42 m is a massive magnetite seam. A pyritic fracture cuts this seam of magnetite at 0 degrees to c.a.			B279879 72.34 - 73.86 m (1.5 m)	Fe (%) 13.9 S (%) 3.13 Cu (ppm) 1035
					73.86					
Skarn as in above interval (30 to 40% garnet).						Blebs or splotches of magnetite starting to appear from 74.37 m to 74.68 m. This may be described as interstitial.				Fe (%) 14.6 S (%) 1.53 Cu (ppm) 567
					75.39					
Skarn as in above interval (30 to 40% garnet).						At about 76.3 m to 76.81 m magnetite goes up to 10 to 20 per cent as blebs splotches and disseminations, plus/minus pyrrhotite.				Fe (%) 17.75 S (%) 1.13 Cu (ppm) 667
Skarn as in above interval (30 to 40%					76.91	Multiple discontinuous			B279882	Fe (%) 23.0
gamet).						seams of magnetite throughout interval. Seams are 1 to 2 cm thick. Seams are typically 90 degrees to c.a.				S (%) 1.19

Emerald Fields Res.		Hole No. Daniel DDH 1-2005 Sheet No. 10 of 17									
Rock Type and Textures	Alteration	Graphic Log	g Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results		
Skarn as above but garnet has diminished to 5 to 10% of composition.		78.44			or interstitial magnetite oc bottom of interval seams of occur and from 2 to 3 cm with the magnetite occurs.	Magnetite is much less abundant. No seams or interstitial magnetite occurs. At 79.55 m to bottom of interval seams of magnetite and occur and from 2 to 3 cm thick. Some pyrite with the magnetite occurs. Hairline fractures with pyrite cut the magnetite seams at 45 degrees and 90 degrees.			Fe (%) 11.95 S (%) 0.95 Cu (ppm) 460		
Skarn as in last interval.		contact 50°			More massive seams of magnetite over the top 1.22 m of interval. Interval is up to 20 per cent magnetite with lesser pyrite cutting magnetite as late fractures. The bottom 1.12 m has no seams of magnetite.			B279884 79.96 - 82.3 m (2.34 m)	Fe (%) 16.4 S (%) 0.63 Cu (ppm) 43.1		
Plagioclase porphyritic diorite. Fine grained groundmass with plagioclase varying up to 1.5 mm. Chilled margins at both contacts show no plagioclase phenocrysts.		contact 45°		82.91	Some very minor pyrite noted.			Not sampled			
Marble - white medium grained. Top 0.6 m has flecks of dark mineral (carbon?) giving it a mottled appearance. From 85.12 m to 85.8 m is plagioclase porphyritic diorite with upper contact at 70 degrees. A zone of epidote occurs over 0.9 m from dike.		contact 20°		92.15	Rare specks of pyrite.			Not sampled			

Emerald Fields Res.		Hole No. Dani	el DDH 1-	2005		Sheet No. 11 of 17			
Rock Type and Textures	Alteration	Graphic Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)		Selected Analytical Results
Plagioclase porphyritic diorite (ppd) with a few pieces of marble caught up. The interval is chloritic and locally shattered. Carbonate veining occurs locally. Some minor chloritic gouge is developed.				92.15 94.64				Not sampled	
Marble as in previous marble interval.								Not sampled	
				96.09					
Chloritic plagioclase porphyry diorite (ppd) as in 92.15 m to 94.64 m interval.		contact 70°		98.07				Not sampled	
Marble	The top 0.46 m is propylitically altered.			102.79				Not sampled	

Emerald Fields Res.		Hole No. Dani	el DDH 1-	2005		Sheet No.12 of 17			
Rock Type and Textures	Alteration	Graphic Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Siliceous epidote skarn with minor garnet. Possibly a skarned intrusive rock. Some plagioclase porphyritic diorite caught up in this zone.	Some chloritic alteration.			102.79	Up to 10 per cent pyrite along fractures or as patches.			B279885 102.79 - 104.9 m (2.1 m)	Fe (%) 6.01 S (%) 3.04 Cu (ppm) 88.2
Plagioclase porphyritic diorite (ppd) dike. A thin rind of garnet occurs at the bottom contact at 10 degrees to c.a.		contact 20°			none			Not sampled	
Marble with some fine grained fragments of mafic material caught up locally				105.71	Rare specks of pyrite.			Not sampled	
Plagioclase porphyritic diorite (ppd) dike. Some marble caught up in bottom 1.22 m. Bottom 1.22 m is also getting gougy with lots of shiny slickensided faces.	Strongly chloritized especially into fault zone near bottom.			112.01	Rare specks of pyrite.			Not sampled	

Emerald Fields Res.		Hole No. Dani	el DDH 1-	2005		Sheet No.13 of 17			
Rock Type and Textures	Alteration	Graphic Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Marble - medium grained calcite crystals. About 5 plagioclase porphyritic diorite (ppd) dikes between 5 and 20 cm occur within this interval. The ppd dikes have garnet along contacts.	The dikes are heavily chloritized.	contact 25°		112.01	Rare specks of pyrite.			Not sampled	
Plagioclase porphyritic diorite (ppd).	Heavily chloritized. Shiny slickensided faces where heavily chloritized.	contact 80°		122.07				Not sampled	
Marble as described in 112.01 m to 120.7 m. One 15 cm dike of ppd in central area. Garnet-epidote occurs over 0.5 cm at bottom contact with the ppd.		contact 70°		125.58	No mineralization observed.			Not sampled	
Plagioclase porphyritic diorite (ppd). The crowding of the plagioclase varies and the size of the plagioclase. Varies along with the crowding. Plagioclase varies from 0.5 mm up to 3 mm locally.	Chlorite altered. Chloritic slips. The top 10 cm of this interval is and epidote-chlorite skarn with some garnet and about 15 cm of marble caught up in it.			130.3	6.4 cm of massive magnetite occurs at 125.96 m			Not sampled	

Emerald Fields Res.		Hole No. D	aniel DDH	1-2005		Sheet No.14 of 17			
Rock Type and Textures	Alteration	Graphic L	.og Angle	s Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Marble - medium grained. Near the top (130.76 m), 15 cm of ppd and another 15 cm of ppd at 131.06 m occur. This marble is cleaner and whiter than has been observed. Another 15 cm ppd dike at 137.77 m occurs. This dike is chloritic and gougy.	contact 30°	contact 75°		130.3				Not sampled	
Siliceous skarn zone. The same as that from 102.72 m to 104.85 m. Could be a skarned ppd or similar intrusive rock. Abundant garnet (10- 15% locally). Epidote splotches occur.					10-15% pyrite locally.				Fe (%) 6.26 S (%) 4.03 Cu (ppm) 116.5
Marble zone. White crystalline fine to medium grained marble. Some mottling locally. Bottom 1.04 m has chloritic fractures at about 20 to 45 degrees.		contact 40°		143.46				Not sampled	
Plagioclase porphyritic diorite (ppd). This is a very crowded porphyry with plagioclase up to 5 mm. The sizes of the plagioclase vary up to 5 mm. Still matrix supported. Thin veinlets of quartz-carbonate occur at 80 degrees.		contact 30°		156.62				Not sampled	

Emerald Fields Res.		Hole No. I	Hole No. Daniel DDH 1-2005 Sheet No.15 of 17								
Rock Type and Textures	Alteration	Graphic	Log Ar		terval netres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results	
Marble - white crystalline and medium grained. A 12.7 cm dike of ppd at 158.95 m occurs. A little magnetite occurs at the contact along with some garnet. At 160.02 m a gougy ppd dikelet occurs over 10 cm.	contact 30* ·	contact 90°				Magnetite occurs at ppd contact at 158.95 m			Not sampled		
Garnet-epidote skarn.	Locally gougy.					A very little pyrite occurs (less than 1%).			Not sampled		
Marble with some minor skarn elements locally.	Carbonaceous seams	contact 90°		16	62.15				Not sampled		
	occur.	contact 70°		16	63.37						
Fine-grained diorite (ppd), occasionally porphyritic. So it is probably a variation on the ppd. It is very chloritic especially where broken up. Garnet-epidote skarn over 10 cm. at bottom of contact.		contact 70°		16	64.44	Rare pyrite.			Not sampled		

Emerald Fields Res.		Hole No. Daniel DDH 1-2005 Sheet No.16 of 17								
Rock Type and Textures	Alteration	Graphic	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Marble. Still white but some greyish mottles. Random fractures contain calcite.	contact 70°				164.44				Not sampled	
		contact			167.41					
Garnet-epidote skarn.						Some pyrite on fractures along with chlorite.			Not sampled	
					168.4					
Crowded plagioclase porphyritic diorite, locally bleached. Hematitic slips. Garnet occurs in veins.		contact				No mineralization observed.			Not sampled	
		55°			169.93					
Marble. Chloritic and gougy at 170.59 m for about 38 cm.						Some pyrite in dike.			Not sampled	
					173.2					

Emerald Fields Res.		Hole No. Dani							
Rock Type and Textures	Alteration	Graphic Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Plagioclase porphyritic diorite - crowded (ppd). Chloritic, gougy and broken up. One 25 cm piece of marble occurs near 174.65 m.		contact 90°		173.2	Pyrite occurs in fractures and splotches over the top 1.07 m of interval especially the top 0.46 m. Some magnetite occurs at contact of marble inclusion. Pyrite occurs with magnetite seam.			Not sampled	
Marble - medium grained, white and clean.				178	No mineralization observed.			Not sampled	

Core Recovery Daniel DDH 1 - 2005

(measured from block marker to marker)

From (motroe)	To (metros)	% Baaay
(metres)	(metres)	Recov.
0	16.46	OVB
16.46	17.98	90
17.98 19.51	19.51 21.03	100 100
21.03	21.03	100
22.56	24.08	100
24.08	25.6	100
25.6	27.13	100
27.13	28.65	86
28.65	30.02	94
30.02	31.39	100 100
31.39 32.92	32.92 34.44	100
34.44	35.97	100
35.97	37.03	71
37.03	38.56	100
38.56	39.32	80
39.32	40.84	100
40.84	42.21	89
42.21 43.74	43.74 45.26	100 89
45.26	46.63	74
46.63	47.24	53
47.24	48.46	100
48.46	49.99	98
49.99	51.51	95
51.51	52.43	100
52.43 53.95	53.95 55.63	100 91
55.63	57.61	91
57.61	58.98	100
58.98	60.5	88
60.5	61.87	94
61.87	63.4	100
63.4	64.77	94
64.77 65.53	65.53 66.6	50 31
66.6	68.28	73
68.28	69.19	67
69.19	70.1	70
70.1	71.17	50
71.17	72.85	91
72.85 73.91	73.91 75.59	100 83
75.59	75.59	80
77.27	78.94	73
78.94	80.31	100
80.31	81.99	89
81.99	83.52	95
83.52	85.04	97 83
85.04 86.56	86.56 88.09	83 98
88.09	89.61	100
89.61	91.14	98
91.14	92.35	96
92.35	93.88	97
93.88	95.4	95
95.4	96.93	92
96.93 98.45	98.45 99.97	93 100
99.97	101.65	94
101.65	103.17	97
103.17	104.55	98
104.55	106.07	98

Core Recovery Daniel DDH 1 - 2005

(measured from block marker to marker)

From (metres)	To (metres)	% Recov.
((
106.07	107.59	98
107.59	109.27	86
109.27	110.49	80
110.49	112.01	92
112.01	113.54	92
113.54	114	92
114	115.21	94
115.21	116.74	95
116.74	118.26	95
118.26	119.79	92
119.79	121.31	92
121.31	121.62	100
121.62	123.14	90
123.14	124.66	97
124.66 126.19	126.19 127.71	100 100
127.71	129.24	87
129.24	130.76	97
130.76	131.37	62
131.37	132.89	100
132.89	134.42	100
134.42	135.94	100
135.94	137.16	100
137.16	138.38	96
138.38	139.9	100
139.9	141.43	98
141.43	142.95	95
142.95	144.48	95
144.48	146	100
146	147.52	98
147.52	149.05	100
149.05	150.57	97
150.57 152.1	152.1 153.62	100 97
153.62	155.14	97
155.14	156.67	100
156.67	158.19	100
158.19	159.72	100
159.72	161.24	100
161.24	162.76	100
162.76	163.83	95
163.83	165.35	100
165.35	166.88	100
166.88	168.55	95
168.55	170.08	100
170.08	171.6	100
171.6	173.13	100
173.13	174.65	90
174.65	176.17	92
176.17 177.55	177.55 178	92 83
177.55	EOH	03
	LON	

Location: Bugaboo Creek Date Collared: May 16, 2005 Date Completed: May 21, 2005	Bearing: Dip: -90 degrees Depth: 181.66 metres	Northing: Easting: Elevation:	38897	73		Property: Port Renfrew Core Size: TWNQ Other: No dip test	Drill: Full Force Drillin Logged By: G. Payie Date: June 6, 2005		cki	
Rock Type and Textures	Alteration	Graphic	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
OVB					0				Not Sampled	
Boulders and rubble of quartz monzonite										
					7.32					
Massive magnetite from 7.32 m to 1 The drill contacts magnetite immediate The first 1.07 m is rubbly and crumbly interaction. Blades, specks and sploto occur. The actinolite (?) occurs as clu surrounded by magnetite. Often the a have filled cavities or open spaces alo calcite occurs also. The actinolite is p	ely below overburden. due to surface ches of actinolite (?) imps or splotches ictinolite appears to ing fractures. Some				8.84	The magnetite is massive Pyrrhotite occurs along co discontinuous fractures (also but less so than chala and chalcopyrite occur intr along fractures. The fract degrees to the core axis.	ontinuous and (1%). Pyrite occurs (copyrite. The pyrite erstitially as well as			Total Fe (%) 63.64 Total S (%) 2.65 Cu (ppm) 468
Massive magnetite ore as above.					10.36	As above.				Total Fe (%) 63.17 Total S (%) 2.03 Cu (ppm) 485

Sheet No. 1 of 13

Hole No.: Conqueror DDH 1-2005

Emerald Fields Res.

Rock Type and Textures	Alteration	Graphic Lo	g Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Result
Massive magnetite ore as above. More actinolite (?) coming in throughout this interval. At 10.97 m is a 0.3 m section of garnet and green mineral skarn.				10.36	As above interval but with more sulphides. Over 10% sulphides consisting of chalcopyrite and pyrite locally. Pyrrhotite still 5 - 10%			B279889 10.36 - 11.89 m (1.5 m)	Total Fe (%) 55.72 Total S (%) 2.16 Cu (ppm) 414
Massive magnetite ore as above.				13.41	As in last interval	The chalcopyrite/pyrite fractures are from 10 to 20 degrees to core axis. Both minerals occur interstitially near fractures.		B279890 11.89 - 13.41 m (1.5 m)	Total Fe (%) 65.99 Total S (%) 2.50 Cu (ppm) 347
Massive magnetite ore as above.				14.94	As above.	As above but less chalcopyrite.		B279891 13.41 - 14.94 m (1.5 m)	Total Fe (%) 64.37 Total S (%) 3.64 Cu (ppm) 475
-	Occasional earthy red hematite along some slip faces.				As above.	As above.		B279892 14.94 - 16.46 m (1.5 m)	Total Fe (%) 59.07 Total S (%) 4.31 Cu (ppm) 683

Emerald Fields Res.		Hole No.	Conq	ueror DD	H 1-2005		Sheet No. 3 of 13			
Rock Type and Textures	Alteration	Graphic	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Massive magnetite ore as above.	Some reddish hues within magnetite matrix and along slip faces indicates hematite alteration from 54 - 56.5'				16.46	Sulphides as in the last few intervals.	Fractures with sulphides and actinolite have similar orientation from 20 to 40 degrees.		B279893 16.46 - 17.98 m (1.5 m)	Total Fe (%) 62.02 Total S (%) 2.40 Cu (ppm) 503
Massive magnetite ore as above. The lower 0.9 m has veinlets, blebs and interstitial calcite.		dike con 80°	act			Sulphides may have diminished somewhat but generally is same as above.	as above		B279894 17.98 - 19.68 m (1.7 m)	Total Fe (%) 63.88 Total S (%) 1.91 Cu (ppm) 462
Marble zone. At the top is a skarned aphanitic, dense, dark greenish black dike. Then into white marble. The top 35.5 cm is fractured and contains calcite. The remaining marble is white and fine to medium grained. A 7.6 cm thick mass of garnet-epidote skarn occurs at the bottom of interval.					22.56	A fine seam of pyrite occurs in skarn at base of interval (up to 4 mm) where marble contacts skarn.			Not sampled.	
Crowded feldspar porphyritic diorite dike. Dark greenish hue. Fine hornblende crystals noted and quartz matrix with phenocrysts of plagioclase up 5 mm.	Pale altered hues throughout. Chloritized.				24.94	Very occasional specks of pyrite - rare. At base of dike is a contact with marble that contains well- formed cubes of pyrite and a little garnet.			Not sampled.	

Emerald Fields Res.		Hole No. 0	Conqu	ueror DDI	H 1-2005	-	Sheet No. 4 of 13			
Rock Type and Textures	Alteration	Graphic I	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Marble - white, massive and generally clean. Medium to coarse grained. Some mottled where coarse and where some crystals are darker. One 10 cm dike at 28 m (chloritic aphanitic and greenish in colour). Its contact is at 75 degrees.		contact 60°			24.94 33.88	Rare speck of pyrite.	Possible bedding highlighted by darker bands at 70 degrees.		Not sampled.	
Skarn. Garnet, chlorite, actinolite/tremolite (?), diopside (?), pyroxene (?). Some epidote also.		contact 60°			37.19	Fractures and blebs of pyrite up to 10 per cent locally but not over the interval.	Abundant random fractures with quartz in fractures. Quartz filled fractures post date the sulphide filled fractures. Siliceous vein/fracture is 30 degrees.			Cu (ppm) 203 Fe (%) 6.93 S (%) 1.83
Massive marble, grey-white and mottled.		contact 40°			41.76	Rare specks of pyrite.			Not sampled.	
Skarn with large interstitial blebs of magnetite. Pyroxene-garnet skarn. With up to 20% magnetite content.		contact 70°			42.52	Magnetite as large interstitial blebs that grade to greater and larger concentrations at the lower contact. Pyrite contact is from 1 to 2%.				Cu (ppm) 83.4 Fe (%) 21.4 S (%) 0.89

contact 70°					Coarse pyrite crystals on a fracture.			B279897	Total Fe (%) 60.74 Total S (%) 2.83
								42.52 - 43.43 m (0.9 m)	
				43.43					
									Total Fe (%) 14.63 Total S (%) 1.19 Cu (ppm) 457
				44.81					
					pyrrhotite, pyrite and				Total Fe (%) 55.42 Total S (%) 1.47 Cu (ppm) 241
				46.08					
ken an shattered Ily and chloritic re broken. Some lote in broken areas and along ures often with hides.	contact				Some large patches of pyri minor chalcopyrite. About occurs in middle of interval splotches of magnetite. pic	te and pyrrhotite with 5 cm of magnetite . Some minor			Total Fe (%) 17.22 Total S (%) 2.44 Cu (ppm) 463
	y and chloritic e broken. Some te in broken areas and along ires often with	y and chloritic b broken. Some te in broken areas and along res often with ides. contact	y and chloritic b broken. Some te in broken areas and along res often with ides. contact	y and chloritic 5 broken. Some te in broken areas and along res often with ides. contact	en an shattered y and chloritic b broken. Some te in broken areas and along res often with ides. contact	en an shattered y and chloritic b broken areas and along res often with ides.	interstitially over bottom 1 foot of interval. 44.81 44.81 44.81 44.81 44.81 44.81 46.08 Veins and patches of pyrite often with epidote. Some large patches of pyrite and pyrrhotite with minor chalcopyrite. About 5 cm of magnetite occurs in middle of interval. Some minor splotches of magnetite. picking up near bottom of interval.	interstitially over bottom 1 foot of interval. 44.81 44.81 Sulphides include pyrrhotite, pyrite and chalcopyrite up to 5 per cent. 46.08 Veins and patches of pyrite often with epidote. Some large patches of pyrite and pyrrhotite with minor chalcopyrite. About 5 cm of magnetite occurs in middle of interval. Some minor splotches of magnetite. picking up near bottom of interval.	interstitially over bottom 1 foot of interval. (1.37 m) 44.81 44.81 44.81 Sulphides include pyrrhotite, pyrite and chalcopyrite up to 5 per cent. B279899 44.81 46.08 44.81 - 46.08 m (1.27 m) 46.08 Veins and patches of pyrite often with epidote. Some large patches of pyrite and pyrrhotite with minor chalcopyrite. About 5 cm of magnetite occurs in middle of interval. B279900 46.08 + 49.56 m (3.48 m) 6.08 - 49.56 m (3.48 m) 46.08 - 49.56 m (3.48 m)

Emerald Fields Res.		Hole No.	Conque	eror DDI	H 1-2005		Sheet No. 6 of 13			
Rock Type and Textures	Alteration	Graphic	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Massive magnetite from 49.56 m to In this 1.5 m interval, the top 1.2 m ha skarn (as above) and finer intergrowth actinolite/tremolite(?) which are up to 2 Magnetite is up to 80 per cent overall Actinolite is about 15 per cent overall. per cent overall. Some carbonate (cale fractures.	s fragments of green s of interstitial 20 per cent locally. throughout interval. Sulphides are about 5	contact 40°			49.56 51.51	The magnetite is black an massive. Pyrite, pyrhotite occur in order of abundam Pyrite 4%, pyrhotite 1%, 1 Sulphide veinlets are from Most are 80 to 90 degrees	e and chalcopyrite ce (more to less). with rare chalcopyrite. 0 to 90 degrees.		B279901 49.56 - 51.51 m (1.95 m)	Total Fe (%) 52.21 Total S (%) 3.08 Cu (ppm) 614
Massive magnetite ore. No more pyroxene skarn fragments. Actinolite/tremolite(?) gone down to about 10 per cent.					53.04		A fault marked by pyrite occurs at 51.82 m. One side of the fault has actinolite/tremolite intergrowths while the other side does not, indicating good movement.		B279902 51.51 - 53.04 m (1.5 m)	Total Fe (%) 56.0 Total S (%) 2.10 Cu (ppm) 684
Massive magnetite ore as in last section. Calcite in occasional fractures.					54.56	Pyrite is most common sulphide (as above) occurring in fractures and as small blebs. Occasional chalcopyrite and pyrrhotite.			B279903 53.04 - 54.56 m (1.5 m)	Total Fe (%) 57.21 Total S (%) 2.10 Cu (ppm) 1010
Massive magnetite. At 55.78 m, a zone of sulphide veining at 30 degrees over 3.8 cm containing pyrite and pyrrhotite. This zone marks a transition downhole into a zone of increasing actinolite/tremolite(?). The blades and aggregations coarsen up and are pale green and may be more tremolite.					56.08	Same as above.			B279904 54.56 - 56.08 m (1.5 m)	Total Fe (%) 57.71 Total S (%) 3.31 Cu (ppm) 528

		56.08	Pyrrhotite has increased strongly as blebs. Pyrite is rare as is chalcopyrite.			B279905	Total Fe (%) 55.32
						56.08 - 57.61 m (1.5 m)	Total S (%) 1.25 Cu (ppm) 415
		57.61					
			chalcopyrite. All sulphides occur interstitially but chalcopyrite is observed				Total Fe (%) 60.29 Total S (%) 1.60 Cu (ppm) 386
		59.13	Abundant sulphides (up			B270007	Total Fe (%) 65.72
			to 10% locally), mostly pyrrhotite and some pyrite and occasional				Total S (%) 2.66
		60.66					
			As above.				Total Fe (%) 64.07 Total S (%) 1.73 Cu (ppm) 430
			59.13	59.13 Solution of the second	chalcopyrite. All sulphides occur interstitially but chalcopyrite is observed in fractures. 59.13 Abundant sulphides (up to 10% locally), mostly pyrrhotite and some pyrite and occasional chalcopyrite on fractures. 60.66	chalcopyrite. All sulphides occur interstitially but chalcopyrite is observed in fractures. 59.13 Abundant sulphides (up to 10% locally), mostly pyrrhotite and some pyrite and occasional chalcopyrite on fractures. 60.66	chalcopyrite. All sulphides 57.61 - 59.13 m occur interstitially but chalcopyrite is observed in fractures. 59.13 59.13 Abundant sulphides (up 10% locally), mostly 59.13 - 60.66 m 60.66 60.66 60.66 8279908 60.66 - 62.18 m

