RECEIVED
MAR 0 3 2006
Gold Commissioner's Office
Receivit
MAR 3 - 2006
the second se
FILE VANCOUVER, B.C.

COMMERCE RESOURCES CORP.

2005 DIAMOND DRILLING AND EXPLORATION AT THE BLUE RIVER PROPERTY

NORTH OF BLUE RIVER, BRITISH COLUMBIA (KAMLOOPS MINING DIVISION)

MINERAL TENURES

374665 (Fir 3), 374670 (Fir 8), 380034 (Mara 5), 382164 (Fir 11), 506262 - 265, 506267, 506270, 506273 - 274, 506387, 506391 - 393, 506395, 506397, 506399, 506401 - 403, 506405, 506407, 506408, 506423, 506425, 506426, 506427 - 431, 506433, 506445, 506450, 506459, 506461, 506464, 506466, 506468, 506473, 506475, 5073

Geographic Coordinates

52°18' N 119°10' W

NTS Sheet 83 D/6

Owner/Operator: Commerce Resources Corp. 600, 789 West Pender Street Vancouver, B.C. V6C 1H2

Consultant: Dahrouge Geological Consulting Ltd. 18, 10509 - 81 Avenue Edmonton, Alberta T6E 1X7

Author: Clinton Davis, B.Sc., P.Geo.

Date Submitted: 2006 02 28

TABLE OF CONTENTS

. . .

a, a

• •

 INTRODUCTION. GEOGRAPHIC SETTING. Location and Access. Location and Access. Topography, Vegetation, Climate and Geographic Names. PROPERTY. HISTORY AND PREVIOUS INVESTIGATIONS PURPOSE. SUMMARY. 	1 2 2 4 4
2. REGIONAL GEOLOGY	5
3. PROPERTY GEOLOGY 3.1 STRATIGRAPHY, STRUCTURE AND LITHOLOGY 3.2 MINERALIZATION	5
 4. 2005 EXPLORATION. 4.1 ACCESS TRAIL CONSTRUCTION AND REHABILITATION. 4.2 DRILLING. 4.3 SAMPLING. 4.3.1 Method and Approach. 4.3.2 Preparation, Analysis and Security. 4.3.3 Data Verification 4.4 METALLURGICAL TESTING. 	7 8 8 8 8
5. DISCUSSION AND CONCLUSIONS	9
6. REFERENCES	10

LIST OF TABLES

Table 1.1:	Blue River Property	3
Table 4.1:	Summary of Analytical Results for the 2005 Core Holes	3

<u>Page</u>

LIST OF ILLUSTRATIONS

<u>Page</u>

-

-

-

.....

.....

....

-

,******---

....

- -

. . .

....

Figure 1.1	Location & Claim Map	F1
Figure 1.2	Plan of 2005 Drill Holes	F2
Figure 2.1	Regional Geology	F3

LIST OF APPENDICES

Appendix 1	Itemized Cost Statement	A1
	Lithological Logs for Drill Holes	
	Geotechnical Logs for Drill Holes	
	Global Discovery Labs Analytical Results	
	SGS Lakefield Metallurgical Test Reports	
	Statement of Qualifications	

INTRODUCTION

The Blue River Property encompasses a series of tantalum-niobium-phosphate bearing carbonatites (including the Fir, Bone Creek and Upper Fir carbonatites), about 25 to 35 km northeast of Blue River, British Columbia. The original property comprised mineral claims Verity 1 to 13, Mara 1 to 7, Paradise 1 to 12, Fir 1 to 12, Serp 1 to 6, Cheadle 3, 4, 13 to 16, Neve Ice 1 to 10 and Thunder 5; however, most of the claims have been converted to cell claims, consolidated or dropped, since the original property acquisitions.

In prior assessment reports these claims have been referred to as the Verity, Mara, Paradise, Gum Creek, Cheadle, Neve Ice, Thunder, Serp and Fir properties. Of the named claims, only Fir 3, 8 (2-post mineral claims), 11 (4-post mineral claim) and Mara 5 (2-post mineral claim), remain. The rest are now map designated claims under the updated mineral tenure system, and are nameless.

During the year SGS Lakefield conducted metallurgical test work on the samples from the property and in October, 2005 a drilling program was carried out. During 2006, fieldwork was conducted between 13 October 2006 and 01 November 2006 by Dahrouge Geological Consulting Ltd., on behalf of Commerce Resources Corp. It included the rehabilitation and construction of about 1½ km of old logging roads and skidder trails to make them suitable for access by drill equipment. In addition, eight HQ-sized diamond drill holes totalling 810 m were completed, logged and sampled. Carbonatite was intersected in five of the eight holes, two in Bone Creek Carbonatite and three in the Upper Fir Carbonatite.

As prior assessment reports (Dahrouge, 2001; Dahrouge and Reeder, 2002) include descriptions of the geographic setting and history and previous investigations, most of that information is not repeated herein. Throughout this report, attitudes of bedding and other planar features are given as A°/B° SW, where A° is the azimuth of the strike and B° is the amount of dip in the direction indicated. A magnetic declination of 20.4° was used.

1.1 GEOGRAPHIC SETTING

1.1.1 Location and Access

The Blue River Property is within North Thompson River valley of east-central British Columbia, within NTS map area 83 D/6 (Fig. 1.1). The Fir Carbonatite is centered at approximately 52° 19' N latitude and 119° 10' W longitude. The Fir, Bone Creek and Upper Fir carbonatites are located within the historic Fir claims (374670, 374665 and 382164 respectively). The Bone Creek showing is situated about 2 km south- to southeast of the Fir showing and the Upper Fir approximately 1 km to the east.

1.

The property is approximately 26 km north of Blue River, British Columbia and is accessible from B.C. Highway 5 (Yellowhead South Highway). The Fir Carbonatite can be reached from the Gum Creek logging road which branches from Highway 5 about 23 km north of Blue River. The main line of the Canadian National Railway passes through the western part of the property. Limited supplies and accommodations are available at either Blue River or Valemount, the latter of which is 68 km north of the property.

1.1.2 Topography, Vegetation, Climate and Geographic Names

The Blue River Property is between 720 m and 2445 m elevation above sea level and is located along the steep, west-facing slopes of the Monashee Mountains. Slopes are typically covered by thick undergrowth consisting of buck brush, devil's club and huckleberry. Areas not subjected to recent logging are covered by dense stands of hemlock, cedar, fir and white pine. Within the area timber line is at about 2000 m elevation. Precipitation averages 120 cm per year and snowfall is generally heavy.

1.2 PROPERTY

The Blue River Property is held 100 percent by Commerce Resources Corp and encompasses about 128 sq. km, situated within Kamloops Mining Division (Fig. 1.1; Table 1.1). Throughout this report the term Blue River Property refers to 44 mineral claims and/or tenures, including Fir 3 (374665), 8 (374670), 11 (382164) and Mara 5 (380034).

The term Fir Property refers to the southern half of the Blue River Project, whereas the Verity Property makes up the northern portion. The project area encompasses a series of tantalum-niobium-phosphate bearing carbonatites, about 25 to 35 km northeast of Blue River, British Columbia. The Fir Property encompasses the Fir, Bone Creek and Upper Fir carbonatites. Historic claims Fir 1 to 9 were acquired by Commerce Resources Corp. during February, 2000; Fir 10 to 12 during October, 2000. Claims Gum 1 to 6 during January 2001; Thunder 5 during April, 2001; Cheadle 3, 4, 13 to 16 and Neve Ice 1 to 10 during May, 2001; and Serp 1 to 6 during March, 2002.

The claims which comprise the Blue River Property have been referred to as the Cheadle, Gum Creek, Fir, Neve Ice, Thunder and Serp properties in prior assessment reports. Several claims have since been converted, consolidated or dropped, since the original property acquisition. Of the named claims, only Fir 3, 8 (2-post mineral claims) and 11 (4-post mineral claim) remain. The rest are now map designated claims under the updated mineral tenure system, and are nameless.

Table 1.1: Blue River Property										
Tenure Number	Claim Name	Owner	Map Number	Good To Date	Status	Mining Division	Area (ha)	Tag Numbe		
374665*	FIR 3	142572 (100%)	083D025	2014/DEC/31	GOOD	KAMLOOPS	25.00	690945M		
374670*	FIR 8	142572 (100%)	083D035	2014/DEC/31	GOOD	KAMLOOPS	25.00	671381M		
380034^	MARA 5	142572 (100%)	083D045	2011/DEC/31	GOOD	KAMLOOPS	25.00	671370M		
382164*	FIR 11	142572 (100%)	083D035	2014/DEC/31	GOOD	KAMLOOPS	500.00	221009		
506262^		142572 (100%)	083D	2013/DEC/31	GOOD	KAMLOOPS	98.62			
506263^		142572 (100%)	083D	2008/DEC/31	GOOD	KAMLOOPS	295.73			
506264^		142572 (100%)	083D	2008/DEC/31	GOOD	KAMLOOPS	236.80			
506265*		142572 (100%)	083D	2012/DEC/31	GOOD	KAMLOOPS	79.07			
506267*		142572 (100%)	083D	2012/DEC/31	GOOD	KAMLOOPS	98.82			
506270*		142572 (100%)	083D	2008/DEC/31	GOOD	KAMLOOPS	1225.77			
506273*		142572 (100%)	083D	2007/DEC/31	GOOD	KAMLOOPS	1619.06			
506274*		142572 (100%)	083D	2007/DEC/31	GOOD	KAMLOOPS	1244.47			
506387^		142572 (100%)	083D	2013/DEC/31	GOOD	KAMLOOPS	98.64			
506391^		142572 (100%)	083D	2013/DEC/31	GOOD	KAMLOOPS	39.46			
506392^		142572 (100%)	083D	2013/DEC/31	GOOD	KAMLOOPS	39.46			
506393^		142572 (100%)	083D	2014/DEC/31	GOOD	KAMLOOPS	39.45			
506395^		142572 (100%)	083D	2013/DEC/31	GOOD	KAMLOOPS	39.45			
506397^		142572 (100%)	083D	2013/DEC/31	GOOD	KAMLOOPS	19.73			
506399*		142572 (100%)	083D	2014/DEC/31	GOOD	KAMLOOPS	79.08			
506401*		142572 (100%)	083D	2012/DEC/31	GOOD	KAMLOOPS	39.54			
506402*		142572 (100%)	083D	2012/DEC/31	GOOD	KAMLOOPS	19.77			
506403*		142572 (100%)	083D	2012/DEC/31	GOOD	KAMLOOPS	19.77			
506405*		142572 (100%)	083D	2012/DEC/31	GOOD	KAMLOOPS	19.77			
506407^		142572 (100%)	083D	2011/DEC/31	GOOD	KAMLOOPS	591.70			
506408^		142572 (100%)	083D	2011/DEC/31	GOOD	KAMLOOPS	118.38			
506423^		142572 (100%)	083D	2011/DEC/31	GOOD	KAMLOOPS	591.65			
506425^		142572 (100%)	083D	2011/DEC/31	GOOD	KAMLOOPS	157.85			
506426^		142572 (100%)	083D	2011/DEC/31	GOOD	KAMLOOPS	39.44			
506427^		142572 (100%)	083D	2011/DEC/31	GOOD	KAMLOOPS	19.72			
506428^		142572 (100%)	083D	2011/DEC/31	GOOD	KAMLOOPS	551.92			
506429^		142572 (100%)	083D	2011/DEC/31	GOOD	KAMLOOPS	78.92			
506430^		142572 (100%)	083D	2011/DEC/31	GOOD	KAMLOOPS	414.44			
506431^		142572 (100%)	083D	2011/DEC/31	GOOD	KAMLOOPS	315.77			
506433*		142572 (100%)	083D	2014/DEC/31	GOOD	KAMLOOPS	533.48			
506445*		142572 (100%)	083D	2014/DEC/31	GOOD	KAMLOOPS	355.92			
506450^		142572 (100%)	083D	2008/DEC/31	GOOD	KAMLOOPS	236.59			
506459^		142572 (100%)	083D	2008/DEC/31	GOOD	KAMLOOPS	473.37			
506461^		142572 (100%)	083D	2008/DEC/31	GOOD	KAMLOOPS	315.73			
506464^		142572 (100%)	083D	2008/DEC/31	GOOD	KAMLOOPS	78.95			
506466^		142572 (100%)	083D	2008/DEC/31	GOOD	KAMLOOPS	217.12			
506468^		142572 (100%)	083D	2008/DEC/31	GOOD	KAMLOOPS	355.27			
506473*		142572 (100%)	083D	2008/DEC/31	GOOD	KAMLOOPS	474.81			
506475*		142572 (100%)	083D	2008/DEC/31	GOOD	KAMLOOPS	395.68			
507391*		142572 (100%)	083D	2008/DEC/31	GOOD	KAMLOOPS	553.70			

* Fir Property ^ Verity Property

...

د مو

...

.

•···

- 4

1.3 HISTORY AND PREVIOUS INVESTIGATIONS

As previous assessment reports (Dahrouge, 2001; Dahrouge and Reeder, 2002) contain detailed accounts of prior exploration of the Fir Carbonatite and the Blue River area, most of that information is not repeated herein. Both the Fir and Bone Creek showings were discovered during an exploration program initiated in 1980 by Anschutz (Canada) Mining Ltd. Studies by Campbell (1968), Pell and Simony (1981), and Pell (1987) contain information on the geology of the Blue River area.

Exploration of the Fir Carbonatite during the fall of 2000, by Commerce Resources Corp. included re-staking of the known carbonatite occurrences and subsequent reconnaissance-scale examinations to confirm known tantalum mineralization (Dahrouge, 2001). This work included the collection of samples for mineralogical determination, geochemical analyses and the acquisition of digital topographic data. The mineralogy and geochemistry confirmed the carbonatite nature of the samples and the highly anomalous 'tantalum - niobium - phosphate' mineralization. Two distinct populations of pyrochlore were identified.

The 2000 exploration was followed by more extensive exploration during the summer of 2001; including geological mapping, soil sampling, pan concentrate sampling and ground magnetic surveys (Dahrouge and Reeder, 2002). Pan concentrates were an effective method at tracing the source of Ta-Nb mineralization, while soil sampling was successful at detecting buried carbonatite bodies. Ground magnetic surveys were unable to delineate the Fir Carbonatite due to lack of sufficient magnetic minerals.

The 2003 soil sampling survey (Dahrouge and Woolbaum, 2004) was undertaken to determine the possible extent of carbonatite outcrop (Upper Fir Carbonatite) discovered in the summer of 2002 (Dahrouge and Smith, 2003). This outcrop, which is predominately covered by vegetation and overburden of various thickness, lies east of the previously discovered and extensively drilled Fir Carbonatite. Prior exploration in the vicinity of the Fir Carbonatite was not extensive enough to have identified any soil anomalies of Ta, Nb, and Mo in soils, which may be related to the Upper Fir Carbonatite. Samples were also collected from the Upper Fir Carbonatite to confirm high values of tantalum obtained from prior grab samples.

1.4 PURPOSE

The exploration described herein, including diamond drilling, was used to confirm previous results by Anschutz (Canada) Mining Ltd. (Aaquist, 1982a; 1982b) for the Bone Creek Carbonatite, and to determine the extent and mineralization within the Upper Fir Carbonatite.

1.5 SUMMARY

The work was authorized by Commerce Resources Corp. and approved under reclamation permit MX-15-183. Dahrouge Geological Consulting Ltd of Edmonton, Alberta, managed the program. Initial reconnaissance, including flagging trails and drill sites, was completed in September 2005. Heavy equipment was used to rehabilitate access trails, construct drill pads and deactivating drill trails. A total of about 1½ km of road was rehabilitated on the Fir Property (Fig. 1.2). Eight HQ sized core holes totalling 810 m were diamond drilled during October 2006 (Fig. 1.2).

2.

REGIONAL GEOLOGY

The Blue River Property is within Omineca Crystalline Belt of the Canadian Cordillera. The eastern flank of the Cordillera has previously been recognized as a locus of alkaline igneous activity (Currie, 1976). Pell (1987) has subdivided the Omineca Alkaline Province, within British Columbia, into three northwest trending belts:

- a) an eastern belt, east of the Rocky Mountain Trench and encompassing most of the Main and Western Ranges of the Rocky Mountains;
- b) a central belt, which predominantly encompasses the Rocky Mountain Trench and eastern part of the Omineca; and
- c) a western belt.

The central carbonatite belt generally hosts multiple deformed and metamorphosed, sill-like bodies hosted by Late Precambrian to Early Cambrian metasedimentary rocks (Pell, 1987). This belt includes the Blue River Area carbonatites: Fir, Verity and Paradise Lake, Howard Creek and Mud Lake-Blue River (Fig. 2.1).

3.

PROPERTY GEOLOGY

The following descriptions of geology of the Fir Property are mostly summarized from prior assessment reports by Dahrouge (2001) and Dahrouge and Reeder (2002).

3.1 STRATIGRAPHY, STRUCTURE AND LITHOLOGY

The Fir Property is underlain by interlayered metasediments and metabasites of the Proterozoic Horsethief Creek Group (Fig. 2.1). Near the Fir Carbonatite, the gneisses have a general strike of 360° and a moderate dip of 11° to 26° east (Aaquist, 1982b). They are locally folded and cut by later faults. The Horsethief Creek rocks are intruded by sills of carbonatite and later pegmatitic sills and dikes. The carbonatite is either sovite (calcite-dominated) or

beforsite (dolomite-dominated). Aaquist (1982a) indicated that the most significant tantalumniobium mineralization is confined to the beforsites. The carbonatite sills found to be composed of sovite are usually thin and barren. Both rock types are medium- to coarse- grained. Most exposures display layering defined by varying quantities of accessory minerals.

The Fir Carbonatite has been identified in outcrop and intersected by ten core holes over an area measuring 350 m east-west and 450 m north-south. It consists of two sub-parallel beforsite sills; the upper sill is up to 22 m thick and the lower sill is between 26 – 50 m thick. The carbonatites contain accessory minerals including Na-amphibole, pyroxene, phylogopite, olivine, magnetite, pyrite, pyrhotite, apatite and the tantalum-niobium bearing minerals.

