Report on Diamond Drilling
Mineral Claims 516241, 516242, 516245, 516248,
516251, 516252 and 516253
Skeena Mining Division
NTS 104B08, 104B09
56.52°N, 130.25°W
owned by
Seabridge Gold Inc.

Work performed by Falconbridge Limited July 7 – September 4, 2005

Report by
Mike Savell (P. Geo.)
and
Allan Huard (P. Geo.)

November 15, 2005



#### **Table of Contents**

| Introduction 2005 Program Iron Cap North Mitchell West Mitchell Icefields Main Copper Macquillan Conclusions and Recommendations                                                   | 1<br>3<br>6<br>6<br>7<br>7<br>8<br>9 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Tables                                                                                                                                                                             |                                      |
| Table 1: Claim Holdings Table 2: Composite Assays                                                                                                                                  | 1<br>5                               |
| Figures                                                                                                                                                                            |                                      |
| Figure 1: Property and Claim Locations Figure 2: Geology plan with drill hole locations                                                                                            | 2<br>4                               |
| Appendices                                                                                                                                                                         |                                      |
| Appendix 1: List of Personnel and Contractors Appendix 2: Statement of Expenditures Appendix 3: Diamond Drill Logs Appendix 4: Cross Sections Appendix 5: Certificates of Analysis |                                      |

#### Introduction

This report describes assessment work conducted on the Kerr-Sulphurets property in northwestern, BC. The property is owned by Seabridge Gold Inc. and the work program was conducted by Falconbridge Limited. The property consists of 28 Mineral Claims converted under the new MTO system (Table 1, Figure 1). They are located approximately 15 km southeast of the Eskay Creek mine in the rugged coastal mountains of northwest B.C. The elevation ranges from about 600 to 1700 meters, and the vegetation ranges from heavily forested to alpine. Access to the property is from either km54 of the Eskay Creek Mine road (22 km to the northwest) or the former Granduc Millsite, 30 km to the south southeast. A List of Personnel and Contractors is provided in Appendix 1, and a Statement of Expenditures is provided in Appendix 2.

| Claim # | Cells | Hectares | TRIM    | Expiry     |
|---------|-------|----------|---------|------------|
| 516236  | 17    | 303.273  | 104B059 | 6/30/2007  |
| 516237  | 4     | 71.379   | 104B059 | 6/30/2006  |
| 516238  | 35    | 624.456  | 104B059 | 12/10/2007 |
| 516239  | 30    | 535.513  | 104B059 | 12/10/2007 |
| 516240  | 6     | 107.016  | 104B059 | 6/30/2006  |
| 516241  | 8     | 142.709  | 104B059 | 6/30/2007  |
| 516242  | 4     | 71.363   | 104B059 | 9/23/2007  |
| 516245  | 20    | 356.921  | 104B059 | 10/12/2005 |
| 516248  | 8     | 142.725  | 104B059 | 8/26/2005  |
| 516251  | 18    | 321.344  | 104B059 | 8/26/2005  |
| 516252  | 7     | 124.994  | 104B059 | 8/26/2005  |
| 516253  | 10    | 178.622  | 104B059 | 8/26/2005  |
| 516254  | 16    | 285.779  | 104B059 | 8/26/2005  |
| 516255  | 12    | 214.346  | 104B049 | 9/23/2007  |
| 516256  | 3     | 53.586   | 104B049 | 8/26/2005  |
| 516258  | 10    | 178.573  | 104B059 | 11/3/2005  |
| 516259  | 6     | 107.173  | 104B049 | 11/3/2005  |
| 516260  | 6     | 107.197  | 104B049 | 11/3/2005  |
| 516261  | 26    | 464.635  | 104B049 | 12/20/2005 |
| 516262  | 19    | 339.526  | 104B049 | 12/17/2005 |
| 516263  | 36    | 643.881  | 104B049 | 12/17/2005 |
| 516264  | 22    | 393.344  | 104B049 | 10/30/2005 |
| 516266  | 10    | 178.778  | 104B049 | 12/17/2005 |
| 516267  | 14    | 250.242  | 104B049 | 12/17/2005 |
| 516268  | 18    | 321.836  | 104B049 | 12/17/2005 |
| 516269  | 6     | 107.208  | 104B049 | 8/26/2005  |

Table 1: Claim Holdings

Exploration in the area began in the 1960's and was mostly focused towards gold. The property is now known to host at least two significant deposits; Sulphurets gold (Minfile #104B182), first drilled by Esso Minerals in 1969, and the Kerr copper-gold porphyry (Minfile #104B191), first drilled by Western Canadian Mining Corporation in 1988. At the Kerr deposit, 155 drillholes (28,469 m) were completed and Minfile lists a geological resource of 140.8 million tonnes grading 0.75% Cu and 0.36 g/t Au, using on a cut-off of 0.4% Cu (this calculation predates NI43-101 specifications). In addition, 60 drillholes (12,083 m) were completed on the Sulphurets deposit, located approximately 2 km north of Kerr. Minfile lists an estimated geological resource of 54.8 million tonnes grading 0.32% Cu and 1.02 g/t Au (this calculation predates NI43-101 specifications).

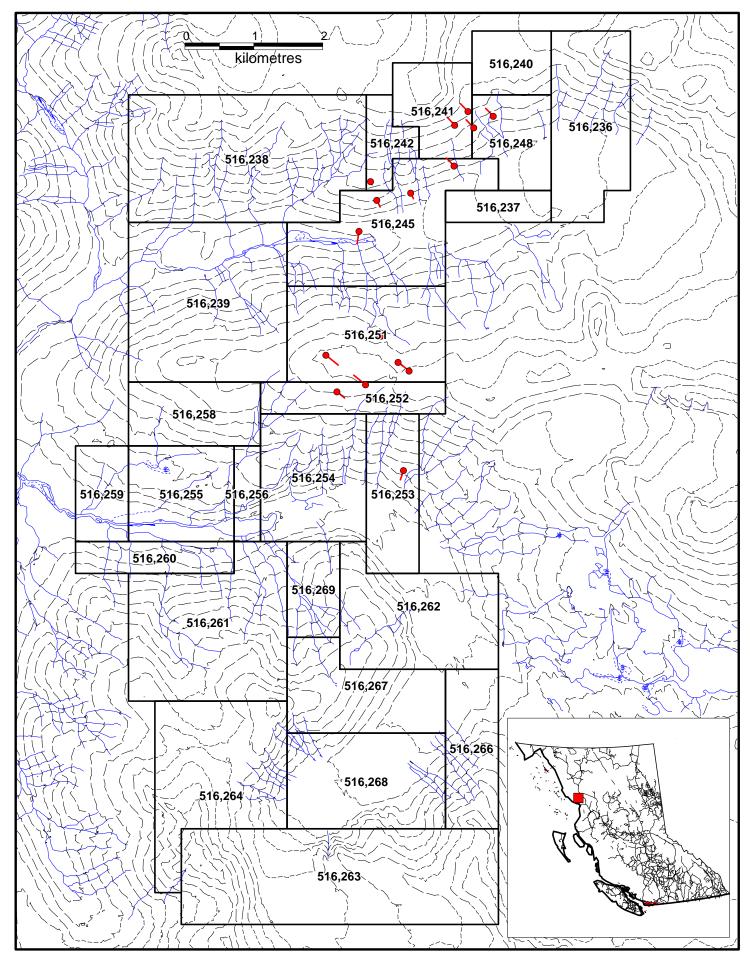



Figure 1: Kerr - Sulphurets Claim Map with Locations of 2005 Drillholes.

In 1989, a 100% interest in the Kerr deposit was purchased by Placer Dome and in the following year it acquired the adjacent Sulphurets property. In 2000, Seabridge Gold Inc. acquired a 100% interest in both properties from Placer Dome. Falconbridge Limited (formerly Noranda Inc. until June 30, 2005) is conducting work on the property under an earn-in agreement signed with Seabridge Gold in 2002.

The property is underlain by Triassic and Jurassic volcaniclastics that have been intruded by a series of late Jurassic monzonite porphyries, similar to those that host other copper-gold porphyry systems in northwest B.C., including Galore Creek, Red Chris, and Kemess. A large hydrothermal alteration system with multiple mineralized centers is associated with the intrusions.

#### 2005 Program

Alteration and copper mineralization occur in many places apart from Kerr and Sulphurets, which were the focus of previous operators. However drilling at these other areas is minimal, amounting to a few holes at Mitchell (4), Iron Cap (5) and Main Copper (4), on the north half of the property, and a few others. At the Mitchell zone, drill intersections up to 0.25% Cu and 0.68 g/t Au over 190.5 meters have been obtained. At the Iron Cap zone, 4 drillholes tested an area of sheeted quartz veins and intense alteration, with intersections up to 0.27% Cu and 0.51 g/t Au over 157 meters. Neither zone has been delineated. The 2005 drill program was designed to test known zones of alteration which were either untested or not completely tested by previous operators. This drilling represents the first drilling undertaken on the property since 1992. Falconbridge (then Noranda) undertook field programs of mapping, rock and soil sampling, and geophysics (IP) in 2003 and 2004 which aided in the development of the drill targets reported here.

Fieldwork began with the establishment of the camp starting July 7, 2005 and consisted of a diamond drill program of 16 drillholes totalling 4,092 m carried out by Hy-Tech Drilling of Smithers. The drill was mobilized by helicopter from km 54 of the Eskay Creek Mine Road on July 14, and was returned to the same point on September 2. The camp decommissioning was completed on September 4. Drillhole locations are presented on the geology map (Figure 2).

All drill moves and support were done by helicopter. All drillholes were plugged with Bradley plugs about 15 m below bedrock interface and were cemented to surface, with the casings left in the holes. Core was logged and sawed on site with half going for analysis and and the other half crosspiled on site (UTM 420,330E, 6,260,830N, NAD27, Zone 9). Samples were transported to EcoTech's prep lab in Stewart, BC for preparation with analytical work done at their Kamloops facility. Samples were submitted in batches which consisted of 32 core samples, 2 reference standards and 1 blank. Drill Logs are provided in Appendix 3, schematic cross sections are in Appendix 4 and analytical certificates are in Appendix 5. All analyses of Standards and Blanks were acceptable, and these results are also in Appendix 5. Results of drilling are described in the following sections. Table 2 is a compilation of composite analyses.

#### Iron Cap

The Iron Cap Zone is a large area of well-exposed, gossanous weathered, intensely and pervasive quartz-sericite-pyrite altered intrusive and volcanic rock at the northeast corner of the claim block. It covers a roughly 500 by 1500 meter, northeast trending area between the Iron Cap glacier and Mitchell glacier.

Alteration is controlled by northeast trending, near vertical structures and associated stockwork fracture and veins. Pyrite content varies from 10% to 70% and averages about 25%. Quartz-pyrite veins up to several meters thick occupy some of the structures. Moderate gold values in some of these veins attracted previous explorers and were the focus of trenching and a 3 hole drilling program. Three drill holes intersected wide intervals of low grade copper-gold mineralization (S80-15: 0.35% Cu, 0.53g/t Au / 93m, and S80-11: Cu not analyzed, 0.51g/t Au / 229 m).

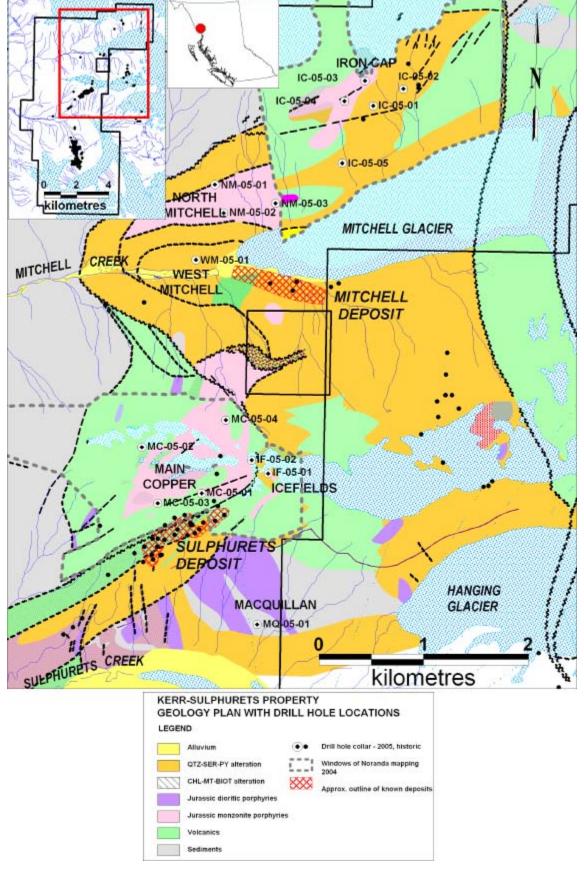



Figure 2: Geology plan with drill hole locations

|                   | DDH             | From         | То            | m            | Cu           | Au           | Мо      | Pb       | Zn           | Ag            | As       |        | Cu/Au        |
|-------------------|-----------------|--------------|---------------|--------------|--------------|--------------|---------|----------|--------------|---------------|----------|--------|--------------|
| Iron Cap          | 05-01           | 3.3          | 249.3         | 246.0        | 0.20         | 0.52         | 13      | 78       | 348          | 4             | 72       | 7      | 0.38         |
|                   | including       | 3.3          | 91.3          | 88.0         | 0.26         | 0.87         | 10      | 111      | 248          | 5             | 78       | 8      | 0.30         |
| IC-               | 05-02           | 0.9          | 250.0         | 249.1        | 0.21         | 0.50         | 31      | 186      | 542          | 8             | 72       | 14     | 0.42         |
|                   | including       | 216.9        | 250.0         | 33.1         | 0.21         | 1.04         | 25      | 596      | 2563         | 16            | 130      | 25     | 0.20         |
|                   | 05-03           | 1.5          | 249.3         | 247.8        | 0.22         | 0.27         | 14      | 210      | 411          | 7             | 131      | 132    | 0.80         |
| IC-               | 05-04           | 5.2          | 248.1         | 242.9        | 0.21         | 0.35         | 26      | 156      | 288          | 3             | 81       | 52     | 0.59         |
|                   | including       | 182.3        | 248.1         | 65.8         | 0.28         | 0.59         | 33      | 15       | 130          | 1             | 20       | 2      | 0.49         |
| IC-               | 05-05           | 6.6          | 249.6         | 243.0        | 0.15         | 0.12         | 8       | 155      | 71           | 3             | 30       | 2      | 1.22         |
|                   | including       | 6.6          | 65.0          | 58.4         | 0.24         | 0.14         | 12      | 152      | 77           | 4             | 27       | 2      | 1.75         |
| Irc               | on Cap 1 to     |              |               | 985.8        | 0.21         | 0.41         | 21      | 158      | 398          | 6             | 89       | 51     | 0.50         |
| North Mitchell NN | <b>1</b> -05-01 | 4.9          | 293.2         | 288.3        | 0.14         | 0.07         | 38      | 18       | 28           | 1             | 5        | 2      | 1.87         |
|                   | including       | 4.9          | 132.4         | 127.5        | 0.18         | 0.10         | 64      | 11       | 34           | 1             | 8        | 2      | 1.71         |
| NN                | 1-05-02         | 205.0        | 319.6         | 114.6        | 0.14         | 0.08         | 6       | 60       | 69           | 1             | 8        | 2      | 1.70         |
| NN                | <b>1</b> -05-03 | 190.6        | 256.9         | 66.3         | 0.26         | 0.25         | 9       | 286      | 500          | 4             | 43       | 2      | 1.06         |
| 14/               | 1.05.04         | 0.0          | 000.0         | 000.0        | 0.47         | 0.00         | 70      | 44       | 404          |               | 40       |        | 0.00         |
| West Mitchell Wi  | M-05-01         | 3.8          | 233.6         | 229.8        | 0.17         | 0.66         | 72      | 41       | 161          | 3             | 10       | 4      | 0.26         |
|                   | including       | 3.8          | 66.0          | 62.2         | 0.10         | 0.25         | 141     | 58       | 215          | 4             | 14       | 2      | 0.38         |
|                   | and             | 66.0         | 282.9         | 216.9        | 0.19         | 0.77         | 41      | 32       | 195          | 3             | 8        | 4      | 0.25         |
| Icefield IF-      | 05-01           | 2.7          | 16.1          | 13.4         | 0.06         | 0.08         | 1       | 14       | 178          | 1             | 53       | 2      | 0.78         |
|                   | and             | 16.1         | 39.2          | 23.1         | 0.45         | 0.21         | 2       | 16       | 929          | 5             | 22       | 5      | 2.19         |
|                   | and             | 39.2         | 87.1          | 47.9         | 0.08         | 0.08         | 2       | 12       | 226          | 1             | 28       | 3      | 1.10         |
|                   | and             | 87.1         | 121.4         | 34.3         | 0.29         | 0.25         | 5       | 6        | 93           | 3             | 145      | 50     | 1.13         |
|                   | and             | 121.4        | 252.7         | 131.3        | 0.04         | 0.31         | 23      | 16       | 55           | 1             | 98       | 3      | 0.11         |
| IF-               | 05-02           | 13.7         | 26.0          | 12.3         | 0.09         | 0.08         | 24      | 33       | 68           | 1             | 15       | 3      | 1.10         |
|                   | and             | 26.0         | 34.0          | 8.0          | 0.47         | 1.64         | 6       | 202      | 43           | 2             | 56       | 7      | 0.28         |
|                   | and             | 34.0         | 160.0         | 126.0        | 0.03         | 0.51         | 12      | 85       | 147          | 2             | 113      | 13     | 0.05         |
| -                 |                 |              |               |              |              |              |         |          |              |               |          |        |              |
| Main Copper MC    | C-05-01         | 2.6          | 55.0          | 52.4         | 0.16         | 0.24         | 20      | 20       | 86           | 1             | 48       | 2      | 0.67         |
|                   | and             | 55.0         | 133.0         | 78.0         | 0.08         | 0.07         | 6       | 14       | 37           | 0             | 12       | 9      | 1.16         |
|                   | and             | 133.0        | 203.0         | 70.0         | 0.33         | 0.32         | 4       | 38       | 73           | 1             | 30       | 49     | 1.03         |
|                   |                 | 203.0        | 341.0         | 138.0        | 0.08         | 0.12         | 11      | 13       | 32           | 0             | 7        | 2      | 0.68         |
| 246               | and             | 341.0        | 344.4         | 3.4          | 0.34         | 0.18         | 16      | 4        | 23           | 1             | 2        | 2      | 1.90         |
| IMC               | C-05-02         | 6.0          | 240.0         | 234.0        | 0.24         | 0.17         | 50      | 17       | 40           | 1             | 23       | 4      | 1.37         |
| NAC               | and<br>C-05-03  | 240.0        | 359.4         | 119.4        | 0.03         | 0.11         | 12<br>7 | 13<br>38 | 23<br>45     | <u>0</u><br>1 | 27       | 2      |              |
| livic             |                 | 2.6          | 14.0          | 11.4         | 0.18         | 0.15         |         |          | 45<br>32     |               | 25       | 2      | 1.18         |
|                   | and             | 14.0<br>96.0 | 96.0<br>162.0 | 82.0<br>66.0 | 0.03<br>0.14 | 0.06<br>0.39 | 7<br>17 | 28<br>28 | 32<br>39     | 0<br>1        | 20<br>22 | 5<br>4 | 0.52         |
|                   | and             | 162.0        | 165.0         | 3.0          | 0.14         | 0.39         |         |          |              | -             | 22       | 4      | 0.35         |
|                   | and<br>and      | 165.0        | 227.0         | 62.0         | 0.21         | 0.20         | 43      | 21       | no rec<br>45 | overy<br>1    | 19       | 2      | 1.06         |
|                   |                 | 227.0        | 252.7         | 25.7         | 0.21         | 0.20         | 20      | 103      | 304          | 2             | 81       | 227    |              |
| MC                | C-05-04         | 3.4          | 25.7          | 22.3         | 0.10         | 0.38         | 63      | 38       | 53           | 2             | 30       | 221    | 0.27<br>1.66 |
| IVIC              | 2-03-04         | 3.4          | 23.1          | 22.5         | 0.21         | 0.13         | 03      | 30       | - 33         |               | 30       |        | 1.00         |
| MacQuillan MC     | Q-05-01         | 7.0          | 16.0          | 9.0          | 0.06         | 0.02         | 3       | 28       | 81           | 1             | 23       | 7      | 2.25         |
|                   | and             | 16.0         | 32.0          | 16.0         | 0.31         | 0.19         | 12      | 29       | 91           | 2             | 143      | 5      | 1.64         |
|                   | and             | 32.0         | 98.0          | 66.0         | 0.06         | 0.07         | 5       | 19       | 56           | 1             | 226      | 7      | 0.85         |
|                   | and             | 98.0         | 251.5         | 153.5        | 0.21         | 0.20         | 12      | 21       | 64           | 2             | 219      | 12     |              |

**Table 2: Composite Assays** 

Noranda's chip sampling from 2003 and 2004 indicates copper mineralization is widespread but erratic. Forty partially leached rock chip samples collected by Noranda over and area of 1200 m x 300 m from the Iron Cap and adjacent Iron Cap West zone average 0.32% Cu and 1.0 g/t Au. The intense quartz-sericite-pyrite alteration of the Iron Cap Zone gradually weakens to the west and primary intrusive textures can be observed.

Five drill holes totaling 1,246.6 metres were completed at Iron Cap. All holes cut long intervals of very fine grained chalcopyrite mineralization in intensely phyllic altered monzonite. Silicification and hydrothermal breccia textures are common. The degree of schistosity is proportional to the intensity of phyllic alteration. The concentration of pyrite, as disseminations and veins, ranges from 5 to 30% and is also proportional to the phyllic alteration. There is a general trend in style from peripheral mesothermal veins in intense phyllic alteration to porphyry quartz stockwork veining with potassic alteration overprinted by phyllic, going east to west in the drilled area. Potassic alteration also increases with depth towards northwest edge of drilled area. The mesothermal style veins are decimeter scale, with a crude cockscomb banded texture, and polymetallic with pyrite, chalcopyrite, sphalerite, galena, and tetrahedrite or tennantite.

#### North Mitchell

Copper mineralization was noted by previous operators in several places on the north bank of Mitchell Creek near the toe of Mitchell Glacier. It is hosted by a distinctive, reddish-purple crowded Kspar-quartz porhyritic granite, which is conspicuously lacking in ferromagnesian minerals. Hematite dusting is ubiquitous, and magnetite is disseminated and in veinlets with quartz. Copper occurs as disseminated and fracture filling chalcopyrite, and with quartz-magnetite veinlets. Quartz veins and stockworks ± chalcopyrite – magnetite are locally well developed in the intrusion, and persist ~ 100 m into hornfels country rock to the east. The southern contact is in places a moderately north-dipping fault, separating unchilled granite from strong phyllically altered volcanics to the south. The granite has a strong hematite-magnetite association and occupies a prominent mag high which indicates it may extend under the volcanics at least 1000 m to the northwest.

NM-05-01, the first North Mitchell drillhole, tested the northern contact area and was completed to 293.2 m. It encountered weak Cu-Mo mineralization in hornfels before passing into the Mitchell Granite at 132.4 m. The granite is extensively veined (qtz, py, qtz-py, and qtz-magnetite) and locally brecciated, but contains only traces of chalcopyrite. Veining and mineralization diminish downhole, away from the north contact. Dykes of the granite in the hornfels are barren, but the hornfels is preferentially mineralized adjacent to them. The hornfels returned 0.18% Cu and 0.10 q/t Au over 127.5 m. from 4.9 to 132.4 m.

The second drillhole at North Mitchell (NM-05-02) tested the south margin of the granite. It encountered a glassy, aphyric felsite with abundant intrusion breccia zones and magnetite cemented hydrothermal breccias. Both of these contain locally impressive splashes of chalcopyrite, but the overall content was only 0.14% Cu and 0.08 g/t Au over 114.6 m from 205.0 to 319.6 m. Exotic fragments show strong potassic alteration, and locally contain abundant disseminated chalcopyrite (2 - 10%).

NM-05-03 tested the eastern end of the Mitchell Granite, and intersected a barren porphyry in the target area, rather than the mineralized intrusive encountered by NM-05-02 500 m to the southwest. It ended in phyllic rocks similar to Mitchell (800 m south) and West Mitchell (900 m southwest) which returned an interval grading 0.26% Cu and 0.25 g/t Au over 66.3 m, from 190.6 to 256.9 m.

#### West Mitchell

The West Mitchell Zone is the westward continuation of the "Mitchell Zone" 750 metres to east. The Mitchell Zone is an area of intensely stockworked and veined, mainly phyllic altered, variably foliated volcanics and monzonitic porphyry exposed over an area of at least 200 by 1000 metres along the south side of the bottom of Mitchell valley at the terminus of Mitchell glacier. The area

was tested with three diamond drill holes by previous operators. Very fine grained chalcopyrite and tennantite is associated with a strongly deformed quartz stockwork zone with a strong, pyrite rich phyllic overprint.

Exploration surveys by Noranda in 2003 and 2004 including rock, soil geochemistry and IP surveying indicated the zone continued along Mitchell valley to the west. The degree of deformation and phyllic overprinting appeared to diminish, and magnetite content increased towards a thumbprint like magnetic feature centered about 700 metres west of drill hole S91-395 in the Mitchell Zone. Hole MC-05-01 tested this feature at the approximate projection of the Mitchell Zone. It collared in schistose, foliated sericite-chlorite altered rock with deformed quartz veins. Anomalous copper grades are attributed to fine disseminated chalcopyrite. From 13 to 58.1 metres, the rock is highly schistose and breaks easily along foliation planes. The fissile nature abruptly ends at 58.1 metres, and the intensity of quartz stockwork veinlets gradually increases with depth. Copper and gold grades also gradually increase, but tend to level off towards the bottom of the hole. Increasing grades also appear to correlate with magnetite content and appearance of kfeldspar flooding. The interval from 171.6 to 237.6 assays 0.24% Cu and 1.10 g/t Au over 66 metres. As elsewhere on the property, there is a late set of ragged calcite veinlets which is likely related to regional deformation.

#### **Icefields**

At the Icefields zone, disseminated chalcopyrite, minor pyrite, and trace molybdenite occur in intensely silicified rocks and hydrothermal breccias similar to the Sulphurets Gold zone. The zone appears to be positioned in the footwall of the Sulphurets fault and is likely the continuation of the Sulphurets deposit, which is still open to the northeast of the last drill hole some 500 metres from here. Ten rock chip samples collected in 2004 over a 200 by 200 meter area averaged 0.41% Cu and 0.6 g/t Au, and the zone may extend under thin ice cover for several hundred meters to the north and east. IP line 40 crossed approximately 200 metres south, and local chargeabilities of 25 to 40 mV/V are attributed at least in part to disseminated sulphides in the Icefields zone.

Two holes, inclined towards each other on the same section were collared to test the zone. In hole IF-05-01, fine disseminated chalcopyrite occurs in variably silicified and brecciated rocks down to 121 metres, with grades averaging on the order of 0.2% Cu and 0.2 g/t Au. Below this depth, there is a sharp change in mineral tenor, with copper falling and gold increasing as indicated in the following table. Hole IF-05-02 intersected a phyllic altered, foliated tuff below oxidized till of the same lithology. The phyllic altered foliated tuff may be a mylonitic zone developed at or near the Sulphurets fault. Again, low copper and gold grades are associated with silicification along veins, crackle breccias and hydrothermal breccias. Below a depth of 34.4 metres anomalous copper and gold values are accompanied by anomalous arsenic, lead, and zinc concentrations.

#### Main Copper

At the Main Copper zone, mineralization is associated with potassic altered monzonitic porphyries which intrude quartz-chlorite-magnetite altered volcanics. Petrographic examination indicates chlorite is likely after secondary biotite. Copper mineralization is hosted by hornfelsed volcanics and stockworked monzonite porphyry which may be sourced by a partially exposed, well mineralized porphyry phase observed only at a few localities. Average Cu and Au values from 55 variably leached and oxidized rock chip samples from 2003 and 2004 sampling, collected over a 1,000 m  $\times$  700 m area are 0.37% and 0.5 g/t respectively. Strong copper-gold soil and rock geochemistry is coincident with large positive magnetic feature over a roughly 1000  $\times$  1000 meter area, and limited IP surveying suggests an envelope of moderate chargeability.

The pyrite to chalcopyrite ratio is low and phyllic alteration is absent, hence the rocks do not exhibit the gossanous, limonitic weathering typical of pyrite-rich, phyllic and silicic alteration elsewhere on the property, notable the Sulphurets, Iron Cap, and Kerr deposits. A few drill holes completed by previous operators at the eastern and western periphery of the Main Copper zone

intersected extensive porphyry style propylitic alteration with stockwork and disseminated mineralization. Composite assays include 0.2% Cu, 0.5 g/t Au over 207 meters, and 0.3% Cu and 0.3 g/t Au over 107.6 meters.

Drilling in 2005 focused in areas of highest geochemistry, potassic alteration, and strong magnetics. Three holes totaling 956.5 metres were completed; a fourth was abandoned at 25.7 metres due to hole conditions. Long intervals of low grade copper-gold mineralization were intersected in each hole, including 0.33% Cu, 0.32 g/t Au over 70 metres in hole MC-05-01, 0.24% Cu, 0.17 g/t Au over 234 metres in hole MC-05-02, 0.17% Cu, 0.30 g/t Au and 0.16% Cu, 0.58 g/t Au over 25.7 metres in hole MC-05-03.

Mineralization occurs as fine grained chalcopyrite, best developed in siliceous, hornfelsed andesites and transitional contact breccias of monzonite porphyry. Magnetite is commonly associated with chalcopyrite. There is a weak stockwork of millimeter scale quartz veins in the andesites and contact areas of the monzonite. Coarser chalcopyrite is often developed at vein and fracture intersects. There is a late set of ragged calcite veinlets which is likely related to regional deformation, however it may in part be a component of a propylitic assemblage that includes chlorite and epidote. Chalcopyrite is occasionally remobilized and reprecipitated in calcite veinlets.

Minor native Cu and chalcocite were observed from 170.45 to 171.45 metres in hole MC-05-02 beneath an incompletely oxidized horizon with malachite on weathered fractures. This is probably a thin, supergene enriched horizon developed during an earlier period of aridity and lower water tables.

Away from the contact areas, monzonite porphyry is poorly veined and mineralized, indicating it could be a later, non-mineralising phase. Mineralisation may be sourced from a deeper intrusion, from which fluids ascended along fracture systems preferentially developed in the brittle, brecciated contact areas between the hornfels and monzonite porphyry. Exposures of densely stockworked porphyry mapped along the western edge of the Main Copper zone may be sourced from such an intrusion.

MC-05-03 intersected the Sulphurets zone beneath the Sulphurets fault at 227m. Here, the alteration is dominantly phyllic, and higher gold grades are accompanied by higher arsenic, antimony, lead and zinc concentrations, indicative of a shallower epithermal environment or high sulphidation overprint. The fault zone is marked by a zone of clayey gouge and strongly foliated, schistose, mylonitic rock with a lapilli tuff like texture. A similar zone observed in hole IF-05-02 is likely also the same fault.

#### Macquillan

The Macquillan zone occurs on the mostly forested slope north of the Sulphurets glacier, and southeast of the Sulphurets deposit. The zone was identified and sampled by previous operators however no drilling had been conducted here prior to 2005. Widely distributed, disseminated and veinlet chalcopyrite and pyrite are associated with altered feldspar phyric intrusive dykes. Mineralization occurs in both the intrusive and surrounding hornfelsed sediments. The intrusive is strongly quartz-sericite altered, with a variable stockwork of thin quartz veinlets, and is typically intensely weathered and partially leached. The sediments have been pervasively silicified and form massive, prominent, rusty purple weathering outcrops. Local, thin limestone beds have been marbleized. Skarn mineral assemblages including calcite, epidote and minor diopside with disseminated and ragged veinlets of pyrite, pyrrhotite, chalcopyrite, and molybdenite have been observed in scattered patchy zones within a larger area of siliceous, pyritic hornfels near the intrusive.

Previous sampling by Noranda from intermittent exposures over a roughly 400 by 1200 meter area returned numerous values over 0.2% Cu and 0.2 g/t Au averaging 0.29% Cu, and 0.23 g/t Au from 10 partially leached samples. A chip sample of the weathered porphyry contained 0.47%

Cu and 0.30g/t Au. Surrounding altered sediments contain up to 0.30% Cu and 0.66g/t Au. A single line of induced polarization (L10) approximately100 to 150 metres upslope of the steep cliff exposures was surveyed in 2004. A strong, coincident high chargeability and low resistivity anomaly correlates with the rock geochem anomaly and suggests a potentially large volume of mineralisation. The geophysical anomaly is open to the west as topography prevented additional surveying.

Hole MQ-05-01 was collared between the IP anomaly and the cliff exposure, and oriented perpendicular to the interpreted trend of mineralization. Weak copper and gold assays stem from widespread, fine disseminated chalcopyrite associated with strong silica flooding, stockwork veining, and hydrothermal breccias. Host rocks are finely porphyritic, massive diorite or andesitic intrusive. Disseminated and veinlet pyrite content ranges from a few up to ten percent and increases with intensity of silicification. High arsenic values are due to fine arsenopyrite. There is a late set of ragged calcite veinlets which is likely related to regional deformation.

#### **Conclusions and Recommendations**

Low grade copper and gold mineralization is widespread throughout the property and was intersected in at least parts of every drill hole. However, given the area's challenging logistics, none of the intervals are considered to be of "ore grade" at the current time.

The mineralisation has its genesis in Late Jurassic porphyry intrusions and the large, coalescing hydrothermal alteration cells which they produced. At the North Mitchell and Main Copper areas, fine disseminated and veinlet chalcopyrite occurs mostly within the transitional and brecciated contact areas between the host andesitic volcanics (Triassic Stuhini Group) and monzonitic to granitic porphyry intrusions with dipping dyke or sill like geometries. In both areas, low intensity k-feldspar flooding occurs within and haloes around quartz veins and aplitic to porphyritic dykes, however propylitic alteration is more widespread. Phyllic alteration is weak to absent in these areas. Grades are lower in the porphyry than in the andesites and breccias developed at the contacts, and the possibility remains that the main source of hydrothermal fluids and metals lies in a deeper intrusive phase. In this scenario, fluids ascend along fracture networks preferentially developed in the brittle, brecciated transitional contact areas between the hornfelsed andesites and porphyry intrusions. However, there are no strong indicators that higher grades than encountered in this year's drilling occur elsewhere at either Main Copper or North Mitchell within similar depths.

At the Iron Cap zone, an intense phyllic overprint strengthens eastward and is characterized by abundant pyrite, deformed quartz stockwork veining, and schistosity. Copper mineralization is very fine grained and almost invisible in hand specimen; occasionally there are a few millimeter scale chalcopyrite clots in breccias, intersections of veinlets, and late calcite veinlets. Decimeter scale, polymetallic quartz-sulphide veins are more abundant towards the east side of Iron Cap. The anomalous concentrations of silver, arsenic, antimony, lead and zinc may be indicative of a shallow or epithermal high sulphidation overprint. However, no enhancement of copper grades has occurred, and no enargite has been identified. Tetrahedrite and tennantite have been identified and are the arsenic and antimony carrying minerals. At the west side of Iron Cap, the intensity of the phyllic overprint weakens and precursor propylitic assemblages are observed. Weak k-feldspar flooding in veins and vein haloes is associated with slightly elevated copper and gold grades at the bottom of hole IC-05-04. This may indicate a zonation towards stronger potassic alteration and higher copper and gold concentrations, and should be considered for further exploration.

The single hole in the West Mitchell zone collared in schistose, phyllic altered rocks, and terminated in strongly stockworked, potassic altered andesite or fine grained intrusive. This hole also may indicate a zonation towards stronger potassic alteration and mineralization, and should be considered for futher exploration.

The Icefields zone is considered the northeast continuation of the Sulphurets deposit. The style of alteration and mineralization is similar to siliceous hydrothermal breccias observed at the Breccia zone of the Sulphurets deposit. Here copper to gold ratios are much lower than other occurrences at Kerr-Sulphurets. It is also characterized by higher arsenic, antimony, lead and zinc concentrations. The controls are not well established, however an east-northeast projecting structural corridor could indicate continuity with the Snowfields zone, a further 1,700 metres on the adjacent Bruceside property.

At the Macquillan zone, strong silicification related to stockwork veining and hydrothermal breccias hosts low grade copper and gold with arsenopyrite and suggests a deeper, higher temperature environment peripheral to a porphyry copper-gold setting. Similar styles have been reported in occurrences on the adjacent Bruceside property. Consideration should be given to further testing in the opposite direction, west of this area towards and topographically underneath the Sulphurets deposit area.

The 2005 drill program has obcumented additional widespread alteration and weak mineralization that could reflect broad, diffusely-zoned alteration and scattered mineralization due to partial or complete dispersal of a potassic-Cu-Au core zone of a large porphyry system. It is not dear whether a large, core zone of economic grade was produced or remains. However, indications of increasing potassic alteration and Cu-Au mineralization in several drill holes warrant additional work. In order to assist in establishing alteration zoning vectors towards potentially economic copper and gold concentrations and confirming the suggestions presented above, petrographic examination of selected drill core samples should be undertaken. Additional mapping or geophysical surveys should be considered over any areas or targets where drill testing may be warranted.



#### Statement of Qualifications

- I, Michael John Savell declare that,
- I am a geologist and have been employed continuously with Falconbridge Limited since May, 1980. My address is 1004 Roxborough Drive, Oakville, Ontario, Canada, L6M 1E3.
- I graduated from Dalhousie University in Halifax, Nova Scotia with a B. Sc. (Honours) Degree in geology in 1980. I am a Practicing Member of the Association of Professional Geoscientists of Ontario (#0477).
- Lundertook work on the Kerr Sulphurets Project in 2005, and was on site from August 10 to September 4, 2005.
- I am not aware of any material fact or material change with respect to the subject matter of this report which is not reflected in this report, the omission of which would make this report misleading.
- My only association with the property and its vendor is as an employee of Falconbridge Limited. I have no financial interest of any sort with the property or it's vendor, nor will I receive any.

Dated at Toronto, Ontario on \_

NOVEMBER 10,

Michael Savell Principal Geologist Copper

Falconbridge Limited

#### Statement of Qualifications

I. Allan Andrew Huard declare that,

- I am a geologist and have been employed continuously with Falconbridge Limited (formerly Noranda Inc.) since May, 1986. My address is 234 Aliancroft Crescent, Beaconsfield, Quebec, H9W 1L7.
- I graduated from St. Francis Xavier University in Antigonish, Nova Scotia with a B. Sc. (First Class Honours) Degree in geology in 1984. I graduated from Memorial University of Newfoundland in St. John's, Newfoundland with an M. Sc. Degree in geology in 1989.
- I am a Practicing Member of the Association of Professional Geoscientists of Ontario (#204).

  I am a Practicing Member of the Professional Engineers and Geoscientists of British Columbia (#28972). I am a Practicing Member of the Professional Engineers and Geoscientists of Newfoundland and Labrador (#02248).
- I supervised the Kerr Sulphurets Project in 2005, and was on site from July 7 to August 13, 2005.
- I am not aware of any material fact or material change with respect to the subject matter of this report which is not reflected in this report, the omission of which would make this report misleading.
- My only association with the property and its vendor is as an employee of Falconbridge Limited. I have no financial interest of any sort with the property or it's vendor, nor will I receive any.

Dated at Laval, Quebec on November 15 / 2005

A. A. V. J. HUARD
# 28972

BRITISH
COLUMBIA
SCIEN

Allan Huard' Senior Project Geologist Falconbridge Limited

| Appendix 1: List of Person | nel and Contractors |  |
|----------------------------|---------------------|--|
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |

Appendix 1: List of Personnel & Contractors

| Personnel        |                   | Company            | Function         | Start           | End               | Days |
|------------------|-------------------|--------------------|------------------|-----------------|-------------------|------|
| Allan Huard      | Montreal, QC      | Falconbridge       | Supervision      | July 7, 2005    | August 13, 2005   | 37   |
| Sylvain Lapointe | Montreal, QC      | Falconbridge       | Core Logging     | July 7, 2005    | August 13, 2005   | 37   |
| Mike Savell      | Toronto, ON       | Falconbridge       | Supervision      | August 11, 2005 | September 4, 2005 | 24   |
| Richard Nieminen | Rouyn, QC         | Falconbridge       | Core Logging     | August 11, 2005 | September 4, 2005 | 24   |
| Elsa Perner      | Fort McMurray, AB | Nuggett Expediting | Cook / First Aid | July 9, 2005    | August 26, 2005   | 48   |
| Karen Groth      | Terrace, BC       | Nuggett Expediting | Cook / First Aid | August 25, 2005 | September 4, 2005 | 10   |
| Norbert Quock    | Telegraph Creek   | TNDC               | Core Sawing      | July 8, 2005    | July 11, 2005     | 3    |
| ""               |                   |                    |                  | July 21, 2005   | September 2, 2005 | 43   |
| Quentin Reid     | Telegraph Creek   | TNDC               | Core Sawing      | July 8, 2005    | July 11, 2005     | 3    |
| ""               |                   |                    |                  | July 21, 2005   | September 2, 2005 | 43   |
| Eric Drew        | Stewart, BC       | Nuggett Expediting | Camp technician  | July 7, 2005    | July 21, 2005     | 14   |
| 1111             |                   |                    |                  | July 25, 2005   | August 10, 2005   | 16   |
| Justin Little    | Stewart, BC       | Granmac Services   | Camp technician  | August 10, 2005 | September 2, 2005 | 23   |

#### Contractors

| CJL Enterprises | Smithers, BC | 2-person crew | Pad Building        | July 9, 2005  | September 4, 2005 | 114 |
|-----------------|--------------|---------------|---------------------|---------------|-------------------|-----|
| Hytech Drilling | Smithers, BC | 5-person crew | Drilling            | July 14, 2005 | September 2, 2005 | 250 |
| Lakelse Air     | Terrace, BC  | 1-person crew | Helicopter Services | July 9, 2005  | September 4, 2005 | 57  |

Total Days: 746





# Falconbridge Limited Exploration - North America 3296, avenue Francis-Hughes

Laval (Québec) Canada H7L 5A7 Tél: (450) 668-2112 Fax: (450) 668-2929

#### **Statement Of Exploration Expenditures** Kerr Sulphurets Property, BC July 1 to October 31, 2005

|                      | Total           | Total Ineligible | Total Eligible  |
|----------------------|-----------------|------------------|-----------------|
| General & Geology    | \$ 94,704.99    | \$ 15,015.29     | \$ 79,689.70    |
| Geophysics           | \$ 730.39       | \$ 730.39        | \$ -            |
| Geochemistry         |                 |                  |                 |
| Diamond Drilling     | \$ 1,006,527.84 | \$ 10,761.00     | \$ 995,766.84   |
| Camp Operations      | \$ 26,544.76    |                  | \$ 26,544.76    |
| Property Maintenance | \$ 17,745.43    | \$ 17,745.43     | \$ -            |
| Totals               | \$ 1,146,253.41 | \$ 44,252.11     | \$ 1,102,001.30 |

Certified Correct

Laina MacLean, CMA

Manager Exploration Accountanting





#### **Falconbridge Limited**

DDH:

IC-05-01

301

Company:

Contractor:

Located by:

Logged by:

Method:

Project:

**KERR-SULPHURETS** 

FALCONBRIDGE

HY-TECH

A. HUARD

Handheld GPS

S. LAPOINTE

Project #:

DDH Casing Location Intervenant

Azimuth: 310 Length (m): 3.3 Pulled: Dip: -50 Non Length (m): Plugged: 249.60 Oui Started: 7/16/2005 Cemented: Oui Completed: 7/18/2005 Core Logged: 7/19/2005

NQ2

Size: Storage: KERR CAMP Coordonnée - UTM

Easting: 424294 6266830 Northing: Elevation: 1465

NAD27 ZN9 Datum:

Claim #: 516248, 51624

Target:

Cu-Au Porphyry

Comments:

#### Directional Tests (C=Collar, R=Reflex)

| Distance | Azimuth | Dip    | Туре |
|----------|---------|--------|------|
| 0.00     | 310.00  | -50.00 | С    |



## Falconbridge Limited

DDH: Project: IC-05-01

KERR-SULPHURETS

Project #: 301

|       | (m)   | ·                                                                                                                                                         | Sample         | from           | to             | <b>Lengti</b> | ppm (ICP)    | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|---------------|--------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 0.00  | 3.30  | CASING                                                                                                                                                    |                |                |                |               |              |                  |                  |                  |                  |                  |                  |
|       |       | 3.0-3.3: Mm to cm scale rounded pebbles (overburden).                                                                                                     |                |                |                |               |              |                  |                  |                  |                  |                  |                  |
| 3.30  | 28.60 | ALTERED MONZONITE (I2M)                                                                                                                                   | 67001          | 3.30           | 5.30           | 2.00          | 4707         | 340              | 12               | 4.6              | 267              | 20               | 2                |
|       |       | I2M/QZ, SE/(PL)/5% PY,TR CP                                                                                                                               | 67002          | 5.30           | 7.30           | 2.00          | 4259         | 330              | 14               | 7.6              | 246              | 15               | 2                |
|       |       | Madium to light arous fine around non-magnetic alongs look magnitus rook                                                                                  | 67003          | 7.30           | 9.30           | 2.00          | 2939         | 250              | 11               | 4.2              | 129              | 40               | 2                |
|       |       | Medium to light grey, fine grained, non magnetic, glassy look massive rock.  Alteration: 3% white Qz veins and veinlets from <1 mm to 1 cm thick; spacing | 67004          | 9.30           | 11.30          | 2.00          | 3969         | 750              | 32               | 4.8              | 52               | 2                | 2                |
|       |       | between 30 and 40 cm and direction from 10 to 25 deg. Also 2% sericite in                                                                                 | 67005          | 11.30          | 13.30          | 2.00          | 3680         | 280              | 9                | 4.7              | 125              | 10               | 2                |
|       |       | winding veinlets <1 mm. Weak phyllic.                                                                                                                     | 67006          | 13.30          | 15.30          | 2.00          | 3440         | 400              | 7                | 6.2              | 181              | 40               | 2                |
|       |       | Miineralization: 5% Py as veins and veinlets and as disseminations. Traces of                                                                             | 67007          | 15.30          | 17.30          | 2.00          | 4325         | 430              | 7                | 3.6              | 111              | 30               | 2                |
|       |       | disseminated Cp.                                                                                                                                          | 67008          | 17.30          | 19.30          | 2.00          | 4830         | 730              | 6                | 13.3             | 711              | 235              | 155              |
|       |       | 13.3-13.9: Fragmented zone                                                                                                                                | 67009          | 19.30          | 21.30          | 2.00          | 2746         | 510              | 8                | 19.0             | 1623             | 225              | 125              |
|       |       | 10.0 10.0.1 Tagmontou 2010                                                                                                                                | 67010          | 21.30          | 23.30          | 2.00          | 1734         | 500              | 11               | 28.5             | 1296             | 50               | 2                |
|       |       | 18.7: Disagreted zone (C/A=45)                                                                                                                            | 67011          | 23.30          | 25.30          | 2.00          | 3550         | 320              | 13               | 13.2             | 974              | 40               | 2                |
|       |       | 20.0-22.8: QZ enriched chaotic zone with big FP patches.                                                                                                  | 67012<br>67013 | 25.30<br>27.30 | 27.30<br>29.30 | 2.00<br>2.00  | 1002<br>1431 | 430<br>270       | 15<br>16         | 2.2<br>5.0       | 47<br>316        | 105<br>50        | 2<br>2           |
|       |       | 28.2-28.6: Banding (shearing?) (C/A=45)                                                                                                                   |                |                |                |               |              |                  |                  |                  |                  |                  |                  |
| 28.60 | 50.00 | BLACK DOTTED MONZONITE (I2M)                                                                                                                              | 67014          | 29.30          | 31.30          | 2.00          | 3102         | 320              | 7                | 5.4              | 117              | 35               | 2                |
|       |       | I2M/QZ,SE/(PL)/6% PY,TR CP                                                                                                                                | 67015          | 31.30          | 33.30          | 2.00          | 3903         | 620              | 21               | 4.5              | 69               | 20               | 2                |
|       |       |                                                                                                                                                           | 67016          | 33.30          | 35.30          | 2.00          | 1885         | 1010             | 8                | 2.2              | 57               | 70               | 2                |
|       |       | Light grey to dark grey, black dotted rock; locally greenish; fine grained matrix, fine to medium grained mafic minerals (CHL after HBL?, 5-15%); non     | 67017          | 35.30          | 37.30          | 2.00          | 2040         | 680              | 12               | 2.1              | 52               | 80               | 2                |
|       |       | magnetic: massive.                                                                                                                                        | 67018          | 37.30          | 39.30          | 2.00          | 911          | 680              | 9                | 1.1              | 62               | 100              | 2                |
|       |       | Alteration:3% white Qz and white Cc veins and veinlets <1 mm to 1 cm thick;                                                                               | 67019          | 39.30          | 41.30          | 2.00          | 3110         | 630              | 14               | 7.2              | 247              | 45               | 2                |
|       |       | spacing of 30 to 40 cm and direction between 30 and 45 deg. Some minor                                                                                    | 67020          | 41.30          | 43.30          | 2.00          | 3577         | 820              | 11               | 2.9              | 40               | 50               | 2                |
|       |       | sericite in veinlets. Weak phyllic.                                                                                                                       | 67021          | 43.30          | 45.30          | 2.00          | 3144         | 950              | 15               | 3.2              | 46               | 100              | 2                |
|       |       | Mineralization: up to 6% disseminated and in veins and veinlets Py. Traces of Cp related to Py veins and veinlets and also as disseminations. One cm wide | 67022          | 45.30          | 47.30          | 2.00          | 2756         | 1950             | 5                | 4.4              | 458              | 70               | 2                |
|       |       | polymetallic white Qz vein (Py, Cp, Sp and Tr. Gl).                                                                                                       | 67023          | 47.30          | 49.30          | 2.00          | 3673         | 1240             | 7                | 4.2              | 1239             | 50               | 2                |
|       |       | 28.6: Disagreted zone (contact)                                                                                                                           |                |                |                |               |              |                  |                  |                  |                  |                  |                  |
|       |       | 40.1-42.3: Disagreted zone                                                                                                                                |                |                |                |               |              |                  |                  |                  |                  |                  |                  |
|       |       | 47.7: 1 cm wide polymetallic white Qz vein hosting Py, Cp, Sp and Tr. Gl.                                                                                 |                |                |                |               |              |                  |                  |                  |                  |                  |                  |
| 50.00 | 76.10 |                                                                                                                                                           | 67024          | 49.30          | 51.30          | 2.00          | 2986         | 680              | 4                | 1.1              | 61               | 15               | 2                |



## Falconbridge Limited

DDH:

IC-05-01

Project: KERR-SULPHURETS
Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                             | Sample | from   | to     | <b>Lengti</b><br>m | <b>h Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------------------|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | PORPHYRY MONZONITE (I2MPOR)                                                                                                                             | 67026  | 51.30  | 53.30  | 2.00               | 2084                     | 960              | 3                | 0.9              | 49               | 10               | 2                |
|             |                  | I2MPOR/(PL)/6% PY,0.5% CP,TR S                                                                                                                          | 67027  | 53.30  | 55.30  | 2.00               | 1807                     | 710              | 3                | 1.2              | 33               | 35               | 2                |
|             |                  | Light to anodicus areas subite and block detted and. Fine areined metric fine to                                                                        | 67028  | 55.30  | 57.30  | 2.00               | 2023                     | 750              | 2                | 1.8              | 37               | 40               | 2                |
|             |                  | Light to medium grey, white and black dotted rock. Fine grained matrix, fine to medium grained mafic minerals (CHL after HBL?, 5-15%); medium to coarse | 67029  | 57.30  | 59.30  | 2.00               | 2579                     | 9280             | 3                | 3.9              | 38               | 40               | 2                |
|             |                  | euhedral to anhedral white felspar crystals (5-20%); non magnetic; porphyric                                                                            | 67030  | 59.30  | 61.30  | 2.00               | 2349                     | 430              | 11               | 2.8              | 19               | 20               | 2                |
|             |                  | and massive rock.                                                                                                                                       | 67031  | 61.30  | 63.30  | 2.00               | 2165                     | 400              | 3                | 1.5              | 29               | 2                | 2                |
|             |                  | Alteration: 3% white Qz and white Cc veins and veinlets <1 mm to 1 cm thick;                                                                            | 67032  | 63.30  | 65.30  | 2.00               | 2326                     | 420              | 6                | 2.2              | 16               | 20               | 2                |
|             |                  | spacing of 30 to 40 cm and direction between 30 and 45 deg. Some minor                                                                                  | 67033  | 65.30  | 67.30  | 2.00               | 3981                     | 430              | 3                | 3.8              | 47               | 30               | 2                |
|             |                  | sericite in veinlets. Weak phyllic.                                                                                                                     | 67034  | 67.30  | 69.30  | 2.00               | 4469                     | 860              | 10               | 4.5              | 47               | 40               | 2                |
|             |                  | Mineralization: up to 6% Py as disseminations, patches and veins/veinlets. Between 0.5 and 1% Cp associated with 1 to 7 cm long Py rounded patches.     | 67035  | 69.30  | 71.30  | 2.00               | 1908                     | 530              | 4                | 3.6              | 172              | 105              | 2                |
|             |                  | Upper contact= intrusive breccia                                                                                                                        | 67036  | 71.30  | 73.30  | 2.00               | 3241                     | 930              | 7                | 5.0              | 612              | 75               | 2                |
|             |                  | Lower contact=Fault zone                                                                                                                                | 67037  | 73.30  | 75.30  | 2.00               | 4724                     | 850              | 7                | 9.5              | 163              | 90               | 2                |
|             |                  | 50.0-51.4: Intrusive breccia                                                                                                                            |        |        |        |                    |                          |                  |                  |                  |                  |                  |                  |
|             |                  | 53.3-53.7: Intrusive breccia                                                                                                                            |        |        |        |                    |                          |                  |                  |                  |                  |                  |                  |
|             |                  | 61.5-61.7: Intrusive breccia                                                                                                                            |        |        |        |                    |                          |                  |                  |                  |                  |                  |                  |
|             |                  | 62.6-63.0: Intrusive breccia                                                                                                                            |        |        |        |                    |                          |                  |                  |                  |                  |                  |                  |
| 76.10       | 129.30           | BLACK DOTTED MONZONITE (I2M)                                                                                                                            | 67038  | 75.30  | 77.30  | 2.00               | 968                      | 870              | 8                | 6.9              | 438              | 250              | 2                |
|             |                  | 12M/QZ,SE/(PL)/6% PY                                                                                                                                    | 67039  | 77.30  | 79.30  | 2.00               | 471                      | 1180             | 10               | 2.4              | 241              | 415              | 2                |
|             |                  |                                                                                                                                                         | 67040  | 79.30  | 81.30  | 2.00               | 1290                     | 500              | 10               | 1.5              | 98               | 160              | 2                |
|             |                  | Light grey to dark grey, black dotted rock; locally greenish; fine grained matrix,                                                                      | 67041  | 81.30  | 83.30  | 2.00               | 1002                     | 1010             | 15               | 13.1             | 89               | 190              | 2                |
|             |                  | fine to medium grained mafic minerals (CHL after HBL?, 5-20%); non                                                                                      | 67042  | 83.30  | 85.30  | 2.00               | 1333                     | 530              | 13               | 2.2              | 74               | 70               | 2                |
|             |                  | magnetic. Massive.  Alteration: 3% white Qz and white Cc veins and veinlets <1 mm to 1 cm thick;                                                        | 67043  | 85.30  | 87.30  | 2.00               | 1343                     | 1260             | 16               | 2.8              | 86               | 175              | 2                |
|             |                  | spacing of 30 to 40 cm and direction between 30 and 45 deg. Some minor                                                                                  | 67044  | 87.30  | 89.30  | 2.00               | 1161                     | 270              | 6                | 0.5              | 65               | 50               | 2                |
|             |                  | sericite in veinlets. Weak phyllic. Few reddish pink felspar grains locally                                                                             | 67045  | 89.30  | 91.30  | 2.00               | 367                      | 1200             | 12               | 0.4              | 51               | 135              | 2                |
|             |                  | (potassic alteration or hematization?).                                                                                                                 | 67046  | 91.30  | 93.30  | 2.00               | 376                      | 170              | 16               | 0.2              | 66               | 15               | 2                |
|             |                  | Mineralization: 6% Py as disseminations, patches and veins/veinlets.                                                                                    | 67047  | 93.30  | 95.30  | 2.00               | 736                      | 130              | 15               | 0.2              | 56               | 20               | 2                |
|             |                  |                                                                                                                                                         | 67048  | 95.30  | 97.30  | 2.00               | 716                      | 260              | 11               | 0.4              | 63               | 80               | 2                |
|             |                  | 76.1-78.3: Disagreted zone                                                                                                                              | 67049  | 97.30  | 99.30  | 2.00               | 1411                     | 330              | 27               | 0.7              | 65               | 40               | 2                |
|             |                  | 98.6-98.7: Slightly sericitized shear zone (C/A=45)                                                                                                     | 67101  | 99.30  | 101.30 | 2.00               | 1179                     | 430              | 4                | 0.7              | 69               | 75               | 2                |
|             |                  | 30.0-30.7. Oligitity Settotized Streat Zotte (C/A=43)                                                                                                   | 67102  | 101.30 | 103.30 | 2.00               | 762                      | 250              | 5                | 0.7              | 64               | 90               | 2                |
|             |                  | 102.2-102.4: Disagreted zone.                                                                                                                           | 67103  |        | 105.30 | 2.00               | 646                      | 190              | 5                | 0.7              | 66               | 30               | 2                |
|             |                  | ·                                                                                                                                                       | 67104  |        | 107.30 | 2.00               | 1284                     | 180              | 12               | 0.7              | 61               | 75               | 2                |
|             |                  | 123.8-124.0: Disagreted zone.                                                                                                                           | 67105  |        | 107.30 | 2.00               | 2228                     | 140              | 5                | 1.4              | 57               | 35               | 2                |
|             |                  |                                                                                                                                                         | 67106  |        | 111.30 | 2.00               | 763                      | 340              | 7                | 1.4              | 58               | 135              | 2                |
|             |                  |                                                                                                                                                         | 07 100 | 103.30 | 111.50 | 2.00               | 100                      | J4U              | ,                | 1.2              | 50               | 133              | _                |



## Falconbridge Limited

DDH:

IC-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | To Description (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample | from   | to     | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | As<br>ppm | <b>Sb</b><br>ppm |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|-----------------|------------------|------------------|------------------|------------------|-----------|------------------|
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67107  | 111.30 | 113.30 | 2.00          | 516             | 390              | 6                | 0.7              | 54               | 255       | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67108  | 113.30 | 115.30 | 2.00          | 619             | 840              | 7                | 0.9              | 56               | 130       | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67109  | 115.30 | 117.30 | 2.00          | 462             | 420              | 25               | 0.6              | 89               | 250       | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67110  | 117.30 | 119.30 | 2.00          | 443             | 470              | 10               | 2.1              | 107              | 230       | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67111  | 119.30 | 121.30 | 2.00          | 807             | 420              | 8                | 2.6              | 273              | 305       | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67112  |        | 123.30 | 2.00          | 1050            | 410              | 4                | 8.0              | 78               | 120       | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67113  |        | 125.30 | 2.00          | 1114            | 520              | 8                | 0.9              | 65               | 90        | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67114  |        | 127.30 | 2.00          | 890             | 530              | 7                | 0.9              | 57               | 100       | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67115  | 127.30 | 129.30 | 2.00          | 1141            | 400              | 12               | 2.1              | 42               | 85        | 2                |
| 129.30      | 186.40 MONZONITE (I2M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67116  | 129.30 | 131.30 | 2.00          | 1659            | 210              | 19               | 1.3              | 22               | 25        | 2                |
|             | I2M/7% PY,TR CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67117  | 131.30 | 133.30 | 2.00          | 2293            | 160              | 34               | 1.1              | 37               | 30        | 2                |
|             | Markey and Committee described and an arrange of the second and th | 67118  | 133.30 | 135.30 | 2.00          | 1641            | 230              | 13               | 0.9              | 21               | 15        | 2                |
|             | Medium grey; fine grained; non magnetic; granophyric and homogeneous massive rock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67119  | 135.30 | 137.30 | 2.00          | 2151            | 220              | 10               | 0.9              | 41               | 20        | 2                |
|             | Alteration: 2% white Qz and white Cc veins and veinlets <1 mm to 1 cm thick;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 67120  | 137.30 | 139.30 | 2.00          | 1662            | 140              | 12               | 0.4              | 56               | 10        | 2                |
|             | spacing of 30 to 40 cm and direction between 40 and 60 deg. Some minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67121  | 139.30 | 141.30 | 2.00          | 1219            | 190              | 14               | 0.3              | 55               | 2         | 2                |
|             | sericite in veinlets.Traces of fluorite and Chl in white Qz-Cc veins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67122  | 141.30 | 143.30 | 2.00          | 1893            | 170              | 11               | 0.7              | 47               | 15        | 2                |
|             | Mineralization: 7% Py as disseminations, patches and veins/veinlets. Rare Cp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 67123  | 143.30 | 145.30 | 2.00          | 2200            | 260              | 8                | 0.9              | 40               | 20        | 2                |
|             | is related to white Qz-Cc veins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67124  | 145.30 | 147.30 | 2.00          | 2136            | 290              | 10               | 8.0              | 50               | 15        | 2                |
|             | 136.7-136.9: Disagreted zone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67126  | 147.30 | 149.30 | 2.00          | 1621            | 170              | 10               | 0.5              | 58               | 20        | 2                |
|             | 130.7-130.3. Disagreted zone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67127  | 149.30 | 151.30 | 2.00          | 1897            | 180              | 17               | 0.4              | 52               | 5         | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67128  | 151.30 | 153.30 | 2.00          | 2940            | 280              | 20               | 0.7              | 58               | 10        | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67129  |        | 155.30 | 2.00          | 6113            | 650              | 10               | 1.3              | 59               | 10        | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67130  |        | 157.30 | 2.00          | 833             | 140              | 12               | 0.3              | 54               | 5         | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67131  |        | 159.30 | 2.00          | 1988            | 360              | 14               | 0.4              | 80               | 45        | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67132  | 159.30 | 161.30 | 2.00          | 1133            | 280              | 9                | 0.3              | 76               | 60        | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67133  | 161.30 | 163.30 | 2.00          | 1970            | 230              | 12               | 0.4              | 72               | 10        | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67134  |        | 165.30 | 2.00          | 3423            | 330              | 8                | 0.8              | 69               | 35        | 5                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67135  |        | 167.30 | 2.00          | 2197            | 520              | 8                | 0.7              | 68               | 140       | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67136  |        | 169.30 | 2.00          | 3742            | 260              | 16               | 1.6              | 68               | 15        | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67137  |        | 171.30 | 2.00          | 1425            | 180              | 34               | 1.7              | 79               | 50        | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67138  |        | 173.30 | 2.00          | 1796            | 230              | 13               | 0.9              | 74               | 70        | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67139  | 173.30 |        | 2.00          | 3034            | 160              | 11               | 0.7              | 70               | 65        | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67140  |        | 177.30 | 2.00          | 2321            | 150              | 34               | 0.4              | 74               | 65        | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67141  |        | 179.30 | 2.00          | 1737            | 190              | 27               | 0.2              | 332              | 30        | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67142  |        | 181.30 | 2.00          | 2218            | 120              | 9                | 2.1              | 241              | 25        | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67143  |        | 183.30 | 2.00          | 2174            | 160              | 25               | 4.0              | 79               | 15        | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67144  |        | 185.30 | 2.00          | 2624            | 170              | 17               | 6.9              | 69               | 20        | 2                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67145  | 185.30 | 187.30 | 2.00          | 5034            | 570              | 16               | 58.0             | 5811             | 85        | 15               |



## Falconbridge Limited

DDH: Project: IC-05-01 KERR-SULPHURETS

Project #:

301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                              | Sample | from   | to     | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 186.40      | 205.30           | ALTERED MONZONITE (I2M)                                                                                                                                                                                  | 67146  | 187.30 | 189.30 | 2.00          | 1912            | 740              | 10               | 4.0              | 74               | 150              | 2                |
|             |                  | I2M/(PL)/8% PY,TR CP,TR SP,TR                                                                                                                                                                            | 67147  | 189.30 | 191.30 | 2.00          | 2706            | 380              | 8                | 4.2              | 46               | 80               | 2                |
|             |                  |                                                                                                                                                                                                          | 67148  | 191.30 | 193.30 | 2.00          | 2078            | 220              | 133              | 4.2              | 131              | 35               | 2                |
|             |                  | Pale grey; fine grained; non magnetic; glassy look massive rock.  Alteration: 6% white Qz-white to pinkish Cc veins/veinlets with, locally, traces                                                       | 67149  | 193.30 | 195.30 | 2.00          | 1927            | 320              | 25               | 4.3              | 94               | 40               | 2                |
|             |                  | of sericite and Chl. At least, two Qz-Cc vein generations: 1) epithermal thicker                                                                                                                         | 67151  | 195.30 | 197.30 | 2.00          | 1906            | 220              | 26               | 4.7              | 59               | 20               | 2                |
|             |                  | Qz-pinkish Cc veins (subparallel to C/A); 2) thinner white QZ-Cc veins (40-70                                                                                                                            | 67152  | 197.30 | 199.30 | 2.00          | 2266            | 920              | 13               | 18.6             | 1143             | 65               | 2                |
|             |                  | deg to C/A). Weak phyllic.                                                                                                                                                                               | 67153  | 199.30 | 201.30 | 2.00          | 4309            | 1260             | 28               | 65.1             | 13600            | 100              | 350              |
|             |                  | Mineralization: 8% Py as disseminations, patches and veins/veinlets. A 30 cm                                                                                                                             | 67154  |        | 203.30 | 2.00          | 1563            | 270              | 11               | 7.1              | 6062             | 40               | 2                |
|             |                  | banded zone composed of Qz-Cc-(Sr)-Py-Cp(8%)-Gl (Tr) outlined the upper contact of the unit. A mineralized epithermal Qz-pinkish Cc vein has also been encountered (see below).  Lower contact: Gradual. | 67155  | 203.30 | 205.30 | 2.00          | 2130            | 580              | 17               | 5.9              | 184              | 35               | 2                |
|             |                  | 186.4-186.7: Upper contact/banded shear zone mostly composed of white Qz, white to pinkish Cc and traces of sericite.It contains Py, up to Cp (8%) and traces of galena (C/A=45; see picture).           |        |        |        |               |                 |                  |                  |                  |                  |                  |                  |
|             |                  | 199.6-201.0: Epithermal Qz-pinkish Cc mineralized vein (Py-1% brownish altered Sp-0.5% Ag min.?) (see picture).                                                                                          |        |        |        |               |                 |                  |                  |                  |                  |                  |                  |
| 205.30      | 249.60           | PORPHYRIC MONZONITE (I2M)                                                                                                                                                                                | 67156  | 205.30 | 207.30 | 2.00          | 1793            | 350              | 12               | 4.2              | 127              | 135              | 2                |
|             |                  | I2M/PORP/(PL)/6% PY,TR CP                                                                                                                                                                                | 67157  | 207.30 | 209.30 | 2.00          | 931             | 490              | 18               | 2.9              | 130              | 85               | 2                |
|             |                  | Light to dark medium grey, white dotted rock. Fine grained matrix, fine to                                                                                                                               | 67158  | 209.30 |        | 2.00          | 1408            | 520              | 13               | 2.1              | 131              | 135              | 2                |
|             |                  | coarse euhedral to anhedral white felspar crystals (5-20%); non magnetic:                                                                                                                                | 67159  | 211.30 |        | 2.00          | 673             | 360              | 10               | 1.5              | 45               | 150              | 2                |
|             |                  | porphyritic and massive rock. Some paler metric intervals with a glassy look.                                                                                                                            | 67160  |        | 215.30 | 2.00          | 848             | 720              | 6                | 1.8              | 56               | 140              | 2                |
|             |                  | Alteration: 3% white Qz and white Cc veins and veinlets <1 mm to 3 cm thick;                                                                                                                             | 67161  | 215.30 |        | 2.00          | 1159            | 200              | 7                | 1.0              | 52               | 100              | 2                |
|             |                  | spacing of 20 to 40 cm and direction between 25 and 40 deg. Some minor                                                                                                                                   | 67162  | 217.30 |        | 2.00          | 960             | 210              | 6                | 0.7              | 29               | 115              | 2                |
|             |                  | sericite and Chl in veinlets. Weak phyllic. Locally, traces of hematization.                                                                                                                             | 67163  | 219.30 |        | 2.00          | 604             | 440              | 5                | 0.5              | 34               | 110              | 2                |
|             |                  | Mineralization: 6% Py as disseminations, patches and veins/veinlets. Traces of Cp locally related to Py veins or veinlets.                                                                               | 67164  | 221.30 |        | 2.00          | 943             | 220              | 10               | 0.4              | 42               | 40               | 2                |
|             |                  | of op locally related to 1 y veints of veintets.                                                                                                                                                         | 67165  | 223.30 |        | 2.00          | 506             | 70               | 4                | 0.2              | 40               | 50               | 2                |
|             |                  | 214.8: Nice exeample of host rock (monzonite) brecciation by pinkish Cc vein                                                                                                                             | 67166  | 225.30 |        | 2.00          | 702             | 170              | 6                | 0.4              | 37               | 55               | 2                |
|             |                  | ("epithermal").                                                                                                                                                                                          | 67167  | 227.30 |        | 2.00          | 2097            | 270              | 7                | 0.9              | 35               | 10               | 2                |
|             |                  |                                                                                                                                                                                                          | 67168  | 229.30 |        | 2.00          | 1682            | 180              | 14               | 0.8              | 33               | 20               | 2                |
|             |                  | 233.2-234.0: Slightly disagreted badly broken rock                                                                                                                                                       | 67169  | 231.30 |        | 2.00          | 892             | 240              | 12               | 0.8              | 34               | 70               | 2                |
|             |                  | 235.9-236.2: Slightly disagreted badly broken rock                                                                                                                                                       | 67170  | 233.30 |        | 2.00          | 1759            | 240              | 60               | 2.7              | 126              | 55               | 2                |
|             |                  | 200.0 200.2. Oliginiy dibagiotod badiy biokon fook                                                                                                                                                       | 67171  | 235.30 |        | 2.00          | 975             | 250              | 9                | 1.6              | 24               | 55               | 2                |
|             |                  |                                                                                                                                                                                                          | 67172  | 237.30 |        | 2.00          | 1149            | 490              | 6                | 0.9              | 26               | 105              | 2                |
|             |                  |                                                                                                                                                                                                          | 67173  | 239.30 |        | 2.00          | 718             | 330              | 5                | 1.0              | 30               | 105              | 2                |
|             |                  |                                                                                                                                                                                                          | 67174  |        | 243.30 | 2.00          | 625             | 460              | 5                | 1.2              | 20               | 45               | 2                |
|             |                  |                                                                                                                                                                                                          | 67176  | 243.30 | 245.30 | 2.00          | 502             | 260              | 5                | 1.2              | 21               | 80               | 2                |

09-Nov-05 9:45:13 PM



## Falconbridge Limited

DDH:

IC-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description | Sample         | from | to               | <b>Length</b> | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|-------------|----------------|------|------------------|---------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  |             | 67177<br>67178 |      | 247.30<br>249.30 | 2.00<br>2.00  | 1017<br>476            | 270<br>320       | 7<br>5           | 1.8<br>0.6       | 27<br>29         | 60<br>45         | 2 2              |

09-Nov-05 9:45:13 PM Page 5 of 5



### **Falconbridge Limited**

DDH:

IC-05-02

Project:

**KERR-SULPHURETS** 

Project #: 301

DDH Casing Azimuth: 310 Length (m): 0.9 Pulled: Dip: -50 Non Length (m): Plugged: 250.00 Oui Started: 7/18/2005 Cemented: Oui Completed: 7/19/2005 Core Logged: 7/20/2005

Size: NQ2

Storage: KERR CAMP

Location

Coordonnée - UTM
Easting: 424581
Northing: 6266993

Elevation: 1460

Datum: NAD27 ZN9

**Claim #:** 516248

Intervenant

Company: FALCONBRIDGE

Contractor: HY-TECH
Located by: A. HUARD
Method: Handheld GPS

Logged by: S. LAPOINTE

Target:

Cu-Au Porphyry

Comments:

#### Directional Tests (C=Collar, R=Reflex)

 Distance
 Azimuth
 Dip
 Type

 0.00
 310.00
 -50.00



## Falconbridge Limited

DDH: Project: IC-05-02

KERR-SULPHURETS

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                          | Sample | from  | to    | <b>Length</b><br>m | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ад</b><br>ррт | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|--------------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 0.00        | 0.90             | OVERBURDEN                                                                                                                                           |        |       |       |                    |                        |                  |                  |                  |                  |                  |                  |
|             |                  | <ul><li>0.6-0.9: Overburden (polygenic pebbles).</li><li>0.9-1.5: Beginning of the first unit</li></ul>                                              |        |       |       |                    |                        |                  |                  |                  |                  |                  |                  |
| 0.90        | 36.90            | METASOMATIC ROCK                                                                                                                                     | 67179  | 0.90  | 2.90  | 2.00               | 871                    | 240              | 18               | 1.9              | 11               | 60               | 2                |
|             |                  | MASP/QZ,SE/SI+,(PL)                                                                                                                                  | 67180  | 2.90  | 4.90  | 2.00               | 600                    | 270              | 6                | 0.9              | 17               | 50               | 2                |
|             |                  |                                                                                                                                                      | 67181  | 4.90  | 6.90  | 2.00               | 2146                   | 470              | 20               | 8.2              | 109              | 175              | 20               |
|             |                  | Massive aphanitic medium grey rock with a brownish teint in the first 6                                                                              | 67182  | 6.90  | 8.90  | 2.00               | 1162                   | 190              | 8                | 1.8              | 200              | 55               | 2                |
|             |                  | meters. Non magnetic.  Alteration: pervasively silicified rock. Also 2-3% white Qz veins and veinlets                                                | 67183  | 8.90  | 10.90 | 2.00               | 761                    | 210              | 17               | 1.8              | 109              | 40               | 2                |
|             |                  | <1 mm to 3 cm thick (spacing of 20 to 50 cm and 20-70 deg with C/A). 3-4%                                                                            | 67184  | 10.90 | 12.90 | 2.00               | 1557                   | 240              | 16               | 2.6              | 57               | 35               | 2                |
|             |                  | sericite as diffused patches and bands and fracture fillings. Iron hydroxyde                                                                         | 67185  | 12.90 | 14.90 | 2.00               | 1686                   | 240              | 13               | 1.4              | 15               | 35               | 2                |
|             |                  | common where the rock is the most fragmented and fratured. Lower contact                                                                             | 67186  | 14.90 | 16.90 | 2.00               | 1255                   | 170              | 10               | 1.6              | 23               | 25               | 2                |
|             |                  | gradual.                                                                                                                                             | 67187  | 16.90 | 18.90 | 2.00               | 1039                   | 140              | 14               | 2.5              | 47               | 35               | 2                |
|             |                  | Mineralization: 4-5% pyrite mostly as disseminations, veinlets, blebs and some veins. Locally higher concentration where white Qz and Se are more    | 67188  | 18.90 | 20.90 | 2.00               | 2410                   | 180              | 29               | 5.5              | 126              | 55               | 10               |
|             |                  | abundant.                                                                                                                                            | 67189  | 20.90 | 22.90 | 2.00               | 984                    | 210              | 14               | 2.4              | 88               | 40               | 2                |
|             |                  |                                                                                                                                                      | 67190  | 22.90 | 24.90 | 2.00               | 2215                   | 320              | 14               | 5.2              | 71               | 60               | 2                |
|             |                  | 2.6-3.4: Rock badly broken.                                                                                                                          | 67191  | 24.90 | 26.90 | 2.00               | 592                    | 320              | 23               | 1.0              | 19               | 65               | 2                |
|             |                  | 0.0.0 Counties On and Charain heating 450/ Division and matches                                                                                      | 67192  | 26.90 | 28.90 | 2.00               | 806                    | 350              | 16               | 2.2              | 42               | 100              | 2                |
|             |                  | 8.2-8.6: white Qz and Ch vein hosting 15% Py as veins and patches.                                                                                   | 67193  | 28.90 | 30.90 | 2.00               | 3208                   | 440              | 17               | 6.3              | 37               | 130              | 2                |
|             |                  | 14.4-14.9: rock badly broken.                                                                                                                        | 67194  | 30.90 | 32.90 | 2.00               | 2945                   | 910              | 18               | 5.2              | 53               | 140              | 2                |
|             |                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                | 67195  | 32.90 | 34.90 | 2.00               | 3410                   | 1220             | 19               | 4.5              | 18               | 95               | 2                |
|             |                  | 32.0-36.6: rock very fragmented and blocky. Mean of 2 cm long core fragment.                                                                         | 67196  | 34.90 | 36.90 | 2.00               | 2601                   | 660              | 22               | 1.9              | 35               | 80               | 2                |
| 36.90       | 66.90            | METASOMATIC ROCK                                                                                                                                     | 67197  | 36.90 | 38.90 | 2.00               | 1654                   | 440              | 26               | 0.9              | 13               | 25               | 2                |
|             |                  | MASP/SE/SI+,PL/3% PY,TR CP                                                                                                                           | 67198  | 38.90 | 40.90 | 2.00               | 1642                   | 300              | 23               | 1.3              | 10               | 30               | 2                |
|             |                  | Massive appearation pale to madium group alternating with pale to madium alive                                                                       | 67199  | 40.90 | 42.90 | 2.00               | 1165                   | 330              | 32               | 0.5              | 32               | 80               | 2                |
|             |                  | Massive aphanitic pale to medium grey alternating with pale to medium olive green rock. Non magnetic. Locally with small sericitic brecciated zones. | 67201  | 42.90 | 44.90 | 2.00               | 3194                   | 370              | 41               | 1.7              | 28               | 90               | 2                |
|             |                  | Alteration: pervasively silicified rock. Also 1-2% white Qz veinlets <1 to 2 mm                                                                      | 67202  | 44.90 | 46.90 | 2.00               | 1790                   | 270              | 32               | 1.2              | 23               | 55               | 2                |
|             |                  | thick . About 10%(?) chlorite mainly as decimetric to metric size green teinted                                                                      | 67203  | 46.90 | 48.90 | 2.00               | 1205                   | 280              | 10               | 1.0              | 39               | 70               | 2                |
|             |                  | intervals. Chlorite is also present as veinlets and halo at margins of breccia                                                                       | 67204  | 48.90 | 50.90 | 2.00               | 3791                   | 480              | 31               | 1.9              | 40               | 65               | 2                |
|             |                  | zones and as patches in it. Only traces of white Cc veinlets. Lower contact is                                                                       | 67205  | 50.90 | 52.90 | 2.00               | 2547                   | 270              | 19               | 0.9              | 67               | 35               | 2                |
|             |                  | outlined by a pyritic 15 cm thick brecciated interval.  Mineralization: 3% pyrite mostly as disseminations, veinlets, blebs and some                 | 67206  | 52.90 | 54.90 | 2.00               | 3626                   | 1690             | 38               | 0.9              | 92               | 45               | 2                |
|             |                  | veins. Pyrite seems to be more abundant in chloritic intervals and particularly                                                                      | 67207  | 54.90 | 56.90 | 2.00               | 9986                   | 1690             | 85               | 2.1              | 184              | 40               | 2                |
|             |                  | in small chloritic brecciated zones. One of the brecciated zones hosts traces                                                                        | 67208  | 56.90 | 58.90 | 2.00               | 7712                   | 290              | 95               | 1.9              | 70               | 20               | 2                |
|             |                  | of chalcopyrite as halo around a pyrite bleb.                                                                                                        | 67209  | 58.90 | 60.90 | 2.00               | 3634                   | 460              | 32               | 1.7              | 115              | 50               | 2                |
|             |                  |                                                                                                                                                      | 67210  | 60.90 | 62.90 | 2.00               | 4137                   | 300              | 53               | 3.7              | 108              | 85               | 10               |



## Falconbridge Limited

DDH:

IC-05-02

Project: KERR-SULPHURETS
Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                     | Sample         | from           | to             | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|---------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | 45.3-46.8: Pale olive green teinted banded chloritic interval. Banding is due to pyrite grains and blebs regular alignment along greyer thin bands (1 mm thick). Probably magmatic texture. C/A=10-15 deg.                                                                      | 67211<br>67212 | 62.90<br>64.90 | 64.90<br>66.90 | 2.00<br>2.00  | 1953<br>389     | 160<br>120       | 61<br>81         | 1.9<br>1.2       | 55<br>76         | 60<br>40         | 2 2              |
|             |                  | 51.5-53.8: Badly broken and locally disagreted rock.                                                                                                                                                                                                                            |                |                |                |               |                 |                  |                  |                  |                  |                  |                  |
|             |                  | 54.2-56.2: four cm to decm scale hydrothermally altered and brecciated zones. Charactherized by Ch halo at margin and abundant Ch as matrix. The pyrite content is higher in those zones and one of them hosts traces of chalcopyrite as halo around a pyrite bleb (55.8-56.2). |                |                |                |               |                 |                  |                  |                  |                  |                  |                  |
| 66.90       | 170.90           | METASOMATIC ROCK                                                                                                                                                                                                                                                                | 67213          | 66.90          | 68.90          | 2.00          | 948             | 220              | 221              | 1.7              | 104              | 50               | 2                |
|             |                  | SI+,(PL)/5% PY,TR SP,TR CP,TR                                                                                                                                                                                                                                                   | 67214          | 68.90          | 70.90          | 2.00          | 1998            | 280              | 26               | 1.7              | 29               | 20               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                 | 67215          | 70.90          | 72.90          | 2.00          | 1297            | 170              | 49               | 1.0              | 48               | 10               | 2                |
|             |                  | Massive aphanitic pale to medium grey and pale olive green rock. Non                                                                                                                                                                                                            | 67216          | 72.90          | 74.90          | 2.00          | 473             | 290              | 39               | 0.7              | 29               | 10               | 2                |
|             |                  | magnetic.                                                                                                                                                                                                                                                                       | 67217          | 74.90          | 76.90          | 2.00          | 1265            | 250              | 45               | 1.3              | 69               | 20               | 2                |
|             |                  | Alteration: pervasively silicified rock. Also 15-20% decim to meter scale                                                                                                                                                                                                       | 67218          | 76.90          | 78.90          | 2.00          | 1692            | 240              | 46               | 1.5              | 77               | 10               | 2                |
|             |                  | mineralized white Qz veins. Also 2-5% white Qz smaller veins and veinlets <1 mm to 1.5 cm thick (spacing of 20-40 cm and C/A of 50 to 70). About 5%(?)                                                                                                                          | 67219          | 78.90          | 80.90          | 2.00          | 1953            | 240              | 49               | 2.1              | 112              | 10               | 2                |
|             |                  | sericite mainly as decimetric size green teinted intervals. Sericite is also                                                                                                                                                                                                    | 67220          | 80.90          | 82.90          | 2.00          | 1370            | 180              | 13               | 1.9              | 39               | 10               | 2                |
|             |                  | present as veinlets which define locally the matrix of initiating breccia zone.                                                                                                                                                                                                 |                |                | 84.90          | 2.00          | 1013            | 250              | 46               | 3.7              | 167              | 10               |                  |
|             |                  | We note few cm scale angular resinous Ch patches (completely replaced                                                                                                                                                                                                           | 67221          | 82.90          |                |               |                 |                  | _                |                  | -                | -                | 2                |
|             |                  | fragments?). Only traces of white Cc as veinlets and small patches.                                                                                                                                                                                                             | 67222          | 84.90          | 86.90          | 2.00          | 848             | 330              | 30               | 3.9              | 386              | 20               | 2                |
|             |                  | Mineralization: 5% pyrite mostly as disseminations, veinlets, blebs and some                                                                                                                                                                                                    | 67223          | 86.90          | 88.90          | 2.00          | 1196            | 460              | 27               | 7.0              | 676              | 75               | 10               |
|             |                  | veins. Up to 20%, locally massive, insome larger white Qz veins. Local Tr of                                                                                                                                                                                                    | 67224          | 88.90          | 90.90          | 2.00          | 1106            | 490              | 23               | 7.4              | 2231             | 95               | 2                |
|             |                  | Sp, as veinlets and blebs, and Cp, as small patches, also associated with                                                                                                                                                                                                       | 67226          | 90.90          | 92.90          | 2.00          | 3713            | 660              | 30               | 101.0            | 5211             | 565              | 530              |
|             |                  | those veins. Cp is also locally associated with small white Qz veins and                                                                                                                                                                                                        | 67227          | 92.90          | 94.90          | 2.00          | 716             | 630              | 12               | 12.7             | 316              | 105              | 15               |
|             |                  | veinlets.                                                                                                                                                                                                                                                                       | 67228          | 94.90          | 96.90          | 2.00          | 1234            | 470              | 11               | 4.1              | 99               | 40               | 2                |
|             |                  | Lower contact: gradual.                                                                                                                                                                                                                                                         | 67229          | 96.90          | 98.90          | 2.00          | 1526            | 180              | 20               | 2.5              | 121              | 15               | 2                |
|             |                  | 67.0-67.15: Upper contact. Pyritic breccia with black apahanitic matrix and                                                                                                                                                                                                     | 67230          | 98.90          | 100.90         | 2.00          | 1301            | 200              | 18               | 2.9              | 149              | 25               | 2                |
|             |                  | angular 1 to 2 cm grey host rock fragments. 40% Py mainly as an almost                                                                                                                                                                                                          | 67231          | 100.90         | 102.90         | 2.00          | 1664            | 260              | 21               | 3.7              | 58               | 35               | 2                |
|             |                  | massive band (C/A=70).                                                                                                                                                                                                                                                          | 67232          | 102.90         | 104.90         | 2.00          | 2160            | 270              | 35               | 4.5              | 87               | 35               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                 | 67233          | 104.90         | 106.90         | 2.00          | 1588            | 610              | 11               | 2.0              | 26               | 60               | 2                |
|             |                  | 76.9-77.3: Badly broken rock.                                                                                                                                                                                                                                                   | 67234          | 106.90         | 108.90         | 2.00          | 2247            | 610              | 22               | 6.1              | 191              | 35               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                 | 67235          | 108.90         |                | 2.00          | 2211            | 400              | 13               | 20.5             | 2258             | 130              | 2                |
|             |                  | 90.3-90.7: Epithermal(?) vein. Look like host rock with a bit more white Qz                                                                                                                                                                                                     | 67236          | 110.90         |                | 2.00          | 3834            | 2790             | 13               | 16.0             | 757              | 115              | 2                |
|             |                  | and Se. 20% Py as disseminations, veins and veinlets and Tr to 1% brownish                                                                                                                                                                                                      | 67237          | 112.90         |                | 2.00          | 1355            | 220              | 28               | 2.6              | 249              | 35               | 2                |
|             |                  | soft mineral (probably Sp) as veinlets. Sp veinlets crosscut Py concentrations.                                                                                                                                                                                                 | 67238          | 114.90         |                | 2.00          | 3079            | 250              | 54               | 4.1              | 224              | 60               | 2                |
|             |                  | (C/A=60)                                                                                                                                                                                                                                                                        | 67239          | 116.90         |                | 2.00          | 3079<br>1777    | 220              | 54<br>21         | 3.4              | 121              | 35               | 2                |
|             |                  | 91.5-92.75: Idem to the latter but with 1% of a disseminated black metallic                                                                                                                                                                                                     |                |                |                |               |                 |                  |                  |                  |                  |                  |                  |
|             |                  | mineral (chalcosite?). Also traces of Cp (C/A=55).                                                                                                                                                                                                                              | 67240          | 118.90         |                | 2.00          | 1641            | 130              | 25               | 3.2              | 36               | 15               | 2                |
|             |                  | (3                                                                                                                                                                                                                                                                              | 67241          | 120.90         |                | 2.00          | 1779            | 190              | 24               | 5.7              | 131              | 50               | 2                |
|             |                  | 93.6-93.9: White Qz vein with green chlorite and 20% Py as massive cm                                                                                                                                                                                                           | 67242          | 122.90         | 124.90         | 2.00          | 7382            | 420              | 70               | 30.0             | 536              | 100              | 55               |



## Falconbridge Limited

DDH: Project: IC-05-02

KERR-SULPHURETS

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                           | Sample | from   | to     | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ад</b><br>ррт | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | scale patches. Upper contact of the vein charactherized by a 10 cm thick                                                                                                                                              | 67243  | 124.90 | 126.90 | 2.00          | 5448            | 290              | 136              | 13.0             | 260              | 25               | 2                |
|             |                  | banded green Ch rich zone (C/A=45).                                                                                                                                                                                   | 67244  | 126.90 | 128.90 | 2.00          | 2123            | 160              | 60               | 5.2              | 148              | 30               | 2                |
|             |                  | 100 1 101 0 Padly broken rook                                                                                                                                                                                         | 67245  | 128.90 | 130.90 | 2.00          | 1401            | 200              | 29               | 3.8              | 373              | 25               | 2                |
|             |                  | 100.4-101.2:Badly broken rock.                                                                                                                                                                                        | 67246  | 130.90 | 132.90 | 2.00          | 1449            | 270              | 26               | 4.8              | 303              | 45               | 2                |
|             |                  | 101.2-101.8: white Qz vein with 10% Py.                                                                                                                                                                               | 67247  | 132.90 | 134.90 | 2.00          | 2442            | 420              | 34               | 7.7              | 226              | 35               | 20               |
|             |                  | ,                                                                                                                                                                                                                     | 67248  | 134.90 | 136.90 | 2.00          | 2234            | 220              | 57               | 6.1              | 92               | 10               | 2                |
|             |                  | 106.9-111.9: High density of mineralized white QZ veins. Mean of 20-25% Py                                                                                                                                            | 67249  | 136.90 | 138.90 | 2.00          | 1813            | 210              | 31               | 5.2              | 109              | 20               | 2                |
|             |                  | mainly as patches and veinlets.                                                                                                                                                                                       | 67251  | 138.90 | 140.90 | 2.00          | 1094            | 190              | 30               | 3.0              | 116              | 25               | 2                |
|             |                  | Incl. 110.6-111.1: Almost massive Py.                                                                                                                                                                                 | 67252  | 140.90 | 142.90 | 2.00          | 1201            | 200              | 14               | 3.3              | 360              | 30               | 2                |
|             |                  | 123.5-126.0: White Qz rich zone with 10-15% Py as disseminations, patches                                                                                                                                             | 67253  | 142.90 | 144.90 | 2.00          | 1554            | 230              | 28               | 4.9              | 138              | 30               | 2                |
|             |                  | and veinlets. Also traces of Cp as overprinting of some Pv patches and as a                                                                                                                                           | 67254  | 144.90 | 146.90 | 2.00          | 1196            | 180              | 11               | 4.3              | 122              | 25               | 2                |
|             |                  | veinlet.                                                                                                                                                                                                              | 67255  | 146.90 | 148.90 | 2.00          | 1478            | 160              | 26               | 4.9              | 127              | 25               | 2                |
|             |                  |                                                                                                                                                                                                                       | 67256  | 148.90 | 150.90 | 2.00          | 1603            | 260              | 23               | 7.0              | 282              | 45               | 5                |
|             |                  | 129.2: Banded white Qz vein (C/A=45)                                                                                                                                                                                  | 67257  | 150.90 | 152.90 | 2.00          | 2337            | 320              | 17               | 5.8              | 216              | 40               | 2                |
|             |                  | 404 0 400 F. Dadky hydron and locally discounted made Case                                                                                                                                                            | 67258  | 152.90 | 154.90 | 2.00          | 3087            | 310              | 38               | 5.9              | 145              | 50               | 2                |
|             |                  | 131.0-132.5: Badly broken and locally disagreted rock. Cave.                                                                                                                                                          | 67259  | 154.90 | 156.90 | 2.00          | 5487            | 570              | 66               | 13.6             | 62               | 20               | 2                |
|             |                  | 133.2.: Banded white Qz vein (C/A=50)                                                                                                                                                                                 | 67260  | 156.90 | 158.90 | 2.00          | 2577            | 1170             | 34               | 44.6             | 748              | 240              | 170              |
|             |                  | Too.z Bandod Willo Q2 Your (G/Y=00)                                                                                                                                                                                   | 67261  | 158.90 | 160.00 | 1.10          | 1983            | 2810             | 29               | 103.0            | 1181             | 320              | 185              |
|             |                  | 153.2-153.7: Badly broken rock.                                                                                                                                                                                       | 67310  | 160.00 | 160.90 | 0.90          | 2831            | 500              | 67               | 18.2             | 248              | 135              | 25               |
|             |                  |                                                                                                                                                                                                                       | 67262  | 160.90 | 162.90 | 2.00          | 1613            | 870              | 34               | 16.0             | 138              | 115              | 10               |
|             |                  | 158.5-158.7: Mineralized hydrothermal white Qz vein. Discontinuous Sp-Gl                                                                                                                                              | 67263  | 162.90 | 164.90 | 2.00          | 3243            | 500              | 21               | 26.6             | 259              | 110              | 45               |
|             |                  | veinlets hosted by white Qz. About 1% Sp+GI.                                                                                                                                                                          | 67264  | 164.90 | 166.90 | 2.00          | 2018            | 210              | 54               | 5.6              | 55               | 45               | 5                |
|             |                  | 158.9-160.0: Mineralized hydrothermal breccia (white angular white Qz                                                                                                                                                 | 67265  |        |        | 2.00          | 2723            | 150              | 70               | 4.6              | 49               | 45               | 10               |
|             |                  | fragments floating in a dark grey aphanitic matrix. Discontinuous Sp-Cp-Gl veinlets hosted by white Qz. About 1% Sp+Gl and traces of Co for the interval Incl.158.9-159.4: High fragment density mineralized breccia. | 67266  | 168.90 | 170.90 | 2.00          | 3176            | 630              | 27               | 4.0              | 17               | 45               | 2                |
| 170.90      | 250.00           | D METASOMATIC ROCK                                                                                                                                                                                                    | 67267  | 170.90 |        | 2.00          | 5935            | 600              | 130              | 7.2              | 67               | 30               | 2                |
|             |                  | MASP/SI,PL/3-4% PY,TR CP,TR SP                                                                                                                                                                                        | 67268  | 172.90 | 174.90 | 2.00          | 5534            | 490              | 94               | 8.7              | 112              | 50               | 2                |
|             |                  |                                                                                                                                                                                                                       | 67269  | 174.90 | 176.90 | 2.00          | 1679            | 430              | 22               | 2.7              | 119              | 55               | 2                |
|             |                  | Massive to slightly banded aphanitic pale greenish grey to medium olive green                                                                                                                                         | 67270  | 176.90 | 178.90 | 2.00          | 1812            | 490              | 9                | 3.3              | 19               | 45               | 2                |
|             |                  | rock. Non magnetic.  Alteration: Pervasively silicified rock. Also 3% white Qz veins and veinlets <1                                                                                                                  | 67271  | 178.90 | 180.90 | 2.00          | 1617            | 430              | 14               | 2.3              | 7                | 25               | 2                |
|             |                  | mm to 1 cm thick (spacing of 20-20 cm; C/A of 50-70) Sericite mostly                                                                                                                                                  | 67272  | 180.90 | 182.90 | 2.00          | 3846            | 390              | 24               | 6.4              | 32               | 35               | 2                |
|             |                  | appears as intimately mixed with the Qz matrix giving the characteristic green                                                                                                                                        | 67273  | 182.90 | 184.90 | 2.00          | 1227            | 490              | 12               | 12.6             | 950              | 80               | 2                |
|             |                  | colour.of the rock. 1% white Cc veinlets and in patches with Qz veins has                                                                                                                                             | 67274  | 184.90 | 186.90 | 2.00          | 1357            | 540              | 13               | 3.9              | 71               | 50               | 2                |
|             |                  | been noted.                                                                                                                                                                                                           | 67276  | 186.90 | 188.90 | 2.00          | 937             | 540              | 24               | 1.7              | 43               | 80               | 2                |
|             |                  | Mineralization:3-4% Py mostly as disseminations and veinlets. Several cm to                                                                                                                                           | 67277  | 188.90 | 190.90 | 2.00          | 953             | 320              | 8                | 2.0              | 117              | 50               | 2                |
|             |                  | decm scale mineralized white Qz crosscutting epithermal vein between 224.5                                                                                                                                            | 67278  | 190.90 | 192.90 | 2.00          | 634             | 400              | 5                | 2.6              | 125              | 45               | 2                |
|             |                  | and 235.0. Their spacing varies between 0.5 and 2 m and their C/A between 55 and 60 deg. They clearly cut the host rock banding. Those veins contain                                                                  | 67279  | 192.90 | 194.90 | 2.00          | 1082            | 280              | 9                | 3.5              | 110              | 90               | 2                |



## Falconbridge Limited

DDH:

IC-05-02

Project:

KERR-SULPHURETS

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                  | Sample | from   | to     | <b>Length</b> | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|----------------------------------------------------------------------------------------------|--------|--------|--------|---------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | mostly Py with variable quantities of Sp, Cp and Hm. (see details below).                    | 67280  | 194.90 | 196.90 | 2.00          | 2287                   | 700              | 13               | 7.7              | 51               | 80               | 2                |
|             |                  |                                                                                              | 67281  | 196.90 | 198.90 | 2.00          | 1562                   | 320              | 10               | 3.9              | 60               | 65               | 2                |
|             |                  | 186.1-187.5: Massive fine grained chloritic softer rock (less altered                        | 67282  | 198.90 | 200.90 | 2.00          | 1648                   | 220              | 8                | 2.3              | 19               | 35               | 2                |
|             |                  | monzonite?). Hosts 5% disseminated fine euhedral Py. Both contacts of this zone are gradual. | 67283  | 200.90 | 202.90 | 2.00          | 815                    | 370              | 5                | 3.1              | 22               | 60               | 2                |
|             |                  | 2010 dio gradadi.                                                                            | 67284  | 202.90 | 204.90 | 2.00          | 2141                   | 450              | 24               | 43.4             | 393              | 145              | 85               |
|             |                  | 203.4-203.5: Banded white Qz vein hosting a 1 cm thick band of tightly                       | 67285  | 204.90 | 206.90 | 2.00          | 1398                   | 360              | 24               | 3.2              | 21               | 100              | 2                |
|             |                  | disseminated grains of a black metallic mineral (chalcosite?). C/A=45.                       | 67286  | 206.90 | 208.90 | 2.00          | 827                    | 330              | 10               | 1.8              | 17               | 100              | 2                |
|             |                  | 047 5 047 7. Dodly bushess and discounted made Vany out                                      | 67287  | 208.90 | 210.90 | 2.00          | 984                    | 740              | 16               | 5.4              | 100              | 140              | 2                |
|             |                  | 217.5-217.7: Badly broken and disagreted rock. Very soft.                                    | 67288  | 210.90 | 212.90 | 2.00          | 942                    | 380              | 24               | 2.4              | 49               | 140              | 2                |
|             |                  | 221.9-22.2: Completely disagreted rock                                                       | 67289  | 212.90 | 214.90 | 2.00          | 1331                   | 270              | 9                | 1.8              | 78               | 110              | 2                |
|             |                  | ZETTO ZELE. Complotory disagnoted rook                                                       | 67290  | 214.90 | 216.90 | 2.00          | 2253                   | 370              | 21               | 25.2             | 800              | 50               | 2                |
|             |                  | 222.3-222.4: Completely disagreted rock                                                      | 67291  | 216.90 | 218.90 | 2.00          | 2523                   | 870              | 16               | 19.1             | 10800            | 115              | 2                |
|             |                  |                                                                                              | 67292  | 218.90 | 220.90 | 2.00          | 1666                   | 730              | 49               | 6.8              | 649              | 95               | 2                |
|             |                  | 224.5-224.7: White Qz banded crosscutting epithermal vein. 30% Py,1% Sp,                     | 67293  | 220.90 | 222.90 | 2.00          | 1118                   | 480              | 52               | 3.3              | 197              | 100              | 2                |
|             |                  | Tr Cp, 5-10% Hm.(C/A host rock=30 deg; C/A vein=60)                                          | 67294  | 222.90 | 224.80 | 1.90          | 1272                   | 1290             | 6                | 11.0             | 2436             | 115              | 2                |
|             |                  | 226.7-226.8: White Qz epithermal vein. 30-35% Py, 1% Sp,1% Cp                                | 67295  | 224.80 | 226.70 | 1.90          | 1482                   | 1150             | 10               | 10.3             | 4923             | 115              | 2                |
|             |                  | 2201 22010 111110 Q2 opinionia 101111 00 00/01 ); 1/0 op; 1/0 op                             | 67296  | 226.70 | 228.00 | 1.30          | 3822                   | 1570             | 6                | 29.7             | 3856             | 235              | 90               |
|             |                  | 227.7-227.8 :Idem to 224.5-224.7.35-40% Py, 5% Hm, 3-4% Cp and 1% Sp.                        | 67297  | 228.00 | 230.00 | 2.00          | 1885                   | 1130             | 4                | 20.2             | 1423             | 315              | 185              |
|             |                  |                                                                                              | 67298  | 230.00 | 231.50 | 1.50          | 987                    | 1520             | 5                | 12.3             | 2886             | 240              | 30               |
|             |                  | 228.9-229.0:Idem to 227.7-227.8 but with 5% Cp and 15-20% Hm (C/A host                       | 67299  | 231.50 | 233.00 | 1.50          | 1235                   | 1090             | 29               | 10.6             | 1734             | 205              | 40               |
|             |                  | rock=35; C/A vein=55)                                                                        | 67301  | 233.00 |        | 1.00          | 4162                   | 1660             | 134              | 28.7             | 12100            | 255              | 105              |
|             |                  | 230.7-230.8: White Qz epithermal vein. 35-40% Py, 3-4% Sp.                                   | 67302  |        | 236.00 | 2.00          | 1707                   | 1430             | 4                | 12.0             | 4500             | 170              | 15               |
|             |                  | 2001 200101 111110 42 001111011114111 00 1070 1 7,0 001                                      | 67303  | 236.00 | 238.00 | 2.00          | 1127                   | 620              | 10               | 5.1              | 294              | 95               | 2                |
|             |                  | 233.0-233.1:Disturbed white Qz banded crosscutting epithermal vein. 10% Py,                  | 67304  | 238.00 | 240.00 | 2.00          | 528                    | 320              | 5                | 2.6              | 344              | 50               | 2                |
|             |                  | 30% Sp, 5% Cp, 5% Hm                                                                         | 67305  | 240.00 | 242.00 | 2.00          | 3012                   | 1180             | 16               | 9.0              | 1093             | 80               | 2                |
|             |                  | 222.7.224.0. "Cloudy" white On anithermal vain 200/. Dv. 20/. Co. 20/. Co. 20/.              | 67306  | 242.00 |        | 2.00          | 3104                   | 790              | 52               | 7.3              | 918              | 90               | 25               |
|             |                  | 233.7-234.0: "Cloudy" white Qz epithermal vein.20% Py, 3% Cp, 3% Sp, 2-3% Hm.                | 67307  | 244.00 |        | 2.00          | 2556                   | 910              | 22               | 6.8              | 287              | 70               | 2                |
|             |                  | 1 1111                                                                                       | 67308  |        | 248.00 | 2.00          | 3775                   | 2160             | 25               | 90.9             | 2425             | 90               | 2                |
|             |                  | 234.9: White Qz banded crosscutting epithermal vein. 25% Py, 15% Sp.                         | 67309  | 248.00 | 250.00 | 2.00          | 2939                   | 420              | 55               | 6.2              | 468              | 45               | 2                |

09-Nov-05 9:48:27 PM



#### **Falconbridge Limited**

DDH:

IC-05-03

Project:

**KERR-SULPHURETS** 

Intervenant

HY-TECH

A. HUARD

Handheld GPS

S. LAPOINTE

FALCONBRIDGE

Project #: 301

Company:

Contractor:

Located by:

Logged by:

Method:

DDH Casing Azimuth: 310 Length (m): 1.5 Pulled: Dip: -50 Non Length (m): Plugged: 249.31 Oui Started: 7/21/2005 Cemented: Oui Completed: 7/23/2005 Core Logged: 7/24/2005 Size: NQ2

Easting: 424215 6267068 Northing:

Coordonnée - UTM

Elevation: Datum:

1625 NAD27 ZN9

Location

Claim #: 516241

Target:

Cu-Au Porphyry

Comments:

#### Directional Tests (C=Collar, R=Reflex)

Storage:

KERR CAMP

| Distance | Azimuth | Dip    | Туре |
|----------|---------|--------|------|
| 0.00     | 310.00  | -50.00 | С    |
| 116.40   | 317.00  | -50.20 | R    |
| 243.20   | 319.00  | -49.80 | R    |



## Falconbridge Limited

DDH: Project: IC-05-03 KERR-SULPHURETS

Project #: 301

| From (m) | <b>To</b> (m) | Description                                                                                                                                                                                                                                                                                                                 | Sample | from  | to    | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b> ppm | <b>Sb</b><br>ppm |
|----------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|---------------|-----------------|------------------|------------------|------------------|------------------|---------------|------------------|
| 0.00     | 1.50          | CASING                                                                                                                                                                                                                                                                                                                      |        |       |       |               |                 |                  |                  |                  |                  |               |                  |
|          |               |                                                                                                                                                                                                                                                                                                                             |        |       |       |               |                 |                  |                  |                  |                  |               |                  |
| 1.50     | 18.60         | PORPHYRY MONZONITE (I2MPOR)                                                                                                                                                                                                                                                                                                 | 67312  | 1.50  | 3.50  | 2.00          | 3200            | 520              | 4                | 0.6              | 27               | 30            | 2                |
|          |               | I2MPOR/(FK),(PL)/2-3% PY,TR CP                                                                                                                                                                                                                                                                                              | 67313  | 3.50  | 5.50  | 2.00          | 3728            | 720              | 14               | 0.7              | 30               | 30            | 2                |
|          |               | Medium dark grey to medium grey, locally greenish massive rock. Fine grained                                                                                                                                                                                                                                                | 67314  | 5.50  | 7.50  | 2.00          | 3613            | 620              | 5                | 0.7              | 26               | 30            | 2                |
|          |               | matrix with medium to coarse grained anhedral to euhedral pinkish Fp                                                                                                                                                                                                                                                        | 67315  | 7.50  | 9.50  | 2.00          | 3820            | 780              | 5                | 0.9              | 24               | 30            | 2                |
|          |               | phenocrysts (20-40%). Non magnetic.                                                                                                                                                                                                                                                                                         | 67316  | 9.50  | 11.50 | 2.00          | 3113            | 530              | 8                | 0.6              | 16               | 75            | 2                |
|          |               | Alteration: Pinkish colour of Fp phenocrysts (K-Fp Or HM+ Fp?) indicates                                                                                                                                                                                                                                                    | 67317  | 11.50 | 13.50 | 2.00          | 3159            | 400              | 4                | 0.5              | 24               | 10            | 2                |
|          |               | possible potassic alteration. 1-2% white Qz and white to pinkish Cc                                                                                                                                                                                                                                                         | 67318  | 13.50 | 15.50 | 2.00          | 2518            | 460              | 5                | 0.5              | 27               | 15            | 2                |
|          |               | veinlets/veins (C/A=60 deg) and small patches. About 1% of sericiteveinlets mostly concentrated just above the greenish tint monzonite. The rock takes a                                                                                                                                                                    | 67319  | 15.50 | 17.50 | 2.00          | 2368            | 420              | 4                | 0.6              | 41               | 20            | 2                |
|          |               | greenish tint (more sericite) in the last few metres and gradually Fp phenocrysyts disappear (weak phyllic alteration interval).  Mineralization: 2-3% Py mostly as disseminations with some small patches. Traces of Cp mainly related to white Qz-White Cc veins/veinlets but also few dissemin. Specks in the monzonite. | 67320  | 17.50 | 18.60 | 1.10          | 2147            | 600              | 9                | 0.7              | 18               | 55            | 2                |
|          |               | 14.9-18.6: Weak phyllic alteration: greenish tint, more sericite rich monzonite. Incl. 18.0-18.6: Lower contact charactherized by a 60 cm thick ionterval of banded (sheared) breccia (C/A=15 deg)                                                                                                                          |        |       |       |               |                 |                  |                  |                  |                  |               |                  |
| 18.60    | 62.80         | BRECCIATED METASOMATIC ROCK                                                                                                                                                                                                                                                                                                 | 67321  | 18.60 | 20.60 | 2.00          | 1563            | 480              | 11               | 0.7              | 14               | 35            | 2                |
|          |               | BREC/QZ, SE/PL/5-7% PY,TR CP                                                                                                                                                                                                                                                                                                | 67322  | 20.60 | 22.60 | 2.00          | 2854            | 470              | 10               | 0.7              | 7                | 65            | 2                |
|          |               | Madison was to make all as was a sub-as Warrack December to the baseline as a second                                                                                                                                                                                                                                        | 67323  | 22.60 | 24.60 | 2.00          | 2816            | 210              | 7                | 0.7              | 10               | 40            | 2                |
|          |               | Medium grey to pale olive green aphanitic rock. Brecciated to locally, massive or slightly banded rock. Breccia is defined by mm to cm scale subrounded to                                                                                                                                                                  | 67324  | 24.60 | 26.60 | 2.00          | 3484            | 260              | 8                | 1.0              | 12               | 70            | 2                |
|          |               | subanguler aphanitic Qz fragments in a Qz-Sericite matrix. Non magnetic. This                                                                                                                                                                                                                                               | 67326  | 26.60 | 28.60 | 2.00          | 1828            | 330              | 13               | 0.7              | 13               | 205           | 2                |
|          |               | unit is generally quite fractured and locally badly broken.                                                                                                                                                                                                                                                                 | 67327  | 28.60 | 30.60 | 2.00          | 4832            | 310              | 12               | 1.5              | 36               | 170           | 2                |
|          |               | Alteration: .Rock mostly composed of Qz with about 20 to 30% % of greenish                                                                                                                                                                                                                                                  | 67328  | 30.60 | 32.60 | 2.00          | 2823            | 280              | 8                | 1.1              | 20               | 70            | 2                |
|          |               | sericite mainly as veinlets but also as patches and bands. 2-3% white Qz and                                                                                                                                                                                                                                                | 67329  | 32.60 | 34.60 | 2.00          | 2736            | 280              | 13               | 1.3              | 11               | 110           | 2                |
|          |               | white Cc veinlets/veins and small patches. Mean spacing of those veins/veinlets                                                                                                                                                                                                                                             | 67330  | 34.60 | 36.60 | 2.00          | 2115            | 570              | 7                | 1.2              | 21               | 65            | 2                |
|          |               | is between 50 and 70 cm and direction between 50 and 80 deg but the global                                                                                                                                                                                                                                                  | 67331  | 36.60 | 38.60 | 2.00          | 1172            | 230              | 7                | 1.3              | 24               | 55            | 2                |
|          |               | distribution is quite chaotic White Cc is dominant among the thinnest and discontinuous veinlets. Several of the latter have been emplaced in small fault                                                                                                                                                                   | 67332  | 38.60 | 40.60 | 2.00          | 2769            | 370              | 10               | 2.2              | 90               | 60            | 2                |
|          |               | planes that crosscut and displaced larger Qz-Cc veins.                                                                                                                                                                                                                                                                      | 67333  | 40.60 | 42.60 | 2.00          | 3159            | 290              | 13               | 2.4              | 225              | 70            | 2                |
|          |               | Mineralization: 5-7% Py mostly as veinlets and disseminations with some cm                                                                                                                                                                                                                                                  | 67334  | 42.60 | 44.60 | 2.00          | 5025            | 300              | 16               | 4.3              | 61               | 45            | 2                |
|          |               | scale patches and few veins. Traces of Cp hosted by white Qz-White Cc veins in                                                                                                                                                                                                                                              | 67335  | 44.60 | 46.60 | 2.00          | 2643            | 250              | 10               | 2.7              | 265              | 75            | 2                |
|          |               | the few upper meters of the unit.                                                                                                                                                                                                                                                                                           | 67336  | 46.60 | 48.60 | 2.00          | 2727            | 280              | 14               | 3.4              | 349              | 135           | 2                |
|          |               |                                                                                                                                                                                                                                                                                                                             |        |       |       |               |                 |                  |                  |                  |                  |               |                  |

13-Nov-05 1:34:40 PM Page 1 of 5



# Drill Log Falconbridge Limited

DDH:

IC-05-03

Project:

KERR-SULPHURETS

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                  | Sample         | from           | to             | <b>Length</b><br>m | <b>Cu</b> ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|--------------------|---------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | 22.2-22.4: Badly broken rock.                                                                                                                                                                                                                                                                                                                                                                | 67337          | 48.60          | 50.60          | 2.00               | 2369                | 420              | 18               | 3.4              | 631              | 75               | 2                |
|             |                  | 23.1-23.4: Badly broken rock.                                                                                                                                                                                                                                                                                                                                                                | 67338<br>67339 | 50.60<br>52.60 | 52.60<br>54.60 | 2.00<br>2.00       | 2202<br>1855        | 310<br>160       | 7<br>6           | 3.5<br>2.0       | 217<br>119       | 50<br>100        | 2<br>2           |
|             |                  | 044047 B # 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                           | 67340          | 54.60          | 56.60          | 2.00               | 716                 | 210              | 13               | 1.7              | 469              | 65               | 2                |
|             |                  | 31.4-31.7: Badly broken and rusty rock.                                                                                                                                                                                                                                                                                                                                                      | 67341          | 56.60          | 58.60          | 2.00               | 1902                | 200              | 15               | 2.3              | 186              | 45               | 2                |
|             |                  | 61.9-62.8: Banded breccia (sheared; C/A=15 deg)                                                                                                                                                                                                                                                                                                                                              | 67342          | 58.60          | 60.60          | 2.00               | 4265                | 130              | 11               | 2.6              | 48               | 30               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                              | 67343          | 60.60          | 61.90          | 1.30               | 3347                | 80               | 11               | 1.4              | 10               | 15               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                              | 67344          | 61.90          | 62.80          | 0.90               | 1958                | 80               | 15               | 1.0              | 8                | 20               | 2                |
| 62.80       | 78.10            | SHEAREDMETASOMATIC ROCK BRECCIA                                                                                                                                                                                                                                                                                                                                                              | 67345          | 62.80          | 64.80          | 2.00               | 1084                | 60               | 11               | 0.7              | 8                | 25               | 2                |
|             |                  | BREC/QZ,SE/(PL)/8-10% PY                                                                                                                                                                                                                                                                                                                                                                     | 67346          | 64.80          | 66.80          | 2.00               | 2876                | 150              | 17               | 13.2             | 463              | 155              | 370              |
|             |                  | Medium to dark medium grey to, locally pale olive green aphanitic rock.                                                                                                                                                                                                                                                                                                                      | 67347          | 66.80          | 68.80          | 2.00               | 2357                | 440              | 11               | 31.5             | 979              | 305              | 635              |
|             |                  | Brecciated and sheared rock. Breccia is defined by mm to cm scale subrounded                                                                                                                                                                                                                                                                                                                 | 67348          | 68.80          | 70.80          | 2.00               | 1770                | 210              | 12               | 25.0             | 800              | 290              | 555              |
|             |                  | to subanguler aphanitic Qz fragments in a Qz-Sericite(?) matrix. The shearing is                                                                                                                                                                                                                                                                                                             | 67349          | 70.80          | 72.80          | 2.00               | 1025                | 120              | 15               | 5.0              | 144              | 135              | 265              |
|             |                  | very low angle to parallel to C/A (0-15 deg). Non magnetic. This unit is badly                                                                                                                                                                                                                                                                                                               | 67351          | 72.80          | 74.80          | 2.00               | 2718                | 190              | 27               | 8.1              | 261              | 265              | 610              |
|             |                  | broken all the way long. The lower contact is frank (C/A=15).                                                                                                                                                                                                                                                                                                                                | 67352          | 74.80          | 76.80          | 2.00               | 1019                | 150              | 38               | 2.3              | 59               | 75               | 105              |
|             |                  | Alteration: Rock mostly composed of Qz with about 20% of greenish sericite mainly mixed with Qz in the matrix (?) and as bands and veinlets parallel to rock fabric. 10-15% white Qz veinlets/veins parallel to rock fabric. Only traces of white Cc as veinlets and patches near the upper contact.  Mineralization: 8-10% Py mostly as disseminations and veinlets parallel to the fabric. | 67353          | 76.80          | 78.10          | 1.30               | 934                 | 160              | 17               | 1.8              | 64               | 70               | 75               |
| 78.10       | 235.40           | METASOMATIC ROCK                                                                                                                                                                                                                                                                                                                                                                             | 67354          | 78.10          | 80.10          | 2.00               | 577                 | 210              | 5                | 3.6              | 84               | 110              | 170              |
|             |                  | MSP/SI,(PL)/5% PY, TR CP,TR SP                                                                                                                                                                                                                                                                                                                                                               | 67355          | 80.10          | 82.10          | 2.00               | 665                 | 160              | 12               | 4.4              | 96               | 130              | 185              |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                              | 67356          | 82.10          | 84.10          | 2.00               | 226                 | 420              | 7                | 1.5              | 33               | 85               | 40               |
|             |                  | Medium grey more or less greenish to pale olive green aphyric rock. Masive but, locally brecciated or banded. Non magnetic.                                                                                                                                                                                                                                                                  | 67357          | 84.10          | 86.10          | 2.00               | 495                 | 240              | 10               | 3.4              | 79               | 105              | 140              |
|             |                  | Alteration: Pervasively weakly to moderately silicified. About 20-25% sericite                                                                                                                                                                                                                                                                                                               | 67358          | 86.10          | 88.10          | 2.00               | 1056                | 310              | 12               | 2.0              | 47               | 90               | 75               |
|             |                  | mainly as part of the aphyric matrix (?); the greener interval being richer in                                                                                                                                                                                                                                                                                                               | 67359          | 88.10          | 90.10          | 2.00               | 1026                | 230              | 9                | 4.3              | 106              | 120              | 160              |
|             |                  | sericite. Also few sericite veinlets. 3-4% white Qz veins and veinlets with a mean                                                                                                                                                                                                                                                                                                           | 67360          | 90.10          | 92.10          | 2.00               | 1480                | 220              | 8                | 7.2              | 195              | 225              | 290              |
|             |                  | spacing between 20-40 cm and direction between 30 and 60 deg compared to                                                                                                                                                                                                                                                                                                                     | 67361          | 92.10          | 94.10          | 2.00               | 1554                | 270              | 7                | 8.1              | 311              | 180              | 270              |
|             |                  | C/A. The Qz veins and veinlets contains minor amount of white Cc.                                                                                                                                                                                                                                                                                                                            | 67362          | 94.10          | 96.10          | 2.00               | 1160                | 380              | 9                | 14.1             | 255              | 240              | 385              |
|             |                  | Mineralization: 5% Py as fine grained disseminations and patches and also as                                                                                                                                                                                                                                                                                                                 | 67363          | 96.10          | 98.10          | 2.00               | 2076                | 170              | 32               | 13.4             | 244              | 355              | 475              |
|             |                  | veinlets. Few Py veins. Traces of Cp mostly as veinlets or specks located in Qz veinlets but also locally, as separate veinlets. Few disseminations. Traces of Sp                                                                                                                                                                                                                            | 67364          | 98.10          | 100.10         | 2.00               | 914                 | 250              | 9                | 8.3              | 235              | 220              | 230              |
|             |                  | as discontiunuous and winding veinlets and veins. The Sp is locally associated                                                                                                                                                                                                                                                                                                               | 67365          | 100.10         | 102.10         | 2.00               | 3685                | 170              | 7                | 24.9             | 711              | 510              | 1050             |
|             |                  | with Py or hosted by Qz veins/veinlets.                                                                                                                                                                                                                                                                                                                                                      | 67366          | 102.10         | 104.10         | 2.00               | 2061                | 100              | 9                | 7.0              | 221              | 185              | 325              |
|             |                  | Lower contact: Quite rapid but gradual over 40 cm.                                                                                                                                                                                                                                                                                                                                           | 67367          | 104.10         | 106.10         | 2.00               | 740                 | 100              | 5                | 4.1              | 753              | 90               | 125              |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                              | 67368          | 106.10         | 108.10         | 2.00               | 2732                | 200              | 8                | 12.8             | 490              | 230              | 555              |

13-Nov-05 1:34:41 PM Page 2 of 5



## Falconbridge Limited

DDH:

IC-05-03

Project: KERR-SULPHURETS

Project #: 301

| 91.1-91.15: Banded zone (several parallel Qz veinlets) that co "flow banding" (C/A=60 deg).  94.2-94.35: Banded zone (C/A=55 deg).  108.0-108.6: A bit richer in Cp interval (1%)  111.7-112.0: Badly broken rock.  120.3-120.7: A bit richer in Cp interval (1%) Incl. 120.4-120.6: Banded grey Qz rich zone ("flow banding").  124.55-124.7: Quite similar to 91.1-91.15.  125.7-130.4: Highest concentrations of Sp veinlets of the hole 135.9-136.2: Badly broken rock.  136.3-138.3: Intrusive breccia charactherized by grey and white (mean size=1-2 cm). Matrix of Qz and Se (?). Incl.: 136.6-136.9: Very badly broken rock.  157.5-158.4: Richer in Cp (1%)  165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein in 15% Cp as disseminations in the vein. (C/A=15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6737<br>6737<br>6737<br>6737<br>6737<br>6737<br>6737<br>6737                                               | 110.1<br>1112.2<br>1114.3<br>1116.4<br>118.6<br>120.7<br>122.3<br>124.9<br>125.0<br>126.1<br>127.2<br>128.3<br>130.4<br>132.5<br>134.6<br>136.1 | .10<br>.10<br>.10<br>.10<br>.10<br>.10<br>.10<br>.10<br>.10<br>.70<br>.70<br>.70<br>.70<br>.40<br>.40 | 110.10<br>112.10<br>114.10<br>116.10<br>118.10<br>120.10<br>122.10<br>124.10<br>125.70<br>126.70<br>127.70<br>128.70<br>130.40<br>132.40<br>134.40<br>136.40 | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>1.60<br>1.00<br>1.70<br>2.00<br>2.00<br>2.00 | 6263<br>2316<br>2538<br>3991<br>2064<br>2036<br>6419<br>2472<br>2208<br>2041<br>1852<br>2140<br>1230<br>2558<br>1816<br>1546 | 120<br>400<br>340<br>520<br>210<br>230<br>120<br>210<br>140<br>520<br>400<br>870<br>460<br>670<br>240 | 10<br>9<br>19<br>35<br>33<br>14<br>7<br>13<br>8<br>16<br>10<br>9<br>31<br>13 | 14.6<br>11.4<br>36.3<br>34.2<br>18.9<br>12.2<br>16.3<br>15.0<br>10.4<br>35.8<br>44.9<br>51.1<br>35.2<br>48.4<br>7.9 | 509<br>375<br>2111<br>525<br>447<br>354<br>369<br>409<br>267<br>1774<br>2413<br>10000<br>4781<br>1973 | 210<br>115<br>365<br>480<br>310<br>165<br>255<br>120<br>115<br>170<br>290<br>320<br>220<br>400 | 525<br>285<br>1050<br>1215<br>730<br>325<br>560<br>210<br>180<br>245<br>560<br>560<br>360<br>425 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 94.2-94.35: Banded zone (C/A=55 deg).  108.0-108.6: A bit richer in Cp interval (1%)  111.7-112.0: Badly broken rock.  120.3-120.7: A bit richer in Cp interval (1%) Incl. 120.4-120.6: Banded grey Qz rich zone ("flow banding").  124.55-124.7: Quite similar to 91.1-91.15.  125.7-130.4: Highest concentrations of Sp veinlets of the hole 135.9-136.2: Badly broken rock.  136.3-138.3: Intrusive breccia charactherized by grey and white (mean size=1-2 cm). Matrix of Qz and Se (?). Incl.: 136.6-136.9: Very badly broken rock.  157.5-158.4: Richer in Cp (1%) 165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein him 15% Cp as disseminations in the vein.(C/A=15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6737<br>6737<br>6737<br>6737<br>6737<br>6737<br>6737<br>6738<br>6738                                       | 1 112.<br>2 114.<br>3 116.<br>4 118.<br>6 120.<br>7 122.<br>3 124.<br>9 125.<br>0 126.<br>1 127.<br>2 128.<br>3 130.<br>4 132.<br>5 134.        | .10<br>.10<br>.10<br>.10<br>.10<br>.10<br>.10<br>.70<br>.70<br>.70<br>.40<br>.40                      | 114.10<br>116.10<br>118.10<br>120.10<br>122.10<br>124.10<br>125.70<br>126.70<br>127.70<br>128.70<br>130.40<br>132.40<br>134.40                               | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>1.60<br>1.00<br>1.00<br>1.70<br>2.00<br>2.00         | 2538<br>3991<br>2064<br>2036<br>6419<br>2472<br>2208<br>2041<br>1852<br>2140<br>1230<br>2558<br>1816                         | 340<br>520<br>210<br>230<br>120<br>210<br>140<br>520<br>400<br>870<br>460<br>670<br>240               | 19<br>35<br>33<br>14<br>7<br>13<br>8<br>16<br>10<br>9<br>31<br>13            | 36.3<br>34.2<br>18.9<br>12.2<br>16.3<br>15.0<br>10.4<br>35.8<br>44.9<br>51.1<br>35.2<br>48.4                        | 2111<br>525<br>447<br>354<br>369<br>409<br>267<br>1774<br>2413<br>10000<br>4781<br>1973               | 365<br>480<br>310<br>165<br>255<br>120<br>115<br>170<br>290<br>320<br>220<br>400               | 1050<br>1215<br>730<br>325<br>560<br>210<br>180<br>245<br>560<br>560<br>360                      |
| 108.0-108.6: A bit richer in Cp interval (1%)  111.7-112.0: Badly broken rock.  120.3-120.7: A bit richer in Cp interval (1%) Incl. 120.4-120.6: Banded grey Qz rich zone ("flow banding").  124.55-124.7: Quite similar to 91.1-91.15.  125.7-130.4: Highest concentrations of Sp veinlets of the hole 135.9-136.2: Badly broken rock.  136.3-138.3: Intrusive breccia charactherized by grey and white (mean size=1-2 cm). Matrix of Qz and Se (?). Incl.: 136.6-136.9: Very badly broken rock.  157.5-158.4: Richer in Cp (1%) 165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein him 15% Cp as disseminations in the vein.(C/A=15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6737<br>6737<br>6737<br>6737<br>6737<br>6737<br>6738<br>6738                                               | 2 114.<br>3 116.<br>4 118.<br>5 120.<br>7 122.<br>3 124.<br>9 125.<br>0 126.<br>1 127.<br>2 128.<br>3 130.<br>4 132.<br>5 134.<br>6 136.        | .10<br>.10<br>.10<br>.10<br>.10<br>.10<br>.70<br>.70<br>.70<br>.40<br>.40                             | 116.10<br>118.10<br>120.10<br>122.10<br>124.10<br>125.70<br>126.70<br>127.70<br>128.70<br>130.40<br>132.40<br>134.40                                         | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>1.60<br>1.00<br>1.00<br>1.70<br>2.00<br>2.00                 | 3991<br>2064<br>2036<br>6419<br>2472<br>2208<br>2041<br>1852<br>2140<br>1230<br>2558<br>1816                                 | 520<br>210<br>230<br>120<br>210<br>140<br>520<br>400<br>870<br>460<br>670<br>240                      | 35<br>33<br>14<br>7<br>13<br>8<br>16<br>10<br>9<br>31<br>13                  | 34.2<br>18.9<br>12.2<br>16.3<br>15.0<br>10.4<br>35.8<br>44.9<br>51.1<br>35.2<br>48.4                                | 525<br>447<br>354<br>369<br>409<br>267<br>1774<br>2413<br>10000<br>4781<br>1973                       | 480<br>310<br>165<br>255<br>120<br>115<br>170<br>290<br>320<br>220<br>400                      | 1215<br>730<br>325<br>560<br>210<br>180<br>245<br>560<br>560<br>360                              |
| 108.0-108.6: A bit richer in Cp interval (1%)  111.7-112.0: Badly broken rock.  120.3-120.7: A bit richer in Cp interval (1%) Incl. 120.4-120.6: Banded grey Qz rich zone ("flow banding").  124.55-124.7: Quite similar to 91.1-91.15.  125.7-130.4: Highest concentrations of Sp veinlets of the hole 135.9-136.2: Badly broken rock.  136.3-138.3: Intrusive breccia charactherized by grey and white (mean size=1-2 cm). Matrix of Qz and Se (?). Incl.: 136.6-136.9: Very badly broken rock.  157.5-158.4: Richer in Cp (1%) 165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein him 15% Cp as disseminations in the vein.(C/A=15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6737<br>6737<br>6737<br>6737<br>6737<br>6738<br>6738<br>(1%). 6738<br>6738<br>6738<br>6738<br>6738<br>6738 | 3 116.<br>4 118.<br>5 120.<br>7 122.<br>3 124.<br>9 125.<br>0 126.<br>1 127.<br>2 128.<br>3 130.<br>4 132.<br>5 134.<br>6 136.                  | .10<br>.10<br>.10<br>.10<br>.10<br>.70<br>.70<br>.70<br>.70<br>.40<br>.40                             | 118.10<br>120.10<br>122.10<br>124.10<br>125.70<br>126.70<br>127.70<br>128.70<br>130.40<br>132.40<br>134.40                                                   | 2.00<br>2.00<br>2.00<br>2.00<br>1.60<br>1.00<br>1.00<br>1.70<br>2.00<br>2.00                         | 2064<br>2036<br>6419<br>2472<br>2208<br>2041<br>1852<br>2140<br>1230<br>2558<br>1816                                         | 210<br>230<br>120<br>210<br>140<br>520<br>400<br>870<br>460<br>670<br>240                             | 33<br>14<br>7<br>13<br>8<br>16<br>10<br>9<br>31<br>13                        | 18.9<br>12.2<br>16.3<br>15.0<br>10.4<br>35.8<br>44.9<br>51.1<br>35.2<br>48.4                                        | 447<br>354<br>369<br>409<br>267<br>1774<br>2413<br>10000<br>4781<br>1973                              | 310<br>165<br>255<br>120<br>115<br>170<br>290<br>320<br>220<br>400                             | 730<br>325<br>560<br>210<br>180<br>245<br>560<br>560<br>360                                      |
| 111.7-112.0: Badly broken rock.  120.3-120.7: A bit richer in Cp interval (1%) Incl. 120.4-120.6: Banded grey Qz rich zone ("flow banding").  124.55-124.7: Quite similar to 91.1-91.15.  125.7-130.4: Highest concentrations of Sp veinlets of the hole 135.9-136.2: Badly broken rock.  136.3-138.3: Intrusive breccia charactherized by grey and white (mean size=1-2 cm). Matrix of Qz and Se (?). Incl.: 136.6-136.9: Very badly broken rock.  157.5-158.4: Richer in Cp (1%)  165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein him 15% Cp as disseminations in the vein.(C/A=15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6737<br>6737<br>6737<br>6737<br>6738<br>6738<br>6738<br>(1%). 6738<br>6738<br>6738<br>6738<br>6738         | 4 118.<br>6 120.<br>7 122.<br>3 124.<br>9 125.<br>0 126.<br>1 127.<br>2 128.<br>3 130.<br>4 132.<br>5 134.<br>6 136.                            | .10<br>.10<br>.10<br>.10<br>.70<br>.70<br>.70<br>.70<br>.40<br>.40                                    | 120.10<br>122.10<br>124.10<br>125.70<br>126.70<br>127.70<br>128.70<br>130.40<br>132.40<br>134.40                                                             | 2.00<br>2.00<br>2.00<br>1.60<br>1.00<br>1.00<br>1.70<br>2.00<br>2.00                                 | 2036<br>6419<br>2472<br>2208<br>2041<br>1852<br>2140<br>1230<br>2558<br>1816                                                 | 230<br>120<br>210<br>140<br>520<br>400<br>870<br>460<br>670<br>240                                    | 14<br>7<br>13<br>8<br>16<br>10<br>9<br>31<br>13                              | 12.2<br>16.3<br>15.0<br>10.4<br>35.8<br>44.9<br>51.1<br>35.2<br>48.4                                                | 354<br>369<br>409<br>267<br>1774<br>2413<br>10000<br>4781<br>1973                                     | 165<br>255<br>120<br>115<br>170<br>290<br>320<br>220<br>400                                    | 325<br>560<br>210<br>180<br>245<br>560<br>560<br>360                                             |
| 111.7-112.0: Badly broken rock.  120.3-120.7: A bit richer in Cp interval (1%) Incl. 120.4-120.6: Banded grey Qz rich zone ("flow banding").  124.55-124.7: Quite similar to 91.1-91.15.  125.7-130.4: Highest concentrations of Sp veinlets of the hole 135.9-136.2: Badly broken rock.  136.3-138.3: Intrusive breccia charactherized by grey and white (mean size=1-2 cm). Matrix of Qz and Se (?). Incl.: 136.6-136.9: Very badly broken rock.  157.5-158.4: Richer in Cp (1%)  165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein him 15% Cp as disseminations in the vein.(C/A=15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6737<br>6737<br>6737<br>6737<br>6738<br>6738<br>(1%). 6738<br>6738<br>6738<br>te Qz fragments              | 6 120. 7 122. 3 124. 9 125. 0 126. 1 127. 2 128. 3 130. 4 132. 5 134.                                                                           | .10<br>.10<br>.10<br>.70<br>.70<br>.70<br>.70<br>.40<br>.40                                           | 122.10<br>124.10<br>125.70<br>126.70<br>127.70<br>128.70<br>130.40<br>132.40<br>134.40                                                                       | 2.00<br>2.00<br>1.60<br>1.00<br>1.00<br>1.70<br>2.00<br>2.00                                         | 6419<br>2472<br>2208<br>2041<br>1852<br>2140<br>1230<br>2558<br>1816                                                         | 120<br>210<br>140<br>520<br>400<br>870<br>460<br>670<br>240                                           | 7<br>13<br>8<br>16<br>10<br>9<br>31<br>13                                    | 16.3<br>15.0<br>10.4<br>35.8<br>44.9<br>51.1<br>35.2<br>48.4                                                        | 369<br>409<br>267<br>1774<br>2413<br>10000<br>4781<br>1973                                            | 255<br>120<br>115<br>170<br>290<br>320<br>220<br>400                                           | 560<br>210<br>180<br>245<br>560<br>560<br>360                                                    |
| 120.3-120.7: A bit richer in Cp interval (1%) Incl. 120.4-120.6: Banded grey Qz rich zone ("flow banding").  124.55-124.7: Quite similar to 91.1-91.15.  125.7-130.4: Highest concentrations of Sp veinlets of the hole 135.9-136.2: Badly broken rock.  136.3-138.3: Intrusive breccia charactherized by grey and whi (mean size=1-2 cm). Matrix of Qz and Se (?). Incl.: 136.6-136.9: Very badly broken rock.  157.5-158.4: Richer in Cp (1%)  165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein him 15% Cp as disseminations in the vein.(C/A=15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6737<br>6737<br>6737<br>6738<br>6738<br>(1%). 6738<br>6738<br>6738<br>te Qz fragments 6738                 | 7 122.<br>3 124.<br>9 125.<br>0 126.<br>1 127.<br>2 128.<br>3 130.<br>4 132.<br>5 134.                                                          | .10<br>.10<br>.70<br>.70<br>.70<br>.70<br>.40<br>.40                                                  | 124.10<br>125.70<br>126.70<br>127.70<br>128.70<br>130.40<br>132.40<br>134.40                                                                                 | 2.00<br>1.60<br>1.00<br>1.00<br>1.00<br>1.70<br>2.00<br>2.00                                         | 2472<br>2208<br>2041<br>1852<br>2140<br>1230<br>2558<br>1816                                                                 | 210<br>140<br>520<br>400<br>870<br>460<br>670<br>240                                                  | 13<br>8<br>16<br>10<br>9<br>31<br>13                                         | 15.0<br>10.4<br>35.8<br>44.9<br>51.1<br>35.2<br>48.4                                                                | 409<br>267<br>1774<br>2413<br>10000<br>4781<br>1973                                                   | 120<br>115<br>170<br>290<br>320<br>220<br>400                                                  | 210<br>180<br>245<br>560<br>560<br>360                                                           |
| Incl. 120.4-120.6: Banded grey Qz rich zone ("flow banding").  124.55-124.7: Quite similar to 91.1-91.15.  125.7-130.4: Highest concentrations of Sp veinlets of the hole  135.9-136.2: Badly broken rock.  136.3-138.3: Intrusive breccia charactherized by grey and whi (mean size=1-2 cm). Matrix of Qz and Se (?). Incl.: 136.6-136.9: Very badly broken rock.  157.5-158.4: Richer in Cp (1%)  165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein h 15% Cp as disseminations in the vein.(C/A=15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6737<br>6738<br>6738<br>6738<br>(1%). 6738<br>6738<br>6738<br>te Qz fragments 6738                         | 3 124.<br>9 125.<br>0 126.<br>1 127.<br>2 128.<br>3 130.<br>4 132.<br>5 134.<br>6 136.                                                          | .10<br>.70<br>.70<br>.70<br>.70<br>.40<br>.40                                                         | 125.70<br>126.70<br>127.70<br>128.70<br>130.40<br>132.40<br>134.40                                                                                           | 1.60<br>1.00<br>1.00<br>1.00<br>1.70<br>2.00<br>2.00                                                 | 2208<br>2041<br>1852<br>2140<br>1230<br>2558<br>1816                                                                         | 140<br>520<br>400<br>870<br>460<br>670<br>240                                                         | 8<br>16<br>10<br>9<br>31<br>13                                               | 10.4<br>35.8<br>44.9<br>51.1<br>35.2<br>48.4                                                                        | 267<br>1774<br>2413<br>10000<br>4781<br>1973                                                          | 115<br>170<br>290<br>320<br>220<br>400                                                         | 180<br>245<br>560<br>560<br>360                                                                  |
| Incl. 120.4-120.6: Banded grey Qz rich zone ("flow banding").  124.55-124.7: Quite similar to 91.1-91.15.  125.7-130.4: Highest concentrations of Sp veinlets of the hole  135.9-136.2: Badly broken rock.  136.3-138.3: Intrusive breccia charactherized by grey and whi (mean size=1-2 cm). Matrix of Qz and Se (?). Incl.: 136.6-136.9: Very badly broken rock.  157.5-158.4: Richer in Cp (1%)  165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein h 15% Cp as disseminations in the vein.(C/A=15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6737<br>6738<br>6738<br>6738<br>6738<br>6738<br>te Qz fragments<br>6738                                    | 9 125.<br>0 126.<br>1 127.<br>2 128.<br>3 130.<br>4 132.<br>5 134.<br>6 136.                                                                    | .70<br>.70<br>.70<br>.70<br>.40<br>.40                                                                | 126.70<br>127.70<br>128.70<br>130.40<br>132.40<br>134.40                                                                                                     | 1.00<br>1.00<br>1.00<br>1.70<br>2.00<br>2.00                                                         | 2041<br>1852<br>2140<br>1230<br>2558<br>1816                                                                                 | 520<br>400<br>870<br>460<br>670<br>240                                                                | 16<br>10<br>9<br>31<br>13                                                    | 35.8<br>44.9<br>51.1<br>35.2<br>48.4                                                                                | 1774<br>2413<br>10000<br>4781<br>1973                                                                 | 170<br>290<br>320<br>220<br>400                                                                | 245<br>560<br>560<br>360                                                                         |
| 124.55-124.7: Quite similar to 91.1-91.15.  125.7-130.4: Highest concentrations of Sp veinlets of the hole 135.9-136.2: Badly broken rock.  136.3-138.3: Intrusive breccia charactherized by grey and whi (mean size=1-2 cm). Matrix of Qz and Se (?). Incl.: 136.6-136.9: Very badly broken rock.  157.5-158.4: Richer in Cp (1%)  165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein high the process of the hole of the hole of the hole statement of the hole o | 6738<br>6738<br>(1%). 6738<br>6738<br>6738<br>te Qz fragments 6738                                         | 126.<br>1 127.<br>2 128.<br>3 130.<br>4 132.<br>5 134.<br>6 136.                                                                                | .70<br>.70<br>.70<br>.40<br>.40                                                                       | 127.70<br>128.70<br>130.40<br>132.40<br>134.40                                                                                                               | 1.00<br>1.00<br>1.70<br>2.00<br>2.00                                                                 | 1852<br>2140<br>1230<br>2558<br>1816                                                                                         | 400<br>870<br>460<br>670<br>240                                                                       | 10<br>9<br>31<br>13<br>13                                                    | 44.9<br>51.1<br>35.2<br>48.4                                                                                        | 2413<br>10000<br>4781<br>1973                                                                         | 290<br>320<br>220<br>400                                                                       | 560<br>560<br>360                                                                                |
| 125.7-130.4: Highest concentrations of Sp veinlets of the hole 135.9-136.2: Badly broken rock.  136.3-138.3: Intrusive breccia charactherized by grey and whi (mean size=1-2 cm). Matrix of Qz and Se (?). Incl.: 136.6-136.9: Very badly broken rock.  157.5-158.4: Richer in Cp (1%)  165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein high the second  | 6738<br>(1%). 6738<br>6738<br>6738<br>te Qz fragments 6738                                                 | 1 127.<br>2 128.<br>3 130.<br>4 132.<br>5 134.<br>6 136.                                                                                        | .70<br>.70<br>.40<br>.40                                                                              | 128.70<br>130.40<br>132.40<br>134.40                                                                                                                         | 1.00<br>1.70<br>2.00<br>2.00                                                                         | 2140<br>1230<br>2558<br>1816                                                                                                 | 870<br>460<br>670<br>240                                                                              | 9<br>31<br>13<br>13                                                          | 51.1<br>35.2<br>48.4                                                                                                | 10000<br>4781<br>1973                                                                                 | 320<br>220<br>400                                                                              | 560<br>360                                                                                       |
| 125.7-130.4: Highest concentrations of Sp veinlets of the hole 135.9-136.2: Badly broken rock.  136.3-138.3: Intrusive breccia charactherized by grey and whi (mean size=1-2 cm). Matrix of Qz and Se (?). Incl.: 136.6-136.9: Very badly broken rock.  157.5-158.4: Richer in Cp (1%)  165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein high the second  | (1%). 6738<br>6738<br>6738<br>6738<br>te Qz fragments 6738                                                 | 2 128.<br>3 130.<br>4 132.<br>5 134.<br>6 136.                                                                                                  | .70<br>.40<br>.40<br>.40                                                                              | 130.40<br>132.40<br>134.40                                                                                                                                   | 1.70<br>2.00<br>2.00                                                                                 | 1230<br>2558<br>1816                                                                                                         | 460<br>670<br>240                                                                                     | 31<br>13<br>13                                                               | 35.2<br>48.4                                                                                                        | 4781<br>1973                                                                                          | 220<br>400                                                                                     | 360                                                                                              |
| 135.9-136.2: Badly broken rock.  136.3-138.3: Intrusive breccia charactherized by grey and whi (mean size=1-2 cm). Matrix of Qz and Se (?). Incl.: 136.6-136.9: Very badly broken rock.  157.5-158.4: Richer in Cp (1%)  165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein high the second  | 6738<br>6738<br>te Qz fragments<br>6738                                                                    | 3 130.<br>4 132.<br>5 134.<br>6 136.                                                                                                            | .40<br>.40<br>.40                                                                                     | 132.40<br>134.40                                                                                                                                             | 2.00<br>2.00                                                                                         | 2558<br>1816                                                                                                                 | 670<br>240                                                                                            | 13<br>13                                                                     | 48.4                                                                                                                | 1973                                                                                                  | 400                                                                                            |                                                                                                  |
| 136.3-138.3: Intrusive breccia charactherized by grey and whi (mean size=1-2 cm). Matrix of Qz and Se (?). Incl.: 136.6-136.9: Very badly broken rock.  157.5-158.4: Richer in Cp (1%)  165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein high the control of the  | 6738<br>te Qz fragments 6738                                                                               | 4 132.<br>5 134.<br>6 136.                                                                                                                      | .40<br>.40                                                                                            | 134.40                                                                                                                                                       | 2.00                                                                                                 | 1816                                                                                                                         | 240                                                                                                   | 13                                                                           |                                                                                                                     |                                                                                                       |                                                                                                | 425                                                                                              |
| 136.3-138.3: Intrusive breccia charactherized by grey and whi (mean size=1-2 cm). Matrix of Qz and Se (?). Incl.: 136.6-136.9: Very badly broken rock.  157.5-158.4: Richer in Cp (1%)  165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein high the control of the  | te Qz fragments 6738                                                                                       | 5 134.<br>6 136.                                                                                                                                | .40                                                                                                   |                                                                                                                                                              |                                                                                                      |                                                                                                                              |                                                                                                       |                                                                              | 7.9                                                                                                                 | 100                                                                                                   |                                                                                                |                                                                                                  |
| (mean size=1-2 cm). Matrix of Qz and Se (?). Incl.: 136.6-136.9: Very badly broken rock.  157.5-158.4: Richer in Cp (1%)  165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein hand the seminations in the vein.(C/A=15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | te Qz fragments 6738                                                                                       | 3 136.                                                                                                                                          |                                                                                                       | 136.40                                                                                                                                                       | 2.00                                                                                                 | 1546                                                                                                                         |                                                                                                       |                                                                              |                                                                                                                     | 182                                                                                                   | 85                                                                                             | 35                                                                                               |
| (mean size=1-2 cm). Matrix of Qz and Se (?). Incl.: 136.6-136.9: Very badly broken rock.  157.5-158.4: Richer in Cp (1%)  165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein hand the seminations in the vein.(C/A=15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6/38                                                                                                       |                                                                                                                                                 | 40                                                                                                    |                                                                                                                                                              |                                                                                                      |                                                                                                                              | 280                                                                                                   | 22                                                                           | 7.9                                                                                                                 | 187                                                                                                   | 170                                                                                            | 55                                                                                               |
| Incl.: 136.6-136.9: Very badly broken rock.  157.5-158.4: Richer in Cp (1%)  165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein hand 15% Cp as disseminations in the vein.(C/A=15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6738                                                                                                       |                                                                                                                                                 | .+0                                                                                                   | 138.40                                                                                                                                                       | 2.00                                                                                                 | 1197                                                                                                                         | 320                                                                                                   | 21                                                                           | 18.6                                                                                                                | 207                                                                                                   | 130                                                                                            | 80                                                                                               |
| 157.5-158.4: Richer in Cp (1%) 165.3-165.4: Banded interval (C/A=55) 184.6-184.9: Grey and white Qz mineralized epithermal vein h 15% Cp as disseminations in the vein.(C/A=15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            | 7 138.                                                                                                                                          | .40                                                                                                   | 140.40                                                                                                                                                       | 2.00                                                                                                 | 1142                                                                                                                         | 70                                                                                                    | 11                                                                           | 14.3                                                                                                                | 453                                                                                                   | 205                                                                                            | 180                                                                                              |
| 165.3-165.4: Banded interval (C/A=55)  184.6-184.9: Grey and white Qz mineralized epithermal vein h 15% Cp as disseminations in the vein.(C/A=15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6738                                                                                                       | 3 140.                                                                                                                                          | .40                                                                                                   | 142.40                                                                                                                                                       | 2.00                                                                                                 | 952                                                                                                                          | 70                                                                                                    | 14                                                                           | 6.7                                                                                                                 | 960                                                                                                   | 90                                                                                             | 85                                                                                               |
| 184.6-184.9: Grey and white Qz mineralized epithermal vein h 15% Cp as disseminations in the vein.(C/A=15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6738                                                                                                       | 142.                                                                                                                                            | .40                                                                                                   | 144.40                                                                                                                                                       | 2.00                                                                                                 | 1005                                                                                                                         | 40                                                                                                    | 16                                                                           | 3.0                                                                                                                 | 1038                                                                                                  | 60                                                                                             | 45                                                                                               |
| 184.6-184.9: Grey and white Qz mineralized epithermal vein h 15% Cp as disseminations in the vein.(C/A=15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6739                                                                                                       | ) 144.                                                                                                                                          | .40                                                                                                   | 146.40                                                                                                                                                       | 2.00                                                                                                 | 1129                                                                                                                         | 70                                                                                                    | 14                                                                           | 3.5                                                                                                                 | 349                                                                                                   | 85                                                                                             | 75                                                                                               |
| 15% Cp as disseminations in the vein.(C/A=15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6739                                                                                                       | 1 146.                                                                                                                                          | .40                                                                                                   | 148.40                                                                                                                                                       | 2.00                                                                                                 | 2339                                                                                                                         | 50                                                                                                    | 59                                                                           | 12.7                                                                                                                | 380                                                                                                   | 305                                                                                            | 390                                                                                              |
| 15% Cp as disseminations in the vein.(C/A=15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | osting 15% Sp. and 6739.                                                                                   | 2 148.                                                                                                                                          | .40                                                                                                   | 150.40                                                                                                                                                       | 2.00                                                                                                 | 3425                                                                                                                         | 210                                                                                                   | 46                                                                           | 11.3                                                                                                                | 384                                                                                                   | 75                                                                                             | 80                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6739                                                                                                       | 3 150.                                                                                                                                          | .40                                                                                                   | 152.40                                                                                                                                                       | 2.00                                                                                                 | 1657                                                                                                                         | 140                                                                                                   | 26                                                                           | 9.0                                                                                                                 | 471                                                                                                   | 70                                                                                             | 50                                                                                               |
| 231.0-232.4: Intrusive brec#cia caused by injection of white C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6739                                                                                                       | 1 152.                                                                                                                                          | .40                                                                                                   | 154.40                                                                                                                                                       | 2.00                                                                                                 | 2024                                                                                                                         | 130                                                                                                   | 27                                                                           | 7.0                                                                                                                 | 487                                                                                                   | 55                                                                                             | 25                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | z matarial. 6739                                                                                           | 5 154.                                                                                                                                          | .40                                                                                                   | 156.40                                                                                                                                                       | 2.00                                                                                                 | 2685                                                                                                                         | 320                                                                                                   | 37                                                                           | 13.7                                                                                                                | 62                                                                                                    | 35                                                                                             | 10                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6739                                                                                                       | 5 156.                                                                                                                                          | .40                                                                                                   | 158.40                                                                                                                                                       | 2.00                                                                                                 | 3274                                                                                                                         | 490                                                                                                   | 28                                                                           | 10.6                                                                                                                | 42                                                                                                    | 70                                                                                             | 45                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6739                                                                                                       | 7 158.                                                                                                                                          | .40                                                                                                   | 160.40                                                                                                                                                       | 2.00                                                                                                 | 3597                                                                                                                         | 120                                                                                                   | 14                                                                           | 5.2                                                                                                                 | 46                                                                                                    | 70                                                                                             | 65                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6739                                                                                                       | 3 160.                                                                                                                                          | .40                                                                                                   | 162.40                                                                                                                                                       | 2.00                                                                                                 | 3395                                                                                                                         | 90                                                                                                    | 7                                                                            | 9.3                                                                                                                 | 72                                                                                                    | 120                                                                                            | 120                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6739                                                                                                       | 162.                                                                                                                                            | .40                                                                                                   | 164.40                                                                                                                                                       | 2.00                                                                                                 | 3586                                                                                                                         | 160                                                                                                   | 19                                                                           | 8.1                                                                                                                 | 111                                                                                                   | 150                                                                                            | 185                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6740                                                                                                       | 1 164.                                                                                                                                          | .40                                                                                                   | 166.40                                                                                                                                                       | 2.00                                                                                                 | 7042                                                                                                                         | 680                                                                                                   | 46                                                                           | 44.3                                                                                                                | 1102                                                                                                  | 490                                                                                            | 695                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6740                                                                                                       | 5 166.                                                                                                                                          | .40                                                                                                   | 168.40                                                                                                                                                       | 2.00                                                                                                 | 2005                                                                                                                         | 340                                                                                                   | 10                                                                           | 7.0                                                                                                                 | 857                                                                                                   | 45                                                                                             | 2                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6740                                                                                                       | 168.                                                                                                                                            | .40                                                                                                   | 170.40                                                                                                                                                       | 2.00                                                                                                 | 2741                                                                                                                         | 200                                                                                                   | 23                                                                           | 2.8                                                                                                                 | 61                                                                                                    | 35                                                                                             | 2                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6740                                                                                                       | 7 170.                                                                                                                                          | .40                                                                                                   | 172.40                                                                                                                                                       | 2.00                                                                                                 | 1760                                                                                                                         | 420                                                                                                   | 9                                                                            | 3.5                                                                                                                 | 1178                                                                                                  | 75                                                                                             | 2                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6740                                                                                                       | 3 172.                                                                                                                                          | .40                                                                                                   | 174.40                                                                                                                                                       | 2.00                                                                                                 | 3713                                                                                                                         | 420                                                                                                   | 13                                                                           | 5.5                                                                                                                 | 295                                                                                                   | 20                                                                                             | 2                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | 9 174.                                                                                                                                          | .40                                                                                                   | 176.40                                                                                                                                                       | 2.00                                                                                                 | 665                                                                                                                          | 140                                                                                                   | 7                                                                            | 0.7                                                                                                                 | 27                                                                                                    | 30                                                                                             | 2                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6740                                                                                                       |                                                                                                                                                 | 40                                                                                                    | 178.40                                                                                                                                                       | 2.00                                                                                                 | 1306                                                                                                                         | 230                                                                                                   | 7                                                                            | 2.4                                                                                                                 | 47                                                                                                    | 50                                                                                             | 2                                                                                                |

13-Nov-05 1:34:41 PM Page 3 of 5



# Drill Log Falconbridge Limited

DDH:

IC-05-03

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b> (m) | Description                                                                                                                                                     | Sample | from   | to     | <b>Length</b> | h <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |               |                                                                                                                                                                 | 67411  | 178.40 | 180.40 | 2.00          | 1999                     | 140              | 9                | 5.0              | 210              | 95               | 15               |
|             |               |                                                                                                                                                                 | 67412  | 180.40 | 182.40 | 2.00          | 1840                     | 290              | 7                | 6.4              | 533              | 190              | 95               |
|             |               |                                                                                                                                                                 | 67413  | 182.40 | 184.50 | 2.10          | 1960                     | 200              | 7                | 12.0             | 355              | 330              | 215              |
|             |               |                                                                                                                                                                 | 67414  | 184.50 | 185.00 | 0.50          | 4087                     | 520              | 3                | 25.5             | 20800            | 365              | 195              |
|             |               |                                                                                                                                                                 | 67415  | 185.00 | 187.00 | 2.00          | 1998                     | 370              | 12               | 9.5              | 724              | 195              | 55               |
|             |               |                                                                                                                                                                 | 67416  | 187.00 | 189.00 | 2.00          | 1140                     | 660              | 42               | 9.6              | 465              | 220              | 15               |
|             |               |                                                                                                                                                                 | 67417  | 189.00 | 191.00 | 2.00          | 1689                     | 180              | 6                | 2.0              | 77               | 185              | 2                |
|             |               |                                                                                                                                                                 | 67418  | 191.00 | 193.00 | 2.00          | 5468                     | 260              | 10               | 5.1              | 182              | 370              | 2                |
|             |               |                                                                                                                                                                 | 67419  | 193.00 | 195.00 | 2.00          | 3525                     | 270              | 4                | 5.4              | 276              | 235              | 10               |
|             |               |                                                                                                                                                                 | 67420  | 195.00 | 197.00 | 2.00          | 6055                     | 160              | 20               | 3.9              | 227              | 40               | 2                |
|             |               |                                                                                                                                                                 | 67421  | 197.00 | 199.00 | 2.00          | 4036                     | 480              | 15               | 4.2              | 43               | 120              | 2                |
|             |               |                                                                                                                                                                 | 67422  | 199.00 | 201.00 | 2.00          | 2160                     | 150              | 8                | 1.2              | 26               | 100              | 2                |
|             |               |                                                                                                                                                                 | 67423  | 201.00 | 203.00 | 2.00          | 2525                     | 110              | 11               | 2.0              | 13               | 65               | 2                |
|             |               |                                                                                                                                                                 | 67424  | 203.00 | 205.00 | 2.00          | 1231                     | 100              | 8                | 1.5              | 36               | 40               | 2                |
|             |               |                                                                                                                                                                 | 67426  | 205.00 | 207.00 | 2.00          | 385                      | 60               | 4                | 0.6              | 84               | 50               | 2                |
|             |               |                                                                                                                                                                 | 67427  | 207.00 | 209.00 | 2.00          | 546                      | 100              | 9                | 0.8              | 78               | 120              | 2                |
|             |               |                                                                                                                                                                 | 67428  | 209.00 | 211.00 | 2.00          | 373                      | 290              | 8                | 1.6              | 470              | 145              | 2                |
|             |               |                                                                                                                                                                 | 67429  | 211.00 | 213.00 | 2.00          | 1028                     | 610              | 20               | 6.3              | 1148             | 205              | 10               |
|             |               |                                                                                                                                                                 | 67430  |        | 215.00 | 2.00          | 498                      | 580              | 7                | 3.2              | 151              | 430              | 10               |
|             |               |                                                                                                                                                                 | 67431  | 215.00 | 217.00 | 2.00          | 344                      | 240              | 8                | 1.5              | 425              | 215              | 2                |
|             |               |                                                                                                                                                                 | 67432  | 217.00 | 219.00 | 2.00          | 611                      | 110              | 11               | 0.9              | 35               | 105              | 2                |
|             |               |                                                                                                                                                                 | 67433  | 219.00 | 221.00 | 2.00          | 1543                     | 130              | 7                | 1.5              | 67               | 75               | 2                |
|             |               |                                                                                                                                                                 | 67434  | 221.00 | 223.00 | 2.00          | 610                      | 110              | 13               | 0.9              | 194              | 95               | 2                |
|             |               |                                                                                                                                                                 | 67435  |        | 225.00 | 2.00          | 724                      | 90               | 40               | 0.9              | 243              | 60               | 2                |
|             |               |                                                                                                                                                                 | 67436  | 225.00 | 227.00 | 2.00          | 1103                     | 200              | 5                | 1.8              | 237              | 60               | 2                |
|             |               |                                                                                                                                                                 | 67437  | 227.00 | 229.00 | 2.00          | 1202                     | 240              | 8                | 1.6              | 91               | 70               | 2                |
|             |               |                                                                                                                                                                 | 67438  | 229.00 | 231.00 | 2.00          | 1838                     | 210              | 7                | 5.1              | 329              | 95               | 2                |
|             |               |                                                                                                                                                                 | 67439  | 231.00 | 232.40 | 1.40          | 2163                     | 620              | 12               | 12.3             | 1210             | 50               | 2                |
|             |               |                                                                                                                                                                 | 67440  | 232.40 | 234.40 | 2.00          | 1888                     | 290              | 53               | 4.7              | 326              | 125              | 2                |
|             |               |                                                                                                                                                                 | 67441  | 234.40 | 235.40 | 1.00          | 1457                     | 110              | 13               | 1.7              | 32               | 65               | 2                |
| 235.40      | 249.30        | MONZONITE (I2M)                                                                                                                                                 | 67442  | 235.40 | 237.40 | 2.00          | 1132                     | 180              | 14               | 1.3              | 65               | 75               | 2                |
|             |               | I2M/MASP/CH/(SI),(CH)/5% PY, T                                                                                                                                  | 67443  | 237.40 | 239.40 | 2.00          | 717                      | 80               | 6                | 0.5              | 67               | 30               | 2                |
|             |               |                                                                                                                                                                 | 67444  | 239.40 | 241.40 | 2.00          | 297                      | 70               | 3                | 0.3              | 67               | 20               | 2                |
|             |               | Medium to dark green locally greyish fine grained massive rock. Composed of                                                                                     | 67445  | 241.40 | 243.40 | 2.00          | 1002                     | 70               | 5                | 0.7              | 81               | 25               | 2                |
|             |               | about 30-40% white Fp euhedral to anhedral crystals. The mafic groundmass of the rock seems to be chloritized (dark green soft smaterial). The rest of the rock | 67446  | 243.40 | 245.40 | 2.00          | 890                      | 50               | 24               | 0.3              | 91               | 15               | 2                |
|             |               | is probably minor amount of Qz and sulphides. We note 3-4% subangular to                                                                                        | 67447  | 245.40 | 247.40 | 2.00          | 374                      | 150              | 4                | 0.3              | 76               | 90               | 2                |
|             |               | subrounded grey Qz fragments (<2 cm long). Non magnetic.                                                                                                        | 67448  | 247.40 | 249.30 | 1.90          | 1048                     | 150              | 10               | 1.1              | 255              | 100              | 2                |

13-Nov-05 1:34:41 PM



#### **Falconbridge Limited**

DDH:

IC-05-03

Project:

**KERR-SULPHURETS** 

Project #: 301

Description From To Length Cu Мо Αg Zn As Sb Sample from to (m) (m) ppm (ICP) ppb ppm ppm ppb ppm ppm

Alteration: Pervasive weak chloritization of the groundmass. Locally, pervasive weak to moderate silicification (rock takes pale green colour and harder). 5% white Qz and white Cc veins and veinlets and also patches and lenses of white Cc

Mineralization: 5% Py mainly as disseminations and some veinlets Traces of Cp essentially hosted by Qz veins

249.30 249.31

13-Nov-05 1:34:41 PM Page 5 of 5



### **Falconbridge Limited**

DDH:

IC-05-04

Project: **KERR-SULPHURETS** 

Project #: 301

DDH Casing

Azimuth: 310 Dip: -50 Length (m): 248.10 Started: 7/23/2005 Completed: 7/25/2005

Length (m): 4.6 Pulled: Non Plugged: Oui Cemented: Oui

Core

Size: NQ2

Storage: KERR CAMP Location

Coordonnée - UTM Easting: 424018 6266873 Northing: Elevation: 1585

NAD27 ZN9 Datum:

Claim #: 516241

Target:

Logged:

Cu-Au Porphyry

7/26/2005

Comments:

#### Directional Tests (C=Collar, R=Reflex)

| Distance | Azimuth | Dip    | Туре |
|----------|---------|--------|------|
| 0.00     | 310.00  | -50.00 | С    |
| 121.60   | 316.70  | -50.60 | R    |
| 243.50   | 318.40  | -49.30 | R    |

#### Intervenant

FALCONBRIDGE Company:

HY-TECH Contractor: Located by: A. HUARD Method: Handheld GPS Logged by: S. LAPOINTE



## Falconbridge Limited

DDH:

IC-05-04

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | To Descri                                                                                                                   | iption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample                                                                                                            | from                                                                                                             | to                                                                                                                | <b>Length</b>                                                | Cu<br>ppm (ICP)                                                                                  | <b>Au</b><br>ppb                                                                        | <b>Мо</b><br>ppm                                                | <b>Ag</b><br>ppm                                                                                 | <b>Zn</b><br>ppb                                                                              | <b>As</b><br>ppm                                                                       | <b>Sb</b><br>ppm                                                                       |
|-------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 0.00        | 4.60 CASING                                                                                                                 | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   |                                                                                                                  |                                                                                                                   |                                                              |                                                                                                  |                                                                                         |                                                                 |                                                                                                  |                                                                                               |                                                                                        |                                                                                        |
| 4.60        | MASP/(Very pa<br>Alteration<br>no veini<br>Mineral                                                                          | lization: 2-3% fine Py mostly as disseminations and veinlets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 67450<br>67451                                                                                                    | 5.20<br>6.70                                                                                                     | 6.70<br>8.20                                                                                                      | 1.50<br>1.50                                                 | 324<br>490                                                                                       | 700<br>460                                                                              | 10<br>8                                                         | 3.5<br>9.3                                                                                       | 940<br>719                                                                                    | 180<br>190                                                                             | 2<br>80                                                                                |
| 8.20        | 33.40 BRECO<br>BRECO<br>Medium<br>magnet<br>the frag<br>Lower of<br>Alteration<br>(50%)<br>direction<br>Mineral<br>veinlets | CIATED PHYLLIC ZONE QZ,SE/PL/3% PY,TR CP  In grey more or less greenish to pale olive green aphyric rock. Non tic. Mainly brecciated rock in a fault zone. The size and the shape of greents are very variable.  contact defined by faulting effect limit.  on: Mainly patchy pervasive silicification (50%) and sericitization About 3% veinlets/veiins of white Qz with a spacing of 20-30 cm and n between 70 and 80 deg from C/A.  Ilization: 3% Py mainly as disseminations but also as patches and so. One speck of Cp in a Qz vein.  3.1: Iron oxyde orange staining in a more fractured rock. Rust in a planes and halos around them.  2.9-13.3: Fault plane subparallel to C/A. | 67452<br>67454<br>67471<br>67472<br>67473<br>67474<br>67475<br>67476<br>67477<br>67479<br>67480<br>67481<br>67482 | 8.20<br>10.20<br>12.20<br>14.20<br>16.20<br>18.20<br>20.20<br>22.20<br>24.20<br>26.20<br>28.20<br>30.20<br>32.20 | 10.20<br>12.20<br>14.20<br>16.20<br>18.20<br>20.20<br>22.20<br>24.20<br>26.20<br>28.20<br>30.20<br>32.20<br>33.40 | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 579<br>1019<br>4891<br>3781<br>2246<br>3980<br>1600<br>407<br>513<br>2285<br>3680<br>2363<br>786 | 570<br>540<br>330<br>340<br>580<br>430<br>360<br>380<br>330<br>420<br>340<br>380<br>160 | 12<br>16<br>19<br>7<br>5<br>10<br>19<br>6<br>7<br>18<br>9<br>10 | 12.4<br>10.2<br>7.6<br>9.9<br>10.7<br>38.1<br>25.1<br>8.7<br>10.7<br>20.3<br>29.8<br>25.5<br>5.9 | 530<br>640<br>208<br>598<br>1628<br>1621<br>2311<br>494<br>940<br>1001<br>4035<br>2319<br>828 | 160<br>215<br>135<br>175<br>100<br>685<br>445<br>165<br>250<br>625<br>580<br>340<br>80 | 100<br>120<br>20<br>105<br>65<br>1105<br>450<br>140<br>200<br>860<br>1075<br>490<br>30 |
| 33.40       | dissemi 28.8-33 mm thic trace.  60.20 MEDIUI MASP/                                                                          | 8.0: Sheared sericitized zone defined by preferential orientation of inated Py grains (C/A=15 deg).  8.2: Badly broken and locally soft rock. Fault zone. Thin fault plane of 1 ck filled with black very soft material (fault gouge) subparallel to hole  M PHYLLIC ZONE QZ,SE/PL/3% PY  dark medium grey more or less greenish to pale olive green. Aphyric, e to locally brecciated rock. The dominant massive facies even hosts                                                                                                                                                                                                                                                      | 67483<br>67484<br>67485<br>67486                                                                                  | 33.40<br>35.40<br>37.40<br>39.40                                                                                 | 35.40<br>37.40<br>39.40<br>41.40                                                                                  | 2.00<br>2.00<br>2.00<br>2.00<br>2.00                         | 360<br>321<br>756<br>522                                                                         | 80<br>50<br>110<br>230                                                                  | 10<br>27<br>51<br>10                                            | 0.8<br>0.3<br>1.6<br>3.4                                                                         | 56<br>25<br>149<br>353                                                                        | 30<br>30<br>75<br>90                                                                   | 2<br>2<br>40<br>30                                                                     |



DDH:

IC-05-04

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                      | Sample | from  | to    | <b>Length</b><br>m | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ррт | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|--------------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | traces to up to 10% rounded to angular fragments mostly composed of grey                                                                                         | 67487  | 41.40 | 43.40 | 2.00               | 1605                   | 240              | 9                | 4.9              | 228              | 50               | 2                |
|             |                  | Qz but also of white Qz (< 4 cm long). The brecciated intervals are probably                                                                                     | 67488  | 43.40 | 45.40 | 2.00               | 639                    | 120              | 10               | 0.6              | 101              | 35               | 2                |
|             |                  | the result of differential phyllic alteration or intrusive brecciation. Non magnetic.<br>Lower contact: frank and defined by more massive aspect and by lower    | 67490  | 45.40 | 47.40 | 2.00               | 714                    | 130              | 6                | 1.2              | 49               | 35               | 2                |
|             |                  | fragments content of the unit below.                                                                                                                             | 67491  | 47.40 | 49.40 | 2.00               | 961                    | 260              | 14               | 1.7              | 79               | 50               | 2                |
|             |                  | Alteration: Pervasive moderate silicification (50%) and sericitization (50%).                                                                                    | 67492  | 49.40 | 51.40 | 2.00               | 516                    | 170              | 4                | 1.7              | 93               | 25               | 2                |
|             |                  | About 5% white Qz- white Cc veins/veinlets and some with Qz alone or Cc                                                                                          | 67493  | 51.40 | 53.40 | 2.00               | 914                    | 450              | 12               | 3.4              | 248              | 195              | 80               |
|             |                  | alone. The thinnest veinlets are usually of Cc alone. The mean spacing is 20-                                                                                    | 67494  | 53.40 | 55.40 | 2.00               | 650                    | 360              | 6                | 5.6              | 1084             | 255              | 210              |
|             |                  | 30 cm and the direction between 60 and 80 deg with C/A. The veins and                                                                                            | 67495  | 55.40 | 57.40 | 2.00               | 2663                   | 220              | 7                | 14.1             | 607              | 585              | 710              |
|             |                  | veinlets become more winding and at a lower angle when approaching the bottom of unit.                                                                           | 67496  | 57.40 | 59.10 | 1.70               | 1788                   | 180              | 17               | 3.4              | 752              | 185              | 70               |
|             |                  | Mineralization: 3% fine Py mainly as disseminations and also as veinlets.                                                                                        | 67497  | 59.10 | 60.20 | 1.10               | 1233                   | 40               | 4                | 0.5              | 43               | 40               | 2                |
|             |                  | 36.6-44.2: Chaotic breccia zone. Incl. 38.6-39.0: Badly broken rusty rock.                                                                                       |        |       |       |                    |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 59.5-60.2: . Porphyritic rock (15% euhedral to anhedral white Fp phenocrysts and traces to 10% altered green mineral crystals). Also grey Qz fragments rich zone |        |       |       |                    |                        |                  |                  |                  |                  |                  |                  |
| 60.20       | 93.20            | O WEAK PHYLLIC ZONE                                                                                                                                              | 67498  | 60.20 | 62.20 | 2.00               | 609                    | 80               | 8                | 0.5              | 45               | 35               | 2                |
|             |                  | MASP/QZ,SE/(PL)/2-3% PY,TR CP                                                                                                                                    | 67499  | 62.20 | 64.20 | 2.00               | 1981                   | 110              | 8                | 0.8              | 29               | 35               | 2                |
|             |                  |                                                                                                                                                                  | 67801  | 64.20 | 66.20 | 2.00               | 1325                   | 290              | 12               | 0.7              | 36               | 90               | 2                |
|             |                  | Pale to medium grey more or less greenish, aphyric and massive rock. Non                                                                                         | 67802  | 66.20 | 68.20 | 2.00               | 1306                   | 140              | 13               | 0.8              | 41               | 95               | 2                |
|             |                  | magnetic.                                                                                                                                                        | 67803  | 68.20 | 70.20 | 2.00               | 344                    | 140              | 9                | 0.4              | 15               | 95               | 2                |
|             |                  | Lower contact is sharp and mostly defined by appearing of white Fp                                                                                               | 67804  | 70.20 | 72.20 | 2.00               | 250                    | 270              | 14               | 0.2              | 49               | 150              | 2                |
|             |                  | phenocrysts Alteration: Weak pervasive silicification (50%) and sericitization (50%). About                                                                      | 67805  | 72.20 | 74.20 | 2.00               | 235                    | 160              | 9                | 0.3              | 12               | 80               | 2                |
|             |                  | 5% white Qz-white Cc veins/veinlets and some with Qz alone or Cc alone.                                                                                          | 67806  | 74.20 | 76.20 | 2.00               | 575                    | 250              | 8                | 0.7              | 77               | 105              | 2                |
|             |                  | The mean spacing is 10-30 cm and the direction between 40 and 60 deg with                                                                                        | 67807  | 76.20 | 78.20 | 2.00               | 348                    | 240              | 10               | 0.5              | 29               | 85               | 2                |
|             |                  | C/A.                                                                                                                                                             | 67808  | 78.20 | 80.20 | 2.00               | 456                    | 110              | 22               | 0.6              | 9                | 35               | 2                |
|             |                  | Mineralization: 2-3% fine disseminated Py and more or less continuous Py                                                                                         | 67809  | 80.20 | 82.20 | 2.00               | 1133                   | 120              | 20               | 0.8              | 11               | 35               | 2                |
|             |                  | veinlets. Traces of Cp in white Qz veins.                                                                                                                        | 67810  | 82.20 | 84.20 | 2.00               | 560                    | 220              | 11               | 0.5              | 8                | 50               | 2                |
|             |                  | 65.5-65.9: Badly broken rock.                                                                                                                                    | 67811  | 84.20 | 86.20 | 2.00               | 2093                   | 180              | 15               | 0.5              | 23               | 35               | 2                |
|             |                  | 00.0 00.0. Dadiy Diokeli look.                                                                                                                                   | 67812  | 86.20 | 88.20 | 2.00               | 3632                   | 160              | 22               | 0.5              | 14               | 35               | 2                |
|             |                  | 66.6-68.4: Badly broken rock.                                                                                                                                    | 67814  | 88.20 | 90.20 | 2.00               | 1872                   | 110              | 15               | 0.5              | 16               | 30               | 2                |
|             |                  | •                                                                                                                                                                | 67815  | 90.20 | 91.20 | 1.00               | 1674                   | 170              | 17               | 0.7              | 14               | 35               | 2                |
|             |                  | 83.0-83.7: Broken rock.                                                                                                                                          | 67816  | 91.20 | 93.20 | 2.00               | 1606                   | 160              | 13               | 0.8              | 19               | 45               | 2                |
|             |                  | 87.5-88.0: Very badly broken rock.                                                                                                                               |        |       |       |                    |                        |                  |                  |                  |                  |                  |                  |
| 93.20       | 105.00           |                                                                                                                                                                  | 67817  | 93.20 | 95.20 | 2.00               | 2534                   | 120              | 53               | 1.1              | 34               | 20               | 2                |

13-Nov-05 1:39:02 PM



DDH:

IC-05-04

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample | from   | to     | <b>Length</b> | <b>Cu</b> ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|---------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | PORPHYRY MONZONITE (I2MPOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67818  | 95.20  | 97.20  | 2.00          | 2956                | 110              | 21               | 0.5              | 26               | 25               | 2                |
|             |                  | I2MPOR/QZ/(PL)/1-2% PY,TR CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67819  | 97.20  | 99.20  | 2.00          | 954                 | 70               | 7                | 0.7              | 24               | 25               | 2                |
|             |                  | Madium avoy to doub modium avoy alightly avoonigh north witin money a vool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67820  | 99.20  | 101.20 | 2.00          | 2840                | 70               | 33               | 0.6              | 9                | 10               | 2                |
|             |                  | Medium grey to dark medium grey slightly greenish porphyritic massive rock.  Traces to 30% of anhedral to euhedral white Fp phenocrysts (<8 mm long or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67821  | -      | 103.20 | 2.00          | 1571                | 60               | 11               | 1.9              | 15               | 10               | 2                |
|             |                  | of diameter). Also traces to 10% altered (Se or Ch?) soft rounded mafic mineral (<4 mm long). The matriz sems to be mostly composed of grey Qz, Fp and Se. We note about 1% of darker (probably chloritized) subangular to angular patches (or fragments?) and traces of grey Qz fragments (<4 cm of diameter0). Non magnetic.  Alteration: Weak to moderate pervasive silicification and weak pervasive sericitization. About 5% white Qz and white Cc veins/veinlets. Spacing between 10 and 30 cm and direction from 45 to 70 deg with C/A. White Cc dominant veins are more irregular and winding. Some Qz veins contain dark green to black chlorite.  Mineralization: 1-2% fine Py mainly as disseminations and as veinlets. The disseminated Py is more abundant in the mafic patches (or fragments). Traces of Cp in a few Qz veins.  Lower contact defined by the disappearing of Fp phenocrysts and by alteration grow up. | 67822  | 103.20 | 105.00 | 1.80          | 1458                | 110              | 15               | 1.3              | 18               | 20               | 2                |
| 105.00      | 169 20           | MEDIUM PHYLLIC ZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67823  | 105.00 | 107.00 | 2.00          | 1512                | 50               | 22               | 0.6              | 13               | 10               | 2                |
| 103.00      | 100.30           | QZ,SE/PL/3-4% PY,TR CP,TR MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67825  | 107.00 |        | 2.00          | 1802                | 100              | 10               | 0.6              | 69               | 65               | 2                |
|             |                  | Q2,0E/1 1/3-4701 1,110 OI ,110 MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67826  | 107.00 |        | 2.00          | 3814                | 220              | 15               | 0.4              | 1081             | 215              | 40               |
|             |                  | Medium grey to dark medium grey, slightly greenish, massive aphyric rock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 67827  | 111.00 |        | 2.00          | 1424                | 80               | 10               | 0.5              | 41               | 30               | 2                |
|             |                  | Becomes a little pinkish in the last few meters of unit. Non magnetic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67828  | 113.00 |        | 2.00          | 2085                | 260              | 17               | 1.8              | 2940             | 45               | 2                |
|             |                  | Alteration: Pervasive moderate silicification and pervasive weak sericitization. 7-8% white Qz-white Cc, Qz alone, Cc alone and Cc-Purple Qz veins/veinlets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67829  | 115.00 |        | 2.00          | 2701                | 550              | 16               | 1.2              | 183              | 25               | 2                |
|             |                  | Chlorite is locally present in Qz veins. Mean spacing of 20 cm and direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67830  | 117.00 | 119.00 | 2.00          | 3929                | 670              | 52               | 1.3              | 217              | 35               | 2                |
|             |                  | mainly between 60 and 80 deg related to C/A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67831  | 119.00 | 121.00 | 2.00          | 3150                | 360              | 20               | 1.2              | 105              | 85               | 45               |
|             |                  | Mineralization: 3-4% fine Py mostly as disseminations with some veinlets and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67832  | 121.00 | 122.70 | 1.70          | 2066                | 270              | 15               | 0.5              | 1128             | 115              | 70               |
|             |                  | small patches. Traces of Cp essentially in Qz, Qz-Cc and Cc-fluorite veinlets and veins. Traces of Mo (2 sites) associated to a Py vein and to a Qz veins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67833  | 122.70 | 124.70 | 2.00          | 1802                | 220              | 19               | 1.1              | 49               | 10               | 2                |
|             |                  | Lower contact defined by more evident pinkish tint and by higher Cp content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67834  | 124.70 | 126.70 | 2.00          | 2042                | 200              | 14               | 1.4              | 33               | 10               | 2                |
|             |                  | in the unit below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 67836  | 126.70 | 128.70 | 2.00          | 3024                | 260              | 138              | 1.5              | 21               | 10               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67837  | 128.70 | 130.70 | 2.00          | 4094                | 130              | 19               | 0.6              | 42               | 15               | 2                |
|             |                  | 120.6: Traces of Mo in a Qz vein.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67838  |        |        | 2.00          | 2519                | 300              | 23               | 2.6              | 252              | 35               | 2                |
|             |                  | 122.7-135.2: Porphyritic interval. 1-10% anhedral to euhedral white Fp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67839  | 132.70 |        | 2.00          | 1854                | 390              | 20               | 1.4              | 242              | 50               | 2                |
|             |                  | phenocrysts (<5 mm of diameter). 5-10% altered dark green mineral (<4 mm).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67840  | 134.70 |        | 0.50          | 2107                | 460              | 55               | 1.2              | 425              | 90               | 2                |
|             |                  | processing to him of diamotory, o 1070 diction dark grown millional (14 mill).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67841  | 135.20 |        | 2.00          | 2865                | 290              | 33               | 4.2              | 447              | 45               | 2                |
|             |                  | 164.5: Qz vein of 8 mm thick hosting mainly massive in the center and traces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67842  | 137.20 | 139.20 | 2.00          | 3159                | 290              | 38               | 3.4              | 107              | 50               | 2                |

13-Nov-05 1:39:02 PM Page 3 of 6



DDH:

IC-05-04

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b> (m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample | from   | to     | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |               | of Cp and traces of Mo at the margin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67843  | 139.20 | 141.20 | 2.00          | 3645            | 270              | 52               | 2.4              | 114              | 45               | 2                |
|             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67844  | 141.20 | 143.20 | 2.00          | 2721            | 260              | 65               | 1.8              | 59               | 45               | 2                |
|             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67845  | 143.20 | 145.20 | 2.00          | 2984            | 200              | 81               | 1.6              | 58               | 30               | 2                |
|             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67846  |        | 147.20 | 2.00          | 2912            | 250              | 208              | 1.5              | 31               | 25               | 2                |
|             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67847  | 147.20 | 149.20 | 2.00          | 1896            | 270              | 35               | 1.5              | 28               | 50               | 2                |
|             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67849  | 149.20 | 151.20 | 2.00          | 1549            | 340              | 27               | 1.8              | 51               | 110              | 2                |
|             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67850  | 151.20 |        | 2.00          | 1670            | 820              | 14               | 6.0              | 260              | 110              | 2                |
|             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67851  | 153.20 | 155.20 | 2.00          | 1659            | 340              | 10               | 2.4              | 65               | 115              | 2                |
|             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67852  | 155.20 | 157.20 | 2.00          | 1297            | 210              | 44               | 0.9              | 37               | 100              | 2                |
|             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67853  | 157.20 | 159.20 | 2.00          | 1573            | 220              | 42               | 1.1              | 41               | 110              | 2                |
|             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67854  | 159.20 | 161.20 | 2.00          | 1161            | 250              | 23               | 0.8              | 43               | 75               | 2                |
|             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67855  | 161.20 | 163.20 | 2.00          | 1154            | 220              | 12               | 0.6              | 42               | 55               | 2                |
|             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67856  | 163.20 | 165.20 | 2.00          | 2475            | 440              | 106              | 1.2              | 64               | 95               | 2                |
|             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67857  | 165.20 | 167.20 | 2.00          | 971             | 260              | 17               | 0.4              | 57               | 85               | 2                |
|             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67858  | 167.20 | 168.30 | 1.10          | 1554            | 360              | 13               | 0.5              | 53               | 70               | 2                |
| 168.30      | 218.00        | WEAK POTASSIC ZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67860  | 168.30 | 170.30 | 2.00          | 2771            | 440              | 22               | 0.6              | 44               | 35               | 2                |
|             |               | QZ, K-FP/(FK)/5% PY,0.25% CP,T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67861  | 170.30 | 172.30 | 2.00          | 2195            | 450              | 24               | 0.5              | 58               | 40               | 2                |
|             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67862  | 172.30 | 174.30 | 2.00          | 1398            | 320              | 23               | 0.3              | 87               | 40               | 2                |
|             |               | Variable pinkish tinted medium grey aphyric massive rock. Non magnetic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67863  | 174.30 | 176.30 | 2.00          | 1726            | 100              | 29               | 0.4              | 60               | 25               | 5                |
|             |               | Locally, 5-25% completely altered mafic mineral (probably chlorite after Bo). They are visible on few cm to decm scale intervals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67864  | 176.30 | 178.30 | 2.00          | 1927            | 220              | 29               | 0.6              | 65               | 25               | 2                |
|             |               | Alteration: Mainly pervasive or in patches very pale pink coloration (weak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67865  | 178.30 | 180.30 | 2.00          | 1348            | 260              | 16               | 0.3              | 46               | 10               | 2                |
|             |               | potassic aleration?). Still pervasive weak to moderate silicification. 3-4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67866  | 180.30 | 182.30 | 2.00          | 1658            | 230              | 21               | 0.4              | 37               | 15               | 2                |
|             |               | veinlets/veins of white Qz and/or white Cc and/or purple Qz and/or dark green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67867  | 182.30 | 184.30 | 2.00          | 2646            | 200              | 25               | 0.7              | 65               | 25               | 2                |
|             |               | chlorite. Mean spacing between 10 and 30 cm and direction from 60 to 80 deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67868  | 184.30 | 186.30 | 2.00          | 3046            | 160              | 44               | 0.8              | 55               | 35               | 2                |
|             |               | with C/A. We note also about 1% pale greenish yellow sericite veinlets. May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67869  | 186.30 | 188.30 | 2.00          | 2453            | 180              | 18               | 0.7              | 65               | 20               | 2                |
|             |               | be an overprinting of potassic and phyllic alteration(?).  Mineralization: 5% fine grained Py mostly as disseminations but also as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67871  | 188.30 | 190.30 | 2.00          | 3162            | 160              | 34               | 0.9              | 49               | 20               | 2                |
|             |               | veinlets. Few veins and massive patches. 0.25% Cp mainly associated to Py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67872  | 190.30 | 192.30 | 2.00          | 2735            | 220              | 62               | 8.0              | 60               | 20               | 2                |
|             |               | in Qz (more or less Cc, purple Qz and Ch) veinlets and veins. Also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67873  | 192.30 | 193.50 | 1.20          | 3331            | 240              | 93               | 8.0              | 81               | 20               | 2                |
|             |               | disseminated in host rock as cloudy patches of very small specks with a black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67874  | 193.50 | 194.50 | 1.00          | 2645            | 120              | 60               | 0.6              | 56               | 15               | 2                |
|             |               | chloritized background (after Bo?). The Cp is quite frequent in fracture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67875  | 194.50 | 196.50 | 2.00          | 2227            | 250              | 47               | 0.5              | 40               | 35               | 2                |
|             |               | cleavages. Traces of Mo associated with Cp in fracture planes (2 sites).  Traces of Hm in few white Qz veins and veinlets; locally specularite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67876  | 196.50 | 197.70 | 1.20          | 3255            | 480              | 132              | 0.3              | 40               | 10               | 2                |
|             |               | Lower contact rapid (over 30 cm) and charactherized by the beginning of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67877  | 197.70 | 198.90 | 1.20          | 2598            | 880              | 67               | 0.6              | 73               | 25               | 5                |
|             |               | phenocrysyts occurrence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67878  | 198.90 | 199.90 | 1.00          | 3778            | 220              | 164              | 0.7              | 53               | 15               | 2                |
|             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67879  | 199.90 | 201.90 | 2.00          | 2456            | 360              | 78               | 0.5              | 74               | 25               | 10               |
|             |               | 179.9-182.6: More broken and fragmented rock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67880  | 201.90 | 203.90 | 2.00          | 2494            | 250              | 32               | 0.6              | 43               | 15               | 2                |
|             |               | 104 Or Traces of Ma accessisted with Co in fracture plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67881  | 203.90 |        | 2.00          | 3146            | 470              | 44               | 0.7              | 45               | 15               | 2                |
|             |               | 194.0: Traces of Mo associated with Cp in fracture plane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67882  | 205.90 | 207.90 | 2.00          | 2672            | 1430             | 21               | 0.7              | 65               | 25               | 2                |
|             |               | 199.3: Traces of Mo associated with Cp in fracture plane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67884  | 207.90 | 209.90 | 2.00          | 2375            | 2960             | 16               | 8.0              | 55               | 25               | 2                |
|             |               | The state of the s | 67885  | 209.90 | 211.90 | 2.00          | 2046            | 1810             | 19               | 0.6              | 55               | 15               | 2                |

13-Nov-05 1:39:02 PM



## Falconbridge Limited

DDH:

IC-05-04

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample         | from   | to to            | <b>Lengti</b><br>m | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|------------------|--------------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67886          |        | 213.90           | 2.00               | 3594                   | 900              | 87               | 0.8              | 57               | 20               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67887<br>67888 |        | 215.90<br>218.00 | 2.00<br>2.10       | 2920<br>4020           | 320<br>240       | 25<br>50         | 0.5<br>0.8       | 54<br>68         | 15<br>10         | 2<br>2           |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |                  |                    |                        |                  |                  |                  |                  |                  |                  |
| 218.00      | 236.80           | PORPHYRY MONZONITE (I2MPOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67889          |        | 220.00           | 2.00               | 2446                   | 330              | 7                | 0.7              | 86               | 5                | 2                |
|             |                  | I2MPOR/(FK),(PL)/2-3% PY, TR C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67890<br>67891 |        | 222.00<br>224.00 | 2.00<br>2.00       | 2335<br>3963           | 290<br>340       | 13<br>13         | 0.6<br>1.1       | 109<br>85        | 10<br>10         | 2<br>2           |
|             |                  | Dark medium grey to dark grey rock and, generally, pink tinted. Massive and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67892          |        | 224.00           | 2.00               | 5363                   | 970              | 13               | 1.1              | 64               | 2                | 2                |
|             |                  | mostly porphyritic rock. About 25% euhedral white Fp phenocrysts (< 1 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67893          |        | 228.00           | 2.00               | 2554                   | 350              | 19               | 0.6              | 55               | 2                | 2                |
|             |                  | long) and about 20% anhedral to euhedral chloritized mafic mineral phenocrysts (<5 mm long; probably after Bo). Most of the upper half of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67895          |        | 230.00           | 2.00               | 2021                   | 300              | 11               | 0.4              | 48               | 2                | 2                |
|             |                  | unit is aphyric (see details below). Matrix probably composed of fine to very                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67896          |        | 232.00           | 2.00               | 1758                   | 190              | 20               | 0.4              | 70               | 2                | 2                |
|             |                  | fine felspar with Qz. Non magnetic to locally, weakly magnetic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67897          |        | 234.00           | 2.00               | 628                    | 120              | 7                | 0.1              | 69               | 2                | 2                |
|             |                  | Alteration: Weak and variable pervasive potassic alteration (pink K-Fp?).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 67898          | 234.00 | 235.40           | 1.40               | 1851                   | 290              | 8                | 0.4              | 59               | 10               | 2                |
|             |                  | Appears as homogeneous or as badly defined patches or bands. Potassic alteration also as veins and veinlets and as halos on both sides of some Qz veins. About 3% white Qz and white Cc veins/veinlets. Some veins can contain purple Qz or Chlorite or Hm. Mean spacing between 10 and 20 cm and direction from 60 to 70 deg C/A. Some cm scale intervals in the aphyric facies are rich in pale greenish yellow sericite (overprinting of phyllic?). Mineralization: 2-3% fine grained Py mainly as disseminations and few veinlets. Traces of Cp as disseminations in Qz veins, on fracture cleavages and also as very fine disseminations in the host rock. Lower contact defined by phenocrysts disappearing and by the glassy look of the unit below.  219.0-229.7: Darker aphyric rock but still with the patchy pink tint. Hosts some cm scale greenish yellow sericite rich zones. | 67899          | 235.40 | 236.80           | 1.40               | 2873                   | 840              | 6                | 1.1              | 35               | 25               | 2                |
| 236.80      | 248.10           | <b>WEAK POTASSIC ZONE</b><br>K-FP,QZ,SE/(FK),SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67900<br>67901 |        | 238.80<br>240.80 | 2.00<br>2.00       | 2755<br>2597           | 240<br>2190      | 10<br>10         | 1.0<br>1.1       | 2287<br>149      | 35<br>25         | 2 2              |
|             |                  | Aphyric pinkish pale to medium grey rock. Massive and non magnetic.General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67902          |        | 242.80           | 2.00               | 2597                   | 1480             | 12               | 1.0              | 63               | 75               | 2                |
|             |                  | glassy look.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67903          |        | 244.80           | 2.00               | 2652                   | 350              | 19               | 1.0              | 51               | 45               | 2                |
|             |                  | Alteration: Weak pervasive but patchy potassic alteration (pinkish tintis probably K-Fp). Moderate pervasive silicification. 4% white Qz and/or white Cc with locally, purple Qz. Mean spacing between 10 and 20 cm and direction between 60 and 70 degC/A). Some white Cc veins at about 15 deg crosscut the latters.  Mineralization: 4% fine grained Py mostly as veinlets with Qz or as patches. The rest as disseminations. About 0.25% Cp as patches (<4 cm of diameter)                                                                                                                                                                                                                                                                                                                                                                                                              | 67904<br>67906 |        | 246.80<br>248.10 | 2.00<br>1.30       | 5378<br>3684           | 180<br>190       | 19<br>42         | 1.9<br>1.4       | 29<br>24         | 30<br>40         | 2                |
|             |                  | directly in the host rock and in Qz and Cc veins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |        |                  |                    |                        |                  |                  |                  |                  |                  |                  |

13-Nov-05 1:39:02 PM Page 5 of 6



### **Falconbridge Limited**

DDH:

IC-05-05

Project:

**KERR-SULPHURETS** 

Project #: 301

DDH Casing Azimuth: 310 Length (m): 4.6 Pulled: Dip: -50 Non Length (m): Plugged: 249.60 Non Started: 8/1/2005 Cemented: Oui Completed: 8/3/2005 Core Logged: 8/4/2005 Size:

Storage:

NQ2

KERR CAMP

Coordonnée - UTM

Location

NAD27 ZN9

Easting: 423997 6266280 Northing: Elevation: 1240

Datum:

Intervenant

FALCONBRIDGE Company:

HY-TECH Contractor: Located by: A. HUARD Method: Handheld GPS Logged by: S. LAPOINTE

Claim #: 516245

Target:

Cu-Au Porphyry

Comments:

#### Directional Tests (C=Collar, R=Reflex)

| Distance | Azimuth | Dip    | Туре |
|----------|---------|--------|------|
| 0.00     | 310.00  | -50.00 | С    |
| 8.80     | 308.30  | -49.60 | R    |
| 121.60   | -       | -49.50 | R    |
| 127.70   | 309.50  | -49.50 | R    |
| 243.50   | 311.90  | -50.40 | R    |



## Falconbridge Limited

DDH:

IC-05-05

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample                                                                       | from                                                                                   | to                                                                                     | <b>Length</b><br>m                                                           | Cu<br>ppm (ICP)                                                              | <b>Au</b><br>ppb                                                 | <b>Мо</b><br>ppm                                  | <b>Ag</b><br>ppm                                                   | <b>Zn</b><br>ppb                                          | <b>As</b><br>ppm                                         | <b>Sb</b><br>ppm                                                                            |
|-------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 0.00        | 4.60             | CASING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              |                                                                                        |                                                                                        |                                                                              |                                                                              |                                                                  |                                                   |                                                                    |                                                           |                                                          |                                                                                             |
|             |                  | 3.1-4.6: Angular pieces of core mixed with polygenic coarse sand (overburden).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                        |                                                                                        |                                                                              |                                                                              |                                                                  |                                                   |                                                                    |                                                           |                                                          |                                                                                             |
| 4.60        | 25.60            | MASP/(PP)  Dark green aphyric massive rock. Non magnetic. Probably mainly composed of Fp, Qz and 5-10% mafic minerals.  Alteration: Weak pervasive propyllitic(?) alteration (Ch coloured rock). Few Qz veins at 50 deg (about 1%) crosscut by at least two generations of Cc veins/veinlets (about 5%). The early one is essentially composed of white Cc veinlets and has a spacing of few cm and directions between 70 and 80 deg. The veins belonging to the late one are larger, have a spacing between 10 and 20 cm and are very low angle relative to C/A (0-15 deg., locally 45 deg.). The latter also bring some pinkish Cc. Mineralization: 5% fine grained disseminated Py and 1-2% Py veinlets in chloritic matrix. Traces of Cp associated with Py. Traces of malachite. Lower contact: Sharp. Defined by the beginning of brecciated silicified | 9071<br>9072<br>9073<br>9074<br>9075<br>9076<br>9077<br>9078<br>9080<br>9081 | 6.60<br>8.60<br>10.60<br>12.60<br>14.60<br>16.60<br>18.60<br>20.60<br>22.60<br>24.60   | 8.60<br>10.60<br>12.60<br>14.60<br>16.60<br>18.60<br>20.60<br>22.60<br>24.60<br>25.60  | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00                 | 1806<br>1457<br>2008<br>3595<br>3263<br>5253<br>6669<br>5712<br>1103<br>1563 | 120<br>60<br>110<br>160<br>140<br>240<br>210<br>140<br>80<br>790 | 5<br>3<br>8<br>3<br>7<br>20<br>5<br>4<br>15<br>21 | 2.6<br>2.0<br>2.5<br>4.1<br>4.5<br>7.4<br>9.0<br>9.9<br>2.7<br>3.9 | 88<br>83<br>41<br>64<br>67<br>127<br>66<br>55<br>44<br>70 | 30<br>20<br>40<br>35<br>25<br>40<br>15<br>15<br>20<br>25 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                    |
|             |                  | intervals typical of the next unit (C/A=10 deg.).  4.6-5.3: Rusty broken rock.  6.6-6.9: Rusty badly broken rock.  7.5-9.7: Rusty badly broken rock.  17.3-18.7: Rusty broken rock with very altered and fragile pieces (strong oxydation of Py and Cp veins).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                        |                                                                                        |                                                                              |                                                                              |                                                                  |                                                   |                                                                    |                                                           |                                                          |                                                                                             |
| 25.60       | 129.40           | BRECCIA BREC/QZ,CH/(PP)/7-8% PY,TR CP  Brecciated greenish pale to medium grey (locally yellowish to dirty white) aphyric rock alternating with some massive dark green aphyric rock. Non magnetic to weakly magnetic (very locally, moderately magnetic). The very dominant breccia facies is mainly composed of Fp and Qz angular jointive fragments with 5-15% of dark green chloritic (?) matrix. Locally, the breccia matrix hosts some Mt. Massive intervals seem to have about the same composition but with chloritic component homogeneously sparsed in the rock. We note few silicified porphyritic dykes with zoned reddish to brick red Fp phenocrysts.                                                                                                                                                                                           | 9082<br>9083<br>9084<br>9085<br>9086<br>9087<br>9088<br>9089<br>9091<br>9092 | 25.60<br>27.40<br>29.10<br>31.00<br>33.00<br>35.00<br>37.00<br>39.00<br>41.00<br>43.00 | 27.40<br>29.10<br>31.00<br>33.00<br>35.00<br>37.00<br>39.00<br>41.00<br>43.00<br>45.00 | 1.80<br>1.70<br>1.90<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 1050<br>3278<br>1348<br>1486<br>597<br>1201<br>967<br>1839<br>740<br>3078    | 140<br>320<br>180<br>240<br>90<br>150<br>100<br>220<br>60<br>90  | 4<br>5<br>6<br>14<br>39<br>17<br>20<br>38<br>9    | 2.0<br>5.0<br>2.7<br>2.5<br>1.3<br>4.6<br>2.6<br>3.7<br>2.4<br>5.2 | 75<br>78<br>71<br>76<br>44<br>52<br>53<br>56<br>45        | 30<br>45<br>35<br>40<br>30<br>75<br>25<br>45<br>20<br>25 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |

13-Nov-05 1:44:15 PM



DDH:

IC-05-05

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b> (m) | Description                                                                                                                                                 | Sample | from   | to     | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b> ppm |
|-------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|-----------------|------------------|------------------|------------------|------------------|------------------|---------------|
|             |               | Alteration: The rock seem to have experimented weak pervasive propyllitic                                                                                   | 9093   | 45.00  | 47.00  | 2.00          | 1409            | 60               | 16               | 3.5              | 67               | 25               | 2             |
|             |               | (chloritic breccia matrix and chloritized mafic minerals in massive intervals)                                                                              | 9094   | 47.00  | 49.00  | 2.00          | 2283            | 90               | 21               | 4.1              | 96               | 30               | 2             |
|             |               | and weak to moderate pervasive phyllic alteration types (silicification, Py rich                                                                            | 9095   | 49.00  | 51.00  | 2.00          | 2162            | 60               | 5                | 2.8              | 116              | 40               | 2             |
|             |               | and local yellowish sericitic replacement of fragments feldspathic component).                                                                              | 9096   | 51.00  | 53.00  | 2.00          | 2367            | 140              | 19               | 2.7              | 150              | 10               | 2             |
|             |               | Some weak pervasive carbonatation intervals.                                                                                                                | 9097   | 53.00  | 55.00  | 2.00          | 2564            | 100              | 2                | 2.7              | 173              | 5                | 2             |
|             |               | Globally, about 7 to 8% veining of different types. The white Qz only veins seem to be older (0.5 to 4 cm thick); their directions are between 15 and 45    | 9098   | 55.00  | 57.00  | 2.00          | 1567            | 60               | 8                | 2.3              | 99               | 10               | 2             |
|             |               | deg. Some contains small amount of disseminated Mt and margins with brick                                                                                   | 9099   | 57.00  | 59.00  | 2.00          | 1919            | 60               | 4                | 1.8              | 67               | 15               | 2             |
|             |               | red Fp grains. Also slightly reddish medium grey Qz veins (3 to 5 cm thick)                                                                                 | 9100   | 59.00  | 61.00  | 2.00          |                 | 110              | 11               | 2.3              | 96               | 10               | 2             |
|             |               | which vary between 50 to 60 deg relative to C/A. They appears around 70.0                                                                                   |        |        |        |               | 2569            | _                |                  |                  |                  |                  |               |
|             |               | meters. Locally, they host hematized brick red Fp grains. There are few white                                                                               | 9151   | 61.00  | 63.00  | 2.00          | 611             | 60               | 14               | 0.9              | 44               | 10               | 2             |
|             |               | to purple Qz-white Cc veins (0.5-1.5 cm thick) at 50 deg with C/A. The straight                                                                             | 9152   | 63.00  | 65.00  | 2.00          | 5856            | 90               | 8                | 3.3              | 74               | 25               | 2             |
|             |               | and thin white Cc veinlets are the most common and the best spreaded; they                                                                                  | 9154   | 65.00  | 67.00  | 2.00          | 1892            | 70               | 23               | 2.0              | 67               | 15               | 2             |
|             |               | dip between 60 and 70 deg. Finally, we note the late white and pink Cc veins                                                                                | 9155   | 67.00  | 69.00  | 2.00          | 1071            | 90               | 6                | 1.4              | 58               | 40               | 2             |
|             |               | (0.5 -7 cm thick) which are about 70 deg for the straight ones and between 15                                                                               | 9156   | 69.00  | 71.00  | 2.00          | 1690            | 80               | 15               | 2.7              | 88               | 25               | 2             |
|             |               | and 30 deg for the irregular ones.                                                                                                                          | 9157   | 71.00  | 73.10  | 2.10          | 844             | 80               | 10               | 2.1              | 55               | 25               | 2             |
|             |               | Mineralization: 7-8% fine grained Py mostly as disseminations and diffused                                                                                  | 9158   | 73.10  | 75.20  | 2.10          | 893             | 70               | 10               | 3.9              | 59               | 20               | 2             |
|             |               | veinlets and splashes. Some fracture cleavage fillings. Traces of Cp mainly                                                                                 | 9159   | 75.20  | 77.00  | 1.80          | 610             | 60               | 7                | 4.4              | 46               | 25               | 2             |
|             |               | associated with Py as fine disseminations and in veinlets with usually Cc in                                                                                | 9160   | 77.00  | 78.80  | 1.80          | 444             | 160              | 9                | 9.0              | 33               | 25               | 2             |
|             |               | background (patches or weak pervasive carbonatation zones). One 15 cm                                                                                       | 9161   | 78.80  | 80.50  | 1.70          | 362             | 70               | 6                | 1.9              | 26               | 15               | 2             |
|             |               | long low angle Py and Cp rich vein.                                                                                                                         |        |        |        |               |                 |                  |                  |                  |                  |                  |               |
|             |               | Lower contact: Outlined by a 6 cm thick banded pinkish Cc vein (C/A=25 deg). Unit change defined by almost disappearing of silicified breccia intervals and | 9162   | 80.50  | 82.50  | 2.00          | 1018            | 110              | 12               | 2.2              | 60               | 20               | 2             |
|             |               | of porphyry dykes.                                                                                                                                          | 9163   | 82.50  | 84.50  | 2.00          | 3725            | 150              | 7                | 3.7              | 73               | 25               | 2             |
|             |               | or porpriyry dykes.                                                                                                                                         | 9165   | 84.50  | 86.50  | 2.00          | 2289            | 60               | 18               | 3.8              | 56               | 20               | 2             |
|             |               | 49.7-50.3: Greenish grey fine grained massive intermediate dyke. Non                                                                                        | 9166   | 86.50  | 88.50  | 2.00          | 2412            | 120              | 8                | 5.0              | 59               | 40               | 2             |
|             |               | magnetic. 6% disseminated fine graned Py. C/A=15 deg.).                                                                                                     | 9167   | 88.50  | 90.50  | 2.00          | 826             | 140              | 6                | 2.3              | 52               | 45               | 2             |
|             |               |                                                                                                                                                             | 9168   | 90.50  | 92.50  | 2.00          | 2006            | 80               | 4                | 4.0              | 62               | 25               | 2             |
|             |               | 63.85-64.0: Low angle Py and Cp rich vein (20% Cp)                                                                                                          | 9169   | 92.50  | 94.50  | 2.00          | 2030            | 70               | 6                | 3.6              | 64               | 25               | 2             |
|             |               |                                                                                                                                                             | 9170   | 94.50  | 96.50  | 2.00          | 3123            | 100              | 1                | 4.5              | 94               | 20               | 2             |
|             |               | 75.2-80.5: Pale grey massive porphyritic silicified intermediate dyke. About 25-                                                                            | 9171   | 96.50  | 98.50  | 2.00          | 1531            | 50               | 1                | 3.2              | 99               | 30               | 2             |
|             |               | 30% partially hematized Fp phenocrysts (red brick corona surrounding Fp                                                                                     | 9172   | 98.50  |        | 2.00          | 1406            | 70               | 4                | 2.6              | 55               | 55               | 2             |
|             |               | crystals). The heart of Fp is still white or grey. Non magnetic. 2%                                                                                         | 9173   | 100.50 | 100.50 | 2.00          | 850             | 120              | 6                | 2.4              | 64               | 25               | 2             |
|             |               | disseminated fine grained Py. The dyke is sinuous and loally subparallel to                                                                                 |        |        |        |               |                 |                  |                  |                  |                  |                  |               |
|             |               | C/A. Upper contact sharp at 20 deg and lower contact more nebulous and                                                                                      | 9174   | 102.50 |        | 2.00          | 3194            | 240              | 5                | 3.4              | 55               | 40               | 2             |
|             |               | around 40 deg.                                                                                                                                              | 9176   | 104.50 |        | 2.00          | 1072            | 210              | 1                | 2.7              | 90               | 40               | 2             |
|             |               | 100 7 112 F. Cimilar to 7F 2 20 F but only some En phonograph are                                                                                           | 9177   | 106.50 |        | 2.00          | 2402            | 80               | 1                | 3.3              | 80               | 25               | 2             |
|             |               | 109.7-113.5: Similar to 75.2-80.5 but only some Fp phenocrysts are hematized. Many have locally a thin rim of dark grey Qz and look like zoned.             | 9178   | 108.50 | 109.70 | 1.20          | 956             | 70               | 1                | 2.4              | 57               | 20               | 2             |
|             |               | A 0.5 cm thick massive Py vein outlines the upper contact of the dyke                                                                                       | 9179   | 109.70 | 111.50 | 1.80          | 742             | 60               | 7                | 2.5              | 40               | 20               | 2             |
|             |               | (C/A=25 deg). Lower contact chaotic (dyke dismembered) and almost                                                                                           | 9180   | 111.50 | 113.20 | 1.70          | 464             | 40               | 4                | 1.3              | 19               | 15               | 2             |
|             |               | subparallel to core axis. The green host rock seemed still hot when the dyke                                                                                | 9181   | 113.20 | 115.20 | 2.00          | 3011            | 80               | 4                | 2.9              | 68               | 20               | 2             |
|             |               | was emplacing (?).                                                                                                                                          | 9182   | 115.20 |        | 2.00          | 606             | 30               | 3                | 1.2              | 13               | 5                | 2             |
|             |               |                                                                                                                                                             | 9183   | 117.20 |        | 2.00          | 400             | 30               | 4                | 1.4              | 17               | 10               | 2             |
|             |               | 114.9-124.6: Same as 109.7-113.5 but dark grey Qz rims around Fp phenocrysts more generalized and thicker. Many phenocrysts are totally                     | 9184   | 119.20 |        | 2.00          | 531             | 15               | 4                | 1.2              | 19               | 5                | 2             |

13-Nov-05 1:44:15 PM



DDH:

IC-05-05

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample | from   | to     | <b>Length</b><br>m | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ррт | <b>Ад</b><br>ррт | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | replaced. Both contacts are chaotic and about subparallel to C/A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9185   | 121.20 | 122.80 | 1.60               | 444                    | 30               | 7                | 0.7              | 14               | 2                | 2                |
|             |                  | 400 4 400 0. Fire analysis demonstrate annual instance distance di | 9186   | 122.80 | 124.30 | 1.50               | 759                    | 40               | 5                | 0.9              | 19               | 10               | 2                |
|             |                  | 126.4-128.0: Fine grained greyish green massive intermediate dyke. Non magnetic. 1-2% disseminated very fine grained Py. Both contacts are quite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9187   | 124.30 |        | 2.10               | 846                    | 60               | 6                | 1.1              | 31               | 25               | 2                |
|             |                  | sharp. Upper contact at 25 deg and lower contact at 45-50 deg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9189   | 126.40 |        | 1.60               | 196                    | 90               | 2                | 0.5              | 73               | 20               | 2                |
|             |                  | charps opposition at 20 day and level contact at 10 do days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9190   | 128.00 | 129.40 | 1.40               | 295                    | 80               | 3                | 1.0              | 23               | 15               | 2                |
|             |                  | 128.0-128.4: Same as 114.9-124.6 but contacts regular and straight (C/A=35 deg).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |        |        |                    |                        |                  |                  |                  |                  |                  |                  |
| 129.40      | 177.00           | ANDESITE (V2A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9191   | 129.40 | 131.30 | 1.90               | 818                    | 60               | 4                | 1.3              | 59               | 20               | 2                |
|             |                  | V2A/MASV/(CB)/5-6% PY,TR CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9192   | 131.30 | 132.50 | 1.20               | 2729                   | 50               | 5                | 3.0              | 87               | 10               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9193   | 132.50 | 134.50 | 2.00               | 699                    | 50               | 4                | 1.5              | 55               | 15               | 2                |
|             |                  | Slightly greenish dark medium grey to dark grey massive aphyric rock. Some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9194   | 134.50 | 136.50 | 2.00               | 1294                   | 50               | 2                | 2.0              | 61               | 20               | 2                |
|             |                  | decimeter scale slightly brecciated intervals. Non magnetic.  Alteration: Locally, weak pervasive silicification or carbonatation. 5% veining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9195   | 136.50 | 138.50 | 2.00               | 1520                   | 80               | 2                | 2.5              | 89               | 25               | 2                |
|             |                  | The great majority are white Cc veinlets and late low angle white and pink Cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9196   | 138.50 | 140.50 | 2.00               | 3090                   | 110              | 3                | 3.6              | 84               | 15               | 2                |
|             |                  | veins. Veinlets spacing is between 5 and 10 cm and their direction between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9197   | 140.50 | 142.50 | 2.00               | 1105                   | 60               | 3                | 2.1              | 68               | 10               | 2                |
|             |                  | 60 and 80 deg. The white and pink Cc veins are spaced of 1 to 5 meters and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9198   | 142.50 | 144.50 | 2.00               | 1646                   | 50               | 1                | 2.0              | 62               | 10               | 2                |
|             |                  | oriented between 10 and 30 deg. Some grey or white Qz (locally with purple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9200   | 144.50 | 146.50 | 2.00               | 1578                   | 70               | 4                | 1.9              | 77               | 10               | 2                |
|             |                  | Qz) veins and patches widely spaced (few meters) and with directions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9201   | 146.50 | 148.50 | 2.00               | 1040                   | 40               | 1                | 1.9              | 78               | 15               | 2                |
|             |                  | between 30 and 50 deg. Few Qz veins bring totally hematized Fp phenocrysts. Mineralization:5-6% fine to medium grained Py mostly as disseminations and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9202   | 148.50 | 150.50 | 2.00               | 1666                   | 40               | 3                | 3.0              | 83               | 30               | 2                |
|             |                  | veinlets. Some Py in fracture cleavages. Traces of Cp in the first 15 meters of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9203   | 150.50 | 152.50 | 2.00               | 773                    | 40               | 1                | 1.0              | 107              | 10               | 2                |
|             |                  | the unit only. It is as few disseminations and fracture cleavage fillings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9204   | 152.50 | 154.50 | 2.00               | 594                    | 50               | 6                | 1.1              | 44               | 2                | 2                |
|             |                  | Lower contact:Gradual but quick (few decimeters). Defined by increasing of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9205   | 154.50 | 156.50 | 2.00               | 655                    | 70               | 5                | 0.9              | 45               | 15               | 2                |
|             |                  | carbonate veining and brecciation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9206   | 156.50 | 158.50 | 2.00               | 434                    | 90               | 5                | 0.9              | 60               | 25               | 2                |
|             |                  | 454.5.454.0. Understhamped hyperic according injection of Coursing naturals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9207   | 158.50 | 160.50 | 2.00               | 329                    | 70               | 4                | 0.8              | 48               | 15               | 2                |
|             |                  | 154.5-154.8: Hydrothermal breccia caused by injection of Cc veins network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9208   | 160.50 | 162.50 | 2.00               | 249                    | 70               | 3                | 0.5              | 36               | 10               | 2                |
|             |                  | 167.3-167.6: Chloritic matrix breccia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9209   | 162.50 | 164.50 | 2.00               | 437                    | 90               | 10               | 1.1              | 63               | 15               | 2                |
|             |                  | Torror or to be a consistent or torror or to be a consistent or torror or to be a consistent or torror or to be a consistent or torror or to be a consistent or torror or to be a consistent or torror or torror or torror or torror or torr | 9211   | 164.50 | 166.50 | 2.00               | 379                    | 50               | 3                | 0.6              | 64               | 10               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9212   | 166.50 | 168.50 | 2.00               | 2367                   | 70               | 7                | 1.2              | 119              | 25               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9213   | 168.50 | 170.50 | 2.00               | 1215                   | 110              | 4                | 1.1              | 92               | 30               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9214   | 170.50 | 172.50 | 2.00               | 1721                   | 250              | 6                | 1.5              | 81               | 20               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9215   | 172.50 | 174.50 | 2.00               | 1828                   | 250              | 6                | 1.5              | 74               | 15               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9216   | 174.50 | 175.80 | 1.30               | 1754                   | 170              | 7                | 1.2              | 65               | 20               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9217   | 175.80 | 177.00 | 1.20               | 510                    | 150              | 10               | 0.6              | 58               | 25               | 2                |
| 177.00      | 189.00           | ANDESITE (V2A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9218   | 177.00 | 179.00 | 2.00               | 559                    | 100              | 4                | 0.8              | 12               | 10               | 2                |
|             |                  | V2A/MASV/CB,(SI)/3% PY,TR CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9219   | 179.00 | 181.00 | 2.00               | 541                    | 120              | 29               | 0.6              | 43               | 35               | 2                |
|             |                  | Olimbali, anno anich deut, anno divan anno de deut, anno anno de cale de la companio de co | 9220   | 181.00 | 183.00 | 2.00               | 594                    | 160              | 13               | 1.2              | 46               | 65               | 2                |
|             |                  | Slightly greenish dark medium grey to dark grey massive aphyric rock. Some decimeter scale slightly brecciated intervals. Non magnetic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9221   | 183.00 | 185.00 | 2.00               | 499                    | 230              | 9                | 8.0              | 47               | 90               | 2                |
|             |                  | Alteration: Locally, weak to moderate pervasive silicification or weak pervasive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9222   | 185.00 | 186.50 | 1.50               | 787                    | 910              | 9                | 29.5             | 74               | 445              | 2                |



## Falconbridge Limited

DDH:

IC-05-05

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample                                                                                                                                                       | from                                                     | to                                                                                                                                                                               | <b>Length</b>                                                | Cu<br>ppm (ICP)                                                                                                                                        | <b>Au</b><br>ppb                                                                                                                          | <b>Mo</b><br>ppm                                                                                          | <b>Ag</b><br>ppm                                                                                                           | <b>Zn</b><br>ppb                                                                                                        | <b>As</b><br>ppm                                                                                                      | <b>Sb</b><br>ppm                                                                            |
|-------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|             |                  | carbonatation. 10-15% veining. Almost essentially white Cc veinlets and late white (and locally pink) Cc veins and veinlets. Those Cc injections formed locally a complicated chaotic network (brecciation of the host rock). Veinlets spacing is variable but mostly below 5 cm and their direction between 0 and 90 deg. Some grey Qz veins widely spaced (few meters) and with directions around 50 deg.  Mineralization:3-4% fine grained Py mostly as disseminations and veinlets. Some Py in fracture cleavages. Traces of disseminated Cp at one site. Lower contact: marked by banded (sheared) Cc vein. The unit below is the same as 129.4-177.0.  183.6-183.8: Hydrothermal breccia caused by network of Cc injections.  187.9-188.6: 30-40% lenses and patches of white Cc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9224<br>9225                                                                                                                                                 | 186.50<br>187.90                                         | 187.90<br>189.00                                                                                                                                                                 | 1.40<br>1.10                                                 | 592<br>356                                                                                                                                             | 90<br>70                                                                                                                                  | 15<br>7                                                                                                   | 1.3<br>0.5                                                                                                                 | 79<br>62                                                                                                                | 30<br>35                                                                                                              | 2 2                                                                                         |
| 189.00      | 249.60           | ANDESITE (V2A)  V2A/MASV/(SI),(CB)/7% PY,TR CP  Slightly greenish dark medium grey to dark grey (locally pale grey-green) massive aphyric rock. Some decimeter scale slightly brecciated intervals. Non magnetic.  Alteration: Locally, weak to moderate pervasive silicification or weak pervasive carbonatation. From 206.0 to 224.0, the andesite seems more silicified. 8-10% veining. Most of the injections is white Cc veins and veinlets and white Cc-pink Cc veins. Mean white Cc veinlets spacing is between 1 to 3 cm and their direction between 60 and 80 deg. The white and pink Cc veins are spaced of 1.5 to 3 meters and oriented 60 deg. Some grey or white Qz (locally with purple Qz) veins and patches with variable spacing between 10 and 40 cm and with directions between 25 and 35 deg. Some Qz veins hosts brick red hematized Fp phenocrysts. Also few white Cc-white Qz veins between 60 and 70 deg. We note two hematized porphyry dykes.  Mineralization: 7% fine to medium grained Py mostly as disseminations and veinlets. Some Py in fracture cleavages. Traces of Cp mostly associated with Py as localized fine disseminations and winding discontinuous veinlets in the neighbourhood or at margins of Qz veins (ex.: 217.3-217.6). Also an occurrence as fine disseminations in a zone rich in Py veinlets and in Cc veinlets (ex.: 221.0). Some disseminations in Qz veins and as fracture cleavage fillings. | 9226<br>9227<br>9228<br>9229<br>9230<br>9231<br>9232<br>9233<br>9235<br>9236<br>9237<br>9238<br>9239<br>9240<br>9241<br>9242<br>9243<br>9244<br>9244<br>9244 | 195.00<br>197.00<br>199.00<br>201.00<br>203.00<br>205.00 | 193.00<br>195.00<br>197.00<br>199.00<br>201.00<br>203.00<br>205.00<br>206.20<br>208.20<br>210.20<br>212.20<br>214.20<br>217.20<br>217.80<br>218.70<br>219.30<br>221.30<br>223.30 | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 872<br>1319<br>743<br>604<br>434<br>672<br>706<br>571<br>918<br>1523<br>1546<br>598<br>1063<br>1147<br>928<br>4807<br>677<br>451<br>1019<br>464<br>724 | 160<br>130<br>150<br>120<br>140<br>160<br>100<br>80<br>150<br>90<br>190<br>80<br>210<br>330<br>190<br>360<br>70<br>30<br>80<br>100<br>130 | 9<br>7<br>6<br>21<br>10<br>16<br>19<br>6<br>2<br>13<br>12<br>6<br>7<br>6<br>10<br>9<br>2<br>1<br>11<br>11 | 1.0<br>1.7<br>1.6<br>3.2<br>2.0<br>3.0<br>2.1<br>1.3<br>1.6<br>5.0<br>1.6<br>2.4<br>1.2<br>0.9<br>4.7<br>1.8<br>2.9<br>3.7 | 75<br>88<br>79<br>77<br>69<br>68<br>80<br>91<br>109<br>85<br>55<br>71<br>106<br>87<br>65<br>145<br>91<br>67<br>96<br>89 | 40<br>30<br>25<br>25<br>30<br>30<br>15<br>20<br>10<br>15<br>30<br>15<br>75<br>190<br>40<br>25<br>10<br>40<br>25<br>45 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
|             |                  | 209.2-209.5: Nice banded purple Qz vein. 218.1-218.7: Probable silicified flow banding (C/A=20 deg).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9249<br>9250<br>9251                                                                                                                                         | 225.30                                                   | 227.30<br>229.30                                                                                                                                                                 | 2.00<br>2.00<br>2.00                                         | 1189<br>1544<br>723                                                                                                                                    | 170<br>140<br>80                                                                                                                          | 4<br>3<br>6                                                                                               | 1.6<br>1.4<br>1.1                                                                                                          | 128<br>72<br>49                                                                                                         | 50<br>65<br>25                                                                                                        | 2<br>2<br>2                                                                                 |

13-Nov-05 1:44:16 PM



## Falconbridge Limited

DDH:

IC-05-05

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                  | Sample | from   | to     | <b>Length</b> | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  |                                                                                                                              | 9252   | 231.30 | 233.30 | 2.00          | 2196                   | 180              | 14               | 2.2              | 29               | 20               | 5                |
|             |                  | 218.7-219.2: Hematized porphyritic dyke. Brick red coloured Fp phenocrysts                                                   | 9253   | 233.30 | 235.30 | 2.00          | 1673                   | 140              | 13               | 2.5              | 66               | 25               | 5                |
|             |                  | (40%). Massive and non magnetic. Both contacts mostly subparallel to andesite flow banding but with small crosscutting pods. | 9254   | 235.30 | 237.30 | 2.00          | 733                    | 100              | 6                | 1.6              | 86               | 15               | 2                |
|             |                  | andesite now banding but with small crosscutting pods.                                                                       | 9255   | 237.30 | 239.30 | 2.00          | 906                    | 100              | 9                | 2.4              | 106              | 10               | 5                |
|             |                  | 219.2-219.8: Same as 218.1-218.7.                                                                                            | 9256   | 239.30 | 240.70 | 1.40          | 1778                   | 140              | 11               | 3.6              | 123              | 15               | 2                |
|             |                  |                                                                                                                              | 9257   | 240.70 | 242.10 | 1.40          | 517                    | 60               | 4                | 1.2              | 81               | 10               | 2                |
|             |                  | 242.1-242.9: Same as 218.7-219. Upper selvage of the dyke brings traces of                                                   | 9259   | 242.10 | 242.90 | 0.80          | 330                    | 30               | 4                | 0.9              | 28               | 2                | 2                |
|             |                  | disseminated Cp.                                                                                                             | 9260   | 242.90 | 244.90 | 2.00          | 910                    | 80               | 7                | 1.5              | 118              | 10               | 2                |
|             |                  | •                                                                                                                            | 9261   | 244.90 | 246.90 | 2.00          | 1128                   | 180              | 8                | 2.8              | 103              | 30               | 2                |
|             |                  |                                                                                                                              | 9262   | 246.90 | 248.30 | 1.40          | 1066                   | 390              | 10               | 2.3              | 111              | 145              | 5                |
|             |                  |                                                                                                                              | 9263   | 248.30 | 249.60 | 1.30          | 1023                   | 140              | 8                | 1.7              | 110              | 25               | 2                |

13-Nov-05 1:44:16 PM Page 5 of 5



Dip:

### **Drill Log**

### **Falconbridge Limited**

DDH:

IF-05-01

Company:

Contractor:

Located by:

Logged by:

Method:

Project:

**KERR-SULPHURETS** 

Intervenant

HY-TECH

A. HUARD

Handheld GPS

S. LAPOINTE

FALCONBRIDGE

Project #: 301

DDH Casing Azimuth: 310 Length (m): 2.7 Pulled: -50 Non Length (m): Plugged: 252.70 Oui Started: 8/9/2005 Cemented: Oui Completed: 8/10/2005 Core Logged: 8/11/2005

> Size: NQ2

Storage: KERR CAMP Location

Coordonnée - UTM

Easting: 423289 6263313 Northing: Elevation: 1715 NAD27 ZN9 Datum:

Claim #:

516251

Target:

Cu-Au Porphyry

Comments:

#### Directional Tests (C=Collar, R=Reflex)

| Azimuth | Dip                        | Туре                                            |
|---------|----------------------------|-------------------------------------------------|
| 310.00  | -50.00                     | С                                               |
| 313.40  | -51.80                     | R                                               |
| 313.10  | -51.80                     | R                                               |
| 317.60  | -51.30                     | R                                               |
|         | 310.00<br>313.40<br>313.10 | 310.00 -50.00<br>313.40 -51.80<br>313.10 -51.80 |



DDH:

IF-05-01

Project: KERR-SULPHURETS

Project #: 301

| From<br>(m) | <b>To</b> (m) | Description                                                                                                                                                 | Sample | from  | to    | <b>Lengtl</b><br>m | <b>Cu</b> ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b> ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|--------------------|---------------------|------------------|------------------|---------------|------------------|------------------|------------------|
| 0.00        | 2.70          | CASING                                                                                                                                                      |        |       |       |                    |                     |                  |                  |               |                  |                  |                  |
|             |               |                                                                                                                                                             |        |       |       |                    |                     |                  |                  |               |                  |                  |                  |
| 2.70        | 76.60         | FELSIC INTRUSIVE (?) (I1)                                                                                                                                   | 9593   | 2.70  | 4.70  | 2.00               | 604                 | 120              | 1                | 1.1           | 176              | 135              | 2                |
|             |               | 11                                                                                                                                                          | 9595   | 4.70  | 6.70  | 2.00               | 339                 | 100              | 1                | 0.6           | 124              | 70               | 2                |
|             |               |                                                                                                                                                             | 9596   | 6.70  | 8.70  | 2.00               | 453                 | 70               | 1                | 0.5           | 149              | 40               | 2                |
|             |               | Slightly reddish, greyish dark green to dark green massive aphyric rock. Host                                                                               | 9597   | 8.70  | 10.70 | 2.00               | 538                 | 60               | 1                | 0.6           | 170              | 25               | 2                |
|             |               | a mean of 20-30% reddish pink to dirty white, more or less diffused, mostly angular "fragments". Their distribution is heterogeneous being locally, sparse  | 9598   | 10.70 | 12.70 | 2.00               | 616                 | 80               | 2                | 0.9           | 164              | 35               | 2                |
|             |               | to dense (breccia-like). Some are porphyritic. Non magnetic to weakly                                                                                       | 9599   | 12.70 | 14.30 | 1.60               | 757                 | 40               | 1                | 1.2           | 192              | 20               | 2                |
|             |               | magnetic.                                                                                                                                                   | 9600   | 14.30 | 16.10 | 1.80               | 1136                | 80               | 2                | 1.8           | 284              | 35               | 5                |
|             |               | Alteration: Weak to moderate HM+ of fragments only (may be partial potassic                                                                                 | 9601   | 16.10 | 18.10 | 2.00               | 2019                | 100              | 10               | 1.8           | 501              | 55               | 2                |
|             |               | alteration?). About 7-8% veining very mostly represented by white Cc veinlets                                                                               | 9602   | 18.10 | 19.90 | 1.80               | 1747                | 130              | 1                | 1.7           | 412              | 25               | 2                |
|             |               | and veins. Few Qz and Cc veins. No Qz only veins (!). The Cc veins and                                                                                      | 9603   | 19.90 | 20.50 | 0.60               | 774                 | 70               | 1                | 1.3           | 213              | 25               | 2                |
|             |               | veinlets have a spacing between 0.5 and 10 cm and directions between 60                                                                                     | 9604   | 20.50 | 21.40 | 0.90               | 988                 | 70               | 1                | 1.3           | 266              | 35               | 2                |
|             |               | and 70 degrees. A late and sparse generation of white Cc veins is oriented                                                                                  | 9605   | 21.40 | 22.90 | 1.50               | 14500               | 410              | 1                | 16.5          | 2358             | 20               | 2                |
|             |               | between 40 and 50 degrees. Locally, the Cc veining initiates brecciation of the host rock. The few Qz-Cc veins are low angle (about 20 degrees) and contain | 9607   | 22.90 | 24.80 | 1.90               | 9143                | 1250             | 1                | 9.8           | 1907             | 10               | 2                |
|             |               | coarse Cp grains.                                                                                                                                           | 9608   | 24.80 | 26.30 | 1.50               | 2860                | 40               | 1                | 1.7           | 646              | 5                | 2                |
|             |               | Mineralization: 2-3% fine grained Py as disseminations and small blebs. Few,                                                                                |        |       |       |                    |                     |                  | 1                |               | 917              |                  | 15               |
|             |               | very sparse veinlets. Globally, traces of Cp but few intervals richer. Those Cp-                                                                            | 9609   | 26.30 | 27.70 | 1.40               | 4159                | 90               |                  | 4.2           | -                | 40               |                  |
|             |               | rich zones correspond to slightly hematized porphyritic dykes (or facies?). The                                                                             | 9610   | 27.70 | 29.30 | 1.60               | 8786                | 180              | 1                | 11.8          | 1857             | 20               | 2                |
|             |               | Cp forms big splashes, thin veinlets, and disseminations. In the most Cp-rich                                                                               | 9611   | 29.30 | 30.80 | 1.50               | 12500               | 220              | 1                | 12.3          | 2193             | 5                | 2                |
|             |               | zone (21.4-30.8), 1.5 to 2% Cp has been estimated. Most of those dykes are                                                                                  | 9612   | 30.80 | 32.30 | 1.50               | 1496                | 50               | 1                | 1.3           | 382              | 15               | 2                |
|             |               | between 1 and 5 cm thick but one is 2.4 meters. Also some Cp as veinlets,                                                                                   | 9613   | 32.30 | 33.80 | 1.50               | 1697                | 15               | 3                | 0.9           | 458              | 10               | 2                |
|             |               | small splashes and disseminations in the host rock in the dyke's                                                                                            | 9614   | 33.80 | 35.20 | 1.40               | 2223                | 60               | 1                | 3.8           | 595              | 40               | 40               |
|             |               | neighbourhood. He rest of the observed Cp is as disseminations in the main                                                                                  | 9615   | 35.20 | 37.20 | 2.00               | 1431                | 60               | 1                | 1.1           | 378              | 10               | 2                |
|             |               | unit and medium to coarse disseminations in Cc veins and Qz-Cc veins.  Traces of malachite until 64.0 meters.                                               | 9616   | 37.20 | 39.20 | 2.00               | 1708                | 70               | 5                | 1.5           | 408              | 15               | 2                |
|             |               | Lower contact: Sharp and low angle (C/A=5 degrees)                                                                                                          | 9617   | 39.20 | 41.20 | 2.00               | 1157                | 50               | 1                | 0.9           | 291              | 15               | 2                |
|             |               | Lower contact. Onaip and low angle (0/74-5 degrees)                                                                                                         | 9618   | 41.20 | 43.20 | 2.00               | 1170                | 30               | 1                | 0.8           | 283              | 15               | 2                |
|             |               | 11.8-12.0: Hydrothermal breccia by Cc veins injections.                                                                                                     | 9619   | 43.20 | 45.20 | 2.00               | 453                 | 30               | 1                | 0.6           | 138              | 20               | 2                |
|             |               | , , , , , , , , , , , , , , , , , , ,                                                                                                                       | 9620   | 45.20 | 47.20 | 2.00               | 645                 | 15               | 1                | 0.5           | 215              | 20               | 2                |
|             |               | 14.3-19.9: Altered (oxydized) and fragmental interval with traces of malachite.                                                                             | 9621   | 47.20 | 49.20 | 2.00               | 1060                | 90               | 1                | 1.0           | 274              | 20               | 2                |
|             |               | Incl. 14.7-18.1: Very badly broken rock                                                                                                                     | 9623   | 49.20 | 51.20 | 2.00               | 751                 | 70               | 1                | 0.9           | 245              | 15               | 2                |
|             |               |                                                                                                                                                             | 9624   | 51.20 | 53.20 | 2.00               | 730                 | 130              | 1                | 1.0           | 229              | 25               | 2                |
|             |               | 20.5-22.9: Cp-rich porphyritic dyke (15-20% Fp anhedral to euhedral                                                                                         | 9625   | 53.20 | 55.20 | 2.00               | 942                 | 320              | 2                | 1.0           | 274              | 10               | 2                |
|             |               | phenocrysts). 0.5-1% Cp.                                                                                                                                    | 9626   | 55.20 | 57.20 | 2.00               | 977                 | 90               | 1                | 0.7           | 277              | 10               | 2                |
|             |               | 23.2-23.5: Same as 20.5-22.9. About 5% Cp.                                                                                                                  |        |       |       |                    | -                   |                  | 1                |               |                  |                  |                  |
|             |               | 20.2 20.0. Gaine as 20.0-22.3. About 0/0 op.                                                                                                                | 9627   | 57.20 | 59.20 | 2.00               | 1075                | 80               |                  | 0.9           | 360              | 25               | 10               |
|             |               | 25.6-27.7: Weakly silicified and oxydized interval. Qz-Fp (aplite?) and Fp                                                                                  | 9628   | 59.20 | 61.20 | 2.00               | 1032                | 15               | 2                | 0.9           | 335              | 10               | 2                |
|             |               | veinlets and veins (C/A=70-90 degrees). Colour very variable and chaotic                                                                                    | 9630   | 61.20 | 63.20 | 2.00               | 1176                | 30               | 1                | 8.0           | 349              | 15               | 2                |
|             |               | aspect. Not mineralized.                                                                                                                                    | 9631   | 63.20 | 65.20 | 2.00               | 2027                | 50               | 2                | 1.6           | 538              | 25               | 2                |
|             |               | ·                                                                                                                                                           | 9632   | 65.20 | 67.20 | 2.00               | 941                 | 30               | 1                | 0.9           | 283              | 15               | 2                |

13-Nov-05 1:48:43 PM



## Falconbridge Limited

DDH:

IF-05-01

Project: KE

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample | from  | to    | <b>Lengt</b> | h <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|--------------|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9633   | 67.20 | 68.70 | 1.50         | 424                      | 30               | 1                | 0.3              | 185              | 10               | 2                |
|             |                  | 28.6-28.8: Diffused porphyritic dyke. About 15% Cp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9634   | 68.70 | 70.70 | 2.00         | 507                      | 90               | 5                | 0.7              | 200              | 40               | 2                |
|             |                  | 30.2-30.3: Same as 28.6-28.8. About 20% Cp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9635   | 70.70 | 72.70 | 2.00         | 669                      | 90               | 1                | 0.7              | 248              | 40               | 10               |
|             |                  | 0012 0010. Califo do 2010 2010. 7 180 at 20 70 Gp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9636   | 72.70 | 74.70 | 2.00         | 986                      | 110              | 2                | 1.1              | 108              | 30               | 2                |
|             |                  | 30.8-35.2: Hematized and locally, weakly silicified interval. Mix of reddish and green colours. Chaotic aspect (may be potassic alteration?). Not mineralized. Looks a little bit like 25.6-27.7.                                                                                                                                                                                                                                                                                                                                                       | 9637   | 74.70 | 76.60 | 1.90         | 976                      | 100              | 2                | 1.2              | 97               | 40               | 2                |
| 76.60       | 79.10            | O INTERMEDIATE DYKE (I2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9638   | 76.60 | 77.90 | 1.30         | 2174                     | 210              | 3                | 3.3              | 18               | 140              | 2                |
|             |                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9639   | 77.90 | 79.10 | 1.20         | 1693                     | 230              | 3                | 4.6              | 42               | 140              | 10               |
|             |                  | Medium greenish grey, aphyric massive rock. The first 10 cm, the dyke is porphyritic and just below the dyke, over few cm, the next unit is brecciated. The rock is probably mostly composed of Fp with small amount of Qz. Non magnetic.  Alteration: 3-4% veining. Essentially, white Cc veins and veinlets. Spacing of 20-30 cm and directions between 40 to 50 degrees.  Mineralization: About 10% disseminated fine grained Py. Traces of Cp related to white Cc.  Lower contact: Sharp at 40 degrees. Outlined by few elongated blebs of pink Cc. |        |       |       |              |                          |                  |                  |                  |                  |                  |                  |
| 79.10       | 95.60            | D BASALT (V3B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9640   | 79.10 | 81.10 | 2.00         | 28                       | 30               | 5                | 0.2              | 150              | 85               | 2                |
|             | 00.0             | V3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9642   | 81.10 | 83.10 | 2.00         | 17                       | 50               | 3                | 0.1              | 92               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9643   | 83.10 | 85.10 | 2.00         | 15                       | 15               | 1                | 0.1              | 122              | 2                | 2                |
|             |                  | Dark green massive aphyric rock. Non magnetic to moderately magnetic. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9644   | 85.10 | 87.10 | 2.00         | 135                      | 30               | 4                | 0.3              | 125              | 2                | 2                |
|             |                  | mostly magnetic zones contain Mt blebs, splashes and probably veinlets.  Alteration: Some decimeter scale paler intervals weakly silicified. About 5%                                                                                                                                                                                                                                                                                                                                                                                                   | 9645   | 87.10 | 89.10 | 2.00         | 3534                     | 130              | 2                | 2.8              | 87               | 30               | 2                |
|             |                  | veining essentially composed of white, locally purple Cc veins and veinlets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9646   | 89.10 | 91.10 | 2.00         | 3652                     | 250              | 2                | 4.2              | 238              | 140              | 100              |
|             |                  | Clearly two sets of veins/veinlets: one with a spacing of 10-30 cm and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9647   | 91.10 | 93.10 | 2.00         | 6450                     | 520              | 1                | 4.3              | 164              | 25               | 10               |
|             |                  | direction around 20 degrees and the other with spacing of 1-10 cm and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9648   | 93.10 | 94.40 | 1.30         | 7849                     | 800              | 1                | 10.1             | 91               | 360              | 115              |
|             |                  | directions between 50 and 70 degrees.  Mineralization: 2% Py as patches and splashes less than 4 cm long. Many traces of Cp as splashes, veinlets and disseminations in the volcanics. Traces of malachite.  Lower contact: Quite sharp but slightly diffused and irregular. Seems to be very low angle (0-5 degrees).                                                                                                                                                                                                                                  | 9649   | 94.40 | 95.60 | 1.20         | 9535                     | 1210             | 1                | 8.3              | 131              | 45               | 2                |
|             |                  | 93.1-93.4: Banded purple Cc vein.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |       |       |              |                          |                  |                  |                  |                  |                  |                  |

13-Nov-05 1:48:43 PM Page 2 of 5



DDH:

IF-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b> (m) | Description                                                                                                                                                                                                                                 | Sample | from   | to     | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 95.60       | 133.60        | BRECCIATED FELSIC INTRUSIVE (?) (I1)                                                                                                                                                                                                        | 9650   | 95.60  | 97.60  | 2.00          | 2837            | 150              | 3                | 5.0              | 268              | 730              | 385              |
|             |               | I1/BREC                                                                                                                                                                                                                                     | 9651   | 97.60  | 99.60  | 2.00          | 1043            | 70               | 2                | 0.7              | 44               | 60               | 5                |
|             |               | Greenish pale to medium grey brecciated aphyric rock. Diffused "fragments"                                                                                                                                                                  | 9652   |        | 101.60 | 2.00          | 768             | 70               | 3                | 0.5              | 35               | 25               | 2                |
|             |               | paler and probably more silicified than the matrix. Heterogeneous distribution.                                                                                                                                                             | 9653   |        | 103.60 | 2.00          | 2938            | 170              | 3                | 2.3              | 112              | 275              | 140              |
|             |               | Breccia look may be caused by differential alteration. "Fragments" colour from                                                                                                                                                              | 9654   |        | 105.60 | 2.00          | 2407            | 190              | 4                | 2.2              | 36               | 50               | 2                |
|             |               | dirty white to pale green to pinkish. Non magnetic. Glassy look.                                                                                                                                                                            | 9655   | 105.60 | 107.60 | 2.00          | 1440            | 160              | 3                | 1.4              | 41               | 50               | 2                |
|             |               | Alteration: Weak to moderate pervasive silicification. Some "fragments" seem                                                                                                                                                                | 9656   | 107.60 | 109.60 | 2.00          | 1647            | 80               | 4                | 2.2              | 96               | 215              | 75               |
|             |               | also have been sericitized (Se yellowish colour; weak phyllic?). About 8-10%                                                                                                                                                                | 9658   | 109.60 | 111.60 | 2.00          | 1920            | 250              | 3                | 2.5              | 44               | 120              | 2                |
|             |               | veining mostly white Cc veinlets (and few veins) and some pale grey Qz (+-                                                                                                                                                                  | 9659   | 111.60 | 113.60 | 2.00          | 1916            | 170              | 3                | 2.3              | 50               | 85               | 2                |
|             |               | white Cc) veins. The Cc veinlets are spaced by 1 to 3 cm and oriented between 45 and 80 degrees. The Qz veins are sparse and heterogeneously                                                                                                | 9660   | 113.60 | 115.60 | 2.00          | 1937            | 310              | 3                | 3.2              | 40               | 115              | 2                |
|             |               | distributed; they are oriented 70 and 90 degrees. Also, very few low angle                                                                                                                                                                  | 9661   | 115.60 | 117.60 | 2.00          | 1692            | 150              | 4                | 3.0              | 63               | 160              | 40               |
|             |               | white and pink Cc veins (10-15 degrees).                                                                                                                                                                                                    | 9662   | 117.60 | 119.50 | 1.90          | 2257            | 160              | 4                | 4.1              | 96               | 105              | 10               |
|             |               | Mineralization: 2-3% fine grained Py mostly as diffused veins (or bands) and                                                                                                                                                                | 9663   | 119.50 | 121.40 | 1.90          | 2077            | 310              | 39               | 4.4              | 58               | 45               | 2                |
|             |               | veinlets and also elongated splashes. Unit more pyritic over 3 meters before                                                                                                                                                                | 9665   | 121.40 | 123.40 | 2.00          | 178             | 150              | 3                | 1.1              | 74               | 60               | 2                |
|             |               | the fault (at 121.5) and over 2 meters before lower contact. Traces of Cp only                                                                                                                                                              | 9666   | 123.40 | 125.40 | 2.00          | 448             | 280              | 7                | 1.6              | 26               | 100              | 2                |
|             |               | in the portion of unit above the fault plane. Mostly as specks in the white Cc                                                                                                                                                              | 9667   | 125.40 | 127.40 | 2.00          | 309             | 280              | 7                | 2.3              | 35               | 85               | 2                |
|             |               | veins and veinlets and also in Qz veins. Some disseminations and Cp only veinlets in the host rock.                                                                                                                                         | 9668   | 127.40 | 129.40 | 2.00          | 344             | 270              | 5                | 1.9              | 70               | 65               | 2                |
|             |               | Lower contact: Sharp at 35 degrees.                                                                                                                                                                                                         | 9669   | 129.40 | 131.50 | 2.10          | 340             | 210              | 5                | 1.0              | 59               | 55               | 2                |
|             |               | Lower contact. Sharp at 66 degrees.                                                                                                                                                                                                         | 9670   | 131.50 | 133.60 | 2.10          | 627             | 660              | 10               | 3.5              | 45               | 65               | 2                |
|             |               | 121.4-121.8: Fault plane with 2 to 3 mm thick gouge. Outlined by Qz vein. C/A=10 degrees.                                                                                                                                                   |        |        |        |               |                 |                  |                  |                  |                  |                  |                  |
|             |               | 121.8-122.7: Broken rock. Grener zone.                                                                                                                                                                                                      |        |        |        |               |                 |                  |                  |                  |                  |                  |                  |
|             |               | 124.3: Two cm shear (fault) zone. No gouge. (C/A=5-10 degrees).                                                                                                                                                                             |        |        |        |               |                 |                  |                  |                  |                  |                  |                  |
| 133.60      | 152.30        | ANDESITE (?) OR INTERMEDIATE INTRUSIVE (?) (V2A OR I2)                                                                                                                                                                                      | 9671   | 133.60 | 135.60 | 2.00          | 330             | 390              | 4                | 1.1              | 55               | 80               | 2                |
|             |               | V2A OR I2/MASP                                                                                                                                                                                                                              | 9672   | 135.60 | 137.60 | 2.00          | 91              | 70               | 2                | 0.1              | 54               | 30               | 2                |
|             |               |                                                                                                                                                                                                                                             | 9673   | 137.60 | 139.60 | 2.00          | 127             | 100              | 3                | 0.1              | 59               | 50               | 2                |
|             |               | Slightly kaki medium green massive aphyric rock. Non magnetic. Some cm to                                                                                                                                                                   | 9674   | 139.60 | 141.60 | 2.00          | 202             | 130              | 5                | 0.2              | 62               | 40               | 2                |
|             |               | decim scale dark green to black patches apparently differentially altered more chloritized. Global glassy look.                                                                                                                             | 9675   | 141.60 | 143.60 | 2.00          | 251             | 150              | 8                | 0.1              | 77               | 25               | 2                |
|             |               | Alteration: Weak pervasive silicification in the green rock and probably weak                                                                                                                                                               | 9677   | 143.60 | 145.60 | 2.00          | 168             | 140              | 6                | 0.2              | 77               | 25               | 2                |
|             |               | pervasive chloritization in the few dark patches. About 5% veining essentially                                                                                                                                                              | 9678   | 145.60 | 147.50 | 1.90          | 410             | 220              | 9                | 0.3              | 83               | 35               | 2                |
|             |               | charactherized by white Cc veinlets and veins. They are spaced by 1 to 5 cm                                                                                                                                                                 | 9679   | 147.50 | 148.80 | 1.30          | 671             | 830              | 13               | 0.6              | 79               | 50               | 2                |
|             |               | and have generally a direction between 70 and 80 degrees. Few veins at 20                                                                                                                                                                   | 9680   | 148.80 |        | 1.20          | 637             | 1290             | 7                | 0.5              | 89               | 45               | 2                |
|             |               | degrees.                                                                                                                                                                                                                                    | 9681   |        | 151.20 | 1.20          | 254             | 320              | 3                | 0.5              | 75               | 40               | 2                |
|             |               | Mineralization: 2-3% fine grained Py mostly as patches and splashes associated with more Cc and Ch rich zones. Heterogeneous distribution. From 147.5 to 150.0 is a more pyritic zone (10-15%). One speck of Cp at the margin of a Cc vein. | 9682   | 151.20 |        | 1.10          | 230             | 1640             | 6                | 11.3             | 56               | 45               | 2                |

13-Nov-05 1:48:43 PM Page 3 of 5



Falconbridge Limited

DDH:

IF-05-01

Project: KERR-SULPHURETS

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                   | Sample               | from                       | to                         | <b>Length</b>        | Cu<br>ppm (ICP)    | <b>Au</b><br>ppb    | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm  | <b>Zn</b><br>ppb | <b>As</b><br>ppm  | <b>Sb</b><br>ppm |
|-------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|----------------------------|----------------------|--------------------|---------------------|------------------|-------------------|------------------|-------------------|------------------|
|             |                  | Lower contact: Gradual over few cm. Colour passes from green to a greyish green.                                                                                                                                                              |                      |                            |                            |                      |                    |                     |                  |                   |                  |                   |                  |
| 152.30      | 188.30           | FELSIC INTRUSIVE (?) OR VOLCANICS (?) (I1 OR V1) I1 OR V1                                                                                                                                                                                     | 9683<br>9684         |                            | 154.30<br>156.30           | 2.00<br>2.00         | 189<br>337         | 350<br>190          | 10<br>16         | 2.1<br>0.5        | 35<br>34         | 75<br>80          | 2<br>2           |
|             |                  | Slightly "mauve" medium grey to locally, pale green massive aphyric rock.<br>Non magnetic. Glassy look.                                                                                                                                       | 9685<br>9686<br>9687 | 158.30                     | 158.30<br>160.30<br>162.30 | 2.00<br>2.00<br>2.00 | 452<br>403<br>394  | 290<br>190<br>310   | 34<br>14<br>11   | 1.0<br>0.7        | 41<br>45<br>77   | 105<br>100<br>75  | 2<br>2<br>2      |
|             |                  | Alteration: Weak to moderate pervasive silicification. About 10% veining almost essentially white Cc veins and veinlets. Spacing is between 0.5 and 5 cm and directions mostly between 60 and 70 degrees. Traces of anhydrite.                | 9688<br>9689         | 162.30                     | 164.30<br>166.30           | 2.00<br>2.00<br>2.00 | 391<br>345         | 140<br>190          | 6                | 0.9<br>0.7<br>0.6 | 92<br>62         | 90<br>90          | 2<br>2<br>2      |
|             |                  | Still some low angle spaced by 0.5 to 2 meters (C/A=15-20 degrees). Mineralization: 4-5% fine to medium grained Py mainly as cm scale patches and splashes. Half is fine disseminations. Only 2 specks of Cp in a Cc veinlet.                 | 9690<br>9691         |                            | 168.30<br>170.30           | 2.00                 | 234<br>178         | 620<br>210          | 11<br>24         | 0.9               | 66<br>42         | 235<br>115        | 2                |
|             |                  | Associated with Py. Lower contact: probably sharp or very quick but not visible (broken rock).                                                                                                                                                | 9693<br>9694<br>9695 | 170.30<br>172.30<br>174.30 | 174.30                     | 2.00<br>2.00<br>2.00 | 405<br>156<br>106  | 150<br>430<br>430   | 37<br>23<br>5    | 1.0<br>0.8<br>0.9 | 41<br>48<br>42   | 165<br>170<br>115 | 2<br>2<br>2      |
|             |                  | 151.8-153.4: Broken rock.                                                                                                                                                                                                                     | 9696<br>9697         | 176.30<br>178.30           | 178.30<br>180.30           | 2.00<br>2.00         | 92<br>130          | 210<br>290          | 20<br>13         | 0.8               | 49<br>41         | 105<br>200        | 2<br>2           |
|             |                  | 187.8-188.3: More white Cc veinlets and brecciated zone.                                                                                                                                                                                      | 9698<br>9700<br>9701 | 182.30                     | 182.30<br>184.30<br>186.30 | 2.00<br>2.00<br>2.00 | 433<br>987<br>2240 | 290<br>240<br>510   | 30<br>23<br>16   | 1.6<br>2.4<br>3.3 | 46<br>53<br>22   | 145<br>165<br>160 | 2<br>2<br>2      |
|             |                  |                                                                                                                                                                                                                                               | 9702<br>9703         | 186.30                     | 187.50<br>188.30           | 1.20<br>0.80         | 993<br>422         | 240<br>390          | 12<br>41         | 2.5<br>1.7        | 23<br>31         | 110<br>320        | 2                |
| 188.30      | 252.70           | INTERMEDIATE VOLCANICS/FELDSPAR PORPHYRY GRANITE (V2/I1GFP) V2/I1GFP                                                                                                                                                                          | 9704<br>9705         | 190.30                     | 190.30<br>192.30           | 2.00<br>2.00         | 272<br>548         | 100<br>230          | 17<br>14         | 0.5<br>0.9        | 24<br>21         | 80<br>120         | 2<br>2           |
|             |                  | Alternating slightly greyish pale green alternating with medium grey generally massive rock. Aphyric (volcanics) to locally porphyritic (felsic dykes). The                                                                                   | 9706<br>9707<br>9708 | 194.30                     | 194.30<br>196.30<br>198.30 | 2.00<br>2.00<br>2.00 | 449<br>646<br>431  | 250<br>1150<br>2160 | 8<br>10<br>11    | 0.8<br>3.6<br>2.3 | 41<br>34<br>25   | 75<br>150<br>210  | 2<br>2<br>2      |
|             |                  | meter scale porphyritic intervals contain 30-40% white Fp anhedral (?) phenocrysts. Non magnetic. Few decimeters scale brecciated zones in the intermediate volcanics at the contact with felsic dykes or inside the volcanics                | 9709<br>9710         | 198.30                     | 200.30<br>202.30           | 2.00<br>2.00         | 301<br>345         | 290<br>280          | 20<br>11         | 1.0<br>1.2        | 43<br>80         | 105<br>565        | 2<br>15          |
|             |                  | also.  Alteration: Moderate pervasive silicification in both facies. The intermediate volcanics facies seems locally pervasively and moderately sericitized                                                                                   | 9712<br>9713<br>9714 | 204.30                     | 204.30<br>206.30<br>208.30 | 2.00<br>2.00<br>2.00 | 312<br>249<br>270  | 320<br>200<br>100   | 7<br>14<br>31    | 0.6<br>0.5<br>0.5 | 23<br>34<br>12   | 215<br>205<br>80  | 2<br>5<br>2      |
|             |                  | (yellowish green to dark brown tinted). About 10% veining. The felsic intrusive intervals are a little bit richer in veining. Veining is very mostly white Cc veins and veinlets with spacing between 3 to 5 cm and directions between 45 and | 9715<br>9716         | 208.30<br>210.30           | 210.30                     | 2.00<br>2.00<br>2.00 | 249<br>301         | 110<br>450          | 11<br>15         | 0.5<br>0.8        | 62<br>88         | 135<br>55         | 2 2              |
|             |                  | 70 degrees. Some white Qz-white Cc veins with variable spacing (5 cm to 1-2 meters) and directions between 70 and 80 degrees.  Mineralization: About 10% fine grained y mostly as fine disseminations and                                     | 9717<br>9718         | 212.30<br>214.30           | 216.30                     | 2.00                 | 247<br>266         | 600<br>310          | 12<br>5          | 0.6<br>2.8        | 159<br>56        | 50<br>65          | 2 2              |
|             |                  | cm scale masses and splashes. Py in felsic intrusive is more of the disseminated type. Locally, in the volcanics, the Py is concentrated in Qz                                                                                                | 9719<br>9720         | 216.30<br>218.30           |                            | 2.00<br>2.00         | 154<br>278         | 260<br>260          | 13<br>16         | 1.5<br>1.0        | 46<br>59         | 55<br>65          | 2                |

13-Nov-05 1:48:44 PM



### **Falconbridge Limited**

DDH: Project: IF-05-01

KERR-SULPHURETS

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                             | Sample | from   | to     | <b>Length</b><br>m | <b>Cu</b> | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|-----------------------------------------------------------------------------------------|--------|--------|--------|--------------------|-----------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | embedded rounded masses surrounded distally, by Ch or sericite rich halo                | 9721   | 220.30 | 222.30 | 2.00               | 270       | 170              | 9                | 0.5              | 101              | 70               | 2                |
|             |                  | (softer material). Also, few Py veinlets in both facies. Traces of Cp in a white        | 9722   | 222.30 | 224.30 | 2.00               | 478       | 190              | 44               | 0.6              | 78               | 70               | 2                |
|             |                  | Cc veinlet.                                                                             | 9723   | 224.30 | 226.30 | 2.00               | 436       | 180              | 35               | 0.7              | 44               | 65               | 2                |
|             |                  | 188.3-198.5: Intermediate volcanics.                                                    | 9724   | 226.30 | 228.30 | 2.00               | 172       | 260              | 20               | 1.2              | 34               | 65               | 2                |
|             |                  | 100.5-130.5. Intermediate volcanics.                                                    | 9725   | 228.30 | 230.30 | 2.00               | 271       | 250              | 64               | 0.6              | 41               | 85               | 2                |
|             |                  | 198.5-199.0: Felsic dyke. Upper contact sharp at 15 degrees.                            | 9726   | 230.30 | 232.30 | 2.00               | 117       | 140              | 40               | 0.3              | 42               | 65               | 2                |
|             |                  | , , , ,                                                                                 | 9728   | 232.30 | 234.30 | 2.00               | 186       | 160              | 41               | 0.4              | 49               | 60               | 2                |
|             |                  | 199.0-205.1: Intermediate volcanics with globular Py masses surrounded by               | 9729   | 234.30 | 236.30 | 2.00               | 323       | 160              | 147              | 0.7              | 66               | 50               | 20               |
|             |                  | Qz-Ch halos.                                                                            | 9730   | 236.30 | 238.30 | 2.00               | 172       | 170              | 263              | 0.4              | 50               | 40               | 10               |
|             |                  | Incl. 204.1-205.1: Brecciated volcanics with a calcitic matrix. Very angular fragments. | 9731   | 238.30 | 240.30 | 2.00               | 350       | 310              | 190              | 0.5              | 54               | 75               | 2                |
|             |                  | nagments.                                                                               | 9732   | 240.30 | 242.30 | 2.00               | 1041      | 70               | 14               | 1.4              | 88               | 80               | 2                |
|             |                  | 205.1-209.8: Felsic intrusive. Badly defined porphyritic texture. Lower contact         | 9733   | 242.30 | 244.30 | 2.00               | 217       | 130              | 14               | 0.5              | 79               | 55               | 15               |
|             |                  | quite gradual.                                                                          | 9735   | 244.30 | 246.30 | 2.00               | 509       | 120              | 6                | 1.0              | 48               | 85               | 2                |
|             |                  |                                                                                         | 9736   | 246.30 | 248.30 | 2.00               | 139       | 100              | 4                | 0.5              | 77               | 35               | 2                |
|             |                  | 209.8-210.7: Intermediate volcanics. Lower part slightly brecciated.                    | 9737   | 248.30 | 250.30 | 2.00               | 123       | 90               | 3                | 0.7              | 58               | 25               | 2                |
|             |                  | 210.7-211.6: Same as 205.1-209.8. Brecciated in the lower part.                         | 9738   | 250.30 | 251.50 | 1.20               | 224       | 90               | 9                | 0.8              | 46               | 30               | 2                |
|             |                  | 210.7-211.0. Same as 203.1-209.0. Diecolated in the lower part.                         | 9739   | 251.50 | 252.70 | 1.20               | 94        | 70               | 3                | 0.3              | 70               | 30               | 2                |
|             |                  | 211.6-224.0: Intermediate volcanics.                                                    |        |        |        |                    |           |                  |                  |                  |                  |                  |                  |

239.7-252.7: Intermediate volcanics.

contact quick (C/A=50 degrees).