Emerald Fields Res.		Hole No. Conqueror DDH 1-20								
Rock Type and Textures	Alteration	Graphic I	_og	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Magnetite ore. Same 'dendritic' pattern of healed magnetite as above. The actinolite/tremolite and sulphide could make up 15% (combined) locally and > 10% of entire interval.						As above but sulphides more consistent throughout interval.			B279909 62.18 - 63.7 m (1.5 m)	Total Fe (%) 66.17 Total S (%) 2.75 Cu (ppm) 513
Magnetite ore as above.						Abundant pyrrhotite, pyrite and chalcopyrite.			B279910 63.7 - 65.23 m (1.5 m)	Total Fe (%) 64.41 Total S (%) 2.68 Cu (ppm) 486
Magnetite ore as above. Actinolite/tremolite pick up over the bottom 0.6 m of interval.						As above.	Sulphide veinlets at 0 and 90 degrees. Pyrite along 0 degree fractures with chalcopyrite along the 90 degree fractures.		B279911 65.23 - 66.75 m (1.5 m)	Total Fe (%) 60.94 Total S (%) 3.44 Cu (ppm) 1230
Magnetite ore as above. Some of the "dendritic" textures in magnetite occur but not as apparent.						Pyrite is more abundant than pyrrhotite. Chalcopyrite is still rare.	Fault gouge in fault zone from 67.06 to 67.36 m.		B279912 66.75 - 68.28 m (1.5 m)	Total Fe (%) 63.59 Total S (%) 3.87 Cu (ppm) 750

Emerald Fields Res.		Hole No. Cond	ueror DD	H 1-2005	7	Sheet No. 9 of 13			
Rock Type and Textures	Alteration	Graphic Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Result
Magnetite ore. Substantial increase n actinolite/tremolite.				68.28	Sulphide abundance is up. Pyrrhotite over pyrite over rare chalcopyrite.	Pyrite occurs along veinlets at 30 degrees to core axis.			Total Fe (%) 61.85 Total S (%) 3.40 Cu (ppm) 841
				69.8					
Magnetite ore as above.					As above but with more chalcopyrite, as veinlets and blebs.				Total Fe (%) 65.61 Total S (%) 2.97 Cu (ppm) 709
				71.32					
Magnetite ore as above. Large fragment of pyroxene skarn shot through with magnetite at 72.85 m.					As above.				Total Fe (%) 63.89 Total S (%) 2.38 Cu (ppm) 502
				72.85					
Magnetite ore zone ends at 74.6 m.					As above.				Total Fe (%) 64.52 Total S (%) 2.63 Cu (ppm) 531
				74.6					

Emerald Fields Res.		Hole No.	Conq	ueror DDI	H 1-2005		Sheet No. 10 of 13			
Rock Type and Textures	Alteration	Graphic	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Fine-grained diorite dike. Greenish in colour.	Mild pervasive propylitic alteration.				74.6	Rare specks of pyrite.			B279917 74.6 - 75.82 m (1.2 m)	Total Fe (%) 10.77 Total S (%) 0.23 Cu (ppm) 51.3
Same fine-grained diorite dike as above but much altered to skarn. It has magnetite shot through to the point it is taking on a healed breccia look with magnetite as the matrix.		contact 55°			78.16	Fifteen to twenty per cent magnetite in fractures throughout. The magnetite is fine grained. Pyrite and chalcopyrite occur along fractures and adjacent to fractures.	Fractures that are 45 to 50 degrees may crosscut fractures that are 0 degrees.		B279918 75.82 - 78.16 m (2.3 m)	Total Fe (%) 20.49 Total S (%) 1.76 Cu (ppm) 552
Massive magnetite over 0.48 m. Some diorite fragments near upper contact.					78.64	Fine-grained black magnetite with pyrrhotite blebs. Pyrite along seams. Rare chalcopyrite.			B279919 78.16 - 78.64 m (0.48 m)	Total Fe (%) 57.06 Total S (%) 2.26 Cu (ppm) 528
Skarned diorite as in 75.82 to 78.16 m interval but with less magnetite and less chlorite.		contact 90°			80.24	About 7 to 10 per cent magnetite in fractures throughout. Pyrite and chalcopyrite noted.	Contact with magnetite below undulates but can be estimated at 90 degrees to core axis.		B279920 78.64 - 80.24 m (1.6 m)	Total Fe (%) 18.57 Total S (%) 0.70 Cu (ppm) 185.5

Emerald Fields Res.	Hole No.	Conqu	eror DDI	11-2005						
Rock Type and Textures	Alteration	Graphic	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Massive magnetite with interstitial actinolite/tremolite up to 10 or 15%. Fine grained black magnetite.	contact 90*				80.24	Pyrrhotite interstitial to may and chalcopyrite occurs m At 81.99 m a massive seal occurs which is 0.3 m thick magnetite occur in the mas but pyrrhotite makes up 90 about 10%.	ainly along fractures. m of pyrrhotite-pyrite k. Fragments of ssive sulphide seam		B279921 80.24 - 82.45 m (2.2 m)	Total Fe (%) 58.56 Total S (%) 7.90 Cu (ppm) 2010
Mixed zone of semi-massive magnetite and skarn. The skarn is pale greenish and looks like actinolite/tremolite but could in fact be pyroxene. The skarn makes up 50% of the interval.	Chlorite occurs along fractures.	contact			83.69	Magnetite up 50 per cent of interval. Pyrrhotite as interstitial blebs and pyrite and chalcopyrite mainly along fractures.			B279922 82.45 - 83.69 m (1.2 m)	Total Fe (%) 45.64 Total S (%) 1.78 Cu (ppm) 1150
Garnet-pyroxene skarn with epidote and chlorite. A fragment(?) of plagioclase porphyritic diorite occurs near the bottom of interval.					85.17	Pyrite along 0 degree fractures. Magnetite occurs over bottom 20 cm, semi-massively.			B279923 83.69 - 85.17 m (1.48 m)	Total Fe (%) 16.95 Total S (%) 1.55 Cu (ppm) 336
Marble from 85.17 m to 146.3 m Recrystallized limestone. Massive me marble. Some grey mottles locally. St fractures. At 98.76 to 99.49 m is a dik diorite. At 104.55 m is a 10 cm fine gy 116.28 m there is 23 cm of epidote-py specks of pyrite). The attitude of this the top and 70 degrees at bottom.	ome grey carbonaceous e of crowded porphyritic rained diorite dike. At roxene skarn (with	contact 20°			146.3	skarn minerals along fractures (<1cm) with pyrite. From 141.43 to	Darker grey bands may define original bedding. These bands are at 45 degrees to core axis (at 106.53 m).		Not sampled.	

Emerald Fields Res.		Hole No.	Conqu	ueror DDI	11-2005		Sheet No. 12 of 13			
Rock Type and Textures	Alteration	Graphic	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Skarned diorite dike with calcite and quartz filled fractures and veinlets (up to 1 cm) throughout up to 1 cm thick veins at 5 to 70 degrees.	contact 20°				146.3	Pyrite occurs as specks or associated with the quartz carbonate veins or as pyrite veins.			B279924 146.3 - 148.64 m (2.3 m)	Cu (ppm) 95.3 Fe (%) 5.71 S (%) 3.62
	irreg 90°	ular contac	I		148.64					
Marble zone with a lot of carbonaceous fractures. One large fragment of plagioclase porphyritic diorite at 150.57 to 151.18 m. The fragment is chlorite/epidote altered and fractured.		contact							Not sampled.	
		30°			153.77					
Diorite dike with skarn elements. Fine to medium grained garnet- epidote skarn. Marble occurs from 156.21 to 156.97 m and again from 159.87 to 160.48 m. The diorite becomes slightly porphyritic near the bottom.		contact 40°			163.42	Pyrite is less that 1%			Not sampled.	
Marble. Clean white marble. Some carbonaceous elements locally. A diorite dikelet at 167.34 m is 7.6 cm thick.					100.42				Not sampled.	
					167.79					

Emerald Fields Res.	lds Res. Hole No. Con					No. Conqueror DDH 1-2005 Sheet No. 13 of 13							
Rock Type and Textures	Alteration	Graphic	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results			
Fine to medium grained locally plagioclase porphyritic diorite as in interval above (153.62 - 163.37 m). Some carbonate veinlets. Garnet- epidote rind at bottom contact with marble.	Chlorite altered.				167.79	Pyrite locally developed along fractures.	Fractures vary from 0 to 90 degrees.		Not sampled.				
		contact 25°			170.76								
White marble as previously described. Some carbonaceous fractures throughout. A few fragments of dike material.									Not sampled.				
		contact 50°			178.36								
Plagioclase porphyritic diorite as in interval 167.79 - 170.76 m. Cut with carbonate veinlets at random angles.									Not sampled.				
					181.05								
Marble. White									Not sampled.				
					181.66								

Core Rec Conqueror DE (measured from block	OH 1 - 2005 marker to marker)		
From	То	% Recov.	
(metres)	(metres)	/01100001.	
0	5.49	7 (OVB)	
5.49	7.32	50 (OVB)	
7.32	8.84	83	
8.84	10.36	100	
10.36	11.89	100	
11.89	13.41	92	
13.41	14.94	100	
14.94	16.46	100	
16.46	17.98	100	
17.98	19.51	100	
19.51	21.03	78	
21.03	22.56	100 100	
22.56	24.08		
24.08	25.6	100	
25.6 27.13	27.13 28.65	100 100	
28.65	28.65 30.18	100	
30.18	31.7	100	
31.7	33.22	100	
33.22	34.75	100	
34.75	36.27	75	
36.27	37.8	100	
37.8	39.32	100	
39.32	40.84	97	
40.84	42.37	100	
42.37	43.89	98	
43.89	45.42	100	
45.42	46.94	100	
46.94	48.46	100	
48.46	49.99	100	
49.99	51.51	98	
51.51	53.04	100	
53.04	54.56	98	
54.56	56.08	98	
56.08	57	92	
57	58.52	100	
58.52	60.05	100	
60.05	60.66	100	
60.66 61.87	61.87 63.4	94 100	
63.4	64.92	97	
64.92	66.45	100	
66.45	67.97	98	
67.97	69.65	95	
69.45	71.02	93	
71.02	72.54	100	
72.54	73.61	100	
73.61	75.13	100	
75.13	75.9	90	
75.9	77.42	100	
77.42	78.94	100	
78.94	80.47	93	
80.47	81.69	100	
81.69	83.21	100	
83.21	84.73	100	
84.73	86.26	95	
86.26	87.78	98	
87.78	89.46	94	

Core Recover Conqueror DDH 1 - (measured from block mark	2005	
From	To	0/ D
(metres)	(metres)	% Recov.
00.40	00.00	07
89.46 90.98	90.98 92.51	97 95
92.51	94.18	100
94.18	95.71	100
95.71	97.23	97
97.23	98.76	98
98.76	100.28	100
100.28	101.8	95
101.8	103.33	100
103.33	104.85	100
104.85	106.38	100
106.38 107.9	107.9 109.58	100 95
109.58	111.1	100
111.1	112.32	96
112.32	113.08	100
113.08	114.6	100
114.6	116.13	100
116.13	117.65	100
117.65	119.18	98
119.18 120.7	120.7 122.22	98 98
122.22	123.75	100
123.75	125.27	98
125.27	126.8	100
126.8	128.32	100
128.32	129.84	100
129.84	131.37	100
131.37	132.89	100
132.89	134.42	100
134.42 135.94	135.94 137.46	98 98
137.46	138.99	100
138.99	140.51	100
140.51	142.04	100
142.04	143.56	100
143.56	145.08	100
145.08	146.61	98
146.61 148.13	148.13 149.66	100 100
149.66	151.18	98
151.18	152.7	100
152.7	154.23	100
154.23	155.75	100
155.75	157.28	100
157.28	158.8	100
158.8	160.32	100
160.32 161.85	161.85 163.37	100 100
163.37	164.9	100
164.9	166.42	100
166.42	167.34	100
167.34	168.86	93
168.86	170.38	95
170.38	170.99	96
170.99	172.21	100
172.21 173.74	173.74 174.96	100 100
173.74 174.96	174.96	100
175.56	175.56	95
177.09	178.61	100
178.61	180.14	100
180.14	181.66	100
	EOH	

Emerald Fields Res.		Hole No.: David DDH 1-2005		Sheet No. 1 of 4
Location: Bugaboo Creek	Bearing: 119 degrees	Northing: 5390589	Property: Port Renfrew	Drill: Full Force Drilling
Date Collared: May 22, 2005	Dip: -60 degrees	Easting: 389291	Core Size: TWNQ	Logged By: G. Payie, G. Owsiacki
Date Completed: May 24, 2005	Depth: 77.42 metres	Elevation: 570 metres	Other: No dip test	Date: June 14, 2005

Rock Type and Textures	Alteration	Graphic L	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
OVB					0				Not Sampled.	
Chunks of magnetite and crowded plagioclase porphyry diorite.										
					0.71					
diorite dike. Feldspars are up to 4	Some small bands (up to 7.6 cm)								Not Sampled.	
mm.										
					2.13					
Broken up rubble of magnetite and plagioclase porphyritic diorite material. Rusty brown.									Not Sampled.	
					2.74					

Emerald Fields Res.		Hole No. I	David	DDH 1-2	2005		Sheet No. 2 of 4			
Rock Type and Textures	Alteration	Graphic	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
No Core. 100% loss.					2.74				Not sampled.	
					4.27					
No Core. 100% loss.					5.79				Not sampled.	
Rubbly. Some magnetite rubble along with rubble of skarned diorite (garnet/epidote).					7.09				Not sampled.	
Marble - white massive recrystallized I grained in texture. Some darker dirty 13.11 m. Dikes of fine-grained greenis altered) from 7.47 to 7.54 m. Similar d where a 15 cm dike occurs. At 15.24 is skarned. From 19.2 to 20.1 m is a r milled or rounded material (possibly fr	grey bands from top to sh black diorite (chlorite- ikes again at 13.56 m m is a 10 cm dike that rubble zone with small	bedding 50°				Tiny rare specks of pyrite in marble. Some very fine pyrite in diorite dikes.			Not sampled.	

Emerald Fields Res.		Hole No.	David	I DDH 1-2	2005		Sheet No. 3 of 4			
Rock Type and Textures	Alteration	Graphic	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Dark green chloritic diorite dike. Some feldspar phenocrysts. Broken up throughout.	Skarn elements developed locally showing epidote and garnet.	contact 5°			26.21	Rare specks of pyrite.			Not Sampled.	
					28.35					
Marble - White recrystallized limestone, medium to coarse grained. At 51.21 m is a fine grained diorite dike (10 cm).	From 51.21 to 56.24 m is a carbonaceous argilically altered section. A pale, beige- tan. Very fine clay filled fractures. The matrix of the marble in this interval is bleached and porous.				56.24	No mineralization noted.			Not Sampled.	
Skarned fine-grained pale green diorite dike.	Epidote in patches or along fractures. Rust clays along fractures.	,			57.45	Pyrite up to 2% throughout.			B279925 56.24 - 57.45 m (1.2 m)	Au 35 ppb Ag 0.07 ppm Cu 59.5 ppm
Marble. Medium to coarse grained.					73.46	No visible mineralization observed.			Not Sampled.	

Emerald Fields Res.		2005		Sheet No. 4 of 4					
Rock Type and Textures	Alteration	Graphic Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Fine-grained pale green diorite dike that is slightly skarned.	Epidote in patches or along fractures.				Pyrite disseminations from 2 to 3 per cent.				Au <5 ppb Ag 0.08 ppm Cu 64.0 ppm
Marble as in last marble interval. One skarned diorite dike from 74.68 to 75.13 m.					Some hematitic stains on fractures.				

Core Recovery David DDH 1 - 2005 (measured from block marker to marker)

From (metres)	To (metres)	% Recov.
0	1.22	97 mostly OVB
1.22	2.74	0
2.74	4.27	0
4.27	5.79	38
5.79	7.32	100
7.32	8.84	100
8.84	10.36	100
10.36	11.89	100
11.89	13.26	100
13.26	14.78	100
14.78	15.24	100
15.24	16.46	90
16.46	17.68	90
17.68	19.2	97
19.2	20.57	100
20.57	22.25	100
22.25	23.77	100
23.77	25.3	100
25.3	26.97	100
26.97	28.5	97
28.5	30.02	100
30.02	31.55	100
31.55	33.07	100
33.07	34.75	95
34.75	36.12	100
36.12	37.64	100
37.64	39.17	100
39.17 40.69	40.69 42.21	100 100
40.69 42.21	42.21	100
43.74	44.5	100
44.5	45.42	92
45.42	46.94	100
46.94	48.46	100
48.46	49.99	100
49.99	51.51	93
51.51	53.04	100
53.04	54.56	100
54.56	56.08	98
56.08	57.61	97
57.61	59.13	100
59.13	60.66	100
60.66	62.18	100
62.18	63.7	97
63.7	65.23	100
65.23	66.75	100
66.75	68.28	100
68.28	69.8 71.32	100
69.8 71.32	71.32	100 100
71.32	72.85	100
72.85	75.9	100
75.9	77.42	100
	EOH	

Emerald Fields Res.

Hole No.: Reko 10 DDH 1-2005

Sheet No. 1 of 2

Location: Renfrew Creek Date Collared: April 22, 2005 Date Completed: April 25, 2005 Bearing: 215 degreesNorthing: 5388653Dip: -60 degreesEasting: 404879Depth: 38.4 metresElevation: 426 metres

 Property:
 Port Renfrew
 Drill:
 Full Force Drilling

 Core Size:
 TWNQ
 Logged By: G. Payie, G. Owsiacki

 Other:
 No dip test
 Date:
 June 16, 2005

Rock Type and Textures	Alteration	Graphic I	Log Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
OVB - cobbles and pebbles of marble, diorite and skarn.				0 3.05				Not Sampled.	
Massive white recrystallized limestone - Marble. Some mottled areas due to carbon content. From 5.89 to 6.55 m is a skarned plagioclase porphyry diorite.	Minor chloritic patches. skarned dike		ntact 50° tact 5°	10.77	Speck of pyrite (<1%) in the marble and up to 5% in the skarned areas.			Not Sampled.	
Black massive fine to medium grained magnetite. This zone of massive magnetite goes to 14.83 m.				12.8	Abundant interstitial pyrrhotite (up to 10%), lesser pyrite. Pyrite along fractures and as blebs. Rare to spotty chalcopyrite.			B279927 10.77 - 12.8 m (2 m)	Total Fe 62.49% Total S 5.24% Cu 1965 ppm

Emerald Fields Res.		Hole No.: Rek	o 10 DDH 1	-2005		Sheet No. 2 of 2				
Rock Type and Textures	Alteration	Graphic Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results	
Massive magnetite zone as above.		contact		12.8 14.83	As above but much more p 20%). Pyrite and chalcopp interval. Crystalline pyrite Pyrrhotite occurs along an up to 3-4 cm thick. Coarse 12.8 m for 15 cm and at 1- cm.	yrite as in above occurs on fractures. Ind adjacent a fracture e crystalline pyrite at		B279928 12.8 - 14.83 m (2 m)	Total Fe 54.27% Total S 7.74% Cu 1625 ppm	
Mixed zone of dark fine-grained mafic brecciated by a leucocratic medium to diorite to monzodiorite(?). At 23.77 to pyroxene skarn zone that is non-miner fragments of dark diorite are caught up intrusive. The fragments are up to 20 pervasively chlorite-altered and more i fractures.	coarse grained quartz 24.69 m is a massive alized. Large o in the leucocratic cm. Both diorites are			38.4	Sulphide (up to 0.5%). A l pyrite occurs with splotche related to fractures). A sar was taken over the entire l found (37.69 - 38.1 m).	es of silica (possibly mple of this material			Cu 740 ppm Fe 8.65% S 0.15 %	

Core Recovery Reko 10 DDH 1 - 2005 (measured from block marker to marker)

From	То	%	
(metres)	(metres)	Recov.	
(metres)	(metres)	Recov.	
0	2.74	0 OVB	
2.74	3.66	58 partial OVE	В
3.66	5.18	100	
5.18	6.71	85	
6.71	8.23	80	
8.23	9.75	95	
9.75	11.28	100	
11.28	12.8	100	
12.8	14.33	85	
14.33	15.85	93	
15.85	17.37	97	
17.37	18.9	97	
18.9	20.42	97	
20.42	21.95	100	
21.95	23.47	95	
23.47	24.99	100	
24.99	26.52	100	
26.52	28.04	90	
28.04	29.57	93	
29.57	31.09	58	
31.09	32.61	88	
32.61	34.14	93	
34.14	35.36	100	
35.36	36.88	87	
36.88	38.4	100	
	EOH		

Emerald Fields Re	es.
-------------------	-----

Hole No.: Reko 10 DDH 2-2005

Sheet No. 1 of 3

Location: Renfrew Creek Date Collared: April 26, 2005 Date Completed: April 28, 2005 Bearing: 210 degreesNorthing: 5388556Dip: -60 degreesEasting: 404900Depth: 38.4 metresElevation: 422 metres

Property: Port Renfrew Core Size: TWNQ Other: No dip test

Drill: Full Force Drilling Logged By: G. Payie, G. Owsiacki Date: June 16, 2005

Rock Type and Textures	Alteration	Graphic	: Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
OVB From 0 to 4.57 m. Rocks and pebbles of quartz diorite and mafic fine-grained diorite.					0				Not Sampled.	
Fina grained dark grannish block	Pervasive chloritic				4.57	Occasional specks of			Not Sampled.	
Fine-grained dark greenish black diorite. Some coarse elements. Occasional plagioclase phenocrysts noted.	alteration. Limonite along fractures throughout.					pyrite.			Not Sampled.	
7 (11-1-1-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	cont	lating act			8.33					
	Chloritic tinge to both the quartz diorite and the dark fine-grained diorite.					Rare pyrite noted throughout.			Not Sampled.	
Zone is competent except for first 1.5 m where it is much broken.					13.41					

Emerald Fields Res.		Hole No.:	Reko 1	0 DDH 2	2-2005		Sheet No. 2 of 3			
Rock Type and Textures	Alteration	Graphic I	_og Ang		nterval netres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Skarn zone from 13.41 to 15.47 m. Garnet-pyroxene skarn with epidote in fractures.				1	13.41	Sparse pyrite observed, locally more intense. Veinlets of pyrite at bottom of section.			B279930 13.41 - 15.54 m (2.1 m)	Cu 86.5 ppm Fe 11.95% S 0.22%
Skarn zone continues as above.	More limonite along fractures.	contact			15.54	Pyrite more evident along fractures. From 16.46 to 17.07 m is a zone where magnetite is found. Pyrrhotite and pyrite occurs in the magnetite zone.			B279931 15.54 - 17.53 m (1.99 m)	Cu 535 ppm Fe 18.0% S 1.15%
Fine grained greenish black diorite. Competent section.						Sparse disseminated pyrite throughout. Pyrite occurs near the bottom of interval along and adjacent a 25 degree fracture. Quartz- carbonate veins at 0 degrees, 3 to 4 mm thick.			Not Sampled.	
Zone of where quartz diorite (medium intruded and has inclusions of fragme greenish black fine-grained mafic dior zones where the mafic fine-grained d with some of the leucocratic quartz di fine-grained fragments can be up to 2 dimension. Chloritic alteration observ	ents of the above rite. There are three iorite is up to 0.9 m but orite cutting them. The 20 by 30 cm in			3	31.62	Sparse disseminated pyrite.	Foliation within the quartz diorite at about 45 degrees.		Not Sampled.	

