

2005 Geological and Geochemical Report on the Ball Creek Property, Northwestern British Columbia

> Liard Mining Division NTS 104G/02, 104G/07, 104G/08 Latitude: 57° 15' N Longitude: 130° 30' W

> > Paget Resources Corporation 2080-777 Hornby Street Vancouver, B.C.

> > > By:

Henry Marsden

December 2005

a 1 2015 Gold Commissioner's Office

Table of Contents

-

....

.

. .

-

	ble of Contents	
Lis	st of Tables	ii
Lis	st of Figures	, iii
Ap	pendices	. iii
1	Introduction	4
2	Property Title	4
3	Access and Geography	5
4	Exploration History	6
5	Regional Geology and Metallogeny	8
	5.1 Stratigraphy	8
	5.2 Intrusive Rocks	9
	5.3 Structural Geology	
	5.4 Regional Metallogeny	10
	5.4.1 Alkalic Copper-Gold-Silver Porphyry and Skarn	11
	5.4.2 Calc-alkaline Porphyry Copper-Gold-Molybdenum	
	5.4.3 Epithermal Gold	
6	Property Geology	
	6.1 Mary	
	6.2 ME	
	6.3 Hank	
	6.4 Whistlepig-Diablo	
	6.5 More Creek	
	6.6 Rainbow Area	
7	Mineralization	
	7.1 Mary	
	7.2 ME	
	7.3 North More	
	7.4 Rojo Grande	
	7.5 Whistlepig-Diablo	
	7.6 Rainbow	
	7.7 Ridge Breccia	
	Geochemical Data From 2005 Exploration Program	22
	••••••••••••••••••••••••••••••••••••••	. 22
	8.1.1 Mary	
	8.1.2 ME	
	8.1.3 North More	
	8.1.4 Rojo Grande	. 26
	8.1.5 Whistlepig	
	8.1.6 Rainbow	
	8.1.7 Ridge Breccia	
	8.2 Soil Sampling	. 29
	8.3 Stream Sediment Sampling	
9	Conclusions and Recommendations for Future Work	. 30

9.1 More Creek	
9.2 Mary-ME	
9.3 Rainbow	
9.4 Property Exploration	
10 References	

List of Tables

.....

. در

~

-

.

Table 2.1: Mineral claims, Ball Creek Property.	4
Table 8.1: Highlighted rock samples from the Mary Porphyry	23
Table 8.2: Rock Samples from the ME zone	24
Table 8.3: Highlighted rock Samples from the More Creek area	25
Table 8.4: Rock samples of altered rhyolites, Rainbow Zone	
Table 8.5: Rock sample of quartz-carbonate brecccia vein, Rainbow Zone	
Table 8.6: Highlighted rock samples from gossan east of Rainbow Zone	27
Table 8.7: Rock samples from iron carbonate zone east of Rainbow Zone	28
Table 8.8: Rock Samples from the Ridge Breccia	29

List of Figures

Figure 1	Location Map
Figure 2	Claim Map
Figure 3	Regional Geology
Figure 4	Property Geology
Figure 5	Mary/ME Geology and Sample Locations (in pocket)
Figure 6	North More Area Geology and Sample Locations (in pocket)
Figure 7	Rainbow Area Geology and Sample Locations (in pocket)

Appendices

Appendix A Descriptions of Geologic Units, Ball Creek Property

Appendix B Rock Samples, Ball Creek Property

Appendix C North More Area Soil Samples

Appendix D Silt Samples, Ball Creek Property

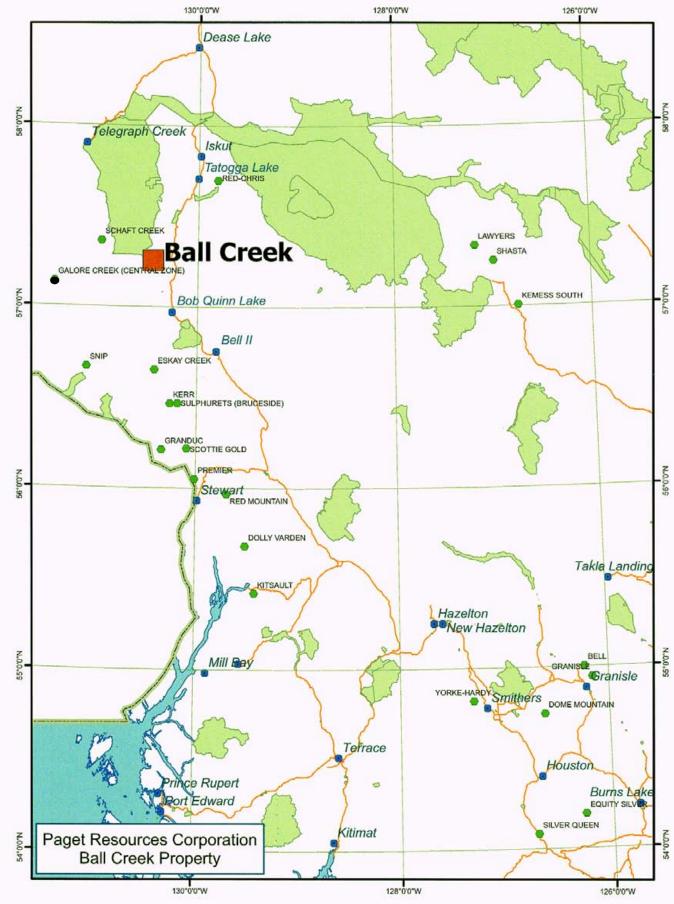
Appendix E Authors Certificate

Appendix F Statement of Expenditures

2005 Geological and Geochemical Report on the on the Ball Creek Property, Northwestern British Columbia

1 Introduction

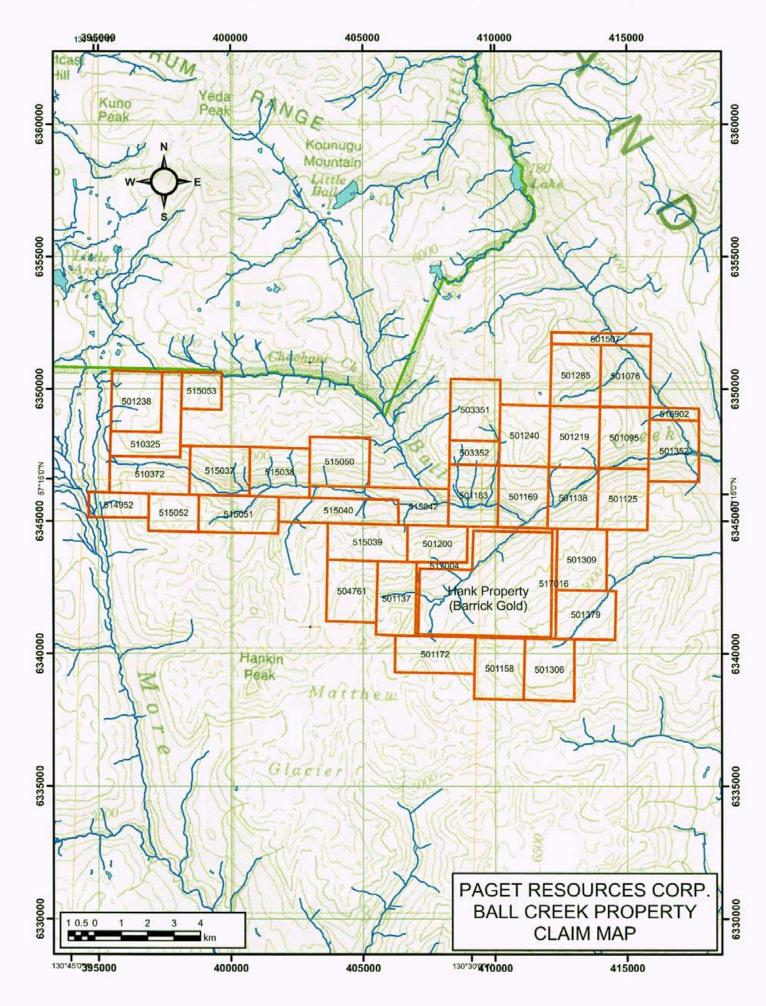
The Ball Creek Property, Liard Mining District, British Columbia, covers a number of porphyry, skarn and epithermal-style precious and base metal mineral occurrences in the Stewart – Iskut River metallogenic belt. Paget Resources Corp. acquired the property in 2005 and conducted an initial reconnaissance evaluation of the property between August 11-25, 2005.


2 Property Title

The Ball Creek Property is located in northwestern British Columbia about 140 kilometres north of Stewart, B.C (Figure 1). The property is contained within NTS map sheets 104G/01, 104G/02, 104G/07 and 104G/08 and consists of 37 contiguous mineral claims with a total area of 14,234.8 hectares. The mineral claims are 100% owned by Paget Resources Corporation and are listed in Table 1 and displayed on Figure 2.

Tenure Number	Claim Name	Owner	Good To Date	Status	Area	Owner Name
<u>501076</u>		<u>201036 100%</u>	2006/JAN/12	GOOD	437.156	Paget Resources Corp.
<u>501095</u>	Mary 2	<u>201036</u> 100%	2006/JAN/12	GOOD	437.412	Paget Resources Corp.
<u>501137</u>		<u>201036 100%</u>	2006/JAN/12	GOOD	420.598	Paget Resources Corp.
<u>501138</u>	ME 1	201036 100%	2006/JAN/12	GOOD	437.697	Paget Resources Corp.
<u>501158</u>		<u>201036 100%</u>	2006/JAN/12	GOOD	438.401	Paget Resources Corp.
<u>501169</u>	ME 2	201036 100%	2006/JAN/12	GOOD	437.694	Paget Resources Corp.
<u>501172</u>	WH3	<u>201036_100%</u>	2006/JAN/12	GOOD	420.809	Paget Resources Corp.
<u>501183</u>	MX 1	201036 100%	2006/JAN/12			Paget Resources Corp.
<u>501200</u>		201036 100%	2006/JAN/12	GOOD	315.288	Paget Resources Corp.
<u>501219</u>	ME 3	201036 100%	2006/JAN/12	GOOD	437.427	Paget Resources Corp.
<u>501238</u>	DA1	201036 100%	2006/JAN/12	GOOD	437.368	Paget Resources Corp.
<u>501240</u>	ME 4	201036 100%	2006/JAN/12	GOOD	437.425	Paget Resources Corp.
<u>501285</u>	BX 1	<u>201036 100%</u>	2006/JAN/12	GOOD	437.179	Paget Resources Corp.
<u>501306</u>	WH4	201036 100%	2006/JAN/12	GOOD	438.405	Paget Resources Corp.
<u>501309</u>	QX 1	201036_100%	2006/JAN/12	GOOD	437.959	Paget Resources Corp.
<u>501352</u>	DX 1	201036 100%	2006/JAN/12			Paget Resources Corp.
<u>501379</u>	LX 1	<u>201036 100%</u>	2006/JAN/12			Paget Resources Corp.

Table 2.1: Mineral claims, Ball Creek Property.


<u>501507</u>	M2	<u>201036 100%</u>	2006/JAN/12	GOOD	174.807	Paget Resources Corp.
<u>501125</u>	MR2	<u>201036_100%</u>	2006/JAN/12	GOOD	437.688	Paget Resources Corp.
<u>503351</u>	Rainbow	<u>201036 100%</u>	2006/JAN/14	GOOD	437.326	Paget Resources Corp.
<u>503352</u>	HG 1	<u>201036 100%</u>	2006/JAN/14	GOOD	175	Paget Resources Corp.
<u>504761</u>	Mal 1	<u>201036_100%</u>	2006/JAN/25	GOOD	438.099	Paget Resources Corp.
<u>510325</u>	DA 2	201036 100%	2006/APR/07	GOOD	419.97	Paget Resources Corp.
<u>510372</u>	DA 3	201036 100%	2006/APR/08	GOOD	437.659	Paget Resources Corp.
<u>514952</u>	D A 4	201036 100%	2006/JUN/22	GOOD	210.136	Paget Resources Corp.
<u>515037</u>	CHAIN1	<u>201036_100%</u>	2006/JUN/22	GOOD	420.13	Paget Resources Corp.
<u>515038</u>	CHAIN2	201036 100%	2006/JUN/22	GOOD	420.124	Paget Resources Corp.
<u>515039</u>	CHAIN4	<u>201036 100%</u>	2006/JUN/22	GOOD	420.386	Paget Resources Corp.
<u>515040</u>	CHAIN3	<u>201036_100%</u>	2006/JUN/22	GOOD	420.271	Paget Resources Corp.
<u>515042</u>	CHAIN5	<u>201036 100%</u>	2006/JUN/22	GOOD	420.226	Paget Resources Corp.
<u>515050</u>	GOAT	<u>201036 100%</u>	2006/JUN/23	GOOD	420.063	Paget Resources Corp.
<u>515051</u>	PARIS	201036 100%	2006/JUN/23	GOOD	420.296	Paget Resources Corp.
<u>515052</u>	HILTON	201036 100%	2006/JUN/23	GOOD	262.685	Paget Resources Corp.
<u>515053</u>	VELVET	<u>201036_100%</u>	2006/JUN/23			Paget Resources Corp.
<u>516902</u>	BA 1	<u>201036_100%</u>	2006/JUL/11	GOOD	87.459	Paget Resources Corp.
<u>517004</u>		<u>201036 100%</u>	2006/JUL/12	GOOD	350.367	Paget Resources Corp.
<u>517016</u>		201036 100%	2006/JUL/12	GOOD	385.59	Paget Resources Corp.

3 Access and Geography

The Ball Creek Property is located between the headwaters of More Creek and the Iskut River, about 75 kilometres southeast of the village of Telegraph Creek, and 130 kilometres south-southwest of Dease Lake. Highway 37 parallels the Iskut River about 10 kilometres east of the Ball Creek Property (Figure 1). Access to the property is by helicopter from Bob Quinn Lake, located 35 kilometres to the southeast, or from Tatogga Lake, 55 kilometers to the northeast. Local manpower and some supplies are available in the village of Iskut, 65 kilometres northeast of the property on Highway 37. The Bob Quinn airstrip is located approximately 410 kilometres by road north along Highway 37 from Smithers, BC. and is suitable for fixed wing aircraft up to and including small passenger jets and cargo aircraft such as the Hercules. Commercial jet airliners service Smithers daily from Vancouver. The communities of Stewart and Dease Lake are the nearest supply centres, however Smithers is most commonly utilized as a base of operations in the area and also has a fully serviced hospital.

Topography varies from hummocky alluvial flats in the upper North More Creek basin in the western part of the property, to high serrated ridges and peaks that are being actively glaciated. Ball Creek and its major tributaries incise steep-sided narrow valleys through the central part of the property. Elevations range from 800 metres above sea level in the lower part of Ball Creek to 2,111 metres in the southern part of the property. Vegetation comprises boreal spruce-pine-fir forest at lower elevations, with poplar, willow and alder

found adjacent to streams and bogs. Timberline is around 1400 metres elevation with subalpine fir and meadow areas above.

Summer and winter temperatures are moderate, with mean temperatures of -12 °C in January and 14 °C in July. Annual precipitation averages about 50 cm, with snow accumulations exceeding 40 cm in January. Fieldwork on the property is possible from the middle of June until the middle of October. Drilling and geophysical surveys could begin in May and continue into November, if not later.

4 **Exploration History**

The area of the Ball Creek Property was first staked in 1929 by G.V. Carson for A.B. Trites (Annual Report of the Minister of Mines, 1929, P. C114). Although there is no record of early work on the property, Ball Creek was worked for placer gold between 1936 and 1940, with only three ounces of gold reported to have been recovered (EMPR Bulletin 28, p.58).

The area was first examined as a molybdenum prospect in 1963 when Southwest Potash Corporation staked the Mary claims. New claims were relocated in 1970 by Newmont Mining Corporation of Canada Limited (Greg Group) and in the same year by the "Kinaskan Joint Venture" (57.5% Great Plains Development Company of Canada, Ltd., and 42.5% Chevron, Ltd.) as the ME and Rog claims. Great Plains added the Tara and Ment claims in 1971, the MDM claims in 1972, and the Bare, BR, and VKR claims in 1973. Initial exploration targeted the gossanous slopes on the north and south sides of Ball Creek, an area including the Cliff, Goat, and South (ME) Zones. Later exploration focused in the area north of the Cliff Zone in what is now called the Main or Camp Zone.

The early phase of exploration included mapping, IP, and rock and soil sampling, followed by the diamond drilling of the Main and South Zones. Three diamond drill holes totalling 1874 feet (571 metres) were drilled in 1973 and three additional drill holes totalling 2132 feet (650 metres) metres were drilled in 1974, all on the Main Zone. Five diamond drill holes were drilled in 1975 for a total footage of 2600 feet (793 metres).

IN 1979, G.R.C. Exploration Company Limited (a subsidiary of Gulf Resources Canada Ltd.) optioned the property from Norcen Energy Resources Ltd. (formerly Great Plains Development), and Chevron Standard Ltd. In 1980, following a program of mapping and rock and soil sampling, two diamond drill holes were drilled on the south side of Ball Creek, testing copper mineralization in the South (ME) Zone (Woodcock and Gorc, 1980).

By 1989, Norcen Energy Resources Ltd. had been diluted out of the Joint Venture, except for a retained 10% net-profits interest, which was later purchased by Chevron. Placer Dome Inc. optioned the property in 1989 from Chevron, and conducted rock and soil sampling (280 and 1410 samples, respectively), Induced Polarization (20.6 km), and Magnetic/VLF (50 km) surveys. In addition, Placer Dome re-logged and re-sampled drill

core from 1973 and 1975, which is still on the property. The re-sampled core intervals were re-assayed by Placer Dome for gold and arsenic, but not for copper. In 1990 Placer Dome drilled 4 shallow holes for a total of 330 metres, outside of the known and previously targeted Main (Camp) Zone (Baril, 1991).

On January 2, 1992, 416993 acquired the property from Chevron Canada Resources Ltd. and subsequently optioned the property to Colossal Resources, Ltd. In 1993 Colossal Resources Ltd. drilled four diamond drill holes totalling 659 metres, in the Main (Camp) Zone. Following this program, the camp site was reclaimed (Turna and Price, 1993). No work was recorded in the area from 1994 to 2005. In January, 2005 the area was open ground, and was staked by John Bradford, John Fleishman and Nigel Luckman for Paget Resources.

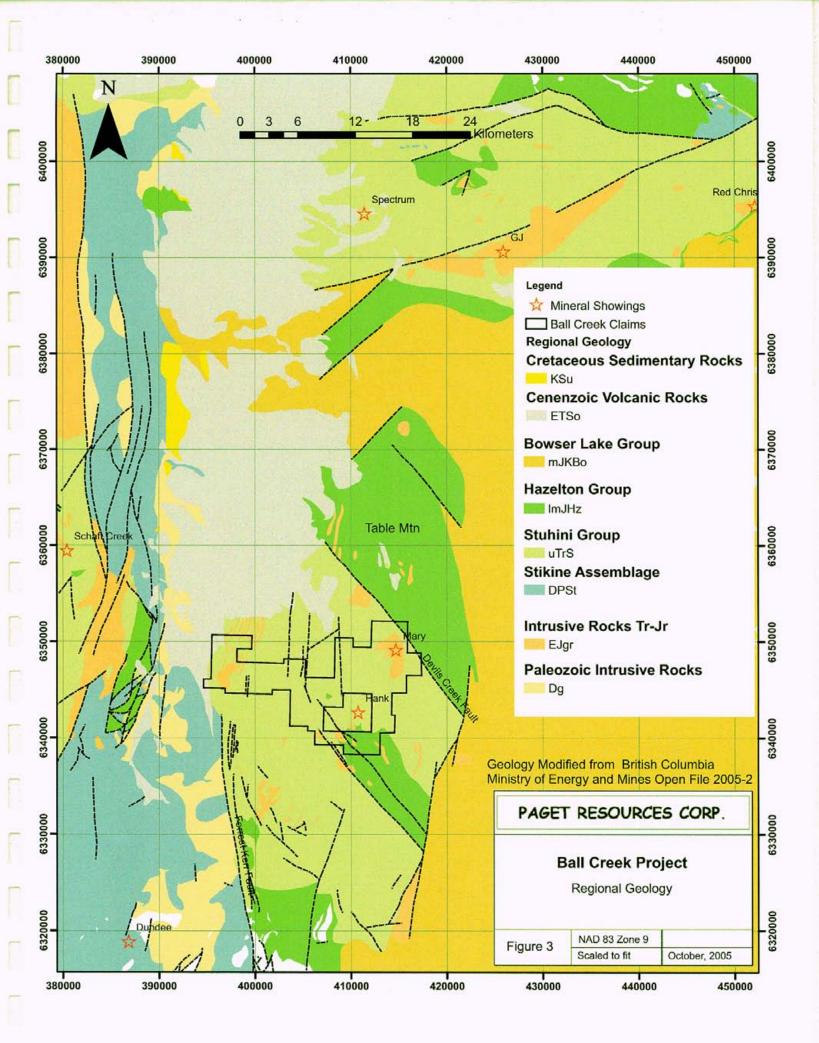
In the western part of the property, Neoconex Ltd. carried out a reconnaissance program in the More Creek drainage in 1976, discovering copper mineralization in the North More area. Edziza Resources and Skylark Resources prospected the area in 1980 (White and Pezzot, 1980), and discovered narrow massive sulfide lenses in calcareous sedimentary rocks next to a syenite porphyry dyke in the Sphaler Creek drainage. Samples of the massive sulphides ran up to 7.6% copper, 8.8% zinc and 204 g/t silver. In 1990, the Spec claims of Noranda Exploration Company, Ltd. were optioned by Alaska Fern Mines Ltd., who carried out a program of mapping (75 Ha at various scales) and rock sampling (57 samples), confirming the presence of locally high copper grades (up to 8.12%), and extending the area of known mineralization to the south (Vulimiri, 1990). In 1991 a program of geological mapping (120 Ha at 1:1000 and 1:5000), rock sampling (25 samples) and geophysics, including IP (11 kilometres), ground magnetics (13 kilometres) and EM (8 kilometres; Blann, 1991) was completed on the Spec claims.

In 1990, Total Energold Resources completed a reconnaissance program in the central part of the property in the Diablo Peak area (Jamet, 1991). The program consisted of reconnaissance scale mapping (4000 Ha at 1:20000 scale), rock sampling (60 samples), and contour soil sampling (72 samples). This work resulted in the discovery of gold mineralization on the north slopes of Diablo Peak (UTM 404800 E, 6345000 N) and anomalous copper in soils near Ferri Creek (400600 E, 6347000 N). Also in 1990, Kestrel Resources carried out a program of reconnaissance prospecting on the Bal claims, around the Rainbow area in the central part of the Ball Creek Property (Chase, 1990).

In the southern part of the property, the Rojo Grande zone is adjacent to the Hank property, presently owned by Barrick Gold Corporation. The Rojo Grande zone is wholly contained within the present Ball Creek property, while the Hank property is enclosed by the Ball Creek Property. Work on Cominco's Panky claims, which included the Rojo Grande zone, was initiated in 1990, when Solomon Resources completed a program of mapping (500 Ha at 1:5000 scale), soil sampling (40 samples) and rock sampling (16 samples; Bobyn, 1990). In 1992, Homestake Canada Ltd. optioned the Hank property, including the Panky claim group, and completed a sampling program, including soils (180 samples), silts (23 samples) and rocks (110 samples), as well as an induced

polarization survey (1.8 kilometres) and detailed geological mapping (575 Ha at 1:5000 scale; McPherson, 1992).

5 Regional Geology and Metallogeny


The Ball Creek Property is located in the east-central part of Stikine Terrane, a mid-Paleozoic to Late Jurassic volcanic arc. The geology of the area is best described by Alldrick et al (2004b), Logan et al. (2000) and Souther (1972, 1993). More detailed observations of local geology are provided by Kaip (1997) and Pantelelyev (1975) as well as in numerous assessment reports.

5.1 Stratigraphy

The Paleozoic Stikine Assemblage is not exposed in the project area (Figure 3 and 4) which is underlain mainly by Upper Triassic Stuhini Group volcanic and sedimentary rocks, including andesitic pyroclastics, basalt, greywacke, siltstone, limestone and mudstone. In the vicinity of the Ball Creek property, the Stuhini Group consists of a lower sedimentary and volcanic package and an upper, dominantly sedimentary succession. Sedimentary and volcanic rocks of the Lower to Middle Jurassic Hazelton Group unconformably overlie these rocks. Within the project area, this sequence consists solely of sedimentary rocks as described by Kaip (1997) while immediately east of the project they include a thick accumulation of basalt with interlayered dacite, rhyolite and some sedimentary rocks described as the Willow Ridge Complex by Alldrick et al. (2004b). Further east these rocks are overlain by the Middle to Upper Jurassic sedimentary rocks of the Bowser Basin (Figure 3).

The lower sedimentary sequence of the Stuhini Group consists of black siliceous argillite which grades upward into calcareous siltstone and sandstone. These rocks are well exposed along Ball Creek and Border Creek on the north side of the claim group. The overlying volcanic rocks consist of a basal sequence of massive, aphanitic dacite overlain by a thick (150 metres) succession of rhythmically-bedded ash tuffs. Laterally equivalent units are preserved as coarse, massive dacite breccias and crudely bedded dacite conglomerates and fine to coarse volcanic sandstone. These rocks are overlain by an andesite sequence that consists of several facies. Near More Creek about 20 kilometres south of Ball Creek, it comprises a series of lava flows with sparse to crowded porphyritic textures. Minor units of tuff separate the massive andesite flows. The lateral facies equivalent to these proximal flows is the thick (>1,000 metres) succession of coarse plagioclase-phyric andesite fragmental rocks with rare sandstone interbeds in the Ball Creek area.

The upper sedimentary sequence of the Stuhini Group consists of a mixed clastic succession of siltstone, sandstone, rare pebble conglomerate and distinctive minor limestone and volcanic members. The sandstone and conglomerate are characterised by buff-orange weathering carbonate cement. Multiple horizons of massive light grey limestone and limestone conglomerates, basalt flows and breccias, and black to white

rhyolite flows with associated bright apple green, massive to bedded rhyolite ash tuffs are preserved in most sections. Local thin flows of andesite and dacite have been noted, but are not evident in all areas mapped. This distinctive rock package is well exposed around the Rainbow prospect. Fossil collections constrain the age of these rocks as Norian (Souther, 1972).

The Lower to Middle Jurassic Hazelton Group in the area consists of a basal unit of coarsening upwards siltstone, sandstone and cobble conglomerate. Petrified wood and marine fossils are relatively abundant. This unit is exposed at the Hank property and on a knoll across Ball Creek to the north. Similar units are exposed at the base of the Willow Ridge complex on Table Mountain, located east of the Ball Creek property. Alldrick et al (2004b) describe the Willow Ridge complex as comprising a lower basalt unit, a middle sedimentary layer with rhyolite flows and domes and an upper basaltic unit. The middle sedimentary unit contains numerous fossils and petrified wood. Alldrick et al. (2004b) report a preliminary Toarcian to Middle Bajocian age for these rocks. They are probably correlative with the very similar unit described above at Hank.

The youngest rocks in the area are volcanic rocks associated with the large Holocene to Recent Mt Edziza volcanic complex located to the north. Within the project area these consist of minor vesicular basalt flows.

5.2 Intrusive Rocks

The Stuhini Group rocks are intruded by a number of feldspar porphyry monzonite to syenite and rhyolite dykes and irregular intrusions. Porphyry-style to epithermal mineralization is associated with more than one intrusive suite. Northeast of the project area, the GJ, an alkalic porphyry system, is hosted by the Groat stock dated as Late Triassic by Freidman and Ash (1997). Coarse syenite porphyry stocks dykes and irregular bodies in the More Creek area are defined as Late Triassic by Logan et al. (1992), while aphanitic rhyolite dykes in the same area were mapped as part of the Early Jurassic Texas Creek Plutonic Suite by both Souther (1993) and Logan et al. (2000). A variety of feldspar porphyry monzonite to equigranular monzonitic intrusions in the area are correlated with the Texas Creek Plutonic Suite by Logan et al. (2000) and Alldrick et al (2004a), based on age dates by Kaip (1997) at Hank and by Ash et al. (1997) in the Groat Stock area. Within the project area, these rocks are associated with mineralization at the Hank, Mary, ME and Ridge Breccia showings.

5.3 Structural Geology

The distribution of rock types in the area is dominated by major north striking faults that bound the Triassic to Early Jurassic strata and northwest striking block faults that bound individual panels of intact stratigraphy (see Figures 3 and 4). The property area is bounded to the west by the Forrest Kerr Fault, a major north-striking feature documented by Read et al. (1989) and Logan et al. (2004). Read (1989) suggests that this fault has

oblique left lateral movement with the block on the east side down dropped 2 km and post-mid Jurassic sinistral movement of 2.5 km, based on stratigraphic and structural relations south of the project area. This fault is the western boundary of Mesozoic strata in the area. A less well exposed and poorly documented sub-parallel fault following the Iskut River valley is presented by Alldrick et al. (2004a). This fault is the eastern boundary of the Triassic and Early Jurassic strata with only Middle Jurassic and younger strata of the Bowser Basin exposed east of the fault. The structural geology between the two faults is somewhat less well documented. Triassic strata are folded into upright to recumbent east-northeast striking folds and cut by several northwest-striking faults. One of these, the North More fault, is a prominent feature with significant sinistral offset. It is exposed near the Whistlepig and Diablo showings where it appears to be the focus of significant alteration and mineralization. Sharp changes in stratigraphy also indicate the project area is the fault along Devils Creek with Triassic strata on the southwest side and Jurassic strata exposed to the northeast.

Mapping during the 2005 exploration program has also identified east-northeast striking faults along and parallel to lower Ball Creek that offset alteration associated with the Early Jurassic intrusive rocks. Northwest striking faults also offset alteration associated with the Mary occurrence and superimpose high sulphidation alteration against unaltered Jurassic sandstone at Rojo Grande.

5.4 Regional Metallogeny

The Stikine Terrane is a very well endowed mineral belt with a long history of exploration and mining. The known mineral deposits are characteristic of the magmatic arc environment that persisted from the Paleozoic to the Middle Jurassic. Deposit types include porphyry copper deposits, epithermal precious metal deposits, subaqueous hot spring deposits (Eskay Creek type), intrusive related precious metal veins and volcanogenic massive sulphide deposits. The immediate area surrounding the Ball Creek property hosts several important porphyry copper deposits as well as related peripheral base and precious metal rich veins. The Ball Creek property itself has a long history of exploration and hosts known porphyry copper gold molybdenum mineralization, low sulphidation precious metal mineralization, high sulphidation alteration and copper skarn. Several new showings discovered in 2004 (Alldrick et al., 2004b) and investigated in this report have the characteristics of shear hosted mesothermal gold deposits.

In the southern part of the Iskut-Stikine belt, including the Stewart mining camp, Kerr-Sulphurets, Eskay Creek and Snip deposits, the mineralization is of early Middle Jurassic age. Further north, in the area surrounding the Ball Creek project, the porphyry deposits are largely of late Triassic age (see below) although Alldrick et al. (2004b) interpret the Mary and Hank showings described below to be of probable Early Middle Jurassic age based on intrusive rock types and stratigraphic relations

5.4.1 Alkalic Copper-Gold-Silver Porphyry and Skarn

The Triassic alkalic porphyry deposits in the district include the GJ, Red Chris, Galore Creek and Copper Canyon. The GJ deposit is located 42 km north of the Ball Creek project where Canadian Gold Hunter has defined 71.2 million tonnes grading 0.397% Cu, 0.398 gpt Au and 2.2 gpt Ag using a 0.2% Cu cutoff grade (Mehner and Peatfield, 2005). The deposit is described as an alkalic porphyry system hosted by the Groat stock dated at 205.1 + 0.8Ma (U-Pb, zircon) by Freidman and Ash (1997).

The Red Chris porphyry deposit is located 25 km east of GJ. BCMetals Corporation recently reported, at a 0.20% Cu cut-off, measured and indicated resources totaling 446.1 million tonnes averaging 0.36% Cu and 0.29 g/t Au, with an additional inferred tonnage of 268.7 million tonnes grading 0.30% Cu and 0.27 g/t Au (Collins et al., 2004). The same authors describe the deposit as an alkalic porphyry deposit with either transitional or overprinted calc alkaline characteristics.

Galore Creek is a large alkalic porphyry system located about 45 kilometres westsouthwest of the Ball Creek property. Published measured and indicated resources, at a 0.35% "CuEq" cut-off stand at 516.7 million tonnes grading 0.59% Cu, 0.36 g/t Au and 4.54 g/t Ag; with an additional inferred resource (at the same cut-off) of 578.3 million tomes grading 0.41 % Cu, 0.42 g/t Au and 4.35 g/t Ag. (Hatch Limited, 2005). The deposit consists of porphyry style mineralization and some skarn associated with strongly alkalic intrusives and volcanic equivalents. Close to Galore Creek is the Copper Canyon deposit, where inferred resources using a 0.35% "copper equivalent" cut-off are 164.8 million tonnes grading 0.35% Cu, 0.54 g/t Au and 7.15 g/t Ag. (Gray, Morris and Giroux, 2005).

On the Ball Creek property the North More Zone is a large area of skarn with widespread copper mineralization associated with synite porphyry dykes and stocks. The area has the characteristics of an alkalic skarn and porphyry system.

5.4.2 Calc-alkaline Porphyry Copper-Gold-Molybdenum

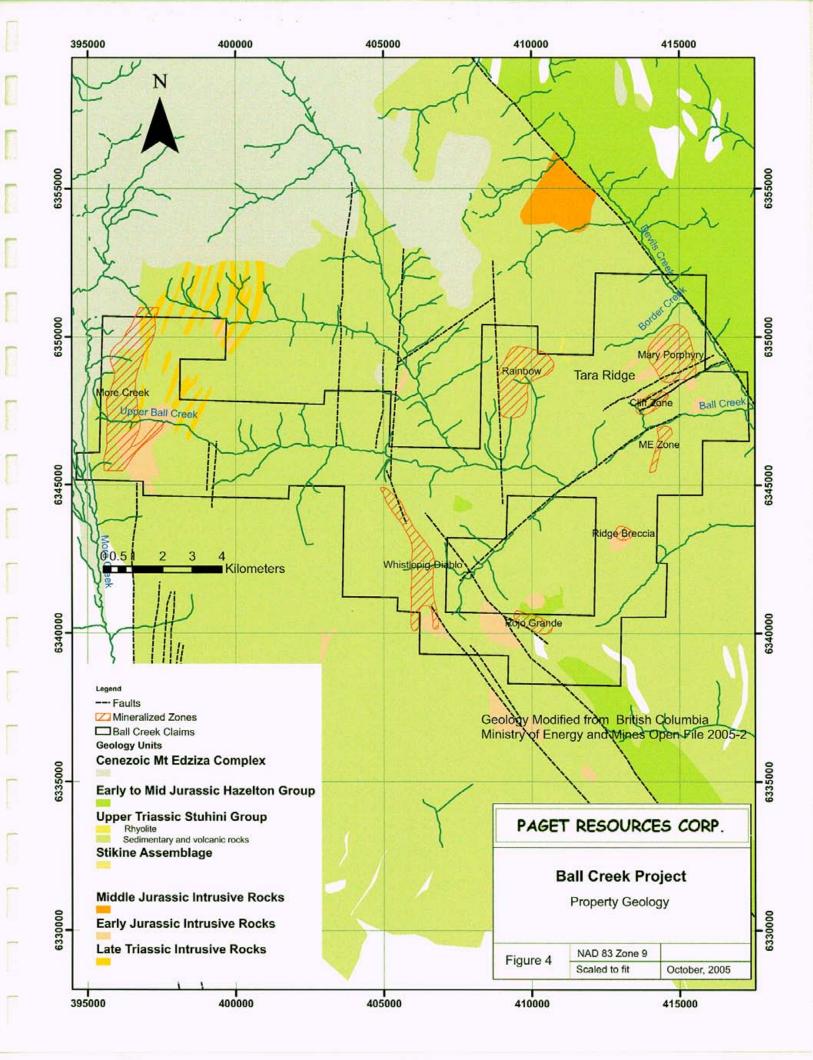
The only porphyry system in the district that is described as a calc alkalic system is the Schaft Creek deposit, where, at a 0.35% copper equivalent cut-off, measured and indicated resources total 464.7 million tonnes grading 0.359% Cu, 0.040% MoS₂, 0.25 g/t Au and 1.99 g/t Ag. An additional inferred resource of 169.3 million tonnes grading 0.358% Cu, 0.045% MoS₂, 0.26 g/t Au and 2.19 g/t Ag (Giroux and Ostensoe, 2003).

The most significant gold deposit in the area is a copper gold porphyry style occurrence hosted by a granodiorite dyke at the Spectrum-Red Dog property located 45 km north of Ball Creek. Norman (1992) describes mineralization along the margins of a porphyry dyke and quotes a pre NI 43-101 'drill indicated reserves' of 0.548 million tonnes grading 9.6 g/t gold using a 5 g/t gold cutoff. Copper grades are not reported. This could be either an intrusive related gold system or a high grade part of a porphyry system.

The Mary showing located within the Ball Creek property, is a calc alkaline porphyry copper gold molybdenum system interpreted by Alldrick et al. (2004) to be of Early Middle Jurassic age.

5.4.3 Epithermal Gold

The Hank deposit is a low sulphidation epithermal deposit located on the Hank property of Barrick Gold Corporation, which is surrounded by the Ball Creek Property. The Hank property includes a number of epithermal alteration zones with gold mineralization associated with pyrite veining, quartz-carbonate and quartz-pyrite veining within intense clay-sericite-pyrite-calcite alteration. Veins strike northeast and dip steeply to the southeast. Drilling by Lac Minerals up to 1987 outlined a pre-NI-43101 geological reserve of 245,000 tonnes with an average grade of 4.0 g/t Au and 215,000 tonnes with an average grade of 2.0 g/t Au in the 200 and 440 pit areas of the Upper alteration zone, respectively (quoted in Kaip, 1997).


6 **Property Geology**

The 2005 program consisted of visiting known mineral occurrences, evaluating RGS stream sediment anomalies and checking previously unmapped gossans, rather than systematic property mapping. Geological observations were recorded and reconnaissance style mapping was completed on several of the main showings, which are all described below. A compilation map of the entire property area, based largely from published sources, supplemented with personal observations by the author and other members of the 2005 Paget Resources exploration team is presented as Figure 4.

The majority of the property is underlain by the Late Triassic Stuhini Group (uTS) with very minor exposures of the Early to Middle Hazelton Group sedimentary rocks (emJH). The Stuhini Group is cut by a variety of intrusive rocks interpreted to be of late Triassic and Early to Middle Jurassic age. In the northern part of the property the Mesozoic rocks are locally covered by basaltic flows from the Late Cenozoic Mt. Edziza complex (Evolc).

6.1 Mary

The Mary occurrence is a porphyry copper-gold-silver-molybdenum prospect hosted in coarse mafic volcaniclastic rocks cut by porphyritic monzonite dikes and plugs (Panteleyev, 1975). The porphyry system was originally interpreted as part of the Upper Triassic metallogenic event that includes Galore Creek, based on a 218 ± 24 Ma sericite K-Ar date. Alldrick et al. (2004a) re-interpreted the intrusive rocks at the Mary prospect as part of the Early Jurassic Texas Creek suite, contemporaneous with similar intrusions on the Hank property to the southwest. Stratified rocks in the immediate area of the Mary occurrence can be subdivided into three main units (Kowalchuk and Turna, 1990):

- The lower unit is a thinly bedded siltstone with chert, shale, sandstone and calcareous beds near the top of the succession. The calcareous siltstone beds locally contain abundant pelecypod and gastropod shells that indicate a Late Triassic (Norian) age. The top of the sedimentary succession is marked by interbedded volcaniclastic rocks, including crystal-lithic tuffs containing abundant orthoclase crystals.
- The middle unit is a series of fine-grained to porphyritic andesite to trachyandesite flows and flow breccias. These rocks have a mottled buff to grey appearance and are characterised by abundant small grains of chloritized hornblende in a fine-grained feldspathic matrix.
- The youngest unit, on Tara Ridge, consists mainly of well-bedded clinopyroxenephyric basalt conglomerate with trachyandesite feldspar porphyry clasts. Minor limestone is intercalated in this unit.

A suite of porphyritic intrusive rocks of monzonitic composition intrudes these rocks. The porphyry includes four main subtypes:

- <u>LJkpp</u> A medium grained subcrowded porphyry with hornblende, plagioclase and prominent potassium feldspar megacrysts from 1 to 3 cm. Varies from fresh to highly altered but is commonly late and cross cutting both lJint and lJhbp.
- <u>LJhbp</u> A medium grained subcrowded porphyry with biotite, hornblende and plagioclase. Varies from fresh to highly altered and probably includes many subtle different phases. This is the dominant rock type in the Mary/ME zones.
- <u>LJint</u> Undivided altered diorite or monzonite. An early unit commonly altered and intruded by lJkpp and lJhbp.
- <u>LJtp</u> A pair of small, strongly magnetic trachyte (trachyandesite) plugs are located between the Mary porphyry and Ball Creek. These are un-mineralized and are probably the latest major intrusive phase. They may be related to strongly magnetic trachyte flows that overlie the porphyry system 500 metres northwest of the Cliff Zone at about 1700 metres elevation.

Panteleyev (1975) describes syenitic felsites not observed by the authors. They are aphanitic to very fine granular, pale buff to cream-coloured rocks that form dykes and small intrusions intimately associated with porphyritic intrusions. A dyke south of Big Red Hill that contains 58% K-feldspar belongs to this phase. These dykes are pyritic and locally mineralized with molybdenite-bearing quartz veinlets. The felsites may be metasomatic rocks characterised by intense K-feldspar alteration.

Limited chemical analyses (Pantelelyev, 1975) of the three intrusive suites show they range from quartz monzonite to monzonite and syenite. Biotite hornblende feldspar porphyry contains 11% normative quartz and may be classed as quartz monzonite. The felsites have a relatively low SiO₂ content and high K₂O (in excess of 10%).

In addition to these phases, post-mineral diabase dykes intrude bedded rocks and porphyritic intrusions.

The intrusive rocks and to a lesser extent the volcanic rocks are altered and mineralized as part of a porphyry copper molybdenum gold system described below (Section 7.1).

6.2 ME

The ME showing is a porphyry style occurrence that is part of the Mary system but located on the south side of Ball Creek. A northeast trending zone of intrusive rocks cuts Upper Triassic andesite and sedimentary rocks. The intrusives are highly altered and form a series of gossanous cliffs. An early, largely equigranular, intrusive phase has both a brown hornfels overprint and strong quartz sericite alteration. There are numerous NE trending, late dykes of medium grained subcrowded porphyry with hornblende, plagioclase and prominent potassium feldspar megacrysts (LJkpp). Previous workers describe calc silicate rocks at depth in drill holes (Woodcock and Gorc, 1980); these rocks do not crop out.

6.3 Hank

The Hank showing has been well described by Kaip (1997). Mapping in 2005 was confined to highly altered rocks at Rojo Grande described in section 7.4. Kaip (1997) describes a sequence of massive to fragmental dacite overlain by andesitic, plagioclase phyric fragmental rocks. These rocks are unconformably overlain by brown green medium bedded coarse greywacke to pebbly conglomerate with abundant petrified wood and marine fossils (emJss).

6.4 Whistlepig-Diablo

The Whistlepig showing was discovered by B.C. Geological Survey personnel during a regional mapping program in 2003. A fault zone cutting Upper Triassic siltstone hosts mineralization which is exposed along a southwestern tributary of Ball Creek, two kilometres west of the Hank deposit. The fault is part of a regionally extensive zone of faults called the Northmore fault zone, which ranges up to 100 metres wide. This shear zone is a steeply inclined, sinistral, transverse fault, easily traced by abundant fractures and gossanous weathering of disseminated sulphides found throughout the fault system. South of the property splays from this fault bound a panel of Hazelton strata of Jurassic age.

6.5 More Creek

The More Creek area is underlain by sedimentary and minor volcanic rocks of the upper sequence of the Stuhini Group. These rocks include well bedded black shale overlain by calcareous sediments, dominantly consisting of medium grained bedded calc arenite. At higher elevations in Sphaler Creek, these rocks are overlain by augite phyric volcanic rocks. At lower elevations along the main More Creek valley, there are exposures of augite and plagioclase phyric fragmental volcanic rocks with a limestone matrix.

The Stuhini Group rocks are intruded by several distinct intrusive rock types, causing extensive skarn metasomatism. The skarn and associated copper mineralization are discussed below (section 7.3). The most important intrusive unit from an economic perspective is the dark syenite porphyries (uTsyp). These rocks make up several larger stocks and numerous dykes and highly irregular intrusive bodies throughout the mapped area. The exposures consist of a dark matrix of fine grained biotite, chlorite and magnetite with pink to salmon colored lathe shaped potassium feldspar phenocrysts 1-4 cm long. A very similar intrusive rock that is less altered is uTwsp, an aphanitic syenite porphyry with large white potassium feldspar phenocrysts 1-6 cm long. These syenites are interpreted to be of late Triassic age by Logan et al. (2000). The syenite porphyries are spatially associated with prominent rusty weathering dykes of orange to buff aphanitic rhyolite (uTrhy). These rocks are commonly fine grained and ambiguous but are locally flow banded and clearly rhyolitic. The dykes strike 020° and locally crosscut the syenite porphyry. They are interpreted to be Early to Middle Jurassic by Logan et al. (2000). In the southern part of the mapped area there is a small stock of equigranular quartz bearing intrusive with biotite and hornblende (IJmz). Marginal phases are very mafic rich comprising dioritic to gabbroic rocks. This intrusive is surrounded by strong skarn. The monzonite is cut by a fine grained, pink coloured intrusive of probable syenitic composition with very few visible chloritized mafic minerals. This rock is associated with rusty zones of alteration and some local strong copper mineralization.

6.6 Rainbow Area

The Rainbow prospect is located at 1900-2000 metres elevation on Tara Ridge, five kilometres west of the Mary porphyry and 7.5 kilometres north of the Hank gold deposit. Black, glassy flow-banded rhyolite flows and dikes exposed over a 1.5 kilometre radius locally have abundant hairline fractures filled with jarositic limonite. The country rock consists of massive light grey Upper Triassic limestone, limy sandstone, grit and pebble conglomerate.

7 Mineralization

7.1 Mary

The Mary occurrence has been the focus of most past exploration work on the Ball Creek project. The following description and interpretation is based on compilation of available historic data as well as several days of mapping and rock sampling completed in 2005. The geology is described in section 6.1.

The Mary is a porphyry copper gold molybdenum occurrence. Prominent gossanous alteration zones occur over a 4×5 kilometre area within the volcanic-sedimentary package. The pyrite bearing alteration causing the gossans can be divided into three main alteration assemblages that occur in two spatially distinct areas. The first area is the Mary porphyry or Camp zone area and the second is the Cliff zone area. They are separated by an area of unaltered volcanic rocks.

The Mary porphyry consists of a potassic core surrounded by strong phyllic alteration and an outer zone of pyritic propylitic alteration. Abundant pyrite is found in both the phyllic and propylitic zones as disseminated and stockwork pyrite. Previous work by Placer Dome (Kowalchuk and Turna, 1990; Baril, 1991) described a central 250 x 500 metre potassic zone (Camp Zone) defined by outcrop at an elevation of 1350-1550 metres, diamond drilling and a magnetic high. This zone is not well exposed and is understood largely on the basis of drilling in the 1970's. This drill core was later resampled and assayed by Placer Dome in 1989 (Kowalchuk and Turna, 1990). The potassic zone consists of strong potassium feldspar flooding with both disseminated and fracture controlled magnetite, chalcopyrite and pyrite. Quartz stockwork and laminated quartz-sulphide veins carry molybdenite and chalcopyrite. Assays compiled by Price (1997) indicate grades of 0.1 to 0.27% Cu and 0.3 to 0.8 g/t Au over core lengths up to 192 metres.

The potassic zone is surrounded by a 500 by 800 m zone of strong phyllic alteration that forms a number of very gossanous outcrops around Big Red Hill at the southwest end of the of the potassic zone. Further strong phyllic alteration is present in a number of other areas including Little Red Hill and the Cliff Zone. The phyllic zone carries some significant gold values in several areas, returning from several hundred ppb to one gram per tonne gold (see section 8.1.1). The distribution of the phyllic alteration as well as the sharp juxtaposition of propylitic and phyllic assemblages across strong topographic lineaments strongly suggest that the larger porphyry system has been segmented by post mineral faulting, particularly along the north-northwest trending Camp Fault and the east-northeast trending Cliff Fault (Figure 5). The area east of the Camp fault and north east of the Cliff zone are underlain by transitional alteration assemblages with strong calcitechlorite and/or sericite with strong pyrite. These assemblages locally carry strong copper mineralization.

The Cliff zone consists of chalcopyrite and some molybdenite that occur in a variety of alteration types. Quartz stockwork with associated chalcopyrite and pyrite occurs in phyllic altered porphyry and to a lesser extent in adjacent calc silicate altered sedimentary rocks with some disseminated pyrrhotite and chalcopyrite. The stockwork zone is flanked to the west by a strong phyllic zone exposed along the sides of a steep and largely inaccessible creek. To the east the zone is flanked by phyllic, then chlorite sericite-calcite-pyrite alteration.

Below the Cliff Zone, along Ball Creek, Reynolds and Termuende (1971) describe phyllic alteration that contains lenses of massive pyrite-chalcopyrite up to 0.3 metres

thick as well as transported copper mineralization as chrysocolla-cemented breccias with altered sedimentary and porphyry clasts in talus slopes at the base of the cliffs.

A soil grid over the porphyry delineated a central 800 x 1000 metre copper-molybdenum \pm gold anomaly, as defined by copper >130 ppm, gold >80 ppb and Mo >8 ppm. The highest copper in soil anomalies (2750 ppm) are down slope and east of the potassic zone, while values up to 600 ppm Cu were obtained within the surface trace of the potassic zone. Gold values are inconsistent within the potassic zone, with higher values found well beyond it. Higher gold in soil values (590-790 ppb gold) were found 300 metres west of the westernmost drill hole in the Main Zone (DH 73-3).

Geophysical surveys (Kowalchuck and Turna, 1990) also help define the alteration assemblages. There is a large magnetic low 1500 metres in diameter with a largely coincident pattern of chargeability highs (> 10Mv) that defines the pyrite bearing, magnetite destructive propylitic and phyllic zones. This is cored by a smaller magnetic high (> 57,800 NT) resulting from the high magnetite concentrations in the potassic core. The Cliff Zone alteration is clearly separated from the Main Zone by a narrow panel of magnetic, unaltered rock. The Cliff Zone is manifested as a linear 1700 metre by 400 metre magnetic low (open to the west) cored by an open ended chargeability high around the Cliff Zone and a smaller elongate chargeability high to the northeast.

Diamond drilling carried out between 1973 and 1975 was focused near the potassic core. Drill logs filed for assessment (Visagie, 1974) indicate that core was both AQ and BQ diameter and that recoveries were generally poor due to zones of strong fracturing and faulting accompanied by deep weathering. The 1974 drill holes included two holes clearly in the potassic zone, 74-2 and 74-3, based on the original logs. Drill hole 74-2 was collared near 73-2, and intersected strongly magnetic "quartz latite" and "quartz latite breccia" with "moderate" quartz veining with K-feldspar envelopes, and chalcopyrite-pyrite and minor molybdenite throughout (169.5 metres total). The best zone was between 106-128 metres, where quartz-potassium feldspar veining was accompanied by strong biotite alteration and >1% chalcopyrite.

Drill hole 74-3 was located about 200 metres southwest of 74-2/73-2, and intersected quartz latite breccias cut by "trachyte" dykes altered to K-feldspar, biotite, sericite and fluorite, with 1% pyrite and 0.5% chalcopyrite. Below 67 metres, drilling encountered a deep "rubbleized" and weathered zone, with poor recoveries until a fault was intersected at 148 metres. Below that similar quartz latite breccia with K-feldspar and sericite alteration was intersected. In 1993, news releases by Colossal Resources in various Stockwatch and George Cross Newsletters reported that 74-3 intersected 631 feet (192 metres) of 0.22% Cu and 0.02 oz/t Au (approximately 0.68 g/t Au; Adam Travis personal communication, 2005). Drill hole 74-1 was collared 225 metres northwest of 74-2/73-2, and intersected propylitic alteration until 224 metres depth, at which point quartz-potassium feldspar veining with weak pyrite-chalcopyrite mineralization was encountered. The 1974 drill holes were vertical holes.

In 1989 Placer Dome re-assayed the 1973 and 1975 drill holes for gold. The three 1974 drill holes had been transported off property and were not available. Re-assays were done on random pieces of split AQ core over 10 foot intervals (Kowalchuck and Turna, 1990). The best drill hole based on these results was 73-2, which returned 172.6 metres of 0.37 g/t Au between 1.8 and 174.4 metres, including 76.8 metres of 0.47 g/t Au between 97.6 and 174.4 metres. According to Placer's observations, potassic alteration was especially strong in DDH 73-2, 73-3, 75-3 and 75-5; some sections originally logged as intensely silicified are actually K-feldspar flooded, with up to 70% K-feldspar and magnetite.

Limited drilling by Placer Dome in 1990 targeted hypothesised gold enrichment in the phyllic and propylitic zones. Three holes intersected 5-10% pyrite in phyllic alteration, with low gold and copper values (except for a narrow intersection in DDS-14). Drilling conditions were described as poor, due to strong fracturing and faulting.