224.0-239.7: Felsic intrusive. Massive. Upper contact quick but broken. Lower

13-Nov-05 1:48:44 PM Page 5 of 5



### **Falconbridge Limited**

DDH:

IF-05-02

Project:

**KERR-SULPHURETS** 

Project #: 301

DDH Casing Azimuth: 130 Length (m): 19. Pulled: Dip: -50 Non Length (m): Plugged: 160.00 Oui Started: 8/23/2005 Cemented: Oui Completed: 8/25/2005 Core Logged: 8/26/2005 Size:

NQ2

Storage: KERR CAMP Coordonnée - UTM

Location

Easting: 423132 6263442 Northing: Elevation: 1665

NAD27 ZN9 Datum:

Claim #: 516251 Intervenant

FALCONBRIDGE Company:

HY-TECH Contractor: Located by: M. SAVELL Method: Handheld GPS

Logged by: R. NIEMINEN

Target:

Comments:

#### Directional Tests (C=Collar, R=Reflex)

| Distance | Azimuth | Dip    | Туре |
|----------|---------|--------|------|
| 0.00     | 130.00  | -50.00 | С    |
| 18.00    | 125.80  | -50.00 | R    |
| 46.90    | 130.80  | -49.20 | R    |
| 76.20    | 128.20  | -49.90 | R    |
|          |         |        |      |



## Falconbridge Limited

DDH:

IF-05-02

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample                           | from                             | to                               | <b>Length</b>                | <b>Cu</b><br>ppm (ICP)       | <b>Au</b><br>ppb            | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm         | <b>Zn</b><br>ppb     | <b>As</b><br>ppm     | <b>Sb</b><br>ppm   |
|-------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------|------------------------------|-----------------------------|------------------|--------------------------|----------------------|----------------------|--------------------|
| 0.00        | 13.70            | OVERBURDEN (OB) OB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                                  |                                  |                              |                              |                             |                  |                          |                      |                      |                    |
| 13.70       | 18.00            | BOULDER TILL (TILL) TILL/LM  BOULDER TILL Very rusty and broken-up rocks. Muddy gouges/faults (?); one at 17.95 - 18.00 metres.                                                                                                                                                                                                                                                                                                                                                                      | 10250<br>10251                   | 13.70<br>15.85                   | 15.85<br>18.00                   | 2.15<br>2.15                 | 891<br>1296                  | 40<br>90                    | 7<br>13          | 0.7<br>1.4               | 59<br>51             | 20<br>30             | 2 2                |
| 18.00       | 23.30            | FELSIC LAPILLI TUFF Medium grey matrix with flattened lapillis that are weakly sericitized. A well prononced schistosity at (70° CA) where some lapillis are elongated while others are not but all follow the foliation trend. The matrix does not appear to be very altered, possibly by weak pervasive chlorite.  Mineralisations are of PYRITE (2-5%) as fine to very fine disseminations. The lower contact (23.30m) coincides with a thin (3-4mm) fault plane (60° CA) together with fine mud. | 10253<br>10254<br>10255          | 18.00<br>20.00<br>22.00          | 20.00<br>22.00<br>24.00          | 2.00<br>2.00<br>2.00         | 1003<br>1200<br>799          | 60<br>40<br>90              | 31<br>44<br>40   | 0.8<br>0.6<br>0.5        | 60<br>56<br>66       | 10<br>5<br>15        | 5<br>5<br>2        |
| 23.30       | 26.40            | FELSIC LAPILLI TUFF (T1L) T1L/SR  SERICITIZED FELSIC LAPILLI TUFF This unit diifers from the above by its strong and pervasive sericite alteration. The lapillis are felsic and also elongated parallel to foliation (75° to 80° CA). Mineralisation consist of very fine to medium grain PYRITE (3%) and traces of CHALCOPYRITE. The lower contact is bounded by a thin fault plane (70° CA) with some mud at (26.40m).                                                                             | 10256                            | 24.00                            | 26.00                            | 2.00                         | 264                          | 180                         | 10               | 0.3                      | 115                  | 10                   | 2                  |
| 26.40       | 34.40            | MINERALIZED FELSIC LAPILLI TUFF (T1L) T1L/SI,SR/PY,CP,MO HIGHLY SILICIFIED AND MODERATELY SERICITIZED FELSIC LAPILLI TUFF Strongly silicified tuffs; possibly by hydrothermal processes. The white quartz                                                                                                                                                                                                                                                                                            | 10257<br>10258<br>10260<br>10261 | 26.00<br>28.00<br>30.00<br>32.00 | 28.00<br>30.00<br>32.00<br>34.00 | 2.00<br>2.00<br>2.00<br>2.00 | 4398<br>4145<br>3660<br>6425 | 450<br>1450<br>1720<br>2950 | 8<br>6<br>6<br>5 | 1.6<br>1.7<br>1.8<br>2.6 | 61<br>22<br>16<br>71 | 10<br>40<br>85<br>90 | 2<br>10<br>2<br>15 |



DDH:

IF-05-02

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample | from  | to    | <b>Lengt</b> i | h Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|----------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | appears as irregular and discontinous pseudo-veins, rounded and difformed "blotches" comprising of (60%) of the rock. It is sub-pervasive to fully pervasive and does not "act" lihe a vein or stockwerk, more like silica flooding. The rock unit is medium green and white with quartz, the lapillis are quite diffused (mm/cm).  Mineralizations are of PYRITE (5-10%) as disseminations, of CHALCOPYRITE (0.5% to locally 1%) filling fractures "wisps" and fine quartz veinlets and of disseminated MOLYBDENUM (traces). There is also some traces fine filements of orangy-yellow mineral that ressembles "honey" variety of sphalerite (?), locally.  Lower contact is around (70° CA). |        |       |       |                |                   |                  |                  |                  |                  |                  |                  |
| 34.40       | 57.80            | ANDESITE (AND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10262  | 34.00 | 36.00 | 2.00           | 795               | 330              | 5                | 0.4              | 77               | 30               | 2                |
| 00          | 0.100            | AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10263  | 36.00 | 38.00 | 2.00           | 114               | 130              | 6                | 0.4              | 52               | 40               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10264  | 38.00 | 40.00 | 2.00           | 102               | 140              | 5                | 0.3              | 52               | 85               | 5                |
|             |                  | MASSIVE ANDESITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10265  | 40.00 | 42.00 | 2.00           | 89                | 230              | 9                | 1.0              | 54               | 100              | 5                |
|             |                  | Fine grain, massive, medium green to beige, presence of amygdules (traces to 1% / 1-3mm; Chl/Py). Calcite veinlets (3%). Some quartz veining and minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10266  | 42.00 | 44.00 | 2.00           | 100               | 210              | 8                | 0.4              | 41               | 45               | 2                |
|             |                  | silicifications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10267  | 44.00 | 46.00 | 2.00           | 86                | 120              | 3                | 0.2              | 47               | 45               | 2                |
|             |                  | Mineralizations: PYRITE (5-10%) as disseminations and as veinlets in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10268  | 46.00 | 48.00 | 2.00           | 92                | 110              | 4                | 0.1              | 55               | 30               | 2                |
|             |                  | fractures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10269  | 48.00 | 50.00 | 2.00           | 126               | 110              | 3                | 0.2              | 78               | 30               | 2                |
|             |                  | Lower contact (60° CA) is sharp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10270  | 50.00 | 52.00 | 2.00           | 126               | 450              | 5                | 1.0              | 601              | 145              | 2                |
|             |                  | 37.00 - 39.00: Strong and pervasive sericite (beige).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10272  | 52.00 | 54.00 | 2.00           | 105               | 210              | 5                | 0.5              | 186              | 50               | 2                |
|             |                  | 37.00 - 33.00. Strong and pervasive seriote (beige).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10273  | 54.00 | 56.00 | 2.00           | 111               | 150              | 4                | 0.7              | 80               | 65               | 2                |
|             |                  | 46.40 - 46.70: Felsic lapilli tuff. Lapillis are siliceous and weakly sericitized. PYRITE (10-15%) as disseminations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10274  | 56.00 | 58.00 | 2.00           | 105               | 200              | 3                | 0.6              | 59               | 70               | 2                |
| 57.80       | 134.80           | ANDESITE (AND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10275  | 58.00 | 60.00 | 2.00           | 55                | 4360             | 7                | 1.1              | 20               | 245              | 2                |
|             |                  | AND/HBRX/SI,SR/PY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10276  | 60.00 | 62.00 | 2.00           | 75                | 1470             | 9                | 1.7              | 10               | 485              | 2                |
|             |                  | LIVEDOTUEDAMI EDECCIATED ANDECITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10277  | 62.00 | 64.00 | 2.00           | 95                | 1530             | 9                | 1.4              | 29               | 495              | 2                |
|             |                  | HYDROTHERMAL BRECCIATED ANDESITE This andesite was possibly pre-breciated then intruded by strong altering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10278  | 64.00 | 66.00 | 2.00           | 71                | 1510             | 19               | 1.4              | 36               | 520              | 2                |
|             |                  | hydrothermal fluids.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10279  | 66.00 | 68.00 | 2.00           | 92                | 450              | 6                | 1.4              | 118              | 245              | 2                |
|             |                  | This andesite breccia texture is oblitered by strong and patchy silicification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10280  | 68.00 | 70.00 | 2.00           | 239               | 130              | 5                | 1.3              | 154              | 45               | 2                |
|             |                  | and sericitization where fragments are digested by these alterations thus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10281  | 70.00 | 72.00 | 2.00           | 50                | 190              | 4                | 0.6              | 289              | 35               | 2                |
|             |                  | rounding off the primary angular fragments, resulting in attractive textures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10282  | 72.00 | 74.00 | 2.00           | 122               | 270              | 5                | 1.0              | 581              | 45               | 2                |
|             |                  | These fragments can be zoned with silica and pyrite. The pyrite is often observed within the centers of the fragments. These alterations can also be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10283  | 74.00 | 76.00 | 2.00           | 71                | 110              | 5                | 0.7              | 855              | 30               | 2                |
|             |                  | pervasive in areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10284  | 76.00 | 78.00 | 2.00           | 74                | 220              | 6                | 8.0              | 375              | 45               | 2                |
|             |                  | Mineralizations: PYRITE (5-10%) as disseminations, as semi-massive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10285  | 78.00 | 80.00 | 2.00           | 190               | 340              | 8                | 0.4              | 177              | 40               | 5                |
|             |                  | veinlets and within fragments. Only traces of CHALCOPYRITE are observed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10286  | 80.00 | 82.00 | 2.00           | 315               | 560              | 7                | 0.5              | 169              | 35               | 5                |
|             |                  | (Details below).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10288  | 82.00 | 84.00 | 2.00           | 109               | 320              | 6                | 0.7              | 70               | 60               | 10               |

13-Nov-05 1:53:02 PM



DDH:

IF-05-02

Project:

KERR-SULPHURETS

**Project #:** 301

| From<br>(m) | <b>To</b> (m) | Description                                                                                                                                        | Sample | from   | to     | <b>Lengt</b> | h Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b> |
|-------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------------|-------------------|------------------|------------------|------------------|------------------|------------------|-----------|
|             |               |                                                                                                                                                    | 10289  | 84.00  | 86.00  | 2.00         | 309               | 500              | 10               | 3.1              | 80               | 145              | 2         |
|             |               | 57.80 - 73.00: Strong silica alteration affecting fragments and pervasive                                                                          | 10290  | 86.00  | 88.00  | 2.00         | 480               | 690              | 25               | 1.8              | 226              | 190              | 2         |
|             |               | locally; weak sericite. Greyish in color. Spectacular altered breccia textures.                                                                    | 10291  | 88.00  | 90.00  | 2.00         | 369               | 2810             | 17               | 1.5              | 85               | 140              | 2         |
|             |               | PYRITE (5-10%) (between 57.80 and 65.00m, Py 15%). The "primary" fragments have been digested by the alteration fluids. Alteration fronts can be   | 10292  | 90.00  | 92.00  | 2.00         | 476               | 1020             | 29               | 2.5              | 35               | 185              | 2         |
|             |               | observed. (First brecciated then introduction of hot hydrothermal fluids). Fine                                                                    | 10293  | 92.00  | 94.00  | 2.00         | 187               | 470              | 8                | 1.3              | 58               | 100              | 2         |
|             |               | calcite stockwerk (5%).                                                                                                                            | 10295  | 94.00  | 96.00  | 2.00         | 245               | 290              | 41               | 1.1              | 42               | 70               | 2         |
|             |               |                                                                                                                                                    | 10296  | 96.00  | 98.00  | 2.00         | 193               | 1480             | 9                | 0.6              | 69               | 45               | 2         |
|             |               | 73.00 - 94.55: Strong patchy to pervasive sericitization (beige) with lesser                                                                       | 10297  | 98.00  | 100.00 | 2.00         | 137               | 640              | 9                | 0.6              | 59               | 40               | 2         |
|             |               | silicifications. The rock is patchy green and beige in color. The brecciated appearence is possibly caused by the alteration processes threw fines | 10298  | 100.00 | 102.00 | 2.00         | 211               | 890              | 27               | 0.7              | 22               | 55               | 2         |
|             |               | fractures. This protholithe appears to have been a MASSIVE and                                                                                     | 10299  | 102.00 | 104.00 | 2.00         | 253               | 630              | 12               | 1.0              | 31               | 140              | 2         |
|             |               | amygdaloidal ANDESITE (?). Some amyboidal textures carrying pyrite in their                                                                        | 10300  | 104.00 | 106.00 | 2.00         | 127               | 220              | 9                | 8.0              | 8                | 55               | 2         |
|             |               | centers are possibly amygdules remnants which are also affected by the                                                                             | 10301  | 106.00 | 108.00 | 2.00         | 216               | 280              | 8                | 0.7              | 17               | 55               | 2         |
|             |               | alteration processes. Fine calcite stockwerk (3-5%).                                                                                               | 10302  | 108.00 | 110.00 | 2.00         | 149               | 1120             | 5                | 0.7              | 13               | 75               | 2         |
|             |               | PYRITE (3-5%) with rare traces of CHALCOPYRITE. The sulphides occur in                                                                             | 10303  | 110.00 | 112.00 | 2.00         | 172               | 490              | 8                | 2.2              | 18               | 50               | 2         |
|             |               | fractures but generally within the pseudo-amygdules textures as aggregates.  One narrow hydrothermal breccia (80° CA) is present between (83.00 -  | 10304  | 112.00 | 114.00 | 2.00         | 168               | 540              | 34               | 1.9              | 31               | 125              | 2         |
|             |               | 83.10m) where small angular fragments can be seen.                                                                                                 | 10305  | 114.00 | 116.00 | 2.00         | 285               | 290              | 10               | 1.0              | 103              | 75               | 2         |
|             |               | At (79.10 - 79.15): calcite vein (45° CA) showing a black jagged fringe (1mm)                                                                      | 10307  | 116.00 | 118.00 | 2.00         | 169               | 210              | 7                | 1.0              | 517              | 70               | 2         |
|             |               | at its lower contact.                                                                                                                              | 10308  | 118.00 | 120.00 | 2.00         | 254               | 240              | 8                | 0.9              | 62               | 80               | 2         |
|             |               | 04.55 07.45. Otropo and namedica citieffection are into This interval above                                                                        | 10309  | 120.00 | 122.00 | 2.00         | 202               | 520              | 7                | 1.3              | 112              | 45               | 2         |
|             |               | 94.55 - 97.15: Strong and pervasive silicification, greyish. This interval show a fine fracture stockwerk (15%) of calcite throughout.             | 10310  | 122.00 | 124.00 | 2.00         | 269               | 640              | 7                | 1.1              | 95               | 55               | 2         |
|             |               | Pyrite (10%) as fine disseminations, as veinlets and as aggregates in rounded                                                                      | 10311  | 124.00 | 126.00 | 2.00         | 431               | 410              | 100              | 0.8              | 58               | 70               | 2         |
|             |               | pseudo-amygdules.                                                                                                                                  | 10312  | 126.00 | 128.00 | 2.00         | 233               | 130              | 14               | 0.5              | 56               | 60               | 10        |
|             |               | 97.15 - 109.00: Moderately to generally strong pervasive silicification. Weak                                                                      | 10313  | 128.00 | 130.00 | 2.00         | 165               | 160              | 35               | 0.6              | 96               | 45               | 2         |
|             |               | sericite. Partly amygdaloidal pseudo-textures (7-10%) but mostly showing                                                                           | 10314  | 130.00 | 132.00 | 2.00         | 148               | 80               | 3                | 0.4              | 40               | 55               | 2         |
|             |               | brecciated textures that are, in part, diffused. Weak sericite. Very fine calcite stockwerk (5-10%) and calcite vein (3mm - 10mm) stockwerk (5%).  | 10315  | 132.00 | 134.00 | 2.00         | 146               | 90               | 4                | 0.5              | 19               | 55               | 2         |

109.00 - 114.00: Strongly and pervasively silicified. Calcite stockwerk (3-5%). Pyrite (5%) as disseminations and some aggregates in fractures. Possible fault (30° CA) at 113.95 - 113.96m.

PYRITE (5%) as fine disseminations and a few fracture filling aggregates. At 108.90 - 109.00: Hydrolic breccia. Angular fragments that are sericitized and silicified. Calcite stockwerk from "low" to intense (15%). Pyrite (3-5%).

114.00 - 118.70: Moderately silicified overprinting moderate to weak sericitization. All alterations are somewhat patchy. The rock is of light green color. Calcite stockwerk (3%). Pyrite (3-5%) as disseminations and some fracture filling.

118.70 - 120.00: Strongly and pervasively silicified. Greyish ligthly purple in color. Pyrite (3-%) as disseminations and some veinlets.

13-Nov-05 1:53:02 PM Page 3 of 5



## Falconbridge Limited

DDH:

IF-05-02

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b> (m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample                  | from                       | to               | <b>Lengti</b><br>m   | <b>h Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb  | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm  | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------|------------------|----------------------|--------------------------|-------------------|------------------|-------------------|------------------|------------------|------------------|
|             |               | 120.00 - 124.50: Medium green andesite. Weakly silicified and sericitized. Calcite stockwerk (1-2%). Pyrite (2-3%) as disseminations and as fine aggregates around fractures. 124.50 - 130.00: Brecciated andesite. Strongly altered by silica and sericite in an irregular fashion. Breccia textures with angular fragments are observed. Calcite stockwerk (3-5%). Pyrite (3-5%) as fine disseminations and fine veinlets. 130.00 - 134.80: Strongly and pervasive sericitization; moderately silicified. Ligth green, massive to brecciated textures. Calcite veinlets (1%). Pyrite (1%) as fine disseminations. |                         |                            |                  |                      |                          |                   |                  |                   |                  |                  |                  |
| 134.80      | 152.25        | FELSIC LAPILLI TUFF (T1L) T1L 134.80 - 145.80: WELDED (?) FELSIC LAPILLI TUFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10316<br>10317<br>10318 | 134.00<br>136.00<br>138.00 | 138.00<br>140.00 | 2.00<br>2.00<br>2.00 | 337<br>937<br>512        | 130<br>680<br>210 | 13<br>11<br>11   | 0.8<br>3.2<br>1.9 | 15<br>470<br>101 | 95<br>240<br>125 | 2<br>2<br>15     |
|             |               | This rock is a Felsic Lapilli Tuff. The lapillis are of quartz (1-3mm) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10319<br>10320          | 140.00<br>142.00           |                  | 2.00<br>2.00         | 456<br>830               | 140<br>400        | 19<br>33         | 1.2<br>8.2        | 40<br>1411       | 65<br>320        | 2<br>210         |
|             |               | appeared to be "welded" (Welded tuff?). Matrix is practically inexistant (clast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10320                   | 144.00                     |                  | 2.00                 | 955                      | 430               | 33<br>29         | 5.2               | 390              | 270              | 210<br>175       |
|             |               | supported). It also has the appearence of a quartzite but in my view, it is a tuff. Greyish in color and massive to compact in appearence. Possibly, pervasive                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10323                   | 146.00                     |                  | 2.00                 | 179                      | 70                | 4                | 0.9               | 76               | 45               | 5                |
|             |               | silicification has occured and some sericitizations. Calcite veining (1-2%).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10324                   | 148.00                     |                  | 2.00                 | 731                      | 320               | 6                | 6.1               | 66               | 175              | 70               |
|             |               | Mineralization: PYRITE (5-10%) and molybdenum (traces) both as fine disseminations and also some wispy occurrence for the moly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10325                   | 150.00                     | 152.00           | 2.00                 | 603                      | 420               | 4                | 8.2               | 147              | 265              | 155              |
|             |               | 145.80 - 146.00: FAULT (70° CA). Four fault "slips" with mud.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                            |                  |                      |                          |                   |                  |                   |                  |                  |                  |
|             |               | 146.00 - 148.55: Same felsic lapilli tuff as above but slightly chloritorized pervasively. Ligth green. Calcite irregular veinlets (1-2%). Disseminated pyrite (1%).                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                            |                  |                      |                          |                   |                  |                   |                  |                  |                  |
|             |               | 148.55 - 148.57: FAULT (60° CA).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                            |                  |                      |                          |                   |                  |                   |                  |                  |                  |
|             |               | 148.57 - 152.25: Felsic lapilli tuff. Siliceous. (as above at 134.80 - 145.80m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                            |                  |                      |                          |                   |                  |                   |                  |                  |                  |
| 152.25      | 160.00        | FELDSPAR PORPHYRITIC ANDESITE (ANDFP) ANDFP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10326<br>10327          | 152.00<br>154.00           | 156.00           | 2.00<br>2.00         | 658<br>1726              | 240<br>340        | 2                | 4.9<br>7.2        | 72<br>73         | 120<br>145       | 10<br>10         |
|             |               | FELDSPAR PORPHYRITIC ANDESITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10328                   | 156.00                     |                  | 2.00                 | 109                      | 120               | 3                | 8.0               | 61               | 80               | 2                |
|             |               | 152.25 - 158.00: Feldspar porphyritic andesite. Medium grey, somewhat massive to compact texture. Moderately and pervasively silicified. Pyrite (1-3%), chalcopyrite (traces) as disseminations. This interval holds white feldspars (2-5mm / 0.5 - 1%) and some medium green "lathe" crystals (1-2% / 2-4mm) locally. Calcite veinlets (1%).  NOTE: This interval is either a silicified felsic lapilli tuff (?) or an Fp andesite                                                                                                                                                                                 | 10330                   | 158.00                     | 160.00           | 2.00                 | 71                       | 150               | 1                | 0.6               | 143              | 50               | 2                |

13-Nov-05 1:53:02 PM



### **Falconbridge Limited**

DDH: Project: IF-05-02

Project #:

KERR-SULPHURETS 301

Description From To Length Мо Αg Zn As Sb Sample from to (m) (m) ppm (ICP) ppb ppm ppm ppb ppm ppm

with diffused amygdules (2-3mm / 0.5-1%). Diffused and discret "pseudofragments" are tentavely interpreted (2 x 5mm to 2 x 3cm). The question remains!

158.00 - 158.20: FAULT (10° ca). 158.20 - 160.00: Aphyric andesite, dark green, homogeneous, moderately and pervasively chloritorized (but the rock is hard) Pyrite (traces) as disseminations.

160.00 metres: End of hole.

13-Nov-05 1:53:02 PM Page 5 of 5



Dip:

### **Drill Log**

### **Falconbridge Limited**

DDH:

MC-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

DDH Casing Azimuth: 310 Length (m): 3.3 Pulled: -50 Non Length (m): Plugged: 344.40 Oui Started: 8/10/2005 Cemented: Oui Completed: 8/15/2005 Core Logged: 8/16/2005

> Size: NQ2

Storage: KERR CAMP Location

Coordonnée - UTM

Easting: 422652 6263125 Northing: Elevation: 1680

NAD27 ZN9 Datum:

Claim #:

Target:

MAIN COPPER

Comments:

#### Directional Tests (C=Collar, R=Reflex)

| Distance | Azimuth | Dip    | Туре |
|----------|---------|--------|------|
| 0.00     | 310.00  | -50.00 | С    |
| 15.00    | 312.60  | -50.40 | R    |
| 152.00   | 314.20  | -49.90 | R    |
| 338.00   | 319.80  | -49.40 | R    |

#### Intervenant

FALCONBRIDGE Company:

HY-TECH Contractor: Located by: A. HUARD Method: Handheld GPS Logged by: R. NIEMINEN

516252, 51625



## Falconbridge Limited

DDH:

MC-05-01

**KERR-SULPHURETS** 

Project: Project #:

301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample                                                                                                                                                               | from                                                                                                                                                               | to                                                                                                                                                                  | <b>Length</b><br>m                                                                                                                   | <b>Cu</b><br>ppm (ICP)                                                                                                                                           | <b>Au</b><br>ppb                                                                                                                      | <b>Мо</b><br>ppm                                                                               | <b>Ag</b><br>ppm                                                                 | <b>Zn</b><br>ppb                                                                                                              | <b>As</b><br>ppm                                                                                                       | <b>Sb</b><br>ppm                                                                            |
|-------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 0.00        | 2.60             | CASING (OB) OB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                                                                                                    |                                                                                                                                                                     |                                                                                                                                      |                                                                                                                                                                  |                                                                                                                                       |                                                                                                |                                                                                  |                                                                                                                               |                                                                                                                        |                                                                                             |
| 2.60        | 41.00            | PPORPHYRITC MONZONITE (PMONZ) PMONZ/BRX  A medium green and fine grained rock showing fine to medium sized (mm/cm) angular to sub-angular fragments that are usually chloriorized. The texture is porphyritic with whitish to beige colored feldspars with maximum size of 2mm by 10mm and 5% in quantity. The feldspars can be diffused and discret.  The alterations are of patchy sericitization and of chloritization that are locally sub-pervasive. The intensities are from weak to moderate. Rusty sections are also present where faulting occurs.  The mineralizations are of pyrite, malachite, chalcopyrite and hematite. The pyrite occurs as fine disseminations (up to 10% locally) in the breccias matrix, in fine fractures and quartz veinlets (1 to 5mm max. in width). The chalcopyrite is fine and is present in fine fractures in trace amount. The malachite is observed within fine fractures in the near surface oxidazation zone up to a depth of 25 meters in amount ranging from trace to 2% and locally up to 3%. It is also observed in trace amount elsewhere down the hole. The hematite is in trace amount as disseminations or as oxidized version in fractures.  2.60 - 14.70: Discret brecciated rock. Broken-up core. Weakly to moderately sericitized (patchy). Locally rusted.  Malachite mineralizations (traces to locally 1%) within very fine fractures. Some traces of chalcopyrite (6.30 - 6.35 m.) and here and there.  14.70 - 16.50: FAULT ZONE.(45° to subparallel to core axis) and numerous mud gouges as described below: From 15.00 - 15.40: Fractured rock with rusty fractures; broken core. Traces of disseminated pyrite. Moderate sericite. From 15.00 - 15.70: PYRITE (15%); fine to very fine and disseminated pyrite | 9740<br>9741<br>9742<br>9743<br>9744<br>9745<br>9747<br>9748<br>9749<br>9750<br>9751<br>9752<br>9753<br>9754<br>9755<br>9756<br>9757<br>9758<br>9759<br>9760<br>9761 | 2.60<br>3.80<br>5.00<br>7.00<br>9.00<br>11.00<br>13.00<br>14.70<br>16.30<br>22.00<br>24.00<br>28.00<br>28.00<br>28.80<br>30.75<br>33.00<br>35.00<br>37.00<br>39.00 | 3.80<br>5.00<br>7.00<br>9.00<br>11.00<br>13.00<br>14.70<br>16.30<br>18.00<br>22.00<br>24.00<br>28.00<br>28.80<br>30.75<br>33.00<br>35.00<br>37.00<br>39.00<br>41.00 | 1.20<br>1.20<br>2.00<br>2.00<br>2.00<br>2.00<br>1.70<br>1.60<br>1.70<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.20<br>2.25<br>2.25 | 693<br>1216<br>1027<br>1323<br>2603<br>1591<br>3428<br>3060<br>4968<br>543<br>2022<br>2034<br>1224<br>1210<br>1390<br>1918<br>744<br>1048<br>2153<br>1305<br>618 | 290<br>150<br>80<br>180<br>260<br>190<br>130<br>660<br>100<br>170<br>340<br>270<br>190<br>90<br>1690<br>130<br>150<br>140<br>90<br>30 | 7<br>8<br>7<br>10<br>16<br>12<br>20<br>33<br>33<br>16<br>10<br>26<br>173<br>7<br>9<br>15<br>13 | 0.3 0.1 0.2 0.9 0.7 0.4 2.1 3.4 0.8 1.3 1.4 2.1 1.0 0.8 17.7 0.4 0.6 0.5 0.5 0.1 | 93<br>89<br>71<br>92<br>105<br>76<br>157<br>66<br>64<br>46<br>77<br>63<br>37<br>46<br>71<br>69<br>69<br>52<br>51<br>56<br>183 | 15<br>15<br>15<br>25<br>30<br>30<br>25<br>145<br>65<br>35<br>95<br>70<br>40<br>30<br>140<br>25<br>40<br>20<br>25<br>40 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
|             |                  | within the rock matrix and also following fine fractures/foliation planes (35° CA). Possible traces of very fine chalcopyrite. Weakly sericitized and chloritorized.  From 15.70 - 16.30: Mud fault (50%) and breccia (50%), Core axis (45° to 50°). The muds are greyish and are composed of rounded peebles (1-3mm) and clayish mud. It aslo holds 5% of very fine disseminated pyrite. The breccia show rusty fracture planes.  16.30 - 16.50: Broken core and some mud.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                      |                                                                                                                                                                    |                                                                                                                                                                     |                                                                                                                                      |                                                                                                                                                                  |                                                                                                                                       |                                                                                                |                                                                                  |                                                                                                                               |                                                                                                                        |                                                                                             |

13-Nov-05 1:57:33 PM Page 1 of 7



#### **Falconbridge Limited**

DDH:

MC-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

Description Length From To Zn Sb Мо Ag As Sample from to (m) (m) ppm (ICP) daa ppm ppm ppb ppm ppm

16.50 - 16.90: PYRITE (1-3%) as disseminations in brecciated rocks. Rust in fractures.

17.59 - 17.60: Fault (35° CA) and mud.

17.60 - 20.00: Rusty breccia. Moderate and patchy sericite. Chloritorized fragments (1-3mm). Pyrite trace. Locally some coarse pyrite in quartz veinlets. 20.00 - 21.00: Quartz vein (10° CA) carrying coarse of pyrite (15%) as aggregates.

21.00 - 28.80: Chloritorized and sericitized porphyritic (Fp) breccia. The sericite is beige and also greenish where the latter affects the feldspars and the first, the matrix and fragments (or pseudo-fragments). MALACHITE (1%) within the fine fractures and disseminated pyrite (traces to 1%) throughout.

28.80 - 30.75: FAULT ZONE (25° to 35° CA). Very rusty and broken-up core, locally gougy. Traces of malachite in the first 50cm.

30.75 - 31.40: Breccia. Traces of malachite, pyrite and hematite.

31.40 - 31.41: FAULT (30° CA) and mud.

31.41 - 41.00: BRECCIA. Tentative lower contact at (25° CA) between the brecciated and the massive and more homgeneous texture with chloritic alteration and absence of sericite. Weak epidote between 39.50 and 40.00m. Traces of disseminated pyrite.

#### Structure

14.70 - 15.00 FAULT

Fault zone from 14.70 to 16.50m.

FLT/45 TO 10

15.70 - 16.30 FAULT ZONE

Mud fault (50%) and breccia (50%).

**FLTZ/45 TO 50** 

17.59 - 17.60 FAULT

FLT/35

28.80 - 30.75 FAULT ZONE

FLTZ/25 TO 35

31.40 - 31.41 FAULT

FLT/30

13-Nov-05 1:57:33 PM Page 2 of 7



DDH: Project:

MC-05-01 KERR-SULPHURETS

Project #: 301

| From<br>(m) | <b>To</b> (m) | Description                                                                                                                                    | Sample | from   | to     | <b>Lengtl</b><br>m | <b>h Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------------------|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 41.00       | 121.30        | ANDESITE (AND)                                                                                                                                 | 9763   | 41.00  | 43.00  | 2.00               | 713                      | 60               | 16               | 0.1              | 189              | 55               | 2                |
|             |               | AND                                                                                                                                            | 9764   | 43.00  | 45.00  | 2.00               | 399                      | 100              | 19               | 0.1              | 89               | 50               | 2                |
|             |               | ANDEOITE                                                                                                                                       | 9765   | 45.00  | 47.00  | 2.00               | 1443                     | 290              | 18               | 0.3              | 128              | 65               | 2                |
|             |               | ANDESITE  Medium green, fine grained and homogeneous. Faint flow textures can be                                                               | 9766   | 47.00  | 49.00  | 2.00               | 1523                     | 100              | 18               | 0.3              | 129              | 45               | 2                |
|             |               | observed (94.00 - 120.00m.) such as discret flow breccias with dark green                                                                      | 9767   | 49.00  | 51.00  | 2.00               | 1562                     | 80               | 13               | 0.3              | 100              | 35               | 2                |
|             |               | chloritorized angular fragments (2-10mm) at 45° CA. Patchy epidote (1%),                                                                       | 9768   | 51.00  | 53.00  | 2.00               | 1109                     | 50               | 16               | 0.1              | 67               | 30               | 2                |
|             |               | weakly chloritic and pervasive and also some darker green chloritorized                                                                        | 9769   | 53.00  | 55.00  | 2.00               | 2623                     | 190              | 5                | 0.6              | 64               | 35               | 2                |
|             |               | patches in the matrix or affecting thiny mafic minerals. Locally we can see                                                                    | 9770   | 55.00  | 57.00  | 2.00               | 944                      | 100              | 2                | 0.2              | 52               | 35               | 2                |
|             |               | weakly hematized and reddish brown silicified patches (85.00 - 94.00m).                                                                        | 9771   | 57.00  | 59.00  | 2.00               | 810                      | 60               | 8                | 0.2              | 71               | 35               | 2                |
|             |               | Calcite veinlets (3-5%), generally white except between (58.00 - 70.00m)                                                                       | 9772   | 59.00  | 61.00  | 2.00               | 969                      | 80               | 8                | 0.4              | 56               | 40               | 2                |
|             |               | where pink calcite dominates over white. Generally weakly magnetic.  Quartz-calcite veins and veinlets (5-7%) of which (3%) show reddish       | 9773   | 61.00  | 63.00  | 2.00               | 784                      | 110              | 12               | 0.2              | 66               | 35               | 2                |
|             |               | hematization from (95.00 - 120.30m).                                                                                                           | 9774   | 63.00  | 65.00  | 2.00               | 636                      | 30               | 6                | 0.1              | 48               | 30               | 2                |
|             |               | Pyrite and lesser chalcopyrite occurs in association with the veining in trace                                                                 | 9775   | 65.00  | 67.00  | 2.00               | 969                      | 50               | 40               | 0.2              | 32               | 25               | 5                |
|             |               | amount, not more than (0.5%).                                                                                                                  | 9776   | 67.00  | 69.00  | 2.00               | 413                      | 30               | 1                | 0.1              | 20               | 2                | 2                |
|             |               | 40.00 47.40 O                                                                                                                                  | 9777   | 69.00  | 71.00  | 2.00               | 640                      | 40               | 1                | 0.1              | 22               | 10               | 5                |
|             |               | 42.00 - 45.40: Quartz veining (10% - 20° CA) carrying (1-3%) pyrite. Very                                                                      | 9778   | 71.00  | 73.00  | 2.00               | 788                      | 50               | 1                | 0.1              | 29               | 2                | 2                |
|             |               | rusty vein and wall rock.                                                                                                                      | 9779   | 73.00  | 75.00  | 2.00               | 486                      | 30               | 2                | 0.1              | 38               | 5                | 2                |
|             |               | 47.40 - 58.00: Broken-up core, rusty section. Epidote patches (1%). Traces of                                                                  | 9780   | 75.00  | 77.00  | 2.00               | 1431                     | 120              | 3                | 0.3              | 28               | 10               | 2                |
|             |               | malachite.                                                                                                                                     | 9782   | 77.00  | 79.00  | 2.00               | 596                      | 70               | 1                | 0.1              | 21               | 5                | 2                |
|             |               | NOTE: from 49.45 - 49.60: FAULT GOUGE with black organic earth (?)                                                                             | 9783   | 79.00  | 81.00  | 2.00               | 872                      | 120              | 5                | 0.1              | 32               | 2                | 2                |
|             |               | (instead of the usual muds).                                                                                                                   | 9784   | 81.00  | 83.00  | 2.00               | 523                      | 60               | 2                | 0.1              | 28               | 10               | 2                |
|             |               | CO 70 CO 00 Deddieb has a herestiand assert usin (CO) CA\ with white                                                                           | 9785   | 83.00  | 85.00  | 2.00               | 528                      | 80               | 1                | 0.1              | 37               | 5                | 2                |
|             |               | 63.70 - 63.80: Reddish brown hematized quartz vein (60° CA) with white quartz-calcite tension veinlets within at right angle to the main vein. | 9786   | 85.00  | 87.00  | 2.00               | 717                      | 90               | 5                | 0.1              | 35               | 10               | 2                |
|             |               | 94.50 - 95.10: Strongly magnetic.                                                                                                              | 9787   | 87.00  | 89.00  | 2.00               | 804                      | 100              | 2                | 0.1              | 33               | 5                | 2                |
|             |               | 99.25 - 99.26: White calcite vein (30° CA) carrying (20%) of coarse pyrite.                                                                    | 9788   | 89.00  | 91.00  | 2.00               | 2390                     | 190              | 17               | 0.5              | 38               | 2                | 2                |
|             |               | 100.30 - 100.40: Sub-smokey quartz vein (25° CA) carrying 4% pyrite, 1%                                                                        | 9789   | 91.00  | 93.00  | 2.00               | 607                      | 50               | 1                | 0.1              | 43               | 5                | 2                |
|             |               | chalcopyrite and 0.5% magnetite.                                                                                                               | 9790   | 93.00  | 95.00  | 2.00               | 855                      | 60               | 2                | 0.1              | 26               | 2                | 2                |
|             |               | 440.00 440.00 FALILT (250 TO 200 CA) and conductive                                                                                            | 9791   | 95.00  | 97.00  | 2.00               | 642                      | 90               | 1                | 0.2              | 27               | 5                | 2                |
|             |               | 110.90 - 110.92: FAULT (35° TO 20° CA) and sandy mud.<br>111.70 - 111.71: FAULT (30° CA) and mud fault.                                        | 9792   | 97.00  | 99.00  | 2.00               | 344                      | 60               | 1                | 0.1              | 29               | 5                | 2                |
|             |               | · · · · · · · · · · · · · · · · · · ·                                                                                                          | 9793   | 99.00  | 101.00 | 2.00               | 1788                     | 190              | 6                | 0.7              | 36               | 2                | 2                |
|             |               | <u>Structure</u>                                                                                                                               | 9794   | 101.00 | 103.00 | 2.00               | 786                      | 60               | 3                | 0.2              | 41               | 10               | 2                |
|             |               | 49.45 - 49.60 FAULT                                                                                                                            | 9795   | 103.00 | 105.00 | 2.00               | 585                      | 90               | 4                | 0.1              | 25               | 10               | 2                |
|             |               | Fault gouge with black organic earth as mud.                                                                                                   | 9796   | 105.00 | 107.00 | 2.00               | 651                      | 50               | 22               | 0.1              | 35               | 5                | 2                |
|             |               | FLT                                                                                                                                            | 9798   | 107.00 | 109.00 | 2.00               | 698                      | 50               | 2                | 0.1              | 32               | 2                | 2                |
|             |               | 110.90 - 110.92 FAULT                                                                                                                          | 9799   | 109.00 | 111.00 | 2.00               | 1048                     | 90               | 2                | 0.1              | 38               | 10               | 2                |
|             |               |                                                                                                                                                | 9800   | 111.00 | 113.00 | 2.00               | 1223                     | 110              | 4                | 0.2              | 38               | 5                | 2                |
|             |               | FLT/35 TO 20                                                                                                                                   | 9801   | 113.00 | 115.00 | 2.00               | 749                      | 40               | 4                | 0.1              | 38               | 10               | 2                |
|             |               | 111.70 - 111.71 FAULT                                                                                                                          | 9802   | 115.00 | 117.00 | 2.00               | 483                      | 15               | 1                | 0.1              | 39               | 10               | 2                |
|             |               | FLT/30                                                                                                                                         | 9803   | 117.00 | 119.00 | 2.00               | 604                      | 30               | 1                | 0.1              | 38               | 10               | 2                |

13-Nov-05 1:57:33 PM



DDH:

MC-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

| 121.30 130.25 PORPHYRITIC GRANODICRITE (PGRDR) 9804 119.00 121.00 2.00 967 70 4 0.1 30 2 2 2 1 1 1 10.0 130 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | From<br>(m) | <b>To</b><br>(m) | Description                                                                                                   | Sample | from   | to     | <b>Length</b> | <b>Cu</b> ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|---------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|---------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| PGRDR  HEMATIZED FELDSPAR PORPHYRY DYKE.  HEMATIZED FELDSPAR PORPHYRY DYKE.  Massive, porphyritic texture with withish automorphous and zoned feldspars (28%), reddish-brown. Strongly magnetic. Traces to 1% of combined disseminated pythe-magnetic-halopyrite.  Sharp upper contact (60° CA); lower contact (55° CA).  1130.25  174.30 ANDSITE (AND)  AND  AND  Same andesite as above.  B811 133.00 133.00 2.00 675 30 6 1.2 154 75 270  AND  Same andesite as above.  B812 135.00 137.00 2.00 476 30 60 11. 1.6 200 150 450  Same andesite as above.  B812 135.00 137.00 2.00 476 401 280 11. 1 6. 200 150 450  Same andesite as above.  B813 137.00 138.00 2.00 478 360 11. 1.6 200 150 450  Holdspards, moderately sericitized and weakly chloritorized.  B814 138.00 141.00 2.00 4281 440 9 2.0 68 45 30  Holdspards, moderately sericitized and weakly chloritorized.  B815 141.00 143.00 2.00 3385 380 4 0.7 52 15 10  Diffling induced (7) greysh mud at 131.10 131.15m.  B816 141.00 143.00 2.00 3385 380 4 0.7 52 15 10  Diffling induced (7) greysh mud at 131.10 131.15m.  B817 141.00 143.00 2.00 4381 400 1 0.7 54 15 2  Holdspards, moderately sericitized and weakly chloritorized.  B818 145.00 147.00 2.00 4866 420 1 1.0 57 20 2  Holdspards, moderately sericitized and weakly chloritorized.  B819 147.00 148.00 2.00 568 640 1 1.0 57 20 2  Holdspards, moderately sericitized and weakly chloritorized.  B816 141.00 143.00 2.00 6386 530 5 1.3 69 15 2  Holdspards, moderately sericitized and weakly chloritorized.  B817 141.00 143.00 2.00 6386 640 1 1.0 57 20 2  Holdspards, moderately sericitized and weakly chloritorized.  B818 145.00 161.00 162.00 6386 640 1 1.0 57 20 2  Holdspards, moderately sericitized and weakly chloritorized.  B819 147.00 148.00 2.00 6386 640 1 1.0 5 8 10 5  Holdspards and the series of 1%1 and 131.10 131.15m.  B819 147.00 148.00 2.00 6386 640 1 1.0 5 8 10 5  Holdspards and the series of 184 188 188 188 188 188 188 188 188 188                                                                                                                    |             |                  |                                                                                                               | 9804   | 119.00 | 121.00 | 2.00          | 967                 | 70               | 4                | 0.1              | 30               | 2                | 2                |
| PGRPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 121.30      | 130.25           | PORPHYRITIC GRANODIORITE (PGRDR)                                                                              | 9805   | 121.00 | 123.00 | 2.00          | 388                 | 15               | 11               | 0.1              | 23               | 10               | 2                |
| HEMATIZED FELDSPAR PORPHYRY DYKE.  Massive, porphyritic texture with whishis automorphous and zoned feldspars (25%), Irediabr-frown. Strongly magnetic. Traces to 1% of combined disseminated pyrite-magnetic-chalcopyrite.  130.25  174.30 ANDSITE (AND)  AND  AND  AND  AND  AND  AND  AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                  | · ,                                                                                                           |        |        |        |               |                     |                  |                  |                  |                  |                  |                  |
| HEMATIZED FELDSPAR PORPHYPY DYCE. Massive, prophyritic lexture with whish automorphous and zoned feldspars (25%), reddish-brown. Strongly magnetic. Traces to 1% of combined disseminated pythe-magnetic -that collocytries. Sharp upper contact (60° CA): lower contact (55° CA).  130.25 174.30 ANDSITE (AND)  AND AND AND AND AND AND AND AND AND AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                  |                                                                                                               |        |        |        |               |                     |                  |                  |                  |                  | 2                |                  |
| ### Massive, poliphymic taxinar with my appetic. Traces to 1% of combined disseminated pyrite-magnetite-chalogymie. Sharp upper contact (60° CA), lower contact (60° CA).  ### 130.25   174.30   ANDSITE (AND)   9810   131.00   131.00   2.00   675   30   6   1.2   154   75   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270 |             |                  |                                                                                                               |        |        |        |               | 271                 |                  |                  | 0.1              |                  |                  |                  |
| AND  Same andesite as above.  Same andesite and avealty chloritorized.  Same andesite as above.  Same andesite and weakly chloritorized.  Same andesite  |             |                  | (25%), reddish-brown. Strongly magnetic. Traces to 1% of combined disseminated pyrite-magnetite-chalcopyrite. |        |        |        |               |                     |                  |                  |                  |                  |                  |                  |
| AND  Same andesite as above.  Same andesite and avealty chloritorized.  Same andesite as above.  Same andesite and weakly chloritorized.  Same andesite  | 130.25      | 174.30           | ANDSITE (AND)                                                                                                 | 9810   | 131.00 | 133.00 | 2.00          | 675                 | 30               | 6                | 1.2              | 154              | 75               | 270              |
| Same andesile as above.    9812   135.00   137.00   2.00   4401   260   11   3.7   475   255   1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                  | ` ,                                                                                                           |        |        |        |               |                     |                  |                  |                  | -                |                  | -                |
| Same andesite as above.  9813 137.00 139.00 2.00 4281 440 9 2.0 68 45 30 130 130.02 5 - 132.60 : Chill margin. Medium green, coarse grained, diffused feldspards, moderately sericitized and weakly chloritorized.  9815 141.00 143.00 2.00 3395 360 4 0.7 52 15 10 10 10 132.65 : Outst-calcite vein (70° CA), white and barren.  9816 141.00 143.00 2.00 3395 360 4 0.7 52 15 10 10 132.65 : Outst-calcite vein (70° CA), white and barren.  9817 143.00 145.00 2.00 6336 530 5 1.3 69 15 2 132.65 - 132.67 : FAULT (70° CA) and mud.  9819 147.00 149.00 2.00 4686 420 1 1.0 57 20 2 132.65 - 132.67 : FAULT (70° CA) and mud.  9819 147.00 149.00 2.00 4686 420 1 1.0 57 20 2 132.65 - 132.67 : FAULT (70° CA) and mud.  9819 147.00 149.00 2.00 4240 510 1 1.0 58 10 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                  |                                                                                                               | 9812   | 135.00 | 137.00 | 2.00          | 4401                | 260              | 11               |                  | 475              |                  | 1050             |
| feldspards, moderately sericitized and weakly chloriforized.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.15m.  Polliling induced (?) greyish mud at 131.10 to 131.10 to 130.0 to 151.00 to 2.00 4374 400 to 1.0.7 to 54 15 2 to 1.0 to 150.00 to  |             |                  | Same andesite as above.                                                                                       | 9813   |        |        | 2.00          | 4281                | 440              | 9                | 2.0              | 68               |                  | 30               |
| feldspards, moderately sericitized and weakly chloritorized.  Drilling induced (?) greyish mud at 131.0 to 131.15m.  3816 141.00 143.00 2.00 6336 530 5 1.3 69 15 2  3132.65 - 132.65; Quartz-calcite vein (70° CA), white and barren.  3818 145.00 147.00 2.00 4696 420 1 1.0 57 20 2  3132.65 - 132.67; FAULT (70° CA) and mud.  4819 147.00 149.00 2.00 4374 400 1 0.7 54 15 2  From 132.67 to 150.60 meters: ANDESITE, medium green, fine grained.  Weakly, and pervasively calcific throughout.  Mineralizations: PYRITE (1-2%) generally (see below for details); CHALCOPYRITE (traces to 1%) along with malachite at the lower end of this interval. Local "splashes" of chalcopyrite (5% over 3cm) can be observed.  133.50 - 134.00: PYRITE (10-15%) fine grained in association with quartz veining that aslo carry calcite tension gashes. Foliation (25° - 20° CA).  147.00 - 150.60: Traces of malachite.  147.00 - 150.60: Traces of malachite.  150.60 - 174.30: Moderately to strongly magnetic. ANDESITE, calcite veinlets (5-7%), some are hematized to a reddish-purple color with lesser that are pinkish. Traces to 0.5% of CHALCOPYRITE as disseminations.  EPIDOTE is observed on fracture planes in trace amount up to approximately 166.00 meters and up to 2% from 166.00 to 174.30 meters. Lower contact is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                  | 120.25 122.60; Chill margin Madium groon, coorse grained diffused                                             | 9814   | 139.00 | 141.00 | 2.00          | 6409                | 480              | 3                | 1.3              | 79               | 20               | 10               |
| Drilling induced (?) greyish mud at 131.10 to 131.15m.  132.60 - 132.65 custrz-calcite vein (70° CA), white and barren.  9817   143.00   145.00   2.00   6336   530   5   1.3   69   15   2    132.65 - 132.67 representation (70° CA) and mud.  From 132.67 to 150.60 meters: ANDESITE, medium green, fine grained. Weakly and pervasively calcitic throughout.  Mineralizations: PYRITE (1-2%) generally (see below for details);  CHALCOPYRITE (traces to 1%) along with malachite at the lower end of this interval. Local "epishese" of chalcopyrite (5% over 3cm) can be observed. 133.50 - 134.00: PYRITE (10-15%) fine grained in association with quartz yeining that aslo carry calcite tension gashes. Foliation (25° - 30° CA). 138.25 - 138.85. Gougy flow textures with (10%) of brassy pyrite. Foliation (10° to 20° CA). 147.00 - 150.60: Strongly magnetic. From 150.40 to 152.20 meters: Dark green CHLORITORIZED and SILICIPIED ZONE that carry (2 %) PYRITE and (0.5 %) CHALCOPYRITE as disseminations. 150.60 - 174.30: Moderately to strongly magnetic (5.75%), some are hematized to a reddish-purple color with lesser that are pinkish. Traces to 0.5% of CHALCOPYRITE "splashes" and some pyrite as disseminations. Pyrite aslo occur as semi-massive veinlets and veins (see below for details). Traces of MALACHITE are present in fines fractures. EPIDOTE is observed on fracture planes in trace amount up to approximately 166.00 meters and up to 29% from 166.00 to 174.30 meters. Lower contact is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                  |                                                                                                               | 9815   | 141.00 | 143.00 | 2.00          | 3395                | 360              | 4                | 0.7              | 52               | 15               | 10               |
| 132.65 - 132.65: Quartz-calcite verin (70° CA), white and barren.  132.65 - 132.67: FAULT (70° CA) and mud.  9818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                  |                                                                                                               | 9817   | 143.00 | 145.00 | 2.00          | 6336                | 530              | 5                | 1.3              | 69               | 15               | 2                |
| From 132.67 to 150.60 meters: ANDESITE, medium green, fine grained. Weakly and pervasively calcific throughout. 9821 151.00 153.00 2.00 5243 400 1 1.0 58 10 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                  |                                                                                                               | 9818   | 145.00 | 147.00 | 2.00          | 4696                | 420              | 1                | 1.0              | 57               | 20               | 2                |
| From 132.67 to 150.00 meters: ANDESTIE, mealum green, line grained.   9821   151.00   153.00   2.00   5243   400   1   1.0   59   15   5   5   Mineralizations: PYRITE (1-2%) generally (see below for details);   9822   153.00   155.00   2.00   4740   560   5   1.2   64   50   5   5   6   6   6   1.2   76   15   5   6   6   6   1   6   5   6   6   5   6   6   5   6   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                  | 132.65 - 132.67: FAULT (70° CA) and mud.                                                                      | 9819   | 147.00 | 149.00 | 2.00          | 4374                | 400              | 1                | 0.7              | 54               | 15               | 2                |
| Weakly and pervasively calcitic throughout.  9821 151.00 153.00 2.00 5243 400 1 1.0 59 15 5 Mineralizations: PYRITE (1-2%) generally (see below for details); 9822 153.00 155.00 2.00 4740 560 5 1.2 64 50 5 CHALCOPYRITE (traces to 1%) along with malachite at the lower end of this 9823 155.00 157.00 2.00 5528 660 16 1.2 76 15 2 interval. Local "splashes" of chalcopyrite (5% over 3cm) can be observed. 9824 157.00 159.00 2.00 3601 340 2 0.7 67 20 2 133.50 - 134.00: PYRITE (10-15%) fine grained in association with quartz 9825 159.00 161.00 2.00 3880 330 3 0.7 65 15 2 veining that aslo carry calcite tension gashes. Foliation (25° -30° CA). 9826 161.00 163.00 2.00 2501 320 1 0.6 63 25 5 138.25: 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (10° to 20° CA). 9828 165.00 167.00 2.00 2466 240 1 0.5 56 15 2 141.00 - 150.60: Strongly magnetic. 9829 167.00 189.00 2.00 2666 180 1 0.5 54 15 2 141.00 - 150.60: Strongly magnetic. 9829 167.00 189.00 2.00 2666 180 1 0.5 54 15 2 15 10 150.60: Strongly magnetic. 9830 169.00 171.00 2.00 2661 180 1 0.5 54 15 10 150.60: Strongly magnetic ANDESITE. Calcite veinlets (5-7%), some are hematized to a reddish-purple color with lesser that are pinkish. Traces to 0.5% of CHALCOPYRITE as disseminations. Pyrite aslo occur as semi-massive veinlets and veins (see below for details). Traces of MALACHITE are present in fines fractures. EPIDOTE is observed on fracture planes in trace amount up to approximately 166.00 meters and up to 2% from 166.00 to 174.30 meters. Lower contact is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                  | From 400 07 to 450 00 contains ANDFOITE and fine areas fine are in a                                          | 9820   | 149.00 | 151.00 | 2.00          | 4240                | 510              | 1                | 1.0              | 58               | 10               | 5                |
| Mineralizations: PYRITE (1-2%) generally (see below for details); CHALCOPYRITE (traces to 1%) along with malachite at the lower end of this interval. Local "splashes" of chalcopyrite (5% over 3cm) can be observed.  133.50 - 134.00: PYRITE (10-15%) fine grained in association with quartz veining that aslo carry calcite tension gashes. Foliation (25° - 30° CA).  135.45 - 135.55: Quartz-calcite vein (45° CA). White and barren.  138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (10° to 20° CA).  147.00 - 150.60: Traces of malachite.  141.00 - 150.60: Strongly magnetic.  150.00 to 152.20 meters: Dark green CHLORITORIZED and disseminations.  150.60 - 174.30: Moderately to strongly magnetic ANDESITE. Calcite veinlets (5-7%), some are hematized to a reddish-purple color with lesser that are pinkish. Traces to 0.5% of CHALCOPYRITE greenshes" and some pyrite as disseminations.  150.60 of Texture splanes in trace amount up to approximately 166.00 meters and up to 2% from 166.00 to 174.30 meters. Lower contact is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                  |                                                                                                               | 9821   | 151.00 | 153.00 | 2.00          | 5243                | 400              | 1                | 1.0              | 59               | 15               | 5                |
| CHALCOPYRITE (traces to 1%) along with malachite at the lower end of this interval. Local "splashes" of chalcopyrite (5% over 3cm) can be observed.  133.50 - 134.00. PYRITE (10-15%) fine grained in association with quartz veining that aslo carry calcite tension gashes. Foliation (25° - 30° CA).  135.50 - 134.00. PYRITE (10-15%) fine grained in association with quartz veining that aslo carry calcite tension gashes. Foliation (25° - 30° CA).  138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (25° - 30° CA).  138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (25° - 30° CA).  138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (25° - 30° CA).  138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (25° - 30° CA).  138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (25° - 30° CA).  138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (25° - 30° CA).  138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (25° - 30° CA).  138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (25° - 30° CA).  138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (25° - 30° CA).  138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (25° - 30° CA).  138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (25° - 30° CA).  138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (25° - 30° CA).  138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (25° - 30° CA).  138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (25° - 30° CA).  138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (25° - 30° CA).  138.25 - 138.85: Gough flow textures with (10%) of brassy pyrite. Foliation (25° - 30° CA).  138.25 - 138.85: Gough flow textures with (10%) of brassy pyrite. Foliation (25° - 30° CA).  141.00 - 150.60: Tra |             |                  |                                                                                                               | 9822   | 153.00 | 155.00 | 2.00          | 4740                | 560              | 5                | 1.2              | 64               | 50               | 5                |
| interval. Local "splashes" of chalcopyrite (5% over 3cm) can be observed.  133.50 - 134.00: PYRITE (10-15%) fine grained in association with quartz veining that aslo carry calcite tension gashes. Foliation (25° - 30° CA).  135.45 - 135.55: Quartz-calcite vein (45° CA). White and barren.  138.25 - 138.85: Googy flow textures with (10%) of brassy pyrite. Foliation (10° to 20° CA).  147.00 - 150.60: Traces of malachite.  157.00 - 150.40 to 152.20 meters: Dark green CHLORITORIZED and disseminations.  150.60 - 174.30: Moderately to strongly magnetic ANDESITE. Calcite veinlets (5-7%), some are hematized to a reddish-purple color with lesser that are pinkish. Traces to 0.5% of CHALCOPYRITE "splashes" and some pyrite as disseminations. Pyrite aslo occur as semi-massive veinlets and veins (see below for details). Traces of MALACHITE are present in fines fractures. EPIDOTE is observed on fracture planes in trace amount up to approximately 166.00 meters and up to 2% from 166.00 to 174.30 meters. Lower contact is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                  |                                                                                                               | 9823   | 155.00 | 157.00 | 2.00          | 5528                | 660              | 16               | 1.2              | 76               | 15               | 2                |
| veining that aslo carry calcite tension gashes. Foliation (25° - 30° CÅ).  135.45 - 135.55: Quartz-calcite vein (45° CA). White and barren.  138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (10° to 20° CA).  147.00 - 150.60: Traces of malachite.  147.00 - 150.60: Strongly magnetic.  From 150.40 to 152.20 meters: Dark green CHLORITORIZED and SILICIFIED ZONE that carry (2 %) PYRITE and (0.5 %) CHALCOPYRITE as disseminations.  150.60 - 174.30: Moderately to strongly magnetic ANDESITE. Calcite veinlets (5-7%), some are hematized to a reddish-purple color with lesser that are pinkish. Traces to 0.5% of CHALCOPYRITE and over the pinkish. Traces of MALACHITE are present in fines fractures.  EPIDOTE is observed on fracture planes in trace amount up to approximately 166.00 meters and up to 2% from 166.00 to 174.30 meters. Lower contact is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                  | interval. Local "splashes" of chalcopyrite (5% over 3cm) can be observed.                                     | 9824   | 157.00 | 159.00 | 2.00          | 3601                | 340              | 2                | 0.7              | 67               | 20               | 2                |
| 135.45 - 135.55: Quartz-calcite vein (45° CA). White and barren. 138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation 147.00 - 150.60: Traces of malachite. 147.00 - 150.60: Strongly magnetic. 141.00 - 150.60: Strongly magnetic. 157.00 - 150.60: Strongly magne |             |                  |                                                                                                               | 9825   | 159.00 | 161.00 | 2.00          | 3880                | 330              | 3                | 0.7              | 65               | 15               | 2                |
| 138.25 - 138.85: Gougy flow textures with (10%) of brassy pyrite. Foliation (10° to 20° CA).  (10° to 20° CA).  147.00 - 150.60: Traces of malachite.  141.00 - 150.60: Strongly magnetic.  From 150.40 to 152.20 meters: Dark green CHLORITORIZED and SILICIFIED ZONE that carry (2 %) PYRITE and (0.5 %) CHALCOPYRITE as disseminations.  150.60 - 174.30: Moderately to strongly magnetic ANDESITE. Calcite veinlets (5-7%), some are hematized to a reddish-purple color with lesser that are pinkish. Traces to 0.5% of CHALCOPYRITE "splashes" and some pyrite as disseminations.  EPIDOTE is observed on fracture planes in trace amount up to approximately 166.00 meters and up to 2% from 166.00 to 174.30 meters. Lower contact is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                  |                                                                                                               | 9826   | 161.00 | 163.00 | 2.00          | 2501                | 320              | 1                | 0.6              | 63               | 25               | 5                |
| (10° to 20° CA).  147.00 - 150.60: Traces of malachite.  147.00 - 150.60: Strongly magnetic.  150.60: Strongly magnet |             |                  |                                                                                                               | 9827   | 163.00 | 165.00 | 2.00          | 2466                | 240              | 1                | 0.5              | 56               | 15               | 2                |
| 147.00 - 150.60: Traces of malachite.  141.00 - 150.60: Strongly magnetic.  141.00 - 150.60: Strongly magnetic.  141.00 - 150.60: Strongly magnetic.  150.40 to 152.20 meters: Dark green CHLORITORIZED and SILICIFIED ZONE that carry (2 %) PYRITE and (0.5 %) CHALCOPYRITE as disseminations.  150.60 - 174.30: Moderately to strongly magnetic ANDESITE. Calcite veinlets (5-7%), some are hematized to a reddish-purple color with lesser that are pinkish. Traces to 0.5% of CHALCOPYRITE "splashes" and some pyrite as disseminations. Pyrite aslo occur as semi-massive veinlets and veins (see below for details). Traces of MALACHITE are present in fines fractures. EPIDOTE is observed on fracture planes in trace amount up to approximately 166.00 meters and up to 2% from 166.00 to 174.30 meters. Lower contact is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                  |                                                                                                               | 9828   | 165.00 | 167.00 | 2.00          | 4310                | 380              | 1                | 0.9              | 62               | 15               | 10               |
| From 150.40 to 152.20 meters: Dark green CHLORITORIZED and SILICIFIED ZONE that carry (2 %) PYRITE and (0.5 %) CHALCOPYRITE as disseminations.  150.60 - 174.30: Moderately to strongly magnetic ANDESITE. Calcite veinlets (5-7%), some are hematized to a reddish-purple color with lesser that are pinkish. Traces to 0.5% of CHALCOPYRITE "splashes" and some pyrite as disseminations. Pyrite aslo occur as semi-massive veinlets and veins (see below for details). Traces of MALACHITE are present in fines fractures. EPIDOTE is observed on fracture planes in trace amount up to approximately 166.00 meters and up to 2% from 166.00 to 174.30 meters. Lower contact is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                  | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                         | 9829   | 167.00 | 169.00 | 2.00          | 2969                | 290              | 1                | 0.5              | 54               | 15               | 2                |
| SILICIFIED ZONE that carry (2 %) PYRITE and (0.5 %) CHALCOPYRITE as disseminations.  150.60 - 174.30: Moderately to strongly magnetic ANDESITE. Calcite veinlets (5-7%), some are hematized to a reddish-purple color with lesser that are pinkish. Traces to 0.5% of CHALCOPYRITE "splashes" and some pyrite as disseminations. Pyrite aslo occur as semi-massive veinlets and veins (see below for details). Traces of MALACHITE are present in fines fractures. EPIDOTE is observed on fracture planes in trace amount up to approximately 166.00 meters and up to 2% from 166.00 to 174.30 meters. Lower contact is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                  |                                                                                                               | 9830   | 169.00 | 171.00 | 2.00          | 2616                | 180              | 1                | 0.5              | 47               | 15               | 10               |
| disseminations.  150.60 - 174.30: Moderately to strongly magnetic ANDESITE. Calcite veinlets (5-7%), some are hematized to a reddish-purple color with lesser that are pinkish. Traces to 0.5% of CHALCOPYRITE "splashes" and some pyrite as disseminations. Pyrite aslo occur as semi-massive veinlets and veins (see below for details). Traces of MALACHITE are present in fines fractures. EPIDOTE is observed on fracture planes in trace amount up to approximately 166.00 meters and up to 2% from 166.00 to 174.30 meters. Lower contact is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                  | From 150.40 to 152.20 meters: Dark green CHLORITORIZED and                                                    | 9831   | 171.00 | 173.00 | 2.00          | 2474                | 340              | 1                | 0.4              | 52               | 15               | 10               |
| 150.60 - 174.30: Moderately to strongly magnetic ANDESITE. Calcite veinlets (5-7%), some are hematized to a reddish-purple color with lesser that are pinkish. Traces to 0.5% of CHALCOPYRITE "splashes" and some pyrite as disseminations. Pyrite aslo occur as semi-massive veinlets and veins (see below for details). Traces of MALACHITE are present in fines fractures. EPIDOTE is observed on fracture planes in trace amount up to approximately 166.00 meters and up to 2% from 166.00 to 174.30 meters. Lower contact is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                  |                                                                                                               | 9833   | 173.00 | 175.00 | 2.00          | 2200                | 240              | 1                | 0.6              | 46               | 15               | 10               |
| (5-7%), some are hematized to a reddish-purple color with lesser that are pinkish. Traces to 0.5% of CHALCOPYRITE "splashes" and some pyrite as disseminations. Pyrite aslo occur as semi-massive veinlets and veins (see below for details). Traces of MALACHITE are present in fines fractures. EPIDOTE is observed on fracture planes in trace amount up to approximately 166.00 meters and up to 2% from 166.00 to 174.30 meters. Lower contact is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                  |                                                                                                               |        |        |        |               |                     |                  |                  |                  |                  |                  |                  |
| pinkish. Traces to 0.5% of CHALCOPYRITE "splashes" and some pyrite as disseminations. Pyrite aslo occur as semi-massive veinlets and veins (see below for details). Traces of MALACHITE are present in fines fractures. EPIDOTE is observed on fracture planes in trace amount up to approximately 166.00 meters and up to 2% from 166.00 to 174.30 meters. Lower contact is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                  |                                                                                                               |        |        |        |               |                     |                  |                  |                  |                  |                  |                  |
| below for details). Traces of MALACHITE are present in fines fractures.  EPIDOTE is observed on fracture planes in trace amount up to approximately 166.00 meters and up to 2% from 166.00 to 174.30 meters. Lower contact is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                  |                                                                                                               |        |        |        |               |                     |                  |                  |                  |                  |                  |                  |
| EPIDOTE is observed on fracture planes in trace amount up to approximately 166.00 meters and up to 2% from 166.00 to 174.30 meters. Lower contact is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                  |                                                                                                               |        |        |        |               |                     |                  |                  |                  |                  |                  |                  |
| 166.00 meters and up to 2% from 166.00 to 174.30 meters. Lower contact is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                  |                                                                                                               |        |        |        |               |                     |                  |                  |                  |                  |                  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                  |                                                                                                               |        |        |        |               |                     |                  |                  |                  |                  |                  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                  | irregular.                                                                                                    |        |        |        |               |                     |                  |                  |                  |                  |                  |                  |

13-Nov-05 1:57:34 PM



### **Falconbridge Limited**

DDH:

MC-05-01

Project: KERR-SULPHURETS
Project #: 301

Description Length From To Sb Мо Ag Zn As Sample from to (m) (m) ppm ppm (ICP) daa ppm ppb ppm ppm 154.00 - 155.50: PYRITE (7-10%), brassy, as semi-massive veins and veinlets (20° CA) and disseminations. 155.50 - 155.60: CHALCOPYRITE (0.5%) as, "splashes" at the wallrock to a 2cm pinkish-white calcite vein (20° CA). From 155.60 - 158.20 meters: Fine semi-massive pyrite veinlets (15° to 20° CA) are present. Structure 132.65 - 132.67 **FAULT** FLT/70 174.30 178.20 PORPHYRITIC GRANODIORITE (PGRDR) 9834 175.00 177.00 2.00 763 60 1 0.2 39 15 5 2.00 664 90 0.1 40 15 10 PGRDR/BRX 9835 177.00 179.00 1 FELDSPAR PORPHYRY BRECCIA (50%) and andesite (50%). Reddish-purple in color, coarse grained, green chlorite matrix, weak epidote, strongly magnetic. Brecciated texture showing andesite fragments trend (alignment) (20° CA). Traces of fine disseminated magnetite. Upper and lower contacts are irregular. 178.20 201.60 ANDESITE (AND) 9836 179.00 181.00 2.00 3068 400 1 8.0 50 20 15 AND 9837 181.00 183.00 2.00 3924 430 3 0.9 54 15 5 9838 183.00 185.00 2.00 1075 130 1 0.2 47 10 10 ANDESITE 9839 185.00 187.00 2.00 435 90 1 0.3 56 85 15 This andesite is similar to the one described above the difference is that it is 8 2.2 94 25 2 9840 187.00 189.00 2.00 4020 370 intruded by "veins/stringers" of feldspar porphyry (15 to 20%). Again, this 59 2 9841 189.00 191.00 2.00 1386 110 1 0.5 20 andesite show traces of malachite on the walls of fine fractures. It is aslo moderately silicified near the intrusions. Calcite veinlets (3%). 193.00 0.6 59 20 10 9842 191.00 2.00 1596 170 1 52 9843 193.00 195.00 2.00 235 15 1 0.1 10 2 188.45 - 188.55: MAGNETITE (5%) and calcite veinlets and disseminated 9844 195.00 197.00 2.00 2804 330 1 0.7 63 15 10 PYRITE (3%) trending (30° CA). 52 9845 197.00 199.00 2.00 2826 320 5 1.0 20 5 192.20 - 192.60: Small shear zone (20° CA). A few (2) Fp porphyry "veinlets" 8 2 9846 199.00 201.00 2.00 4908 350 1.3 36 2 are present parallel to the shear. The lower contact is arbitrary. 201.60 247.25 PORPHYRITIC GRANODIORITE (PGRDR) 9847 201.00 203.00 2.00 3359 220 21 32 5 2 1.4 2 PGRDR/BRX 9848 203.00 205.00 2.00 1265 90 12 0.5 32 10 205.00 207.00 2.00 10 2 9849 1590 150 1 0.2 31 FELDSPAR PORPHYRY BRECCIA (55%) and andesite (45%). 9850 207.00 209.00 2.00 976 200 1 0.4 31 15 5 The feldspar porphyry intrusion and the andesites are the same as described 9852 209.00 211.00 2.00 1459 140 2 0.3 28 5 2 above. Magnetic from weak to strong.



Falconbridge Limited

DDH:

MC-05-01

Project: KERR-SULPHURETS
Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                             | Sample       | from   | to to  | <b>Length</b><br>m | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|--------|--------------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  |                                                                                                                                                                                                                                                                                         | 9853         | 211.00 | 213.00 | 2.00               | 2261            | 230              | 1                | 0.6              | 30               | 10               | 2                |
|             |                  | Calcite veinlets (15%), quartz veins (0.5%).                                                                                                                                                                                                                                            | 9854         | 213.00 | 215.00 | 2.00               | 684             | 110              | 5                | 0.5              | 40               | 10               | 5                |
|             |                  | 202.70 - 203.20: PYRITE (8%) and traces of chalcopyrite as fine                                                                                                                                                                                                                         | 9855         | 215.00 | 217.00 | 2.00               | 360             | 40               | 3                | 0.1              | 39               | 2                | 2                |
|             |                  | disseminations associated with moderate silicification and weak sericitization at the upper wallrock of a 15cm wide intrusion (I1Fp).                                                                                                                                                   | 9856         | 217.00 | 219.00 | 2.00               | 719             | 60               | 3                | 0.3              | 45               | 10               | 2                |
|             |                  | At 207.10m: a "splash" of CHALCOPYRITE (5 by 5mm) in association with a                                                                                                                                                                                                                 | 9857         | 219.00 | 221.00 | 2.00               | 665             | 40               | 3                | 0.3              | 48               | 10               | 2                |
|             |                  | slightly pinkish calcite vein.                                                                                                                                                                                                                                                          | 9858         | 221.00 | 223.00 | 2.00               | 450             | 70               | 4                | 0.4              | 49               | 15               | 2                |
|             |                  | 227.00 - 230.00: Massive MAGNETITE veinlets (2 x 2mm) and fracture fillings                                                                                                                                                                                                             | 9859         | 223.00 | 225.00 | 2.00               | 1133            | 100              | 4                | 1.0              | 44               | 15               | 2                |
|             |                  | (1 X 6cm X 4cm, massive at 229.50m).                                                                                                                                                                                                                                                    | 9860         | 225.00 | 227.00 | 2.00               | 736             | 90               | 4                | 0.4              | 34               | 10               | 2                |
|             |                  | Datuman 000 00 044 50 Occasional discussion (0.15 5 cm with 40/ 400 to 700                                                                                                                                                                                                              | 9861         | 227.00 | 229.00 | 2.00               | 1638            | 80               | 4                | 0.5              | 40               | 5                | 2                |
|             |                  | Between 233.00 - 241.50: Quartz-calcite veins (2 to 5 cm wide; 1%; 40° to 70°                                                                                                                                                                                                           | 9862         | 229.00 | 231.00 | 2.00               | 3430            | 320              | 7                | 1.3              | 43               | 10               | 2                |
|             |                  | CA). Traces of pyrite.<br>241.50 - 244.00: Broken-up core of mostly greenish breccia. Traces of fine                                                                                                                                                                                    | 9863         | 231.00 | 233.00 | 2.00               | 669             | 60               | 3                | 0.3              | 47               | 2                | 2                |
|             |                  | disseminated pyrite.                                                                                                                                                                                                                                                                    | 9864         | 233.00 | 235.00 | 2.00               | 625             | 60               | 7                | 0.2              | 34               | 10               | 2                |
|             |                  | 244.00 - 246.40: Massive feldspar porphyry granite. Dark green "lathes"                                                                                                                                                                                                                 | 9865         | 235.00 |        | 2.00               | 328             | 30               | 6                | 0.2              | 37               | 5                | 5                |
|             |                  | minerals are present (5% / 2 x 4mm) with the feldspars.                                                                                                                                                                                                                                 | 9866         |        | 239.00 | 2.00               | 691             | 60               | 9                | 0.1              | 41               | 2                | 2                |
|             |                  | 246.40 - 247.25: Breccia. PYRITE (10%) as fine to medium grained                                                                                                                                                                                                                        | 9868         |        | 241.00 | 2.00               | 449             | 40               | 5                | 0.1              | 34               | 5                | 2                |
|             |                  | disseminations. Moderately silicified.                                                                                                                                                                                                                                                  | 9869         | 241.00 |        | 2.00               | 361             | 15               | 3                | 0.2              | 30               | 10               | 2                |
|             |                  | Sharp lower contact (30° CA).                                                                                                                                                                                                                                                           | 9870         |        | 245.00 | 2.00               | 164             | 40               | 4                | 0.2              | 21               | 10               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                         | 9871         |        | 247.00 | 2.00               | 161             | 110              | 52               | 0.8              | 19               | 25               | 2                |
| 247.25      | 267 00           | 267.00 PORPHYRITIC GRANODIORITE (PGRDR)                                                                                                                                                                                                                                                 |              |        | 249.00 | 2.00               | 448             | 70               | 36               | 0.4              | 33               | 10               | 2                |
| 241.23      | 207.00           | PGRDR/MASV                                                                                                                                                                                                                                                                              | 9872<br>9873 |        | 251.00 | 2.00               | 440<br>111      | 15               | 6                | 0.4              | 33<br>31         | 5                | 2                |
|             |                  | FORDRIVIASV                                                                                                                                                                                                                                                                             | 9875         |        | 253.00 | 2.00               | 95              | 15               | 18               | 0.1              | 33               | 5                | 2                |
|             |                  | MASSIVE FELDSPAR PORPHYRY GRANODIORITE                                                                                                                                                                                                                                                  | 9876         |        | 255.00 | 2.00               | 320             | 30               | 5                | 0.1              | 32               | 10               | 2                |
|             |                  | Noted foliation (from 247.25 to 256.00 meters approx.) by the alignment of the                                                                                                                                                                                                          |              |        |        |                    |                 |                  |                  |                  |                  |                  |                  |
|             |                  | feldspar lathes varrying from 20° to 45° CA.                                                                                                                                                                                                                                            | 9877         | 255.00 |        | 2.00               | 166             | 15               | 7                | 0.1              | 28               | 5                | 2                |
|             |                  | Reddish-brown by weak to moderate hematization, porphyritic texture (Fp: up                                                                                                                                                                                                             | 9878         | 257.00 |        | 2.00               | 456             | 40               | 26               | 0.1              | 27               | 10               | 2                |
|             |                  | to 4mm X 8mm, rare cm; automorphic; 10%) with some other (1% / 2mm X                                                                                                                                                                                                                    | 9879         | 259.00 |        | 2.00               | 424             | 30               | 119              | 0.2              | 23               | 10               | 2                |
|             |                  | 4mm) dark green minerals (chloritorized Fp?). Weakly magnetic. Weak veining (1%) consisting of fine calcite veinlets. Some portion show weak                                                                                                                                            | 9880         | 261.00 |        | 2.00               | 196             | 30               | 52               | 0.2              | 24               | 10               | 2                |
|             |                  | chloritization.                                                                                                                                                                                                                                                                         | 9881         | 263.00 |        | 2.00               | 184             | 60               | 12               | 0.3              | 36               | 15               | 2                |
|             |                  | PYRITE (1%) and MAGNETITE (traces to 0.5%) as fine disseminations.                                                                                                                                                                                                                      | 9882         | 265.00 | 267.00 | 2.00               | 243             | 40               | 11               | 0.1              | 27               | 5                | 2                |
|             |                  | 263.00 - 264.00: PYRITE (3%) as fine disseminations and also in association with a quartz veinlet (30° CA) where the pyrite occurs as semi-massive accumulations (263.90m).  Traces of very fine specks of chalcopyrite within a meter from the lower contact.  Lower contact (50° CA). |              |        |        |                    |                 |                  |                  |                  |                  |                  |                  |
|             |                  |                                                                                                                                                                                                                                                                                         |              |        |        |                    |                 |                  |                  |                  |                  |                  |                  |
| 267.00      | 344.40           | PORPHYRITIC GRANODIORITE (PGRDR)                                                                                                                                                                                                                                                        | 9883         |        | 269.00 | 2.00               | 2023            | 290              | 7                | 0.5              | 34               | 2                | 2                |
|             |                  | PGRDR/BRX                                                                                                                                                                                                                                                                               | 9884         |        | 271.00 | 2.00               | 1225            | 160              | 5                | 0.1              | 31               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                         | 9885         | 271.00 | 273.00 | 2.00               | 1974            | 230              | 5                | 0.4              | 31               | 2                | 2                |

13-Nov-05 1:57:34 PM Page 6 of 7



DDH:

MC-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                 | Sample | from   | to     | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | FELDSPAR PORPHYRY BRECCIA (75%) and andesite (25%).                                                                                         | 9887   | 273.00 | 275.00 | 2.00          | 465             | 80               | 6                | 0.1              | 29               | 2                | 2                |
|             |                  | This unit is similar to the one described above but show greater sized                                                                      | 9888   | 275.00 | 277.00 | 2.00          | 1341            | 130              | 10               | 0.9              | 29               | 2                | 2                |
|             |                  | feldspars, some are slightly above one (1) centimeter. The rocks are                                                                        | 9889   | 277.00 | 279.00 | 2.00          | 384             | 60               | 16               | 0.3              | 30               | 5                | 2                |
|             |                  | somewhat more chloritorized (up to moderate). Calcite veinlets (5%) and veins along with quartz are less than (1%).                         | 9890   | 279.00 | 281.00 | 2.00          | 1591            | 100              | 5                | 0.7              | 31               | 5                | 2                |
|             |                  | Mineralizations generally consist of chalcopyrite (0.5 to 1%) with pyrite (0.5%)                                                            | 9891   | 281.00 | 283.00 | 2.00          | 1509            | 140              | 7                | 0.5              | 29               | 5                | 2                |
|             |                  | as disseminations, blebs and fine veinlets for the pyrite. Magnetite is also                                                                | 9892   | 283.00 | 285.00 | 2.00          | 1678            | 140              | 4                | 0.5              | 27               | 2                | 2                |
|             |                  | present as fine dissemination (traces to 0.5%).                                                                                             | 9893   | 285.00 | 287.00 | 2.00          | 1360            | 150              | 12               | 0.6              | 33               | 5                | 2                |
|             |                  |                                                                                                                                             | 9894   | 287.00 | 289.00 | 2.00          | 800             | 60               | 25               | 0.4              | 26               | 2                | 2                |
|             |                  | 268.90 - 269.10: Silicified and sericitized breccia that carry CHALCOPYRITE                                                                 | 9895   | 289.00 | 291.00 | 2.00          | 1000            | 130              | 10               | 0.4              | 33               | 2                | 2                |
|             |                  | (10%) disseminations (specks) and a "blob" that measure just under a square                                                                 | 9896   | 291.00 | 293.00 | 2.00          | 575             | 70               | 4                | 0.2              | 28               | 2                | 2                |
|             |                  | centimeter                                                                                                                                  | 9897   | 293.00 | 295.00 | 2.00          | 1048            | 120              | 14               | 0.5              | 29               | 5                | 2                |
|             |                  | 274.60 - 276.10: PYRITE (5-7%), CHALCOPYRITE (traces) both as fine                                                                          | 9898   | 295.00 | 297.00 | 2.00          | 1873            | 330              | 9                | 1.1              | 36               | 10               | 2                |
|             |                  | disseminations and fine veinlets for the pyrite. These are in association with a                                                            | 9899   | 297.00 | 299.00 | 2.00          | 3163            | 790              | 6                | 2.6              | 35               | 5                | 2                |
|             |                  | strongly silicified section of the porphyry.                                                                                                | 9900   | 299.00 | 301.00 | 2.00          | 945             | 180              | 30               | 0.5              | 37               | 10               | 2                |
|             |                  |                                                                                                                                             | 9901   | 301.00 | 303.00 | 2.00          | 458             | 50               | 10               | 0.2              | 30               | 2                | 2                |
|             |                  | 285.90 - 286.10: Quartz-calcite vein (20° CA), barren.                                                                                      | 9903   | 303.00 | 305.00 | 2.00          | 1044            | 80               | 6                | 0.5              | 34               | 2                | 2                |
|             |                  | 294.60 - 294.75: Quartz vein (20° CA), white and barren.                                                                                    | 9904   | 305.00 | 307.00 | 2.00          | 1308            | 100              | 9                | 0.4              | 39               | 2                | 2                |
|             |                  | 294.75 - 296.40: CHALCOPYRITE (0.05 to 1%), PYRITE (1%) as fine                                                                             | 9905   | 307.00 | 309.00 | 2.00          | 236             | 60               | 6                | 0.7              | 46               | 2                | 2                |
|             |                  | disseminations and fracture filling in dark green chloritorized porphyry.                                                                   | 9906   | 309.00 |        | 2.00          | 456             | 50               | 21               | 0.4              | 39               | 2                | 2                |
|             |                  | 296.40 - 296.75: Reddish porphyry. Traces of disseminated pyrite.                                                                           | 9907   | 311.00 | 313.00 | 2.00          | 195             | 30               | 2                | 0.1              | 62               | 20               | 2                |
|             |                  | 296.75 - 301.00: Fine "silky" quartz veining (25° CA / 5%). PYRITE (5%),                                                                    | 9908   | 313.00 | 315.00 | 2.00          | 1788            | 230              | 21               | 1.8              | 42               | 10               | 2                |
|             |                  | CHALCOPYRITE (0.5%) as fine disseminations and fracture filling. Their                                                                      | 9910   | 315.00 | 317.00 | 2.00          | 373             | 50               | 11               | 0.2              | 33               | 5                | 2                |
|             |                  | could be more Cp. but it is so fine and it could be pyrite.<br>301.00 - 310.80: Chloritorized porphyry, dark green color to partly reddish. | 9911   | 317.00 | 319.00 | 2.00          | 348             | 110              | 13               | 0.3              | 51               | 20               | 2                |
|             |                  | Feldspars are diffused. Traces of pyrite as disseminations and as aggregates                                                                | 9912   | 319.00 | 321.00 | 2.00          | 115             | 80               | 17               | 0.2              | 27               | 10               | 2                |
|             |                  | within fractures and/or gashes. Chalcopyrite appears to be absent.                                                                          | 9913   | 321.00 | 323.00 | 2.00          | 293             | 70               | 7                | 0.4              | 36               | 10               | 2                |
|             |                  | 310.80 - 312.65: ANDESITE. Weakly amygdaloidal (CC / CL), faint foliation at                                                                | 9914   | 323.00 | 325.00 | 2.00          | 158             | 190              | 4                | 0.2              | 31               | 10               | 2                |
|             |                  | (20° CA / stretched amygdules). Upper contact (15° CA) and lower (20° CA).                                                                  | 9915   | 325.00 | 327.00 | 2.00          | 85              | 140              | 4                | 0.1              | 19               | 5                | 2                |
|             |                  | 312.65 - 337.60: Chloritorized porphyry (no andesites). Mostly greenish to                                                                  | 9916   | 327.00 | 329.00 | 2.00          | 199             | 330              | 3                | 0.2              | 13               | 2                | 2                |
|             |                  | weakly reddish, partly diffused feldspar / porphyry texture. Traces of pyrite, disseminations and rare veinlets.                            | 9917   | 329.00 | 331.00 | 2.00          | 111             | 190              | 2                | 0.2              | 12               | 2                | 2                |
|             |                  | 337.60 - 343.80: Feldspar porphyry breccia (80%) with andesite clasts (20%).                                                                | 9918   | 331.00 |        | 2.00          | 271             | 60               | 3                | 0.2              | 11               | 2                | 2                |
|             |                  | Traces of pyrite with lesser chalcopyrite.                                                                                                  | 9919   | 333.00 |        | 2.00          | 163             | 140              | 1                | 0.1              | 11               | 2                | 2                |
|             |                  | NOTE: at 340.00 - 340.15: Calcite vein (1cm) parrallel to chloritorized                                                                     | 9920   | 335.00 |        | 2.00          | 264             | 120              | 5                | 0.2              | 12               | 2                | 2                |
|             |                  | andesite (?) (2cm wide) fracture carrying PYRITE (5%), CHALCOPYRITE                                                                         | 9922   | 337.00 |        | 2.00          | 601             | 180              | 3                | 0.3              | 18               | 2                | 2                |
|             |                  | (traces). The chalcopyrite is associated with the calcite vein.                                                                             | 9923   | 339.00 |        | 2.00          | 360             | 170              | 4                | 1.5              | 16               | 2                | 2                |
|             |                  | 343.80 - 344.40: Massive feldspar porphyry, reddish. PYRITE and                                                                             | 9924   |        | 343.00 | 2.00          | 3148            | 170              | 12               | 1.1              | 26               | 2                | 2                |
|             |                  | CHALCOPYRITE (0.5% to possibly 1%) combined with a ratio of (4 to 1) respectively.                                                          | 9925   | 343.00 |        | 1.40          | 3731            | 190              | 22               | 0.9              | 19               | 2                | 2                |
|             |                  | 100p00tivory.                                                                                                                               | 3320   | 5.5.00 | 30     | 0             | 0.01            | .00              |                  | 0.0              |                  | _                | -                |

END OF HOLE.

13-Nov-05 1:57:34 PM Page 7 of 7



Azimuth:

Length (m):

Completed:

Started:

Logged:

Dip:

### **Drill Log**

### **Falconbridge Limited**

DDH:

MC-05-02

Project:

**KERR-SULPHURETS** 

Project #: 301

DDH Casing

Length (m): 7.6 Pulled: Non Plugged: Oui

Cemented:

Oui

Core

Size: NQ2

Storage: KERR CAMP Location

Coordonnée - UTM Easting: 422082

6263565 Northing: Elevation: 1710

NAD27 ZN9 Datum:

Claim #:

Target:

MAIN COPPER

130

-50

359.40

8/15/2005

8/19/2005

8/20/2005

Comments:

#### Directional Tests (C=Collar, R=Reflex)

| Distance | Azimuth | Dip    | Туре |
|----------|---------|--------|------|
| 0.00     | 130.00  | -50.00 | С    |
| 15.00    | 132.50  | -50.30 | R    |
| 353.40   | 139.00  | -48.60 | R    |

#### Intervenant

FALCONBRIDGE Company:

HY-TECH Contractor: Located by: A. HUARD Method: Handheld GPS Logged by: R. NIEMINEN

516252



## Falconbridge Limited

DDH:

MC-05-02

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b> (m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample                                                                                                                                       | from                                                                                                                                                  | to                                                                                                                                                    | <b>Length</b>                                                | <b>Cu</b><br>ppm (ICP)                                                                                                                        | <b>Au</b><br>ppb                                                                                            | <b>Мо</b><br>ppm                                                                                          | <b>Ag</b><br>ppm                                                                                             | <b>Zn</b><br>ppb                                                                                         | <b>As</b><br>ppm                                                                         | <b>Sb</b><br>ppm                                                                            |
|-------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 0.00        | 6.00          | OVERBURDEN (OB) OB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                       |                                                              |                                                                                                                                               |                                                                                                             |                                                                                                           |                                                                                                              |                                                                                                          |                                                                                          |                                                                                             |
| 6.00        | 11.30         | ANDESITE (AND) AND  MASSIVE ANDESITE  Medium green, fine grained, homogeneous looking. Weakly to moderately magnetic. Epidote (1%) within fine fractures.  Lower contact at (35° CA).  6.60 - 6.70: Quartz-calcite vein (45° CA) hosting (15%) of fine to medium grained PYRITE in the silicified wallrock with traces of magnetite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9926<br>9927<br>9928                                                                                                                         | 6.00<br>8.00<br>10.00                                                                                                                                 | 8.00<br>10.00<br>12.00                                                                                                                                | 2.00<br>2.00<br>2.00                                         | 1753<br>1229<br>940                                                                                                                           | 360<br>130<br>140                                                                                           | 24<br>17<br>31                                                                                            | 1.2<br>0.3<br>0.3                                                                                            | 28<br>17<br>16                                                                                           | 10<br>2<br>2                                                                             | 2<br>2<br>2                                                                                 |
| 11.30       | 48.00         | INTERMEDIATE LAPILLI and ASH TUFFS.  Medium green with textures alternating from gritty, to angular lapillis (2-3mm up to 5cm) that are locally polylithic and/or altered (Si-SR), to finely laminated ashes.  Propylithic alteration with epidote (1%) occuring to a depth of 63.00 metres.  Other alterations consist of silica and sericite that generally affecting the fragments giving them a somewhat beige color. Silica is also pervasive, locally.  Mineralizations are of pyrite, chalcopyrite, malachite and magnetite as disseminations, in fractures and locally massive for chalcopyrite and in association with veins (QZ-CC); details below.  11.30 - 12.75: Moderately silicified sub-pervasively with epidote (5%) in fine fractures. Very fine fractures and quartz-calcite veinlets stockwork (3-5%). PYRITE (0.5%), CHALCOPYRITE (traces) with lesser malachite and magnetite (traces) disseminations.  12.75 - 30.25: GRITTY TUFF. Medium green, massive and griity aspect with (1mm) lithic fragments (looks like an andesite). Lower contact at (75° CA). Fine disseminations of PYRITE (1%) and within fine fractures and veins with lesser chalcopyrite, generally. From 12.49 - 12.50: FAULT (40° ca) and sandy mud. Calcite veining/stringers (5%) from 12.50 to 12.60m.  From 18.30 - 18.32: White -pinkish calcite vein (15° CA). | 9929<br>9930<br>9931<br>9932<br>9933<br>9934<br>9935<br>9936<br>9938<br>9939<br>9940<br>9941<br>9942<br>9943<br>9945<br>9946<br>9947<br>9948 | 12.00<br>14.00<br>16.00<br>18.00<br>22.00<br>24.00<br>26.00<br>28.00<br>30.00<br>32.00<br>34.00<br>36.00<br>38.00<br>40.00<br>42.00<br>44.00<br>46.00 | 14.00<br>16.00<br>18.00<br>20.00<br>22.00<br>24.00<br>26.00<br>28.00<br>30.00<br>32.00<br>34.00<br>36.00<br>40.00<br>42.00<br>44.00<br>46.00<br>48.00 | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 1939<br>2266<br>4271<br>4226<br>10288<br>1519<br>2030<br>2204<br>2311<br>1926<br>3025<br>1860<br>2168<br>1998<br>1069<br>1834<br>1825<br>1673 | 240<br>330<br>230<br>140<br>80<br>220<br>140<br>110<br>260<br>680<br>220<br>130<br>210<br>200<br>250<br>110 | 24<br>34<br>67<br>202<br>62<br>43<br>72<br>86<br>33<br>64<br>81<br>62<br>37<br>78<br>63<br>70<br>72<br>41 | 0.7<br>1.4<br>1.0<br>1.0<br>4.3<br>0.9<br>0.8<br>0.8<br>0.6<br>0.9<br>0.7<br>0.8<br>0.8<br>0.4<br>1.0<br>1.3 | 16<br>19<br>18<br>21<br>27<br>18<br>20<br>18<br>25<br>22<br>19<br>29<br>19<br>31<br>22<br>30<br>34<br>48 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>10<br>2<br>10 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |

13-Nov-05 2:02:26 PM Page 1 of 12



### **Falconbridge Limited**

DDH: Project: MC-05-02

301

**KERR-SULPHURETS** 

2

2

2

2

2

2

2

Project #:

Description Length From To Sb Мо Ag Zn As Sample from to (m) (m) ppm ppm (ICP) daa ppm ppb ppm ppm

MOLYBDENITE (traces) occurring within fractures (50° CA) with some calcite. The chalcopyrite exhibits a (3 x 5cm) massive accumulation in this interval.. 21.10 - 21.15: Calcite vein (55° CA). Showing some malachite staining (traces).

From 23.70 - 24.60: Calcite vein 10° CA at (24.20 - 24.35) and fine epidote (10%) and calcite stockwerk throuhout this interval. PYRITE (0.5 to 1%) with traces of CHALCOPYRITE near the vein.

24.60 - 30.25: Epidote stockwerk (5%). Some fine magnetite veinlets.

30.25 - 30.35: Silicfied lapilli (2-3mm) Tuff. Irregular/ondulating contact.

30.35 - 84.70: COARSE LAPILLI TUFF. Weakly chloritorized. The lapillis (mm / cm) are polylithic or altered: some are silicified (and ser) to quartzy, dark green mafics or/and chloritorized and epidotized and also lapilli tuff fragments.

32.55 - 32.56: Quartz-calcite vein (20° CA) that carry CHALCOPYRITE (1%) and PYRITE (1%) with traces of MAGNETITE.

33.25 - 33.50: Pervasive to patchy EPIDOTE (10%) and POTASSIC (5%) alterations. Disseminated PYRITE (2%) and traces of CHALCOPYRITE. 35.00 - 36.10: Calcite veins (6) and up to (2cm) in width. One as 35% epidote from (20° to 30° CA).

38.95 - 40.00: Calcite vein (20° CA)

40.00 - 47.00: Epidote (1%) in fractures and as disseminations. Pyrite (traces to 1%) as disseminations and fine veins. Fine calcite veinlets (3-5%) stockwerk.

47.00 - 47.80: SEMI-MASSIVE PYRITE veins (3%; 45° CA) but the pyrite account for (10%). Traces of CHALCOPYRITE. Epidote (1%). 47.80 - 48.00: Calcite vien (50° CA).

#### <u>Structure</u>

12.49 - 12.50 FAULT

FLT/40

## **48.00 63.80 ANDESITE (AND)**AND

48.00 - 58.50: ANDESITE (?). Medium green, fine grain and MASSIVE. No fragments are observed. Calcite veinlets (3%) with epidote. PYRITE (0.5 to 1%) as veinlets and disseminations. Traces of magnetite, rare veinlets. Pinkish calcite vein (40° CA) at (55.60 - 55.70m). Calcite vein (45° CA; 56.10 - 56.25m).

58.50 - 63.80: ANDESITE BRECCIA. Fragments (andesite) are angular measuring under 10cm.. Local strong epidote (5% from 58.40 to 61.30m) which carry PYRITE (5%), CHALCOPYRITE (1%) within veins and veinlets

| 9949 | 48.00 | 50.00 | 2.00 | 1691 | 270 | 3  | 0.7 | 41 | 2  | : |
|------|-------|-------|------|------|-----|----|-----|----|----|---|
| 9950 | 50.00 | 52.00 | 2.00 | 2699 | 270 | 90 | 1.1 | 38 | 2  | : |
| 9951 | 52.00 | 54.00 | 2.00 | 604  | 70  | 4  | 0.2 | 33 | 55 | : |
| 9952 | 54.00 | 56.00 | 2.00 | 1788 | 140 | 43 | 8.0 | 49 | 15 | : |
| 9953 | 56.00 | 58.00 | 2.00 | 1724 | 100 | 85 | 0.6 | 41 | 2  | : |
| 9954 | 58.00 | 60.00 | 2.00 | 3910 | 140 | 45 | 1.6 | 42 | 2  | : |
| 9955 | 60.00 | 62.00 | 2.00 | 3898 | 270 | 44 | 2.4 | 56 | 2  | : |
| 9957 | 62.00 | 64.00 | 2.00 | 951  | 50  | 29 | 0.4 | 37 | 2  | : |

13-Nov-05 2:02:26 PM Page 2 of 12



Falconbridge Limited

DDH: Project: MC-05-02

**KERR-SULPHURETS** 

Project #:

301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                    | Sample | from   | to     | <b>Lengtl</b><br>m | <b>Cu</b> ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------------------|---------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | (45° CA) and disseminations. Weak epidote elsewhere. Contacts are not well defined; TO CHECK THE TOP CONTACT AGAIN. Lower contact marked by the noted difference of fragments. |        |        |        |                    |                     |                  |                  |                  |                  |                  |                  |
| 63.80       | 84.70            | INTERMEDIATE LAPILLI TUFF (T2L)                                                                                                                                                | 9958   | 64.00  | 66.00  | 2.00               | 1914                | 90               | 59               | 0.4              | 34               | 2                | 2                |
|             |                  | T2L                                                                                                                                                                            | 9959   | 66.00  | 68.00  | 2.00               | 1520                | 60               | 105              | 0.4              | 46               | 2                | 2                |
|             |                  | DOLVILLI II CUNTEDMEDIATE LADIU I TUEF (av accidencato)                                                                                                                        | 9960   | 68.00  | 70.00  | 2.00               | 1704                | 200              | 89               | 0.7              | 48               | 2                | 2                |
|             |                  | POLYLITHIC INTERMEDIATE LAPILLI TUFF (or sediments).  The lapillis composition vary from silicified, to sericitized that are rarely                                            | 9961   | 70.00  | 72.00  | 2.00               | 2605                | 110              | 68               | 0.9              | 42               | 2                | 2                |
|             |                  | banded, to mafic with biotite and pyrite with angular to sub-rounded shapes.                                                                                                   | 9962   | 72.00  | 74.00  | 2.00               | 1996                | 60               | 77               | 0.7              | 45               | 2                | 2                |
|             |                  | The matrix is medium green and fine grained. Rusty cleavage planes are                                                                                                         | 9963   | 74.00  | 76.00  | 2.00               | 1236                | 120              | 94               | 0.6              | 34               | 10               | 2                |
|             |                  | observed. The lower contact is defined by a dominance of silicified and weakly                                                                                                 | 9964   | 76.00  | 78.00  | 2.00               | 3334                | 210              | 282              | 1.1              | 48               | 2                | 2                |
|             |                  | sericitized finely laminated and angular fragments/lapillis.                                                                                                                   | 9965   | 78.00  | 80.00  | 2.00               | 3055                | 320              | 127              | 1.5              | 62               | 50               | 2                |
|             |                  | 63.80 - 81.40: PYRITE (2-3%) and traces of chalcopyrite as disseminations                                                                                                      | 9966   | 80.00  | 82.00  | 2.00               | 1778                | 820              | 161              | 2.6              | 47               | 160              | 2                |
|             |                  | and fine veinlets.                                                                                                                                                             | 9967   | 82.00  | 84.00  | 2.00               | 1086                | 330              | 48               | 1.6              | 44               | 60               | 2                |
|             |                  | 81.40 - 82.50: MINERALIZED QUARTZ-CALCITE VEIN (25° CA) carrying                                                                                                               |        |        |        |                    |                     |                  |                  |                  |                  |                  |                  |
|             |                  | PYRITE (10%) as fine to medium grained disseminations. This vein is                                                                                                            |        |        |        |                    |                     |                  |                  |                  |                  |                  |                  |
|             |                  | brecciated and most of the pyrite is within the host rock fragments.                                                                                                           |        |        |        |                    |                     |                  |                  |                  |                  |                  |                  |
|             |                  | 82.50 - 84.70: Calcite veinlets (5%). Pyrite (3-5%), chalcopyrite (traces) as veinlets and disseminations.                                                                     |        |        |        |                    |                     |                  |                  |                  |                  |                  |                  |
| 84.70       | 119.00           | O INTERMEDIATE LAPILLI TUFF (T2L)                                                                                                                                              | 9968   | 84.00  | 86.00  | 2.00               | 2051                | 210              | 59               | 1.3              | 39               | 2                | 2                |
|             |                  | T2L                                                                                                                                                                            | 9969   | 86.00  | 88.00  | 2.00               | 2476                | 90               | 35               | 1.1              | 49               | 2                | 2                |
|             |                  |                                                                                                                                                                                | 9970   | 88.00  | 90.00  | 2.00               | 2379                | 100              | 51               | 0.8              | 32               | 15               | 2                |
|             |                  | INTERMEDIATE LAPILLI TUFF                                                                                                                                                      | 9971   | 90.00  | 92.00  | 2.00               | 1069                | 50               | 120              | 0.4              | 35               | 2                | 2                |
|             |                  | 04.70 400.00 INTERMEDIATE LARIES THE                                                                                                                                           | 9973   | 92.00  | 94.00  | 2.00               | 1649                | 230              | 82               | 1.2              | 44               | 2                | 2                |
|             |                  | 84.70 - 108.00: INTERMEDIATE LAPILLI TUFF Most of the fragments are angular, showing some fine laminations, fine                                                               | 9974   | 94.00  | 96.00  | 2.00               | 3406                | 100              | 142              | 1.0              | 39               | 2                | 2                |
|             |                  | grained and locally with angular quartz grains and beige weakly pinkish in                                                                                                     | 9975   | 96.00  | 98.00  | 2.00               | 2644                | 150              | 89               | 1.8              | 38               | 2                | 2                |
|             |                  | color (sericite and/or potassic). Some other fragments are more mafic and                                                                                                      | 9976   | 98.00  | 100.00 | 2.00               | 2325                | 220              | 61               | 1.9              | 58               | 15               | 2                |
|             |                  | hold biotite porphyries.                                                                                                                                                       | 9977   | 100.00 | 102.00 | 2.00               | 1066                | 190              | 49               | 0.8              | 53               | 10               | 2                |
|             |                  | Mineralisations are of disseminated PYRITE (1-2%), CHALCOPYRITE                                                                                                                | 9978   |        | 104.00 | 2.00               | 1598                | 50               | 67               | 0.4              | 33               | 2                | 2                |
|             |                  | (traces) also as disseminations. Traces of MALACHITE is observed in                                                                                                            | 9980   |        | 106.00 | 2.00               | 2360                | 170              | 120              | 0.9              | 39               | 25               | 2                |
|             |                  | fractures                                                                                                                                                                      | 9981   |        | 108.00 | 2.00               | 3169                | 150              | 55               | 1.7              | 52               | 2                | 2                |
|             |                  | 105.00 - 105.02: FAULT (50°).                                                                                                                                                  | 9982   | 108.00 |        | 2.00               | 3053                | 100              | 200              | 1.5              | 45               | 2                | 2                |
|             |                  |                                                                                                                                                                                | 9983   | 110.00 |        | 2.00               | 2955                | 100              | 81               | 1.1              | 45               | 2                | 2                |
|             |                  | 108.00 - 119.00: INTERMEDIATE LAPILLI TUFF                                                                                                                                     | 9984   | 112.00 |        | 2.00               | 3101                | 160              | 89               | 1.1              | 43               | 30               | 2                |
|             |                  | This unit is carries sub-rounded quartzy white to purpleish lapillis, some are                                                                                                 | 9985   | 114.00 |        | 2.00               | 1178                | 70               | 11               | 0.4              | 44               | 2                | 2                |
|             |                  | angular and feldspatized. The matrix is medium green. Traces of pyrite and                                                                                                     | 9986   | 116.00 |        | 2.00               | 1115                | 40               | 26               | 0.8              | 48               | 35               | 2                |
|             |                  | "slpashes" of chalcopyrite can be seen (maybe from traces to 0.5%). Lower contact (50° CA).                                                                                    | 9987   | 118.00 |        | 2.00               | 1313                | 15               | 9                | 0.8              | 48               | 20               | 2                |

13-Nov-05 2:02:26 PM Page 3 of 12



## Falconbridge Limited

DDH: Project:

MC-05-02 KERR-SULPHURETS

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                       | Sample | from   | to     | <b>Length</b><br>m | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | 113.50 - 113.90: MAJOR FAULT (30° CA) and sandy mud.                                                                                              |        |        |        |                    |                 |                  |                  |                  |                  |                  |                  |
|             |                  | <u>Structure</u>                                                                                                                                  |        |        |        |                    |                 |                  |                  |                  |                  |                  |                  |
|             |                  | 113.50 - 113.90 FAULT                                                                                                                             |        |        |        |                    |                 |                  |                  |                  |                  |                  |                  |
|             |                  | Major fault.                                                                                                                                      |        |        |        |                    |                 |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/30                                                                                                                                            |        |        |        |                    |                 |                  |                  |                  |                  |                  |                  |
|             |                  |                                                                                                                                                   |        |        |        |                    |                 |                  |                  |                  |                  |                  |                  |
| 119.00      | 240.60           | ANDESITE (AND)                                                                                                                                    | 9988   | 120.00 | 122.00 | 2.00               | 1472            | 15               | 27               | 0.7              | 40               | 25               | 2                |
|             |                  | AND                                                                                                                                               | 9989   | 122.00 | 124.00 | 2.00               | 2339            | 15               | 34               | 1.0              | 40               | 15               | 2                |
|             |                  |                                                                                                                                                   | 9990   | 124.00 | 126.00 | 2.00               | 1589            | 40               | 35               | 0.9              | 44               | 10               | 2                |
|             |                  | MASSIVE ANDESITE                                                                                                                                  | 9992   | 126.00 | 128.00 | 2.00               | 2044            | 30               | 29               | 1.7              | 46               | 50               | 2                |
|             |                  | Fine to medium fine grain, medium green, massive and homogeneous.  Moderately chloritorized pervasively. From non magnetic to weakly.             | 9993   | 128.00 | 130.00 | 2.00               | 1475            | 160              | 9                | 0.8              | 35               | 5                | 2                |
|             |                  | Weak pervasive chloritization. General mineralisations consist of pyrite (1%),                                                                    | 9994   | 130.00 | 132.00 | 2.00               | 3845            | 180              | 25               | 1.8              | 45               | 20               | 2                |
|             |                  | chalcopyrite (traces), malachite (traces), magnetite (traces), molybdenite                                                                        | 9995   | 132.00 | 134.00 | 2.00               | 3897            | 210              | 33               | 1.6              | 51               | 15               | 2                |
|             |                  | (traces), hematite (traces) and locally some native copper (see below for                                                                         | 9996   | 134.00 | 136.00 | 2.00               | 2089            | 240              | 25               | 1.7              | 56               | 50               | 2                |
|             |                  | details).                                                                                                                                         | 9997   | 136.00 | 138.00 | 2.00               | 2220            | 50               | 18               | 1.1              | 43               | 10               | 2                |
|             |                  | 110.00 110.20. Enideta (tracca to 10/) in fractures and as discominations                                                                         | 9998   | 138.00 | 140.00 | 2.00               | 3452            | 80               | 20               | 1.7              | 41               | 65               | 2                |
|             |                  | 119.00 - 149.30: Epidote (traces to 1%) in fractures and as disseminations. PYRITE (1%) in fractures, with veining and disseminations.            | 9999   | 140.00 | 142.00 | 2.00               | 3135            | 60               | 27               | 2.4              | 35               | 170              | 15               |
|             |                  | CHALCOPYRITE (0.2 to 0.5%) as disseminations "splashes" and associated                                                                            | 10000  | 142.00 | 144.00 | 2.00               | 2083            | 150              | 11               | 1.3              | 50               | 25               | 2                |
|             |                  | with calcite veinlets.                                                                                                                            | 10001  | 144.00 | 146.00 | 2.00               | 2210            | 140              | 28               | 0.9              | 40               | 15               | 2                |
|             |                  | MALACHITE (traces) locallized within fracture walls.                                                                                              | 10002  | 146.00 | 148.00 | 2.00               | 2500            | 150              | 29               | 1.4              | 49               | 15               | 2                |
|             |                  | MAGNETITE (traces) with calcite.                                                                                                                  | 10003  | 148.00 | 150.00 | 2.00               | 1658            | 460              | 32               | 0.5              | 37               | 15               | 2                |
|             |                  | From 139.50 - 140.50: Hydrobreccia, silicified matrix and angular fragments.                                                                      | 10004  | 150.00 | 152.00 | 2.00               | 2632            | 110              | 22               | 1.7              | 67               | 50               | 2                |
|             |                  | PYRITE (5%), CHALCOPYRITE (traces to 0.2%).                                                                                                       | 10005  | 152.00 | 154.00 | 2.00               | 2224            | 80               | 8                | 1.0              | 65               | 20               | 2                |
|             |                  | 149.30 - 154.50: Broken-up core, fault zone with some mud fault. Rust in                                                                          | 10006  | 154.00 | 156.00 | 2.00               | 2645            | 100              | 12               | 0.7              | 51               | 15               | 2                |
|             |                  | fracture planes. PYRITE (0.5 to 1%), CHALCOPYRITE (traces), MALACHITE                                                                             | 10008  | 156.00 | 158.00 | 2.00               | 1891            | 50               | 5                | 0.9              | 37               | 10               | 2                |
|             |                  | (traces).                                                                                                                                         | 10009  | 158.00 | 160.00 | 2.00               | 2429            | 60               | 20               | 8.0              | 44               | 10               | 2                |
|             |                  | 154.50 - 156.30: Massive andesite with pinkish-brown porphyry veinlets (1%)                                                                       | 10010  | 160.00 | 162.00 | 2.00               | 4224            | 120              | 64               | 5.5              | 67               | 100              | 70               |
|             |                  | and calcite veinlets (1%). Fragments of andesite and of the porphyry are observed at the lower contact (20 cm). Pyrite and chalcopyrite (traces). | 10011  | 162.00 | 164.00 | 2.00               | 2153            | 70               | 40               | 8.2              | 82               | 315              | 155              |
|             |                  | 156.30 - 157.15: FELDSPAR PORPHYRY (60%) and ANDESITE (40%). The                                                                                  | 10012  | 164.00 | 166.00 | 2.00               | 2549            | 80               | 20               | 1.9              | 63               | 60               | 2                |
|             |                  | dykes contacts are at (45° to 50° CA) and sharp. PYRITE and                                                                                       | 10013  | 166.00 | 168.00 | 2.00               | 2947            | 80               | 98               | 19.3             | 51               | 30               | 2                |
|             |                  | CHALCOPYRITE in traces amount.                                                                                                                    | 10015  | 168.00 | 170.00 | 2.00               | 2905            | 50               | 29               | 1.7              | 58               | 40               | 2                |
|             |                  | 157.15 - 161.60: PYRITE (traces to 1%), CHALCOPYRITE (traces),                                                                                    | 10016  | 170.00 | 172.00 | 2.00               | 2444            | 190              | 32               | 1.7              | 45               | 35               | 2                |
|             |                  | MAGNETITE (traces to less than 1%) with calcite veinlets and traces of                                                                            | 10017  | 172.00 | 174.00 | 2.00               | 2981            | 150              | 56               | 1.9              | 57               | 15               | 2                |
|             |                  | MALACHITE. Limonite is still present on fracture planes.                                                                                          | 10018  | 174.00 | 176.00 | 2.00               | 3108            | 120              | 49               | 1.1              | 35               | 15               | 2                |
|             |                  | 161.60 - 162.80: FAULT ZONE (30° CA), broken-up core and some mud fault,                                                                          | 10019  | 176.00 |        | 2.00               | 4487            | 60               | 49               | 2.2              | 46               | 60               | 15               |
|             |                  | medium grey rock; detail as follow:                                                                                                               | 10020  | 178.00 |        | 2.00               | 3291            | 150              | 26               | 3.3              | 45               | 95               | 2                |
|             |                  | From 161.60 - 162.60: Breccia. Moderately silicified. PYRITE (2%) and traces                                                                      | 10021  |        | 182.00 | 2.00               | 1176            | 160              | 14               | 1.1              | 56               | 45               | 2                |
|             |                  | of CHALCOPYRITE. Traces of malachite.                                                                                                             | 10022  | 182.00 | 184.00 | 2.00               | 1255            | 170              | 23               | 0.6              | 40               | 65               | 2                |

13-Nov-05 2:02:26 PM Page 4 of 12



## **Falconbridge Limited**

DDH:

Project:

MC-05-02 KERR-SULPHURETS

Project #: 301

| From<br>(m) | <b>To</b><br>(m)                                             | Description                                                                                                                                | Sample         | from             | to               | <b>Length</b> |      | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|------------------|---------------|------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                                                              | From 162.60 - 162.65: FAULT (30° CA) and mud.                                                                                              | 10023          | 184.00           | 186.00           | 2.00          | 746  | 100              | 4                | 0.4              | 38               | 15               | 2                |
|             |                                                              | From 162.65 - 162.80: PYRITE (2%) as veinlets and disseminations.                                                                          | 10024          | 186.00           | 188.00           | 2.00          | 1779 | 720              | 24               | 1.0              | 37               | 60               | 2                |
|             |                                                              | 162.80 - 164.40: andesite, weakly silicified. Traces of pyrite and of                                                                      | 10025          | 188.00           | 190.00           | 2.00          | 1017 | 90               | 21               | 0.3              | 34               | 15               | 2                |
|             |                                                              | chalcopyrite.                                                                                                                              | 10027          | 190.00           | 192.00           | 2.00          | 909  | 40               | 36               | 0.3              | 47               | 25               | 2                |
|             |                                                              | •                                                                                                                                          | 10028          | 192.00           | 194.00           | 2.00          | 1575 | 100              | 24               | 0.5              | 31               | 30               | 2                |
|             |                                                              | 164.40 - 170.40: FAULT ZONE                                                                                                                | 10029          |                  | 196.00           | 2.00          | 2732 | 110              | 14               | 0.6              | 35               | 10               | 2                |
|             |                                                              | From 164.40 - 167.60: Broken-up core. Rusty fracture planes with MALACHITE staining (traces to 0.2%) and possibly calcocite (?). Traces of | 10030          | 196.00           | 198.00           | 2.00          | 1995 | 80               | 25               | 0.6              | 34               | 10               | 2                |
|             |                                                              | epidote.                                                                                                                                   | 10031          | 198.00           | 200.00           | 2.00          | 6268 | 250              | 24               | 2.3              | 43               | 20               | 2                |
|             |                                                              | From 167.60 - 167.85: MUD, greyish-brown.                                                                                                  | 10032          |                  | 202.00           | 2.00          | 3314 | 300              | 28               | 1.6              | 49               | 35               | 2                |
|             |                                                              | From 167.85 - 170.40: Broken-up core, the longest piece is less than 20cm.                                                                 | 10033          |                  |                  | 2.00          | 4308 | 270              | 52               | 1.7              | 45               | 10               | 2                |
|             |                                                              | Rusty fracture planes with malachite staining (0.5%). Calcite veinlets (1%)                                                                | 10034          | 204.00           | 206.00           | 2.00          | 3548 | 250              | 43               | 1.0              | 40               | 10               | 2                |
| 170.40      | and some (2 X 1cm) pinkish intrusive veins. Pyrite (traces). | 10035                                                                                                                                      | 206.00         | 208.00           | 2.00             | 2723          | 200  | 15               | 1.2              | 42               | 10               | 2                |                  |
|             |                                                              | 170.40 - 171.45: NATIVE COPPER (traces) as fine disseminations on fracture                                                                 | 10036          | 208.00           |                  | 2.00          | 2745 | 190              | 39               | 0.9              | 37               | 10               | 2                |
|             |                                                              | planes wth malachite and possibly some calcocite (?). Massive andesite.                                                                    | 10037          | 210.00           |                  | 2.00          | 2580 | 220              | 20               | 1.1              | 44               | 15               | 2                |
|             |                                                              | Calcite veinlets (3%). Pyrite and chalcopyrite (traces).                                                                                   | 10038          |                  |                  | 2.00          | 4968 | 380              | 15               | 1.6              | 39               | 10               | 2                |
|             |                                                              |                                                                                                                                            | 10039          |                  | 216.00           | 2.00          | 1895 | 90               | 6                | 0.8              | 42               | 10               | 2                |
|             |                                                              | 171.45 - 171.90: Feldspar porphyry granodiorite dyke (55° CA). Pinkish.                                                                    | 10040          |                  | 218.00           | 2.00          | 1197 | 90               | 74               | 0.6              | 37               | 10               | 2                |
|             |                                                              | Disseminated pyrite (0.5%).                                                                                                                | 10041          |                  | 220.00           | 2.00          | 1067 | 140              | 195              | 0.8              | 43               | 15               | 2                |
|             |                                                              | 171.90 - 176.75: Massive andesite. Weakly to moderately chloritorized and                                                                  | 10043          |                  |                  | 2.00          | 1734 | 90               | 25               | 1.3              | 34               | 10               | 2                |
|             |                                                              | traces of epidote. Calcite veinlets (2-3%).                                                                                                | 10044          | 222.00           |                  | 2.00          | 2933 | 180              | 37               | 0.6              | 32               | 20               | 2                |
|             |                                                              | From 175.30 - 175.35: Feldspar porphyry granodiorite (45° CA) that carry                                                                   | 10045          |                  |                  | 2.00          | 2588 | 130              | 32               | 0.9              | 35               | 15               | 2                |
|             |                                                              | PYRITE (2%) and CHALCOPYRITE (0.5%). The upper wallrock aslo carries                                                                       | 10046          | 226.00<br>228.00 | 228.00<br>230.00 | 2.00          | 2247 | 440              | 16<br>18         | 1.2              | 42<br>35         | 65<br>10         | 2                |
|             |                                                              | Py-Cp (0.5 to 1%) combined.                                                                                                                | 10047          |                  |                  | 2.00          | 2505 | 170              | _                | 8.0              |                  | -                | 2                |
|             |                                                              | From 175.35 - 176.65: Calcite veinlets (2%). Pyrite and chalcopyrite (traces to 1%) combined.                                              | 10048          | 230.00<br>232.00 | 232.00<br>234.00 | 2.00          | 2834 | 290              | 17               | 0.9<br>0.7       | 32               | 20               | 2                |
|             |                                                              | 176.65 - 176.75: Shearing at (30° CA) with semi-massive PYRITE vein. The                                                                   | 10050          |                  |                  | 2.00          | 1143 | 390              | 10               | -                | 39               | 20               | 2                |
|             |                                                              | pyrite accounts for (5%).                                                                                                                  | 10051<br>10052 | 234.00<br>236.00 | 236.00<br>238.00 | 2.00          | 2399 | 180              | 15<br>14         | 1.0<br>1.2       | 34               | 10               | 2<br>2           |
|             |                                                              | 17                                                                                                                                         |                |                  |                  | 2.00          | 3166 | 230<br>440       | 14<br>34         |                  | 44<br>37         | 15<br>35         | 2                |
|             |                                                              | 176.75 - 176.76: FAULT (30° CA) and mud.<br>176.76 - 177.00: Weak shearing parallel to fault.                                              | 10053          | 238.00           | 240.00           | 2.00          | 1315 | 440              | 34               | 1.3              | 31               | 33               | 2                |
|             |                                                              | 177.00 - 178.45: PYRITE (2%) as disseminations and veinlets, CHALCOPYRITE (0.5%) as disseminations "splashes". Weakly schistozed           |                |                  |                  |               |      |                  |                  |                  |                  |                  |                  |

13-Nov-05 2:02:26 PM Page 5 of 12

178.45 - 178.50: FAULT (45° CA) and mud. Strong whitish-beige clay (sericite) bordering the fault (0.5mm in width each). Pyrite (0.5%) and traces

179.50 - 180.20: Quartz and calcite veining (5%) and moderate silicification. PYRITE (5%) as veins and disseminations with traces of chalcopyrite. 180.20 - 185.70: Calcite veinlets (3-5%). Weakly rusted fracture planes.

185.70 - 187.00: Broken-up core and faulting.

of chalcopyrite.



#### **Falconbridge Limited**

DDH:

Project:

MC-05-02

**KERR-SULPHURETS** 

Project #: 301

Description Length From To Sb Мо Ag Zn As Sample from to (m) (m) ppm (ICP) daa ppm ppm ppb ppm ppm

From 185.90 - 185.92: FAULT (50° CA) and mud. Rusty fracture planes.

187.00 - 187.15: Strong pervasive silicification. Calcite veinlets (3%). Fine disseminated pyrite (3%).

189.35 - 189.36: FAULT (50° CA) and mud.

189.98 - 189.99: FAULT (50° CA) and little mud.

193.87 - 193.89: FAULT (70° CA) "slip" and some mud.

193.89 - 196.40: Calcite veinlets (2-5%).

196.40 - 196.41: Calcite vein (30° CA) carrying MAGNETITE (1%).

197.50 - 197.52: FAULT (70° ca) "slip" and little mud.

199.10 - 199.35: Calcite vein (30° CA). Weakly pinkish.

199.35 - 201.88: PYRITE (2%) locally (5% for 20cm) where quartz veining

occurs. Malachite and rusty fracture planes are somewhat absent pass this depth. Quartz veins (1%), calcite veinlets (2%).

201.88 - 201.90: FAULT (80° CA) "slip" and little mud.

201.90 - 202.95: Calcite veinlets (3%).

202.95 - 202.98: FAULT (50° CA) and mud.

202.98 - 205.80: Quartz-calcite (and some epidote) veining (2%). PYRITE

(1%), CHALCOPYRITE (0.2 - 0.5%) as disseminations and with the veining.

MAGNETITE (traces) is also present within some veins.

205.80 - 205.83: Quartz (calcite) vein (40° CA). MOLYBDENITE (1.5%),

PYRITE (0.3%) CHALCOPYRITE (traces) all within the vein.

205.83 - 211.80: Epidote (1-2%) in fractures and sub-pervasive locally. Calcite veining (3-4%) at (30° CA). A couple (2) veins carry semi-massive pyrite with traces of chalcopyrite and some magnetite. A (5cm; 30° CA) wide veins carries (3-5%) coarse pyrite.

211.80 - 212.00: Pyritized fault "slip" (35° CA). This interval is strongly silicified and holds Py (15%), disseminated and semi-massive.

212.00 - 219.95: Massive andesite. Calcite veinlets (3-4%) with weak epidote. There is some weak sericite affecting the wallrocks of the veins. A few semimassive pyrite veinlets and one larger one at (219.80 - 219.82m).

219.95 - 222.20: FAULT ZONE: in andesite with traces of fine disseminated pyrite.

219.95 - 219.97: FAULT (50° CA) and mud.

220.70 - 220.75: FAULT (40° CA) and mud.

221.75 - 222.20: FAULT (50%) and muds.

222.20 - 230.80: Andesite with (3%) of calcite and quartz stockwerk veining. Some of which carry semi-massive pyrite (225.50 - 225.60 and 227.00 -227.10m). In the andesites the pyrite accounts for (1%) and the chalcopyrite

13-Nov-05 2:02:26 PM Page 6 of 12



### **Falconbridge Limited**

DDH: Project: MC-05-02

**KERR-SULPHURETS** 

Project #:

301

Description Length From To Zn Sb Мо Ag As Sample from to (m) (m) ppm (ICP) daa ppm ppm ppb ppm ppm

is in trace amount as magnetite. Weak foliation is at (45° CA). This interval also contains a few fault "slips" (30° CA).

230.80 - 239.10: FAULT ZONE (70° to 50° CA) consisting of crumple and fragile rock with mud fault and carrying quartz-pyrite veins (6) of semi-massive pyrite (from 0.5 to 5cm max in width). This interval show some strongly siliceous and weakly potassic thin intervals that are derived from the under lying intrusive. Calcite-quartz veining stockwerk (5%). CHALCOPYRITE (0.2%) is also observed in fractures and in veins.

230.80 - 230.82: FAULT (70° CA) and mud.

231.27 - 231.28: FAULT (50° CA) "slip" and little mud.

238.15 - 238.16: FAULT (70° CA) "slip".

239.10 - 240.60: Hornfel andesite. Strongly siliceous, masive, medium green, discret porphyric texture. Disseminate pyrite (1%).

FAULT (70° CA) at 239.60 - 239.62m.

Sharp upper contact (65° CA). Lower contact (70° CA).

#### Structure

162.60 - 162.65 FAULT

Fault zone from 161.60 to 162.80m.

FLT/30

167.60 - 167.85 FAULT

Fault zone from 164.40 - 170.40m.

167.60 - 167.85: Mud fault and no core angle.

FLT

176.75 - 176.76 FAULT

FLT/30

178.45 - 178.50 FAULT

FLT/45

185.90 - 185.92 FAULT

FLT/50

189.35 - 189.36 FAULT

FLT/50

189.98 - 189.99 FAULT

FLT/50

193.87 - 193.89 FAULT

13-Nov-05 2:02:27 PM Page 7 of 12



261.40

240.60

## **Drill Log**

## **Falconbridge Limited**

DDH:

80

14

1019

16

15

2

0.7

MC-05-02

Project: K

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                      |                   |  | Sample | from | to | <b>Lengt</b> | h Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|----------------------------------|-------------------|--|--------|------|----|--------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | FLT/70                           |                   |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | 197.50 - 197.52                  | FAULT             |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/70                           |                   |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | 201.88 - 201.90                  | FAULT             |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/80                           |                   |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | 202.95 - 202.98                  | FAULT             |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/50                           |                   |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | 211.80 - 212.00                  | FAULT             |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | Pyritized fault "slip FLT/35     | " (Py 15%).       |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | 219.95 - 219.97                  | FAULT             |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | Fault zone from 21               | 19.95 to 222.20m. |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/50                           |                   |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | 220.70 - 220.75                  | FAULT             |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/40                           |                   |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | 221.75 - 222.20                  | FAULT             |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/50                           |                   |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | 230.80 - 230.82                  | FAULT             |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | Fault zone from 23               | 30.80 to 239.10m. |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/70                           |                   |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | 231.27 - 231.28                  | FAULT             |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/50                           |                   |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | 232.10 - 232.70                  | FAULT             |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | Major fault, 35% of FLT/45 TO 85 | f this interval.  |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | 238.15 - 238.16                  | FAULT             |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/70                           |                   |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | 239.60 - 239.62                  | FAULT             |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/70                           |                   |  |        |      |    |              |                   |                  |                  |                  |                  |                  |                  |

13-Nov-05 2:02:27 PM Page 8 of 12

10054 240.00 242.00

2.00



DDH: Project: MC-05-02

roject:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                          | Sample | from   | to     | <b>Length</b> |     | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|-----|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | PORPHYRITIC MONZONITE (PMONZ)                                                                                                                        | 10055  | 242.00 | 244.00 | 2.00          | 480 | 40               | 4                | 0.3              | 17               | 5                | 2                |
|             |                  | PMONZ/BRX/SI                                                                                                                                         | 10056  | 244.00 | 246.00 | 2.00          | 153 | 30               | 3                | 0.2              | 18               | 10               | 2                |
|             |                  | PODDI IVDITIO MONIZONITE QUI IQIFIED DDEQQIA                                                                                                         | 10057  | 246.00 | 248.00 | 2.00          | 503 | 40               | 11               | 0.4              | 22               | 20               | 2                |
|             |                  | PORPHYRITIC MONZONITE SILICIFIED BRECCIA  Alternating pink and green rock. The pink is intrusive while the greenish is                               | 10058  | 248.00 | 250.00 | 2.00          | 128 | 15               | 6                | 0.3              | 20               | 25               | 2                |
|             |                  | either andesite and/or strongly chloritic intrusive. This interval holds a quartz                                                                    | 10059  | 250.00 | 252.00 | 2.00          | 296 | 50               | 6                | 0.3              | 19               | 15               | 2                |
|             |                  | vein stockwerk (5-7%) resulting in a strongly and pervasively silicified rock.                                                                       | 10060  | 252.00 | 254.00 | 2.00          | 727 | 30               | 5                | 7.2              | 32               | 20               | 5                |
|             |                  | Mineralizations consist of fine disseminated pyrite (0.5%) with rare coarse                                                                          | 10062  | 254.00 | 256.00 | 2.00          | 346 | 40               | 4                | 0.5              | 26               | 15               | 2                |
|             |                  | accumulations within veins; chalcopyrite appears as "specs" in trace amount                                                                          | 10063  | 256.00 | 258.00 | 2.00          | 229 | 15               | 3                | 0.1              | 22               | 10               | 2                |
|             |                  | as for some magnetite.                                                                                                                               | 10064  | 258.00 | 260.00 | 2.00          | 459 | 40               | 6                | 0.3              | 30               | 35               | 2                |
|             |                  | Lower contact is somewhat gradual but appears to be close to (50° CA).                                                                               | 10065  | 260.00 | 262.00 | 2.00          | 334 | 40               | 10               | 0.3              | 24               | 30               | 2                |
| 261.40      | 359.40           | PORPHYRITIC MONZONITE (PMONZ)                                                                                                                        | 10066  | 262.00 | 264.00 | 2.00          | 93  | 180              | 13               | 0.3              | 22               | 55               | 2                |
|             |                  | PMONZ/MASS ,                                                                                                                                         | 10067  | 264.00 | 266.00 | 2.00          | 117 | 50               | 6                | 0.3              | 23               | 45               | 2                |
|             |                  |                                                                                                                                                      | 10068  | 266.00 | 268.00 | 2.00          | 176 | 40               | 7                | 0.3              | 20               | 30               | 2                |
|             |                  | PORPHYRITIC MONZONITE                                                                                                                                | 10069  | 268.00 | 270.00 | 2.00          | 121 | 50               | 12               | 0.3              | 20               | 25               | 2                |
|             |                  | Coarse grain, massive porphyritic texture with zoned and automorphous pinkish (potassic alteration) feldspar (1-2mm to 1cm / 20-25%) porphyries in a | 10070  | 270.00 | 272.00 | 2.00          | 152 | 60               | 42               | 0.4              | 18               | 25               | 2                |
|             |                  | grey-green matrix. Weak veining consisting od calcite veinlets (3%) and veins                                                                        | 10071  | 272.00 | 274.00 | 2.00          | 101 | 160              | 25               | 0.7              | 16               | 65               | 2                |
|             |                  | (5-10cm, rare) see below for details.                                                                                                                | 10072  | 274.00 | 276.00 | 2.00          | 177 | 480              | 18               | 0.4              | 23               | 20               | 2                |
|             |                  | NOTE: the vein frequency decreases from the upper contact towards the                                                                                | 10073  | 276.00 | 278.00 | 2.00          | 233 | 160              | 10               | 0.6              | 28               | 40               | 2                |
|             |                  | bottom of the hole.                                                                                                                                  | 10074  | 278.00 | 280.00 | 2.00          | 61  | 130              | 4                | 0.2              | 23               | 35               | 2                |
|             |                  | Alterations are of chlorite (propylythic) from weak to locally moderately strong                                                                     | 10075  | 280.00 | 282.00 | 2.00          | 110 | 120              | 36               | 0.2              | 24               | 25               | 2                |
|             |                  | and pervasive.  Mineralizations are mostly of disseminated pyrite and semi-massive pyrite in                                                         | 10076  | 282.00 | 284.00 | 2.00          | 432 | 140              | 24               | 1.0              | 24               | 45               | 2                |
|             |                  | veins. Chalcopyrite is in trace amount within veins or as disseminated "specs".                                                                      | 10078  | 284.00 | 286.00 | 2.00          | 181 | 70               | 7                | 0.8              | 24               | 45               | 2                |
|             |                  | Tomos Charlespy no to in trace amount main forms of as also minutes of species in                                                                    | 10079  | 286.00 | 288.00 | 2.00          | 53  | 630              | 17               | 0.8              | 20               | 290              | 2                |
|             |                  | 216.40 - 271.80: Porphyritic texture, strongly chloritorized matrix. Calcite                                                                         | 10080  | 288.00 | 290.00 | 2.00          | 120 | 220              | 5                | 0.4              | 36               | 95               | 2                |
|             |                  | veinlets (1-2%).                                                                                                                                     | 10081  | 290.00 | 292.00 | 2.00          | 107 | 50               | 4                | 0.2              | 26               | 35               | 2                |
|             |                  | Pinkish calcite vein (45° CA) breccia at (264.75 - 264.90).                                                                                          | 10082  | 292.00 | 294.00 | 2.00          | 136 | 60               | 5                | 0.3              | 22               | 20               | 2                |
|             |                  | 270.25 - 270.26: FAULT (30° CA) and mud.<br>270.30 - 270.32: FAULT (60° CA) and mud.                                                                 | 10083  | 294.00 | 296.00 | 2.00          | 124 | 80               | 6                | 0.3              | 24               | 20               | 2                |
|             |                  | 271.65 - 271.66: FAULT (60° CA) and mud.                                                                                                             | 10085  | 296.00 | 298.00 | 2.00          | 239 | 15               | 5                | 0.2              | 25               | 10               | 2                |
|             |                  | 271.00 271.00.171021 (00 07) and made                                                                                                                | 10086  | 298.00 | 300.00 | 2.00          | 50  | 30               | 5                | 0.1              | 23               | 5                | 2                |
|             |                  | 271.80 - 272.75: PYRITE (10-15%) as disseminations and concentrated along                                                                            | 10087  | 300.00 | 302.00 | 2.00          | 145 | 180              | 51               | 0.1              | 26               | 15               | 2                |
|             |                  | quartz veins (5%; 60° to 70°) with strong silicification of the wallrock. Calcite                                                                    | 10088  | 302.00 | 304.00 | 2.00          | 959 | 100              | 16               | 0.5              | 27               | 15               | 2                |
|             |                  | veinlets (1%).                                                                                                                                       | 10089  |        | 306.00 | 2.00          | 473 | 120              | 35               | 0.4              | 29               | 20               | 2                |
|             |                  | 272.75 - 273.00: Porphyritic texture with strongly sericitized green (lathe) feldspars (?) aligned at (5%; 80° CA) along with pink feldspar (3%)     | 10090  | 306.00 | 308.00 | 2.00          | 124 | 15               | 7                | 0.2              | 24               | 5                | 2                |
|             |                  | reluspars (1) aligned at (3%, ou CA) along with pink leluspar (3%)                                                                                   | 10091  | 308.00 | 310.00 | 2.00          | 136 | 110              | 3                | 0.2              | 26               | 25               | 2                |
|             |                  | 281.40 - 281.45: FAULT (10° CA), brittle and weakly muddy.                                                                                           | 10092  | 310.00 |        | 2.00          | 107 | 50               | 2                | 0.1              | 25               | 15               | 2                |
|             |                  | (·· - · · · · · · · · · · · · · ·                                                                                                                    | 10093  | 312.00 |        | 2.00          | 136 | 40               | 8                | 0.1              | 24               | 5                | 2                |
|             |                  | 282.40 - 282.41: FAULT (60° CA) and weakly muddy.                                                                                                    | 10094  | 314.00 |        | 2.00          | 90  | 15               | 1                | 0.1              | 25               | 10               | 2                |
|             |                  | 283.30 - 283.60: Quartz veinlets (2) and strong pervasive silicification carrying                                                                    | 10095  | 316.00 |        | 2.00          | 89  | 40               | 5                | 0.1              | 25               | 10               | 2                |

13-Nov-05 2:02:27 PM Page 9 of 12



#### **Falconbridge Limited**

DDH:

MC-05-02

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b> (m) | Description                                                                                                                                                                                                                   | Sample | from   | to     | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ррт | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |               | PYRITE (3%) and traces of CHALCOPYRITE.                                                                                                                                                                                       | 10097  | 318.00 | 320.00 | 2.00          | 66              | 60               | 1                | 0.1              | 19               | 10               | 2                |
|             |               | 283.60 - 286.00: Traces of fine pyrite veinlets.                                                                                                                                                                              | 10098  | 320.00 | 322.00 | 2.00          | 119             | 100              | 18               | 0.2              | 26               | 35               | 2                |
|             |               | 200 00 200 40. Drittle and fractioned real, and coloite (and come growth) fine                                                                                                                                                | 10099  | 322.00 | 324.00 | 2.00          | 186             | 140              | 7                | 0.3              | 19               | 40               | 2                |
|             |               | 286.00 - 288.10: Brittle and fractured rock and calcite (and some quartz) fine stockwerk (3-5%). Larger calcite (quartz veins at (287.15 - 287.25 and                                                                         | 10100  | 324.00 | 326.00 | 2.00          | 314             | 130              | 7                | 0.3              | 19               | 20               | 2                |
|             |               | 287.70 - 288.10) the first at 45° CA and the second at 10° CA. Between the                                                                                                                                                    | 10101  | 326.00 | 328.00 | 2.00          | 229             | 100              | 13               | 0.5              | 24               | 20               | 2                |
|             |               | two lies a (10cm) quartz-pyrite multi-vein. This vein holds (20%) coarse                                                                                                                                                      | 10102  | 328.00 | 330.00 | 2.00          | 300             | 30               | 18               | 0.2              | 21               | 5                | 2                |
|             |               | pyrite.                                                                                                                                                                                                                       | 10103  | 330.00 | 332.00 | 2.00          | 575             | 50               | 9                | 0.3              | 19               | 5                | 2                |
|             |               | 289.55 - 289.60: Coarse pyrite (20%) filling fractures.                                                                                                                                                                       | 10104  | 332.00 | 334.00 | 2.00          | 224             | 15               | 12               | 0.2              | 17               | 2                | 2                |
|             |               | 289.60 - 293.50: Calcite veining (3-4%). Traces of pyrite in fractures and some veins and as disseminations with lesser chalcopyrite as "specs".                                                                              | 10105  | 334.00 | 336.00 | 2.00          | 360             | 60               | 18               | 0.1              | 23               | 10               | 2                |
|             |               | 293.50 - 302.85: Massive porphyritic monzonite. Fine calcite veinlets (1%).                                                                                                                                                   | 10106  | 336.00 | 338.00 | 2.00          | 156             | 40               | 12               | 0.1              | 27               | 15               | 2                |
|             |               | 302.85 - 302.90: Quartz vein (60° CA) with minor calcite that carry pyrite                                                                                                                                                    | 10107  | 338.00 | 340.00 | 2.00          | 285             | 15               | 9                | 0.1              | 24               | 10               | 2                |
|             |               | (10%).                                                                                                                                                                                                                        | 10108  | 340.00 | 342.00 | 2.00          | 125             | 15               | 12               | 0.1              | 20               | 2                | 2                |
|             |               | 302.90 - 305.10: Calicte veinlets (2%); semi-massive pyrite (2%) in two                                                                                                                                                       | 10109  | 342.00 | 344.00 | 2.00          | 370             | 40               | 24               | 0.2              | 20               | 10               | 2                |
|             |               | fractures (the first at 10° CA and the second at 45° CA). Hosted in the weakly                                                                                                                                                | 10110  | 344.00 | 346.00 | 2.00          | 247             | 60               | 21               | 0.2              | 20               | 10               | 2                |
|             |               | chloritorized intrusive. Large (cm) feldspars. Fine traces rare "specs" of chalcopyrite.                                                                                                                                      | 10111  | 346.00 | 348.00 | 2.00          | 281             | 30               | 13               | 0.1              | 23               | 5                | 2                |
|             |               | 305.10 - 309.00: Same intrusive as above. Calcite veining (1%). Traces of                                                                                                                                                     | 10113  | 348.00 | 350.00 | 2.00          | 420             | 1140             | 18               | 1.4              | 24               | 95               | 2                |
|             |               | pyrite and lesser chalcopyrite.                                                                                                                                                                                               | 10114  | 350.00 | 352.00 | 2.00          | 589             | 70               | 8                | 0.3              | 25               | 20               | 2                |
|             |               |                                                                                                                                                                                                                               | 10115  | 352.00 | 354.00 | 2.00          | 236             | 200              | 10               | 0.3              | 21               | 20               | 2                |
|             |               | 309.00 - 309.05: Quartz vein (75° CA) hosting coarse grain semi-massive                                                                                                                                                       | 10116  | 354.00 | 356.00 | 2.00          | 178             | 50               | 9                | 0.2              | 24               | 10               | 2                |
|             |               | PYRITE (30%), traces of CHALCOPYRITE and "specs" of MOLYBDENUM                                                                                                                                                                | 10117  | 356.00 | 358.00 | 2.00          | 308             | 80               | 18               | 0.3              | 23               | 25               | 2                |
|             |               | (?).                                                                                                                                                                                                                          | 10118  | 358.00 | 359.40 | 1.40          | 645             | 60               | 15               | 0.4              | 24               | 25               | 2                |
|             |               | 309.05 - 313.00: Calcite veining (2%). Quartz vein (60° CA) carrying medium grained and disseminated PYRITE (10%) at (312.30 - 312.35).                                                                                       |        |        |        |               |                 |                  |                  |                  |                  |                  |                  |
|             |               | 313.00 - 317.00: EPIDOTE fine stockwerk (5%) and calcite veinlets (2%). Weakly chloritorized matrix. Traces of MAGNETITE and "specs" of CHALCOPYRITE. 317.00 - 319.30: "Fresh" equigranular monzonite (or monzo-syenite). The |        |        |        |               |                 |                  |                  |                  |                  |                  |                  |

319.30 - 327.30: Moderately to weakly and pervasively chlororized matrix. This interval holds PYRITE (3%) as quartz-pyrite veins and as fine disseminations. The last 40cm of this interval show dark green "lathe" porphyries (10%) that are aligned more or less to the lower contact (40° CA).

feldspars are automorphous (3-5mm), pinkish and light green to whitish. Disseminated MAGNETITE (0.5%) is observed. Contacts are gradual.

327.40 - 331.40: Calcite fine stockwerk (2-3%). Traces of pyrite with lesser chalcopyrite.

331.40 - 331.75: Brecciated rock. Upper and lower contact (20° CA).

331.75 - 331.95: Fractured rock with calcite veinlet stockwerk (5%).

331.95 - 332.00: FAULT (45° ca) and mud fault.

13-Nov-05 2:02:27 PM Page 10 of 12



#### **Falconbridge Limited**

DDH:

MC-05-02

Project:

**KERR-SULPHURETS** 

Project #: 301

Description Length From To Sb Мо Ag Zn As Sample from to (m) (m) ppm (ICP) daa ppm ppm ppb ppm ppm

332.00 - 337.00: Weakly chloritorized matrix. Fine calcite stockwerk (1-2%). Fine traces of disseminated pyrite and lesser chalcopyrite. Local quartz-pyrite veinlets.

337.00 - 337.80: FAULT ZONE (45° CA). Broken-up core and muds. Brittle rock. Calcite veinlets (3%).

337.80 - 345.60: Calcite fine stockwerk (3-5%). MAGNETITE (1-2%) as fine disseminations; PYRITE (traces) disseminations and lesser traces of CHALCOPYRITE. Weakly chloritorized and magnetic rock.

345.60 - 349.49: Dark green "lathe" porphyries (1-4mm / 10%), chloritorized intrusive. Wealy magnetic. Traces of pyrite in fractures and in veinlets (Qz-CC).

349.49 - 349.50: FAULT (60° CA) and mud.

349.50 - 349.60: Quartz-Pyrite-Hematite vein 60% at (60° CA). The pyrite is coarse semi-massive aggregates (25-30%), the hematite colours some of the quartz to a reddish-brown and "steel" color "specs" minerals (hematite specularite?) are observed within it (Qz).

349.60 - 352.98: Calcite veining and veinlets (3%). The centimetre wide veins (20° CA) hold locally pyrite (1%) and some traces of chalcopirite where the veinlets are as stockwerk with only traces of sulphides.

352.98 - 352.99: FAULT (70° CA) and mud seam.

352.99 - 356.70: Moderately chloritorized massive intrusive. Fine disseminated and rare veins of pyrite (traces).

356.70 - 359.40: Weakly chloritorized intrusive:

356.89 - 356.90: Calcite vein (20° CA), barren.

357.55 - 357.56: Quartz-pyrite vein (20° CA). Pyrite (30%) of the vein and is coarse grain.

357.95 357.96: Quartz vein (20° CA) that carry Pyrite-chalcopyrite (!% combined, 2 to 1 ratio respectively) as aggregates/splashes within it.

359.40 metres: END OF HOLE.

<u>Structure</u>

270.25 - 270.26 FAULT

FLT/30

270.30 - 270.32 FAULT

FLT/60

271.65 - 271.66 FAULT

FLT/60

281.40 - 281.45 FAULT

13-Nov-05 2:02:27 PM Page 11 of 12



## **Falconbridge Limited**

DDH:

MC-05-02

Project:

**KERR-SULPHURETS** 

Project #: 301

Length From Description To Cu Мо Αg Zn As Sb Sample from to (m) (m) ppm (ICP) ppb ppm ppm ppb ppm ppm

FLT/10

282.40 - 282.41 FAULT

FLT/60

331.95 - 332.00 FAULT

FLT/45

337.00 - 337.80 FAULT ZONE

FLTZ

349.49 - 349.50 FAULT

FLT/60

352.98 - 352.99 FAULT

FLT/70

<u>Altération</u>

313.00 - 317.00 EPIDOTE (EP)

Fine stockwerk (5%).

ΕP

13-Nov-05 2:02:27 PM Page 12 of 12



## **Falconbridge Limited**

DDH:

MC-05-03

Project:

**KERR-SULPHURETS** 

Project #: 301

Casing DDH Location Intervenant Coordonnée - UTM Azimuth: 130 Length (m): 4.6 FALCONBRIDGE Company: Dip: Easting: 422233 HY-TECH -55 Pulled: Non Contractor: Length (m): Plugged: 6263030 252.70 Oui Northing: Located by: M. SAVELL Started: Elevation: 1605 Method: Handheld GPS 8/26/2005 Cemented: Oui Completed: NAD27 ZN9 R. NIEMINEN Datum: Logged by: 8/29/2005 Core Logged: 8/30/2005 Size: NQ2

Claim #:

516252

Storage: KERR CAMP

Target:

Comments: NOTE: Three (3) metres should be added to the meterage blocks within the core boxes from 161.20 to 191.40m. (blocks) due to grinded core during drilling. Pass this point, the

"blocks" are restored.

#### Directional Tests (C=Collar, R=Reflex)

| Distance | Azimuth | Dip    | Туре |
|----------|---------|--------|------|
| 0.00     | 130.00  | -55.00 | С    |
| 11.90    | 128.80  | -56.60 | R    |
| 124.70   | 136.50  | -57.10 | R    |
| 243.80   | 137.30  | -56.70 | R    |



## Falconbridge Limited

DDH:

MC-05-03

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b> (m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample                                                                                 | from                                                                                   | to                                                                                     | <b>Lengti</b>                                                     | <b>h Cu</b><br>ppm (ICP)                                        | <b>Au</b><br>ppb                                          | <b>Мо</b><br>ppm                            | <b>Ag</b><br>ppm                                     | <b>Zn</b><br>ppb                                         | <b>As</b><br>ppm                                   | <b>Sb</b><br>ppm                                         |
|-------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|
| 0.00        | 2.60          | OVERBURDEN (OB) OB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                        |                                                                                        |                                                                                        |                                                                   |                                                                 |                                                           |                                             |                                                      |                                                          |                                                    |                                                          |
| 2.60        | 21.90         | PORPHIRITIC MONZONITE BRECCIA (PMONZ) PMONZ/BRX  PORPHYRITIC MONZONITE INTRUSIVE BRECCIA (40%) in ANDESITE (60%).  The andesites are fine grained, massive, medium green, silicified and hornfelded. Irregular calcite veining (3-5%), some show a pinkish tint. Locally magnetic.  Mineralizations are of PYRITE (2-3%) locally up to 5%, very fine and disseminated and rare stringers at the beginning of the hole; of CHALCOPYRITE (traces to 0.1%) of fine disseminations and of MAGNETITE (traces to 0.3%) as fine disseminations.  The monzonite is porphyritic with white automorphous feldspars (5-10%/ 1-5mm) within a reddish "hematized" matrix. Massive and dyke like and irregular to fragmental.  Mineralizations are similar to the andesite as described above except for the absence of the stringer mineralizations.  9.95 - 9.96: FAULT (60° CA) and rusty mud.  Lower contact at (60° CA).  Structure | 10331<br>10332<br>10333<br>10334<br>10335<br>10336<br>10337<br>10338<br>10339          | 2.60<br>6.00<br>8.00<br>10.00<br>12.00<br>14.00<br>16.00<br>18.00<br>20.00             | 6.00<br>8.00<br>10.00<br>12.00<br>14.00<br>16.00<br>18.00<br>20.00<br>22.00            | 3.40<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2 | 1723<br>2258<br>761<br>2965<br>1266<br>206<br>603<br>487<br>368 | 100<br>260<br>50<br>280<br>100<br>30<br>60<br>60          | 4<br>17<br>7<br>3<br>4<br>1<br>2<br>1<br>3  | 2.3<br>2.3<br>0.4<br>0.6<br>0.4<br>0.1<br>0.3<br>0.3 | 51<br>50<br>39<br>45<br>36<br>35<br>40<br>40<br>35       | 40<br>25<br>15<br>15<br>20<br>15<br>20<br>25<br>10 | 2<br>2<br>2<br>2<br>2<br>5<br>2<br>10<br>2               |
|             |               | 9.95 - 9.96 FAULT<br>FLT/60°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |                                                                                        |                                                                                        |                                                                   |                                                                 |                                                           |                                             |                                                      |                                                          |                                                    |                                                          |
| 21.90       | 50.30         | PORPHYRITIC MONZONITE (PMONZ) PMONZ/MASS  PORPHYRITIC MONZONITE Siliceous, massive and porphyritic (Fp and altered greenish lathes) textures. The feldspars (2-5mm x 2-12mm, 5-10%) are automorphous, zoned, reddish (hematized); the lathes, probably altered mafic minerals, are medium to light green sub-automorphous (1-3mm / 2-4mm, 2% to locally 5%). Foliation is more defined in intervals associated with these mafic porphyry minerals (60° CA).  Alterations are of weak and somewhat pervasive hematization and                                                                                                                                                                                                                                                                                                                                                                                               | 10340<br>10342<br>10343<br>10344<br>10345<br>10346<br>10347<br>10348<br>10349<br>10350 | 22.00<br>24.00<br>26.00<br>28.00<br>30.00<br>32.00<br>34.00<br>36.00<br>38.00<br>40.00 | 24.00<br>26.00<br>28.00<br>30.00<br>32.00<br>34.00<br>36.00<br>38.00<br>40.00<br>42.00 | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00      | 167<br>231<br>103<br>503<br>41<br>51<br>81<br>444<br>333<br>215 | 30<br>30<br>15<br>70<br>15<br>15<br>30<br>60<br>140<br>30 | 9<br>12<br>8<br>22<br>5<br>8<br>3<br>9<br>6 | 0.2<br>0.2<br>0.1<br>0.4<br>0.1<br>0.1<br>0.3<br>0.3 | 30<br>26<br>23<br>23<br>22<br>20<br>21<br>25<br>24<br>22 | 10<br>15<br>15<br>10<br>20<br>15<br>15<br>20<br>25 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |

13-Nov-05 4:38:08 PM Page 1 of 10



## Falconbridge Limited

DDH: Project: MC-05-03

Project #:

KERR-SULPHURETS 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                           | Sample | from  | to    | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|---------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | chloritization.                                                                                                                                                       | 10351  | 42.00 | 44.00 | 2.00          | 44              | 30               | 4                | 0.1              | 21               | 10               | 2                |
|             |                  | Mineralizations are of PYRITE (0.5 - 1%), of CHALCOPYRITE (traces) and of                                                                                             | 10352  | 44.00 | 46.00 | 2.00          | 26              | 40               | 1                | 0.1              | 21               | 20               | 2                |
|             |                  | MAGNETITE (traces) all are finely disseminated in the matrix and within fine                                                                                          | 10353  | 46.00 | 48.00 | 2.00          | 96              | 40               | 4                | 0.1              | 21               | 15               | 2                |
|             |                  | fractures. Lower contact (60° CA).  This lower contact is strongly silicified, pervasive and show a moderately strong schistosity (60° CA)                            | 10354  | 48.00 | 50.00 | 2.00          | 62              | 15               | 6                | 0.3              | 17               | 15               | 2                |
|             |                  | 24.85 - 24.86: FAULT (85° CA).<br>26.80 - 27.00: Pink calcite vein (15° CA), barren.<br>33.10 - 33.15: Hydrothermal vein (60° CA).                                    |        |       |       |               |                 |                  |                  |                  |                  |                  |                  |
|             |                  | 44.00 - 45.00: Calcite veining (10%), irregular stockwerk, sligthly pinkish.                                                                                          |        |       |       |               |                 |                  |                  |                  |                  |                  |                  |
|             |                  | <u>Structure</u>                                                                                                                                                      |        |       |       |               |                 |                  |                  |                  |                  |                  |                  |
|             |                  | 24.85 - 24.86 FAULT                                                                                                                                                   |        |       |       |               |                 |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/85°                                                                                                                                                               |        |       |       |               |                 |                  |                  |                  |                  |                  |                  |
| 50.30       | 82.90            | PORPHYRITIC MONZONITE BRECCIA (PMONZ)                                                                                                                                 | 10355  | 50.00 | 52.00 | 2.00          | 212             | 40               | 7                | 0.2              | 22               | 15               | 2                |
|             |                  | PMONZ/BRX                                                                                                                                                             | 10356  | 52.00 | 54.00 | 2.00          | 807             | 40               | 6                | 1.0              | 59               | 15               | 2                |
|             |                  |                                                                                                                                                                       | 10358  | 54.00 | 56.00 | 2.00          | 212             | 15               | 1                | 0.1              | 45               | 20               | 10               |
|             |                  | PORPHYRITIC MONZONITE INTRUSIVE BRECCIA (30%) in ANDESITE                                                                                                             | 10359  | 56.00 | 58.00 | 2.00          | 393             | 60               | 3                | 0.2              | 50               | 15               | 2                |
|             |                  | (70%).                                                                                                                                                                | 10360  | 58.00 | 60.00 | 2.00          | 108             | 50               | 12               | 0.3              | 57               | 10               | 25               |
|             |                  | The andesites are fine grain, medium to dark green with brecciated textures                                                                                           | 10361  | 60.00 | 62.00 | 2.00          | 524             | 110              | 16               | 0.7              | 40               | 25               | 50               |
|             |                  | and locally foliated. It shows some moderate silicifications and chloritizations                                                                                      | 10362  | 62.00 | 64.00 | 2.00          | 342             | 70               | 3                | 0.4              | 40               | 40               | 2                |
|             |                  | with weak hematizations, weak sericitizations also occur. Calcite veinlets (3-                                                                                        | 10363  | 64.00 | 66.00 | 2.00          | 243             | 450              | 7                | 0.8              | 61               | 70               | 2                |
|             |                  | 4%) as fine "wispy" and irregular veinlets and some veins with purple                                                                                                 | 10365  | 66.00 | 68.00 | 2.00          | 396             | 140              | 7                | 1.0              | 35               | 50               | 5                |
|             |                  | anhydrite within while other are pinkish.                                                                                                                             | 10366  | 68.00 | 70.00 | 2.00          | 276             | 40               | 4                | 0.6              | 36               | 25               | 10               |
|             |                  | Mineralizations are of PYRITE (3-5%), CHALCOPYRITE (traces) as fine disseminations and with veining (Qz-CC), HEMATITE (traces for the interval                        | 10367  | 70.00 | 72.00 | 2.00          | 1038            | 90               | 6                | 2.8              | 37               | 25               | 2                |
|             |                  | but concentrated in veinlets)                                                                                                                                         | 10368  | 72.00 | 74.00 | 2.00          | 326             | 50               | 7                | 0.6              | 38               | 25               | 2                |
|             |                  | but concentrated in vernicia)                                                                                                                                         | 10369  | 74.00 | 76.00 | 2.00          | 851             | 90               | 9                | 0.4              | 36               | 25               | 10               |
|             |                  | The porphyry is of narrow reddish dykes (as above) with contacts from (25° to                                                                                         | 10370  | 76.00 | 78.00 | 2.00          | 908             | 90               | 5                | 0.3              | 35               | 15               | 2                |
|             |                  | 65° CA) and as intrusive rounded fragments. The green lathe mineral                                                                                                   | 10371  | 78.00 | 80.00 | 2.00          | 553             | 80               | 1                | 0.1              | 34               | 15               | 2                |
|             |                  | porphyries are also locally present near foliated contacts. Mineralizations are the same as for the andesites.                                                        | 10372  | 80.00 | 82.00 | 2.00          | 416             | 60               | 3                | 0.2              | 29               | 20               | 10               |
|             |                  | 64.50 - 67.50: PYRITE (10%), CHALCOPYRITE (0.1%) as fine disseminations and within veining (Qz-CC: 7%) with some hydrobreccias 67.99 - 68.00: FAULT (45° CA) and mud. |        |       |       |               |                 |                  |                  |                  |                  |                  |                  |
|             |                  | 70.89 - $70.90$ : Hematite-calcite vein (50° CA) carrying HEMATITE (25%, altered and specularite), PYRITE (10%), CHALCOPYRITE (2%) all within the veinlet.            |        |       |       |               |                 |                  |                  |                  |                  |                  |                  |

13-Nov-05 4:38:09 PM Page 2 of 10



## Falconbridge Limited

DDH:

MC-05-03

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                       | Sample         | from             | to     | <b>Lengti</b> | h <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|--------|---------------|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | From 70.00 to 73.00 metres: Green lathe minerals (5-10%) 72.90 - 73.60: Moderately sheared (45° CA). Alternating silicified and chloritorized bands parallel to foliation. At 81.10 metres: Broken-up core and mud fault. At 82.80 - 82.81m: Possible fault (45° CA), presence of mud.  Structure |                |                  |        |               |                          |                  |                  |                  |                  |                  |                  |
|             |                  | 67.99 - 68.00 FAULT                                                                                                                                                                                                                                                                               |                |                  |        |               |                          |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/45°                                                                                                                                                                                                                                                                                           |                |                  |        |               |                          |                  |                  |                  |                  |                  |                  |
|             |                  | 82.80 - 82.81 FAULT                                                                                                                                                                                                                                                                               |                |                  |        |               |                          |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/45°                                                                                                                                                                                                                                                                                           |                |                  |        |               |                          |                  |                  |                  |                  |                  |                  |
| 82.90       | 95.6             | PORPHYRITIC MONZONITE (PMONZ)                                                                                                                                                                                                                                                                     | 10373          | 82.00            | 84.00  | 2.00          | 116                      | 15               | 1                | 0.1              | 29               | 15               | 2                |
|             |                  | PMONZ/MASS                                                                                                                                                                                                                                                                                        | 10374          | 84.00            | 86.00  | 2.00          | 83                       | 15               | 11               | 0.1              | 23               | 15               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                   | 10375          | 86.00            | 88.00  | 2.00          | 220                      | 30               | 23               | 0.1              | 26               | 15               | 2                |
|             |                  | PORPHYRITIC MONZONITE  Massive and porphyritic (as above). The matrix is weakly chloritorized.                                                                                                                                                                                                    | 10377          | 88.00            | 90.00  | 2.00          | 117                      | 15               | 6                | 0.1              | 20               | 20               | 2                |
|             |                  | Calcile veinlets (3-4%); quartz veins (1%).                                                                                                                                                                                                                                                       | 10378          | 90.00            | 92.00  | 2.00          | 110                      | 15               | 2                | 0.1              | 25               | 15               | 2                |
|             |                  | Mineralizations: PYRITE (traces to 0.5%), MAGNETITE (traces to 1%),                                                                                                                                                                                                                               | 10379          | 92.00            | 94.00  | 2.00          | 200                      | 70               | 14               | 0.2              | 24               | 15               | 2                |
|             |                  | CHALCOPYRITE (fine traces) all as fine disseminations and some pyrite in fractures. Rare traces of disseminated MOLYBDENUM have been observed (around 86.00m).  Lower contact (50° CA).                                                                                                           | 10380          | 94.00            | 96.00  | 2.00          | 306                      | 40               | 25               | 0.2              | 28               | 10               | 2                |
| 95.65       | 156.20           | PORPHYRITIC MONZONITE BRECCIA (PMONZ)                                                                                                                                                                                                                                                             | 10381          | 96.00            | 98.00  | 2.00          | 1011                     | 100              | 2                | 0.3              | 42               | 15               | 2                |
|             |                  | PMONZ/BRX                                                                                                                                                                                                                                                                                         | 10382          | 98.00            | 100.00 | 2.00          | 1059                     | 200              | 1                | 0.3              | 41               | 15               | 2                |
|             |                  | PORRENORIO MONZONITE INTREGUE PRECOLA (000) :- ANDEGITE                                                                                                                                                                                                                                           | 10383          | 100.00           | 102.00 | 2.00          | 1529                     | 100              | 6                | 0.6              | 46               | 20               | 2                |
|             |                  | PORPHYRITIC MONZONITE INTRUSIVE BRECCIA (20%) in ANDESITE (80%).                                                                                                                                                                                                                                  | 10384          | 102.00           |        | 2.00          | 2325                     | 130              | 13               | 0.9              | 35               | 15               | 2                |
|             |                  | (6676).                                                                                                                                                                                                                                                                                           | 10385          | 104.00           |        | 2.00          | 563                      | 40               | 6                | 0.4              | 33               | 25               | 2                |
|             |                  | The andesites are brecciated with minor massive intervals. They are silicified                                                                                                                                                                                                                    | 10386          | 106.00           |        | 2.00          | 942                      | 110              | 9                | 0.9              | 38               | 25               | 10               |
|             |                  | (moderate to locally strong) and chloritorized (weak to moderate).  The intrusive is more discret and don't appear as massive dyke. It is more like                                                                                                                                               | 10387<br>10388 | 108.00<br>110.00 |        | 2.00<br>2.00  | 1074<br>505              | 90<br>50         | 10<br>11         | 0.6<br>0.3       | 41<br>50         | 25<br>20         | 2<br>2           |
|             |                  | a fragmented "melange" throughout.                                                                                                                                                                                                                                                                | 10389          | 112.00           |        | 2.00          | 740                      | 80               | 10               | 0.3              | 42               | 20               | 2                |
|             |                  | Calcite (quartz) stockwerk veining (3-5%).                                                                                                                                                                                                                                                        | 10390          | 114.00           |        | 2.00          | 867                      | 80               | 59               | 0.4              | 42               | 20               | 2                |
|             |                  | Mineralizations: PYRITE (1-2%) as disseminations and within veins stockwerk (CC-Qz)and strongly silicified intervals, CHALCOPYRITE (0.1%, with some                                                                                                                                               | 10391          | 116.00           |        | 2.00          | 920                      | 80               | 9                | 0.5              | 42               | 20               | 2                |
|             |                  | narrow intervals going up to 0.5% with 5-10% pyrite: 100.10 - 100.20m;                                                                                                                                                                                                                            | 10393          | 118.00           |        | 2.00          | 1992                     | 230              | 4                | 0.7              | 42               | 20               | 2                |
|             |                  | 131.50 - 142.10m) in fine fractures with Qz-CC and disseminations,                                                                                                                                                                                                                                | 10394          | 120.00           | 122.00 | 2.00          | 2023                     | 9150             | 9                | 7.5              | 47               | 25               | 10               |
|             |                  | MOLYBDENUM (traces) as specs. Traces of malachite.                                                                                                                                                                                                                                                | 10395          | 122.00           |        | 2.00          | 2909                     | 270              | 39               | 1.0              | 50               | 20               | 5                |
|             |                  |                                                                                                                                                                                                                                                                                                   | 10396          | 124.00           | 126.00 | 2.00          | 1708                     | 160              | 11               | 0.6              | 39               | 20               | 10               |

13-Nov-05 4:38:09 PM Page 3 of 10



## **Falconbridge Limited**

DDH:

MC-05-03

Project:

**KERR-SULPHURETS** 

As

ppm

 Sb

ppm

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                             | Sample | from   | to     | <b>Length</b> | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb |
|-------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|------------------------|------------------|------------------|------------------|------------------|
|             |                  | 103.00 - 107.20: MASSIVE PORPHYRITIC MONZONITE DYKE:                                                                                                                                                                                                                                                                                    | 10397  | 126.00 | 128.00 | 2.00          | 2695                   | 250              | 10               | 0.6              | 45               |
|             |                  | From 104.40 - 105.20: Fault zone and presence of mud. Broken-up core.                                                                                                                                                                                                                                                                   | 10398  | 128.00 |        | 2.00          | 2737                   | 280              | 13               | 0.9              | 46               |
|             |                  | From 106.00 - 106.20: FAULT (45°CA) and mud,                                                                                                                                                                                                                                                                                            | 10400  | 130.00 | 132.00 | 2.00          | 2964                   | 240              | 28               | 1.5              | 46               |
|             |                  | From 107.00 - 107.60: FAULT (10° CA) and traces of mud.                                                                                                                                                                                                                                                                                 | 20801  | 132.00 | 134.00 | 2.00          | 1695                   | 140              | 12               | 1.1              | 39               |
|             |                  | 112.00 - 112.01: FAULT (70° CA) and traces of mud.                                                                                                                                                                                                                                                                                      | 20802  | 134.00 | 136.00 | 2.00          | 1123                   | 80               | 9                | 0.7              | 42               |
|             |                  | 112.88 - 112.90: FAULT (70°CA) and mud.                                                                                                                                                                                                                                                                                                 | 20803  | 136.00 | 138.00 | 2.00          | 2783                   | 240              | 6                | 1.3              | 51               |
|             |                  | 112.90 - 116.00: Good breccia texture in andesite.                                                                                                                                                                                                                                                                                      | 20804  | 138.00 | 140.00 | 2.00          | 1622                   | 150              | 14               | 1.0              | 41               |
|             |                  | 447.04 447.05 FALILT (000.0A) and made                                                                                                                                                                                                                                                                                                  | 20805  | 140.00 | 142.00 | 2.00          | 1056                   | 90               | 29               | 0.7              | 34               |
|             |                  | 117.64 - 117.65: FAULT (60° CA) and mud.<br>117.75 - 117.80: Pink calcite vein (80° CA) that carry CHALCOPYRITE (0.5%)                                                                                                                                                                                                                  | 20806  | 142.00 | 144.00 | 2.00          | 467                    | 15               | 11               | 0.3              | 19               |
|             |                  | within the vein and at the wallrock contact with fine traces of MOLYBDENUM.                                                                                                                                                                                                                                                             | 20807  | 144.00 |        | 2.00          | 1213                   | 100              | 12               | 0.6              | 38               |
|             |                  | PYRITE (0.5%) in the wallrock.                                                                                                                                                                                                                                                                                                          | 20808  | 146.00 |        | 2.00          | 1104                   | 130              | 64               | 8.0              | 39               |
|             |                  |                                                                                                                                                                                                                                                                                                                                         | 20809  | 148.00 |        | 2.00          | 266                    | 40               | 6                | 0.3              | 30               |
|             |                  | 126.80m: Traces of malachite.                                                                                                                                                                                                                                                                                                           | 20810  | 150.00 |        | 2.00          | 271                    | 15               | 4                | 0.1              | 30               |
|             |                  | 126.94 - 126.98: FAULT (70° CA) and mud.                                                                                                                                                                                                                                                                                                | 20812  | 152.00 |        | 2.00          | 729                    | 40               | 9                | 0.5              | 27               |
|             |                  | 128.00 - 134.00: Calcite stockwerk veining (7-10%). Traces of malachite.                                                                                                                                                                                                                                                                | 20813  | 154.00 | 156.00 | 2.00          | 1012                   | 80               | 24               | 0.6              | 29               |
|             |                  | 135.00 - 135.05: Gougy calcite vein (45° CA).                                                                                                                                                                                                                                                                                           |        |        |        |               |                        |                  |                  |                  |                  |
|             |                  | 135.05 - 142.10: Strongly and pervasively silicified and moderately chloritorized within the breccias matrix of the andesite breccia. Calcite stockwerk (3%). 142.10 - 142.11: FAULT (50° ca), broken core and sandy mud. 142.11 - 142.50: Calcite vein (irregular) and hydro-breccia in a calcite matrix.                              |        |        |        |               |                        |                  |                  |                  |                  |
|             |                  | 142.50 - 143.75: Porphyritic Monzonite. Diffused white to reddish feldspars (10%) and mafic mineral porphyries (5%) within the foliated (50° CA) lower half of the interval. Pyrite (0.5 - 1%) finely disseminated. Traces of chalcopyrite (?). Lower contact (70° CA).                                                                 |        |        |        |               |                        |                  |                  |                  |                  |
|             |                  | 143.75 - 156.20: Silicified and chloritorized andesite breccia intruded by reddish porphyritic monzonite (Fp: white-reddish) and greenish porphyritic "monzonite" with mafic and altered porphyries. The latter unit is also, locally, moderately sericitized with traces of "bottle green" fuchite (?). Calcite vein stockwerk (3-4%). |        |        |        |               |                        |                  |                  |                  |                  |

From 143.75 - 148.45: Strongly silicified and chloritorized. Pyrite (1-2%) as disseminations and stringers, chalcopyrite (0.2%) as disseminations. From 148.45 - 149.00: Green porphyritic "monzonite" (mafic and chloritorized lathe porphyries 5-7%). Pyrite (2%) as aggregates within fine fractures (45°

From 149.00 - 156.20: Intrusive porphyritic monzonite breccia (50%) in strongly chloritorized, weakly sericitized andesite (50%) with some narrow intervals with mafic porphyries. Calcite veining (2%). Pyrite (1%) as

13-Nov-05 4:38:09 PM Page 4 of 10



## Falconbridge Limited

DDH:

MC-05-03

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                    |                                                                                                                                                                                                    | Sample | from   | n to   | <b>Length</b> | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | specs of molybder<br>Lower contact is a                        | d within veinlets and fractures, chalcopyrite (traces) and num. rbitrary at (25° CA).                                                                                                              |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | Structure                                                      | EALH T 70NE                                                                                                                                                                                        |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 104.40 - 105.20<br>FLTZ                                        | FAULT ZONE                                                                                                                                                                                         |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 106.00 - 106.20                                                | FAULT                                                                                                                                                                                              |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/45°                                                        | FAOLI                                                                                                                                                                                              |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 107.00 - 107.60                                                | FAULT                                                                                                                                                                                              |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/10°                                                        | TAGET                                                                                                                                                                                              |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 112.00 - 112.01                                                | FAULT                                                                                                                                                                                              |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/70°                                                        | 17021                                                                                                                                                                                              |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 112.88 - 112.90                                                | FAULT                                                                                                                                                                                              |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/70°                                                        |                                                                                                                                                                                                    |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 117.64 - 117.65                                                | FAULT                                                                                                                                                                                              |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/60°                                                        |                                                                                                                                                                                                    |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 126.94 - 126.98                                                | FAULT                                                                                                                                                                                              |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/70°                                                        |                                                                                                                                                                                                    |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 142.10 - 142.11                                                | FAULT                                                                                                                                                                                              |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | FLT/50°                                                        |                                                                                                                                                                                                    |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  |                                                                |                                                                                                                                                                                                    |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
| 156.20      | 164.25           | MAJOR FAULT ZO                                                 | ONE (FLTZ)                                                                                                                                                                                         | 20814  | 156.00 | 158.00 | 2.00          | 1427                   | 110              | 30               | 0.8              | 26               | 20               | 10               |
|             |                  | FLTZ                                                           | ,                                                                                                                                                                                                  | 20815  | 158.00 | 160.00 | 2.00          | 1619                   | 70               | 39               | 1.2              | 30               | 25               | 2                |
|             |                  | Broken-up core an                                              | ONE: Andesite breccia. Calcite veining (3-5%) and muddy fault planes. Good fine pyrite (3%) and 0.3%) between 159.00 - 160.00 metres. Elsewhere Py (1%)                                            | 20816  | 160.00 | 162.00 | 2.00          | 1016                   | 50               | 34               | 0.7              | 32               | 20               | 2                |
|             |                  | 157.19 - 157.20: F<br>157.63 - 157.65: F<br>157.70 - 157.71: F | fault plane (60° CA) and mud. fault plane (35° CA) and mud. fault plane (15° CA) and mud. fault plane (70° CA) and mud. fault plane (70° CA) and mud. flajor gouge of clay mud and rock fragments. |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | NOTE-1: ADD 3.0                                                | 5 metres to 161.20 = 164.25 metres. One complete drilling                                                                                                                                          |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |

13-Nov-05 4:38:09 PM Page 5 of 10



## **Falconbridge Limited**

DDH:

MC-05-03

Project:

**KERR-SULPHURETS** 

Project #: 301

| From | To  | Description | _     |      |    | Length | Cu       | Au  | Мо  | Ag  | Zn  | As  | Sb  |
|------|-----|-------------|-------|------|----|--------|----------|-----|-----|-----|-----|-----|-----|
| (m)  | (m) | Sa          | ample | from | to | m p    | pm (ICP) | ppb | ppm | ppm | ppb | ppm | ppm |

run (10 feet/3.05m) without any core. Grinded and/or large gap.
So: 162.00 - 165.00: Grinded core, no recovery and no sampling.
NOTE-2: Three (3) metres should be added to the meterage blocks within the core boxes from 161.20 to 191.40m. (blocks) due to grinded core during drilling. Pass this point, the "blocks" are restored.

#### Structure

156.95 - 156.96 FAULT

FLT/60°

157.19 - 157.20 FAULT

FLT/35°

157.63 - 157.65 FAULT

FLT/15°

157.70 - 157.71 FAULT

FLT/70°

160.70 - 161.20 MAJOR FAULT

**FLT** 

#### 164.25 165.80 PORPHYRITIC MONZONITE DYKE (PMONZ)

**PMONZ** 

#### MASSIVE PORPHYRITIC MONZONITE DYKE

Massive, porphyritic (Fp: 5-7% / 2-8mm, pinkish, automorphous) and mafic (3% / 1-3mm, dark green lathes). Calcite veinlet stockwerk (2-3%). Pyrite (1%), chalcopyrite (traces).

Lower contact (70° CA).

#### 165.80 176.65 ANDESITE BRECCIA (AND)

stockwerk (3%).

AND/BRX/SI,CL,SE 20818 167.00 169.00 2.00 3344 290 12 2.6 50 15 20819 169.00 171.00 2.00 1898 250 12 42 10 1.0 ANDESITE BRECCIA 20820 171.00 173.00 2.00 2660 410 27 1.5 43 15 Dark green, brecciated texture, strongly chloritorized and moderately to locally 173.00 175.00 2.00 2750 200 57 39 20821 1.3 15 strong silicification and weakly sericitized in the foliated areas. Calcite veinlet

165.00

175.00

167.00

177.00

2.00

2.00

4045

1741

660

110

33

38

2.3

0.9

47

29

15

15

2

2

2

2

2

2

20817

20822

Some foliation (70° CA) at 170 metres.

13-Nov-05 4:38:09 PM Page 6 of 10



## Falconbridge Limited

DDH:

MC-05-03

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                        | Sample         | from             | to     | <b>Lengti</b><br>m | <b>h Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|--------|--------------------|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | 165.80 - 167.00: Py (5-7%), Cp (0.3%).<br>167.00 - 169.00: Py (1-2%), Cp (0.2-0.3%).<br>169.00 - 171.00: Py (2%), Cp (0.1%)<br>171.00 - 173.00: Py (2%), Cp (0.1%)<br>173.00 - 175.00: Py (3-5%), Cp (0.3%)<br>175.00 - 176.65: Py (2%), Cp (0.2%) |                |                  |        |                    |                          |                  |                  |                  |                  |                  |                  |
| 176.65      | 178.00           | MASSIVE PORPHYRITIC MONZONITE (PMONZ) PMONZ                                                                                                                                                                                                        | 20823          | 177.00           | 179.00 | 2.00               | 1361                     | 80               | 26               | 0.8              | 39               | 15               | 2                |
|             |                  | As above.                                                                                                                                                                                                                                          |                |                  |        |                    |                          |                  |                  |                  |                  |                  |                  |
|             |                  | 176.65 - 178.00: Py (1%), Cp (traces).                                                                                                                                                                                                             |                |                  |        |                    |                          |                  |                  |                  |                  |                  |                  |
| 178.00      | 226.80           | O ANDESITE (AND)                                                                                                                                                                                                                                   | 20824          | 179.00           | 181.00 | 2.00               | 2039                     | 260              | 20               | 1.1              | 42               | 30               | 2                |
|             |                  | AND                                                                                                                                                                                                                                                | 20825          | 181.00           | 183.00 | 2.00               | 2288                     | 150              | 32               | 1.1              | 41               | 20               | 2                |
|             |                  | Andesite                                                                                                                                                                                                                                           | 20826          | 183.00           | 185.00 | 2.00               | 1859                     | 130              | 64               | 1.1              | 43               | 20               | 2                |
|             |                  | Medium to dark green, brecciated to massive intervals. Strongly to moderately                                                                                                                                                                      | 20828          | 185.00           |        | 2.00               | 1765                     | 100              | 33               | 0.9              | 39               | 20               | 2                |
|             |                  | and partly pervasive silicification and moderate and patchy chloritization. Fine                                                                                                                                                                   | 20829          | 187.00           |        | 2.00               | 2505                     | 190              | 47               | 1.3              | 37               | 10               | 2                |
|             |                  | calcite with quartz stockwerk (5% to 7% locally). Magnetite is observed from                                                                                                                                                                       | 20830<br>20831 | 189.00<br>191.00 |        | 2.00<br>2.00       | 2301<br>1900             | 360<br>290       | 27<br>25         | 1.4<br>1.5       | 41<br>56         | 15<br>30         | 2<br>2           |
|             |                  | (187.00 - 215.00 metres) as veins and veinlets and some disseminations.                                                                                                                                                                            | 20832          | 193.00           | 195.00 | 2.00               | 2619                     | 240              | 23<br>24         | 1.5              | 49               | 15               | 2                |
|             |                  | 179.04 - 179.05: FAULT (45° CA) and little mud.                                                                                                                                                                                                    | 20833          | 195.00           |        | 2.00               | 1871                     | 60               | 22               | 1.0              | 56               | 15               | 2                |
|             |                  | 196.70 - 196.75: Calcite-chlorite-magnetite vein (45° CA). Magnetite semi-                                                                                                                                                                         | 20835          | 197.00           |        | 2.00               | 2370                     | 80               | 39               | 1.2              | 49               | 20               | 2                |
|             |                  | massive veinlets (10%), Py (3-5%), Cp (0.2%). Possible fault at 199.00 metres, broken-up core and some mud.                                                                                                                                        | 20836          | 199.00           | 201.00 | 2.00               | 2611                     | 130              | 36               | 1.1              | 67               | 25               | 2                |
|             |                  | Possible lault at 199.00 metres, broken-up core and some mud.                                                                                                                                                                                      | 20837          | 201.00           | 203.00 | 2.00               | 2157                     | 130              | 204              | 0.9              | 45               | 20               | 2                |
|             |                  | 200.00 - 203.00: Narrow porphyritc monzonite dykes (45).                                                                                                                                                                                           | 20838          | 203.00           | 205.00 | 2.00               | 1757                     | 60               | 31               | 0.6              | 44               | 15               | 2                |
|             |                  | 215.85 - 215.86: Fault plane (65° CA) and mud.                                                                                                                                                                                                     | 20839          | 205.00           | 207.00 | 2.00               | 1999                     | 200              | 170              | 0.8              | 50               | 40               | 2                |
|             |                  | 217.10 - 218.25: Massive porphyritic monzonite dyke.                                                                                                                                                                                               | 20840          | 207.00           | 209.00 | 2.00               | 1413                     | 140              | 28               | 0.6              | 48               | 25               | 2                |
|             |                  | 219.10 - 219.11: Mud fault (80° CA).<br>222.70 - 225.10: Porphyritic monzonite dykes (65%).                                                                                                                                                        | 20841          | 209.00           | 211.00 | 2.00               | 741                      | 90               | 14               | 0.3              | 46               | 15               | 2                |
|             |                  | ZZZ.70 ZZG.10.1 orphymio monzonic dynos (6676).                                                                                                                                                                                                    | 20842          | 211.00           |        | 2.00               | 1507                     | 210              | 19               | 0.7              | 52               | 35               | 2                |
|             |                  | 225.10 - 226.80: Gritty looking, greenish porphyritic monzonite with diffused                                                                                                                                                                      | 20843          | 213.00           |        | 2.00               | 3517                     | 320              | 12               | 1.3              | 44               | 20               | 2                |
|             |                  | pinkish feldspar crystals. This interval is highly affected by the subsequent                                                                                                                                                                      | 20844          | 215.00           |        | 2.00               | 1347                     | 180              | 30               | 0.7              | 42               | 10               | 2                |
|             |                  | fault to which it is in contact. This lower contact is (85° CA)                                                                                                                                                                                    | 20845          | 217.00           |        | 2.00               | 617                      | 100              | 11               | 0.3              | 37               | 20               | 2                |
|             |                  | 178.00 - 179.00: Py (2-3%), Cp (0.1-0.2%)                                                                                                                                                                                                          | 20847          | 219.00           |        | 2.00               | 2660                     | 220              | 54               | 1.2              | 40               | 2                | 2                |
|             |                  | 179.00 - 181.00: Py (3%), Cp (0.1%)                                                                                                                                                                                                                | 20848          | 221.00           |        | 2.00               | 1936                     | 150              | 53               | 1.0              | 50               | 25               | 2                |
|             |                  | 181.00 - 183.00: Py (5%), Cp (0.2%)                                                                                                                                                                                                                | 20849          | 223.00           | 225.00 | 2.00               | 1940                     | 100              | 104              | 0.8              | 35<br>53         | 15<br>25         | 2<br>2           |
|             |                  | 183.00 - 185.00: Py (5%), Cp (0.2%)<br>185.00 - 187.00: Py (3-5%), Cp (0.1-0.2%)                                                                                                                                                                   | 20850          | 225.00           | 227.00 | 2.00               | 881                      | 170              | 24               | 1.0              | 53               | 35               | ۷                |

13-Nov-05 4:38:09 PM Page 7 of 10



#### **Falconbridge Limited**

DDH: Project: MC-05-03 KERR-SULPHURETS

Project #: 301

Description Length From To Cu Zn Sb Au Мо Ag As Sample from to (m) (m) ppm (ICP) daa ppm ppm ppb ppm ppm

```
187.00 - 189.00: Py (3-5%), Cp (0.2-0.3%), Mt (traces)
189.00 - 191.00: Py (3-5%), Cp (0.3%), Mt (0.5%) and traces of malachite.
191.00 - 193.00: Py (5%), Mt (2%), Cp (0.4%) and some traces of malachite.
193.00 - 195.00: Py (5%), Mt (1%), Cp (0.1%)
195.00 - 197.00: Py (3-5%), Mt (2%), Cp (0.1%)
197.00 - 199.00: Py (3-5%), Mt (traces), Cp (0.1%)
199.00 - 201.00: Py (3-5%) fine to very fine, Mt (0.5%), Cp (0.2%)
201.00 - 203.00: Py (5-7%), Mt (10%), Cp (0.5%)
203.00 - 205.00: Py (5%), Cp (0.1%), Mt (traces)
205.00 - 207.00: Py (5-7%) as disseminations and semi-massive aggregares
with calcite, Mt (0.5%) as veinlets, Cp (0.2%)
207.00 - 209.00: Py (5%), Mt (0.5%), Cp (0.3%)
209.00 - 211.00: Py (3%), Cp (0.3%)
211.00 - 213.00: Py (3%), Cp (0.2%)
213.00 - 215.00: Py (1%), Mt (7%), Cp (0.5%)
215.00 - 217.00: Py (1-2%), Cp (0.2%)
217.00 - 219.00: Py (1%), Cp (0.1%)
219.00 - 221.00: Py (1-2%), Cp (0.3%)
221.00 - 223.00: Py (7-10%), Cp (0.3%)
223.00 - 225.00: Py (5%), Cp (0.3%)
225.00 - 226.80: Py (1-2%), Cp (0.1%)
Structure
179.04 - 179.05
                   FAULT
FLT/45°
215.85 - 215.86
                   FAULT
FLT/65°
219.10 - 219.11
                   FAULT
FLT/80°
```

#### 226.80 227.00 MAJOR FAULT (FLT)

FL

MAJOR FAULT (upper contact 80°- lower contact 85° CA)

This fault consist of black clay (60%) and black unconsolidated rock (40%).

**Structure** 

226.80 - 227.00

80°/85°

13-Nov-05 4:38:09 PM Page 8 of 10



#### **Falconbridge Limited**

DDH:

MC-05-03

Project:

**KERR-SULPHURETS** 

Project #: 301

| W. Assert   |               |                                                                                                                                                              |        |        |        |                    |           |                  |                  |                  |                  |                  | _ |
|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------------------|-----------|------------------|------------------|------------------|------------------|------------------|---|
| From<br>(m) | <b>To</b> (m) | Description                                                                                                                                                  | Sample | from   | to     | <b>Length</b><br>m | <b>Cu</b> | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm |   |
| 227.00      | 252.70        | FELSIC LAPILLI TUFF (TIL)                                                                                                                                    | 20851  | 227.00 | 229.00 | 2.00               | 827       | 200              | 11               | 9.9              | 105              | 60               |   |
|             |               | TIL/SR,SI.CL                                                                                                                                                 | 20852  | 229.00 | 231.00 | 2.00               | 1725      | 1110             | 14               | 2.3              | 289              | 55               |   |
|             |               |                                                                                                                                                              | 20853  | 231.00 | 233.00 | 2.00               | 1862      | 210              | 11               | 2.0              | 363              | 70               |   |
|             |               | FELSIC LAPILLI TUFF                                                                                                                                          | 20854  | 233.00 | 235.00 | 2.00               | 1728      | 170              | 10               | 1.0              | 90               | 80               |   |
|             |               | From greenish and greyish to locally beige in color. Fine grain, diffused quartz and chloritorized, sub-rounded to angular lapillis (2-4mm / 1-3%). Strongly | 20855  | 235.00 | 237.00 | 2.00               | 1295      | 110              | 14               | 0.9              | 260              | 65               |   |
|             |               | foliated from (227.00 - 232.30 metres) at (75° CA) and some contortions.                                                                                     | 20856  | 237.00 | 239.00 | 2.00               | 1299      | 160              | 10               | 0.8              | 279              | 130              |   |
|             |               | Calcite and quartz veining stockwerk (3%).                                                                                                                   | 20857  | 239.00 | 241.00 | 2.00               | 1785      | 300              | 6                | 0.6              | 515              | 100              |   |
|             |               | Alterations are of moderate sericite to locally strong and pervasive and also                                                                                | 20858  | 241.00 | 243.00 | 2.00               | 2012      | 150              | 25               | 1.1              | 417              | 185              |   |
|             |               | following foliation planes; patchy pervasive to sub-pervasive silicification                                                                                 | 20859  | 243.00 | 245.00 | 2.00               | 3062      | 4140             | 71               | 1.0              | 240              | 100              |   |
|             |               | which is moderate and some weak chloritization that is sub-pervasive                                                                                         | 20860  | 245.00 | 247.00 | 2.00               | 1906      | 270              | 45               | 0.8              | 177              | 100              |   |
|             |               | throughout.  Mineralizations are of pyrite (2-5% and chalcopyrite (traces) mostly as                                                                         | 20861  | 247.00 | 249.00 | 2.00               | 875       | 130              | 18               | 0.2              | 55               | 20               |   |
|             |               | disseminations and some semi-massive veinlets for the pyrite.                                                                                                | 20863  | 249.00 | 251.00 | 2.00               | 1200      | 110              | 8                | 0.5              | 122              | 15               |   |
|             |               | From 227.00 to 232.30 metres the rock is fragile and show numerous fault                                                                                     | 20864  | 251.00 | 252.70 | 1.70               | 1053      | 520              | 10               | 2.0              | 1166             | 70               |   |
|             |               | slips.                                                                                                                                                       |        |        |        |                    |           |                  |                  |                  |                  |                  |   |
|             |               | 232.30 - 232.32: FAULT (65° CA) and mud.                                                                                                                     |        |        |        |                    |           |                  |                  |                  |                  |                  |   |
|             |               | 235.05 - 235.20: Quartz vein (50° CA)                                                                                                                        |        |        |        |                    |           |                  |                  |                  |                  |                  |   |
|             |               | 239.40 - 239.45: Quartz vein (25° CA)<br>From 232.32 - 252.70: The rock is more competent.                                                                   |        |        |        |                    |           |                  |                  |                  |                  |                  |   |
|             |               | From 252.52 - 252.70. The rock is more competent.                                                                                                            |        |        |        |                    |           |                  |                  |                  |                  |                  |   |
|             |               | 252.30 - 252.40: FAULT (45° CA) and "crackled" rock.                                                                                                         |        |        |        |                    |           |                  |                  |                  |                  |                  |   |
|             |               | 227.00 - 229.00: Py (5%), Cp (0.1%)                                                                                                                          |        |        |        |                    |           |                  |                  |                  |                  |                  |   |
|             |               | 229.00 - 231.00: Py (5%), Cp (?) not observed.                                                                                                               |        |        |        |                    |           |                  |                  |                  |                  |                  |   |
|             |               | 231.00 - 233.00: Py (3-5%), Cp (?) not observed.                                                                                                             |        |        |        |                    |           |                  |                  |                  |                  |                  |   |
|             |               | 233.00 - 235.00: Py (3%), Cp (traces)                                                                                                                        |        |        |        |                    |           |                  |                  |                  |                  |                  |   |
|             |               | 235.00 - 237.00: Py (2-3%), Cp (?) not observed.<br>237.00 - 239.00: Py (2-3%), Cp (?) not observed.                                                         |        |        |        |                    |           |                  |                  |                  |                  |                  |   |
|             |               | 239.00 - 241.00: Py (1-2%), Cp (?) not observed.                                                                                                             |        |        |        |                    |           |                  |                  |                  |                  |                  |   |
|             |               | 241.00 - 243.00: Py (1%), Cp (?) not observed.                                                                                                               |        |        |        |                    |           |                  |                  |                  |                  |                  |   |
|             |               | 242.00 245.00 Pt/(20/) Cp (0.40/)                                                                                                                            |        |        |        |                    |           |                  |                  |                  |                  |                  |   |

252.70 metres: End of hole.

243.00 - 245.00: Py (2%), Cp (0.1%). 245.00 - 247.00: Py (2%), Cp (0.2%). 247.00 - 249.00: Py (2-3%), Cp (0.1-0.2%). 249.00 - 251.00: Py (1-2%), Cp (0.2%). 251.00 - 252.70: Py (2%), Cp (0.1%).

<u>Structure</u>

232.30 - 232.32 FAULT

FLT/65°

252.30 - 252.40 FAULT

FLT/45°

13-Nov-05 4:38:09 PM Page 9 of 10



Azimuth:

Length (m):

Completed:

Started:

Logged:

Dip:

## **Drill Log**

## **Falconbridge Limited**

DDH:

MC-05-04

Project:

**KERR-SULPHURETS** 

Project #: 301

DDH Casing 130

Length (m): 27. Pulled: Oui Plugged: Oui Cemented: Oui

8/30/2005 9/1/2005

9/1/2005

-55

27.40

Core NQ2

Storage: KERR CAMP

Location Coordonnée - UTM

Easting: 422884 6263824 Northing: Elevation: 1545

NAD27 ZN9 Datum:

Claim #:

516251

Intervenant

FALCONBRIDGE Company:

HY-TECH Contractor: Located by: M. SAVELL Method: Handheld GPS

R. NIEMINEN Logged by:

Target:

Comments: Hole abandoned due to difficult terrain; boulders, caving and faulting.

Size:

#### Directional Tests (C=Collar, R=Reflex)

| Distance | Azimuth | Dip    | Туре |
|----------|---------|--------|------|
| 0.00     | 130.00  | -55.00 | С    |
| 8.80     | 126.30  | -54.80 |      |



## Falconbridge Limited

DDH:

MC-05-04

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b> (m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample                                                                                          | from                                                                                        | to                                                                                           | <b>Length</b>                                                     |                                                                                     | <b>Au</b><br>ppb                                                  | <b>Mo</b><br>ppm                                                | <b>Ag</b><br>ppm                                                          | <b>Zn</b><br>ppb                                               | <b>As</b><br>ppm                                               | <b>Sb</b><br>ppm                                         |
|-------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|
| 0.00        | 3.40          | OVERBURDEN (OB) OB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                                                             |                                                                                              |                                                                   |                                                                                     |                                                                   |                                                                 |                                                                           |                                                                |                                                                |                                                          |
| 3.40        | 25.70         | Pintrusive Porphyritic Monzonite Breccia (PMonz) PMONZ/BRX  Highly brecciated and broken-up core. Intrusive breccia (75%) and feldspar porphyritic andesite (?) (25%). Patchy greenish to reddish-brown and slightly beige. Strongly silicified and moderately chloritorized, both somewhat patchy to subpervasive. Limonite is also present throughout. Mineralizations are of: Magnetite (1-2%), disseminated, in fractures and as semi-massive accumulation locally. Pyrite (1-2%), disseminated and within fine fractures. Chalcopyrite (0.1-2%) as fine disseminations and within fine fractures. Sphalerite? (traces) as very fine disseminations. Native copper (traces) very fine and disseminations locally. Malachite (0.5 - 1%) within fractures. Azurite (traces) with the malachite. | 20865<br>20866<br>20867<br>20868<br>20870<br>20871<br>20872<br>20873<br>20874<br>20875<br>20876 | 3.40<br>5.00<br>7.00<br>9.00<br>11.00<br>13.00<br>15.00<br>17.00<br>19.00<br>21.00<br>23.00 | 5.00<br>7.00<br>9.00<br>11.00<br>13.00<br>15.00<br>17.00<br>19.00<br>21.00<br>23.00<br>25.70 | 1.60<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2 | 5889<br>1913<br>1450<br>2505<br>2138<br>2889<br>2947<br>1425<br>1762<br>1081<br>662 | 200<br>120<br>100<br>120<br>100<br>140<br>100<br>90<br>200<br>150 | 340<br>74<br>25<br>13<br>58<br>47<br>23<br>88<br>23<br>63<br>15 | 5.4<br>1.7<br>0.9<br>0.6<br>1.8<br>2.0<br>1.2<br>0.8<br>0.8<br>3.0<br>1.5 | 65<br>59<br>44<br>44<br>66<br>80<br>40<br>32<br>42<br>61<br>55 | 20<br>70<br>25<br>25<br>30<br>25<br>20<br>25<br>20<br>40<br>30 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
|             |               | <ul><li>20.00 - 25.70: Faulted terrain and grinded core.</li><li>25.70 metres: End of hole. Abandoned.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                                                                                             |                                                                                              |                                                                   |                                                                                     |                                                                   |                                                                 |                                                                           |                                                                |                                                                |                                                          |

27.40 (NO CORE) NO CORE 25.70

Page 1 of 1 13-Nov-05 4:41:44 PM



## **Falconbridge Limited**

DDH:

MQ-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

DDH Casing Azimuth: 200 Length (m): 12. Dip: -55 Pulled: Non Length (m): Plugged: 251.50 Oui Started: 8/20/2005 Cemented: Oui Completed: 8/23/2005 Core Logged: 8/24/2005

Size: NQ2

Storage: KERR CAMP

Location

Coordonnée - UTM

 Easting:
 423183

 Northing:
 6261869

 Elevation:
 1045

Datum: NAD27 ZN9

Claim #: 516253

Intervenant

Company: FALCONBRIDGE

Contractor: HY-TECH
Located by: M. SAVELL
Method: Handheld GPS
Logged by: R. NIEMINEN

Target: CU-AU PORPHYRY

Comments: NOTE: M. Savell did the logging from 64.40 to 109.3 metres

#### Directional Tests (C=Collar, R=Reflex)

| Distance | Azimuth | Dip    | Туре |
|----------|---------|--------|------|
| 0.00     | 200.00  | -55.00 | С    |
| 21.00    | 200.20  | -53.80 | R    |
| 103.30   | 203.30  | -53.30 | R    |
| 242.00   | 205.10  | -52.80 | R    |



## Falconbridge Limited

DDH:

MQ-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample                                                                        | from                                                                          | to                                                                            | <b>Length</b>                                                     | Cu<br>ppm (ICP)                                                     | <b>Au</b><br>ppb                                        | <b>Мо</b><br>ррт                            | <b>Ад</b><br>ррт                                            | <b>Zn</b><br>ppb                                      | As<br>ppm                                              | <b>Sb</b><br>ppm                             |
|-------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|
| 0.00        | 7.00             | OVERBURDEN (OB) OB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |                                                                               |                                                                               |                                                                   |                                                                     |                                                         |                                             |                                                             |                                                       |                                                        |                                              |
| 7.00        | 9.00             | DIORITE (DIOR) DIOR  FELDSPAR PORPHYRITIC DIORITE (ANDESITE) This rock is medium green, homogeneous, massive and porphyritic with white automorphous feldspars (1-2mm / 5%). I think this is a contact metamorphosed andesite from the presence of (1-3mm / 1%) of amygdules (Qz, Ep) and the somewhat fine grain texture.  7.00 - 7.20: Silicified breccia. Boulder (?).                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10120                                                                         | 7.00                                                                          | 10.30                                                                         | 3.30                                                              | 51                                                                  | 15                                                      | 1                                           | 0.1                                                         | 67                                                    | 10                                                     | 2                                            |
| 9.00        | 31.20            | DIORITE (DIOR) DIOR/HBRX  HYDROTHERMAL BRECCIA This breccia has the appearence of a andesitic flow breccia. This breccia is intruded by quartz veins (1%) and is altered by strong sub-pervasive silica (silica flooding) turning the rock to a light greyish color. Sericite is also present following fractures and crossing to the wallrock giving it a light green bleached look. Dark green color is also present highlighting the brecciated texture. The breccia holds PYRITE (2%) and traces of CHALCOPYRITE, ARSENOPYRITE (at 29.70m.), MALACHITE and locally some SPHALERITE (black jack? At 29.80m.). These mineralizations are mostly within fractures with little disseminations. The lower contact is (65° CA) and sharp.  17.10 - 18.20: Massive diorite (andesite). Sharp upper contact at (35° CA), lower contact is all broken-up. | 10200<br>10121<br>10122<br>10123<br>10124<br>10125<br>10126<br>10127<br>10128 | 10.30<br>16.00<br>18.00<br>20.00<br>22.00<br>24.00<br>26.00<br>28.00<br>30.00 | 16.00<br>18.00<br>20.00<br>22.00<br>24.00<br>26.00<br>28.00<br>30.00<br>32.00 | 5.70<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2 | 839<br>3428<br>1582<br>1631<br>3585<br>3350<br>4391<br>3472<br>3111 | 30<br>90<br>90<br>60<br>170<br>210<br>420<br>290<br>170 | 4<br>4<br>1<br>6<br>9<br>3<br>13<br>7<br>57 | 0.9<br>2.5<br>1.1<br>1.1<br>2.5<br>2.5<br>2.8<br>3.5<br>3.3 | 89<br>83<br>43<br>47<br>120<br>124<br>41<br>191<br>77 | 30<br>40<br>55<br>40<br>100<br>100<br>65<br>280<br>465 | 10<br>10<br>2<br>2<br>2<br>10<br>5<br>2<br>5 |
| 31.20       | 64.20            | DIORITE (DIOR) DIOR  MASSIVE FELDSPAR PORPHYRITIC DIORITE (Andesite). Same as above (7.00 - 9.00m.).  32.55 - 33.20: FAULT ZONE: from 32.55 - 32.56: Fault (30°CA) and sandy mud.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10129<br>10130<br>10132<br>10133<br>10134<br>10135<br>10136                   | 32.00<br>34.00<br>36.00<br>38.00<br>40.00<br>42.00<br>44.00                   | 34.00<br>36.00<br>38.00<br>40.00<br>42.00<br>44.00<br>46.00                   | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00      | 67<br>46<br>44<br>1878<br>473<br>41<br>125                          | 15<br>15<br>15<br>60<br>40<br>15                        | 1<br>1<br>1<br>5<br>1<br>1                  | 0.2<br>0.2<br>0.1<br>3.2<br>0.8<br>0.1                      | 72<br>65<br>69<br>98<br>85<br>67<br>65                | 25<br>20<br>10<br>85<br>40<br>10<br>25                 | 5<br>2<br>5<br>5<br>10<br>10<br>2            |



## Falconbridge Limited

DDH:

MQ-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b> (m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample                                                      | from                                                        | to                                                          | <b>Length</b>                                        | Cu<br>ppm (ICP)                                 | <b>Au</b><br>ppb                   | <b>Mo</b><br>ppm              | <b>Ад</b><br>ррт                              | <b>Zn</b><br>ppb                       | <b>As</b><br>ppm                       | <b>Sb</b><br>ppm                      |
|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|------------------------------------|-------------------------------|-----------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|
|             |               | From 32.65 - 33.20: Fault (10° CA) and sandy mud. This fault is sub-parallel to core axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10137<br>10138                                              | 46.00<br>48.00                                              | 48.00<br>50.00                                              | 2.00<br>2.00                                         | 33<br>33                                        | 15<br>15                           | 1<br>1                        | 0.1<br>0.1                                    | 69<br>69                               | 15<br>15                               | 5<br>5                                |
|             |               | 39.35 - 40.20: Hydrothermal veins/silica flooding. Strong silica. Epidote (3%) following fine fractures. PYRITE (5%) and traces of CHALCOPYRITE as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10139<br>10140                                              | 50.00<br>52.00                                              | 52.00<br>54.00                                              | 2.00<br>2.00                                         | 31<br>38                                        | 15<br>15                           | 1<br>1                        | 0.1<br>0.1                                    | 72<br>69                               | 10<br>10                               | 2<br>2                                |
|             |               | disseminations and within fractures. Upper contact (35° CA) and lower at (55° CA) both quite sharp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10141<br>10142                                              | 54.00<br>56.00                                              | 56.00<br>58.00                                              | 2.00                                                 | 28<br>145                                       | 15<br>15                           | 7                             | 0.1                                           | 61<br>63                               | 10<br>20                               | 50<br>10                              |
|             |               | 40.20 - 57.80: Massive diorite/andesite, amygdules (1%, 2-3mm/Qz-Ep). Epidote (1%) within amygdules and in fine fractures affecting the wallrock. Possible faulting at 47.10 - 47.20m.; possibly drilling induced.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10143<br>10144<br>10145                                     | 58.00<br>60.00<br>62.00                                     | 60.00<br>62.00<br>64.00                                     | 2.00<br>2.00<br>2.00                                 | 809<br>760<br>25                                | 50<br>40<br>15                     | 2<br>1<br>1                   | 1.6<br>1.7<br>0.1                             | 124<br>54<br>47                        | 220<br>430<br>20                       | 2<br>2<br>10                          |
|             |               | 57.80 - 61.10: HYDROTHERMAL SILICA/QUARTZ VEINING. From the lower contact, the "vein" is massive quartz (59.80 - 61.10m) and is gradually tapering off towards the upper contact where it affects the porphyritic rocks in a more pervasive fashion and slightly overpriting the feldspar porphytic texture.  PYRITE (1%) with traces of CHALCOPYRITE as disseminations and within fractures.  Upper contact gradual at (35° CA) and lower contact is very sharp at (80° CA). From 58.39 - 58.40: Calcite vein (80° CA) that holds PYRITE (2%) and coarse brownish-red SPHALERITE CRYSTALS (0.5%; max. size 8mm).  61.10 - 64.20: Massive diorite/Andesite (same as above). Epidote (2%) affecting wallrock of fine fractures. |                                                             |                                                             |                                                             |                                                      |                                                 |                                    |                               |                                               |                                        |                                        |                                       |
| 64.20       | 67.9          | D HYDROTHERMAL BRECCIA (HBRX) DIOR/HBRX  QUARTZ-SULFIDE HYDROTHERMAL BRECCIA 70% pale grey, aphanitic quartz, 25% silicified wall rock fragments, 5-10% pyrite as disseminations, clots, and ragged veinlets, tr. cpy. Cut by late milky white quartz veinlets and a few later calcite veinlets. Wall rock fragments are preferentially pyritized. Lower contact sharp at 40deg to CA.                                                                                                                                                                                                                                                                                                                                         | 10146<br>10148                                              | 64.00<br>66.00                                              | 66.00<br>68.00                                              | 2.00<br>2.00                                         | 1513<br>1786                                    | 100<br>150                         | 12<br>17                      | 2.6<br>2.6                                    | 45<br>55                               | 70<br>105                              | 10<br>2                               |
| 67.90       | 91.70         | D SILICIFIED DIORITE (DIOR) DIOR  SILICIFIED DIORITE OR FINE ANDESITIC PORPHYRY Pale grey-green, (bleached due to variable silicification), fine grained diorite or andesitic porphyry, mafics altered to pale, waxy green chlorite and/or sericite, occasional unaltered plagioclase phenocrysts in areas of minimal silicification. Cut by irregular network or stockwork of pale milky grey quartz                                                                                                                                                                                                                                                                                                                          | 10149<br>10150<br>10151<br>10152<br>10153<br>10155<br>10156 | 68.00<br>70.00<br>72.00<br>74.00<br>76.00<br>78.00<br>80.00 | 70.00<br>72.00<br>74.00<br>76.00<br>78.00<br>80.00<br>82.00 | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 2000<br>995<br>845<br>921<br>1747<br>601<br>483 | 160<br>50<br>70<br>50<br>120<br>40 | 18<br>12<br>9<br>5<br>15<br>2 | 3.9<br>1.7<br>1.3<br>1.1<br>1.5<br>0.6<br>0.6 | 59<br>60<br>40<br>30<br>30<br>36<br>29 | 70<br>20<br>30<br>35<br>70<br>35<br>55 | 10<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |



DDH: Project: MQ-05-01

t: KERR-SULPHURETS

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                        | Sample | from   | to     | <b>Length</b><br>m | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | veinlets, wormy to blotchy, typically shallow angles to CA. Thicker veinlets                                                                       | 10157  | 82.00  | 84.00  | 2.00               | 895             | 50               | 9                | 0.8              | 27               | 110              | 2                |
|             |                  | contain silicified wall rock fragments. 3-5% disseminated and veinlet pyrite, tr.                                                                  | 10158  | 84.00  | 86.00  | 2.00               | 548             | 80               | 4                | 8.0              | 72               | 325              | 2                |
|             |                  | cpy, more abundant in areas of heavier quatz veining. Late calcite veinlets and blotches sometimes with cpy.                                       | 10159  | 86.00  | 88.00  | 2.00               | 333             | 310              | 4                | 0.9              | 15               | 880              | 2                |
|             |                  | 67.9 - 71.5: 60% quartz veins                                                                                                                      | 10160  | 88.00  | 90.00  | 2.00               | 316             | 200              | 4                | 0.7              | 17               | 860              | 2                |
|             |                  | 71.5 - 76.5: 20% quartz veins<br>76.5 - 86.2: 5% quartz veins<br>86.2 - 91.7: 20-% quartz veins                                                    | 10161  | 90.00  | 92.00  | 2.00               | 330             | 230              | 7                | 1.0              | 24               | 1435             | 15               |
| 91.70       | 93.60            | HYDROTHERMAL BRECCIA (HBRX) DIOR/HBRX/QZ/PY                                                                                                        | 10162  | 92.00  | 94.00  | 2.00               | 472             | 220              | 13               | 1.4              | 34               | 1095             | 40               |
|             |                  | QUARTZ-SULFIDE HYDROTHERMAL BRECCIA<br>Same as 64.2 - 67.9m<br>Py (3-5%), Cp (0.1%).                                                               |        |        |        |                    |                 |                  |                  |                  |                  |                  |                  |
| 93.60       | 251.50           | ANDESITE (AND)                                                                                                                                     | 10163  | 94.00  | 96.00  | 2.00               | 447             | 50               | 4                | 0.8              | 53               | 695              | 2                |
|             |                  | AND/SI                                                                                                                                             | 10164  | 96.00  | 98.00  | 2.00               | 954             | 60               | 9                | 1.3              | 66               | 610              | 2                |
|             |                  |                                                                                                                                                    | 10165  | 98.00  | 100.00 | 2.00               | 3726            | 280              | 6                | 3.1              | 112              | 350              | 2                |
|             |                  | STRONGLY SILICIFIED ANDESITE                                                                                                                       | 10167  | 100.00 | 102.00 | 2.00               | 595             | 50               | 16               | 0.6              | 72               | 135              | 2                |
|             |                  | Quartz stockwork (10%) and strongly silicified wallrocks.  The rocks are medium green, fine grained. The textures are mostly brecciated            | 10168  | 102.00 | 104.00 | 2.00               | 1768            | 160              | 13               | 1.6              | 78               | 30               | 2                |
|             |                  | with minor massive portions that can show porphyries of dark green "lathed"                                                                        | 10169  | 104.00 | 106.00 | 2.00               | 2022            | 160              | 11               | 1.8              | 76               | 40               | 2                |
|             |                  | minerals (possibly chloritorized feldspars). Others observed textures, within                                                                      | 10170  | 106.00 | 108.00 | 2.00               | 748             | 40               | 8                | 0.8              | 34               | 45               | 2                |
|             |                  | the brecciated horizons, are very similar to pillow fragments (pillow breccia                                                                      | 10171  | 108.00 | 110.00 | 2.00               | 1168            | 50               | 35               | 1.0              | 24               | 55               | 2                |
|             |                  | textures) with "triple jointing" contacts. No clear pillows are defined but partial                                                                | 10172  | 110.00 | 112.00 | 2.00               | 2589            | 160              | 3                | 1.6              | 32               | 45               | 2                |
|             |                  | edges (with or without radiating amygdules). For me, these rocks are more andesites than diorites however some possible dykes can be present. (see | 10173  | 112.00 | 114.00 | 2.00               | 2081            | 60               | 41               | 1.2              | 35               | 30               | 2                |
|             |                  | below for details).                                                                                                                                | 10174  | 114.00 | 116.00 | 2.00               | 2151            | 60               | 219              | 1.2              | 34               | 40               | 2                |
|             |                  | below for details).                                                                                                                                | 10175  | 116.00 | 118.00 | 2.00               | 2212            | 90               | 60               | 2.9              | 48               | 130              | 2                |
|             |                  | 93.6 - 104: 35% quartz veinlets                                                                                                                    | 10176  | 118.00 | 120.00 | 2.00               | 2353            | 100              | 48               | 3.1              | 46               | 125              | 2                |
|             |                  | 107.00 - 113.00: Massive, porphyritic (10% / 1-3mm, dark green feldspars                                                                           | 10177  | 120.00 | 122.00 | 2.00               | 1577            | 60               | 24               | 2.2              | 30               | 140              | 2                |
|             |                  | (?)). Quartz-calcite veining (3%). Weak scistosity at (50° CA), aligned lathes.                                                                    | 10178  | 122.00 | 124.00 | 2.00               | 1257            | 110              | 22               | 1.0              | 28               | 45               | 2                |
|             |                  | 113.00 - 121.00: Andesite pillow breccia (?). Chloritorized (weak to moderate)                                                                     | 10179  | 124.00 | 126.00 | 2.00               | 2051            | 110              | 2                | 2.5              | 32               | 55               | 2                |
|             |                  | and locally strong sericitized matrix. Quartz-calcite veining (3-5%). PYRITE (3%) and CHALCOPYRITE (0.1%) as stringers, fine disseminations and    | 10180  | 126.00 | 128.00 | 2.00               | 971             | 80               | 7                | 1.7              | 30               | 95               | 2                |
|             |                  | locally within possible amygdules (1mm).                                                                                                           | 10181  | 128.00 |        | 2.00               | 876             | 50               | 2                | 0.9              | 34               | 70               | 2                |
|             |                  | 121.00 - 126.00: Massive and porphyritic (dark green Fp). Quartz-calcite                                                                           | 10183  | 130.00 |        | 2.00               | 1931            | 230              | 8                | 1.6              | 70               | 65               | 2                |
|             |                  | veining (1%). PYRITE (1%) as disseminations and some very fine veins.                                                                              | 10184  | 132.00 |        | 2.00               | 2872            | 210              | 10               | 2.1              | 89               | 80               | 2                |
|             |                  | 126.00 - 127.00: Strongly silicified hydrothermal breccia. Quartz stockwerk                                                                        | 10185  | 134.00 |        | 2.00               | 2048            | 220              | 7                | 1.8              | 91               | 80               | 2                |
|             |                  | (10%) and calcite veining (1%). Brassy pyrite (2%) as fine veinlets.                                                                               | 10186  | 136.00 |        | 2.00               | 1905            | 240              | 27               | 1.3              | 50               | 75               | 2                |
|             |                  | 127.00 - 131.00: Massive and porphyritic (as above). Quartz vein stockwerk (2%). Pyrite (2%) with fine calcite veins, traces of chalcopyrite.      | 10187  | 138.00 |        | 2.00               | 2337            | 310              | 11               | 2.4              | 160              | 275              | 330              |

13-Nov-05 4:57:20 PM



DDH:

MQ-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                   | Sample | from   | to     | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | 131.00 - 133.40: Massive and porphyritic (as above). Quartz vein stockwerk                                                                                    | 10188  | 140.00 | 142.00 | 2.00          | 2607            | 350              | 2                | 2.3              | 82               | 80               | 2                |
|             |                  | (10%). Pyrite (5%) associated with veining and some disseminations,                                                                                           | 10190  | 142.00 | 144.00 | 2.00          | 3324            | 690              | 4                | 2.7              | 125              | 90               | 2                |
|             |                  | chalcopyrite (traces to locally 0.2%) in quartz veins.                                                                                                        | 10191  | 144.00 | 146.00 | 2.00          | 1648            | 250              | 7                | 1.6              | 78               | 45               | 2                |
|             |                  | 133.40 - 135.50: Massive and porphyritic (as above). Quartz veining (0.5%) and calcite (1%). Pyrite (0.5%) and traces of chalcopyrite all within fine calcite | 10192  | 146.00 | 148.00 | 2.00          | 722             | 150              | 16               | 1.7              | 43               | 310              | 2                |
|             |                  | veinlets.                                                                                                                                                     | 10193  | 148.00 | 150.00 | 2.00          | 1031            | 190              | 12               | 2.1              | 66               | 145              | 2                |
|             |                  | 135.50 - 140.10: Strongly and sub-pervasively silicified pillow breccia (?).                                                                                  | 10194  | 150.00 | 152.00 | 2.00          | 1600            | 260              | 17               | 2.0              | 84               | 85               | 2                |
|             |                  | Locallized strong beige sericite alterations. Quartz veining (2%). Pyrite (3%)                                                                                | 10195  | 152.00 | 154.00 | 2.00          | 2449            | 410              | 14               | 2.2              | 94               | 45               | 5                |
|             |                  | and traces of chalcopyrite as stringers.                                                                                                                      | 10196  | 154.00 | 156.00 | 2.00          | 2229            | 470              | 18               | 1.5              | 82               | 385              | 30               |
|             |                  | 140.10 - 145.90: Massive and aphyric andesite. Rare white feldspars.  Moderately and pervasively silicified. Calcite veinlets (2%) and quartz veining         | 10197  | 156.00 | 158.00 | 2.00          | 2274            | 370              | 3                | 1.8              | 61               | 350              | 2                |
|             |                  | (1%). Pyrite (1%) and traces of chalcopyrite.                                                                                                                 | 10198  | 158.00 | 160.00 | 2.00          | 502             | 90               | 1                | 0.6              | 48               | 30               | 2                |
|             |                  | 145.90 - 157.00: Strongly and sub-pervasively silicified andesitic pillow                                                                                     | 10199  | 160.00 | 162.00 | 2.00          | 1698            | 150              | 4                | 2.0              | 63               | 770              | 10               |
|             |                  | breccia (?). Weakly sericitized bleaching the rocks to a light green. Pyrite                                                                                  | 10202  | 162.00 | 164.00 | 2.00          | 2421            | 140              | 4                | 2.3              | 51               | 440              | 2                |
|             |                  | (2%) and traces of chalcopyrite as stringers and some disseminations. Traces                                                                                  | 10203  | 164.00 | 166.00 | 2.00          | 1329            | 200              | 4                | 1.1              | 32               | 1630             | 25               |
|             |                  | of malachite between (148.00 - 154.00m).                                                                                                                      | 10204  | 166.00 | 168.00 | 2.00          | 2170            | 180              | 4                | 2.0              | 74               | 475              | 2                |
|             |                  | 457.00 400.40 Madematak ta atau ak a "a" ada a a a a a a a a a a a a a a a                                                                                    | 10205  | 168.00 | 170.00 | 2.00          | 2070            | 190              | 1                | 1.8              | 67               | 130              | 2                |
|             |                  | 157.00 - 189.40: Moderately to strongly silicified massive to brecciated                                                                                      | 10206  | 170.00 | 172.00 | 2.00          | 1145            | 190              | 4                | 1.2              | 51               | 225              | 2                |
|             |                  | andesite. Medium to light green, fine grained, rare amygdules (Qz-Ep).  Weakly to moderately and locallized chloritizations that are overprinted by           | 10207  | 172.00 | 174.00 | 2.00          | 1959            | 210              | 5                | 2.1              | 58               | 135              | 5                |
|             |                  | silica. Pyrite (2%) and traces of chalcopyrite as stringers and disseminations.                                                                               | 10208  | 174.00 | 176.00 | 2.00          | 2766            | 150              | 5                | 2.6              | 32               | 240              | 2                |
|             |                  | Quartz vein stockwerk (5-7%, up to 10cm wide) and calcite veinlets (traces to                                                                                 | 10209  | 176.00 | 178.00 | 2.00          | 3121            | 230              | 6                | 3.0              | 56               | 185              | 15               |
|             |                  | 1%).                                                                                                                                                          | 10210  | 178.00 | 180.00 | 2.00          | 2445            | 330              | 4                | 1.9              | 55               | 30               | 2                |
|             |                  | FAULT (80° CA) at 154.30 - 154.31, with whitish-beige mud and fragments.                                                                                      | 10211  | 180.00 | 182.00 | 2.00          | 3314            | 220              | 7                | 2.0              | 53               | 25               | 2                |
|             |                  | 400 40 400 00 Massive and fine arrained and site Madium arrang Calaita                                                                                        | 10212  | 182.00 | 184.00 | 2.00          | 4454            | 180              | 6                | 2.8              | 54               | 365              | 2                |
|             |                  | 189.40 - 199.00: Massive and fine grained andesite. Medium green. Calcite veinlets (1%) and quartz vein stockwerk (0.5 to 1%). Weakly silicified. Pyrite      | 10213  | 184.00 | 186.00 | 2.00          | 6922            | 380              | 12               | 3.9              | 62               | 165              | 2                |
|             |                  | (0.5 to 1%) and traces of chalcopyrite with veining.                                                                                                          | 10214  | 186.00 | 188.00 | 2.00          | 3181            | 290              | 1                | 1.9              | 74               | 35               | 2                |
|             |                  | 199.00 - 212.00: Massive andesite intruded by strong quartz vein stockwerk                                                                                    | 10215  | 188.00 | 190.00 | 2.00          | 2974            | 390              | 4                | 1.9              | 74               | 30               | 2                |
|             |                  | (10%) with some more intense intervals (under a metre) where the                                                                                              | 10216  | 190.00 |        | 2.00          | 2016            | 110              | 2                | 1.0              | 42               | 25               | 2                |
|             |                  | silicification is more pervasive in nature. Calcite veinlets account for (2-3%).                                                                              | 10218  | 192.00 |        | 2.00          | 1966            | 120              | 1                | 1.8              | 62               | 35               | 2                |
|             |                  | Pyrite (2-3%) and traces of chalcopyrite as fine veinlets, aggregates and                                                                                     | 10219  | 194.00 |        | 2.00          | 2088            | 120              | 5                | 2.1              | 56               | 45               | 2                |
|             |                  | disseminations. 212.00 - 216.00: Massive, fine grained, medium to dark green andesite.                                                                        | 10220  | 196.00 | 198.00 | 2.00          | 2387            | 170              | 2                | 1.6              | 76               | 50               | 2                |
|             |                  | Moderately and pervasively chloritorized. Traces of epidote. Quartz veining                                                                                   | 10221  | 198.00 |        | 2.00          | 2852            | 270              | 2                | 2.1              | 97               | 35               | 2                |
|             |                  | (2%). Pyrite (1-2%) as aggregate within the veins.                                                                                                            | 10222  | 200.00 |        | 2.00          | 2314            | 120              | 4                | 2.0              | 73               | 45               | 2                |
|             |                  | 216.00 - 231.00: Massive andesite, moderately to strongly silicified in part                                                                                  | 10223  | 202.00 |        | 2.00          | 2304            | 160              | 8                | 3.8              | 84               | 100              | 35               |
|             |                  | pervasive. Quartz vein stockwerk (5-7%). Fine calcite veinlets (1-2%). Pyrite                                                                                 | 10225  | 204.00 |        | 2.00          | 1501            | 120              | 9                | 1.4              | 55               | 135              | 2                |
|             |                  | (2-3%) as veinlets and some disseminations, traces of chalcopyrite.                                                                                           | 10226  | 206.00 |        | 2.00          | 1756            | 130              | 6                | 1.3              | 48               | 155              | 2                |
|             |                  | 224 00 OF4 FOLCTDONICLY CHICKETED MACCONE AND ECITE.                                                                                                          | 10227  | 208.00 |        | 2.00          | 2308            | 230              | 8                | 1.9              | 44               | 60               | 2                |
|             |                  | 231.00 - 251.50: STRONGLY SILICIFIED MASSIVE ANDESITE: from 237.80 - 238.80: massive quartz vein (45° CA). Pyrite (3%) as fracture                            | 10228  | 210.00 |        | 2.00          | 1491            | 120              | 12               | 1.0              | 38               | 45               | 2                |
|             |                  | filling, within the vein and some disseminations. Upper contact at (45° CA)                                                                                   | 10229  | 212.00 |        | 2.00          | 2536            | 270              | 4                | 1.5              | 95               | 30               | 35               |
|             |                  | and lower somewhat gradual but around (50° CA).                                                                                                               | 10230  | 214.00 |        | 2.00          | 3530            | 340              | 6                | 2.2              | 76               | 55               | 2                |
|             |                  | From 239.90 - 240.10: FELSIC FELDSPAR PORPHYRY DYKE. Highly siliceous and irregular dyke. Feldspars (2-3mm / 3-5%) white and diffused.                        | 10230  | 216.00 |        | 2.00          | 1636            | 110              | 8                | 0.9              | 42               | 160              | 2                |

13-Nov-05 4:57:20 PM



## **Falconbridge Limited**

DDH:

MQ-05-01

Project:

**KERR-SULPHURETS** 

**Project #:** 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                         | Sample | from   | to     | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ррт | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | Pyrite (1%), chalcopyrite (0.2%; splashes) as fracture filling within the dyke.                                                                                                     | 10232  | 218.00 | 220.00 | 2.00          | 2359            | 460              | 9                | 1.9              | 71               | 1695             | 15               |
|             |                  | From 240.10 - 241.85: Silicified andesite. Pyrite (2%) as fine stringers (45°                                                                                                       | 10233  | 220.00 | 222.00 | 2.00          | 2105            | 440              | 7                | 2.0              | 43               | 1470             | 10               |
|             |                  | CA, average).                                                                                                                                                                       | 10234  | 222.00 | 224.00 | 2.00          | 1179            | 120              | 5                | 0.9              | 43               | 220              | 2                |
|             |                  | 241.85 - 242.90: FELSIC FELDSPAR PORPHYRY DYKE. Massive, whitish. Pyrite (1%) as fine veinlets within fractures. Upper contact (10° CA) and lower                                   | 10235  | 224.00 | 226.00 | 2.00          | 1586            | 110              | 5                | 1.0              | 40               | 360              | 2                |
|             |                  | (20° CA).                                                                                                                                                                           | 10237  | 226.00 | 228.00 | 2.00          | 2032            | 190              | 7                | 1.2              | 52               | 465              | 2                |
|             |                  | (25 5) ().                                                                                                                                                                          | 10238  | 228.00 | 230.00 | 2.00          | 1923            | 190              | 7                | 1.5              | 71               | 385              | 2                |
|             |                  | 242.90 - 246.90: Pervasive and strongly silicified massive and fine grained                                                                                                         | 10239  | 230.00 | 232.00 | 2.00          | 1719            | 270              | 9                | 1.4              | 46               | 495              | 2                |
|             |                  | andesite. Quartz vein (3%) and calcite veinlets (2%). Generally the pyrite                                                                                                          | 10240  | 232.00 | 234.00 | 2.00          | 1334            | 240              | 15               | 1.1              | 33               | 335              | 2                |
|             |                  | accounts for (3%) with traces of chalcopyrite and malachite.                                                                                                                        | 10241  | 234.00 | 236.00 | 2.00          | 1593            | 190              | 11               | 1.3              | 36               | 405              | 2                |
|             |                  | From: 243.30 - 244.00: PYRITE (3%), CHALCOPYRITE (0.5%) all within                                                                                                                  | 10242  | 236.00 | 238.00 | 2.00          | 1813            | 190              | 10               | 1.2              | 56               | 105              | 2                |
|             |                  | quartz veins and fine fractures.                                                                                                                                                    | 10243  | 238.00 | 240.00 | 2.00          | 638             | 70               | 11               | 0.3              | 15               | 85               | 2                |
|             |                  | 246.90 - 247.00: FAULT (?) "slip" (45° CA).                                                                                                                                         | 10244  | 240.00 | 242.00 | 2.00          | 2405            | 170              | 8                | 1.4              | 65               | 70               | 2                |
|             |                  | 247.00 - 248.30: PYRITE (3-5%), CHALCOPYRITE (0.5%), MOLYBDENUM                                                                                                                     | 10245  | 242.00 | 244.00 | 2.00          | 1657            | 150              | 8                | 1.3              | 37               | 105              | 2                |
|             |                  | (traces), associated with quartz to intrusive veining and fracture filling. Quartz                                                                                                  | 10246  | 244.00 | 246.00 | 2.00          | 2278            | 200              | 8                | 1.8              | 75               | 365              | 2                |
|             |                  | stockwerk (10-15%).                                                                                                                                                                 | 10247  | 246.00 | 248.00 | 2.00          | 4182            | 280              | 8                | 3.6              | 297              | 440              | 20               |
|             |                  | 248.30 - 248.90: FELSIC FELDSPAR PORPHYRY DYKE. Massive. The white                                                                                                                  | 10248  | 248.00 | 250.00 | 2.00          | 2418            | 240              | 4                | 15.0             | 141              | 265              | 145              |
|             |                  | feldspars (2-4mm / 10%) are automorphic but diffused. Pyrite (2-3%) as disseminations and fracture filling. Upper contact (15° CA) and lower is gradual.                            | 10249  |        | 251.50 | 1.50          | 2282            | 230              | 7                | 26.4             | 122              | 190              | 185              |
|             |                  | 248.90 - 250.70: Highly silicified (pervasive) andesite. Massive, fine grain and medium green. Pyrite (2%), chalcopyrite (traces) as fine disseminations and within fine fractures. |        |        |        |               |                 |                  |                  |                  |                  |                  |                  |

250.70 - 251.50: Sub-parallel to core axis FAULT and calcite veinlet. Some mud fault. Pyrite (1-2%) as above.

251.50 metres: End of hole.

within fine fractures.

13-Nov-05 4:57:20 PM Page 5 of 5



## **Falconbridge Limited**

DDH:

NM-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

DDH Casing Azimuth: 155 Length (m): 4.6 Pulled: Dip: -80 Non Length (m): Plugged: 293.20 Oui Started: 7/27/2005 Cemented: Oui Completed: 7/29/2005 Core Logged: 7/30/2005

Size: NQ2

Storage: KERR CAMP

Location

Coordonnée - UTM

 Easting:
 422778

 Northing:
 6266076

 Elevation:
 1350

 Datum:
 NAD27 ZN9

**Claim #:** 516242

Intervenant

Company: FALCONBRIDGE

Contractor: HY-TECH
Located by: A. HUARD
Method: Handheld GPS
Logged by: S. LAPOINTE

Target:

Cu-Au Porphyry

Comments:

#### Directional Tests (C=Collar, R=Reflex)

| Distance | Azimuth | Dip    | Type |
|----------|---------|--------|------|
| 0.00     | 155.00  | -80.00 | С    |
| 5.80     | -       | -80.20 | R    |
| 152.10   | 159.10  | -78.60 | R    |



## Falconbridge Limited

DDH:

NM-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b> (m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample                           | from                             | to                               | <b>Length</b><br>m           | <b>Cu</b><br>ppm (ICP)       | <b>Au</b><br>ppb         | <b>Мо</b><br>ppm     | <b>Ag</b><br>ppm         | <b>Zn</b><br>ppb     | <b>As</b><br>ppm    | <b>Sb</b><br>ppm |
|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------|------------------------------|--------------------------|----------------------|--------------------------|----------------------|---------------------|------------------|
| 0.00        | 4.60          | CASING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                                  |                                  |                              |                              |                          |                      |                          |                      |                     |                  |
| 4.60        | 23.40         | INTERMEDIATE INTRUSIVE (?) (I2) I2/DYKP/(SI)/7-8% PY,TR MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67907<br>67908                   | 4.90<br>6.90                     | 6.90<br>8.90                     | 2.00<br>2.00                 | 1183<br>685                  | 120<br>60                | 75<br>35             | 0.8<br>0.5               | 32<br>31             | 2<br>5              | 2 2              |
|             |               | Slightly greenish medium grey, very fine grained massive rock. Non magnetic. Contain 2-3% chloritized anhedral mafic mineral phenocryss (<8 mm long).                                                                                                                                                                                                                                                                                                                                                                                            | 67909<br>67910<br>67911          | 8.90<br>10.90<br>12.90           | 10.90<br>12.90<br>14.90          | 2.00<br>2.00<br>2.00         | 1642<br>1406<br>1180         | 90<br>60<br>40           | 45<br>32<br>40       | 0.6<br>0.3<br>0.3        | 35<br>31<br>19       | 2 2 2               | 2<br>2<br>2      |
|             |               | Some of those seem to be more fragments than crysts.  Alteration: Pervasive weak silicification and perhaps very weak pervasive phyllic that gives to the roch his greenish tint. Also few sericite veinlets and in fracture cleavage. About 4 to 5% Qz and white, locally orange Cc                                                                                                                                                                                                                                                             | 67912<br>67913<br>67914          | 14.90<br>16.90<br>18.90          | 16.90<br>18.90<br>20.90          | 2.00<br>2.00<br>2.00         | 1314<br>1053<br>1228         | 60<br>30<br>30           | 61<br>48<br>45       | 0.6<br>0.9<br>1.1        | 30<br>22<br>24       | 2<br>10<br>5        | 2<br>2<br>2      |
|             |               | veins/veinlets. Some purple Qz was noted. Spacing irregular but around 10 cm when it has veins and directionof about 40 to 45 deg relative to C/A. Mineralization: 7-8% fine grained Py almost essentially as disseminations. Some rare Py in Qz veins and some in fracture cleavages. Traces of malachite in the first 6 meters of the unit. No direct observation of Cp. Lower contact: oullined by a shear zone developped in the unit below (banded and foliated rock; C/A=30 deg)) and by the contrasting colour and texture of the latter. | 67915<br>67916                   | 20.90 22.10                      | 22.10<br>23.40                   | 1.20<br>1.30                 | 1124<br>1124                 | 340<br>60                | 48<br>49             | 1.2                      | 22 29                | 10<br>5             | 2 2              |
|             |               | <ul><li>4.6-4.9: Rounded pebbles (overburden)</li><li>4.6-9.1: Very badly broken and rusty (iron oxyde orange staining) rock.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                                  |                                  |                              |                              |                          |                      |                          |                      |                     |                  |
|             |               | 17.7: 3 cm thick shear zone with few slightly salmon Cc veins (C/A=40 deg).                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                  |                                  |                              |                              |                          |                      |                          |                      |                     |                  |
| 23.40       | 78.70         | WEAK PROPYLLITIC ZONE<br>MT/(PP),(SI)/4% PY, TR CP+ MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67917<br>67919                   | 23.40 24.40                      | 24.40<br>26.40                   | 1.00                         | 1333<br>2873                 | 120<br>170               | 26<br>65             | 0.8                      | 57<br>38             | 25<br>10            | 2 2              |
|             |               | Dark green locally greyish aphyric massive rock. Non magnetic to locally, weaklly magnetic Some badly defined white Fp phenocrysyts are still visible locally; a porphyritic or granophyric intrusive is probably the protolith.  Alteration: The unit is considered pervasively weakly propyllitic altered                                                                                                                                                                                                                                      | 67920<br>67921<br>67922<br>67923 | 26.40<br>28.40<br>30.40<br>32.40 | 28.40<br>30.40<br>32.40<br>34.40 | 2.00<br>2.00<br>2.00<br>2.00 | 3873<br>3662<br>2884<br>3176 | 190<br>170<br>180<br>260 | 87<br>49<br>70<br>48 | 1.7<br>1.7<br>1.8<br>2.2 | 57<br>61<br>53<br>79 | 10<br>5<br>10<br>15 | 2<br>2<br>2<br>2 |
|             |               | intrusive by its fair chlorite content. There is also a weak pervasive silicification It is cut by several generations of white Qz and/or white to salmon pink Cc veins and veinlets. (6-7%). Their mean spacing is between 20 to 30 cm. Their direction is quite variable and varies between 15 and 70 deg relative to C/A.                                                                                                                                                                                                                     | 67924<br>67925<br>67926<br>67927 | 34.40<br>36.40<br>38.40<br>40.40 | 36.40<br>38.40<br>40.40<br>42.40 | 2.00<br>2.00<br>2.00<br>2.00 | 3849<br>2277<br>2257<br>2391 | 180<br>280<br>140<br>120 | 34<br>41<br>71<br>64 | 2.2<br>2.1<br>1.3<br>1.4 | 30<br>25<br>41<br>26 | 15<br>15<br>5<br>5  | 2<br>2<br>2      |
|             |               | As a general trend, the veins and veinlets seem to be steeper down hole. The veins and veinlets are locally cut and displaced by micro faults.  Mineralization: 4-5% fine grained Py is mainly present as disseminations and as veinlets with Qz or alone. Disseminations are a bit more abundant in black                                                                                                                                                                                                                                       | 67928<br>67930<br>67931          | 42.40<br>44.40<br>46.40          | 44.40<br>46.40<br>48.40          | 2.00<br>2.00<br>2.00         | 1956<br>1651<br>1533         | 140<br>130<br>70         | 113<br>69<br>53      | 1.1<br>1.1<br>0.8        | 27<br>31<br>39       | 5<br>10<br>10       | 2<br>2<br>2<br>2 |
|             |               | chlorite rich zones. Some magnetite and traces of Cp are present in those Qz                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67932                            | 48.40                            | 50.40                            | 2.00                         | 2369                         | 160                      | 106                  | 1.0                      | 49                   | 10                  | 2                |

13-Nov-05 5:08:25 PM



## Falconbridge Limited

DDH:

NM-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                          | Sample | from  | to    | <b>Lengti</b> | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ррт | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|---------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | veins with Py but mostly at their margins. Cp is also found as fine                                                                                                                                                  | 67933  | 50.40 | 52.40 | 2.00          | 2164                   | 90               | 94               | 0.8              | 38               | 5                | 2                |
|             |                  | disseminations in more chloritized host rock patches (mixed with Py) or in                                                                                                                                           | 67934  | 52.40 | 54.40 | 2.00          | 2660                   | 140              | 54               | 1.1              | 39               | 10               | 2                |
|             |                  | fracture cleavages with Mo.                                                                                                                                                                                          |        | 54.40 | 56.40 | 2.00          | 1688                   | 110              | 60               | 0.8              | 48               | 15               | 2                |
|             |                  | 23.4-24.4: Banded and foliated rock charactherized by black chlorite and by                                                                                                                                          | 67936  | 56.40 | 58.40 | 2.00          | 825                    | 120              | 12               | 0.6              | 27               | 10               | 2                |
|             |                  | Qz and white to pale salmon Cc subparallel veins. Sheared contact zone with                                                                                                                                          | 67937  | 58.40 | 60.40 | 2.00          | 1750                   | 160              | 52               | 0.9              | 34               | 10               | 2                |
|             |                  | the unit above (C/A=30 deg).                                                                                                                                                                                         | 67938  | 60.40 | 62.40 | 2.00          | 1342                   | 80               | 53               | 0.7              | 36               | 5                | 2                |
|             |                  | ,                                                                                                                                                                                                                    | 67939  | 62.40 | 64.40 | 2.00          | 1497                   | 80               | 40               | 0.7              | 34               | 10               | 2                |
|             |                  | 31.55-31.9: Mixed of fragmented Qz veins and pale to dark green brecciated                                                                                                                                           | 67941  | 64.40 | 66.40 | 2.00          | 1341                   | 80               | 40               | 0.6              | 35               | 10               | 2                |
|             |                  | host rock                                                                                                                                                                                                            | 67942  | 66.40 | 68.40 | 2.00          | 1317                   | 90               | 43               | 0.9              | 64               | 10               | 2                |
|             |                  | 20.4.20.0. About the same that provious interval but with Coursing and Du                                                                                                                                            | 67943  | 68.40 | 70.40 | 2.00          | 1437                   | 90               | 48               | 0.7              | 39               | 10               | 2                |
|             |                  | 32.4-32.9: About the same that previous interval but with Cc veins and Py (patches and disseminations).                                                                                                              | 67944  | 70.40 | 72.40 | 2.00          | 1228                   | 60               | 38               | 0.7              | 70               | 10               | 2                |
|             |                  | (pateries and dissertifications).                                                                                                                                                                                    | 67945  | 72.40 | 74.40 | 2.00          | 1020                   | 60               | 35               | 0.6              | 39               | 5                | 2                |
|             |                  | 39.6-40.1: Silicified Qz and dark green chlorite rich breccia. Hosts 10-15% Py.                                                                                                                                      | 67946  | 74.40 | 76.40 | 2.00          | 1260                   | 60               | 34               | 0.7              | 33               | 5                | 2                |
|             |                  | ,                                                                                                                                                                                                                    | 67947  | 76.40 | 77.40 | 1.00          | 984                    | 50               | 55               | 0.5              | 29               | 5                | 2                |
|             |                  | 56.3-57.6: Broken rock.                                                                                                                                                                                              | 67948  | 77.40 | 78.70 | 1.30          | 1253                   | 140              | 32               | 0.6              | 39               | 5                | 2                |
|             |                  | 59.2-60.5: Greyer very fine grained massive rock. Less magnetic. May be intermediate dyke (?)                                                                                                                        |        |       |       |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 66.0-66.8: Broken rock.                                                                                                                                                                                              |        |       |       |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 69.8-72.4: Greyer slightly brownish very fine grained massive rock. Less magnetic and with fewer veins. Some Qz and black chloritized "fragments". May be intermediate dyke (?). Incl. 71.0-71.4: Badly broken rock. |        |       |       |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 72.5-73.5: Broken rock.                                                                                                                                                                                              |        |       |       |               |                        |                  |                  |                  |                  |                  |                  |
| 78.70       | 85.20            | D INTERMEDIATE INTRUSIVE (I2)                                                                                                                                                                                        | 67949  | 78.70 | 80.70 | 2.00          | 1069                   | 100              | 29               | 0.8              | 31               | 5                | 2                |
|             |                  | I2/DYKP,MASP/(AR),(SI)                                                                                                                                                                                               | 67950  | 80.70 | 82.70 | 2.00          | 1085                   | 60               | 35               | 0.5              | 31               | 10               | 2                |
|             |                  | . , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                              | 67951  | 82.70 | 84.00 | 1.30          | 1000                   | 50               | 54               | 0.5              | 30               | 5                | 2                |
|             |                  | Medium grey slightly brownish or greenish very fine grained massive rock.                                                                                                                                            | 67952  | 84.00 | 85.20 | 1.20          | 882                    | 50               | 27               | 0.5              | 36               | 15               | 2                |
|             |                  | Non magnetic to weakly magnetite.                                                                                                                                                                                    | 0.002  | 000   | 00.20 | 0             | 552                    | 00               |                  | 0.0              | 00               |                  | _                |
|             |                  | Alteration: Possibly very weak pervasive propyllitic (minor chlorite content). 2-                                                                                                                                    |        |       |       |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 3% white Qz-white Cc veins and veinlets with a direction between 50 and 60 deg and mean spacing of 20 to 30 cm. Some Qz veins partially salmon                                                                       |        |       |       |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | coloured inside and in their neighbourhood too.                                                                                                                                                                      |        |       |       |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | Mineralization: About 3% fine grained Py mostly as disseminations and few                                                                                                                                            |        |       |       |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | veinlets. Very locally, but at several places, 2% of fine disseminated                                                                                                                                               |        |       |       |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | magnetite. No Cp noted.                                                                                                                                                                                              |        |       |       |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | Upper contact: Quite sharp (C/A=60-70 deg)                                                                                                                                                                           |        |       |       |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | Lower contact: Very sharp (C/A=30 deg). Faulted.                                                                                                                                                                     |        |       |       |               |                        |                  |                  |                  |                  |                  |                  |

13-Nov-05 5:08:25 PM Page 2 of 7



Falconbridge Limited

DDH:

NM-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample         | from             | to     | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|--------|---------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 85.20       | 103.30           | WEAK PHYLLIC (?) ZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67954          | 85.20            | 87.20  | 2.00          | 1257            | 70               | 57               | 0.7              | 22               | 5                | 2                |
|             |                  | MASP/QZ/SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67955          | 87.20            | 89.20  | 2.00          | 1016            | 60               | 34               | 0.7              | 20               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67956          | 89.20            | 91.20  | 2.00          | 747             | 40               | 42               | 0.8              | 9                | 2                | 2                |
|             |                  | Pale grey to medium grey slightly greenish or salmon tinted aphyric and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67957          | 91.20            | 93.20  | 2.00          | 1094            | 90               | 51               | 1.1              | 18               | 10               | 2                |
|             |                  | massive rock. Non magnetic. Few brechoid minor intervals.  Alteration: Pervasive moderate silicification. Locally (patchy), very pale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67958          | 93.20            | 95.20  | 2.00          | 1019            | 40               | 28               | 0.5              | 21               | 5                | 2                |
|             |                  | salmon tint intervals that might annouce an evolving hematization. 15-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67959          | 95.20            | 97.20  | 2.00          | 1344            | 40               | 32               | 0.7              | 25               | 5                | 2                |
|             |                  | veins and veinlets composed of Qz-Cc, Qz only or Cc only. There are several                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67960          | 97.20            | 99.20  | 2.00          | 1109            | 40               | 41               | 0.6              | 26               | 10               | 2                |
|             |                  | generations that constitute an whole quite anarchic with spacing and direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67961          | 99.20            | 101.20 | 2.00          | 1444            | 150              | 91               | 1.9              | 24               | 20               | 2                |
|             |                  | very variable. Fine discontinuous and sinuous veinlets network is quite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67962          | 101.20           | 102.30 | 1.10          | 1742            | 90               | 136              | 1.3              | 25               | 10               | 2                |
|             |                  | common. Some veinlets with a yellowish content bring probably minor amount of sericite. A little chlorite in few fracture cleavages and small faul planes. Mineralization: 3% fine grained Py mostly as disseminations in host rock and some veinlets located in Qz veins. One spot with few grains of Cp disseminated within host rock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 67963          | 102.30           | 103.30 | 1.00          | 1408            | 80               | 71               | 0.6              | 25               | 10               | 2                |
| 103.30      | 112.80           | WEAK PROPYLLITIC ZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67965          | 103.30           | 105.30 | 2.00          | 1157            | 40               | 56               | 0.4              | 41               | 10               | 2                |
|             |                  | MASP/QZ,CH/(AR),(SI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67966          | 105.30           | 107.30 | 2.00          | 1024            | 30               | 34               | 0.5              | 30               | 10               | 2                |
|             |                  | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 67967          | 107.30           | 109.30 | 2.00          | 1239            | 40               | 48               | 0.5              | 48               | 10               | 2                |
|             |                  | Almost the same as 23.4 to 78.7.  Dark green locally locally salmon tinted aphyric massive rock. Non magnetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67968          | 109.30           | 111.30 | 2.00          | 4249            | 140              | 157              | 1.8              | 29               | 15               | 2                |
|             |                  | Dark green locally locally salmon tinted aphyric massive rock. Non magnetic to locally, weaklly magnetic. Some badly defined white Fp phenocrysyts are still visible locally; a porphyritic or granophyric intrusive is probably the protolith.  Alteration: The unit is considered pervasively weakly propyllitic altered intrusive by its fair chlorite content. There is also a weak pervasive silicification It is cut by several generations of white Qz veins and veinlets (7-8%). Their mean spacing is between 20 to 30 cm. Their direction is quite variable and varies between 15 and 70 deg relative to C/A.  Mineralization: 3% fine grained Py mainly present as disseminations and as veinlets with Qz or alone. Some magnetite is locally associated to those Qz veins but also disseminated in the host rock. Only two specks of Cp have been noted in a Qz vein. No Mo observed.  Upper contact: Gradual but rapid outlined by colour change and by a few cm thick banded zone formed by alignment of small chlorite altered mineral (C/A=50 deg)  Lower contact: gradual and defined by appearing of dark salmon to brick red bands or patches (beginning of potassic alteration) | 67969          | 111.30           | 112.80 | 1.50          | 2220            | 110              | 55               | 1.2              | 22               | 10               | 2                |
| 112.80      | 132.40           | <b>WEAK POTASSIC ZONE</b> MASP/(FK),SI/4% PY,TR CP,TR MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 67970<br>67971 | 112.80<br>114.00 |        | 1.20<br>1.20  | 2611<br>2521    | 210<br>90        | 258<br>98        | 1.3<br>1.2       | 32<br>20         | 10<br>5          | 2<br>2           |

13-Nov-05 5:08:25 PM



DDH:

NM-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample | from   | to     | <b>Length</b> | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | Greennish and salmon tinted dark medium grey to dark grey aphyric rock.                                                                                                                                                                                                                                                                                                                                                                                                         | 67972  | 115.20 | 117.30 | 2.10          | 701                    | 30               | 422              | 0.5              | 13               | 5                | 2                |
|             |                  | Massive. From non magnetic to strongly magnetic (locally; magnetite                                                                                                                                                                                                                                                                                                                                                                                                             | 67973  | 117.30 | 119.30 | 2.00          | 1906                   | 100              | 118              | 1.1              | 33               | 10               | 2                |
|             |                  | concentrations in Qz veins) but commonly weakly to moderately magnetic.  The unit is crosscut by two brick red Fp porphyry granite dykes.                                                                                                                                                                                                                                                                                                                                       | 67974  | 119.30 | 121.30 | 2.00          | 2689                   | 120              | 131              | 1.4              | 31               | 10               | 2                |
|             |                  | Alteration: Moderate pervasive silicification and weak potassic. The potassic                                                                                                                                                                                                                                                                                                                                                                                                   | 67976  | 121.30 | 122.80 | 1.50          | 3170                   | 140              | 75               | 1.5              | 33               | 5                | 2                |
|             |                  | alteration appears as pervasive (altered rock with a slight salmon diffused                                                                                                                                                                                                                                                                                                                                                                                                     | 67977  | 122.80 |        | 1.10          | 720                    | 50               | 14               | 0.6              | 14               | 2                | 2                |
|             |                  | tint), as patchy (well defined bands) or as thin halos around Qz veins. 5-6%                                                                                                                                                                                                                                                                                                                                                                                                    | 67978  |        |        | 2.00          | 4248                   | 190              | 57               | 2.6              | 38               | 10               | 2                |
|             |                  | of white Qz-white Cc, Qz only and Cc only veins and veinlets. Mean spacing                                                                                                                                                                                                                                                                                                                                                                                                      | 67979  | 125.90 |        | 2.00          | 2069                   | 200              | 48               | 1.4              | 40               | 30               | 2                |
|             |                  | around 20 cm and mean direction between 40 and 50 deg relative to C/A. At least three generation of veins. Some Qz veins are very magnetite rich at                                                                                                                                                                                                                                                                                                                             | 67980  | 127.90 |        | 2.00          | 2245                   | 80               | 33               | 1.2              | 36               | 2                | 2                |
|             |                  | about 3 meters above the lower contact of the unit.                                                                                                                                                                                                                                                                                                                                                                                                                             | 67981  | 129.90 |        | 1.30          | 1759                   | 80               | 32               | 8.0              | 12               | 5                | 2                |
|             |                  | Mineralization: About 4% fine grained Py as disseminations, as veinlets (often associated with Qz veins) and as fracture cleavage filling. Py veinlets make an angle of 70 to 80 deg with C/A. Traces of Cp related to Py veinlets and to Qz veins with Py and as disseminations in the matrix of host rock. Some in fracture cleavages. Traces of Mo noted at the upper contact and elsewhere few meters below in fracture cleavage.  Lower contact: Sharp at 35 deg with C/A. | 67982  | 131.20 | 132.40 | 1.20          | 2487                   | 60               | 96               | 1.1              | 20               | 2                | 2                |
|             |                  | 115.2-117.3: Red brick Fp porphyry granite dyke. Massive. Non to very weakly magnetic. About 20% euhedral to anhedral Fp phenocrysts. Some are zoned. Dyke with sharp contacts. Any traces of Cp in the dyke but a slight enrichment of Cp near both contacts in the host rock.                                                                                                                                                                                                 |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 122.8-123.9: Same as 115.2-117.3.                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 130.2-130.7: Qz and magnetite rich zone. Strongly magnetic. About 30% Mt.                                                                                                                                                                                                                                                                                                                                                                                                       |        |        |        |               |                        |                  |                  |                  |                  |                  |                  |
| 132.40      | 280.80           | FELDSPAR PORPHYRY GRANITE (I1GFP)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67983  | 132.40 | 134.40 | 2.00          | 642                    | 30               | 60               | 0.4              | 10               | 2                | 2                |
|             |                  | I1GFP/K-FP,QZ/HM/3% PY,TR CP                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67984  | 134.40 |        | 2.00          | 1075                   | 40               | 106              | 0.6              | 8                | 2                | 2                |
|             |                  | . , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67985  | 136.40 |        | 2.00          | 940                    | 50               | 81               | 0.4              | 15               | 2                | 2                |
|             |                  | Brick red to purple porphyritic massive granite. About 15 to 20% euhedral to                                                                                                                                                                                                                                                                                                                                                                                                    | 67986  | 138.40 | 140.40 | 2.00          | 1301                   | 40               | 22               | 0.6              | 15               | 2                | 2                |
|             |                  | anhedral Fp phenocrysts and some rounded Qz phenocrysysts. Visually, the phenocrysts don't seem to be zoned. Globally weakly magnetic (non to                                                                                                                                                                                                                                                                                                                                   | 67987  | 140.40 | 142.40 | 2.00          | 1328                   | 50               | 34               | 0.6              | 12               | 2                | 2                |
|             |                  | moderate magnetism); tendancy to be a little bit higher and continuous                                                                                                                                                                                                                                                                                                                                                                                                          | 67989  | 142.40 | 144.40 | 2.00          | 2001                   | 40               | 52               | 1.1              | 15               | 2                | 2                |
|             |                  | downward). 4-5% dirty grey Qz subangular to rounded fragments are spread                                                                                                                                                                                                                                                                                                                                                                                                        | 67990  | 144.40 | 146.40 | 2.00          | 1446                   | 60               | 90               | 0.8              | 13               | 2                | 2                |
|             |                  | in the whole rock. Those fragments contain locally, black totally chloritized                                                                                                                                                                                                                                                                                                                                                                                                   | 67991  | 146.40 | 148.40 | 2.00          | 1038                   | 50               | 17               | 0.6              | 12               | 2                | 2                |
|             |                  | mineral grains and/or magnetite. The matrix is fine to medium grained and                                                                                                                                                                                                                                                                                                                                                                                                       | 67992  | 148.40 | 150.40 | 2.00          | 797                    | 30               | 13               | 0.4              | 13               | 2                | 2                |
|             |                  | seems to be composed mainly of Qz and Fp with 1-2% mafic mineral grains                                                                                                                                                                                                                                                                                                                                                                                                         | 67993  | 150.40 | 152.40 | 2.00          | 1124                   | 40               | 22               | 0.6              | 14               | 2                | 2                |
|             |                  | and magnetite. From 132.4 to 143.4, the phenocrysyts are fewer and not well defined than further down. Many of them look quite dirty and are partially to                                                                                                                                                                                                                                                                                                                       | 67994  | 152.40 |        | 2.00          | 804                    | 40               | 9                | 0.7              | 15               | 2                | 2                |
|             |                  | totally replace by blackish chloritic material (soft).                                                                                                                                                                                                                                                                                                                                                                                                                          | 67995  | 154.40 |        | 2.00          | 1022                   | 50               | 11               | 0.6              | 14               | 2                | 2                |
|             |                  | Alteration: Pervasive medium to strong hematization. 5-6% mostly white Qz                                                                                                                                                                                                                                                                                                                                                                                                       | 67996  | 156.40 | 158.40 | 2.00          | 1547                   | 50               | 17               | 0.9              | 14               | 2                | 2                |
|             |                  | veins and veinlets but also some Qz-Cc and Cc only. Mean spacing between                                                                                                                                                                                                                                                                                                                                                                                                        | 67997  | 158.40 | 160.40 | 2.00          | 1157                   | 30               | 14               | 0.7              | 8                | 2                | 2                |

13-Nov-05 5:08:25 PM Page 4 of 7



DDH: Project: NM-05-01

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b> (m) | Description                                                                                                                                                  | Sample | from   | to     | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |               | 10 and 20 cm and mean directions between 40 and 50 deg with C/A. A veins                                                                                     | 67998  | 160.40 |        | 2.00          | 796             | 40               | 13               | 0.4              | 13               | 2                | 2                |
|             |               | family around 15 to 20 deg with C/A. At l.east, three vein generations. Many of the Qz veins show an enrichment in magnetite Some decm to meter scale        | 68000  |        | 164.40 | 2.00          | 928             | 50               | 9                | 0.6              | 12               | 2                | 2                |
|             |               | intervals with higher density of Cc veinlets which locally initiate brecciation of                                                                           | 67311  | 164.40 |        | 2.00          | 979             | 15               | 7                | 0.8              | 18               | 5                | 2                |
|             |               | the granite.                                                                                                                                                 | 8301   | 166.40 |        | 2.00          | 1170            | 40               | 11               | 0.7              | 22               | 2                | 2                |
|             |               | Mineralization: 3% fine grained Py mostly as veinlets. About 1% disseminated                                                                                 | 8302   | 168.40 |        | 2.00          | 1197            | 30               | 20               | 0.6              | 11               | 2                | 2                |
|             |               | Py. Only traces of Cp mainly as isolated specks in white Qz veins and                                                                                        | 8303   | 170.40 |        | 2.00          | 786             | 30               | 20               | 0.4              | 18               | 2                | 2                |
|             |               | veinlets. Few grains and splashes directly in the granite (ex.: 257.8; see                                                                                   | 8304   | 172.40 |        | 2.00          | 998             | 30               | 19               | 0.6              | 17               | 2                | 2                |
|             |               | picture). One grain in a chloritized elongated small fragment. No Mo noted.<br>Lower contact: Gradual over 1.8 meter. The granite loses slowly his brick red | 8305   | 174.40 |        | 2.00          | 768             | 30               | 29               | 0.5              | 19               | 2                | 2                |
|             |               | colour                                                                                                                                                       | 8306   | 176.40 |        | 2.00          | 914             | 30               | 11               | 0.7              | 14               | 2                | 2                |
|             |               | oloai                                                                                                                                                        | 8308   | 178.40 |        | 2.00          | 677             | 40               | 8                | 0.5              | 17               | 2                | 2                |
|             |               | 177.5-178.0: Higher density of white Cc veinlets.                                                                                                            | 8309   | 180.40 |        | 2.00          | 1196            | 50               | 13               | 1.0              | 13               | 2                | 2                |
|             |               |                                                                                                                                                              | 8311   | 182.40 |        | 2.00          | 801             | 15               | 7                | 0.5              | 15               | 2                | 2                |
|             |               | 188.8-188.9: Qz vein with 10% Py and 10% Cp. Banded aspect (see picture).                                                                                    | 8312   | 184.40 |        | 2.00          | 2497            | 80               | 173              | 2.0              | 19               | 2                | 2                |
|             |               | 199.6-200.1: Same as 177.5-178.0.                                                                                                                            | 8313   |        | 188.40 | 2.00          | 1194            | 40               | 12               | 1.1              | 14               | 2                | 2                |
|             |               | 199.0-200.1. Same as 177.5-176.0.                                                                                                                            | 8314   | 188.40 | 190.40 | 2.00          | 1682            | 40               | 12               | 1.0              | 19               | 2                | 2                |
|             |               | 212.0-212.5: Hydrothermal breccia caused by massive injection of white to                                                                                    | 8315   |        | 192.40 | 2.00          | 1250            | 30               | 13               | 0.7              | 15               | 2                | 2                |
|             |               | locally salmon pink Cc veins and veinlets.                                                                                                                   | 8316   |        | 194.40 | 2.00          | 952             | 30               | 9                | 0.8              | 20               | 2                | 2                |
|             |               |                                                                                                                                                              | 8317   | 194.40 | 196.40 | 2.00          | 632             | 60               | 7                | 0.6              | 20               | 10               | 2                |
|             |               | 225.8-229.3: More fractured and fragmented rock.                                                                                                             | 8318   | 196.40 | 198.40 | 2.00          | 980             | 40               | 10               | 0.7              | 24               | 2                | 2                |
|             |               | 266 2 200 0. Homography and continuously magnetic interval                                                                                                   | 8319   | 198.40 | 200.40 | 2.00          | 816             | 15               | 48               | 0.6              | 22               | 2                | 2                |
|             |               | 266.2-280.8: Homogeneously and continuously magnetic interval Incl. 279.0-280.8: Brick red colour and blackish Qz-Mt rich "fragments"                        | 8320   | 200.40 |        | 2.00          | 1453            | 60               | 31               | 1.0              | 16               | 2                | 2                |
|             |               | disappearing gradually.                                                                                                                                      | 8321   | 202.40 | 204.40 | 2.00          | 1579            | 70               | 14               | 1.0              | 17               | 2                | 2                |
|             |               | and approximity graduation.                                                                                                                                  | 8322   | 204.40 | 206.40 | 2.00          | 1420            | 90               | 12               | 1.2              | 18               | 2                | 2                |
|             |               |                                                                                                                                                              | 8324   | 206.40 | 208.40 | 2.00          | 1465            | 90               | 23               | 1.7              | 17               | 2                | 2                |
|             |               |                                                                                                                                                              | 8325   | 208.40 | 210.40 | 2.00          | 1676            | 70               | 8                | 1.1              | 25               | 2                | 2                |
|             |               |                                                                                                                                                              | 8326   | 210.40 | _      | 2.00          | 1149            | 70               | 12               | 1.0              | 19               | 5                | 2                |
|             |               |                                                                                                                                                              | 8327   | 212.40 |        | 2.00          | 902             | 15               | 5                | 0.7              | 17               | 2                | 2                |
|             |               |                                                                                                                                                              | 8328   | 214.40 | 216.40 | 2.00          | 1262            | 60               | 8                | 1.0              | 17               | 2                | 2                |
|             |               |                                                                                                                                                              | 8329   | 216.40 |        | 2.00          | 1484            | 60               | 17               | 1.0              | 19               | 2                | 2                |
|             |               |                                                                                                                                                              | 8330   | 218.40 | 220.40 | 2.00          | 1933            | 60               | 6                | 1.1              | 20               | 2                | 2                |
|             |               |                                                                                                                                                              | 8331   | 220.40 |        | 2.00          | 2167            | 100              | 13               | 1.2              | 20               | 2                | 2                |
|             |               |                                                                                                                                                              | 8332   | 222.40 |        | 2.00          | 1795            | 70               | 8                | 1.0              | 19               | 2                | 2                |
|             |               |                                                                                                                                                              | 8333   | 224.40 | 226.40 | 2.00          | 934             | 40               | 5                | 8.0              | 24               | 2                | 2                |
|             |               |                                                                                                                                                              | 8335   | 226.40 |        | 2.00          | 761             | 15               | 3                | 0.6              | 28               | 2                | 2                |
|             |               |                                                                                                                                                              | 8336   | 228.40 |        | 2.00          | 534             | 80               | 10               | 1.0              | 19               | 2                | 2                |
|             |               |                                                                                                                                                              | 8337   | 230.40 |        | 2.00          | 1113            | 140              | 12               | 2.4              | 39               | 10               | 2                |
|             |               |                                                                                                                                                              | 8338   | 232.40 | 234.40 | 2.00          | 874             | 50               | 6                | 8.0              | 49               | 10               | 2                |
|             |               |                                                                                                                                                              | 8339   | 234.40 |        | 2.00          | 914             | 70               | 7                | 0.9              | 46               | 2                | 2                |
|             |               |                                                                                                                                                              | 8340   | 236.40 | 238.40 | 2.00          | 1557            | 90               | 9                | 1.5              | 48               | 10               | 2                |

13-Nov-05 5:08:26 PM



DDH:

NM-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample | from   | to     | <b>Length</b><br>m | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8341   | 238.40 | 240.40 | 2.00               | 1077                   | 50               | 5                | 1.0              | 31               | 5                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8342   | 240.40 | 242.40 | 2.00               | 2055                   | 150              | 4                | 2.1              | 33               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8343   | 242.40 | 244.40 | 2.00               | 1809                   | 110              | 5                | 1.6              | 24               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8344   | 244.40 | 246.40 | 2.00               | 1615                   | 80               | 4                | 1.4              | 36               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8346   | 246.40 | 248.40 | 2.00               | 596                    | 15               | 7                | 0.6              | 26               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8347   | 248.40 |        | 2.00               | 2210                   | 70               | 5                | 1.4              | 27               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8348   | 250.40 | 252.40 | 2.00               | 984                    | 40               | 5                | 0.9              | 29               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8349   | 252.40 |        | 2.00               | 1003                   | 50               | 7                | 0.9              | 30               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8350   |        | 256.40 | 2.00               | 739                    | 15               | 4                | 8.0              | 27               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8351   | 256.40 | 258.40 | 2.00               | 654                    | 40               | 3                | 0.5              | 23               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8352   |        | 260.40 | 2.00               | 714                    | 40               | 11               | 0.6              | 27               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8353   | 260.40 | 262.40 | 2.00               | 716                    | 15               | 3                | 0.5              | 23               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8354   | 262.40 |        | 2.00               | 430                    | 30               | 4                | 0.4              | 20               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8355   | 264.40 |        | 2.00               | 562                    | 60               | 6                | 0.9              | 29               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8356   | 266.40 | 268.40 | 2.00               | 571                    | 15               | 9                | 0.4              | 26               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8357   | 268.40 |        | 2.00               | 839                    | 30               | 7                | 0.7              | 28               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8359   | 270.40 |        | 2.00               | 1073                   | 70               | 3                | 0.9              | 28               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8360   | 272.40 |        | 2.00               | 829                    | 30               | 4                | 0.7              | 25               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8361   | 274.40 |        | 2.00               | 514                    | 15               | 3                | 0.4              | 23               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8362   | 276.40 |        | 2.00               | 995                    | 60               | 7                | 0.7              | 36               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8363   | 278.40 |        | 1.20               | 373                    | 40               | 6                | 0.6              | 63               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8364   | 279.60 | 280.80 | 1.20               | 711                    | 30               | 5                | 0.6              | 50               | 2                | 2                |
| 280.80      | 293.20           | FELDSPAR PORPHYRY GRANITE (I1GFP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8365   | 280.80 | 282.80 | 2.00               | 167                    | 40               | 7                | 0.5              | 42               | 2                | 2                |
|             |                  | I1GFP/FP,CH/(AR)/TR PY,TR CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8366   | 282.80 | 284.80 | 2.00               | 130                    | 30               | 44               | 0.2              | 38               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8367   | 284.80 | 286.80 | 2.00               | 82                     | 50               | 4                | 0.1              | 49               | 2                | 2                |
|             |                  | Greenish medium grey, locally reddish massive Fp porphyry granite. About 10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8368   | 286.80 | 288.80 | 2.00               | 214                    | 80               | 2                | 0.4              | 38               | 2                | 2                |
|             |                  | 15% mostly euhedral unzoned Fp phenocrysts. Matrix fine to medium grained and composed mainly of Fp and Qz with 10-15% chloritized mafic mineral                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8370   | 288.80 | 290.80 | 2.00               | 130                    | 50               | 3                | 0.4              | 46               | 10               | 2                |
|             |                  | grains (Ch after Hb or Bo?), 5% Ep and 2-3% fine grained disseminated Mt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8371   | 290.80 | 292.00 | 1.20               | 47                     | 15               | 3                | 0.1              | 47               | 2                | 2                |
|             |                  | Moderately to weakly magnetic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8372   | 292.00 | 293.20 | 1.20               | 115                    | 15               | 9                | 1.0              | 46               | 2                | 2                |
|             |                  | Alteration: Weak propyllitic alteration charactherized by pervasive replacement of mafic minerals by Ch and by, locally, partial to total alteration of Fp by Ep. 2-3% white Qz and white Cc veinlets with few veins. Few Qz veins bring chloritized mafic mineral grains.and show a brick red halo. Some low angle white and salmon pink Cc veins. Also few Ep or Ch veinlets. Irregular veins and veinlets spacing but mean around 20 cm. Prevalent direction about 50 deg with C/A Mineralization: Traces of disseminated fine grained Py in matrix and Qz veins. Few grains of Cp also in Qz veins. |        |        |        |                    |                        |                  |                  |                  |                  |                  |                  |

13-Nov-05 5:08:26 PM Page 6 of 7



## **Falconbridge Limited**

DDH:

NM-05-01

**KERR-SULPHURETS** 

Project: Project #:

Мо

ppm

301

From (m) (m)

Description To

Sample

from

to

Length Cu ppm (ICP) ppb

Αg ppm

Zn ppb

As Sb ppm ppm

292.7-293.2: Broken rock with rusty orange fracture cleavages.