Emerald Fields Res.		Hole No.:	Reko 10 D	DH 2-2005		Sheet No. 3 of 3			
Rock Type and Textures	Alteration	Graphic Lo	og Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
5	Epidote along fractures ocally.			31.62 38.4	Sparse pyrite throughout.			Not sampled.	

Core Recovery Reko 10 DDH 2 - 2005

(measured from block marker to marker)

From	То	%	
(metres)	(metres)	Recov.	
0	1.22	8	OVB
1.22	3.66	2	OVB
3.66	5.18	53	mostly OVB
5.18	6.71	93	
6.71	8.23	83	
8.23	9.75	90	
9.75	11.28	97	
11.28	12.8	90	
12.8	14.02	68	
14.02	15.54	97	
15.54	16.46	78	
16.46	17.37	69	
17.37	18.9	100	
18.9	20.42	100	
20.42	21.95	100	
21.95	23.47	100	
23.47	24.99	100	
24.99	26.52	100	
26.52	28.04	100	
28.04	29.57	100	
29.57	30.78	100	
30.78	32.31	93	
32.31	33.99	89	
33.99	35.51	97	
35.51	36.88	93	
36.88	38.4	95	
	EOH		

Emerald Fields Res.

Hole No.: Reko 10 DDH 3-2005

Sheet No. 1 of 2

Location: Renfrew Creek Date Collared: April 28, 2005 Date Completed: April 29, 2005 Bearing: 190 degreesNorthing: 5390079Dip: -60 degreesEasting: 404342Depth: 24.08 metresElevation: 466 metres

Property: Port Renfrew Core Size: TWNQ Other: No dip test Drill: Full Force Drilling Logged By: G. Payie, G. Owsiacki Date: June 16, 2005

Rock Type and Textures	Alteration	Graphic Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
OVB to 1.52 m Pebbles of intrusive and skarn material.				0				Not Sampled.	
Skarn from 1.52 m to 12.01 m Garnet-pyroxene(?) skarned plagioclase porphyry diorite. Remnant plagioclase phenocrysts are clearly visible locally. Garnet occurs massively and as veinlets. Epidote occurs locally.	Thick, rusty limonite along fractures.			-	Rare specks of pyrite.				Cu 189 ppm Fe 7.84% S 0.04%
Skarn as above. Competent throughout.	Some limonite on fractures as above. Some hematite with limonite on fractures.			7.62	Rare specks of pyrite.				Cu 990 ppm Fe 9.56% S 2.0%

Emerald Fields Res.		Hole No.: Re	ko 10 DDI	H 3-2005		Sheet No. 2 of 2			
Rock Type and Textures	Alteration	Graphic Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Skarn as above. The remnant (protolith) skarn is now more aphanitic and darker.				7.62	As above			B279934 7.62 - 12.01 m (4.3 m)	Cu 3400 ppm Fe 13.4% S 4.73%
Zone with remnant plagioclase porphy skarning. Fragments(?) of plagioclase and appear to be undergoing absorpti The fragments which show the plagioc absorbed are locally stretched out as i state and undergoing strain.	on by the skarn fluids. clase that are being				In one zone pyrite and epidote occur in fractures. This zone is from 14.1 to 17.9 m. Chalcopyrite is noted at 17.2 m.			B279935 14.17 - 16.31 m (2.1 m)	Cu 503 ppm Fe 5.54% S 0.46%
state and undergoing strain.				24.08				B279936 16.31 - 17.98 m (1.6 m)	Cu 1440 ppm Fe 5.51% S 1.02%

EOH

Core Recovery Reko 10 DDH 3 - 2005 (measured from block marker to marker)

From (metres) 0	To (metres) 1.22	% Recov	
		4	OVB
1.22	2.13	67	partial OVB
2.13	3.66	77	
3.66	4.27	54	
4.27	5.79	92	
5.79	7.32	100	
7.32	8.84	93	
8.84	10.36	72	
10.36	11.89	97	
11.89	13.41	95	
13.41	14.94	95	
14.94	16.31	96	
16.31	17.98	112	There is an extra 20 cm in this interval that cannot be given to either adjacent intervals.
17.98	19.51	100	
19.51	20.88	94	
20.88	22.56	100	
22.56	24.08	98	
	EOH		

Emerald Fields Res.		Hole No.:	: Mar	ble DDH	1-2005		Sheet No. 1 of 6			
Location: Renfrew Creek Date Collared: April 30, 2005 Date Completed: May 7, 2005	Bearing: 020 degrees Dip: -60 degrees Depth: 173.43 metres	Northing: Easting: Elevation:	4032	261		Property: Port Renfrew Core Size: TWNQ Other: No dip test	Drill: Full Force Drilli Logged By: D. Hora, Date: June 20, 2005	G. Payie and	G. Owsiacki	
Rock Type and Textures	Alteration	Graphic	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
OVB					0				Not Sampled.	
Pieces of fine-grained intrusive rock. Some well-rounded pebbles.										
					2.34					
White marble with black and grey streaks. At 2.7 m mark is 10 cm of well-rounded pebbles of fine grained dark green diorite as in the 0 - 2.34 m interval. The marble is medium grained.									Not Sampled.	
					3.35					
Garnet-epidote skarned mafic dark green diorite. The texture is fine grained.		contact 43° /				Some pyrite up to 0.5% with the epidote.			Not Sampled.	

Emerald Fields Res.		Hole No.	Marbl	le DDH	1-2005		Sheet No. 2 of 6			
Rock Type and Textures	Alteration	Graphic	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
White marble as in previous marble intervals but cleaner, less grey streaking.	contact 43°				3.86				Not sampled.	
					4.57					
Same as previous diorite dike described but no skarning observed. Local feldspar porphyritic section. Broken and rubbly in top 30 cm.									Not sampled.	
		contact 34°			5.41					
White marble. Occasional thin black veins from 13.36 to 14.99 m. From 14.99 to 17.98 m it is grey mottled. From 17.98 m to bottom of interval there are bands of grey.		contact 85°			23.39		There is a banding or layering throughout at 65 degrees. Bedding?		10.36 - 13.41 m (3.05 m)	XRF Whole Rock CaO 53.05% MgO 1.83% SiO2 0.43% Fe2O3 0.09% Al2O3 0.08% Na2O 0.10% K2O 0.01% Cr2O3 0.01% MnO <0.01%
Siliceous quartz feldspar porphyry dike. Light grey with feldspar phenocryst up to 1 cm in length. Specks of black may be hornblende. Slight foliation in the texture.	Carbonate and chlorite along fractures throughout.				27.56	Specks of disseminated pyrite (< 0.5%)				Au <5 ppb Cu 27.5 ppm Ag 0.14 ppm

Emerald Fields Res.		Hole No.	Mar	ble DDH	1-2005		Sheet No. 3 of 6			
Rock Type and Textures	Alteration	Graphic	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Fine-grained garnet-epidote skarn.					27.56				Not sampled.	
		contact							-	
		45°	-		28.24					
Marble unit is cut by several mafic dike	es and siliceous dikes and				20.21				Not sampled.	
contains skarned sections.									nor oumpiour	
28.17 to 32.61 m - white marble;										
32.61 to 33.93 m - white marble with b	lack veining:									
35.05 to 35.41 m - white marble;	5,									
35.41 to 36.04 m - epidote?garnet ska	rn:									
36.04 to 36.83 m - white marble crosse										
fracture between 36.04 and 36.27 m;										
36.83 to 37.19 m - green skarn with litt	le garnet:									
37.19 to 38.1 m - fine-grained, hard, si										
with fine pyrite, light grey colour;	, 3 ,									
38.1 to 38.56 m - white marble;										
38.56 to 38.58 - greenstone;										
38.58 to 38.81 m - white marble with p	vrite in chloritic fractures;									
38.81 to 39.83 m - greenstone;	,									
39.83 to 47.68 m - white marble with g	rey bands and streaks, some									
stockwork-like black fracture filling;										
47.68 to 48.29 m - sheared dark green	stone, swelling clay contact on									
both sides;										
48.29 to 50.57 m - white marble with s	tylolite and grey veining;									
50.57 to 51.05 m - altered greenstone	breccia:									
51.05 to 51.18 m - white marble;										
51.18 to 51.46 m - black breccia with s	lickenside planes:									
51.46 to 51.48 m - white marble;	• •									
51.48 to 52.12 m - 40 cm light green g	reenstone, 23 cm dark green w									
52.12 to 53.06 m - white marble with b										
53.06 to 53.11 m - light green skarn?					53.11					
Pale grey siliceous feldspar porphyry					00.11				Not sampled.	
with feldspar crystals up to 1 cm.									Not bumpiou.	
with foldopar oryotalo up to 1 offic										
					55.47					
Marble unit intermixed with one greens	stone unit. Intervals are:		l						Not sampled.	
55.47 to 56.16 m - white marble, grey										
56.16 to 56.69 m - greenstone breccia										
sheared slickenside planes	2									
56.69 to 59.79 m - white marble with g	rey streaks and black	contact								
stockwork	-	60°								
					59.79					

Emerald Fields Res.		Hole No.	Mar	ble DDH	1-2005		Sheet No. 4 of 6			
Rock Type and Textures	Alteration	Graphic	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Greenstone with calcite veinlets. Fine-grained, dark green mafic intermediate dioritic dike (greenstone).	contact 60°				59.79				Not sampled.	
(9.00.10.0.10).					61.42					
White marble. Some mottles and grey-black streaks. Some stockwork- like fracture fillings.		contact 60°			70.26				Not sampled.	
Mixed unit. Marble as above mixed with several g 70.26 to 71.63 m - greenstone, 70.41 marble, sheared, altered 71.63 to 72.69 m - white marble with g 72.69 to 74.68 m - greenstone, to 73.4 0.6 m siliceous rhyolite-like, at 74.65 r 74.68 to 76.81 m - white marble, at 76 chlorite/epidote? veining 76.81 to 79.43 m - greenstone 79.86 to 81.08 m - white marble/green the core length 50/50% 81.08 to 83.62 m - white marble 83.62 to 84.48 m - greenstone The greenstone is the same rock as th mafic diorite.	to 71.32 m breccia with 50% grey streaks 46 m skarn-like, fine grained, n - 2.5 cm of garnet skarn 5.35 m, 2.5 cm green hstone irregular border along				84.48	Occasional specks of pyrite.	At 72.69 m and at 74.68 m the contacts are 70 degrees. At 76.81 m the contact is 42 degrees. The greenstone-marble contact at 79.86 m is 0 degrees. The contact at 83.62 m is 45 degrees and the contact at 84.48 m is 60 degrees.		Not sampled.	
White marble with grey streaks, greenstone bands at: 85.19 to 85.24 m 89.0 to 89.13 m 89.87 to 89.92 m 90.25 to 90.27 m 91.14 to 91.24 m 94.49 to 94.64 m - black, sheared, swelling infill.					95.1				Not sampled.	

Emerald Fields Res.		Hole No.	Mark	ble DDH	1-2005		Sheet No. 5 of 6			
Rock Type and Textures	Alteration	Graphic	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Mixed unit of greenstone (diorite dike) porphyry and skarn. 95.1 to 96.01 m - greenstone 96.01 to 97.94 m - white rhyolite(?), g nica filled veins 97.94 to 98.4 m - greenstone 88.4 to 98.76 m - rhyolite(?)/greensto 98.76 to 102.67 m - grey marble, blac 02.67 to 116.28 m - greenstone, alte epidote). Areas of finely disseminate specks of pyrite occur.	rey vein mesh/stockwork, black ne mix k veining, in siliceous rhyolite red and bleached and skarned				95.1				96.47 - 97.99 m (1.5 m) B279940	Au <5 ppb Cu 5.4 ppm Ag 0.04 ppm Au <5 ppb Cu 4.0 ppm Ag 0.05 ppm
Marble unit mixed zone. At least 11 s skarns: 116.28 to 117.65 m - white marble 117.65 to 118.34 m - greenstone, gar 118.34 to 118.57 m - white marble 118.57 to 118.87 m - greenstone/mar 50/50% 118.87 to 119.68 m - greenstone 119.68 to 119.91 m - limestone/green 119.68 to 119.91 m - greenstone 121.01 to 125.37 m - white marble 125.37 to 126.44 m - greenstone, last 126.44 to 129.29 m - light grey marble 130.4 to 132.44 m - ight grey marble 135.23 to 133.55 m - greenstone, epin 135.23 to 136.14 m - greenstone, bot with grey marble, epidotized along the contact into marble 136.14 to 139.95 m - grey marble, 138 speckled "igneous" feldspar porphyriti 139.6 to 139.95 m - greenstone, altern	net on limestone contact ble contact along the core stone contact 50/50% 5 cm garnet band a dotized, 5 cm of marble within le/skarn tom steep contact (10 degrees) a contact and in veinlets from 23 - 138.46 m, black, white c rock (like gneiss)					Marble unit mixed zone. <i>J</i> of greenstone and skarns 139.95 to 140.06 m - grey 140.06 to 140.44 m - epid 140.44 to 142.34 m - light 142.34 to 143.87 m - epid 143.87 to 146.71 m - grey 146.71 to 147.22 m - marb skarn 147.22 to 147.83 m - white 147.83 to 149.2 m - marbl skarn 149.2 to 158.19 m - white 158.79 to 159.72 m - gam skarn 159.72 to 160.12 m - "fres 160.12 to 160.38 m - white 160.33 to 166.53 m - gree 160.53 to 166.12 m - marbl uniformly grey, at 164.64 i mottled with dark streaks 166.42 to 166.7 m - dark g	(continued): marble otized greenstone grey marble otized skarn breccia marble ele/garnet/epidote e marble e/garnet/epidote and light grey marble et/epidote/chlorite h" greenstone e marble nstone ble to 164.59 m m, 5 cm garnet, rest		Not sampled.	

Emerald Fields Res.		Hole No.	Mark	ole DDH	1-2005		Sheet No. 6 of 6			
Rock Type and Textures	Alteration	Graphic	Log	Angles	Interval (metres)	Mineralization	Structures	Core Rec. (see below)	Sample Numbers	Selected Analytical Results
Greenstone/skarn zone. Zone of skar grained diorite (greenstone). 166.7 to 168.96 m - garnet/epidote sk 168.96 to 169.27 m - greenstone 169.27 to 169.37 m - garnet skarn 169.37 to 170.51 m - altered, bleache 170.51 to 171.3 m - garnet skarn 171.3 to 171.91 m - bleached greenst 171.91 to 172.82 m – dark green gree green diorite dikes) 172.82 to 173.43 m - altered bleached patches	arn d greenstone one instone (fine-grained mafic					Pyrite occurs along fractures from 170.38 m to end of hole.				Au <5 ppb Cu 94.3 ppm Ag 0.07 ppm

EOH

Core Recovery Marble DDH 1 - 2005 (measured from block marker to marker)

From	То	
(metres)	(metres)	% Recov.
. ,	. ,	
0	1.22	4 OVB
1.22	2.74	38 mostly OVB
2.74	4.27	97
4.27	5.79	90
5.79	7.32	100
7.32	8.84	98
8.84	10.36	100
10.36	11.89	100
11.89	13.41	100
13.41	14.94	100
14.94	16.46	98
16.46	17.98	92
17.98	19.51	98
19.51	21.03	98
21.03	22.56	100
22.56	24.08	95
24.08	25.6	98
25.6	27.13	93
27.13	28.65	100
28.65	30.18	100
30.18	31.7	100
31.7	33.22	100
33.22	34.75	100
34.75	36.27	100
36.27	37.8	92
37.8	39.32	100
39.32	40.84	100
40.84	42.37	100
42.37	43.89	100
43.89	45.42	100
45.42	46.94	98
46.94	48.46	100
48.46	49.99	100
49.99	51.51	90
51.51	53.04	93
53.04	54.25	94
54.25	56.08	100
56.08	57.61	90
57.61	59.13	100
59.13	60.66	100
60.66	62.03	80
62.03	63.55	86
63.55	64.92	100
64.92	66.45	100
66.45	67.97	100
67.97	69.49	100
69.49	71.17	94
71.17	72.69	98
72.69	74.22	100
74.22	75.74	100
75.74	77.27	97
77.27	78.64	94
78.64	79.55	100
79.55	81.08	97
81.08	82.6	100
82.6	84.12	100
84.12	85.8	95
85.8	87.48	91
87.48	89	100

Core Recovery Marble DDH 1 - 2005 (measured from block marker to marker)

From	То	
From (metres)	(metres)	% Recov.
(1101100)	(110100)	
89	90.53	100
90.53	92.2	97
92.2	93.73	100
93.73	95.4	100
95.4	96.93	100
96.93	98.45	98
98.45	98.76	50
98.76	100.28	100
100.28	101.8	100
101.8	103.33	98
103.33	104.85	100
104.85 106.38	106.38 107.9	100 98
107.9	109.42	97
107.9	110.95	98
110.95	112.47	100
112.47	114	100
114	115.52	100
115.52	117.04	100
117.04	118.57	100
118.57	120.09	100
120.09	121.62	100
121.62	123.14	100
123.14	124.66	98
124.66	126.19	97
126.19	127.71	100
127.71	129.24	97
129.24	130.76	97
130.76	132.28	100
132.28	133.81	97
133.81	135.33	98
135.33	136.86	100
136.86	138.38	100
138.38	139.9	100
139.9	141.43	100
141.43	142.95	100
142.95 144.48	144.48 146	100
144.48	146	98
146	147.52	100 100
149.05	149.03	100
150.57	152.1	100
152.1	153.62	100
153.62	155.14	100
155.14	156.67	92
156.67	158.19	105 ?
158.19	159.72	105 ?
159.72	161.24	93
161.24	162.76	100
162.76	164.29	100
164.29	165.81	98
165.81	167.34	95
167.34	168.86	100
168.86	170.38	100
170.38	171.91	100
171.91	173.43	98
	EOH	

APPENDIX B

ALS CHEMEX ANALYTICAL CERTIFICATES

ALS Chemex **EXCELLENCE IN ANALYTICAL CHEMISTRY**

ALS Canada Ltd. 212 Brooksbank Avenue

North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: EMERALD FIELDS RESOURCE CORP. **1546 PINE PORTAGE ROAD KENORA ON P9N 2K2**

Page: 1 Finalized Date: 13-JUN-2005 This copy reported on 23-JUN-2005 Account: PJV

AAS

CEF	RTIFICATE VA05043738		SAMPLE PREPARATIO	ON
		ALS CODE	DESCRIPTION	
Project: Port Renfrew		WEI-21	Received Sample Weight	
P.O. No.:		LOG-22	Sample login - Rcd w/o BarCode	
	amples submitted to our lab in Vancouver. BC. Canada on	CRU-31	Fine crushing - 70% <2mm	
6-JUN-2005.	amples submitted to our lab in valicouver, bC, Carlada on	SPL-21	Split sample - riffle splitter	
The following have access the perry HEATHERINGTON	o data associated with this certificate:	PUL-31	Pulverize split to 85% <75 um	
PERRI HEATHERINGTON	GEORGE OWSIACKI		ANALYTICAL PROCEDU	JRES
		ALS CODE	DESCRIPTION	
		ME-MS61	47 element four acid ICP-MS	
		Fe-VOL51	Total Fe in Concentrates	
		S-IR08	Total Sulphur (Leco)	LECO

Au-AA23

To: EMERALD FIELDS RESOURCE CORP. ATTN: GEORGE OWSIACKI **1350 KRISTINE RAE LANE** VICTORIA BC

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Au 30g FA-AA finish

Signature: Philles

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. **1546 PINE PORTAGE ROAD KENORA ON P9N 2K2**

Page: 2 - A Total # Pages: 2 (A - D) Finalized Date: 13-JUN-2005 Account: PJV

Project: Port Renfrew

CERTIFICATE OF ANALYSIS VA05043738 ME-MS61 ME-MS61

B279853 B279854 B279855 B279856 B279857	8.16 8.28 6.38	0.141	3.18	9.02		100									
B279855 B279856	Sector Sector	0.007				2.7	460	1.26	<0.01	3.83	0.18	26.4	30.7	30	0.64
B279856	6 38		0.18	0.44		1.4	<10	0.1	0.24	0.73	0.09	7.85	127	1	0.08
		0.019	2.52	5.76	10		390	0.55	0.1	11.45	0.18	38.2	28.2	8	0.3
B279857	7.06	0.005	0.16	1.19		4.2	<10	0.09	0.28	3.96	0.08	10.85	145	29	0.06
	7.98	0.022	0.48	1.43		3.1	10	0.11	0.3	2.69	0.11	8.16	135.5	26	0.09
B279858	7.24	<0.005	0.15	0.76		2.2	<10	0.17	0.26	1.36	0.1	9.04	122	8	0.08
B279859	6.64	0.005	0.38	0.57		5.8	<10	0.14	0.29	2.01	0.1	11.3	128	21	0.05
B279860	7.54	<0.005	0.13	0.76		5.4	<10	0.13	0.36	1.79	0.09	10.4	131	19	0.06
B279861	6.80	<0.005	0.16	0.59		3.7	<10	0.14	0.31	1.26	0.07	11.3	119	8	0.09
B279862	6.00	<0.005	0.2	0.41		4.4	<10	0.18	0.25	0.75	0.06	8.68	137	5	0.07
B279863	7.10	0.009	0.26	1.06		15.5	<10	0.24	0.29	2.95	0.08	23.4	163	37	0.08
B279864	6.30	<0.005	0.18	0.54		15.6	<10	0.21	0.18	2.24	0.09	27.4	144	7	< 0.05
B279865	5.28	<0.005	0.44	0.91		4.5	<10	0.2	0.15	3.62	0.09	10.25	139	27	<0.05
B279866	5.56	<0.005	0.18	1.74		5.2	<10	0.27	0.14	5.08	0.07	8.54	135.5	40	0.05
B279867	5.20	<0.005	0.19	3.1		7.7	<10	0.47	0.12	6.86	0.07	18.25	105	61	0.08
B279868	6.32	0.006	0.25	1.52		5.7	<10	0.32	0.15	2.78	0.1	9.13	160	14	0.06
B279869	9.30	0.013	0.42	1.29		2.4	<10	0.18	0.11	2.75	0.15	4.77	220	9	0.07
B279870	7.46	0.005	0.17	4.46	<5		250	0.98	0.08	12.85	0.1	22	88.5	1	0.24
B279871	7.28	<0.005	0.7	0.83		4.4	<10	0.17	0.14	1.82	0.13	3.61	185	3	0.05
B279872	6.64	<0.005	0.2	0.71		2.1	<10	0.06	0.13	1.06	0.12	2.52	140	<1	0.06
B279873	5.46	0.006	0.26	3.21		4.7	<10	0.19	0.17	4.86	0.11	7.8	184	93	0.08
B279874	2.58	0.007	0.16	1.6		1.8	20	0.12	0.34	1.6	0.09	4.67	141.5	94	0.17
B279875	6.12	0.006	0.28	0.9		1.3	10	0.2	0.27	2.58	0.06	4.07	182	1	0.16
B279876	4.22	0.006	0.2	2.26	<5		10	0.45	0.14	13.85	0.15	3.15	102.5	14	0.05
B279877	3.22	0.006	0.37	0.68	5		<10	0.47	0.28	12.8	0.1	2.31	234	14	<0.05
B279878	4.08	<0.005	0.27	2.97	<5		10	0.64	0.14	15	0.13	11.5	62.7	21	0.05
B279879	5.24	<0.005	0.35	6.33	<5		70	0.37	0.22	12.95	0.1	25.1	117.5	20	0.24
B279880	5.02	0.005	0.24	4.55	<5		20	0.6	0.12	15.05	0.14	8.06	81.9	132	0.1
B279881	5.10	< 0.005	0.43	2.86	<5		20	0.94	0.06	14.85	0.35	5.67	85.4	257	0.06
B279882	3.54	<0.005	0.43	1.55	6		20	0.52	0.05	13.8	0.82	0.76	66.4	5	0.12
B279883	5.82	<0.005	0.13	4.86	9		10	0.54	0.13	14.6	0.08	14.3	65.4	27	0.05
B279884	6.98	<0.005	0.06	2.3	6		20	0.67	0.13	14.6	0.24	23.4	25.1	3	0.09
B279885	6.50	< 0.005	0.08	7.81	12		120	0.43	0.35	11.3	0.03	10.9	33	169	1.44
B279886	4.38	<0.005	0.1	8.52		16.7	90	0.56	0.11	6.87	0.07	11.8	39.6	18	1.55