Colossal Resources drilled three holes in 1993. The best intersection was 128 metres of 0.18% Cu and 0.41 g/t Au between 57 and 185 metres in DH 93-1 (Turna and Price, 1993).

7.2 ME

The ME zone lies directly across Ball Creek from the Mary porphyry and is clearly part of the same mineralizing system associated with porphyritic monzonite intrusive rocks (Figure 5). The rocks form a prominent gossan on steep slopes along the south side of Ball Creek with a prominent northeast trend. Three distinct alteration types are present. An early episode of brown hornfels affects a now highly altered intrusive phase. This rock is commonly altered to quartz sericite pyrite throughout the gossanous area. Volcanic and intrusive rocks along the south side of the zone are altered to chlorite pyrite with variable amounts of calcite. The phyllic alteration hosts two types of mineralized veins. Pyrite chalcopyrite rich (40-70% sulphide) veins to 10 cm wide and quartz calcite iron carbonate veins with galena chalcopyrite and pyrite occur as sheeted veins in zones up to 1 metre wide. These veins strike northeast and dip to the northwest. Strong quartz stockwork with chalcopyrite in hard (potassium feldspar flooded?) porphyry occurs in one area, while quartz molybdenite veins are present in several areas of stronger phyllic alteration.

This zone is probably originally part of the same zone as the Cliff Zone and has been separated from it by post mineral faulting along Ball Creek.

7.3 North More

The North More Creek area has seen only very limited prospecting and rock sampling Reconnaissance exploration by Noranda in 1990 showed that there are several phases of syenite porphyry, and that the mainly sedimentary country rocks are extensively altered to skarn ((Vulimiri, 1990; Van Wollen, 1990).

Noranda documented three showings in the northern part of the property. This is an area of poor exposure, with partial cover by Late Tertiary basalt flows of the Mount Edziza complex, and by glacial deposits. At the Butte and Spar showings, chalcopyrite, bornite, pyrite and pyrrhotite occur in diopside-garnet-potassium feldspar-epidote skarn and in veinlets in K-feldspar megacrystic syenite porphyry. Samples at the Butte showing, collected over a 30 x 30 metre area, returned values up to 7.53% Cu and 280 g/t Ag, and 1.09% Cu and 16.6 g/t Ag. About 80 metres to the northeast, two samples assayed 6.10% Cu and 99.2 g/t Ag, and 0.14% Cu and 2.8 g/t Ag. At the Spar showing, 100 metres west of the Butte, endoskarn with calcite stringers and disseminated and fracture-controlled chalcopyrite/malachite ran 3.44% Cu, 24 g/t Ag, 7.80% Cu and 331 g/t Ag, 0.78% Cu and 4.9 g/t Ag.

The View showing is located 200 metres south of the Butte occurrence, and consists of chalcopyrite in fractures in epidote-rich endoskarn in syenite porphyry. Copper values of 3780, 2632, 5771 1577 ppm and anomalous gold (430 and 600 ppb) were obtained from this showing. About 300 metres to the southeast, a sample ran 1.82% Cu and 7.6 g/t Ag.

A second area with documented showings is in the upper "Sphaler Creek" drainage, about 1.8 kilometres south of the northern area. Syenite porphyry dykes intruding calcareous metasediments are associated with narrow (30 cm wide) contact zones of polymetallic massive sulfides, assaying up to 295 g/t Ag, 7.6% Cu, 6.5% Zn and 1.4% Pb. About 200 metres downstream to the west, fracture-controlled chalcopyrite and malachite occurs in syenite porphyry, with values up to 0.26% Cu.

In the southern part of the Property on the south side of Ball Creek, Noranda noted highly altered syenite with endoskarn cut by quartz-K-feldspar-pyrite stringers. Four samples over a 350 metre strike length returned copper values of 2985, 5443, 2491 and 3419 ppm.

The current work program has defined a five kilometre long zone of strong skarn with mineralized potassium feldspar megacrystic syenite dykes and plugs as well as altered and mineralized rhyolite dykes (Figure 6). Mineralization consists of chalcopyrite expressed mostly as widespread localities with malachite. The skarn zone is widespread and varies from proximal garnet-actinolite skarn to a distal chlorite-amphibole-epidote assemblage. Mineralization within the skarn appears to be restricted to pyrite with the exception of one occurrence of garnet skarn near the Butte showing with strong copper mineralization and the narrow sulphide bands in skarn reported by Vulimiri (1990) in Sphaler Creek. The bulk of the mapped copper mineralization is in, and adjacent to, the syenite porphyry dykes and stocks with a minor amount associated with some of the rhyolite dykes. The syenite porphyry hosts disseminated and fracture controlled chalcopyrite in many areas. The rock consists of dark pink feldspar megacrysts in a dark matrix consisting of chlorite (and/or biotite?) and abundant magnetite.

The mineralization and the distribution of the dark syenite porphyry both suggest that there are two mineralized stocks located 3600 metres apart (Figure 6), with the intervening area hosting numerous dykes and skarn. The skarn is clearly not related to either the syenite or rhyolite dykes as they cut both skarn and unaltered calcareous rocks. The skarn must be the result of a deeper seated intrusive. The northern stock is located partially within Mt Edziza Provincial Park and is alienated from exploration, although the remainder of the zone is located within the Ball Creek Property.

7.4 Rojo Grande

Rojo Grande comprises the southwestern portion of the Hank epithermal system, located at elevations between 1600 and 1900 metres, south of the Barrick Property on the Ball Creek Property. The alteration zone lies south of the 185 Ma Bald Bluff orthoclase megacrystic porphyry and at higher levels, extending to Goat Peak. It also overlies the Flats zone, where potassic alteration was intersected at depth in drilling.

Alteration is characterised by quartz-alunite-dickite, extending outward to quartz-claypyrite enveloping north-trending linear zones of intense quartz-pyrite (Kaip, 1997). Rojo Chico is the 150 m-wide extension of the Rojo Grande zone to the northwest, and consists of massive, granular quartz-clay-pyrite alteration.

The Rojo Grande Zone has not been drill tested. Soil sampling by Homestake in 1992 delineated a 500 x 900 metre zone of anomalous As (>50 ppm) and Hg (>1000 ppb), with highs of >10 ppm Hg and 454 ppm As (McPherson, 1992). Within this zone there are several areas with anomalous gold values from 90 to 736 pbb gold.

An IP survey outlined a broad, deep-seated resistivity high on the northwest flank of Rojo Grande, in part correlative with the soil gold anomalies.

Rock chip samples collected by Homestake of the alteration zone were weakly anomalous in gold, to a high of 355 ppb from the linear band of alteration east of Goat Peak. Eight of 110 samples ran over 50 ppb. Mercury is very high, with several samples over 10 ppm, concentrated along the southeastern edge of the zone. Arsenic is subdued, mostly in the 20-50 ppm range, and Sb and Ba are erratic, to highs of 122 and 1908 ppm, respectively.

7.5 Whistlepig-Diablo

The Whistlepig showing was discovered by B.C. Geological Survey personnel during a regional mapping program in 2003. A fault zone cutting Upper Triassic siltstone hosts mineralization which is exposed along a southwestern tributary of Ball Creek, two kilometres west of the Hank deposit. Alteration associated with this structure was mapped by the BCGS over a strike length of 2.6 kilometres at elevations between 1200 and 1500 metres, approximately. Mineralization occurs as semi-massive sulphides in fault-hosted, quartz-calcite veins. The fault is part of a regionally extensive zone of faults called the Northmore fault zone, which ranges up to 100 metres wide. This shear zone is easily traced by abundant fractures and gossanous weathering of disseminated sulphides

found throughout the fault system. The veins were sampled in two locations, the best assay yielding 0.73 g/t Au, 2.87 g/t Ag, and 1001 ppm Cu.

The Whistlepig North target is 2.5 kilometres north of the Whistlepig target, within a narrow, northwest trending graben structure which extends from the West Hank Fault to the Diablo Peak area (Alldrick et al., 2004b). A talus sample from this area (Total Energold, 1991, Assessment Report 22045) returned elevated Cu (399 ppm), Zn (1200 ppm) and Au (53 ppb) values). The target area surrounds a small, fault-bounded wedge of limestone between Stuhini Group basalts and epiclastic sedimentary rocks.

Rock float and outcrop sampling below the small glacier on the north side of Diablo Peak returned elevated gold and silver values over a distance of about 700 metres (Total Energold, 1991, Assessment Report 22045). They reported six rock samples with anomalous gold to a maximum of 3.6 g/t Au.

7.6 Rainbow

The Rainbow prospect was also discovered by B.C. Geological Survey personnel during a regional mapping program in 2003. It is located at 1900-2000 metres elevation on Tara Ridge, five kilometres west of the Mary porphyry and 7.5 kilometres north of the Hank gold deposit (see Figure 4). Black rhyolite flows and dikes exposed over a 1.5 kilometre radius locally have abundant hairline fractures filled with jarositic limonite. The country rock consists of massive light grey Upper Triassic limestone, limy sandstone, grits and pebble conglomerate. Limited sampling by the BCGS returned anomalous Au (76 ppb), Ag (5.3 ppm), As (688 ppm), and Sb (24 ppm).

About 1.5 kilometres to the east of the showing, reconnaissance prospecting along the ridge by Kestrel Resources in 1990 discovered numerous gossanous zones, locally associated with hydrothermally altered breccias. One breccia had the groundmass completely replaced by pyrite, but limited sampling (19 rock samples) failed to return any anomalous values.

7.7 Ridge Breccia

The 2005 Program defined a new zone of mineralization on the ridge between the Hank and ME showings (Figure 4). This gossanous area is underlain by brecciated intrusive rocks of probable Early Jurassic age. The showing consists of rusty limonitic exposures with disseminated pyrite and traces of chalcopyrite.

A brief evaluation of this area included mapping and the collection of seven rock samples. Strong sericite-pyrite alteration with pyrite stringers and clots is variably oxidized, producing abundant jarositic limonite over an area of at least 300 x 500 metres. The alteration is hosted by monzonitic intrusive rocks and andesitic volcaniclastics, including cobble conglomerates. Alteration is locally overprinted by carbonate veins.

8 Geochemical Data From 2005 Exploration Program

8.1 Rock Sampling

A total of 231 rock samples were collected during the 2005 program. The rock samples are all either grab samples or measured chip samples. The chip samples are collected as semi-continuous chips across a measured length or as random chips distributed through a measured panel area. The samples are collected in a plastic bag, labelled and tagged then sealed with electrical ties. The sample locations are marked with flagging and labelled with an embossed aluminium tag.

All samples were checked for numbering errors and then bagged in polyester rice bags and sealed with numbered security tags. All samples were shipped directly to ALS Chemex in North Vancouver via Bandstra shipping. At ALS Chemex, rock samples were logged in at the lab with a recorded sample weight. The entire sample was crushed dry, split, and 250 grams was pulverized to >85% passing 75 microns. A 30 gram charge was analyzed for Au (Fire Assay – Atomic Absorbtion Spectroscopy). Aqua regia digestion is utilized for 34-element Inductively Coupled Plasma Emission Spectroscopy.

ALS Chemex's North Vancouver laboratory is compliant with ISO 9001:2000 and ISO 17025:1999 standards. Sample preparation QC protocols include the use of barren material to clean sample preparation equipment between sample batches, and where necessary, between highly mineralized samples. Analytical accuracy and precision are monitored by the analysis of reagent blanks, reference materials and replicate samples. Sample tracking includes a LIMS system utilizing bar coding and scanning technology to provide chain of custody records for every stage of sample preparation and analysis.

8.1.1 Mary

Rock sampling in the Mary area consisted of 44 chip and grab samples from mineralized and altered zones. Highlighted sample results are listed below in Table 8.1; complete sample descriptions and results are in Appendix B. The sampling confirms the presence of significant copper and gold (Figure 5). No samples were collected from the poorly exposed potassic zone but samples from the surrounding phyllic and chlorite sericite calcite alteration zones indicate the presence of anomalous copper with values from greater than 0.01% to a high of 0.36% Cu in a 1.0 metre chip across a discrete mineralized structure (B386279). Parts of the phyllic zone carry very significant gold values. Three distinct areas within the phyllic alteration halo returned values of greater than 0.1 g/t Au with a high of 1.2 g/t gold. This sample is from a 120 metre long outcrop of moderate to strong quartz sericite pyrite alteration. All five rocks samples from this outcrop returned values greater than 0.15 g/t gold and weakly anomalous copper. Samples from the easternmost part of the phyllic and chlorite-sericite-calcite alteration also returned anomalous gold values to 0.56 g/t Au associated with anomalous copper. Pale grey quartz veinlets sampled in two areas also returned anomalous gold grades with no significant copper values.

Samples from the Cliff Zone area indicate higher copper grades but low gold and much lower Au/Cu ratios than the Main zone. Four chip samples returned Cu grades from 0.1 to 0.7% copper but only the sample with highest copper (B386512) returned any significant gold (0.15 g/t). The zone also reports significant lead and zinc values from some of the samples.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SAMPLE	ТҮРЕ	LENGTH	AU	AG	CU	MO	PB	SB	ZN
B386278Chip1.000.260.9156031432286B386279Chip1.000.320.9363020410259B386283Chip1.000.372.718355114224B386286Grab0.641.16271265B386287Grab0.170.57145637B386288Chip random0.160.8923219267B386337Chip2.000.052.92622342966B386343Chip2.000.630.61468811216B386343Chip3.001.191.087924915221B386362Chip1.000.160.3138342929B386363Chip1.000.051.842168951270B386385Grab0.063.81121207031805B386386Chip1.000.073.4971268021515B386387Chip1.000.073.54115953203B386389Chip1.000.073.4971268021515B386390Grab0.360.67220251<	B386276	Grab		0.01	0.2	1135	1	3	2	124
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B386277	Grab		0.37	1.3	1510	112	15	2	31
B386283Chip B386286I.00 0.37 2.7 18 35 51 142 24 B386286Grab 0.64 1.1 6 2 7 12 65 B386287Grab 0.17 0.5 7 1 4 56 37 B386288Chip random 0.16 0.8 9 2 32 192 67 B386337Chip 3.00 0.55 11.1 132 1 301 2 228 B386338Chip 2.00 0.63 0.6 146 88 11 2 16 B386343Chip 2.00 0.63 0.6 146 88 11 2 16 B386344Chip 3.00 1.19 1.0 879 249 15 2 21 B386362Chip 1.00 0.16 0.3 138 342 9 2 9 B386385Grab 0.06 3.8 112 1 2070 3 1805 B386386Chip 1.00 0.05 1.8 42 1 689 5 1270 B386386Chip 1.00 0.03 2.0 174 6 13 2 52 B386387Chip 1.00 0.07 3.4 97 1 2680 2 51 B386389Chip 1.00 0.07 3.4 97 1 2680 2 51 B386508 <td< td=""><td>B386278</td><td>Chip</td><td>1.00</td><td>0.26</td><td>0.9</td><td>1560</td><td>314</td><td>32</td><td>2</td><td>86</td></td<>	B386278	Chip	1.00	0.26	0.9	1560	314	32	2	86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B386279	Chip	1.00	0.32	0.9	3630	204	10	2	59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B386283	Chip	1.00	0.37	2.7	18	35	51	142	24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B386286	Grab		0.64	1.1	6	2	7	12	65
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B386287	Grab		0.17	0.5	7	1	4	56	37
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B386288	Chip random		0.16	0.8	9	2	32	192	67
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B386337	Chip	3.00	0.55	11.1	132	1	301	2	228
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B386338	Chip	2.00	0.05	2.9	262	2	34	2	966
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B386343	Chip	2.00	0.63	0.6	146	88	11	2	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B386344	Chip	3.00	1.19	1.0	879	249	15	2	21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B386362	Chip	1.00	0.16	0.3	138	342	9	2	9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B386363	Chip	1.00	0.28	1.0	444	29	13	2	12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B386384	Chip	1.00	0.05	1.8	42	1	689	5	1270
B386387Chip2.000.032.0174613252B386388Chip1.000.073.4971268021515B386389Chip1.500.073.54115953203B386390Grab0.360.67220251B386507Chip5.000.012.411002914257B386508Chip2.000.012.436253258280B386509Chip4.000.020.22601014253B386510Chip2.000.010.41150820721105B386512Chip1.000.1511.1735045640028220B386513Chip2.000.030.7230052302142	B386385	Grab		0.06	3.8	112	1	2070	3	1805
B386388Chip1.000.073.4971268021515B386389Chip1.500.073.54115953203B386390Grab0.360.67220251B386507Chip5.000.012.411002914257B386508Chip2.000.012.436253258280B386509Chip4.000.020.22601014253B386510Chip2.000.012.4.311254410221365B386511Chip2.500.010.41150820721105B386512Chip1.000.1511.1735045640028220B386513Chip2.000.030.7230052302142	B386386	Chip	1.00	0.08	1.7	94	1	144	2	129
B386389Chip1.500.073.54115953203B386390Grab0.360.67220251B386507Chip5.000.012.411002914257B386508Chip2.000.012.436253258280B386509Chip4.000.020.22601014253B386510Chip2.000.010.4311254410221365B386511Chip2.500.010.41150820721105B386512Chip1.000.1511.1735045640028220B386513Chip2.000.030.7230052302142	B386387	Chip	2.00	0.03	2.0	174	6	13	2	52
B386390Grab0.360.367220251B386507Chip5.000.012.411002914257B386508Chip2.000.012.436253258280B386509Chip4.000.020.22601014253B386510Chip2.000.024.311254410221365B386511Chip2.500.010.41150820721105B386512Chip1.000.1511.1735045640028220B386513Chip2.000.030.7230052302142	B386388	Chip	1.00	0.07	3.4	97	1	2680	2	1515
B386507Chip5.000.012.411002914257B386508Chip2.000.012.436253258280B386509Chip4.000.020.22601014253B386510Chip2.000.024.311254410221365B386511Chip2.500.010.41150820721105B386512Chip1.000.1511.1735045640028220B386513Chip2.000.030.7230052302142	B386389	Chip	1.50	0.07	3.5	41	1	595	3	203
B386508Chip2.000.012.436253258280B386509Chip4.000.020.22601014253B386510Chip2.000.024.311254410221365B386511Chip2.500.010.41150820721105B386512Chip1.000.1511.1735045640028220B386513Chip2.000.030.7230052302142	B386390	Grab		0.36	0.6	7	2	20	2	51
B386509Chip4.000.020.22601014253B386510Chip2.000.024.311254410221365B386511Chip2.500.010.41150820721105B386512Chip1.000.1511.1735045640028220B386513Chip2.000.030.7230052302142	B386507	Chip	5.00	0.01	2.4	1100	29	14	2	57
B386510Chip2.000.024.311254410221365B386511Chip2.500.010.41150820721105B386512Chip1.000.1511.1735045640028220B386513Chip2.000.030.7230052302142	B386508	Chip	2.00	0.01	2.4	362	53	258	2	80
B386511Chip2.500.010.41150820721105B386512Chip1.000.1511.1735045640028220B386513Chip2.000.030.7230052302142	B386509	Chip	4.00	0.02	0.2	260	10	14	2	53
B386512Chip1.000.1511.1735045640028220B386513Chip2.000.030.7230052302142	B386510	Chip	2.00	0.02	4.3	1125	44	102	2	1365
B386513 Chip 2.00 0.03 0.7 2300 52 30 2 142	B386511	Chip	2.50	0.01	0.4	1150	8	207	2	1105
	B386512	Chip	1.00	0.15	11.1	7350	45	6400	2	8220
B386514 Chip 1.00 0.02 5.1 454 305 124 2 232	B386513	Chip	2.00	0.03	0.7	2300	52	30	2	142
	B386514	Chip	1.00	0.02	5.1	454	305	124	2	232

Table 8.1: Highlighted rock samples from the Mary Porphyry

All values in ppm

Two mapping and sampling traverses were completed over steep exposures in the ME zone, collecting seventeen samples (Figure 5). All samples indicate elevated copper although only one chip yielded greater than 0.1% copper while a select sample from a narrow pyrite chalcopyrite vein assayed > 1% copper (B385347). Gold values are relatively erratic and do not correlate well with copper. Quartz carbonate base metal veins are present throughout the zone and carry lead, zinc, some copper and weak gold and silver grades. Molybdenum is present in quartz veins and returned values to 0.07%. The southwest extension of the ME zone, located 900 metres to the southwest, returned anomalous copper and gold numbers from three chip samples.

SAMPLE	Туре	LENGTH	AU	AG	CU	MO	PB	SB	ZN
B386346	Chip	3.00	0.02	3.3	483	7	12	-2	61
B386347	Chip	0.15	0.06	99.6	14800	2	164	-2	781
B386348	Chip	2.00	0.04	1.8	240	11	23	-2	19
B386349	Chip	4.00	0.02	0.9	325	5	8	-2	30
B386350	Chip	2.00	0.01	5.8	1315	2	34	-2	1060
B386501	Grab		0.03	8.7	684	3	2450	2	2350
B386502	Grab		0.16	13.7	998	444	2080	2	2080
B386503	Chip	3.00	0.01	3.0	787	36	15	-2	99
B386504	Chip	2.00	0.03	4.1	594	739	164	-2	192
B386662	Chip	0.15	0.13	15.1	379	3	2560	3	1670
B386663	Chip	2.00	0.06	5.9	387	12	225	3	485
B386664	Chip	1.50	0.04	4.0	418	54	138	2	142
B386665	Chip	2.00	0.04	0.8	962	55	9	2	51
B386666	Chip	2.50	0.81	18.2	124	363	741	2	142
B386667	Chip	2.00	0.11	0.9	316	23	12	-2	82
B386668	Chip	3.00	0.44	0.6	258	16	14	-2	41
B386669	Chip	3.00	0.26	0.4	107	6	8	-2	50

All values in ppm

8.1.3 North More

The North More area was the focus of a significant part of the exploration program. Mapping was completed in a 5 kilometre long belt along the east side of More Creek and 54 rock grab and chip samples were collected. The area is underlain by extensive skarn cut by numerous rhyolite and potassium feldspar megacrystic syenite dykes and stocks. Mineralization is dominantly hosted in the syenite porphyry but is present in some of the rhyolite dykes and to a very minor extent in the skarn. Mineralization consists of disseminated to fracture controlled chalcopyrite expressed in the surface outcrops mostly as malachite. The chalcopyrite is dominantly associated with abundant magnetite in the matrix of the syenite porphyry but the stronger mineralization also contains pyrrhotite and some pyrite. The rock sampling has indicated widespread occurrences of high grade copper along the entire 5 kilometres trend. Mineralization is most widespread and best developed in two areas, the northern area around the Butte/Spar/View showings and on the south side of upper Ball Creek. High grade copper mineralization in the Sphaler Creek area is more restricted and tends to be associated with rhyolite dykes. The sampling returned twenty five samples with assays of greater than 0.1% copper including five samples with 1 to 5% copper. Gold grades are generally very low and erratic with only local gold enrichment. Molybdenum is also very low in all except one sample. The anomalous gold and molybdenum values both tend to occur in and around the northern and southern syenite stocks.

SAMPLE	Туре	LENGTH	AU	AG	CU	MO	PB	SB	ZN
B386248	Chip random		0.02	5.2	13600	3	113	3	29
B386250	Chip	2.00	0.95	100.0	23300	7	514	2	53
B386265	Chip	2.00	0.03	1.7	509	4	50	2	8
B386266	Chip	1.00	0.75	11.3	609	1300	149	6	30
B386267	Chip	2.00	0.01	2.7	3710	11	158	2	32
B386268	Chip	2.00	0.04	6.6	5840	4	139	2	208
B386269	Grab		0.02	1.0	1250	2	11	2	106
B386325	Chip	1.00	0.03	1.9	1765	1	3	2	61
B386326	Grab		0.01	5.5	15500	4	105	2	539
B386328	Chip	1.50	0.01	1.4	1460	1	19	2	71
B386351	Chip random		0.01	6.8	7800	1	46	2	1 74
B386352	Grab		0.18	0.5	66	10	15	2	22
B386354	Chip random		0.05	3.9	6560	1	147	2	202
B386355	Chip	1.00	0.40	1.6	673	10	13	2	59
B386393	Grab		0.07	4.8	5580	1	34	2	67
B386506	Grab		0.06	11.9	16000	6	140	2	354
B386536	Chip	1.00	0.01	0.2	91	7	10	2	2610
B386537	Chip	0.25	0.01	0.3	1205	1	6	9	449
B386538	Chip	3.00	0.01	0.4	1855	1	9	2	3600
B386539	Chip	0.80	0.63	0.2	15	2	25	2	55
B386540	Chip	0.50	0.06	0.3	436	1	8	2	144
B386541	Chip	1.00	0.06	1.6	2260	1	9	2	68
B386542	Chip	0.50	0.18	1.6	176	12	243	2	63
B386543	Chip	1.00	0.01	0.5	635	1	22	2	78
B386545	Chip	1.50	0.02	5.4	1200	37	7	2	15
B386548	Chip	4.00	0.01	0.9	1430	1	9	2	84
B386549	Chip	2.00	0.02	1.0	783	1	7	2	37
B386550	Chip	2.00	0.01	0.9	794	1	9	2	60

Table 8.3: Highlighted rock samples from the More Creek area

B386568	Grab		0.01	4.1	4560	6	4	2	56
B386569	Grab		0.02	14.8	9450	30	6	2	15
B386571	Grab		0.01	1.9	928	1	4	2	60
B386572	Grab		0.01	8.8	9200	3	5	2	78
B386574	Grab		0.03	30.8	50500	7	6	2	65
B386576	Chip	2.00	0.01	3.4	5580	1	4	2	47
B386579	Grab		0.19	0.2	49	4	4	2	9
B386652	Chip	1.00	0.22	7.6	8960	1	27	2	115
B386653	Chip	4.00	0.08	4.3	4340	1	13	2	111
B386654	Chip	2.00	0.01	1.4	1025	1	7	2	134

All values in ppm

8.1.4 Rojo Grande

The Rojo Grande target was mapped and 12 rock samples were collected. The northern and eastern parts of the hill are underlain by rusty weathering quartz clay pyrite alteration. The southern part of the hill exposed along the east side of a small pocket glacier are underlain by grey to dark grey quartz alunite with some patches of pyrite. Exposures north of the glacier consist of polished outcrops of strong silica and silica clay pyrite. Rock samples all contained very low gold and silver values, relatively weak arsenic (to 434 ppm) and local minor antimony (to 36 ppm). High barium values (to 2770 ppm) reflect the local presence of visible crystalline barite. Results are in Appendix B.

8.1.5 Whistlepig

The Whistlepig and Diablo showings are part of a semi-continuous zone of faulting and associated alteration and mineralization. The area is very steep and access to the one is restricted to three areas where the structure crosses accessible valleys. Twenty seven rock samples were collected. They all carry very low gold values and previous samples reporting significant gold values (Alldrick et al., 2004b; Total Energold, 1991, Assessment Report 22045) were not repeated. Results from the 2005 program are in Appendix B.

8.1.6 Rainbow

The Rainbow area was evaluated by mapping, rock sampling and stream sediment sampling. Mapping during the 2005 program showed that altered rhyolite crops out sporadically over a 950 x 150-250 metre area (Figure 7). Alteration appears to be be related to an 010° trending fault. Six rock chip samples of altered and brecciated rhyolite were taken in the Rainbow area in 2005. Three out of six samples along the 010° trend returned anomalous values of >50 ppb Au, >10 ppm Sb, and >100 ppm As. Two samples returned anomalous Zn values (>200 ppm; Table 8.4). A random chip in a siliceous

breccia assayed 0.155 g/t gold and a 1 by 2 metre panel chip in dark siliceous breccia in a rhyolite assayed 19.5 g/t gold, 95 g/t silver with very high arsenic and elevated antimony, lead and zinc.

Sample	Easting	Northing	Au	Ag	As	Sb	Pb	Zn
B386369	409031	6348876	-0.005	0.2	6	-2	23	240
B386370	409283	6348976	0.155	1.5	160	12	10	11
B386372	409603	6349593	0.034	0.3	66	3	8	10
B386396	409275	6348914	0.009	0.4	41	4	16	10
B386397	409321	6348834	19.500	94.6	10000	258	1025	1140
B386398	409240	6348736	0.053	1.0	103	36	19	13

All values in ppm

About 500 metres south-southwest of sample B386397, along the same 010° structural trend, quartz-carbonate breccia veinlets cutting limestone and limy volcanic sandstones also returned weakly anomalous Au, As and Sb values and elevated Zn.

Table 8.5: Rock sample of quartz-carbonate brecccia vein, Rainbow Zone.

Sample	Easting	Northing	Au	Ag	As	Sb	Pb	Zn
B386368	409013	6348415	0.038	1.3	94	22	19	125
All values	in nom							

All values in ppm

About 700 metres east of the Rainbow altered rhyolite, a gossan in andesitic volcanic and/or intrusive rocks was also found in 2005 (Figure 7). The gossan is about 200 x 500 metres, and crops out over a vertical range of 150 meters. Alteration consists of pervasive chlorite-pyrite to sericite-pyrite, cut by local zones of silicification and quartz veining. Alteration averages about 5% pyrite as disseminations and stringers.

Eleven rock samples from the gossan generally returned low precious and base metal values, but one sample from the lowermost part of the gossan had elevated Cu (945 ppm) and another was anomalous in Au (0.674 ppm), Ag (19.3 ppm) and As (436 ppm).

B386593 410003 6348975 -0.005 0.2 45 4 9 72	In Cu	Zn	Pb	Sb	As	Ag	Au	Northing	Easting	Sample
D29(504 400040 (24000(0(74 10 0 40(00 05	72 945	72	9	4	45	0.2	-0.005	6348975	410003	B386593
B386594 409942 6349006 0.674 19.3 436 29 37 25	25 20	25	37	29	436	19.3	0.674	6349006	409942	B386594

All values in ppm

Extensive iron carbonate alteration was mapped about 1.2 kilometres to the east of the Rainbow altered rhyolite (Figure 7). The iron carbonate zone was mapped over an area of 100-300 by 500 metres, elongate in an east-west direction. The zone consists of

volcaniclastic sedimentary rocks pervasively altered to iron carbonate and cut by abundant quartz veins and stringers. Patchy galena and sphalerite were observed locally. White felsite dykes crop out at the base of the hill where the zone is exposed. The intrusive rocks are cut by narrow quartz and calcite veinlets, locally approaching stockworks.

Sampling of the iron carbonate alteration zone returned low gold and silver values, and locally anomalous As (three samples >100 ppm), Pb (two samples >500 ppm) and Zn (two samples >100 ppm). Manganese is strongly elevated.

Sample	Easting	Northing	Au	Ag	As	Pb	Zn	Ba	Mn
B386373	410625	6349026	0.023	1.0	163	544	129	1090	11100
B386375	410887	6349083	0.010	0.4	30	4	19	810	4680
B386376	410888	6349233	0.030	0.6	236	11	17	70	3800
B386585	410595	6349088	0.084	1.7	118	755	1675	100	13800

All values in ppm

Float sampling from creeks draining the Rainbow zone confirmed the presence of gold mineralization in these drainages (Figure 7). A float sample from a quartz vein with grey margins collected 3 kilometres downstream from the Rainbow Zone assayed 8 g/t gold, also with high silver and arsenic. A float sample from a similar vein in another creek located 650 metres further west also assayed 3.3 g/t gold with silver and arsenic. A float sample of carbonate altered sandstone with grey quartz veinlets from the same drainage assayed 0.76 g/t Au with some silver and arsenic (Appendix B).

This sampling confirms the presence of a new gold-silver (arsenic-antimony) vein and breccia target located in the Rainbow area. Brecciation, alteration and mineralization in the rhyolites follows an 010° structural trend, although anomalous arsenic values suggest an overall 070° trend to the zones.

8.1.7 Ridge Breccia

Seven rock samples were collected in a brief evaluation of the Ridge Breccia Zone (Figure 5). Two of the rock samples carry anomalous gold values (\geq 300 ppb) with elevated arsenic, while three other samples indicate very weak copper mineralization (Table 8.8). This area warrants further work.

Table 8.8: Rock Samples from the Ridge Breccia

SAMPLE	TYPE	AU	AG	AS	CU	SB
B386404	Grab	0.30	1.10	404	176	14
B386405	Grab	0.32	0.90	183	28	5
B386406	Grab	0.09	0.70	78	130	6
B386407	Grab	0.01	0.20	21	265	14
B386408	Grab	0.07	0.20	195	149	470
B386409	Grab	0.01	0.20	2	4	2
B386410	Grab	0.01	0.30	122	214	26

All values in ppm

8.2 Soil Sampling

A total of 82 soil samples were collected along the northern part of the North More Zone. Samples were collected from B horizon at depths of 30-40 centimetres in a small training grid comprising four 300 metre lines spaced at 100 metre intervals, as well as along a 2.5 km long contour soil line with samples spaced at 60 metre intervals. The soil samples defined four clusters of anomalous copper values. The northern cluster is about 300 x 900 metres, and contains copper values to 827 ppm. South of Sphaler Creek, copper values between 188 and 471 ppm occur over a distance of 450 metres in an area with no mapped, outcropping copper mineralization (Figure 6).

8.3 Stream Sediment Sampling

Ten stream sediment samples were collected from active stream drainages. Silt, sand and gravel was dug from favourable trap sites and then passed through a coarse (1/4'') sieve. This material was bagged, labelled and sealed with electrical ties in the field and the site marked with flagging tape.

Three stream sediment samples were collected in the stream system draining south from the Rainbow area. Sample, BCS-5, collected in the same drainage as the 8 g/t float sample and the 19.5 g/t outcrop chip returned the highest values in Au (131 ppb), Ag (2.4 ppm), Pb (50 ppm), Zn (179 ppm) and Sb (10 ppm). Stream sediment sample BCS-7, from the drainage 160 metres to the west, returned anomalous values in Au (63 ppb) and Sb (8 ppm). Sample B386557, located south of Ball Creek below the Ridge Breccia zone, also returned elevated values in Au (33 ppb), Ag (1.4 ppm), As (336 ppm) and Sb (8 ppm).

9 Conclusions and Recommendations for Future Work

The Ball Creek property warrants further exploration work. Three areas have significant exploration potential and warrant further detailed exploration work including diamond drilling. In addition, limited prospecting in 2005 led to the discovery of a new gold zone indicating that the project area is underexplored and warrants further stream sediment sampling and prospecting.

9.1 More Creek

Exploration results from this area have delineated an area of northeast trending dykes, irregular bodies and small stocks of syenite porphyry and rhyolite with significant copper mineralization. The zone has been traced over 5.3 km across a width of 600 to 900 metres. Grab and chip samples from the stronger zones of mineralization show numerous samples with >0.1% copper and some samples with >1.0% copper. The strongest mineralization is associated with biotite chlorite magnetite alteration in the syenite porphyry. These results all suggest the potential for a significant mineralized porphyry system within the mineralized trend. The mineralization observed to date is strongly magnetic and an airborne magnetic and radiometric survey is recommended to delineate magnetic highs and zones of potassium enrichment that could represent a strong porphyry target. This survey should be combined with 1:5,000 geological mapping, rock chip sampling, systematic soil sampling and some petrographic work to define the style, extent and any possible exploration vectors within the mineralized system. This work should lead to drill targets.

9.2 Mary-ME

This area is clearly underlain by a large porphyry copper gold molybdenum system. The main potassic core has been defined by geological, geochemical and geophysical surveys. Diamond drilling has defined significant copper and gold grades from surface to an average vertical depth of 160 metres and a maximum depth of 230 metres. The assay results from this drilling are not available although systematic re-sampling of the core in 1989 indicated gold from 0.1 to 0.7 gpt Au from surface to the depth drilled. This system has not been drilled to depth and assay records for the known zone are inadequate especially for molybdenum and copper grades. A drill program with two 500 metres depth and to establish probable grades near surface is strongly recommended. The outlying Cliff and ME zone targets should also be tested by two 350 metre holes inclined to the northwest in order to cross the northeast trend of the alteration zones, associated geochemical signature and post mineral faults.

9.3 Rainbow

The Rainbow area hosts interesting gold-silver-arsenic-antimony mineralization in veins and breccia zones. This is an early stage discovery and grid based soil sampling, geological mapping and rock sampling is recommended to delineate the size, grade and economic potential of the mineralized zone(s).

9.4 Property Exploration

The 2005 exploration program led to the discovery of new targets in the Rainbow area and anomalous gold and copper near the Ridge Breccia. This indicates that further prospecting and reconnaissance work may lead to the discovery of further mineralization. A program of stream sediment sampling, prospecting and rock sampling is recommended for the remainder of the property areas. Priority targets should include the following:

- The area surrounding the Ridge Breccia discovery, especially to the south and east.
- The area between the Mary porphyry and the Rainbow prospect
- The area drained by the main, middle fork of Ball Creek, extending from south of the Rainbow prospect to the More Creek target in the west.

10 References

- Alldrick, D.J., Stewart, M.L., Nelson, J.L. and Simpson, K.A. (2004a): Geology of the More Creek - Kinaskan Lake area, northwestern British Columbia; British Columbia Ministry of Energy and Mines, Open File Map 2004-2, Scale 1:50 000
- Alldrick, D.J., Stewart, M.L., Nelson, J.L. and Simpson, K.A. (2004b): Tracking the Eskay Rift through Northern British Columbia – Geology and Mineral Occurrences of the Upper Iskut River Area. Geological Fieldwork 2003. British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 2004-1
- Alldrick, D.J., Nelson, J.L. and Barressi, T. (2005): Geology and Mineral Occurrences of the Upper Iskut River Area: Tracking the Eskay Rift through Northern British Columbia. Geological Fieldwork 2004. British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 2005-1.
- Anderson, R.G. (1989): A stratigraphic, plutonic and structural framework for the Iskut Map area, northwestern British Columbia: Current Research, Part E, Geological Survey of Canada, Paper 89-1 E, p.145-154
- Anderson, R.G. (1993): A Mesozoic stratigraphic and plutonic framework for northwestern Stikinia, northwestern British Columbia, Canada; in Dunne, G., and McDougall, K., editors, Mesozoic Paleogeography of the western United States-II, Pacific Section SEPM, vol. 71, p.477-494
- Anderson, R.G. and Thorkelson, D.J. (1990): Mesozoic stratigraphy and setting for some mineral deposits in Iskut River map area, Northwestern British Columbia, in Current Research, Part E, Geological Survey of Canada, Paper 90-1 E, p.131-139
- Ash, C., Macdonald, R.W.J., Stinson, P.K., Fraser, T.M., Nelson, K.J, Arden, K.M and Lefebure, D.V. (1997): Geology and Mineral Occurrences of the Todagain Lake Map Area (104W12NW & 13SW; 104G/9NE & 16SE). British Columbia Ministry of Employment and Investment, Geological Survey Branch, Open File 1997-3.
- Baril, J. (1991): Diamond drilling report on the Ball Creek Project. British Columbia

Ministry of Energy and Mines, Assessment Report 21,188, 114 pp.

- Blann, D. (1991): Geological, geochemical and geophysical report on the Spec claims. British Columbia Ministry of Energy and Mines, Assessment Report 22001, 30 pp.
- Bobyn, M.G. (1990): Assessment report on geological mapping, prospecting and geochemistry of the Panky 1 and 2 claims. British Columbia Ministry of Energy and Mines, Assessment Report 21,205, 35 pp
- Campbell, T., Savell, M. and Wong, T. (1990): Geological geochemical and geophysical report on the Ball Creek property; British Columbia Minstry of Energy and Mines, Assessment Report 20,617, 15 pp.
- Chase, W.F. (1990): Prospecting report on the Bal 5-8 claims. British Columbia Ministry of Energy and Mines, Assessment Report 19896.
- Collins, J, Colquhoun, W., Giroux, G.H., Nilsson, J.W. And Tenney, D. (2004): Technical Report on the Red Chris Copper-Gold Project, Liard Mining Division. Merit Consultants International Inc., AMEC Americas Ltd., Giroux Consultants Ltd., Nilsson Mine Services Ltd. and Mine Geology Services. Report prepared for Red Chris Development Company Ltd. and BCMetals Corporation Report filed on Sedar for BCMetals Corp.
- Friedman, R.M. and Ash, C. (1997): U-Pb age of intrusions related to porphyry Cu-Au mineralization in the Tatogga Lake Area, Northwestern British Columbia (10411/12W, 1 04G/9E), in Geological Fieldwork 1996 British Columbia Ministry of Employment and Investment, Geological Survey Branch, Paper 1997-1, pages 291-297.
- Giroux, G.H. and Ostensoe, E.A. (2004): Summary report status and resource estimate Schaft Creek Property, Northwestern British Columbia. Technical Report filed on SEDAR for Copper Fox Metals, Inc.
- Gray, J.H, Morris, R.J., and Giroux, G.H. (2005): Geology and Resource Potential of the Copper Canyon Property, Liard Mining Division, British Columbia. Hatch Ltd., GR Technical Services Ltd. and Giroux Consultants Ltd. Report prepared for NovaGold Resources Inc. Technical report filed on Sedar for Novagold.
- Hatch Limited (2005): Novagold Resources Ltd. Updated Preliminary Economic Assessment for the Galore Creek Project. Report filed on SEDAR for Novagold Resources.
- Jamet, P. (1991): Geological and geochemical report on the Chain Creek area. British Columbia Ministry of Energy and Mines, Assessment Report 22045.
- Kaip, A.W. and McPherson, M.D. (1993): Preliminary Geology of the Hank property, Northwestern British Columbia; in Geological Fieldwork 1992, B.C. Ministry of Energy, Mines and Petroleurn Resources, Paper 1993-1, pages 349-357.
- Kaip, A.W. and Gaunt, D. (1994): Geology and Alteration Zonation of the Hank property, Northwestern British Columbia (104G/1,2); in Geological Fieldwork 1993, B.C. Ministry of Energy, Mines and Petroleurn Resources, Paper 1994-1.
- Kaip, A.W. (1997): Geology, alteration and mineralization on the Hank property, Northwestern British Columbia: a near-surface, low-sulfidation epithermal system; University of British Columbia, M.Sc. Thesis, 198p
- Kowalchuk, J.M. and Turna, R. (1990): Geological, geochemical and geophysical report on the Ball Creek joint venture. British Columbia Ministry of Energy and Mines, Assessment Report 19316.

Lett, R. and Jackaman, W. (2004): New exploration opportunities in the B.C. regional geochemical survey database; British Columbia Ministry of Energy and Mines, Geological Fieldwork 2003, Paper 2004-1

Logan, J.M., Drobe, J.R. and Elsby, D.C. (1992): Geology of the More Creek Area, Northwestern British Columbia (104G/2); in British Columbia Ministry of Energy and Mines, Geological Fieldwork 1991, Paper 1992-1, pp. 161-178.

Logan, J.M., Drobe, J.R. and McClelland, W.C. (2000): Geology of the Forrest Kerr-Mess Creek Area, Northwestern British Columbia, NTS 104B/10, 15 & 104G/2 & 7W, , Geological Survey Branch, Bulletin 104

McInnis, M. and Visagie, R. (1974): Geological & Geophysical Report - Ball 1 & 2 Groups. British Columbia Ministry of Energy and Mines, Assessment Report 4651.

McPherson, M. (1992): Geological, geochemical and geophysical report on the Panky 1-2 claims. British Columbia Ministry of Energy and Mines, Assessment Report 22747.

Mehner, D.T. and Peatfield, G.R. (2005): Technical Report Kinaskan Lake Project, British Columbia, prepared for Canadian Gold Hunter Corp., filed on SEDAR.

Norman, G. (1992) Drilling Report on the Spectrum Project, prepared for Columbia Gold Mines Ltd. British Columbia Ministry of Energy and Mines, Assessment Report 22838.

Operation Stikine (1957): Stikine River area, British Columbia (104A, B, G, H, I, J). Map 9-1957

Panteleyev, A. (1975): Mary; in Geology in British Columbia, British Columbia Ministry of Mines and Petroleum Resources, p.G81-G85

Price, B.J. (1997): Geological Report Ball Creek Copper Gold Porphyry, prepared for 413288 BC Ltd.

- Read, P.B., Brown, R.L., Psutka, J.F., Moore, J.M., Journeay, J.M., Lane, L.S. and Orchard, M.J. (1989): Geology More and Forrest Kerr Creeks (parts of 104B/10,15,16 & 104G/1,2), Northwestern British Columbia, Geological Survey of Canada, Open File 2094.
- Reynolds, N. and Termuende, R. (1971): ME, Rog. British Columbia Ministry of Energy and Mines, Assessment Report 3186.
- Simpson, K.A. and Nelson, J.L. (2004): Preliminary interpretations of mid-Jurassic volcanic and sedimentary facies in the East Telegraph Creek map area; Geological Survey of Canada, Current Research 2004-A1, 8p
- Souther, J.G. (1972): Telegraph Creek map-area, British Columbia; Geological Survey of Canada, Paper 71-44
- Souther, J.G., (1992): The Late Cenozoic, Mt. Edzizz Volcanic Complex, British Columbia; Geological Survey of Canada, Memoir 420, 320pp.
- Turna, R. and Price, B. (1993): Report on drilling and reclamation on the Ball Creek Property, Liard Mining Division, NTS 104G/8W. Private report for Colossal Resources Corp. filed with B.C. District Geology office, Smithers, B.C.
- Van Wollen, T. (1990): Geological summary report of the Spec groups of claims. British Columbia Ministry of Energy and Mines, Assessment Report 20785.

Visagie, H.M, (1974): Diamond drilling report on the Ball Creek Property (Tara claim group) Ball Creek Property, Iskut River Telegraph Creek area. British Columbia Ministry of Energy and Mines, Assessment Report 5168.

Vulimiri, M.R. (1990): Geological summary report on the Spec group of claims. British

Columbia Ministry of Energy and Mines, Assessment Report 20785, 17 pp.

White, G.E., and Pezzot, E.T. (1980): Dago, Silver Run. British Columbia Ministry of Energy and Mines, Assessment Report 8738.

Woodcock, J.R. and Gorc, D.M. (1980): Drilling, Geochemical, Geological report on the ME property. British Columbia Ministry of Energy and Mines, Assessment Report 8546.

Appendix A: Descriptions of Geologic Units, Ball Creek Property

Eocene to Recent Mt Edziza Complex

<u>Evolc</u>	Vesicular basalt flows of the Mt Edziza complex
--------------	---

Early to Lower Middle Jurassic Hazelton Group (EMJH)

<u>emJss:</u> Brown green medium bedded coarse greywacke to pebbly conglomerate with abundant petrified wood and marine fossils

(Upper Triassic Stunhini Group (uTS)

Volcanic Rock <u>uTrhy</u>	s Black siliceous rhyolite sills and possible flows
<u>uTavc</u> clasts	Andesitic lapilli tuff to volcanic breccia with heterolithic dark green volcanic
<u>uTand</u>	Undivided dark green volcanic rocks. Feldspar porphyritic to augite feldspar phyric rocks of probable andesitic composition. Includes some dark green feldspar porphyry and fine grained diorite dykes
<u>uTals</u>	Augite and feldspar porphyritic mafic volcanic fragmental with light grey limestone matrix
uTdac	Columnar jointed aphanitic grey dacite
Sedimentary ro	
<u>Utslst</u>	Thick beds of medium to dark green siltstone, minor greywacke and fine to medium grained sandstone.
<u>uTshs</u>	Black and grey well bedded argillite, siltstone and sandstone in beds 5mm to 50 cm. Some thicker units of black argillite, lacking turbiditic layering are also included in this unit.
<u>uTlst</u>	Medium grained clastic limestone
<u>uTsh</u>	Dark black thin bedded shale rusty and weakly pyritic
<u>uTvcg</u>	Thick units of a coarse grained volcanic conglomerate with intrusive and volcanic clasts interbedded with uTshs, uTsls
<u>uTch</u>	Dark thin bedded argillite with some calcareous units and continuous silicified beds with white to grey cherty silica and abundant pyrite.
<u>uTcs</u>	Dark calcareous shale and dark grey limestone

Undivided sedimentary rocks dominantly green siltstone and fine sandstone

<u>uTs</u> (uTsls)

Intrusive rocks

Early Middle Jurassic

lJhbp	Medium grained subcrowded porphyry with biotite, hornblende and plagioclase. Varies from fresh to highly altered and probably includes many subtle different phases. Dominant rock type at Mary/ME zones
<u>IJkpp</u>	Medium grained subcrowded porphyry with hornblende plagioclase and k feldspar megacrysts from 1 to 3 cm. Varies from fresh to highly altered and is related to lJhbp
<u>lJint</u>	Undivided altered diorite or monzonite. Commonly altered and intruded by lJkpp and lJhbp
<u>lJrhy</u>	Pink to salmon colored aphanitic dykes. Some with clearly evident flow banding others with ambiguous fine grained texture
<u>lJmz</u>	Equigranular quartz bearing intrusive with biotite and hornblende. Marginal phases are very mafic rich comprising dioritic to gabbroic rocks. Large coherent intrusive body at the SW end of the claim block. Probably responsible for extensive skarn in host rocks.

Late Triassic or Early Jurassic?

<u>uTsyp</u> Dark grey porphyry with orange brown lathe shaped kspar megacrysts. Abundant magnetite and chloritized mafics. Commonly contains trace to significant chalcopyrite. Probable biotite-magnetite-chalcopyrite alteration with late chlorite-epidote overprint.

<u>uTwsp</u> Aphanitic porphyry with large white potassium feldspar megacrysts 1-6 cm long.

Alteration

- <u>Alt</u> Highly altered rocks of either unknown protolith or with an alteration assemblage as their dominant characteristic.
- <u>Altered breccia</u> Dark fine grained clasts to several metres across floating in a pale Fe carbonate altered matrix. Intrusive rock?
- <u>Altered intrusive</u> Rocks with intrusive texture but strong alteration overprint. Red brown hornfels and green skarn color common with moderate to very strong quartz sericite overprint. Locally contains quartz stockwork. Dominant rock type and porphyry dyke host at the ME showing
- <u>Mineralized porphyry</u> Highly altered porphyry (phyllic to potassic) with strong quartz stockwork and abundant chalcopyrite molybdenite in veins

Silica alunite	Gray silica with patches of white to pink fine crystalline alunite.
<u>Green skarn (sed)</u>	Light green fine grained skarn (diopside epidote?) with no significant sulphide. Probable sedimentary protolith
Dark green skarn (volc)	Dark green (actinolite-chlorite-magnetite?) skarn in volcanic rocks. Abundant late epidote
Garnet actinolite skarn	Dark green skarn with large patches of fine grained dark red brown garnet.
Pale green pyritic skarn	Pale green (diopside-epidote?) fine grained skarn with 2-5% disseminated pyrite
Hornfels skarn	Dark red brown fine grained hornfels with veinlet and patchy green diopside skarn overprint. Commonly contains 1-2% disseminated pyrrhotite and locally with chalcopyrite and some quartz stockwork

.....

A

.....

-

. .

...

. .

.

. .