Amphibolite and glimmerite (biotite-rich rock) are closely associated with the carbonatite bodies. Nepheline syenite has been found in the area (Aaquist, 1982b).

3.2 MINERALIZATION

The host rocks to the mineral occurrences on the Fir Property are carbonatites, which are igneous rock bodies composed of more than 50% carbonate minerals. Typically, they are relatively enriched in alkali elements and occur with other under-saturated alkaline rocks (feldspathoidal syenites and rocks of the ijolite suite).

Deposits of tantalum and niobium within carbonatite bodies were formed by primary magmatic concentration. The non-carbonate minerals tend to segregate into bands, thus a diffuse igneous layering is present with bands richer and poorer in carbonate minerals. This process is enhanced by the relatively low viscosity of the carbonatite magma. If a magma pulse rich in tantalum and niobium is intruded, the minerals may segregate into non-carbonate mineral rich layers and potentially form in economic concentrations.

The main carbonatite body on the Fir claims was discovered in 1981 by a surface outcrop and four subsequent drill holes. The sill possesses the highest concentrations of tantalum and niobium of any of the carbonatites discovered in the Blue River area (Aaquist, 1982a). The surface outcrop was identified as a result of a fortuitous landslide (Ahroon, 1980).

Knox (2000) determined that at the Fir Property, tantalum and niobium could be found in three minerals, pyrochlore ((Ca,Na)₂Nb₂O₆(OH,F)), columbite (FeNb₂O₆) and fersmite ((Ca,Na)Nb₂(O,OH,F)₆). Tantalum substitution for niobium occurs in all three of the minerals. A mineralogical study (Aaquist, 1982a) ascertained that virtually all the tantalum is hosted by pyrochlore. Pyrochlore crystals range in size from 0.2 to 2 mm and occur in two habits (Knox, 2000). Typically, the pyrochlore crystals are dark red in color (Aaquist, 1982a; Knox, 2000) but

black and yellow coloured varieties have been recognized (Aaquist, 1982a; Mariano, 2000).

7

Samples from the surface outcrop have returned values of up to 250 ppm Ta₂O₅ and 0.30% Nb₂O₅ (Aaquist, 1982a; Dahrouge, 2001). The best intersection obtained from prior drilling was from Hole BC-19: 7.9 m of 0.037% Ta₂O₅, 0.064% Nb₂O₅ and 3.25% P₂O₅ (Aaquist, 1982b). This intersection is probably the same carbonatite horizon found at the surface exposure. At least ten intersections grading greater then 200 ppm Ta₂O₅ over potentially mineable widths were cut in the four holes. The most significant finding of the analytical results from the Fir Carbonatite is the overall higher tantalum concentrations when compared with other carbonatites in the Blue River area. The Fir Carbonatite is characterized by concentrations of tantalum greater than 100 ppm with generally low U and Th.

4.

2005 EXPLORATION

4.1 ACCESS TRAIL CONSTRUCTION AND REHABILITATION

Initial reconnaissance, including flagging trails and drill sites, was completed in September 2005 by Dahrouge personnel. Trails and drill pads were constructed by Spaz Logging of Valemount, B.C., who were involved in the prior exploration of the property from October, 2001 to April, 2002 (B&G Logging). For the October 2006^{5} work period the following equipment was used:

- Chain saw for clearing,
- Low bed for transportation,
- Excavator for reclaiming logging roads and skidder trails, and
- John Deere bull dozer.

The excavator was used intermittently during the above noted period to rehabilitate access trails, construct drill pads and deactivate drill trails. The excavator was also used for upgrading existing access trails and roads, ditching within wet and poorly drained areas, and for installing culverts where required. The John Deere dozer belonged to RJ Beaupre Drilling Ltd and assisted with trail rehabilitation.

A total of about 11/2 km of road was rehabilitated on the Fir Property (Fig. 1.2).

4.2 DRILLING

Diamond drilling was approved under reclamation permit MX-15-183, obtained during 2005. Eight HQ sized core holes totalling 810 m were diamond drilled during October 2006. Four core holes were located east and upslope of the Bone Creek outcrops; and four core holes were drilled east and south of the Upper Fir outcrop (Fig.1.2). Drillhole collars were surveyed by a Garmin 76S GPS instrument.

Diamond drilling was contracted to RJ Beaupre Drilling Ltd. of Princeton, B.C. Access to drill sites was obtained along Gum Creek logging road and a rehabilitated cat trail. Water for drilling was obtained from nearby creeks and runoff streams draining the property.

The core was logged and split at a garage in Blue River, B.C. Core logging involved both geological and geotechnical aspects. Geological descriptions included lithology, mineralogy and structure (Appendix 2A). Geotechnical logging involved measured recoveries, rock quality description (RQD) and fracture densities (Appendix 2B). All cores were photographed. After logging, the intervals of carbonatite were split with half of the core replaced in the core box.

The dominant rock type of interest was a rusty weathered, coarse-grained beforsite (dolomite-dominated) carbonatite, found in holes CF0502, CF0504, CF0505, CF0506 and CF0508. All core holes were vertical which is approximately perpendicular to the sub-horizontal sills. Thus, reported intersections are interpreted as representative of true thickness, (Table 4.1).

Table 4.1.	QUIII	illai y Ul A	ilaiyucai i		00 COLC I	10163		
Hole	From (m)	To (m)	Length (m)	Total Carbonatite (m)	Ta ₂ O ₅ (g/t)	$Nb_2O_5(g/t)$	U ₃ O ₈ (g/t)	P₂O₅ (%)
Bone Creek								
CF0501	-	-	-	-	-	-	-	-
CF0502	30.57	32.73	2.21	2.21	218.97	237.00	56.6	4.00
CF0503	-	-	-	-	-	-	-	-
CF0504	11.9	20.92	9.02	9.02	239.96	2287.25	8.3	3.05
Upper Fir								
CF0505	69.86	90.46	20.60	16.79	210.92	2094.99	<3.5	3.30
CF0506	48.58	57.35	8.77	8.77	172.78	1967.56	<3.5	3.28
CF0507	-	-	-	-	-		-	-
CF0508	63.09	77.6	14.51	14.51	232.81	1449.99	27.2	3.81

Table 4.1: Summary of Analytical Results for the 2005 Core Holes

4.3 SAMPLING

4.3.1 Method and Approach

Carbonatite intersections were sampled at approximately 1 m intervals, or less. All samples were analyzed for tantalum, niobium and uranium in carbonatites (Table 4.1). Disseminated sulphides were observed throughout the host gneisses, therefore two samples were collected to analyze for base and precious metal.

4.3.2 Preparation, Analysis and Security

One half of the core was sampled and sent for lithogeochemical analyses by X-Ray Fluorescence at Teck Cominco Metals Ltd.'s Global Discovery Lab in Vancouver, (Appendix 3).

4.3.3 Data Verification

Repeat analyses were completed for random samples, as well as analyses of a standard were run at the lab. Results are in Appendix 3.

At the time of writing values for Ta, Nb and U, as well as whole rock data were obtained for the 2005 core samples.

4.4 METALLURGICAL TESTING

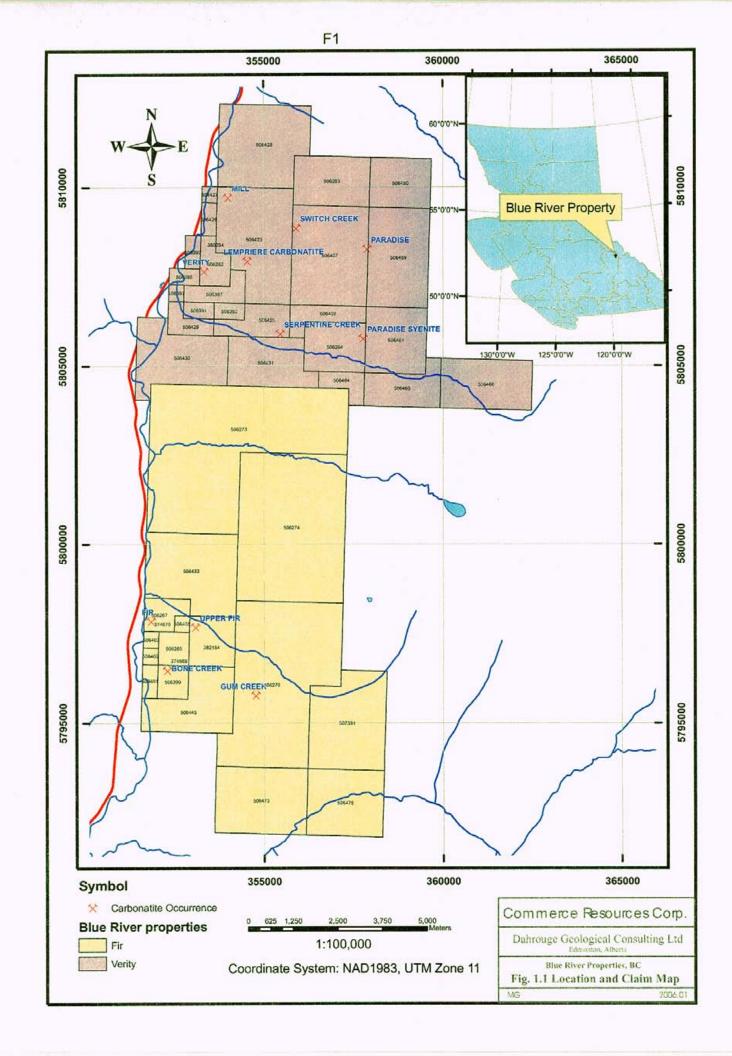
Metallurgical tests on material from the Fir Carbonatite were conducted at SGS Lakefield Research Limited in Lakefield, Ontario. Two reports regarding the results are in Appendix 4.

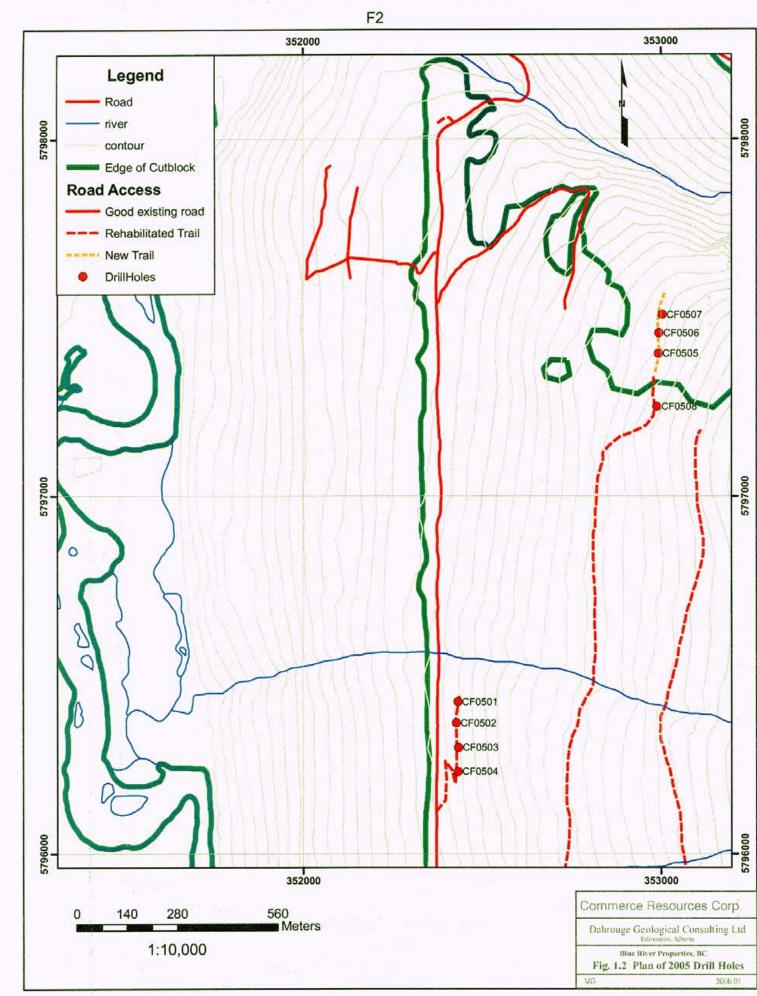
5.

DISCUSSION AND CONCLUSIONS

Drilling conducted during 2005 confirms prior drill results reported by Anschutz Mining (Canada) Ltd. (Aaquist, 1982b) for the Bone Creek Carbonatite. At the Upper Fir Carbonatite, further delineation drilling between the currently drilled zone and the known surface outcrops, as well as drilling further south of the 2005 drilling, will provide a more accurate determination of size and grade of the deposit. Rare earth elemental analyses should be considered, as trace element plots may be used to determine if a relationship exists between the Fir, Upper Fir and Bone Creek carbonatites.

2006 02 20


Clinton Davis, B.Sc., P.Geo.


Edmonton, Alberta

10 REFERENCES

- Aaquist, B. (1982a). Blue River Carbonatites, British Columbia, Final Report; B.C. Min. Energy, Mines Petr. Res. Ass. Rept. 10 274, 30 p.
- Aaquist, B. (1982b). Assessment Report Blue River Carbonatites, British Columbia,; B.C. Min. Energy, Mines Petr. Res. Ass. Rept. 11 130, 15 p.
- Ahroon, T.A. (1980). Geologic Report on the Blue River Project, British Columbia; B.C. Min. Energy, Mines Petr. Res. Ass. Rept. 9566, 13 p.
- Campbell, R.B. (1968). Canoe River, British Columbia; Geol Surv. Can., Map15-1967.
- Currie, K.L. (1976). The Alkaline Rocks of Canada; Geol. Surv. Can., Bull. 239., 228 p.
- Dahrouge, J. (2001a). 2000 Geologic Mapping and Sampling on the Verity Property; B.C. Min. Energy, Mines Petr. Res. Ass. Rept 26550, 7 p.
- Dahrouge, J. (2001b). 2000 Geologic Mapping and Sampling on the Fir Property; B.C. Min. Energy, Mines Petr. Res. Ass. Rept 26549, 7 p.
- Dahrouge, J. & Reeder J. (2002). 2001 Geologic Mapping, Sampling and Geophysical Surveys on the Fir Property; B.C. Min. Energy, Mines Petr. Res. Ass. Rept. 26781. 9 p.
- Dahrouge, J. & Smith M. (2002a). 2001 Diamond Drilling on the Fir Property; B.C. Min. Energy, Mines Petr. Res. Ass. Rept. 26911. 13 p. with appendices
- Dahrouge, J. & Smith, M. (2002b). 2002 Exploration of the Gum Creek Property; B.C. Min. Energy, Mines Petr. Res. Ass. Rept. 26990. 8 p. with appendices
- Dahrouge, J. & Smith M. (2003). 2002 Diamond Drilling and Exploration on the Blue River Property; B.C. Min. Energy, Mines Petr. Res. Ass. Rept. 27131. 20 p. with appendices
- Dahrouge, J. & Woolbaum, R. (2004). 2003 Exploration at the Blue River Property; B.C. Min. Energy, Mines Petr. Res. Ass. Rept. 27412. 13 p. with appendices
- Knox, A. (2000). Summary Report on the Blue River Carbonatite Property; prepared for Commerce Resources Corp., 21 p.
- Mariano, A.N. (2000). Personal Communication to Jody Dahrouge.
- McCrea, J. (2002). Fir Carbonatite Property, Resource Estimate; prepared for Commerce Resources Corp.
- Pell, J. and Simony, P. (1981). Stratigraphy, structure and metamorphism in the southern Cariboo Mountains, British Columbia: *in* Current Research, Part A, Geol. Surv. Can., Paper 81-1A, p. 227-230.
- Pell, J. (1987). Alkaline Ultrabasic Rocks in British Columbia: Carbonatites, Nepheline Syenites, Kimberlites and Related Rocks; B.C. Min. Energy, Mines Petr. Res.; Open File 1987-17, 109 p.

6.

A1

-

-

.

.-

APPENDIX 1: ITEMIZED COST STATEMENT

a)	Person					
	J. Dahro	ouge, geologi	st			
	9.25	dovo		permitting and planning, supervising and report		
	9.25 1.00	days days		preparation field work and travel May 31		
	9.25	-	0	\$ 604.55	\$ 5,592.09	
	9.20	days	w	φ 004.00	φ 0,092.09	
	C. Davis	s, geologist				
				permitting and planning, data compilation, report		
	21.80	days		preparation		
	21.00	days		field work and travel October 13 to November 1		
	21.80	days	@	\$ 588.50	\$ 12,829.30	
	R. Gryw	ul, geologist				
	0.50	days		preparations		
	2.00	days		field work and travel between June 17 to 18		
	2.50	days	@	\$ 497.55	\$ 1,243.88	
	R. Hard	y, geologist				
	19.00	days		field work and travel October 16 to November 1		
	19.00	days	@	\$ 481.50	\$ 9,148.50	
		allum, geolog	ist			
	3.10	days		preparations		
	2.00	days	_	field work and travel between September 14 to 15		
	5.10	days	@	\$ 363.80	\$ 1,855.38	
	W. McG	uire, field ass	sistan	t and draftsman		
	3.25	days		drafting, preparing and plotting figures and maps, other		
	3.25	days	0	\$ 476.15	\$ 1,547.49	
	G Saue	er, assistant				
	2.00	days		field work and travel between September 14 to 15		
	2.00	days	0	\$ 240.75	\$ 481.50	
	2.00	aayo	e	¥ 240.10	φ (01.00	
		on, assistant		··· · · ·		
	8.00	hours	_	data entry, binding reports, photocopying, other	•	
	8.00	hours	@	\$ 19.26	\$ 154.08	\$ 32,852.21
						\$ 32,852.21
b)	Food a	nd Accommo	odatio	on		
	47	man-days	0	\$ 45.55 accommodations and meals	\$ 2,140.99	
	47	man-days	@	\$ 24.81 groceries and other	\$ 1,166.22	
						\$ 3,307.21

c)	Transportation					
-	Vehicles:	Rental for 4x4 Truck	\$	4,321.94		
		- September 14, 15; October 13 to November 1				
		Rental for two ATV's (2 days)	\$	588.50		
		- September 14, 15				
		Bus Fare	\$	112.52		
		Fuel	\$	991.94		
		Mileage	\$	568.49		
		Parking	\$	13.20		
					\$	6,596.60
d)	Instrument Rental	n/a				
e)	Drilling					
		Spaz Logging				
		 Excavator Work, Reclamation and Logging 	\$ 15,2	269.99		
		Beaupre Diamond Drilling				
		 Mob/Demob, Tractor, Consumables, 810 m - HQ Core 	\$ 96,7	741.09		
					\$	112,011.08
f)	<u>Analyses</u>					
		SGS Lakefield				
		- mineral processing	· \$	5,992.00		
		Teck-Cominco Laboratories Ltd.				
		 60 samples, Ta, Nb, U, whole rock and 	\$	1,530.00		
		trace element analysis	<u> </u>			
					\$	7,522.00
1	Down and		<u>~</u>	00.00		
g)	<u>Report</u>	Reproductions and assembly	\$	96.80	•	~~~~~
					\$	96.80
h)	<u>Other</u>	Operation and Objection	¢	44.00		
		Courier and Shipping	\$	44.98		
		Field Equipment and Supplies	\$	842.51		
		Licences and Permits	\$	581.65		
		Long distance telephone	\$	246.10		
		Maps	\$	-		
		Miscellaneous	\$	-		
		Plots	\$	58.85	•	
					\$	1,774.10
	<u>Total</u>				\$	164,159.99

• •

,...