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. 1546 PINE PORTAGE ROAD KENORA ON P9N 2K2

Page: 2 - B Total # Pages: 2 (A - D) Finalized Date: 13-JUN-2005 Account: PJV

Project: Port Renfrew

CERTIFICATE OF ANALYSIS VA05043738

Sample Description	Method Analyte Units LOR	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS6 Ni ppm 0.2
B279853		89.7	3	20.2	0.14	0.6	0.04	0.98	11.1	3.3	1.66	608	1.16	4.47	5.8	14.8
B279854		715	>50	4.39	0.7	0.1	0.17	0.02	5	0.6	0.45	3580	0.8	0.03	0.9	10
B279855		245	15.75	11.55	0.22	1.5	0.756	0.91	12.1	3	1.15	4470	57.3	1.41	4	3.6
B279856		798	>50	4.61	0.6	0.3	0.293	0.01	5.8	1	1.02	5410	0.4	0.01	0.8	9.4
B279857		811	>50	3.76	0.61	0.5	0.238	0.02	5.3	1.3	1.11	5100	0.53	0.01	1.1	8.7
B279858		789	>50	3.52	0.65	0.2	0.156	0.02	5.5	0.5	0.76	3770	0.53	0.01	1.4	7.9
B279859		720	>50	3.36	0.64	0.2	0.186	0.01	7.5	0.6	1.11	4280	0.32	0.01	0.8	6.6
B279860		637	>50	3.25	0.61	0.2	0.188	0.01	6.8	0.6	0.96	4030	0.24	0.01	0.9	7.7
B279861		495	>50	3.9	0.64	0.1	0.141	0.02	8.2	0.7	0.7	3050	0.29	0.01	0.9	7.6
B279862		735	>50	2.36	0.58	0.1	0.112	0.01	6.9	0.5	0.58	2770	0.28	0.01	0.6	9.6
B279863		1190	>50	2.88	0.53	0.2	0.198	0.01	18.3	0.8	1.43	3760	0.29	0.01	0.8	10.2
B279864		720	>50	2.48	0.57	0.1	0.177	0.01	20.6	0.6	1.15	4440	0.31	0.01	0.7	8.1
B279865		1340	>50	2.61	0.59	0.3	0.247	0.01	7	0.8	1.34	5690	0.39	0.01	1.1	7.5
B279866		823	49.9	3.3	0.52	0.6	0.289	0.01	5.4	1.1	2.21	5120	0.89	0.01	1.5	7.7
B279867		666	39	4.49	0.48	1.2	0.394	0.01	12.6	2.1	2.55	5950	1.45	0.01	1.8	5.6
B279868		1370	>50	3.32	0.52	0.5	0.247	0.01	6.1	1.3	1.43	6090	0.32	0.01	1.2	7.2
B279869	1	1275	>50	3.32	0.5	0.3	0.293	0.02	2.9	1.3	1.46	6790	0.75	0.01	1.3	7.4
B279870		1315	14.85	6.68	0.18	1.5	0.64	0.99	10	1.2	3.45	6880	8.87	0.7	3.8	2.7
B279871		1115	>50	2.95	0.64	0.2	0.332	0.01	2.1	0.5	1.47	6640	0.61	0.01	0.7	6.7
B279872		1135	>50	3.18	0.56	0.1	0.379	0.01	1.4	0.5	1.23	7630	0.45	0.01	0.8	5.8
B279873		1170	48.9	6.32	0.49	0.7	0.382	0.01	4.5	1.5	1.75	8100	0.89	0.02	1	8.9
B279874		601	>50	4.27	0.66	0.3	0.286	0.06	2	3.6	2.9	3710	0.74	0.12	0.7	51.4
B279875		936	>50	4.78	0.55	0.2	0.286	0.05	2.1	0.9	1.93	2670	0.38	0.04	0.6	15.8
B279876		877	20.6	7.46	0.18	0.5	0.718	0.03	1.6	1.7	4.14	5260	0.74	0.13	1.4	20.2
B279877		1550	23.4	5.07	0.28	0.2	0.52	<0.01	1.7	3.3	4.6	4990	0.37	0.13	0.6	35
B279878		547	13	10.6	0.12	0.9	0.974	0.04	6.3	2.3	4.77	4670	0.8	0.14	1.7	10.8
B279879		1035	13.9	20.8	0.19	1.2	1.97	0.23	15.3	3.7	4.07	2630	0.54	0.16	1.9	17.6
B279880		567	14.6	13	0.17	0.9	0.863	0.06	3.7	3.8	3.43	4590	0.83	0.13	1.7	52.1
B279881		667	17.75	10.45	0.15	0.6	0.668	0.06	2.1	3.2	3.38	5570	0.68	0.17	1.2	74.6
B279882		517	23	8.04	0.16	0.4	0.344	0.03	<0.5	1.8	4.21	4830	0.48	0.1	0.9	8.6
B279883		460	11.95	18.35	0.22	1.3	1.52	0.03	7.9	3	4.32	3240	0.45	0.1	2	10.4
B279884		43.1	16.4	10.15	0.16	1	0.843	0.01	11.6	2.8	4.48	5060	0.8	0.14	1.7	2.4
B279885		88.2	6.01	14.45	0.11	0.9	0.061	0.91	4.7	11.4	5.08	1510	4.79	1.02	1.4	54
B279886		116.5	6.26	15.55	0.1	0.8	0.041	0.6	5	13.1	4.62	860	3.89	2.17	1.6	25.4

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. 1546 PINE PORTAGE ROAD KENORA ON P9N 2K2

Page: 2 - C Total # Pages: 2 (A - D) Finalized Date: 13-JUN-2005 Account: PJV

Project: Port Renfrew

CERTIFICATE OF ANALYSIS VA05043738

Meth Analy Unit Sample Description Unit B279853 Unit B279854 B279855 B279855 B279856 B279857 B279858 B279859 B279861 B279861 B279862 B279863 B279863 B279864 B279865 B279867 B279868 B279868 B279869 B279869 B279870	P P ppm 10 860 100 430 390 280 280 190 760 510 210 150 150 420 380 420 380 450 460	ME-MS61 Pb ppm 0.5 9.4 0.8 3.4 0.6 1.5 0.8 0.9 0.9 0.6 1.4 0.9 0.6 0.9 0.6 0.9 0.7 0.7	ME-MS61 Rb ppm 0.1 20.9 0.8 21.7 0.7 0.9 1 0.7 0.7 0.7 1.1 0.5 0.8 0.3 0.4 0.5	ME-MS61 Re ppm 0.002 <0.002 0.014 0.049 0.009 0.009 0.009 0.009 0.007 0.01 0.012 0.014 0.014 0.01 0.01 0.01	ME-MS61 S % 0.01 0.29 2.63 0.49 2.83 2.63 2.48 2.48 2.44 2.47 2.5 2.9 3.3 2.71	ME-MS61 Sb ppm 0.05 1.14 0.19 0.63 0.14 0.28 0.24 0.17 0.16 0.17 0.34 0.21	ME-MS61 Se ppm 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ME-MS61 Sn ppm 0.2 0.8 1.3 1.3 2.5 1.7 1.1 1.3 1.7 1.5 1.4	ME-MS61 Sr ppm 0.2 723 8.3 289 9 51.9 37 13.1 11 10.1 6.7	ME-M561 Ta ppm 0.05 0.46 0.07 0.35 0.06 0.08 0.08 <0.05 0.05 0.05	ME-MS61 Te ppm 0.05 0.06 0.54 0.07 0.57 0.46 0.43 0.49 0.51 0.45 0.57	ME-MS61 Th ppm 0.2 2.6 0.2 2.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ME-MS61 Ti % 0.005 0.415 0.016 0.12 0.065 0.095 0.034 0.033 0.052 0.034	ME-MS61 TI ppm 0.02 0.09 <0.02 0.02 0.02 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	ME-MS6 U ppm 0.1 1 2.3 10.1 3.3 2.7 1.5 1.7 1.8 1.8 1.8
Bample Description Unit Lot B279853 B279854 B279854 B279855 B279856 B279857 B279857 B279858 B279859 B279861 B279861 B279862 B279863 B279864 B279865 B279866 B279867 B279868 B279868 B279869	ss ppm 10 860 100 430 390 280 190 760 510 210 150 1680 2260 420 380 450 460 460	ppm 0.5 9.4 0.8 3.4 0.6 1.5 0.8 0.9 0.9 0.9 0.6 1.4 0.9 0.6 0.9 0.6 0.9 0.7	ppm 0.1 20.9 0.8 21.7 0.7 0.9 1 0.7 0.7 1.1 0.5 0.8 0.3 0.4	ppm 0.002 <0.002 0.014 0.009 0.009 0.009 0.009 0.007 0.01 0.012 0.014 0.014	% 0.01 0.29 2.63 0.49 2.83 2.63 2.48 2.24 2.24 2.5 2.9 3.3 2.71	ppm 0.05 1.14 0.19 0.63 0.14 0.28 0.24 0.24 0.17 0.16 0.17 0.34 0.21	ррт 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.8 0.8 1.3 13 2.5 1.7 1.1 1.3 1.7 1.5 1.4	ppm 0.2 723 8.3 289 9 51.9 37 13.1 11 10.1	ppm 0.05 0.46 0.07 0.35 0.05 0.08 0.1 <0.05 <0.05 0.05 0.05	ppm 0.05 0.06 0.54 0.57 0.46 0.43 0.49 0.51 0.45	ppm 0.2 2.6 0.2 2.6 0.2 0.2 0.2 0.2 0.6 0.2 0.2 0.2 0.2	% 0.005 0.415 0.016 0.12 0.065 0.095 0.034 0.033 0.052 0.034	ppm 0.02 0.09 <0.02 0.06 0.02 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 0.03	ppm 0.1 1 2.3 10.1 3.3 2.7 1.5 1.7 1.8 1.8
ample Description LOI B279853 B279853 B279854 B279855 B279856 B279857 B279858 B279859 B279861 B279862 B279863 B279864 B279865 B279866 B279867 B279868 B279868 B279868 B279869 B279868	10 860 100 430 390 280 190 760 510 210 150 1680 2260 420 380 450	0.5 9.4 0.8 3.4 0.6 1.5 0.8 0.9 0.9 0.9 0.6 1.4 0.9 0.6 0.9 0.6 0.9 0.7	0.1 20.9 0.8 21.7 0.7 0.9 1 0.7 0.7 1.1 0.5 0.8 0.3 0.4	0.002 <0.002 0.014 0.009 0.008 0.009 0.007 0.01 0.012 0.014 0.014 0.01	0.01 0.29 2.63 0.49 2.83 2.63 2.48 2.24 2.24 2.24 2.5 2.9 3.3 2.71	0.05 1.14 0.19 0.63 0.14 0.28 0.24 0.17 0.16 0.17 0.34 0.21	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.2 0.8 1.3 2.5 1.7 1.1 1.3 1.7 1.5 1.4	0.2 723 8.3 289 9 51.9 37 13.1 11 10.1	0.05 0.46 0.07 0.35 0.05 0.08 0.1 <0.05 <0.05 0.05	0.05 0.06 0.54 0.07 0.57 0.46 0.43 0.49 0.51 0.45	0.2 2.6 0.2 2.6 0.2 0.2 0.2 0.2 0.6 0.2 0.2 0.2 0.2	0.005 0.415 0.016 0.12 0.065 0.095 0.034 0.033 0.052 0.034	0.02 0.09 <0.02 0.06 0.02 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 0.03	0.1 1 2.3 10.1 3.3 2.7 1.5 1.7 1.8 1.8
B279854 B279855 B279856 B279857 B279858 B279869 B279860 B279861 B279862 B279863 B279864 B279864 B279865 B279866 B279866 B279866 B279868 B279868 B279868	100 430 390 280 190 760 510 210 150 1680 2260 420 380 450 460	0.8 3.4 0.6 1.5 0.8 0.9 0.9 0.9 0.9 0.6 1.4 0.9 0.6 0.9 0.6 0.9 0.7	0.8 21.7 0.7 0.9 1 0.7 0.7 1.1 0.5 0.8 0.3 0.4	0.014 0.049 0.009 0.008 0.009 0.007 0.01 0.012 0.014 0.014 0.01	2.63 0.49 2.83 2.63 2.48 2.24 2.5 2.9 3.3 2.71	0.19 0.63 0.14 0.28 0.24 0.17 0.16 0.17 0.34 0.21	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.3 13 2.5 1.7 1.1 1.3 1.7 1.5 1.4	8.3 289 9 51.9 37 13.1 11 10.1	0.07 0.35 0.05 0.08 0.1 <0.05 <0.05	0.54 0.07 0.57 0.46 0.43 0.49 0.51 0.45	0.2 2.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.016 0.12 0.065 0.095 0.034 0.033 0.052 0.034	<0.02 0.06 0.02 0.02 <0.02 <0.02 <0.02 <0.02 0.03	2.3 10.1 3.3 2.7 1.5 1.7 1.8 1.8
B279855 B279856 B279857 B279858 B279859 B279860 B279861 B279862 B279863 B279864 B279865 B279866 B279866 B279866 B279868 B279868 B279868 B279868	430 390 280 190 760 510 210 150 1680 2260 420 380 450 460	3.4 0.6 1.5 0.8 0.9 0.9 0.9 0.6 1.4 0.9 0.6 0.9 0.6 0.9 0.7	21.7 0.7 0.9 1 0.7 0.7 1.1 0.5 0.8 0.3 0.4	0.049 0.009 0.008 0.009 0.007 0.01 0.012 0.014 0.014 0.01	0.49 2.83 2.63 2.48 2.24 2.47 2.5 2.9 3.3 2.71	0.63 0.14 0.28 0.24 0.17 0.16 0.17 0.34 0.21	2 2 2 2 2 2 2 2 2 2 2 2	13 2.5 1.7 1.1 1.3 1.7 1.5 1.4	289 9 51.9 37 13.1 11 10.1	0.35 0.05 0.08 0.1 <0.05 <0.05 0.05	0.07 0.57 0.46 0.43 0.49 0.51 0.45	2.6 0.2 0.6 0.2 0.2 0.2 0.2 0.2	0.12 0.065 0.095 0.034 0.033 0.052 0.034	0.06 0.02 0.02 <0.02 <0.02 <0.02 <0.02 0.03	10.1 3.3 2.7 1.5 1.7 1.8 1.8 1.8
B279856 B279857 B279859 B279860 B279860 B279862 B279863 B279864 B279865 B279865 B279866 B279866 B279866 B279868 B279868 B279868	390 280 190 760 510 210 150 1680 2260 420 380 450 460	0.6 1.5 0.8 0.9 0.9 0.6 1.4 0.9 0.6 0.9 0.6 0.9 0.7	0.7 0.9 1 0.7 0.7 1.1 0.5 0.8 0.3 0.4	0.009 0.008 0.009 0.007 0.01 0.012 0.014 0.014 0.01	2.83 2.63 2.48 2.24 2.47 2.5 2.9 3.3 2.71	0.14 0.28 0.24 0.17 0.16 0.17 0.34 0.21	2 2 2 2 2 2 2 2 2 2	2.5 1.7 1.1 1.3 1.7 1.5 1.4	9 51.9 37 13.1 11 10.1	0.05 0.08 0.1 <0.05 <0.05 0.05	0.57 0.46 0.43 0.49 0.51 0.45	0.2 0.2 0.6 0.2 0.2 0.2 0.2	0.065 0.095 0.034 0.033 0.052 0.034	0.02 0.02 <0.02 <0.02 <0.02 <0.02 0.03	3.3 2.7 1.5 1.7 1.8 1.8
B279857 B279858 B279860 B279861 B279862 B279863 B279864 B279865 B279865 B279866 B279866 B279866 B279868 B279868 B279868	280 190 760 510 210 150 1680 2260 420 380 450 460	1.5 0.8 0.9 0.6 1.4 0.9 0.6 0.9 0.6 0.9 0.7	0.9 1 0.7 0.7 1.1 0.5 0.8 0.3 0.4	0.008 0.009 0.007 0.01 0.012 0.014 0.014 0.01	2.63 2.48 2.24 2.47 2.5 2.9 3.3 2.71	0.28 0.24 0.17 0.16 0.17 0.34 0.21	2 2 2 2 2 2 2	1.7 1.1 1.3 1.7 1.5 1.4	51.9 37 13.1 11 10.1	0.08 0.1 <0.05 <0.05 0.05	0.46 0.43 0.49 0.51 0.45	0.2 0.6 0.2 0.2 0.2	0.095 0.034 0.033 0.052 0.034	0.02 <0.02 <0.02 <0.02 0.03	2.7 1.5 1.7 1.8 1.8
B279858 B279859 B279860 B279861 B279862 B279863 B279864 B279865 B279865 B279866 B279867 B279868 B279868 B279869	190 760 510 210 150 1680 2260 420 380 450 460	0.8 0.9 0.6 1.4 0.9 0.6 0.9 0.6 0.9 0.7	1 0.7 1.1 0.5 0.8 0.3 0.4	0.009 0.007 0.01 0.012 0.014 0.014 0.01	2.48 2.24 2.47 2.5 2.9 3.3 2.71	0.24 0.17 0.16 0.17 0.34 0.21	2 2 2 2 2	1.1 1.3 1.7 1.5 1.4	37 13.1 11 10.1	0.1 <0.05 <0.05 0.05	0.43 0.49 0.51 0.45	0.6 0.2 0.2 0.2	0.034 0.033 0.052 0.034	<0.02 <0.02 <0.02 0.03	1.5 1.7 1.8 1.8
B279859 B279860 B279861 B279862 B279863 B279864 B279865 B279865 B279866 B279867 B279868 B279868 B279869	760 510 210 150 1680 2260 420 380 450 460	0.9 0.9 0.6 1.4 0.9 0.6 0.9 0.7	0.7 0.7 1.1 0.5 0.8 0.3 0.4	0.007 0.01 0.012 0.014 0.014 0.01	2.24 2.47 2.5 2.9 3.3 2.71	0.17 0.16 0.17 0.34 0.21	2 2 2 2	1.3 1.7 1.5 1.4	13.1 11 10.1	<0.05 <0.05 0.05	0.49 0.51 0.45	0.2 0.2 0.2	0.033 0.052 0.034	<0.02 <0.02 0.03	1.7 1.8 1.8
3279860 3279861 3279862 3279863 3279864 3279865 3279865 3279866 3279867 3279868 3279868	510 210 150 260 420 380 450 460	0.9 0.6 1.4 0.9 0.6 0.9 0.7	0.7 1.1 0.5 0.8 0.3 0.4	0.01 0.012 0.014 0.014 0.01	2.47 2.5 2.9 3.3 2.71	0.16 0.17 0.34 0.21	2 2 2	1.7 1.5 1.4	11 10.1	<0.05 0.05	0.51 0.45	0.2 0.2	0.052 0.034	<0.02 0.03	1.8 1.8
3279861 3279862 3279863 3279864 3279865 3279866 3279866 3279867 3279868 3279868	210 150 2260 420 380 450 460	0.6 1.4 0.9 0.6 0.9 0.9 0.7	1.1 0.5 0.8 0.3 0.4	0.012 0.014 0.014 0.01	2.5 2.9 3.3 2.71	0.17 0.34 0.21	2 2	1.5 1.4	10.1	0.05	0.45	0.2	0.034	0.03	1.8
B279862 B279863 B279864 B279865 B279866 B279867 B279868 B279868 B279869	150 1680 2260 420 380 450 460	1.4 0.9 0.6 0.9 0.7	0.5 0.8 0.3 0.4	0.014 0.014 0.01	2.9 3.3 2.71	0.34	2	1.4							
B279863 B279864 B279865 B279866 B279867 B279868 B279868 B279869	1680 2260 420 380 450 460	0.9 0.6 0.9 0.7	0.8 0.3 0.4	0.014 0.01	3.3 2.71	0.21	0.52%	1.001.002	6.7	0.05	0.57	0.2			
B279864 B279865 B279866 B279867 B279868 B279868 B279869	2260 420 380 450 460	0.6 0.9 0.7	0.3 0.4	0.01	2.71		2					0,070	0.023	0.09	1.7
B279865 B279866 B279867 B279868 B279868 B279869	420 380 450 460	0.9 0.7	0.4			0 4 4		2.1	38	0.05	0.7	0.7	0.061	0.02	2.6
B279866 B279867 B279868 B279869	380 450 460	0.7		0.01		0.14	2	2	14.2	<0.05	0.56	0.6	0.027	<0.02	2.3
B279867 B279868 B279869	450 460		0.5		2.86	0.18	2	2.5	21.6	0.05	0.55	0.2	0.057	<0.02	2.4
B279868 B279869	460	0.7		0.013	3.09	0.19	2	3.7	22.5	0.07	0.51	0.3	0.108	<0.02	2.3
B279869	0.022222		0.4	0.019	2.66	0.32	2	5.3	167.5	0.1	0.47	0.5	0.188	<0.02	4.6
		0.7	0.4	0.024	3.69	0.19	2	3.2	31.7	0.06	0.73	0.3	0.124	<0.02	2.3
B279870	130	1.3	0.7	0.038	4.45	0.19	2	2.5	20.7	0.1	0.98	0.2	0.059	<0.02	1.8
	110	1.2	20.6	0.027	3.25	0.69	2	7.5	240	0.32	0.36	2.4	0.043	0.08	3.7
B279871	50	0.8	0.3	0.02	4.04	0.42	2	2	11.1	<0.05	0.71	<0.2	0.036	<0.02	0.9
B279872	10	0.7	0.5	0.009	2.92	0.17	2	1.8	9.2	<0.05	0.5	<0.2	0.023	<0.02	0.9
B279873	250	1	0.6	0.015	4.62	0.32	3	3.2	146.5	0.05	0.71	0.3	0.166	<0.02	1.5
B279874	90	1	1.6	0.044	7.48	0.2	2	3.7	30.5	0.05	1.33	0.2	0.084	0.1	0.5
B279875	10	0.9	2.6	0.013	4.21	0.29	3	3.1	16.7	<0.05	0.45	<0.2	0.042	0.08	0.7
B279876	110	0.8	0.8	0.006	1.18	0.41	2	3.3	108	0.06	0.11	0.2	0.084	<0.02	2.4
B279877	100	0.9	0.1	0.006	3.71	0.46	4	1.2	42.1	<0.05	0.35	<0.2	0.046	<0.02	2.2
B279878	120	1.8	0.9	0.008	0.83	1.51	2	3.6	308	0.09	0.08	0.4	0.225	<0.02	8
B279879	120	1.5	7.6	0.008	3.13	1.49	4	7.4	630	0.11	0.22	0.5	0.215	0.07	14.8
B279880	220	1.8	1.7	0.007	1.53	1.12	2	5.6	297	0.09	0.14	0.4	0.246	0.06	5.3
B279881 B279882	210	1.4	0.6	0.003	1.13	0.53	2	4.4	101	0.06	0.1	0.4	0.192	< 0.02	2.7
	90		1.2	0.003	1.19	0.52	2	2.9	25	<0.05	0.05	<0.2	0.069	0.02	0.9
B279883 B279884	90 170	1.4	0.6	0.004	0.95	1.69	2	5.7	465	0.13	0.09	0.4	0.296	0.04	13.3
B279885	1030	1.7	0.5 30.7	0.003	0.63	1.28	1	3.3	269	0.15	<0.05 0.09	0.5	0.086	0.04	5.7
B279886	1140	3.5	12	0.004	3.04	1.32	2	0.6	1390	0.09	0.09	0.5	0.48	0.24	1.2
121 3000	1140	3.5	12	0.005	4.03	1.87	2	0.6	1590	0.11	0.15	0.5	0.55	0,18	0.7