Sample	Fasting	Northing	Au	<u>Aa</u>	AI %	٨e	8	Ba	Ro	Bi	Ca %	Cd	Co	Cr	Сш	Fe %	Ga	Ыл	K % i	12	Ma %
	-	×		Ag		As	B		Be								Ga	Hg		La	Mg %
B386248	396805	6350632	0.022	5.2	0.38	5	10	90	1.2	14	3.80	0.5	11	52	13600	3.53	10	1	0.30		0.46
B386249	396834	6350642		0.7	0.36	108	10	280	0.5	2	0.24	0.5	3	70	190	4.36	10	1	0.17		0.17
B386250	396665	6350552		100.0	0.15	12	10	30	2.0		1.84	6.9	6	72	23300	3.19	10	1	0.12		0.15
B386265	396646	6350565	0.029	1.7	0.15	28	10	110	1.0	4	0.81	0.5	3	7	509	1.61	10	1	0.16		0.02
B386266	396610	6350540	0.752	11.3	0.21	249	10	70	0.5	3	0.90	0.8	14	75	609	4.45	10	1	0.19		0.10
B386267	396513	6350240	0.007	2.7	1.09	3	10	50	0.6	2	5.21	0.6	16	34	3710	3.32	10	1	0.12	10	0.31
B386268	397093	6350278	0.043	6.6	1.28	2	10	140	0.9	14	1.42	4.1	25	56	5840	3.65	10	1	0.21	10	1.35
B386269	397225	6350245	0.019	1.0	2.32	2	10	70	1.2	2	5.63	0.6	23	38	1250	5.65	10	1	0.19	10	1.85
B386270	406760	6340146	0.005	0.2	1.06	120	10	100	0.5	2	1.08	0.5	6	55	22	3.03	10	1	0.14	10	0.70
B386271	406740	6340168	0.017	0.2	1.53	56	10	60	0.5	2	0.41	0.5	6	20	23	3.30	10	1	0.18	10	1.16
B386272	406745	6340217	0.005	0.2	0.62	418	10	80	0.5	2	5.81	0.5	5	35	16	3.79	10	1	0.12	10	1.20
B386273	406742	6340400	0.005	0.2	0.78	35	10	140	0.5	2	12.75	0.5	12	17	21	3.32	10	1	0.10	10	1.92
B386274	414812	6349973	0.067	0.2	0.76	2	10	200	0.5	2	0.10	0.5	2	17	97	3.06	10	1	0.14		0.34
B386275	414793	6350030	0.033	0.2	0.97	2	10	360	0.5	2	0.08	0.5	1	1	22	4.18	10	1	0.18		0.30
B386276	414795	6350185	0.005	0.2	4.65	2	10	260	0.6	2	2.88	0.5	30	49	1135	5.41	10	1	0.08		3.80
B386277	414817	6350221	0.367	1.3	1.29	6	10	100	0.5	2	0.53	0.5	17	5	1510	2.95	10	1	0.19		1.18
B386278	414849	6350221	0.260	0.9	1.47	2		110	0.5	2	1.34										
							10		<u> </u>	_		0.5	39	32	1560	4.34	10	1	0.16		0.97
B386279	414845	6350255	0.315	0.9	1.11	11	10	310	0.5	4	1.30	0.5	22	6	3630	2.25	10	1	0.13		0.84
B386280	414998	6350283	0.025	0.2	0.58	2	10	120	0.5	2	0.07	0.5	4	24	55	3.33	10	1	0.19		0.28
B386281	414334	6349117	0.010	0.2	1.26	11	10	80	0.5	2	0.33	0.5	6	1	23	4.90	10	1	0.19		0.78
B386282	414316	6349128	0.006	0.2	1.09	2	10	90	0.5	2	0.09	0.5	2	21	40	3.98	10	1	0.13	10	0.49
B386283	414113	6349112	0.367	2.7	0.37	5180	10	290	0.5	2	0.05	0.5	2	3	18	1.26	10	1	0.21	10	0.02
B386284	414272	6349208	0.078	0.3	0.92	20	10	130	0.5	2	0.11	0.5	2	14	73	3.98	10	1	0.18	10	0.63
B386285	414372	6348956	0.005	0.8	1.54	12	10	200	0.5	5	0.14	0.5	3	2	56	3.87	10	1	0.12	10	0.63
B386286	414598	6348510	0.641	1.1	0.80	619	10	320	0.5	2	0.14	0.5	3	33	6	2.60	10	1	0.27	10	0.21
B386287	414594	6348499	0.168	0.5	0.69	2110	10	130	0.5	2	3.37	0.5	3	5	7	1.98	10	1	0.17	10	0.38
B386288	414666	6348577	0.157	0.8	0.99	6690	10	240	0.5	2	0.38	0.5	4	27	9	3.19	10	1	0.23	10	0.40
B386289	405349	6344646	0.005	0.2	1.16	36	20	90	0.5	2	8.89	0.5	21	26	122	4.60	10	1	0.18	10	1.06
B386290	405232	6344758	0.007	0.4	2.10	22	10	160	0.5	2	5.95	0.5	12	1	124	3.48	10	1	0.27	10	1.36
B386291	405214	6344781	0.011	0.8	2.18	11	10	30	0.5	2	6.19	0.7	16	81	91	5.03	10	1	0.22	10	1.42
B386292	405068	6344823	0.006	0.5	1.93	25	10	130	0.5	2	5.09	0.5	28	3	204	5.92	10	1	0.19	10	0.62
B386293	405011	6344890	0.039	0.3	0.88	4	10	600	0.5	2	1.59	0.5	5	9	44	1.95	10	1	0.21	10	0.50
B386294	406029	6342386	0.049	0.6	1.30	54	10	130	0.5	2	12.90	0.5	9	31	88	3.25	10	1	0.27	10	0.60
B386295	406511	6342379	0.040	0.2	3.00	116	10	110	0.5	2	4.69	0.5	16	48	80	5.57	10	1	0.30	10	2.12
B386296	406526	6342389	0.018	0.2	2.97	8	10	140	0.5		1.93	0.5	19	40 51	246	8.19	10	1	0.30	10	1.83
0000250	400020	0342303	0.010	0.3	2.97	0	10	140	0.5	- <u>-</u>	1.93	0.5	19	ង	240	0.19	10	-	0.31	10	1.65
0296207	406665	6342316	0.000	0.4	0.07	40	40		0 F		0.00	0.0	00	40		40.00	40		أمما	40	4.04
B386297			0.033	0.4	2.07	15	10	50	0.5	3	2.02	0.5	36	12	383	13.00	10	1	0.30		1.04
B386298	406128	6348576	0.006	0.2	2.17	4	10	60	0.5	2	9.95	0.5	12	7	47	4.09	10	1	0.22		0.52
B386299	406013	6348640	0.042	0.3	2.84	2	10	140	0.5	2	6.52	0.5	19	7	136	5.78	10	1	0.22		1.77
B386300	405969	6348697	0.007	0.3	0.26	389	10	10	0.5	2	14.70	0.5	4	1	3	18.20	10	1	0.01	10	0.29
B386325	396859	6350218	0.031	1.9	1.80	19	10	60	0.5	2	2.69	0.5	16	141	1765	3.11	10	2	0.21	10	1.32
B386326	396467	6348684	0.007	5.5	0.21	101	10	20	1.0	2	0.10	4.7	28	33	15500	0.79	10	1	0.02	20	0.01
B386327	396393	6348699	0.005	0.2	1.24	13	10	30	0.5	2	1.10	0.5	16	69	144	2.96	10	1	0.42	10	1.37
B386328	396158	6349334	0.005	1.4	0.78	7	10	340	0.7	2	1.62	0.5	10	16	1460	3.18	10	1	0.22	10	0.54
B386329	395858	6349360	0.005	0.3	1.41	2	10	10	0.5	2	5.47	0.5	10	2	105	3.88	10	1	0.04	10	1.10
B386330	410166	6340422	0.026	0.2	0.04	5	10	1960	0.5		0.03	0.5	1	87	15	0.29	10		0.01	10	
						-	_			t –											
B386331	410079	6340260	0.005	0.2	0.06	19	10	2770	0.5	2	0.01	0.5	1	70	7	0.70	10	3	0.01	10	0.01
		0010200	0.000	0.2	0.00		10	2110	0.0	- <u>-</u>		0.0		10	<u>'</u>	0.10		5	0.01		0.01
B386332	410109	6340214	0.007	0.2	0.11	142	10	2230	٨٩	2	0.03	0.5	1	8	7	1 1 4	10	2	0.02	10	0.04
B386333	410094	6340208		0.2	0.09					ł		0.5			7	1.14	10	3	0.03		0.01
6300333	410094	0340200	0.005	0.2	0.09	2	10	2750	0.5	2	0.01	0.5	1	82	· 1	0.23	10	5	0.01	10	0.01
0000004	400040	0040005	0.004	~ ~	0.05		40		~ -		0.04			~				_			
B386334	409912	6340365	0.084	0.2	0.25	434	10	10	0.5	4	0.01	0.5	3	6	25	7.52	10	5	0.01	10	0.01
B386335	409700			0.2	0.73	160	10		0.5		0.15	0.5	6	87	33	3.47	10	2	0.03		
B386336	415427	6349437	0.005	0.2	2.60	10	10	70	0.5		3.21	0.8	14	1	27	5.85	10	1	0.14		
B386337	415406	6349438	0.546	11.1	2.30	37	10	170	0.5	2	0.57	0.8	4	15	132	4.74	10	1	0.12	10	1.67
B386338	415380	6349391	0.054	2.9	2.41	31	10	100	0.5	2	1.08	6.2	7	11	262	6.55	10	1	0.23	10	1.60
B386339	415353	6349374	0.010	0.4	2.05	2	10		0.5	·	6.00	0.5	11	12	50	4.40	10	1	0.25		1.49
B386340	415074	6349308	0.020	0.8	0.86	4	10			-	0.14	0.5	1	18	99	2.78	10	1	0.25	_	
		_				• •		· · · · ·	1	<u> </u>								•			
B386341	415052	6349181	0.132	1.1	0.70	99	10	130	0.5	2	0.17	0.5	3	18	9	3.13	10	1	0.35	10	0.11
										-		5.5	~`·					•	0.00		
B386342 ·	414781	6349509	0.017	0.2	1.24	2	10	350	0.5	2	0.39	0.5	4	14	98	3.78	10	1	0.21	20	0.67
2000042		6349403	0.633	0.2	1.34	2	10		0.5	-	0.39	0.5	4	9	146	1.98					
B366342			v.000	0.0	1.04	· 4	10	00	0.0	1 4	0.04	0.0		э	140	1.90	10	1	0.23	JU.	0.60
B386343	414321	0010100								1											
B386343 B386344				1.0	1.07	2	10	160	0.5	2	0.14	0.5	4	20	879	4.45	10	1	0.27	40	0.53

. .

.

	-		•	•			-	-	~		0.14	<u> </u>	~	•	•	F 0(~		16.06		NA D (
Sample	Easting	Northing	Au	Ag	AI%	As	B	Ba	Be	Bi	Ca %	Cd	Co		Cu	Fe %		Hg	K %	La	Mg %
B386345	414242	6349362	0.152	0.3	1.00	8	10	140	0.5	3	0.05	0.5	4	16	63	2.97	10	1	0.31	10	0.45
B386346	414490	6346735	0.017	3.3	1.71	17	10	70	0.5	6	0.87	0.5	8	17	483	4.30	10	1	0.22	10	1.58
B386347	414486	6346740	0.055	99.6	0.86	183	10	10	0.5	83	0.04	8.0	37	50	14800	22.40	10	1	0.09	10	1.02
B386348	414566	6346814	0.043	1.8	0.54	9	10	80	0.5	2	0.13	0.5	21	5	240	4.25	10	1	0.16	10	0.34
0206240	414572	6246040	0.046		1 48	4	10	20	0.5	2	1 10	0.5		5	225		10	4	044	10	1.00
B386349	414572	6346818	0.010	0.9	1.46	4	10	30	0.5	2	1.18	0.5	8	. Э	325	4.14	10	1	0.11	10	1.08
B386350	414586	6346797	0.010	5.8	1.34	36	10	50	0.5	2	2.85	9.9	8	8	1315	3.06	10	1	0.10	10	1.40
B386351	396809	6350851	0.005	6.8	0.59	8	10	210	1.5	2	4.60	10.5	13	54	7800	2.84	10	1	0.10	10	0.75
B386352	396999	6350734	0.175	0.5	0.42	26	10	80	0.5	2	0.36	0.5	3	8	66	1.48	10	1	0.28	20	0.13
B386353	397164	6350744		0.2	2.48	5	10	90	0.6	2	2.50	0.5	19	116	170	3.60	10	1	1.02	10	2.68
B386354	397192	6350804	0.047	3.9	0.99	5	10	90	0.6	2	1.19	4.5	20	11	6560	3.64	10	1	0.15	10	1.01
B386355	397186	6350531	0.399	1.6	1.05	106	10	30	0.8	2	8.88	0.5	13	44	673	3.62	10	1	0.50	10	0.93
B386356	410223	6340404	0.005	0.2	0.88	12	10	30	0.5	2	0.02	0.5	4	5	38	1.95	10	1	0.02	10	0.01
B386357	410212	6340421	0.005	0.2	0.13	2	10	2050	0.5	2	0.08	0.5	1	9	13	0.30	10	1	0.01	10	0.01
B386358	410229	6340481	0.012	0.2	0.19	10	10	1700	0.5	2	0.01	0.5	1	31	8	0.31	10	1	0.01	10	0.01
B386359	410215	6340462	0.015	0.2	0.80	21	10	350	0.5	2	0.01	0.5	1	1	21	1.28	10	3	0.01	10	0.01
B386360	410207	6340531	0.005	0.2	0.80	25	10	20	0.5	2	0.01	0.5	29	6	66	6.14	10	3	0.01	10	0.01
B386361	410337	6340407	0.005	0.2	0.30	13	10	50	0.5	2	0.65	0.5	3	14	13	1.76	10	2	0.04	10	0.03
B386362	414327	6349384	0.160	0.3	0.72	2	10	270	0.5	2	0.02	0.5	1	11	138	2.64	10	1	0.31	20	0.32
B386363	414357	6349368	0.277	1.0	0.69	2	10	100	0.5	2	0.04	0.5	12	5	444	3.69	10	1	0.21	20	0.33
B386364	415573	6347370	0.026	1.8	1.08	45	10	40	0.5	10	2.35	15.4	10	17	293	4.57	10	1	0.12		0.91
B386365	415421	6347376	0.005	0.4	1.48	5	10	190	0.5	2	2.34	0.5	10	50	86	3.31	10	1	0.11		1.32
B386366	415450	6347380	0.012	0.9	1.18	11	10	50	0.5	5	1.68	0.5	26	22	437	7.99	10	1	0.06		0.83
B386367	415525	6347360	0.037	15.3	0.68	7	10	20	0.5	73	11.25	209.0	23	3	478	8.21	10	1	0.04		0.68
B386368 B386369	409013 409031	6348415 6348876	0.038	1.3 0.2	0.46	94 6	10 10	170 50	0.5 0.5	2	0.55	1.2	2	28 21	33 14	2.22	10 10	1	0.15	10 10	0.02
B386370	409031	6348976	0.155	1.5	0.07	160	10	200	0.5	2	0.03	0.5	2	65	14	1.02	10	1	0.03	10	0.01
B386371	409504	6349345	0.005	0.2	0.10	8	10	190	0.5	2	18.90	0.5	6	7	22	4.71	10	1	0.08	10	3.70
B386372	409603	6349593	0.000	0.3	0.10	66	10	40	0.5	2	0.15	0.5	1	63	11	0.76	10	1	0.04	10	0.02
B386373	410625	6349026	0.023	1.0	0.09	163	10	1090	0.5	2	20.70	0.5	2	1	11	5.34	10	1	0.02	10	3.24
B386374	411034	6349017	0.005	0.2	0.68	54	10	50	0.5	2	2.05	0.5	24	15	110	6.19	10	1	0.05	10	0.75
B386375	410887	6349083	0.010	0.4	0.20	30	10	810	0.5	2	13.40	0.5	3	8	14	2.86	10	1	0.10	10	2.22
B386376	410888	6349233	0.030	0.6	0.17	236	10	70	0.5	2	9.24	0.5	6	6	15	4.07	10	1	0.08	10	2.31
B386377	410240	6349350	0.016	0.2	1.74	4	10	30	0.5	2	0.65	0.5	16	16	45	5.56	10	1	0.08	10	1.72
B386378	410232	6349291	0.017	0.2	1.78	4	10	40	0.5	2	0.41	0.5	15	6	65	6.18	10	1	0.07	10	1.70
B386379	410250	6349284	0.019	0.2	1.13	8	10	70	0.5	2	0.36	0.5	9	22	30	4.24	10	1	0.09	10	0.97
B386380	410242	6349235	0.032	0.3	1.2 1	9	10	60	0.5	2	0.29	0.5	9	7	41	5.94	10	1	0.04	10	1.26
B386381	410155	6349066	0.005	0.2	3.27	9	10	20	0.5	2	3.46	0.5	17	18	38	5.95	10	1	0.07	10	1.54
B386382	415277	6348563	0.013	0.4	0.53	187	10	110	0.5	2	1.17	0.5	3	8	27	3.25	10	1	0.32	10	0.23
B386383	415400	6348680	0.005	0.2	1.94	9	10	110	0.5	2	3.66	0.5	24	14	2	4.95	10	1	0.15	10	1.41
B386384	415400	6348680	0.045	1.8	2.04	59	10	110	0.5	2	5.99	8.3	10	4	42	4.65	10	1	0.21	10	1.45
B386385	415373	6348672	0.060	3.8	2.42	29	10	40	0.5	2	0.71	7.2	10	16	112	10.75	10	1	0.16	10	1.38
B386386 B386387	415308 415281	6348679 6348928	0.083	1.7	1.31 0.68	219 2	10 10	90 340	0.5	2	0.32	0.6	15 1	36 36	94 174	5.44 2.51	10 10	1	0.24	10 10	0.77
B386388	415322	6348928 634891 1	0.033	3.4	0.97	42	10	100	0.5	2	0.03	9.6	3	7	97	6.90	10	1	0.15	10	0.31
B386389	415322	6348864	0.070	3.5	1.42	42 79	10		0.5	2	0.47	9.6	6	(27	97 41	4.07	10	1	0.20	10	0.39
B386390	414886	6348672	0.359	0.6	0.83	106	10	370	0.5	2	0.39	0.5	3	21	41	2.77	10		0.30	10	0.00
B386391	398073				1.50	5	10		0.5		3.31	0.5	12	9	, 25	3.74	10		0.08		0.62
B386392	396572			0.7	0.92	7	10		0.7	2	2.34	0.5	6	4	134	3.53	10		0.35		
B386393	396315			4.8	1.04	7	10	110	0.8	2	2.51	0.8	8	3	5580	4.83	10		0.33		0.33
B386394	408938			0.2	0.28	6	10	50	0.5	2	25.00	0.5	7	23	44	2.04	10	1	0.01		0.42
B386395	408932	6348560	0.005	0.4	0.16	6	10	50	0.5	2	25.00	0.5	2	2	29	0.33	10	1	0.07		0.13
B386396	409275	6348914	0.009	0.4	0.08	41	10	260	0.5	2	0.66	0.5	1	33	20	1.50	10	1	0.04	10	0.01
B386397	409321			94.6	0.16	10000	10	80	0.5	2	0.06	9.9	1	30	124	2.86	10	3	0.08	-	0.01
B386398	409240			1.0	0,15	103	10	130	0.5	2	0.04	0.5	2	27	19	1.97	10	1	0.07		0.01
B386399	395583			0.6	2.69	52	10	60	0.5	2	2.00	0.5	28	4	86	5.01	10	1	0.39		2.15
B386400	406061	6340171	0.006	0.2	0.42	12	10	190	0.5	2	2.38	0.5	2	26	13	1.69	10	1	0.09	10	0.28
B386401	406060	6340216	0.009	1.9	1.06	39	10	50	0.5	2	2.69	4.4	13	37	50	3.69	10	1	0.26	10	0.95
	- ··	<i></i>								-	-				~~	0.00					0.00
B386402	406064	6340228	0.005	0.3	4.50	20	10	320	0.5	2	4.60	0.5	31	83	49	6.69	10	_1	0.18	10	3.54
B386403	405998	6340207	0.029	0.2	0.34	15	10	220	0.5	2	1.29	0.5	5	19	21	2.03	10	1	0 11	10	0.14
B386403	403998			1.1	0.34	404	10	190	0.5	2	0.75	0.5	8	19	176	3.57	10	1			0.14
	+10000		0.200	1.1	0.01			100	0.0	2	0.10	0.0		<u> </u>		0.01			0.00	, u	0.10
B386405	413268	6343262	0.322	0.9	1.50	183	10	260	0.5	2	9.72	0.5	10	5	28	3.57	10	1	0.26	10	0.40
B386406	413396			0.7	1.16	78	10		0.5	2	0.27	0.5	2	1	130	3.40	10	1	0.54	_	
B386407	413069			0.2	2.05	21	10	500	0.6	2	1.81	0.5	11	2	265	4.98	10	1	0.35		0.33
B386408	412876			0.2	1.10	195	10	20	0.5	2	0.48	0.5	6	2	149	10.95					0.16
B386409	413032			0.2	1.29	2	10	70	0.9	2	0.62	0.5	6	1	4	3.87	10	1	0.33		0.32
						_								·	· · · · · · · · · · · · · · · · · · ·	,					

. ...

.....

· · · ·

All values in ppm unless stated as %

Sample	Easting	Northing	Au	Ag	AI %	As	B	Ba	Be	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	Ga	Hg	Κ%	La	Mg 9
3386410	413183	6343500	0.013	0.3	1.09	122	10	50	0.6	2	2.35	0.5	12	2	214	3.17	10	1	0.43	20	0.15
3386501	414581	6346802																		1	
			0.030	8.7	0.30	58	10	90	0.5	11	6.29	20.0	3	48	684	2.84	10	1	0.17	10	0.1
3386502	414578	6346811	0.164	13.7	0.73	78	10	80	0.5	7	2.16	20.6	4	16	998	2.91	10	1	0.20	10	0.6
3386503	414639	6346706							1								- 1			1	
			0.011	3.0	1.10	8	10	70	0.5	2	3.61	0.9	4	29	787	1.47	10	1	0.09	10	1.2
3386504	414653	6346670					t														
			0.030	4.1	0.58	14	10	210	0.5	7	0.62	3.4	3	16	594	1.80	10	1	0.17	10	0.3
3386505	395664	6350350								-										·· 1	
			0.005	0.2	2.25	2	10	90	0.5	2	1.84	0.5	19	15	47	5.38	10	1	0.51	10	1.8
3386506	396592	6350424	0,000	0.2		- (0.0			0.0				0.00					
0000000	000002	0000424	0.061	11.9	0.34	25	10	120	0.5	2	2.43	10.8	13	7	16000	3.30	10	1	0.20	10	0.2
3386507	412092	6347833	0.001		0.04	20	10	120	0.0	<u> </u>	2.70	10.0	10	- 1	10000	0.00		<u> </u>	0.20		0.2
5300307	410302	0341033	0.007	2.4	0.49	2	10	190	0.5	2	0.20	0.5	3	48	1100	1.12	10	1	0.12	10	0.3
1200500	444004	6947775	0.007	2.4	0.45	~	10	100	0.0	. *	0.20	0.0	5	-+0				<u> </u>	0.12	10	0.0
3386508	4 14024	6347775	0.010	24	0.55	-	40	500	0 E		0.00	0.6	2	20	200	0.01	40		0.11	10	0.0
	444440	0042074	0.013	2.4	0.55	7	10	500	0.5	2	0.09	0.5	3	32	362	2.01	10	1	0.11	10	0.2
3386509		6347674	0.015	0.2	1.08	5	10	50	0.5	2	1.97	0.5	9	44	260	2.49	10	1	0.11	10	0.6
3386510	414069	6347881		'						_						'					
			0.020	4.3	0.79	26	10	70	0.5	2	1.15	8.6	10	21	1125	2.85	10	1	0.13	10	0.6
B386511	414080	6347840																			
			0.005	0.4	0.75	2	10	780	0.5	2	1.18	6.4	5	46	1150	1.69	10	1	0.17	20	0.3
B386512	414101	6347828			1																
		_	0.152	11.1	0.65	16	10	30	0.5	2	0.87	60.9	38	33	7350	12.55	10	1	0.08	10	0.3
B386513	414129	6347775			Į				T				T				7				
			0.029	0.7	2.24	2	10	100	0.6	2	2.29	0.6	25	29	2300	5.78	10	1	0.78	10	2.3
B386514	414180	6347835	0.016	5.1	0.52	6	10	130	0.5	9	1.55	1.4	4	22	454	1.96	10	1	0.18	10	0.3
B386516	400579	6346675	0.005	0.2	1.60	2	10	80	0.5	2	0.88	0.5	14	12	158	5.27	10	1	0.13	10	0.9
B386517		6346884	0.005	0.2	1.66	7	10	160	0.5	2	0.78	0.5	12	14	102	6.17	10	1	0.15		1.2
B386518		6346993				· · ·				_											
	000120		0.005	0.2	0.29	5	10	240	0.5	2	0.03	0.5	2	24	13	1.62	- 10	1	0.10	10	0.1
B386519	399714	6346961	0.005	0.2	0.25	11	10	140	0.5	2	0.02	0.5	1	28	11	2.45	10	1	0.08	10	0.0
B386520	399590	6346769	0.005	0.2	0.17	12	10	400	0.5	2	0.02	0.5	2	21	11	1.77	10	1	0.05		0.0
	412085		0.000	0.2	0.17	12	10	400	0.5	2	0.02	0.0	~	21		1.11	10		0.00	-10	0.0
B386521	412065	6345458	0.007		0.70	440		00	0.5	~	0.70		40	~	050	4 70		05	0.07		~ •
			0.007	2.2	0.73	118	10	60	0.5	2	9.72	0.6	12	3	256	4.73	10	25	0.27		2.4
	412091	6345462	2.460	411.0	0.17	221	10	90	0.5	2	4.57	11.5	2	18	144	1.68	10	1	0.03	10	0.1
B386523	413456	6346432								_			_			i	1'				
			0.012	2.0	0.48	36	10	190	0.5	2	3.59	0.5	2	14	24	1.53	10	1	0.06	10	0.2
B386524	409631	6345800	0.029	3.5	0.64	45	10	30	0.5	2	3.34	0.5	16	5	45	6.22	10	1	0.32	10	0.8
B386525	409639	6345790	0.044	1.0	0.21	27	10	90	0.5	2	24.90	0.5	4	1	26	4.53	10	1	0.10	10	2.1
B38652 <u>6</u>	409637	6345790	0.113	4.0	0.05	7170	10	10	0.5	2	0.53	0.5	2	12	51	5.47	10	1	0.02	10	0.0
B386527	409637	6345789	8.170	37.6	0.02	2990	10	60	0.5	2	0.51	1.1	1	4	31	1.16	10	1	0.01	10	0.0
B386528	409001	6345869																			
	1		1																		
			0.763	17.7	0.03	996	10	90	0.5	2	25.00	9.0	1	1	63	1.15	10	1	0.01	10	0.1
B386529	408999	6345866	0.006	0.5	1.40	48	10	770	0.5	2	9.56	0.5	14	50	34	4.40	10	1	0.07	10	3.6
B386530		6345864		••••	• •						· ·										
2000000		0010001	3.320	39.9	0.18	1420	10	130	0.5	2	25.00	51.0	2	4	184	3.18	10	1	0.06	10	0.1
			0.020			1120										0.10		<u> </u>	0.00		u .,
R 186531	408601	6346102	1					}				01.0	_								
8386531	408601	6346192	0.022	ሰጸ	0.54	Δn	10	240	0.5	2	3 13			5	a	1.87	10	1	0.20	10	<u>∩ 1</u>
B386531			0.022	0.8	0.54	40	10	240	0.5	2	3.13	0.5	4	5	9	1.87	10	1	0.29	10	0.1
		6346192 6346475	0.022	0.8	0.54	40	10	240	0.5	2	3.13			5	9	1.87	10	1	0.29	10	0.1
												0.5	4								
B386532	408539	6346475	0.022 0.032			40 49	10 10		0.5 0.5	2	3.13 2.75			5	9 14	1.87 3.61			0.29		
B386532	408539		0.032	0.9	0.40	49	10	20	0.5	2	2.75	0.5 0.5	4	5	14	3.61	10	1	0.22	10	0.1
B386532 B386533	408539 408570	6346475 6346170						20				0.5	4			3.61	10	1		10	0.1
B386532 B386533	408539 408570	6346475	0.032 0.057	0.9	0.40 0.55	49 41	10 10	20 50	0.5 0.5	2 2	2.75 0.86	0.5 0.5 0.5	4 5 4	5	14	3.61	10 10	1	0.22 0.28	10	0.1
B386532 B386533 B386534	408539 408570 407810	6346475 6346170 6345812	0.032	0.9	0.40	49	10	20 50	0.5	2	2.75	0.5 0.5	4	5	14	3.61	10 10	1	0.22	10	0.1
B386532 B386533 B386534	408539 408570 407810	6346475 6346170	0.032 0.057 0.005	0.9 0.5 0.8	0.40 0.55 0.64	49 41 117	10 10 10	20 50 90	0.5 0.5 0.5	2 2 2	2.75 0.86 3.50	0.5 0.5 0.5	4 5 4 7	5 7 3	14 12 43	3.61 3.12 2.24	10 10 10	1	0.22 0.28 0.31	10 10 10	0.1 0.0 0.3
B386532 B386533 B386534 B386535	408539 408570 407810 407817	6346475 6346170 6345812 6345804	0.032 0.057	0.9	0.40 0.55	49 41	10 10	20 50 90	0.5 0.5 0.5	2 2 2	2.75 0.86	0.5 0.5 0.5	4 5 4	5	14	3.61	10 10 10	1	0.22 0.28	10 10 10	0.1 0.0 0.3
B386532 B386533 B386534 B386535	408539 408570 407810 407817	6346475 6346170 6345812	0.032 0.057 0.005	0.9 0.5 0.8	0.40 0.55 0.64	49 41 117	10 10 10	20 50 90	0.5 0.5 0.5	2 2 2	2.75 0.86 3.50	0.5 0.5 0.5	4 5 4 7	5 7 3	14 12 43	3.61 3.12 2.24	10 10 10	1	0.22 0.28 0.31	10 10 10	0.1 0.0 0.3
B386532 B386533 B386534 B386535	408539 408570 407810 407817	6346475 6346170 6345812 6345804	0.032 0.057 0.005	0.9 0.5 0.8	0.40 0.55 0.64	49 41 117	10 10 10	20 50 90	0.5 0.5 0.5	2 2 2	2.75 0.86 3.50	0.5 0.5 0.5	4 5 4 7	5 7 3	14 12 43	3.61 3.12 2.24	10 10 10	1	0.22 0.28 0.31	10 10 10	0.1 0.0 0.3
B386532 B386533 B386534 B386535	408539 408570 407810 407817	6346475 6346170 6345812 6345804	0.032 0.057 0.005	0.9 0.5 0.8	0.40 0.55 0.64	49 41 117	10 10 10	20 50 90 140	0.5 0.5 0.5 0.5	2 2 2	2.75 0.86 3.50	0.5 0.5 0.5	4 5 4 7	5 7 3	14 12 43	3.61 3.12 2.24	10 10 10	1 1 1	0.22 0.28 0.31	10 10 10	0.1 0.0 0.3
B386532 B386533 B386534 B386535 B386536	408539 408570 407810 407817 397418	6346475 6346170 6345812 6345804	0.032 0.057 0.005 0.020	0.9	0.40 0.55 0.64 0.54	49 41 117 46	10 10 10	20 50 90 140	0.5 0.5 0.5 0.5	2 2 2 2	2.75 0.86 3.50 1.03	0.5 0.5 0.5 0.5 0.5	4 5 4 7 7	5 7 3 14	14 12 43 40	3.61 3.12 2.24 1.69	10 10 10	1 1 1	0.22 0.28 0.31 0.27	10 10 10	0.1 0.0 0.3
B386532 B386533 B386534 B386535 B386536	408539 408570 407810 407817 397418	6346475 6346170 6345812 6345804 6347067	0.032 0.057 0.005 0.020 0.006	0.9 0.5 0.8 0.4 0.2	0.40 0.55 0.64 0.54 0.79	49 41 117 46	10 10 10 10	20 50 90 140 480	0.5 0.5 0.5 0.5	2 2 2 2 2	2.75 0.86 3.50 1.03 0.62	0.5 0.5 0.5 0.5 0.5 19.0	4 5 4 7 7 7	5 7 3 14 7	14 12 43 40 91	3.61 3.12 2.24 1.69 2.52	10 10 10 10	1 1 1	0.22 0.28 0.31 0.27 0.28	10 10 10 10	0.1 0.0 0.2
B386532 B386533 B386534 B386535 B386536 B386537	408539 408570 407810 407817 397418 397237	6346475 6346170 6345812 6345804 6347067 6346784	0.032 0.057 0.005 0.020	0.9	0.40 0.55 0.64 0.54	49 41 117 46 2	10 10 10	20 50 90 140 480	0.5 0.5 0.5 0.5	2 2 2 2	2.75 0.86 3.50 1.03	0.5 0.5 0.5 0.5 0.5	4 5 4 7 7	5 7 3 14 7	14 12 43 40	3.61 3.12 2.24 1.69	10 10 10 10	1 1 1	0.22 0.28 0.31 0.27	10 10 10 10	0.1 0.0 0.2
B386532 B386533 B386534 B386535 B386536	408539 408570 407810 407817 397418 397237	6346475 6346170 6345812 6345804 6347067	0.032 0.057 0.005 0.020 0.020 0.006	0.9 0.5 0.8 0.4 0.2 0.3	0.40 0.55 0.64 0.54 0.79 2.46	49 41 117 46 2 2	10 10 10 10	20 50 90 140 480 80	0.5 0.5 0.5 0.5 0.5 0.9	2 2 2 2 2 2 2 2	2.75 0.86 3.50 1.03 0.62 1.36	0.5 0.5 0.5 0.5 19.0 4.6	4 5 4 7 7 7 18	5 7 3 14 7 27	14 12 43 40 91 1205	3.61 3.12 2.24 1.69 2.52 4.63	10 10 10 10 10 10	1 1 1 4 3	0.22 0.28 0.31 0.27 0.28 0.14	10 10 10 10 10	0.1 0.0 0.3 0.1 0.2
B386532 B386533 B386534 B386535 B386535 B386537 B386537 B386538	408539 408570 407810 407817 397418 397237 396560	6346475 6346170 6345812 6345804 6347067 6346784 6346147	0.032 0.057 0.005 0.020 0.006	0.9 0.5 0.8 0.4 0.2	0.40 0.55 0.64 0.54 0.79	49 41 117 46 2	10 10 10 10	20 50 90 140 480 80	0.5 0.5 0.5 0.5	2 2 2 2 2	2.75 0.86 3.50 1.03 0.62	0.5 0.5 0.5 0.5 0.5 19.0	4 5 4 7 7 7	5 7 3 14 7 27	14 12 43 40 91	3.61 3.12 2.24 1.69 2.52	10 10 10 10	1 1 1 4 3	0.22 0.28 0.31 0.27 0.28	10 10 10 10 10	0.1 0.0 0.3 0.1 0.2
B386532 B386533 B386534 B386535 B386536 B386537	408539 408570 407810 407817 397418 397237 396560	6346475 6346170 6345812 6345804 6347067 6346784	0.032 0.057 0.005 0.020 0.006 0.006 0.005 0.011	0.9 0.5 0.8 0.4 0.2 0.3 0.4	0.40 0.55 0.64 0.54 0.79 2.46 3.69	49 41 117 46 2 2 3	10 10 10 10 10 10	20 50 90 140 480 80 380	0.5 0.5 0.5 0.5 0.5 0.9	2 2 2 2 2 2 2 2 2 2	2.75 0.86 3.50 1.03 0.62 1.36 1.75	0.5 0.5 0.5 0.5 19.0 4.6 59.6	4 5 4 7 7 7 7 18 28	5 7 3 14 7 27 28	14 12 43 40 91 1205 1855	3.61 3.12 2.24 1.69 2.52 4.63 5.01	10 10 10 10 10 10 10	1 1 1 4 3 1	0.22 0.28 0.31 0.27 0.28 0.14 0.11	10 10 10 10 10 10	0.1 0.2 0.2 2.8
B386532 B386533 B386534 B386535 B386536 B386537 B386537 B386538 B386539	408539 408570 407810 407817 397418 397237 396560 396483	6346475 6346170 6345812 6345804 6345804 6347067 6346784 6346147 6346079	0.032 0.057 0.005 0.020 0.020 0.006	0.9 0.5 0.8 0.4 0.2 0.3	0.40 0.55 0.64 0.54 0.79 2.46	49 41 117 46 2 2	10 10 10 10 10 10	20 50 90 140 480 80	0.5 0.5 0.5 0.5 0.5 0.9	2 2 2 2 2 2 2 2	2.75 0.86 3.50 1.03 0.62 1.36	0.5 0.5 0.5 0.5 19.0 4.6	4 5 4 7 7 7 18	5 7 3 14 7 27	14 12 43 40 91 1205	3.61 3.12 2.24 1.69 2.52 4.63	10 10 10 10 10 10 10	1 1 1 4 3 1	0.22 0.28 0.31 0.27 0.28 0.14	10 10 10 10 10 10	0.1 0.2 0.2 2.8
B386532 B386533 B386534 B386535 B386535 B386537 B386537 B386538	408539 408570 407810 407817 397418 397237 396560 396483	6346475 6346170 6345812 6345804 6347067 6346784 6346147	0.032 0.057 0.005 0.020 0.006 0.005 0.011 0.634	0.9 0.5 0.8 0.4 0.2 0.3 0.4 0.2	0.40 0.55 0.64 0.54 0.79 2.46 3.69 0.54	49 41 117 46 2 2 3 93	10 10 10 10 10 10 10	20 50 90 140 480 80 380 360	0.5 0.5 0.5 0.5 0.5 0.9 0.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.75 0.86 3.50 1.03 0.62 1.36 1.75 0.16	0.5 0.5 0.5 0.5 19.0 4.6 59.6 1.2	4 5 4 7 7 7 7 18 28 1	5 7 3 14 7 27 28 12	14 12 43 40 91 1205 1855 15	3.61 3.12 2.24 1.69 2.52 4.63 5.01 1.62	10 10 10 10 10 10 10 10	1 1 1 4 3 1	0.22 0.28 0.31 0.27 0.28 0.14 0.11 0.29	10 10 10 10 10 10 10	0.1 0.2 0.1 0.2 2.0 0.0
B386532 B386533 B386534 B386535 B386536 B386537 B386537 B386539 B386539 B386540	408539 408570 407810 407817 397418 397237 396560 396483 396010	6346475 6346170 6345812 6345804 6347067 6346784 6346147 6346079 6345561	0.032 0.057 0.005 0.020 0.006 0.006 0.005 0.011	0.9 0.5 0.8 0.4 0.2 0.3 0.4	0.40 0.55 0.64 0.54 0.79 2.46 3.69	49 41 117 46 2 2 3	10 10 10 10 10 10 10	20 50 90 140 480 80 380	0.5 0.5 0.5 0.5 0.5 0.9 0.5	2 2 2 2 2 2 2 2 2 2	2.75 0.86 3.50 1.03 0.62 1.36 1.75	0.5 0.5 0.5 0.5 19.0 4.6 59.6	4 5 4 7 7 7 7 18 28	5 7 3 14 7 27 28	14 12 43 40 91 1205 1855	3.61 3.12 2.24 1.69 2.52 4.63 5.01	10 10 10 10 10 10 10 10	1 1 1 4 3 1	0.22 0.28 0.31 0.27 0.28 0.14 0.11	10 10 10 10 10 10 10	0.1 0.2 0.1 0.2 2.0 0.0
3386532 3386533 3386534 3386535 3386536 3386536 3386539 3386539 3386540	408539 408570 407810 407817 397418 397237 396560 396483 396010	6346475 6346170 6345812 6345804 6345804 6347067 6346784 6346147 6346079	0.032 0.057 0.005 0.020 0.006 0.005 0.011 0.634	0.9 0.5 0.8 0.4 0.2 0.3 0.4 0.2	0.40 0.55 0.64 0.54 0.79 2.46 3.69 0.54	49 41 117 46 2 2 3 93	10 10 10 10 10 10 10	20 50 90 140 480 80 380 380 360	0.5 0.5 0.5 0.5 0.5 0.9 0.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.75 0.86 3.50 1.03 0.62 1.36 1.75 0.16	0.5 0.5 0.5 0.5 19.0 4.6 59.6 1.2	4 5 4 7 7 7 7 18 28 1	5 7 3 14 7 27 28 12	14 12 43 40 91 1205 1855 15	3.61 3.12 2.24 1.69 2.52 4.63 5.01 1.62	10 10 10 10 10 10 10 10	1 1 1 1 4 3 1 1 1	0.22 0.28 0.31 0.27 0.28 0.14 0.11 0.29	10 10 10 10 10 10 10 30	0. ⁻ 0.: 0.: 2.: 0.: 1.:

-. -

۰. م

. .

.....

. .

.....

Sample	Easting	Northing	Au	A	AI %	As	в	Ba	Be	Bi	Ca %	Cd	Co	Cr	Си	F = 9/	<u></u>	11-	N 07		84 - 97
B386542	396185	6346538	Au	Ag	AI 76	M 5		Dđ	De	DI	Ca %			. ur		Fe %	Ga	Hġ	К%	La	Mg %
D300342	390100	0340036																			
			0.177	1.6	0.90	38	10	50	2.2	2	0.20	0.5	2	2	176	2.70	10	1	0.55	10	0.12
B386543	395877	6346968	01171	1.0	0.00						0.20		-	~		2.10	<u></u>	·'	0.00		0.12
			0.005	0.5	1.60	2	10	20	1.0	2	3.42	0.5	12	4	635	4.89	10	1	1.02	10	0.65
B386544	410878	6345878																			
			0.006	0.7	2.04	14	10	70	0.5	2	5.27	0.5	14	4	75	4.19	10	1	0.25	10	1.42
B386545	396519	6346999																		i	_
			0.023	5.4	0.75	2	10	60	0.5	2	1.30	0.5	2	3	1200	2.54	10	1	0.31	10	0.10
B386546	396512	6346980												-							
0000547	000504		0.005	0.3	1.12	2	10	50	0.5	2	2.55	0.5	6	5	282	3.17	10	1	0.31	10	0.42
B386547	396504	6346994	0.005	0.3	0.91	2	10	100	07	2	1 40	0.5	-	10	293	2.44	40		0.07	أمما	0.00
B386548	396472	6346977	0.000	0.5	0.91	<u> </u>	10	100	0.7	2	1.48	0.5	7	10	293	2.14	10	1	0.27	10	0.20
0000040	030472	00-0017																			
			0.011	0.9	1.60	3	10	60	0.8	2	3.45	0.5	11	7	1430	4.60	10	1	0.74	20	0.97
B386549	396431	6346930						~~.		-	0110		· · ·	,	1100	1.00	10		<u>v., 1</u>		0.01
			0.016	1.0	0.58	2	10	140	0.5	2	1.29	0.5	5	7	783	2.79	10	1	0.31	20	0.32
B386550	396426	6346887		-																, <u> </u>	
			0.007	0.9	0.82	3	10	80	0.9	2	0.95	0.5	6	9	794	3.52	10	1	0.42	20 (0.58
B386551	411488	6345906	0.005	0.2	0.09	4	10	170	0.5	2	25.00	0.5	1	1	13	0.66	10	1	0.04	10	0.25
B386553	411611	6345716	0.007	0.2	0.05	23	10	30	0.5	2	25.00	0.5	1	1	7	1.67	10	1	0.02	10	1.17
B386555	411608	6345750	0.009	0.3	1.20	44	10	90	0.8	2	5.00	0.5	16	3	127	4.57	10	1	0.25	10	1.41
B386556	412066	6345534	0.005	0.2	0.75	4	10	360	0.5	2	2.91	0.5	6	2	6	3.35	10	1	0.32	20	0.91
B386558	405361	6344553																			
			0.005	0.2	1.47	9	10	40	0.5	2	1.77	0.5	10	18	47	3.52	10	1	0.01	10	0.94
	405243	6344338	0.128	0.2	2.77	18	10	80	0.5	2	0.12	0.5	21	9	231	9.20	10	1	0.33	10	1.42
B386560	405287	6344283																			
	L		0.008	0.2	0.84	19	10	170	0.5	2	0.28	0.5	9	3	87	3.13	10	1	0.45	10	0.09
B386561	405334	6344264								_							1				
			0.005	0.2	0.17	374	10	30	0.5	2	25.00	0.5	3	1	4	2.48	10	1	0.02	10	1.93
B386562	405459	6344265				~~				-											
Dabasoa	405700	0044440	0.044	0.2	2.68	22	10	200	0.5	2	4.86	0.5	17	22	139	4.52	10	1	0.35	10	1.60
B386563	405789	6344149	0.007	0.2	1.30	19	10	50	1.1	2	2.18	0.5	8	3	121	3.63	10	1	0.20	10	0.54
B386564	405871	6344120	0.005	0.2	1.33	8	10	60	0.8	2	0.01	0.5		5	61	2.64	10		0.00	20	1 00
B386565	406355	6343746	0.005	0.2	1.00	0	10	00	0.0	2	0.91	0.5	8	5	61	3.64	10	1	0.23	20	1.02
0000000	400000	0343740	0.005	0.6	1.18	28	10	30	0.5	2	8.56	0.5	9	27	130	3.18	10	1	0.19	10	0.52
B386566	407155	6344048	0.005	0.2	3.20	20	10	260	0.5	2	3.29	0.5	16	64	210	4.82	10	1	0.19		1.09
-	407206	6344103	0.005	0.2	3.66	2	10	960	0.5	2	2.36	0.5	25	23	83	6.29	10	1	0.11		
	396195	6348368	0.009	4.1	0.92	26	10	60	0.9	2	1.52	0.5	33	52	4560	2.58	10	1	0.06		0.59
B386569		6348368	0.017	14.8	0.38	29	10	100	0.5	2	0.22	0.5	4	4	9450	1.92	10	1	0.02		0.08
B386570	396243	6348426	0.005	0.2	0.60	4	10	140	0.5	2	1.12	0.5	5	7	54	2.75	10	1	0.23		0.24
B386571	396265	6348447	0.005	1.9	0.79	3	10	110	0.5	2	1.42	0.5	11	8	928	1.62	10	1	0.21	20	0.45
B386572	396193	6348407	0.006	8.8	0.93	5	10	280	0.7	8	1.41	0.6	41	43	9200	2.73	10	1	0.22	10	0.64
B386573	395578	6348765																			
	_		0.092	0.2	2.85	4	10	110	0.5	2	4.31	0.5	21	162	69	4.42	10	1	0.66	10	2.92
B386574		6348363	0.031	30.8	0.87	3	10	20	1.1	2	0.33	1.1	28	1	50500	3.02	10	1	0.01	30	0.39
B386575			0.006	0.3	2.38	7	10	130	0.5		2.12	0.5	30		215	5.20	10	1	1.18		1.86
B386576		6347966	0.007	3.4	2.19	8	10	30	0.6	3	10.65	0.5	20	34	5580	4.54	10	1	0.04		0.98
B386577		6348279	0.007	0.2	0.76	4	10	40	0.6	2	6.16	0.5	17	59	134	3.61	10	1	0.49		0.55
B386578		6348042	0.005	0.2	0.51	2	10	90	0.5	2	1.00	0.5	1	4	122	2.15	10	1	0.33		0.04
B386579 B386580		6348035 6347951	0.193	0.2	0.98	11	10	20	0.5	2	2.36	0.5	14	40	49	3.54	10	1	0.23		0.82
B386581		6348803	0.037	1.1	0.40	287	10	70	0.5	2	6.47	0.5	14	24	122	2.74	10	1	0.20	10	0.58
100001	410254	0340003	0.035	1.2	1.62	83	10	70	0.5	2	0.25	ΛE	10	2	120	6 63	10		0 40	20	0.05
B386582	410300	6348850	0.055	1.2	0.59	99	10		0.5	2	11.45	0.5	3	3	138 232	6.63 1.30	10 10	1	0.18		0.95
B386583		6349097	0.005	0.2	0.99	3		2850		2	3.05	0.5	5	4	232	2.65	10	1	0.42		0.18
B386584		6349122	0.000	0.2	0.00	<u> </u>		2000	0.0	~	0.00	0.5		~		2.00	10	1	0.42	-10	0.05
	110001	SO ID ILL	0.005	0.2	0.29	9	10	2480	0.5	2	24.00	0.5	5	1	11	1.71	10	1	0.11	10	1.88
B386585	410595	6349088				-		2.00	0.0			0.0	Ŭ		••	•		'	V.11		
		00.0000	0.084	1.7	0.06	118	10	100	0.5	2	25.00	4.6	3	1	33	1.68	10	1	0.02	10	0.96
B386586	410601	6349136	0.007	0.2	0.34	13	10	80	0.5	2	18.70	0.5	4	1	14	2.71	10	1	0.19		0.59
B386587	-	6349136	0.025	1.0	0.49	33	10	80	0.5	2	11.45	0.5	5	1	33	3.92	10	1	0.20	10	0.23
	410265	6349243	0.013	0.2	1.98	20	10	20	0.5	2	0.43	0.5	10	4	42	5.68	10	1	0.14		2.35
B386588		6349110	0.005	0.2	2.97	5	10	30	0.5	2	2.09	0.5	14	1	29	4.81	10	1	0.14		1.85
B386588 B386589]41006∠				0.54	8	10	10	0.5	2	3.26	0.5	19	2	47	6.02	-				
	•	6349062	0.005	0.2	3.04	0		10	0.01	2.	3.20	0.0	13	~	47	0.02	10	1	0.18	101	1.16
B386589	410154	6349062 6349054	0.005	0.2	3.04 2.97	7	10	40	0.5	2	0.08	0.5	5	1	28	6.66	10	1	0.18		1.46
B386589 B386590	410154 410135						<u> </u>										-			10	
B386589 B386590 B386591	410154 410135 410003	6349054	0.005	0.2	2.97	7	10	40	0.5	2	0.08	0.5	5	1	28	6.66	10	1	0.20	10	1.46

...