13-Nov-05 5:08:26 PM Page 7 of 7



## **Falconbridge Limited**

DDH: Project: NM-05-02

Contractor:

Located by:

Logged by:

Method:

**KERR-SULPHURETS** 

HY-TECH

A. HUARD

Handheld GPS

S. LAPOINTE

Project #: 301

DDH Casing Location Intervenant Coordonnée - UTM FALCONBRIDGE Company:

Easting:

Northing:

Elevation:

422864

1190

6265803

NAD27 ZN9

Azimuth: 155 Length (m): 2.5 Pulled: Dip: -70 Non Length (m): Plugged: 341.10 Oui Started: 7/29/2005 Cemented: Oui Completed: 8/1/2005 Core Logged: 8/2/2005

Datum:

Size:

KERR CAMP

NQ2 Claim #: 516245

Target: Cu-Au Porphyry

Comments:

#### Directional Tests (C=Collar, R=Reflex)

Storage:

| Distance | Azimuth | Dip    | Туре |
|----------|---------|--------|------|
| 0.00     | 155.00  | -70.00 | С    |
| 8.84     | 153.30  | -71.00 | R    |
| 109.00   | 158.50  | -71.80 | R    |
| 149.00   | 161.50  | -71.60 | R    |
| 189.00   | 150.90  | -71.60 | R    |
| 335.00   | 158.00  | -70.70 | R    |



DDH:

NM-05-02

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                | Sample | from  | to    | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|---------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 0.00        | 3.00             | D CASING                                                                                                                                                   |        |       |       |               |                 |                  |                  |                  |                  |                  |                  |
| 0.00        | 0.0              | CASING                                                                                                                                                     |        |       |       |               |                 |                  |                  |                  |                  |                  |                  |
|             |                  |                                                                                                                                                            |        |       |       |               |                 |                  |                  |                  |                  |                  |                  |
| 3.00        | 97.40            | FELDSPAR PORPHYRY GRANITE (I1GFP)                                                                                                                          | 8373   | 3.00  | 4.50  | 1.50          | 162             | 15               | 1                | 0.1              | 28               | 2                | 2                |
|             |                  | I1GFP/CH,EP/(PP)/1% PY, TR CP                                                                                                                              | 8374   | 4.50  | 6.50  | 2.00          | 96              | 15               | 1                | 0.1              | 25               | 2                | 2                |
|             |                  |                                                                                                                                                            | 8375   | 6.50  | 8.50  | 2.00          | 103             | 30               | 1                | 0.1              | 31               | 2                | 2                |
|             |                  | White to pink dotted medium to dark medium green Fp porphyry granite.                                                                                      | 8376   | 8.50  | 10.50 | 2.00          | 173             | 15               | 1                | 0.1              | 30               | 2                | 2                |
|             |                  | About 15-25% mainly euhedral Fp phenocrysts (<1.5 cm long). Some zoned                                                                                     | 8377   | 10.50 | 12.50 | 2.00          | 231             | 15               | 3                | 0.1              | 38               | 2                | 2                |
|             |                  | crystals have been observed. The fine to medium grained matrix is mostly                                                                                   | 8378   | 12.50 | 14.50 | 2.00          | 449             | 30               | 1                | 0.4              | 30               | 2                | 2                |
|             |                  | composed of Fp and Qz with 15 to 20% chloritized mafic mineral (Ch after Bo or Hb?) and 2 to 4% fine grained disseminated Mt. Within the upper 20          | 8379   | 14.50 | 16.50 | 2.00          | 135             | 15               | 1                | 0.1              | 37               | 2                | 2                |
|             |                  | meters of the unit, Ep alters pervasively Fp crystals and becomes one of the                                                                               | 8381   | 16.50 | 17.70 | 1.20          | 199             | 15               | 1                | 0.1              | 34               | 2                | 2                |
|             |                  | important constituent of the rock. Weakly to moderately magnetic.                                                                                          | 8382   |       |       |               | 174             | 15               | 1                | 0.1              |                  | 2                |                  |
|             |                  | Alteration: Pervasive moderate propylltic alteration in the upper 20 meters of                                                                             |        | 17.70 | 18.90 | 1.20          |                 | -                |                  | -                | 50               |                  | 2                |
|             |                  | the granite then weak. Moderate propyllitic is charactherized by intensive                                                                                 | 8383   | 18.90 | 20.90 | 2.00          | 349             | 15               | 3                | 0.3              | 56               | 10               | 2                |
|             |                  | replacement of mafic mineral by Ch and by ntensive replacement of Fp by Ep.                                                                                | 8384   | 20.90 | 22.90 | 2.00          | 76              | 15               | 2                | 0.1              | 34               | 2                | 2                |
|             |                  | In the weak alteration, Ep is more local and the replacement is quite partial.                                                                             | 8385   | 22.90 | 24.40 | 1.50          | 197             | 15               | 2                | 0.1              | 39               | 2                | 2                |
|             |                  | Some decm scale intervals are silicified and loses their initial intrusive texture;                                                                        | 8386   | 24.40 | 25.80 | 1.40          | 175             | 60               | 3                | 0.2              | 36               | 2                | 2                |
|             |                  | they becomes dark grey slightly brownish. About 2% mainly Qz and/or Cc and                                                                                 | 8387   | 25.80 | 26.60 | 0.80          | 154             | 3030             | 5                | 0.7              | 46               | 2                | 2                |
|             |                  | Ep veins and veinlets. Mean spacing of 30 to 40 cm and directions between                                                                                  | 8388   | 26.60 | 27.40 | 0.80          | 130             | 70               | 2                | 0.3              | 49               | 2                | 2                |
|             |                  | 50 et 70 deg with C/A. Some weared shape brownish grey to brick red cherty                                                                                 | 8389   | 27.40 | 29.40 | 2.00          | 69              | 220              | 3                | 0.4              | 86               | 2                | 2                |
|             |                  | Qz veins are present.                                                                                                                                      | 8390   | 29.40 | 31.40 | 2.00          | 75              | 50               | 3                | 0.5              | 59               | 2                | 2                |
|             |                  | Mineralization: 1% of fine grained Py mainly as veinlets and fracture cleavage.                                                                            | 8391   | 31.40 | 33.40 | 2.00          | 52              | 70               | 1                | 0.3              | 40               | 2                | 2                |
|             |                  | Some sparse disseminations. Traces of Cp disseminated in Qz veins and one splash in a lense of white Cc (52.3). Traces of malachite associated with Cp     | 8392   | 33.40 | 35.40 | 2.00          | 60              | 540              | 3                | 0.4              | 44               | 2                | 2                |
|             |                  | in a Qz vein in the upper meters of the unit. Also traces of hematite                                                                                      | 8394   |       |       | 2.00          |                 | 490              | 2                | -                |                  | 2                |                  |
|             |                  | specularite in oxydized veins.                                                                                                                             |        | 35.40 | 37.40 |               | 131             |                  |                  | 0.5              | 45               |                  | 2                |
|             |                  | Lower contact: Defined by the beginning of intermittent appearing of brick red                                                                             | 8395   | 37.40 | 39.40 | 2.00          | 125             | 50               | 5                | 0.2              | 39               | 2                | 2                |
|             |                  | altered (HM+) Fp porphyry granite                                                                                                                          | 8396   | 39.40 | 41.40 | 2.00          | 130             | 50               | 4                | 0.2              | 35               | 2                | 2                |
|             |                  | andrea (mm), i p perpriyry granice                                                                                                                         | 8397   | 41.40 | 43.40 | 2.00          | 59              | 90               | 3                | 0.2              | 35               | 2                | 2                |
|             |                  | 3.0-18.9: Moderate pervasive argillic alteration. Ep and Ch more abundant.                                                                                 | 8398   | 43.40 | 45.40 | 2.00          | 377             | 200              | 4                | 2.1              | 34               | 2                | 2                |
|             |                  | Epidote tinted rock.                                                                                                                                       | 8399   | 45.40 | 47.40 | 2.00          | 681             | 210              | 4                | 1.3              | 33               | 35               | 2                |
|             |                  | Incl.: 10.1-10.6: Broken rock.                                                                                                                             | 8400   | 47.40 | 49.40 | 2.00          | 1609            | 200              | 6                | 1.3              | 37               | 25               | 2                |
|             |                  |                                                                                                                                                            | 8401   | 49.40 | 51.40 | 2.00          | 332             | 160              | 5                | 1.2              | 41               | 25               | 2                |
|             |                  | 19.2-20.5: Badly broken rock.                                                                                                                              | 8402   | 51.40 | 53.40 | 2.00          | 274             | 60               | 2                | 0.5              | 33               | 2                | 2                |
|             |                  |                                                                                                                                                            | 8403   | 53.40 | 55.40 | 2.00          | 69              | 50               | 4                | 1.6              | 43               | 2                | 2                |
|             |                  | 23.4-24.4: Badly broken rock.                                                                                                                              | 8405   | 55.40 | 57.40 | 2.00          | 83              | 50               | 4                | 0.2              | 36               | 2                | 2                |
|             |                  | OF 0.07 4. Non-normhyritia fine grained granite. Non-negative Duck at the                                                                                  |        |       |       |               |                 |                  |                  |                  |                  |                  |                  |
|             |                  | 25.8-27.4: Non porphyritic fine grained granite. Non magnetic. Probably the same granite but doesn't look like. Broken rock with oxydized fracture planes. | 8406   | 57.40 | 59.40 | 2.00          | 63              | 110              | 3                | 0.7              | 45               | 15               | 2                |
|             |                  | 3-4% fine grained disseminated Py.                                                                                                                         | 8407   | 59.40 | 61.40 | 2.00          | 62              | 120              | 5                | 0.2              | 42               | 20               | 2                |
|             |                  | 3-4/0 IIIIE graineu disseriilialeu Fy.                                                                                                                     | 8408   | 61.40 | 63.40 | 2.00          | 62              | 40               | 6                | 0.1              | 32               | 2                | 2                |
|             |                  | 28.7-29.4: Foliated granite (C/A=50 deg)                                                                                                                   | 8409   | 63.40 | 65.40 | 2.00          | 78              | 40               | 18               | 0.2              | 37               | 2                | 2                |
|             |                  | 20.7 20.7. I onatou granite (O/N=00 dog)                                                                                                                   | 8410   | 65.40 | 67.40 | 2.00          | 253             | 40               | 1                | 0.1              | 32               | 2                | 2                |
|             |                  |                                                                                                                                                            | 8411   | 67.40 | 69.40 | 2.00          | 77              | 15               | 1                | 0.1              | 30               | 2                | 2                |

13-Nov-05 5:18:10 PM



DDH:

NM-05-02

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                              | Sample       | from             | to             | <b>Length</b><br>m | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|----------------|--------------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | 44.2-44.6: Cherty Qz veins.                                                                                                                              | 8412         | 69.40            | 71.40          | 2.00               | 110                    | 15               | 2                | 0.1              | 33               | 2                | 2                |
|             |                  | 44.6-45.4: Badly broken oxidyzed rock.                                                                                                                   | 8413         | 71.40            | 73.40          | 2.00               | 63                     | 15               | 1                | 0.1              | 35               | 2                | 2                |
|             |                  | 44.0-45.4. Dauly blokeli oxidyzed lock.                                                                                                                  | 8414         | 73.40            | 75.40          | 2.00               | 77                     | 15               | 1                | 0.1              | 32               | 2                | 2                |
|             |                  | 53.9-54.4: Broken rock.                                                                                                                                  | 8416         | 75.40            | 77.40          | 2.00               | 69                     | 60               | 1                | 0.1              | 31               | 5                | 2                |
|             |                  |                                                                                                                                                          | 8417         | 77.40            | 79.40          | 2.00               | 40                     | 40               | 2                | 0.1              | 33               | 2                | 2                |
|             |                  |                                                                                                                                                          | 8418<br>8419 | 79.40<br>81.40   | 81.40<br>83.40 | 2.00<br>2.00       | 44<br>49               | 230<br>50        | 2<br>1           | 0.3<br>0.1       | 33<br>28         | 15<br>2          | 2<br>2           |
|             |                  |                                                                                                                                                          | 8420         | 83.40            | 85.40          | 2.00               | 49<br>28               | 40               | 1                | 0.1              | 20               | 2                | 2                |
|             |                  |                                                                                                                                                          | 8421         | 85.40            | 87.40          | 2.00               | 43                     | 80               | 1                | 0.1              | 27               | 2                | 2                |
|             |                  |                                                                                                                                                          | 8422         | 87.40            | 89.40          | 2.00               | 53                     | 140              | 1                | 0.4              | 31               | 40               | 2                |
|             |                  |                                                                                                                                                          | 8423         | 89.40            | 91.40          | 2.00               | 40                     | 50               | 1                | 0.4              | 32               | 5                | 2                |
|             |                  |                                                                                                                                                          | 8424         | 91.40            | 93.40          | 2.00               | 61                     | 660              | 2                | 0.3              | 35               | 15               | 2                |
|             |                  |                                                                                                                                                          | 8425         | 93.40            | 95.40          | 2.00               | 46                     | 120              | 1                | 0.2              | 30               | 40               | 2                |
|             |                  |                                                                                                                                                          | 8426         | 95.40            | 97.40          | 2.00               | 292                    | 100              | 2                | 0.4              | 29               | 30               | 2                |
| 97.40       | 208.10           | FELDSPAR PORPHYRY GRANITE (I1GFP)                                                                                                                        | 8427         | 97.40            | 99.40          | 2.00               | 541                    | 520              | 5                | 0.6              | 25               | 20               | 2                |
|             |                  | I1GFP/FP,CH/(PP)/1% PY, TR CP                                                                                                                            | 8429         | 99.40            | 101.40         | 2.00               | 149                    | 240              | 4                | 0.2              | 23               | 25               | 2                |
|             |                  | 0                                                                                                                                                        | 8430         | 101.40           | 103.40         | 2.00               | 117                    | 90               | 3                | 0.1              | 19               | 5                | 2                |
|             |                  | Same as the unit above (3.0-97.40) but mixed with several pale to medium brick red intervals.                                                            | 8431         | 103.40           | 105.40         | 2.00               | 151                    | 60               | 3                | 0.4              | 25               | 10               | 2                |
|             |                  | White to pink dotted medium green alternating with pale to, locally, medium                                                                              | 8432         |                  | 107.40         | 2.00               | 328                    | 240              | 4                | 1.2              | 30               | 55               | 2                |
|             |                  | brick red Fp porphyry granite. About 15-30% mainly euhedral Fp phenocrysts                                                                               | 8433         | 107.40           | 108.90         | 1.50               | 225                    | 150              | 5                | 0.9              | 21               | 40               | 2                |
|             |                  | (<1.5 cm long). Some zoned crystals have been observed. The fine to                                                                                      | 8434         |                  | 110.30         | 1.40               | 224                    | 40               | 4                | 0.1              | 21               | 2                | 2                |
|             |                  | medium grained matrix is mostly composed of Fp and Qz with 15 to 20%                                                                                     | 8435         | 110.30           |                | 1.10               | 377                    | 50               | 24               | 0.2              | 17               | 2                | 2                |
|             |                  | chloritized mafic mineral (Ch after Bo or Hb?) and 2 to 4% fine grained disseminated Mt. Weakly to moderately magnetic.                                  | 8436         | 111.40           |                | 2.00               | 395                    | 30               | 4                | 0.3              | 20               | 2                | 2                |
|             |                  | Alteration: Weak pervasive propyllitic alteration charactherized by Ch                                                                                   | 8437         | 113.40           |                | 2.00               | 201                    | 15               | 9                | 0.2              | 24               | 2                | 2                |
|             |                  | replacing mafic mineral grains and locally by slight Ep tinted Fp phenocrysts                                                                            | 8438         | 115.40           |                | 2.00               | 160                    | 30               | 3                | 0.1              | 21               | 2                | 2                |
|             |                  | and by few Ep and Ep-Cc veinlets. Some decm scale reddish intervals are                                                                                  | 8440         | 117.40           |                | 2.00               | 240                    | 15               | 8                | 0.1              | 22               | 2                | 2                |
|             |                  | silicified and their matrix lose partially its phyric texture; few among them                                                                            | 8441         | 119.40           |                | 2.00               | 127                    | 40               | 2                | 0.1              | 23               | 2                | 2                |
|             |                  | hosts grey-green rounded to subangular fragments (<4.5 cm of diameter).  Those fragments are absent from the green facies granite. About 2% mainly       | 8442         | 121.40           |                | 2.00               | 83                     | 50               | 3                | 0.1              | 29               | 10               | 2                |
|             |                  | Qz and/or Cc and some Cc-Ep veins and veinlets. Mean spacing of 30 to 40                                                                                 | 8443         | 123.40           |                | 2.00               | 161                    | 40               | 2                | 0.1              | 23               | 2                | 2                |
|             |                  | cm and directions between 50 et 70 deg with C/A. Some of the Qz veins have                                                                               | 8444         | 125.40           | _              | 2.00               | 88                     | 15               | 2                | 0.1              | 26               | 2                | 2                |
|             |                  | thin brick red hematized selvages.                                                                                                                       | 8445         | 127.40           |                | 2.00               | 160                    | 70               | 2<br>7           | 0.1              | 26               | 10<br>25         | 2<br>2           |
|             |                  | Mineralization: 1% of fine grained Py mainly as veinlets and fracture cleavage.                                                                          | 8446         | 129.40           | 133.40         | 2.00               | 363                    | 90               | 1                | 0.3              | 26               |                  |                  |
|             |                  | Some sparse disseminations. Traces of Cp disseminated in Qz veins and Cc veinlets and also in most hematized (brick red) facies. Two tiny splashesin the | 8447         |                  |                | 2.00               | 203                    | 30<br>40         |                  | 0.1              | 21               | 10<br>5          | 2                |
|             |                  | host rock matrix (97.6). Traces of malachite locally associated to Cp in Qz                                                                              | 8448<br>8449 | 133.40<br>135.40 | 135.40         | 2.00<br>2.00       | 330<br>250             | 110              | 1<br>4           | 0.2<br>0.4       | 20<br>26         | 5<br>25          | 2                |
|             |                  | vein and Cc veinlets.                                                                                                                                    | 8952         |                  | 137.40         | 2.00               | 639                    | 380              | 16               | 0.4              | 26<br>28         | 25<br>115        | 2                |
|             |                  | Lower contact: sharp but sinuous (C/A=65 deg).                                                                                                           | 8953         |                  | 141.40         | 2.00               | 448                    | 100              | 9                | 0.4              | 24               | 15               | 2                |
|             |                  | 440.2 444.4. Driek and cilipitad interval hasting many group for grounds and                                                                             | 8954         |                  | 143.40         | 2.00               | 95                     | 60               | 2                | 0.3              | 27               | 20               | 2                |
|             |                  | 110.3-111.4: Brick red silicified interval hosting grey-green fragments and traces of Cp (most important concentration in the unit!).                    | 8955         | 143.40           |                | 2.00               | 146                    | 15               | 3                | 0.1              | 25               | 2                | 2                |

13-Nov-05 5:18:10 PM



DDH:

NM-05-02

Project:

**KERR-SULPHURETS** 

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                            | Sample | from   | to     | <b>Length</b><br>m | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ррт | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  |                                                                                                                                                        | 8956   | 145.40 | 147.40 | 2.00               | 257             | 15               | 2                | 0.1              | 24               | 2                | 2                |
|             |                  | 195.9, 196.1 and 196.7:White to pink Cc veins with locally some Qz. 10-20%                                                                             | 8957   | 147.40 | 149.40 | 2.00               | 104             | 15               | 1                | 0.1              | 23               | 2                | 2                |
|             |                  | Cp with locally some Py (sample # ????).                                                                                                               | 8958   | 149.40 | 151.40 | 2.00               | 155             | 30               | 2                | 0.1              | 24               | 2                | 2                |
|             |                  | 205.0-205.6: Intermixing of brick red Fp porphyry granite and dark grey slightly                                                                       | 8959   | 151.40 | 153.40 | 2.00               | 188             | 15               | 2                | 0.3              | 21               | 2                | 2                |
|             |                  | greenish aphyric dyke(?). Globally, subrounded dark grey dyke parts are                                                                                | 8960   | 153.40 | 155.40 | 2.00               | 96              | 15               | 5                | 0.1              | 23               | 2                | 2                |
|             |                  | isolated by diffused veins of brick red graniic material. The interval contains                                                                        | 8961   | 155.40 |        | 2.00               | 85              | 15               | 14               | 0.1              | 21               | 2                | 2                |
|             |                  | about 5% Cp mostly distributed as very fine disseminations in the dark grey                                                                            | 8962   |        | 159.40 | 2.00               | 200             | 15               | 7                | 0.3              | 19               | 2                | 2                |
|             |                  | zones and as rims around them. Also few winding veinlets and specks in the porphyry granite. Cp is accompanied by Mt enrichment mainly in the granite. | 8964   |        | 161.40 | 2.00               | 114             | 50               | 3                | 0.2              | 21               | 2                | 2                |
|             |                  | Comment: the very fine and homogenously distributed Cp disseminations in                                                                               | 8965   | 161.40 |        | 2.00               | 203             | 200              | 8                | 0.4              | 30               | 20               | 2                |
|             |                  | the dark intrusive seem to indicate that it brought the sulphides (see picture).                                                                       | 8966   | 163.40 | 165.40 | 2.00               | 257             | 270              | 4                | 1.5              | 32               | 60               | 2                |
|             |                  | 3                                                                                                                                                      | 8967   |        | 167.40 | 2.00               | 161             | 60               | 3                | 0.4              | 33               | 2                | 2                |
|             |                  |                                                                                                                                                        | 8968   | 167.40 | 169.40 | 2.00               | 146             | 40               | 6                | 0.5              | 27               | 15               | 2                |
|             |                  |                                                                                                                                                        | 8969   | 169.40 | 171.40 | 2.00               | 128             | 50               | 2                | 0.3              | 28               | 20               | 2                |
|             |                  |                                                                                                                                                        | 8970   | 171.40 | 173.40 | 2.00               | 342             | 50               | 3                | 0.6              | 26               | 10               | 2                |
|             |                  |                                                                                                                                                        | 8971   | 173.40 | 175.40 | 2.00               | 118             | 15               | 3                | 0.4              | 27               | 2                | 2                |
|             |                  |                                                                                                                                                        | 8972   | 175.40 | 177.40 | 2.00               | 159             | 50               | 2                | 0.3              | 33               | 20               | 2                |
|             |                  |                                                                                                                                                        | 8973   | 177.40 | 179.40 | 2.00               | 94              | 70               | 2                | 0.1              | 32               | 25               | 2                |
|             |                  |                                                                                                                                                        | 8975   | 179.40 | 181.40 | 2.00               | 42              | 70               | 2                | 0.4              | 26               | 2                | 2                |
|             |                  |                                                                                                                                                        | 8976   | 181.40 |        | 2.00               | 310             | 60               | 3                | 1.0              | 29               | 20               | 2                |
|             |                  |                                                                                                                                                        | 8977   | 183.40 | 185.40 | 2.00               | 80              | 15               | 2                | 0.1              | 21               | 2                | 2                |
|             |                  |                                                                                                                                                        | 8978   | 185.40 | 187.40 | 2.00               | 181             | 15               | 3                | 0.1              | 26               | 2                | 2                |
|             |                  |                                                                                                                                                        | 8979   | 187.40 | 189.40 | 2.00               | 233             | 15               | 2                | 0.1              | 27               | 2                | 2                |
|             |                  |                                                                                                                                                        | 8980   | 189.40 | 191.40 | 2.00               | 145             | 15               | 2                | 0.1              | 25               | 2                | 2                |
|             |                  |                                                                                                                                                        | 8981   | 191.40 | 193.40 | 2.00               | 248             | 30               | 3                | 0.2              | 23               | 10               | 2                |
|             |                  |                                                                                                                                                        | 8982   | 193.40 | 195.40 | 2.00               | 504             | 15               | 3                | 0.3              | 28               | 2                | 2                |
|             |                  |                                                                                                                                                        | 8983   | 195.40 | 197.40 | 2.00               | 1982            | 60               | 7                | 0.7              | 30               | 2                | 2                |
|             |                  |                                                                                                                                                        | 8984   | 197.40 | 199.40 | 2.00               | 209             | 15               | 5                | 0.1              | 20               | 2                | 2                |
|             |                  |                                                                                                                                                        | 8986   |        | 201.40 | 2.00               | 620             | 30               | 3                | 0.4              | 21               | 5                | 2                |
|             |                  |                                                                                                                                                        | 8987   | 201.40 | 203.30 | 1.90               | 266             | 15               | 2                | 0.1              | 26               | 2                | 2                |
|             |                  |                                                                                                                                                        | 8988   | 203.30 | 205.00 | 1.70               | 418             | 15               | 2                | 0.1              | 24               | 2                | 2                |
|             |                  |                                                                                                                                                        | 8989   | 205.00 | 205.60 | 0.60               | 4997            | 230              | 1                | 1.6              | 45               | 2                | 2                |
|             |                  |                                                                                                                                                        | 8990   | 205.60 | 206.40 | 0.80               | 832             | 15               | 2                | 0.4              | 25               | 2                | 2                |
|             |                  |                                                                                                                                                        | 8991   | 206.40 | 208.10 | 1.70               | 876             | 50               | 2                | 0.4              | 46               | 10               | 2                |
| 208.10      | 264.10           | O INTERMEDIATE INTRUSIVE(?) (I2)                                                                                                                       | 8992   | 208.10 | 210.10 | 2.00               | 1196            | 40               | 1                | 0.8              | 42               | 10               | 2                |
|             |                  | I2/MASP/SI,HM/3% PY,0.25% CP                                                                                                                           | 8993   | 210.10 | 211.90 | 1.80               | 2065            | 100              | 2                | 1.1              | 35               | 5                | 2                |
|             |                  |                                                                                                                                                        | 8994   | 211.90 | 213.70 | 1.80               | 1152            | 80               | 2                | 0.8              | 31               | 2                | 2                |
|             |                  | Dark grey to black and brick red marbled aphyric rock. The rock seems mainly                                                                           | 8995   | 213.70 | 215.70 | 2.00               | 316             | 15               | 1                | 0.1              | 92               | 10               | 2                |
|             |                  | composed of K-Fp, Qz, mafic minerals (in the dark grey to black portions) and Mt. Massive to locally brecciated (249.0-264.1). Weakly to moderately    | 8996   | 215.70 | 217.00 | 1.30               | 148             | 15               | 1                | 0.1              | 84               | 5                | 2                |
|             |                  | magnetic.                                                                                                                                              | 8997   | 217.00 | 218.20 | 1.20               | 81              | 15               | 3                | 0.1              | 79               | 5                | 2                |



DDH:

NM-05-02

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                | Sample | from   | to     | <b>Length</b><br>m | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ад</b><br>ррт | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | Alteration: Patchy pervasive hematization and weakly to moderately silicified.                                                                                                                                                                                                                                                                                                             | 8999   | 218.20 | 220.20 | 2.00               | 1163                   | 90               | 2                | 0.9              | 28               | 10               | 2                |
|             |                  | Veining density varies between 3 and 10%. The highest density being                                                                                                                                                                                                                                                                                                                        | 9000   | 220.20 | 222.20 | 2.00               | 1949                   | 110              | 2                | 1.1              | 32               | 5                | 2                |
|             |                  | associated with brecciated zone. Mainly white Qz with more or less white Cc                                                                                                                                                                                                                                                                                                                | 9001   | 222.20 | 224.20 | 2.00               | 2839                   | 110              | 1                | 1.1              | 47               | 2                | 2                |
|             |                  | straight veins and veinlets. Also good proportion of irregular white Cc veinlets. The spacing of the Qz-Cc veins and veinlets is between 30 and 50 cm and the                                                                                                                                                                                                                              | 9002   | 224.20 | 225.90 | 1.70               | 3495                   | 110              | 2                | 1.4              | 44               | 2                | 2                |
|             |                  | direction between 50 and 80 deg with C/A. The spacing and direction of Cc                                                                                                                                                                                                                                                                                                                  | 9003   | 225.90 | 227.50 | 1.60               | 2990                   | 70               | 6                | 1.5              | 38               | 2                | 2                |
|             |                  | veinlets are extremely variable; spacing decimeter to millimeter scale and                                                                                                                                                                                                                                                                                                                 | 9004   | 227.50 | 229.50 | 2.00               | 587                    | 40               | 3                | 0.3              | 65               | 10               | 2                |
|             |                  | directions subparallel to perpendicular to C/A. The veining in the brecciated                                                                                                                                                                                                                                                                                                              | 9005   | 229.50 | 231.50 | 2.00               | 1028                   | 90               | 9                | 0.8              | 51               | 20               | 2                |
|             |                  | zone is mostly more or less continuous Qz veins, veinlets and patches. Cc is                                                                                                                                                                                                                                                                                                               | 9006   | 231.50 | 233.50 | 2.00               | 926                    | 40               | 7                | 8.0              | 48               | 15               | 2                |
|             |                  | rare in this interval.                                                                                                                                                                                                                                                                                                                                                                     | 9007   | 233.50 | 235.60 | 2.10               | 901                    | 15               | 5                | 0.5              | 51               | 2                | 2                |
|             |                  | Mineralization: 3% Py mostly as fine disseminations, fracture cleavage fillings and some veinlets locally with Cp. About 0.25% Cp mainly as splashes and                                                                                                                                                                                                                                   | 9008   | 235.60 | 237.60 | 2.00               | 1199                   | 30               | 5                | 0.7              | 30               | 2                | 2                |
|             |                  | disseminations in the brick red component of the unit and also locally, finely                                                                                                                                                                                                                                                                                                             | 9010   | 237.60 | 239.60 | 2.00               | 1420                   | 80               | 23               | 0.8              | 28               | 2                | 2                |
|             |                  | and homogeneously disseminated in dark grey and black portions of the unit.                                                                                                                                                                                                                                                                                                                | 9011   | 239.60 | 241.60 | 2.00               | 1845                   | 90               | 4                | 1.3              | 43               | 2                | 2                |
|             |                  | Mt enrichment goes with those types of Cp mineralizations. The rest is related                                                                                                                                                                                                                                                                                                             | 9012   | 241.60 |        | 2.10               | 2642                   | 140              | 7                | 2.6              | 44               | 20               | 2                |
|             |                  | to Qz veins with or wihout Py. Traces of Mo (with Cp) in a fracture cleavage.                                                                                                                                                                                                                                                                                                              | 9013   | 243.70 | 244.90 | 1.20               | 508                    | 15               | 1                | 0.4              | 41               | 2                | 2                |
|             |                  | 040 0 044 4 B                                                                                                                                                                                                                                                                                                                                                                              | 9014   | 244.90 | 246.90 | 2.00               | 1797                   | 230              | 6                | 1.5              | 41               | 2                | 2                |
|             |                  | 210.9-211.4: Badly broken rock.                                                                                                                                                                                                                                                                                                                                                            | 9015   | 246.90 | 249.00 | 2.10               | 1390                   | 80               | 4                | 1.4              | 38               | 10               | 2                |
|             |                  | 213.7-218.2: Dark green massive porphyritic intermediate dyke(?). About 25                                                                                                                                                                                                                                                                                                                 | 9016   | 249.00 | 251.00 | 2.00               | 986                    | 15               | 7                | 0.6              | 34               | 2                | 2                |
|             |                  | to 30% Fp phenocrysts. Moderately magnetic. No mineralization noted. Upper                                                                                                                                                                                                                                                                                                                 | 9017   | 251.00 | 253.00 | 2.00               | 1304                   | 15               | 18               | 0.7              | 26               | 2                | 2                |
|             |                  | contact at 25 deg and lower contact at 35 deg.                                                                                                                                                                                                                                                                                                                                             | 9018   | 253.00 | 255.00 | 2.00               | 558                    | 60               | 3                | 0.7              | 25               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                            | 9019   | 255.00 |        | 2.00               | 977                    | 15               | 14               | 0.7              | 23               | 2                | 2                |
|             |                  | 224.6-225.3: Strongly mineralized interval. 10% Cp as splashes and patches                                                                                                                                                                                                                                                                                                                 | 9021   | 257.00 |        | 2.00               | 887                    | 30               | 3                | 0.7              | 29               | 2                | 2                |
|             |                  | in the brick red facies. Many subangular black fragments with fine                                                                                                                                                                                                                                                                                                                         | 9022   | 259.00 |        | 2.00               | 511                    | 40               | 2                | 0.4              | 28               | 2                | 2                |
|             |                  | disseminated Cp.                                                                                                                                                                                                                                                                                                                                                                           | 9023   |        | 262.60 | 1.60               | 1424                   | 40               | 1                | 0.8              | 22               | 2                | 2                |
|             |                  | 227.5-235.6: Medium green locally reddish aphyric to locally fine to medium grained intermediate dyke(?). Some patches of brick red material. Weakly to moderately magnetic. Traces of disseminated Cp mainly associated with Cc patches and veinlets. Upper and lower contacts at 45 deg. Incl.: 233.5: Four cm white Cc patch with 35% Cp. Surrounded by 1 cm wide pink alteration halo. | 9024   | 262.60 |        | 1.50               | 3366                   | 120              | 3                | 1.9              | 41               | 2                | 2                |
|             |                  | 243.7-244.9: Medium green intermediate dyke(?) with 6-7% fine disseminated Mt. Moderately magnetic. Not mineralized. Upper and lower contacts are winding and between 70 and 90.                                                                                                                                                                                                           |        |        |        |                    |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 249.0-264.1: Brecciated zone. Network of Qz-Mt veins, veinlets and patches that isolate brick red fragments. 0.25% Cp mostly related to Qz-Mt. Also some disseminations and splashes in red material fragments. Some partly resorbed black "fragments" with fine disseminated Cp. Moderately to strongly magnetic.                                                                         |        |        |        |                    |                        |                  |                  |                  |                  |                  |                  |
| 264.10      | 297.90           |                                                                                                                                                                                                                                                                                                                                                                                            | 9025   | 264.10 | 265.90 | 1.80               | 1932                   | 70               | 6                | 2.0              | 40               | 2                | 2                |

13-Nov-05 5:18:10 PM



**Falconbridge Limited** 

DDH:

NM-05-02

Project:

**KERR-SULPHURETS** 

**Project #:** 301

| From<br>(m) | <b>To</b> (m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample | from   | to     | <b>Length</b> | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |               | INTERMEDIATE INTRUSIVE (I2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8307   | 265.90 | 267.60 | 1.70          | 968                    | 30               | 13               | 0.5              | 35               | 2                | 2                |
|             |               | I2/(SI),(HM)/1-2% PY,TR CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8951   | 267.60 | 269.40 | 1.80          | 2194                   | 80               | 4                | 1.5              | 57               | 2                | 2                |
|             |               | Alternative management of the second | 9026   | 269.40 | 270.60 | 1.20          | 646                    | 40               | 3                | 0.5              | 39               | 2                | 2                |
|             |               | Alternating greenish medium grey to dark grey massive rock with marbled brick red and black brecciated rock. Grey facies is fine to medium grained and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9027   | 270.60 | 272.40 | 1.80          | 266                    | 40               | 1                | 0.2              | 38               | 10               | 2                |
|             |               | mainly composed of Fp with 10-15% chloritized mafic mineral and minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9028   | 272.40 | 274.20 | 1.80          | 121                    | 15               | 1                | 0.1              | 33               | 2                | 2                |
|             |               | amount of Qz and Mt (2-7%). The marbled facies is aphyric and probably                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9029   | 274.20 | 276.40 | 2.20          | 2053                   | 100              | 5                | 1.0              | 40               | 10               | 2                |
|             |               | composed of Fp, Qz, mafic minerals and Mt (3-10%). The magnetite of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9030   | 276.40 | 278.40 | 2.00          | 686                    | 90               | 9                | 0.5              | 45               | 2                | 2                |
|             |               | brecciated facies is mostly interstitial to the fragments and appears like a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9031   | 278.40 | 280.40 | 2.00          | 791                    | 50               | 19               | 0.5              | 39               | 5                | 2                |
|             |               | veins and veinlets network. The grey massive facies is moderately magnetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9032   | 280.40 | 282.30 | 1.90          | 1240                   | 40               | 9                | 1.1              | 36               | 5                | 2                |
|             |               | and the marbled one is weakly to strongly magnetic. The contact between both facies is always rapid from sharp to diffused and sinuous. Massive grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9034   | 282.30 | 283.90 | 1.60          | 1018                   | 40               | 7                | 0.7              | 36               | 10               | 2                |
|             |               | intervals are probably early dykes crosscutting the red and black rock. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9035   | 283.90 | 285.30 | 1.40          | 429                    | 15               | 2                | 0.3              | 35               | 2                | 2                |
|             |               | dykes with diffused and sinuous contacts have probably been emplaced at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9036   | 285.30 | 287.30 | 2.00          | 845                    | 160              | 6                | 1.2              | 33               | 45               | 2                |
|             |               | liquid state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9037   | 287.30 | 289.30 | 2.00          | 911                    | 140              | 8                | 1.3              | 33               | 25               | 2                |
|             |               | Alteration: The grey massive facies doesn't show important alteration. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9038   | 289.30 | 291.30 | 2.00          | 417                    | 40               | 2                | 0.5              | 25               | 10               | 2                |
|             |               | brecciated brick red and black facies is weakly to moderately hematized and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9039   | 291.30 | 293.30 | 2.00          | 2248                   | 60               | 11               | 1.8              | 60               | 2                | 2                |
|             |               | silicified. About 4% white Qz an/or white Cc veins and veinlets. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9040   | 293.30 | 294.90 | 1.60          | 2187                   | 60               | 12               | 1.7              | 66               | 2                | 2                |
|             |               | brecciated facies hosts almost essentially Qz only veins, veinlets and patches. There are at least, 2 sets of veins and veinlets; one at 15 deg with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9041   | 294.90 | 296.40 | 1.50          | 2054                   | 50               | 20               | 1.6              | 94               | 2                | 2                |
|             |               | C/A and the other between 70 and 80 deg. Their spacing is around 20 cm. Cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9042   | 296.40 | 297.90 | 1.50          | 2174                   | 70               | 21               | 2.0              | 86               | 10               | 2                |

and their direction between 60 and 70 deg. Mineralization: The brecciated is more mineralized. It contains 2% Py as fine disseminations and fracture cleavage fillings with few veinlets and splashes. Traces of Cp associated with Mt veins and veinlets (matrix), in Qz veins and as disseminations in brick red fragments. Some in fracture cleavages. The massive facies contains 1% fine grained Py as disseminationsand few veinlets. Traces of Cp almost essentially associated with Ccveinlets and small patches.

veinlets are dominant in the other facies. The mean spacing is about 10 cm

Lower contact of the unit defined by a 5 cm thick bleached (pale green-grey) zone followed by a 15 cm slightly banded zone (C/A=90 deg).

264.1-267.6: Intermediate dyke quite similar to the phyric portion of 227.5-235.6. Not mineralized. Moderately to strongly magnetic. Upper contact irregular but around 50 deg.

267.6-269.4: Brecciated brick red and black facies. Traces Cp.

269.4-270.9: Mediu to coarse grained intermediate dyke. Moderately to strongly magnetic. Traces of Cp. Upper and lower contacts at 40 deg relative to C/A.

270.9-274.2: Not mineralized fine grained intermediate dyke. Moderately magnetic. Lower contact quick but diffused and badly defined.

13-Nov-05 5:18:10 PM Page 5 of 7



### Falconbridge Limited

DDH:

NM-05-02

Project:

**KERR-SULPHURETS** 

| <b>From</b> (m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                         | Sample       | from             | to     | <b>Length</b> | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-----------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|--------|---------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                 |                  | 274.2-276.4: Brecciated brick red and black facies. Traces Cp.                                                                                                                                                                      |              |                  |        |               |                        |                  |                  |                  |                  |                  |                  |
|                 |                  | 276.4-280.4: Same as 270.9-274.2 but traces of Cp.                                                                                                                                                                                  |              |                  |        |               |                        |                  |                  |                  |                  |                  |                  |
|                 |                  | 280.4-283.9: Brecciated brick red and black facies. Traces Cp.                                                                                                                                                                      |              |                  |        |               |                        |                  |                  |                  |                  |                  |                  |
|                 |                  | 283.9-285.3: Same as 270.9-274.2. Not mineralized.                                                                                                                                                                                  |              |                  |        |               |                        |                  |                  |                  |                  |                  |                  |
|                 |                  | 285.3-286.1: Brecciated brick red and black facies. Not mineralized. 5-6% fine grained Py.                                                                                                                                          |              |                  |        |               |                        |                  |                  |                  |                  |                  |                  |
|                 |                  | 286.1-286.9: Same as 270.9-274.2. Not mineralized.                                                                                                                                                                                  |              |                  |        |               |                        |                  |                  |                  |                  |                  |                  |
|                 |                  | 286.9-297.9: Brecciated brick red and black facies. Traces of Cp in fracture cleavages. More pyritic in the lower 5 meters (5% fine grained disseminated Py).                                                                       |              |                  |        |               |                        |                  |                  |                  |                  |                  |                  |
| 297.90          | 321.40           | D INTERMEDIATE INTRUSIVE (I2)                                                                                                                                                                                                       | 9043         | 297.90           |        | 2.00          | 1079                   | 50               | 6                | 1.5              | 106              | 15               | 2                |
|                 |                  | I2/MASP/CH/(PP)/4-5% PY                                                                                                                                                                                                             | 9045<br>9046 | 299.90<br>301.90 | 301.90 | 2.00<br>2.00  | 1302<br>1429           | 80<br>50         | 1<br>5           | 2.2<br>6.0       | 117<br>167       | 15<br>25         | 2<br>2           |
|                 |                  | Medium green aphyric massive rock. Non magnetic to locally, weakly                                                                                                                                                                  | 9047         | 303.90           |        | 2.00          | 965                    | 100              | 5                | 4.9              | 235              | 25               | 2                |
|                 |                  | magnetic (the upper 3 meters of the unit).  Alteration: Weak propyllitic alteration (?) charactherized by pervasive                                                                                                                 | 9048         | 305.90           |        | 2.00          | 1497                   | 180              | 1                | 5.2              | 439              | 20               | 2                |
|                 |                  | distribution of Ch that gives green colour to the rock. Mean of 5% white to                                                                                                                                                         | 9049         | 307.90           | 309.30 | 1.40          | 1311                   | 80               | 1                | 2.1              | 120              | 5                | 2                |
|                 |                  | locally, purple Qz veins and white Cc veinlets. Some white Qz-white Cc veins.                                                                                                                                                       | 9050         | 309.30           | 310.60 | 1.30          | 1210                   | 70               | 1                | 2.1              | 116              | 10               | 2                |
|                 |                  | The main spacing is around 20 cm and direction between 60 and 80 deg.                                                                                                                                                               | 9051         | 310.60           | 312.10 | 1.50          | 118                    | 150              | 4                | 0.5              | 44               | 10               | 2                |
|                 |                  | Veining more important in the upper 6 meters of the unit and mostly as several cm thick Qz veins crosscut by Cc veinlets.                                                                                                           | 9052         | 312.10           |        | 1.50          | 1717                   | 320              | 11               | 3.4              | 356              | 15               | 2                |
|                 |                  | Mineralization: 4-5% fine grained Py mainly as disseminations, veinlets and                                                                                                                                                         | 9053         | 313.60           |        | 2.00          | 1631                   | 230              | 1                | 3.0              | 149              | 5                | 2                |
|                 |                  | splashes. Any Cp noted.                                                                                                                                                                                                             | 9054         | 315.60           |        | 2.00          | 2087                   | 120              | 1                | 3.6              | 154              | 10               | 5                |
|                 |                  | Lower contact: seems to be sharp and defined by contrasting colour between                                                                                                                                                          | 9056         | 317.60           |        | 2.00<br>1.80  | 2528<br>1604           | 260<br>210       | 1<br>2           | 8.4<br>2.7       | 143              | 20<br>15         | 2<br>2           |
|                 |                  | the two units. Scrumbled rock at the contact.  299.6-300.0: Bleached and silicified fault zone (C/A=80-90 deg). Fault gouge at the middle. This fault has probably been observed on the field.  305.0: Banded Qz vein (C/A=50 deg). | 9057         | 319.60           | 321.40 | 1.60          | 1604                   | 210              | 2                | 2.1              | 152              | 15               | 2                |
|                 |                  | 310.6-313.6: Pale red interval rich in Cc veinlets (C/A=80-90 deg). Both contacts quick but not sharp; sinuous and diffused.                                                                                                        |              |                  |        |               |                        |                  |                  |                  |                  |                  |                  |
| 321.40          | 341.10           | D INTERMEDIATE INTRUSIVE (I2) I2/QZ/(PL),SI/5-7% PY,TR CP                                                                                                                                                                           | 9058<br>9059 | 321.40<br>322.90 |        | 1.50<br>1.20  | 106<br>1271            | 40<br>100        | 6<br>28          | 1.1<br>2.2       | 48<br>84         | 5<br>10          | 2<br>2           |



#### **Falconbridge Limited**

DDH: Project: NM-05-02

**KERR-SULPHURETS** 

Project #:

301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                           | Sample | from   | to     | <b>Length</b><br>m | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | Greenish medium grey massive aphyric rock. Non magnetic.                                                                                                                                                              | 9060   | 324.10 | 325.30 | 1.20               | 745                    | 90               | 6                | 1.9              | 104              | 15               | 2                |
|             |                  | Alteration: Weak to moderate pervasive silicification and possibly                                                                                                                                                    | 9061   | 325.30 | 326.50 | 1.20               | 118                    | 40               | 3                | 0.6              | 43               | 10               | 2                |
|             |                  | weakpervasive phyllic alteration (united pale green colour of the rock). About                                                                                                                                        | 9062   | 326.50 | 328.00 | 1.50               | 1852                   | 120              | 8                | 3.4              | 116              | 30               | 2                |
|             |                  | 2% veining mainly as white Cc veinlets with some white Qz (locally purple Qz)                                                                                                                                         | 9063   | 328.00 | 328.90 | 0.90               | 54                     | 15               | 12               | 0.6              | 32               | 10               | 2                |
|             |                  | veins and veinlets. Mean spacing between 20 and 30 cm and directions                                                                                                                                                  | 9064   | 328.90 | 330.90 | 2.00               | 479                    | 50               | 13               | 2.6              | 97               | 10               | 2                |
|             |                  | varying between 70 and 80 deg.  Mineralization: 5-7% fine grained Py mostly as disseminations and veins and                                                                                                           | 9065   | 330.90 | 332.90 | 2.00               | 1053                   | 60               | 20               | 12.0             | 484              | 15               | 2                |
|             |                  | veinlets. Few cm scale splashes. Traces of Cp associated to Py veinlets                                                                                                                                               | 9066   | 332.90 | 334.90 | 2.00               | 942                    | 40               | 11               | 7.7              | 45               | 10               | 2                |
|             |                  | volinoto. I ow oill sould splashed. Traces of op associated to 1 y volinoto                                                                                                                                           | 9067   | 334.90 | 336.90 | 2.00               | 945                    | 30               | 20               | 11.7             | 42               | 15               | 2                |
|             |                  | 321.4-322.9: Fine to medium grained reddish porphyritic interval. 5-10% white                                                                                                                                         | 9069   | 336.90 | 339.00 | 2.10               | 938                    | 30               | 19               | 2.8              | 39               | 15               | 2                |
|             |                  | rounded Fp phenocrysts. Pervasive moderate silicification. Fp crystals of the matrix are brick red (hematized). 10-15% white Cc veining. 1-2% disseminated fine grained Py. Contacts with host rock sharp but waving. | 9070   | 339.00 | 341.10 | 2.10               | 1107                   | 30               | 8                | 11.0             | 38               | 10               | 2                |

325.3-326.5:Same as 321.4-322.9

328.0-328.9:Same as 321.4-322.9

329.5-330.0: Same as 321.4-322.9

13-Nov-05 5:18:11 PM Page 7 of 7



#### **Falconbridge Limited**

DDH:

NM-05-03

Project:

**KERR-SULPHURETS** 

Project #: 301

DDH Casing Azimuth: 155 Length (m): 5.2 Pulled: Dip: -70 Non Length (m): Plugged: 280.10 Oui Started: 8/4/2005 Cemented: Oui Completed: 8/6/2005 Core Logged: 8/7/2005

Size: NQ2

Storage: KERR CAMP Location

Coordonnée - UTM Easting: 423360 6265898 Northing: Elevation: 1100

NAD27 ZN9 Datum:

Claim #: 516245 Intervenant

FALCONBRIDGE Company:

HY-TECH Contractor: Located by: A. HUARD Method: Handheld GPS

Logged by: S. LAPOINTE

Target:

Cu-Au Porphyry

Comments:

#### Directional Tests (C=Collar, R=Reflex)

| Distance | Azimuth | Dip    | Туре |
|----------|---------|--------|------|
| 0.00     | 155.00  | -70.00 | С    |
| 8.80     | 155.60  | -70.80 | R    |
| 150.60   | 154.10  | -70.50 | R    |
| 274.00   | 158.10  | -70.30 | R    |



### Falconbridge Limited

DDH:

NM-05-03

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample | from  | to    | <b>Lengti</b><br>m | <b>h Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ад</b><br>ррт | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|--------------------|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 0.00        | 5.20             | CASING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |       |       |                    |                          |                  |                  |                  |                  |                  |                  |
|             |                  | 4.3-4.7: Polygenic core fragments (overburden).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |       |       |                    |                          |                  |                  |                  |                  |                  |                  |
|             |                  | 4.7-5.2: Same as first unit described.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |       |       |                    |                          |                  |                  |                  |                  |                  |                  |
| 5.20        | 9.30             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9265   | 5.20  | 7.20  | 2.00               | 862                      | 70               | 33               | 3.6              | 72               | 40               | 40               |
|             |                  | MASP/QZ/SI/7% PY,TR CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9266   | 7.20  | 9.30  | 2.10               | 2526                     | 110              | 20               | 8.4              | 83               | 30               | 15               |
|             |                  | Greenish pale grey massive aphyric rock. Non magnetic. Alteration: Moderate pervasive silicification. 20% veining mostly white Qz veins and veinlets. The thickest is up to 30 cm. Spacing between 5 and 10 cm and directions between 60 and 70 deg. Some white Cc veinlets heterogeneously distributed and oriented.  Mineralization: 7% fine grained Py mostly as disseminations and veins/veinlets. Some splashes. Traces of Cp mainly in the Qz veinlets and in more siliceous zones. Few fracture cleavage fillings.  Lower contact: Defined by dark green coloured and appearing of brecciation. Gradual over 60 cm. Contact zone is also outlined by two cm scale hematized porphyritic dykes (35-40% brick red Fp phenocrysts). Dykes have irregular winding margins. |        |       |       |                    |                          |                  |                  |                  |                  |                  |                  |
| 9.30        | 32.00            | ANDESITE (V2A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9267   | 9.30  | 10.50 | 1.20               | 1657                     | 50               | 18               | 5.9              | 119              | 20               | 15               |
|             |                  | V2A/BREC/(HM),(SI)/3% PY,TR CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9268   | 10.50 | 12.10 | 1.60               | 1796                     | 110              | 14               | 6.0              | 82               | 55               | 15               |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9270   | 12.10 | 14.00 | 1.90               | 480                      | 15               | 3                | 1.1              | 34               | 5                | 2                |
|             |                  | Very dark green, brick red and locally, pale grey aphyric rock. Brecciated to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9271   | 14.00 | 15.80 | 1.80               | 708                      | 15               | 5                | 1.6              | 24               | 5                | 2                |
|             |                  | locally, massive weak magnetic rock (non magnetic to very locally moderately magnetic). Breccia composed of 40 to 50% pale grey and/or brick red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9272   | 15.80 | 17.80 | 2.00               | 1669                     | 40               | 10               | 4.9              | 97               | 2                | 2                |
|             |                  | hematized subangular to angular fragments. Hematization mostly at the edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9273   | 17.80 | 19.80 | 2.00               | 1100                     | 15               | 8                | 2.1              | 72               | 2                | 2                |
|             |                  | of the fragments (surrounding pale grey) in the upper half of the unit and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9274   | 19.80 | 21.80 | 2.00               | 1968                     | 40               | 12               | 3.6              | 94               | 2                | 2                |
|             |                  | completely replacing them in the lower half. Matrix is dark green chloritic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9275   | 21.80 | 23.80 | 2.00               | 808                      | 40               | 5                | 2.2              | 196              | 25               | 5                |
|             |                  | material. Massive intervals has the same composition than the matrix of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9276   | 23.80 | 25.80 | 2.00               | 1489                     | 15               | 9                | 2.7              | 106              | 2                | 2                |
|             |                  | brecciated facies. Dark matrix and massive intervals are more magnetic. Few                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9277   | 25.80 | 27.50 | 1.70               | 889                      | 15               | 5                | 1.8              | 209              | 5                | 2                |
|             |                  | hematized porphyritic dykes.  Alteration: Weak pervasive silicification and weak to moderate pervasive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9278   | 27.50 | 29.10 | 1.60               | 493                      | 15               | 3                | 1.1              | 186              | 2                | 2                |
|             |                  | hematization of breccia fragments. Chlorite seemsto be a primary mineral (?).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9279   | 29.10 | 30.60 | 1.50               | 1165                     | 15               | 8                | 2.4              | 116              | 2                | 2                |
|             |                  | 8-10% veining almost essentially composed of grey Qz veins and veinlets spaced of 10 to 20 cm and oriented quite variably. Probably several veins and veinlets generations. There is one generation at low angle (5 to 30 deg). Most of the other veins and veinlets are around 50 to 60 deg. Minor white Cc veinlets with directions varying between 45 and 70 deg.  Mineralization: 3-4% fine grained Py mostly as disseminations and veinlets (locally with Qz). Traces of Cp in Qz veins and veinlets. We note several Cp                                                                                                                                                                                                                                                 | 9281   | 30.60 | 32.00 | 1.40               | 1205                     | 15               | 7                | 2.3              | 94               | 2                | 2                |

13-Nov-05 5:28:03 PM



Falconbridge Limited

DDH:

NM-05-03

Project:

**KERR-SULPHURETS** 

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                | Sample | from  | to    | <b>Length</b><br>m | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ррт | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|--------------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | specks at 3 cm above the upper contact of an hematized porphyry dyke. Traces of malachite in fracture cleavages. Lower contact: sharp (C/A=50-60 deg.).                                                                                                    |        |       |       |                    |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 12.1-15.8: Hematized massive medium grained intermediate porphyry dyke. About 35% brick red Fp phenocrysts and 5% bigger white to pinkish ones. Non magnetic. Traces of Cp at the upper selvage and in Qz vein cutting the dyke. Sharp contacts at 60 deg. |        |       |       |                    |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 28.5-29.1: Rusty fracture cleavages broken rock.                                                                                                                                                                                                           |        |       |       |                    |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 30.3-30.7: Same as 12.1-15.8 but no Cp.                                                                                                                                                                                                                    |        |       |       |                    |                        |                  |                  |                  |                  |                  |                  |
| 32.00       | 56.10            | FELDSPAR PORPHYRY MONZONITE (I2MFP)                                                                                                                                                                                                                        | 9282   | 32.00 | 34.00 | 2.00               | 476                    | 15               | 3                | 1.4              | 32               | 2                | 2                |
|             |                  | I2MFP/MASP/HM/1-2% PY,TR CP                                                                                                                                                                                                                                | 9283   | 34.00 | 36.00 | 2.00               | 301                    | 15               | 2                | 0.6              | 38               | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                            | 9284   | 36.00 | 38.00 | 2.00               | 364                    | 15               | 3                | 2.3              | 36               | 2                | 2                |
|             |                  | Greyish purple, medium grained, massive Fp porphyry monzonite. About 40% hematized anhedral to euhedral Fp phenocrysts. Also 5-10% white to pinkish                                                                                                        | 9285   | 38.00 | 40.00 | 2.00               | 860                    | 15               | 5                | 2.1              | 46               | 2                | 2                |
|             |                  | bigger euhedral Fp phenocrysts (up to 2 cm long). Matrix is composed of                                                                                                                                                                                    | 9286   | 40.00 | 42.00 | 2.00               | 1490                   | 50               | 1                | 1.8              | 93               | 15               | 2                |
|             |                  | whitish fine grained Fp groundmass with about 10% very fine grained mafic                                                                                                                                                                                  | 9287   | 42.00 | 44.00 | 2.00               | 361                    | 30               | 1                | 1.1              | 62               | 20               | 2                |
|             |                  | minerals (Hb or Bo?). The lowest five meters of unit host several dykes (or                                                                                                                                                                                | 9288   | 44.00 | 46.00 | 2.00               | 316                    | 30               | 1                | 0.5              | 83               | 20               | 2                |
|             |                  | pockets) of the following unit i.e. high euhedral Fp phenocrysts density                                                                                                                                                                                   | 9289   | 46.00 | 48.00 | 2.00               | 342                    | 15               | 1                | 0.8              | 62               | 20               | 2                |
|             |                  | monzonite). Non magnetic.                                                                                                                                                                                                                                  | 9290   | 48.00 | 50.00 | 2.00               | 941                    | 15               | 3                | 2.0              | 77               | 15               | 2                |
|             |                  | Alteration: Moderate pervasive hematization. About 4-5% white Qz only veins, white Qz-white Cc veins and Cc only veinlets. Spacing of the veins between                                                                                                    | 9291   | 50.00 | 51.40 | 1.40               | 461                    | 15               | 6                | 2.0              | 99               | 10               | 2                |
|             |                  | 30 and 50 cm and directions between 50 and 60 deg. Cc veinlets spaced by 2                                                                                                                                                                                 | 9292   | 51.40 | 52.70 | 1.30               | 785                    | 30               | 1                | 1.1              | 54               | 10               | 2                |
|             |                  | to 5 cm and oriented between 70 and 80 deg.                                                                                                                                                                                                                | 9294   | 52.70 | 53.90 | 1.20               | 827                    | 15               | 1                | 1.1              | 58               | 10               | 2                |
|             |                  | Mineralization: 1-2% fine grained Py mostly as disseminations and as few                                                                                                                                                                                   | 9295   | 53.90 | 56.10 | 2.20               | 477                    | 15               | 2                | 1.1              | 35               | 20               | 2                |
|             |                  | veinlets. Traces of Cp as isolated specks in Qz veins and veinlets and also in                                                                                                                                                                             |        |       |       |                    |                        |                  |                  |                  |                  |                  |                  |
|             |                  | some in Py veinlets. Few fracture cleavage fillings. Lower contact: sharp but sinuous (C/A=90).                                                                                                                                                            |        |       |       |                    |                        |                  |                  |                  |                  |                  |                  |
|             |                  | Lower contact. Sharp but sindous (C/A=30).                                                                                                                                                                                                                 |        |       |       |                    |                        |                  |                  |                  |                  |                  |                  |
|             |                  | 49.8-50.5: Broken rock with rusty fracture cleavage.                                                                                                                                                                                                       |        |       |       |                    |                        |                  |                  |                  |                  |                  |                  |
| 56.10       | 85.70            | FELDSPAR PORPHYRY MONZONITE (I2MFP)                                                                                                                                                                                                                        | 9296   | 56.10 | 58.10 | 2.00               | 593                    | 50               | 6                | 1.1              | 41               | 25               | 2                |
|             |                  | I2MFP/FLUV/(HM)/1-2% PY,TR CP                                                                                                                                                                                                                              | 9297   | 58.10 | 60.10 | 2.00               | 335                    | 140              | 1                | 2.5              | 266              | 65               | 5                |
|             |                  |                                                                                                                                                                                                                                                            | 9298   | 60.10 | 62.10 | 2.00               | 535                    | 40               | 2                | 1.2              | 78               | 20               | 2                |
|             |                  | White spotted pale grey to pale purple massive Fp porphyry monzonite. High                                                                                                                                                                                 | 9299   | 62.10 | 64.10 | 2.00               | 434                    | 30               | 2                | 1.8              | 50               | 10               | 2                |
|             |                  | density (40-50%) of euhedral zoned Fp phenocrysts. Up to 5 cm long crystals.                                                                                                                                                                               | 9300   | 64.10 | 66.10 | 2.00               | 494                    | 40               | 1                | 2.2              | 83               | 30               | 2                |
|             |                  | We note 1-10% of coarse dark green mineral with locally elongated shape (Ch after Hb?). Matrix is composed of very fine grained Fp. Qz(?) and pale green                                                                                                   | 9301   | 66.10 | 68.10 | 2.00               | 371                    | 15               | 1                | 1.5              | 74               | 10               | 2                |
|             |                  | mineral groundmass. Non magnetic. Fluidal texture (caused by magmatic                                                                                                                                                                                      | 9302   | 68.10 | 70.10 | 2.00               | 757                    | 120              | 2                | 2.9              | 137              | 30               | 2                |
|             |                  | flow) noted at several sites.                                                                                                                                                                                                                              | 9303   | 70.10 | 72.10 | 2.00               | 609                    | 160              | 2                | 2.3              | 149              | 55               | 2                |
|             |                  | <u>'</u>                                                                                                                                                                                                                                                   |        |       |       |                    |                        |                  |                  |                  |                  |                  |                  |



DDH: Project: NM-05-03

**KERR-SULPHURETS** 

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                             | Sample | from   | to     | <b>Lengti</b> | h <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ррт | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | Alteration: Weak pervasive hematization of matrix in the upper half of the                                                                                                                                                                                                                                                                                                              | 9305   | 72.10  | 74.10  | 2.00          | 293                      | 230              | 3                | 1.5              | 94               | 80               | 5                |
|             |                  | intrusion. About 2% veining. Mostly white Qz only veins and white Cc veinlets.                                                                                                                                                                                                                                                                                                          | 9306   | 74.10  | 76.10  | 2.00          | 583                      | 150              | 1                | 1.6              | 104              | 65               | 2                |
|             |                  | Qz veins have irregular spacing between 1 and 2 meters and directions between 15 and 45 deg. White Cc veinlets are spaced by 2 to 10 cm and                                                                                                                                                                                                                                             | 9307   | 76.10  | 78.10  | 2.00          | 316                      | 240              | 1                | 1.8              | 317              | 55               | 10               |
|             |                  | oriented between 60 and 70 deg. Few white Qz-white Cc veins with directions                                                                                                                                                                                                                                                                                                             | 9308   | 78.10  | 80.10  | 2.00          | 382                      | 140              | 2                | 1.0              | 65               | 55               | 2                |
|             |                  | 45 and 60 deg.                                                                                                                                                                                                                                                                                                                                                                          | 9309   | 80.10  | 82.10  | 2.00          | 665                      | 690              | 2                | 2.3              | 188              | 75               | 2                |
|             |                  | Mineralization:1-2% fine to medium grained Py as disseminations, few                                                                                                                                                                                                                                                                                                                    | 9310   | 82.10  | 84.10  | 2.00          | 546                      | 170              | 2                | 2.0              | 128              | 55               | 2                |
|             |                  | veinlets and fracture cleavage fillings. Traces of Cp at the upper margin of the intrusion (one speck) and an other in a Qz vein. Traces of malachite in fracture planes.  Lower contact: sharp at 35 deg.                                                                                                                                                                              | 9311   | 84.10  | 85.70  | 1.60          | 329                      | 160              | 2                | 1.2              | 51               | 50               | 2                |
|             |                  | 78.9-79.1: Hematized Fp porphyry dyke (or xenolith?).                                                                                                                                                                                                                                                                                                                                   |        |        |        |               |                          |                  |                  |                  |                  |                  |                  |
| 85.70       | 96.60            | ANDESITE (V2A)                                                                                                                                                                                                                                                                                                                                                                          | 9312   | 85.70  | 86.40  | 0.70          | 160                      | 60               | 3                | 0.5              | 187              | 70               | 15               |
|             |                  | V2A/MASV/CH/CB,(PP)                                                                                                                                                                                                                                                                                                                                                                     | 9313   | 86.40  | 88.10  | 1.70          | 367                      | 440              | 3                | 1.4              | 51               | 100              | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                         | 9314   | 88.10  | 90.10  | 2.00          | 620                      | 170              | 3                | 1.0              | 68               | 40               | 10               |
|             |                  | Medium green massive aphyric rock. Non magnetic.  Alteration: Medium pervasive carbonatation and weak pervasive propyllitic                                                                                                                                                                                                                                                             | 9316   | 90.10  | 92.10  | 2.00          | 825                      | 220              | 4                | 3.2              | 121              | 65               | 2                |
|             |                  | (chloritic) alterations. At least 10% veining; half is grey Qz veins and half is                                                                                                                                                                                                                                                                                                        | 9317   | 92.10  | 94.10  | 2.00          | 1113                     | 140              | 3                | 1.7              | 116              | 25               | 5                |
|             |                  | white to pinkish Cc veins, veinlets and patches. Qz veins spaced by 10 to 20                                                                                                                                                                                                                                                                                                            | 9318   | 94.10  | 95.40  | 1.30          | 664                      | 200              | 3                | 1.2              | 95               | 15               | 10               |
|             |                  | cm and oriented between 40 and 50 deg. Only few large veins of white and pinkish Cc (up to 15 cm); they have a direction of 45 deg. White Cc veinlets are between 60 and 70 deg. And are spaced by 2 to 10 cm.  Mineralization: 3-4% fine grained Py essentially as disseminations. One speck of Cp in a white and pinkish Cc vein.  Lower contact: sharp but winding (C/A=50-60 deg.). | 9319   | 95.40  | 96.60  | 1.20          | 1070                     | 70               | 1                | 2.2              | 83               | 20               | 15               |
|             |                  | 85.7-86.4: Very chloritized andesite.                                                                                                                                                                                                                                                                                                                                                   |        |        |        |               |                          |                  |                  |                  |                  |                  |                  |
|             |                  | 86.4-88.1: High density Fp porphyry dyke (same as 56.1-85.7). Andesite is brecciated over few cm on both sides of the dyke.                                                                                                                                                                                                                                                             |        |        |        |               |                          |                  |                  |                  |                  |                  |                  |
| 96.60       | 115.10           | FELDSPAR PORPHYRY MONZONITE (I2MFP)                                                                                                                                                                                                                                                                                                                                                     | 9320   | 96.60  | 98.60  | 2.00          | 640                      | 60               | 1                | 1.7              | 57               | 15               | 5                |
|             |                  | I2MFP/MASP/HM/1% PY                                                                                                                                                                                                                                                                                                                                                                     | 9321   | 98.60  | 100.60 | 2.00          | 343                      | 90               | 19               | 1.0              | 43               | 30               | 2                |
|             |                  | Slightly purple medium grey to purple (brick red) massive Fp porphyry                                                                                                                                                                                                                                                                                                                   | 9322   | 100.60 |        | 1.80          | 301                      | 60               | 2                | 1.4              | 71               | 30               | 2                |
|             |                  | monzonite. Very fine grained (matrix) to medium grained (phenocrysts). About                                                                                                                                                                                                                                                                                                            | 9323   | 102.40 | -      | 2.00          | 561                      | 30               | 1                | 1.3              | 55               | 35               | 2                |
|             |                  | 40% hematized anhedral to euhedral Fp phenocrysts (<5 mm of diameter).                                                                                                                                                                                                                                                                                                                  | 9324   | 104.40 |        | 1.50          | 248                      | 40               | 4                | 1.0              | 50               | 30               | 2                |
|             |                  | Matrix is composed of whitish fine grained Fp and some Qz (?) groundmass                                                                                                                                                                                                                                                                                                                | 9325   | 105.90 |        | 1.50          | 266                      | 15               | 1                | 0.4              | 50               | 20               | 2                |
|             |                  | with about 5 to 10% fine to medium grained chloritized mafic minerals (Ch                                                                                                                                                                                                                                                                                                               | 9326   | 107.40 |        | 2.00          | 386                      | 15               | 2                | 1.2              | 50               | 25               | 2                |
|             |                  | after Hb?). Non magnetic.                                                                                                                                                                                                                                                                                                                                                               | 9327   | 109.40 |        | 2.00          | 286                      | 15               | 1                | 0.7              | 39               | 10               | 2                |
|             |                  | Alteration: Weak to moderate pervasive (mostly Fp phenocrysts)                                                                                                                                                                                                                                                                                                                          | 9329   | 111.40 | 113.40 | 2.00          | 204                      | 15               | 1                | 0.5              | 41               | 10               | 2                |



DDH: Project: NM-05-03

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample | from   | to     | <b>Length</b> | <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | hematization. 3-4% veining mainly white Qz veins and white Cc veinletsand veins. Mean spacing of Qz veins is 20 cm and directions between 30 and 45 deg.). Cc veinlets and veins are spaced by 10 to 20 cm and have directions quite similar to Qz veins.  Mineralization: 1% fine grained Py as few veinlets and very sparse disseminations. No Cp noted.  Lower contact: sharp at 80 deg.  103.3-107.4: More Cc veinlets rich interval | 9330   | 113.40 | 115.10 | 1.70          | 341                    | 40               | 1                | 0.9              | 47               | 35               | 2                |
| 115.10      | 167.40           | ANDESITE (V2A)                                                                                                                                                                                                                                                                                                                                                                                                                           | 9331   | 115.10 | 117.10 | 2.00          | 358                    | 15               | 1                | 0.7              | 129              | 15               | 10               |
|             |                  | V2A/(CB),(CL)/3% PY,TR CP                                                                                                                                                                                                                                                                                                                                                                                                                | 9332   | 117.10 |        | 2.00          | 407                    | 15               | 1                | 0.8              | 132              | 15               | 10               |
|             |                  | V2/V(OD),(OE)/O/O/ 1,111 O/                                                                                                                                                                                                                                                                                                                                                                                                              | 9333   | 119.10 |        | 2.00          | 551                    | 15               | 1                | 1.0              | 94               | 15               | 2                |
|             |                  | Very dark green to dark medium green, locally purple patched massive                                                                                                                                                                                                                                                                                                                                                                     | 9334   | 121.10 |        | 2.00          | 1014                   | 15               | 3                | 1.4              | 65               | 15               | 2                |
|             |                  | andesite. Aphyric. Non to weakly magnetic (very locally, moderate to strong).                                                                                                                                                                                                                                                                                                                                                            | 9335   | 123.10 |        | 2.00          | 572                    | 15               | 1                | 1.1              | 175              | 15               | 2                |
|             |                  | The most magnetic spots are small blebs or bands (<1 cm of diameter or                                                                                                                                                                                                                                                                                                                                                                   | 9336   | 125.10 |        | 2.00          | _                      |                  | 1                |                  | _                |                  | 2                |
|             |                  | thickness) of fine grained magnetite; mostly associated to higher Py                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |               | 828                    | 15               |                  | 0.9              | 126              | 10               |                  |
|             |                  | concentrations. The andesite hosts several more or less porphyritic purple to                                                                                                                                                                                                                                                                                                                                                            | 9337   | 127.10 |        | 2.00          | 750                    | 15               | 1                | 1.3              | 124              | 10               | 2                |
|             |                  | dark purple small irregular dykes and patches. Flow banding has been noted                                                                                                                                                                                                                                                                                                                                                               | 9338   | 129.10 |        | 2.00          | 1118                   | 15               | 6                | 2.3              | 347              | 10               | 2                |
|             |                  | at several places (C/A=30 deg.).  Alteration: Locally, weak pervasive carbonatation. The very dark green                                                                                                                                                                                                                                                                                                                                 | 9340   | 131.10 |        | 2.00          | 581                    | 15               | 7                | 1.3              | 231              | 15               | 2                |
|             |                  | intervals of the unit are softer and affected by weak pervasive chloritization. 6-                                                                                                                                                                                                                                                                                                                                                       | 9341   | 133.10 | 135.10 | 2.00          | 796                    | 15               | 1                | 2.2              | 153              | 10               | 2                |
|             |                  | 7% veining. The veining is mainly white Qz veins and white Cc veinlets. Qz                                                                                                                                                                                                                                                                                                                                                               | 9342   | 135.10 | 135.90 | 0.80          | 569                    | 30               | 1                | 2.0              | 359              | 15               | 2                |
|             |                  | veins spacing is between 10 and 20 cm and their direction between 20 and 30                                                                                                                                                                                                                                                                                                                                                              | 9343   | 135.90 | 137.90 | 2.00          | 789                    | 70               | 52               | 1.7              | 64               | 15               | 2                |
|             |                  | deg. Few Qz veins bring totally hematized Fp grains at their margins. The                                                                                                                                                                                                                                                                                                                                                                | 9344   | 137.90 | 139.90 | 2.00          | 845                    | 40               | 12               | 1.5              | 60               | 15               | 5                |
|             |                  | white Cc veinlets are spaced of 2 to 10 cms and oriented between 20 and 30                                                                                                                                                                                                                                                                                                                                                               | 9345   | 139.90 | 141.50 | 1.60          | 686                    | 60               | 9                | 3.1              | 80               | 40               | 10               |
|             |                  | deg. We note also few white and pink Cc veins at 20 deg. From 148.5 to the                                                                                                                                                                                                                                                                                                                                                               | 9346   | 141.50 | 143.10 | 1.60          | 1101                   | 40               | 3                | 1.4              | 74               | 10               | 2                |
|             |                  | end of the unit, there are some irregular shape deep purple hematized Qz                                                                                                                                                                                                                                                                                                                                                                 | 9347   | 143.10 | 145.10 | 2.00          | 936                    | 70               | 7                | 2.3              | 82               | 10               | 2                |
|             |                  | veins (< 8 cm thick) that host up to 10% disseminated Py (C/A=35-40 deg.).                                                                                                                                                                                                                                                                                                                                                               | 9348   | 145.10 | 147.10 | 2.00          | 960                    | 80               | 6                | 2.2              | 82               | 15               | 2                |
|             |                  | Mineralization: 3% fine grained Py mostly as veinlets, disseminations and                                                                                                                                                                                                                                                                                                                                                                | 9349   | 147.10 | _      | 2.00          | 1226                   | 140              | 15               | 6.7              | 148              | 15               | 2                |
|             |                  | fracture cleavage fillings. Traces of Cp almost essentially in fracture planes.  Also, a couple of specks near a Cc veinlet.                                                                                                                                                                                                                                                                                                             | 9351   | 149.10 |        | 2.00          | 814                    | 15               | 3                | 1.5              | 92               | 10               | 2                |
|             |                  | Lower contact: Charactherized by a banded 30 cm thick Py and Mt rich zone                                                                                                                                                                                                                                                                                                                                                                | 9352   | 151.10 |        | 2.00          | 649                    | 60               | 3                | 1.4              | 82               | 15               | 2                |
|             |                  | (C/A=65 deg).                                                                                                                                                                                                                                                                                                                                                                                                                            | 9353   | 153.10 |        | 2.00          | 783                    | 30               | 14               | 1.2              | 86               | 10               | 2                |
|             |                  | (                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9354   | 155.10 |        | 2.00          | 1268                   | 40               | 7                | 1.6              | 89               | 15               | 2                |
|             |                  | 135.7-143.1: Pale green weakly silicified interval.                                                                                                                                                                                                                                                                                                                                                                                      |        |        |        |               |                        | _                |                  |                  |                  |                  | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9355   | 157.10 |        | 2.00          | 992                    | 90               | 31               | 3.5              | 370              | 15               |                  |
|             |                  | 147.4: 2 cm thick Py vein (C/A=30 deg.)                                                                                                                                                                                                                                                                                                                                                                                                  | 9356   | 159.10 |        | 1.20          | 1332                   | 320              | 9                | 4.2              | 175              | 25               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9357   | 160.30 |        | 1.20          | 1672                   | 180              | 5                | 2.6              | 151              | 25               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9358   | 161.50 |        | 1.90          | 1180                   | 90               | 2                | 2.3              | 666              | 20               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9359   | 163.40 |        | 1.80          | 3273                   | 120              | 4                | 4.7              | 217              | 20               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9360   |        | 165.90 | 0.70          | 1254                   | 130              | 2                | 2.5              | 133              | 20               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9362   | 165.90 | 167.90 | 2.00          | 1309                   | 140              | 1                | 2.0              | 110              | 10               | 2                |

13-Nov-05 5:28:04 PM Page 4 of 7



DDH:

NM-05-03

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample       | from             | to     | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ррт | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|--------|---------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 167.40      | 184.80           | ANDESITE (?) (V2A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9363         | 167.90           | 169.90 | 2.00          | 932             | 80               | 1                | 1.4              | 72               | 15               | 2                |
|             |                  | V2A/MASV/(SI),(CB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9364         | 169.90           | 171.90 | 2.00          | 1298            | 130              | 3                | 1.5              | 89               | 15               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9365         | 171.90           | 173.90 | 2.00          | 630             | 110              | 2                | 1.0              | 144              | 2                | 2                |
|             |                  | Greenish pale grey to medium greyish green massive andesite (?). Aphyric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9366         | 173.90           | 175.90 | 2.00          | 942             | 100              | 1                | 1.5              | 139              | 2                | 2                |
|             |                  | and non magnetic. Traces to 1% of an anhedral chloritized mafic mineral (about 1 mm diameter). Few hematized (brick red or purple) more or less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9367         | 175.90           | 177.90 | 2.00          | 689             | 70               | 2                | 0.8              | 92               | 5                | 2                |
|             |                  | porphyritic dykes and patches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9368         | 177.90           | 179.90 | 2.00          | 750             | 40               | 4                | 0.9              | 83               | 2                | 2                |
|             |                  | Alteration: Globally, weak pervasive siicification (locally, glassy look) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9369         | 179.90           | 181.90 | 2.00          | 848             | 140              | 6                | 1.1              | 98               | 10               | 2                |
|             |                  | carbonatation. Traces of sericite, locally. About 8-10% of white (locally,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9370         | 181.90           | 183.90 | 2.00          | 705             | 40               | 3                | 0.9              | 63               | 5                | 2                |
|             |                  | purple) Qz veins and white Cc veinlets. Qz veins with 20 to 30 cm spacing and directions between 0 and 50 deg. The biggest Qz veins is 50 cm wide. Several Qz veins bring 20 to 40% of a black prismatic hard mineral, some magnetite and 1-2% disseminated Py. The white Cc veinlets are spaced by few cm and oriented mostly between 70 and 80 deg. We note one white and pink Cc vein (C/A=20 deg.).  Mineralization: 6% fine grained Py as disseminations, veinlets and in Qz veins. Traces of Cp in a Qz vein and as disseminations in Cc veinlets neighbourhood (zone of pervasive carbonatation). Traces in fracture planes. | 9371         |                  | 184.80 | 0.90          | 1103            | 40               | 2                | 1.3              | 46               | 5                | 2                |
| 184.80      | 216.30           | P RHYODACITE (V1H) V1H/BREC/(SI),(CB)/6% PY,TR CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9372<br>9373 | 184.80<br>186.80 | 188.80 | 2.00          | 1480<br>442     | 40<br>50         | 1                | 1.7              | 77<br>121        | 10<br>15         | 2 2              |
|             |                  | Slightly greyish pale green to dark green weakly (initiating process) brecciated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9374         |                  | 190.60 | 1.80          | 589             | 90               | 3                | 1.7              | 109              | 1855             | 195              |
|             |                  | andesite. The pale brownish aphyric angular fragments are still almost jointive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9375         | 190.60           |        | 1.80          | 3993            | 260              | 4                | 4.4              | 89               | 40               | 2                |
|             |                  | and isolated by dark green chloritic aphyric matrix. Some decimeter scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9376         | 192.40           |        | 1.50          | 1528            | 130              | 1                | 1.8              | 46               | 20               | 2                |
|             |                  | more massive intervals and also some flow banding zones (C/A=45). Globally,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9378         | 193.90           | 195.40 | 1.50          | 5308            | 340              | 2                | 6.1              | 156              | 85               | 2                |
|             |                  | the unit has a chaotic look.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9379         |                  | 196.80 | 1.40          | 8319            | 640              | 2                | 10.7             | 184              | 90               | 2                |
|             |                  | Alteration: Weak pervasive silicification in the dominant brecciated facies.  Locally, weak pervasive carbonatation in the darker massive facies. About                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9380         |                  | 198.80 | 2.00          | 2479            | 80               | 1                | 3.1              | 137              | 20               | 2                |
|             |                  | 10% veining; mainly medium to large (up to 2.7 meters wide) white Qz veins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9381         |                  | 200.80 | 2.00          | 1009            | 130              | 2                | 1.6              | 91               | 30               | 2                |
|             |                  | and veinlets and smaller white Cc veinlets. The Qz veins are spaced by 5 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9382         |                  | 202.80 | 2.00          | 2387            | 160              | 2                | 2.8              | 97               | 30               | 2                |
|             |                  | 20 cm and the directions are between 5 and 75 deg. The white Cc veinlets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9383         |                  | 204.80 | 2.00          | 2028            | 60               | 1                | 2.1              | 109              | 40               | 2                |
|             |                  | crosscut the Qz veins and have directions between 60 and 80 deg. Their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9385         | 204.80           |        | 2.00          | 2121            | 140              | 5                | 2.7              | 143              | 55               | 2                |
|             |                  | spacing vary between 2 and 10 cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9386         | 206.80           |        | 2.00          | 1527            | 660              | 8                | 1.7              | 103              | 45               | 2                |
|             |                  | Mineralization: 6% fine grained Py as disseminations, veinlets, splashes and veins. Traces of Cp mainly as disseminations in the biggest Qz veins and as                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9387         | 208.80           |        | 2.00          | 868             | 100              | 6                | 1.2              | 97               | 40               | 2                |
|             |                  | disseminations in volcanic host rock in the neighbourhood of Qz veins or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9388         | 210.80           |        | 2.00          | 916             | 470              | 10               | 1.7              | 212              | 110              | 2                |
|             |                  | farter. A little in fracture planes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9389         | 212.80           |        | 1.80          | 2126            | 330              | 9                | 2.6              | 271              | 125              | 2                |
|             |                  | Lower contact: sharp but hidden by a 20 cm thick pale purple hematized Fp porphyry dyke.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9390         | 214.60           | 216.30 | 1.70          | 1305            | 540              | 21               | 3.5              | 1134             | 225              | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |        |               |                 |                  |                  |                  |                  |                  |                  |

13-Nov-05 5:28:04 PM Page 5 of 7

192.4-196.8: Several white Qz veins intermixed with host rock. The interval



### Falconbridge Limited

DDH:

NM-05-03

Project:

**KERR-SULPHURETS** 

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                       | Sample | from   | to     | <b>Lengti</b><br>m | h <b>Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------------------|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | contains about 10% fine grained disseminated Py and 1% fine grained disseminated Cp. Cp mineralizations are most abundant in the host volcanic rock. 10-15% black Ch in Qz veins. |        |        |        |                    |                          |                  |                  |                  |                  |                  |                  |
|             |                  | 206.2-207.0: Broken rock.                                                                                                                                                         |        |        |        |                    |                          |                  |                  |                  |                  |                  |                  |
|             |                  | 214.0-214.5: Broken rock.                                                                                                                                                         |        |        |        |                    |                          |                  |                  |                  |                  |                  |                  |
| 216.30      | 256.90           | RHYODACITE (V1H)                                                                                                                                                                  | 9391   | 216.30 | 218.30 | 2.00               | 7955                     | 500              | 3                | 8.1              | 1601             | 90               | 2                |
|             |                  | V1H/MT/(SI),(CB)/10% PY,TR CP                                                                                                                                                     | 9392   | 218.30 | 220.30 | 2.00               | 1050                     | 280              | 5                | 2.1              | 241              | 75               | 2                |
|             |                  |                                                                                                                                                                                   | 9393   | 220.30 | 222.30 | 2.00               | 1676                     | 100              | 5                | 1.9              | 336              | 30               | 2                |
|             |                  | Greyish dark medium green to dark green massive aphyric andesite. Non                                                                                                             | 9394   | 222.30 | 224.30 | 2.00               | 3776                     | 210              | 5                | 4.1              | 731              | 40               | 2                |
|             |                  | magnetic to weakly magnetic (very locally, moderate to strong magnetism caused by Mt veinlets and small lenses). Flow banding measured at 50 deg.                                 | 9395   | 224.30 | 226.30 | 2.00               | 4817                     | 350              | 9                | 4.0              | 928              | 50               | 2                |
|             |                  | Py rich rock.                                                                                                                                                                     | 9397   | 226.30 | 228.30 | 2.00               | 1758                     | 110              | 17               | 3.2              | 369              | 35               | 2                |
|             |                  | Alteration: Weak pervasive silicification in the most part of the unit and local                                                                                                  | 9398   | 228.30 | 230.30 | 2.00               | 2072                     | 80               | 8                | 4.0              | 444              | 35               | 2                |
|             |                  | weak pervasive carbonatation (paler rock). 5% white Cc veinlets, white and                                                                                                        | 9399   | 230.30 | 232.30 | 2.00               | 1291                     | 40               | 6                | 3.1              | 298              | 20               | 2                |
|             |                  | pink Cc veins and Qz veins. More or less continuous white Cc veinlets are                                                                                                         | 9400   | 232.30 | 234.30 | 2.00               | 3682                     | 110              | 5                | 4.0              | 1090             | 15               | 2                |
|             |                  | spaced by 1 to 2 cm and oiented between 60 and 80 deg. Two white and pink Cc veins 30 cm from each other have a direction of 45 deg. Qz veins have a                              | 9401   | 234.30 | 236.30 | 2.00               | 1178                     | 40               | 3                | 2.0              | 300              | 10               | 2                |
|             |                  | very variable spacing and are oriented mostly at 50 deg.                                                                                                                          | 9402   | 236.30 | 238.30 | 2.00               | 1151                     | 40               | 3                | 2.2              | 331              | 10               | 2                |
|             |                  | Mineralization: A mean of 10% fine to medium grained Py. Most of the Py as                                                                                                        | 9403   | 238.30 | 240.30 | 2.00               | 2875                     | 100              | 2                | 2.2              | 577              | 10               | 2                |
|             |                  | disseminations, diffused bands and splashes. Some straigjht Py only veinlets                                                                                                      | 9404   | 240.30 | 242.30 | 2.00               | 2259                     | 90               | 7                | 2.7              | 466              | 10               | 2                |
|             |                  | and/or veins and Py bearing Qz veins. The most important Py concentration                                                                                                         | 9405   | 242.30 | 244.30 | 2.00               | 1194                     | 260              | 13               | 2.3              | 269              | 15               | 2                |
|             |                  | zones are moderately to strongly magnetic (Mt small lenses, veinlets and                                                                                                          | 9406   | 244.30 | 246.30 | 2.00               | 947                      | 280              | 6                | 2.7              | 361              | 10               | 2                |
|             |                  | veins). Traces of Cp associated with Py but never with Mt (never in the magnetic zones). Cp mostly as fine disseminations (impregnations) directly in                             | 9407   | 246.30 | 248.10 | 1.80               | 865                      | 160              | 32               | 8.0              | 1010             | 20               | 2                |
|             |                  | the volcanic host; locally, up to 10% Cp over 15 cm interval (ex.: 224.9-                                                                                                         | 9408   | 248.10 | 249.90 | 1.80               | 650                      | 220              | 8                | 8.4              | 1662             | 25               | 2                |
|             |                  | 225.05). Also in few veinlets with Py and in fracture planes.                                                                                                                     | 9409   | 249.90 | 251.00 | 1.10               | 7696                     | 1430             | 28               | 11.1             | 782              | 60               | 2                |
|             |                  | Lower contact: Almost sharp (over 4 cm). It is outlined by a medium grey-                                                                                                         | 9410   | 251.00 | 253.00 | 2.00               | 2854                     | 250              | 81               | 9.6              | 1106             | 20               | 2                |
|             |                  | green aphyric "foliated" (probably sheared) rock (C/A=70).                                                                                                                        | 9411   | 253.00 | 255.00 | 2.00               | 4963                     | 260              | 5                | 5.6              | 933              | 10               | 2                |
|             |                  | 250.1-250.7: Almost massive Py and Mt vein. No Cp noted. Mt seems to be partly replaced by Hm.                                                                                    | 9413   | 255.00 | 256.90 | 1.90               | 4444                     | 320              | 4                | 4.6              | 827              | 15               | 2                |
|             |                  | 252.5-256.5: Quite Py rich moderately magnetic zone with several subparallel Mt stringers (C/A=60 deg.). The rock looks slightly brecciated.                                      |        |        |        |                    |                          |                  |                  |                  |                  |                  |                  |
| 256.90      | 280.10           | P RHYODACITE (?) (V1H)                                                                                                                                                            | 9414   | 256.90 | 258.90 | 2.00               | 762                      | 40               | 5                | 2.7              | 224              | 10               | 2                |
|             |                  | V1H/MASV/QZ/SI/6-7% PY,TR CP                                                                                                                                                      | 9415   | 258.90 |        | 2.00               | 544                      | 40               | 3                | 0.7              | 332              | 15               | 2                |
|             |                  |                                                                                                                                                                                   | 9416   | 260.90 |        | 2.00               | 984                      | 60               | 5                | 1.3              | 250              | 10               | 2                |
|             |                  | Slightly greenish medium grey to dark medium green massive aphyric felsic volcanic (?) rock. Non magnetic. We note two 40 cm wide purple (brick red)                              | 9417   | 262.90 |        | 2.00               | 2442                     | 140              | 5                | 2.4              | 484              | 10               | 2                |



#### **Falconbridge Limited**

DDH:

NM-05-03

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                             | Sample | from   | to     | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  | hematized Fp porphyry dykes (C/A=45 deg.).                                                                                                              | 9418   | 264.90 | 266.90 | 2.00          | 960             | 60               | 7                | 1.3              | 223              | 5                | 2                |
|             |                  | Alteration: Weak to moderate pervasive silicification and weak very local                                                                               | 9420   | 266.90 | 268.90 | 2.00          | 594             | 60               | 10               | 3.5              | 286              | 10               | 2                |
|             |                  | pervasive carbonatation. Possible traces of sericitization (phyllic alteration).                                                                        | 9421   | 268.90 | 270.90 | 2.00          | 1252            | 60               | 5                | 1.2              | 278              | 10               | 2                |
|             |                  | Veining (3-4%) mostly composed of white and pinkish Cc veins and white Cc veinlets with some Qz veins. White and pinkish Cc veins are in the upper part | 9422   | 270.90 | 272.90 | 2.00          | 879             | 110              | 4                | 0.8              | 255              | 25               | 2                |
|             |                  | of the unit (over 2 meters) and have a chaotic pattern (beginning of                                                                                    | 9423   | 272.90 | 274.90 | 2.00          | 2986            | 130              | 11               | 5.1              | 652              | 15               | 2                |
|             |                  | brecciation by stockwork). White Cc veinlets are spaced by a mean of 5 cm                                                                               | 9424   | 274.90 | 276.40 | 1.50          | 806             | 200              | 13               | 8.9              | 375              | 40               | 2                |
|             |                  | and have two main directions. One setof veinlets is oriented at about 15                                                                                | 9425   | 276.40 | 277.80 | 1.40          | 952             | 430              | 9                | 13.6             | 377              | 40               | 2                |
|             |                  | degrees and the other at 50 deg. Qz veins are few and directed 20 deg. (clearly cut by Cc veinlets).                                                    | 9426   | 277.80 | 280.10 | 2.30          | 287             | 80               | 59               | 0.4              | 47               | 30               | 2                |

Mineralization: 6-7% finr grained Py mainly as disseminations with some more or less continuousand winding veinlets. Traces of Cp as fine disseminations and discontinuous fine veinlets in the most silicified parts of the unit. Associated with Py.

277.8: Fault with a 1.5 cm thick gouge. Rock is quite soft over 20 cm. The rock is strongly silicified over 40 cm just above the fault plane (C/A=80 deg.).

277.8-280.1: Rock below the fault is pale to dark green (patchy look) and brecciated by white Cc veinlets stockwork.

13-Nov-05 5:28:04 PM Page 7 of 7



#### **Falconbridge Limited**

DDH:

WM-05-01

Project:

**KERR-SULPHURETS** 

Intervenant

HY-TECH

A. HUARD

Handheld GPS

S. LAPOINTE

FALCONBRIDGE

Project #: 301

Company:

Contractor:

Located by:

Logged by:

Method:

DDH Casing Azimuth: 190 Length (m): 3.8 Pulled: Dip: -50 Non Length (m): Plugged: 282.90 Oui Started: 8/6/2005 Cemented: Oui Completed: 8/9/2005 Core Logged: 8/10/2005 Size: NQ2

Coordonnée - UTM

**Easting:** 422597

**Northing:** 6265357 **Elevation:** 820

Datum: NAD27 ZN9

Claim #:

516245

Location

Target:

Cu-Au Porphyry

Comments:

#### Directional Tests (C=Collar, R=Reflex)

Storage:

KERR CAMP

| Distance | Azimuth | Dip    | Туре |
|----------|---------|--------|------|
| 0.00     | 190.00  | -50.00 | С    |
| 8.80     | 152.70  | -50.90 | R    |
| 119.20   | 161.80  | -50.20 | R    |
| 277.10   | 162.40  | -49.10 | R    |



### Falconbridge Limited

DDH:

WM-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample                                                                                                               | from                                                                                                                                | to                                                                                                                         | <b>Lengti</b>                                                                     |                                                                                                                | <b>Au</b><br>ppb                                                                                      | <b>Мо</b><br>ррт                                                                                 | <b>Ag</b><br>ppm                                                                                             | <b>Zn</b><br>ppb                                                                                         | <b>As</b><br>ppm                                                                | <b>Sb</b><br>ppm                                                                            |
|-------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 0.00        | 3.80             | CASING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                     |                                                                                                                            |                                                                                   |                                                                                                                |                                                                                                       |                                                                                                  |                                                                                                              |                                                                                                          |                                                                                 |                                                                                             |
|             |                  | 3.3-3.8: Polygenic more or less rounded pieces of core (overburden).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                      |                                                                                                                                     |                                                                                                                            |                                                                                   |                                                                                                                |                                                                                                       |                                                                                                  |                                                                                                              |                                                                                                          |                                                                                 |                                                                                             |
| 3.80        | 13.00            | WEAK PHYLLIC ZONE<br>FOLC/(PL)/4% PY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9427<br>9428                                                                                                         | 3.80<br>5.80                                                                                                                        | 5.80<br>7.80                                                                                                               | 2.00<br>2.00                                                                      | 1015<br>853                                                                                                    | 170<br>160                                                                                            | 104<br>209                                                                                       | 1.5<br>1.3                                                                                                   | 32<br>36                                                                                                 | 5<br>10                                                                         | 2<br>2                                                                                      |
|             |                  | Slightly greenish pale grey aphyric to very fine grained foliated rock. About 10-15% medium grey-green chloritized anhedral more mafic mineral (<1.5 mm long or of diameter). Aphyric pale matrix. Non magnetic. Foliation is about 80 deg.  Alteration: Possible weak sericitization (phyllic alteration). Some sericite shining fracture planes. Pale green tint of the rock is probably caused by sericite. About 7% veining mainly white Qz veins with fewer white Cc veins. Qz veis are spaced by 30 to 40 cm and oriented from 45 to 80 degrees. The white Cc veins have a spacing around 50 cm and direction of about 70 degrees. They are parallel and generally, associated to the three fault planes that crosscut the unit.  Mineralization:4% fine grained Py mostly as disseminations and as veinlets associated and subparallel to fault plane. Also veinlets in Qz veins (C/A=45-50 deg.).  Lower conatct: Gradual over 1.5 meters and defined by colour change. Contact seems to be parallel to foliation (C/A-80 deg.). | 9429<br>9430<br>9432                                                                                                 | 7.80<br>9.80<br>11.80                                                                                                               | 9.80<br>11.80<br>13.00                                                                                                     | 2.00<br>2.00<br>1.20                                                              | 1307<br>1487<br>971                                                                                            | 300<br>380<br>380                                                                                     | 139<br>151<br>291                                                                                | 2.0<br>1.9<br>1.3                                                                                            | 41<br>61<br>89                                                                                           | 20<br>10<br>10                                                                  | 5<br>2<br>2                                                                                 |
| 13.00       | 58.10            | PFAULTED PROPYLLITIC ZONE CH,SE/PP,(PL)/3-4% PY, TR MO  Medium to dark medium green aphyric foliated and faulted rock. Non magnetic to locally, weakly magnetic. Rock is very badly broken over all the interval; the most dominant shape is chip or puck like pieces.  Alterattion: Moderate propyllitic alteration (Ch rich rock). Some sericite (phyllic) in fracture cleavages. It can be an overprinting of propyllitic on phyllic alteration type (?). Probably about 10% veining. Almost essentially white Cc veinlets parallel to the main fabric (C/A=80 deg.). They are spaced by 2 to 5 cm. Qz veins with a spacing between 30 and 60 cm and direction that seems to be mainly subparallel to foliation. At least one Qz vein with an angle of 35 degrees. Alteration process probably driven and focused in part, by faulting. Mineralization: 3-4% fine grained Py mostly as disseminations and veinlets parallel to foliation. Traces of Mo in fracture planes. No Cp noted.                                               | 9433<br>9434<br>9435<br>9436<br>9437<br>9438<br>9439<br>9440<br>9441<br>9442<br>9443<br>9444<br>9445<br>9446<br>9448 | 13.00<br>14.90<br>17.10<br>19.00<br>21.00<br>23.00<br>25.00<br>27.00<br>29.00<br>31.00<br>33.00<br>35.00<br>39.00<br>41.00<br>43.00 | 14.90<br>17.10<br>19.00<br>21.00<br>23.00<br>25.00<br>27.00<br>29.00<br>31.00<br>35.00<br>37.00<br>39.00<br>41.00<br>43.00 | 1.90<br>2.20<br>1.90<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2 | 1049<br>1268<br>967<br>730<br>662<br>812<br>662<br>652<br>624<br>715<br>899<br>650<br>558<br>692<br>954<br>521 | 180<br>250<br>280<br>220<br>210<br>230<br>200<br>120<br>180<br>220<br>240<br>180<br>130<br>200<br>220 | 89<br>168<br>76<br>88<br>47<br>148<br>99<br>134<br>47<br>54<br>69<br>79<br>41<br>60<br>76<br>129 | 1.8<br>2.2<br>2.6<br>2.2<br>1.8<br>2.9<br>2.9<br>3.9<br>2.8<br>2.7<br>2.9<br>1.9<br>1.4<br>1.6<br>3.8<br>2.0 | 214<br>134<br>73<br>143<br>154<br>218<br>235<br>145<br>94<br>1158<br>109<br>93<br>65<br>94<br>458<br>152 | 10<br>10<br>5<br>10<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |

13-Nov-05 5:34:21 PM



Falconbridge Limited

DDH:

WM-05-01

Project:

**KERR-SULPHURETS** 

Project #: 301

| From<br>(m) | <b>To</b><br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample | from  | to    | <b>Length</b> | Cu<br>ppm (ICP) | <b>Au</b><br>ppb | <b>Мо</b><br>ppm | <b>Ад</b><br>ррт | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|---------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9450   | 45.00 | 47.00 | 2.00          | 1498            | 300              | 88               | 5.2              | 605              | 15               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9451   | 47.00 | 49.00 | 2.00          | 1014            | 220              | 103              | 4.9              | 173              | 15               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9452   | 49.00 | 51.00 | 2.00          | 946             | 270              | 202              | 2.3              | 119              | 10               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9453   | 51.00 | 53.00 | 2.00          | 770             | 190              | 411              | 1.7              | 381              | 15               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9455   | 53.00 | 55.00 | 2.00          | 731             | 230              | 147              | 1.0              | 66               | 15               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9456   | 55.00 | 57.00 | 2.00          | 1741            | 670              | 176              | 2.5              | 66               | 20               | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9457   | 57.00 | 58.10 | 1.10          | 1468            | 320              | 156              | 3.8              | 106              | 15               | 2                |
| 58.10       | 65.40            | WEAK PROPYLLITIC ZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9458   | 58.10 | 60.10 | 2.00          | 1500            | 510              | 124              | 23.3             | 326              | 20               | 10               |
|             |                  | MASP/CH/(PP)/6% PY,TR CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9459   | 60.10 | 62.50 | 2.40          | 1319            | 360              | 589              | 10.2             | 706              | 25               | 2                |
|             |                  | Same as 13.0-58.1 but not faulted or fragmented. Medium green fine grained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9460   | 62.50 | 65.40 | 2.90          | 1068            | 180              | 105              | 4.3              | 144              | 25               | 2                |
|             |                  | massive to locally, slightly foliated rock. About 25% of a dark green chloritized rounder to elongated anhedral mafic mineral (<5 mm long). Matrix very fine and composed probably mostly of Fp. Non magnetic. Alteration: Weak pervasive propyllitic alteration (?) charactherized by chlorite green colour of the rock and replacement of mafic minerals by Ch. 15% grey to white Qz veins and white Cc veins and veinlets. The Qz veins are spaced by 5 to 20 cm and have two main directions which are 50-55 and 5-20 degrees. They generally host subparallel very fine Py veinlets that give them a banded look. The Cc veins and veinlets are more abundant approaching the upper contact of unit where the foliation is still present. They have a 5 to 10 cm spacing and direction around 70 degrees.  Mineralization: 6% fine grained Py mostly as veinlets and veins associated with Qz veins. Half of the Py as fine disseminations. Traces of Cp in Py vein within a Qz-Cc vein.  Lower contact: sharp but winding. Outlined by quick disappearing of medium grained chloritized mafic mineral. |        |       |       |               |                 |                  |                  |                  |                  |                  |                  |
| 65.40       | 282.90           | ANDESITE (V2A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9461   | 65.40 | 66.00 | 0.60          | 1365            | 160              | 45               | 5.9              | 297              | 10               | 2                |
|             |                  | V2A/(EP)/3% PY,TR CP,TR MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9462   | 66.00 | 66.60 | 0.60          | 18800           | 870              | 37               | 50.1             | 205              | 2                | 2                |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9463   | 66.60 | 68.60 | 2.00          | 1453            | 580              | 88               | 2.4              | 117              | 10               | 2                |
|             |                  | Dark medium green to dark green aphyric massive to locally, foliated rock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9464   | 68.60 | 70.60 | 2.00          | 781             | 330              | 320              | 1.4              | 140              | 15               | 2                |
|             |                  | Few cm to decimeter scale interval with 10 to 15% chloritized mafic more or less elongated mineral (<7 mm long). Some decimeter scale sheared zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9465   | 70.60 | 72.60 | 2.00          | 799             | 280              | 89               | 1.2              | 113              | 15               | 2                |
|             |                  | (C/A=50-65 deg.) developped in Qz veins or invaded by several subparallel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9467   | 72.60 | 74.60 | 2.00          | 1234            | 560              | 72               | 2.0              | 141              | 10               | 2                |
|             |                  | Qz veins and Cc veins with a few mm spacing. Weakly to moderately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9468   | 74.60 | 76.60 | 2.00          | 1231            | 670              | 121              | 2.0              | 114              | 10               | 2                |
|             |                  | magnetic (locally, strongly magnetic). Magnetism increasing down hole. At                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9469   | 76.60 | 78.60 | 2.00          | 943             | 350              | 91               | 1.7              | 147              | 15               | 2                |
|             |                  | least, 5% very fine disseminated Mt and many stringers, splashes and blebs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9470   | 78.60 | 80.10 | 1.50          | 733             | 270              | 84               | 2.3              | 161              | 20               | 2                |
|             |                  | in a good part of the unit. This unit is probably the source of the Mag high of the map.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9471   | 80.10 | 81.50 | 1.40          | 756             | 250              | 79               | 1.8              | 204              | 10               | 2                |
|             |                  | Alteration: The rock doesn't seem to have been altered in a pervasive way.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9472   | 81.50 | 82.70 | 1.20          | 3616            | 1260             | 162              | 8.9              | 212              | 10               | 2                |

13-Nov-05 5:34:21 PM Page 2 of 5



DDH: Project: WM-05-01

Project #:

KERR-SULPHURETS 301

| Although, we note some 1 to 5 meters thick intervals of pinkishification phases; although, we note some 1 to 5 meters thick intervals of pinkishification phases; although of the cock becomes pelor, the Fig /) take a pink to reddish that and the grain size of the rock seems to increase. Those zones contains quite visible M winders and veinites and veinites and veinites and veinites. Some write Cc veines and veinites. Some write Cc veines and white and pink Cc veins. The Cz veins and veinites. Some write Cc veinites and white and pink Cc veins. The Cz veins are spaced by 2 to 20 cm and flow two man directions as set of veinites are oriented around 70 degrees. The Irrapidar white and pink Cc veinites are oriented around 70 degrees. The Irrapidar white and pink Cc veinites are oriented around 70 degrees. The Irrapidar white and pink Cc veinites are oriented around 70 degrees. The Irrapidar white and pink Cc veinites are oriented around 70 degrees. The Irrapidar white and pink Cc veinites are oriented around 70 degrees. The Irrapidar white and pink Cc veinites are oriented around 70 degrees. The Irrapidar white and pink Cc veinites are oriented around 70 degrees. The Irrapidar white and pink Cc veinites are oriented around 70 degrees. The Irrapidar white and pink Cc veinites are oriented around 70 degrees. The Irrapidar white and pink Cc veinites are oriented around 70 degrees. The Irrapidar white and pink Cc veinites are oriented around 70 degrees. The Very variable spacing and direction the spacing is between 50 cm and few meters and the direction is around 55 degrees. They are more present in the lower part of the unit. Many of them question and alto fine to Carse Cp grains. They crossoull the horizon and seem to be the latest vieining and the control of the proof in pinkish rock that green chloride and also fine to carse Cp grains. They crossoull the horizon and seem to be the latest vieining and the control of the proof they per degrees around the direction and seem to the proof the proof the proof the proof th | From<br>(m) | <b>To</b><br>(m) | Description                                                                   | Sample | from   | to     | <b>Lengti</b> | <b>h Cu</b><br>ppm (ICP) | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|-------------------------------------------------------------------------------|--------|--------|--------|---------------|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| the Fp (?) take a pink to reddish that and the grain size of the rock seems to increase. Those zones containing suite visible Mit veinlets and visines and locally, disserinated fine Cp only specks. Traces of epidote locally, About 8 (top) 10 25% (bottom) visining mainly represented by more or less pyrits. Go zeros and veinlets. Some white Co verines and white and pink Cc veins. The Qz veins and veinlets. Some white Co verines and white and pink Cc veins. The Qz veins and veinlets. Some white Co veinlets and white and pink Cc veins. The Qz veins and veinlets. Some white Cc veinlets and white and pink Cc veins. The Qz veins and veinlets. Some white Cc veinlets and white and pink Cc veins. The Qz veins and pink Cc veins. Gear thick) have very veriable speacing and direction; the spacing is between 50 cm and few meters and the directions is around 55 degrees. The year emore present in the lower part of the unit. Many of them contain black to dark green chlorite and also fine to coarse Cp grains. They event. Veining is clearly increasing down hole.  Mineralization 35 fine grained Py mostly as veinless and as fine whet were and veinlets with by in Qz-Qc) veins and also in Cc veins and veinlets with 50 experts. The contain black to dark green chlorite and also fine to coarse Cp grains. They event. Veining is clearly increasing down hole.  Mineralization 35 fine grained fly mostly as veinless and as fine whet in the other types of the disseminations courreness in pinkish rock intervals. Few fracture cleavage fillings. Traces of Mo in a facture plane.  466.2-86.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  47.4-87.6: Badly broken rock.  4946 10.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 |             |                  |                                                                               | 9473   | 82.70  | 84.70  | 2.00          | 972                      | 500              | 81               | 1.8              | 174              | 10               | 2                |
| increase. Those zones contains quite visible htt veinlets and veins and locally, disseminated fine Cp only specified locally. About 8 (top) to 25% (bottom) veining mainly represented by more or less pyrtic. Cz veins and veinlets. Some white Cx veinlets and white and price of the Cx veins are spaced by 2 to 20 on and have two main directions: a set of veins at 0 to 15 degrees. Less common) and the other between 30 and 60 degrees. The inequiar white and white or weinless common and the other between 30 and 60 degrees. The inequiar white and white or weinless and white and the other between 30 and 60 degrees. The inequiar white and so line or the very set of injections and seem to be the direction is around 55 degrees. They are more present in the lower part of the unit. Many of them contain black to dark green chioties and so line to coarse Cp grains. They crossout all the other types of injections and seem to be the latest veining event. Veining is clearly increasing down hole.  Mineralization: 3% fine grained Py mostly as veinlets and as fine disseminations in Cz veins come isolated Py splashes. Traces of Cp very heterogeneously distributed; mainly associated with Py in Qr./Cic) veins and also in Cz veins and veinlets with some Py. Fine disseminations in Cz veins. Some isolated Py splashes. Traces of Cp very heterogeneously distributed; mainly associated with Py in Qr./Cic) veins and also in Cz veins and veinlets with some Py. Fine disseminations occurrences in prikksh rock intervals. Few fracture cleavage fillings. Traces of Mo in a flash of Cz vein. Some sand veinlets with some Py. Fine disseminations occurrences in prikksh rock intervals. Few fracture cleavage fillings. Traces of Mo in a flash of Cz veins. Some sand veinlets with some Py. Fine disseminations occurrences in prikksh rock intervals. Few fracture cleavage fillings. Traces of Mo in a flash of Cz veins. Some sand veinlets with some Py. Fine disseminations occurrences in prikksh rock intervals. Few fracture cleavage fillings. Traces of Mo in a flas |             |                  |                                                                               | 9474   | 84.70  | 86.70  | 2.00          | 1225                     | 530              | 86               | 2.2              | 174              | 10               | 2                |
| disseminated fine Cp only specks. Traces of epidote locally. About 8 (top) to 25% (bottom) veining mainly represented by more or less pytric for veins and veinlets. Some white Cc veinlets and white and pink Cc veins. The Qz veins and veinlets. Some white Cc veinlets and white and pink Cc veins at 0 to 15 degrees (less common) and the other between 30 and 60 degrees. The 15d pink Cc veins at 0 to 15 degrees (less common) and the other between 30 and 60 degrees. The 15d pink Cc veins et 0 to 15d degrees. The 15d pink Cc veins et 0 to 15d degrees. The 15d pink Cc veins et 0 to 15d degrees. The 15d pink Cc veins et 0 to 15d degrees. The 15d pink Cc veins (e.6 cm thick) have very variable spacing and direction: the 25d degrees. The 15d pink Cc veins (e.6 cm thick) have very variable spacing and direction: the 25d degrees. The 15d pink Cc veins (e.6 cm thick) have very variable spacing and direction: the 25d degrees. The year more present in the 15d pink Cc veins (e.6 cm thick) have very variable spacing and direction: the 25d degrees. The year more present in the 15d pink Cc veins end veinted and as fine 25d degrees. The 15d pink Cc veins end veinted and as fine 25d pink Cc veins and veinted and as fine 25d pink Cc veins and veinted and as fine 25d pink Cc veins and veinted and as fine 25d pink Cc veins and veinted with 50 me Py. Fine disseminations occurrences 25d pink the 15d  |             |                  |                                                                               | 9475   | 86.70  | 88.70  | 2.00          | 1106                     | 380              | 57               | 3.3              | 447              | 10               | 2                |
| 25% (bottom) viaining mainly represented by more or less pyritic. Oz veins and vieinless. Some white Co veinlets and white and pink Co veins. The Oz veins are spaced by 2 to 20 cm and have two main directions: a set of veins at 0 to 15 degrees (less common) and the other between 30 and 60 degrees. The few white Cc veinlets are oriented around 70 degrees. The few white Cc veinlets are oriented around 70 degrees. The irregular white and pink Cc veine, 66 cm thick) have very variable spacing and direction; the spacing is between 50 cm and few meters and the direction is around 55 degrees. They are more present in the lower part of the unit. Many of them contain black to dark green chlorite and also fine to coarse Cp grains. They crosscot all the other types of injections and seem to be the latest veining event. Veining is clearly increasing down hole.  Mineralization: 3% fine grained Py mostly as vainlets and as fine disseminations: 3% fine grained Py mostly as vainlets and as fine disseminations: 3% fine grained Py mostly as vainlets and as fine disseminations: 3% fine grained Py mostly as vainlets and as fine disseminations: 3% fine grained Py mostly as vainlets and as fine disseminations: 3% fine grained Py mostly as vainlets and as fine disseminations: 3% fine grained Py mostly as vainlets and as fine disseminations: 3% fine grained Py mostly as vainlets and as fine disseminations: 3% fine grained Py mostly as vainlets and as fine disseminations: 3% fine grained Py mostly as vainlets and as fine disseminations: 3% fine grained Py mostly as vainlets and as fine disseminations: 3% fine grained Py mostly as vainlets and as fine disseminations in Qz veins. Some isolated Py splashes. Traces of Op very heterogeneously distributed rainly associated with Py in Qz:\(Cz) veins and also in Cc veins and vainlets with some Py. Fine disseminations occurrences in pinksh rock, metrylas. Few fracture deavage fillings. Traces of Mo in a fracture plane.  4949 114,60 118,60 2.00 1186 80 44 4 2.5 287 15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |             |                  |                                                                               | 9476   | 88.70  | 90.70  | 2.00          | 1925                     | 830              | 113              | 4.8              | 220              | 10               | 2                |
| veinitels. Some white Co veinets and white and pink Co veins. The Qz veins are spaced by 2 to 20 cm and have two main directions: as ted to viens at 0 to 15 degrees (less common) and the other between 30 and 60 degrees. The few white Co veinites are oriented around 70 degrees. The registral white and pink Co veins (-6 cm thick) have very variable spacing and direction; the spacing is between 50 cm and few meters and the direction is a round 55 degrees. The registral white and pink Co veins to thick) have very variable spacing and direction; the spacing is between 50 cm and few meters and the direction is a round 55 degrees. They are more present in the lower part of the unit. Many of them contain black to dark green cholrie and also fine to coarse Cp grains. They crossout all the other types of injections and seem to be the latest veining event. Veining is clearly increasing down hole.  Mineralization: 3% fine grained Py mostly as veinlets and as fine disseminations in Qz veins. Some isolated Py splashes. Traces of Cp very heterogeneously distributed; mainly associated with Py in Qz-(Cc) veins and also in Cx veins and veinlets with some Py. Fine disseminations occurrences in pinkish rock intervals. Few fracture cleavage fillings. Traces of Mo in a facture plane.  662-266.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  74.4-76.6: Badly broken rock.  9406 122.30 123.00 1.00 123.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                  |                                                                               | 9477   | 90.70  | 92.70  | 2.00          | 1889                     | 840              | 75               | 2.8              | 187              | 15               | 35               |
| are spaced by 2 to 20 cm and have two main directions: a set of veins at 0 to 15 degrees (less common) and the other between 30 and 60 degrees. The few white Cc veinlets are oriented around 70 degrees. The irregular white and pink Cc veins; (6c m thick) have very variable spacing and direction: the spacing is between 50 cm and few meters and the direction is around 55 degrees. They are more present in the lower part of the unit. Many of them contain black to dark green chlorite and also fine to coarse Cp grains. They crossorut all the other types of injections and seem to be the latest veining event. Veining is clearly increasing down hole.  Mineralization: 3% fine grained Fy mostly as evinlets and as fine disseminations in Cz veins. Some isolated Py splashes. Traces of Cp very pheterogeneously distributed: mainly associated with Py in Cz./Cc) veins an also in Cz veins and veinites with some Py. Fine disseminations occurrenoes in pinkshr rock intervals. Few fracture cleavage fillings. Traces of Mo in a fracture plane.  66.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  9496 122.30 123.00 1.00 1853 880 43 2.2 68 3.3 69 12 2 201.3-203.0: Broken rock.  9497 123.30 124.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                  |                                                                               | 9478   | 92.70  | 94.70  | 2.00          | 1442                     | 510              | 72               | 5.1              | 428              | 15               | 30               |
| few white Cc veinlets are oriented around 70 degrees. The irregular white and pink Cc veins (-6 cm thick) have very variable spacing and direction; the spacing is between 50 cm and few meters and the direction is around 55 degrees. They are more present in the lower part of the unit. Many of them contain black to dark green chlorite and also fine to coarse Cp grains. They crossout all the other types of injections and seem to be the latest veining over the latest veining over the latest veining is clearly increasing down hole.  Mineralization 3% fine grained Py mostly as veinlets and as fine disseminations in Cz veins. Some isolated Py splashes. Traces of Cp very heterogeneously distributed, mainly associated with Py in C2/Cc) veins and also in Cc veins and veinlets with some Py. Fine disseminations occurrences in pinksh nock intervals. Few fracture cleavage fillings. Traces of Mo in a fracture plane.  66.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  1990-161.4 (box 21 to 30): A strap has broken during transportation and it has had apartial lost of core. Some septies in this interval are shorter than usual but representative of their row in the box.  1890-193.0: Broken rock.  2013-203.0: Broken rock.  2013-203.0: Broken rock.  2013-203.0: Broken rock.  2014-205.0: 144.0: 0.000.0: 140.0: 144.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: 149.0: 0.000.0: |             |                  | are spaced by 2 to 20 cm and have two main directions: a set of veins at 0 to | 9479   | 94.70  | 96.70  | 2.00          | 1079                     | 450              | 75               | 2.9              | 178              | 15               | 40               |
| pink Cc veins (-66 cm thick) have very variable spacing and direction; the spacing is between 50 cm and few meters and the direction is around 55 degrees. They are more present in the lower part of the unit. Many of them 200 contain black to dark green chlorite and also fine to carses Cp grains. They crosscut all the other types of injections and seem to be the latest veining event. Veining is clearly increasing down hole.  Mineralization: 3% fine grained Py mostly as veinlets and as fine disseminations in Oz veins. Some isolated Py splashes. Traces of Cp very heterogeneously distributed; mainly associated with Py in Oz-(Cc) veins and also in Cc veins and veinlets with some Py. Fine disseminations occurrences in pinksh rock intervals. Few fracture cleavage fillings. Traces of Mo in a fracture plane.  662-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  1990-161.4 (box 21 to 30): A strap has broken during transportation and it has had appartial lost of core. Some samples in this interval are shorter than usual but representative of their row in the box.  189.0-193.0: Broken rock.  2013-203.0: Broken rock.  2013-203.0: Broken rock.  2013-204.1 (box 21 to 30): A strap has broken during transportation and it has had appartial lost of core. Some samples in this interval are shorter than usual but representative of their row in the box.  2013-203.0: Broken rock.  2014-204.0: Broken rock.  2013-203.0: Broken rock.  2014-204.0: Broken rock.  20 |             |                  |                                                                               | 9480   | 96.70  | 98.70  | 2.00          | 1292                     | 540              | 72               | 2.9              | 962              | 15               | 40               |
| spacing is between 50 cm and few meters and the direction is around 55 degrees. They are more present in the lower part of the unit. Many of them 944 102.70 104.70 2.00 1185 530 67 1.9 137 10 2 contain black to dark green chlorite and also line to coarse Cp grains. They corsostrul fall the other types of injections and seem to be the latest veining 948 102.70 106.70 2.00 887 440 48 1.5 151 10 20 crossotrul fall the other types of injections and seem to be the latest veining 948 106.70 106.70 2.00 887 440 48 1.5 151 10 20 crossotrul fall the other types of injections and seem to be the latest veining 948 106.70 106.70 2.00 1070 500 60 1.6 183 10 2 event. Veining is clearly increasing down hole.  Minaralization: 3% fine grained Py mostly as veinlets and as fine disseminations in C2 veins. Some isolated Ps splashes. Traces of Cp very heterogeneously distributed, mainly associated with Ps in Ca2-(Cc) veins and also in Cc veins and veinlets with some Py. Fine disseminations occurrences in pinkish rock intervals. Few fracture cleavage fillings. Traces of Mo in a fracture plane.  662-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp. 9495 121.30 122.30 1.00 1508 860 44 2.5 287 15 2 14.4-76.6: Badly broken rock.  9496 122.30 123.30 1.00 1853 880 43 2.4 641 10 2 2 14.4-76.6: Badly broken rock.  9497 122.30 123.30 123.30 1.00 1853 880 43 2.4 641 10 2 2 14.4-76.6: Badly broken rock.  9498 122.30 123.30 123.30 1.00 1853 880 43 2.4 641 10 2 2 14.4-76.6: Badly broken rock.  9498 122.30 123.30 123.30 1.00 1853 880 43 2.4 641 10 2 2 14.4-76.6: Badly broken rock.  9498 123.30 123.30 123.30 1.00 1853 880 43 2.4 641 10 2 2 14.4-76.6: Badly broken rock.  9499 123.30 123.30 123.30 1.00 1853 880 43 2.4 641 10 2 2 14.4-76.6: Badly broken rock.  9500 123.30 131.20 132.60 1.40 147.5 590 27 2.3 112 2 2 2 14.4-76.6: Badly broken rock.  9501 123.30 132.00 132.00 134.00 140 450 42 1.9 106 2 2 1.9 106 2 2 1.9 106 2 1.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0                                                                               |             |                  |                                                                               | 9481   | 98.70  | 100.70 | 2.00          | 739                      | 330              | 57               | 2.0              | 204              | 25               | 35               |
| degrees. They are more present in the lower part of the unit. Many of them contain black to dark green chlorite and also fine to coarse Cp grains. They crosscut all the other types of injections and seem to be the latest veining event. Veining is clearly increasing down hole.  Mineralization: 3% fine grained Py mostly as veinlets and as fine disseminations in Oz verons. Some isolated Py spashes. Traces of Cp very heterogeneously distributed; mainly associated with Py in Oz-Co veins and also in C covering and veinlets with some Py. Fine disseminations cocurrences in princish rock intervals. Few fracture cleavage fillings. Traces of Moi a fracture plane.  66.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  74.4-76.6: Badly broken rock.  189.0-193.0: Broken rock.  189.0-193.0: Broken rock.  189.0-193.0: Broken rock.  291.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194.0-194. |             |                  |                                                                               | 9483   | 100.70 | 102.70 | 2.00          | 1009                     | 400              | 61               | 2.0              | 188              | 20               | 30               |
| contain black to dark green chlorite and also fine to coarse Cp grains. They crossout all the other types of injections and seem to be the latest veining event. Veining is clearly increasing down hole.  Mineralization: 3% fine grained Py mostly as veinlets and as fine disseminations in Qz veins. Some isolated Py splashes. Traces of Cp very heterogeneously distributed; mainly associated with Py in Qz-(Cp) veins and also in Cc veins and veinlets with some Py. Fine disseminations cocurrences in pinkish rock intervals. Few fracture cleavage fillings. Traces of Mo in a fracture plane.  66.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  74.4-76.6: Badly broken rock.  199.0-161.4 (box 21 to 30): A strap has broken during transportation and it has had apartial lost of core. Some samples in this interval are shorter than usual but representative of their row in the box.  189.0-193.0: Broken rock.  201.3-203.0: Broken rock.  201.3-203.0: Broken rock.  202.0-194.5 (box 21 to 30): A strap has broken during transportation and it has had apartial lost of core. Some samples in this interval are shorter than usual but representative of their row in the box.  201.3-203.0: Broken rock.  202.3-203.0: Broken rock.  203.0: Broken rock.  203.0: Bro |             |                  |                                                                               | 9484   | 102.70 | 104.70 | 2.00          | 1185                     | 530              | 67               | 1.9              | 137              | 10               | 2                |
| crosscut all the other types of injections and seem to be the latest veining of event. Veining is clearly increasing down hole.  Mineralization: 3% fine grained Py mostly as veinlets and as fine disseminations in Qz veins. Some isolated Py splashes. Traces of Cp very heterogeneously distributed; mainly associated with Py in Qz-(Cc) veins and also in Cc veins and veinlets with some Py. Fine disseminations occurrences in pinkish rock intervals. Few fracture cleavage fillings. Traces of Mo in a facture plane.  66.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  74.4-76.6: Badly broken rock.  1999 121.30 122.30 1.00 1853 880 43 2.4 641 10 20 20 1858 880 44 2.5 287 15 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2 185 2  |             |                  |                                                                               | 9485   | 104.70 | 106.70 | 2.00          | 887                      | 440              | 48               | 1.5              | 151              | 10               | 20               |
| Mineralization: 3% fine grained Py mostly as veinlets and as fine disseminations in Qz veins. Some isolated Py sphashes. Traces of Cp very heterogeneously distributed; mainly associated with Py in Qz-(Cc) veins and also in Cc veins and veinlets with some Py. Fine disseminations occurrences in pinkish rock intervals. Few fracture cleavage fillings. Traces of Mo in a fracture plane.  66.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  74.4-76.6: Badly broken rock.  9496 122.30 123.30 1.00 1853 880 43 2.4 641 10 2 4997 123.30 123.30 1.00 1853 880 43 2.4 641 10 2 4997 123.30 123.30 1.00 1853 880 43 2.4 641 10 2 4997 123.30 123.30 1.00 1853 880 43 2.4 641 10 2 4997 123.30 123.30 1.00 1853 880 43 2.4 641 10 2 4997 123.30 123.30 1.00 1481 540 42 1.9 106 2 2 4997 123.30 124.30 1.00 1481 540 42 1.9 106 2 2 4998 124.30 126.30 2.00 1319 520 33 2.2 116 10 2 4999 126.30 128.30 120.00 1447 590 27 2.3 112 2 2 4999 126.30 128.30 130.00 1484 540 42 1.9 106 2 2 4999 126.30 128.30 130.00 1481 540 42 1.9 106 2 2 4999 126.30 128.30 130.00 1481 540 42 1.9 106 2 2 4999 126.30 128.30 120.00 1475 590 27 2.3 112 2 2 4999 126.30 128.30 120.00 1475 590 27 2.3 112 2 2 4999 126.30 128.30 120.00 1476 590 27 2.3 112 2 2 4999 126.30 128.30 120.00 1498 580 23 3.4 111 2 2 4999 126.30 128.00 120.00 1498 580 23 3.4 111 2 2 4999 126.30 128.00 133.50 135.00 1.50 1854 790 35 3.1 198 2 2 4999 1299 1299 1299 1299 1299 1299 1299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                  | crosscut all the other types of injections and seem to be the latest veining  | 9486   | 106.70 | 108.70 | 2.00          | 948                      | 470              | 50               | 1.5              | 146              | 10               | 2                |
| disseminations in Qz veins. Some isolated Py splashes. Traces of Cp very heterogeneously distributed: mainly associated with Py in Qz-(Cp) veins and also in Cc veins and veinlets with some Py. Fine disseminations occurrences in pinkish rock intervals. Few fracture cleavage fillings. Traces of Mo in a fracture plane.  9491 114.60 118.60 2.00 1508 860 44 2.5 287 15 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                  |                                                                               | 9487   | 108.70 | 110.70 | 2.00          | 1070                     | 500              | 60               | 1.6              | 183              | 10               | 2                |
| heterogeneously distributed; mainly associated with Py in Qz-(Cc) veins and also in Cc veins and veinlets with some Py. Fine disseminations occurrences in pinkish rock intervals. Few fracture cleavage fillings. Traces of Mo in a plays 116.60 118.60 12.00 1508 860 44 2.5 287 15 2 fracture plane.  66.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  4949 120.00 121.30 12.30 12.30 12.00 1508 860 44 2.5 287 15 2 160.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  4949 120.00 121.30 12.30 12.30 12.00 1.00 1853 880 43 2.4 641 10 2 2 14.4-76.6: Badly broken rock.  4949 122.30 123.30 120.00 140 1541 610 61 2.6 345 15 2 160.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  4949 120.30 121.30 122.30 1.00 1853 880 43 2.4 641 10 2 2 16.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  4949 122.30 124.30 1.00 2307 510 27 2.3 81 10 2 16.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  4949 122.30 124.30 1.00 1853 880 43 2.4 641 10 2 2 16.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  4949 123.30 124.30 1.00 1853 880 43 2.4 641 10 2 2 16.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  4949 123.30 124.30 1.00 1853 880 43 2.4 641 10 2 2 16.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  4949 123.30 124.30 1.00 1853 880 43 2.4 641 10 2 2 16.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  4949 123.30 124.30 1.00 1853 880 43 2.4 641 10 2 2 19.00 10 20.00 11475 590 27 2.3 81 10 2 2 10.00 11475 590 27 2.3 81 10 2 2 10.00 11475 590 27 2.3 81 10 2 2 10.00 11475 590 27 2.3 81 10 2 2 10.00 11475 590 27 2.3 81 10 2 2 10.00 11475 590 27 2.3 81 10 2 2 10.00 11475 590 27 2.3 81 10 2 2 10.00 11475 590 27 2.3 81 10 2 2 10.00 11475 590 27 2.3 81 10 2 2 10.00 11475 590 27 2.3 81 10 2 2 10.00 11475 590 27 2.3 81 10 2 2 10.00 11475 590 27 2.3 81 10 2 2 10.00 11475 590 27 2.3 81 10 2 2 10.00 11475 590 27 2.3 81 10 2 2 10.00 11475 590 20 20 20 20 20 20 20 20 20 20 20 20 20                                 |             |                  | Mineralization: 3% fine grained Py mostly as veinlets and as fine             | 9488   | 110.70 | 112.60 | 1.90          | 2027                     | 690              | 46               | 2.4              | 150              | 15               | 2                |
| also in °Cc veins and veinlets with some Py. Fine disseminations occurrences in pinkish rock intervals. Few fracture cleavage fillings. Traces of Mo in a serial reacture plane.  4949 116.60 118.60 2.00 150.8 860 44 2.5 287 15 2 gracture plane.  4949 118.60 120.00 1.40 1541 610 61 2.6 345 15 2 gracture plane.  4949 120.00 121.30 1.30 2121 720 58 3.3 619 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                  |                                                                               | 9490   | 112.60 | 114.60 | 2.00          | 1179                     | 550              | 36               | 1.6              | 148              | 10               | 2                |
| in pinkish rock intervals. Few fracture cleavage fillings. Traces of Mo in a fracture plane.  9492 116.60 118.60 2.00 1508 860 44 2.5 287 15 2 9493 118.60 12.00 1.40 1541 610 61 2.6 345 15 2 9493 118.60 12.00 12.30 1.30 1214 720 58 3.3 619 20 2 9494 12.00 12.30 1.30 1214 720 58 3.3 619 20 2 9495 121.30 122.30 1.00 1863 880 43 2.4 641 10 2 9496 122.30 12.30 1.00 1863 880 43 2.4 641 10 2 9496 122.30 12.30 1.00 1481 540 42 1.9 106 2 2 10.00 161.4 (box 21 to 30): A strap has broken during transportation and it has had apartial lost of core. Some samples in this interval are shorter than usual but representative of their row in the box.  9496 122.30 123.30 1.00 1481 540 42 1.9 106 2 2 1.0 10.0 1481 540 12 1.0 10 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 12 1.0 |             |                  |                                                                               | 9491   | 114.60 | 116.60 | 2.00          | 2006                     | 840              | 35               | 3.2              | 305              | 15               | 2                |
| fracture plane.  66.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  66.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  74.4-76.6: Badly broken rock.  9496 122.30 123.30 1.00 1853 880 43 2.4 641 10 2  74.4-76.6: Badly broken rock.  9497 123.30 122.30 1.00 2307 510 27 2.3 81 10 2  109.0-161.4 (box 21 to 30): A strap has broken during transportation and it has had apartial lost of core. Some samples in this interval are shorter than usual but representative of their row in the box.  9497 123.30 124.30 1.00 1481 540 42 1.9 106 2 2  109.0-161.4 (box 21 to 30): A strap has broken during transportation and it has had apartial lost of core. Some samples in this interval are shorter than usual but representative of their row in the box.  9500 128.30 130.30 2.00 1475 590 27 2.3 112 2 2  189.0-193.0: Broken rock.  9500 128.30 131.20 132.60 14.0 1244 490 45 1.8 91 2 2  201.3-203.0: Broken rock.  9501 131.50 133.50 135.00 1.50 1854 790 35 3.1 98 2 2  254.1-258.0: Badly broken rock.  9505 133.50 135.00 1.50 1854 790 35 3.1 98 2 2  254.1-258.0: Badly broken rock (potassic alteration?) example.  9508 139.00 141.00 142.00 1.00 2168 1090 22 2.8 107 2 2  9510 142.00 142.00 142.00 1.00 2168 1090 22 2.8 107 2 2  9510 142.00 142.00 142.00 1.00 2168 1090 22 2.8 107 2 2  9510 142.00 142.00 1.00 2.00 1497 650 21 1.8 87 2 2  9510 142.00 142.00 1.00 2.00 1497 650 21 1.8 87 2 2  9510 144.00 142.00 1.00 2.00 1497 650 21 1.8 87 2 2  9510 144.00 142.00 1.00 2.00 1497 650 22 1.9 88 5 2  9510 144.00 145.00 1.50 650 2504 910 24 4.0 91 2 2  9510 144.00 145.00 1.50 650 2504 910 24 4.0 91 2 2  9510 144.00 145.00 1.50 650 2504 910 24 4.0 91 2 2  9510 144.00 145.00 1.50 650 2504 910 24 4.0 91 2 2  9510 144.00 145.00 1.50 650 2504 910 24 4.0 91 2 2  9511 145.00 145.00 1.50 650 2504 910 24 4.0 91 2 2  9512 144.10 145.60 1.50 650 2504 910 24 4.0 91 2 2  9513 145.60 147.60 1.50 650 2504 910 24 4.0 91 2 2  9513 145.60 147.60 1.50 650 2504 910 24 4.0 91 2 2  9513 145.60 147.60 1.50 650 2504 910 24 4.0 91 2 2  9513 145.60  |             |                  |                                                                               | 9492   | 116.60 | 118.60 | 2.00          | 1508                     | 860              | 44               | 2.5              | 287              | 15               | 2                |
| 66.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.  9494 120.00 121.30 1.30 2121 720 58 3.3 619 20 2 9495 121.30 122.30 1.00 1853 880 43 2.4 641 10 2 74.4-76.6: Badly broken rock.  9496 122.30 12.30 1.00 2307 510 27 2.3 81 10 2 109.0-161.4 (box 21 to 30): A strap has broken during transportation and it has had apartial lost of core. Some samples in this interval are shorter than usual but representative of their row in the box.  9500 128.30 130.30 2.00 1475 590 27 2.3 112 2 2 189.0-193.0: Broken rock.  9500 128.30 130.30 2.00 1475 590 27 2.3 112 2 2 201.3-203.0: Broken rock.  9501 130.30 131.20 0.90 1498 580 23 3.4 111 2 2 201.3-203.0: Broken rock.  9503 131.20 132.60 1.40 1244 490 45 1.8 91 2 2 254.1-258.0: Badly broken rock.  9504 132.60 133.50 135.00 1.50 1854 790 35 3.1 98 2 2 254.1-258.0: Badly broken rock.  9507 137.00 139.00 2.00 1471 690 26 1.9 116 2 2 254.1-258.0: Badly broken rock.  9508 139.00 141.00 142.00 1.00 2168 1090 22 2.8 107 2 2 9509 141.00 142.00 1.00 2168 1090 22 2.8 107 2 2 9501 143.20 144.10 0.90 1492 620 22 1.9 88 5 2 261.6-273.7: "Pinkishification" zone (potassic alteration?) example.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                  |                                                                               | 9493   | 118.60 | 120.00 | 1.40          | 1541                     | 610              | 61               | 2.6              | 345              | 15               | 2                |
| 74.4-76.6: Badly broken rock.  9496 122.30 123.30 1.00 2307 510 27 2.3 81 10 2 2 2 109.0-161.4 (box 21 to 30): A strap has broken during transportation and it has had apartial lost of core. Some samples in this interval are shorter than usual but representative of their row in the box.  9499 126.30 128.30 120.0 1475 590 27 2.3 112 2 2 18.8 14.9 14.9 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                  |                                                                               | 9494   |        |        | 1.30          | 2121                     | 720              | 58               | 3.3              | 619              | 20               |                  |
| 109.0-161.4 (box 21 to 30): A strap has broken during transportation and it has had apartial lost of core. Some samples in this interval are shorter than usual but representative of their row in the box.  189.0-193.0: Broken rock.  189.0-193.0: Broken rock.  201.3-203.0: Broken rock.  201.3-200.0: Broken rock.  201.3-203.0: Broken rock.  201.3 |             |                  | 66.2-66.5: Sericitized Ba (?) vein hosting about 20% Py and 5% Cp.            | 9495   | 121.30 | 122.30 | 1.00          | 1853                     | 880              | 43               | 2.4              | 641              | 10               | 2                |
| 109.0-161.4 (box 21 to 30): A strap has broken during transportation and it has had apartial lost of core. Some samples in this interval are shorter than usual but representative of their row in the box.  189.0-193.0: Broken rock.  201.3-203.0: Broken rock.  201.3-300.0: Broken rock.  201.3 |             |                  | 74.4.76 G. Dodh, hroken rock                                                  | 9496   | 122.30 | 123.30 | 1.00          | 2307                     | 510              | 27               | 2.3              | 81               | 10               | 2                |
| has had apartial lost of core. Some samples in this interval are shorter than usual but representative of their row in the box.    9500   128.30   130.30   2.00   2022   970   48   15.4   344   25   10   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                  | 74.4-70.0. Badiy broken rock.                                                 | 9497   | 123.30 | 124.30 | 1.00          | 1481                     | 540              | 42               | 1.9              | 106              | 2                | 2                |
| has had apartial lost of core. Some samples in this interval are shorter than usual but representative of their row in the box.  9500 128.30 130.30 2.00 2022 970 48 15.4 344 25 10 189.0-193.0: Broken rock.  9502 130.30 131.20 0.90 1498 580 23 3.4 111 2 2 2 2 190.3-203.0: Broken rock.  9503 131.20 132.60 1.40 1244 490 45 1.8 91 2 2 190.3-203.0: Broken rock.  9504 132.60 133.50 0.90 851 330 18 1.1 105 2 2 2 190.3-203.0: Broken rock.  9505 133.50 135.00 1.50 1854 790 35 3.1 98 2 2 2 190.3-203.0: Broken rock.  9506 135.00 137.00 2.00 1205 680 22 1.9 126 5 2 190.3-203.0: Broken rock.  9507 137.00 139.00 2.00 1471 690 26 1.9 116 2 2 190.3-203.0: Broken rock.  9508 139.00 141.00 2.00 1915 840 28 2.6 88 2 2 195.00 142.00 144.7 650 21 1.8 87 2 2 195.00 142.00 143.20 144.10 0.90 1492 660 22 1.9 88 5 2 195.00 144.10 145.60 1.50 2634 910 24 4.0 91 2 2 195.00 144.10 145.60 1.50 2634 910 24 4.0 91 2 2 2 195.00 144.00 145.60 1.50 1655 770 20 2.0 78 2 2 195.00 145.00 145.60 147.60 2.00 1655 770 20 2.0 78 2 2 2 195.00 145.00 145.60 147.60 2.00 1655 770 20 2.0 78 2 2 2 10.00 145.00 145.60 147.60 2.00 1655 770 20 2.0 78 2 2 2 10.00 145.00 145.60 147.60 145.60 147.60 2.00 1655 770 20 2.0 78 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                  | 109.0-161.4 (box 21 to 30): A strap has broken during transportation and it   | 9498   | 124.30 | 126.30 | 2.00          | 1319                     | 520              | 33               | 2.2              | 116              | 10               | 2                |
| 189.0-193.0: Broken rock.  9502 130.30 131.20 0.90 1498 580 23 3.4 111 2 2  201.3-203.0: Broken rock.  9503 131.20 132.60 1.40 1244 490 45 1.8 91 2 2  201.3-203.0: Broken rock.  9504 132.60 133.50 0.90 851 330 18 1.1 105 2 2  254.1-258.0: Badly broken rock.  9505 133.50 135.00 1.50 1854 790 35 3.1 98 2 2  254.1-258.0: Badly broken rock.  9506 135.00 137.00 2.00 1205 680 22 1.9 126 5 2  261.6-273.7: "Pinkishification" zone (potassic alteration?) example.  9508 139.00 141.00 2.00 1915 840 28 2.6 88 2 2  9509 141.00 142.00 1.00 2168 1090 22 2.8 107 2 2  9510 142.00 143.20 1.20 1447 650 21 1.8 87 2 2  9511 143.20 144.10 0.90 1492 620 22 1.9 88 5 2  9512 144.10 145.60 1.50 2634 910 24 4.0 91 2 2  9513 145.60 147.60 2.00 1655 770 20 2.0 78 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                  | has had apartial lost of core. Some samples in this interval are shorter than | 9499   | 126.30 | 128.30 | 2.00          | 1475                     | 590              | 27               | 2.3              | 112              | 2                | 2                |
| 189.0-193.0: Broken rock.  9503 131.20 132.60 1.40 1244 490 45 1.8 91 2 2 201.3-203.0: Broken rock.  9504 132.60 133.50 0.90 851 330 18 1.1 105 2 2 254.1-258.0: Badly broken rock.  9505 133.50 135.00 1.50 1854 790 35 3.1 98 2 2 254.1-258.0: Badly broken rock.  9506 135.00 137.00 2.00 1205 680 22 1.9 126 5 2 261.6-273.7: "Pinkishification" zone (potassic alteration?) example.  9507 137.00 139.00 2.00 1471 690 26 1.9 116 2 2 254.1-258.0: Badly broken rock.  9508 139.00 141.00 2.00 1915 840 28 2.6 88 2 2 254.1-258.0: Badly broken rock.  9509 141.00 142.00 1.00 2168 1090 22 2.8 107 2 2 2554.1-258.0: Badly broken rock.  9509 141.00 142.00 1.00 2168 1090 22 2.8 107 2 2 2554.1-258.0: Badly broken rock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  | usual but representative of their row in the box.                             | 9500   |        |        |               |                          | 970              | 48               | 15.4             | 344              |                  | 10               |
| 9503 131.20 132.60 1.40 1244 490 45 1.8 91 2 2 201.3-203.0: Broken rock. 9504 132.60 133.50 0.90 851 330 18 1.1 105 2 2 254.1-258.0: Badly broken rock. 9505 133.50 135.00 1.50 1854 790 35 3.1 98 2 2 254.1-258.0: Badly broken rock. 9506 135.00 137.00 2.00 1205 680 22 1.9 126 5 2 261.6-273.7: "Pinkishification" zone (potassic alteration?) example. 9508 139.00 141.00 2.00 1915 840 28 2.6 88 2 2 9509 141.00 142.00 1.00 2168 1090 22 2.8 107 2 2 9510 142.00 143.20 1.20 1447 650 21 1.8 87 2 2 9511 143.20 144.10 0.90 1492 620 22 1.9 88 5 2 9512 144.10 145.60 1.50 2634 910 24 4.0 91 2 2 9513 145.60 147.60 2.00 1655 770 20 2.0 78 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                  | 400 0 400 0 B                                                                 | 9502   | 130.30 | 131.20 | 0.90          | 1498                     | 580              | 23               | 3.4              | 111              | 2                | 2                |
| 9505 133.50 135.00 1.50 1854 790 35 3.1 98 2 2 254.1-258.0: Badly broken rock. 9506 135.00 137.00 2.00 1205 680 22 1.9 126 5 2 261.6-273.7: "Pinkishification" zone (potassic alteration?) example. 9508 139.00 141.00 2.00 1915 840 28 2.6 88 2 9509 141.00 142.00 1.00 2168 1090 22 2.8 107 2 2 9510 142.00 143.20 1.20 1447 650 21 1.8 87 2 2 9511 143.20 144.10 0.90 1492 620 22 1.9 88 5 2 9512 144.10 145.60 1.50 2634 910 24 4.0 91 2 2 9513 145.60 147.60 2.00 1655 770 20 2.0 78 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                  | 189.0-193.0: Broken rock.                                                     | 9503   | 131.20 | 132.60 | 1.40          | 1244                     | 490              | 45               | 1.8              | 91               | 2                | 2                |
| 9505 133.50 135.00 1.50 1854 790 35 3.1 98 2 2 254.1-258.0: Badly broken rock. 9506 135.00 137.00 2.00 1205 680 22 1.9 126 5 2 261.6-273.7: "Pinkishification" zone (potassic alteration?) example. 9508 139.00 141.00 2.00 1915 840 28 2.6 88 2 9509 141.00 142.00 1.00 2168 1090 22 2.8 107 2 2 9510 142.00 143.20 1.20 1447 650 21 1.8 87 2 2 9511 143.20 144.10 0.90 1492 620 22 1.9 88 5 2 9512 144.10 145.60 1.50 2634 910 24 4.0 91 2 2 9513 145.60 147.60 2.00 1655 770 20 2.0 78 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                  | 201.3-203.0: Broken rock                                                      | 9504   | 132.60 | 133.50 | 0.90          | 851                      | 330              | 18               | 1.1              | 105              | 2                | 2                |
| 261.6-273.7: "Pinkishification" zone (potassic alteration?) example.<br>9507 137.00 139.00 2.00 1471 690 26 1.9 116 2 2 9508 139.00 141.00 2.00 1915 840 28 2.6 88 2 2 9509 141.00 142.00 1.00 2168 1090 22 2.8 107 2 2 9510 142.00 143.20 1.20 1447 650 21 1.8 87 2 2 9511 143.20 144.10 0.90 1492 620 22 1.9 88 5 2 9512 144.10 145.60 1.50 2634 910 24 4.0 91 2 2 9513 145.60 147.60 2.00 1655 770 20 2.0 78 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                  | 20110 20010. Diokoti 10010.                                                   | 9505   | 133.50 | 135.00 | 1.50          | 1854                     | 790              | 35               | 3.1              | 98               | 2                |                  |
| 261.6-273.7: "Pinkishification" zone (potassic alteration?) example.<br>9507 137.00 139.00 2.00 1471 690 26 1.9 116 2 2 9508 139.00 141.00 2.00 1915 840 28 2.6 88 2 2 9509 141.00 142.00 1.00 2168 1090 22 2.8 107 2 2 9510 142.00 143.20 1.20 1447 650 21 1.8 87 2 2 9511 143.20 144.10 0.90 1492 620 22 1.9 88 5 2 9512 144.10 145.60 1.50 2634 910 24 4.0 91 2 2 9513 145.60 147.60 2.00 1655 770 20 2.0 78 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                  | 254.1-258.0: Badly broken rock.                                               | 9506   |        |        |               | 1205                     | 680              |                  | 1.9              | 126              |                  |                  |
| 261.6-273.7: "Pinkishification" zone (potassic alteration?) example.  9508 139.00 141.00 2.00 1915 840 28 2.6 88 2 2 9509 141.00 142.00 1.00 2168 1090 22 2.8 107 2 2 9510 142.00 143.20 1.20 1447 650 21 1.8 87 2 2 9511 143.20 144.10 0.90 1492 620 22 1.9 88 5 2 9512 144.10 145.60 1.50 2634 910 24 4.0 91 2 2 9513 145.60 147.60 2.00 1655 770 20 2.0 78 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                  |                                                                               | 9507   |        |        |               | 1471                     | 690              | 26               | 1.9              | 116              |                  |                  |
| 9509       141.00       142.00       1.00       2168       1090       22       2.8       107       2       2         9510       142.00       143.20       1.20       1447       650       21       1.8       87       2       2         9511       143.20       144.10       0.90       1492       620       22       1.9       88       5       2         9512       144.10       145.60       1.50       2634       910       24       4.0       91       2       2         9513       145.60       147.60       2.00       1655       770       20       2.0       78       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                  | 261.6-273.7: "Pinkishification" zone (potassic alteration?) example.          | 9508   | 139.00 | 141.00 | 2.00          | 1915                     | 840              | 28               | 2.6              | 88               | 2                | 2                |
| 9511       143.20       144.10       0.90       1492       620       22       1.9       88       5       2         9512       144.10       145.60       1.50       2634       910       24       4.0       91       2       2         9513       145.60       147.60       2.00       1655       770       20       2.0       78       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  |                                                                               | 9509   | 141.00 | 142.00 | 1.00          | 2168                     | 1090             | 22               | 2.8              | 107              |                  |                  |
| 9511       143.20       144.10       0.90       1492       620       22       1.9       88       5       2         9512       144.10       145.60       1.50       2634       910       24       4.0       91       2       2         9513       145.60       147.60       2.00       1655       770       20       2.0       78       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  |                                                                               |        |        |        |               |                          |                  |                  |                  |                  |                  |                  |
| 9512 144.10 145.60 1.50 2634 910 24 4.0 91 2 2<br>9513 145.60 147.60 2.00 1655 770 20 2.0 78 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  |                                                                               |        |        |        |               |                          |                  |                  |                  |                  |                  |                  |
| 9513 145.60 147.60 2.00 1655 770 20 2.0 78 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                  |                                                                               |        |        |        |               |                          |                  |                  |                  |                  |                  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                  |                                                                               |        |        |        |               |                          |                  | 20               |                  | 78               |                  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                  |                                                                               |        |        |        |               |                          | 750              | 23               |                  |                  |                  |                  |

13-Nov-05 5:34:21 PM Page 3 of 5



**DDH:** WM-05-01

Project: KERR-SULPHURETS

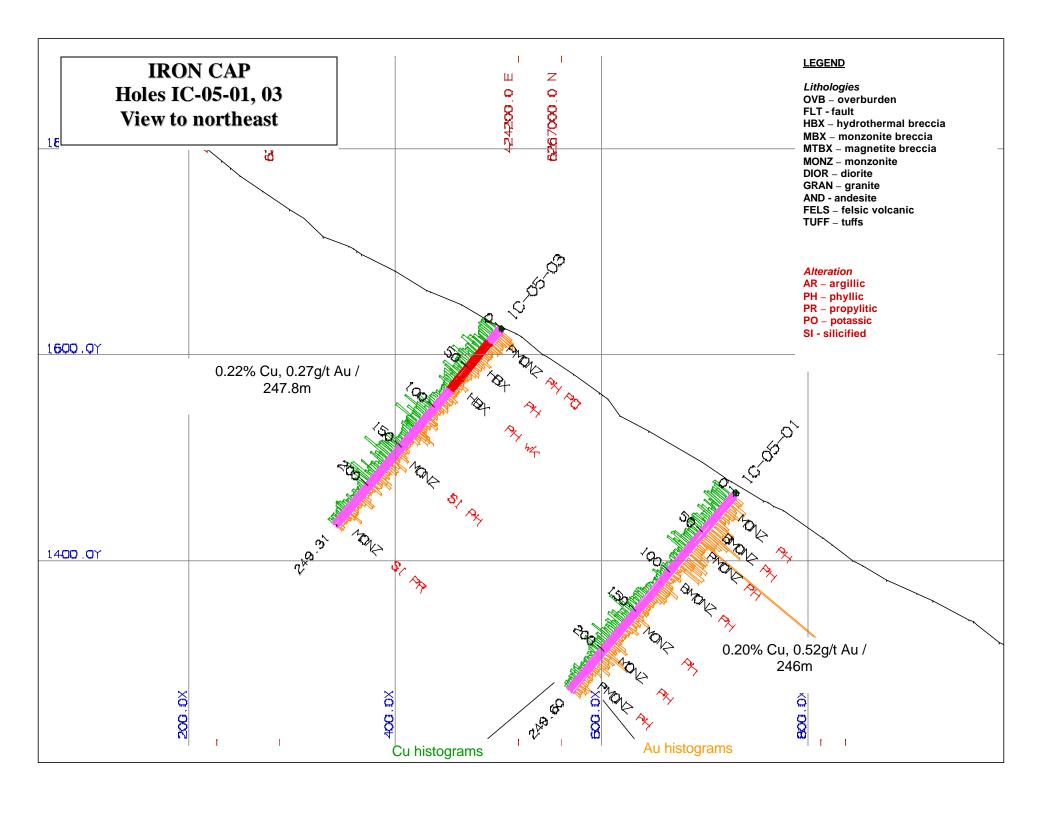
Project #: 301

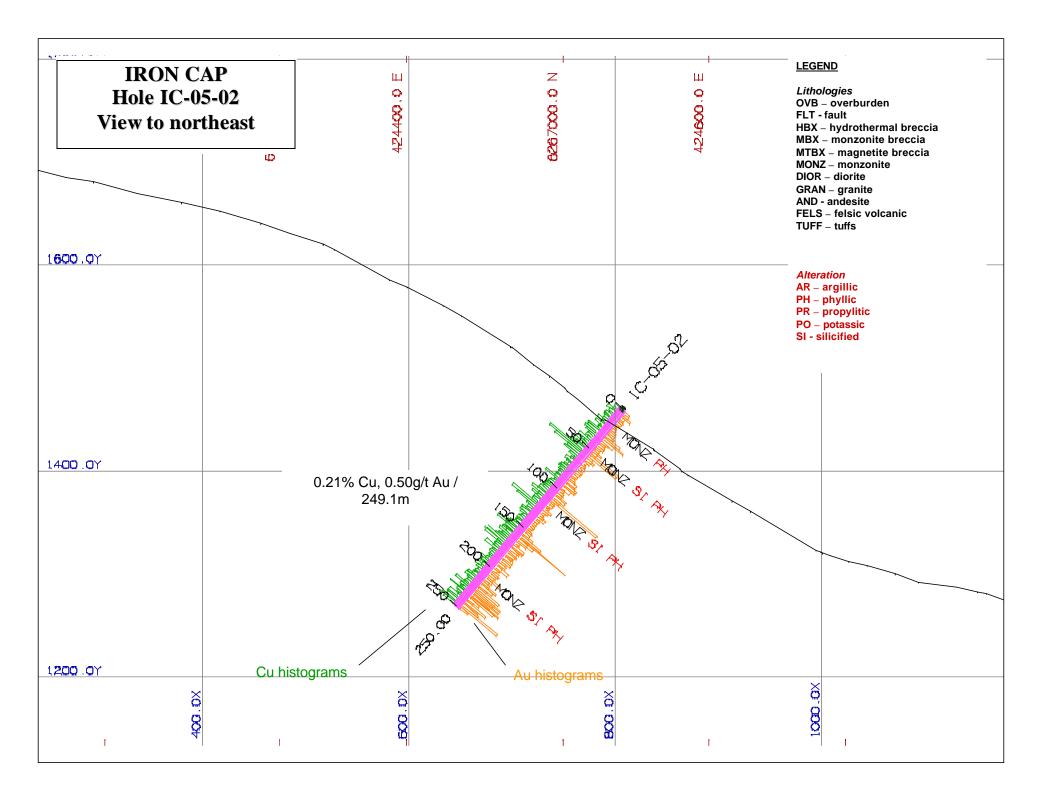
| Sample Trom to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | From | То  | Description |        |        |        | Length | ) Cu      | Au   | Мо  | Ag   | Zn  | As  | Sb  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-------------|--------|--------|--------|--------|-----------|------|-----|------|-----|-----|-----|
| 9516       169.50       150.90       1.40       256.8       1140       20       3.0       66       2         9518       150.20       152.20       153.0       2516       1100       19       2.5       71       2         9519       152.20       153.0       13.0       1241       420       24       1.7       77       5         9521       154.70       156.00       13.0       1861       560       21       13.2       218       20         9522       156.00       167.0       140       140       468       560       22       2.0       74       5         9622       157.0       158.80       160.10       1.30       1861       560       21       1.8       51       2         9622       157.0       158.80       160.10       1.30       1424       570       14       1.3       61       2         9622       158.80       160.10       16.60       1.50       1424       570       14       1.3       61       2         9522       158.80       166.00       16.60       2.00       168       600       22       2.4       68       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (m)  | (m) |             | Sample | from   | to     | m      | ppm (ICP) | ppb  | ppm |      | ppb | ppm | ppm |
| 9516       169.0       169.0       16.0       2568       1140       20       3.0       66       2         9518       150.0       152.20       13.0       2516       1100       19       2.5       71       2         9519       152.20       153.0       13.0       1241       420       24       1,7       77       5         9521       154.70       155.00       13.0       1861       560       21       13.2       218       20         9522       157.40       158.00       1.0       1468       560       22       2.0       74       5         9523       157.40       158.80       160.10       1.30       1861       560       22       2.0         74       5         9522       157.40       158.80       16.10       1.30       1424       570       14       1.3       61       2         9522       157.40       158.80       16.10       1.30       1424       570       14       1.3       61       2         9522       158.60       16.10       15.0       1421       570       14       1.3       61       2         9522       158.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |     |             | 9515   | 148.40 | 149.50 | 1.10   | 1565      | 780  | 22  | 1.9  | 82  | 2   | 2   |
| 8619       152.20       153.50       13.00       1241       420       24       1.7       77       5         8520       155.70       156.00       1.30       1861       560       21       13.2       218       20         8521       154.70       156.00       1.30       1861       560       21       13.2       218       20         8522       156.00       157.40       158.80       160.10       1.30       1424       570       14       1.3       61       2         9525       158.80       160.10       1.30       1424       570       14       1.3       61       2         9525       158.80       160.10       1.50       1421       570       14       1.3       61       2         9526       158.60       160.10       1.50       1421       570       14       1.3       61       2         9527       161.60       163.60       2.00       1286       600       22       2.4       68       5         9528       165.60       167.60       2.00       2188       800       18       2.6       65       2         9530       167.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |     |             | 9516   | 149.50 | 150.90 | 1.40   |           |      |     | 3.0  | 66  |     | 2   |
| 9520       153.50       154.70       1.20       1814       630       25       3.5       77       10         9521       154.70       156.00       1.30       1861       560       21       13.2       218       20         9522       156.00       157.40       158.00       1.40       1468       550       28       2.0       74       5         9525       158.00       157.40       158.80       16.10       13.00       1424       570       14       1.3       51       2         9526       160.10       161.60       13.50       1421       570       18       19       53       2         9527       161.00       163.60       165.60       2.0       1866       660       22       2.4       4.6       150       5         9528       163.60       165.60       163.60       2.00       1266       490       24       2.6       150       5         9529       165.50       167.60       168.60       2.00       1658       710       21       2.1       88       2         9531       169.60       177.60       169.60       2.00       4897       1030       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |             | 9518   | 150.90 | 152.20 | 1.30   | 2516      | 1100 | 19  | 2.5  | 71  | 2   | 2   |
| 9821       154.70       156.00       13.00       1861       560       21       13.2       218       20         9822       155.00       157.40       158.80       1.40       1488       550       28       2.0       74       5         9523       157.40       158.80       1.40       1358       600       27       1.8       51       2         9526       158.60       160.10       161.00       161.00       161.00       161.00       161.00       161.00       161.00       161.00       161.00       161.00       161.00       161.00       161.00       161.00       161.00        161.00       161.00       161.00       161.00       161.00       161.00       161.00       161.00       161.00       160.00       20       21.00       18       1.9       53       2         9528       165.60       165.00       167.00       2.00       1686       600       22       2.4       68       5       2         9531       167.60       169.60       2.00       20       218       800       18       2.6       65       2         9531       176.00       179.60       179.60       179.60       200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |             | 9519   | 152.20 | 153.50 | 1.30   | 1241      | 420  | 24  | 1.7  | 77  | 5   | 2   |
| 9522 156.00 157.40 1.40 1468 550 28 2.0 74 5 9523 157.40 158.80 1.40 1468 550 28 2.0 74 5 9523 158.80 150.10 158.80 140.10 1.30 1424 570 14 1.3 611 2 9526 160.10 161.60 1.50 1421 570 14 1.3 611 2 9526 160.10 161.60 1.50 1421 570 18 1.9 53 2 9526 160.10 161.60 1.50 1421 570 18 1.9 53 2 9526 160.10 161.60 1.50 1421 570 18 1.9 53 2 9528 163.60 165.60 2.00 122 4.4 68 5 9528 163.60 165.60 2.00 122 4.4 68 5 9529 165.60 165.60 167.60 2.00 1226 490 24 2.6 150 5 9529 165.60 167.60 160.60 171.60 2.00 4997 1030 27 9.1 18 10 9533 173.60 175.60 2.00 4997 1030 27 9.1 18 10 9533 173.60 175.60 2.00 4997 1030 27 9.1 18 10 9533 173.60 175.60 2.00 200 200 200 200 2.0 665 2 9534 176.60 176.60 176.60 2.00 200 200 200 200 200 200 200 200 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |     |             | 9520   | 153.50 | 154.70 | 1.20   | 1814      | 630  | 25  | 3.5  | 77  | 10  | 2   |
| 9523 157.40 158.80 1.40 1358 600 27 1.8 51 2 9526 150.01 1.30 1424 570 14 1.3 51 2 9526 160.10 161.60 1.50 1421 570 18 1.9 53 2 9527 161.60 163.60 1.50 1421 570 18 1.9 53 2 9527 161.60 163.60 1.50 1421 570 18 1.9 53 2 9527 161.60 163.60 1.50 1421 570 18 1.9 53 2 9529 165.60 163.60 165.60 2.00 1686 600 22 2.4 68 5 9529 165.60 160.60 17.60 1226 480 24 2.6 150 5 5 9529 165.60 160.60 160.60 171.60 2.00 1226 480 24 2.6 150 5 5 9529 165.60 160.60 171.60 2.00 140.60 18 2.6 65 2 9531 167.60 169.60 171.60 2.00 4997 1030 27 9.1 118 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |             | 9521   | 154.70 | 156.00 | 1.30   | 1861      | 560  | 21  | 13.2 | 218 | 20  | 2   |
| 9525 158.80 160.10 1.50 1.50 1424 570 14 1.3 61 2 9526 160.10 161.60 1.50 1.50 1421 570 18 1.9 53 2 9527 161.60 163.60 2.00 1566 600 22 2.4 68 5 9528 163.60 165.60 2.00 1226 490 24 2.6 150 5 9529 165.60 167.60 2.00 1226 490 24 2.6 150 5 9529 165.60 167.60 2.00 1298 800 18 2.6 65 2 9530 167.60 169.60 2.00 1298 1800 18 2.6 65 2 9530 167.60 173.60 2.00 1838 760 30 2.0 69 2 9531 169.60 173.60 2.00 1838 760 30 2.0 69 2 9531 173.60 173.60 2.00 1838 760 30 2.0 69 2 9531 173.60 173.60 173.60 2.00 200 200 200 200 200 200 200 200 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |             | 9522   | 156.00 | 157.40 | 1.40   | 1468      | 550  | 28  | 2.0  | 74  | 5   | 2   |
| 9526   160.10   161.60   1.50   1.421   570   18   1.9   53   2   9527   161.60   163.60   2.00   1626   600   22   2.4   68   5   5   5   5   5   5   5   5   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |     |             | 9523   | 157.40 | 158.80 | 1.40   | 1358      | 600  | 27  | 1.8  | 51  | 2   | 2   |
| 9627       161.60       163.60       2.00       168.66       600       22       2.4       68       5         9528       163.60       165.60       2.00       1296       490       24       2.6       150       5         9529       165.60       167.60       2.00       2198       800       18       2.6       65       2         9530       167.60       169.60       2.00       1688       710       21       2.1       88       2         9531       169.60       171.60       173.60       2.00       1683       760       30       2.0       69       2         9632       171.60       173.60       2.00       1683       760       30       2.0       69       2         9534       175.60       177.60       173.60       2.00       2402       890       42       2.5       71       2         9537       177.60       179.60       177.60       2.00       2400       1000       21       3.0       66       2         9537       179.60       181.60       2.0       2915       1340       46       3.2       68       2         9539 <td< td=""><td></td><td></td><td></td><td>9525</td><td>158.80</td><td>160.10</td><td>1.30</td><td>1424</td><td>570</td><td>14</td><td>1.3</td><td>61</td><td>2</td><td>2</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |             | 9525   | 158.80 | 160.10 | 1.30   | 1424      | 570  | 14  | 1.3  | 61  | 2   | 2   |
| 9528 163.60 165.60 2.00 1226 490 24 2.6 150 5 9529 165.60 167.60 2.00 2198 800 18 2.6 65 2 9530 167.60 169.60 2.00 1658 710 21 2.1 88 2 9531 169.60 171.60 2.00 4997 1030 27 9.1 118 10 9532 171.60 173.60 2.00 1838 760 30 2.0 2.0 69 2 9533 173.60 175.60 2.00 2402 890 42 2.5 71 2 9534 175.60 177.60 2.00 2087 690 20 2.3 68 2 9535 177.60 179.60 2.00 2400 1000 21 3.0 66 2 9537 179.60 181.60 2.00 2400 1000 21 3.0 66 2 9538 181.60 183.60 2.00 2401 880 25 2.6 64 2 9538 181.60 183.60 2.00 2411 880 25 2.6 64 2 9541 187.60 189.60 12.00 2413 890 24 51.1 86 2 9542 189.60 191.60 2.00 2413 890 24 51.1 88 2 9544 193.60 189.60 2.00 2413 890 24 51.1 88 2 9544 193.60 189.60 2.00 2179 840 18 3.3 77 2 9543 193.60 185.60 2.00 2179 840 18 3.3 77 2 9544 193.60 195.60 2.00 2179 840 18 3.3 77 2 9545 195.60 197.60 2.00 2179 840 18 3.3 77 2 9546 197.60 199.60 2.00 2179 840 18 3.3 77 2 9547 199.60 20.00 20.00 2133 710 21 2.8 70 10 9548 193.60 195.60 2.00 2013 710 21 2.8 70 10 9549 203.60 20.00 2560 2.00 2560 1400 25 3.2 72 2 9548 201.60 203.60 2.00 2560 1400 25 3.2 72 2 9549 203.60 205.60 2.00 2560 1400 25 3.2 72 2 9549 203.60 205.60 2.00 2560 1400 25 3.2 75 2 9550 205.60 205.60 2.00 2374 870 23 2.7 55 2 9551 207.60 209.60 2.00 3816 1400 29 3.9 64 2 9551 207.60 209.60 2.00 2411 950 29 3.9 64 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |     |             | 9526   | 160.10 | 161.60 | 1.50   | 1421      | 570  | 18  | 1.9  | 53  | 2   | 2   |
| 9529   165.60   167.60   2.00   2198   800   18   2.6   65   2   9530   167.60   169.60   2.00   1658   710   21   2.1   88   2   9531   169.60   171.60   2.00   4997   1030   27   9.1   118   10   9532   171.60   173.60   2.00   1838   760   30   2.0   69   2   9533   173.60   175.60   2.00   2402   890   42   2.5   71   2   9533   173.60   175.60   2.00   2402   890   42   2.5   71   2   9535   177.60   177.60   2.00   2402   890   42   2.5   71   2   9535   177.60   179.60   2.00   2400   1000   21   3.0   66   2   9537   179.60   181.60   2.00   2915   1340   46   3.2   68   2   9538   181.60   183.60   2.00   2281   880   25   2.6   64   2   9538   181.60   183.60   2.00   2411   880   23   3.0   48   2   9538   181.60   185.60   2.00   2419   880   23   3.0   48   2   9540   185.60   187.60   2.00   2418   880   23   3.1   81   2   9541   187.60   189.60   2.00   2486   930   22   3.1   81   2   9543   191.60   193.60   2.00   2486   930   22   3.1   81   2   9543   191.60   193.60   2.00   2173   840   18   3.3   77   2   9543   191.60   193.60   2.00   2173   840   18   3.3   77   2   9544   193.60   195.60   2.00   2173   870   21   2.8   70   10   9545   195.60   197.60   2.00   2173   870   21   2.8   70   10   9546   195.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207.60   207 |      |     |             | 9527   | 161.60 | 163.60 | 2.00   | 1686      | 600  | 22  | 2.4  | 68  | 5   | 2   |
| 9530 167.60 169.60 2.00 1658 710 21 2.1 88 2 9531 169.60 171.60 2.00 4997 1030 27 9.1 118 10 9532 171.60 173.60 2.00 4997 1030 27 9.1 118 10 9533 173.60 175.60 2.00 1838 760 30 2.0 69 2 9533 173.60 175.60 2.00 2402 890 42 2.5 71 2 9534 175.60 177.60 2.00 2087 680 20 2.3 68 2 9535 177.60 177.60 2.00 2400 1000 21 3.0 66 2 9537 179.60 181.60 2.00 2400 1000 21 3.0 66 2 9537 179.60 181.60 2.00 2915 1340 46 3.2 68 2 9538 181.60 183.60 2.00 2915 1340 46 3.2 68 2 9539 183.60 185.60 2.00 2211 880 25 2.6 64 2 9539 183.60 185.60 2.00 2411 880 23 3.0 48 2 9540 185.60 187.60 2.00 2413 680 24 5.1 186 2 9541 187.60 188.60 2.00 2413 680 24 5.1 186 2 9541 187.60 188.60 2.00 2413 690 24 5.1 186 2 9541 187.60 189.60 191.60 2.00 2413 690 24 5.1 186 2 9544 193.60 193.60 193.60 2.00 1967 550 19 2.5 71 5 9544 193.60 193.60 193.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 2134 670 20 21 5.4 68 35 9547 199.60 2.00 2580 1400 25 3.2 72 2 9548 201.60 203.60 2.00 2580 1400 25 3.2 72 2 9548 201.60 203.60 2.00 2580 1400 25 3.2 72 2 9548 201.60 203.60 2.00 2374 870 23 2.7 55 2 9548 201.60 203.60 2.00 2374 870 23 2.7 55 2 9554 201.60 203.60 2.00 2374 870 23 2.7 55 2 9554 201.60 203.60 2.00 2374 870 23 2.7 55 2 9554 201.60 203.60 2.00 203 816 1400 29 3.9 64 2 9554 201.60 203.60 200 200 2164 600 25 3.9 64 2 2 9554 201.60 203.60 200 201.60 200 238 100 20 2.6 71 2 2 2 9554 201.60 203.60 200 200 200 200 200 200 200 200 200 2                                                                                                                                                                                                                                                                                                                                                              |      |     |             | 9528   | 163.60 | 165.60 | 2.00   | 1226      | 490  | 24  | 2.6  | 150 | 5   | 2   |
| 9531 169.60 171.60 2.00 4997 1030 27 9.1 118 10 9532 171.60 173.60 2.00 4997 760 30 2.0 69 2 9533 173.60 175.60 2.00 2402 890 42 2.5 71 2 9534 175.60 177.60 2.00 2087 690 20 2.3 68 2 9535 177.60 179.60 183.60 2.00 2400 1000 21 3.0 66 2 9535 177.60 181.60 2.00 2915 1340 46 3.2 68 2 9537 179.60 181.60 2.00 2915 1340 46 3.2 68 2 9539 183.60 185.60 2.00 2281 880 25 2.6 64 2 9539 183.60 185.60 2.00 2281 880 25 2.6 64 2 9539 183.60 185.60 2.00 2419 880 23 3.0 48 2 9540 185.60 187.60 189.60 2.00 2419 880 23 3.0 48 2 9541 187.60 189.60 2.00 2419 80 23 3.1 81 2 9542 189.60 191.60 2.00 2419 80 23 3.1 81 2 9544 189.60 191.60 191.60 2.00 2486 930 22 3.1 81 2 9544 189.60 191.60 2.00 2486 930 22 3.1 81 2 9544 189.60 191.60 2.00 2179 840 18 3.3 77 2 9544 195.60 195.60 2.00 2179 840 18 3.3 77 2 9544 195.60 195.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 2133 710 21 2.8 70 10 9546 195.60 197.60 2.00 2560 210 2560 210 2560 2560 2560 2560 2560 2560 2560 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |     |             | 9529   | 165.60 | 167.60 | 2.00   | 2198      | 800  | 18  | 2.6  | 65  | 2   | 2   |
| 9532 171.60 173.60 2.00 1838 760 30 2.0 69 2 9533 173.60 175.60 2.00 2402 890 42 2.5 71 2 9534 175.60 177.60 179.60 2.00 2087 690 20 2.3 68 2 9535 177.60 179.60 2.00 2400 1000 21 3.0 66 2 9537 179.60 181.60 2.00 2915 1340 46 3.2 68 2 9538 181.60 183.60 2.00 2915 1340 46 3.2 68 2 9539 183.60 185.60 2.00 2419 880 23 3.0 48 2 9539 183.60 185.60 189.60 2.00 2419 880 23 3.0 48 2 9540 185.60 187.60 2.00 2419 880 23 3.0 48 2 9541 187.60 189.60 2.00 2419 80 23 3.1 81 2 9542 189.60 191.60 2.00 248 930 22 3.1 81 2 9543 191.60 193.60 2.00 248 930 22 3.1 81 2 9544 193.60 191.60 2.00 2179 840 18 33 77 2 9544 193.60 195.60 2.00 1373 580 20 1.7 88 2 9546 197.60 199.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 2184 6560 21 5.4 68 35 9547 199.60 203.60 2.00 2580 1400 25 3.2 72 2 9548 203.60 205.60 2.00 2374 870 23 2.7 55 2 9549 203.60 205.60 20.0 203 816 1400 25 3.2 72 2 9550 205.60 207.60 2.00 5939 1230 226 6.0 55 5 9551 207.60 209.60 2.00 3816 1400 29 3.9 64 2 9553 209.60 211.60 2.00 2189 1050 20 2.0 2.0 6 71 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |     |             | 9530   | 167.60 | 169.60 | 2.00   | 1658      | 710  | 21  | 2.1  | 88  | 2   | 2   |
| 9533 173.60 175.60 2.00 2402 890 42 2.5 71 2 9534 175.60 177.60 2.00 2087 690 20 2.3 68 2 9535 177.60 179.60 181.60 2.00 2400 1000 21 3.0 66 2 9537 179.60 181.60 2.00 2915 1340 46 3.2 68 2 9538 181.60 183.60 2.00 2281 880 25 2.6 64 2 9539 183.60 185.60 2.00 2419 880 23 3.0 48 2 9540 185.60 187.60 2.00 2418 880 25 3.0 48 2 9541 187.60 189.60 2.00 2418 690 24 5.1 186 2 9541 187.60 189.60 2.00 2418 690 24 5.1 186 2 9542 189.60 191.60 2.00 2486 930 22 3.1 81 2 9543 191.60 193.60 2.00 1967 550 19 2.5 71 5 9544 193.60 195.60 190.0 2.00 1967 550 19 2.5 71 5 9545 195.60 197.60 2.00 1373 580 20 1.7 88 2 9546 197.60 199.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 2580 1400 25 3.2 72 2 9548 201.60 203.60 2.00 2580 1400 25 3.2 72 2 9549 203.60 203.60 2.00 2580 1400 25 3.2 72 2 9549 203.60 205.60 207.60 2.00 5939 1230 226 6.0 55 5 9551 207.60 209.60 2.00 3816 1400 29 3.9 64 2 9552 205.60 207.60 2.00 2189 1050 20 2.6 71 2 9553 209.60 211.60 2.00 2389 1050 20 2.6 71 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |             | 9531   | 169.60 | 171.60 | 2.00   | 4997      | 1030 | 27  | 9.1  | 118 | 10  | 2   |
| 9534 175.60 177.60 2.00 2087 690 20 2.3 68 2 9535 177.60 179.60 2.00 2400 1000 21 3.0 66 2 9537 179.60 181.60 2.00 2915 1340 46 3.2 66 2 9538 181.60 183.60 2.00 2215 1880 25 2.6 64 2 9539 183.60 185.60 2.00 2419 880 23 3.0 48 2 9540 185.60 187.60 2.00 2413 690 24 5.1 186 2 9541 187.60 188.60 2.00 2413 690 24 5.1 186 2 9541 187.60 188.60 2.00 2469 930 22 3.1 81 2 9542 189.60 191.60 2.00 2179 840 18 3.3 777 2 9543 191.60 193.60 2.00 1967 550 19 2.5 71 5 9544 193.60 195.60 197.60 2.00 1373 580 20 1.7 88 2 9545 195.60 197.60 2.00 1373 580 20 1.7 88 2 9546 197.60 199.60 2.00 2164 6560 21 5.4 68 35 9547 199.60 201.60 2.00 2580 1400 25 3.2 72 2 9548 201.60 203.60 2.00 2374 870 23 2.7 55 2 9550 205.60 207.60 2.00 3816 1400 29 3.9 64 2 9553 209.60 211.60 2.00 2189 1050 20 2.6 671 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |             | 9532   | 171.60 | 173.60 | 2.00   | 1838      | 760  | 30  | 2.0  | 69  | 2   | 2   |
| 9535 177.60 179.60 2.00 2400 1000 21 3.0 66 2 9537 179.60 181.60 2.00 2915 1340 46 3.2 68 2 9538 181.60 183.60 2.00 2281 880 25 2.6 64 2 9539 183.60 185.60 2.00 2419 880 23 3.0 48 2 9540 185.60 187.60 2.00 2419 880 23 3.0 48 2 9541 187.60 189.60 2.00 2413 690 24 5.1 186 2 9541 187.60 189.60 2.00 2486 930 22 3.1 81 2 9542 189.60 191.60 2.00 2179 840 18 3.3 77 2 9543 191.60 193.60 2.00 1967 550 19 2.5 71 5 9544 193.60 195.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 2133 710 21 2.8 70 10 9546 197.60 199.60 2.00 2133 710 21 2.8 70 10 9547 199.60 201.60 2.00 2164 6560 21 5.4 68 35 9547 199.60 201.60 2.00 2580 1400 25 3.2 72 2 9548 201.60 203.60 2.00 2740 680 26 2.6 69 10 9549 203.60 205.60 2.00 2374 870 23 2.7 55 2 95549 203.60 205.60 2.00 3816 1400 29 3.9 64 2 9555 205.60 207.60 20.00 2189 1050 20 2.6 71 2 9555 205.60 207.60 20.00 2189 1050 20 2.6 71 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |             | 9533   | 173.60 | 175.60 | 2.00   | 2402      | 890  | 42  | 2.5  | 71  | 2   | 2   |
| 9537 179.60 181.60 2.00 2915 1340 46 3.2 68 2 9538 181.60 183.60 2.00 2281 880 25 2.6 64 2 9539 183.60 185.60 2.00 2419 880 23 3.0 48 2 9540 185.60 187.60 2.00 2413 690 24 5.1 186 2 9541 187.60 188.60 2.00 2486 930 22 3.1 81 2 9542 189.60 191.60 2.00 2486 930 22 3.1 81 2 9543 191.60 193.60 2.00 2179 840 18 3.3 77 2 9543 191.60 193.60 2.00 2179 840 18 3.3 77 2 9544 193.60 195.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 2164 6560 21 5.4 68 35 9547 199.60 201.60 2.00 2164 6560 21 5.4 68 35 9547 199.60 201.60 2.00 2580 1400 25 3.2 72 2 9548 201.60 203.60 2.00 2374 870 23 2.7 55 2 9550 205.60 207.60 2.00 2374 870 23 2.7 55 2 9551 207.60 209.60 200.60 2.00 2189 1050 20 2.6 6.0 55 5 9551 207.60 209.60 200.0 2189 1050 20 2.6 671 2 9553 209.60 211.60 2.00 2189 1050 20 2.6 71 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |             | 9534   | 175.60 | 177.60 | 2.00   | 2087      | 690  | 20  | 2.3  | 68  | 2   | 2   |
| 9538 181.60 183.60 2.00 2281 880 25 2.6 64 2 9539 183.60 185.60 2.00 2419 880 23 3.0 48 2 9540 185.60 187.60 2.00 2418 690 24 5.1 186 2 9541 187.60 189.60 2.00 2486 930 22 3.1 81 2 9542 189.60 191.60 2.00 2179 840 18 3.3 77 2 9543 191.60 193.60 2.00 1967 550 19 2.5 71 5 9544 193.60 195.60 197.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 2133 710 21 2.8 70 10 9546 197.60 199.60 2.00 2136 6560 21 5.4 68 35 9547 199.60 201.60 2.00 2580 1400 25 3.2 72 2 9548 201.60 203.60 2.00 2374 870 23 2.7 55 2 9550 205.60 205.60 207.60 2.00 3816 1400 29 3.9 64 2 9553 209.60 211.60 2.00 2189 1050 20 2.6 71 2 9553 209.60 211.60 2.00 2189 1050 20 2.6 71 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |     |             | 9535   | 177.60 | 179.60 | 2.00   | 2400      | 1000 | 21  | 3.0  | 66  | 2   | 2   |
| 9539 183.60 185.60 2.00 2419 880 23 3.0 48 2 9540 185.60 187.60 2.00 2413 690 24 5.1 186 2 9541 187.60 189.60 2.00 2486 930 22 3.1 81 2 9542 189.60 191.60 2.00 2179 840 18 3.3 77 2 9543 191.60 193.60 2.00 1967 550 19 2.5 71 5 9544 193.60 195.60 197.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 1373 580 20 1.7 88 2 9546 197.60 199.60 2.00 2164 6560 21 5.4 68 35 9547 199.60 201.60 2.00 2580 1400 25 3.2 72 2 9548 201.60 203.60 2.00 20374 870 23 2.7 55 2 9550 205.60 207.60 2.00 5939 1230 226 6.0 55 5 9551 207.60 209.60 2.00 2189 1050 20 2.6 71 2 9553 209.60 211.60 2.00 2386 1400 29 3.9 64 2 9553 209.60 211.60 2.00 2189 1050 20 2.6 71 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |     |             | 9537   | 179.60 | 181.60 | 2.00   | 2915      | 1340 | 46  | 3.2  | 68  | 2   | 2   |
| 9540 185.60 187.60 2.00 2413 690 24 5.1 186 2 9541 187.60 189.60 2.00 2486 930 22 3.1 81 2 9542 189.60 191.60 2.00 2179 840 18 3.3 77 2 9543 191.60 193.60 2.00 1967 550 19 2.5 71 5 9544 193.60 195.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 1373 580 20 1.7 88 2 9546 197.60 199.60 2.00 2164 6560 21 5.4 68 35 9547 199.60 201.60 2.00 2580 1400 25 3.2 72 2 9548 201.60 203.60 2.00 2580 1400 25 3.2 72 2 9549 203.60 205.60 2.00 2374 870 23 2.7 55 2 9550 205.60 207.60 2.00 5939 1230 226 6.0 55 5 9551 207.60 209.60 200.60 2.00 3816 1400 29 3.9 64 2 9553 209.60 211.60 2.00 2189 1050 20 2.6 71 2 9554 211.60 213.60 2.00 2411 920 22 3.0 74 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |             | 9538   | 181.60 | 183.60 | 2.00   | 2281      | 880  | 25  | 2.6  | 64  | 2   | 2   |
| 9541 187.60 189.60 2.00 2486 930 22 3.1 81 2 9542 189.60 191.60 2.00 2179 840 18 3.3 77 2 9543 191.60 193.60 2.00 1967 550 19 2.5 71 5 9544 193.60 195.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 1373 580 20 1.7 88 2 9546 197.60 199.60 2.00 2164 6560 21 5.4 68 35 9547 199.60 201.60 2.00 2580 1400 25 3.2 72 2 9548 201.60 203.60 2.00 2580 1400 25 3.2 72 2 9549 203.60 205.60 207.60 2.00 5939 1230 226 6.0 55 5 9551 207.60 209.60 2.00 3816 1400 29 3.9 64 2 9553 209.60 211.60 2.00 2189 1050 20 2.6 71 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |     |             | 9539   | 183.60 | 185.60 | 2.00   | 2419      | 880  | 23  | 3.0  | 48  | 2   | 2   |
| 9542 189.60 191.60 2.00 2179 840 18 3.3 77 2 9543 191.60 193.60 2.00 1967 550 19 2.5 71 5 9544 193.60 195.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 1373 580 20 1.7 88 2 9546 197.60 199.60 2.00 2164 6560 21 5.4 68 35 9547 199.60 201.60 2.00 2580 1400 25 3.2 72 2 9548 201.60 203.60 2.00 2580 1400 25 3.2 72 2 9549 203.60 205.60 2.00 2374 870 23 2.7 55 2 9550 205.60 207.60 2.00 5939 1230 226 6.0 55 5 9551 207.60 209.60 2.00 3816 1400 29 3.9 64 2 9553 209.60 211.60 2.00 2189 1050 20 2.6 71 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |     |             | 9540   | 185.60 | 187.60 | 2.00   | 2413      | 690  | 24  | 5.1  | 186 | 2   | 2   |
| 9543 191.60 193.60 2.00 1967 550 19 2.5 71 5 9544 193.60 195.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 1373 580 20 1.7 88 2 9546 197.60 199.60 2.00 2164 6560 21 5.4 68 35 9547 199.60 201.60 2.00 2580 1400 25 3.2 72 2 9548 201.60 203.60 2.00 1740 680 26 2.6 69 10 9549 203.60 205.60 2.00 2374 870 23 2.7 55 2 9550 205.60 207.60 2.00 5939 1230 226 6.0 55 5 9551 207.60 209.60 2.00 3816 1400 29 3.9 64 2 9553 209.60 211.60 2.00 2189 1050 20 2.6 71 2 9554 211.60 213.60 2.00 2411 920 22 3.0 74 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |     |             | 9541   | 187.60 | 189.60 | 2.00   | 2486      | 930  | 22  | 3.1  | 81  | 2   | 2   |
| 9544 193.60 195.60 2.00 2133 710 21 2.8 70 10 9545 195.60 197.60 2.00 1373 580 20 1.7 88 2 9546 197.60 199.60 2.00 2164 6560 21 5.4 68 35 9547 199.60 201.60 2.00 2580 1400 25 3.2 72 2 9548 201.60 203.60 2.00 1740 680 26 2.6 69 10 9549 203.60 205.60 2.00 2374 870 23 2.7 55 2 9550 205.60 207.60 2.00 5939 1230 226 6.0 55 5 9551 207.60 209.60 2.00 3816 1400 29 3.9 64 2 9553 209.60 211.60 2.00 2189 1050 20 2.6 71 2 9554 211.60 213.60 2.00 2411 920 22 3.0 74 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |     |             | 9542   | 189.60 | 191.60 | 2.00   | 2179      | 840  | 18  | 3.3  | 77  | 2   | 2   |
| 9545 195.60 197.60 2.00 1373 580 20 1.7 88 2 9546 197.60 199.60 2.00 2164 6560 21 5.4 68 35 9547 199.60 201.60 2.00 2580 1400 25 3.2 72 2 9548 201.60 203.60 2.00 1740 680 26 2.6 69 10 9549 203.60 205.60 2.00 2374 870 23 2.7 55 2 9550 205.60 207.60 2.00 5939 1230 226 6.0 55 5 9551 207.60 209.60 2.00 3816 1400 29 3.9 64 2 9553 209.60 211.60 2.00 2189 1050 20 2.6 71 2 9554 211.60 213.60 2.00 2411 920 22 3.0 74 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |     |             | 9543   | 191.60 | 193.60 | 2.00   | 1967      | 550  | 19  | 2.5  | 71  | 5   | 2   |
| 9546 197.60 199.60 2.00 2164 6560 21 5.4 68 35<br>9547 199.60 201.60 2.00 2580 1400 25 3.2 72 2<br>9548 201.60 203.60 2.00 1740 680 26 2.6 69 10<br>9549 203.60 205.60 2.00 2374 870 23 2.7 55 2<br>9550 205.60 207.60 2.00 5939 1230 226 6.0 55 5<br>9551 207.60 209.60 2.00 3816 1400 29 3.9 64 2<br>9553 209.60 211.60 2.00 2189 1050 20 2.6 71 2<br>9554 211.60 213.60 2.00 2411 920 22 3.0 74 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |     |             | 9544   | 193.60 | 195.60 | 2.00   | 2133      | 710  | 21  | 2.8  | 70  | 10  | 2   |
| 9547       199.60       201.60       2.00       2580       1400       25       3.2       72       2         9548       201.60       203.60       2.00       1740       680       26       2.6       69       10         9549       203.60       205.60       205.60       2.00       2374       870       23       2.7       55       2         9550       205.60       207.60       200       5939       1230       226       6.0       55       5         9551       207.60       209.60       2.00       3816       1400       29       3.9       64       2         9553       209.60       211.60       2.00       2189       1050       20       2.6       71       2         9554       211.60       213.60       2.00       2411       920       22       3.0       74       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |             | 9545   | 195.60 | 197.60 | 2.00   | 1373      | 580  | 20  | 1.7  | 88  | 2   | 2   |
| 9548       201.60       203.60       2.00       1740       680       26       2.6       69       10         9549       203.60       205.60       2.00       2374       870       23       2.7       55       2         9550       205.60       207.60       207.60       2.00       5939       1230       226       6.0       55       5         9551       207.60       209.60       2.00       3816       1400       29       3.9       64       2         9553       209.60       211.60       2.00       2189       1050       20       2.6       71       2         9554       211.60       213.60       2.00       2411       920       22       3.0       74       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |     |             | 9546   | 197.60 | 199.60 | 2.00   | 2164      | 6560 | 21  | 5.4  | 68  | 35  | 2   |
| 9549     203.60     205.60     2.00     2374     870     23     2.7     55     2       9550     205.60     207.60     2.00     5939     1230     226     6.0     55     5       9551     207.60     209.60     2.00     3816     1400     29     3.9     64     2       9553     209.60     211.60     2.00     2189     1050     20     2.6     71     2       9554     211.60     213.60     2.00     2411     920     22     3.0     74     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |     |             | 9547   | 199.60 | 201.60 | 2.00   | 2580      | 1400 | 25  | 3.2  | 72  | 2   | 2   |
| 9550     205.60     207.60     2.00     5939     1230     226     6.0     55     5       9551     207.60     209.60     2.00     3816     1400     29     3.9     64     2       9553     209.60     211.60     2.00     2189     1050     20     2.6     71     2       9554     211.60     213.60     2.00     2411     920     22     3.0     74     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |             | 9548   | 201.60 | 203.60 | 2.00   | 1740      | 680  | 26  | 2.6  | 69  | 10  | 2   |
| 9550     205.60     207.60     2.00     5939     1230     226     6.0     55     5       9551     207.60     209.60     2.00     3816     1400     29     3.9     64     2       9553     209.60     211.60     2.00     2189     1050     20     2.6     71     2       9554     211.60     213.60     2.00     2411     920     22     3.0     74     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |             | 9549   | 203.60 | 205.60 | 2.00   | 2374      | 870  | 23  |      | 55  |     | 2   |
| 9551     207.60     209.60     2.00     3816     1400     29     3.9     64     2       9553     209.60     211.60     2.00     2189     1050     20     2.6     71     2       9554     211.60     213.60     2.00     2411     920     22     3.0     74     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |     |             | 9550   |        |        |        |           | 1230 | 226 |      | 55  |     | 2   |
| 9553 209.60 211.60 2.00 2189 1050 20 2.6 71 2<br>9554 211.60 213.60 2.00 2411 920 22 3.0 74 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |             | 9551   | 207.60 | 209.60 | 2.00   | 3816      | 1400 | 29  | 3.9  | 64  |     | 2   |
| 9554 211.60 213.60 2.00 2411 920 22 3.0 74 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |     |             | 9553   | 209.60 | 211.60 | 2.00   | 2189      | 1050 | 20  |      | 71  | 2   | 2   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |             |        | 211.60 | 213.60 | 2.00   | 2411      | 920  |     |      | 74  |     | 2   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |             |        |        |        | 2.00   | 1902      | 830  |     |      | 84  |     | 2   |
| 9556 215.60 217.60 2.00 2176 800 34 2.9 66 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |             | 9556   | 215.60 | 217.60 | 2.00   | 2176      | 800  | 34  | 2.9  | 66  | 10  | 2   |
| 9557 217.60 219.60 2.00 2178 1100 26 3.1 67 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |     |             | 9557   |        |        | 2.00   | 2178      | 1100 | 26  |      | 67  |     | 2   |

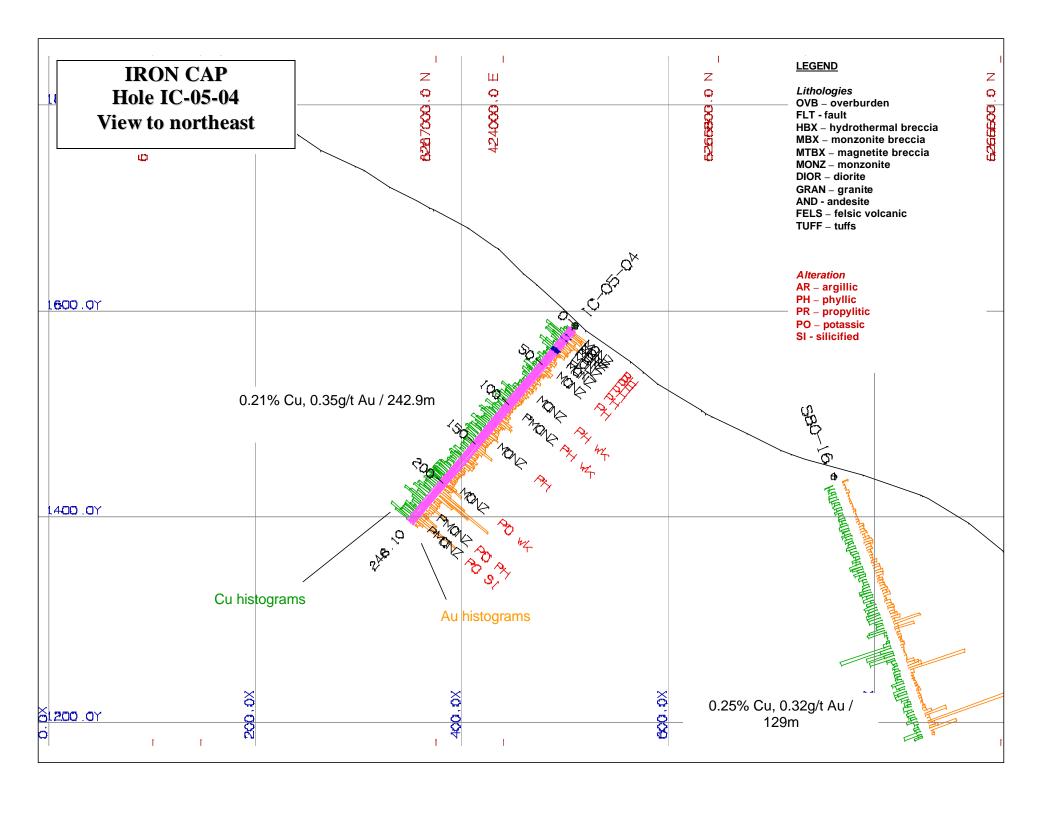
13-Nov-05 5:34:21 PM

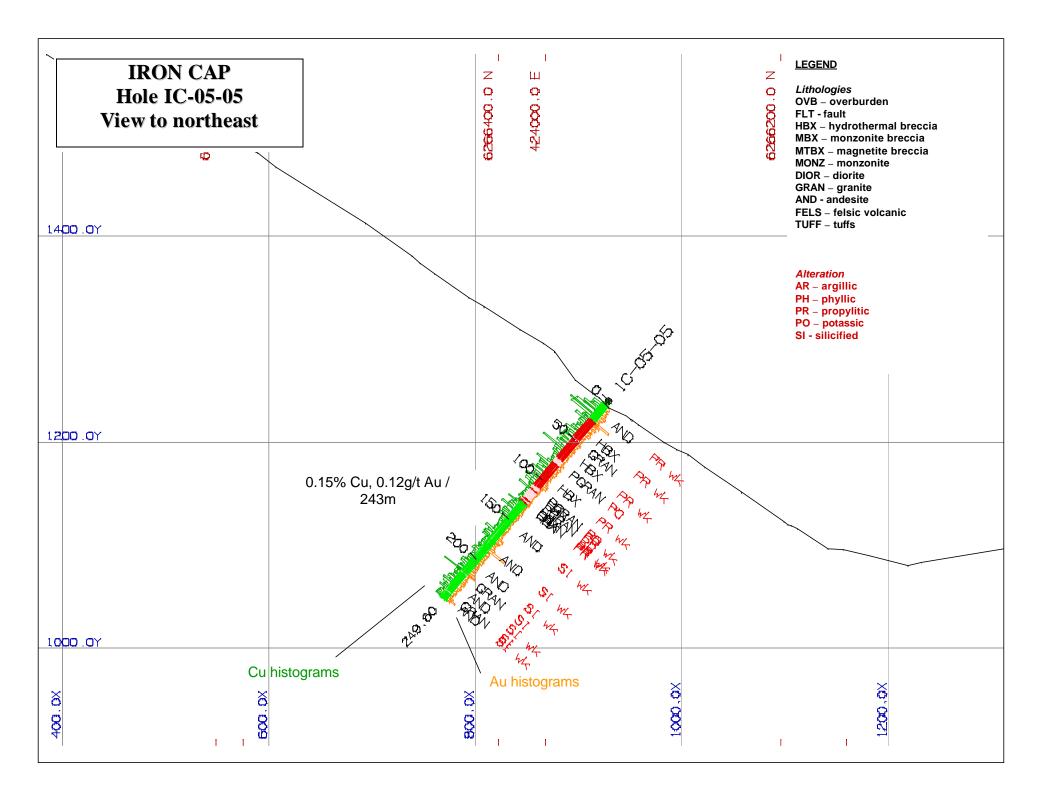


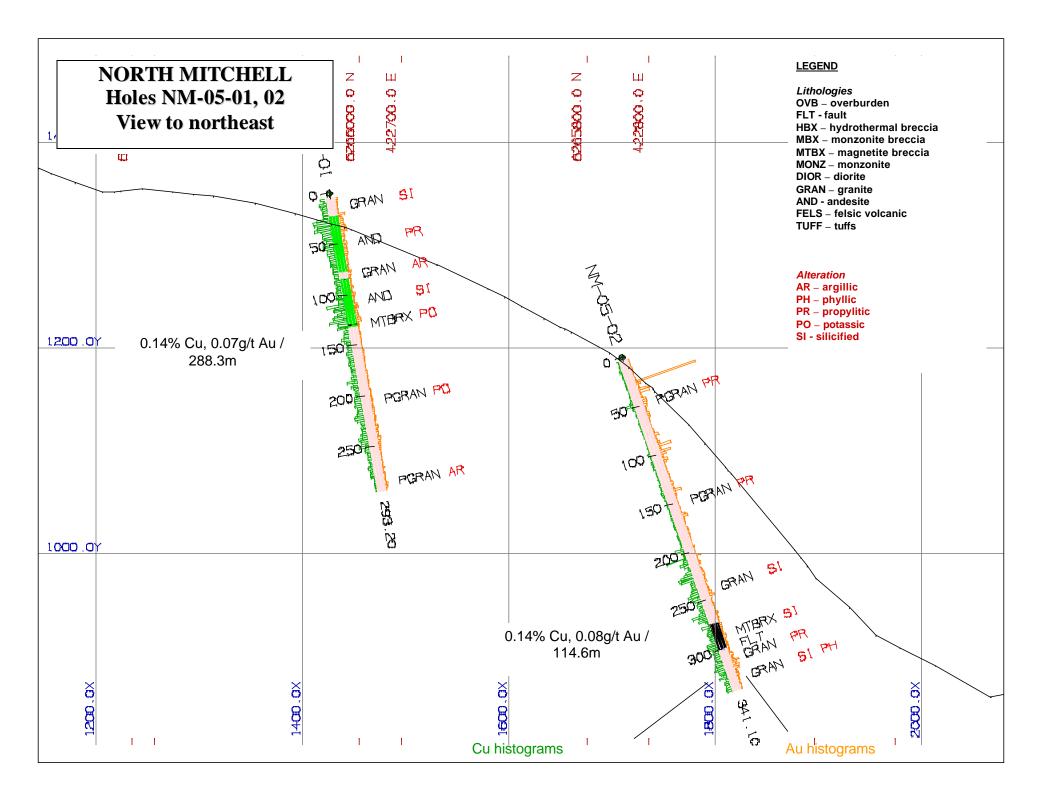
*DDH:* WM-05-01

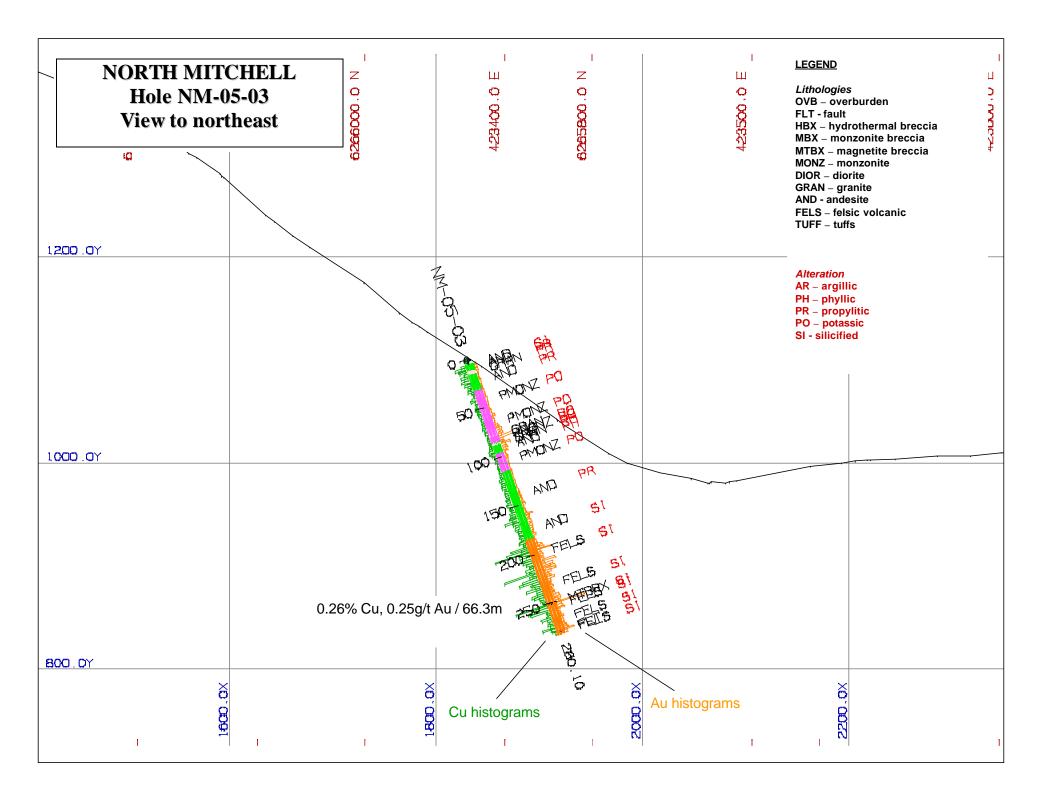

Project: KERR-SULPHURETS

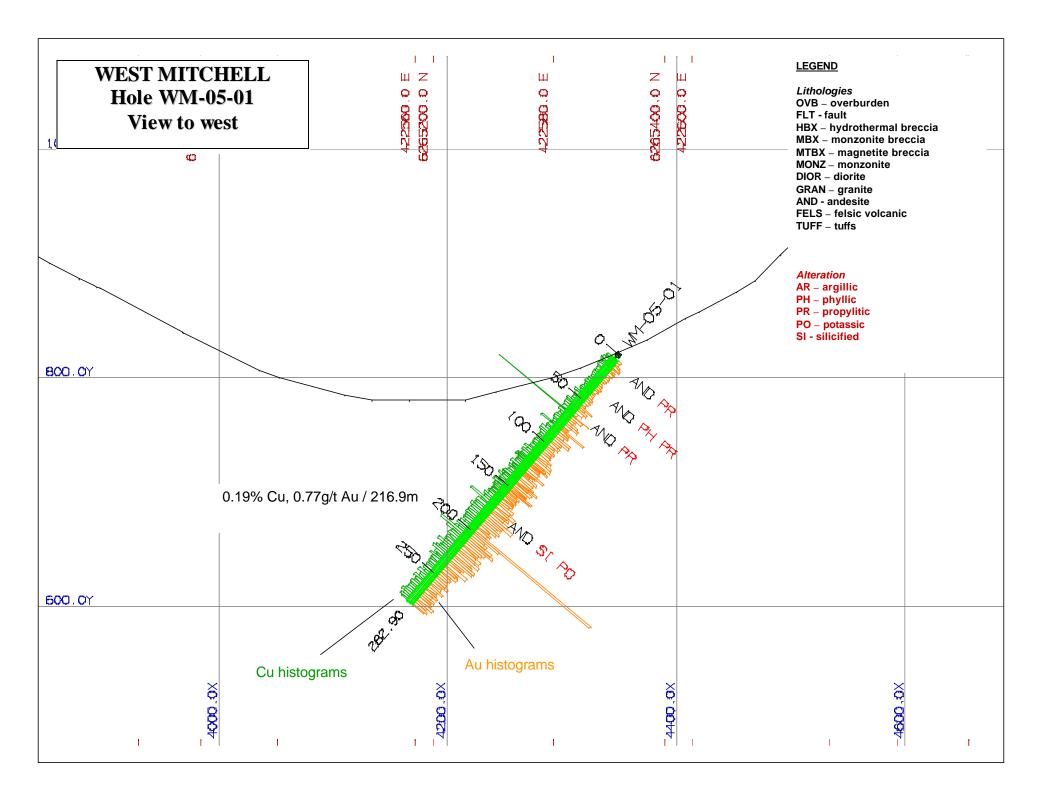

Project #: 301

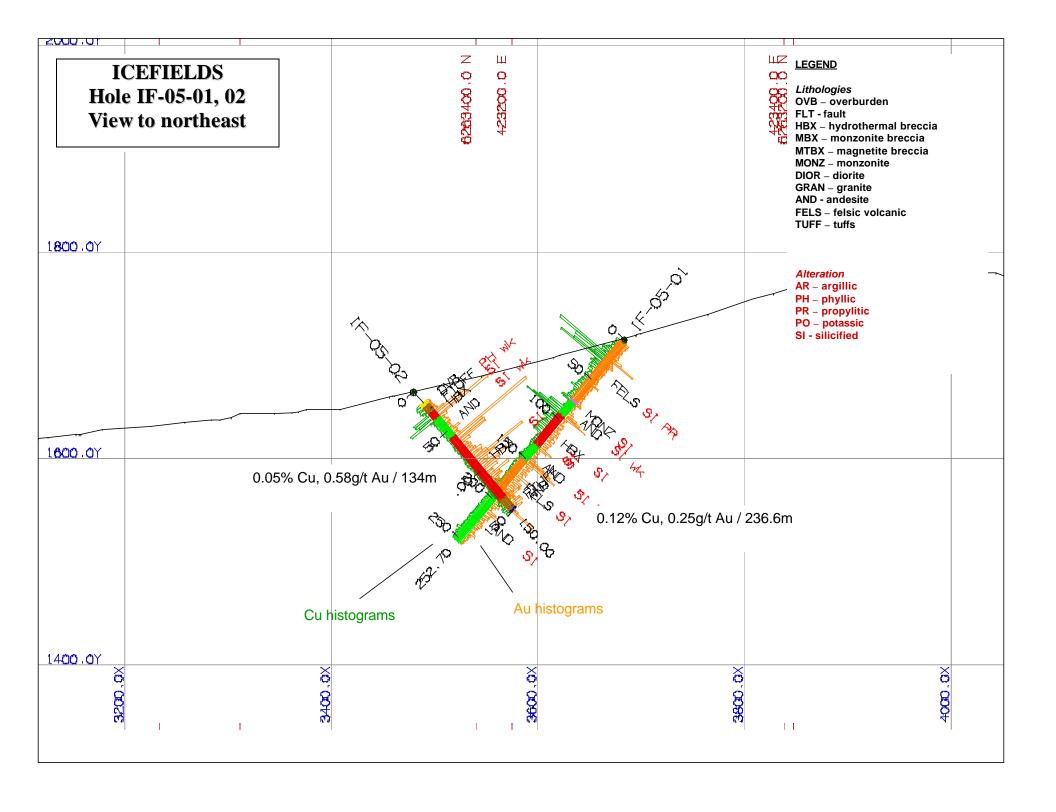

| <b>From</b> (m) | <b>To</b><br>(m) | Description | Sample       | from             | to               | <b>Length</b> | Cu           | <b>Au</b><br>ppb | <b>Mo</b><br>ppm | <b>Ag</b><br>ppm | <b>Zn</b><br>ppb | <b>As</b><br>ppm | <b>Sb</b><br>ppm |
|-----------------|------------------|-------------|--------------|------------------|------------------|---------------|--------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                 | (,,,,            |             |              |                  |                  |               | ppiii (101 ) | ррь              | ррт              | ррш              | ρρυ              | ррт              | ———              |
|                 |                  |             | 9558         | 219.60           | 221.60           | 2.00          | 1935         | 900              | 24               | 2.8              | 99               | 10               | 2                |
|                 |                  |             | 9560         | 221.60           | 223.60           | 2.00          | 3396         | 1190             | 32               | 4.6              | 98               | 5                | 2                |
|                 |                  |             | 9561         | 223.60           | 225.60           | 2.00          | 1774         | 850              | 25               | 3.0              | 76               | 5                | 2                |
|                 |                  |             | 9562         | 225.60           | 227.60           | 2.00          | 2161         | 980              | 22               | 2.7              | 90               | 2                | 2                |
|                 |                  |             | 9563         | 227.60           | 229.60           | 2.00          | 2787         | 1180             | 22               | 3.4              | 88               | 5                | 2                |
|                 |                  |             | 9564         | 229.60           | 231.60           | 2.00          | 3208         | 1160             | 29               | 4.5              | 116              | 5                | 2                |
|                 |                  |             | 9565         | 231.60           | 233.60           | 2.00          | 2131         | 750              | 58               | 2.5              | 79<br>402        | 10               | 2                |
|                 |                  |             | 9566         |                  | 235.60           | 2.00          | 1542         | 670              | 35               | 2.1              | 403              | 5                | 2                |
|                 |                  |             | 9567         |                  | 237.60           | 2.00          | 2758         | 1080             | 33               | 2.8              | 554              | 5                | 2                |
|                 |                  |             | 9568         | 237.60<br>239.60 | 239.60<br>241.60 | 2.00          | 1962         | 720<br>650       | 18               | 2.1              | 417              | 5                | 2                |
|                 |                  |             | 9569<br>9570 |                  | 241.60           | 2.00<br>2.00  | 1724<br>1778 | 780              | 18<br>14         | 2.4<br>4.4       | 376<br>359       | 10<br>35         | 2<br>10          |
|                 |                  |             | 9570<br>9572 |                  |                  | 2.00          | 1494         | 520              | 17               | 2.1              | 326              | 2                | 2                |
|                 |                  |             | 9572<br>9573 |                  | 247.60           | 2.00          | 1700         | 610              | 24               | 2.0              | 373              | 5                | 2                |
|                 |                  |             | 9574         | 247.60           | 249.60           | 2.00          | 1588         | 520              | 17               | 2.3              | 365              | 5                | 2                |
|                 |                  |             | 9575         | 249.60           | 251.60           | 2.00          | 1725         | 570              | 14               | 2.1              | 362              | 5                | 2                |
|                 |                  |             | 9576         | 251.60           | 253.60           | 2.00          | 1085         | 600              | 24               | 1.4              | 260              | 5                | 2                |
|                 |                  |             | 9577         | 253.60           | 255.60           | 2.00          | 2256         | 750              | 19               | 2.3              | 451              | 15               | 2                |
|                 |                  |             | 9578         | 255.60           | 257.60           | 2.00          | 1428         | 520              | 22               | 1.5              | 318              | 5                | 2                |
|                 |                  |             | 9579         | 257.60           | 259.60           | 2.00          | 1321         | 550              | 40               | 1.8              | 322              | 5                | 2                |
|                 |                  |             | 9580         |                  | 261.60           | 2.00          | 2237         | 730              | 50               | 2.9              | 455              | 2                | 2                |
|                 |                  |             | 9581         | 261.60           | 263.60           | 2.00          | 1581         | 490              | 13               | 2.1              | 327              | 2                | 2                |
|                 |                  |             | 9582         | 263.60           | 265.60           | 2.00          | 1567         | 560              | 15               | 1.8              | 347              | 2                | 2                |
|                 |                  |             | 9583         | 265.60           | 267.60           | 2.00          | 1994         | 660              | 15               | 2.3              | 410              | 2                | 2                |
|                 |                  |             | 9584         | 267.60           | 269.60           | 2.00          | 1615         | 460              | 14               | 1.9              | 345              | 2                | 2                |
|                 |                  |             | 9585         | 269.60           | 271.60           | 2.00          | 1612         | 690              | 15               | 3.3              | 350              | 10               | 2                |
|                 |                  |             | 9586         | 271.60           | 273.70           | 2.10          | 1602         | 590              | 14               | 2.0              | 328              | 5                | 2                |
|                 |                  |             | 9588         | 273.70           | 275.60           | 1.90          | 1884         | 690              | 12               | 3.4              | 385              | 35               | 5                |
|                 |                  |             | 9589         | 275.60           | 277.60           | 2.00          | 2446         | 850              | 33               | 4.1              | 484              | 5                | 2                |
|                 |                  |             | 9590         | 277.60           | 279.60           | 2.00          | 1561         | 580              | 13               | 2.6              | 333              | 10               | 2                |
|                 |                  |             | 9591         | 279.60           | 281.60           | 2.00          | 2042         | 700              | 13               | 3.9              | 449              | 15               | 2                |
|                 |                  |             | 9592         | 281.60           | 282.90           | 1.30          | 1508         | 600              | 13               | 2.8              | 335              | 35               | 2                |

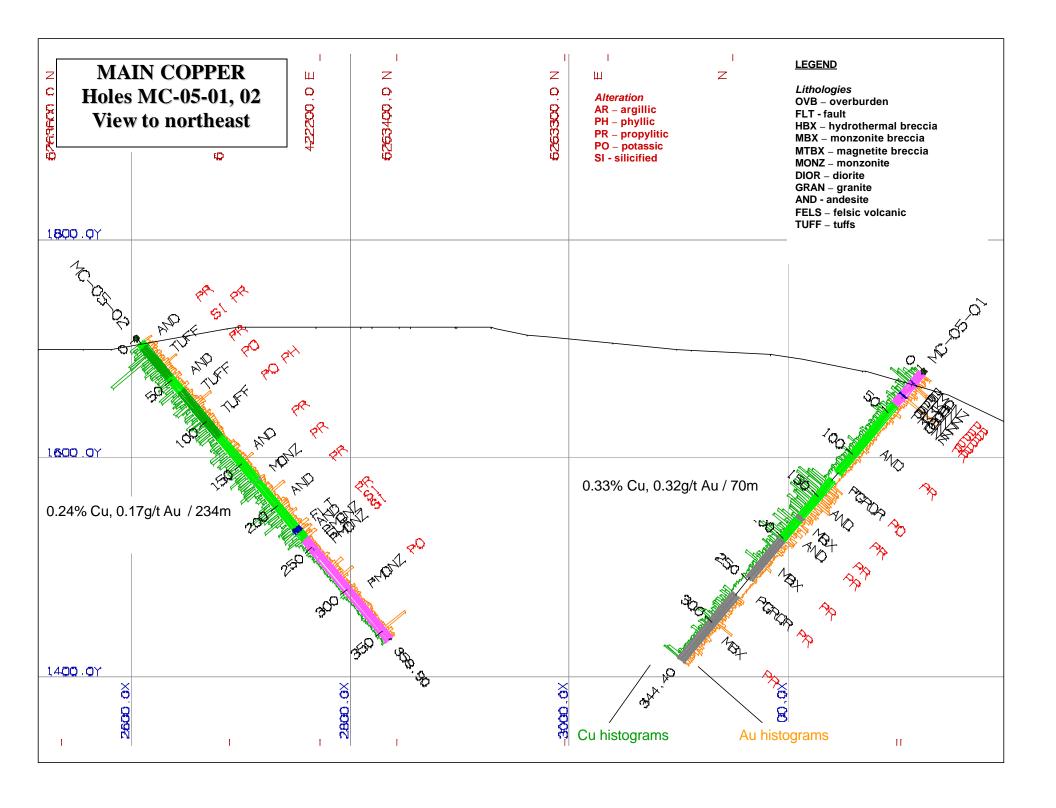

13-Nov-05 5:34:21 PM Page 5 of 5

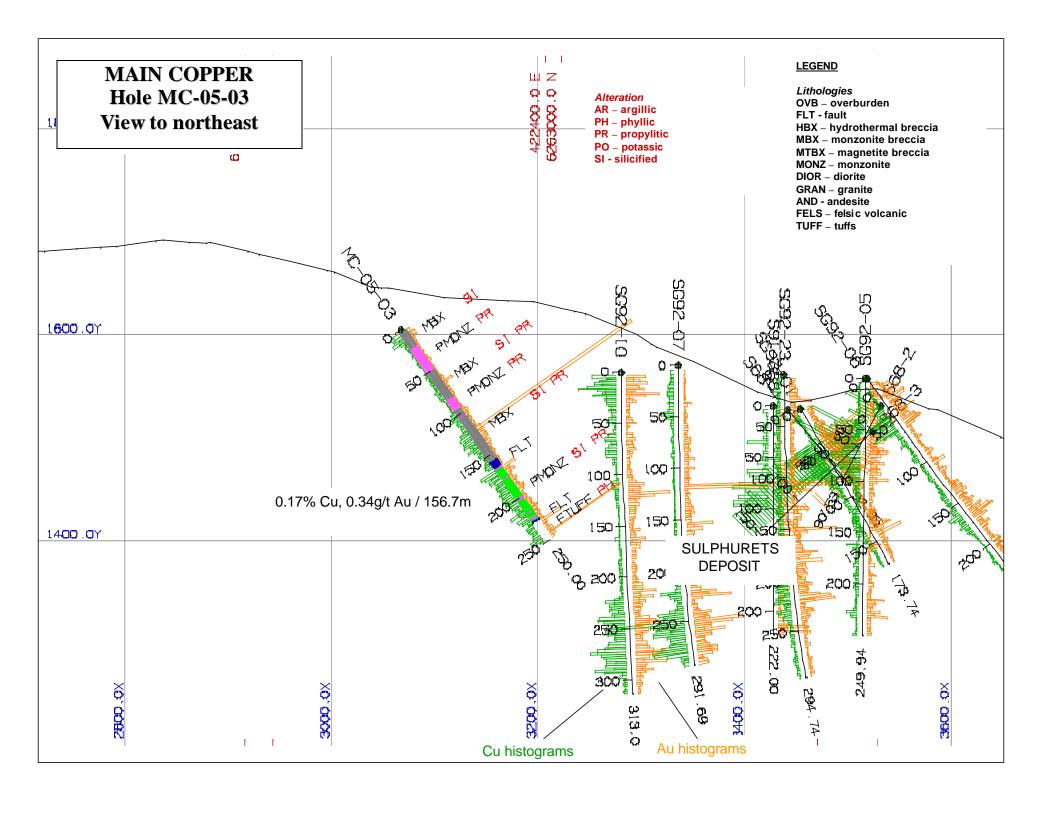


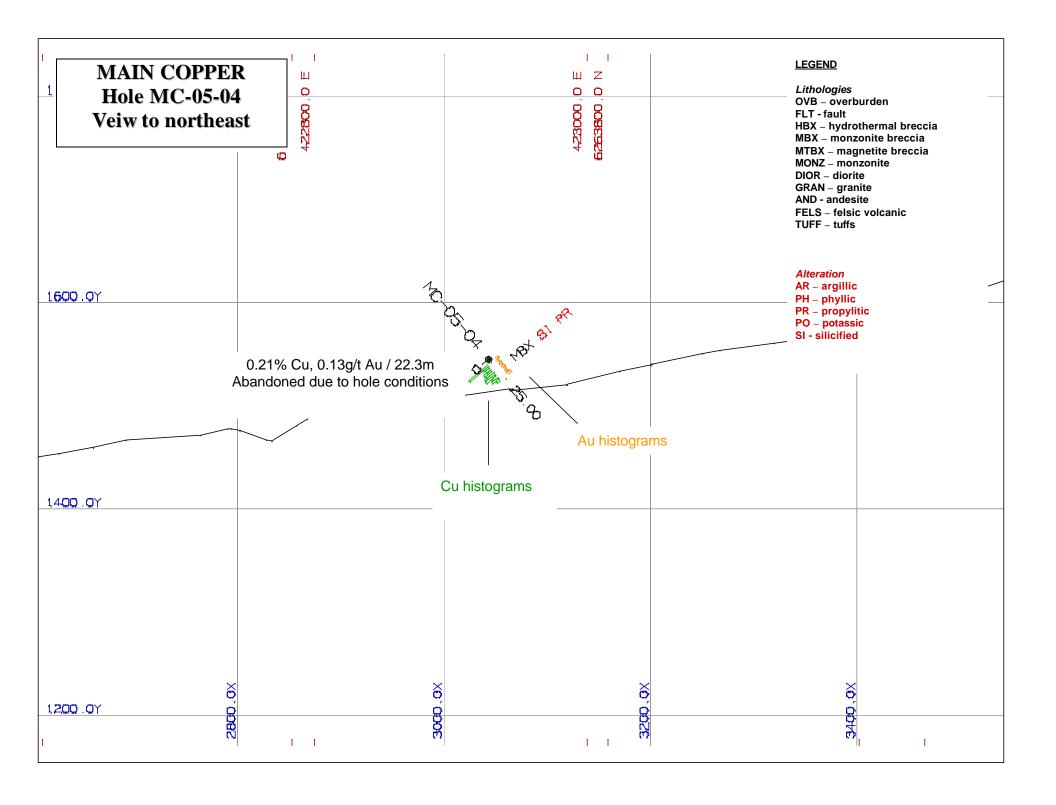



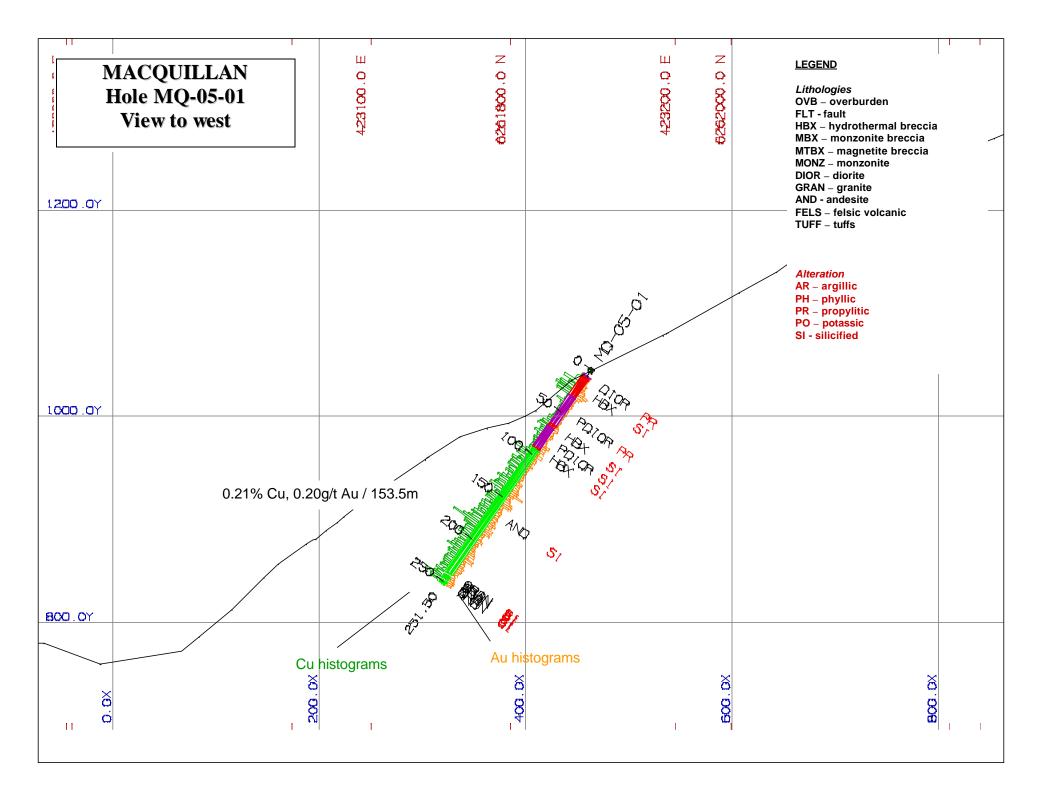



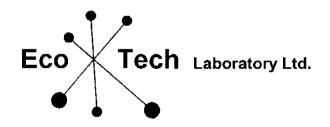














| Standard               | 51           | 1P         | 53           | 3P  | 43P        |           | Blank    |            |
|------------------------|--------------|------------|--------------|-----|------------|-----------|----------|------------|
| Certificate            | Cu           | Au         | Cu           | Au  | Mo         | Cu        | Au       | Мо         |
| 2005-5084              | 7387         | 470        |              |     | 111        | 183       | 15       | 0          |
| 2005-5086              | 7061         | 440        |              |     | 112        | 99        | 15       | 0          |
| 2005-5087              | 7241         | 450        |              |     | 129        | 89        | 15       | 0          |
| 2005-5088              | 7301         | 430        |              |     | 110        | 64        | 15       | 0.5        |
| 2005-5089              | 7397         | 460        |              |     | 110        | 82        | 30       | 2          |
| 2005-5090              | 7384         | 440        |              |     | 120        | 99        | 15       | 0.5        |
| 2005-5091              |              |            | 4146         | 390 | 125        | 109       | 15       | 0.5        |
| 2005-5092              | 7240         | 440        |              |     | 119        | 87        | 15       | 0.5        |
| 2005-5093              | 7268         | 440        | 4007         | 400 | 110<br>131 | 100       | 15       | 0.5        |
| 2005-5094<br>2005-5095 | 7426         | 440        | 4097         | 420 | 117        | 94<br>81  | 15<br>15 | 0.5<br>0.5 |
| 2005-5095              | 7420         | 440        | 4046         | 390 | 137        | 70        | 15       | 0.5        |
| 2005-5097              |              |            | 4096         | 390 | 114        | 82        | 15       | 0.5        |
| 2005-5098              | 7328         | 440        | 4090         | 390 | 120        | 109       | 15       | 0.5        |
| 2005-5099              | 7064         | 460        |              |     | 130        | 90        | 15       | 0.5        |
| 2005-5100              | 7114         | 440        |              |     | 123        | 63        | 15       | 0.5        |
| 2005-5101              | 7263         | 430        |              |     | 123        | 100       | 15       | 0.5        |
| 2005-5102              | 7038         | 440        |              |     | 124        | 99        | 15       | 0.5        |
| 2005-5103              | 7268         | 450        |              |     | 124        | 159       | 15       | 0.5        |
| 2005-5104              | 7054         | 430        |              |     | 127        | 94        | 15       | 0.5        |
| 2005-5105              | 7115         | 420        |              |     | 120        | 75        | 15       | 0.5        |
| 2005-5106              | 7237         | 420        |              |     | 124        | 142       | 15       | 0.5        |
| 2005-5107              | 7223         | 440        |              |     | 121        | 136       | 15       | 0.5        |
| 2005-5108              | 7143         | 440        |              |     | 122        | 95        | 15       | 0.5        |
| 2005-5109              | 7299         | 450        |              |     | 129        | 80        | 15       | 0.5        |
| 2005-5111              |              |            | 4201         | 390 | 122        | 114       | 15       | 0.5        |
| 2005-5112              | 74.04        | 1.10       | 4028         | 380 | 123        | 114       | 15       | 0.5        |
| 2005-5113<br>2005-5114 | 7181<br>7378 | 440        |              |     | 120<br>107 | 81<br>78  | 15       | 2<br>0.5   |
| 2005-5114              | 7092         | 430<br>460 |              |     | 107        | 92        | 15<br>15 | 0.5        |
| 2005-5116              | 7092         | 460        | 4045         | 390 | 112        | 77        | 15       | 0.5        |
| 2005-5117              | 7130         | 430        | 4043         | 390 | 125        | 121       | 15       | 0.5        |
| 2005-5118              | 7097         | 420        |              |     | 110        | 80        | 15       | 0.5        |
| 2005-5119              | 7068         | 430        |              |     | 101        | 75        | 15       | 2          |
| 2005-5120              | 7247         | 430        |              |     | 105        | 172       | 15       | 0.5        |
| 2005-5121              |              |            | 4156         | 380 | 121        | 114       | 15       | 0.5        |
| 2005-5122              |              |            | 4086         | 390 | 113        | 65        | 15       | 0.5        |
| 2005-5124              |              |            | 4233         | 380 | 119        | 149       | 15       | 0.5        |
| 2005-5125              | 7098         | 440        |              |     | 130        | 94        | 15       | 0.5        |
| 2005-5127              |              |            | 4104         | 380 | 104        | 68        | 15       | 0.5        |
| 2005-5128              |              |            | 4227         | 390 | 118        | 107       | 15       | 0.5        |
| 2005-5129              |              |            | 4298         | 390 | 129        | 91        | 15       | 0.5        |
| 2005-5130              |              |            | 4078         | 370 | 120        | 72        | 15       | 0.5        |
| 2005-5131              | 7159         | 440        |              |     | 126        | 150       | 15       | 0.5        |
| 2005-5132              |              |            | 4073         | 380 | 119        |           |          |            |
| 2005-5133              | 7327         | 420        |              |     | 128        |           |          |            |
| 2005-5134              | 7305         | 420        | 4060         | 200 | 129        | 110       | 4.5      |            |
| 2005-5136<br>2005-5137 | 7333         | 440        | 4260         | 390 | 117<br>118 | 110<br>81 | 15<br>15 | 2<br>0.5   |
| 2005-5137              | 1333         | 440        | 4201         | 390 | 120        | 90        | 15       | 0.5        |
| 2005-5139              | 7236         | 430        | 7201         | 390 | 124        | 70        | 15       | 0.5        |
| 2005-5139              | 7251         | 400        |              |     | 130        | 88        | 15       | 0.5        |
| 2005-5142              | . 201        | .50        | 4088         | 390 | 123        | 107       | 15       | 0.5        |
| 2005-5143              |              |            | 4313         | 380 | 130        | 118       | 15       | 0.5        |
| 2005-5145              |              |            | 4382         | 380 | 127        | 115       | 15       | 0.5        |
| 2005-5146              | 7336         | 440        |              |     | 130        | 120       | 15       | 0.5        |
| 2005-5147              | 7324         | 420        |              |     | 127        | 115       | 15       | 2          |
| 2005-5148              | 7505         | 440        |              |     | 128        | 120       | 15       | 0.5        |
| 2005-5150              | 7252         | 430        |              |     | 128        | 96        | 15       | 0.5        |
| 2005-5151              | 7314         | 430        |              |     | 125        | 108       | 15       | 0.5        |
| 2005-5152              | 7256         | 430        |              |     | 118        | 119       | 15       | 0.5        |
| 2005-5154              |              |            | 4082         | 390 | 120        | 89        | 15       | 0.5        |
| 2005-5155              |              |            | 4242         | 390 | 113        | 101       | 15       | 0.5        |
| 2005-5158              |              |            | 4294         | 370 | 122        | 114       | 15       | 0.5        |
| 2005-5159              | 7408         | 430        | 4262         | 380 | 116        | 148       | 15       | 2          |
| 2005-5160              |              |            | 4400         | 200 | 404        | 400       | 4.5      |            |
| Average<br>Accepted    | 7242         | 436<br>430 | 4168<br>4130 | 386 | 121<br>127 | 102       | 15       | 1          |
| Accepted               | 7280         | 430        | 4130         | 380 | 141        |           |          |            |



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573~5700 Fax (250) 573~4557 E-mail: info@ecotechlab.com

www.ecotechlab.com

## **CERTIFICATE OF ASSAY AS 2005-5084**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 1

Samples Submitted by: Allan Huard

4-Aug-05

|      |       | Au    | Au     |              |   |
|------|-------|-------|--------|--------------|---|
| ET#. | Tag # | (g/t) | (oz/t) |              |   |
| 1    | 67001 | 0.34  | 0.010  | <del>'</del> |   |
| 2    | 67002 | 0.33  | 0.010  |              |   |
| 3    | 67003 | 0.25  | 0.007  |              |   |
| 4    | 67004 | 0.75  | 0.022  |              |   |
| 5    | 67005 | 0,28  | 0.008  |              |   |
| 6    | 67006 | 0.40  | 0.012  |              |   |
| 7    | 67007 | 0.43  | 0.013  |              |   |
| 8    | 67008 | 0.73  | 0.021  |              |   |
| 9    | 67025 | 0.47  | 0.014  |              |   |
| 10   | 67117 | 0.16  | 0.005  |              |   |
| 11   | 67118 | 0.23  | 0.007  |              |   |
| 12   | 67119 | 0.22  | 0.006  |              |   |
| 13   | 67120 | 0.14  | 0.004  |              |   |
| 14   | 67121 | 0.19  | 0.006  |              |   |
| 15   | 67122 | 0.17  | 0.005  |              |   |
| 16   | 67123 | 0.26  | 0.008  |              |   |
| 17   | 67124 | 0.29  | 0.008  |              |   |
| 18   | 67125 | 0.06  | 0.002  |              |   |
| 19   | 67126 | 0.17  | 0.005  |              |   |
| 20   | 67127 | 0.18  | 0.005  | •            | • |
| 21   | 67128 | 0.28  | 0.008  |              |   |
| 22   | 67129 | 0.65  | 0.019  |              |   |
| 23   | 67130 | 0.14  | 0.004  |              |   |
| 24   | 67167 | 0.27  | 0.008  |              | _ |
| 25   | 67168 | 0.18  | 0.005  |              |   |
|      |       |       |        |              |   |

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assaver

|            |               | Au    | Au     |  |
|------------|---------------|-------|--------|--|
| ET #.      | Tag #         | (g/t) | (oz/t) |  |
| 26         | 67169         | 0.24  | 0.007  |  |
| 27         | 67170         | 0.24  | 0.007  |  |
| 28         | 67171         | 0.25  | 0.007  |  |
| 29         | 67172         | 0.49  | 0.014  |  |
| 30         | 67173         | 0.33  | 0.010  |  |
| 31         | 67174         | 0.46  | 0.013  |  |
| <b>3</b> 2 | 67176         | 0.26  | 0.008  |  |
| 33         | 67177         | 0.27  | 0.008  |  |
| 34         | 67178         | 0.32  | 0.009  |  |
| 35         | 67050         | <0.03 | <0.001 |  |
|            |               |       |        |  |
| QC DATA:   | :             |       |        |  |
| Repeat:    |               |       |        |  |
| 1          | 67001         | 0.34  | 0.010  |  |
| 4          | 67004         | 0.81  | 0.024  |  |
| 8          | 67008         | 0.74  | 0.022  |  |
| 10         | 67117         | 0.15  | 0.004  |  |
| 19         | 671 <b>26</b> | 0.15  | 0.004  |  |
| 22         | 67129         | 0.70  | 0.020  |  |
| 29         | 67172         | 0.55  | 0.016  |  |
| 31         | 67174         | 0.51  | 0.015  |  |
|            |               |       |        |  |
| Resplit:   | 67004         | 0.30  | 0.011  |  |
| 1          | 67001         | 0.38  | 0,011  |  |
| Standard:  |               |       |        |  |
| OX140      |               | 1,85  | 0.054  |  |

JJ/bs XLS/04 ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

ICP CERTIFICATE OF ANALYSIS AS 2005-5084

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

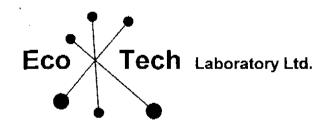
Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 1

Samples submitted by: Allan Huard


| Et #. | Tag#  | Ag   | AI % | As         | Ba B          | i Ca%  | Cd  | Со | Cr  | Cu   | Fe %   | La M  | 1g % | Mn  | Мо  | Na %   | Ni          | Р    | Pb  | Sb Sn   | Şr  | Ti %   | U   | v   | w     | Y  | Zn  |
|-------|-------|------|------|------------|---------------|--------|-----|----|-----|------|--------|-------|------|-----|-----|--------|-------------|------|-----|---------|-----|--------|-----|-----|-------|----|-----|
| 1     | 67001 | 4.6  | 0.33 | 20         | 40 <          | 5 0.47 | 5   | 11 | 57  | 4707 | 3.23 < | :10   | 0.03 | 511 | 12  | <0.01  | 5           | 1220 | 50  | <5 <20  | 34  | <0.01  | <10 | 16  | <10 1 | 10 | 267 |
| 2     | 67002 | 7.6  | 0.29 | 15         | 45 <          | 5 0.84 | - 3 | 12 | 46  | 4259 | 4.34 < | :10   | 0.01 | 933 | 14  | 0.01   | 4           | 850  | 60  | <5 <20  | 71  | < 0.01 | <10 | 17  | <10   | 5  | 246 |
| 3     | 67003 | 4.2  | 0.36 | <b>4</b> 0 | 50 <          | 0.55   | 2   | 11 | 47  | 2939 | 3.47 < | :10   | 0.02 | 412 | 11  | <0.01  | 3           | 1120 | 28  | <5 <20  | 35  | < 0.01 | <10 | 14  | <10 1 | 10 | 129 |
| 4     | 67004 | 4.8  | 0.29 | <5         | 40 <          | 5 0.39 | 1   | 16 | 52  | 3969 | 5.72 < | :10 < | 0.01 | 310 | 32  | < 0.01 | 4           | 750  | 22  | <5 <20  | 23  | < 0.01 | <10 | 13  | <10   | 4  | 52  |
| 5     | 67005 | 4.7  | 0.28 | 10         | 50 <          | 5 0.48 | 2   | 10 | 45  | 3680 | 3.81 < | :10 < | 0.01 | 378 | 9   | <0.01  | 5           | 890  | 60  | <5 <20  | 35  | <0.01  | <10 | 16  | <10   | 6  | 125 |
| 6     | 67006 | 6.2  | 0.35 | 40         | 40 <          | 5 0.17 | 4   | 8  | 56  | 3440 | 4.47 < | :10 < | 0.01 | 52  | 7   | <0.01  | 4           | 730  | 56  | <5 <20  | 29  | <0.01  | <10 | 13  | <10 < | <1 | 181 |
| 7     | 67007 | 3.6  | 0.33 | 30         | 40 <          | 5 0.26 | 3   | 8  | 57  | 4325 | 4.10 < | <10 < | 0.01 | 140 | 7   | <0.01  | 2           | 770  | 30  | <5 <20  | 22  | < 0.01 | <10 | 12  | <10   | 3  | 111 |
| 8     | 67008 | 13.3 | 0.32 | 235        | 35 <          | 5 0.19 | 10  | 8  | 73  | 4830 | 5.36 < | :10 < | 0.01 | 103 | 6   | <0.01  | 4           | 470  | 100 | 155 <20 | 11  | < 0.01 | <10 | 14  | <10 < | <1 | 711 |
| 9     | 67025 | 2.0  | 1.45 | <5         | 305 <         | 5 1.39 | <1  | 7  | 26  | 7387 | 3.19 < | :10   | 0.92 | 468 | 3   | 0.17   | 10          | 2180 | 16  | <5 <20  | 82  | 0.06   | <10 | 137 | <10 1 | 16 | 59  |
| 10    | 67117 | 1.1  | 0.86 | 30         | 70 <          | 5 0.56 | <1  | 20 | 48  | 2293 | 4.60 < | :10   | 0.56 | 247 | 34  | 0.03   | 3           | 1170 | <2  | <5 <20  | 58  | <0.01  | <10 | 108 | <10   | 7  | 37  |
| 11    | 67118 | 0.9  | 0.65 | 15         | 50 <          | 5 1.04 | <1  | 13 | 50  | 1641 | 4.60 < | :10   | 0.34 | 208 | 13  | 0.03   | 4           | 1450 | 4   | <5 <20  | 86  | 0.01   | <10 | 76  | <10   | 7  | 21  |
| 12    | 67119 | 0.9  | 0.99 | 20         | 60 <          | 5 0.44 | <1  | 17 | 45  | 2151 | 5.41 < | :10   | 0.57 | 228 | 10  | 0.02   | 2           | 1470 | <2  | <5 <20  | 23  | <0.01  | <10 | 86  | <10   | 7  | 41  |
| 13    | 67120 | 0.4  | 1.67 | 10         | 130 <         | 5 1.03 | <1  | 14 | 35  | 1662 | 4.71 < | :10   | 1.28 | 588 | 12  | 0.06   | 2           | 1580 | <2  | <5 <20  | 83  | 0.01   | <10 | 140 | <10 1 | 12 | 56  |
| 14    | 67121 | 0.3  | 1.53 | <5         | 95 <          | 5 1.05 | <1  | 11 | 25  | 1219 | 4.71 < | :10   | 1.21 | 480 | 14  | 0.05   | <1          | 1570 | <2  | <5 <20  | 88  | <0.01  | <10 | 151 | <10 1 | 12 | 55  |
| 15    | 67122 | 0.7  | 1.22 | 15         | 85 <          | 5 0.74 | <1  | 10 | 31  | 1893 | 4.14 < | :10   | 0.93 | 313 | 11  | 0.05   | 2           | 1550 | <2  | <5 <20  | 51  | <0.01  | <10 | 127 | <10 1 | 1  | 47  |
| 16    | 67123 | 0.9  | 1.08 | 20         | 75 <          | 5 0.93 | <1  | 13 | 42  | 2200 | 4.77 < | :10   | 0.77 | 334 | 8   | 0.06   | <1          | 1380 | <2  | <5 <20  | 79  | <0.01  | <10 | 119 | <10   | 9  | 40  |
| 17    | 67124 | 8.0  | 1.27 | 15         | 125 <         |        | <1  |    | 35  | 2136 | 4.72 < | :10   | 1.02 | 411 | 10  | 80.0   | 2           | 1390 | <2  | <5 <20  | 93  | <0.01  | <10 | 142 | <10 1 | 11 | 50  |
| 18    | 67125 | 0.2  | 0.82 | 75         | 150 <         | 5 0.22 | <1  | 59 | 237 | 489  | >10 <  | :10   | 0.16 | 429 | 111 | 0.05   | <b>42</b> 0 | 30   | 104 | <5 <20  | 13  | <0.01  | <10 | 25  | <10 < | <1 | 458 |
| 19    | 67126 | 0.5  | 1.59 | 20         | 110 <         | 5 1.23 | <1  | 21 | 28  | 1621 | 4.95 < | :10   | 1.20 | 622 | 10  | 0.05   | <1          | 1510 | <2  | <5 <20  | 80  | <0.01  | <10 | 162 | <10 1 | 10 | 58  |
| 20    | 67127 | 0.4  | 1.48 | 5          | 100 <         | 5 0.93 | <1  | 20 | 28  | 1897 | 4.66 < | :10   | 1.16 | 458 | 17  | 0.05   | 3           | 1610 | <2  | <5 <20  | 61  | <0.01  | <10 | 142 | <10 1 | 11 | 52  |
| 21    | 67128 | 0.7  | 1.43 | 10         | 100 <         | 5 0.87 | <1  | 16 | 31  | 2940 | 4.42 < |       | 1.17 | 498 | 20  | 0.05   | 2           | 1500 | <2  | <5 <20  | 86  | <0.01  | <10 | 151 | <10 1 | 11 | 58  |
| 22    | 67129 | 1.3  | 1.49 | 10         | 105 <         | 5 0.93 | <1  | 14 | 31  | 6113 | 4.72 < | :10   | 1.30 | 509 | 10  | 0.06   | 3           | 1240 | <2  | <5 <20  | 71  | 0.01   | <10 | 197 | <10 1 | 10 | 59  |
| 23    | 67130 | 0.3  | 1.42 | 5          | 105 <         | 5 0.88 | <1  | 9  | 18  | 833  | 4.06 < | :10   | 1.17 | 509 | 12  | 0.04   | 1           | 1460 | <2  | <5 <20  | 80  | < 0.01 | <10 | 140 | <10 1 | 10 | 54  |
| 2.4   | 67167 | 0.9  | 0.92 | 10         | 125 <         | 5 1.29 | <1  | 10 | 29  | 2097 | 3.02 < | :10   | 0.54 | 585 | 7   | 0.04   | 3           | 880  | <2  | <5 <20  | 137 | 0.02   | <10 | 66  | <10   | 8  | 35  |
| 25    | 67168 | 0.8  | 0.92 | 20         | <b>1</b> 15 < | 5 1.33 | <1  | 10 | 29  | 1682 | 3.25 < | :10   | 0.54 | 667 | 14  | 0.04   | 3           | 830  | <2  | <5 <20  | 152 | <0.01  | <10 | 66  | <10   | 7  | 33  |

| Et #.     | Tag #          | Ag  | Al % | As  | Ba Bi  | Ca % | Cd | Co | Cr | Cu   | Fe % La  | Mg % | Mn  | Мо | Na %  | Ni | р    | Pb | Sb Sn  | Şr  | Ti %   | υ   | V   | W   | Υ. | Źn  |
|-----------|----------------|-----|------|-----|--------|------|----|----|----|------|----------|------|-----|----|-------|----|------|----|--------|-----|--------|-----|-----|-----|----|-----|
| 26        | 67169          | 8.0 | 0.90 | 70  | 75 <5  | 1.34 | <1 | 10 | 42 | 892  | 2.91 10  | 0.49 | 799 | 12 | 0.04  | 1  | 990  | <2 | <5 <20 | 112 | <0.01  | <10 | 43  | <10 | 12 | 34  |
| 27        | 67170          | 2.7 | 0.38 | 55  | 45 <5  | 0.95 | 1  | 8  | 44 | 1759 | 2.11 <10 | 0.06 | 333 | 60 | 0.02  | 2  | 960  | 34 | <5 <20 | 91  | < 0.01 | <10 | 11  | <10 | 7  | 126 |
| 28        | 67171          | 1.6 | 0.42 | 55  | 40 <5  | 0.44 | <1 | 6  | 46 | 975  | 2.53 <10 | 0.09 | 188 | 9  | 0.02  | 3  | 1000 | 8  | <5 <20 | 57  | <0.01  | <10 | 16  | <10 | 4  | 24  |
| 29        | 67172          | 0.9 | 0.71 | 105 | 45 <5  | 0.49 | <1 | 8  | 47 | 1149 | 2.90 <10 | 0.36 | 342 | 6  | 0.02  | 3  | 088  | 2  | <5 <20 | 53  | < 0.01 | <10 | 37  | <10 | 6  | 26  |
| 30        | 67173          | 1.0 |      | 105 | 45 <5  | 0.81 | <1 | 6  | 47 | 718  | 3.21 <10 | 0.37 | 468 | 5  | 0.03  | 2  | 880  | 6  | <5 <20 | 62  | <0.01  | <10 | 48  | <10 | 6  | 30  |
| 31        | 67174          | 1.2 | 0.47 | 45  | 40 <5  | 0.50 | <1 | 8  | 43 | 625  | 3.21 <10 | 0.15 | 236 | 5  | 0.03  | 2  | 1030 | 4  | <5 <20 | 56  | <0.01  | <10 | 29  | <10 | 7  | 20  |
| 32        | 67176          | 1,2 | 0.32 | 80  | 35 <5  | 0.70 | <1 | 9  | 45 | 502  | 3.26 <10 | 0.04 | 250 | 5  | 0.03  | 1  | 1000 | 8  | <5 <20 | 64  | <0.01  | <10 | 19  | <10 | 7  | 21  |
| 33        | 67177          | 1.8 | 0.67 | 60  | 60 <5  | 1.32 | <1 | 10 | 45 | 1017 | 3.10 10  | 0.35 | 597 | 7  | 0.03  | 2  | 980  | 8  | <5 <20 | 119 | <0.01  | <10 | 42  | <10 | 10 | 27  |
| 34        | 67178          | 0.6 | 0.74 | 45  | 75 <5  | 1.10 | <1 | 6  | 37 | 476  | 3.04 10  | 0.39 | 536 | 5  | 0.04  | 2  | 1090 | 4  | <5 <20 | 99  | <0.01  | <10 | 47  | <10 | 8  | 29  |
| 35        | 67050          | 0.0 | 2.58 | 5   | 80 <5  | 3.49 | <1 | 25 | 34 | 183  | 5.75 <10 | 2.38 | 769 | <1 | 0.03  | 14 | 1480 | <2 | 5 <20  | 108 | 0.09   | <10 | 194 | <10 | 10 | 61  |
| QC DATA   | :              |     |      |     |        |      |    |    |    |      |          |      |     |    |       |    |      |    |        |     |        |     |     |     |    |     |
| Resplit:  |                |     |      |     |        |      |    |    |    |      |          |      |     |    |       |    |      |    |        |     |        |     |     |     |    |     |
| 1         | 67001          | 4.6 | 0.31 | 25  | 40 <5  | 0.44 | 4  | 10 | 61 | 4515 | 3.19 <10 | 0.03 | 589 | 11 | <0.01 | 6  | 1200 | 50 | <5 <20 | 31  | <0.01  | <10 | 17  | <10 | 11 | 252 |
| Repeat:   |                |     |      |     |        |      |    |    |    |      |          |      |     |    |       |    |      |    |        |     |        |     |     |     |    |     |
| 1         | 67001          | 4.7 | 0.25 | 20  | 40 <5  | 0.40 | 4  | 9  | 59 | 4624 | 3.04 <10 | 0.02 | 518 | 10 | <0.01 | 4  | 1010 | 48 | <5 <20 | 28  | <0.01  | <10 | 14  | <10 | 9  | 259 |
| 10        | 67 <b>1</b> 17 | 1.1 | 0.81 | 25  | 65 <5  | 0.55 | <1 | 20 | 47 | 2208 | 4.53 <10 | 0.54 | 241 | 34 | 0.03  | 2  | 1150 | <2 | <5 <20 | 56  | <0.01  | <10 | 103 | <10 | 6  | 36  |
| 19        | 67126          | 0.5 | 1.72 | 15  | 125 <5 | 1.29 | <1 | 21 | 29 | 1661 | 5.05 <10 | 1.36 | 664 | 10 | 0.07  | 1  | 1610 | <2 | <5 <20 | 83  | <0.01  | <10 | 179 | <10 | 11 | 58  |
| Standard: |                |     |      |     |        |      |    |    |    |      |          |      |     |    |       |    |      |    |        |     |        |     |     |     |    |     |
| GEO'05    |                | 1.5 | 1.40 | 60  | 150 <5 | 1.23 | <1 | 19 | 58 | 86   | 3.51 <10 | 0.74 | 538 | <1 | 0.03  | 28 | 540  | 20 | <5 <20 | 54  | 0.11   | <10 | 69  | <10 | 9  | 75  |

ECO TECH LABORATORY LTD.

BC Certified Assayer

JJ/bs df/744J XLS/02



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

# CERTIFICATE OF ASSAY AS 2005-5086

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35 Sample type: Core/Rock/Pulp

Project #: 301 Shipment #: 2

Samples Submitted by: Allan Huard

|        |       | Au    | Au     |   |
|--------|-------|-------|--------|---|
| ET #.  | Tag # | (g/t) | (oz/t) |   |
| 1      | 67009 | 0.51  | 0.015  |   |
| 2      | 67010 | 0.50  | 0.015  |   |
| 2<br>3 | 67011 | 0.32  | 0.009  |   |
| 4      | 67012 | 0.43  | 0.013  |   |
| 5      | 67013 | 0.27  | 0.008  |   |
| 6      | 67014 | 0.32  | 0.009  |   |
| 6<br>7 | 67015 | 0.62  | 0.018  |   |
| 8      | 67016 | 1.01  | 0.029  |   |
| 9      | 67017 | 0.68  | 0.020  | • |
| 10     | 67018 | 0.68  | 0.020  |   |
| 11     | 67019 | 0.63  | 0.018  |   |
| 12     | 67020 | 0.82  | 0.024  |   |
| 13     | 67021 | 0.95  | 0.028  |   |
| 14     | 67022 | 1.95  | 0.057  |   |
| 15     | 67023 | 1.24  | 0.036  |   |
| 16     | 67024 | 0.68  | 0.020  |   |
| 17     | 67026 | 0.96  | 0.028  |   |
| 18     | 67027 | 0.71  | 0.021  |   |
| 19     | 67028 | 0.75  | 0.022  |   |
| 20     | 67029 | 9.28  | 0.271  | • |
| 21     | 67030 | 0.43  | 0.013  |   |
| 22     | 67031 | 0.40  | 0.012  |   |
| 23     | 67032 | 0.42  | 0.012  |   |
| 24     | 67033 | 0.43  | 0.013  |   |
| 25     | 67034 | 0.86  | 0.025  |   |

Jutte Jealouse B.C. Certified Assayer

|                    |       | Au    | Au     |                          |
|--------------------|-------|-------|--------|--------------------------|
| ET#.               | Tag # | (g/t) | (oz/t) |                          |
| 26                 | 67035 | 0,53  | 0.015  |                          |
| 27                 | 67036 | 0.93  | 0.027  |                          |
| 28                 | 67037 | 0.85  | 0.025  |                          |
| 29                 | 67038 | 0.87  | 0.025  |                          |
| 30                 | 67039 | 1,18  | 0.034  |                          |
| 31                 | 67040 | 0.50  | 0.015  |                          |
| 32                 | 67041 | 1.01  | 0.029  |                          |
| 33                 | 67400 | <0.03 | <0.001 |                          |
| 34                 | 67401 | 0.44  | 0.013  |                          |
| 35                 | 67402 | 0.06  | 0.002  |                          |
| QC DATA:           | r     |       |        |                          |
| Repeat:            |       |       |        |                          |
| 1                  | 67009 | 0.53  | 0.015  |                          |
| 8                  | 67016 | 1.09  | 0.032  |                          |
| 10                 | 67018 | 0.65  | 0.019  |                          |
| 13                 | 67021 | 0.98  | 0.029  |                          |
| 14                 | 67022 | 1.84  | 0.054  |                          |
| 15                 | 67023 | 1.24  | 0.036  |                          |
| 17                 | 67026 | 0.89  | 0.026  |                          |
| 19                 | 67028 | 0.63  | 0.018  |                          |
| . 20               | 67029 | 8.96  | 0.261  |                          |
| 30                 | 67039 | 1.22  | 0.036  |                          |
| 32                 | 67041 | 1.02  | 0.030  |                          |
| Resplit:           |       |       |        |                          |
| 1                  | 67009 | 0.56  | 0.016  |                          |
| Standard:          |       |       |        |                          |
| SH13               |       | 1.33  | 0.039  |                          |
| SN16               |       | 8.89  | 0.259  |                          |
|                    |       |       |        | EÇØ TECH LABORATORY LTD. |
| JJ/bs/ga           |       |       |        | Jutta Jealouse           |
| 33/55/ga<br>XLS/05 |       |       |        | B.C. Certified Assayer   |
| XE3/03             |       |       |        | B.O. Germined Assayon    |

### ICP CERTIFICATE OF ANALYSIS AS 2005-5086

ECO TECH LABORATORY LTD.