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. 1546 PINE PORTAGE ROAD KENORA ON P9N 2K2

Page: 2 - D Total # Pages: 2 (A - D) Finalized Date: 13-JUN-2005 Account: PJV

Project: Port Renfrew

									CERTIFICATE OF ANALYSIS	VA05043738
Met	thod	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	Fe-VOL51	S-IR08		
	alyte	V	w	Y	Zn	Zr	Fe	S		
	nits	ppm	ppm	ppm	ppm	ppm	%	%		
ple Description Lo	OR	1	0.1	0.1	2	0.5	0.01	0.01		
9853		118	0.6	26.7	45	12				
79854		44	0.2	2.4	408	2.1	66.51	3.70		
79855		68	0.6	23	122	30.4				
79856		110	0.2	4	700	9.1	55.94	3.80		
9857		83	0.2	5	681	14.2	57.74	3.40		
79858		57	0.2	4.5	394	4.2	63.66	3.69		
9859		63	0.1	3.1	497	4.3	61.76	3.23		
79860		60	0.2	4.2	530	6.2	62.03	3.69		
79861		49	0.2	4.3	398	3.7	64.15	3.67		
79862		39	0.3	2.5	304	3	66.22	3.81		
79863		62	0.4	4.8	427	6.7	57.10	4.26		
79864	- 1	49	0.4	5.1	508	4.2	61.22	3.65		
79865		60	0.9	6.3	623	8.8	56.53	3.76		
79866		89	0.4	6.2	701	17.1	48.70	3.81		
79867		101	0.5	10.6	604	32.3	37.30	3.04		
79868		85	0.4	3.1	900	14.7	57.04	4.92		
79869		52	0.2	2.6	772	11.2	56.31	6.30		
79870		15	0.5	17.6	210	33				
79871		43	0.2	1.7	826	6.4	59.15	5.16		
79872		41	0.2	1.2	935	3.8	62.87	3.59		
79873		94	0.3	6.2	845	18.8	47.09	5.22		
79874		49	0.3	4	625	7.3	50.44	9.13		
79875		50	0.2	1.5	410	6.2	55.99	5.03		
79876		84	0.6	8.2	404	14.8				
79877		53	0.4	4.1	149	6.5				
79878		78	0.6	12.5	113	26.8				
79879		91	0.8	26.9	103	35.6				
79880		110	3.3	14.2	133	27.7				
79881		119	2.5	11.3	138	20.3				
79882		29	2.9	4.5	173	13.1				
79883		122	0.9	23.4	101	41.2				
79884		49	0.5	10.6	117	27.5				
79885		255	0.3	12.3	70	23.3				
79886		247	0.5	13.9	82	19.9				

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. **1546 PINE PORTAGE ROAD KENORA ON P9N 2K2**

Page: 1 Finalized Date: 21-JUN-2005 This copy reported on 23-JUN-2005 Account: PJV

AAS

CEF	TIFICATE VA050455	518		SAMPLE PREPARATIO	ON
			ALS CODE	DESCRIPTION	
Project: Port Renfrew P.O. No.: This report is for 38 Drill Core s 13-JUN-2005. The following have access t	o data associated with this o		WEI-21 PUL-31 SPL-21 CRU-31 LOG-22	Received Sample Weight Pulverize split to 85% <75 um Split sample - riffle splitter Fine crushing - 70% <2mm Sample login - Rcd w/o BarCode	
PERRY HEATHERINGTON	GEORGE OWSIACKI			ANALYTICAL PROCEDU	RES
		A	ALS CODE	DESCRIPTION	
			ME-MS61 Fe-VOL51 S-IR08	47 element four acid ICP-MS Total Fe in Concentrates Total Sulphur (Leco)	LECO

Au-AA23

To: EMERALD FIELDS RESOURCE CORP. ATTN: GEORGE OWSIACKI **1350 KRISTINE RAE LANE** VICTORIA BC

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Au 30g FA-AA finish

Signature: Placed Com

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. 1546 PINE PORTAGE ROAD KENORA ON P9N 2K2

Page: 2 - A Total # Pages: 2 (A - D) Finalized Date: 21-JUN-2005 Account: PJV

Project: Port Renfrew

CERTIFICATE OF ANALYSIS VA05045518

	Method	WEI-21	Au-AA23	ME-MS61	ME-MS6											
	Analyte	Recvd Wt.	Au	Ag	AI	As	As	Ba	Be	Bi	Са	Cd	Ce	Co	Cr	Cs
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
ample Description	LOR	0.02	0.005	0.01	0.01	5	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05
3279887		6.56	0.005	0.24	0.46		4.8	20	0.08	0.13	0.73	0.10	1.38	132.0	<1	0.26
3279888		8.20	<0.005	0.27	0.17		4.6	10	< 0.05	0.13	0.19	0.08	0.18	111.0	<1	0.20
B279889		6.92	< 0.005	0.19	0.79		4.8	30	0.15	0.13	1.52	0.08	4.88	109.0	7	0.83
B279890		6.86	<0.005	0.21	0.26		3.3	<10	<0.05	0.15	0.37	0.03	0.16	114.0	<1	0.38
B279891		8.14	0.005	0.23	0.25		2.7	10	<0.05	0.31	0.39	0.07	0.22	135.5	<1	0.26
3279892		7.68	0.008	0.36	0.83		6.6	10	<0.05	0.23	0.55	0.05	0.17	230	6	1.74
B279893		7.34	< 0.005	0.21	0.47		4.5	10	< 0.05	0.19	0.4	0.06	0.1	146.5	<1	1
B279894		8.44	< 0.005	0.23	0.46		3.6	<10	<0.05	0.17	1.58	0.08	0.31	115	<1	0.2
B279895		10.14	< 0.005	0.04	8.64	8		80	0.42	0.1	12.3	0.06	10.6	40.8	72	1.3
B279896		3.16	<0.005	0.05	0.62	9		<10	0.49	0.07	13.1	0.05	1.6	30.1	26	0.11
B279897		4.26	<0.005	0.24	0.48	1000	3.2	10	0.21	0.22	2.24	0.09	0.13	122.5	<1	0.16
B279898		4.88	<0.005	0.2	8.67	<5		40	0.33	0.26	11.4	0.1	10.7	69.6	86	0.89
B279899		5.28	<0.005	0.12	1.35		2.9	10	0.27	0.15	2.96	0.05	4.21	88.9	10	0.44
B279900		11.46	0.008	0.2	5.89	7		10	0.26	0.23	11.2	0.06	7.56	71.9	67	0.41
B279901		8.72	<0.005	0.19	0.8		2.9	10	0.23	0.19	3.7	0.05	0.86	102	1	0.23
3279902		6.82	<0.005	0.28	0.66		3.1	10	0.25	0.14	2.69	0.05	0.17	83.9	<1	0.14
B279903		6.88	0.006	0.28	0.74		3.9	10	0.24	0.18	2.5	0.06	0.12	87.1	<1	0.19
B279904		6.96	0.007	0.21	0.5		3.1	10	0.17	0.19	1.97	0.05	0.08	112	<1	0.16
B279905		7.62	<0.005	0.16	0.4		2.5	10	0.12	0.14	3.95	0.06	0.09	78.1	<1	0.29
B279906		7.54	<0.005	0.23	0.46		2.4	10	0.15	0.17	2.36	0.07	0.21	87.4	<1	0.23
B279907		8.32	0.006	0.24	0.36		2.2	10	0.1	0.23	0.92	0.06	0.14	123	<1	0.21
B279908		7.12	<0.005	0.27	0.51		2.9	10	0.16	0.2	1.41	0.08	0.14	97.6	<1	0.27
B279909		8.18	<0.005	0.22	0.39		2	10	0.11	0.22	1.17	0.07	0.09	114.5	<1	0.26
B279910		8.28	< 0.005	0.27	0.53		1.9	10	0.16	0.23	1	0.07	0.14	123.5	<1	0.35
B279911		7.76	0.006	0.4	0.58		2.9	10	0.18	0.4	1.99	0.11	0.13	256	<1	0.45
B279912		8.38	0.017	0.43	0.41		4.6	10	0.09	0.29	0.99	0.09	0.1	133.5	1	0.19
B279913		7.52	<0.005	0.34	0.37		2.7	10	0.11	0.34	2.07	0.1	0.16	162	<1	0.34
B279914		7.46	0.008	0.44	0.37		2.5	10	0.11	0.29	0.93	0.11	0.18	133	<1	0.32
B279915		8.14	0.008	0.24	0.39		3.1	10	0.13	0.23	1.37	0.07	0.31	118	3	0.23
B279916		9.50	0.006	0.33	0.39		2.4	<10	0.09	0.22	1.05	0.08	0.19	134	<1	0.24
B279917		3.96	< 0.005	0.02	7.79	-	1.6	180	0.52	0.1	9.62	0.05	24.8	39.1	154	0.53
B279918		8.58	0.008	0.22	0.47	<5	202	<10	0.27	0.16	12.4	0.11	12.05	49.3	44	0.15
B279919		2.70	<0.005	0.27	0.44	24	2.1	10	0.14	0.12	3.26	0.09	1.86	103.5	14	0.11
B279920		5.48	<0.005	0.22	3.18	13	-	20	0.28	0.17	11.00	0.11	25.30	34.3	74	0.54
B279921		11.30	0.024	0.70	0.32		2.4	10	0.14	0.61	2.00	0.17	0.22	224.0	1	0.19
B279922		5.74	0.061	0.64	0.62	2.24	1.7	<10	0.42	0.22	5.87	0.11	2.79	59.9	2	0.11
B279923		4.86	0.007	0.15	4.39	<5		10	0.39	0.30	11.30	0.08	34.20	52.3	5	0.19
B279924		8.00	<0.005	0.13	7.58	28		60	0.34	0.08	10.60	0.12	9.47	26.8	81	0.64

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. 1546 PINE PORTAGE ROAD KENORA ON P9N 2K2

Page: 2 - B Total # Pages: 2 (A - D) Finalized Date: 21-JUN-2005 Account: PJV

Project: Port Renfrew

CERTIFICATE OF ANALYSIS VA05045518

Sample Description	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Cu	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni
	Units	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm
	LOR	0.2	0.01	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2
B279887 B279888 B279889 B279890 B279891		468.0 485.0 414.0 347.0 475.0	>50 >50 >50 >50 >50 >50	4.57 3.60 5.77 4.02 3.21	0.71 0.65 0.67 0.68 0.60	0.1 <0.1 0.2 <0.1 <0.1	0.021 0.019 0.025 0.018 0.023	0.07 0.02 0.15 0.04 0.04	0.7 <0.5 2.1 <0.5 <0.5	1.1 0.6 2.4 1.2 0.7	0.94 0.66 1.20 0.84 0.83	1205 1445 1230 1120 1050	0.37 0.17 0.40 0.17 0.17	0.10 0.02 0.13 0.01 0.01	0.6 0.4 1.0 0.4 0.4	2.4 1.0 5.9 1.8 2.2
B279892 B279893 B279894 B279895 B279895 B279896		683 503 462 203 83.4	>50 >50 >50 6.93 21.4	3.37 4.47 5.53 14.35 3.72	0.62 0.69 0.73 0.1 0.18	0.1 0.1 0.1 1 0.3	0.023 0.027 0.048 0.073 0.2	0.24 0.11 0.03 0.83 0.01	<0.5 <0.5 <0.5 3.9 0.6	1.7 1.2 1.1 7.3 2.7	2.11 1.91 1.06 4.6 5.65	1275 1805 1695 1170 2780	0.13 0.08 0.32 0.85 0.12	0.01 0.01 0.94 0.08	0.4 0.4 0.4 1.6 0.8	2.4 2 3.4 29.6 2.9
B279897 B279898 B279899 B279999 B279900 B279901		567 457 241 463 614	>50 15.7 >50 16.2 >50	8.04 12.6 9.98 9.17 7.61	0.82 0.14 0.91 0.2 0.91	<0.1 0.8 0.2 0.7 0.1	0.047 0.157 0.092 0.148 0.063	0.06 0.71 0.14 0.18 0.08	<0.5 3.7 2.4 2.8 <0.5	1.6 7.5 3.1 3.1 3.1	1.19 5.02 1.52 4.18 2.19	1260 2080 1415 1695 1365	0.08 0.42 0.56 0.23 0.09	0.04 0.27 0.08 0.1 0.07	0.4 1.7 0.6 1.5 0.4	11.8 17.5 9.7 14.8 11.1
B279902		684	>50	8.88	0.95	0.1	0.047	0.06	<0.5	1.6	1.82	1365	0.07	0.05	0.4	8.4
B279903		1010	>50	10.05	1.06	0.1	0.054	0.08	<0.5	1.8	2.02	1530	0.11	0.06	0.5	7.9
B279904		528	>50	6.97	0.78	0.1	0.027	0.05	<0.5	1.4	1.56	1150	0.09	0.03	0.4	10.2
B279905		415	>50	6.43	0.83	0.1	0.03	0.04	<0.5	1.5	2.65	1295	0.09	0.03	0.4	9.4
B279906		386	>50	8	0.74	0.2	0.026	0.03	<0.5	1.4	1.6	1300	0.13	0.03	0.5	12.7
B279907 B279908 B279909 B279910 B279911		522 430 513 486 1230	>50 >50 >50 >50 >50 >50	8.05 8.9 7.63 8.25 10.3	0.64 0.69 0.66 0.68 1.04	<0.1 <0.1 <0.1 <0.1 0.1	0.014 0.016 0.014 0.015 0.031	0.03 0.04 0.03 0.05 0.06	<0.5 <0.5 <0.5 <0.5 <0.5	1.1 1.9 1.4 1.5 2	0.75 1.03 0.87 0.83 1.46	1090 1180 1055 1120 1740	0.14 0.08 0.09 0.08 0.12	0.02 0.04 0.03 0.03 0.05	0.4 0.5 0.4 0.4 0.7	17.8 14.1 17 16.4 25.6
B279912		750	>50	7.06	0.76	<0.1	0.019	0.02	<0.5	0.8	0.85	1175	0.1	0.02	0.5	16.4
B279913		841	>50	8.73	0.85	<0.1	0.027	0.03	<0.5	1	1.48	1400	0.11	0.03	0.5	22.1
B279914		709	>50	8.26	0.71	<0.1	0.018	0.03	<0.5	1.1	0.81	1265	0.11	0.03	0.5	18.6
B279915		502	>50	7.64	0.67	<0.1	0.017	0.03	<0.5	1.4	0.96	1150	0.12	0.04	0.5	17.8
B279916		531	>50	7.45	0.63	<0.1	0.015	0.03	<0.5	0.9	0.93	1025	0.12	0.02	0.4	25.8
B279917		51.3	9.7	17.6	0.17	0.9	0.09	0.84	9.7	12.4	4.54	1640	0.92	0.33	4.9	69.7
B279918		552	18.85	3.86	0.16	0.9	0.076	0.02	5.1	2.3	6.6	1900	0.76	0.07	2.9	26.2
B279919		528	>50	6.46	0.77	0.2	0.039	0.03	0.8	1.5	1.76	1215	0.25	0.04	0.8	30.7
B279920		185.5	16.50	6.55	0.14	1.1	0.160	0.23	12.6	5.4	5.83	2100	0.59	0.12	3.3	22.3
B279921		2010.0	>50	6.52	0.62	<0.1	0.061	0.02	<0.5	1.7	1.11	1055	0.16	0.04	0.3	53.9
B279922		1150.0	46.90	6.73	0.71	0.1	0.152	0.03	1.5	1.8	2.78	1750	0.27	0.06	0.4	15.6
B279923		336.0	14.60	11.90	0.33	1.3	0.527	0.11	18.6	3.1	3.15	1860	0.53	0.37	3.3	10.8
B279924		95.3	5.71	12.90	0.09	0.8	0.047	0.40	3.7	13.8	4.36	615	0.63	1.16	1.1	29.0

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. 1546 PINE PORTAGE ROAD KENORA ON P9N 2K2

Page: 2 - C Total # Pages: 2 (A - D) Finalized Date: 21-JUN-2005 Account: PJV

Project: Port Renfrew

CERTIFICATE OF ANALYSIS VA05045518

ample Description	Method Analyte Units LOR	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02	ME-MS6 U ppm 0.1
B279887		40	1.6	3.5	0.005	2.43	0.63	1	0.2	45.2	<0.05	0.13	<0.2	0.022	0.07	0.2
B279888		20	1.6	1.1	0.005	1.87	1.04	1	0.2	10.6	< 0.05	0.09	<0.2	0.007	0.05	0.1
B279889		260	1.8	10.2	0.004	1.91	0.76	1	0.3	51.7	0.07	0.14	0.2	0.156	0.05	0.2
B279890		10	2.2	3.1	0.002	2.13	0.64	1	0.2	10.6	<0.05	0.17	<0.2	0.007	0.02	0.2
B279891		20	2.5	3.2	0.002	3.19	0.90	1	0.2	9.2	<0.05	0.20	<0.2	0.009	0.05	0.1
B279892		50	2.6	26.5	0.004	3.64	1.14	1	<0.2	18.4	<0.05	0.18	<0.2	0.015	0.27	0.3
B279893		30	1.6	11	0.004	2.1	0.93	1	<0.2	35.6	<0.05	0.12	<0.2	0.014	0.14	0.2
B279894		40	1.6	1.7	0.004	1.62	0.64	1	<0.2	58.5	<0.05	0.14	<0.2	0.015	0.06	0.2
B279895		970	1.8	41.1	0.006	1.83	0.49	2	0.6	1190	0.1	0.07	0.4	0.512	0.19	1.5
B279896		270	1.4	0.6	<0.002	0.89	0.56	1	0.6	86.6	<0.05	0.05	<0.2	0.14	0.02	0.8
B279897		100	1.6	1.5	0.003	2.31	0.68	2	0.2	24.8	<0.05	0.21	<0.2	0.016	0.05	0.1
B279898		1050	2.4	37.5	0.004	1.3	1.85	2	0.8	1260	0.09	0.16	0.4	0.516	0.18	1.1
B279899		140	1.2	5.9	0.004	1.3	0.58	2	0.3	74.5	<0.05	0.14	<0.2	0.091	0.06	0.4
B279900		730	2	10.4	0.002	2.2	1.33	2	0.7	839	0.07	0.15	0.3	0.391	0.11	1.2
B279901		80	1.3	2.4	0.002	2.59	0.43	2	0.2	31.4	<0.05	0.13	<0.2	0.039	0,1	0.2
3279902		20	1.3	1.3	0.002	1.77	0.48	1	0.2	44.5	<0.05	0.11	<0.2	0.017	0.1	0.1
B279903		20	1.6	1.4	0.004	2.01	0.62	2	0.2	33.1	<0.05	0.13	<0.2	0.014	0.18	0.1
B279904		20	1.3	1.1	0.002	2.5	0.41	2	<0.2	25.8	<0.05	0.18	<0.2	0.01	0.14	0.1
B279905		10	1.8	2.2	0.002	1.15	0.31	2	0.2	18	<0.05	0.09	<0.2	0.013	0.03	0.1
B279906		90	1.9	1.6	0.002	1.43	0.3	2	0.2	28.7	<0.05	0.11	0.2	0.022	0.04	0.3
B279907		20	2	1.3	0.006	2.16	0.28	2	<0.2	21.3	<0.05	0.15	<0.2	0.008	0.04	0.2
B279908		30	1.9	1.6	0.002	1.46	0.3	2	0.2	25.7	<0.05	0.14	<0.2	0.009	0.03	0.1
B279909		40	1.9	1.6	0.004	2.09	0.26	2	<0.2	16.4	<0.05	0.16	<0.2	0.006	0.04	0.1
B279910		100	2.3	3	0.002	2.03	0.25	2	<0.2	17.7	<0.05	0.17	<0.2	0.014	0.03	0.2
B279911		150	2.4	4.1	0.004	3.72	0.31	3	0.2	24.7	<0.05	0.28	<0.2	0.014	0.05	0.4
B279912		50	2.4	1	0.003	2.95	0.66	2	<0.2	13.6	<0.05	0.23	<0.2	0.007	0.2	0.2
B279913		60	2.3	1.8	0.003	2.86	0.26	2	<0.2	19.4	<0.05	0.23	<0.2	0.005	0.04	0.3
B279914		30	2.5	1.5	0.002	2.15	0.27	2	<0.2	15	<0.05	0.18	<0.2	0.005	0.02	0.2
B279915		50	2.2	1.1	0.002	1.75	0.29	2	<0.2	16	<0.05	0.18	<0.2	0.018	0.03	0.1
B279916		30	2	1.1	0.002	1.88	0.35	2	<0.2	15.4	<0.05	0.16	<0.2	0.011	0.04	0.2
B279917		1480	1.7	18	0.002	0.21	0.83	1	0.8	496	0.27	0.06	0.9	0.552	0.1	0.5
B279918		1090	1.9	0.7	0.003	1.62	0.61	2	0.9	28.5	0.18	0.12	0.6	0.413	0.07	0.7
B279919		200	1.3	1.1	<0.002	1.68	0.31	2	0.2	19.7	<0.05	0.11	<0.2	0.098	0.02	0.2
B279920		1090	2.0	15.2	<0.002	0.76	0.94	2	1.2	218.0	0.22	0.05	1.4	0.528	0.05	1.7
B279921		40	1.6	0.7	0.004	5.18	0.40	5	<0.2	26.9	<0.05	0.58	<0.2	0.011	0.10	0.2
B279922		120	1.0	0.7	0.002	1.45	0.36	2	0.2	75.8	<0.05	0.15	0.2	0.043	0.03	0.6
B279923		950	1.4	3.9	0.002	1.54	1.29	2	1.2	865.0	0.22	0.14	1.1	0.506	0.05	3.4
B279924		750	1.4	11.1	<0.002	3.62	0.32	2	0.5	615.0	0.08	0.06	0.4	0.415	0.14	0.4

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. 1546 PINE PORTAGE ROAD KENORA ON P9N 2K2