All values in ppm unless stated as %

All sample locations NAD 83 UTM Zone 9

Sample	Easting	Northing	Au	Ag	AI %	As	В	Ba	Be	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	Ga	Hg	К%	La	Mg %
B386595	398920	6350193	0.005	0.3	1.83	5	10	110	0.8	2	0.45	0.5	12	6	82	5.62	10	1	0.28	10	1.12
B386596	398873	6350081																			
			0.013	5.1	2.93	4	10	90	0.5	36	0.14	0.5	7	18	664	8.39	30	1	0.04	10	2.49
B386597	398778	6349752	0.006	0.7	0.52	2	10	50	0.5	6	0.02	0.5	1	4	80	6.88	10	1	0.06	20	0.03
B386651	396441	6346873																			
			0.006	0.4	1.18	2	10	110	0.7	2	2.28	0.5	9	4	328	3.41	10	1	0.39	20	0.83
B386652	396426	6346792																			
	:		0.219	7.6	0.92	7	10	100	0.7	7	1.94	0.8	9	3	8960	4.45	10	1	0.39	30	0.40
B386653	396292	6346850																			
	-		0.080	4.3	1.38	3	10	80	1.1	2	1.46	0.5	11	8	4340	5.24	10	1	0.57	20	1.07
B386654	396190	6346777	0.011	1.4	1.60	7	10	80	1.0	2	4.16	0.5	11	4	1025	4.90	10	1	0.56	40	0.68
B386662	414442	6346674																			,
			0.127	15.1	0.84	197	10	70	0.5	17	16.90	13.5	16	2	379	4.29	10	1	0.15	10	0.74
B386663	414489	6346642														İ					
			0.064	5.9	1.76	68	10	50	0.5	5	1.20	4.0	12	3	387	5.85	10	1	0.33	10	1.37
B386664	414549	6346604																			
			0.036	4.0	0.99	38	10	440	0.5	2	0.91	1.1	4	5	418	3.28	10	1	0.34	10	0.29
B386665	414564	6346556					1														1
	:		0.043	0.8	2.84	2	10	170	0.5	2	1.71	0.5	21	17	962	5.10	10	1	1.34	10	1.64
B386666	414479	6346449																			
			0.814	18.2	0.67	98	10	70	0.5	13	0.28	0.6	5	2	124	4.67	10	1	0.36	10	0.25
B386667		6345668	0.114	0.9	1.27	7	10	80	0.5	2	1.21	0.5	12	2	316	3.64	10	1	0.19	10	1.05
B386668	414092	6345673																			
			0.443	0.6	1.60	5	10	70	0.5	4	1.56	0.5	15	7	258	4.70		1	0.11	10	
B386669	414090	6345488	0.260	0.4	3.43	6	10	40	1.3	2	2.67	0.5	12	4	107	5.45	20	1	0.10	10	1.71

Sample	Mn	Mo	Na %	NI	Р	Pb	\$%	Sb	Sc	Sr	Tì	TI	U	۷	W	Zn	Туре	Samp Type	Length
B386248	446	3	0.01	20	520	113	1.12	3	2	198	0.13	10	10	223	10	29	oc	Chip random	-
B386249	71	41	0.06	18	1830	33	0.42	2	8	72	0.24	10	10	171	10	6	oc	Chip random	
B386250	607	7	0.01	3	120	514	1.50	2	2	154	0.11	10	10	312	10	53	oc	Chip	2.00
B386265	228	4	0.01	2	210	50	0.15	2	1	110	0.07	10	10	150	10	8	oc	Chip	2.00
B386266	196	1300	0.01	22	1380	149	1.92	6	6	89	0.11	10	10	372	10	30	oc	Chip	
B386267	620	11	0.02	43	1620	158	0.38	2	4	850	0.21	10	10	357	10	32	oc	Chip	2.00
B386268	492	4	0.01	43	560	139	0.82	2	5	87	0.07	10	10	161	10	208	oc	Chip	2.00
B386269	1100	2	0.02	30	2460	11	0.52	2	17	159	0.34	10	10	229	10	106	float	Grab	
B386270	237	3	0.01	69	230	4	0.58	2	1	13	0.01	10	10	19	10	58	oc	Grab	
B386271	337	3	0.01	102	410	4	1.43	2	2	14	0.02	10	10	40	10	72	OC OC	Chip	4.00
B386272	734	1	0.01	56	190	4	1.50	6	3	67	0.01	10	10	23	10	53	oc	Chip	3.50
B386273	1110	1	0.01	31	370	6	1.84	2	6	192	0.01	10	10	42	10	55	loc	Chip	3.50
B386274	92	4	0.05	1	640	12	0.63	2	2	34	0.07	10	10	39	10	22	oc	Chip	1.00
B386275	82	1	0.06	1	690	29	0.75	2	2	56	0.02	10	10	37	10	16	oc	Chip	1.00
B386276	1075	1	0.00	49	1000	3	0.13	2	12	90	0.02	10	10	162	10	124		+	1.00
	177	112	0.04	49				2	3	16							00	Grab	
B386277					900	15	1.18				0.01	10	10	69	10	31	oc	Grab	
B386278	340	314	0.02	1	800	32	1.65	2	2	65	0.01	10	10	41	10	86	oc	Chip	1.00
B386279	549	204	0.02	4	660	10	0.53	2	2	38	0.01	10	10	48	10	59	oc	Chip	1.00
B386280	39	7	0.04	2	990	12	0.98	2	2	26	0.01	10	10	40	10	13	oc	Grab	
B386281	141	1	0.06	3	1400	13	3.42	2	3	22	0.11	10	10	35	10	30	oc	Chip random	
B386282	189	1	0.03	1	660	9	2.54	2	1	25	0.01	10	10	31	10	18	oc	Chip random	
B386283	31	35	0.01	1	570	51	0.48	142	1	14	0.01	10	10	6	10	24	oc	Chip	1.00
B386284	144	1	0.04	4	1190	12	1.58	2	4	16	0.23	10	10	66	10	20	oc	Chip	2.00
B386285	328	1	0.04	1	950	19	0.77	2	7	16	0.16	10	10	94	10	34	oc	Grab	
B386286	367	2	0.01	1	940	7	0.55	12	1	13	0.01	10	10	12	10	65	oc	Grab	
B386287	1475	1	0.01	1	630	4	0.86	56	1	97	0.01	10	10	12	10	37	oc	Grab	
B386288	1080	2	0.01	5	1000	32	0.97	192	1	23	0.01	10	10	18	10	67	oc	Chip random	
B386289	1000	1	0.04	18	710	26	0.10	7	15	239	0.01	10	10	121	10	44	oc	Chip	1.00
B386290	1165	1	0.05	12	1290	17	0.02	2	5	153	0.01	10	10	82	10	46	oc	Chip	1.00
B386291	849	3	0.05	55	1250	14	1.66	2	7	100	0.07	10	10	131	10	111	oc	Chip	1.50
B386292	695	1	0.06	7	1550	12	2.11	3	7	83	0.01	10	10	79	10	26	oc	Chip	1.50
B386293	261	2	0.01	20	1380	12	0.26	2	2	40	0.01	10	10	16	10	88	oc	Chip	1.50
B386294	2070	10	0.01	39	2300	8	1.16	2	3	402	0.01	10	10	62	10	25	oc	Chip	6.00
B386295	1050	1	0.04	29	1270	8	0.76	2	10	46	0.11	10	10	142	10	34	oc	Chip	3.00
B386296	719	4	0.11	35	1280	5	2.85	4	9	54	0.12	10	10	149	10	74	oc	Chip	3.00
0000200			0.11		1200		2.00	-	0		0.12		10	1-10		14	00	omp	0.00
B386297	609	1	0.02	14	880	6	5.91	2	5	30	0.11	10	10	67	10	23	oc	Chip	4.00
B386298	1400	1	0.02	5	1270	5	0.22	2	14	166	0.01	10	10	85	10	69	oc	Chip	0.50
B386299	1285	1	0.02	9	1170	10	2.15	2	18	128	0.01	10	10	162	10	83		- · ·	
B386300	2300	7	0.08	3		4			10								00	Chip	2.00
B386325		1			40	3	10.00	11		89	0.01	10	10	6	10	7	float	Grab	4.00
0300325	595	<u> </u>	0.01	131	1300	3	0.09	2	6	313	0.30	10	10	111	10	61	OC .	Chip	1.00
0000000	400		0.00			405	0.40	_	~		0.04	40		_	40	500	0	a .	
B386326	169	4	0.08	2	30	105	0.12	2	2	10	0.01	10	10	5	10	539	float	Grab	
B386327	190	. 7	0.06	100	1260	8	1.38	2	4	267	0.22	10	10	63	10	49	float	Chip	2.00
				[
B386328	577	1	0.01	15	370	19	0.04	2	2	87	0.01	10	10	155	10	71	oc	Chip	1.50
					İ		ŀ												
B386329	1345	1	0.05	3	750	9	0.01	2	8	112	0.25	10	10	144	10	57	oc	Chip	0.30
B386330	20	1	0.01	5	20	3	0.07	2	1	57	0.01	10	10	2	10	2	oc	Chip	4.00
				ļ									•	1					
B386331	13	8	0.01	3	60	13	0.11	2	1	79	0.01	10	10	3	10	2	oc	Chip	2.00
		· -								<u> </u>	<u> </u>								
B386332	19	14	0.01	2	100	13	0.14	4	1	103	0.01	10	10	6	10	2	oc	Chip	3.00
B386333	13	2	0,01	3	20	8	0.10	2	1	146	0.01		10		10	2	talus	Grab	0.00
				•								,,,,	10	-		-			
B386334	18	20	0.01	1	10	38	7.71	25	1	112	0.01	10	10	6	10	3	float	Grab	
2000004		~ ~ 0	0.01		10	- 00	<u> ' ' '</u>	20	. '	112	0.01		10		10	J	noat	Grab	
B386335	217	15	0.04	2	540	2 5	1.04	30		10	0.07	10	10	67	40	34	0.0	Crah	
			0.01		540	25	1.04	36	4	40	0.07	10	10		10	21	oc	Grab	
B386336	1550	1	0.03	1	2230	10	2.12	2	11	77	0.13	10		147	10	211	OC	Chip	2.00
B386337	949	1	0.10	3	1880	301	1.18	2	7	73	0.15	10	10	113	10	228	oc	Chip	3.00
	40	_					1		-										
B386338	1350	2	0.05	2	2190	34	1.84	2	7	41	0.02	10		105	10	966	oc	Chip	2.00
B386339	2070	1	0.03	4	1760	7	2.12	2	6	146	0.01	10	10		10	130	oc	Grab	
B386340	172	13	0.09	1	550	9	0.32	2	2	55	0.09	10	10	30	10	28	oc	Chip	5.00
										1									
B386341	151	2	0.01	3	1500	10	1.12	3	2	20	0.01	10	10	29	10	10	oc	Chip	2.00
				i l							[-					T.]	
B386342	345	1	0.09	2	710	8	0.15	2	3	57	0.09	10	10	53	10	48	oc	Chip	2.00
B386343	72	88	0.08	1	750	11	0.05	2	3	17	0.01	10	10		10	16	oc	Chip	2.00
				·				-	5	<u> </u>		- <u></u>				14			2.00
		249	0.10	2	1590		1	i i		1	1	1		81	10	21	ł	1	

Ali values in ppm unless stated as %

Sample	Mn -	Мо	Na %	Ni	P	Pb	S %	Sb	Sc	Sr	TI	TF	U	V	W	Zn	Туре	Samp Type	Length
B386345	55	3	0.08	1	1380	10	1.38	2	2	20	0.04	10	10	26	10	9	oc	Chip	2.00
B386346	493	7	0.12	5	2200	12	2.40	2	7	47	0.22	10	10	121	10	61	oc	Chip	3.00
B386347	367	2	0.01	13	340	164	10.00	2	1	4	0.01	10	10	63	10	781	oc	Chip	0.15
B386348	182	11	0.02	2	540	23	2.86	2	2	14	0.04	10	10	34	10	19	oc	Chip	2.00
0000010								_	_									· · · · · · · · · · · · · · · · · · ·	
B386349	391	5	0.09	4	2080	8	1.65	2	5	41	0.20	10	10	114	10	30	oc	Chip	4.00
							_												1
B386350	1010	2	0.06	6	1870	34	2.62	2	6	93	0.14	10	10	99	10	1060	loc	Chip	2.00
B386351	448	1	0.05	63	1580	46	0.72	2	2	303	0.18	10	10	126	10	174	oc	Chip random	•
B386352	201	10	0.01	4	230	15	0.31	2	1	47	0.07	10	10	36	10	22	oc	Grab	()
B386353	737	1	0.14	91	1110	2	0.05	2	10	263	0.23	10	10	154	10	80	oc	Chip random	
B386354	641	1	0.02	33	1040	147	0.75	2	8	74	0.11	10	10	152	10	202	oc	Chip random	
B386355	1090	10	0.01	35	1090	13	2.00	2	10	266	0.18	10	10	206	10	59	oc	Chip	1.00
B386356	8	1	0.01	2	30	11	1.68	3	1	86	0.01	10	10	20	10	9	oc	Chip	1.00
B386357	24	2	0.01	1	20	5	0.07	2	1	100	0.01	10	10	6	10	3	00	Chip	1.00
B386358	10	1	0.01	2	20	9	0.08	4	1	132	0.01	10	10	5	10	2	oc	Chip	2.00
B386359	5	3	0.01	1	20	15	0.76	3	1	42	0.01	10	10	14	10	2	OC OC	Chip	1.00
B386360	47	3	0.01	6	30	9	5.91	2	1	29	0.01	10	10	25	10	6	oc	Chip	1.00
			0.01	2	-30 -90	3	1.20	2	1	120	0.01	10	10	7	10	12	SC	Chip random	1.00
B386361	364	2		_			0.60	2	2	32	0.01	10	10	32	10	- 9		Chip	1.00
B386362	36	342	0.07	1	650	9	1.89	2	<u>∠</u> 3	32	0.01	10	10	32 48	10	12	OC OC	Chip	1.00
B386363	47	29	0.06		640	13			-3-3-	33 70		10	10	48 73	10	1425		Grab	1.00
B386364	742	3	0.05	4	1120	59	2.98	2			0.06						OC C	1	
B386365	907	1	0.06	20	890	8	1.14	2	7	86	0.10	10	10	88	10	41	OC .	Chip random	ł l
B386366	923	2	0.08	13	2010	7	4.54	2	6	65	0.15	10	10	97	10	23	oc	Grab	0.50
B386367	2220	1	0.01	3	120	916	7.12	2	1	247	0.01	10	10	39	10	23200	OC	Chip	0.50
B386368	41	4	0.01	9	3340	19	1.04	22	2	75	0.01	10	10	20	10	125	oc	Chip	2.00
B386369	56	1	0.01	7	30	23	0.19	2	1	10	0.01	10	10	6	10	240	oc	Chip random	
B386370	29		0.01	8	400	10	0.30	12	1	35	0.01	10	10	7	10	11	oc	Chip random	
B386371	3050	1	0.01	5	150	6	0.48	4	3	531	0.01	10	10	41	10	27	oc	Grab	
B386372	45	1	0.01	6	100	8	0.24	3	1	13	0.01	10	10	3	10	10	oc	Chip random	
B386373	11100	1	0.01	1	20	544	0.15	3	1	553	0.01	10	10	5	10	129	fels	Grab	
B386374	1410	1	0.02	13	2170	14	1.09	2	14	57	0.01	10	10	186	10	101	fels	Grab	
B386375	4680	1	0.01	2	210	4	0.21	2	2	439	0.01	10	10	12	10	19	oc	Chip	2.50
B386376	3800	1	0.01	2	290	11	0.98	11	2	223	0.01	10	10	12	10	17	float	Grab	
B386377	1540	6	0.10	5	1520	12	4.11	2	13	47	0.08	10	10	138	10	109	oc	Grab	
B386378	716	4	0.07	7	1300	14	3.07	2	21	30	0.20	10	10	200	10	59	oc	Grab	
B386379	585	4	0.11	4	1380	7	3.27	2	8	39	0.06	10	10	94	10	54	oc	Chip	1.00
B386380	682	3	0.05	5	980	17	2.58	2	18	10	0.44	10	10	208	10	29	oc	Chip	1.50
B386381	1035	2	0.34	4	1580	5	5.12	2	15	263	0.05	10	10	112	10	50	oc	Grab	
B386382	675	2	0.01	2	1410	16	2.26	8	1	36	0.01	10	10	12	10	45	00	Chip	1.00
B386383	1350	1	0.02	1	2110	8	2.41	2	7	93	0.08	10	10	78	10	61	oc	Grab	
B386384	2500	1	0.01	1	2180	689	2.32	5	4	208	0.01	10	10	51	10	1270	oc	Chip	1.00
B386385	1735	1	0.01	2	2000	2070	3.97	3	3	27	0.01	10	10	63	10	1805	oc	Grab	
B386386	1040	1	0.01	19	940	144	2.90	2	3	10	0.01	10	10	33	10	129	oc	Chip	1.00
B386387	168	6	0.03	1	640	13	0.44	2	1	68	0.01	10	10	28	10	52	oc	Chip	2.00
B386388	283	1	0.05	1	1350	2680	2.15	2	2	40	0.02	10	10	41	10	1515	oc	Chip	1.00
B386389	1215	1	0,08	2	1240	595	1.32	3	6	78	0.21	10	10	97	10	203	oc	Chip	1.50
B386390	170	2	0.01	2	1360	20	0.10	2	1	13	0.01	10	10	30	10	51	oc	Grab	
B386391	585	5	0.11	7	1000	4	0.08	2	6	245	0.21	10	10		10	18	oc	Chip	!
B386392	663	5	0.02	2	840	15	0.79	2	5	155	0.24			265	10	31	float	Grab	1
B386393	904	1	0.05	3	270	34	0.14	2	3	238	0.31	10	10	829	10	67	float	Grab	
B386394	3910	1	0.01	12	340	7	0.01	2	7	776	0.01	10	10	51	10	29	float	Grab	
B386395	743	1	0.01	2	200	3	0.01	2	1	1080	0.01	10	10	7	10	11	vein	Chip	0.75
B386396	99	1	0.01	8	30	16	0.18	4	1	30	0.01	10	10	5	10	10	oc	Chip	2x2
B386397	73	19	0.01	6	250	1025	1.08	258	1	31	0.01	10	10	54	10	1140	oc	Chip	1x2
B386398	87	7	0.01	12	330	19	0.18	36	1	83	0.01	10	10	16	10	13	oc	Chip	Grab
B386399	825	2	0,21	4	860	9	1.31	2	8	100	0.40	10	10	162	10	65	oc	Chip	1x2
B386400	386	5	0.01	15	480	14	0.51	2	1	72	0.01	10	10	18	10	54	oc	chip	3.00
				<u> </u>										1				· · ·	1
B386401	432	74	0.02	49	1110	8	3.00	10	4	111	0.01	10	10	277	10	294	oc	grab	
	1		1				+					1							
B386402	1050	1	0.26	64	1520	17	1.50	2	16	172	0.03	10	10	167	10	83	oc	grab	
10000402	1.000		3.20		1020				+ · · ·	• • • • •	0.00	+	1.0	1.51	10	<u> </u>	<u> </u>		1
B386403	231	: 1	0.01	16	470	17	0.94	3	2	42	0.01	10	10	10	10	46	oc		
B386403	+		<u> </u>	7		17	1.53	14	3	30	0.01	<u> </u>	10		10	29	oc	arab	
0300404	161		0.02	1	3120	<u>!</u> /	1.03	14	- 3	30	0.01	10	10	1.08	1.12	23		grab	+
0000405		-	0.04		1340	4.4	0.00	-	E	B10	0.04	10	40	60	10	07	00	arah	
B386405	2340	2	0.04	1	1340	14	0.86	5	5	613	0.01		10		10	87	00	grab	
	79	1	0.03	2	2980	20	0.21	6	3	39	0.01		10	* *	10	23	OC	grab	+
B386406						20	0.66	14	5	87	0.01	10	10	151	10	64	OC	grab	1
B386407	628	2	0.05	3	3680												+ · · ·		1
	628 128 540	2 14 1	0.05	4	2540 1260	20 21 6	10.00			22 36	0.01	220		79	10 10	78 35	oc float	grab grab	

*

. .

All values in ppm unless stated as %

Sample	Mn	Mo	Na %	NI	P	Pb	S %	Sb	Sc	Sr	Ti	TI	U	V	W	Zn	Туре	Samp Type	Length
B386410	608	5	0.02	10	3290	19	1.90	26	3	64	0.01	10	10	45	10	100	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	grab	, see
B386501	000		0.02		0200		1.00		<u> </u>	• •	V.V.I	10				100	float	Grab	
	1930	3	0.01	3	510	2450	3.51	2	1	132	0.01	10	10	6	10	2350		0.00	
B386502	790	444	0.04	4	1300	2080	3.01	2	2	60	0.01	10	10	37	10	2080	float	Grab	
B386503	100		0.01		1000	2000	0.01		-					<u> </u>			oc	Chip	3.00
0000000	796	36	0.09	7	1920	15	0.57	2	8	100	0.20	10	10	144	10	99		F	
B386504				-					=								oc	Chip	2.00
2000001	314	739	0.03	2	750	164	0.83	2	2	31	0.01	10	10	27	10	192			
B386505	911		0.00	- 1			0.00	-									oc	Chip	2.00
0000000	1150	3	0.06	7	1450	9	0.01	2	7	90	0.26	10	10	160	10	112	00	omp	
B386506	1100	<u> </u>	0.00	,	1400		0.01				0.20		10				sc	Grab	
000000	897	6	0.01	12	360	140	1.68	2	3	237	0.02	10	10	75	10	354	30	Ciuo	
B386507	001		0.01	12	300	140	1.00	~		207	0.02	10	10			-00-	00	Chip	5.00
0000007	406	29	0.02	2	300	14	0.39	2	1	22	0.03	10	10	32	10	57	00	omp	0.00
B386508	700	20	0.02	-	000		0.00	-	-		0.00					0.	oc	Chip	2.00
0000000	276	53	0.02	2	370	258	0.29	2	1	18	0.01	10	10	35	10	80	00	omp	2.00
B386509	516	10	0.02	4	1110	14	0.89	2	2	60	0.06	10	10	100	10	53	oc	Chip	4.00
B386510	510		0.00		1110	14	0.03		-	00	0.00	- 10	10	100	10			Chip	2.00
0160060	527	44	0.02	2	400	102	2 40	2	1	33	0.02	10	10	33	10	1365	UC	Cinb	2.00
DODOT 1	927	44	0.03	2	490	102	2.18	4	-	- 33	0.03	10	10	33	10	1303		Chin	2.50
B386511	005		0.00	_	520	007	0.07	2	2	OF	0.04	10	40	20	10	4405	oc	Chip	2.50
B00054 8	895	8	0.02	2	530	207	0.37	2	2	65	0.01	10	10	36	10	1105		Oh in	4.00
B386512									-	-							oc	Chip	1.00
	468	45	0.02	10	700	6400	10.00	2	2	79	0.06	10	10	41	10	8220			0.00
B386513								_					1				oc	Chip	2.00
	834	52	0.10	15	2350	30	2.85	2	16	85	0.37	10	10	فسنسمط	10	142			
B386514	410	305	0.03	1	570	124	1.74	2	1	41	0.01	10	10	17	10	232	00	Chip	1.00
B386516	701	14	0.12	7	830	9	0.07	2	9	102	0.40	10	10	128	10	87	oc	Chip	3.00
B386517	884	5	0.11	6	830	14	0.16	2	11	46	0.49	10	10	164	10	91	OC	Chip	3.00
B386518												[oc	Chip	2.00
	84	1	0.01	9	110	10	0.07	2	1	10	0.01	10	10	15	10	15			
B386519	70	6	0.02	10	200	25	0.26	2	1	6	0.01	10	10	16	10	13	oc	Chip	2.00
B386520	67	3	0.02	6	200	16	0.08	2	1	8	0.01	10	10	6	10	25	oc	,Chip	2.00
B386521												İ	1				float	Grab	
	2610	1	0.01	3	100	11	0.92	19	3	437	0.01	10	10	51	10	132		<u>.</u>	
B386522	1735	1	0.01	2	90	1300	0.87	84	1	166	0.01	10	10	8	10	2810	float	Grab	
B386523		1	[ficat	Grab	1 1
	618	1	0.01	2	240	12	0.07	2	1	64	0.01	10	10	18	10	43			
B386524	924	4	0.06	5	1720	18	6.07	2	4	140	0.01	10	10	39	10	61	oc	Grab	
B386525	1300	1	0.01	2	120	6	4.80	10	1	446	0.01	10	10	5	10	9	float	Grab	
B386526	127	1	0.01	2	30	71	4.42	57	1	43	0.01	10	10	2	10	114	float	Grab	
B386527	52	1	0.01	1	10	44	0.83	47	1	1470	0.01	10	10	1	10	186	oc	Grab	
B386528		-						1	1 -		[float	Grab	
									1										
	7840	1	0.01	1	50	4570	1.30	26	1	1405	0.01	10	10	1	10	2140			
B386529	1435	1	0.01	22	910	9	0.30	2	12	358	0.01	10	10	113	10	48	float	Grab	
B386530			1	1			1		-								oc	Grab	
	4820	1	0.01	2	260	14400	4.60	31	2	862	0.01	10	10	6	10	5240			
B386531				1										İ			float	Grab	1
	587	1	0.01	1	230	146	1.15	3	1	152	0.01	10	10	4	10	142			
B386532		† ·		<u>.</u>					-			†	1	i – '		1	oc	Chip	3.00
	ĺ			ł														•	
1	556	' 1	0.01	4	80	187	2.80	4	1	148	0.01	10	10	6	10	98			
B386533	t	••• ——	1	<u>!</u>				···				-	<u> </u>	<u> </u>	-		float	Grab	
1	223	1	0.01	2	50	29	2.60	6	1	66	0.01	10	10	5	10	144		1	
B386534		<u> </u>		<u> </u>	<u> </u>			<u> </u>	†÷		<u> </u>	1	1	<u> </u>	<u> </u>	<u> </u>	oc	Chip	1.00
	681	2	0.01	3	850	17	0.69	4	5	255	0.01	10	10	22	10	37		-	
B386535		<u> </u>	0.01	Ť	1		1	<u> </u>	Ť			1	1.0	<u> </u>			ос	Chip	0.50
000000	301	3	0.01	10	670	32	0.19	3	6	20	0.01	10	10	25	10	55			0.00
B386536		Ŭ	0.01	+ ' <u>``</u>	0,0	52		٦	1 -		0.01	+	1.0				oc	Chip	1.00
0000000																	00		1.00
1	304	7	0.03	5	610	10	0.44	2	2	29	0.01	10	10	19	10	2610			
0396537	304		0.05	3	010	10	0.44	~	2	29	0.01		1.10	19		2010		Chin	0.25
B386537	4000		0.00	40	4040		0.44		~	400	0.07	40	1.0	400	40	440	00	Chip	0.25
0000500	1085	1	0.06	16	1940	6	0.14	9	9	102	0.27	10	10	109	10	449	-	Chin	2.00
B386538	4000		0.04	0	0400	~	0.40	_	100	440	0.00		1.0	140	1	2000	oc	Chip	3.00
Danar	1205	1	0.04	28	2190	9	0.10	2	10	140	0.32	10	110	119	10	3600			0.00
B386539		-						_			0.00	1	1		1		oc	Chip	0.80
	75	2	0.01	6	230	25	0.06	2	1	70	0.03	10	10	8	10	55			
B386540				1		1								_	} . <u>-</u>		SC	Chip	0.50
	1565	1	0.01	8	1280	8	0.20	2	6	343	0.07	10	10	538	10	144	L	<u> </u>	+
B386541				1		ļ	1		1				1		Ì		oc	Chip	1.00
	793	1	0.01	4	930	9	0.01	2	6	467	0.28	10	10	497	10	68	1		1

6...

.

.....

-

- ----

.....

....

. .

. .

.....

All values in ppm unless stated as %

All sample locations NAD 83 UTM Zone 9

Sample	Mn	Мо	Na %	NI	Р	Pb	S %	Sb	Sc	Sr	Ti	TI	U	V	W	Zn	Туре	Samp Type	Length
B386542												1		Í	1		OC	Chip	0.50
									1										
	196	12	0.01	1	80	243	1.18	2	1	128	0.06	10	10	155	10	63			
B386543			_					_									oc	Chip	1.00
	1460	1	0.05	4	1390	22	0.53	2	8	322	0.31	10	10	343	10	78			
B386544	4500		0.05		4000	40	4.00		E	450	0.04	10	10	114	10	68	OC .	Chip	1.50
DOOCEAE	1500	1	0.05	4	1930	12	1.26	3	5	156	0.01	10	10	114		00	ос	Chip	1.50
B386545	643	37	0.03	1	320	7	0.43	2	2	149	0.18	10	10	174	10	15	00	Cilip	1.00
B386546		57	0.00		ULU	· · · ·	0.10		~		0.10		10				oc	Chip	2.00
	1130	15	0.04	1	890	10	0.64	2	4	158	0.26	10	10	216	10	42			
B386547																	oc	Chip	2.00
	491	4	0.07	2	630	8	0.25	2	3	247	0.24	10	10	137	10	24			
B386548									1								oc	Chip	4.00
						_										~ .			ļ
	1580	1	0.06	4	1100	9	0.10	2	7	227	0.37	10	10	704	10	84		<u></u>	0.00
B386549	540		0.02		500	7	0.08	2	4	179	0.24	10	10	282	10	37	oc	Chip	2.00
B386550	519	1	0.03	3	590		0.00	<u> </u>	4	179	0.24	IU	10	202		3/	oc	Chip	2.00
0000000	612	1	0.03	3	730	9	0.05	2	5	52	0.22	10	10	297	10	60		Chip	2.00
B386551	1025	1	0.00	3	90	2	0.01	2	1	1020	0.01	10	10	6	10	9	ос	chip	0.04
B386553	3730	1	0.02	1	20	3	0.01	2	1	685	0.01	10	10	8	10	5	OC	chip	0.30
B386555	1110	1	0.09	4	2480	14	0.86	6	6	209	0.01	10	10	151	10	72	float	grab	
B386556	916	1	0.11	1	1040	6	0.03	2	3	117	0.02	10	10	61	10	47	oc	grab	
B386558																	oc	grab]
	1340	1	0.09	7	490	4	0.05	2	11	66	0.01	10	10	132	10	32			
B386559	408	3	0.04	11	670	5	1.62	3	11	11	0.03	10	10	105	10	14	float	grab	
B386560				10	070							40	40	10		40	oc	chip	0.12
DOOGEGI	188	1	0.02	13	270	4	0.81	2	2	11	0.01	10	10	10	10	19	flact	anah	
B386561	2200	1	0.04	1	70	2	1.70	2	7	406	0.01	10	10	32	10	7	float	grab	
B386562	2200	•	0.04	-	-70	2	1.70	<u> </u>	<u>'</u>	400	0.01	10	10	52		,	float	grab	+
5360302	707	1	0.03	31	1320	4	1.30	2	3	84	0.01	10	10	53	10	14	noar	grac	
B386563	926	4	0.08	4	1300	49	0.05	2	6	33	0.01	10	10	84	10	103	oc	grab	
B386564																	oc	grab	-
	773	2	0.12	5	1440	19	0.01	2	6	39	0.02	10	10	88	10	64		U.S.	
B386565	• ···-												[float	grab	
	1145	4	0.05	44	850	21	2.03	2	4	527	0.13	10	10	60	10	72			
B386566	896	1	0.05	28	2550	5	0.01	2	12	69	0.15	10	10	206	10	85	float	grab	
B386567	905	1	0.37	13	1210	6	0.04	2	22	240	0.13	10	10	263	10	87	float	Igrab	
B386568 B386569	730	6 30	0.10	42 11	800 60	 6	0.18	2	5	56 17	0.11	10 10	10 10	74	10 10	56 15	coll coll	grab grab	
B386570	227	1	0.07	3	1580	6	1.08	2	2	184	0.19	10	10	80	10	12	coll	grab	
B386571	194	1	0.06	12	2720	4	0.06	2	3	219	0.21	10	10	77	10	60	coll	grab	
B386572	439	3	0.13	41	1320	5	0.10	2	5	146	0.26	10	10	92	10	78	coll	grab	
B386573																	coll	grab	
	727	1	0.22	164	1010	7	0.09	2	8	114	0.28	10	10	155	10	35			
B386574	275	7	0.14	20	530	6	0.41	2	5	14	0.10	10	10	46	10	65	coll	grab	
B386575	440	3	0.04	17		6	1.51	2	6	262	0.54		10			66	oc	grab	-
B386576	1905	1	0.03	76	920	4	0.18	2	7	264	0.17			124		47	oc	chip	2.00
B386577 B386578	630 130	10	0.09	51 2	1240 360	3 12	1.54 0.52	2	4	130 178	0.26		10 10			275	00	grab grab	
B386579	176	1 4	0.12	58	1660	4	1.62	2	4	41	0.32		10		10	9	oc oc	grab	-
B386580	662	2	0.05	35	1190	63	0.67	4	8	104	0.00	10	10		10	45	oc	grab	
B386581	002	2	0.00	00	1100		0.01	<u>+</u>	Ť		0.01		10				oc	grab	
	519	6	0.10	3	1440	21	3.16	3	4	11	0.01	10	10	112	10	51		10	
B386582	2040	2	0.03	2	560	891	0.32	2	3	195	0.01	10	10		10	4790	oc	grab	
B386583	891	1	0.04	1	1020	9	0.08	2	2	204	0.03	10	10	37	10	55	oc	chip	0.06
B386584							<u> </u>					[.					oc	chip	0.10
	3160	1	0.02	1	190	14	0.01	2	2	772	0.01	10	10	15	10	49			
B386585				{										_			coll	grab	
	13800	1	0.01	1	40	755	0.60	3	1	654	0.01	10	10		10	1675		-61-	0.40
B386586	2600	1	0.01	1	210	10	0.60	2	2	649	0.01	10	10	<u> </u>	10	37	oc	chip	0.40
B386587	2250	2	0.02	2	580	27	0.99	5	3	444	0.01	10	10	-	10	57	OC	chip	0.30
B386588	741	2	0.08	4	1400	6	2.85	2	15 14	45 146	0.09	10	10			63 94	00	grab	
B386589 B386590	1220 920	<u>1</u>	0.33	3	1630	5 5	4.52	4	14	255	0.26		10			94 54	oc oc	grab grab	
10000090	263	' 1	0.32	1	1630	5 6	4.52	3	12	36	0.02	10	10			<u> </u>	oc oc	grab	
B386504												10	10		10	19	float		+
B386591 B386592	-	1	0.01	5	420	5	1 81	1.3	1.5	201	111111							TOLAD	
B386591 B386592 B386593	2910 1295	1 7	0.0 <u>1</u>	5 24	420	5 9	1.81	3	3	201 84	0.01	10	10			72	float	grab grab	

. . .

All values in ppm unless stated as %

Sample	Mn	Мо	Na %	NI	P	Pb	S %	\$b	Sc	Sr	TI	TI	U	٧	W	Zn	Туре	Samp Type	Length
B386595	573	1	0.12	3	1320	3	0.49	2	7	25	0.16	10	10	116	10	80	OC .	chip	0.12
B386596																	oc	grab	
	2100	3	0.09	13	1030	20	0.39	3	19	8	0.20	10	10	307	10	175			
B386597	57	6	0.15	1	250	15	0.32	2	1	6	0.01	10	10	6	10	26	oc	grab	
B386651																	oc	Chip	1.50
	801	1	0.04	4	690	4	0.04	2	4	142	0.07	10	10	219	10	62			
B386652																	oc	Chip	1.00
	788	1	0.03	4	940	27	0.05	2	5	240	0.27	10	10	400	10	115			
B386653																	OC	Chip	4.00
	1130	1	0.03	6	760	13	0.04	2	9	249	0.31	10	10	466	10	111			
B386654	1350	1	0.06	4	4100	7	0.06	2	13	616	0.34	10	10	903	10	134	OC	Chip	2.00
B386662																	OC	Chip	0.15
	8550	3	0.02	2	490	2560	4.00	3	2	4 47	0.01	10	10	48	10	1670			
8386663]				OC	Chip	2.00
	1030	12	0.06	З	2000	225	2.11	3	6	47	0.06	10	10	150	10	485			
B386664					2												oc	Chip	1.50
	589	54	0.07	2	640	138	0.61	2	2	43	0.02	10	10	45	10	142			
B386665																	oc	Chip	2.00
	448	55	0.25	11	2610	9	1.41	2	8	108	0.37	10	10	228	10	51			
B386666																	oc	Chip	2.50
	216	363	0.04	1	740	741	1. 1 4	2	2	27	0.05	10	10	39	370	142			
B386667	563	23	0.09	1	1460	12	1.36	2	7	43	0.21	10	10	105	10	82	oc	Chip	2.00
B386668																	OC	Chip	3.00
	557	16	0.11	6	2960	14	1.46	2	7	45	0.22	10	10	150	10	41			
B386669	891	6	0.05	6	2040	8	1.46	2	8	60	0.29	10	10	170	10	50	oc	Chip	3.00

....

--- **-**

-

.....

.

.

....

....

ه. بو

Camada	
	Lithology/Description
B386248 B386249	
B386250	
B386265	
B386265	
	skamed seds
	skamed seds
	skarned seds
B386270	
B386271	
B386272	
B386273	
	monz por
	crdd monz por?
B386276	
B386277	dior/monz?
B386278	
B386279	
B386280	monz
B386281	
B386282	
B386283	volc?
B386284	monz?
B386285	
B386286	
B386287	
B386288	
B386289	Fe-carb zone,approx 20m wide
B386290	
	arg seds
	cherty arg seds
	cherty arg seds ?
	Fe-carb zone,arg seds
	cherty mudstone-siltstone
B386296	cherty mudstone-siltstone,narrow qtz.veins
B396307	cherty mudstone-siltstone,narrow qtz.veins,calcite veins and
B386297	clots
B386298	clots And?,with 8cm qtz vein,fault face?rusty
B386298 B386299	clots
B386298 B386299 B386300	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides
B386298 B386299	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy
B386298 B386299 B386300	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite
B386298 B386299 B386300 B386325	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy
B386298 B386299 B386300 B386325 B386326	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite
B386298 B386299 B386300 B386325 B386326	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated
B386298 B386299 B386300 B386325 B386326 B386327	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated
B386298 B386299 B386300 B386325 B386326 B386327	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy
B386298 B386299 B386300 B386325 B386326 B386327 B386328 B386328 B386329	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy
B386298 B386299 B386300 B386325 B386326 B386327 B386328 B386328 B386329	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E
B386298 B386299 B386300 B386325 B386326 B386327 B386328 B386328 B386329	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy sllica
B386298 B386299 B386300 B386325 B386326 B386327 B386328 B386328 B386329 B386330	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dark grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia
B386298 B386299 B386300 B386325 B386326 B386327 B386327 B386329 B386330 B386331 B386332	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dak grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia matrix Minor white yelow alunite
B386298 B386299 B386300 B386325 B386326 B386327 B386327 B386329 B386330 B386331	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dark grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia matrix Minor white yelow alunite Talus grab Dark grey silica bx with light grey clasts
B386298 B386299 B386300 B386325 B386326 B386327 B386328 B386328 B386329 B386330 B386331 B386332 B386333	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dak grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia matrix Minor white yelow alunite
B386298 B386299 B386300 B386325 B386326 B386327 B386327 B386329 B386330 B386331 B386332	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dark grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia matrix Minor white yelow alunite Talus grab Dark grey silica bx with light grey clasts Boulder at base of ice Very strong quartz clay pyrite (10-30%)
B386298 B386299 B386300 B386325 B386326 B386327 B386328 B386328 B386329 B386330 B386331 B386332 B386333 B386333	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dark grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia matrix Minor white yelow alunite Talus grab Dark grey silica bx with light grey clasts
B386298 B386299 B386300 B386325 B386326 B386327 B386327 B386329 B386330 B386330 B386331 B386332 B386333 B386334 B386335	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dark grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia matrix Minor white yelow alunite Talus grab Dark grey silica bx with light grey clasts Boulder at base of ice Very strong quartz clay pyrite (10-30%) Massive medium grey silica rusty and locally brecciated milled
B386298 B386299 B386300 B386325 B386326 B386327 B386329 B386329 B386330 B386331 B386331 B386333 B386334 B386335 B386336	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dark grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia matrix Minor white yelow alunite Talus grab Dark grey silica bx with light grey clasts Boulder at base of ice Very strong quartz clay pyrite (10-30%) Massive medium grey silica rusty and locally brecciated milled Porphyry pale green calcite chlorite+/-serecite pyrite
B386298 B386299 B386300 B386325 B386326 B386327 B386327 B386329 B386330 B386330 B386331 B386332 B386333 B386334 B386335	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dark grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia matrix Minor white yelow alunite Talus grab Dark grey silica bx with light grey clasts Boulder at base of ice Very strong quartz clay pyrite (10-30%) Massive medium grey silica rusty and locally brecciated milled Porphyry pale green calcite chlorite+/-serecite pyrite Rusty porphyry with strong qtz ser py traces coveilite
B386298 B386299 B386300 B386325 B386326 B386327 B386328 B386329 B386330 B386331 B386331 B386332 B386334 B386334 B386335 B386337	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dark grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia matrix Minor white yelow alunite Talus grab Dark grey silica bx with light grey clasts Boulder at base of ice Very strong quartz clay pyrite (10-30%) Massive medium grey silica rusty and locally brecciated milled Porphyry pale green calcite chlorite+/-serecite pyrite Rusty porphyry with strong qtz ser py traces coveilite Green cal-ser-py alteration in porphyry with malachite stain
B386298 B386299 B386300 B386325 B386326 B386327 B386328 B386328 B386329 B386330 B386331 B386333 B386333 B386335 B386335 B386337 B386338	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dark grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia matrix Minor white yelow alunite Talus grab Dark grey silica bx with light grey clasts Boulder at base of ice Very strong quartz clay pyrite (10-30%) Massive medium grey silica rusty and locally brecciated milled Porphyry pale green calcite chlorite+/-serecite pyrite Rusty porphyry with strong qtz ser py traces coveilite Green cal-ser-py alteration in porphyry with malachite stain Py>>cpy 2%
B386298 B386299 B386300 B386325 B386326 B386327 B386328 B386328 B386329 B386330 B386331 B386331 B386333 B386335 B386335 B386337 B386338 B386337 B386338 B386339	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dark grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia matrix Minor white yelow alunite Talus grab Dark grey silica trusty and locally brecciated milled Porphyry pale green calcite chlorite+/-serecite pyrite Rusty porphyry with strong qtz ser py traces coveilite Ster cal-ser-py alteration in porphyry with malachite stain Py>>cpy 2%
B386298 B386299 B386300 B386325 B386326 B386327 B386328 B386328 B386329 B386330 B386331 B386333 B386333 B386335 B386335 B386337 B386338	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dark grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia matrix Minor white yelow alunite Talus grab Dark grey silica bx with light grey clasts Boulder at base of ice Very strong quartz clay pyrite (10-30%) Massive medium grey silica rusty and locally brecciated milled Porphyry pale green calcite chlorite+/-serecite pyrite Rusty porphyry with strong qtz ser py traces coveilite Green cal-ser-py alteration in porphyry with malachite stain Py>>cpy 2% Ser-cal-chi-py in porphyry with narrow black veinlets Strong qtz-ser-py with some py fracture fill. Porphyry?
B386298 B386299 B386300 B386325 B386326 B386327 B386327 B386328 B386329 B386330 B386330 B386331 B386333 B386333 B386334 B386336 B386337 B386338 B386339 B3863340	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dark grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia matrix Minor white yelow alunite Talus grab Dark grey silica trusty and locally brecciated milled Porphyry pale green calcite chlorite+/-serecite pyrite Rusty porphyry with strong qtz ser py traces coveilite Ster cal-ser-py alteration in porphyry with malachite stain Py>>cpy 2%
B386298 B386299 B386300 B386325 B386326 B386327 B386328 B386328 B386329 B386330 B386331 B386331 B386333 B386335 B386335 B386337 B386338 B386337 B386338 B386339	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskam with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dark grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia matrix Minor white yelow alunite Talus grab Dark grey silica tx with light grey clasts Boulder at base of ice Very strong quartz clay pyrite (10-30%) Massive medium grey silica rusty and locally brecciated milled Porphyry pale green calcite chlorite+/-serecite pyrite Rusty porphyry with strong qtz ser py traces coveilite Green cal-ser-py alteration in porphyry with malachite stain Py>>cpy 2% Ser-cal-chl-py in porphyry with narrow black veinlets Strong qtz-ser-py with some py fracture fill. Porphyry? Strong qtz-ser-py in volcanic with late black veinlet stockwork
B386298 B386299 B386300 B386326 B386327 B386326 B386327 B386328 B386329 B386329 B386329 B386331 B386331 B386332 B386333 B386333 B386334 B386335 B386336 B386337 B386338 B386339 B386341 B386341	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskam with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dark grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia matrix Minor white yelow alunite Talus grab Dark grey silica tx with light grey clasts Boulder at base of ice Very strong quartz clay pyrite (10-30%) Massive medium grey silica rusty and locally brecciated milled Porphyry pale green calcite chlorite+/-serecite pyrite Rusty porphyry with strong qtz ser py traces coveilite Green cal-ser-py alteration in porphyry with malachite stain Py>>cpy 2% Ser-cal-chl-py in porphyry with narrow black veinlets Strong qtz-ser-py in volcanic with late black veinlet stockwork Hbl-bio-piag-kspar porphyry with bio-mgt altered mafics and
B386298 B386299 B386300 B386325 B386326 B386327 B386328 B386329 B386330 B386331 B386331 B386332 B386333 B386334 B386336 B386337 B386336 B386337 B386336 B3863341 B3863412	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dark grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia matrix Minor white yelow alunite Talus grab Dark grey silica bx with light grey clasts Boulder at base of ice Very strong quartz clay pyrite (10-30%) Massive medium grey silica rusty and locally brecciated milled Porphyry pale green calcite chlorite+/-serecite pyrite Rusty porphyry with strong qtz ser py traces coveilite Green cal-ser-py alteration in porphyry with malachite stain Py>>cpy 2% Ser-cal-chl-py in porphyry with narrow black veinlets Strong qtz-ser-py in volcanic with late black veinlet stockwork Hbl-bio-piag-kspar porphyry with bio-mgt altered mafics and very minor cpy
B386298 B386299 B386300 B386326 B386327 B386326 B386327 B386328 B386329 B386329 B386329 B386331 B386331 B386332 B386333 B386333 B386334 B386335 B386336 B386337 B386338 B386339 B386341 B386341	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dark grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia matrix Minor white yelow alunite Talus grab Dark grey silica bx with light grey clasts Boulder at base of ice Very strong quartz clay pyrite (10-30%) Massive medium grey silica rusty and locally brecciated milled Porphyry pale green calcite chlorite+/-serecite pyrite Rusty porphyry with strong qtz ser py traces coveilite Green cal-ser-py alteration in porphyry with malachite stain Py>>cpy 2% Ser-cal-chl-py in porphyry with narrow black veinlets Strong qtz-ser-py in volcanic with late black veinlet stockwork Hbl-bio-piag-kspar porphyry with bio-mgt altered mafics and very minor cpy Bieached rusty porphyry with weak ser py (2%)
B386298 B386299 B386300 B386325 B386326 B386327 B386328 B386329 B386330 B386331 B386331 B386332 B386333 B386334 B386336 B386337 B386336 B386337 B386336 B3863341 B3863412	clots And?,with 8cm qtz vein,fault face?rusty Felsic Intrusive?qtz-carb stringers,ser,py Massive barite,approx 60% sulphides Chip epidote rich endoskarn with DARK 1-2% diss cpy Float train from ice pale yellow rhyolite with Fe stain malachite and diss cpy Float but very local Pale green skarn with 3% diss py Dark coloured megacrystic kspar porphyry with dissmeinated cpy mgt Pale white skarn band with abundant magnetite minor cpy 335/40E Brown grey weakly vuggy silica Fragmental with dark grey silica fragments in pale grey silica matrix. Minor alunite Pale buff grey silica with late drak silica as jigsaw breccia matrix Minor white yelow alunite Talus grab Dark grey silica bx with light grey clasts Boulder at base of ice Very strong quartz clay pyrite (10-30%) Massive medium grey silica rusty and locally brecciated milled Porphyry pale green calcite chlorite+/-serecite pyrite Rusty porphyry with strong qtz ser py traces coveilite Green cal-ser-py alteration in porphyry with malachite stain Py>>cpy 2% Ser-cal-chl-py in porphyry with narrow black veinlets Strong qtz-ser-py in volcanic with late black veinlet stockwork Hbl-bio-piag-kspar porphyry with bio-mgt altered mafics and very minor cpy