APPENDIX 2A LITHOLOGICAL LOGS FOR DRILL HOLES

- -

.....

. .

.

Company	Commerce	Resources C	Огр	Date Started	16-Oct-05	Bearing	none	Datum	NAD83		
	Blue River		Í.	Date Finished	17-Oct-05	Inclination	-90	UTM E	352431		
Claim				Logged By	R. Hardy w/ C.Davis	Core Size	HQ	UTM N	5796425		
Hole No	CF0501			Drill Co	RJ Beaupre Drilling	Depth (m)	81.38	Elev (m)	1054		
Note	most interv	als based on	runs								
From (m)	To (m)	Rock Type		Des	cription	Mineralization	Alteration	Sample #	From (m)	To (m)	Length (m)
0	1.22		Casing - m	inimal overburder						• •	
1.22	5.18	Gneiss	grey, fine-r		e, biotite-plagioclase, quartz	tr po py	Sil +/- bt (phlog)			• !	
5.18	8.23	Gneiss	amphibolite texture, 6m 2cm 80oC/	e interval ~5cm th n significant fractu A, 7.5-8 garnet mi	e, biotite-plagioclase, 7.13m ick, dark green, subparallel re 15oCA, 7.35m quartz vein 1- ca amphibole, garnet <2cm otite? or phlogopite?	tr ро ру					
8.23	11.28	Gneiss	8.65m 40% 600CA, 11 Not solid +,	garnet, high mic -11.15m quartz ve /- mica (phlogopit eared/weak zone	e, garnet-biotite-plagioclase, a content, 10.65m gneissosity ein with Po +/- Py, vein breccia? e?), 11.28m ~5cm thick, parallet gneissosity,	tr po py	Sil +/- bt (phlog)			· · · ·	
11.28	14.33	Gneiss	amphibole	+/- quartz-plagioc m trace to 5-10%	ium crystalline, garnet-mica- dase, 13.25-14m increase PoPy , 14.3-14.37m quartz vein	5-10% po py disseminated					
14.33	17.37	Gneiss	amphibole wioth Po fra 17.37m mo	+/- quartz-plagioo acture fill, phlogop ottled greyish gree	ium crystalline, garnet-mica- :lase, 16-16.28m bull quartz vein bite layer at base of quartz, 16.31 :n, gneissosity 70-80oCA, 17m • (light green pearly) 25oCA	tr po py	Sil +/- bt (phlog)				
17.37	20.42	Gneiss	amphibole medium pir feldspar+qu 55oCA, 20 massive ph	+/- quartz-plagioc hk, 19.85-19.91m uartz+green ampl .20-20.42m phlog	nibole, 20.10m gneissosity opite gneiss, 20.30-20.62 nto phlogopite-quartz @ 20.62m,	tr po py	Sil mod-strong, K-Spar weak- mod 19.85- 19.91m				
20.42	23.47	Gneiss + Pegmatite	amphibole minor plagi	+/- quartz-plagioo	ium crystalline, garnet-mica- clase, 20.70-21m quartz vein with n gneiss, 21.75-23.47m garnet unit	tr-5% po py	Sil mod-strong, mica (muscovite) weak-mod (metamorphic)				

From (m)		Rock Type	Description	Mineralization	Alteration	Sample #	From (m)	To (m)	Length (m)
23.47	26.52	Gneiss	light-medium grey, fine-medium crystalline, garnet-mica- amphibole +/- quartz-plagioclase, deceasing garnet content, 26m gneissosity 60oCA	tr po py	Sil mod-strong				
26.52	29.57	Gneiss	light-medium grey, fine-medium crystalline, garnet-mica- amphibole +/- quartz-plagioclase, 26.63-26.73m massive phologopite (talc feel), 27-27.05m shear/fracture defined by phologopite parallels gneissosity 70oCA, 27.32-27.75m epidote-phologopite-quartz-plagioclase amphibole +/- Po Py, 27.75-28.15m gneiss, 27.88-28.15m brecciated gneiss (resilicified?), 28.44 & 28.47m phlogopite-quartz vein parallel gneissosity 70oCA, 28.45-28.47 dark blue grey 2 cm disk of plagioclase amphibole +/- epidote & phologopite, 29-29.02m phologopite-quartz vein parallel gneissosity, 29.02-29.57m grey gneiss	tr po py	Sil mod-strong, Serp intermittent weak (Ep?)				
29.57	30.97	Gneiss	light-medium grey, fine-medium crystalline, garnet-mica- amphibole +/- quartz-plagioclase	tr po py	Sil mod-strong				
30.97	31.4	Pegmatite	quartz-plagioclase brecciated/mottled, medium crystalline, white-grey, texture gneissosity parallel, trace sulphide at bottom contact in gneiss	tr po py					
31.4	31.77	Gneiss	light-medium grey, fine-medium crystalline, garnet-mica- amphibole +/- quartz-plagioclase	tr po py	Sil mod-strong				
31.77	32.61	Gneiss	mica quartz interlayered with grey gneiss, fault zone? ~0oCA with displacement, gneissosity 60-70oCA	5% ро ру	Sil mod-strong				
32.61	33.22	Sheared Gneiss	32.61-33.22m nice O0CA offset (closed), bottom contact crumbly ~4cm	tr po py	Sil mod-strong				
33.22	34.1	Gneiss	light-medium grey, fine-medium crystalline, garnet-mica- amphibole +/- quartz-plagioclase	tr po py	Sil mod-strong				
34.1	34.45	Sheared Gneiss	O0CA offset (closed)	tr po py	Sil mod-strong				
34.45	35	Gneiss	light-medium grey, fine-medium crystalline, garnet-mica- amphibole +/- quartz-plagioclase	tr po py					
35	35.66	Sheared Gneiss	O0CA offset (closed) +/- fenitization	tr po py	Fen weak				
35.66	38.71	Pegmatite	massive bul quartz+plagioclase, possible trace pyrochlore (brown 2-3mm), trace apatite (elongate hexagons, 5-8mm), highly fractured (closed), moderate open fractures, 5% green pearlescent soapy greasy- talc?, open fractures 20oCA, 30oCA, 90oCA	tr po py	Sil strong				
38.71	39.01	Amphibolite/ Gneiss	very dark green medium crystalline aphibolite, sheared	tr po py					

,

From (m)	To (m)	Rock Type	Description	Mineralization	Alteration	Sample #	From (m)	To (m)	Length (m
39.01	39.42	Gneiss	light-medium grey, fine-medium crystalline, garnet-mica- amphibole +/- quartz-plagioclase to fine crystalline greenish grey sheared	tr po py	Sil mod-strong				
39.42	39.62	Gneiss	light-medium grey, fine-medium crystalline, garnet-mica- amphibole +/- quartz-plagioclase to fine crystalline greenish grey sheared	tr po py	Sil mod-strong				
39.62	40.1	Gneiss	lightly fracture/sheared greyish green gneiss	tr po py	Sil mod-strong				
40.1	41.1	Gneiss	medium green grey, 40.10m calcite veinlet 5mm thick iπegular (stylolite-like) ~30οCA	tr po py	Sil-Carb moderate, Serp weak (Ep?)				
41.1	41.23	Gneiss	guartz-amphibolite	tr po py	Sil strong				
41.23	41.28	Gneiss	biotite-muscovite	tr po py	Sil strong				
41.28	41.35	Gneiss	guartz-amphibolite	tr po py	Sil strong				
41.35	41.76	Gneiss		tr po py	Sil strong				
41.76	44.81	Gneiss	41.76-43.21m biotite-muscovite, medium crystalline, grey with minor increasing silica & amphibole component, 43.21- 44.81m increasing silica grey to white "zebra" striped gneiss	tr po py	Sil strong				
44.81	47.85	Gneiss + Pegmatite	44.81-45.3m highly siliceous "zebra" striped gneiss, 45.3- 45.32m phologopite/muscovite shear/weak zone, 45.32- 45.7m biotite-plagioclase-quartz gneiss +/- sericite, 45.7- 46.17m high silica "zebra" gneiss, 46.17-46.52m quartz- plagioclase pegmatite, 46.52-46.62m grey gneiss, gneissosity 80oCA, 46.62-46.67m quartz amphibole irregular veinlet, 46.67-46.82m sheared amphibole gneiss, 46.82- 47.85m grey gneiss		Sil strong				
47.85	50.9	Gneiss	medium crystalline grey gneiss, moderate gneissosity 80oCA	tr po py	Sil strong				
50.9	53.95	Gneiss	medium crystalline grey gneiss, moderate gneissosity 80oCA, 53.65m irregular quartz veinlet	tr po py	Sil strong				
53.95	57	Gneiss	medium crystalline grey gneiss, moderate gneissosity 80oCA, 54.85-55m garnet porphyroblast 5-10cm, 56.5m 2cm quatrz pyroxene wih po py veinlet	tr po py, 56.5m 5% po py	Sil strong				
57	60.05	Gneiss	medium crystalline grey gneiss	tr po py	Sil strong				
60.05	63.09	Gneiss	medium crystalline grey gneiss, 62.69m muscovite (shear/weak zone)	tr po py	Sil strong				
63.09	66.14	Gneiss	medium crystalline grey gneiss, high fracturing, 64.6-64.64m amphibole phologopite gneissosity parallel incalcation	tr po py	Sil strong				
66.14	37.62	Gneiss	medium crystalline grey gneiss	tr po py	Sil strong				

From (m)	To (m)	Rock Type	Description	Mineralization	Aiteration	Sample #	From (m)	To (m)	Length (m)
37.62	67.82	Gneiss	fine-medium crystalline green & black, 67.62-67.64m garnet	tr po py	Sil strong, Serp	Ì			
			porphyroblasts, 67.76-67.77m garnet porphyroblasts		moderate (Ep?)				
67.82	68.74	Amphibolite + Pegmatite	Gneiss medium grey, moderate foliation/gneissosity 80oCA, interbanded with quartz plagioclase pegmatite, 67.82-68.08m biotite-amphibole interbanded with quartz plagioclase cm- scale, 68.08-68.43m quartz plagioclase pegmatite with 5% coarse crystalline amphibole, 5% Po, 68.43-68.74m quartz plagioclase pegmatite interlayered with biotite amphibole		Sil strong, Serp weak-moderate (Ep?)		-		
68.74	69.45	Gneiss	grey medium crystalline, gneissosity 70oCA	tr po py	Sil strong				
69.45	77.23	Pegmatite	quartz plagioclase coarse crystalline with bands of biotite amphibole (20%) and coarse muscovite (10%), spotty green coloru and rust spots <3mm (trace), drark bands and muscovite bands 60-70oCA, 72.64-72.73m mafic band with 2cm dark green margins, top & bottom, centre medium green	tr po py	Sil strong, Serp weak (Ep?)				
77.23	81.38	Gneiss + Pegmatite	fine to medium crystalline, medium grey, gneissosity, 70oCA, 79.03-79.18m quartz plagioclase pegmatite	tr po py	Sil strong, Serp weak (Ep?)				
EC	рн								

.

Company	Commerce	Resources C	orp Date Started	18-Oct-05			Bearing	none	Datum	NAD83	
Project	Blue River		Date Finished	19-Oct-05			Inclination	-90	UTM E	352427	
Claim			Logged By	C. Davis			Core Size	HQ	UTM N	5796366	
Hole No	CF0502		Drill Co	RJ Beaupre Dril	lling		Depth (m)	76.81	Elev (m)	1049	
From (m)	To (m)	Rock Type	Det	scription		Mineralization	Alteration	Sample #	From (m)	To (m)	· Length (m)
0	1.22	Casing	Minimal Overburden					:			
1.22	30.57	Gneiss	fine-medium equicrystalline,			tr po py	Sil strong, Serp				
			bands, biotite-quartz-plagioc	•	-		weak-moderate				
			muscovite, gneissosity 60-70				(Ep?)	1			:
			green interval - amphibolite?								
			1cm reverse displacement, 7		•						
			green interval - amphibolite?	·							
			green interval - amphibolite?								
			top of 3cm quartz band, 25.5 irregular shape ~50oCA, 25.								
			interval - amphibolite?, 29.2-		-						
			intervar - ampaibonter, 23.2-	Solor daik grey g	9110100						
30.57	32.73	Carbonatite	white with grey spider fractur	ring, 5mm black s	peckles			22211	30.57	31.29	0.72
		CO. CO. CO.	(elongate-amphiboles), and						00.01		
			<3mm - apatite, 350-400 cou		<u> </u>					:	
			top contact sharp ~70°CA, b	ottom contact sha	arp 50°CA			22212	31.29	32.01	0.72
			brecciated texture, fragment					22213	32.01	32.73	0.72
32.73	34.74	Gneiss	fine-medium equicrystalline,			tr po py	Sil strong				
			white bands, biotite-quartz-p		-						
			gneissosity 60°CA, <1cm ba most <0.5cm	nds of quartz, gar	rnets pink <2cm,						
34.74	35.1	Pegmatite	massive, coarse crystalline o	uartz & plagiocla	ise +/- mafics						
			(amphibole, biotite)								
35.1	35.5	Gneiss	medium green, fine-medium	crystalline, weak	gneissosity	tr po py	Sil strong, Serp				
0F F	05.05		70°CA				moderate (Ep?)		1		
35.5	35.65	Pegmatite	massive, coarse crystalline c	juanz & plagiocia	ise +/- matics						
35.65	37.36	Gneiss	(amphibole, biotite) fine-medium equicrystalline,	modium arou #	arean with white	tr no ny	Sil strong, Serp		1		
55.05	07.00	01000	bands, biotite-quartz-plagioc			a bo by	weak (Ep?)			:	
			gneissosity 70°CA, lacks gar		, gamar,						
37.36	37.97	Pegmatite	massive, coarse crystalline of		ise +/- mafics						
		- cymauo	(amphibole, biotite)	ing of the second				}			
37.97	42.64	Gneiss	fine-medium crystalline, alter	rnating bands of r	medium arev &	tr po py	Sil strong, Serp				
		_	pale-medium green, 1-5 cm	-			weak (Ep?)				
42.64	43.69	Gneiss	medium-dark grey, medium-			tr po py	Sil strong				
			gneissosity				l ,				

From (m)	To (m)	Rock Type	Description	Mineralization	Alteration	Sample #	From (m)	To (m)	Length (m)
43.69	45.91	Gneiss	pale-medium green, medium crsytalline, weak gneissosity,	tr po py	Sil strong				
		:	bottom contact alteration around closed fracture 20°CA x2, halo ~3cm, washed out core i.e. lighter colour						
45.91	71.34		fine-medium crystalline, medium grey with white quartz bands <2cm, varying garnet content, 1-2cm biotite-amphibole bands @ 54.9m, 55.79m and 58.8m, 2-4cm garnet quartz plagioclase bands @ 57.8m, 67.42m and 52.9m, fault gouge ~4cm thick ~70°CA across gneissosity, also ~70°CA		Sil strong				
71.34	76.81		thicker intervals of quartz plagioclase in gneiss with amphibole medium-dark grey, fine-medium crystalline, gneissosity 70°CA, 74.79-75.15m quartz plagioclase massive white, sharp contacts	tr po py	Sil strong				
EC	ĎН								

.

.