Page: 2 - D Total # Pages: 2 (A - D) Finalized Date: 21-JUN-2005 Account: PJV

Project: Port Renfrew

									CERTIFICATE OF ANALYSIS	VA05045518
	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	Fe-VOL51	S-IR08		
	Analyte	V	W	Y	Zn	Zr	Fe	S		
ample Decorintion	Units	ppm	ppm	ppm	ppm	ppm	%	%		
ample Description	LOR	1	0.1	0.1	2	0.5	0.01	0.01		
B279887		9	0.7	1.2	74	2.8	63.64	2.65		
B279888		з	0.9	0.3	86	1.3	63.17	2.03		
B279889		45	1.4	4.9	71	4.3	55.72	2.16		
B279890		5	1.3	0.3	59	1.2	65.99	2.50		
B279891		5	1.0	0.3	70	1.3	64.37	3.64		
B279892		10	1.5	0.3	60	1.9	59.07	4.31		
B279893		11	0.8	0.3	113	1.6	62.02	2.40		
B279894		14	1	1.2	120	1.9	63.88	1.91		
B279895		262	0.8	16.6	68	32.4				
B279896		62	0.6	3.1	68	9.9				
B279897		25	0.7	0.5	82	1.7	60.74	2.83		
B279898		238	1.3	16.9	83	23.4	14.63	1.19		
B279899	1	60	0.9	2.8	67	6.5	55.42	1.47		
B279900		178	0.8	12.3	55	22.4	17.22	2.44		
B279901		27	0.7	1.4	57	4.2	52.21	3.08		
B279902		14	0.8	0.8	55	3	56.00	2.10		
B279903		17	1	0.8	66	2.8	57.21	2.10		
B279904		14	0.7	0.6	43	1.9	57.71	3.31		
B279905		20	1.1	0.9	68	2.8	55.32	1.25		
B279906		21	12.6	1.1	72	5,3	60.29	1.60		
B279907		18	17.4	0.4	54	1.1	65.72	2.66		
B279908		21	1.1	0.5	51	1.6	64.07	1.73		
B279909		15	0.8	0.4	44	1.3	66.17	2.75		
B279910		20	0.5	0.3	53	1.6	64.41	2.68		
B279911		27	0.7	0.6	78	2.5	60.94	3.44		
B279912		13	0.5	0.4	57	1.6	63.59	3.87		
B279913		15	0.9	0.7	64	1.5	61.85	3.40		
B279914		15	0.6	0.5	63	1.2	65.61	2.97		
B279915		21	0.6	0.8	58	1.6	63.89	2.38		
B279916		30	0.5	0.4	65	1.1	64.52	2.63		
B279917		269	5.6	16.5	93	21.1	10.77	0.23		
B279918		141	0.8	15	81	17.8	20.49	1.76		
B279919		74	0.4	2.6	122	4.8	57.06	2.26		
B279920		176	1.6	20.6	83	27.7	18.57	0.70		
B279921		21	0.8	0.7	87	1.6	58.56	7.90		
B279922		45	32.2	1.8	125	4.3	45.64	1.78		
B279923		180	1.3	20.2	76	40.8	16.95	1.55		
B279924		261	1.0	13.8	58	21.6				

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. 1546 PINE PORTAGE ROAD KENORA ON P9N 2K2

Page: 1 Finalized Date: 5-JUL-2005 Account: PJV

LECO

CERTIFICATE VA05048160		SAMPLE PREPARATIO	DN .
	ALS CODE	DESCRIPTION	
Project: Port Renfrew P.O. No.: This report is for 12 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 20-JUN-2005. The following have access to data associated with this certificate:	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um	
PERRY HEATHERINGTON GEORGE OWSIACKI		ANALYTICAL PROCEDU	
	ALS CODE	DESCRIPTION	INSTRUMENT
	Au-AA23 ME-MS61	Au 30g FA-AA finish 47 element four acid ICP-MS	AAS

Fe-VOL51

S-IR08

Total Fe in Concentrates

Total Sulphur (Leco)

To: EMERALD FIELDS RESOURCE CORP. ATTN: GEORGE OWSIACKI 1350 KRISTINE RAE LANE VICTORIA BC

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Phased Com

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. 1546 PINE PORTAGE ROAD KENORA ON P9N 2K2

Page: 2 - A Total # Pages: 2 (A - D) Finalized Date: 5-JUL-2005 Account: PJV

Project: Port Renfrew

CERTIFICATE OF ANALYSIS VA05048160

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-MS61 Ag ppm 0.01	ME-MS61 AI % 0.01	ME-MS61 As ppm 0.2	ME-MS61 As ppm 5	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05
B279925		3.76	0.035	0.07	8.19		14	60	0.40	0.07	11.20	0.19	7.69	27.3	41	0.73
B279926		2.68	< 0.005	0.08	7.61		12	20	0.31	0.21	17.10	0.07	5.30	26.7	51	0.05
B279927		11.02	0.037	0.46	0.39	1.5		10	<0.05	0.10	1.44	0.10	4.13	185.0	<1	0.08
B279928		8.78	0.022	0.46	0.83	2.4		50	0.14	0.22	2.48	0.15	3.74	328.0	2	0.21
B279929	-	1.56	0.016	0.22	8.46	0.5		190	0.45	0.03	6.55	0.13	12.40	60.6	346	1.26
B279930		7.66	<0.005	0.07	4.98		23	160	0.41	0.08	16.85	0.13	44.70	11.6	43	0.29
B279931		6.90	0.007	0.21	6.06		8	280	0.51	0.11	11.40	0.16	29.70	70.1	58	1.19
B279932		8.92	< 0.005	0.06	7.88		20	130	0.69	0.06	17.30	0.14	16.70	9.2	81	0.48
B279933		10.52	0.005	0.20	7.33		18	170	0.70	0.11	16.85	0.13	26.50	68.2	87	0.72
B279934		14.30	0.023	0.63	4.50		14	90	0.53	0.20	14.90	0.20	18.00	127.0	92	0.74
B279935		7.24	0.005	0.13	8.19		5	170	0.96	0.05	11.75	0.08	32.70	37.5	138	0.86
B279936		6.78	<0.005	0.33	8.63		13	200	0.94	0.11	13.10	0.13	22.10	39.4	134	1.28

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. 1546 PINE PORTAGE ROAD KENORA ON P9N 2K2

Page: 2 - B Total # Pages: 2 (A - D) Finalized Date: 5-JUL-2005 Account: PJV

Project: Port Renfrew

CERTIFICATE OF ANALYSIS VA05048160

Sample Description	Method Analyte Units LOR	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0,2
B279925		59.5	4.92	12.75	0.10	0.8	0.041	0.38	3.2	24.8	4.89	475	1.67	1.22	1.0	23.6
B279926		64.0	5.27	13.70	0.09	0.8	0.050	0.02	2.1	2.5	4.29	663	0.62	0.06	1.5	24.1
B279927		1965.0	>50	7.60	0.87	0.2	0.170	0.01	2.6	1.6	0.62	2330	1.02	0.01	0.7	31.5
B279928		1625.0	>50	8.77	0.91	0.3	0.176	0.02	2.1	2.4	1.42	2560	1.03	0.02	0.8	43.0
B279929		740.0	8.65	15.15	0.15	1.0	0.086	1.00	5.3	8.9	5.88	1310	0.30	2.07	2.0	323.0
B279930		86.5	11.95	8.48	0.21	1.7	0.491	0.45	17.7	1.8	0.89	3530	0.73	0.56	4.8	9.0
B279931		535.0	18.00	15.60	0.26	1.8	0.284	0.72	11.2	5.1	1.29	3160	2.82	0.78	9.1	62.5
B279932		189.0	7.84	10.55	0.12	1.1	0.489	0.41	11.4	3.5	2.90	3170	0.38	0.08	1.5	17.8
B279933		990.0	9.56	11.30	0.16	1.1	0.526	0.61	22.6	5.5	3.35	2590	0.89	0.12	1.5	98.5
B279934		3400.0	13.40	11.35	0.18	1.1	0.475	0.35	13.1	5.5	3.75	1980	2.35	0.24	1.4	157.0
B279935		503.0	5.54	18.60	0.13	2.2	0.173	0.75	26.2	9.5	4.60	1280	3.16	0.89	7.6	83.1
B279936		1440.0	5.51	19.40	0.14	2.3	0.165	0.81	11.6	7.3	4.28	1245	1.95	0.57	7.1	104.5

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. 1546 PINE PORTAGE ROAD **KENORA ON P9N 2K2**

Page: 2 - C Total # Pages: 2 (A - D) Finalized Date: 5-JUL-2005 Account: PJV

Project: Port Renfrew

CERTIFICATE OF ANALYSIS VA05048160 ME MOOA ----HE HOLD ----------------

Sample Description	Method Analyte Units LOR	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1
B279925 B279926 B279927 B279928		700 800 250 160	2.3 2.0 1.3 1.1	6.3 0.8 0.7 1.4	0.006 0.010 0.032 0.046	2.93 2.16 3.96 7.04	0.63 1.20 0.26 0.45	3 4 5 10	0.5 0.6 2.1 2.1	1925.0 1570.0 24.6 29.0	0.07 0.08 <0.05 <0.05	0.09 0.11 0.40 0.52	0.3 0.4 1.4 1.1	0.422 0.390 0.014 0.038	0.20 <0.02 0.04 0.11	2.1 2.4 1.1 0.8
B279929 B279930 B279931 B279932 B279933 B279934		420 1150 520 580 640 630	1.7 1.5 1.1 0.6 <0.5 0.7	40.2 11.6 26.9 19.4 29.5 17.0	<0.002 0.002 0.010 <0.002 0.004 0.013	0.15 0.22 1.15 0.04 2.00 4.73	0.33 0.29 0.26 0.26 0.40 0.41	2 4 2 5 10	0.8 2.5 2.1 3.4 3.7 4.8	266.0 198.0 294.0 160.5 286.0 158.5	0.12 0.39 0.57 0.09 0.09 0.10	<0.05 <0.05 0.07 <0.05 0.24 0.48	0.6 3.0 2.1 0.5 0.5 0.4	0.450 0.295 0.539 0.419 0.384 0.285	0.13 0.04 0.11 0.09 0.25 0.44	0.3 6.7 3.1 4.2 4.3 5.2
B279935 B279936		580 590	0.7 1.3	30.1 36.1	0.003 0.002	0.46 1.02	0.73 1.19	3 4	1.8 1.8	517.0 793.0	0.48 0.50	0.06 0.08	0.7 0.6	1.025 1.025	0.12 0.16	2.4 2.8
а																

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. 1546 PINE PORTAGE ROAD KENORA ON P9N 2K2

CERTIFICATE OF ANALYSIS VA05048160

Page: 2 - D Total # Pages: 2 (A - D) Finalized Date: 5-JUL-2005 Account: PJV

Project: Port Renfrew

Sample Description	Method Analyte Units LOR	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Fe-VOL51 Fe % 0.01	S-IR08 S % 0.01	
B279925 B279926 B279927 B279927 B279928 B279929		234 227 88 91 204	0.3 0.4 0.1 0.2 0.2	11.2 10.4 2.5 7.7 25.1	46 38 449 574 84	26.0 28.4 5.1 9.7 26.9	62.49 54.27	5.24 7.74	
B279930 B279931 B279932 B279933 B279933 B279934		94 138 144 128 152	0.4 0.5 1.1 1.2 1.8	20.1 19.8 12.2 13.8 16.0	36 209 52 62 70	61.5 58.4 37.8 35.6 35.3		Se recipient de	
B279935 B279936		298 287	1.0 1.2	24.5 21.8	58 42	63.0 69.1			
Commente: Interference									

Project: Port Renfrew

PERRY HEATHERINGTON

P.O. No.:

23-JUN-2005.

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. 1546 PINE PORTAGE ROAD KENORA ON P9N 2K2

Page: 1 Finalized Date: 30-JUN-2005 This copy reported on 12-JUL-2005 Account: PJV

DTIC	CATE	1/405040470
RIF	CATE	VA05049476

This report is for 5 Drill Core samples submitted to our lab in Vancouver, BC, Canada on

GEORGE OWSIACKI

The following have access to data associated with this certificate:

ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	
ME-MS61	47 element four acid ICP-MS	
ME-XRF06	Whole Rock Package - XRF	XRF
OA-GRA06	LOI for ME-XRF06	WST-SIM
Au-AA23	Au 30g FA-AA finish	AAS

To: EMERALD FIELDS RESOURCE CORP. ATTN: GEORGE OWSIACKI 1350 KRISTINE RAE LANE VICTORIA BC V8Z 7L1

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Philles

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. **1546 PINE PORTAGE ROAD KENORA ON P9N 2K2**

Page: 2 - A Total # Pages: 2 (A - E) Finalized Date: 30-JUN-2005 Account: PJV

Project: Port Renfrew

									C		CATE	F ANA	LYSIS	VA050	49476	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 5	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05
B279937 B279938 B279939 B279940 B279941		9.22 4.26 4.04 4.82 4.90	<0.005 <0.005 <0.005 <0.005 <0.005	0.05 0.14 0.04 0.05 0.07	0.04 6.60 6.47 10.80 8.24	<5 <5	9.0 1.1 2.4	10 520 1010 10 360	<0.05 1.81 0.98 0.43 1.57	0.34 0.19 0.03 0.18 0.07	36.40 1.62 0.99 15.45 5.24	0.12 0.26 0.05 0.03 0.07	0.31 32.40 23.40 51.10 52.10	1.0 2.6 1.0 11.0 22.7	2 8 12 44 2	0.05 0.30 0.14 <0.05 0.45
5																

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd,

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. 1546 PINE PORTAGE ROAD KENORA ON P9N 2K2

Page: 2 - B Total # Pages: 2 (A - E) Finalized Date: 30-JUN-2005 Account: PJV

Project: Port Renfrew

									(ERTIFI	CATEC	OF ANA	LYSIS	VA050	49476	
Sample Description	Method Analyte Units LOR	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0,005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2
B279937 B279938 B279939 B279940 B279941		10.2 27.5 5.4 4.0 94.3	0.05 0.83 0.51 5.22 5.86	0.12 14.00 8.94 27.70 20.90	<0.05 0.11 0.07 0.13 0.17	<0.1 1.4 1.0 2.5 1.5	<0.005 <0.005 <0.005 0.044 0.077	<0.01 1.56 3.23 <0.01 1.10	<0.5 16.1 12.3 26.9 22.5	0.3 1.0 0.3 2.8 2.8	1.25 0.20 0.21 0.71 1.45	18 156 117 562 1145	0.19 2.84 3.36 0.34 1.66	0.01 3.10 2.99 0.01 4.08	0.1 8.0 4.9 10.5 8.9	1.5 1.7 1.3 14.6 2.4

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. 1546 PINE PORTAGE ROAD KENORA ON P9N 2K2

Page: 2 - C Total # Pages: 2 (A - E) Finalized Date: 30-JUN-2005 Account: PJV

Project: Port Renfrew

									C	CERTIFI	CATE	OF ANA	LYSIS	VA050	49476	
Sample Description	Method Analyte Units LOR	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1
B279937 B279938 B279939 B279940 B279941		80 110 140 310 2180	1.8 14.3 4.1 2.6 4.4	0.4 51.3 52.4 0.1 35.0	0.002 <0.002 <0.002 <0.002 0.002	0.02 0.14 0.06 0.04 0.72	0.11 0.21 0.12 0.19 0.36	2 1 1 2 3	<0.2 0.5 0.6 1.4 1.8	3040.0 357.0 294.0 1390.0 855.0	<0.05 0.62 0.36 0.91 0.52	<0.05 <0.05 <0.05 <0.05 0.11	<0.2 7.7 4.7 8.3 3.5	<0.005 0.126 0.138 0.253 0.906	<0.02 0.19 0.14 <0.02 0.10	0.9 2.2 1.7 3.0 1.4

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. 1546 PINE PORTAGE ROAD KENORA ON P9N 2K2

CERTIFICATE OF ANALYSIS VA05049476

Page: 2 - D Total # Pages: 2 (A - E) Finalized Date: 30-JUN-2005 Account: PJV

Project: Port Renfrew

Sample Description	Method Analyte Units LOR	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	ME-XRF06 SiO2 % 0.01	ME-XRF06 Al2O3 % 0.01	ME-XRF06 Fe2O3 % 0.01	ME-XRF06 CaO % 0.01	ME-XRF06 MgO % 0.01	ME-XRF06 Na2O % 0.01	ME-XRF06 K2O % 0.01	ME-XRF06 Cr2O3 % 0.01	ME-XRF06 TiO2 % 0.01	ME-XRF06 MnO % 0.01
B279937 B279938 B279939 B279940 B279941		2 11 12 87 140	0.1 0.3 0.1 0.4 0.7	0.3 16.0 10.6 21.3 46.9	13 22 12 24 41	0.9 45.1 33.5 80.0 42.9	0.43	0.08	0.09	53.05	1.83	0.10	0.01	0.01	<0.01	<0.01

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd,

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: EMERALD FIELDS RESOURCE CORP. 1546 PINE PORTAGE ROAD KENORA ON P9N 2K2

Page: 2 - E Total # Pages: 2 (A - E) Finalized Date: 30-JUN-2005 Account: PJV

Project: Port Renfrew

CERTIFICATE OF ANALYSIS VA05049476

Sample Description	Method Analyte Units LOR	ME-XRF06 P2O5 % 0.01	ME-XRF06 SrO % 0.01	ME-XRF06 BaO % 0.01	ME-XRF06 LOI % 0.01	ME-XRF06 Total % 0.01	
B279937 B279938 B279939 B279940 B279941	5	0.02	0.33	<0.01	43.90	99.84	

APPENDIX C

ALS CHEMEX SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Sample Preparation Package – PREP-31 Standard Sample Preparation: Dry, Crush, Split and Pulverize

Sample is dried and the entire sample is crushed to better than 70% passing a 2 mm (Tyler 10 mesh) screen. A split of up to 250 grams is taken and pulverized to better than 85% passing a 75 micron (Tyler 200 mesh) screen.

ALS Chemex Method Code	Description
LOG-22	Sample is logged in tracking system and a bar code label is
LOG-22	attached.
CRU-31	Fine crushing of rock chip and drill samples to better than
CKU-51	70% of the sample passing 2 mm.
SPL-21	Split sample using riffle splitter.
	A sample split of up to 250 g is pulverized to better than 85% of
PUL-31	the sample passing 75 microns.

<u>Geochemical Procedure</u> – ME-MS61 Ultra-Trace Level Method Using ICP-MS and ICP-AES

Sample Decomposition:HF-HNO3-HClO4 acid digestion, HCl leachAnalytical Methods:Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)

A prepared sample (0.250 gram) is digested with perchloric, nitric, and hydrofluoric acids to near dryness. The sample is then further digested in a small amount of hydrochloric acid. The solution is made up to a final volume of 12.5 ml with 11% hydrochloric acid, homogenized, and analyzed by inductively coupled plasmaatomic emission spectrometry. Following this analysis, the results are reviewed for high concentrations of bismuth, mercury, molybdenum, silver and tungsten and diluted accordingly. Samples that meet this criteria are then analyzed by inductively coupled plasma-mass spectrometry. Results are corrected for spectral interelement interferences.

Element	Symbol	Detection Limit	Upper Limit	Units	Analytical Technique
Silver	Ag	0.01	100	ppm	AES+MS
Aluminum	Al	0.01	25	%	AES
Arsenic	As	0.2	10,000	ppm	AES+MS
Barium	Ba	0.5	10,000	ppm	AES
Beryllium	Be	0.05	1000	ppm	AES+MS
Bismuth	Bi	0.01	10,000	ppm	AES+MS
Calcium	Ca	0.01	25	%	AES
Cadmium	Cd	0.02	500	ppm	AES+MS
Cerium	Ce	0.01	500	ppm	MS
Cobalt	Со	0.1	10,000	ppm	AES+MS
Chromium	Cr	1	10,000	ppm	AES
Cesium	Cs	0.05	500	ppm	MS
Copper	Cu	0.2	10,000	ppm	AES
Iron	Fe	0.01	25	%	AES
Gallium	Ga	0.05	500	ppm	MS
Germanium	Ge	0.05	500	ppm	MS
Hafnium	Hf	0.1	500	ppm	MS
Indium	In	0.005	500	ppm	MS
Potassium	K	0.01	10	%	AES
Lanthanum	La	0.5	500	ppm	MS

Element	Symbol	Detection Limit	Upper Limit	Units	Analytical Technique
Lithium	Li	0.2	500	ppm	MS
Magnesium	Mg	0.01	15	%	AES
Manganese	Mn	5	10,000	ppm	AES
Molybdenum	Мо	0.05	10,000	ppm	MS+AES
Sodium	Na	0.01	10	%	AES
Niobium	Nb	0.1	500	ppm	MS
Nickel	Ni	0.2	10,000	ppm	AES+MS
Phosphorous	Р	10	10,000	ppm	AES
Lead	Pb	0.5	10,000	ppm	AES+MS
Rubidium	Rb	0.1	500	ppm	MS
Rhenium	Re	0.002	50	ppm	MS
Sulfur	S	0.01	10	%	AES
Antimony	Sb	0.05	1000	ppm	MS
Selenium	Se	1	1000	ppm	MS
Tin	Sn	0.2	500	ppm	MS
Strontium	Sr	0.2	10,000	ppm	AES+MS
Tantalum	Та	0.05	100	ppm	MS
Tellurium	Те	0.05	500	ppm	MS
Thorium	Th	0.2	500	ppm	MS
Titanium	Ti	0.01	10	%	AES+MS
Thallium	T1	0.02	500	ppm	MS
Uranium	U	0.1	500	ppm	MS
Vanadium	V	1	10,000	ppm	AES
Tungsten	W	0.1	10,000	ppm	AES+MS
Yttrium	Y	0.1	500	ppm	MS
Zinc	Zn	2	10,000	ppm	AES
Zirconium	Zr	0.5	500	ppm	MS

MS - Results are	from the ICP-MS scan
------------------	----------------------

- AES Results are from the ICP-AES scan
- AES+MS Results are a combination of ICP-AES and ICP-MS scans

<u>Fire Assay Procedure</u> – Au-AA23 and Au-AA24 Fire Assay Fusion, AAS Finish

Sample Decomposition:Fire Assay FusionAnalytical Method:Atomic Absorption Spectroscopy (AAS)

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required, inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested in 0.5 ml dilute nitric acid in the microwave oven, 0.5 ml concentrated hydrochloric acid is then added and the bead is further digested in the microwave at a lower power setting. The digested solution is cooled, diluted to a total volume of 4 ml with de-mineralized water, and analyzed by atomic absorption spectroscopy against matrix-matched standards.

ALS Chemex Method Code	Element	Symbol	Sample Weight	Lower Reporting Limit	Upper Reporting Limit	Units
Au-AA23	Gold	Au	30 g	0.005	10.0	ppm
Au-AA24	Gold	Au	50g	0.005	10.0	ppm

Specialty Assay Procedure – Fe-VOL51 Volumetric Determination of Iron in Ore Samples and Smelter

Sample Decomposition:HCl-HNO3-H2SO4-HFAnalytical Method:Volumetric

This method is suitable for the determination of high concentrations of iron in custom ores, concentrates and samples that do not completely decompose with acid digestion, such as chromites, black sand or samples with high Ti content.

A prepared sample is (0.25 to 1.00 g) is digested with hydrochloric, sulfuric, nitric and hydrofluoric acid and evaporated to dryness. This residue is then re-dissolved with dilute hydrochloric acid. The Fe(OH)3 in the aqueous state is then precipitated with ammonium hydroxide, filtered off, and dissolved in hydrochloric acid. The ferric hydroxide in solution is then reduced to the ferrous state. The ferrous iron is re-oxided by potentiometric titration from Fe2+ to Fe3+ and the amount of iron calculated.

Element	Symbol	Lower Reporting Limit	Upper Reporting Limit	Units
Iron	Fe	0.01	100	%

Specialty Assay Procedure – Sulfur Analysis Methods

Parameter	Method Code	Symbol	Lower Reporting Limit	Upper Reporting Limit	Units
Total Sulfur (Leco)	S-IR08	S	0.01	50	%
Sulfide Sulfur (Leco)	S-IR07	S	0.01	10	%
Sulfate Sulfur (carbonate leach)	S-GRA06	S	0.01	50	%
Sulfate Sulfur (HCl leach)	S-GRA06a	S	0.01	50	%
Sulfide Sulfur (calculated)	S-CAL06	S	0.01	50	%
Sulfide Sulfur (calculated)	S-CAL06a	S	0.01	50	%
Total Sulfur (Gravimetric)	S-GRA08	S	0.01	100	%

Total Sulfur Method Code: S-IR08

The sample is analyzed for Total Sulfur using a Leco sulfur analyzer. The sample (0.5 to 5.0 grams) is heated to approximately 1350 degrees Celsius in an induction furnace while passing a stream of oxygen through the sample. Sulfur dioxide released from the sample is measured by an IR detection system and the Total Sulfur result is provided.