0041 Dallas Drive (AMLOOPS, B.C.

/2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

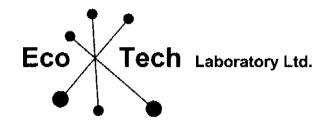
ATTENTION: Allan Huard

No. of samples received: 35 Sample type: Core/Rock/Pulp

Project #: 301 Shipment #: 2

Samples submitted by: Allan Huard

| Et #. | Tag#  | Ag   | Al % | As  | Ва  | Bi              | Ca % | Cď | Со | Cr  | Cu           | Fe % | La  | Mg %   | Mn   | Мо | Na %   | Ni | Р    | Pb  | Sb  | Sn  | Sr | Ti %   | U_  | ٧  | w   | Υ  | Zn         |
|-------|-------|------|------|-----|-----|-----------------|------|----|----|-----|--------------|------|-----|--------|------|----|--------|----|------|-----|-----|-----|----|--------|-----|----|-----|----|------------|
| 1     | 67009 | 19.0 | 0.31 | 225 | 40  |                 | 0.53 |    |    | 113 | 2746         | 4.11 | <10 | <0.01  | 397  | 8  | <0.01  | 7  | 790  | 622 | 125 | <20 | 34 | <0.01  | <10 | 13 | <10 | <1 | 1623       |
| 2     | 67010 | 28.5 | 0.24 | 50  |     | <5              |      | 16 | 9  | 127 | 1734         | 4.01 | <10 | <0.01  | 970  | 11 | < 0.01 | 4  | 730  | 844 | <5  | <20 | 56 | <0.01  | <10 | 9  | <10 | 3  | 1296       |
| 3     | 67011 | 13.2 | 0.38 | 40  |     | <5              |      | 14 | 32 | 57  | 3550         | 4.33 | <10 | 0.03   | 1208 | 13 | < 0.01 | 1  | 1230 | 622 | <5  | <20 | 76 | <0.01  | <10 | 12 | <10 | 8  | 974        |
| 4     | 67012 | 2.2  | 0.33 | 105 |     | <5              |      | <1 |    | 50  | 1002         | 4.14 | <10 | 0.01   | 377  | 15 | <0.01  | 3  | 1260 | 40  | <5  | <20 | 33 | <0.01  | <10 | 11 | <10 | 6  | 47         |
| 5     | 67013 | 5.0  | 0.40 | 50  | 35  | _               | 1.03 | 4  | 16 | 87  | 1431         | 3.74 | <10 | 0.04   | 1073 | 16 | 0.01   | 3  | 1220 | 152 | <5  | <20 | 64 | <0.01  | <10 | 15 | <10 | 8  | 316        |
|       | 0,0,0 | 0.0  |      | • • |     | _               |      |    | ·  |     |              |      |     |        |      |    |        |    |      |     |     |     |    |        |     |    |     |    |            |
| 6     | 67014 | 5.4  | 0.54 | 35  | 50  | <5              | 0.69 | 1  | 16 | 56  | 3102         | 3.58 | <10 | 0.18   | 769  | 7  | 0.03   | 2  | 1310 | 54  | <5  | <20 | 45 | <0.01  | <10 | 28 | <10 | 11 | 117        |
| 7     | 67015 | 4.5  | 0.70 | 20  | 45  | <5              | 0.75 | <1 | 21 | 60  | 3903         | 4.18 | <10 | 0.31   | 804  | 21 | 0.03   | 3  | 1190 | 30  | <5  | <20 | 50 | < 0.01 | <10 | 44 | <10 | 10 | 69         |
| 8     | 67016 | 2.2  | 0.96 | 70  | 50  | <5              | 0.67 | <1 | 12 | 49  | 1885         | 5.45 | <10 | 0.47   | 960  | 8  | 0.04   | 2  | 1150 | <2  | <5  | <20 | 46 | <0.01  | <10 | 75 | <10 | 6  | 57         |
| 9     | 67017 | 2.1  | 0.89 | 80  | 70  | <5              | 0.88 | <1 | 14 | 50  | 2040         | 3.82 | <10 | 0.41   | 1004 | 12 | 0.04   | 4  | 1280 | <2  | <5  | <20 | 74 | <0.01  | <10 | 48 | <10 | 11 | 52         |
| 10    | 67018 | 1.1  | 0.79 | 100 | 45  | <5              | 0.61 | <1 | 13 | 50  | 911          | 3.94 | <10 | 0.33   | 704  | 9  | 0.04   | 3  | 1260 | 4   | <5  | <20 | 29 | <0.01  | <10 | 40 | <10 | 7  | 62         |
|       | 0,0.0 |      |      |     |     |                 |      |    |    |     |              |      |     |        |      |    |        |    |      |     |     |     |    |        |     |    |     |    |            |
| 11    | 67019 | 7.2  | 0.42 | 45  | 45  | <5              | 0.83 | 2  | 15 | 57  | 3110         | 3.59 | <10 | 0.07   | 1144 | 14 | 0.01   | 4  | 1240 | 88  | <5  | <20 | 45 | <0.01  | <10 | 15 | <10 | 10 | 247        |
| 12    | 67020 | 2.9  | 0.46 | 50  | 45  | <5              | 1.45 | <1 | 8  | 69  | 3577         | 3.53 | <10 | 0.08   | 1349 | 11 | <0.01  | 3  | 1020 | 32  | <5  | <20 |    | <0.01  | -   | 16 | <10 | 8  | 40         |
| 13    | 67021 | 3.2  | 0.62 | 100 | 50  | <5              | 0.74 | <1 | 8  | 64  | 3144         | 3.42 | <10 | 0.13   | 594  | 15 | 0.01   | 2  | 1250 | 138 | <5  | <20 | 37 | <0.01  | <10 | 22 | <10 | 8  | <b>4</b> 6 |
| 14    | 67022 | 4.4  | 0.69 | 70  | 65  | <5              | 1,02 | 6  | 10 | 42  | 2756         | 3.86 | <10 | 0.25   | 809  | 5  | 0.02   | <1 | 1280 | 442 | <5  | <20 | 54 | <0.01  | <10 | 27 | <10 | 9  | 458        |
| 15    | 67023 | 4.2  | 0.84 | 50  | 50  | <5              | 1.04 | 17 | 8  | 57  | 3673         | 4.10 | <10 | 0.26   | 766  | 7  | 0.02   | 1  | 1160 | 272 | <5  | <20 | 59 | < 0.01 | <10 | 35 | <10 | 9  | 1239       |
| . •   | •     |      | -    |     |     |                 |      |    |    |     |              |      |     |        |      |    |        |    |      |     |     |     |    |        |     |    |     |    |            |
| 16    | 67024 | 1.1  | 1.09 | 15  | 125 | <5              | 1.51 | <1 | 8  | 53  | 2986         | 3.88 | <10 | 0.42   | 1144 | 4  | 0.03   | 2  | 1050 | 6   | <5  | <20 | 93 | <0.01  |     |    | <10 |    | 61         |
| 17    | 67026 | 0.9  | 0.84 | 10  | 160 | <5              | 1.15 | <1 | 6  | 53  | 2084         | 3.19 | <10 | 0.18   | 1222 | 3  | 0.02   | 2  | 820  | 2   | <5  | <20 | 66 |        |     |    | <10 | 6  | 49         |
| 18    | 67027 | 1.2  | 0.62 | 35  | 115 | <5              | 0.86 | <1 | 5  | 38  | 1807         | 2.38 | <10 | 0.12   | 1023 | 3  | <0.01  | 2  | 910  | 6   | <5  | <20 | 81 | <0.01  | <10 | 17 | <10 | 6  | 33         |
| 19    | 67028 | 1.8  | 0.65 | 40  | 80  | <5              | 1.43 | <1 | 5  | 40  | 2023         | 3.03 | <10 | 0.15   | 1280 | 2  | 0.02   | <1 | 820  | 8   | <5  | <20 | 82 | <0.01  | <10 | 25 | <10 | 5  | 37         |
| 20    | 67029 | 3.9  | 0.58 | 40  | 75  | <5              | 1.14 | <1 | 6  | 45  | 2579         | 3.34 | <10 | 0.13   | 1066 | 3  | 0.02   | 3  | 840  | 14  | <5  | <20 | 68 | <0.01  | <10 | 21 | <10 | 5  | 38         |
|       |       |      |      |     |     |                 |      |    |    |     |              |      |     |        |      |    |        |    |      |     |     |     |    |        |     |    |     |    |            |
| 21    | 67030 | 2.8  | 0.36 | 20  | 45  | <5              | 0.93 | <1 | 7  | 70  | 2349         | 2.75 | <10 | 0.02   | 591  | 11 | <0.01  | 4  | 750  | 10  | <5  | <20 |    | <0.01  |     |    | <10 |    | 19         |
| 22    | 67031 | 1.5  | 0.38 | <5  | 50  | <5              | 1.48 | <1 | 7  | 59  | 2165         | 3.02 | <10 | 0.09   | 978  | 3  | <0.01  | 3  | 670  | 8   | <5  | <20 |    | <0.01  |     |    | <10 | 4  | 29         |
| 23    | 67032 | 2.2  | 0.34 | 20  | 40  | <5              | 1.09 | <1 | 5  | 62  | 2326         | 3.17 | <10 | 0.02   | 619  | 6  | <0.01  | 1  | 720  | 8   | -   | <20 |    | <0.01  |     |    | <10 | 3  | 16         |
| 24    | 67033 | 3.8  | 0.25 | 30  | 50  | <5              | 0.81 | <1 | 5  | 62  | 3981         | 3.05 | <10 | < 0.01 | 422  | 3  | < 0.01 | 2  | 590  | 16  | <5  | <20 |    | <0.01  |     |    | <10 |    | 47         |
| 25    | 67034 | 4.5  | 0.24 | 40  | 35  | <sup>'</sup> <5 | 0.47 | <1 | 10 | 82  | <b>446</b> 9 | 3.75 | <10 | <0.01  | 212  | 10 | <0.01  | 4  | 480  | 16  | <5  | <20 | 29 | <0.01  | <10 | 14 | <10 | <1 | 47         |
|       |       |      |      |     |     |                 |      |    |    |     |              |      |     |        |      |    |        |    |      |     |     |     |    |        |     |    |     |    |            |


JJ/bs/ga df/744J

XLS/02

| Et #.              | Tag #     | Ag          | Al % | As  | Ва  | Bi            | Ca % | Cd | Со | Cr  | Cu   | Fe % | La  | Mg %   | Mn   | Мо  | Na %   | Ni  | P    | Pb  | Sb            | Sn  | Sr | Ti %   | U   | ٧   | W   | Y  | Zn   |
|--------------------|-----------|-------------|------|-----|-----|---------------|------|----|----|-----|------|------|-----|--------|------|-----|--------|-----|------|-----|---------------|-----|----|--------|-----|-----|-----|----|------|
| 26                 | 67035     | 3.6         | 0.37 | 105 | 30  | <5            | 0.29 | 1  | 6  | 127 | 1908 | 3.77 | <10 | <0.01  | 120  | 4   | <0.01  | 4   | 660  | 90  | <5            | <20 |    | <0.01  | <10 | •   | <10 |    | 172  |
| 27                 | 67036     | 5.0         | 0.25 | 75  | 30  | <5            | 0.30 | 4  | 8  | 92  | 3241 | 4.09 | <10 | < 0.01 | 134  | 7   | <0.01  | 4   | 520  | 308 | -             | <20 |    | <0.01  |     | . – | <10 |    | 612  |
| 28                 | 67037     | 9.5         | 0.27 | 90  | 35  | <5            | 0.74 | 2  | 7  | 68  | 4724 | 3.75 | <10 | <0.01  | 398  | 7   | <0.01  | 2   | 620  | 234 |               | <20 | 40 | < 0.01 |     |     | <10 |    | 163  |
| 29                 | 67038     | 6.9         | 0.39 | 250 | 35  | <5            | 0.93 | 3  | 12 | 73  | 968  | 4.59 | <10 | 0.02   | 743  | 8   | <0.01  | 3   | 1270 | 184 |               | <20 |    | <0.01  |     |     | <10 | <1 | 438  |
| 30                 | 67039     | 2.4         | 0.46 | 415 | 40  | <5            | 1.36 | <1 | 16 | 51  | 471  | 4.18 | <10 | 0.11   | 1915 | 10  | <0.01  | 2   | 1680 | 54  | <5            | <20 | 65 | <0.01  | <10 | 18  | <10 | 7  | 241  |
| 31                 | 67040     | 1.5         | 0.39 | 160 | 45  | <5            | 2.14 | <1 | 20 | 44  | 1290 | 4.14 | <10 |        | 1607 |     | <0.01  | 3   |      | 16  |               | <20 | 76 | <0.01  |     |     | <10 |    | 98   |
| 32                 | 67041     | 13.1        | 0.35 | 190 | 40  | <5            | 0.86 | <1 | 18 | 58  | 1002 | 5.24 | <10 | 0.01   | 319  | 15  |        | 5   | 1560 | 68  |               | <20 | 40 | <0.01  |     |     | <10 |    | 89   |
| 33                 | 67400     | 0.3         | 2.29 | 20  | 95  | <5            | 5.11 | <1 | 28 | 52  | 99   | 5.69 |     | 1.82   | 767  | <1  | 0.04   | 15  | 1640 | 6   | _             | <20 | 84 |        | <10 |     |     |    | 69   |
| 34                 | 67401     | 2.2         | 1.39 | 5   | 320 | <5            | 1.39 | <1 | 9  | 15  | 7061 | 3.59 |     |        | 432  | 2   | 0.15   | 11  | 2430 | <2  | _             | <20 | 72 | 0.07   |     | 179 |     |    | 60   |
| 35                 | 67402     | 0.4         | 0.70 | 80  | 135 | <5            | 0.22 | <1 | 59 | 222 | 447  | >10  | <10 | 0.12   | 419  | 112 | 0.05   | 399 | 50   | 104 | <5            | <20 | 11 | <0.01  | <10 | 22  | <10 | <1 | 473  |
| <u>QC DATA</u>     | <u>v:</u> |             |      |     |     |               |      |    |    |     |      |      |     |        |      |     |        |     |      |     |               |     |    |        |     |     |     |    |      |
| Resplit:<br>1      | 67009     | 20.3        | 0.30 | 210 | 35  | <5            | 0.55 | 21 | 10 | 145 | 2597 | 4.20 | <10 | <0.01  | 391  | 10  | <0.01  | 4   | 850  | 802 | 110           | <20 | 32 | <0.01  | <10 | 13  | <10 | <1 | 1716 |
| Repeat:            |           |             |      |     |     |               |      |    |    |     |      |      |     |        |      |     |        |     |      |     |               |     |    |        |     |     |     |    |      |
| 1                  | 67009     | 19.3        | 0.31 | 230 | 35  | <5            | 0.52 | 19 | 10 | 111 | 2690 | 4.04 | <10 | <0.01  | 386  | 10  | < 0.01 | 3   | 800  | 616 | 125           | <20 | 32 | <0.01  | <10 | 13  | <10 | <1 | 1599 |
| 10                 | 67018     | 1. <b>1</b> | 0.81 | 110 | 45  | <5            | 0.65 | <1 | 13 | 54  | 925  | 4.14 | <10 | 0.34   | 737  | 8   | 0.04   | 2   | 1330 | 4   | <5            | <20 | 30 | <0.01  | <10 | 41  | <10 | 7  | 64   |
| 19                 | 67028     | 1.8         | 0.65 | 35  | 95  | <5            | 1.46 | <1 | 5  | 40  | 2025 | 3.10 | <10 | 0.15   | 1304 | 2   | 0.02   | 3   | 840  | 10  | <5            | <20 | 81 | <0.01  | <10 | 25  | <10 | 5  | 38   |
| Standard<br>GEO'05 | l:        | 1.5         | 1.38 | 60  | 155 | <b>&lt;</b> 5 | 1.35 | <1 | 16 | 59  | 88   | 3.82 | <10 | 0.73   | 564  | <1  | 0.02   | 27  | 600  | 22  | <b>&lt;</b> 5 | <20 | 54 | 0.11   | <10 | 72  | <10 | 11 | 79   |

ECOTECH LABORATORY LTD.

BC Certified Assayer



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com

www.ecotechlab.com

## **CERTIFICATE OF ASSAY AS 2005-5087**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

9-Aug-05

Attention: Allan Huard

No. of samples received: 35 Sample type: Rock/Pulp

Project #: 301 Shipment #: 3

Samples Submitted by: Allan Huard

|       |                | Au    | Au     | Ag    | Ag     | Zn   |            |  |
|-------|----------------|-------|--------|-------|--------|------|------------|--|
| ET #. | Tag #          | (g/t) | (oz/t) | (g/t) | (oz/t) | (%)  |            |  |
| 1     | 67131          | 0.36  | 0.010  |       |        |      |            |  |
| 2     | 67132          | 0.28  | 0.008  |       |        |      |            |  |
| 3     | 67133          | 0.23  | 0.007  |       |        |      |            |  |
| 4     | 67134          | 0.33  | 0.010  |       |        |      |            |  |
| 5     | 67135          | 0.52  | 0.015  |       |        |      |            |  |
| 6     | 67136          | 0.26  | 0.008  |       |        |      |            |  |
| 7     | 67137          | 0.18  | 0.005  |       |        |      |            |  |
| 8     | 67138          | 0.23  | 0.007  |       |        |      |            |  |
| 9     | 67139          | 0.16  | 0.005  |       |        |      |            |  |
| 10    | 67140          | 0.15  | 0.004  |       |        |      |            |  |
| 11    | 671 <b>41</b>  | 0.19  | 0.006  |       |        |      |            |  |
| 12    | 671 <b>4</b> 2 | 0.12  | 0.003  |       |        |      |            |  |
| 13    | 67143          | 0.16  | 0.005  |       |        |      |            |  |
| 14    | 671 <b>44</b>  | 0.17  | 0.005  |       |        |      |            |  |
| 15    | 67145          | 0.57  | 0.017  | 58.0  | 1.691  |      |            |  |
| 16    | 6714 <b>6</b>  | 0.74  | 0.022  |       |        |      |            |  |
| 17    | 67147          | 0.38  | 0.011  |       |        |      |            |  |
| 18    | 67148          | 0.22  | 0.006  |       |        |      |            |  |
| 19    | 67149          | 0.32  | 0.009  |       |        |      |            |  |
| 20    | 67151          | 0.22  | 0.006  |       |        |      |            |  |
| 21    | 67152          | 0.92  | 0.027  |       |        |      |            |  |
| 22    | <b>6715</b> 3  | 1.26  | 0.037  | 65.1  | 1.899  | 1.36 |            |  |
| 23    | 67154          | 0.27  | 0.008  |       |        |      |            |  |
| 24    | 67155          | 0.58  | 0.017  |       |        |      |            |  |
| 25    | 67156          | 0.35  | 0.010  |       |        |      |            |  |
|       |                |       |        |       |        |      | <b>^</b> \ |  |

ERO TECH LABORATORY LTD.

B.C. Certified Asseye

|           | - "            | Au           | Au             | Ag    | Ag     | Zn<br>(9/) |          |
|-----------|----------------|--------------|----------------|-------|--------|------------|----------|
| ET #.     | Tag #          | (g/t)        | (oz/t)         | (g/t) | (oz/t) | (%)        | <u> </u> |
| 26        | 67157          | 0.49         | 0.014          |       |        |            |          |
| 27        | 67158          | 0.52         | 0.015          |       |        |            |          |
| 28        | 67159          | 0.36         | 0.010          |       |        |            |          |
| 29        | 67160<br>67161 | 0.72<br>0.20 | 0.021<br>0.006 |       |        |            |          |
| 30        | 67161          | 0.20<br>0.21 | 0.006          |       |        |            |          |
| 31        | 67162<br>67163 | 0.21<br>0.44 | 0.008          |       |        |            |          |
| 32        | 67163          | <0.03        | <0.013         |       |        |            |          |
| 33        | 67150          | 0.07         | 0.002          |       |        |            |          |
| 34        | 67403          |              |                |       |        |            |          |
| 35        | 67175          | 0.45         | 0.013          |       |        |            |          |
|           |                |              |                |       |        |            |          |
| 00 5474.  |                |              |                |       |        |            |          |
| QC DATA:  |                |              |                |       |        |            |          |
| Repeat:   | 07101          | 0.40         | 0.040          |       |        |            |          |
| 1_        | 67131          | 0.42         | 0.012          |       |        |            |          |
| 5         | 67135          | 0.55         | 0.016          |       |        |            |          |
| 10        | 67140          | 0.15         | 0.004          | =0.4  | 4.000  |            |          |
| 15        | 67145          |              |                | 56.1  | 1.636  |            |          |
| 16        | 67146          | 0.84         | 0.024          |       |        |            |          |
| 19        | 67149          | 0.33         | 0.010          |       |        |            |          |
| 22        | 67153          | 1.17         | 0.034          |       |        |            |          |
| 29        | 67160          | 0.78         | 0.023          |       |        |            |          |
| Resplit:  |                |              |                |       |        |            |          |
| 1         | 67131          | 0.39         | 0.011          |       |        |            |          |
| Standard: |                |              |                |       |        |            |          |
| PB106     |                |              |                | 59.3  | 1.73   | 0.84       |          |
| OX140     |                | 1.88         | 0.055          |       |        |            |          |
| SN16      |                | 8.89         | 0.259          |       |        |            |          |
|           |                |              |                |       |        |            |          |
|           |                |              |                |       |        |            |          |

JJ/bs/ga XLS/05 ECO TECH LABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

#### ICP CERTIFICATE OF ANALYSIS AS 2005-5087

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

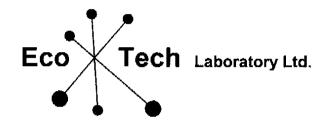
No. of samples received: 35 Sample type: Rock/Pulp Project #: 301 Shipment #: 3

Samples submitted by: Allan Huard

| Et #.    | Tag # | Ag   | Al % | As  | Ва  | Bi_ | Ca % | Cd  | Co | Cr | Cu   | Fe % | La 1 | Mg %             | Mn   | Мо  | Na %   | Ni | Р       | Pb             | Sb  | Sn  | Sr Ti%      | U   | V   | W   | Υ  | Zn       |
|----------|-------|------|------|-----|-----|-----|------|-----|----|----|------|------|------|------------------|------|-----|--------|----|---------|----------------|-----|-----|-------------|-----|-----|-----|----|----------|
| 1        | 67131 | 0.4  | 1.67 | 45  | 105 | <5  | 1.05 | <1  | 16 | 38 | 1988 | 5.43 | <10  | 1.08             | 606  | 14  | 0.05   | <1 | 1890    | <2             | <5  | <20 | 89 < 0.01   | <10 | 157 | <10 |    | 80       |
| 2        | 67132 | 0.3  | 1.47 | 60  | 70  | <5  | 1.15 | <1  | 14 | 26 | 1133 | 4.91 | <10  | 1.05             | 770  | 9   | 0.05   | 2  | 1830    | 4              | <5  | <20 | 95 < 0.01   | <10 | 119 | <10 |    | 76       |
| 3        | 67133 | 0.4  | 1.57 | 10  | 145 | <5  | 1.30 | <1  | 11 | 31 | 1970 | 4.30 | <10  | 1.22             | 834  | 12  | 0.05   | 3  | 1850    | <2             | <5  | <20 | 90 < 0.01   | <10 | 142 | <10 | -  | 72       |
| 4        | 67134 | 0.8  | 1.50 | 35  | 155 | <5  | 1.00 | <1  | 11 | 33 | 3423 | 4.28 | <10  | 1.24             | 812  | 8   | 0.06   | 2  | 1510    | <2             | 5   | <20 | 63 < 0.01   | <10 | 162 | <10 |    | 69       |
| 5        | 67135 | 0.7  | 1.47 | 140 | 110 | <5  | 1.04 | <1  | 18 | 30 | 2197 | 4.92 | <10  | 1,27             | 944  | 8   | 0.07   | 2  | 1680    | <2             | <5  | <20 | 64 0.01     | <10 | 155 | <10 | 12 | 68       |
|          |       |      |      |     |     |     |      |     |    |    |      |      |      |                  |      |     |        |    |         |                |     |     |             |     |     |     |    |          |
| 6        | 67136 | 1.6  | 1.51 | 15  | 110 | <5  | 1.06 | <1  | 26 | 35 | 3742 | 5.12 |      | 1.17             | 972  | 16  | 0.05   | _  | 1540    | <2             | <5  | <20 | 80 <0.01    | <10 | 156 | <10 |    | 68       |
| 7        | 67137 | 1.7  | 1.30 | 50  | 65  | <5  | 1.08 | <1  | 12 | 37 | 1425 | 4.63 |      |                  | 1118 | 34  | 0.06   |    | 1700    | 32             | <5  | <20 | 92 < 0.01   | <10 | 118 | <10 |    | 79       |
| 8        | 67138 | 0.9  | 1.22 | 70  | 55  | <5  | 1.45 | <1  | 15 | 39 | 1796 | 4.87 |      | 0.79             | 1265 | 13  | 0.03   | 3  |         | 10             | <5  | <20 | 107 < 0.01  | <10 | 92  | <10 |    | 74       |
| 9        | 67139 | 0.7  | 1.03 | 65  | 55  | <5  | 1.28 | <1  | 14 | 43 | 3034 | 4.02 | <10  | 0.68             | 1122 | 11  | 0.03   | 1  | 1490    | 14             | <5  | <20 | 110 < 0.01  | <10 | 79  | <10 |    | 70       |
| 10       | 67140 | 0.4  | 1.20 | 65  | 65  | <5  | 0.82 | <1  | 13 | 38 | 2321 | 4.26 | <10  | 0.82             | 962  | 34  | 0.04   | 4  | 1440    | 30             | <5  | <20 | 55 < 0.01   | <10 | 96  | <10 | 12 | 74       |
|          |       |      |      |     |     |     |      |     |    |    |      |      |      |                  |      |     |        |    |         |                | _   |     | WA          | .45 | 70  | .40 | -  | 000      |
| 11       | 67141 | 0.2  | 0.92 | 30  | 50  | <5  | 0.95 | 4   | 15 | 45 | 1737 | 4.58 |      | 0.63             |      | 27  | 0.04   |    | 1160    | 164            | <5  | <20 | 72 <0.01    | <10 | 70  |     | 7  | 332      |
| 12       | 67142 | 2.1  | 1.17 | 25  | 75  | <5  | 1.05 | 3   | 13 | 58 | 2218 | 4.06 |      | 0.7 <del>6</del> |      | 9   | 0.04   | 2  | 1470    | 130            | <5  | <20 | 71 <0.01    | <10 | 95  | <10 |    | 241      |
| 13       | 67143 | 4.0  | 1.31 | 15  | 75  | <5  | 1.36 | <1  | 18 | 47 | 2174 | 4.89 |      | 0.83             |      | 25  | 0.06   | 4  | 1630    | 30             | <5  | <20 | 77 0.01     | <10 | 121 | <10 |    | 79       |
| 14       | 67144 | 6.9  | 0.84 | 20  | 55  | <5  | 0.86 | <1  | 20 | 42 | 2624 | 4.49 | <10  | 0.44             | 1017 | 17  | 0.04   | 1  | 1340    | 46             | <5  | <20 | 65 < 0.01   | <10 | 71  | <10 |    | 69       |
| 15       | 67145 | >30  | 0.37 | 85  | 45  | <5  | 1.47 | 70  | 19 | 52 | 5034 | 5.51 | <10  | 0.06             | 930  | 16  | 0.01   | 1  | 990     | 1590           | 15  | <20 | 128 < 0.01  | <10 | 21  | 10  | 5  | 5811     |
|          |       |      |      |     |     |     |      |     |    |    |      |      |      |                  |      |     |        |    | 4400    |                |     | -00 | 407 +0.04   | -40 | 20  | -10 | 13 | 74       |
| 16       | 67146 | 4.0  | 0.42 | 150 | 40  | _   | 1.34 |     |    | 35 | 1912 |      |      | 0.27             | 911  | 10  |        | 1  |         | 82             | <5  | <20 | 127 < 0.01  | <10 | 30  | <10 |    | 74<br>46 |
| 17       | 67147 | 4.2  |      | 80  | 50  | -   | 1.47 | -   |    | 43 | 2706 | 3.30 |      | 0.21             | 893  | 8   | 0.02   |    |         | 18             | <5  | <20 | 128 < 0.01  | <10 | 34  | <10 |    | 131      |
| 18       | 67148 | 4.2  |      | 35  | 50  | _   | 1.39 | -   | 11 | 61 | 2078 | 3.57 |      | 0.27             | 1022 | 133 | 0.02   | -  | 1330    | 26             | <5  | <20 | 167 < 0.01  | <10 | 47  | <10 | 10 |          |
| 19       | 67149 | 4.3  | 0.59 | 40  | 40  |     | 1.71 | <1  |    | 57 | 1927 | 3.95 |      | 0.21             | 1276 | 25  | 0.02   | -  | 1720    | 28             | <5  | <20 | 179 <0.01   | <10 | 28  | <10 | 8  | 94<br>59 |
| 20       | 67151 | 4.7  | 0.87 | 20  | 60  | <5  | 1.20 | <1  | 13 | 54 | 1906 | 4.00 | 10   | 0.44             | 1260 | 26  | 0.03   | 3  | 1250    | 1 <del>6</del> | <5  | <20 | 90 <0.01    | <10 | 80  | <10 | 9  | 38       |
|          |       |      |      |     |     |     | 4 47 |     | 40 | 40 | 0000 | 4.00 | -10  | 0.24             | 1303 | 12  | 0.02   |    | 1180    | 228            | <5  | <20 | 93 < 0.01   | <10 | 36  | <10 | 7  | 1143     |
| 21       | 67152 | 18.6 | 0.61 | 65  | 45  |     | 1.47 |     | 12 | 43 | 2266 | 4.32 |      | 0.24             | 1636 |     | < 0.02 | 4  | 480     | 1280           | 350 | <20 | 131 < 0.01  | <10 | 18  | 30  |    | 10000    |
| 22       | 67153 | >30  |      | 100 | 40  | _   | 2.59 |     | 15 | 95 | 4309 | 3.57 |      | 0.09             | 995  |     | < 0.01 | 3  | 870     | 126            | <5  | <20 | 99 < 0.01   | <10 | 18  | 10  | 3  | 6062     |
| 23       | 67154 | 7.1  |      | 40  | 35  | -   | 1.60 | 70  | 11 | 62 | 1563 | 2.54 |      |                  | 1298 |     | <0.01  | 3  | 760     | 122            | <5  | <20 | 111 < 0.01  | <10 | 22  | <10 | 3  | 184      |
| 24       | 67155 | 5.9  |      | 35  | 30  | <5  | 2.00 | 2   | 24 | 52 | 2130 | 2.96 | <10  | 0.06             | 894  |     | 0.01   | 2  |         | 62             | <5  | <20 | 76 <0.01    | <10 | 22  | <10 | 12 | 127      |
| 25       | 67156 | 4.2  | 0.43 | 135 | 35  | <5  | 1.50 | <1  | 12 | 52 | 1793 | 3.82 | <10  | 0.06             | 894  | 12  | 0.01   | 2  | 1420    | QZ             | ~0  | ~20 | 70 <0.01    | ~10 | ZŁ  | -10 | 12 | 121      |
| 26       | 67157 | 2.9  | 0.68 | 85  | 40  | <5  | 1.12 | <1  | 8  | 57 | 931  | 3.93 | <10  | 0.26             | 969  | 18  | 0.02   | 4  | 1010    | 56             | <5  | <20 | 72 <0.01    | <10 | 42  | <10 | 7  | 130      |
| 27       | 67158 | 2.1  | 0.60 | 135 | 35  | <5  | 1.05 | <1  | 12 | 52 | 1408 | 3.75 | <10  | 0.30             | 937  | 13  | 0.02   | 3  | 980     | 58             | <5  | <20 | 64 < 0.01   | <10 | 35  | <10 | 6  | 131      |
|          | 67159 | 1.5  | 0.40 | 150 | 40  | <5  | 1.90 | <1  | 7  | 48 | 673  | 3.23 | <10  | 0.08             | 991  | 10  | 0.02   | -  |         | 30             | <5  | <20 | 109 < 0.01  | <10 | 17  | <10 | 10 | 45       |
| 28<br>20 | 67160 | 1.8  | 0.40 | 140 | 65  | <5  | 2.89 | <1  | 8  | 46 | 848  | 3.34 | <10  | 0.31             | 1634 | 6   | 0.03   | 3  |         | 12             | <5  | <20 | 111 < 0.01  | <10 | 34  | <10 | 9  | 56       |
| 29<br>30 | 67161 | 1.0  |      | 100 | 60  | <5  | 1.65 | <1  | 8  | 58 | 1159 | 3.21 |      | 0.25             | 888  | 7   |        | -  | 1170    | 12             | <5  | <20 | 94 < 0.01   | <10 | 36  | <10 | 9  | 52       |
| 30       | 97191 | 1.0  | 0.03 | 100 | 00  | ~5  | 1.00 | - 1 | Ç  | 50 | 1100 | J. 2 | -10  | 4.24             | 000  | ,   | V.VV   | •  | , , , , |                | -   |     | • . • . • . |     |     |     |    |          |

ECO TECH LABORATORY LTD.

### ICP CERTIFICATE OF ANALYSIS AS 2005-5087


Falconbridge Limited

| Et #.     | Tag #    | Ag  | Al % | As  | Ва  | Bi | Ca % | Cd | Co  | Cr  | Cu   | Fe %        | La_ | Mg % | Mn    | Mo  | Na <u>%</u> | Ni  | P    | Pb  | Sb  | Sn  | \$r 11 %  | <u> </u> | V   | - 44 | <u>T</u> |     |
|-----------|----------|-----|------|-----|-----|----|------|----|-----|-----|------|-------------|-----|------|-------|-----|-------------|-----|------|-----|-----|-----|-----------|----------|-----|------|----------|-----|
| 31        | 67162    | 0.7 | 0.51 | 115 | 50  | <5 | 1.51 | <1 | 10  | 52  | 960  | 3.15        | <10 | 0.10 | 619   | 6   | 0.04        | 2   | 1290 | 14  | <5  | <20 | 77 0.0    | 1 <10    | 28  | <10  | 8        | 29  |
| 32        | 67163    | 0.5 | 0.47 | 110 | 40  | <5 | 1.75 | <1 | 11  | 53  | 604  | 3.44        | <10 | 0.11 | 668   | 5   | 0.04        | 2   | 1200 | 20  | <5  | <20 | 94 < 0.0  | 1 <10    | 29  | <10  | 7        | 34  |
|           | 67150    | 0.1 | 2.27 | 20  | 105 | <5 | 4.33 | <1 | 30  | 61  | 89   | 5.95        | <10 | 1.78 | 761   | <1  | 0.05        | 15  | 1790 | 18  | <5  | <20 | 70 0.1    | 3 <10    | 223 | <10  | 19       | 85  |
| 33        |          |     |      | 100 | 160 | _  | 0.26 | 4  | 70  | 247 | 429  | >10         | <10 | 0.12 | 485   | 129 |             | 443 | 90   | 112 | <5  | <20 | 11 <0.0   | 1 <10    | 26  | <10  | <1       | 486 |
| 34        | 67403    | 0.2 | 0.81 | 100 |     | <5 |      |    |     |     |      |             |     |      |       |     | 0.13        | 10  | 1440 | 16  | <5  | <20 | 74 0.0    |          | 176 | <10  | 15       | 62  |
| 35        | 67175    | 2.1 | 1.42 | 5   | 290 | <5 | 1.42 | <1 | 12  | 14  | 7241 | 3.25        | <10 | 0.99 | 458   | 4   | 0.13        | 10  | 1440 | 10  | ~\$ | 120 | 74 0.0    | , 10     | 110 | .10  | 10       |     |
|           |          |     |      |     |     |    |      |    |     |     |      |             |     |      |       |     |             |     |      |     |     |     |           |          |     |      |          |     |
| QC DATA   | <u>:</u> |     |      |     |     |    |      |    |     |     |      |             |     |      |       |     |             |     |      |     |     |     |           |          |     |      |          |     |
| Resplit:  |          |     |      |     |     |    |      |    |     |     |      |             |     |      |       |     |             |     |      |     |     |     |           |          |     |      |          |     |
| 1         | 67131    | 0.4 | 1.62 | 40  | 90  | <5 | 0.96 | <1 | 14  | 26  | 1985 | 5.32        | <10 | 1.05 | 676   | 14  | 0.04        | <1  | 1600 | 6   | <5  | <20 | 64 <0.0   | 1 <10    | 119 | <10  | 10       | 72  |
| Repeat:   |          |     |      |     |     |    |      |    |     |     |      |             |     |      |       |     |             |     |      |     |     |     |           |          |     |      |          |     |
| 1         | 67131    | 0.4 | 1.67 | 40  | 95  | <5 | 0.98 | <1 | 14  | 32  | 1970 | 5.24        | <10 | 1.08 | 604   | 14  | 0.04        | 2   | 1620 | <2  | <5  | <20 | 74 <0.0   | 1 <10    | 130 | <10  | 11       | 70  |
| 10        | 67140    | 0.4 | 1.17 | 60  | 60  | <5 | 0.82 | <1 | 13  | 39  | 2325 | 4.26        | <10 | 0.80 | 962   | 35  | 0.04        | <1  | 1460 | 32  | <5  | <20 | 54 < 0.0  | 1 <10    | 95  | <10  | 12       | 74  |
| 19        | 67149    | 4.5 | 0.62 | 45  | 50  | <5 | 1.79 | 1  | 16  | 57  | 1880 | 3.95        | <10 | 0.21 | 1252  | 29  | 0.02        |     | 1730 | 44  | <5  | <20 | 176 < 0.0 | 1 <10    | 31  | <10  | 11       | 109 |
| 19        | 07 149   | 4.5 | 0.02 | 40  | 30  | ~5 | 1.75 | •  | . • | 3,  | 1000 | <b>U.30</b> | .,0 | V.E. | . 232 |     | 2.02        | •   |      |     |     |     |           |          |     |      |          |     |
| Standard: | :        |     |      |     |     |    |      |    |     |     |      |             |     |      |       |     |             |     |      |     |     |     |           |          |     |      |          |     |
| GEO'05    |          | 1.5 | 1.54 | 55  | 140 | <5 | 1.29 | <1 | 15  | 55  | 84   | 3.57        | <10 | 0.66 | 537   | <1  | 0.02        | 26  | 580  | 18  | 5   | <20 | 42 0.1    | 1 <10    | 75  | <10  | 10       | 75  |

ECO LECH LABORATORY LTD.
Julia Jealouse
BC Ceptified Assayer

XLS/02

JJ/bs/ga df/744J



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com

www.ecotechlab.com

## **CERTIFICATE OF ASSAY AS 2005-5088**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35 Sample type: Core/Rock/Pulp

Project #: 301 Shipment #: 4

Samples Submitted by: Allan Huard

|       | Au                                                                                                                                                                                                                   | Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tag # |                                                                                                                                                                                                                      | (oz/t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 67042 | 0.53                                                                                                                                                                                                                 | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67043 | 1.26                                                                                                                                                                                                                 | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67044 | 0.27                                                                                                                                                                                                                 | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67045 | 1.20                                                                                                                                                                                                                 | 0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67046 | 0.17                                                                                                                                                                                                                 | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67047 | 0.13                                                                                                                                                                                                                 | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67048 | 0.26                                                                                                                                                                                                                 | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67049 | 0.33                                                                                                                                                                                                                 | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67101 | 0.43                                                                                                                                                                                                                 | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67102 | 0.25                                                                                                                                                                                                                 | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67103 |                                                                                                                                                                                                                      | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67104 |                                                                                                                                                                                                                      | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                      | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67106 |                                                                                                                                                                                                                      | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67107 |                                                                                                                                                                                                                      | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67108 | 0.84                                                                                                                                                                                                                 | 0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67109 |                                                                                                                                                                                                                      | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                      | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67111 | 0.42                                                                                                                                                                                                                 | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                      | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                      | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                      | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                      | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                      | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67164 |                                                                                                                                                                                                                      | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | 67042<br>67043<br>67044<br>67045<br>67046<br>67047<br>67048<br>67049<br>67101<br>67102<br>67103<br>67104<br>67105<br>67106<br>67107<br>67108<br>67109<br>67110<br>67111<br>67112<br>67113<br>67114<br>67115<br>67116 | Tag #         (g/t)           67042         0.53           67043         1.26           67044         0.27           67045         1.20           67046         0.17           67047         0.13           67048         0.26           67049         0.33           67101         0.43           67102         0.25           67103         0.19           67104         0.18           67105         0.14           67106         0.34           67107         0.39           67108         0.84           67109         0.42           67110         0.47           67111         0.42           67112         0.41           67113         0.52           67114         0.53           67115         0.40           67116         0.21 |

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

|           |       | Au     | Au             |                          |
|-----------|-------|--------|----------------|--------------------------|
| ET #.     | Tag#  | (g/t)  | (oz/t)         |                          |
| 26        | 67165 | 0.07   | 0.002          |                          |
| 27        | 67166 | 0.17   | 0.005          |                          |
| 28        | 67179 | 0.24   | 0.007          |                          |
| 29        | 67180 | 0.27   | 0.008          |                          |
| 30        | 67181 | 0.47   | 0.014          |                          |
| 31        | 67182 | 0.19   | 0.006          |                          |
| 32        | 67183 | 0.21   | 0.006          |                          |
| 33        | 67455 | 0.43   | 0.013          |                          |
| 34        | 67467 | < 0.03 | <0.001         |                          |
| 35        | 67461 | 0.06   | 0.002          |                          |
| QC DATA:  |       |        |                |                          |
|           | •     |        |                |                          |
| Repeat:   |       | 0.50   | 0.046          |                          |
| 1         | 67042 | 0.56   | 0.016          |                          |
| 2         | 67043 | 1.11   | 0.032          |                          |
| 4         | 67045 | 1.16   | 0.034<br>0.007 |                          |
| 10        | 67102 | 0.25   | 0.007          |                          |
| 16        | 67108 | 0.81   | 0.024          |                          |
| 19        | 67111 | 0.44   | 0.013          |                          |
| Resplit:  |       |        |                |                          |
| 1         | 67042 | 0.53   | 0.015          |                          |
| ·         |       |        |                |                          |
| Standard: |       |        |                |                          |
| SH13      |       | 1.32   | 0.038          |                          |
|           |       |        |                |                          |
|           |       |        |                | ECO FECH LABORATORY LTD. |
|           |       |        |                | Jutta Jealouse           |
| JJ/ga     |       |        |                | B.C. Certified Assayer   |
| XLS/05    |       |        |                | B.C. Calified Assayor    |
|           |       |        |                |                          |
|           |       |        |                |                          |

#### ICP CERTIFICATE OF ANALYSIS AK 2005-5088

ECO TECH LABORATORY LTD.

10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Lavat, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35 Sample type: Core/Rock/Pulp

Project #: 301 Shipment #: 4

Samples submitted by: Allan Huard

| Et #. | Tag # | Ag  | AI % | As  | Ва  | Bi            | Ca % | Cd  | Co  | Cr  | Cu   | Fe % | La  | Mg %   | Ma         | Мо | Na %   | Ni | P    | Pb S  | b Sn   | Sr Ti%     | U   | ν  | W   | Υ  | Zn         |
|-------|-------|-----|------|-----|-----|---------------|------|-----|-----|-----|------|------|-----|--------|------------|----|--------|----|------|-------|--------|------------|-----|----|-----|----|------------|
| 1     | 67042 | 2.2 | 1.02 | 70  | 60  | <b>&lt;</b> 5 | 0.70 | <1  | 16  | 39  | 1333 | 3.65 | <10 | 0.56   | 642        | 13 | 0.02   | 3  | 1570 | 14 <  | 5 <20  | 40 < 0.01  | <10 |    |     | 8  | 74         |
| 2     | 67043 | 2.8 | 0.77 | 175 | 40  | <5            | 0.79 | <1  | 11  | 36  | 1343 | 3.78 | <10 | 0.34   | 452        | 16 | 0.02   | 3  | 1470 | 38 <  | 5 <20  | 40 < 0.01  | <10 |    | <10 | 5  | 86         |
| 3     | 67044 | 0.5 | 1.31 | 50  | 120 | <5            | 1.44 | <1  | 14  | 27  | 1161 | 3.95 | <10 | 0.78   | 908        | 6  | 0.03   | 3  | 1700 | 6 <   | 5 <20  | 106 < 0.01 | <10 | -  | <10 | 7  | 65         |
| 4     | 67045 | 0.4 | 1.20 | 135 | 50  | <5            | 1.13 | <1  | 11  | 29  | 367  | 4.20 | <10 | 0.64   | 686        | 12 | 0.02   | 4  | 1800 | 10 <  | 5 <20  | 71 <0.01   | <10 |    | <10 | 8  | 51         |
| 5     | 67046 | 0.2 | 1.79 | 15  | 240 | <5            | 1.39 | <1  | 11  | 25  | 376  | 4.49 | <10 | 1.08   | 747        | 16 | 0.04   | 3  | 1630 | 6 <   | 5 <20  | 97 0.01    | <10 | 98 | <10 | 10 | 66         |
|       |       |     |      |     | 470 |               | 4.45 |     | 4.4 | -00 | 700  | 4.06 | <10 | 0.95   | 562        | 15 | 0.04   | 2  | 1660 | 6 -   | 5 <20  | 86 0.02    | <10 | 88 | <10 | 13 | 56         |
| 6     | 67047 | 0.2 | 1.52 | 20  | 170 | <5<br>-c      | 1.42 | <1  | 11  | 22  | 736  | 4.06 | <10 | 0.99   | 483        | 11 | 0.04   | 2  | 1560 |       | 5 <20  | 43 0.01    | <10 |    | <10 | -  | 63         |
| 7     | 67048 | 0.4 | 1.54 | 80  | 105 | <5<br>        | 0.73 | <1  | 11  | 30  | 716  |      |     |        | 403<br>477 | 27 | 0.04   | 3  | 1520 |       | 5 <20  | 111 < 0.01 | <10 |    |     | 7  | 65         |
| 8     | 67049 | 0.7 | 1.27 | 40  | 50  | <5            | 1.02 | <1  | 13  | 38  | 1411 | 3.92 | <10 | 0.80   |            |    |        | _  | 1530 |       | 5 <20  | 36 < 0.01  | <10 |    | <10 | 8  | 69         |
| 9     | 67101 | 0.7 | 1.39 | 75  | 55  | <5            | 0.53 | <1  | 9   | 24  | 1179 | 4.03 | <10 | 0.98   | 437        | 4  | 0.03   | 2  |      |       |        | 33 < 0.01  | <10 |    | <10 | 8  | 64         |
| 10    | 67102 | 0.7 | 1.24 | 90  | 35  | <5            | 0.56 | <1  | 10  | 28  | 762  | 3.99 | <10 | 0.76   | 434        | 5  | 0.02   | 3  | 1570 | 6 <   | 5 <20  | 33 <0.01   | ×10 | 51 | ~10 | 0  | 04         |
| 11    | 67103 | 0.3 | 1.52 | 30  | 170 | <5            | 0.95 | <1  | 10  | 26  | 646  | 3.90 | <10 | 0.96   | 633        | 5  | 0.04   | 4  | 1530 | 6 <   | 5 <20  | 65 < 0.01  | <10 | 71 | <10 | 12 | 66         |
| 12    | 67104 | 0.7 | 1.42 | 75  | 110 | <5            | 0.76 | <1  | 12  | 26  | 1284 | 3.96 | <10 | 0.92   | 546        | 12 | 0.04   | 3  |      | <2 <  | 5 <20  | 39 0.01    | <10 | 73 | <10 | 10 | 61         |
| 13    | 67104 | 1.4 | 1.28 | 35  | 120 | <5            | 0.55 | <1  | 11  | 24  | 2228 | 3.70 | <10 | 0.82   | 458        | 5  | 0.04   | 3  | 1460 | 2 <   | 5 <20  | 26 0.02    | <10 | 68 | <10 | 10 | 57         |
|       |       |     | 1.26 | 135 | 70  | <5            | 0.52 | <1  | 14  | 28  | 763  | 4.26 | <10 | 0.82   | 494        | 7  | 0.04   | 3  | 1550 |       | 5 <20  | 25 0.02    | <10 | 73 | <10 | 8  | 58         |
| 14    | 67106 | 1.2 |      |     |     | <5            | 1.33 | <1  | 12  | 25  | 516  | 4.30 | <10 | 0.67   | 773        | 6  | 0.04   | 3  | 1580 |       | 5 <20  | 70 <0.01   | <10 | 69 | <10 | 6  | 54         |
| 15    | 67107 | 0.7 | 1.15 | 255 | 55  | <b>~</b> 5    | 1.33 | ~ 1 | 12  | 20  | 310  | 4.50 | 110 | 0.07   | 113        | •  | 0.04   | J  | 1000 | ~     | • 20   |            |     |    |     |    |            |
| 16    | 67108 | 0.9 | 1.18 | 130 | 50  | <5            | 1.06 | <1  | 13  | 29  | 619  | 3.88 | <10 | 0.65   | 815        | 7  | 0.03   | 3  | 1620 | 10 <  | 5 <20  | 55 < 0.01  | <10 | 62 | <10 | 8  | 56         |
| 17    | 67109 | 0.6 | 1.45 | 250 | 75  | <5            | 1.79 | <1  | 12  | 29  | 462  | 4.57 | <10 | 0.83   | 1167       | 25 | 0.04   | 4  | 1730 | 22 <  | 5 <20  | 94 0.03    | <10 | 82 | <10 | 9  | 89         |
| 18    | 67110 | 2.1 | 0.92 | 230 | 40  | <5            | 0.53 | <1  | 13  | 25  | 443  | 3.64 | <10 | 0.54   | 572        | 10 | 0.03   | 4  | 1370 | 46 <  | 5 <20  | 47 0.01    | <10 | 52 | <10 | 4  | 107        |
| 19    | 67111 | 2.6 | 1.11 | 305 | 50  | <5            | 0.95 | 1   | 12  | 31  | 807  | 4.25 | <10 | 0.69   | 878        | 8  | 0.05   | 3  | 1500 | 122 < | 5 <20  | 55 0.03    | <10 | 71 | <10 | 8  | 273        |
| 20    | 67112 | 0.8 | 1.44 | 120 | 115 | <5            | 1.57 | <1  | 9   | 21  | 1050 | 4.29 | <10 | 0.88   | 1568       | 4  | 0.04   | 3  | 1600 | 10 <  | 5 <20  | 81 0.03    | <10 | 86 | <10 | 6  | 78         |
| 20    | 01112 | 0.0 |      | 120 |     | •             |      | ·   | •   |     |      |      |     |        |            |    |        |    |      |       |        |            |     |    |     |    |            |
| 21    | 67113 | 0.9 | 1.33 | 90  | 55  | <5            | 1.68 | <1  | 14  | 33  | 1114 | 4.34 | <10 | 0.91   | 1419       | 8  | 0.03   | 3  | 1630 |       | 5 <20  | 97 <0.01   | <10 |    | <10 |    | 65         |
| 22    | 67114 | 0.9 | 1.19 | 100 | 45  | <5            | 1.59 | <1  | 12  | 30  | 890  | 4.54 | <10 | 0.79   | 1120       | 7  | 0.02   | 4  | 1640 | 8 <   | :5 <20 | 59 <0.01   | <10 |    | <10 |    | 57         |
| 23    | 67115 | 2.1 | 88.0 | 85  | 30  | <5            | 0.73 | <1  | 11  | 51  | 1141 | 4.12 | <10 | 0.46   | 479        | 12 | <0.01  | 3  | 1470 | 10 <  | <5 <20 | 35 < 0.01  | <10 |    | <10 |    | 42         |
| 24    | 67116 | 1.3 | 0.62 | 25  | 35  | <5            | 0.54 | <1  | 14  | 63  | 1659 | 3.55 | <10 | 0.30   | 190        | 19 | 0.02   | 4  | 1090 | 8 <   | <5 <20 | 39 < 0.01  | <10 |    |     | 7  | <b>2</b> 2 |
| 25    | 67164 | 0.4 | 0.94 | 40  | 110 | <5            | 1.28 | <1  | 11  | 44  | 943  | 2.93 | <10 | 0.48   | 675        | 10 | 0.05   | 4  | 960  | 8 <   | <5 <20 | 96 0.01    | <10 | 56 | <10 | 7  | 42         |
|       |       |     |      |     |     |               |      |     |     |     |      |      |     |        |            |    |        |    |      |       |        |            |     |    |     |    | 40         |
| 26    | 67165 | 0.2 | 0.96 | 50  | 150 | <5            | 1.23 | <1  | 5   | 32  | 506  | 2.86 | <10 | 0.50   | 641        | 4  | 0.04   | 2  | 990  |       | <5 <20 | 106 0.01   | <10 |    | <10 | 7  | 40         |
| 27    | 67166 | 0.4 | 0.93 | 55  | 115 | <5            | 1.21 | <1  | 6   | 35  | 702  | 2.81 | <10 | 0.46   | 616        | 6  | 0.04   | 4  | 980  |       | <5 <20 | 110 0.02   | <10 | -  | <10 | 8  | 37         |
| 28    | 67179 | 1.9 | 0.37 | 60  | 30  | <5            | 0.03 | <1  | 29  | 80  | 871  | 5.27 | <10 | < 0.01 | 16         | 18 | <0.01  | 19 | 250  |       | <5 <20 | 13 < 0.01  | <10 |    | <10 |    | 11         |
| 29    | 67180 | 0.9 | 0.36 | 50  | 35  | <5            | 0.13 | <1  | 16  | 62  | 600  | 5.20 | <10 | <0.01  | 14         | 6  | < 0.01 | 20 | 580  |       | <5 <20 | 9 < 0.01   | <10 |    | <10 | 4  | 17         |
| 30    | 67181 | 8.2 | 0.36 | 175 | 35  | <5            | 0.11 | <1  | 27  | 113 | 2146 | 4.93 | <10 | <0.01  | 20         | 20 | <0.01  | 20 | 650  | 144 2 | 20 <20 | 18 < 0.01  | <10 | 35 | <10 | 2  | 109        |
|       |       |     |      |     |     |               |      |     |     |     |      |      |     |        |            |    |        |    |      |       |        |            |     |    |     |    |            |

8-Aug-05

Tag#

Et #.

#### ECO TECH LABORATORY LTD.

Ag Al%

As

#### ICP CERTIFICATE OF ANALYSIS AK 2005-5088

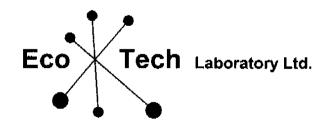
La Mg %

Mn

Mo Na% Ni

Ba Bi Ca % Cd Co Cr Cu Fe %

#### Falconbridge Limited


Sr Ti%

Pb Sb Sn

| 31       | 67182 | 1.8  | 0.27 | 55  | 35  | <5 | 0.11 | 2  | 18 | 136 | 1162 | 3.12 | <10 | 0.01  | 22  | 8   | < 0.01 | 16  | 580  | 142 | <5 <20 | 11 <0. | .01  | <10 | 28 <10  | 5  | 200 |
|----------|-------|------|------|-----|-----|----|------|----|----|-----|------|------|-----|-------|-----|-----|--------|-----|------|-----|--------|--------|------|-----|---------|----|-----|
| 32       | 67183 | 1.8  | 0.30 | 40  | 40  | <5 | 0.07 | <1 | 14 | 118 | 761  | 3.87 | <10 | <0.01 | 18  | 17  | <0.01  | 21  | 390  | 68  | <5 <20 | 8 <0   | .01  | <10 | 29 <10  | <1 | 109 |
| 33       | 67455 | 2.0  | 1.45 | <5  | 325 | <5 | 1.37 | <1 | 12 | 23  | 7301 | 3.49 | 10  | 1.12  | 476 | 2   | 0.15   | 18  | 2450 | 22  | <5 <20 | 77 0.  | .06  | <10 | 186 <10 | 15 | 54  |
| 34       | 67467 | <0.2 | 1.85 | 10  | 70  | <5 | 3.96 | <1 | 19 | 49  | 64   | 3.83 | <10 | 1.26  | 532 | <1  | 0.04   | 12  | 1220 | 6   | 5 <20  | 84 0.  | .14  | <10 | 169 <10 | 12 | 46  |
| 35       | 67461 | 0.2  | 08.0 | 80  | 130 | <5 | 0.22 | <1 | 59 | 241 | 442  | >10  | <10 | 0.13  | 423 | 110 | 0.05   | 401 | 90   | 100 | <5 <20 | 11 <0  | .01  | <10 | 23 <10  | <1 | 393 |
| QC DATA  | i     |      |      |     |     |    |      |    |    |     |      |      |     |       |     |     |        |     |      |     |        |        |      |     |         |    |     |
| Resplit: |       |      |      |     |     |    |      |    |    |     |      |      |     |       |     |     |        |     |      |     |        |        |      |     |         | _  | 7.4 |
| 1        | 67042 | 2.2  | 1.08 | 85  | 50  | <5 | 0.76 | <1 | 17 | 42  | 1246 | 3.83 | <10 | 0.56  | 687 | 13  | 0.02   | 4   | 1620 | 18  | <5 <20 | 44 <0  | 0.01 | <10 | 56 <10  | 8  | 71  |
| Repeat:  |       |      |      |     |     |    |      |    |    |     |      |      |     |       |     |     |        |     |      |     |        |        |      |     |         | _  |     |
| 1        | 67042 | 2.3  | 1.12 | 75  | 55  | <5 | 0.71 | <1 | 16 | 41  | 1376 | 3.73 | <10 | 0.59  | 657 | 14  | 0.03   | 3   | 1580 |     | <5 <20 | 41 <0  |      | <10 | 57 <10  | 7  | 74  |
| 10       | 67102 | 0.7  | 1.30 | 95  | 40  | <5 | 0.57 | <1 | 10 | 29  | 752  | 4.08 | <10 | 0.77  | 441 | 4   | 0.02   | 3   | 1620 | 6   | <5 <20 | 35 <0  | 0.01 | <10 | 59 <10  | 8  | 66  |
| 19       | 67111 | 2.6  | 1.12 | 330 | 50  | <5 | 0.97 | 1  | 12 | 33  | 797  | 4.38 | <10 | 0.67  | 892 | 8   | 0.04   | 4   | 1570 | 126 | <5 <20 | 53 0   | 0.03 | <10 | 72 <10  | 8  | 293 |
| Standard | •     |      |      |     |     |    |      |    |    |     |      |      |     |       |     |     |        |     |      |     |        |        |      |     |         |    |     |
| GEO'05   |       | 1.6  | 1.28 | 55  | 130 | <5 | 1.49 | <1 | 19 | 58  | 84   | 3.36 | <10 | 0.65  | 503 | <1  | 0.03   | 26  | 750  | 20  | <5 <20 | 53 0   | 0.09 | <10 | 73 <10  | 9  | 70  |

JJ/bs df/5088 XLS/02 ECO YEAR LABORATORY LTD.

Jura Jealouse
BC Cartified Assayer



10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

## **CERTIFICATE OF ASSAY AS 2005-5089**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35 Sample type: Core/Rock/Pulp

Project #: 301 Shipment #: 5

Samples Submitted by: Allan Huard

|               |       | Au    | Au     |  |
|---------------|-------|-------|--------|--|
| ET #.         | Tag # | (g/t) | (oz/t) |  |
| 1             | 67184 | 0.24  | 0.007  |  |
| 2             | 67185 | 0.24  | 0.007  |  |
| <b>2</b><br>3 | 67186 | 0.17  | 0.005  |  |
| 4             | 67187 | 0.14  | 0.004  |  |
|               | 67188 | 0.18  | 0.005  |  |
| 5<br>6        | 67189 | 0.21  | 0.006  |  |
| 7             | 67190 | 0.32  | 0.009  |  |
| 8             | 67191 | 0.32  | 0.009  |  |
| 9             | 67192 | 0.35  | 0.010  |  |
| 10            | 67193 | 0.44  | 0.013  |  |
| 11            | 67194 | 0.91  | 0.027  |  |
| 12            | 67195 | 1.22  | 0.036  |  |
| 13            | 67196 | 0.66  | 0.019  |  |
| 14            | 67197 | 0.44  | 0.013  |  |
| 15            | 67198 | 0.30  | 0.009  |  |
| 16            | 67199 | 0.33  | 0.010  |  |
| 17            | 67201 | 0.37  | 0.011  |  |
| 18            | 67202 | 0.27  | 0.008  |  |
| 19            | 67203 | 0.28  | 0.008  |  |
| 20            | 67204 | 0.48  | 0.014  |  |
| 21            | 67205 | 0.27  | 0.008  |  |
| 22            | 67206 | 1.69  | 0.049  |  |
| 23            | 67207 | 1.69  | 0.049  |  |
| 24            | 67208 | 0.29  | 0.008  |  |
| 25            | 67209 | 0.46  | 0.013  |  |

ECOTECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

|                 |       | Au    | Au     |                                                                 |
|-----------------|-------|-------|--------|-----------------------------------------------------------------|
| ET #.           | Tag # | (g/t) | (oz/t) |                                                                 |
| 26              | 67210 | 0.30  | 0.009  | ······································                          |
| 27              | 67211 | 0.16  | 0.005  |                                                                 |
| 28              | 67212 | 0.12  | 0.003  |                                                                 |
| 29              | 67213 | 0.22  | 0.006  |                                                                 |
| 30              | 67214 | 0.28  | 0.008  |                                                                 |
| 31              | 67215 | 0.17  | 0.005  |                                                                 |
| 32              | 67216 | 0.29  | 0.008  |                                                                 |
| 33              | 67456 | 0.46  | 0.013  |                                                                 |
| 34              | 67200 | 0.03  | <0.001 |                                                                 |
| 35              | 67462 | 0.07  | 0.002  |                                                                 |
| QC DATA:        | =     |       |        |                                                                 |
| Repeat:         |       |       |        |                                                                 |
| · 1             | 67184 | 0.24  | 0.007  |                                                                 |
| 10              | 67193 | 0.47  | 0.014  |                                                                 |
| 12              | 67195 | 1.18  | 0.034  |                                                                 |
| 13              | 67196 | 0.58  | 0.017  |                                                                 |
| 19              | 67203 | 0.30  | 0.009  |                                                                 |
| 22              | 67206 | 1.64  | 0.048  |                                                                 |
| 23              | 67207 | 1.64  | 0.048  |                                                                 |
| Resplit:        |       |       |        |                                                                 |
| 1               | 67184 | 0.23  | 0.007  |                                                                 |
| Standard:       |       | 1.34  | 0.039  |                                                                 |
| SH13            |       | 1.54  | 0.039  |                                                                 |
| JJ/ga<br>XLS/05 |       |       |        | ECO FECH LABORATORY LTD. Jutta Jealouse  B.C. Certified Assayer |
|                 |       |       |        |                                                                 |

ICP CERTIFICATE OF ANALYSIS AK 2005-5089

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

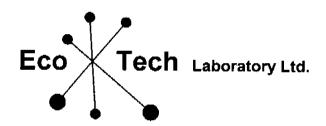
Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 5

Samples submitted by: Allan Huard


| £t #.      | Tag#  | Ag  | AI % | As  | Ва В  | Ca % | Cd              | Со | Cr         | Cu   | Fe % | La  | Mg %  | Mn  | Мо | Na %   | Ni | Р   | Pb Sb | Sn  | Sr | Ti %   | U   | ν  | w   | Υ  | Zn  |
|------------|-------|-----|------|-----|-------|------|-----------------|----|------------|------|------|-----|-------|-----|----|--------|----|-----|-------|-----|----|--------|-----|----|-----|----|-----|
| 1          | 67184 | 2.6 | 0.29 | 35  | 45 <5 | 0.08 | <1              | 17 | 119        | 1557 | 3.40 | <10 | 0.01  | 27  | 16 | <0.01  | 18 | 310 | 52 <5 | <20 | 8  | <0.01  | <10 | 16 | <10 | <1 | 57  |
| 2          | 67185 | 1.4 | 0.27 | 35  | 35 <5 | 0.04 | <1              | 11 | 105        | 1686 | 2.57 | <10 | <0.01 | 21  | 13 | < 0.01 | 15 | 210 | 24 <5 | <20 | 6  | < 0.01 | <10 | 23 | <10 | <1 | 15  |
| 3          | 67186 | 1.6 | 0.20 | 25  | 40 <5 | 0.02 | <1              | 18 | 102        | 1255 | 2.23 | <10 | <0.01 | 15  | 10 | <0.01  | 12 | 110 | 26 <5 | <20 | 10 | <0.01  | <10 | 14 | <10 | <1 | 23  |
| 4          | 67187 | 2.5 | 0.28 | 35  | 40 <5 | 0.02 | <1              | 11 | 113        | 1039 | 1.67 | <10 | 0.01  | 20  | 14 | < 0.01 | 10 | 200 | 38 <5 | <20 | 8  | <0.01  | <10 | 10 | <10 | <1 | 47  |
| 5          | 67188 | 5.5 | 0.23 | 55  | 45 <5 | 0.03 | <1              | 8  | 122        | 2410 | 1.85 | <10 | <0.01 | 20  | 29 | <0.01  | 14 | 230 | 58 10 | <20 | 20 | <0.01  | <10 | 10 | <10 | <1 | 126 |
| 6          | 67189 | 2.4 | 0.22 | 40  | 45 <5 | 0.06 | s <1            | 9  | 92         | 984  | 2.63 | <10 | <0.01 | 20  | 14 | <0.01  | 20 | 420 | 60 <5 | <20 | 15 | <0.01  | <10 | 18 | <10 | 2  | 88  |
| 7          | 67190 | 5.2 | 0.26 | 60  | 35 <5 | 0.08 | 1               | 27 | 87         | 2215 | 3.17 | <10 | <0.01 | 22  | 14 | <0.01  | 34 | 330 | 54 <5 | <20 | 17 | < 0.01 | <10 | 17 | <10 | 1  | 71  |
| 8          | 67191 | 1.0 | 0.27 | 65  | 35 <5 | 0.09 | <1              | 8  | 108        | 592  | 3.80 | <10 | <0.01 | 17  | 23 | <0.01  | 31 | 500 | 14 <5 | <20 | 15 | < 0.01 | <10 | 27 | <10 | 1  | 19  |
| 9          | 67192 | 2.2 | 0.26 | 100 | 45 <5 | 0.11 | <1              | 12 | 115        | 806  | 2.66 | <10 | <0.01 | 46  | 16 | <0.01  | 25 | 530 | 14 <5 | <20 | 40 | < 0.01 | <10 | 16 | <10 | 5  | 42  |
| 10         | 67193 | 6.3 | 0.28 | 130 | 45 <5 | 0.03 | <1              | 11 | 107        | 3208 | 2.96 | <10 | <0.01 | 16  | 17 | <0.01  | 38 | 390 | 10 <5 | <20 | 29 | <0.01  | <10 | 19 | <10 | 1  | 37  |
| 11         | 67194 | 5.2 | 0.32 | 140 | 30 <5 | 0.05 | 5 <1            | 23 | 113        | 2945 | 5.13 | <10 | <0.01 | 18  | 18 | <0.01  | 43 | 180 | 6 <5  | <20 | 7  | <0.01  | <10 | 17 | <10 | <1 | 53  |
| 12         | 67195 | 4.5 | 0.44 | 95  | 30 <5 | 0.11 | <1              | 32 | 101        | 3410 | 4.18 | <10 | 0.01  | 19  | 19 | <0.01  | 20 | 470 | 4 <5  | <20 | 11 | < 0.01 | <10 | 18 | <10 | 3  | 18  |
| 13         | 67196 | 1.9 | 0.38 | 80  | 30 <5 | 0.14 | <b>!</b> <1     | 32 | 80         | 2601 | 4.41 | <10 | <0.01 | 21  | 22 | <0.01  | 21 | 660 | 2 <5  | <20 | 8  | <0.01  | <10 | 14 | <10 | 4  | 35  |
| 14         | 67197 | 0.9 | 0.33 | 25  | 35 <5 | 0.11 | <1              | 11 | 88         | 1654 | 2.04 | <10 | 0.02  | 40  | 26 | < 0.01 | 11 | 310 | 4 <5  | <20 | 8  | < 0.01 | <10 | 9  | <10 | <1 | 13  |
| 15         | 67198 | 1.3 | 0.34 | 30  | 30 <5 | 0.11 | <1              | 5  | 74         | 1642 | 2.29 | <10 | 0.02  | 44  | 23 | <0.01  | 10 | 390 | 12 <5 | <20 | 7  | <0.01  | <10 | 9  | <10 | 1  | 10  |
| 16         | 67199 | 0.5 | 0.40 | 80  | 40 <5 | 0.09 | <del>)</del> <1 | 8  | 91         | 1165 | 2.20 | <10 | 0.02  | 28  | 32 | <0.01  | 10 | 350 | 14 <5 | <20 | 6  | <0.01  | <10 | 12 | <10 | <1 | 32  |
| 17         | 67201 | 1.7 | 0.27 | 90  | 40 <5 | 0.07 | <1              | 14 | 92         | 3194 | 2.19 | <10 | <0.01 | 21  | 41 | <0.01  | 13 | 190 | 12 <5 | <20 | 6  | <0.01  | <10 | 16 | <10 | <1 | 28  |
| 18         | 67202 | 1.2 | 0.40 | 55  | 40 <5 | 0.09 | <1              | 8  | 103        | 1790 | 2.50 | <10 | 0.02  | 25  | 32 | <0.01  | 11 | 320 | 12 <5 | <20 | 6  | <0.01  | <10 | 13 | <10 | 1  | 23  |
| 19         | 67203 | 1.0 | 0.27 | 70  | 35 <5 | 0.07 | <sup>7</sup> <1 | 6  | 93         | 1205 | 1.94 | <10 | 0.01  | 26  | 10 | <0.01  | 10 | 260 | 14 <5 | <20 | 6  | <0.01  | <10 | 11 | <10 | <1 | 39  |
| 20         | 67204 | 1.9 | 0.36 | 65  | 35 <5 | 0.14 | <1              | 19 | 74         | 3791 | 3.27 | 10  | 0.01  | 18  | 31 | <0.01  | 20 | 530 | 12 <5 | <20 | 8  | <0.01  | <10 | 13 | <10 | 5  | 40  |
| 21         | 67205 | 0.9 | 0.53 | 35  | 35 <5 | 0.22 | 2 <1            | 12 | 89         | 2547 | 3.65 | <10 | 0.04  | 41  | 19 | <0.01  | 19 | 470 | 4 <5  | <20 | 13 | <0.01  | <10 | 32 | <10 | 7  | 67  |
| 2 <b>2</b> | 67206 | 0.9 | 0.90 | 45  | 45 <5 | 0.22 | 2 1             | 33 | 64         | 3626 | 3.53 | <10 | 0.50  | 334 | 38 | <0.01  | 20 | 430 | 6 <5  | <20 | 15 | <0.01  |     |    | <10 | 6  | 92  |
| 23         | 67207 | 2.1 | 0.86 | 40  | 50 <5 | 0.37 | 7 3             | 19 | 54         | 9986 | 2.83 | <10 | 0.26  | 180 | 85 | <0.01  | 17 | 130 | 12 <5 | <20 | 14 | <0.01  |     |    | <10 | 9  | 184 |
| 24         | 67208 | 1.9 | 0.39 | 20  | 40 <5 | 0.25 | 5 1             | 18 | 37         | 7712 | 2.28 | <10 | 0.04  | 61  | 95 | <0.01  | 16 | 330 | <2 <5 | <20 | 13 | <0.01  |     |    | <10 | 6  | 70  |
| 25         | 67209 | 1.7 | 0.48 | 50  | 40 <5 | 0.27 | 7 <1            | 12 | <b>6</b> 2 | 3634 | 3.32 | <10 | 0.03  | 75  | 32 | <0.01  | 19 | 790 | 24 <5 | <20 | 11 | <0.01  | <10 | 22 | <10 | 9  | 115 |
| 26         | 67210 | 3.7 | 0.40 | 85  | 40 <5 | 0.18 | 3 <1            | 11 | 97         | 4137 | 2.34 | <10 | 0.02  | 61  | 53 | <0.01  | 21 | 630 | 28 10 | <20 | 9  | <0.01  |     |    | <10 | 4  | 108 |
| 27         | 67211 | 1.9 | 0.34 | 60  | 35 <5 | 0.08 | 3 <1            | 12 | 83         | 1953 | 2.71 | <10 | 0.02  | 25  | 61 | <0.01  | 16 | 260 | 42 <5 | <20 | 6  | <0.01  |     |    | <10 |    | 55  |
| 28         | 67212 | 1.2 | 0.27 | 40  | 35 <5 | 0.09 | 3 <1            | 7  | 75         | 389  | 3.06 | <10 | <0.01 | 21  | 81 | <0.01  | 15 | 370 | 56 <5 | <20 | 7  | <0.01  |     |    | <10 | 2  | 76  |
| 29         | 67213 | 1.7 | 0.34 | 50  | 35 <5 | 0.07 | 7 <1            | 9  | 132        | 948  | 4.15 | <10 | <0.01 |     |    | < 0.01 | 20 | 300 | 66 <5 | <20 | 6  | <0.01  |     |    | <10 |    | 104 |
| 30         | 67214 | 1.7 | 0.34 | 20  | 40 <5 | 0.1  | <b>  &lt;1</b>  | 7  | 118        | 1998 | 2.67 | <10 | 0.01  | 38  | 26 | <0.01  | 17 | 270 | 26 <5 | <20 | 12 | <0.01  | <10 | 24 | <10 | <1 | 29  |

#### ICP CERTIFICATE OF ANALYSIS AK 2005-5089

| Et #.    | Tag #    | Ag    | AI % | As  | Ва  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg %  | Mn  | Мо  | Na %  | Ni  | P    | Pb Sb | Sn  | Sr  | % iT   | U   | V_    | W   | Υ   | Zn  |
|----------|----------|-------|------|-----|-----|----|------|----|----|-----|------|------|-----|-------|-----|-----|-------|-----|------|-------|-----|-----|--------|-----|-------|-----|-----|-----|
| 31       | 67215    | 1.0   | 0.36 | 10  | 40  | <5 | 0.14 | <1 | 6  | 112 | 1297 | 2.81 | <10 | 0.02  | 42  | 49  | <0.01 | 16  | 270  | 26 <5 | <20 | 9   | <0.01  | <10 | 28 <  | 10  | <1  | 48  |
| 32       | 67216    | 0.7   | 0.29 | 10  | 30  | <5 | 0.14 | <1 | 10 | 91  | 473  | 3.35 | <10 | 0.02  | 41  | 39  | <0.01 | 18  | 520  | 20 <5 | <20 | 11  |        | <10 |       | 10  | 2   | 29  |
| 33       | 67456    | 2.0   | 1.42 | 5   | 295 | <5 | 1.44 | <1 | 17 | 24  | 7397 | 3.38 | 10  | 1.13  | 461 | 3   | 0.15  | 16  | 2400 | 22 <5 | <20 | 68  |        |     | 177 < |     | 13  | 55  |
| 34       | 67200    | < 0.2 | 2.04 | 15  | 70  | <5 | 4.13 | <1 | 22 | 37  | 82   | 5.52 | <10 | 1.89  | 754 | 2   | 0.02  | 14  | 1200 | 10 5  | <20 | 103 |        |     |       | :10 | 9   | 61  |
| 35       | 67462    | <0.2  | 0.72 | 85  | 125 | <5 | 0.22 | <1 | 59 | 224 | 442  | >10  | <10 | 0.11  | 420 | 110 | 0.04  | 400 | 90   | 96 <5 | <20 | 10  | <0.01  | <10 | 22 <  | 10  | <1  | 388 |
| QC DATA  | <u>:</u> |       |      |     |     |    |      |    |    |     |      |      |     |       |     |     |       |     |      |       |     |     |        |     |       |     |     |     |
| Resplit: | 67184    | 2.5   | 0.25 | 30  | 40  | <5 | 0.07 | <1 | 12 | 105 | 1420 | 2.84 | <10 | <0.01 | 19  | 18  | <0.01 | 17  | 360  | 44 <5 | <20 | 6   | <0.01  | <10 | 14 <  | :10 | <1  | 55  |
| Repeat:  |          |       |      |     |     |    |      |    |    |     |      |      |     |       |     |     |       |     |      |       |     | _   | -0.04  | -40 | 45    | -10 | -4  |     |
| 1        | 67184    | 2.5   | 0.27 | 35  | 40  | <5 | 0.07 | <1 | 16 | 112 | 1481 | 3.31 | <10 | 0.01  | 24  | 15  |       | 19  | 300  | 50 <5 | <20 | /   | <0.01  | <10 |       |     | <1  | 55  |
| 10       | 67193    | 6.3   | 0.28 | 130 | 45  | <5 | 0.03 | <1 | 11 | 110 | 3189 | 2.97 | <10 |       | 19  | 17  | <0.01 | 38  | 390  | 10 <5 | <20 | 29  | < 0.01 | <10 |       | (10 | - 1 | 38  |
| 19       | 67203    | 1.1   | 0.29 | 75  | 40  | <5 | 0.07 | <1 | 6  | 102 | 1258 | 2.13 | <10 | 0.01  | 29  | 11  | <0.01 | 11  | 280  | 16 <5 | <20 | 7   | <0.01  | <10 | 12 <  | :10 | <1  | 44  |
| Standard | :        |       |      |     |     |    |      |    |    |     |      |      |     |       |     |     | 2.00  |     | E 40 | 20 45 | -00 | 50  | 0.11   | -10 | 69 <  | :10 | 10  | 74  |
| GEO'05   |          | 1.5   | 1.16 | 55  | 130 | <5 | 1.16 | <1 | 19 | 60  | 83   | 3.30 | <10 | 0.60  | 495 | <1  | 0.02  | 28  | 540  | 22 <5 | <20 | 58  | 0.11   | <10 | 69 4  | -10 | 10  | 14  |

JJ/ga df/5089 XLS/02

ECO TECH LABORATORY LTD. Juita Jealouse BC Certified Assayer



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com

www.ecotechiab.com

## **CERTIFICATE OF ASSAY AK 2005-5090**

Falconbridge Limited
3296 Francis-Hughes Avenue
Laval, Quebec
H7L 5A7

Attention: Allan Huard

No. of samples received: 35 Sample type: Core/Rock/Pulp

Project #: 301 Shipment #: 9

Samples Submitted by: Allan Huard

| ET #.       | Tag # | Au<br>(g/t) | Au<br>(oz/t) | Ag<br>(g/t) | Ag<br>(oz/t) |          |
|-------------|-------|-------------|--------------|-------------|--------------|----------|
| 1           | 67317 | 0.40        | 0.012        | (5' -7      | ,            |          |
|             | 67318 | 0.46        | 0.013        |             |              |          |
| 2<br>3      | 67319 | 0.42        | 0.012        |             |              |          |
| 4           | 67320 | 0.60        | 0.017        |             |              |          |
| 5           | 67321 | 0.48        | 0.014        |             |              |          |
| 5<br>6<br>7 | 67322 | 0.47        | 0.014        |             |              |          |
| 7           | 67323 | 0.21        | 0.006        |             |              |          |
| 8           | 67324 | 0.26        | 0.008        |             |              |          |
| 8<br>9      | 67326 | 0.33        | 0.010        |             |              |          |
| 10          | 67327 | 0.31        | 0.009        |             |              |          |
| 11          | 67328 | 0.28        | 0.008        |             |              |          |
| 12          | 67329 | 0.28        | 0.008        |             |              |          |
| 13          | 67330 | 0.57        | 0.017        |             |              |          |
| 14          | 67331 | 0.23        | 0.007        |             |              |          |
| 15          | 67332 | 0.37        | 0.011        |             |              |          |
| 16          | 67333 | 0.29        | 0.008        |             |              |          |
| 17          | 67334 | 0.30        | 0.009        |             |              |          |
| 18          | 67335 | 0.25        | 0.007        |             | •            |          |
| 19          | 67336 | 0.28        | 0.008        |             |              |          |
| 20          | 67337 | 0.42        | 0.012        |             |              |          |
| 21          | 67338 | 0,31        | 0.009        |             |              |          |
| 22          | 67339 | 0,16        | 0.005        |             |              |          |
| 23          | 67340 | 0.21        | 0.006        |             |              |          |
| 24          | 67341 | 0.20        | 0.006        | 1           |              |          |
| 25          | 67342 | 0.13        | 0.004        |             | 10           | <u> </u> |

ECØ TECH LABORATORY LTD.

Jutta Jeallouse

B.C. Certified Assayer

|           |       | Au     | Au     | Ag    | Ag     |  |
|-----------|-------|--------|--------|-------|--------|--|
| ET #.     | Tag#  | (g/t)  | (oz/t) | (g/t) | (oz/t) |  |
| 26        | 67343 | 80.0   | 0.002  | •     |        |  |
| 27        | 67344 | 0.08   | 0.002  |       |        |  |
| 28        | 67345 | 0.06   | 0.002  |       |        |  |
| 29        | 67346 | 0.15   | 0.004  |       |        |  |
| 30        | 67347 | 0.44   | 0.013  | 31.5  | 0.919  |  |
| 31        | 67348 | 0.21   | 0.006  |       |        |  |
| 32        | 67349 | 0.12   | 0.003  |       |        |  |
| 33        | 67325 | 0.08   | 0.002  |       |        |  |
| 34        | 67350 | < 0.03 | <0.001 |       |        |  |
| 35        | 67459 | 0.44   | 0.013  |       |        |  |
| QC DATA:  |       |        |        |       |        |  |
| Repeat:   |       |        |        |       |        |  |
| 1         | 67317 | 0.37   | 0.011  |       |        |  |
| 4         | 67320 | 0.65   | 0.019  |       |        |  |
| 10        | 67327 | 0.32   | 0.009  |       |        |  |
| 13        | 67330 | 0.65   | 0.019  |       |        |  |
| 19        | 67336 | 0.28   | 0.008  |       |        |  |
| 21        | 67338 | 0.28   | 0.008  |       |        |  |
| Resplit:  |       |        |        |       |        |  |
| 1         | 67317 | 0.40   | 0.012  |       |        |  |
| Standard: |       |        |        |       |        |  |
| SH13      |       | 1.33   | 0.039  |       |        |  |
| Pb106     |       |        |        | 59.2  | 1.726  |  |
|           |       |        |        | =     | _      |  |

JJ/bs/ga XLS/05

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

ECC TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2005-5090

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 9

Samples submitted by: Allan Huard

|       |       |                                         |      |     |       |          |      |    |    |            | _    |      |     |        |     |           |        | _        |     |     | _   |            |     |                |     | ., | -u . |
|-------|-------|-----------------------------------------|------|-----|-------|----------|------|----|----|------------|------|------|-----|--------|-----|-----------|--------|----------|-----|-----|-----|------------|-----|----------------|-----|----|------|
| Et #. | Tag # | Ag                                      |      | As  | Ba    |          | Ca % | Cd | Co | Cr         |      | Fe % |     | Mg %   | Mn  | Mo Na %   | Ni     | <u> </u> | Pb  | Sb  | Sn  | Sr Ti%     | U   | V              | W   | Υ  | Zn   |
| 1     | 67317 | 0.5                                     |      | 10  | 125   |          | 1.12 | <1 | 4  |            | 3159 | 1.79 |     | 0.24   | 501 | 4 0.03    | 4      | 890      | 10  | <5  | <20 | 92 < 0.01  |     | 33             | <10 | 7  | 24   |
| 2     | 67318 | 0.5                                     | 0.58 | 15  | 110   | <5       | 1.12 | <1 | 5  | 61         | 2518 | 2.22 | <10 | 0.21   | 552 | 5 0.02    | 4      | 1090     | 14  | <5  | <20 | 88 < 0.01  |     | 35             | <10 | 7  | 27   |
| 3     | 67319 | 0.6                                     | 0.54 | 20  | 85    | <5       | 1.33 | <1 | 6  | 72         | 2368 | 2.20 | <10 | 0.14   | 781 | 4 0.02    | 5      |          | 10  | <5  | <20 | 99 < 0.01  |     | 36             | <10 | 7  | 41   |
| 4     | 67320 | 0.7                                     | 0.43 | 55  | 40    | <5       | 1.23 | <1 | 9  | 60         |      | 2.58 | <10 | 0.05   | 476 | 9 < 0.01  |        | 1180     | 12  | <5  | <20 | 108 < 0.01 |     | 22             | <10 | 8  | 18   |
| 5     | 67321 | 0.7                                     | 0.39 | 35  | 40    | <5       | 0.92 | <1 | 11 | 58         | 1563 | 2.38 | <10 | 0.03   | 359 | 11 < 0.01 | 3      | 1090     | 14  | <5  | <20 | 70 < 0.01  | <10 | 18             | <10 | 9  | 14   |
| 0     | 07000 | 0.7                                     | 0.07 | 65  | 25    |          | 0.70 | -4 | ć  | 73         | 2054 | 2.02 | -10 | 0.01   | 204 | 10 < 0.01 |        | 470      | 16  | <5  | <20 | 57 <0.01   | c10 | 13             | <10 | 4  | 7    |
| 6     | 67322 | 0.7                                     | 0.27 | 65  | 35    | <5<br>-5 | 0.76 | <1 | 6  | 73         |      | 2.02 | <10 |        | 281 |           | 4      | 450      | 14  | <5  | <20 | 48 < 0.01  |     | 17             | <10 | 4  | 10   |
| 7     | 67323 | 0.7                                     | 0.36 | 40  | 30    | <5       | 0.67 | <1 | 1  | 89         | 2816 | 2.34 | <10 | 0.02   | 342 | 7 <0.01   | 4      |          |     | <5  | <20 | 31 < 0.01  |     | 17             | <10 | 2  | 12   |
| 8     | 67324 | 1.0                                     | 0.32 | 70  | 25    | <5       | 0.43 | <1 | 8  | 85         | 3484 | 2.98 | <10 | 0.01   | 222 | 8 < 0.01  | 5      | 540      | 12  |     |     | 32 < 0.01  |     |                | <10 | 5  | 13   |
| 9     | 67326 | 0.7                                     | 0.34 | 205 | 30    | <5       | 0.48 | <1 | ,  | 75         | 1828 | 3.58 |     | <0.01  | 214 | 13 < 0.01 | 3      | 800      | 18  | <5  | <20 | +          |     | 1 <del>6</del> |     | -  | -    |
| 10    | 67327 | 1.5                                     | 0.30 | 170 | 30    | <5       | 0.35 | <1 | 10 | 80         | 4832 | 4.06 | <10 | <0.01  | 238 | 12 < 0.01 | 4      | 320      | 42  | <5  | <20 | 25 < 0.01  | <10 | 17             | <10 | <1 | 36   |
| 11    | 67328 | 1.1                                     | 0.39 | 70  | 30    | <5       | 0.43 | <1 | 10 | 78         | 2823 | 3.00 | <10 | 0.02   | 199 | 8 < 0.01  | 4      | 1080     | 22  | <5  | <20 | 29 <0.01   | <10 | 22             | <10 | 6  | 20   |
|       | 67329 | 1.3                                     | 0.29 | 110 | 30    | <5       | 0.43 | <1 | 10 | 70         |      | 3.36 | -   | <0.01  | 141 | 13 <0.01  | 4      | 570      | 28  | <5  | <20 | 30 < 0.01  | -   | 15             | <10 | 3  | 11   |
| 12    | 67330 | 1.2                                     | 0.23 | 65  | 25    | <5       | 0.43 | <1 | 10 |            | 2115 | 3.25 |     | <0.01  | 74  | 7 <0.01   | 5      | 500      | 56  | <5  | <20 | 16 < 0.01  |     | 18             | <10 | 3  | 21   |
| 13    |       |                                         | 0.35 |     |       |          | 0.64 |    | 10 |            | 1172 | 3.19 | <10 | 0.01   | 223 | 7 <0.01   | 5      | 880      | 120 | <5  | <20 | 43 < 0.01  |     | 18             | <10 | 6  | 24   |
| 14    | 67331 | 1.3                                     |      | 55  | 25    | <5       |      | <1 |    | 57         | 2769 | 3.19 | <10 | 0.01   | 269 | 10 < 0.01 | 5<br>5 | 880      | 80  | <5  | <20 | 51 < 0.01  |     | 22             | <10 | 7  | 90   |
| 15    | 67332 | 2.2                                     | 0.36 | 60  | 25    | <5       | 0.74 | <1 | 11 | 31         | 2709 | 3.33 | ×10 | 0.01   | 209 | 10 <0.01  | J      | 000      | 50  | -5  | ~20 | 31 <0.01   | ~10 | L. <b>L</b>    | ~10 | ,  | 30   |
| 16    | 67333 | 2.4                                     | 0.34 | 70  | 35    | <5       | 0.43 | 1  | 11 | 53         | 3159 | 3.09 | <10 | 0.01   | 114 | 13 < 0.01 | 5      | 1010     | 156 | <5  | <20 | 26 < 0.01  | <10 | 22             | <10 | 6  | 225  |
| 17    | 67334 | 4.3                                     | 0.36 | 45  | 35    | <5       | 0.66 | <1 | 19 | 45         | 5025 | 3.35 | <10 | 0.01   | 193 | 16 < 0.01 | 4      | 1160     | 42  | <5  | <20 | 38 < 0.01  | <10 | 18             | <10 | 7  | 61   |
| 18    | 67335 | 2.7                                     | 0.45 | 75  | 50    | <5       | 0.62 | 2  | 8  | 54         | 2643 | 2.19 | <10 | 0.03   | 183 | 10 < 0.01 | 4      | 960      | 128 | <5  | <20 | 38 < 0.01  | <10 | 20             | <10 | 7  | 265  |
| 19    | 67336 | 3.4                                     | 0.48 | 135 | 40    | <5       | 0.77 | 3  | 11 | 54         | 2727 | 2.94 | <10 | 0.03   | 218 | 14 < 0.01 | 5      | 1110     | 208 | <5  | <20 | 55 < 0.01  | <10 | 21             | <10 | 8  | 349  |
| 20    | 67337 | 3.4                                     | 0.52 | 75  | 35    | <5       | 0.64 | 6  | 12 | 68         | 2369 | 3.60 | <10 | 0.02   | 174 | 18 < 0.01 | 5      | 1170     | 652 | <5  | <20 | 35 < 0.01  | <10 | 29             | <10 | 7  | 631  |
|       | 0.00. | • • • • • • • • • • • • • • • • • • • • | 0.04 |     | • • • | _        |      |    |    |            |      |      |     |        |     |           |        |          |     |     |     |            |     |                |     |    |      |
| 21    | 67338 | 3.5                                     | 0.50 | 50  | 45    | <5       | 0.67 | 2  | 10 | 59         | 2202 | 3.13 | <10 | 0.02   | 181 | 7 < 0.01  | 5      | 1370     | 170 | <5  | <20 | 37 < 0.01  | <10 | 26             | <10 | 8  | 217  |
| 22    | 67339 | 2.0                                     | 0.41 | 100 | 35    | <5       | 0.58 | <1 | 8  | 56         | 1855 | 2.93 | 10  | 0.02   | 153 | 6 < 0.01  | 4      | 1180     | 54  | <5  | <20 | 33 < 0.01  | <10 | 26             | <10 | 7  | 119  |
| 23    | 67340 | 1.7                                     | 0.41 | 65  | 45    | <5       | 0.89 | 5  | 6  | 56         | 716  | 2.32 | <10 | 0.02   | 274 | 13 < 0.01 | 7      | 980      | 480 | <5  | <20 | 43 < 0.01  | <10 | 27             | <10 | 9  | 469  |
| 24    | 67341 | 2.3                                     | 0.49 | 45  | 45    | <5       | 0.74 | 2  | 8  | 50         | 1902 | 2.30 | <10 | 0.03   | 272 | 15 < 0.01 | 3      | 840      | 346 | <5  | <20 | 43 < 0.01  | <10 | 27             | <10 | 7  | 186  |
| 25    | 67342 | 2.6                                     | 0.53 | 30  | 40    | <5       | 0.36 | <1 | 7  | 55         | 4265 | 2.91 | <10 | 0.03   | 80  | 11 <0.01  | 5      | 950      | 20  | <5  | <20 | 21 < 0.01  | <10 | 23             | <10 | 5  | 48   |
|       |       |                                         |      |     |       |          |      |    |    |            |      |      |     |        |     |           |        |          |     |     |     |            |     |                |     |    |      |
| 26    | 67343 | 1.4                                     | 0.46 | 15  | 30    | <5       | 0.31 | <1 | 10 | <b>4</b> 7 | 3347 | 3.05 | <10 | 0.02   | 58  | 11 <0.01  |        | 1060     | 12  | <5  | <20 | 18 <0.01   |     | 22             | <10 | 6  | 10   |
| 27    | 67344 | 1.0                                     | 0.54 | 20  | 25    | <5       | 0.44 | <1 | 11 | 74         | 1958 | 3.40 | <10 | 0.02   | 106 | 15 < 0.01 | 5      | 1130     | 16  | <5  | <20 | 30 < 0.01  |     | 29             | <10 | 5  | 8    |
| 28    | 67345 | 0.7                                     | 0.38 | 25  | 25    | <5       | 0.46 | <1 | 11 | 76         | 1084 | 3.00 | <10 | <0.01  | 107 | 11 <0.01  | 4      | 930      | 20  | <5  | <20 | 21 <0.01   | <10 | 20             | <10 | 5  | 8    |
| 29    | 67346 | 13.2                                    | 0.46 | 155 | 25    | <5       | 0.22 | 4  | 14 | 71         | 2876 | 3.27 | <10 | 0.01   | 35  | 17 < 0.01 | 4      | 1000     | 246 | 370 | <20 | 13 <0.01   | <10 | 19             | <10 | 2  | 463  |
| 30    | 67347 | >30                                     | 0.40 | 305 | 20    | <5       | 0.13 | 10 | 12 | 90         | 2357 | 3.44 | <10 | < 0.01 | 25  | 11 <0.01  | 5      | 550      | 996 | 635 | <20 | 14 < 0.01  | <10 | 16             | <10 | <1 | 979  |
|       |       |                                         |      |     |       |          |      |    |    |            |      |      |     |        |     |           |        |          |     |     |     |            |     |                |     |    |      |

Et#. Tag#

ECO TECH LABORATORY LTD.

Ag Al %

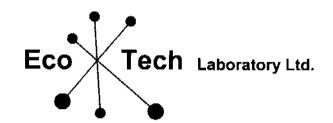
Ba

BiCa% Cd Co Cr Cu Fe% La Mg% M/n MoNa%

#### Falconbridge Limited

W Y

Sb Sn Sr Ti % U


Ni

P Pb

| 3!        | 67348    | 25.0 | 0.41 | 290 | 15  | <5 | 0.21 | 7  | 10 | 87  | 1770 | 3.69 | <10 | <0.01  | 25  | 12  | <0.01  | 4   | 950  | 626 | 555 | <20         | 17 | <0.01        | <10 | 18  | <10 | <1 | 800 |
|-----------|----------|------|------|-----|-----|----|------|----|----|-----|------|------|-----|--------|-----|-----|--------|-----|------|-----|-----|-------------|----|--------------|-----|-----|-----|----|-----|
| 32        | 67349    | 5.0  | 0.46 | 135 | 20  | <5 | 0.29 | <1 | 16 | 51  | 1025 | 2.74 | <10 | 0.02   | 30  |     | < 0.01 | 4   | 1430 | 38  | 265 | <20         | 16 | < 0.01       | <10 | 19  | <10 | 8  | 144 |
|           | 67325    | 0.2  | 0.80 | 95  | 135 | <5 | 0.24 | <1 | 65 | 244 | 442  | >10  | <10 | 0.10   | 458 | 120 | 0.04   | 430 | 100  | 112 | <5  | <20         |    | < 0.01       | <10 | 25  | <10 | <1 | 433 |
| 33        |          |      |      |     |     | _  |      |    |    |     | 99   | 5.37 | <10 | 1.54   | 672 | <1  | 0.04   | 16  | 1630 | 18  | <5  | <20         | 56 | 0.14         |     | 195 | <10 | 14 | 66  |
| 34        | 67350    | <0.2 | 1.91 | 20  | 95  | <5 | 2.99 | <1 | 30 | 49  |      |      |     |        |     | •   |        |     |      | 26  | <5  | <20         | 69 | 0.06         |     | 183 | <10 | 13 | 60  |
| 35        | 67459    | 2.0  | 1.35 | <5  | 315 | <5 | 1.40 | <1 | 12 | 24  | 7384 | 3.47 | <10 | 1.14   | 483 | 2   | 0.14   | 16  | 2610 | 20  | ~5  | ~20         | 05 | 0.00         | 10  | 103 | ×10 | 13 | 00  |
|           |          |      |      |     |     |    |      |    |    |     |      |      |     |        |     |     |        |     |      |     |     |             |    |              |     |     |     |    |     |
|           |          |      |      |     |     |    |      |    |    |     |      |      |     |        |     |     |        |     |      |     |     |             |    |              |     |     |     |    |     |
| QC DATA   | <u>:</u> |      |      |     |     |    |      |    |    |     |      |      |     |        |     |     |        |     |      |     |     |             |    |              |     |     |     |    |     |
| Resplit:  |          |      |      |     |     |    |      |    |    |     |      |      |     |        |     |     |        |     |      |     |     |             |    |              |     |     |     |    |     |
| 1         | 67317    | 0.6  | 0.54 | 10  | 125 | <5 | 1.04 | <1 | 3  | 74  | 3003 | 1.79 | <10 | 0.24   | 455 | 4   | 0.03   | 3   | 930  | 12  | <5  | <20         | 87 | <0.01        | <10 | 30  | <10 | 6  | 22  |
| Connet:   |          |      |      |     |     |    |      |    |    |     |      |      |     |        |     |     |        |     |      |     |     |             |    |              |     |     |     |    |     |
| Repeat:   | 67217    | 0.6  | 0.50 | 10  | 120 | <5 | 1.11 | <1 | А  | 74  | 3129 | 1.77 | <10 | 0.24   | 496 | 4   | 0.03   | 3   | 910  | 10  | <5  | <20         | 90 | <0.01        | <10 | 31  | <10 | 6  | 24  |
| 10        | 67317    | 0.6  | 0.59 |     |     | _  |      |    | 10 | 79  | 4788 | 4.03 |     | < 0.01 | 237 |     | <0.01  | 5   | 330  | 40  | <5  | <20         |    | <0.01        | _   | 16  | <10 | <1 | 36  |
| 10        | 67327    | 1.5  | 0.29 | 155 | 25  | <5 | 0.35 | <1 | 10 |     |      |      |     |        |     |     |        | 6   |      | 202 | <5  | <20         |    | <0.01        | <10 | 20  | <10 | 7  | 353 |
| 19        | 67336    | 3.5  | 0.43 | 135 | 40  | <5 | 0.75 | 3  | 11 | 52  | 2616 | 2.88 | <10 | 0.02   | 214 | 14  | <0.01  | 0   | 1110 | 202 | ~5  | <b>\</b> 20 | 55 | <b>\0.01</b> | ~10 | 20  | ~10 | '  | 503 |
|           |          |      |      |     |     |    |      |    |    |     |      |      |     |        |     |     |        |     |      |     |     |             |    |              |     |     |     |    |     |
| Standard: | •        |      |      |     |     |    |      |    |    |     |      |      |     |        |     |     |        |     |      |     |     |             |    |              |     |     |     |    |     |
| GEO'05    |          | 1.5  | 1.57 | 55  | 145 | <5 | 1.21 | <1 | 19 | 59  | 89   | 3.46 | <10 | 0.60   | 519 | <1  | 0.02   | 25  | 600  | 24  | <5  | <20         | 54 | 0.11         | <10 | 72  | <10 | 9  | 76  |

ECO FECTIABORATORY-LTD.
Julia Jealduse
BC Certified Assayer

JJ/bs/ga df/5090 XLS/02



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com

www.ccotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5091**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35 Sample type: Core/Rock/Pulp

Project #: 301 Shipment #: 10

Samples Submitted by: Allan Huard

|    |        |       | Au   | ı Aı    | ı Ag         | Ag           |             |      |
|----|--------|-------|------|---------|--------------|--------------|-------------|------|
| ĘŢ | Γ#.    | Tag # | (g/t | ) (oz/t | (g/t)        | (oz/t)       |             | <br> |
|    | 1      | 67351 | 0.19 | 9 0.006 | 3            |              |             |      |
|    | 2<br>3 | 67352 | 0.18 | 5 0.004 | ļ            |              |             |      |
|    | 3      | 67353 | 0.16 | 3 0.008 | 5            |              |             |      |
|    | 4      | 67354 | 0.2  | 1 0.006 | 6            |              |             |      |
|    | 5      | 67355 | 0.16 | 5 0.005 | 5            |              |             |      |
| 1  | 6      | 67356 | 0.42 | 2 0.012 | 9            |              |             |      |
|    | 7      | 67357 | 0.24 | 4 0.007 | •            |              |             |      |
|    | 8      | 67358 | 0.3  | 1 0.009 | )            |              |             |      |
|    | 9      | 67359 | 0.23 | 3 0.007 | <del>,</del> |              |             |      |
| 1  | 10     | 67360 | 0.22 | 2 0.006 | }            |              |             |      |
| 1  | 11     | 67361 | 0.2  | 7 0.008 | 3            |              |             |      |
| 1  | 12     | 67362 | 0.38 | 8 0.011 | 1            |              |             |      |
|    | 13     | 67363 | 0.17 | 7 0.005 | 5            |              |             |      |
|    | 14     | 67364 | 0.2  | 5 0.007 | 7            |              |             |      |
|    | 15     | 67365 | 0.17 |         | 5            |              |             |      |
|    | 16     | 67366 | 0.10 | 0.003   | 3            |              |             |      |
|    | 17     | 67367 | 0.10 | 0.003   | 3            |              |             |      |
| 1  | 18     | 67368 | 0.26 | 0.00€   | 5            |              |             |      |
|    | 19     | 67369 | 0.12 | 2 0.003 | 3            |              |             |      |
|    | 20     | 67370 | 0.40 | 0.012   | 2            |              |             |      |
| 2  | 21     | 67371 | 0.3  | 4 0.010 | 36.3         | 1.059        |             |      |
|    | 22     | 67372 | 0.53 | 2 0.015 | 34.2         | 0.997        |             |      |
|    | 23     | 67373 | 0.2  |         |              |              |             |      |
|    | 24     | 67374 | 0.23 |         |              |              | / \         |      |
|    | 25     | 67376 | 0.13 |         |              | / \ <u>.</u> | « /         |      |
|    |        |       |      |         |              | VI           | /\ <b>/</b> |      |

ECO TECH LABORATORY LTD.

P.C. Certified Assayer

| ET #.           | Tag #         | Au<br>(g/t) | Au<br>(oz/t) | Ag<br>(g/t) | Ag<br>(oz/t)                                |      |  |
|-----------------|---------------|-------------|--------------|-------------|---------------------------------------------|------|--|
| 26              | 67377         | 0.21        | 0.006        | (9/1)       | (02/1)                                      | <br> |  |
| 26<br>27        | 67378         | 0.14        | 0.004        |             |                                             |      |  |
| 28              | 67379         | 0.52        | 0.015        | 35.8        | 1.044                                       |      |  |
| 28<br>29        | 67380         | 0.40        | 0.012        | 44.9        | 1.309                                       |      |  |
| 29<br>30        | 67381         | 0.40        | 0.025        | 51.1        | 1.490                                       |      |  |
| 31              | 67382         | 0.46        | 0.013        | 35.2        | 1.027                                       |      |  |
| 32              | 67383         | 0.40        | 0.020        | 48.4        | 1.411                                       |      |  |
| 33              | <b>673</b> 75 | 0.39        | 0.011        | 70.7        | 1,-7 ( )                                    |      |  |
| 34              | 67469         | <0.03       | <0.001       |             |                                             |      |  |
| 35              | 67465         | 0.08        | 0.002        |             |                                             |      |  |
|                 | 07405         | 0.00        | 0.002        |             |                                             |      |  |
| QC DATA:        | <u>=</u>      |             |              |             |                                             |      |  |
| Repeat:         |               |             |              |             |                                             |      |  |
| 1               | 67351         | 0.17        | 0.005        |             |                                             |      |  |
| 10              | 67360         | 0.20        | 0.006        |             |                                             |      |  |
| 19              | 67369         | 0.12        | 0.003        |             |                                             |      |  |
| 21              | 67371         |             |              | 36.3        | 1.059                                       |      |  |
| 22              | 67372         | 0.53        | 0.015        |             |                                             |      |  |
| 28              | 67379         | 0.55        | 0.016        |             |                                             |      |  |
| 32              | 67383         | 0.65        | 0.019        |             |                                             |      |  |
| Resplit:        |               |             |              |             |                                             |      |  |
| 1               | 67351         | 0.18        | 0.005        |             |                                             |      |  |
| Standard:       |               |             |              |             |                                             |      |  |
| SH13            |               | 1.36        | 0.040        |             |                                             |      |  |
| SH13            |               | 1.34        | 0.039        |             |                                             |      |  |
| Pb106           |               |             |              | 59.3        | 1.729                                       |      |  |
| JJ/ga<br>XLS/05 |               |             |              | رل ً        | CO TECH LA<br>Atta Jealpuse<br>.C. Cernfied | LTD. |  |

#### ICP CERTIFICATE OF ANALYSIS AK 2005-5091

ECO TECH LABORATORY LTD. 10041 Dallas Drive

KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Lavat, Quebec H7L 5A7

ATTENTION: Allan Huard

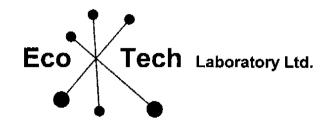
No. of samples received: 35 Sample type: Core/Rock/Pulp

Project #: 301 Shipment #: 10

Samples submitted by: Allan Huard

| Fundos (1) | pp amooc | ••••• |      |     |    |            |              |     |    |     |      |      |     |        |    |    |        |    |      |      |      |     |    |        |     |        |       |       |  |
|------------|----------|-------|------|-----|----|------------|--------------|-----|----|-----|------|------|-----|--------|----|----|--------|----|------|------|------|-----|----|--------|-----|--------|-------|-------|--|
| Et #.      | Tag #    | Ag    | AI % | As  | Ва | Bi         | C <u>a %</u> | Cd  | Co | Cr  | Cu   | Fe % | La  | Mg %   | Mn | Мо | Na %_  | Ni | Р    | Pb   | Sb   | Sn  | Sr |        | U   |        | Υ     | Zn    |  |
| 1          | 67351    | 8.1   | 0.51 | 265 | 30 | <5         | 0.30         | 2   | 26 | 52  | 2718 | 3.14 | <10 | 0.02   | 31 |    | <0.01  | _  | 1210 | 24   | 610  | <20 |    | <0.01  |     | 20 <10 |       | 261   |  |
| 2          | 67352    | 2.3   | 0.44 | 75  | 20 | <5         | 0.31         | <1  | 23 | 39  | 1019 | 3,19 | <10 | 0.02   | 27 | 38 | <0.01  | _  | 1380 | 16   | 105  | <20 |    | <0.01  |     | 17 <10 |       | 59    |  |
| 3          | 67353    | 1.8   | 0.39 | 70  | 30 | <5         | 0.30         | <1  | 20 | 45  | 934  | 4.34 | <10 | <0.01  | 26 | 17 | <0.01  | 4  | 1350 | 22   | 75   | <20 |    | <0.01  |     | 19 <10 |       | 64    |  |
| 4          | 67354    | 3.6   | 0.43 | 110 | 25 | <5         | 0.23         | <1  | 8  | 37  | 577  | 3.81 | <10 | 0.02   | 38 | 5  | <0.01  | 3  | 1000 | 26   | 170  | <20 |    | <0.01  |     | 17 <10 | 5     | 84    |  |
| 5          | 67355    | 4.4   | 0.56 | 130 | 25 | <5         | 0.29         | 1   | 14 | 47  | 665  | 4.53 | <10 | 0.02   | 37 | 12 | <0.01  | 3  | 1320 | 32   | 185  | <20 | 22 | <0.01  | <10 | 20 <10 | 7     | 96    |  |
| 6          | 67356    | 1.5   | 0.48 | 85  | 25 | <5         | 0.33         | <1  | 8  | 37  | 226  | 4.83 | <10 | 0.01   | 36 | 7  | <0.01  | 2  | 1550 | 20   | 40   | <20 | 26 | <0.01  | <10 | 19 <10 | 6     | 33    |  |
| 7          | 67357    | 3.4   | 0.49 | 105 | 25 | <5         | 0.26         | <1  | 11 | 57  | 495  | 4.74 | <10 | 0.01   | 45 | 10 | <0.01  | 4  | 1200 | 70   | 140  | <20 | 23 | <0.01  | <10 | 23 <10 | 4     | 79    |  |
| 8          | 67358    | 2.0   | 0.46 | 90  | 30 | < <b>5</b> | 0.29         | <1  | 29 | 39  | 1056 | 5.60 | <10 | <0.01  | 31 | 12 | < 0.01 | 3  | 1320 | 20   | 75   | <20 | 19 | <0.01  | <10 | 19 <10 | 4     | 47    |  |
| 9          | 67359    | 4.3   | 0.47 | 120 | 25 | <5         | 0.27         | 1   | 15 | 48  | 1026 | 3.84 | <10 | 0.02   | 27 | 9  | < 0.01 | 3  | 1200 | 18   | 160  | <20 | 23 | <0.01  | <10 |        | 7     | 106   |  |
| 10         | 67360    | 7.2   | 0.50 | 225 | 30 | <5         | 0.31         | 2   | 13 | 45  | 1480 | 4.55 | <10 | 0.02   | 41 | 8  | <0.01  | 3  | 1430 | 46   | 290  | <20 | 22 | <0.01  | <10 | 19 <10 | 7     | 195   |  |
| 11         | 67361    | 8.1   | 0.44 | 180 | 25 | <5         | 0.25         | 3   | 14 | 60  | 1554 | 4.12 | <10 | 0.02   | 64 | 7  | <0.01  | 3  | 1090 | 128  | 270  | <20 | 24 | <0.01  | <10 | 17 <10 | 4     | 311   |  |
| 12         | 67362    | 14.1  | 0.35 | 240 | 25 | <5         | 0.34         | 3   |    | 64  | 1160 | 4.82 | <10 | < 0.01 | 34 | 9  | < 0.01 | 2  | 1580 | 486  | 385  | <20 | 23 | < 0.01 | 20  | 16 <10 | 3     | 255   |  |
| 13         | 67363    | 13.4  | 0.43 | 355 | 25 | <5         | 0.26         | 2   |    | 48  | 2076 | 3.82 | <10 | 0.01   | 45 | 32 | < 0.01 | 2  | 1050 | 168  | 475  | <20 | 20 | <0.01  | <10 | 16 <10 | 4     | 244   |  |
| 14         | 67364    | 8.3   | 0.48 | 220 | 25 | <5         | 0.31         | 3   | 9  | 50  | 914  | 3.46 | <10 | 0.02   | 63 | 9  | < 0.01 | 3  | 1400 | 162  | 230  | <20 | 29 | <0.01  | <10 | 19 <10 | 4     | 235   |  |
| 15         | 67365    | 24.9  | 0.42 | 510 | 20 | <5         | 0.28         | 8   | 21 | 50  | 3685 | 3.68 | <10 | 0.01   | 36 | 7  | <0.01  | 2  | 1140 | 212  | 1050 | <20 | 24 | <0.01  | <10 | 18 <10 | 3     | 711   |  |
| 16         | 67366    | 7.0   | 0.41 | 185 | 25 | <5         | 0.30         | 2   | 18 | 45  | 2061 | 3.86 | <10 | 0.02   | 42 | 9  | <0.01  | 2  | 1270 | 78   | 325  | <20 | 22 | <0.01  | 20  | 18 <10 | 2     | 221   |  |
| 17         | 67367    | 4.1   | 0.48 | 90  | 30 | <5         | 0.31         | 8   | 11 | 50  | 740  | 3.89 | <10 | 0.02   | 45 | 5  | < 0.01 | 2  | 1470 | 424  | 125  | <20 | 18 | <0.01  | <10 | 17 <10 | 4     | 753   |  |
| 18         | 67368    | 12.8  | 0.46 | 230 | 30 | <5         | 0.32         | 8   | 10 | 54  | 2732 | 3.86 | <10 | 0.02   | 61 | 8  | < 0.01 | 4  | 1370 | 220  | 555  | <20 | 17 | <0.01  | <10 | 15 <10 | 3     | 490   |  |
| 19         | 67369    | 14.6  | 0.45 | 210 | 35 | <5         | 0.32         | 6   | 14 | 51  | 6263 | 4.04 | <10 | 0.02   | 86 | 10 | < 0.01 | 4  | 1200 | 70   | 525  | <20 | 26 | <0.01  | 10  | 16 <10 | 2     | 509   |  |
| 20         | 67370    | 11.4  | 0.33 | 115 | 30 | <5         | 0.18         | 4   | 17 | 60  | 2316 | 5.15 | <10 | <0.01  | 32 | 9  | <0.01  | 4  | 690  | 126  | 285  | <20 | 13 | <0.01  | <10 | 14 <10 | <1    | 375   |  |
| 21         | 67371    | >30   | 0.49 | 365 | 25 | <5         | 0.24         | 26  | 12 | 89  | 2538 | 4.20 | <10 | 0.01   | 28 | 19 | <0.01  | 5  | 950  | 916  | 1050 | <20 |    | <0.01  | 10  | 17 <10 | <1    | 2111  |  |
| 22         | 67372    | >30   | 0.34 | 480 | 25 | <5         | 0.25         | 8   | 12 | 94  | 3991 | 3.48 | <10 | < 0.01 | 39 | 35 | <0.01  | 2  | 960  | 510  | 1215 | <20 |    | <0.01  | . – | 12 <10 | 1     | 525   |  |
| 23         | 67373    | 18.9  | 0.40 | 310 | 25 | <5         | 0.20         | 7   | 20 | 74  | 2064 | 4.42 | <10 | 0.01   | 48 | 33 | <0.01  | 3  | 810  | 398  | 730  | <20 |    | <0.01  |     | 19 <10 |       | 447   |  |
| 24         | 67374    | 12.2  | 0.36 | 165 | 35 | <5         | 0.16         | 4   | 15 | 88  | 2036 | 3.73 | <10 | <0.01  | 65 | 14 | <0.01  | 3  | 640  | 138  | 325  | <20 |    | <0.01  |     |        | 1     | 354   |  |
| 25         | 67376    | 16.3  | 0.42 | 255 | 30 | <5         | 0.28         | 3   | 11 | 65  | 6419 | 3.85 | <10 | 0.02   | 61 | 7  | <0.01  | 4  | 1000 | 36   | 560  | <20 | 29 | <0.01  | <10 | 17 <10 | 3     | 369   |  |
| 26         | 67377    | 15.0  | 0.44 | 120 | 25 | <5         | 0.25         | 6   | 9  | 74  | 2472 | 4.08 | <10 | 0.02   | 68 | 13 | <0.01  | 3  | 1030 | 50   | 210  |     |    | <0.01  |     | 23 <10 |       | 409   |  |
| 27         | 67378    | 10.4  | 0.47 | 115 | 30 | <5         | 0.12         | 4   | 7  | 107 | 2208 | 3.14 | <10 | 0.01   | 26 | 8  | <0.01  | 3  | 420  | 424  | 180  | <20 |    | <0.01  |     | 17 <10 |       | 267   |  |
| 28         | 67379    | >30   | 0.35 | 170 | 25 | <5         | 0.13         | 24  | 17 | 103 | 2041 | 4.07 | <10 | <0.01  | 17 | 16 | <0.01  | 3  | 450  |      | 245  | <20 |    | < 0.01 |     | 15 <10 |       | 1774  |  |
| 29         | 67380    | >30   | 0.42 | 290 | 30 | <5         | 0.19         | 32  | 13 | 86  | 1852 | 3.59 | <10 | <0.01  | 19 | 10 |        | 3  |      | 1016 | 560  | <20 | 27 |        |     | 15 <10 |       |       |  |
| 30         | 67381    | >30   | 0.56 | 320 | 30 | <5         | 0.09         | 123 | 40 | 95  | 2140 | 4.72 | <10 | 0.01   | 21 | 9  | <0.01  | 4  | 280  | 1260 | 560  | <20 | 21 | <0.01  | 10  | 19 20  | <1 ·1 | 10000 |  |

ECO TECH LABORATORY LTD.


| Et #.                 | Tag # | Ag    | AI % | As  | Ba  | Bi            | Ca % | Cd | Co | Сг  | Cu   | Fe % | La  | Mg %_ | Mn  | Мо  | Na %   | Ni  | P    | Pb  | Sb            | Sn  | Sr          | <u>Ti %</u> | U   | <u> </u> | Y  | Zn   |
|-----------------------|-------|-------|------|-----|-----|---------------|------|----|----|-----|------|------|-----|-------|-----|-----|--------|-----|------|-----|---------------|-----|-------------|-------------|-----|----------|----|------|
| 31                    | 67382 | >30   | 0.42 | 220 | 30  | <5            | 0.10 | 56 | 12 | 85  | 1230 | 2.66 | <10 | 0.01  | 20  | 31  | < 0.01 | 3   | 330  | 948 | 360           | <20 | 21          | <0.01       | <10 | 15 <10   |    | 4781 |
| 32                    | 67383 | >30   | 0.70 | 400 | 35  | <5            | 0.34 | 27 | 17 | 74  | 2558 | 4.22 | <10 | 0.02  | 22  | 13  | <0.01  | 5   | 1020 | 950 | 425           | <20 | 34          | <0.01       | <10 | 25 <10   | 2  | 1973 |
| 33                    | 67375 | 1.1   | 1.14 | <5  | 105 | <5            | 1.49 | <1 | 14 | 34  | 4146 | 3.72 | <10 | 1.00  | 685 | 3   | 0.17   | 18  | 1110 | 14  | <5            | <20 | <b>1</b> 11 | 0.14        | <10 | 176 <10  | 18 | 41   |
| 34                    | 67469 | < 0.2 | 3.24 | 20  | 100 | <5            | 3.67 | <1 | 37 | 60  | 109  | 7.44 | <10 | 2.65  | 951 | <1  | 0.04   | 17  | 1930 | 26  | <5            | <20 | 75          | 0.18        | <10 | 265 <10  | 22 | 79   |
| 35                    | 67465 | <0.2  | 0.98 | 100 | 165 | <5            | 0.27 | <1 | 71 | 272 | 432  | >10  | <10 | 0.18  | 499 | 125 | 0.06   | 466 | 190  | 130 | <5            | <20 | 13          | <0.01       | <10 | 27 <10   | <1 | 423  |
| QC DATA:              |       |       |      |     |     |               |      |    |    |     |      |      |     |       |     |     |        |     |      |     |               |     |             |             |     |          |    |      |
| Re <b>split:</b><br>1 | 67351 | 8.6   | 0.77 | 335 | 25  | <b>&lt;</b> 5 | 0.32 | 3  | 37 | 67  | 2929 | 3.87 | <10 | 0.04  | 39  | 35  | <0.01  | 6   | 1470 | 54  | 785           | <20 | 24          | <0.01       | 10  | 29 <10   | 10 | 346  |
| Repeats:              |       |       |      |     |     |               |      |    |    |     |      |      |     |       |     |     |        |     |      |     |               |     |             |             |     |          |    |      |
| 1                     | 67351 | 8.1   | 0.57 | 295 | 25  | <5            | 0.33 | 2  | 28 | 57  | 2877 | 3.38 | <10 | 0.03  | 35  | 24  | <0.01  | 3   | 1400 | 30  | 685           | <20 |             |             | <10 | 22 <10   | 10 | 293  |
| 10                    | 67360 | 7.2   | 0.56 | 240 | 40  | <5            | 0.33 | 2  | 14 | 49  | 1642 | 4.82 | <10 | 0.03  | 45  | 9   | <0.01  | 4   | 1460 | 48  | 315           | <20 |             |             | <10 | 21 <10   | 8  | 197  |
| 19                    | 67369 | 14.6  | 0.43 | 195 | 35  | <5            | 0.30 | 5  | 13 | 49  | 5857 | 3.82 | <10 | 0.02  | 81  | 10  | <0.01  | 3   | 1120 | 66  | 485           | <20 | 23          | <0.01       | <10 | 16 <10   | 2  | 488  |
| Standard:<br>GEO'05   |       | 1.5   | 1.59 | 60  | 165 | <b>&lt;</b> 5 | 1.45 | <1 | 18 | 60  | 86   | 3.98 | <10 | 0.83  | 604 | <1  | 0.03   | 27  | 720  | 20  | <b>&lt;</b> 5 | <20 | 52          | 0.10        | <10 | 76 <10   | 12 | 74   |

ECO ECO LABORATORY LTD.

Julia Jealouse

BC Certified Assayer

JJ/bs/ga df/5091 XLS/02



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

### **CERTIFICATE OF ASSAY AS 2005-5092**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

16-Aug-05

Attention: Allan Huard

No. of samples received: 35 Sample type: Core/Rock/Pulp

Project #: 301 Shipment #: 6

Samples Submitted by: Allan Huard

| ET #        | To = # | Au<br>(a/t) | Au<br>(oz/t) | Ag<br>(g/t) | Ag<br>(oz/t) |   |
|-------------|--------|-------------|--------------|-------------|--------------|---|
| ET#.        | Tag #  | (g/t)       | 0.007        | (9/6)       | (021)        |   |
| il .        | 67217  | 0.25        |              |             |              |   |
| 2<br>3      | 67218  | 0.24        | 0.007        |             |              |   |
|             | 67219  | 0.24        | 0.007        |             |              |   |
| 4           | 67220  | 0.18        | 0.005        |             |              |   |
| 5           | 67221  | 0.25        | 0.007        |             |              |   |
| 6           | 67222  | 0.33        | 0.010        |             |              |   |
| 7           | 67223  | 0.46        | 0.013        |             |              |   |
| 8           | 67224  | 0.49        | 0.014        |             |              |   |
| 9           | 67226  | 0.66        | 0.019        | 101         | 2.95         |   |
| 10          | 67227  | 0.63        | 0.018        |             |              |   |
| 11          | 67228  | 0.47        | 0.014        |             |              |   |
| 12          | 67229  | 0.18        | 0.005        |             |              |   |
| 13          | 67230  | 0.20        | 0.006        |             |              |   |
| 14          | 67231  | 0.26        | 0.008        |             |              |   |
| 15          | 67232  | 0.27        | 0.008        |             |              |   |
| 16          | 67233  | 0.61        | 0.018        |             |              |   |
| 17          | 67234  | 0.61,       | 0.018        |             |              |   |
| 18          | 67235  | 0.40        | 0.012        |             |              |   |
| 19          | 67236  | 2.79        | 0.081        |             |              |   |
| 20          | 67237  | 0.22        | 0.006        |             |              |   |
| 21          | 67238  | 0.25        | 0.007        |             |              |   |
| 22          | 67239  | 0.22        | 0.006        |             |              |   |
| 23          | 67240  | 0.13        | 0.004        |             |              |   |
| 24          | 67241  | 0.19        | 0.006        |             |              | _ |
| 25          | 67242  | 0.42        | 0.012        |             |              |   |
| Manage Page |        | • • • •     | <del></del>  | •           |              |   |

ABORATORY LTD.

| ET #.     | Tag # | Au<br>(g/t) | Au<br>(oz/t) | Ag<br>(g/t) | Ag<br>(oz/t)                     |               |
|-----------|-------|-------------|--------------|-------------|----------------------------------|---------------|
| 26        | 67243 | 0.29        | 0.008        | (5.0)       | (92,9)                           |               |
| 27        | 67244 | 0.16        | 0.005        |             |                                  |               |
| 28        | 67245 | 0.20        | 0.005        |             |                                  |               |
| 29        | 67246 | 0.27        | 0.008        |             |                                  |               |
| 30        | 67247 | 0.42        | 0.008        |             |                                  |               |
| 31        | 67248 | 0.42        | 0.012        |             |                                  |               |
| 32        | 67249 | 0.21        | 0.006        |             |                                  |               |
| 33        | 67225 | 0.21        | 0.000        |             |                                  |               |
| 34        | 67250 | <0.03       | <0.002       |             |                                  |               |
| 35        | 67457 | 0.44        | 0.013        |             |                                  |               |
| 35        | 07407 | 0.44        | U.Ų 13       |             |                                  |               |
| QC DATA:  | :     |             |              |             |                                  |               |
| Repeat:   |       |             |              |             |                                  |               |
| 1         | 67217 | 0.25        | 0.007        |             |                                  |               |
| 9         | 67226 | 0.65        | 0.019        |             |                                  |               |
| 9         | 67226 |             |              | 101         | 2.95                             |               |
| 10        | 67227 | 0.63        | 0.018        |             |                                  |               |
| 16        | 67233 | 0.67        | 0.020        |             |                                  |               |
| 17        | 67234 | 0.61        | 0.018        |             |                                  |               |
| 18        | 67235 | 0.40        | 0.012        |             |                                  |               |
| 18        | 67235 | 0.44        | 0.013        |             |                                  |               |
| 19        | 67236 | 2.78        | 0.081        |             |                                  |               |
| 19        | 67236 | 3.14        | 0.092        |             |                                  |               |
| 20        | 67237 | 0.24        | 0.007        |             |                                  |               |
| 21        | 67238 | 0.23        | 0.007        |             |                                  |               |
| 22        | 67239 | 0.19        | 0.006        |             |                                  |               |
|           |       |             |              |             |                                  |               |
| Resplit:  |       |             |              |             |                                  |               |
| 1         | 67217 | 0.29        | 0.008        |             |                                  |               |
| Standard: |       |             |              |             |                                  |               |
| SH13      |       | 1.34        | 0.039        |             |                                  |               |
| PB106     |       |             | 5.000        | 59.3        | 1.73                             |               |
|           |       |             |              | 33.3        |                                  |               |
| JJ/bs     |       |             |              |             | CO TECH LA                       | BORATORY LTD. |
| XLS/04    |       |             |              | Æ           | utta Jealouse<br>.C. Certified A | ssaver        |
|           |       |             |              |             | 7(7                              |               |

#### ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

ICP CERTIFICATE OF ANALYSIS AS 2005-5092

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

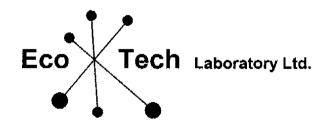
Phone: 250-573-5700 Fax : 250-573-4557

ATTENTION: Allan Huard

No. of samples received: 35 Sample type: Core/Rock/Pulp

Project #: 301 Shipment #: 6

Samples submitted by: Allan Huard


|       |       |      |      | _   |      |      | <b>.</b> |      |     | _     | T - 0/ |     | B.B 0/  |     | 84 - N- | . 07 | NI: | Þ    | Dh  | Sb Sn   | Sr Ti% U       | v w v     | Zn   |
|-------|-------|------|------|-----|------|------|----------|------|-----|-------|--------|-----|---------|-----|---------|------|-----|------|-----|---------|----------------|-----------|------|
| Et #. | Tag#  | Ag   | Al % |     | Ba E |      |          |      |     |       | Fe %   |     |         |     | Mo Na   |      | Ni  |      |     |         | 16 < 0.01 < 10 |           | 69   |
| 1     | 67217 | 1.3  | 0.30 | 20  | 40 < |      |          | 1 5  | 128 | 1265  | 2.54   |     |         | 39  |         | .01  | 15  | 130  | 32  | -       | 10 <0.01 <10   |           | 77   |
| 2     | 67218 | 1.5  | 0.29 | 10  | 50 < |      |          | 1 7  |     | 1692  | 1.87   |     | 0.01    | 30  | 46 <0   |      |     | 210  | 36  |         |                |           | 112  |
| 3     | 67219 | 2.1  | 0.36 | 10  | 50 < |      |          | 1 12 | —   | 1953  | 2.17   | -   | 0.02    | 53  |         | .01  | 18  | 190  | 76  | = :     | 19 <0.01 <10   |           | 39   |
| 4     | 67220 | 1.9  | 0.31 | 10  | 45 < |      |          |      |     | 1370  | 1.86   |     | 0.02    | 24  | 13 <0   |      | 14  | 210  | 52  |         | 10 <0.01 <10   |           |      |
| 5     | 67221 | 3.7  | 0.36 | 10  | 45 < | 5 0. | 14       | 26   | 140 | 1013  | 1.69   | <10 | 0.03    | 39  | 46 <0   | .01  | 14  | 220  | 174 | <5 <20  | 20 <0.01 <10   | 18 <10 2  | 167  |
|       |       |      |      |     | 40   |      | 40       | - 0  | 440 | 040   | 2 27   | 20  | 0.01    | 41  | 30 <0   | 04   | 14  | 310  | 214 | <5 <20  | 17 <0.01 <10   | 16 <10 3  | 386  |
| 6     | 67222 | 3.9  | 0.29 |     | 40 < |      |          |      | 113 |       |        |     | 0.01    |     |         |      | 11  | 270  | 336 | 10 <20  | 16 < 0.01 < 10 |           | 676  |
| 7     | 67223 | 7.0  | 0.28 | 75  | 35 < | -    |          | 3 5  | 109 | 1196  | 2.71   |     | 0.01    | 48  | 27 <0   |      |     |      |     | <5 <20  | 10 <0.01 <10   |           |      |
| 8     | 67224 | 7.4  | 0.31 | 95  | 40 < |      |          |      |     | 1106  | 3.61   |     | 0.01    | 62  | 23 <0   |      | 9   | 150  |     | 530 <20 | 13 <0.01 <10   |           |      |
| 9     | 67226 | >30  | 0.27 |     | 35 < |      |          | 3 12 |     | 3713  | 3.39   |     | 0.01    | 67  | 30 <0   |      | 15  | 300  |     |         | 11 <0.01 <10   |           |      |
| 10    | 67227 | 12.7 | 0.35 | 105 | 30 < | 5 0. | 12       | 4 9  | 127 | 716   | 4.43   | <10 | 0.02    | 33  | 12 <0   | .01  | 20  | 510  | 200 | 15 <20  | 11 <0.03 <10   | 23 -10 -1 | 310  |
|       | 07000 |      | 0.40 | 40  | 40 - | - 0  | 47 -     | 4 40 | ne  | 1004  | 1 51   | -10 | 0.03    | 38  | 11 <0   | 04   | 20  | 630  | 58  | <5 <20  | 12 <0.01 <10   | 38 < 10 3 | 99   |
| 11    | 67228 | 4.1  | 0.43 |     | 40 < |      |          |      |     | 1234  |        |     | 0.05    | 57  | 20 <0   |      | 12  | 410  | 28  |         | 17 <0.01 <10   |           | 121  |
| 12    | 67229 | 2.5  | 0.53 | 15  | 45 < |      |          | 2 7  |     | 1526  | 2.76   |     | 0.05    |     | 18 <0   |      | 16  | 370  | 82  |         | 14 <0.01 <10   | •         | 149  |
| 13    | 67230 | 2.9  | 0.33 | 25  | 35 < | -    |          | 2 10 | -   | 1301  | 3.46   |     | • • • • | 37  |         |      | 18  | 440  |     | <5 <20  | 29 <0.01 <10   |           | 58   |
| 14    | 67231 | 3.7  | 0.27 | 35  |      |      |          | 1 12 |     | 1664  | 3.59   |     | 0.01    | 53  | 21 <0   |      |     |      | 58  |         | 11 <0.01 <10   |           | 87   |
| 15    | 67232 | 4.5  | 0.36 | 35  | 30 < | 5 0. | 14 <     | 1 11 | 150 | 2160  | 3.73   | <10 | 0.02    | 33  | 35 <0   | 1.01 | 17  | 410  | 50  | ~0 ~20  | 11 <0.01 <10   | 55 110 2  | O,   |
| 16    | 67233 | 2.0  | 0.70 | 60  | 50 < | 5 A  | 77 <     | 1 10 | 85  | 1588  | 3.56   | <10 | 0.08    | 210 | 11 0    | 01   | 15  | 1280 | 12  | <5 <20  | 72 <0.01 <10   | 87 <10 14 | 26   |
| 17    | 67234 | 6.1  | 0.70 |     | 35 < |      |          | 2 13 |     | 2247  |        |     | < 0.01  |     | 22 <0   |      | 13  | 130  | 88  | <5 <20  | 15 < 0.01 < 10 | 26 <10 <1 | 191  |
| 18    | 67235 | 20.5 | 0.03 |     | 45 < | -    | -        | 1 20 |     | 2211  |        |     | <0.01   |     | 13 <0   | -    | 15  | <10  | 582 | <5 <20  | 6 < 0.01 10    | 48 <10 <1 | 2258 |
| 19    | 67236 | 16.0 | 0.03 |     | 50 < |      |          | 1 13 |     | 3834  |        |     | <0.01   |     | 13 <0   |      | 17  | 250  | 230 | <5 <20  | 17 < 0.01 < 10 | 71 <10 <1 | 757  |
| 20    | 67237 | 2.6  |      |     | 45 < |      |          | 3 9  |     | 1355  |        |     | 0.04    |     | 28 <0   |      | 16  | 530  |     | <5 <20  | 19 < 0.01 < 10 | 50 < 10 2 | 249  |
| 20    | 01231 | 2.0  | 0.43 | 30  | 70 1 | J 0. | 20       |      | 104 | 1000  | 0.00   | -10 | 0.01    | ٠.  | 10 0    |      | ,,, | •    |     | •       |                |           |      |
| 21    | 67238 | 4.1  | 0.40 | 60  | 45 < | 5 0. | 24       | 3 20 | 76  | 3079  | 5.34   | <10 | 0.02    | 72  | 54 <0   | 0.01 | 23  | 860  | 154 | <5 <20  | 18 <0.01 <10   | 41 <10 1  | 224  |
| 22    | 67239 | 3.4  | 0.47 |     | 40 < |      |          | 2 23 | 91  | 1777  | 4.87   | <10 | 0.03    | 84  | 21 <0   | 0.01 | 21  | 960  | 114 | <5 <20  | 18 <0.01 <10   | 44 <10 4  | 121  |
| 23    | 67240 | 3.2  | 0.35 |     |      | -    |          | 1 10 | 89  | 1641  | 3.32   | <10 | 0.02    | 42  | 25 <0   | 0.01 | 14  | 690  | 40  | <5 <20  | 18 < 0.01 < 10 | 39 <10 4  | 36   |
| 24    | 67241 | 5.7  | 0.34 | _   | 30 < |      |          | 2 14 |     | 1779  | 5.08   | <10 | 0.01    | 39  | 24 <0   | 0.01 | 17  | 530  | 74  | <5 <20  | 12 <0.01 <10   | 41 <10 <1 | 131  |
| 25    | 67242 | >30  | 0.28 |     | -    |      |          | 7 11 |     | 7382  |        |     | <0.01   | 45  | 70 <0   | 0.01 | 14  | 50   | 264 | 55 <20  | 10 < 0.01 < 10 | 34 <10 <1 | 536  |
| 20    | 31272 | - 50 | 0.20 | 100 | -ιψ  | · •  |          | , ,, |     | , 555 | ,      | . • |         |     |         | _    | ,   |      |     |         |                |           |      |

| Et #.              | Tag#      | Ag   | Al % | Αs  | Ba E  | 3i C | a %  | Cd | Co | Cr  | Cu   | Fe % | La  | Mg %  | Mn          | Мо  | Na %  | Ni         | P    | Pb  | Sb Sn  | Sr  | Ti %   | U   | V   | W     | Υ        | Zn  |
|--------------------|-----------|------|------|-----|-------|------|------|----|----|-----|------|------|-----|-------|-------------|-----|-------|------------|------|-----|--------|-----|--------|-----|-----|-------|----------|-----|
| 26                 | 67243     | 13.0 | 0.28 | 25  | 40 <  | 5 (  | 0.05 | 3  | 18 | 142 | 5448 | 3.93 | <10 | <0.01 | 42          | 136 | <0.01 | 13         | <10  | 118 | <5 <20 | 7   | <0.01  | <10 | 20  | <10 < | :1       | 260 |
| 27                 | 67244     | 5.2  | 0.25 | 30  | 35 <  | 5 (  | 0.06 | 1  | 14 | 160 | 2123 | 2.94 | <10 | <0.01 | 45          | 60  | <0.01 | 12         | 120  | 72  | <5 <20 | 11  | <0.01  | <10 | 14  | <10 < | <b>1</b> | 148 |
| 28                 | 67245     | 3.8  | 0.38 | 25  | 40 <  | 5 (  | 0.06 | 4  | 15 | 196 | 1401 | 3.10 | <10 | 0.02  | 46          | 29  | 0.01  | 15         | 190  | 94  | <5 <20 | 10  | < 0.01 | <10 | 24  | <10 < | <1       | 373 |
| 29                 | 67246     | 4.8  | 0.42 | 45  | 30 <  | 5 (  | 0.30 | 3  | 8  | 163 | 1449 | 3.02 | <10 | 0.03  | 211         | 26  | <0.01 | 14         | 750  | 108 | <5 <20 | 67  | <0.01  | <10 |     | <10   |          | 303 |
| 30                 | 67247     | 7.7  | 0.23 | 35  | 35 <  | 5 (  | 0.07 | 3  | 11 | 262 | 2442 | 3.27 | <10 | 0.01  | 59          | 34  | <0.01 | 12         | 90   | 82  | 20 <20 | 11  | <0.01  | <10 | 29  | <10 < | <1       | 226 |
| 31                 | 67248     | 6.1  | 0.38 | 10  | 50 <  | 5 (  | 0.07 | 1  | 9  | 141 | 2234 | 2.51 | <10 | 0.03  | 39          | 57  | <0.01 | 8          | 90   | 62  | <5 <20 | 11  | <0.01  | <10 | 46  | <10 < | <1       | 92  |
| 32                 | 67249     | 5.2  | 0.41 | 20  | 40 <  |      | 0.08 | 1  | 11 | 169 | 1813 |      | <10 | 0.03  | 50          | 31  | <0.01 | 11         | 100  | 82  | <5 <20 | 11  | < 0.01 | <10 | 39  | <10 < | <1       | 109 |
| 33                 | 67225     | <0.2 | 0.83 |     |       | _    |      | <1 | 67 | 243 | 442  |      | <10 | 0.12  | 476         | 119 |       | 443        | 90   | 110 | <5 <20 | 13  | < 0.01 | <10 | 24  | <10 < | <1       | 473 |
| 34                 | 67250     | <0.2 | 2.17 |     | 115 < |      |      | <1 | 24 | 55  | 87   | 4.71 |     | 1.78  |             | <1  | 0.07  | 15         | 1430 | <2  | <5 <20 | 113 | 0.17   | <10 | 204 | <10 1 | 19       | 49  |
| 35                 | 67457     | 2.1  | 1.36 | -   | 300 < |      |      | <1 | 19 | 25  | 7240 | 3.59 |     | 1.03  | <b>46</b> 6 | 3   | 0.15  | <b>1</b> 1 | 2290 | 22  | <5 <20 | 77  | 0.06   | <10 | 179 | <10 ′ | 17       | 53  |
| QC DATA            | <b>A:</b> |      |      |     |       |      |      |    |    |     |      |      |     |       |             |     |       |            |      |     |        |     |        |     |     |       |          |     |
| Resplit:           | 67217     | 1.3  | 0.22 | 30  | 30 <  | 5 (  | 0.11 | <1 | 6  | 110 | 1217 | 2.73 | <10 | <0.01 | 48          | 43  | <0.01 | 16         | 160  | 34  | <5 <20 | 15  | <0.01  | <10 | 16  | <10 < | <1       | 61  |
| Repeat:            |           |      |      |     |       |      |      |    |    |     |      |      |     |       |             |     |       |            |      |     |        |     |        |     |     |       |          |     |
| 1                  | 67217     | 1.3  | 0.27 | 25  | 40 <  | 5 (  | 0.10 | <1 | 5  | 123 | 1280 | 2.55 | <10 | 0.01  | 37          | 46  | 0.01  | 15         | 140  | 36  | <5 <20 | 16  | <0.01  | <10 | 19  | <10 < | <1       | 75  |
| 10                 | 67227     | 12.8 |      | 110 | 25 <  | 5 (  | 0.12 | 4  | 9  | 122 | 719  | 4.41 | <10 | 0.01  | 32          | 12  | <0.01 | 18         | 500  | 200 | 20 <20 | 10  | <0.01  | <10 | 20  | <10 < | <1       | 318 |
| 19                 | 67236     | 16.0 | 0.25 | 110 | 50 <  | 5 (  | 0.17 | 11 | 14 | 188 | 3793 | 9.82 | <10 | <0.01 | 128         | 11  | <0.01 | 14         | 270  | 230 | <5 <20 | 17  | <0.01  | <10 | 64  | <10 < | <1       | 759 |
| Standard<br>GEO'05 | d:        | 1.5  | 1.39 | 55  | 145 < | 5    | 1.26 | <1 | 16 | 55  | 86   | 3.60 | <10 | 0.73  | 544         | <1  | 0.03  | 28         | 590  | 20  | <5 <20 | 55  | 0.11   | <10 | 68  | <10   | 11       | 74  |

JJ/bs df/5092 XLS/02 ECO TECH LABORATORY LTD.

Julta Jealouse

BC Certified Assayer



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com

www.ecotechiab.com

## **CERTIFICATE OF ASSAY AS 2005-5093**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

10-Aug-05

Attention: Allan Huard

No. of samples received: 35 Sample type: Core/Rock/Pulp

Project #: 301 Shipment #: 7

Samples Submitted by: Allan Huard

| ET#.        | Tag #          | Au<br>(g/t) | Au<br>(oz/t) | Ag<br>(g/t) | Ag<br>(oz/t) |  |
|-------------|----------------|-------------|--------------|-------------|--------------|--|
| 1           | 67251          | 0.19        | 0.006        | (3/-/       |              |  |
| 2           | 67252          | 0.20        | 0.006        |             |              |  |
| 2<br>3      | 67253          | 0.23        | 0.007        |             |              |  |
| 4           | 67254          | 0.18        | 0.005        |             |              |  |
|             | 67255          | 0.16        | 0.005        |             |              |  |
| 5<br>6<br>7 | 67256          | 0.26        | 0.008        |             |              |  |
| 7           | 67257          | 0.32        | 0.009        |             |              |  |
| 8           | 67258          | 0.31        | 0.009        |             |              |  |
| 9           | 67259          | 0.57        | 0.017        |             |              |  |
| 10          | 67260          | 1.17        | 0.034        | 44.6        | 1.30         |  |
| 11          | 67261          | 2.81        | 0.082        | 103         | 3.00         |  |
| 12          | 67 <b>26</b> 2 | 0.87        | 0.025        |             |              |  |
| 13          | 67263          | 0.50        | 0.015        |             |              |  |
| 14          | 67264          | 0.21        | 0.006        |             |              |  |
| 15          | 67265          | 0.15        | 0.004        |             |              |  |
| 16          | 67266          | 0.63        | 0.018        |             |              |  |
| 17          | 67267          | 0.60        | 0.017        |             |              |  |
| 18          | 67268          | 0.49        | 0.014        |             |              |  |
| 19          | 672 <b>6</b> 9 | 0.43        | 0.013        |             |              |  |
| 20          | 67270          | 0.49        | 0.014        |             |              |  |
| 21          | 67271          | 0.43        | 0.013        |             |              |  |
| 22          | 67272          | 0.39        | 0.011        |             |              |  |
| 23          | 67273          | 0.49        | 0.014        |             |              |  |
| 2.4         | 67274          | 0.54        | 0.016        |             |              |  |
| 25          | 67276          | 0.54        | 0.016        |             |              |  |

LABORATORY LTD.

B.C. Cettified Assayer

Page 1

|           |       | Au    | Au     | Ag    | Ag     |  |
|-----------|-------|-------|--------|-------|--------|--|
| ET #.     | Tag # | (g/t) | (oz/t) | (g/t) | (oz/t) |  |
| 26        | 67277 | 0.32  | 0.009  |       |        |  |
| 27        | 67278 | 0.40  | 0.012  |       |        |  |
| 28        | 67279 | 0.28  | 0.008  |       |        |  |
| 29        | 67280 | 0.70  | 0.020  |       |        |  |
| 30        | 67281 | 0.32  | 0.009  |       |        |  |
| 31        | 67282 | 0.22  | 0.006  |       |        |  |
| 32        | 67283 | 0.37  | 0.011  |       |        |  |
| 33        | 67275 | 0.44  | 0.013  |       |        |  |
| 34        | 67468 | <0.03 | <0.001 |       |        |  |
| 35        | 67463 | 0.07  | 0.002  |       |        |  |
| QC DATA:  |       |       |        |       |        |  |
| Repeat:   |       |       |        |       |        |  |
| 1         | 67251 | 0.20  | 0.006  |       |        |  |
| 10        | 67260 | 1.14  | 0.033  | 44,6  | 1.30   |  |
| 11        | 67261 | 2.76  | 0.080  |       |        |  |
| 12        | 67262 | 0.9   | 0.026  |       |        |  |
| 19        | 67269 | 0.43  | 0.013  |       |        |  |
| Resplit:  |       |       |        |       |        |  |
| 1         | 67251 | 0.19  | 0.006  |       |        |  |
| Standard: |       |       |        |       |        |  |
| SH13      |       | 1.36  | 0.040  |       |        |  |
| CU106     |       |       |        | 136   | 3.97   |  |
| PB106     |       |       |        | 58.8  | 1.72   |  |

JJ/bs XLS/04 ECO FECH LABORATORY LTD.

Mitta Jealouse

B.C. Certified Assayer

ICP CERTIFICATE OF ANALYSIS AK 2005-5093

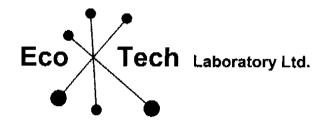
ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H71 5A7

ATTENTION: Allan Huard

No. of samples received: 35 Sample type: Core/Rock/Pulp

Project #: 301 Shipment #: 7


Samples submitted by: Allan Huard

|          |       |            |      |          |    |        |      |    |     |     |      |      |     |       |       |     |        |    | _         |      |     | _   | _   | <b>-</b> : n/ |     | .,      | 167 |         | 7    |
|----------|-------|------------|------|----------|----|--------|------|----|-----|-----|------|------|-----|-------|-------|-----|--------|----|-----------|------|-----|-----|-----|---------------|-----|---------|-----|---------|------|
| Et #.    | Tag # | Ag         | Al % | As       | Ba | Bi     | Ca % | Cd | Co  | Сг  | Cu   | Fe % | La  | Mg %  | Mn    |     | Na %   | Ni | <u> P</u> | Pb   | Sb  | Sn  |     | Ti %          | U   | V_      | W   | Υ       | Zn   |
| 1        | 67251 | 3.0        | 0.26 | 25       | 40 | <5     | 0.07 | 1  | 11  | 120 | 1094 | 2.25 | <10 |       | 33    |     | <0.01  | 9  | 200       | 50   | <5  | <20 |     | <0.01         | <10 | 26      | <10 | <1      | 116  |
| 2        | 67252 | 3.3        | 0.28 | 30       | 45 | <5     | 0.09 | 4  | 6   | 83  | 1201 | 1.86 | <10 | 0.03  | 28    |     | <0.01  | 9  | 320       | 120  | <5  | <20 |     | <0.01         | <10 | 35      | <10 | 1       | 360  |
| 3        | 67253 | 4.9        | 0.30 | 30       | 40 | <5     | 0.06 | 1  | 8   | 126 | 1554 | 1.98 | <10 | 0.03  | 34    |     | <0.01  | 10 | 140       | 102  | <5  | <20 |     | <0.01         | <10 | 34      | <10 | <1      | 138  |
| 4        | 67254 | 4.3        | 0.28 | 25       | 40 | <5     | 0.09 | 2  | 7   | 103 | 1196 | 1.60 | <10 | 0.03  | 28    |     | <0.01  | 8  | 240       | 56   | <5  | <20 |     | <0.01         | <10 | 30      | <10 | <1      | 122  |
| 5        | 67255 | 4.9        | 0.27 | 25       | 40 | <5     | 0.08 | 1  | 7   | 103 | 1478 | 1.72 | <10 | 0.02  | 26    | 26  | <0.01  | 7  | 220       | 60   | <5  | <20 | 9   | <0.01         | <10 | 29      | <10 | <1      | 127  |
|          |       |            |      |          |    |        |      |    |     |     |      |      |     |       |       |     |        |    | 200       | 400  | -   | -20 | 4.4 | -0.04         | -10 | 20      | -10 | 4       | 282  |
| 6        | 67256 | 7.0        | 0.33 | 45       | 45 | <5     | 0.13 | 3  | 6   | 126 | 1603 | 1.68 | <10 |       | 31    |     | <0.01  | 9  | 390       | 100  | 5   | <20 |     | <0.01         | <10 | 29      | <10 | 10      | 216  |
| 7        | 67257 | 5.8        | 0.39 | 40       | 30 | <5     | 0.34 | 2  | 11  | 98  | 2337 | 3.23 | 10  | 0.03  | 116   | 17  |        | 19 | 1160      | 106  | <5  | <20 |     | <0.01         | <10 | 21      | <10 | 10      | 145  |
| 8        | 67258 | 5.9        | 0.43 | 50       | 40 | <5     | 0.71 | 1  | 13  | 46  | 3087 | 2.74 | 10  | 0.04  | 296   | 38  |        | 19 | 550       | 124  | <5  | <20 |     | <0.01         | <10 | 14      | <10 | 12<br>7 |      |
| 9        | 67259 | 13.6       | 0.36 | 20       | 35 | <5     | 0.63 | <1 | 17  | 42  | 5487 | 2.44 | <10 | 0.03  | 231   |     | <0.01  | 16 | 310       | 24   | <5  | <20 |     | < 0.01        | <10 | 11      | <10 |         | 62   |
| 10       | 67260 | >30        | 0.34 | 240      | 25 | <5     | 0.13 | 7  | 16  | 60  | 2577 | 3.99 | <10 | 0.01  | 27    | 34  | <0.01  | 14 | 430       | 752  | 170 | <20 | 10  | <0.01         | <10 | 9       | <10 | <1      | 748  |
|          |       |            |      |          |    |        |      |    | _   |     |      |      |     |       | 40    |     | -0.04  | 40 | 4.40      | 4044 | 105 | <20 | 14  | <0.01         | <10 | 7       | <10 | <1      | 1181 |
| 11       | 67261 | >30        | 0.19 | 320      | 25 | <5     | 80.0 | 11 | 8   | 158 | 1983 | 3.59 |     | <0.01 | 43    |     | <0.01  | 10 | 140       | 1344 | 185 | <20 |     | <0.01         | <10 | 11      | <10 | <1      | 138  |
| 12       | 67262 | 16.0       | 0.31 | 115      | 25 | <5     | 0.09 | 2  | 10  | 96  | 1613 | 3.70 |     | <0.01 | 30    |     | <0.01  | 10 | 250       | 182  | 10  |     |     | <0.01         | <10 | 15      | <10 | 3       | 259  |
| 13       | 67263 | 26.6       | 0.31 | 110      | 30 | <5     | 0.22 | 3  | 8   | 91  | 3243 | 2.31 |     | 0.02  | 43    |     | <0.01  | 8  | 740       | 176  | 45  | <20 |     |               | <10 |         | <10 | 1       | 55   |
| 14       | 67264 | 5.6        | 0.28 | 45       | 30 | <5     | 0.14 | <1 | 9   | 115 | 2018 | 1.97 | <10 | 0.02  | 37    |     | < 0.01 | 9  | 390       | 22   | 5   | <20 |     | <0.01         | <10 | 10<br>8 | <10 | <1      | 49   |
| 15       | 67265 | 4.6        | 0.24 | 45       | 65 | <5     | 0.09 | <1 | 6   | 118 | 2723 | 1.05 | <10 | 0.02  | 33    | 70  | <0.01  | 7  | 180       | 8    | 10  | <20 | 10  | <0.01         | <10 | 0       | ×10 | -1      | 43   |
|          |       |            |      |          |    | -      |      |    |     | 407 | 0470 | 0.50 | -40 | 0.00  | 40    | 27  | 0.00   | 24 | 500       | 8    | <5  | <20 | 20  | <0.01         | <10 | 22      | <10 | 3       | 17   |
| 16       | 67266 | 4.0        |      | 45       | 40 | <5     | 0.19 |    | 14  |     | 3176 | 2.52 | <10 |       | 49    | 27  |        | 24 | 240       | 30   | <5  | <20 |     | <0.01         | <10 | 19      | <10 | <1      | 67   |
| 17       | 67267 | 7.2        | 0.38 | 30       | 25 | <5     | 0.13 | <1 | 15  | 95  | 5935 | 2.59 | <10 |       | 29    | 130 |        | 21 | 340       | 62   | <5  | <20 |     | <0.01         | <10 | 13      | <10 | 2       | 112  |
| 18       | 67268 | 8.7        | 0.39 | 50       | 30 | <5     | 0.18 | 1  | 8   | 66  | 5534 | 2.33 |     | 0.03  | 42    | 94  |        | 6  | 1030      | 58   | <5  | <20 |     | <0.01         | <10 | 15      | <10 | 7       | 119  |
| 19       | 67269 | 2.7        | 0.47 | 55       | 30 | <5     | 0.29 | 1  | 7   | 39  | 1679 | 2.18 | <10 |       | 54    | 22  |        | 4  |           | 32   | <5  | <20 |     | <0.01         | <10 | 15      | <10 | 4       | 19   |
| 20       | 67270 | 3.3        | 0.44 | 45       | 35 | <5     | 0.53 | <1 | 9   | 36  | 1812 | 2.73 | <10 | 0.04  | 200   | 9   | 0.02   | 4  | 970       | 32   | ~5  | ~20 | 40  | ~0.01         | ~10 | 10      | 110 | 7       | 10   |
| 24       | 67074 | 2.3        | 0.45 | 26       | 35 | <5     | 1.11 | -1 | 9   | 34  | 1617 | 2.74 | <10 | 0.06  | 630   | 14  | 0.02   | 4  | 970       | 4    | <5  | <20 | 78  | <0.01         | <10 | 15      | <10 | 9       | 7    |
| 21       | 67271 |            | 0.45 | 25<br>25 | 40 | <5     | 0.94 |    | 9   | 48  | 3846 | 2.68 | <10 |       | 562   | 24  |        | 3  | 930       | 22   | <5  | <20 |     | < 0.01        | <10 | 21      | <10 | 11      | 32   |
| 22       | 67272 | 6.4        | 0.60 | 35       |    | -      | 0.35 |    | 10  | 65  | 1227 | 4.72 | <10 |       | 120   |     | <0.01  | 3  | 880       | 862  | <5  | <20 |     | < 0.01        | <10 | 13      | <10 | 2       | 950  |
| 23       | 67273 | 12.6       | 0.49 | 80<br>50 | 25 | <5<br> | 0.65 |    | 6   | 34  | 1357 | 2.76 | <10 |       | 657   | 13  |        | 2  | 1010      | 52   | <5  | <20 |     | < 0.01        | <10 | 19      | <10 | 7       | 71   |
| 24       | 67274 | 3.9        | 0.57 | 50       | 30 | <5     |      |    | _   |     | 937  | 2.69 | <10 |       | 1075  | 24  |        | 2  | 980       | 32   | <5  | <20 |     | < 0.01        | <10 | 18      | <10 | 10      | 43   |
| 25       | 67276 | 1.7        | 0.53 | 80       | 25 | <5     | 1.40 | <1 | 6   | 36  | 937  | 2.69 | <10 | 0.14  | 1075  | 24  | Ų.UZ   | _  | 200       | 32   | ~5  | ~20 | 121 | 40.01         | -10 |         |     | 10      |      |
| 26       | 67277 | 2.0        | 0.49 | 50       | 30 | <5     | 1.25 | 1  | 7   | 41  | 953  | 2.83 | <10 | 0.04  | 699   | 8   | 0.01   | 2  | 950       | 64   | <5  | <20 | 98  | <0.01         | <10 | 13      | <10 | 7       | 117  |
| 27       | 67278 | 2.6        |      | 45       | 25 | <5     | 1.48 | 1  | 7   | 41  | 634  | 3.32 | <10 | *     | 918   | 5   |        | 3  | 870       | 84   | <5  | <20 | 88  | < 0.01        | <10 | 11      | <10 | 6       | 125  |
| 28       | 67279 | 3.5        |      | 90       | 35 | <5     | 0.73 | 1  | 10  | 51  | 1082 | 3.70 | <10 | 0.05  | 364   | 9   |        | 2  | 1190      | 76   | <5  | <20 | 49  | <0.01         | <10 | 16      | <10 | 7       | 110  |
|          | 67279 | 3.5<br>7.7 | 0.52 | 80       | 25 | <5     | 0.75 | <1 | 10  | 49  | 2287 | 4.70 | <10 | 0.03  | 135   | _   | <0.01  | 3  | 940       | 82   | <5  | <20 | 33  | < 0.01        | <10 | 12      | <10 | 5       | 51   |
| 29<br>30 | 67281 | 3.9        |      | 65       | 25 | <5     | 0.63 |    | 11  | 51  | 1562 | 3.70 | <10 |       | 342   | 10  |        | 2  |           | 36   | <5  | <20 | 47  | < 0.01        | <10 | 15      | <10 | 4       | 60   |
| 30       | 0/201 | ۵.9        | 0.02 | 05       | 29 | \J     | 0.03 | -1 | 1 7 | J.  | 1002 | 5.10 | .,0 | Q.5 T | 0 122 | .0  | 0.01   | _  |           |      | _   |     |     |               |     |         |     |         |      |

|          |          |      |      |     | _   |    |      |    | _   | _   | _           |      |           |        |             |           | • 17 | _        | DL  | O.L | c   | C- T: 0/   | 11       | V   | w   | v              | Zπ   |
|----------|----------|------|------|-----|-----|----|------|----|-----|-----|-------------|------|-----------|--------|-------------|-----------|------|----------|-----|-----|-----|------------|----------|-----|-----|----------------|------|
| Et #.    | Tag #    | Ag   | Al % | As  | Ba  | Bi | Ca % | Cd | Co_ | Cr  | Cu          | Fe % | <u>La</u> | Mg %   | Mn          | Mo Na%    | Ni_  | <u>P</u> | Pb  | Sb  | Sn  | Sr Ti %    | <u>U</u> | V   |     | <del>- '</del> |      |
| 31       | 67282    | 2.3  | 0.47 | 35  | 50  | <5 | 1.28 | <1 | 7   | 33  | 1648        | 2.14 | <10       | 0.07   | 1050        | 8 0.02    | 2    | 1080     | 6   | <5  | <20 | 103 < 0.01 | <10      | 13  | <10 | 9              | 19   |
| 32       | 67283    | 3.1  | 0.59 | 60  | 30  | <5 | 0.97 | <1 | 8   | 36  | 815         | 3.05 | <10       | 0.07   | 744         | 5 0.03    | 2    | 1240     | 20  | <5  | <20 | 76 <0.01   | <10      | 18  | <10 | 7              | 22   |
| 33       | 67275    | 2.1  | 1.37 | <5  | 300 | <5 | 1.37 | <1 | 7   | 24  | 7268        | 3.41 | 10        | 1.14   | 473         | 2 0.14    | 18   | 2310     | 22  | <5  | <20 | 72 0.06    | <10      | 187 | <10 | 14             | 51   |
| 34       | 67468    | <0.2 | 1.96 | 10  | 60  | <5 | 3.81 | <1 | 20  | 37  | 100         | 4.54 | <10       | 1.62   | 628         | <1 0.03   | 12   | 1230     | 4   | 5   | <20 | 80 0.10    | <10      | 177 | <10 | 12             | 50   |
| 35       | 67463    | <0.2 | 0.80 | 85  | 125 | <5 | 0.22 | <1 | 57  | 231 | <b>4</b> 67 | >10  | <10       | 0.14   | <b>4</b> 17 | 110 0.05  | 390  | 100      | 98  | <5  | <20 | 12 <0.01   | <10      | 23  | <10 | <1             | 444  |
| QC DATA  | <u>:</u> |      |      |     |     |    |      |    |     |     |             |      |           |        |             |           |      |          |     |     |     |            |          |     |     |                |      |
| Resplit: |          |      |      |     |     |    |      |    |     |     |             |      |           |        |             |           |      |          |     |     |     |            |          |     |     |                |      |
| 1        | 67251    | 3.2  | 0.27 | 30  | 40  | <5 | 0.08 | 1  | 12  | 138 | 1113        | 2.48 | <10       | 0.02   | 46          | 31 < 0.01 | 10   | 280      | 58  | <5  | <20 | 8 <0.01    | <10      | 29  | <10 | <1             | 124  |
| Repeat:  |          |      |      |     |     |    |      |    |     |     |             |      |           |        |             |           |      |          |     |     |     |            |          |     |     |                |      |
| 1        | 67251    | 3.1  | 0.25 | 25  | 35  | <5 | 0.07 | 1  | 11  | 119 | 1103        | 2.26 | <10       | 0.02   | 33          | 30 < 0.01 | 9    | 210      | 50  | <5  | <20 | 8 <0.01    | <10      | 26  | <10 | <1             | 115  |
| 10       | 67260    | >30  | 0.28 | 220 | 25  | <5 | 0.12 | 6  | 14  | 54  | 2333        | 3.64 | <10       | < 0.01 | 23          | 30 < 0.01 | 12   | 410      | 704 | 155 | <20 | 10 < 0.01  | <10      | 7   | <10 | <1             | 703  |
| 19       | 67269    | 2.5  | 0.51 | 60  | 30  | <5 | 0.32 | 1  | 8   | 41  | 1814        | 2.32 | <10       | 0.04   | 59          | 22 0.02   | 3    | 1150     | 62  | <5  | <20 | 27 <0.01   | <10      | 16  | <10 | 8              | 128  |
| Standard | :        |      |      |     |     |    |      |    |     |     |             |      |           |        |             |           |      |          |     |     |     |            |          |     |     |                |      |
| GEO'05   |          | 1.5  | 1.49 | 55  | 130 | <5 | 1.19 | <1 | 19  | 57  | 84          | 3.27 | <10       | 0.67   | 496         | <1 0.03   | 28   | 550      | 20  | <5  | <20 | 54 0.11    | <10      | 73  | <10 | 9              | . 75 |

ECO TECH LABORATORY LTD.
Jutta Joan Service Assayer

JJ/bs/ga df/5093 XLS/05



10-Aug-05

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5094**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301
Shipment #: 8

25

67309

Samples Submitted by: Allan Huard

| ET#. | Tag # | Au<br>(g/t) | Au<br>(oz/t) | Ag<br>(g/t) | Ag<br>(oz/t)  | Zn<br>(%) |  |
|------|-------|-------------|--------------|-------------|---------------|-----------|--|
| 1    | 67284 | 0.45        | 0.013        | 43.4        | 1,266         |           |  |
| 2    | 67285 | 0.36        | 0.010        |             |               |           |  |
| 3    | 67286 | 0.33        | 0.010        |             |               |           |  |
| 4    | 67287 | 0.74        | 0.022        |             |               |           |  |
| 5    | 67288 | 0.38        | 0.011        |             |               |           |  |
| 6    | 67289 | 0.27        | 0.008        |             |               |           |  |
| 7    | 67290 | 0.37        | 0.011        |             |               |           |  |
| 8    | 67291 | 0.87        | 0.025        |             |               | 1.08      |  |
| 9    | 67292 | 0.73        | 0.021        |             |               |           |  |
| 10   | 67293 | 0.48        | 0.014        |             |               |           |  |
| 11   | 67294 | 1.29        | 0.038        |             |               |           |  |
| 12   | 67295 | 1,15        | 0.034        |             |               |           |  |
| 13   | 67296 | 1.57        | 0.046        |             |               |           |  |
| 14   | 67297 | 1.13        | 0.033        |             |               |           |  |
| 15   | 67298 | 1.52        | 0.044        |             |               |           |  |
| 16   | 67299 | 1.09        | 0.032        |             |               |           |  |
| 17   | 67301 | 1.66        | 0.048        |             |               | 1.21      |  |
| 18   | 67302 | 1.43        | 0.042        |             |               |           |  |
| 19   | 67303 | 0.62        | 0.018        |             |               |           |  |
| 20   | 67304 | 0.32        | 0.009        |             |               |           |  |
| 21   | 67305 | 1.18        | 0.034        |             |               |           |  |
| 22   | 67306 | 0.79        | 0.023        |             |               |           |  |
| 23   | 67307 | 0.91        | 0.027        |             |               |           |  |
| 24   | 67308 | 2.16        | 0.063        | 90.9        | 2.65 <u>1</u> |           |  |

0.012

0.42

LUTTE JEST LABORATORY LTD.

B.Q. Certified Assaye

Page 1

| FT #                 | ·T#            | Au            | Au<br>(oz/t) | Ag<br>(g/t) | Ag<br>(oz/t) | Zn<br>(%) |  |
|----------------------|----------------|---------------|--------------|-------------|--------------|-----------|--|
| ET #.                | Tag #          | (g/t)<br>0.50 | 0.015        | (9/1)       | (OZIC)       | (70)      |  |
| 26                   | 67310<br>67311 | <0.03         | <0.015       |             |              |           |  |
| 27                   | 67311<br>67312 | 0.52          | 0.001        |             |              |           |  |
| 28                   | 67312<br>67313 | 0.72          | 0.013        |             |              |           |  |
| 29<br>30             | 67313          | 0.62          | 0.023        |             |              |           |  |
| 30                   | 67314          | 0.78          | 0.013        |             |              |           |  |
| 32                   | 67316          | 0.73          | 0.025        |             |              |           |  |
| 33                   | 67458          | 0.42          | 0.012        |             |              |           |  |
| 33<br>34             | 67300          | < 0.03        | <0.001       |             |              |           |  |
| 3 <del>4</del><br>35 | 67464          | 0.08          | 0.002        |             |              |           |  |
| 33                   | 07404          | 0.00          | 0.002        |             |              |           |  |
| QC DATA:             |                |               |              |             |              |           |  |
| Repeat:              | •              |               |              |             |              |           |  |
| 1                    | 67284          | 0.46          | 0.013        | 43.4        | 1.27         |           |  |
| 2                    | 67285          | 0.34          | 0.010        |             |              |           |  |
| 3                    | 67286          | 0.27          | 0.008        |             |              |           |  |
| 4                    | 67287          | 0.71          | 0.021        |             |              |           |  |
| 5                    | 67288          | 0.32          | 0.009        |             |              |           |  |
| 6                    | 67289          | 0.24          | 0.007        |             |              |           |  |
| 7                    | 67290          | 0.36          | 0.010        |             |              |           |  |
| 8                    | 67291          | 0.87          | 0.025        |             |              |           |  |
| 10                   | 67293          | 0.45          | 0.013        |             |              |           |  |
| 11                   | 67294          | 1.29          | 0.038        |             |              |           |  |
| 12                   | 67295          | 1.04          | 0.030        |             |              |           |  |
| 13                   | 67296          | 1.63          | 0.048        |             |              |           |  |
| 16                   | 67299          | 1.06          | 0.031        |             |              |           |  |
| 19                   | 67303          | 0.63          | 0.018        |             |              |           |  |
| 21                   | 67305          | 1.19          | 0.035        |             |              |           |  |
| 24                   | 67308          | 2.08          | 0.061        |             |              |           |  |
| Resplit:             |                |               |              |             |              |           |  |
| 1                    | 67284          | 0.42          | 0.012        |             |              |           |  |
| Standard:            |                |               |              |             |              |           |  |
| SH13<br>PB106        |                | 1.34          | 0.039        | 59.3        | 1.73         | 0.84      |  |
| . 5.00               |                |               |              |             |              |           |  |

JJ/bs XLS/04 ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

Eco Tech LABORATORY LTD.
Page 2

XLS/02

| -00    | TECH     | LABOR | ATODY | ' I TD |
|--------|----------|-------|-------|--------|
| - ((.) | I M.C.H. | LABUR | AIURI | LID.   |

#### ICP CERTIFICATE OF ANALYSIS AK 2005-5094

### Falconbridge Limited

| Et #.    | Tag #     | Ag   | Ai % | As  | Ва  | Bi         | Ca % | Cd | Со | Cr         | Cu   | Fe % | La_l  | Mg % | Mn  | Мо  | Na %  | Ni  | Р    | Pb          | Sb      | Sn  | Şr          | Ti %   | U   |     | W   | Υ  | Zn        |
|----------|-----------|------|------|-----|-----|------------|------|----|----|------------|------|------|-------|------|-----|-----|-------|-----|------|-------------|---------|-----|-------------|--------|-----|-----|-----|----|-----------|
| 26       | 67310     | 18.2 | 0.60 | 135 | 45  | <5         | 0.16 | 2  | 20 | 73         | 2831 | 3.12 | <10   | 0.05 | 53  | 67  | <0.01 | 27  | 360  | 62          | 25      | <20 |             | < 0.01 | <10 |     | <10 | 3  | 248       |
| 27       | 67311     | 8.0  | 0.32 | 5   | 120 | <5         | 0.60 | <1 | 4  | 114        | 979  | 2.11 | <10   | 0.19 | 227 | 7   | 0.06  | 2   | 310  | 10          | <5      | <20 |             | <0.01  |     |     |     | 2  | 18        |
| 28       | 67312     | 0.6  | 0.74 | 30  | 110 | <5         | 1.21 | <1 | 7  | 88         | 3200 | 2.50 | <10   | 0.36 | 414 | 4   | 0.03  | 10  | 1150 | 12          | <5      | <20 | 112         |        | <10 |     | <10 | 6  | 27        |
| 29       | 67313     | 0.7  | 0.69 | 30  | 100 | <5         | 1.04 | <1 | 8  | 73         | 3728 | 2.84 | <10   | 0.26 | 538 | 14  | 0.02  | 6   | 1200 | 12          | <5      | <20 |             | <0.01  |     | . – | <10 | -  | 30        |
| 30       | 67314     | 0.7  | 0.78 | 30  | 105 | <5         | 0.97 | <1 | 7  | 78         | 3613 | 2.74 | <10   | 0.25 | 483 | 5   | 0.03  | 5   | 1160 | 16          | <5      | <20 | 91          | <0.01  | <10 | 47  | <10 | 7  | 26        |
|          |           |      |      |     |     |            |      |    |    |            |      |      |       |      |     | _   |       | _   | 4000 | 20          |         | -00 | <b>ለ</b> ሳታ | -0.04  | ~10 | 27  | -10 | 7  | 24        |
| 31       | 67315     | 0.9  | 0.68 | 30  |     | <5         | 1.39 | <1 | 6  | 85         | 3820 | 2.60 |       | 0.20 | 601 | 5   | 0.02  | 6   | 1380 | 22          | <5<br>  | <20 | . — .       | < 0.01 |     |     | <10 |    | 24<br>16  |
| 32       | 67316     | 0.6  | 0.53 | 75  |     | <5         | 2.29 | <1 | 9  | 77         | 3113 | 2.94 |       | 0.06 | 912 | 8   | 0.01  | 6   | 1230 | 14          | <5      | <20 |             | <0.01  |     |     | <10 |    | 16        |
| 33       | 67458     | 1.0  | 1.17 | <5  | 110 |            | 1.61 | <1 | 13 | 34         | 4097 | 3.61 |       | 1.12 | 696 | <1  | 0.18  | 18  | 1910 | 16          | <5      | <20 | 109         |        | <10 |     |     |    | 54        |
| 34       | 67300     | <0.2 | 2.55 | 25  |     | <5         | 3.79 | <1 | 32 | <b>5</b> 5 | 94   |      |       | 2.03 | 790 | <1  | 0.04  | 17  | 1690 | 26          | <5<br>- | <20 | 76          |        | <10 |     |     |    | 75<br>470 |
| 35       | 67464     | <0.2 | 0.80 | 90  | 160 | <5         | 0.26 | <1 | 67 | 243        | 428  | >10  | <10   | 0.12 | 480 | 131 | 0.05  | 442 | 100  | 1 <b>14</b> | <5      | <20 | 11          | <0.01  | <10 | 22  | <10 | <1 | 473       |
|          |           |      |      |     |     |            |      |    |    |            |      |      |       |      |     |     |       |     |      |             |         |     |             |        |     |     |     |    |           |
|          |           |      |      |     |     |            |      |    |    |            |      |      |       |      |     |     |       |     |      |             |         |     |             |        |     |     |     |    |           |
| QC DATA  | <u>4:</u> |      |      |     |     |            |      |    |    |            |      |      |       |      |     |     |       |     |      |             |         |     |             |        |     |     |     |    |           |
| Resplit: |           |      |      |     |     |            |      |    |    |            |      |      |       |      |     |     |       |     |      |             |         |     |             |        |     |     |     |    |           |
| 1        | 67284     | >30  | 0.44 | 130 | 50  | <5         | 1.25 | 4  | 8  | 52         | 1925 | 3.58 | <10   | 0.03 | 863 | 28  | 0.01  | 4   | 1022 | 328         | 80      | <20 | 89          | <0.01  | <10 | 11  | <10 | 14 | 415       |
| Danasti  |           |      |      |     |     |            |      |    |    |            |      |      |       |      |     |     |       |     |      |             |         |     |             |        |     |     |     |    |           |
| Repeat:  | 67094     | >30  | 0.49 | 145 | 55  | <5         | 1.18 | 4  | 8  | 54         | 2197 | 3 37 | <10   | 0.04 | 849 | 28  | 0.02  | 3   | 970  | 260         | 90      | <20 | 87          | <0.01  | <10 | 12  | <10 | 13 | 388       |
| 10       | 67284     |      | 0.65 | 105 |     | <5         | 0.64 | 2  | 10 | 72         | 1107 |      | <10   | 0.04 | 285 | 48  | 0.01  | 5   | 1420 | 128         | <5      | <20 | 46          |        |     | 19  | <10 | 6  | 206       |
| 10       | 67293     | 3.4  |      | 95  |     | <5         | 0.77 | 3  |    | 48         | 1138 | 4.39 |       | 0.03 | 411 | 9   | 0.02  | 1   | 1550 | 264         | <5      | <20 |             | <0.01  |     |     | <10 |    | 313       |
| 19       | 67303     | 5.1  | 0.66 | 90  | 40  | <b>~</b> 0 | 0.77 | 3  | 12 | 40         | 1130 | 4.33 | ~ I U | 0.03 | 711 | J   | 0.02  | '   | 1000 | 204         |         | -20 |             | ••••   |     |     |     |    |           |
|          |           |      |      |     |     |            |      |    |    |            |      |      |       |      |     |     |       |     |      |             |         |     |             |        |     |     |     |    |           |
|          |           |      |      |     |     |            |      |    |    |            |      |      |       |      |     |     |       |     |      |             |         |     |             |        |     |     |     |    |           |
| Standard | d:        |      |      |     |     |            |      |    |    |            |      |      |       |      |     |     |       |     |      |             | _       |     |             |        |     | 70  | -40 | 40 | 70        |
| GEO'05   |           | 1.5  | 1.40 | 55  | 155 | <5         | 1.32 | <1 | 16 | 60         | 86   | 3.74 | <10   | 0.72 | 569 | <1  | 0.02  | 29  | 640  | 22          | <5      | <20 | 55          | 0.11   | <10 | 70  | <10 | 10 | 76        |
|          |           |      |      |     |     |            |      |    |    |            |      |      |       |      |     |     |       |     |      |             |         |     |             |        |     |     |     |    |           |

JJ/bs df/5094

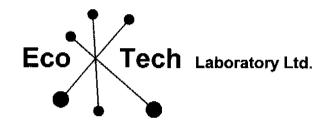
ECO TESH EABORATORY LTD.
Jutta Jealouse
BC Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 5094 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec

Laval, Quel


ATTENTION: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 8

Samples submitted by: Allan Huard

| Et #. | Tag#  | Ag           | Al % | As  | Ba E | i Ca 🤋 | 6 Cd          | Co   | Cr  | Cu           | Fe %  | La   | Mg %  | Mn   | Мо | Na %  | Ni  | Р    | Pb   | Sb | Sn  | Sr | Ti %   | Ų   |    | W Y    |     | Zn           |
|-------|-------|--------------|------|-----|------|--------|---------------|------|-----|--------------|-------|------|-------|------|----|-------|-----|------|------|----|-----|----|--------|-----|----|--------|-----|--------------|
| 1     | 67284 | >30          | 0.40 | 145 | 50 < | 5 1.1  | 1 3           | 7    | 50  | 2141         | 3.27  | <10  | 0.03  | 817  | 24 | 0.01  | 2   | 890  | 244  | 85 | <20 | -  | <0.01  |     |    | <10 13 |     | 393          |
| 2     | 67285 | 3.2          | 0.49 | 100 | 65 < | 5 1.4  | 2 <1          | 10   | 35  | 1398         | 3.12  | <10  | 0.04  | 1178 | 24 | 0.02  | 3   | 1120 | 28   | <5 | <20 |    | <0.01  | . – |    | <10 12 |     | 21           |
| 3     | 67286 | 1.8          | 0.63 | 100 | 55 < | 5 1.2  | 4 <1          | 9    | 42  | 827          | 3.33  | <10  | 0.04  | 979  | 10 | 0.02  | 3   | 1250 | 36   | <5 | <20 |    | <0.01  |     |    | <10 9  |     | 17           |
| 4     | 67287 | 5.4          | 0.51 | 140 | 50 < | 5 0.9  | 4 <1          | 13   | 48  | 984          | 5.03  | <10  | 0.02  | 668  | 16 | <0.01 | 2   |      | 108  | <5 | <20 |    | <0.01  |     |    | <10 7  |     | 100          |
| 5     | 67288 | 2.4          | 0.57 | 140 | 50 < | 5 0.9  | 3 <1          | 8    | 44  | 942          | 3.51  | <10  | 0.04  | 724  | 24 | <0.01 | 3   | 1180 | 48   | <5 | <20 | 70 | <0.01  | <10 | 13 | <10 7  |     | 49           |
|       |       |              |      |     |      |        |               |      |     |              |       |      |       |      |    |       |     |      |      | _  |     |    |        |     | 40 | .40 45 |     | 70           |
| 6     | 67289 | 1.8          | 0.53 | 110 | 60 < | 5 1.5  | 4 <1          | 8    | 40  | 1331         | 3.00  |      |       | 1229 | 9  | 0.01  | 2   |      | 32   | <5 | <20 |    | <0.01  |     |    | <10 12 |     | 78           |
| 7     | 67290 | 25.2         | 0.53 | 50  | 70 < | 5 1.5  | 56            | 10   | 60  | 2253         |       | <10  |       | 1164 |    | <0.01 | 3   |      | 322  | <5 | <20 |    | <0.01  |     |    |        |     | 800          |
| 8     | 67291 | 19.1         | 0.45 | 115 | 55 < | 5 0.5  | 1 147         | 10   | 85  | 2523         | 4.40  | <10  | 0.02  | 248  | _  | <0.01 | 4   | 940  | 1572 | <5 | <20 |    | <0.01  |     |    | 20 <1  |     |              |
| 9     | 67292 | 6.8          | 0.51 | 95  | 50 < | 5 0.4  | 78            | 11   | 68  | 1666         |       | <10  | 0.03  | 169  |    | <0.01 | 4   | ,    | 332  | <5 | <20 |    | <0.01  |     |    |        |     | 649          |
| 10    | 67293 | 3.3          | 0.57 | 100 | 45 < | 5 0.6  | 4 2           | 10   | 70  | 1118         | 3.46  | <10  | 0.04  | 283  | 52 | <0.01 | 4   | 1420 | 130  | <5 | <20 | 47 | <0.01  | <10 | 17 | <10 6  | 1   | 197          |
|       |       |              |      |     |      |        |               |      |     |              |       |      |       |      | _  |       |     |      |      |    | .00 | 40 | -0.04  | -40 | 40 | -40 -4 |     | 436          |
| 11    | 67294 | 11.0         | 0.42 | 115 | 55 < |        | 6 33          |      | 65  | 1272         | *     |      | <0.01 | 253  | _  | <0.01 |     | 1160 | 2754 | <5 | <20 |    | <0.01  |     |    |        |     | 1436<br>1923 |
| 12    | 67295 | 10.3         | 0.58 | 115 | 60 < |        |               | 10   | 75  | 1482         |       |      | 0.03  | 152  |    | <0.01 | 5   | 1310 | 498  | <5 | <20 |    | <0.01  |     |    | <10 4  |     | 1923<br>1856 |
| 13    | 67296 | <b>2</b> 9.7 | 0.44 | 235 | 40 < |        |               | 11   | 87  | 3822         |       |      | <0.01 | 76   |    | <0.01 | 4   | 940  | 692  | 90 | <20 |    | < 0.01 |     |    | <10 <1 |     | 1423         |
| 14    | 67297 | 20.2         | 0.48 | 315 | 45 < |        |               |      | 62  | 1885         |       | <10  |       | 66   | 4  | 0.01  | 3   | 1210 | 358  |    | <20 |    | <0.01  |     |    | <10 4  |     | 1423<br>2886 |
| 15    | 67298 | 12.3         | 0.56 | 240 | 50 < | 5 0.3  | 1 40          | 9    | 65  | 987          | 6.16  | <10  | 0.01  | 45   | 5  | 0.01  | 4   | 1340 | 454  | 30 | <20 | 26 | <0.01  | IŲ  | 10 | <10 <  | 2   | .000         |
|       |       | 40.0         | 5.40 | 005 | 45   | - ^^   |               |      | 74  | 4005         | 4 4 4 | -10  | 0.00  | 80   | 29 | 0.01  | 5   | 1270 | 336  | 40 | <20 | 27 | <0.01  | <10 | 13 | <10 5  | · 1 | 734          |
| 16    | 67299 | 10.6         | 0.48 | 205 | 45 < |        | 5 22<br>3 463 |      |     | 1235<br>4162 | 4.14  | <10  |       | 129  |    | 0.01  | 4   | 930  | 668  |    | <20 | 28 |        |     |    |        |     |              |
| 17    | 67301 | 28.7         | 0.51 | 255 | 40 < |        |               |      | 113 | 1707         |       | <10  |       | 106  | 4  | 0.01  | 2   |      | 510  | 15 | <20 |    | <0.01  |     |    |        |     | 1500         |
| 18    | 67302 | 12.0         | 0.43 | 170 | 35 < |        |               |      | 53  |              |       |      |       | 399  | 10 | 0.01  | 5   |      | 256  | <5 | <20 |    | <0.01  |     |    |        |     | 294          |
| 19    | 67303 | 5.1          | 0.60 | 95  | 50 < |        | -             |      | 48  | 1127         |       | <10  |       | 874  | 5  | 0.02  | 3   |      | 222  | _  | <20 |    | <0.01  |     |    |        |     | 344          |
| 20    | 67304 | 2.6          | 0.42 | 50  | 40 < | 5 1.4  | 0 4           | 7    | 36  | 528          | 3.20  | <10  | 0.02  | 0/4  | 5  | 0.02  | 3   | 1550 | 222  | 70 | ~20 | 10 | 10.01  | -,0 | ,_ | -10 1  |     | <b>.</b>     |
| 24    | 67305 | 0.0          | 0.47 | 80  | 55 < | 5 0.6  | E 13          | 11   | 87  | 3012         | 4.49  | <10  | 0.02  | 242  | 16 | 0.02  | 4   | 1020 | 378  | <5 | <20 | 46 | <0.01  | <10 | 20 | <10 6  | 3 1 | 1093         |
| 21    | 67305 | 9.0<br>7.3   | 0.47 | 00  | 60 < | •      |               | 13   | 95  | 3104         |       | <10  |       | 137  | 52 | 0.02  | 4   |      | 336  | 25 | <20 | _  | <0.01  |     |    | <10 9  |     | 918          |
| 22    |       | 6.8          | 0.46 | 70  | 45 < |        |               | 11   | 66  | 2556         |       | <10  |       | 63   | 22 | 0.02  | 4   | 1440 | 240  | <5 | <20 |    | < 0.01 |     |    | <10 1  |     | 287          |
| 23    | 67307 | >30          | 0.30 | 90  | 45 < |        |               |      | 67  | 3775         |       | <10  |       | 114  | 25 | 0.02  | 3   |      | 750  | <5 | <20 |    | < 0.01 |     |    |        |     | 2425         |
| 24    | 67308 | 6.2          |      | 45  | 55 < |        |               | 13   | 69  | 2939         | -     | <10  |       | 402  | 55 | 0.02  | 4   | 1360 | 322  | <5 | <20 |    | <0.01  |     |    | <10 9  |     | 468          |
| 25    | 67309 | 0.2          | 0.52 | 40  | 55 \ | J 1.0  | , .           | , 13 | UÐ. | 2000         | 2.00  | - 10 | 0.04  | 702  | 55 | 0.02  | - F | .000 |      | _  | _0  |    |        |     |    |        |     |              |



10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5095**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 11

Samples Submitted by: Allan Huard

15-Aug-05

| ET #.       | Tag #          | Au<br>(g/t) | Au<br>(oz/t) | Ag<br>(g/t) | Ag<br>(oz/t) |                    |
|-------------|----------------|-------------|--------------|-------------|--------------|--------------------|
| 1           | 67384          | 0.24        | 0.007        |             | ,            |                    |
| 2           | 67385          | 0.28        | 0.008        |             |              |                    |
| 2<br>3      | 67386          | 0.32        | 0.009        |             |              |                    |
| 4           | 67387          | 0.07        | 0.002        |             |              |                    |
| 5           | 67388          | 0.07        | 0.002        |             |              |                    |
| 5<br>6<br>7 | 67389          | 0.04        | 0.001        |             |              |                    |
| 7           | 67390          | 0.07        | 0.002        |             |              |                    |
| 8           | 6739 <b>1</b>  | 0.05        | 0.001        |             |              |                    |
| 8<br>9      | 67392          | 0.21        | 0.006        |             |              |                    |
| 10          | 67393          | 0.14        | 0.004        |             |              |                    |
| 11          | 67394          | 0.13        | 0.004        |             |              |                    |
| 12          | 673 <b>9</b> 5 | 0.32        | 0.009        |             |              |                    |
| 13          | 67396          | 0.49        | 0.014        |             |              |                    |
| 14          | 67397          | 0.12        | 0.003        |             |              |                    |
| 15          | 67398          | 0.09        | 0.003        |             |              |                    |
| 16          | 67399          | 0.16        | 0.005        |             |              |                    |
| 17          | 67404          | 0.68        | 0.020        | 44.3        | 1.29         |                    |
| 18          | 67405          | 0.34        | 0.010        |             |              |                    |
| 19          | 67406          | 0.20        | 0.006        |             |              |                    |
| 20          | 67407          | 0.42        | 0.012        |             |              |                    |
| 21          | 67408          | 0.42        | 0.012        |             |              |                    |
| 22          | <b>6740</b> 9  | 0.14        | 0.004        |             |              |                    |
| 23          | 67410          | 0.23        | 0.007        |             |              |                    |
| 24          | 67411          | 0.14        | 0.004        |             |              |                    |
| 25          | 67412          | 0.29        | 0.008        |             |              | _ / \              |
|             |                |             |              |             |              | $\frown$ ./ $\mid$ |

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

| E <b>T</b> #.     | Tag # | Au<br>(g/t) | Au<br>(oz/t) | Ag<br>(g/t) | Ag<br>(oz/t) | Zn<br>(%) |               |
|-------------------|-------|-------------|--------------|-------------|--------------|-----------|---------------|
| 26                | 67413 | 0.20        | 0.006        | (3:4/       | <u> </u>     |           |               |
| 27                | 67414 | 0.52        | 0.015        |             |              | 2.08      |               |
| 28                | 67415 | 0.37        | 0.011        |             |              |           |               |
| 29                | 67416 | 0.66        | 0.019        |             |              |           |               |
| 30                | 67417 | 0.18        | 0.005        |             |              |           |               |
| 31                | 67418 | 0.26        | 0.008        |             |              |           |               |
| 32                | 67419 | 0,27        | 0.008        |             |              |           |               |
| 33                | 67460 | 0.44        | 0.013        |             |              |           |               |
| 34                | 67470 | <0.03       | < 0.001      |             |              |           |               |
| 35                | 67466 | 0.07        | 0.002        |             |              |           |               |
| QC DATA:          |       |             |              |             |              |           |               |
| QC DATA.          |       |             |              |             |              |           |               |
| Repeat:           |       |             |              |             |              |           |               |
| 1                 | 67384 | 0.24        | 0.007        |             |              |           |               |
| 10                | 67393 | 0.14        | 0.004        |             |              |           |               |
| 17                | 67404 | 0.63        | 0.018        |             |              |           |               |
| 19                | 67406 | 0.20        | 0.006        |             |              |           |               |
| 29                | 67416 | 0.67        | 0.020        |             |              |           |               |
| Resplit:          |       |             |              |             |              |           |               |
| 1                 | 67384 | 0.26        | 0.008        |             |              |           |               |
| Standard:<br>SH13 |       | 1.34        | 0.039        |             |              |           |               |
| PB106             |       | 1,04        | 0.000        | 58.9        | 1.72         | 0.84      |               |
| JJ/bs             |       |             |              | 33.0        | E            | )dA/      | BORATORY LTD. |
| XLS/04            |       |             |              |             | В.           |           | ssayer        |

# ECO TECH LABORATORY LTD. 10041 Dallas Drive

10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700

Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AS 2005-5095

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

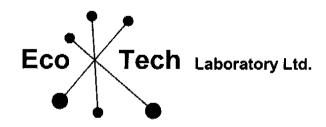
Attention: Allan Huard

No. of samples received: 35 Sample Type: Core/Rock/Pulp Submitted by: Allan Huard

Project #: 301 Shipment #: 11

| Et #.          | Tag # | Ag Al %   | As  | Ва       | Bi         | Ca % | Cd       | Co | Cr  | Cu   | Fe % | La  | Mg %  | Mn  | Mo Na %   | Ni | Р    | Pb   | Sb  | Sn  | \$r | Ti %   | U   | ٧  | W   | Y  | Zn   |
|----------------|-------|-----------|-----|----------|------------|------|----------|----|-----|------|------|-----|-------|-----|-----------|----|------|------|-----|-----|-----|--------|-----|----|-----|----|------|
| <del>- 1</del> | 67384 | 7.9 0.56  | 85  | 35       | <5         | 0.26 | 2        | 13 | 67  | 1816 | 3.99 | <10 | 0.02  | 22  | 13 < 0.01 | 3  | 1050 | 428  | 35  | <20 |     | <0.01  | <10 |    | <10 | 1  | 182  |
| 2              | 67385 | 7.9 0.52  | 170 | 30       | <5         | 0.21 | 2        | 6  | 84  | 1546 | 2.98 | <10 | 0.01  | 21  | 22 < 0.01 | 2  | 870  | 228  | 55  | <20 |     | <0.01  | <10 | 19 | <10 | <1 | 187  |
| 3              | 67386 | 18.6 0.42 | 130 | 30       | <5         | 0.37 | 4        | 14 | 134 | 1197 | 3.29 | <10 | <0.01 | 23  | 21 < 0.01 | 3  | 1770 | 1058 | 80  | <20 |     | <0.01  | <10 | 18 | <10 | <1 | 207  |
| 4              | 67387 | 14.3 0.38 | 205 | 30       | <5         | 0.18 | 7        | 5  | 88  | 1142 | 2.22 | <10 | <0.01 | 19  | 11 <0.01  | 2  |      | 356  | 180 | <20 |     | <0.01  | <10 | 17 | <10 | 1  | 453  |
| 5              | 67388 | 6.7 0.52  | 90  | 35       | <5         | 0.15 | 12       | 4  | 82  | 952  | 1.51 | <10 | 0.02  | 20  | 14 < 0.01 | <1 | 480  | 372  | 85  | <20 | 41  | <0.01  | <10 | 15 | <10 | 3  | 960  |
| 6              | 67389 | 3.0 0.68  | 60  | 35       | <b>~</b> 5 | 0.19 | 11       | 5  | 45  | 1005 | 1.29 | <10 | 0.05  | 39  | 16 < 0.01 | 1  | 770  | 190  | 45  | <20 | 70  | <0.01  | <10 | 17 | <10 | 2  | 1038 |
| 7              | 67390 | 3.5 0.55  | 85  | 35       | <5         | 0.14 | 2        | 8  |     | 1129 |      | <10 | 0.03  | 24  | 14 < 0.01 | 2  |      | 126  | 75  | <20 | _   | < 0.01 | <10 | 17 | <10 | 1  | 349  |
| 8              | 67391 | 12.7 0.58 | 305 | 40       | <5         | 0.22 | 3        | 8  |     | 2339 | 2.00 | <10 | 0.04  | 37  | 59 0.01   | 3  | 840  | 154  | 390 | <20 | 39  | < 0.01 | <10 | 13 | <10 | 2  | 380  |
| 9              | 67392 | 11.3 0.51 | 75  | 35       | <5         | 0.19 | 5        | 13 |     | 3425 | 3.42 |     | 0.02  | 25  | 46 0.01   | 3  | 650  | 236  | 80  | <20 |     | < 0.01 | <10 | 17 | <10 | <1 | 384  |
| 10             | 67393 | 9.0 0.47  | 70  | 30       | <5         | 0.11 | 7        | 9  |     | 1657 |      | -   | 0.02  | 20  | 26 0.01   | 3  | 370  | 214  | 50  | <20 | 32  | < 0.01 | <10 | 18 | <10 | <1 | 471  |
| 10             | 01090 | 3.0 0.47  | 10  | 00       |            | 0.11 | •        | Ů  |     | 1001 | ,_   | , • | 4.02  |     |           |    |      |      |     |     |     |        |     |    |     |    |      |
| 11             | 67394 | 7.0 0.61  | 55  | 30       | <5         | 0.08 | 6        | 12 | 102 | 2024 | 2.76 | <10 | 0.03  | 24  | 27 0.01   | 4  | 200  | 110  | 25  | <20 | 41  | <0.01  | <10 | 24 | <10 | <1 | 487  |
| 12             | 67395 | 13.7 0.69 | 35  | 35       | <5         | 0.21 | <1       | 15 | 37  | 2685 | 2.04 | <10 | 0.05  | 60  | 37 0.01   | 2  | 730  | 30   | 10  | <20 |     | <0.01  | <10 | 17 | <10 | 5  | 62   |
| 13             | 67396 | 10.6 0.62 | 70  | 35       | <5         | 0.22 | <1       | 7  | 49  | 3274 | 1.61 | <10 | 0.05  | 91  | 28 < 0.01 | <1 | 820  | 14   | 45  | <20 |     | <0.01  | <10 | 14 | <10 | 4  | 42   |
| 14             | 67397 | 5.2 0.73  | 70  | 40       | <5         | 0.24 | <1       | 6  | 76  | 3597 | 1.76 | <10 | 0.06  | 101 | 14 0.01   | 2  | 900  | 66   | 65  | <20 |     | <0.01  | <10 | 20 | <10 | 7  | 46   |
| 15             | 67398 | 9.3 0.59  | 120 | 35       | <5         | 0.27 | <1       | 4  | 56  | 3395 | 1.71 | 20  | 0.04  | 104 | 7 <0.01   | 3  | 1090 | 178  | 120 | <20 | 72  | <0.01  | <10 | 16 | <10 | 8  | 72   |
| 4.0            | 67200 | P 4 0 70  | 450 | 40       | <i>-E</i>  | 0.28 | <1       | 9  | 90  | 3586 | 2.18 | 20  | 0.06  | 75  | 19 0.01   | 2  | 920  | 26   | 185 | <20 | 59  | <0.01  | <10 | 20 | <10 | 11 | 111  |
| 16             | 67399 | 8.1 0.79  | 150 | 40       | <5<br><5   | 0.29 |          | 14 |     | 7042 |      | 10  | 0.00  | 62  | 46 0.01   | 4  |      | 426  | 695 | <20 | 51  |        |     | 18 | <10 | 11 | 1102 |
| 17             | 67404 | >30 0.50  | 490 | 35       | _          | 0.29 | 11<br>10 | 10 |     | 2005 | 3.31 | <10 | 0.04  | 87  | 10 0.01   | 3  |      | 346  | <5  | <20 |     | <0.01  |     | 29 | <10 | 7  | 857  |
| 18             | 67405 | 7.0 0.58  | 45  | 35       | <5         | 0.34 | <1       | 13 | -   |      | 3.70 | <10 |       | 99  | 23 0.01   | -  |      | 40   | <5  | <20 |     | <0.01  |     | 26 | <10 | 4  | 61   |
| 19             | 67406 | 2.8 0.63  | 35  | 40<br>45 | <5<br><5   | 0.23 | 15       | 12 |     | 1760 |      |     |       | 60  | 9 0.01    | 4  | 500  | 568  | <5  | <20 |     | <0.01  | <10 | 36 | <10 | 2  | 1178 |
| 20             | 67407 | 3.5 0.54  | 75  | 45       | <b>~</b> 5 | 0.23 | 13       | 12 | 70  | 1700 | 4.50 | ~10 | 0.00  | 00  | 3 0.01    | 7  | 000  | 000  |     | -20 | 00  | 0.01   |     |    |     |    |      |
| 21             | 67408 | 5.5 0.49  | 20  | 40       | <5         | 0.26 | 4        | 33 | 56  | 3713 | 3.84 | 10  | 0.03  | 64  | 13 0.01   | 4  | 580  | 88   | <5  | <20 |     | <0.01  | <10 | 23 | <10 | 10 | 295  |
| 2 <b>2</b>     | 67409 | 0.7 0.63  | 30  | 45       | <5         | 0.35 | <1       | 13 | 78  | 665  | 3.78 | <10 | 0.03  | 111 | 7 0.01    | 3  | 670  | 12   | <5  | <20 | 38  | <0.01  |     | 30 | <10 | 6  | 27   |
| 23             | 67410 | 2.4 0.50  | 50  | 45       | <5         | 0.35 | <1       | 8  | 84  | 1306 | 3.95 | <10 | 0.02  | 116 | 7 0.01    | 2  | 480  | 58   | <5  | <20 |     | <0.01  |     | 22 | <10 | 4  | 47   |
| 24             | 67411 | 5.0 0.50  | 95  | 40       | <5         | 0.15 | 2        | 7  | 72  | 1999 | 3.83 | <10 | 0.03  | 50  | 9 0.01    | 2  | 450  | 122  | 15  | <20 | 24  | <0.01  |     | 30 | <10 | 3  | 210  |
| 25             | 67412 | 6.4 0.60  | 190 | 40       | <5         | 0.23 | 6        | 9  | 101 | 1840 | 5.31 | <10 | 0.03  | 111 | 7 0.01    | 5  | 760  | 138  | 95  | <20 | 31  | <0.01  | <10 | 43 | <10 | <1 | 533  |
|                |       |           |     |          |            |      |          |    |     |      |      |     |       |     |           |    |      |      |     |     |     |        |     |    |     |    |      |

12-Aug 05 ECO TECH LABORATORY LTD.


### Falconbridge Limited

| Et #.               | Tag # | Ag Al %   | As  | Ва  | Bi | Ca % | Cd  | Co | Cr  | Cu         | Fe % | La  | Mg % | Mn         | Mo  | Na %  | <u>Ni</u> | Р       | Pb   | Sb  | <u>Sn</u> | Sr  | Ti %   | U   | <u>v</u> | W   | <u> Y</u> | Zn     |
|---------------------|-------|-----------|-----|-----|----|------|-----|----|-----|------------|------|-----|------|------------|-----|-------|-----------|---------|------|-----|-----------|-----|--------|-----|----------|-----|-----------|--------|
| 26                  | 67413 | 12.0 0.58 | 330 | 35  | <5 | 0.12 | 4   | 9  | 93  | 1960       | 4.36 | <10 | 0.02 | 71         | 7   | 0.02  | 3         | 330     | 496  | 215 | <20       |     | <0.01  | <10 | 31       | <10 | <1        | 355    |
| 27                  | 67414 | 25.5 0.53 | 365 | 30  | <5 | 0.11 | 238 | 10 | 104 | 4087       | 3.61 | <10 | 0.03 | 67         | 3   | 0.01  | <1        | 110     | 9440 | 195 | <20       |     | <0.01  | <10 | 20       | 30  | _         | >10000 |
| 28                  | 67415 | 9.5 0.60  | 195 | 40  | <5 | 0.47 | 9   | 7  | 94  | 1998       | 3.35 | <10 | 0.04 | 191        | 12  | 0.02  | 2         | 570     | 264  | 55  | <20       |     | <0.01  | <10 | 25       | <10 | 2         | 724    |
| 29                  | 67416 | 9.6 0.52  | 220 | 35  | <5 | 0.32 | 6   | 10 |     | 1140       | 4.09 | <10 | 0.02 | 90         | 42  | 0.02  | 4         | . — — — | 580  | 15  | <20       |     | <0.01  | <10 | 25       | <10 | 4         | 465    |
| 30                  | 67417 | 2.0 0.59  | 185 | 45  | <5 | 0.39 | <1  | 11 | 63  | 1689       | 4.46 | <10 | 0.03 | 89         | 6   | 0.02  | 3         | 1370    | 28   | <5  | <20       | 34  | 0.01   | <10 | 33       | <10 | 9         | 77     |
| 31                  | 67418 | 5.1 0.51  | 370 | 50  | <5 | 0.75 | <1  | 11 | 61  | 5468       | 4.53 | <10 | 0.03 | 232        | 10  | 0.02  | 3         | 890     | 60   | <5  | <20       | 39  | 0.02   | <10 | 30       | <10 | 7         | 182    |
| 32                  | 67419 | 5.4 0.58  | 235 | 55  | <5 | 1.19 | 3   | 5  | 52  | 3525       | 2.48 | <10 | 0.05 | 432        | 4   | 0.02  | <1        | 1060    | 380  | 10  | <20       | 52  | 0.02   | <10 | 28       | <10 | 14        | 276    |
| 33                  | 67460 | 2.0 1.40  | <5  | 310 | <5 | 1.46 | <1  | 12 | 24  | 7426       | 1.06 | 476 | 2.00 | 476        | 2   | 0.14  | 18        | 2240    | <2   | <5  | <20       | 84  | 0.07   | <10 | 146      | <10 | 19        | 46     |
| 34                  | 67470 | <0.2 2.10 | 5   | 85  | <5 | 5.67 | <1  | 23 | 57  | 81         | 4.61 | <10 | 1.55 | 640        | <1  | 0.05  | 11        | 1240    | 2    | 5   | <20       | 115 | 0.16   | <10 | 201      | <10 | 20        | 50     |
| 35                  | 67466 | <0.2 0.70 | 85  | 155 | <5 | 0.24 | 1   | 64 | 246 | 439        | >10  | <10 | 0.12 | 459        | 117 | 0.05  | 435       | 80      | 110  | <5  | <20       | 11  | <0.01  | <10 | 26       | <10 | <1        | 469    |
| QC DATA:<br>Repeat: |       |           |     |     |    |      |     |    |     |            |      |     |      |            |     |       |           |         |      |     |           |     |        |     |          |     |           |        |
| nepeat.             | 67384 | 7.9 0.58  | 95  | 30  | <5 | 0.26 | 2   | 14 | 70  | 1734       | 4.02 | <10 | 0.02 | 23         | 13  | <0.01 | 3         | 1030    | 434  | 30  | <20       | 30  | < 0.01 | <10 | 20       | <10 | 2         | 186    |
| 10                  | 67393 | 9.0 0.48  | 70  | 25  | <5 | 0.11 | 6   | 9  |     | 1625       | 2.70 | <10 | 0.02 | 20         |     | <0.01 | 1         | 340     | 210  | 45  | <20       | 32  | < 0.01 | <10 | 18       | <10 | <1        | 464    |
| 19                  | 67406 | 2.8 0.60  | 30  | 40  | <5 | 0.31 | <1  | 12 |     | 2554       | 3.40 | <10 | 0.04 | 92         | 23  | 0.01  | 4         | 370     | 42   | <5  | <20       | 35  | <0.01  | <10 | 25       | <10 | 4         | 63     |
| Resplit:            | 67384 | 7.9 0.70  | 100 | 30  | <5 | 0.23 | 3   | 12 | 76  | 1688       | 3.76 | <10 | 0.02 | 23         | 13  | <0.01 | 2         | 950     | 398  | 40  | <20       | 28  | <0.01  | <10 | 24       | <10 | 2         | 200    |
| Standard:           |       |           |     |     | _  |      |     |    |     | <b>a</b> - |      | 4.0 |      | <b>500</b> |     | 0.00  | 00        | 040     | 20   |     | <00       | EC. | 0.40   | <10 | 68       | <10 | 14        | 74     |
| GEO '05             |       | 1,5 1.54  | 55  | 155 | <5 | 1.39 | <1  | 19 | 63  | 83         | 3.93 | <10 | 0.78 | 580        | <1  | 0.03  | 26        | 610     | 20   | <5  | <20       | 56  | 0.10   | ~10 | 90       | ~10 | 14        | 14     |

JJ/bs df/5095 XLS/05 Fax#:

ECO/ECH LABORATORY-LTD.

Justa Jealouse
B.C. Certified Assayer



10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com

www.ecotechlab.com

16-Aug-05

# **CERTIFICATE OF ASSAY AS 2005-5096**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35 Sample type: Core/Rock/Pulp

Project #: 301 Shipment #: 12

Samples Submitted by: Allan Huard

|      |       | Au    | Au     |  |
|------|-------|-------|--------|--|
| ET#. | Tag # | (g/t) | (oz/t) |  |
| 1    | 67420 | 0.16  | 0.005  |  |
| 2    | 67421 | 0.48  | 0.014  |  |
| 3    | 67422 | 0.15  | 0.004  |  |
| 4    | 67423 | 0.11  | 0.003  |  |
| 5    | 67424 | 0.10  | 0.003  |  |
| 6    | 67426 | 0.06  | 0.002  |  |
| 7    | 67427 | 0.10  | 0.003  |  |
| 8    | 67428 | 0.29  | 0.008  |  |
| 9    | 67429 | 0.61  | 0.018  |  |
| 10   | 67430 | 0.58  | 0.017  |  |
| 11   | 67431 | 0.24  | 0.007  |  |
| 12   | 67432 | 0.11  | 0.003  |  |
| 13   | 67433 | 0.13  | 0.004  |  |
| 14   | 67434 | 0.11  | 0.003  |  |
| 15   | 67435 | 0.09  | 0.003  |  |
| 16   | 67436 | 0.20  | 0.006  |  |
| 17   | 67437 | 0.24  | 0.007  |  |
| 18   | 67438 | 0.21  | 0.006  |  |
| 19   | 67439 | 0.62  | 0.018  |  |
| 20   | 67440 | 0.29  | 0.008  |  |
| 21   | 67441 | 0.11  | 0.003  |  |
| 22   | 67442 | 0.18  | 0.005  |  |
| 23   | 67443 | 0.08  | 0.002  |  |
| 24   | 67444 | 0.07  | 0.002  |  |
| 2.5  | 67445 | 0.07  | 0.002  |  |

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

|           |       | Au    | Au            |   |
|-----------|-------|-------|---------------|---|
| ET #.     | Tag#  | (g/t) | (oz/t)        |   |
| 26        | 67446 | 0.05  | 0.001         |   |
| 27        | 67447 | 0.15  | 0.004         |   |
| 28        | 67448 | 0.15  | 0.004         | * |
| 29        | 67450 | 0.70  | 0.020         |   |
| 30        | 67451 | 0.46  | 0.013         |   |
| 31        | 67452 | 0.57  | 0.017         |   |
| 32        | 67454 | 0.54  | 0.016         |   |
| 33        | 67425 | 0.06  | 0.002         |   |
| 34        | 67453 | <0.03 | <0.001        |   |
| 35        | 67449 | 0.39  | 0.011         |   |
| QC DATA:  |       |       |               |   |
| Repeat:   |       |       |               |   |
| 1         | 67420 | 0.17  | 0.005         |   |
| 10        | 67430 | 0.54  | <b>0</b> .016 |   |
| 19        | 67439 | 0.60  | 0.017         |   |
| 29        | 67450 | 0.68  | 0.020         |   |
| Resplit:  |       |       |               |   |
| 1         | 67420 | 0.17  | 0.005         |   |
| Standard: |       |       |               |   |
| SH13      |       | 1.33  | 0.039         | _ |

JJ/bs XLS/04 ECOTESTI LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax: : 250-573-4557

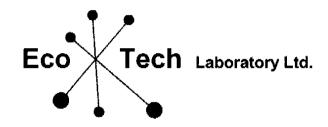
Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35 Sample type: Core/Rock/Pulp

Project #: 301 Shipment #: 12

Samples submitted by: Allan Huard


| Et #.    | Tag #          | Ag   | AI % | As         | Ba I  | Bi C | Ca % | Cd  | Со | Cr Cu    | Fe %   | La   | Mg % | Mn   | Мо  | Na % | Ni | Р    | Pb   | Sb   | Sn          | Sr       | Ti % t   | <u> </u> | W Y    | Zn  |
|----------|----------------|------|------|------------|-------|------|------|-----|----|----------|--------|------|------|------|-----|------|----|------|------|------|-------------|----------|----------|----------|--------|-----|
| 1        | 67420          | 3.9  | 0.72 | 40         | 70 <  | <5   | 0.67 | 3   | 5  | 84 6055  | 2.02   | 10   | 0.07 | 216  | 20  | 0.03 | 3  | 920  | 246  | <5 < | <20         | 45       | 0.02 <10 |          | <10 10 |     |
| 2        | 67421          | 4.2  | 0.59 | 120        | 45 <  | <5   | 0.87 | <1  | 14 | 52 4036  | 4.68   | <10  | 0.04 | 232  | 15  | 0.02 | 4  | 2140 | 26   | <5 < | -           | 43       | 0.02 <10 |          | <10 11 | 43  |
| 3        | 67422          | 1.2  | 0.69 | 100        | 45 <  | <5   | 0.58 | <1  | 8  | 61 2160  | 3.16   | <10  | 0.06 | 162  | 8   | 0.02 | 2  | 1710 | 18   | <5 < |             | 43       | 0.02 <10 |          | <10 11 | 26  |
| 4        | 67423          | 2.0  | 0.48 | 65         | 45 <  | <5   | 0.31 | <1  | 7  | 82 2525  | 2.90   | 10   | 0.04 | 95   | 11  | 0.02 | 2  | 690  | 30   | <5 < |             | 27       | 0.01 <1  |          | <10 4  | 13  |
| 5        | 67424          | 1.5  | 0.44 | <b>4</b> 0 | 50 <  | <5   | 0.22 | <1  | 9  | 102 1231 | 2.35   | <10  | 0.03 | 93   | 8   | 0.02 | 4  | 380  | 32   | <5 < | <20         | 28       | <0.01 <1 | 34       | <10 3  | 36  |
|          |                |      |      |            |       | _    |      |     | _  |          | 4.50   |      |      | 70   |     | 0.00 |    | 050  | 50   | -5   | <b>-</b> 20 | 24       | <0.01 <1 | 35       | <10 13 | 84  |
| 6        | 67426          | 0.6  | 0.65 |            | 130 < |      |      | 1   | 3  | 59 385   |        | 20   |      | 79   | 4   | 0.02 | 2  | 950  | 56   | <5 < |             |          |          |          | <10 13 | 78  |
| 7        | 67427          | 8.0  | 0.68 | 120        |       |      | 0.35 | <1  | 7  | 81 546   |        | 10   | 0.06 | 83   | 9   | 0.02 | 4  | 1310 | 24   | <5 < |             |          | <0.01 <1 |          |        |     |
| 8        | 67428          | 1.6  | 0.68 | 145        | 50 ≺  |      | 0.26 | 5   | 8  | 112 373  |        |      | 0.05 | 98   | 8   | 0.02 | 5  | 900  | 100  | <5 < |             | 24       | 0.01 <1  |          | <10 8  |     |
| 9        | 67429          | 6.3  | 0.62 | 205        | 45 -  | <5   | 0.72 | 13  | 10 | 75 1028  |        |      | 0.03 | 290  | 20  | 0.02 | 5  | 1040 | 460  | 10 < |             | 39       | 0.01 <1  |          | <10 4  |     |
| 10       | 67430          | 3.2  | 0.59 | 430        | 50 <  | <5   | 2.00 | <1  | 8  | 67 498   | 4.35   | <10  | 0.02 | 802  | 7   | 0.02 | 4  | 1380 | 66   | 10 • | <20         | 76       | 0.02 <1  | 38       | <10 12 | 151 |
|          |                |      |      |            |       | _    |      | _   | _  | 64 644   | 0.04   | -40  | 0.05 | 205  | 0   | 0.00 | 2  | 1260 | 244  | <5 < | ~2 <b>0</b> | 38       | 0.02 <1  | ) 43     | <10 13 | 425 |
| 11       | 67 <b>4</b> 31 | 1.5  | 0.64 |            |       | _    | 0.89 | 3   | 8  | 61 344   |        |      |      | 305  | 8   | 0.02 | 3  |      |      |      |             | 33       | 0.02 <1  |          | <10 12 |     |
| 12       | 67432          | 0.9  |      | 105        | 45 •  | _    | 0.48 |     | 10 | 61 611   |        |      | 0.04 | 114  | 11  | 0.02 | 2  | 1520 | 102  | <5 · |             | 33<br>44 | 0.02 <1  | -        | <10 12 |     |
| 13       | 67433          | 1.5  | 0.66 | 75         | 50 ≺  | _    | 0.00 | <1  | 8  | 81 1543  |        |      | 0.05 | 182  | - ( | 0.02 | 4  | 1480 | 82   | <5 • |             |          |          |          | <10 6  |     |
| 14       | 67434          | 0.9  | 0.52 | 95         |       | _    | 0.27 | 3   | 32 | 103 610  |        |      |      | 71   | 13  | 0.02 | 2  | 890  | 166  | <5 · |             |          | <0.01 <1 |          | <10 13 |     |
| 15       | 67435          | 0.9  | 0.69 | 60         | 70 ·  | <5   | 0.49 | 3   | 20 | 73 724   | 1.81   | 10   | 0.06 | 131  | 40  | 0.02 | 2  | 1480 | 148  | <5 · | <20         | 31       | <0.01 <1 | 23       | <10 13 | 240 |
| 40       | 07400          | 4.0  | 0.05 | 60         | 55 -  | <5   | 0.50 | 2   | 8  | 73 1103  | 3 2.52 | -10  | 0.05 | 100  | 5   | 0.02 | 3  | 1740 | 212  | <5 · | <20         | 32       | 0.01 <1  | 26       | <10 12 | 237 |
| 16       | 67436          | 1.8  | 0.65 | 70         | -     |      |      | <1  | -  | 73 1103  |        | <10  |      | 130  | 8   | 0.02 | 3  | 1460 | 70   | <5 · |             | 36       | 0.03 <1  | •        | <10 12 |     |
| 17       | 67437          | 1.6  | 0.79 |            |       | <5   | 0.50 |     | 10 | 80 1838  |        | <10  |      | 108  | 7   | 0.02 | 3  | 1430 | 144  | <5   |             | 33       | 0.02 <1  |          | <10 11 |     |
| 18       | 67438          | 5.1  | 0.87 | 95         | 45    | -    |      | 4   |    | *        |        | <10  |      | 284  | 12  | 0.02 | 4  |      | 1224 | <5 · |             |          | <0.01 <1 |          | <10 7  | =   |
| 19       | 67439          | 12.3 | 0.40 | 50         | 40 -  |      |      | 15  |    | 172 2163 |        |      |      | 130  | 53  | 0.01 | 4  | 1400 | 164  | <5   |             | 31       | 0.02 <1  |          | <10 8  |     |
| 20       | 67440          | 4.7  | 0.70 | 125        | 50 ·  | <5   | 0.48 | 3   | 14 | 89 1888  | 4.00   | <10  | 0.04 | 130  | Ųδ  | 0.02 | -  | 1400 | 10-7 | -3   | ~20         | 01       | 0.02     | J        | 110    | 020 |
| 21       | 67441          | 1.7  | 0.79 | 65         | 65 -  | <5   | 0.71 | <1  | g  | 56 1457  | 2.29   | <10  | 0.07 | 199  | 13  | 0.02 | <1 | 1740 | 14   | <5 · | <20         | 35       | 0.02 <1  | 0 37     | <10 13 | 32  |
| 22       | 67442          | 1.3  | 0.91 | 75         |       | -    | 0.98 |     | 11 | 53 1132  |        | <10  |      | 506  | 14  | 0.03 | 3  | 1600 | 14   | <5   | <20         | 45       | 0.02 <1  | 0 48     | <10 13 | 65  |
| 22       | 67443          | 0.5  | 1.27 |            | 125   |      | 1.18 |     | 6  | 49 717   |        | <10  |      | 770  | 6   | 0.03 | 3  | 1590 | 26   | <5   |             | 71       | 0.02 <1  | 0 56     | <10 18 | 67  |
| 23<br>24 | 67444          | 0.3  | 1.17 |            | 240   |      | 2.04 |     | 4  | 43 297   |        |      |      | 1151 | 3   | 0.03 | <1 | 1420 | 28   | <5   |             | 119      | 0.02 <1  | 0 55     | <10 23 | 67  |
|          | •              | 0.3  | 1.29 | 25         |       | _    | 1.60 |     | 8  | 48 1002  |        | <10  |      | 1093 | 5   | 0.03 | 2  | 1510 | 16   | <5 · |             | 80       | 0.02 <1  |          | <10 15 | 81  |
| 25       | 67445          | Ų.7  | 1.29 | 20         | 70    | ~U   | 1.00 | ~ 1 | O  | 40 1002  | . 5.51 | ~ 10 | Ų.JZ | 1000 | J   | 0.00 | -  | ,0.0 | ,,,  | •    |             |          |          |          |        |     |

| Et #.         | Tag#  | Ag    | Al % | As  | Ва  | Bi | Ca % | Cd | Со | Cr  | Cu   | Fe % | La  | Mg %  | Mn   | Мо  | Na %   | Ni  | Р    | Pb   | Sb Sn   | Sr  | Ti %    | U     | ٧   | w   | Υ  | Zn   |
|---------------|-------|-------|------|-----|-----|----|------|----|----|-----|------|------|-----|-------|------|-----|--------|-----|------|------|---------|-----|---------|-------|-----|-----|----|------|
| 26            | 67446 | 0.3   | 1.49 | 15  | 85  | <5 | 1.57 | <1 | 10 | 51  | 890  | 3.80 | <10 | 0.55  | 1205 | 24  | 0.03   | 1   | 1930 | 14   | <5 <20  | 88  | 0.02 <  | <10   | 67  | <10 | 16 | 91   |
| 27            | 67447 | 0.3   | 1.36 | 90  | 85  | <5 | 2.26 | <1 | 7  | 44  | 374  | 3.36 | <10 | 0.44  | 1599 | 4   | 0.03   | <1  | 1930 | 16   | <5 <20  | 100 | 0.02 <  | <10   | 56  | <10 | 18 | 76   |
| 28            | 67448 | 1.1   | 0.79 | 100 | 55  | <5 | 2.10 | 3  | 8  | 45  | 1048 | 2.53 | 10  | 0.16  | 1173 | 10  | 0.03   | 2   | 2010 | 116  | <5 <20  | 107 | 0.02 <  | <10   | 37  | <10 | 19 | 255  |
| 29            | 67450 | 3.5   | 0.66 | 180 | 45  | <5 | 0.34 | 10 | 8  | 69  | 324  | 5.19 | <10 | 0.05  | 91   | 10  | <0.01  | 3   | 1700 | 782  | <5 <20  | 11  | <0.01 < | <10   | 34  | <10 | <1 | 940  |
| 30            | 67451 | 9.3   | 0.78 | 190 | 40  | <5 | 0.19 | 7  | 9  | 102 | 490  | 3.77 | <10 | 0.05  | 56   | 8   | <0.01  | 3   | 950  | 644  | 80 <20  | 11  | <0.01   | <10   | 41  | <10 | 3  | 719  |
| 31            | 67452 | 12.4  | 0.73 | 160 | 40  | <5 | 0.68 | 5  | 11 | 164 | 579  | 6.19 | <10 | <0.01 | 82   | 12  | <0.01  | 5   | 3560 | 1380 | 100 <20 | 45  | <0.01   | <10   | 43  | <10 | 1  | 530  |
| 32            | 67454 | 10.2  | 0.69 | 215 | 35  | <5 | 0.23 | 6  | 9  | 149 | 1019 | 5.65 | <10 | 0.01  | 47   | 16  | < 0.01 | 5   | 1490 | 782  | 120 <20 | 14  | <0.01   | <10   | 46  | <10 | <1 | 640  |
| 33            | 67425 | < 0.2 | 1.01 | 90  | 160 | <5 | 0.27 | 1  | 70 | 230 | 449  | >10  | <10 | 0.14  | 431  | 137 | 0.05   | 414 | 90   | 112  | <5 <20  | 11  | <0.01   | <10   | 26  | <10 | <1 | 492  |
| 34            | 67453 | < 0.2 | 2.53 | 10  | 140 | <5 | 5.89 | <1 | 32 | 60  | 70   | 6.35 | <10 | 2.08  | 844  | <1  | 0.05   | 14  | 1680 | 12   | <5 <20  | 123 | 0.21    | <10 2 | 243 | <10 | 27 | 74   |
| 35            | 67449 | 1.1   | 1.17 | <5  | 120 | <5 | 1.64 | <1 | 14 | 35  | 4046 | 4.03 | <10 | 1.09  | 742  | 1   | 0.18   | 18  | 1450 | 16   | <5 <20  | 114 | 0.16    | <10 1 | 184 | <10 | 14 | 57   |
| QC DATA       |       |       |      |     |     |    |      |    |    |     |      |      |     |       |      |     |        |     |      |      |         |     |         |       |     |     |    |      |
| Resplit:<br>1 | 67420 | 3.9   | 0.70 | 40  | 65  | <5 | 0.85 | <1 | 5  | 87  | 6242 | 2.25 | <10 | 0.06  | 274  | 23  | 0.02   | 2   | 1040 | 106  | <5 <20  | 41  | 0.02    | <10   | 25  | <10 | 11 | 203  |
| Repeat:       |       |       |      |     |     |    |      |    |    |     |      |      |     |       |      |     |        |     |      |      |         |     |         |       |     |     | _  |      |
| 1             | 67420 | 3.9   | 0.76 | 40  | 70  | <5 | 0.67 | 3  | 5  | 86  | 6086 | 2.01 | 10  | 0.07  | 218  | 20  | 0.03   | <1  | 900  |      |         |     |         |       | 25  | <10 | 9  | 232  |
| 10            | 67430 | 3.2   | 0.60 | 485 | 55  | <5 | 2.28 | <1 | 9  | 78  | 549  | 4.90 | <10 | 0.03  | 805  | 8   | 0.02   | 5   | 1440 | 66   | 15 <20  |     |         |       | 40  | <10 |    | 169  |
| 19            | 67439 | 12.3  | 0.45 | 55  | 45  | <5 | 0.71 | 15 | 25 | 181 | 2173 | 3.88 | <10 | 0.02  | 293  | 13  | 0.01   | 5   | 790  | 1280 | <5 <20  | 74  | <0.01   | <10   | 15  | <10 | 7  | 1273 |
| Standard:     |       |       |      |     |     |    |      |    |    |     |      |      |     |       |      |     |        |     |      |      |         |     |         |       |     |     |    |      |
| GEO'05        |       | 1.5   | 1.40 | 60  | 150 | <5 | 1.40 | <1 | 19 | 61  | 82   | 3.98 | <10 | 0.70  | 574  | <1  | 0.03   | 25  | 610  | 22   | <5 <20  | 59  | 0.10    | <10   | 70  | <10 | 10 | 75   |

JJbs df/5095 XLS/02 ECO TECH LABORATORY LTD.

Julita Jealouse

BC Certified Assayer



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com www.ecotechlab.com

16-Aug-05

# **CERTIFICATE OF ASSAY AS 2005-5097**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35 Sample type: Core/Rock/Pulp

Project #: 301 Shipment #: 13

Samples Submitted by: Allan Huard

|             |               | Au     | Au     | Ag    | Ag     |  |
|-------------|---------------|--------|--------|-------|--------|--|
| ET #.       | Tag #         | _(g/t) | (oz/t) | (g/t) | (oz/t) |  |
| 1           | 67471         | 0.33   | 0.010  |       |        |  |
| 2           | 67472         | 0.34   | 0.010  |       |        |  |
| 2<br>3      | 67473         | 0.58   | 0.017  |       |        |  |
| 4           | 67474         | 0.43   | 0.013  | 38.1  | 1.11   |  |
| 5           | 67475         | 0.36   | 0.010  |       |        |  |
| 5<br>6<br>7 | 67476         | 0.38   | 0.011  |       |        |  |
|             | 67477         | 0.33   | 0.010  |       |        |  |
| 8<br>9      | 67479         | 0.42   | 0.012  |       |        |  |
| 9           | 67480         | 0.34   | 0.010  |       |        |  |
| 10          | 67481         | 0.38   | 0.011  |       |        |  |
| 11          | 67482         | 0.16   | 0.005  |       |        |  |
| 12          | 67483         | 80.0   | 0.002  |       |        |  |
| 13          | 67484         | 0.05   | 0.001  |       |        |  |
| 14          | 67485         | 0.11   | 0.003  |       |        |  |
| 15          | 67486         | 0.23   | 0.007  |       |        |  |
| 16          | <b>674</b> 87 | 0.24   | 0.007  |       |        |  |
| 17          | 67488         | 0.12   | 0.003  |       |        |  |
| 18          | 67490         | 0.13   | 0.004  |       |        |  |
| 19          | 67491         | 0.26   | 0.008  |       |        |  |
| 20          | 67492         | 0.17   | 0.005  |       |        |  |
| 21          | 67493         | 0.45   | 0.013  |       |        |  |
| 22          | 67494         | 0.36   | 0.010  |       |        |  |
| 23          | 67495         | 0.22   | 0.006  |       |        |  |
| 24          | 67496         | 0.18   | 0.005  |       |        |  |
| 25          | 67497         | 0.04   | 0.001  |       |        |  |

ABORATORY LTD.

**B**/C. Centified Assaye

|                |       | Au    | Au     | Ag           | Ag             |                 |  |
|----------------|-------|-------|--------|--------------|----------------|-----------------|--|
| ET#.           | Tag # | (g/t) | (oz/t) | (g/t)        | (oz/t)         |                 |  |
| 26             | 67498 | 0.08  | 0.002  |              |                |                 |  |
| 27             | 67499 | 0.11  | 0.003  |              |                |                 |  |
| 28             | 67801 | 0.29  | 0.008  |              |                |                 |  |
| 29             | 67802 | 0.14  | 0.004  |              |                |                 |  |
| 30             | 67803 | 0.14  | 0.004  |              |                |                 |  |
| 31             | 67804 | 0.27  | 0.008  |              |                |                 |  |
| 32             | 67805 | 0.16  | 0.005  |              |                |                 |  |
| 33             | 67478 | 0.39  | 0.011  |              |                |                 |  |
| 34             | 67500 | <0.03 | <0.001 |              |                |                 |  |
| 35             | 67489 | 0.07  | 0.002  |              |                |                 |  |
|                |       |       |        |              |                |                 |  |
| QC DATA:       |       |       |        |              |                |                 |  |
| Repeat:        |       |       |        |              |                |                 |  |
| 1              | 67471 | 0.35  | 0.010  |              |                |                 |  |
| 3              | 67473 | 0.54  | 0.016  |              |                |                 |  |
| 4              | 67474 | 0.47  | 0.014  |              |                |                 |  |
| <del>1</del> 0 | 67481 | 0.37  | 0.011  |              |                |                 |  |
| 19             | 67491 | 0.26  | 0.008  |              |                |                 |  |
| 15             | 07401 | 0.20  | 0.000  |              |                |                 |  |
| Resplit:       |       |       |        |              |                |                 |  |
| 1              | 67471 | 0.34  | 0.010  |              |                |                 |  |
|                |       |       |        |              |                |                 |  |
| Standard:      |       |       |        |              |                |                 |  |
| SH13           |       | 1.31  | 0.038  |              |                |                 |  |
| Pb106          |       |       |        | <b>58</b> .7 | 1.71           |                 |  |
|                |       |       |        |              |                |                 |  |
|                |       |       |        |              |                | at /            |  |
|                |       |       |        |              | X//            | 21 1 -          |  |
|                |       |       |        | ( )          |                | 1/ADOMATODY LTD |  |
|                |       |       |        | (            | Jutta Jea/ous  | LABORATORY LTD. |  |
| JJ/bs          |       |       |        | `,           | B.C. Certified | d Assertad      |  |
| XLS/04         |       |       |        |              | D.C. Certined  | 1 Masayer       |  |
|                |       |       |        | 1            | /(             |                 |  |
|                |       |       |        | <i>(</i> -   | $/ \setminus$  | /               |  |

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allian Huard

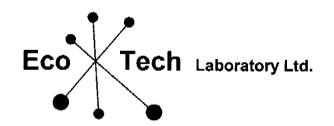
No. of samples received: 35 Sample type: Core/Rock/Pulp

Project #: 301 Shipment #: 13

Samples submitted by: Allan Huard

| £t #.            | Tag#  | Ag   | AI % | As  | Ba  | Bi | Ca %          | Cd | Со         | Çr  | Cu   | Fe % | La  | Mg %  | Mn   | Мо  | Na %   | Ni | Р    | Pb   | Sb   | Sn  |     | Ti %   |     | ٧  | W     | Υ  | Zn   |
|------------------|-------|------|------|-----|-----|----|---------------|----|------------|-----|------|------|-----|-------|------|-----|--------|----|------|------|------|-----|-----|--------|-----|----|-------|----|------|
| 1                | 67471 | 7.6  | 0.60 | 135 | 40  | <5 | 0.16          | 6  | 19         | 109 | 4891 | 4.28 | 10  | 0.04  | 31   | 19  | 0.01   | 5  | 710  | 496  | 20   | <20 |     |        | <10 |    |       | 2  | 208  |
| 2                | 67472 | 9.9  | 0.53 | 175 | 40  | <5 | 0.32          | 5  | 13         | 106 | 3781 | 3.21 | 10  | 0.04  | 41   | 7   | <0.01  | 7  | 1490 | 120  | 105  | <20 |     |        | <10 |    |       | 8  | 598  |
| 3                | 67473 | 10.7 | 0.59 | 100 | 50  | <5 | 0.33          | 21 | 13         | 142 | 2246 | 3.30 | <10 | 0.04  | 64   | 5   | <0.01  | _  | 1570 | 736  |      | <20 |     | <0.01  |     |    |       | -  | 1628 |
| 4                | 67474 | >30  | 0.61 | 685 | 40  | <5 | 0.33          | 15 | 16         | 183 | 3980 | 3.53 | <10 | 0.04  | 90   | 10  | <0.01  |    | 1450 | 394  | 1105 |     | . — |        | <10 |    | <10   |    | 1621 |
| 5                | 67475 | 25.1 | 0.53 | 445 | 35  | <5 | 0.49          | 29 | 7          | 302 | 1600 | 3.48 | <10 | <0.01 | 78   | 19  | <0.01  | 8  | 2390 | 1296 | 450  | <20 | 34  | <0.01  | <10 | 25 | <10 < | :1 | 2311 |
| 6                | 67476 | 0.7  | 0.33 | 165 | 26  | <5 | 0.23          | 4  | 5          | 442 | 407  | 3.60 | <10 | <0.01 | 62   | 6   | <0.01  | 8  | 1090 | 794  | 140  | <20 | 24  | <0.01  | <10 | 19 | <10 < | :1 | 494  |
| 6<br>7           | 67477 |      | 0.34 |     |     | <5 | 0.35          | 8  | 7          | 219 | 513  |      |     | <0.01 | 67   |     | < 0.01 | 6  | 1780 | 1132 |      | <20 | 33  | < 0.01 | <10 | 17 | <10   | 2  | 940  |
| •                | 67479 |      | 0.45 |     |     | <5 | 0.33          |    | 10         | 164 | 2285 |      |     | 0.01  | 68   |     | <0.01  | _  | 1060 | 570  | 860  |     |     |        | -   |    | <10 • | :1 | 1001 |
| 8                | 67480 |      | 0.45 |     |     | <5 | 0.24          |    |            | 257 | 3680 |      |     | <0.01 | 90   | . – | <0.01  | 7  | 660  | 2932 | 1075 |     |     |        |     |    | <10 < |    | 4035 |
| 9                | 67481 |      | 0.34 |     |     | <5 | 0.10          |    |            | 182 | 2363 |      |     | 0.02  | 63   | _   | < 0.01 | 7  | 930  | 1566 |      | <20 |     |        | <10 |    |       |    | 2319 |
| 10               | 0/401 | 20.0 | 0.47 | 340 | 30  | ~5 | U.Z.Z.        | 31 | Z <b>4</b> | 102 | 2303 | 7.10 | 10  | Ų.ŲZ  | 00   | 10  | 10.01  | •  | 500  | 1000 | 100  |     |     |        |     |    |       |    |      |
| 11               | 67482 | 5.9  | 0.64 | 80  | 45  | <5 | 0.80          | 10 | 17         | 144 | 786  | 2.72 | 10  | 0.05  | 258  | 19  | 0.01   | 6  | 2080 | 520  | 30   | <20 | 60  | <0.01  | <10 | 30 | <10   | 0  | 828  |
| 12               | 67483 | 0.8  | 0.56 | 30  | 90  | <5 | 1.41          | <1 | 10         | 110 | 360  | 1.60 | 20  | 0.06  | 588  | 10  | 0.01   | 5  | 2250 | 40   | <5   | <20 |     |        | <10 |    | <10   |    | 56   |
| 13               | 67484 | 0.3  | 0.60 | 30  | 145 | <5 | 1.66          | <1 | 3          | 104 | 321  | 1.03 | 20  | 0.07  | 739  | 27  | 0.01   | 3  | 2380 | 32   | <5   | <20 |     |        | <10 |    | <10   |    | 25   |
| 14               | 67485 | 1.6  | 0.52 | 75  | 55  | <5 | 0.69          | 2  | 7          | 116 | 756  | 1.91 | 20  | 0.05  | 223  | 51  | <0.01  | 3  | 1770 | 236  | 40   | <20 | 43  |        | <10 |    | <10   |    | 149  |
| 15               | 67486 | 3.4  | 0.49 | 90  | 45  | <5 | 0.98          | 4  | 7          | 109 | 522  | 2.58 | 10  | 0.04  | 523  | 10  | <0.01  | 3  | 1440 | 156  | 30   | <20 | 47  | 0.01   | <10 | 26 | <10   | 12 | 353  |
|                  |       |      |      |     |     |    | 4             |    |            | 400 | 4005 | 0.40 | 40  | 0.05  | 4000 | 0   | 0.04   | _  | 1960 | 102  | -5   | <20 | Ω1  | ∠0 01  | <10 | 28 | <10   | 13 | 228  |
| 16               | 67487 |      | 0.50 |     |     | <5 | 1.78          | 3  | 9          | 129 | 1605 | 2.13 |     |       | 1368 | 9   |        | _  | 1960 | 48   | _    | <20 | -   |        | <10 |    | <10   |    | 101  |
| 17               | 67488 |      | 0.83 |     | 105 |    | 1.55          | 1  | 6          | 142 | 639  | 1.42 |     |       | 1624 | 10  |        |    |      | 24   | _    | <20 |     |        | <10 |    | <10   |    | 49   |
| 18               | 67490 | —    | 0.60 |     | 115 | _  | 1.54          |    | 6          | 97  | 714  | 1.18 | 10  |       | 2189 | 6   |        |    | 1320 |      | _    | <20 |     |        |     |    | <10   |    | 79   |
| 19               | 67491 |      | 0.63 |     |     | <5 | 1.35          |    |            | 113 | 961  | 1.88 | 10  |       | 2016 | 14  |        |    | 1490 | 40   | -    |     |     | -      | <10 |    | <10   |    | 93   |
| 20               | 67492 | 1.7  | 0.50 | 25  | 110 | <5 | 1.13          | <1 | 6          | 116 | 516  | 1.38 | 20  | 0.06  | 1434 | 4   | 0.01   | 3  | 1490 | 48   | <5   | <20 | 04  | ~U.U1  | ×10 | 23 | 10    | 10 | 33   |
| 21               | 67493 | 3 /  | 0.48 | 105 | 35  | <5 | 0.37          | 2  | 7          | 114 | 914  | 3.15 | 10  | 0.04  | 245  | 12  | <0.01  | 5  | 1260 | 94   | 80   | <20 | 22  | <0.01  | <10 | 23 | <10   | 4  | 248  |
| 22               | 67494 |      | 0.51 |     |     | <5 | 0.17          | 8  | 9          | 108 | 650  | 3.00 | 10  |       | 83   | 6   |        | 6  | 620  | 474  | 210  | <20 | 23  | < 0.01 | <10 | 23 | <10   | 3  | 1084 |
| 23               | 67495 |      | 0.67 |     |     | <5 | 0.48          | -  | 10         | 127 | 2663 | 3.02 | 20  | 0.05  | 128  | 7   |        | 5  | 2210 | 140  | 710  | <20 | 25  | <0.01  | <10 | 27 | <10   | 6  | 607  |
| 23<br>24         | 67496 |      | 0.52 |     |     | _  | 0.40          | 7  |            | 127 | 1788 | 4.28 |     |       | 220  | 17  |        | 6  |      | 202  |      | <20 |     |        | <10 |    | <10   | 6  | 752  |
| ∠ <u>4</u><br>25 | 67490 | •, . | 0.52 |     |     | <5 |               | •  |            | 105 | 1233 | 1.54 |     |       |      | 4   |        | 4  |      | 10   |      | <20 |     |        | <10 |    | <10   |    | 43   |
| 25               | 0/49/ | 0.5  | 0.44 | 40  | 90  | ~0 | Ų. <i>1</i> 1 | ~  | 13         | 100 | 1200 | 1.54 | ,,, | 0.07  | 000  | 7   | 0.01   | •  |      | , •  |      |     |     |        |     |    |       |    |      |

|  | ABORATORY LTD. |  |
|--|----------------|--|
|  |                |  |
|  |                |  |
|  |                |  |


### Falconbridge Limited

| 45 < 10 7 45    |
|-----------------|
|                 |
| 3 34 < 10 9 29  |
| 32 < 10 7 36    |
| 0 27 <10 11 41  |
| 0 30 <10 10 15  |
| 0 29 <10 8 49   |
| 0 33 <10 7 12   |
| 0 172 <10 12 58 |
| 0 280 <10 25 88 |
| 0 28 <10 <1 478 |
| 0 35 <10 3 211  |
|                 |
|                 |
|                 |
| 0 28 <10 11 79  |
| 0 65 <10 10 72  |
|                 |

JJbs df/5095 XLS/02 ECO TECH ABORATORY LTD.

Jutta Jealouse

BC Certified Assayer



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com

www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5098**

16-Aug-05

Falconbridge Limited
3296 Francis-Hughes Avenue
Laval, Quebec
H7L 5A7

Attention: Allan Huard

No. of samples received: 35 Sample type: Core/Rock/Pulp

Project #: 301 Shipment #: 14

Samples Submitted by: Allan Huard

|             |       | Au    | Au     |  |
|-------------|-------|-------|--------|--|
| ET #.       | Tag # | (g/t) | (oz/t) |  |
| 1           | 67806 | 0.25  | 0.007  |  |
| 2           | 67807 | 0.24  | 0.007  |  |
| 2<br>3      | 67808 | 0.11  | 0.003  |  |
| 4           | 67809 | 0.12  | 0.003  |  |
| 5           | 67810 | 0.22  | 0.006  |  |
| 5<br>6<br>7 | 67811 | 0.18  | 0.005  |  |
| 7           | 67812 | 0.16  | 0.005  |  |
| 8           | 67814 | 0.11  | 0.003  |  |
| 8<br>9      | 67815 | 0.17  | 0.005  |  |
| 10          | 67816 | 0.16  | 0.005  |  |
| 11          | 67817 | 0.12  | 0.003  |  |
| 12          | 67818 | 0.11  | 0.003  |  |
| 13          | 67819 | 0.07  | 0.002  |  |
| 14          | 67820 | 0.07  | 0.002  |  |
| 15          | 67821 | 0.06  | 0.002  |  |
| 16          | 67822 | 0.11  | 0.003  |  |
| 17          | 67823 | 0.05  | 0.001  |  |
| 18          | 67825 | 0.10  | 0.003  |  |
| 19          | 67826 | 0.22  | 0.006  |  |
| 20          | 67827 | 0.08  | 0.002  |  |
| 21          | 67828 | 0.26  | 0.008  |  |
| 22          | 67829 | 0.55  | 0.016  |  |
| 23          | 67830 | 0.67  | 0.020  |  |
| 24          | 67831 | 0.36  | 0.010  |  |
| 25          | 67832 | 0.27  | 0.008  |  |

ECO TECH LABORATORY LTD.

Jutta Jealouse

A.C. Certified Assaye

|                   |       | Au    | Au     |  |
|-------------------|-------|-------|--------|--|
| ET #.             | Tag # | (g/t) | (oz/t) |  |
| 26                | 67833 | 0.22  | 0.006  |  |
| 27                | 67834 | 0.20  | 0.006  |  |
| 28                | 67836 | 0.26  | 0.008  |  |
| 29                | 67837 | 0.13  | 0.004  |  |
| 30                | 67838 | 0.30  | 0.009  |  |
| 31                | 67839 | 0.39  | 0.011  |  |
| 32                | 67840 | 0.46  | 0.013  |  |
| 33                | 67813 | 0.44  | 0.013  |  |
| 34                | 67835 | <0.03 | <0.001 |  |
| 35                | 67824 | 0.07  | 0.002  |  |
| QC DATA:          |       |       |        |  |
| Repeat:           |       |       |        |  |
| 1                 | 67806 | 0.31  | 0.009  |  |
| 10                | 67816 | 0.12  | 0.003  |  |
| 19                | 67826 | 0.23  | 0.007  |  |
| 22                | 67829 | 0.50  | 0.015  |  |
| 23                | 67830 | 0.56  | 0.016  |  |
| Resplit:          |       |       |        |  |
| 1                 | 67806 | 0.23  | 0.007  |  |
| Standard:<br>SH13 |       | 1.33  | 0.039  |  |
|                   |       |       |        |  |

JJ/bs XLS/04 ECOTECH LABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

### Falconbridge Limited

| Et #.         | Tag#  | Ag Al%    | As         | Ba Bi  | Ca % | Cd Co | Сг   | Cu   | Fe% La   | Mg % | Mn  | Мо  | Na %  | Ni  | Р    | Pb Sb Sn   | Sr Ti %    | U          | V    | W Y          |     | Zn         |
|---------------|-------|-----------|------------|--------|------|-------|------|------|----------|------|-----|-----|-------|-----|------|------------|------------|------------|------|--------------|-----|------------|
| 26            | 67833 | 1.1 0.39  | 10         | 60 <5  | 0.90 | <1 6  | 121  | 1802 | 1.82 10  | 0.04 | 528 | 19  | 0.01  | 4   | 770  | 20 <5 <20  | 86 < 0.01  |            | 21 < | :10 7        | 7   | 49         |
| 27            | 67834 | 1.4 0.48  | 10         | 60 <5  | 1.11 | <1 7  | 167  | 2042 | 1.66 10  | 0.05 | 583 | 14  | 0.01  | 6   | 790  | 16 <5 <20  | 102 < 0.01 |            | 25 < | <10 8        | }   | 33         |
| 28            | 67836 | 1.5 0.33  | 10         | 50 <5  | 1.02 | <1 12 | 118  | 3024 | 1.83 <10 | 0.03 | 651 | 138 | <0.01 | 5   | 670  | * 8 <5 <20 | 91 < 0.01  | <10        | 18 < | <10 €        | 3   | 21         |
| 29            | 67837 | 0.6 0.46  | 15         | 55 <5  | 0.80 | <1 7  | 154  | 4094 | 1.99 <10 | 0.05 | 403 | 19  | 0.01  | 5   | 630  | 46 <5 <20  | 66 < 0.01  |            |      | <10 <b>5</b> | _   | <b>4</b> 2 |
| 30            | 67838 | 2.6 0.39  | 35         | 45 <5  | 0.83 | 2 8   | 141  | 2519 | 2.44 <10 | 0.04 | 327 | 23  | <0.01 | 6   | 860  | 72 <5 <20  | 67 <0.01   | <10        | 20 < | <10 4        | 4   | 252        |
| 24            | 07020 | 44 057    | <b>5</b> 0 | 40 <5  | 0.95 | 3 12  | 207  | 1854 | 3.38 <10 | 0.05 | 291 | 20  | 0.01  | 10  | 1500 | 90 <5 <20  | 64 < 0.01  | <10        | 34 < | <10 7        | 7   | 242        |
| 31            | 67839 | 1.4 0.57  | 50         |        |      | -     |      | 2107 | 4.56 10  | 0.05 | 230 | 55  | 0.01  | 13  | 4080 | 560 <5 <20 | 92 < 0.01  |            |      | <10 14       |     | 425        |
| 32            | 67840 | 1.2 0.60  | 90         | 45 <5  | 1.43 | 5 11  |      |      |          | 1.15 | 471 | 4   | 0.15  | 18  | 2860 | <2 <5 <20  | 75 0.06    |            |      |              |     | 53         |
| 33            | 67813 | 2.1 1.49  | _          | 305 <5 | 1.40 | <1 12 |      | 7328 | 3.43 <10 |      |     | - I |       | 15  | 1610 | <2 <5 <20  |            |            |      | <10 19       |     | 62         |
| 34            | 67835 | <0.2 2.55 |            | 100 <5 | 3.99 | <1 29 |      | 109  | 5.73 <10 | 1.96 | 766 |     | 0.05  |     | -    |            | 12 < 0.01  |            |      |              |     | 480        |
| 35            | 67824 | 0.2 0.82  | 95         | 145 <5 | 0.26 | <1 68 | 243  | 430  | >10 <10  | 0.12 | 4/2 | 120 | 0.05  | 438 | 100  | 104 <5 <20 | 12 <0.01   | <b>\10</b> | 24.  | .10 \        | •   | 400        |
| QC DATA:      |       |           |            |        |      |       |      |      |          |      |     |     |       |     |      |            |            |            |      |              |     |            |
| Resplit:<br>1 | 67806 | 0.7 0.50  | 120        | 45 <5  | 0.28 | <1 5  | i 71 | 362  | 2.77 <10 | 0.04 | 144 | 9   | <0.01 | 4   | 810  | 30 <5 <20  | 20 <0.01   | <10        | 18 < | <10 2        | 2   | 76         |
| Repeat:       |       |           |            |        |      |       |      |      |          |      |     |     |       |     |      |            |            |            |      |              |     |            |
| 1             | 67806 | 0.8 0.46  | 105        | 35 <5  | 0.30 | <1 4  | 71   | 598  | 2.72 10  | 0.04 | 156 | 9   | <0.01 | 4   | 830  | 28 <5 <20  | 23 < 0.01  |            |      | <10 :        | 3   | 79         |
| 10            | 67816 | 0.9 0.68  | 45         | 65 <5  | 1.28 | <1 9  | 217  | 1686 | 2.42 10  | 0.18 | 850 | 14  | 0.01  | 8   | 660  | 24 <5 <20  | 77 <0.01   |            |      | <10 !        | 9   | 20         |
| 19            | 67826 | 0.5 0.48  | 220        | 45 <5  | 0.48 | 15 10 | 111  | 3724 | 3.03 <10 | 0.03 | 284 | 14  | <0.01 | 6   | 920  | 678 45 <20 | 36 < 0.01  | <10        | 21 < | ÷10 :        | 2 1 | 1102       |
| Standard:     |       |           |            |        |      |       |      |      |          |      |     |     |       |     |      |            |            | 4.5        | 70   | .40.4        |     | 70         |
| GEO'05        |       | 1.5 1.38  | 60         | 140 <5 | 1.30 | <1 15 | 58   | 86   | 3.64 <10 | 0.73 | 550 | <1  | 0.02  | 26  | 560  | 22 <5 <20  | 54 0.11    | <10        | 70 4 | <10 1        | I   | 76         |

JJ/bs df/5098 XLS/02 ECO TECHLABORATORY LTD.