Company	Comme	rce Resourc	es Corp	Date Started	19-Oct-05			Bearing	none	Datum	NAD83	
Project		ver - Fir Pty		Date Finished	20-Oct-05			Inclination	-90	UTME	352433	
Claim				Logged By	R. Hardy			Core Size	HQ	UTM N	5796297	
Hole No	CF0503			Drill Co	RJ Beaupre Dr	illina		Depth (m)	81.38	Elev (m)	1048	
Note		ervals based	d on runs		: Boucpro Dr				01.00			
From (m)		Rock Type		Ďe	scription	I	Mineralization	Alteration	Sample #	From (m)	To (m)	Length (m)
0	3.35	Casing	, minimal ov								,	
3.35	5.18	Gneiss		ained, grey-light g	nev aredina inte	n fine grained	mainly					
0.00				rey @3.7m into g			disseminated					
			i	astic massive gne			pyrite					
5.18	8.23	Gneiss		ained, grey to gre			tr py po					
5.10	0.20	Glieiss					u py po					
		zones of silica flood gneisses interlayered with medium grained purple grey		iai mealant								
0.00	44.00			ove with amphibolite gniess clasts in bedded in meium								
8.23	11.28	Gneiss			mphibolite gniess clasts in bedded in meium tr eiss, quartz phologopite stringers @8.4m		tr py po	1				
			grey aloriti	c gneiss, quartz	phologopite strin	igers @8.4m						
11.28	14.33	Gneiss	an about y	vith quartz-pholog	nito 'nurovono'	ovrito ovrbotito	troupo					
11.20	14.55	Grieiss) 11.6m, 11.85m,		pyme-pymone	tr py po					
14.33	17.37	Gneiss		rey gneiss as abo		ite alteration	tr py po					
14.00	17.57	Cheiss		sturbed core with			u py po					
				d perpendicular to	•		:					
			55 CA, and	i perpendicular to	gheissosity (& i	andon naciule)	r I					
17.37	20.42	Gneiss	as above of	grey-green gneiss	ses with gradatio	en into	tr py po	Serp	:			
17.07	20.42	Chiciaa		pyroxenite gneiss	-			moderate				
:			20m	pyronoliito giloloo				moderate				
20.42	23.47	Gneiss		e-brown) (phlogo	nite) aneisses wi	ith randomly	tr py po	Sil strong,				
20.12	20.17	0.10.00		arnet porphyrobl			a py po	Serp				
				ith fairly flow text				moderate				
23.47	26.52	Gneiss		e-brown) with ~1		adioclase	tr py po					
20.11	LUIUL	Choice		(banding) with an		-	a p3 p0					
			stringer at :									
26.52	29.57	Gneiss +		vith increasing gra	ain size through :	27.4m (fine	tr py po					
		Pegmatite		rnet bearing amp	-	•				:		
		Ū		3m + quartz plag	•							
			through to		•	<i>,</i> , ,				:		
29.57	32.61	Pegmatite		ioclase metasom	ie to 29.83m, into	o grey-(purple-	tr py po	Sil strong,				
		+ Gneiss		eiss to amphibole		÷ • • •		Serp				
			30.32 to 30).55m, green grey	fine grained gn	eiss to 31.64m,		moderate				
				ic silica-amphibic								
	1	}	33.41m									

ł

From (m)	To (m)	Rock Type	Description	Mineralization	Alteration	Sample #	From (m)	To (m)	Length (m)
32.61	35.66	Gneiss	amphibole (greenish) to grey purple brown rythmic zebra gneiss	tr py po	Sil strong				
35.66	38.71	Gneiss	as above, decreasing quartz plagioclase component in grey green to purple grey gneiss, 7cm quartz fracture infill with	tr py po					
			phlogopite base @ 38.37-38.44m, gneissosity @ 77°CA				:		
38.71	41.76	Gneiss	as above with slight grain size increase to quartz flodded near and about 41m as above to 41.76m	tr py po	Sil strong				
41.76	44.81	Gneiss	as above gith 18cm quartz plagioclase pegmatie @ 42.05m, very impressive phologpite-feldspathoid lenses: 43.99-44.1m, 44.17-44.25m, 44.4-44.48m, medium grain grey gniess to 44.81m	tr py po				-	
44.81	47.86	Gneiss + Pegmatite	greenish grey gneiss to granodorite gneiss into quartz plagioclase(+/- mica amphibole) 45.5-46.25m, gneissosities 85°CA, 70°CAm 90°CA @ 46.25m, 30°CA @ 47.5m	tr py po					
47.86	50.9	Gneiss	as above, green to greenish grey to grey purple gneiss with phologpite-quartz-sulphide lens	tr py po					
50.9	53.95	Gneiss	grey medium grained gneiss with phologpite quartz at 51.15- 51.2m, quartz muscovite-plagioclase at 51.30-51.42m, phologpite-quartz @ 51.15m, 51.87m, 52.19m, 52.4m, 52.5- 52.62m	tr py po					
53.95	57	Gneiss	as above gneisses, no phlogopite lenses, grades to fine grained green epidote bearing (fracture & healed) gneiss to 57m	tr py po	Serp (Ep?)				
57	60.05	Gneiss	interleaves of fine grained green gneiss, random & chaotic orientation o gneissosity + grey gneiss (garnet porphyroblasts @ 59 - 59.06m), white grey gneiss to 60.05m	tr py po					
	63.09	Gneiss	grey grades into lite grey granodioritic gneisses to 63.09m	tr py po					
63.09	66.14	Gneiss	as above with interleaving of fine grained lite green gneiss - garnets	tr py po					
66.14	69.19	Gneiss	as above gneissosity 73°CA	tr py po					
	72.24	Gneiss	rapid transition into medium grained biotite-muscovite	tr py po					
	75.29		quartz-albite granodioritic gneiss through to 75.29m	tr py po					
	80.52		as aboveminor quartz plagioclase garnet lenses	tr py po		t i i i i i i i i i i i i i i i i i i i			
	81.38		fairly impressive garnet 'freckle' amphibolite gneiss	tr py po					
EOł			,						

Company	Commerce	Resources C	orp	Date Started	20-Oct-05			Bearing	none	Datum	NAD83	
Project	Blue River	- Fir Pty		Date Finished	21-Oct-05	¦ 		Inclination	-90	UTM E	352432	
Claim				Logged By	C. Davis			Core Size	HQ	UTM N	5796230	
Hole No	CF0504			Drill Co	RJ Beaupre Dr	illing		Depth (m)	60.05	Elev (m)	1046	:
Note	Samples in	itervals by R.	Hardy									
From (m)	To (m)	Rock Type		Des	cription		Mineralization	Alteration	Sample #	From (m)	To (m)	Length (m)
0	3.66	Casing	Minimal ove	erburden				Sil strong	_			
3.66	11.48	Gneiss	medium-da	rk grey medium o	crystalline biotite	amphibole		Sil strong				
			quartz plag	ioclase +/- pink g	arnet porphyrob	lasts most						
			<0.5cm, 0.5	5cm <rare<2cm, g<="" td=""><td>neissosities: 3.6</td><td>6-10.68m</td><td></td><td></td><td></td><td></td><td></td><td></td></rare<2cm,>	neissosities: 3.6	6-10.68m						
			90°CA, 10.6	68-11.48m 60°C/	4							
11.48	11.9	Gneiss	arev & aree	en strined appear	ance with round	ed white clasts -	tr-3% Po	Sil strong				1
			.	-quartz, fracture				0				
			tr-3%		0 0	•						
1 1.9	20.92	Carbonatite	white to pal	e grey with pale	grey fracturing a	nd green-			22201	11.9	12.75	0.85
				ate speckles - ar					22202	12.75	13.6	0.85
			consistent,	transluscent hex	agonal crystals	<3mm ~5%,			22203	13.6	14.45	0.85
				ide blebs (po) 0.5					22204	14.45	15.3	0.85
			movement,	subangular clast	ts <1cm, minor y	ellow			22205	15.3	16.15	0.85
			staining (ru	st/limonite), 350-	400 counts/sec,	15.58-			22206	16.15	17	0.85
			16.03m ma	fic unit, dark grey	-green with whit	te similar to			22207	17	17.85	0.85
			11.48-11.9	m unit, platy soap	y green pearles	cent mineral			22208	17.85	18.7	0.85
			dominates,	12.93-13.31m g	rey green interva	al strained			22209	18.7	19.55	0.85
			texture lie 1	1.48-11.9m, top	contact 60°CA,	bottom			22210	19.55	20.1	0.55
			80°CA						22214	20.1	20.87	0.77
20.92	20.95	Fen. Gneiss	-	n bottom contact	of carbonatite, f	ienitized gneiss,		Sil weak,				
			dark green	to black				Fen strong			1	
20.95	60.05	Gneiss		rk grey with white				Sil strong			1	
	1		sort of gree	n as nickel bloon	n, NOT nickel bl	oom)						
EC	ЭН										1	

Company	Commer	ce Resources (Corp Date Start	ed 22-Oct-05			Bearing	none	Datum	NAD83	
Project	Blue Rive	er - Fir Pty	Date Finis	ned 24-Oct-05			Inclination	-90	UTM E	352992	
Claim			Logged By				Core Size	HQ	UTM N	5797400	
Hole No Note	CF0505		Drill Co	RJ Beaupre I	Drilling		Depth (m)	185.01	Elev (m)	1267	
From (m)	To (m)	Rock Type	. '	Description	1	Mineralization	Alteration	Sample #	From (m)	To (m)	Length (m)
0	1.22	Casing	Minimal overburden								
1.22	13.7	Gneiss +	Gneiss- medium grey			trace Po Py	Gneiss-sil				
		Amphibolite	amphibole quartz plag	ioclase +/- pink g	arnets (<5%),		strong;				
			gneissosity 70°CA; An				Amph-biot				
			black, biotite pyroxene		ted, found at 5.18-		mod strong				
			6.44m, 12.38-12.48m,								
13.7	15.08	Pegmatite	white with black/dark g								
			crystalline, quartz palg	ioclase, black ba	nds parallel above						
			gneissosity 75°CA								
15.08	69.79	Gneiss +	Gneiss- medium-dark			trace Po Py	Gneiss-sil	ł			
		Amphibolite	biotite amphibole quar				strong;				
			(variable), medium-co medium-dark green wi				Amph-biot mod strong				
			amphibole, foliated we				mou strong				
			coarse crystalline, fou		•						
			50.75-52.91m	la at 10.02 10.01	, 10.0 10.7 olli,						
69.79	69.86	Amphibolite	dark green, biotite pyr	xene amphibole	. contact with				1		
		· · · · •	carbonatite sharp 60°(
69.86	70.9	Carbonatite	white breccia texture (n grey matrix,	trace Po Py		22216	69.86	70.9	1.04
		(Beforesite?)	weak foliation parallel			-					
			speckles (amphiboles)	<0.5cm, 3% (les	s than Bone Creek						
			carbonatite), no signifi								
			rock 150-200, except	vhere there is inc	rease in density of						:
			amphiboles								1
70.9	71.3	Gneiss	dark grey-black with w	•••	s, gneissosity	trace Po Py	Gneiss-sil				
			75°CA, bottom contac		,		strong				
71.3	73.02	Carbonatite	white breccia texture (trace Po Py		22217	71.3	72.24	0. 9 4
	ĺ	(Beforesite?)	weak foliation parallel								
			speckles (amphiboles)								
			carbonatite), no signifi			•					
			rock 150-200, except	vnere there is inc	rease in density of						
	:		amphiboles	lonual amphibale	^			22218	72.24	73.02	0.78
73.02	73.62	Carbonatite	Carbonatite interlayer	•		trace Po Py		22218	73.02	73.42	0.78
10.02	10.02	Carbonatite	layers/bands	a with plack and		uduerury		22213	10.02	p 0.42	V.4

From (m)	To (m)	Rock Type	Description	Mineralization	Alteration	Sample #	From (m)	To (m)	Length (m)
73.62	76.05	Carbonatite (Beforesite?)	white breccia texture (flow) with medium grey matrix, weak foliation parallel gneissosity, black elongate speckles (amphiboles) <0.5cm, 3% (less than Bone Creek carbonatite), no significant change in counts/sec from host rock 150-200, except where there is increase in density of amphiboles	trace Po Py		22220	73.66	74.56	0.9
			bottom contact gradual ~60°CA, short amphibolite (fenite?) before more carbonatite			22221	74.56	75.66	1.1
76.05	76.46	Carbonatite +Amphibolite	Carbonatite interlayered with black amphibole layers/bands, pale green halo between carbonatite and amphibolite - fenite? ~1cm wide	trace Po Py		22222	75.66	76.46	0.8
76.46	76.86	Amphibolite	dark green-black with pale green, biotite pyroxene amphibole, pale green-fenite? (bottom half of interval),	trace Po Py					
76.86	78.02	Pegmatite	bottom contact sharp ~85°CA white with grey black cross hatch texture, quartz plagioclase with pink garnets <1cm round <5%	trace Po Py					:
78.02	78.06	Amphibolite	short band dark green and black	trace Po Py					
78.06	86.93	Carbonatite (Beforesite?)	white breccia texture (flow) with medium grey matrix, weak foliation parallel gneissosity, black elongate	trace Po Py		22223	78.11	78.56	0.45
			speckles (amphiboles) <0.5cm, 3% (less than Bone			22224	78.56	79.56	1
			Creek carbonatite), no significant change in			22225	79.56	80.56	1
			counts/sec from host rock 150-200, except where			22226	80.56	81.63	1.07
			there is increase in density of amphiboles			22227	81.63	82.63	1
			close fractures 1-2cm wide, medium grey fill			22228	82.63	83.43	0.8
			85.43-85.83m amhibole fracture fill			22229	83.43	84.43	1
						22230	84.43	85.43	1
						22231 22232	85.43 86.18	86.18 86.93	0.75 0.75
00.00	07.07	0	On the second			22232	80.18	80.93	0.75
86.93	87.07	Carbonatite +Amphibolite (fenite?)	Carbonatite interlayered with black amphibole layers/bands, pale green halo between carbonatite and amphibolite - fenite? ~1cm wide	trace Po Py					
87.07	88.88	Amphibolite Gneiss	black with dark green & white bands, minor garnet (pink bands), gneissosity golded, bottom contact interfingered with carbonatite ~20cm	trace Po Py					
88.88	90.46	Carbonatite (Beforesite?)	white breccia texture (flow) with medium grey matrix, weak foliation parallel gneissosity, black elongate speckles (amphiboles) <0.5cm, 3% (less than Bone Creek carbonatite), no significant change in counts/sec from host rock 150-200, except where there is increase in density of amphiboles			22233	88.88	89.71	0.83

!

From (m)	To (m)	Rock Type	Description	Mineralization	Alteration	Sample # 22234	From (m) 89.71	To (m) 90.46	Length (m) 0.75
90.46	90.53	Amphibolite (fenite?)	dark green-black with pale green, biotite pyroxene amphibole, pale green-fenite?	trace Po Py					
90.53	91.53	Gneiss	medium grey with white & pink speckles, pink garnets <1cm, 10%, gneissosity 60-80°CA (folded), bottom contact sharp 60°CA	trace Po Py					
91.53	94.76	Pegmatite	white&grey +/-pink (garnet), coarse crystalline, quartz plagioclase	trace Po Py					
94.76	171.56	Gneiss	medium grey with white & black bands, variable pink speckles & green intervals, biotite amphibole quartz plagioclase +/- pink garnets <2cm, interbands of quartz plagioclase pegmatite and green biotite amphibolite, 119.8-120.25 brecciated cross fractues in place, Pegmatite @:5.24-95.33m, 98.47-98.7m, 108.88- 108.98m, 116.66-116.79m, 142.67-142.92m, 153.87- 154.02m, 154.45-154.58m, 157.63-157.73m, 157.88- 158.01m, 158.13-158.7m; Amphibolite @: 99.04-99.17m, 117.69-118.15m, 123.82-123.91m, 124.91-125.47m, 126.74-127.78m, 138.59-138.75m, 143.39-143.41m; Gneissosities: 96.62m 65°CA, 99.67m 75°CA, 102.72m 70°CA, 15.77m 75°CA, 108.81m 80°CA, 118.6m 80°CA, 114.91m 85°CA, 117.46m 85°CA, 121.01m 75°CA, 124.05m 80°CA, 127.1m 80°CA, 130.15m 85°CA, 133.2m 85°A, 13.25m 75°CA, 139.29m 80°CA, 142.34m 85°CA, 145.39m 80°CA, 148.44m 75°CA, 151.49m 70°CA, 154.33°CA, 157.58m 70°CA, 163.68 70°CA, 169.77m	trace Po Py, fracture fill Po Py: 127.1- 127.78m, 149.89- 149.96m, 158m					
171.56	176.75	Gneiss	60°CA pale green & white, medium-coarse crystalline with medium grey bands, this unit only seen in this hole, top contact folding in bottom 30cm of overlying unit, gneissosity 60°CA	trace Po Py					
176.75	185.01	Gneiss	medium grey with white & black bands, variable pink speckles & pale green intervals, biotite amphibole quartz plagioclase +/- pink garnets <2cm, gneissosity 65°-75°CA	trace Po Py				:	
EO	I H								

Company	Commer	ce Resources C	orp Date Started	24-Oct-05		Bearing	none	Datum	NAD83	
Project	Blue Rive	er - Fir Pty	Date Finished	25-Oct-05		Inclination	-90	UTM E	352994	
Claim	Ì	•	Logged By	C. Davis		Core Size	HQ	UTM N	5797457	
Hole No	CF0506		Drill Co	RJ Beaupre Drilling		Depth (m)	99.67	Elev (m)	1278	
Note	1					,	:			
From (m)	To (m)	Rock Type	Des	cription	Mineralization	Alteration	Sample #	From (m)	To (m)	Length (m)
	1.83	Casing	minimal overburden				-			
1.83	12.28	Gneiss	medium-dark grey, fine-med	ium crystalline, biotite	tr Po Py	Sil strong				
			plagioclase quartz amphibol occassional guartz bands 5-	e +- garnet, gneissosity 70°CA,					1	
40.00	40.00	C-size/	· ·		te Do Du	Cil otropo				
12.28	13.28	Gneiss/	dark green-black, medium o	rystalline, blotte pyroxene	tr Po Py	Sil strong				
40.00	40.50	Amphibolite	amphibole, foilation 65°CA	1	+- D - D -	0.1				
13.28	48.58	Gneiss	medium-dark grey, fine-med	•	tr Po Py	Sil strong				
	:		plagioclase quartz amphibol loccassional quartz bands 5-	e +- garnet, gneissosity 70°CA, 10cm, Amobibolie intervals						
			(dark green) @:18.81-19.04							
			28.82m, 33.28-33.38m, 34.0							
			14.33m 80°CA, 17.37m 85°C							
			85°CA, 26.57m 80°CA, 29.5							
	:		35.66m 70°CA, 41.26m 85°0 70°CA	JA, 44.81M 80°CA, 47.85M						
48.58	57.35	Carbonatite	white-light grey with black/da	ark arean alongata speckles	tr Po Py		22235	48.58	49.58	1
40.00	51.55	(Beforesite?)	(amphiboles) <0.5cm 5-10%		latory		22200	40.00	40.00	1
		(Deroreane :)	transparent/transluscent mir				22236	49.58	50.58	1
	:		breccia clast subangular (flo	• • • •			22237	50.58	51.58	1
			change in CPS from gneiss/				22238	51.58	52.58	1
	1						22239	52.58	53.58	1
	:						22240	53.58	54.58	1
							22241	54.58	55.58	1
							22242	55.58	56.58	1
							22243	56.58	57.35	0.77
57.35	64.65	Gneiss	medium-dark grey with white	e bands, medium-coarse	tr Po Py	Sil strong				
	!		crystalline, biotite amphibole		····,	.				
			gneissosity 75°-80°CA	1						
64.65	64.88	Carbonatite	white-light grey with black/da	ark green elongate speckles	tr Po Py		22260	64.65	64.88	0.23
•	•	(Beforesite?)		, clear transparent/transluscent					-	••
		(,	minerals 2-3 <0.5cm (apatite	-						
				nge in CPS from gneiss/host,	,					
				lium green grey- fenite?, miday				:	1	
			in interval 1cm band of medi							
				-			ĺ			
64.88	65.52	Fenite?	pale-dark pastel green with	white & dark green patches,	tr Po Py					