Sulfide Sulfur Method Code: S-IR07

A prepared sample is selectively leached by converting metal sulfide to insoluble carbonates and soluble sulfate by heating with sodium carbonate solution. The

resulting insoluble carbonates are removed by filtration and the sulfide residue is washed free of carbonate solution and analyzed by a Leco sulfur analyzer.

Sulfate Sulfur – Carbonate Leach Method Code: S-GRA06

A prepared sample is boiled with a sodium carbonate solution for 30 minutes. Any insoluble materials are removed by filtration and ferric iron is reduced to ferrous iron by the addition of hydroxylamine hydrochloride. The sulfate in the resulting filtrate is then precipitated with barium chloride in a dilute hydrochloric acid medium. The barium sulfate precipitate is filtered, ignited, weighed and calculated as %S (of total sulfate) in the original sample.

Sulfate Sulfur – HCl Leachable Method Code: S-GRA06a

A prepared sample (0.2 to 1.0 gram) is heated with dilute hydrochloric acid for 30 minutes. Silica and any acid-insoluble materials are removed by filtration and ferric iron is reduced to ferrous iron by the addition of hydroxylamine hydrochloride. The sulfate in the resulting filtrate is then precipitated with barium chloride in a dilute hydrochloric acid medium. The barium sulfate precipitate is filtered, ignited, weighed and calculated as %S (of the HCl-leachable sulfate) in the original sample.

Sulfide Sulfur Method Code: S-CAL06

Sulfide Sulfur (%S) is calculated by subtracting the Sulfate (%S) obtained from the Carbonate Leach from the Total Sulfur (%S) obtained from the Leco analyzer.

Sulfide Sulfur Method Code: S-CAL06a

Sulfide Sulfur (%S) is calculated by subtracting the Sulfate (%S) obtained from the HCl Leach from the Total Sulfur (%S) obtained from the Leco analyzer.

Total Sulfur Method Code: S-GRA08

The ore sample is digested with nitric acid and potassium chlorate and bromine is added to assist oxidation. After complete dehydration of the silica and complete removal of the nitric acid and silica, the iron in solution is reduced with hydroxylamine hydrochloride. The sulfate is then precipitated by the addition of barium chloride solution and is filtered and weighed as barium sulfate.

Whole Rock Geochemistry – ME-XRF06

Sample Decomposition:Lithium Tetraborate Fusion*Analytical Method:X-Ray Fluorescence Spectroscopy (XRF)

A prepared sample (1.000 gram) is added to lithium tetraborate flux (9.000 grams), mixed well and fused in a furnace at 1100°C. A flat glass disc is prepared from the resulting melt. This disc is then analyzed by X-ray fluorescence spectrometry. Oxide concentration is calculated from the determined elemental concentration and the result is reported in that format.

To determine loss on ignition (L.O.I.), a porcelain crucible is dried in an oven at 105°C, cooled and the weight recorded. A prepared sample (3.00 grams) is added to the crucible and then ashed at 1000°C for one hour. The sample is then cooled in a desiccator, weighed and the percent loss on ignition is calculated.

Oxide Determined	Symbol	Lower Reporting Limit	Upper Reporting Limit	Units
Aluminum Oxide	Al ₂ O ₃	0.01	100	%
Barium Oxide	BaO	0.01	100	%
Calcium Oxide	CaO	0.01	100	%
Chromium Oxide	Cr_2O_3	0.01	100	%
Ferric Oxide	Fe ₂ O ₃	0.01	100	%
Magnesium Oxide	MgO	0.01	100	%
Manganese Oxide	MnO	0.01	100	%
Phosophorus Oxide	P2O5	0.01	100	%
Potassium Oxide	K ₂ O	0.01	100	%
Silicon Oxide	SiO ₂	0.01	100	%
Sodium Oxide	Na ₂ O	0.01	100	%
Strontium Oxide	SrO	0.01	100	%
Titanium Oxide	TiO ₂	0.01	100	%
Loss On Ignition	L.O.I.	0.01	100	%

*Note: For samples that are high in sulphides, we may substitute a peroxide fusion in order to obtain better results.

APPENDIX D

MINFILE MASTER REPORTS

<u>Run Date:</u> 2005/Aug/16 <u>Run Time:</u> 01:46 PM

MINFILE Number: 092C 022

National Mineral Inventory: 092C9 Fe1

Name(s): BUGABOO, CONQUEROR (L.172), DANIEL (L.173), CYRUS (L.171), JENNIE (L.174)

 Status:
 Developed Prospect

 Regions:
 British Columbia , Vancouver Island

 NTS Map:
 092C10E
 092C09W

 Latitude:
 48 39 35 N

 Longitude:
 124 30 39 W

 Elevation:
 500 Metres

 Location Accuracy:
 Within 500M

 Comments:
 Centre of Conqueror Crown grant claim (Lot 172), (NTS Map 92C/10).

Mining Division: Victoria

<u>UTM Zone:</u> 10 (NAD 83) <u>Northing:</u> 5390731 <u>Easting:</u> 388745

Physiographic Area: Vancouver Island Ranges

Commodities: Iron

Magnetite

Pyrite

Garnet

MINERALS

DEPOSIT

<u>Significant:</u> Magnetite <u>Alteration:</u> Pyroxene <u>Alteration Type:</u> Skarn <u>Mineralization Age:</u> Unknown

> <u>Character:</u> Massive <u>Classification:</u> Skarn

Type: [Fe skarn.]

Disseminated Industrial Min.

HOST ROCK

Dominant Host Rock: Sedimentary

Stratigraphic Age	Group	Formation	Igneous/Metamorphic/Other
Paleozoic-Mesozoic			Westcoast Complex

Pyrrhotite

Actinolite

Lithology: Pyroxene Skarn Limestone Diorite

Host Rock Comments: Mineralization occurs at the contact of Westcoast Complex diorite and a limestone roof pendant.

GEOLOGICAL SETTING

<u>Tectonic Belt:</u> Insular <u>Terrane:</u> Wrangell

Magnetite

INVENTORY	(Reserves/Resources not com Instrument 43-101 unless spe		
Ore Zone:	BUGABOO	Report On: Y	
Category:	Combined		Year: 1960
Quantity:	4,400 kt		
	Commodity	Grade	

<u>Comments:</u> Combined total indicated, possible and probable ore in the Daniel and Conqueror ore zones.

100.000 %

Reference: Property File - Noranda Mines Report 1960, Menzies, M. and Nichols.

CAPSULE GEOLOGY

The Bugaboo ore deposits consist of massive magnetite occurring within zones of pyroxene skarn formed along the contact of diorite of the Mesozoic and/or Paleozoic Westcoast Complex and a limestone roof pendant of similar age. The skarn appears to be of two phases. The first is an older garnet-epidote assemblage found only as a remnant within the massive magnetite; the second is the later pyroxene skarn that surrounds the magnetite body. Actinolite is a minor constituent in the zone of alteration.

The magnetite occurs as large, irregular massive bodies entirely surrounded by skarn. It is essentially free of impurities and has only a small percentage of included sulphides. Assays of magnetite yielded grades up to 69.2 per cent iron with 0.5 per cent sulphur (Minister of Mines Annual Report 1902, page H220). The only sulphides present are pyrite and pyrrhotite.

Two relatively high-grade orebodies, the Daniel and the Conqueror, have been located.

The shape of the Daniel orebody resembles a flattened cylinder with its axis oriented east of north and plunging about 20 degrees to the north. The orebody is apparently limited on all sides by extensive intrusions of dioritic and porphyritic rocks, with limestone found at depth below the ore. The drill indicated tonnage of the Daniel orebody is 1,537,000 tonnes. Additional probable ore of 508,000 tonnes raises the Daniel ore potential to 2,045,000

tonnes. The average grade of the Daniel ore is 55.67 per cent iron and 3.61 per cent sulphur (Menzies and Nicolls, 1960).

The Conqueror orebody strikes northwest and, on the surface is divided into the "West" and "East" pipe-like orebodies. Conqueror East plunges steeply west while Conqueror West appears to dip steeply south and thus may join the East body at depth. These orebodies are surrounded by recrystallized limestone, cut by porphyry dykes, and contain inclusions of unreplaced skarn. A large mass of diorite lies 60 metres to the south. Drill indicated reserves, as of 1960, were reported to be 1,069,000 tonnes. Additional possible reserves of 1,252,000 tonnes have also been reported, of which 454,000 tonnes are probable ore. Conqueror or eaverages 54.31 per cent iron and 2.21 per cent sulphur (Menzies and Nicolls, 1960).

A combined total indicated, possible and probable ore in the Daniel and Conqueror ore zones of 4.4 million tonnes magnetite is calculated (Property File - Noranda Mines Report 1960, Menzies, M. and Nichols).

BIBLIOGRAPHY

EMPR AR 1902-219; 1905-249; *1916-275,283; 1959-140; 1960-116 EMPR FIELDWORK 1989, pp. 503-510 EMPR OF 1992-1; 1992-9 EMPR OF 1992-1; 1992-9 EMPR PF (In 092C General File - Aeromagnetic Contour Map, Nitinat Lake Area, Noranda Mines Ltd., date unknown; Aeromagnetic map of the Bugaboo and Gordon creeks area, Noranda Mines Limited, 1957; *Menzies, M.M. and Nicolls, O.W (1960): Final Report for 1960 on the Port Renfrew Iron Property) GSC EC GEOL *3 (1926), p. 168 GSC MAP 1386A GSC MEM 13 GSC OF 463; 821; 1272 GSC P 72-44; 76-1A; 79-30 CANMET RPT *47, p. 11

Date Coded: 1985/07/24 Date Revised: 1990/12/11 Coded By: GSB Revised By: GJP

Name(s): DAVID (L.170), CONQUEROR, BUGABOO

 Status:
 Showing

 Regions:
 British Columbia , Vancouver Island

 NTS Map:
 092C10E
 092C09W (NAD 83)

 Latitude:
 48 39 32 N

 Longitude:
 124 30 12 W

 Elevation:
 600 Metres

 Location Accuracy:
 Within 500M

 Comments:
 Centre of Lot 170 (NTS Map 092C/10).

Commodities: Iron

MINERALSSignificant:MagnetiteAlteration:PyroxeneActinoliteGarnetAlteration Type:SkarnMineralization Age:Unknown

DEPOSIT

<u>Character:</u> Massive <u>Classification:</u> Skarn Disseminated

Magnetite

HOST ROCK

Dominant Host Rock: Plutonic

Stratigraphic Age	Group	Formation	Igneous/Metamorphic/Other
Paleozoic-Mesozoic			Westcoast Complex

Lithology: Diorite Limestone Skarn

Host Rock Comments: Mineralization occurs at the contact of Westcoast Complex diorite and limestone found as a roof pendant in the diorite.

GEOLOGICAL SETTING

<u>Tectonic Belt:</u> Insular <u>Terrane:</u> Wrangell Physiographic Area: Vancouver Island Ranges

National Mineral Inventory: 092C9 Fe1

Mining Division: Victoria

<u>UTM Zone:</u> 10 (NAD 83) <u>Northing:</u> 5390628

Easting: 389295

CAPSULE GEOLOGY

The David area is underlain by the contact of diorite of the Mesozoic and/or Paleozoic Westcoast Complex and a limestone roof pendant of similar age. The skarn appears to be of two phases. The first is an older garnet-epidote assemblage found only as a remnant within the massive magnetite; the second is the later pyroxene skarn that surrounds the magnetite body. Actinolite is a minor constituent in the zone of alteration.

The principal showings on the David Crown grant (Lot 170) are located in the southwest corner, about 500 metres due south of the falls on the Bugaboo property (092C 022). Magnetite is exposed in five isolated patches in an horizontal north and south distance of 71 metres, but there is no indication that the magnetite is continuous between these patches. The grade of the David magnetite is approximately the same grade as at the Bugaboo occurrence (Conqueror deposit).

BIBLIOGRAPHY

EMPR AR 1906-256; 1916-283 EMPR FIELDWORK 1989, pp. 503-510 EMPR OF RGS 24 EMPR PF (In 092C General File - Aeromagnetic Contour Map, Nitinat Lake Area, Noranda Mines Ltd., date unknown) GSC EC GEOL *3, Vol.1 (1926), p. 174 GSC MAP 1386A GSC MEM 13 GSC OF 463; 821; 1272 GSC P 72-44; 76-1A; 79-30 CANMET RPT 47, p. 11

Date Coded: 1985/07/24 Date Revised: 1990/12/12 Coded By: GSB Revised By: GJP

Name(s): ELIJAH (L.207), CONQUEROR

 Status:
 Showing

 Regions:
 British Columbia, Vancouver Island

 NTS Map:
 092C10E
 092C09W (NAD 83)

 Latitude:
 48 39 45 N
 10 W

 Elevation:
 500 Metres

 Location Accuracy:
 Within 500M

 Comments:
 Centre of Lot 207 (NTS Map 092C/10).

Commodities: Iron

MINERALS

Significant:	Magnetite			
Alteration:	Garnet	Tremolite	Pyroxene	Epidote
Alteration Type:	Skarn			
Mineralization Age:	Unknown			

DEPOSIT

<u>Character:</u> Massive <u>Classification:</u> Skarn Disseminated

Magnetite

HOST ROCK

Dominant Host Rock: Plutonic

Stratigraphic Age	Group	Formation	Igneous/Metamorphic/Other
Paleozoic-Mesozoic			Westcoast Complex

Lithology: Diorite Limestone Skarn

Host Rock Comments: Mineralization occurs at the contact of Westcoast Complex diorite and limestone found as a roof pendant.

GEOLOGICAL SETTING

<u>Tectonic Belt:</u> Insular <u>Terrane:</u> Wrangell

CAPSULE GEOLOGY

The Elijah area is underlain by the contact of diorite of the Mesozoic and/or Paleozoic Westcoast Complex and a limestone roof pendant of similar age. The skarn appears to be of two phases. The first is an older garnet-epidote assemblage found only as a remnant within the massive magnetite; the second is the later pyroxene skarn that surrounds the magnetite body.

One small, low-grade lens of magnetite with pyrite and skarn occurs on the main diorite-limestone contact; two small, almost sulphide-free, lenses of magnetite with minor disseminated garnet and tremolite occur in the limestone along a tongue of diorite. One of the latter is 7.5 metres high and 6 metres wide, surrounded by drift; the other, 4.5 metres to the west of it, shows a width of 3 metres and length of 3.6 metres and is also surrounded by drift. A small tunnel has been driven below this exposure.

BIBLIOGRAPHY

EMPR AR 1908-252; 1916-283 EMPR FIELDWORK 1989, pp. 503-510 EMPR OF RGS 24 EMPR PF (In 092C General File - Aeromagnetic Contour Map, Nitinat Lake Area, Noranda Mines Ltd., date unknown) GSC EC GEOL *3, Vol.1 (1926), p. 175 GSC MAP 1386A GSC MEM 13 GSC OF 463; 821; 1272 GSC P 72-44; 76-1A; 79-30

Date Coded: 1985/07/24 Date Revised: 1990/12/12 Coded By: GSB Revised By: GJP Field Check: N Field Check: N

National Mineral Inventory: 092C9 Fe1

Mining Division: Victoria

UTM Zone: 10 (NAD 83)

Northing: 5391028

Easting: 389344

Physiographic Area: Vancouver Island Ranges

Run Date:	2005/Aug/16
Run Time:	01:52 PM

Name(s): SIRDAR (L.143), GENERAL WHITE (L.142), BUGABOO, BUGABOO CREEK

Status: Developed Prospect Mining Division: Victoria Regions: British Columbia, Vancouver Island NTS Map: 092C09W (NAD 83) UTM Zone: 10 (NAD 83) Northing: 5390374 Latitude: 48 39 24 N Longitude: 124 29 56 W Easting: 389618 Elevation: 580 Metres Location Accuracy: Within 500M Comments: Centre of Lot 143 (NTS Map 092C/09). Commodities: Iron Magnetite MINERALS Significant: Magnetite Pyrite Alteration: Magnetite Pyroxene Garnet Epidote Alteration Type: Skarn Mineralization Age: Unknown DEPOSIT Disseminated Character: Massive Classification: Skarn Replacement Industrial Min. Type: [Fe skarn.]

HOST ROCK

Dominant Host Rock: Plutonic

Stratigraphic Age	Group	Formation	Igneous/Metamorphic/Other
Paleozoic-Mesozoic			Westcoast Complex

Lithology: Quartz Diorite Limestone Hornblende Porphyry Lamprophyre Dike Skarn

Host Rock Comments: Mineralization occurs as a replacement of a limestone roof pendant or inclusion within diorite of the Westcoast Complex.

GEOLOGICAL SETTING

<u>Tectonic Belt:</u> Insular <u>Terrane:</u> Wrangell Physiographic Area: Vancouver Island Ranges

National Mineral Inventory: 092C9 Fe1

INVENTORY (Reserves/Resources not compliant with National Instrument 43-101 unless specified in comments) Ore Zone: SIRDAR

Commodity

Category: Combined Quantity: 86,900 t

Iron

Report On: Y Year: 1926

<u>Comments:</u> Estimated reserves in all categories(proven, probable, possible). The grade is taken from one sample only and is not representative.

Reference: Geological Survey of Canada Economic Geology Series No.3, pp. 177-181.

Grade 56.000 %

CAPSULE GEOLOGY

The Sirdar area is underlain by the contact of diorite of the Mesozoic and/or Paleozoic Westcoast Complex and a limestone roof pendant of similar age. The deposit consists of a single lens of magnetite containing pyrite disseminations and limestone inclusions, cut by hornblende porphyry and lamprophyre dykes, and enclosed in quartz diorite. Magnetite probably replaced a limestone inclusion.

The magnetite occurs as a massive deposit almost completely surrounded by quartz diorite porphyry. It has a maximum extension in a northwest direction of 38 metres, a maximum width in a northeast direction of 27 metres, and a proven depth of 15 metres to the level of the tunnel. The deposit may have a general northeasterly dip.

A sample of the ore gave the following analysis: iron, 56.57 per cent; insolubles, 8.52 per cent; sulphur, 2.75 per cent; phosphorous, 0.121 per cent (CANMET Report No. 47, page 11). Based on the apparent dimensions of the deposit, Young and Uglow (Geological Survey of Canada Economic Geology Series No.3, 1926) made an estimate of the reserves as proven - 9000 tonnes, probable - 8900 tonnes, and possible - 69,000 tonnes.

BIBLIOGRAPHY

EM EXPL 2002-29-40 EMPR AR 1902-219; 1904-253,302; 1905-216; 1916-282,275 EMPR BULL 3 (1917), p. 14 EMPR FIELDWORK 1989, pp. 503-510 EMPR OF RGS 24 EMR MP CORPFILE (International Iron Mines; Noranda Mines Ltd.) GSC EC GEOL *3, Vol.1 (1926), pp. 177-181 GSC MAP 196A; 1386A GSC MEM 13, p. 189 GSC OF 463; 821 GSC P 72-44; 76-1A; 79-30 CANMET RPT 47, p. 10

<u>Date Coded:</u> 1985/07/24 <u>Date Revised:</u> 1990/12/16 Coded By: GSB Revised By: GJP

National Mineral Inventory: 092C9 Fe1

Name(s): BADEN POWELL (L.140), LITTLE BOBS (L.141), GENERAL FRENCH (L.139), BUGABOO CREEK

	Developed Prospect	Underground	Mining Division: Victoria
NTS Map:	British Columbia , Vancouver 092C09W (NAD 83) 48 39 18 N	Island	<u>UTM Zone:</u> 10 (NAD 83) Northing: 5390175
	124 29 22 W		Easting: 390309
	400 Metres		
Location Accuracy:			
Comments:	Approximate centre of Lots 14 (092C 024), and Sirdar (092C	0 and 141 (NTS Map 092C/09). See also Bugaboo (0 025).	192C 022), David (092C 023), Elijah
Commodities:	Iron	Magnetite	
MINERALS			

Magnetite
Magnetite
Skarn
Unknown

DEPOSIT

<u>Character:</u> Massive <u>Classification:</u> Skarn <u>Type:</u> [Fe skarn.] Disseminated Industrial Min.

Pyrite

HOST ROCK

Dominant Host Rock: Plutonic

Stratigraphic Age	Group	Formation	Igneous/Metamorphic/Other
Paleozoic-Mesozoic	W		Westcoast Complex

Lithology: Quartz Diorite Limestone

GEOLOGICAL SETTING

<u>Tectonic Belt:</u> Insular <u>Terrane:</u> Wrangell Physiographic Area: Vancouver Island Ranges

INVENTORY (Reserves/Resources not compliant with National Instrument 43-101 unless specified in comments) Ore Zone: BADEN POWELL Category: Combined Quantity: 89,800 t

 Commodity
 Grade

 Iron
 59.000 %

<u>Report On:</u> Y <u>Year:</u> 1926

Comments: A combined estimate in the proven and probable categories. The grade is for one sample only and not representative.

Reference: Geological Survey of Canada, Economic Geology Series No.3, page 186.

CAPSULE GEOLOGY

The Baden Powell magnetite deposit occurs on the steep northeastern side of a mountain sloping down to Bugaboo Creek. A northwest trending limestone roof pendant is underlain by quartz diorite of the Mesozoic and/or Paleozoic Westcoast Complex.

The orebody is lenticular and outcrops along a northwest trend for about 106 metres. The greatest exposed width is 27 metres and the greatest proven depth is 46 metres. The upper contact of the deposit is against quartz diorite; the dip of the contact is 50 degrees into the hill. The central part of the orebody is high-grade magnetite; the outer edges are mixed with metamorphosed rock and impregnated with pyrite.

Based on the apparent dimensions of the deposit, Young and Uglow made an estimate of the reserves: proven, 33,800 tonnes; probable, 56,000 tonnes. A sample of the higher grade part of the deposit graded 59.34 per cent iron, 5.93 per cent insolubles, 2.57 per cent sulphur, 0.012 per cent phosphorous and 1.14 per cent manganese oxide (Geological Survey of Canada Economic Geology Series No.3, page 185).

Two tunnels, 15 metres apart vertically, were developed on the deposit in the early part of the century.

BIBLIOGRAPHY

EMPR AR 1902-219; 1904-253,301; 1905-216; 1916-282,275 EMPR BULL 3 (1917), p. 14; 101, p. 148 EMPR FIELDWORK 1989, pp. 503-510 EMPR OF RGS 24 EMR MP CORPFILE (International Iron Mines; Noranda Mines Ltd.) GSC EC GEOL *3, Vol.1 (1926), p. 168 GSC MAP 196A; 1386A GSC MEM 13, p. 189 GSC OF 463; 821 GSC P 72-44; 76-1A; 79-30 CANMET RPT 47, p. 10 Hudson, R. (1997): A Field Guide to Gold, Gemstone & Mineral Sites of British Columbia, Vol. 1: Vancouver Island, pp. 78-79

<u>Date Coded:</u> 1985/07/24 <u>Date Revised:</u> 1990/12/16 Coded By: GSB <u>Revised By:</u> GJP

<u>Run Date:</u> 2005/Aug/29 <u>Run Time:</u> 01:03 PM

MINFILE Number: 092C 030

Name(s): ROSE (L.124), THORN (L.125), NEWTON

Status: Showing

 Regions:
 British Columbia , Vancouver Island

 NTS Map:
 092C09W (NAD 83)

 Latitude:
 48 38 05 N

 Longitude:
 124 26 24 W

 Elevation:
 80 Metres

 Location Accuracy:
 Within 500M

Comments: Located on the Gordon River, at the centre of Crown grant Lot 124 (NTS Map 092C/09).