B386345 [Very strong qtz-ser-py B386347 [Py>cpy>qtz veln [50-60% sus) 020/40E B386347 [Py>cpy>qtz veln [50-60% sus) 020/40E B386348 [Intrusive with strong qz ser py and zones stronger pyrite Intrusive with remnant green to brown homfels? with late mo B386349 qz ser py Strong qz-ser-py with later qtz cal velns and some cpy fractu B386350 fill B386351 syen por; arg/sis B386352 syen por B386355 arg sis/ist B386355 arg sis/ist B386355 and brx/ap tuff B386356 [PP and/frgtl B386356] and brx/ap tuff B386356 and brx/ap tuff B386356] and brx/ap tuff B386356 and tap tuff B386356] and brx/ap tuff B386356] and tuff? B386356 monz por B386356 monz por B386356 and vc?/monz por B386357 and B386370 rhy B386371 vdc sst, arg B386371 vdc sst, arg B386372 vdc sis/sst? B386372 vdc sis/sst? B386375 vdc sis/sst? B386375 vdc sis/sst? B386376 vdc sis/sst? B386376 vdc sis/sst? B386376 vdc sis/sst? B386376 vdc sis/sst? B386377 and flow?/int? B386378 and flow?/int? B386379 and flow?/int? B386379 and flow?/int? B386379 and flow?/int? B386379 and flow?/int? B386381 and flow?/int? B386381 and flow?/int? B386383 and flow?/int? B386383 and flow?/int? B386383 and flow?/int? B386383 and flow?/int? B386383 and flow?/int? B386383 and flow?/int? B386383 and flow?/int? B386381 and flow?/int? B386381 and flow?/int? B386381 and flow?/int? B386381 and flow?/int? B386383 and flow?/int? B386383 and flow?/int? B386383 and flow?/int? B386383 and flow?/int? B386383 and flow?/int? B386383 and flow?/int? B386384 and vc B386383 and flow?/int? B386383 and flow?/int? B386384 and vc B386383 and flow?/int? B386383 and vc B386385 and vc B386385 and vc B386383 and sc rcd		Lithology/Description
B386347 Py>cpy>qtz vein (50-60% sus) 020/40E B386348 Intrusive with strong qz ser py and zones stronger pyrite Intrusive with strong qz ser py and zones stronger pyrite B386349 qz ser py Strong qz-ser-py with later qtz cal veins and some cpy fractu B386351 syen por; arg/sls B386352 syen por B386353 mafic syen?/gabbro B386354 syen por B386355 arg sls/lst B386356 FP and/frgtl B386357 and brx B386363 and izp tuff B386363 and izp tuff B386363 and izp tuff B386363 and alg tuff B386364 and vc?/monz por B386365 monz B386366 and B386367 and B386368 and B386367 and B386367 and B386367 and izp tuff B386367 and izp tuff B386371 volc sst, arg B386372 inty <		
B386348 Intrusive with strong qz ser py and zones stronger pyrite Intrusive with remnant green to brown hornfels? With late mo B386350 Strong qz-ser-py with later qtz cal veins and some opy fractu B386351 syen por; arg/sis B386352 syen por; arg/sis B386353 mafic syen?/gabbro B386354 syen por B386355 arg sis/ist B386356 arg sis/ist B386357 and brx B386358 and brx/lap tuff B386361 and tuff? B386362 monz B386363 monz B386364 and vc?/monz por B386365 monz B386366 and vc?/monz por B386371 nol set. arg B386372 rhy B386373 and B386374 and/monz? B386375 yolc sis/sst? B386376 yolc sis/sst? B386377 and flow?/int? B386378 and flow?/int? B386389 and flow?/int? B386389 and flow?/int? B386381	3386346	Very strong qz ser py 2% diss py
Intrusive with remnant green to brown homfels? with late mo B386349 qz ser py Strong qz-ser-py with later qtz cal veins and some cpy fractu B386351 syen por B386352 syen por B386353 mafic syen?/gabbro B386354 syen por B386355 ang sis/ist B386356 arg sis/ist B386357 and brx B386358 and brx/lap tuff B386361 and tuff? B386362 monz B386363 monz B386364 and vc?/monz por B386365 monz por B386366 and? B386367 and B386368 st. volc sst. arg B386371 volc sst. arg B386372 rhy B386373 and B386374 and/morz? B386375 volc sls/sst? B386376 volc sls/sst? B386377 and flow?/int? B386378 and flow?/int? B386379 and flow?/int? B386370 volc sls/sst?		
B386349 qz ser py Strong qz-ser-py with later qtz cal veins and some cpy fractu B386351 syen por B386352 syen por B386353 mailc syen?/gabbro B386354 syen por B386355 arg sis/ist B386356 arg sis/ist B386356 arg sis/ist B386356 and bx B386356 and bx B386357 and bx B386368 and bx/lap tuff B386361 and tuff? B386362 monz B386363 monz B386364 and vc?/monz por B386365 and yc?/monz por B386366 and? B386371 and B386372 rhy B386373 and B386374 volc sis/sst? B386375 volc sis/sst? B386376 volc sis/sst? B386377 and flow?/int? B386382 and flow?/int? B386383 crdd monz por	3386348	Intrusive with strong qz ser py and zones stronger pyrite
Strong qz-ser-py with later qtz cal veins and some cpy fractu B386350 B386351 syen por; arg/sis B386352 B386353 syen por B386354 syen por B386355 B386356 B386356 B386357 B386358 B386359 B1F P dyke? brx dyke? B386361 B386362 monz B386363 B386364 and vc?/monz por B386366 B386366 monz B386366 B386367 B386368 monz B386367 B386370 B386371 B386372 fty B386373 B386374 B386375 shd B386376 shy B386377 B386378 shdfow?/int? B386379 shdfow?/int? </td <td></td> <td></td>		
B386350 fill B386351 syen por B386352 syen por B386353 mafic syen?/gabbro B386355 arg sls/ist B386356 arg sls/ist B386357 and brx B386356 arg sls/ist B386357 and brx B386356 and sp.tuff B386361 and bx/lap tuff B386362 monz B386363 and tap tuff B386363 monz B386363 and color B386363 and color B386371 volc sst. arg B386372 rhy B386373 and B386374 volc sls/sst? B386375 volc sls/sst? <td< td=""><td></td><td></td></td<>		
B386351 syen por, arg/sls B386352 syen por B386353 mafic syen?/gabbro B386354 syen por B386355 arg sls/lst B386355 arg sls/lst B386355 arg sls/lst B386356 FP and/frgtl B386356 and brx/lap tuff B386356 and lap tuff B386362 monz B386363 monz B386364 and vc?/monz por B386365 monz B386366 and? B386366 and? B386366 and vc?/monz por B386367 and B386368 rhy B386371 volc sst. arg B386372 rhy B386373 and B386374 and/wc?/int? B386375 volc sls/sst? B386376 volc sls/sst? B386377 and flow?/int? B386382 and B386383 and flow?/int? B386382		
B386352 syen por B386354 syen por B386354 syen por B386354 syen por B386355 arg sis/ist B386356 FP and/frgtl B386357 and brx B386358 and brx B386359 sil FP dyke? brx dyke? B386360 and tuff? B386361 and tuff? B386362 monz B386363 monz B386364 and vc?/monz por B386365 monz B386366 and? B386367 and B386368 monz B386370 rhy B386371 volc sst. B386372 rhy B386373 and flow?/int? B386374 and/monz? B386375 volc sis/sst? B386376 and flow?/int? B386377 and flow?/int? B386382 and flow?/int? B386382 and wc B386383 rcdd monz por </td <td></td> <td></td>		
B386353 mafic syen?/gabbro B386354 syen por B386355 arg sis/ist B386356 FP and/figtt B386357 and brx B386358 and brx/lap tuff B386359 sil FP dyke? brx dyke? B386350 and tap tuff B386361 and tuff? B386362 monz B386363 monz B386364 and vc?/monz por B386365 monz B386366 and? B386367 and B386368 ist, volc sst, arg B386370 rhy B386371 volc sis/sst? B386372 rhy B386373 and B386374 and/monz? B386375 volc sis/sst? B386376 volc sis/sst? B386377 and flow?/int? B386378 and flow?/int? B386379 and flow?/int? B386382 and flow?/int? B386383 and flow?/int?		
B386354 syen por B386355 arg sis/ist B386355 and brx B386356 and brx B386357 and brx B386358 and brx B386359 ail FP dyke? brx dyke? B386361 and tuff? B386362 monz B386363 monz B386364 and vc?/monz por B386365 monz B386366 and? B386367 and B386368 inonz por B386367 and B386367 and B386370 rhy B386371 wolc sis/sst? B386372 rhy B386373 and B386374 and flow?/int? B386375 wolc sis/sst? B386376 wolc sis/sst? B386377 and flow?/int? B386383 and flow?/int? B386383 and flow?/int? B386384 and vc; crdd monz por B386385 and vc <td></td> <td></td>		
B386355 arg sis/ist B386356 FP and/figti B386357 and brx B386358 and brx/lap tuff B386359 sill FP dyke? brx dyke? B386360 and tuff? B386361 and tuff? B386362 monz B386363 monz B386364 and vc?/monz por B386365 monz por B386366 and ? B386367 and B386368 ist, volc sst, arg B386371 volc sst, arg B386372 my B386373 and B386374 and/monz? B386375 volc sis/sst? B386376 volc sis/sst? B386377 and flow?/int? B386378 and flow?/int? B386379 and flow?/int? B386381 and flow?/int? B386382 and B386383 crdd monz por B386384 and flow?/int? B386385 and flow?/int?		
B386356 FP and/frgtl B386357 and brx B386358 and brx/lap tuff B386359 sill FP dyke? brx dyke? B386360 and tap tuff B386361 and tuff? B386363 monz B386364 and vc?/monz por B386365 monz B386366 and vc?/monz por B386367 mol B386368 ist, voic sst, arg B386371 molc sst, arg B386372 my B386373 and B386374 and/monz? B386375 voic sis/sst? B386376 voic sis/sst? B386377 and flow?/int? B386378 and flow?/int? B386383 crdd monz por B386384 and flow?/int? B386385 and flow?/int? B386386 and flow?/int? B386386 and row B386386 and row B386386 and vc B386386 and vc <t< td=""><td>3386355</td><td>ara ele/let</td></t<>	3386355	ara ele/let
B386357 and brx/lap tuff B386359 sil FP dyke? brx dyke? B386361 and tuff? B386362 monz B386363 monz B386364 and vc?/monz por B386365 monz por B386366 and vc?/monz por B386367 and B386368 st, volc sst, arg B386371 volc sst B386372 rhy B386373 and flow?/int? B386374 and/monz? B386375 volc sis/sst? B386376 volc sis/sst? B386377 and flow?/int? B386378 and flow?/int? B386382 and flow?/int? B386383 and flow?/int? B386384 and vc; crdd monz por B386385 and vc; drd monz por <		
B386358 and brx/lap tuff B386360 and tap tuff B386361 and tuff? B386362 monz B386363 monz B386364 and vc?/monz por B386365 monz B386366 and vc?/monz por B386366 and vc?/monz por B386366 and vc?/monz por B386366 and vc?/monz por B386367 and B386368 ist, voic sst, arg B386371 voic sst, arg B386372 rhy B386373 and B386374 and/monz? B386375 voic sis/sst? B386376 voic sis/sst? B386377 and flow?/int? B386378 and flow?/int? B386379 and flow?/int? B386381 and flow?/int? B386382 and vc B386383 crid monz por B386384 and vc B386385 and vc B386386 and vc		
B386359 sil FP dyke? bx dyke? B386360 and tap tuff B386361 and tuff? B386362 monz B386363 monz por B386366 and vc?/monz por B386366 and vc?/monz por B386366 and vc?/monz por B386366 and vc?/monz por B386367 and B386368 int, volc sst, arg B386371 volc sst, str B386372 rhy B386373 and B386374 and/monz? B386375 volc sis/sst? B386376 volc sis/sst? B386377 and flow?/int? B386383 and flow?/int? B386384 and flow?/int? B386385 and vc B386386 and vc B386		
B386360 and tap tuff B386361 and tuff? B386362 monz B386363 monz por B386364 and vc?/monz por B386365 monz por B386366 and vc?/monz por B386366 and vc?/monz por B386366 and vc?/monz por B386366 and vc?/monz por B386367 and B386367 and B386371 volc sst, arg B386372 rhy B386373 and B386374 and/monz? B386375 volc sis/sst? B386376 volc sis/sst? B386377 and flow?/int? B386378 and flow?/int? B386381 and flow?/int? B386382 and vc B386383 cridd monz por B386384 and vc B386385 and vc B386386 and? B386381 and wc B386382 cridd monz por B3863831		
B386361 and tuff? B386362 monz B386363 monz por B386364 and vc?/monz por B386365 monz por B386366 and vc?/monz por B386366 and vc? B386366 and vc? B386367 and B386368 Ist, volc sst, arg B386367 and B386370 rhy B386371 volc sst B386372 rhy B386373 and B386374 and/monz? B386375 volc sls/sst? B386376 volc sls/sst? B386377 and flow?/int? B386383 and flow?/int? B386384 and vc? crdd monz por B386385 and flow?/int? B386386 and vc B386386 and vc? B386386 and vc? B386386 and vc? B386386 and vc? B386387 crdd monz por B386388 a		
B386362 monz B386363 monz B386364 and vc?/monz por B386365 monz por B386366 and vc?/monz por B386366 and B386366 and B386367 and B386368 ist, volc sst, arg B386370 rhy B386371 volc sst B386372 rhy B386373 and B386374 and/monz? B386375 volc sis/sst? B386376 volc sis/sst? B386377 and flow?/int? B386378 and flow?/int? B386380 and flow?/int? B386381 and flow?/int? B386382 and B386383 crdd monz por B386384 and vc; crdd monz por dyke B386385 and vc B386386 and? B386386 and? B386386 and? B386386 and? B386386 and? <		
B386363 monz B386364 and vc?/monz por B386366 andr B386366 andr B386367 and B386368 ist, voic sst, arg B386369 rhy B386371 voic sst B386372 rhy B386373 and B386374 and/monz? B386375 voic sis/sst? B386376 and flow?/int? B386377 and flow?/int? B386378 and flow?/int? B386379 and flow?/int? B386379 and flow?/int? B386381 and flow?/int? B386382 and B386383 crdd monz por B386384 and vc B386385 and vc B386386 and? <		
B386364 and vc?/monz por B386365 monz por B386366 and? B386367 and B386368 lst, volc sst, arg B386369 rhy B386371 volc sst, arg B386372 rhy B386373 and B386374 and/monz? B386375 volc sls/sst? B386376 volc sls/sst? B386377 and flow?/int? B386378 and flow?/int? B386377 and flow?/int? B386378 and flow?/int? B386381 and flow?/int? B386382 and B386383 crdd monz por B386384 and vc B386385 and vc B386386 and? B386387 crdd monz por B386388 crdd monz por B386389 pale gm int? or and vc? B386389 int? B386389 pale gm int? or and vc? B386391 And with syanite dykes,fairly fresh look		
B386365 monz por B386366 and? B386367 and B386368 lst, volc sst, arg B386367 ny B386370 rhy B386371 volc sst B386372 rhy B386373 and B386374 and/monz? B386375 volc sls/sst? B386376 volc sls/sst? B386377 and flow?/int? B386378 and flow?/int? B386379 and flow?/int? B386381 and flow?/int? B386382 and flow?/int? B386383 crdd monz por B386384 and vc; crdd monz por dyke B386385 and vc B386386 and? B386385 and vc B386386 and? B386386 and? B386386 and? B386386 and? B386386 and? B386385 and wc B386386 and?		
B386366 and? B386367 and B386368 list, volc sst, arg B3863670 rhy B386371 volc sst B386372 rhy B386373 and B386374 and/monz? B386375 volc sls/sst? B386376 volc sls/sst? B386377 and flow?/int? B386378 and flow?/int? B386378 and flow?/int? B386381 and flow?/int? B386382 and B386383 crdd monz por B386382 and B386383 crdd monz por dyke B386384 and vc; crdd monz por dyke B386385 and? B386386 and? B386385 and vc B386386 and? B386386 and? B386386 and? B386386 and? B386386 and? B386385 and vc; crdd monz por B386386 and?		
B386367 and B386368 Ist, voic sst, arg B386369 rhy B386371 voic sst B386372 rhy B386373 and B386374 and/monz? B386375 voic sis/sst? B386376 voic sis/sst? B386377 and flow?/int? B386378 and flow?/int? B386381 and flow?/int? B386382 and B386383 crdd monz por B386383 and flow?/int? B386383 and flow?/int? B386383 and flow?/int? B386384 and vc; crdd monz por dyke B386385 and vc B386386 and? B386387 crdd monz por		
B386368 lst, voic sst, arg B386369 rhy B386370 rhy B386371 voic sst B386372 rhy B386373 and B386374 and/monz? B386375 voic sis/sst? B386376 voic sis/sst? B386377 and flow?/int? B386378 and flow?/int? B386379 and flow?/int? B386379 and flow?/int? B386379 and flow?/int? B386380 and flow?/int? B386381 and flow?/int? B386382 and B386383 crdd monz por B386384 and vc, crdd monz por dyke B386385 and vc B386386 and? B386386 crdd monz por B386389 int? B386389 int? B386391 And with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy,rare qtz.stringers B386393 Intrusive,hard and glassy,rare qtz.stringers,str Cu sta		
B386369 rhy B386370 rhy B386371 voic sst B386373 and B386374 and/monz? B386375 voic sis/sst? B386376 voic sis/sst? B386377 and flow?/int? B386378 and flow?/int? B386379 and flow?/int? B386379 and flow?/int? B386379 and flow?/int? B386380 and flow?/int? B386381 and flow?/int? B386382 and B386383 crdd monz por B386384 and vc B386385 and vc B386386 and? B386386 and? B386386 and vc B386389 int? B386389 pale gm int? or and vc? B386391 And with syanite dykes,fairly fresh looking B		
B386370 rhy B386371 voic sst B386372 rhy B386373 and B386374 and/monz? B386375 voic sis/sst? B386376 voic sis/sst? B386377 and flow?/int? B386378 and flow?/int? B386379 and flow?/int? B386381 and flow?/int? B386382 and B386383 crdd monz por B386384 and vc; crdd monz por dyke B386385 and vc B386386 and? B386385 and vc B386386 and? B386386 and? B386386 and? B386386 and? B386386 and? B386387 crdd monz por B386388 int? B386390 pale gm int? or and vc? B386391 And.with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy.rare qtz.stringers B386393 Intrusive,h		
B386371 volc sst B386372 rhy B386373 and B386374 and/monz? B386375 volc sls/sst? B386376 volc sls/sst? B386377 and flow?/int? B386378 and flow?/int? B386379 and flow?/int? B386379 and flow?/int? B386381 and flow?/int? B386382 and B386383 crdd monz por B386384 and vc; crdd monz por dyke B386385 and vc B386386 and? B386387 crdd monz por B386388 crdd monz por B386389 int? B386380 pale gm int? or and vc? B386391 And.with syanite dykes.fairly fresh looking B386392 Intrusive, hard and glassy.rare qtz.stringers B386393 Intrusive, hard and glassy.rare qtz.stringers.str Cu stain B386393 Intrusive, hard and glassy.rare qtz.stringers.str Cu stain B386394 Qtz-carb Sk float.alunite? B386395 Black-carb vein.strike168.dip50east B386396		
B386372 rhy B386373 and B386374 and/monz? B386375 volc sis/sst? B386376 volc sis/sst? B386377 and flow?/int? B386378 and flow?/int? B386379 and flow?/int? B386379 and flow?/int? B386381 and flow?/int? B386382 and B386383 crdd monz por B386384 and vc; crdd monz por dyke B386385 and vc B386386 and? B386385 and vc B386386 and? B386386 and? B386386 and? B386386 and? B386386 and? B386387 crdd monz por B386388 crdd monz por B386391 And.with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy,rare qtz.stringers B386393 Intrusive,hard and glassy,rare qtz.stringers,str Cu stain B3863939 Biack-carb vein,strike168,		
B386373 and B386374 and/monz? B386375 voic sis/sst? B386376 voic sis/sst? B386377 and flow?/int? B386378 and flow?/int? B386379 and flow?/int? B386379 and flow?/int? B386380 and flow?/int? B386381 and flow?/int? B386382 and B386383 crdd monz por B386382 and vo: crdd monz por dyke B386383 crdd monz por B386384 and vc: crdd monz por dyke B386385 and vc: crdd monz por B386386 and? B386387 crdd monz por B386388 crdd monz por B386389 pale gm int? or and vc? B386391 And.with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy,rare qtz.stringers B386393 Intrusive,hard and glassy,rare qtz.stringers B386393 Intrusive,hard and glassy,rare qtz.stringers B386394 Qtz-carb Sx float,alunite? B386395 Biack-carb vein,strike168,dip50east		
B386374 and/monz? B386375 voic sis/sst? B386376 voic sis/sst? B386377 and flow?/int? B386378 and flow?/int? B386379 and flow?/int? B386379 and flow?/int? B386380 and flow?/int? B386381 and flow?/int? B386382 and B386383 crdd monz por B386384 and vc; crdd monz por dyke B386385 and vc B386386 and? B386387 crdd monz por B386388 crdd monz por B386386 and? B386387 crdd monz por B386388 int? B386389 pale gm int? or and vc? B386390 pale gm int? or and vc? B386391 And.with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy.rare qtz.stringers B386393 Intrusive,hard and glassy.rare qtz.stringers,str Cu stain B386393 Biack-carb vein,strike168,dip50east B386394 Qtz-carb Bx float,alunite? B386395 Biack-carb vein		
B386375 voic sis/sst? B386376 voic sis/sst? B386377 and flow?/int? B386379 and flow?/int? B386379 and flow?/int? B386379 and flow?/int? B386379 and flow?/int? B386380 and flow?/int? B386381 and flow?/int? B386382 and B386383 crdd monz por B386383 crdd monz por B386384 and vc, crdd monz por dyke B386385 and vc B386386 and? B386386 and? B386386 and vc B386387 crdd monz por B386389 pale gm int? or and vc? B386390 pale gm int? or and vc? B386391 And with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy,rare qtz.stringers. B386393 Intrusive,hard and glassy,rare qtz.stringers. B386393 Biack-carb		
B386376 voic sis/sst? B386377 and flow?/int? B386378 and flow?/int? B386379 and flow?/int? B386379 and flow?/int? B386380 and flow?/int? B386381 and flow?/int? B386382 and B386383 crdd monz por B386384 and vc; crdd monz por dyke B386385 and vc B386384 and vc; crdd monz por dyke B386385 and vc B386386 and? B386386 and? B386386 and? B386386 and? B386386 and? B386387 crdd monz por B386388 int? B386390 pale gm int? or and vc? B386391 And.with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy.rare qtz.stringers B386393 Intrusive,hard and glassy.rare qtz.stringers B386394 Qtz-carb Bx float,alunife? B386395 Black-carb vein,strike168,dip50east B386396 Same as JB,s #B386269 <td< td=""><td></td><td></td></td<>		
B386377 and flow?/int? B386378 and flow?/int? B386379 and flow?/int? B386380 and flow?/int? B386381 and flow?/int? B386382 and flow?/int? B386383 and flow?/int? B386384 and flow?/int? B386385 and monz por B386386 and? B386386 and? B386386 and? B386386 and? B386386 and? B386387 crdd monz por B386388 crdd monz por B386389 and? B386380 pale gm int? or and vc? B386391 And with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy,rare qtz.stringers B386393 Intrusive,hard and glassy,rare qtz.stringers,str Cu stain B386394 Qtz-carb Bx float,alunite? B386395 Black-carb vein,strike168,dip50east B386396 Same as JB,s #B386269 B386397 Rhyolite Bx. Qtz flooded,unit strike10 dip 40west B386398 Rhyolite ,frac.rusty B386399		
B386378 and flow?/int? B386379 and flow?/int? B386380 and flow?/int? B386381 and flow?/int? B386382 and B386383 crdd monz por B386384 and vc B386385 and vc B386386 and? B386386 and? B386386 and? B386387 crdd monz por B386388 crdd monz por B386388 crdd monz por B386388 crdd monz por B386389 int? B386380 pale gm int? or and vc? B386391 And.with syanite dykes,fairly fresh looking B386392 Intrusive, hard and glassy,rare qtz.stringers, str Cu stain B386393 Intrusive, hard and glassy,rare qtz.stringers,str Cu stain B386394 Qtz-carb Bx float,alunite? B386395 Black-carb vein,strike168,dip50east B386396 Same as JB,s #B386269 B386397 Rhyolite frac.rusty B386398 Rhyolite Bx. Qtz flooded,unit strike10 dip 40west B386399 Skarned Intrusive?Strong epidote stringers and blebs		
B386379 and flow?/int? B386380 and flow?/int? B386381 and flow?/int? B386382 and B386383 crdd monz por B386384 and vc; crdd monz por dyke B386385 and vc; B386386 and? B386386 and? B386386 and? B386386 and? B386386 crdd monz por B386386 crdd monz por B386387 crdd monz por B386388 crdd monz por B386389 int? B386380 pale gm int? or and vc? B386391 And.with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy,rare qtz.stringers B386393 Intrusive,hard and glassy,rare qtz.stringers,str Cu stain B386394 Qtz-carb Sk float,alunite? B386395 Biack-carb vein,strike168,dip50east B386396 Same as JB,s #B386269 B386397 Rhyolite frac,rusty B386398 Rhyolite frac,rusty B386399 Skarned Intrusive?Strong epidote stringers and blebs B3864		
B386380 and flow?/Int? B386381 and flow?/Int? B386382 and B386383 crdd monz por B386384 and vc; crdd monz por dyke B386385 and vc; crdd monz por dyke B386386 and vc; B386386 and vc; B386386 and? B386386 and? B386386 and? B386386 and? B386386 and? B386387 crdd monz por B386388 crdd monz por B386389 pale gm int? or and vc? B386391 And.with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy,rare qtz.stringers B386393 Intrusive,hard and glassy,rare qtz.stringers,str Cu stain B386393 Black-carb vein,strike168,dip50east B386394 Qtz-carb Ex float,alunite? B386395 Black-carb vein,strike168,dip50east B386396 Same as JB,s #B386269 B386397 Rhyolite frac,rusty B386398 Rhyolite frac,rusty B386399 Skarned Intrusive?Strong epidote stringers and blebs </td <td></td> <td></td>		
B386381 and flow?/int? B386382 and B386383 crdd monz por B386384 and vc; crdd monz por dyke B386385 and vc; crdd monz por dyke B386386 and? B386386 and? B386386 and? B386386 and? B386386 and? B386387 crdd monz por B386388 crdd monz por B386389 int? B386389 pale gm int? or and vc? B386391 And.with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy,rare qtz.stringers B386393 Intrusive,hard and glassy,rare qtz.stringers,str Cu stain B386393 Biack-carb vein,strike168,dip50east B386394 Qtz-carb Bx float,alunite? B386395 Biack-carb vein,strike168,dip50east B386396 Same as JB,s #B386269 B386397 Rhyolite Bx. Qtz flooded,unit strike10 dip 40west B386398 Rhyolite ,frac,rusty B386399 Skarned Intrusive?Strong epidote stringers and blebs B386400 gossanous pyritic siliceous sediments		
B386382 and B386383 crdd monz por B386384 and vc; crdd monz por dyke B386385 and vc B386386 and? B386386 and? B386386 and? B386387 crdd monz por B386386 and? B386387 crdd monz por B386389 int? B386389 pale gm int? or and vc? B386391 And.with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy,rare qtz.stringers B386393 Intrusive,hard and glassy,rare qtz.stringers,str Cu stain B386394 Qtz-carb Bx float,alunite? B386395 Black-carb vein,strike168,dip50east B386396 Same as JB,s #B386269 B386397 Rhyolite Bx. Qtz flooded,unit strike10 dip 40west B386398 Rhyolite frac,rusty B386399 Skarned Intrusive?Strong epidote stringers and blebs B386400 gossanous pyritic siliceous sediments shaly graphitic sed with qtz stringers (wp is 192, sample B386401 386401))		
B386383 crdd monz por B386384 and vc; crdd monz por dyke B386385 and vc B386386 and? B386386 and? B386386 and? B386386 and? B386386 and? B386386 crdd monz por B386389 int? B386390 pale gm int? or and vc? B386391 And.with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy.rare qtz.stringers B386393 Intrusive,hard and glassy.rare qtz.stringers,str Cu stain B386394 Qtz-carb Bx float,alunite? B386395 Black-carb vein,strike168,dip50east B386396 Same as JB,s #B386269 B386397 Rhyolite Bx. Qtz flooded,unit strike10 dip 40west B386398 Rhyolite, frac.rusty B386399 Skarned Intrusive?Strong epidote stringers and blebs B386390 Sosanous pyritic siliceous sediments shaly graphitic sel with qtz stringers (wp is 192, sample B386401 386401))		
B386384 and vc; crdd monz por dyke B386385 and vc B386386 and? B386386 and? B386387 crdd monz por B386388 crdd monz por B386389 int? B386390 pale gm int? or and vc? B386391 And.with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy,rare qtz.stringers B386393 Intrusive,hard and glassy,rare qtz.stringers,str Cu stain B386394 Qtz-carb Bx float,alunite? B386395 Black-carb vein,strike168,dip50east B386396 Same as JB,s #JB386269 B386397 Rhyolite Bx, Qtz flooded,unit strike10 dip 40west B386398 Rhyolite Bx, Qtz flooded,unit strike10 dip 40west B386399 Skarned Intrusive?Strong epidote stringers and blebs B386400 gossanous pyritic siliceous sediments shaly graphitic sed with qtz stringers (wp is 192, sample B386401 386401))		
B386386 and? B386386 crdd monz por B386387 crdd monz por B386388 crdd monz por B386389 int? B386390 pale gm int? or and vc? B386391 And.with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy,rare qtz.stringers B386393 Intrusive,hard and glassy,rare qtz.stringers,str Cu stain B386394 Qtz-carb Bx float,alunite? B386395 Black-carb vein,strike168,dip50east B386396 Same as JB,s #B386269 B386397 Rhyolite Bx. Qtz flooded,unit strike10 dip 40west B386398 Rhyolite, frac,rusty B386399 Skarned Intrusive?Strong epidote stringers and blebs B386400 gossanous pyritic siliceous sediments shaly graphitic sed with qtz stringers (wp is 192, sample B386401 386401))		
B386387 crdd monz por B386388 crdd monz por B386389 int? B386390 pale gm int? or and vc? B386391 And.with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy,rare qtz.stringers B386393 Intrusive,hard and glassy,rare qtz.stringers,str Cu stain B386394 Qtz-carb Bx float,alunite? B386395 Biack-carb vein,strike168,dip50east B386396 Same as JB,s #B386269 B386397 Rhyolite Bx. Qtz flooded,unit strike10 dip 40west B386398 Rhyolite, frac,rusty B386399 Skarned Intrusive?Strong epidote stringers and blebs B386400 gossanous pyritic siliceous sediments shaly graphitic sed with qtz stringers (wp is 192, sample B386401 386401))	B386385	and vc
B386388 crdd monz por B386389 int? B386390 pale gm int? or and vc? B386391 And.with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy,rare qtz.stringers B386393 Intrusive,hard and glassy,rare qtz.stringers,str Cu stain B386394 Qtz-carb Bx float,alunite? B386395 Biack-carb vein,strike168,dip50east B386396 Same as JB,s #B386269 B386397 Rhyolite Bx. Qtz flooded,unit strike10 dip 40west B386398 Riyolite, frac,rusty B386399 Skarned Intrusive?Strong epidote stringers and blebs B386400 gossanous pyritic siliceous sediments shaly graphitic sed with qtz stringers (wp is 192, sample B386401 386401))	B386386	and?
B386388 crdd monz por B386389 int? B386390 pale gm int? or and vc? B386391 And.with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy,rare qtz.stringers B386393 Intrusive,hard and glassy,rare qtz.stringers,str Cu stain B386394 Qtz-carb Bx float,alunite? B386395 Biack-carb vein,strike168,dip50east B386396 Same as JB,s #B386269 B386397 Rhyolite Bx. Qtz flooded,unit strike10 dip 40west B386398 Riyolite, frac,rusty B386399 Skarned Intrusive?Strong epidote stringers and blebs B386400 gossanous pyritic siliceous sediments shaly graphitic sed with qtz stringers (wp is 192, sample B386401 386401))	B386387	crdd monz por
B386390 pale gm int? or and vc? B386391 And.with syanite dykes, fairly fresh looking B386392 Intrusive, hard and glassy, rare qtz.stringers B386393 Intrusive, hard and glassy, rare qtz.stringers, str Cu stain B386394 Qtz-carb Bx float, alunite? B386395 Black-carb Vein, strike 168, dip50east B386396 Same as JB, s #B386269 B386397 Rhyolite Bx. Qtz flooded, unit strike10 dip 40west B386398 Rhyolite, frac, rusty B386399 Skarned Intrusive?Strong epidote stringers and blebs B386400 gossanous pyritic siliceous sediments shaly graphitic sed with qtz stringers (wp is 192, sample B386401 386401))		
B386391 And.with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy,rare qtz.stringers B386393 Intrusive,hard and glassy,rare qtz.stringers B386394 Qtz-carb Bx float,alunite? B386395 Black-carb vein,strike168,dip50east B386396 Same as JB,s #B386269 B386397 Rhyolite Bx. Qtz flooded,unit strike10 dip 40west B386398 Rhyolite, frac,rusty B386399 Skarned Intrusive?Strong epidote stringers and blebs B386400 gossanous pyritic siliceous sediments shaly graphitic sed with qtz stringers (wp is 192, sample B386401 386401))	B386389	int?
B386391 And.with syanite dykes,fairly fresh looking B386392 Intrusive,hard and glassy,rare qtz.stringers B386393 Intrusive,hard and glassy,rare qtz.stringers B386394 Qtz-carb Bx float,alunite? B386395 Black-carb vein,strike168,dip50east B386396 Same as JB,s #B386269 B386397 Rhyolite Bx. Qtz flooded,unit strike10 dip 40west B386398 Rhyolite, frac,rusty B386399 Skarned Intrusive?Strong epidote stringers and blebs B386400 gossanous pyritic siliceous sediments shaly graphitic sed with qtz stringers (wp is 192, sample B386401 386401))	B386390	pale gm int? or and vc?
B386392 Intrusive, hard and glassy, rare qtz.stringers B386393 Intrusive, hard and glassy, rare qtz.stringers, str Cu stain B386394 Qtz-carb Bx float, alunite? B386395 Black-carb vein, strike 168, dip50east B386396 Same as JB,s #B386269 B386397 Rhyolite Bx. Qtz flooded, unit strike10 dip 40west B386398 Rhyolite, frac, rusty B386399 Skarned Intrusive?Strong epidote stringers and blebs B386400 gossanous pyritic siliceous sediments shaly graphitic sed with qtz stringers (wp is 192, sample B386401 386401))		
B386394 Qtz-carb Bx float,alunite? B386395 Black-carb vein,strike168,dip50east B386396 Same as JB,s #B386269 B386397 Rhyolite Bx. Qtz flooded,unit strike10 dip 40west B386398 Rhyolite, frac,rusty B386399 Skarned Intrusive?Strong epidote stringers and blebs B386400 gossanous pyritic siliceous sediments shaly graphitic sed with qtz stringers (wp is 192, sample B386401 386401))	B386392	Intrusive,hard and glassy,rare qtz.stringers
B386394 Qtz-carb Bx float,alunite? B386395 Black-carb vein,strike168,dip50east B386396 Same as JB,s #B386269 B386397 Rhyolite Bx. Qtz flooded,unit strike10 dip 40west B386398 Rhyolite, frac,rusty B386399 Skarned Intrusive?Strong epidote stringers and blebs B386400 gossanous pyritic siliceous sediments shaly graphitic sed with qtz stringers (wp is 192, sample B386401 386401))	B386393	Intrusive,hard and glassy,rare qtz.stringers,str Cu stain
B386396 Same as JB,s #B386269 B386397 Rhyolite Bx. Qtz flooded,unit strike10 dip 40west B386398 Rhyolite, frac,rusty B386399 Skarned Intrusive?Strong epidote stringers and blebs B386400 gossancus pyritic siliceous sediments shaly graphitic sed with qtz stringers (wp is 192, sample B386401 386401))		
B386397 Rhyolite Bx. Qtz flooded,unit strike10 dip 40west B386398 Rhyolite, frac,rusty B386399 Skarned Intrusive?Strong epidote stringers and blebs B386400 gossanous pyritic siliceous sediments shaly graphitic sed with qtz stringers (wp is 192, sample B386401 386401))		
B386398 Rhyolite ,frac,rusty B386399 Skarned Intrusive?Strong epidote stringers and blebs B386400 gossanous pyritic siliceous sediments shaly graphitic sed with qtz stringers (wp is 192, sample B386401 386401))	B386396	Same as JB,s #B386269
B386399 Skarned Intrusive?Strong epidote stringers and blebs B386400 gossanous pyritic siliceous sediments shaly graphitic sed with qtz stringers (wp is 192, sample B386401 386401))	B386397	Rhyolite Bx. Qtz flooded, unit strike10 dip 40west
B386400 gossanous pyritic siliceous sediments shaly graphitic sed with qtz stringers (wp is 192, sample B386401 386401))	B386398	Rhyolite ,frac,rusty
shaly graphitic sed with qtz stringers (wp is 192, sample B386401 386401))	B386399	Skarned Intrusive?Strong epidote stringers and blebs
B386401 386401))	B386400	
		shaly graphitic sed with qtz stringers (wp is 192, sample
silicoous duka 5-10% nu in stringare and date (while 101	B386401	386401))
anceous uyke, or to a py in sungers and clots (whis ter,		siliceous dyke, 5-10% py in stringers and clots (wp is 191,
B386402 sample 386402)	B386402	sample 386402)
rusty black cherty sed (rhyolite?) 1-2% diss py, qtz carb		rusty black cherty sed (rhyolite?) 1-2% diss py, qtz carb
B386403 stringers	B386403	stringers
B386404 rusty, attered, jarositic intrusive	B386404	rusty, altered, jarositic intrusive
andesite conglomerate, 1% diss py, carbonate veins upto		andesite conglomerate, 1% diss py, carbonate veins upto
B386405 20cm, most 2-4cm		20cm, most 2-4cm
B386406 rusty, altered, jarositic intrusive		
B386407 intrusive with 1% diss py, trace cp	B386407	intrusive with 1% diss py, trace cp
B386408 rotten, jarositic rusty int? diss py in stringers and clots		

....

p~~

_

-

.

....

••

	Lithology/Description
	rust jarositic altered andesite cong?, minor py
B386501	Float sample Pale altered intrusive with qz cal veinlets py cpy
	gal sph
B386502	Gully float Strong qz ser py with qz mo vein and diss cpy
0000002	Mauve to pale green silicified (kspar?) alt with strong Mo cpy
5000003	wauve to pare green sinched (kspar?) all with strong wo cpy
B386504	Quartz stockwork in strong qz ser py with Mo qtz veins and
	good diss cpy
B386505	Chip in fine grained actinolite magnetite epidote, strong mgt
0000000	omp in the grande admonte magnetice opidetes, sublig high
	Soc with strong malachite and cpy in dark megacrystic kspar
	porphyry
B386507	Porphyry with strong qtz stkwk dom 220/50NW py> cpy 3%
B386508	Strong gz ser py in porphyry with 30% gtz stkwk mai cpy py
0000500	
8366508	Green altered porphyry strong qtz stkwk but py>>cpy
B386510	Porphyry with strong qtz ser py and veins qtz py cpy to 1 cm
B386511	Porphyry with relict matics strong qtz stkwk cpy mal py
	Strongest min 230/60NW
0206542	Porphyry and some pale skarn with strong qtz stkwk and py
000012	
	mgt cpy veins to 5 cm 240/50NW
B386513	Biotite hornfels with late green skarn stockwork. Fracture
	controlled and diss py>>cpy
B386514	Porphyry with strong qtz ser py and qtz-mo veins 010/80E
D396546	Strong qtz mgt +/- ep in a green siltstone. Very fg mgt
	Qtz-mgt-ep in green sist
B386518	Very rusty sillceous beds adjoining black shale and red and
	green shale 055/80SE
B386519	Rusty siliceous beds with with clots of up to 15% py
	Rusty silicified unit as samples 518 519
	Creek float of strong qtz ser py qtz veinelts with py cpy cov
B386521 B386522	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py
B386521 B386522	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral
B386521 B386522 B386523	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveillte?
B386521 B386522 B386523 B386524	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveillte? Strong carb ser with 5-10% diss py
B386521 B386522 B386523 B386524	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveillte?
B386521 B386522 B386523 B386524 B386525	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone
B386522 B386522 B386523 B386524 B386525 B386526	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment
B386521 B386522 B386523 B386524 B386525 B386526 B386527	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin
B386521 B386522 B386523 B386524 B386525 B386526 B386527	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey
B386521 B386522 B386523 B386524 B386525 B386526 B386527	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin
B386521 B386522 B386523 B386524 B386525 B386526 B386527 B386528	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets
B386521 B386522 B386523 B386524 B386525 B386526 B386527 B386528 B386528 B386529	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm
B386521 B386522 B386523 B386524 B386525 B386526 B386527 B386528 B386528 B386529	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets
B386521 B386522 B386523 B386524 B386525 B386526 B386527 B386528 B386529 B386529 B386530	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd?
B386521 B386522 B386523 B386524 B386525 B386526 B386527 B386528 B386529 B386529 B386530	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd?
B386521 B386522 B386523 B386524 B386525 B386526 B386527 B386528 B386529 B386529 B386530	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intr with strong qtz ser py and irregular grey qtz
B386521 B386522 B386523 B386524 B386526 B386526 B386527 B386528 B386529 B386529 B386530 B386531	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float intr with strong qtz ser py and irregular grey qtz patches
B386521 B386522 B386523 B386524 B386526 B386526 B386527 B386528 B386529 B386529 B386530 B386531	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz veniets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intr with strong qtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser
B386521 B386522 B386523 B386524 B386526 B386526 B386527 B386528 B386529 B386529 B386530 B386531	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float intr with strong qtz ser py and irregular grey qtz patches
B386521 B386522 B386523 B386523 B386526 B386526 B386526 B386527 B386528 B386528 B386530 B386531 B386532	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intr with strong qtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70
B386521 B386522 B386523 B386523 B386526 B386526 B386526 B386527 B386528 B386528 B386530 B386531 B386532	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz veniets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intr with strong qtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser
B386522 B386522 B386523 B386524 B386525 B386526 B386527 B386528 B386529 B386530 B386531 B386532	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intr with strong qtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float Fe carb ser py altered intrusive with dark grey qtz
B386521 B386522 B386523 B386525 B386525 B386526 B386527 B386528 B386528 B386530 B386530 B386531 B386531 B386533	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb ye gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intr with strong qtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float Fe carb ser py altered intrusive with dark grey qtz hydrothermal breccia
B386521 B386522 B386523 B386525 B386525 B386526 B386527 B386528 B386528 B386530 B386530 B386531 B386531 B386533	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb y gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intr with strong qtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float Fe carb ser py altered intrusive with dark grey qtz hydrothermal breccia Chip Dark feldspar porphyry bx with Fe carb matrix and
B386521 B386522 B386523 B386525 B386525 B386526 B386527 B386528 B386528 B386530 B386530 B386531 B386531 B386532 B386533 B386533	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb y gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float Fe carb ser py altered intrusive with dark grey qtz hydrothermal breccia Chip Dark feldspar porphyry bx with Fe carb matrix and 220/80 dark alteration carb> qtz veins
B386521 B386522 B386523 B386523 B386526 B386526 B386527 B386529 B386529 B386529 B386530 B386531 B386532 B386533	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb y gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float Fe carb ser py altered intrusive with dark grey qtz hydrothermal breccia Chip Dark feldspar porphyry bx with Fe carb matrix and 220/80 dark alteration carb> qtz veins
B386521 B386522 B386523 B386525 B386525 B386526 B386527 B386528 B386528 B386530 B386530 B386531 B386531 B386532 B386533 B386533	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb y gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float Fe carb ser py altered intrusive with dark grey qtz hydrothermal breccia Chip Dark feldspar porphyry bx with Fe carb matrix and 220/80 dark alteration carb> qtz veins
B386521 B386522 B386523 B386524 B386525 B386526 B386527 B386528 B386528 B386530 B386531 B386531 B386533 B386533 B386533 B386533	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Qtz carb py gal vein 8 cm 30 cm banded qtz carb py gal vein 8 cm 30 cm banded qtz carb py gal vein 8 cm Creek float Intr with strong qtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float Fe carb ser py altered intrusive with dark grey qtz hydrothermal breccia Chip Dark feldspar porphyry bx with Fe carb matrix and 220/80 dark alteration carb> qtz veins Dark siliceous breccia mod rusty adjacent gouge zone 060/80
B386521 B386522 B386523 B386524 B386525 B386526 B386527 B386528 B386528 B386530 B386531 B386531 B386533 B386533 B386533 B386533	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb ye gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intr with strong qtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float Fe carb ser py altered intrusive with dark grey qtz hydrothermal breccia Chip Dark feldspar porphyry bx with Fe carb matrix and 220/80 dark alteration carb> qtz veins Dark siliceous breccia mod rusty adjacent gouge zone 060/80 Rusty altered intrusive with 1% diss pyrite veinelt specularite
B386521 B386522 B386523 B386524 B386525 B386526 B386527 B386528 B386528 B386530 B386531 B386531 B386533 B386533 B386533 B386533	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Qtz carb py gal vein 8 cm 30 cm banded qtz carb py gal vein 8 cm 30 cm banded qtz carb py gal vein 8 cm Creek float Intr with strong qtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float Fe carb ser py altered intrusive with dark grey qtz hydrothermal breccia Chip Dark feldspar porphyry bx with Fe carb matrix and 220/80 dark alteration carb> qtz veins Dark siliceous breccia mod rusty adjacent gouge zone 060/80
B386521 B386522 B386523 B386523 B386525 B386526 B386526 B386527 B386528 B386528 B386530 B386530 B386531 B386533 B386533 B386534 B386535 B386536	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb ye gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intr with strong gtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float alteration carb> qtz veins Dark feldspar porphyry bx with Fe carb matrix and 220/80 dark alteration carb> qtz veins Dark sillceous breccia mod rusty adjacent gouge zone 060/80 Rusty altered intrusive with 1% diss pyrite veinelt specularite and traces malachite Qtz veinelts to 1 cm 190/90
B386521 B386522 B386523 B386523 B386525 B386526 B386526 B386527 B386528 B386528 B386530 B386530 B386531 B386533 B386533 B386534 B386535 B386536	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb yeal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intr with strong qtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float fe carb ser py altered intrusive with dark grey qtz hydrothermal breccia Chip Dark feldspar porphyry bx with Fe carb matrix and 220/80 dark alteration carb> qtz veins Dark siliceous breccia mod rusty adjacent gouge zone 060/80 Rusty altered intrusive with 1% diss pyrite veinelt specularite
B386521 B386522 B386523 B386523 B386525 B386526 B386526 B386527 B386528 B386528 B386530 B386530 B386531 B386533 B386533 B386534 B386535 B386536	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb ye gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intr with strong gtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float alteration carb> qtz veins Dark feldspar porphyry bx with Fe carb matrix and 220/80 dark alteration carb> qtz veins Dark sillceous breccia mod rusty adjacent gouge zone 060/80 Rusty altered intrusive with 1% diss pyrite veinelt specularite and traces malachite Qtz veinelts to 1 cm 190/90
B386521 B386522 B386523 B386525 B386526 B386526 B386527 B386527 B386528 B386530 B386530 B386531 B386531 B386533 B386533 B386533 B386535 B386536 B386537	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz veniets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intr with strong qtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float fe carb ser py altered intrusive with dark grey qtz hydrothermal breccia Chip Dark feldspar porphyry bx with Fe carb matrix and 220/80 dark alteration carb> qtz veins Dark siliceous breccia mod rusty adjacent gouge zone 060/80 Rusty altered intrusive with 1% diss pyrite veinelt specularite and traces malachite Qtz veinelts to 1 cm 190/90 Chl actinolite mgt py mal in gabbro with pink dykes to 20 cm
B386521 B386522 B386523 B386525 B386526 B386526 B386527 B386527 B386528 B386530 B386530 B386531 B386531 B386533 B386533 B386533 B386535 B386536 B386537	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb y gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Ter carb ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float Fe carb ser py altered intrusive with dark grey qtz hydrothermal breccia Chip Dark feldspar porphyry bx with Fe carb matrix and 220/80 dark alteration carb> qtz veins Dark siliceous breccia mod rusty adjacent gouge zone 060/80 Rusty altered intrusive with 1% diss pyrite veinelt specularite and traces malachite Qtz veinelts to 1 cm 190/90 Chi actinolite mgt py mal in gabbro with pink dykes to 20 cm Monzonite adjacent gossan green skarn? altered intrusive with
B386521 B386522 B386523 B386523 B386525 B386526 B386526 B386527 B386528 B386529 B386530 B386531 B386531 B386532 B386533 B386534 B386535 B386536 B386537 B386537 B386538	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intr with strong qtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float alteration carb> qtz veins Dark feldspar porphyry bx with Fe carb matrix and 220/80 dark alteration carb> qtz veins Dark siliceous breccia mod rusty adjacent gouge zone 060/80 Rusty altered intrusive with 1% diss pyrite veinelt specularite and traces malachite Qtz veinelts to 1 cm 190/90 Chi actinolite mgt py mal in gabbro with pink dykes to 20 cm Monzonite adjacent gossan green skarn? altered intrusive witt black Mn? stain and strong malachite
B386521 B386522 B386523 B386523 B386525 B386526 B386526 B386527 B386528 B386529 B386530 B386531 B386531 B386532 B386533 B386534 B386535 B386536 B386537 B386537 B386538	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intr with strong qtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float alteration carb> qtz veins Dark feldspar porphyry bx with Fe carb matrix and 220/80 dark alteration carb> qtz veins Dark siliceous breccia mod rusty adjacent gouge zone 060/80 Rusty altered intrusive with 1% diss pyrite veinelt specularite and traces malachite Qtz veinelts to 1 cm 190/90 Chi actinolite mgt py mal in gabbro with pink dykes to 20 cm Monzonite adjacent gossan green skarn? altered intrusive witt black Mn? stain and strong malachite Rubble crop rusty qtz vein with qtz ser py margins along pink
B386521 B386522 B386523 B386523 B386525 B386526 B386526 B386527 B386528 B386529 B386530 B386530 B386531 B386533 B386533 B386535 B386536 B386537 B386538 B386538 B386538	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intr with strong qtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float alteration carb> qtz veins Dark feldspar porphyry bx with Fe carb matrix and 220/80 dark alteration carb> qtz veins Dark siliceous breccia mod rusty adjacent gouge zone 060/80 Rusty altered intrusive with 1% diss pyrite veinelt specularite and traces malachite Qtz veinelts to 1 cm 190/90 Chi actinolite mgt py mal in gabbro with pink dykes to 20 cm Monzonite adjacent gossan green skarn? altered intrusive witt black Mn? stain and strong malachite Rubble crop rusty qtz vein with qtz ser py margins along pink intrusive and hbl bio monzonite contact
B386521 B386522 B386523 B386525 B386525 B386526 B386526 B386527 B386528 B386529 B386530 B386531 B386532 B386533 B386533 B386535 B386537 B386538 B386538 B386539	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intr with strong qtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float alteration carb> qtz veins Dark feldspar porphyry bx with Fe carb matrix and 220/80 dark alteration carb> qtz veins Dark siliceous breccia mod rusty adjacent gouge zone 060/80 Rusty altered intrusive with 1% diss pyrite veinelt specularite and traces malachite Qtz veinelts to 1 cm 190/90 Chi actinolite mgt py mal in gabbro with pink dykes to 20 cm Monzonite adjacent gossan green skarn? altered intrusive witt black Mn? stain and strong malachite Rubble crop rusty qtz vein with qtz ser py margins along pink
B386521 B386522 B386523 B386525 B386525 B386526 B386526 B386527 B386528 B386529 B386530 B386531 B386532 B386533 B386533 B386535 B386537 B386538 B386538 B386539	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb yy gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intr with strong qtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fig py veinlets 220/70 Creek float alteration carb> qtz veins Dark feldspar porphyry bx with Fe carb matrix and 220/80 dark alteration carb> qtz veins Dark siliceous breccia mod rusty adjacent gouge zone 060/80 Rusty altered intrusive with 1% diss pyrite veinelt specularite and traces malachite Qtz veinelts to 1 cm 190/90 Chi actinolite mgt py mal in gabbro with pink dykes to 20 cm Monzonite adjacent gossan green skarn? altered intrusive with black Mn? stain and strong malachite Rubble crop rusty qtz vein with qtz ser py margins along pink intrusive and hbl bio monzonite contact Boulder or soc dark kspar por with dark matrix with abundant
B386521 B386522 B386523 B386523 B386525 B386526 B386526 B386527 B386528 B386530 B386530 B386531 B386533 B386533 B386534 B386536 B386538 B386538 B386538 B386539 B386540	Creek float of strong qtz ser py qtz veinelts with py cpy cov Float boulder 10 cm qtz vein with cpy gal sph py Float 5 cm fine grained white to grey vein with dark mineral coveilite? Strong carb ser with 5-10% diss py Creek float qtz carb py (10%) vein in unaltered mudstone Creek float Qtz py aspy? vein 5 cm fragment Quartz vein with fine dark grey quartz layers on margin Creek float Sandstone with strong Fe carb alteration and grey quartz stockwork. Minor coarse py in white qtz venlets Creek float qtz carb py gal vein 8 cm 30 cm banded qtz carb vein with black layers and gal py possible thd? Creek float Intr with strong qtz ser py and irregular grey qtz patches Chip Fel por intrusive with strong ser carb py and zones qtz ser py (to 25%) and 2 cm massive fg py veinlets 220/70 Creek float alteration carb> qtz veins Dark feldspar porphyry bx with Fe carb matrix and 220/80 dark alteration carb> qtz veins Dark siliceous breccia mod rusty adjacent gouge zone 060/80 Rusty altered intrusive with 1% diss pyrite veinelt specularite and traces malachite Qtz veinelts to 1 cm 190/90 Chi actinolite mgt py mal in gabbro with pink dykes to 20 cm Monzonite adjacent gossan green skarn? altered intrusive witt black Mn? stain and strong malachite Rubble crop rusty qtz vein with qtz ser py margins along pink intrusive and hbl bio monzonite contact

....

·---

...-

.....

•

.....

, ·

• •

	Lithology/Description
Sample B386542	Rusty skarn with 3% diss py as a patchy zone in dark skarn
0000042	altered volcanic breccia with strong mgt and kspar veins
B386543	Dark green chi mgt with strong mgt and 1-2% py and 1% diss cpy
B386544	Small creek oc eldspathic rock with diss py, green fuchsite and grey stockwork
B386545	Hard pale siliceous skarn with 2% diss py and trace to 2% cpy
B386546	Rusty siliceous skam with late cpy and 1-2% diss py>>cpy
B386547	Siliceous to dark brown garnet chi skarn 1-2% py and some mai
B386548	
B386549	Crowded kspar por with minor diss cpy py and strong chl mgt
B386550	Kspar por with chi and strong mgt and patchy cpy>py (2%) disseminated 350/80E sheeted fractures
B386551	4cm coarse grained qtz vein ~020/80N in black rhyolite?
	qtz vein up to 30cm wide in andesite
	pyritic black rhyolite
	rusty black andesite, minor py
B386558	4cm qtz vein with 1-2mm black sx bands/staining // margins
B386559	rusty siliceous volc, 1mm py stringers (and?)
B386560	highly siliceous dyke ~350/90 20cm wide 1mm py stringers
	qtz vein 5-10mm black layers // to margin spaced 2-3cm, cored by 1mm py stringers
B386562	wispy 5mm carbonate in v.fn.grnd. black 1% py rhyolite (andesite?)
B386563	rusty k-spar equigranular intrusive
	rusty andesite at contact with white porphyritic feldspar
	intrusive
B386565	pyritic black andesitic? boulder in landslide. qtz stringers 1cm.
B386566	chlorite altered green andesite?
	rusty andesite?
B386568	
	pink feldspar qtz intrusive with pyrite & malachite +cp?
B386569	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite?
B386569 B386570	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive
B386569 B386570 B386571	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive
B386569 B386570	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive malachite in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd
B386569 B386570 B386571 B386572 B386573	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyoilte? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive malachite in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces
B386569 B386570 B386571 B386572 B386573 B386573	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive malachite in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive
B386569 B386570 B386571 B386572 B386573 B386574 B386575	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive malachite in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive pyritic and with epidote, fn black sx
B386569 B386570 B386571 B386572 B386573 B386574 B386575 B386576	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive andchite in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive pyritic and with epidote, fn black sx malachite in andesite at contact with dyke
B386569 B386570 B386571 B386572 B386573 B386574 B386574 B386575 B386576 B386577	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive pyritic and with epidote, fn black sx malachite in andesite at contact with dyke pyritic and (rhyolite?)
B386569 B386570 B386571 B386572 B386573 B386573 B386575 B386576 B386577 B386578	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive pyritic and with epidote, fn black sx malachite in andesite at contact with dyke pyritic and (rhyolite?) gossanous rhyolite, 2% diss py
B386569 B386570 B386571 B386572 B386573 B386573 B386575 B386576 B386577 B386578 B386579	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive malachite in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive pyritic and with epidote, fn black sx malachite in andesite at contact with dyke pyritic and (rhyolite?) gossanous rhyolite, 2% diss py gossanous black rhyolite, minor diss py
B386569 B386570 B386571 B386572 B386573 B386573 B386575 B386576 B386577 B386578	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive pyritic and with epidote, fn black sx malachite in andesite at contact with dyke pyritic and (rhyolite?) gossanous rhyolite, 2% diss py gossanous black rhyolite, minor diss py
B386569 B386570 B386571 B386572 B386573 B386573 B386575 B386576 B386576 B386577 B386578 B386579 B386582 B386582	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive pyritic and with epidote, fn black sx malachite in andesite at contact with dyke pyritic and (rhyolite?) gossanous hyolite, 2% diss py gossanous black rhyolite, minor diss py strongly silicified 5-10% py rusty zone equigranular intrusive Quartz veln up to 12cm width
B386569 B386570 B386571 B386572 B386573 B386573 B386575 B386576 B386576 B386578 B386579 B386579 B386580 B386582 B386582 B386583	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive pyritic and with epidote, fn black sx malachite in andesite at contact with dyke pyritic and (rhyolite?) gossanous hyolite, 2% diss py gossanous black rhyolite, minor diss py strongly silicified 5-10% py rusty zone equigranular intrusive Quartz veln up to 12cm width siliceous stringer // to bedding in conglomerate
B386569 B386570 B386571 B386572 B386573 B386573 B386575 B386576 B386576 B386578 B386579 B386579 B386580 B386582 B386582 B386583	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive andchite in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive pyritic and with epidote, fn black sx malachite in andesite at contact with dyke pyritic and (rhyolite?) gossanous hyolite, 2% diss py gossanous black rhyolite, minor diss py strongly silicified 5-10% py rusty zone equigranular intrusive Quartz veln up to 12cm width
B386589 B386570 B386571 B386572 B386573 B386573 B386576 B386576 B386576 B386578 B386578 B386581 B386581 B386583 B386583 B386585	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive malachite in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive pyritic and with epidote, fn black sx malachite in andesite at contact with dyke pyritic and (rhyolite?) gossanous rhyolite, 2% diss py gossanous black rhyolite, minor diss py gossanous black rhyolite, minor diss py strongly silicified 5-10% py rusty zone equigranular intrusive Quartz veln up to 12cm width siliceous stringer // to bedding in conglomerate qtz vein 8-10cm wide x-cutting conglerate bedding, site of BCRR sample 25018 stockwork 8mm qtz stringers containing thin <1mm black sulphide bands
B386589 B386570 B386571 B386572 B386573 B386573 B386576 B386576 B386576 B386578 B386578 B386581 B386581 B386583 B386583 B386585	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive malachite in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive pyritic and with epidote, fn black sx malachite in andesite at contact with dyke pyritic and (rhyolite?) gossanous black rhyolite, minor diss py gossanous stringer // to bedding in conglomerate qtz vein up to 12cm width siliceous stringer // to bedding in conglomerate gtz vein 8-10cm wide x-cutting conglerate bedding, site of BCRR sample 25018 stockwork 8mm qtz stringers containing thin <1mm black sulphide bands qtz carb stringers in equigranular intrusive
B386589 B386570 B386571 B386572 B386573 B386573 B386576 B386576 B386576 B386578 B386578 B386581 B386581 B386583 B386583 B386585	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive malachite in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive pyritic and with epidote, fn black sx malachite in andesite at contact with dyke pyritic and (rhyolite?) gossanous rhyolite, 2% diss py gossanous black rhyolite, minor diss py gossanous black rhyolite, minor diss py strongly silicified 5-10% py rusty zone equigranular intrusive Quartz veln up to 12cm width siliceous stringer // to bedding in conglomerate qtz vein 8-10cm wide x-cutting conglerate bedding, site of BCRR sample 25018 stockwork 8mm qtz stringers containing thin <1mm black sulphide bands
B386589 B386570 B386571 B386572 B386573 B386573 B386576 B386576 B386576 B386578 B386578 B386581 B386581 B386583 B386585 B386585 B386585 B386585	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive malachite in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive pyritic and with epidote, fn black sx malachite in andesite at contact with dyke pyritic and (rhyolite?) gossanous black rhyolite, minor diss py gossanous black rhyolite, minor diss py gossanous black rhyolite, minor diss py strongly silicified 5-10% py rusty zone equigranular intrusive Quartz vein up to 12cm width siliceous stringer // to bedding in conglomerate qtz vein 8-10cm wide x-cutting conglerate bedding, site of BCRR sample 25018 stockwork 8mm qtz stringers containing thin <1mm black sulphide bands qtz carb stringers in equigranular intrusive
B386589 B386570 B386571 B386572 B386573 B386573 B386576 B386576 B386576 B386576 B386578 B386579 B386581 B386581 B386582 B386583 B386585 B386586 B386586 B386586	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive pyritic and with epidote, fn black sx malachite in andesite at contact with dyke pyritic and (rhyolite?) gossanous hyolite, 2% diss py gossanous black rhyolite, minor diss py gossanous black rhyolite, minor diss py strongly silicified 5-10% py rusty zone equigranular intrusive Quartz vein up to 12cm width siliceous stringer // to bedding in conglomerate qtz vein 8-10cm wide x-cutting conglerate bedding, site of BCRR sample 25018 stockwork 8mm qtz stringers containing thin <1mm black sulphide bands qtz carb stringers in equigranular intrusive qtz stringers, diss py in equigranular intrusive
B386589 B386570 B386571 B386572 B386573 B386573 B386576 B386576 B386576 B386576 B386578 B386579 B386580 B386581 B386582 B386583 B386584 B386586 B386586 B386586 B386586 B386586 B386586	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive pyritic and with epidote, fn black sx malachite in andesite at contact with dyke pyritic and (rhyolite?) gossanous hyolite, 2% diss py gossanous black rhyolite, minor diss py gossanous black rhyolite, minor diss py strongly silicified 5-10% py rusty zone equigranular intrusive Quartz vein up to 12cm width siliceous stringer // to bedding in conglomerate qtz vein 8-10cm wide x-cutting conglerate bedding, site of BCRR sample 25018 stockwork 8mm qtz stringers containing thin <1mm black sulphide bands qtz carb stringers in equigranular intrusive rusty pyritic andesite
B386569 B386570 B386571 B386572 B386573 B386575 B386576 B386576 B386576 B386578 B386578 B386581 B386581 B386583 B386583 B386585 B386586 B386586 B386586 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive malachite in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive pyritic and with epidote, fn black sx malachite in andesite at contact with dyke pyritic and (rhyolite, 7) gossanous hyolite, 2% diss py gossanous black rhyolite, minor diss py gossanous black rhyolite, minor diss py strongly silicified 5-10% py rusty zone equigranular intrusive Quartz vein up to 12cm width siliceous stringer // to bedding in conglomerate qtz vein 8-10cm wide x-cutting conglerate bedding, site of BCRR sample 25018 stockwork 8mm qtz stringers containing thin <1mm black sulphide bands qtz carb stringers in equigranular intrusive rusty pyritic randesite slightly rusty black pyritic rhyolite?
B386589 B386570 B386571 B386572 B386573 B386573 B386575 B386576 B386576 B386578 B386578 B386580 B386581 B386584 B386585 B386585 B386586 B386586 B386586 B386586 B386586 B386586 B386586 B386586 B386586 B386586 B386586 B386586 B386586 B386586 B386586 B386586 B386586 B386586 B386580 B3865890 B386590	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive pyritic and with epidote, fn black sx malachite in andesite at contact with dyke pyritic and (rhyolite?) gossanous hyolite, 2% diss py gossanous black rhyolite, minor diss py gossanous black rhyolite, minor diss py strongly silicified 5-10% py rusty zone equigranular intrusive Quartz vein up to 12cm width siliceous stringer // to bedding in conglomerate qtz vein 8-10cm wide x-cutting conglerate bedding, site of BCRR sample 25018 stockwork 8mm qtz stringers containing thin <1mm black sulphide bands qtz carb stringers in equigranular intrusive rusty pyritic runyolite? (~50m from 586380) rusty pyritic andesite slightly rusty black pyritic rhyolite? very rusty jarositic andesite?
B386569 B386570 B386571 B386572 B386573 B386575 B386576 B386576 B386576 B386578 B386578 B386581 B386581 B386583 B386583 B386585 B386586 B386586 B386586 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588 B386588	pink feldspar qtz intrusive with pyrite & malachite +cp? malachite-stained siliceous float boulder - rhyolite? rusty k-spar porphritic intrusive malachite stringers in rusty k-spar porphritic intrusive and? with epidote stringers and clots, sooty black fn grnd sulfides. weathering surface has open spaces malachite in rusty k-spar porphritic intrusive pyritic and with epidote, fn black sx malachite in andesite at contact with dyke pyritic and (rhyolite?) gossanous black rhyolite, minor diss py gossanous black rhyolite, minor diss py gossanous black rhyolite, minor diss py strongly silicified 5-10% py rusty zone equigranular intrusive Quartz vein up to 12cm width siliceous stringer // to bedding in conglomerate qtz vein 8-10cm wide x-cutting conglerate bedding, site of BCRR sample 25018 stockwork 8mm qtz stringers containing thin <1mm black sulphide bands qtz carb stringers in equigranular intrusive rusty pyritic andesite sightly rusty black pyritic rhyolite? very rusty jarositic andesite? black rhyolite, 5-10% py in clots and stringers

s. 64

. .