ł

From (m)	To (m)	Rock Type	Description	Mineralization	Alteration	Sample # From (m)	To (m)	Length (m)
65.52	66.34	Gneiss	medium-dark grey with white bands, medium-coarse crystalline, biotite amphibole quartz plagioclase, gneissosity 70°CA	tr Po Py				
66.34	66.68	Pegmatite/ Felsic Gneiss	quartz plagioclase, coarse-very coarse crystalline, top contact sharp, 65°CA, bottom 70°CA contact sharp	tr Po Py				
66.68	76.73	Gneiss	medium-dark grey with white bands, medium-coarse crystalline, biotite amphibole quartz plagioclase, gneissosity 65°-75°CA, parting along gneissosity, Amphibolite (medium-dark green +biotite) @: 67.28-67.88m (weak foliation 60°CA), 68.19-69.19m, 73.85-73.6m, 74.85- 75.05m	tr Po Py	Sil strong			
76.73	77.33	Pegmatite		tr Po Py				
77.33	93.17	Gneiss	medium-dark grey with white bands, medium-coarse crystalline, biotite amphibole quartz plagioclase, gneissosity 65°-75°CA, parting along gneissosity, Amphibolite (medium-dark green +biotite) @: 81.08- 81.68m; Gneissosities: 78.33m 85°CA, 81.38m 80°CA, 84.45m 80°CA, 87.48m 70°CA, 90.53m 65°CA	tr Po Py	Sil strong			
93.17	95.02	Pegmatite/ Felsic Gneiss		tr Po Py				
95.02	99.67	Gneiss	medium-dark grey with white bands, medium-coarse crystalline, biotite amphibole quartz plagioclase, gneissosity 60°CA	tr Po Py	Sil strong			
EO	H							

Company	Commer	ce Resources	Corp Date Started	25-Oct-05			Bearing	none	Datum	NAD83	
		er - Fir Pty	Date Finished	26-Oct-05			Inclination	-90	UTM E	353003	
Claim			Logged By	C. Davis			Core Size	HQ	UTM N	5797509	
Hole No	CF0507		Drill Co	RJ Beaupre	Drilling		Depth (m)	99.67	Elev (m)	1258	
Note				ļ							
From (m)	To (m)			scription		Mineralization	Alteration	Sample #	From (m)	To (m)	Length (m)
		Casing	Minimal oveburden			tr Po Py					
2.44		Gneiss +	medium grey with light/white		4	tr Po Py					
		Amphibolite	(amphibole+biotite), minor p								
		:	subround, Amphibolite (bioti		•						
			parallel gneissosity): 10.81-1							į	
		1	12.09m, 12.95-13.08m; Qua		• • • •					:	
		i I	60°CA, bottom 70°CA) 13.93	-						1	
			30°CA, 5.18m 65°CA, 8.23n	180°CA, 11.2	8m 70°CA, 14.33m						
			75°CA, 17.37m 70°CA								÷
18.24	19.07	Pegmatite	white & grey with black spec	kles, medium	-coarse crystalline.	tr Po Py					
		3	biotite amphibole quartz pla			,					:
	;		gneiss	•							
19.07	47.15	Gneiss	medium grey with white ban			tr Po Py; Po +/-					
			22.02-23.3m, 25.45-26.15m	, 26.39-26.52	m, 26.62 - 27.01m,	Py veinlets 34.01-					
			27.95-28.95m			34.03m, 34.54-					
						34.62m, Qtz vnlt					
	t					+ PoPy, garnet & Cpy? 33.78-					
	-					33.84m					
47.15	47.35	Pegmatite	white & grey, palgioclase qu	artz, coarse e	longate crystals	tr Po Py					
	48.6	Gneiss	dark grey & white with black			tr Po Py					
			quartz + plagioclase +/- garr	• •	•	,	1				
					,						
48.6	48.85	Pegmatite	white & grey, palgioclase qu	artz, coarse e	longate crystals	tr Po Py					
	49.48	Gneiss	dark grey & white with black			tr Po Py					
		Pegmatite	white & grey, palgioclase qu			tr Po Py	1				
50.11		Gneiss +	Gneiss: dark grey & white w			tr Po Py					
		Amphibolite	biotite, quartz + plagioclase								
			Amphibolite: dark green biot 51.25m	ite pyrxene ar	npnibole @ 50.24-						
51.38	51.7	Pegmatite	white & grey, palgioclase qu	artz, coarse e	longate crystals	tr - 5% Po Py					
			gneiss band midway			disseminated					

From (m)	To (m)	Rock Type	Description	Mineralization	Alteration	Sample #	From (m)	To (m)	Length (m
51.7	60.18	Gneiss	medium grey with light/white & medium-dark green bands (amphibole+biotite), minor pink speckles (gamet) <1cm subround, Amphibolite (biotite pyroxene amphibole, foliated parallel gneissosity): 53.13-53.87m, 54.14-54.31m, 54.55- 54.74m	tr Po Py					
60.18 60.25	60.25 61.28	Pegmatite Gneiss	white & grey, palgioclase quartz, coarse elongate crystals medium grey with light/white & medium-dark green bands (amphibole+biotite), minor pink speckles (gamet) <1cm subround, weak gneissosity	tr Po Py tr Po Py					
61.28	62.11	Pegmatite	white & grey, palgioclase quartz, coarse elongate crystals, with gneiss bands	tr Po Py					
62.11	70.06	Gneiss	medium dark with zones of medium green grey (not amphibolite described previously), gneissosit consistent 65°CA, no ampibolite intervals, rare garnet	tr Po Py					
70.06	70.76	Pegmatite + Gneiss		tr Po Py					
70.76	75.95	Gneiss	medium dark with zones of medium green grey (not amphibolite described previously), gneissosit consistent 65°CA, no ampibolite intervals, rare garnet	tr Po Py					-
75.95	77.3	Pegmatite	very coarse crystalline, plagioclase quartz +/- biotite amphibole, contacts across gneissosity top 70°CA, bottom 50°CA	tr Po Py					
77.3	77.96	Gneiss	medium dark with zones of medium green grey (not amphibolite described previously), gneissosit consistent 65ºCA, no ampibolite intervals, rare garnet	tr Po Py					
77.96	78.32	Pegmatite	very coarse crystalline, plagioclase quartz +/- biotite amphibole, contacts across gneissosity top irregular 35°CA, bottom 50°CA	-					
78.32	88.05	Gneiss	medium dark with zones of medium green grey (not amphibolite described previously), gneissosity consistent 70°CA, no ampibolite intervals, increasing garnet content <1cm, 5-10% throughout	tr Po Py					
88.05	88.84	Pegmatite	very coarse crystalline, plagioclase quartz +/- biotite amphibole, contacts across gneissosity top 50°CA, bottom 60°CA	tr Po Py		1			

.

From (m)	To (m)	Rock Type		De	scription		Mineralization	Alteration	Sample #	From (m)	To (m)	Length (m)
88.84	94.18	Gneiss	medium dark with zones of medium green grey (not				tr Po Py		1			
			amphibolite	described previo	usly), gneissosi	ty consistent						
			65°CA, no a 90m, rare be	mpibolite interva elow	ls, garnet <1cm	, 5-10% above						
94.18	95.52	Pegmatite	very coarse	crystalline, plagi	oclase quartz +/	- biotite amphibole	tr Po Py					
95.52	99.67	Gneiss medium dark with zones of medium green grey (not				rey (not	tr Po Py					
	amphibolite described previously), gneissosit consistent 60°CA some sections weak gneissosity, no ampibolite intervals, rare garnet											
EOH]						1

Company	Comme	rce Resources	Согр	Date Started	26-Oct-05		İ	Bearing	none	Datum	NAD83	
Project		er - Fir Pty		Date Finished	28-Oct-05			Inclination	-90	UTM E	352988	
Claim		:		Logged By	C. Davis			Core Size	HQ	UTM N	5797251	
Hole No	CF0508			Drill Co	RJ Beaupre	Drilling		Depth (m)	121.01	Elev (m)	1277	
Note		•										
From (m)				Descri	ption		Mineralization	Alteration	Sample #	From (m)	To (m)	Eength (m)
0	3.66	Casing	Minimal ov									
3.66	50.52	Gneiss		rey with interband			tr Po Py					
				n green grey, the o	- ·							
				garnet), gneissos								
				505-07, more high	-							
				e quartz amphibo					•			
				occassional bands rease in Po Py in								
				ner intervals of Arr								
	1	1		oles, Amphibolite					-			
		1		13m, 35.48-35.79i					:			
	;			neissosity: 3.66m								Ì
			8.23m 50°	CA, 11.28m 20°C	A, 14.33m 55	5⁰A, 17.37m						
			40°CA, 20	.42m 70°CA, 23.4	7m 75°CA, 2	6.52m			i			
			60°CA, 29	.57m 80°CA, 32.6	61m 75°CA, 3	5.86m						
			70°CA, 38	.71m 70°CA, 41.7	′6m 75°CA, 4	4.81m		1			I	
	:			.85m 70°A, 50.52								
50.52	63.09	Gneiss		ark grey with whit			tr Po Py					
				bround <3cm, mo								
				e quartz amphibo								
				h bands- amphibo								
				19m, 58.98-59.16								
	!			ty: 50.9m 75°CA,		., 57m →						
	:		70°CA, 60	.05m 70°CA, 63.0	9m 70°CA							
63.09	77.6	Carbonatite	white with	grey matrix flow b	oreccia textur	e calst <1cm	tr Po Py		22244	63.09	64	0.91
	1	(Beforesite?)		ir, transluscent-tra								
	:			l cross section - a					22245	64	65	1
	• •			overall 8 - amphiol					22246	65	66	1
	1			niboles correspon					22247	66	67	1
				from background					22248	67	68	1
			600cps; bi	otite ampibole ba	nd @: 72.84-				22249	68	69	1

From (m)	To (m)	Rock Type	Description	Mineralization	Alteration	Sample #	From (m)	To (m)	Length (m)
			73.22m, 74.59-74.99m, shorter intervsl			22250	69	70	1
			elsewhere (<5cm)72.43-72.46m, 76.16-76.19m,	1		22251	70	71	-1
		1	weak foliation texture except 76.19-77.6m			22252	71	72	1
			80oCA			22253	72	73	1
						22254	73	74	1
						22255	74	75	1
						22256	75	76	1
						22257	76	76.8	0.8
						22258	76.8	77.6	0.8
77.6	112.5	Gneiss	medium-dark grey with white bands and pink spots	tr - 5% Po Py		22259	94	94.36	0.36
	1		(garnet subround <3cm, most <1cm), biotite	(variable), 94.16-					
	-		plagioclase quartz amphibole, 5-10% garnet, more	94.30m 3cm					
		,	folding activity evident, variable gneissosities,	wide, 15cm long					
		1	crenulated folds, no amphibolite bands; Gneissosity:	fracture fill Po					:
			78.33m 70°CAm 81.38m 70°CA, 84.43m 70°CA,						
	:		87.48m 75°CA (crenulated fold), 90.53m 75°CA						
	:		(crenulated fold), 93.57m indistinct, 9.62m 60°CA,						
	İ		99.67m 80°CA, 99.67m 80°CA, 102.72m 70°CA,						
			105.77m 70°CA, 108.81m 30°CA, 111.86m 40°CA			i			
			105.77m 70°CA, 108.81m 30°CA, 111.86m 40°CA						
440 5	440.00	0		4- D- D-					
112.5	116.96	Gneiss	medium grey with interbands of white, minor interals	tr Po Py		1			
			of medium green grey, the dark green (amphibolite),						
			rare pink (garnet), gneissosity not as consistent as in						
			holes CF0505-07, more higher angle, biotite plagioclase quartz amphibole +/- garnet (trace),			•			
			Epidote? occassional bands of quartz with pale			:			
			green (increase in Po Py in this green zone), more						
			crenulated folding present, less intervals of			•			
			Amphibolite described in previous holes, Amphibolite						
			(medium-dark green) @: 113.18-113.4m;]		
			Gneissosity: 112.5m 60°CA, 114.91m 75°CA						
110.00	447.00	Dogocziła		te Da Du					1
116.96	117.33	Pegmatite	white & grey with black speckles/bands (biotite	tr Po Py		:			1
			amphibole) coarse crystalline, quartz plagioclase						:

From (m)	To (m)	Rock Type	Description	Mineralization	Alteration	Sample #	From (m)	To (m)	Length (m)
	120.24		medium grey with interbands of white, minor interals of medium green grey, the dark green (amphibolite), rare pink (garnet), gneissosity not as consistent as in holes CF0505-07, more higher angle, biotite plagioclase quartz amphibole +/- garnet (trace), Epidote? occassional bands of quartz with pale green (increase in Po Py in this green zone), more crenulated folding present, less intervals of Amphibolite described in previous holes, Amphibolite (medium-dark green) @: 119.83-119.91m;	tr Po Py				,	
120.24	120.63	Pegmatite	Gneissosity: 117.96m 80°CA, 120m 70°CA white & grey with black speckles/bands (biotite amphibole) coarse crystalline, quartz plagioclase	tr Po Py					
120.63	121.01	Gneiss	medium grey with interbands of white, minor interals of medium green grey, the dark green (amphibolite), rare pink (garnet), gneissosity not as consistent as in holes CF0505-07, more higher angle, biotite plagioclase quartz amphibole +/- garnet (trace), Epidote? occassional bands of quartz with pale green (increase in Po Py in this green zone), more crenulated folding present, gneissosity 75°CA	-					
EOF	l Hi								

•

APPENDIX 2B GEOTECHNICAL LOGS FOR DRILL HOLES

....

.....

....

Company	Commerce	Resources C	orp	Date Started	16-Oct-05		Bearing	none	Datum	NAD83
Project	Blue River	- Fir Pty		Date Finished	17-Oct-05		Inclination	-90	UTM E	352431
Claim				Logged By	C. Davis w/ R.	Hardy	Core Size	HQ	UTM N	5796425
Hole No	CF0501			Drill Co	RJ Beaupre Dr	illing	Depth (m)	81.38	Elev (m)	1054
Run From	Run To	Run Length	Measured	Total >15cm	RQD	No	Recovery %	Rock Type	No	otes
(m)	(m)	(m)	Run (m)	(m)		Fractures	Recovery /a	ROCK Type		ЛСЭ
2.18	5.18	3.00			42.33%			Gneiss		
5.18	8.23	3.05	2.98	1.56	51.15%	21	98%	Gneiss		
8.23	11.28	3.05	2.99	1.52	49.84%	27		Gneiss		
11.28	14.33	3.05	2.90	2.29	75.08%	14	95%	Gneiss		
14.33	17.37	3.04	2.96	1.93	63.49%	23		Gneiss	Qtz vein w	// Po-Py
17.37	20.42	3.05	2.90	2.11	69.18%	23	95%	Gneiss		
20.42	23.47	3.05	3.00	2.08	68.20%	23	98%	Gneiss		
23.47	26.52	3.05	2.95	2.21	72.46%	26		Gneiss		
26.52	29.57	3.05	2.98	1.02	33.44%	39	98%	Gneiss		ĺ
29.57	32.61	3.04	3.00	1.37	45.07%	28	99%	Gneiss		
32.61	35.66	3.05	2.91	2.22	72.79%	47	95%	Gneiss		:
35.66	38.71	3.05	2.77	2.77	90.82%	61	91%	Pegmatite	Qtz Plag	
38.71	41.76	3.05	2.89	2.89	94.75%	42	95%	Gneiss		
41.76	44.81	3.05	2.86	2.86	93.77%	32	94%	Gneiss		
44.81	47.85	3.04	2.92	2.92	96.05%	41	96%	Gneiss		
47.85	50.90	3.05	3.03	3.03	99.34%	35	99%	Gneiss		
50.90	53.95	3.05	2.96	2.96	97.05%	37	97%	Gneiss		
53.95	57.00	3.05	2.86	2.86	93.77%	24	94%	Gneiss		
57.00	60.05	3.05	3.00	3.00	98.36%	27	98%	Gneiss		1
60.05	63.09	3.04	2.88	2.88	94.74%	30	95%	Gneiss		
63.09	66.14	3.05	2.77	2.77	90.82%	58	91%	Gneiss		
66.14	69.19	3.05	2.94	2.94	96.39%	32	96%	Gneiss		
69.19	72.24	3.05	2.71	2.71	88.85%	>66	89%	Pegmatite	Qtz Musc	Plag
72.24	75.29	3.05		2.88	94.43%	48		Pegmatite	Qtz Plag	_
75.29	78.33	3.04	2.74	2.74	90.13%	32		Gneiss + Peg		
78.33	81.38	3.05		2.87	94.10%	48		Gneiss + Peg	1	