Jutta Jealouse

BC Certified Assayer

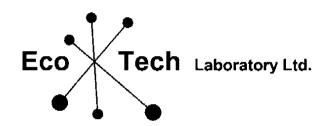
ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Fax : 250-573-4557

Phone: 250-573-5700

Values in ppm unless otherwise reported

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7


ATTENTION: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 14

Samples submitted by: Alian Huard

| Et #. | Tag # | Ag  | AI % | As  | Ва  | Bì | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn   | Мо         | Na %   | Ni | Р    | Pb  | Sb Sn  | Sr  | Ti %   | Ų   | V  | W      | <u></u> | Zn   |
|-------|-------|-----|------|-----|-----|----|------|----|----|-----|------|------|-----|------|------|------------|--------|----|------|-----|--------|-----|--------|-----|----|--------|---------|------|
| 1     | 67806 | 0.7 | 0.45 | 105 | 45  | <5 | 0.29 | <1 | 4  | 67  | 575  | 2.65 | 10  | 0.04 | 150  | 8          | <0.01  | 4  | 800  | 28  | <5 <20 |     | <0.01  |     |    | <10    |         | 77   |
| 2     | 67807 | 0.5 | 0.56 | 85  | 65  | <5 | 0.98 | <1 | 5  | 49  | 348  | 1.90 | 10  | 0.06 | 519  | 10         | <0.01  | 2  | 1240 | 14  | <5 <20 |     | <0.01  |     |    | <10 1  |         | 29   |
| 3     | 67808 | 0.6 | 0.53 | 35  | 85  | <5 | 1.26 | <1 | 3  | 70  | 456  | 1.16 | 20  | 0.07 | 810  | 22         | <0.01  | 2  | 1200 | 4   | <5 <20 |     | <0.01  |     |    | <10 14 |         | 9    |
| 4     | 67809 | 0.8 | 0.63 | 35  | 95  | <5 | 1.14 | <1 | 7  | 136 | 1133 | 1.42 | 30  | 80.0 | 636  | 20         | 0.01   | 4  | 1240 | 6   | <5 <20 |     | <0.01  |     |    | <10 1  |         | 11   |
| 5     | 67810 | 0.5 | 0.49 | 50  | 70  | <5 | 1.90 | <1 | 6  | 60  | 560  | 1.54 | 20  | 0.07 | 995  | 11         | <0.01  | 2  | 1350 | 4   | <5 <20 | 168 | <0.01  | <10 | 21 | <10 1  | 7       | 8    |
| 6     | 67811 | 0.5 | 0.49 | 35  | 60  | <5 | 1.12 | <1 | 10 | 105 | 2093 | 2.40 | 20  | 0.07 | 619  | 15         | 0.01   | 4  | 1080 | 12  | <5 <20 | 99  | <0.01  | <10 | 32 | <10 1  | 1       | 23   |
| 7     | 67812 |     | 0.51 | 35  | 60  | <5 | 1.56 | <1 | 16 | 87  | 3632 | 2.67 | <10 | 0.06 | 927  | 22         | 0.01   | 4  | 990  | 4   | <5 <20 |     | <0.01  |     |    | <10 1  | 0       | 14   |
| 8     | 67814 |     | 0.65 | 30  | 65  | <5 | 1.34 | <1 | 6  | 165 | 1872 | 2.17 | 10  | 0.18 | 950  | 15         | 0.01   | 5  | 910  | 2   | <5 <20 | 108 | <0.01  | <10 | 34 | <10 1  | 1       | 16   |
| 9     | 67815 | 0.7 | 0.63 | 35  | 60  | <5 | 1.74 | <1 | 6  | 116 | 1674 | 1.74 | 20  | 0.14 | 898  | 17         | 0.01   | 5  | 990  | 6   | <5 <20 |     | < 0.01 |     |    | <10 1  |         | 14   |
| 10    | 67816 | 8.0 | 0.65 | 45  | 75  | <5 | 1.22 | <1 | 9  | 206 | 1606 | 2.31 | 10  | 0.17 | 806  | 13         | 0.01   | 6  | 630  | 24  | <5 <20 | 73  | <0.01  | <10 | 43 | <10    | 9       | 19   |
| 11    | 67817 | 1.1 | 1.03 | 20  | 175 | <5 | 1.28 | <1 | 7  | 121 | 2534 | 3.41 | <10 | 0.32 | 1020 | 53         | 0.01   | 6  | 750  | 6   | <5 <20 |     | <0.01  |     |    | <10 1  |         | 34   |
| 12    | 67818 | 0.5 | 0.81 | 25  | 70  | <5 | 1.55 | <1 | 13 | 116 | 2956 | 2.72 | 10  | 0.20 | 1080 | 21         | 0.01   | 5  | 910  |     | <5 <20 |     | <0.01  |     |    | <10 1  |         | 26   |
| 13    | 67819 | 0.7 | 0.84 | 25  | 75  | <5 | 1.77 | <1 | 7  | 86  | 954  | 2.13 | 20  | 0.18 | 1148 | 7          | 0.01   | 3  | 1390 | 4   | <5 <20 |     |        |     |    | <10 1  |         | 24   |
| 14    | 67820 | 0.6 | 0.48 | 10  | 95  | <5 | 1.05 | <1 | 6  | 123 | 2840 | 1.32 | 20  | 0.06 | 648  | 33         | 0.01   | 3  | 900  |     | <5 <20 |     | <0.01  |     |    | <10 1  |         | 9    |
| 15    | 67821 | 1.9 | 0.74 | 10  | 105 | <5 | 1.62 | <1 | 6  | 125 | 1571 | 1.43 | 20  | 0.15 | 1041 | <b>1</b> 1 | 0.01   | 3  | 940  | 2   | <5 <20 | 98  | <0.01  | <10 | 37 | <10 1  | 3       | 15   |
| 16    | 67822 | 1.3 | 0.65 | 20  | 85  | <5 | 1.77 | <1 | 6  | 89  | 1458 | 1.50 | 20  | 0.16 | 1482 | 15         | <0.01  | 3  | 890  | <2  | <5 <20 |     |        |     |    | <10 1  |         | 18   |
| 17    | 67823 | 0.6 | 0.50 | 10  | 90  | <5 | 1.92 | <1 | 5  | 93  | 1512 | 1.15 | 10  | 80.0 | 1456 | 22         | 0.01   | 4  | . ,  |     | <5 <20 |     | <0.01  |     |    | <10 1  |         | 13   |
| 18    | 67825 | 0.4 | 0.49 | 65  | 40  | <5 | 0.54 | <1 | 6  | 121 | 1802 | 2.08 | 10  | 0.05 | 310  | 10         | <0.01  | 5  | 1320 | 38  |        |     | <0.01  |     |    |        | 5       | 69   |
| 19    | 67826 | 0.5 | 0.41 | 215 | 35  | <5 | 0.48 | 14 | 10 | 115 | 3814 | 3.03 | <10 | 0.03 | 283  | 15         | <0.01  | 7  | 860  | 674 | 40 <20 |     | < 0.01 |     |    | <10    | 1 1     | 1081 |
| 20    | 67827 | 0.5 | 0.43 | 30  | 30  | <5 | 0.55 | <1 | 10 | 110 | 1424 | 4.25 | <10 | 0.03 | 303  | 10         | <0.01  | 8  | 1100 | 14  | <5 <20 | 30  | <0.01  | <10 | 26 | <10    | 1       | 41   |
| 21    | 67828 | 1.8 | 0.49 | 45  | 45  | <5 | 0.40 | 34 | 8  | 147 | 2085 | 3.33 | <10 | 0.04 | 267  | 17         | <0.01  | 7  | 730  | 766 | <5 <20 |     | <0.01  |     |    | <10 <  |         | 2940 |
| 22    | 67829 | 1.2 | 0.40 | 25  | 50  | <5 | 0.90 | 2  | 8  | 128 | 2701 | 2.74 | <10 | 0.04 | 603  | 16         | 0.01   | 5  | 980  | 66  | <5 <20 |     | <0.01  |     |    | <10    |         | 183  |
| 23    | 67830 |     | 0.46 | 35  | 55  | <5 | 0.82 | 2  | 11 | 158 | 3929 | 2.65 | <10 | 0.04 | 569  | 52         | 0.01   | 5  | 590  | 66  | <5 <20 |     | <0.01  |     |    | , -    | 2       | 217  |
| 24    | 67831 | -   | 0.44 | 85  | 45  | <5 | 0.57 | <1 | 10 | 155 | 3150 | 2.33 | <10 | 0.04 | 325  | 20         | < 0.01 | 6  | 690  | 68  | 45 <20 |     | <0.01  |     |    |        | 3       | 105  |
| 25    | 67832 |     | 0.56 | 115 |     | <5 | 0.36 | 12 | 8  | 182 | 2066 | 2.44 | <10 | 0.04 | 183  | 15         | <0.01  | 7  | 670  | 324 | 70 <20 | 36  | <0.01  | <10 | 22 | <10    | 2       | 1128 |



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com

www.ecotechlab.com

16-Aug-05

# **CERTIFICATE OF ASSAY AS 2005-5099**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301
Shipment #: 17

Samples Submitted by: Allan Huard

|             |               | Au    | Au     |   |
|-------------|---------------|-------|--------|---|
| ET#         | Tag#          | (g/t) | (oz/t) |   |
| 1           | 67911         | 0.04  | 0.001  | · |
| 2           | 67912         | 0.06  | 0.002  |   |
| 3           | 67913         | 0.03  | 0.001  |   |
| 4           | 67914         | 0.03  | 0.001  |   |
| 5<br>6<br>7 | 67 <b>915</b> | 0.34  | 0.010  |   |
| 6           | 67 <b>916</b> | 0.06  | 0.002  |   |
| 7           | 67917         | 0.12  | 0.003  |   |
| 8           | 67919         | 0.17  | 0.005  |   |
| 9           | 67920         | 0.19  | 0.006  |   |
| 10          | 67921         | 0.17  | 0.005  |   |
| 11          | 67922         | 0.18  | 0.005  |   |
| 12          | 67923         | 0.26  | 0.008  |   |
| 13          | 67924         | 0.18  | 0.005  |   |
| 14          | 67925         | 0.28  | 0.008  |   |
| 15          | 67926         | 0.14  | 0.004  |   |
| 16          | 67927         | 0.12  | 0.003  |   |
| 17          | 67928         | 0.14  | 0.004  |   |
| 18          | 67930         | 0.13  | 0.004  |   |
| 19          | 37931         | 0.07  | 0.002  |   |
| 20          | 67932         | 0.16  | 0.005  |   |
| 21          | 67933         | 0.09  | 0.003  |   |
| 22          | 67934         | 0.14  | 0.004  |   |
| 23          | 67935         | 0.11  | 0.003  |   |
| 24          | 67936         | 0.12  | 0.003  |   |
| 25          | 67937         | 0.16  | 0.005  |   |

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. C∉rtified Assay≰∕r

# Falconbridge Limited

|                   |       | Au    | Au     |   |
|-------------------|-------|-------|--------|---|
| ET #.             | Tag # | (g/t) | (oz/t) |   |
| 26                | 67938 | 0.08  | 0.002  |   |
| 27                | 67939 | 0.08  | 0.002  |   |
| 28                | 67941 | 0.08  | 0.002  |   |
| 29                | 67942 | 0.09  | 0.003  |   |
| 30                | 67943 | 0.09  | 0.003  |   |
| 31                | 67944 | 0.06  | 0.002  |   |
| 32                | 67945 | 0.06  | 0.002  |   |
| 33                | 67918 | 0.46  | 0.013  |   |
| 34                | 67940 | <0.03 | <0.001 |   |
| 35                | 67929 | 0.07  | 0.002  |   |
| QC DATA:          |       |       |        |   |
| Repeat:           |       |       |        |   |
| 1                 | 67911 | 0.05  | 0,001  |   |
| 10                | 67921 | 0.17  | 0,005  |   |
| 19                | 37931 | 0.06  | 0.002  |   |
| Resplit:          |       |       |        |   |
| 1                 | 67911 | 0.05  | 0.001  | • |
| Standard:<br>SH13 |       | 1.32  | 0.038  |   |
|                   |       |       |        |   |

JJ/bs XLS/04 ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AS 2005-5099

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

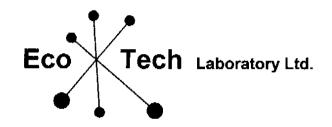
No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 17

Samples submitted by: Allan Huard

| Et #. | Tag # | Ag  | AI % | As | Ва  | Bi | Ca % | Cd         | Co_ | Cr    | Cu   | Fe % | La  | Mg % | Mn   | Мо  | Na % | Ni  | Р    | Pb  |    |     | Sr  | Ti %   | U_  | <u> v</u> |     |   |    |
|-------|-------|-----|------|----|-----|----|------|------------|-----|-------|------|------|-----|------|------|-----|------|-----|------|-----|----|-----|-----|--------|-----|-----------|-----|---|----|
| 1     | 67911 | 0.3 | 1.18 | <5 | 50  | <5 | 1.41 | <1         | 18  | 82    | 1180 | 4.34 | <10 | 0.97 | 295  | 40  | 0.03 | 7   | 1570 | <2  | <5 | <20 | 58  | <0.01  | <10 |           | <10 | 9 | 19 |
| 2     | 67912 | 0.6 | 1.05 | <5 | 45  | <5 | 1.46 | <1         | 19  | 78    | 1314 | 4.15 | <10 | 0.90 | 284  | 61  | 0.03 | 7   | 1550 | <2  | <5 | <20 | 55  | <0.01  | <10 |           | <10 | 8 | 30 |
| 3     | 67913 | 0.9 | 1.36 | 10 | 50  | <5 | 1.78 | <1         | 18  | 66    | 1053 | 4.27 | <10 | 1.11 | 449  | 48  | 0.03 | 8   | 1510 | <2  | <5 | <20 |     | <0.01  |     |           | <10 | - | 22 |
| 4     | 67914 | 1.1 | 1.33 | 5  | 45  | <5 | 1,15 | <1         | 20  | 76    | 1228 | 4.74 | <10 | 1.08 | 328  | 45  | 0.02 | 8   | 1490 | 6   | <5 |     |     | <0.01  |     |           | <10 | _ | 24 |
| 5     | 67915 | 1.2 | 1.26 | 10 | 45  | <5 | 1.29 | <1         | 19  | 81    | 1124 | 4.68 | <10 | 0.91 | 345  | 48  | 0.03 | 8   | 1540 | <2  | <5 | <20 | 46  | <0.01  | <10 | 86        | <10 | 8 | 22 |
|       |       |     |      |    |     |    |      |            |     |       |      |      |     |      |      |     |      | _   |      |     | _  |     | 404 | .0.04  |     | -y r      | -40 | 0 | 20 |
| 6     | 67916 | 8.0 | 1.23 | 5  |     | <5 | 2.34 |            | _   |       | 1124 | 4.84 |     |      | 552  | 49  | 0.02 | 8   | 1690 | -   | _  | <20 |     | < 0.01 |     |           | <10 | 8 | 29 |
| 7     | 67917 | 0.8 | 1.66 | 25 | 85  | <5 | 9.07 | <1         | 11  | 62    | 1333 | 4.42 |     | 1.58 | 2185 | 26  | 0.02 | 4   | 910  | -   |    | <20 |     | <0.01  | _   |           | <10 |   | 57 |
| 8     | 67919 | 1.3 | 1.27 | 10 | 65  | <5 | 3.22 | <1         | 12  | 106   | 2873 | 4,47 |     | 1.01 | 854  | 65  | 0.03 | - / | 1030 |     |    | <20 | 154 | 0.02   |     | 155       |     | 5 | 38 |
| 9     | 67920 | 1.7 | 1.39 | 10 | 80  | <5 | 2.04 |            |     | 96    | 3873 | 4.74 |     | 1.05 | 633  | 87  | 0.04 | 6   | 1190 |     | <5 |     | 99  | 0.02   |     | 165       |     | 6 | 57 |
| 10    | 67921 | 1.7 | 1.08 | 5  | 90  | <5 | 1.65 | <1         | 14  | 90    | 3662 | 4.72 | <10 | 0.87 | 559  | 49  | 0.03 | 6   | 1030 | <2  | <5 | <20 | 79  | 0.01   | <10 | 232       | <10 | 5 | 61 |
|       |       |     |      |    |     | _  |      |            | 4-  |       | 0004 | - 40 | .40 | 4.00 | 700  | 70  | 0.04 |     | 1250 | -20 | ~E | <20 | 100 | <0.01  | ~10 | 135       | <10 | 6 | 53 |
| 11    | 67922 |     | 1.21 | 10 |     | <5 |      |            |     |       | 2884 | 5.19 | _   |      | 709  | 70  | 0.04 | 7   |      | _   | _  | <20 |     | <0.01  |     |           | <10 | 6 | 79 |
| 12    | 67923 | 2.2 |      | 15 |     | <5 | 4.03 |            |     | 93    | 3176 | 4.52 |     | 1.36 | 1101 | 48  | 0.02 | 7   | 1180 |     | _  | <20 |     | <0.01  |     | 124       |     | _ | 30 |
| 13    | 67924 |     | 1.12 | 15 |     | <5 | 2.18 |            |     | 106   | 3849 | 3.91 |     |      | 677  | 34  | 0.03 | 7   | 1250 |     | -  |     |     | <0.01  |     |           | <10 |   | 25 |
| 14    | 67925 |     | 0.85 | 15 |     | <5 | 3.35 |            |     | 115   | 2277 | 4.07 | 30  |      | 867  | 41  | 0.02 | •   | 1220 |     | -  |     |     |        |     |           | <10 |   | 41 |
| 15    | 67926 | 1.3 | 1.75 | 5  | 65  | <5 | 2.03 | <1         | 13  | 76    | 2257 | 5.71 | <10 | 1.60 | 726  | 71  | 0.02 | Þ   | 1420 | 2   | <5 | <20 | 91  | 0.01   | ×10 | 200       | ×10 | 9 | 41 |
| 40    | 07007 | 4.4 | 4.50 |    | 90  | -= | 1.81 | -1         | 10  | 90    | 2391 | 4.73 | -10 | 1.28 | 570  | 64  | 0.03 | 4   | 1300 | <2  | <5 | <20 | 75  | 0.02   | <10 | 194       | <10 | 8 | 26 |
| 16    | 67927 |     | 1.52 |    | 105 |    | 2.11 |            |     | 98    | 1956 | 4.33 |     |      | 600  |     | 0.03 | 5   |      |     |    | <20 | 92  | 0.03   |     |           | <10 |   | 27 |
| 17    | 67928 |     | 1.45 | _  |     | -  |      |            |     | 98    | 1651 | 4.71 |     |      | 639  |     | 0.03 | 6   | 1520 |     | _  | <20 | 84  | 0.03   |     |           | <10 |   | 31 |
| 18    | 67930 |     | 1.40 | 10 |     | <5 | 2.22 |            |     | 117   | 1533 | 4.80 |     |      | 680  |     | 0.04 | _   | 1400 |     |    | <20 | 83  | 0.02   |     |           | <10 |   | 39 |
| 19    | 67931 |     | 1.46 | 10 |     | <5 | -    |            |     | • • • |      |      |     |      | 828  |     |      |     | 1390 | <2  | _  | <20 | 94  | 0.04   |     |           | <10 |   | 49 |
| 20    | 67932 | 1.0 | 1.59 | 10 | 85  | <5 | 2.54 | <1         | 17  | 136   | 2369 | 4.95 | <10 | 1.36 | 020  | 100 | 0.04 | O   | 1580 | ~~  | ~0 | ~20 | 34  | 0.04   | -10 | 100       | -10 | , |    |
| 21    | 67933 | 0.8 | 1.24 | 5  | 90  | <5 | 1.32 | <1         | 16  | 129   | 2164 | 5.13 | <10 | 1.01 | 456  | 94  | 0.09 | 8   | 1350 | <2  | <5 | <20 | 52  | 0.04   | <10 | 221       | <10 | 7 | 38 |
|       | 67934 |     | 1.17 | 10 | 75  | -  | 1.44 |            |     | 108   | 2660 | 5.53 |     |      | 472  | -   | 0.06 | 7   | 1300 | <2  | <5 | <20 | 53  | 0.03   | <10 | 249       | <10 | 6 | 39 |
| 22    |       |     | 1.41 | 15 |     | <5 | 2.89 |            |     | 110   | 1688 | 5.65 |     |      | 896  |     | 0.06 | 6   | 1350 |     |    | <20 | 96  | 0.02   | <10 | 178       | <10 | 7 | 48 |
| 23    | 67935 |     |      | 10 | 80  |    | 3.19 |            |     | 112   | 825  | 3.45 |     |      | 814  |     | 0.04 | 5   | 960  |     |    | <20 | 117 | <0.01  | <10 | 84        | <10 | 9 | 27 |
| 24    | 67936 | _   | 0.99 |    |     | -  | 2.12 |            |     | 90    | 1750 | 4.39 |     |      | 594  |     |      | 7   | 1320 |     |    | <20 | 74  | 0.01   |     |           | <10 | 9 | 34 |
| 25    | 67937 | 0.9 | 1.10 | 10 | 00  | <5 | ۷.۱۷ | <u>~ I</u> | 10  | 90    | 1750 | 4.55 | ~10 | U.SU | 554  | VZ. | 0.04 | '   | 1020 | -7  |    |     | • • | U.U.   |     |           |     | _ |    |

15-Aug-05


| റ  | TEC | 14  | ΛÐ  |     | TOR | V I | TD |
|----|-----|-----|-----|-----|-----|-----|----|
| レい | IEU | FIL | -MD | URP | IUK | 1 1 | U. |

### Falconbridge Limited

| Et #.    | Tag #     | Ag    | AI % | As  | Ва  | Bi | Ca % | Cd | Со | Cr           | Cu   | Fe % | La  | Mg % | Mn  | Мо  | Na % | Ni  | Р    | Pb  | Sb | Sn  | Sr  | Ti %  | U   | ν   | W   | Υ  |     |
|----------|-----------|-------|------|-----|-----|----|------|----|----|--------------|------|------|-----|------|-----|-----|------|-----|------|-----|----|-----|-----|-------|-----|-----|-----|----|-----|
| 26       | 67938     |       | 1.32 | 5   | 60  | <5 | 2.57 | <1 | 17 | 114          | 1342 | 4.95 | <10 | 1.12 | 658 | 53  | 0.06 | 10  | 1550 | 4   | <5 | <20 | 91  | 0.01  | <10 | 149 | <10 | 8  | 36  |
| 27       | 67939     | 0.7   | 1.24 | 10  | 70  | <5 | 1.36 |    | 17 | 221          | 1497 | 4 82 | <10 | 1.02 | 444 | 40  | 0.09 | 10  | 1330 | 4   | <5 | <20 | 53  | 0.01  | <10 | 230 | <10 | 6  | 34  |
| 28       | 67941     | 0.6   | 1.00 | 10  | 50  | <5 | 1.56 | <1 | 15 | 115          | 1341 | 4.48 | <10 | 0.84 | 484 | 40  | 0.06 | 8   | 1530 | 4   | <5 | <20 | 54  | <0.01 | <10 | 183 |     | 6  | 35  |
| 29       | 67942     | 0.9   | 0.98 | 10  | 50  | <5 | 2.07 | <1 | 13 | 149          | 1317 | 3.81 | <10 | 0.68 | 557 | 43  | 0.03 | 8   | 1320 | 24  | <5 | <20 | 73  | 0.01  | <10 | 182 |     | 8  | 64  |
| 30       | 67943     |       | 1.09 | 10  | 55  | <5 | 1.40 | <1 | 17 | 142          | 1437 | 4.74 | <10 | 0.91 | 444 | 48  | 0.06 | 9   | 1370 | 6   | <5 | <20 | 47  | 0.02  | <10 | 290 | <10 | 7  | 39  |
| 31       | 67944     | 0.7   | 0.92 | 10  | 50  | <5 | 2.04 | <1 | 14 | 113          | 1228 | 4.17 | <10 | 0.72 | 577 | 38  | 0.04 | 9   | 1460 |     | -  | <20 | 73  | 0.02  |     |     | <10 |    | 70  |
| 5.7      | 67945     | 0.6   | 1.26 | 5   | 60  | <5 | 1.99 | <1 | 16 | 1 <b>1</b> 1 | 1020 | 4.60 | <10 | 1.17 | 708 | 35  | 0.06 | 9   | 1650 | -   |    | <20 | 77  | 0.02  |     |     | <10 |    | 39  |
| 33       | 67918     | 2.1   | 1.47 | <5  | 320 | <5 | 1.49 | <1 | 9  | 15           | 7064 | 3.62 | <10 | 1.12 | 477 | 2   | 0.14 | 17  | 2710 | 20  |    | <20 | 71  | 0.07  |     |     | <10 |    | 52  |
| 34       | 67940     | < 0.2 | 2.75 | 15  | 105 | <5 | 5.48 | <1 | 31 | 70           | 90   | 6.73 | <10 | 2.26 | 895 | <1  | 0.05 | 16  | 1720 |     |    | <20 | 112 | 0.20  |     | 240 |     |    | 74  |
| 35       | 67929     | 0.2   | 0.79 | 105 | 160 | <5 | 0.24 | <1 | 65 | 236          | 431  | >10  | <10 | 0.12 | 434 | 130 | 0.05 | 404 | 90   | 116 | <5 | <20 | 11  | <0.01 | <10 | 22  | <10 | <1 | 447 |
| QC DATA  | <u>ī:</u> |       |      |     |     |    |      |    |    |              |      |      |     |      |     |     |      |     |      |     |    |     |     |       |     |     |     |    |     |
| Resplit: |           |       |      |     |     |    |      |    |    |              |      |      |     |      |     |     |      |     |      |     |    |     |     |       |     |     |     |    |     |
| 1        | 67911     | 0.4   | 1.12 | <5  | 50  | <5 | 1.63 | <1 | 19 | 73           | 1060 | 4.55 | <10 | 0.93 | 327 | 43  | 0.02 | 8   | 1720 | 6   | <5 | <20 | 60  | 0.01  | <10 | 74  | <10 | 9  | 22  |
| Repeat:  |           |       |      |     |     |    |      |    |    |              |      |      |     |      |     |     |      |     |      |     |    |     |     |       | 4.0 |     | 4.0 |    | 00  |
| 1        | 67911     | 0.4   | 1.24 | <5  | 50  | <5 | 1.45 | <1 | 18 | 86           | 1176 | 4.46 | <10 | 0.98 | 302 | 41  | 0.03 | 7   | 1600 | <2  |    | <20 | 56  | 0.01  |     |     | <10 | _  | 20  |
| 10       | 67921     | 1.7   | 1.10 | 10  | 95  | <5 | 1.70 | <1 | 14 | 96           | 3604 | 4.88 | <10 | 0.87 | 571 | 47  | 0.04 | 7   | 1110 | <2  |    | <20 | 79  |       | <10 |     | <10 |    | 65  |
| 19       | 67931     | 0.7   | 1.50 | 10  | 100 | <5 | 2.10 | <1 | 17 | 127          | 1499 | 5.00 | <10 | 1.21 | 697 | 54  | 0.04 | 7   | 1500 | 4   | <5 | <20 | 83  | 0.02  | <10 | 185 | <10 | 9  | 42  |
| Standard | d:        |       |      |     |     |    |      |    |    |              |      |      |     |      |     |     |      |     |      |     |    |     |     |       |     |     |     |    |     |
| GEO'05   |           | 1.5   | 1.50 | 65  | 155 | <5 | 1.52 | <1 | 18 | 60           | 86   | 4.01 | <10 | 0.77 | 619 | <1  | 0.03 | 27  | 670  | 24  | <5 | <20 | 54  | 0.11  | <10 | 69  | <10 | 10 | 73  |

JJ/bs df/5098 XLS/02 ECO TECH LABORATORY LTD.
Jutta Jealouse

BC Certified Assayer



16-Aug-05

10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

#### **CERTIFICATE OF ASSAY AS 2005-5100**

Falconbridge Limited
3296 Francis-Hughes Avenue
Laval, Quebec
H7L 5A7

Attention: Allan Huard

No. of samples received: 35 Sample type: Core/Rock/Pulp

Project #: 301 Shipment #: 18

Samples Submitted by: Allan Huard

Αu Au ET #. (g/t)(oz/t) Tag # 67946 0.06 0.002 1 2 67947 0.05 0.001 3 67948 0.14 0.004 4 67949 0.10 0.003 5 67950 0.06 0.002 6 67951 0.05 0.001 7 67952 0.05 0.001 8 67954 0.07 0.002 9 0.002 67955 0.06 10 67956 0.04 0.001 11 0.09 0.003 67957 12 67958 0.04 0.001 0.04 0.001 13 67959 14 67960 0.04 0.001 15 0.15 0.004 67961 16 67962 0.09 0.003 17 67963 0.08 0.002 18 67965 0.04 0.001 19 67966 0.03 0.001 20 67967 0.04 0.001 21 67968 0.14 0.004 22 67969 0.11 0.003 23 67970 0.21 0.006 24 67971 0.09 0.003 25 67972 0.03 0.001

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assaye

|           |       | Au    | Au     |
|-----------|-------|-------|--------|
| ET #.     | Tag # | (g/t) | (oz/t) |
| 26        | 67973 | 0.10  | 0.003  |
| 27        | 67974 | 0.12  | 0.003  |
| 28        | 67976 | 0.14  | 0.004  |
| 29        | 67977 | 0.05  | 0.001  |
| 30        | 67978 | 0.19  | 0.006  |
| 31        | 67979 | 0.20  | 0,006  |
| 32        | 67980 | 0.08  | 0.002  |
| 33        | 67953 | 0.44  | 0.013  |
| 34        | 67975 | <0.03 | <0.001 |
| 35        | 67964 | 0.07  | 0.002  |
| QC DATA:  |       |       |        |
| Repeat:   |       |       |        |
| 1         | 67946 | 0.13  | 0.004  |
| 10        | 67956 | <0.03 | <0.001 |
| 19        | 67966 | 0.05  | 0.001  |
| Doonlit:  |       |       |        |
| Resplit:  | 67046 | 0.08  | 0.002  |
| T         | 67946 | 0.06  | 0.002  |
| Standard: |       |       |        |
| SH13      |       | 1.33  | 0.039  |

JJ/bs XLS/04 ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

#### ECO TECH LABORATORY LTD.

10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AS 2005-5100

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

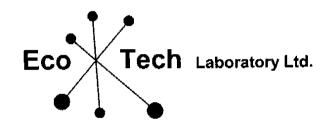
No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 18

Samples submitted by: Allan Huard

|       |       |     |      |    |       |        |       |      |       |          |      |     |     |             |           |      |                       |                |     |             |        | _        |
|-------|-------|-----|------|----|-------|--------|-------|------|-------|----------|------|-----|-----|-------------|-----------|------|-----------------------|----------------|-----|-------------|--------|----------|
| Et #. | Tag#  | Ag  | AI % | As | Ba Bi | Ca % ( | d Co  | Сг   | Cu    | Fe% La   | Mg % | Mn  | Мо  | <u>Na %</u> | <u>Ni</u> | P    | Pb Sb Sn              | Sr Ti % U      | V   | <u> </u>    | Y      | Zn       |
| 1     | 67946 | 0.7 | 1.08 | 5  | 60 <5 | 1.99   | <1 15 | 91   | 1260  | 4.75 <10 | 1.07 | 641 | 34  | 0.05        | 7         | 1470 | 4 <5 <20              | 79 <0.01 <10   | 212 | <10         | 8      | 33       |
| 2     | 67947 | 0.5 | 1.05 | 5  | 70 <5 | 2.58   | <1 14 | 158  | 984   | 4.16 <10 | 0.93 | 685 | 55  | 0.07        | -         | 1480 | 6 <5 <20              | 85 0.01 <10    | 174 | <10         | 11     | 29       |
| 3     | 67948 | 0.6 | 1.51 | 5  | 75 <5 | 3.13   | <1 15 | 99   | 1253  | 4.47 <10 | 1.53 | 819 | 32  | 0.03        | -         | 1480 | 6 <5 <20              | 131 0.02 <10   | 169 | <10         | 12     | 39       |
| 4     | 67949 | 8.0 | 0.98 | 5  | 45 <5 | 1.68   | <1 21 | 112  | 1069  | 5.57 <10 | 0.90 | 432 | 29  | 0.05        |           | 1680 | 12 <5 <20             | 56 0.01 <10    | 173 | <10         | 10     | 31       |
| 5     | 67950 | 0.5 | 0.68 | 10 | 40 <5 | 0.95   | <1 17 | 126  | 1085  | 4.23 <10 | 0.39 | 236 | 35  | 0.05        | 8         | 1530 | 12 <5 <20             | 33 <0.01 <10   | 142 | <10         | 11     | 31       |
|       |       |     |      |    |       |        |       |      |       |          |      |     |     |             | _         |      |                       | 40 004 40      | 400 | -40         | 40     | 20       |
| 6     | 67951 | 0.5 | 0.74 | 5  | 50 <5 | 1.47   | <1 18 | 107  | 1000  | 4.40 <10 | 0.51 | 363 | 54  | 0.05        | -         | 1860 | 14 <5 <20             | 48 < 0.01 < 10 | 162 | <10         | 12     | 30       |
| 7     | 67952 | 0.5 | 0.70 | 15 | 45 <5 | 0.88   | <1 19 | 81   | 882   | 4.66 <10 | 0.40 | 238 | 27  | 0.03        | _         | 1510 | 14 <5 <20             | 38 <0.01 <10   | 126 | <10         | 11     | 36       |
| 8     | 67954 | 0.7 | 0.36 | 5  | 45 <5 | 1.48   | <1 14 | 164  | 1257  | 3.42 <10 | 0.37 | 371 | 57  | 0.03        |           | 1380 | 10 <5 <20             | 59 <0.01 <10   | 53  | <10         | 10     | 22       |
| 9     | 67955 | 0.7 | 0.41 | <5 | 45 <5 | 1.77   | <1 17 | 131  | 1016  | 3.96 <10 | 0.44 | 546 | 34  | 0.03        | -         | 1550 | 6 <5 <20              | 60 < 0.01 < 10 | 60  | <10         | 11     | 20       |
| 10    | 67956 | 8.0 | 0.46 | <5 | 35 <5 | 1.31   | <1 20 | 170  | 747   | 4.50 <10 | 0.28 | 430 | 42  | 0.04        | 9         | 1780 | 6 <5 <20              | 36 <0.01 <10   | 48  | <10         | 10     | 9        |
|       |       |     |      |    |       |        |       |      |       | _        |      |     |     |             | _         |      |                       | 04 -004 -40    |     | -40         | 4.4    | 10       |
| 11    | 67957 | 1.1 | 0.52 | 10 | 40 <5 | 0.95   | <1 21 | 144  | 1094  | 4.58 <10 | 0.27 | 322 | 51  | 0.03        |           | 1800 | 8 <5 <20              | 24 < 0.01 < 10 | 58  | <10         | 11     | 18       |
| 12    | 67958 | 0.5 | 0.49 | 5  | 55 <5 | 1.27   |       | 119  | 1019  | 3.54 <10 | 0.40 | 389 | 28  | 0.03        | 7         | ~    | 8 <5 <20              | 33 <0.01 <10   | 84  | <10         | 13     | 21       |
| 13    | 67959 | 0.7 | 0.68 | 5  | 40 <5 | 1.56   |       | –    | 1344  | 4.98 <10 | 0.63 | 464 | 32  | 0.04        | -         | 1740 | 10 <5 <20             | 42 <0.01 <10   | 101 | <10         | 10     | 25<br>26 |
| 14    | 67960 | 0.6 | 0.62 | 10 | 50 <5 |        |       |      | 1109  | 4.65 <10 | 0.68 | 464 | 41  | 0.04        |           | 1540 | 10 <5 <20             | 51 <0.01 <10   | 102 | <10         | 9      | 24       |
| 15    | 67961 | 1.9 | 0.44 | 20 | 40 <5 | 1.32   | <1 24 | 141  | 1444  | 5.29 <10 | 0.42 | 455 | 91  | 0.03        | 10        | 1670 | 10 <5 <20             | 35 < 0.01 < 10 | 102 | <10         | 8      | 24       |
|       |       |     |      |    |       |        |       |      | 47.40 | E 00 .40 | 0.55 | 202 | 400 | 0.05        | 7         | 4750 | 6 -5 -20              | 54 <0.01 <10   | 93  | <10         | 8      | 25       |
| 16    | 67962 | 1.3 |      | 10 | 35 <5 |        |       |      | 1742  |          | 0.55 | 292 |     | 0.05        | -         | 1750 | 6 <5 <20<br>10 <5 <20 | 24 < 0.01 < 10 | 119 | <10         | 9      | 25       |
| 17    | 67963 | 0.6 | 0.80 | 10 | 45 <5 |        |       |      | 1408  | 4.43 <10 | 0.63 | 278 | 71  | 0.05        |           | 2040 | 12 <5 <20             | 22 <0.01 <10   | 212 | <10         | 8      | 41       |
| 18    | 67965 | 0.4 | 1.06 | 10 | 60 <5 |        |       |      | 1157  | 4,44 <10 | 0.99 | 417 | 56  | 0.06        |           | 1780 |                       | 37 <0.01 <10   | 203 | <10         | 9      | 30       |
| 19    | 67966 | 0.5 | 1.03 | 10 | 50 <5 |        |       | 127  | 1024  | 4.82 <10 | 1.01 | 455 | 34  | 0.05        |           | 1580 | 12 <5 <20             | 56 < 0.01 < 10 | 170 | <10         | 8      | 48       |
| 20    | 67967 | 0.5 | 1.22 | 10 | 60 <5 | 1.64   | <1 16 | 125  | 1239  | 4.65 <10 | 1.16 | 571 | 48  | 0.03        | 8         | 1670 | 16 <5 <20             | 56 <0.01 <10   | 170 | <b>~10</b>  | U      | 40       |
|       |       |     |      |    |       |        |       | 0.5. | 40.40 | 0.00 .40 | 0.04 | 400 | 457 | 0.00        | 40        | 1600 | 8 <5 <20              | 39 < 0.01 < 10 | 274 | <10         | 7      | 29       |
| 21    | 67968 | 1.8 | 0.97 | 15 | 50 <5 |        | <1 25 | 257  | 4249  | 6.06 <10 | 0.61 | 428 |     | 0.06        | 12        | 1600 |                       | * · · · ·      | 156 | <10         | 5      | 22       |
| 22    | 67969 | 1.2 | 0.52 | 10 | 40 <5 |        |       | 179  |       | 4.47 <10 | 0.22 | 192 | 55  | 0.04        | 10        | 1480 | 12 <5 <20             | 17 <0.01 <10   | 212 | <10         | 6      | 32       |
| 23    | 67970 | 1.3 | 0.64 | 10 | 40 <5 |        |       | 185  | 2611  | 4.97 <10 | 0.38 | 359 |     | 0.04        | 9         | 1460 | 10 <5 <20             | 32 <0.01 <10   |     | <10         |        | 20       |
| 24    | 67971 | 1.2 | 0.42 | 5  |       |        | <1 13 | 154  | 2521  | 4.41 <10 | 0.20 | 172 | 98  | 0.03        |           | 1130 | 4 <5 <20              | 21 <0.01 <10   | 506 | <10         | 2<br>3 | 13       |
| 25    | 67972 | 0.5 | 0.36 | 5  | 90 <5 | 0.86   | <1 5  | 174  | 701   | 2.37 <10 | 0.16 | 236 | 422 | 0.06        | 4         | 310  | 10 <5 <20             | 31 <0.01 <10   | 193 | <b>~ 10</b> | 3      | 10       |

| $-\sim$ | TECH | 1 4001 | RATORY | ITO |
|---------|------|--------|--------|-----|
|         |      |        |        |     |
|         |      |        |        |     |


JJ/bs df/5098 XLS/02

#### ICP CERTIFICATE OF ANALYSIS AS 2005-5100

### Falconbridge Limited

| Et #.               | Tag # | Ag  | AI % | As | Ва  | Ві | Ca % | Cd         | Со | Cr   | Cu   | Fe % | La  | Mg % | Mn  | Мо  | Na % | Ni  | Р    | Pb  | Sb   | Sn  | Sr  | Ti %   | U   | V   | W   | Y  | Zn  |
|---------------------|-------|-----|------|----|-----|----|------|------------|----|------|------|------|-----|------|-----|-----|------|-----|------|-----|------|-----|-----|--------|-----|-----|-----|----|-----|
| 26                  | 67973 | 1.1 | 0.60 | 10 | 80  | <5 | 1.03 | <1         | 14 | 186  | 1906 | 4.56 | <10 | 0.44 | 324 | 118 | 0.04 | 7   | 1470 | 8   | <5   | <20 | 39  | <0.01  | <10 | 364 | <10 | 3  | 33  |
| 27                  | 67974 | 1.4 | 0.54 | 10 | 75  | <5 | 1.38 | <1         | 17 | 125  | 2689 | 5.42 | <10 | 0.44 | 391 | 131 | 0.04 | 7   | 1460 | 6   | <5   | <20 | 50  | < 0.01 | <10 | 459 | <10 | 3  | 31  |
| 28                  | 67976 | 1.5 | 0.83 | 5  | 55  | <5 | 1.10 | <1         | 23 | 154  | 3170 | 5.60 | <10 | 0.62 | 349 | 75  | 0.06 | 9   | 1730 | 4   | <5   | <20 | 37  | < 0.01 | <10 | 322 | <10 | 6  | 33  |
| 29                  | 67977 | 0.6 | 0.31 | <5 | 105 | <5 | 0.62 | <1         | 5  | 133  | 720  | 2.40 | <10 | 0.21 | 190 | 14  | 0.04 | 3   | 420  | 6   | <5   | <20 | 47  | < 0.01 | <10 | 159 | <10 | <1 | 14  |
| 30                  | 67978 | 2.6 | 0.73 | 10 | 60  | <5 | 1.54 | <1         | 23 | 121  | 4248 | 5.45 | <10 | 0.63 | 486 | 57  | 0.05 | 8   | 1560 | 4   | <5   | <20 | 59  | <0.01  | <10 | 331 | <10 | 5  | 38  |
| 31                  | 67979 | 1,4 | 0.87 | 30 | 50  | <5 | 1.59 | <1         | 21 | 117  | 2069 | 6.61 | <10 | 0.69 | 565 | 48  | 0.02 | 7   | 1510 | 10  | <5   | <20 | 56  | <0.01  | <10 | 431 | <10 | 2  | 40  |
| 32                  | 67980 | 1.2 | 0.78 | <5 | 85  | <5 | 1.67 | <1         | 20 | 155  | 2245 | 6.24 | <10 | 0.46 | 496 | 33  | 0.06 | 9   | 1690 | 6   | <5   | <20 | 51  | 0.01   | <10 | 775 | <10 | 3  | 36  |
| 33                  | 67953 | 2.1 | 1.46 | <5 | 310 | <5 | 1.48 | <1         | 12 | 26   | 7114 | 3.66 | <10 | 1.12 | 477 | 1   | 0.14 | 18  | 2880 | 26  | <5   | <20 | 73  | 0.05   | <10 | 190 | <10 | 15 | 61  |
| 34                  | 67975 | 0:1 | 2.35 | 15 | 80  | 5  | 8.72 | <1         | 28 | 68   | 63   | 5.81 | <10 | 1.85 | 828 | <1  | 0.03 | 15  | 1510 | 12  | <5   | <20 | 147 | 0.15   | <10 | 207 | <10 | 15 | 65  |
| 35                  | 67964 | 0.3 | 0.80 | 90 | 155 | <5 | 0.29 | <1         | 70 | 247  | 423  | >10  | <10 | 0.13 | 430 | 123 | 0.05 | 398 | 110  | 112 | <5   | <20 | 12  | < 0.01 | <10 | 22  | <10 | <1 | 487 |
| QC DATA:  Resplit:  | 67946 | 0.7 | 1.10 | 10 | 60  | <5 | 2.18 | <b>~</b> 1 | 16 | 114  | 1292 | 4 96 | <10 | 1.06 | 671 | 30  | 0.06 | 8   | 1580 | F   | i <5 | <20 | 82  | <0.01  | <10 | 217 | <10 | 8  | 37  |
| Repeat:             | 07840 | 0.7 | 1.10 | 10 | 00  | -5 | 2.10 | ~1         | 10 | 11-7 | 1232 | 4.50 | -10 | 1.00 | 011 | 50  | 0.00 | Ū   | 1000 |     | , .  |     | VI. | 0.01   |     | -7. | , • |    |     |
| 1                   | 67946 | 8.0 | 1.10 | 10 | 60  | <5 | 2.14 | <1         | 17 | 97   | 1250 | 5.07 | <10 | 1.09 | 674 | 36  | 0.05 | 6   | 1600 | 8   | < 5  | <20 | 78  | <0.01  | <10 | 218 | <10 | 8  | 39  |
| 10                  | 67956 | 0.9 | 0.46 | 5  | 35  | <5 | 1.30 | <1         | 20 | 174  | 741  | 4.48 | <10 | 0.28 | 429 | 43  | 0.04 | 8   | 1780 | 8   | < 5  | <20 | 35  | <0.01  | <10 | 48  | <10 | 10 | 9   |
| 19                  | 67966 | 0.5 | 1.06 | 5  | 50  | <5 | 1.27 | <1         | 21 | 130  | 1054 | 4.90 | <10 | 1.04 | 462 | 36  | 0.05 | 7   | 1610 | 10  | ) <5 | <20 | 38  | <0.01  | <10 | 211 | <10 | 8  | 30  |
| Standard:<br>GEO'05 |       | 1.5 | 1.43 | 55 | 160 | <5 | 1.53 | <1         | 19 | 61   | 88   | 4.08 | <10 | 0.74 | 629 | <1  | 0.02 | 28  | 740  | 20  | ) <5 | <20 | 55  | Q.10   | <10 | 66  | <10 | 11 | 74  |

ECO TECH LABORATORY LTD.
Julia Jealpuse
BC Certified Assayer



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5101**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

29-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core **Project #: n/a Shipment #: n/a** 

Samples Submitted by: Allan Huard

|                  |                | Au    | Au     |                 |        |
|------------------|----------------|-------|--------|-----------------|--------|
| ET #.            | Tag #          | (g/t) | (oz/t) | <br>            |        |
| 1                | 67841          | 0.29  | 0.008  |                 |        |
| 2                | 67842          | 0.29  | 0.008  |                 |        |
| 2<br>3           | 67843          | 0.27  | 0.008  |                 |        |
| 4                | 67844          | 0.26  | 0.008  |                 |        |
| 4<br>5<br>6<br>7 | 67845          | 0.20  | 0.006  |                 |        |
| 6                | 67846          | 0.25  | 0.007  |                 |        |
| 7                | 67847          | 0.27  | 0.008  |                 |        |
| 8<br>9           | 67849          | 0.34  | 0.010  |                 |        |
| 9                | 67850          | 0.82  | 0.024  |                 |        |
| 10               | 67851          | 0.34  | 0.010  |                 |        |
| 11               | 67852          | 0.21  | 0.006  |                 |        |
| 12               | 67853          | 0.22  | 0.006  |                 |        |
| 13               | 67854          | 0.25  | 0.007  |                 |        |
| 14               | 67855          | 0.22  | 0.006  |                 |        |
| 15               | 67856          | 0.44  | 0.013  |                 |        |
| 16               | 67857          | 0.26  | 0.008  |                 |        |
| 17               | 67858          | 0.36  | 0.010  |                 |        |
| 18               | 67860          | 0.44  | 0.013  |                 |        |
| 19               | 67861          | 0.45  | 0.013  |                 |        |
| 20               | 67862          | 0.32  | 0.009  |                 |        |
| 21               | 67863          | 0.10  | 0.003  |                 |        |
| 22               | 67 <b>86</b> 4 | 0.22  | 0.006  |                 |        |
| 23               | 67865          | 0.26  | 0.008  |                 |        |
| 24               | 67866          | 0.23  | 0.007  |                 |        |
| 25               | 67867          | 0.20  | 0.006  |                 |        |
| 26               | 67868          | 0.16  | 0.005  | ,               |        |
| 27               | 67869          | 0.18  | 0.005  | <i>Asta</i> Dri | Brus 1 |

ECØ/TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

# Falconbridge Limited AS5-5101

|                                     |       | Au           | Au             |
|-------------------------------------|-------|--------------|----------------|
| ET#.                                | Tag # | (g/t)        | (oz/t)         |
| 28                                  | 67871 | 0.16         | 0.005          |
| 29                                  | 67872 | 0.22         | 0.006          |
| 30                                  | 67873 | 0.24         | 0.007          |
| 31                                  | 67874 | 0.12         | 0.003          |
| 32                                  | 67875 | 0.25         | 0.007          |
| 33                                  | 67848 | 0.43         | 0.013          |
| 34                                  | 67870 | <0.03        | <0.001         |
| 35                                  | 67859 | 0.07         | 0.002          |
| QC DATA:                            |       |              |                |
| 1                                   | 67841 | 0.30         | 0.009          |
| 10                                  | 67851 | 0.34         | 0.010          |
| 19                                  | 67861 | 0.46         | 0.013          |
| Resplit:<br>1<br>Standard:<br>OX140 | 67841 | 0.33<br>1.93 | 0.010<br>0.056 |
|                                     |       |              |                |

JJ/bw XLS/05 ECO TECH LABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

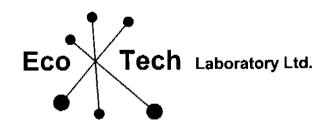
Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35
Sample type:Core
Project #: 301
Shipment #: not indicated
Samples submitted by: Allan Huard

| Et #. | Tag # | Ag  | Al %          | As       | Ва       | Bi     | Ca %         | Cd       | Co     | Cr        | Cu   | Fe %         | La         | Mg % | Mn          | Мо  | Na % | Ni | Р    | Pb  | Sb Sn   |           | Ti% U       | ٧   | W   | Υ  | Zn  |   |
|-------|-------|-----|---------------|----------|----------|--------|--------------|----------|--------|-----------|------|--------------|------------|------|-------------|-----|------|----|------|-----|---------|-----------|-------------|-----|-----|----|-----|---|
| 1     | 67841 | 4.2 | 0.51          | 45       | 60       | <5     | 1.43         | 5        | 6      | 113       | 2865 | 2.45         | <10        | 0.05 | 329         | 33  | 0.01 |    | 2650 | 282 |         |           | <0.01 <10   |     | <10 |    |     |   |
| 2     | 67842 | 3.4 | 0.78          | 50       | 55       | <5     | 1.26         | <1       | 8      | 145       | 3159 | 3.28         | <10        | 0.07 | 278         | 38  | 0.02 | 15 | 1180 | 34  | <5 <20  |           | <0.01 <10   |     | <10 |    | 107 |   |
| 3     | 67843 | 2.4 | 0.65          | 45       | 45       | <5     | 1.08         | <1       | 12     | 110       | 3645 | 3.08         | 10         | 0.06 | 213         | 52  | 0.01 | 12 | 1420 | 24  | <5 <20  |           | <0.01 <10   | 64  | <10 |    | 114 |   |
| 4     | 67844 | 1.8 | 0.59          | 45       | 60       | <5     | 1.38         | <1       | 12     | 87        | 2721 | 2.71         | 10         | 0.06 | 388         | 65  | 0.01 | 15 |      | 22  | <5 <20  |           | < 0.01 < 10 | 58  | <10 | 12 | 59  | Ċ |
| 5     | 67845 | 1.6 | 0.81          | 30       | 85       | <5     | 1.50         | <1       | 11     | 114       | 2984 | 2.30         | 10         | 0.17 | 630         | 81  | 0.01 | 9  | 1530 | 20  | <5 <20  | 92        | <0.01 <10   | 69  | <10 | 14 | 58  |   |
|       |       |     |               |          |          | _      |              |          | _      |           |      |              |            |      |             | 000 | 0.04 |    | 4440 | 40  | -E -200 | 90        | <0.01 <10   | 76  | <10 | 13 | 31  |   |
| 6     | 67846 | 1.5 | 0.75          | 25       | 85       | <5     | 1.47         | <1       | 7      | 108       | 2912 | 2.01         | 10         | 0.19 | 737         | 208 | 0.01 | •  | 1110 | 16  | <5 <20  |           |             | 57  | <10 | 9  | 28  |   |
| 7     | 67847 | 1.5 | 0.62          | 50       | 60       | <5     | 1.50         | <1       | 11     | 95        | 1896 | 2.80         | <10        | 0.14 | 734         | 35  | 0.01 | 11 | 920  | 14  | <5 <20  |           | <0.01 <10   | 72  | <10 | 9  | 51  |   |
| 8     | 67849 | 1.8 | 0.71          | 110      | 60       | <5     | 1.29         | <1       | 11     | 104       | 1549 | 3.30         | <10        | 0.24 | 734         | 27  | 0.01 | 12 | 970  | 16  | <5 <20  |           | <0.01 <10   | 80  | <10 | 7  | 260 |   |
| 9     | 67850 | 6.0 | 0.79          | 110      | 60       | <5     | 1.59         | 2        | 6      | 136       | 1670 | 3.07         | <10        | 0.16 | 666         | 14  | 0.01 | 10 | 740  | 98  | <5 <20  |           | <0.01 <10   |     | <10 |    | 65  |   |
| 10    | 67851 | 2.4 | 0.59          | 115      | 55       | <5     | 1.71         | <1       | 8      | 101       | 1659 | 3.35         | <10        | 0.22 | 862         | 10  | 0.01 | 9  | 880  | 42  | <5 <20  | 102       | <0.01 <10   | 07  | ×10 | 10 | 65  |   |
|       |       |     | 0.00          | 400      | 00       |        | 4.00         | -4       | 40     | 00        | 1297 | 2.59         | <10        | 0.26 | 751         | 44  | 0.01 | 12 | 1120 | 14  | <5 <20  | <b>Q1</b> | <0.01 <10   | 97  | <10 | 13 | 37  |   |
| 11    | 67852 | 0.9 | 0.83          | 100      | 80       | <5<br> | 1.89         | <1       | 10     | 92        | 1573 | 2.59<br>3.66 |            | 0.26 | 889         | 42  | 0.01 | 13 | 980  | 12  | <5 <20  |           | -           |     | <10 |    | 41  |   |
| 12    | 67853 | 1.1 | 0.76          | 110      | 55<br>75 | <5     | 1.88         | <1       | 18     | 98        | 1161 | 2.66         | <10<br><10 | 0.27 | 767         | 23  | 0.01 | 12 | 740  | 10  | <5 <20  |           | <0.01 <10   | 84  | <10 |    | 43  |   |
| 13    | 67854 | 8.0 | 0.69          | 75<br>55 | 75<br>70 | <5     | 1.43         | <1       | 7<br>7 | 96<br>105 | 1154 | 2.76         | <10        | 0.35 | 761         | 12  | 0.01 | 14 | 960  | 8   | <5 <20  | -         | <0.01 <10   | 70  | <10 |    | 42  |   |
| 14    | 67855 | 0.6 | 0.74          | 55<br>05 | 70<br>50 | <5     | 1.31<br>1.22 | <1<br><1 | 19     | 89        | 2475 | 4.70         | <10        | 0.60 | 842         | 106 | 0.01 | 17 | 940  | 10  | <5 <20  | 78        |             |     | <10 | 7  | 64  |   |
| 15    | 67856 | 1.2 | 1. <b>0</b> 9 | 95       | 50       | <5     | 1.22         | ~1       | 19     | 09        | 24/5 | 4.70         | ~10        | 0.00 | 042         | 100 | 0.01 | ,, | 540  | 10  | -0 -20  |           | D.OL 10     |     |     | ·  | •   |   |
| 16    | 67857 | 0.4 | 1.18          | 85       | 70       | <5     | 2.59         | <1       | 8      | 81        | 971  | 4.08         | <10        | 0.68 | 1681        | 17  | 0.01 | 10 | 1070 | 12  | <5 <20  | 146       | 0.01 < 10   | 114 | <10 | 12 | 57  |   |
| 17    | 67858 | 0.5 | 1.08          | 70       | 55       | <5     | 1.02         | <1       | 9      | 61        | 1554 | 4.04         | <10        | 0.48 | 784         | 13  | 0.02 | 3  |      | 14  | <5 <20  | 74        | <0.01 <10   | 91  | <10 | 12 | 53  |   |
| 18    | 67860 | 0.6 | 0.74          | 35       | 60       | <5     | 1.47         | <1       | 13     | 129       | 2771 | 3.96         | <10        | 0.39 | 1039        | 22  | 0.01 | 10 | 1200 | 10  | <5 <20  | 108       | <0.01 <10   | 72  | <10 | 11 | 44  |   |
| 19    | 67861 | 0.5 | 1.17          | 40       | 60       | <5     | 1.56         | <1       | 13     | 72        | 2195 | 4.63         | <10        | 0.79 | 1231        | 24  | 0.01 | 13 | 1040 | 10  | <5 <20  | 88        | <0.01 <10   | 125 | <10 | 11 | 58  |   |
| 20    | 67862 | 0.3 |               | 40       | 60       | <5     | 1.05         | <1       | 11     | 92        | 1398 | 5.53         | <10        | 1.24 | 1317        | 23  | 0.01 | 16 | 1200 | 10  | <5 <20  | 74        | 0.01 <10    | 173 | <10 | 10 | 87  |   |
|       | 01002 | 0.0 | 1.0.          |          | -        | -      |              |          |        |           |      |              |            |      |             |     |      |    |      |     |         |           |             |     |     |    |     |   |
| 21    | 67863 | 0.4 | 1,34          | 25       | 95       | <5     | 1.03         | <1       | 8      | 75        | 1726 | 3.76         | <10        | 0.87 | 841         | 29  | 0.02 | 12 | 1300 | 8   | 5 <20   | 87        | <0.01 <10   | 134 | <10 | 10 | 60  |   |
| 22    | 67864 | 0.6 | 1.17          | 25       | 75       | <5     | 1.05         | <1       | 11     | 98        | 1927 | 4.35         | <10        | 0.75 | 648         | 29  | 0.02 | 19 | 1340 | 14  | <5 <20  |           | <0.01 <10   |     | <10 | 9  | 65  |   |
| 23    | 67865 | 0.3 | 1.08          | 10       | 110      | <5     | 0.92         | <1       | 7      | 108       | 1348 | 2.90         | <10        | 0.62 | 565         | 16  | 0.02 | 10 | 1160 | 6   | <5 <20  |           | <0.01 <10   |     |     |    | 46  |   |
| 24    | 67866 | 0.4 | 0.93          | 15       | 95       | <5     | 0.76         | <1       | 9      | 106       | 1658 | 2.97         | 10         | 0.48 | <b>4</b> 28 | 21  | 0.01 | 9  | 1130 | 4   | <5 <20  |           | <0.01 <10   | 77  | <10 |    | 37  |   |
| 25    | 67867 | 0.7 | 1.26          | 25       | 85       | <5     | 0.77         | <1       | 10     | 84        | 2646 | 4.19         | <10        | 0.61 | 554         | 25  | 0.02 | 7  | 1410 | 12  | <5 <20  | 56        | <0.01 <10   | 114 | <10 | 10 | 65  |   |
|       |       |     |               |          |          |        |              |          |        |           |      |              |            |      |             |     |      |    |      |     |         |           |             |     |     |    |     |   |
| 26    | 67868 | 0.8 | 1.24          | 35       | 95       | <5     | 0.82         | <1       | 9      | 74        | 3046 | 3.96         | <10        | 0.66 | 519         | 44  |      |    | 1270 | 10  | <5 <20  |           | <0.01 <10   |     |     |    | 55  |   |
| 27    | 67869 | 0.7 | 1.22          | 20       | 85       | <5     | 1.15         | <1       | 12     | 75        | 2453 | 3.78         | <10        | 0.71 | 593         | 18  | 0.02 | -  | 1140 | 10  | <5 <20  | 90        |             |     |     |    | 65  |   |
| 28    | 67871 | 0.9 | 1.06          | 20       | 70       | <5     | 1.37         | <1       | 12     | 82        | 3162 | 3.61         | <10        | 0.60 | 646         | 34  | 0.02 | 5  |      | 8   | <5 <20  | 113       |             | 95  | <10 |    | 49  |   |
| 29    | 67872 | 0.8 | 1.34          | 20       | 90       | <5     | 1.88         | <1       | 16     | 89        | 2735 | 3.59         | <10        | 0.74 | 771         | 62  | 0.02 | 26 |      | 6   | <5 <20  | 138       |             | 95  | <10 |    | 60  |   |
| 30    | 67873 | 8.0 | 1.39          | 20       | 90       | <5     | 1.23         | <1       | 15     | 71        | 3331 | 3.85         | <10        | 0.84 | 633         | 93  | 0.01 | 9  | 1530 | 6   | <5 <20  | 75        | 0.05 <10    | 107 | <10 | 14 | 81  |   |
|       |       |     |               |          |          |        |              |          |        |           |      |              | Page       | 7    |             |     |      |    |      |     |         |           |             |     |     |    |     |   |
|       |       |     |               |          |          |        |              |          |        |           |      |              |            |      |             |     |      |    |      |     |         |           |             |     |     |    |     |   |

#### Falconbridge Limited


| _Et#.   | ı ag #      | Ag    | Al % | A5  | ьа  | ы  | Ca % | Ca | CO | C1  | - Cu | F# 70 | Ld  | ING 76 | 14111 | IVIO | 14a 7a | 191 |      | 1.11 | <u> </u> | <u> </u>    | 11 /0     |     |     | <u> </u> |             |
|---------|-------------|-------|------|-----|-----|----|------|----|----|-----|------|-------|-----|--------|-------|------|--------|-----|------|------|----------|-------------|-----------|-----|-----|----------|-------------|
| 31      | 67874       | 0.6   | 1.26 | 15  | 110 | <5 | 1.49 | <1 | 9  | 72  | 2645 | 2.89  | <10 | 0.69   | 629   | 60   | 0.02   | 5   | 1540 | 6    | <5 <20   | 122         | 0.03 <10  | 87  | <10 | 16       | 56          |
| 32      | 67875       | 0.5   | 1.15 | 35  | 75  | <5 | 1.11 | <1 | 12 | 77  | 2227 | 3.40  | <10 | 0.60   | 420   | 47   | 0.01   | 6   | 1370 | 10   | <5 <20   | 72          | 0.03 <10  | 99  | <10 | 12       | 40          |
| 33      | 67848       | 2.0   | 1.46 | <5  | 320 | <5 | 1.38 | <1 | 11 | 26  | 7263 | 3.56  | <10 | 1.08   | 480   | 2    | 0.16   | 16  | 2460 | 20   | <5 <20   | 77          | 0.07 <10  | 145 | <10 | 15       | 58          |
| 34      | 67870       | < 0.2 | 2.62 | 5   | 115 | <5 | 4.92 | <1 | 27 | 58  | 100  | 5.51  | <10 | 2.08   | 758   | <1   | 0.07   | 12  | 1610 | <2   | 5 <20    | 116         | 0.18 <10  | 226 | <10 | 20       | 63          |
| 35      | 67859       | 0.2   | 0.75 | 90  | 160 | <5 | 0.25 | <1 | 69 | 238 | 434  | >10   | <10 | 0.12   | 489   | 123  | 0.06   | 436 | 60   | 114  | <5 <20   | 12          | <0.01 <10 | 24  | <10 | <1       | <b>4</b> 18 |
|         |             |       |      |     |     |    |      |    |    |     |      |       |     |        |       |      |        |     |      |      |          |             |           |     |     |          |             |
|         |             |       |      |     |     |    |      |    |    |     |      |       |     |        |       |      |        |     |      |      |          |             |           |     |     |          |             |
| QC DAT  | ΤΑ <u>:</u> |       |      |     |     |    |      |    |    |     |      |       |     |        |       |      |        |     |      |      |          |             |           |     |     |          |             |
|         | <del></del> |       |      |     |     |    |      |    |    |     |      |       |     |        |       |      |        |     |      |      |          |             |           |     |     |          |             |
| Resplit | <i>:</i>    |       |      |     |     |    |      |    |    |     |      |       |     |        |       |      |        |     |      |      |          |             |           |     |     |          |             |
| 1       | 67841       | 4.2   | 0.64 | 55  | 60  | <5 | 1.59 | 5  | 8  | 191 | 3203 | 2.62  | <10 | 0.06   | 389   | 37   | 0.02   | 13  | 2490 | 288  | <5 <20   | 98          | <0.01 <10 | 66  | <10 | 12       | 414         |
|         |             |       |      |     |     |    |      |    |    |     |      |       |     |        |       |      |        |     |      |      |          |             |           |     |     |          |             |
| Repeat  | :           |       |      |     |     |    |      |    |    |     |      |       |     |        |       |      |        |     |      |      |          |             |           |     |     |          |             |
| 1       | 67841       | 4.2   | 0.52 | 50  | 55  | <5 | 1.47 | 5  | 7  | 119 | 2756 | 2.52  | <10 | 0.05   | 341   | 34   | 0.01   | 12  | 2750 | 296  | <5 <20   | 82          | <0.01 <10 | 59  | <10 | 12       | 499         |
| 10      | 67851       | 2.3   | 0.64 | 120 | 50  | <5 | 1.74 | <1 | 8  | 106 | 1710 | 3.44  | <10 | 0.23   | 888   | 11   | 0.01   | 10  | 910  | 44   | 5 < 20   | <b>1</b> 07 | <0.01 <10 | 72  | <10 | 10       | 66          |
| 19      | 67861       | 0.4   | 1.26 | 35  | 75  | <5 | 1.55 | <1 | 13 | 67  | 2278 | 4.56  | 10  | 0.83   | 1220  | 24   | 0.02   | 11  | 970  | 8    | <5 <20   | 92          | 0.01 <10  | 132 | <10 | 11       | 57          |
|         |             |       |      |     |     |    |      |    |    |     |      |       |     |        |       |      |        |     |      |      |          |             |           |     |     |          |             |
| Standa  | rd:         |       |      |     |     |    |      |    |    |     |      |       |     |        |       |      |        |     |      |      |          |             |           |     |     |          |             |
| GEO'05  |             | 1.5   | 1.57 | 55  | 155 | <5 | 1.47 | <1 | 19 | 58  | 86   | 3.83  | <10 | 0.82   | 579   | <1   | 0.03   | 29  | 590  | 20   | <5 <20   | 54          | 0.11 <10  | 66  | <10 | 10       | 73          |
|         |             |       |      |     |     | -  |      |    |    |     |      |       |     |        |       |      |        |     |      |      |          |             |           |     |     |          |             |

ECØ TECH LABORATORY LTD.

Jutta Jealouse

BC Certified Assayer

JJ/ga df/5101 XLS/05



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com

www.ecotechlab.com

# CERTIFICATE OF ASSAY AS 2005-5102

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

26-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: n/a Shipment #:16

Samples Submitted by: Allan Huard

|                  |       | Au    | Au     |                          |
|------------------|-------|-------|--------|--------------------------|
| <b>压</b> 丁 #.    | Tag # | (g/t) | (oz/t) |                          |
| 1                | 67876 | 0.48  | 0.014  |                          |
| 2                | 67877 | 0.88  | 0.026  |                          |
| 2<br>3           | 67878 | 0.22  | 0.006  |                          |
|                  | 67879 | 0.36  | 0.010  |                          |
| 4<br>5<br>6<br>7 | 67880 | 0.25  | 0.007  |                          |
| 6                | 67881 | 0.47  | 0.014  |                          |
| 7                | 67882 | 1.43  | 0.042  |                          |
| 8<br>9           | 67884 | 2.96  | 0.086  |                          |
| 9                | 67885 | 1.81  | 0.053  |                          |
| 10               | 67886 | 0.90  | 0.026  |                          |
| 11               | 67887 | 0.32  | 0.009  |                          |
| 12               | 67888 | 0.24  | 0.007  |                          |
| 13               | 67889 | 0.33  | 0.010  |                          |
| 14               | 67890 | 0.29  | 0.008  |                          |
| 15               | 67891 | 0.34  | 0.010  |                          |
| 16               | 67892 | 0.97  | 0.028  |                          |
| 17               | 67893 | 0.35  | 0.010  |                          |
| 18               | 67895 | 0.30  | 0.009  |                          |
| 19               | 67896 | 0.19  | 0.006  |                          |
| 20               | 67897 | 0.12  | 0.003  |                          |
| 21               | 67898 | 0.29  | 0.008  |                          |
| 22               | 67899 | 0.84  | 0.024  |                          |
| 23               | 67900 | 0.24  | 0.007  |                          |
| 24               | 67901 | 2.19  | 0.064  |                          |
| 25               | 67902 | 1.48  | 0.043  |                          |
| 26               | 67903 | 0.35  | 0.010  | $\mathcal{L}$            |
| 27               | 67904 | 0.18  | 0.005  | 1 A. Krain low           |
| 28               | 67906 | 0.19  | 0.006  | ayane Druce 1907         |
|                  |       |       |        | ECO/TECH LABORATORY LTD. |

Page 1

Jutta Jealouse B.C. Certified Assayer

# Falconbridge Limited AS5-5102

|                      |       | Au     | Au     |  |
|----------------------|-------|--------|--------|--|
| ET #.                | Tag # | (g/t)  | (oz/t) |  |
| 29                   | 67907 | 0.12   | 0.003  |  |
| 30                   | 67908 | 0.06   | 0.002  |  |
| 31                   | 67909 | 0.09   | 0.003  |  |
| 32                   | 67910 | 0.06   | 0.002  |  |
| 33                   | 67883 | 0.44   | 0.013  |  |
| 34                   | 67905 | < 0.03 | <0.001 |  |
| 35                   | 67894 | 0.08   | 0.002  |  |
| QC DATA:<br>Resplit: | 67876 | 0.51   | 0.015  |  |
| Repeats:             |       |        |        |  |
| 1                    | 67876 | 0.50   | 0.015  |  |
| 10                   | 67886 | 0.93   | 0.027  |  |
| 19                   | 67896 | 0.20   | 0.006  |  |
| Standard:<br>OX140   |       | 1.85   | 0.054  |  |

JJ/bw XLS/05 FCO TECH LABORATORY LTD. Jutta Jealouse

B.C. Certified Assayer

ECO TECH LABORATORY LTD.

10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35
Sample type:Core

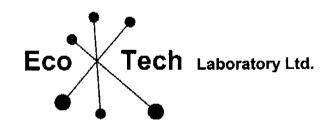
Project #: 301 Shipment #: 16

Samples submitted by: Allan Huard

| Et #. | Tag # | Ag  | AI % | As | Ва  | Bi | Ca % | Cd | Со | Cr  | Cu   | Fe % | La  | Mg % | Mn  | Мо  | Na % | Ni | Р    | Pb | Sb Sn  | Sr  | Ti % U    | ٧   | W   | Υ  | Zn ·             |
|-------|-------|-----|------|----|-----|----|------|----|----|-----|------|------|-----|------|-----|-----|------|----|------|----|--------|-----|-----------|-----|-----|----|------------------|
| 1     | 67876 | 0.3 | 1.04 | 10 | 145 | <5 | 1.44 | <1 | 16 | 96  | 3255 | 2.99 | 10  | 0.52 | 536 | 132 | 0.02 | 7  | 1440 | 6  | <5 <20 | 102 | 0.02 <10  |     | <10 |    | 40               |
| 2     | 67877 | 0.6 | 1.53 | 25 | 130 | <5 | 1.28 | <1 | 16 | 53  | 2598 | 4.54 | <10 | 0.98 | 726 | 67  | 0.01 | 6  | 1390 | 8  | 5 <20  | 76  | 0.03 <10  |     |     |    | 73               |
| 3     | 67878 | 0.7 | 1.09 | 15 | 115 | <5 | 1.20 | <1 | 17 | 138 | 3778 | 2.99 | 10  | 0.67 | 507 | 164 | 0.02 | 8  | 1390 | 6  | <5 <20 | 87  | 0.02 <10  |     | <10 |    | 53               |
| 4     | 67879 | 0.5 | 1.43 | 25 | 120 | <5 | 1.07 | <1 | 14 | 96  | 2456 | 3.95 | <10 | 1.02 | 539 | 78  | 0.01 | 11 | 1050 | 8  | 10 <20 | 63  | 0.04 < 10 |     |     |    | 74               |
| 5     | 67880 | 0.6 | 1.01 | 15 | 105 | <5 | 0.99 | <1 | 12 | 140 | 2494 | 2.74 | <10 | 0.62 | 335 | 32  | 0.02 | 15 | 740  | 10 | <5 <20 | 73  | 0.05 <10  | 92  | <10 | 13 | 43               |
| 6     | 67881 | 0.7 | 1.13 | 15 | 120 | <5 | 0.95 | <1 | 10 | 104 | 3146 | 2.85 | 10  | 0.89 | 406 | 44  | 0.01 | 7  | 830  | 6  | <5 <20 | 61  | 0.01 <10  | 115 | <10 | 10 | 45               |
| 7     | 67882 | 0.7 | 1.59 | 25 | 155 | <5 | 1.13 | <1 | 13 | 123 | 2672 | 4.12 | 10  | 1.29 | 551 | 21  | 0.02 | 20 | 1150 | 10 | <5 <20 | 89  | 0.04 < 10 | 152 | <10 | 12 | 65               |
| 8     | 67884 | 0.8 | 1.32 | 25 | 155 | <5 | 0.84 | <1 | 9  | 104 | 2375 | 3.58 | 10  | 1.04 | 417 | 16  | 0.02 | 11 | 1180 | 10 | <5 <20 | 70  | 0.01 <10  | 129 | <10 | 9  | 55               |
| 9     | 67835 | 0.6 | 1.26 | 15 | 150 | <5 | 0.96 | <1 | 7  | 82  | 2046 | 3.45 | 10  | 0.97 | 428 | 19  | 0.03 | 5  | 990  | 8  | <5 <20 | 82  | <0.01 <10 | 131 | <10 | 9  | 55 ்             |
| 10    | 67886 | 0.8 | 1.22 | 20 | 170 | <5 | 0.71 | <1 | 9  | 72  | 3594 | 3.93 | 10  | 0.87 | 332 | 87  | 0.03 | 5  | 1380 | 12 | <5 <20 | 65  | <0.01 <10 | 132 | <10 | 10 | 57               |
| 11    | 67887 | 0.5 | 1.25 | 15 | 185 | <5 | 1.19 | <1 | 8  | 97  | 2920 | 3.19 | 10  | 0.90 | 367 | 25  | 0.05 | 5  | 1320 | 8  | <5 <20 | 83  | 0.02 <10  | 138 | <10 | 13 | 54               |
| 12    | 67888 | 0.8 | 1.18 | 10 | 180 | <5 | 0.97 | <1 | 8  | 91  | 4020 | 3.53 | 10  | 0.81 | 305 | 50  | 0.04 | 6  | 1050 | 8  | <5 <20 | 90  | 0.01 < 10 | 135 | <10 | 10 | 68               |
| 13    | 67889 | 0.7 | 1.65 | 5  | 250 | <5 | 1.16 | <1 | 9  | 71  | 2446 | 5.08 | <10 | 0.99 | 452 | 7   | 0.04 | 3  | 1190 | 8  | <5 <20 | 113 | 0.03 <10  | 187 | <10 | 9  | 86               |
| 14    | 67890 | 0.6 | 1.68 | 10 | 225 | <5 | 1.32 | <1 | 11 | 41  | 2335 | 5.37 | 10  | 1.18 | 651 | 13  | 0.04 | 4  | 1280 | 6  | <5 <20 | 145 | 0.01 < 10 | 183 | <10 | 10 | 109              |
| 15    | 67891 | 1.1 | 1.21 | 10 | 155 | <5 | 1.04 | <1 | 10 | 66  | 3963 | 4.55 | 10  | 0.94 | 580 | 13  | 0.03 |    | 1270 | 4  | <5 <20 | 91  | <0.01 <10 | 150 | <10 | 10 | 85               |
|       |       |     |      |    |     |    |      |    |    |     |      |      |     |      |     |     |      |    |      |    |        |     |           |     |     | _  |                  |
| 16    | 67892 | 1.5 | 1.31 | <5 | 135 | <5 | 0.87 | <1 | 13 | 76  | 5363 | 4.51 | <10 | 1.04 | 423 | 13  | 0.03 |    | 1020 | 4  | <5 <20 | 76  |           |     | <10 | 9  | 64               |
| 17    | 67893 | 0.6 | 1.55 | <5 | 170 | <5 | 1.07 | <1 | 8  | 78  | 2554 | 4.51 | 20  | 1.23 | 431 | 19  | 0.03 | -  | 1110 | 4  | <5 <20 |     | <0.01 <10 |     | <10 | 10 | 55               |
| 18    | 67895 | 0.4 | 1.20 | <5 | 160 | <5 | 0.84 | <1 | 8  | 59  | 2021 | 3.54 | 10  | 1.04 | 364 | 11  | 0.02 |    | 1160 | 8  | <5 <20 |     | <0.01 <10 |     | <10 |    | 48               |
| 19    | 67896 | 0.4 | 1.29 | <5 | 255 | <5 | 0.89 | <1 | 7  | 76  | 1758 | 4.13 | 10  | 0.85 | 450 | 20  | 0.04 |    | 1150 | 14 | <5 <20 | 76  | 0.01 <10  |     | <10 | 9  | 70<br><b>c</b> o |
| 20    | 67897 | 0.1 | 1.53 | <5 | 225 | <5 | 0.84 | <1 | 8  | 46  | 628  | 5.03 | <10 | 0.74 | 425 | 7   | 0.03 | 2  | 1460 | 14 | <5 <20 | 92  | 0.01 <10  | 153 | <10 | 10 | 69               |
| 21    | 67898 | 0.4 | 1.33 | 10 | 205 | <5 | 1.27 | <1 | 8  | 63  | 1851 | 3.75 | <10 | 0.78 | 487 | 8   | 0.02 | 3  | 1340 | 14 | <5 <20 |     | <0.01 <10 |     | <10 | 13 | 59               |
| 22    | 67899 | 1.1 | 0.73 | 25 | 90  | <5 | 0.68 | <1 | 9  | 93  | 2873 | 2.93 | <10 | 0.31 | 200 | 6   | 0.02 | 5  | 770  | 50 | <5 <20 |     | <0.01 <10 | 90  | <10 | 6  | 35               |
| 23    | 67900 | 1.0 | 0.64 | 35 | 35  | <5 | 0.89 | 35 | 13 | 104 | 2755 | 3.68 | <10 | 0.09 | 114 | 10  | 0.02 | 5  | 990  | 76 | <5 <20 | -   | <0.01 <10 | 68  | <10 |    | 2287             |
| 24    | 67901 | 1.1 | 0.66 | 25 | 50  | <5 | 1.38 | 2  | 14 | 59  | 2597 | 4.20 | <10 | 0.29 | 515 | 10  | 0.01 | 5  | 1230 | 12 | <5 <20 |     | <0.01 <10 | 75  | <10 |    | 149              |
| 25    | 67902 | 1.0 | 0.83 | 75 | 55  | <5 | 1.01 | <1 | 16 | 88  | 2597 | 5.27 | <10 | 0.34 | 314 | 12  | 0.01 | 7  | 1410 | 20 | <5 <20 | 80  | <0.01 <10 | 93  | <10 | 7  | 63               |
| 26    | 67903 | 1.0 | 1.04 | 45 | 40  | <5 | 2.33 | <1 | 12 | 76  | 2652 | 4.16 | <10 | 0.15 | 269 | 19  | 0.03 | 4  | 1640 | 50 | <5 <20 | 332 | <0.01 <10 | 94  | <10 | 11 | 51               |
| 27    | 67904 | 1.9 | 0.82 | 30 | 50  | <5 | 1.58 | <1 | 10 | 99  | 5378 | 3.48 | <10 | 0.12 | 213 | 19  | 0.05 | 2  | 1300 | 44 | <5 <20 | 99  | <0.01 <10 | 68  | <10 | 9  | 29               |
| 28    | 67906 | 1.4 | 0.84 | 40 | 45  | <5 | 1.74 | <1 | 10 | 89  | 3684 | 3.97 | <10 | 0.16 | 242 | 42  | 0.02 | 4  | 1630 | 60 | <5 <20 | 203 | <0.01 <10 | 96  | <10 | 11 | 24               |
| 29    | 67907 | 0.8 | 1.43 | <5 | 80  | <5 | 0.41 | <1 | 17 | 74  | 1183 | 4.50 | <10 | 1.06 | 254 | 75  | 0.03 | 7  | 1710 | 8  | <5 <20 | 10  | <0.01 <10 | 97  | <10 | 6  | 32               |
| 30    | 67908 | 0.5 | 1.35 | 5  | 90  | <5 | 0.29 | <1 | 13 | 71  | 685  | 4.11 | <10 | 1.07 | 244 | 35  | 0.03 | 7  | 1690 | 10 | <5 <20 | 5   | 0.01 < 10 | 104 | <10 | 6  | 31               |
|       |       |     |      |    |     |    |      |    |    |     |      |      |     |      |     |     |      |    |      |    |        |     |           |     |     |    |                  |

ECO TECH LABORATORY LTD.

#### ICP CERTIFICATE OF ANALYSIS AS 2005-5102


#### Falconbridge Limited

| Et #.             | Tag #      | Ag   | AI % | As | Ва  | Bi            | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn  | Мо  | Na % | Ni  | P    | Pb  | Sb \$n | Sr  | Ti% U     | V   | W   | Υ  | Zn  |
|-------------------|------------|------|------|----|-----|---------------|------|----|----|-----|------|------|-----|------|-----|-----|------|-----|------|-----|--------|-----|-----------|-----|-----|----|-----|
| 31                | 67909      | 0.6  | 1.41 | <5 | 65  | <5            | 0.60 | <1 | 18 | 73  | 1642 | 4.09 | <10 | 1.12 | 310 | 45  | 0.04 | 8   | 1570 | 10  | <5 <20 | 17  | <0.01 <10 | 91  | <10 | 10 | 35  |
| 32                | 67910      | 0.3  | 1.25 | <5 | 65  | <5            | 1.01 | <1 | 19 | 63  | 1406 | 4.37 | <10 | 1.00 | 259 | 32  | 0.03 | 8   | 1710 | 8   | <5 <20 | 31  | <0.01 <10 | 79  | <10 | 10 | 31  |
| 33                | 67883      | 2.0  | 1.43 | <5 | 310 | <5            | 1,42 | <1 | 13 | 25  | 7038 | 3.58 | <10 | 1.15 | 484 | 3   | 0.17 | 16  | 2630 | 18  | <5 <20 | 75  | 0.07 <10  | 187 | <10 | 20 | 53  |
| 34                | 67905      | <0.2 | 2.76 | 10 | 95  | <5            | 4.45 | <1 | 32 | 57  | 99   | 7.13 | <10 | 2.48 | 954 | <1  | 0.04 | 18  | 1790 | 10  | 5 <20  | 122 | 0.11 <10  | 267 | <10 | 17 | 83  |
| 35                | 67894      | 0.2  | 0.82 | 85 | 155 | <5            | 0.26 | <1 | 71 | 245 | 429  | >10  | <10 | 0.12 | 420 | 124 | 0.05 | 441 | 90   | 110 | <5 <20 | 11  | <0.01 <10 | 22  | <10 | <1 | 445 |
| QC DAT            |            |      |      |    |     |               |      |    |    |     |      |      |     |      |     |     |      |     |      |     |        |     |           |     |     |    |     |
| Resplit.          | :<br>67876 | 0.4  | 0.96 | 15 | 100 | <5            | 1.45 | <1 | 17 | 79  | 3469 | 3.33 | <10 | 0.51 | 562 | 125 | 0.02 | 5   | 1550 | 8   | <5 <20 | 98  | 0.02 <10  | 89  | <10 | 15 | 44  |
| Repeat            | •          |      |      |    |     |               |      |    |    |     |      |      |     |      |     |     |      |     |      |     |        |     |           |     |     |    |     |
| 1                 | 67876      | 0.3  | 1.02 | 10 | 125 | <5            | 1.46 | <1 | 16 | 96  | 3329 | 3.03 | 10  | 0.53 | 542 | 129 | 0.02 | 6   | 1490 | 8   | <5 <20 | 102 | 0.02 <10  | 91  | <10 | 15 | 40  |
| 10                | 67886      | 0.8  | 1.10 | 30 | 125 | <b>&lt;</b> 5 | 0.69 | <1 | 9  | 68  | 3370 | 3.84 | 10  | 0.81 | 325 | 82  | 0.03 | 5   | 1370 | 8   | <5 <20 | 59  | <0.01 <10 | 125 | <10 | 10 | 59  |
| 19                | 67896      | 0.4  | 1.25 | <5 | 205 | <5            | 0.91 | <1 | 8  | 71  | 1802 | 4.20 | 10  | 0.86 | 461 | 20  | 0.03 | 3   | 1210 | 14  | <5 <20 | 77  | 0.01 <10  | 137 | <10 | 9  | 71  |
| Standar<br>GEO'05 |            | 1.5  | 1.49 | 60 | 155 | <5            | 1.41 | 1  | 19 | 58  | 84   | 4.02 | <10 | 0.79 | 610 | 1   | 0.03 | 30  | 640  | 20  | <5 <20 | 54  | 0.11 <10  | 66  | <10 | 10 | 74  |

Julia Jealouse

BC Certified Assayer

JJ/ga df/5101 XLS/05



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

## **CERTIFICATE OF ASSAY AS 2005-5103**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

26-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core
Project #: n/a
Shipment #: 20

Samples Submitted by: Allan Huard

|                  |       | Au     | Au      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|-------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ET #.            | Tag # | (g/t)  | (oz/t)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                | 8316  | 0.03   | 0.001   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                | 8317  | 0.06   | 0.002   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2<br>3           | 8318  | 0.04   | 0.001   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                | 8319  | < 0.03 | < 0.001 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4<br>5<br>6<br>7 | 8320  | 0.06   | 0.002   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                | 8321  | 0.07   | 0.002   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                | 8322  | 0.09   | 0.003   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                | 8324  | 0.09   | 0.003   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9                | 8325  | 0.07   | 0.002   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10               | 8326  | 0.07   | 0.002   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11               | 8327  | < 0.03 | <0.001  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12               | 8328  | 0.06   | 0.002   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13               | 8329  | 0.06   | 0.002   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14               | 8330  | 0.06   | 0.002   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15               | 8331  | 0.10   | 0.003   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16               | 8332  | 0.07   | 0.002   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17               | 8333  | 0.04   | 0.001   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18               | 8335  | < 0.03 | <0.001  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19               | 8336  | 0.08   | 0.002   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20               | 8337  | 0.14   | 0.004   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21               | 8338  | 0.05   | 0.001   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 22               | 8339  | 0.07   | 0.002   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23               | 8340  | 0.09   | 0.003   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24               | 8341  | 0.05   | 0.001   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25               | 8342  | 0.15   | 0.004   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 26               | 8343  | 0.11   | 0.003   | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 27               | 8344  | 0.08   | 0.002   | Shan Daice los                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 28               | 8346  | <0.03  | <0.001  | Coly To The Market of the Coly |
| 29               | 8347  | 0.07   | 0.002   | ECØ TECH LABORATORY LTD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |       |        |         | Jutta Jealousė                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Jutta Jealouse

|           |       | Au     | Au     |  |
|-----------|-------|--------|--------|--|
| ET #.     | Tag # | (g/t)  | (oz/t) |  |
| 30        | 8348  | 0.04   | 0.001  |  |
| 31        | 8349  | 0.05   | 0.001  |  |
| 32        | 8350  | < 0.03 | <0.001 |  |
| 33        | 8323  | 0.45   | 0.013  |  |
| 34        | 8345  | < 0.03 | <0.001 |  |
| 35        | 8334  | 0.08   | 0.002  |  |
| QC DATA:  |       |        |        |  |
| Repeats:  |       |        |        |  |
| . 1       | 8316  | 0.03   | 0.001  |  |
| 10        | 8326  | 0.08   | 0.002  |  |
| 19        | 8336  | 0.08   | 0.002  |  |
| Resplit:  |       |        |        |  |
| i         | 8316  | 0.04   | 0.001  |  |
| Standard: |       |        |        |  |
| OX140     |       | 1.86   | 0.054  |  |

JJ/bw XLS/05 ECO TECH LABORATORY LTD.

Jutta Jealouse

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

Falconbridge Limited

ATTENTION: Allan Huard

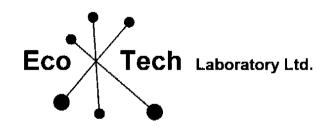
No. of samples received: 35

Sample type:Core Project #: 301 Shipment #: 20

Samples submitted by: Allan Huard

| Et #. | Tag # | Ag . | AI % | As | Ва  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La   | Mg % | Mn  | Мо | Na % | Ni | Р   | Pb | Sb Sn  | Sr Ti%     |     | ٧   | W   | Y  | Zn       |
|-------|-------|------|------|----|-----|----|------|----|----|-----|------|------|------|------|-----|----|------|----|-----|----|--------|------------|-----|-----|-----|----|----------|
| 1     | 8316  | 0.8  | 0.49 | <5 | 80  | <5 | 1.59 | <1 | 5  | 134 | 952  | 2.49 | <10  | 0.30 | 510 | 9  | 0.03 | 2  | 290 | 4  |        | 68 < 0.01  |     |     | <10 | 2  | 20       |
| 2     | 8317  | 0.6  | 0.50 | 10 | 100 | <5 | 1.13 | <1 | 4  | 115 | 632  | 2.02 | <10  | 0.28 | 353 | 7  | 0.04 | 2  | 290 | 6  | <5 <20 | 52 < 0.01  |     | 227 | <10 | 2  | 20       |
| 3     | 8318  | 0.7  | 0.61 | <5 | 110 | <5 | 1.92 | <1 | 4  | 161 | 980  | 2.12 | <10  | 0.41 | 616 | 10 | 0.05 | 3  | 270 | 8  | <5 <20 | 74 <0.01   |     | 277 | <10 | 3  | 24       |
| 4     | 8319  | 0.6  | 0.63 | <5 | 95  | <5 | 1.89 | <1 | 5  | 127 | 816  | 2.39 | <10  | 0.40 | 579 | 48 | 0.04 | 2  | 310 | 6  | <5 <20 | 78 <0.01   |     | 286 | <10 | 2  | 22       |
| 5     | 8320  | 1.0  | 0.37 | <5 | 90  | <5 | 0.86 | <1 | 6  | 170 | 1453 | 2.31 | <10  | 0.27 | 296 | 31 | 0.04 | 4  | 300 | 6  | <5 <20 | 46 < 0.01  | <10 | 242 | <10 | <1 | 16       |
|       |       |      |      |    |     |    |      |    |    |     |      |      |      |      |     |    |      |    |     |    |        |            |     |     |     |    |          |
| 6     | 8321  | 1.0  | 0.43 | <5 | 70  | <5 | 1.42 | <1 | 8  | 160 | 1579 | 2.69 | <10  | 0.29 | 434 | 14 | 0.04 | 4  | 180 | 6  | <5 <20 | 61 < 0.01  |     |     | <10 | 1  | 17       |
| 7     | 8322  | 1.2  | 0.34 | <5 | 90  | <5 | 1.42 | <1 | 6  | 148 | 1420 | 2.01 | <10  | 0.26 | 424 | 12 | 0.05 | 3  | 300 | 8  | <5 <20 | 57 < 0.01  |     |     | <10 |    | 18       |
| 8     | 8324  | 1.7  | 0.31 | <5 | 45  | <5 | 1.68 | <1 | 7  | 128 | 1465 | 2.79 | <10  | 0.25 | 451 | 23 | 0.03 | 4  | 320 | 16 | <5 <20 | 66 < 0.01  |     |     | <10 | 1  | 17       |
| 9     | 8325  | 1.1  | 0.63 | <5 | 105 | <5 | 2.04 | <1 | 6  | 142 | 1676 | 2.16 | <10  | 0.45 | 632 | 8  | 0.05 | 2  | 290 | 4  | <5 <20 | 97 < 0.01  |     |     | <10 | 4  | 25       |
| 10    | 8326  | 1.0  | 0.48 | 5  | 80  | <5 | 2.62 | <1 | 6  | 114 | 1149 | 2.09 | <10  | 0.32 | 771 | 12 | 0.03 | 3  | 300 | 6  | <5 <20 | 101 < 0.01 | <10 | 216 | <10 | 5  | 19       |
|       |       |      |      |    |     |    |      |    |    |     |      |      |      |      |     |    |      |    |     |    |        |            |     |     | .40 | _  | 47       |
| 11    | 8327  | 0.7  | 0.58 | <5 | 185 | <5 | 2.57 | <1 | 4  | 170 | 902  | 1.94 | <10  | 0.32 | 801 | 5  | 0.06 | 3  | 270 | 4  | <5 <20 | 113 < 0.01 |     |     |     | (  | 17       |
| 12    | 8328  | 1.0  | 0.55 | <5 | 120 | <5 | 1.30 | <1 | 5  | 160 | 1262 | 2.22 | <10  | 0.30 | 377 | 8  | 0.06 | 3  | 260 | 8  | <5 <20 | 88 < 0.01  |     |     | <10 | 2  | 17       |
| 13    | 8329  | 1.0  | 0.55 | <5 | 100 | <5 | 0.95 | <1 | 6  | 132 | 1484 | 2.23 | <10  | 0.32 | 301 | 17 | 0.05 | 2  | 260 | 6  | <5 <20 | 53 <0.01   |     | 297 |     |    | 19       |
| 14    | 8330  | 1.1  | 0.59 | <5 | 90  | <5 | 1.07 | <1 | 7  | 122 | 1933 | 2.71 | <10  | 0.36 | 350 | 6  | 0.03 | 2  | 260 | 6  | <5 <20 | 54 < 0.01  |     |     | . • |    | 20       |
| 15    | 8331  | 1.2  | 0.59 | <5 | 100 | <5 | 1.13 | <1 | 6  | 191 | 2167 | 2.27 | <10  | 0.29 | 358 | 13 | 0.06 | 3  | 300 | 8  | <5 <20 | 58 < 0.01  | <10 | 297 | <10 | 2  | 20       |
|       |       |      |      |    |     |    |      |    |    |     |      |      |      |      |     |    |      |    |     |    |        | -0.004     | .46 | 000 | -40 |    | 40       |
| 16    | 8332  | 1.0  | 0.43 | <5 | 100 | <5 | 0.81 | <1 | 5  | 190 | 1795 | 2.21 | <10  | 0.22 | 263 | 8  |      | 4  | 220 | 6  | <5 <20 | 50 < 0.01  |     |     |     |    | 19       |
| 17    | 8333  | 8.0  | 0.46 | <5 | 110 | <5 | 0.90 | <1 | 7  | 149 | 934  | 2.18 | <10  | 0.23 | 269 | 5  | 0.06 | 3  | 270 | 14 | <5 <20 | 56 < 0.01  |     |     | <10 | -  | 24       |
| 18    | 8335  | 0.6  | 0.50 | <5 | 100 | <5 | 1.24 | <1 | 5  | 124 | 761  | 2.16 | <10  | 0.37 | 431 | 3  | 0.04 | 1  | 290 | 8  | <5 <20 | 63 < 0.01  |     |     | <10 | 1  | 28       |
| 19    | 8336  | 1.0  | 0.36 | <5 | 55  | <5 | 0.80 | <1 | 6  | 169 | 534  | 2.61 | <10  | 0.31 | 305 | 10 |      | 3  | 270 | 22 | <5 <20 | 44 < 0.01  |     |     | <10 |    | 19       |
| 20    | 8337  | 2.4  | 0.59 | 10 | 55  | <5 | 0.68 | <1 | 7  | 111 | 1113 | 2.88 | <10  | 0.37 | 302 | 12 | 0.02 | 3  | 260 | 52 | <5 <20 | 36 < 0.01  | <10 | 222 | <10 | <1 | 39       |
|       |       |      |      |    |     |    |      |    |    |     |      |      |      |      |     | _  |      |    |     |    |        | 25 -0.01   | -40 | 227 | <10 | -1 | 49       |
| 21    | 8338  | 0.8  | 0.80 | 10 | 100 | <5 | 0.62 | <1 | 4  | 155 | 874  | 2.31 | <10  | 0.63 | 360 | 6  |      | 3  | 340 | 8  | <5 <20 | 35 < 0.01  |     |     |     |    | 49<br>46 |
| 22    | 8339  | 0.9  | 0.69 | <5 | 90  | <5 | 0.69 | <1 | 5  | 114 | 914  | 2.53 | <10  | 0.55 | 354 | 7  | 0.0_ | <1 | 290 | 10 | <5 <20 | 38 < 0.01  |     |     | <10 | -  | 48       |
| 23    | 8340  | 1.5  | 0.63 | 10 | 75  | <5 | 1.14 | <1 | 7  | 136 | 1557 | 2.55 | <10  | 0.43 | 387 | 9  | 0.03 | 2  | 280 | 34 | <5 <20 | 62 < 0.01  | -   | 305 | <10 |    |          |
| 24    | 8341  | 1.0  | 0.51 | 5  | 115 | <5 | 0.94 | <1 | 4  | 132 | 1077 | 1.97 | <10  | 0.34 | 306 | 5  | 0.05 | 4  | 310 | 8  | <5 <20 | 71 <0.01   | -   |     | <10 | 2  | 31       |
| 25    | 8342  | 2.1  | 0.51 | <5 | 85  | <5 | 0.89 | <1 | 5  | 145 | 2055 | 2.20 | <10  | 0.35 | 297 | 4  | 0.05 | 2  | 220 | 12 | <5 <20 | 72 <0.01   | <1U | 241 | <10 | <1 | 33       |
|       |       |      |      |    |     |    |      |    |    |     |      |      |      |      |     | _  |      | _  |     |    | .6 .00 | 00 40 04   | -10 | 404 | -10 | -1 | 24       |
| 26    | 8343  | 1.6  | 0.39 | <5 | 105 | <5 | 0.83 | <1 | 5  | 137 | 1809 | 1.84 | <10  | 0.24 | 263 | 5  |      | 3  | 220 | 10 | <5 <20 | 83 < 0.01  |     |     |     |    | 24       |
| 27    | 8344  | 1.4  | 0.51 | <5 | 100 | <5 | 0.75 | <1 | 6  | 159 | 1615 | 2.48 | <10  | 0.32 | 258 | 4  | 0.05 | 3  | 250 | 10 | <5 <20 | 72 < 0.01  |     |     | <10 |    | 36<br>26 |
| 28    | 8346  | 0.6  | 0.36 | <5 | 185 | <5 | 1.09 | <1 | 3  | 140 | 596  | 2.11 | <10  | 0.29 | 321 | 7  | 0.05 | 3  | 370 | 12 | <5 <20 | 88 < 0.01  |     |     |     | _  |          |
| 29    | 8347  | 1.4  | 0.44 | <5 | 155 | <5 | 0.97 | <1 | 5  | 163 | 2210 | 2.07 | <10  | 0.27 | 284 | 5  | 0.07 | 2  | 260 | 12 | <5 <20 | 83 < 0.01  |     |     | <10 | 1  | 27       |
| 30    | 8348  | 0.9  | 0.33 | <5 | 195 | <5 | 1.00 | <1 | 3  | 120 | 984  | 1.94 | <10  | 0.25 | 295 | 5  | 0.08 | 1  | 280 | 20 | <5 <20 | 82 <0.01   | <10 | 2/5 | <10 | <1 | 29       |
| ĺ     |       |      |      |    |     |    |      |    |    |     |      |      | Page | ı    |     |    |      |    |     |    |        |            |     |     |     |    |          |
|       |       |      |      |    |     |    |      |    |    |     |      |      |      |      |     |    |      |    |     |    |        |            |     |     |     |    |          |

ECO TECH LABORATORY LTD.


| Et #.   | Tag#       | Ag   | AI%  | As | Ва  | Ві | Ca % | Ca | Co | Gr  | Cu   | F€ % | La  | Mg % | IVID | INIO | Na 70 | INI | r    | FD  | 30 311 | ٦ţ  | 11 /6 0   | _   |     |    | 2-11 |
|---------|------------|------|------|----|-----|----|------|----|----|-----|------|------|-----|------|------|------|-------|-----|------|-----|--------|-----|-----------|-----|-----|----|------|
| 31      | 8349       | 0.9  | 0.36 | <5 | 185 | <5 | 1.01 | <1 | 4  | 133 | 1003 | 2.18 | <10 | 0.29 | 325  | 7    | 0.06  | 3   | 350  | 14  | <5 <20 | 86  | <0.01 <10 | 333 | <10 | <1 | 30   |
| 32      | 8350       | 0.8  | 0.31 | <5 | 165 | <5 | 0.93 | <1 | 3  | 156 | 739  | 2.23 | <10 | 0.23 | 277  | 4    | 0.05  | 2   | 170  | 8   | <5 <20 | 63  | <0.01 <10 | 358 | <10 | <1 | 27   |
| 33      | 8323       | 2.0  | 1.54 | <5 | 310 | <5 | 1.40 | <1 | 11 | 25  | 7268 | 3.48 | <10 | 1.10 | 465  | 2    | 0.16  | 18  | 2450 | 12  | <5 <20 | 76  | 0.07 <10  | 186 | <10 | 21 | 58   |
| 34      | 8345       | <0.2 | 3.42 | 10 | 125 | <5 | 3.71 | <1 | 35 | 52  | 159  | 7.97 | <10 | 3.20 | 1046 | <1   | 0.03  | 16  | 1650 | <2  | <5 <20 | 119 | 0.15 <10  | 284 | <10 | 22 | 88   |
| 35      | 8334       | 0.2  | 0.80 | 80 | 150 | <5 | 0.26 | 1  | 71 | 269 | 430  | >10  | <10 | 0.20 | 466  | 124  | 0.06  | 439 | 70   | 112 | <5 <20 | 14  | <0.01 <10 | 24  | <10 | <1 | 409  |
|         |            |      |      |    |     |    |      |    |    |     |      |      |     |      |      |      |       |     |      |     |        |     |           |     |     |    |      |
| OC DA   | <u>TA:</u> |      |      |    |     |    |      |    |    |     |      |      |     |      |      |      |       |     |      |     |        |     |           |     |     |    |      |
| Resplit | :          |      |      |    |     |    |      |    |    |     |      |      |     |      |      |      |       |     |      |     |        |     |           |     |     |    |      |
| 1       | 8316       | 0.9  | 0.55 | <5 | 80  | <5 | 1.62 | <1 | 5  | 140 | 1123 | 2.67 | <10 | 0.33 | 536  | 12   | 0.04  | 4   | 290  | 6   | <5 <20 | 70  | <0.01 <10 | 247 | <10 | 3  | 21   |
| Repeat  | :          |      |      |    |     |    |      |    |    |     |      |      |     |      |      |      |       |     |      |     |        |     |           |     |     | _  |      |
| 1       | 8316       | 0.9  | 0.54 | <5 | 75  | <5 | 1.65 | <1 | 5  | 136 | 1064 | 2.54 | <10 | 0.33 | 573  | 9    | 0.04  | 3   | 310  | 4   |        | 76  |           |     | <10 | 2  | 22   |
| 10      | 8326       | 1.0  | 0.47 | <5 | 80  | <5 | 2.68 | <1 | 6  | 113 | 1165 | 2.10 | <10 | 0.33 | 773  | 10   | 0.03  | 3   | 320  | 8   | <5 <20 | 101 |           |     | <10 | 5  | 20   |
| 19      | 8336       | 1.1  | 0.35 | <5 | 55  | <5 | 0.80 | <1 | 6  | 169 | 541  | 2.62 | <10 | 0.31 | 307  | 11   | 0.04  | 2   | 260  | 20  | <5 <20 | 43  | <0.01 <10 | 131 | <10 | <1 | 20   |
| Standa  | rd:        |      |      |    |     |    |      |    |    |     |      |      |     |      |      |      |       |     |      |     |        |     |           |     |     |    |      |
| GEO'05  | 5          | 1.5  | 1.57 | 50 | 165 | <5 | 1.40 | <1 | 19 | 59  | 86   | 3.90 | <10 | 0.84 | 590  | <1   | 0.03  | 28  | 630  | 20  | <5 <20 | 53  | 0.11 <10  | 70  | <10 | 10 | 76   |

ECO TECH LABORATORY LTD.

Jutta Jealouse

BC Certified Assayer

JJ/ga df/5101 XLS/05



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com

www.ecotechlab.com

# CERTIFICATE OF ASSAY AS 2005-5104R

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

29-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: n/a Shipment #: 21

Samples Submitted by: Allan Huard

|                            |              | Au     | Au      |                         |
|----------------------------|--------------|--------|---------|-------------------------|
| ET #.                      | Tag #        | (g/t)  | (oz/t)  |                         |
| 1                          | 8351         | 0.04   | 0.001   |                         |
| 2                          | 8352         | 0.04   | 0.001   |                         |
| 2<br>3                     | 8353         | <0.03  | < 0.001 |                         |
|                            | 8354         | 0.03   | 0.001   |                         |
| 4<br>5<br>6<br>7<br>8<br>9 | 8355         | 0.06   | 0.002   |                         |
| 6                          | 8356         | < 0.03 | <0.001  |                         |
| 7                          | 8357         | 0.03   | 0.001   |                         |
| 8                          | 8359         | 0.07   | 0.002   |                         |
| 9                          | 8360         | 0.03   | 0.001   |                         |
| 10                         | 8361         | < 0.03 | <0.001  |                         |
| 11                         | 8362         | 0.06   | 0.002   |                         |
| 12                         | 8363         | 0.04   | 0.001   |                         |
| 13                         | 8364         | 0.03   | 0.001   |                         |
| 14                         | 8365         | 0.04   | 0.001   |                         |
| 15                         | <b>8366</b>  | 0.03   | 0.001   |                         |
| 16                         | 8367         | 0.05   | 0.001   |                         |
| 17                         | 8368         | 0.08   | 0.002   |                         |
| 18                         | 8370         | 0.05   | 0.001   |                         |
| 19                         | 8371         | < 0.03 | <0.001  |                         |
| 20                         | 8372         | < 0.03 | <0.001  |                         |
| 21                         | 8373         | < 0.03 | <0.001  |                         |
| <b>2</b> 2                 | 8374         | <0.03  | <0.001  |                         |
| 23                         | <b>8</b> 375 | 0.03   | 0.001   |                         |
| 24                         | 8376         | <0.03  | <0.001  |                         |
| 25                         | 8377         | < 0.03 | <0.001  |                         |
| 26                         | 8378         | 0.03   | 0.001   |                         |
| 27                         | 8379         | <0.03  | <0.001  | A AN I                  |
| 28                         | 8381         | < 0.03 | <0.001  | / <u>/au</u>            |
|                            |              |        |         | ECO TECHLABORATORY LTD. |

CO TECHLABORATORY LT

Jutta (Jealouse B.C. Øertified Assayer

|                           |                      | Au                     | Au                        |      |
|---------------------------|----------------------|------------------------|---------------------------|------|
| ET #.                     | Tag #                | (g/t)                  | (oz/t)                    | <br> |
| 29                        | 8382                 | <0.03                  | <0.001                    |      |
| 30                        | 8383                 | < 0.03                 | <0.001                    |      |
| 31                        | 8384                 | < 0.03                 | <0.001                    |      |
| 32                        | 8385                 | < 0.03                 | <0.001                    |      |
| 33                        | 8358                 | 0.43                   | 0.013                     |      |
| 34                        | 8380                 | < 0.03                 | <0.001                    |      |
| 35                        | 8369                 | 0.08                   | 0.002                     |      |
| QC DATA: Repeats: 1 10 19 | 8351<br>8361<br>8371 | 0.03<br><0.03<br><0.03 | 0.001<br><0.001<br><0.001 |      |
| <b>Resplit</b> :<br>1     | 8351                 | 0.03                   | 0.001                     |      |
| Standard:<br>OX140        |                      | 1.90                   | 0.055                     |      |

JJ/bw XL\$/05 ECO TECHLABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

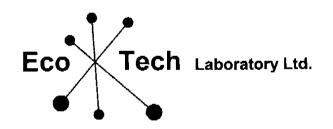
No. of samples received: 35 Sample type:Core Project #: 301 Shipment #: 21 Samples submitted by: Allan Huard

| Et #. | Tag #        | Ag   | AI % | As         | Ва   | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La   | Mg % | Mn   | Мо | Na % | Ni | р    | Pb  | Sb Sn  |     | Ti % U    | ٧               | W   | Υ  | Zn |
|-------|--------------|------|------|------------|------|----|------|----|----|-----|------|------|------|------|------|----|------|----|------|-----|--------|-----|-----------|-----------------|-----|----|----|
| 1     | 8351         | 0.5  | 0.26 | <5         | 175  | <5 | 0.97 | <1 | 3  | 163 | 654  | 2.18 | <10  | 0.20 | 306  | 3  | 0.05 | 4  | 210  | 10  | <5 <20 |     | <0.01 <10 |                 | <10 |    | 23 |
| 2     | 8352         | 0.6  | 0.35 | <5         | 175  | <5 | 1.16 | <1 | 3  | 124 | 714  | 2.16 | <10  | 0.25 | 308  | 11 | 0.05 | 3  | 340  | 12  | <5 <20 |     | <0.01 <10 |                 | <10 |    | 27 |
| 3     | 8353         | 0.5  | 0.34 | <5         | 200  | <5 | 1.10 | <1 | 2  | 140 | 716  | 1.77 | <10  | 0.20 | 304  | 3  | 0.05 | 3  | 270  | 8   | <5 <20 |     | <0.01 <10 |                 | <10 |    | 23 |
| 4     | 8354         | 0.4  | 0.35 | <5         | 115  | <5 | 1.56 | <1 | 5  | 174 | 430  | 1.94 | <10  | 0.20 | 439  | 4  | 0.05 | 3  | 270  | 12  | <5 <20 |     | <0.01 <10 |                 | <10 | 2  | 20 |
| 5     | 8355         | 0.9  | 0.40 | <5         | 115  | <5 | 1.48 | <1 | 3  | 151 | 562  | 2.18 | <10  | 0.28 | 507  | 6  | 0.04 | 3  | 290  | 10  | <5 <20 | 65  | <0.01 <10 | 279             | <10 | 2  | 29 |
| _     |              |      |      |            |      |    |      |    |    |     |      |      |      |      |      |    |      |    |      |     |        |     |           |                 |     |    |    |
| 6     | 8356         | 0.4  | 0.29 | <5         | 285  | <5 | 1.05 | <1 | 3  | 130 | 571  | 2.24 | <10  | 0.23 | 352  | 9  | 0.04 | 3  | 240  | 10  | <5 <20 |     | <0.01 <10 |                 |     |    | 26 |
| 7     | 8357         | 0.7  | 0.39 | <5         | 265  | <5 | 1.06 | <1 | 3  | 120 | 839  | 2.12 | <10  | 0.22 | 317  | 7  | 0.06 | 4  | 290  | 10  | <5 <20 | 88  | 0.01 <10  |                 | <10 |    | 28 |
| 8     | 8359         | 0.9  | 0.44 | <5         | 280  | <5 | 1.01 | <1 | 2  | 175 | 1073 | 1.72 | <10  | 0.21 | 308  | 3  | 0.08 | 4  | 360  | 12  | <5 <20 |     | <0.01 <10 |                 | <10 | 2  | 28 |
| 9     | 8360         | 0.7  | 0.36 | <5         | 235  | <5 | 1.22 | <1 | 3  | 123 | 829  | 2.10 | <10  | 0.18 | 335  | 4  | 0.06 | 2  | 300  | 10  | <5 <20 |     | <0.01 <10 |                 | <10 |    | 25 |
| 10    | 8361         | 0.4  | 0.25 | <5         | 255  | <5 | 1.19 | <1 | 4  | 119 | 514  | 2.49 | <10  | 0.19 | 367  | 3  | 0.06 | <1 | 340  | 12  | <5 <20 | 74  | <0.01 <10 | 262             | <10 | <1 | 23 |
|       | 000,         | •    |      | -          |      |    |      |    |    |     |      |      |      |      |      |    |      |    |      |     |        |     |           |                 |     |    |    |
| 11    | 8362         | 0.7  | 0.37 | <5         | 215  | <5 | 1.46 | <1 | 6  | 109 | 995  | 3.22 | <10  | 0.31 | 467  | 7  | 0.05 | 3  | 430  | 14  | <5 <20 |     | <0.01 <10 |                 | <10 | 1  | 36 |
| 12    | 8363         | 0.6  | 0.63 | <5         | 175  | <5 | 2.21 | <1 | 6  | 77  | 373  | 2.70 | <10  | 0.46 | 744  | 6  | 80.0 | 2  | 890  | 90  | <5 <20 | 129 | 0.01 <10  |                 | <10 | 10 | 63 |
| 13    | 8364         | 0.6  | 0.74 | <5         | 255  | <5 | 2.38 | <1 | 7  | 55  | 711  | 3.43 | <10  | 0.53 | 740  | 5  | 0.08 | 3  | 1060 | 42  | <5 <20 |     | <0.01 <10 |                 | <10 | 8  | 50 |
| 14    | 8365         | 0.5  | 0.57 | < <b>5</b> | 340  | <5 | 3.86 | <1 | 5  | 56  | 167  | 2.86 | <10  | 0.42 | 1225 | 7  | 0.07 | 2  | 1000 | 306 | <5 <20 | 131 | <0.01 <10 | 162             | <10 | 13 | 42 |
| 15    | 8366         | 0.2  | 0.55 | <5         | 220  | <5 | 2.70 | <1 | 6  | 50  | 130  | 2.93 | <10  | 0.37 | 893  | 44 | 0.07 | <1 | 1000 | 24  | <5 <20 | 98  | 0.02 <10  | 176             | <10 | 11 | 38 |
| ,,,   | 4000         | 0.2  | 5.55 | _          |      | -  |      |    |    |     |      |      |      |      |      |    |      |    |      |     |        |     |           |                 |     |    |    |
| 16    | 8367         | <0.2 | 0.63 | <5         | 335  | <5 | 2.44 | <1 | 6  | 71  | 82   | 3.13 | <10  | 0.44 | 757  | 4  | 0.10 | 2  | 1030 | 28  | <5 <20 | 129 | 0.02 <10  |                 | <10 | 9  | 49 |
| 17    | 8368         | 0.4  | 0.60 | <5         | 200  | <5 | 1.44 | <1 | 7  | 76  | 214  | 3.17 | <10  | 0.42 | 510  | 2  | 0.08 | 3  | 780  | 20  | <5 <20 | 88  | 0.04 <10  |                 | <10 | 6  | 38 |
| 18    | 8370         | 0.4  | 0.62 | 10         | 100  | <5 | 1.98 | <1 | 8  | 70  | 130  | 3.09 | <10  | 0.38 | 691  | 3  | 0.06 | 2  | 960  | 120 | <5 <20 | 84  |           |                 | <10 | 8  | 46 |
| 19    | 8371         | <0.2 | 0.49 | <5         | 1250 | <5 | 2.79 | <1 | <1 | 60  | 47   | 2.86 | <10  | 0.38 | 839  | 3  | 0.08 | 2  | 990  | 16  | <5 <20 | 133 | 0.01 <10  |                 | <10 | 8  | 47 |
| 20    | 8372         | 1.0  |      | <5         | 220  | <5 | 3.18 | <1 | 7  | 72  | 115  | 2.87 | <10  | 0.32 | 1071 | 9  | 0.08 | 2  | 1000 | 996 | <5 <20 | 94  | <0.01 <10 | 116             | <10 | 10 | 46 |
|       | 00. <b>=</b> |      |      | -          |      |    |      |    |    |     |      |      |      |      |      |    |      |    |      |     |        |     |           |                 |     |    |    |
| 21    | 8373         | <0.2 | 0.49 | <5         | 345  | <5 | 0.53 | <1 | 7  | 54  | 162  | 3.03 | <10  | 0.22 | 403  | <1 | 0.10 | 1  | 1180 | 16  | <5 <20 | 111 | 0.06 <10  |                 | <10 | 9  | 28 |
| 22    | 8374         | <0.2 |      | <5         | 445  | <5 | 0.79 | <1 | 6  | 72  | 96   | 3.07 | <10  | 0.20 | 316  | <1 | 0.12 | 2  | 1160 | 14  | <5 <20 | 102 | 0.07 <10  |                 | <10 | 9  | 25 |
| 23    | 8375         | <0.2 |      | <5         | 405  | <5 | 0.94 | <1 | 7  | 45  | 103  | 3.22 | <10  | 0.32 | 488  | <1 | 0.11 | 3  | 1240 | 10  | <5 <20 | 87  | 0.06 <10  |                 | <10 | 8  | 31 |
| 24    | 8376         | <0.2 | 0.54 | <5         | 635  | <5 | 0.54 | <1 | 4  | 62  | 173  | 2.87 | <10  | 0.34 | 371  | <1 | 0.11 | 2  | 1120 | 10  | <5 <20 | 79  | 0.06 <10  |                 |     | 10 | 30 |
| 25    | 8377         |      | 0.55 | <5         | 580  | <5 | 1.37 | <1 | 5  | 65  | 231  | 2.91 | <10  | 0.36 | 491  | 3  | 0.09 | 2  | 1210 | 12  | <5 <20 | 94  | 0.04 <10  | 120             | <10 | 9  | 38 |
| 20    | 5011         | 0.2  | 0.00 | ū          |      | •  |      |    |    |     |      |      |      |      |      |    |      |    |      |     |        |     |           |                 |     |    |    |
| 26    | 8378         | 0.4  | 0.50 | <5         | 390  | <5 | 0.54 | <1 | 6  | 58  | 449  | 2.81 | <10  | 0.29 | 337  | <1 | 0.11 | 2  | 1220 | 16  | <5 <20 | 70  |           |                 |     | 9  | 30 |
| 27    | 8379         | <0.2 | 0.63 | <5         | 670  | <5 | 0.55 | <1 | 5  | 61  | 135  | 3.08 | <10  | 0.40 | 396  | <1 | 0.11 | <1 | 1230 | 16  | <5 <20 | 102 | 0.06 <10  |                 |     | 9  | 37 |
| 28    | 8381         | <0.2 | 0.63 | <5         | 585  | <5 | 0.50 | <1 | 5  | 58  | 199  | 3.17 | <10  | 0.43 | 420  | <1 | 0.11 | 3  | 1190 | 12  | <5 <20 | 85  | 0.06 <10  |                 | <10 | 8  | 34 |
| 29    | 8382         | <0.2 | 0.84 | <5         | 840  | <5 | 0.74 | <1 | 6  | 53  | 174  | 3.51 | <10  | 0.61 | 608  | <1 | 0.11 | 4  | 1200 | 12  | <5 <20 | 67  | 0.06 <10  |                 | <10 | 9  | 50 |
| 30    | 8383         | 0.3  |      | 10         | 470  | <5 | 0.81 | <1 | 8  | 68  | 349  | 3.48 | <10  | 0.52 | 772  | 3  | 0.06 | 3  | 1160 | 16  | <5 <20 | 38  | 0.02 <10  | 13 <del>9</del> | <10 | 9  | 56 |
|       |              | 5.0  | v    |            |      | -  | -    |    |    |     |      |      | Page | 1    |      |    |      |    |      |     |        |     |           |                 |     |    |    |
|       |              |      |      |            |      |    |      |    |    |     |      |      |      |      |      |    |      |    |      |     |        |     |           |                 |     |    |    |

ECO TECH LABORATORY LTD.

### ICP CERTIFICATE OF ANALYSIS AS 2005-5104

Falconbridge Limited


| Et #.             | Tag # | Ag    | AI % | As | Ва   | Bi            | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn   | Мо  | Na % | Ni  | P    | Pb  | Sb Sn  | Sr  | Ti %    | U     | V    | W   | Υ  | Zn  |
|-------------------|-------|-------|------|----|------|---------------|------|----|----|-----|------|------|-----|------|------|-----|------|-----|------|-----|--------|-----|---------|-------|------|-----|----|-----|
| 31                | 8384  | <0.2  | 0.57 | <5 | 760  | <5            | 3.50 | <1 | 5  | 46  | 76   | 3.31 | <10 | 0.35 | 1311 | 2   | 0.07 | 3   | 1220 | 12  | <5 <20 | 96  | 0.04 <  | 10 1  | 38 • | <10 | 13 | 34  |
| 32                | 8385  | <0.2  | 0.53 | <5 | 465  | <5            | 1.65 | <1 | 6  | 65  | 197  | 3.27 | <10 | 0.23 | 1067 | 2   | 0.08 | 2   | 1290 | 12  | <5 <20 | 62  | 0.03 <  | 10 1. | 29 - | <10 | 11 | 39  |
| 33                | 8358  | 2.0   | 1.41 | 10 | 310  | <5            | 1.42 | <1 | 12 | 25  | 7054 | 3.57 | 10  | 0.98 | 483  | 2   | 0.15 | 19  | 2770 | 20  | <5 <20 | 78  | 0.07 <  |       | -    |     | 18 | 56  |
| 34                | 8380  | < 0.2 | 2.76 | 10 | 125  | <5            | 4.20 | <1 | 37 | 52  | 94   | 7.59 | <10 | 2.39 | 998  | <1  | 0.04 | 17  | 1790 | 8   | <5 <20 | 93  | 0.16 <  | -     |      |     | 19 | 83  |
| 35                | 8369  | 0.2   | 0.80 | 90 | 145  | <5            | 0.26 | <1 | 70 | 245 | 429  | >10  | <10 | 0.13 | 456  | 127 | 0.05 | 442 | 90   | 114 | <5 <20 | 12  | <0.01 < | 10    | 22   | <10 | <1 | 488 |
| QC DAT            |       |       |      |    |      |               |      |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     |         |       |      |     |    |     |
| Resplit:<br>1     | 8351  | 0.5   | 0.24 | <5 | 165  | <5            | 0.99 | <1 | 3  | 134 | 561  | 2.19 | <10 | 0.20 | 311  | 3   | 0.04 | 3   | 230  | 10  | <5 <20 | 53  | <0.01 < | 10 2  | 98 - | <10 | <1 | 29  |
| Repeat:           | :     |       |      |    |      |               |      |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     |         |       |      |     |    |     |
| i                 | 8351  | 0.5   | 0.26 | <5 | 180  | <5            | 0.96 | <1 | 3  | 165 | 646  | 2.16 | <10 | 0.20 | 302  | 3   | 0.05 | 4   | 220  | 8   | <5 <20 | 61  |         |       |      | 10  | <1 | 22  |
| 10                | 8361  | 0.5   | 0.25 | <5 | 265  | <5            | 1.20 | <1 | 4  | 121 | 510  | 2.52 | <10 | 0.19 | 372  | 3   | 0.05 | 3   | 360  | 10  | <5 <20 |     |         |       |      | ,,, | <1 | 23  |
| 19                | 8371  | <0.2  | 0.48 | <5 | 1255 | <5            | 2.82 | <1 | <1 | 60  | 45   | 2.88 | <10 | 0.37 | 836  | 4   | 80.0 | 3   | 1030 | 18  | <5 <20 | 125 | 0.01 <  | 10 1  | 17   | <10 | 8  | 49  |
| Standar<br>GEO'05 |       | 1.5   | 1.32 | 60 | 150  | <b>&lt;</b> 5 | 1.37 | <1 | 19 | 56  | 83   | 3.86 | <10 | 0.70 | 590  | <1  | 0.02 | 28  | 630  | 22  | <5 <20 | 51  | 0.11 <  | 10    | 70   | <10 | 11 | 76  |

*/ [[[]]AAN ( ) [[]OO | [F<sup>O</sup>]* Égő tech láboratory Ltd.

Julta Jealouse

BC Certified Assayer

JJ/ga df/5101 XLS/05



10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

# CERTIFICATE OF ASSAY AS 2005-5105

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

26-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: n/a Shipment #: 22

Samples Submitted by: Allan Huard

|               |      | Au     | Au      |                          |
|---------------|------|--------|---------|--------------------------|
| ET #.         | Tag# | (g/t)  | (oz/t)  |                          |
| 1             | 8386 | 0.06   | 0.002   |                          |
| 2             | 8387 | 3.03   | 0.088   |                          |
| 2<br>3        | 8388 | 0.07   | 0.002   |                          |
| 4             | 8389 | 0.22   | 0.006   |                          |
| 5<br>6        | 8390 | 0.05   | 0.001   |                          |
| 6             | 8391 | 0.07   | 0.002   |                          |
| 7             | 8392 | 0.54   | 0.016   |                          |
| <b>8</b><br>9 | 8394 | 0.49   | 0.014   |                          |
| 9             | 8395 | 0.05   | 0.001   |                          |
| 10            | 8396 | 0.05   | 0.001   |                          |
| 11            | 8397 | 0.09   | 0.003   |                          |
| 12            | 8398 | 0,20   | 0.006   |                          |
| 13            | 8399 | 0.21   | 0.006   |                          |
| 14            | 8400 | 0.20   | 0.006   |                          |
| 15            | 8401 | 0.16   | 0.005   |                          |
| 16            | 8402 | 0.06   | 0.002   |                          |
| 17            | 8403 | 0.05   | 0.001   |                          |
| 18            | 8405 | 0.05   | 0.001   |                          |
| 19            | 8406 | 0.11   | 0.003   |                          |
| 20            | 8407 | 0.12   | 0.003   |                          |
| 21            | 8408 | 0.04   | 0.001   |                          |
| 22            | 8409 | 0.04   | 0.001   |                          |
| 23            | 8410 | 0.04   | 0.001   |                          |
| 24            | 8411 | < 0.03 | <0.001  |                          |
| 25            | 8412 | < 0.03 | <0.001  | _                        |
| 26            | 8413 | <0.03  | < 0.001 | ,                        |
| 27            | 8414 | <0.03  | <0.001  | -1 n. / - / 100 n.       |
| 28            | 8416 | 0.06   | 0.002   | and he War (1) man 1807  |
|               |      |        |         | FOO TECH LABORATORY LTD. |

ECO TECH LABORATORY LTD.

Jutta Jealouse

|           |       | Au     | Au     |  |
|-----------|-------|--------|--------|--|
| ET #.     | Tag # | (g/t)  | (oz/t) |  |
| 29        | 8417  | 0.04   | 0.001  |  |
| 30        | 8418  | 0.23   | 0.007  |  |
| 31        | 8419  | 0.05   | 0.001  |  |
| 32        | 8420  | 0.04   | 0.001  |  |
| 33        | 8393  | 0.42   | 0.012  |  |
| 34        | 8415  | < 0.03 | <0.001 |  |
| 35        | 8404  | 0.07   | 0.002  |  |
| QC DATA:  |       |        |        |  |
| 1         | 8386  | 0.05   | 0.001  |  |
| 2         | 8387  | 2.91   | 0.085  |  |
| 7         | 8392  | 0.55   | 0.016  |  |
| 8         | 8394  | 0.48   | 0.014  |  |
| 10        | 8396  | 0.05   | 0.001  |  |
| 19        | 8406  | 0.11   | 0.003  |  |
| Standard: |       |        |        |  |
| OX140     |       | 1.89   | 0.055  |  |

JJ/bw XLS/05 ECO TECH LABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

ECO TECH LABORATORY LTD.

10041 Dallas Drive

KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AS 2005-5105

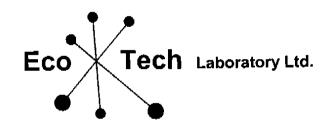
Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 22

Samples submitted by: Allan Huard


| Ët #. | Tag # | Ag    | AI % | As            | Ва       | Ri | Ca % | C4 | Со | Cr         | Cu   | Fe % | l a | Mg % | Mn   | Мо | Na % | Ni | Р    | Pb | Sb           | Sn  | Sr  | Ti %  | U   | v   | w   | Υ | Zn |
|-------|-------|-------|------|---------------|----------|----|------|----|----|------------|------|------|-----|------|------|----|------|----|------|----|--------------|-----|-----|-------|-----|-----|-----|---|----|
| 1     | 8386  | 0.2   | 0.68 | <5            | 70       | <5 | 2.85 | <1 | 9  | 45         | 175  | 3.44 | <10 | 0.40 | 1057 | 3  | 0.04 |    | 1000 | 14 | <u>&lt;5</u> | <20 | 102 | 0.02  |     | 82  |     | 7 | 36 |
| 2     | 8387  | 0.7   | 0.74 | <5            | 75<br>75 | <5 | 0.68 | <1 | 9  | 48         | 154  | 3.09 | <10 | 0.37 | 487  | 5  | 0.03 | 2  | 1100 | 32 | <5           | <20 | 26  | 0.02  | <10 | 38  | <10 | 5 | 46 |
| 3     | 8388  | 0.3   | 0.81 | <b>&lt;</b> 5 | 135      | <5 | 1.85 | <1 | 7  | 42         | 130  | 2.49 | <10 | 0.42 | 757  | 2  | 0.02 | 3  | 1080 | 6  | <5           | <20 | 76  | 0.02  | <10 | 41  | <10 | 6 | 49 |
| 4     | 8389  | 0.4   | 0.62 | <5            | 70       | <5 | 2.42 | 1  | 8  | 43         | 69   | 2.27 | <10 | 0.34 | 814  | 3  | 0.01 | 4  | 990  | 54 | <5           | <20 | 94  | 0.01  | <10 | 22  | <10 | 5 | 86 |
| 5     | 8390  | 0.5   | 0.69 | <5            | 60       | <5 | 2.70 | <1 | 8  | 40         | 75   | 2.44 | <10 | 0.43 | 809  | 3  | 0.02 | 3  | 1080 | 32 | <5           | <20 | 116 | 0.02  | <10 | 29  | <10 | 6 | 59 |
| 6     | 8391  | 0.3   | 0.71 | <5            | 85       | <5 | 2.34 | <1 | 7  | 43         | 52   | 2.39 | <10 | 0.44 | 662  | 1  | 0.03 | 2  | 1090 | 16 | <5           | <20 | 124 | 0.03  | <10 | 40  | <10 | 6 | 40 |
| 7     | 8392  | 0.4   | 0.74 | <5            | 60       | <5 | 2.37 | <1 | 9  | 39         | 60   | 2.86 | <10 | 0.48 | 678  | 3  | 0.03 | 3  | 1150 | 38 | <5           | <20 | 101 | 0.03  | <10 | 42  | <10 | 6 | 44 |
| 8     | 8394  | 0.5   | 0.61 | <5            | 85       | <5 | 3.02 | <1 | 7  | 58         | 131  | 2.29 | <10 | 0.38 | 763  | 2  | 0.02 | 4  | 860  | 77 | <5           | <20 | 140 | 0.02  | <10 | 45  | <10 | 6 | 45 |
| 9     | 8395  | 0.2   | 0.63 | <5            | 210      | <5 | 2.10 | <1 | 7  | 62         | 125  | 3.16 | <10 | 0.37 | 590  | 5  | 0.04 | 3  | 930  | 16 | <5           | <20 | 139 | 0.03  | <10 | 154 | <10 | 4 | 39 |
| 10    | 8396  | 0.2   | 0.60 | <5            | 150      | <5 | 2.14 | <1 | 7  | <b>4</b> 2 | 130  | 2.95 | <10 | 0.38 | 584  | 4  | 0.04 | 3  | 940  | 14 | <5           | <20 | 141 | 0.02  | <10 | 127 | <10 | 5 | 35 |
| 11    | 8397  | 0.2   | 0.63 | <5            | 80       | <5 | 2.20 | <1 | 7  | 40         | 59   | 2.84 | <10 | 0.42 | 589  | 3  | 0.04 | 2  | 920  | 14 | <5           | <20 | 131 | 0.02  | <10 | 75  | <10 | 7 | 35 |
| 12    | 8398  | 2.1   | 0.48 | <5            | 75       | <5 | 1.54 | <1 | 7  | 59         | 377  | 2.74 | <10 | 0.28 | 516  | 4  | 0.04 | 3  | 820  | 38 | <5           | <20 | 76  | <0.01 | <10 | 57  | <10 | 4 | 34 |
| 13    | 8399  | 1.3   | 0.46 | 35            | 70       | <5 | 1.89 | <1 | 7  | 58         | 681  | 2.64 | <10 | 0.31 | 744  | 4  | 0.04 | 3  | 820  | 10 | <5           | <20 | 67  | <0.01 | <10 | 59  | <10 | 5 | 33 |
| 14    | 8400  | 1.3   | 0.57 | 25            | 40       | <5 | 1.67 | <1 | 10 | 48         | 1609 | 3.67 | <10 | 0.43 | 566  | 6  | 0.04 | 4  | 1210 | 13 | <5           | <20 | 58  | 0.02  | <10 | 88  | <10 | 2 | 37 |
| 15    | 8401  | 1.2   | 0.79 | 25            | 120      | <5 | 2.46 | <1 | 8  | 40         | 332  | 2.99 | <10 | 0.61 | 894  | 5  | 0.03 | 3  | 1020 | 4  | <5           | <20 | 92  | 0.02  | <10 | 94  | <10 | 5 | 41 |
| 16    | 8402  | 0.5   | 0.70 | <5            | 470      | <5 | 3.15 | <1 | 5  | 34         | 274  | 2.86 | <10 | 0.53 | 976  | 2  | 0.04 | 2  | 1070 | 4  | <5           | <20 | 142 | 0.02  | <10 | 107 | <10 | 7 | 33 |
| 17    | 8403  | 1.6   | 0.51 | <5            | 125      | <5 | 2.35 | <1 | 7  | 38         | 69   | 3.09 | <10 | 0.45 | 798  | 4  | 0.03 | 2  | 1070 | 6  | <5           | <20 |     | <0.01 |     | 87  |     | 5 | 43 |
| 18    | 8405  | 0.2   | 0.64 | <5            | 215      | <5 | 2.47 | <1 | 7  | 38         | 83   | 2.85 | <10 | 0.50 | 804  | 4  | 0.04 | 3  | 970  | 2  | <5           | <20 | 82  | 0.01  | <10 | 94  |     | 6 | 36 |
| 19    | 8406  | 0.7   | 0.76 | 15            | 115      | <5 | 2.56 | <1 | 9  | 30         | 63   | 3.05 | <10 | 0.55 | 915  | 3  | 0.03 | 4  | 1010 | 18 | <5           | <20 | 76  | 0.01  |     | 79  | <10 | 7 | 45 |
| 20    | 8407  | 0.2   | 0.60 | 20            | 45       | <5 | 2.91 | <1 | 8  | 38         | 62   | 3.46 | <10 | 0.47 | 1020 | 5  | 0.03 | 3  | 1010 | 14 | <5           | <20 | 99  | 0.02  | <10 | 70  | <10 | 6 | 42 |
| 21    | 8408  | <0.2  | 0.64 | <5            | 300      | <5 | 2.35 | <1 | 6  | 44         | 62   | 2.87 | <10 | 0.51 | 742  | 6  | 0.05 | 2  | 930  | 4  | <5           | <20 | 92  | 0.03  |     |     | •   | 6 | 32 |
| 22    | 8409  | 0.2   | 0.70 | <5            | 185      | <5 | 2.09 | <1 | 9  | 46         | 78   | 3.56 | <10 | 0.51 | 748  | 18 | 0.05 | 3  | 1080 | 14 | <5           |     | 86  | 0.05  | <10 | 139 |     | 5 | 37 |
| 23    | 8410  | <0.2  | 0.66 | <5            | 280      | <5 | 2.20 | <1 | 7  | 52         | 253  | 3.08 | <10 | 0.49 | 728  | 1  | 0.06 | 3  | 910  | 10 | <5           | <20 | 90  | 0.05  | <10 | 147 | <10 | 5 | 32 |
| 24    | 8411  | < 0.2 | 0.58 | <5            | 465      | <5 | 2.30 | <1 | 5  | 42         | 77   | 2.96 | <10 | 0.44 | 760  | 1  | 0.05 | 3  | 900  | 2  | <5           | <20 | 100 | 0.05  | <10 |     |     | 3 | 30 |
| 25    | 8412  | <0.2  | 0.71 | <5            | 460      | <5 | 2.14 | <1 | 5  | 47         | 110  | 2.92 | <10 | 0.56 | 790  | 2  | 0.05 | 2  | 940  | 2  | <5           | <20 | 84  | 0.04  | <10 | 131 | <10 | 4 | 33 |

## Falconbridge Limited

| Et #.    | Tag#      | Ag    | Al % | As | Ba  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn   | Мо  | Na % | Ni  | P    | Pb  | Sb            | Sn  | Sr  | Ti %  | U   | <u> </u> | ÅΛ  | <u> </u> | Zn  |
|----------|-----------|-------|------|----|-----|----|------|----|----|-----|------|------|-----|------|------|-----|------|-----|------|-----|---------------|-----|-----|-------|-----|----------|-----|----------|-----|
| 26       | 8413      | <0.2  | 0.80 | <5 | 535 | <5 | 1.96 | 1  | 6  | 37  | 63   | 3.24 | <10 | 0.64 | 763  | <1  | 0.05 | 1   | 1040 | 2   | <5            | <20 | 96  | 0.05  | <10 | 153      | <10 | 5        | 35  |
| 27       | 8414      | < 0.2 | 0.70 | <5 | 535 | <5 | 1.90 | <1 | 6  | 58  | 77   | 3.10 | <10 | 0.54 | 663  | 1   | 0.06 | 2   | 960  | 2   | <5            | <20 | 103 | 0.06  | <10 | 147      | <10 | 4        | 32  |
| 28       | 8416      | < 0.2 | 0.69 | 5  | 330 | <5 | 1.86 | <1 | 7  | 50  | 69   | 2.81 | <10 | 0.54 | 656  | <1  | 0.05 | 2   | 850  | 2   | <5            | <20 | 102 | 0.05  | <10 | 158      | <10 | 3        | 31  |
| 29       | 8417      | < 0.2 | 0.73 | <5 | 540 | <5 | 2.14 | <1 | 6  | 58  | 40   | 3.15 | <10 | 0.55 | 781  | 2   | 0.05 | 3   | 980  | 2   | <5            | <20 | 99  | 0.05  | <10 | 147      | <10 | 4        | 33  |
| 30       | 8418      | 0.3   | 0.77 | 15 | 260 | <5 | 3.18 | <1 | 7  | 38  | 44   | 2.99 | <10 | 0.60 | 1140 | 2   | 0.04 | 2   | 950  | 2   | <5            | <20 | 96  | 0.04  | <10 | 120      | <10 | 6        | 33  |
| 31       | 8419      | <0.2  | 0.67 | <5 | 420 | <5 | 2.19 | <1 | 7  | 51  | 49   | 2.79 | <10 | 0.50 | 715  | <1  | 0.04 | 3   | 960  | 2   | <5            | <20 | 121 | 0.06  | <10 |          | <10 | 4        | 28  |
| 32       | 8420      | < 0.2 | 0.49 | <5 | 200 | <5 | 1.48 | <1 | 6  | 42  | 28   | 2.65 | <10 | 0.35 | 435  | <1  | 0.05 | 1   | 930  | 2   | <5            | <20 | 116 | 0.07  | <10 | 145      | <10 | 4        | 22  |
| 33       | 8393      | 2.1   | 1.20 | <5 | 315 | <5 | 1.05 | <1 | 14 | 34  | 7115 | 3.29 | <10 | 0.94 | 477  | 2   | 0.15 | 16  | 2740 | 2   | <5            | <20 | 74  | 0.06  | <10 | 138      | <10 | 13       | 54  |
| 34       | 8415      | < 0.2 | 2.08 | <5 | 50  | <5 | 2.79 | <1 | 22 | 44  | 75   | 5.22 | <10 | 1.88 | 732  | <1  | 0.03 | 13  | 1200 | 2   | <5            | <20 | 72  | 0.10  | <10 | 174      | <10 | 3        | 56  |
| 35       | 8404      | 0.2   | 0.83 | 85 | 125 | <5 | 0.24 | <1 | 61 | 239 | 433  | >10  | <10 | 0.12 | 469  | 120 | 0.05 | 413 | <10  | 107 | <5            | <20 | 12  | <0.01 | <10 | 26       | <10 | <1       | 473 |
| QC DAT   | <u>A:</u> |       |      |    |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |     |               |     |     |       |     |          |     |          |     |
| Repeat:  |           |       |      |    |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |     |               |     |     |       |     |          |     |          |     |
| 1        | 8386      | 0.2   | 0.64 | <5 | 65  | <5 | 2.73 | 1  | 9  | 42  | 163  | 3.26 | <10 | 0.38 | 1007 | 3   | 0.04 | 4   | 990  | 18  | <5            | <20 | 96  | 0.02  | <10 | 87       | <10 | 7        | 36  |
| 10       | 8396      | 0.2   | 0.59 | <5 | 160 | <5 | 2.16 | <1 | 6  | 44  | 122  | 3.01 | <10 |      | 612  | 4   | 0.04 | 3   | 860  | 14  | <5            | <20 | 133 | 0.02  | <10 | 130      |     | 5        | 38  |
| 19       | 8406      | 0.7   | 0.70 | 20 | 115 | <5 | 2.39 | <1 | 8  | 28  | 60   | 2.98 | <10 | 0.51 | 858  | 3   | 0.03 | 3   | 920  | 16  | <b>&lt;</b> 5 | <20 | 75  | 0.01  | <10 | 72       | <10 | 6        | 42  |
| Resplit: |           |       |      |    |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |     |               |     |     |       |     |          |     |          |     |
| 1        | 8386      | 0.2   | 0.68 | <5 | 70  | <5 | 2.78 | <1 | 8  | 47  | 157  | 3.26 | <10 | 0.37 | 1053 | 2   | 0.04 | 3   | 1000 | 16  | <5            | <20 | 98  | 0.02  | <10 | 88       | <10 | 7        | 42  |
| Standar  | rd:       |       |      |    |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |     |               |     |     |       |     |          |     |          |     |
| GEO'05   |           | 1.5   | 1.56 | 65 | 145 | <5 | 1.30 | <1 | 18 | 58  | 79   | 3.58 | <10 | 0.66 | 566  | <1  | 0.02 | 28  | 500  | 16  | <5            | <20 | 54  | 0.11  | <10 | 70       | <10 | 9        | 74  |

ECO TECH LABORATORY LTD.
Julia Jealouse
BC Certified Assayer

JJ/bs df/5105 XLS/02



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com

www.ecotechlab.com

# CERTIFICATE OF ASSAY AS 2005-5106

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

26-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: n/a Shipment #: 23

Samples Submitted by: Allan Huard

|             |       | Au    | Au     |                          |
|-------------|-------|-------|--------|--------------------------|
| ET #.       | Tag # | (g/t) | (oz/t) |                          |
| 1           | 8421  | 0.08  | 0.002  |                          |
| 2           | 8422  | 0.14  | 0.004  |                          |
| 2<br>3      | 8423  | 0.05  | 0.001  |                          |
| 4           | 8424  | 0.66  | 0.019  |                          |
|             | 8425  | 0.12  | 0.003  |                          |
| 5<br>6<br>7 | 8426  | 0.10  | 0.003  |                          |
|             | 8427  | 0.52  | 0.015  |                          |
| 8           | 8429  | 0.24  | 0.007  |                          |
| 9           | 8430  | 0.09  | 0.003  |                          |
| 10          | 8431  | 0.06  | 0.002  |                          |
| 11          | 8432  | 0.24  | 0.007  |                          |
| 12          | 8433  | 0.15  | 0.004  |                          |
| 13          | 8434  | 0.04  | 0.001  |                          |
| 14          | 8435  | 0.05  | 0.001  |                          |
| 15          | 8436  | 0.03  | 0.001  |                          |
| 16          | 8437  | <0.03 | <0.001 |                          |
| 17          | 8438  | 0.03  | 0.001  |                          |
| 18          | 8440  | <0.03 | <0.001 |                          |
| 19          | 8441  | 0.04  | 0.001  |                          |
| 20          | 8442  | 0.05  | 0.001  |                          |
| 21          | 8443  | 0.04  | 0.001  |                          |
| <b>2</b> 2  | 8444  | <0.03 | <0.001 |                          |
| 23          | 8445  | 0.07  | 0.002  |                          |
| 24          | 8446  | 0.09  | 0.003  |                          |
| 25          | 8447  | 0.03  | 0.001  | 200                      |
| 26          | 8448  | 0.04  | 0.001  | KYM DRICE / POT          |
| 27          | 8449  | 0.11  | 0.003  | ECO TECH LABORATORY LTD. |
| 28          | 8951  | 0.08  | 0.002  | Jufta Jealouse           |
| 29          | 8952  | 0.38  | 0.011  | B.C. Certified Assayer   |
| 30          | 8953  | 0.10  | 0.003  |                          |
| 31          | 8954  | 0.06  | 0.002  |                          |

Page 1

# Falconbridge Limited AS 2005 5106

|           |      | Au    | Au     |  |
|-----------|------|-------|--------|--|
| ET#.      | Tag# | (g/t) | (oz/t) |  |
| 32        | 8955 | <0.03 | <0.001 |  |
| 33        | 8428 | 0.42  | 0.012  |  |
| 34        | 8450 | <0.03 | <0.001 |  |
| 35        | 8439 | 0.07  | 0.002  |  |
| QC DATA:  |      |       |        |  |
| Repeats:  |      |       |        |  |
| · 1       | 8421 | 0.08  | 0.002  |  |
| 4         | 8424 | 0.62  | 0.018  |  |
| 7         | 8427 | 0.55  | 0.016  |  |
| 10        | 8431 | 0.05  | 0.001  |  |
| 19        | 8441 | 0.03  | 0.001  |  |
| 29        | 8952 | 0.35  | 0.010  |  |
|           |      |       |        |  |
| Resplit:  |      |       |        |  |
| 1         | 8421 | 0.04  | 0.001  |  |
| Standard: |      |       |        |  |
| OX140     |      | 1.89  | 0.055  |  |

JJ/bw XLS/05 ECO TECH LABORATORY LTD.

Jutta Jealouse

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

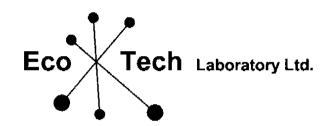
ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core Project #: 301

Shipment #: 23 Samples submitted by: Allan Huard

| Et #. | Tag # | Ag    | Al % | As         | Ba  | Bi | Ca % | Cd  | Co | Cr  | Cu   | Fe % | La   | Mg % | Mn          | Мо | Na %    | Ni | Р   | ₽b  | Sb Sn  | Sr  | Ti % U    | V   | w   | Υ  | Zn |
|-------|-------|-------|------|------------|-----|----|------|-----|----|-----|------|------|------|------|-------------|----|---------|----|-----|-----|--------|-----|-----------|-----|-----|----|----|
| 1     | 8421  | <0.2  | 0.78 | <5         | 295 | <5 | 1.71 | <1  | 8  | 57  | 43   | 3.11 | <10  | 0.59 | 626         | <1 | 0.07    | 3  | 920 | 2   | <5 <20 | 122 | 0.09 <10  | 157 | <10 | 13 | 27 |
| 2     | 8422  | 0.4   | 0.88 | 40         | 65  | <5 | 3.28 | <1  | 9  | 72  | 53   | 2.80 | <10  | 0.53 | 1086        | <1 | 0.03    | 4  | 880 | 8   | <5 <20 | 114 | 0.05 < 10 |     | <10 | 13 | 31 |
| 3     | 8423  | < 0.2 | 0.86 | 5          | 425 | <5 | 2.35 | <1  | 6  | 47  | 40   | 3.04 | <10  | 0.60 | 804         | <1 | 0.04    | 3  | 950 | <2  | <5 <20 | 117 | 0.06 < 10 |     | <10 |    | 32 |
| 4     | 8424  | 0.3   | 1.03 | 15         | 145 | <5 | 2.36 | <1  | 8  | 112 | 61   | 2.97 | <10  | 0.60 | 822         | 2  | 0.07    | 4  | 830 | 6   | <5 <20 | 116 | 0.07 < 10 | 109 | <10 |    | 35 |
| 5     | 8425  | 0.2   | 0.77 | 40         | 80  | <5 | 2.82 | <1  | 9  | 61  | 46   | 2.95 | <10  | 0.51 | 909         | <1 | 0.04    | 3  | 890 | 10  | <5 <20 | 149 | 0.06 <10  | 116 | <10 | 13 | 30 |
|       |       |       |      |            |     |    |      |     |    |     |      |      |      |      |             |    |         |    |     |     |        |     |           |     |     |    |    |
| 6     | 8426  | 0.4   | 0.95 | 30         | 80  | <5 | 2.51 | <1  | 9  | 84  | 292  | 3.57 | <10  | 0.67 | 782         | 2  |         | 4  | 870 | 4   | <5 <20 | 111 | 0.05 < 10 |     |     |    | 29 |
| 7     | 8427  | 0.6   | 0.78 | 20         | 65  | <5 | 1.84 | <1  | 10 | 73  | 541  | 3.77 | <10  | 0.59 | 531         | 5  | 0.05    | 4  | 490 | 6   | <5 <20 | 107 | 0.03 < 10 |     | <10 | 7  | 25 |
| 8     | 8429  | 0.2   | 0.79 | 25         | 100 | <5 | 1.86 | <1  | 6  | 104 | 149  | 3.56 | <10  | 0.47 | <b>4</b> 94 | 4  | 0.09    | 4  | 820 | 6   | <5 <20 | 139 | 0.03 < 10 |     |     | 10 | 23 |
| 9     | 8430  | <0.2  | 0.64 | 5          | 460 | <5 | 1.83 | <1  | 3  | 81  | 117  | 1.95 | <10  | 0.39 | 471         | 3  | 0.08    | 3  | 580 | 8   | <5 <20 | 150 | 0.04 < 10 |     |     | 13 | 19 |
| 10    | 8431  | 0.4   | 0.81 | 10         | 220 | <5 | 1.96 | <1  | 6  | 46  | 151  | 2.69 | <10  | 0.59 | 580         | 3  | 0.05    | 2  | 700 | 8   | <5 <20 | 136 | 0.03 <10  | 113 | <10 | 9  | 25 |
|       |       |       |      | _ =        |     | _  |      |     | _  |     |      |      | 4.5  | 0.50 | 7.40        |    | 0.04    | _  | 050 |     | -E -00 | 400 | 0.00 -40  | 440 | -10 | 44 | 30 |
| 11    | 8432  | 1.2   |      | 55         | 40  | <5 | 2.33 | <1  | 8  | 55  | 328  | 3.33 | <10  | 0.52 | 743         | 4  |         | 3  | 650 | 4   | <5 <20 | 130 | 0.03 <10  |     |     |    | 21 |
| 12    | 8433  | 0.9   | 0.65 | <b>4</b> 0 | 40  | <5 | 1.89 | <1  | 8  | 63  | 225  | 4.06 | <10  | 0.46 | 523         | 5  | 0.06    | 3  | 780 | 0   | <5 <20 | 110 | 0.03 <10  |     | <10 | 8  | 21 |
| 13    | 8434  | <0.2  | 0.73 | <5         | 110 | <5 | 2.04 | <1  | 6  | 76  | 224  | 3.15 | <10  | 0.53 | 504         | 4  | 0.07    | 2  | 720 | 4   | <5 <20 | 116 | 0.04 <10  |     |     |    |    |
| 14    | 8435  | 0.2   | 0.67 | <5         | 100 | <5 | 1.34 | <1  | 6  | 119 | 377  | 2.84 | <10  | 0.50 | 397         | 24 | 0.06    | 4  | 480 | - 2 | <5 <20 | 75  | 0.03 <10  |     |     | 7  | 17 |
| 15    | 8436  | 0.3   | 0.71 | <5         | 130 | <5 | 2.00 | <1  | 8  | 83  | 395  | 3.24 | <10  | 0.50 | 505         | 4  | 0.07    | 3  | 750 | 4   | <5 <20 | 114 | 0.06 <10  | 100 | <10 | 11 | 20 |
| 16    | 8437  | 0.2   | 0.67 | <5         | 775 | <5 | 2.75 | <1  | 2  | 77  | 201  | 2.49 | <10  | 0.37 | 715         | 9  | 0.06    | 3  | 900 | 4   | <5 <20 | 168 | 0.04 <10  | 121 | <10 | 14 | 24 |
| 17    | 8438  | <0.2  | 0.58 | <5         | 390 | <5 | 2.75 | <1  | 5  | 68  | 160  | 2.83 | <10  | 0.32 | 741         | 3  | 0.06    | 3  | 760 | 6   | <5 <20 | 116 | 0.04 <10  |     |     | 12 | 21 |
| 18    | 8440  | <0.2  | 0.73 | <5         | 550 | <5 | 2.48 | <1  | 4  | 62  | 240  | 2.75 | <10  | 0.50 | 677         | 8  | 0.07    | 2  | 750 | 4   | <5 <20 | 124 | 0.04 <10  | 154 | <10 | 10 | 22 |
| 19    | 8441  | <0.2  | 0.72 | <5         | 335 | <5 | 2.19 | <1  | 6  | 69  | 127  | 2.97 | <10  | 0.47 | 640         | 2  | 0.08    | 3  | 780 | 10  | <5 <20 | 140 | 0.04 <10  | 142 | <10 | 9  | 23 |
| 20    | 8442  | <0.2  |      | 10         | 140 | <5 | 2.74 | <1  | 7  | 52  | 83   | 3.42 | <10  | 0.72 | 838         | 3  |         | 2  | 840 | 4   | <5 <20 | 115 | 0.04 <10  | 158 | <10 | 9  | 29 |
| 20    | 0772  | ٧٠.2  | 0.00 | ,,,        | 140 | -0 | 2.77 | - , | ,  | ŲŽ  | ĢĐ.  | 0.12 |      | 0.12 | 000         | Ū  | 0.00    | _  |     |     |        |     |           |     |     |    |    |
| 21    | 8443  | <0.2  | 0.75 | <5         | 285 | <5 | 2.13 | <1  | 6  | 58  | 161  | 2.75 | <10  | 0.55 | 639         | 2  | 0.06    | 3  | 760 | 8   | <5 <20 | 108 | 0.03 <10  | 124 | <10 | 9  | 23 |
| 22    | 8444  | < 0.2 | 0.70 | <5         | 405 | <5 | 2.06 | <1  | 5  | 52  | 88   | 2.83 | <10  | 0.53 | 673         | 2  | 0.05    | 2  | 750 | 10  | <5 <20 | 119 | 0.04 <10  | 135 | <10 | 9  | 26 |
| 23    | 8445  | < 0.2 | 0.70 | 10         | 470 | <5 | 1.86 | <1  | 5  | 51  | 160  | 2.85 | <10  | 0.57 | 688         | 2  | 0.04    | 1  | 800 | 8   | <5 <20 | 114 | 0.04 <10  | 143 | <10 | 9  | 26 |
| 24    | 8446  | 0.3   | 0.80 | 25         | 155 | <5 | 2.00 | <1  | 6  | 66  | 363  | 3.14 | <10  | 0.60 | 696         | 7  | 0.07    | 3  | 740 | 8   | <5 <20 | 91  | 0.04 <10  | 159 | <10 | 8  | 26 |
| 25    | 8447  | < 0.2 |      | 10         | 325 | <5 | 2.11 | <1  | 5  | 49  | 203  | 2.60 | <10  | 0.55 | 662         | <1 | 0.05    | 2  | 710 | 6   | <5 <20 | 120 | 0.04 <10  | 128 | <10 | 10 | 21 |
|       |       |       |      |            |     |    |      |     |    |     |      |      |      |      |             |    |         |    |     |     |        |     |           |     |     |    |    |
| 26    | 8448  | 0.2   |      | 5          | 205 | <5 | 2.07 | <1  | 6  | 51  | 330  | 2.62 | <10  | 0.53 | 632         | 1  | • • • • | 3  | 700 | 8   | <5 <20 | 111 | 0.04 < 10 | -   |     | 9  | 20 |
| 27    | 8449  | 0.4   | 0.78 | 25         | 60  | <5 | 1.86 | <1  | 7  | 50  | 250  | 3.17 | <10  | 0.53 | 651         | 4  | 0.04    | 2  | 850 | 10  | <5 <20 | 80  | 0.02 < 10 | -   |     | 8  | 26 |
| 28    | 8951  | 1.5   | 0.66 | <5         | 135 | <5 | 0.96 | <1  | 10 | 58  | 2194 | 3.72 | <10  | 0.59 | 408         | 4  | 0.03    | 6  | 840 | 2   | <5 <20 | 55  | 0.07 <10  |     |     | 9  | 57 |
| 29    | 8952  | 0.4   | 1.01 | 115        | 70  | <5 | 2.36 | <1  | 8  | 56  | 639  | 3.33 | <10  | 0.73 | 1046        | 16 | 0.04    | 2  | 800 | 8   | <5 <20 | 97  | 0.03 <10  |     |     | 7  | 28 |
| 30    | 8953  | 0.3   | 0.70 | 15         | 150 | <5 | 2.20 | <1  | 7  | 43  | 448  | 2.99 | <10  |      | 631         | 9  | 0.04    | 2  | 880 | 10  | <5 <20 | 115 | 0.03 <10  | 116 | <10 | 9  | 24 |
|       |       |       |      |            |     |    |      |     |    |     |      |      | Page | 7    |             |    |         |    |     |     |        |     |           |     |     |    |    |
|       |       |       |      |            |     |    |      |     |    |     |      |      |      |      |             |    |         |    |     |     |        |     |           |     |     |    |    |

JJ/ga df/871 XLS/05


### ICP CERTIFICATE OF ANALYSIS AS 2005-5106

### Falconbridge Limited

| Et #.                          | Tag#                                 | Ag                                 | Al %                                 | As                         | Ba                              | Bi                         | Ca %                                 | Cd                         | Co                       | Çr_                         | Cu                              | Fe %                                | <u>La</u>                       | Mg %                                 | Mn                              | Mo                       | Na %                                 | <u>Ni</u>                 | P                                | Pb                         | Sb Sn                                                    | Sr                          | Ti % U                                                    | <u> </u>                      | W                 | Y                        | Zn                          |
|--------------------------------|--------------------------------------|------------------------------------|--------------------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|----------------------------|--------------------------|-----------------------------|---------------------------------|-------------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------|--------------------------------------|---------------------------|----------------------------------|----------------------------|----------------------------------------------------------|-----------------------------|-----------------------------------------------------------|-------------------------------|-------------------|--------------------------|-----------------------------|
| 31<br>32<br>33<br>34<br>35     | 8954<br>8955<br>8428<br>8450<br>8439 | <0.2<br><0.2<br>2.1<br><0.2<br>0.2 | 0.83<br>0.61<br>1.31<br>2.64<br>0.80 | 20<br><5<br><5<br>10<br>85 | 145<br>930<br>305<br>105<br>165 | <5<br><5<br><5<br><5<br><5 | 1.95<br>2.96<br>1.48<br>2.76<br>0.25 | <1<br><1<br><1<br><1<br><1 | 7<br>2<br>12<br>33<br>69 | 41<br>56<br>24<br>43<br>236 | 95<br>146<br>7237<br>142<br>447 | 3.08<br>3.25<br>3.63<br>6.40<br>>10 | <10<br><10<br><10<br><10<br><10 | 0.62<br>0.41<br>0.95<br>2.30<br>0.12 | 658<br>905<br>468<br>824<br>418 | 2<br>3<br>2<br><1<br>124 | 0.03<br>0.06<br>0.15<br>0.03<br>0.05 | 2<br>3<br>16<br>15<br>433 | 930<br>880<br>2220<br>1470<br>80 | 8<br>10<br>20<br><2<br>106 | <5 <20<br><5 <20<br><5 <20<br><5 <20<br><5 <20<br><5 <20 | 82<br>153<br>79<br>79<br>15 | 0.02 <10<br>0.04 <10<br>0.06 <10<br>0.14 <10<br><0.01 <10 | 97<br>172<br>183<br>233<br>29 |                   | 8<br>9<br>19<br>19<br><1 | 27<br>25<br>54<br>63<br>398 |
| QC DA <sup>*</sup> Resplit     |                                      | <0.2                               | 0.77                                 | 5                          | 295                             | <5                         | 1.77                                 | <1                         | 9                        | 53                          | 50                              | 3.26                                | <10                             | 0.60                                 | 665                             | <1                       | 0.06                                 | 3                         | 1040                             | 8                          | <5 <20                                                   | 118                         | 0.09 <10                                                  | 158                           | <10               | 13                       | 31                          |
| <b>Repeat</b><br>1<br>10<br>19 | :<br>8421<br>8431<br>8441            | <0.2<br>0.3<br><0.2                | 0.85<br>0.85<br>0.71                 | <5<br>10<br>5              | 325<br>225<br>340               | <5<br><5<br><5             | 1.79<br>2.02<br>2.21                 | <1<br><1<br><1             | 9<br>6<br>6              | 61<br>48<br>66              | 46<br>152<br>127                | 3.22<br>2.78<br>3.00                | <10<br><10<br><10               | 0.62<br>0.60<br>0.47                 | 652<br>595<br>648               | <1<br>3<br>2             | 0.07<br>0.05<br>0.07                 | 4<br>3<br>3               | 950<br>730<br>790                | 2<br>10<br>10              | <5 <20<br><5 <20<br><5 <20                               | 139<br>139<br>140           | 0.10 <10<br>0.04 <10<br>0.05 <10                          | 166<br>119<br>144             | <10<br><10<br><10 | 14<br>10<br>10           | 28<br>26<br>23              |
| Standa<br>GEO'05               |                                      | 1.5                                | 1.5 <b>4</b>                         | 60                         | 155                             | <5                         | 1.38                                 | <1                         | 19                       | 58                          | 86                              | 3.88                                | <10                             | 0.79                                 | 579                             | <1                       | 0.02                                 | 28                        | 560                              | 20                         | <5 <20                                                   | 54                          | 0.10 <10                                                  | 70                            | <10               | 10                       | 73                          |

MANU ( ) NICL / PRI EGO TECH LABORATORY LTD.

Jutta Jealouse



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5107**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

30-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type:Core Project #: 301 Shipment #: 24

Samples submitted by: Allan Huard

|                  |                   | Au    | Au      |                          |
|------------------|-------------------|-------|---------|--------------------------|
| ET#              | Tag #             | (g/t) | (oz/t)  |                          |
| 1                | 8956              | <0.03 | < 0.001 |                          |
| 2                | 8957              | <0.03 | <0.001  |                          |
| 2<br>3           | 8958              | 0.03  | 0.001   |                          |
| 4                | 8959              | <0.03 | <0.001  |                          |
| 4<br>5<br>6<br>7 | 8960              | <0.03 | <0.001  |                          |
| 6                | 8961              | <0.03 | <0.001  |                          |
| 7                | 8962              | <0.03 | <0.001  |                          |
| 8<br>9           | 8964              | 0.05  | 0.001   |                          |
| 9                | 8965              | 0.20  | 0.006   |                          |
| 10               | 8966              | 0.27  | 0.008   |                          |
| 11               | 8967              | 0.06  | 0.002   |                          |
| 12               | 89 <del>6</del> 8 | 0.04  | 0.001   |                          |
| 13               | 8669              | 0.05  | 0.001   |                          |
| 14               | 8970              | 0.05  | 0.001   |                          |
| 15               | 8971              | <0.03 | <0.001  |                          |
| 16               | 8972              | 0.05  | 0.001   |                          |
| 17               | 8973              | 0.07  | 0.002   |                          |
| 18               | 8975              | <0.03 | <0.001  |                          |
| 19               | 8976              | 0.06  | 0.002   |                          |
| 20               | 8977              | <0.03 | <0.001  |                          |
| 21               | 8978              | <0.03 | <0.001  |                          |
| 22               | 8979              | <0.03 | <0.001  |                          |
| 23               | 8980              | <0.03 | <0.001  |                          |
| 24               | 8981              | 0.03  | 0.001   |                          |
| 25               | 8982              | <0.03 | <0.001  |                          |
| 26               | 8983              | 0.06  | 0.002   | / /) <u>-</u>            |
| 27               | 8984              | <0.03 | <0.001  | A. O. Kinga Inn          |
| 28               | 8986              | 0.03  | 0.001   | ayan Oxio / per          |
|                  |                   |       |         | ECO TECH LABORATORY LTD. |

Jutta Jealouse

|                           |                      | Au                    | Au                       |
|---------------------------|----------------------|-----------------------|--------------------------|
| ET #.                     | Tag #                | (g/t)                 | (oz/t)                   |
| 29                        | 8987                 | <0.03                 | <0.001                   |
| 30                        | 8988                 | < 0.03                | <0.001                   |
| 31                        | 8989                 | 0.23                  | 0.007                    |
| 32                        | 8990                 | < 0.03                | < 0.001                  |
| 33                        | 8963                 | 0.44                  | 0.013                    |
| 34                        | 8985                 | <0.03                 | <0.001                   |
| 35                        | 8974                 | 0.07                  | 0.002                    |
| QC DATA: Repeats: 1 10 19 | 8956<br>8966<br>8976 | <0.03<br>0.27<br>0.06 | <0.001<br>0.008<br>0.002 |
| Resplit:                  | 8956                 | <0.03                 | <0.001                   |
| Standard:<br>PM176        |                      | 2.05                  | 0.060                    |

JJ/kk XLS/05 ECO TECH LABORATORY LTD.

Jutta Jealouse

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core

Project #: 301 Shipment #: 24

Samples submitted by: Allan Huard

|       |       |      |      |    |      |    |      |    |    |    |             |      |      |      |      |    |      |     |      |    |        | _     |        |             |     |     |    | _  |
|-------|-------|------|------|----|------|----|------|----|----|----|-------------|------|------|------|------|----|------|-----|------|----|--------|-------|--------|-------------|-----|-----|----|----|
| Et #. | Tag # | Ag   | Al % | As | Ba   | Bí | Ca % | Cd | Co | Cr |             | Fe % |      | Mg % | Mn   |    | Na % | Ni_ | P    |    | Sb Sn  | Şr    |        |             | V   | W   | Y  | Zn |
| 1     | 8956  | <0.2 | 0.57 | <5 | 1150 | <5 | 2.32 | <1 | 1  | 53 | 257         | 3.69 |      | 0.36 | 792  | 2  | 0.06 | 2   | 760  | 8  | <5 <20 | 144   | 0.04 < |             |     | <10 | 6  | 24 |
| 2     | 8957  | <0.2 |      | <5 | 750  | <5 | 1.41 | <1 | 3  | 58 | 104         | 2.80 | <10  | 0.38 | 521  | <1 | 0.06 | 2   | 740  | 8  | <5 <20 | 155   | 0.05 < | _           | 47  | <10 | 8  | 23 |
| 3     | 8958  | <0.2 | 0.71 | <5 | 685  | <5 | 2.23 | <1 | 2  | 56 | 155         | 3.03 | <10  | 0.50 | 735  | 2  | 0.06 | 3   | 750  | 6  | <5 <20 | 109   | 0.03 < | . –         | 57  | <10 | 9  | 24 |
| 4     | 8959  | 0.3  | 0.62 | <5 | 115  | <5 | 1.71 | <1 | 7  | 55 | 188         | 3.81 | <10  | 0.39 | 557  | 2  | 0.07 | 3   | 870  | 8  | <5 <20 | 102   | 0.04 < |             | 225 | <10 | 8  | 21 |
| 5     | 8960  | <0.2 | 0.67 | <5 | 330  | <5 | 1.62 | <1 | 6  | 54 | 96          | 3.39 | <10  | 0.44 | 493  | 5  | 0.06 | <1  | 770  | 10 | <5 <20 | 109   | 0.03 < | 10 1        | 69  | <10 | 8  | 23 |
|       |       |      |      |    |      |    |      |    |    |    |             |      |      |      |      |    |      |     |      |    |        |       |        |             |     |     | _  |    |
| 6     | 8961  | <0.2 | 0.66 | <5 | 320  | <5 | 1.71 | <1 | 5  | 55 | 85          | 3.13 | <10  | 0.43 | 501  | 14 | 0.05 | 3   | 840  | 6  | <5 <20 | 107   | 0.03 < |             |     | <10 | 8  | 21 |
| 7     | 8962  | 0.3  | 0.58 | <5 | 90   | <5 | 1.49 | <1 | 8  | 52 | 200         | 3.74 | <10  | 0.34 | 430  | 7  | 0.06 | 3   | 940  | 18 | <5 <20 | 92    | 0.04 < |             | 202 | <10 | 8  | 19 |
| 8     | 8964  | 0.2  | 0.61 | <5 | 175  | <5 | 1.55 | <1 | 6  | 53 | 114         | 3.48 | <10  | 0.36 | 469  | 3  | 0.05 | 3   | 870  | 16 | <5 <20 | 94    | 0.04 < |             | 223 | <10 | 8  | 21 |
| 9     | 8965  | 0.4  | 0.75 | 20 | 60   | <5 | 1.52 | <1 | 7  | 53 | 203         | 3.07 | <10  | 0.49 | 555  | 8  | 0.05 | 2   | 840  | 10 | <5 <20 | 88    | 0.03 < | 10 <b>1</b> | 133 | <10 | 8  | 30 |
| 10    | 8966  | 1.5  | 0.73 | 60 | 40   | <5 | 1.81 | <1 | 7  | 66 | 257         | 2.94 | <10  | 0.38 | 677  | 4  | 0.04 | 4   | 680  | 28 | <5 <20 | 92    | 0.02 < | 10 1        | 134 | <10 | 7  | 32 |
|       |       |      |      |    |      |    |      |    |    |    |             |      |      |      |      |    |      |     |      |    |        |       |        |             |     |     | _  |    |
| 11    | 8967  | 0.4  | 0.67 | <5 | 125  | <5 | 1.54 | <1 | 6  | 53 | 1 <b>61</b> | 3.35 | <10  | 0.42 | 501  | 3  | 0.06 | 3   | 810  | 16 | <5 <20 | 113   | 0.03 < |             |     | <10 | 7  | 33 |
| 12    | 8968  | 0.5  | 0.72 | 15 | 90   | <5 | 1.70 | <1 | 7  | 56 | 146         | 3.10 | <10  | 0.48 | 556  | 6  | 0.06 | 2   | 840  | 10 | <5 <20 | 96    | 0.03 < |             |     | <10 | 9  | 27 |
| 13    | 8669  | 0.3  | 0.65 | 20 | 95   | <5 | 1.81 | <1 | 6  | 52 | 128         | 3.17 | <10  | 0.44 | 612  | 2  | 0.05 | 1   | 810  | 8  | <5 <20 | 104   | 0.03 < |             | 149 |     | 10 | 28 |
| 14    | 8970  | 0.6  | 0.65 | 10 | 135  | <5 | 1.56 | <1 | 6  | 52 | 342         | 3.17 | <10  | 0.44 | 502  | 3  | 0.06 | 3   | 910  | 8  | <5 <20 | 125   | 0.04 < |             | 171 | <10 | 9  | 26 |
| 15    | 8971  | 0.4  | 0.63 | <5 | 330  | <5 | 1.98 | <1 | 6  | 51 | 118         | 3.01 | <10  | 0.40 | 571  | 3  | 0.06 | 2   | 870  | 10 | <5 <20 | 212   | 0.05 < | 10 1        | 147 | <10 | 10 | 27 |
|       |       |      |      |    |      |    |      |    |    |    |             |      |      |      |      |    |      |     |      | _  |        |       |        |             |     |     |    |    |
| 16    | 8972  | 0.3  | 0.83 | 20 | 165  | <5 | 1.60 | <1 | 6  | 53 | 159         | 2.92 | <10  | 0.57 | 612  | 2  |      | 4   | 780  | 8  | <5 <20 | 88    | 0.04 < |             | _   | <10 | 8  | 33 |
| 17    | 8973  | <0.2 | 0.84 | 25 | 280  | <5 | 2.11 | <1 | 6  | 50 | 94          | 3.17 | <10  | 0.60 | 784  | 2  | 0.05 | 3   | 840  | 12 | <5 <20 | 110   | 0.03 < |             |     | <10 | 8  | 32 |
| 18    | 8975  | 0.4  | 0.60 | <5 | 1285 | <5 | 2.00 | <1 | <1 | 51 | 42          | 2.87 | <10  | 0.36 | 660  | 2  | 0.07 | 4   | 860  | 8  | <5 <20 | 161   | 0.03 < |             |     | <10 | 8  | 26 |
| 19    | 8976  | 1.0  | 0.72 | 20 | 80   | <5 | 2.20 | <1 | 8  | 57 | 310         | 3.18 | <10  | 0.49 | 687  | 3  | 0.05 | 2   | 910  | 16 | <5 <20 | 119   | 0.03 < |             |     | <10 | 8  | 29 |
| 20    | 8977  | <0.2 | 0.59 | <5 | 1045 | <5 | 2.24 | <1 | <1 | 59 | 80          | 2.75 | <10  | 0.36 | 657  | 2  | 0.07 | 3   | 990  | 10 | <5 <20 | 168   | 0.04 < | 10 1        | 128 | <10 | 11 | 21 |
|       |       |      |      | _  |      |    |      |    |    |    |             |      |      |      |      | _  |      |     | 4000 |    | -5 -00 | 404   | 0.04 - | 40 4        | 477 | ~1A | 40 | 20 |
| 21    | 8978  | <0.2 | 0.62 | <5 | 600  | <5 | 2.12 | <1 | 4  | 68 | 181         | 3.19 | <10  | 0.36 | 684  | 3  |      |     | 1090 | 8  | <5 <20 | 134   | 0.04 < |             | 177 | <10 | 10 | 26 |
| 22    | 8979  | <0.2 | 0.62 | <5 | 1045 | <5 | 2.46 | <1 | 2  | 55 | 233         | 3.44 | <10  | 0.43 | 883  | 2  | 0.06 | _   | 1140 | 8  | <5 <20 | 159   | 0.05 < | -           | 208 | <10 | 10 | 27 |
| 23    | 8980  | <0.2 | 0.71 | <5 | 620  | <5 | 2.97 | <1 | 5  | 48 | 145         | 3.56 | <10  | 0.51 | 969  | 2  | 0.06 | 2   |      | 4  | <5 <20 | 150   | 0.04 < |             | 197 | <10 | 9  | 25 |
| 24    | 8981  | 0.2  | 0.71 | 10 | 295  | <5 | 2.36 | <1 | 7  | 52 | 248         | 3.73 | <10  | 0.50 | 721  | 3  | 0.06 |     |      | 8  | <5 <20 | 139   | 0.04 < | -           | 244 | <10 | 9  | 23 |
| 25    | 8982  | 0.3  | 0.83 | <5 | 510  | <5 | 1.74 | <1 | 6  | 50 | 504         | 4.13 | <10  | 0.60 | 608  | 3  | 0.06 | 4   | 1010 | 10 | <5 <20 | 125   | 0.04 < | 10 3        | 314 | <10 | 8  | 28 |
|       |       |      |      | _  |      | _  |      |    |    |    | 4500        |      | 4.0  | 0.50 | 0.40 | 7  | 0.05 |     | 076  | •  | 4E 400 | 4 4 5 | 0.04 - | 10 0        | 224 | -10 | n  | 30 |
| 26    | 8983  | 0.7  | 0.74 | <5 | 205  | <5 | 2.82 | <1 | 9  | 53 | 1982        | 3.73 | <10  | 0.52 | 842  | 7  | 0.00 | 4   |      | 8  | <5 <20 | 145   | 0.04 < |             |     | <10 | 9  |    |
| 27    | 8984  | <0.2 |      | <5 | 430  | <5 | 2.41 | <1 | 5  | 52 | 209         | 3.15 | <10  | 0.38 | 730  | 5  | 0.06 | 3   | 1070 | 8  | <5 <20 | 141   | 0.04 < |             |     |     | 10 | 20 |
| 28    | 8986  | 0.4  |      | 5  | 300  | <5 | 2.06 | <1 | 6  | 55 | 620         | 3.11 | <10  | 0.44 | 633  | 3  | 0.06 | 3   | 940  | 8  | <5 <20 | 135   | 0.04 < |             | 208 |     | 10 | 21 |
| 29    | 8987  | <0.2 | 0.71 | <5 | 910  | <5 | 2.89 | <1 | 3  | 50 | 266         | 3.10 | <10  | 0.50 | 935  | 2  | 0.07 | 2   | 940  | 10 | <5 <20 | 194   | 0.05 < |             | 203 |     | 11 | 26 |
| 30    | 8988  | <0.2 | 0.61 | <5 | 1095 | <5 | 3.06 | <1 | 2  | 48 | 418         | 2.96 | <10  | 0.50 | 954  | 2  | 0.06 | 2   | 860  | 8  | <5 <20 | 232   | 0.05 < | 10 2        | 245 | <10 | 12 | 24 |
|       |       |      |      |    |      |    |      |    |    |    |             |      | Page | 1    |      |    |      |     |      |    |        |       |        |             |     |     |    |    |
|       |       |      |      |    |      |    |      |    |    |    |             |      |      |      |      |    |      |     |      |    |        |       |        |             |     |     |    |    |

JJ/ga df/5101 XLS/05


### Falconbridge Limited

#### ECO TECH LABORATORY LTD.

### ICP CERTIFICATE OF ANALYSIS AS 2005-5107

| Et #.             | Tag# | Ag    | AI % | As | Ва   | Bi | Ca % | Cd | Со | Cr  | Cu   | Fe % | La  | Mg % | Mn  | Мо  | Na % | Ni  | P    | Pb  | Sb Sn  | Sr  | Ti%      | J V   | W   | Υ  | Zn  |
|-------------------|------|-------|------|----|------|----|------|----|----|-----|------|------|-----|------|-----|-----|------|-----|------|-----|--------|-----|----------|-------|-----|----|-----|
| 31                | 8989 | 1.6   | 0.96 | <5 | 175  | <5 | 2.92 | <1 | 16 | 54  | 4997 | 5.39 | <10 | 0.89 | 969 | 1   | 0.08 | 8   | 580  | 6   | <5 <20 | 179 | 0.10 <1  | 0 910 | <10 | 7  | 45  |
| 32                | 8990 | 0.4   | 0.65 | <5 | 510  | <5 | 2.18 | <1 | 6  | 57  | 832  | 3.27 | <10 | 0.45 | 735 | 2   | 0.08 | 3   | 980  | 8   | <5 <20 | 162 | 0.06 <1  | 0 218 | <10 | 12 | 25  |
| 33                | 8963 | 2.1   | 1.34 | <5 | 310  | <5 | 1.49 | <1 | 12 | 25  | 7223 | 3.56 | <10 | 1.15 | 472 | 3   | 0.13 | 16  | 2190 | 20  | <5 <20 | 79  | 0.06 <1  | 0 185 | <10 | 19 | 55  |
| 34                | 8985 | < 0.2 | 2.69 | 10 | 110  | <5 | 5.09 | <1 | 28 | 44  | 136  | 6.22 | <10 | 2.47 | 870 | <1  | 0.03 | 14  | 1440 | <2  | <5 <20 | 142 | 0.17 <1  | 0 216 | <10 | 21 | 63  |
| 35                | 8974 | 0.2   | 0.75 | 80 | 160  | <5 | 0.25 | <1 | 69 | 240 | 435  | >10  | <10 | 0.12 | 416 | 121 | 0.05 | 421 | 90   | 112 | <5 <20 | 14  | <0.01 <1 | 0 26  | <10 | <1 | 390 |
| QC DAT            |      |       |      |    |      |    |      |    |    |     |      |      |     |      |     |     |      |     |      |     |        |     |          |       |     |    |     |
| 1                 | 8956 | <0.2  | 0.57 | <5 | 1215 | <5 | 2.28 | <1 | 1  | 58  | 275  | 3.76 | <10 | 0.35 | 785 | 3   | 0.06 | 3   | 690  | 10  | <5 <20 | 143 | 0.04 <1  | 0 216 | <10 | 6  | 25  |
| Repeat:           |      |       |      |    |      |    |      |    |    |     |      |      |     |      |     |     |      |     |      |     |        |     |          |       |     |    |     |
| 1                 | 8956 | < 0.2 | 0.58 | <5 | 1225 | <5 | 2.33 | <1 | <1 | 53  | 259  | 3.71 | <10 | 0.37 | 798 | 2   | 0.07 | 3   | 780  | 8   | <5 <20 | 149 | 0.04 <1  | 0 221 | <10 | 6  | 24  |
| 10                | 8966 | 1.6   | 0.73 | 60 | 45   | <5 | 1.82 | <1 | 7  | 67  | 252  | 2.96 | <10 | 0.37 | 680 | 3   | 0.04 | 2   | 670  | 30  | <5 <20 | 89  | 0.02 <1  | 0 135 | <10 | 8  | 33  |
| 19                | 8976 | 1.0   | 0.73 | 20 | 90   | <5 | 2.21 | <1 | 9  | 61  | 309  | 3.23 | <10 | 0.49 | 689 | 3   | 0.05 | 3   | 910  | 16  | <5 <20 | 120 | 0.03 <1  | 0 142 | <10 | 8  | 29  |
| Standar<br>GEO'05 |      | 1.5   | 1.49 | 60 | 150  | <5 | 1.36 | <1 | 19 | 59  | 83   | 3.85 | <10 | 0.77 | 573 | <1  | 0.02 | 29  | 560  | 20  | <5 <20 | 52  | 0.10 <1  | 0 69  | <10 | 10 | 74  |

Jutta Jealouse



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com

www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5108**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

30-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type:Core
Project #: 301
Shipment #: 25

Samples submitted by: Alian Huard

|                  |       | Au     | Au      |                          |
|------------------|-------|--------|---------|--------------------------|
| E <u>T</u> #.    | Tag # | (g/t)_ | (oz/t)_ |                          |
| 1                | 8991  | 0.05   | 0.001   | •                        |
| 2                | 8992  | 0.04   | 0.001   |                          |
| 2<br>3           | 8993  | 0.10   | 0.003   |                          |
|                  | 8994  | 0.08   | 0.002   |                          |
| 4<br>5<br>6<br>7 | 8995  | <0.03  | <0.001  |                          |
| 6                | 8996  | <0.03  | <0.001  |                          |
| 7                | 8997  | <0.03  | <0.001  |                          |
| 8                | 8999  | 0.09   | 0.003   |                          |
| 8<br>9           | 9000  | 0.11   | 0.003   |                          |
| 10               | 9001  | 0.11   | 0.003   |                          |
| 11               | 9002  | 0.11   | 0.003   |                          |
| 12               | 9003  | 0.07   | 0.002   |                          |
| 13               | 9004  | 0.04   | 0.001   |                          |
| 14               | 9005  | 0.09   | 0.003   |                          |
| 15               | 9006  | 0.04   | 0.001   |                          |
| 16               | 9007  | < 0.03 | <0.001  |                          |
| 17               | 9008  | 0.03   | 0.001   |                          |
| 18               | 9010  | 0.08   | 0.002   |                          |
| 19               | 9011  | 0.09   | 0.003   |                          |
| 20               | 9012  | 0.14   | 0.004   |                          |
| 21               | 9013  | <0.03  | < 0.001 |                          |
| 22               | 9014  | 0.23   | 0.007   |                          |
| 23               | 9015  | 0.08   | 0.002   |                          |
| 24               | 9016  | < 0.03 | <0.001  |                          |
| 25               | 9017  | <0.03  | <0.001  |                          |
| 26               | 9018  | 0.06   | 0.002   |                          |
| 27               | 9019  | < 0.03 | <0.001  | A.O. Kanalana            |
| 28               | 9021  | 0.03   | 0.001   | MANU DRIO / DD)          |
|                  |       |        |         | ECO TECH LABORATORY LTD. |

Jutta Jealouse

## Falconbridge Limited AS5-5108

|                           |                      | Au                   | Au                      |  |
|---------------------------|----------------------|----------------------|-------------------------|--|
| ET#.                      | Tag #                | (g/t)                | (oz/t)                  |  |
| 29                        | 9022                 | 0.04                 | 0.001                   |  |
| 30                        | 9023                 | . 0.04               | 0.001                   |  |
| 31                        | 9024                 | 0.12                 | 0.003                   |  |
| 32                        | 9025                 | 0.07                 | 0.002                   |  |
| 33                        | 8998                 | 0.44                 | 0.013                   |  |
| 34                        | 9020                 | <0.03                | <0.001                  |  |
| 35                        | 9009                 | 0.06                 | 0.002                   |  |
| QC DATA: Repeats: 1 10 19 | 8991<br>9001<br>9011 | 0.04<br>0.11<br>0.11 | 0.001<br>0.003<br>0.003 |  |
| Resplit:                  | 8991                 | 0.06                 | 0.002                   |  |
| Standard:<br>PM176        |                      | 2.07                 | 0.060                   |  |

JJ/kk XLS/05 ECØ/TECH LABORATORY LTD.
Julia Jealouse

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

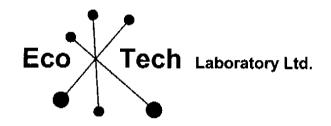
ATTENTION: Allan Huard

No. of samples received: 35
Sample type:Core
Project #: 301
Shipment #: 25

Samples submitted by: Allan Huard

| Et #.    | Tag # | Ag      | AI %              | As  | Ва  | Bi | Ca %  | Cd | Co | Cr  | Cu     | Fe % | La   | Mg % | Mn  | Мо | Na % | Ni | P    | Pb | Sb Sn          | Sr  | Ti% U     | <u> V</u>   | W   | Y  | Zn         |
|----------|-------|---------|-------------------|-----|-----|----|-------|----|----|-----|--------|------|------|------|-----|----|------|----|------|----|----------------|-----|-----------|-------------|-----|----|------------|
| 1        | 8991  | 0.4     | 1.01              | 10  | 290 | <5 | 0.92  | <1 | 9  | 61  | 876    | 3.59 | <10  | 0.83 | 623 | 2  | 0.06 |    | 1000 | 6  | <5 <20         | 69  | 0.05 < 10 |             | <10 | 9  | 46         |
| 2        | 8992  | 0.8     | 0.77              | 10  | 115 | <5 | 0.69  | <1 | 6  | 57  | 1196   | 2.32 | <10  | 0.65 | 340 | 1  | 0.04 | 4  | 1270 | 4  | <5 <20         | 38  | 0.04 < 10 |             | <10 | 7  | 42         |
| 3        | 8993  | 1.1     | 0.61              | 5   | 150 | <5 | 0.99  | <1 | 7  | 49  | 2065   | 2.22 | <10  | 0.47 | 551 | 2  | 0.03 | 6  | 1170 | 4  | <5 <20         | 60  | 0.03 < 10 |             | <10 | 7  | 35         |
| 4        | 8994  | 0.8     | 0.56              | <5  | 210 | <5 | 1.71  | <1 | 6  | 62  | 1152   | 2.97 | <10  | 0.44 | 621 | 2  | 0.04 | 3  | 850  | 2  | <5 <20         | 107 | 0.03 <10  |             | <10 | 7  | 31         |
| 5        | 8995  | < 0.2   | 1.72              | 10  | 200 | <5 | 1.68  | <1 | 20 | 28  | 316    | 5.83 | <10  | 1.89 | 978 | <1 | 0.04 | 9  | 930  | 2  | <5 <20         | 90  | 0.10 <10  | 207         | <10 | 13 | 92         |
| _        |       |         |                   |     |     |    |       |    |    |     |        |      |      |      |     |    |      |    |      |    |                |     |           |             |     |    |            |
| 6        | 8996  | < 0.2   | 1.60              | 5   | 335 | <5 | 1.84  | <1 | 19 | 25  | 148    | 5.63 | <10  | 1.78 | 970 | 1  | 0.04 | 7  | 920  | 4  | <5 <20         | 98  | 0.11 <10  |             |     |    | 84         |
| 7        | 8997  | < 0.2   | 1.68              | 5   | 315 | 5  | 2.09  | <1 | 20 | 39  | 81     | 5.69 | <10  | 1.79 | 981 | 3  | 0.05 | 8  | 910  | 6  | <5 <20         | 117 | 0.10 <10  |             |     |    | 79         |
| 8        | 8999  | 0.9     | 0.49              | 10  | 195 | <5 | 1.88  | <1 | 6  | 67  | 1163   | 2.58 | <10  | 0.36 | 478 | 2  | 0.04 | 4  | 880  | 4  | <5 <20         | 138 | 0.04 < 10 |             | <10 | 5  | 28         |
| 9        | 9000  | 1.1     | 0.51              | 5   | 155 | <5 | 2.03  | <1 | 8  | 100 | 1949   | 2.69 | <10  | 0.39 | 620 | 2  | 0.05 | 4  | 430  | 6  | <5 <20         | 132 | 0.04 <10  |             | <10 | 5  | 32         |
| 10       | 9001  | 1.1     | 0.72              | <5  | 225 | <5 | 1.91  | <1 | 10 | 67  | 2839   | 3.27 | <10  | 0.60 | 610 | 1  | 0.06 | 4  | 920  | 4  | <5 <20         | 140 | 0.07 <10  | 622         | <10 | 9  | 47         |
| ,        |       | • • • • | <b>*</b> ···-     | _   |     | -  |       |    |    |     |        |      |      |      |     |    |      |    |      |    |                |     |           |             |     |    |            |
| 11       | 9002  | 1.4     | 0.61              | <5  | 145 | <5 | 1.22  | <1 | 11 | 84  | 3495   | 3.32 | <10  | 0.48 | 433 | 2  | 0.06 | 5  | 610  | 4  | <5 <20         | 96  | 0.06 < 10 | 575         | <10 | 6  | 44         |
| 12       | 9003  | 1.5     | 0.50              | <5  | 135 | <5 | 1.22  | <1 | 10 | 100 | 2990   | 2.74 | <10  | 0.33 | 347 | 6  | 0.05 | 6  | 660  | 4  | <5 <20         | 86  | 0.05 <10  |             | <10 | 6  | 38         |
| 13       | 9004  | 0.3     | 1.07              | 10  | 130 | <5 | 1.45  | <1 | 12 | 70  | 587    | 5.01 | <10  | 1.00 | 642 | 3  | 0.05 | 3  | 1140 | 6  | <5 <20         | 88  | 0.09 <10  |             |     | 11 | 65         |
| 14       | 9005  | 0.8     | 1.11              | 20  | 80  | <5 | 1.62  | <1 | 13 | 150 | 1028   | 4.69 | <10  | 0.86 | 674 | 9  | 0.10 | 5  | 1030 | 12 | <5 <20         | 97  | 0.11 <10  |             |     | 14 | 51         |
| 15       | 9006  | 0.8     | 1.03              | 15  | 75  | <5 | 1.94  | <1 | 13 | 66  | 926    | 4.85 | <10  | 0.89 | 769 | 7  | 80.0 | 2  | 1200 | 16 | <5 <20         | 119 | 0.11 <10  | 343         | <10 | 15 | 48         |
| , ,      | 3000  | 0.0     | 1,00              | ,,, |     |    |       |    |    |     |        |      |      |      |     |    |      |    |      |    |                |     |           |             |     |    |            |
| 16       | 9007  | 0.5     | 0.98              | <5  | 125 | <5 | 1.78  | <1 | 14 | 56  | 901    | 4.71 | <10  | 0.89 | 713 | 5  | 0.08 | 2  | 1200 | 8  | <5 <20         | 103 | 0.10 <10  |             | <10 | _  | 51         |
| 17       | 9008  | 0.7     | 0.65              | <5  | 205 | <5 | 1.76  | <1 | 12 | 76  | 1199   | 3.88 | <10  | 0.49 | 573 | 5  | 0.06 | 3  | 1000 | 10 | <5 <20         | 100 | 0.08 < 10 | <b>44</b> 3 | <10 | 10 | 30         |
| 18       | 9010  | 0.8     | 0.57              | <5  | 125 | <5 | 0.95  | <1 | 12 | 112 | 1420   | 2.85 | <10  | 0.43 | 291 | 23 | 0.05 | 5  | 1010 | 4  | <5 <20         | 55  | 0.06 <10  |             | <10 | 8  | 28         |
| 19       | 9011  | 1.3     | 0.68              | <5  | 120 | <5 | 1.33  | <1 | 14 | 92  | 1845   | 4.44 | <10  | 0.56 | 428 | 4  | 0.05 | 6  | 1030 | 6  | <5 <20         | 72  | 0.06 <10  |             | <10 | 6  | 43         |
| 20       | 9012  | 2.6     | 0.80              | 20  | 50  | <5 | 1.58  | <1 | 16 | 114 | 2642   | 4.16 | <10  | 0.70 | 560 | 7  | 0.05 | 6  | 1090 | 6  | <5 <20         | 78  | 0.07 <10  | 557         | <10 | 8  | 44         |
| 2.0      | JUIL  | 2.0     | ψ.σσ              |     | •   | -  |       |    |    |     |        |      |      |      |     |    |      |    |      |    |                |     |           |             |     |    |            |
| 21       | 9013  | 0.4     | 0.93              | <5  | 320 | <5 | 2.15  | <1 | 12 | 50  | 508    | 4.44 | <10  | 0.83 | 769 | <1 | 0.07 | 2  | 1310 | 6  | < <b>5</b> <20 | 154 | 0.12 <10  |             | <10 | 14 | 41         |
| 22       | 9014  | 1.5     | 0.59              | <5  | 100 | <5 | 1.13  | <1 | 16 | 95  | 1797   | 3.85 | <10  | 0.48 | 430 | 6  | 0.03 | 5  | 1010 | 6  | <5 <20         | 73  | 0.05 <10  | 707         |     | 6  | 41         |
| 23       | 9015  | 1.4     | 0.60              | 10  | 90  | <5 | 1.59  | <1 | 8  | 85  | 1390   | 2.89 | <10  | 0.49 | 554 | 4  | 0.03 | 4  | 1070 | 6  | <5 <20         | 99  | 0.03 <10  |             | <10 | 6  | 38         |
| 24       | 9016  | 0.6     | 0.64              | <5  | 175 | <5 | 2.20  | <1 | 6  | 107 | 986    | 3.69 | <10  | 0.54 | 777 | 7  | 0.03 | 4  | 1010 | 4  | <5 <20         | 107 | 0.05 <10  | 979         | <10 | 9  | 34         |
| 25       | 9017  | 0.7     | 0.46              | <5  | 155 | <5 | 1.86  | <1 | 5  | 126 | 1304   | 3.08 | <10  | 0.39 | 593 | 18 | 0.03 | 4  | 840  | 2  | <5 <20         | 85  | 0.04 < 10 | 717         | <10 | 8  | 26         |
| 2.5      | 3017  | 0.7     | 0.40              | -0  | 100 | Ū  |       |    | _  |     |        |      |      |      |     |    |      |    |      |    |                |     |           |             |     |    |            |
| 26       | 9018  | 0.7     | 0.42              | <5  | 215 | <5 | 1.90  | <1 | 5  | 132 | 558    | 3.06 | <10  | 0.31 | 655 | 3  | 0.03 | 3  | 900  | 6  | <5 <20         | 93  | 0.05 <10  | 863         | <10 | 9  | 25         |
| 27       | 9019  | 0.7     | 0.48              | <5  | 130 | <5 | 0.99  | <1 | 6  | 148 | 977    | 2.33 | <10  | 0.36 | 338 | 14 | 0.03 | 3  | 920  | 6  | <5 <20         | 53  | 0.06 < 10 |             |     | 10 | 23         |
| 28       | 9021  | 0.7     | 0.51              | <5  | 200 | <5 | 1.12  | <1 | 5  | 115 | 887    | 2.85 | <10  | 0.44 | 369 | 3  | 0.03 | 4  | 930  | 4  | <5 <20         | 65  | 0.05 < 10 | 707         | <10 | 7  | 29         |
| 29       | 9021  | 0.4     | 0.59              | <5  | 170 | <5 | 1.99  | <1 | 4  | 135 | 511    | 2.17 | <10  | 0.52 | 714 | 2  | 0.03 | 4  | 730  | 6  | <5 <20         | 99  | 0.05 < 10 | 461         | <10 | 11 | 28         |
| 29<br>30 | 9023  | 0.4     |                   | <5  | 130 | <5 | 0.73  | <1 | 5  | 158 | 1424   | 1.67 | <10  |      | 247 | 1  |      | 5  | 980  | 4  | <5 <20         | 43  | 0.05 <10  | 279         | <10 | 11 | <b>2</b> 2 |
| 30       | QUEU  | 0.0     | Ų. <del>→</del> I | .5  | 100 | •  | 5,, 5 | •  | •  |     | · ·- · |      | Page |      |     |    |      |    |      |    |                |     |           |             |     |    |            |
|          |       |         |                   |     |     |    |       |    |    |     |        |      | 7    |      |     |    |      |    |      |    |                |     |           |             |     |    |            |

### ICP CERTIFICATE OF ANALYSIS AS 2005-5108 Falconbridge Limited


#### ECO TECH LABORATORY LTD.

| Et #.  | Tag # | Aa   | Al % | As | Ва  | Bi            | Ca % | Cd | Co | Сг  | Cu   | Fe % | La  | Mg % | Mn  | Mo  | Na % | Ni  | P    | Pb  | Sb Sn  | Sr         | Ti% U     | V   | W   | Υ  | Zn  |
|--------|-------|------|------|----|-----|---------------|------|----|----|-----|------|------|-----|------|-----|-----|------|-----|------|-----|--------|------------|-----------|-----|-----|----|-----|
| 31     | 9024  | 1.9  |      | <5 | 150 | <u>&lt;5</u>  | 1.07 | <1 | 10 | 101 | 3366 | 3.21 | <10 | 0.47 | 373 | 3   | 0.04 | 5   | 920  | 6   | <5 <20 | 70         | 0.07 <10  | 487 | <10 | 12 | 41  |
| 32     | 9025  | 2.0  | 0.74 | <5 | 70  | <5            | 1.44 | <1 | 15 | 70  | 1932 | 3.95 | <10 | 0.66 | 550 | 6   | 0.06 | 5   | 980  | 6   | <5 <20 | 91         | 0.08 < 10 | 327 | <10 | 12 | 40  |
| 33     | 8998  | 2.2  | 1.39 | <5 | 305 | <5            | 1.51 | <1 | 12 | 25  | 7143 | 3.50 | <10 | 1.19 | 479 | 2   | 0.14 | 16  | 2180 | 20  | <5 <20 | 74         | 0.06 <10  | 179 | <10 | 21 | 54  |
| 34     | 9020  | <0.2 | 2.81 | 15 | 95  | <5            | 3.69 | <1 | 31 | 72  | 95   | 6.54 | <10 | 2.28 | 838 | <1  | 0.05 | 15  | 1520 | <2  | <5 <20 | 80         | 0.18 <10  | 237 | <10 | 22 | 66  |
| 35     | 9009  | 0.2  | 0.78 | 80 | 155 | <5            | 0.22 | <1 | 69 | 240 | 434  | >10  | <10 | 0.12 | 472 | 122 | 0.05 | 421 | 100  | 110 | <5 <20 | 12         | <0.01 <10 | 24  | <10 | <1 | 396 |
| QC DAT |       | 0.4  | 1.02 | 10 | 290 | <5            | 1.00 | <1 | 10 | 57  | 805  | 3.64 | <10 | 0.86 | 635 | 2   | 0.06 | 7   | 920  | 6   | <5 <20 | 71         | 0.05 <10  | 230 | <10 | 10 | 46  |
| Repeat |       |      |      |    |     |               |      |    |    |     |      |      |     |      |     |     |      |     |      |     |        |            |           |     |     |    |     |
| 1      | 8991  | 0.4  | 1.06 | 10 | 300 | <5            | 0.93 | <1 | 9  | 66  | 903  | 3.64 | <10 | 0.86 | 633 | 1   | 0.07 | 4   | 1030 | 6   | <5 <20 | 72         | 0.05 < 10 | 235 | <10 | 10 | 45  |
| 10     | 9001  | 1.1  | 0.74 | <5 | 240 | <5            | 1.90 | <1 | 9  | 68  | 2873 | 3.24 | <10 | 0.60 | 608 | 1   | 0.06 | 6   | 880  | 4   | <5 <20 | 142        | 0.08 <10  | 625 | <10 | 10 | 46  |
| 19     | 9011  | 1.3  | 0.68 | 5  | 120 | <5            | 1.34 | <1 | 14 | 95  | 1824 | 4.46 | <10 | 0.56 | 427 | 4   | 0.05 | 6   | 1040 | 4   | <5 <20 | 70         | 0.06 <10  | 692 | <10 | 6  | 44  |
| Standa |       | 1.5  | 1.51 | 60 | 150 | <b>&lt;</b> 5 | 1.38 | <1 | 19 | 59  | 85   | 3.85 | <10 | 0.77 | 577 | <1  | 0.02 | 29  | 570  | 20  | <5 <20 | <b>5</b> 2 | 0.10 <10  | 70  | <10 | 10 | 74  |

ECO/TECH LABORATORY LTD.

Jutta Jealouse BC Certified Assayer

JJ/ga df/5101 XLS/05



10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

## **CERTIFICATE OF ASSAY AS 2005-5109**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

30-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type:Core
Project #: 301
Shipment #: 26

Samples submitted by: Allan Huard

|             |       | Au     | Au      |                          |
|-------------|-------|--------|---------|--------------------------|
| ET #.       | Tag # | (g/t)  | (oz/t)  |                          |
| 1           | 9026  | 0.04   | 0.001   |                          |
| 2           | 9027  | 0.04   | 0.001   |                          |
| 2<br>3      | 9028  | <0.03  | < 0.001 |                          |
| 4           | 9029  | 0.10   | 0.003   |                          |
| 5           | 9030  | 0.09   | 0.003   |                          |
| 5<br>6<br>7 | 9031  | 0.05   | 0.001   |                          |
| 7           | 9032  | 0.04   | 0.001   |                          |
| 8           | 9034  | 0.04   | 0.001   |                          |
| 9           | 9035  | < 0.03 | < 0.001 |                          |
| 10          | 9036  | 0.16   | 0.005   |                          |
| 11          | 9037  | 0.14   | 0.004   |                          |
| 12          | 9038  | 0.04   | 0.001   |                          |
| 13          | 9039  | 0.06   | 0.002   |                          |
| 14          | 9040  | 0.06   | 0.002   |                          |
| 15          | 9041  | 0.05   | 0.001   |                          |
| 16          | 9042  | 0.07   | 0.002   |                          |
| 17          | 9043  | 0,05   | 0.001   |                          |
| 18          | 9045  | 0.08   | 0.002   |                          |
| 19          | 9046  | 0.05   | 0.001   |                          |
| 20          | 9047  | 0.10   | 0.003   |                          |
| 21          | 9048  | 0.18   | 0.005   |                          |
| 22          | 9049  | 0.08   | 0.002   |                          |
| 23          | 9050  | 0.07   | 0.002   |                          |
| 24          | 9051  | 0.15   | 0.004   |                          |
| 25          | 9052  | 0.32   | 0.009   |                          |
| 26          | 9053  | 0.23   | 0.007   | . ^                      |
| 27          | 9054  | 0.12   | 0.003   |                          |
| 28          | 9056  | 0.26   | 0.008   | Suran Dela 1807          |
|             |       |        |         | ECO/TECH LABORATØRY LTD. |

Jutta Jealouse

|                            |                      | Au                   | Aμ                      |  |
|----------------------------|----------------------|----------------------|-------------------------|--|
| ET #.                      | Tag #                | (g/t)                | (oz/t)                  |  |
| 29                         | 9057                 | 0.21                 | 0.006                   |  |
| 30                         | 9058                 | 0.04                 | 0.001                   |  |
| 31                         | 9059                 | 0.10                 | 0.003                   |  |
| 32                         | 9060                 | 0.09                 | 0.003                   |  |
| 33                         | 9033                 | 0.45                 | 0.013                   |  |
| 34                         | 9055                 | <0.03                | <0.001                  |  |
| 35                         | 9044                 | 0.07                 | 0.002                   |  |
| QC DATA: Repeats: 1 10 19  | 9026<br>9036<br>9046 | 0.03<br>0.15<br>0.04 | 0.001<br>0.004<br>0.001 |  |
| Resplit:<br>1<br>Standard: | 9026                 | 0.03                 | 0.001                   |  |
| PM176                      |                      | 2.04                 | 0.059                   |  |

JJ/kk XLS/05 ECO TECH LABORATORY LTD.
Julia Jealouse
B.C. Certified

ECO TECH LABORATORY LTD. 10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35

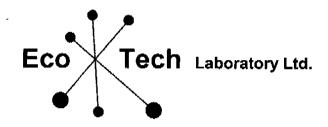
Sample type:Core Project #: 301

Shipment #: 26 Samples submitted by: Allan Huard

| Values | in nom | unless  | otherwise  | reported     |
|--------|--------|---------|------------|--------------|
| KOIGES | m ppm  | 0111033 | Other will | 1 CP DI CC L |

| "        |       | _    |      | •  | <b>-</b>   | <b>.</b>   | 0- 0/        | 04  |    | ٥., | ٥    | E- 0/        |      | <b>8.8</b> ~ 0/ | 24.0 | Mo | Na %         | Ni | Р               | Pb      | Sb Sn            | Sr  | Ti% U     | v               | w   | Υ   | Zn  |
|----------|-------|------|------|----|------------|------------|--------------|-----|----|-----|------|--------------|------|-----------------|------|----|--------------|----|-----------------|---------|------------------|-----|-----------|-----------------|-----|-----|-----|
| Et#.     | Tag # | Ag   | Al % | As | Ba         |            | Ca %         | Cd  | Co | Cr  |      | Fe %         |      | Mg %            | Mn   |    |              | 3  | <del>7</del> 90 | 20      | <5 <20           | 94  | 0.05 <10  |                 | <10 |     | 39  |
| 1        | 9026  |      | 0.59 | <5 | 95         | <5         | 1.60         | <1  | 9  | 67  | 646  | 3.12         | <10  | 0.43            | 675  | 3  | 0.06<br>0.06 |    | 1070            | 20<br>8 | <5 <20           | 173 | 0.03 < 10 |                 | <10 |     | 38  |
| 2        | 9027  | 0.2  | 0.77 | 10 | 95         | <5         | 4.35         | <1  | 10 | 56  | 266  | 3.57         | <10  | 0.65            | 1638 | <1 |              |    | 1180            | 10      | <5 <20           | 122 | 0.03 < 10 |                 | <10 |     | 33  |
| 3        | 9028  | <0.2 | 0.72 | <5 | 540        | <5         | 2.00         | <1  | 7  | 65  | 121  | 3.92         | <10  | 0.53            | 686  | <1 | 0.08         | -  | 970             | 6       | <5 <20           | 60  | 0.10 < 10 |                 | <10 | 9   | 40  |
| 4        | 9029  | 1.0  | 0.79 | 10 | 100        | <5         | 1.01         | <1  | 11 | 123 | 2053 | 3.90         | <10  | 0.68            | 405  | 5  | 0.04         | 7  |                 | -       | <5 <20<br><5 <20 | 102 | 0.07 < 10 |                 | <10 |     | 45  |
| 5        | 9030  | 0.5  | 0.91 | <5 | 100        | <5         | 1.70         | <1  | 12 | 75  | 686  | 4.19         | <10  | 0.80            | 617  | 9  | 0.06         | 4  | 1120            | 8       | <3 <20           | ΙŲΖ | 0.00 < 10 | 232             | ~10 | 1.1 | 40  |
| _        | 0004  | 0.5  | 0.00 | E  | 415        | <b>∠</b> E | 1.82         | <1  | 11 | 102 | 791  | 4.01         | <10  | 0.73            | 677  | 19 | 0.09         | 5  | 1060            | 10      | <5 <20           | 177 | 0.11 <10  | 323             | <10 | 13  | 39  |
| 6        | 9031  | 0.5  | 0.89 | 5  | 115        | <5<br><5   | 1.14         | <1  | 10 | 150 | 1240 | 3.83         | <10  | 0.52            | 427  | 9  |              | 7  | 870             | 10      | <5 <20           | 63  | 0.08 < 10 |                 | <10 | 12  | 36  |
| 7        | 9032  | 1.1  | 0.67 | 5  | 130        | <5         |              |     | 10 | 170 | 1018 | <b>4</b> .24 | <10  | 0.52            | 438  | 7  |              | 7  |                 | 8       | <5 <20           | 61  | 0.09 <10  |                 | <10 | 12  | 36  |
| 8        | 9034  | 0.7  | 0.70 | 10 | 95         | _          | 1.22         | <1  |    |     | 429  | 3.80         | <10  | 0.66            | 715  | 2  |              |    | 1100            | 12      | <5 <20           | 122 | 0.10 <10  |                 |     | _   | 35  |
| 9        | 9035  | 0.3  | 0.83 | <5 | 255        | <5         | 1.96         | <1  | 10 | 67  |      |              |      |                 | 770  | 6  |              |    | 1040            | 12      | <5 <20           | 86  | 0.09 <10  |                 | <10 |     | 33  |
| 10       | 9036  | 1.2  | 0.79 | 45 | <b>4</b> 5 | <5         | 2.10         | <1  | 15 | 96  | 845  | 4.43         | <10  | 0.77            | 770  | 0  | 0.04         | 0  | 1040            | 12      | ~3 ~20           | 00  | 0.03 -10  | <del>5</del> 55 | 110 | , _ | 00  |
| 4.1      | 9037  | 1.3  | 0.81 | 25 | 55         | <5         | 1.14         | <1  | 13 | 135 | 911  | 3.62         | <10  | 0.78            | 485  | 8  | 0.04         | 8  | 1030            | 8       | <5 <20           | 48  | 0.09 <10  | 392             | <10 | 13  | 33  |
| 11<br>12 | 9038  | 0.5  | 0.74 | 10 | 120        | <5         | 1.81         | <1  | 9  | 121 | 417  | 2.35         | <10  | 0.65            | 676  | 2  |              | 5  |                 | 10      | <5 <20           | 70  | 0.11 <10  | 338             | <10 | 18  | 25  |
|          | 9039  | 1.8  | 0.74 | <5 | 65         | <5         | 1.62         | <1  | 22 | 96  | 2248 | 6.36         | <10  | 0.72            | 630  | 11 |              | 19 | 1050            | 14      | <5 <20           | 55  | 0.13 < 10 | 730             | <10 | 9   | 60  |
| 13       | 9040  | 1.0  | 0.98 | <5 | 65         | <5         | 1.56         | <1  | 23 | 98  | 2187 | 5.46         | <10  | 0.88            | 660  | 12 |              | 14 | 1230            | 10      | <5 <20           | 51  | 0.15 <10  | 598             | <10 | 12  | 66  |
| 14       |       | 1.7  |      | <5 | 70         | ~5<br><5   | 1.28         | <1  | 34 | 140 | 2054 | 8.19         |      | 1.79            | 883  | 20 |              | 26 | 1440            | 6       | <5 <20           | 43  | 0.20 <10  |                 | <10 | 14  | 94  |
| 15       | 9041  | 1.0  | 1.74 | -5 | 70         | ~5         | 1.20         | ~1  | 24 | 140 | 2004 | Ų. 13        | 410  | 1.75            | ÇĞÇ  | 20 | 0.00         | 20 |                 | •       |                  |     |           |                 |     |     |     |
| 16       | 9042  | 2.0  | 1.45 | 10 | 75         | <5         | 1.92         | <1  | 25 | 163 | 2174 | 7,13         | <10  | 1.41            | 890  | 21 | 0.06         | 31 | 1370            | 16      | <5 <20           | 82  | 0.16 <10  | 626             | <10 | 13  | 86  |
| 17       | 9043  | 1.5  | 1.52 | 15 | 50         | <5         | 1.78         | <1  | 18 | 160 | 1079 | 4.97         | <10  | 1.58            | 916  | 6  | 80.0         | 24 | 1370            | 38      | <5 <20           | 126 | 0.06 <10  | 463             | <10 | 8   | 106 |
| 18       | 9045  | 2.2  | 1.34 | 15 | 60         | <5         | 2.42         | <1  | 16 | 141 | 1302 | 3.96         | <10  | 1.21            | 1237 | <1 | 0.06         | 25 | 1120            | 190     | <5 <20           | 143 | 0.13 <10  | 304             | <10 | 20  | 117 |
| 19       | 9046  | 6.0  | 1.21 | 25 | 90         | <5         | 2.95         | <1  | 12 | 198 | 1429 | 3.18         | <10  | 1.11            | 1683 | 5  | 0.03         | 25 | 770             | 1276    | <5 <20           | 158 | 0.08 < 10 | 285             | <10 | 15  | 167 |
| 20       | 9047  | 4.9  | 1.40 | 25 | 75         | <5         | 2.36         | 2   | 16 | 130 | 965  | 4.61         | <10  | 1.38            | 1847 | 5  | 0.03         | 22 | 1140            | 704     | <5 <20           | 103 | 0.16 < 10 | 366             | <10 | 25  | 235 |
| 20       | 0041  | 4.0  | 1.70 |    |            | _          | 2.00         | _   |    |     |      |              |      |                 |      |    |              |    |                 |         |                  |     |           |                 |     |     |     |
| 21       | 9048  | 5.2  | 1.60 | 20 | 60         | <5         | 3.14         | 8   | 17 | 114 | 1497 | 5.35         | <10  | 1.25            | 3201 | <1 | 0.02         | 6  | 1560            | 448     | <5 <20           | 160 | 0.15 <10  | 388             |     |     | 439 |
| 22       | 9049  | 2.1  | 1.31 | 5  | 80         | <5         | 2.16         | 1   | 15 | 169 | 1311 | 3.82         | 10   | 1.13            | 1853 | <1 | < 0.01       | 17 | 970             | 66      | <5 <20           | 87  | 0.16 <10  | 513             | <10 | 27  | 120 |
| 23       | 9050  | 2.1  | 1.22 | 10 | 65         | <5         | 2.39         | <1  | 16 | 158 | 1210 | 4.21         | 10   | 1.04            | 1807 | <1 | < 0.01       | 14 | 890             | 56      | <5 <20           | 122 | 0.15 <10  | 470             | <10 | 26  | 116 |
| 24       | 9051  | 0.5  | 0.63 | 10 | 85         | <5         | 1.66         | <1  | 4  | 202 | 118  | 2.33         | 20   | 0.34            | 1164 | 4  | 0.01         | 6  | 90              | 30      | <5 <20           | 82  | 0.02 <10  | 118             | <10 | 8   | 44  |
| 25       | 9052  | 3.4  |      | 15 | 65         | <5         | 3.22         | 14  | 9  | 91  | 1717 | 3.32         | 10   |                 | 2025 | 11 | 0.01         | 6  | 520             | 74      | <5 <20           | 116 | 0.07 <10  | 285             | <10 | 17  | 356 |
| 2.0      | 3032  | J.7  | 1.10 | 10 | 00         |            | 0.22         | , , | J  | ٠.  | ,,,, | •            |      |                 |      |    |              |    |                 |         |                  |     |           |                 |     |     |     |
| 26       | 9053  | 3.0  | 1.36 | 5  | 60         | <5         | 3.17         | <1  | 15 | 125 | 1631 | 4.79         | 10   | 1.07            | 2481 | <1 | < 0.01       |    | 1250            | 58      | <5 <20           | 137 | 0.12 <10  |                 |     |     | 149 |
| 27       | 9054  | 3.6  | 1.75 | 10 | 65         | <5         | 2.25         | 1   | 23 | 110 | 2087 | 5.77         | <10  | 1.69            | 2513 | <1 | 0.01         | 14 | 1450            | 66      | 5 <20            | 120 | 0.19 <10  |                 |     |     | 154 |
| 28       | 9056  | 8.4  | 1.52 | 20 | 65         | <5         | 2.66         | <1  | 17 | 66  | 2528 | 5.48         | 10   | 1.39            | 2540 | <1 | <0.01        | 8  | 1300            | 174     | <5 <20           | 105 | 0.17 <10  |                 |     |     | 143 |
| 29       | 9057  | 2.7  | 1.28 | 15 | 55         | <5         | 2.83         | 2   | 18 | 131 | 1604 | 4.73         | 20   | 1.03            | 1949 | 2  | <0.01        | 13 | 1180            | 82      | <5 <20           | 98  | 0.18 <10  | _               | <10 | 27  | 152 |
| 30       | 9058  | 1.1  |      | 5  | 70         | <5         |              | <1  | 1  | 97  | 106  | 1.30         | <10  | 0.29            | 627  | 6  | 0.04         | 3  | 20              | 96      | <5 <20           | 75  | <0.01 <10 | 70              | <10 | 4   | 48  |
|          | 5504  |      |      | -  |            | _          | <del>-</del> |     |    |     |      |              | Page | 1               |      |    |              |    |                 |         |                  |     |           |                 |     |     |     |
|          |       |      |      |    |            |            |              |     |    |     |      |              |      |                 |      |    |              |    |                 |         |                  |     |           |                 |     |     |     |

### ICP CERTIFICATE OF ANALYSIS AS 2005-5109


### Falconbridge Limited

| Et #.    | Tag #       | Aq    | Al % | As  | Ва  | Bì | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn   | Мо  | Na % | Ni  | Р    | Pb   | Sb Sn  | Sr  | Ti% U     | V   | W   | Υ  | Zn  |
|----------|-------------|-------|------|-----|-----|----|------|----|----|-----|------|------|-----|------|------|-----|------|-----|------|------|--------|-----|-----------|-----|-----|----|-----|
| 31       | 9059        | 2.2   | 0.93 | 10  | 40  | <5 | 2.04 | <1 | 12 | 86  | 1271 | 3.83 | 10  | 0.79 | 1204 | 28  | 0.03 | 6   | 910  | 144  | <5 <20 | 91  | 0.08 <10  | 204 | <10 | 16 | 84  |
| 32       | 9060        | 1.9   | 0.82 | 15  | 40  | <5 | 2.25 | <1 | 11 | 56  | 745  | 3.94 | <10 | 0.68 | 1182 | 6   | 0.02 | 6   | 1170 | 184  | <5 <20 | 77  | 0.11 <10  | 168 | <10 | 18 | 104 |
| 33       | 9033        | 2.0   | 1.50 | <5  | 305 | <5 | 1.55 | <1 | 12 | 25  | 7299 | 3.61 | <10 | 1.05 | 476  | 2   | 0.16 | 16  | 2380 | 20   | <5 <20 | 80  | 0.06 <10  | 176 | <10 | 20 | 59  |
| 34       | 9055        | < 0.2 | 3.13 | 10  | 110 | 5  | 5.56 | <1 | 33 | 60  | 80   | 7.66 | <10 | 2.88 | 1041 | <1  | 0.03 | 17  | 1490 | 2    | <5 <20 | 152 | 0.20 <10  | 256 | <10 | 24 | 72  |
| 35       | 9044        | <0.2  | 0.76 | 100 | 150 | <5 | 0.25 | <1 | 70 | 224 | 427  | >10  | <10 | 0.12 | 414  | 129 | 0.05 | 428 | 100  | 102  | <5 <20 | 11  | <0.01 <10 | 26  | <10 | <1 | 426 |
|          |             |       |      |     |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |      |        |     |           |     |     |    |     |
| QC DAT   | [ <u>A:</u> |       |      |     |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |      |        |     |           |     |     |    |     |
| Resplit: | :           |       |      |     |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |      |        |     |           |     |     |    |     |
| 1        | 9026        | 0.4   | 0.65 | <5  | 95  | <5 | 1.69 | <1 | 9  | 86  | 551  | 3.35 | <10 | 0.44 | 706  | 2   | 0.07 | 4   | 810  | 22   | <5 <20 | 98  | 0.07 <10  | 229 | <10 | 12 | 44  |
| Repeat:  | :           |       |      |     |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |      |        |     |           |     |     |    |     |
| 1        | 9026        | 0.5   | 0.62 | <5  | 95  | <5 | 1.61 | <1 | 9  | 74  | 658  | 3,14 | <10 | 0.44 | 682  | 3   | 0.06 | 2   | 780  | 20   | <5 <20 | 98  | 0.06 <10  | 219 | <10 | 12 | 39  |
| 10       | 9036        | 1.3   | 0.81 | 50  | 45  | <5 | 2.08 | <1 | 15 | 107 | 838  | 4.44 | <10 | 0.77 | 767  | 6   | 0.05 | 6   | 1000 | 14   | <5 <20 | 86  | 0.09 <10  | 404 | <10 | 12 | 33  |
| 19       | 9046        | 6.3   | 1.20 | 20  | 95  | <5 | 3.05 | 1  | 12 | 207 | 1398 | 3.29 | <10 | 1.09 | 1723 | 5   | 0.03 | 27  | 860  | 1252 | <5 <20 | 154 | 0.09 <10  | 290 | <10 | 16 | 171 |
| Standar  | rd:         |       |      |     |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |      |        |     |           |     |     |    |     |
| GEO'05   |             | 1.5   | 1,47 | 65  | 150 | <5 | 1.41 | <1 | 17 | 59  | 85   | 3.54 | <10 | 0.77 | 588  | <1  | 0.02 | 27  | 600  | 22   | <5 <20 | 54  | 0,11 <10  | 70  | <10 | 10 | 76  |

ECO TECH LABORATORY LTD:

Jutta Jealouse **BC** Certified Assayer

JJ/ga df/888 XLS/05



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com

www.ecotechlab.com

## **CERTIFICATE OF ASSAY AS 2005-5111**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

30-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 27

Samples submitted by: Allan Huard

|             |      | Au     | Au     |                 |
|-------------|------|--------|--------|-----------------|
| ET #.       | Tag# | (g/t)  | (oz/t) |                 |
| 1           | 9061 | 0.04   | 0.001  |                 |
| 2<br>3      | 9062 | 0.12   | 0.003  |                 |
| 3           | 9063 | < 0.03 | <0.001 |                 |
| 4           | 9064 | 0.05   | 0.001  |                 |
|             | 9065 | 0.06   | 0.002  |                 |
| 5<br>6<br>7 | 9066 | 0.04   | 0.001  |                 |
|             | 9067 | 0.03   | 0.001  |                 |
| 8           | 9069 | 0.03   | 0.001  |                 |
| 9           | 9070 | 0.03   | 0.001  |                 |
| 10          | 9071 | 0.12   | 0.003  |                 |
| 11          | 9072 | 0.06   | 0.002  |                 |
| 12          | 9073 | 0.11   | 0.003  |                 |
| 13          | 9074 | 0.16   | 0.005  |                 |
| 14          | 9075 | 0.14   | 0.004  |                 |
| 15          | 9076 | 0.24   | 0.007  |                 |
| 16          | 9077 | 0.21   | 0.006  |                 |
| 17          | 9078 | 0.14   | 0.004  |                 |
| 18          | 9080 | 0.08   | 0.002  |                 |
| 19          | 9081 | 0.79   | 0.023  |                 |
| 20          | 9082 | 0.14   | 0.004  |                 |
| 21          | 9083 | 0.32   | 0.009  |                 |
| 22          | 9084 | 0.18   | 0.005  |                 |
| 23          | 9085 | 0.24   | 0.007  |                 |
| 24          | 9086 | 0.09   | 0.003  |                 |
| 25          | 9087 | 0.15   | 0.004  |                 |
| 26          | 9088 | 0.10   | 0.003  | <u>^</u>        |
| 27          | 9089 | 0.22   | 0.006  | 10 Rull         |
| 28          | 9091 | 0.06   | 0.002  | MIN () YUC (DE) |

ECO TECH LABORATORY LTD.

Jútta Jealouse

# Falconbridge Limited AS-5111

|                           |                      | Au                   | Au                      |  |
|---------------------------|----------------------|----------------------|-------------------------|--|
| ET#.                      | Tag #                | (g/t)                | (oz/t)                  |  |
| 29                        | 9092                 | 0.09                 | 0.003                   |  |
| 30                        | 9093                 | 0.06                 | 0.002                   |  |
| 31                        | 9094                 | 0.09                 | 0.003                   |  |
| 32                        | 9095                 | 0.06                 | 0.002                   |  |
| 33                        | 9068                 | 0.39                 | 0.011                   |  |
| 34                        | 9090                 | <0.03                | <0.001                  |  |
| 35                        | 9079                 | 0.08                 | 0.002                   |  |
| QC DATA: Repeats: 1 10 19 | 9061<br>9071<br>9081 | 0.03<br>0.11<br>0.77 | 0.001<br>0.003<br>0.022 |  |
| Resplit:<br>1             | 9061                 | 0.05                 | 0.001                   |  |
| <b>Standard:</b><br>PM176 |                      | 2.09                 | 0.061                   |  |

JJ/kk XLS/05 ECO TECH LABORATORY LTD.
Jutta Jealouse

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35 Sample type: Core Project #: 301 Shipment #: 27

Samples submitted by: Allan Huard

| Et #.    | Tag# | Ag   | AI %         | As | Ва       | Bi       | Ca %         | Cd       | Co       | Cr        |       | Fe % |      | Mg % | Mn   |     | Na %  | Ni | <u>Р</u> | Pb   | Sb Sn            |          | Ti% U     | V   | W   | Y   | Zn       |
|----------|------|------|--------------|----|----------|----------|--------------|----------|----------|-----------|-------|------|------|------|------|-----|-------|----|----------|------|------------------|----------|-----------|-----|-----|-----|----------|
| 1        | 9061 | 0.6  | 0.45         | 10 | 90       | <5       |              | <1       | 2        | 134       | 118   | 1.38 |      | 0.31 |      | 3   | 0.02  | 3  | 190      | 48   | <5 <20           | 84       | 0.03 <10  |     | <10 | .7  | 43       |
| 2        | 9062 | 3.4  | 2.05         | 30 | 55       | <5       | 3.42         | 2        | 18       | 57        | 1852  | 5.32 | <10  | 0.84 | 1162 | 8   | 0.04  | 7  |          | 214  | <5 <20           | 62       | 0.15 < 10 |     | <10 | . – | 116      |
| 3        | 9063 | 0.6  | 0.48         | 10 | 65       | <5       | 1.82         | <1       | 2        | 78        | 54    | 1.34 | <10  | 0.19 | 748  | 12  | 0.02  | 3  | 20       | 74   | <5 <20           | 50       | 0.01 < 10 | 71  | <10 | 5   | 32       |
| 4        | 9064 | 2.6  | 0.77         | 10 | 35       | <5       | 1.95         | <1       | 7        | 66        | 479   | 2.94 | <10  | 0.67 | 1208 | 13  | 0.04  | 3  | 440      | 482  | <5 <20           | 61       | 0.04 < 10 |     | <10 | 8   | 97       |
| 5        | 9065 | 12.0 | 0.94         | 15 | 40       | <5       | 1.25         | 8        | 15       | 68        | 1053  | 4.67 | 10   | 0.91 | 648  | 20  | 0.04  | 7  | 1200     | 2252 | <5 <20           | 33       | 0.06 <10  | 243 | <10 | 10  | 484      |
| _        |      |      | 0.07         | 40 | 40       |          | . 70         | -4       | 4-7      | 445       | 0.40  | 4.04 | -40  | 0.00 | 400  | 4.4 | 0.00  | _  | 4400     | 4000 | -E -00           | 10       | 0.10 <10  | 247 | <10 | 1.1 | 45       |
| 6        | 9066 | 7.7  | 0.87         | 10 | 40       | <5<br>   | 0.72         | <1       | 17       | 115       | 942   | 4.61 | <10  | 0.98 | 403  | 11  |       | -  | 1190     | 1096 | <5 <20<br><5 <20 | 19<br>35 | 0.10 < 10 |     | <10 | 8   | 45<br>42 |
| 7        | 9067 | 11.7 | 0.85         | 15 | 45       | <5       | 0.97         | <1       | 17       | 106       | 945   | 5.03 | <10  | 0.92 | 478  | 20  | 0.04  |    | 1150     | 1816 |                  |          |           |     | -   | _   | 39       |
| 8        | 9069 | 2.8  | 0.79         | 15 | 40       | <5       | 0.81         | <1       | 17       | 95        | 938   | 4.88 | <10  | 0.93 | 475  | 19  | 0.04  |    | 1200     | 272  | <5 <20           | 32       | 0.05 < 10 |     | <10 | 9   |          |
| 9        | 9070 | 11.0 | 0.74         | 10 | 35       | <5       | 0.83         | <1       | 19       | 104       | 1107  | 5.06 | <10  | 0.89 | 480  | 8   | 0.05  | 6  | 1220     | 1766 | <5 <20           | 30       | 0.07 <10  |     | <10 | 12  | 38       |
| 10       | 9071 | 2.6  | 0.80         | 30 | 45       | <5       | 2.93         | <1       | 18       | 189       | 1806  | 5.31 | <10  | 0.57 | 1171 | 5   | 0.01  | 20 | 680      | 60   | <5 <20           | 97       | 0.07 <10  | 308 | <10 | 14  | 88       |
|          | 0070 | 0.0  | 0.70         | 00 | 50       |          | 4.47         | -4       | 10       | 400       | 1457  | 4.00 | -40  | D 46 | 700  | 2   | 0.02  | 17 | 740      | E 0  | <5 <20           | 56       | 0.06 <10  | 268 | <10 | 10  | 83       |
| 11       | 9072 | 2.0  | 0.76         | 20 | 50       | <5       | 1.17         | <1       | 19       | 160       | 1457  | 4.60 | <10  | 0.45 | 738  | 3   |       | 17 | 740      | 58   | <5 <20<br><5 <20 | 158      | 0.05 < 10 |     | <10 | 24  | 41       |
| 12       | 9073 | 2.5  | 0.44         | 40 | 45       | <5       | 4.33         | <1       | 14       | 158       | 2008  | 3.94 | <10  | 0.20 | 1621 | -   | <0.01 | 17 |          | 54   |                  |          |           |     |     |     |          |
| 13       | 9074 | 4.1  | 0.62         | 35 | 50       | <5       | 1.88         | <1       | 16       | 129       | 3595  | 4.50 | <10  | 0.38 | 952  | 3   | 0.02  | 16 | 960      | 40   | <5 <20           | 70       | 0.09 <10  |     | <10 | 18  | 64       |
| 14       | 9075 | 4.5  | 1.00         | 25 | 50       | <5       | 1.93         | <1       | 19       | 95        | 3263  | 7.48 | <10  | 0.92 | 738  | 7   | 0.04  | 14 | 1260     | 36   | <5 <20           | 59       | 0.06 <10  |     | <10 |     | 67       |
| 15       | 9076 | 7.4  | 1.22         | 40 | 80       | <5       | 1.74         | 1        | 26       | 111       | 5253  | >10  | <10  | 0.84 | 1844 | 20  | 0.03  | 22 | 1470     | 52   | <5 <20           | 58       | 0.06 <10  | 287 | <10 | 32  | 127      |
| 10       | 0077 | 0.0  | 4.02         | 15 | 55       | ~E       | 1.42         | <1       | 22       | 95        | 6669  | 8.45 | <10  | 0.87 | 619  | 5   | 0.02  | 11 | 1260     | 16   | <5 <20           | 55       | 0.08 <10  | 386 | <10 | 10  | 66       |
| 16       | 9077 | 9.0  | 1.03<br>0.97 | 15 | 55<br>55 | <5       | 1.70         |          | 22<br>23 | 59<br>59  | 5712  | 6.76 | <10  | 0.86 | 549  | 4   | 0.02  | 12 |          | 14   | <5 <20           | 63       | 0.10 <10  |     | <10 |     | 55       |
| 17       | 9078 | 9.9  |              | 15 |          | <5<br><5 | 2.76         | <1<br><1 |          | 73        | 1103  | 4.78 | <10  | 0.92 | 809  | 15  | 0.01  | 10 |          | 22   | <5 <20           | 106      | 0.10 < 10 |     | <10 | 18  | 44       |
| 18       | 9080 | 2.7  | 0.96         | 20 | 65       | <5       |              | <1       | 15<br>15 | 7.5<br>85 | 1563  | 4.70 | <10  | 0.58 | 887  | 21  | 0.02  |    |          | 50   | <5 <20           | 91       | 0.07 <10  |     | <10 |     | 70       |
| 19       | 9081 | 3.9  | 0.75         | 25 | 55       | _        | 2.53<br>3.80 |          |          |           | 1050  | 5.73 |      | 0.76 | 1209 | 4   |       | 9  |          | 28   | <5 <20           | 184      | 0.05 < 10 | -   | <10 |     | 75       |
| 20       | 9082 | 2.0  | 0.90         | 30 | 70       | <5       | 3.00         | <1       | 14       | 83        | 1050  | 5.75 | <10  | 0.70 | 1209 | 4   | 0.04  | 3  | 1920     | 20   | ~3 ~20           | 104      | 0.05 -10  | 504 | 110 | 10  | 10       |
| 21       | 9083 | 5.0  | 1.16         | 45 | 65       | <5       | 2.16         | <1       | 35       | 51        | 3278  | 8.37 | <10  | 1.09 | 1419 | 5   | 0.02  | 15 | 1940     | 20   | <5 <20           | 120      | 0.06 <10  | 312 | <10 | 12  | 78       |
| 22       | 9084 | 2.7  | 0.95         | 35 | 65       | <5       | 2.24         | <1       | 21       | 90        | 1348  | 6.19 | <10  | 0.82 | 789  | 6   | 0.02  | 18 | 1830     | 34   | <5 <20           | 94       | 0.07 < 10 |     |     | 14  | 71       |
| 23       | 9085 | 2.5  | 0.93         | 40 | 55       | <5       | 2.13         | <1       | 16       | 99        | 1486  | 4.94 | <10  | 0.70 | 825  | 14  | 0.02  | 22 | 1440     | 56   | <5 <20           | 84       | 0.07 < 10 |     | <10 |     | 76       |
| 24       | 9086 | 1.3  | 0.83         | 30 | 50       | <5       | 2.93         | <1       | 12       | 94        | 597   | 3.74 | <10  | 0.61 | 766  | 39  | 0.07  | 19 | 1650     | 48   | <5 <20           | 107      | 0.04 < 10 |     | _   |     | 44       |
|          |      | 4.6  | 0.73         | 75 | 65       | <5       | 4.00         | <1       | 15       | 73        | 1201  | 4.66 | <10  | 0.67 | 1172 | 17  |       | 14 |          | 268  | <5 <20           | 149      | 0.06 < 10 |     | <10 |     | 52       |
| 25       | 9087 | 4.0  | 0.73         | 75 | 05       | ~5       | 4.00         | ~1       | 1,5      | 1.0       | 1201  | 7.00 | 10   | 0.07 | 1112 |     | 0.03  | 17 | 1200     | 200  | -0 -20           | 1-10     | 0.00      | 200 |     |     | ~-       |
| 26       | 9088 | 2.6  | 0.84         | 25 | 25       | <5       | 5.04         | <1       | 17       | 89        | 967   | 4.64 | <10  | 0.57 | 1577 | 20  | 0.01  | 15 | 1160     | 66   | <5 <20           | 136      | 0.08 <10  | 270 | <10 | 17  | 53       |
| 27       | 9089 | 3.7  | 0.80         | 45 | 60       | <5       | 3.66         | <1       | 26       | 81        | 1839  | 5.29 | <10  | 0.49 | 1246 | 38  | 0.02  | 23 | 1090     | 138  | <5 <20           | 126      | 0.08 < 10 | 259 | <10 | 17  | 56       |
| 28       | 9091 | 2.4  | 0.74         | 20 | 55       | <5       | 3.24         | <1       | 16       | 102       | 740   | 3.48 | <10  | 0.46 | 1005 | 9   | 0.03  | 20 | 900      | 138  | <5 <20           | 97       | 0.05 < 10 | 213 | <10 | 14  | 45       |
| 20<br>29 | 9092 | 5.2  | 0.68         | 25 | 60       | <5       | 4.13         | <1       | 25       | 94        | 3078  | 4.51 | <10  | 0.35 | 1356 | 9   | 0.03  | 13 | 590      | 650  | <5 <20           | 102      | 0.06 < 10 |     | <10 | 17  | 58       |
| 30       | 9092 | 3.5  | 0.79         | 25 | 60       | <5       | 2.68         | <1       | 20       | 140       | 1409  | 4.52 | 10   | 0.47 | 779  | 16  | 0.03  | 21 | 1250     | 484  | <5 <20           | 67       | 0.10 <10  |     | <10 |     | 67       |
| 50       | 3033 | 5.5  | 0.13         | 20 | 55       | ٠,       | 2.00         |          | 20       | .70       | 1-700 | 1.0% | Page |      |      | 1.0 | 5.00  |    |          |      |                  |          |           | ,   |     |     | - •      |
|          |      |      |              |    |          |          |              |          |          |           |       |      |      |      |      |     |       |    |          |      |                  |          |           |     |     |     |          |
|          |      |      |              |    |          |          |              |          |          |           |       |      |      |      |      |     |       |    |          |      |                  |          |           |     |     |     |          |

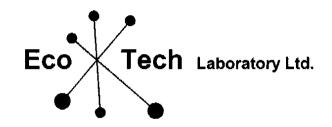
ECO TECH LABORATORY LTD.

#### Falconbridge Limited

Pb Sb Sn Sr Ti % U V W Y

#### ICP CERTIFICATE OF ANALYSIS AS 2005-5111

Mo Na%


| Et #.   | Tag #        | Ag   | Al % | As  | Ba  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn   | Mo  | Na % | Ni  | ₽    | Pb  | Sb Sn  | Sr  | Ti% U     | <u>V</u> | W   | Υ  | Zn  |
|---------|--------------|------|------|-----|-----|----|------|----|----|-----|------|------|-----|------|------|-----|------|-----|------|-----|--------|-----|-----------|----------|-----|----|-----|
| 31      | 9094         | 4.1  | 0.97 | 30  | 55  | ~5 | 3.23 | <1 | 22 | 80  | 2283 | 6.02 | <10 | 0.78 | 1220 | 21  | 0.01 | 22  | 1330 | 604 | <5 <20 | 88  | 0.10 <10  | 392      | <10 | 18 | 96  |
| 32      | 9095         | 2.8  | 1.14 | 40  | 65  | <5 | 3.54 | <1 | 31 | 73  | 2162 | 6.86 | <10 | 0.89 | 1282 | 5   | 0.01 | 16  | 2110 | 300 | <5 <20 | 110 | 0.12 <10  | 401      | <10 | 16 | 116 |
| 33      | 9068         | 1.1  | 1.19 | <15 | 100 | <5 | 1.65 | <1 | 15 | 31  | 4201 | 4.06 | <10 | 1.13 | 705  | <1  | 0.16 | 18  | 1220 | 28  | <5 <20 | 109 | 0.09 <10  | 185      | <10 | 19 | 57  |
| 34      | 9090         | <0.2 | 2.94 | 30  | 90  | <5 | 3.46 | <1 | 33 | 54  | 114  | 7.02 | <10 | 2.34 | 886  | <1  | 0.05 | 18  | 2200 | 26  | <5 <20 | 67  | 0.17 < 10 | 249      | <10 | 20 | 80  |
| 35      | 9079         | 0.2  | 0.97 | 100 | 145 | <5 | 0.21 | <1 | 63 | 223 | 448  | >10  | <10 | 0.12 | 466  | 122 | 0.06 | 428 | 100  | 108 | <5 <20 | 11  | <0.01 <10 | 24       | <10 | <1 | 461 |
| QC DA1  | <u>ΓΑ:</u>   |      |      |     |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     |           |          |     |    |     |
| Resplit | <del>.</del> |      |      |     |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     |           |          |     |    |     |
| 1       | 9061         | 0.6  | 0.49 | 15  | 85  | <5 | 2.52 | <1 | 3  | 123 | 128  | 1.56 | <10 | 0.35 | 1168 | 4   | 0.02 | 3   | 190  | 66  | 5 <20  | 94  | 0.03 <10  | 70       | <10 | 10 | 57  |
| Repeat  | <i>:</i>     |      |      |     |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     | 10        |          |     | _  |     |
| 1       | 9061         | 0.6  | 0.46 | 10  | 80  | <5 | 2.40 | <1 | 2  | 133 | 123  | 1.40 | <10 | 0.32 | 1133 | 3   |      | 4   | 190  | 54  | <5 <20 | 88  | 0.03 <10  | 60       | <10 |    | 44  |
| 10      | 9071         | 2.6  | 0.75 | 30  | 40  | <5 | 2.83 | <1 | 18 | 183 | 1740 | 5.19 | <10 | 0.54 | 1144 | 4   | 0.01 | 19  | 640  | 56  | <5 <20 | 91  | 0.06 <10  | 293      | <10 |    | 86  |
| 19      | 9081         | 3.9  | 0.74 | 30  | 55  | <5 | 2.58 | <1 | 15 | 85  | 1520 | 4.77 | <10 | 0.57 | 891  | 22  | 0.02 | 16  | 1980 | 58  | <5 <20 | 92  | 0.07 <10  | 254      | <10 | 16 | 76  |
| Standa  | rd:          |      |      |     |     |    |      |    |    |     |      |      |     |      | 0.40 |     | 0.00 | 20  | 000  | 20  | 4E 400 | ΕΛ  | 0.10 <10  | 67       | <10 | 10 | 73  |
| GEO'05  |              | 1.5  | 1.62 | 55  | 165 | <5 | 1.56 | <1 | 20 | 60  | 86   | 4.03 | <10 | 0.83 | 640  | <1  | 0.02 | 29  | 830  | 20  | <5 <20 | 54  | 0.10 ~10  | 07       | ~10 | 10 | 1 0 |

ECO TECH LABORATORY LTD.

Jutta Jealouse

**BC** Certified Assayer

JJ/kk df/942 XLS/05



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

## **CERTIFICATE OF ASSAY AS 2005-5112**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

30-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 28

Samples Submitted by: Allan Huard

|             |       | Au    | Au     |                          |
|-------------|-------|-------|--------|--------------------------|
| ET #        | Tag # | (g/t) | (oz/t) |                          |
| 1           | 9096  | 0.14  | 0.004  |                          |
| 2           | 9097  | 0.10  | 0.003  |                          |
| 2<br>3      | 9098  | 0.06  | 0.002  |                          |
| 4           | 9099  | 0.06  | 0.002  |                          |
| 5           | 9100  | 0.11  | 0.003  |                          |
| 5<br>6<br>7 | 9151  | 0.06  | 0.002  |                          |
| 7           | 9152  | 0.09  | 0.003  |                          |
| 8           | 9154  | 0.07  | 0.002  |                          |
| 9           | 9155  | 0.09  | 0.003  |                          |
| 10          | 9156  | 80.0  | 0.002  |                          |
| 11          | 9157  | 0.08  | 0.002  |                          |
| 12          | 9158  | 0.07  | 0.002  |                          |
| 13          | 9159  | 0.06  | 0.002  |                          |
| 14          | 9160  | 0.16  | 0.005  |                          |
| 15          | 9161  | 0.07  | 0.002  |                          |
| 16          | 9162  | 0.11  | 0.003  |                          |
| 17          | 9163  | 0.15  | 0.004  |                          |
| 18          | 9165  | 0.06  | 0.002  |                          |
| 19          | 9166  | 0.12  | 0.003  |                          |
| 20          | 9167  | 0.14  | 0.004  |                          |
| 21          | 9168  | 0.08  | 0.002  |                          |
| 22          | 9169  | 0.07  | 0.002  |                          |
| 23          | 9170  | 0.10  | 0.003  |                          |
| 24          | 9171  | 0.05  | 0.001  |                          |
| 25          | 9172  | 0.07  | 0.002  |                          |
| 26          | 9173  | 0.12  | 0.003  | Man Kan In.              |
| 27          | 9174  | 0.24  | 0.007  | ayour Drove / goes       |
| 28          | 9176  | 0.21  | 0.006  | ECO TECH LABORATORY LTD. |
| 29          | 9177  | 0.08  | 0.002  | Juัtta Jealouse          |
| 30          | 9178  | 0.07  | 0.002  | B.C. Certified Assayer   |
| 31          | 9179  | 0.06  | 0.002  |                          |

# Falconbridge Limited AS 2005-5112

|           |       | Au     | Au     |
|-----------|-------|--------|--------|
| ET #.     | Tag # | (g/t)  | (oz/t) |
| 32        | 9180  | 0.04   | 0.001  |
| 33        | 9153  | 0.38   | 0.011  |
| 34        | 9175  | < 0.03 | <0.001 |
| 35        | 9164  | 0.07   | 0.002  |
|           |       |        |        |
| QC DATA:  |       |        |        |
| Repeats:  |       |        |        |
| 1         | 9096  | 0.14   | 0.004  |
| 10        | 9156  | 0.08   | 0.002  |
| 19        | 9166  | 0.12   | 0.003  |
| Posnlit:  |       |        |        |
| Resplit:  | 9096  | 0.14   | 0.004  |
| •         |       |        |        |
| Standard: |       |        |        |
| OX140     |       | 1.88   | 0.055  |

JJ/ XLS/05 ECO TECH LABORATORY LTD.
Jutta Jealouse

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ATTENTION: Allan Huard

Falconbridge Limited

Laval, Quebec

H7L 5A7

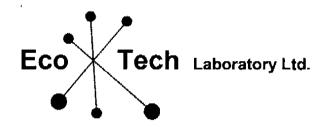
3296 Francis-Hughes Ave.

No. of samples received: 35 Sample type: Core Project #: 301 Shipment #: 28

Samples submitted by: Allan Huard

|       |              |     |      |     |     |               |      |    | _  | _   | _    |      |      |      |      |    |       |    | _    | ъ.  | O! O   | ٥   | T: 0/ 11  | w   | 183 | v  | 70        |
|-------|--------------|-----|------|-----|-----|---------------|------|----|----|-----|------|------|------|------|------|----|-------|----|------|-----|--------|-----|-----------|-----|-----|----|-----------|
| Et #. | Tag #        | Ag  | Al % | As_ | Ва  |               | Ca % | Cd | Co | Cr  | _    | Fe % |      | Mg % | Mn   |    | Na %  | Ni | P    |     | Sb Sn  | Sr  | Ti % U    |     | - W | Y  | <u>Zn</u> |
| 1     | 9096         |     | 1.00 | 10  | 70  | <5            | 3.29 | 1  | 22 | 87  | 2367 | 5.21 |      | 0.92 | 966  |    | 0.02  | 15 | 850  | 200 | <5 <20 | 124 | 0.10 <10  |     |     |    | 150       |
| 2     | 9097         | 2.7 | 0.81 | 5   | 65  | <5            | 2.63 | 2  | 22 | 77  | 2564 | 4.85 | <10  | 0.71 | 687  | 2  | 0.02  |    | 1070 | 328 | <5 <20 | 100 | 0.10 <10  |     | <10 |    | 173       |
| 3     | 9098         | 2.3 | 1.11 | 10  | 65  | <5            | 2.49 | 1  | 15 | 75  | 1567 | 4.60 | <10  | 1.07 | 735  | 8  | 0.04  |    | 1240 | 246 | <5 <20 | 82  | 0.14 < 10 |     | <10 |    | 99        |
| 4     | 9099         | 1.8 | 0.92 | 15  | 60  | <5            | 3.11 | <1 | 15 | 67  | 1919 | 4.39 | <10  | 0.80 | 858  | 4  | 0.03  |    | 1190 | 128 | <5 <20 | 109 | 0.13 < 10 |     | <10 | -  | 67        |
| 5     | 9100         | 2.3 | 0.93 | 10  | 55  | <5            | 1.94 | <1 | 16 | 90  | 2569 | 5.42 | <10  | 0.83 | 686  | 11 | 0.03  | 20 | 920  | 174 | <5 <20 | 65  | 0.10 <10  | 305 | <10 | 12 | 96        |
|       |              |     |      |     |     |               |      |    |    |     |      |      |      |      |      |    |       | _  |      |     |        | 450 | 0.00 .40  | 405 | -40 | 24 |           |
| 6     | <b>91</b> 51 | 0.9 | 0.68 | 10  | 70  | <5            | 6.19 | <1 | 8  | 56  | 611  | 3.32 | <10  | 0.36 | 2500 | 14 | 0.02  | 9  | 860  | 60  | <5 <20 | 152 | 0.06 <10  |     | _   |    | 44        |
| 7     | 9152         | 3.3 | 0.63 | 25  | 50  | <5            | 2.48 | <1 | 26 | 65  | 5856 | 5.87 | <10  |      | 1784 | 8  | 0.01  | 19 | 520  | 90  | <5 <20 | 99  | 0.03 <10  |     | <10 |    | 74        |
| 8     | 9154         | 2.0 | 0.80 | 15  | 55  | <5            | 4.54 | <1 | 12 | 81  | 1892 | 3.47 | <10  | 0.39 | 1529 | 23 | 0.01  | 13 | 750  | 162 | <5 <20 | 114 | 0.04 <10  |     | <10 |    | 67        |
| 9     | 9155         | 1.4 | 1.00 | 40  | 45  | <5            | 4.43 | <1 | 18 | 75  | 1071 | 5.20 | <10  | 0.64 | 1911 | _  | <0.01 |    | 1140 | 106 | <5 <20 | 130 | 0.06 <10  |     |     |    | 58        |
| 10    | 9156         | 2.7 | 0.82 | 25  | 55  | <5            | 2.72 | <1 | 16 | 91  | 1690 | 4.15 | 10   | 0.44 | 1656 | 15 | <0.01 | 21 | 1110 | 144 | <5 <20 | 75  | 0.02 <10  | 198 | <10 | 17 | 88        |
|       |              |     |      |     |     |               |      |    |    |     |      |      |      |      |      |    |       |    |      | _   |        |     |           |     |     |    |           |
| 11    | 9157         | 2.1 | 0.68 | 25  | 50  | <5            | 4.99 | <1 | 12 | 84  | 844  | 3.53 | <10  | 0.40 | 2186 | 10 | <0.01 | 14 | 830  | 78  | <5 <20 | 127 | 0.02 <10  |     | <10 |    | 55        |
| 12    | 9158         | 3.9 | 0.83 | 20  | 55  | <5            | 3.15 | <1 | 13 | 57  | 893  | 4.00 | <10  | 0.55 | 1037 | 10 | 0.02  | 23 | 1200 | 364 | <5 <20 | 106 | 0.02 <10  |     | <10 |    | 59        |
| 13    | 9159         | 4.4 | 0.62 | 25  | 60  | <5            | 3.41 | <1 | 7  | 125 | 610  | 2.60 | <10  | 0.41 | 1185 | 7  | <0.01 | 11 | 310  | 294 | <5 <20 | 111 | 0.02 <10  |     | <10 |    | 46        |
| 14    | 9160         | 9.0 | 0.35 | 25  | 55  | <5            | 1.62 | <1 | 4  | 161 | 444  | 2.08 | <10  | 0.20 | 522  | 9  | 0.02  | 7  | 60   | 788 | <5 <20 |     | <0.01 <10 |     | <10 | 6  | 33        |
| 15    | 9161         | 1.9 | 0.28 | 15  | 65  | <5            | 2.05 | <1 | 2  | 163 | 362  | 1.46 | <10  | 0.13 | 618  | 6  | 0.03  | 5  | 30   | 110 | <5 <20 | 97  | <0.01 <10 | 84  | <10 | 6  | 26        |
|       |              |     |      |     |     |               |      |    |    |     |      |      |      |      |      |    |       |    |      |     |        |     |           |     |     |    | ••        |
| 16    | 9162         | 2.2 | 0.79 | 20  | 65  | <5            | 4.44 | <1 | 11 | 81  | 1018 | 3.75 | <10  | 0.49 | 1657 | 12 | <0.01 | 15 | 960  | 146 | <5 <20 | 151 | 0.03 <10  |     |     |    | 60        |
| 17    | 9163         | 3.7 | 1.00 | 25  | 60  | <5            | 2.98 | <1 | 21 | 72  | 3725 | 5.16 | <10  | 0.75 | 999  | 7  | 0.01  | 14 | 1560 | 86  | <5 <20 | 119 | 0.03 <10  |     |     |    | 73        |
| 18    | 9165         | 3.8 | 0.84 | 20  | 65  | <5            | 5.53 | <1 | 11 | 77  | 2289 | 3.53 | <10  | 0.56 | 1890 | 18 | 0.01  | 15 | 940  | 156 | <5 <20 | 172 | 0.02 <10  |     | <10 | 16 | 56        |
| 19    | 9166         | 5.0 | 0.92 | 40  | 70  | <5            | 3.23 | <1 | 11 | 90  | 2412 | 4.18 | <10  | 0.64 | 1050 | 8  | 0.02  | 14 | 1040 | 142 | <5 <20 | 145 | 0.06 <10  |     |     | 11 | 59        |
| 20    | 9167         | 2.3 | 0.74 | 45  | 50  | <5            | 3.32 | <1 | 12 | 60  | 826  | 4.64 | <10  | 0.57 | 1570 | 6  | 0.01  | 13 | 1300 | 76  | <5 <20 | 136 | 0.06 <10  | 238 | <10 | 16 | 52        |
|       |              |     |      |     |     |               |      |    |    |     |      |      |      |      |      |    |       |    |      |     |        |     |           |     |     |    |           |
| 21    | 9168         | 4.0 | 0.99 | 25  | 55  | <5            | 3.07 | <1 | 14 | 65  | 2006 | 4.58 | <10  | 0.70 | 1066 | 4  | 0.02  | 11 | 1440 | 92  | <5 <20 | 125 | 0.08 <10  |     |     |    | 62        |
| 22    | 9169         | 3.6 | 1.03 | 25  | 50  | <5            | 2.10 | <1 | 20 | 55  | 2030 | 6.18 | <10  | 0.77 | 1239 | 6  | 0.01  | 14 | 1640 | 98  | <5 <20 | 105 | 0.09 <10  | 294 | <10 | 11 | 64        |
| 23    | 9170         | 4.5 | 1.54 | 20  | 70  | <5            | 3.17 | <1 | 21 | 55  | 3123 | 7.63 | <10  | 1.46 | 1507 | <1 | 0.03  | 9  | 1950 | 74  | <5 <20 | 173 | 0.15 <10  |     | <10 | 12 | 94        |
| 24    | 9171         | 3.2 | 1.82 | 30  | 70  | <5            | 3.48 | <1 | 19 | 69  | 1531 | 7.48 | <10  | 1.61 | 1366 | <1 | 0.04  | 11 | 1860 | 102 | <5 <20 | 163 | 0.15 <10  | 506 | <10 | 12 | 99        |
| 25    | 9172         | 2.6 | 0.99 | 55  | 55  | <5            | 2.98 | <1 | 18 | 74  | 1406 | 5.00 | <10  | 0.81 | 1234 | 4  | 0.02  | 19 | 1300 | 94  | <5 <20 | 120 | 0.08 < 10 | 338 | <10 | 15 | 55        |
|       | • –          |     |      |     |     |               |      |    |    |     |      |      |      |      |      |    |       |    |      |     |        |     |           |     |     |    |           |
| 26    | 9173         | 2.4 | 0.81 | 25  | 50  | <5            | 2.59 | <1 | 16 | 124 | 850  | 4.37 | <10  | 0.50 | 1020 | 6  | 0.02  | 19 | 1240 | 166 | <5 <20 | 105 | 0.04 <10  |     | <10 | 14 | 64        |
| 27    | 9174         | 3.4 | 0.75 | 40  | 55  | <5            | 3.22 | <1 | 13 | 89  | 3194 | 4.40 | <10  | 0.52 | 1100 | 5  | 0.02  | 14 | 780  | 102 | <5 <20 | 128 | 0.06 <10  | 327 | <10 | 14 | 55        |
| 28    | 9176         | 2.7 | 0.94 | 40  | 60  | <5            | 3.00 | <1 | 17 | 102 | 1072 | 4.66 | <10  | 0.75 | 1101 | <1 | 0.02  | 8  | 1340 | 238 | <5 <20 | 142 | 0.10 <10  | 356 | <10 | 15 | 90        |
| 29    | 9177         | 3.3 | 0.95 | 25  | 60  | <5            | 2.46 | <1 | 22 | 79  | 2402 | 5.52 | <10  | 0.76 | 1350 | <1 | 0.01  | 14 | 1400 | 100 | <5 <20 | 163 | 0.13 <10  | 359 | <10 | 16 | 80        |
| 30    | 9178         | 2.4 | 0.71 | 20  | 55  | <b>&lt;</b> 5 | 3.45 | <1 | 16 | 114 | 956  | 3.66 | <10  | 0.43 | 1331 | 1  | 0.02  | 16 | 900  | 98  | <5 <20 | 184 | 0.10 <10  | 315 | <10 | 18 | 57        |
|       |              |     |      |     | _ = | -             |      |    |    |     |      |      | Page | 1    |      |    |       |    |      |     |        |     |           |     |     |    |           |
|       |              |     |      |     |     |               |      |    |    |     |      |      |      |      |      |    |       |    |      |     |        |     |           |     |     |    |           |

| <b>ECO TECH</b> | LABORATORY | LTD. |
|-----------------|------------|------|
|-----------------|------------|------|


| Et #.    | Tag#        | Ag   | Al % | As  | Ba  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn   | Мо  | Na %   | Ni  | P_   | Pb  | Sb Sn  | Sr  | Ti % U    | <u> </u> | ٧٧  | <u>Y</u> | Zn  |
|----------|-------------|------|------|-----|-----|----|------|----|----|-----|------|------|-----|------|------|-----|--------|-----|------|-----|--------|-----|-----------|----------|-----|----------|-----|
| 31       | 9179        | 2.5  | 0.44 | 20  | 50  | <5 | 1.27 | <1 | 4  | 145 | 742  | 2.44 | 20  | 0.09 | 349  | 7   | 0.04   | 5   | 90   | 88  | <5 <20 | 54  | <0.01 <10 | 174      | <10 | 8        | 40  |
| 32       | 9180        | 1,3  | 0.27 | 15  | 45  | <5 | 0.92 | <1 | 3  | 156 | 464  | 1.74 | <10 | 0.08 | 333  | 4   | 0.04   | 5   | 20   | 50  | <5 <20 | 53  | 0.01 < 10 | 136      | <10 | 3        | 19  |
| 33       | 9153        | 1,2  | 1.08 | 10  | 120 | <5 | 1.46 | <1 | 13 | 22  | 4028 | 3.72 | <10 | 0.96 | 676  | <1  | 0.15   | 11  | 930  | 8   | <5 <20 | 106 | 0.13 <10  | 171      | <10 | 18       | 46  |
| 34       | 9175        | <0.2 | 3.46 | 15  | 105 | <5 | 3.60 | <1 | 36 | 55  | 114  | 8.28 | <10 | 3.20 | 1086 | <1  | 0.03   | 17  | 1850 | 8   | <5 <20 | 102 | 0.18 <10  | 271      | <10 | 22       | 77  |
| 35       | 9164        | 0.3  | 0.89 | 100 | 140 | <5 | 0.26 | <1 | 70 | 250 | 418  | >10  | <10 | 0.16 | 488  | 123 | 0.05   | 448 | 150  | 116 | <5 <20 | 14  | <0.01 <10 | 26       | <10 | <1       | 408 |
|          | •           |      |      |     |     |    |      |    |    |     |      |      |     |      |      |     |        |     |      |     |        |     |           |          |     |          |     |
| QC DAT   | ( <u>A:</u> |      |      |     |     |    |      |    |    |     |      |      |     |      |      |     |        |     |      |     |        |     |           |          |     |          |     |
| Resplit: |             |      |      |     |     |    |      |    |    |     |      |      |     |      |      |     |        |     |      |     |        |     |           |          |     |          |     |
| 1        | 9096        | 3.0  | 1.07 | 20  | 60  | <5 | 3.15 | 1  | 29 | 97  | 2225 | 6.23 | <10 | 0.99 | 1023 | 21  | 0.02   | 18  | 1090 | 252 | <5 <20 | 108 | 0.10 < 10 | 404      | <10 | 12       | 174 |
| ,        | 0000        | 0.0  | 7.07 |     |     |    |      | -  |    |     |      |      |     |      | •    |     |        |     |      |     |        |     |           |          |     |          |     |
| Repeat:  | •           |      |      |     |     |    |      |    |    |     |      |      |     |      |      |     |        |     |      |     |        |     |           |          |     |          |     |
| 1        | 9096        | 2.7  | 0.96 | 15  | 70  | <5 | 3.39 | 1  | 23 | 89  | 2085 | 5.20 | <10 | 0.88 | 976  | 19  | 0.02   | 13  | 850  | 194 | <5 <20 | 117 | 0.10 <10  | 374      | <10 | 12       | 152 |
| 10       | 9156        | 2.7  | 0.89 | 30  | 55  | <5 | 3.02 | <1 | 16 | 96  | 1794 | 4.27 | 10  | 0.47 | 1707 | 14  | < 0.01 | 23  | 1170 | 148 | <5 <20 | 82  | 0.02 <10  | 213      | <10 | 19       | 90  |
| 19       | 9166        | 4.9  | 0.93 | 45  | 65  | <5 | 3.36 | <1 | 11 | 95  | 2386 | 4.31 | <10 | 0.64 | 1076 | 7   | 0.02   | 14  | 1170 | 154 | <5 <20 | 142 | 0.06 <10  | 345      | <10 | 11       | 64  |
|          |             |      | 2.20 | ,•  |     | •  |      | -  |    |     |      |      |     |      |      |     |        |     |      |     |        |     |           |          |     |          |     |
| Standar  | rd:         |      |      |     |     |    |      |    |    |     |      |      |     |      |      |     |        |     |      |     |        |     |           |          |     |          |     |
| GEO'05   |             | 1.5  | 1.49 | 60  | 145 | <5 | 1.39 | <1 | 19 | 58  | 84   | 3.88 | <10 | 0.77 | 586  | <1  | 0.02   | 28  | 690  | 22  | <5 <20 | 54  | 0.11 <10  | 71       | <10 | 10       | 74  |
| 22000    |             |      |      | 3.0 |     | -  |      | -  | _  |     |      |      |     |      |      |     |        |     |      |     |        |     |           |          |     |          |     |

ECO TECH LABORATORY LTD.