Sample	Lithology/Description
B386595	jarositic pyritic magnetitic rhyolite 5m wide zone
B386596	rusty pyritic 3m wide zone in rhyolite at contact between plnk
	rhyolite and k-spar por int
B386597	rusty jarositic pyritic rhyolite
B386651	Dark chloritic kspar por with chl mgt and < 1% diss cpy rare qtz mgt cpy veinlets
B386652	Strong mal in kspar por with chl mgt and 1% diss cpy Strong 160/90 fractures host zone
B386653	Rusty zone mal stained kspar por with fracture controlled cpy
B386654	Mal stained kspar por with skarn altered seds
B386662	Quartz carb vein with py cpy gal 030/50SE. One of several parallel veins in porphyry
B386663	Very strong qtz ser py with 020/80SE qtz py cpy and qtz carb veins
B386664	Strong qtz ser py with 050/60SE qtz py mo veins to 1 cm and some diss cpy
B386665	Green brown hornfels with abundant pyrite banded quartz veinelts to 6 mm and some fract controlled cpy
B386666	Very strong qtz ser py with 050/90 grey qtz py mo veins to 5 cm
B386667	Chip strong qtz ser po cpy with some veinlet mo
B386668	
B386669	Rusty chl-ser-py with traces cpy

Appendix C: North More Area Soil Samples

,.....

....

*******~~

....

- -

. .

Descul.	7		(1788 b14	FI 14		AL 0/		D	0-	D -	-	0- N		A -		•	F • •(•
Sample 9100N 9850E	Zone NAD83 ZN 9	UTM_East 396133	UTM_North 6350249	Elev Au 1603 0.005	Ag 0.2	AI % 3.91	As 7	B 10	Ba 100	Be 1.4	Bi 2.0	Ca % 0.72	Cd 0.5	Co 31	Cr 48	Cu 160	Fe %	Ga 10
9100N 9900E	NAD83 ZN 9	396133	6350249	1600 0.005	0.2	2.75	7	10	90	1.4	2.0	0.72	0.5	21	40	232	6.09	10
9100N 9950E	NAD83 ZN 9	396215	6350174	1600 0.000	0.2	2.10	4	10	90	1.0	2.0	0.87	0.5	22	50	143	4.94	10
9100N 10000E	NAD83 ZN 9	396249	6350148	1616 0.005	0.2	2.90	5	10	130	1.6	2.0	0.66	1.2	25	43	176	6.55	10
9100N 10050E	NAD83 ZN 9	396291	6350110	1631 0.007	0.2	2.36	8	10	90	1.2	2.0	0.60	1.3	26	40	168	5.76	10
9100N 10100E	NAD83 ZN 9	396314	6350072	1637 0.007	0.2	2.23	6	10	110	1.2	2.0	0.72	1.0	25	52	229	5.26	10
9100N 10150E	NAD83 ZN 9	396357	6350041	1639 0.005	0.2	3.02	6	10	160	1.9	2.0	0.68	0.7	17	37	130	5.56	10
9200N 9850E	NAD83 ZN 9	396217	6350313	0.005	0.2	3.81	8	10	90	3.1	2.0	0.61	0.5	16	44	66	5.65	20
9200N 9900E	NAD83 ZN 9	396256	6350277	1610 0.005	0.2	2.94	6	10	80	1.6	2.0	0.90	0.5	17	66	95	5.05	10
9200N 9950E	NAD83 ZN 9	396298	6350239	1618 0.005	0.2	2.89	6	10	130	1.6	2.0	1.00	0.5	20	39	161	6.20	10
9200N 10050E	NAD83 ZN 9	396369	6350203	1639 0.005	0.2	4.35	3	10	160	1.4	2.0	1.00	0.5	29	26	106	9.26	20
9200N 10000E	NAD83 ZN 9	396326	6350217	1620 0.005	0.2	2.98	7	10	120	1.5	2.0	0.84	0.5	18	35	101	6.03	10
9200N 10100E	NAD83 ZN 9	396394	6350158	1649 0.005	0.2	3.01	7	10	80	1.5	2.0	0.71	0.5	16	40	84	5.21	10
9200N 10150E	NAD83 ZN 9	396428	6350125	1664 0.005	0.2	2.66	12	10	60	1.5	2.0	0.58	0.5	21	53	184	5.20	10
9300N 9850E	NAD83 ZN 9	396270	6350386	1619 0.005	0.3	3.20	6	10	70	2.0	2.0	0.46	0.5	15	29	46	4.62	10
9300N 9900E	NAD83 ZN 9	396321	6350353	1633 0.005	0.2	3.57	6	10	120	1.3	2.0	0.80	0.5	17	29	60	6.69	10
9300N 9950E	NAD83 ZN 9	396363	6350310	1642 0.005 1649 0.007	0.2	2.74	3	10	80	1.3	2.0	0.60	0.5	17	44	138	4.91	10
9300N 10000E 9300N 10050E	NAD83 ZN 9 NAD83 ZN 9	396402 396451	6350279 6350232	1649 0.007 1655 0.013	0.3	2.65	6 11	10 10	90 70	1.5	2.0 2.0	0.97	0.5	15	51	221 332	4.50	10
9300N 10050E	NAD83 ZN 9	396480	6350252	1668 0.006	0.2	2.14	9	10	50	1.4	2.0	0.67	0.5	25 16	72 56	145	5.24 4.48	10 10
9300N 10150E	NAD83 ZN 9	396515	6350183	1677 0.011	0.2	2.33	6	10	70	1.5	2.0	0.86	0.6	23	59	271	5.02	10
9400N 9850E	NAD83 ZN 9	396350	6350462	1646 0.005	0.2	3.09	2	10	160	1.1	2.0	1.10	0.5	26	31	106	9.05	20
9400N 9900E	NAD83 ZN 9	396393	6350423	1667 0.005	0.2	3.10	6	10	140	1.4	2.0	1.36	0.5	19	30	83	6.62	10
9400N 9950E	NAD83 ZN 9	396439	6350385	1668 0.006	0.2	2.88	4	10	100	1.3	2.0	0.91	0.5	21	54	178	5.24	10
9400N 10000E	NAD83 ZN 9	396484	6350349	1663 0.008	0.2	2.48	6	10	90	1.5	2.0	0.90	0.5	18	60	198	4.51	10
9400N 10050E	NAD83 ZN 9	396500	6350330	1671 0.007	0.3	2.23	6	10	70	1.2	2.0	0.90	0.6	27	87	363	5.10	10
9400N 10100E	NAD83 ZN 9	396558	6350276	1687 0.014	0.2	2.74	5	10	70	1.4	2.0	0.73	0.5	23	67	243	5.15	10
9400N 10150E	NAD83 ZN 9	396577	6350248	1688 0.007	0.2	2.42	9	10	80	1.5	2.0	0.72	0.6	22	56	249	5.01	10
9500N 10000E	NAD83 ZN 9	396547	6350413	0.016	0.8	2.08	14	10	140	1.7	2.0	0.81	8.0	20	88	570	5.37	10
9600N 10000E	NAD83 ZN 9	396622	6350483	0.009	0.3	2.80	9	10	70	1.3	2.0	0.99	0.5	25	112	286	5.47	10
9700N 10000E	NAD83 ZN 9	396693	6350553	0.045	1.2	2.85	22	10	140	2.2	2.0	0.79	0.5	30	91	827	6.71	10
9800N 10000E	NAD83 ZN 9	396760	6350630	0.026	0.7	1.88	17	10	90	1.8	2.0	0.67	0.5	24	76	295	5.34	10
9900N 10000E	NAD83 ZN 9	396829	6350700	0.014	0.3	2.93	10	10	130	1.3	2.0	1.40	0.5	30	118	217	5.71	10
1	NAD83 ZN 9	396448	6350467	1659 0.006	0.2	3.60	5	10	90	2.3	2.0	0.52	0.5	16	43	180	5.59	20
3	NAD83 ZN 9 NAD83 ZN 9	396430 396417	6350413 6350344	1660 0.008 1657 0.009	0.3	2.72	6	10 10	160	1.6	2.0	1.19	0.5	16	61	230	4.65	10
4	NAD83 ZN 9	396417	6350280	1657 0.009	0.2	2.83	6	10	120	1.2	2.0 2.0	1.26	0.5	23	78	285 206	5.58	10
5	NAD83 ZN 9	396420	6350220	1656 0.020	0.3	3.17	8	10	70	1.3	2.0	0.68	0.5	23	54	205	5.19 4.83	10
6	NAD83 ZN 9	396410	6350161	1654 0.020	0.2	3.31	6	10	120	1.8	2.0	0.88	0.5	23	34	86	7.50	10
7	NAD83 ZN 9	396391	6350107	1654 0.005	0.2	2.47	11	10	100	1.2	2.0	0.67	0.5	22	46	128	5.66	10
8	NAD83 ZN 9	396372	6350051	1659 0.009	0.2	3.02	3	10	200	1.7	2.0	0.96	1.5	27	68	371	5.80	10
9	NAD83 ZN 9	396345	6350003	1654 0.023	0.2	2.82	7	10	130	1.7	2.0	0.74	0.6	22	49	198	5.65	10
10	NAD83 ZN 9	396333	6349944	1657 0.006	0.2	2.70	9	10	90	1.4	2.0	0.61	0.5	22	57	172	5.16	10
11	NAD83 ZN 9	396312	6349892	1652 0.010	0.2	2.33	6	10	50	1.1	2.0	0.40	0.5	19	35	72	4.08	10
12	NAD83 ZN 9	396303	6349836	1649 0.005	0.2	1.86	7	10	40	0.9	2.0	0.35	0.5	15	34	64	3.32	10
13	NAD83 ZN 9	396288	6349787	1647 0.005	0.2	1.12	2	10	20	0.5	2.0	0.36	0.5	12	29	37	2.33	10
14	NAD83 ZN 9	396280	6349733	1650 0.012	0.2	2.59	3	10	50	1.0	2.0	0.46	0.5	18	41	60	3.99	10
15	NAD83 ZN 9	396260	6349688	1646 0.005	D.2	1.05	2	10	60	0.5	2.0	0.85	0.5	23	40	56	3.92	10
16	NAD83 ZN 9	396254	6349635	1647 0.005	0.2	3.32	6	10	100	1,4	2.0	0.80	0.5	25	53	114	4.92	10
17 18	NAD83 ZN 9	396215	6349589	1651 0.008	0.2	2.21	5	10	40	0.8	2.0	0.97	0.5	21	85	90	4.25	10
19	NAD83 ZN 9 NAD83 ZN 9	396233 396228	6349533 6349482	1643 0.005 1634 0.008	D.2 0.2	3.16	6 2	10 10	90	1.1	2.0 2.0	1.46	0.5	28	184	106	4.84	10
20	NAD83 ZN 9	396226	6349423	1618 0.007	0.2	2.03	8	10	90	1.2	2.0	1.01	0.5	31 23	62 82	153 244	4.72	10
21	NAD83 ZN 9	396242	6349376	1609 0.009	0.2	3.14	9	10	290	3.5	2.0	4.88	0.5	23	104	295	6.20	10
22	NAD83 ZN 9	396259	6349323	1591 0.013	0.2	1.69	12	10	60	0.9	2.0	1.11	0.8	21	64	128	4.85	10
23	NAD83 ZN 9	396234	6349280	1587 0.052	0.2	1.28	5	10	40	0.5	2.0	2.72	0.5	17	79	98	3.59	10
24	NAD83 ZN 9	396175	6349261	1583 0.019	0.2	1.66	7	10	70	0.6	2.0	2.31	0.5	19	96	146	3.88	10
25	NAD83 ZN 9	396116	6349246	1580 0.028	0.2	1.41	3	10	50	0.5	2.0	2.31	0.5	19	83	115	3.70	10
26	NAD83 ZN 9	396055	6349245	1577 0.034	0.2	1.24	4	10	50	0.5	2.0	2.25	0.5	17	62	122	3.45	10
27	NAD83 ZN 9	395997	6349241	1573 0.036	0.2	1.62	7	10	80	0.8	2.0	2.04	0.6	27	75	202	4.10	10
28	NAD83 ZN 9	395952	6349201	1569 0.019	0.2	2.03	5	10	80	1.3	2.0	1.72	0.6	23	71	311	4.78	10
29	NAD83 ZN 9	395898	6349175	1572 0.016	0.2	2.17	4	10	70	1.4	2.0	1.50	0.6	20	60	301	4.51	10
30	NAD83 ZN 9	395886	6349111	1562 0.010	0.2	2.74	9	10	70	1.9	2.0	1.40	0.5	21	64	471	4.64	10
31 32	NAD83 ZN 9	395842	6349075	1564 0.031	0.2	2.31	2	10	80	1.2	2.0	1.49	0.7	19	46	447	4.50	10
32	NAD83 ZN 9 NAD83 ZN 9	395796 395762	6349042 6348992	1557 0.008 1558 0.010	0.2	2.25	5	10 10	50	1.7	2.0	1.37	0.6	17	66	325	4.33	10
34	NAD83 ZN 9	395782	6348992	1558 0.010	0.2	1.79	4	10	50 70	1.0	2.0	1.58	0.5	19 22	<u>58</u> 61	189	4.37	10
35	NAD83 ZN 9	395735	6348885	1554 0.009	0.2	1.82	4	10	60	0.9	2.0	1.86	0.7	16	61	188 195	4.79	10
36	NAD83 ZN 9	395668	6348830	1551 0.006	0.2	2.38	3	10	60	1.0	2.0	1.37	0.6	17	69	132	4.45	10
37	NAD83 ZN 9	395644	6348772	1547 0.020	0.2	2.30	5	10	70	0.9	2.0	1.89	0.5	21	114	154	4.10	10
38	NAD83 ZN 9	395607	6348714	1550 0.016	0.2	2.48	6	10	70	0.8	2.0	1.58	0.5	28	106	132	5.06	10
39	NAD83 ZN 9	395587	6348659	1541 0.013	0.2	2.41	7	10	60	1.0	2.0	1.07	0.5	23	60	137	4.78	10
40	NAD83 ZN 9	395571	6348598	1543 0.122	0.2	2.82	5	10	50	1.0	2.0	0.74	0.5	21	29	148	4.67	10
41	NAD83 ZN 9	395571	6348544	1554 0.005	0.2	3.05	10	10	30	1.1	2.0	0.47	0.5	19	35	76	4.79	10
42	NAD83 ZN 9	395579	6348492	1561 0.006	0.2	2.76	5	10	70	0.9	2.0	1.21	0.5	27	107	119	4.93	10
43	NAD83 ZN 9	395586	6348434	1566 0.005	0.2	3.35	2	10	70	0.5	2.0	1.10	0.5	31	6	72	5.84	10
44	NAD83 ZN 9	395584	6348374	1564 0.005	0.2	2.87	13	10	30	1.2	2.0	0.41	0.5	16	75	94	4.74	10
45	NAD83 ZN 9		6348298	1571 0.015	0.2	2.96	9	10	50	0.7	2.0	0.80	0.5	20	53	105	4.57	10
	NAD83 ZN 9	395582	6348243	1572 0.006	0.2	3.23	7	10	60	1.2	2.0	0.62	0.5	23	49	38	5.76	10
46																		40
47	NAD83 ZN 9	395589	6348180	1569 0.005	0.2	3.01	11	10	40	0.9	2.0	0.46	0.5	17	83	45	4.58	10
47 48	NAD83 ZN 9 NAD83 ZN 9	395600	6348135	1554 0.005	0.2	2.38	12	10	60	0.9	2.0	0.37	0.5	17	67	40	4.51	10
47	NAD83 ZN 9	395600 395598																10 10

Appendix C: North More Area Soil Samples

Sample	Hg	К%	La	Mg %	Mn	Мо	Na %	NII	Р	Pb	S %	Sb	Sc	Sr	П	TI	U	v	w	Zn
9100N 9850E	1.0	0.11	10	1.26	1295	2	0.05	62	1470	. 11	0.05	2	7	52	0.43	10	10	133	10	110
9100N 9900E	1.0	0.14	20	1.53	927	3	0.04	56	1480	52	0.05	2	8	68	0.36	10	10	134	10	110
9100N 9950E 9100N 10000E	1.0	0.13 0.14	10 20	1.48	780	2	0.06	<u>72</u> 57	1160	26 30	0.01	2	7 9	<u>61</u> 52	0.31	10	10 10	93 113	10 10	83 127
9100N 10050E	1.0	0.14	10	1.80	1035	1	0.04	74	1260	30	0.02	2	8	45	0.42	10	10	116	10	99
9100N 10100E	1.0	0.13	10	1.85	963	1	0.04	78	1160	38	0.02	2	8	56	0.28	10	10	122	10	98
9100N 10150E	1.0	0.08	20	1.25	891	3	0.04	36	1540	18	0.08	2	8	46	0.35	10	10	112	10	116
9200N 9850E	1.0	0.09	30	0.89	993	4	0.04	46	1460	17	0.09	2	4	43	0.25	10	10	82	10	94
9200N 9900E 9200N 9950E	1.0 1.0	0.09	20 20	1.27 1.24	869 1025	4	0.03	<u>56</u> 38	1110	27 32	0.08	2	4 8	67 81	0.24	10 10	10 10	119	10	104 89
9200N 10050E	1.0	0.15	20	1.21	1450	1	0.03	29	1550	13	0.03	2	15	123	0.94	10	10	120	10	110
9200N 10000E	1.0	0.10	20	1.22	860	5	0.04	35	1350	17	0.08	2	8	62	0.42	10	10	110	10	70
9200N 10100E	1.0	0.07	20	1.16	692	7	0.03	33	1480	16	0.08	2	7	43	0.35	10	10	111	10	77
9200N 10150E	1.0	0.08	20	1.80	930	7	0.02	58	1040	23	0.06	2	7	35	0.17	10	10	133	10	99
9300N 9850E 9300N 9900E	<u>1.0</u> 1.0	0.06	20 20	0.76	1510 932	4	0.04	34 28	1310 1670	<u>14</u> 11	0.10 0.11	2	3 8	29 58	0.18	10 10	10	63 105	10 10	73 89
9300N 9950E	1.0	0.09	10	1.19	705	6	0.03	40	1430	26	0.11	2	4	42	0.22	10	10	105	10	82
9300N 10000E	1.0	0.09	20	1.40	595	8	0.02	46	1620	27	0.11	2	6	64	0.19	10	10	112	10	82
9300N 10050E	1.0	0.23	10	1.87	911	2	0.03	73	1250	93	0.03	2	9	94	0.22	10	10	159	10	94
9300N 10100E 9300N 10150E	1.0 1.0	0.17	20 20	1.39	787 921	2	0.05	50 66	1250	<u>46</u> 65	0.03	2	6 9	<u>65</u> 72	0.23	10 10	10	110	10 10	92 88
9400N 9850E	1.0	0.18	20	1.19	1245	1	0.05	26	1750	9	0.03	2	12	153	0.23	10	10	113	10	94
9400N 9900E	1.0	0.10	20	1.21	1160	2	0.04	26	1740	8	0.09	2	10	119	0.50	10	10	109	10	79
9400N 9950E	1.0	0.10	10	1.56	916	5	0.03	51	1300	19	0.06	2	8	57	0.23	10	10	118	10	71
9400N 10000E	1.0	0.14	10	1.58	600	7	0.03	54	1100	23	0.05	2	7	63	0.24	10	10	126	10	83
9400N 10050E 9400N 10100E	1.0 1.0	0.24	10	1.80	999 1005	2	0.03	80 52	1410	<u>58</u> 26	0.02	2	8 9	64 55	0.22	10	10 10	154 155	10 10	97 83
9400N 10150E	1.0	0.12	10	1.82	991	1	0.03	48	1220	41	0.04	2	9	50	0.23	10	10	155	10	86
9500N 10000E	1.0	0.24	10	1.95	926	5	0.02	82	1340	118	0.02	2	11	50	0.19	10	10	193	10	114
9600N 10000E	1.0	0.31	10	2.30	851	2	0.02	110	980	72	0.03	2	9	62	0.23	10	10	159	10	80
9700N 10000E 9800N 10000E	1.0 1.0	0.31	20 20	2.17	1190 1385	3	0.02	<u>93</u> 63	1470	115	0.02	2	12	80	0.24	10	10	237	10	125
9900N 10000E	1.0	0.22	20	2.11	1075	2	0.04	124	1410	65	0.03	2	15 11	91	0.20	10 10	10	247 145	10	108 96
1	1.0	0.11	20	1.19	897	10	0.03	43	1660	22	0.08	2	7	37	0.33	10	10	99	10	118
2	1.0	0.08	20	1.54	678	13	0.03	58	1400	31	0.12	2	6	73	0.16	10	10	115	10	98
3	1.0	0.18	10	1.94	898	3	0.03	64	1430	28	0.02	2	12	82	0.27	10	10	157	10	88
5	1.0	0.15	10 10	1.59	649	9	0.02	51	1460	27	0.05	2	9	69	0.28	10	10	135	10	85
6	1.0	0.09	20	2.22	1130 1360	6	0.03	62 41	1760 2080	27	0.04	2	8 10	49 46	0.22	10	10	132	10 10	126 109
7	1.0	0.12	10	1.67	981	2	0.03	51	1370	24	0.03	2	ß	48	0.27	10	10	126	10	89
8	1.0	0.17	20	2.11	967	2	0.04	94	1330	49	0.02	2	10	72	0.33	10	10	145	10	169
9	1.0	0.10	20	1.87	1030	3	0.03	59	1240	31	0.06	2	9	51	0.25	10	10	153	10	118
10 11	1.0 1.0	0.14	20 10	1.78	1025 874	. 2	0.04	64 55	1440	26 9	0.03	2	9 5	<u>38</u> 19	0.24	10	10 10	132 82	10 10	107
12	1.0	0.06	10	1.05	629	1	0.04	44	1020	9	0.02	2	5	17	0.16	10	10	75	10	65
13	1.0	0.03	10	0.63	380	1	0.04	39	820	5	0.01	2	3	14	0.14	10	10	44	10	37
14	1.0	0.07	10	1.11	672	1	0.06	59	1170	10	0.03	2	4	24	0.22	10	10	83	10	70
15 16	1.0 1.0	0.05	10 20	1.76	<u>578</u> 935	1	0.10	83 73	920	<u>5</u> 14	0.01	2	4	42	0.26	10	10	57	10	47
17	1.0	0.09	10	1.66	574	1	0.03	98	1620	20	0.06	2	7	61 55	0.30	10 10	10	112 110	10	94 55
18	1.0	0.26	10	2.53	1105	2	0.03	201	1010	35	0.07	2	6	74	0.25	10	10	139	10	114
19	1.0	0.14	10	2.53	981	1	0.07	126	830	23	0.02	2	9	58	0.29	10	10	81	10	76
20	1.0	0.19	10	1.80	1095	2	0.03	88	1230	32	0.02	2	8	92	0.24	10	10	148	10	97
21 22	1.0 1.0	0.17	10 10	3.26 1.80	2480	2	0.02	120 59	1350	<u>38</u> 33	0.01	4	11 8	<u>117</u> 55	0.16	10 10	10	256 145	10 10	136 88
23	1.0	0.39	10	1.05	560	2	0.02	65	1390	13	0.02	2	6	134	0.16	10	10	132	10	56
24	1.0	0.39	10	1,46	749	1	0.02	82	1460	22	0.03	2	7	148	0.19		10	128	10	73
25	1.0	0.30	10	1.15	630	1	0.02	69	1380	19	0.03	2	6	138	0.17	10	10	124	10	66
26 27	1.0 1.0	0.21	10 10	0.90	580 892	2	0.01	. 56 79	1420	22	0.02	2	5	158 166	0.17	10 10	<u>10</u> 10	116 127	10 10	56 83
28	1.0	0.23	10	1.68	970		0.02	69	1680	33	0.01	2	8	131	0.19	10	10	127	10	113
29	1.0	0.34	10	1.57	923	2	0.02	58	1480	32	0.01	2	8	112	0.23	10	10	156	10	115
30	1.0	0.27	20	1.94	857	2	0.02	68	1410	34	0.02	2	9	110	0.26	10	10	155	10	157
31	1.0	0.42	10	1.93	823	1	0.02	44	1590	31	0.02	2	8	114	0.25	10	10	156	10	132
32 33	1.0 1.0	0.22	10 10	1.59	648 965	4 6	0.02	58 56	1300 1290	17	0.03	2	6 6	96 122	0.20	10 10	<u>10</u> 10	138 160	10	124 116
34	-1.0	0.38	10	1.56	842	3	0.01	58	1710	26	0.05	2	8	119	0.17	10	10	160	10	108
35	1.0	0.39	10	1.58	648	4	0.01	55	1460	22	0.06	2	8	120	0.19	10	10	153	10	104
36	1.0	0.10	10	1.59	773	6	0.02	64	1110	25	0.04	2	5	101	0.18	10	10	136	10	107
37	1.0	0.27	10	1.92	820	6	0.02	102	1330	29	0.01	2	9	98	0.22	10	10	143	10	126
38 39	1.0 1.0	0.31	10 10	2.26	1070 876	5	0.02	104 58	1340 990	31	0.02	2	8 6	118 74	0.22	10 10	10	146 132	10	123 91
40	1.0	0.20	10	1.92	926	1	0.04	28	920	7	0.01	2	5	50	0.25	10	10	132	10	94
41	1.0	0.10	10	1.57	697	2	0.03	30	1020	6	0.05	2	5	33	0.26	10	10	133	10	81
42	1.0	0.29	10	2.39	993	2	0.02	102	1250	7	0.03	2	6	111	0.23	10	10	135	10	93
43 44	1.0	0.38	10 10	3.02	739	1	0.03	11 60	400	2	0.03	2	7	66	0.42	10	10	193	10	56
45	1.0	0.11	10	1.36	<u>773</u> 682	2	0.03	48	1060	9	0.05	2	3 5	37 67	0.20	10 10	10	110 131	10	73 64
46	1.0	0.30	10	2.11	826	2	0.02	41	630	5	0.02	2	5	43	0.32	10	10	149	10	84
47	1.0	0.07	10	1.53	665	2	0.02	74	640	8	0.07	2	4	42	0.20	10	10	118	10	54
48	1.0	0.08	10	1.29	996	2	0.03	61	850	7	0.09	2	3	41	0.19	10	10	115	10	64
49 50	1.0 1.0	0.10	10 10	1.35	795 697	1	0.02	<u>36</u> 33	960 1170	5	0.06	2	4	68 G4	0.18	10 10	10	115	10	71
00	1.0	0.20	N.	2.15	037		0.01	- 33	11/0	10	0.02		4	94	0.28	10	10	123	10	58

Appendix D: Silt samples, Ball Creek Property

. . .

, ---

•

÷.....

,....

÷ .

.

. .

Sample	Datum	East	North	Au	Ag	Al %	As	В	Ba	Be	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	Ga	Hg	К%	La	Mg %	Mn	Мо	Na %
B386552	NAD83 ZN 9	411608	6345711	0.030	0.8	1.23	84	10	270	1	2	3.78	1	19	9	115	5.62	-10	-1	0.12	20	0.74	1005	6	0.12
B386554	NAD83 ZN 9	411609	6345752	0.011	0.8	1.09	75	-10	210	1	-2	4.13	-1	17	7	100	5.13	-10	-1	0.10	10	0.72	973	4	0.12
B386557	NAD83 ZN 9	412068	6345540	0.033	1.4	1.29	361	-10	270	1	-2	1.63	1	17	6	69	5.35	-10	-1	0.11	10	0.78	1630	3	0.02
BCS1	NAD83 ZN 9	412016	6345355	0.027	0.6	1.06	104	-10	180	1	-2	2.78	-1	19	8	86	5.58	-10	-1	0.13	10	0.72	1010	3	0.01
BCS2	NAD83 ZN 9	412565	6345699	0.030	0.7	1.47	88	-10	260	1	-2	2.79	1	19	23	95	6.93	10	-1	0.09	20	0.88	923	3	0.04
BCS3	NAD83 ZN 9	413096	6346139	0.018	0.4	1.87	47	-10	340	1	-2	1.08	-1	21	8	92	6.20	10	-1	0.11	20	1.20	1170	3	0.09
BCS4	NAD83 ZN 9	413456	6346425	0.040	0.2	1.96	22	-10	140	i 1	-2	2.86	1	16	28	75	4.91	10	-1	0.06	10	1.39	844	3	0.11
BCS5	NAD83 ZN 9	409637	6345675	0.131	2.4	1.08	146	-10	160	: 1	-2	2.27	, 1 _.	22	8	93	6.46	-10	-1	0.10	10	0.64	1155	7	0.02
BCS6	NAD83 ZN 9	409009	6345876	-0.005	-0.2	1.41	16	-10	220	. 1	-2	2.77	-1_	18	.7.	79	6.30	-10	-1	0.11	20	0.75	1095	2	0.27
BCS7	NAD83 ZN 9	408847	6345907	0.063	0.7	0.96	52	-10	170	. 1	-2	3.66	1	17	20	71	5.06	-10	-1	0.09	10	0.63	905	2	0.01

Sample	Nî	P	Pb	S %	Sb	Sc	Sr	Ti	TI	U	٧	W	Zn	Quality	Gradient	Comments
B386552	21	2750	20	0.28	6	- 7	216	0.04	-10	-10	133	-10	126			
B386554	18	2630	19	0.29	4	7	216	0.03	-10	-10	118	-10	107			
B386557	8	2110	27	0.47	8	- 5	70	-0.01	-10	-10	82	-10	142			
																Float 40% dark argillite/slst 30% Fe carb alteration 20% green
																sist sst and 5% calcite veins Minor qso with qtz cpy veinelts
BCS1	12	2360	15	0.80	3	7	118	0.01	-10	-10	100	-10	88	Good	Mod	and qz v with py sph cpy
							1									Outcrop fine grained ambiguous volc or sed. Float 70%
					i		ŗ									volcanic 15% Fe carb carb veins and 15% Green feldspar
BCS2	17·	3610	18	0.59	5	- 7	147	0.05	-10	-10	173	-10	106	Poor	Steep	porphyry
					-											Outcrop green volc with faulting minor calcite veins. Float 80%
BCS3	10	2750	24	0.15	3	7	86	0.08	-10	-10	184	-10	118	Good	Mod	volcanic 18% seds and 2% strong Fe carb
																Outcrop of green volcanics and fresh plag kspar porphyry
BCS4	24	1910	14	0.28	-2	- 7	74	0.13	-10	-10	141	-10	96	Mod	Mod	Float 99% same but 1% qsp altered intrusive and qtz vein
					· ·											Float 60% green sandstone 30% dark argillite 10% Fe carb
																alteration cal veins. Some carb ser py with py veinlets and qz
BCS5	24	2150	50	1.23	10	7	87	0.01	-10	-10	93	-10	179	Good	Mod	carb py gal veins
									ľ					1		Till banks and 60% dark sandstone/mudstone 5% Fe carb and
BCS6	8	3030	8	0.30	2	9	138	0.02	-10	-10	128	-10	118	Good	Mod	very minor qtz carb veins with py gal thd?
							1									Till banks Float 70% Fe carb in intrusive seds, 20% green fine
BCS7	27	1720	14	0.33	8	8	110	0.01	-10	-10	98	-10	106	Good	Mod	grained volc and10% grey limestone

Appendix E Authors Certificate

I, Henry Marsden, P.Eng., certify that:

- I am a self employed consulting geologist with a business address located at: 1417 Windsor Cr. Delta, BC, Canada V4M 3C3
- 2. I am a member in good standing of the Association of Professional Geoscientists of Ontario.
- 3. I graduated from the University of British Columbia in 1986 with a Bachelor of Science in Geology and from Carleton University in 1991 with a Master of Science in Geology.
- 4. Since 1986 I have been continuously employed in exploration for base and precious metals in North America, Central and South America and China. As a result of my experience and education, I am a qualified person as defined in National Instrument 43-101 (NI 43-101).
- 5. I supervised and participated in the 2005 exploration program from August 11th to August 25th, 2005 and am therefore personally familiar with the geology of the Ball Creek Property and the work conducted in 2005. I have prepared all sections of this report with the assistance of Paget Resources personnel.

Dated this 21st Day of December, 2005

Signature

Henry Marsden, M.Sc

Appendix F Statement of Expenditures

Professional Fees and Wages

. .

Tereselena i see and mageo	Days	Rate/day		Total
Henry Marsden	Zujo	20 \$ 600.00	\$	12,000.00
John Bradford		11 \$ 500.00	\$	5,500.00
John Fleishman		24 \$ 400.00	\$	9,600.00
Nigel Luckman		13 \$ 500.00	\$	6,500.00
			Ŧ	0,000.00
Joey Henyu		10 \$ 190.00	\$	1,900.00
Douglas Kwok		12 \$ 190.00	\$	2,280.00
Merv		12 \$ 190.00	\$	2,280.00
Standby days		11 \$ 60.00	\$	660.00
Tax			\$	519.94
Equipment Rental				
Satellite Phone			\$	450.04
Rental Truck			\$	1,873.13
Hand-held radios			\$	183.54
Expenses				
Expediting (Full Spectrum En	terprises)		\$	200.00
Geochemical Analyses			\$	7,584.00
Food (incl mob out)			\$	2,942.65
Accomodation (incl mob out)			\$	3,001.44
Automotive fuel			\$	478.82
Material and Supplies			\$	2,520.31
Helicopter			\$	41,468.97
Air fare (Vancouver-Smithers				
(Smithers-Vancouver	x 2)		\$	952.34
Taxis			\$	147.00
Freight			\$	533.46
Report		2 \$ 600.00	\$	1,200.00
Subtotal			\$	104,775.64
Management/Project Supervision			\$	10,477.56
(10% of subtotal)				
Total			;	\$ 115,253.20

hemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

CERTIFICATE VA05074026

Project: BC 2005

P.O. No.:

This report is for 125 Rock samples submitted to our lab in Vancouver, BC, Canada on 30-AUG-2005.

The following have access to data associated with this certificate:

JOHN	BRADFORD

HENRY MARSDEN

ARMSTRONG SIMPSON	
-------------------	--

To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

Page: 1 Finalized Date: 16-SEP-2005 Account: PAGRES

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffie splitter	
PUL-31	Pulverize split to 85% <75 um	

ANALYTICAL PROCEDURES ALS CODE DESCRIPTION INSTRUMENT ME-ICP41 34 Element Aqua Regia ICP-AES **ICP-AES** Ag-AA46 Ore grade Ag - aqua regia/AA AAS Cu-AA46 Ore grade Cu - aqua regia/AA AAS Pb-AA46 Ore grade Pb - aqua regia/AA AAS Au-AA23 Au 30g FA-AA finish AAS Au-GRA21 Au 30g FA-GRAV finish WST-SIM

PAGET RESOURCES To: ATTN: ARMSTRONG SIMPSON 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Rest

÷

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

Total # Pages: 5 (A - C) Finalized Date: 16-SEP-2005 Account: PAGRES

;

Project: BC 2005

CERTIFICATE OF ANALYSIS VA05074026

.

ſ

	Method	WEI-21	Au-AA23	Au-GRA21	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Analyte	Recvd Wt.	Au	Au	Ag	AL	As	B	Ba	Be	8	Ca	Cd	Co	Cr	Cu Cu
	Units	kg	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	LOR	0.02	0.005	0.05	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1
B386287		Not Recvd													····	
B386288		Not Recvd														
B386289		1.14	<0.005		<0.2	1.16	36	20	90	<0.5	<2	8.89	<0.5	21	26	122
B386290		1.32	0.007		0.4	2.10	22	10	160	0.5	<2	5.95	<0.5	12	1	124
B200291		1.22	0.011		0.8	2.18	11	10	30	0.5	<2	6.19	0.7	16	81	91
B32		1.50	0.006		0.5	1.93	25	10	130	<0.5	<2	5.09	<0.5	28	3	204
B386293		1.66	0.039		0.3	0.88	4	<10	600	<0.5	<2	1.59	0.5	5	9	44
B386294		1.98	0.049		0.6 ≺0.7	1.30	54 116	<10	130	<0.5	<2	12.90	<0.5	9	31	88
B386295		1.72	0.017 0.018		<0.2	3.00 2.97		<10 <10	110	<0.5 <0.5	<2	4.69	<0.5	16	48	80
B386296		1.98			0.3		8		140		<2	1.93	<0.5	19	51	246
B386297		2.16	0.033		0.4	2.07	15	<10	50	<0.5	3	2.02	<0.5	36	12	383
8386298		1.78	0.006		<0.2	2.17	4	10	60	0.5	<2	9.95	<0.5	12	7	47
8386299		1.70	0.042		0.3	2.84	<2	10	140	<0.5	<2	6.52	<0.5	19	7	136
B386300		1.48	0.007		0.3 <0.2	0.26	389	<10	<10	<0.5	2	14.7	<0.5	4'	<1	3
B386391		2.02	<0.005			1.50	5	<10	240	<0.5	<2	3.31	<0.5	12	9	25
B386392		1.40	0.007 0.073		0.7 4.8	0.92	7 7	<10	100	0.7	<2	2.34	<0.5	6	4	134
B386393		1.34	<0.073		4.0 <0.2	1.04 0.28	6	<10 <10	110 50	0.8 <0.5	<2	2.51 >25.0	0.8	8	3	5680
B386394		1.78 2.44	<0.005		~0.2	0.20	6	<10	50 50	<0.5 <0.5	<2	>25.0	<0.5	ſ	23	44
B386395 B386396		2,44	0.009		0.4	0.08	41	<10	260	<0.5	<2 <2	0.66	<0.5 <0.5	2 1	2 33	2 9 20
		1.34	>10.0	19.50	94,6	0.16	>10000	<10	80	<0.5	<2	0.06		-	-	
B386397 B386398		1.34	0.053	19.50	1.0	0.15	103	<10	130	<0.5	<2	0.08	9.9 <0.5	1	30 27	124 19
B386399		2.02	0.062		0.6	2.69	52	<10	60	<0.5	<2	2.00	<0.5	28	4	86
B386400		3.14	0.006		<0.2	0.42	12	<10	190	<0.5	<2	2.38	<0.5	20	26	13
B386401		1,48	0.009		1.9	1.06	39	<10	50	0.5	<2	2.69	4.4	13	37	50
02		2.30	<0.005		0.3	4.50	20	10	320	<0.5	<2	4.60	<0.5	31	83	49
Bow0403		1.54	0.029		0.2	0.34	15	<10	220	<0.5	<2	1.29	<0.5	5	19	21
B386404		1,92	0.299		1.1	0.97	404	<10	190	<0.5	<2	0.75	<0.5	8	7	176
B386405		1,30	0.322		0.9	1.50	183	<10	260	0.5	<2	9.72	<0.5	10	5	28
B386406		3.52	0.089		0.7	1.16	78	<10	380	0.5	<2	0.27	<0.5	2	1	130
B386407		3.12	0.008		0.2	2.05	21	10	500	0.6	<2	1.81	<0.5	11	2	265
B386408		3.40	0.068		0.2	1.10	195	<10	20	<0.5	<2	0.48	<0.5	6	2	149
B386409		1.68	<0.005		<0.2	1.29	2	<10	70	0.9	<2	0.62	<0.5	6	1	4
B386410		1.56	0.013		0.3	1.09	122	<10	50	0.6	<2	2.35	<0.5	12	2	214
B386516		2.28	<0.005	<u></u>	<0.2	1.60	<2	<10	80	<0.5	2	88.0	<0.5	14	12	158
B386517		2.08	<0.005		0.2	1.66	7	<10	160	<0.5	<2	0.78	<0.5	12	14	102
B386518		1.10	<0.005		<0.2	0.29	5	<10	240	<0.5	<2	0.03	<0.5	2	24	13
B386519		1.66	<0.005		<0.2	0.25	11	<10	140	<0.5	<2	0.02	<0.5	1	28	11
B386520		1.46	0.005		0.2	0.17	12	<10	400	<0.5	<2	0.02	<0.5	2	21	11
B386521		1.58	0.007		2.2	0.73	118	10	60	<0.5	<2	9.72	0.6	12	3	256

Page: 2 - A

1

ALS Chemex

ALS Canada Ltd.

To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

1

1

Page: 2 - B Total # Pages: 5 (A - C) Finalized Date: 16-SEP-2005 Account: PAGRES

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

1

١

								CERTIFICATE OF ANALYSIS VA05074026								
Sample Description	Method Analyte Units LOR	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1
B386287																
B386288 B386289		4.60	<10	<1	0.18	<10	1.06	1000	1	0.04	18	710	00	0.40	-	
B386290		3.48	10	<1	0.27	10	1.36	1165	, ,	0.04	12	1290	26 17	0.10 0.02	7 <2	15 5
B204291		5.03	10	1	0.22	10	1.42	849	3	0.05	55	1250	14	1.66	2	7
92		5.92	<10	<1	0.19	10	0.62	695	1	0.06	7	1550	12	2.11	3	7
B386293		1.95	<10	<1	0.21	10	0.50	261	2	0.01	20	1380	12	0.26	<2	2
B386294		3.25	<10	<1	0.27	10	0.60	2070	10	0.01	39	2300	8	1.16	2	3
B386295		5.57	10	<1	0.30	<10	2.12	1050	1	0.04	29	1270	8	0.76	2	10
B386296		8.19	10	<1	0.31	<10	1.83	719	4	0.11	35	1280	5	2.85	4	9
B386297		13.0	10	<1	0.30	<10	1.04	609	1	0.02	14	880	6	5.91	2	5
B386298		4.09 5.78	<10 10	1 <1	0.22	10 10	0.52 1.77	1400 1285	1	0.02	5 9	1270	5	0.22	<2	14
B386299 B386300		18.2	<10	<1	0.22	<10	0.29	2300	7	0.08 <0.01	9 3	1170 40	10 4	2.15 >10.0	<2 11	18 1
B386391		3.74	10	<1	0.08	10	0.62	585	5	0.11	7	1000	4	0.08	<2	6
B386392		3.53	10	<1	0.35	10	0.21	663	5	0.02	2	840	15	0.79	<2	5
B386393		4.83	10	<1	0.33	10	0.33	904	1	0.05	3	270	34	0.14	<2	3
B386394		2.04	<10	<1	0.01	10	0.42	3910	1	0.01	12	340	7	<0.01	2	7
B386395		0.33	<10	<1	0.07	<10	0.13	743	<1	0.01	2	200	3	<0.01	<2	1
B386396		1.50	<10	<1	0.04	<10	0.01	99	1	<0.01	8	30	16	0.18	4	<1
B386397		2.86	<10	3	0.08	<10	0.01	73	19	<0.01	6	250	1025	1.08	258	1
B386398		1.97	<10	<1	0.07	<10	0.01	87	7	<0.01	12	330	19	D.18	36	1
8386399		5.01	10	<1	0.39	<10	2.15	825	2	0.21	4	860	9	1.31	2	8
B386400 B386401		1.69 3.69	<10 <10	<1 <1	0.09 0.26	<10 10	0.28 0.95	386 432	5 74	0.01 0.02	15 49	480 1110	14 8	0.51	2 10	1
													·	3.00		4
402		6.69 2.03	10 <10	<1 <1	0.18 0.11	10 <10	3.54 0.14	1050 231	1	0.26 0.01	64 16	1520 470	17 17	1.50	<2	16
B386404		3.57	<10	<1	0.38	10	0.19	161	1	0.02	7	3120	17	0.94 1.53	3 14	2 3
B386405		3.57	<10	<1	0.26	10	0.40	2340	2	0.04	1	1340	14	0.86	5	5
B386406		3.40	<10	<1	0.54	20	0.06	79	1	0.03	2	2980	20	0.21	6	3
B386407		4.98	10	<1	0.35	10	0.33	628	2	0.05	3	3680	20	0.66	14	5
B386408	:	10.95	<10	22	0.33	10	0.16	128	14	0.05	4	2540	21	>10.0	470	2
B386409		3.87	<10	<1	0.33	20	0.32	540	1	0.02	<1	1260	6	1.94	2	1
8386410		3.17	<10	1	0.43	20	0.15	608	5	0.02	10	3290	19	1.90	26	3
B386516		5.27	10	<1	0.13	<10	0.94	701	14	0.12	7	830	9	0.07	2	9
B 386517		6.17	10	<1	0.15	10	1.27	884	5	0.11	6	830	14	0.16	<2	11
B386518		1.62	<10	<1	0.10	10	0.14	84	1	0.01	9	110	10	0.07	<2	1
B386519		2,45	<10	<1	0.08 0.05	10 10	0.09 0.01	70 67	6	0.02	10	200	25	0.26	2	1
B386520 B386521		1.77 4.73	<10 <10	<1 25	0.05	10	2.41	ь/ 2610	3	0.02 0.01	6 3	200 100	16 11	0.08	2	1
0.00021					V.£/	VI	6.71	2010	1	0.01				0.92	19	3

1 1

1

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

Project: BC 2005

Page: 2 - C Total # Pages: 5 (A - C) Finalized Date: 16-SEP-2005 Account: PAGRES

									(ERTIF	CATE OF	ANALYSIS	VA05074026
Sample Description	Nethod Analyte Units LOR	ME-ICP41 Sr ppm 1	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01	Pb-AA48 Pb % 0.01		
B386287													
8386288													
B386289		239	0.01	<10	<10	121	<10	44					
B386290		153 100	0.01 0.07	<10 <10	<10 <10	82 131	<10 <10	46 111					
│ <u>`</u>												······	
292		83	<0.01	<10	<10	79	<10	26					
B386293 B386294		40 402	0.01 <0.01	<10 <10	<10 <10	16 62	<10 <10	88					
8386295		402	0.11	<10	<10	142	<10	25 34					
B386296		-+0 54	0.12	<10	<10	149	<10	74					
B386297		30	0.11	<10	<10	67	<10						
B386298		166	<0.01	<10	<10	85	<10	23 69					
B386299		128	0.04	<10	<10	162	<10	83		•			
B386300		89	<0.01	<10	<10	6	<10	7					
B386391		245	0.21	<10	<10	94	<10	18					
B386392		155	0.24	<10	<10	265	<10	31					
B386393		238	0.31	<10	<10	829	<10	67					
B386394		776	< 0.01	<10	<10	51	<10	29					
B386395		1080	<0.01	<10	<10	7	<10	11					
B386396		30	<0.01	<10	<10	5	<10	10					
B386397		31	<0.01	<10	<10	54	<10	1140					······································
8386398		83	<0.01	<10	<10	16	<10	13					
B386399		100	0.40	<10	<10	162	<10	65					
B386400	i	72	<0.01	<10	<10	18	<10	54					
R386401		111	0.01	<10	<10	277	<10	294					
J6402		172	0.03	<10	<10	167	<10	83					
B386403		42	<0.01	<10	<10	10	<10	46					
B386404		30	<0.01	<10	<10	59	<10	29					
B386405		613	<0.01	<10	<10	52	<10	87					
B386406		39	<0.01	<10	<10	54	<10	23					
B386407		87	<0.01	<10	<10	151	<10	64					
B386408		22	<0.01	220	<10	79	<10	78					
B386409		36	<0.01	<10	<10	22	<10	35				•	
8386410 B386516	i	64 102	<0.01 0.40	<10 <10	<10 <10	45 128	<10 <10	100 87					
8386517			0.49		<10	164	<10			······	<u> </u>		
B386517 B386518		46 10	0.49	<10 <10	<10 <10	104	<10 <10	91 15					
B386519		6	0.01	<10	<10	16	<10	13					
B386520		8	<0.01	<10	<10	6	<10	25					
B386521	l	437	<0.01	<10	<10	51	<10	132					

_

1

١

:

1 1 1 To: PAGET RESOURCES

2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

Page: 3 - A Total # Pages: 5 (A - C) Finalized Date: 16-SEP-2005 Account: PAGRES

1

1

CERTIFICATE OF ANALYSIS VA05074026

1

3

212 Brooksbank North Vancouver Phone: 604 984

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

k Aveni	9		
эr BC V	7J 2C1		
0221	Fax: 604 984 0218	www.alschemex.com	Project: BC 2005

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1
B386522	_	2.08	2.46		>100	0.17	221	<10	90	<0.5	<2	4.57	11.5	2	18	444
B386523		0.40	0.012		2.0	0.48	36	<10	190	<0.5	<2	3.59	<0.5	2	14	144 24
B386524		1.68	0.029		3.5	0.64	45	10	30	<0.5	<2	3.34	<0.5	16	5	45
B386525		1.50	0.044		1.0	0.21	27	<10	90	<0.5	<2	24.9	<0.5	4	1	26
P196526		0.28	0.113		4.0	0.05	7170	<10	10	<0.5	~	0.53	<0.5	2	12	51
H 527		0.40	8.17		37.6	0.02	2990	<10	60	<0.5	<2	0.51		1		
B386528		1.40	0.763		17.7	0.02	2330	<10	90	<0.5	<2	>25.0	1.1 9.0	1	4 1	31
B386529		2.22	0.006		0.5	1.40	48	10	770	<0.5	<2	9.56	<0.5	14	50	63
B386530		0.56	3.32		39.9	0.18	1420	<10	130	<0.5	<2	>25.0	~0.5 51.0	2	50 4	34
B386531		1.34	0.022		0.8	0.54	40	10	240	0.5	<2	3.13	<0.5	4	5	184 9
······································																
B386532		2.64	0.032		0.9 0.5	0.40 0.55	49 41	10 10	20	<0.5	<2	2.75	0.5	5	5	14
B386533		2.38	0.057 0.005		0.5	0.55	117	10	50 90	0.5	<2	0.86	0.5	4	7	12
B386534		2.02	0.005		0.6	0.54	46	טר <10	- +	<0.5 <0.5	<2 <2	3.50	<0.5	7	3	43
B386535		1.34	0.020		<0.2	0.54	2	<10	140 480	<0.5 <0.5	<2	1.03 0.62	<0.5 19.0	7	14 7	40
B386536																91
B386537		1.70	<0.005		0.3	2.46	2	10	80	0.9	<2	1.36	4.6	18	27	1205
B386538		2.32	0.011		0.4	3.69	3	<10	380	<0.5	<2	1.75	59.6	28	28	1855
B386539		1.80	0.634		0.2	0.54	93	<10	360	<0.5	<2	0.16	1.2	1	12	15
B386540		1.64	0.061		0.3	1.24	10	<10	660	0.6	<2	4.63	1,3	9	14	436
B386541		1.70	0.061		1.6	1.40	9	<10	70	0.9	<2	2.85	<0.5	8	6	2260
B386542		1.54	0.177		1.6	0.90	38	<10	50	2.2	2	0.20	0.5	2	2	176
B386543		2.04	0.005		0.5	1.60	2	<10	20	1.0	<2	3.42	<0.5	12	4	635
B386544		1.84	0.006		0.7	2.04	14	<10	70	0.5	<2	5.27	<0.5	14	4	75
B386545		2.70	0.023		5.4	0.75	<2	<10	60	<0.5	2	.1.30	<0.5	2	3	1200
8386546		2.40	0.005		0.3	1.12	2	<10	50	<0.5	<2	2.55	<0.5	6	5	282
36547		2.00	0.005		0.3	0.91	<2	<10	100	0.7	<2	1.48	<0.5	7	10	293
0386548		2.88	0.011		0.9	1.60	3	<10	60	0.8	<2	3,45	<0.5	11	7	1430
B386549		1.60	0.016		1.0	0.58	2	<10	140	<0.5	<2	1.29	<0.5	5	7	783
B386550		1.82	0.007		0.9	0.82	3	<10	80	0.9	<2	0.95	<0.5	6	9	794
B386551		1.30	<0.005		<0.2	0.09	4	<10	170	<0.5	<2	>25.0	<0.5	<1	1	13
B386553		0.88	0.007		<0.2	0.05	23	<10	30	<0.5	<2	>25.0	<0.5	1	<1	7
B386555		1.24	0.009		0.3	1.20	44	10	90	0.8	<2	5.00	<0.5	16	3	127
B386556		1.04	<0.005		<0.2	0.75	4	10	360	0.5	<2	2.91	<0.5	6	2	6
B386558		1.18	0.005		<0.2	1.47	9	<10	40	<0.5	<2	1.77	<0.5	10	18	47
B386559		1.96	0.128		<0.2	2.77	18	<10	80	<0.5	<2	0.12	<0.5	21	9	231
B386560		1.68	0.008		0.2	0.84	19	10	170	0.5	<2	0.28	<0.5	9	3	87
B386561		0.80	0.005		<0.2	0.17	374	<10	30	<0.5	<2	>25.0	<0.5	3	1	4
B386562		0.86	0.044		<0.2	2.68	22	<10	200	<0.5	~2	4.86	<0.5	17	22	139
B386563		1.32	0.007		<0.2	1.30	19	<10	50	1.1	<2	2.18	<0.5	8	3	121
B386564		1.08	<0.005		<0.2	1.33	a	<10	60	0.8	<2	0,91	<0.5	ě	5	61
		1	21224				-				-			-	-	