Company	Commerce	Resources C	orp	Date Started	18-Oct-05		Bearing	none	Datum	NAD83
Project	Blue River		,	Date Finished	19-Oct-05		Inclination	-90	UTME	352427
Claim				Logged By	C. Davis		Core Size	HQ	UTM N	5796366
Hole No	CF0502			Drill Co	RJ Beaupre Dr	illing	Depth (m)	76.81	Elev (m)	1049
Run From	Run To	Run Length	Measured	Total >15cm	RQD	No	Recovery	Deek Tune	NI.	otes
(m)	(m)	(m)	Run (m)	(m)	RQD	Fractures	%	Rock Type	INC.	les
1.81	5.18	3.37	2.97	1.53	51.52%	55	88%	Gneiss		
5.18	8.23	3.05	2.92	1.83	62.67%	18	96%	Gneiss		
8.23	11.28	3.05	2.88	1.68	58.33%	26	94%	Gneiss		
11.28	14.33	3.05	3.05	1.38	45.25%	37	100%	Gneiss		
14.33	17.37	3.04	2.88	1.48	51.39%	24	95%	Gneiss		
17.37	20.42	3.05	3.02	2.47	81.79%	19	99%	Gneiss		
20.42	23.47	3.05	2.97	1.71	57.58%	19	97%	Gneiss		
23.47	26.52	3.05	3.04	1.12	36.84%	39		Gneiss		
26.52	29.57	3.05	2.82	1.54	54.61%	31	92%	Gneiss		
29.57	32.61	3.04	2.99	2.22	74.25%	23	98%	Carbonatite	Gneiss 29.57	-30.56m = 18
									frac, Carb 30.	56-32.71m = 4
									frac	
32.61	35.66	3.05	3.03	1.43	47.19%	29	99%	Gneiss+Peg		
35.66	38.71		2.98	1.51	50.67%	26		Gneiss+Peg		
38.71	41.76	3.05	2.91	1.71	58.76%	24		Gneiss		
41.76	44.81	3.05	2.45			37		Gneiss		
44.81	47.85		2.94	2.13	72.45%	17	97%	Gneiss		
47.85	50.90	3.05	3.05	2.41	79.02%	24	100%	Gneiss		
50.90	53.95	3.05	3.03	1.67	55.12%	30	99%	Gneiss	51.74m 2cm i	normal displ
							1		20CA closed	frac
53.95	57.00	3.05	3.01	2.27	75.42%	18	99%	Gneiss		
57.00	60.05	3.05	3.02	1.97	65.23%	24	99%	Gneiss		
60.05	63.09	3.04	2.97	1.68	56.57%	27	98%	Gneiss		
63.09	66.14	3.05	3.03	0.37	12.21%	60	99%	Gneiss		
66.14	69.19	3.05	3.05	1.92	62.95%	31	100%	Gneiss		
69.19	72.24	3.05	3.00	2.58	86.00%	15	98%	Gneiss		
72.24	75.29	3.05	2.98	2.57	86.24%	14	98%	Gneiss		
75.29	76.81	1.52	1.50	1.22	81.33%	7	99%	Gneiss		

Company	Commerce	Resources C	orp	Date Started	19-Oct-05		Bearing	none	Datum	NAD83
	Blue River			Date Finished	20-Oct-05		Inclination	-90	UTM E	352433
Claim				Logged By	R. Hardy		Core Size	HQ	UTM N	579629
Hole No	CF0503			Drill Co	RJ Beaupre Dr	illing	Depth (m)	81.38	Elev (m)	1048
Run From	Run To	Run Length	Measured	Total >15cm (m)	RQD	No	Recovery	Rock Type	Ni	otes
(m)	(m)	(m)	Run (m)	Total > 15cm (m)		Fractures	%	-		162
3.35	5.18	1.83	1	1.48	84.09%	27		Gneiss		i i
5.18	8.23	3.05	2.82	2.10	74.47%		92%	Gneiss		
8.23	11.28	3.05	2.90	1.92	66.21%	47	95%	Gneiss		1
11.28	14.33	3.05	2.92	2.09	71.58%	35	96%	Gneiss		
14.33	17.37	3.04	2.35	0.42	17.87%	>66	77%	Gneiss		1
17.37	20.42	3.05	2.86	0.44	15.38%	>66	94%	Gneiss		
20.42	23.47	3.05	2.81	1.15	40.93%	55	92%	Gneiss		
23.47	26.52	3.05	2.94	2.03	69.05%	41	96%	Gneiss		
26.52	29.57	3.05	2.74	1.65	60.22%	36	90%	Gneiss+Peg		
29.57	32.61	3.04	2.96	1.68	56.76%	59	97%	Peg+Gneiss		
32.61	35.66	3.05	2.84	2.02	71.13%	25	93%	Gneiss		
35.66	38.71	3.05	3.03	2.10	69.31%	28	99%	Gneiss		
38.71	41.76	3.05	3.00	1.74	58.00%	38	98%	Gneiss		
41.76	44.81	3.05	2.96	2.20	74.32%	27	97%	Gneiss		
44.81	47.85	3.04	3.04	2.47	81.25%	23	100%	Gneiss +/- Peg		
47.85	50.90	3.05	3.03	1.85	61.06%	36	99%	Gneiss		
50.90	53.95	3.05	2.97	2.80	94.28%	18	97%	Gneiss		
53.95	57.00			2.32	78.91%	26		Gneiss		
57.00	60.05			2.03	67.44%	37	99%	Gneiss		
60.05	63.09	3.04		1.34	44.08%	41	100%	Gneiss		
63.09	66.14	1	2.94			46	96%	Gneiss		
66.14	69.19		2.97	1.97	66.33%	28		Gneiss		
69.19	72.24	3.05	3.01	2.26		17	1	Gneiss		
72.24	75.29	3.05	3.02	2.47	81.79%	19		Gneiss		
75.29	78.33	3.04			1			Gneiss		
78.33		3.05		2.14		26		Gneiss		
EO										

Company	Commerce	Resources C	orp	Date Started	20-Oct-05		Bearing	none	Datum	NAD83
Project	Blue River	- Fir Pty		Date Finished	21-Oct-05		Inclination	-90	UTM E	352432
Claim				Logged By	C. Davis w/ R.	Hardy	Core Size	HQ	UTM N	5796230
Hole No	CF0504			Drill Co	RJ Beaupre Dr	illing	Depth (m)	60.05	Elev (m)	1046
Run From	Run To	Run Length	Measured	Total SdEams (m)	BOD	No	Recovery	Deals Trees	Nata	. <u>.</u>
(m)	(m)	(m)	Run (m)	Total >15cm (m)	RQD	Fractures		Rock Type	Note	25
3.66	5.18	1.52	1.27	0.00	0.00%	99	84%	Gneiss		
5.18	8.23	3.05	2.81	1.43	50.89%	35	92%	Gneiss		
8.23	11.28	3.05	2.93	1.35	46.08%	35	96%	Gneiss		
1 1.28	14.33	3.05	3.05	2.11	69.18%	26	100%	Carbonatite	Carb 11.98-2	0.91m
14.33	17.37	3.04	2.95	1.90	64.41%	23	97%	Carbonatite		
17.37	20.42	3.05	3.05	3.05	100.00%	3	100%	Carbonatite		
20.42	23.47	3.05	2.96	1.09	36.82%	29	97%	Gneiss		
23.47	26.52	3.05	2.91	0.97	33.33%	44	95%	Gneiss		1
26.52	29.57	3.05	2.98	1.09	36.58%	34	98%	Gneiss		:
29.57	32.61	3.04	2.98	1.87	62.75%	20	98%	Gneiss		1
32.61	35.66	3.05	2.98	1.75	58.72%	31	98%	Gneiss		
35.66	38.71	3.05	3.00	2.39	79.67%	17	98%	Gneiss		
38.71	41.76	3.05	2.91	1.31	45.02%	29	95%	Gneiss		
41.76	44.81	3.05	2.93	1.34	45.73%	36	96%	Peg+Gneiss		
44.81	47.85	3.04	3.05	1.75	57.38%	21	100%	Gneiss		
47.85	50.90	3.05	2.98	2.14	71.81%	20	98%	Gneiss		
50.90	53.95	3.05	2.97	2.55	85.86%	14	97%	Gneiss		
53.95	57.00	3.05	3.00	2.07	69.00%	21	98%	Gneiss		
57.00	60.05	3.05	3.00	2.44	81.33%	13	98%	Gneiss		
EC	H									

		Resources C	orp	Date Started	22-Oct-05		Bearing	none	Datum	NAD83
	Blue River	- Fir Pty		Date Finished	24-Oct-05		inclination	-90	UTME	352992
Claim				Logged By	R. Hardy		Core Size	HQ	UTMIN	579740
t	CF0505			Drill Co	RJ Beaupre Dr	-	Depth (m)	185.01	Elev (m)	1267
Run From	Run To	Run Length	Measured	Total >15cm	RQD	No	Recovery %	Rock Type	Note	s
(m)	(m)	(m)	Run (m)	(m)	ļ	Fractures	• •			
1.81	5.18	3.37	3.71	2.12	57.14%			Gneiss		
5.18	8.23	3.05	3.17	1.97	62.15%	42		Gneiss		
8.23	11.28	3.05	3.00:	2.62	87.33%	11	98%	Gneiss		
11.28	14.33	3.05	2.92	2.17	74.32%	26	96%	Gneiss		
14.33	17.37	3.04	3.00	1.93	64.33%	33	99%	Gneiss		
17.37	20.42	3.05	3.08	2.78	90.26%	18	101%	Gneiss		
20.42	23.47	3.05	3.05	2.71	88.85%	14		Gneiss		
23.47	26.52	3.05	2.96	2.49	84.12%	18		Gneiss		
26.52	29.57	3.05	3.05	2.62	85.90%	19	100%	Gneiss		
29.57	32.61	3.04	3.03	2.94	97.03%	10		Gneiss		
32.61	35.66	3.05	2.92	2.41	82.53%	35	96%	Gneiss		
35.66	38.71	3.05	3.05	2.58	84.59%	22		Gneiss		Í
38.71	41.76	3.05	3.10	2.34	75.48%	27	102%	Gneiss		
41.76	44.81	3.05	3.03	2.83	93.40%	14		Gneiss		
44.81	47.85	3.04	3.00	2.59	86.33%	27		Gneiss		
47.85	50.90	3.05	3.03	2.87	94.72%	15	99%	Gneiss		1
50.90	53.95	3.05	3.02	2.67	88.41%	23	99%	Gneiss		
53.95	57.00	3.05	3.05	1.99	65.25%	29		Gneiss		1
57.00	60.05	3.05	3.12	2.61	83.65%	21	102%	Gneiss		
60.05	63.09	3.04	3.05	1.85	60.66%	22		Gneiss		
63.09	66.14	3.05	3.02 _;	2.42	80.13%	19		Gneiss		
66.14	69.19	3.05	3.00 ₎	2.63	87.67%	20		Gneiss		
69.19	72.24	3.05	3.06	2.97	97.06%	11		Gneiss		
72.24	75.29	3.05	3.05 ₁	2.83	92.79%	9		Carbonatite		
75.29	78.33	3.04	3.07 ₁	2.63	85.67%	7		Carbonatite		
78.33	81.38	3.05	3.00	3.08	102.67%	8		Carbonatite		
81.38	84.43	3.05	3.05	2.76	90.49%	8		Carbonatite		
84.43	87.48	3.05	3.00	2.68	89.33%	18		Carbonatite		1
87.48	90.53	3.05	3.05	2.67	87.54%	9		Carbonatite		
90.53	93.57	3.04	3.05	2.66	87.21%	12		Gneiss+Peg		
93.57	96.62	3.05	3.05	2.50	81.97%	17		Gneiss+Peg		İ
96.62	99.67	3.05	2.99	2.13	71.24%	37		Gneiss+Peg		
99.67	102.72	3.05	3.04	2.18	71.71%	31		Gneiss		
102.72	105.77	3.05	3.05	2.67	87.54%	21		Gneiss		
105.77	108.81	3.04	3.01	2.62	87.04%	14		Gneiss		
108.81	111.86	3.05	3.02	2.61	86.42%	14		Gneiss		
111.86	114.91	3.05	3.04	2.82	92.76%	19		Gneiss		
114.91	117.96	3.05	3.01	2.44	81.06%	30		Gneiss		
117.96	121.01	3.05	3.02	2.37	78.48%	24		Gneiss		
121.01	124.05	3.04	2.91	2.55	87.63%	19		Gneiss		
124.05	127.10	3.05	3.02	2.71	89.74%	14		Gneiss		
127.10	130.15	3.05	3.01	2.62				Gneiss		
130.15	133.20	3.05	3.04	2.76		6		Gneiss		
133.20	136.25	3.05	3.02	2.65		19		Gneiss		
136.25	139.29	3.04	3.01	2.87	95.35%	9		Gneiss		
139.29	142.34	3.05	3.07	2.18				Gneiss		
142.34 145.39	145.39 148.44	3.05	3.04	2.65		17		Gneiss		
145.39 148.44	i i i i i i i i i i i i i i i i i i i	3.05 3.05	3.04	2.62	86.18%	7		Gneiss		
148.44	151.49 154.53	3.05	3.02 2.97	2.52 1.37	83.44% 46.13%	17		Gneiss		
						41		Gneiss		
154.53	157.58	3.05	2.99	1.68		39		Gneiss		
157.58	160.63	3.05	3.03	2.07		31		Gneiss		
160.63	163.68	3.05	3.00	2.06	68.67%	26		Gneiss		
163.68	166.73	3.05	3.01	2.43	80.73%	23		Gneiss		
166.73	169.77	3.04	3.07	2.49	81.11%	11		Gneiss		1
169.77	172.82	3.05	3.01	2.22	73.75%	13		Gneiss		:
172.82	175.87	3.05	3.05	3.02	99.02%	7		Gneiss		
175.87	178.92	3.05	3.08	2.47	80.19%	19		Gneiss	1	
178.92	181.97	3.05	3.03	2.24				Gneiss		•
181.97	185.01	3.04	3.05	2.39	78.36%	23	. 100%	Gneiss	1	

......

,....

• -

•••

•

....

• ••

p.

...

Company	Commerce	Resources C	orp	Date Started	24-Oct-05		Bearing	none	Datum	NAD83
Project	Blue River			Date Finished	25-Oct-05		Inclination	-90	UTM E	352994
Claim				Logged By	C. Davis		Core Size	HQ	UTM N	579745
Hole No	CF0506			Drill Co	RJ Beaupre Dr	illing	Depth (m)	99.67	Elev (m)	1278
Run From	Run To	Run Length	Measured	Total >15cm	· ·	No	Recovery			
(m)	(m)	(m) Č	Run (m)	(m)	RQD	Fractures	%	Rock Type	Not	es
1.83	5.18	3.35	2.93		30.72%	47	87%	Gneiss		
5.18	8.23	3.05	3.09	2.33	75.40%	23	101%	Gneiss		
8.23	11.28	3.05	2.97	2.10	70.71%	21	97%	Gneiss		
11.28	14.33	3.05	3.03	2.24	73.93%	28		Gneiss		
14.33	17.37	3.04	3.00	1.69	56.33%	29	99%	Gneiss		
17.37	20.42	3.05	3.05	2.02	66.23%	18	100%	Gneiss		
20.42	23.47	3.05	3.03	2.45	80.86%	12	99%	Gneiss	1	
23.47	26.52	3.05	3.01	3.01	100.00%	6	99%	Gneiss		
26.52	29.57	3.05	3.02	2.79	92.38%	9	99%	Gneiss		
29.57	32.61	3.04	2.98	2.05	68.79%	18	98%	Gneiss		
32.61	35.66		2.97	1.58	53.20%	22		Gneiss		
35.66	38.71	3.05	3.03	2.59	85.48%	13	99%	Gneiss		
38.71	41.76		3.05	2.90	95.08%	13	100%	Gneiss		
41.76	44.81	3.05	3.02		73.18%	22		Gneiss		
44.81	47.85	3.04	3.08	2.17	70.45%	10	101%	Gneiss		
47.85	50.90	3.05	3.02	2.81	93.05%	9	99%	Gneiss+Carb	Carb 48.53-	57.35m
50.90	53.95	3.05	3.05	3.05	100.00%	6	100%	Carbonatite		
53.95	57.00	3.05	3.00	2.94	98.00%	5	98%	Carb+Gneiss		
57.00	60.05	3.05	3.05	2.17	71.15%	22	100%	Gneiss		
60.05	63.09	3.04	3.00	2.46	82.00%	20	99%	Gneiss		
63.09	66.14	3.05	3.04	2.14	70.39%	19	100%	Gneiss+Peg		
66.14	69.19		2.99	2.05	68.56%	23		Gneiss(Amph) + Peg		
69.19	72.24	3.05	3.00	1.55	51.67%	25	98%	Gneiss(Amph)		
72.24	75.29		3.06	1.66	54.25%	23		Gneiss		1
75.29	78.33	3.04	2.99	2.47	82.61%	23	98%	Gneiss		
78.33	81.38	3.05	3.04	0.94	30.92%	36	100%	Gneiss + (Amph)		
81.38	84.45	3.07	3.03	2.16	71.29%	21		Gneiss	block m misl	labelled
]							83.52m but 3	277 ft
84.45	87.48	3.03	3.00	1.20	40.00%	32	99%	Gneiss	1	
87.48	90.53	3.05	3.05		100.00%	5		Gneiss		
90.53	93.57	3.04	3.00		92.67%	10	99%	Gneiss+Peg		
93.57	96.62	3.05	3.02		74.17%	16		Gneiss+Peg		
96.62	99.67	3.05	2.95		85.42%	15		Gneiss		
EO									1	

s * i :