Jutta Jealouse

BC Certified Assayer

JJ/kk df/5101 XLS/05



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5113**

Falconbridge Limited
3296 Francis-Hughes Avenue
Laval, Quebec
H7L 5A7

30-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 29

Samples Submitted by: Allan Huard

|                       |       | Au    | Au     |                             |
|-----------------------|-------|-------|--------|-----------------------------|
| ET #.                 | Tag # | (g/t) | (oz/t) |                             |
| 1                     | 9181  | 0.08  | 0.002  |                             |
| 2                     | 9182  | 0.03  | 0.001  |                             |
| 3                     | 9183  | 0.03  | 0.001  |                             |
| 4                     | 9184  | <0.03 | <0.001 |                             |
| 2<br>3<br>4<br>5<br>6 | 9185  | 0.03  | 0.001  |                             |
| 6                     | 9186  | 0.04  | 0.001  |                             |
| 7                     | 9187  | 0.06  | 0.002  |                             |
| 8                     | 9189  | 0.09  | 0.003  |                             |
| 9                     | 9190  | 0.08  | 0.002  |                             |
| 10                    | 9191  | 0.06  | 0.002  |                             |
| 11                    | 9192  | 0.05  | 0.001  |                             |
| 12                    | 9193  | 0.05  | 0.001  |                             |
| 13                    | 9194  | 0.05  | 0.001  |                             |
| 14                    | 9195  | 0.08  | 0.002  |                             |
| 15                    | 9196  | 0.11  | 0.003  |                             |
| 16                    | 9197  | 0.06  | 0.002  |                             |
| 17                    | 9198  | 0.05  | 0.001  |                             |
| 18                    | 9200  | 0.07  | 0.002  |                             |
| 19                    | 9201  | 0.04  | 0.001  |                             |
| 20                    | 9202  | 0.04  | 0.001  |                             |
| 21                    | 9203  | 0.04  | 0.001  |                             |
| 22                    | 9204  | 0.05  | 0.001  |                             |
| 23                    | 9205  | 0.07  | 0.002  |                             |
| 24                    | 9206  | 0.09  | 0.003  |                             |
| 25                    | 9207  | 0.07  | 0.002  | /                           |
| 26                    | 9208  | 0.07  | 0.002  | La Kara ha                  |
| 27                    | 9209  | 0.09  | 0.003  | ayan esince /fer            |
| 28                    | 9211  | 0.05  | 0.001  | ECO TECH LABORATORY LTD.    |
| 29                    | 9212  | 0.07  | 0.002  | Ju <del>l</del> ta Jealouse |
| 30                    | 9213  | 0.11  | 0.003  | B.C. Certified Assayer      |
| 31                    | 9214  | 0.25  | 0.007  |                             |

# Falconbridge Limited AS 2005 5113

|           |      | Au    | Au     |  |
|-----------|------|-------|--------|--|
| ET #      | Tag# | (g/t) | (oz/t) |  |
| 32        | 9215 | 0.25  | 0.007  |  |
| 33        | 9188 | 0.44  | 0.013  |  |
| 34        | 9210 | <0.03 | <0.001 |  |
| 35        | 9199 | 0.07  | 0.002  |  |
| QC DATA:  |      |       |        |  |
| Repeats:  |      |       |        |  |
| 1         | 9181 | 0.07  | 0.002  |  |
| 10        | 9191 | 0.05  | 0.001  |  |
| 19        | 9201 | 0.04  | 0.001  |  |
| 31        | 9214 | 0.26  | 0.008  |  |
| 32        | 9215 | 0.23  | 0.007  |  |
| Resplit:  |      |       |        |  |
| 1         | 9181 | 0.08  | 0.002  |  |
| Standard: |      | 2.21  | 0.050  |  |
| PM176     |      | 2.04  | 0.059  |  |

JJ/bw XLS/05 ECO TECH LABORATORY LTD.
Jutta Jealouse

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core Project #: 301 Shipment #: 29

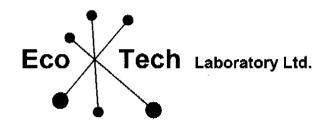
Samples submitted by: Allan Huard

| Et #. | Tag # | Ag  | AI%  | As | Ва | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La   | Mg % | Mn          | Мо | Na %  | Ni | Р    | Pb  | Sb Sn  | Sr  | Ti% U     | V   | W   | Υ  | Zn  |
|-------|-------|-----|------|----|----|----|------|----|----|-----|------|------|------|------|-------------|----|-------|----|------|-----|--------|-----|-----------|-----|-----|----|-----|
| 1     | 9181  | 2.9 | 0.71 | 20 | 75 | <5 | 1.90 | <1 | 12 | 95  | 3011 | 3.35 | 10   | 0.54 | 75 <b>5</b> | 4  |       | 13 | 860  | 78  | <5 <20 | 97  | 0.09 < 10 |     |     |    | 68  |
| 2     | 9182  | 1.2 | 0.18 | 5  | 45 | <5 | 0.35 | <1 | 2  | 119 | 606  | 1.15 | <10  | 0.04 | 128         | 3  | 0.04  | 4  | <10  | 38  | <5 <20 |     | <0.01 <10 | 74  | <10 | -  | 13  |
| 3     | 9183  | 1.4 | 0.20 | 10 | 40 | <5 | 0.37 | <1 | 2  | 127 | 400  | 1.09 | <10  | 0.07 | 142         | 4  | 0.05  | 3  | 30   | 52  | <5 <20 |     | <0.01 <10 | 87  | <10 | 1  | 17  |
| 4     | 9184  | 1.2 | 0.18 | 5  | 40 | <5 | 0.45 | <1 | 2  | 109 | 531  | 1.22 | <10  | 0.07 | 177         | 4  | 0.02  | 4  | 60   | 48  | <5 <20 |     | <0.01 <10 | 81  | <10 | 2  | 19  |
| 5     | 9185  | 0.7 | 0.24 | <5 | 40 | <5 | 0.47 | <1 | 2  | 121 | 444  | 1.20 | <10  | 0.08 | 186         | 7  | 0.05  | 3  | <10  | 22  | <5 <20 | 24  | <0.01 <10 | 51  | <10 | <1 | 14  |
| _     |       |     |      |    |    |    |      |    |    |     |      |      |      |      |             |    |       |    |      |     |        |     |           |     |     |    |     |
| 6     | 9186  | 0.9 | 0.26 | 10 | 40 | <5 | 2.55 | <1 | 3  | 119 | 759  | 1.63 | <10  | 0.11 | 897         | 5  | 0.03  | 4  | <10  | 24  | <5 <20 |     | <0.01 <10 | 85  | <10 | 5  | 19  |
| 7     | 9187  | 1.1 | 0.38 | 25 | 45 | <5 | 3.13 | <1 | 8  | 90  | 846  | 2.86 | <10  | 0.21 | 1080        | 6  | 0.01  | 16 | 560  | 42  | <5 <20 | 95  | 0.03 <10  |     | <10 | 9  | 31  |
| 8     | 9189  | 0.5 | 1.03 | 20 | 50 | <5 | 2.24 | <1 | 15 | 26  | 196  | 4.10 | <10  | 0.85 | 942         | 2  | 0.03  | 3  | 1290 | 36  | <5 <20 | 71  | 0.05 <10  |     | <10 | 6  | 73  |
| 9     | 9190  | 1.0 | 0.35 | 15 | 50 | <5 | 3.48 | <1 | 4  | 124 | 295  | 1.82 | <10  | 0.22 | 1341        | 3  | <0.01 | 8  | 380  | 36  | <5 <20 | 95  | <0.01 <10 | 69  | <10 | 5  | 23  |
| 10    | 9191  | 1.3 | 0.79 | 20 | 75 | <5 | 3.57 | <1 | 10 | 68  | 818  | 3.03 | <10  | 0.64 | 1370        | 4  | 0.02  | 14 | 980  | 38  | <5 <20 | 103 | 0.03 <10  | 193 | <10 | 10 | 59  |
|       | •     |     |      |    |    |    |      |    |    |     |      |      |      |      |             |    |       |    |      |     |        |     |           |     |     |    |     |
| 11    | 9192  | 3.0 | 1.00 | 10 | 65 | <5 | 2.66 | <1 | 22 | 113 | 2729 | 5.18 | <10  | 0.83 | 1055        | 5  | 0.04  | 18 | 940  | 74  | <5 <20 | 98  | 0.11 <10  |     | <10 | 12 | 87  |
| 12    | 9193  | 1.5 | 0.60 | 15 | 55 | <5 | 2.49 | <1 | 13 | 80  | 699  | 3.30 | <10  | 0.54 | 908         | 4  | 0.02  | 16 | 1050 | 60  | <5 <20 | 80  | 0.05 <10  |     | <10 | 11 | 55  |
| 13    | 9194  | 2.0 | 0.74 | 20 | 70 | <5 | 3.09 | <1 | 14 | 61  | 1294 | 4.12 | <10  | 0.65 | 1111        | 2  | 0.02  | 13 | 1200 | 66  | <5 <20 | 103 | 0.08 <10  |     | <10 |    | 61  |
| 14    | 9195  | 2.5 | 0.95 | 25 | 65 | <5 | 3.37 | <1 | 21 | 56  | 1520 | 5.40 | <10  | 0.93 | 1357        | 2  | 0.02  | 17 | 1290 | 76  | <5 <20 | 108 | 0.09 <10  |     | <10 |    | 89  |
| 15    | 9196  | 3.6 | 0.80 | 15 | 55 | <5 | 2.99 | <1 | 20 | 69  | 3090 | 5.04 | <10  | 0.72 | 1131        | 3  | 0.01  | 14 | 1090 | 46  | <5 <20 | 93  | 0.07 <10  | 248 | <10 | 9  | 84  |
|       |       |     |      |    |    |    |      |    |    |     |      |      |      |      |             |    |       |    |      |     |        |     |           |     |     |    |     |
| 16    | 9197  | 2.1 | 0.74 | 10 | 55 | <5 | 3.28 | <1 | 14 | 62  | 1105 | 4.78 | <10  | 0.71 | 1261        | 3  | 0.01  | 11 | 1330 | 32  | <5 <20 | 94  | 0.09 <10  |     | <10 |    | 68  |
| 17    | 9198  | 2.0 | 0.61 | 10 | 55 | <5 | 3.60 | <1 | 15 | 80  | 1646 | 4.93 | <10  | 0.55 | 1599        | 1  | <0.01 | 11 | 1230 | 28  | <5 <20 | 102 | 0.08 <10  |     |     |    | 62  |
| 18    | 9200  | 1.9 | 0.73 | 10 | 55 | <5 | 3.41 | <1 | 12 | 68  | 1578 | 4.45 | <10  | 0.64 | 1238        | 4  | 0.02  | 15 | 1390 | 52  | <5 <20 | 99  | 0.10 <10  |     | <10 |    | 77  |
| 19    | 9201  | 1.9 | 0.75 | 15 | 85 | <5 | 2.91 | <1 | 12 | 83  | 1040 | 4.16 | <10  | 0.69 | 1101        | 1  | 0.02  | 12 | 1330 | 56  | <5 <20 | 94  | 0.10 <10  |     | <10 |    | 78  |
| 20    | 9202  | 3.0 | 0.76 | 30 | 50 | <5 | 2.58 | <1 | 21 | 55  | 1666 | 6.68 | <10  | 0.69 | 1536        | 3  | 0.01  | 13 | 1810 | 64  | <5 <20 | 80  | 0.09 <10  | 212 | <10 | 13 | 83  |
|       |       |     |      |    |    |    |      |    |    |     |      |      |      |      |             |    |       |    |      |     |        |     |           |     |     |    |     |
| 21    | 9203  | 1.0 | 1.05 | 10 | 70 | <5 | 3.19 | <1 | 13 | 68  | 773  | 4.52 | <10  | 0.87 | 1268        | 1  | 0.02  | 15 | 1670 | 42  | <5 <20 | 77  | 0.11 <10  |     |     |    | 107 |
| 22    | 9204  | 1,1 | 0.38 | <5 | 50 | <5 | 3.88 | <1 | 10 | 63  | 594  | 2.88 | <10  | 0.29 | 1326        | 6  | <0.01 | 8  | 930  | 56  | <5 <20 | 92  | 0.06 <10  |     |     |    | 44  |
| 23    | 9205  | 0.9 | 0.53 | 15 | 65 | <5 | 4.87 | <1 | 15 | 70  | 655  | 3.85 | <10  | 0.43 | 2106        | 5  | 0.02  | 13 | 1380 | 38  | <5 <20 | 90  | 0.06 <10  |     | <10 |    | 45  |
| 24    | 9206  | 0.9 | 0.65 | 25 | 60 | <5 | 3.63 | <1 | 15 | 70  | 434  | 4.42 | <10  | 0.56 | 1334        | 5  | 0.02  | 18 | 1460 | 52  | <5 <20 | 80  | 0.09 <10  |     | <10 |    | 60  |
| 25    | 9207  | 0.8 | 0.49 | 15 | 60 | <5 | 3.70 | <1 | 12 | 80  | 329  | 4.02 | <10  | 0.41 | 1275        | 4  | 0.02  | 17 | 1320 | 60  | <5 <20 | 86  | 0.08 <10  | 173 | <10 | 24 | 48  |
|       |       |     | -    |    |    |    |      |    |    |     |      |      |      |      |             |    |       |    |      |     |        |     |           |     |     |    |     |
| 26    | 9208  | 0.5 | 0.37 | 10 | 60 | <5 | 5.11 | <1 | 9  | 54  | 249  | 2.50 | <10  | 0.29 | 1781        | 3  | 0.02  | 17 | 940  | 38  | <5 <20 | 87  | 0.06 < 10 |     |     |    | 36  |
| 27    | 9209  | 1.1 | 0.63 | 15 | 60 | <5 | 3.56 | <1 | 12 | 106 | 437  | 3.55 | <10  | 0.46 | 1151        | 10 | 0.03  | 26 | 1350 | 84  | <5 <20 | 85  | 0.06 < 10 |     |     |    | 63  |
| 28    | 9211  | 0.6 | 0.62 | 10 | 70 | <5 | 5.68 | <1 | 12 | 53  | 379  | 3.91 | <10  | 0.50 | 1898        | 3  | 0.01  | 16 | 1480 | 50  | <5 <20 | 108 | 0.06 < 10 |     |     |    | 64  |
| 29    | 9212  | 1.2 | 0.98 | 25 | 80 | <5 | 5.57 | <1 | 18 | 96  | 2367 | 5.40 | <10  | 0.59 | 1665        | 7  | <0.01 | 25 | 1050 | 48  | <5 <20 | 85  | 0.02 <10  |     |     |    | 119 |
| 30    | 9213  | 1.1 | 0.61 | 30 | 55 | <5 | 3.71 | <1 | 39 | 78  | 1215 | 5.71 | <10  | 0.50 | 1451        | 4  | <0.01 | 27 | 1730 | 100 | <5 <20 | 86  | 0.06 < 10 | 193 | <10 | 13 | 92  |
| 75    |       |     |      |    |    |    |      |    |    |     |      |      | Page | : 1  |             |    |       |    |      |     |        |     |           |     |     |    |     |
|       |       |     |      |    |    |    |      |    |    |     |      |      |      |      |             |    |       |    |      |     |        |     |           |     |     |    |     |

#### ICP CERTIFICATE OF ANALYSIS AS 2005-5113

#### Falconbridge Limited

Pb Sb Sn Sr Ti % U V


W Y Zn

| Et #.             | Tag #        | Ag   | AI % | As | Ba  | Bi | Ca % | Cd | Ço | Cr  | Cu   | Fe % | La  | Mg % | Mn   | Мо  | Na %  | Ni  | P    | Pb  | Sb   | \$n | Sr  | Ti %    | U     | V   | W   | Υ  | Zn  |
|-------------------|--------------|------|------|----|-----|----|------|----|----|-----|------|------|-----|------|------|-----|-------|-----|------|-----|------|-----|-----|---------|-------|-----|-----|----|-----|
| 31                | 9214         | 1.5  | 0.61 | 20 | 50  | <5 | 2,73 | <1 | 27 | 68  | 1721 | 5.55 | <10 | 0.54 | 1009 | 6   | <0.01 | 24  | 1390 | 76  | <5 < | 20  | 63  | 0.07 <  | 10 2  | 209 | <10 | 11 | 81  |
| 32                | 9215         | 1.5  | 0.53 | 15 | 55  | <5 | 3.92 | <1 | 25 | 97  | 1828 | 6.84 | <10 | 0.32 | 2130 | 6   | <0.01 | 18  | 1600 | 84  | <5 < | <20 | 92  | 0.04 <  | 10 2  | 245 | <10 | 23 | 74  |
| 33                | 9188         | 2.1  | 1.37 | 5  | 290 | <5 | 1.40 | <1 | 13 | 25  | 7181 | 3.51 | 10  | 1.19 | 470  | 2   | 0.10  | 15  | 2880 | 26  | <5 < | <20 | 71  | 0.06 <  | 10 1  | 189 | <10 | 17 | 59  |
| 34                | 9210         | <0.2 | 1.53 | 15 | 70  | <5 | 3.40 | <1 | 24 | 56  | 81   | 5.61 | <10 | 1.44 | 711  | 2   | 0.02  | 14  | 1380 | 14  | <5 • | <20 | 72  | 0.07 <  | :10 1 | 180 | <10 | 11 | 76  |
| 35                | 9199         | 0.2  | 0.77 | 85 | 130 | <5 | 0.20 | <1 | 67 | 243 | 465  | >10  | <10 | 0.11 | 442  | 120 | 0.04  | 435 | 150  | 118 | <5 < | <20 | 11  | <0.01 < | :10   | 20  | <10 | <1 | 403 |
| QC DAT            | Γ <b>A</b> : |      |      |    |     |    |      |    |    |     |      |      |     |      |      |     |       |     |      |     |      |     |     |         |       |     |     |    |     |
|                   |              |      |      |    |     |    |      |    |    |     |      |      |     |      |      |     |       |     |      |     |      |     |     |         |       |     |     |    |     |
| Resplit:<br>1     | 9181         | 3.2  | 0.50 | 30 | 65  | <5 | 2.09 | <1 | 15 | 93  | 2153 | 4.02 | <10 | 0.40 | 797  | 8   | 0.01  | 16  | 1060 | 120 | <5 · | <20 | 74  | 0.09 <  | :10 2 | 236 | <10 | 14 | 102 |
| Repeat:           | ;            |      |      |    |     |    |      |    |    |     |      |      |     |      |      |     |       |     |      |     |      |     |     |         |       |     |     |    |     |
| 1                 | 9181         | 2.9  | 0.60 | 20 | 70  | <5 | 1.82 | <1 | 11 | 91  | 2465 | 3.48 | 10  | 0.46 | 711  | 5   | 0.02  | 12  | 850  | 76  | <5 · | <20 | 87  | 0.09 <  |       | 242 | <10 | 15 | 70  |
| 10                | 9191         | 1.4  | 0.65 | 20 | 70  | <5 | 3.49 | <1 | 10 | 67  | 626  | 2.98 | <10 | 0.52 | 1312 | 4   | 0.02  | 16  | 970  | 44  |      | <20 | 94  | 0.03 <  |       | 178 | <10 | 8  | 68  |
| 19                | 9201         | 2.0  | 0.84 | 15 | 90  | <5 | 3.03 | <1 | 14 | 89  | 1102 | 4.19 | <10 | 0.75 | 1264 | <1  | 0.02  | 13  | 1320 | 56  | <5 · | <20 | 102 | 0.12 <  | 10 2  | 246 | <10 | 17 | 79  |
| Standar<br>GEO'05 |              | 1.5  | 1.36 | 55 | 145 | <5 | 1.55 | <1 | 19 | 60  | 84   | 4.20 | <10 | 0.59 | 618  | <1  | 0.02  | 30  | 720  | 24  | <5 · | <20 | 56  | 0.10 <  | <10   | 70  | <10 | 11 | 79  |

Julia Jealouse

BC Certified Assayer

JJ/ga df/5101 XLS/05



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com

www.ecotechlab.com

### **CERTIFICATE OF ASSAY AS 2005-5114**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

29-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core **Project #: 301 Shipment #: 30** 

Samples Submitted by: Allan Huard

|             |       | Au    | Au     |                          |
|-------------|-------|-------|--------|--------------------------|
| ET#.        | Tag # | (g/t) | (oz/t) |                          |
| 1           | 9216  | 0.17  | 0.005  |                          |
| 2<br>3      | 9217  | 0.15  | 0.004  |                          |
| 3           | 9218  | 0.10  | 0.003  |                          |
| 4           | 9219  | 0.12  | 0.003  |                          |
| 4<br>5<br>6 | 9220  | 0.16  | 0.005  |                          |
| 6           | 9221  | 0.23  | 0.007  |                          |
| 7           | 9222  | 0.91  | 0.027  |                          |
| 8           | 9224  | 0.09  | 0.003  |                          |
| 9           | 9225  | 0.07  | 0.002  |                          |
| 10          | 9226  | 0.16  | 0.005  |                          |
| 11          | 9227  | 0.13  | 0.004  |                          |
| 12          | 9228  | 0.15  | 0.004  |                          |
| 13          | 9229  | 0.12  | 0.003  |                          |
| 14          | 9230  | 0.14  | 0.004  |                          |
| 15          | 9231  | 0.16  | 0.005  |                          |
| 16          | 9232  | 0.10  | 0.003  |                          |
| 17          | 9233  | 0.08  | 0.002  |                          |
| 18          | 9235  | 0.15  | 0.004  |                          |
| 19          | 9236  | 0.09  | 0.003  |                          |
| 20          | 9237  | 0.19  | 0.006  |                          |
| 21          | 9238  | 0.08  | 0.002  |                          |
| 22          | 9239  | 0.21  | 0.006  |                          |
| 23          | 9240  | 0.33  | 0.010  |                          |
| 24          | 9241  | 0.19  | 0.00€  |                          |
| 25          | 9242  | 0.36  | 0.010  | $\wedge$                 |
| 26          | 9243  | 0.07  | 0.002  | La Richardon             |
| 27          | 9244  | 0.03  | 0.001  | MANE ONCE / HOT          |
| 28          | 9246  | 0.08  | 0.002  | ECO TECH LABORATORY LTD. |
| 29          | 9247  | 0.10  | 0.003  | Jutta Jealouse           |
| 30          | 9248  | 0.13  | 0.004  | B.C. Certified Assayer   |
| 31          | 9249  | 0.17  | 0.005  |                          |

# Falconbridge Limited AS 2005-5114

|           |         | Au    | Au     |   |
|-----------|---------|-------|--------|---|
| ET #.     | Tag # _ | (g/t) | (oz/t) |   |
| 32        | 9250    | 0.14  | 0.004  | • |
| 33        | 9223    | 0.43  | 0.013  |   |
| 34        | 9245    | <0.03 | <0.001 |   |
| 35        | 9234    | 0.08  | 0.002  |   |
| QC DATA:  |         |       |        |   |
|           |         |       |        |   |
| Repeats:  | 0046    | 0.14  | 0.004  |   |
| 1         | 9216    |       |        |   |
| 7         | 9222    | 0.93  | 0.027  |   |
| 10        | 9226    | 0.16  | 0.005  |   |
| 19        | 9236    | 0.08  | 0.002  |   |
| 20        | 9237    | 0.14  | 0.004  |   |
| Resplit:  |         |       |        |   |
| 1         | 9216    | 0.15  | 0.004  |   |
| Standard: |         | 0.04  | 0.050  |   |
| PM176     |         | 2.01  | 0.059  |   |

ECO TECH LABORATØRY LTD.
Jutta Jealouse

B.C. Certified Assayer

JJ/bw XLS/05

ECO TECH LABORATORY LTD. 10041 Dallas Drive

KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35
Sample type:Core
Project #: 301
Shipment #: 30

Samples submitted by: Allan Huard

| Et #. | Tag #      | Ag   | AI % | As  | Ва       | Bì | Ca % | Cd       | Со       | Cr       | Cu          | Fe % | La     | Mg % | Mn   | Мо | Na %   | Ni  | P           | Pb       | Sb Sn            | Sr        | Ti% U                | ٧   | W   | Υ  | Zn  |
|-------|------------|------|------|-----|----------|----|------|----------|----------|----------|-------------|------|--------|------|------|----|--------|-----|-------------|----------|------------------|-----------|----------------------|-----|-----|----|-----|
| 1     | 9216       | 1,2  | 0.64 | 20  | 60       | <5 | 3.35 | <1       | 22       | 100      | 1754        | 6.76 | <10    | 0.34 | 1569 | 7  | <0.01  | 32  | 1180        | 46       | <5 <20           | 87        | 0.06 <10             |     | <10 |    | 65  |
| 2     | 9217       | 0.6  | 0.68 | 25  | 50       | <5 | 4.88 | <1       | 12       | 46       | 510         | 4.78 | <10    | 0.44 | 1819 | 10 | 0.01   | 18  | 1450        | 50       | <5 <20           | 109       | 0.06 <10             |     |     | 22 | 58  |
| 3     | 9218       | 0.8  | 0.22 | 10  | 50       | <5 | 4.48 | <1       | 9        | 70       | 559         | 3.14 | <10    | 0.05 | 1273 | 4  | 0.01   | 13  | 1290        | 50       | <5 <20           | 86        | 0.05 < 10            | 81  |     |    | 12  |
| 4     | 9219       | 0.6  | 0.57 | 35  | 60       | <5 | 4.97 | <1       | 10       | 82       | 541         | 4.09 | <10    | 0.41 | 1594 | 29 | 0.01   | 28  | 1370        | 62       | <5 <20           | 101       | •••                  | 143 | <10 | 15 | 43  |
| 5     | 9220       | 1.2  | 0.61 | 65  | 60       | <5 | 5.58 | <1       | 12       | 67       | 594         | 4.45 | <10    | 0.42 | 2118 | 13 | <0.01  | 27  | 1470        | 80       | <5 <20           | 103       | 0.04 <10             | 160 | <10 | 20 | 46  |
|       |            |      |      |     |          |    |      |          |          |          |             |      |        |      |      | _  | 0.04   | 0.5 | 4 4 7 0     | 60       | -E -OO           | 404       | 0.04 -40             | 107 | <10 | 17 | 47  |
| 6     | 9221       | 8.0  | 0.60 | 90  | 60       | <5 | 6.01 | <1       | 10       | 58       | 499         | 4.48 | <10    | 0.39 | 2338 | _  | <0.01  | 25  | 1470        | 60       | <5 <20           | 124<br>73 | 0.04 <10<br>0.07 <10 |     | <10 |    | 74  |
| 7     | 9222       | 29.5 | 0.54 | 445 | 50       | 20 | 2.28 | <1       | 23       | 79       | 787         | 7.86 | <10    | 0.26 | 1666 | _  | <0.01  | 24  | 960         | 4706     | <5 <20<br><5 <20 | 73<br>96  | 0.07 < 10            |     | <10 |    | 79  |
| 8     | 9224       | 1.3  | 0.75 | 30  | 65       | <5 | 5.45 | <1       | 15       | 76       | 592         | 3.78 | <10    | 0.56 | 1782 | 15 | 0.01   | 15  | 1660        | 160      |                  | 440       | 0.07 < 10            | -   |     | 23 | 62  |
| 9     | 9225       | 0.5  | 0.62 | 35  | 80       | <5 | >10  | <1       | 11       | 41       | 356         | 3.27 | <10    | 0.55 | 4762 |    | < 0.01 | 13  | 780<br>1600 | 66<br>92 | <5 <20<br><5 <20 | 103       | 0.08 < 10            |     | <10 |    | 75  |
| 10    | 9226       | 1.0  | 0.60 | 40  | 65       | <5 | 3.54 | <1       | 30       | 65       | 872         | 6.39 | <10    | 0.48 | 1411 | 9  | 0.01   | 22  | 1000        | 92       | <b>\5 \2</b> 0   | 103       | 0.00 < 10            | 199 | ~10 | 3  | 7.5 |
|       | 6007       | 4.5  | 0.50 | 20  | 00       | -5 | 4.40 | -1       | 24       | 0.1      | 1210        | 6.31 | <10    | 0.51 | 1601 | 7  | 0.02   | 12  | 1780        | 308      | <5 <20           | 108       | 0.12 <10             | 226 | <10 | 14 | 88  |
| 11    | 9227       | 1.7  | 0.58 | 30  | 60       | <5 | 4.40 | <1       | 31       | 91<br>94 | 1319<br>743 | 5.59 | <10    | 0.49 | 1977 | 6  | 0.02   | 18  | 1660        | 220      | <5 <20           | 131       | 0.11 < 10            | 198 |     | 20 | 79  |
| 12    | 9228       | 1.6  | 0.65 | 25  | 60<br>05 | <5 | 5.41 | <1       | 31<br>32 | 100      | 604         | 4.82 | <10    | 0.53 | 1897 | 21 | 0.01   | 30  | 1390        | 338      | <5 <20           | 118       | 0.07 < 10            | 235 | <10 |    | 77  |
| 13    | 9229       | 3.2  | 0.65 | 25  | 65       | <5 | 5.91 | <1       |          | 100      | 434         | 4.40 | <10    | 0.54 | 1956 | 10 | 0.01   | 25  | 1700        | 144      | <5 <20           | 107       | 0.08 <10             |     |     | 17 | 69  |
| 14    | 9230       | 2.0  | 0.67 | 30  | 60       | <5 | 6.62 | <1<br><1 | 16<br>22 | 100      | 672         | 5.02 | <10    | 0.51 | 1570 | 16 | 0.02   | 28  | 1840        | 194      | <5 <20           | 104       | 0.10 <10             |     |     |    | 68  |
| 15    | 9231       | 3.0  | 0.65 | 30  | 65       | <5 | 5.27 | ~1       | 22       | 101      | 012         | ي.uz | ~10    | 0.51 | 1310 | 10 | 0.02   | LU  | 10-0        | , ,      | .0 20            | ,         | 0,10                 |     |     |    |     |
| 16    | 9232       | 2.1  | 0.76 | 15  | 65       | <5 | 4.64 | <1       | 25       | 135      | 706         | 5.33 | <10    | 0.62 | 1502 | 19 | 0.02   | 28  | 1550        | 118      | <5 <20           | 106       | 0.12 <10             | 270 | <10 | 15 | 80  |
| 17    | 9233       | 1.3  | 0.75 | 20  | 75       | <5 | 4.08 | <1       | 28       | 130      | 571         | 5.48 | <10    | 0.69 | 1358 | 6  | 0.02   | 36  | 1710        | 94       | <5 <20           | 92        | 0.13 <10             | 265 | <10 | 17 | 91  |
| 18    | 9235       | 1.6  | 1.19 | 10  | 80       | <5 | 3.17 | <1       | 26       | 132      | 918         | 6.88 | <10    | 1.13 | 1153 | 2  | 0.02   | 38  | 1670        | 108      | <5 <20           | 77        | 0.17 <10             | 333 | <10 | 20 | 109 |
| 19    | 9236       | 1.6  | 0.49 | 15  | 60       | <5 | 3.99 | 2        | 26       | 127      | 1523        | 5.55 | <10    | 0.35 | 1071 | 13 | < 0.01 | 32  | 1800        | 112      | <5 <20           | 87        | 0.09 < 10            | 273 | <10 | 17 | 85  |
| 20    | 9237       | 5.0  |      | 30  | 85       | <5 | 5.54 | <1       | 27       | 153      | 1546        | 6.47 | 20     | 0.44 | 1369 | 12 | 0.03   | 31  | 2100        | 192      | <5 <20           | 108       | 0.11 <10             | 596 | <10 | 30 | 55  |
|       | <b>0_0</b> |      |      |     |          |    |      |          |          |          |             |      |        |      |      |    |        |     |             |          |                  |           |                      |     |     |    |     |
| 21    | 9238       | 1.6  | 0.62 | 15  | 70       | <5 | 3.65 | <1       | 17       | 112      | 598         | 4.30 | <10    | 0.51 | 991  | 6  | 0.02   | 26  | 1800        | 82       | <5 <20           | 85        | 0.10 <10             |     |     |    | 71  |
| 22    | 9239       | 2.4  | 0.90 | 75  | 65       | <5 | 3.72 | <1       | 23       | 138      | 1063        | 5.54 | <10    | 0.57 | 1223 | 7  | 0.02   | 33  | 1980        | 116      | <5 <20           | 85        | 0.13 <10             |     |     |    | 106 |
| 23    | 9240       | 1.2  | 0.68 | 190 | 60       | <5 | 4.67 | <1       | 21       | 82       | 1147        | 5.15 | <10    | 0.41 | 1758 | 6  | <0.01  | 37  | 1730        | 88       | 5 <20            | 98        | 0.10 <10             |     |     |    | 87  |
| 24    | 9241       | 0.9  | 0.60 | 40  | 50       | <5 | 4.34 | <1       | 20       | 115      | 928         | 4.50 | <10    | 0.32 | 1257 | 10 | <0.01  | 37  | 1520        | 60       | <5 <20           | 94        | 0.09 <10             |     |     |    | 65  |
| 25    | 9242       | 4.7  | 1.14 | 50  | 80       | <5 | 5.33 | 2        | 38       | 129      | 4807        | 6.50 | 20     | 0.27 | 1329 | 9  | 0.02   | 42  | 1340        | 200      | <5 <20           | 108       | 0.10 <10             | 419 | <10 | 22 | 145 |
|       |            |      |      |     |          |    |      |          |          |          |             |      |        |      |      |    |        |     |             |          |                  |           |                      |     |     |    |     |
| 26    | 9243       | 1.8  | 0.72 | 25  | 100      | <5 | 8.01 | <1       | 21       | 90       | 677         | 3.80 | <10    | 0.47 | 2088 | 2  |        | 28  | 1870        | 250      | 5 <20            | 120       | 0.10 <10             |     |     |    | 91  |
| 27    | 9244       | 2.9  | 0.48 | 10  | 125      | <5 | 2.78 | <1       | 7        | 168      | 451         | 3.07 | <10    | 0.30 | 759  | <1 | 0.01   | 17  | 470         | 1060     | <5 <20           | 81        | 0.06 < 10            |     |     | _  | 67  |
| 28    | 9246       | 3.7  | 0.78 | 40  | 100      | <5 | 5.67 | <1       | 19       | 146      | 1019        | 4.73 | <10    | 0.60 | 1507 | 11 | 0.03   | 37  | 2240        | 916      | <5 <20           | 123       | 0.13 <10             |     | <10 |    | 96  |
| 29    | 9247       | 1.0  | 0.79 | 25  | 105      | <5 | 5.09 | <1       | 17       | 88       | 464         | 4.35 | <10    | 0.56 | •    | <1 | 0.02   | 28  | 2500        | 82       | <5 <20           | 124       | 0.14 < 10            |     |     | 21 | 89  |
| 30    | 9248       | 1.4  | 0.96 | 45  | 75       | <5 | 3.05 | 3        | 24       | 87       | 724         | 6.72 | <10    | 0.80 | 1044 | 21 | <0.01  | 17  | 2480        | 294      | <5 <20           | 84        | 0.12 <10             | 271 | <10 | 13 | 184 |
|       |            |      |      |     |          |    |      |          |          |          |             |      | Page 1 | I    |      |    |        |     |             |          |                  |           |                      |     |     |    |     |
|       |            |      |      |     |          |    |      |          |          |          |             |      |        |      |      |    |        |     |             |          |                  |           |                      |     |     |    |     |

29-Aug-05

Tag #

#### ECO TECH LABORATORY LTD.

#### ICP CERTIFICATE OF ANALYSIS AS 2005-5114

La Mg%

Mn

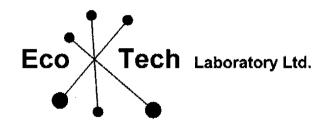
Mo Na%

Cu Fe %

Bi Ca %

#### Falconbridge Limited

Sr Ti % U


Pb Sb Sn

| ET#.     | ≀ag #     | Ag    | Al 70 | AS  | Da  | DI | Ca 70 | Gu | CO | C.          | Cu   | 16 /6 | La  | 141Y 70 | 19141 | 1410      | 110 /0 |     |      | 1 10 | 00 011 | _ <del></del> |           |     |      |     |     |
|----------|-----------|-------|-------|-----|-----|----|-------|----|----|-------------|------|-------|-----|---------|-------|-----------|--------|-----|------|------|--------|---------------|-----------|-----|------|-----|-----|
| 31       | 9249      | 1.6   | 1.07  | 50  | 75  | <5 | 2.79  | <1 | 40 | 75          | 1189 | 8.03  | <10 | 1.08    | 1091  | 4         | 0.01   | 21  | 2540 | 174  | <5 <20 | 80            | 0.12 <10  |     | . –  |     | 128 |
| 32       | 9250      | 1.4   | 0.79  | 65  | 75  | <5 | 2.84  | <1 | 29 | 105         | 1544 | 6.16  | <10 | 0.71    | 1163  | 3         | 0.01   | 26  | 2400 | 108  | <5 <20 | 84            | 0.10 <10  | 363 | <10  | 19  | 72  |
| 33       | 9223      | 2.0   | 1.49  | <5  | 315 | <5 | 1.46  | <1 | 14 | 29          | 7378 | 3.74  | <10 | 1.05    | 478   | 2         | 0.14   | 15  | 3110 | 24   | <5 <20 | 77            | 0.07 <10  | 187 | <10  | 18  | 52  |
| 34       | 9245      | < 0.2 | 1,71  | 20  | 90  | <5 | 4.02  | <1 | 31 | 60          | 78   | 6.95  | <10 | 1.43    | 835   | <1        | 0.02   | 17  | 2410 | 46   | <5 <20 | 53            | 0.13 <10  | 209 | <10  | 15  | 61  |
| 35       | 9234      | 0.2   | 0.81  | 100 | 150 | <5 | 0.26  | 1  | 75 | 230         | 433  | >10   | <10 | <0.01   | 430   | 107       | 0.04   | 426 | 100  | 118  | <5 <20 | 11            | <0.01 <10 | 22  | <10  | <1  | 492 |
|          |           |       |       |     |     |    |       |    |    |             |      |       |     |         |       |           |        |     |      |      |        |               |           |     |      |     |     |
| QC DATA  | <u>4:</u> |       |       |     |     |    |       |    |    |             |      |       |     |         |       |           |        |     |      |      |        |               |           |     |      |     |     |
| Resplit: |           |       |       |     |     |    |       |    |    |             |      |       |     |         |       |           |        |     |      |      |        |               |           |     |      |     |     |
| 1        | 9216      | 1.3   | 0.67  | 35  | 55  | <5 | 3.94  | <1 | 27 | 101         | 1826 | 7.77  | <10 | 0.32    | 2022  | 9         | <0.01  | 37  | 1520 | 74   | <5 <20 | 103           | 0.07 <10  | 371 | <10  | 18  | 73  |
| Repeats: |           |       |       |     |     |    |       |    |    |             |      |       |     |         |       |           |        |     |      |      |        |               |           |     |      |     |     |
| 1        | 9216      | 1.2   | 0.69  | 30  | 60  | <5 | 3.61  | <1 | 24 | <b>1</b> 15 | 1746 | 7.30  | <10 | 0.35    | 1694  | 7         | <0.01  | 34  | 1430 | 60   | <5 <20 | 92            | 0.07 <10  |     | <10  | 16  | 66  |
| 10       | 9226      | 1.0   | 0.61  | 40  | 65  | <5 | 3.85  | <1 | 30 | 69          | 919  | 6.47  | <10 | 0.48    | 1418  | 9         | 0.01   | 21  | 1620 | 92   | <5 <20 | 103           | 0.08 <10  |     | <10  | 8   | 64  |
| 19       | 9236      | 1.6   | 0.52  | 25  | 60  | <5 | 4.18  | 2  | 28 | 140         | 1538 | 5.93  | <10 | 0.36    | 1132  | 16        | 0.01   | 34  | 2060 | 130  | <5 <20 | 89            | 0.09 <10  | 297 | <10  | 18  | 80  |
|          |           |       |       |     |     |    |       |    |    |             |      |       |     |         |       |           |        |     |      |      |        |               |           |     |      |     |     |
| Standard | t:        |       |       |     | 450 |    | 4.50  | -4 | 40 | <b>.</b>    | 94   | 2.62  | -10 | 0.83    | 740   | <1        | 0.02   | 30  | 840  | 20   | <5 <20 | 55            | 0.11 <10  | 68  | <10  | 11  | 73  |
| GEO'05   |           | 1.5   | 1.56  | 55  | 150 | <5 | 1.52  | <1 | 18 | 56          | 84   | 3.63  | <10 | Ų.Đ3    | 740   | <b>\1</b> | 0.02   | 30  | 040  | 20   | -U -ZU | 55            | Q.11 -10  | 00  | - 10 | • • |     |

Jutta Jealouse

BC Certified Assayer

JJ/bw df/956-2 XLS/05



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com

www.ecotechlab.com

# CERTIFICATE OF ASSAY AS 2005-5115

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

29-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 32

Samples Submitted by: Allan Huard

|          |       | Au    | Au     |                             |
|----------|-------|-------|--------|-----------------------------|
| <u> </u> | Tag # | (g/t) | (oz/t) |                             |
| 1        | 9286  | 0.05  | 0.001  |                             |
| 2        | 9287  | 0.03  | 0.001  |                             |
| 3        | 9288  | 0,03  | 0.001  |                             |
| 4        | 9289  | <0.03 | <0.001 |                             |
| 5<br>6   | 9290  | <0.03 | <0.001 |                             |
| 6        | 9291  | <0.03 | <0.001 |                             |
| 7        | 9292  | 0.03  | 0.001  |                             |
| 8        | 9294  | <0.03 | <0.001 |                             |
| 9        | 9295  | <0.03 | <0.001 |                             |
| 10       | 9296  | 0.05  | 0.001  |                             |
| 11       | 9297  | 0.14  | 0.004  |                             |
| 12       | 9298  | 0.04  | 0.001  |                             |
| 13       | 9299  | 0.03  | 0.001  |                             |
| 14       | 9300  | 0.04  | 0.001  |                             |
| 15       | 9301  | <0.03 | <0.001 |                             |
| 16       | 9302  | 0.12  | 0.003  |                             |
| 17       | 9303  | 0.16  | 0.005  |                             |
| 18       | 9305  | 0.23  | 0.007  |                             |
| 19       | 9306  | 0.15  | 0.004  |                             |
| 20       | 9307  | 0.24  | 0.007  |                             |
| 21       | 9308  | 0.14  | 0.004  |                             |
| 22       | 9309  | 0.69  | 0.020  |                             |
| 23       | 9310  | 0.17  | 0.005  |                             |
| 24       | 9311  | 0.16  | 0.005  |                             |
| 25       | 9312  | 0.06  | 0.002  | (                           |
| 26       | 9313  | 0.44  | 0.013  | of the Koulan har-          |
| 27       | 9314  | 0.17  | 0.005  | Mydre Diavor 1807           |
| 28       | 9316  | 0.22  | 0.006  | ECO/TECH LABORATORY LTD.    |
| 29       | 9317  | 0.14  | 0.004  | Jut <del>f</del> á Jealouse |
| 30       | 9318  | 0.20  | 0.006  | B.C. Certified Assayer      |
| 31       | 9319  | 0.07  | 0.002  |                             |

# Falconbridge Limited AS 2005-5115

|           |       | Au    | Au     |  |
|-----------|-------|-------|--------|--|
| ET #.     | Tag # | (g/t) | (oz/t) |  |
| 32        | 9320  | 0.06  | 0.002  |  |
| 33        | 9315  | 0.46  | 0.013  |  |
| 34        | 9293  | <0.03 | <0.001 |  |
| 35        | 9304  | 0.08  | 0.002  |  |
|           |       |       |        |  |
|           |       |       |        |  |
| QC DATA:  |       |       |        |  |
| Repeats:  |       |       |        |  |
| 1         | 9286  | 0.03  | <0.001 |  |
| 10        | 9296  | 0.05  | 0.001  |  |
| 19        | 9306  | 0.15  | 0.004  |  |
|           |       |       |        |  |
| Resplit:  |       |       |        |  |
| 1         | 9286  | 0.06  | 0.002  |  |
|           |       |       |        |  |
| Standard: |       | 0.05  | 0.000  |  |
| PM176     |       | 2.05  | 0.060  |  |
|           |       |       |        |  |

ECO TECH LABORATORY LTD.
Jutta Jealouse

B.C. Certified Assayer

JJ/bw XLS/05

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

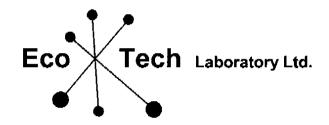
ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core Project #: 301 Shipment #: 32

Samples submitted by: Allan Huard

| 1 9286 1.8 0.32 15 210 <5 1.04 <1 5 131 1490 2.36 <10 0.12 411 <1 0.05 6 290 22 <5 <20 45 0.04 <10 365 2 9287 1.1 0.24 20 330 <5 1.15 <1 3 169 361 2.14 <10 0.11 431 <1 0.05 6 290 22 <5 <20 45 0.04 <10 365 3 9288 0.5 0.30 20 395 <5 1.15 <1 3 139 316 2.24 <10 0.13 491 <1 0.06 6 310 24 <5 <20 48 0.04 <10 418 4 9289 0.8 0.26 20 330 <5 1.10 <1 3 168 342 1.97 <10 0.11 450 <1 0.05 6 270 20 <5 <20 49 0.03 <10 369     | <b>W</b> | <u>Y</u> | Zn    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-------|
| 1 9286 1.8 0.32 15 210 <5 1.04 <1 5 151 1490 2.38 <10 0.12 411 <1 0.06 7 280 20 <5 <20 46 0.04 <10 380 2 9287 1.1 0.24 20 330 <5 1.15 <1 3 169 361 2.14 <10 0.11 431 <1 0.05 6 290 22 <5 <20 45 0.04 <10 365 3 9288 0.5 0.30 20 395 <5 1.15 <1 3 139 316 2.24 <10 0.13 491 <1 0.06 6 310 24 <5 <20 48 0.04 <10 418 4 9289 0.8 0.26 20 330 <5 1.10 <1 3 168 342 1.97 <10 0.11 450 <1 0.05 6 270 20 <5 <20 49 0.03 <10 540 369 | <10      |          |       |
| 3 9288                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 2        |       |
| 3 9288 0.5 0.30 20 395 <5 1.15 <1 3 139 316 2.24 <10 0.13 491 <1 0.06 6 310 24 <5 <20 48 0.04 <10 418 4 9289 0.8 0.26 20 330 <5 1.10 <1 3 168 342 1.97 <10 0.11 450 <1 0.05 6 270 20 <5 <20 49 0.03 <10 540                                                                                                                                                                                                                  | <10      | 2        |       |
| 4 9289 0.8 0.26 20 330 <5 1.10 <1 3 168 342 1.97 <10 0.11 450 <1 0.05 6 270 20 <5 <20 49 0.03 <10 369                                                                                                                                                                                                                                                                                                                        | <10      | 2        |       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                            | <10      | 2        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | <10      | <1       | 77    |
|                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |       |
| 1 6 9291 713 1031 10 105 <5 0.71 3 5 144 461 1.83 ×10 0.13 367 0 0.04 0 200 44 0 20 0.04 0 200                                                                                                                                                                                                                                                                                                                               | <10      |          | 99    |
| 7 9292 1.1 0.36 10 170 <5 1.08 <1 3 149 785 1.67 <10 0.19 398 1 0.05 6 230 20 <5 <20 63 <0.01 <10 240                                                                                                                                                                                                                                                                                                                        | <10      | <1       | 54    |
| 8 9294 1.1 0.38 10 305 <5 1.00 <1 1 115 827 1.40 <10 0.20 391 1 0.04 5 250 26 <5 <20 102 <0.01 <10 195                                                                                                                                                                                                                                                                                                                       | <10      | <1       | 58    |
| 9 9295 1.1 0.25 20 180 <5 0.83 <1 1 156 477 1.11 <10 0.10 307 2 0.03 5 120 30 <5 <20 59 <0.01 <10 125                                                                                                                                                                                                                                                                                                                        | <10      | <1       | 35    |
| 10 9296 1.1 0.23 25 110 <5 0.86 <1 2 124 593 1.29 <10 0.06 300 6 0.04 4 210 40 <5 <20 85 <0.01 <10 73                                                                                                                                                                                                                                                                                                                        | <10      | 1        | 41    |
| 10 3230 1.1 0.23 20 110 0 0.00 0                                                                                                                                                                                                                                                                                                                                                                                             |          |          |       |
| 11 9297 2.5 0.37 65 65 <5 1.12 3 3 81 335 1.92 <10 0.16 517 1 0.03 3 300 200 5 <20 123 <0.01 <10 77                                                                                                                                                                                                                                                                                                                          | <10      | 1        | 266   |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | <10      | 3        | 78    |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | <10      | 3        | 50    |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | <10      | 3        | 83    |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | <10      | 3        | 74    |
| 10 9301 1.5 0.29 10 500 15 0.50 11 17 71 511 1121 15 515                                                                                                                                                                                                                                                                                                                                                                     |          |          |       |
| 16 9302 2.9 0.29 30 80 <5 0.65 1 2 79 757 1.52 <10 0.07 341 2 0.02 4 270 146 <5 <20 113 <0.01 <10 58                                                                                                                                                                                                                                                                                                                         | <10      | 2        | 137   |
| 17 9303 2.3 0.24 55 70 <5 0.41 1 2 55 609 1.55 <10 <0.01 190 2 0.02 4 290 130 <5 <20 94 <0.01 <10 35                                                                                                                                                                                                                                                                                                                         | <10      | 2        |       |
| 18 9305 1.5 0.26 80 60 <5 0.51 1 2 91 293 1.50 <10 0.02 259 3 0.02 4 310 76 5 <20 127 <0.01 <10 79                                                                                                                                                                                                                                                                                                                           | <10      | 2        |       |
| 19 9306 1.6 0.21 65 70 <5 1.04 <1 1 48 583 1.48 <10 0.01 496 1 0.02 3 320 104 <5 <20 139 <0.01 <10 37                                                                                                                                                                                                                                                                                                                        | <10      | 2        | 104   |
| 20 9307 1.8 0.22 55 70 <5 1.35 4 2 77 316 1.30 <10 0.01 697 1 0.01 3 240 224 10 <20 128 <0.01 <10 26                                                                                                                                                                                                                                                                                                                         | <10      | 2        | 317   |
| 20 9307 1.0 8.22 66 76 6 1.65 7 4 7 5 6                                                                                                                                                                                                                                                                                                                                                                                      |          |          |       |
| 1 21 9308 10 1124 55 80 <5 1.04 <7 2 76 362 1.41 <10 0.02 436 2 0.02 4 0.00 00 00 00 00 00 00 00 00 00 00 00 0                                                                                                                                                                                                                                                                                                               | <10      | 2        |       |
| 22 9309 23 0.26 75 60 <5 0.84 1 2 107 665 1.74 <10 0.02 387 2 <0.01 4 400 142 <5 <20 88 <0.01 <10 70                                                                                                                                                                                                                                                                                                                         | <10      | 2        |       |
| 23 9310 2.0 0.34 55 105 <5 0.79 1 3 81 546 1.56 <10 0.11 344 2 0.02 4 430 148 <5 <20 84 <0.01 <10 87                                                                                                                                                                                                                                                                                                                         | <10      | 2        |       |
| 24 9311 1.2 0.40 50 95 <5 2.54 <1 3 77 329 1.61 <10 0.19 704 2 0.01 5 420 72 <5 <20 93 <0.01 <10 60                                                                                                                                                                                                                                                                                                                          | <10      | 2        | 51    |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | <10      | 11       | 187   |
| 25 9512 0.5 1.01 10 110 0 0.00 1 00 0.00                                                                                                                                                                                                                                                                                                                                                                                     |          |          |       |
| 1 26 9313 1 4 0 44 100 90 <5 3.60 <1 / /8 36/ 2.42 <10 0.10 926 3 <0.01 10 340 /2 30 32 04 303 10 11                                                                                                                                                                                                                                                                                                                         | <10      | 4        |       |
| 27 9314 1.0 1.97 40 90 <5 >10 <1 12 41 620 3.45 <10 2.17 2424 3 0.01 19 700 18 10 <20 508 0.02 <10 162                                                                                                                                                                                                                                                                                                                       | <10      | 6        |       |
| 28 9316 3.2 1.16 65 80 <5 8.38 <1 23 44 825 5.50 <10 1.11 2008 4 0.02 20 2100 70 <5 <20 166 0.03 <10 170                                                                                                                                                                                                                                                                                                                     | <10      | 4        | 121   |
| 29 9317 1.7 1.26 25 90 <5 6.97 <1 16 76 1113 4.76 <10 1.30 1641 3 0.01 23 2280 48 5 <20 138 0.05 <10 299                                                                                                                                                                                                                                                                                                                     | <10      | 7        | ′ 116 |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | <10      | 5        | 95    |
| Page 1                                                                                                                                                                                                                                                                                                                                                                                                                       |          |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |       |

#### ECO TECH LABORATORY LTD.


#### ICP CERTIFICATE OF ANALYSIS AS 2005-5115

| Et #.             | Tag #      | Ag    | Al % | As  | Ba  | Ві | Ca % | Cd | Co         | Cr  | Cu   | Fe % | La  | Mg % | Mn   | Мо  | Na % | Ni  | Р    | Pb  | Sb Sn  | Sr  | Ti% U     |     | W   | Υ  | Zn  |
|-------------------|------------|-------|------|-----|-----|----|------|----|------------|-----|------|------|-----|------|------|-----|------|-----|------|-----|--------|-----|-----------|-----|-----|----|-----|
| 31                | 9319       | 2.2   | 1.02 | 20  | 110 | <5 | 6.00 | <1 | 11         | 54  | 1070 | 3.50 | <10 | 1.05 | 1353 | 1   | 0.01 | 12  | 1970 | 54  | 15 <20 | 98  | 0.05 <10  | 311 | <10 | 8  | 83  |
| 32                | 9320       | 1.7   | 0.53 | 15  | 145 | <5 | 3.02 | <1 | 3          | 172 | 640  | 1.91 | <10 | 0.49 | 828  | <1  | 0.01 | 8   | 430  | 34  | 5 <20  | 54  | 0.02 <10  | 315 | <10 | 2  | 57  |
| 33                | 9315       | 2.0   | 1.49 | 5   | 320 | <5 | 1.46 | <1 | 14         | 27  | 7092 | 3.60 | 10  | 1.10 | 481  | 2   | 0.15 | 16  | 2690 | 20  | 5 <20  | 74  | 0.06 < 10 | 185 | <10 | 18 | 61  |
| 34                | 9293       | < 0.2 | 1.86 | 20  | 90  | <5 | 6.16 | <1 | 34         | 57  | 92   | 7.53 | <10 | 1.51 | 928  | <1  | 0.02 | 20  | 1970 | 44  | <5 <20 | 75  | 0.13 <10  | 191 | <10 | 14 | 75  |
| 35                | 9304       | <0.2  | 0.73 | 100 | 100 | <5 | 0.22 | <1 | <b>7</b> 0 | 226 | 437  | >10  | <10 | 0.01 | 469  | 121 | 0.03 | 405 | 90   | 112 | <5 <20 | 10  | <0.01 <10 | 26  | <10 | <1 | 467 |
| QC DAT            | <u>'A:</u> |       |      |     |     |    |      |    |            |     |      |      |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
| Resplit:          |            |       |      |     |     |    |      |    |            |     |      |      |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
| 1                 | 9286       | 1.9   | 0.29 | 20  | 170 | <5 | 0.97 | <† | 5          | 152 | 1744 | 2.18 | <10 | 0.12 | 398  | <1  | 0.05 | 7   | 250  | 20  | <5 <20 | 41  | 0.03 <10  | 347 | <10 | 2  | 86  |
| Repeat:           |            |       |      |     |     |    |      |    |            |     |      |      |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
| 1                 | 9286       | 1.8   | 0.30 | 15  | 210 | <5 | 0.98 | <1 | 5          | 146 | 1933 | 2,24 | <10 | 0.11 | 385  | <1  | 0.06 | 7   | 270  | 18  | <5 <20 | 43  | 0.04 < 10 |     | <10 | 1  | 88  |
| 10                | 9296       | 1.1   | 0.20 | 20  | 135 | <5 | 0.78 | <1 | 1          | 115 | 631  | 1.18 | <10 | 0.05 | 289  | 5   | 0.03 | 3   | 180  | 38  | <5 <20 | 78  |           |     | <10 | <1 | 39  |
| 19                | 9306       | 1.6   | 0.17 | 55  | 90  | <5 | 0.94 | <1 | <1         | 48  | 610  | 1.20 | <10 | 0.01 | 480  | 1   | 0.01 | 2   | 290  | 94  | <5 <20 | 129 | <0.01 <10 | 30  | <10 | 2  | 98  |
| Standar<br>GEO'05 | rd:        | 1.5   | 1.48 | 55  | 160 | <5 | 1.58 | 1  | 19         | 60  | 86   | 4.03 | <10 | 0.80 | 680  | 1   | 0.02 | 30  | 740  | 20  | <5 <20 | 54  | 0.11 <10  | 71  | <10 | 10 | 79  |

ECO TECH LABORATORY LTD.
Jura Jealouse

**BC** Certified Assayer

JJ/ga df/5101 XLS/05



10041 Dailas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com

www.ecotechlab.com

# CERTIFICATE OF ASSAY AS 2005-5116

Falconbridge Limited
3296 Francis-Hughes Avenue
Laval, Quebec
H7L 5A7

29-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 33

Samples Submitted by: Allan Huard

|        |       | Au     | Au      |                          |
|--------|-------|--------|---------|--------------------------|
| ET #.  | Tag # | (g/t)  | (oz/t)  |                          |
| 1      | 9321  | 0.09   | 0.003   |                          |
| 2      | 9322  | 0.06   | 0.002   |                          |
| 2<br>3 | 9323  | 0.03   | 0.001   |                          |
| 4      | 9324  | 0.04   | 0.001   |                          |
|        | 9325  | < 0.03 | <0.001  |                          |
| 5<br>6 | 9326  | < 0.03 | <0.001  |                          |
| 7      | 9327  | < 0.03 | <0.001  |                          |
| 8      | 9329  | < 0.03 | <0.001  |                          |
| 9      | 9330  | 0.04   | 0.001   |                          |
| 10     | 9331  | < 0.03 | <0.001  |                          |
| 11     | 9332  | < 0.03 | <0.001  |                          |
| 12     | 9333  | < 0.03 | <0.001  |                          |
| 13     | 9334  | < 0.03 | <0.001  |                          |
| 14     | 9335  | < 0.03 | < 0.001 |                          |
| 15     | 9336  | < 0.03 | <0.001  |                          |
| 16     | 9337  | < 0.03 | <0.001  |                          |
| 17     | 9338  | < 0.03 | <0.001  |                          |
| 18     | 9340  | < 0.03 | < 0.001 |                          |
| 19     | 9341  | < 0.03 | <0.001  |                          |
| 20     | 9342  | 0.03   | 0.001   |                          |
| 21     | 9343  | 0.07   | 0.002   |                          |
| 22     | 9344  | 0.04   | 0.001   |                          |
| 23     | 9345  | 0.06   | 0.002   |                          |
| 24     | 9346  | 0.04   | 0.001   |                          |
| 25     | 9347  | 0.07   | 0.002   |                          |
| 26     | 9348  | 0.08   | 0.002   | $\wedge$                 |
| 27     | 9349  | 0.14   | 0.004   | MA Days law              |
| 28     | 9351  | < 0.03 | < 0.001 | CEMAN DIVICE /ADZ        |
|        |       |        |         | ECØ/TECH LABORATØRY LTD. |

Jutta Jealouse

### Falconbridge Limited AS5-5116

|                           |                      | Au                    | Au                       |          |  |  |
|---------------------------|----------------------|-----------------------|--------------------------|----------|--|--|
| ET #.                     | Tag #                | (g/t)                 | (oz/t)                   |          |  |  |
| 29                        | 9352                 | 0.06                  | 0.002                    |          |  |  |
| 30                        | 9353                 | 0.03                  | 0.001                    |          |  |  |
| 31                        | 9354                 | 0.04                  | 0.001                    |          |  |  |
| 32                        | 9355                 | 0.09                  | 0.003                    |          |  |  |
| 33                        | 9328                 | 0.39                  | 0.011                    |          |  |  |
| 34                        | 9350                 | < 0.03                | <0.001                   |          |  |  |
| 35                        | 9339                 | 0.07                  | 0.002                    |          |  |  |
| QC DATA: Repeats: 1 10 19 | 9321<br>9331<br>9341 | 0.08<br><0.03<br>0.03 | 0.002<br><0.001<br>0.001 |          |  |  |
| Resplit:<br>1             | 9321                 | 0.06                  | 0.002                    | <u>!</u> |  |  |
| <b>Standard:</b><br>PM176 |                      | 2.07                  | 0.060                    | )        |  |  |

JJ/kk XL\$/05 ECO TECH LABORATORY LTD.
Jutta Jealouse

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 3296 Francis-Hughes Ave. **Laval, Quebec** H7L 5A7

Falconbridge Limited

ATTENTION: Allan Huard

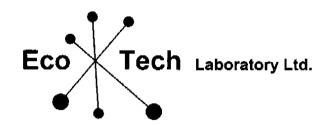
No. of samples received: 35 Sample type:Core

Project #: 301 Shipment #: 33

Samples submitted by: Allan Huard

|       | <b>-</b> 11 | • - | A I 0/ | 4. | В-       | D:        | Ca % | Cd  | Co  | Cr         | C    | Fe % | la l | Mq % | Mn   | Mo            | Na %  | Ni | Р    | Pb         | Sb Sn   | Sr  | Ti% L       | v     | w          | Υ      | Zn        |
|-------|-------------|-----|--------|----|----------|-----------|------|-----|-----|------------|------|------|------|------|------|---------------|-------|----|------|------------|---------|-----|-------------|-------|------------|--------|-----------|
| Et #. | Tag #       |     | AI %   | As | Ba       |           |      |     |     |            | 343  | 1.70 | <10  | 0.29 | 295  | 19            | 0.03  | 7  | 260  | 24         | <5 <20  |     | <0.01 <10   |       | <10        | <1     | 43        |
| 1     | 9321        |     | 0.43   | 30 | 60       | <5        | 0.96 | <1  | 4   | 130<br>148 | 301  | 1.74 | <10  | 0.46 | 479  | 2             | 0.03  | 10 | 320  | 32         | <5 <20  |     | <0.01 <10   |       | <10        | 1      | 71        |
| 2     | 9322        | 1.4 | 0.56   | 30 | 55<br>50 | <5<br>-5  | 1.09 | <1  | 4   | 116        | 561  | 1.45 | <10  | 0.40 | 718  | <b>&lt;</b> 1 | 0.03  | 6  | 160  | 54         | <5 <20  | 53  | 0.02 <10    |       | <10        | 2      | 55        |
| 3     | 9323        | 1.3 | 0.50   | 35 | 50       | <5<br>-:- | 1.81 | <1  | _   | 128        | 248  | 1.40 | <10  | 0.41 | 482  | 4             | 0.03  | 6  | 140  | 42         | <5 <20  |     | <0.01 <10   |       | <10        | <1     | 50        |
| 4     | 9324        | 1.0 | 0.37   | 30 | 110      | <5        | 1.16 | <1  | 2   | 132        | 266  | 1.10 | <10  | 0.23 | 295  | <1            | 0.03  | 7  | 140  | 20         | <5 <20  |     | <0.01 <10   |       | <10        | <1     | 50        |
| 5     | 9325        | 0.4 | 0.37   | 20 | 80       | <5        | 0.56 | <1  | 1   | 132        | 200  | 1.10 | ×10  | 0.23 | 293  | ` 1           | 0.04  | ,  | 140  | 20         | .0 .20  | ٠.  | 0.0.        |       |            | Ţ      |           |
| 6     | 9326        | 1.2 | 0.34   | 25 | 70       | <5        | 0.49 | <1  | 2   | 114        | 386  | 1.10 | <10  | 0.21 | 255  | 2             | 0.04  | 6  | 120  | 46         | <5 <20  | 30  | <0.01 <10   | 207   | <10        | <1     | 50        |
| 7     | 9327        | 0.7 | 0.28   | 10 | 245      | <5        | 0.48 | <1  | <1  | 107        | 286  | 1,13 | <10  | 0.15 | 311  | <1            | 0.05  | 6  | 100  | 26         | <5 <20  | 34  | 0.01 <10    | 343   | <10        | 1      | 39        |
| 8     | 9329        | 0.5 | 0.26   | 10 | 460      | <5        | 0.71 | <1  | <1  | 150        | 204  | 1.25 | <10  | 0.18 | 333  | <1            | 0.06  | 6  | 130  | 24         | <5 <20  | 52  | 0.01 < 10   | 409   | <10        | 2      | 41        |
| 9     | 9330        | 0.9 | 0.36   | 35 | 55       | <5        | 0.64 | <1  | 3   | 121        | 341  | 1.39 | <10  | 0.22 | 334  | 1             | 0.05  | 7  | 150  | 38         | <5 <20  | 35  | < 0.01 < 10 | 263   | <10        | 1      | 47        |
| 10    | 9331        | 0.7 | 1.76   | 15 | 370      | <5        | 4.57 | <1  | 14  | 211        | 358  | 4.44 | <10  | 2.37 | 2361 | <1            | 0.05  | 61 | 1850 | 90         | 10 <20  | 113 | 0.17 <10    | 663   | <10        | 19     | 129       |
| 10    | 9331        | 0.1 | 1.70   |    | 0.0      | -0        | 7.07 | - • | • • |            | -    |      |      |      |      |               |       |    |      |            |         |     |             |       |            |        |           |
| 11    | 9332        | 0.8 | 1.63   | 15 | 285      | <5        | 4.23 | <1  | 14  | 202        | 407  | 4.39 | <10  | 2.17 | 2215 | <1            | 0.05  | 59 | 1720 | 80         | 10 < 20 | 118 | 0.15 < 10   | 648   | <10        | 15     | 132       |
| 12    | 9333        | 1.0 | 1.17   | 15 | 285      | <5        | 3.84 | <1  | 14  | 183        | 551  | 3.98 | <10  | 1.45 | 1805 | <1            | 0.05  | 60 | 1550 | 118        | <5 <20  | 86  | 0.16 < 10   | 689   | <10        | 15     | 94        |
| 13    | 9334        | 1.4 | 0.78   | 15 | 140      | <5        | 4.57 | <1  | 21  | 185        | 1014 | 4.13 | <10  | 0.87 | 1738 | 3             | 0.04  | 53 | 1670 | 74         | <5 <20  | 82  | 0.14 < 10   | 651   | <10        | 13     | 65        |
| 14    | 9335        | 1.1 | 1.15   | 15 | 310      | <5        | 2.67 | 1   | 15  | 177        | 572  | 4.12 | <10  | 1.39 | 1529 | 1             | 0.05  | 55 | 1820 | 206        | <5 <20  | 56  | 0.17 <10    | 862   | <10        | 18     | 175       |
| 15    | 9336        | 0.9 | 0.92   | 10 | 460      | <5        | 1.74 | <1  | 18  | 214        | 828  | 4.58 | <10  | 1.17 | 1163 | <1            | 0.03  | 76 | 1520 | 52         | <5 <20  | 49  | 0.14 <10    | 918   | <10        | 12     | 126       |
| 10    | 5500        | 0.0 | •.•-   |    |          | -         |      |     |     |            |      |      |      |      |      |               |       |    |      |            |         |     |             |       |            |        |           |
| 16    | 9337        | 1.3 | 1.22   | 10 | 350      | <5        | 2.20 | <1  | 16  | 164        | 750  | 4.72 | <10  | 1.51 | 1352 | <1            | 0.06  | 56 | 1540 | 110        | <5 <20  | 60  | 0.16 < 10   |       | <10        |        | 124       |
| 17    | 9338        | 2.3 |        | 10 | 135      | <5        | 2.79 | 2   | 12  | 105        | 1118 | 3.46 | <10  | 0.69 | 1158 | 6             | 0.05  | 21 | 1340 | 216        | <5 <20  | 81  | 0.09 <1     |       | <10        | 10     | 347       |
| 18    | 9340        | 1.3 | 0.99   | 15 | 110      | <5        | 2.53 | 2   | 11  | 93         | 581  | 3.52 | <10  | 1.17 | 1196 | 7             | 0.06  | 14 | 1430 | 172        | <5 <20  | 106 | 0.13 <10    |       | <10        | 12     | 231       |
| 19    | 9341        | 2.2 | 0.95   | 10 | 105      | <5        | 2.46 | <1  | 13  | 50         | 796  | 3.64 | <10  | 0.99 | 903  | 1             | 0.06  | 6  | 1790 | 234        | <5 <20  | 100 | 0.12 <10    |       | <10        | 13     | 153       |
| 20    | 9342        | 2.0 | 1.23   | 15 | 145      | <5        | 3.06 | 4   | 14  | 89         | 569  | 4.12 | <10  | 1.23 | 1076 | <1            | 0.08  | 19 | 1890 | 344        | <5 <20  | 144 | 0.15 <19    | 3 434 | <10        | 15     | 359       |
|       |             |     |        |    |          |           |      |     |     |            |      |      |      |      |      |               |       |    |      |            |         |     |             |       |            |        |           |
| 21    | 9343        | 1.7 | 0.76   | 15 | 90       | <5        | 2.35 | <1  | 11  | 62         | 789  | 3.10 | <10  | 0.68 | 800  | 52            |       |    | 1900 | 50         | <5 <20  | 87  | 0.07 <10    |       |            |        | 64        |
| 22    | 9344        | 1.5 | 0.86   | 15 | 85       | <5        | 3.50 | <1  | 10  | 79         | 845  | 2.76 | <10  | 0.84 | 1271 | 12            |       |    | 1560 | 50         | 5 <20   | 143 | 0.05 <10    |       | <10        | 10     | 60        |
| 23    | 9345        | 3.1 | 1.20   | 40 | 30       | <5        | 6.53 | <1  | 13  | 36         | 686  | 3.72 | <10  | 1.86 | 2684 | 9             | <0.01 | 10 |      | 112        | 10 <20  | 293 | 0.02 <1     | •     |            | 5      | 80        |
| 24    | 9346        | 1.4 | 0.90   | 10 | 120      | <5        | 4.03 | <1  | 10  | 54         | 1101 | 3,11 | <10  | 0.93 | 1422 | 3             |       |    | 1780 | 22         | <5 <20  | 218 | 0.03 <1     |       |            |        | 74        |
| 25    | 9347        | 2.3 | 0.98   | 10 | 100      | <5        | 2.48 | <1  | 12  | 52         | 936  | 3.30 | <10  | 0.93 | 980  | 7             | 0.03  | 8  | 1870 | 128        | <5 <20  | 134 | 0.07 <1     | ) 238 | <10        | 10     | 82        |
|       |             |     |        |    |          |           |      |     |     |            |      |      |      |      |      | _             |       | _  |      | 440        | .E .00  | 440 | 0.00 -4     | 3 040 | -40        | 10     | 93        |
| 26    | 9348        | 2.2 | 0.92   | 15 | 90       | <5        |      | <1  | 11  | 51         | 960  | 3.28 | <10  | 0.91 | 920  | 6             |       |    | 1830 | 110        | <5 <20  | 116 | 0.06 <1     |       |            |        | 82<br>148 |
| 27    | 9349        | 6.7 | 0.99   | 15 | 50       | <5        | 2.36 | <1  | 16  | 66         | 1226 | 5.00 | <10  | 1.04 | 1038 | 15            |       | 11 |      | 494        | <5 <20  | 123 | 0.07 <1     |       |            | 7<br>9 | 92        |
| 28    | 9351        | 1.5 | 0.98   | 10 | 175      | <5        | 2.26 | <1  | 11  | 71         | 814  | 3.83 | <10  | 0.92 | 894  | 3             | 0.07  | 10 |      | 78         | <5 <20  | 152 | 0.04 <1     |       | <10<br><10 | 9      | 92<br>82  |
| 29    | 9352        | 1.4 | 1.00   | 15 | 90       | <5        | 2,08 | <1  | 17  | 65         | 649  | 4.22 | <10  | 0.96 | 856  | 3             | 0.05  | 8  | 2070 | 76         | <5 <20  | 126 | 0.07 <1     |       |            | -      | o∠<br>86  |
| 30    | 9353        | 1.2 | 1.03   | 10 | 80       | <5        | 2.46 | <1  | 15  | 60         | 783  | 4.47 | <10  |      | 996  | 14            | 0.05  | 10 | 1840 | <b>4</b> 6 | <5 <20  | 145 | 0.09 <1     | J 394 | ×10        | 12     | ΦΦ        |
|       |             |     |        |    |          |           |      |     |     |            |      |      | Page | ! ]  |      |               |       |    |      |            |         |     |             |       |            |        |           |
|       |             |     |        |    |          |           |      |     |     |            |      |      |      |      |      |               |       |    |      |            |         |     |             |       |            |        |           |

#### ECO TECH LABORATORY LTD.


#### ICP CERTIFICATE OF ANALYSIS AS 2005-5116

| Et #.    | Tag #      | Ag    | Al % | As | Ва  | Bi | Ca % | Cd | Со | Cr  | Cu   | Fe % | La  | Mg % | Mn   | Mo       | Na % | Ni  | Р    | Pb  | Sb Sn  | Sr  | Ti % U    | V   | W   | Υ  | Zn  |
|----------|------------|-------|------|----|-----|----|------|----|----|-----|------|------|-----|------|------|----------|------|-----|------|-----|--------|-----|-----------|-----|-----|----|-----|
| 31       | 9354       | 1.6   | 0.97 | 15 | 95  | <5 | 2.19 | <1 | 13 | 53  | 1268 | 3.76 | <10 | 1.04 | 842  | 7        | 0.04 | 7   | 1860 | 36  | <5 <20 | 155 | 0.07 <10  | 324 | <10 | 9  | 89  |
| 32       | 9355       | 3.5   | 1.08 | 15 | 50  | <5 | 2.23 | 2  | 19 | 84  | 992  | 5.39 | <10 | 1.12 | 866  | 31       | 0.04 | 12  | 1780 | 194 | <5 <20 | 148 | 0.10 <10  | 347 | <10 | 8  | 370 |
| 33       | 9328       | 1.1   | 1.15 | <5 | 120 | <5 | 1.63 | <1 | 16 | 33  | 4045 | 3.83 | <10 | 1.08 | 697  | 2        | 0.16 | 18  | 1280 | 16  | <5 <20 | 109 | 0.14 <10  | 169 | <10 | 15 | 56  |
| 34       | 9350       | < 0.2 | 1.98 | 15 | 85  | <5 | 3.63 | <1 | 25 | 46  | 77   | 5.16 | <10 | 1.52 | 635  | <1       | 0.04 | 13  | 2130 | 20  | 5 <20  | 76  | 0.14 <10  | 205 | <10 | 16 | 63  |
| 35       | 9339       | 0.2   | 0.80 | 85 | 160 | <5 | 0.26 | <1 | 68 | 226 | 437  | >10  | <10 | 0.12 | 430  | 112      | 0.06 | 398 | 100  | 112 | <5 <20 | 11  | <0.01 <10 | 20  | <10 | <1 | 468 |
| QC DAT   | <u>'A:</u> |       |      |    |     |    |      |    |    |     |      |      |     |      |      |          |      |     |      |     |        |     |           |     |     |    |     |
| Resplit: | ı          |       |      |    |     |    |      |    |    |     |      |      |     |      |      |          |      |     |      |     |        |     |           |     |     |    |     |
| 1        | 9321       | 1.0   | 0.44 | 30 | 55  | <5 | 1.00 | <1 | 4  | 128 | 334  | 1.73 | <10 | 0.28 | 316  | 15       | 0.04 | 7   | 290  | 26  | <5 <20 | 36  | <0.01 <10 | 194 | <10 | <1 | 44  |
| Repeat:  | ı          |       |      |    |     |    |      |    |    |     |      |      |     |      |      |          |      |     |      |     |        |     |           |     |     |    |     |
| 1        | 9321       | 1.0   | 0.42 | 30 | 55  | <5 | 0.93 | <1 | 4  | 128 | 332  | 1.64 | <10 | 0.28 | 283  | 18       | 0.03 | 6   | 250  | 24  | <5 <20 | 34  |           | 191 | <10 | <1 | 41  |
| 10       | 9331       | 0.7   | 1.65 | 10 | 370 | <5 | 4.33 | <1 | 13 | 198 | 339  | 4.19 | <10 | 2.22 | 2229 | <1       | 0.05 | 60  | 1750 | 86  | 5 <20  | 106 |           |     | <10 |    | 124 |
| 19       | 9341       | 2.2   | 0.99 | 10 | 115 | <5 | 2.54 | <1 | 14 | 53  | 821  | 3.76 | <10 | 1.02 | 931  | <1       | 0.06 | 6   | 1900 | 242 | <5 <20 | 107 | 0.13 <10  | 445 | <10 | 13 | 159 |
| Standar  |            |       |      |    |     |    | 4.54 | 4  | 40 | -00 | 0.4  | 4.00 | -10 | 0.73 | ene. | <1       | 0.03 | 29  | 870  | 20  | <5 <20 | 54  | 0.10 <10  | 70  | <10 | 10 | 74  |
| GEO'05   |            | 1.5   | 1.51 | 55 | 155 | <5 | 1.51 | <1 | 19 | 60  | 84   | 4.08 | <10 | 0.73 | 605  | <u> </u> | 0.03 | 29  | 570  | 20  | ~5 ~20 | J4  | 0.10 -10  | , 0 | -10 | .0 | 1   |

Jutta Jealouse

BC Certified Assayer

JJ/ga df/5101 XLS/05



10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com www.ecotechlab.com

**CERTIFICATE OF ASSAY AS 2005-5117** 

Falconbridge Limited
3296 Francis-Hughes Avenue
Laval, Quebec
H7L 5A7

29-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301
Shipment #: 34

Samples Submitted by: Allan Huard

| <b></b> " | <b>-</b> " | Au    | Au     |                          |
|-----------|------------|-------|--------|--------------------------|
| ET#.      | Tag #      | (g/t) | (oz/t) |                          |
| 1         | 9356       | 0.32  | 0.009  |                          |
| 2<br>3    | 9357       | 0.18  | 0.005  |                          |
|           | 9358       | 0.09  | 0.003  |                          |
| 4         | 9359       | 0.12  | 0.003  |                          |
| 5         | 9360       | 0.13  | 0.004  |                          |
| 6         | 9362       | 0.14  | 0.004  |                          |
| 7         | 9363       | 0.08  | 0.002  |                          |
| 8         | 9364       | 0.13  | 0.004  |                          |
| 9         | 9365       | 0.11  | 0.003  |                          |
| 10        | 9366       | 0.10  | 0.003  |                          |
| 11        | 9367       | 0.07  | 0.002  | ·                        |
| 12        | 9368       | 0.04  | 0.001  |                          |
| 13        | 9369       | 0.14  | 0.004  |                          |
| 14        | 9370       | 0.04  | 0.001  |                          |
| 15        | 9371       | 0.04  | 0.001  |                          |
| 16        | 9372       | 0.04  | 0.001  |                          |
| 17        | 9373       | 0.05  | 0.001  |                          |
| 18        | 9374       | 0.09  | 0.003  |                          |
| 19        | 9375       | 0.26  | 800.0  |                          |
| 20        | 9376       | 0.13  | 0.004  |                          |
| 21        | 9378       | 0.34  | 0.010  |                          |
| 22        | 9379       | 0.64  | 0.019  |                          |
| 23        | 9380       | 0.08  | 0.002  |                          |
| 24        | 9381       | 0.13  | 0.004  |                          |
| 25        | 9382       | 0.16  | 0.005  |                          |
| 26        | 9383       | 0.06  | 0.002  | ,                        |
| 27        | 9385       | 0.14  | 0.004  | dia R                    |
| 28        | 9386       | 0.66  | 0.019  | ayan Dao 1807            |
|           |            |       |        | ECO TECH LABORATORY LTD. |

Jutta Jealouse

### Falconbridge Limited AS5-5117

|                    |       | Au    | Au     |                                       |
|--------------------|-------|-------|--------|---------------------------------------|
| ET #.              | Tag # | (g/t) | (oz/t) |                                       |
| 29                 | 9387  | 0.10  | 0.003  | · · · · · · · · · · · · · · · · · · · |
| 30                 | 9388  | 0.47  | 0.014  |                                       |
| 31                 | 9389  | 0.33  | 0.010  |                                       |
| 32                 | 9390  | 0.54  | 0.016  |                                       |
| 33                 | 9361  | 0.43  | 0.013  |                                       |
| 34                 | 9384  | <0.03 | <0.001 |                                       |
| 35                 | 9377  | 0.07  | 0.002  |                                       |
|                    |       |       |        |                                       |
| QC DATA:           |       |       |        |                                       |
| Repeats:           |       |       |        |                                       |
| · 1                | 9356  | 0.33  | 0.010  |                                       |
| 10                 | 9366  | 0.11  | 0.003  |                                       |
| 19                 | 9375  | 0.25  | 0.007  |                                       |
| 22                 | 9379  | 0.58  | 0.017  |                                       |
| 28                 | 9386  | 0.59  | 0.017  |                                       |
| 32                 | 9390  | 0.52  | 0.015  |                                       |
| Resplit:           |       |       |        |                                       |
| 7 (e.s.p.m.)       | 9356  | 0.34  | 0.010  |                                       |
|                    |       |       |        |                                       |
| Standard:<br>PM176 |       | 2.04  | 0.059  |                                       |

JJ/kk XLS/05 ECO TECH LABORATORY
Jutta Jealouse

ECO TECH LABORATORY LTD. 10041 Dallas Drive

KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

3296 Francis-Hughes Ave. Lavat, Quebec H7L 5A7

Falconbridge Limited

ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core

Project #: 301 Shipment #: 34

Samples submitted by: Allan Huard

|       |      |      |      |      |     |     |      |    |    |     |      |      |      |      |      |    |        |     |      |          |                  |     |                      |       |      |     | _   |
|-------|------|------|------|------|-----|-----|------|----|----|-----|------|------|------|------|------|----|--------|-----|------|----------|------------------|-----|----------------------|-------|------|-----|-----|
| Et #. | Tag# | Ag   | Al % | As   | Ba  | Bi  | Ca % | Cd | Co | Cr  | Cu   | Fe % | La   | Mg % | Mn   | Мо | Na %   | Ni  | P    |          | Sb Sn            |     | Ti% L                |       |      |     | Zn  |
| 1     | 9356 | 4.2  | 2.22 | 25   | 80  | <5  | 1.76 | <1 | 23 | 160 | 1332 | 7.88 | <10  | 2.88 | 1027 | 9  | 0.07   | 32  | 4010 | 256      | <5 <20           | 104 | 0.20 <10             |       |      | 27  |     |
| 2     | 9357 | 2.6  | 1.90 | 25   | 75  | <5  | 1.82 | <1 | 25 | 126 | 1672 | 7.14 | <10  | 2.36 | 1217 | 5  | 0.04   | 31  | 1590 | 88       | <5 <20           | 113 | 0.16 <10             |       |      | 12  |     |
| 3     | 9358 | 2.3  | 0.93 | 20   | 70  | <5  | 1.94 | 10 | 14 | 79  | 1180 | 3.35 | <10  | 0.93 | 1289 | 2  | 0.01   | 20  | 980  | 546      | <5 <20           | 109 | 0.10 <10             |       | <10  |     | 666 |
| 4     | 9359 | 4.7  | 0.88 | 20   | 70  | <5  | 1.92 | 3  | 11 | 107 | 3273 | 3.04 | 30   | 0.79 | 1525 | 4  |        | 13  | 1210 | 110      | <5 <20           | 107 | 0.08 <10             |       | <10  | . — |     |
| 5     | 9360 | 2.5  | 0.52 | 20   | 70  | <5  | 5.55 | 2  | 5  | 151 | 1254 | 1.89 | 20   | 0.55 | 2769 | 2  | <0.01  | 4   | 610  | 80       | <5 <20           | 210 | 0.02 <10             | 86 (  | <10  | 31  | 133 |
|       |      |      |      |      |     |     |      |    |    |     |      |      |      |      |      |    |        | _   | 1000 | 40       | -C -OO           | 420 | 0.07 <10             | 2 274 | -10  | 22  | 110 |
| 6     | 9362 | 2.0  | 1.00 | 10   | 90  | <5  | 2.63 | <1 | 9  | 65  | 1309 | 2.97 | <10  | 0.83 | 1662 | 1  |        | -   | 1030 | 46       | <5 <20           | 138 | 0.07 < 10            |       |      |     | 72  |
| 7     | 9363 | 1.4  | 0.96 | 15   | 95  | <5  | 2.19 | <1 | 9  | 64  | 932  | 2.84 | <10  | 0.76 | 1411 | <1 | 0.01   | 5   | 1020 | 32       | <5 <20           | 141 |                      |       | <10  |     | 89  |
| 8     | 9364 | 1.5  | 1.06 | 15   | 125 | <5  | 3.44 | <1 | 12 | 75  | 1298 | 3.22 | <10  | 0.87 | 1263 | 3  | 0.02   | 18  | 1870 | 46       | <5 <20           | 217 | 0.09 <10<br>0.04 <10 |       |      |     | 144 |
| 9     | 9365 | 1.0  | 0.76 | <5   | 105 | <5  | 1.78 | 2  | 8  | 78  | 630  | 2.65 | <10  | 0.61 | 816  | 2  | 0.03   | 7   | 800  | 98       | <5 <20           | 124 |                      |       |      |     |     |
| 10    | 9366 | 1.5  | 0.74 | <5   | 175 | <5  | 2.00 | 2  | 5  | 83  | 942  | 2.27 | <10  | 0.61 | 857  | 1  | 0.03   | 5   | 740  | 96       | <5 <20           | 149 | 0.04 <10             | ) 335 | <10  | 13  | 139 |
|       |      |      |      |      |     |     |      |    |    |     |      |      |      |      |      | _  |        | _   | 240  |          | -E -200          | 405 | 0.02 <10             | 0 421 | <10  | 10  | 92  |
| 11    | 9367 | 8.0  | 1.00 | 5    | 265 | <5  | 2.33 | <1 | 6  | 74  | 689  | 3.14 | <10  | 0.97 | 1101 | 2  |        | 6   | 910  | 44       |                  | 185 | 0.02 < 10            |       |      | . – | 83  |
| 12    | 9368 | 0.9  | 0.93 | <5   | 140 | <5  | 2.73 | <1 | 7  | 69  | 750  | 3.02 | <10  | 0.80 |      | 4  | 0.03   | 6   | 1010 | 40       | <5 <20           | 210 |                      |       |      |     | 98  |
| 13    | 9369 | 1.1  | 0.85 | 10   | 85  | <5  | 3.14 | <1 | 8  | 62  | 848  | 2.69 | 10   | 0.66 | 1521 | 6  | 0.01   | 8   | 920  | 64       | <5 <20           | 208 | 0.01 <10             |       |      |     |     |
| 14    | 9370 | 0.9  | 0.93 | 5    | 100 | <5  | 2.65 | <1 | 7  | 46  | 705  | 2.67 | 10   | 0.69 | 1006 | 3  | 0.02   | 5   | 1220 | 36       | <5 <20           | 158 | 0.02 <10             | _     |      |     | 63  |
| 15    | 9371 | 1.3  | 0.89 | 5    | 115 | <5  | 2.62 | <1 | 7  | 50  | 1103 | 2.40 | <10  | 0.58 | 958  | 2  | 0.02   | 5   | 1150 | 28       | <5 <20           | 161 | 0.05 <10             | 179   | <10  | 14  | 46  |
|       |      |      |      |      |     |     |      |    |    |     |      |      |      |      |      |    | 0.04   | 40  | 070  | 20       | -E -200          | 242 | 0.10 <10             | 0 214 | <10  | 15  | 77  |
| 16    | 9372 | 1.7  | 1.02 | 10   | 70  | <5  | 3.06 | <1 | 14 | 75  | 1480 | 2.90 | <10  |      | 1233 | <1 |        | 19  | 870  | 28       | <5 <20           |     | 0.13 <10             |       |      | . – | 121 |
| 17    | 9373 | 0.8  | 1.42 | 15   | 60  | <5  | 3.83 | 1  | 10 | 76  | 442  | 2.56 | <10  |      | 1212 | <1 |        | 16  | 910  | 32       | <5 <20           | 201 | 0.13 < 10            |       |      |     | 109 |
| 18    | 9374 | 1.7  | 1.55 | 1855 | <5  | 205 | 3.48 | <1 | 43 | 95  | 589  | 2.65 | 20   |      | 1181 |    | <0.01  | 175 | 270  |          | 195 <20          | <1  | 0.06 <10             |       | -    |     | 89  |
| 19    | 9375 | 4.4  | 1.01 | 40   | 75  | <5  | 3.40 | <1 | 17 | 59  | 3993 | 3.43 | <10  | 0.87 |      | 4  |        | 18  | 1150 | 62       | <5 <20           | 223 |                      |       |      |     | 46  |
| 20    | 9376 | 1.8  | 0.27 | 20   | 55  | <5  | 2.13 | <1 | 6  | 216 | 1528 | 1.46 | <10  | 0.30 | 951  | <1 | <0.01  | 7   | 100  | 34       | <5 <20           | 152 | 0.02 <1              | J 143 | ~10  | 0   | 40  |
|       |      |      |      |      |     |     |      |    |    |     |      |      |      |      |      |    | .0.04  | 40  | 40   | 70       | <5 <20           | 184 | 0.03 <1              | 0 7/5 | <10  | 1.1 | 156 |
| 21    | 9378 | 6.1  | 0.76 | 85   | 60  | <5  | 3.08 | 1  | 11 | 165 | 5308 | 3.62 | <10  | 1.00 |      | _  | <0.01  | 13  | 10   | 76<br>74 | <5 <20           |     | 0.03 <1              | -     |      |     | 184 |
| 22    | 9379 | 10.7 | 0.54 | 90   | 55  | <5  | 4.02 | 2  | 14 | 155 | 8319 | 3.82 | 40   | 0.74 |      |    | < 0.01 | 12  | <10  | 74       | <5 <20<br><5 <20 | 261 | 0.03 < 1             |       |      |     | 137 |
| 23    | 9380 | 3.1  | 1.35 | 20   | 105 | <5  | 4.15 | 1  | 16 | 56  | 2479 | 4.30 | 10   | 1.27 |      |    | <0.01  | 16  | 780  | 46       |                  |     | 0.12 <1              | •     |      |     | 91  |
| 24    | 9381 | 1.6  | 1.37 | 30   | 75  | <5  | 4.36 | <1 | 22 | 71  | 1009 | 5.45 | <10  | 1.23 |      |    | <0.01  | 19  | 730  | 42       | <5 <20           | 237 |                      |       |      |     | 97  |
| 25    | 9382 | 2.8  | 1.42 | 30   | 55  | <5  | 3.59 | <1 | 28 | 73  | 2387 | 6.56 | <10  | 1.27 | 1331 | 2  | <0.01  | 24  | 740  | 44       | <5 <20           | 165 | 0.12 <1              | J 914 | ~10  | 17  | 31  |
|       |      |      |      |      |     |     |      |    |    |     |      |      |      |      |      |    | -0.04  | 0.4 | 4450 | 40       | -E -20           | 100 | 0.13 <1              | 0 648 | <10  | 15  | 109 |
| 26    | 9383 | 2.1  | 1.56 | 40   | 60  | <5  | 2.22 | <1 | 20 | 87  | 2028 | 4.81 | <10  | 1.36 | 852  |    | < 0.01 |     | 1150 | 46       | <5 <20           | 106 |                      |       |      |     | 143 |
| 27    | 9385 | 2.7  | 1.63 | 55   | 60  | <5  | 2.93 | <1 | 25 | 72  |      | 6.62 | <10  | 1.43 |      |    | <0.01  | 22  |      | 106      | <5 <20           | 129 | 0.11 <1              |       |      |     | 103 |
| 28    | 9386 | 1,7  | 1.07 | 45   | 40  | <5  | 2.83 | <1 | 22 | 81  | 1527 | 4.23 | <10  | 0.83 |      |    | <0.01  |     | 1770 | 74       | <5 <20           | 159 | 0.06 <1              |       |      |     | 97  |
| 29    | 9387 | 1.2  | 1.28 | 40   | 95  | <5  | 3.23 | <1 | 16 | 66  | 868  | 4.26 | <10  | 0.92 |      | 6  |        |     | 1160 | 60       | <5 <20           | 178 | 0.07 <1              |       | -    |     |     |
| 30    | 9388 | 1.7  | 1.07 | 110  | 65  | <5  | 3.16 | 2  | 19 | 84  | 916  | 4.42 | _30  | 0.88 | 2223 | 10 | 0.01   | 18  | 1140 | 206      | <5 <20           | 209 | 0.04 <1              | 0 311 | ~ 10 | 23  | 214 |
|       |      |      |      |      |     |     |      |    |    |     |      |      | Page | 1    |      |    |        |     |      |          |                  |     |                      |       |      |     |     |
|       |      |      |      |      |     |     |      |    |    |     |      |      |      |      |      |    |        |     |      |          |                  |     |                      |       |      |     |     |

Et#. Tag#

#### ECO TECH LABORATORY LTD.

Ag Al %

Bi Ca%

Ba

As

Cd

Co

#### ICP CERTIFICATE OF ANALYSIS AS 2005-5117

La Mg%

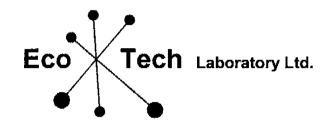
Mn

Mo Na%

Νì

Cr Cu Fe %

|          |           |      |      |     |     |               |      |    |     |     |      |      |     |      |      |     |       |     |      |     |                 |     |             | OFO  |       |      | 074 |
|----------|-----------|------|------|-----|-----|---------------|------|----|-----|-----|------|------|-----|------|------|-----|-------|-----|------|-----|-----------------|-----|-------------|------|-------|------|-----|
| 31       | 9389      | 2.6  | 1.00 | 125 | 55  | <5            | 3.70 | 2  | 26  | 67  | 2126 | 5.28 | <10 | 0.94 | 2769 | 9   | <0.01 | 17  | 1290 | 176 | <5 <20          | 254 | 0.06 <10    | 358  | <10 - |      | 271 |
| 32       | 9390      | 3.5  | 0.90 | 225 | 60  | <5            | 5.18 | 14 | 21  | 110 | 1305 | 6.01 | 60  | 1.15 | 3518 | 21  | <0.01 | 16  | 410  | 988 | <5 <20          | 315 | 0.07 <10    | 707  | <10   | 60 1 | 134 |
| 33       | 9361      | 2.2  | 1.45 | 10  | 320 | <5            | 1.40 | <1 | 14  | 26  | 7130 | 3.69 | <10 | 1.14 | 472  | 2   | 0.15  | 14  | 2270 | 24  | <5 <20          | 83  | 0.07 <10    | 199  | <10   | 19   | 57  |
| 34       | 9384      | <0.2 | 2.40 | 20  | 80  | <b>&lt;</b> 5 | 6.20 | <1 | 27  | 46  | 121  | 6.12 | <10 | 1.92 | 854  | <1  | 0.03  | 16  | 1770 | 18  | <5 <20          | 133 | 0.11 <10    | 215  | <10   | 12   | 68  |
|          |           |      |      | 100 | 155 | <5            | 0.22 | <1 | 65  | 223 | 430  | >10  | <10 | 0.11 | 416  | 125 | 0.04  | 430 | 100  | 100 | <5 <20          | 11  | < 0.01 < 10 | 26   | <10   | <1   | 473 |
| 35       | 9377      | 0.2  | 0.76 | 100 | 155 | ~5            | 0.22 | ~1 | Q.J | 223 | 730  | - 10 | 110 | 0.11 | 7.0  | 120 | 0.01  | ,00 | ,,,, |     |                 |     |             |      |       |      |     |
|          |           |      |      |     |     |               |      |    |     |     |      |      |     |      |      |     |       |     |      |     |                 |     |             |      |       |      |     |
|          |           |      |      |     |     |               |      |    |     |     |      |      |     |      |      |     |       |     |      |     |                 |     |             |      |       |      |     |
| QC DAT   | <u>A:</u> |      |      |     |     |               |      |    |     |     |      |      |     |      |      |     |       |     |      |     |                 |     |             |      |       |      |     |
|          |           |      |      |     |     |               |      |    |     |     |      |      |     |      |      |     |       |     |      |     |                 |     |             |      |       |      |     |
| Resplit: |           |      |      |     |     |               |      |    |     |     |      |      |     |      |      |     |       |     |      |     |                 |     | 2.40.40     | 0.40 | .40   | 0.5  | 000 |
| 1        | 9356      | 4.2  | 2.05 | 40  | 80  | <5            | 1.94 | <1 | 24  | 152 | 1129 | 8.24 | <10 | 2.67 | 1046 | 13  | 0.05  | 33  | 4310 | 314 | <5 <20          | 114 | 0.18 <10    | 348  | <10   | 25   | 202 |
|          |           |      |      |     |     |               |      |    |     |     |      |      |     |      |      |     |       |     |      |     |                 |     |             |      |       |      |     |
| Repeat:  |           |      |      |     |     |               |      |    |     |     |      |      |     |      |      |     |       |     |      |     |                 |     |             |      |       |      |     |
| 1        | 9356      | 4.1  | 2.00 | 25  | 70  | <5            | 1.63 | 1  | 21  | 145 | 1219 | 7.40 | <10 | 2.65 | 953  | 11  | 0.06  | 32  | 3730 | 242 | 5 <20           | 93  | 0.16 <10    | 328  | <10   | 23   | 167 |
| 10       | 9366      | 1.4  | 0.69 | <5  | 155 | <5            | 1.93 | 2  | 5   | 78  | 932  | 2.18 | <10 | 0.59 | 827  | <1  | 0.02  | 4   | 700  | 92  | <5 <20          | 148 | 0.04 < 10   | 322  | <10   | 12   | 134 |
|          |           |      |      | 45  | 75  | <5            | 3.56 | <1 | 18  | 60  | 3919 | 3.58 | <10 | 0.84 | 1676 | 5   | 0.01  | 19  | 1430 | 76  | <5 <20          | 226 | 0.06 < 10   | 204  | <10   | 16   | 102 |
| 19       | 9375      | 4.5  | 0.99 | 40  | 75  | ~5            | 3.00 | ~  | 10  | 00  | 3313 | 0.00 | -10 | 0.01 | 1010 | v   | ψ.σ.  | , . | ,    |     |                 |     |             |      |       |      |     |
|          |           |      |      |     |     |               |      |    |     |     |      |      |     |      |      |     |       |     |      |     |                 |     |             |      |       |      |     |
| Standar  | d:        |      |      |     |     | _             | 4.50 |    | 40  |     | 0.0  | 4.00 | -10 | 0.70 | 616  | -1  | מת ח  | 29  | 870  | 22  | <5 <20          | 53  | 0.10 <10    | 67   | <10   | 11   | 74  |
| GEO'05   |           | 1.5  | 1.54 | 55  | 155 | <5            | 1.50 | <1 | 19  | 61  | 86   | 4.00 | <10 | 0.78 | 616  | <1  | 0.03  | 29  | QΙU  | 22  | ~\$ <b>~</b> 20 | 55  | 0.10 10     | 01   | - 10  | ' '  | , - |
|          |           |      |      |     |     |               |      |    |     |     |      |      |     |      |      |     |       |     |      |     |                 |     |             |      |       |      |     |


ECO/TECH LABORATORY LTD.

Jutta Jealouse

Pb Sb Sn Sr Ti % U V

BC Certified Assayer

JJ/ga df/5101 XLS/05



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com

www.ecotechlab.com

### **CERTIFICATE OF ASSAY AS 2005-5118**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

29-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 19

Samples Submitted by: Allan Huard

|        |              | Au    | Au     |                                         |
|--------|--------------|-------|--------|-----------------------------------------|
| ET #.  | Tag #        | (g/t) | (oz/t) |                                         |
| 1      | 67981        | 0.08  | 0.002  |                                         |
| 2      | 67982        | 0.06  | 0.002  |                                         |
| 3      | 67983        | 0.03  | 0.001  |                                         |
| 4      | 67984        | 0.04  | 0.001  |                                         |
| 5<br>6 | 67985        | 0.05  | 0.001  |                                         |
| 6      | 67986        | 0.04  | 0.001  |                                         |
| 7      | 67987        | 0.05  | 0.001  |                                         |
| 8      | 67989        | 0.04  | 0.001  |                                         |
| 9      | 67990        | 0.06  | 0.002  |                                         |
| 10     | 67991        | 0.05  | 0.001  |                                         |
| 11     | 67992        | 0.03  | 0.001  |                                         |
| 12     | 67993        | 0.04  | 0.001  |                                         |
| 13     | 67994        | 0.04  | 0.001  |                                         |
| 14     | 67995        | 0.05  | 0.001  |                                         |
| 15     | 67996        | 0.05  | 0.001  |                                         |
| 16     | 67997        | 0.03  | 0.001  |                                         |
| 17     | 67998        | 0.04  | 0.001  |                                         |
| 18     | 68000        | 0.05  | 0.001  |                                         |
| 19     | 8301         | 0.04  | 0.001  |                                         |
| 20     | 8302         | 0.03  | 0.001  |                                         |
| 21     | 8303         | 0.03  | 0.001  |                                         |
| 22     | 8304         | 0.03  | 0.001  |                                         |
| 23     | <b>830</b> 5 | 0.03  | 0.001  |                                         |
| 24     | 8306         | 0.03  | 0.001  |                                         |
| 25     | 8307         | 0.03  | 0.001  |                                         |
| 26     | 8308         | 0.04  | 0.001  | <i>, (</i> ) <i>, , , , , , , , , ,</i> |
| 27     | 8309         | 0.05  | 0.001  | of D. Kon Inn                           |
| 28     | 8311         | <0.03 | <0.001 | (MANI LYCUE/PO/                         |
|        |              |       |        | ECØ/TECH LABORATORY LTD.                |

ECO TECH LABORATORY LTD.

Jutta Jealouse

### Falconbridge Limited AS5-5118

|           |       | Au     | Au      |
|-----------|-------|--------|---------|
| ET #.     | Tag#  | (g/t)  | (oz/t)  |
| 29        | 8312  | 0.08   | 0.002   |
| 30        | 8313  | 0.04   | 0.001   |
| 31        | 8314  | 0.04   | 0.001   |
| 32        | 8315  | 0.03   | 0.001   |
| 33        | 67988 | 0.42   | 0.012   |
| 34        | 8310  | < 0.03 | < 0.001 |
| 35        | 67999 | 0.08   | 0.002   |
| QC DATA:  |       |        |         |
| Repeats:  | =     |        |         |
| 1         | 67981 | 0.08   | 0.002   |
| 10        | 67991 | 0.05   | 0.001   |
| 19        | 8301  | 0.03   | 0.001   |
|           |       |        |         |
| Resplit:  |       |        |         |
| i         | 67981 | 0.10   | 0.003   |
|           |       |        |         |
| Standard: |       |        |         |
| PM176     |       | 2.08   | 0.061   |

JJ/bw XL\$/05 Jutta Jealouse

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core

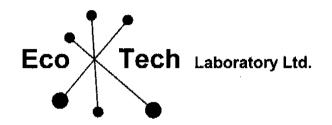
Project #: 301 Shipment #: 19

Samples submitted by: Allan Huard

| Et #. | Tag#  | Ag  | AI % | As | Ва  | Bi | Ca % | Cd | Co         | Cr | Cu   | Fe % | La   | Mg % | Mn  | Мо  | Na %   | Ni | P    | Pb | Sb Sn            | Sr          |         | Ü    | <u>V</u>   | W          | Υ  | Zn       |
|-------|-------|-----|------|----|-----|----|------|----|------------|----|------|------|------|------|-----|-----|--------|----|------|----|------------------|-------------|---------|------|------------|------------|----|----------|
| 1     | 67981 | 0.8 | 0.38 | 5  | 45  | <5 | 1.82 | <1 | 58         | <1 | 1759 | 5.52 | <10  | 0.23 | 557 | 32  | <0.01  | 32 | 450  | 6  | <5 <20           |             | 0.02 <  |      |            | <10        | 6  | 12       |
| 2     | 67982 | 1.1 | 0.71 | <5 | 70  | <5 | 1.53 | <1 | 77         | <1 | 2487 | 2.66 | <10  | 0.44 | 491 | 96  | <0.01  | 41 | 1210 | 4  | <5 <20           |             | <0.01 < | -    | 299        | <10        | 9  | 20       |
| 3     | 67983 | 0.4 | 0.48 | <5 | 90  | <5 | 1.06 | <1 | 23         | <1 | 642  | 1.47 | <10  | 0.29 | 360 | 60  | <0.01  | 13 | 220  | 6  | <5 <20           |             | <0.01 < |      | 146        | <10        | 3  | 10       |
| 4     | 67984 | 0.6 | 0.45 | <5 | 70  | <5 | 0.60 | <1 | 32         | <1 | 1075 | 1.42 | <10  | 0.23 | 223 | 106 | <0.01  | 18 | 230  | 4  | <5 <20           |             | <0.01 < |      | 130        | <10        | 2  | 8        |
| 5     | 67985 | 0.4 | 0.57 | <5 | 70  | <5 | 1.58 | <1 | 29         | <1 | 940  | 1.70 | <10  | 0.45 | 536 | 81  | <0.01  | 16 | 320  | 8  | <5 <20           | 72          | <0.01 < | <10  | 142        | <10        | 3  | 15       |
|       |       |     |      |    |     |    |      |    |            |    |      |      |      |      |     |     |        |    |      |    | ·5 ·00           | 70          | 40.04 · | -40  | 470        | -10        | 4  | 15       |
| 6     | 67986 | 0.6 | 0.55 | <5 | 75  | <5 | 1.45 | <1 | 40         | <1 | 1301 | 1.78 | <10  | 0.36 | 465 |     | <0.01  | 21 | 330  | 8  | <5 <20           |             | <0.01 < |      | 172        | <10<br><10 | 4  | 15<br>12 |
| 7     | 67987 | 0.6 | 0.48 | <5 | 75  | <5 | 1.52 | <1 | 40         | <1 | 1328 | 1.61 | <10  | 0.32 | 508 | -   | <0.01  | 22 | 410  | 6  | <5 <20           |             | <0.01 < |      | 163<br>103 | <10        | 5  | 15       |
| 8     | 67989 | 1.1 | 0.30 | <5 | 60  | <5 | 1.97 | <1 | 60         | <1 | 2001 | 2.08 | <10  | 0.37 | 613 |     | <0.01  | 31 | 370  | 10 | <5 <20           |             | <0.01 < |      |            |            | -  |          |
| 9     | 67990 | 0.8 | 0.51 | <5 | 70  | <5 | 1.09 | <1 | 44         | <1 | 1446 | 2.01 | <10  | 0.31 | 314 |     | <0.01  | 23 | 410  | 8  | <5 <20           |             | <0.01 < |      | 184        | <10        | 4  | 13       |
| 10    | 67991 | 0.6 | 0.47 | <5 | 85  | <5 | 0.88 | <1 | 32         | <1 | 1038 | 1.91 | <10  | 0.28 | 267 | 17  | <0.01  | 18 | 360  | 6  | <5 <20           | 65          | <0.01 < | <10  | 183        | <10        | 3  | 12       |
|       |       |     |      |    |     |    |      |    |            |    |      |      |      |      |     |     |        |    |      | _  |                  | ~~          | .0.04   | .40  | 400        | -46        |    | 12       |
| 11    | 67992 | 0.4 | 0.49 | <5 | 55  | <5 | 1.14 | <1 | 27         | <1 | 797  | 2.39 | <10  | 0.28 | 342 |     | <0.01  | 15 | 430  | 8  | <5 <20           |             | <0.01 < |      | 190        | <10        | 4  | 13       |
| 12    | 67993 | 0.6 | 0.45 | <5 | 80  | <5 | 0.91 | <1 | 35         | <1 | 1124 | 1.82 | <10  | 0.25 | 286 |     | <0.01  | 19 | 280  | 8  | <5 <20           |             | <0.01 < |      | 239        | <10        | 3  | 14       |
| 13    | 67994 | 0.7 | 0.42 | <5 | 100 | <5 | 1.08 | <1 | 26         | <1 | 804  | 1.55 | <10  | 0.24 | 323 | -   | <0.01  | 14 | 340  | 6  | <5 <20           |             | <0.01 < |      | 140        | <10        | 3  | 15       |
| 14    | 67995 | 0.6 | 0.47 | <5 | 45  | <5 | 0.94 | <1 | 33         | <1 | 1022 | 2.23 | <10  | 0.28 | 299 |     | <0.01  | 18 | 430  | 10 | <5 <20           |             | <0.01 < |      | 141        | <10        | 3  | 14       |
| 15    | 67996 | 0.9 | 0.53 | <5 | 65  | <5 | 0.84 | <1 | 46         | <1 | 1547 | 2.20 | <10  | 0.27 | 210 | 17  | <0.01  | 24 | 510  | 8  | <5 <20           | 54          | <0.01 < | <10  | 186        | <10        | 4  | 14       |
|       |       |     |      |    |     |    |      |    |            |    |      |      |      |      |     |     |        |    |      |    | .5 .00           |             | 20.04   | -10  | 177        | <10        | 4  | 8        |
| 16    | 67997 | 0.7 | 0.36 | <5 | 75  | <5 | 0.83 | <1 | 35         | <1 | 1157 | 1.96 | <10  | 0.24 | 265 |     | <0.01  | 19 | 450  | 6  | <5 <20           | -           | <0.01 < |      |            |            | 4  | 13       |
| 17    | 67998 | 0.4 | 0.40 | <5 | 100 | <5 | 0.85 | <1 | 25         | <1 | 796  | 1.90 | <10  | 0.29 | 288 |     | 0.01   | 14 | 450  | 8  | <5 <20           | -           | <0.01 < |      | 197        | <10        | •  | 12       |
| 18    | 68000 | 0.6 | 0.32 | <5 | 100 | <5 | 0.90 | <1 | 29         | <1 | 928  | 2.04 | <10  | 0.26 | 289 | _   | <0.01  | 16 | 400  | 6  | <5 <20           |             | <0.01 < |      | 308        | <10        | 4  | 22       |
| 19    | 8301  | 0.7 | 0.51 | <5 | 120 | <5 | 1.28 | <1 | 36         | <1 | 1170 | 2.01 | <10  | 0.46 | 416 |     | < 0.01 | 19 | 400  | 6  | <5 <20           |             | <0.01   |      | 208        | <10        | 4  |          |
| 20    | 8302  | 0.6 | 0.34 | <5 | 135 | <5 | 1.19 | <1 | 36         | <1 | 1197 | 1.59 | <10  | 0.30 | 371 | 20  | <0.01  | 19 | 360  | 6  | <5 <20           | 67          | <0.01   | <10  | 188        | <10        | 4  | 11       |
|       |       |     |      |    |     |    |      |    |            |    |      |      |      |      | 447 | -00 | -0.04  | 40 | 440  | å  | -E -20           | 90          | <0.01   | -10  | 184        | <10        | 4  | 18       |
| 21    | 8303  | 0.4 |      | <5 | 150 | <5 | 1.34 | <1 | 25         | <1 | 786  | 1.52 | <10  | 0.38 | 417 |     | <0.01  | 13 | 440  | 4  | <5 <20<br><5 <20 |             | <0.01   |      | 184        | <10        | 4  | 17       |
| 22    | 8304  | 0.6 | 0.43 | <5 | 155 | <5 | 1.58 | <1 | 31         | <1 | 998  | 1.49 | <10  | 0.35 | 480 |     | <0.01  | 17 | 410  | 8  | <5 <20<br><5 <20 |             | <0.01   |      | 130        | <10        | 5  | 19       |
| 23    | 8305  | 0.5 | 0.33 | <5 | 90  | <5 | 2.79 | <1 | 26         | <1 | 768  | 1.95 | <10  | 0.56 | 808 |     | <0.01  | 13 | 340  | ٥  |                  |             | <0.01   |      | 153        | <10        | 5  | 14       |
| 24    | 8306  | 0.7 | 0.42 | <5 | 80  | <5 | 1.96 | <1 | 29         | <1 | 914  | 1.63 | <10  | 0.30 | 595 |     | <0.01  | 16 | 360  | 6  | <5 <20           |             |         |      |            | <10        | -  | 35       |
| 25    | 8307  | 0.5 | 0.72 | <5 | 255 | <5 | 2.69 | <1 | 36         | <1 | 968  | 3.26 | 10   | 0.59 | 900 | 13  | <0.01  | 18 | 1330 | 8  | <5 <20           | <b>1</b> 12 | 0.10    | < 10 | 235        | ×10        | 13 | 30       |
|       |       |     |      |    |     |    |      |    |            |    |      |      |      |      |     | _   |        | 40 | 400  | ^  | 4E 400           | 96          | <0.01 - | -10  | 211        | <10        | 4  | 17       |
| 26    | 8308  | 0.5 | 0.53 | <5 | 100 | <5 | 1.59 | <1 | 2 <b>2</b> | <1 | 677  | 1.78 | <10  | 0.41 | 490 | _   | <0.01  | 12 | 400  | 6  | <5 <20           |             |         |      | 181        | <10        | 3  | 13       |
| 27    | 8309  | 1.0 | 0.45 | <5 | 60  | <5 | 1.22 | <1 | 37         | <1 | 1196 | 2.22 | <10  | 0.28 | 358 |     | <0.01  | 20 | 330  | 6  | <5 <20           |             | <0.01   |      |            |            |    | 15       |
| 28    | 8311  | 0.5 | 0.37 | <5 | 140 | <5 | 1.23 | <1 | 25         | <1 | 801  | 1.79 | <10  | 0.27 | 388 |     | <0.01  | 13 | 430  | 6  | <5 <20           |             | <0.01   |      | 320        | <10        | 4  | 19       |
| 29    | 8312  | 2.0 | 0.48 | <5 | 65  | <5 | 1.53 | <1 | 74         | <1 | 2497 | 2.86 | <10  | 0.31 | 437 |     | <0.01  | 37 | 450  | 4  | <5 <20           |             | <0.01   |      | 356        | <10        | 5  |          |
| 30    | 8313  | 1.1 | 0.42 | <5 | 90  | <5 | 1.98 | <1 | 37         | <1 | 1194 | 2.14 | <10  | 0.24 | 534 | 12  | <0.01  | 20 | 410  | 8  | <5 <20           | 109         | <0.01   | < IŲ | 306        | <10        | 6  | 14       |
| 1     |       |     |      |    |     |    |      |    |            |    |      |      | Page | 1    |     |     |        |    |      |    |                  |             |         |      |            |            |    |          |
|       |       |     |      |    |     |    |      |    |            |    |      |      |      |      |     |     |        |    |      |    |                  |             |         |      |            |            |    |          |

#### ECO TECH LABORATORY LTD.

#### ICP CERTIFICATE OF ANALYSIS AS 2005-5118


| Et #.   | Tag #      | pΑ   | Al % | As | Ва  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn  | Mo Na %   | Ni  | Р    | Pb  | Sb Sn  | Sr  | Ti %    | U   | ٧    | W   | Υ  | Zn  |
|---------|------------|------|------|----|-----|----|------|----|----|-----|------|------|-----|------|-----|-----------|-----|------|-----|--------|-----|---------|-----|------|-----|----|-----|
| 31      | 8314       | 1.0  | 0.52 | <5 | 75  | <5 | 2.20 | <1 | 51 | <1  | 1682 | 2.17 | <10 | 0.36 | 648 | 12 < 0.01 | 26  | 370  | 6   | <5 <20 | 96  | <0.01 < | 10  | 206  | <10 | 8, | 19  |
| 32      | 8315       | 0.7  | 0.44 | <5 | 90  | <5 | 1.60 | <1 | 38 | <1  | 1250 | 1.89 | <10 | 0.28 | 452 | 13 < 0.01 | 20  | 380  | 6   | <5 <20 | 83  | <0.01 < | :10 | 198  | <10 | 4  | 15  |
| 33      | 67988      | 2.0  | 1.42 | <5 | 305 | <5 | 1.40 | <1 | 19 | <1  | 7097 | 3.54 | 10  | 1.04 | 482 | 2 < 0.01  | 191 | 2960 | 20  | <5 <20 | 80  | 0.07 <  | :10 | 163  | <10 | 17 | 53  |
| 34      | 8310       | <0.2 | 2.67 | 5  | 85  | 10 | 5.12 | <1 | 30 | 68  | 80   | 5.77 | <10 | 2.58 | 974 | <1 0.03   | 24  | 1730 | 16  | 5 <20  | 122 | 0.20 <  | 410 | 196  | <10 | 15 | 60  |
| 35      | 67999      | 0.2  | 0.80 | 95 | 125 | <5 | 0.24 | <1 | 67 | 229 | 430  | >10  | <10 | 0.12 | 441 | 110 0.04  | 409 | 110  | 110 | <5 <20 | 11  | <0.01 < | <10 | 22   | <10 | 9  | 470 |
| QC DA   | <u>[A:</u> |      |      |    |     |    |      |    |    |     |      |      |     |      |     |           |     |      |     |        |     |         |     |      |     |    |     |
| Resplit | :          |      |      |    |     |    |      |    |    |     |      |      |     |      |     |           |     |      | _   |        | ٥.  | 0.04    | -40 | 070  | -45 | •  | 1.4 |
| 1       | 67981      | 1.0  | 0.40 | 10 | 40  | <5 | 2.08 | <1 | 65 | <1  | 1949 | 5.53 | <10 | 0.25 | 624 | 31 < 0.01 | 36  | 480  | 6   | <5 <20 | 95  | 0.01 <  | <10 | 970  | <10 | 6  | 14  |
| Repeat  | :          |      |      |    |     |    |      |    |    |     |      |      |     |      |     |           |     |      |     |        |     |         |     |      |     | _  |     |
| 1       | 67981      | 0.8  | 0.36 | <5 | 40  | <5 | 1.80 | <1 | 56 | <1  | 1714 | 5.42 | <10 | 0.22 | 552 | 34 <0.01  | 31  | 510  | 4   | <5 <20 | 75  |         |     | 1014 | <10 | 6  | 12  |
| 10      | 67991      | 0.6  | 0.46 | <5 | 80  | <5 | 0.86 | <1 | 32 | <1  | 1025 | 1.87 | <10 | 0.27 | 262 | 16 < 0.01 | 17  | 330  | 6   | <5 <20 | 64  |         | . • | 177  | <10 | 3  | 12  |
| 19      | 8301       | 0.7  | 0.50 | <5 | 115 | <5 | 1.30 | <1 | 36 | <1  | 1177 | 2.03 | <10 | 0.47 | 424 | 11 <0.01  | 19  | 370  | 6   | <5 <20 | 77  | <0.01 < | <10 | 204  | <10 | 4  | 20  |
| Standa  | rd:        |      |      |    |     |    |      |    |    |     |      |      |     |      |     |           |     |      |     |        |     |         |     |      |     |    |     |
| GEO'05  |            | 1.5  | 1.65 | 50 | 130 | <5 | 1.52 | <1 | 19 | 59  | 86   | 3.59 | <10 | 0.87 | 651 | 1 0.02    | 29  | 640  | 24  | 5 <20  | 54  | 0.11 <  | <10 | 73   | <10 | 9  | 74  |

EOO TECH LABORATORY LTD.

Jutta Jealouse

BC Certified Assayer

JJ/ga df/5101 XLS/05



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com

www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5119**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

29-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 31

Samples Submitted by: Allan Huard

|        |       | Au     | Au      |                          |
|--------|-------|--------|---------|--------------------------|
| ET #.  | Tag # | (g/t)  | (oz/t)  |                          |
| 1      | 9251  | 0.08   | 0.002   |                          |
| 2      | 9252  | 0.18   | 0.005   |                          |
| 2<br>3 | 9253  | 0.14   | 0.004   |                          |
| 4      | 9254  | 0.10   | 0.003   |                          |
| 5      | 9255  | 0.10   | 0.003   |                          |
| 6      | 9256  | 0.14   | 0.004   |                          |
| 7      | 9257  | 0.06   | 0.002   |                          |
| 8      | 9259  | 0.03   | 0.001   |                          |
| 9      | 9260  | 0.08   | 0.002   |                          |
| 10     | 9261  | 0.18   | 0.005   |                          |
| 11     | 9262  | 0.39   | 0.011   |                          |
| 12     | 9263  | 0.14   | 0.004   |                          |
| 13     | 9264  | 0.11   | 0.003   |                          |
| 14     | 9265  | 0.07   | 0.002   |                          |
| 15     | 9266  | 0.11   | 0.003   |                          |
| 16     | 9267  | 0.05   | 0.001   |                          |
| 17     | 9268  | 0.11   | 0.003   |                          |
| 18     | 9270  | < 0.03 | <0.001  |                          |
| 19     | 9271  | <0.03  | <0.001  |                          |
| 20     | 9272  | 0.04   | 0.001   |                          |
| 21     | 9273  | < 0.03 | <0.001  |                          |
| 22     | 9274  | 0.04   | 0.001   |                          |
| 23     | 9275  | 0.04   | 0.001   |                          |
| 24     | 9276  | < 0.03 | <0.001  |                          |
| 25     | 9277  | < 0.03 | < 0.001 |                          |
| 26     | 9278  | < 0.03 | <0.001  | , ,                      |
| 27     | 9279  | < 0.03 | < 0.001 | of Dr. Rough             |
| 28     | 9281  | <0.03  | < 0.001 | Sylan Drive Ber          |
|        |       |        |         | ECO TECH LABORATORY LTD. |

Jutta Jealouse

|           |       | Au    | Au     |      |
|-----------|-------|-------|--------|------|
| ET #.     | Tag # | (g/t) | (oz/t) | <br> |
| 29        | 9282  | <0.03 | <0.001 |      |
| 30        | 9283  | <0.03 | <0.001 |      |
| 31        | 9284  | <0.03 | <0.001 |      |
| 32        | 9285  | <0.03 | <0.001 |      |
| 33        | 9258  | 0.43  | 0.013  |      |
| 34        | 9280  | <0.03 | <0.001 |      |
| 35        | 9269  | 0.06  | 0.002  |      |
|           |       |       |        |      |
| QC DATA:  |       |       |        |      |
|           |       |       |        |      |
| Repeats:  | 0054  | 0.07  | 0.000  |      |
| 1         | 9251  | 0.07  | 0.002  |      |
| 10        | 9261  | 0.18  | 0.005  |      |
| 11        | 9262  | 0.41  | 0.012  |      |
| 19        | 9271  | <0.03 | <0.001 |      |
| 33        | 9258  | 0.43  | 0.013  |      |
| Resplit:  |       |       |        |      |
| Respire.  | 9251  | 0.08  | 0.002  |      |
| 1         | 9251  | 0.00  | 0.002  |      |
| Standard: |       |       |        |      |
| PM176     |       | 1.98  | 0.058  |      |
|           |       |       |        |      |

JJ/bw XLS/05 ECO TECH LABORATORY LTD.
Jutta Jealouse

ECO TECH LABORATORY LTD. 10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35

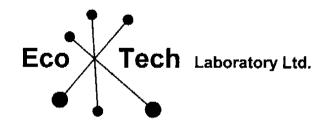
Sample type:Core Project #: 301

Shipment #: 31

Samples submitted by: Allan Huard

| Et #. | Tag # | Ag  | Al % | As  | Ba         | Bi | Ca % | Çd | Co | Cr  | Çu   | Fe % | La l | Mg % | Mn          | Мо | Na %   | Ni | <u>P</u> |     | Sb Sn   |     | Ti% U     |     | W   | Υ  | Zn  |
|-------|-------|-----|------|-----|------------|----|------|----|----|-----|------|------|------|------|-------------|----|--------|----|----------|-----|---------|-----|-----------|-----|-----|----|-----|
| 1     | 9251  | 1.1 | 0.99 | 25  | 40         | <5 | 2.12 | <1 | 32 | <1  | 723  | 3.72 | 10   | 0.98 | 973         | -  | <0.01  | 24 | 1460     | 50  | <5 <20  | 128 | 0.08 < 10 |     | <10 |    | 49  |
| 2     | 9252  | 2.2 | 0.60 | 20  | 40         | <5 | 1.41 | <1 | 68 | <1  | 2196 | 2.85 | 20   | 0.33 | 504         |    | <0.01  | 35 | 880      | 40  | 5 <20   | 72  | 0.04 < 10 |     | <10 |    | 29  |
| 3     | 9253  | 2.5 | 0.73 | 25  | 50         | <5 | 2.08 | <1 | 57 | <1  | 1673 | 3.23 | 20   | 0.46 | 770         | 13 | <0.01  | 32 | 990      | 60  | 5 <20   | 118 | 0.09 <10  |     | <10 |    | 66  |
| 4     | 9254  | 1.6 | 1.32 | 15  | 90         | <5 | 2.56 | <1 | 30 | <1  | 733  | 3.17 | 10   | 1.16 | 979         | 6  | <0.01  | 22 | 1300     | 34  | <5 <20  | 120 | 0.13 <10  |     |     | 16 | 86  |
| 5     | 9255  | 2.4 | 1.11 | 10  | 75         | <5 | 3.26 | <1 | 37 | <1  | 906  | 3.26 | 10   | 0.92 | 1234        | 9  | <0.01  | 22 | 840      | 82  | 5 <20   | 163 | 0.12 <10  | 337 | <10 | 13 | 106 |
|       |       |     |      |     |            |    |      |    |    |     |      |      |      |      |             |    |        |    |          |     |         |     |           |     |     |    | 400 |
| 6     | 9256  | 3.6 | 1.60 | 15  | 55         | <5 | 2.32 | <1 | 59 | <1  | 1778 | 4.59 | 10   | 1.64 | 1172        | 11 | <0.01  |    | 1240     | 76  | <5 <20  | 130 | 0.15 <10  |     | <10 |    |     |
| 7     | 9257  | 1.2 | 1.21 | 10  | 65         | <5 | 2.81 | <1 | 24 | <1  | 517  | 3.28 | 10   | 1.23 | 1070        | 4  | <0.01  | 17 | 1290     | 32  | <5 <20  | 143 | 0.14 <10  |     | <10 |    | 81  |
| 8     | 9259  | 0.9 | 0.34 | <5  | 60         | <5 | 1.20 | <1 | 12 | 101 | 330  | 1.31 | <10  | 0.17 | 378         | 4  | <0.01  | 9  | 110      | 36  | <5 <20  | 90  | 0.03 <10  |     | <10 | 7  | 28  |
| 9     | 9260  | 1.5 | 1.31 | 10  | 50         | <5 | 2.63 | <1 | 42 | <1  | 910  | 4.10 | <10  | 1.50 | 1033        | 7  | <0.01  | 26 | 1560     | 136 | <5 <20  | 195 | 0.10 <10  |     | <10 |    |     |
| 10    | 9261  | 2.8 | 1,21 | 30  | 40         | <5 | 2.16 | <1 | 48 | <1  | 1128 | 4.33 | 10   | 1.31 | 975         | 8  | < 0.01 | 35 | 1270     | 142 | <5 <20  | 121 | 0.13 <10  | 323 | <10 | 13 | 103 |
|       |       |     |      |     |            |    |      |    |    |     |      |      |      |      |             |    |        |    |          |     |         |     |           |     |     |    |     |
| 11    | 9262  | 2.3 | 1.18 | 145 | 30         | <5 | 2.49 | 2  | 57 | <1  | 1066 | 5.70 | <10  | 0.98 | 987         | 10 | <0.01  |    | 1410     | 134 | 5 <20   | 114 | 0.14 <10  |     | <10 |    |     |
| 12    | 9263  | 1.7 | 1.19 | 25  | 45         | <5 | 2.34 | <1 | 43 | <1  | 1023 | 4.21 | 10   | 1.18 | 972         | 8  | <0.01  | 28 | 1280     | 54  | <5 <20  | 129 | 0.11 <10  |     | <10 |    |     |
| 13    | 9264  | 2.4 | 1.29 | 20  | 40         | <5 | 2.43 | <1 | 66 | <1  | 1756 | 4.52 | 10   | 0.57 | 801         | 13 | <0.01  | 45 | 1060     | 36  | <5 <20  | 72  | 0.08 < 10 |     |     |    | 74  |
| 14    | 9265  | 3.6 | 0.31 | 40  | 30         | <5 | 0.97 | 1  | 36 | <1  | 862  | 3.37 | <10  | 0.04 | 321         | 33 | <0.01  | 28 | 1360     | 32  | 40 <20  | 37  | 0.01 < 10 |     | <10 | 7  | 72  |
| 15    | 9266  | 8.4 | 0.28 | 30  | 25         | <5 | 0.74 | <1 | 82 | <1  | 2526 | 3.89 | <10  | 0.04 | 203         | 20 | < 0.01 | 56 | 1380     | 22  | 15 <20  | 35  | 0.04 < 10 | 146 | <10 | 7  | 83  |
|       |       |     |      |     |            |    |      |    |    |     |      |      |      |      |             |    |        |    |          |     |         |     |           |     | 4.5 | _  | 440 |
| 16    | 9267  | 5.9 | 0.46 | 20  | 30         | <5 | 0.77 | <1 | 56 | <1  | 1657 | 2.86 | <10  | 0.24 | 334         | 18 | <0.01  | 41 | 960      | 24  | 15 < 20 | 34  | 0.04 <10  |     | <10 | -  | 119 |
| 17    | 9268  | 6.0 | 1.22 | 55  | 35         | <5 | 2.01 | <1 | 65 | <1  | 1796 | 4.01 | <10  | 1.18 | 1006        | 14 | <0.01  | 55 | 1410     | 32  | 15 <20  | 66  | 0.13 < 10 |     |     | 12 | 82  |
| 18    | 9270  | 1.1 | 0.35 | 5   | 205        | <5 | 0.63 | <1 | 15 | <1  | 480  | 0.88 | <10  | 0.12 | 249         | 3  |        | 11 | 100      | 8   | <5 <20  | 61  | 0.01 < 10 |     |     | <1 | 34  |
| 19    | 9271  | 1.6 | 0.32 | 5   | 150        | <5 | 0.47 | <1 | 21 | <1  | 708  | 0.92 | <10  | 0.08 | 185         | 5  | 0.01   | 14 | 170      | 8   | <5 <20  | 51  | 0.02 <10  |     |     | 1  | 24  |
| 20    | 9272  | 4.9 | 1.17 | <5  | <b>5</b> 5 | <5 | 1.56 | <1 | 60 | <1  | 1669 | 4.02 | <10  | 1.25 | 677         | 10 | <0.01  | 55 | 1560     | 22  | <5 <20  | 64  | 0.16 <10  | 564 | <10 | 11 | 97  |
|       |       |     |      |     |            |    |      |    |    |     |      |      |      |      |             |    |        |    |          |     |         |     |           |     | 40  |    | 70  |
| 21    | 9273  | 2.1 | 1.08 | <5  | 95         | <5 | 1.87 | <1 | 46 | <1  | 1100 | 3.80 | <10  | 1.08 | 772         |    | <0.01  |    | 1460     | 12  |         | 64  | 0.18 <10  |     | <10 | 9  | 72  |
| 22    | 9274  | 3.6 | 1.19 | <5  | 155        | <5 | 1.33 | <1 | 69 | <1  | 1968 | 3.81 | <10  | 1.45 | 646         |    | <0.01  | 59 | 1410     | 10  | <5 <20  | 54  | 0.15 < 10 |     |     |    | 94  |
| 23    | 9275  | 2.2 | 1.23 | 25  | 90         | <5 | 1.83 | 3  | 38 | <1  | 808  | 3.80 | <10  | 1.30 | 852         | _  | <0.01  | 59 | 1520     | 24  | 5 <20   | 66  | 0.12 <10  |     |     | 11 | 196 |
| 24    | 9276  | 2.7 | 0.93 | <5  | 290        | <5 | 1.29 | <1 | 52 | <1  | 1489 | 3.29 | <10  | 0.97 | 55 <b>5</b> | -  | <0.01  | 52 | 1000     | 12  | <5 <20  | 57  | 0.12 < 10 |     | <10 |    | 106 |
| 25    | 9277  | 1.8 | 1.23 | 5   | 75         | <5 | 1.42 | 2  | 39 | <1  | 889  | 3.90 | <10  | 1.29 | 624         | 5  | <0.01  | 37 | 1480     | 14  | <5 <20  | 49  | 0.13 <10  | 438 | <10 | 10 | 209 |
|       |       |     |      |     |            |    |      |    |    |     |      |      |      |      |             |    |        |    |          |     |         |     |           | 000 | .40 | 40 | 400 |
| 26    | 9278  | 1.1 | 1.46 | <5  | 395        | <5 | 1.96 | <1 | 27 | <1  | 493  | 3.80 | <10  | 1.74 | 955         | -  | <0.01  |    | 1410     | 16  | <5 <20  | 81  | 0.12 <10  |     |     |    | 186 |
| 27    | 9279  | 2.4 | 0.81 | <5  | 275        | <5 | 1.05 | <1 | 42 | <1  | 1165 | 3.14 | <10  | 0.80 | 516         | 8  | <0.01  | 40 |          | 12  | <5 <20  | 59  | 0.12 <10  |     |     | 8  | 116 |
| 28    | 9281  | 2.3 | 0.76 | <5  | 455        | <5 | 1.69 | <1 | 43 | <1  | 1205 | 3.24 | <10  | 0.77 | 658         | 7  | <0.01  | 49 | 1280     | 16  | <5 <20  | 71  | 0.12 <10  |     |     | 9  | 94  |
| 29    | 9282  | 1.4 | 0.31 | <5  | 290        | <5 | 0.80 | <1 | 15 | 34  | 476  | 0.90 | <10  | 0.07 | 400         | 3  |        | 11 | 160      | 12  | <5 <20  | 46  | 0.02 <10  |     |     | 2  | 32  |
| 30    | 9283  | 0.6 | 0.29 | <5  | 345        | <5 | 0.70 | <1 | 10 | 23  | 301  | 1.05 |      | 0.11 | 334         | 2  | 0.06   | 7  | 140      | 6   | <5 <20  | 50  | 0.02 <10  | 350 | <10 | 1  | 38  |
|       |       |     |      |     |            |    |      |    |    |     |      |      | Page | 1    |             |    |        |    |          |     |         |     |           |     |     |    |     |
|       |       |     |      |     |            |    |      |    |    |     |      |      |      |      |             |    |        |    |          |     |         |     |           |     |     |    |     |

#### ECO TECH LABORATORY LTD.


#### ICP CERTIFICATE OF ANALYSIS AS 2005-5119

| Et #.             | Tag #      | Ag    | A1 % | As             | Ва  | Bi | Ça % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn  | Mo Na%   | Ni         | p    | Pb  | Sb Sn  | Sr  | Ti% U     | v   | W   | Υ  | Zn  |
|-------------------|------------|-------|------|----------------|-----|----|------|----|----|-----|------|------|-----|------|-----|----------|------------|------|-----|--------|-----|-----------|-----|-----|----|-----|
| 31                | 9284       | 2.3   | 0.34 | <5             | 285 | <5 | 0.77 | <1 | 12 | 33  | 364  | 1.16 | <10 | 0.11 | 368 | 3 0.05   | 8          | 190  | 8   | <5 <20 | 74  | 0.01 <10  | 344 | <10 | 1  | 36  |
| 32                | 9285       | 2.1   | 0.33 | <5             | 380 | <5 | 0.87 | <1 | 26 | <1  | 860  | 1.43 | <10 | 0.14 | 401 | 5 0.02   | 15         | 190  | 16  | <5 <20 | 79  | 0.03 <10  | 378 | <10 | 2  | 46  |
| 33                | 9258       | 2.1   | 1.43 | <5             | 310 | <5 | 1.43 | <1 | 19 | <1  | 7068 | 3.25 | 10  | 1.05 | 462 | 4 < 0.01 | 22         | 2960 | <2  | <5 <20 | 83  | 0.07 <10  | 185 | <10 | 17 | 45  |
| 34                | 9280       | < 0.2 | 2.46 | <5             | 80  | 10 | 3.44 | <1 | 27 | 94  | 75   | 5.16 | <10 | 2.08 | 779 | 2 0.05   | <b>2</b> 2 | 1780 | 14  | 5 <20  | 65  | 0.21 <10  | 193 | <10 | 15 | 55  |
| 35                | 9269       | 0.2   | 0.88 | <del>9</del> 5 | 130 | 10 | 0.24 | <1 | 70 | 244 | 428  | >10  | <10 | 0.12 | 460 | 101 0.04 | 418        | 100  | 118 | 10 <20 | 15  | <0.01 <10 | 23  | 20  | 10 | 428 |
| QC DAT            | <u>'A:</u> |       |      |                |     |    |      |    |    |     |      |      |     |      |     |          |            |      |     |        |     |           |     |     |    |     |
| Resplit:          |            |       |      |                |     |    |      |    |    |     |      |      |     |      |     |          |            |      |     |        |     |           |     |     |    |     |
| 1                 | 9251       | 1.1   | 1.00 | 25             | 40  | <5 | 2.10 | <1 | 34 | <1  | 727  | 3.91 | 10  | 0.98 | 951 | 6 < 0.01 | 25         | 1520 | 54  | 5 <20  | 116 | 0.08 <10  | 262 | <10 | 17 | 51  |
| Repeat:           |            |       |      |                |     |    |      |    |    |     |      |      |     |      |     |          |            |      |     |        |     |           |     |     |    |     |
| 1                 | 9251       | 1.1   | 0.99 | 25             | 45  | <5 | 2.08 | <1 | 31 | <1  | 696  | 3.66 | 10  | 0.96 | 950 | 6 <0.01  | 23         | 1410 | 50  | <5 <20 | 125 | 0.08 < 10 |     | <10 | 16 | 49  |
| 10                | 9261       | 2.8   | 1.25 | 30             | 40  | <5 | 2.25 | <1 | 49 | <1  | 1128 | 4.41 | 10  | 1.32 | 992 | 8 <0.01  | 35         | 1330 | 144 | <5 <20 | 126 | 0.14 <10  |     | <10 | 14 | 105 |
| 19                | 9271       | 1.6   | 0.32 | <5             | 145 | <5 | 0.46 | <1 | 21 | <1  | 693  | 0.89 | <10 | 80.0 | 178 | 5 0.01   | 13         | 190  | 8   | <5 <20 | 51  | 0.02 <10  | 159 | <10 | 1  | 22  |
| Standar<br>GEO'05 |            | 1.5   | 1.72 | 50             | 130 | <5 | 1.61 | <1 | 19 | 60  | 83   | 3.80 | <10 | 0.91 | 692 | 1 0.02   | 29         | 710  | 20  | 5 <20  | 57  | 0.12 <10  | 70  | <10 | 10 | 74  |

Juita Jealouse

BC Certified Assayer

JJ/ga df/5101 XLS/05



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com

www.ecotechlab.com

### **CERTIFICATE OF ASSAY AS 2005-5120**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

14-Sep-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 35

Samples Submitted by: Allan Huard

|                   |       | Au    | Au     |                          |
|-------------------|-------|-------|--------|--------------------------|
| ET #              | Tag # | (g/t) | (oz/t) |                          |
| 1                 | 9391  | 0.50  | 0.015  |                          |
| 2                 | 9392  | 0.28  | 0.008  |                          |
| 2<br>3            | 9393  | 0.10  | 0.003  |                          |
| 4                 | 9394  | 0.21  | 0.006  |                          |
| 5                 | 9395  | 0.35  | 0.010  |                          |
| 5<br>6<br>7       | 9397  | 0.11  | 0.003  |                          |
| 7                 | 9398  | 0.08  | 0.002  |                          |
| 8<br><del>9</del> | 9399  | 0.04  | 0.001  |                          |
| 9                 | 9400  | 0.11  | 0.003  |                          |
| 10                | 9401  | 0.04  | 0.001  |                          |
| 11                | 9402  | 0.04  | 0.001  |                          |
| 12                | 9403  | 0.10  | 0.003  |                          |
| 13                | 9404  | 0.09  | 0.003  |                          |
| 14                | 9405  | 0.26  | 0.008  |                          |
| 15                | 9406  | 0.28  | 0.008  |                          |
| 16                | 9407  | 0.16  | 0.005  |                          |
| 17                | 9408  | 0.22  | 0.006  |                          |
| 18                | 9409  | 1.43  | 0.042  |                          |
| 19                | 9410  | 0.25  | 0.007  |                          |
| 20                | 9411  | 0.26  | 0.008  |                          |
| 21                | 9413  | 0.32  | 0.009  |                          |
| 22                | 9414  | 0.04  | 0.001  |                          |
| 23                | 9415  | 0.04  | 0.001  |                          |
| 24                | 9416  | 0.06  | 0.002  |                          |
| 25                | 9417  | 0.14  | 0.004  |                          |
| 26                | 9418  | 0.06  | 0.002  |                          |
| 27                | 9420  | 0.06  | 0.002  |                          |
| 28                | 9421  | 0.06  | 0.002  |                          |
|                   |       |       |        | ECO TECH LABORATORY LTD. |

Jutta Jealouse

|                           |                      | Au                   | Au                      |   |
|---------------------------|----------------------|----------------------|-------------------------|---|
| ET #.                     | Tag #                | (g/t)                | (oz/t)                  |   |
| 29                        | 9422                 | 0.11                 | 0.003                   | , |
| 30                        | 9423                 | 0.13                 | 0.004                   |   |
| 31                        | 9424                 | 0.20                 | 0.006                   |   |
| 32                        | 9425                 | 0.43                 | 0.013                   |   |
| 33                        | 9396                 | 0.43                 | 0.013                   |   |
| 34                        | 9419                 | <0.03                | <0.001                  |   |
| 35                        | 9412                 | 0.07                 | 0.002                   |   |
| QC DATA: Repeats: 1 10 18 | 9391<br>9401<br>9409 | 0.52<br>0.04<br>1.43 | 0.015<br>0.001<br>0.042 |   |
| 19                        | 9410                 | 0.29                 | 0.008                   |   |
| 32                        | 9425                 | 0.43                 | 0.013                   |   |
| 33                        | 9396                 | 0.43                 | 0.013                   |   |
| Resplit:<br>1             | 9391                 | 0,48                 | 0.014                   |   |
| <i>Standard:</i><br>PM176 |                      | 2.02                 | 0.059                   |   |

JJ/bw XLS/05 ECO FECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

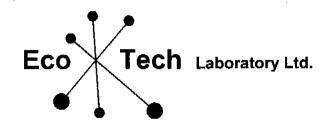
No. of samples received: 35 Sample type:Core Project #: 301 Shipment #: 35

Samples submitted by: Allan Huard

| Et #. | Tag # | Ag   | AI % | As  | Ва  | Bi       | Ca % | Cd | Со | Сг       | Cu          | Fe %         | <u>La</u> | Mg %         | Mn             | Мо   | Na %              | Ni        | Р            | Pb   | Sb Sn  |     | Ti% U     | V   |     |     | Zn   |
|-------|-------|------|------|-----|-----|----------|------|----|----|----------|-------------|--------------|-----------|--------------|----------------|------|-------------------|-----------|--------------|------|--------|-----|-----------|-----|-----|-----|------|
| 1     | 9391  | 8.1  | 1.27 | 90  | 10  | <5       | 2.51 | 3  | 19 | 39       | 7955        | 5.98         | 20        | 0.98         | 1889           | 3 -  | <0.01             | 418       | 1560         | 596  | <5 <20 | 128 | 0.16 <10  | 388 | <10 | 19  | 1601 |
| 2     | 9392  | 2.1  | 1.26 | 75  | 10  | <5       | 2.78 | <1 | 20 | 45       | 1050        | 3.84         | 30        | 1.12         | 1980           | 5 -  | <0.01             | 65        | 1440         | 300  | <5 <20 | 138 | 0.17 <10  |     |     |     | 241  |
| 3     | 9393  | 1.9  | 1.30 | 30  | 15  | <5       | 2.52 | <1 | 15 | 78       | 1676        | 3.29         | 10        | 0.78         | 1519           | 5 ·  | <0.01             | 98        | 1090         | 138  | <5 <20 | 132 | 0.12 <10  |     |     |     | 336  |
| 4     | 9394  | 4.1  | 0.94 | 40  | 5   | <5       | 1.80 | 1  | 37 | 75       | 3776        | 6.09         | 10        | 0.59         | 953            | 5 ·  | <0.01             | 210       | 1160         | 128  | <5 <20 | 101 | 0.08 <10  | 191 | <10 | 13  | 731  |
| 5     | 9395  | 4.0  | 1.46 | 50  | 10  | <5       | 3.13 | 2  | 19 | 72       | 4817        | 5.36         | 20        | 1.51         | 2056           | 9 -  | <0.01             | 266       | 860          | 222  | <5 <20 | 175 | 0.19 <10  | 510 | <10 | 19  | 928  |
|       |       |      |      |     |     |          |      |    |    |          |             |              |           |              |                |      |                   |           |              |      |        |     |           |     |     |     |      |
| 6     | 9397  | 3.2  | 1.09 | 35  | 15  | 5        | 2.56 | <1 | 16 | 74       |             | 3.74         | 30        | 0.86         |                |      | <0.01             |           |              | 296  | <5 <20 | 106 | 0.15 < 10 |     |     |     | 369  |
| 7     | 9398  | 4.0  | 1.22 | 35  | 15  | <5       | 2.65 | 2  | 17 | 90       | 2072        | 4.09         | 20        | 0.88         | 1106           | -    | <0.01             | . — .     |              | 328  |        | 117 | 0.19 <10  |     |     |     | 444  |
| 8     | 9399  | 3.1  | 1.14 | 20  | 15  | <5       | 2.86 | <1 | 14 | 53       | 1291        | 3.08         | 20        | 0.85         | 1139           | -    | <0.01             |           | 1250         | 296  | <5 <20 | 115 | 0.18 <10  |     | <10 | . – | 298  |
| 9     | 9400  | 4.0  | 1.38 | 15  | 5   | <5       | 5.14 | 11 | 17 | 73       | 3682        | 4.33         | 10        | 0.94         | 2248           | 5    | <0.01             | 204       | 1150         | 274  | <5 <20 | 137 | 0.15 <10  |     |     |     | 1090 |
| 10    | 9401  | 2.0  | 1.16 | 10  | 15  | 5        | 2.89 | 1  | 16 | 76       | 1178        | 4.09         | 20        | 1.00         | 1555           | 3    | <0.01             | 78        | 1380         | 206  | <5 <20 | 131 | 0.19 <10  | 318 | <10 | 21  | 300  |
|       |       |      |      |     |     |          |      |    |    |          |             |              |           |              |                |      |                   |           |              |      |        |     |           |     |     |     |      |
| 11    | 9402  | 2.2  | 1.33 | 10  | 15  | 5        | 2.19 | 2  | 15 | 74       | 1151        | 3.74         | 20        | 1.54         | 1521           | _    | <0.01             |           | 1540         | 214  |        | 105 | 0.22 <10  |     | <10 |     | 331  |
| 12    | 9403  | 2.2  | 1.56 | 10  | 15  | <5       | 2.04 | <1 | 17 | 40       | 2875        | 3.96         | 20        | 2.08         | 1799           | _    | <0.01             | -         | 1280         | 178  | <5 <20 | 138 | >10 <10   |     | <10 |     | 577  |
| 13    | 9404  | 2.7  | 1.48 | 10  | 10  | <5       | 2.22 | <1 | 21 | 74       | 2259        | 4.77         | 20        | 1.81         | 1806           | 7    | <0.01             | -         |              | 196  | <5 <20 | 128 | >10 <10   |     | <10 |     | 466  |
| 14    | 9405  | 2.3  | 1.15 | 15  | 15  | <5       | 2.95 | <1 | 16 | 49       | 1194        | 3.85         | 20        | 0.87         | 1912           | 13   | <0.01             | 77        | 1270         | 208  | <5 <20 | 160 | 0.15 <10  |     | <10 |     | 269  |
| 15    | 9406  | 2.7  | 1.56 | 10  | 15  | <5       | 2.78 | 2  | 14 | 62       | 947         | 4.39         | 20        | 1.59         | 3366           | 6    | <0.01             | 62        | 1190         | 392  | <5 <20 | 141 | 0.16 <10  | 297 | <10 | 18  | 361  |
|       |       |      |      |     |     |          |      |    |    |          |             |              |           |              |                |      |                   |           |              |      |        | 470 | 0.45 -40  | 204 | -40 | 40  | 4040 |
| 16    | 9407  | 8.0  | 1.20 | 20  |     |          | 4.46 |    |    | 51       | <b>8</b> 65 | 4.64         | 20        |              | 6705           |      | <0.01             |           | 1470         | 1048 | <5 <20 | 178 | 0.15 < 10 |     |     |     | 1010 |
| 17    | 9408  | 8.4  | 1.09 | 25  | 10  |          | 3.46 | 27 |    | 73       | 650         | 4.55         | 20        | 0.81         |                | _    | <0.01             | 43        |              | 1910 | <5 <20 | 179 | 0.15 < 10 |     |     |     | 1662 |
| 18    | 9409  | 11.1 | 1.23 |     | 125 | -        | 1.50 | 12 |    | 54       | 7696        | >10          | <10       |              | 4350           |      | <0.01             | 25        | <10          | 326  | <5 <20 | 102 | 0.04 < 10 |     | <10 |     | 782  |
| 19    | 9410  | 9.6  | 1.61 | 20  |     | 15       | 2.92 |    |    | 116      | 2854        | 7.93         | 100       | 0.81         |                |      | <0.01             | 166       | 3160         | 644  | <5 <20 | 104 | 0.13 < 10 |     |     |     | 1106 |
| 20    | 9411  | 5.6  | 0.54 | 10  | <5  | <5       | 0.65 | 1  | 34 | 109      | 4963        | >10          | 10        | 0.17         | 735            | 5    | <0.01             | 279       | 1450         | 106  | <5 <20 | 49  | 0.06 <10  | 88  | 10  | 16  | 933  |
|       |       |      |      | 4.5 |     |          | 5.00 | _  | 24 | 440      | 4444        | . 10         | 20        | 0.07         | 705            |      | <sub>2</sub> 0.04 | 256       | 1400         | 108  | <5 <20 | 63  | 0.10 <10  | 13/ | 10  | 18  | 827  |
| 21    | 9413  | 4.6  | 0.68 | 15  | <5  | <5       | 0.93 | 1  |    | 118      | 4444        | >10<br>3.76  | 20<br>20  | 0.27<br>1.19 | 795<br>1772    | •    | <0.01<br><0.01    | 256<br>47 | 1460<br>1610 | 216  | <5 <20 | 179 | 0.14 < 10 |     | <10 |     | 224  |
| 22    | 9414  | 2.7  | 1.28 | 10  | 15  | 10       | 3.23 | <1 |    | 51       | 762         |              |           |              | —              | -    | <0.01             | 34        | 860          | 108  | <5 <20 | 335 | 0.03 <10  |     |     | 26  | 332  |
| 23    | 9415  | 0.7  | 1.02 | 15  | 20  | <5<br>-5 | 7.85 | 8  | 8  | 50       | 544         | 2.56         | 10        |              | 4378           |      |                   | 55        | 1230         | 102  | <5 <20 | 151 | 0.03 < 10 |     | <10 |     | 250  |
| 24    | 9416  | 1.3  | 0.92 | 10  |     | <5       | 2.51 |    | 11 | 40       | 984         | 3.00         | 10        |              | 1345           | _    | <0.01             |           |              |      | <5 <20 | 77  | 0.09 < 10 |     |     |     | 484  |
| 25    | 9417  | 2.4  | 1.12 | 10  | 10  | <5       | 1.52 | 1  | 14 | 64       | 2442        | 4.12         | 20        | 1.12         | 1081           | 5    | <0.01             | 129       | 1330         | 88   | <5 <20 | 11  | 0.09 < 10 | 241 | ~10 | 10  | 404  |
| 20    | 0440  | 1.2  | 0.06 | E   | 16  | ~ =      | 2.24 | <1 | 10 | 42       | 960         | 3.11         | 20        | 0.03         | 1246           | 7    | <0.01             | 52        | 1250         | 120  | <5 <20 | 114 | 0.05 < 10 | 164 | <10 | 16  | 223  |
| 26    | 9418  | 1.3  | 0.96 | 5   |     | < 5<br>5 | 2.24 |    |    | 42<br>95 | 594         | 3.11<br>2.41 | 10        |              | 1132           |      | <0.01             | 40        | 900          | 264  | <5 <20 | 89  | 0.09 < 10 |     | <10 |     | 286  |
| 27    | 9420  | 3.5  | 0.81 | 10  | 25  | -        | 2.04 | 4  | 9  |          |             |              |           |              |                |      | <0.01             | 73        | 1580         | 74   | <5 <20 | 138 | 0.09 < 10 |     | <10 |     | 278  |
| 28    | 9421  | 1.2  | 0.98 | 10  | 10  | _        |      | <1 |    | 55       | 1252        | 4.10         | 20        | 1.20         |                | -    | <0.01             | 49        | 2230         | 80   | <5 <20 | 138 | 0.14 < 10 |     | <10 |     | 255  |
| 29    | 9422  | 0.8  | 1.81 | 25  | 10  |          | 2.96 | <1 |    | 58       | 879         | 6.39         | 20        |              | 1916           | -    | <0.01             |           |              | 804  | <5 <20 | 157 | 0.13 < 10 |     |     |     | 652  |
| 30    | 9423  | 5.1  | 1.33 | 15  | 10  | 10       | 3.23 | 2  | 19 | 65       | 2986        | 5.30         | 20        |              | 2084<br>Page 1 | - 11 | ~U.UT             | 107       | 1040         | QU4  | ~0 ~20 | 157 | 0.00 < 10 | JU2 | ~10 | .,  | 002  |
|       |       |      |      |     |     |          |      |    |    |          |             |              |           | •            | age i          |      |                   |           |              |      |        |     |           |     |     |     |      |

ECO TECH LABORATORY LTD.

#### ICP CERTIFICATE OF ANALYSIS AS 2005-5120


Falconbridge Limited

ECO TECH LABORATORY LTD.
Jutta Jeglouse
BC Certified Assayer

| Et #.                           | Tag#                                 | Ag                                | AI %                                 | As                         | Ва                           | Bì                         | Ca %                                 | Cd                       | Co                         | Cr                          | Cu                               | Fe %                                | La                           | Mg %                                 | Mn                                | Мо           | Na %                                     | Ni                          | P                                  | Pb                              | Sb                | \$n               | Sr                           | Ti %                                   | Ü                 | V                              | W                               | Υ                         | Zn                            |
|---------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|----------------------------|------------------------------|----------------------------|--------------------------------------|--------------------------|----------------------------|-----------------------------|----------------------------------|-------------------------------------|------------------------------|--------------------------------------|-----------------------------------|--------------|------------------------------------------|-----------------------------|------------------------------------|---------------------------------|-------------------|-------------------|------------------------------|----------------------------------------|-------------------|--------------------------------|---------------------------------|---------------------------|-------------------------------|
| 31<br>32<br>33<br>34<br>35      | 9424<br>9425<br>9396<br>9419<br>9412 | 8.9<br>13.6<br>2.3<br><0.2<br>0.2 | 0.92<br>0.65<br>1.39<br>2.55<br>0.81 | 40<br>40<br><5<br>10<br>95 | 10<br>10<br>250<br>55<br>130 | 20<br>15<br><5<br><5<br><5 | 2.19<br>2.01<br>1.36<br>6.37<br>0.24 | 4<br>4<br><1<br><1<br><1 | 15<br>16<br>11<br>25<br>69 | 93<br>81<br>24<br>38<br>235 | 806<br>952<br>7247<br>172<br>439 | 5.19<br>5.06<br>3.54<br>5.26<br>>10 | 20<br>20<br>10<br><10<br><10 | 0.94<br>0.89<br>1.13<br>2.35<br>0.11 | 1269<br>1079<br>438<br>885<br>478 | 9<br>2<br><1 | <0.01<br><0.01<br><0.01<br><0.01<br>0.04 | 53<br>62<br>22<br>19<br>411 | 1480<br>1440<br>2920<br>1380<br>80 | 2178<br>8614<br>28<br>20<br>110 | <5 <5 <5 <5 <5 <5 | <20<br><20        | 96<br>110<br>71<br>109<br>12 | 0.02<br><0.01<br>0.08<br>0.21<br><0.01 | <10<br><10<br><10 | 268<br>185<br>184<br>179<br>23 | <10<br><10<br><10<br><10<br><10 | 16<br>10<br>5<br>16<br>11 | 375<br>377<br>63<br>65<br>393 |
| QC DAI                          |                                      |                                   |                                      |                            |                              |                            |                                      |                          |                            |                             |                                  |                                     |                              |                                      |                                   |              |                                          |                             |                                    |                                 |                   |                   |                              |                                        |                   |                                |                                 |                           |                               |
| Resplit:                        | 9391                                 | 8.3                               | 1.39                                 | 100                        | 5                            | <5                         | 2.82                                 | 4                        | 27                         | 43                          | 7992                             | 6.94                                | 20                           | 1.10                                 | 2014                              | 3            | <0.01                                    | 422                         | 1640                               | 628                             | <5                | <20               | 143                          | 0.18                                   | <10               | 417                            | <10                             | 22                        | 1599                          |
| <b>Repeat:</b><br>1<br>10<br>19 | 9391<br>9401<br>9410                 | 8.0<br>2.0<br>9.6                 | 1.38<br>1.17<br>1.49                 | 90<br>10<br>20             | 10<br>15<br>10               | <5<br>5<br>15              | 2.62<br>2.90<br>2.85                 | 3<br>1<br>12             | 22<br>16<br>28             | 43<br>74<br>104             | 8028<br>1177<br>2698             | 6.40<br>4.09<br>7.79                | 20<br>20<br>90               | 1.11<br>0.99<br>0.75                 | 1868<br>1558<br>2139              | -            | <0.01<br><0.01<br><0.01                  | 438<br>78<br>152            | 1570<br>1420<br>3020               | 582<br>208<br>622               | <5                | <20<br><20<br><20 | 141<br>130<br>93             |                                        | <10               | 319                            | <10<br><10<br><10               |                           | 1606<br>301<br>1034           |
| Standar<br>GEO'05               |                                      | 1.5                               | 1.54                                 | 60                         | 150                          | <5                         | 1.86                                 | <1                       | 20                         | 59                          | 89                               | 4.00                                | <10                          | 1.12                                 | 781                               | <1           | 0.02                                     | 30                          | 830                                | 20                              | <5                | <20               | <b>5</b> 5                   | 0.11                                   | <10               | 73                             | <10                             | 10                        | 78                            |

JJ/ga df/n5210/1004m XLS/05

Page 2



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com

www.ecotechlab.com

# CERTIFICATE OF ASSAY AS 2005-5121

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

29-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 36

Samples Submitted by: Allan Huard

|             |       | Au    | Au     |                          |
|-------------|-------|-------|--------|--------------------------|
| ET #.       | Tag # | (g/t) | (oz/t) |                          |
| 1           | 9426  | 0.08  | 0.002  |                          |
| 2           | 9427  | 0.17  | 0.005  |                          |
| 2<br>3      | 9428  | 0.16  | 0.005  |                          |
| 4           | 9429  | 0.30  | 0.009  |                          |
|             | 9430  | 0.38  | 0.011  |                          |
| 5<br>6<br>7 | 9432  | 0.38  | 0.011  |                          |
|             | 9433  | 0.18  | 0.005  |                          |
| 8<br>9      | 9434  | 0.25  | 0.007  |                          |
| 9           | 9435  | 0.28  | 0.008  |                          |
| 10          | 9436  | 0.22  | 0.006  |                          |
| 11          | 9437  | 0.21  | 0.006  |                          |
| 12          | 9438  | 0.23  | 0.007  |                          |
| 13          | 9439  | 0,20  | 0.006  |                          |
| 14          | 9440  | 0.12  | 0.003  |                          |
| 15          | 9441  | 0.18  | 0.005  |                          |
| 16          | 9442  | 0.22  | 0.006  |                          |
| 17          | 9443  | 0.27  | 0.008  |                          |
| 18          | 9444  | 0.24  | 0.007  |                          |
| 19          | 9445  | 0.18  | 0.005  |                          |
| 20          | 9446  | 0.13  | 0.004  |                          |
| 21          | 9448  | 0.20  | 0.006  |                          |
| 22          | 9449  | 0.22  | 0.006  |                          |
| 23          | 9450  | 0.30  | 0.009  |                          |
| 24          | 9451  | 0.22  | 0.006  |                          |
| 25          | 9452  | 0.27  | 0.008  |                          |
| 26          | 9453  | 0.19  | 0.006  | $\wedge$                 |
| 27          | 9455  | 0.23  | 0.007  | Lo. Roy Los              |
| 28          | 9456  | 0.67  | 0.020  | ayone Dicico / per       |
|             |       |       |        | ECO TECH LABORATORY LTD. |

Jutta Jealouse

# Falconbridge Limited AS5-5121

|           |       | Au    | Au     |  |
|-----------|-------|-------|--------|--|
| ET #.     | Tag # | (g/t) | (oz/t) |  |
| 29        | 9457  | 0.32  | 0.009  |  |
| 30        | 9458  | 0.51  | 0.015  |  |
| 31        | 9459  | 0.36  | 0.010  |  |
| 32        | 9460  | Q.18  | 0.005  |  |
| 33        | 9431  | 0.38  | 0.011  |  |
| 34        | 9454  | <0.03 | <0.001 |  |
| 35        | 9447  | 0.07  | 0.002  |  |
|           |       |       |        |  |
| QC DATA:  |       |       |        |  |
| Repeats:  |       |       |        |  |
| 1         | 9426  | 0.09  | 0.003  |  |
| 5         | 9430  | 0.37  | 0.011  |  |
| 6         | 9432  | 0.39  | 0.011  |  |
| 10        | 9436  | 0.22  | 0.006  |  |
| 19        | 9445  | 0.16  | 0.005  |  |
| 28        | 9456  | 0.68  | 0.020  |  |
| Resplit:  |       |       |        |  |
| i         | 9426  | 0.10  | 0.003  |  |
| Standard: |       |       |        |  |
| PM176     |       | 2.01  | 0.059  |  |
|           |       |       |        |  |

JJ/bw XL\$/05 ECO TECH LABORATORY LTD.
Julia Jealouse

ECO TECH LABORATORY LTD. 10041 Dallas Drive

KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

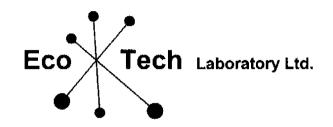
ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core Project #: 301 Shipment #: 36

Samples submitted by: Alian Huard

| Et #. | Tag#  | Ag   | Al % | As | Ва  | Bi            | Ca % | Cd | Co  | Cr  | Cu   | Fe % | La   | Mg %         | Mn         | Mo        | Na %         | Ni | P    | Pb  | Sb Sn            | Sr       | Ti% U                | V        | W                | Υ        | Zn            |
|-------|-------|------|------|----|-----|---------------|------|----|-----|-----|------|------|------|--------------|------------|-----------|--------------|----|------|-----|------------------|----------|----------------------|----------|------------------|----------|---------------|
| 1     | 9426  | 0.4  | 0.76 | 30 | 45  | <5            | 3.20 | <1 | 14  | 100 | 287  | 4.29 | <10  | 0.64         | 1204       | 59        | 0.03         | 6  | 1570 | 20  | <5 <20           | 105      | <0.01 <10            | 61       | <sup>~</sup> <10 | 9        | 47            |
| 2     | 9427  | 1.5  | 0.34 | 5  | 20  | <5            | 1.27 | <1 | 12  | 77  | 1015 | 3.34 | <10  | 0.22         | 498        | 104       | <0.01        | 4  | 960  | 26  | <5 <20           | 27       | <0.01 <10            | 8        | <10              | <1       | 32            |
| 3     | 9428  | 1.3  | 0.38 | 10 | 20  | <5            | 1.14 | <1 | 10  | 140 | 853  | 3.40 | <10  | 0.23         | 521        | 209       | <0.01        | 5  | 870  | 32  | <5 <20           | 28       | <0.01 <10            | 7        | <10              | <1       | 36            |
| 4     | 9429  | 2.0  | 0.35 | 20 | 20  | <5            | 1.35 | <1 | 12  | 101 | 1307 | 3.89 | <10  | 0.33         | 723        | 139       | <0.01        | 4  | 940  | 44  | 5 <20            |          | <0.01 <10            | 6        | <10              |          | 41            |
| 5     | 9430  | 1.9  | 0.48 | 10 | 30  | <5            | 1.30 | <1 | 13  | 133 | 1487 | 3.93 | <10  | 0.31         | 445        | 151       | 0.01         | 5  | 1050 | 42  | <5 <20           | 22       | <0.01 <10            | 13       | <10              | <1       | 61            |
| _     |       |      |      |    |     | _             |      |    | 4.4 | 400 | 074  | 2.04 | -40  | 0.54         | 740        | 204       | 0.01         | E  | 1370 | 14  | <5 <20           | 38       | <0.01 <10            | 23       | <10              | 3        | 89            |
| 6     | 9432  |      | 0.71 | 10 | 75  | <5            | 2.36 | <1 | 11  | 103 | 971  | 2.64 | <10  | 0.54         | 718        | 291       | 0.01         | 12 |      | 56  | <5 <20           |          | <0.01 <10            | 89       | <10              | _        | 214           |
| 7     | 9433  | 1.8  | 1.32 | 10 | 35  | <5            | 1.70 | <1 | 24  | 96  | 1049 | 6.21 | <10  | 1.18         | 527        | 89<br>168 | 0.02         | 9  | 3040 | 58  | <5 <20           |          | <0.01 <10            | 67       | <10              | _        | 134           |
| 8     | 9434  | 2.2  | 1.24 | 10 | 35  | <5            | 1.53 | <1 | 22  | 93  | 1268 | 5.48 | <10  | 1.08<br>0.75 | 512<br>713 | 76        | 0.01<br>0.02 | 6  | 2570 | 30  | <5 <20           |          | <0.01 <10            | 47       | <10              | 6        | 73            |
| 9     | 9435  | 2.6  | 1.14 | 5  | 40  | <5            | 2.56 | <1 | 18  | 91  | 967  | 4.88 | <10  |              |            |           |              | 8  |      | 28  | <5 <20           |          | <0.01 <10            | 45       | <10              |          | 143           |
| 10    | 9436  | 2.2  | 1.26 | 10 | 30  | <5            | 2.60 | <1 | 18  | 63  | 730  | 5.46 | <10  | 1.04         | 985        | 00        | <0.01        | 0  | 2010 | 20  | ~3 ~20           | 31       | ~0.01 ~10            | 40       | ~10              | J        | 145           |
| 11    | 9437  | 1.8  | 1.32 | 15 | 35  | <5            | 3.19 | <1 | 16  | 78  | 662  | 4.70 | <10  | 1.06         | 1162       | 47        | <0.01        | 10 | 2620 | 24  | <5 <20           | 37       | <0.01 <10            | 48       | <10              | 8        | 154           |
| 12    | 9438  | 2.9  | 1.22 | 15 | 30  | <b>&lt;</b> 5 | 3.55 | <1 | 17  | 93  | 812  | 5.02 | <10  | 0.97         | 1293       | 148       | < 0.01       | 7  | 2300 | 42  | <5 <20           | 37       | <0.01 <10            | 38       | <10              | 7        | 218           |
| 13    | 9439  | 2.9  | 1.03 | 10 | 35  | <5            | 3.48 | 4  | 14  | 73  | 662  | 4.32 | <10  | 0.78         | 1225       | 99        | < 0.01       | 5  | 2390 | 72  | <5 <20           | 42       | <0.01 <10            | 34       | <10              | 8        | 235           |
| 14    | 9440  | 3.9  | 0.87 | 15 | 35  | <5            | 1.72 | 2  | 14  | 81  | 652  | 4.20 | <10  | 0.63         | 662        | 134       | 0.01         | 4  | 2390 | 204 | <5 <20           | 25       | <0.01 <10            | 39       | <10              | 7        | 145           |
| 15    | 9441  | 2.8  | 1.01 | 15 | 45  | <5            | 1.22 | <1 | 12  | 119 | 624  | 3.64 | <10  | 0.69         | 690        | 47        | 0.03         | 3  | 2170 | 36  | <5 <20           | 24       | <0.01 <10            | 46       | <10              | 9        | 94            |
|       |       |      |      |    |     |               |      |    |     |     |      |      |      |              |            |           |              |    |      | 70  | ·F ·00           |          | 0.04 440             | 20       | -10              | 10.      | 1150          |
| 16    | 9442  | 2.7  | 0.96 | 15 | 30  | <5            | 1.83 | 19 | 16  | 90  | 715  | 4.56 | <10  | 0.72         | 944        | 54        | 0.01         |    | 2100 | 72  | <5 <20           | 27       | 0.04 < 10            | 39       |                  |          |               |
| 17    | 9443  | 2.9  | 1.00 | 15 | 35  | <5            | 1.40 | <1 | 18  | 95  | 899  | 4.47 | <10  | 0.67         | 673        | 69        | 0.01         | 5  |      | 32  | <5 <20           | 25       | 0.08 < 10            | 40       | <10<br><10       | 12<br>13 | 109<br>93     |
| 18    | 9444  | 1.9  | 1.10 | 10 | 45  | <5            | 2.55 | <1 | 19  | 66  | 650  | 4.65 | <10  | 0.76         | 969        | 79        | 0.02         | 5  | 1880 | 20  | <5 <20           | 44       | 0.10 <10<br>0.09 <10 | 42<br>50 | <10              |          | 65            |
| 19    | 9445  | 1.4  | 1.02 | 15 | 35  | <5            | 1.48 | <1 | 18  | 87  | 558  | 4.54 | <10  | 0.68         | 702        | 41        | 0.03         | 6  | 1940 | 26  | <5 <20<br><5 <20 | 29<br>31 | 0.09 < 10            |          | <10              |          | 94            |
| 20    | 9446  | 1.6  | 0.96 | 15 | 35  | <5            | 2.38 | <1 | 19  | 90  | 692  | 4.60 | <10  | 0.73         | 993        | 60        | 0.02         | 6. | 1890 | 54  | <0 <20           | 31       | 0.00 ~10             | 4-4      | 10               | • •      | 37            |
| 21    | 9448  | 3.8  | 0.94 | 15 | 30  | <5            | 1.93 | 7  | 20  | 107 | 954  | 4.63 | <10  | 0.66         | 1130       | 76        | <0.01        | 5  | 1950 | 60  | <5 <20           | 23       | 0.08 <10             | 38       | <10              | 11       | 458           |
| 22    | 9449  | 2.0  | 0.98 | 15 | 75  | <5            | 2.37 | <1 | 13  | 74  | 521  | 3.24 | <10  | 0.77         | 1352       | 129       | <0.01        | 6  | 1840 | 16  | <5 <20           | 35       | 0.08 < 10            | 30       | <10              | 12       | 152           |
| 23    | 9450  | 5.2  | 0.87 | 15 | 30  | <5            | 2.05 | 11 | 20  | 149 | 1498 | 5.00 | <10  | 0.55         | 1143       | 88        | <0.01        | 8  | 1810 | 54  | <5 <20           | 21       | 0.08 <10             | 30       | <10              | 10       | 605           |
| 24    | 9451  | 4.9  | 0.87 | 15 | 30  | <5            | 2.38 | 1  | 17  | 65  | 1014 | 5.32 | <10  | 0.59         | 996        | 103       | < 0.01       | 6  | 1880 | 112 | <5 <20           | 29       | 0.07 <10             | 36       | <10              | 12       | 173           |
| 25    | 9452  | 2.3  | 1.00 | 10 | 55  | <5            | 3.03 | <1 | 17  | 104 | 946  | 3.79 | <10  | 0.65         | 934        | 202       | 0.02         | 6  | 1950 | 26  | <5 <20           | 51       | 0.10 <10             | 38       | <10              | 16       | 119           |
|       | 0 102 |      |      |    | ••• |               |      |    |     |     |      |      |      |              |            |           |              |    |      |     |                  |          |                      |          |                  |          |               |
| 26    | 9453  | 1.7  | 0.92 | 15 | 50  | <5            | 3.47 | 7  | 19  | 112 | 770  | 4.15 | <10  | 0.60         | 819        | 411       | 0.02         | 6  |      | 264 | <5 <20           | 53       |                      | 39       | <10              |          | 381           |
| 27    | 9455  | 1.0  | 1.10 | 15 | 75  | <5            | 2.33 | <1 | 18  | 122 | 731  | 4.41 | <10  | 0.72         | 703        | 147       | 0.02         | 6  | 2060 | 22  | <5 <20           | 40       |                      | 43       | <10              |          | 66            |
| 28    | 9456  | 2.5  | 0.86 | 20 | 40  | <5            | 2.26 | <1 | 18  | 107 | 1741 | 4.73 | <10  | 0.62         | 778        |           | <0.01        | 7  |      | 16  | <5 <20           | 33       | 0.08 < 10            | 33       | <10              |          | - 66<br>- 400 |
| 29    | 9457  | 3.8  | 0.78 | 15 | 30  | <5            | 2.42 | <1 | 20  | 123 | 1468 | 4.27 | <10  | 0.58         | 967        | -         | <0.01        | 6  | 1960 | 32  | <5 <20           | 47       | 0.06 <10             | 34       | <10              | 12       | 106           |
| 30    | 9458  | 23.3 | 0.50 | 20 | 20  | <5            | 2.30 | 5  | 15  | 98  | 1500 | 4.79 | <10  | 0.33         | 1061       | 124       | <0.01        | 7  | 1680 | 158 | 10 <20           | 30       | 0.04 <10             | 28       | <10              | 7        | 326           |
|       |       |      |      |    |     |               |      |    |     |     |      |      | Page | ı            |            |           |              |    |      |     |                  |          |                      |          |                  |          |               |

#### ECO TECH LABORATORY LTD.


#### ICP CERTIFICATE OF ANALYSIS AS 2005-5121

| Et #.             | Tag #      | Ag    | AI % | As  | Ba  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn   | Мо  | Na %  | Ni  | P_   | Pb  | Sb   | Sn  | Sr  | Ti %    | U    | ٧  | W   | Y  | Zn         |
|-------------------|------------|-------|------|-----|-----|----|------|----|----|-----|------|------|-----|------|------|-----|-------|-----|------|-----|------|-----|-----|---------|------|----|-----|----|------------|
| 31                | 9459       | 10.2  | 0.68 | 25  | 35  | <5 | 3.01 | 14 | 15 | 110 | 1319 | 4.50 | <10 | 0.46 | 1370 | 589 | <0.01 | 6   | 1840 | 82  | <5 · | <20 | 26  | 0.04 <  |      | 33 | <10 |    | 706        |
| 32                | 9460       | 4.3   | 0.89 | 25  | 55  | <5 | 2.36 | <1 | 17 | 86  | 1068 | 4.34 | <10 | 0.68 | 1379 | 105 | <0.01 | 7   | 2180 | 30  | <5 · | <20 | 22  | 0.06 <  | 10   | 38 | <10 | 11 | 144        |
| 33                | 9431       | 1.2   | 1.11 | <5  | 105 | <5 | 1.74 | <1 | 16 | 36  | 4156 | 4.00 | <10 | 1.17 | 758  | 4   | 0.16  | 19  | 1520 | 20  | <5   | <20 | 91  | 0.15 <  | 10 1 | 67 | <10 | 17 | 51         |
| 34                | 9454       | < 0.2 | 2.35 | 35  | 95  | <5 | 7.70 | <1 | 40 | 88  | 114  | 7.90 | <10 | 1.82 | 967  | <1  | 0.02  | 22  | 2140 | 34  | <5   | <20 | 101 | 0.21 <  |      |    |     | 21 | 68         |
| 35                | 9447       | 0.2   | 0.77 | 110 | 150 | <5 | 0.30 | <1 | 61 | 230 | 429  | >10  | <10 | 0.12 | 436  | 121 | 0.04  | 465 | 100  | 100 | <5 · | <20 | 11  | <0.01 < | 10   | 25 | <10 | <1 | 473        |
| QC DAT            | <u>[Α:</u> |       |      |     |     |    |      |    |    |     |      |      |     |      |      |     |       |     |      |     |      |     |     |         |      |    |     |    |            |
| Resplit:          | :<br>9426  | 0.4   | 0.75 | 35  | 40  | <5 | 3.44 | <1 | 15 | 68  | 271  | 4.48 | <10 | 0.66 | 1252 | 63  | 0.03  | 7   | 1730 | 25  | <5   | <20 | 110 | <0.01 < | 10   | 60 | <10 | 10 | 58         |
| Repeat:           | :          |       |      |     |     |    |      |    |    |     |      |      |     |      |      |     |       |     |      |     |      |     |     |         |      |    |     |    |            |
| 1                 | 9426       | 0.4   | 0.77 | 30  | 45  | <5 | 3.08 | <1 | 14 | 100 | 276  | 4.16 | <10 | 0.63 | 1160 | 56  | 0.03  | 6   | 1520 | 20  | <5   | <20 |     | <0.01 < |      | -  | <10 | 9  | <b>4</b> 6 |
| 10                | 9436       | 2.2   | 1.30 | 10  | 30  | <5 | 2.64 | <1 | 18 | 65  | 746  | 5.61 | <10 | 1.05 | 998  | 73  | <0.01 | 7   | 2670 | 30  | _    | <20 |     | <0.01 < |      |    | <10 | 5  | 149        |
| 19                | 9445       | 1.4   | 1.09 | 10  | 45  | <5 | 1.58 | <1 | 19 | 94  | 565  | 4.81 | <10 | 0.71 | 732  | 44  | 0.03  | 5   | 2080 | 32  | <5   | <20 | 32  | 0.11 <  | 10   | 55 | <10 | 14 | 71         |
| Standar<br>GEO'05 |            | 1.5   | 1.24 | 60  | 155 | <5 | 1.64 | <1 | 20 | 60  | 83   | 4.09 | <10 | 0.61 | 645  | <1  | 0.02  | 32  | 850  | 24  | <5   | <20 | 53  | 0.10 <  | :10  | 72 | <10 | 11 | 76         |
|                   |            | ·     |      |     |     |    |      |    |    |     |      |      |     |      |      |     |       |     |      |     |      |     |     |         |      |    |     |    |            |

ECO/TECH LABORATORY LTD.
Jutta Jealouse
BC Certified Assayer

Pb Sb Sn Sr Ti % U V W Y Zn

JJ/ga df/5101 XLS/05



10041 Dalias Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5122**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

1-Sep-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 37

Samples Submitted by: Allan Huard

| ET #.             | Tag #         | Au<br>(g/t) | Au<br>(oz/t) | Ag<br>(g/t) | Ag<br>(oz/t) | Cu<br>(%) |  |
|-------------------|---------------|-------------|--------------|-------------|--------------|-----------|--|
| <u> </u>          | 9461          | 0.16        | 0.005        | (9,4)       | (02/1)       | (70)      |  |
| 2                 | 9462          | 0.10        | 0.025        | 50.1        | 1.46         | 1.88      |  |
| 2<br>3            | 9463          | 0.58        | 0.023        | 30.1        | 1.40         | 1.00      |  |
|                   | 9464          | 0.33        | 0.010        |             |              |           |  |
| <del>4</del><br>5 | 9465          | 0.28        | 0.008        |             |              |           |  |
| 4<br>5<br>6<br>7  | 9 <b>4</b> 63 | 0.56        | 0.016        |             |              |           |  |
| 7                 | 9468          | 0.67        | 0.020        |             |              |           |  |
|                   | 9469          | 0.35        | 0.020        |             |              |           |  |
| 8<br>9            | 9470          | 0.33        | 0.010        |             |              |           |  |
|                   | 9471          | 0.25        | 0.007        |             |              |           |  |
| 10<br>11          | 9471          | 1.26        | 0.037        |             |              |           |  |
| 12                | 9473          | 0.50        | 0.037        |             |              |           |  |
|                   | 9474          | 0.53        | 0.015        |             |              |           |  |
| 13                |               | 0.38        | 0.013        |             |              |           |  |
| 14                | 9475          | 0.83        |              |             |              |           |  |
| 15                | 9476          |             | 0.024        |             |              |           |  |
| 16                | 9477          | 0.84        | 0.024        |             |              |           |  |
| 17                | 9478          | 0.51        | 0.015        |             |              |           |  |
| 18                | 9479          | 0.45        | 0.013        |             |              |           |  |
| 19                | 9480          | 0.54        | 0.016        |             |              |           |  |
| 20                | 9481          | 0.33        | 0.010        |             |              |           |  |
| 21                | 9483          | 0.40        | 0.012        |             |              |           |  |
| 22                | 9484          | 0.53        | 0.015        |             |              |           |  |
| 23                | 9485          | 0.44        | 0.013        |             |              |           |  |
| 24                | 9486          | 0.47        | 0.014        |             |              |           |  |
| 25                | 9487          | 0.50        | 0.015        |             |              |           |  |
| 26                | 9488          | 0.69        | 0.020        | /           | < \ \ \ \ /  | 1         |  |
| 27                | 9490          | 0.55        | 0.016        |             | XI)          | 1         |  |

ECO TECH MABORATORY LTD.

dutta Jediouse

B.C. Certified Assayer

|           |      | Au    | Au      | Ag    | Ag     | Cu  |      |                  |
|-----------|------|-------|---------|-------|--------|-----|------|------------------|
| ET#.      | Tag# | (g/t) | (oz/t)  | (g/t) | (oz/t) | (%) |      | Chicken District |
| 28        | 9491 | 0.84  | 0.024   |       |        |     |      |                  |
| 29        | 9492 | 0.86  | 0.025   |       |        |     |      |                  |
| 30        | 9493 | 0.61  | 0.018   |       |        |     |      |                  |
| 31        | 9494 | 0.72  | 0.021   |       |        |     |      |                  |
| 32        | 9495 | 0.88  | 0.026   |       |        |     |      |                  |
| 33        | 9466 | 0.39  | 0.011   |       |        |     |      |                  |
| 34        | 9489 | <0.03 | < 0.001 |       |        |     |      |                  |
| 35        | 9482 | 0.07  | 0.002   |       |        |     |      |                  |
|           |      |       |         |       |        |     |      |                  |
| QC DATA:  |      |       |         |       |        |     |      |                  |
| Repeats:  | •    |       |         |       |        |     |      |                  |
| 1         | 9461 | 0.16  | 0.005   |       |        |     |      |                  |
| 7         | 9468 | 0.68  | 0.020   |       |        |     |      |                  |
| 10        | 9471 | 0.24  | 0.007   |       |        |     |      |                  |
| 11        | 9472 | 1.33  | 0.039   |       |        |     |      |                  |
| 16        | 9477 | 0.80  | 0.023   |       |        |     |      |                  |
| 19        | 9480 | 0.60  | 0.017   |       |        |     |      |                  |
| 29        | 9492 | 0.80  | 0.023   |       |        |     |      |                  |
| 32        | 9495 | 0.93  | 0.027   |       |        |     |      |                  |
|           |      |       |         |       |        |     |      |                  |
| Resplit:  |      |       |         |       |        |     |      |                  |
| nespiit.  | 9461 | 0.14  | 0.004   |       |        |     |      |                  |
| '         | 3401 | U. 14 | 0.00-   |       |        |     |      |                  |
| Standard: |      |       |         |       |        |     |      |                  |
| PM176     |      | 2.04  | 0.059   |       |        |     |      |                  |
| Cu106     |      |       |         | 136   |        |     | 1.43 |                  |
| OX140     |      | 1.86  | 0.054   |       |        |     |      |                  |

JJ/bw XLS/05 ECOTECH LABORATORY LTD.
Jutta Jealouse
B.C Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

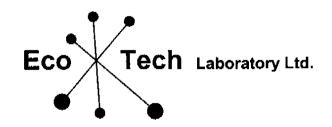
Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core Project #: 301 Shipment #: 37

Samples submitted by: Allan Huard

| Et #. | Tag # | Ag  | AI % | As | Ва  | Bi            | Ca % | Cd | Co | Cr    | Cu           | Fe % | La 1       | Mg % | Mn          | Mo       | Na %         | Ni | Р    |     | Sb Sn            |           | Ti% U                | V   | W   | Y  | Zn   |
|-------|-------|-----|------|----|-----|---------------|------|----|----|-------|--------------|------|------------|------|-------------|----------|--------------|----|------|-----|------------------|-----------|----------------------|-----|-----|----|------|
| 1     | 9461  | 5.9 | 1.02 | 10 | 50  | <5            | 2.03 | <1 | 18 | 86    | 1365         | 5.18 | <10        | 0.81 | 1441        | 45       | 0.02         | 6  | 2120 | 66  | <5 <20           | 19        | 0.07 <10             | 43  |     |    | 297  |
| 2     | 9462  | >30 | 0.42 | <5 | 40  | <5            | 2.07 | 7  | 21 | 124 > | 10000        | >10  | <10        | 0.16 | 702         | 37       | <0.01        | 8  | 1260 | 312 | <5 <20           | 19        | 0.04 <10             | 26  | . • |    | 205  |
| 3     | 9463  | 2.4 | 0.97 | 10 | 45  | <5            | 1.65 | <1 | 25 | 119   | 1453         | 5.89 | <10        | 0.66 | 813         | 88       | 0.02         | 7  |      | 30  | <5 <20           | 19        | 0.05 <10             | 44  |     | 10 |      |
| 4     | 9464  | 1.4 | 0.88 | 15 | 50  | <5            | 1.83 | <1 | 18 | 104   | 781          | 4.64 | <10        | 0.68 | 813         | 320      | 0.02         |    | 1950 | 94  | <5 <20           | 27        | 0.05 < 10            | 46  |     | 12 |      |
| 5     | 9465  | 1.2 | 0.93 | 15 | 60  | <5            | 2.70 | <1 | 16 | 129   | 799          | 4.52 | <10        | 0.65 | 976         | 89       | 0.03         | 5  | 1870 | 38  | <5 <20           | 58        | 0.06 <10             | 46  | <10 | 12 | 113  |
|       |       |     |      |    |     |               |      |    |    |       |              |      |            |      |             |          |              |    |      |     |                  |           | 0.00 -40             |     | -40 | 40 | 4.44 |
| 6     | 9467  | 2.0 | 0.84 | 10 | 95  | <5            | 2.68 | <1 | 16 | 122   | 1234         | 5.16 | <10        | 0.58 | 981         | 72       | 0.03         | 5  |      | 34  | <5 <20           | 57        | 0.08 < 10            | 57  | <10 |    |      |
| 7     | 9468  | 2.0 | 0.96 | 10 | 130 | <5            | 1.26 | <1 | 15 | 122   | 1231         | 5.38 | <10        | 0.72 | 632         | 121      | 0.04         | 5  | 2020 | 34  | <5 <20           | 42        | 0.11 <10             | 67  | <10 |    |      |
| 8     | 9469  | 1.7 | 0.98 | 15 | 110 | <5            | 1.95 | <1 | 18 | 85    | 943          | 5.39 | <10        | 0.73 | 1008        | 91       | 0.02         | 6  | 2120 | 40  | <5 <20           | 44        | 0.08 <10             | 57  | <10 |    |      |
| 9     | 9470  | 2.3 | 1.02 | 20 | 80  | <5            | 2.29 | <1 | 20 | 106   | 733          | 5.40 | <10        | 0.67 | 1188        | 84       | 0.03         | 5  | 2180 | 42  | <5 <20           | 46        | 0.07 <10             | 56  | <10 |    | 161  |
| 10    | 9471  | 1.8 | 1.03 | 10 | 195 | <5            | 2.03 | <1 | 16 | 84    | 756          | 5.37 | <10        | 0.77 | 1082        | 79       | 0.03         | 5  | 2220 | 42  | <5 <20           | 46        | 0.07 <10             | 57  | <10 | 11 | 204  |
|       |       |     |      |    |     | •             |      |    |    |       |              |      |            |      |             |          |              |    |      |     |                  |           | 0.00 -40             | ~0  | -40 | 40 | 242  |
| 11    | 9472  | 8.9 | 0.86 | 10 | 40  | <5            | 2.55 | <1 | 18 | 141   | 3616         | 5.05 | <10        | 0.62 | 1060        | 162      | 0.03         |    | 1590 | 198 | <5 <20           | 43        | 0.06 < 10            | 58  | <10 |    | 212  |
| 12    | 9473  | 1.8 | 0.96 | 10 | 145 | <5            | 2.54 | <1 | 15 | 79    | 972          | 5.28 | <10        |      | 1111        | 81       | 0.02         | 6  | 2110 | 46  | <5 <20           | 53        | 0.06 < 10            | 47  | <10 | 10 |      |
| 13    | 9474  | 2.2 | 0.92 | 10 | 70  | <b>&lt;</b> 5 | 1.99 | <1 | 20 | 110   | 1225         | 5.82 | <10        | 0.66 | 1160        | 86       | 0.04         | 7  |      | 54  | <5 <20           | 63        | 0.08 < 10            | 68  | <10 | 10 |      |
| 14    | 9475  | 3.3 | 0.91 | 10 | 70  | <5            | 2.84 | 2  | 18 | 120   | 1106         | 5.36 | <10        | 0.65 | 1544        | 57       | 0.03         | 7  |      | 100 | <5 <20           | 83        | 0.08 < 10            | 55  | <10 | 10 |      |
| 15    | 9476  | 4.8 | 1.05 | 10 | 90  | <5            | 1.24 | <1 | 19 | 88    | 1925         | 5.44 | <10        | 0.76 | 881         | 113      | 0.03         | 7  | 1920 | 62  | <5 <20           | 34        | 0.08 <10             | 62  | <10 | 9  | 220  |
|       |       |     |      |    |     |               |      |    |    |       |              |      |            |      |             |          |              | 40 | 4000 |     | 25 -20           | 40        | 0.05 <10             | 67  | <10 | 9  | 187  |
| 16    | 9477  | 2.8 | 1.01 | 15 | 65  | <5            | 1.64 | 3  | 22 | 125   | 1889         | 6.28 | <10        | 0.79 | 889         | 75       | 0.02         | 16 | -    | 44  | 35 < 20          | 48        |                      | 41  | <10 | •  | 428  |
| 17    | 9478  | 5.1 | 0.96 | 15 | 45  | <5            | 1.71 | 4  | 21 | 122   | 1442         | 5.38 | <10        | 0.65 | 1216        | 72       | 0.01         | 15 |      | 94  | 30 <20           | 30        | 0.05 <10<br>0.05 <10 | 70  | <10 | -  | 178  |
| 18    | 9479  | 2.9 | 0.89 | 15 | 55  | <5            | 2.30 | 3  | 17 | 123   | <b>10</b> 79 | 5.16 | <10        | 0.75 | 1038        | 75       | 0.03         | 16 |      | 40  | 40 <20           | 201       | 0.05 < 10            | 61  | <10 | _  | 962  |
| 19    | 9480  | 2.9 | 0.91 | 15 | 55  | <5            | 2.76 | 13 | 17 | 117   | 1292         | 5.45 | <10        | 0.69 | 1068        | 72       | 0.03         | 17 |      | 74  | 40 <20<br>35 <20 | 113<br>49 | 0.03 < 10            | 52  | <10 |    | 204  |
| 20    | 9481  | 2.0 | 0.98 | 25 | 70  | <5            | 2.59 | 3  | 16 | 126   | 739          | 5.18 | <10        | 0.75 | 1404        | 57       | 0.02         | 16 | 1980 | 68  | 35 ~20           | 49        | 0.04 < 10            | 52  | ~10 | 5  | 204  |
|       |       |     |      |    |     |               |      | _  |    |       |              |      | 40         | 0.70 | 4470        |          | 0.00         | 14 | 1990 | 46  | 30 <20           | 69        | 0.06 <10             | 65  | <10 | 9  | 188  |
| 21    | 9483  | 2.0 |      | 20 | 95  | <5            | 2.85 | 2  | 17 | 100   | 1009         | 4.93 | <10        | 0.73 | 1170        | 61       | 0.03         | 6  |      | 36  | <5 <20           | 61        | 0.08 < 10            | 94  | <10 | 8  | 137  |
| 22    | 9484  | 1.9 | 0.93 | 10 | 120 | <5            | 2.03 | 1  | 18 | 82    | 1185         | 5.56 | <10        | 0.84 | 986         | 67       | 0.03<br>0.05 | 13 |      | 38  | 20 <20           | 61        | 0.08 < 10            | 101 |     |    | 151  |
| 23    | 9485  | 1.5 | 0.98 | 10 | 160 | <5            | 1.99 | 2  | 17 | 108   | 887          | 5.31 | <10        | 0.82 | 1073        | 48       |              | 7  |      | 30  | <5 <20           | 61        | 0.08 < 10            | 89  | <10 |    | 146  |
| 24    | 9486  | 1.5 | 0.82 | 10 | 195 | <5            | 2.45 | <1 | 16 | 76    | 948          | 5.90 | <10        | 0.65 | 1042        | 50       | 0.03         | -  | 1960 | 38  | <5 <20           | 61        | 0.10 <10             |     | <10 |    |      |
| 25    | 9487  | 1.6 | 1.05 | 10 | 190 | <5            | 2.30 | <1 | 19 | 123   | 1070         | 6.27 | <10        | 0.80 | 1180        | 60       | 0.05         | 0  | 1900 | 30  | ~> ~20           | 01        | 0,10 -10             | 10  | -10 |    | 700  |
|       |       |     |      |    |     | _             |      |    |    |       | 0007         | - 40 | :40        | 0.00 | 000         | 46       | 0.02         | ۰  | 1520 | 46  | <5 <20           | 47        | 0.07 <10             | 80  | <10 | 9  | 150  |
| 26    | 9488  | 2.4 | 0.84 | 15 | 75  | <5            | 2.16 | <1 | 15 | 149   | 2027         | 5.49 | <10        | 0.69 | 903         | 46       |              | 7  |      | 42  | <5 <20           | 47        | 0.10 < 10            | 105 | <10 | -  | 148  |
| 27    | 9490  | 1.6 | 0.91 | 10 | 145 | <5            | 1.41 | <1 | 18 | 100   | 1179         | 6.23 | <10        | 0.72 | 845         | 36<br>35 | 0.04<br>0.02 | 8  |      | 66  | <5 <20           | 37        | 0.10 < 10            | 84  | <10 | 5  | 305  |
| 28    | 9491  | 3.2 | 0.94 | 15 | 45  | <5            | 1.41 | 2  | 21 | 136   | 2006         | 7.15 | <10        | 0.74 | 918<br>1195 | 44       | 0.02         | 7  |      | 136 | <5 <20           | 63        | 0.09 <10             | 102 | <10 | 8  | 287  |
| 29    | 9492  | 2.5 | 1.00 | 15 | 65  | <5            | 2.32 | 2  | 19 | 125   | 1508         | 6.43 | <10<br><10 | 0.84 |             | 61       | 0.04         |    | 1780 | 62  | <5 <20           | 50        | 0.07 <10             | 88  |     | -  | 345  |
| 30    | 9493  | 2.6 | 0.88 | 15 | 100 | <5            | 2.17 | 2  | 17 | 119   | 1541         | 7.09 | Page 1     |      | 1117        | 01       | 0.03         | ,  | 1700 | 02  | -0 -20           | Ų.        | 5.01                 |     |     | -  |      |
|       |       |     |      |    |     |               |      |    |    |       |              |      | age        | 1    |             |          |              |    |      |     |                  |           |                      |     |     |    |      |
|       |       |     |      |    |     |               |      |    |    |       |              |      |            |      |             |          |              |    |      |     |                  |           |                      |     |     |    |      |


#### ECO TECH LABORATORY LTD.

## ICP CERTIFICATE OF ANALYSIS AS 2005-5122

| Et #.             | Tag #      | Ag   | Al % | As  | Ва  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn   | Мо  | Na % | Ni  | Р    | Pb  | Sb Sn  | Sr  | Ti % U    | V   | W   | Y  | Zn  |
|-------------------|------------|------|------|-----|-----|----|------|----|----|-----|------|------|-----|------|------|-----|------|-----|------|-----|--------|-----|-----------|-----|-----|----|-----|
| 31                | 9494       | 3.3  | 0.84 | 20  | 45  | <5 | 1.43 | 5  | 18 | 217 | 2121 | 6.85 | <10 | 0.55 | 812  | 58  | 0.03 | 8   | 1690 | 168 | <5 <20 | 32  | 0.07 < 10 | 82  | <10 | -  | 619 |
| 32                | 9495       | 2.4  | 0.83 | 10  | 110 | <5 | 1.51 | 6  | 16 | 101 | 1853 | 6.28 | <10 | 0.68 | 637  | 43  | 0.03 | 7   | 1840 | 66  | <5 <20 | 38  | 0.08 <10  | 91  | <10 | 6  | 641 |
| 33                | 9466       | 1.0  | 1.19 | <5  | 100 | <5 | 1.66 | <1 | 16 | 29  | 4086 | 4.08 | 10  | 1.15 | 756  | 4   | 0.16 | 19  | 1670 | 22  | 5 <20  | 91  | 0.15 <10  | 164 | <10 | 15 | 56  |
| 34                | 9489       | <0.2 | 2.17 | 20  | 85  | <5 | 5.35 | <1 | 37 | 82  | 65   | 7.75 | <10 | 1.86 | 979  | <1  | 0.03 | 23  | 2410 | 52  | 5 <20  | 89  | 0.19 <10  | 244 | <10 | 17 | 120 |
| 35                | 9482       | 0.2  | 0.75 | 100 | 150 | <5 | 0.27 | <1 | 71 | 253 | 420  | >10  | <10 | 0.11 | 439  | 113 | 0.04 | 469 | 100  | 100 | <5 <20 | 10  | <0.01 <10 | 25  | <10 | <1 | 530 |
| QC DAT            | <u>ra:</u> |      |      |     |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
| Resplit           | -          |      |      |     |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
| 1                 | 9461       | 4.9  | 1.12 | 20  | 55  | <5 | 2.38 | <1 | 19 | 109 | 1113 | 5.21 | <10 | 0.83 | 1573 | 52  | 0.02 | 6   | 2350 | 62  | <5 <20 | 22  | 0.07 <10  | 47  | <10 | 9  | 331 |
| Repeat            | :          |      |      |     |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
| 1                 | 9461       | 5.9  | 1.06 | 15  | 50  | <5 | 2.08 | <1 | 19 | 90  | 1353 | 5.33 | <10 | 0.81 | 1469 | 52  | 0.02 | 7   | 2350 | 66  | <5 <20 | 18  | 0.07 <10  | 45  | <10 |    | 318 |
| 10                | 9471       | 1.8  | 0.99 | 15  | 195 | <5 | 1.91 | 3  | 15 | 82  | 721  | 5.06 | <10 | 0.73 | 1020 | 83  | 0.03 | 15  | 1990 | 38  | 5 <20  | 46  | 0.04 < 10 | 55  | <10 |    | 191 |
| 19                | 9480       | 3.0  | 0.94 | 15  | 55  | <5 | 2.83 | 11 | 18 | 123 | 1301 | 5.58 | <10 | 0.69 | 1095 | 68  | 0.03 | 16  | 1930 | 80  | <5 <20 | 123 | 0.07 <10  | 63  | <10 | 8  | 988 |
| Ctondo            | und s      |      |      |     |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
| Standa.<br>GEO'05 |            | 1.5  | 1.23 | 60  | 145 | <5 | 1.30 | <1 | 19 | 56  | 86   | 3.70 | <10 | 0.62 | 549  | <1  | 0.02 | 28  | 600  | 22  | <5 <20 | 56  | 0.09 <10  | 70  | <10 | 9  | 72  |

JJ/ga df/5101 XLS/05

ECO JECH LABORATORY LTD.
Julta Jealouse
BC Certified Assayer



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com

www.ecotechlab.com

# CERTIFICATE OF ASSAY AS 2005-5124

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

29**-**Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 38

Samples Submitted by: Allan Huard

|             |       | Au    | Au     |                                           |
|-------------|-------|-------|--------|-------------------------------------------|
| ET#.        | Tag # | (g/t) | (oz/t) |                                           |
| 1           | 9496  | 0.51  | 0.015  |                                           |
| 2           | 9497  | 0.54  | 0.016  |                                           |
| 2<br>3      | 9498  | 0.52  | 0.015  |                                           |
| 4           | 9499  | 0.59  | 0.017  |                                           |
|             | 9500  | 0.97  | 0.028  |                                           |
| 5<br>6<br>7 | 9502  | 0.58  | 0.017  |                                           |
| 7           | 9503  | 0.49  | 0.014  |                                           |
| 8           | 9504  | 0.33  | 0.010  |                                           |
| 8<br>9      | 9505  | 0.79  | 0.023  |                                           |
| 10          | 9506  | 0.68  | 0.020  |                                           |
| 11          | 9507  | 0.69  | 0.020  |                                           |
| 12          | 9508  | 0.84  | 0.024  |                                           |
| 13          | 9509  | 1.09  | 0.032  |                                           |
| 14          | 9510  | 0.65  | 0.019  |                                           |
| 15          | 9511  | 0.62  | 0.018  |                                           |
| <b>1</b> 6  | 9512  | 0.91  | 0.027  |                                           |
| 17          | 9513  | 0.77  | 0.022  |                                           |
| 18          | 9514  | 0.75  | 0.022  |                                           |
| 19          | 9515  | 0.78  | 0.023  |                                           |
| 20          | 9516  | 1.14  | 0.033  |                                           |
| 21          | 9518  | 1.10  | 0.032  |                                           |
| 22          | 9519  | 0.42  | 0.012  |                                           |
| 23          | 9520  | 0.63  | 0.018  |                                           |
| 24          | 9521  | 0.56  | 0.016  |                                           |
| 25          | 9522  | 0.55  | 0.016  | / \n/ / _                                 |
| 26          | 9523  | 0.60  | 0.017  |                                           |
| 27          | 9525  | 0.57  | 0.017  |                                           |
| 28          | 9526  | 0.57  | 0.017  | ECETECH LABORATORY LTD.                   |
| 29          | 9527  | 0.60  | 0.017  | ( )Xitta Jealopuse /                      |
| 30          | 9528  | 0.49  | 0.014  | ∕B.C. Cerlifi <b>è</b> d Assay <b>¢</b> r |
|             |       |       |        |                                           |

Page 1

|           |       | Au     | Au     |  |
|-----------|-------|--------|--------|--|
| ET #      | Tag # | (g/t)  | (oz/t) |  |
| 31        | 9529  | 0.80   | 0.023  |  |
| 32        | 9530  | 0.71   | 0.021  |  |
| 33        | 9501  | 0.38   | 0.011  |  |
| 34        | 9524  | < 0.03 | <0.001 |  |
| 35        | 9517  | 0.08   | 0.002  |  |
|           |       |        |        |  |
| QC DATA:  |       |        |        |  |
| Repeats:  |       |        |        |  |
| 1         | 9496  | 0.49   | 0.014  |  |
| 5         | 9500  | 0.88   | 0.026  |  |
| 10        | 9506  | 0.72   | 0.021  |  |
| 12        | 9508  | 0.79   | 0.023  |  |
| 13        | 9509  | 1.05   | 0.031  |  |
| 19        | 9515  | 0.78   | 0.023  |  |
| 20        | 9516  | 1.05   | 0.031  |  |
| 21        | 9518  | 0.98   | 0.029  |  |
| Resplit:  |       |        |        |  |
| 1         | 9496  | 0.49   | 0.014  |  |
| Standard: |       | 4.00   | 0.000  |  |
| OX140     |       | 1.82   | 0.053  |  |

JJ/bw XLS/05 ECOACH LABORATORY LTD.
Jutta Jealouse
B.C. Cermied Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

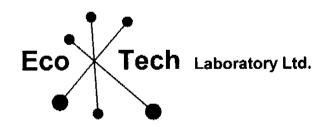
ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core Project #: 301 Shipment #: 38

Samples submitted by: Allan Huard

Values in ppm unless otherwise reported

| Et #. | Tag #        | Ag         | Al %         | As       | Ba         | Bi       | Ca %         | Cd      | Co       | Cr  | Cu   | Fe % | La   | Mg %         | Mn         | Mo       | Na %  | Ni_ | Р     | Pb | Sb Sn  | Sr  | Ti% U     | V        | W          | Υ  | Zn  |
|-------|--------------|------------|--------------|----------|------------|----------|--------------|---------|----------|-----|------|------|------|--------------|------------|----------|-------|-----|-------|----|--------|-----|-----------|----------|------------|----|-----|
| 1     | 9496         | 2.3        | 0.94         | 10       | 85         | <5       | 1.13         | <1      | 12       | 58  | 2307 | 4.04 | <10  | 0.80         | 665        | 27       | 0.03  | 4   | 970   | 10 | <5 <20 | 38  | 0.05 < 10 | 61       | <10        | 6  | 81  |
| 2     | 9497         | 1.9        | 1.06         | <5       | 85         | <5       | 1.30         | <1      | 13       | 71  | 1481 | 4.44 | <10  | 0.88         | 883        | 42       | 0.04  |     | 1120  | 30 | <5 <20 | 61  | 0.06 < 10 | 67       | <10        |    | 106 |
| 3     | 9498         | 2.2        | 1.18         | 10       | 75         | <5       | 1.33         | 1       | 13       | 67  | 1319 | 4.47 | <10  | 0.93         | 882        | 33       | 0.05  |     | 1170  | 36 | <5 <20 | 62  | 0.06 < 10 | 70       | <10        | -  | 116 |
| 4     | 9499         | 2.3        | 0.99         | <5       | 120        | <5       | 1.26         | <1      | 11       | 63  | 1475 | 4.15 | <10  | 0.81         | 787        | 27       | 0.04  | _   | 1140  | 28 | <5 <20 | 62  | 0.04 < 10 | 63       | <10        | -  | 112 |
| 5     | 9500         | 15.4       | 0.88         | 25       | 40         | <5       | 1.53         | 7       | 12       | 129 | 2022 | 4.22 | <10  | 0.62         | 852        | 48       | 0.03  | 4   | 800   | 74 | 10 <20 | 77  | 0.03 <10  | 34       | <10        | 4  | 344 |
|       |              |            |              |          |            |          |              |         |          |     |      |      |      |              |            |          |       |     |       |    |        |     | 0.05 .45  | 70       | .40        | 7  | 444 |
| 6     | 9502         | 3.4        | 1.09         | <5       | 185        | <5       | 1.62         | <1      | 10       | 47  | 1498 | 4.71 | <10  | 0.88         | 861        | 23       | 0.04  |     | 1220  | 4  | <5 <20 | 62  | 0.05 < 10 | 70       | <10        | -  | 111 |
| 7     | 9503         | 1.8        | 1.18         | <5       | 120        | <5       | 0.78         | 1       | 12       | 69  | 1244 | 4.59 | <10  | 1.02         | 624        | 45       | 0.05  | 4   |       | 18 | <5 <20 | 64  | 0.05 <10  | 88       | <10        | 6  | 91  |
| 8     | 9504         | 1.1        | 1.31         | <5       | 440        | <5       | 0.88         | <1      | 9        | 47  | 851  | 4.80 | <10  | 1.04         | 699        | 18       | 0.06  | 4   | 1240  | 14 | <5 <20 | 85  | 0.06 <10  | 90       | <10        |    | 105 |
| 9     | 9505         | 3.1        | 1.03         | <5       | 60         | <5       | 0.54         | 1       | 12       | 94  | 1854 | 4.51 | <10  | 0.85         | 664        | 35       | 0.03  |     |       | 26 | <5 <20 | 38  | 0.04 < 10 | 58       | <10        | 4  | 98  |
| 10    | 9506         | 1.9        | 1.11         | 5        | 110        | <5       | 1.56         | <1      | 11       | 53  | 1205 | 4.40 | <10  | 0.96         | 875        | 22       | 0.04  | 3   | 1220  | 14 | <5 <20 | 145 | 0.05 <10  | 66       | <10        | 5  | 126 |
|       |              |            |              |          |            |          |              |         |          |     |      |      |      |              |            |          |       | _   | 1000  |    | ·F ·OO | 00  | 0.04 -40  | 74       | -10        | 4  | 116 |
| 11    | 9507         | 1.9        | 1.09         | <5       | 100        | <5       | 1.72         | 1       | 11       | 82  | 1471 | 5.45 | <10  | 0.90         | 856        | 26       | 0.04  |     | 1020  | 40 | <5 <20 | 89  | 0.04 < 10 | 71<br>35 | <10<br><10 | 5  | 88  |
| 12    | 9508         | 2.6        | 0.82         | <5       | 65         | <5       | 1.65         | 1       | 11       | 67  | 1915 | 4.91 | <10  | 0.58         | 891        | 28       | 0.01  | 6   | 1040  | 22 | <5 <20 | 35  | 0.03 <10  |          |            |    | 107 |
| 13    | 9509         | 2.8        | 0.97         | <5       | 100        | <5       | 1.84         | 2       | 16       | 113 | 2168 | 5.85 | <10  | 0.79         | 876        | 22       | 0.04  | 5   | 780   | 28 | <5 <20 | 118 | 0.04 < 10 | 69<br>67 | <10<br><10 | 7  | 87  |
| 14    | 9510         | 1.8        | 1.05         | <5       | 105        | <5       | 2.38         | 1       | 12       | 52  | 1447 | 4.51 | <10  | 0.98         | 1040       | 21       | 0.03  | 3   |       | 16 | <5 <20 | 90  | 0.04 < 10 | 67<br>78 |            | 6  | 88  |
| 15    | <b>9</b> 511 | 1.9        | 1.08         | 5        | 75         | <5       | 1.64         | 1       | 11       | 77  | 1492 | 4.55 | <10  | 1.00         | 876        | 22       | 0.05  | 4   | 1030  | 20 | <5 <20 | 126 | 0.05 <10  | 70       | ~10        | u  | 00  |
|       |              |            |              | _        |            | _        |              |         |          |     | 0004 | 0.00 | -40  | 0.00         | 700        | 24       | 0.03  | 4   | 710   | 50 | <5 <20 | 35  | 0.05 < 10 | 83       | <10        | <1 | 91  |
| 16    | 9512         | 4.0        | 1.02         | <5       | 40         | <5       | 0.75         | 4       | 21       | 86  | 2634 | 6.96 | <10  | 0.92         | 702        | 24       | 0.03  |     | 1110  | 8  | <5 <20 | 64  | 0.05 < 10 | 71       | <10        | 5  | 78  |
| 17    | 9513         | 2.0        | 1.10         | <5       | 95         | <5       | 1.25         | <1      | 12       | 82  | 1655 | 4.40 | <10  | 0.94         | 749        | 20<br>23 | 0.04  | 5   | 860   | 10 | <5 <20 | 102 | 0.05 < 10 | 65       | <10        | 5  | 64  |
| 18    | 9514         | 1.9        | 0.89         | <5       | 55         | <5       | 1.91         | <1      | 12       | 106 | 1506 | 4.20 | <10  | 0.80<br>1.15 | 806<br>866 | 23       | 0.04  | 5   | 1040  | 12 | <5 <20 | 63  | 0.05 < 10 | 84       | <10        | 6  | 82  |
| 19    | 9515         | 1.9        | 1.25         | <5       | 80         | <5       | 1.36         | 1       | 13       | 108 | 1565 | 4.55 | <10  | 0.77         | 629        | 20       | 0.04  | 5   | 690   | 12 | <5 <20 | 48  | 0.04 < 10 | 101      |            | 2  | 66  |
| 20    | 9516         | 3.0        | 0.84         | <5       | 80         | <5       | 1.12         | <1      | 13       | 107 | 2568 | 5.82 | <10  | 0.77         | 029        | 20       | 0.04  | 5   | 050   | 12 | ·0 ·20 | 70  | 0.04 -10  | ,        |            | _  | •   |
|       |              |            | 0.00         |          | 405        |          | 4.00         | 4       | 40       | 68  | 2516 | 5.84 | <10  | 0.83         | 821        | 19       | 0.05  | 4   | 920   | 8  | <5 <20 | 70  | 0.04 <10  | 101      | <10        | 3  | 71  |
| 21    | 9518         | 2.5        | 0.98         | <5       | 125        | <5       | 1.82<br>1.82 | 1       | 13       | 50  | 1241 | 3.96 | <10  | 0.87         | 1000       | 24       | 0.02  | 4   |       | 12 | <5 <20 | 80  | 0.04 <10  | 51       | <10        | 8  | 77  |
| 22    | 9519         | 1.7        | 1.02         | 5        | 55<br>60   | <5<br>-5 |              | <1<br>1 | 11<br>13 | 67  | 1814 | 4.83 | <10  | 0.97         | 1003       | 25       | 0.02  | 5   |       | 6  | <5 <20 | 41  | 0.04 <10  | 53       | <10        | 5  | 77  |
| 23    | 9520         | 3.5        | 1.19         | 10       | 60         | <5<br><5 | 1.51<br>3.29 | 3       | 11       | 51  | 1861 | 5.20 | <10  | 1.13         | 1875       |          | <0.01 | 4   | 1030  | 86 | <5 <20 | 66  | 0.02 <10  | 36       | <10        | 8  | 218 |
| 24    | 9521         | 13.2       | 1.25         | 20       | 45         | <5       | 1.90         | 1       | 11       | 107 | 1468 | 4.49 | <10  | 0.78         | 819        | 28       | 0.07  | 6   |       | 8  | <5 <20 | 78  | 0.05 < 10 | 57       | <10        | 9  | 74  |
| 25    | 9522         | 2.0        | 1.11         | 5        | 110        | <2       | 1.90         | 1       | " "      | 107 | 1400 | 4.40 | 10   | 0.70         | 013        | 20       | 0.01  | ·   | 12,00 | •  | •      |     |           |          |            |    |     |
| 00    | 0500         | 4.0        | 0.97         |          | 60         | <5       | 2.00         | 1       | 12       | 62  | 1358 | 4.51 | <10  | 0.68         | 873        | 27       | 0.02  | 4   | 1140  | 6  | <5 <20 | 97  | 0.04 < 10 | 51       | <10        | 5  | 51  |
| 26    | 9523         | 1.8        | 0.87<br>0.99 | <5<br><5 | 60<br>430  | <5       | 1.61         | <1      | 10       | 55  | 1424 | 4.71 | <10  | 0.90         | 883        | 14       | 0.05  |     | 1230  | <2 | <5 <20 | 77  | 0.06 <10  | 92       | <10        | 8  | 61  |
| 27    | 9525         | 1.3        | 0.99         |          | 430<br>145 | <5       | 1.44         | <1      | 10       | 70  | 1421 | 4.52 | <10  | 0.64         | 706        | 18       | 0.05  | -   | 1120  | 8  | <5 <20 | 96  | 0.05 < 10 | 88       | <10        | 6  | 53  |
| 28    | 9526         | 1.9        | 0.78         | <5<br>5  | 90         | <5       | 2.05         | <1      | 10       | 56  | 1686 | 3.79 | <10  | 0.68         | 933        | 22       | 0.02  | _   | 1160  | 6  | <5 <20 | 63  | 0.03 < 10 | 55       | <10        | 6  | 68  |
| 29    | 9527         | 2.4<br>2.6 | 0.91         | 5<br>5   | 90<br>70   | <5       | 2.05         | 3       | 10       | 49  | 1226 | 4.23 | <10  | -            | 1153       | 24       | 0.01  |     | 1100  | 44 | <5 <20 | 137 | 0.03 <10  | 37       | <10        | 5  | 150 |
| 30    | 9528         | ∠.0        | 0.07         | Ş        | 70         | -5       | 2.55         | J       | 10       | 73  | 1220 | 7.20 | Page |              |            | -'       | u.u.  | ·   |       |    |        |     |           |          |            |    |     |
|       |              |            |              |          |            |          |              |         |          |     |      |      | 3-   |              |            |          |       |     |       |    |        |     |           |          |            |    |     |
|       |              |            |              |          |            |          |              |         |          |     |      |      |      |              |            |          |       |     |       |    |        |     |           |          |            |    |     |


#### ECO TECH LABORATORY LTD.

#### ICP CERTIFICATE OF ANALYSIS AS 2005-5124

| Et#.              | Tag # | Αa    | AI % | As | Ba  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La         | Mg % | Mn  | Мо  | Na % | Ni  | P    | Рb | Sb            | Sn  | Sr  | Ti %  | U   | ν   | W   | Υ. | Zn  |
|-------------------|-------|-------|------|----|-----|----|------|----|----|-----|------|------|------------|------|-----|-----|------|-----|------|----|---------------|-----|-----|-------|-----|-----|-----|----|-----|
| 31                | 9529  | 2.6   | 1.02 | <5 | 80  | <5 | 1.70 | 1  | 11 | 78  | 2198 | 5.12 | <10        | 0.92 | 851 | 18  | 0.04 | 5   | 1030 | 10 | <5            | <20 | 135 | 0.04  | <10 | 73  | <10 | 5  | 65  |
| 32                | 9530  | 2.1   | 0.97 | <5 | 90  | <5 | 1.66 | <1 | 12 | 99  | 1658 | 5.43 | <10        | 0.84 | 923 | 21  | 0.03 | 5   | 1090 | 20 | <5            | <20 | 143 | 0.04  | <10 | 74  | <10 | 4  | 88  |
| 33                | 9501  | 1.1   | 1.19 | <5 | 115 | <5 | 1.60 | <1 | 16 | 32  | 4233 | 3.54 | <10        | 1.10 | 753 | 3   | 0.16 | 18  | 1780 | 16 | <5            | <20 | 110 | 0.12  | <10 | 170 | <10 | 12 | 51  |
| 34                | 9524  | < 0.2 | 3.09 | 15 | 100 | <5 | 3.59 | <1 | 30 | 66  | 149  | 6.82 | <10        | 2.76 | 874 | <1  | 0.06 | 15  | 1540 | <2 | <5            | <20 | 106 | 0.10  | <10 | 239 | <10 | 15 | 60  |
| 35                | 9517  | 0.2   | 0.81 | 85 | 140 | <5 | 0.25 | 1  | 64 | 234 | 442  | >10  | <10        | 0.12 | 466 | 119 | 0.06 | 411 | 100  | 98 | <5            | <20 | 11  | <0.01 | <10 | 26  | <10 | <1 | 440 |
| QC DAT            |       |       | 4.40 | _  | 20  |    | 1.00 |    | 40 | 62  | 2070 | 4.00 | <b>~40</b> | 0.00 | 700 | 29  | 0.06 | 5   | 1090 | 12 | <b>&lt;</b> 5 | <20 | 49  | 0.07  | <10 | 77  | <10 | 8  | 86  |
| 1                 | 9496  | 2.2   | 1.18 | 5  | 08  | <5 | 1.26 | 7  | 13 | 63  | 2378 | 4.23 | <10        | 0.90 | 708 | 29  | 0.06 | 5   | 1090 | 14 | ~5            | ~20 | 43  | 0.07  | 10  | ,,  | 110 | Ü  | 00  |
| Repeat:           |       |       |      |    |     |    |      |    |    |     |      |      |            |      |     |     |      |     |      |    |               |     |     |       |     |     |     |    |     |
| i                 | 9496  | 2.4   | 0.97 | 5  | 80  | <5 | 1.15 | 1  | 12 | 60  | 2321 | 4.09 | <10        | 0.82 | 667 | 27  | 0.03 | 5   | 990  | 12 | <5            | <20 | 40  | 0.06  |     | 64  | <10 | 7  | 81  |
| 10                | 9506  | 1.9   | 1.17 | 5  | 105 | <5 | 1.59 | 1  | 11 | 56  | 1236 | 4.50 | <10        | 1.00 | 889 | 24  | 0.04 | 5   | 1230 | 14 |               | <20 | 166 | 0.06  |     | 70  | <10 | 7  | 125 |
| 19                | 9515  | 2.0   | 1.34 | <5 | 75  | <5 | 1.43 | <1 | 14 | 117 | 1562 | 4.59 | <10        | 1.21 | 900 | 22  | 0.07 | 5   | 1120 | 14 | <5            | <20 | 72  | 0.06  | <10 | 84  | <10 | 7  | 86  |
| Standar<br>GEO'05 |       | 1.5   | 1.49 | 55 | 145 | <5 | 1.32 | <1 | 19 | 59  | 86   | 3.65 | <10        | 0.80 | 560 | <1  | 0.03 | 28  | 600  | 22 | <5            | <20 | 54  | 0.11  | <10 | 71  | <10 | 11 | 74  |

ECO TEGH LABORATORY LTD.
Julia Jeajousa
BC Certified Assayer

JJ/ga df/5101 XL\$/05



10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5125**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

29-Aug-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 39

Samples Submitted by: Allan Huard

|                  |              | Au    | Au     |                         |
|------------------|--------------|-------|--------|-------------------------|
| ET#.             | Tag #        | (g/t) | (oz/t) |                         |
| 1                | 9531         | 1.03  | 0.030  |                         |
| 2<br>3           | 9532         | 0.76  | 0.022  |                         |
| 3                | 9533         | 0.89  | 0.026  |                         |
| 4<br>5<br>6<br>7 | 9534         | 0.69  | 0.020  |                         |
| 5                | 9535         | 1.00  | 0.029  |                         |
| 6                | 9537         | 1.34  | 0.039  |                         |
| 7                | 9538         | 0.88  | 0.026  |                         |
| 8                | 9539         | 0.88  | 0.026  |                         |
| 9                | 9540         | 0.69  | 0.020  |                         |
| 10               | 9541         | 0.93  | 0.027  |                         |
| 11               | 9542         | 0.84  | 0.024  |                         |
| 12               | 9543         | 0.55  | 0.016  |                         |
| 13               | 9544         | 0.71  | 0.021  |                         |
| 14               | 9545         | 0.58  | 0.017  |                         |
| 15               | 9546         | 6.56  | 0.191  |                         |
| 16               | 9547         | 1.40  | 0.041  |                         |
| 17               | 9548         | 0.68  | 0.020  |                         |
| 18               | 9549         | 0.87  | 0.025  |                         |
| 19               | 9550         | 1.23  | 0.036  |                         |
| 20               | 9551         | 1.40  | 0.041  |                         |
| 21               | 9553         | 1.05  | 0.031  |                         |
| 22               | 9554         | 0.92  | 0.027  |                         |
| 23               | 9555         | 0.83  | 0.024  |                         |
| 24               | 9556         | 0.80  | 0.023  |                         |
| 25               | 9557         | 1.10  | 0.032  |                         |
| 26               | 9558         | 0.90  | 0.026  |                         |
| 27               | 9560         | 1.19  | 0.035  |                         |
| 28               | <b>95</b> 61 | 0.85  | 0.025  | ECONECH LABORATORY LTD. |
| 29               | 9562         | 0.98  | 0.029  | Juxta Jealouse          |
| 30               | 9563         | 1.18  | 0.034  | Æ.C. Certi∕ried Assay∉r |
|                  |              |       |        |                         |

Page 1

# Falconbridge Limited AS 2005-5125

29-Aug-05

|           |       | Au    | Au     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|-------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ET #.     | Tag # | (g/t) | (oz/t) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 31        | 9564  | 1.16  | 0.034  | THE PROPERTY OF THE PROPERTY O |
| 32        | 9565  | 0.75  | 0.022  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 33        | 9536  | 0.44  | 0,013  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34        | 9559  | <0.03 | <0.001 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 35        | 9552  | 0.08  | 0.002  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| QC DATA:  |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Repeats:  |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| . 1       | 9531  | 0.99  | 0.029  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6         | 9537  | 1.40  | 0.041  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10        | 9541  | 0.97  | 0.028  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15        | 9546  | 6.46  | 0.188  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16        | 9547  | 1.47  | 0.043  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19        | 9550  | 1.20  | 0.035  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20        | 9551  | 1.32  | 0.038  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Resplit:  |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| i         | 9531  | 1.07  | 0.031  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Standard: |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OX140     |       | 1.85  | 0.054  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

JJ/bw XLS/05 ECO TECHILABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

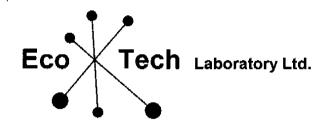
ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core Project #: 301 Shipment #: 39

Samples submitted by: Allan Huard

Values in ppm unless otherwise reported

|       |       |     |      |    |     |    |      |    |            |     |      |      |      |      |      |     |       |           |          |            |               |          |                      |           |     |               | _        |
|-------|-------|-----|------|----|-----|----|------|----|------------|-----|------|------|------|------|------|-----|-------|-----------|----------|------------|---------------|----------|----------------------|-----------|-----|---------------|----------|
| Et #. | Tag # | Ag  | Al % | As | Ba  | Bi | Ca % | Cd | Со         | Cr  | Cu   | Fe % |      | Mg % | Mn   |     | Na %  | <u>Ni</u> | <u> </u> |            | Sb Sn         | Sr       | Ti % U               | V         | W   | Y             | Zn       |
| 1     | 9531  | 9.1 | 0.99 | 10 | 55  | <5 | 3.09 | 2  | <b>1</b> 1 | 102 | 4997 | 5.54 | <10  | 0.81 | 1583 | 27  | 0.01  | 5         | 640      | 76         | <5 <20        | 78       | 0.01 <10             | 30        | <10 | 6             | 118      |
| 2     | 9532  | 2.0 | 1.18 | <5 | 175 | <5 | 1.33 | <1 | 9          | 88  | 1838 | 4.65 | <10  | 0.97 | 847  | 30  | 0.04  |           | 1100     | 4          | <5 <20        | 53       | 0.03 < 10            | 69        | <10 | 4             | 69<br>74 |
| 3     | 9533  | 2.5 | 1.03 | <5 | 105 | <5 | 0.73 | <1 | 13         | 109 | 2402 | 5.25 | <10  | 0.90 | 606  | 42  | 0.05  | 5         | 1010     | 4          | <5 <20        | 74       | 0.05 <10             | 99        | <10 | 3             | 71       |
| 4     | 9534  | 2.3 | 0.90 | <5 | 65  | <5 | 1.27 | <1 | 17         | 96  | 2087 | 5.59 | <10  | 0.79 | 721  | 20  | 0.05  | _         | 1020     | 12         | <5 <20        | 57       | 0.05 < 10            | 101       | <10 | 4             | 68<br>66 |
| 5     | 9535  | 3.0 | 0.85 | <5 | 80  | <5 | 1.62 | 1  | 13         | 103 | 2400 | 5.42 | <10  | 0.79 | 782  | 21  | 0.04  | 5         | 830      | 18         | <5 <20        | 133      | 0.05 <10             | 95        | <10 | 4             | 66       |
|       |       |     |      |    |     |    |      |    |            |     |      |      |      |      |      | 40  |       | _         | 000      |            | 45 AOO        | 67       | 0.06 -10             | 112       | <10 | 4             | 68       |
| 6     | 9537  | 3.2 | 0.98 | <5 | 75  | <5 | 1.44 | <1 | 15         | 126 | 2915 | 6.16 | <10  | 0.89 | 819  | 46  | 0.06  | 5         | 830      | 8          | <5 <20        | 87       | 0.06 <10<br>0.05 <10 | 77        | <10 | 5             | 64       |
| 7     | 9538  | 2.6 | 0.89 | <5 | 160 | <5 | 1.65 | <1 | 10         | 89  | 2281 | 5.40 | <10  | 0.75 | 733  | 25  | 0.03  | 4         | 1050     | 6          | <5 <20        | 92       |                      |           |     | 5             | 48       |
| 8     | 9539  | 3.0 | 0.61 | <5 | 55  | <5 | 2.76 | 1  | 11         | 101 | 2419 | 4.86 | <10  | 0.33 | 870  | 23  | 0.02  | 5         | 1010     | 16         | <5 <20        | 125      | 0.04 < 10            | 39        | <10 | 7             |          |
| 9     | 9540  | 5.1 | 0.70 | <5 | 50  | <5 | 2.44 | 3  | 10         | 106 | 2413 | 4.48 | <10  | 0.37 | 984  | 24  | 0.01  | _         | 1120     | 108        | <5 <20        | 62       | 0.04 < 10            | 32        | <10 | •             | 186      |
| 10    | 9541  | 3.1 | 1.08 | <5 | 145 | <5 | 1,14 | 1  | 12         | 122 | 2486 | 5.77 | <10  | 0.90 | 729  | 22  | 0.06  | 6         | 1100     | 16         | <5 <20        | 37       | 0.06 <10             | 108       | <10 | 7             | 81       |
|       |       |     |      |    |     |    |      |    |            |     |      |      |      |      |      |     |       |           | 4866     |            | -5 -00        |          | 0.00 -40             | 100       | <10 | 6             | 77       |
| 11    | 9542  | 3.3 | 1.08 | <5 | 300 | <5 | 0.97 | 2  | 12         |     | 2179 | 4.91 | <10  | 1.06 | 852  | 18  | 0.05  | _         | 1090     | 4          | <5 <20        | 37       | 0.06 < 10            | 100<br>93 | <10 | 5             | 71       |
| 12    | 9543  | 2.5 | 1.02 | 5  | 135 | <5 | 0.71 | <1 | 14         | 139 | 1967 | 5.17 | <10  | 0.94 | 756  | 19  | 0.05  | 5         | 960      | 10         | <5 <20        | 28       | 0.06 <10             | -         | <10 | 5             | 70       |
| 13    | 9544  | 2.8 | 0.90 | 10 | 75  | <5 | 1.74 | 9  | 13         | 93  | 2133 | 5.71 | <10  | 0.72 | 810  | 21  | 0.03  | 5         | 1030     | 28         | <5 <20        | 65       | 0.03 < 10            | 85        |     | 5<br>5        |          |
| 14    | 9545  | 1.7 | 1.09 | <5 | 160 | <5 | 1.54 | <1 | 12         | 110 | 1373 | 5.39 | <10  | 1.00 | 910  | 20  | 0.05  | 4         | 1080     | 8          | <5 <20        | 162      | 0.06 < 10            | 98        | <10 | 5             | 88<br>68 |
| 15    | 9546  | 5.4 | 0.83 | 35 | 55  | <5 | 1.51 | 1  | 13         | 88  | 2164 | 5.42 | <10  | 0.62 | 750  | 21  | 0.02  | 5         | 1120     | <b>2</b> 2 | <5 <20        | 47       | 0.05 < 10            | 61        | <10 | 5             | 00       |
|       |       |     |      |    |     |    |      |    |            |     |      |      |      |      |      | •-  |       |           | 050      | 40         | رد د <u>ر</u> | 75       | 0.06 <10             | 95        | <10 | 5             | 72       |
| 16    | 9547  | 3.2 | 1.06 | <5 | 90  | <5 | 1.95 | <1 | 14         | 121 | 2580 | 6.16 | <10  | 0.86 | 876  | 25  | 0.05  | 4         | 950      | 10         | <5 <20        | 75<br>54 | -                    | 90        | <10 | 7             | 69       |
| 17    | 9548  | 2.6 | 1.10 | 10 | 195 | <5 | 1.70 | 1  | 12         | 87  | 1740 | 5.32 | <10  | 0.98 | 928  | 26  | 0.04  | 5         | 1220     | 6          | <5 <20        | 54       | 0.06 < 10            | 106       | <10 | 4             | 55       |
| 18    | 9549  | 2.7 | 1.04 | <5 | 95  | <5 | 1.37 | <1 | 13         | 130 | 2374 | 5.83 | <10  | 0.89 | 721  | 23  | 0.05  | 5         | 910      | 8          | <5 <20        | 51       | 0.07 < 10            |           |     | <1            | 55<br>55 |
| 19    | 9550  | 6.0 | 0.91 | 5  | 60  | <5 | 1.18 | 1  | 14         | 150 | 5939 | 5.69 | <10  | 0.84 | 546  | 226 | 0.04  | 6         | 460      | 10         | <5 <20        | 49       | 0.05 <10             | 92        | <10 | -             | 64       |
| 20    | 9551  | 3.9 | 0.98 | <5 | 95  | <5 | 1.43 | 1  | 14         | 164 | 3816 | 5.85 | <10  | 0.80 | 749  | 29  | 0.05  | 7         | 860      | 6          | <5 <20        | 59       | 0.06 <10             | 99        | <10 | 4             | 04       |
|       |       |     |      |    |     |    |      |    |            |     |      |      |      |      | =    |     |       |           | 1000     | 4.4        | 4F 400        | 04       | 0.05 <10             | 87        | <10 | 5             | 71       |
| 21    | 9553  | 2.6 | 0.95 | <5 | 110 | <5 | 2.42 | <1 | 14         | 101 |      |      | <10  | 0.79 | 1037 | 20  | 0.04  |           | 1090     | 14         | <5 <20        | 81       | 0.05 < 10            | 100       | <10 | 6             | 74       |
| 22    | 9554  | 3.0 | 1.05 | <5 | 215 | <5 | 1.65 | <1 | 14         | 105 |      | 6.01 | <10  | 0.89 | 937  | 22  | 0.05  |           | 1130     | 14         | <5 <20        | 70<br>76 |                      | 81        | <10 | 5             | 84       |
| 23    | 9555  | 2.5 | 1.16 | 5  | 155 | <5 | 1.90 | 1  | 14         | 75  | 1902 | 6.06 | <10  | 0.97 | 1014 | 30  | 0.03  |           | 1220     | 8          | <5 <20        | 75       | 0.06 < 10            |           |     | 4             | 66       |
| 24    | 9556  | 2.9 | 0.98 | 10 | 95  | <5 | 2.36 | 1  | 13         | 114 | 2176 | 5.80 | <10  | 0.68 | 940  | 34  | 0.03  | 4         |          | 12         | <5 <20        | 80       | 0.05 <10             | 68        | <10 | 4             |          |
| 25    | 9557  | 3.1 | 1.10 | 25 | 60  | <5 | 1.89 | <1 | 13         | 123 | 2178 | 5.18 | <10  | 0.74 | 932  | 26  | <0.01 | 4         | 1210     | 14         | <5 <20        | 55       | 0.04 <10             | 29        | <10 | -4            | 67       |
|       |       |     |      |    |     |    |      |    |            |     |      |      |      |      |      | ٠.  | 2 22  |           | 1000     | 40         | -C -OO        | 06       | 0.03 <10             | 63        | <10 | 6             | 99       |
| 26    | 9558  | 2.8 | 0.99 | 10 | 75  | <5 | 2.31 | <1 | 13         | 136 |      |      | <10  | 0.71 | 965  | 24  | 0.03  |           | 1050     | 18         | <5 <20        | 96       | 0.03 < 10            | 71        | <10 | 2             | 98       |
| 27    | 9560  | 4.6 | 0.84 | 5  | 65  | <5 | 1.26 | <1 | 13         | 142 | 3396 |      | <10  | 0.65 | 752  | 32  | 0.02  | 5         | 790      | 28         | <5 <20        | 81       |                      |           |     | -             |          |
| 28    | 9561  | 3.0 | 0.78 | 5  | 85  | <5 | 1.69 | <1 | 11         | 99  | 1774 | 4.78 | <10  | 0.60 | 809  | 25  | 0.03  | 5         |          | 16         | <5 <20        | 73       | 0.04 < 10            | 64        | <10 | <b>4</b><br>6 | 76<br>90 |
| 29    | 9562  | 2.7 | 0.93 | <5 | 165 | <5 | 1.81 | <1 | 11         | 88  | 2161 | 5.16 | <10  | 0.83 | 907  | 22  | 0.05  | 4         | 1040     | 14         | <5 <20        | 104      | 0.05 < 10            | 96        |     | Ö             | 90<br>88 |
| 30    | 9563  | 3.4 | 0.94 | 5  | 100 | <5 | 1.78 | <1 | 12         | 107 | 2787 | 6.44 | <10  | 0.81 | 922  | 22  | 0.04  | 5         | 930      | 12         | <5 <20        | 128      | 0.05 <10             | 107       | <10 | 2             | 00       |
|       |       |     |      |    |     |    |      |    |            |     |      |      | Page | 1    |      |     |       |           |          |            |               |          |                      |           |     |               |          |
|       |       |     |      |    |     |    |      |    |            |     |      |      |      |      |      |     |       |           |          |            |               |          |                      |           |     |               |          |


JJ/ga df/5101 XLS/05

#### ICP CERTIFICATE OF ANALYSIS AS 2005-5125

### Falconbridge Limited

| Et #.             | Tag#       | Ag   | AI % | As | Ba  | Bi | Ca % | Cd | Co | Çr  | Cu   | Fe % | La  | Mg %_ | Mn   | Мо  | Na % | <u>Ní</u> | <u> </u> | Pb  | Sb Sn  | Şr_ | Ti% U     | <u>V</u> | W   | Y  | ,Zn |
|-------------------|------------|------|------|----|-----|----|------|----|----|-----|------|------|-----|-------|------|-----|------|-----------|----------|-----|--------|-----|-----------|----------|-----|----|-----|
| 31                | 9564       | 4.5  | 1.02 | 5  | 55  | <5 | 1.25 | 2  | 14 | 73  | 3208 | 5.90 | <10 | 0.78  | 819  | 29  | 0.02 | 4         | 1010     | 38  | <5 <20 | 40  | 0.02 <10  | 51       | <10 | 4  | 116 |
| 32                | 9565       | 2.5  | 1.05 | 10 | 110 | <5 | 1.20 | <1 | 11 | 118 | 2131 | 5.55 | <10 | 0.84  | 752  | 58  | 0.04 | 5         | 1170     | 12  | <5 <20 | 57  | 0.02 <10  | 85       | <10 | 5  | 79  |
| 33                | 9536       | 2.3  | 1.39 | <5 | 325 | <5 | 1.45 | <1 | 11 | 25  | 7098 | 3.55 | 10  | 1.16  | 478  | 3   | 0.15 | 16        | 2560     | 20  | <5 <20 | 90  | 0.07 < 10 | 191      | <10 | 18 | 53  |
| 34                | 9559       | <0.2 | 3.51 | 10 | 85  | <5 | 3.79 | <1 | 35 | 56  | 94   | 7.94 | <10 | 3.14  | 1000 | <1  | 0.04 | 18        | 1870     | <2  | <5 <20 | 95  | 0.16 <10  | 303      | <10 | 22 | 72  |
| 35                | 9552       | 0.3  | 0.83 | 85 | 160 | <5 | 0.25 | <1 | 62 | 226 | 429  | >10  | <10 | 0.12  | 425  | 130 | 0.06 | 420       | 100      | 110 | <5 <20 | 15  | <0.01 <10 | 25       | <10 | <1 | 479 |
| QC DAT            | <u>ΓΑ:</u> |      |      |    |     |    |      |    |    |     |      |      |     |       |      |     |      |           |          |     |        |     |           |          |     |    |     |
| Resplit:          | :<br>9531  | 9.6  | 1.09 | 10 | 50  | <5 | 2.89 | 3  | 12 | 104 | 5148 | 6.06 | <10 | 0.85  | 1488 | 29  | 0.01 | 5         | 790      | 72  | <5 <20 | 74  | 0.01 <10  | 35       | <10 | 5  | 126 |
| Repeat:           |            |      |      |    |     |    |      |    |    |     |      |      |     |       |      |     |      |           |          |     |        |     |           |          |     |    |     |
| 1                 | 9531       | 9.2  | 1.03 | 10 | 55  | <5 | 3.18 | 3  | 11 | 107 | 5049 | 5.68 | <10 | 0.83  | 1609 | 28  | 0.01 | 4         | 710      | 82  | <5 <20 | 78  | 0.01 <10  | 32       | <10 | 5  | 124 |
| 10                | 9541       | 3.5  | 1.18 | <5 | 165 | <5 | 1,17 | 1  | 12 | 129 | 2614 | 5.97 | <10 | 0.96  | 750  | 21  | 0.07 | 6         | 1100     | 14  | <5 <20 | 42  | 0.07 <10  | 117      | <10 | 7  | 81  |
| 19                | 9550       | 5.9  | 0.91 | 5  | 65  | <5 | 1.19 | 1  | 14 | 158 | 5801 | 5.69 | <10 | 0.82  | 540  | 242 | 0.04 | 7         | 510      | 10  | <5 <20 | 49  | 0.06 <10  | 93       | <10 | 2  | 56  |
| Standar<br>GEO'05 |            | 1.5  | 1.62 | 65 | 160 | <5 | 1.44 | <1 | 19 | 59  | 84   | 3.65 | <10 | 0.85  | 597  | <1  | 0.03 | 28        | 690      | 22  | <5 <20 | 54  | 0.11 <10  | 68       | <10 | 12 | 74  |

ECO TECH LABORATORY LTD.
Jutta Jealouse
BC Confiled Assayer



10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com

www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5127**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

14-Sep-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 40

Samples Submitted by: Mike Savell

|                       |              | Au            | Au     |                        |
|-----------------------|--------------|---------------|--------|------------------------|
| ET#.                  | ⊺ag#         | (g/t)         | (oz/t) |                        |
| 1                     | 9566         | 0.67          | 0.020  |                        |
| 2                     | 9567         | 1.08          | 0.031  |                        |
| 3                     | 9568         | 0.72          | 0.021  |                        |
| 4                     | 9569         | 0.65          | 0.019  |                        |
| 2<br>3<br>4<br>5<br>6 | 9570         | 0.78          | 0.023  |                        |
| 6                     | 9572         | 0.52          | 0.015  |                        |
| 7                     | 9573         | 0.61          | 0.018  |                        |
| 8                     | 9574         | 0.52          | 0.015  |                        |
| 9                     | 9575         | 0.57          | 0.017  |                        |
| 10                    | 9576         | 0.60          | 0.017  |                        |
| 11                    | 9577         | 0.75          | 0.022  |                        |
| 12                    | 9578         | 0.52          | 0.015  |                        |
| 13                    | <b>9</b> 579 | 0.55          | 0.016  | •                      |
| 14                    | 9580         | 0.73          | 0.021  |                        |
| 15                    | 9581         | 0.49          | 0.014  |                        |
| 16                    | 9582         | 0.56          | 0.016  |                        |
| <b>1</b> 7            | 9583         | 0.66          | 0.019  |                        |
| 18                    | 9584         | 0.46          | 0.013  |                        |
| 19                    | 9585         | 0. <b>6</b> 9 | 0.020  |                        |
| 20                    | 9586         | 0.59          | 0.017  |                        |
| 21                    | 9588         | 0.69          | 0.020  |                        |
| 22                    | 9589         | 0.85          | 0.025  |                        |
| 23                    | 9590         | 0.58          | 0.017  |                        |
| 24                    | 9591         | 0.70          | 0.020  |                        |
| 25                    | 9592         | 0.60          | 0.017  |                        |
| 26                    | 9593         | 0.12          | 0.003  |                        |
| 27                    | 9595         | 0.10          | 0.003  | 1970                   |
| 28                    | 9596         | 0.07          | 0.002  | ECOTECH ABORATORY LTD. |
| 29                    | 9597         | 0.06          | 0.002  | utta Jeplouse          |
| 30                    | 9598         | 80.0          | 0.002  | B.C. Certified Assayer |
|                       |              |               |        |                        |
|                       |              |               |        |                        |

Page 1

|                |       | Au    | Au     |  |
|----------------|-------|-------|--------|--|
| ET #.          | Tag # | (g/t) | (oz/t) |  |
| 31             | 9599  | 0.04  | 0.001  |  |
| 32             | 9600  | 0.08  | 0.002  |  |
| 33             | 9571  | 0.38  | 0.011  |  |
| 34             | 9594  | <0.03 | <0.001 |  |
| 35             | 9587  | 0.08  | 0.002  |  |
| QC DATA:       |       |       |        |  |
| Repeats:       |       |       |        |  |
| <sup>1</sup> 1 | 9566  | 0.68  | 0.020  |  |
| 2              | 9567  | 0.98  | 0.029  |  |
| 5              | 9570  | 0.83  | 0.024  |  |
| 10             | 9576  | 0.58  | 0.017  |  |
| 19             | 9585  | 0.66  | 0.019  |  |
| 22             | 9589  | 0.90  | 0.026  |  |
| Resplit:       |       |       |        |  |
| 1              | 9566  | 0.72  | 0.021  |  |
| Standard:      |       |       |        |  |
| OX140          |       | 1.87  | 0.055  |  |

JJ/bw XLS/05 ECO TECH LABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

ECO TECH LABORATORY LTD.

10041 Dallas Drive KAMLOOPS, B.C.

√2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AS 2005-5127

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 40

Samples Submitted by: Allan Huard

Values in ppm unless otherwise reported

| Et #.                            | Tag #        | Ag  | Al % | As  | Ba  | Bi_ | Ca % | Cd  | Co | Cr          | Cu   | Fe % | La   | Mg % | Mn   | Mo      | Na %   | Ni  | P    |    | Sb_Sn  | Sr  | Ti% U     | V  | W   | Υ  | Zn  |
|----------------------------------|--------------|-----|------|-----|-----|-----|------|-----|----|-------------|------|------|------|------|------|---------|--------|-----|------|----|--------|-----|-----------|----|-----|----|-----|
| 1                                | 9566         | 2.1 | 1.07 | 5   | 25  | <5  | 2.01 | <1  | 11 | 110         | 1542 | 6.17 | <10  | 0.93 | 943  | 35      | <0.01  |     | 1580 | 22 | <5 <20 | 69  | 0.03 < 10 |    | <10 |    | 403 |
| 2                                | 9567         | 2.8 | 1.06 | 5   | 20  | 5   | 1.96 | <1  | 13 | 130         | 2758 | 6.67 | <10  | 1.09 | 996  | 33      | <0.01  |     | 1330 | 26 | <5 <20 | 99  | 0.06 <10  | 84 | <10 | -  | 554 |
| 3                                | 9568         | 2.1 | 1.15 | 5   | 30  | 5   | 2.18 | <1  | 13 | 129         | 1962 | 6.27 | <10  | 1.11 | 1055 |         | <0.01  |     | 1550 | 26 | <5 <20 | 135 | 0.06 <10  | 78 | <10 |    | 417 |
| 4                                | 9569         | 2.4 | 1.03 | 10  | 35  | 5   | 2.28 | <1  | 11 | 127         | 1724 | 5.35 | <10  | 0.91 | 1102 | 18      | <0.01  |     | 1620 | 20 | <5 <20 | 148 | 0.07 <10  | 59 | <10 | _  | 376 |
| 5                                | 9570         | 4.4 | 0.66 | 35  | 10  | 10  | 1.42 | <1  | 11 | 117         | 1778 | 5.36 | <10  | 0.48 | 618  | 14      | <0.01  | 98  | 1130 | 28 | 10 <20 | 37  | 0.03 <10  | 32 | <10 | 6  | 359 |
| 6                                | 9572         | 2.1 | 0.98 | <5  | 40  | 5   | 2.32 | <1  | 10 | 95          | 1494 | 4.92 | <10  | 0.96 | 990  | 17      | <0.01  | 82  | 1460 | 26 | <5 <20 | 85  | 0.06 <10  | 63 | <10 | 9  | 326 |
| 7                                | 9573         | 2.0 | 1.11 | 5   | 35  | <5  | 1.94 | <1  | 11 | 94          | 1700 | 5.45 | <10  | 1.16 | 1002 | 24      | <0.01  | 93  | 1430 | 24 | <5 <20 | 70  | 0.06 <10  | 73 | <10 | 9  | 373 |
| 8                                | 9574         | 2.3 | 1.03 | 5   | 50  | 5   | 1.73 | 1   | 11 | 83          | 1588 | 4.95 | <10  | 1.00 | 903  | 17      | <0.01  | 87  | 1650 | 50 | <5 <20 | 65  | 0.06 < 10 | 62 | <10 | 9  | 365 |
| 9                                | 9575         | 2.1 | 0.98 | 5   | 35  | 5   | 1.86 | <1  | 10 | 108         | 1725 | 5.93 | <10  | 0.97 | 968  | 14      | < 0.01 | 94  | 1400 | 18 | <5 <20 | 58  | 0.06 <10  | 87 | <10 | 9  | 362 |
| 10                               | 9576         | 1.4 | 0.94 | 5   | 25  | 10  | 2.05 | <1  | 11 | 135         | 1085 | 5.40 | <10  | 0.95 | 806  | 24      | <0.01  | 66  | 1410 | 16 | <5 <20 | 128 | 0.08 <10  | 87 | <10 | 9  | 260 |
| 11                               | 9577         | 2.3 | 0.97 | 15  | 20  | <5  | 1.33 | <1  | 11 | 111         | 2256 | 5.58 | <10  | 0.99 | 884  | 19      | <0.01  | 124 | 1460 | 22 | <5 <20 | 63  | 0.09 <10  | 83 | <10 | 9  | 451 |
| 12                               | 9578         | 1.5 | 1.17 | 5   | 45  | 10  | 1.60 | <1  | 12 | 108         | 1428 | 6.43 | <10  | 1.31 | 1040 | 22      | 0.03   |     | 1310 | 30 | <5 <20 | 43  | 0.07 < 10 | 92 | <10 | 8  | 318 |
| 13                               | 9579         | 1.8 | 1.10 | 5   | 45  | 5   | 1.38 | 1   | 11 | 114         | 1321 | 5.44 | <10  | 1.16 | 877  |         | < 0.01 | 73  | 1540 | 38 | <5 <20 | 50  | 0.06 < 10 | 88 | <10 | 9  | 322 |
| 14                               | 9580         | 2.9 | 0.97 | <5  | 25  | 5   | 1.07 | 1   | 12 | 118         | 2237 | 5.77 | <10  | 1.07 | 754  |         | <0.01  | 122 | 1280 | 18 | <5 <20 | 59  | 0.07 < 10 | 90 | <10 | 8  | 455 |
| 15                               | 9581         | 2.1 | 0.61 | <5  | 30  | <5  | 0.93 | <1  | 10 | 165         | 1581 | 6.58 | <10  | 0.61 | 583  | 13      | <0.01  | 87  | 890  | 14 | <5 <20 | 51  | 0.05 < 10 | 95 | <10 | 6  | 327 |
| , -                              | ***          |     |      |     |     |     |      |     |    |             |      |      |      |      |      |         |        |     |      |    |        |     |           |    |     |    |     |
| 16                               | 9582         | 1.8 | 0.81 | <5  | 35  | 5   | 1.13 | <1  | 10 | <b>1</b> 19 | 1567 | 6.03 | <10  | 0.86 | 715  | 15      | <0.01  | 86  | 1170 | 24 | <5 <20 | 57  | 0.06 <10  | 93 | <10 | 7  | 347 |
| 17                               | 9583         | 2.3 | 08.0 | <5  | 20  | <5  | 1.35 | <1  | 11 | 135         | 1994 | 5.63 | <10  | 0.84 | 690  | 15      | <0.01  | 109 | 1060 | 20 | <5 <20 | 87  | 0.06 <10  | 85 | <10 | 7  | 410 |
| 18                               | 9584         | 1.9 | 0.76 | <5  | 25  | 5   | 1.80 | <1  | 10 | 113         | 1615 | 5.39 | <10  | 0.80 | 770  | 14      | <0.01  | 88  | 1080 | 14 | <5 <20 | 132 | 0.05 <10  | 79 | <10 | 7  | 345 |
| 19                               | 9585         | 3.3 | 0.79 | 10  | 25  | 5   | 1.91 | <1  | 11 | 114         | 1612 | 5.61 | <10  | 0.76 | 844  | 15      | <0.01  | 94  | 1300 | 18 | <5 <20 | 119 | 0.06 <10  | 76 | <10 | 8  | 350 |
| 20                               | 9586         | 2.0 | 0.87 | 5   | 35  | 5   | 2.94 | <1  | 11 | 102         | 1602 | 4.38 | <10  | 0.69 | 1099 | 14      | <0.01  | 88  | 1530 | 16 | <5 <20 | 137 | 0.06 <10  | 43 | <10 | 9  | 328 |
| 21                               | 9588         | 3.4 | 0.86 | 35  | 10  | <5  | 2.93 | 2   | 13 | 135         | 1884 | 4.82 | <10  | 0.68 | 1381 | 12      | <0.01  | 104 | 1190 | 28 | 5 <20  | 90  | 0.03 <10  | 22 | <10 | 8  | 385 |
| 22                               | 9589         | 4.1 | 0.87 | 5   | 15  | <5  | 1.26 | <1  | 16 | 159         | 2446 | 5.19 | <10  | 0.80 | 642  | 33      | <0.01  | 136 | 1140 | 22 | <5 <20 | 90  | <0.01 <10 | 52 | <10 | 5  | 484 |
| 23                               | 9590         | 2.6 | 0.93 | 10  | 30  | 5   | 1.93 | <1  | 12 | 125         | 1561 | 4.90 | <10  | 1.00 | 902  | 13      | < 0.01 | 86  | 1140 | 18 | <5 <20 | 98  | <0.01 <10 | 65 | <10 | 5  | 333 |
| 24                               | 9591         | 3.9 | 1.19 | 15  | 15  | 5   | 1,53 | <1  | 14 | 171         | 2042 | 5.65 | <10  | 1.17 | 953  | 13      | < 0.01 | 113 | 1090 | 24 | <5 <20 | 77  | 0.01 <10  | 59 | <10 | 5  | 449 |
| 25                               | 9592         | 2.8 | 1.31 | 35  | 15  | 10  | 1.25 | <1  | 10 | 129         | 1508 | 5.59 | <10  | 1.08 | 811  | 13      | <0.01  | 83  | 1540 | 22 | <5 <20 | 57  | <0.01 <10 | 36 | <10 | 7  | 335 |
| 26                               | 9593         | 1.1 | 1.26 | 135 | 65  | 10  | 2.18 | <1  | 11 | 92          | 604  | 3.89 | <10  | 1.30 | 1291 | 1       | <0.01  | 44  | 1060 | 16 | <5 <20 | 129 | <0.01 <10 | 84 | <10 | 9  | 176 |
| 26<br>27                         | 9595<br>9595 | 0.6 | 1.09 | 70  | 100 | 10  | 2.53 | <1  | 7  | 97          | 339  | 3,14 | <10  | 1.03 | 1164 | -<br><1 | 0.04   |     | 1190 | 14 | <5 <20 |     | <0.01 <10 | 64 | <10 | 11 | 124 |
| 27<br>28                         | 9595<br>9596 | 0.5 | 1.20 | 40  | 80  | 5   | 2.35 | <1  | 9  | 76          | 453  | 3.45 | <10  | 1.13 | 979  | <1      | 0.03   | 35  | 1410 | 16 | <5 <20 | 135 | <0.01 <10 | 66 | <10 | 10 | 149 |
| 2 <del>0</del><br>2 <del>9</del> | 9596<br>9597 | 0.6 | 1.20 | 25  | 100 | 10  | 2.86 | <1  | 9  | 63          | 538  | 3.54 | <10  | 1.12 | 1253 | <1      | 0.02   | 39  | 1470 | 16 | <5 <20 |     | <0.01 <10 | 72 | <10 | 12 | 170 |
| 30                               | 9598<br>9598 | 0.9 | 0.80 | 35  | 80  | 5   | 5.38 | <1  | 9  | 79          | 616  | 2.52 | <10  |      | 2336 |         | < 0.01 | 42  | 910  | 14 | <5 <20 |     | <0.01 <10 | 45 | <10 | 20 | 164 |
| 50                               | <b>90</b> 90 | 0.5 | 0.00 | 00  | Ų.  | J   | 0.00 | - 1 | v  | . 5         | 5.0  |      | Page |      |      | _       |        |     |      |    |        |     |           |    |     |    |     |
|                                  |              |     |      |     |     |     |      |     |    |             |      |      |      |      |      |         |        |     |      |    |        |     |           |    |     |    |     |

Et#. Tag#

JJ/ga df/n5126 XLS/05

FOO TECH LABORATORY LTD.

Ag Al%

Ва

Bi Ca % Cd Co

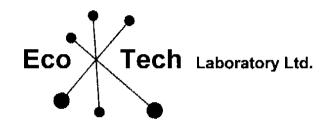
#### ICP CERTIFICATE OF ANALYSIS AS 2005-5127

Mn

Mo Na%

Cu Fe % La Mg %

Falconbridge Limited


Pb Sb Sn Sr Ti % U

Ni

| 31       | 9599      | 1.2  | 0.64 | 20  | 145 | <5 | 2.35 | <1 | 5  | 58  | 757  | 1.85 | <10 | 0.51 | 938  | 1 0.01    | 50  | 810  | 10  | <5 <20 |     | <0.01 <10 | 29  | <10 |    | 192 |
|----------|-----------|------|------|-----|-----|----|------|----|----|-----|------|------|-----|------|------|-----------|-----|------|-----|--------|-----|-----------|-----|-----|----|-----|
| 32       | 9600      | 1.8  | 0.73 | 35  | 115 | <5 | 1.15 | <1 | 8  | 35  | 1136 | 2.23 | <10 | 0.40 | 1198 | 2 < 0.01  | 76  | 1020 | 14  | 5 <20  | 67  | <0.01 <10 | 21  | <10 | 14 | 284 |
| 33       | 9571      | 1.1  | 1.21 | 5   | 105 | <5 | 1.83 | <1 | 14 | 30  | 4104 | 3.71 | <10 | 1.20 | 433  | 2 0.13    | 24  | 2490 | 22  | <5 <20 | 134 | 0.07 < 10 | 197 | <10 | 15 | 59  |
| 34       | 9594      | <0.2 | 3.06 | 10  | 60  | 20 | 4.38 | <1 | 34 | 68  | 68   | 7.42 | <10 | 3.34 | 1085 | <1 0.02   | 15  | 2090 | 26  | <5 <20 | 108 | 0.20 <10  | 223 | <10 | 18 | 73  |
| 35       | 9587      | 0.2  | 0.91 | 100 | 120 | <5 | 0.23 | <1 | 56 | 224 | 449  | >10  | <10 | 0.15 | 487  | 104 0.04  | 405 | 90   | 106 | <5 <20 | 11  | <0.01 <10 | 25  | <10 | 10 | 452 |
| QC DAT   | <u>A:</u> |      |      |     |     |    |      |    |    |     |      |      |     |      |      |           |     |      |     |        |     |           |     |     |    |     |
| Resplit: |           |      |      |     |     |    |      |    |    |     |      |      |     |      |      |           |     |      |     |        |     |           |     |     |    |     |
| 1        | 9566      | 2.4  | 0.99 | <5  | 30  | 5  | 2.00 | <1 | 11 | 106 | 1691 | 5.82 | <10 | 0.90 | 987  | 37 <0.01  | 107 | 1530 | 24  | <5 <20 | 73  | 0.03 <10  | 56  | <10 | 9  | 421 |
| Repeat:  |           |      |      |     |     |    |      |    |    |     |      |      |     |      |      |           |     |      |     |        |     |           |     |     | _  |     |
| 1        | 9566      | 2.1  | 0.97 | <5  | 25  | 5  | 1.87 | <1 | 10 | 103 | 1484 | 5.72 | <10 | 0.87 | 937  | 37 < 0.01 | 93  | 1470 | 20  | <5 <20 | 61  | 0.02 <10  | 54  | <10 |    | 394 |
| 10       | 9576      | 1.4  | 0.89 | 5   | 25  | 10 | 2.02 | <1 | 10 | 126 | 983  | 5.37 | <10 | 0.91 | 788  | 21 < 0.01 | 62  | 1280 | 16  | <5 <20 | 121 | 0.07 <10  | 81  | <10 | 8  | 247 |
| 19       | 9585      | 3.4  | 0.81 | 15  | 25  | 5  | 1.98 | <1 | 12 | 117 | 1644 | 5.66 | <10 | 0.80 | 853  | 16 < 0.01 | 97  | 1370 | 22  | <5 <20 | 119 | 0.06 <10  | 77  | <10 | 8  | 367 |
| Standare | d:        |      |      |     |     |    |      |    |    |     |      |      |     |      |      |           |     |      |     |        |     |           | ~~  | 4.0 |    | 70  |
| GEO'05   |           | 1.5  | 1.74 | 60  | 125 | 10 | 1.71 | <1 | 19 | 60  | 85   | 4.09 | <10 | 1.01 | 698  | <1 0.03   | 28  | 830  | 32  | 5 <20  | 57  | 0.11 <10  | 68  | <10 | 11 | 73  |

ECO TECH LABORATORY LTD.