Commodities: Iron

Magnetite

MINERALS

<u>Significant:</u> Magnetite <u>Alteration:</u> Magnetite <u>Alteration Type:</u> Skarn <u>Mineralization Age:</u> Unknown

DEPOSIT

<u>Character:</u> Massive <u>Classification:</u> Skarn Disseminated

HOST ROCK

Dominant Host Rock: Plutonic

Stratigraphic Age	Group	Formation	Igneous/Metamorphic/Other
Paleozoic-Mesozoic			Westcoast Complex

Lithology: Diorite Limestone

GEOLOGICAL SETTING

<u>Tectonic Belt:</u> Insular <u>Terrane:</u> Wrangell Physiographic Area: Vancouver Island Ranges

CAPSULE GEOLOGY

Several exposures of magnetite occur close to Gordon River, about 8 kilometres from its mouth. The main showings are on the Rose and Thorn claims on the northeast side of river. The Thorn showings are about 400 metres north of the Rose workings. The magnetite occurs at or near the contact of a northwest trending limestone roof pendant and the encompassing diorite of the Mesozoic and/or Paleozoic Westcoast Complex.

Two tunnels and a shaft were excavated on the Rose occurrence by 1902. One drift was reported to have cut diagonally through 18 metres of ore mixed with country rock. There are at least 3 exposures of magnetite on the Thorn claim, the largest having a triangular shape measuring 24 by 18 by 12 metres. The smaller masses are vein-like stringers in limestone.

BIBLIOGRAPHY

EMPR AR *1902-219; 1903-215; 1905-249; *1916-275,281 EMPR FIELDWORK 1989, pp. 503-510 EMPR OF RGS 24 GSC EC GEOL *3, Vol.1, p. 188 GSC MAP 1386A GSC MEM 13 GSC OF 463; 821 GSC P 72-44; 76-1A; 79-30 CANMET RPT 47, p. 9

<u>Date Coded:</u> 1985/07/24 <u>Date Revised:</u> 1990/12/17 Coded By: GSB Revised By: GJP Field Check: N Field Check: N

Mining Division: Victoria

National Mineral Inventory:

<u>UTM Zone:</u> 10 (NAD 83) <u>Northing:</u> 5387852 <u>Easting:</u> 393908 <u>Run Date:</u> 2005/Aug/10 <u>Run Time:</u> 10:56 AM

MINFILE Number: 092C 090

Name(s): REKO 3

National Mineral Inventory: 092F9 Fe2

Status:
Regions:
NTS Map:ProspectMining Division:VictoriaNTS Map:
Latitude:092C09W (NAD 83)UTM Zone:
10 (NAD 83)10 (NAD 83)Latitude:
Longitude:48 39 27 NNorthing:
53901995390199Longitude:
Elevation:500 MetresEasting:404245Location Accuracy:
Comments:Within 500MEast of Renfrew Creek (Geology and Exploration in B.C. 1975, page G38).UTM Zone:
404245

MINERALS	
Significant: Magnetite Chalcopyrite Alteration: Garnet Epidote Alteration Type: Skarn Silicific'n Mineralization Age: Unknown	yrite ilica

DEPOSIT

<u>Character:</u> Massive <u>Classification:</u> Skarn Disseminated Replacement

HOST ROCK

Dominant Host Rock: Plutonic

Stratigraphic Age	Group	Formation	Igneous/Metamorphic/Other
Paleozoic-Mesozoic			Westcoast Complex

Lithology: Diorite Limestone Andesite Skarn

GEOLOGICAL SETTING

Tectonic Belt: Insular Terrane: Wrangell Physiographic Area: Vancouver Island Ranges

CAPSULE GEOLOGY

The area of the Reko 3 occurrence is mapped by Muller (Geological Survey of Canada Open File 821) as primarily diorite of the Mesozoic and/or Paleozoic Westcoast Complex. An east trending band of limestone is also mapped. Volcanic rock of the Lower Jurassic Bonanza Group lies to the north.

The north part of the Reko property is underlain by grey to white crystalline limestone, and the central and south part is underlain mainly by intrusive breccia. Several bodies of limestone also occur in the central and south part. The primary fragments of the breccia are fine grained and dark grayish green in colour, resembling andesite, and some contain amygdules. This andesitic rock was successively intruded by mafic-rich and mafic-poor diorite. The breccia grades to massive, mesocratic diorite to the south, and to massive andesite at about the 600 metre level on the west side of the east ridge. A set of long, narrow, fine-grained grey dykes strike 020 degrees and transects all other rocks. Most limestone bodies have been successively intruded by dykes of andesite and leuco- diorite. It is thought likely that, prior to diorite intrusion andesite underlay the limestone and also intruded it.

Two zones make up the Reko 3 occurrence. Zone 7 consists of two small exposures of massive pyrrhotite containing networks of chalcopyrite. Zone 8 (North Pit zone), located within a few hundred metres of Zone 8, consists of numerous small exposures of magnetite and skarn on two knolls and in a small quarry. In one hole massive to near massive magnetite with minor pyrite from 2.7 metres to 9.7 metres occurs. It is estimated that Zone 8 contains about 33,000 tonnes of magnetite (Geology and Exploration in British Columbia 1974, page 170).

See also Reko 10 (092C 091), Reko 38 (092C 110) and Reko North (092C 146).

BIBLIOGRAPHY

EMPR ASS RPT 5029 EMPR FIELDWORK 1989, pp. 503-510 EMPR GEM 1972-242; 1973-226; *1974-166-170 EMPR GEOLOGY *1975 pp. 39-42 EMPR OF *1988-28, p. 56 EMPR OF RGS 24 EMPR PF (Reako Explorations Ltd., Prospectus, 1972; Reako Explorations Ltd., Statement of Material Facts, 1972; Various maps and sketches, 1970's; Exploration information, 1992, Memo - PGE potential, 2003; Minister's Letter, 2003; Letter and memo, 2002; District Geologist Assays, 2001 and 2002) GSC MAP 1386A GSC MEM 13 GSC OF 463; 821 GSC P 72-44; 76-1A; 79-30 GCNL #147,#157,#196,#235, 1972; #20,#21,#26,#43,#69,#117,#143,#212, 1973; #9, 1974; *#207,#223, 1975

<u>Date Coded:</u> 1985/07/24 <u>Date Revised:</u> 1990/12/19 Coded By: GSB Revised By: GJP

<u>Run Date:</u> 2005/Aug/10 <u>Run Time:</u> 10:53 AM

MINFILE Number: 092C 091

Name(s): REKO 10

National Mineral Inventory: 092C9 Fe2

Status: Developed Prospect Mining Division: Victoria Regions: British Columbia, Vancouver Island NTS Map: 092C09W (NAD 83) UTM Zone: 10 (NAD 83) Latitude: 48 38 35 N Northing: 5388584 Easting: 404750 Longitude: 124 17 35 W Elevation: 360 Metres Location Accuracy: Within 500M Comments: Located on Zone 2, just east of Renfrew Creek (Geology and Exploration in B.C. 1975, page 38). Commodities: Iron Gold Copper MINERALS

Significant:	Magnetite	Chalcopyrite	Pyrrhotite	Pyrite
Alteration:	Garnet	Epidote	Pyroxene	Silica
Alteration Type:	Skarn	Silicific'n		
Mineralization Age:	Unknown			
DEPOSIT				
DEPOSIT				
Character:	Massive	Disseminated		

Replacement

<u>Character:</u> Massive <u>Classification:</u> Skarn <u>Type:</u> [Fe skarn.]

HOST ROCK

Dominant Host Rock: Volcanic

Stratigraphic Age	Group	Formation	Igneous/Metamorphic/Other
Lower Jurassic	Bonanza	Undefined Formation	
Paleozoic-Mesozoic			Westcoast Complex

[Cu skarn.]

Lithology: Limestone Andesite Diorite Garnetite

GEOLOGICAL SETTING

Tectonic Belt: Insular Terrane: Wrangell Physiographic Area: Vancouver Island Ranges

INVENTORY	(Reserves/Resources not compliant with National Instrument 43-101 unless specified in comments)					
Ore Zone:	1 0 /					
Category:	Inferred Year: 1975					
Quantity:	4,500 kt					
	Commodity	Grade				
	Iron	22.000 %				

Reference: George Cross News Letter No.207, (October), 1975.

CAPSULE GEOLOGY

The area of the Reko occurrences is mapped by Muller (Geological Survey of Canada Open File 821) as primarily diorite of the Mesozoic and/or Paleozoic Westcoast Complex. An east trending band of limestone is also mapped. Volcanics of the Lower Jurassic Bonanza Group lie to the north.

The north part of the Reko property is underlain by grey to white crystalline limestone, and the central and south part is underlain mainly by intrusive breccia. Several bodies of limestone also occur in the central and south part. The primary fragments of the breccia are fine grained and dark grayish green in colour, resembling andesite, and some contain amygdules. This andesitic rock was successively intruded by mafic-rich and mafic-poor diorite. The breccia grades to massive, mesocratic diorite to the south, and to massive andesite at about the 600 metre level on the west side of the east ridge. A set of long, narrow, fine-grained grey dykes strike 020 degrees and transects all other rocks. Most limestone bodies have been successively intruded by dykes of andesite and leucodiorite. It is thought that, prior to diorite intrusion, andesite underlay the limestone and also intruded it.

There are 4 zones included in the Reko 10 occurrence. Zone 1 (South Pit A) is exposed for 12 metres and a width of about 5 metres. Drilling has indicated that it is not much larger than the surface exposure. It consists of 35 per cent magnetite, 35 per cent garnet and 30 per cent pyrrhotite. Chalcopyrite occurs as small blebs, minute veinlets and fine disseminations. Rocks in the drill holes include limestone and andesite. An estimated 41,000 tonnes of ore occurs in Zone 1 (Geology and Exploration in B.C., 1974, page 170). No grade was given.

Zone 2 (South Pit B) is located about 200 metres southwest of Zone 1. A drill hole put down on the centre of the zone shows magnetite disseminated in epidote-pyroxene-garnet skarn from 2.4 to 25 metres. Pyrite and chalcopyrite occur locally. Rock types found include garnetite and andesite. An estimated 970,000 tonnes of ore were calculated for Zone 2 (Geology and Exploration in B.C, 1974, page 170. No grade was given.

Zone 3 (South Pit C) is located about 425 metres northwest of Zone 2. The zone is not exposed and is known only from the drilling of a magnetic anomaly. A hole put down on the centre of the zone shows, from 19 to 24 metres, magnetite, pyrrhotite and pyrite, both disseminated and as veins or veinlets. Below 24 metres the rock is predominantly diorite. Zone 3 has an estimated 32,000 tonnes or ore (Geology and Exploration in B.C., 1974, page 170). No grade was given.

In 1975, Reako Explorations Ltd. reported an ore reserve estimate on the Reko property (see Reko 3 -- 092C 090, Reko 38 -- 092C 110 and Reko North -- 092C 146) of 4,500,000 tonnes grading 22 per cent iron (George Cross News Letter No.207, 1975). The same reference also reported a 4.6 metre section of drill core (location not reported) that graded 1.5 per cent copper and 6.86 grams per tonne gold.

BIBLIOGRAPHY

EM EXPL 2002-29-40 EMPR ASS RPT 5029 EMPR FIELDWORK 1989, pp. 503-510 EMPR GEM 1972-242; 1973-226; *1974-166-170 EMPR GEOLOGY *1975 pp. 39-42 EMPR OF *1988-28, p. 56 EMPR OF RGS 24 EMPR PF (Reako Explorations Ltd., Prospectus, 1972; Reako Explorations Ltd., Statement of Material Facts, 1972; Various maps and sketches, 1970's; Grove, E.W. (1986): Geological Report and Work Proposal on the San Juan River Property, Pan Island Resource Corp.) GSC MAP 1386A GSC MEM 13 GSC OF 463; 821 GSC P 72-44; 76-1A; 79-30 GCNL #147, #157, #196, #235, 1972; #20, #21, #26, #43, #69, #117, #143, #212, 1973; #9, 1974; #207, #223, 1975

Date Coded: 1985/07/24 Date Revised: 1990/12/19 Coded By: GSB Revised By: GJP

<u>Run Date:</u> 2005/Aug/10 <u>Run Time:</u> 10:57 AM

National Mineral Inventory:

Mining Division: Victoria

UTM Zone: 10 (NAD 83)

Northing: 5389777 Easting: 403644

MINFILE Number: 092C 110

Name(s): REKO 38

 Status:
 Prospect

 Regions:
 British Columbia, Vancouver Island

 NTS Map:
 092C09W (NAD 83)

 Latitude:
 48 39 13 N

 Longitude:
 124 18 30 W

 Elevation:
 500 Metres

 Location Accuracy:
 Within 500M

 Comments:
 Located on Zone 5 (Geology in B.C. 1975, page G38).

Commodities: Magnetite

MINERALS

MINENAL	•				
<u>S</u>	ignificant:	Magnetite	Pyrrhotite	Chalcopyrite	Pyrite
Altera	tion Type:	Skarn			
Mineraliz	ation Age:	Unknown			
DEPOSIT					
DEFUSIT					
	Character:	Massive	Disseminated		

<u>Character:</u> Massive <u>Classification:</u> Skarn Disseminated Replacement

Copper

HOST ROCK

Dominant Host Rock: Plutonic

Stratigraphic Age	Group	Formation	Igneous/Metamorphic/Other
Paleozoic-Mesozoic	l v		Westcoast Complex

Lithology: Diorite Andesite

Limestone

GEOLOGICAL SETTING

<u>Tectonic Belt:</u> Insular <u>Terrane:</u> Wrangell Physiographic Area: Vancouver Island Ranges

CAPSULE GEOLOGY

The area of the Reko occurrences is mapped by Muller (Geological Survey of Canada Open File 821) as primarily diorite of the Mesozoic and/or Paleozoic Westcoast Complex. An east trending band of limestone is also mapped. Volcanics of the Lower Jurassic Bonanza Group lie to the north of the Reko property.

The north part of the Reko property is underlain by grey to white crystalline limestone, and the central and south part is underlain mainly by intrusive breccia. Several bodies of limestone also occur in the central and south part. The primary fragments of the breccia are fine grained and dark grayish green in colour, resembling andesite, and some contain amygdules. This andesitic rock was successively intruded by mafic-rich and mafic-poor diorite. The breccia grades to massive, mesocratic diorite to the south, and to massive andesite at about the 600 metre level on the west side of the east ridge. A set of long, narrow, fine-grained grey dykes strike 020 degrees and transects all other rocks. Most limestone bodies have been successively intruded by dykes of andesite and leuco- diorite. It is thought that prior to diorite intrusion andesite underlay the limestone and also intruded it.

Three zones make up the Reko 38 occurrence. Zone 4 (Martin's Pit), located on a bluff, consists of irregular veins, pockets and masses of magnetite in partly skarned diorite. Drilling into the base of the exposure in 1974 showed substantial lengths of magnetite.

Zone 5 (Northwest zone), located 900 metres north-northeast of Zone 4, consists of a mixture of magnetite and sulphide minerals in skarn. Abundant magnetite occurs with chalcopyrite, pyrrhotite and pyrite in one drill hole, from 0.6 to 8 metres. From 20 to 26.5 metres the core is mostly massive pyrrhotite, containing lenses and blebs of chalcopyrite. Zone 5 is estimated to have about 35,000 tonnes of ore (Geology and Exploration in B.C. 1974, page 170). No grade of ore was given.

Zone 6 (Falls) is located about 250 metres southeast of Zone 5. A mixture of magnetite and skarn is exposed over an area of about 9 square metres and a height of 3.7 metres. It is flanked by diorite and andesite.

See also Reko 3 (092C 090), Reko 10 (092C 091) and Reko North (092C 146).

BIBLIOGRAPHY

EM EXPL 2002-29-40 EMPR ASS RPT <u>5029</u> EMPR FIELDWORK 1989, pp. 503-510 EMPR GEM 1972-242; 1973-226; *1974-166-170

Search MINFILE Database

EMPR GEOLOGY *1975, pp. 39-42 EMPR OF *1988-28, p. 56 EMPR OF RGS 24 EMPR PF (Reako Explorations Ltd., Prospectus, 1972; Reako Explorations Ltd., Statement of Material Facts, 1972; Various maps and sketches, 1970's) GSC MAP 1386A GSC MEM 13 GSC OF 463; 821 GSC P 72-44; 76-1A; 79-30 GCNL #147,#157,#196,#235, 1972; #20,#21,#26,#43,#69,#117,#143,#212, 1973; #9, 1974; #207,#223, 1975

<u>Date Coded:</u> 1985/07/24 <u>Date Revised:</u> 1990/12/20

Coded By: GSB Revised By: GJP

<u>Run Date:</u> 2005/Aug/29 <u>Run Time:</u> 11:27 AM

National Mineral Inventory:

Name(s): EBB

<u>Status:</u> Showing <u>Regions:</u> British Columbia, Va <u>NTS Map</u> : 092C09W (NAD 83) <u>Latitude:</u> 48 35 55 N <u>Longitude:</u> 124 20 14 W <u>Elevation:</u> 350 Metres <u>Location Accuracy:</u> Within 500M <u>Comments:</u> Middle of Ebb claim s		8).	<u>Mining Division:</u> Victoria <u>UTM Zone:</u> 10 (NAD 83) <u>Northing:</u> 5383700 <u>Easting:</u> 401410)
Commodities: Copper	Nickel	Cobalt		
MINERALS <u>Significant:</u> Pyrite Violarite <u>Alteration:</u> Epidote <u>Alteration Type:</u> Skarn	Pyrrhotite Magnetite	Magnetite	Chalcopyrite	Pentlandite

DEPOSIT

<u>Character:</u> Disseminated <u>Classification:</u> Magmatic

HOST ROCK

Dominant Host Rock: Plutonic

Mineralization Age: Unknown

Stratigraphic Age	Group Formation Ig		Igneous/Metamorphic/Other
Paleozoic-Mesozoic	W		Westcoast Complex
Mesozoic			Pacific Rim Complex

Lithology: Gabbro Hornblendite

GEOLOGICAL SETTING

Tectonic Belt: Insular Terrane: Wrangell Physiographic Area: Vancouver Island Ranges

CAPSULE GEOLOGY

The area, according to Muller, is underlain by an east trending band of rocks known as the Chert-Argillite-Volcanic Unit, of the Mesozoic Pacific Rim Complex. In this area, the rocks are reported to consist of deformed cherts, argillites, limestone, sandstone, pyroclastics and volcanic flows. In contact with the northern boundary of this band, are metamorphic rocks of the Mesozoic and/or Paleozoic Westcoast Complex.

Gabbro and hornblendite (Westcoast Complex) are reported to contain, locally, pyrite, pyrrhotite, and chalcopyrite, along with significant amounts of cobalt and nickel mineralization. The nickel minerals pentlandite and violarite are reported.

In the same area, pyrite, pyrrhotite, magnetite and chalcopyrite are reported to occur in an epidote skarn.

BIBLIOGRAPHY

EM EXPL 2002-29-40 EMPR ASS RPT <u>*8278, 12885</u> EMPR FIELDWORK 1988, pp. 525-527; 1989, pp. 503-510 EMPR OF RGS 24 GSC MAP 1386A GSC MEM 13 GSC OF 463 GSC P 72-44; 74-1A; 76-1A; 79-30

Pacific Rim

Skarn

Date Coded: 1990/12/07 Date Revised: Coded By: GJP Revised By:

<u>Run Date:</u> 2005/Aug/10 <u>Run Time:</u> 10:57 AM

MINFILE Number: 092C 146

Name(s): REKO NORTH

G38).

Status: Prospect

 Regions:
 British Columbia , Vancouver Island

 NTS Map:
 092C09W (NAD 83)
 UTM Z

 Latitude:
 48 39 58 N
 North

 Longitude:
 124 19 17 W
 East

 Elevation:
 760 Metres
 2000 Min 500M

 Location Accuracy:
 Within 500M
 Within 500M

 Comments:
 Located on Zone 10, about 800 metres north of the headwaters of Renfrew Creek (Geology in B.C. 1975, page

Mining Division: Victoria

National Mineral Inventory: 092F9 Fe2

<u>UTM Zone:</u> 10 (NAD 83) <u>Northing:</u> 5391183 <u>Easting:</u> 402707

Commodities: Iron

Magnetite

MINERALS

<u>Significant:</u> Magnetite <u>Alteration:</u> Garnet <u>Alteration Type:</u> Skarn <u>Mineralization Age:</u> Unknown

DEPOSIT

<u>Character:</u> Massive <u>Classification:</u> Skarn

HOST ROCK

Dominant Host Rock: Sedimentary

Stratigraphic Age	Group	Formation	Igneous/Metamorphic/Other
Paleozoic-Mesozoic			Westcoast Complex

Lithology: Limestone Andesite Diorite

Host Rock Comments: In limestone band, in area underlain by andesite and intruded by diorite.

GEOLOGICAL SETTING

<u>Tectonic Belt:</u> Insular <u>Terrane:</u> Wrangell Physiographic Area: Vancouver Island Ranges

CAPSULE GEOLOGY

The area of the Reko occurrences is mapped by Muller (Geological Survey of Canada Open File 821) as primarily diorite of the Mesozoic and/or Paleozoic Westcoast Complex. An east trending band of limestone is also mapped. Volcanics of the Lower Jurassic Bonanza Group occur to the north of the Reko property.

The north part of the Reko property is underlain by grey to white crystalline limestone, and the central and south part is underlain mainly by intrusive breccia. Several bodies of limestone also occur in the central and south part. The primary fragments of the breccia are fine grained and dark grayish green in colour, resembling andesite, and some contain amygdules. This andesitic rock was successively intruded by mafic-rich and mafic-poor diorite. The breccia grades to massive, mesocratic diorite to the south, and to massive andesite at about the 600 metre level on the west side of the east ridge. A set of long, narrow, fine-grained grey dykes strike 020 degrees and transects all other rocks. Most limestone bodies have been successively intruded by dykes of andesite and leuco- diorite. It is thought that prior to diorite intrusion andesite underlay the limestone and also intruded it.

Three zones make up the Reko North occurrence. Zone 9 is a body of pure magnetite emplaced directly in limestone. It is exposed over an area of about 8 by 15 metres. Magnetite float continues uphill almost to the crest of the ridge. About 60 metres northeast of Zone 9, a vein of massive magnetite 50 centimetres wide dips 70 degrees southwest in the limestone; the exposed length is a few metres. To the southwest a 120 centimetre lens of massive magnetite dips 70 degrees east-northeast.

Zone 10, about 350 metres to the west-northwest of Zone 9, is a narrow zone of outcrops of mostly pure magnetite. Downslope it appears to finger out among andesite dykes, but mostly the walls appear to be limestone. The width appears to range from 3 to 15 metres, over a length of inferred continuity of 75 metres. A small magnetite showing occurs 200 metres upslope.

Zone 11, about 300 metres west of Zone 10, consists largely of garnetite, which contains pockets and narrow bands of magnetite. The upper part has an estimated width of 45 metres and a slope length of 120 metres.

See also Reko 3 (092C 090), Reko 10 (092C 091) and Reko 38 (092C 110).

BIBLIOGRAPHY

EM EXPL 2002-29-40 EMPR ASS RPT <u>5029</u> EMPR FIELDWORK 1989, pp. 503-510 EMPR GEM 1972-242; 1973-226; *1974-166-170 EMPR GEOLOGY *1975, pp. 39-42 EMPR OF *1988-28, p. 56; RGS 24 EMPR PF (Reako Explorations Ltd., Prospectus, 1972; Reako Explorations Ltd., Statement of Material Facts, 1972; Various maps and sketches, 1970's) GSC MAP 1386A GSC MEM 13 GSC OF 463; 821 GSC P 72-44; 76-1A; 79-30 GCNL #147,#157,#196,#235, 1972; #20,#21,#26,#43,#69,#117,#143,#212, 1973; #9, 1974; #207,#223, 1975

<u>Date Coded:</u> 1990/12/20 <u>Date Revised:</u> 1991/01/22 Coded By: GJP Revised By: GJP