Company	Commerce	Resources C	orp	Date Started	25-Oct-05		Bearing	none	Datum	NAD83
Project	Blue River	- Fir Pty		Date Finished	26-Oct-05		Inclination	-90	UTM E	353003
Claim				Logged By	R. Hardy w/ C.	Davis	Core Size	HQ	UTM N	5797509
Hole No	CF0507			Drill Co	RJ Beaupre Dr	illing	Depth (m)	99.67	Elev (m)	1258
Run From	Run To	Run Length	Measured	Total >15cm	RQD	No	Recovery %	Beek Ture	Note	
(m)	(m)	(m)	Run (m)	(m)		Fractures	Recovery %	Rock Type	Note	5
2.43	5.18	2.75	2.17	0.35	16.13%			Gneiss		
5.18	8.23	3.05	2.87	1.67	58.19%	38		Gneiss		
8.23				2.71	89.14%	18		Gneiss		
11.28	14.33	3.05		2.15	71.91%	24		Gneiss		
14.33	17.37	3.04	2.93	2.86	97.61%	8	96%	Gneiss		
17.37	20.42	3.05	3.01	2.70	89.70%	11	99%	Gneiss		
20.42		3.05	2.98	2.54	85.23%	16		Gneiss		
23.47	26.52	3.05	3.04	2.37	77.96%	20	100%	Gneiss		
26.52	29.57	3.05	3.01	1.98	65.78%	28	99%	Gneiss		
29.57	32.61	3.04	3.04	2.42	79.61%	19	100%	Gneiss		
32.61	35.66	3.05	2.72	2.00	73.53%	33	89%	Gneiss		
35.66	38.71	3.05	3.04	2.57	84.54%	17	100%	Gneiss		
38.71	41.76	3.05	2.98	2.71	90.94%	15	98%	Gneiss		
41.76	44.81	3.05	3.05	2.99	98.03%	10	100%	Gneiss		
44.81	47.85	3.04	3.02	2.71	89.74%	14	99%	Gneiss		
47.85	50.90	3.05	3.00	2.57	85.67%	11	98%	Gneiss		
50.90	53.95	3.05	2.88	1.61	55.90%	35	94%	Gneiss		
53.95	57.00	3.05	2.82	2.21	78.37%	15	92%	Gneiss		
57.00	60.05	3.05	2.91	2.16	74.23%	21	95%	Gneiss		
60.05	63.09	3.04	2.88	2.71	94.10%	17	95%	Gneiss		
63.09	66.14	3.05	2.89	0.95	32.87%	51	95%	Gneiss		
66.14	69.19	3.05	2.59	0.81	31.27%	>66	85%	Gneiss		
69.19	72.24	3.05	2.84	2.16	76.06%	26	93%	Gneiss		
72.24	75.29	3.05	2.96	2.69	90.88%	20	97%	Gneiss		
75.29	78.33	3.04	2.89	2.48	85.81%	14	95%	Peg+Gneiss		
78.33	81.38			2.72	93.15%	11	96%	Peg+Gneiss		
81.38	84.43	3.05	3.05	2.67	87.54%	16	100%	Gneiss		
84.43	87.48	3.05	3.04	2.99	98.36%	6	100%	Gneiss		
87.48	90.53	3.05	3.05	2.06	67.54%	18	100%	Gneiss+Peg		
90.53	93.57	3.04	3.01	2.42	80.40%	11		Gneiss	1	
93.57	96.62	3.05	2.94	2.65	90.14%	9	96%	Gneiss+Peg	1	
96.62	99.67		3.05	2.67	87.54%	9	100%	Gneiss		
EO	Н									

Company	Commerce	Resources C	orp	Date Started	26-Oct-05		Bearing	none	Datum	NAD83
Project	Blue River	- Fir Pty		Date Finished	28-Oct-05		Inclination	-90	UTM E	352988
Claim				Logged By	R. Hardy		Core Size	HQ	UTM N	579725
Hole No	CF0508			Drill Co	RJ Beaupr	e Drilling	Depth (m)	121.01	Elev (m)	1277
Run From	Run To	Run Length	Measured	Total >15cm	DOD	No	Decessor 9/	Deals Trees	N	otes
(m)	(m)	(m)	Run (m)	(m)	RQD	Fractures	Recovery %	коск туре		Dies
3.66	5.18	1.52	1.41	0.64	45.39%	31	93%	Gneiss		
5.18	8.23	3.05	2.88	1.49	51.74%	67	94%	Gneiss		
8.23	11.28	3.05	2.93	1.76	60.07%	37	96%	Gneiss		
11.28	14.33	3.05	2.83	1.97	69.61%	39	93%	Gneiss		
14.33	17.37	3.04	2.77	2.01	72.56%	>66	91%	Gneiss		
17.37	20.42	3.05	3.15	2.55	80.95%	31	103%	Gneiss		
20.42	23.47	3.05	2.86			27	94%	Gneiss		
23.47	26.52	3.05	3.09	2.52		17		Gneiss		
26.52	29.57	3.05	3.03	2.23		19		Gneiss		
29.57	32.61	3.04	3.08			7		Gneiss		
32.61	35.66	3.05	3.05	2.80		15		Gneiss		
35.66	38.71	3.05	3.00			28		Gneiss		
38.71	41.76	3.05	3.01	2.82		10		Gneiss		
41.76	44.81	3.05	3.15	2.55		31		Gneiss		
44.81	47.85	3.03	3.05			13	• •	Gneiss		
44.01	50.90	3.04	2.94	2.52		25		Gneiss		
50.90	53.95	3.05	3.03	1.71	1	32		Gneiss		
53.95		3.05	2.97	2.11		48		Gneiss		
57.00	1	3.05	2.97	2.11	÷	40 28				
								Gneiss		
60.05	63.09	3.04	2.94	2.81				Gneiss		'
63.09	66.14	3.05	3.04	2.92				Carbonatite		
66.14	69.19	3.05	3.12	3.04		9		Carbonatite		
69.19	72.24	3.05	3.02	2.88		9		Carbonatite		
72.24	75.29	3.05	3.01	2.87		14		Carbonatite		
75.29	78.33	3.04	3.04	2.90				Gneiss		
78.33		3.05	3.05			18		Gneiss		
81.38		3.05	2.96			18		Gneiss		
84.43		3.05	3.05	2.70		28		Gneiss		
87.48	90.53	3.05	3.10			15		Gneiss		
90.53	93.57	3.04	2.99			12	98%	Gneiss		
93.57	96.62	3.05	3.05	2.95	96.72%		100%	Gneiss		
96.62		3.05	3.07	2.57	83.71%	24	101%	Gneiss		
99.67	102.72	3.05	3.04	2.89	95.07%	13	100%	Gneiss		
102.72	105.77	3.05	3.13	3.00	95.85%	8	103%	Gneiss		
105.77	108.81	3.04	2.96			15		Gneiss		
108.81	111.86	3.05	3.04	2.91	95.72%	12	100%	Gneiss		
111.86	114.91	3.05	3.12	2.80	89.74%	16	102%	Gneiss		
114.91	117.96	3.05	3.00	2.92	97.33%	5	98%	Gneiss		
117.96	121.01	3.05	3.05	2.68	87.87%	22	100%	Gneiss		
EC	н				1					

APPENDIX 3 GLOBAL DISCOVERY LABS ANALYTICAL RESULTS

н...-

.....

. .

....

....

.....

DAHROUGE GEOLOGICAL-X05

-

BLUE RIVER/FIR:PJR#20002

Report date: 17 JAN 2006

teckcominco

Global Discovery Labs

Job V 05-1116R

LAB NO	FIELD NUMBER	Au	Wt Au	Nb(F)	Ta(F)	U(P)
		ppb	gram	ppm	ppm	ppm
R0540078	GDL PREP BLANK	<10	5			
R0540079	22215	<10	5			
R0540080	22259	<10	5			
R0540081	22201			3876	155	<3
R0540082	22202			3101	205	<3
R0540083	22203			2815	162	<3
R0540084	22204			1080	180	<3
R0540085	22205			1418	197	<3
R0540086	22206			1295	192	<3
R0540087	22207			1518	305	<3
R0540087 rpt				1464	293	
R0540088	22208			947	236	<3
R0540089	22209			295	185	24
R0540090	22210			309	152	29
R0540091	22211			333	195	<3
R0540092	22212			163	136	58
R0540093	22213			323	207	83
R0540094	22214			362	175	8
R0540095	22216			570	81	<3
R0540096	22217			583	155	<3
R0540096 rpt				000	100	<3
R0540097	22218			311	116	<3
R0540098	22219			920	182	<3
R0540099	22220			1931	209	<3
R0540100	22221			1650	155	<3
R0540101	22222			699	107	<3
R0540102	22223			402	82	<3
R0540102	22224			1307	166	<3
R0540105	22225			3271		<3
	22226				297	
R0540105				1199	214	<3
R0540106	22227			1192	151	<3
R0540107	22228			2159	173	<3
R0540108	22229			1805	269	<3
R0540109	22230			1137	149	<3
R0540110	22231			4280	423	<3
R0540110 rpt	00000					<3
R0540111	22232			770	93	<3
R0540111 rpt					104	-
R0540112	22233			1120	69	<3
R0540113	22234			1967	133	<3
R0540114	22235			665	87	<3
R0540115	22236			1706	147	<3
R0540116	22237			645	114	<3
R0540117	22238			2180	254	<3
R0540118	22238 DUP			1938	194	<3
R0540119	22239			1823	132	<3
R0540120	22240			2320	183	<3
R0540121	22241			1012	117	<3
R0540122	22242			1411	150	<3
R0540123	22243			390	74	<3
R0540124	22244			1443	121	<3
R0540125	22245			1297	204	<3
R0540126	22246			1429	282	3

	Report da	ite: 17 JAN 2006				Job V 05-1116
LAB NO	FIELD NUMBER	Au	Wt Au	Nb(F)	Ta(F)	U(P)
		ppb	gram	ppm	ррт	ppm
R0540126 rpt				1354	271	
R0540127	22247			506	213	31
R0540128	22248			168	144	18
R0540129	22249			921	501	174
R0540130	22250			221	135	42
R0540131	22251			225	112	17
R0540132	22252			1377	197	10
R0540133	22253			1098	280	20
R0540134	22254			580	77	<3
R0540135	22255			1405	113	<3
R0540136	22256			1508	128	<3
R0540137	22257			2539	252	<3
R0540138	22258			785	86	<3
R0540139	22260			1173	106	<3
STD: SY-4				26		270
STD: VS-N					800	
STD: OKA-1				3734		

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS

Wt Au The weight of sample taken to analyse for gold (geochem)

Nb(F) X-Ray fluorescence / fusion

Ta(F) X-Ray fluorescence / fusion

U(P) X-Ray fluorescence / pressed pellet

DAHROUGE GEOLOGICAL-X05 BLUE RIVER/FIR:PJR#20002

FIELD

22215

22259

NUMBER

															al Discove	ery Labs			
																Job V	05-111	6R	
NI	Fe	Mo	Cr	Bi	Sb	v	Sn	w	Sr	Y	La	Mn	Mg	Ti	AI	Са	Na	ĸ	Р

5

14

29

DDID

13

224

35

ppm

587

505

360

%

0.90

0.59

1.30

%

0.17

0.08

0.19

%

1.91

0.46

2.48

ppm ppm ppm ppm

<2 115

3 122

<2 99

÷

í.

teckcominco

%

1.09

1.74

2.24

%

0.26 0.18

0.10

0.12

%

0.06

1.76

ppm

586

3155

11450

~----

•••				
l=insufficient sample	X=small sample	E=exceeds calibration	C=being checked	R=revised

Cu Pb

ppm

34

15

14

орт

67

372

1551

If requested analyses are not shown, results are to follow

GDL PREP BLAN

Report date: 5 DEC 2005

ANALYTICAL METHODS

R0540078

R0540079

R0540080

LAB NO

ICP PACKAGE : 0.5 gram sample digested in hot reverse aqua regia (soil,silt) or hot Aqua Regia(rocks).