BC Ceptified Assayer



10041 Dailas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com

www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5128**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

6-Oct-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 41

Samples Submitted by: Mike Savell

|        |              | Au     | Au     | Cu                       |
|--------|--------------|--------|--------|--------------------------|
| ET #.  | Tag#         | (g/t)  | (oz/t) | (%)                      |
| 1      | 9601         | 0.10   | 0.003  |                          |
|        | 9602         | 0.13   | 0.004  |                          |
| 2<br>3 | 9603         | 0.07   | 0.002  |                          |
| 4      | 9604         | 0.07   | 0.002  |                          |
| 5      | 9605         | 0.41   | 0.012  | 1.45                     |
| 6      | 9607         | 1.25   | 0.036  |                          |
| 7      | 9608         | 0.04   | 0.001  |                          |
| 8      | 9609         | 0.09   | 0.003  |                          |
| 9      | 9610         | 0.18   | 0.005  |                          |
| 10     | 9611         | 0.22   | 0.006  | 1.25                     |
| 11     | 9612         | 0.05   | 0.001  |                          |
| 12     | 9613         | < 0.03 | <0.001 |                          |
| 13     | 9614         | 0.06   | 0.002  |                          |
| 14     | 9615         | 0.06   | 0.002  |                          |
| 15     | 9616         | 0.07   | 0.002  |                          |
| 16     | 9617         | 0.05   | 0.001  |                          |
| 17     | 9618         | 0.03   | 0.001  |                          |
| 18     | 9619         | 0.03   | 0.001  |                          |
| 19     | 9620         | <0.03  | <0.001 |                          |
| 20     | 9621         | 0.09   | 0.003  |                          |
| 21     | 9623         | 0.07   | 0.002  |                          |
| 22     | 9624         | 0.13   | 0.004  |                          |
| 23     | <b>962</b> 5 | 0.32   | 0.009  |                          |
| 24     | 9626         | 0.09   | 0.003  |                          |
| 25     | 9627         | 80.0   | 0.002  | ( )                      |
| 26     | 9628         | < 0.03 | <0.001 | A was been               |
| 27     | 9630         | 0.03   | 0.001  | MIAMI I WILL / 1947      |
| 28     | 9631         | 0.05   | 0.001  | ECO TECH LABORATORY LTD: |
| 29     | 9632         | 0.03   | 0.001  | Juta Jealouse            |
| 30     | 9633         | 0.03   | 0.001  | B.C. Certified Assayer   |

|           |      | Au    | Au     | Cu   |
|-----------|------|-------|--------|------|
| ET #.     | Tag# | (g/t) | (oz/t) | (%)  |
| 31        | 9634 | 0.09  | 0.003  |      |
| 32        | 9635 | 0.09  | 0.003  |      |
| 33        | 9606 | 0.39  | 0.011  |      |
| 34        | 9629 | <0.03 | <0.001 |      |
| 35        | 9622 | 0.09  | 0.003  |      |
| QC DATA:  | =    |       |        |      |
| Repeats:  | 0004 | 0.40  | 0.000  |      |
| 1         | 9601 | 0.10  | 0.003  | 4.45 |
| 5         | 9605 | 0.42  | 0.012  | 1,45 |
| 6         | 9607 | 1.35  | 0.039  |      |
| 10        | 9611 | 0.20  | 0.006  |      |
| 19        | 9620 | <0.03 | <0.001 |      |
| Resplit:  |      |       |        |      |
| 1         | 9601 | 0.10  | 0.003  |      |
| Standard: |      | 4.00  | 0.054  |      |
| OX140     |      | 1.86  | 0.054  | 0.00 |
| PB106     |      |       |        | 0.62 |
| CU106     |      |       |        | 1.42 |

JJ/bw XLS/05

Jutta Jealouse B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive

KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax 250-573-4557

Values in ppm unless otherwise reported

#### ICP CERTIFICATE OF ANALYSIS AS 2005-5128

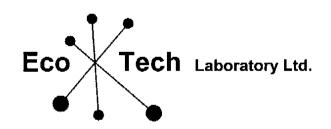
Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35 Sample type: Core

Project #: 301 Shipment #: 41

Samples Submitted by: Mike Savell


| Et #.         | Tag # | Ag   | AI % | As | Ва  | Bi | Ca % | Cď | Co  | Cr  | Cu     | Fe % | La  | Mg %         | Mn    | Мо       | Na %   | Ni         | Р            | Pb             | Sb Sn            | Sr  | Ti %   | U          | v   | W   | Υ   | Zn   |
|---------------|-------|------|------|----|-----|----|------|----|-----|-----|--------|------|-----|--------------|-------|----------|--------|------------|--------------|----------------|------------------|-----|--------|------------|-----|-----|-----|------|
| <del>-1</del> | 9601  | 1.8  | 0.92 | 55 | 145 | <5 | 0.24 | 2  | 12  | 46  | 2019   | 2.84 | 10  | 0.41         | 4962  | 10       | 0.04   | 145        | 990          | 14             | <5 <20           | 21  | <0.01  | <10        | 31  | <10 |     | 501  |
| 2             | 9602  | 1.7  | 0.95 | 25 | 120 | <5 | 0.81 | <1 | 8   | 77  | 1747   | 2.42 | <10 | 0.83         | 927   | 1        | 0.06   | 121        | 720          | 10             | <5 <20           | 44  | <0.01  | <10        | 56  | <10 | 13  | 412  |
| 3             | 9603  | 1.3  | 0.91 | 25 | 95  | <5 | 1.04 | <1 | 7   | 84  | 774    | 2.38 | <10 | 0.73         | 710   | <1       | 0.05   | 61         | 570          | 10             | <5 <20           |     | <0.01  |            | 46  | <10 | 9   | 213  |
| 4             | 9604  | 1.3  | 1.14 | 35 | 120 | <5 | 1.34 | <1 | 7   | 46  | 988    | 3.07 | <10 | 0.83         | 818   | <1       | 0.03   | 67         | 1200         | 12             | <5 <20           |     | <0.01  |            | 57  | <10 | 9   | 266  |
| 5             | 9605  | 16.5 | 0.53 | 20 | 15  | <5 | 1.19 | 1  | 6   | 78  | >10000 | 2.94 | <10 | 0.38         | 497   | <1       | 0.05   | 726        | 690          | 48             | <5 <20           | 93  | <0.01  | <10        | 36  | <10 | 8 2 | 2358 |
| 6             | 9607  | 9.8  | 1.23 | 10 | 40  | <5 | 1.84 | <1 | 15  | 78  | 9143   | 3.57 | <10 | 1.34         | 983   | <1       | 0.05   | 593        | 920          | 26             | <5 <20           | 135 | <0.01  | <10        | 66  | <10 | 8   | 1907 |
| 7             | 9608  | 1.7  | 1.00 | 5  | 125 | <5 | 1.90 | <1 | 10  | 46  | 2860   | 4.06 | <10 | 1.35         | 922   | 1        | 0.04   | 186        | 1320         | 10             | <5 <20           | 137 | <0.01  | <10        | 56  | <10 | 10  | 646  |
| 8             | 9609  | 4.2  | 0.73 | 40 | 100 | <5 | 2.59 | <1 | 10  | 56  | 4159   | 3.24 | <10 | 1.24         | 1261  | 1        | 0.03   | 281        | 920          | 12             | 15 < 20          | 162 | < 0.01 | <10        | 41  | <10 | 10  | 917  |
| 9             | 9610  | 11.8 | 1.25 | 20 | 45  | <5 | 3.35 | <1 | 9   | 38  | 8786   | 3.65 | <10 | 1.18         | 1550  | <1       | 0.04   | 558        | 1270         | 16             | <5 <20           | 185 | <0.01  | <10        | 70  | <10 | 12  | 1857 |
| 10            | 9611  | 12.3 | 1.07 | 5  | 40  | <5 | 2.68 | <1 | 9   | 51  | >10000 | 3.07 | <10 | 1.15         | 1094  | <1       | 0.04   | 661        | 1320         | 16             | <5 <20           | 166 | <0.01  | <10        | 76  | <10 | 10  | 2193 |
|               |       |      |      |    |     |    |      | _4 | _   |     | 4.400  | 0.07 | 10  | 4.20         | 4.400 | -4       | 0.04   | 00         | 1100         | 8              | <5 <20           | 111 | <0.01  | c10        | 30  | <10 | 10  | 382  |
| 11            | 9612  | 1.3  | 0.59 | 15 | 140 | <5 |      | <1 | 8   | 37  | 1496   | 3.07 | <10 | 1.30         | 1483  | <1       |        | 98         | 1100<br>1270 | 0<br>12        | <5 <20<br><5 <20 | 212 |        |            | 46  |     |     | 458  |
| 12            | 9613  | 0.9  | 0.86 | 10 | 420 | <5 | 2.76 | <1 | 10  | 92  | 1697   | 3.32 | <10 | 1.64         | 1334  | _        | < 0.01 | 115<br>146 | 1310         | 10             | 40 <20           |     | < 0.01 |            | 39  |     |     | 595  |
| 13            | 9614  | 3.8  | 0.80 | 40 | 120 | <5 | 4.27 | 1  | 11  | 97  | 2223   | 3.71 | <10 | 1.52         | 1808  | <1       | 0.08   | 96         | 1270         | 16             | <5 <20           |     | <0.01  |            | 90  |     |     | 378  |
| 14            | 9615  | 1.1  | 1.21 | 10 | 400 | <5 | 3.53 | <1 | 9   | 102 | 1431   | 3.68 | <10 | 1.18         | 1236  | <1       | 0.12   |            | 1260         | 12             | <5 <20<br><5 <20 |     | <0.01  |            | 61  | <10 |     | 408  |
| 15            | 9616  | 1.5  | 0.78 | 15 | 45  | <5 | 5.43 | <1 | 9   | 84  | 1708   | 2.94 | <10 | 0.74         | 1631  | 5        | <0.01  | 112        | 1200         | 12             | ~5 ~20           | 310 | \Q.U1  | <b>\10</b> | O I | ~10 | 13  | 400  |
| 16            | 9617  | 0.9  | 0.94 | 15 | 65  | <5 | 1.82 | <1 | 12  | 83  | 1157   | 2.88 | <10 | 0.84         | 799   | <1       | 0.10   | 82         | 1500         | 12             | <5 <20           | 143 | <0.01  | <10        | 81  | <10 | 10  | 291  |
| 17            | 9618  | 0.8  | 1.22 | 15 | 70  | 5  | 2,21 | <1 | 14  | 95  | 1170   | 3.62 | <10 | 1.13         | 840   | <1       | 0.11   | 80         | 1420         | 10             | <5 <20           | 168 | < 0.01 | <10        | 84  | <10 | 10  | 283  |
| 18            | 9619  | 0.6  | 0.67 | 20 | 35  | <5 | 3.46 | <1 | 11  | 57  | 453    | 2.31 | <10 | 0.59         | 1164  | <1       | 0.10   | 34         | 1190         | 16             | <5 <20           | 271 | <0.01  | <10        | 54  | <10 | 10  | 138  |
| 19            | 9620  | 0.5  | 0.93 | 20 | 45  | <5 | 1.97 | <1 | 12  | 84  | 645    | 2.92 | <10 | 0.98         | 932   | 1        | 0.10   | 46         | 1440         | 12             | <5 <20           | 227 | <0.01  | <10        | 68  | <10 | 9   | 215  |
| 20            | 9621  | 1.0  | 0.76 | 20 | 40  | <5 | 2.93 | <1 | 11  | 62  | 1060   | 2.75 | <10 | 0.67         | 1051  | <1       | 0.17   | 68         | 1530         | 16             | <5 <20           | 227 | <0.01  | <10        | 69  | <10 | 11  | 274  |
|               |       |      | 4.00 | 45 | 4.5 | 40 | 4.00 |    | 4.4 | 70  | 754    | 2.40 | -10 | 4.00         | 0.46  | -1       | 0.07   | E2         | 1470         | 16             | <5 <20           | 135 | <0.01  | <10        | 70  | <10 | 8   | 245  |
| 21            | 9623  | 0.9  |      | 15 | 45  | 10 | 1.69 | <1 | 11  | 76  | 751    | 3.10 | <10 | 1.00<br>0.76 | 846   | <1<br>-1 |        | 53<br>59   | 990          | 2              | <5 <20           | 162 |        |            | 52  | <10 | 7   | 229  |
| 22            | 9624  | 1.0  | 0.77 | 25 | 40  | <5 | 1.68 | <1 | 6   | 62  | 730    | 2.00 | <10 |              | 888   | <1       |        | 62         | 1350         | 14             | <5 <20           | 158 |        |            | 69  | <10 | 7   | 274  |
| 23            | 9625  | 1.0  | 0.95 | 10 | 115 | 10 | 1.57 | <1 | 14  | 68  | 942    | 2.92 | <10 |              | 764   |          | < 0.01 | 63         | 1530         | 20             | <5 <20           | 226 |        |            | 94  | <10 | 11  | 277  |
| 24            | 9626  | 0.7  | 1.12 | 10 | 60  | 10 | 2.14 | <1 | 13  | 93  | 977    | 4.01 | <10 |              | 1026  | <1       |        | 76         | 1720         | 24             | 10 <20           | 160 |        |            |     | <10 |     | 360  |
| 25            | 9627  | 0.9  | 1.27 | 25 | 75  | 15 | 1.89 | <1 | 15  | 103 | 1075   | 3.71 | <10 | 1.19         | 1192  | <1       | 0.17   | /0         | 1720         | Z <del>4</del> | 10 -20           | 100 | 0.03   | ~10        | 10  | ~10 | 10  | 500  |

| Et #.            | Tag #      | Ag   | Al % | As | Ва  | Bi | Ca % | Cd | Со | Çr  | Cu     | Fe % | La  | Mg % | Mn   | Мо  | Na %  | Ni  | Р    | Pb  | Sb Sn  | Sr   | Ti %  | U   | V   | W   | Υ  | Zn   |
|------------------|------------|------|------|----|-----|----|------|----|----|-----|--------|------|-----|------|------|-----|-------|-----|------|-----|--------|------|-------|-----|-----|-----|----|------|
| 26               | 9628       | 0.9  | 1.02 | 10 | 130 | <5 | 1.86 | <1 | 11 | 73  | 1032   | 3.31 | <10 | 1.06 | 887  | 2   | 0.05  | 67  | 1590 | 20  | <5 <20 | 163  | 0.02  | <10 | 86  |     | 10 | 335  |
| 27               | 9630       | 8.0  | 1.19 | 15 | 115 | <5 | 2.53 | <1 | 14 | 97  | 1176   | 3.53 | <10 | 1.24 | 1246 | <1  | 0.16  | 08  | 1710 | 14  | <5 <20 | 253  |       | <10 | 78  | <10 | 10 | 349  |
| 28               | 9631       | 1.6  | 1.27 | 25 | 60  | <5 | 1.75 | <1 | 13 | 73  | 2027   | 3.47 | <10 | 1.35 | 1039 | 2   | 0.08  | 131 | 1720 | 16  | <5 <20 |      |       | <10 | 77  | <10 | 9  | 538  |
| 29               | 9632       | 0.9  | 0.97 | 15 | 35  | 10 | 1.55 | <1 | 11 | 81  | 941    | 2.94 | <10 | 0.96 | 861  | <1  | 0.18  | 63  | 1330 | 12  | <5 <20 |      |       | <10 | 62  | <10 | 7  | 283  |
| 30               | 9633       | 0.3  | 0.98 | 10 | 40  | 15 | 1.19 | <1 | 10 | 66  | 424    | 2.86 | <10 | 1.08 | 833  | <1  | 0.09  | 27  | 1500 | 8   | <5 <20 | 122  | <0.01 | <10 | 52  | <10 | 7  | 185  |
| 31               | 9634       | 0.7  | 1.12 | 40 | 25  | 20 | 1.57 | <1 | 12 | 77  | 507    | 3.20 | <10 | 1.15 | 999  |     | <0.01 | 42  | 1490 | 18  | <5 <20 | - 11 |       | <10 | 63  | <10 | 7  | 200  |
| 32               | 9635       | 0.7  | 1.08 | 40 | 40  | 20 | 0.95 | <1 | 11 | 70  | 669    | 3.04 | <10 | 1.08 | 699  | <1  | 0.09  | 45  | 1690 | 18  | 10 <20 | 84   |       | <10 | 62  | <10 | 6  | 248  |
| 33               | 9606       | 1.2  | 1.08 | 10 | 130 | <5 | 1.33 | <1 | 12 | 21  | 4227   | 3.34 | <10 | 0.97 | 630  | <1  | 0.18  | 13  | 720  | 16  | <5 <20 | 109  |       | <10 | 167 | <10 | 15 | 40   |
| 34               | 9629       | <0.2 | 2.26 | 5  | 55  | 10 | 3.45 | <1 | 29 | 106 | 107    | 4.74 | <10 | 2.19 | 733  | <1  | 0.16  | 20  | 1870 | 24  | 5 <20  | 99   |       | <10 | 176 | <10 | 12 | 80   |
| 35               | 9622       | 0.2  | 0.76 | 80 | 135 | <5 | 0.19 | <1 | 64 | 290 | 439    | >10  | 10  | 0.14 | 410  | 118 | <0.01 | 456 | 110  | 104 | <5 <20 | 18   | <0.01 | <10 | 23  | 20  | 6  | 477  |
| QC DA            | IA:        |      |      |    |     |    |      |    |    |     |        |      |     |      |      |     |       |     |      |     |        |      |       |     |     |     |    |      |
| Resplit<br>1     | t:<br>9601 | 2.0  | 0.69 | 50 | 190 | <5 | 0.15 | 2  | 11 | 68  | 2623   | 1.89 | <10 | 0.30 | 3935 | 10  | <0.01 | 185 | 780  | 18  | <5 <20 | 21   | <0.01 | <10 | 25  | <10 | 16 | 625  |
| Repeat           | t:         |      |      |    |     |    |      |    |    |     |        |      |     |      |      |     |       |     |      |     |        |      | .0.04 | -40 | 24  | -10 | 20 | 400  |
| 1                | 9601       | 1.9  | 0.91 | 55 | 155 | <5 | 0.24 | 2  | 12 | 44  | 1952   | 2.77 | 10  | 0.40 | 4889 | 9   | 0.04  | 140 | 960  | 16  | <5 <20 | 21   |       | <10 | 31  | <10 | 20 | 486  |
| 10               | 9611       | 12.2 | 0.91 | 5  | 40  | <5 | 2.67 | <1 | 9  |     | >10000 | 2.97 | <10 | 0.98 | 941  | <1  | 0.10  | 710 | 1360 | 18  | <5 <20 |      |       | <10 | 68  | <10 |    | 3005 |
| 19               | 9620       | 0.5  | 1.02 | 20 | 55  | <5 | 2.08 | <1 | 12 | 92  | 718    | 3.09 | <10 | 1.02 | 1035 | <1  | 0.13  | 50  | 1530 | 14  | <5 <20 | 236  | <0.01 | <10 | 71  | <10 | 9  | 239  |
| Standa<br>GEO'05 |            | 1.5  | 1.29 | 50 | 150 | <5 | 1.47 | <1 | 19 | 62  | 85     | 3.79 | <10 | 0.76 | 507  | 1   | 0.05  | 30  | 700  | 24  | <5 <20 | 53   | 0.11  | <10 | 66  | <10 | 10 | 73   |

ECO TECH LABORATORY LTD.
Julia Jealouse

BC Certified Assayer

JJ/kk df/5128/1216a XLS/05



10041 Dalias Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5129**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

12-Oct-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core **Project #: 301 Shipment #: 42** 

Samples Submitted by: Mike Savell

|            |       | Au    | Au      |           |
|------------|-------|-------|---------|-----------|
| ET #.      | Tag # | (g/t) | (oz/t)  |           |
| 1          | 9636  | 0.11  | 0.003   |           |
| 2          | 9637  | 0.10  | 0.003   |           |
| 3          | 9638  | 0.21  | 0.006   |           |
| 4          | 9639  | 0.23  | 0.007   |           |
| 5          | 9640  | 0.03  | 0.001   |           |
| 6          | 9642  | 0.05  | 0.001   |           |
| 7          | 9643  | <0.03 | < 0.001 |           |
| 8          | 9644  | 0.03  | 0.001   |           |
| 9          | 9645  | 0.13  | 0.004   |           |
| 10         | 9646  | 0.25  | 0.007   |           |
| 11         | 9647  | 0.52  | 0.015   |           |
| 12         | 9648  | 0.80  | 0.023   |           |
| 13         | 9649  | 1.21  | 0.035   |           |
| 14         | 9650  | 0.15  | 0.004   |           |
| 15         | 9651  | 0.07  | 0.002   |           |
| 16         | 9652  | 0.07  | 0.002   |           |
| 17         | 9653  | 0.17  | 0.005   |           |
| 18         | 9654  | 0.19  | 0.006   |           |
| <b>1</b> 9 | 9655  | 0.16  | 0.005   |           |
| 20         | 9656  | 0.08  | 0.002   |           |
| 21         | 9658  | 0.25  | 0.007   |           |
| 22         | 9659  | 0.17  | 0.005   |           |
| 23         | 9660  | 0.31  | 0.009   |           |
| 24         | 9661  | 0.15  | 0.004   |           |
| 25         | 9662  | 0.16  | 0.005   |           |
|            |       |       |         | / \ \ ( 1 |

ECO TECH LABORATORY LTD.

Kutta Jea/ouke

B.C. Certified Assayer

|                               |                              | Au                           | Au                               |
|-------------------------------|------------------------------|------------------------------|----------------------------------|
| ET #.                         | Tag #                        | (g/t)                        | (oz/t)                           |
| 26                            | 9663                         | 0.31                         | 0.009                            |
| 27                            | 9665                         | 0.15                         | 0.004                            |
| 28                            | 9666                         | 0.28                         | 0.008                            |
| 29                            | 9667                         | 0.28                         | 0.008                            |
| 30                            | 9668                         | 0.27                         | 0.008                            |
| 31                            | 9669                         | 0.21                         | 0.006                            |
| 32                            | 9670                         | 0.66                         | 0.019                            |
| 33                            | 9641                         | 0.39                         | 0.011                            |
| 34                            | 9664                         | < 0.03                       | <0.001                           |
| 35                            | 9657                         | 0.07                         | 0.002                            |
| QC DATA:  Repeats: 1 10 12 13 | 9636<br>9646<br>9648<br>9649 | 0.11<br>0.23<br>0.84<br>1.26 | 0.003<br>0.007<br>0.024<br>0.037 |
| 19                            | 9655                         | 0.15                         | 0.004                            |
| Resplit:                      |                              |                              |                                  |
| 1                             | 9636                         | 0.12                         | 0.003                            |
| Standard:                     |                              |                              |                                  |
| PM176                         |                              | 2.02                         | 0.059                            |
| OX140                         |                              | 1.83                         | 0.053                            |
| CU106                         |                              |                              |                                  |

JJ/ga XLS/05 ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

JJ/bw/ga df/5129 XLS/05

### ICP CERTIFICATE OF ANALYSIS AS 2005-5129

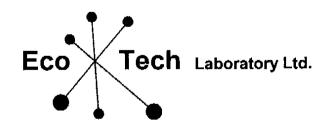
### Falconbridge Limited

| Et #.                     | Tag # | Ag    | Al % | As  | Ва  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn   | Mo  | Na %  | Ni  | P    | Pb | Sb | Sn  | Sr         | <u>Ti %</u> | U   | V   | W   | Υ  | Zn             |
|---------------------------|-------|-------|------|-----|-----|----|------|----|----|-----|------|------|-----|------|------|-----|-------|-----|------|----|----|-----|------------|-------------|-----|-----|-----|----|----------------|
| 31                        | 9669  | 1.0   | 0.87 | 55  | 45  | <5 | 2.06 | <1 | 17 | 38  | 340  | 5.37 | <10 | 0.59 | 1511 | 5   | <0.01 | 66  | 1380 | 6  | <5 | <20 | 114        | <0.01       | <10 | 30  | <10 | 5  | 5 <del>9</del> |
| 32                        | 9670  | 3.5   | 0.62 | 65  | 30  | <5 | 1.27 | <1 | 17 | 53  | 627  | 7.79 | <10 | 0.34 | 1080 | 10  | <0.01 | 45  | 1470 | 14 | <5 | <20 | 79         | <0.01       | <10 | 36  | <10 | <1 | 45             |
| 33                        | 9641  | 1.1   | 1.13 | <5  | 135 | <5 | 1.53 | <1 | 14 | 24  | 4298 | 3.65 | <10 | 1.01 | 708  | 3   | 0.16  | 18  | 1300 | 16 | <5 | <20 | 105        | 0.15        | <10 | 176 | <10 | 1  | 41             |
| 34                        | 9664  | < 0.2 | 2.93 | 10  | 115 | <5 | 3.33 | <1 | 35 | 58  | 91   | 8.14 | <10 | 2.63 | 1049 | <1  | 0.02  | 19  | 1680 | 10 | <5 | <20 | 74         | 0.16        | <10 | 269 | <10 | 11 | 93             |
| 35                        | 9657  | 0.2   | 0.82 | 95  | 145 | <5 | 0.27 | <1 | 71 | 224 | 435  | >10  | <10 | 0.11 | 423  | 129 | 0.04  | 408 | 70   | 98 | <5 | <20 | 11         | < 0.01      | <10 | 26  | <10 | <1 | 463            |
| QC DA1<br>Resplit.        |       | 1.0   | 1.17 | 45  | 75  | <5 | 1.70 | <1 | 13 | 47  | 701  | 4.28 | <10 | 0.98 | 1106 | 3   | 0.04  | 6   | 1220 | 8  | <5 | <20 | 98         | <0.01       | <10 | 92  | <10 | 5  | 132            |
| Repeat                    | :     |       |      |     |     |    |      |    |    |     |      |      |     |      |      |     |       |     |      |    |    |     |            |             |     |     |     |    |                |
| 1                         | 9636  | 1.1   | 1.33 | 40  | 70  | <5 | 1.67 | <1 | 13 | 54  | 972  | 4.20 | <10 | 1.14 | 1092 | 2   | 0.05  | 7   | 1220 | 6  | <5 | <20 | 110        | 0.01        | <10 | 95  | <10 | 4  | 113            |
| 10                        | 9646  | 4.1   | 2.29 | 140 | 105 | <5 | 5.50 | <1 | 12 | 40  | 4556 | 6.59 | <10 | 2.76 | 2478 | 2   | 0.03  | 23  | 580  | 4  | 90 | <20 | 309        | 0.02        |     | 151 | <10 | <1 | 234            |
| 19                        | 9655  | 1.4   | 0.37 | 55  | 40  | <5 | 1.59 | <1 | 14 | 59  | 1311 | 3.32 | <10 | 0.34 | 911  | 3   | 0.02  | 21  | 940  | 6  | <5 | <20 | 69         | <0.01       | <10 | 28  | <10 | 1  | 45             |
| <b>Standa</b> i<br>GEO'05 |       | 1.5   | 1.32 | 50  | 155 | <5 | 1.40 | <1 | 19 | 61  | 83   | 3.89 | <10 | 0.67 | 597  | <1  | 0.02  | 28  | 610  | 22 | <5 | <20 | 5 <b>4</b> | 0.10        | <10 | 73  | <10 | 10 | 74             |

ECO TECH LABORATORY L.TD.
Juffa Jealouse
BC Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7


ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core Project #: 301 Shipment #: 42

Samples submitted by: Mike Savell

### Values in ppm unless otherwise reported

|               |      |            |              |           |            |            |              |          |    |     |      |      |        |              |              |    |              |          |            |    |       | _   | _   |        |     |     |     |     | _          |
|---------------|------|------------|--------------|-----------|------------|------------|--------------|----------|----|-----|------|------|--------|--------------|--------------|----|--------------|----------|------------|----|-------|-----|-----|--------|-----|-----|-----|-----|------------|
| Et #.         | Tag# | Ag         | AI %         | As        | Ba         | Bi         | Ca %         | Cd       | Co | Cr  | Cu   | Fe % | La     | Mg %         | Mn           | Мо | Na %         | Ni       | P          | Pb |       | \$n | Sr  | Ti %   | U   |     | W   | Υ   | Zn         |
| <del></del> 1 | 9636 | 1.1        | 1.34         | 30        | 65         | <5         | 1.65         | <1       | 13 | 53  | 986  | 4.17 | <10    | 1.16         | 1081         | 2  | 0.05         | -        | 1170       | 6  | <5 <  |     |     | <0.01  |     |     | <10 | 3   | 108        |
| 2             | 9637 | 1.2        | 1.15         | 40        | 55         | <5         | 1.31         | <1       | 12 | 51  | 976  | 4.13 | <10    | 1.06         | 1068         | 2  | 0.04         | -        | 1130       | 6  | <5 <  |     |     | <0.01  |     | 70  | <10 | 3   | 97         |
| 3             | 9638 | 3.3        | 0.42         | 140       | 30         | <5         | 1.16         | <1       | 15 | 52  | 2174 | 3.34 | <10    | 0.13         | 541          | 3  | 0.01         |          | 1180       | 10 | -     | 20  |     | <0.01  |     | 19  | <10 | 2   | 18         |
| 4             | 9639 | 4.6        | 0.74         | 140       | 40         | <5         | 3.04         | <1       | 25 | 43  | 1693 | 4.42 | <10    | 0.44         | 1661         | 3  | 0.01         | 10       | 1540       | 10 |       | 20  |     | <0.01  |     | 48  | <10 | 9   | 42         |
| 5             | 9640 | 0.2        | 3.17         | 85        | 90         | <5         | 3.76         | <1       | 33 | 70  | 28   | 8.86 | <10    | 2.97         | 2114         | 5  | 0.03         | 7        | 840        | 2  | <5 <  | 20  | 206 | 0.02   | <10 | 222 | <10 | 1   | 150        |
|               |      |            |              | _         |            | _          |              |          |    |     | 47   | 7.00 | -40    | 2.44         | 4400         | 2  | 0.02         | 44       | 540        | 4  | <5 <  | 20  | 293 | 0.02   | ~10 | 204 | <10 | 7   | 92         |
| 6             | 9642 | < 0.2      |              | <5        | 305        | <5         | 4.72         | <1       | 33 | 97  | 17   | 7.09 | <10    | 3.41         | 1426         | 3  | 0.02         | 11<br>13 | 440        | 4  | <5 <  |     | 252 | 0.02   |     |     | <10 | 4   | 122        |
| 7             | 9643 | <0.2       | 3.38         | <5        | 80         | 5          | 4.65         | <1       | 36 | 143 | 15   | 7.47 | <10    | 3.85         | 1828         |    | 0.02<br>0.02 | 6        | 970        | 8  | <5 <  |     | 243 | 0.03   |     | 187 | <10 | 8   | 125        |
| 8             | 9644 | 0.3        | 2.49         | <5        | 60         | <5         | 4.03         | <1       | 32 | 39  | 135  | 8.69 | <10    | 2.30         | 1803         | 4  | 0.02         | 30       | 950        | 4  | <5 <  |     | 201 | 0.03   |     | 71  | <10 | 6   | 87         |
| 9             | 9645 | 2.8        | 0.96         | 30        | 35         | <5         | 3.37         | <1       | 10 | 79  | 3534 | 3.61 | <10    | 0.99         | 1344         | 2  |              | 23       | 930<br>610 |    | 100 < |     | 312 | 0.02   |     | 152 | <10 | <1  |            |
| 10            | 9646 | 4.2        | 2.33         | 140       | 100        | <5         | 5.53         | <1       | 12 | 40  | 3652 | 6.65 | <10    | 2.84         | 2489         | 2  | 0.03         | 23       | 010        | 4  | 100 \ | -20 | 312 | 0.02   | ~10 | 102 | -10 | - 1 | 200        |
| 4.4           | 0047 | 4.0        | 2.07         | 25        | 145        | <b>7</b> E | 3.82         | -1       | 13 | 51  | 6450 | 6.43 | <10    | 3.49         | 1893         | <1 | 0.03         | 22       | 790        | <2 | 10 <  | :20 | 213 | 0.03   | <10 | 191 | <10 | <1  | 164        |
| 11            | 9647 | 4.3        | 2.87         | 25        | 145        | <5<br>~5   | 3.62<br>4.15 | <1<br><1 | 13 | 76  | 7849 | 5.34 | <10    | 2.70         | 1533         | <1 | 0.04         | 49       | 640        |    | 115 < |     | 280 | 0.03   |     | 144 | <10 | 3   | 91         |
| 12            | 9648 | 10.1       | 2.08         | 360       | 185<br>105 | <5<br><5   | 5.18         | <1       | 11 | 50  | 9535 | 5.69 | <10    | 2.19         | 1742         | <1 | 0.03         | 27       | 500        | 2  |       | 20  | 276 | 0.03   |     | 161 | <10 | 3   | 131        |
| 13            | 9649 | 8.3        | 1.74<br>0.30 | 45<br>730 | 50         | <5         | 2.35         | <1       | 9  | 63  | 2837 | 3.79 | <10    | 0.70         | 1113         | 3  | 0.02         | 17       | 710        | _  | 385 < |     |     | < 0.01 |     | 48  | <10 | 4   | 268        |
| 14            | 9650 | 5.0<br>0.7 | 0.34         | 60        | 45         | ^5<br><5   | 1.16         | <1       | 10 | 70  | 1043 | 2.44 | <10    | 0.47         | 641          | 2  | 0.03         | 20       | 930        | 4  | 5 <   |     |     | < 0.01 |     | 35  | <10 | 6   | 44         |
| 15            | 9651 | 0.7        | 0.54         | Ųΰ        | 40         | `J         | 1.10         | ~ 1      | 10 | , 0 | 1043 | 2.77 | -10    | <b>3.</b> ⊣1 | <b>0</b> / · | _  | 0.00         |          | 000        | ,  | _     |     |     |        |     |     |     |     |            |
| 16            | 9652 | 0.5        | 0.45         | 25        | 40         | <5         | 1.24         | <1       | 10 | 68  | 768  | 2.98 | <10    | 0.39         | 688          | 3  | 0.03         | 19       | 890        | 4  | <5 <  | 20  | 59  | <0.01  | <10 | 46  | <10 | 8   | 35         |
| 17            | 9653 | 2.3        | 0.44         | 275       | 55         | <5         | 2.31         | <1       | 11 | 63  | 2938 | 3.48 | <10    | 0.66         | 1097         | 3  | 0.02         | 25       | 1030       | 2  | 140 < | 20  | 195 | <0.01  | <10 | 43  | <10 | 8   | 112        |
| 18            | 9654 | 2.2        | 0.37         | 50        | 40         | <5         | 1.34         | <1       | 17 | 60  | 2407 | 2.99 | <10    | 0.35         | 753          | 4  | 0.03         | 25       | 940        | 10 | <5 <  | :20 | 83  | < 0.01 | <10 | 26  | <10 | 11  | 36         |
| 19            | 9655 | 1.4        | 0.38         | 50        | 35         | <5         | 1.56         | <1       | 14 | 56  | 1440 | 3.26 | <10    | 0.37         | 904          | 3  | 0.02         | 21       | 930        | 6  | <5 <  | 20  | 77  | <0.01  | <10 | 29  | <10 | 8   | 41         |
| 20            | 9656 | 2.2        | 0.24         | 215       | 45         | <5         | 1.79         | <1       | 16 | 60  | 1647 | 3.03 | <10    | 0.37         | 1024         | 4  | 0.02         | 33       | 1110       | 6  | 75 <  | 20  | 103 | <0.01  | <10 | 20  | <10 | 9   | 96         |
|               |      |            |              |           |            |            |              |          |    |     |      |      |        |              |              |    |              |          |            |    |       |     |     |        |     |     |     |     |            |
| 21            | 9658 | 2.5        | 0.58         | 120       | 40         | <5         | 1.93         | <1       | 8  | 75  | 1920 | 4.46 | <10    | 0.46         | 1663         | 3  | 0.01         | 21       | 900        | 8  | <5 <  |     |     | < 0.01 |     | 47  | <10 | 4   | 44         |
| 22            | 9659 | 2.3        | 0.46         | 85        | 45         | <5         | 2.19         | <1       | 10 | 90  | 1916 | 3.78 | <10    | 0.44         | 1391         | 3  | 0.01         | 31       | 850        | 10 | <5 <  |     |     | < 0.01 |     | 35  | <10 | 7   | 50         |
| 23            | 9660 | 3.2        | 0.31         | 115       | 25         | <5         | 1.64         | <1       | 9  | 57  | 1937 | 3.92 | <10    | 0.34         | 1444         | 3  | <0.01        | 26       | 1000       | 8  | <5 <  |     |     | < 0.01 |     | 25  | <10 | 3   | 40         |
| 24            | 9661 | 3.0        | 0.29         | 160       | 35         | <5         | 2.01         | <1       | 12 | 78  | 1692 | 3.72 | <10    | 0.42         | 1717         | 4  | 0.01         | 24       | 1170       | 8  | 40 <  |     |     | < 0.01 |     | 27  | <10 | 4   | 63         |
| 25            | 9662 | 4.1        | 0.33         | 105       | 35         | <5         | 1.95         | <1       | 13 | 65  | 2257 | 4.23 | <10    | 0.43         | 1569         | 4  | 0.02         | 24       | 1000       | 12 | 10 <  | 20  | 97  | < 0.01 | <10 | 39  | <10 | 5   | 96         |
|               |      |            |              |           |            |            |              |          |    |     |      |      |        |              |              |    |              |          |            |    | _     | ••  |     | .0.04  | .40 | o.→ | -40 | 2   | <b>C</b> 0 |
| 26            | 9663 | 4.4        | 0.33         | 45        | 30         | <5         | 1.66         | <1       | 32 | 74  | 2077 | 4.83 | <10    | 0.25         | 1492         | 39 |              | 24       | 810        | 14 | <5 ·  |     |     | < 0.01 |     | 27  | <10 | 3   | 58         |
| 27            | 9665 | 1.1        | 0.73         | 60        | 35         | <5         | 3.05         | <1       | 17 | 58  | 178  | 3.56 | <10    | 0.56         | 2194         | 3  |              | 46       | 1280       | 8  | <5 <  | -   |     | < 0.01 |     | 25  | <10 | -   | 74<br>26   |
| 28            | 9666 | 1.6        | 0.29         | 100       | 35         | <5         | 2.12         | <1       | 15 | 43  | 448  | 3.87 | <10    | 0.08         | 2016         |    |              | 52       | 1190       | 22 | <5 •  |     |     | < 0.01 |     | 13  | <10 | 12  | 26         |
| 29            | 9667 | 2.3        | 0.32         | 85        | 25         | <5         | 1.95         | <1       | 19 | 42  | 309  | 4.99 | <10    | 0.12         | 2207         |    | < 0.01       | 35       | 860        | 18 |       | 20  |     | < 0.01 | -   | 12  | <10 | 5   | 35<br>70   |
| 30            | 9668 | 1.9        | 0.68         | 65        | 30         | <5         | 2.09         | <1       | 18 | 53  | 344  | 5.24 | <10    | 0.41         | 2063         | 5  | <0.01        | 52       | 910        | 12 | <5 ·  | -20 | 134 | <0.01  | <10 | 18  | <10 | 6   | 70         |
|               |      |            |              |           |            |            |              |          |    |     |      | -    | Page 1 |              |              |    |              |          |            |    |       |     |     |        |     |     |     |     |            |
|               |      |            |              |           |            |            |              |          |    |     |      |      |        |              |              |    |              |          |            |    |       |     |     |        |     |     |     |     |            |



10041 Dalias Drive, Kamioops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com

www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5130**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

14-Sep-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 43

Samples Submitted by: Mike savell

|               |              | Au           | Au     |      |
|---------------|--------------|--------------|--------|------|
| ET #          | Tag #        | (g/t)        | (oz/t) | <br> |
| 1             | 967 <b>1</b> | 0.39         | 0.011  |      |
| 2<br>3        | 9672         | 0.07         | 0.002  |      |
| 3             | 9673         | 0.10         | 0.003  |      |
| 4             | 9674         | 0.13         | 0.004  |      |
| 5             | 9675         | 0.15         | 0.004  |      |
| 6             | 9677         | 0.14         | 0.004  |      |
| 6<br>7        | 9678         | 0.22         | 0.006  |      |
| 8             | 9679         | 0.83         | 0.024  |      |
| <b>8</b><br>9 | 9680         | 1.29         | 0.038  |      |
| 10            | 9681         | 0.32         | 0.009  |      |
| 11            | 9682         | 1. <b>64</b> | 0.048  |      |
| 12            | 9683         | 0.35         | 0.010  |      |
| 13            | 9684         | 0.19         | 0.006  |      |
| 14            | 9685         | 0.29         | 0.008  |      |
| 15            | 9686         | 0.19         | 0.006  |      |
| 16            | 9687         | 0.31         | 0.009  |      |
| 17            | 9688         | 0.14         | 0.004  |      |
| 18            | 9689         | 0.19         | 0.006  |      |
| 19            | 9690         | 0.62         | 0.018  |      |
| 20            | 9691         | 0.21         | 0.006  |      |
| 21            | <b>96</b> 93 | 0.15         | 0.004  |      |
| 22            | 9694         | 0.43         | 0.013  |      |
| 23            | 9695         | 0.43         | 0.013  |      |
| 24            | 9696         | 0.21         | 0.006  | <br> |
| 25            | 9697         | 0.29         | 0.008  |      |

ECO TELH LABORATORY LTD.

Jutta Jeanouse

B.C. Certified Assayer

|           |       | Au    | Au             |                          |
|-----------|-------|-------|----------------|--------------------------|
| ET#.      | Tag # | (g/t) | (oz/t)         |                          |
| 26        | 9698  | 0.29  | 0.008          |                          |
| 27        | 9700  | 0.24  | 0.007          |                          |
| 28        | 9701  | 0.51  | 0.015          |                          |
| 29        | 9702  | 0.24  | 0.007          |                          |
| 30        | 9703  | 0.39  | 0.011          |                          |
| 31        | 9704  | 0.10  | 0.003          |                          |
| 32        | 9705  | 0.23  | 0.007          | •                        |
| 33        | 9676  | 0.37  | 0.011          |                          |
| 34        | 9699  | <0.03 | <0.001         |                          |
| 35        | 9692  | 0.07  | 0.002          |                          |
|           |       |       |                | •                        |
| QC DATA:  |       |       |                |                          |
| Repeats:  |       |       |                |                          |
| 1         | 9671  | 0.38  | 0.011          |                          |
| 9         | 9680  | 1.32  | 0.038          |                          |
| 10        | 9681  | 0.30  | 0.009          |                          |
| 11        | 9682  | 1.58  | 0.046          |                          |
| 19        | 9690  | 0.59  | 0.017          |                          |
| 26        | 9698  | 0.31  | 0.009<br>0.007 |                          |
| 27        | 9700  | 0.24  | 0.007          |                          |
| 28        | 9701  | 0.55  | 0.016          |                          |
| Resplit:  |       |       |                |                          |
| 1         | 9671  | 0.41  | 0.012          |                          |
| Standard: |       |       |                |                          |
| PM176     |       | 2.03  | 0.059          |                          |
| OX140     |       | 1.87  | 0.055          |                          |
|           |       |       |                |                          |
|           |       |       |                |                          |
|           |       |       |                | ECO JECH LABORATORY LTD. |
| 1.10-     |       |       |                | Justa Jealouse           |
| JJ/bw/ga  |       |       |                | B.C. Certified Assayer   |
| XLS/05    |       |       |                | B.C. Certined Assayer    |
|           |       |       |                |                          |

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700

Fax : 250-573-4557

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

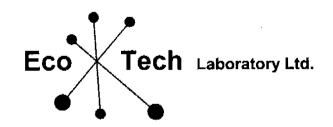
ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core Project #: 301 Shipment #: 43

Samples submitted by: Mike Savell

Values in ppm unless otherwise reported

| Et #. | Tag # | Ag    | AI % | As   | Ba   | Bi            | Ca % | Cd      | Co | Cr  | Çu   | Fe % | La          | Mg % | Mn   | Мо  | Na %   | Ni | Р    | Pb | Sb Sn          | Şr  |          | U    | ٧  | W   | Υ  | Zn             |
|-------|-------|-------|------|------|------|---------------|------|---------|----|-----|------|------|-------------|------|------|-----|--------|----|------|----|----------------|-----|----------|------|----|-----|----|----------------|
| 1     | 9671  | 1.1   | 1.02 | 80   | 35   | <5            | 2.22 | <1      | 17 | 101 | 330  | 5.27 | <10         | 0.84 | 1185 | 4   | 0.04   | 40 | 880  | 8  | <5 <20         |     | <0.01 <  |      | 54 | <10 | 2  | 55             |
| 2     | 9672  | <0.2  | 1.11 | 30   | 50   | <5            | 1.78 | <1      | 14 | 84  | 91   | 3.33 | <10         | 1.15 | 910  | 2   | 0.05   | 23 | 680  | 6  | <5 <20         | 98  |          |      | 71 | <10 | 7  | 54             |
| 3     | 9673  | < 0.2 | 1.26 | 50   | 60   | <5            | 3.54 | <1      | 16 | 80  | 127  | 3.96 | <10         | 1.08 | 1565 | 3   | 0.04   | 33 | 1040 | 10 | <5 <20         | 158 | <0.01 <  | 10   | 56 | <10 | 11 | 59             |
| 4     | 9674  | 0.2   | 1.04 | 40   | 40   | <5            | 2.19 | <1      | 24 | 82  | 202  | 4.78 | <10         | 0.85 | 1142 | 5   | 0.03   | 62 | 1200 | 8  | <5 <20         | 96  | <0.01 <  |      | 49 | <10 | 4  | 62             |
| 5     | 9675  | <0.2  | 1.03 | 25   | 35   | <5            | 2.98 | <1      | 19 | 156 | 251  | 4.86 | <10         | 0.89 | 1348 | 8   | 0.03   | 83 | 1160 | 8  | <5 <20         | 132 | <0.01 <  | 10   | 70 | <10 | 9  | 77             |
|       |       |       | 5.05 | 05   | 45   |               | 0.04 | -4      | 40 | 407 | 400  | 4.40 | -10         | 0.04 | 1010 | c   | 0.04   | 58 | 870  | 8  | <5 <20         | 120 | <0.01 <  | 10   | 75 | <10 | 6  | 77             |
| 6     | 9677  | 0.2   | 0.95 | 25   | 45   | <5<br>        | 2.61 | <1      | 12 | 107 | 168  | 4.10 | <10         | 0.91 |      | 6   | 0.04   | 63 | 1220 | 10 | <5 <20         |     | <0.01 <  |      | 61 | <10 | 5  | 83             |
| 7     | 9678  | 0.3   | 1.31 | 35   | 50   | <5            | 2.19 | <1      | 15 | 80  | 410  | 5.35 | <10         | 1.04 | 1170 | 9   |        |    |      |    | <5 <20         |     | <0.01 <  |      | 60 |     | <1 | 7 <del>9</del> |
| 8     | 9679  | 0.6   | 1.20 | 50   | 35   | <5            | 1.19 | <1      | 21 | 71  | 671  | 9.42 | <10         | 0.86 | 1200 | 13  | 0.01   | 47 | 1670 | 10 |                |     | <0.01 <  |      | 95 |     | <1 | 89             |
| 9     | 9680  | 0.5   | 1.33 | 45   | 40   | <5            | 1.09 | <1      | 25 | 91  | 637  | >10  | <10         | 0.98 | 1119 | 7   | 0.01   | 36 | 1230 | 14 | <5 <20         |     |          |      |    |     |    | 75             |
| 10    | 9681  | 0.5   | 0.87 | 40   | 30   | <5            | 2.52 | <1      | 14 | 71  | 254  | 4.79 | <10         | 0.73 | 1135 | 3   | 0.02   | 28 | 2050 | 10 | <5 <20         | 115 | <0.01 <  | 10   | 74 | <10 | 12 | 15             |
| 11    | 9682  | 11.3  | 0.57 | 45   | 35   | <5            | 2.19 | <1      | 15 | 86  | 230  | 4.56 | <10         | 0.42 | 925  | 6   | 0.03   | 27 | 1410 | 22 | <5 <20         | 107 | <0.01 <  | 10   | 47 | <10 | 11 | 56             |
| 12    | 9683  | 2.1   | 0.41 | 75   | 30   | <5            | 1.81 | <1      | 16 | 60  | 189  | 3.82 | <10         | 0.25 | 762  | 10  | 0.02   | 31 | 1050 | 6  | <5 <20         | 95  | < 0.01 < | 10   | 29 | <10 | 11 | 35             |
| 13    | 9684  | 0.5   | 0.43 | 80   | 25   | <5            | 1.87 | -<br><1 | 19 | 86  | 337  | 4.45 | <10         | 0.23 | 912  | 16  | 0.02   | 50 | 850  | 6  | <5 <20         | 97  | <0.01 <  | 10   | 32 | <10 | 12 | 34             |
| 14    | 9685  | 1.0   | 0.40 | 105  | 30   | <5            | 1.55 | <1      | 19 | 83  | 452  | 4.95 | <10         | 0.16 | 782  |     |        | 48 | 770  | 10 | <5 <20         | 83  | <0.01 <  | :10  | 33 | <10 | 7  | 41             |
| 15    | 9686  | 0.7   | 0.45 | 100  | 30   | <5            | 1.13 | <1      | 19 | 101 | 403  | 4.96 | <10         | 0.18 | 503  | 14  | 0.01   | 48 | 1000 | 10 | <5 <20         | 59  | < 0.01 < | 10   | 34 | <10 | 6  | 45             |
| 15    | 9000  | U.7   | 0.43 | 100  | 30   |               | 1.13 | `'      | 10 |     | 400  | 4.00 | -10         | 0,10 | 000  | . , | 0.07   |    |      |    |                |     |          |      |    |     |    |                |
| 16    | 9687  | 0.9   | 0.64 | 75   | 30   | <5            | 1.25 | <1      | 23 | 66  | 394  | 7.33 | <10         | 0.53 | 783. | 11  | 0.02   | 35 | 1310 | 12 | <5 <20         | 83  | <0.01 <  |      | 53 | <10 | 3  | 77             |
| 17    | 9688  | 0.7   | 0.71 | 90   | 35   | <5            | 2.14 | <1      | 18 | 94  | 391  | 6.05 | <10         | 0.78 | 1157 | 6   | 0.03   | 35 | 1770 | 12 | <5 <20         | 104 | <0.01 <  | 10   | 86 | <10 | 10 | 92             |
| 18    | 9689  | 0.6   | 0.48 | 90   | 40   | <5            | 1.84 | <1      | 15 | 60  | 345  | 5.47 | <10         | 0.39 | 1018 | 13  | 0.01   | 35 | 1960 | 14 | <5 <20         | 94  | <0.01 <  | 10   | 44 | <10 | 13 | 62             |
| 19    | 9690  | 0.9   | 0.53 | 235  | 30   | <5            | 1.49 | <1      | 18 | 94  | 234  | 7.92 | <10         | 0.41 | 1149 | 11  | < 0.01 | 43 | 1510 | 16 | <5 <20         | 97  | <0.01 <  | :10  | 44 | <10 | 5  | 66             |
| 20    | 9691  | 0.6   | 0.21 | 115  | 35   | <5            | 2.47 | <1      | 13 | 70  | 178  | 4,21 | <10         | 0.14 | 1460 | 24  | < 0.01 | 34 | 1110 | 22 | <5 <20         | 156 | <0.01 <  | :10  | 25 | <10 | 8  | 42             |
|       |       |       |      |      |      |               |      |         |    |     |      |      |             |      |      |     |        |    |      |    |                |     |          |      |    |     | _  |                |
| 21    | 9693  | 1.0   | 0.22 | 165  | 35   | <5            | 2.30 | <1      | 21 | 132 | 405  | 4.52 | <10         |      | 1299 | _   | <0.01  | 32 | 1150 | 20 | <5 <20         |     | <0.01 <  |      | 42 | <10 | 8  | 41             |
| 22    | 9694  | 8.0   | 0.24 | 170  | 35   | <5            | 2.45 | <1      | 20 | 63  | 156  | 5.76 | <10         | 0.25 | 1752 | 23  | <0.01  | 48 | 960  | 16 | <5 <20         |     | <0.01 <  |      | 17 | <10 | 9  | 48             |
| 23    | 9695  | 0.9   | 0.30 | 115  | 45   | <5            | 1.75 | <1      | 18 | 68  | 106  | 5.74 | <10         | 0.20 | 1182 | 5   | <0.01  | 60 | 960  | 8  | <5 <20         |     | <0.01 <  |      | 16 | <10 | 2  | 42             |
| 24    | 9696  | 8.0   | 0.43 | 105  | 35   | <5            | 1.91 | <1      | 21 | 65  | 92   | 5.34 | <10         | 0.36 | 1132 | 20  | <0.01  | 64 | 1080 | 8  | <5 <20         |     | <0.01 <  |      | 24 | <10 | 7  | 49             |
| 25    | 9697  | 1.1   | 0.49 | 200  | 35   | <5            | 1.59 | <1      | 17 | 88  | 130  | 6.15 | <10         | 0.32 | 1079 | 13  | <0.01  | 78 | 1080 | 12 | <5 <20         | 85  | <0.01 <  | 10   | 35 | <10 | 8  | 41             |
| 00    | 0000  | 4.0   | 0.07 | 4.45 | O.E. | -6            | 2.20 | 1       | 12 | 65  | 433  | 5.53 | <10         | 0.18 | 1887 | รก  | <0.01  | 54 | 1170 | 12 | <5 <20         | 146 | <0.01 <  | :10  | 21 | <10 | 7  | 46             |
| 26    | 9698  | 1.6   | 0.27 | 145  | 25   | <5            | 2.28 | <1      |    |     | 987  |      | <10         | 0.16 | 1836 |     | <0.01  | 77 | 910  | 10 | <5 <20         |     | <0.01 <  |      | 27 | <10 | 7  | 53             |
| 27    | 9700  | 2.4   | 0.32 | 165  | 30   | <b>&lt;</b> 5 | 2.09 | <1      | 23 | 112 |      | 5.74 | <10         | 0.03 | 753  |     | <0.01  | 39 | 1290 | 12 | <5 <20         |     | <0.01 <  |      | 21 | <10 | 6  | 22             |
| 28    | 9701  | 3.3   | 0.24 | 160  | 35   | <5            | 1.71 | <1      | 29 | 74  | 2240 | 5.06 |             |      |      |     |        |    | 1540 | 8  | <5 <20         |     | <0.01 <  |      | 22 |     | 13 | 23             |
| 29    | 9702  | 2.5   | 0.33 | 110  | 40   | <5            | 2.35 | <1      | 12 | 104 | 993  | 3.74 | <10         | 0.11 | 1116 |     | <0.01  | 28 | 510  | 12 | <5 <20         |     | <0.01 <  | -    | 19 | <10 | 7  | 31             |
| 30    | 9703  | 1.7   | 0.25 | 320  | 25   | <5            | 2.48 | <1      | 15 | 107 | 422  | 5.28 | <10<br>Page | 0.10 | 1913 | 41  | <0.01  | 49 | \$10 | 14 | ~≎ <b>~</b> ∠∪ | 101 | ~0.01 ~  | . 10 | 10 | -10 | ,  | Ų.             |
|       |       |       |      |      |      |               |      |         |    |     |      |      | raye        | 1    |      |     |        |    |      |    |                |     |          |      |    |     |    |                |


### Falconbridge Limited

ECO TECH LABORATORY LTD.
Julia Jealbuse
BC Certified Assayer

| Et #.            | Tag # | Ag    | Al % | As   | Ва  | Bi            | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn          | Mo  | Na %   | Ni  | P    | Pb | Sb Sn  | Sr  | Ti% U        | <u> v</u> | W   | <u>Y</u> | Zn  |
|------------------|-------|-------|------|------|-----|---------------|------|----|----|-----|------|------|-----|------|-------------|-----|--------|-----|------|----|--------|-----|--------------|-----------|-----|----------|-----|
| 31               | 9704  | 0.5   | 0.33 | 80   | 25  | <5            | 1.95 | <1 | 16 | 82  | 272  | 3.80 | <10 | 0.08 | 946         | 17  | < 0.01 | 48  | 830  | 8  | <5 <20 | 79  | <0.01 <10    | 17        | <10 | 6        | 24  |
| 32               | 9705  | 0.9   | 0.25 | 120  | 35  | <5            | 2.18 | <1 | 17 | 107 | 548  | 4.39 | <10 | 0.07 | 1265        | 14  | < 0.01 | 44  | 620  | 10 | <5 <20 | 85  | <0.01 <10    | 16        | <10 | 3        | 21  |
| 33               | 9676  | 1.1   | 1.07 | <5   | 110 | <5            | 1.63 | <1 | 14 | 36  | 4078 | 4.00 | <10 | 1.12 | 746         | 2   | 0.16   | 18  | 1210 | 20 | <5 <20 | 108 | 0.16 <10     | 177       | <10 | 6        | 62  |
| 34               | 9699  | < 0.2 | 2.59 | 25   | 80  | <5            | 4.70 | <1 | 39 | 66  | 72   | 7.78 | <10 | 2.24 | 1005        | <1  | 0.02   | 21  | 1440 | 14 | <5 <20 | 91  | 0.14 < 10    | 231       | <10 | 7        | 92  |
| 35               | 9692  | 0.2   | 0.80 | 105  | 130 | <5            | 0.20 | <1 | 64 | 220 | 436  | >10  | <10 | 0.11 | 434         | 120 | 0.05   | 434 | 60   | 96 | <5 <20 | 12  | <0.01 <10    | 24        | <10 | <1       | 438 |
| QC DA            |       |       |      |      |     |               |      |    |    |     |      |      |     |      |             |     |        |     |      |    | •      |     |              |           |     |          |     |
| Resplit          |       |       |      | 4.40 | 46  |               | 0.00 |    | 40 | 404 | 200  | r 00 | -40 | 0.05 | 4700        | e   | 0.04   | 48  | 900  | 12 | <5 <20 | 106 | <0.01 <10    | 59        | <10 | 1        | 68  |
| 1                | 9671  | 1.1   | 1.07 | 110  | 45  | <5            | 2.26 | <1 | 18 | 121 | 299  | 5.88 | <10 | 0.85 | 1233        | 6   | 0.04   | 40  | 890  | 12 | ~5 ~20 | 100 | <b>10.01</b> | 33        | -10 | 7        | 00  |
| Repeat           | :     |       |      |      |     |               |      |    |    |     |      |      |     |      |             |     |        |     |      |    |        |     |              |           |     |          |     |
| 1                | 9671  | 1.1   | 1.03 | 85   | 40  | <5            | 2.30 | <1 | 19 | 109 | 322  | 5.45 | <10 | 0.84 | 1222        | 4   | 0.04   | 43  | 920  | 10 | <5 <20 | 113 | <0.01 <10    | 56        | <10 | 3        | 60  |
| 10               | 9681  | 0.5   | 0.94 | 50   | 25  | <5            | 2.72 | <1 | 14 | 76  | 267  | 5.09 | <10 | 0.76 | 1223        | 4   | 0.02   | 30  | 2080 | 12 | <5 <20 | 123 | <0.01 <10    | 82        | <10 | 12       | 79  |
| 19               | 9690  | 1.1   | 0.55 | 245  | 25  | <5            | 1.47 | <1 | 19 | 96  | 237  | 8.09 | <10 | 0.41 | 1129        | 11  | <0.01  | 46  | 1490 | 16 | <5 <20 | 91  | <0.01 <10    | 47        | <10 | 2        | 67  |
| Standa<br>GEO'05 |       | 1.5   | 1.33 | 60   | 170 | <b>&lt;</b> 5 | 1.56 | <1 | 19 | 60  | 86   | 4.06 | <10 | 0.67 | <b>6</b> 45 | <1  | 0.02   | 30  | 630  | 22 | <5 <20 | 56  | 0.11 <10     | 67        | <10 | 9        | 74  |

JJ/bw/ga df/5129 XLS/05

Page 2



10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5131**

Falconbridge Limited 3296 Francis-Hughes Avenue Lavai, Quebec H7L 5A7

14-Sep-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 44

Samples Submitted by: Mike Savell

|                  |       | Au    | Au     |                           |
|------------------|-------|-------|--------|---------------------------|
| ET#.             | Tag # | (g/t) | (oz/t) |                           |
| 1                | 9706  | 0.25  | 0.007  |                           |
| 2                | 9707  | 1.15  | 0.034  |                           |
| 2<br>3           | 9708  | 2.16  | 0.063  |                           |
| 4                | 9709  | 0.29  | 0.008  |                           |
|                  | 9710  | 0.28  | 0.008  |                           |
| 5<br>6<br>7<br>8 | 9712  | 0.32  | 0.009  |                           |
| 7                | 9713  | 0.20  | 0.006  |                           |
| 8                | 9714  | 0.10  | 0.003  |                           |
| 9                | 9715  | 0.11  | 0.003  |                           |
| 10               | 9716  | 0.45  | 0.013  |                           |
| 11               | 9717  | 0.60  | 0.017  |                           |
| 12               | 9718  | 0.31  | 0.009  |                           |
| 13               | 9719  | 0.26  | 0.008  |                           |
| 14               | 9720  | 0.26  | 0.008  |                           |
| 15               | 9721  | 0.17  | 0.005  |                           |
| 16               | 9722  | 0.19  | 0.006  |                           |
| 17               | 9723  | 0.18  | 0.005  |                           |
| 18               | 9724  | 0.26  | 0.008  |                           |
| 19               | 9725  | 0.25  | 0.007  |                           |
| 20               | 9726  | 0.14  | 0.004  |                           |
| 21               | 9728  | 0.16  | 0.005  |                           |
| 22               | 9729  | 0.16  | 0.005  |                           |
| 23               | 9730  | 0.17  | 0.005  |                           |
| 24               | 9731  | 0.31  | 0.009  |                           |
| 25               | 9732  | 0.07  | 0.002  |                           |
| 26               | 9733  | 0.13  | 0.004  | / \and) L                 |
| 27               | 9735  | 0.12  | 0.003  |                           |
| 28               | 9736  | 0.10  | 0.003  | ECO FEORI LABORATORY LTD. |
| 29               | 9737  | 0.09  | 0.003  | Juffa Jealouse            |
| 30               | 9738  | 0.09  | 0.003  | (B.C. Ceftified Assayer   |
|                  |       |       |        |                           |

|           |       | Au    | Au     |  |
|-----------|-------|-------|--------|--|
| ET #.     | Tag # | (g/t) | (oz/t) |  |
| 31        | 9739  | 0.07  | 0.002  |  |
| 32        | 9740  | 0.29  | 0.008  |  |
| 33        | 9711  | 0,44  | 0.013  |  |
| 34        | 9734  | <0.03 | <0.001 |  |
| 35        | 9727  | 0.07  | 0.002  |  |
|           |       |       |        |  |
| OC DATA.  |       |       |        |  |
| QC DATA:  |       |       |        |  |
| Repeats:  |       | 2.00  | 0.000  |  |
| 1         | 9706  | 0.20  | 0.006  |  |
| 2<br>3    | 9707  | 1.12  | 0.033  |  |
| 3         | 9708  | 2.08  | 0.061  |  |
| 10        | 9716  | 0.46  | 0.013  |  |
| 19        | 9725  | 0.24  | 0.007  |  |
|           |       |       |        |  |
| Resplit:  |       |       |        |  |
| 1         | 9706  | 0.24  | 0.007  |  |
| Standard: |       |       |        |  |
| PM176     |       | 1.99  | 0.058  |  |
| I-WIT70   |       | 1.55  | 0,000  |  |
|           |       |       |        |  |

JJ/bw/ga XLS/05

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

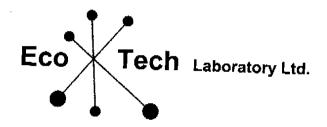
ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core **Project #: 301** 

Project #: 301 Shipment #: 44

Samples submitted by: Mike Savell

#### Values in ppm unless otherwise reported


| Et #. | Tag#         | Ag          | AI % | As . | Ba   | Bi            | Ca % | Cd  | Co  | Cr          | Cu   | Fe %     | La ! | Mg %  | Mn   | Mo  | Na %   | Ni  | <u> P</u> |    | Sb Sn  |     | Ti % U      | V  | W   | Υ  | Zn  |
|-------|--------------|-------------|------|------|------|---------------|------|-----|-----|-------------|------|----------|------|-------|------|-----|--------|-----|-----------|----|--------|-----|-------------|----|-----|----|-----|
| 1     | 9706         | 0.8         | 0.22 | 75   | 30   | <5            | 1.73 | <1  | 18  | 91          | 449  | 4.15     | <10  | 0.04  | 919  | 8   | <0.01  | 42  | 680       | 18 | <5 <20 |     | <0.01 <10   | 17 | <10 | 2  | 41  |
| 2     | 9707         | 3.6         | 0.28 | 150  | 30   | <5            | 2.22 | <1  | 21  | 135         | 646  | 5.25     | <10  | 0.05  | 1162 | 10  | <0.01  | 46  | 650       | 18 | <5 <20 |     | <0.01 <10   | 20 | <10 | 4  | 34  |
| 3     | 9708         | 2.3         | 0.22 | 210  | 30   | <5            | 1.26 | <1  | 27  | 99          | 431  | 7.89     | <10  | <0.01 | 604  | 11  | <0.01  | 56  | 610       | 24 | <5 <20 |     | <0.01 <10   | 17 | <10 | <1 | 25  |
| 4     | 9709         | 1.0         | 0.26 | 105  | 30   | <5            | 2.04 | <1  | 16  | 116         | 301  | 5.35     | <10  | 0.09  | 1030 | 20  | <0.01  | 38  | 1050      | 28 | <5 <20 |     | <0.01 <10   | 15 | <10 | 5  | 43  |
| 5     | 9710         | 1.2         | 0.32 | 565  | 45   | <5            | 3.07 | <1  | 21  | 71          | 345  | 7.54     | <10  | 0.24  | 1915 | 11  | <0.01  | 71  | 1210      | 28 | 15 <20 | 111 | <0.01 <10   | 20 | <10 | 4  | 80  |
|       |              |             |      |      |      |               |      |     |     |             | 0    |          |      |       |      |     |        |     |           |    |        |     |             |    |     |    |     |
| 6     | 9712         | 0.6         | 0.28 | 215  | 35   | <5            | 4.13 | <1  | 24  | 67          | 312  | 4.77     | <10  | 0.29  | 2302 | 7   | <0.01  | 88  | 1350      | 20 | <5 <20 | 134 | <0.01 <10   | 22 | <10 | 9  | 23  |
| 7     | 9713         | 0.5         | 0.17 | 205  | 45   | <5            | 7.55 | <1  | 13  | 105         | 249  | 4.72     | <10  | 0.22  | 3384 | 14  | <0.01  | 28  | 600       | 12 | 5 <20  | 220 | <0.01 <10   | 9  | <10 | 12 | 34  |
| 8     | 9714         | 0.5         | 0.16 | 80   | 40   | <5            | 3.27 | <1  | 17  | 156         | 270  | 2.86     | <10  | <0.01 | 1234 | 31  | < 0.01 | 20  | 470       | 14 | <5 <20 | 114 | <0.01 <10   | 7  | <10 | 6  | 12  |
| 9     | 9715         | 0.5         | 0.16 | 135  | 35   | <5            | 4.96 | <1  | 10  | 112         | 249  | 4.34     | <10  | 0.06  | 1907 | 11  | <0.01  | 29  | 520       | 22 | <5 <20 | 155 | < 0.01 < 10 | 8  | <10 | 8  | 62  |
| 10    | 9716         | 0.8         | 0.20 | 55   | 30   | <5            | 3.73 | <1  | 17  | 106         | 301  | 4.31     | <10  | 0.18  | 1511 | 15  | <0.01  | 58  | 920       | 40 | <5 <20 | 162 | <0.01 <10   | 11 | <10 | 6  | 88  |
| 10    | 0, ,0        | <b>V</b> .0 | 0.20 |      | - +  | _             |      |     |     |             |      |          |      |       |      |     |        |     |           |    |        |     |             |    |     |    |     |
| 11    | 9717         | 0.6         | 0.42 | 50   | 45   | <5            | 3.27 | <1  | 22  | 110         | 247  | 5.66     | <10  | 0.58  | 1952 | 12  | < 0.01 | 103 | 1010      | 48 | <5 <20 | 129 | <0.01 <10   | 28 | <10 | 6  | 159 |
| 12    | 9718         | 2.8         | 0.36 | 65   | 35   | <5            | 2.64 | <1  | 23  | 117         | 266  | 4.86     | <10  | 0.58  | 1457 | 5   | 0.01   | 119 | 1020      | 14 | <5 <20 | 109 | < 0.01 < 10 | 26 | <10 | 5  | 56  |
| 13    | 9719         | 1.5         | 0.26 | 55   | 35   | <5            | 2.59 | <1  | 18  | 102         | 154  | 4.68     | <10  | 0.44  | 1304 | 13  | 0.01   | 88  | 910       | 12 | <5 <20 | 112 | < 0.01 < 10 | 21 | <10 | 6  | 46  |
| 14    | 9720         | 1.0         | 0.27 | 65   | 25   | <5            | 2.35 | <1  | 28  | 101         | 278  | 7.71     | <10  | 0.24  | 1126 | 16  | 0.01   | 105 | 780       | 16 | <5 <20 | 96  | <0.01 <10   | 21 | <10 | <1 | 59  |
| 15    | 9721         | 0.5         | 0.52 | 70   | 35   | <5            | 2.83 | <1  | 31  | 129         | 270  | 8.09     | <10  | 0.51  | 1677 | 9   | 0.01   | 140 | 830       | 28 | <5 <20 | 122 | <0.01 <10   | 37 | <10 | 4  | 101 |
| 13    | 3121         | 0.0         | 0.52 | 7.0  | 00   |               | 2.00 | •   | ٠.  | 0           | _,_  |          |      |       |      |     |        |     |           |    |        |     |             |    |     |    |     |
| 16    | 9722         | 0.6         | 0.31 | 70   | 40   | <5            | 2.94 | <1  | 29  | 130         | 478  | 6.19     | <10  | 0.26  | 1385 | 44  | < 0.01 | 106 | 980       | 24 | <5 <20 | 126 | <0.01 <10   | 31 | <10 | 6  | 78  |
| 17    | 9723         | 0.7         | 0.20 | 65   | 25   | < <b>5</b>    | 2.60 | <1  | 16  | 56          | 436  | 5.06     | <10  | 0.34  | 1088 | 35  | 0.01   | 48  | 1190      | 12 | <5 <20 | 98  | <0.01 <10   | 17 | <10 | 15 | 44  |
| 18    | 9724         | 1.2         | 0.18 | 65   | 35   | <5            | 2.51 | <1  | 15  | 144         | 172  | 4.45     | <10  | 0.27  | 949  | 20  | 0.03   | 42  | 660       | 42 | <5 <20 | 85  | <0.01 <10   | 15 | <10 | 8  | 34  |
| 19    | 9725         | 0.6         | 0.20 | 85   | 15   | <5            | 2.49 | <1  | 13  | 74          | 271  | 5.13     | <10  | 0.25  | 849  | 64  | < 0.01 | 59  | 1290      | 14 | <5 <20 | 75  | <0.01 <10   | 21 | <10 | 12 | 41  |
| 20    | 9726         | 0.3         | 0.28 | 65   | 30   | <5            | 2.33 | <1  | 11  | 121         | 117  | 3.93     | <10  | 0.21  | 816  | 40  | 0.02   | 42  | 710       | 12 | <5 <20 | 94  | <0.01 <10   | 24 | <10 | 10 | 42  |
| 20    | 0.20         | 0.0         | 0.20 | •    |      |               |      |     |     |             |      |          |      |       |      |     |        |     |           |    |        |     |             |    |     |    |     |
| 21    | 9728         | 0.4         | 0.34 | 60   | 25   | <5            | 1.69 | <1  | 17  | 108         | 186  | 4.09     | <10  | 0.24  | 642  | 41  | 0.01   | 36  | 490       | 14 | <5 <20 | 70  | <0.01 <10   | 26 | <10 | 6  | 49  |
| 22    | 9729         | 0.7         | 0.64 | 50   | 45   | <5            | 4.41 | 1   | 17  | <b>1</b> 14 | 323  | 4.52     | <10  | 0.84  | 1768 | 147 | < 0.01 | 54  | 1260      | 20 | 20 <20 | 180 | <0.01 <10   | 53 | <10 | 18 | 66  |
| 23    | 9730         | 0.4         | 0.41 | 40   | 40   | <5            | 4.60 | <1  | 8   | 120         | 172  | 2.73     | <10  | 0.59  | 1788 | 263 | < 0.01 | 28  | 590       | 16 | 10 <20 | 166 | <0.01 <10   | 41 | <10 | 13 | 50  |
| 24    | 9731         | 0.5         | 0.59 | 75   | 45   | < <b>5</b>    | 5.23 | <1  | 21  | 141         | 350  | 4.91     | <10  | 0.60  | 2124 | 190 | < 0.01 | 69  | 960       | 18 | <5 <20 | 173 | <0.01 <10   | 54 | <10 | 10 | 54  |
| 25    | 9732         | 1.4         | 0.42 | 80   | 30   | <5            | 3.42 | <1  | 39  | 86          | 1041 | 7.61     | <10  | 0.44  | 1591 | 14  | 0.01   | 109 | 1250      | 26 | <5 <20 | 113 | <0.01 <10   | 30 | <10 | 8  | 88  |
| 2.5   | 3132         | 1.4         | 0.72 | 00   | O.O. | -0            | 0.42 |     | 00  |             |      |          |      |       |      |     |        |     |           |    |        |     |             |    |     |    |     |
| 26    | 9733         | 0.5         | 0.53 | 55   | 35   | <5            | 2.38 | 1   | 23  | 134         | 217  | 5.58     | <10  | 0.31  | 1231 | 14  | 0.02   | 98  | 910       | 16 | 15 <20 | 89  | <0.01 <10   | 29 | <10 | 6  | 79  |
| 27    | 9735         | 1.0         | 0.34 | 85   | 35   | <5            | 4.28 | <1  | 16  | 116         | 509  | 5.18     | <10  | 0.10  | 1626 |     | < 0.01 | 62  | 1240      | 22 | <5 <20 | 149 | <0.01 <10   | 20 | <10 | 10 | 48  |
| 28    | 9736         | 0.5         | 0.89 | 35   | 55   | <5            | 1.91 | <1  | 14  | 108         | 139  | 3.96     | <10  | 0.66  | 980  | 4   | 0.02   | 45  | 830       | 20 | <5 <20 | 82  | <0.01 <10   | 43 | <10 | 10 | 77  |
| 29    | 9737         | 0.7         | 0.64 | 25   | 45   | <5            | 1.82 | <1  | 15  | 99          | 123  | 3.20     | <10  | 0.53  | 972  | 3   | 0.01   | 36  | 780       | 20 | <5 <20 | 71  | <0.01 <10   | 25 | <10 | 9  | 58  |
| 30    | 9738<br>9738 | 0.8         | 0.52 | 30   | 45   | <b>&lt;</b> 5 | 1.83 | <1  | 14  | 100         | 224  | 3.08     | <10  | 0.34  | 899  | 9   | 0.02   | 34  | 840       | 14 | <5 <20 |     | <0.01 <10   | 24 | <10 | 12 | 46  |
| 50    | 3130         | 0.0         | 0.02 | 00   | 70   |               | 1.00 | • • | . , |             |      | <b>.</b> | Page |       |      | _   |        |     |           |    |        |     |             |    |     |    |     |
|       |              |             |      |      |      |               |      |     |     |             |      |          | J    |       |      |     |        |     |           |    |        |     |             |    |     |    |     |

ECO TECH LABORATORY LTD.

| Et #.             | Tag #      | Ag   | AI % | As  | Ва  | Bí | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn   | Мо  | Na %  | Ni  | Р    | Pb | Sb Sn  | Sr         | Ti %     | U    | ٧  | W   | Y  | Zn          |
|-------------------|------------|------|------|-----|-----|----|------|----|----|-----|------|------|-----|------|------|-----|-------|-----|------|----|--------|------------|----------|------|----|-----|----|-------------|
| 31                | 9739       | 0.3  | 0.78 | 30  | 40  | <5 | 2.31 | <1 | 13 | 65  | 94   | 2.84 | <10 | 0.60 | 1121 | 3   | 0.01  | 35  | 1090 | 16 | <5 <20 | 100        | <0.01 <1 | 10   | 31 | <10 | 16 | 70          |
| 32                | 9740       | 0.3  | 1.10 | 15  | 135 | <5 | 0.44 | <1 | 19 | 86  | 693  | 4.02 | <10 | 0.88 | 536  | 7   | 0.03  | 19  | 940  | 14 | <5 <20 | <b>1</b> 1 | <0.01 <  | 10   | 80 | <10 | 14 | 93          |
| 33                | 9711       | 2.1  | 1.46 | <5  | 330 | <5 | 1.47 | <1 | 10 | 28  | 7159 | 3.89 | 10  | 1.17 | 481  | 2   | 0.14  | 16  | 2520 | 22 | <5 <20 | 73         | 0.07 <   | 10 1 | 85 | <10 | 10 | 56          |
| 34                | 9734       | <0.2 | 2.54 | 30  | 70  | <5 | 2.96 | <1 | 37 | 56  | 150  | 8.46 | <10 | 2.29 | 1068 | <1  | 0.01  | 22  | 1800 | 24 | <5 <20 | 67         | 0.09 <   | 10 2 | 52 | <10 | 8  | 12 <b>1</b> |
| 35                | 9727       | 0.2  | 0.77 | 105 | 130 | <5 | 0.24 | <1 | 63 | 239 | 449  | >10  | <10 | 0.11 | 415  | 126 | 0.04  | 437 | 100  | 98 | <5 <20 | 11         | <0.01 <  | 10   | 24 | <10 | <1 | 400         |
| QC DAT            | <u>ΓΑ:</u> |      |      |     |     |    |      |    |    |     |      |      |     |      |      |     |       |     |      |    |        |            |          |      |    |     |    |             |
| Resplit:          | 9706       | 8.0  | 0.21 | 80  | 30  | <5 | 1.76 | <1 | 18 | 107 | 410  | 4.49 | <10 | 0.05 | 922  | 8   | <0.01 | 44  | 760  | 22 | <5 <20 | 54         | <0.01 <  | 10   | 17 | <10 | 2  | 50          |
| Repeat:           | •          |      |      |     |     |    |      |    |    |     |      |      |     |      |      |     |       |     |      |    |        |            |          |      |    |     | _  |             |
| 1                 | 9706       | 0.8  | 0.26 | 85  | 35  | <5 | 1.86 | <1 | 20 | 99  | 450  | 4.48 | <10 | 0.05 | 985  | 9   | <0.01 | 45  | 730  | 20 | <5 <20 | 69         |          |      |    | <10 | 2  | 43          |
| 10                | 9716       | 0.8  | 0.19 | 55  | 35  | <5 | 3.71 | 1  | 17 | 110 | 276  | 4.33 | <10 | 0.17 | 1495 | 17  | <0.01 | 63  | 950  | 40 | <5 <20 | 143        |          |      |    | <10 | 6  | 100         |
| 19                | 9725       | 0.7  | 0.23 | 80  | 20  | <5 | 2.54 | <1 | 13 | 77  | 287  | 5.20 | <10 | 0.27 | 866  | 62  | 0.01  | 57  | 1240 | 12 | <5 <20 | 80         | <0.01 <  | 10   | 23 | <10 | 12 | 39          |
| Standar<br>GEO'05 |            | 1.5  | 1.33 | 55  | 145 | <5 | 1.56 | <1 | 19 | 60  | 89   | 4.06 | <10 | 0.67 | 645  | <1  | 0.02  | 30  | 630  | 22 | <5 <20 | 56         | 0.11 <   | 10   | 70 | <10 | 10 | 74          |

ECO TECH LABORATORY LTD.
Jutta Jealouse
BC Certified Assayer

JJ/bw/ga df/5129 XLS/05



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5132**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

14-Sep-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 45

Samples Submitted by: Mike Savell

|             |       | Au    | Au     |                                           |
|-------------|-------|-------|--------|-------------------------------------------|
| ET #.       | Tag # | (g/t) | (oz/t) |                                           |
| 1           | 9741  | 0.15  | 0.004  |                                           |
| 2           | 9742  | 0.08  | 0.002  |                                           |
| 2<br>3      | 9743  | 0.18  | 0.005  |                                           |
| 4           | 9744  | 0.26  | 0.008  |                                           |
|             | 9745  | 0.19  | 0.006  |                                           |
| 5<br>6<br>7 | 9747  | 0.13  | 0.004  |                                           |
| 7           | 9748  | 0.60  | 0.017  |                                           |
| 8           | 9749  | 0.66  | 0.019  |                                           |
| 8<br>9      | 9750  | 0.10  | 0.003  |                                           |
| 10          | 9751  | 0.17  | 0.005  |                                           |
| 11          | 9752  | 0.34  | 0.010  |                                           |
| 12          | 9753  | 0.27  | 0.008  |                                           |
| 13          | 9754  | 0.19  | 0.006  |                                           |
| 14          | 9755  | 0.09  | 0.003  |                                           |
| 15          | 9756  | 1.69  | 0.049  |                                           |
| 16          | 9757  | 0.13  | 0.004  |                                           |
| 17          | 9758  | 0.15  | 0.004  |                                           |
| 18          | 9759  | 0.14  | 0.004  |                                           |
| 19          | 9760  | 0.09  | 0.003  |                                           |
| 20          | 9761  | 0.03  | 0.001  |                                           |
| 21          | 9763  | 0.06  | 0.002  |                                           |
| 22          | 9764  | 0.10  | 0.003  |                                           |
| 23          | 9765  | 0.29  | 0.008  |                                           |
| 24          | 9766  | 0.10  | 0.003  |                                           |
| 25          | 9767  | 0.08  | 0.002  |                                           |
| 26          | 9768  | 0.05  | 0.001  |                                           |
| 27          | 9769  | 0.19  | 0.006  | (/AV/2                                    |
| 28          | 9770  | 0.10  | 0.003  | ECO TECH LABORATORY LTD.                  |
| 29          | 9771  | 0,06  | 0.002  | ∖ ياني∕(a Jealous⁄e /                     |
| 30          | 9772  | 0.08  | 0.002  | ß.C. Ce <i>p</i> tified Assay <i>y</i> er |
|             |       |       |        |                                           |

|           |       | Au    | Au     |     |
|-----------|-------|-------|--------|-----|
| ET #.     | Tag # | (g/t) | (oz/t) | 756 |
| 31        | 9773  | 0.11  | 0.003  |     |
| 32        | 9774  | 0.03  | 0.001  |     |
| 33        | 9775  | 0.05  | 0.001  |     |
| 34        | 9746  | 0.38  | 0.011  |     |
| 35        | 9762  | 0.07  | 0.002  |     |
| QC DATA:  |       |       |        |     |
| Repeats:  |       |       |        |     |
| 1         | 9741  | 0.15  | 0.004  |     |
| 7         | 9748  | 0.58  | 0.017  |     |
| 8         | 9749  | 0.69  | 0.020  |     |
| 10        | 9751  | 0,16  | 0.005  |     |
| 15        | 9756  | 1.73  | 0.050  |     |
| 19        | 9760  | 0.09  | 0.003  |     |
| 34        | 9746  | 0.40  | 0.012  |     |
| 35        | 9762  | 0.08  | 0.002  |     |
| Resplit:  |       |       |        |     |
| 1         | 9741  | 0.16  | 0.005  |     |
| Standard: |       |       |        |     |
| PM176     |       | 2.01  | 0.059  |     |
| OX140     |       | 1.87  | 0.055  |     |

JJ/bw/ga XLS/05

ECO TECH LABORATORY LTL.
Jutta Jeglouse
B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive

KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

#### ICP CERTIFICATE OF ANALYSIS AS 2005-5132

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

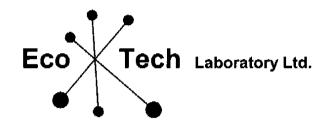
No. of samples received: 35 Sample type:Core Project #: 301 Shipment #: 45

Samples submitted by: Mike Savell

| Values | in oom | unless | otherwise  | reported |
|--------|--------|--------|------------|----------|
| rainco | m ppm  | Diness | Other mise | reported |

| Et #. | Tag#  | Ag              | Al %         | As                | Ва       | Bi | Ca %         | Cd      | Co  | Cr       | Cu   | Fe % | La l   | Mg % | Mn    | Mo  | Na %   | Ni | Р    | Pb | Sb Sn  | Sr  | Ti% U                | V   | W   | Υ  | Zn    |
|-------|-------|-----------------|--------------|-------------------|----------|----|--------------|---------|-----|----------|------|------|--------|------|-------|-----|--------|----|------|----|--------|-----|----------------------|-----|-----|----|-------|
| 1     | 9741  | <0.2            | 1.31         | 15                | 165      | <5 | 1.03         | <1      | 20  | 63       | 1216 | 5.35 | <10    | 1.04 | 720   | 8   | 0.04   | 21 | 1350 | 16 | <5 <20 | 22  | <0.01 <10            | 122 | <10 | 19 | 89    |
| 2     | 9742  | <0.2            | 1.36         | 15                | 125      | <5 | 0.79         | <1      | 20  | 84       | 1027 | 6.10 | <10    | 1.13 | 584   | 7   | 0.03   | 26 | 1310 | 14 | <5 <20 |     | 0.02 <10             |     | <10 |    | 71    |
| 3     | 9743  | 0.2             | 1.24         | 25                | 135      | <5 | 0.47         | <1      | 17  | 76       | 1323 | 4.21 | <10    | 1.08 | 625   | 10  | 0.02   | 23 | 1070 | 14 | <5 <20 |     | <0.01 <10            | 87  | <10 | 16 | 92    |
| 4     | 9744  | 0.9             | 1.17         | 30                | 85       | <5 | 0.36         | <1      | 22  | 72       | 2603 | 4.26 | <10    | 0.98 | 691   | 16  | 0.01   | 23 | 1310 | 16 | <5 <20 |     | <0.01 <10            | 75  | <10 | 16 | 105   |
| 5     | 9745  | 0.7             | 1.24         | 30                | 75       | <5 | 0.24         | <1      | 19  | 84       | 1591 | 4.42 | <10    | 1.02 | 600   | 12  | 0.02   | 26 | 950  | 18 | <5 <20 | 6   | <0.01 <10            | 99  | <10 | 12 | 76    |
| ^     | 07.17 | 0.4             | 4.00         | 25                | cc       | <5 | 0.40         | 2       | 18  | 104      | 3428 | 3.08 | <10    | 0.83 | 677   | 20  | 0.02   | 31 | 960  | 10 | <5 <20 | 5   | <0.01 <10            | 68  | <10 | 15 | 157   |
| 6     | 9747  | 0.4             | 1.03<br>1.13 | 25<br>1 <b>45</b> | 55<br>45 | <5 | 0.19<br>0.17 | 2<br><1 | 20  | 78       | 3060 | 7.17 | <10    | 0.68 | 456   | 33  | 0.02   | 39 | 1570 | 22 | <5 <20 | _   | <0.01 <10            | 56  | <10 | 6  | 66    |
| 7     | 9748  | 2.1             | 0.88         |                   | 45<br>45 | <5 | 0.17         | <1      | 18  | 73       | 4968 | 4.58 | <10    | 0.62 | 441   |     | <0.01  | 20 | 1180 | 14 | <5 <20 |     | <0.01 <10            | 40  | <10 | 3  | 64    |
| 8     | 9749  | 3.4             |              | 65<br>35          | 45<br>65 | -  | 0.10         |         | 9   | 73<br>89 | 543  | 3.07 | <10    | 0.64 | 437   |     | <0.01  | 12 | 880  | 14 | <5 <20 |     | <0.01 <10            | 31  | <10 | 7  | 46    |
| 9     | 9750  | 0.8             | 0.87         | 35                | 65       | <5 |              | <1      | _   | 82       | 2022 | 5.59 | <10    | 0.55 | 464   |     | <0.01  | 27 | 1030 | 30 | <5 <20 |     | <0.01 <10            | 34  | <10 | -  | 77    |
| 10    | 9751  | 1.3             | 0.79         | 95                | 30       | <5 | 0.29         | <1      | 36  | 02       | 2022 | 5.59 | ~10    | 0.55 | 404   | 10  | ~0.01  | 21 | 1030 | 50 | \J \20 | •   | 10.01                | 57  | -10 | 10 | • • • |
| 11    | 9752  | 1.4             | 0.67         | 95                | 25       | <5 | 0.83         | <1      | 19  | 111      | 2034 | 5.00 | <10    | 0.42 | 567   | 26  | < 0.01 | 26 | 960  | 18 | <5 <20 | 14  | <0.01 <10            | 32  | <10 | 9  | 63    |
| 12    | 9753  | 2.1             | 0.53         | 70                | 35       | <5 | 1.56         | <1      | 15  | 97       | 1224 | 4.36 | <10    | 0.35 | 583   | 10  | < 0.01 | 13 | 1060 | 14 | <5 <20 | 31  | <0.01 <10            | 23  | <10 | 5  | 37    |
| 13    | 9754  | 1.0             | 0.82         | 40                | 55       | <5 | 3.27         | <1      | 9   | 82       | 1210 | 3.56 | <10    | 0.68 | 1185  | 9   | < 0.01 | 11 | 970  | 14 | <5 <20 | 63  | < 0.01 < 10          | 32  | <10 | 7  | 46    |
| 14    | 9755  | 0.8             | 1.19         | 30                | 60       | <5 | 1.97         | <1      | 9   | 91       | 1390 | 3.45 | <10    | 1.05 | 1153  | 26  | < 0.01 | 16 | 970  | 14 | <5 <20 | 37  | < 0.01 < 10          | 44  | <10 | 7  | 71    |
| 15    | 9756  | 17.7            | 0.55         | 140               | 90       | <5 | 0.32         | <1      | 11  | 79       | 1918 | >10  | <10    | 0.22 | 423   | 173 | <0.01  | 19 | 880  | 50 | <5 <20 | 7   | <0.01 <10            | 37  | <10 | <1 | 69    |
|       | 0.00  |                 | 5,50         |                   |          | _  |              |         |     |          |      |      |        |      |       |     |        |    |      |    |        |     |                      |     |     |    |       |
| 16    | 9757  | 0.4             | 1.10         | 25                | 55       | <5 | 1.60         | <1      | 9   | 84       | 744  | 3.80 | <10    | 0.91 | 958   | 7   | <0.01  | 17 | 1210 | 16 | <5 <20 | 32  | <0.01 <10            | 57  | <10 | 10 | 69    |
| 17    | 9758  | 0.6             | 0.92         | 40                | 80       | <5 | 2.54         | <1      | 13  | 110      | 1048 | 3.79 | <10    | 0.73 | 1127  | 9   | 0.01   | 17 | 820  | 16 | <5 <20 | 36  | <0.01 <10            | 47  | <10 | 10 | 52    |
| 18    | 9759  | 0.5             | 0.97         | 20                | 65       | <5 | 2.28         | <1      | 17  | 85       | 2153 | 3.60 | <10    | 0.79 | 1089  | 15  | 0.01   | 23 | 1060 | 14 | <5 <20 | 30  | 0.02 <10             | 58  | <10 | 9  | 51    |
| 19    | 9760  | 0.5             | 0.98         | 25                | 70       | <5 | 1.34         | <1      | 17  | 88       | 1305 | 3.20 | <10    | 0.78 | 996   | 13  | < 0.01 | 24 | 1050 | 14 | <5 <20 | 17  | 0.03 <10             | 55  | <10 | 8  | 56    |
| 20    | 9761  | <0.2            | 1.84         | 40                | 110      | <5 | 0.41         | <1      | 24  | 154      | 618  | 8.46 | <10    | 1.41 | 2132  | 10  | <0.01  | 62 | 1040 | 28 | <5 <20 | 6   | 0.04 < 10            | 102 | <10 | <1 | 183   |
|       |       |                 |              |                   |          | _  |              |         | •   |          | 740  | 40   | .40    | 4.07 | 0.404 | 40  | -0.04  | 40 | 0.40 | 24 | -E -20 | 4.1 | 0.04 <10             | 120 | <10 | <1 | 189   |
| 21    | 9763  | <0.2            | 2.35         | 55                | 45       | <5 | 0.91         | <1      | 23  | 134      | 713  | >10  | <10    | 1.67 | 2481  |     | <0.01  | 46 | 940  | 34 | <5 <20 | 11  | 0.04 < 10            |     | <10 |    | 89    |
| 22    | 9764  | <0.2            | 1.53         | 50                | 50       | <5 | 2.49         | <1      | 19  | 138      | 399  | 9.01 | <10    | 1.18 | 1572  | 19  |        | 43 | 1010 | 26 | <5 <20 | 32  |                      | _   | <10 |    | 128   |
| 23    | 9765  | 0.3             | 2.16         | 65                | 45       | <5 | 0.49         | <1      | 29  | 171      | 1443 | >10  | <10    | 1.67 | 1799  |     | < 0.01 | 57 | 1350 | 30 | <5 <20 | 6   | 0.04 <10<br>0.05 <10 |     |     |    |       |
| 24    | 9766  | 0.3             | 1.88         | 45                | 90       | <5 | 0.65         | <1      | 38  | 165      | 1523 | 8.73 | <10    | 1.59 | 2102  |     | <0.01  | 73 | 1600 | 28 | <5 <20 | 9   |                      |     |     |    | 129   |
| 25    | 9767  | 0.3             | 1.54         | 35                | 125      | <5 | 1.13         | <1      | 38  | 159      | 1562 | 6.64 | <10    | 1.38 | 2185  | 13  | 0.01   | 60 | 1240 | 20 | <5 <20 | 16  | 0.08 <10             | 128 | <10 | 3  | 100   |
| 26    | 9768  | <0.2            | 1.73         | 30                | 75       | <5 | 2.80         | <1      | 48  | 199      | 1109 | 7.06 | <10    | 1.79 | 1712  | 16  | 0.02   | 71 | 1630 | 22 | <5 <20 | 38  | 0.12 <10             | 187 | <10 | <1 | 67    |
| 27    | 9769  | 0.6             | 1.85         | 35                | 60       | <5 | 2.59         | <1      | 57  | 183      | 2623 | 8.11 | <10    | 2.02 | 1330  | 5   | 0.02   | 81 | 1820 | 24 | <5 <20 | 41  | 0.13 <10             |     | <10 | <1 | 64    |
| 28    | 9770  | 0.0             | 1.19         | 35                | 190      | <5 | 2.56         | <1      | 24  | 128      | 944  | 5.61 | <10    | 1.16 | 1126  | 2   | 0.01   | 55 | 1580 | 18 | <5 <20 | 39  | 0.11 <10             |     | <10 | <1 | 52    |
| 29    | 9771  | 0.2             | 1.27         | 35                | 75       | <5 | 2.71         | <1      | 25  | 134      | 810  | 5.47 | <10    | 1.04 | 1664  | 8   | 0.01   | 59 | 1190 | 20 | <5 <20 | 23  | 0.07 <10             |     | <10 | <1 | 71    |
| 30    | 9772  | 0.4             | 1.18         | 40                | 80       | <5 | 5.70         | <1      | 24  | 141      | 969  | 4.97 | <10    |      | 1970  | 8   | 0.01   | 59 | 1150 | 20 | <5 <20 | 49  | 0.08 < 10            | 118 | <10 | 4  | 56    |
| ŞÜ    | 0112  | V. <del>4</del> | 7.10         |                   |          |    | 5., 5        |         | - ' |          | 000  |      | Page 1 |      |       | ,   |        |    |      |    |        |     |                      |     |     |    |       |
|       |       |                 |              |                   |          |    |              |         |     |          |      |      |        |      |       |     |        |    |      |    |        |     |                      |     |     |    |       |

ECO TECH LABORATORY LTD.


#### ICP CERTIFICATE OF ANALYSIS AS 2005-5132

Falconbridge Limited

| Et #.                                                                                                                               | Tag # | Ag    | AI % | As  | Ва  | Bi | Ca % | Cd | Co | Çr  | Çu              | Fe % | La  | Mg % | Mn   | Мо  | Na %  | Ni_ | P    | Pb  | Sb Sn  | Sr  | Ti %         | U   | V   | W   | Υ  | Zn  |
|-------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------|-----|-----|----|------|----|----|-----|-----------------|------|-----|------|------|-----|-------|-----|------|-----|--------|-----|--------------|-----|-----|-----|----|-----|
| 31                                                                                                                                  | 9773  | 0.2   | 1.36 | 35  | 55  | <5 | 4.43 | <1 | 45 | 137 | 784             | 5.89 | <10 | 1.33 | 1752 | 12  | 0.02  | 56  | 1190 | 22  | <5 <20 | 43  | 0.08         | <10 | 119 | <10 | 2  | 66  |
| 32                                                                                                                                  | 9774  | <0.2  | 1.20 | 30  | 80  | <5 | 3.54 | <1 | 26 | 123 | 636             | 4.30 | <10 | 1,12 | 1005 | 6   | 0.02  | 61  | 1270 | 16  | <5 <20 | 40  | 0.10         | <10 | 101 | <10 | 1  | 48  |
| 33                                                                                                                                  | 9775  | 0.2   | 1.11 | 25  | 95  | <5 | 3.55 | <1 | 19 | 146 | 969             | 3.30 | <10 | 1.17 | 685  | 40  | 0.03  | 55  | 1110 | 18  | 5 <20  | 48  | 0.10         | <10 | 105 | <10 | 2  | 32  |
| 34                                                                                                                                  | 9746  | 1.2   | 1.09 | 10  | 115 | <5 | 1.37 | <1 | 12 | 22  | 4073            | 3.45 | <10 | 0.94 | 642  | <1  | 0.18  | 12  | 790  | 16  | <5 <20 | 104 | 0.14         |     | 166 | <10 | 11 | 42  |
| 35                                                                                                                                  | 9762  | 0.3   | 0.98 | 95  | 145 | <5 | 0.24 | <1 | 65 | 269 | 427             | >10  | <10 | 0.18 | 472  | 119 | 0.06  | 440 | 150  | 116 | <5 <20 | 14  | <0.01        | <10 | 27  | <10 | <1 | 359 |
| QC DATA:  Resplit:  1 9741 0.3 1.27 30 175 <5 0.96 <1 23 69 1217 5.26 <10 0.97 757 8 0.05 24 1480 22 <5 <20 19 <0.01 <10 115 <10 19 |       |       |      |     |     |    |      |    |    |     | 14 <del>9</del> |      |     |      |      |     |       |     |      |     |        |     |              |     |     |     |    |     |
| 1                                                                                                                                   | 9741  | 0.3   | 1.27 | 30  | 175 | <5 | 0.96 | <1 | 23 | 69  | 1217            | 5.26 | <10 | 0.97 | 757  | 8   | 0.05  | 24  | 1480 | 22  | <5 <20 | 19  | <b>~0.01</b> | ~10 | 713 | ~10 | 13 | 143 |
| Repeat:                                                                                                                             | •     |       |      |     |     |    |      |    |    |     |                 |      |     |      |      |     |       |     |      |     |        |     |              |     |     |     |    |     |
| 1                                                                                                                                   | 9741  | < 0.2 | 1.24 | 15  | 145 | <5 | 0.95 | <1 | 19 | 59  | 1148            | 5.00 | <10 | 0.99 | 665  | 7   | 0.04  | 20  | 1250 | 14  | <5 <20 |     | <0.01        |     | 114 | <10 |    | 121 |
| 10                                                                                                                                  | 9751  | 1.3   | 0.75 | 95  | 40  | <5 | 0.29 | <1 | 35 | 81  | 1865            | 5.48 | <10 | 0.51 | 451  | 10  | <0.01 | 26  | 1070 | 30  | <5 <20 |     | < 0.01       |     | 33  | <10 |    | 115 |
| 19                                                                                                                                  | 9760  | 0.4   | 0.99 | 25  | 80  | <5 | 1.36 | <1 | 16 | 92  | 1287            | 3.21 | <10 | 0.78 | 1004 | 12  | <0.01 | 23  | 1060 | 16  | <5 <20 | 19  | 0.03         | <10 | 56  | <10 | 8  | 80  |
| Standar<br>GEO'05                                                                                                                   |       | 1.6   | 1.41 | 100 | 155 | <5 | 1.59 | <1 | 20 | 60  | 85              | 4.01 | <10 | 0.54 | 646  | <1  | 0.01  | 30  | 720  | 22  | <5 <20 | 54  | 0.11         | <10 | 68  | <10 | 9  | 73  |

ECO TECH LABORATORY LTD.
Julia Jealouse
DC Certified Assayer

JJ/bw/ga df/5129 XLS/05



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com

www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5133**

Falconbridge Limited
3296 Francis-Hughes Avenue
Laval, Quebec
H7L 5A7

14-Sep-05

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 46

Samples Submitted by: Mike Savell

|             |      | Au     | Au     |                          |
|-------------|------|--------|--------|--------------------------|
| ET #.       | Tag# | (g/t)  | (oz/t) |                          |
| 1           | 9776 | 0.03   | 0.001  |                          |
| 2           | 9777 | 0.04   | 0.001  |                          |
| 3           | 9778 | 0.05   | 0.001  |                          |
| 2<br>3<br>4 | 9779 | 0.03   | 0.001  |                          |
| 5           | 9780 | 0.12   | 0.003  |                          |
| 6           | 9782 | 0.07   | 0.002  |                          |
| 7           | 9783 | 0.12   | 0.003  |                          |
| 8           | 9784 | 0.06   | 0.002  |                          |
| 9           | 9785 | 0.08   | 0.002  |                          |
| 10          | 9786 | 0.09   | 0.003  |                          |
| 11          | 9787 | 0.10   | 0.003  |                          |
| 12          | 9788 | 0.19   | 0.006  |                          |
| 13          | 9789 | 0.05   | 0.001  |                          |
| 14          | 9790 | 0.06   | 0.002  |                          |
| 15          | 9791 | 0.09   | 0.003  |                          |
| 16          | 9792 | 0.06   | 0.002  |                          |
| <b>1</b> 7  | 9793 | 0.19   | 0.006  |                          |
| 18          | 9794 | 0.06   | 0.002  |                          |
| 19          | 9795 | 0.09   | 0.003  |                          |
| 20          | 9796 | 0.05   | 0.001  |                          |
| 21          | 9798 | 0.05   | 0.001  |                          |
| 22          | 9799 | 0.09   | 0.003  |                          |
| 23          | 9800 | 0.11   | 0 003  |                          |
| 24          | 9801 | 0.04   | 0.001  |                          |
| 25          | 9802 | < 0.03 | <0.001 |                          |
| 26          | 9803 | 0.03   | 0.001  |                          |
| 27          | 9804 | 0.07   | 0.002  |                          |
| 28          | 9805 | <0.03  | <0.001 |                          |
| 29          | 9806 | 0.04   | 0.001  | ECO TECH LABORATORY LTD. |
| 30          | 9807 | <0.03  | <0.001 | /Jutta Je/alouse         |
|             |      |        |        | ( B.C. Certified As≰ayer |

Page 1

|           |       | Au    | Au     |  |
|-----------|-------|-------|--------|--|
| ET #.     | Tag # | (g/t) | (oz/t) |  |
| 31        | 9808  | <0.03 | <0.001 |  |
| 32        | 9809  | <0.03 | <0.001 |  |
| 33        | 9810  | 0.03  | 0.001  |  |
| 34        | 9781  | 0.07  | 0.002  |  |
| 35        | 9797  | 0.42  | 0.012  |  |
|           |       |       |        |  |
| QC DATA:  |       |       |        |  |
| Repeats:  |       |       |        |  |
| 1         | 9776  | <0.03 | <0.001 |  |
| 10        | 9786  | 0.09  | 0.003  |  |
| 19        | 9795  | 0.10  | 0.003  |  |
| Resplit:  |       |       |        |  |
| i         | 9776  | <0.03 | <0.001 |  |
| Standard: |       |       |        |  |
| PM176     |       | 1.99  | 0.058  |  |

JJ/bw XLS/05 autta Jealouse

B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. /2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35
Sample type:Core
Project #: 301
Shipment #: 46
Samples submitted by: Mike Savell

| Et #. | Tag # | Ag    | Al % | As | Ba  | Bi        | Ca % | Cd | Co | Cr          | Cu   | Fe %         | La l | Mg % | Mn   | Мо | Na %         | Ni                      | <u> P</u>  | Pb       | Sb Sn  | Sr          | Ti% U     | V   | W    | Υ  | Zn |
|-------|-------|-------|------|----|-----|-----------|------|----|----|-------------|------|--------------|------|------|------|----|--------------|-------------------------|------------|----------|--------|-------------|-----------|-----|------|----|----|
| 1     | 9776  | <0.2  | 1.32 | <5 | 130 | <5        | 1.71 | <1 | 13 | 109         | 413  | 2.58         | <10  | 1.37 | 447  | <1 | 0.06         | 38                      | 860        | 18       | <5 <20 | 67          | 0.11 <10  |     | <10  | 8  | 20 |
| 2     | 9777  | <0.2  | 1.36 | 10 | 125 | <5        | 2.29 | <1 | 16 | 116         | 640  | 2.91         |      | 1.41 | 577  | <1 | 0.06         | 41                      | 930        | 12       | 5 <20  | 86          |           |     |      | 10 | 22 |
| 3     | 9778  | < 0.2 | 1.37 | <5 | 145 | <5        | 1,52 | <1 | 17 | 110         | 788  | 3.18         |      | 1.30 | 717  | <1 | 0.05         | 39                      | 920        | 16       | <5 <20 | 84          | 0.09 <10  | 99  |      | 10 | 29 |
| 4     | 9779  | <0.2  | 1.46 | 5  | 100 | <5        | 2.67 | <1 | 14 | 112         | 486  | 3.51         | <10  | 1.29 | 882  | 2  | 0.04         | 36                      | 1040       | 14       | <5 <20 | 49          | 0.07 < 10 |     | <10  | 8  | 38 |
| 5     | 9780  | 0.3   | 1.45 | 10 | 70  | <5        | 3.17 | <1 | 17 | 152         | 1431 | 3.17         | <10  | 1.48 | 849  | 3  | 0.05         | 43                      | 880        | 12       | <5 <20 | 70          | 0.10 <10  | 117 | <10  | 10 | 28 |
|       |       |       |      |    |     |           |      |    |    |             |      |              | 4.0  | 4 40 | 700  |    | 0.00         |                         | 000        | 40       | <5 <20 | 65          | 0.11 <10  | 109 | <10  | 10 | 21 |
| 6     | 9782  | <0.2  | 1.40 | 5  | 70  | <5        | 2.37 | <1 | 17 | 112         | 596  | 3.30         | <10  | 1.46 | 708  | <1 | 0.06<br>0.07 | <b>44</b><br><b>4</b> 3 | 930<br>870 | 12<br>12 | <5 <20 | 62          | 0.10 < 10 |     | <10  | 9  | 32 |
| 7     | 9783  | < 0.2 | 1.89 | <5 | 65  | <5        | 3.02 | <1 | 20 | 146         | 872  | 4.12         | <10  | 2.10 | 982  | 5  |              | _                       |            | 10       | <5 <20 | 65          |           | 166 | <10  |    | 28 |
| 8     | 9784  | <0.2  | 1.54 | 10 | 60  | <5        | 3.51 | <1 | 15 | 131         | 523  | 3.28         | <10  | 1.71 | 902  | 2  | 0.06         | 30                      | 890        | _        | <5 <20 | 58          |           | 181 | <10  |    | 37 |
| 9     | 9785  | <0.2  | 1.95 | 5  | 145 | <5        | 2.76 | <1 | 16 | 183         | 528  | 4.00         | <10  | 2.09 | 939  | <1 | 0.07         | 40                      | 920        | 12       | <5 <20 | 74          | 0.10 < 10 |     |      |    | 35 |
| 10    | 9786  | <0.2  | 1.59 | 10 | 155 | <5        | 3.56 | <1 | 16 | 142         | 717  | 3.47         | <10  | 1.71 | 1124 | 5  | 0.06         | 37                      | 910        | 12       | <5 <20 | /4          | 0.09 >10  | 133 | 10   |    | 55 |
|       |       | .0.0  | 4.70 | _  | 455 |           | 0.00 | -4 | 45 | 404         | DO 4 | 272          | <10  | 1.86 | 1071 | 2  | 0.07         | 39                      | 950        | 12       | <5 <20 | 60          | 0.09 < 10 | 168 | <10  | 11 | 33 |
| 11    | 9787  | <0.2  | 1.76 | 5  | 155 | <5<br>- 5 | 2.98 | <1 | 15 | 184         | 804  | 3.72<br>4.19 | <10  | 1.93 | 1069 | 17 | 0.07         | 49                      | 800        | 14       | <5 <20 | 54          | 0.10 < 10 |     | <10  | 8  | 38 |
| 12    | 9788  | 0.5   | 1.82 | <5 | 90  | <5<br>    | 2.55 | <1 | 23 | 151         | 2390 |              | <10  | 1.78 | 1225 | <1 | 0.07         | 43                      | 960        | 10       | <5 <20 | 48          | 0.10 < 10 |     | <10  | 9  | 43 |
| 13    | 9789  | <0.2  | 1.96 | 5  | 125 | <5<br>-:5 | 2.34 | <1 | 21 | 146         | 607  | 4.26<br>4.42 | <10  | 1.68 | 1266 | 2  | 0.06         | 46                      | 870        | 10       | <5 <20 | 110         | 0.09 < 10 |     | <10  | 11 | 26 |
| 14    | 9790  | <0.2  | 1.76 | <5 | 85  | <5<br>    | 4.48 | <1 | 28 | 111         | 855  |              | <10  | 1.22 | 945  | 1  | 0.05         | 51                      | 920        | 10       | <5 <20 | 51          | 0.08 < 10 |     | <10  | 7  | 27 |
| 15    | 9791  | 0.2   | 1.49 | 5  | 85  | <5        | 2.52 | <1 | 28 | 113         | 642  | 3.88         | ×10  | 1.22 | 945  | '  | 0.03         | 51                      | 92U        | 10       | -0 -20 | ٠,٠         | 0.00      | 100 | - 10 | •  |    |
| 16    | 9792  | <0.2  | 1.40 | 5  | 80  | <5        | 3.66 | <1 | 21 | 98          | 344  | 3.37         | <10  | 1.04 | 1165 | <1 | 0.03         | 42                      | 1050       | 12       | <5 <20 | 63          | 0.06 <10  | 78  | <10  | 10 | 29 |
| 17    | 9793  |       | 1.46 | <5 | 70  | <5        | 1.97 | <1 | 36 | 119         | 1788 | 4.46         | <10  | 1.23 | 893  | 6  | 0.03         | 51                      | 930        | 10       | <5 <20 | 35          | 0.07 < 10 | 120 | <10  | 4  | 36 |
| 18    | 9794  |       |      | 10 | 75  | <5        | 2.81 | <1 | 18 | 129         | 786  | 3.81         | <10  | 1.52 | 1274 | 3  | 0.03         | 50                      | 920        | 14       | <5 <20 | 47          | 0.07 <10  | 104 | <10  | 7  | 41 |
| 19    | 9795  | -     | 1.42 | 10 | 85  | <5        | 3.10 | <1 | 17 | 121         | 585  | 3.20         | <10  | 1.33 | 1012 | 4  | 0.04         | 41                      | 990        | 14       | <5 <20 | 61          | 0.08 <10  | 107 | <10  | 12 | 25 |
| 20    | 9796  | <0.2  | 1.62 | 5  | 65  | <5        | 3.18 | <1 | 18 | 132         | 651  | 3.27         | <10  | 1.55 | 1296 | 22 | 0.04         | 45                      | 970        | 16       | <5 <20 | 55          | 0.09 <10  | 117 | <10  | 10 | 35 |
|       | 3.33  | •     |      | _  |     |           |      |    |    |             |      |              |      |      |      |    |              |                         |            |          |        |             |           |     |      |    |    |
| 21    | 9798  | <0.2  | 1.90 | <5 | 120 | <5        | 3.63 | <1 | 16 | 129         | 698  | 3.56         | <10  | 2.05 | 1349 | 2  | 0.04         | 38                      | 950        | 16       | <5 <20 | 60          | 0.10 <10  |     |      | 14 | 32 |
| 22    | 9799  | < 0.2 | 1.95 | 10 | 85  | <5        | 2.64 | <1 | 22 | 130         | 1048 | 4.09         | <10  | 2.03 | 1163 | 2  | 0.03         | 50                      | 1010       | 14       | <5 <20 | 46          | 0.09 <10  |     |      | 10 | 38 |
| 23    | 9800  | 0.2   | 1.86 | 5  | 70  | <5        | 3.77 | <1 | 24 | 136         | 1223 | 4.61         | <10  | 1.82 | 1239 | 4  | 0.05         | 46                      | 870        | 18       | <5 <20 | 71          | 0.08 <10  |     | <10  | 8  | 38 |
| 24    | 9801  | < 0.2 | 1.91 | 10 | 85  | <5        | 3.53 | <1 | 26 | <b>1</b> 15 | 749  | 4.74         | <10  | 1.69 | 1156 | 4  | 0.03         | 47                      | 1160       | 10       | <5 <20 | 65          | 0.06 <10  |     |      | 6  | 38 |
| 25    | 9802  | <0.2  | 2.00 | 10 | 140 | <5        | 4.16 | <1 | 21 | 144         | 483  | 4.90         | <10  | 2.09 | 1305 | <1 | 0.04         | 39                      | 1300       | 16       | <5 <20 | 82          | 0.10 <10  | 203 | <10  | 11 | 39 |
|       |       |       |      |    |     |           |      |    |    |             |      |              |      |      |      |    |              |                         |            |          |        |             |           |     |      |    |    |
| 26    | 9803  | < 0.2 | 2.16 | 10 | 160 | <5        | 3.82 | <1 | 17 | 153         | 604  | 4.66         | <10  | 2.56 | 1301 | <1 | 0.04         | 36                      | 1260       | 18       | <5 <20 | 88          | 0.13 <10  |     |      |    | 38 |
| 27    | 9804  | <0.2  | 1.60 | <5 | 70  | <5        | 2.52 | <1 | 20 | 160         | 967  | 4.66         | <10  | 1.71 | 769  | 4  | 0.06         | 30                      | 1170       | 20       | <5 <20 | <b>1</b> 31 | 0.12 < 10 |     | <10  | 8  | 30 |
| 2-3   | 9805  | < 0.2 | 0.90 | 10 | 165 | <5        | 3.09 | <1 | 10 | 61          | 388  | 2.91         | <10  | 0.81 | 849  | 11 | 0.05         | 10                      | 1060       | 12       | <5 <20 | 109         | 0.07 <10  | 139 |      | 12 | 23 |
| 29    | 9806  | 0.2   | 0.72 | 10 | 120 | <5        | 1.97 | <1 | 7  | 76          | 625  | 2.92         | <10  | 0.49 | 566  | 18 | 0.05         | 7                       | 880        | 12       | <5 <20 | 72          | 0.04 < 10 |     |      | 9  | 25 |
| 30    | 9807  | <0.2  | 0.60 | <5 | 260 | <5        | 1.97 | <1 | 5  | 44          | 505  | 2.53         | <10  | 0.40 | 548  | 5  | 0.04         | 5                       | 910        | 10       | <5 <20 | 76          | 0.03 <10  | 108 | <10  | 9  | 18 |
|       |       |       |      |    |     |           |      |    |    |             |      |              | Page | 1    |      |    |              |                         |            |          |        |             |           |     |      |    |    |
|       |       |       |      |    |     |           |      |    |    |             |      |              |      |      |      |    |              |                         |            |          |        |             |           |     |      |    |    |

Tag#

Et #.

JJ/bw/ga df/977 XLS/05

ECO TECH LABORATORY LTD.

Ag Al%

As

Ва

Bi Ca%

Cd Co

### ICP CERTIFICATE OF ANALYSIS AS 2005-5133

La Mg %

Mn

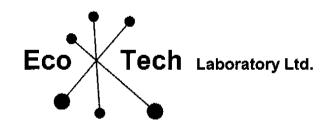
Cr Cu Fe %

Mo Na %

Ni

**Falconbridge Limited** 

Sr Ti % U


Pb Sb Sn

W Y Zn

| 31       | 9808       | <0.2  | 0.65 | <5 | 320 | <5 | 2.23 | <1 | 6  | 58  | 271  | 2.83 | <10 | 0.45 | 601  | 3   | 0.05 | 4   | 970  | 10  | <5 <20  | 82  | 0.04 < 10 | 114 | <10 | 10 | 20  |
|----------|------------|-------|------|----|-----|----|------|----|----|-----|------|------|-----|------|------|-----|------|-----|------|-----|---------|-----|-----------|-----|-----|----|-----|
| 32       | 9809       | <0.2  | 0.70 | 5  | 230 | <5 | 3.33 | <1 | 7  | 47  | 375  | 2.42 | <10 | 0.37 | 733  | 11  | 0.03 | 5   | 1080 | 16  | <5 <20  | 178 | 0.01 <10  | 88  | <10 | 10 | 17  |
| 33       | 9810       | 1.2   | 1.04 | 75 | 170 | <5 | 4.09 | 4  | 11 | 71  | 675  | 2.14 | <10 | 0.70 | 1473 | 6   | 0.02 | 17  | 1140 | 26  | 270 <20 | 197 | <0.01 <10 | 52  | <10 | 11 | 154 |
| 34       | 9781       | 0.2   | 0.87 | 90 | 160 | <5 | 0.26 | <1 | 69 | 241 | 441  | >10  | <10 | 0.18 | 476  | 128 | 0.05 | 427 | 100  | 108 | <5 <20  | 11  | <0.01 <10 | 22  | <10 | <1 | 400 |
| 35       | 9797       | 2.1   | 1.36 | 5  | 310 | <5 | 1.40 | <1 | 12 | 25  | 7327 | 3.56 | 10  | 0.99 | 476  | 2   | 0.16 | 16  | 2330 | 22  | <5 <20  | 80  | 0.08 <10  | 187 | <10 | 16 | 56  |
| . –      |            |       |      |    |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |     |         |     |           |     |     |    |     |
| QC DAT   | <u>'A:</u> |       |      |    |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |     |         |     |           |     |     |    |     |
| Resplit: |            |       |      |    |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |     |         |     |           |     |     |    |     |
| 1        | 9776       | <0.2  | 1.34 | 10 | 150 | <5 | 1.67 | <1 | 14 | 113 | 373  | 2.68 | <10 | 1.38 | 464  | <1  | 0.06 | 38  | 870  | 20  | <5 <20  | 68  | 0.11 <10  | 88  | <10 | 9  | 22  |
| Repeat:  |            |       |      |    |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |     |         |     |           |     |     |    |     |
| 1        | 9776       | < 0.2 | 1.43 | 5  | 145 | <5 | 1.77 | <1 | 14 | 113 | 442  | 2.65 | <10 | 1.48 | 460  | <1  | 0.07 | 38  | 880  | 14  | <5 <20  | 77  | 0.12 <10  | 92  | <10 |    | 20  |
| 10       | 9786       | < 0.2 | 1.65 | 5  | 150 | <5 | 3.60 | <1 | 16 | 143 | 753  | 3.51 | <10 | 1.76 | 1141 | 6   | 0.07 | 37  | 900  | 10  | <5 <20  | 77  | 0.09 <10  | 157 | <10 |    | 34  |
| 19       | 9795       | <0.2  | 1.33 | 10 | 80  | <5 | 3.15 | <1 | 17 | 121 | 539  | 3.23 | <10 | 1.24 | 1012 | 5   | 0.03 | 43  | 1030 | 16  | <5 <20  | 55  | 0.08 <10  | 103 | <10 | 10 | 28  |
| Standar  | d:         |       |      |    |     |    |      |    |    |     |      |      |     |      |      |     |      |     |      |     |         |     |           |     |     |    |     |
| GEO'05   |            | 1.5   | 1.58 | 60 | 160 | <5 | 1.39 | <1 | 17 | 59  | 86   | 3.89 | <10 | 0.82 | 593  | <1  | 0.03 | 26  | 600  | 24  | <5 <20  | 52  | 0.11 <10  | 67  | <10 | 11 | 73  |

ECO TECH DABORATORY LTD.
Jutta Jenouse

BC Certified Assayer



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com

www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5134**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

15-Sep-05

Attention: Allan Huard

No. of samples received: 34

Sample type: Core Project #: 301 Shipment #: 47

Samples Submitted by: Mike Savell

|        |              | Au    | Au      |                          |
|--------|--------------|-------|---------|--------------------------|
| ET#.   | Tag #        | (g/t) | (oz/t)  |                          |
| 1      | 9811         | 0.50  | 0.015   |                          |
| 2      | 9812         | 0.26  | 0.008   |                          |
| 2<br>3 | 9813         | 0.44  | 0.013   |                          |
| 4      | 9814         | 0.48  | 0.014   |                          |
| 5      | 9815         | 0.36  | 0.010   |                          |
| 6      | 9817         | 0.53  | 0.015   |                          |
| 7      | 9818         | 0.42  | 0.012   |                          |
| 8      | 9819         | 0.40  | 0.012   |                          |
| 9      | 9820         | 0.51  | 0.015   |                          |
| 10     | 9821         | 0.40  | 0.012   |                          |
| 11     | 9822         | 0.56  | 0.016   |                          |
| 12     | 982 <b>3</b> | 0.66  | 0.019   |                          |
| 13     | 9 <b>824</b> | 0.34  | 0.010   |                          |
| 14     | 9825         | 0.33  | 0.010   |                          |
| 15     | 9826         | 0.32  | 0.009   |                          |
| 16     | 9827         | 0.24  | 0.007   |                          |
| 17     | 9828         | 0.38  | 0.011   |                          |
| 18     | 9829         | 0.29  | 0.008   |                          |
| 19     | 9830         | 0.18  | 0.005   |                          |
| 20     | 9831         | 0.34  | 0.010   |                          |
| 21     | 9833         | 0.24  | 0.007   |                          |
| 22     | 9834         | 0.06  | 0.002   |                          |
| 23     | 9335         | 0.09  | 0.003   |                          |
| 24     | 9836         | 0.40  | 0.012   |                          |
| 25     | 9837         | 0.43  | 0.013   |                          |
| 26     | 9838         | 0.13  | 0.004   |                          |
| 27     | 9840         | 0.37  | 0.011   |                          |
| 28     | 9841         | 0.11  | 0.003   | ECO TECH LABORATORY LTD. |
| 29     | 9842         | 0.17  | 0.005   | Jutta Jealouse           |
| 30     | H843         | <0.03 | < 0.001 | /B.C. Ceptified Assayer  |
|        |              |       |         |                          |

Page 1

|           |      | Au    | Au     |  |
|-----------|------|-------|--------|--|
| ET #.     | Tag# | (g/t) | (oz/t) |  |
| 31        | 9844 | 0.33  | 0.010  |  |
| 32        | 9845 | 0.32  | 0.009  |  |
| 33        | 9816 | 0.07  | 0.002  |  |
| 34        | 9832 | 0.42  | 0.012  |  |
| QC DATA:  |      |       |        |  |
| Repeats:  |      |       |        |  |
| 1         | 9811 | 0.49  | 0.014  |  |
| 10        | 9821 | 0.42  | 0.012  |  |
| 19        | 9830 | 0.21  | 0.006  |  |
| 28        | 9841 | 0.11  | 0.003  |  |
| 29        | 9842 | 0.19  | 0.006  |  |
| 30        | 9843 | <0.03 | <0.001 |  |
| 32        | 9845 | 0.34  | 0.010  |  |
| Resplit:  |      |       |        |  |
| 1         | 9811 | 0.57  | 0.017  |  |
| Standard: |      | 4.00  | 0.057  |  |
| PM176     |      | 1.96  | 0.057  |  |
| OX140     |      | 1.87  | 0.055  |  |
|           |      |       |        |  |

\*9839 - SAMPLE MISSING

JJ/bw/ga XLS/05

ECO PECIA LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 34 Sample type:Core Project #: 301 Shipment #: 47

Samples submitted by: Mike Savell

| Et #. | Tag#         | Aa          | AI %         | As       | Ba         | Bi         | Ca %         | Cd  | Co | Cr  | Cu   | Fe % | La   | Mg %  | Mn   | Mo | Na %   | Ni  | P    | Pb  | Sb Sn    | Sr          | Ti% U     | ٧   | W   | Y      | Zn       |
|-------|--------------|-------------|--------------|----------|------------|------------|--------------|-----|----|-----|------|------|------|-------|------|----|--------|-----|------|-----|----------|-------------|-----------|-----|-----|--------|----------|
| 1     | 9811         |             | 1.66         | 150      | 40         | <5         | 4.65         | <1  | 36 | 105 | 3753 | 6.62 | <10  | 1.34  | 2118 | 11 | <0.01  | 75  | 1220 | 110 | 450 <20  | 179         | <0.01 <10 | 98  | <10 | 4      | 200      |
| 2     | 9812         | 3.7         | 2.01         | 255      | 95         | <5         | 3.75         | 9   | 23 | 141 | 4401 | 4.71 | <10  |       | 1736 | 11 | < 0.01 | 72  | 1310 | 106 | 1050 <20 | 135         | 0.02 < 10 | 103 | <10 | 4      | 475      |
| 3     | 9813         | 2.0         | 1.51         | 45       | 60         | <5         | 3.23         | <1  | 33 | 133 | 4281 | 5.30 | <10  | 1.49  | 653  | 9  | 0.02   | 87  | 1280 | 44  | 30 <20   | 109         | 0.06 <10  | 94  | <10 | 5      | 68       |
| 4     | 9814         | 1.3         | 1.86         | 20       | 95         | <5         | 3.90         | <1  | 35 | 154 | 6409 | 5.49 | <10  | 2.01  | 996  | 3  | 0.02   | 106 | 1170 | 30  | 10 <20   | <b>1</b> 11 | 0.09 <10  | 144 | <10 | 5      | 79       |
| 5     | 9815         | 0.7         | 1.55         | 15       | 170        | <5         | 3.22         | <1  | 21 | 138 | 3395 | 4.49 | <10  | 1.74  | 891  | 4  | 0.04   | 68  | 1200 | 22  | 10 <20   | 74          | 0.07 <10  | 146 | <10 | 4      | 52       |
|       |              |             |              |          |            |            |              |     |    |     |      |      |      |       |      |    |        |     |      |     |          |             |           |     |     |        |          |
| 6     | 9817         | 1,3         | 1.67         | 15       | 105        | <5         | 3.58         | <1  | 29 | 154 | 6336 | 5.43 | <10  | 1.77  | 1084 | 5  | 0.03   | 96  | 1190 | 28  | <5 <20   | 72          | 0.09 <10  | 148 | <10 | 8      | 69       |
| 7     | 9818         | 1.0         | 1.37         | 20       | 140        | <5         | 2.63         | <1  | 26 | 127 | 4696 | 4.61 | <10  | 1.59  | 654  | <1 | 0.03   | 86  | 1090 | 22  | <5 <20   | 49          | 0.10 <10  | 136 | <10 | 6      | 57       |
| 8     | 9819         | 0.7         | 1.37         | 15       | 185        | <5         | 1.52         | <1  | 28 | 189 | 4374 | 4.92 | <10  | 1.64  | 467  | <1 | 0.03   | 154 | 1110 | 22  | <5 <20   | 41          | 0.09 <10  |     |     | 4      | 54       |
| 9     | 9820         | 1.0         | 1.66         | 10       | 145        | <5         | 1.65         | <1  | 30 | 152 | 4240 | 4.92 | <10  | 2.03  | 534  | <1 | 0.04   | 108 | 1250 | 28  | 5 <20    | 37          | 0.12 <10  | 150 | <10 | 4      | 58       |
| 10    | 9821         | 1.0         | 1.63         | 15       | 160        | <5         | 3.09         | <   | 32 | 146 | 5243 | 5.28 | <10  | 1.94  | 718  | <1 | 0.03   | 124 | 1250 | 30  | 5 <20    | 51          | 0.14 < 10 | 173 | <10 | 9      | 59       |
|       |              |             |              |          |            |            |              |     |    |     |      |      |      |       |      |    |        |     |      |     |          |             |           |     |     |        |          |
| 11    | 9822         | 1.2         | 1.50         | 50       | 50         | <5         | 3.78         | <1  | 63 | 158 | 4740 | 6.51 | <10  | 1.52  | 1027 | 5  | 0.02   | 106 | 1290 | 34  | 5 <20    | 61          | 0.08 <10  |     |     | 6      | 64       |
| 12    | 9823         | 1.2         | 1.81         | 15       | 70         | <5         | 5.32         | <1  | 42 | 147 | 5528 | 6.20 | <10  | 1.92  | 1447 | 16 | 0.03   | 100 | 1230 | 34  | <5 <20   | 80          | 0.09 < 10 |     |     | 10     | 76       |
| 13    | 9824         | 0.7         | 1.68         | 20       | 220        | <5         | 4.57         | <1  | 26 | 216 | 3601 | 5.11 | <10  | 1.82  | 1037 | 2  | 0.06   |     | 1460 | 34  | <5 <20   | 72          | 0.11 <10  |     |     | 10     | 67       |
| 14    | 9825         | 0.7         | 1.60         | 15       | 165        | <5         | 4.36         | <1  | 26 | 139 | 3880 | 4.78 | <10  | 1.78  | 975  | 3  | 0.03   |     | 1290 | 30  | <5 <20   | 79          | 0.08 <10  |     |     | 7      | 65       |
| 15    | 9826         | 0.6         | 1.95         | 25       | 220        | <5         | 4.10         | <1  | 27 | 172 | 2501 | 5.86 | <10  | 2.03  | 1235 | <1 | 0.04   | 72  | 1420 | 40  | 5 <20    | 67          | 0.11 <10  | 183 | <10 | 8      | 63       |
|       |              |             |              |          |            |            |              |     |    |     |      |      |      | . = 0 |      |    |        | =0  | 4000 | 20  | -E -OO   | 0.4         | 0.07 -40  | 111 | -10 | c      | E.C      |
| 16    | 9827         | 0.5         | 1.60         | 15       | 290        | <5         | 4.73         | <1  | 19 | 141 | 2466 | 4.67 |      | 1.72  |      | <1 | 0.03   |     | 1280 | 36  | <5 <20   | 81          | 0.07 <10  |     |     | 6<br>7 | 56<br>62 |
| 17    | 9828         | 0.9         | 1.42         | 15       | 165        | <5         | 3.25         | <1  | 31 | 156 | 4310 | 5.00 | <10  | 1.61  | 756  | 1  | 0.04   | 81  | 1220 | 26  | 10 <20   | 67          | 0.11 < 10 |     | <10 | 8      | 6∠<br>54 |
| 18    | 9829         | 0.5         | 1.69         | 15       | 230        | <5         | 3.99         | <1  | 25 | 174 | 2969 | 5.07 | <10  | 2.01  | 875  | <1 | 0.05   | 71  | 1460 | 32  | <5 <20   | 77          | 0.15 < 10 |     | <10 | _      |          |
| 19    | 9830         | 0.5         | 1.84         | 15       | 330        | <5         | 2.72         | <1  | 24 | 183 | 2616 | 4.56 | <10  | 2.33  | 699  | <1 | 0.05   | 65  | 1430 | 40  | 10 <20   | 67          | 0.16 <10  |     |     | 10     | 47<br>52 |
| 20    | 9831         | 0.4         | 1.69         | 15       | 370        | <5         | 2.13         | <1  | 22 | 143 | 2474 | 4.46 | <10  | 2.21  | 632  | <1 | 0.04   | 54  | 1460 | 38  | 10 <20   | 51          | 0.15 < 10 | 105 | <10 | 10     | ŞΖ       |
| 0.4   | 0000         | 0.0         | 4.24         | 45       | 075        | <b>∠</b> E | 0.46         | <1  | 21 | 137 | 2200 | 4.45 | <10  | 1.63  | 611  | <1 | 0.05   | 47  | 1480 | 36  | 10 <20   | 59          | 0.12 <10  | 157 | <10 | 9      | 46       |
| 21    | 9833         | 0.6         |              | 15<br>15 | 275<br>685 | <5<br><5   | 2.15<br>2.62 | <1  | 13 | 115 | 763  | 3.85 | <10  | 1.47  | 636  | <1 | 0.03   | 32  | 1490 | 32  | 5 <20    | 72          | 0.11 < 10 |     |     | 9      | 39       |
| 22    | 9834<br>9835 | 0.2<br><0.2 | 1.22<br>1.36 | 15       | 930        | <5         | 2.70         | <1  | 12 | 156 | 664  | 3.57 | <10  | 1.69  | 670  | <1 | 0.07   | 37  | 1610 | 32  | 10 <20   | 78          | 0.14 <10  | -   |     | 9      | 40       |
| 23    |              |             |              | 20       | 215        | <5         | 1.29         | <1  | 20 | 98  | 3068 | 3.49 | <10  | 1.62  | 457  | <1 | 0.06   |     | 1460 | 34  | 15 <20   | 53          | 0.12 <10  |     |     | 9      | 50       |
| 24    | 9836<br>9837 | 0.8         |              | 15       | 320        | <5         | 3.32         | <1  | 26 | 197 | 3924 | 5.10 | <10  | 1.87  | 780  | 3  | 0.06   |     | 1450 | 32  | 5 <20    | 80          | 0.14 < 10 |     |     | 7      | 54       |
| 25    | 9637         | 0.9         | 1.00         | 15       | 320        | <b>~</b> 5 | 3.32         | ~ 1 | 20 | 191 | 3924 | 5.10 | ~10  | 1.07  | 700  | ,  | 0.00   | , , | 1430 | 02  | Q -20    | 00          | 0.14 -10  |     | 10  | •      | •        |
| 26    | 9838         | 0.2         | 1.42         | 10       | 290        | <5         | 2.68         | <1  | 17 | 106 | 1075 | 3.89 | <10  | 1.68  | 653  | <1 | 0.05   | 37  | 1490 | 34  | 10 <20   | 59          | 0.13 <10  | 155 | <10 | 10     | 47       |
| 27    | 9840         | 2.2         |              | 25       | 125        | <5         | 3.95         | <1  | 32 | 181 | 4020 | 6.52 | <10  | 2.38  | 1890 | 8  | 0.02   | 72  | 1260 | 56  | <5 <20   | 67          | 0.11 < 10 | 149 | <10 | 5      | 94       |
| 28    | 9841         | 0.5         |              | 20       | 275        | <5         | 3.56         | <1  | 22 | 170 | 1386 | 5.03 | <10  | 2.25  | 1007 | 1  | 0.04   |     | 1460 | 46  | <5 <20   | 64          | 0.14 <10  | 197 | <10 | 8      | 59       |
| 29    | 9842         | 0.6         | 2.12         | 20       | 430        | <5         | 3.93         | <1  | 21 | 201 | 1596 | 4.95 | <10  | 2.50  |      | <1 | 0.03   | 55  | 1330 | 54  | 10 <20   | 78          | 0.15 < 10 | 198 | <10 | 10     | 59       |
| 30    | 9843         | <0.2        |              | 10       | 1295       | <5         | 3.16         | <1  | 14 | 120 | 235  | 5.71 | <10  |       | 812  | <1 | 0.04   |     | 1170 | 38  | <5 <20   | 100         | 0.11 <10  | 218 | <10 | 4      | 52       |
| 55    | 3910         | 4.4         |              |          | ,          |            |              | -   |    | •   |      |      | Page |       |      |    |        |     |      |     |          |             |           |     |     |        |          |
|       |              |             |              |          |            |            |              |     |    |     |      |      | -    |       |      |    |        |     |      |     |          |             |           |     |     |        |          |

Tag#

Et#.

Ag Al%

As

Ba

#### ICP CERTIFICATE OF ANALYSIS AS 2005-5134

La Mg %

Mn Mo Na%

Ni

Cu Fe %

Co

Çd

Bi Ca%

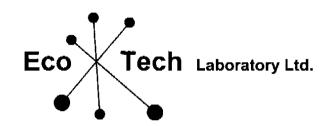
Cr

#### Falconbridge Limited

Şr Ti% U

Sb Sn

| 31       | 9844      | 0.7 | 1.94 | 15  | 300 | <5 | 4.46 | <1 | 26 | 204 | 2804 | <b>4</b> .77 | <10 | 2.30 | 1021 | <1  | 0.04  | 63  | 1240 | 44  |     | <20 | 79  | 0.16 <10  | 189 | <10 | 10 | 63             |
|----------|-----------|-----|------|-----|-----|----|------|----|----|-----|------|--------------|-----|------|------|-----|-------|-----|------|-----|-----|-----|-----|-----------|-----|-----|----|----------------|
| 32       | 9845      | 1.0 | 1.33 | 20  | 80  | <5 | 2.83 | <1 | 19 | 81  | 2826 | 3.97         | <10 | 1.32 | 687  | 5   | 0.02  | 55  | 1380 | 34  |     | <20 | 51  | 0.04 <10  | 130 | <10 | 4  | 52             |
| 33       | 9816      | 0.3 | 0.79 | 100 | 145 | <5 | 0.26 | <1 | 70 | 236 | 434  | >10          | <10 | 0.11 | 478  | 129 | 0.05  | 444 | 100  | 102 | <5  | <20 | 9   | <0.01 <10 | 24  | <10 | <1 | 423            |
| 34       | 9832      | 2.1 | 1.49 | <5  | 300 | <5 | 1.49 | <1 | 12 | 25  | 7305 | 3.48         | <10 | 1.20 | 457  | 2   | 0.12  | 14  | 2950 | 28  | <5  | <20 | 72  | 0.06 <10  | 187 | <10 | 15 | 59             |
| 00 047   |           |     |      |     |     |    |      |    |    |     |      |              |     |      |      |     |       |     |      |     |     |     |     |           |     |     |    |                |
| QC DAT   | <u>A:</u> |     |      |     |     |    |      |    |    |     |      |              |     |      |      |     |       |     |      |     |     |     |     |           |     |     |    |                |
| Resplit: | •         |     |      |     |     |    |      |    |    |     |      |              |     |      |      |     |       |     |      |     |     |     |     |           |     | 40  |    | 400            |
| 1        | 9811      | 1.7 | 1.40 | 130 | 35  | <5 | 4.21 | 1  | 33 | 104 | 2878 | 6.01         | <10 | 1.12 | 1854 | 12  | <0.01 | 68  | 1110 | 146 | 335 | <20 | 154 | <0.01 <10 | 85  | <10 | 4  | 168            |
| Repeat:  | •         |     |      |     |     |    |      |    |    |     |      |              |     |      |      |     |       |     |      |     |     |     |     |           |     |     |    |                |
| 1        | 9811      | 1.5 | 1.49 | 150 | 55  | <5 | 4.34 | 1  | 33 | 97  | 3446 | 6.15         | <10 | 1.21 | 1958 | 10  | <0.01 | 66  | 1160 | 106 | 430 | <20 | 165 | <0.01 <10 | 88  | <10 | 4  | 192            |
| 10       | 9821      | 1.0 | 1.62 | 10  | 160 | <5 | 3.09 | <1 | 31 | 142 | 5281 | 5.21         | <10 | 1.92 | 711  | 3   | 0.03  | 121 | 1190 | 28  | <5  | <20 | 49  | 0.13 <10  | 170 | <10 | 7  | 60             |
| 19       | 9830      | 0.5 | 1.84 | 15  | 320 | <5 | 2.74 | <1 | 24 | 184 | 2564 | 4.63         | <10 | 2.31 | 704  | <1  | 0.05  | 67  | 1460 | 40  | 10  | <20 | 64  | 0.17 <10  | 176 | <10 | 9  | 4 <del>9</del> |
| Standar  | rd:       |     |      |     |     |    |      |    |    |     |      |              |     |      |      |     |       |     |      |     |     |     |     |           |     |     |    |                |
| GEO'05   |           | 1.5 | 1.33 | 50  | 150 | <5 | 1.39 | <1 | 17 | 59  | 86   | 3.96         | <10 | 0.68 | 578  | <1  | 0.02  | 28  | 750  | 22  | <5  | <20 | 54  | 0.11 <10  | 67  | <10 | 10 | 74             |


<sup>\*</sup> Sample #9839 missing

JJ/bw/ga df/5134 XLS/05

DUITE DE LABORATORY LTD.

Jutta de liouse

BC Ceytified Assayer



10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

# CERTIFICATE OF ASSAY AS 2005-5136

26-Sep-05

Falconbridge Limited
3296 Francis-Hughes Avenue
Laval, Quebec
H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 48

Samples Submitted by: Mike Savell

|   |        |       | Au     | Au     |  |
|---|--------|-------|--------|--------|--|
| E | Γ#.    | Tag # | (g/t)  | (oz/t) |  |
|   | 1      | 9846  | 0.35   | 0.010  |  |
|   | 2      | 9847  | 0.22   | 0.006  |  |
|   | 2<br>3 | 9848  | 0.09   | 0.003  |  |
|   | 4      | 9849  | 0.15   | 0.004  |  |
|   | 5      | 9850  | 0.20   | 0.006  |  |
|   | 6      | 9852  | 0.14   | 0.004  |  |
|   | 7      | 9853  | 0.23   | 0.007  |  |
|   | 8      | 9854  | 0.11   | 0.003  |  |
|   | 9      | 9855  | 0.04   | 0.001  |  |
|   | 10     | 9856  | 0.06   | 0.002  |  |
|   | 11     | 9857  | 0.04   | 0.001  |  |
|   | 12     | 9858  | 0.07   | 0.002  |  |
|   | 13     | 9859  | 0.10   | 0.003  |  |
|   | 14     | 9860  | 0.09   | 0.003  |  |
|   | 15     | 9861  | 0.08   | 0.002  |  |
|   | 16     | 9862  | 0.32   | 0.009  |  |
|   | 17     | 9863  | 0.06   | 0.002  |  |
|   | 18     | 9864  | 0.06   | 0.002  |  |
|   | 19     | 9865  | 0.03   | 0.001  |  |
|   | 20     | 9866  | 0.06   | 0.002  |  |
|   | 21     | 9868  | 0.04   | 0.001  |  |
|   | 22     | 9869  | < 0.03 | <0.001 |  |
|   | 23     | 9870  | 0.04   | 0.001  |  |
|   | 24     | 9871  | 0.11   | 0.003  |  |
|   | 25     | 9872  | 0.07   | 0.002  |  |

CO TECH LABORATORY LTD.

jutta Jealou**zé** 

B.C. Certif**r**ed Assayer

|           |       | Au    | Au     |
|-----------|-------|-------|--------|
| ET #      | Tag # | (g/t) | (oz/t) |
| 26        | 9873  | <0.03 | <0.001 |
| 27        | 9875  | <0.03 | <0.001 |
| 28        | 9876  | 0.03  | 0.001  |
| 29        | 9877  | <0.03 | <0.001 |
| 30        | 9878  | 0.04  | 0.001  |
| 31        | 9879  | 0.03  | 0.001  |
| 32        | 9880  | 0.03  | 0.001  |
| 33        | 9851  | 0.39  | 0.011  |
| 34        | 9874  | <0.03 | <0.001 |
| 35        | 9867  | 0.08  | 0.002  |
|           |       |       |        |
| QC DATA:  |       |       |        |
| Repeats:  |       |       |        |
| 1         | 9846  | 0.32  | 0.009  |
| 10        | 9856  | 0.07  | 0.002  |
| 19        | 9865  | <0.03 | <0.001 |
|           |       |       |        |
| Resplit:  |       |       |        |
| 1         | 9846  | 0.29  | 0.008  |
|           |       |       |        |
| Standard: |       |       |        |
| PM176     |       | 2.02  | 0.059  |

JJ/ga XLS/05 ECO TECH LABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core **Project #: 301** 

Shipment #: 48 Samples submitted by: Mike Savell

| Et #.       | Tag # | Ag    | Al % | As | Ba   | Bí       | Ca % | Cd | Co | Cr  | Cu          | Fe %         | La 🛚       | Mg %         | Mn_          | Мо     | Na %         | Ni | Р    | Pb  | Sb Sn            | Sr  | Ti% U                  | V         | W          | Y       | Zn       |
|-------------|-------|-------|------|----|------|----------|------|----|----|-----|-------------|--------------|------------|--------------|--------------|--------|--------------|----|------|-----|------------------|-----|------------------------|-----------|------------|---------|----------|
| <del></del> | 9846  | 1.3   |      | <5 | 115  | <5       | 2.27 | <1 | 23 | 88  | 4908        | 4.13         | <10        | 1.57         | 603          | 8      | 0.03         | 35 | 1020 | 10  | <5 <20           | 56  | 0.04 <10               |           | <10        | 5       | 36       |
| 2           | 9847  | 1.4   | 1.37 | 5  | 80   | <5       | 2.48 | <1 | 19 | 85  | 3359        | 3.66         | <10        | 1.29         | 567          | 21     | 0.03         | 23 | 1220 | 10  | <5 <20           | 53  | 0.02 < 10              |           | <10        | 3       | 32       |
| 3           | 9848  | 0.5   | 1.70 | 10 | 290  | <5       | 4.24 | <1 | 16 | 147 | 1265        | 3.43         | <10        | 1.75         | 815          | 12     | 0.04         | 30 | 980  | 18  | <5 <20           | 91  | 0.09 <10               |           | <10        | 11      | 32       |
| 4           | 9849  | 0.2   | 1.68 | 10 | 570  | <5       | 3.86 | <1 | 13 | 169 | 1590        | 3.49         | <10        | 1.91         | 756          | <1     | 0.06         | 39 | 960  | 12  | <5 <20           | 93  | 0.10 <10               | 166       | <10        | 12      | 31       |
| 5           | 9850  | 0.4   | 1.60 | 15 | 305  | <5       | 3.95 | <1 | 13 | 149 | 976         | 3.60         | <10        | 1.70         | 781          | <1     | 0.06         | 33 | 1010 | 16  | 5 <20            | 102 | 0.09 <10               | 142       | <10        | 10      | 31       |
|             |       |       |      |    |      |          |      |    |    |     |             |              |            |              |              | _      |              |    |      | 40  | ·E ·OO           | 70  | 0.00 -40               | 400       | <10        | 11      | 28       |
| 6           | 9852  | 0.3   | 1.54 | 5  | 325  | <5       | 3.31 | <1 | 14 | 150 | 1459        | 3.16         | <10        | 1.50         | 685          | 2      | 0.05         | 33 | 920  | 12  | <5 <20           | 73  | 0.09 <10               | 129       |            |         | 30       |
| 7           | 9853  | 0.6   | 1.35 | 10 | 360  | <5       | 4.03 | <1 | 12 | 128 | 2261        | 2.78         | <10        | 1.36         | 815          | <1     | 0.04         | 32 | 820  | 14  | <5 <20           | 110 | 0.07 <10               | 109       | <10        | 10<br>8 | 40       |
| 8           | 9854  | 0.5   | 1.68 | 10 | 110  | <5       | 4.89 | <1 | 14 | 112 | 684         | 3.35         | <10        | 1.50         | 1152         | 5      | 0.02         | 33 | 1030 | 16  | 5 <20            | 79  | 0.04 < 10              | 79<br>120 | <10<br><10 | 7       | 39       |
| 9           | 9855  | <0.2  | 1.62 | <5 | 125  | <5       | 5.20 | <1 | 13 | 103 | 360         | 4.24         | <10        | 1.44         | 1239         | 3      | 0.04         | 28 | 1230 | 12  | <5 <20           | 93  | 0.04 < 10<br>0.03 < 10 | . — -     |            |         | 39<br>45 |
| 10          | 9856  | 0.3   | 1.83 | 10 | 595  | <5       | 4.74 | <1 | 12 | 108 | 719         | 4.11         | <10        | 1.67         | 1448         | 3      | 0.02         | 36 | 1110 | 14  | <5 <20           | 99  | 0.03 < 10              | НЭ        | × 10       | 12      | 40       |
|             |       |       |      |    | 0.45 |          | 0.00 |    |    | 400 | 005         | 2.76         | -40        | 4.60         | 4220         | 2      | 0.02         | 35 | 930  | 22  | <5 <20           | 70  | 0.02 <10               | 97        | <10        | 7       | 48       |
| 11          | 9857  | 0.3   |      | 10 | 245  | <5       | 3.83 | <1 | 14 | 123 | 665         | 3.76         | <10<br><10 | 1.63<br>1.73 | 1238<br>1194 | 3<br>4 | 0.02         | 31 | 1030 | 22  | <5 <20           |     | <0.01 <10              |           | <10        | 5       | 49       |
| 12          | 9858  | 0.4   | 1.69 | 15 | 90   | <5<br>-5 | 3.79 | <1 | 13 | 132 | 450         | 3.92<br>3.40 | <10        | 1.73         | 1171         | 4      | 0.03         | 27 | 950  | 26  | <5 <20           |     | <0.01 <10              | 94        | <10        | 6       | 44       |
| 13          | 9859  | 1.0   | 1,32 | 15 | 120  | <5<br>   | 3.58 | <1 | 14 | 114 | 1133        | 3.40<br>4.54 | <10        | 1.61         | 912          | 4      | 0.02         | 31 | 960  | 12  | <5 <20           | 92  | 0.05 <10               | 200       | <10        | 5       | 34       |
| 14          | 9860  | 0.4   | 1.49 | 10 | 390  | <5       | 3.90 | <1 | 13 | 152 | 736<br>1638 | 4.55         | <10        | 1.99         | 884          | 4      | 0.04         | 37 | 990  | 12  | <5 <20           | 110 | 0.08 < 10              | 196       | <10        | 8       | 40       |
| 15          | 9861  | 0.5   | 1,73 | 5  | 590  | <5       | 3.88 | <1 | 15 | 192 | 1036        | 4.55         | ×10        | 1.55         | 004          | 4      | <b>u</b> .05 | 31 | 550  | 12  | -0 -20           | 110 | 0,00                   | 100       | , •        | ·       |          |
| 16          | 9862  | 1.3   | 1.47 | 10 | 145  | <5       | 2.72 | <1 | 16 | 105 | 3430        | 4.74         | <10        | 1.49         | 814          | 7      | 0.05         | 32 | 970  | 12  | <5 <20           | 81  | 0.04 < 10              | 166       | <10        | 6       | 43       |
| 17          | 9863  | 0.3   | 1.62 | <5 | 325  | <5       | 3.85 | <1 | 16 | 91  | 669         | 5.12         | <10        | 1.62         | 1013         | 3      | 0.05         | 29 | 940  | 20  | <5 <20           | 106 | 0.04 < 10              | 158       | <10        | 8       | 47       |
| 18          | 9864  | 0.2   | 1.59 | 10 | 360  | <5       | 4.26 | <1 | 10 | 104 | 625         | 3.40         | <10        | 1.55         | 1097         | 7      | 0.03         | 21 | 1280 | 18  | <5 <20           | 100 | <0.01 <10              | 88        | <10        | 5       | 34       |
| 19          | 9865  | 0.2   | 1.50 | 5  | 130  | <5       | 5.62 | <1 | 10 | 74  | 328         | 3.50         | <10        | 1.47         | 1277         | 6      | 0.03         | 14 | 920  | 14  | 5 <20            | 197 | <0.01 <10              | 100       | <10        | 8       | 37       |
| 20          | 9866  | <0.2  | 1.26 | <5 | 790  | <5       | 2.89 | <1 | 11 | 84  | 691         | 5.37         | <10        | 1.32         | 645          | 9      | 0.06         | 15 | 980  | 10  | <5 <20           | 105 | <0.01 <10              | 212       | <10        | 8       | 41       |
| 20          |       |       |      |    |      |          |      |    |    |     |             |              |            |              |              |        |              |    |      |     |                  |     |                        |           |            |         |          |
| 21          | 9868  | < 0.2 | 1.18 | 5  | 660  | <5       | 3.17 | <1 | 8  | 88  | 449         | 3.95         | <10        | 1.33         | 663          | 5      | 0.06         | 15 | 1080 | 8   | <5 <20           | 128 | 0.03 < 10              | 169       | <10        | 9       | 34       |
| 22          | 9869  | 0.2   | 1.74 | 10 | 955  | <5       | 5.87 | <1 | 4  | 61  | 361         | 3.23         | <10        | 1.92         | 1604         | 3      | 0.02         | 11 | 720  | 18  | <5 <20           |     | <0.01 <10              | 78        | <10        | 7       | 30       |
| 23          | 9870  | 0.2   | 0.92 | 10 | 325  | <5       | 1.46 | <1 | 4  | 44  | 164         | 2.50         | <10        | 0.65         | 581          | 4      | 0.02         | 6  | 950  | 10  | <5 <20           |     | <0.01 <10              | 63        | <10        | 7       | 21       |
| 24          | 9871  | 0.8   | 0.89 | 25 | 45   | <5       | 2.46 | <1 | 10 | 65  | 161         | 4.10         | <10        | 0.72         | 804          | 52     | 0.02         | 6  | 800  | 18  | <5 <20           |     | <0.01 <10              | 59        | <10        | 7       | 19       |
| 25          | 9872  | 0.4   | 1.12 | 10 | 70   | <5       | 2.58 | <1 | 6  | 40  | 448         | 3.59         | <10        | 0.96         | 970          | 36     | 0.03         | 2  | 880  | 10  | <5 <20           | 72  | <0.01 <10              | 81        | <10        | 8       | 33       |
|             |       |       |      |    |      |          |      |    |    |     |             |              |            |              |              | _      |              | _  | 0.40 | 4.0 | .E .DO           | 0.0 | -0.01 -40              | 07        | -10        | 10      | 24       |
| 26          | 9873  | <0.2  | 1.01 | 5  | 370  | <5       | 2.37 | <1 | 4  | 61  | 111         | 3.01         | <10        | 0.77         | 872          | 6      | 0.04         | 5  | _    | 10  | <5 <20           |     | <0.01 <10              | 87        | <10        | 10      | 31       |
| 27          | 9875  | <0.2  |      | 5  | 205  | <5       | 2.07 | <1 | 5  | 40  | 95          | 3.04         | <10        | 0.98         | 890          | 18     | 0.03         | 5  | 1040 | 12  | <5 <20           |     | <0.01 <10              | 90<br>99  | <10<br><10 | 8<br>8  | 33<br>32 |
| 28          | 9876  | <0.2  |      | 10 | 245  | <5       | 1.72 | <1 | 6  | 59  | 320         | 3.15         | <10        | 0.82         | 660          | 5      | 0.04         | 4  | 980  | 12  | <5 <20           |     | <0.01 <10              |           | <10        | 7       | 28       |
| 29          | 9877  | <0.2  |      | 5  | 400  | <5       | 1.99 | <1 | 4  | 45  | 166         | 2.82         | <10        | 0.84         | 702          | 7      | 0.04         | 3  | 980  | 8   | <5 <20<br><5 <20 |     | <0.01 <10 <0.01 <10    | 98<br>83  | <10        | 7       | 20<br>27 |
| 30          | 9878  | <0.2  | 0.96 | 10 | 195  | <5       | 1.64 | <1 | 4  | 64  | 456         | 2.36         | <10        |              | 583          | 26     | 0.04         | 4  | 850  | 8   | <5 <20           | 00  | ~0.01 ~ 10             | φĢ        | ~10        | '       | 21       |
|             |       |       |      |    |      |          |      |    |    |     |             |              | Page       |              |              |        |              |    |      |     |                  |     |                        |           |            |         |          |
|             |       |       |      |    |      |          |      |    |    |     |             |              |            |              |              |        |              |    |      |     |                  |     |                        |           |            |         |          |

Et#. Tag#

JJ/ga df/5101 XLS/05 Ag Al%

### ICP CERTIFICATE OF ANALYSIS AS 2005-5136

La Mg %

Сг

Bi Ca %

Ba

As

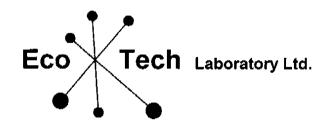
Cd

Co

Cu Fe %

Mo Na%

Mn


Ni

## Falconbridge Limited

Pb Sb Sn Sr Ti % U V W Y Zn

|         | <del>_</del> |      |      | <del></del> |      |    |               |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
|---------|--------------|------|------|-------------|------|----|---------------|----|----|-----|------|------|-----|------|------|-----|------|-----|------|-----|--------|-----|-----------|-----|-----|----|-----|
| 31      | 9879         | 0.2  | 0.90 | 10          | 150  | <5 | 1.23          | <1 | 5  | 50  | 424  | 2.22 | <10 | 0.81 | 519  | 119 | 0.03 | 4   | 770  | 8   | <5 <20 | 45  | <0.01 <10 | 74  | <10 | 5  | 23  |
| 32      | 9880         | 0.2  | 0.85 | 10          | 105  | <5 | 1.30          | <1 | 6  | 69  | 196  | 2.49 | <10 | 0.76 | 495  | 52  | 0.05 | 3   | 830  | 10  | <5 <20 | 51  | <0.01 <10 | 80  | <10 | 5  | 24  |
| 33      | 9851         | 1.0  | 1.11 | <5          | 110  | <5 | 1,66          | <1 | 16 | 31  | 4260 | 3.28 | <10 | 1.13 | 692  | 4   | 0.15 | 19  | 1600 | 12  | <5 <20 | 108 | 0.11 <10  | 148 | <10 | 13 | 44  |
| 34      | 9874         | <0.2 | 2.60 | 10          | 80   | <5 | 3.82          | <1 | 29 | 47  | 110  | 6.67 | <10 | 2.33 | 871  | 2   | 0.02 | 16  | 1550 | 26  | 5 <20  | 80  | 0.09 < 10 | 218 | <10 | 12 | 69  |
| 35      | 9867         | 0.2  | 0.80 | 85          | 150  | <5 | 0.24          | <1 | 63 | 228 | 444  | >10  | <10 | 0.12 | 448  | 117 | 0.05 | 427 | 90   | 102 | <5 <20 | 10  | <0.01 <10 | 24  | <10 | <1 | 384 |
| 33      | 3001         | Ų.Z  | 0.00 | 00          | 100  | .0 | Ų. <u>2</u> 1 | •  | 00 |     |      | , ,  |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
|         |              |      |      |             |      |    |               |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
|         |              |      |      |             |      |    |               |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
| QC DAT  | <u>lAi</u>   |      |      |             |      |    |               |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
|         |              |      |      |             |      |    |               |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
| Resplit |              |      |      |             |      |    |               |    |    |     |      |      |     |      |      |     | 0.00 |     | 4070 | 40  | ·C -00 | E 4 | 0.04 ~40  | 100 | -10 | 4  | 35  |
| 1       | 9846         | 1.3  | 1.55 | 10          | 105  | <5 | 2.22          | <1 | 22 | 89  | 4389 | 3.98 | <10 | 1.47 | 580  | 9   | 0.03 | 36  | 1070 | 12  | <5 <20 | 51  | 0.04 <10  | 109 | <10 | 4  | 30  |
|         |              |      |      |             |      |    |               |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
| Repeat  | :            |      |      |             |      |    |               |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     |           |     |     | _  |     |
| 1       | 9846         | 1.3  | 1.54 | 5           | 120  | <5 | 2.16          | <1 | 22 | 84  | 4526 | 3.91 | <10 | 1.45 | 569  | 7   | 0.03 | 32  | 1020 | 10  | <5 <20 | 50  | 0.04 <10  | 111 | <10 | 3  | 35  |
| 10      | 9856         | 0.3  | 1.84 | 15          | 615  | <5 | 4.70          | <1 | 11 | 108 | 716  | 4.08 | <10 | 1.65 | 1438 | 2   | 0.02 | 37  | 1090 | 14  | <5 <20 | 101 | 0.03 <10  | 117 | <10 | 11 | 45  |
| 19      | 9865         | 0.2  | 1.41 | 5           | 130  | <5 | 5.37          | <1 | 10 | 70  | 311  | 3.31 | <10 | 1.38 | 1213 | 5   | 0.03 | 12  | 910  | 14  | <5 <20 | 189 | <0.01 <10 | 94  | <10 | 8  | 36  |
|         |              |      |      |             |      |    |               |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
| Standa  | rd:          |      |      |             |      |    |               |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
| GEO'05  |              | 1.4  | 1.22 | 55          | 140  | <5 | 1.17          | <1 | 19 | 59  | 83   | 3.53 | <10 | 0.66 | 502  | <1  | 0.02 | 28  | 550  | 20  | <5 <20 | 56  | 0.11 <10  | 69  | <10 | 10 | 76  |
| GEO 00  | 1            | 1.4  | 1.22 | JJ          | i-10 | -5 | 1.17          | 1  |    | 30  | 00   | Q.00 | -10 | 5.00 |      | •   |      |     |      |     |        |     |           |     |     |    |     |
|         |              |      |      |             |      |    |               |    |    |     |      |      |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |

ECO TECH LABORATORY LTD.
Jutta Jealouse
8C Certified Assayer



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com

www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5137**

27-Sep-05

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 49

Samples submitted by: Mike Savell

|        |       | Au    | Au     |     |
|--------|-------|-------|--------|-----|
| ET #.  | Tag # | (g/t) | (oz/t) |     |
| 1      | 9881  | 0.06  | 0.002  |     |
| 2      | 9882  | 0.04  | 0.001  |     |
| 3      | 9883  | 0.29  | 0.008  |     |
| 4      | 9884  | 0.16  | 0.005  |     |
| 5      | 9885  | 0.23  | 0.007  |     |
| 6<br>7 | 9887  | 0.08  | 0.002  |     |
| 7      | 9888  | 0.13  | 0.004  |     |
| 8      | 9889  | 0.06  | 0.002  |     |
| 9      | 9890  | 0.10  | 0.003  |     |
| 10     | 9891  | 0.14  | 0.004  |     |
| 11     | 9892  | 0.14  | 0.004  |     |
| 12     | 9893  | 0.15  | 0.004  |     |
| 13     | 9894  | 0.06  | 0.002  |     |
| 14     | 9895  | 0.13  | 0.004  |     |
| 15     | 9896  | 0.07  | 0.002  |     |
| 16     | 9897  | 0.12  | 0.003  |     |
| 17     | 9898  | 0.33  | 0.010  |     |
| 18     | 9899  | 0.79  | 0.023  |     |
| 19     | 9900  | 0.18  | 0.005  |     |
| 20     | 9901  | 0.05  | 0.001  |     |
| 21     | 9903  | 0.08  | 0.002  |     |
| 22     | 9904  | 0.10  | 0.003  |     |
| 23     | 9905  | 0.06  | 3.002  |     |
| 24     | 9906  | 0.05  | 0.001  |     |
| 25     | 9907  | 0.03  | 0.001  |     |
| 26     | 9908  | 0.23  | 0.007  | 1 W |

ECO TECH LABORATORY LTD.

Jutta Jealouse\

S.C. Certified Assaye

|                   |       | Au    | Au     |  |
|-------------------|-------|-------|--------|--|
| ET #.             | Tag # | (g/t) | (oz/t) |  |
| 27                | 9910  | 0.05  | 0.001  |  |
| 28                | 9911  | 0.11  | 0.003  |  |
| 29                | 9912  | 0.08  | 0.002  |  |
| 30                | 9913  | 0.07  | 0.002  |  |
| 31                | 9914  | 0.19  | 0.006  |  |
| 32                | 9915  | 0.14  | 0.004  |  |
| 33                | 9886  | 0.44  | 0.013  |  |
| 34                | 9909  | <0.03 | <0.001 |  |
| 35                | 9902  | 0.08  | 0.002  |  |
| QC DATA: Repeats: | 9881  | 0.05  | 0.001  |  |
| 10                | 9891  | 0.10  | 0.003  |  |
| 18                | 9899  | 0.82  | 0.024  |  |
| 19                | 9900  | 0.15  | 0.004  |  |
| · -               |       |       |        |  |
| Resplit:          |       |       |        |  |
| 1                 | 9881  | 0.04  | 0.001  |  |
|                   |       |       |        |  |
| Standard:         |       | 5     |        |  |
| SN16              |       | 8.37  | 0.244  |  |
| PM176             |       | 2.00  | 0.058  |  |

JJ/kk XLS/05 ECO TECAL ABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

| Et #.   | Tag #        | Aa   | Al % | As | Ba  | Bi          | Ca % | Cd | Co | Cr  | Çu   | Fe % | La  | Mg % | Mn  | Мо  | Na % | Ni  | Р    | Pb  | Sb Sn  | Sr  | Tí %    | ប    | ٧   | W    | Υ  | Žn  |
|---------|--------------|------|------|----|-----|-------------|------|----|----|-----|------|------|-----|------|-----|-----|------|-----|------|-----|--------|-----|---------|------|-----|------|----|-----|
| 31      | 9914         | 0.2  | 0.95 | 10 | 130 | <del></del> | 1.91 | <1 | 7  | 51  | 158  | 3.15 | <10 | 0.75 | 711 | 4   | 0.04 | 6   | 860  | 14  | <5 <20 | 183 | 0.03 <  | 0 8  | 87  | <10  | 7  | 31  |
| 32      | 9915         | <0.2 | 0.67 | 5  | 485 | <5          | 2.28 | <1 | 3  | 74  | 85   | 2.31 | <10 | 0.41 | 635 | 4   | 0.06 | 5   | 840  | 8   | <5 <20 | 611 | 0.03 <  |      |     | <10  | 9  | 19  |
| 33      | 9886         | 2.1  | 1.40 | <5 | 285 | <5          | 1.31 | <1 | 18 | 24  | 7333 | 3.60 | 10  | 1.13 | 455 | 2   | 0.13 | 16  | 2450 | 20  | <5 <20 | 73  | 0.06 <  |      |     | <10  | 15 | 55  |
| 34      | 9909         | <0.2 | 1.92 | 5  | 70  | <5          | 3.22 | <1 | 24 | 42  | 81   | 5.02 | <10 | 1.61 | 637 | <1  | 0.03 | 14  | 1400 | 20  | <5 <20 | 58  | 0.09 <  |      |     | <10  | 9  | 57  |
| 35      | 9902         | 0.3  | 0.81 | 85 | 160 | <5          | 0.24 | <1 | 66 | 240 | 446  | >10  | <10 | 0.13 | 452 | 118 | 0.05 | 443 | 100  | 110 | <5 <20 | 11  | <0.01 < | 10 : | 24  | <10  | <1 | 409 |
| QC_DAT  | <u>ΓΑ:</u>   |      |      |    |     |             |      |    |    |     |      |      |     |      |     |     |      |     |      |     |        |     |         |      |     |      |    |     |
| Resplit | :            |      |      |    |     |             |      |    |    |     |      |      |     |      |     |     |      |     |      |     |        |     |         |      |     |      |    |     |
| 1       | 9881         | 0.3  | 0.97 | 10 | 85  | <5          | 1.11 | <1 | 8  | 48  | 171  | 2.97 | <10 | 0.93 | 578 | 15  | 0.03 | 5   | 900  | 16  | <5 <20 | 39  | <0.01 < | 10   | 88  | <10  | 4  | 36  |
| Repeat  | <del>.</del> |      |      |    |     |             |      |    |    |     |      |      |     |      |     |     |      | _   |      | 4.0 |        | 4.4 | -0.04 - | 10   | 00  | -10  | -  | 24  |
| 1       | 9881         | 0.3  | 1.01 | 10 | 90  | <5          | 1.21 | <1 | 7  | 46  | 183  | 2.95 | <10 | 0.99 | 607 | 11  | 0.03 | 3   | 920  | 16  | <5 <20 | 44  |         |      | -   | <10  | 20 | 34  |
| 10      | 9891         | 0.5  | 1.12 | 5  | 220 | <5          | 2.51 | <1 | 10 | 48  | 1534 | 3.36 | <10 | 1.27 | 613 | 7   | 80.0 | 11  | 990  | 14  | <5 <20 | 111 | 0.03 <  |      |     | . –  | 12 | 29  |
| 19      | 9900         | 0.5  | 1.30 | 10 | 135 | <5          | 0.46 | <1 | 9  | 75  | 970  | 3.89 | <10 | 1.33 | 331 | 29  | 0.04 | 9   | 910  | 18  | <5 <20 | 121 | <0.01 < | 10 1 | 55  | <10  | 1  | 38  |
| Standa  |              |      |      |    |     |             |      |    |    |     | 0.5  | 0.00 | -46 | 0.00 | 507 | -1  | 0.00 | 28  | 560  | 20  | <5 <20 | 54  | 0.11 <  | 10   | 70  | <10  | 10 | 74  |
| GEO'05  | 5            | 1.5  | 1.23 | 55 | 135 | <5          | 1.20 | <1 | 14 | 51  | 85   | 3.38 | <10 | 0.66 | 507 | <1  | 0.02 | 20  | 500  | 20  | ~5 ~20 | 54  | 0,11    |      | , 0 | - 10 |    | • • |

ECO FECH LABORATORY LTD.
Jutta Jealouse
BC Certified Assayer

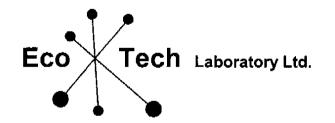
JJ/ga df/5101 XLS/05

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 H7L 5A7

3296 Francis-Hughes Ave.


Falconbridge Limited

Laval, Quebec

ATTENTION: Allan Huard

No. of samples received: 35
Sample type:Core
Project #: 301
Shipment #: 49
Samples submitted by: Mike Savell

| 1 8881 0.3 1.04 16 90 <5 1.26 <1 8 47 164 307 <10 101 629 12 0.03 3 950 18 <5 <2 46 <0.01 <10 95 <10 7 36      36 52 98 52 0.2 0.86 5 240 <45 124 <1 5 47 243 2.56 <10 0.77 50 11 0.05 <4 96 10 0.55 <2 44 <0.01 <10 95 <10 7 36      37 36 <10 101 629 12 0.03 3 950 18 <5 <2 40 6 <0.01 <10 95 <10 7 36      36 30 104 15 50 0.05 <10 95 <10 7 36 <10 0.07 <10 95 <10 7 36 <10 95 <10 7 36 <10 95 <10 95 <10 95 <10 7 36 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 95 <10 9                           | Et #.      | Tag#     | Ag    | AI % | As  | Ва  | Bi | Ca % | Cd         | Co | Cr  | Cu   | Fe % | La I | Mg % | Mn   | Мо | Na % | Ni | Р    | Pb  | Sb Sn  |      | Ti% U     | V   | W   | Υ  | Zn |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-------|------|-----|-----|----|------|------------|----|-----|------|------|------|------|------|----|------|----|------|-----|--------|------|-----------|-----|-----|----|----|
| 3 9883 0.5 1.36 <5 255 <5 252 <1 14 63 2623 4.56 <10 1.54 6.36 7 0.06 19 1100 12 <5 20 117 0.02 <10 189 <10 8 34 4 9884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1          | 9881     | 0.3   | 1.04 | 15  | 90  | <5 | 1.25 | <1         | 8  | 47  | 184  | 3.07 | <10  | 1.01 | 629  | 12 | 0.03 | 3  | 950  | 18  | <5 <20 | 46   | <0.01 <10 | 95  | <10 | 7  | 36 |
| 3883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2          | 9882     | <0.2  | 0.88 | 5   | 240 | <5 | 1.24 | <1         | 5  | 47  | 243  | 2.56 | <10  | 0.77 | 504  | 11 | 0.05 | 4  | 960  | 10  | <5 <20 | 49   | <0.01 <10 | 100 | <10 | 6  | 27 |
| \$ 9887 \$ \cdot 0, 1, 1, 2, 3 \cdot 0, 0 \cdot 0, 2, 2, 26 \cdot 1, 12 \cdot 48  \text{1974}  4.31 \cdot 0, 1, 37  \text{765}  5  0.05  \text{15}  \text{84}  \text{94}  \text{14}  \text{10}  \text{1.37}  \text{765}  5  0.00  \text{15}  \text{18}  \text{5}  \text{20}  \text{18}  \text{1974}  \text{4.18}  \text{10}  \text{1.47}  \text{68}   \text{10}  \text{1.48}  \text{10}  \text{10}  \text{10}  \text{10}  \text{18}  \text{5}  \text{20}  \text{5}  \text{19}  \text{11}  \text{18}  \text{5}  \text{19}  \text{11}  \text{10}  \text{18}  \text{10}     \text{10}     \text{10}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 9883     | 0.5   | 1.36 | <5  | 255 | <5 | 2.57 | <1         | 14 | 63  | 2023 | 4.56 | <10  | 1.54 | 636  | 7  | 0.06 | 19 | 1100 | 12  | <5 <20 | 110  | 0.02 <10  | 189 | <10 | 8  | 34 |
| 6   9887   0.4   1.23   < < < < < < < < < < < < < < < < < <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4          | 9884     | < 0.2 | 1.47 | <5  | 440 | <5 | 2.62 | <1         | 15 | 77  | 1225 | 5.05 | <10  | 1.85 | 689  | 5  | 0.08 | 19 | 1040 | 12  | <5 <20 | 3074 |           |     | <10 | 11 | -  |
| 9888 09 1.13 <5 75 <5 1.93 <1 14 84 1341 5.11 <10 123 644 10 0.06 16 830 14 <5 20 51 0.03 <10 188 <10 5 29 89 9880 07 1.13 5 130 <5 3.02 <1 9 93 384 4.14 <10 124 1026 16 0.06 15 910 10 <5 20 82 0.03 <10 184 22 <10 9 14 31 10 9891 0.5 1.08 5 230 <5 2.44 <1 10 75 1581 3.48 <10 129 1016 5 0.06 13 1120 10 <5 20 82 0.03 <10 184 <10 14 31 110 9891 0.5 1.08 5 230 <5 2.44 <1 10 75 1581 3.48 <10 129 1016 5 0.06 13 1120 10 <5 20 82 0.03 <10 184 <10 14 31 110 9891 0.5 1.08 5 230 <5 2.44 <1 10 75 1581 3.48 <10 129 1016 5 0.06 13 1120 10 <5 20 82 0.03 <10 184 <10 14 31 112 10 9891 0.5 1.08 5 230 <5 2.44 <1 10 47 1509 3.25 <10 123 600 7 0.07 12 950 12 <5 20 107 0.03 <10 144 <10 14 31 112 10 9891 0.5 1.08 5 20 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5          | 9885     |       | 1.23 | <5  | 400 | <5 | 2.96 | <1         | 12 | 49  | 1974 | 4.31 | <10  | 1.37 | 765  | 5  | 0.05 | 15 | 940  | 8   | <5 <20 | 112  | 0.02 <10  | 174 | <10 | 9  | 31 |
| 9888 0 9 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c          | 0007     | <0.2  | 1 27 | ~E  | 135 | -5 | 2 20 | <i>~</i> 1 | 12 | 51  | 465  | 4 69 | <10  | 1 47 | 683  | 6  | 0.05 | 16 | 960  | 12  | <5 <20 | 56   | 0.01 <10  | 188 | <10 | 5  | 29 |
| 8 9889 0.3 1.18 5 205 <5 3.02 <1 9 93 384 4.14 <10 1.24 1026 16 0.06 15 910 10 <5 <20 78 0.02 <10 192 <10 9 30 9 9890 0.7 1.13 5 130 <5 3.95 <1 10 75 1591 3.48 <10 1.29 1016 5 0.06 13 1120 10 <5 <20 82 0.03 <10 184 <10 14 31 10 9891 0.5 1.08 5 2.20 <5 5.20 <5 2.44 <1 10 47 1509 3.25 <10 1.23 600 7 0.07 12 950 12 <5 <20 107 0.03 <10 144 <10 13 29 11 1 9893 0.6 1.23 5 275 <5 0.96 <1 9 47 1360 3.12 <10 1.43 379 12 0.04 10 860 14 <5 <20 95 0.05 <10 113 <10 14 <7 33 133 9894 0.4 0.90 <5 450 <5 164 <1 4 56 800 2.82 <10 0.95 361 25 0.06 8 8 930 10 <5 <20 104 0.01 10 14 10 6.2 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7          |          |       |      | _   |     |    |      |            |    |     |      |      |      |      |      | _  |      |    |      |     |        |      |           |     | <10 | 5  | 29 |
| 9 9880 0.7 1.13 5 130 <5 3.95 <1 10 75 1591 3.48 <10 1.29 1016 5 0.06 13 1120 10 <5 <0 82 0.03 <10 184 <10 14 31 10 9891 0.5 1.08 5 230 <5 2.44 <1 10 47 1509 3.25 <10 123 600 7 0.07 12 950 12 <5 <0 107 0.03 <10 184 <10 14 31 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,          |          |       |      | _   |     |    |      |            |    |     |      |      |      |      |      |    |      |    |      | • • | •      |      |           |     | <10 | 9  | 30 |
| 9899 0.7 1.08 5 230 <5 2.44 <1 10 47 1509 3.25 <10 12.3 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _          |          |       |      | _   |     |    |      |            | -  |     |      |      |      |      |      |    |      |    |      |     |        |      |           |     |     | 14 |    |
| 11 9892 0.5 1.02 <5 515 <5 2.61 <1 9 40 1678 2.32 <10 1.26 577 4 0.07 12 1070 14 <5 <0 95 0.05 <10 113 <10 14 27 12 9893 0.6 123 5 275 <5 0.96 <1 9 47 1360 3.12 <10 1.43 379 12 0.04 10 860 14 <5 <0 95 0.05 <10 113 <10 7 33 13 9894 0.4 0.90 <5 450 <5 1.64 <1 4 56 800 2.82 <10 0.95 361 25 0.06 8 930 10 <5 <0 64 <0.01 <14 <5 <0 0 193 0.02 <10 144 <10 7 33 13 9895 0.4 1.42 <5 395 <5 2.95 <1 10 68 1000 4.30 <10 162 559 10 0.07 13 1390 16 <5 <0 64 <0.01 <10 144 <10 6 28 11 9 9 57 1048 3.51 <10 162 559 10 0.07 13 1390 16 <5 <0 12 0.01 <10 228 <10 8 33 15 9896 0.2 149 <5 865 <5 1.94 <1 8 76 575 4.06 <10 1.95 408 4 0.06 12 1530 16 <5 <0 12 1530 16 <5 <0 12 0.01 <10 228 <10 8 33 15 9896 0.2 149 <5 865 <5 1.94 <1 8 76 575 4.06 <10 1.95 408 4 0.06 12 1530 16 <5 <0 12 1530 16 <5 <0 12 0.01 <10 208 <10 8 33 15 9898 0.2 1 15 16 10 0.00 1 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _          |          |       |      | _   |     | -  |      |            |    |     |      |      |      |      |      | _  |      |    |      |     |        |      |           |     |     | 13 |    |
| 9893 0.6 1.23 5 275 <5 0.96 <1 9 47 1360 3.12 <10 1.43 379 12 0.04 10 860 14 <5 <0 193 0.02 <10 144 <10 7 33 13 9894 0.4 0.90 <5 450 5 1.64 <1 4 56 800 2.82 <10 0.95 361 25 0.06 8 8930 10 <5 <20 64 <0.01 <10 141 <10 6 26 14 9895 0.4 1.42 <5 395 <5 2.95 <1 10 68 1000 4.30 <10 1.65 59 10 0.07 13 1390 16 <5 <0 122 0.01 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 <10 201 | 10         | 9091     | 0.5   | 1.00 | 5   | 230 | ~5 | 2.44 | ~          | 10 | 41  | 1303 | 3.23 | ~10  | 1.20 | 000  | ,  | G.Gr | 12 | 300  | '-  | 0 20   | , 0, | 0.20      | –   |     |    |    |
| 12 9893 0.6 1.23 5 275 <5 0.96 <1 9 47 1360 3.12 <10 1.43 379 12 0.04 10 860 14 <5 <20 193 0.02 <10 144 <10 7 33 13 9894 0.4 0.90 <5 450 <5 1.64 <1 4 56 800 2.82 <10 0.95 361 25 0.06 8 930 10 <5 <20 64 <0.01 <10 114 <10 6 26 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>1</b> 1 | 9892     | 0.5   | 1.02 | <5  | 515 | <5 | 2.61 | <1         | 9  | 40  | 1678 | 2.32 | <10  | 1.26 | 577  | 4  | 0.07 | 12 | 1070 | 14  | <5 <20 | 95   | 0.05 < 10 | 113 | <10 | 14 | 27 |
| 9994 0.4 0.90 <5 450 <5 1.64 <1 4 56 800 2.82 <10 0.95 361 25 0.06 8 930 10 <5 <20 64 <0.01 <10 141 <10 6 26 14 9895 0.4 1.42 <5 395 <5 2.95 <1 10 68 1000 4.30 <10 1.62 559 10 0.07 13 1390 16 <5 <20 122 0.01 <10 228 <10 8 33 15 9896 0.2 1.49 <5 865 <5 1.94 <1 8 76 575 4.06 <10 1.95 408 4 0.06 12 1530 16 <5 <20 122 0.01 <10 228 <10 8 33 16 <5 <20 122 0.01 <10 228 <10 8 33 16 <10 1.95 408 4 0.06 12 1530 16 <5 <20 122 0.01 <10 228 <10 8 33 16 <10 1.95 408 4 0.06 12 1530 16 <5 <20 122 0.01 <10 228 <10 8 33 16 <10 1.95 408 4 0.06 12 1530 16 <5 <20 122 0.01 <10 228 <10 8 33 16 <10 1.95 408 4 0.06 12 1530 16 <5 <20 122 0.01 <10 189 <10 <10 227 <10 6 28 18 18 18 18 18 18 18 18 18 18 18 18 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          |       |      | _   |     | <5 | 0.96 | <1         | 9  | 47  | 1360 | 3.12 | <10  | 1.43 | 379  | 12 | 0.04 | 10 | 860  | 14  | <5 <20 | 193  | 0.02 <10  | 144 | <10 | 7  | 33 |
| 14 9995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |          | *     |      | -   | 450 | <5 | 1.64 | <1         | 4  | 56  | 800  | 2.82 | <10  | 0.95 | 361  | 25 | 0.06 | 8  | 930  | 10  | <5 <20 | 64   | <0.01 <10 | 141 | <10 | 6  | 26 |
| 15 9896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |          |       |      | _   |     | <5 |      | <1         | 10 | 68  | 1000 | 4.30 | <10  | 1.62 | 559  | 10 | 0.07 | 13 | 1390 | 16  | <5 <20 | 122  | 0.01 < 10 | 228 | <10 | 8  | 33 |
| 16 9897 0.5 1.38 5 225 <5 0.58 <1 9 57 1048 3.51 <10 1.66 260 14 0.05 11 1440 14 <5 <20 230 <0.01 <10 189 <10 <1 29 17 9898 1.1 1.61 10 205 <5 0.55 <1 11 90 1873 4.03 <10 1.95 301 9 0.05 12 1240 20 <5 <20 103 <0.01 <10 180 <10 23 6 <10 23 6 18 9899 2.6 1.22 5 105 <5 0.95 <1 11 109 3163 3.44 <10 1.40 309 6 0.04 12 1010 26 <5 <20 103 <0.01 <10 180 <10 2 35 19 9900 0.5 1.24 10 115 <5 0.45 <1 9 72 945 3.78 <10 1.27 320 30 0.03 10 880 16 <5 <20 106 <0.01 <10 149 <10 <1 37 20 9901 0.2 1.38 <5 380 <5 0.68 <1 7 49 458 3.65 <10 1.46 325 10 0.04 9 1020 14 <5 <20 92 <0.01 <10 141 <10 2 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |          |       |      | _   |     | _  |      |            |    |     |      |      | <10  | 1.95 | 408  | 4  | 0.06 | 12 | 1530 | 16  | <5 <20 | 313  | 0.03 < 10 | 227 | <10 | 6  | 28 |
| 17 9898 1.1 1.61 10 205 <5 0.55 <1 11 90 1873 4.03 <10 1.95 301 9 0.05 12 1240 20 <5 <20 103 <0.01 <10 205 <10 2 36 18 9899 2.6 1.22 5 105 <5 0.95 <1 11 109 3163 3.44 <10 1.40 309 6 0.04 12 1010 26 <5 <20 120 <0.01 <10 180 <10 2 35 19 9900 0.5 1.24 10 115 <5 0.45 <1 9 72 945 3.78 <10 1.27 320 30 0.03 10 880 16 <5 <20 106 <0.01 <10 149 <10 <1 37 20 9901 0.2 1.38 <5 360 <5 0.68 <1 7 49 458 3.65 <10 1.46 325 10 0.04 9 1020 14 <5 <20 92 <0.01 <10 121 <10 2 30 14 <5 <20 92 <0.01 <10 121 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 2 30 14 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 12 <10 | 10         | 0003     |       |      | -   |     | _  |      |            |    |     |      |      |      |      |      |    |      |    |      |     |        |      |           |     |     |    |    |
| 18 9899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16         | 9897     | 0.5   | 1.38 | 5   | 225 | <5 | 0.58 | <1         | 9  | 57  | 1048 | 3.51 | <10  | 1.66 | 260  | 14 | 0.05 |    |      | 14  |        |      |           |     |     |    |    |
| 18 9899 2.6 1.22 5 103 50 1.93 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17         | 9898     | 1.1   | 1.61 | 10  | 205 | <5 | 0.55 | <1         | 11 | 90  | 1873 | 4.03 | <10  | 1.95 | 301  | 9  | 0.05 |    |      |     |        |      |           |     |     |    |    |
| 20 9901 0.2 1.38 <5 360 <5 0.68 <1 7 49 458 3.65 <10 1.46 325 10 0.04 9 1020 14 <5 <20 92 <0.01 <10 121 <10 2 30    21 9903 0.5 1.34 <5 255 <5 0.53 <1 8 47 1044 3.29 <10 1.50 289 6 0.06 9 980 16 <5 <20 65 <0.01 <10 111 <10 5 34    22 9904 0.4 1.35 <5 215 <5 0.65 <1 8 65 1308 3.57 <10 1.34 335 9 0.07 10 1220 14 <5 <20 65 <0.01 <10 137 <10 5 39    23 9905 0.7 1.76 <5 130 <5 0.77 <1 15 48 236 5.20 <10 1.83 486 6 0.06 13 1340 26 <5 <20 42 0.03 <10 160 <10 6 46    24 9906 0.4 1.11 <5 265 <5 0.46 <1 7 33 456 3.90 <10 1.07 274 21 0.05 6 1220 14 <5 <20 59 0.01 <10 130 <10 6 39    25 9907 <0.2 2.97 20 180 <5 2.55 <1 30 82 195 6.25 <10 3.68 1079 2 0.03 61 1270 30 <5 <20 96 0.10 <10 215 <10 11 42    26 9908 1.8 1.30 10 90 <5 1.92 <1 13 40 1788 4.73 <10 1.20 686 21 0.07 9 1160 22 <5 <20 73 0.04 <10 155 <10 11 42    27 9910 0.2 1.20 5 480 <5 2.32 <1 9 40 373 4.25 <10 1.19 664 11 0.05 10 990 14 <5 <20 175 0.04 <10 156 <10 11 32    28 9911 0.3 1.63 20 130 <5 2.02 <1 12 44 348 4.33 <10 1.72 850 13 0.05 11 1060 24 <5 <20 75 0.03 <10 168 <10 7 51    29 9912 0.2 0.87 10 135 <5 1.23 <1 6 77 115 2.56 <10 0.79 508 17 0.04 4 580 12 <5 <20 98 0.05 <10 95 <10 10 36    20 9913 0.4 1.11 10 95 <5 2.18 <1 9 57 293 3.43 <10 0.93 752 7 0.05 7 910 16 <5 <20 98 0.05 <10 95 <10 10 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18         | 9899     | 2.6   | 1.22 | 5   | 105 | <5 | 0.95 | <1         | 11 | 109 | 3163 | 3.44 | <10  | 1.40 | 309  | 6  |      | 12 |      | 26  |        |      |           |     |     | _  |    |
| 21 9903 0.5 1.34 <5 255 <5 0.53 <1 8 47 1044 3.29 <10 1.50 289 6 0.06 9 980 16 <5 <20 65 <0.01 <10 111 <10 5 34 22 9904 0.4 1.35 <5 2.15 <5 0.65 <1 8 65 1308 3.57 <10 1.34 335 9 0.07 10 1220 14 <5 <20 65 <0.01 <10 137 <10 5 39 23 9905 0.7 1.76 <5 130 <5 0.77 <1 15 48 236 5.20 <10 1.83 486 6 0.06 13 1340 26 <5 <20 42 0.03 <10 160 <10 6 46 24 9906 0.4 1.11 <5 265 <5 0.46 <1 7 33 456 3.90 <10 1.07 274 21 0.05 6 1220 14 <5 <20 59 0.01 <10 130 <10 6 39 25 9907 <0.2 2.97 20 180 <5 2.55 <1 30 82 195 6.25 <10 3.68 1079 2 0.03 61 1270 30 <5 <20 96 0.10 <10 215 <10 12 62 14 <5 <20 96 0.10 <10 155 <10 11 42 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19         | 9900     | 0.5   | 1.24 | 10  | 115 | <5 | 0.45 | <1         | 9  | 72  | 945  | 3.78 | <10  | 1.27 | 320  | 30 | 0.03 | 10 |      |     |        |      |           |     |     |    |    |
| 22 9904 0.4 1.35 <5 215 <5 0.65 <1 8 65 1308 3.57 <10 1.34 335 9 0.07 10 1220 14 <5 <0 65 <0.01 <10 137 <10 5 39 23 9905 0.7 1.76 <5 130 <5 0.77 <1 15 48 236 5.20 <10 1.83 486 6 0.06 13 1340 26 <5 <20 42 0.03 <10 160 <10 6 46 24 9906 0.4 1.11 <5 265 <5 0.46 <1 7 33 456 3.90 <10 1.07 274 21 0.05 6 1220 14 <5 <20 59 0.01 <10 130 <10 6 39 25 9907 <0.2 2.97 20 180 <5 2.55 <1 30 82 195 6.25 <10 3.68 1079 2 0.03 61 1270 30 <5 <0 73 0.04 <10 155 <10 11 42 62 62 62 62 63 63 63 64 64 64 64 64 64 64 64 64 64 64 64 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20         | 9901     | 0.2   | 1.38 | <5  | 360 | <5 | 0.68 | <1         | 7  | 49  | 458  | 3.65 | <10  | 1.46 | 325  | 10 | 0.04 | 9  | 1020 | 14  | <5 <20 | 92   | <0.01 <10 | 121 | <10 | 2  | 30 |
| 22 9904 0.4 1.35 <5 215 <5 0.65 <1 8 65 1308 3.57 <10 1.34 335 9 0.07 10 1220 14 <5 <20 65 <0.01 <10 137 <10 5 39 23 9905 0.7 1.76 <5 130 <5 0.77 <1 15 48 236 5.20 <10 1.83 486 6 0.06 13 1340 26 <5 <20 42 0.03 <10 160 <10 6 46 24 9906 0.4 1.11 <5 265 <5 0.46 <1 7 33 456 3.90 <10 1.07 274 21 0.05 6 1220 14 <5 <20 59 0.01 <10 130 <10 6 39 25 9907 <0.2 2.97 20 180 <5 2.55 <1 30 82 195 6.25 <10 3.68 1079 2 0.03 61 1270 30 <5 <20 96 0.10 <10 215 <10 12 62 <10 14 <5 <20 96 0.10 <10 155 <10 11 42 <10 0.05 10 990 14 <5 <20 96 0.10 <10 155 <10 11 42 <10 0.05 10 990 14 <5 <20 175 0.04 <10 156 <10 11 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24         | 0000     | 0.5   | 1 24 | -25 | 255 | -5 | 0.53 | ~1         | Q  | 47  | 1044 | 3 20 | <10  | 1.50 | 289  | 6  | 0.06 | 9  | 980  | 16  | <5 <20 | 65   | <0.01 <10 | 111 | <10 | 5  | 34 |
| 23 9905 0.7 1.76 <5 130 <5 0.77 <1 15 48 236 5.20 <10 1.83 486 6 0.06 13 1340 26 <5 <20 42 0.03 <10 160 <10 6 46 24 9906 0.4 1.11 <5 265 <5 0.46 <1 7 33 456 3.90 <10 1.07 274 21 0.05 6 1220 14 <5 <20 59 0.01 <10 130 <10 6 39 25 9907 <0.2 2.97 20 180 <5 2.55 <1 30 82 195 6.25 <10 3.68 1079 2 0.03 61 1270 30 <5 <20 96 0.10 <10 215 <10 12 62 <1 9910 0.2 1.20 5 480 <5 2.32 <1 9 40 373 4.25 <10 1.19 664 11 0.05 10 990 14 <5 <20 175 0.04 <10 156 <10 11 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | <b>+</b> |       |      |     |     | _  |      |            |    |     |      |      |      |      |      | _  |      |    |      |     | -      | 65   | <0.01 <10 | 137 | <10 | 5  | 39 |
| 24 9906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |          |       |      |     |     | _  |      |            |    |     |      |      |      |      |      | -  |      |    |      |     |        |      |           |     | <10 | 6  | 46 |
| 24 9907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |          |       |      |     |     | _  |      |            |    |     |      |      |      |      |      | _  |      |    |      |     | -      |      |           |     | <10 | 6  | 39 |
| 26 9908 1.8 1.30 10 90 <5 1.92 <1 13 40 1788 4.73 <10 1.20 686 21 0.07 9 1160 22 <5 <20 73 0.04 <10 155 <10 11 42<br>27 9910 0.2 1.20 5 480 <5 2.32 <1 9 40 373 4.25 <10 1.19 664 11 0.05 10 990 14 <5 <20 175 0.04 <10 156 <10 11 33<br>28 9911 0.3 1.63 20 130 <5 2.02 <1 12 44 348 4.33 <10 1.72 850 13 0.05 11 1060 24 <5 <20 75 0.03 <10 168 <10 7 51<br>29 9912 0.2 0.87 10 135 <5 1.23 <1 6 77 115 2.56 <10 0.79 508 17 0.04 4 580 12 <5 <20 46 0.02 <10 78 <10 5 27<br>30 9913 0.4 1.11 10 95 <5 2.18 <1 9 57 293 3.43 <10 0.93 752 7 0.05 7 910 16 <5 <20 98 0.05 <10 95 <10 10 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |          |       |      | -   | •   | _  |      | -          |    |     |      |      |      |      |      |    |      | -  |      |     |        |      |           |     |     | 12 |    |
| 27 9910 0.2 1.20 5 480 <5 2.32 <1 9 40 373 4.25 <10 1.19 664 11 0.05 10 990 14 <5 <20 175 0.04 <10 156 <10 11 33 28 9911 0.3 1.63 20 130 <5 2.02 <1 12 44 348 4.33 <10 1.72 850 13 0.05 11 1060 24 <5 <20 75 0.03 <10 168 <10 7 51 29 9912 0.2 0.87 10 135 <5 1.23 <1 6 77 115 2.56 <10 0.79 508 17 0.04 4 580 12 <5 <20 46 0.02 <10 78 <10 5 27 30 9913 0.4 1.11 10 95 <5 2.18 <1 9 57 293 3.43 <10 0.93 752 7 0.05 7 910 16 <5 <20 98 0.05 <10 95 <10 10 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25         | 9907     | ₹0.2  | 2.91 | 20  | 100 | -5 | 2.55 | ~1         | 30 | 02  | 190  | 0.23 | ~10  | 3.00 | 1075 |    | 0.00 | ٠, | 12.0 |     | 0 20   | 00   | 0.10      |     |     |    | •  |
| 28 9911 0.3 1.63 20 130 <5 2.02 <1 12 44 348 4.33 <10 1.72 850 13 0.05 11 1060 24 <5 <20 75 0.03 <10 168 <10 7 51 29 9912 0.2 0.87 10 135 <5 1.23 <1 6 77 115 2.56 <10 0.79 508 17 0.04 4 580 12 <5 <20 46 0.02 <10 78 <10 5 27 30 9913 0.4 1.11 10 95 <5 2.18 <1 9 57 293 3.43 <10 0.93 752 7 0.05 7 910 16 <5 <20 98 0.05 <10 95 <10 10 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26         | 9908     | 1.8   | 1.30 | 10  | 90  | <5 | 1.92 | <1         | 13 | 40  | 1788 |      | <10  |      |      | 21 |      | _  |      |     |        |      |           |     |     |    |    |
| 29 9912 0.2 0.87 10 135 <5 1.23 <1 6 77 115 2.56 <10 0.79 508 17 0.04 4 580 12 <5 <20 46 0.02 <10 78 <10 5 27 30 9913 0.4 1.11 10 95 <5 2.18 <1 9 57 293 3.43 <10 0.93 752 7 0.05 7 910 16 <5 <20 98 0.05 <10 95 <10 10 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27         | 9910     | 0.2   | 1.20 | 5   | 480 | <5 | 2.32 | <1         | 9  | 40  | 373  | 4.25 | <10  | 1.19 |      |    |      | 10 |      |     |        |      |           |     |     |    |    |
| 30 9913 0.4 1.11 10 95 <5 2.18 <1 9 57 293 3.43 <10 0.93 752 7 0.05 7 910 16 <5 <20 98 0.05 <10 95 <10 10 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28         | 9911     | 0.3   | 1.63 | 20  | 130 | <5 | 2.02 | <1         | 12 | 44  | 348  | 4.33 | <10  |      |      |    |      |    |      |     |        |      |           |     |     |    |    |
| 30 9913 0.4 1.11 10 95 45 2.16 41 9 57 295 5.45 416 0.95 702 7 6.05 7 610 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29         | 9912     | 0.2   | 0.87 | 10  | 135 | <5 | 1.23 | <1         | 6  | 77  | 115  | 2.56 |      |      |      |    |      | •  |      |     |        |      |           |     |     |    |    |
| Page 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30         | 9913     | 0.4   | 1.11 | 10  | 95  | <5 | 2.18 | <1         | 9  | 57  | 293  | 3.43 |      |      | 752  | 7  | 0.05 | 7  | 910  | 16  | <5 <20 | 98   | 0.05 < 10 | 95  | <10 | 10 | 36 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |          |       |      |     |     |    |      |            |    |     |      |      | Page | 1    |      |    |      |    |      |     |        |      |           |     |     |    |    |



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com

www.ecotechlab.com

26-Sep-05

# **CERTIFICATE OF ASSAY AS 2005-5138**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 50

Samples Submitted by: Mike Savell

|       |       | Au    | Au     |   |
|-------|-------|-------|--------|---|
| ET #. | Tag # | (g/t) | (oz/t) |   |
| 1     | 9916  | 0.33  | 0.010  |   |
| 2     | 9917  | 0.19  | 0.006  |   |
| 3     | 9918  | 0.06  | 0.002  |   |
| 4     | 9919  | 0.14  | 0.004  |   |
| 5     | 9920  | 0.12  | 0.003  |   |
| 6     | 9922  | 0.18  | 0.005  |   |
| 7     | 9923  | 0.17  | 0.005  |   |
| 8     | 9924  | 0.17  | 0.005  |   |
| 9     | 9925  | 0.19  | 0.006  |   |
| 10    | 9926  | 0.36  | 0.010  |   |
| 11    | 9927  | 0.13  | 0.004  |   |
| 12    | 9928  | 0.14  | 0.004  |   |
| 13    | 9929  | 0.24  | 0.007  | • |
| 14    | 9930  | 0.33  | 0.010  |   |
| 15    | 9931  | 0.23  | 0.007  |   |
| 16    | 9932  | 0.14  | 0.004  |   |
| 17    | 9933  | 0.08  | 0.002  |   |
| 18    | 9934  | 0.22  | 0.006  |   |
| 19    | 9935  | 0.14  | 0.004  |   |
| 20    | 9936  | 0.11  | 0.003  |   |
| 21    | 9938  | 0.20  | 0.006  |   |
| 22    | 9939  | 0.11  | 0.003  |   |
| 23    | 9940  | 0.26  | 0.008  |   |
| 24    | 9941  | 0.68  | 0.020  |   |
| 25    | 9942  | 0.22  | 0.006  |   |

ECO TECH LABORATORY LTD.

Jutta Jea/ouse

B.C. Certified Assayer

## Falconbridge Limited AS5-5138

|                          |      | Au    | Au      |  |
|--------------------------|------|-------|---------|--|
| ET #.                    | Tag# | (g/t) | (oz/t)  |  |
| 26                       | 9943 | 0.13  | 0.004   |  |
| 27                       | 9945 | 0.21  | 0.006   |  |
| 28                       | 9946 | 0.20  | 0.006   |  |
| 29                       | 9947 | 0.25  | 0.007   |  |
| 30                       | 9948 | 0.11  | 0.003   |  |
| 31                       | 9949 | 0.27  | 0.008   |  |
| 32                       | 9950 | 0.27  | 0.008   |  |
| 33                       | 9921 | 0.39  | 0.011   |  |
| 34                       | 9944 | <0.03 | < 0.001 |  |
| 35                       | 9937 | 0.08  | 0.002   |  |
| QC DATA:<br>Repeats:     |      |       |         |  |
| 1                        | 9916 | 0.30  | 0.009   |  |
| 10                       | 9926 | 0.41  | 0.012   |  |
| 19                       | 9935 | 0.13  | 0.004   |  |
| Resplit:                 | 9916 | 0.35  | 0.010   |  |
| ·                        |      | 0.00  | 3,510   |  |
| <i>Standard:</i><br>SH13 |      | 1.30  | 0.038   |  |

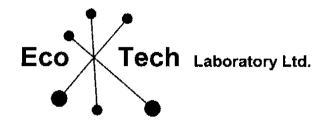
JJ/ga XLS/05

ECO TECH LABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard


No. of samples received: 35 Sample type:Core Project #: 301 Shipment #: 50

Samples submitted by: Mike Savell

| Et #. | Tag # | Aq          | Al % | As | Ва  | Bi     | Ca % | Cď | Со  | Cr | Cu    | Fe % | La  | Mg %          | Mn   | Мо       | Na % | Ni | Р            | Pb | Sb Sn            | Sr       | Ti% U                | ٧   | w   | Υ   | Zn               |
|-------|-------|-------------|------|----|-----|--------|------|----|-----|----|-------|------|-----|---------------|------|----------|------|----|--------------|----|------------------|----------|----------------------|-----|-----|-----|------------------|
| 1     | 9916  | 0.2         |      | <5 | 435 | <5     |      | <1 | 4   | 52 | 199   | 2.52 |     | 0.51          | 712  | 3        | 0.05 | 4  | 820          | 2  | <5 <20           | 155      | 0.03 <10             | 80  | <10 | 9   | 13               |
| 2     | 9917  | 0.2         | 0.69 | <5 | 480 | <5     | 2.19 | <1 | 4   | 48 | 111   | 2.25 | <10 | 0.44          | 672  | 2        | 0.06 | 4  | 800          | <2 | <5 <20           | 187      | 0.04 <10             | 76  | <10 | 8   | 12               |
| 3     | 9918  | 0.2         | 0.63 | <5 | 570 | <5     | 2.30 | <1 | 4   | 45 | 271   | 2.23 | <10 | 0.38          | 647  | 3        | 0.06 | 3  | 840          | 2  | <5 <20           | 222      | 0.04 < 10            | 81  | <10 | 9   | 11               |
| 4     | 9919  | <0.2        |      | <5 | 510 | <5     | 2.38 | <1 | 3   | 58 | 163   | 2.18 | <10 | 0.36          | 636  | 1        | 0.07 | 5  | 830          | 2  | <5 <20           | 195      | 0.04 < 10            | 83  | <10 | 8   | 11               |
| 5     | 9920  | 0.2         |      | <5 | 215 | <5     | 1.87 | <1 | 6   | 45 | 264   | 2.19 | 10  | 0.46          | 628  | 5        | 0.04 | 4  | 800          | 2  | <5 <20           | 127      | <0.01 <10            | 58  | <10 | 6   | 12               |
| ŭ     | **-*  |             |      | _  |     | •      |      |    |     |    |       |      |     |               |      |          |      |    |              |    |                  |          |                      |     |     |     |                  |
| 6     | 9922  | 0.3         | 0.92 | <5 | 425 | <5     | 2.20 | <1 | 12  | 80 | 601   | 3.54 | <10 | 0.71          | 701  | 3        | 0.05 | 13 | 810          | 4  | <5 <20           | 152      | 0.06 <10             | 101 | <10 | 5   | 18               |
| 7     | 9923  | 1.5         | 0.84 | <5 | 235 | <5     | 2.43 | <1 | 8   | 45 | 360   | 2.59 | <10 | 0.60          | 756  | 4        | 0.03 | 5  | 890          | 6  | <5 <20           | 155      | 0.04 <10             | 72  | <10 | 6   | 16               |
| 8     | 9924  | <b>1</b> .1 | 1.32 | <5 | 90  | <5     | 1.98 | <1 | 30  | 65 | 3148  | 4.83 | <10 | 1.08          | 770  | 12       | 0.06 | 23 | 730          | 6  | <5 <20           | 109      | 0.08 <10             | 114 | <10 | 4   | 26               |
| 9     | 9925  | 0.9         | 1.02 | <5 | 135 | <5     | 2.42 | <1 | 16  | 61 | 3731  | 3.41 | <10 | 0.89          | 653  | 22       | 80.0 | 14 | 740          | <2 | <5 <20           | 377      | 0.07 <10             |     | <10 | 8   | 19               |
| 10    | 9926  | 1.2         | 1.73 | 10 | 75  | <5     | 1.71 | <1 | 27  | 23 | 1753  | 6.10 | <10 | 1.62          | 931  | 24       | 0.07 | 11 | 1420         | 8  | <5 <20           | 75       | 0.15 <10             | 188 | <10 | 5   | 28               |
|       |       |             |      |    |     |        |      |    |     |    |       |      |     |               |      |          |      |    |              |    |                  |          |                      |     |     |     |                  |
| 11    | 9927  | 0.3         | 1.83 | <5 | 85  | <5     | 1.64 | <1 | 23  | 19 | 1229  | 4.76 | <10 | 1.77          | 664  | 17       | 0.09 | 8  | 1630         | <2 | <5 <20           | 99       | 0.14 <10             |     |     | 6   | 17               |
| 12    | 9928  | 0.3         | 1.40 | <5 | 100 | <5     | 1.69 | <1 | 21  | 47 | 940   | 3.95 | <10 | 1.22          | 519  | 31       | 0.10 | 12 | 1440         | 2  | <5 <20           | 112      | 0.15 <10             |     |     | 10  | 16               |
| 13    | 9929  | 0.7         | 1.46 | <5 | 105 | <5     | 2.09 | <1 | 25  | 42 | 1939  | 4.39 | <10 | 1.44          | 425  | 24       | 0.07 | 16 | 1650         | 2  | <5 <20           | 124      | 0.15 < 10            |     |     | 8   | 16               |
| 14    | 9930  | 1.4         | 1.67 | <5 | 115 | <5     | 2.55 | <1 | 22  | 43 | 2266  | 4.98 | <10 | 1.86          | 696  | 34       | 0.06 | 15 | 1460         | 2  | <5 <20           | 95       | 0.14 < 10            |     |     | 4   | 19               |
| 15    | 9931  | 1.0         | 1,27 | <5 | 110 | <5     | 1.76 | <1 | 22  | 61 | 4271  | 4.49 | <10 | 1.41          | 421  | 67       | 0.07 | 18 | 1270         | 4  | <5 <20           | 58       | 0.15 <10             | 196 | <10 | 8   | 18               |
|       |       |             |      |    |     |        |      |    |     |    |       |      |     |               |      |          |      |    |              |    |                  |          |                      | 400 | -46 | 4.0 |                  |
| 16    | 9932  | 1.0         | 1.21 | <5 | 85  | <5     | 3.47 | <1 | 27  | 65 | 4226  | 4.55 | <10 | 1.25          | 586  | 202      | 0.06 | 17 | 1010         | 6  | <5 <20           | 86       | 0.14 < 10            |     |     |     | 21               |
| 17    | 9933  | 4.3         | 1.25 | <5 | 70  | <5     | 3.16 | <1 | 47  |    | 10288 | 5.65 | <10 | 1.29          | 515  | 62       | 0.04 | 30 | 690          | 6  | <5 <20           | 71       | 0.12 <10             |     |     | 9   | 27               |
| 18    | 9934  | 0.9         | 0.95 | <5 | 75  | <5     | 1.94 | <1 | 18  | 50 | 1519  | 3.42 | <10 | 0.94          | 414  | 43       | 0.04 | 14 | 970          | 4  | <5 <20           | 55       | 0.10 <10             |     |     | 5   | 18               |
| 19    | 9935  | 0.9         | 1.25 | <5 | 80  | <5     | 4.00 | <1 | 24  | 50 |       | 3.98 | <10 | 1.13          | 543  | 72       | 0.04 | 17 | 1150         | 8  | <5 <20           | 167      | 0.12 <10             |     |     | 9   | 20               |
| 20    | 9936  | 8.0         | 1.03 | <5 | 100 | <5     | 2.06 | <1 | 20  | 51 | 2204  | 3.66 | <10 | 0.89          | 380  | 86       | 0.07 | 13 | 1490         | 4  | <5 <20           | 82       | 0.13 <10             | 120 | <10 | 11  | 18               |
|       |       |             |      |    |     |        |      |    |     |    |       |      |     |               |      |          |      |    | 4700         | _  | ·s -00           | 400      | 0.45 -40             | 170 | -10 | 10  | 26               |
| 21    | 9938  | 0.8         |      | <5 | 85  | <5     | 2.88 | <1 | 21  |    |       | 4.68 | <10 | 1.41          | 621  | 33       | 0.05 | 14 |              | 6  |                  | 100      | 0.15 <10<br>0.13 <10 |     |     | 9   | 2 <b>5</b><br>22 |
| 22    | 9939  | 0.6         | 1.18 | <5 | 65  | <5     | 2.01 | <1 | 22  | 42 | 1926  | 4.26 | <10 | 0.98          | 431  | 64       | 0.07 | 11 | 2050         | 6  | <5 <20           | 83       | 0.13 < 10            |     |     | 7   | 19               |
| 23    | 9940  | 0.9         | 1.09 | <5 | 95  | <5     | 2.20 | <1 | 23  | 30 | 3025  | 4.79 | <10 | 0.95          | 375  | 81       | 0.07 | 11 | 1950         | 6  | <5 <20           | 86       | 0.14 < 10            |     |     | 8   | 29               |
| 24    | 9941  | 0.7         | 1.35 | <5 | 90  | <5     | 3.10 | <1 | 24  | 55 | 1860  | 5.13 | <10 | 1.34          | 699  | 62       | 0.07 | 17 | 1960         | 12 | <5 <20           | 79       | 0.13 < 10            |     |     | 7   | 19               |
| 25    | 9942  | 8.0         | 1.22 | <5 | 80  | <5     | 3.07 | <1 | 31  | 44 | 2168  | 5.55 | <10 | 1.16          | 602  | 37       | 0.05 | 16 | 2040         | 6  | <5 <20           | 99       | 0.12 < 10            | 100 | -10 | ,   | 19               |
|       |       |             |      | _  |     | _      |      |    | ~ 4 |    | 1000  | c 07 | -40 | 4.00          | 040  | 70       | 0.00 | 10 | 1000         | 10 | <5 <20           | 99       | 0.15 <10             | 217 | <10 | 5   | 31               |
| 26    | 9943  | 8.0         |      | <5 | 80  | <5     | 4.09 | <1 | 24  | 78 | 1998  | 5.37 | <10 | 1.93          | 913  | 78       | 0.08 |    | 1960<br>1960 | 10 |                  | 93       | 0.15 < 10            |     |     |     | 22               |
| 27    | 9945  | 0.4         | 1.43 | <5 | 155 | <5     | 3.66 | <1 | 25  | 44 | 1069  | 5.08 | <10 |               | 685  | 63       | 0.09 | 12 |              | 16 | <5 <20<br><5 <20 | 93<br>93 | 0.15 < 10            |     |     |     | 30               |
| 28    | 9946  | 1.0         | 1.69 | 10 | 115 | <5     | 5.40 | <1 | 25  | 61 | 1834  | 6.96 | <10 | 1.74          | 1169 | 70       | 0.08 | 17 | 2160<br>1920 | 18 | <5 <20<br><5 <20 | 74       | 0.16 < 10            |     |     | 7   | 34               |
| 29    | 9947  | 1.3         | 1.48 | <5 | 70  | <5<br> | 5.03 | <1 | 26  | 60 | 1825  | 5.92 | <10 | 1.33          | 1244 | 72<br>44 |      |    | 2760         | 26 | <5 <20<br><5 <20 | 121      | 0.14 < 10            |     |     |     | 48               |
| 30    | 9948  | 1.2         | 2.09 | 10 | 80  | <5     | 6.46 | <1 | 36  | 38 | 1673  | 9.40 |     | 1.99<br>age 1 | 1889 | 41       | 0.04 | a  | 2700         | 20 | -0 -20           | 141      | 0.17 -10             | 204 | 10  | 10  | 70               |
|       |       |             |      |    |     |        |      |    |     |    |       |      | г   | age i         |      |          |      |    |              |    |                  |          |                      |     |     |     |                  |

| Et #.                           | Tag#                 | Ag                | AI %                 | As             | Ba              | Bi             | Ca %                 | Cd             | Co            | Cr             | Cu                  | Fe %                 | La                | Mg %                 | Mn                | Мо            | Na %                 | Ni           | Р                   | Pb            | Sb Sn                      | Sr               | Ti% U                            |                  | W                 | Y            | Zn             |
|---------------------------------|----------------------|-------------------|----------------------|----------------|-----------------|----------------|----------------------|----------------|---------------|----------------|---------------------|----------------------|-------------------|----------------------|-------------------|---------------|----------------------|--------------|---------------------|---------------|----------------------------|------------------|----------------------------------|------------------|-------------------|--------------|----------------|
| 31                              | 9949                 | 0.7               | 2.39                 | <5             | 110             | <5             | 4.96                 | <1             | 50            | 15             | 1691                | 9.23                 | <10               | 2.35                 | 1581              | 3             | 0.05                 | 7            | 3430                | 26            | <5 <20                     | 101              | 0.20 <10                         | 304              | <10               | 9            | 41             |
| 32                              | 9950                 | 1.1               | 2.08                 | <5             | 95              | <5             | 5.55                 | <1             | 48            | 31             | 2699                | 8.04                 | <10               | 1.85                 | 1247              | 90            | 0.06                 | 8            | 3100                | 20            | <5 <20                     | 118              | 0.19 <10                         | 255              | <10               | 10           | 38             |
| 33                              | 9921                 | 1.2               | 1.18                 | <5             | 125             | <5             | 1.71                 | <1             | 15            | 36             | 4201                | 4.09                 | <10               | 1.14                 | 771               | 3             | 0.15                 | 16           | 1750                | 14            | <5 <20                     | 105              | 0.15 <10                         | 180              | <10               | 15           | 42             |
| 34                              | 9944                 | < 0.2             | 2.52                 | <5             | 110             | <5             | 4.36                 | <1             | 35            | 54             | 90                  | 7.87                 | <10               | 2.17                 | 1014              | <1            | 0.03                 | 17           | 1940                | 20            | <5 <20                     | 73               | 0.14 <10                         | 246              | <10               | 9            | 64             |
| 35                              | 9937                 | 0.4               | 0.80                 | 80             | 140             | <5             | 0.26                 | <1             | 71            | 246            | 433                 | >10                  | <10               | 0.09                 | 456               | 120           | 0.05                 | 467          | 100                 | 96            | <5 <20                     | 12               | <0.01 <10                        | 24               | <10               | <1           | 380            |
| QC DAT Resplit:                 |                      | 0.2               | 0.67                 | <5             | 520             | <5             | 2.70                 | <1             | 4             | 58             | 179                 | 2.91                 | <10               | 0.42                 | 845               | 5             | 0.04                 | 7            | 1030                | 8             | <5 <20                     | 144              | 0.03 <10                         | 80               | <10               | 9            | 21             |
| <b>Repeat:</b><br>1<br>10<br>19 | 9916<br>9926<br>9935 | 0.2<br>1.0<br>0.9 | 0.79<br>1.64<br>1.23 | <5<br>15<br><5 | 410<br>75<br>80 | <5<br><5<br><5 | 2.02<br>1.84<br>4.02 | <1<br><1<br><1 | 4<br>29<br>27 | 52<br>26<br>55 | 206<br>1691<br>1968 | 2.50<br>6.78<br>4.06 | <10<br><10<br><10 | 0.51<br>1.63<br>1.13 | 717<br>997<br>583 | 3<br>26<br>80 | 0.06<br>0.06<br>0.03 | 5<br>9<br>17 | 790<br>1600<br>1160 | 2<br>10<br>10 | <5 <20<br><5 <20<br><5 <20 | 158<br>68<br>165 | 0.03 <10<br>0.16 <10<br>0.12 <10 | 80<br>190<br>112 | <10<br><10<br><10 | 8<br>5<br>12 | 13<br>34<br>25 |
| Standar<br>GEO'05               |                      | 1.5               | 1.27                 | 60             | 190             | <b>&lt;</b> 5  | 1.57                 | <1             | 19            | 60             | 89                  | 4.39                 | <10               | 0.65                 | 648               | <1            | 0.02                 | 31           | 730                 | 24            | <5 <20                     | 54               | 0.11 <10                         | 73               | <10               | 9            | 76             |

JJ/ga df/5138 XLS/05 ECO TEOH LABORATORY LTD.
Jutta Jealouse
BC Certified Assayer



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com

www.ecotechlab.com

29-Sep-05

# CERTIFICATE OF ASSAY AS 2005-5139

**Falconbridge Limited** 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 51

Samples Submitted by: Mike Savell

|        |       | Au    | Au     |
|--------|-------|-------|--------|
| ET #.  | Tag # | (g/t) | (oz/t) |
| 1      | 9951  | 0.07  | 0.002  |
| 2      | 9952  | 0.14  | 0.004  |
| 2<br>3 | 9953  | 0.10  | 0.003  |
| 4      | 9954  | 0.14  | 0.004  |
| 5      | 9955  | 0.27  | 0.008  |
| 6<br>7 | 9957  | 0.05  | 0.001  |
|        | 9958  | 0.09  | 0.003  |
| 8      | 9959  | 0.06  | 0.002  |
| 8<br>9 | 9960  | 0.20  | 0.006  |
| 10     | 9961  | 0.11  | 0.003  |
| 11     | 9962  | 0.06  | 0.002  |
| 12     | 9963  | 0.12  | 0.003  |
| 13     | 9964  | 0.21  | 0.006  |
| 14     | 9965  | 0.32  | 0.009  |
| 15     | 9966  | 0.82  | 0.024  |
| 16     | 9967  | 0.33  | 0.010  |
| 17     | 9968  | 0.21  | 0.006  |
| 18     | 9969  | 0.09  | 0.003  |
| 19     | 9970  | 0.10  | 0.003  |
| 20     | 9971  | 0.05  | 0.001  |
| 21     | 9973  | 0.23  | 0.007  |
| 22     | 9974  | 0.10  | 0.003  |
| 23     | 9975  | 0.15  | 0.004  |
| 24     | 9976  | 0.22  | 0.006  |
| 25     | 9977  | 0.19  | 0.006  |

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

# Falconbridge Limited AS5-5139

|                                        |                                                      | Au                                                   | Au                                                          |  |
|----------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|--|
| ET #                                   | Tag #                                                | (g/t)                                                | (oz/t)                                                      |  |
| 26                                     | 9978                                                 | 0.05                                                 | 0.001                                                       |  |
| 27                                     | 9980                                                 | 0.17                                                 | 0.005                                                       |  |
| 28                                     | 9981                                                 | 0.15                                                 | 0.004                                                       |  |
| 29                                     | 9982                                                 | 0.10                                                 | 0.003                                                       |  |
| 30                                     | 9983                                                 | 0.10                                                 | 0.003                                                       |  |
| 31                                     | 9984                                                 | 0.16                                                 | 0.005                                                       |  |
| 32                                     | 9985                                                 | 0.07                                                 | 0.002                                                       |  |
| 33                                     | 9956                                                 | 0.43                                                 | 0.013                                                       |  |
| 34                                     | 9979                                                 | <0.03                                                | <0.001                                                      |  |
| 35                                     | 9972                                                 | 0.07                                                 | 0.002                                                       |  |
| QC DATA:  Repeats: 1 10 14 15 16 17 19 | 9951<br>9961<br>9965<br>9966<br>9967<br>9968<br>9970 | 0.06<br>0.11<br>0.33<br>0.84<br>0.33<br>0.21<br>0.10 | 0.002<br>0.003<br>0.010<br>0.024<br>0.010<br>0.006<br>0.003 |  |
| Resplit:<br>1                          | 9951                                                 | 0.06                                                 | 0.002                                                       |  |
| Standard:<br>PM176<br>SN16             |                                                      | 2.05<br>8.37                                         | 0.060<br>0.244                                              |  |

JJ/ga XLS/05

ECO TECH LABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

3296 Francis-Hughes Ave.

Falconbridge Limited

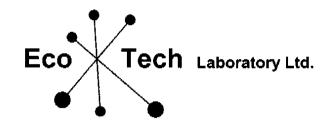
Laval, Quebec

H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35

Sample type:Core
Project #: 301
Shipment #: 51


Samples submitted by: Mike Savell

| Et #. | Tag # | Ag  | Al % | As  | Ba  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La∃  | Mg % | Mn   | Mo  | Na %  | Ni  | P     |    | \$b Sn                | Sr  | Tí% U     | V   | W   | Y   | Zn       |
|-------|-------|-----|------|-----|-----|----|------|----|----|-----|------|------|------|------|------|-----|-------|-----|-------|----|-----------------------|-----|-----------|-----|-----|-----|----------|
| 1     | 9951  | 0.2 | 2.03 | 55  | 105 | <5 | 7.78 | <1 | 31 | 17  | 604  | 6.75 | <10  |      | 2556 | 4   | 0.03  | -   | 3140  |    | <5 <20                | 94  | 0.13 <10  |     |     |     | 33       |
| 2     | 9952  | 0.8 | 2.12 | 15  | 85  | <5 | 5.08 | <1 | 42 | 29  | 1788 | 9.05 | <10  |      | 1548 | 43  | 0.03  |     | 3370  | 19 | <5 <20                | 55  | 0.10 <10  |     | <10 | 3   | 49       |
| 3     | 9953  | 0.6 | 1.58 | <5  | 85  | <5 | 5.59 | <1 | 35 | 24  | 1724 | 7.40 | <10  | 1.29 | 1160 | 85  | 0.04  | 8   | 3320  | 18 | <5 <20                | 79  | 0.14 <10  |     |     |     | 41       |
| 4     | 9954  | 1.6 | 1.12 | <5  | 70  | <5 | 2.05 | <1 | 51 | 41  | 3910 | 9.55 | <10  | 0.90 | 565  | 45  | 0.05  | 9   | 2940  | 10 | <5 <20                | 84  | 0.10 <10  |     | <10 |     | 42       |
| 5     | 9955  | 2.4 | 1.20 | <5  | 65  | <5 | 3.37 | <1 | 43 | 55  | 3898 | 9.96 | <10  | 0.98 | 1240 | 44  | 0.04  | 21  | 2580  | 20 | <5 <20                | 68  | 0.11 <10  | 199 | <10 | <1  | 56       |
|       |       |     |      |     |     |    |      |    |    |     |      |      |      |      |      |     |       |     |       |    |                       |     | 0.40 .40  | 205 | -40 | •   | 27       |
| 6     | 9957  | 0.4 | 1.50 | <5  | 90  | <5 | 3.12 | <1 | 30 | 80  | 951  | 6.63 | <10  | 1.50 | 662  | 29  | 0.05  | 34  | 2250  | 20 | <5 <20                | 73  | 0.16 <10  |     | <10 | 8   | 37       |
| 7     | 9958  | 0.4 | 1.19 | <5  | 70  | <5 | 3.83 | <1 | 51 | 108 | 1914 | 9.32 | <10  | 1.08 | 652  | 59  | 0.02  | 38  | 2300  | 20 | <5 <20                | 76  | 0.05 < 10 |     |     | 9   | 34       |
| 8     | 9959  | 0.4 | 1.34 | <5  | 70  | <5 | 3.00 | <1 | 51 | 145 | 1520 | 9.59 | <10  | 1.31 | 698  | 105 | 0.03  | 44  | 2330  | 22 | <5 <20                | 65  | 0.02 < 10 |     | <10 | 8   | 46       |
| 9     | 9960  | 0.7 | 1.47 | <5  | 75  | <5 | 2.17 | <1 | 55 | 135 | 1704 | 9.57 | <10  | 1.50 | 587  | 89  | 0.03  | 55  | 2250  | 24 | <5 <20                | 49  | 0.01 < 10 |     |     | 5   | 48       |
| 10    | 9961  | 0.9 | 1.50 | <5  | 65  | <5 | 2.36 | <1 | 38 | 164 | 2605 | 8.40 | <10  | 1.44 | 628  | 68  | 0.03  | 42  | 2030  | 20 | <5 <20                | 48  | 0.02 <10  | 206 | <10 | 10  | 42       |
|       |       |     |      |     |     |    |      |    |    |     |      |      |      |      |      |     |       |     |       |    | - 00                  |     | 0.00 .40  | 477 | .40 | 24  | 46       |
| 11    | 9962  | 0.7 | 1.48 | <5  | 65  | <5 | 3.22 | <1 | 39 | 156 | 1996 | 8.69 | <10  | 1.31 | 678  | 77  | 0.03  | -   | 2430  | 20 | <5 <20                | 59  | 0.03 <10  |     |     |     | 45       |
| 12    | 9963  | 0.6 | 1.05 | 10  | 55  | <5 | 3.46 | <1 | 21 | 146 | 1236 | 6.54 | <10  | 0.78 | 722  | 94  | 0.03  | 37  |       | 10 | <5 <20                | 77  | 0.02 <10  |     |     | 3   | 34       |
| 13    | 9964  | 1.1 | 1.10 | <5  | 75  | <5 | 3.97 | <1 | 47 | 202 | 3334 | >10  | <10  | 0.71 | 933  | 282 | 0.02  |     | 2270  | 16 | <5 <20                | 76  | 0.04 < 10 |     |     | 2   | 48       |
| 14    | 9965  | 1.5 | 1.50 | 50  | 95  | <5 | 4.63 | <1 | 42 | 232 | 3055 | 9.49 | <10  | 1.11 | 1242 | 127 | 0.02  |     | 2420  | 26 | <5 <20                | 84  | 0.05 < 10 |     |     | 6   | 62       |
| 15    | 9966  | 2.6 | 1.33 | 160 | 55  | <5 | 4.51 | <1 | 27 | 212 | 1778 | >10  | <10  | 1.18 | 1844 | 161 | <0.01 | 41  | 1560  | 40 | <5 <20                | 101 | 0.02 <10  | 256 | <10 | <1  | 47       |
|       |       |     |      |     |     |    |      |    |    |     |      |      |      |      |      |     |       |     |       |    | <b>5</b> . <b>5</b> 0 | 400 | .0.04 -40 | 400 | -40 | 40  | 4.4      |
| 16    | 9967  | 1.6 | 1.52 | 60  | 70  | <5 | 7.31 | <1 | 29 | 122 | 1086 | 8.18 |      | 1.47 |      |     | <0.01 | 35  |       | 24 | <5 <20                |     | <0.01 <10 |     |     |     | 44       |
| 17    | 9968  | 1.3 | 1.28 | <5  | 60  | <5 | 4.06 | <1 | 33 | 283 | 2051 | 7.02 | <10  | 1.18 | 1193 | 59  | 0.02  | 110 | 1820  | 18 | <5 <20                | 71  | 0.02 <10  |     |     | 6   | 39       |
| 18    | 9969  | 1.1 | 1.32 | <5  | 85  | <5 | 3.27 | <1 | 35 | 327 | 2476 | 6.83 | <10  | 1.41 | 949  | 35  | 0.03  | 114 | 1960  | 24 | <5 <20                | 78  | 0.11 < 10 |     | <10 |     | 49       |
| 19    | 9970  | 0.8 | 1.22 | 15  | 70  | <5 | 2.90 | <1 | 34 | 151 | 2379 | 6.86 | <10  | 1.10 | 564  | 51  | 0.03  | 59  | 1660  | 22 | <5 <20                | 62  | 0.05 <10  |     | <10 | 9   | 32       |
| 20    | 9971  | 0.4 | 0.99 | <5  | 65  | <5 | 3.18 | <1 | 26 | 84  | 1069 | 6.41 | <10  | 0.86 | 597  | 120 | 0.03  | 18  | 1760  | 16 | <5 <20                | 75  | 0.08 <10  | 145 | <10 | 9   | 35       |
|       |       |     |      |     |     |    |      |    |    |     |      |      |      |      |      |     |       |     | 4 400 |    | -6 -00                | 40  | 0.40 -40  | 420 | -40 | 0   | 4.4      |
| 21    | 9973  | 1.2 | 1.03 | <5  | 80  | <5 | 2.39 | <1 | 33 | 107 | 1649 | 6.29 | <10  | 0.85 | 684  | 82  |       |     | 1420  | 28 | <5 <20                | 49  |           |     |     | _   | 44       |
| 22    | 9974  | 1.0 | 1.38 | <5  | 105 | <5 | 1.65 | <1 | 31 | 148 | 3406 | 6.71 | <10  | 1.35 | 464  | 142 |       | 40  | 1850  | 18 | <5 <20                | 31  |           |     |     |     | 39       |
| 23    | 9975  | 1.8 | 1.23 | <5  | 100 | <5 | 2.51 | <1 | 26 | 229 | 2644 | 5.37 | <10  | 1.18 | 608  | 89  | 0.05  | 42  |       | 22 | <5 <20                | 45  | 0.13 <10  |     |     | . — | 38       |
| 24    | 9976  | 1.9 | 1.25 | 15  | 85  | <5 | 1.22 | <1 | 32 | 161 | 2325 | 5.82 | <10  | 1.18 | 933  | 61  | 0.03  | 38  | 1580  | 22 | <5 <20                | 22  | 0.11 <10  |     |     |     | 58       |
| 25    | 9977  | 0.8 | 1.49 | 10  | 75  | <5 | 1.31 | <1 | 27 | 113 | 1066 | 6.63 | <10  | 1.36 | 1052 | 49  | 0.04  | 21  | 1410  | 22 | <5 <20                | 31  | 0.12 <10  | 1/1 | <10 | 7   | 53       |
|       |       |     |      |     |     |    |      |    |    |     |      |      |      |      |      |     |       |     | 4700  | 40 | -F 00                 | 0.7 | 0.46 -46  | 204 | -10 | 10  | 33       |
| 26    | 9978  | 0.4 | 1.27 | <5  | 120 | <5 | 3.66 | <1 | 28 | 211 | 1598 | 5.40 | <10  | 1.29 | 553  | 67  |       |     | 1730  | 16 | <5 <20                | 87  | 0.16 <10  |     |     |     | 39       |
| 27    | 9980  | 0.9 | 1,15 | 25  | 95  | <5 | 3.20 | <1 | 40 | 261 | 2360 | 7.19 | <10  | 1.03 | 747  | 120 |       | 54  | 1980  | 20 | <5 <20                | 69  | 0.13 <10  |     |     |     |          |
| 28    | 9981  | 1.7 | 1.37 | <5  | 115 | <5 | 2.46 | <1 | 45 | 163 | 3169 | 8.51 | <10  | 1.40 | 732  | 55  | 0.05  | 39  |       | 20 | <5 <20                | 55  | 0.16 <10  |     |     |     | 52       |
| 29    | 9982  | 1.5 | 1.28 | <5  | 90  | <5 | 3.48 | <1 | 38 | 180 | 3053 | 7.91 | <10  | 1.24 | 896  | 200 | 0.04  | 39  |       | 18 | <5 <20                | 78  |           |     |     |     | 45<br>45 |
| 30    | 9983  | 1.1 | 1.27 | <5  | 100 | <5 | 3.23 | <1 | 43 | 130 | 2955 | 8.27 |      | 1.19 | 940  | 81  | 0.04  | 38  | 2220  | 14 | <5 <20                | 71  | 0.14 <10  | 336 | <10 | 7   | 45       |
|       |       |     |      |     |     |    |      |    |    |     |      |      | Page | 1    |      |     |       |     |       |    |                       |     |           |     |     |     |          |
|       |       |     |      |     |     |    |      |    |    |     |      |      |      |      |      |     |       |     |       |    |                       |     |           |     |     |     |          |

JJ/ga df/5138 XLS/05

| Et #.             | Tag#       | Aq    | Al % | As         | Ва          | Bi            | Ca % | Cd | Co | Сг  | Cu   | Fe % | La  | Mg % | Mn   | Мо  | Na % | Ni  | P    | Pb | Sb S  | n    | Sr   | Ti %    | IJ  | <u>v</u> | W   | Y  | Zn  |
|-------------------|------------|-------|------|------------|-------------|---------------|------|----|----|-----|------|------|-----|------|------|-----|------|-----|------|----|-------|------|------|---------|-----|----------|-----|----|-----|
| 31                | 9984       | 1.1   | 1.26 | 30         | <b>1</b> 15 | ~5            | 5.82 | <1 | 40 | 98  | 3101 | 7.64 | <10 | 1.09 | 1110 | 89  | 0.03 | 31  | 2420 | 22 | <5 <2 | 20 1 | 90   | 0.09 <  | 10  | 323      | <10 | 12 | 43  |
| 32                | 9985       | 0.4   | 1.37 | <5         | 225         | <5            | 2.46 | <1 | 26 | 117 | 1178 | 6.58 | <10 | 1.41 | 908  | 11  | 0.04 | 34  | 2050 | 20 | <5 <2 | 20   | 32   | 0.16 <  | <10 | 309      | <10 | 9  | 44  |
| 33                | 9956       | 2.0   | 1.48 | <5         | 320         | <5            | 1.40 | <1 | 13 | 27  | 7236 | 3.75 | <10 | 0.96 | 479  | 2   | 0.15 | 18  | 2800 | 26 | <5 <2 | 20   | 79   | 0.07 <  | <10 | 184      | <10 | 16 | 57  |
| 34                | 9979       | < 0.2 | 2.23 | 10         | 90          | <5            | 3.17 | <1 | 33 | 60  | 70   | 7.70 | <10 | 1.86 | 948  | <1  | 0.03 | 18  | 1780 | 24 | <5 <2 | 20   | 51   | 0.11 <  | <10 | 209      | <10 | 5  | 70  |
| 35                | 9972       | 0.3   | 0.79 | 100        | 165         | <5            | 0.27 | <1 | 70 | 226 | 450  | >10  | <10 | 0.13 | 460  | 124 | 0.04 | 398 | 90   | 90 | <5 <2 | 20   | 11 - | <0.01 < | <10 | 26       | <10 | <1 | 408 |
| QC DAT            | <u>ΓΑ:</u> |       |      |            |             |               |      |    |    |     |      |      |     |      |      |     |      |     |      |    |       |      |      |         |     |          |     |    |     |
| Resplit:          | :<br>9951  | 0.3   | 1.79 | 50         | 105         | <5            | 7.70 | <1 | 28 | 20  | 695  | 6.50 | <10 | 1.65 | 2483 | 9   | 0.03 | 7   | 2950 | 16 | <5 <2 | 20   | 84   | 0.11    | <10 | 209      | <10 | 10 | 35  |
| Repeat            | :          |       |      |            |             |               |      |    |    |     |      |      |     |      |      |     |      |     |      |    |       |      |      |         |     |          |     |    |     |
| i                 | 9951       | 0.2   | 1.80 | 45         | 95          | <5            | 7.27 | <1 | 30 | 17  | 528  | 6.49 | <10 | 1.65 | 2400 | 8   |      | 6   |      | 16 | <5 <2 |      | 79   | 0.11    |     | 204      | <10 | 12 | 35  |
| 10                | 9961       | 0.9   | 1.62 | <5         | 60          | <5            | 2.53 | <1 | 39 | 175 | 2773 | 8.99 | <10 | 1.54 | 669  | 72  |      | 45  | 2180 | 22 | <5 <2 |      | 49   | 0.02    | -   | 221      | <10 | 6  | 46  |
| 19                | 9970       | 8.0   | 1.26 | 20         | 80          | <5            | 3.12 | <1 | 40 | 160 | 2568 | 7.01 | <10 | 1.20 | 662  | 54  | 0.04 | 62  | 2210 | 22 | <5 <2 | 20   | 78   | 0.07    | <10 | 200      | <10 | 11 | 43  |
| Standai<br>GEO'05 |            | 1.5   | 1.16 | <b>5</b> 5 | 130         | <b>&lt;</b> 5 | 1.16 | <1 | 19 | 60  | 83   | 3.30 | <10 | 0.60 | 495  | <1  | 0.02 | 28  | 540  | 22 | <5 <2 | 20   | 58   | 0.11    | <10 | 69       | <10 | 10 | 74  |

ECO TECH LABORATORY LTD.
Jutta Jealouse
BC Centified Assayer



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com

www.ecotechlab.com

# CERTIFICATE OF ASSAY AS 2005-5140

26-Sep-05

Falconbridge Limited
3296 Francis-Hughes Avenue
Laval, Quebec
H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 52

Samples Submitted by: Mike Savell

|        |              | Au     | Au     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|--------------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ET #.  | Tag #        | (g/t)  | (oz/t) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1      | 9986         | 0.04   | 0.001  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2<br>3 | 9987         | < 0.03 | <0.001 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3      | 9988         | < 0.03 | <0.001 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4      | 9989         | <0.03  | <0.001 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5      | 9990         | 0.04   | 0.001  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6      | 9992         | 0.03   | 0.001  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7      | 9993         | 0.16   | 0.005  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8      | 9994         | 0.18   | 0.005  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9      | 9995         | 0.21   | 0.006  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10     | 9996         | 0.24   | 0.007  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11     | <b>9</b> 997 | 0.05   | 0.001  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12     | 9998         | 0.08   | 0.002  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13     | 9 <b>999</b> | 0.06   | 0.002  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14     | 10000        | 0.15   | 0.004  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15     | 10001        | 0.14   | 0.004  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16     | 10002        | 0.15   | 0.004  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17     | 10003        | 0,46   | 0.013  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18     | 10004        | 0,11   | 0.003  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19     | 10005        | \$0.0  | 0.002  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20     | 10006        | 0.10   | 0.003  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21     | 10008        | 0.05   | 0.001  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 22     | 10009        | 0.06   | 0.002  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23     | 10010        | 0.12   | 0.003  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24     | 10011        | 0.07   | 0.002  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25     | 10012        | 0.08   | 0.002  | And the second s |

ECO TECH LABORATORY LTD.

Kutta Jealouse

(B.C. Certified Assaye

# Falconbridge Limited AS5-5140

|                   |       | Au    | Au     |  |
|-------------------|-------|-------|--------|--|
| ET#.              | Tag # | (g/t) | (oz/t) |  |
| 26                | 10013 | 80.0  | 0.002  |  |
| 27                | 10015 | 0.05  | 0.001  |  |
| 28                | 10016 | 0.19  | 0.006  |  |
| 29                | 10017 | 0.15  | 0.004  |  |
| 30                | 10018 | 0.12  | 0.003  |  |
| 31                | 10019 | 0.06  | 0.002  |  |
| 32                | 10020 | 0.15  | 0.004  |  |
| 33                | 9991  | 0.40  | 0.012  |  |
| 34                | 10014 | <0.03 | <0.001 |  |
| 35                | 10007 | 0.07  | 0.002  |  |
| QC DATA:          |       |       |        |  |
| 1                 | 9986  | 0.04  | 0.001  |  |
| 10                | 9996  | 0.27  | 0.008  |  |
| 19                | 10005 | 0.08  | 0.002  |  |
| Resplit:          | 9986  | 0.04  | 0.001  |  |
| Standard:<br>SH13 |       | 1.32  | 0.038  |  |

JJ/ga XLS/05

ECOTECH LABORATORY LTD.

Jufta Jealouse

B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

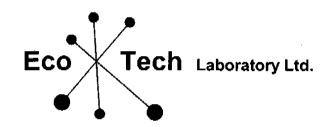
Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AS 2005-5140

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core Project #: 301 Shipment #: 52

Samples submitted by: Mike Savell


| Et #. | Tag #          | Ag         | AI %         | As                   | Ва       | Bi        | Ca % | Cd  | Co       | Cr       | Çu           | Fe %     | La          | Vig % | Mn               |    | Na %  | Ni | P    | Pb  | Sb Sn            | Sr       | Ti% U                                   | V    | W_         | Y   | Zn_      |
|-------|----------------|------------|--------------|----------------------|----------|-----------|------|-----|----------|----------|--------------|----------|-------------|-------|------------------|----|-------|----|------|-----|------------------|----------|-----------------------------------------|------|------------|-----|----------|
| 1     | 9986           | 0.8        | 1.59         | 35                   | 100      | <5        | 2.03 | <1  | 22       | 94       | 1115         | 6.79     | <10         |       | 1018             | 26 | 0.02  |    | 1650 | 28  | <5 <20           | 73       | 0.11 <10                                |      |            | _   | 48       |
| 2     | 9987           | 0.8        | 2.05         | 20                   | 80       | <5        | 2.52 | <1  | 20       | 119      | 1313         | 6.10     | <10         |       | 1269             | 9  | 0.02  | 43 | 1690 | 28  | <5 <20           | 66       | 0.09 <10                                |      | <10<br><10 | 9   | 48<br>40 |
| 3     | 9988           | 0.7        | 2.24         | 25                   | 75       | <5        | 2.71 | <1  | 26       | 220      | 1472         | 5.95     | <10         |       | 1127             | 27 | 0.02  |    | 1520 | 28  | <5 <20           | 68       | 0.10 <10                                |      | <10        |     | 40       |
| 4     | 9989           | 1.0        | 1.72         | 15                   | 65       | <5        | 2.12 | <1  | 28       | 65       | 2339         | 5.16     | <10         | 1.47  | 775              | 34 | 0.02  |    | 1760 | 18  | <5 <20           | 46       | 0.10 <10<br>0.08 <10                    |      |            |     | 44       |
| 5     | 9990           | 0.9        | 1.52         | 10                   | 60       | <5        | 2.54 | <1  | 22       | 44       | 1589         | 4.85     | <10         | 1.23  | 941              | 35 | 0.02  | 10 | 1720 | 20  | <5 <20           | 59       | 0.00 > 10                               | 112  | 10         | ''  | 44       |
|       |                |            |              |                      |          |           | 2.00 |     | 00       | 70       | 2044         | 5.88     | <10         | 1.05  | 1035             | 20 | <0.01 | 16 | 1420 | 20  | <5 <20           | 81       | 0.07 <10                                | 85   | <10        | 10  | 46       |
| 6     | 9992           | 1.7        |              | 50                   | 65<br>55 | <5        | 2.86 | <1  | 26       | 78<br>44 | 2044<br>1475 | 4.98     | <10         | 1.43  | 612              | 9  | 0.04  |    | 1790 | 16  | <5 <20           | 64       | 0.13 <10                                |      | <10        | 11  | 35       |
| 7     | 9993           | 0.8        | 1.50         | 5                    | 55       | <5        | 2.24 | <1  | 25       |          | 3845         | 4.28     | <10         | 1.12  | 789              | 25 | 0.03  |    | 1990 | 16  | <5 <20           | 65       | 0.09 < 10                               |      | <10        | 17  | 45       |
| 8     | 9994           | 1.8        | 1.37         | 20                   | 70       | <5<br>- 5 | 2.78 | <1  | 23<br>33 | 21<br>20 | 3897         | 5.32     | <10         | 1.47  | 702              | 33 | 0.04  |    | 2270 | 20  | <5 <20           | 44       | 0.12 < 10                               |      | <10        |     | 51       |
| 9     | 9995           | 1.6        | 1.63         | 15                   | 65       | <5        | 1.62 | <1  |          | 19       | 2089         | 5.37     | <10         | 1.21  | 926              | 25 | 0.02  | _  | 2190 | 26  | <5 <20           | 52       | 0.10 < 10                               |      | <10        | 13  | 56       |
| 10    | 9996           | 1.7        | 1.49         | 50                   | 60       | <5        | 2.10 | <1  | 26       | 19       | 2009         | 0.57     | ~10         | 1.21  | 320              | 23 | 0.02  | Ü  | 2.00 |     | •                |          | • • • • • • • • • • • • • • • • • • • • |      |            |     |          |
| 4.4   | 0007           | 4.4        | 1.00         | 10                   | 70       | <5        | 2.00 | <1  | 24       | 18       | 2220         | 4.66     | <10         | 1.63  | 893              | 18 | 0.03  | 7  | 2030 | 20  | <5 <20           | 51       | 0.11 <10                                | 159  | <10        | 12  | 43       |
| 11    | 9997           | 1.1        | 1.66<br>1.50 | 10<br><del>6</del> 5 | 70<br>70 | <5        | 2.78 | <1  | 22       | 22       | 3452         | 4.43     | <10         | 1.26  | 882              | 20 | 0.03  | -  | 1890 | 20  | <5 <20           | 65       | 0.11 < 10                               | 136  | <10        | 12  | 41       |
| 12    | 9998<br>9999   | 1.7        | 1.24         | 170                  | 55       | <5        | 2.62 | <1  | 23       | 38       | 3135         | 4.66     | <10         | 0.92  | 650              | 27 | 0.02  | 7  | 1840 | 18  | 15 <20           | 66       | 0.12 < 10                               | 121  | <10        | 13  | 35       |
| 13    |                | 2.4<br>1.3 | 1.63         | 25                   | 70       | <5        | 2.02 | <1  | 27       | 18       | 2083         | 5.01     | <10         | 1.51  | 1050             | 11 |       | 8  | 2010 | 24  | <5 <20           | 54       | 0.15 < 10                               | 186  | <10        | 12  | 50       |
| 14    | 10000<br>10001 | 0.9        | 1.59         | 15                   | 50       | <5        | 2.22 | <1  | 24       | 26       | 2210         | 5.10     | <10         | 1.57  | 731              | 28 | 0.04  |    | 2010 | 20  | <5 <20           | 66       | 0.16 < 10                               | 219  | <10        | 11  | 40       |
| 15    | 10001          | 0.9        | 1.59         | 13                   | 30       | -0        | 2.22 | - 1 |          | -4       | LLIG         | <b>V</b> |             |       |                  |    | -     |    |      |     |                  |          |                                         |      |            |     |          |
| 16    | 10002          | 1.4        | 1.66         | 15                   | 85       | <5        | 2.17 | <1  | 23       | 22       | 2500         | 4.92     | <10         | 1.61  | 851              | 29 | 0.04  | 6  | 1970 | 20  | <5 <20           | 60       | 0.17 < 10                               | 236  | <10        |     | 49       |
| 17    | 10002          | 0.5        |              | 15                   | 70       | <5        | 2.54 | <1  | 28       | 28       | 1658         | 5,10     | <10         | 1.60  | 7 <del>6</del> 7 | 32 | 0.06  | 5  | 2110 | 20  | <5 <20           | 84       | 0.18 <10                                |      | <10        |     | 37       |
| 18    | 10004          | 1.7        |              | 50                   | 75       | <5        | 2.35 | <1  | 28       | 28       | 2632         | 5.77     | <10         | 1,77  | 992              | 22 | 0.03  | 12 | 1840 | 26  | <5 <20           | 54       | 0.15 <10                                |      | <10        |     | 67       |
| 19    | 10005          | 1.0        | 1.95         | 20                   | 65       | <5        | 1.05 | <1  | 32       | 24       | 2224         | 5.96     | <10         | 1.84  | 635              | 8  | 0.04  | 8  | 2330 | 24  | <5 <20           | 49       | 0.14 <10                                |      | <10        | 9   | 65       |
| 20    | 10006          | 0.7        |              | 15                   | 50       | <5        | 2.22 | <1  | 24       | 14       | 2645         | 4.34     | <10         | 1.45  | 578              | 12 | 0.04  | 4  | 2180 | 20  | <5 <20           | 65       | 0.14 <10                                | 180  | <10        | 14  | 51       |
|       | 10000          | •          |              |                      |          |           |      |     |          |          |              |          |             |       |                  |    |       |    |      |     |                  |          |                                         |      | .40        |     | 0.7      |
| 21    | 10008          | 0.9        | 1.19         | 10                   | 45       | <5        | 1.89 | <1  | 20       | 35       | 1891         | 3.92     | <10         | 1.07  | 515              | 5  | 0.03  | _  | 1720 | 18  | <5 <20           | 44       | 0.12 < 10                               |      | <10        |     | 37       |
| 22    | 10009          | 8.0        | 1.54         | 10                   | 85       | <5        | 2.12 | <1  | 28       | 27       | 2429         | 4.62     | <10         | 1.42  | 536              | 20 | 0.04  | 5  |      | 24  | <5 <20           | 60       | 0.15 < 10                               |      | <10        |     | 44       |
| 23    | 10010          | 5.5        | 1.11         | 100                  | 40       | <5        | 1.49 | <1  | 31       | 36       | 4224         | 4.93     | <10         | 0.63  | 546              | 64 | 0.01  | 22 |      | 16  |                  | 37       | 0.03 < 10                               |      | <10        |     | 67       |
| 24    | 10011          | 8.2        | 1.21         | 315                  | 50       | <5        | 1.96 | <1  | 30       | 44       | 2153         | 6.60     | <10         | 0.93  | 755              | 40 | 0.02  | 19 |      |     | 155 <20          | 60       | 0.08 < 10                               |      | <10        |     | 82       |
| 25    | 10012          | 1.9        | 1.57         | 60                   | 60       | <5        | 2.27 | <1  | 29       | 23       | 2549         | 5.67     | <10         | 1.38  | 732              | 20 | 0.03  | 7  | 2190 | 24  | <5 <20           | 58       | 0.12 <10                                | 200  | <10        | 14  | 63       |
|       |                |            |              |                      |          |           |      |     |          |          |              |          |             |       |                  |    |       | 40 | 0400 | 0.4 | at ann           | 0.0      | 0.14 <10                                | 243  | <10        | 11  | 51       |
| 26    | 10013          | 19.3       | 1.66         | 30                   | 85       | <5        | 2.42 | <1  | 27       | 37       | 2947         | 5.40     | <10         | 1.56  | 598              | 98 | 0.03  |    | 2120 | 24  |                  | 98       | 0.14 < 10                               |      | <10        | 15  | 58       |
| 27    | 10015          | 1.7        | 1.48         | 40                   | 60       | <5        | 2.47 | <1  | 26       | 22       | 2905         | 5.00     | <10         | 1.24  | 790              | 29 | 0.03  | 5  |      | 24  | <5 <20<br><5 <20 | 57<br>56 | 0.17 < 10                               |      |            |     | 45       |
| 28    | 10016          | 1.7        | 1.49         | 35                   | 50       | <5        | 2.40 | <1  | 23       | 36       | 2444         | 4.87     | <10         | 1.38  | 692              | 32 | 0.03  | 6  |      | 22  | <5 <20<br><5 <20 | 66       | 0.07 < 10                               |      |            | 19  | 57       |
| 29    | 10017          | 1.9        | 1.49         | 15                   | 90       | <5        | 2.95 | <1  | 25       | 19       | 2981         | 5.34     | <10         | 1.28  | 1249             | 56 | 0.03  | 6  |      | 30  | <5 <20<br><5 <20 | 83       |                                         |      |            |     | 35       |
| 30    | 10018          | 1.1        | 1.42         | 15                   | 90       | <5        | 3.28 | <1  | 22       | 31       | 3108         | 4.02     | <10<br>Bage | 1.17  | 712              | 49 | 0.04  | 8  | 2420 | 18  | NO NZU           | 03       | 0.00 -10                                | ,-,0 | -10        | - ' | -55      |
|       |                |            |              |                      |          |           |      |     |          |          |              |          | Page        | 1     |                  |    |       |    |      |     |                  |          |                                         |      |            |     |          |
|       |                |            |              |                      |          |           |      |     |          |          |              |          |             |       |                  |    |       |    |      |     |                  |          |                                         |      |            |     |          |

# Falconbridge Limited

| Et #.    | Tag#       | Ag    | Al % | As  | ₿a  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | <u>La</u> | Mg % | Mn   | IVIO | Na %   | Ni  | <u> </u> | - GF | 20 20  | 3f  | 11 % U    | · V | V 7 |    | 211 |
|----------|------------|-------|------|-----|-----|----|------|----|----|-----|------|------|-----------|------|------|------|--------|-----|----------|------|--------|-----|-----------|-----|-----|----|-----|
| 31       | 10019      | 2.2   | 1.41 | 60  | 55  | <5 | 3.63 | <1 | 22 | 29  | 4487 | 4.44 | <10       | 1.08 | 867  | 49   | 0.01   | 11  | 2320     | 20   | 15 <20 | 114 | 0.05 <10  | 113 |     | 15 | 46  |
| 32       | 10020      | 3.3   | 1.33 | 95  | 65  | <5 | 3.15 | <1 | 26 | 40  | 3291 | 5.10 | <10       | 0.83 | 1034 | 26   | < 0.01 | 13  | 2060     | 20   | <5 <20 | 114 | 0.01 <10  | 75  | <10 | 16 | 45  |
| 33       | 9991       | 2.2   | 1.33 | <5  | 315 | <5 | 1.43 | <1 | 12 | 27  | 7251 | 3.52 | <10       | 1.13 | 481  | 1    | 0.14   | 16  | 2720     | 24   | <5 <20 | 74  | 0.07 <10  | 188 | <10 | 20 | 58  |
| 34       | 10014      | < 0.2 | 2.61 | 15  | 110 | <5 | 5.36 | <1 | 28 | 53  | 88   | 5.94 | <10       | 1.97 | 831  | <1   | 0.03   | 16  | 1830     | 38   | <5 <20 | 109 | 0.16 <10  | 237 | <10 | 11 | 67  |
| 35       | 10007      | 0.2   | 0.81 | 100 | 160 | <5 | 0.24 | <1 | 70 | 235 | 448  | >10  | <10       | 0.12 | 420  | 130  | 0.05   | 441 | 100      | 98   | <5 <20 | 11  | <0.01 <10 | 26  | <10 | <1 | 422 |
|          |            |       |      |     |     |    |      |    |    |     |      |      |           |      |      |      |        |     |          |      |        |     |           |     |     |    |     |
| QC DAT   | <u>TA:</u> |       |      |     |     |    |      |    |    |     |      |      |           |      |      |      |        |     |          |      |        |     |           |     |     |    |     |
| Resplit. |            |       |      |     |     |    |      |    |    |     |      |      |           |      |      |      |        |     |          |      |        |     |           |     |     |    |     |
| 1        | 9986       | 0.9   | 1.84 | 55  | 100 | <5 | 2.44 | <1 | 26 | 118 | 1378 | 7.90 | <10       | 1.84 | 1189 | 43   | 0.02   | 35  | 2170     | 34   | <5 <20 | 91  | 0.15 <10  | 431 | <10 | 13 | 57  |
| Repeat   |            |       |      |     |     |    |      |    |    |     |      |      |           |      |      |      |        |     |          |      |        |     |           |     |     |    |     |
| 1        | 9986       | 0.8   | 1.70 | 35  | 100 | <5 | 2.14 | <1 | 23 | 99  | 1218 | 7.04 | <10       | 1.78 | 1064 | 25   | 0.02   | 30  | 1720     | 26   | <5 <20 | 81  | 0.13 <10  |     | <10 | 10 | 48  |
| 10       | 9996       | 1.8   | 1.57 | 50  | 60  | <5 | 2.24 | <1 | 27 | 21  | 2170 | 5.64 | <10       | 1.24 | 971  | 26   | 0.02   | 8   | 2380     | 32   | <5 <20 | 54  | 0.11 <10  |     | <10 | 15 | 60  |
| 19       | 10005      | 1.0   | 1.92 | 25  | 70  | <5 | 1.08 | <1 | 34 | 25  | 2170 | 6.07 | <10       | 1.78 | 638  | 11   | 0.04   | 9   | 2520     | 30   | <5 <20 | 51  | 0.15 <10  | 221 | <10 | 9  | 70  |
| Standa   | rd:        |       |      |     |     |    |      |    |    |     |      |      |           |      |      |      |        |     |          |      |        |     |           |     |     |    |     |
| GEO'05   |            | 1.5   | 1.55 | 60  | 175 | <5 | 1.43 | <1 | 18 | 60  | 86   | 4.01 | <10       | 0.79 | 598  | <1   | 0.03   | 27  | 750      | 24   | <5 <20 | 58  | 0.11 <10  | 71  | <10 | 11 | 77  |
|          |            |       |      |     |     |    |      |    |    |     |      |      |           |      |      |      |        |     |          |      |        |     |           |     |     |    |     |

ECØ TECH LABORATORY LTD. Jutta Jealouse BC Certified Assayer

JJ/ga df/5140 XLS/05



10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5142**

26-Sep-05

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 54

Samples Submitted by: Mike Savell

|        | -     | Au     | Au     |
|--------|-------|--------|--------|
| ET #.  | Tag # | (g/t)  | (oz/t) |
| 1      | 10056 | 0.03   | 0.001  |
| 2      | 10057 | 0.04   | 0:001  |
| 2<br>3 | 10058 | < 0.03 | <0.001 |
| 4      | 10059 | 0.05   | 0.001  |
| 5      | 10060 | 0.03   | 0.001  |
| 6      | 10062 | 0.04   | 0.001  |
| 7      | 10063 | < 0.03 | <0.001 |
| 8      | 10064 | 0.04   | 0.001  |
| 9      | 10065 | 0.04   | 0.001  |
| 10     | 10066 | 0.18   | 0.005  |
| 11     | 10067 | 0.05   | 0.001  |
| 12     | 10068 | 0.04   | 0.001  |
| 13     | 10069 | 0.05   | 0.001  |
| 14     | 10070 | 0.06   | 0.002  |
| 15     | 10071 | 0,16   | 0.005  |
| 16     | 10072 | 0.48   | 0.014  |
| 17     | 10073 | 0.16   | 0.005  |
| 18     | 10074 | 0.13   | 0.004  |
| 19     | 10075 | 0.12   | 0.003  |
| 20     | 10076 | 0.14   | 0.004  |
| 21     | 10078 | 0.07   | 0.002  |
| 22     | 10079 | 0.63   | 0.018  |
| 23     | 10080 | 0.22   | 0.006  |
| 24     | 10081 | 0.05   | 0.001  |
| 25     | 10082 | 0.06   | 0.002  |

# Falconbridge Limited AS

|                   |       | Au    | Au     |  |
|-------------------|-------|-------|--------|--|
| ET #.             | Tag # | (g/t) | (oz/t) |  |
| 26                | 10083 | 0.08  | 0.002  |  |
| 27                | 10085 | <0.03 | <0.001 |  |
| 28                | 10086 | 0.03  | 0.001  |  |
| 29                | 10087 | 0.18  | 0.005  |  |
| 30                | 10088 | 0.10  | 0.003  |  |
| 31                | 10089 | 0.12  | 0.003  |  |
| 32                | 10090 | <0.03 | <0.001 |  |
| 33                | 10061 | 0.39  | 0.011  |  |
| 34                | 10077 | <0.03 | <0.001 |  |
| 35                | 10084 | 0.08  | 0.002  |  |
|                   |       |       |        |  |
|                   |       |       |        |  |
| QC DATA:          |       |       |        |  |
| Repeats:          |       |       |        |  |
| 1                 | 10056 | 0.03  | 0.001  |  |
| 10                | 10066 | 0.18  | 0.005  |  |
| 19                | 10075 | 0.10  | 0.003  |  |
| - "               |       |       |        |  |
| Resplit:          | 40050 | ^^    | 0.004  |  |
| 1                 | 10056 | 0.04  | 0.001  |  |
| Standard:         |       |       |        |  |
| Standard:<br>SH13 |       | 1.32  | 0.038  |  |
| SHIS              |       | 1.32  | 0.050  |  |

JJ/ga XLS/05

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

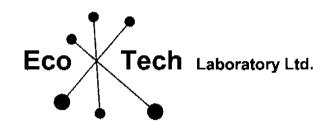
Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core Project #: 301 Shipment #: 54

Samples submitted by: Mike Savell

| Et #. | Tag # | Ag   | Al % | As  | Ba  | Bi | Ca % | Cd | Co | Cr       | Çu         | Fe %         | La         | Mg %         | Mn   | Мо | Na % | Ni  | Р    | Pb       | Sb Sn            | Sr  |           | <u> v</u> | W   | <u>Y</u> | Zn       |
|-------|-------|------|------|-----|-----|----|------|----|----|----------|------------|--------------|------------|--------------|------|----|------|-----|------|----------|------------------|-----|-----------|-----------|-----|----------|----------|
| 1     | 10056 | 0.2  | 0.75 | 10  | 160 | <5 | 1.77 | <1 | 4  | 117      | 153        | 1.76         | <10        | 0.66         | 506  | 3  | 0.02 |     | 1330 | 10       | <5 <20           |     | <0.01 <10 |           | <10 |          | 18       |
| 2     | 10057 | 0.4  | 0.82 | 20  | 125 | <5 | 1.41 | <1 | 6  | 119      | 503        | 1.89         | <10        | 0.66         | 440  | 11 | 0.03 | •   | 1360 | 14       | <5 <20           |     | <0.01 <10 |           |     | 11       | 22       |
| 3     | 10058 | 0.3  | 0.78 | 25  | 125 | <5 | 1.47 | <1 | 7  | 97       | 128        | 1.89         | <10        | 0.57         | 387  | 6  | 0.02 | _   | 1290 | 14       | <5 <20           |     | <0.01 <10 |           |     | 13       | 20       |
| 4     | 10059 | 0.3  | 0.77 | 15  | 145 | <5 | 1,44 | <1 | 5  | 108      | 296        | 2.00         | <10        | 0.58         | 381  | 6  | 0.03 |     | 1270 | 12       | <5 <20           |     | <0.01 <10 |           | <10 | . —      | 19       |
| 5     | 10060 | 7.2  | 0.87 | 20  | 265 | <5 | 1.82 | <1 | 5  | 90       | 727        | 2.40         | <10        | 0.72         | 433  | 5  | 0.03 | 6   | 1450 | 16       | 5 <20            | 100 | 0.01 <10  | 205       | <10 | 15       | 32       |
|       |       |      |      |     |     | _  |      |    |    |          |            |              |            |              | 500  |    | 0.04 | 4.4 | 1000 | 20       | -E -20           | 93  | 0.03 <10  | 277       | <10 | 1/1      | 26       |
| 6     | 10062 | 0.5  | 1.23 | 15  | 215 | <5 | 2.12 | <1 | 9  | 108      | 346        | 3.37         | <10        | 1.14         | 523  | 4  | 0.04 |     | 1880 | 20<br>18 | <5 <20<br><5 <20 | 117 | 0.03 < 10 |           |     |          | 22       |
| 7     | 10063 | <0.2 | 1.08 | 10  | 750 | <5 | 1.90 | <1 | 4  | 100      | 229        | 2.54         | <10        | 1.01         | 428  | 3  | 0.04 | -   | 1740 |          | <5 <20           | 121 | 0.10 < 10 |           | <10 |          | 30       |
| 8     | 10064 | 0.3  | 1.66 | 35  | 155 | <5 | 3.14 | <1 | 12 | 107      | 459        | 3.96         | <10        | 1.57         | 930  | 6  | 0.05 | 7   |      | 24       | <5 <20           | 87  | 0.10 < 10 |           | <10 |          | 24       |
| 9     | 10065 | 0.3  | 1.06 | 30  | 180 | <5 | 2.41 | <1 | 7  | 83       | 334        | 2.58         | <10        | 0.94         | 639  | 10 | 0.03 | _   | 1570 | 20       | <5 <20           | 105 |           |           |     |          | 22       |
| 10    | 10066 | 0.3  | 0.88 | 55  | 105 | <5 | 2.46 | <1 | 7  | 115      | 93         | 2.82         | <10        | 0.57         | 875  | 13 | 0.05 | 4   | 1070 | 18       | <b>~5 ~20</b>    | เบอ | 0.03 < 10 | 70        | ~10 | 1 1      | 22       |
|       |       |      |      |     |     |    |      | -4 | _  | 77       | 447        | 2.00         | -10        | 0.74         | 1282 | 6  | 0.03 | 4   | 1060 | 12       | <5 <20           | 112 | 0.02 <10  | 65        | <10 | 14       | 23       |
| 11    | 10067 | 0.3  | 0.95 | 45  | 80  | <5 | 3.36 | <1 | 7  | 77       | 117        | 3.00         |            | 0.71         | 757  | 7  | 0.03 | 3   |      | 16       | <5 <20           | 107 | 0.02 < 10 | 83        | <10 |          | 20       |
| 12    | 10068 | 0.3  | 0.95 | 30  | 180 | <5 | 2.24 | <1 | 7  | 94       | 176        | 2.91         | <10<br><10 | 0.67<br>0.54 | 669  | 12 | 0.03 | 3   |      | 14       | <5 <20           | 109 | 0.03 < 10 | 70        | <10 |          | 20       |
| 13    | 10069 | 0.3  | 0.80 | 25  | 250 | <5 | 2.21 | <1 | 7  | 83       | 121        | 2.76         |            | 0.54         | 751  | 42 | 0.04 | 4   |      | 14       | <5 <20           | 146 | *         | 56        | <10 | 13       | 18       |
| 14    | 10070 | 0.4  | 0.76 | 25  | 85  | <5 | 2.52 | <1 | 7  | 98<br>79 | 152<br>101 | 2.54<br>4.55 | <10<br><10 | 0.30         | 724  | 25 | 0.03 | 7   |      | 14       | <5 <20           |     | <0.01 <10 | 42        | <10 | 7        | 16       |
| 15    | 10071 | 0.7  | 0.56 | 65  | 25  | <5 | 2.19 | <1 | 10 | 19       | 101        | 4.55         | ×10        | 0.50         | 724  | 20 | 0.02 | ,   | 310  | 17       | -5 -20           | OL. | 0.01      |           |     |          |          |
| 16    | 10072 | 0.4  | 0.79 | 20  | 110 | <5 | 2.26 | <1 | 8  | 90       | 177        | 2.71         | <10        | 0.49         | 790  | 18 | 0.03 | 5   | 1050 | 24       | <5 <20           | 117 | <0.01 <10 | 58        | <10 | 12       | 23       |
| 17    | 10072 | 0.6  | 0.86 | 40  | 90  | <5 | 3.11 | <1 | 9  | 68       | 233        | 3.23         | <10        | 0.64         | 1046 | 10 | 0.04 | 5   | 1070 | 18       | <5 <20           | 97  | 0.01 < 10 | 78        | <10 | 16       | 28       |
| 18    | 10074 | 0.2  | 0.84 | 35  | 225 | <5 | 2.14 | <1 | 6  | 83       | 61         | 2.75         | <10        | 0.61         | 832  | 4  | 0.06 | 5   | 950  | 14       | <5 <20           | 75  | <0.01 <10 | 92        | <10 | 10       | 23       |
| 19    | 10075 | 0.2  | 0.89 | 25  | 195 | <5 | 2.11 | <1 | 6  | 69       | 110        | 2.84         | <10        | 0.70         | 823  | 36 | 0.05 | 2   | 960  | 16       | <5 <20           | 76  | <0.01 <10 | 92        | <10 | 12       | 24       |
| 20    | 10076 | 1.0  | 0.80 | 45  | 75  | <5 | 1.98 | <1 | 12 | 89       | 432        | 3.24         | <10        | 0.51         | 663  | 24 | 0.05 | 3   | 880  | 16       | <5 <20           | 88  | <0.01 <10 | 90        | <10 | 12       | 24       |
|       |       |      |      |     |     |    |      |    |    |          |            |              |            |              |      |    |      |     |      |          |                  |     |           |           |     |          |          |
| 21    | 10078 | 0.8  | 0.74 | 45  | 125 | <5 | 2.06 | <1 | 7  | 54       | 181        | 3.13         | <10        | 0.51         | 580  | 7  | 0.05 | 5   | 940  | 14       | <5 <20           | 104 |           | 99        | <10 | 12       | 24       |
| 22    | 10079 | 8.0  | 0.54 | 290 | 55  | 10 | 4.85 | <1 | 16 | 80       | 53         | 6.34         | <10        | 0.27         | 855  | 17 | 0.02 | 5   | 860  | 22       | <5 <20           |     |           | 41        | <10 | 7        | 20       |
| 23    | 10080 | 0.4  | 88.0 | 95  | 40  | <5 | 2.12 | <1 | 9  | 79       | 120        | 4.16         | <10        | 0.57         | 794  | 5  | 0.03 | 3   | 1200 | 22       | <5 <20           |     | <0.01 <10 |           | <10 |          | 36       |
| 24    | 10081 | 0.2  | 0.75 | 35  | 130 | <5 | 1.85 | <1 | 7  | 81       | 107        | 3.16         | <10        | 0.47         | 665  | 4  | 0.05 | 5   | 1130 | 16       | <5 <20           |     | <0.01 <10 | 86        |     |          | 26       |
| 25    | 10082 | 0.3  | 0.71 | 20  | 190 | <5 | 3.46 | <1 | 6  | 58       | 136        | 2.72         | <10        | 0.49         | 1084 | 5  | 0.05 | 3   | 910  | 14       | <5 <20           | 175 | <0.01 <10 | 95        | <10 | 22       | 22       |
|       |       |      |      |     |     |    |      |    |    |          |            |              |            |              |      |    |      |     |      |          |                  |     | 0.04 .40  | 404       | -40 | 44       | 04       |
| 26    | 10083 | 0.3  | 0.69 | 20  | 120 | <5 | 1.73 | <1 | 8  | 80       | 124        | 3.03         | <10        | 0.47         | 660  | 6  | 0.05 | 4   | 890  | 14       | <5 <20           |     | <0.01 <10 |           | <10 |          | 24       |
| 27    | 10085 | 0.2  | 0.70 | 10  | 220 | <5 | 2.13 | <1 | 8  | 59       | 239        | 2.79         | <10        | 0.51         | 654  | 5  | 0.06 | 4   | 910  | 14       | <5 <20           | 398 |           |           | <10 |          | 25       |
| 28    | 10086 | <0.2 | 0.60 | 5   | 180 | <5 | 1.54 | <1 | 11 | 75       | 50         | 2.79         | <10        | 0.44         | 526  | 5  | 0.06 | 4   | 890  | 14       | <5 <20           | 273 |           |           | <10 | 6        | 23<br>26 |
| 29    | 10087 | <0.2 | 0.65 | 15  | 155 | <5 | 1.93 | <1 | 8  | 62       | 145        | 2.89         | <10        | 0.46         | 647  | 51 | 0.05 | 5   | 970  | 14       | <5 <20           | 106 |           |           |     | 11       | 26<br>27 |
| 30    | 10088 | 0.5  | 0.85 | 15  | 90  | <5 | 2.30 | <1 | 9  | 81       | 959        | 3.72         | <10        |              | 754  | 16 | 0.06 | 4   | 1040 | 14       | <5 <20           | 112 | <0.01 <10 | 113       | <10 | 12       | 21       |
|       |       |      |      |     |     |    |      |    |    |          |            |              | Page       | : 1          |      |    |      |     |      |          |                  |     |           |           |     |          |          |
|       |       |      |      |     |     |    |      |    |    |          |            |              |            |              |      |    |      |     |      |          |                  |     |           |           |     |          |          |


JJ/ga df/5140 XLS/05

### ICP CERTIFICATE OF ANALYSIS AS 2005-5142

## Falconbridge Limited

|                   |            |       |      |    |     |    |      |     |    |     |      |      |     |      |      |     |      |           |      |     |        |     |          |          |         |     |            | _   |
|-------------------|------------|-------|------|----|-----|----|------|-----|----|-----|------|------|-----|------|------|-----|------|-----------|------|-----|--------|-----|----------|----------|---------|-----|------------|-----|
| Et #.             | Tag #      | Ag    | Al % | As | Ва  | Bi | Ca % | Cd  | Co | Сг  | Cu   | Fe % | L.a | Mg % | Mn   | Мо  | Na % | <u>Ni</u> | P    | Pb_ | Sb Sn  | Sr  | Ti %     | <u>U</u> | <u></u> | W   | Y          | Zn  |
| 31                | 10089      | 0.4   | 0.88 | 20 | 125 | <5 | 1.85 | <1  | 9  | 53  | 473  | 3.68 | <10 | 0.67 | 655  | 35  | 0.05 | 3         | 1170 | 16  | <5 <20 | 114 | 0.02 <   | 10 1     | 34      | <10 | 10         | 29  |
| 32                | 10090      | 0.2   | 0.85 | 5  | 265 | <5 | 2.00 | <1  | 7  | 77  | 124  | 2.75 | <10 | 0.59 | 582  | 7   | 0.07 | 2         | 1100 | 14  | <5 <20 | 153 | 0.02 <   | 10 1     | 00      | <10 | 10         | 24  |
| 33                | 10061      | 1.1   | 1.14 | <5 | 110 | <5 | 1.64 | <1  | 13 | 34  | 4088 | 3.65 | <10 | 0.93 | 668  | 2   | 0.16 | 18        | 1630 | 20  | <5 <20 | 107 | 0.13 <   | 10 1     | 70      | <10 | 13         | 48  |
| 34                | 10077      | < 0.2 | 3.27 | 20 | 80  | <5 | 2.97 | <1  | 36 | 59  | 107  | 8.23 | <10 | 2.96 | 1026 | <1  | 0.03 | 20        | 2110 | 46  | <5 <20 | 76  | 0.12 <   | 10 2     | 66      | <10 | 13         | 84  |
| 35                | 10084      | 0.3   | 0.80 | 90 | 150 | <5 | 0.26 | <1  | 67 | 235 | 437  | >10  | <10 | 0.12 | 472  | 123 | 0.05 | 439       | 210  | 96  | <5 <20 | 11  | <0.01 <  | 10       | 25      | <10 | <1         | 399 |
| QC DA1            |            |       |      |    |     |    |      |     |    |     |      |      |     |      |      |     |      |           |      |     |        |     |          |          |         |     |            |     |
| Resplit:          | :<br>10056 | 0.3   | 0.72 | 10 | 165 | <5 | 1.56 | <1  | 4  | 130 | 149  | 1.63 | <10 | 0.62 | 449  | 4   | 0.02 | 9         | 1210 | 14  | <5 <20 | 62  | <0.01 <  | 10 1     | 36      | <10 | 11         | 18  |
| '                 | 10030      | 0.5   | 0.12 | ,, | 105 | 5  | 1.00 | - 1 | •  | ,00 | 175  | 1.00 | -10 | 0.01 | -110 | ·   | D.01 | •         | 1-7- |     |        |     |          |          |         |     |            |     |
| Repeat:           | •          |       |      |    |     |    |      |     |    |     |      |      |     |      |      |     |      |           |      |     |        |     |          |          |         |     |            |     |
| 1                 | 10056      | 0.2   | 0.73 | 15 | 185 | <5 | 1.73 | <1  | 4  | 118 | 150  | 1.75 | <10 | 0.64 | 521  | 3   | 0.02 | 8         | 1350 | 14  | <5 <20 | 73  | < 0.01 < | 10 1     | 45      | <10 | 12         | 19  |
| 10                | 10066      | 0.3   | 0.85 | 50 | 120 | <5 | 2.38 | <1  | 7  | 110 | 89   | 2.72 | <10 | 0.55 | 848  | 13  | 0.05 | 4         | 1010 | 18  | <5 <20 | 103 | 0.03 <   | 10       | 67      | <10 | <b>1</b> 1 | 22  |
| 19                | 10075      | 0.2   | 0.85 | 20 | 210 | <5 | 2.03 | <1  | 6  | 67  | 104  | 2.73 | <10 | 0.67 | 790  | 35  | 0.05 | 4         | 910  | 16  | <5 <20 | 72  | <0.01 <  | 10       | 88      | <10 | 11         | 23  |
| ,,                |            | J.L   | 5.50 |    |     | •  | 30   | ·   | Ū  |     | 1    |      | - 4 |      |      |     |      |           |      |     |        |     |          |          |         |     |            |     |
| Standar<br>GEO'05 |            | 1.5   | 1.34 | 65 | 155 | <5 | 1.36 | <1  | 19 | 58  | 86   | 3.65 | <10 | 0.74 | 564  | <1  | 0.02 | 29        | 690  | 24  | <5 <20 | 56  | 0.11 <   | 10       | 70      | <10 | 10         | 75  |

ECO TECH CABORATORY LTD.
Jutta Jealouse
BC Certified Assayer



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com

www.ecotechlab.com

29-Sep-05

# **CERTIFICATE OF ASSAY AS 2005-5143**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 53

Samples Submitted by: Allan Huard

|       |       | Au    | Αu     |   |
|-------|-------|-------|--------|---|
| ET #. | Tag # | (g/t) | (oz/t) |   |
| 1     | 10021 | 0.16  | 0.005  |   |
| 2     | 10022 | 0.17  | 0.005  |   |
| 3     | 10023 | 0.10  | 0.003  |   |
| 4     | 10024 | 0.72  | 0.021  |   |
| 5     | 10025 | 0.09  | 0.003  | • |
| 6     | 10027 | 0.04  | 0.001  |   |
| 7     | 10028 | 0.10  | 0.003  |   |
| 8     | 10029 | 0.11  | 0.003  |   |
| 9     | 10030 | 0.08  | 0.002  |   |
| 10    | 10031 | 0.25  | 0.007  |   |
| 11    | 10032 | 0.30  | 0.009  |   |
| 12    | 10033 | 0.27  | 0.008  |   |
| 13    | 10034 | 0.25  | 0.007  |   |
| 14    | 10035 | 0.20  | 0.006  |   |
| 15    | 10036 | 0.19  | 0.006  |   |
| 16    | 10037 | 0.22  | 0.006  |   |
| 17    | 10038 | 0.38  | 0.011  |   |
| 18    | 10039 | 0.09  | 0.003  |   |
| 19    | 10040 | 0.09  | 0.003  |   |
| 20    | 10041 | 0.14  | 0.004  |   |
| 21    | 10043 | 0.09  | 0.003  |   |
| 22    | 10044 | 0.18  | 0.005  |   |
| 23    | 10045 | 0.13  | 0.004  |   |
| 24    | 10046 | 0.44  | 0.013  |   |
| 25    | 10047 | 0.17  | 0.005  |   |
| 26    | 10048 | 0.29  | 0.008  |   |

ECOTECH ABORATORY LTD.