ł

1

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

2

Page: 3 - B Total # Pages: 5 (A - C) Finalized Date: 16-SEP-2005 Account: PAGRES

2

1

Project: BC 2005

CERTIFICATE OF ANALYSIS VA05074026

÷

	Method	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Analyte	Fe	Ga	Hg	к	La	Mg	Mo	Mo	Na	Ni	P	Pb	S	Sb	Sc
	Unite	%	ppm	ρpm	%	ppm	*	ppm	ppm	*	ppm	ppm	ppm	*	ppm	ppm
Sample Description	LOR	0.01	10	1	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2	1
B386522	-	1.68	<10	1	0.03	<10	0.12	1735	1	0.01	2	90	1300	0.87	84	1
B386523		1.53	<10	<1.	0.06	<10	0.27	618	<1	0.01	2	240	12	0.07	<2	1
B386524		6.22	<10	<1	0.32	10	0.83	924	4	0.06	5	1720	18	6.07	2	4
B386525		4.53	<10	<1	0.10	<10	2.17	1300	<1	0.01	2	120	6	4.8	10	<1
526		5.47	<10	1	0.02	<10	0.05	127	<1	<0.01	2	30	71	4.42	57	<1
527		1.16 1.15	<10 <10	1 <1	0.01 0.01	<10 <10	0.04 0.13	52 7840	<1 <1	<0.01 0.01	1 <1	10 50	44	0.83	47	<1
B386528 B386529		4.40	<10	<1	0.07	<10	3.60	1435	1	0.01	22	50 910	4570 9	1.3	26 2	1
B386530		3.18	<10	<1	0.06	<10	0.19	4820	<1	0.01	2	260	>10000	0.30 4.6	31	12 2
B386531		1,87	<10	1	0.29	10	0.10	587	<	0.01	1	230	146	4.0	3	2
					0.22	<10					<u>_</u>					
B386532		3.61	<10 <10	ব ব	0.22	<10	0.12 0.07	556 223	1 1	0.01 0.01	4 2	80	187	2.80	4	1
8386533 8386534		3,12 2,24	<10	1	0.28	<10	0.33	681	2	<0.01	∡ 3	50 850	29 17	2.60 0.69	6 ∡	1
B386535		1,69	<10	<1	0.27	<10	0.10	301	2	<0.01	10	670	32	0.19	4 3	5 6
B386536		2.52	<10	4	0.28	10	0.21	304	3 7	0.03	5	610	10	0.19	-3 -<2	2
		4,63	10	3	0.14	10	2.00	1085	1	0.06	16	1940	6			
B386537 B386538	1	4,63 5,01	10	1	0.11	10	2.51	1205	1	0.08	28	2190	9	0.14 0.10	9	9
B386539		1.62	<10	<1	0.29	<10	0.04	75	2	<0.04	6	230	25	0.10	<2 <2	10
B386540		3.61	10	<1	0.25	30	1.02	1565	<1	<0.01	8	1280	8	0.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6
B386541		4.04	10	<1	0.27	10	0.73	793	<1	0.01	4	930	9	0.01	~2	6
B386542		2.70	10	<1	0.55	10	0.12	196	12	<0.01	<1	80	243	1.18	<2	<1
B386543		4,89	10	<1	1.02	10	0.65	1460	1	0.05	4	1390	22	0.53	<2	8
B386544		4,19	10	<1	0.25	10	1.42	1500	1	0.05	4	1930	12	1.26	3	5
B386545		2.54	10	<1	0.31	10	0.10	643	37	0.03	<1	320	7	0.43	<2	2
^{~386546}		3,17	10	<1	0.31	10	0.42	1130	15	0.04	1	890	10	0.64	<2	4
46547		2.14	<10	<1	0.27	10	0.20	491	4	0.07	2	630	8	0.25	<2	3
B386548		4.60	10	<1	0.74	20	0.97	1580	t	0.06	4	1100	9	0.10	<2	7
B386549		2.79	10	<1	0.31	20	0.32	519	1	0.03	3	590	7	0.08	<2	4
B386550		3.52	10	<1	0.42	20	0.58	612	<1	0.03	3	730	9	0.05	<2	5
B386551		0.66	<10	1	0.04	<10	0.25	1025	- 1	0.02	3	90	2	<0.01	<2	1
B386553		1,67	<10	<1	0.02	<10	1.17	3730	<1	0.02	<1	20	3	<0.01	<2	1
B386555		4.57	10	<1	0.25	10	1.41	1110	1	0.09	4	2480	14	0.86	6	6
B386556		3.35	<10	1	0.32	20	0.91	916	1	0.11	<1	1040	6	0.03	2	3
B386558		3.52	10	<1	0.01	<10	0.94	1340	1	0.09	7	490	4	0.05	2	11
B386559		9,20	10	<1	0.33	<10	1.42	408	3	0.04	11	670	5	1.62	3	11
8386560		3.13	<10	<1	0.45	10	0.09	188	1	0.02	13	270	4	0.81	2	2
B386561		2.48	<10	1	0.02	<10	1.93	2200	<1	0.04	<1	70	2	1.7	<2	7
B386562		4.52	10	<1	0.35	<10	1.60	707	1	0.03	31	1320	4	1.30	<2	3
B386563		3.63	10	1	0.20	10	0.54	926	4	0.08	4	1300	49	0.05	2	6
B386564		3.64	10	<1	0.23	20	1.02	773	2	0.12	5	1440	19	0.01	<2	6

To: PAGET RESOURCES

1

١

2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4 Page: 3 - C Total # Pages: 5 (A - C) Finalized Date: 16-SEP-2005 Account: PAGRES

1

ALS

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 212 Brooksbank Avenue

ALS Chemex

1

North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

1

Project: BC 2005

CERTIFICATE OF ANALYSIS VA05074026

3

2

ŗ

1

	Method Analyte	ME-ICP41 Sr	ME-ICP41 Ti	ME-ICP41 TI	ME-ICP41 U	ME-ICP41 V	ME-ICP41 W	ME-ICP41 Zn	Ag-AA46 Ag	Cu-AA46 Cu	Pb-AA46 Pb	
Sample Description	Units LOR	ppm 1	% 0.01	ррт) 10	ppm 10	ppm 1	ppm 10	ppm 2	ррт 1	% 0.01	% 0.01	
B386522		166	<0.01	<10	<10	8	<10	2810	411			
B386523		64	<0.01	<10	<10	18	<10	43				
B386524		140	<0.01	<10	<10	39	<10	61				
B386525		446	<0.01	<10	<10	5	<10	9				
526		43	<0.01	<10	<10	2	<10	114				
6_627		1470	<0.01	<10	<10	1	<10	186				
B386528		1405	<0.01	<10	<10	1	<10	2140				
B386529		358	<0.01	<10	<10 <10	113 6	<10	48				
B386530 B386531	1	862 152	<0.01 <0.01	<10 <10	<10	о 4	<10 <10	5240 142			1.44	
						·····			 .		·	
B386532		148	<0.01	<10	<10	6	<10	98				
B386533		66 057	<0.01	<10	<10	5	<10	144				
B386534		255	<0.01 <0.01	<10	<10 <10	22 25	<10 <10	37				
B386535 B386536		20 29	0.01	<10 <10	<10	20 19	<10	55 2610				1
B386537		102	0.27	<10	<10	109	<10	449				
B386538		140	0.32 0.03	<10	<10 <10	119 8	<10 <10	3600				
B386539 B386540		70 343	0.03	<10 <10	10	6 538	<10	55 144				
B386541		467	0.28	<10	<10	497	<10	68				
8386542 B386543		128 322	0.06 0.31	<10 <10	10 <10	155 343	<10 <10	63 78				
B386544		156	<0.01	<10	<10	114	<10	68				
B386545		149	0.18	<10	<10	174	<10	15				
P386546		158	0.26	<10	<10	216	<10	42				
V '		247	0.24	<10	<10	137	<10	24				
3547 B386548		247	0.24	<10	<10	704	<10	24 84				
B386549		179	0.37	<10	<10	282	<10	37				
B386550	i	52	0.24	<10	<10	297	<10	60				
B386551		1020	<0.01	<10	10	6	<10	9				
B386553		685	<0.01	<10	10	8	<10	5				
8386555		209	<0.01	<10	<10	151	<10	72				
B386556		117	0.02	<10	<10	61	<10	47				
B386558		66	0.01	<10	<10	132	<10	32				
B386559		11	0.03	<10	<10	105	<10	14				
B386560	<u> </u>	11	<0.01	<10	<10	10	<10	19				
B386561		406	<0.01	<10	10	32	<10	7				
8386562		84	0.01	<10	<10	53	<10	14				
B386563		33	0.01	<10	<10	84	<10	103				
B386564		39	0.02	<10	<10	88	<10	64				ļ
L		1										

1

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue

North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

3

Page: 4 - A Total # Pages: 5 (A - C) Finalized Date: 16-SEP-2005 Account: PAGRES

1

•

Project: BC 2005

:

CERTIFICATE OF ANALYSIS VA05074026

	Method	WEI-21	Au-AA23	Au-GRA21	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Analyte	Recvd Wt.	Au	Au	Ag	AI	As	8	Ba	Be	Bi	Ca	Cđ	Co	Cr	Cu
	Units	kg	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	LOR	0.02	0.005	0.05	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1
B386565		0.96	0.005		0.6	1.18	28	<10	30	<0.5	<2	8.56	<0.5	9	27	130
8386566	1	1.64	0.006		<0,2	3.20	_<2	<10	260	0.5	<2	3.29	<0.5	16	64	210
B386567		1.06	<0.005		<0.2	3.66	2	<10	960	<0.5	<2	2.36	<0.5	25	23	83
B386568		1.20	0.009		4.1	0.92	26	<10	60	0.9	<2	1.52	0.5	33	52	4560
P 1569		1.16	0.017		14.8	0.38	29	<10	100	0.5	<2	0.22	<0.5	4	4	9450
		1.54	<0.005		<0.2	0.60	4	<10	140	<0.5	<2	1.12	<0.5	5	7	54
B386571		1.26	<0.005		1.9	0.79	3	<10	110	<0.5	<2	1.42	0.5	11	8	928
B386572		1.16	0.006		8.8	0.93	5	<10	280	0.7	8	1.41	0.6	41	43	9200
B386573		1.18	0.092		0.2	2.85	4	<10	110	<0.5	<2	4.31	<0.5	21	162	69
B386574		1.62	0.031		30.8	0.87	3	<10	20	1.1	<2	0.33	1.1	28	<1	>10000
B386575		1.50	0.006		0.3	2.38	7	<10	130	<0.5	<2	2.12	<0.5	30	17	215
8386576		2.20	0.007		3.4	2.19	8	<10	30	0.6	3	10.65	0.5	20	34	5580
B386577		0.98	0.007		0.2	0.76	4	<10	40	0.6	<2	6.16	<0.5	17	59	134
B386578		1.00	0.005		0.2	0.51	<2	<10	90	<0.5	<2	1.00	<0.5	1	4	122
B386579		0.88	0.193		<0.2	0.98	11	<10	20	0.5	<2	2.36	<0.5	14	40	49
B386580		0.96	0.037		1.1	0.40	287	10	70	0.5	<2	6.47	<0.5	14	24	122
B386581		88.0	0.035		1.2	1.62	83	<10	70	<0.5	<2	0.25	<0.5	10	3	138
B386582		1.12	0.061		1.5	0.59	99	<10	580	<0.5	<2	11.45	18.3	3	4	232
B386583		0.58	<0.005		0.2	0.99	3	10	2850	0.5	<2	3.05	<0.5	5	2	8
B386584		0.98	<0.005		<0.2	0.29	9	<10	2480	<0.5	<2	24.0	<0.5	5	<1	11
B386585		1.34	0.084		1.7	0.06	118	<10	100	<0.5	<2	>25.0	4.6	3	<1	33
B386586		1.64	0.007		0.2	0.34	13	<10	80	<0.5	<2	18.7	<0.5	4	<1	14
B386587		0.96	0.025		1.0	0.49	33	<10	80	0.5	<2	11.45	<0.5	5	<1	33
B386588		1.12	0.013		0.2	1.98	20	<10	20	<0.5	<2	0.43	<0.5	10	4	42
P386589		1.70	<0.005		0.2	2.97	5	<10	30	<0.5	<2	2.09	<0.5	14	1	29
\$590		0.78	<0.005		<0.2	3.04	8	10	10	0.5	<2	3.26	<0.5	1 9	2	47
B386591		1.40	<0.005		<0.2	2.97	7	<10	40	<0.5	<2	0.08	<0.5	5	1	28
B386592		1.22	<0.005		0.6	0.63	12	<10	20	<0.5	<2	5.69	<0.5	6	2	34
B386593		1.04	<0.005		0.2	3.44	45	10	170	0.7	<2	4.21	<0.5	25	21	945
B386594		1.74	0.674		19.3	0.52	436	<10	230	<0.5	<2	0.10	<0.5	4	8	20
B386595		0.64	<0.005		0.3	1.83	5	<10	110	0.8	<2	0.45	<0.5	12	6	82
B386596		0.86	0.013		5.1	2.93	4	<10	90	<0.5	36	0.14	<0.5	7	18	664
B386597		0.74	0.006		0.7	0.52	<2	<10	50	<0.5	6	0.02	<0.5	1	4	80
B386651		2.30	0.006		0.4	1.18	<2	<10	110	0.7	<2	2.28	<0.5	9	4	328
B386652		2.22	0.219		7.6	0.92	7	<10	100	0.7	7	1.94	0.8	9	3	8960
B386653		2.10	0.080		4.3	1.38	3	<10	80	1.1	<2	1.46	<0.5	11	8	4340
B386654		2.82	0.011		1.4	1.60	7	<10	80	1.0	<2	4.16	<0.5	11	4	1025
B386662		1.22	0.127		15.1	0.84	197	<10	70	<0.5	17	16.9	13.5	16	2	379
B386663		3.48	0.064		5.9	1.76	68	<10	50	<0.5	5	1.20	4.0	12	3	387
B386664		1.50	0.036		4.0	0.99	38	<10	440	<0.5	2	0.91	1.1	4	5	418

1

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

1 To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

1

1

1

1

]

1

Total # Pages: 5 (A - C) Finalized Date: 16-SEP-2005 Account: PAGRES

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com Project: BC 2005

1

									C	ERTIFI	VA050	A05074026				
Sample Description	Method Analyte Unite LOR	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-1CP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1
B386565 B386566		3.18 4.82	<10 10	<1 <1	0.19 0.20	<10 10	0.52 1.09	1145 896	4	0.05 0.05	44 28	850 2550	21 5	2.03 0.01	<2 <2	4 12
8386567 8386568 8015569		6.29 2.58 1.92	10 <10 <10	<1 <1 1	0,11 0.06 0.02	10 20 20	2.77 0.59 0.08	905 730 147	1 6 30	0.37 0.10 0.19	13 42 11	1210 800 60	6 4 6	0.04 0.18 0.81	2 2 2 2	22 5
570 B386571	·	2.75	<10 <10 <10	<1 <1	0.23	20	0.24	227	1	0.07	3 12	1580 2720		1.08	2 2 2 2 2	2 2 3
B386572 B386573		2.73 4.42	<10 10	<1 <1	0.22 0.66	10 <10	0.64	439 727	3 1	0.13 0.22	41 164	1320 1010	5 7	0.10 0.09	<2 2	5 8
B386574 B386575 B386576		3.02 5.20 4.54	<10 10 10	<1 <1 <1	0.01 1.18 0.04	30 20 <10	0.39 1.86 0.98	275 440 1905	7 3 1	0.14	20 17 76	530 3100 920	6 6 4	0.41 1.51 0.18	2	5 6 7
B386577 B386578		3.61 2.15	10 <10	<1 <1	0.49 0.33	10 10	0.55 0.04	630 130	10 <1	0.09 0.01	51 2	1240 360	4 3 12	1.54 0.52	8 8 8 8 8	4 2
B386579 B386580		3.54 2.74	10 <10	<1	0.23	10	0.82	176 662	<u>4</u>	0.12	58 35	1660	4 63	0.67	2	
8386581 8386582 8386583		6.63 1.30 2.65	10 <10 <10	<1 1 <1	0.18 0.12 0.42	20 10 10	0.95 0.18 0.89	519 2040 891	6 2 <1	0.10 0.03 0.04	3 2 1	1440 560 1020	21 891 9	3.16 0.32 0.08	3 <2 2	4 3 2
B386584 B386585		1.71 1.68	<10 <10	<1 1	0.11	10 10	1.88 0.96	3160 13800	1 <1	0.02	<1 <1	190 40	14 755	<0.01 0.6	<2 3	2
B386586 B386587 B386588		2.71 3.92 5.68	<10 <10 10	<1 <1 <1	0.19 0.20 0.14	10 10 10	0.59 0.23 2.35	2600 2250 741	≺1 2 2	0.01 0.02 0.08	1 2 4	210 580 1400	10 27 6	0.6 0.99 2.85	<2 5 <2	2 3 15
B386589 B590		4.81	10	1	0.14	10	1.85	1220 920	<u>1</u> 1	0.33	35	1510	5	2.07	3	14 16
B386591 B386592 B386593		6.66 3.11 7.04	10 <10 10	1 1 <1	0.20 0.24 0.33	10 <10 10	1.46 1.32 1.99	263 2910 1295	1 <1 7	0.04 0.01 0.01	1 5 24	1640 420 1700	6 5 9	1.16 1.81 0.89	3 3 4	12 3 15
B386594 B386595		2.15	<10 10	<u>্ব</u> বা	0.25	<10	0.03	243	<u><1</u> 1	<0.01	2	320	37	0.89	29 2	15 1 7
B386596 B386597		8.39 6.88	30 <10	<1 1	0.04 0.06	10 20	2.49 0.03	2100 57	3	0.09 0.15	13 1	1030 250	20 15	0.39 0.32	3 <2	19 1
B386651 B386652 B386653		3.41 4.45 5.24	10 10 10	<1 <1 <1	0.39 0.39 0.57	20 30 20	0.83 0.40 1.07	801 788 1130	<1 1 	0,04 0.03 0.03	4 6	690 940 760	4 27 13	0.04 0.05 0.04	<2 <2 2	4 5 9
B386654 B386662		4.90 4.29	10 <10	<1 1	0.56 0.15	40 10	0.68 0.74	1350 8550	<1 3	0.06 0.02	4 2	4100 490	7 2560	0.06 4.0	2 3	13 2
B386663 B386664		5.85 3.28	10 <10	<1 <1	0.33 0.34	10 10	1.37 0.29	1030 589	12 54	0.06	3	2000 640	225 138	2.11 0.61	3 2	6 2

1 Page: 4 - B

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

Total # Pages: 5 (A - C) Finalized Date: 16-SEP-2005 Account: PAGRES

1

Project: BC 2005

							,		C	ERTIFI	CATE OF ANALYSIS	VA05074026
Sample Description	Method Analyte Units LOR	ME-ICP41 Sr ppm 1	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01	Pb-AA46 Pb % 0.01	
B386565 B386566 B386567 B386568 P^*6569		527 69 240 56 17	0.13 0.15 0.13 0.11 0.01	<10 <10 <10 <10 <10 <10	10 <10 <10 <10 10	60 206 263 74 10	<10 <10 <10 <10 <10	72 85 87 56 15				
570 B386571 B386572 B386573 B386574		184 219 146 114 14	0.19 0.21 0.26 0.28 0.10	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	80 77 92 155 46	<10 <10 <10 <10 10	12 60 78 35 65	_	5.05		
B386575 B386576 B386577 B386578 B386579		262 264 130 178 41	0.54 0.17 0.26 0.32 0.30	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	142 124 132 150 83	<10 10 <10 <10 <10	66 47 27 5 9				
B386580 B386581 B386582 B386583 B386583 B386584		104 11 195 204 772	0.01 0.01 <0.01 0.03 <0.01	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	73 112 18 37 15	<10 <10 <10 <10 <10 <10	45 51 4790 55 49	deren Add			
B386585 B386586 B386587 B386588 B386588 B386589		654 649 444 45 146	<0.01 <0.01 <0.01 0.09 0.26	10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	5 8 23 146 142	<10 <10 <10 <10 <10 <10	1675 37 57 63 94				
6590 6590 6591 8386592 8386593 8386593 8386594		255 36 201 84 47	0.02 <0.01 <0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	102 104 19 150 10	<10 <10 <10 <10 <10 <10	54 41 19 72 25		·		
8386595 B386596 B386597 B386651 B386651 B386652		25 8 6 142 240	0.16 0.20 <0.01 0.07 0.27	<10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 10	116 307 6 219 400	<10 <10 <10 <10 <10 <10	80 175 26 62 115				
B386653 B386654 B386662 B386663 B386663 B386664	<u></u>	249 616 447 47 43	0.31 0.34 0.01 0.06 0.02	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	466 903 48 150 45	<10 <10 <10 <10 <10 <10	111 134 1670 485 142	- ///	<u> </u>		

Page: 4 - C

1 1 1 1 To: PAGET RESOURCES 2080-777 HORNBY STREET EXCELLENCE IN ANALYTICAL CHEMISTRY

VANCOUVER BC V6Z 1S4

1

Page: 5 - A Total # Pages: 5 (A - C) Finalized Date: 16-SEP-2005 Account: PAGRES

1

7

North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd.

212 Brooksbank Avenue

ALS Chemex

Project: BC 2005

CERTIFICATE OF ANALYSIS VA05074026

1

1

1

1

Nethod Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-łCP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-IGP41 Cr ppm 1	ME-ICP41 Cu ppm 1
	2.52 1.92 2.34 2.92 2.02	0.043 0.814 0.114 0.443 0.260		0.8 18.2 0.9 0.6 0.4	2.84 0.67 1.27 1.60 3.43	<2 98 7 5 6	<10 <10 <10 <10 10	170 70 80 70 40	0.5 <0.5 0.5 0.5 1.3	<2 13 2 4 <2	1.71 0.28 1.21 1.56 2.67	<0.5 0.6 <0.5 <0.5 <0.5	21 5 12 15 12	17 2 2 7 4	962 124 316 258 107
														<u>, , , , , , , , , , , , , , , , , , , </u>	
													·		
	Analyte Units	Analyte Units LOR 2.52 1.92 2.34 2.92	Analyte Recvd Wt. Au Units kg ppm LOR 0.02 0.005 2.52 0.043 1.92 0.814 2.34 0.114 2.92 0.443	Analyte Recvd Wt. Au Au Units kg ppm ppm LOR 0.02 0.005 0.05 2.52 0.043 1.92 0.814 2.34 0.114 2.92 0.443	Analyte Recvd Wt. Au Au Au Ag Units kg ppm ppm ppm ppm LOR 0.02 0.005 0.05 0.2 2.52 0.043 0.8 18.2 2.34 0.114 0.9 2.92 2.92 0.443 0.6	Analyte Recvd Wt. Au Au Ag Al Units kg ppm ppm ppm % LOR 0.02 0.005 0.05 0.2 0.01 2.52 0.043 0.8 2.84 1.92 0.814 18.2 0.67 2.34 0.114 0.9 1.27 2.92 0.443 0.6 1.60	Analyte Recvd Wt. Au Au Ag AJ As Units kg ppm ppm	Analyte Recvd Wt. Au Au Ag Al As B Units kg ppm ppm ppm % ppm ppm ppm LOR 0.02 0.005 0.05 0.2 0.01 2 10 LOR 2.52 0.043 0.8 2.84 <2	Analyte Recvd Wt. Au Au Ag Al As B Ba Units LOR kg ppm ppm ppm % ppm 10 10 10 170 2.34 0.114 0.9 1.27 7 <10	Analyte Units LOR Recvd Wt. Au Au Ag Al As B Ba Be Units LOR kg ppm ppm ppm % ppm qpm qqm qpm qpm	Analyte Units LOR Recvd Wt. Au Au Ag Al As B Ba Be Bi Units LOR kg ppm ppm ppm % ppm fits fits	Analyte Units Recvd Wt. Au Au Ag Al As B Ba Be Bi Ca Units kg ppm ppm ppm % ppm % ppm % 0.01 2 10 10 0.5 2 0.01 2.52 0.043 0.85 2.84 <2	Analyte Units LOR Recvd Wt. Au Au Ag Al As B Ba Be Bi Ca Cd Units LOR kg ppm ppm ppm % ppm 10.5 2 0.01 0.5 1.5 1.60 5 10 70 0.5 4 1.56 <0.5	Analyte Units Recvd Wt. Au Au Ag Al As B Ba Be Bi Ca Cd Ca Units kg ppm pmm ppm pmm pm <td>Analyte Units Recvd Wt. Au Au Ag Al As B Ba Be Bi Ca Cd Co Cr Units kg ppm pmm pm pmm pmm</td>	Analyte Units Recvd Wt. Au Au Ag Al As B Ba Be Bi Ca Cd Co Cr Units kg ppm pmm pm pmm pmm

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

Page: 5 - B Total # Pages: 5 (A - C) Finalized Date: 16-SEP-2005 Account: PAGRES

:

1

Project: BC 2005

1

										ERTIFI	CATE C	OF ANA	LYSIS	VA050	74026	
Sample Description	Method Analyle Units LOR	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1
B386665 B386666 B386667 B386668 5555669		5.10 4.67 3.64 4.70 5.45	10 <10 10 10 20	1 1 1 <1 <1	1.34 0.36 0.19 0.11 0.10	10 10 10 10 <10	1.64 0.25 1.05 1.50 1.71	448 216 563 557 891	55 363 23 16 6	0.25 0.04 0.09 0.11 0.05	11 1 1 6 6	2610 740 1460 2960 2040	9 741 12 14 8	1.41 1.14 1.36 1.46 1.46	2 2 2 2 2 2 2 2 2	8 2 7 7 8
			_													

-

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

1

1

1

1

Page: 5 - C Total # Pages: 5 (A - C) Finalized Date: 16-SEP-2005 Account: PAGRES

1

North Vancouver BC V7J 2C1

ALS Canada Ltd.

212 Brooksbank Avenue

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

Project: BC 2005

CERTIFICATE OF ANALYSIS VA05074026

1

1

1

1

Sample Description	Method Analyte Units LOR	ME-ICP41 Sr ppm 1	ME-ICP41 Tř % 0.01	ME-ICP41 Tl ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01	Pb-AA46 Pb % 0.01			
B386665 B386666 B386667 B386668 P===5669		108 27 43 45 60	0.37 0.05 0.21 0.22 0.29	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	228 39 105 150 170	<10 370 <10 <10 <10	51 142 82 41 50					 	
														-
												·		
				<u></u>							·			

1 Nac: =

Project:

P.O. No.: BC 2005

JOHN BRADFORD

19-AUG-2005.

ALS Chemex

CERTIFICATE VA05070139

This report is for 107 Rock samples submitted to our lab in Vancouver, BC, Canada on

HENRY MARSDEN

ARMSTRONG SIMPSON

The following have access to data associated with this certificate:

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

Page: 1 Finalized Date: 4-SEP-2005 This copy reported on 7-SEP-2005 Account: PAGRES

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
PUL-31	Pulverize split to 85% <75 um	
SPL-21	Split sample - riffie splitter	
CRU-31	Fine crushing - 70% <2mm	
LOG-22	Sample login - Rcd w/o BarCode	

1

1

ł

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	34 Element Aqua Regia ICP-AES	ICP-AES
Ag-AA46	Ore grade Ag - aqua regia/AA	AAS
Cu-AA46	Ore grade Cu - aqua regia/AA	AAS
Zn-AA46	Ore grade Zn - aqua regia/AA	AAS
Au-AA23	Au 30g FA-AA finish	AAS

To: PAGET RESOURCES ATTN: ARMSTRONG SIMPSON 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Reset Com

Ŋ

1

Page: 2 - A Total # Pages: 4 (A - C) Finalized Date: 4-SEP-2005 Account: PAGRES

Cu

ppm

1

ł

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com **CERTIFICATE OF ANALYSIS** ME-ICP41 WEI-21 ME-ICP41 ME-ICP41 ME-ICP41 ME-JCP41 ME-ICP41 Au-AA23 ME-JCP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 Method Recvd Wt. в Ba Bi Analyte Au Ag AL As Be Ca Cd Co Cr Units % % kg DDM DDM ppm ppm ppm ppm ppm ppm ppm ppm Sample Description LOR 0.02 0.005 0.2 0.01 2 10 10 0.5 2 0.01 0.5 1 1 2.9 1.4 2.0 3.4 1.1 1.3 1.5 1.3 2.4 1.8

B386248

B386249

B386250

B386265

B386268

B386269

B386270

B386271

B386272

B386273

B386274

B386275

B386276

B386277

B386278

B386279

B386280

B386281

B386282

B386283

B386284

B386285

B225286

B386325

B386326

B386327

B386328

B386329

B386330

B386331

B386332

B386333

B386334

B386335

B386336

B386337

£. B386288

.87

~266

.

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

1

}

*

ALS Canada Ltd.

2.28

1.34

1.84

2.26

1.70

1.78

1.36

1.50

1.26

< 0.005

0.026

0.005

0.007

<0.005

0.084

0.022

<0.005

0.546

0.3

< 0.2

< 0.2

< 0.2

<0.2

<0.2

<0.2

<0.2

11.1

1.41

0.04

0.06

0.11

0.09

0.25

0.73

2.60

2.30

<2

5

19

142

2

434

160

10

37

<10

10

<10

<10

<10

<10

<10

<10

<10

10

1960

2770

2230

2750

10

120

70

170

< 0.5

<0.5

< 0.5

< 0.5

<0.5

< 0.5

<0.5

< 0.5

< 0.5

<2

<2

<2

2

<2

4

<2

<2

<2

5.47

0.03

0.01

0.03

0.01

0.01

0.15

3.21

0.57

<0.5

<0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

0.8

0.8

10

<1

<1

1

<1

3

6

14

4

٦

٦

٦

ME-ICP41

Fe

%

0.01

3.53

4.36

3.19

1.61

4.45

3.32

3.65

5.65

3.03

3.30

3.79

3.32

3.06

4.18

5.41

2.95

4.34

2.25

3.33

4.90

3.98

1.26

3.98

3.87

2.60

1.98

3.19

3.11

0.79

2.96

3.18

3.88

0.29

0.70

1.14

0.23

7.52

3.47

5.85

4.74

2

87

70

8

82

6

87

1

15

105

15

7

7

7

25

33

27

132

VA05070139

1

1

1

.-				-			0.0			4.0	· · · · · · · · · · · · · · · · · · ·	-	
2.96	0.022	5.2	0.38	5	<10	90	1.2	14	3.80	<0.5	11	52	>10000
1.44	0.022	0.7	0.36	108	<10	280	<0.5	<2	0.24	<0.5	3	70	190
2.00	0.951	>100	0.15	12	<10	30	2.0	104	1.84	6.9	6	72	>10000
3.48	0.029	1.7	0.15	28	<10	110	1.0	4	0.81	<0.5	3	7	509
1.18	0.752	11.3	0.21	249	<10	70	<0.5	3	0.90	0.8	14	75	609
1.32	0.007	2.7	1.09	3	<10	50	0.6	<2	5.21	0.6	16	34	3710
1.58	0.043	6.6	1.28	<2	<10	140	0.9	14	1.42	4.1	25	56	5840
1.38	0.019	1.0	2.32	2	<10	70	1.2	<2	5.63	0.6	23	38	1250
2.42	<0.005	0.2	1.06	120	<10	100	<0.5	<2	1.08	<0.5	6	55	22
1.84	0.017	0.2	1.53	56	<10	60	<0.5	<2	0.41	<0.5	6	20	23
2.52	0.005	0.2	0.62	418	<10	80	<0.5	<2	5.81	<0.5	5	35	16
1.98	0.005	0.2	0.78	35	<10	140	<0.5	<2	12.75	<0.5	12	17	21
1.70	0.067	<0.2	0.76	<2	<10	200	<0.5	<2	0.10	<0.5	2	17	97
1.82	0.033	0.2	0.97	<2	<10	360	<0.5	<2	0.08	<0.5	1	1	22
0.88	<0.005	<0.2	4.65	<2	10	260	0.6	<2	2.88	<0.5	30	49	1135
1.76	0.367	1.3	1.29	6	<10	100	<0.5	<2	0.53	<0.5	17	5	1510
1.96	0.260	0.9	1.47	<2	<10	110	<0.5	<2	1.34	<0.5	39	32	1560
1.42	0.315	0.9	1.11	11	<10	310	<0.5	4	1.30	<0.5	22	6	3630
1.28	0.025	0.2	0.58	<2	<10	120	<0.5	<2	0.07	<0.5	4	24	55
1.26	0.010	<0.2	1.26	11	<10	80	<0.5	2	0.33	<0.5	6	<1	23
0.96	0.006	0.2	1.09	<2	<10	90	<0.5	<2	0.09	<0.5	2	21	40
1.66	0.367	2.7	0.37	5180	<10	290	<0.5	<2	0.05	<0.5	2	3	18
1.26	0.078	0.3	0.92	20	<10	130	<0.5	2	0.11	<0.5	2	14	73
1.02	<0.005	0.8	1.54	12	<10	200	<0.5	5	0.14	<0.5	3	2	56
2.06	0.641	1.1	0.80	619	<10	320	<0.5	<2	0.14	<0.5	3	.33	6
1.64	0.168	0.5	0.69	2110	<10	130	<0.5	2	3.37	<0.5	3	5	7
1.70	0.157	0.8	0.99	6690	<10	240	<0.5	<2	0.38	<0.5	4	27	9
1.84	0.031	1.9	1.80	19	<10	60	<0.5	<2	2.69	<0.5	16	141	1765
1.60	0.007	5.5	0.21	101	<10	20	1.0	<2	0.10	4.7	28	33	>10000
1.96	<0.005	<0.2	1.24	13	<10	30	<0.5	<2	1.10	<0.5	16	69	144
2.20	<0.005	1.4	0.78	7	<10	340	0.7	<2	1.62	<0.5	10	16	1460

.

•

;

Page: 2 - B Total # Pages: 4 (A - C) Finalized Date: 4-SEP-2005 Account: PAGRES

2

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

									0	ERTIF	CATE C	of Ana	LYSIS	VA050	701 <u>3</u> 9	
Sample Description	Method	MÉ-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	МЕ-ICP41	ME-JCP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Analyte	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	Р	РЬ	S	Sb	Sc	Sr
	Units	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ррт	ррт	%	ppm	ppm	ppm
	LOR	10	1	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2	1	1
B386248		<10	<1	0.30	<10	0.46	446	3	0.01	20	520	113	1.12	3	2	198
B386249		<10	<1	0.17	10	0.17	71	41	0.06	18	1830	33	0.42	<2	8	72
B386250		<10	<1	0.12	10	0.15	607	7	<0.01	3	120	514	1.50	<2	2	154
B386265		<10	<1	0.16	10	0.02	228	4	<0.01	2	210	50	0.15	<2	1	110
266		<10	1	0.19	10	0.10	196	1300	<0,01	22	1380	149	1.92	6	6	89
Ludo267		<10	<1	0.12	<10	0.31	620	11	0.02	43	1620	158	0.38	<2	4	850
B386268		10	<1	0.21	10	1.35	492	4	0.01	43	560	139	0.82	<2	5	87
B386269		10	1	0.19	<10	1.85	1100	2	0.02	30	2460	11	0.52	<2	17	159
B386270		<10	1	0.14	<10	0.70	237	3	<0.01	69	230	4	0.58	2	1	13
B386271		<10	<1	0.18	10	1.16	337	3	0.01	102	410	4	1.43	<2	2	14
B386272		<10	<1	0.12	<10	1.20	734	<1	<0.01	56	190	4	1.50	6	3	67
B386273		<10	<1	0.10	<10	1.92	1110	1	<0.01	31	370	6	1.84	<2	6	192
B386274		10	<1	0.14	10	0.34	92	4	0.05	<1	640	12	0.63	<2	2	34
B386275		10	<1	0.18	10	0.30	82	<1	0.06	<1	690	29	0.75	<2	2	56
B386276		10	1	0.08	<10	3.80	1075	1	0.04	49	1000	3	0.12	<2	12	90
B386277 B386278 B386279 B386280		10 10 <10 <10	<1 1 <1 <1	0.19 0.16 0.13 0.19	20 20 40 10	1.18 0.97 0.84 0.28	177 340 549 39	112 314 204 7	0.02 0.02 0.02 0.04	4 1 4 2	900 800 660 990	15 32 10 12	1.18 1.65 0.53 0.98	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 2 2 2	16 65 38 26
B386281 B386282 B386283 B386284		<10 <10 <10 10	<1 <1 <1 <1 <1	0.19 0.13 0.21 0.18	<10 10 10 10	0.78 0.49 0.02 0.63	141 189 31 144	<1 1 35 <1	0.06 0.03 <0.01 0.04	3 1 <1 4	1400 660 570 1190	13 9 51 12	3.42 2.54 0.48 1.58	<2 <2 142 <2	3 1 1 4	22 25 14 16
B386285 P 286		10 <10 <10	1 <1 <1	0.12 0.27 0.17	10 10 <10	0.63 0.21 0.38	328 367 1475	1 2 <1	0.04 <0.01 <0.01	1 1 1	950 940 630	19 7 4	0.77 0.55 0.86	<2 12 56	7 1 1	16 13 97
 ∠287 B386288 B386325 B386326 B386327 		<10 <10 <10 <10 <10	<1 2 <1 <1	0.17 0.23 0.21 0.02 0.42	10 <10 20 <10	0.38 0.40 1.32 0.01 1.37	1080 595 169 190	2 <1 4 7	<0.01 <0.01 <0.01 0.08 0.06	5 131 2 100	1000 1300 30 1260	4 32 3 105 8	0.88 0.97 0.09 0.12 1.38	192 <2 <2 <2	1 6 2 4	97 23 313 10 267
B386328		<10	1	0.22	10	0.54	577	1	0.01	15	370	19	0.04	<2	2	87
B386329		<10	<1	0.04	<10	1.10	1345	<1	0.05	3	750	9	<0.01	<2	8	112
B386330		<10	2	0.01	<10	0.01	20	1	<0.01	5	20	3	0.07	2	<1	57
B386331		<10	3	0.01	<10	<0.01	13	8	<0.01	3	60	13	0.11	<2	<1	79
B386332		<10	3	0.03	<10	0.01	19	14	<0.01	2	100	13	0.14	4	<1	103
B386333		<10	5	0.01	<10	<0.01	13	2	<0.01	3	20	8	0.10	2	<1	146
B386334		<10	5	<0.01	<10	<0.01	18	20	<0.01	1	10	38	7.71	25	<1	112
B386335		<10	2	0.03	<10	0.71	217	15	0.01	2	540	25	1.04	36	4	40
B386336 B386337		10 10	1 <1	0.14 0.12	10 10	1.96 1.67	1550 949	1 1	0.03 0.10	<1 3	2230 1880	10 301	2.12 1.18	<2 2</td <td>11 7</td> <td>77 73</td>	11 7	77 73

1

1

1

1

)

1

Page: 2 - C Total # Pages: 4 (A - C) Finalized Date: 4-SEP-2005 Account: PAGRES

1

;

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01	Zn-AA46 Zn % 0.01	
B386248		0.13	<10	<10	223	10	29		1.36		
B386249 B386250	i	0.24	<10	<10	171	10	6	100			
B386250 B386265		0.11 0.07	<10 <10	<10 <10	312 150	10 <10	53 8	100	2.33		
266		0.07	<10	<10	372	<10	30				
J267		0.21	<10	<10	357	10	32		•		
B386268		0.07	<10	<10	161	<10	208				
B386269		0.34	10	<10	229	<10	106				
B386270		<0.01	<10	<10	19	<10	58				
B386271		0.02	<10	<10	40	<10	72				
B386272		<0.01	<10	<10	23	<10	53				
B386273		<0.01	<10	<10	42	<10	55				
B386274		0.07	<10	<10	39	<10	22				
B386275		0.02	<10 <10	<10 <10	37 162	<10 <10	16 124				
B386276		0.44									
B386277		0.01	<10	<10	69	<10	31				
B386278 B386279		0.01	<10	<10	41	<10 <10	86 50				
B386279 B386280		0.01 0.01	<10 <10	<10 <10	48 40	10	59 13				
B386281		0.01	<10	<10	40 35	<10	30				
											<u></u>
B386282 B386283		0.01 <0.01	<10 <10	<10 <10	31 6	<10 <10	18 24				
B386284		0.01	<10	<10	66	<10	24 20				
B386285		0.16	<10	<10	94	<10	34				
B206286		<0.01	<10	<10	12	<10	65				
L .87		<0.01	<10	<10	12	<10	37				
B386288		<0.01	<10	<10	18	<10	67				
B386325		0.30	<10	<10	111	<10	61				
B386326		<0.01	. <10	10	5	<10	539		1.55		
B386327		0.22	<10	<10	63	<10	49				
B386328		0.01	<10	<10	155	<10	71				
B386329		0.25	<10	<10	144	<10	57				
B386330		<0.01	<10	<10	2	<10	<2				
B386331		<0.01	<10	<10	3	<10	<2				
B386332		<0.01	<10	<10	6	<10	<2				
B386333		<0.01	<10	<10	2	<10	2				
B386334		<0.01	10	<10	6	<10	3				
B386335		0.07	<10	<10	52	<10 <10	21				
B386336 B386337		0.13	<10 <10	<10 <10	147 113	<10 <10	211 228				
B30033/		0.15	< IV	×10	113	< IU	228				

.

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com 1

1

CERTIFICATE OF ANALYSIS VA05070139

Page: 3 - A Total # Pages: 4 (A - C) Finalized Date: 4-SEP-2005 Account: PAGRES

3

1

1

CERTIFICATE OF ANALYSIS VA05070139

3

.

ALS CHEMEX EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wi. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fs %
		0.02	0.005	0.2	0.01		10	10	0.5		0.01	0.0				0.01
B386338		1.70	0.054	2.9	2.41	31	<10	100	<0.5	<2	1.08	6.2	7	11	262	6.55
B386339		1.18	0.010	0.4	2.05	2	<10	100	<0.5	<2	6.00	<0.5	11	12	50	4.40
B386340		2.28	0.020	0.8	0.86	4	<10	910	<0.5	<2	0.14	<0.5	1	18	99	2.78
B386341		1,54	0.132	1.1	0.70	99	<10	130	<0.5	<2	0.17	<0.5	3	18	9	3.13
D086342		1.30	0.017	<0.2	1.24	<2	<10	350	0.5	<2	0.39	<0.5	4	14	98	3.78
5343		1.94	0.633	0.6	1.34	<2	<10	80	<0.5	<2	0.04	<0.5	<1	9	146	1.98
B386344		1.62	1.190	1.0	1.07	<2	<10	160	<0.5	2	0.14	<0.5	4	20	879	4.45
B386345		1.84	0.152	0.3	1.00	8	<10	140	<0.5	3	0.05	<0.5	4	16	63	2.97
B386346		1,42	0.017	3.3	1.71	17	<10	70	<0.5	6	0.87	<0.5	8	17	483	4.30
B386347		1.64	0.055	99.6	0.86	183	<10	10	<0.5	83	0.04	8.0	37	50	>10000	22.4
B386348		1.46	0.043	1.8	0.54	9	<10	80	<0.5	2	0.13	<0.5	21	5	240	4.25
B386349		1.36	0.016	0.9	1.46	4	<10	30	<0.5	<2	1.18	<0.5	8	5	325	4.14
B386350		1.84	0.010	5.8	1.34	36	<10	50	<0.5	2	2.85	9.9	8	8	1315	3.06
B386351		1.86	0.005	6.8	0.59	8	<10	210	1.5	<2	4.60	10.5	13	54	7800	2.84
B386352		1.46	0.175	0.5	0.42	26	<10	80	<0.5	<2	0.36	<0.5	3	8	66	1.48
B386353		1.44	<0.005	<0.2	2.48	5	<10	90	0.6	<2	2.50	<0.5	19	116	170	3.60
B386354		1.38	0.047	3.9	0.99	5	<10	90	0.6	<2	1.19	4.5	20	11	6560	3.64
B386355		1.46	0.399	1.6	1.05	106	<10	30	0.8	<2	8.88	<0.5	13	44	673	3.62
B386356		1.50	<0.005	<0.2	0.88	12	<10	30	<0.5	<2	0.02	<0.5	4	5	38	1.95
B386357		1.84	0.005	<0.2	0.13	2	<10	2050	<0.5	<2	0.08	<0.5	<1	9	13	0.30
B386358		1.96	0.012	<0.2	0.19	10	<10	1700	<0.5	<2	<0.01	<0.5	<1	31	8	0.31
B386359		1.70	0.015	<0.2	0.80	21	<10	350	<0.5	<2	<0.01	<0.5	1	1	21	1.28
B386360		1.36	0.005	<0.2	0.80	25	<10	20	<0.5	<2	<0.01	<0.5	29	6	66	6.14
B386361		1.78	<0.005	<0.2	0.30	13	<10	50	<0.5	<2	0.65	<0.5	3	14	13	1.76
B386362		1.60	0.160	0.3	0.72	<2	<10	270	<0.5	<2	0.02	<0.5	1	11	138	2.64
63		1.56	0.277	1.0	0.69	<2	<10	100	<0.5	<2	0.04	<0.5	12	5	444	3.69
B300364		0.74	0.026	1.8	1.08	45	<10	40	<0.5	10	2.35	15.4	10	17	293	4.57
B386365		0.94	0.005	0.4	1.48	5	<10	190	<0.5	<2	2.34	<0.5	10	50	86	3.31
B386366		1.36	0.012	0.9	1.18	11	<10	50	<0.5	5	1.68	<0.5	26	22	437	7.99
B386367		2.12	0.037	15.3	0.68	7	<10	20	<0.5	73	11.25	209	23	3	478	8.21
B386368		1.44	0.038	1.3	0.46	94	10	170	<0.5	<2	0.55	1.2	2	28	33	2.22
B386369		1.30	<0.005	0.2	0.07	6	<10	50	<0.5	<2	0.17	2.3	2	21	14	0.67
B386370		1.64	0.155	1.5	0.10	160	<10	200	<0.5	<2	0.03	<0.5	2	65	15	1.02
B386371		1.44	<0.005	<0.2	0.27	. 8	<10	190	<0.5	<2	18.9	<0.5	6	7	22	4.71
B386372		1.82	0.034	0.3	0.10	66	<10	40	<0.5	<2	0.15	<0.5	1	63	11	0.76
B386373		1.16	0.023	1.0	0.09	163	<10	1090	<0.5	<2	20.7	<0.5	2	1	11	5.34
B386374		1.74	< 0.005	<0.2	0.68	54	<10	50	<0.5	<2	2.05	<0.5	24	15	110	6.19
B386375		1.52	0.010	0.4	0.20	30	<10	810	<0.5	<2	13.40	<0.5	3	8	14	2.86
B386376		1.54	0.030	0.6	0.17	236	<10	70	<0.5	<2	9.24	<0.5	6	6	15	4.07
B386377		1.80	0.016	<0.2	1.74	4	<10	30	<0.5	<2	0.65	<0.5	16	16	45	5.56

1

ALS Chemex To: PAGE 2080-

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

1

1 1 1

3

Page: 3 - B Total # Pages: 4 (A - C) Finalized Date: 4-SEP-2005 Account: PAGRES

									C	ERTIFI	CATE (OF ANA	LYSIS	VA050	70139	
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-/CP41 Ма ррт 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
B386338 B386339		10 10	1 <1	0.23 0.25	10 <10	1.60 1.49	1350 2070	2 <1	0.05 0.03	2	2190 1760	34 7	1.84 2.12	<2 <2	7	41 146
B386340		<10	<1	0.25	10	0.28	172	13	0.09	1	550	, 9	0.32	<2	2	55
B386341		<10	<1	0.35	10	0.11	151	2	0.01	3	1500	10	1.12	3	2	20
7342		10	<1	0.21	20	0.67	345	1	0.09	2	710	8	0.15	<2	3	57
L		10	<1	0.23	30	0.60	72	88	0.08	1	750	11	0.05	<2	3	17
B386344		10	<1	0.27	10	0.53	74	249	0.10	2	1590	15	1.02	<2	4	22
B386345		<10	<1	0.31	10	0.45	55	3	0.08	1	1380	10	1.38	<2	2	20
B386346		10	<1	0.22	10	1.58	493	7	0.12	5	2200	12	2.40	<2	7	47
B386347		10	1	0.09	<10	1.02	367	2	<0.01	13	340	164	>10.0	<2	1	4
B386348		<10	~1	0.16	10	0.34	182	11	0.02	2	540	23	2.86	<2	2	14
B386349		10	<1	0.11	10	1.08	391	5	0.09	4	2080	8	1.65	<2	5	41
B386350		10	1	0.10	10	1.40	1010	2	0.06	6	1870	34	2.62	<2	6	93
B386351		<10	<1	0.57	10	0.75	448	1	0.05	63	1580	46	0.72	<2	2	303
B386352		<10	1	0.28	20	0.13	201	10	<0.01	4	230	15	0.31	<2	1	47
B386353		10	<1	1.02	<10	2.68	737	1	0.14	91	1110	2	0.05	<2	10	263
B386354		10	<1	0.15	10	1.01	641	1	0.02	33	1040	147	0.75	<2	8	74
B386355		<10	1	0.50	10	D.93	1090	10	0.01	35	1090	13	2.00	<2	10	266
B386356		<10	1	0.02	<10	0.01	8	1	<0.01	2 1	30	11 5	1.68	3 2	1	86
B386357		<10		0.01	<10	0.01	24	2	<0.01		20		0.07		<1	100
B386358		<10	1	<0.01	<10	<0.01	10	1	<0.01	2	20	9	0.08	4	<1	132
B386359		<10	3	0.01	<10	<0.01	5	3	<0.01	<1	20	15	0.76	3	1	42
B386360		<10	3	0.01	<10	<0.01	47	3	<0.01	6	30	9	5.91	<2	1	29
B386361 Brands62		<10	2 <1	0.04	<10 20	0.03 0.32	364 36	2 342	<0.01 0.07	2 1	90 650	3 9	1.20 0.60	<2 <2	<1 2	120
<u> </u>		<10		0.31	· · · · · · · · · · · · · · · · · · ·							-			· · · · · · · · · · · · · · · · · · ·	32
L .63		<10	<1	0.21	20	0.33	47	29	0.06	3	640	13	1.89	<2	3	33
B386364		<10	1	0.12	10	0.91	742	3	0.05	4	1120	59	2.98	2	3	70
B386365		10	<1	0.11	20 10	1.32	907	1. 2	0.06	20	890	8 7	1.14	<2	7	86
B386366 B386367		<10 <10	<1 1	0.06 0.04	<10	0.83 0.68	923 2220	2	0.08 <0.01	13 3	2010 120	, 916	4.54 7.12	<2 2	6 1	65 247
								-		-						
B386368		<10	1	0.15	<10	0.02	41	4	<0.01	9	3340	19	1.04	22	2	75
B386369		<10	<1 1	0.03 0.08	<10	0.01 <0.01	56 29	1	< 0.01	7 8	30 400	23	0.19	<2	1	10
B386370 B386371		<10 <10	1 <1	0.08	<10 <10	<0.01 3.70	29 3050	1	<0.01 <0.01	8 5	400 150	10 6	0.30 0.48	12 4	1 3	35 531
B386372		<10	<1	0.04	<10	0.02	45	1	<0.01	6	100	8	0.48	4	3 1	
	· · · · ·												· ·			
B386373		<10	1 <1	0.02	10	3.24	11100 1410	<1 1	< 0.01	<1	20	544	0.15	3 2	1	553
B386374 B386375		<10 <10	<1 <1	0.05 0.10	10 10	0.75 2.22	1410 4680	1	0.02 <0.01	13 2	2170 210	14 4	1.09 0.21	2	14 2	57 439
B386376		<10 <10	<1	0.10	10 <10	2.22	4680 3800	1	<0.01	2	210	4 11	0.21	∠ 11	2	439 223
B386377		10	1	0.08	10	1.72	1540	6	0.10	5	1520	12	4.11	<2	13	47
			•	0.00				·	0.10					~~	10	-+/

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

CERTIFICATE OF ANALYSIS VA05070139

Page: 3 - C Total # Pages: 4 (A - C) Finalized Date: 4-SEP-2005 Account: PAGRES

1

1

;

Mathod Analyte ME-ICP41 Sample Description Units LoR 0.01 B386338 0.02 0.01 B386339 0.01 0.09	ME-ICP41 Tl ppm 10 <10 <10	ME-ICP41 U ppm 10 <10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm	Ag-AA46 Ag	Cu-AA46 Cu	Zn-AA46 Zn		
B386339 0.01	<10	<10			2	ррт 1	% 0.01	% 0.01		
B386339 0.01	<10	~10	105	<10	966	·····			<u> </u>	
		<10	99	<10	130					
	<10	<10	30	<10	28					
B386341 0.01	<10	<10	29	<10	10					
342 0.09	<10	<10	53	<10	48					
0343 0.01	<10	<10	50	<10	16					
B386344 0.05	<10	<10	81	<10	21					
B386345 0.04	<10	<10	26	<10	9					
B386346 0.22	<10	<10	121	<10	61					
B386347 <0.01	<10	<10	63	<10	781		1.48			
B386348 0.04	<10	<10	34	<10	19					
B386349 0.20	<10	<10	114	10	30					
B386350 0.14	<10	<10	99	<10	1060					
B386351 0.18	<10	<10	126	<10	174					
B386352 0.07	<10	<10	36	<10	22					
B386353 0.23	<10	<10	154	<10	80					
B386354 0.11	<10	<10	152	<10	202					
B386355 0,18	<10	<10	206	<10	59					
B386356 <0.01	10	<10	20	<10	9					
B386357 <0.01	<10	<10	6	<10	3					
B386358 <0.01	<10	<10	5	<10	<2					
B386359 <0.01	<10	<10	14	<10	2					
B386360 <0.01	10	<10	25	<10	6					
B386361 0.01	<10	<10	7	<10	12					
₽ ⁵⁷³ 362 0.01	<10	<10	32	<10	9					
L J63 0.01	<10	<10	48	<10	12			<u> </u>		····
B386364 0.06	<10	<10	73	<10	1425					
B386365 0.10	<10	<10	88	<10	41					
B386366 0.15	<10	<10	97	10	23					
B386367 0.01	<10	<10	39	<10	>10000			2.32		
B386368 <0.01	<10	<10	20	<10	125					
B386369 <0.01	<10	<10	6	<10	240					
B386370 <0.01	<10	<10	7	<10	11					
B386371 <0.01	<10	<10	41	<10	27					
B386372 <0.01	<10	<10	3	<10	10					
B386373 <0.01	<10	<10	5	<10	129					
B386374 <0.01	<10	<10	186	<10	101					
B386375 <0.01	<10	<10	12	<10	19					
B386376 <0.01	<10	<10	12	<10	17					
B386377 0.08	<10	<10	138	<10	109					

]____

1

ļ

1

ALS Chemex

1

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

1

To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

1

١

]

;

7

1

1

Page: 4 - A Total # Pages: 4 (A - C) Finalized Date: 4-SEP-2005 Account: PAGRES

										ERTIFI	CATE C	OF ANA	LYSIS	VA050	70139	
Sample Description	Method Analyte Units LQR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0,D1
Sample Description B386378 B386379 B366380 B386381 3383 B386384 B386385 B386385 B386386 B386387 B386386 B386390 B386501 B386502 B386502 B386502 B386505 B386505 B386506 B386507 B386508 B386507 B386511 B386511 B386512		+	••	••			••	••		••						
J13 B386514		1.54	0.029	0.7 5.1	2.24 0.52	2 6	<10 <10	100 130	0.6 <0.5	<2 9	2.29	0.6 1.4	25 4	29 22	2300 454	5.78

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

:

.