Jutta Jearquise

B.C. Certified Assay

|                                             |                                  | Au                           | Au                               |  |
|---------------------------------------------|----------------------------------|------------------------------|----------------------------------|--|
| ET#                                         | Tag #                            | (g/t)                        | (oz/t)                           |  |
| 27                                          | 10050                            | 0.39                         | 0.011                            |  |
| 28                                          | 10051                            | 0.18                         | 0.005                            |  |
| 29                                          | 10052                            | 0.23                         | 0.007                            |  |
| 30                                          | 10053                            | 0.44                         | 0.013                            |  |
| 31                                          | 10054                            | 0.08                         | 0.002                            |  |
| 32                                          | 10055                            | 0.04                         | 0.001                            |  |
| 33                                          | 10026                            | 0.38                         | 0.011                            |  |
| 34                                          | 10049                            | < 0.03                       | <0.001                           |  |
| 35                                          | 10042                            | 0.07                         | 0.002                            |  |
| QC DATA:<br>Repeats:<br>1<br>10<br>19<br>23 | 10021<br>10031<br>10040<br>10045 | 0.13<br>0.25<br>0.08<br>0.15 | 0.004<br>0.007<br>0.002<br>0.004 |  |
| Resplit:<br>1                               | 10021                            | 0.24                         | 0.007                            |  |
| Standard:<br>SH13                           |                                  | 1.31                         | 0.038                            |  |

JJ/ga XLS/05

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive

KAMLOOPS, B.C. V2C 6T4

Fax : 250-573-4557

Phone: 250-573-5700

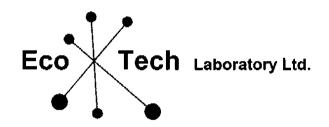
Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Alian Huard

No. of samples received: 35 Sample type:Rock/Pulp Project #: 301 Shipment #: 53

Samples submitted by: Mike Savell

| Values | in ppn | ı unless | otherwise | reported |
|--------|--------|----------|-----------|----------|
|--------|--------|----------|-----------|----------|


| Et #.   | Tag#  | Ag         | AI % | As       | Ва       | Bi | Ca %  | Cd | Co | Cr. | Cu          | Fe % | La   | Mg % | Mn   | Мо  | Na % | Ni  | P    | Pb | Sb Sn        | Sr         | Ti % U                | V   |     | Y       | Zn  |
|---------|-------|------------|------|----------|----------|----|-------|----|----|-----|-------------|------|------|------|------|-----|------|-----|------|----|--------------|------------|-----------------------|-----|-----|---------|-----|
| 1       | 10021 | 1.1        | 2.43 | 45       | 65       | <5 | 3.95  | <1 | 25 | 81  | 1176        | 6.30 | <10  | 2.06 | 1424 | 14  |      | 23  | 1250 | 18 | <5 <20       | 135        | 0.08 < 10             |     | <10 | 9       | .56 |
| 2       | 10022 | 0.6        | 2.05 | 65       | 60       | <5 | 3.56  | <1 | 24 | 101 | 1255        | 5.04 | <10  | 2.11 | 1353 | 23  | 0.03 | 33  | 950  | 14 | <5 <20       | 92         | 0.09 < 10             |     | <10 | 8       | 40  |
| 3       | 10023 | 0.4        | 2.03 | 15       | 80       | <5 | 3.74  | <1 | 20 | 96  | 746         | 4.78 | <10  | 2.02 | 1196 | 4   | 0.03 |     | 1140 | 16 | <5 <20       | 91         | 0.10 <10              |     | <10 |         | 38  |
| 4       | 10024 | 1.0        | 1.92 | 60       | 55       | <5 | 2.79  | <1 | 29 | 27  | 1779        | 6.07 | <10  | 1.80 | 848  | 24  | 0.04 |     |      | 14 | <5 <20       | 70         | 0.12 <10              |     | <10 |         | 37  |
| 5       | 10025 | 0.3        | 2.41 | 15       | 85       | <5 | 3.01  | <1 | 23 | 22  | 1017        | 5.78 | <10  | 2.57 | 945  | 21  | 0.05 | 5   | 2160 | 20 | <5 <20       | 70         | 0.15 <10              | 259 | <10 | 16      | 34  |
| 6       | 10027 | 0.3        | 2.30 | 25       | 80       | <5 | 3.54  | <1 | 26 | 13  | 909         | 6.31 | <10  | 2.31 | 1083 | 36  | 0.04 | 8   | 1930 | 20 | <5 <20       | 92         | 0.18 <10              | 280 | <10 | 16      | 47  |
| 6<br>7  | 10027 | 0.5        | 1.77 | 30       | 80       | <5 | 3.47  | <1 | 19 | 25  | 1575        | 4.39 | <10  | 1.75 | 1089 | 24  | 0.06 | 5   | 2250 | 14 | <5 <20       | 80         | 0.12 <10              |     | <10 |         | 31  |
| •       | 10028 | 0.6        | 2.03 | 10       | 80       | <5 | 3.26  | <1 | 23 | 12  | 2732        | 5.16 | <10  | 2.00 | 1241 | 14  | 0.03 | 7   | 2090 | 14 | <5 <20       | 80         | 0.14 < 10             | 243 | <10 | 15      | 35  |
| 8       | 10029 | 0.6        | 1.83 | 10       | 80       | <5 | 3.37  | <1 | 23 | 30  | 1995        | 5.02 | <10  | 1.83 | 871  | 25  | 0.05 |     | 1650 | 14 | <5 <20       | 72         | 0.15 < 10             |     | <10 |         | 34  |
| 9<br>10 | 10030 | 2.3        | 1.75 | 20       | 40       | <5 | 3.10  | <1 | 26 | 40  | 6268        | 5.10 | <10  | 1.62 | 932  | 24  | 0.04 |     | 1130 | 10 | <5 <20       | 82         | 0.12 < 10             | 192 | <10 | 9       | 43  |
| 10      | 10031 | 2.0        | 1.73 | 20       | 70       | -5 | 3.10  | -, | 20 | .0  | <b>VLUU</b> | 0.10 | . •  | 1.02 |      |     |      |     |      |    |              |            |                       |     |     |         |     |
| 11      | 10032 | 1.6        | 2.13 | 35       | 55       | <5 | 3.89  | <1 | 25 | 30  | 3314        | 6.05 | <10  | 2.03 | 1611 | 28  | 0.03 | 6   | 1990 | 16 | <5 <20       | 76         | 0.09 < 10             | 218 | <10 | 16      | 49  |
| 12      | 10033 | 1.7        | 2.12 | 10       | 70       | <5 | 3.09  | <1 | 27 | 15  | 4308        | 5.25 | <10  | 2.12 | 825  | 52  | 0.04 | 9   | 2130 | 14 | <5 <20       | 76         | 0.13 < 10             | 246 | <10 | 13      | 45  |
| 13      | 10034 | 1.0        | 1.82 | 10       | 75       | <5 | 3.19  | <1 | 24 | 69  | 3548        | 5.12 | <10  | 1.75 | 667  | 43  | 0.05 | 13  | 1510 | 12 | <5 <20       | 80         | 0.13 < 10             | 260 | <10 | 13      | 40  |
| 14      | 10035 | 1.2        | 1.55 | 10       | 70       | <5 | 3.77  | <1 | 26 | 45  | 2723        | 4.89 | <10  | 1.43 | 679  | 15  | 0.05 | 12  | 1680 | 10 | <5 <20       | 135        | 0.14 < 10             | 223 | <10 | 15      | 42  |
| 15      | 10036 | 0.9        | 1.77 | 10       | 65       | <5 | 3.02  | <1 | 29 | 57  | 2745        | 5.53 | <10  | 1.60 | 605  | 39  | 0.07 | 14  | 1750 | 12 | <5 <20       | 259        | 0.16 <10              | 213 | <10 | 14      | 37  |
| 10      | 10000 | 0.0        |      |          |          | _  | -     |    |    |     |             |      |      |      |      |     |      |     |      |    |              |            |                       |     |     |         |     |
| 16      | 10037 | 1.1        | 1.56 | 15       | 60       | <5 | 3.03  | <1 | 21 | 50  | 2580        | 4.56 | <10  | 1.38 | 615  | 20  | 0.05 | 11  | 1700 | 10 | <5 <20       | 88         | 0.15 <10              |     | <10 |         | 44  |
| 17      | 10038 | 1.6        | 1.58 | 10       | 65       | <5 | 3.67  | <1 | 30 | 62  | 4968        | 4.90 | <10  | 1.33 | 588  | 15  | 80.0 | 11  | 1630 | 10 | <5 <20       | 121        | 0.16 <10              |     | <10 |         | 39  |
| 18      | 10039 | 8.0        | 1.50 | 10       | 75       | <5 | 2.42  | <1 | 19 | 58  | 1895        | 4.25 | <10  | 1.37 | 572  | 6   | 0.05 | 9   |      | 14 | <5 <20       | 84         | 0.15 <10              | 185 |     | 15      | 42  |
| 19      | 10040 | 0.6        | 1.14 | 10       | 55       | <5 | 2.51  | <1 | 16 | 83  | 1197        | 3.01 | <10  | 0.81 | 562  | 74  | 0.06 | 7   | 970  | 10 | <5 <20       | 91         | 0.10 <10              | 90  |     | 13      | 37  |
| 20      | 10041 | 0.8        | 1.06 | 15       | 40       | <5 | 2.55  | <1 | 14 | 64  | 1067        | 3.59 | <10  | 0.76 | 607  | 195 | 0.03 | 8   | 870  | 12 | <5 <20       | 81         | 0.08 <10              | 70  | <10 | 12      | 43  |
|         |       |            |      |          |          |    |       |    |    |     |             |      |      |      |      |     |      | _   |      |    | .5 .00       | 00         | -0.04 -40             | 65  | <10 | 9       | 34  |
| 21      | 10043 | 1.3        | 1.31 | 10       | 45       | <5 | 2.22  | <1 | 17 | 68  | 1734        | 3.50 | <10  | 0.88 | 570  | 25  | 0.02 | -   | 1210 | 12 | <5 <20       |            | <0.01 <10<br>0.05 <10 |     |     | 9<br>17 | 32  |
| 22      | 10044 | 0.6        | 1.74 | 20       | 60       | <5 | 3.56  | <1 | 24 | 46  | 2933        | 4.91 | <10  | 1.47 | 733  | 37  | 0.04 |     | 1870 | 14 | <5 <20       | 135        | 0.05 < 10             | 153 | <10 | 11      | 35  |
| 23      | 10045 | 0.9        | 1.78 | 15       | 50       | <5 | 4.39  | <1 | 21 | 82  | 2588        | 4.86 | <10  | 1.64 | 917  | 32  | 0.05 |     | 1180 | 12 | <5 <20       | 192<br>118 | 0.09 < 10             |     | <10 | 12      | 42  |
| 24      | 10046 | 1.2        | 1.65 | 65       | 55       | <5 | 2.83  | <1 | 22 | 42  | 2247        | 6.43 | <10  | 1.42 | 1060 | 16  | 0.03 | 10  |      | 16 | <5 <20       |            | -                     |     |     |         | 35  |
| 25      | 10047 | 8.0        | 1.61 | 10       | 75       | <5 | 3.25  | <1 | 22 | 41  | 2505        | 4.94 | <10  | 1.33 | 886  | 18  | 0.04 | 11  | 1820 | 14 | <5 <20       | 130        | 0.09 <10              | 172 | ×10 | 17      | 30  |
| 00      | 40040 | 0.0        | 4.25 | 20       | 45       | <5 | 3.58  | <1 | 20 | 54  | 2834        | 4.51 | <10  | 1.14 | 800  | 17  | 0.04 | 13  | 1430 | 10 | <5 <20       | 161        | 0.04 <10              | 146 | <10 | 14      | 32  |
| 26      | 10048 | 0.9<br>0.7 | 1.35 | 20       | 45<br>55 | <5 | 3.25  | <1 | 15 | 57  | 1143        | 4.31 | <10  | 1.56 | 1026 | 10  | 0.04 | 11  |      | 16 | <5 <20       | 141        | 0.04 <10              |     | <10 | 15      | 39  |
| 27      | 10050 |            | 1.70 | 20       | 55<br>50 | <5 | 2.59  | <1 | 18 | 61  | 2399        | 3.91 | <10  | 1.54 | 881  | 15  | 0.05 | 12  |      | 14 | <5 <20       | 95         | 0.05 <10              |     | <10 | 15      | 34  |
| 28      | 10051 | 1.0        | 1.64 | 10<br>15 | 50<br>70 | <5 | 2.70  | <1 | 18 | 80  |             | 3.94 | <10  | 1.86 | 997  | 14  | 0.04 |     | 1790 | 20 | <5 <20       | 89         | 0.05 < 10             |     |     |         | 44  |
| 29      | 10052 | 1.2        | 1.79 | 15       | 70       | ~5 | Z. FU | ~1 | 10 | UU  | 3100        | J.J4 | ~ 10 | 1.00 | 9.01 | 1-7 | 0.0⊣ | • • | 1,00 |    | <b>\$</b> 20 |            |                       |     |     |         |     |

| Et #.   | Tag #        | Ag          | Al % | As  | Ва  | Bi | Ca % | Cd | Co | Cr  | Cu            | Fe % | La  | Mg % | Mn   | Mo             | Na % | Ni  | Р    | Pb | Sb Sn  | Sr  | Ti% U       | ٧   | W   | ΥΥ | Zn  |
|---------|--------------|-------------|------|-----|-----|----|------|----|----|-----|---------------|------|-----|------|------|----------------|------|-----|------|----|--------|-----|-------------|-----|-----|----|-----|
| 30      | 10053        | 1.3         | 1.65 | 35  | 35  | <5 | 1.69 | <1 | 15 | 79  | 1315          | 4.50 | <10 | 1.36 | 683  | 34             | 0.02 | 13  | 1010 | 16 | <5 <20 | 61  | 0.01 <10    | 125 | <10 | 14 | 37  |
| 31      | 10054        | 0.7         | 0.88 | 15  | 105 | <5 | 2.19 | <1 | 5  | 100 | 1019          | 1.88 | <10 | 0.71 | 593  | 14             | 0.02 | 7   | 840  | 10 | <5 <20 | 86  | <0.01 <10   | 82  | <10 | 12 | 16  |
| 32      | 10055        | 0.3         | 0.79 | 5   | 130 | <5 | 1.74 | <1 | 3  | 122 | 480           | 1.59 | <10 | 0.67 | 479  | 4              | 0.03 | 6   | 940  | 8  | <5 <20 | 66  | < 0.01 < 10 | 124 | <10 | 12 | 17  |
| 33      | 10026        | 1.1         | 1.19 | <5  | 120 | <5 | 1.62 | <1 | 14 | 35  | 4313          | 3.77 | <10 | 1.04 | 696  | 3              | 0.18 | 18  | 1190 | 16 | <5 <20 | 111 | 0.15 <10    | 182 | <10 | 13 | 46  |
| 34      | 10049        | < 0.2       | 2.88 | 15  | 105 | <5 | 3.54 | <1 | 31 | 60  | 118           | 6.53 | <10 | 2.44 | 841  | <1             | 0.05 | 16  | 1660 | 30 | <5 <20 | 86  | 0.16 <10    | 261 | <10 | 17 | 68  |
| 35      | 10042        | 0.2         | 0.84 | 105 | 150 | <5 | 0.22 | <1 | 62 | 225 | <b>4</b> 21   | >10  | <10 | 0.12 | 473  | 130            | 0.06 | 441 | 100  | 94 | <5 <20 | 11  | <0.01 <10   | 22  | <10 | <1 | 395 |
| QC DAT  | <u>[A:</u>   |             |      |     |     |    |      |    |    |     |               |      |     |      |      |                |      |     |      |    |        |     |             |     |     |    |     |
| Resplit | -            |             |      |     |     |    |      |    |    |     |               |      |     |      |      |                |      |     |      |    |        |     |             |     |     |    |     |
| 1       | 10021        | 1.1         | 2.70 | 50  | 70  | <5 | 4.19 | <1 | 29 | 96  | 1 <b>24</b> 2 | 7.27 | <10 | 2.23 | 1541 | 15             | 0.03 | 25  | 1500 | 24 | <5 <20 | 148 | 0.09 <10    | 174 | <10 | 10 | 62  |
| Repeat  | <del>,</del> |             |      |     |     |    |      |    |    |     |               |      |     |      |      |                |      |     |      |    |        |     |             |     |     |    |     |
| i       | 10021        | <b>1</b> .1 | 2.39 | 40  | 60  | <5 | 3.94 | <1 | 25 | 80  | 1161          | 6.31 | <10 | 2.04 | 1417 | 13             | 0.02 | 22  | 1270 | 20 | <5 <20 | 129 | 0.08 <10    | 153 | <10 | 8  | 59  |
| 10      | 10031        | 2.3         | 1.85 | 25  | 35  | <5 | 3.26 | <1 | 27 | 41  | 6285          | 5.33 | <10 | 1.72 | 976  | 22             | 0.04 | 15  | 1180 | 8  | <5 <20 | 84  | 0.11 <10    | 200 | <10 | 9  | 45  |
| 19      | 10040        | 0.6         | 1.15 | 10  | 55  | <5 | 2.58 | <1 | 16 | 84  | 1215          | 3.10 | <10 | 0.82 | 579  | 7 <del>9</del> | 0.06 | 7   | 1020 | 12 | <5 <20 | 88  | 0.10 <10    | 91  | <10 | 14 | 39  |
| Standar | rd:          |             |      |     |     |    |      |    |    |     |               |      |     |      |      |                |      |     |      |    |        |     |             |     |     |    |     |
| GEO'05  |              | 1.4         | 1.62 | 65  | 175 | <5 | 1.43 | <1 | 19 | 62  | 86            | 3.97 | <10 | 0.84 | 597  | <1             | 0.03 | 29  | 640  | 20 | <5 <20 | 57  | 0.10 <10    | 69  | <10 | 10 | 74  |

ECO TECH LABORATORY LTD. Jutta Jealouse BC Certified Assayer

JJ/ga df/5143 XLS/05

raging the control of the control of



5-Oct-05

10041 Dailas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5145**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type:Core
Project #: 301
Shipment #: 55

Samples submitted by: Mike Savell

|        |       | Au     | Au     |          |
|--------|-------|--------|--------|----------|
| ET#.   | Tag # | (g/t)  | (oz/t) |          |
| 1      | 10091 | 0.11   | 0.003  |          |
| 2      | 10092 | 0.05   | 0.001  |          |
| 2<br>3 | 10093 | 0.04   | 0.001  |          |
| 4      | 10094 | <0.03  | <0.001 |          |
| 5      | 10095 | 0.04   | 0.001  |          |
| 6      | 10097 | 0.06   | 0.002  |          |
| 7      | 10098 | 0.10   | 0.003  |          |
| 8      | 10099 | 0.14   | 0.004  |          |
| 8<br>9 | 10100 | 0.13   | 0.004  |          |
| 10     | 10101 | 0.10   | 0.003  |          |
| 11     | 10102 | 0.03   | 0.001  |          |
| 12     | 10103 | 0.05   | 0.001  |          |
| 13     | 10104 | <0.03  | <0.001 |          |
| 14     | 10105 | 0.06   | 0.002  |          |
| 15     | 10106 | 0.04   | 0.001  |          |
| 16     | 10107 | <0.03  | <0.001 |          |
| 17     | 10108 | < 0.03 | <0.001 |          |
| 18     | 10109 | 0.04   | 0.001  |          |
| 19     | 10110 | 0.06   | 0.002  |          |
| 20     | 10111 | 0.03   | 0.001  |          |
| 21     | 10113 | 1.14   | 0.033  |          |
| 22     | 10114 | 0.07   | 0.002  |          |
| 23     | 10115 | 0.20   | 0.006  |          |
| 24     | 10116 | 0.05   | 0.001  |          |
| 25     | 10117 | 0.08   | 0.002  |          |
| 26     | 10118 | 0.06   | 0.002  | ( \A ( ) |

ECO TECH LABORATOR Jutta Jealouse B.C. Certified Assayer

## Falconbridge Limited AS5-5145

|           |       | Au    | Au      |  |
|-----------|-------|-------|---------|--|
| ET #.     | Tag # | (g/t) | (oz/t)  |  |
| 27        | 10120 | <0.03 | <0.001  |  |
| 28        | 10121 | 0.09  | 0.003   |  |
| 29        | 10122 | 0.09  | 0.003   |  |
| 30        | 10123 | 0.06  | 0.002   |  |
| 31        | 10124 | 0.17  | 0.005   |  |
| 32        | 10125 | 0.21  | 0.006   |  |
| 33        | 10096 | 0.38  | 0.011   |  |
| 34        | 10119 | <0.03 | < 0.001 |  |
| 35        | 10112 | 0.08  | 0.002   |  |
|           |       |       |         |  |
| QC DATA:  |       |       |         |  |
| Repeats:  |       |       |         |  |
| 1         | 10091 | 0.07  | 0.002   |  |
| 19        | 10110 | 0.04  | 0.001   |  |
| 21        | 10113 | 1.15  | 0.034   |  |
|           |       |       |         |  |
| Resplit:  |       |       |         |  |
| 1         | 10091 | 0.05  | 0.001   |  |
|           |       |       | ,       |  |
| Standard: |       |       |         |  |
| SH13      |       | 1.30  | 0.038   |  |
|           |       |       |         |  |

JJ/kk XLS/05 ECO TECH LABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

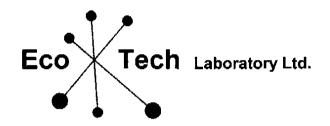
Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core **Project #: 301** 

Shipment #: 55

Samples submitted by: Mike Savell


Values in ppm unless otherwise reported

| Et #. | Tag#  | Ag           | Al %         | As      | Ва         | Bi       | Ca % | Cd       | Co     | Cr         | Cu   | Fe %  | La   | Mg % | Mn  | Мо | Na % | Ni | P    | Рb | Sb Sn   | Şr  | Tí % U     | ٧   | W   | Υ   | Žn         |
|-------|-------|--------------|--------------|---------|------------|----------|------|----------|--------|------------|------|-------|------|------|-----|----|------|----|------|----|---------|-----|------------|-----|-----|-----|------------|
| 1     | 10091 | 0.2          | 1.01         | 25      | 125        | <5       | 1.78 | <1       | 11     | 66         | 136  | 4.27  | <10  | 0.81 | 611 | 3  | 0.07 | 3  | 1100 | 14 | <5 <20  | 209 | 0.07 <10   | 154 | <10 | 7   | 26         |
| 2     | 10092 | < 0.2        | 0.89         | 15      | 435        | <5       | 2.00 | <1       | 8      | 75         | 107  | 3.52  | <10  | 0.68 | 620 | 2  | 0.08 | 5  | 1060 | 10 | <5 <20  | 220 | 0.07 < 10  | 148 | <10 | 8   | 25         |
| 3     | 10093 | < 0.2        | 0.83         | 5       | 345        | <5       | 2.23 | <1       | 8      | 63         | 136  | 3.53  | <10  | 0.61 | 634 | 8  | 0.07 | 3  | 1080 | 10 | <5 <20  | 222 | 0.06 <10   | 152 | <10 | 9   | 24         |
| 4     | 10094 | < 0.2        | 1.03         | 10      | 770        | <5       | 2.18 | <1       | 7      | 61         | 90   | 3.40  | <10  | 0.88 | 663 | <1 | 0.07 | 3  | 1110 | 14 | <5 <20  | 345 | 0.08 <10   | 153 | <10 | 8   | 25         |
| 5     | 10095 | <0.2         | 0.86         | 10      | 285        | <5       | 1.85 | <1       | 8      | 59         | 89   | 3.34  | <10  | 0.65 | 672 | 5  | 0.07 | 4  | 1040 | 12 | <5 <20  | 172 | 0.07 <10   | 147 | <10 | 9   | 25         |
| 6     | 10097 | <0.2         | 0.67         | 10      | 170        | <5       | 1.43 | <1       | 7      | 57         | 66   | 2.99  | <10  | 0.50 | 539 | <1 | 0.06 | 4  | 900  | 10 | <5 <20  | 137 | 0.06 <10   | 112 | <10 | 7   | 19         |
| 7     | 10097 | 0.2          |              | 35      | 95         | <5       | 1.80 | <1       | 8      | 54         | 119  | 3.63  | <10  | 0.53 | 724 | 18 | 0.04 | 4  | 970  | 14 | <5 <20  | 232 | 0.03 <10   | –   | <10 | 8   | 26         |
| 8     | 10090 | 0.2          | 0.73         | 40      | 50         | <5       | 2.10 | <1       | 8      | 56         | 186  | 3.76  | <10  | 0.44 | 588 | 7  | 0.04 | 4  | 970  | 10 | <5 <20  | 132 | 0.01 <10   | 94  | <10 | 9   | 19         |
| 9     | 10100 | 0.3          | 0.74         | 20      | 50         | <5       | 2.05 | <1       | 12     | 66         | 314  | 3.40  | <10  | 0.48 | 570 | 7  | 0.04 | 2  | 900  | 12 | <5 <20  | 185 | 0.01 <10   |     |     | 11  | 19         |
| 10    | 10100 | 0.5          | 0.80         | 20      | 70         | <5       | 2.03 | <1       | 9      | 51         | 229  | 3.40  | <10  | 0.46 | 559 | 13 | 0.04 | 2  | 1000 | 10 | <5 <20  |     | <0.01 <10  |     |     | 12  | 24         |
| 10    | 10101 | 0.5          | 0.00         | 20      | 10         | -5       | 2.13 | ~1       | Þ      | J1         | 225  | J. 18 | ~10  | 0.40 | 339 | 13 | 0.04 | 2. | 1000 | 10 | 15 120  | 155 | 10.01      | 110 | -10 | 1 = | <b>-</b> 1 |
| 11    | 10102 | 0.2          | 0.83         | 5       | 670        | <5       | 2.15 | <1       | 4      | 77         | 300  | 3.09  | <10  | 0.59 | 500 | 18 | 0.07 | 4  | 950  | 10 | <5 <20  | 234 | <0.01 <10  | 143 | <10 | 13  | 21         |
| 12    | 10103 | 0.3          | 0.82         | 5       | 445        | <5       | 3.10 | <1       | 6      | 50         | 575  | 3.20  | 10   | 0.62 | 566 | 9  | 0.05 | 4  | 920  | 10 | <5 <20  | 236 | <0.01 < 10 | 136 | <10 | 18  | 19         |
| 13    | 10104 | 0.2          | 0.77         | <5      | 215        | <5       | 2.07 | <1       | 7      | 82         | 224  | 2.87  | 10   | 0.38 | 407 | 12 | 0.05 | 2  | 1040 | 8  | <5 <20  | 157 | <0.01 <10  | 97  | <10 | 11  | 17         |
| 14    | 10105 | < 0.2        | 0.85         | 10      | 375        | <5       | 2.02 | <1       | 7      | 61         | 360  | 3.18  | <10  | 0.68 | 498 | 18 | 0.06 | 3  | 990  | 10 | <5 <20  | 155 | <0.01 <10  | 122 | <10 | 12  | 23         |
| 15    | 10106 | <0.2         | 1.03         | 15      | 100        | <5       | 1.96 | <1       | 7      | 68         | 156  | 2.98  | 10   | 0.66 | 717 | 12 | 0.03 | 3  | 1010 | 12 | <5 <20  | 144 | <0.01 <10  | 72  | <10 | 11  | 27         |
| 46    | 10107 | -0.3         | 0.00         | 10      | 415        | <5       | 2.49 | <1       | E      | 50         | 285  | 2.99  | <10  | 0.55 | 657 | 9  | 0.05 | 2  | 970  | 8  | <5 <20  | 183 | <0.01 <10  | 104 | <10 | 14  | 24         |
| 16    |       | <0.2         | 0.80<br>0.78 |         | 665        | <5       | 2.49 |          | 5      | 66         | 125  | 3.25  | 10   | 0.55 | 671 | 12 | 0.05 | 3  | 1000 | 8  | <5 <20  |     | <0.01 <10  |     | <10 |     | 20         |
| 17    | 10108 |              |              | <5      |            | ^⊃<br><5 | 2.81 | <1<br><1 | 4<br>6 | 55         | 370  | 3.23  | <10  | 0.55 | 643 | 24 | 0.05 | 3  | 960  | 8  | <5 <20  |     | <0.01 <10  | 108 | <10 |     | 20         |
| 18    | 10109 |              | 0.76         | 10      | 275        | <5       | 2.42 | <1       | 6      | 88         | 247  | 3.23  | <10  | 0.43 | 623 | 21 | 0.05 | 4  | 1010 | 8  | <5 <20  |     | <0.01 <10  |     | <10 |     | 20         |
| 19    | 10110 |              | 0.82         | 10<br>5 | 235<br>400 | <5       | 2.54 |          | 4      | 54         | 281  | 3.06  | <10  | 0.43 | 796 | 13 | 0.03 |    | 1010 | 8  | <5 <20  |     | <0.01 <10  |     | <10 |     | 23         |
| 20    | 10111 | <b>~</b> 0.∠ | 0.88         | 3       | 400        | ~5       | 2.34 | <1       | 4      | <b>∵</b> 4 | 201  | 3.00  | ~10  | 0.51 | 190 | 13 | 0.03 | ,  | 1010 | Ü  | 70 720  | 044 | 10,01      | Ų.  | -10 | •   | 20         |
| 21    | 10113 | 1.4          | 0.84         | 95      | 35         | <5       | 1.83 | <1       | 14     | 83         | 420  | 6.13  | <10  | 0.50 | 620 | 18 | 0.04 | 4  | 890  | 10 | <5 <20  |     | <0.01 <10  | 87  | <10 | 6   | 24         |
| 22    | 10114 | 0.3          | 0.81         | 20      | 55         | <5       | 2.38 | <1       | 6      | 78         | 589  | 3.24  | <10  | 0.47 | 592 | 8  | 0.04 | 4  | 920  | 10 | <5 <20  |     | <0.01 <10  | 83  | <10 | 9   | 25         |
| 23    | 10115 | 0.3          | 0.81         | 20      | 60         | <5       | 1.73 | <1       | 7      | 75         | 236  | 3.73  | <10  | 0.46 | 502 | 10 | 0.04 | 6  | 1110 | 10 | <5 <20  |     | <0.01 <10  | 93  | <10 | 9   | 21         |
| 24    | 10116 | 0.2          | 0.85         | 10      | 110        | <5       | 2.18 | <1       | 7      | 59         | 178  | 3.42  | <10  | 0.58 | 564 | 9  | 0.39 | 4  | 1070 | 10 | <5 <20  |     | <0.01 <10  | 100 |     | 12  | 24         |
| 25    | 10117 | 0.3          | 0.91         | 25      | 50         | <5       | 2.13 | <1       | 7      | 80         | 308  | 4.12  | <10  | 0.67 | 550 | 18 | 0.06 | 4  | 1030 | 10 | <5 <20  | 135 | <0.01 <10  | 136 | <10 | 12  | 23         |
| 26    | 10118 | 0.4          | 0.89         | 25      | 160        | <5       | 2.07 | <1       | 8      | 58         | 645  | 3.76  | <10  | 0.69 | 556 | 15 | 0.05 | 5  | 1060 | 10 | <5 <20  | 128 | 0.02 <10   | 135 | <10 | 13  | 24         |
| 27    | 10120 | <0.2         | 1.84         | 10      | 110        | <5       | 0.87 | <1       | 27     | 74         | 51   | 4.24  | <10  | 1.61 | 489 | <1 | 0.07 | 37 | 770  | 24 | <5 <20  | 38  | 0.24 <10   | 62  | <10 | 13  | 67         |
| 28    | 10121 | 2.5          | 2.28         | 40      | 50         | <5       | 1.62 | <1       | 28     | 70         | 3428 | 5.22  | <10  | 2.54 | 562 | 4  | 0.05 | 29 | 550  | 26 | 10 < 20 | 43  | 0.17 <10   | 86  | <10 | 8   | 83         |
| 29    | 10121 | 1.1          | 1.25         | 55      | 75         | <5       | 1.84 | <1       | 17     | 83         | 1582 | 3.39  | <10  | 1.15 | 392 | <1 | 0.04 | 21 | 790  | 16 | <5 <20  | 43  | 0.14 <10   | 88  | <10 | 16  | 43         |
| 30    | 10123 | 1.1          | 1.22         | 40      | 80         | <5       | 1.42 | <1       | 11     | 89         | 1631 | 2.84  | <10  | 1.06 | 351 | 6  | 0.03 | 15 | 730  | 16 | <5 <20  | 31  | 0.10 <10   | 74  |     | 15  | 47         |
|       |       |              |              |         |            |          |      |          |        |            |      |       | Page | 1    |     |    |      |    |      |    |         |     |            |     |     |     |            |

## Falconbridge Limited

| Et #.    | Tag#      | Ag    | Al % | As  | Ва  | Ві | Ca % | Cd | Co | Ur_ | Cu   | re % | La  | IVIG % | IViii | IVIO | Na % | NI  | <u> </u> | PD | 50 SII | <u> </u> | 11% 0     | V   | 89  | į. | 411 |
|----------|-----------|-------|------|-----|-----|----|------|----|----|-----|------|------|-----|--------|-------|------|------|-----|----------|----|--------|----------|-----------|-----|-----|----|-----|
| 31       | 10124     | 2.5   | 1.65 | 100 | 70  | <5 | 1.37 | 1  | 15 | 105 | 3585 | 4.00 | <10 | 1.37   | 478   | 9    | 0.04 | 20  | 680      | 30 | <5 <20 | 32       | 0.10 <10  | 91  | <10 | 11 | 120 |
| 32       | 10125     | 2.5   | 1.34 | 100 | 75  | <5 | 1.53 | 1  | 12 | 101 | 3350 | 3.12 | <10 | 0.92   | 394   | 3    | 0.04 | 18  | 740      | 28 | 10 <20 | 37       | 0.11 <10  | 78  | <10 | 14 | 124 |
| 33       | 10096     | 1.1   | 1.22 | 10  | 100 | <5 | 1.58 | <1 | 14 | 24  | 4382 | 3.87 | <10 | 1.06   | 713   | <1   | 0.20 | 18  | 1740     | 16 | <5 <20 | 124      | 0.16 < 10 | 186 | <10 | 17 | 48  |
| 34       | 10119     | < 0.2 | 2.92 | 15  | 95  | <5 | 5.66 | <1 | 29 | 55  | 115  | 6.62 | <10 | 2.52   | 920   | <1   | 0.03 | 17  | 1480     | 30 | <5 <20 | 134      | 0.15 <10  | 250 | <10 | 17 | 65  |
| 35       | 10112     | 0.2   | 0.97 | 105 | 135 | <5 | 0.24 | 1  | 53 | 237 | 442  | >10  | <10 | 0.10   | 430   | 127  | 0.05 | 395 | 90       | 98 | <5 <20 | 14       | <0.01 <10 | 30  | <10 | <1 | 423 |
|          |           |       |      |     |     |    |      |    |    |     |      |      |     |        |       |      |      |     |          |    |        |          |           |     |     |    |     |
|          |           |       |      |     |     |    |      |    |    |     |      |      |     |        |       |      |      |     |          |    |        |          |           |     |     |    |     |
| QC DAT   | <u>A:</u> |       |      |     |     |    |      |    |    |     |      |      |     |        |       |      |      |     |          |    |        |          |           |     |     |    |     |
|          |           |       |      |     |     |    |      |    |    |     |      |      |     |        |       |      |      |     |          |    |        |          |           |     |     |    |     |
| Resplit: |           |       |      |     |     |    |      |    |    |     |      |      |     |        |       |      |      |     |          |    |        |          |           |     |     | _  |     |
| 1        | 10091     | 0.2   | 0.99 | 25  | 130 | <5 | 1.85 | <1 | 10 | 62  | 137  | 4.17 | <10 | 0.80   | 610   | 4    | 0.06 | 4   | 1030     | 14 | <5 <20 | 209      | 0.06 <10  | 150 | <10 | 1  | 26  |
| D4-      |           |       |      |     |     |    |      |    |    |     |      |      |     |        |       |      |      |     |          |    |        |          |           |     |     |    |     |
| Repeat:  | 10004     | 0.0   | 0.02 | ae. | 420 | E  | 1.68 | 24 | 10 | 61  | 127  | 4.06 | <10 | 0.76   | 580   | 3    | 0.06 | 3   | 1000     | 12 | <5 <20 | 181      | 0.06 <10  | 144 | <10 | 6  | 25  |
| 10       | 10091     | 0.2   | 0.93 | 25  | 120 | <5 |      | <1 | 10 | 61  |      |      |     |        |       | -    |      | _   |          | 12 | <5 <20 |          | <0.00 <10 | 116 | <10 | 14 | 23  |
| 10       | 10101     | 0.5   | 0.81 | 20  | 70  | <5 | 2.14 | <1 | 9  | 52  | 234  | 3.15 | <10 | 0.47   | 565   | 13   | 0.05 | 3   | 960      |    |        |          |           |     |     |    |     |
| 19       | 10110     | 0.2   | 0.83 | 10  | 220 | <5 | 2.47 | <1 | 6  | 90  | 252  | 3.29 | <10 | 0.44   | 635   | 21   | 0.06 | 3   | 1030     | 8  | <5 <20 | 189      | <0.01 <10 | 102 | <10 | 14 | 21  |
|          |           |       |      |     |     |    |      |    |    |     |      |      |     |        |       |      |      |     |          |    |        |          |           |     |     |    |     |
| Standari | d:        |       |      |     |     |    |      |    |    |     |      |      |     |        |       |      |      |     |          |    |        |          | 544.45    |     | -40 |    | 77  |
| GEO'05   |           | 1.5   | 1.59 | 60  | 150 | <5 | 1.45 | <1 | 18 | 60  | 87   | 3.58 | <10 | 0.83   | 602   | <1   | 0.03 | 29  | 620      | 24 | <5 <20 | 54       | 0.11 <10  | 67  | <10 | 11 | 77  |

JJ/ga df/5143 XLS/05 ECO TECHNABORATORY LTD.
Jutta Jeliouse
BC Spirified Assaye



4-Oct-05

10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5146**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35 Sample type:Core/Pulp

Project #: 301 Shipment #: 56

Samples submitted by: Mike Savell

|    | <b></b> 44    | T#    | Au<br>(=/\$) | Au<br>(o.=(t) |               |
|----|---------------|-------|--------------|---------------|---------------|
| 14 | ET #.         | Tag # | (g/t)        | (oz/t)        |               |
|    | 1             | 10126 | 0.42         | 0.012         |               |
|    | <b>2</b><br>3 | 10127 | 0.29         | 0.008         |               |
|    |               | 10128 | 0.17         | 0.005         |               |
|    | 4             | 10129 | < 0.03       | <0.001        |               |
|    | 5             | 10130 | <0.03        | <0.001        |               |
|    | 6<br>7        | 10132 | < 0.03       | <0.001        |               |
|    | 7             | 10133 | 0.06         | 0.002         |               |
|    | 8             | 10134 | 0.04         | 0.001         |               |
|    | 9             | 10135 | < 0.03       | <0.001        |               |
|    | 10            | 10136 | <0.03        | <0.001        |               |
|    | 11            | 10137 | <0.03        | <0.001        |               |
|    | 12            | 10138 | < 0.03       | <0.001        |               |
|    | 13            | 10139 | <0.03        | <0.001        |               |
|    | 14            | 10140 | <0.03        | <0.001        |               |
|    | 15            | 10141 | < 0.03       | < 0.001       |               |
|    | 16            | 10142 | < 0.03       | <0.001        |               |
|    | 17            | 10143 | 0.05         | 0.001         |               |
|    | 18            | 10144 | 0.04         | 0.001         |               |
|    | 19            | 10145 | < 0.03       | < 0.001       |               |
|    | 20            | 10146 | 0.10         | 0.003         |               |
|    | 21            | 10148 | 0.15         | 0.004         |               |
|    | 22            | 10149 | 0.16         | 0.005         |               |
|    | 23            | 10150 | 0.05         |               |               |
|    | 24            | 10151 | 0.07         |               |               |
|    | 25            | 10152 | 0.05         |               |               |
|    | 26            | 10153 | 0.12         |               |               |
|    | 27            | 10155 | 0.04         |               |               |
|    |               |       |              |               | 7 / NB/4" / 1 |

ECO TECH LABORATORY LTD.

Yutta Jealguse

B.C. Certified Assays

## Falconbridge Limited AS5-5146

|                                   |                                  | Au                             | Au                                 |  |
|-----------------------------------|----------------------------------|--------------------------------|------------------------------------|--|
| ET #.                             | Tag #                            | (g/t)                          | (oz/t)                             |  |
| 28                                | 10156                            | <0.03                          | <0.001                             |  |
| 29                                | 10157                            | 0.05                           | 0.001                              |  |
| 30                                | 10158                            | 0.08                           | 0.002                              |  |
| 31                                | 10159                            | 0.31                           | 0.009                              |  |
| 32                                | 10131                            | 0.44                           | 0.013                              |  |
| 33                                | 10154                            | <0.03                          | <0.001                             |  |
| 34                                | 10147                            | 0.07                           | <0.001                             |  |
| 35                                | 10200                            | 0.03                           | 0.001                              |  |
| QC DATA:  Repeats:  1  10  19  31 | 10126<br>10136<br>10145<br>10159 | 0.41<br><0.03<br><0.03<br>0.31 | 0.012<br><0.001<br><0.001<br>0.009 |  |
| Resplit:<br>1                     | 10126                            | 0.37                           | 0.011                              |  |
| Standard:<br>SH13                 |                                  | 1.28                           | 0.037                              |  |

JJ/kk XL\$/05 ECO TECH LABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

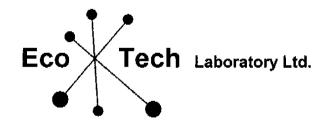
No. of samples received: 35 Sample type:Core

Sample type:Core
Project #: 301
Shipment #: 56

Samples submitted by: Mike Savell

|       |       |       |      |            |     |          |      |          | _          | _          | _    | - ~  |      |      |             | M-  | NL= 0/ | KI!      | В          | Db      | ch en           | Sr         | Ti % U               | ٧        | w    | Υ  | Zn                   |
|-------|-------|-------|------|------------|-----|----------|------|----------|------------|------------|------|------|------|------|-------------|-----|--------|----------|------------|---------|-----------------|------------|----------------------|----------|------|----|----------------------|
| Et #. | Tag # | Ag    | Al % | As         | Ba  |          | Ca % | Çd       | Co         | Cr         |      | Fe % |      | Mg % | <u>Mn</u>   |     | Na %   | Ni       | P_         |         | 5 <20           | 82         | 0.07 <10             | 49       | <10  | 6  | 41                   |
| 1     | 10126 | 2.8   | 0.92 | 65         | 55  | <5       | 3.17 | <1       | 12         | 102        | 4391 | 2.67 | <10  | 0.48 | 427         | 13  |        | 19       | 370<br>800 | 8<br>60 | 5 <20<br><5 <20 | o∠<br>46   | 0.07 < 10            | 65       | <10  |    | 191                  |
| 2     | 10127 | 3.5   | 1.20 | 280        | 50  | <5       | 1.35 | 3        | 21         | 71         | 3472 | 3.99 | <10  | 0.74 | 349         | 7   | 0.03   | 23       | 600        | 48      | 5 <20           | 36         | 0.03 < 10            | 78       | <10  | 9  | 77                   |
| 3     | 10128 | 3.3   | 1.48 | 465        | 85  | <5       | 1.26 | <1       | 23         | 92         | 3111 | 4.08 | <10  | 1.12 | 388         | 57  | 0.05   | 26<br>42 | 770        | 26      | 5 < 20          | 62         | 0.16 < 10            | 65       |      | 15 | 72                   |
| 4     | 10129 | 0.2   | 1.93 | 25         | 60  | <5       | 1.11 | <1       | 30         | 75         | 67   | 4.63 | <10  | 1.75 | 489         | <1  | 0.06   | 43<br>42 | 770<br>750 | 28      | <5 <20          | 78         | 0.20 < 10            | 74       | <10  |    | 65                   |
| 5     | 10130 | 0.2   | 2.03 | 20         | 75  | <5       | 1.25 | <1       | 30         | 100        | 46   | 4.71 | <10  | 1.80 | 514         | <1  | 0.09   | 42       | 750        | 20      | <b>~3 ~20</b>   | 70         | 0.51 -10             |          | - 10 |    | 00                   |
|       | 40400 | -0.0  | 4.00 | 40         | 70  | -5       | 1.00 | <1       | 29         | 82         | 44   | 4.48 | <10  | 1.69 | 453         | <1  | 0.07   | 41       | 750        | 26      | 5 < 20          | 56         | 0.26 <10             | 63       | <10  | 15 | 69                   |
| 6     | 10132 | <0.2  | 1.88 | 10         | 70  | <5<br><5 |      | <1       | 27         | 131        | 1878 | 4.14 | <10  | 1.21 | 416         | 5   | 0.07   | 29       | 540        | 28      | 5 <20           | 54         | 0.20 < 10            | 65       | <10  | 10 | 98                   |
| 7     | 10133 | 3.2   | 1.44 | 85         | 90  | -        | 1.10 |          | 29         | 88         | 473  | 4.88 | <10  | 1.54 | 484         | <1  | 0.07   | 34       | 690        | 30      | 10 <20          | 36         | 0.25 < 10            | 70       | <10  | 14 | 85                   |
| 8     | 10134 | 0.8   | 1.76 | 40         | 105 | <5<br>-  | 1.08 | <1<br><1 | 29         | 101        | 473  | 4.38 | <10  | 1.60 | 441         | <1  |        | 38       | 760        | 28      | 10 <20          | 63         | 0.28 < 10            | 63       | <10  | 15 | 67                   |
| 9     | 10135 | <0.2  | 1.83 | 10         | 100 | 5        | 1.05 | <1       | 29<br>27   | 85         | 125  | 4.18 | <10  | 1.49 | 434         | <1  |        | 38       | 730        | 26      | <5 <20          | 51         | 0.26 <10             | 67       | <10  | 14 | 65                   |
| 10    | 10136 | 0.2   | 1.68 | 25         | 85  | <5       | 1.08 | ~1       | 21         | 00         | 123  | 4.10 | ~10  | 1.43 | 404         | , , | 0.07   | 00       | , 00       |         | 0 20            | ٠.         |                      |          |      |    |                      |
| 11    | 10137 | <0.2  | 2.02 | 15         | 60  | <5       | 1.47 | <1       | <b>3</b> 2 | 95         | 33   | 4.72 | <10  | 1.86 | 502         | <1  | 0.07   | 43       | 750        | 26      | 5 <20           | 88         | 0.31 < 10            | 78       | <10  | 18 | 69                   |
| 12    | 10137 | <0.2  |      | 15         | 60  | <5       | 1.60 | <1       | 31         | 77         | 33   | 4.61 | <10  | 1.80 | 524         | <1  | 0.06   | 43       | 740        | 26      | 5 < 20          | 81         | 0.29 <10             | 74       | <10  | 17 | 69                   |
| 13    | 10139 | <0.2  |      | 10         | 80  | 5        | 1.22 | <1       | 29         | 97         | 31   | 4.55 | <10  | 1.71 | 424         | <1  | 0.09   | 41       | 750        | 28      | <5 <20          | 66         | 0.28 <10             | 70       | <10  | 18 | 72                   |
| 14    | 10139 | <0.2  |      | 10         | 65  | <5       | 1.25 | <1       | 29         | 74         | 38   | 4.58 | <10  | 1.73 | 432         | <1  | 0.07   | 40       | 770        | 28      | <5 <20          | 53         | 0.26 <10             | 67       | <10  | 17 | 69                   |
| 15    | 10140 | <0.2  |      | 10         | 65  | <5       | 1.07 | 2        | 28         | 83         | 28   | 4.16 | <10  | 1.57 | 383         | 7   | 0.07   | 50       | 750        | 26      | 50 <20          | 67         | 0.15 <10             | 64       | <10  | 13 | 61                   |
| 13    | 10141 | -0.2  | 1.75 | 10         | -   |          |      | _        |            |            |      |      |      |      |             |     |        |          |            |         |                 |            |                      |          |      |    |                      |
| 16    | 10142 | 0.2   | 1.71 | 20         | 70  | <5       | 1.04 | <1       | 28         | 77         | 145  | 4.37 | <10  | 1.54 | 442         | <1  | 0.07   | 40       | 760        | 28      | 10 <20          | 40         | 0.22 <10             | 66       | . –  | 14 | 63                   |
| 17    | 10143 | 1.6   | 0.95 | 220        | 65  | <5       | 0.89 | 2        | 13         | 106        | 809  | 3.24 | <10  | 0.61 | 296         | 2   | 0.04   | 6        | 810        | 50      | <5 <20          | 17         | 0.06 <10             | 84       | <10  | 5  | 124                  |
| 18    | 10144 | 1.7   | 0.89 | 430        | 90  | <5       | 0.98 | <1       | 12         | 147        | 760  | 2.48 | <10  | 0.75 | 247         | <1  | 0.05   | 18       | 410        | 28      | <5 <20          | 41         | 0.11 <10             | 52       | <10  | 6  | 54                   |
| 19    | 10145 | < 0.2 | 1.23 | 20         | 135 | <5       | 1.37 | <1       | 18         | 7 <b>4</b> | 25   | 2.64 | <10  | 1.12 | 329         | <1  | 0.09   | 31       | 740        | 18      | 10 <20          | 71         | 0.25 <10             | 51       | <10  | 18 | 47                   |
| 20    | 10146 | 2.6   |      | 70         | 65  | <5       | 2.22 | 1        | 10         | 177        | 1513 | 2.04 | <10  | 0.28 | 417         | 12  | 0.03   | 11       | 140        | 8       | 10 <20          | 70         | 0.03 <10             | 32       | <10  | 3  | 45                   |
|       |       |       |      |            |     |          |      |          |            |            |      |      |      |      |             |     |        |          |            |         |                 |            | 0.00 .40             |          | -40  | -1 | cc                   |
| 21    | 10148 | 2.6   | 0.35 | 105        | 45  | <5       | 1.74 | <1       | 20         | 221        | 1786 | 3.74 | <10  | 0.16 | <b>3</b> 83 | 17  |        | 4        | 190        | 12      | <5 <20          | 71         | 0.02 <10             | 27       | <10  |    | 55<br>50             |
| 22    | 10149 | 3.9   | 0.66 | 70         | 50  | <5       | 0.99 | 1        | 40         | 149        | 2000 | 5.09 | <10  | 0.40 | 252         | 18  |        | 12       | 430        | 14      | 10 <20          | 45         | 0.02 < 10            | 52       | <10  |    | 59                   |
| 23    | 10150 | 1.7   | 0.58 | 20         | 40  | <5       | 0.96 | <1       | 17         | 170        | 995  | 2.99 | <10  | 0.37 | 211         | 12  |        | 5        | 500        | 8       | <5 <20          | 62         | 0.02 < 10            | 42       | <10  | 1  | 60                   |
| 24    | 10151 | 1.3   | 0.65 | 30         | 45  | <5       | 1.33 | <1       | 13         | 108        | 845  | 2.88 | <10  | 0.38 | 298         | 9   | 0.02   | 6        | 720        | 12      | <5 <20          | 73         | 0.02 < 10            | 37       | <10  | 4  | 40                   |
| 25    | 10152 | 1.1   | 0.66 | 35         | 45  | <5       | 0.99 | <1       | 10         | 163        | 921  | 2.35 | <10  | 0.30 | 226         | 5   | 0.02   | 5        | 790        | 8       | <5 <20          | 44         | 0.02 <10             | 30       | <10  | 3  | 30                   |
|       |       |       |      |            |     |          |      |          |            |            |      |      |      |      |             |     |        |          | 0.40       |         | -E 400          | 100        | 0.02 <10             | 22       | <10  | 2  | 30                   |
| 26    | 10153 | 1.5   | 0.72 | 70         | 45  | <5       | 3.36 | <1       | 27         | 122        | 1747 | 3.64 | <10  | 0.41 | 619         |     | <0.01  | 3        | 640        | 6       | <5 <20          | 198        | 0.02 < 10            |          | <10  | _  | 36                   |
| 27    | 10155 | 0.6   | 1.02 | 35         | 60  | <5       | 2.69 | <1       | 15         | 107        | 601  | 3.29 | <10  | 0.49 | 568         | 2   |        | 3        | 980        | 14      | <5 <20          | 136        | 0.05 <10<br>0.05 <10 | 34<br>34 | <10  | 9  | 29                   |
| 28    | 10156 | 0.6   | 0.78 | <b>5</b> 5 | 55  | <5       | 2.78 | <1       | 14         | 74         | 483  | 2.70 | <10  | 0.40 | 554         | 3   | 0.02   | 4        | 1010       | 12      | <5 <20          | 132        |                      | 34       | <10  | -  | 2 <del>9</del><br>27 |
| 29    | 10157 | 0.8   | 0.75 | 110        | 50  | <5       |      | <1       | 12         | 120        | 895  | 2.86 | <10  | 0.30 | 561         | 9   | 0.02   | 6        | 940        | 12      | <5 <20          | 132<br>107 | 0.05 <10<br>0.03 <10 | 18       |      | 7  | 72                   |
| 30    | 10158 | 8.0   | 0.48 | 325        | 45  | <5       | 2.71 | <1       | 11         | 97         | 548  | 2.65 | <10  | 0.19 | 601         | 4   | <0.01  | 4        | 940        | 14      | <5 <20          | 107        | 0.05 ~ 10            | 10       | ~10  | ,  | 14                   |
|       |       |       |      |            |     |          |      |          |            |            |      |      | Page | 1    |             |     |        |          |            |         |                 |            |                      |          |      |    |                      |
|       |       |       |      |            |     |          |      |          |            |            |      |      |      |      |             |     |        |          |            |         |                 |            |                      |          |      |    |                      |

ECO TECH LABORATORY LTD.


#### ICP CERTIFICATE OF ANALYSIS AS 2005-5146

Falconbridge Limited

| Et #.         | Tag#          | Ag   | Al % | As  | Ва  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn          | Мо  | Na %  | Ŋi  | P    | Pb  | Sb Sn  | Sr  | Ti %  | U   | v_  | W   | Y   | Zn  |
|---------------|---------------|------|------|-----|-----|----|------|----|----|-----|------|------|-----|------|-------------|-----|-------|-----|------|-----|--------|-----|-------|-----|-----|-----|-----|-----|
| 31            | 10159         | 0.9  | 0.36 | 880 | 50  | <5 | 5.08 | <1 | 9  | 99  | 333  | 2.57 | <10 | 0.09 | 916         | 4   | <0.01 | 4   | 760  | 8   | <5 <20 | 294 | 0.02  | <10 | 8   | <10 | 6   | 15  |
| 32            | 10131         | 2.2  | 1.37 | 5   | 330 | <5 | 1.49 | <1 | 13 | 26  | 7336 | 3.47 | 10  | 1.09 | 477         | 3   | 0.16  | 15  | 2400 | 26  | <5 <20 | 85  | 0.06  | <10 | 176 | <10 | 18  | 56  |
| 33            | 10154         | <0.2 | 3.27 | 15  | 120 | 5  | 4.07 | <1 | 33 | 64  | 120  | 7.59 | <10 | 2.92 | 995         | <1  | 0.03  | 18  | 1740 | 44  | <5 <20 | 125 | 0.12  | <10 | 283 | <10 | 15  | 75  |
| 34            | 10147         | 0.3  | 0.80 | 95  | 155 | <5 | 0.26 | 1  | 70 | 238 | 443  | >10  | <10 | 0.12 | 500         | 130 | 0.06  | 441 | 100  | 106 | <5 <20 | 12  | <0.01 | <10 | 23  | <10 | <1  | 401 |
| 35            | 10200         | 0.9  | 1.78 | 30  | 95  | <5 | 0.85 | <1 | 8  | 66  | 839  | 3.55 | <10 | 1.97 | 502         | 4   | 0.04  | 8   | 990  | 30  | 10 <20 | 27  | 0.08  | <10 | 80  | <10 | 12  | 89  |
| QC DAT        | ſ <b>A</b> :  |      |      |     |     |    |      |    |    |     |      |      |     |      |             |     |       |     |      |     |        |     |       |     |     |     |     |     |
| Resplit:<br>1 | :<br>10126    | 2.4  | 0.88 | 70  | 55  | <5 | 3.13 | <1 | 12 | 107 | 4031 | 2.69 | <10 | 0.45 | <b>4</b> 41 | 8   | 0.03  | 18  | 520  | 10  | <5 <20 | 80  | 0.07  | <10 | 49  | <10 | 8   | 39  |
| Repeat:       | •             |      |      |     |     |    |      |    |    |     |      |      |     |      |             |     |       |     |      |     |        |     |       |     |     |     |     |     |
| í             | 10126         | 2.8  | 0.86 | 70  | 55  | <5 | 3.12 | <1 | 12 | 101 | 4316 | 2.62 | <10 | 0.46 | 416         | 14  | 0.03  | 19  | 420  | 10  | <5 <20 | 75  |       | <10 | 46  | <10 | 6   | 42  |
| 10            | <b>1</b> 0136 | 0.2  | 1,74 | 20  | 80  | <5 | 1.08 | <1 | 27 | 85  | 128  | 4.20 | <10 | 1.56 | 437         | <1  | 0.07  | 37  | 720  | 22  | <5 <20 | 54  | 0.25  |     | 69  | <10 | 13  | 62  |
| 19            | 10145         | <0.2 | 1.25 | 20  | 135 | <5 | 1.40 | <1 | 18 | 75  | 25   | 2.70 | <10 | 1.14 | 335         | <1  | 0.09  | 31  | 760  | 20  | 10 <20 | 71  | 0.25  | <10 | 50  | <10 | 17  | 49  |
| Standar       |               | 4.5  | 4.50 | e e | 460 | ~E | 1.28 | <1 | 19 | 60  | 84   | 3.86 | <10 | 0.78 | 576         | <1  | 0.03  | 26  | 690  | 20  | <5 <20 | 52  | 0,11  | <10 | 66  | <10 | 10  | 74  |
| GEO'05        |               | 1.5  | 1.50 | 65  | 160 | <5 | 1.20 | ~  | 19 | -00 | 04   | 5.00 | ~10 | 0.70 | 510         | ~ 1 | 0.00  | 20  | 000  | 20  | -0 -20 | -   | ,     | . • |     |     | . • |     |

Juta Jealouse
BC Certified Assayer

JJ/ga df/1068c XLS/05



10041 Dailas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com

www.ecotechlab.com

4-Oct-05

## **CERTIFICATE OF ASSAY AS 2005-5147**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type:Core Project #: 301 Shipment #: 57

Samples submitted by: Mike Savell

|   |        |       | Au    | Au     |   |
|---|--------|-------|-------|--------|---|
|   | ET #.  | Tag#  | (g/t) | (oz/t) |   |
| _ | 1      | 10160 | 0.20  | 0.006  |   |
|   | 2<br>3 | 10161 | 0.23  | 0.007  |   |
|   | 3      | 10162 | 0.22  | 0.006  |   |
|   | 4      | 10163 | 0.05  | 0.001  |   |
|   | 5      | 10164 | 0.06  | 0.002  |   |
|   | 6      | 10165 | 0.28  | 0.008  |   |
|   | 7      | 10167 | 0.05  | 0.001  |   |
|   | 8      | 10168 | 0.16  | 0.005  |   |
|   | 9      | 10169 | 0.16  | 0.005  |   |
|   | 10     | 10170 | 0.04  | 0.001  |   |
|   | 11     | 10171 | 0.05  | 0.001  |   |
|   | 12     | 10172 | 0.16  | 0.005  |   |
|   | 13     | 10173 | 0.06  | 0.002  |   |
|   | 14     | 10174 | 0.06  | 0.002  |   |
|   | 15     | 10175 | 0.09  | 0.003  |   |
|   | 16     | 10176 | 0.10  | 0.003  |   |
|   | 17     | 10177 | 0.06  | 0.002  |   |
|   | 18     | 10178 | 0.11  | 0.003  |   |
|   | 19     | 10179 | 0.11  | 0.003  |   |
|   | 20     | 10180 | 80.0  | 0.002  |   |
|   | 21     | 10181 | 0.05  | 0.001  | • |
|   | 22     | 10183 | 0,23  | 0.007  |   |
|   | 23     | 10184 | 0.21  | 0.006  |   |
|   | 24     | 10185 | 0.22  | 0.006  |   |
|   | 25     | 10186 | 0.24  | 0.007  |   |
|   | 26     | 10187 | 0.31  | 0.009  |   |
|   | 27     | 10188 | 0.35  | 0.010  | / |
|   |        |       |       |        |   |

ECO TECH LABORATORY LTD.

B.C. Certified Assayer

Page 1

|                          |       | Au    | Αц     |  |
|--------------------------|-------|-------|--------|--|
| ET #.                    | Tag # | (g/t) | (oz/t) |  |
| 28                       | 10190 | 0.69  | 0.020  |  |
| 29                       | 10191 | 0.25  | 0.007  |  |
| 30                       | 10192 | 0.15  | 0.004  |  |
| 31                       | 10193 | 0.19  | 0.006  |  |
| 32                       | 10194 | 0,26  | 0.008  |  |
| 33                       | 10166 | 0,42  | 0.012  |  |
| 34                       | 10189 | <0.03 | <0.001 |  |
| 35                       | 10182 | 0.07  | 0.002  |  |
| QC DATA: Repeats:        | 10160 | 0.19  | 0.006  |  |
| 10                       | 10170 | 0.05  | 0.001  |  |
| 19                       | 10179 | 0.10  | 0.003  |  |
| Resplit:                 | 10160 | 0.18  | 0.005  |  |
| <b>Standard:</b><br>SH13 |       | 1.33  | 0.039  |  |

JJ/ga XLS/05

ECO TECH CABORATORY LTD.

Jutta Jeziouse

B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

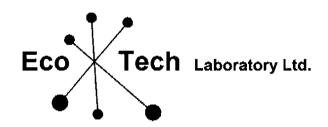
Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core Project #: 301 Shipment #: 57

Samples submitted by: Mike Savell

Values in ppm unless otherwise reported


|       |       |     |      |      |     |           |      |         |            |     |      |       |      |               |      |     |        |    |      |    |                        |          |           |           |     |    | -        |
|-------|-------|-----|------|------|-----|-----------|------|---------|------------|-----|------|-------|------|---------------|------|-----|--------|----|------|----|------------------------|----------|-----------|-----------|-----|----|----------|
| Et #. | Tag # | Ag  | AI % | As   | Ва  | Bi        | Ca % | Cd      | Co         | Cr  | Cu   | Fe %_ | La   | Mg %          | Mn   | Мо  | Na %   | Ni | Р    | Pb | Sb Sn                  | Sr       | Ti% U     | <u> v</u> | W   | Y  | Zn       |
| 1     | 10160 | 0.7 | 0.40 | 860  | 40  | <5        | 3.52 | <1      | 9          | 85  | 316  | 2.66  | <10  | 0.14          | 655  | 4   | <0.01  | 5  | 1000 | 10 | <5 <20                 | 137      | 0.03 <10  | 11        | <10 | 8  | 17       |
| 2     | 10161 | 1.0 | 0.25 | 1435 | 70  | <5        | 7.87 | <1      | 8          | 100 | 330  | 1.81  | <10  | 0.07          | 1687 | 7   | <0.01  | 5  | 630  | 6  | 15 <20                 | 237      | 0.02 <10  | 8         | <10 | 13 | 24       |
| 3     | 10162 | 1.4 | 0.20 | 1095 | 35  | <5        | 3.77 | <1      | 11         | 137 | 472  | 2.42  | <10  | 0.02          | 811  | 13  | <0.01  | 6  | 590  | 8  | 40 <20                 | 119      | 0.02 <10  | 6         | <10 | 6  | 34       |
| 4     | 10163 | 8.0 | 0.59 | 695  | 65  | <5        | 2.17 | <1      | 10         | 159 | 447  | 2.33  | <10  | 0.29          | 465  | 4   |        | 6  | 780  | 12 | <5 <20                 | 69       | 0.03 <10  | 27        | <10 | 4  | 53       |
| 5     | 10164 | 1.3 | 0.52 | 610  | 55  | <5        | 1.84 | <1      | 13         | 183 | 954  | 2.59  | <10  | 0.24          | 381  | 9   | <0.01  | 6  | 530  | 10 | <5 <20                 | 54       | 0.02 <10  | 21        | <10 | 3  | 66       |
|       |       |     |      |      |     | _         |      |         |            |     | .=   |       | 4.5  |               |      | ^   | 0.04   | 00 | (10  | _  | رد د <u>د د</u>        | e.c      | 0.02 <10  | 23        | <10 | 1  | 112      |
| 6     | 10165 | 3.1 | 0.55 | 350  | 45  | <5        | 2.35 | <1      | 17         | 209 | 3726 | 3.28  | <10  | 0.23          | 425  | 6   | 0.01   | 23 | 410  | 6  | <5 <20                 | 65<br>66 | 0.02 < 10 | 53        | <10 | 3  | 72       |
| 7     | 10167 | 0.6 | 0.78 | 135  | 55  | <5        | 1.90 | <1      | 12         | 176 | 595  | 3.31  | <10  | 0.53          | 401  |     | <0.01  | 8  | 600  | 14 | <5 <20                 |          | 0.03 < 10 | 69        | <10 | 4  | 72<br>78 |
| 8     | 10168 | 1.6 | 0.94 | 30   | 65  | <5        | 2.00 | <1      | 12         | 167 | 1768 | 3.52  | <10  | 0.66          | 464  | 13  | 0.02   | 10 | 680  | 14 | <5 <20                 | 86       |           |           |     | 3  | 76       |
| 9     | 10169 | 1.8 | 0.98 | 40   | 60  | <5        | 2.23 | <1      | 15         | 157 | 2022 | 4.00  | <10  | 0.73          | 456  | 11  | 0.02   | 8  | 750  | 18 | <5 <20                 | 91       | 0.05 < 10 | 74        | <10 |    |          |
| 10    | 10170 | 8.0 | 0.84 | 45   | 80  | <5        | 3.04 | <1      | 10         | 71  | 748  | 2.90  | <10  | 0.47          | 592  | 8   | 0.01   | 3  | 1210 | 14 | <5 <20                 | 95       | 0.05 <10  | 42        | <10 | 9  | 34       |
|       |       |     |      |      | 0.5 |           | 2.00 |         | 40         | 70  | 4400 | 0.50  | 410  | 0.27          | 500  | 25  | <0.01  | 6  | 1210 | 10 | <5 <20                 | 94       | 0.05 <10  | 17        | <10 | 11 | 24       |
| 11    | 10171 | 1.0 | 0.64 | 55   | 65  | <5<br>- 5 | 3.20 | <1      | 12         | 79  | 1168 | 2.56  | <10  |               | 613  |     | <0.01  |    | 1140 | 14 | <5 <20                 | 151      | 0.05 <10  | 21        | <10 | 11 | 32       |
| 12    | 10172 | 1.6 | 0.85 | 45   | 60  | <5        | 4.53 | <1      | 9          | 82  | 2589 | 3.08  | <10  | 0.42          |      | _   |        |    | 1250 | 14 | <5 <20                 | 116      | 0.06 <10  | 47        | <10 | 9  | 35       |
| 13    | 10173 | 1.2 | 0.98 | 30   | 75  | <5        | 3.70 | <1      | 11         | 98  | 2081 | 3.46  | <10  | 0.55          | 545  |     | <0.01  |    | 1300 | 22 | <5 <20                 | 198      | 0.00 < 10 | 132       | <10 | 17 | 34       |
| 14    | 10174 | 1.2 | 1.26 | 40   | 50  | <5        | 5.11 | <1      | 19         | 116 | 2151 | 4.43  | <10  | 0.88          | 627  | 219 | 0.02   |    |      |    | <5 <20<br><5 <20       | 250      | 0.05 < 10 | 111       |     |    | 48       |
| 15    | 10175 | 2.9 | 1.23 | 130  | 70  | <5        | 6.13 | <1      | <b>2</b> 3 | 96  | 2212 | 5.80  | <10  | 0.80          | 1090 | 50  | <0.01  | 51 | 1110 | 20 | <b>~</b> 5 <b>~</b> 20 | 250      | 0.00 < 10 |           | -10 | 14 | 40       |
| 16    | 10176 | 3.1 | 1.14 | 125  | 60  | <5        | 5.97 | <1      | 23         | 78  | 2353 | 5.87  | <10  | 0.73          | 1062 | 48  | <0.01  | 50 | 1190 | 20 | <5 <20                 | 249      | 0.05 <10  | 117       | <10 | 12 | 46       |
| 17    | 10177 | 2.2 | 0.60 | 140  | 35  | <5        | 3.60 | <1      | 11         | 105 | 1577 | 2.86  | <10  | 0.26          | 552  |     | <0.01  | 24 | 1150 | 12 | <5 <20                 | 96       | 0.06 <10  | 31        | <10 | 10 | 30       |
| 18    | 10178 | 1.0 | 0.80 | 45   | 65  | <5        | 3.85 | <1      | 11         | 121 | 1257 | 2.60  | <10  | 0.36          | 528  | 22  | 0.02   | 4  | 1290 | 16 | <5 <20                 | 129      | 0.05 < 10 | 30        | <10 | 12 | 28       |
| 19    | 10178 | 2.5 | 0.78 | 55   | 80  | <5        | 3.27 | <1      | 9          | 113 | 2051 | 2.79  | <10  | 0.42          | 550  |     | < 0.01 | 7  | 1230 | 16 | <5 <20                 | 95       | 0.06 < 10 | 30        | <10 | 11 | 32       |
| 20    | 10179 | 1.7 |      | 95   | 45  | <5        | 3.55 | <1      | 8          | 112 | 971  | 2.75  | <10  | 0.41          | 629  |     | < 0.01 | 5  | 1170 | 16 | <5 <20                 | 91       | 0.04 < 10 | 23        | <10 | 11 | 30       |
| 20    | 10100 | 1.1 | 0.71 | 90   | 70  | ٠,٥       | 3.55 | - 1     | U          | 112 | Ų, i | 2.10  | -,0  | Ų. 1 <b>.</b> | 010  | ,   | •.•.   | -  |      |    |                        |          |           |           |     |    |          |
| 21    | 10181 | 0.9 | 0.89 | 70   | 70  | <5        | 3.19 | <1      | 8          | 76  | 876  | 2.87  | <10  | 0.54          | 538  | 2   | < 0.01 | 5  | 1320 | 20 | <5 <20                 | 82       | 0.05 <10  | 27        | <10 | 7  | 34       |
| 22    | 10183 | 1.6 | 0.81 | 65   | 65  | <5        | 2.50 | <1      | 12         | 85  | 1931 | 3.12  | <10  | 0.41          | 463  | 8   | 0.02   | 8  | 1250 | 18 | <5 <20                 | 63       | 0.04 < 10 | 37        | <10 | 9  | 70       |
| 23    | 10184 | 2.1 | 0.90 | 80   | 50  | <5        | 2.83 | <1      | 20         | 85  | 2872 | 4.45  | <10  | 0.56          | 567  | 10  | 0.01   | 11 | 950  | 18 | <5 <20                 | 75       | 0.03 <10  | 55        | <10 | 8  | 89       |
| 24    | 10185 | 1.8 | 1.27 | 80   | 70  | <5        | 2.64 | <1      | 17         | 101 | 2048 | 4.75  | <10  | 0.81          | 686  | 7   | 0.02   | 14 | 1280 | 28 | <5 <20                 | 75       | 0.06 <10  | 82        | <10 | 10 | 91       |
| 25    | 10186 | 1.3 | 0.97 | 75   | 55  | <5        | 3.52 | -<br><1 | 11         | 84  | 1905 | 3.29  | <10  | 0.73          | 673  | 27  | 0.02   | 23 | 1120 | 20 | <5 <20                 | 124      | 0.03 < 10 | 101       | <10 | 7  | 50       |
| 23    | 10100 | 1.5 | 0.57 |      | 55  | .0        | 0.02 |         | • • •      |     |      | 0.20  | , ,  |               | •    |     |        |    |      |    |                        |          |           |           |     |    |          |
| 26    | 10187 | 2.4 | 1.01 | 275  | 70  | <5        | 5.27 | <1      | 11         | 87  | 2337 | 3.73  | <10  | 1.05          | 993  | 11  | 0.02   | 18 | 1340 | 28 | 330 <20                | 334      | <0.01 <10 | 60        | <10 | 9  | 160      |
| 27    | 10188 | 2.3 | 0.92 | 80   | 60  | <5        | 5.90 | <1      | 13         | 56  | 2607 | 3.36  | <10  | 0.63          | 868  | 2   | 0.01   | 8  | 1080 | 14 | <5 <20                 | 182      | 0.03 <10  | 39        | <10 | 6  | 82       |
| 28    | 10190 | 2.7 | 0.89 | 90   | 80  | <5        | 2.94 | <1      | 9          | 116 | 3324 | 2.72  | <10  | 0.53          | 595  | 4   | 0.03   | 8  | 1050 | 16 | <5 <20                 | 79       | 0.04 < 10 | 54        | <10 | 5  | 125      |
| 29    | 10191 | 1.6 | 0.77 | 45   | 70  | <5        | 2.85 | <1      | 13         | 85  | 1648 | 2.73  | <10  | 0.45          | 535  | 7   | 0.03   | 15 | 1230 | 14 | <5 <20                 | 87       | 0.04 < 10 | 52        | <10 | 9  | 78       |
| 30    | 10192 | 1.7 | 0.68 | 310  | 20  | <5        | 2.81 | <1      | 11         | 170 | 722  | 3.19  | <10  | 0.31          | 449  | 16  | 0.01   | 21 | 1240 | 16 | <5 <20                 | 83       | 0.04 < 10 | 59        | <10 | 8  | 43       |
|       |       |     |      |      |     | -         |      |         |            |     |      |       | Page | 1             |      |     |        |    |      |    |                        |          |           |           |     |    |          |
|       |       |     |      |      |     |           |      |         |            |     |      |       |      |               |      |     |        |    |      |    |                        |          |           |           |     |    |          |

## Falconbridge Limited

| Et #.            | Tag #      | Ag   | AI % | As  | Ba         | Bi | Ca % | Cd | Co         | Cr  | Cu   | Fe % | La  | Mg % | Mn          | Mo Na%   | Ni  | P    | Pb  | Sb Sn  | Sr  | <u>Ti% U</u> |            | W     | <u>Y</u> | Zn  |
|------------------|------------|------|------|-----|------------|----|------|----|------------|-----|------|------|-----|------|-------------|----------|-----|------|-----|--------|-----|--------------|------------|-------|----------|-----|
| 31               | 10193      | 2.1  | 0.55 | 145 | 30         | <5 | 2.15 | <1 | 11         | 138 | 1031 | 2.86 | <10 | 0.33 | 365         | 12 0.01  | 25  | 810  | 14  | <5 <20 | 95  | 0.06 <10     | 85         | <10   | 6        | 66  |
| 32               | 10194      | 2.0  | 0.77 | 85  | 45         | <5 | 2.13 | <1 | 24         | 219 | 1600 | 4.16 | <10 | 0.49 | 467         | 17 0.02  | 36  | 1160 | 16  | <5 <20 | 76  | 0.08 <10     | 164        | <10   | 9        | 84  |
| 33               | 10166      | 2.2  | 1.45 | 5   | 320        | <5 | 1.39 | <1 | 14         | 26  | 7324 | 3.60 | <10 | 1.16 | 481         | 2 0.12   | 18  | 2250 | 24  | <5 <20 | 81  |              | 147        | <10 1 | 9        | 54  |
| 34               | 10189      | <0.2 | 3.12 | 30  | 120        | 10 | 3.39 | <1 | 39         | 69  | 115  | 8.56 | <10 | 2.70 | 1037        | 2 0.03   | 24  | 2480 | 56  | <5 <20 | 87  | 0.10 <10     | 315        |       |          | 93  |
| 35               | 10182      | 0.3  | 0.79 | 105 | 160        | <5 | 0.28 | <1 | 75         | 298 | 448  | >10  | <10 | 0.16 | 421         | 127 0.05 | 409 | 90   | 108 | <5 <20 | 9   | <0.01 <10    | 26         | <10 < | 1 4      | 165 |
| QC DA            | IA:        |      |      |     |            |    |      |    |            |     |      |      |     |      |             |          |     |      |     |        |     |              |            |       |          |     |
| Resplit.<br>1    | :<br>10160 | 0.6  | 0.39 | 830 | <b>5</b> 5 | <5 | 3.58 | <1 | <b>1</b> 1 | 120 | 320  | 2.82 | <10 | 0.12 | 669         | 8 <0.01  | 6   | 1170 | 10  | <5 <20 | 144 | 0.03 <10     | <b>1</b> 1 | <10 1 | 0        | 17  |
| Repeat           | :          |      |      |     |            |    |      |    |            |     |      |      |     |      |             |          |     |      |     |        |     |              |            |       |          | 00  |
| i                | 10160      | 0.7  | 0.39 | 855 | 30         | <5 | 3.56 | <1 | 9          | 87  | 331  | 2.74 | <10 | 0.13 | 672         | 4 < 0.01 | 3   | 1140 | 12  | <5 <20 | 148 | 0.03 <10     | 12         |       | 11       | 20  |
| 10               | 10170      | 0.8  | 0.79 | 50  | 70         | <5 | 2.88 | <1 | 10         | 68  | 710  | 2.81 | <10 | 0.43 | 571         | 9 < 0.01 | 5   | . —  | 16  | <5 <20 | 90  | 0.05 <10     | 41         |       | 10       | 35  |
| 19               | 10179      | 2.3  | 0.77 | 60  | 70         | <5 | 3.27 | <1 | 9          | 111 | 2065 | 2.81 | <10 | 0.42 | <b>55</b> 5 | 3 < 0.01 | 6   | 1260 | 18  | <5 <20 | 96  | 0.06 <10     | 30         | <10 1 | 12       | 33  |
| Standa<br>GEO'05 |            | 1.5  | 1.43 | 50  | 150        | <5 | 1.37 | <1 | 18         | 62  | 84   | 3.54 | <10 | 0.76 | 584         | <1 0.02  | 32  | 850  | 24  | <5 <20 | 54  | 0.11 <10     | 71         | <10   | 9        | 75  |

ECO TECH LABORATORY LTD.
Juita Jealouse
BC Contilled Assayer

JJ/ga df/5140 XL\$/05



4-Oct-05

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5148**

Falconbridge Limited
3296 Francis-Hughes Avenue
Laval, Quebec
H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type:Core
Project #: 301
Shipment #: 58

Samples submitted by: Mike Savell

|       |       | Au    | Au     |
|-------|-------|-------|--------|
| ET #. | Tag # | (g/t) | (oz/t) |
| ¨ 1   | 10195 | 0.41  | 0.012  |
| 2     | 10196 | 0.47  | 0.014  |
| 3     | 10197 | 0.37  | 0.011  |
| 4     | 10198 | 0.09  | 0.003  |
| 5     | 10199 | 0.15  | 0.004  |
| 6     | 10202 | 0.14  | 0.004  |
| 7     | 10203 | 0.20  | 0.006  |
| 8     | 10204 | 0.18  | 0.005  |
| 9     | 10205 | 0.19  | 0.006  |
| 10    | 10206 | 0.19  | 0.006  |
| 11    | 10207 | 0.21  | 0.006  |
| 12    | 10208 | 0.15  | 0.004  |
| 13    | 10209 | 0.23  | 0.007  |
| 14    | 10210 | 0.33  | 0.010  |
| 15    | 10211 | 0.22  | 0.006  |
| 16    | 10212 | 0.18  | 0.005  |
| 17    | 10213 | 0.38  | 0.011  |
| 18    | 10214 | 0.29  | 0.008  |
| 19    | 10215 | 0.39  | 0.011  |
| 20    | 10216 | 0.11  | 0.003  |
| 21    | 10218 | 0.12  | 0.003  |
| 22    | 10219 | 0.12  | 0.003  |
| 23    | 10220 | 0.17  | 0.005  |
| 24    | 10221 | 0.27  | 0.008  |
| 25    | 10222 | 0.12  | 0.003  |
| 26    | 10223 | 0.16  | 0.005  |

ECO TECH LABORATORY LTD.
Julia Jeal Juse

B.C. Certified Assay

|           |       | Au    | Au     |      |
|-----------|-------|-------|--------|------|
| ET #.     | Tag # | (g/t) | (oz/t) | <br> |
| 27        | 10225 | 0.12  | 0.003  |      |
| 28        | 10226 | 0.13  | 0.004  |      |
| 29        | 10227 | 0.23  | 0.007  |      |
| 30        | 10228 | 0.12  | 0.003  |      |
| 31        | 10229 | 0.27  | 0.008  |      |
| 32        | 10230 | 0.34  | 0.010  |      |
| 33        | 10201 | 0.44  | 0.013  |      |
| 34        | 10224 | <0.03 | <0.001 |      |
| 35        | 10217 | 0.08  | 0.002  |      |
|           |       |       |        |      |
|           |       |       |        |      |
| QC DATA:  |       |       |        |      |
| Repeats:  |       |       |        |      |
| 1         | 10195 | 0.40  | 0.012  |      |
| 10        | 10206 | 0.20  | 0.006  |      |
| 19        | 10215 | 0.36  | 0.010  |      |
|           |       |       |        |      |
| Resplit:  |       |       |        |      |
| 1         | 10195 | 0.50  | 0.015  |      |
|           |       |       |        |      |
| Standard: |       |       |        |      |
| SH13      |       | 1.33  | 0.039  |      |

JJ/kk XLS/05 ECO TECHTABORATORY LTD.

Jutta Jaziouse

B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive

KAMLOOPS, B.C. V2C 6T4

Fax : 250-573-4557

Phone: 250-573-5700

Values in ppm unless otherwise reported

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

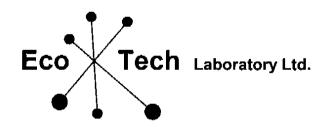
No. of samples received: 35

Sample type:Core Project #: 301 Shipment #: 58

Samples submitted by: Mike Savell

|       |       |     |      |      |            |    |      |    |    |     |      |      |             |              |      |    |       |          |       |          |                  |            |           |       |            |          | _        |
|-------|-------|-----|------|------|------------|----|------|----|----|-----|------|------|-------------|--------------|------|----|-------|----------|-------|----------|------------------|------------|-----------|-------|------------|----------|----------|
| Et #. | Tag # | Ag  | Al % | As   | Ba         | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La          | Mg %         | Mn   | Mo | Na %  | Ni       | P     | Pb       | Sb Sn            |            | Ti % L    |       |            | <u>Y</u> | Zn       |
| 1     | 10195 | 2.2 | 0.97 | 45   | 60         | <5 | 3.87 | <1 | 11 | 131 | 2449 | 3.18 | <10         | 0.80         | 788  | 14 | 0.02  | 29       | 930   | 16       | 5 <20            | 133        | 0.06 <10  |       |            | 9        | 94       |
| 2     | 10196 | 1.5 | 1.24 | 385  | 85         | <5 | 3.83 | <1 | 15 | 54  | 2229 | 4.27 | <10         | 0.94         | 967  | 18 | 0.01  |          | 1170  | 26       | 30 <20           | 263        | 0.02 <10  |       |            | 8        | 82       |
| 3     | 10197 | 1.8 | 1.13 | 350  | 90         | <5 | 5.82 | <1 | 19 | 101 | 2274 | 3.65 | <10         | 0.96         | 1058 | 3  | 0.01  | 23       | 1190  | 18       | <5 <20           | 141        | 0.06 <10  |       |            | /        | 61       |
| 4     | 10198 | 0.6 | 1.04 | 30   | 80         | <5 | 5.24 | <1 | 11 | 117 | 502  | 2.60 | <10         | 0.88         | 903  | <1 | 0.04  | 11       | 1270  | 18       | <5 <20           | 118        | 0.05 <10  |       |            | 8        | 48       |
| 5     | 10199 | 2.0 | 1.12 | 770  | 55         | <5 | 3.80 | <1 | 18 | 119 | 1698 | 4.33 | <10         | 0.86         | 821  | 4  | 0.01  | 22       | 1330  | 14       | 10 <20           | 76         | 0.05 <10  | 66    | <10        | 3        | 63       |
| -     |       |     |      |      |            |    |      |    |    |     |      |      |             |              |      |    |       |          |       |          |                  |            | 0.07 .47  |       | -40        | _        | E 4      |
| 6     | 10202 | 2.3 | 1.25 | 440  | 55         | <5 | 3.73 | <1 | 29 | 133 | 2421 | 5.21 | <10         | 0.97         | 747  |    | <0.01 | 29       | 1370  | 18       | <5 <20           | 73         | 0.07 <10  |       |            | 2        | 51       |
| 7     | 10203 | 1.1 | 0.92 | 1630 | 80         | <5 | 8.29 | <1 | 16 | 88  | 1329 | 4.36 | <10         | 0.75         | 1304 |    | <0.01 | 15       | 900   | 18       | 25 <20           | 205        | 0.04 <10  |       |            | 6        | 32<br>74 |
| 8     | 10204 | 2.0 | 1.48 | 475  | 80         | <5 | 6.16 | <1 | 26 | 115 | 2170 | 5.44 | <10         | <b>1</b> .17 | 1183 | 4  | <0.01 | 30       | 1240  | 26       | <5 <20           | 152        | 0.06 <10  |       |            | 6        | 67       |
| 9     | 10205 | 1.8 | 1.63 | 130  | 75         | <5 | 4.95 | <1 | 19 | 146 | 2070 | 4.83 | <10         | 1.51         | 1049 | <1 | 0.02  | 21       | 1240  | 30       | <5 <20           | 123        | 0.08 <10  |       |            | 9        | •        |
| 10    | 10206 | 1.2 | 1.06 | 225  | 90         | <5 | 5.87 | <1 | 14 | 123 | 1145 | 3.12 | <10         | 0.94         | 967  | 4  | 0.03  | 17       | 1290  | 22       | <5 <20           | 146        | 0.05 <10  | 92    | <10        | 11       | 51       |
|       |       |     |      |      |            |    |      |    |    |     |      |      |             |              |      |    |       |          |       |          | <b>.</b>         | 435        | 0.05 .44  |       | -10        | 0        | 50       |
| 11    | 10207 | 2.1 | 1.11 | 135  | 75         | <5 | 6.43 | <1 | 19 | 102 | 1959 | 3.63 | <10         | 0.96         | 1134 | 5  | 0.02  |          | 1350  | 16       | 5 <20            | 175        | 0.05 <10  |       |            | 7        | 58<br>32 |
| 12    | 10208 | 2.6 | 0.78 | 240  | 60         | <5 | 3.92 | <1 | 13 | 106 | 2766 | 3.64 | <10         | 0.49         | 660  | 5  | 0.02  | 20       | 1120  | 12       | <5 <20           | 112        | 0.04 <10  |       |            | 6        | 52<br>56 |
| 13    | 10209 | 3.0 | 1.55 | 185  | 65         | <5 | 4.36 | <1 | 28 | 122 | 3121 | 5.57 | <10         | 1.38         | 990  | 6  | 0.01  | 31       | 1250  | 22       | 15 <20           | 128        | 0.07 <10  |       |            | 7        | 55       |
| 14    | 10210 | 1.9 | 1.20 | 30   | 105        | <5 | 4.41 | <1 | 16 | 106 | 2445 | 3.58 | <10         | 0.98         | 808  | 4  | 0.02  | 15       | 1300  | 16       | <5 <20           | 136        | 0.06 < 10 |       | <10<br><10 | -        | 53       |
| 15    | 10211 | 2.0 | 1.34 | 25   | 90         | <5 | 3.11 | <1 | 22 | 104 | 3314 | 4.27 | <10         | 1.07         | 624  | 7  | 0.01  | 21       | 1340  | 22       | <5 <20           | 116        | 0.07 <10  | ) 84  | <10        | 12       | 55       |
|       |       |     |      |      |            |    |      |    |    |     |      |      |             |              |      | _  |       |          | 4000  |          | -C -OO           | 60         | 0.05 <16  | 92    | <10        | 23       | 54       |
| 16    | 10212 | 2.8 | 1,31 | 365  | 85         | <5 | 2.30 | <1 | 24 | 128 | 4454 | 4.45 | <10         | 0.87         | 605  | 6  | 0.01  | 34       | 1200  | 14       | <5 <20           | 68         | 0.05 < 1  |       |            |          | 62       |
| 17    | 10213 | 3.9 | 1.96 | 165  | 75         | <5 | 4,17 | <1 | 33 | 127 | 6922 | 6.80 | <10         | 1.75         | 1109 | 12 | 0.01  | 37       | 910   | 26       | <5 <20           | 127<br>197 | 0.07 < 1  |       |            |          | 74       |
| 18    | 10214 | 1.9 | 1.59 | 35   | <b>9</b> 5 | <5 | 4.84 | <1 | 19 | 121 | 3181 | 4.75 | <10         | 1.37         | 871  | 1  | 0.02  | 20       | 1120  | 20       | <5 <20<br><5 <20 | 146        | 0.07 < 1  |       |            | 8        | 74       |
| 19    | 10215 | 1.9 | 1.25 | 30   | 95         | <5 | 3.36 | <1 | 16 | 124 | 2974 | 3.86 | <10         | 1.10         | 693  | 4  | 0.03  | 19       | 1330  | 18       | <5 <20           | 118        | 0.07 <1   |       |            | -        | 42       |
| 20    | 10216 | 1.0 | 1.44 | 25   | 95         | <5 | 3.27 | <1 | 19 | 115 | 2016 | 4.68 | <10         | 1.16         | 766  | 2  | 0.03  | 19       | 1340  | 20       | <b>NO NZU</b>    | 110        | 0.05 < 1  | y 212 | ~10        | J        | 72       |
|       |       |     |      |      |            |    |      |    |    |     |      |      |             |              |      |    | 0.04  | 40       | 4.420 | 24       | ZE Z20           | 157        | 0.11 <1   | n 232 | <10        | 8        | 62       |
| 21    | 10218 | 1.8 | 1.64 | 35   | 115        | <5 | 3.99 | <1 | 22 | 98  | 1966 | 5.37 | <10         | 1.46         | 976  | <1 | 0.04  | 18       |       | 24<br>48 | <5 <20<br><5 <20 | 130        | 0.09 <1   |       |            | -        | 56       |
| 22    | 10219 | 2.1 | 1.38 | 45   | 55         | <5 | 3.41 | <1 | 21 | 118 | 2088 | 4.69 | <10         | 1.24         | 721  | 5  | 0.03  | 19       | 1180  | 28       | <5 <20           | 145        | 0.03 <1   |       |            |          | 76       |
| 23    | 10220 | 1.6 | 1.53 | 50   | 85         | <5 | 3.24 | <1 | 20 | 106 | 2387 | 4.75 | <10         | 1.43         | 723  | 2  | 0.02  | 17       | 1330  | 22       | <5 <20           | 163        | 0.05 <1   |       |            |          | 97       |
| 24    | 10221 | 2.1 | 1.12 | 35   | 80         | <5 | 3.01 | <1 | 15 | 158 | 2852 | 4.07 | <10         | 1.02         | 599  | 2  | 0.02  | 12       | 830   | 34       | <5 <20           | 220        | 0.05 <1   |       |            | _        | 73       |
| 25    | 10222 | 2.0 | 1.53 | 45   | 85         | <5 | 3.65 | <1 | 19 | 111 | 2314 | 4.89 | <10         | 1.41         | 779  | 4  | 0.02  | 18       | 1220  | 34       | ~3 <b>~</b> 20   | 220        | 0.05 ~1   | 0 200 | 110        | v        | . •      |
|       |       |     |      |      |            |    |      |    |    |     |      |      | 40          | 0.70         | 405  |    | 0.04  | 4.4      | 020   | 20       | 35 <20           | 133        | 0.01 <1   | 0 128 | <10        | <1       | 84       |
| 26    | 10223 | 3.8 | 0.96 | 100  | 45         | <5 | 2.27 | <1 | 14 | 145 |      | 4.08 | <10         | 0.78         | 465  | 8  | 0.01  | 14       | 930   | 18       | <5 <20           | 63         | 0.01 <1   |       |            |          | 55       |
| 27    | 10225 | 1.4 | 1.26 | 135  | 85         | <5 | 1.67 | <1 | 14 | 132 |      | 4.86 | <10         | 0.98         | 459  | 9  | 0.01  | 12<br>13 |       | 10       | <5 <20           | 117        | 0.03 <1   |       |            |          | 48       |
| 28    | 10226 | 1.3 | 1.54 | 155  | 100        | <5 | 2.84 | <1 | 10 | 126 | 1756 | 6.09 | <10         | 1.11         | 700  | 6  | 0.02  | 17       |       | 24       | <5 <20           | 119        | 0.01 <1   |       |            |          | 44       |
| 29    | 10227 | 1.9 | 1.19 | 60   | 95         | <5 | 3.52 | <1 | 13 | 106 | 2308 | 4.68 | <10         | 0.95         | 699  | 8  | 0.02  | 17       |       | 22       | <5 <20           | 148        | 0.02 <1   |       |            |          | 38       |
| 30    | 10228 | 1.0 | 1.61 | 45   | 95         | <5 | 2.94 | <1 | 14 | 130 | 1491 | 6.42 | <10<br>Page | 1.17         | 696  | 12 | 0.01  | 15       | 1950  | 22       | ~Q ~ZU           | 170        | 0.01      | Ų 10C | ,0         |          | ~ ~      |
|       |       |     |      |      |            |    |      |    |    |     |      |      | raye        | 1            |      |    |       |          |       |          |                  |            |           |       |            |          |          |
|       |       |     |      |      |            |    |      |    |    |     |      |      |             |              |      |    |       |          |       |          |                  |            |           |       |            |          |          |

### ECO TECH LABORATORY LTD.


## ICP CERTIFICATE OF ANALYSIS AS 2005-5148

## Falconbridge Limited

| Ĕt #.    | Tag #      | Ag   | AI % | As  | Ва  | Bi | Ca % | Cd  | Co | Cr  | Cu   | Fe % | La  | Mg %_ | Mn   | Mo  | Na % | Ni  | P    | Pb  | Sb Sn  | <u>Sr</u> | Ti% U     | <u>V</u> | W   | Υ  | Zn  |
|----------|------------|------|------|-----|-----|----|------|-----|----|-----|------|------|-----|-------|------|-----|------|-----|------|-----|--------|-----------|-----------|----------|-----|----|-----|
| 31       | 10229      | 1.5  | 1.37 | 30  | 95  | <5 | 3.25 | 1   | 20 | 103 | 2536 | 6.60 | <10 | 1.22  | 776  | 4   | 0.02 | 20  | 1350 | 24  | 35 <20 | 281       | 0.07 <10  | 213      | <10 | 3  | 95  |
| 32       | 10230      | 2.2  | 1.74 | 55  | 100 | <5 | 3.24 | <1  | 23 | 132 | 3530 | 7.04 | <10 | 1.32  | 819  | 6   | 0.02 | 21  | 1390 | 28  | <5 <20 | 143       | 0.09 <10  | 261      | <10 | 5  | 76  |
| 33       | 10201      | 2.2  | 1.39 | 5   | 320 | <5 | 1.43 | <1  | 11 | 26  | 7505 | 3.56 | <10 | 0.94  | 482  | <1  | 0.15 | 18  | 2520 | 24  | <5 <20 | 84        | 0.07 < 10 | 145      | <10 | 17 | 59  |
| 34       | 10224      | <0.2 | 3.53 | 20  | 100 | <5 | 2.15 | <1  | 39 | 62  | 120  | 8.69 | <10 | 3.20  | 1052 | <1  | 0.03 | 20  | 1880 | 44  | <5 <20 | 64        | 0.16 <10  | 299      | <10 | 17 | 84  |
| 35       | 10217      | 0.2  | 0.95 | 75  | 100 | <5 | 0.26 | <1  | 70 | 245 | 433  | >10  | <10 | 0.17  | 479  | 128 | 0.06 | 386 | 100  | 114 | <5 <20 | 14        | <0.01 <10 | 24       | <10 | <1 | 411 |
| 5.5      | 10217      | 0.2  | 0.00 | , 0 | 100 |    | 0.20 | •   |    | •   |      | , -  |     |       |      |     |      |     |      |     |        |           |           |          |     |    |     |
|          |            |      |      |     |     |    |      |     |    |     |      |      |     |       |      |     |      |     |      |     |        |           |           |          |     |    |     |
| QC DAT   | <u>[A:</u> |      |      |     |     |    |      |     |    |     |      |      |     |       |      |     |      |     |      |     |        |           |           |          |     |    |     |
| Resplit: |            |      |      |     |     |    |      |     |    |     |      |      |     |       |      |     |      |     |      |     |        |           |           |          |     |    |     |
| 1        | 10195      | 2.2  | 0.92 | 50  | 60  | <5 | 4.02 | <1  | 13 | 116 | 2461 | 3.23 | <10 | 0.74  | 795  | 12  | 0.02 | 30  | 990  | 16  | 5 <20  | 135       | 0.06 <10  | 153      | <10 | 9  | 93  |
| l        |            |      |      |     |     |    |      |     |    |     |      |      |     |       |      |     |      |     |      |     |        |           |           |          |     |    |     |
| Repeat   |            |      |      |     | 0.5 |    | 0.00 | - 4 | 40 | 407 | 2422 | 2.00 | ~10 | 0.00  | 803  | 11  | 0.02 | 30  | 970  | 14  | <5 <20 | 137       | 0.06 <10  | 166      | <10 | 8  | 98  |
| 1        | 10195      | 2.2  | 0.98 | 50  | 65  | <5 | 3.96 | <1  | 12 | 137 | 2422 | 3.26 | <10 | 0.80  |      |     |      |     |      |     |        | 153       | 0.06 < 10 |          | <10 | 9  | 51  |
| 10       | 10206      | 1.3  | 1.13 | 220 | 85  | <5 | 5.95 | <1  | 14 | 130 | 1201 | 3.21 | <10 | 1.00  | 995  | 4   | 0.03 | 17  | 1260 | 20  | 5 <20  |           |           |          |     | _  |     |
| 19       | 10215      | 1.9  | 1.23 | 30  | 100 | <5 | 3.35 | <1  | 15 | 124 | 2928 | 3.81 | <10 | 1.08  | 686  | 3   | 0.03 | 19  | 1310 | 16  | <5 <20 | 146       | 0.07 <10  | 183      | <10 | 8  | 73  |
| I        |            |      |      |     |     |    |      |     |    |     |      |      |     |       |      |     |      |     |      |     |        |           |           |          |     |    |     |
| Standar  |            |      | 4.40 | -   | 470 |    | 4 22 | -1  | 40 | 50  | 00   | 3.78 | <10 | 0.74  | 572  | <1  | 0.02 | 29  | 640  | 24  | <5 <20 | 54        | 0.11 <10  | 72       | <10 | 10 | 74  |
| GEO'05   | •          | 1.5  | 1.42 | 60  | 170 | <5 | 1.33 | <1  | 19 | 59  | 88   | 3.70 | ~10 | 0.74  | 372  | ~   | U.UZ | 25  | 040  | 27  | -0 -20 | 5-        | 0         |          | ,,  |    |     |

JJ/ga df/1068c XLS/05 autta Jegliouse BC Ceptified Assayer

ECOTECH LABORATIONY LTD.



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com www.ecotechlab.com

14-Oct-05

# **CERTIFICATE OF ASSAY AS 2005-5150**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type:Core
Project #: 301
Shipment #: 59

Samples submitted by: Mike Savell

|          |       | Au    | Au     |  |
|----------|-------|-------|--------|--|
| <br>ET#. | Tag # | (g/t) | (oz/t) |  |
| 1        | 10231 | 0.11  | 0.003  |  |
| 2        | 10232 | 0.46  | 0.013  |  |
| 2<br>3   | 10233 | 0.44  | 0.013  |  |
| 4<br>5   | 10234 | 0.12  | 0.003  |  |
| 5        | 10235 | 0.11  | 0.003  |  |
| 6<br>7   | 10237 | 0.19  | 0.006  |  |
|          | 10238 | 0.19  | 0.006  |  |
| 8        | 10239 | 0.27  | 0.008  |  |
| 9        | 10240 | 0.24  | 0.007  |  |
| 10       | 10241 | 0.19  | 0.006  |  |
| 11       | 10242 | 0.19  | 0.006  |  |
| 12       | 10243 | 0.07  | 0.002  |  |
| 13       | 10244 | 0.17  | 0.005  |  |
| 14       | 10245 | 0.15  | 0.004  |  |
| 15       | 10246 | 0.20  | 0.006  |  |
| 16       | 10247 | 0.28  | 0.008  |  |
| 17       | 10248 | 0.24  | 0.007  |  |
| 18       | 10249 | 0.23  | 0.007  |  |
| 19       | 10250 | 0.04  | 0.001  |  |
| 20       | 10251 | 0.09  | 0.003  |  |
| 21       | 10253 | 0.06  | 0.002  |  |
| 22       | 10254 | 0.04  | 0.001  |  |
| 23       | 10255 | 0.09  | 0.003  |  |
| 24       | 10256 | 0.18  | 0.005  |  |
| 25       | 10257 | 0.45  | 0.013  |  |
| 26       | 10258 | 1.45  | 0.042  |  |
|          |       |       |        |  |

ECO TECH LABORATORY LTD.

B.C. Certified Assay

Page 1

|                   |       | Au    | Au     |  |
|-------------------|-------|-------|--------|--|
| ET #.             | Tag # | (g/t) | (oz/t) |  |
| 27                | 10260 | 1.72  | 0.050  |  |
| 28                | 10261 | 2.95  | 0.086  |  |
| 29                | 10262 | 0.33  | 0.010  |  |
| 30                | 10263 | 0.13  | 0.004  |  |
| 31                | 10264 | 0.14  | 0.004  |  |
| 32                | 10265 | 0.23  | 0.007  |  |
| 33                | 10236 | 0.43  | 0.013  |  |
| 34                | 10259 | <0.03 | <0.001 |  |
| 35                | 10252 | 0.08  | 0.002  |  |
|                   |       |       |        |  |
| QC DATA:          |       |       |        |  |
| Repeats:          |       |       |        |  |
| 1                 | 10231 | 0.11  | 0.003  |  |
| 10                | 10241 | 0.19  | 0.006  |  |
| 19                | 10250 | 0.05  | 0.001  |  |
| 23                | 10255 | 0.10  | 0.003  |  |
| 25                | 10257 | 0.49  | 0.014  |  |
| 26                | 10258 | 1.50  | 0.044  |  |
| 27                | 10260 | 1.76  | 0.051  |  |
| 28                | 10261 | 3.15  | 0.092  |  |
| Resplit:          |       |       |        |  |
| 1                 | 10231 | 0.10  | 0.003  |  |
| Standard:         |       |       |        |  |
| Standard.<br>SH13 |       | 1.29  | 0.038  |  |
|                   |       |       |        |  |

JJ/ga XLS/05

ECO TECH LABORATORY LTD.
Jutta Jealbuse
B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

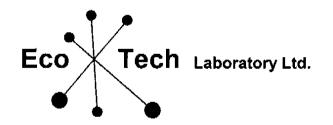
No. of samples received: 35 Sample type:Core **Project #: 301** 

Project #: 301 Shipment #: 59

Samples submitted by: Mike Savell

Values in ppm unless otherwise reported

| Et #.    | Tag # | Ag   | AI % | As   | Ва         | ₿i | Ca %         | Cd      | Co       | Cr       | Cu           | Fe %         | La ! | Mg % | Mn   | Мо  | Na %   | Ni | Р    | Pb       | Sb Sn   | Sr  | Ti % U     | <u>v</u> | W   | Y   | Zn : |
|----------|-------|------|------|------|------------|----|--------------|---------|----------|----------|--------------|--------------|------|------|------|-----|--------|----|------|----------|---------|-----|------------|----------|-----|-----|------|
| 1        | 10231 | 0.9  |      | 160  | 80         | <5 | 3.14         | <1      | 13       | 108      | 1636         | 4.42         | <10  | 1.37 | 702  | 8   | <0.01  |    | 1090 | 18       |         | 128 | 0.03 < 10  |          | <10 | 3   | 42   |
| 2        | 10232 | 1.9  | 1.13 | 1695 | 60         | <5 | 3.51         | <1      | 17       | 114      | 2359         | 5.12         | <10  | 0.93 | 755  | 9   | <0.01  |    | 1100 | 16       | 15 <20  | 125 | 0.04 < 10  | 91       | <10 | 3   | 71   |
| 3        | 10233 | 2.0  | 0.86 | 1470 | 50         | <5 | 3.49         | <1      | 18       | 98       | 2105         | 4.73         | <10  | 0.69 | 780  |     | <0.01  | 15 | 1200 | 16       | 10 <20  | 121 | 0.03 < 10  | 52       | <10 | 4   | 43   |
| 4        | 10234 | 0.9  | 0.84 | 220  | 60         | <5 | 2.79         | <1      | 11       | 133      | 1179         | 3.48         | <10  | 0.57 | 570  | _   | <0.01  | 8  | 1200 | 10       | <5 <20  | 103 | 0.02 <10   | 75<br>75 | <10 | 1   | 43   |
| 5        | 10235 | 1.0  | 1.01 | 360  | 65         | <5 | 3.57         | <1      | 13       | 83       | 1586         | 3.73         | <10  | 0.74 | 698  | 5   | <0.01  | 4  | 1530 | 12       | <5 <20  | 148 | 0.02 <10   | 75       | <10 | 5   | 40   |
|          |       |      |      |      |            |    |              |         |          |          |              |              |      |      |      | _   | 0.00   | •  | 4440 | 4.4      | -E -20  | 122 | 0.02 <10   | 89       | <10 | 4   | 52   |
| 6        | 10237 | 1.2  | 0.99 | 465  | 65         | <5 | 3.09         | <1      | 14       | 91       | 2032         | 4.06         | <10  | 0.69 | 660  |     | 0.02   | _  | 1440 | 14       | <5 <20  | 132 | 0.02 < 10  | 72       |     | 2   | 71   |
| 7        | 10238 | 1.5  | 1.05 | 385  | 75         | <5 | 3.78         | <1      | 17       | 97       | 1923         | 4.61         | <10  | 0.66 | 751  |     | <0.01  | 10 | 1240 | 12       | <5 <20  | 170 | 0.02 < 10  | 88       |     | _   | 46   |
| 8        | 10239 | 1.4  | 1.00 | 495  | 75         | <5 | 3.30         | <1      | 16       | 87       | 1719         | 4.77         | <10  | 0.62 | 656  | _   | <0.01  | 5  | 1430 | 16       | <5 <20  | 161 | <0.01 < 10 | 61       | <10 |     | 33   |
| 9        | 10240 | 1.1  | 0.71 | 335  | 75         | <5 | 3.03         | <1      | 20       | 66       | 1334         | 5.32         | <10  | 0.47 | 572  |     | <0.01  | 8  | 1290 | 12       | <5 <20  |     |            | 81       | <10 |     | 36   |
| 10       | 10241 | 1.3  | 0.87 | 405  | 75         | <5 | 2.96         | <1      | 14       | 105      | 1593         | 4.74         | <10  | 0.52 | 545  | 11  | <0.01  | 6  | 1360 | 14       | <5 <20  | 140 | <0.01 <10  | 01       | <10 | `1  | 30   |
|          |       |      |      |      |            |    |              |         |          |          |              |              |      | 0.50 |      | 40  | 0.00   | 7  | 1280 | 1.1      | <5 <20  | 150 | <0.01 <10  | 85       | <10 | 2   | 56   |
| 11       | 10242 | 1.2  | 0.89 | 105  | 70         | <5 | 3.01         | <1      | 14       | 127      | 1813         | 3.31         | <10  | 0.58 | 511  | 10  | 0.02   | •  | 1070 | 14<br>12 | <5 <20  |     | <0.01 <10  | 41       | <10 | 4   | 15   |
| 12       | 10243 | 0.3  | 0.50 | 85   | 70         | <5 | 3.29         | <1      | . 8      | 154      | 638          | 2.13         | <10  | 0.28 | 441  | 11  | 0.01   | •  | 1210 | 32       | <5 <20  | 238 | 0.03 <10   | 144      | <10 | <1  | 65   |
| 13       | 10244 | 1.4  | 1.78 | 70   | 80         | <5 | 4.58         | <1      | 25       | 71       | 2405         | 6.39         | <10  | 1.54 | 992  |     | <0.01  | -  |      | 14       | <5 <20  | 150 |            | 43       | <10 | 2   | 37   |
| 14       | 10245 | 1.3  | 0.55 | 105  | 65         | <5 | 2.85         | <1      | 10       | 92       | 1657         | 2.50         | <10  | 0.29 | 498  |     | <0.01  | 5  | 920  |          | <5 <20  | 127 | 0.02 <10   | 85       |     | <1  | 75   |
| 15       | 10246 | 1.8  | 0.94 | 365  | 70         | <5 | 2.98         | <1      | 19       | 94       | 2278         | 4.49         | <10  | 0.55 | 631  | 8   | 0.01   | 6  | 1560 | 16       | NO NZO  | 121 | 0.02 <10   | 05       | -10 | - • | , 0  |
|          |       |      |      |      |            |    | 0.04         | -       | 24       | 90       | 4400         | E 00         | <10  | 0.46 | 559  | 9   | <0.01  | 11 | 1200 | 46       | 20 <20  | 121 | 0.01 <10   | 48       | <10 | <1  | 297  |
| 16       | 10247 | 3.6  | 0.82 | 440  | 55         | <5 | 2.64         | 5       | 21<br>22 | 89<br>97 | 4182<br>2418 | 5.09<br>4.80 | <10  | 0.56 | 638  | _   | <0.01  |    | 1230 | 68       | 145 <20 |     | <0.01 <10  | 58       | <10 | <1  | 141  |
| 17       | 10248 | 15.0 | 0.95 | 265  | 65<br>65   | <5 | 2.65<br>2.72 | 3       | 24       | 72       | 2282         | 5.02         | <10  | 0.51 | 573  |     | <0.01  | 9  |      |          | 185 <20 |     | <0.01 <10  | 58       | <10 | 1   | 122  |
| 18       | 10249 | 26.4 | 0.97 | 190  | 55<br>4505 | <5 | 0.36         | 2<br><1 | 24       | 65       | 891          | 3.02         | <10  | 0.26 | 1139 | 7   | 0.02   | 12 |      | 22       |         |     | <0.01 <10  | 59       | <10 | 6   | 59   |
| 19       | 10250 | 0.7  | 0.88 | 20   | 1595       | <5 |              | <1      | 15       | 48       | 1296         | 3.70         | <10  |      |      | 13  |        |    | 1370 | 16       |         | 53  | <0.01 <10  | 34       | <10 | 6   | 51   |
| 20       | 10251 | 1.4  | 0.58 | 30   | 90         | <5 | 0.63         | - 1     | 10       | 40       | 1290         | 5.70         | 10   | 0.20 | 1227 | ,,, | 3.07   |    |      |          |         |     |            |          |     |     |      |
| 24       | 10253 | 0.8  | 0.32 | 10   | 45         | <5 | 4.95         | <1      | 15       | 119      | 1003         | 3.80         | <10  | 1.87 | 1250 | 31  | 0.02   | 32 | 1010 | 54       | 5 <20   | 412 | <0.01 <10  | 27       | <10 | 6   | 60   |
| 21<br>22 | 10253 | 0.6  | 0.32 | 5    | 35         | <5 | 4.54         | <1      | 26       | 48       | 1200         | 4.73         | <10  | 1.82 | 1007 | 44  | 0.01   | 34 | 1280 | 12       | 5 <20   | 319 | <0.01 <10  | 18       | <10 | 2   | 56   |
| 22       | 10254 | 0.5  | 0.43 | 15   | 45         | <5 | 2.58         | <1      | 22       | 79       | 799          | 4.04         | <10  | 1.12 | 784  | 40  | 0.03   | 25 | 1080 | 50       | <5 <20  | 180 | <0.01 <10  | 18       | <10 | 4   | 66   |
|          | 10255 | 0.3  | 0.45 | 10   | 60         | <5 | 2.74         | <1      | 16       | 48       | 264          | 5.12         | <10  | 1.46 | 1262 | 10  | 0.02   | 32 | 1240 | 46       | <5 <20  | 195 | <0.01 <10  | 13       | <10 | 4   | 115  |
| 24<br>25 | 10256 | 1.6  | 0.37 | 10   | 60         | <5 | 1.12         | <1      | 17       | 76       | 4398         | 2.73         | <10  | 0.66 | 459  | 8   | 0.02   | 30 | 830  | 168      | <5 <20  | 90  | <0.01 <10  | 16       | <10 | 5   | 61   |
| 25       | 10237 | 1.0  | 0.51 | 10   | 00         | ~0 | 1. 12        | - 1     |          | , ,      | 1000         | 2.70         | . •  |      |      |     |        |    |      |          |         |     |            |          |     |     |      |
| 26       | 10258 | 1.7  | 0.24 | 40   | 40         | <5 | 0.62         | <1      | 7        | 95       | 4145         | 1.63         | <10  | 0.21 | 239  | 6   | < 0.01 | 14 | 530  | 340      | 10 <20  | 53  | <0.01 <10  | 12       | <10 | 1   | 22   |
| 20<br>27 | 10250 | 1.8  | 0.32 | 85   | 30         | <5 | 0.55         | <1      | 8        | 147      | 3660         | 2.35         | <10  | 0.13 | 196  | 6   | <0.01  | 18 | 630  | 150      | <5 <20  |     | <0.01 <10  | 16       |     | 3   | 16   |
| 28       | 10261 | 2.6  | 0.26 | 90   | 35         | <5 | 0.64         | 2       | 11       | 82       | 6425         | 3.61         | <10  | 0.07 | 193  | 5   | < 0.01 | 26 | 740  | 148      | 15 <20  | 45  | <0.01 <10  |          |     | 3   | 71   |
| 29       | 10261 | 0.4  | 0.65 | 30   | 35         | <5 | 3.55         | 1       | 19       | 48       | 795          | 5.06         | <10  | 1.02 | 1474 | 5   | 0.01   | 7  | 1550 | 34       | <5 <20  |     | <0.01 <10  | 40       |     | 2   | 77   |
| 30       | 10263 | 0.4  | 0.63 | 40   | 40         | <5 | 4.11         | <1      | 29       | 38       | 114          | 5.72         | <10  | 1.26 | 1588 | 6   | 0.01   | 7  | 1620 | 10       | <5 <20  | 280 | <0.01 <10  | 48       | <10 | 1   | 52   |
| 50       | 10200 | 0.2  | 0.00 |      | .5         |    | !            |         | _,       |          |              |              | Page | 1    |      |     |        |    |      |          |         |     |            |          |     |     |      |
|          |       |      |      |      |            |    |              |         |          |          |              |              |      |      |      |     |        |    |      |          |         |     |            |          |     |     |      |


## Falconbridge Limited

ECO TECH LABORATORY LTD.
Julia Jealouse
C Certified Assayer

| Et #.             | Tag #      | Aq   | AI % | As  | Ba   | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn   | Mo Na%    | Ni  | Р    | Pb  | Sb Sn  | Sr  | Ti% U      |     | W   | Υ  | Zn  |
|-------------------|------------|------|------|-----|------|----|------|----|----|-----|------|------|-----|------|------|-----------|-----|------|-----|--------|-----|------------|-----|-----|----|-----|
| 31                | 10264      | 0.3  | 0.67 | 85  | 45   | 5  | 4.01 | <1 | 19 | 56  | 102  | 5.34 | <10 | 1.46 | 1564 | 5 0.02    | 5   | 1610 | 22  | 5 <20  | 321 | <0.01 <10  | 60  | <10 | 3  | 52  |
| 32                | 10265      | 1.0  | 0.74 | 100 | 55   | <5 | 4.20 | <1 | 17 | 39  | 89   | 5.11 | <10 | 0.63 | 1869 | 9 < 0.01  | 9   | 1670 | 100 | 5 <20  | 182 | <0.01 <10  | 40  | <10 | <1 | 54  |
| 33                | 10236      | 2.2  | 1.35 | 5   | 325  | <5 | 1.48 | <1 | 12 | 26  | 7252 | 3.68 | <10 | 0.99 | 478  | 2 0.15    | 11  | 2550 | 28  | <5 <20 | 85  | 0.07 <10   | 189 |     | 18 | 53  |
| 34                | 10259      | <0.2 | 2.84 | 25  | 90   | <5 | 5.43 | <1 | 31 | 59  | 96   | 7.01 | <10 | 2.48 | 926  | <1 0.01   | 15  | 1640 | 48  | <5 <20 | 126 | 0.08 <10   | 246 | . • | 11 | 78  |
| 35                | 10252      | 0.3  | 0.80 | 100 | 135  | <5 | 0.26 | <1 | 71 | 221 | 429  | >10  | <10 | 0.13 | 482  | 128 0.04  | 393 | 100  | 102 | <5 <20 | 11  | <0.01 <10  | 22  | <10 | <1 | 447 |
|                   |            |      |      |     |      |    |      |    |    |     |      |      |     |      |      |           |     |      |     |        |     |            |     |     |    |     |
| QC DAT            | <u>TA:</u> |      |      |     |      |    |      |    |    |     |      |      |     |      |      |           |     |      |     |        |     |            |     |     |    |     |
| Resplit           | :          |      |      |     |      |    |      |    |    |     |      |      |     |      |      |           |     | 1000 | 0.4 | -5 -00 | 404 | 0.04 -40   | 457 | -10 | E  | 49  |
| 1                 | 10231      | 0.9  | 1.47 | 165 | 95   | <5 | 3.47 | <1 | 12 | 128 | 1643 | 4.60 | <10 | 1.32 | 739  | 5 <0.01   | 14  | 1200 | 24  | <5 <20 | 131 | 0.04 <10   | 157 | <10 | 5  | 49  |
| Repeat            | :          |      |      |     |      |    |      |    |    |     |      |      |     |      |      |           |     |      |     |        | 405 |            | 400 | .40 | _  | 40  |
| 1                 | 10231      | 0.9  | 1.55 | 185 | 95   | <5 | 3.43 | <1 | 14 | 120 | 1642 | 4.79 | <10 | 1.40 | 752  | 9 < 0.01  |     | 1220 | 22  |        | 135 |            |     | <10 | 5  | 49  |
| 10                | 10241      | 1.3  | 0.86 | 385 | 75   | <5 | 2.97 | <1 | 15 | 105 | 1564 | 4.74 | <10 | 0.51 | 543  | 12 < 0.01 | 7   | 1370 | 18  | <5 <20 | 144 | <0.01<10   | 82  | <10 | 1  | 38  |
| 18                | 10249      | 25.1 |      |     |      |    |      |    |    |     |      |      |     |      |      |           |     |      |     |        |     |            |     |     |    |     |
| 19                | 10250      | 0.7  | 0.92 | 20  | 1630 | <5 | 0.36 | <1 | 2  | 69  | 913  | 3.13 | <10 | 0.26 | 1152 | 6 0.02    | 11  | 1300 | 24  | <5 <20 | 46  | <0.01 < 10 | 62  | <10 | 7  | 60  |
| Standa            | ed.        |      |      |     |      |    |      |    |    |     |      |      |     |      |      |           |     |      |     |        |     |            |     |     |    |     |
| Standar<br>GEO'05 |            | 1.5  | 1.43 | 65  | 165  | <5 | 1.36 | <1 | 19 | 61  | 83   | 3.89 | <10 | 0.74 | 579  | <1 0.01   | 29  | 660  | 24  | <5 <20 | 53  | 0.10 <10   | 73  | <10 | 10 | 72  |
|                   |            |      |      |     |      |    |      |    |    |     |      |      |     |      |      |           |     |      |     |        |     |            | _   |     |    |     |

JJ/ga df/5150 XLS/05

Page 2



4-Oct-05

10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

## **CERTIFICATE OF ASSAY AS 2005-5151**

Falconbridge Limited
3296 Francis-Hughes Avenue
Laval, Quebec
H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type:Core
Project #: 301
Shipment #: 60

Samples submitted by: Mike Savell

|      |       | Au    | Au     |
|------|-------|-------|--------|
| ET#. | Tag # | (g/t) | (oz/t) |
| 1    | 10266 | 0.21  | 0.006  |
| 2    | 10267 | 0.12  | 0.003  |
| 3    | 10268 | 0.11  | 0.003  |
| 4    | 10269 | 0.11  | 0.003  |
| 5    | 10270 | 0.45  | 0.013  |
| 6    | 10272 | 0.21  | 0.006  |
| 7    | 10273 | 0.15  | 0.004  |
| 8    | 10274 | 0.20  | 0.006  |
| 9    | 10275 | 4.36  | 0.127  |
| 10   | 10276 | 1.47  | 0.043  |
| 11   | 10277 | 1.53  | 0.045  |
| 12   | 10278 | 1.51  | 0.044  |
| 13   | 10279 | 0.45  | 0.013  |
| 14   | 10280 | 0.13  | 0.004  |
| 15   | 10281 | 0.19  | 0.006  |
| 16   | 10282 | 0.27  | 0.008  |
| 17   | 10283 | 0.11  | 0.003  |
| 18   | 10284 | 0.22  | 0.006  |
| 19   | 10285 | 0.34  | 0.010  |
| 20   | 10286 | 0.56  | 0.016  |
| 21   | 10288 | 0.32  | 0.009  |
| 22   | 10289 | 0.50  | 0.015  |
| 23   | 10290 | 0.69  | 0.020  |
| 24   | 10291 | 2.81  | 0.082  |
| 25   | 10292 | 1.02  | 0.030  |
| 26   | 10293 | 0.47  | 0.014  |

ECO TECH LABORATORY LTD. Jutta Jealouse

B.C. Certified Assayer

|           |       | Au    | Au     |  |
|-----------|-------|-------|--------|--|
| ET #.     | Tag # | (g/t) | (oz/t) |  |
| 27        | 10295 | 0.29  | 0.008  |  |
| 28        | 10296 | 1.48  | 0.043  |  |
| 29        | 10297 | 0.64  | 0.019  |  |
| 30        | 10298 | 0.89  | 0.026  |  |
| 31        | 10299 | 0.63  | 0.018  |  |
| 32        | 10300 | 0.22  | 0.006  |  |
| 33        | 10271 | 0.43  | 0.013  |  |
| 34        | 10294 | <0.03 | <0.001 |  |
| 35        | 10287 | 0.08  | 0.002  |  |
|           |       |       |        |  |
| OC DATA   |       |       |        |  |
| QC DATA:  |       |       |        |  |
| Repeats:  |       |       |        |  |
| 1         | 10266 | 0.23  | 0.007  |  |
| 10        | 10276 | 1.51  | 0.044  |  |
| 9         | 10275 | 4.35  | 0.127  |  |
| 11        | 10277 | 1,81  | 0.053  |  |
| 12        | 10278 | 1.62  | 0.047  |  |
| 19        | 10285 | 0.32  | 0.009  |  |
| 23        | 10290 | 0.69  | 0.020  |  |
| 24        | 10291 | 2.86  | 0.083  |  |
| 25        | 10292 | 0.94  | 0.027  |  |
| 28        | 10296 | 1.43  | 0.042  |  |
| 30        | 10298 | 0.85  | 0.025  |  |
| Resplit:  |       |       |        |  |
| 1         | 10266 | 0.24  | 0.007  |  |
| Standard: |       |       |        |  |
| SH13      |       | 1.32  | 0.038  |  |

JJ/kk XLS/05 ECO TECH LABORATORY LTD.
Jutta Jeptouse
B.C. Certified Asseyer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

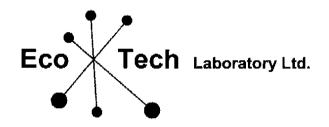
No. of samples received: 35 Sample type:Core Project #: 301 Shipment #: 60

Samples submitted by: Mike Savell

### Values in ppm unless otherwise reported

| Et #. | Tag#  | Ag    | Al % | As  | Ba       | Bi | Ca % | Cd | Co       | Cr | Cu  | Fe % | La          | Mg %   | Mn            | Мо | Na %   | Ni         | P    | Pb  | Sb Sn  | Sr  |        |     | ٧        | W   | Υ  | Zn  |
|-------|-------|-------|------|-----|----------|----|------|----|----------|----|-----|------|-------------|--------|---------------|----|--------|------------|------|-----|--------|-----|--------|-----|----------|-----|----|-----|
| 1     | 10266 | 0.4   | 1.11 | 45  | 45       | <5 | 3.10 | <1 | 17       | 37 | 100 | 5.09 | <10         | 1.06   | 1336          | 8  | 0.03   | 4          | 1420 | 18  | <5 <20 | 162 | <0.01  | <10 | 88       |     | <1 | 41  |
| 2     | 10267 | 0.2   | 1.28 | 45  | 50       | <5 | 3.23 | <1 | 19       | 54 | 86  | 5.02 | <10         | 1.32   | 1375          | 3  | 0.04   | 4          | 1460 | 18  | <5 <20 | 149 |        |     | 98       | <10 | 2  | 47  |
| 3     | 10268 | < 0.2 | 0.79 | 30  | 45       | <5 | 3.46 | <1 | 13       | 40 | 92  | 4.72 | <10         | 1.21   | 1475          | 4  | 0.03   | 4          | 1470 | 16  | <5 <20 | 169 | <0.01  | <10 | 59       | <10 | 6  | 55  |
| 4     | 10269 | 0.2   | 1.33 | 30  | 55       | <5 | 3.25 | <1 | 14       | 42 | 126 | 5.05 | <10         | 1.36   | 1332          | 3  | 0.04   | 4          | 1580 | 24  | <5 <20 | 161 | <0.01  | <10 | 86       | <10 | 3  | 78  |
| 5     | 10270 | 1.0   | 0.77 | 145 | 60       | <5 | 3.59 | 6  | 16       | 45 | 126 | 4.90 | <10         | 0.55   | 2472          | 5  | <0.01  | 6          | 1330 | 106 | <5 <20 | 195 | <0.01  | <10 | 34       | <10 | 4  | 601 |
| 6     | 10272 | 0.5   | 1.21 | 50  | 110      | <5 | 4.69 | 2  | 15       | 39 | 105 | 3.73 | <10         | 0.74   | 1846          | 5  | 0.02   | 7          | 1420 | 350 | <5 <20 | 206 | <0.01  | <10 | 64       | <10 | 5  | 186 |
| 7     | 10273 | 0.7   | 1.48 | 65  | 115      | <5 | 4.92 | <1 | 20       | 43 | 111 | 4.26 | <10         | 0.89   | 1946          | 4  | 0.02   | 9          | 1410 | 50  | <5 <20 | 206 | < 0.01 | <10 | 63       | <10 | 5  | 80  |
| 8     | 10273 | 0.6   | 1.36 | 70  | 100      | <5 | 4.82 | <1 | 22       | 45 | 105 | 4.13 | <10         | 0.84   | 2076          | 3  | 0.01   | 7          | 1270 | 30  | <5 <20 | 199 | <0.01  | <10 | 60       | <10 | 5  | 59  |
| 9     | 10275 | 1.1   | 0.36 | 245 | 50       | <5 | 3.20 | <1 | 27       | 61 | 55  | 5.00 | <10         | 0.20   | 2118          | _  | <0.01  | 18         | 710  | 20  | <5 <20 | 158 | < 0.01 | <10 | 15       | <10 | 5  | 20  |
| 10    | 10275 | 1.7   | 0.30 | 485 | 40       | 5  | 1,62 | <1 | 45       | 57 | 75  | 7.02 | <10         | 0.07   | 839           | 9  | 0.01   | 34         | 710  | 20  | <5 <20 |     | <0.01  |     | 12       | <10 | <1 | 10  |
|       |       |       |      |     |          |    |      |    |          |    |     |      |             |        | 4004          |    | 0.04   | 20         | 4500 | 24  | -E -00 | 447 | <0.01  | -10 | 25       | <10 | <1 | 29  |
| 11    | 10277 | 1.4   | 0.50 | 495 | 55       | 10 | 2.28 | <1 | 48       | 55 | 95  | 7.70 | <10         | 0.48   | 1264          | 9  | 0.01   | 36         | 1530 | 34  | <5 <20 |     |        |     | 25<br>36 | -   | <1 | 36  |
| 12    | 10278 | 1.4   | 0.59 | 520 | 15       | 20 | 1.71 | <1 | 48       | 68 | 71  | 8.87 | <10         | 0.60   | 1043          | 19 | 0.02   | 59         | 900  | 44  | <5 <20 |     | <0.01  |     |          |     | -  |     |
| 13    | 10279 | 1.4   | 0.42 | 245 | 50       | <5 | 1.62 | <1 | 30       | 71 | 92  | 4.82 | <10         | 0.57   | 916           | 6  | 0.04   | 24         | 670  | 64  | <5 <20 | -   | <0.01  |     | 26       |     |    | 118 |
| 14    | 10280 | 1.3   | 0.47 | 45  | 50       | <5 | 3.24 | 1  | 14       | 58 | 239 | 4.55 | <10         | 0.98   | 2035          | 5  | 0.04   | 22         | 860  | 188 | <5 <20 |     | <0.01  |     | 29       | <10 |    | 154 |
| 15    | 10281 | 0.6   | 0.63 | 35  | 50       | <5 | 3.23 | <1 | 15       | 68 | 50  | 3.56 | <10         | 1.02   | 1983          | 4  | 0.05   | 20         | 680  | 80  | <5 <20 | 163 | <0.01  | <10 | 36       | <10 | 5  | 289 |
| 16    | 10282 | 1.0   | 1.09 | 45  | 55       | <5 | 2.94 | 3  | 14       | 47 | 122 | 5.12 | <10         | 1.63   | 1932          | 5  | 0.05   | 30         | 1170 | 168 | <5 <20 | 153 | <0.01  | <10 | 55       | <10 | 4  | 581 |
| 17    | 10283 | 0.7   | 0.48 | 30  | 20       | <5 | 3.28 | 8  | 11       | 51 | 71  | 4.40 | <10         | 1.39   | 2107          | 5  | 0.04   | 21         | 1210 | 342 | <5 <20 | 175 | < 0.01 | <10 | 25       | <10 | <1 | 855 |
| 18    | 10284 | 0.8   | 0.77 | 45  | 50       | <5 | 3.01 | 1  | 11       | 41 | 74  | 4.53 | <10         | 1.82   | 1984          | 6  | 0.04   | 29         | 1030 | 126 | <5 <20 | 209 | < 0.01 | <10 | 44       | <10 | 4  | 375 |
| 19    | 10285 | 0.4   | 0.97 | 40  | 45       | <5 | 4.41 | <1 | 14       | 52 | 190 | 4.82 | <10         | 1.47   | 2517          | 8  | 0.04   | 28         | 840  | 66  | 5 < 20 | 178 | < 0.01 | <10 | 58       | <10 | 15 | 177 |
| 20    | 10286 | 0.5   | 0.91 | 35  | 55       | <5 | 2.87 | <1 | 12       | 48 | 315 | 5.51 | <10         | 1.79   | 1 <b>8</b> 59 | 7  | 0.03   | 32         | 810  | 46  | 5 <20  | 180 | <0.01  | <10 | 55       | <10 | <1 | 169 |
| 04    | 10288 | 0.7   | 0.32 | 60  | 1 E      | <5 | 3.16 | <1 | 10       | 46 | 109 | 5.77 | <10         | 1.43   | 1890          | 6  | 0.02   | 23         | 1120 | 44  | 10 <20 | 306 | <0.01  | <10 | 25       | <10 | 3  | 70  |
| 21    |       | 0.7   | 0.66 | 145 | 45<br>45 | <5 | 1.83 | <1 | 42       | 39 | 309 | 7.97 | <10         | 0.92   | 1319          | 10 | 0.02   | 29         | 1160 | 36  | <5 <20 |     | <0.01  |     | 26       | <10 | <1 | 80  |
| 22    | 10289 | 3.1   |      |     | 45       | <5 | 2.20 | 1  | 42<br>43 | 64 | 480 | 8.02 | <10         | 0.32   | 1320          |    | < 0.02 | 50         | 890  | 76  | <5 <20 |     | <0.01  |     | 21       | <10 | 5  | 226 |
| 23    | 10290 | 1.8   | 0.45 | 190 | 50       |    |      | <1 | •        | 64 | 369 | 6.38 | <10         | 0.13   | 1163          |    | <0.01  | 42         | 800  | 38  | <5 <20 |     | <0.01  |     | 13       | <10 | 2  | 85  |
| 24    | 10291 | 1.5   | 0.29 | 140 | 45<br>50 | <5 | 2.02 |    | 32       |    |     | 5.52 | <10         | 0.13   | 1414          |    | <0.01  | 36         | 890  | 34  | <5 <20 |     | <0.01  |     | 13       | <10 | 5  | 35  |
| 25    | 10292 | 2.5   | 0.30 | 185 | 50       | <5 | 2.60 | <1 | 29       | 45 | 476 | 5.52 | < 10        | Ų. I I | 14 14         | 29 | ~0.01  | <b>3</b> 0 | 050  | J-4 | -5 -20 | 100 | -0.01  | -10 | ,,       |     | Ü  | -   |
| 26    | 10293 | 1.3   | 0.59 | 100 | 55       | <5 | 2.64 | <1 | 22       | 52 | 187 | 5.01 | <10         | 0.44   | 1211          | _  | <0.01  | 57         | 1450 | 30  | <5 <20 |     | <0.01  |     | 20       | <10 | 10 | 58  |
| 27    | 10295 | 1.1   | 0.27 | 70  | 30       | <5 | 1.84 | <1 | 23       | 50 | 245 | 4.73 | <10         | 0.10   | 685           | 41 | <0.01  | 37         | 1220 | 36  | <5 <20 |     | <0.01  |     | 34       | <10 | 6  | 42  |
| 28    | 10296 | 0.6   | 0.49 | 45  | 40       | <5 | 1.86 | <1 | 18       | 68 | 193 | 4.06 | <10         | 0.40   | 898           | 9  | 0.02   | 40         | 810  | 32  | <5 <20 |     | <0.01  |     | 31       | <10 | 3  | 69  |
| 29    | 10297 | 0.6   | 0.82 | 40  | 35       | <5 | 2.06 | <1 | 15       | 80 | 137 | 4.05 | <10         | 0.79   | 1090          | 9  | 0.04   | 48         | 1000 | 26  | <5 <20 |     | <0.01  |     | 72       | <10 | 1  | 59  |
| 30    | 10298 | 0.7   | 0.38 | 55  | 45       | <5 | 1.99 | <1 | 13       | 78 | 211 | 3.47 | <10<br>Page | 0.23   | 760           | 27 | 0.02   | 44         | 870  | 14  | <5 <20 | 97  | <0.01  | <10 | 33       | <10 | 3  | 22  |
|       |       |       |      |     |          |    |      |    |          |    |     |      | . aye       | •      |               |    |        |            |      |     |        |     |        |     |          |     |    |     |

ECO TECH LABORATORY LTD.


## ICP CERTIFICATE OF ANALYSIS AS 2005-5151

## Falconbridge Limited

| Et #.             | Tag#        | Ag   | Al % | As  | Ва  | Bi | Ca % | Çd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn   | Мо  | Na %  | Ni  | P    | Pb  | Sb Sn  | Sr  | Ti %     | U     | ٧   | W   | Υ  | Zn   |
|-------------------|-------------|------|------|-----|-----|----|------|----|----|-----|------|------|-----|------|------|-----|-------|-----|------|-----|--------|-----|----------|-------|-----|-----|----|------|
| 31                | 10299       | 1.0  | 0.35 | 140 | 45  | <5 | 2.03 | <1 | 31 | 52  | 253  | 5.33 | <10 | 0.24 | 892  | 12  | 0.01  | 50  | 970  | 30  | <5 <20 | 109 | < 0.01 < | 10 1  | 8   | <10 | 5  | 31   |
| 32                | 10300       | 0.8  | 0.19 | 55  | 40  | <5 | 3.20 | <1 | 17 | 49  | 127  | 4.25 | <10 | 0.03 | 1540 | 9   | <0.01 | 49  | 1000 | 42  | <5 <20 | 190 | <0.01 <  | 10 1  | 3 - | <10 | 11 | 8    |
| 33                | 10271       | 2.3  | 1.48 | 10  | 335 | <5 | 1.40 | <1 | 13 | 25  | 7314 | 3.45 | 10  | 1.13 | 473  | 2   | 0.15  | 16  | 2420 | 22  | <5 <20 | 77  | 0.07 <   | 10 18 | 32  | <10 | 17 | 57   |
| 34                | 10294       | <0.2 | 2.69 | 15  | 85  | <5 | 4.48 | <1 | 29 | 55  | 108  | 6.55 | <10 | 2.41 | 881  | <1  | 0.04  | 15  | 1600 | 50  | <5 <20 | 124 | 0.14 <   | 10 24 | 14  | <10 | 16 | 68   |
| 35                | 10287       | 0.3  | 0.80 | 105 | 160 | <5 | 0.26 | <1 | 69 | 247 | 430  | >10  | <10 | 0.12 | 485  | 125 | 0.05  | 440 | 100  | 104 | <5 <20 | 12  | <0.01    | 10 2  | 26  | <10 | <1 | 414  |
| QC DAT            | <u> [A:</u> |      |      |     |     |    |      |    |    |     |      |      |     |      |      |     |       |     |      |     |        |     |          |       |     |     |    |      |
| Resplit:          | •           |      |      |     |     |    |      |    |    |     |      |      |     |      |      |     |       |     |      |     |        |     |          | 40    | •   | .40 | •  | 40   |
| 1                 | 10266       | 0.4  | 1.09 | 55  | 50  | <5 | 3.03 | <1 | 20 | 40  | 106  | 5.68 | <10 | 1.03 | 1350 | 9   | 0.02  | 6   | 1560 | 30  | <5 <20 | 153 | <0.01 <  | 10 ε  | 39  | <10 | 2  | 48 . |
| Repeat:           | •           |      |      |     |     |    |      |    |    |     |      |      |     |      |      |     |       |     |      |     |        |     |          |       |     |     |    |      |
| 1                 | 10266       | 0.4  | 1.05 | 50  | 50  | <5 | 3.02 | <1 | 17 | 36  | 94   | 5.11 | <10 | 1.00 | 1324 | 7   | 0.02  | 5   | 1450 | 22  | <5 <20 | 150 |          |       |     | <10 | 1  | 44   |
| 10                | 10276       | 1.7  | 0.32 | 500 | 30  | <5 | 1.79 | <1 | 49 | 60  | 80   | 7.55 | <10 | 0.07 | 896  | 9   | 0.01  | 36  | 710  | 24  | <5 <20 |     | <0.01 <  |       |     | .,0 | <1 | 12   |
| 19                | 10285       | 0.4  | 0.94 | 40  | 40  | <5 | 4.52 | <1 | 13 | 51  | 184  | 4.91 | <10 | 1.44 | 2532 | 8   | 0.03  | 31  | 880  | 68  | <5 <20 | 173 | <0.01 <  | 10 5  | 57  | <10 | 13 | 190  |
| C4n melan         | ent.        |      |      |     |     |    |      |    |    |     |      |      |     |      |      |     |       |     |      |     |        |     |          |       |     |     |    | ļ    |
| Standar<br>GEO'05 |             | 1.5  | 1.48 | 65  | 160 | <5 | 1.39 | <1 | 19 | 59  | 84   | 3.89 | <10 | 0.77 | 587  | <1  | 0.02  | 29  | 670  | 24  | <5 <20 | 54  | 0.11 <   | 10 7  | 72  | <10 | 10 | 74   |

ECO TECHNABORATORY LTD.
Jutta Jeanouse
BC Certified Assayer

JJ/ga df/5101 XLS/05



4-Oct-05

10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5152**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type:Core
Project #: 301
Shipment #: 61

Samples submitted by: Mike Savell

|       | Au                                                                                                                                                                                                                            | Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tag # | (g/t)                                                                                                                                                                                                                         | (oz/t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10301 | 0.28                                                                                                                                                                                                                          | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10302 | 1.12                                                                                                                                                                                                                          | 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10303 | 0.49                                                                                                                                                                                                                          | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10304 | 0.54                                                                                                                                                                                                                          | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10305 | 0.29                                                                                                                                                                                                                          | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10307 | 0.21                                                                                                                                                                                                                          | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10308 | 0.24                                                                                                                                                                                                                          | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10309 | 0.52                                                                                                                                                                                                                          | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10310 | 0.64                                                                                                                                                                                                                          | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10311 | 0.41                                                                                                                                                                                                                          | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10312 | 0.13                                                                                                                                                                                                                          | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10313 | 0.16                                                                                                                                                                                                                          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10314 | 0.08                                                                                                                                                                                                                          | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10315 | 0.09                                                                                                                                                                                                                          | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10316 | 0.13                                                                                                                                                                                                                          | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10317 | 0.68                                                                                                                                                                                                                          | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10318 | 0.21                                                                                                                                                                                                                          | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10319 | 0.14                                                                                                                                                                                                                          | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10320 | 0.40                                                                                                                                                                                                                          | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10321 | 0.43                                                                                                                                                                                                                          | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10323 | 0.07                                                                                                                                                                                                                          | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10324 | 0.32                                                                                                                                                                                                                          | 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10325 | 0.42                                                                                                                                                                                                                          | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10326 | 0.24                                                                                                                                                                                                                          | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10327 | 0.34                                                                                                                                                                                                                          | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10328 | 0.12                                                                                                                                                                                                                          | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 10301<br>10302<br>10303<br>10304<br>10305<br>10307<br>10308<br>10309<br>10310<br>10311<br>10312<br>10313<br>10314<br>10315<br>10316<br>10317<br>10318<br>10319<br>10320<br>10321<br>10323<br>10324<br>10325<br>10326<br>10327 | Tag #         (g/t)           10301         0.28           10302         1.12           10303         0.49           10304         0.54           10305         0.29           10307         0.21           10308         0.24           10309         0.52           10310         0.64           10311         0.41           10312         0.13           10313         0.16           10314         0.08           10315         0.09           10316         0.13           10317         0.68           10318         0.21           10319         0.14           10320         0.40           10321         0.43           10323         0.07           10324         0.32           10325         0.42           10327         0.34 | Tag #         (g/t)         (oz/t)           10301         0.28         0.008           10302         1.12         0.033           10303         0.49         0.014           10304         0.54         0.016           10305         0.29         0.008           10307         0.21         0.006           10308         0.24         0.007           10309         0.52         0.015           10310         0.64         0.019           10311         0.41         0.012           10312         0.13         0.004           10313         0.16         0.005           10314         0.08         0.002           10315         0.09         0.003           10316         0.13         0.004           10317         0.68         0.020           10318         0.21         0.006           10319         0.14         0.004           10320         0.40         0.012           10321         0.43         0.013           10323         0.07         0.002           10324         0.32         0.009           10325         < |

ECO TECH LABORATORY LTD.

Jutta Jealguse

B.C. Certified Assays

|           |       | Au    | Au     |  |
|-----------|-------|-------|--------|--|
| ET#       | Tag # | (g/t) | (oz/t) |  |
| 27        | 10330 | 0.15  | 0.004  |  |
| 28        | 10331 | 0.10  | 0.003  |  |
| 29        | 10332 | 0.26  | 0.008  |  |
| 30        | 10333 | 0.05  | 0.001  |  |
| 31        | 10334 | 0.28  | 0.008  |  |
| 32        | 10335 | 0.10  | 0.003  |  |
| 33        | 10306 | 0.43  | 0.013  |  |
| 34        | 10329 | <0.03 | <0.001 |  |
| 35        | 10322 | 0.07  | 0.002  |  |
|           |       |       |        |  |
| OO DATA.  |       |       |        |  |
| QC DATA:  |       |       |        |  |
| Repeats:  |       |       |        |  |
| 1         | 10301 | 0.26  | 0.008  |  |
| 2         | 10302 | 1.06  | 0.031  |  |
| 3         | 10303 | 0.50  | 0.015  |  |
| 4         | 10304 | 0.50  | 0.015  |  |
| 9         | 10310 | 0.59  | 0.017  |  |
| 16        | 10317 | 0.65  | 0.019  |  |
| 19        | 10320 | 0.39  | 0.011  |  |
| 23        | 10325 | 0.44  | 0.013  |  |
| Resplit:  |       |       |        |  |
| 1         | 10301 | 0.27  | 0.008  |  |
|           |       |       |        |  |
| Standard: |       |       |        |  |
| SH13      |       | 1.27  | 0.037  |  |

JJ/kk XLS/05 ECO FECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

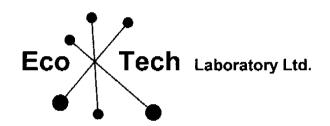
ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core Project #: 301 Shipment #: 61

Samples submitted by: Mike Savell

Values in ppm unless otherwise reported

| Et #. | Tag # | Ag  | AI % | As  | Ba  | Bi | Ca % | Cd | Co | Çr  | Cu   | Fe % | La          | Mg %  | Mn    | Мо  | Na %   | Ni  | P            | Pb       | Sb Sn            |          | Tì% U                  | <u> v</u> | W          | Υ   | Zn       |
|-------|-------|-----|------|-----|-----|----|------|----|----|-----|------|------|-------------|-------|-------|-----|--------|-----|--------------|----------|------------------|----------|------------------------|-----------|------------|-----|----------|
| 1     | 10301 | 0.7 | 0.26 | 55  | 55  | <5 | 2.57 | <1 | 19 | 66  | 216  | 3.43 | <10         | 0.14  | 1308  | 8   | <0.01  | 45  | 960          | 22       | <5 <20           |          | <0.01 <10              | 16        | <10        | 8   | 17       |
| 2     | 10302 | 0.7 | 0.23 | 75  | 50  | <5 | 4.08 | <1 | 11 | 79  | 149  | 3.82 | <10         | 0.10  | 1931  | 5   | <0.01  | 39  | 1030         | 24       | <5 <20           |          | <0.01 <10              | 14        | <10        | 14  | 13       |
| 3     | 10303 | 2.2 | 0.27 | 50  | 30  | <5 | 2.69 | <1 | 9  | 66  | 172  | 3.87 | <10         | 0.10  | 1259  | 8   | <0.01  | 37  | 1050         | 12       | <5 <20           |          | <0.01 <10              | 24        | <10        | 6   | 18       |
| 4     | 10304 | 1.9 | 0.27 | 125 | 30  | <5 | 2.04 | <1 | 19 | 123 | 168  | 3.87 | <10         | 0.17  | 873   | _   | <0.01  | 39  | 950          | 66       | <5 <20           |          | <0.01 <10              | 24        | <10        | 11  | 31       |
| 5     | 10305 | 1.0 | 0.34 | 75  | 45  | <5 | 2.87 | <1 | 25 | 76  | 285  | 5.34 | <10         | 0.33  | 1811  | 10  | <0.01  | 67  | 850          | 150      | <5 <20           | 151      | <0.01 <10              | 17        | <10        | 4   | 103      |
|       |       |     |      |     |     |    |      |    |    |     |      |      |             |       |       |     |        |     |              |          |                  |          | 0.04 .45               | 40        | -40        |     | 547      |
| 6     | 10307 | 1.0 | 0.73 | 70  | 55  | <5 | 2.55 | 3  | 20 | 116 | 169  | 6.61 | <10         | 0.66  | 2205  |     | <0.01  | 90  | 1200         | 272      | <5 <20           |          | <0.01 <10              | 43        | <10        | 2   |          |
| 7     | 10308 | 0.9 | 0.42 | 80  | 45  | <5 | 1.78 | <1 | 28 | 86  | 254  | 5.75 | <10         | 0.35  | 1130  | _   | <0.01  |     | 1120         | 44       | <5 <20           |          | <0.01 <10              | 27        | <10        | 5   | 62       |
| 8     | 10309 | 1.3 | 0.85 | 45  | 60  | <5 | 2.09 | <1 | 21 | 127 | 202  | 5.70 | <10         | 1.14  | 1776  | -   | <0.01  | 96  | 1160         | 48       | <5 <20           |          | <0.01 <10              | 51        | <10        | 2   | 112      |
| 9     | 10310 | 1.1 | 0.84 | 55  | 55  | <5 | 1.84 | <1 | 23 | 159 | 269  | 6.77 | <10         | 1.06  | 1783  |     | <0.01  | 104 | 1080         | 36       | <5 <20           |          | <0.01 <10              | 62        | <10        | <1  | 95<br>50 |
| 10    | 10311 | 0.8 | 0.42 | 70  | 40  | <5 | 1.54 | <1 | 21 | 114 | 431  | 4.63 | <10         | 0.35  | 875   | 100 | <0.01  | 60  | 1060         | 40       | <5 <20           | 97       | <0.01 <10              | 31        | <10        | 7   | 58       |
|       |       |     |      |     |     |    |      |    |    |     |      |      |             |       |       |     |        |     | 000          |          | 40 -00           | 400      | -0.04 -40              | 40        | -10        | 15  | 56       |
| 11    | 10312 | 0.5 | 0.35 | 60  | 35  | <5 | 3.40 | <1 | 14 | 58  | 233  | 3.63 | <10         | 0.28  | 1953  |     | <0.01  | 33  | 980          | 28       | 10 <20           |          | <0.01 <10              | 13        | <10<br><10 | 6   | 96       |
| 12    | 10313 | 0.6 | 0.35 | 45  | 30  | <5 | 1.90 | <1 | 13 | 112 | 165  | 3.32 | <10         | 0.19  | 849   | 35  | 0.01   | 29  | 730          | 80       | <5 <20           |          | <0.01 <10              | 13        | <10        | -   | 90<br>40 |
| 13    | 10314 | 0.4 | 0.56 | 55  | 45  | <5 | 2.32 | <1 | 19 | 62  | 148  | 3.22 | <10         | 0.79  | 1014  | 3   | 0.02   | 52  | 1200         | 26       | <5 <20           |          | <0.01 <10              | 25        |            |     | 40<br>19 |
| 14    | 10315 | 0.5 | 0.41 | 55  | 30  | <5 | 3.83 | <1 | 10 | 81  | 146  | 3.13 | <10         | 0.41  | 1842  | 4   |        | 41  | 1200         | 16       | <5 <20           |          | <0.01 <10              | 22        | <10        | 15  |          |
| 15    | 10316 | 8.0 | 0.28 | 95  | 20  | <5 | 4.25 | <1 | 13 | 81  | 337  | 4.15 | <10         | 0.16  | 2541  | 13  | <0.01  | 36  | 850          | 14       | <5 <20           | 203      | <0.01 <10              | 13        | <10        | 9   | 15       |
|       |       |     |      |     |     |    |      |    |    |     |      |      |             |       |       |     | .0.04  | 0.0 | 700          | 054      | -E -DA           | 447      | -0.01 -10              | 13        | <10        | 1   | 470      |
| 16    | 10317 | 3.2 | 0.30 | 240 | 45  | <5 | 2.31 | 3  | 15 | 124 | 937  | 5.28 | <10         | 0.24  | 2062  |     | <0.01  | 28  | 720          | 254      | <5 <20           |          | <0.01 <10              | 7         | <10        | •   |          |
| 17    | 10318 | 1.9 | 0.24 | 125 | 35  | <5 | 0.97 | <1 | 11 | 84  | 512  | 3.48 | <10         | 0.01  | 714   |     | < 0.01 | 19  | 490          | 62       | 15 <20<br><5 <20 |          | <0.01 <10              | 7         | <10        |     | 40       |
| 18    | 10319 | 1.2 | 0.27 | 65  | 30  | <5 | 0.90 | <1 | 10 | 167 | 456  | 2.34 | <10         | 0.02  | 579   |     | <0.01  | 20  | 480          | 54       |                  |          | <0.01 <10<br><0.01 <10 | 6         | <10        |     |          |
| 19    | 10320 | 8.2 | 0.25 | 320 | 20  | <5 | 0.51 | 12 | 13 | 111 | 830  | 3.86 |             | <0.01 | 454   |     | <0.01  | 21  | 290          |          | 210 <20          |          | <0.01 <10              | 7         | <10        |     |          |
| 20    | 10321 | 5.2 | 0.26 | 270 | 25  | <5 | 1.14 | 4  | 12 | 154 | 955  | 3.58 | <10         | 0.01  | 699   | 29  | <0.01  | 23  | 510          | 342      | 175 <20          | 04       | <0.01 <10              | ,         | ~10        | - 1 | 390      |
|       |       |     |      |     |     |    |      |    |    |     |      |      |             | 4.00  | 4.400 |     | 0.00   | _   | 1720         | 22       | 5 <20            | 274      | <0.01 <10              | 59        | <10        | 9   | 76       |
| 21    | 10323 | 0.9 | 1.20 | 45  | 65  | <5 | 3.49 | <1 | 17 | 46  | 179  | 3.71 | <10         | 1.00  |       | 4   |        | _   | 1730<br>1610 | 32<br>56 | 70 <20           |          | <0.01 <10              | 26        | <10        | 9   | 66       |
| 22    | 10324 | 6.1 | 0.63 | 175 | 50  | <5 | 2.73 | <1 | 16 | 77  | 731  | 4.37 | <10         | 0.49  |       |     | < 0.01 | _   |              | 108      | 155 <20          | 225      |                        | 18        | <10        | _   | 147      |
| 23    | 10325 | 8.2 | 0.42 | 265 | 25  | <5 | 3.74 | <1 | 10 | 74  | 603  | 3.47 | <10         | 0.39  | 4036  |     | <0.01  |     |              | 166      | 10 < 20          |          | <0.01 <10              | 27        | <10        |     | 72       |
| 24    | 10326 | 4.9 | 0.91 | 120 | 50  | <5 | 4.86 | <1 | 9  | 79  | 658  | 3.37 | <10         | 0.68  | 3438  |     | <0.01  |     | 1170         |          | 10 <20           |          | <0.01 <10              |           | <10        |     |          |
| 25    | 10327 | 7.2 | 0.78 | 145 | 55  | <5 | 3.79 | <1 | 8  | 56  | 1726 | 3.67 | <10         | 0.51  | 2210  | 3   | <0.01  | - 7 | 1260         | 76       | 10 <20           | 100      | ~0.01 ~10              | 33        | ~10        | ,   | 7.5      |
|       |       |     |      |     |     | _  |      |    | _  |     | 400  | 0.00 | .46         | 0.74  | 2450  | ^   | 0.03   | 2   | 4630         | 20       | <5 <20           | 111      | 0.02 <10               | 79        | <10        | 8   | 61       |
| 26    | 10328 | 0.8 | 1.08 | 80  | 60  | <5 | 3.16 | <1 | 9  | 63  | 109  | 3.98 | <10         | 0.71  |       | 3   |        | _   | 1630         | 38       |                  | 274      |                        | 162       | <10        |     | 143      |
| 27    | 10330 | 0.6 | 2.00 | 50  | 80  | 10 | 7.25 | <1 | 20 | 42  | 71   | 6.04 | <10         | 1.83  |       | 1   | 0.02   | 4   | 1420         | 58       | <5 <20           |          |                        | 174       | <10        | 13  | 51       |
| 28    | 10331 | 2.3 | 1.69 | 40  | 65  | <5 | 3.13 | <1 | 16 | 118 | 1723 | 5.45 | <10         | 1.21  | 1040  | 4   |        | 23  | 1970         | 42       | <5 <20           | 55<br>87 |                        | 246       | <10        |     | 50       |
| 29    | 10332 | 2.3 | 1.78 | 25  | 70  | <5 | 4.04 | <1 | 18 | 61  | 2258 | 5.57 | <10         | 1.62  |       | 17  |        | 26  | 2100         | 34       | <5 <20<br><5 <20 | 30       | -                      | 231       | <10        |     | 39       |
| 30    | 10333 | 0.4 | 1.63 | 15  | 220 | <5 | 3.56 | <1 | 10 | 88  | 761  | 4.33 | <10<br>Page | 1.58  | 1132  | 7   | 0.06   | 15  | 2090         | 36       | <5 <20           | 00       | 0.07 < 10              | ا بے      | ~10        | 14  | 93       |
| i     |       |     |      |     |     |    |      |    |    |     |      |      | Page        | •     |       |     |        |     |              |          |                  |          |                        |           |            |     |          |
|       |       |     |      |     |     |    |      |    |    |     |      |      |             |       |       |     |        |     |              |          |                  |          |                        |           |            |     |          |


JJ/ga df/5150 XLS/05

### ICP CERTIFICATE OF ANALYSIS AS 2005-5152

### Falconbridge Limited

| Et #.    | Tag # | Ag   | Al % | As   | Ba  | Bi | Ca % | Cd  | Co | _ Cr_      | Cu   | Fe %_ | La  | Mg %  | Min  | INO | Na %   | Nt  | <u> </u> | aH  | 50 SII  | <u> </u> | 11 70 C                   | <u> </u> | 77  | <u> </u> |      |
|----------|-------|------|------|------|-----|----|------|-----|----|------------|------|-------|-----|-------|------|-----|--------|-----|----------|-----|---------|----------|---------------------------|----------|-----|----------|------|
| 31       | 10334 | 0.6  | 1.57 | 15   | 180 | <5 | 4.36 | <1  | 17 | 108        | 2965 | 5.37  | <10 | 1.48  | 1218 | 3   | 0.05   | 35  | 2140     | 38  | <5 <20  | 99       | 0.05 <10                  | 302      |     | 13       | 45   |
| 32       | 10335 | 0.4  | 1.35 | 20   | 155 | <5 | 5.12 | <1  | 12 | 68         | 1266 | 3.79  | <10 | 1.23  | 1080 | 4   | 0.05   | 21  | 2200     | 36  | <5 <20  | 103      | 0.04 <10                  | 206      | <10 | 16       | 36   |
| 33       | 10306 | 2.2  | 1.53 | 10   | 350 | <5 | 1.19 | <1  | 9  | 16         | 7256 | 3.52  | <10 | 0.95  | 476  | 3   | 0.15   | 12  | 2970     | 26  | <5 <20  | 78       | 0.07 < 10                 | 147      | <10 | 19       | 57   |
| 34       | 10329 | <0.2 | 3.01 | 30   | 95  | <5 | 4.96 | <1  | 34 | 64         | 119  | 7.65  | <10 | 2.63  | 974  | <1  | 0.02   | 21  | 2090     | 60  | 10 <20  | 116      | 0.11 <10                  | 274      | <10 | 15       | 87   |
|          |       | 0.2  |      | 100  | 180 | <5 | 0.23 | <1  | 57 | 238        | 450  | >10   | <10 | 0.12  | 502  | 118 | 0.05   | 441 | 100      | 102 | <5 <20  | 15       | < 0.01 < 10               | 29       | <10 | <1       | 487  |
| 35       | 10322 | 0.2  | 0.79 | 100  | 100 | -5 | 0.20 | - 1 | 01 | 200        | 100  |       |     | J. 1  |      |     |        |     |          |     |         |          |                           |          |     |          |      |
|          |       |      |      |      |     |    |      |     |    |            |      |       |     |       |      |     |        |     |          |     |         |          |                           |          |     |          |      |
| OC DAT   | га.   |      |      |      |     |    |      |     |    |            |      |       |     |       |      |     |        |     |          |     |         |          |                           |          |     |          |      |
| QC DA    | LA    |      |      |      |     |    |      |     |    |            |      |       |     |       |      |     |        |     |          |     |         |          |                           |          |     |          |      |
| Docalit  |       |      |      |      |     |    |      |     |    |            |      |       |     |       |      |     |        |     |          |     |         |          |                           |          |     |          |      |
| Resplit. |       | 0.6  | 0.24 | 50   | 55  | <5 | 3.11 | <1  | 20 | 72         | 206  | 3.58  | <10 | 0.15  | 1457 | 10  | < 0.01 | 48  | 1120     | 24  | <5 <20  | 177      | < 0.01 < 10               | 15       | <10 | 9        | 17   |
| ,        | 10301 | 0.0  | 0.24 | 50   | 55  | ٠, | 9.11 | -,  | 20 | , <u>L</u> |      | 0.00  |     | 0.70  |      |     |        |     |          |     |         |          |                           |          |     |          |      |
| Danast   |       |      |      |      |     |    |      |     |    |            |      |       |     |       |      |     |        |     |          |     |         |          |                           |          |     |          |      |
| Repeat   |       | 0.7  | 0.00 | C.E. | E0  | -6 | 260  | <1  | 20 | 66         | 220  | 3.47  | <10 | 0.15  | 1332 | 8   | <0.01  | 46  | 990      | 24  | <5 <20  | 167      | < 0.01 < 10               | ) 15     | <10 | 8        | 16   |
| 1        | 10301 | 0.7  | 0.25 | 65   | 50  | <5 | 2.69 |     |    |            |      |       |     |       |      |     |        | 65  | 1160     | 40  | <5 <20  | 106      | <0.01 <10                 | 31       | <10 | 7        | 59   |
| 10       | 10311 | 0.9  | 0.42 | 65   | 45  | <5 | 1.64 | <1  | 21 | 115        | 452  | 4.74  | <10 | 0.36  | 900  |     |        |     |          |     |         |          | <0.01 <1                  |          | <10 |          | 1445 |
| 19       | 10320 | 8.2  | 0.23 | 325  | 15  | <5 | 0.52 | 13  | 13 | 108        | 817  | 3.90  | <10 | <0.01 | 460  | 31  | <0.01  | 22  | 290      | 838 | 215 <20 | 31       | <b>~</b> 0.01 <b>~</b> 10 | , 0      | ~10 | ` '      | 1445 |
|          |       |      |      |      |     |    |      |     |    |            |      |       |     |       |      |     |        |     |          |     |         |          |                           |          |     |          |      |
| Standa   | rd:   |      |      |      |     |    |      |     |    |            |      |       |     |       |      |     |        |     |          |     |         |          | 2.40                      |          | .40 | 40       | 7.6  |
| GEO'05   | ;     | 1.5  | 1.46 | 55   | 170 | <5 | 1.44 | <1  | 18 | 60         | 84   | 4.00  | <10 | 0.76  | 599  | <1  | 0.01   | 28  | 780      | 22  | <5 <20  | 50       | 0.10 <10                  | ) 65     | <10 | Ю        | 74   |

ECO TECH ABORATORY LTD.
Juria Jealouse
BC Certified Assayer



10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5154**

4-Oct-05

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type: Core Project #: 301 Shipment #: 62

Samples Submitted by: Mike Savell

|        |       | Au     | Au      |  |
|--------|-------|--------|---------|--|
| ET #.  | Tag # | (g/t)  | (oz/t)  |  |
| 1      | 10336 | 0.03   | 0.001   |  |
| 2      | 10337 | 0.08   | 0.002   |  |
| 2<br>3 | 10338 | 0.06   | 0.002   |  |
| 4      | 10339 | 0.06   | 0.002   |  |
| 5      | 10340 | 0.03   | 0.001   |  |
| 6      | 10342 | 0.03   | 0.001   |  |
| 7      | 10343 | < 0.03 | < 0.001 |  |
| 8      | 10344 | 0.07   | 0.002   |  |
| 9      | 10345 | <0.03  | <0.001  |  |
| 10     | 10346 | <0.03  | <0.001  |  |
| 11     | 10347 | 0.03   | 0.001   |  |
| 12     | 10348 | 0.06   | 0.002   |  |
| 13     | 10349 | 0.14   | 0.004   |  |
| 14     | 10350 | 0.03   | 0.001   |  |
| 15     | 10351 | 0.03   | 0.001   |  |
| 16     | 10352 | 0.04   | 0.001   |  |
| 17     | 10353 | 0.04   | 0.001   |  |
| 18     | 10354 | <0.03  | <0.001  |  |
| 19     | 10355 | 0.04   | 0.001   |  |
| 20     | 10356 | 0.04   | 0.001   |  |
| 21     | 10358 | <0.03  | <0.001  |  |
| 22     | 10359 | 0.06   | 0.002   |  |
| 23     | 10360 | 0.05   | 0.001   |  |
| 24     | 10361 | 0.11   | 0.003   |  |
| 25     | 10362 | 0.07   | 0.002   |  |
| 26     | 10363 | 0.45   | 0.013   |  |

ECO TECH LABORATORY LTD.

Kutta Jealouse

B.C. Ce**rt**fied Assays

| ET #.             | Tag # | Au<br>(g/t) | Au<br>(oz/t) |
|-------------------|-------|-------------|--------------|
| 27                | 10365 | 0.14        | 0.004        |
| 28                | 10366 | 0.04        | 0.001        |
| 29                | 10367 | 0.09        | 0.003        |
| 30                | 10368 | 0.05        | 0.001        |
| 31                | 10369 | 0.09        | 0.003        |
| 32                | 10370 | 0.09        | 0.003        |
| 33                | 10341 | 0.39        | 0.011        |
| 34                | 10364 | <0.03       | <0.001       |
| 35                | 10357 | 0.08        | 0.002        |
| QC DATA:          |       |             |              |
| · 1               | 10336 | 0.03        | 0.001        |
| 10                | 10346 | <0.03       | < 0.001      |
| 19                | 10355 | 0.03        | 0.001        |
| Resplit:<br>1     | 10336 | <0.03       | <0.001       |
| Standard:<br>SH13 |       | 1.32        | 0.038        |

JJ/kk XL\$/05 ECO TECH LABORATORY LTD.

Juna Jealpuse

B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core Project #: 301 Shipment #: 62

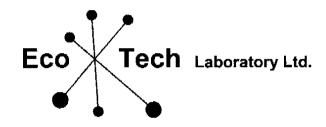
Samples submitted by: Mike Savell

# Values in ppm unless otherwise reported

| Et #.    | Tag # | Ag    | AI % | As | Ba   | Bi | Ca % | Cd       | Co         | Cr         | Сu         | Fe %         | La         | Mg %         | Mn   | Мо | Na %   | Nì | <u> </u>   | Pb       | Sb Sn         | Sr   | Ti %     |       | V   | <u>w</u> _ | Υ   | Zn             |
|----------|-------|-------|------|----|------|----|------|----------|------------|------------|------------|--------------|------------|--------------|------|----|--------|----|------------|----------|---------------|------|----------|-------|-----|------------|-----|----------------|
| 1        | 10336 | <0.2  | 1.31 | 15 | 500  | <5 | 6.69 | <1       | 7          | 72         | 206        | 3.07         | <10        |              | 1298 | <1 | 0.06   |    | 2140       | 26       | 5 <20         | 137  | 0.07 <   |       |     | <10        |     | 35             |
| 2        | 10337 | 0.3   | 1.62 | 20 | 120  | <5 | 5.64 | <1       | 11         | 48         | 603        | 4.32         | <10        | 1.56         | 1783 | 2  | 0.03   | 16 | 2410       | 32       | <5 <20        | 118  | 0.06 <   |       |     | <10        |     | 40             |
| 3        | 10338 | 0.3   | 1.76 | 25 | 325  | <5 | 5.51 | <1       | 11         | 66         | 487        | 3.89         | <10        | 1.63         | 1662 | <1 | 0.08   | 12 | 2250       | 40       | 10 <20        | 116  | 0.08 <   |       |     | <10        |     | 40             |
| 4        | 10339 | < 0.2 | 1.51 | 10 | 600  | <5 | 5.96 | <1       | 7          | <b>4</b> 2 | 368        | 4.80         | <10        | 1.38         | 1722 | 3  | 0.05   | 14 | 2010       | 26       | <5 <20        | 128  | 0.06 <   |       |     | <10        |     | 35             |
| 5        | 10340 | 0.2   | 0.86 | 10 | 265  | <5 | 2.90 | <1       | 4          | 84         | 167        | 2.37         | <10        | 0.68         | 788  | 9  | 0.04   | 7  | 800        | 28       | <5 <20        | 85   | 0.01 <   | 10    | 78  | <10        | 11  | 30             |
|          |       |       |      |    |      |    |      |          | _          |            |            |              |            | 0.50         |      | 40 | 0.00   |    | 700        | 20       | <5 <20        | 92   | <0.01 <  | 10    | 49  | <10        | 13  | 26             |
| 6        | 10342 | 0.2   | 0.69 | 15 | 195  | <5 | 3.57 | <1       | 3          | 74         | 231        | 1.94         | <10        | 0.53         | 1014 | 12 | 0.02   | 6  | 730<br>730 | 20       | <5 <20        |      | <0.01 <  |       |     | <10        |     | 23             |
| 7        | 10343 | <0.2  | 0.61 | 15 | 130  | <5 | 4.60 | <1       | 3          | 70         | 103        | 1.83         | <10        | 0.46         | 1247 | 8  | 0.02   | 4  | 780<br>780 | 20<br>16 | <5 <20        |      | <0.01 <  |       |     | <10        | 9   | 23             |
| 8        | 10344 | 0.4   | 0.57 | 10 | 235  | <5 | 2.53 | <1       | 3          | 73         | 503        | 1.90         | <10        | 0.38         | 538  | 22 | 0.02   | 6  | 770        | 22       | <5 <20        |      | <0.01 <  | . –   | . – | <10        | _   | 22             |
| 9        | 10345 | <0.2  | 0.66 | 20 | 200  | <5 | 2.81 | <1       | 3          | 55         | 41         | 1.84         | <10        | 0.46         | 580  | 5  | 0.02   | 4  |            | 20       | <5 <20        |      | <0.01 <  |       |     | <10        |     | 20             |
| 10       | 10346 | <0.2  | 0.57 | 15 | 220  | <5 | 2.74 | <1       | 3          | 69         | 51         | 1.66         | <10        | 0.36         | 507  | 8  | 0.01   | 3  | 750        | 20       | <b>43 420</b> | QΖ   | ~U.UT ~  | 10    | Şι  | ~10        | • • | 20             |
|          |       |       |      |    | 4.40 |    |      | 4        | _          | <b>→</b> 0 | 0.4        | 1.04         | -10        | 0.30         | 533  | 3  | 0.02   | 3  | 780        | 22       | <5 <20        | 68   | <0.01 <  | 10    | 34  | <10        | 10  | 21             |
| 11       | 10347 | <0.2  | 0.57 | 15 | 110  | <5 | 2.37 | <1       | 5          | 70<br>75   | 81         | 1.81         | <10        | 0.38         | 480  | 9  | 0.02   | 6  | 780        | 22       | <5 <20        |      | <0.01 <  |       | 45  | <10        | 7   | 25             |
| 12       | 10348 | 0.3   | 0.63 | 20 | 210  | <5 | 2.02 | <1       | 4          | 75         | 444        | 1.96         | <10        | 0.45<br>0.44 | 425  | 6  | 0.02   | 5  | 780        | 20       | <5 <20        |      | <0.01 <  |       |     | <10        | 9   | 24             |
| 13       | 10349 | 0.3   | 0.63 | 25 | 190  | <5 | 1.75 | <1<br>-1 | 5          | 91         | 333        | 2.13         | <10<br><10 | 0.44         | 528  | 9  | 0.03   | 3  | 780        | 20       | <5 <20        |      | <0.01 <  |       |     | <10        | 10  | 22             |
| 14       | 10350 | 0.2   | 0.64 | 15 | 360  | <5 | 2.20 | <1       | 3          | 67         | 215        | 2.15<br>1.93 | <10        | 0.43         | 546  | 4  | 0.02   | 3  | 790        | 20       | <5 <20        |      | <0.01 <  |       |     | <10        |     | 21             |
| 15       | 10351 | <0.2  | 0.55 | 10 | 345  | <5 | 2.16 | <1       | 3          | 67         | <b>4</b> 4 | 1.93         | ~10        | 0.55         | 540  | 4  | 0.02   | Ų  | 130        | 20       | -0 -20        | Ģ,   |          |       | • • |            |     |                |
| 40       | 10352 | <0.2  | 0.61 | 20 | 155  | <5 | 6.96 | <1       | 3          | 60         | 26         | 1.71         | <10        | 0.43         | 1826 | 1  | 0.01   | 2  | 670        | 18       | <5 <20        | 187  | <0.01 <  | 10    | 33  | <10        | 27  | 21             |
| 16<br>17 | 10352 | <0.2  | 0.58 | 15 | 135  | <5 | 3.36 | <1       | 4          | 75         | 96         | 1.73         | <10        | 0.39         | 675  | 4  |        | 4  | 750        | 18       | <5 <20        | 88   | <0.01 <  | 10    | 32  | <10        | 13  | 21             |
| 18       | 10353 | 0.2   | 0.50 | 15 | 20   | <5 | 3.40 | <1       | 5          | 60         | 62         | 1.85         | <10        | 0.33         | 707  | 6  | < 0.01 | 5  | 750        | 26       | <5 <20        | 101  | < 0.01 < | 10    | 19  | <10        | 12  | 17             |
| 19       | 10354 | 0.3   |      | 15 | 165  | <5 | 5.33 | <1       | 8          | 81         | 212        | 2.58         | <10        | 1.03         | 994  | 7  | 0.01   | 10 | 1220       | 30       | <5 <20        | 136  | 0.02 <   | 10    | 82  | <10        | 16  | 22             |
| 20       | 10356 | 1.0   | 1.76 | 15 | 215  | <5 | 5.65 | <1       | 13         | 114        | 807        | 4.61         | <10        | 1.88         | 1315 | 6  | 0.03   | 30 | 1550       | 50       | <5 <20        | 130  | 0.03 <   | 10 1  | 182 | <10        | 13  | 5 <del>9</del> |
| 20       | 10330 | 1.0   | 1.70 |    | 2.0  | Ū  | 0.00 | ·        |            | , , ,      |            |              |            |              |      |    |        |    |            |          |               |      |          |       |     |            |     |                |
| 21       | 10358 | <0.2  | 1.96 | 20 | 800  | <5 | 5.57 | <1       | 14         | 182        | 212        | 5.37         | <10        | 2.24         | 1335 | <1 | 0.03   | 47 | 1750       | 48       | 10 <20        | 156  | 0.12 <   |       | 239 | <10        | . – | 45             |
| 22       | 10359 | 0.2   | 1.56 | 15 | 170  | <5 | 5.50 | <1       | 15         | 136        | 393        | 5.80         | <10        | 1.67         | 1185 | 3  | 0.02   | 35 | 1500       | 40       | <5 <20        | 4704 | 0.09 <   |       | 208 | <10        | 8   | 50             |
| 23       | 10360 | 0.3   | 1.20 | 10 | 65   | <5 | 3.77 | 2        | 11         | 73         | 108        | 6.42         | <10        | 0.99         | 1251 | 12 | 0.02   | 31 | 1570       | 34       | 25 <20        | 90   | 0.02 <   |       | 151 | <10        | 5   | 57             |
| 24       | 10361 | 0.7   | 1.27 | 25 | 60   | <5 | 4.00 | 3        | 12         | 51         | 524        | 4.00         | <10        | 1.15         | 1115 | 16 | 0.02   | 31 | 1700       | 44       | 50 <20        | 115  | 0.04 <   |       | 120 | <10        |     | 40             |
| 25       | 10362 | 0.4   | 1.06 | 40 | 85   | <5 | 4.61 | <1       | <b>1</b> 1 | 49         | 342        | 3.46         | <10        | 0.88         | 1268 | 3  | 0.02   | 17 | 1720       | 40       | <5 <20        | 108  | 0.04 <   | 10 1  | 105 | <10        | 16  | 40             |
| 20       | ,0001 |       |      |    |      |    |      |          |            |            |            |              |            |              |      |    |        |    |            |          |               |      |          |       |     |            |     |                |
| 26       | 10363 | 0.8   | 1.26 | 70 | 45   | <5 | 3.83 | <1       | 10         | 67         | 243        | 4.37         | <10        | 1.14         | 1769 | 7  | 0.02   | 13 | 1900       | 34       | <5 <20        |      | 0.06 <   |       | 129 | <10        |     | 61             |
| 27       | 10365 | 1.0   | 1.48 | 50 | 40   | <5 | 6.20 | <1       | 11         | 57         | 396        | 3.91         | <10        | 1.62         | 1736 | 7  | <0.01  | 16 | 1480       | 40       | 5 <20         |      | 0.01 <   |       | 69  | <10        |     | 35             |
| 28       | 10366 | 0.6   | 1.61 | 25 | 60   | <5 | 7.69 | <1       | 12         | 90         | 276        | 3.44         | <10        | 1.71         | 1707 | 4  | <0.01  | 27 | 1190       | 38       | 10 <20        |      | 0.02 <   |       | 71  | <10        |     | 36             |
| 29       | 10367 | 2.8   | 1.27 | 25 | 40   | <5 | 4.31 | <1       | 11         | 65         | 1038       | 3.67         | <10        | 1.10         | 1261 |    | <0.01  |    | 1130       | 60       | <5 <20        |      | 0.01 <   |       | 61  | <10        |     | 37             |
| 30       | 10368 | 0.6   | 1.64 | 25 | 95   | <5 | 7.32 | <1       | 12         | 91         | 326        | 3.58         | _<10       | 1.69         | 2071 | 7  | <0.01  | 26 | 1040       | 36       | <5 <20        | 180  | <0.01 <  | :10 1 | 100 | <10        | 11  | 38             |
|          |       |       |      |    |      |    |      |          |            |            |            |              | Page       | 1            |      |    |        |    |            |          |               |      |          |       |     |            |     |                |
|          |       |       |      |    |      |    |      |          |            |            |            |              |            |              |      |    |        |    |            |          |               |      |          |       |     |            |     |                |

### ECO TECH LABORATORY LTD.

### ICP CERTIFICATE OF ANALYSIS AS 2005-5154


## Falconbridge Limited

| €t #.             | Tag#  | Ag          | Al % | As  | Ba  | Bi | Ca % | Cd  | Co | Cr  | Cu   | Fe %_ | La  | Mg % | Mn   | Мо  | Na % | Ni  | P    | Pb  | Sb Sn  | Sr  | Ti % U    | V   | W   | Υ  | Zn  |
|-------------------|-------|-------------|------|-----|-----|----|------|-----|----|-----|------|-------|-----|------|------|-----|------|-----|------|-----|--------|-----|-----------|-----|-----|----|-----|
| 31                | 10369 | 0.4         | 1.45 | 25  | 115 | <5 | 4.56 | <1  | 12 | 83  | 851  | 3,31  | <10 | 1.40 | 1159 | 9   | 0.01 | 27  | 1390 | 30  | 10 <20 | 104 | 0.03 <10  | 110 | <10 | 11 | 36  |
| 32                | 10370 | 0.3         | 1.47 | 15  | 170 | <5 | 4.10 | <1  | 13 | 107 | 908  | 3.37  | <10 | 1.43 | 940  | 5   | 0.01 | 29  | 1370 | 36  | <5 <20 | 125 | 0.04 <10  | 113 | <10 | 13 | 35  |
| 33                | 10341 | 1.1         | 1.12 | 5   | 115 | <5 | 1.69 | <1  | 14 | 26  | 4082 | 3.97  | <10 | 1.16 | 716  | 2   | 0.17 | 18  | 1380 | 22  | <5 <20 | 114 | 0.16 <10  | 177 | <10 | 19 | 58  |
| 34                | 10364 | <0.2        | 3.14 | 35  | 130 | 5  | 5.49 | <1  | 38 | 59  | 89   | 8.23  | <10 | 2.78 | 1072 | <1  | 0.02 | 19  | 1950 | 72  | <5 <20 | 132 | 0.14 <10  | 278 | <10 | 19 | 94  |
| 35                | 10357 | 0.3         | 0.80 | 105 | 130 | <5 | 0.23 | <1  | 77 | 225 | 441  | >10   | <10 | 0.13 | 426  | 120 | 0.05 | 443 | 90   | 120 | <5 <20 | 10  | <0.01 <10 | 23  | <10 | <1 | 463 |
|                   |       | 0.0         | 0.00 | 100 |     | _  |      |     |    |     |      |       |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
| QC DAT            | A:    |             |      |     |     |    |      |     |    |     |      |       |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
| Resplit:          | •     |             |      |     |     |    |      |     |    |     |      |       |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
| 1                 | 10336 | <0.2        | 1.35 | 15  | 375 | <5 | 5.81 | <1  | 8  | 76  | 191  | 3.20  | <10 | 1.25 | 1195 | <1  | 0.05 | 17  | 2240 | 32  | <5 <20 | 122 | 0.06 <10  | 159 | <10 | 18 | 39  |
| Repeat:           | •     |             |      |     |     |    |      |     |    |     |      |       |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
| 1                 | 10336 | <0.2        | 1.26 | 15  | 485 | <5 | 6.61 | <1  | 7  | 71  | 199  | 3.05  | <10 | 1.14 | 1283 | <1  | 0.05 | 15  | 2060 | 32  | <5 <20 | 130 |           |     | <10 | 19 | 37  |
| 10                | 10346 | < 0.2       | 0.57 | 15  | 210 | <5 | 2.79 | <1  | 2  | 69  | 51   | 1.70  | <10 | 0.37 | 515  | 7   | 0.01 | 4   | 760  | 18  | <5 <20 | 85  |           | 32  | <10 | 11 | 20  |
| 19                | 10355 | 0.2         | 1.06 | 10  | 150 | <5 | 5.30 | <1  | 7  | 79  | 216  | 2.55  | <10 | 1.05 | 995  | 6   | 0.01 | 11  | 1180 | 24  | <5 <20 | 137 | 0.02 <10  | 81  | <10 | 14 | 22  |
|                   |       | 5. <b>_</b> |      |     |     |    |      |     |    |     |      |       |     |      |      |     |      |     |      |     |        |     |           |     |     |    |     |
| Standar<br>GEO'05 |       | 1.5         | 1.46 | 60  | 170 | <5 | 1.43 | <1  | 18 | 60  | 86   | 4.02  | <10 | 0.75 | 596  | <1  | 0.02 | 29  | 760  | 22  | <5 <20 | 50  | 0.10 <10  | 73  | <10 | 10 | 74  |
| GEO 03            |       | 1.5         | 1.40 | 30  | 170 | -5 | 1.40 | - 1 | 10 | ÇÜ  | 00   | 1.02  |     | 5.10 |      | ·   | -104 |     |      |     |        |     |           |     |     |    |     |

Julta Jealguse

BC Certified Assayer

JJ/ga df/5150 XLS/05



10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com

www.ecotechlab.com

4-Oct-05

# **CERTIFICATE OF ASSAY AS 2005-5155**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35 Sample type:Core/Pulp

Project #: 301 Shipment #: 63

Samples submitted by: Mike Savell

|        |       | Au    | Au     |  |
|--------|-------|-------|--------|--|
| ET #   | Tag#  | (g/t) | (oz/t) |  |
| 1      | 10371 | 0.08  | 0.002  |  |
| 2      | 10372 | 0.06  | 0.002  |  |
| 2<br>3 | 10373 | <0.03 | <0.001 |  |
| 4      | 10374 | <0.03 | <0.001 |  |
| 5      | 10375 | 0.03  | 0.001  |  |
| 6      | 10377 | <0.03 | <0.001 |  |
| 6<br>7 | 10378 | <0.03 | <0.001 |  |
| 8      | 10379 | 0.07  | 0.002  |  |
| 9      | 10380 | 0.04  | 0.001  |  |
| 10     | 10381 | 0.10  | 0.003  |  |
| 11     | 10382 | 0.20  | 0.006  |  |
| 12     | 10383 | 0.10  | 0.003  |  |
| 13     | 10384 | 0.13  | 0.004  |  |
| 14     | 10385 | 0.04  | 0.001  |  |
| 15     | 10386 | 0.11  | 0.003  |  |
| 16     | 10387 | 0.09  | 0.003  |  |
| 17     | 10388 | 0.05  | 0.001  |  |
| 18     | 10389 | 0.08  | 0.002  |  |
| 19     | 10390 | 0.08  | 0.002  |  |
| 20     | 10391 | 0.08  | 0.002  |  |
| 21     | 10393 | 0.23  | 0.007  |  |
| 22     | 10394 | 9.15  | 0.267  |  |
| 23     | 10395 | 0.27  | 0.008  |  |
| 24     | 10396 | 0.16  | 0.005  |  |
| 25     | 10397 | 0.25  | 0.007  |  |
| 26     | 10398 | 0.28  | 0.008  |  |

EGO TECH LABORATORY LTE

Jutta Jealouse

B.C. Certified Assayer

|           |       | Au    | Au             |  |
|-----------|-------|-------|----------------|--|
| ET #.     | Tag # | (g/t) | (oz/t)_        |  |
| 27        | 10400 | 0.24  | 0.007          |  |
| 28        | 20801 | 0.14  | 0.004          |  |
| 29        | 20802 | 0.08  | 0.002          |  |
| 30        | 20803 | 0.24  | 0.007          |  |
| 31        | 20804 | 0.15  | 0.004          |  |
| 32        | 20805 | 0.09  | 0.003          |  |
| 33        | 10376 | 0.39  | 0.011          |  |
| 34        | 10399 | <0.03 | <0.001         |  |
| 35        | 10392 | 0.08  | 0.002          |  |
|           |       |       |                |  |
| 000474    |       |       |                |  |
| QC DATA:  |       |       |                |  |
| Repeats:  |       | 0.00  | 0.000          |  |
| 1         | 10371 | 0.06  | 0.002          |  |
| 10        | 10381 | 0.08  | 0.002          |  |
| 19        | 10390 | 0.08  | 0.002          |  |
| 21        | 10393 | 0.25  | 0.007          |  |
| 22        | 10394 | 10.5  | 0.306          |  |
| 22        | 10394 | 9.38  | 0.274<br>0.007 |  |
| 25        | 10397 | 0.24  |                |  |
| 26        | 10398 | 0.28  | 0.008          |  |
| Resplit:  |       |       |                |  |
| 1         | 10371 | 0.06  | 0.002          |  |
|           |       |       |                |  |
| Standard: |       |       |                |  |
| SH13      |       | 1.30  | 0.038          |  |
| SN16      |       | 8.68  | 0.253          |  |
|           |       |       |                |  |

JJ/kk XLS/05 ECO TECH LABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AS 2005-5155

Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

Sample type:Core/Pulp
Project #: 301
Shipment #: 63

No. of samples received: 35

Samples submitted by: Mike Savell

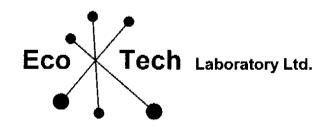
Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

|       |       |       |      |    |           |           |              |          |          |           |      |      |      |      |              |          |      |           | _    |     |                  | <b>5</b> | T:0/ 11    | .,                | LAC        | Υ   | 70    |
|-------|-------|-------|------|----|-----------|-----------|--------------|----------|----------|-----------|------|------|------|------|--------------|----------|------|-----------|------|-----|------------------|----------|------------|-------------------|------------|-----|-------|
| Et #. | Tag#  | Ag    | Al % | As | Ba        | <u>Bi</u> | Ca %         | Cd       | Co       | Cr        | Cu   | Fe % |      | Mg % | Mn           | Mo       | Na % | <u>Ni</u> | P    |     | Sb Sn            | Sr       |            | V                 | W          |     | Zn 34 |
| 1     | 10371 | <0.2  | 1.96 | 15 | 650       | <5        | 4.27         | <1       | 16       | 191       | 553  | 3.74 | <10  |      | 1004         | <1       | 0.03 | 49        | 1600 | 28  | <5 <20           | 171      | 0.13 <10   |                   | <10<br><10 |     | 29    |
| 2     | 10372 | 0.2   | 1.47 | 20 | 465       | <5        | 4.68         | <1       | 8        | 99        | 416  | 2.66 | <10  | 1.57 | 1052         | 3        | 0.02 | 28        | 1640 | 28  | 10 <20           | 113      | 0.03 <10   | 123               | <10        |     | 29    |
| 3     | 10373 | <0.2  | 1.14 | 15 | 745       | <5        | 3.98         | <1       | 3        | 122       | 116  | 2.40 | <10  | 1.19 | 1042         | 1        | 0.04 | 13        | 1460 | 18  | <5 <20           | 109      | 0.02 <10   | 1 <b>∠4</b><br>87 |            | 13  | 23    |
| 4     | 10374 | < 0.2 | 0.73 | 15 | 325       | <5        | 2.02         | <1       | 4        | 87        | 83   | 2.43 | <10  | 0.51 | 512          | 11       | 0.04 | 9         | 1020 | 14  | <5 <20           |          |            | 79                |            |     | 26    |
| 5     | 10375 | <0.2  | 0.83 | 15 | 210       | <5        | 1.89         | <1       | 6        | 73        | 220  | 2.64 | <10  | 0.61 | 577          | 23       | 0.03 | 6         | 1000 | 14  | <5 <20           | 64       | <0.01 <10  | 19                | <10        | 11  | 20    |
|       |       |       |      |    |           |           |              |          |          |           |      |      |      |      |              | _        |      |           | 000  | 4.4 | -C -OO           | 67       | <0.01 <10  | 40                | <10        | 13  | 20    |
| 6     | 10377 | <0.2  | 0.72 | 20 | 115       | <5        | 2.30         | <1       | 6        | 85        | 117  | 2.20 | <10  | 0.48 | 594          | 6        | 0.03 | 6         | 930  | 14  | <5 <20<br><5 <20 |          | <0.01 <10  | 69                |            | 12  | 25    |
| 7     | 10378 | <0.2  | 0.60 | 15 | 730       | <5        | 1.95         | <1       | 2        | 80        | 110  | 2.46 | <10  | 0.36 | 415          | 2        | 0.04 | 6         | 1010 | 14  |                  |          | <0.01 <10  | 79                | <10        |     | 24    |
| 8     | 10379 | 0.2   | 0.72 | 15 | 345       | <5        | 1.96         | <1       | 5        | 83        | 200  | 2.66 | <10  | 0.44 | 452          | 14       | 0.03 | 6         | 1080 | 16  | <5 <20           | 87       |            |                   | <10        |     | 28    |
| 9     | 10380 | 0.2   | 0.77 | 10 | 290       | <5        | 2.96         | <1       | 7        | 73        | 306  | 3.10 | <10  | 0.59 | 580          | 25       | 0.04 | 9         | 1150 | 14  | <5 <20           | -        | 0.02 < 10  |                   |            |     | 42    |
| 10    | 10381 | 0.3   | 1.81 | 15 | 455       | <5        | 3.91         | <1       | 18       | 170       | 1011 | 5.21 | <10  | 2.30 | 697          | 2        | 0.05 | 36        | 1720 | 28  | <5 <20           | 153      | 0.15 < 10  | 211               | <b>\10</b> | IU  | 42    |
|       |       |       |      |    |           |           |              |          |          |           |      |      |      |      |              |          | 0.05 |           | 4740 | 20  | <5 <20           | 173      | 0.12 <10   | 253               | <10        | 9   | 41    |
| 11    | 10382 | 0.3   | 1.86 | 15 | 495       | <5        | 4.50         | <1       | 15       | 133       | 1059 | 4.77 | <10  | 2.33 | 670          | <1       | 0.05 |           | 1710 | 28  | <5 <20           | 119      |            | 249               | <10        | 6   | 46    |
| 12    | 10383 | 0.6   | 2.20 | 20 | 325       | <5        | 3.25         | <1       | 17       | 221       | 1529 | 6.06 | <10  | 2.51 | 781          | 6        | 0.05 | 51        | 1810 | 48  | <5 <20           |          | <0.03 < 10 | 121               | <10        | 11  | 35    |
| 13    | 10384 | 0.9   | 1.46 | 15 | 110       | <5        | 3.47         | <1       | 15       | 56        | 2325 | 4.11 | <10  | 1.22 | 846          | 13       | 0.02 | 20        | 1790 | 22  | <5 <20           |          | <0.01 <10  | 86                | <10        | 15  | 33    |
| 14    | 10385 | 0.4   | 1.17 | 25 | 145       | <5        | 3.10         | <1       | 9        | 84        | 563  | 3.26 | <10  | 0.90 | 858          | 6        | 0.03 | 9         | 1250 | 20  | 10 <20           |          | <0.01 <10  |                   | <10        |     | 38    |
| 15    | 10386 | 0.9   | 1.37 | 25 | 105       | <5        | 4.25         | <1       | 11       | 73        | 942  | 3.60 | <10  | 1.23 | 1055         | 9        | 0.03 | 19        | 1510 | 112 | 10 ~20           | 144      | ~0.01 ~10  | 101               | 110        | , , | 50    |
|       |       |       |      |    |           | _         |              |          |          |           | 4074 | 4.70 | -40  | 4.50 | 1100         | 40       | 0.02 | 31        | 1830 | 26  | <5 <20           | 205      | <0.01 <10  | 170               | <10        | 10  | 41 :  |
| 16    | 10387 | 0.6   | 1.67 | 25 | 105       | <5        | 5.84         | <1       | 15       | 98        | 1074 | 4.79 | <10  | 1.53 | 1163         | 10       | 0.03 | 35        | 2000 | 32  | <5 <20           | 189      | = -        |                   | <10        | 8   | 50    |
| 17    | 10388 | 0.3   | 2.10 | 20 | 170       | <5        | 4.91         | <1       | 14       | 106       | 505  | 5.62 | <10  | 2.19 | 1151<br>1062 | 11<br>10 | 0.03 | 30        | 1710 | 32  | <5 <20           | 187      | 0.02 < 10  |                   | <10        | 9   | 42 .  |
| 18    | 10389 | 0.4   | 1.96 | 20 | 700       | <5        | 4.63         | <1       | 12       | 153       | 740  | 4.57 | <10  | 2.13 | 11062        | 59       | 0.05 | 27        | 1910 | 26  | <5 <20           | 212      | -          |                   | <10        | 11  | 42    |
| 19    | 10390 | 0.4   | 1.83 | 20 | 235       | <5        | 5.77         | <1       | 15       | 147       | 867  | 3.84 | <10  |      |              | 9        |      | 35        | 1800 | 30  | <5 <20           |          |            |                   | _          |     | 42    |
| 20    | 10391 | 0.5   | 1.93 | 20 | 235       | <5        | 5.46         | <1       | 14       | 163       | 920  | 3.87 | <10  | 2.10 | 1000         | Э        | 0.05 | JJ        | 1000 | 50  | 10 120           | ***      | 0.02       |                   |            |     |       |
|       |       |       |      | 20 | 222       |           | 4 40         | 4        | 40       | 100       | 1992 | 4.02 | <10  | 2.45 | 953          | 4        | 0.04 | 34        | 1680 | 28  | <5 <20           | 282      | 0.10 <10   | 174               | <10        | 12  | 42    |
| 21    | 10393 | 0.7   |      | 20 | 200       | <5        | 4.43         | <1       | 19       | 123<br>95 | 2023 | 4.64 | <10  | 2.54 | 837          | 9        | 0.05 | 31        | 1690 | 30  | 10 <20           | 527      | 0.03 < 10  |                   | <10        | _   | 47    |
| 22    | 10394 | 7.5   |      | 25 | 75        | <5        | 3.63         | <1<br><1 | 22<br>21 | 95<br>85  | 2909 | 4.83 | <10  | 1.84 | 842          | 39       | 0.03 | 34        | 1850 | 26  | 5 < 20           | 207      | 0.03 <10   | 175               | <10        | 11  | 50    |
| 23    | 10395 | 1.0   |      | 20 | 75        | <5<br>-c  | 4.13         |          |          | 156       | 1708 | 3.88 | <10  | 2.38 | 985          | 11       | 0.04 | 41        |      | 28  | 10 <20           | 197      | 0.08 < 10  |                   | <10        | 10  | 39    |
| 24    | 10396 | 0.6   |      | 20 | 160       | <5<br>-c  | 4.98         | <1       | 21       |           | 2695 | 5.27 | <10  | 2.82 | 680          | 10       |      |           | 1750 | 34  | 5 < 20           | 86       |            |                   | <10        | 15  | 45    |
| 25    | 10397 | 0.6   | 2.33 | 15 | 135       | <5        | 2.77         | <1       | 28       | 66        | 2090 | 5.27 | ~10  | 2.02 | 000          | ,,,      | 0.00 | 00        | 1700 | Ψ,  |                  |          |            |                   |            |     |       |
|       | 40000 |       | 0.00 |    | 400       |           | 4.45         | <1       | 29       | 143       | 2737 | 4.78 | <10  | 2.94 | 986          | 13       | 0.05 | 50        | 1980 | 38  | 5 <20            | 130      | 0.06 < 10  | 183               | <10        | 17  | 46    |
| 26    | 10398 | 0.9   |      | 25 | 130       | <5        | 4.45         |          | 29       | 142       | 2964 | 3.99 | <10  | 1.66 | 1244         | 28       | 0.03 | 54        | 1980 | 24  | <5 <20           | 118      | 0.03 < 10  | 130               | <10        | 13  | 46    |
| 27    | 10400 | 1.5   |      | 30 | 110       | <5<br><5  | 5.31         | <1<br>1  | 15       | 111       | 1695 | 3.93 | <10  | 1.15 | 1327         | 12       | 0.04 | 28        | 2000 | 26  | <5 <20           | 138      | 0.03 <10   | 137               | <10        | 16  | 39 -  |
| 28    | 20801 | 1.1   | 1.30 | 35 | 80<br>265 | <5        | 5.36<br>4.62 | <1<br><1 | 13       | 146       | 1123 | 3.37 | <10  | 2.27 | 1109         | 9        | 0.04 | 38        | 2320 | 28  | 15 <20           | 116      | 0.07 < 10  | 167               | <10        | 15  | 42    |
| 29    | 20802 | 0.7   | 1.80 | 25 | 265<br>90 | <5<br><5  | 4.60         | <1       | 18       | 162       | 2783 | 3.85 | <10  | 2.17 |              | 6        | 0.05 | 48        |      | 30  | 10 <20           | 150      | 0.08 < 10  | 166               | <10        | 14  | 51    |
| 30    | 20803 | 1.3   | 1.88 | 20 | 90        | ~5        | 4.00         | ~1       | 10       | 102       | 2700 | 3.00 | Page |      |              | ·        |      |           |      |     |                  |          |            |                   |            |     |       |
|       |       |       |      |    |           |           |              |          |          |           |      |      | •    |      |              |          |      |           |      |     |                  |          |            |                   |            |     |       |

JJ/ga df/5140 XLS/05

### ICP CERTIFICATE OF ANALYSIS AS 2005-5155


## Falconbridge Limited

| Et #.   | Tag #       | Ag    | Al % | As  | Ba  | Bi | Ca % | Cd | Ço  | Cr  | Cu   | re %    | La  | wig % | חנעו | INIO | Na % | 191 | P    | FD  | 30 311 | 31  | 11 76 U   | · · |     |    |     |
|---------|-------------|-------|------|-----|-----|----|------|----|-----|-----|------|---------|-----|-------|------|------|------|-----|------|-----|--------|-----|-----------|-----|-----|----|-----|
| 31      | 20804       | 1.0   | 1.45 | 25  | 170 | <5 | 4.42 | <1 | 14  | 100 | 1622 | 3.10    | <10 | 1.37  | 1039 | 14   | 0.03 | 39  | 2150 | 20  | <5 <20 | 194 | 0.02      | 111 |     | 15 | 41  |
| 32      | 20805       | 0.7   | 1.16 | 35  | 155 | <5 | 4.97 | <1 | 10  | 72  | 1056 | 2.49    | <10 | 0.96  | 1084 | 29   | 0.03 | 24  | 2060 | 16  | <5 <20 | 175 | <0.01 <10 | 69  | <10 | 19 | 34  |
| 33      | 10376       | 1.1   | 1.12 | 5   | 115 | <5 | 1.68 | <1 | 15  | 36  | 4242 | 4.02    | <10 | 1.14  | 725  | 3    | 0.16 | 18  | 1430 | 22  | <5 <20 | 137 | 0.16 <10  | 190 | <10 | 16 | 55  |
| 34      | 10399       | < 0.2 | 2.68 | 40  | 125 | <5 | 5.25 | <1 | 33  | 64  | 101  | 6.98    | <10 | 2.40  | 976  | <1   | 0.03 | 17  | 2410 | 42  | <5 <20 | 218 | 0.12 <10  | 245 | <10 | 18 | 88  |
| 35      | 10392       | 0.3   | 0.98 | 105 | 185 | <5 | 0.26 | <1 | 70  | 202 | 455  | >10     | <10 | 0.14  | 432  | 113  | 0.05 | 433 | 100  | 114 | <5 <20 | 12  | <0.01 <10 | 31  | <10 | <1 | 483 |
| QC DA   | <u>TA;</u>  |       |      |     |     |    |      |    |     |     |      |         |     |       |      |      |      |     |      |     |        |     |           |     |     |    |     |
| Resplit | ::<br>10371 | <0.2  | 1.94 | 25  | 485 | <5 | 4,11 | <1 | 18  | 201 | 644  | 3.85    | <10 | 2.45  | 992  | 2    | 0.03 | 51  | 1800 | 28  | 10 <20 | 178 | 0.12 <10  | 203 | <10 | 14 | 34  |
| '       | 10011       | ~U.Z  | 1.57 | 20  | 700 |    |      | •  | . • |     | 0,,  | • • • • |     |       |      |      |      |     |      |     |        |     |           |     |     |    |     |
| Repeat  | <u>:</u>    |       |      |     |     |    |      |    |     |     |      |         |     |       |      |      |      |     |      |     |        |     |           |     |     |    |     |
| 1       | 10371       | < 0.2 | 1.90 | 20  | 645 | <5 | 4.16 | <1 | 16  | 183 | 554  | 3.64    | <10 | 2.42  | 979  | <1   | 0.03 | 48  | 1620 | 28  | 5 <20  | 164 | 0.12 <10  | 196 | <10 | 13 | 33  |
| 10      | 10381       | 0.3   | 1.77 | 20  | 425 | <5 | 3.90 | <1 | 18  | 167 | 1017 | 5.17    | <10 | 2.26  | 692  | 4    | 0.05 | 38  | 1760 | 30  | <5 <20 | 149 | 0.14 <10  | 264 | <10 |    | 42  |
| 19      | 10390       | 0.4   | 1.79 | 25  | 220 | <5 | 5.54 | <1 | 16  | 145 | 900  | 3.85    | <10 | 2.04  | 1104 | 63   | 0.05 | 25  | 2090 | 28  | <5 <20 | 226 | 0.03 <10  | 181 | <10 | 14 | 43  |
| Standa  | rd:         |       |      |     |     |    |      |    |     |     |      |         |     |       |      |      |      |     | 5.45 | 00  | -5 -00 | ٠.  | 0.44 -40  | 72  | -10 | 10 | 70  |
| GEO'05  | 5           | 1.5   | 1.52 | 60  | 150 | <5 | 1.38 | <1 | 19  | 60  | 87   | 4.08    | <10 | 0.76  | 612  | <1   | 0.02 | 30  | 940  | 20  | <5 <20 | 54  | 0.11 <10  | 73  | <10 | 10 | 73  |

EGO TECH LABORATORY LTD.

Juita Jealouse

BC Certified Assayer



6-Oct-05

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5158**

Au

Au

0.13

0.10

0.19

0.36

0.29

0.24

0.06

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 35

Sample type: Core
Project #: 301
Shipment #: 64

ET #.

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

Samples Submitted by: Mike Savell

Tag # 20806

20807

20808

20809

20810

20812

20813

20814

20815

20816

20817

20818

20819

20820

20821

20822

20823 20824

20825

20826

20828

20829

20830

20831

20832

20833

| (g/t)  | (oz/t)  |
|--------|---------|
| <0.03  | <0.001  |
| 0.10   | 0.003   |
| 0.13   | 0.004   |
| 0.04   | 0.001   |
| < 0.03 | < 0.001 |
| 0.04   | 0.001   |
| 0.08   | 0.002   |
| 0.11   | 0.003   |
| 0.07   | 0.002   |
| 0.05   | 0.001   |
| 0.66   | 0.019   |
| 0.29   | 0.008   |
| 0.25   | 0.007   |
| 0.41   | 0.012   |
| 0.20   | 0.006   |
| 0.11   | 0.003   |
| 0.08   | 0.002   |
| 0.26   | 0.008   |
| 0.15   | 0.004   |

ECO TECH LABORATORY LTD.

B.C. Certified Assaye

Page 1

0.004

0.003

0.006

0.010

800.0

0.007

0.002

|       | Au                                                                   | Au                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                               |
|-------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tag # | (g/t)                                                                | (oz/t)                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                               |
| 20835 | 0.08                                                                 | 0.002                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                               |
| 20836 | 0.13                                                                 | 0.004                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                               |
| 20837 | 0.13                                                                 | 0.004                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                               |
| 20838 | 0.06                                                                 | 0.002                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                               |
| 20839 | 0.20                                                                 | 0.006                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                               |
| 20840 | 0.14                                                                 | 0.004                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                               |
| 20811 | 0.37                                                                 | 0.011                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                               |
| 20834 | <0.03                                                                | <0.001                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                               |
| 20827 | 0.07                                                                 | 0.002                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                      |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                      |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                      |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                               |
| 20906 | ~0.03                                                                | <0.001                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                      |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                      |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                               |
| 20020 | 0.16                                                                 | 0.005                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                      |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                               |
| 20806 | <0.03                                                                | < 0.001                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                               |
|       | 0.00                                                                 |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                      |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                               |
|       | 1.32                                                                 | 0.038                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                               |
|       | 20835<br>20836<br>20837<br>20838<br>20839<br>20840<br>20811<br>20834 | Tag #         (g/t)           20835         0.08           20836         0.13           20837         0.13           20838         0.06           20839         0.20           20840         0.14           20811         0.37           20834         <0.03 | Tag #         (g/t)         (oz/t)           20835         0.08         0.002           20836         0.13         0.004           20837         0.13         0.004           20838         0.06         0.002           20839         0.20         0.006           20840         0.14         0.004           20811         0.37         0.011           20834         <0.03 |

JJ/kk XLS/05 ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Cerlifed Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Laval, Quebec

H7L 5A7

Falconbridge Limited

3296 Francis-Hughes Ave.

ATTENTION: Allan Huard

No. of samples received: 35 Sample type:Core/Pulp

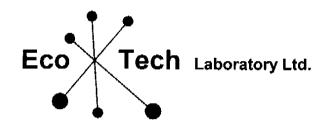
Project #: 301 Shipment #: 64

Samples submitted by: Mike Savell

Values in ppm unless otherwise reported

| Et #. | Tag # | Ag   | AI % | As  | Ва         | Ві     | Ça % | Cď | Co | Cr  | Cu   | Fe %    | La          | Mg %         | Mn   | Мо  | Na % | Ni       | P          | Pb       | Sb Sn   | Sr   | Ti %           | Ų    | V         | w          | Υ   | Zn         |
|-------|-------|------|------|-----|------------|--------|------|----|----|-----|------|---------|-------------|--------------|------|-----|------|----------|------------|----------|---------|------|----------------|------|-----------|------------|-----|------------|
| 1     | 20806 |      | 1.04 | 10  | 185        | <5     | 3.51 | <1 | 5  | 85  | 467  | 1,97    | <10         | 0.73         | 722  | 11  | 0.03 | 9        | 870        | 12       | <5 <20  | 159  | <0.01          | <10  | 45        | <10        | 12  | 19         |
| 2     | 20807 | 0.6  | 1.82 | 15  | 250        | <5     | 4.18 | <1 | 10 | 76  | 1213 | 3.06    | <10         | 1.66         | 899  | 12  | 0.02 | 25       | 1300       | 20       | <5 <20  | 220  | < 0.01         | <10  | 87        | <10        | 12  | 38         |
| 3     | 20808 | 0.8  | 1.66 | 30  | 60         | <5     | 4.73 | <1 | 14 | 63  | 1104 | 3.82    | <10         | 1.45         | 1097 | 64  | 0.01 | 20       | 1120       | 24       | <5 <20  | 186  | < 0.01         | <10  | 68        | <10        | 11  | 39         |
| 4     | 20809 | 0.3  | 1.39 | 15  | 110        | <5     | 4.77 | <1 | 10 | 67  | 266  | 2.75    | <10         | 1.13         | 1016 | 6   | 0.02 | 14       | 1220       | 20       | <5 <20  | 194  | < 0.01         | <10  | 59        | <10        | 13  | 30         |
| 5     | 20810 | <0.2 | 1.13 | 10  | 570        | <5     | 3.92 | <1 | 7  | 59  | 271  | 3.18    | <10         | 0.75         | 088  | 4   | 0.03 | 10       | 1210       | 14       | <5 <20  | 199  | <0.01          | <10  | 76        | <10        | 9   | 30         |
| _     | 22212 |      | 4 00 | 0.0 | 400        | -      | 4.55 | -4 |    |     | 700  | 0.40    | -40         | 4.40         | 070  |     | 0.01 | 12       | 900        | 20       | <5 <20  | 107  | <0.01          | ~10  | 42        | <10        | 12  | 27         |
| 6     | 20812 | 0.5  | 1.32 | 30  | 160        | <5<br> | 4.55 | <1 | 9  | 60  | 729  | 2.48    | <10         | 1.16         | 972  | 9   | 0.01 | 13       | 800<br>970 | 20<br>22 | <5 <20  |      | <0.01          |      | 58        |            |     | 29         |
| 7     | 20813 | 0.6  | 1.66 | 25  | 135        | <5     | 6.59 | <1 | 18 | 56  | 1012 | 3.02    | <10         | 1.64         | 1332 | 24  | 0.01 | 21       | 970<br>790 | 20       | 10 < 20 |      | <0.01          |      | 58        | <10        | 9   | 26         |
| 8     | 20814 | 0.8  | 1.60 | 20  | 70         | <5<br> | 4.75 | <1 | 17 | 81  | 1427 | 3.26    | <10         | 1.54         | 1087 | 30  | 0.01 | 20<br>34 |            | 24       | <5 <20  |      | <0.01          |      | 61        |            | -   | 30         |
| 9     | 20815 | 1.2  | 1.71 | 25  | 65         | <5     | 6.35 | <1 | 32 | 76  | 1619 | 4.25    | <10         | 1.61         | 1386 | 39  | 0.01 | -        | 1060       |          |         |      |                |      | 50        | <10        |     | 32         |
| 10    | 20816 | 0.7  | 1.42 | 20  | 60         | <5     | 4.73 | <1 | 17 | 75  | 1016 | 3.00    | <10         | 1.19         | 1220 | 34  | 0.01 | 21       | 870        | 20       | <5 <20  | 165  | <0.01          | ~10  | 50        | ~10        | 10  | JZ         |
| 11    | 20817 | 2.3  | 1.44 | 15  | 50         | <5     | 3.33 | <1 | 20 | 102 | 4045 | 4.81    | <10         | 1.09         | 1097 | 33  | 0.02 | 41       | 850        | 14       | <5 <20  | 133  | <0.01          | <10  | 92        | <10        | 4   | 47         |
| 12    | 20818 | 2.6  | 1.90 | 15  | 85         | <5     | 5.27 | <1 | 26 | 83  | 3344 | 4.61    | <10         | 1.56         | 1564 | 12  | 0.02 | 57       | 1020       | 20       | <5 <20  | 214  | <0.01          | <10  | 91        | <10        | 8   | 50         |
| 13    | 20819 | 1.0  | 1.53 | 10  | 65         | <5     | 2.81 | <1 | 24 | 55  | 1898 | 4.33    | <10         | 1.17         | 975  | 12  | 0.02 | 34       | 1030       | 20       | <5 <20  | 121  | < 0.01         | <10  | 69        | <10        | 6   | 42         |
| 14    | 20820 | 1.5  | 1.38 | 15  | 55         | <5     | 3.21 | <1 | 23 | 51  | 2660 | 3.91    | <10         | 1.04         | 871  | 27  | 0.03 | 23       | 920        | 18       | <5 <20  | 159  | <0.01          | <10  | 58        | <10        | 9   | 43         |
| 15    | 20821 | 1.3  | 1.36 | 15  | 65         | <5     | 2.38 | <1 | 36 | 36  | 2750 | 4.33    | <10         | 1.04         | 725  | 57  | 0.03 | 25       | 950        | 16       | <5 <20  | 109  | <0.01          | <10  | 53        | <10        | 7   | 39         |
|       |       |      |      |     |            | _      |      |    |    |     |      |         |             |              |      |     | 0.04 | 4.4      | 000        | 40       | 4E 400  | 4.40 | -0.04          | -10  | 60        | -10        | 12  | 20         |
| 16    | 20822 | 0.9  | 1.14 | 15  | 65         | <5     | 3.15 | <1 | 27 | 51  | 1741 | 3.34    | <10         | 0.96         | 923  | 38  | 0.04 | 11       | 900        | 16       | <5 <20  |      | < 0.01         |      | 62        |            | 5   | 29<br>39   |
| 17    | 20823 | 0.8  | 1.41 | 15  | 60         | <5     | 2.27 | <1 | 26 | 59  | 1361 | 4.29    | <10         | 1.12         | 828  | 26  | 0.03 | 13       | 970        | 16       | <5 <20  |      | <0.01<br><0.01 |      | 62        | <10<br><10 | 9   | 39<br>42   |
| 18    | 20824 | 1.1  | 1.40 | 30  | 50         | <5     | 4.17 | <1 | 47 | 54  | 2039 | 5.16    | <10         | 1.04         | 1022 | 20  | 0.03 | 18       | 1010       | 18       | <5 <20  | –    |                |      | 62        | <10        | 8   | 42<br>41   |
| 19    | 20825 | 1.1  | 1 48 | 20  | 55         | <5     | 3.10 | <1 | 34 | 47  | 2288 | 5.07    | <10         | 1.08         | 892  | 32  | 0.03 | 15       | 1310       | 20       | <5 <20  |      | <0.01          |      | 64<br>68  | <10        | 11  | 43         |
| 20    | 20826 | 1.1  | 1.44 | 20  | 45         | <5     | 3.69 | <1 | 41 | 56  | 1859 | 4.94    | <10         | 1.05         | 968  | 64  | 0.03 | 18       | 1190       | 18       | <5 <20  | 151  | <0.01          | < 10 | 90        | ×10        | ''' | 40         |
| 21    | 20828 | 0.9  | 1.41 | 20  | 45         | <5     | 3.17 | <1 | 34 | 47  | 1765 | 4.38    | <10         | <b>1</b> .12 | 847  | 33  | 0.02 | 14       | 1130       | 20       | <5 <20  | 131  | <0.01          | <10  | 62        | <10        | 9   | 39         |
| 22    | 20829 | 1.3  | 1.29 | 10  | 50         | <5     | 3.14 | <1 | 54 | 70  | 2505 | 4.78    | <10         | 0.86         | 914  | 47  | 0.03 | 18       | 1000       | 16       | <5 <20  | 132  | <0.01          | <10  | 64        | <10        | 10  | 37         |
| 23    | 20830 | 1.4  | 1.34 | 15  | 45         | <5     | 3.76 | <1 | 53 | 65  | 2301 | 5.09    | <10         | 0.91         | 951  | 27  | 0.03 | 20       | 1030       | 18       | <5 <20  | 143  | <0.01          | <10  | 58        | <10        | 9   | 41         |
| 24    | 20831 | 1.5  | 1.48 | 30  | 50         | <5     | 3.72 | <1 | 42 | 44  | 1900 | 5.88    | <10         | 1.17         | 1083 | 25  | 0.02 | 15       | 1000       | 30       | <5 <20  | 136  | <0.01          | <10  | 72        | <10        | 5   | 56         |
| 25    | 20832 | 1.5  |      | 15  | <b>4</b> 5 | <5     | 3.88 | <1 | 49 | 46  | 2619 | 4.77    | <10         | 0.95         | 948  | 24  | 0.02 | 16       | 1010       | 18       | <5 <20  | 155  | <0.01          | <10  | 53        | <10        | 10  | 49         |
|       |       |      |      |     |            | _      |      |    |    |     |      | <b></b> | 4.0         |              |      | 20  | 0.00 | 0.4      | 000        | 24       | 4C 400  | 405  | -0 04          | -10  | 92        | <10        | 4.6 | 56         |
| 26    | 20833 | 1.0  |      | 15  | 45         | <5     | 4.16 | <1 | 44 | 53  | 1871 | 5.28    | <10         | 1.44         | 986  | 22  | 0.03 | 21       | 990        | 24       | <5 <20  |      | <0.01          |      | 83<br>ne  |            |     | 49         |
| 27    | 20835 | 1.2  | 1.66 | 20  | 45         | <5     | 4.10 | <1 | 49 | 53  | 2370 | 5.85    | <10         | 1.61         | 1081 | 39  | 0.03 | 22       | 1050       | 24       | <5 <20  | 187  |                |      | 86<br>102 |            |     | 49<br>67   |
| 28    | 20836 | 1.1  | 1.77 | 25  | 55         | <5     | 3.43 | <1 | 55 | 60  | 2611 | 6.68    | <10         | 1.57         | 827  | 36  | 0.03 | 21       | 960        | 24       | <5 <20  |      | <0.01          |      |           | <10        | 3   | -          |
| 29    | 20837 | 0.9  | 1.57 | 20  | 50         | <5     | 3.78 | <1 | 53 | 62  | 2157 | 7.38    | <10         | 1.40         | 745  | 204 | 0.03 | 26       | 970        | 24       | <5 <20  | 155  |                |      | 130       | <10        | 4   | 45         |
| 30    | 20838 | 0.6  | 1.45 | 15  | 35         | <5     | 2.87 | <1 | 59 | 53  | 1757 | 5.86    | <10<br>Page | 1.18         | 634  | 31  | 0.04 | 15       | 1260       | 20       | <5 <20  | 121  | <0.01          | <10  | 83        | <10        | 8   | <b>4</b> 4 |
|       |       |      |      |     |            |        |      |    |    |     |      |         | 50          | -            |      |     |      |          |            |          |         |      |                |      |           |            |     |            |

JJ/ga df/5143 XLS/05


ECO TECH LABORATORY LTD.

|          |            |       |      |     |     |    |      |    |    |     |      |      |      |      |      |                                         |      |     |      |     |        |     |          |       |          |                |      | _         |
|----------|------------|-------|------|-----|-----|----|------|----|----|-----|------|------|------|------|------|-----------------------------------------|------|-----|------|-----|--------|-----|----------|-------|----------|----------------|------|-----------|
| Et #.    | Tag #      | Ag    | AI % | As  | Ba  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La   | Mg % | Mn   | Mo                                      | Na % | Ni  | P    | Pb  | Sb Sn  | Sr  | Ti %     | U     | <u>v</u> | W              | Υ    | <u>Zn</u> |
| 31       | 20839      | 0.8   | 1.90 | 40  | 45  | <5 | 3.94 | <1 | 50 | 72  | 1999 | 6.43 | <10  | 1.54 | 786  | 170                                     | 0.03 | 23  | 1170 | 24  | <5 <20 | 176 | <0.01 <1 | 1Ö 9  | 9 <      | :10            | 7    | 50        |
| 32       | 20840      | 0.6   | 1.91 | 25  | 70  | <5 | 4.59 | <1 | 37 | 64  | 1413 | 5.61 | <10  | 1.50 | 825  | 28                                      | 0.03 | 20  | 1240 | 28  | <5 <20 | 222 | < 0.01 < | 10 9  | 0 <      | <10 1          | 1    | 48        |
| 33       | 20811      | 1.1   | 1.20 | <5  | 115 | <5 | 1.67 | <1 | 15 | 29  | 4294 | 4.01 | <10  | 1.13 | 744  | 3                                       | 0.10 | 18  | 1880 | 24  | <5 <20 | 112 | 0.16 <   | 10 18 | 9 <      | <10 1          | 8    | 56        |
| 34       | 20834      | < 0.2 | 2.67 | 25  | 105 | 5  | 8.62 | <1 | 32 | 70  | 114  | 6.40 | <10  | 2.16 | 920  | <1                                      | 0.03 | 17  | 1560 | 40  | 5 <20  | 187 | 0.15 <   | 10 23 | 2 <      | <10 1          | 6    | 69        |
| 35       | 20827      | 0.2   | 0.85 | 105 | 155 | <5 | 0.24 | <1 | 67 | 223 | 450  | >10  | <10  | 0.12 | 438  | 122                                     | 0.06 | 414 | 100  | 116 | <5 <20 | 12  | <0.01 <  | 10 3  | 0 <      | <10 <          | :1 4 | 463       |
| QC DA    | [A:        |       |      |     |     |    |      |    |    |     |      |      |      |      |      |                                         |      |     |      |     |        |     |          |       |          |                |      |           |
| Resplit: | :<br>20806 | 0.3   | 1.05 | 15  | 210 | <5 | 3.42 | <1 | 6  | 61  | 513  | 2.06 | <10  | 0.76 | 693  | 11                                      | 0.03 | 12  | 1090 | 16  | <5 <20 | 160 | <0.01 <  | 10 4  | 5 <      | < <b>1</b> 0 1 | 13   | 23        |
| '        | 20000      | 0.5   | 1.05 | 13  | 210 | ~5 | 3.42 | ~1 | O  | 01  | 313  | 2.00 | ~ 10 | 0.70 | 093  | • • • • • • • • • • • • • • • • • • • • | 0.03 | 12  | 1000 | 10  | -5 -20 | 100 | ~0.01    | 10 7  | Ų        | 10 1           |      | 20        |
| Repeat   | •          |       |      |     |     |    |      |    |    |     |      |      |      |      |      |                                         |      |     |      |     |        |     |          |       |          |                |      |           |
| 1        | 20806      | 0.3   | 0.99 | 10  | 180 | <5 | 3.51 | <1 | 5  | 83  | 458  | 1.96 | <10  | 0.71 | 719  | 12                                      | 0.03 | 11  | 890  | 14  | <5 <20 | 156 | <0.01 <  | 10 4  | 2 <      | <10 1          | 4    | 19        |
| 10       | 20816      | 0.7   | 1.44 | 25  | 65  | <5 | 4.90 | <1 | 19 | 75  | 1053 | 3.10 | <10  | 1.21 | 1254 | 33                                      | 0.01 | 18  | 910  | 22  | <5 <20 | 176 | <0.01 <  | 10 5  | 0 <      | <10 1          | 12   | 34        |
| 19       | 20825      | 1.1   | 1.39 | 20  | 55  | <5 | 3.04 | <1 | 34 | 45  | 2182 | 5.00 | <10  | 1.02 | 876  | 32                                      | 0.03 | 18  | 1320 | 22  | <5 <20 |     | <0.01 <  | 10 6  | 0 <      | <10            | 9    | 42        |
| .5       | 20020      | • • • | 1.00 |     |     |    | 5.51 | ·  |    |     |      | 2.00 |      |      |      | 32                                      | 2.20 | , , |      |     |        | •   |          |       |          |                |      |           |
| Standar  | rd:        |       |      |     |     |    |      |    |    |     |      |      |      |      |      |                                         |      |     |      |     |        |     |          |       |          |                |      |           |
| GEO'05   |            | 1.5   | 1.61 | 55  | 175 | <5 | 1.52 | <1 | 19 | 60  | 89   | 4.02 | <10  | 0.83 | 623  | <1                                      | 0.03 | 29  | 700  | 22  | <5 <20 | 55  | 0.11 <   | 10 7  | 1 <      | <10 1          | 1    | 76        |

ECOLINE AL ABORATORY LTD.
Jutta Jealouse

BC/Certified Assayer

Page 2



6-Oct-05

10041 Dallas Drive, Kamioops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

# **CERTIFICATE OF ASSAY AS 2005-5159**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 25

Sample type:Core Project #: 301 Shipment #: 65

ET #.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Samples submitted by: Mike Savell

Tag#

20841

20842

20843

20844

20845

20847

20848

20849

20850

20851

20852

20853

20854

20855

20856

20857

20858

20859

20860

20861

20863

20864

20846

20869

20862

| Αu    | Au     |
|-------|--------|
| (g/t) | (oz/t) |
| 0.09  | 0.003  |
| 0.21  | 0.006  |
| 0.32  | 0.009  |
| 0.18  | 0.005  |
| 0.10  | 0.003  |
| 0.22  | 0.006  |
| 0.15  | 0.004  |
| 0.10  | 0.003  |
| 0.17  | 0.005  |
| 0.20  | 0.006  |
| 1.11  | 0.032  |
| 0.21  | 0.006  |
| 0.17  | 0.005  |

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assaye

Page 1

0.11

0.16

0.30

0.15

4.14

0.27

0.13

0.11

0.52

0.38

< 0.03

0.08

0.003

0.005

0.009

0.004

0.121

0.008

0.004

0.003

0.015

0.011

<0.001

0.002

| ET #.     | Tag # | Au<br>(g/t) | Au<br>(oz/t) |  |
|-----------|-------|-------------|--------------|--|
|           |       |             |              |  |
|           |       |             |              |  |
| QC DATA:  |       |             |              |  |
| Repeats:  |       |             |              |  |
| 1         | 20841 | 0.11        | 0.003        |  |
| 10        | 20851 | 0.18        | 0.005        |  |
| 11        | 20852 | 1.23        | 0.036        |  |
| 18        | 20859 | 3.95        | 0.115        |  |
| 19        | 20860 | 0.27        | 0.008        |  |
| 22        | 20864 | 0.53        | 0.015        |  |
| Resplit:  |       |             |              |  |
| 1         | 20841 | 0,13        | 0.004        |  |
| Standard: |       |             |              |  |
| \$H13     |       | 1.30        | 0.038        |  |
| SH13      |       | 1.31        | 0.038        |  |
|           |       |             |              |  |
|           |       |             |              |  |

JJ/kk XL\$/05 ECO FECH LABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AS 2005-5159

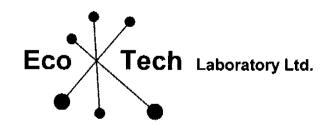
Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 25 Sample type:Core Project #: 301 Shipment #: 65

Samples submitted by: Mike Savell

### Values in ppm unless otherwise reported


100 A 100 A 100 A 100 A

|       | T #   | ۸    | A 1 0/ | 4         | D.  | о:       | C= 9/ | <b>64</b> | 0-             | ٥.,      | C.,  | E- 0/        | 1.0        | 8.f 0/       | R#          | -56         | Na %         | Ni       | Р           | Pb  | Sb Sn         | Sr  | Ti %   | U    | ν   | w   | v        | Zn         |
|-------|-------|------|--------|-----------|-----|----------|-------|-----------|----------------|----------|------|--------------|------------|--------------|-------------|-------------|--------------|----------|-------------|-----|---------------|-----|--------|------|-----|-----|----------|------------|
| Et #. | Tag # |      | Al %   | As        | Ba  |          | Ca %  | Cd        | Co             | Cř       |      |              |            | Mg %         | Mn          | <del></del> |              |          |             | 26  | <5 <20        |     | <0.01  |      | 116 | <10 | 5        | 46         |
| 1     | 20841 | 0.3  | 2.41   | 15<br>25  | 140 | <5       | 4.18  | <1        | 27             | 73       | 741  | 5.72         | <10        | 2.11         | 993<br>1296 | 14<br>19    | 0.04<br>0.02 | 26<br>22 | 1120<br>980 | 20  | <5 <20        |     | <0.01  |      | 85  | <10 | g<br>g   | 52         |
| 2     | 20842 | 0.7  | 1.92   | 35        | 65  | <5       | 4.61  | <1        | 30             | 54       | 1507 | 5.58         | <10        | 1.65         |             | 12          |              | 22       | 770         | 14  | <5 <20        |     | <0.01  |      | 88  | <10 | 5        | 44         |
| 3     | 20843 | 1.3  | 1.85   | 20        | 130 | <5       | 4.70  | <1        | 35             | 53       | 3517 | 5.37         | <10        | 1.57         | 949<br>1235 | 30          | 0.04<br>0.03 | 19       | 1030        | 18  | <5 <20        |     | <0.01  |      | 73  | <10 | 8        | 42         |
| 4     | 20844 | 0.7  | 1.74   | 10        | 80  | <5       | 4.92  | <1        | 23             | 56<br>70 | 1347 | 4.86         | <10        | 1.41<br>1.17 | 1320        | 11          |              | 9        | 690         | 18  | <5 <20        |     | <0.01  |      | 57  | <10 | 13       | 37         |
| 5     | 20845 | 0.3  | 1.44   | 20        | 90  | <5       | 4.99  | <1        | 14             | 78       | 617  | 3.71         | <10        | 1.17         | 1320        | 11          | 0.02         | 9        | 690         | 10  | <b>~5 ~20</b> | 201 | ~0.01  | ~10  | 51  | ~10 | 10       | <b>9</b> 1 |
| 6     | 20847 | 1.2  | 1.63   | <5        | 25  | 20       | 4.44  | <1        | 49             | 71       | 2660 | 5.25         | <10        | 1.23         | 1092        | 54          | 0.03         | 20       | 1040        | 54  | <5 <20        | 215 | 0.01   | <10  | 72  | <10 | 26       | 40         |
| 7     | 20848 | 1.0  | 1.62   | 25        | 60  | <5       | 5.42  | <1        | 31             | 96       | 1936 | 5.24         | <10        | 1.36         | 1411        | 53          | 0.02         | 24       | 850         | 20  | <5 <20        | 308 | < 0.01 | <10  | 70  | <10 | 15       | 50         |
| 8     | 20849 | 0.8  | 1.28   | 15        | 55  | <5       | 2.87  | <1        | 35             | 82       | 1940 | 4.99         | <10        | 1.03         | 769         | 104         | 0.04         | 21       | 910         | 20  | <5 <20        | 175 | <0.01  | <10  | 73  | <10 | 6        | 35         |
| 9     | 20850 | 1.0  | 1.36   | 35        | 55  | <5       | 3.22  | <1        | 15             | 73       | 881  | 3.88         | <10        | 1.02         | 890         | 24          | 0.03         | 14       | 830         | 24  | <5 <20        | 225 | <0.01  | <10  | 62  | <10 | 12       | 53         |
| 10    | 20851 | 9.9  | 0.45   | 60        | 40  | <5       | 4.10  | 2         | 18             | 44       | 827  | 3.94         | <10        | 1.19         | 1301        | 11          | 0.02         | 9        | 920         | 42  | 140 < 20      | 389 | <0.01  | <10  | 19  | <10 | 9        | 105        |
|       |       |      |        |           |     |          |       |           |                |          |      |              |            |              |             |             |              |          |             |     |               |     |        |      |     |     |          |            |
| 11    | 20852 | 2.3  | 0.66   | 55        | 50  | <5       | 2.60  | 4         | 12             | 62       | 1725 | 4.16         | <10        | 0.75         | 2079        | 14          | 0.02         | 5        | 850         | 70  | 85 <20        | 237 | <0.01  | <10  | 20  | <10 | 6        | 289        |
| 12    | 20853 | 2.0  | 0.47   | 70        | 50  | <5       | 3.62  | 4         | 16             | 54       | 1862 | 3.75         | <10        | 0.71         | 2759        | 11          | 0.01         | 4        | 850         | 108 | 105 < 20      | 271 | <0.01  | <10  | 14  | <10 | 11       | 363        |
| 13    | 20854 | 1.0  | 0.47   | 80        | 55  | <5       | 2.48  | 1         | 15             | 56       | 1728 | 3.41         | <10        | 0.55         | 1224        | 10          | 0.02         | 6        | 940         | 22  | 145 <20       | 198 | < 0.01 | <10  | 12  | <10 | 9        | 90         |
| 14    | 20855 | 0.9  | 0.41   | 65        | 50  | <5       | 3.94  | 3         | 16             | 69       | 1295 | 3.66         | <10        | 0.62         | 2096        | 14          | 0.02         | 5        | 900         | 84  | 85 <20        | 280 | <0.01  | <10  | 10  | <10 |          | 260        |
| 15    | 20856 | 0.8  | 0.43   | 130       | 70  | <5       | 2.60  | 3         | 15             | 64       | 1299 | 3.79         | <10        | 0.79         | 1919        | 10          | 0.03         | 7        | 1050        | 146 | 640 <20       | 234 | <0.01  | <10  | 14  | <10 | 5        | 279        |
|       |       |      |        |           |     |          |       |           |                |          |      |              |            |              |             |             |              |          |             |     |               |     |        | .40  |     | .46 | <b>_</b> | 545        |
| 16    | 20857 | 0.6  | 0.56   | 100       | 75  | <5       | 3.06  | 5         | 12             | 63       | 1785 | 3.94         | <10        | 1.00         | 2109        | 6           |              | 4        | 880         |     | 415 <20       |     | <0.01  |      | 21  | <10 |          | 515        |
| 17    | 20858 | 1.1  | 0.54   | 185       | 55  | <5       | 2.38  | 5         | 14             | 82       | 2012 | 3.43         | <10        | 0.68         | 1148        | 25          | 0.04         | 5        | 940         |     | 735 <20       |     | < 0.01 |      | 18  | <10 | _        | 417        |
| 18    | 20859 | 1.0  | 0.43   | 100       | 35  | <5       | 1.94  | 2         | 12             | 64       | 3062 | 3.93         | <10        | 0.44         | 1010        | 71          |              | 6        | 780         |     | 255 <20       |     | < 0.01 |      | 18  | <10 |          | 240        |
| 19    | 20860 | 8.0  | 0.50   | 100       | 35  | <5       | 1.91  | 2         | 13             | 62       | 1906 | 3.77         | <10        | 0.53         | 624         | 45          | 0.04         | 4        | 930         |     | 205 <20       |     | < 0.01 |      | 16  | <10 |          | 177        |
| 20    | 20861 | 0.2  | 0.50   | 20        | 50  | <5       | 2.26  | <1        | 10             | 54       | 875  | 3.16         | <10        | 0.77         | 587         | 18          | 0.05         | 4        | 990         | 16  | 25 <20        | 230 | <0.01  | <10  | 16  | <10 | 6        | 55         |
| 24    | 20002 | 0.5  | 0.50   | 4.5       | cc  | -6       | 2.44  | 4         | 47             | 36       | 1200 | י ב ג        | <10        | 0.74         | 749         | 8           | 0.04         | 5        | 980         | 68  | <5 <20        | 217 | <0.01  | <10  | 18  | <10 | 7        | 122        |
| 21    | 20863 | 0.5  | 0.56   | 15        | 55  | <5<br>-5 | 2.41  | 44        | 17             |          |      | 3.54         |            |              |             | 10          |              | 5        | 960         | 376 | 100 < 20      | 90  |        |      | 12  | <10 | •        | 166        |
| 22    | 20864 | 2.0  | 0.42   | 70<br>6   | 40  | <5       | 1.63  | 11        | 24             | 55<br>25 | 1053 | 4.15         | <10<br><10 | 0.48<br>1.15 | 601<br>751  | 3           | 0.03         | 18       | 1760        | 22  | <5 <20        | 110 |        |      | 201 | <10 | 17       | 47         |
| 23    | 20846 | 1.0  | 1.26   | . 5<br>25 | 115 | <5<br><5 | 1.61  | <1<br>-1  | 14             | 35       | 4262 | 3.97<br>8.31 |            |              | 1093        | 2           | 0.05         | 19       | 1740        | 48  | <5 <20        | 133 |        |      | 339 |     | 14       | 72         |
| 24    | 20869 | <0.2 | 3.95   | 25        | 140 | <5<br>-∈ | 4.30  | <1<br>-1  | 3 <del>6</del> | 61       | 148  |              | <10        | 3.50         |             | 116         | 0.05         | 409      | 100         | 100 | <5 <20        |     | <0.03  | -    | 23  |     | • •      | 470        |
| 25    | 20862 | 0.2  | 0.78   | 105       | 120 | <5       | 0.22  | <1        | 63             | 221      | 431  | >10          | <10        | 0.16         | <b>4</b> 47 | פוו         | 0.04         | 409      | 100         | 100 | ~5 ~20        | 11  | ~0.01  | ~ 10 | 23  | -10 | - 1      | 410        |

JJ/ga df/1080 XL\$/05

| Tag #     | Ag                      | Al %                                | As                                                 | Ba                                                          | Bi                                                                     | Ca %                                                                      | Cd                                                                                             | Co                                                                                               | Cr                                                                                                              | Cu                                                                                                                   | <u>Fe %</u>                                           | La                                                    | Mg %                                                  | <u>Mn</u>                                             | Mo                                                    | Na %                                    | Ni                                                    | <u>Р</u>  | Pb        | Sb        | Sn        | Sr        | Ti %                                                                                                                                                                                                                                                                                  | υ         |                                                                   | W                                                                                                                                                                                                                                                                                                                                                 | <u>Y</u>  | Zn                                                                                                                                                                                                                                                                                                                                                 |
|-----------|-------------------------|-------------------------------------|----------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                         |                                     |                                                    |                                                             |                                                                        | ·                                                                         |                                                                                                |                                                                                                  |                                                                                                                 |                                                                                                                      |                                                       |                                                       |                                                       |                                                       |                                                       | • • • • • • • • • • • • • • • • • • • • |                                                       |           |           |           |           |           |                                                                                                                                                                                                                                                                                       |           |                                                                   |                                                                                                                                                                                                                                                                                                                                                   |           |                                                                                                                                                                                                                                                                                                                                                    |
| <u>4:</u> |                         |                                     |                                                    |                                                             |                                                                        |                                                                           |                                                                                                |                                                                                                  |                                                                                                                 |                                                                                                                      |                                                       |                                                       |                                                       |                                                       |                                                       |                                         |                                                       |           |           |           |           |           |                                                                                                                                                                                                                                                                                       |           |                                                                   |                                                                                                                                                                                                                                                                                                                                                   |           |                                                                                                                                                                                                                                                                                                                                                    |
| 20841     | 0.4                     | 2.59                                | 20                                                 | 165                                                         | <5                                                                     | 4.13                                                                      | <1                                                                                             | 28                                                                                               | 70                                                                                                              | 989                                                                                                                  | 5.97                                                  | <10                                                   | 2.29                                                  | 1006                                                  | 18                                                    | 0.05                                    | 26                                                    | 1160      | 28        | <5        | <20       | 231       | <0.01 <                                                                                                                                                                                                                                                                               | :10       | 122                                                               | <10                                                                                                                                                                                                                                                                                                                                               | 5         | 47                                                                                                                                                                                                                                                                                                                                                 |
|           |                         |                                     |                                                    |                                                             |                                                                        |                                                                           |                                                                                                |                                                                                                  |                                                                                                                 |                                                                                                                      |                                                       |                                                       |                                                       |                                                       |                                                       |                                         |                                                       |           |           |           |           |           |                                                                                                                                                                                                                                                                                       |           |                                                                   |                                                                                                                                                                                                                                                                                                                                                   |           |                                                                                                                                                                                                                                                                                                                                                    |
| 20841     | 0.4                     | 2.47                                | 20                                                 | 150                                                         | <5                                                                     | 4.16                                                                      | <1                                                                                             | 27                                                                                               | 74                                                                                                              | 754                                                                                                                  | 5.70                                                  | <10                                                   | 2.14                                                  | 994                                                   | 15                                                    | 0.05                                    | 25                                                    | 1120      | 26        | <5        | <20       | 225       | < 0.01 <                                                                                                                                                                                                                                                                              | 10        | 118                                                               | <10                                                                                                                                                                                                                                                                                                                                               | 7         | 45                                                                                                                                                                                                                                                                                                                                                 |
| 20851     | 9.4                     | 0.47                                | 65                                                 | 45                                                          | <5                                                                     | 4.18                                                                      | 3                                                                                              | 19                                                                                               | 45                                                                                                              | 826                                                                                                                  | 4.03                                                  | <10                                                   | 1.20                                                  | 1331                                                  | 11                                                    | 0.02                                    | 10                                                    | 950       | 44        | 145       | <20       | 394       | <0.01 <                                                                                                                                                                                                                                                                               | :10       | 20                                                                | <10                                                                                                                                                                                                                                                                                                                                               | 10        | 109                                                                                                                                                                                                                                                                                                                                                |
| t:        |                         |                                     |                                                    |                                                             |                                                                        |                                                                           |                                                                                                |                                                                                                  |                                                                                                                 |                                                                                                                      |                                                       |                                                       |                                                       |                                                       |                                                       |                                         |                                                       |           |           |           |           |           |                                                                                                                                                                                                                                                                                       |           |                                                                   |                                                                                                                                                                                                                                                                                                                                                   |           |                                                                                                                                                                                                                                                                                                                                                    |
|           | 1.5                     | 1.76                                | 65                                                 | 155                                                         | <5                                                                     | 1.46                                                                      | <1                                                                                             | 19                                                                                               | 60                                                                                                              | 88                                                                                                                   | 4.06                                                  | <10                                                   | 0.93                                                  | 612                                                   | <1                                                    | 0.03                                    | 29                                                    | 620       | 22        | <5 ·      | <20       | 52        | 0.10 <                                                                                                                                                                                                                                                                                | :10       | 69                                                                | <10                                                                                                                                                                                                                                                                                                                                               | 10        | 74                                                                                                                                                                                                                                                                                                                                                 |
|           | 20841<br>20841<br>20851 | 20841 0.4<br>20841 0.4<br>20851 9.4 | 20841 0.4 2.59<br>20841 0.4 2.47<br>20851 9.4 0.47 | 20841 0.4 2.59 20<br>20841 0.4 2.47 20<br>20851 9.4 0.47 65 | 20841 0.4 2.59 20 165<br>20841 0.4 2.47 20 150<br>20851 9.4 0.47 65 45 | 20841 0.4 2.59 20 165 <5 20841 0.4 2.47 20 150 <5 20851 9.4 0.47 65 45 <5 | 20841 0.4 2.59 20 165 <5 4.13<br>20841 0.4 2.47 20 150 <5 4.16<br>20851 9.4 0.47 65 45 <5 4.18 | 20841 0.4 2.59 20 165 <5 4.13 <1 20841 0.4 2.47 20 150 <5 4.16 <1 20851 9.4 0.47 65 45 <5 4.18 3 | 20841 0.4 2.59 20 165 <5 4.13 <1 28<br>20841 0.4 2.47 20 150 <5 4.16 <1 27<br>20851 9.4 0.47 65 45 <5 4.18 3 19 | 20841 0.4 2.59 20 165 <5 4.13 <1 28 70  20841 0.4 2.47 20 150 <5 4.16 <1 27 74  20851 9.4 0.47 65 45 <5 4.18 3 19 45 | A:       20841     0.4     2.59     20     165     <5 | A:  20841                               | A:       20841     0.4     2.59     20     165     <5 | A:  20841 0.4 2.59 20 165 <5 4.13 <1 28 70 989 5.97 <10 2.29 1006 18 0.05 26 1160 28 <5 <20 231  20841 0.4 2.47 20 150 <5 4.16 <1 27 74 754 5.70 <10 2.14 994 15 0.05 25 1120 26 <5 <20 225 20851 9.4 0.47 65 45 <5 4.18 3 19 45 826 4.03 <10 1.20 1331 11 0.02 10 950 44 145 <20 394 | A:  20841 | A:         20841       0.4       2.59       20       165       <5 | 20841 0.4 2.59 20 165 <5 4.13 <1 28 70 989 5.97 <10 2.29 1006 18 0.05 26 1160 28 <5 <20 231 <0.01 <10 122   20841 0.4 2.47 20 150 <5 4.16 <1 27 74 754 5.70 <10 2.14 994 15 0.05 25 1120 26 <5 <20 225 <0.01 <10 118   20851 9.4 0.47 65 45 <5 4.18 3 19 45 826 4.03 <10 1.20 1331 11 0.02 10 950 44 145 <20 394 <0.01 <10 20 150 150      Column | A:  20841 | A:  20841 0.4 2.59 20 165 <5 4.13 <1 28 70 989 5.97 <10 2.29 1006 18 0.05 26 1160 28 <5 <20 231 <0.01 <10 122 <10 5  20841 0.4 2.47 20 150 <5 4.16 <1 27 74 754 5.70 <10 2.14 994 15 0.05 25 1120 26 <5 <20 225 <0.01 <10 118 <10 7  20851 9.4 0.47 65 45 <5 4.18 3 19 45 826 4.03 <10 1.20 1331 11 0.02 10 950 44 145 <20 394 <0.01 <10 20 <10 10 |

ECO-PECH LABORATORY LTD.
Jutta Jealouse
BC Certified Assayer



5-Oct-05

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

## **CERTIFICATE OF ASSAY AS 2005-5160**

Falconbridge Limited 3296 Francis-Hughes Avenue Laval, Quebec H7L 5A7

Attention: Allan Huard

No. of samples received: 13

Sample type:Core
Project #: 301
Shipment #: 66

Samples submitted by: Mike Savell

Αu Au ET #. Tag# (g/t)(oz/t)7 20865 0.20 0.006 2 20866 0.12 0.003 3 20867 0.10 0.003 4 20868 0.12 0.003 5 20870 0.10 0.003 6 0.14 0.004 20871 7 20872 0.10 0.003 8 20873 0.10 0.003 0.09 9 20874 0.003 10 20875 0.20 0.006 11 20876 0.15 0.004 0.43 12 20877 0.013 13 0.09 0.003 9839 QC DATA: Repeats: 1 0.21 0.006 20865 10 20875 0.16 0.005 13 9839 0.08 0.002 Standard: SH13 1.31 0.038

JJ/kk XLS/05 ECOTECH LABORATORY LTD.

B.C. Certified Assayer

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Falconbridge Limited 3296 Francis-Hughes Ave. Laval, Quebec H7L 5A7

ATTENTION: Allan Huard

No. of samples received: 13 Sample type:Core Project #: 301 Shipment #: 66

Samples submitted by: Mike Savell

Values in ppm unless otherwise reported

| Et #.                 | Tag #      | Ag  | Al % | As | Ba  | Bi | Ca % | Cd | Co | Cr  | Cu   | Fe % | La  | Mg % | Mn  | Мо  | Na % | Ni | P    | Pb | Sb Sn  | Sr | Ti % Li   | V   | W   | Υ  | Zn |
|-----------------------|------------|-----|------|----|-----|----|------|----|----|-----|------|------|-----|------|-----|-----|------|----|------|----|--------|----|-----------|-----|-----|----|----|
| 1                     | 20865      | 5.4 | 1.28 | 20 | 55  | <5 | 0.45 | <1 | 17 | 51  | 5889 | 7.48 | <10 | 1.06 | 612 | 340 | 0.03 | 25 | 600  | 38 | <5 <20 | 18 | <0.01 <10 |     | <10 | 5  | 65 |
| 2                     | 20866      | 1.7 | 1.32 | 70 | 110 | <5 | 0.68 | <1 | 11 | 74  | 1913 | 6.50 | <10 | 1.03 | 692 | 74  | 0.02 | 17 | 970  | 40 | <5 <20 | 6  | 0.01 <10  | 186 | <10 | 13 | 59 |
| 3                     | 20867      | 0.9 | 1.24 | 25 | 150 | <5 | 0.61 | <1 | 14 | 86  | 1450 | 6.11 | <10 | 1.01 | 557 | 25  | 0.04 | 22 | 1070 | 32 | <5 <20 | 11 | <0.01 <10 |     | <10 | 11 | 44 |
| 4                     | 20868      | 0.6 | 1.25 | 25 | 190 | <5 | 0.37 | <1 | 13 | 59  | 2505 | 5.08 | <10 | 1.07 | 545 | 13  | 0.05 | 17 | 1040 | 34 | <5 <20 | _  | <0.01 <10 |     |     |    | 44 |
| 5                     | 20870      | 1.8 | 1.14 | 30 | 105 | <5 | 0.72 | <1 | 11 | 67  | 2138 | 6.31 | <10 | 0.93 | 710 | 58  | 0.03 | 17 | 880  | 36 | <5 <20 | 18 | <0.01 <10 | 199 | <10 | 15 | 66 |
| 6                     | 20871      | 2.0 | 0.98 | 25 | 105 | <5 | 0.47 | <1 | 11 | 78  | 2889 | 4.41 | <10 | 0.87 | 603 | 47  | 0.03 | 14 | 790  | 66 | <5 <20 | 20 | <0.01 <10 | 170 | <10 | 16 | 80 |
| 7                     | 20872      | 1.2 | 0.89 | 20 | 175 | <5 | 0.31 | <1 | 10 | 90  | 2947 | 2.94 | <10 | 0.83 | 548 | 23  | 0.04 | 13 | 750  | 26 | <5 <20 | 11 | <0.01 <10 | 105 | <10 | 20 | 40 |
| 8                     | 20873      | 8.0 | 0.83 | 25 | 155 | <5 | 1.59 | <1 | 9  | 98  | 1425 | 2.94 | <10 | 0.80 | 604 | 88  | 0.04 | 14 | 830  | 26 | <5 <20 |    |           |     | <10 |    | 32 |
| 9                     | 20874      | 8.0 | 0.92 | 20 | 230 | <5 | 0.93 | <1 | 8  | 89  | 1762 | 3.07 | <10 | 0.84 | 607 | 23  | 0.06 | 15 | 740  | 26 | <5 <20 |    | <0.01 <10 |     | <10 |    | 42 |
| 10                    | 20875      | 3.0 | 1.22 | 40 | 235 | <5 | 0.11 | <1 | 8  | 73  | 1081 | 3.88 | <10 | 0.91 | 347 | 63  | 0.03 | 15 | 680  | 56 | <5 <20 | 5  | <0.01 <10 | 120 | <10 | 9  | 61 |
| 11                    | 20876      | 1.5 | 1.17 | 30 | 145 | <5 | 0.23 | <1 | 8  | 88  | 662  | 4.42 | <10 | 1.08 | 363 | 15  | 0.04 | 18 | 1210 | 36 | <5 <20 | 4  | <0.01 <10 | 149 | <10 | 12 | 55 |
| 12                    | 20877      | 2.1 | 1.35 | 25 | 300 | <5 | 1.12 | <1 | 9  | 16  | 7408 | 3.56 | <10 | 0.99 | 432 | 3   | 0.15 | 9  | 1430 | 30 | 15 <20 | 74 | 0.06 <10  | 146 | <10 | 19 | 49 |
| 13                    | 9839       | 0.3 | 0.83 | 85 | 160 | <5 | 3.47 | <1 | 20 | 158 | 435  | 4.68 | <10 | 2.50 | 916 | <1  | 0.04 | 44 | 1120 | 56 | 15 <20 | 61 | 0.13 <10  | 187 | <10 | 18 | 56 |
| QC DAT                | <u> A:</u> |     |      |    |     |    |      |    |    |     |      |      |     |      |     |     |      |    |      |    |        |    |           |     |     |    |    |
| <b>Resplit:</b><br>11 | 20876      | 1.5 | 1.20 | 35 | 120 | <5 | 0.24 | <1 | 9  | 75  | 652  | 4.50 | <10 | 1.11 | 368 | 18  | 0.04 | 17 | 1210 | 38 | <5 <20 | <1 | <0.01 <10 | 153 | <10 | 13 | 54 |
| Repeat:               | 20865      | 5.4 | 1.29 | 25 | 55  | <5 | 0.46 | <1 | 19 | 54  | 6237 | 7.66 | <10 | 1.15 | 638 | 343 | 0.03 | 25 | 570  | 44 | <5 <20 | 17 | <0.01 <10 | 229 | <10 | 11 | 65 |
| Standar<br>GEO'05     |            | 1.5 | 1.54 | 60 | 135 | <5 | 1.38 | <1 | 18 | 61  | 86   | 3.95 | <10 | 0.80 | 598 | <1  | 0.03 | 26 | 660  | 22 | <5 <20 | 54 | 0.11 <10  | 65  | <10 | 10 | 74 |

ECOTECH LABORATORY LTD.

Jutta Jealouse

BC Cartified Assayer

JJ/ga df/5151a XLS/05

Page 1