!

?

CERTIFICATE OF ANALYSIS

ł

1

Page: 4 - B Total # Pages: 4 (A - C) Finalized Date: 4-SEP-2005 Account: PAGRES

VA05070139

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 Method Analyte Ga Hg κ La Mg Mn Ma Na Ni Р РЬ s Sb Sc Sr Units % % % ppm opm % рргл ppm DDM ppm ppm ppm ppm ppm ppm Sample Description LOR 0.01 0.01 10 10 5 0.01 10 2 0.01 2 1 1 1 1 1 1.70 21 B386378 10 <1 0.07 10 716 4 0.07 7 1300 14 3.07 <2 30 B386379 10 <1 0.09 10 0.97 585 4 0.11 4 1380 7 3.27 <2 8 39 10 0.04 <10 1.26 682 3 980 17 2.58 18 B386380 0.05 5 <2 10 1 B386381 10 1 0.07 10 1.54 1035 2 0.34 4 1580 5 5.12 2 15 263 7 79382 <10 <1 0.32 10 0.23 675 2 < 0.01 2 1410 16 2.26 8 36 1 10 0.15 10 1.41 1350 2110 В 2.41 <2 <1 1 0.02 1 7 93 ച്383 1.45 2500 2,32 B386384 <10 <1 0.21 10 1 0.01 1 2180 689 5 4 208 10 0.16 10 1.38 1735 < 0.01 2 2000 2070 3.97 3 27 B386385 1 1 3 B386386 <10 <1 0.24 10 0.77 1040 <1 < 0.01 19 940 144 2.90 <2 3 10 8386387 <10 <1 0.15 10 0.31 168 6 0.03 1 640 13 0.44 <2 1 68 10 0.39 283 10 0.20 0.05 1350 2680 2.15 2 2 40 B386388 <1 1 1 0.13 10 0.86 1215 1 0.08 1240 595 B386389 10 <1 2 1.32 з 6 78 <10 0.30 10 0.18 170 2 20 0.10 <2 B386390 1 < 0.01 2 1360 1 13 B386501 <10 1 0.17 10 0.11 1930 3 < 0.01 3 510 2450 3.51 2 1 132 <10 0.20 10 0.60 790 444 0.04 1300 2080 3.01 2 2 B386502 <1 4 60 10 1.28 796 <10 <1 0.09 36 0.09 7 1920 15 0.57 <2 8 100 B386503 <10 0.17 10 0.37 314 739 0.03 2 750 164 0.83 <2 2 31 B386504 1 <10 1150 B386505 10 <1 0.51 1.87 3 0.06 7 1450 9 < 0.01 <2 7 90 B386506 <10 <1 0.20 10 0.22 897 6 < 0.01 12 360 140 1.68 <2 3 237 <10 0.12 <10 0.31 406 29 0.02 2 300 14 0.39 <2 <1 22 B386507 1 <1 0.11 <10 0.29 276 53 0.02 2 370 258 0,29 <2 <10 1 18 B386508 0.67 516 B386509 10 1 0.11 10 10 0.06 4 1110 14 0.89 2 2 60 <10 <1 0.13 10 0.68 527 44 0.03 2 490 102 2.18 <2 33 B386510 1 0.32 895 <10 <1 0.17 20 8 0.02 2 530 207 0.37 <2 2 65 B386511 B396512 <10 1 0.08 <10 0.30 468 45 0.02 10 700 6400 >10.0 2 2 79 834 52 /13 10 <1 0.78 10 2.39 0.10 15 2350 30 2,85 <2 16 85 B386514 <10 <1 0.18 10 0.30 410 305 0.03 570 124 1.74 <2 41 1 1

1

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

1

1

1

1

Page: 4 - C Total # Pages: 4 (A - C) Finalized Date: 4-SEP-2005 Account: PAGRES

1

									<u> </u>	ERTIFIC	CATE OF ANALYSIS	VA05070139	
Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Ag-AA46 Ag ppm 1	Си- АА46 Сц % 0.01	Zn-AA46 Zn % 0.01			
B386378 B386379 B386380 B386380 B386381 		0.01 0.20 0.06 0.44 0.05 <0.01 0.08 0.01 <0.01 <0.01 0.02 0.21 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.001 <0.01 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0	10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <	10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <	1 200 94 208 112 12 78 51 63 33 28 41 97 30 6 37 30 6 37 144 27	10 <10 <10 <10 <10 <10 <10 <10 <	2 59 54 29 50 45 61 1270 1805 129 52 1515 203 51 2350 2080 99 192	1	0.01	0.01			
B386505 B386506 B386507 B386508 B386509 B386510		0.26 0.02 0.03 <0.01 0.06 0.03	<10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10 <10	160 75 32 35 100 33 36	<10 <10 <10 <10 <10 <10 <10 <10	112 354 57 80 53 1365 1105		1.60				
B386511 B386512 i 13 B306514		0.01 0.06 0.37 0.01	<10 <10 <10 <10	<10 <10 <10 <10	36 41 275 17	<10 <10 <10 <10	1105 8220 142 232						

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

Page: 1 Finalized Date: 3-SEP-2005 This copy reported on 7-SEP-2005 Account: PAGRES

à

,

÷,

CE	RTIFICATE VA05070	138	SAMPLE PREPARATION						
			ALS CODE	DESCRIPTION					
Project: BC 2005 P.O. No.: This report is for 28 Soil sam 19-AUG-2005.	bles submitted to our lab in Van	couver, BC, Canada on	WEI-21 SCR-41 LOG-22	Received Sample Weight Screen to -180um and save both Sample login - Rcd w/o BarCode					
The following have access	to data associated with this	certificate:		ANALYTICAL PROCEDUR	ES				
JOHN BRADFORD	HENRY MARSDEN	ARMSTRONG SIMPSON	ALS CODE	DESCRIPTION	INSTRUMENT				
······	- -		Au-AA23 ME-ICP41	Au 30g FA-AA finish 34 Element Aqua Regia ICP-AES	AAS ICP-AES				

To: PAGET RESOURCES ATTN: ARMSTRONG SIMPSON 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Rest Com

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 3-SEP-2005 Account: PAGRES

1

ALS Chemex

1

7

1

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

1

1

1

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

1

To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

1

1

1

1

Project: BC 2005

CERTIFICATE OF ANALYSIS VA05070138

1

1

Sample Description	Method Analyte Unita LOR	WEi-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
9100N 9850 9100N 9900 9100N 9950 9100N 10000		0.38 0.44 0.44 0.38	<0.005 0.006 0.005 0.006	<0.2 <0.2 <0.2 <0.2	3.91 2.75 2.10 2.90	7 7 4 5	<10 <10 <10 <10	100 90 90 130	1.4 1.5 1.0 1.6	<2 <2 <2 <2	0.72 0.89 0.87 0.66	<0.5 <0.5 <0.5 1.2	31 21 22 25	48 56 52 43	160 232 143 176	7.62 6.09 4.94 6.55
N 10050 JN 10100 9100N 10150 9200N 9850 9200N 9900		0.36 0.26 0.28 0.32 0.36	0.007 0.007 <0.005 <0.005 0.005	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	2.36 2.23 3.02 3.81 2.94	6 6 8 6	<10 <10 <10 <10 <10	90 110 160 90 80	1.2 1.2 1.9 3.1 1.6	<2 <2 <2 <2 <2 <2	0.60 0.72 0.68 0.61 0.90	1.3 1.0 0.7 <0.5 <0.5	26 25 17 16 17	49 52 37 44 66	168 229 130 66 95	5.76 5.26 5.56 5.65 5.05
9200N 9950 9200N 10000 9200N 10050 9200N 10100 9200N 10150		0.42 0.30 0.24 0.40 0.40	<0.005 <0.005 <0.005 <0.005 0.005	<0.2 <0.2 <0.2 <0.2 <0.2	2.89 4.35 2.98 3.01 2.66	6 3 7 7 12	<10 <10 <10 <10 <10	130 160 120 80 60	1.6 1.4 1.5 1.5 1.5	<2 <2 <2 <2 <2 <2 <2	1.00 1.00 0.84 0.71 0.58	<0.5 <0.5 <0.5 <0.5 0.5	20 29 18 16 21	39 26 35 40 53	161 106 101 84 184	6.20 9.26 6.03 5.21 5.20
9300N 9850 9300N 9900 9300N 9950 9300N 10000 9300N 10050		0.36 0.38 0.40 0.50 0.42	<0.005 <0.005 <0.005 0.007 0.013	0.3 <0.2 <0.2 0.3 0.2	3.20 3.57 2.74 2.65 2.14	6 6 3 6 11	<10 <10 <10 <10 <10	70 120 80 90 70	2.0 1.3 1.5 1.4	<2 <2 <2 <2 <2 <2	0.46 0.80 0.60 0.97 1.17	<0.5 <0.5 <0.5 <0.5 0.5	15 17 17 15 25	29 29 44 51 72	46 60 138 221 332	4.62 6.69 4.91 4.50 5.24
9300N 10100 9300N 10150 9400N 9850 9400N 9900 9400N 9950		0.50 0.54 0.46 0.28 0.38	0.006 0.011 <0.005 <0.005 0.006	<0.2 0.2 <0.2 <0.2 <0.2 <0.2	2.43 2.33 3.09 3.10 2.88	9 6 <2 6 4	<10 <10 <10 <10 <10	50 70 160 140 100	1.7 1.5 1.1 1.4 1.3	<2 <2 <2 <2 <2 <2	0.67 0.86 1.10 1.36 0.91	<0.5 0.6 <0.5 <0.5 <0.5	16 23 26 19 21	56 59 31 30 54	145 271 106 83 178	4.48 5.02 9.05 6.62 5.24
9400N 10000 9400N 10100 9400N 10150		0.68 0.46 0.50 0.46	0.008 0.007 0.014 0.007	0.2 0.3 <0.2 <0.2	2.48 2.23 2.74 2.42	6 5 9	<10 <10 <10 <10	90 70 70 80,	1.5 1.2 1.4 1.5	<2 <2 <2 <2	0.90 0.90 0.73 0.72	<0.5 0.6 <0.5 0.6	18 27 23 22	60 87 67 56	198 363 243 249	4.51 5.10 5.15 5.01

* - To: PAGET RESOURCES 2080-777 HORNBY STREET

ŧ

VANCOUVER BC V6Z 1S4

2

Project: BC 2005

Total # Pages: 2 (A - C) Finalized Date: 3-SEP-2005 Account: PAGRES

1

ł

1

•

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

_									CERTIFICATE OF ANALYS					VA050	70138	
Sample Description	Mothod Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
9100N 9850 9100N 9900 9100N 9950 9100N 10000 ~N 10050		10 10 10 10 10	<1 <1 <1 <1 <1 <1	0.11 0.14 0.13 0.14 0.12	10 20 10 20 10	1.26 1.53 1.48 1.58 1.80	1295 927 780 1135 1035	2 3 2 2 1	0.05 0.04 0.06 0.04 0.04	62 56 72 57 74	1470 1480 1160 1460 1260	11 52 26 30 30	0.05 0.05 0.01 0.02 0.02	<2 <2 <2 <2 <2 2	7 8 7 9 8	52 68 61 52 45
9100N 10100 9200N 10150 9200N 9850 9200N 9900 9200N 9950		10 10 20 10 10	<1 <1 <1 1 <1	0.13 0.08 0.09 0.09 0.11	10 20 30 20 20	1.85 1.25 0.89 1.27 1.24	963 891 993 869 1025	1 3 4 4 3	0.04 0.04 0.04 0.03 0.04	78 36 46 56 38	1160 1540 1460 1110 1410	38 18 17 27 32	0.02 0.08 0.09 0.08 0.08	♀ ♀ ♀ ♀ ♀ ♀ ♀ ♀ ♀ ♀<	8 8 4 4 8	56 46 43 67 81
9200N 10000 9200N 10050 9200N 10100 9200N 10150 9300N 9850		20 10 10 10 10	1 1 <1 <1 <1	0.15 0.10 0.07 0.08 0.06	20 20 20 20 20 20	1.21 1.22 1.16 1.80 0.76	1450 860 692 930 1510	1 5 7 7 4	0.03 0.04 0.03 0.02 0.04	29 35 33 58 34	1550 1350 1480 1040 1310	13 17 16 23 14	0.03 0.08 0.08 0.06 0.10	<2 <2 2 <2 2 2	15 8 7 7 3	123 62 43 35 29
9300N 9900 9300N 9950 9300N 10000 9300N 10050 9300N 10100		10 10 10 10 10	<1 <1 <1 1 <1	0.09 0.09 0.09 0.23 0.17	20 10 20 10 20	0.82 1.19 1.40 1.87 1.39	932 705 595 911 787	3 6 8 2 2	0.03 0.03 0.02 0.03 0.03 0.05	28 40 46 73 50	1670 1430 1620 1250 1250	11 26 27 93 46	0.11 0.11 0.11 0.03 0.03	<2 <2 <2 <2 <2 <2	8 4 6 9 6	58 42 64 94 65
9300N 10150 9400N 9850 9400N 9900 9400N 9950 9400N 9050		10 20 10 10 10	<1 <1 <1 <1 <1 <1	0.21 0.18 0.10 0.10 0.10 0.14	20 20 20 10 10	1.81 1.19 1.21 1.56 1.58	921 1245 1160 916 600	2 <1 2 5 7	0.03 0.05 0.04 0.03 0.03	66 26 26 51 54	1220 1750 1740 1300 1100	65 9 8 19 23	0.03 0.01 0.09 0.06 0.05	<2 <2 <2 <2 <2 <2	9 12 10 8 7	72 153 119 57 63
9400N 10100 9400N 10100 9400N 10150		10 10 10	<1 1 <1	0.24 0.13 0.12	10 10 10	1.80 2.08 1.82	999 1005 991	2 2 1	0.03 0.03 0.02	80 52 48	1410 1060 1220	58 26 41	0.02 0.04 0.02	<2 2 <2	8 9 9	64 55 57
	i															

Page: 2 - B

1

ALS Chemex

1

1

1

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

1

1 1

To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

1

]

J

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 3-SEP-2005 Account: PAGRES

1

Project: BC 2005

CERTIFICATE OF ANALYSIS VA05070138

1

1

1

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-JCP41 Zn ppm 2	
9100N 9850	- 1	0.43	<10	<10	133	<10	110	
9100N 9900		0.36	<10	<10	134	<10	110	
9100N 9950		0.31	<10	<10	93	<10	83	
9100N 10000		0.42	<10	<10	113	<10	127	
N 10050		0.36	<10	<10	116	<10	99	
. JN 10100		0.28	<10	<10	122	<10	98	
9100N 10150		0.35	<10	<10	112	<10	116	
9200N 9850		0.25	<10	<10	82	<10	94	
9200N 9900		0.24	<10	<10	119	<10	104	
9200N 9950		0.42	<10	<10	119	<10	89	
9200N 10000		0.94	<10	<10	120	<10	110	
9200N 10050		0.42	<10	<10	110	<10	70	
9200N 10100		0.35	<10	<10	111	<10	77	
9200N 10150 9300N 9850		0.17 0.18	<10 <10	<10 <10	133 63	<10 <10	99 73	
9300N 9900		0.53	<10	<10	105	<10	89	
9300N 9950		0.22	<10	<10	105	<10	82	
9300N 10000		0.19	<10	<10	112	<10	82	
9300N 10050		0.22	<10	<10	159	<10	94	
9300N 10100		0.23	<10	<10	110	<10	92	
9300N 10150		0.23	<10	<10	140	<10	88	
9400N 9850		0.80	<10	<10	113	<10	94	
9400N 9900		0.50	<10	<10	109	<10	79	
9400N 9950		0.23	<10	<10	118	<10	71	
9400N 10000		0.24	10	<10	126	<10	83	
l 10050		0.22	<10	<10	154	<10	97	
9400N 10100		0.23	<10	<10	155	<10	83	
9400N 10150		0.22	<10	<10	157	<10	86	

1

1

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

CERTIFICATE VA05074025

To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

Page: 1 Finalized Date: 16-SEP-2005 Account: PAGRES

ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
SCR-41	Screen to -180um and save both

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41	34 Element Aqua Regia ICP-AES	ICP-AES

Project: BC2005

P.O. No.:

This report is for 66 Stream Sediment samples submitted to our lab in Vancouver, BC, Canada on 30-AUG-2005.

The following have access to data associated with this certificate:

JOHN BRADFORD

HENRY MARSDEN

ARMSTRONG SIMPSON

To: PAGET RESOURCES ATTN: ARMSTRONG SIMPSON 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Pater Com

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 16-SEP-2005 Account: PAGRES

]

1

Project: BC2005

CERTIFICATE OF ANALYSIS VA05074025

1

3

1

	Method	WEI-21	Au-AA23	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Analyte	Recvd Wt.	Au	Ag	A)	As	8	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe
Sample Description	Units LOR	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
Sauthing measurements		0.02	0.005	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	. 1	0.01
WAY01		0.50	0.006	<0.2	3.60	5	<10	90	2.3	<2	0.52	<0.5	16	43	180	5.59
WAY02		0.38	0.008	0.3	2.72	6	<10	160	1.6	<2	1.19	<0.5	16	61	230	4.65
WAY03		0.62	0.009	<0.2	2.41	6	<10	100	1.2	<2	1.26	<0.5	23	78	285	5.58
WAY04		0.60	0.007	0.3	2.83	6	<10	120	1.3	<2	1.01	<0.5	17	54	206	5.19
WAY05		0.42	0.020	0.2	3.17	8	<10	70	1.4	<2	0.68	<0.5	23	54	281	4.83
6		0.34	0.007	<0.2	3.31	6	<10	120	1.8	<2	0.76	0.7	24	34	86	7.50
WAY07		0.60	0.005	<0.2	2.47	11	<10	100	1.2	<2	0.67	<0.5	22	46	128	5.66
WAY08		0.52	0.009	<0.2	3.02	3 7	<10	200	1.7	<2	0.96	1.5	27	68	371	5.80
WAY09		0.46	0.023	0.2	2.82 2.70	•	<10	130	1.7	<2	0.74	0.6	22	49	198	5.65
WAY10		0.52	0.006	<0.2		9	<10	90	1.4	<2	0.61	0.5	22	57	172	5.16
WAY11		0.44	0.010	<0.2	2.33	6	<10	50	1.1	<2	0.40	<0.5	19	35	72	4.08
WAY12		0.50	0.005	<0.2	1.86	7	<10	40	0.9	<2	0.35	<0.5	15	34	64	3.32
WAY13		0.46	<0.005	<0.2	1.12	<2	<10	20	<0.5	<2	0.36	<0.5	12	29	37	2.33
WAY14		0.48	0.012	<0.2	2.59	3	<10	50	1.0	<2	0.46	<0.5	18	41	60	3.99
WAY15		0.54	<0.005	<0.2	1.05	2	<10	50	<0.5	<2	0.85	<0.5	23	40	56	3.92
WAY16		0.52	<0.005	<0.2	3.32	6	<10	100	1.4	<2	0.80	<0.5	25	53	114	4.92
WAY17		0.48	0.008	<0.2	2.21	5	<10	40	0.8	<2	0.97	<0.5	21	85	90	4.25
WAY18		0.40	0.005	0.2	3.16	6	<10	90	1.1	<2	1.46	<0.5	28	184	106	4.84
WAY19		0.40	0.008	0.2	2.03	2	<10	90	1.0	<2	1.01	<0.5	31	62	153	4.72
WAY20		0.58	0.007	0.2	2.34	8	<10	100	1.2	<2	1.40	0.5	23	82	244	4.72
WAY21		0.44	0.009	0.2	3.14	9	<10	290	3.5	<2	4.88	0.5	27	104	295	6.20
WAY22		0.44	0.013	0.2	1.69	12	<10	60	0.9	<2	1.11	0.8	21	64	128	4.85
WAY23	i	0.56	0.052	0.2	1.28	5	<10	40	<0.5	<2	2.72	0.5	17	79	98	3.59
WAY24		0.60	0.019	0.2	1.66	7	<10	70	0.6	<2	2.31	<0.5	19	96	146	3.88
WAY25		0.52	0.028	0.2	1.41	3	<10	50	0.5	<2	2.31	0.5	19	83	115	3.70
6		0.58	0.034	<0.2	1.24	4	<10	50	0.5	<2	2.25	0.5	17	62	122	3.45
Vn-27		0.50	0.036	<0.2	1.62	7	<10	80	0.8	<2	2.04	0.6	27	75	202	4.10
WAY28		0.52	0.019	0.2	2.03	5	<10	80	1.3	<2	1.72	0.6	23	71	311	4.78
WAY29		0.38	0.016	<0.2	2.17	4	<10	70	1.4	<2	1,50	0.6	20	60	301	4.51
WAY30		0.44	0.010	0.2	2.74	9	<10	70	1.9	<2	1.40	0.5	21	64	471	4.64
WAY31		0.42	0.031	<0.2	2.31	<2	<10	80	1.2	<2	1.49	0.7	19	46	447	4.50
WAY32		0.48	0.008	<0.2	2.25	5	<10	50	1.7	<2	1.37	0.6	17	66	325	4.33
WAY33		0.44	0.010	<0.2	2.19	2	<10	50	1.0	<2	1,58	<0.5	19	58	189	4.37
WAY34		0.50	0.009	0.2	1.79	4	<10	70	0.9	<2	1.90	1.1	22	61	188	4.79
WAY35		0.48	0.010	<0.2	1.82	4	<10	60	0.9	<2	1.86	0.7	16	61	195	4.45
WAY36	=	0.44	0.006	0.2	2.38	3	<10	60	1.0	2	1.37	0.6	17	69	132	4.16
WAY37		0.42	0.020	0.2	2.31	5	<10	70	0.9	<2	1.89	<0.5	21	114	154	4.61
WAY38		0.34	0.016	<0.2	2.48	6	<10	70	8.0	<2	1.58	0.5	28	106	132	5.06
WAY39		0.38	0.013	0.2	2.41	7	<10	60	1.0	<2	1.07	<0.5	23	60	137	4.78
WAY40		0.50	0.122	<0.2	2.82	5	<10	50	1.0	<2	0.74	<0.5	21	29	148	4.67

3

1

. , To: PAGET RESOURCES 2080-777 HORNBY STREET

4

•

VANCOUVER BC V6Z 1S4

ì

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 16-SEP-2005 Account: PAGRES

3

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 212 Brooksbank Avenue

ALS Chemex

North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

Project: BC2005

									0	ERTIFI	CATE C)F ANA	YSIS	VA050	74025	
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Ma ppm 5	ME-ICP4t Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
WAY01		20	<1	0.11	20	1.19	897	10	0.03	43	1660	22	0.08	<2	7	37
WAY02		10	<1	0.08	20	1.54	678	13	0.03	58	1400	31	0.12	<2	6	73
WAY03		10	<1	0.18	10	1.94	898	3	0.03	64	1430	28	0.02	<2	12	82
WAY04 WAY05		10 10	<1 <1	0.15 0.29	10 10	1.59 2.22	649 1130	9 1	0.02 0.03	51 62	1460 1760	27	0.05	<2	9	69
												27	0.04	<2	8	49
6		10	<1	0.09	20	1.34	1360	6	0.04	41	2080	17	0.04	<2	10	46
WAY07		10	<1	0.12	10	1.67	981	2	0.03	51	1370	24	0.03	2	8	48
WAY08		10	1	0.17	20	2.11	967	2	0.04	94	1330	49	0.02	<2	10	72
WAY09	i	10	<1	0.10	20	1.87	1030	3	0.03	59	1240	31	0.06	2	9	51
WAY10		10	<1	0.14	20	1.78	1025	2	0.04	64	1440	26	0.03	<2	9	38
WAY11		10	<1	0.06	10	1.29	874	1	0.04	55	1030	9	0.04	<2	5	19
WAY12		10	<1	0.06	10	1.05	629	1	0.04	44	1020	9	0.02	<2	5	17
WAY13		<10	<1	0.03	10	0.63	380	1	0.04	39	820	5	0.01	<2	3	14
WAY14		10	<1	0.07	10	1.11	672	1	0.06	59	1170	10	0.03	<2	4	24
WAY15	-	<10	<1	0.05	10	1.76	578	<1	0.10	83	920	5	0.01	<2	4	42
WAY16		10	<1	0.12	20	1.45	935	1	0.07	73	1620	14	0.06	2	7	61
WAY17		10	<1	0.09	10	1.66	574	1	0.03	98	1020	20	0.04	<2	5	55
WAY18		10	1	0.26	10	2.53	1105	2	0.03	201	1010	35	0.07	<2	6	74
WAY19		10	<1	0.14	10	2.53	981	<1	0.07	126	830	23	0.02	<2	9	58
WAY20		10	<1	0.19	10	1.80	1095	2	0.03	88	1230	32	0.02	<2	8	92
WAY21		10	<1	0.17	10	3.26	2480	2	0.02	120	1350	38	0.01	4	11	117
WAY22		10	<1	0.17	10	1.60	776	3	0.02	59	1260	33	0.02	4	8	55
WAY23		<10	<1	0.39	10	1.05	560	2	0.01	65	1390	13	0.05	<2	6	134
WAY24		<10	<1	0.39	10	1.46	749	1	0.02	82	1460	22	0.03	<2	7	148
WAY25		<10	<1	0.30	10	1.15	630	1	0.02	69	1380	19	0.03	2	6	138
28		<10	<1	0.21	10	0.90	580	2	0.01	56	1420	22	0.02	2	5	158
127		10	<1	0.23	10	1.36	892	3	0.02	79	1590	31	0.01	~	7	166
WAY28		10	<1	0.33	10	1.68	970	1	0.02	69	1680	33	0.01	~	8	131
WAY29		10	<1	0.34	10	1.57	923	2	0.02	58	1480	32	0.01	<2	8	112
WAY30		10	<1	0.27	20	1.94	857	2	0.02	68	1410	34	0.02	2	9	110
WAY31		10	<1	0.42	10	1.93	823	1	0.02	44	1590	31	0.02	<2	8	114
WAT31 WAY32		10	<1	0.42	10	1.59	648	4	0.02	58	1300	17	0.02	<2	6	96
WAT32 WAY33		10	<1	0.10	10	1.71	965	6	0.02	56	1290	26	0.05	~	6	122
WAY34		10	<1	0.38	10	1.56	842	3	0.01	58	1710	26	0.05	~2	8	119
WAY35		10	<1	0.39	10	1.58	648	4	0.01	55	1460	22	0.06	~	8	120
	-	10	<1	0.10	10	1.59	773	6	0.02	64	1110	25	0.04	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5	
WAY36 WAY37		10	<1	0.10	10	1.98	820	6	0.02	102	1330	25 29	0.04	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5	101
WAY37 WAY38		10	<1	0.27	10	2.26	1070	5	0.02	102	1340	2 9 31	0.01	<2	8	98 118
WAT30 WAY39		10	1	0.31	10	1.95	876	2	0.02	58	990	15	0.02	<2	6	74
WAY40		10	- <1	0.20	10	1.93	926	1	0.04	28	920	7	0.01	<2	5	50
11AT4V		i		0.20	10	1.74	320	· · · · ·	0.04		320	1	0.01	~~		

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

1

Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 16-SEP-2005 Account: PAGRES

ļ

Project: BC2005

}

1

1

CERTIFICATE OF ANALYSIS VA05074025

٦

	Method	ME-ICP41	ME-ICP41 TI	ME-ICP41 U	ME-ICP41	ME-ICP41	ME-ICP41	
	Analyta Units	%		_	V	W	Zn	
Sample Description	LOR	0.01	ppm 10	ppm 10	ppm 1	ppm 10	2 2	
		0.07					4	
WAY01		0.33	<10	<10	99	<10	118	
WAY02		0.16	<10	<10	115	<10	98	
WAY03		0.27	<10	<10	157	<10	88	
WAY04		0.28	<10	<10	135	<10	85	
WAY05		0.22	<10	<10	132	<10	126	
6		0.85	<10	<10	128	<10	109	
WAY07		0.27	<10	<10	126	<10	89	
WAY08		0.33	<10	<10	145	<10	169	
WAY09		0.25	<10	<10	153	<10	118	
WAY10		0.24	<10	<10	132	<10	107	
WAY11		0.20	<10	<10	82	<10	70	
WAY12		0.16	<10	<10	75	<10	65	
WAY13		0.14	<10	<10	44	<10	37	
WAY14		0.22	<10	<10	83	<10	70	
WAY15		0.26	<10	<10	57	<10	47	· · · · · · · · · · · · · · · · · · ·
WAY16		0.30	<10	<10	112	<10	94	
WAY17		0.19	<10	<10	110	<10	55	
WAY18		0.25	<10	<10	139	<10	114	
WAY19		0.29	<10	<10	81	<10	76	
WAY20		0.24	<10	<10	148	<10	97	
WAY21	_	0.16	<10	<10	256	<10	136	
WAY22		0.16	<10	<10	145	<10	88	
WAY23	1	0.16	<10	<10	132	<10	56	•
WAY24		0.19	<10	<10	128	<10	73	
WAY25		0.17	<10	<10	124	<10	66	
26		0.17	<10	<10	116	<10	56	
127		0.19	<10	<10	127	<10	83	
WAY28		0.23	<10	<10	159	<10	113	
WAY29		0.21	<10	<10	156	<10	115	
WAY30		0.26	<10	<10	155	<10	157	
WAY31		0.25	<10	<10	156	<10	132	
WAY32		0.20	<10	<10	138	<10	124	
WAY33		0.17	<10	<10	160	<10	116	
WAY34		0.19	<10	<10	160	<10	108	
WAY35		0.19	<10	<10	153	<10	104	
WAY36		0.18	<10	<10	136	<10	107	
WAY37		0.22	<10	<10	143	<10	126	
WAY38		0,22	<10	<10	146	<10	123	
WAY39		0.25	<10	<10	132	<10	91	
WAY40		0.28	<10	<10	131	<10	94	

· }

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue

North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 16-SEP-2005 Account: PAGRES

1

1

Project: BC2005

CERTIFICATE OF ANALYSIS VA05074025

•

3

1

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm t	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
WAY41		0.38	<0.005	<0.2	3.05	10	<10	30	1.1	<2	0.47	<0.5	19	35	76	4.79
WAY42		0.50	0.006	<0.2	2.76	5	<10	70	0.9	<2	1.21	<0.5	27	107	119	4.93
WAY43		0.38	<0.005	<0.2	3.35	2	<10	70	0.5	<2	1.10	<0.5	31	6	72	5.84
WAY44		0.42	0.005	<0.2	2,67 2,96	13	<10	30	1.2	2	0.41	<0.5	16	75	94	4.74
WAY45		0.38	0.015	<0.2		9	<10	50	0.7	<2	0.80	<0.5	20	53	105	4.57
46		0.38	0.006	<0.2	3,23	7	<10	60	1.2	<2	0.62	<0.5	23	49	38	5.76
WAY47		0.44	<0.005	<0.2	3.01	11	<10	40	0.9	<2	0.46	<0.5	17	83	45	4.58
WAY48 WAY49		0.24	<0.005 0.011	<0.2 <0.2	2.38 2.11	12 4	<10 <10	60 50	0.9 0.8	<2 <2	0.37 0.63	<0.5 <0.5	17	67	40	4.51
WAY50		0.52	0.008	<0.2	2.71	7	<10	30	0.3	<2	0.03	<0.5	20 24	41 32	364 223	4.98 5.10
										· · · · · · · · · · · · · · · · · · ·						
10+00E 9+500N 10+00E 9+600N		0.58 0.42	0.016 0.009	0.8 0.3	2.08 2.80	14 9	<10 <10	140 70	1.7 1.3	2 <2	0.81 0.99	0.8 <0.5	20 25	68	570	5.37
10+00E 9+700N		0.42	0.009	1.2	2.85	22	<10	140	2.2	2	0.99	₹0.5 0.5	20 30	112 91	286 827	5.47
10+00E 9+800N		0.48	0.026	0.7	1.88	17	<10	90	1.8	<2	0.67	0.5	24	76	295	6.71 5.34
10+00E 9+900N		0.40	0.014	0.3	2.93	10	<10	130	1.3	~	1.40	<0.5	30	118	200	5.71
10+00E 10+000N		0.42	0.009	0.2	2.20	8	<10	90	1.2	<2	1.04	<0.5	24	112	182	5.23
BCS1		0.76	0.027	0.6	1.06	104	<10	180	0.7	<2	2.78	<0.5	19	8	86	5.58
BCS2		0.86	0.030	0.7	1.47	88	<10	260	0.8	<2	2.79	0.5	19	23	95	6.93
BCS3		0.74	0.018	0.4	1.87	47	<10	340	1.2	<2	1.08	<0.5	21	8	92	6.20
BCS4		0.94	0.040	0.2	1.96	22	<10	140	0.7	<2	2.86	0.8	16	28	75	4.91
BCS5		0.80	0.131	2.4	1.08	146	<10	160	0.6	<2	2.27	1.3	22	8	93	6.46
BCS6		0.96	<0.005	<0.2	1.41	16	<10	220	1.0	<2	2.77	<0.5	18	7	79	6.30
BCS7		0.98	0.063	0.7	0.96	52	<10	170	0.5	~	3.66	0.6	17	20	71	5.06
8386552		1.72	0.030	0.8	1.23	84	10	270	1.1	<2	3.78	0.5	19	9	115	5.62
8386554		1.90	0.011	0.8	1.09	75 361	<10 <10	210	0.9	2	4.13	<0.5	17	7	100	5.13
657		1.74	0.033							-		0.6	17	6	69	5.35

:

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

1

1

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 16-SEP-2005 Account: PAGRES

ţ

Project: BC2005

1

CERTIFICATE OF ANALYSIS VA05074025

1

1

1

1

1

Sample Description	Method Analyte Unita LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
WAY41		10	<1	0.10	10	1.57	697	2	0.03	30	1020	6	0.05	<2	5	33
WAY42		10 10	<1 <1	0.29 0.38	10 <10	2.39 3.02	993 739	2	0.02 0.03	102	1250 400	7	0.03	<2	6	111
WAY43 WAY44		10	<1	0.36	10	1.36	773	5	0.03	11 60	1060	<2 9	0.03 0.05	2 <2	7 3	66
W'**45		10	<1	0.25	10	1.66	682	2	0.02	48	1140	6	0.05	<2	3 5	37 67
16	1	10	<1	0.30	<10	2.11	826	2	0.03	41	630	5	0.05	<2	5	43
WĀY47		10	<1	0.07	10	1.53	665	2	0.02	74	640	8	0.07	<2	4	42
WAY48		10	<1	0.08	10	1.29	996	2	0.03	61	850	7	0.09	<2	3	41
WAY49		10	<1	0.10	10	1.35	795	1	0.02	36	960	5	0.06	2	4	68
WAY50		10	<1	0.28	10	2,15	697	1	0.01	33	1170	5	0.02	<2	4	94
10+00E 9+500N		10	<1	0.24	10	1.95	926	5	0.02	82	1340	118	0.02	<2	11	50
10+00E 9+600N		10	<1	0.31	10	2.30	851	2	0.02	110	980	72	0.03	<2	9	62
10+00E 9+700N		10	<1	0.31	20	2.17	1190	3	0.02	93	1470	115	0.02	<2	12	80
10+00E 9+800N 10+00E 9+900N		10 10	<1 <1	0.31 0.22	20 20	1.73 2.11	1385 1075	3 2	0.04 0.04	63 124	1590 1410	65 33	0.03 0.03	2 2 2	15 11	142 91
10+00E 10+000N		10	<1	0.28	20	1.72	988	3	0.03	97	1390	48	0.02	2		65
BCS1		<10	<1	0.13	10	0.72	1010	3	0.01	12	2360	15	0.80	3	7	118
BCS2		10	<1	0.09	20	0.88	923	3	0.04	17	3610	18	0.59	5	7	147
BCS3		10	<1	0.11	20	1.20	1170	3	0.09	10	2750	24	0.15	3	7	86
BCS4		10	<1	0.06	10	1.39	844	3	0.11	24	1910	14	0.28	2	7	74
BCS5		<10	<1	0.10	10	0.64	1155	7	0.02	24	2150	50	1.23	10	7	87
BCS6		<10	<1	0.11	20	0.75	1095	2	0.27	8	3030	8	0.30	2	9	138
BCS7		<10 <10	<1 <1	0.09 0.12	10 20	0.63 0.74	905 1005	2 6	0.01 0.12	27 21	1720 2750	14 20	0.33	8	8 7	110
B386552 B386554		<10 <10	<1	0.12	20 10	0.74	973	4	0.12	∠≀ 18	2750	20 19	0.28 0.29	6 4	7	216 216
557		<10	<1	0.10	10	0.78	1630	3	0.02	8	2110	27	0.47		5	70

ۍ ^۲ و.

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

•

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschernex.com To: PAGET RESOURCES 2080-777 HORNBY STREET

•

t

VANCOUVER BC V6Z 1S4

ł.

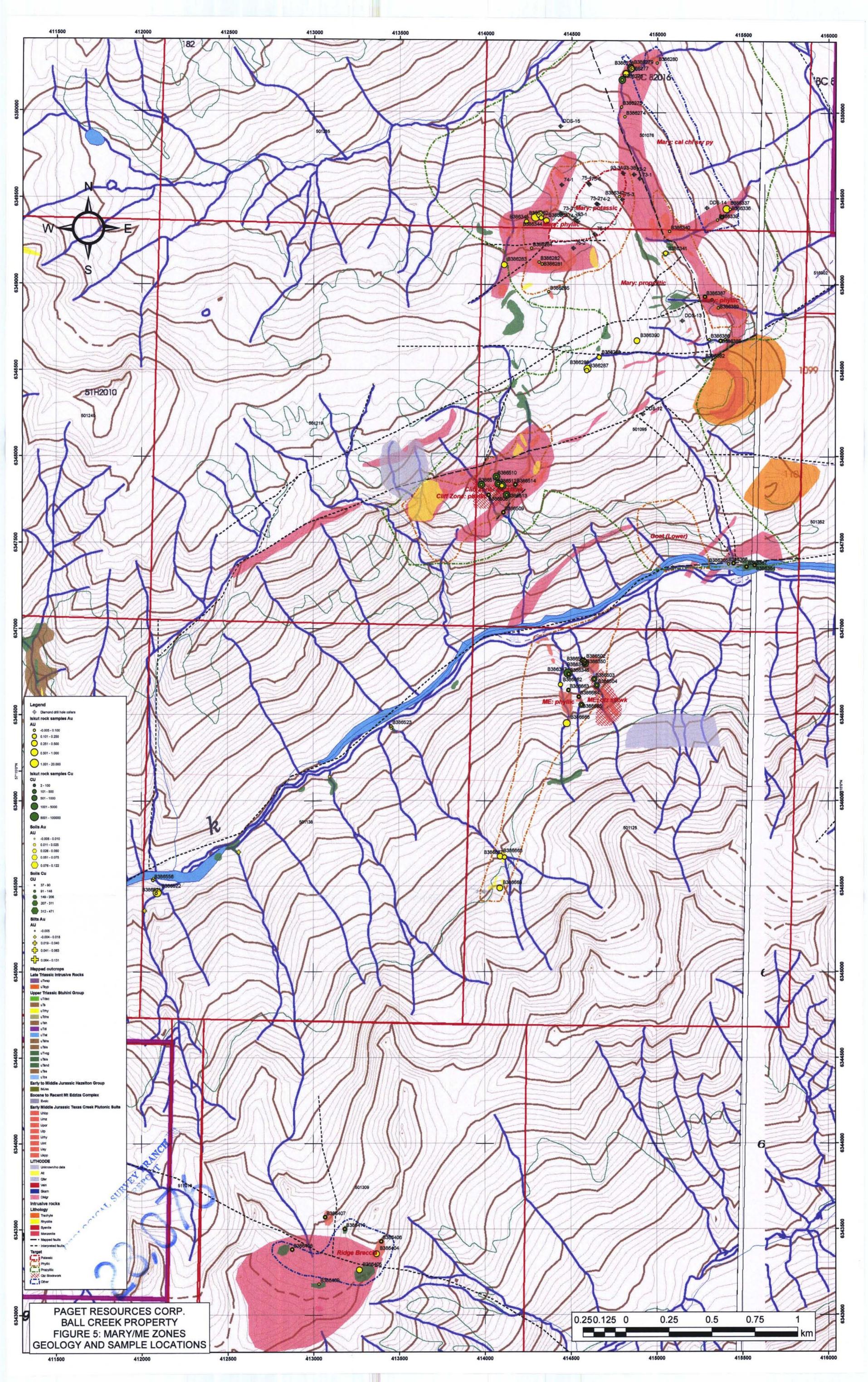
h.

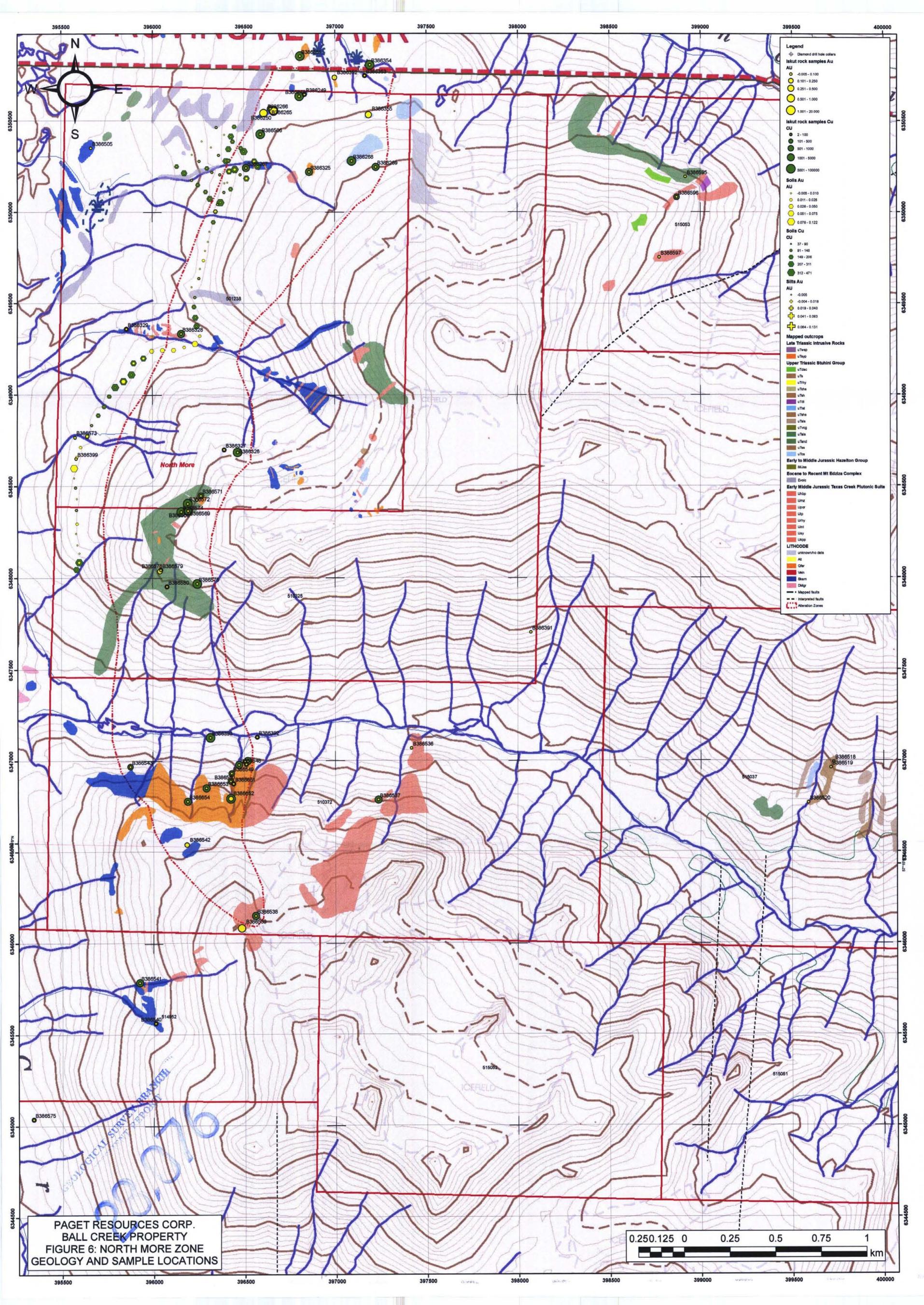
Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 16-SEP-2005 Account: PAGRES

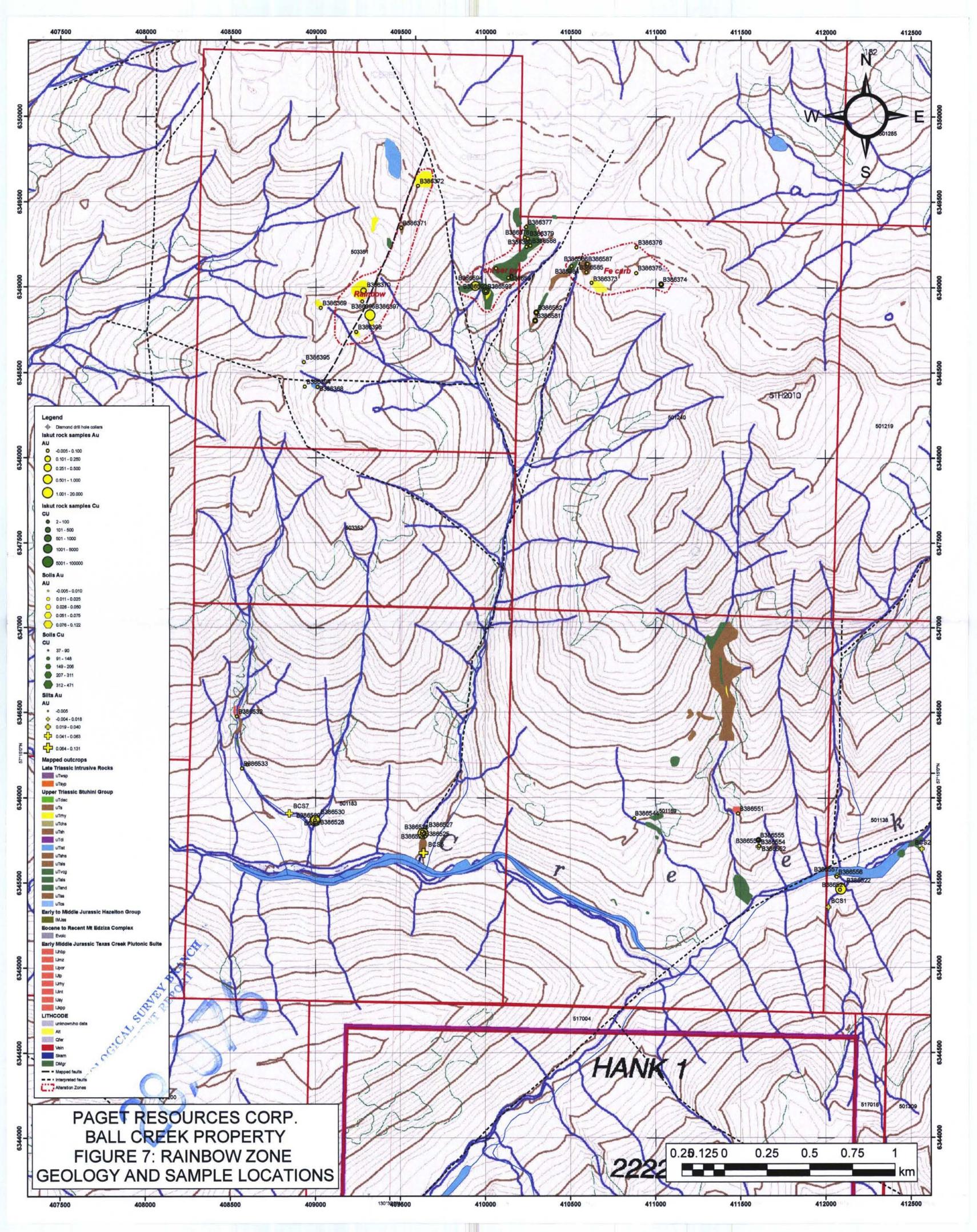
1

3

Project: BC2005


CERTIFICATE OF ANALYSIS VA05074025


;


Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
WAY41		0.26	<10	<10	133	<10	81	
WAY42		0.23	<10	<10	135	<10	93	
WAY43		0.42	<10	<10	193	<10	56	
WAY44		0.20	<10	<10	110	<10	73	
V'1 ¥45		0.22	<10	<10	131	<10	64	
46		0.32	<10	<10	149	<10	84	
WĀY47		0.20	<10	<10	118	<10	54	
WAY48		0.19	<10	<10	115	<10	64	
WAY49		0.18	<10	<10	115	<10	71	
WAY50		0.28	<10	<10	123	<10	58	
10+00E 9+500N		0.19	<10	<10	193	<10	114	
10+00E 9+600N		0.23	<10	<10	159	<10	80	
10+00E 9+700N	[0.24	<10	<10	237	<10	125	
10+00E 9+800N 10+00E 9+900N		0.20 0.24	<10 <10	<10 <10	247 145	<10 <10	108 96	
10+00E 10+000N		0.31	<10	<10	128	<10	94	
BCS1		0.01 0.05	<10 <10	<10 <10	100 173	<10 <10	88 106	
BCS2 BCS3		0.05	<10	<10	184	<10	118	
BCS4	1	0.08	<10	<10	141	<10	96	
	-			<10				
BCS5 BCS6		0.01 0.02	<10 <10	<10 <10	93 128	<10 <10	179 118	
BCS7		0.02	<10	<10	98	<10	106	
B386552		0.04	<10	<10	133	<10	126	
B386554		0.03	<10	<10	118	<10	107	
.557		<0.01	<10	<10	82	<10	142	
_ ³⁰¹		~0.01	~ 10		02		142	

•