Ad As

ppm ppm

<.4

<.4

<.4

Ба

ppm

115

90

42

4

18

11

Cd

ppm

<1

<1

<1

Co

8

63 378

98

ppm

<1

143

2.98

5.40

11.64

% ppm ppm

<2

<2

2 55

19

162

ppm

<5

<5

<5

ppm ppm

98

20

49

<2

<2

<2

<5

<5

<5

ppm

Zn

81

25

91

ppm

DAHROUGE GEOLOGICAL-X05

BLUE RIVER/FIR:PJR#20002

ł

Global Discovery Labs

1

Lak NO FIELD NUMBER SIG2 NG23 Fo203 Fo203 Fo20 NS0		Rep	oort date: 18 JAN 2006													05-1116R	
Rossengel Z2201 6.48 0.09 2.25 7.96 0.89 14.64 20.01 0.02 0.11 3.01 0.01 34.13 95.56 Rossenge2 22202 15.27 0.42 0.41 8.21 0.87 14.27 27.43 0.02 0.11 3.01 0.01 25.0 0.43 35.5 25.0 0.43 35.5 25.0 0.43 35.5 25.0 0.41 35.6 23.20 0.10 2.55 0.01 37.00 97.06 Rossener 22205 12.31 0.02 0.41 7.45 0.91 14.56 27.90 0.01 37.00 97.06 7.42 0.83 1.43 27.90 0.31 0.01 33.36 97.56 87.57 87.56 87.57 1.11 87.66 87.57 1.11 87.66 87.57 1.11 87.66 1.11 87.67 1.11 87.67 1.11 87.7 1.11 1.11 1.11 1.11 1.11 1.11	LAB NO	FIELD NUMBER	SiO2	TiO2	AI2O3	Fe2O3	FeO	MnØ	MgO	CaO	Na2O	K2O	P205	Ba(F)	LOI		
R0540092 22202 15.2 15.2 10.1 2.41 0.01 2.52 0.4.27 R0540093 22203 0.30 0.34 8.69 0.87 14.72 27.33 0.02 0.19 2.55 0.01 3.55 0.56 2.520 0.10 2.55 0.01 3.75 0.91 14.55 2.83 0.02 0.10 2.55 0.01 3.71 0.65 R0540095 22206 12.31 0.82 0.21 7.74 0.84 15.66 2.83 0.01 0.10 3.43 0.01 3.43 0.66 3.75 R0540087 22209 2.86 0.01 0.27 7.00 0.01 1.14 3.28 0.01 3.43 0.61 3.45 0.75 R0540087 22211 2.89 0.10 0.27 7.00 0.01 1.14 3.01 0.01 3.44 0.01 3.44 7.45 R0540087 22211 2.47 0.40 7.75 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																	
R0640083 22203 9.25 0.03 0.34 8.69 0.47 14.75 22.25 0.01 2.55 0.01 37.06 R0540064 22205 10.09 0.03 0.31 7.65 0.91 14.56 23.01 0.01 2.55 0.01 37.10 87.66 R0540067 22207 2.33 0.05 0.21 7.71 0.81 14.39 2.85 0.01 0.10 3.33 0.01 3.83 9.786 R0540087 22207 2.33 0.05 0.25 7.21 0.74 15.50 2.82 0.01 0.10 2.84 0.01 3.83 9.786 R0540087 22208 2.66 0.01 0.27 7.00 0.80 15.10 0.01 0.40 4.74 0.33 0.01 4.78 0.32 7.89 R0540081 22210 2.66 0.01 0.21 6.80 0.71 0.10 3.85 0.11 4.57 0.11 4.57 <	R0540081	22201	6.48	0.05	0.25	7.96		0.89	14.64	29.01	0.02	0.11	3.01	0.01	34.13	96.56	
R0540094 2204 4.09 0.02 0.20 7.68 0.96 15.06 29.20 0.02 0.10 2.55 0.01 37.00 97.06 R0540085 22206 12.31 0.02 0.40 7.88 0.91 14.86 27.56 0.28 0.11 2.87 0.01 3.11 98.18 R0540087 22206 0.61 0.10 3.43 0.01 3.25 97.35 R0540087 22208 2.68 0.01 0.22 7.42 0.83 0.55 2.92.2 0.01 0.10 3.43 0.01 3.25 97.35 R0540080 22209 2.66 0.01 0.27 7.00 0.80 1.51 30.21 0.33 0.10 4.01 33.45 97.35 R0540080 22212 7.40 0.40 0.76 0.31 0.30 0.31 7.61 0.55 0.71 0.35 0.41 3.43 0.41 3.43 0.41 3.43 0.41	R0540082	22202	15.27	0.02	0.41	8.21		0.87	14.27	27.43	0.02	0.15	2.41	0.01	25.20	94.27	1
R0540065 2205 10.00 0.03 0.74 7.65 0.91 14.56 28.34 0.03 0.10 2.80 0.01 31.21 96.57 R0540067 22207 2.33 0.05 0.22 7.17 0.81 15.40 2.870 0.01 0.10 3.33 0.01 38.43 97.66 R0540087 22208 2.230 0.01 0.20 7.42 0.83 15.39 2.92.2 0.01 0.10 3.81 0.01 3.82 97.35 R0540080 22201 2.60 0.01 0.27 7.00 0.80 15.10 0.01 0.47 0.01 3.82 97.35 R0540691 22211 2.88 0.10 0.44 0.21 0.62 1.31 0.51 0.31 0.61 0.31 0.61 0.41 2.81 0.33 0.10 2.48 0.30 2.11 8.43 0.32 2.12 2.83 0.31 7.31 0.84 1.41 2.30	R0540083		9.25	0.03	0.34			0.87	14.75	28.25	0.02	0.14	2.52	0.01	30.95		1
R054008 22206 12.31 0.02 0.40 7.85 0.61 1.4.96 27.56 0.28 0.71 2.67 0.01 3.1.11 98.18 R0540087 rpt 2.230 0.05 0.25 7.71 0.81 15.49 28.26 0.01 0.10 3.43 0.64 3.43 9.76 R0540087 rpt 2.209 2.66 0.01 0.27 7.00 0.63 15.14 30.26 0.01 0.44 0.45.0 9.83 9.83 9.83 R0540090 22211 7.66 0.02 1.51.4 30.16 0.02 0.21 2.83 0.01 3.45 9.73 R0540092 22213 4.78 0.23 1.18 0.65 7.61 35.95 0.07 0.28 4.59 0.33 2.12 9.87 R0540062 22216 1.53 0.33 0.44 7.76 0.81 4.84 28.86 0.01 0.10 2.86 0.01 3.81 9.75 <	R0540084		4.09	0.02	0.20	7.86		0.95	15.06	29.20	0.02	0.10	2.55	0. 0 1	37.00		1
R0540097 Z207 Z38 0.05 0.21 7.77 0.74 15.49 29.7 0.10 3.39 0.41 3.43 97.66 R0540087 Z208 2.63 0.01 0.23 7.42 0.83 15.39 29.62 0.01 0.10 2.88 0.01 3.36 97.55 R0540080 Z2204 2.60 0.01 0.21 6.80 0.74 0.80 15.14 30.28 0.01 0.40 3.36 97.65 R0540091 Z2216 2.60 0.01 0.21 6.80 0.01 1.61 30.7 0.01 4.67 0.81 0.14 0.75 0.01 3.43 0.16 0.11 3.40 0.41 7.61 0.80 1.46 2.81 0.01 0.46 0.41 7.61 0.81 1.43 0.35 0.10 2.84 0.61 3.34 9.75 R0540091 Z2214 3.30 0.40 7.76 0.81 1.43 0.35 0.1				0.03				0.91	14.56		-	0.10			-		1
R0540087 rpt 2.33 0.65 0.26 7.21 0.74 15.59 29.82 0.01 0.10 3.43 0.01 38.26 97.35 R0540086 22209 2.66 0.01 0.27 7.00 0.80 15.14 30.28 0.01 3.41 0.01 3.41 0.01 3.42 97.35 R0540080 22209 2.62 0.01 0.27 7.00 0.80 15.14 30.21 0.01 3.40 97.35 R0540091 22211 7.46 0.95 0.91 6.46 2.1 0.80 1.46 2.1.76 0.11 3.40 97.35 R0540093 22215 4.7 0.03 0.41 7.76 0.81 1.44 3.05 0.10 0.10 3.80 97.81 R0540096 22216 1.53 0.33 0.44 7.76 0.81 1.44 3.06 0.11 0.10 3.86 97.81 R0540097 22216 1.54 0.59		22206		0.02		7.88		0.81	14.96	27.56		0.17					l
R054008 2230 2.63 0.11 0.20 7.42 0.63 15.39 29.62 0.01 0.10 2.88 0.01 33.10 93.50 R0540090 22200 2.02 0.01 0.21 7.60 0.07 15.14 0.03 0.10 4.07 0.01 34.04 95.05 R0540091 22211 7.66 0.05 0.51 0.62 1.10 0.11 4.57 0.01 34.04 97.59 R0540091 22211 2.86 0.10 0.46 2.11 0.62 1.10 0.11 0.10 3.84 0.01 3.31 97.55 R0540095 22217 2.02 0.03 0.44 7.76 0.78 1.414 3.03 0.10 0.10 3.84 0.01 3.84 97.55 R0540095 22217 2.02 0.33 0.44 7.76 0.79 1.414 3.03 0.10 0.10 3.84 0.01 3.84 8.59 <t< td=""><td>R0540087</td><td>22207</td><td>2.38</td><td>0.05</td><td></td><td>7.17</td><td></td><td>0.81</td><td>15.40</td><td>29.70</td><td>0.01</td><td>0.10</td><td>3.39</td><td>0.01</td><td></td><td></td><td></td></t<>	R0540087	22207	2.38	0.05		7.17		0.81	15.40	29.70	0.01	0.10	3.39	0.01			
R054009022002.660.010.277.000.8015.1430.280.030.103.810.0188.16R0540090222117.460.050.998.520.801.4.4628.130.090.212.830.013.4.0487.59R0540092222122.980.100.468.200.801.4.4628.130.090.212.830.013.4.0487.59R0540093222134.780.280.331.680.657.413.550.070.184.590.013.4.19.73R0540094222161.530.030.447.760.881.4.442.9.880.010.102.660.013.3.197.55R0540095222161.530.047.760.881.4.442.9.880.010.102.660.013.8.18.50R0540096222172.020.330.407.760.791.4.143.0.70.184.510.013.8.98.53R0540095222182.2.20.150.407.307.670.791.4.143.0.70.103.80.013.8.98.53R0540096222202.4.30.050.467.300.670.530.550.550.103.860.647.39R0540102222221.510.250.103.850.013.860.013.850.013.850.01<	•			0.05		7.21		0.74	15.59			0.10					. 1
R0540090 22210 2.02 0.01 0.21 6.00 0.79 15.10 20.31 0.03 0.10 4.07 0.01 38.20 98.50 R0540091 22212 2.98 0.10 0.46 8.21 0.62 13.10 31.76 0.20 0.21 4.55 0.01 34.45 97.39 R0540093 22214 3.00 0.03 0.31 1.761 0.80 1.451 30.30 0.01 3.44 0.01 3.44 0.01 3.44 0.01 3.44 0.01 3.44 0.01 3.44 0.01 3.44 0.01 3.44 0.01 3.44 0.01 3.44 0.01 3.44 0.01 3.44 0.01 3.44 0.01 3.45 0.01 3.45 0.01 3.45 0.01 3.45 0.01 3.45 0.01 3.45 0.03 0.01 3.45 0.01 3.45 0.03 0.01 3.45 0.03 0.01 3.45 0.01 3				0.01													
R0540091 2211 7.46 0.05 0.99 8.52 0.80 14.46 27.13 0.00 0.21 2.83 0.10 3.4.46 97.59 R0540093 22213 4.78 0.28 0.31 1.68 0.55 7.61 35.59 0.07 0.28 4.59 0.01 3.74 97.51 R0540093 22216 1.33 0.03 0.31 7.61 0.80 1.4.81 30.39 0.10 0.10 2.84 0.01 3.34 0.01 3.31 97.51 R0540093 22216 1.33 0.03 0.44 7.76 0.81 1.4.42 2.80 0.10 2.84 0.01 3.83 0.83 8.83 R0540093 22219 1.81 0.42 0.77 7.77 0.43 1.3.28 2.26 0.71 3.83 0.61 3.63 8.83 R0540093 2221 1.81 0.05 0.27 7.89 0.83 1.5.61 2.55 0.10	R0540089	22209	2.66	0.01	0.27	7.00			15.14	30.28	0.03	0.10	3.81	0.01	38.16	98.27	į
F0540092 22212 2.88 0.10 0.44 8.21 0.82 13.10 31.76 0.02 0.11 4.57 0.01 35.45 97.39 R0540093 22214 3.00 0.03 0.31 7.01 0.55 7.61 35.95 0.01 0.11 4.57 0.01 35.42 95.67 R0540095 22216 1.53 0.03 0.44 7.76 0.81 14.47 30.56 0.11 0.10 3.84 0.01 39.11 97.55 R0540096 22217 2.02 0.30 0.44 7.76 0.79 1.414 31.07 0.28 0.11 0.01 36.83 86.52 R0540097 22219 1.61 0.62 7.79 0.83 1.56 0.01 0.71 7.51 87.11 R054009 22221 1.61 0.02 7.79 0.83 1.56 0.80 0.77 0.93 0.47 3.93 0.04 2.5.7 9.747			2.02	0.01	0.21	6.80		0.79	15.10	30.71		0.10		0.01			l
R0540093 2213 4.78 0.28 0.83 11.68 0.55 7.61 35.95 0.70 0.28 4.59 0.03 21.74 97.61 R0540095 22216 1.53 0.03 0.41 7.76 0.80 14.94 29.88 0.01 0.10 2.66 0.01 3.01 97.55 R0540096 22217 2.02 0.03 0.40 7.76 0.81 14.94 30.36 0.17 0.10 3.86 0.01 3.0.9 3.0.93 9.0.9 9.0.22 1.61 0.01 3.62 0.75 0.11 0.12 0.43 0.01 3.0.8 0.91 7.77 0.83 1.8.28 2.026 0.74 2.71 6.23 0.09 1.7.57 9.13 R0540010 22221 1.61 0.52 7.79 0.63 1.62 2.0.5 0.74 2.7 0.91 3.84 9.7.31 R0540102 22223 2.83 0.03 0.23 7.64 0.50 <td></td> <td></td> <td>7.46</td> <td>0.05</td> <td>0.99</td> <td>8.52</td> <td></td> <td>0.80</td> <td>14.46</td> <td>28.13</td> <td>Q.09</td> <td>0.21</td> <td>2.83</td> <td>0.01</td> <td>34.04</td> <td></td> <td>l</td>			7.46	0.05	0.99	8.52		0.80	14.46	28.13	Q.09	0.21	2.83	0.01	34.04		l
R0540094 2214 3.00 0.03 0.31 7.01 0.80 14.81 30.99 0.10 0.10 3.84 0.01 37.41 97.85 R0540095 22216 1.53 0.03 0.44 7.76 0.88 14.94 29.86 0.01 0.10 2.66 0.01 3.84 0.01 38.0 98.59 R0540096 22217 2.24 0.07 0.73 7.67 0.79 14.14 31.07 0.28 0.15 4.51 0.01 36.93 98.59 R0540096 22210 2.43 0.05 0.46 7.88 0.22 15.16 2.56 0.41 3.69 0.01 3.69 7.77 97.1 R0540101 22222 13.18 0.20 3.58 8.02 0.64 13.89 0.61 3.51 0.10 3.85 0.01 3.55 0.10 3.55 0.11 3.56 9.74 R0540102 22224 1.51 0.35 0.17	R0540092	22212	2.98	0.10	0.46	8.21		0.62	13.10	31.76	0.02	0.11	4.57	0.01	35.45	97.39	l
R0540095 22216 1.53 0.03 0.44 7.76 0.88 14.94 28.88 0.01 0.10 2.66 0.01 30.31 97.55 R0540096 22217 2.02 0.03 0.40 7.76 0.61 14.78 30.56 0.17 0.10 3.86 0.01 3.01 36.93 98.59 R0540098 22219 18.10 0.62 5.90 10.02 0.43 13.28 22.06 0.74 2.71 6.23 0.09 17.95 98.13 R0540099 22220 2.43 0.05 0.46 7.88 0.82 15.10 29.51 0.26 0.14 3.63 97.47 97.11 R0540101 22222 1.18 0.05 0.27 7.09 0.83 15.60 30.30 0.04 25.37 97.47 R0540102 22223 2.83 0.30 0.44 7.30 0.87 15.82 29.56 0.10 3.83 0.01 35.37 97.	R0540093	22213	4.78	0.28	0.93	11.68		0.55	7.61	35.95	0.07	0.28	4.59	0.03	29.12	95.87	l
R0540096 22217 2.02 0.03 0.40 7.76 0.81 14.78 30.36 0.17 0.10 3.88 0.01 38.00 98.32 R0540097 22218 2.24 0.07 0.73 7.67 0.79 14.14 31.07 0.28 0.15 4.51 0.01 36.93 98.59 R0540098 2220 2.43 0.05 0.46 7.88 0.82 15.10 29.51 0.25 0.14 3.69 0.01 36.77 97.11 R0540100 22221 13.18 0.20 0.44 7.30 0.87 15.02 29.27 0.15 0.10 1.38 0.01 37.55 98.43 R0540101 22222 13.18 0.20 3.56 0.02 7.79 0.83 15.61 29.27 0.15 0.10 3.35 0.01 3.765 98.44 R0540103 22224 3.35 0.33 0.22 7.86 0.86 15.61 29.56 0.36<	R0540094	22214	3.00	0.03	0.31	7.01		0.80	14.81	30.39	0.10	0.10	3.84	0.01	37.41	97.81	l
R0540097 22218 2.24 0.07 0.73 7.67 0.79 14.14 31.07 0.28 0.15 4.51 0.01 36.33 98.59 R0540098 22210 18.10 0.62 5.90 10.02 0.43 13.28 22.06 0.74 2.71 6.23 0.09 17.95 98.13 R0540100 22221 1.61 0.05 0.47 7.86 0.02 15.10 25.10 0.25 0.14 3.69 0.01 38.77 7.71 R0540101 22222 1.318 0.02 3.56 8.02 0.64 1.89 26.17 0.55 0.61 3.04 7.37 R0540102 22223 2.83 0.03 0.24 7.30 0.87 15.62 29.65 0.10 3.05 0.01 37.5 96.44 R0540104 22225 1.60 0.03 0.23 7.65 0.83 15.61 29.65 0.36 0.10 3.6.9 98.13 R0540106 22226 1.60 0.05 0.37 7.59 0.85 1.4.	R0540095	22216	1.53	0.03	0.44	7.76		0.88	14.94	29.88	0.01	0.10	2.66	0.01	39.31	97.55	l
R0540098 22219 18.10 0.62 5.90 10.02 0.43 13.28 22.06 0.74 2.71 6.23 0.09 17.95 98.13 R0540090 22220 2.43 0.05 0.46 7.86 0.62 15.10 29.51 0.25 0.14 3.69 0.01 38.67 37.11 R0540101 22222 13.18 0.20 3.58 8.02 0.64 13.89 26.17 0.58 0.87 3.33 0.04 28.31 97.47 R0540102 22223 2.83 0.03 0.28 7.44 0.87 15.82 29.66 0.10 3.05 0.01 37.56 98.43 R0540103 22226 3.09 0.05 0.23 7.86 0.86 15.02 29.56 0.37 0.10 3.83 0.01 38.49 98.35 R0540105 22227 1.80 0.05 0.27 7.28 0.87 15.43 29.90 0.37 0.10 3.83 97.18 R0540106 22227 1.80 0.33 7.15	R0540096	22217	2.02	0.03	0.40	7.76		0.81	14.78	30.36	0.17	0.10	3.88	0.01	38.00	98.32	ļ
R0540099 2220 2.43 0.05 0.46 7.88 0.82 15.10 29.51 0.25 0.14 3.69 0.01 36.77 97.11 R0540100 22221 1.161 0.05 0.27 7.09 0.83 15.60 30.03 0.07 0.09 2.82 0.01 38.84 97.31 R0540101 22222 1.3.16 0.20 5.58 0.64 1.89 26.17 0.15 0.10 1.38 0.04 28.7 97.47 R0540102 22223 2.83 0.03 0.42 7.44 0.87 15.62 29.56 0.10 1.38 0.01 36.18 97.16 R0540104 22225 3.09 0.05 0.23 7.65 0.83 15.61 29.56 0.37 0.10 3.83 0.01 36.18 97.16 R0540105 22226 1.60 0.33 7.15 0.87 1.560 29.96 0.12 3.21 0.01 38.47 97.68	R0540097	22218	2.24	0.07	0.73	7.67		0.79	14.14	31.07	0.28	0.15	4.51	0.01	36.93	98.59	l
R0540100 22221 1.61 0.05 0.27 7.09 0.83 15.60 30.03 0.07 0.09 2.82 0.01 38.84 97.31 R0540101 22222 13.18 0.20 3.58 8.02 0.64 13.89 26.17 0.58 0.87 3.93 0.04 26.37 97.47 R0540102 22223 2.83 0.03 0.24 7.30 0.87 16.02 29.27 0.10 3.05 0.01 37.55 R0540104 22225 3.09 0.05 0.23 7.65 0.86 15.02 29.56 0.37 0.10 3.83 0.01 36.49 98.35 R0540105 22226 1.60 0.05 0.27 7.28 0.87 15.41 29.69 0.37 0.10 3.23 0.01 3.69 98.35 R0540106 22227 1.80 0.05 0.37 7.59 0.85 14.97 29.29 0.52 0.12 3.21 0.01 3.84 97.18 R0540108 22229 2.82 0.05 0.33	R0540098	22219	18.10	0.62	5.90	10.02		0.43	13.28	22.06	0.74	2.71	6.23	0.09	17.95	98.13	l
R0540101 2222 13.18 0.20 3.58 8.02 0.64 13.89 26.17 0.58 0.87 3.93 0.04 26.37 97.47 R0540102 2223 2.23 2.83 0.03 0.44 7.30 0.87 16.02 29.27 0.15 0.10 1.38 0.01 33.75 98.44 R0540104 22225 3.09 0.05 0.23 7.86 0.86 15.02 29.56 0.37 0.10 3.83 0.01 36.18 97.16 R0540105 22227 1.80 0.03 0.23 7.65 0.83 15.61 29.66 0.37 0.10 3.83 0.01 39.09 98.31 R0540106 22227 1.80 0.05 0.37 7.59 0.85 14.97 29.29 0.52 0.12 3.21 0.01 33.63 97.18 R0540106 22229 2.62 0.05 0.37 7.59 0.85 14.97 29.29 0.52 0.12 3.21 0.01 3.84 98.10 R0540110 22230	R0540099	22220	2.43	0.05	0.46	7.88		0.82	15.10	29.51	0.25	0.14	3.69	0.01	36.77	97.11	
R0540102 2223 2.83 0.03 0.44 7.30 0.87 16.02 29.27 0.15 0.10 1.38 0.01 39.13 97.53 R0540103 2224 3.35 0.03 0.28 7.44 0.87 15.82 29.88 0.25 0.10 3.05 0.01 37.56 98.44 R0540104 22226 1.60 0.03 0.23 7.86 0.86 15.02 29.85 0.36 0.10 2.79 0.01 39.49 98.35 R0540106 22227 1.80 0.05 0.27 7.28 0.87 15.43 29.90 0.37 0.10 3.23 0.01 39.49 98.35 R0540107 22228 6.57 0.05 0.37 7.59 0.85 14.97 29.90 0.52 0.10 3.43 97.68 R0540108 22229 2.82 0.05 0.33 7.15 0.87 15.60 29.69 0.15 0.10 2.44 0.01 38.47 97.68 R0540110 22230 2.21 0.03 0.34<	R0540100	22221	1.61	0.05	0.27	7.09		0.83	15.60	30.03	0.07	0.09	2.82	0.01	38.84	97.31	
R0540103 2224 3.35 0.03 0.28 7.44 0.87 15.82 29.68 0.25 0.10 3.05 0.01 37.56 98.44 R0540104 22225 3.09 0.05 0.23 7.66 0.86 15.02 29.56 0.37 0.10 3.83 0.01 36.18 97.16 R0540105 22226 1.60 0.05 0.27 7.28 0.87 15.43 29.90 0.37 0.10 3.23 0.01 39.00 98.31 R0540107 22228 6.57 0.05 0.37 7.59 0.85 14.87 29.20 0.52 0.12 3.21 0.01 38.63 97.18 R0540108 2229 2.82 0.05 0.33 7.15 0.87 15.60 2.60 0.15 0.10 3.41 97.16 R0540109 2230 2.21 0.03 0.34 7.01 0.86 15.67 30.04 0.11 0.11 2.80 0.01 35.11 97.00 R0540110 22230 5.11 0.05 0.74 <td>R0540101</td> <td>22222</td> <td>13.18</td> <td>0.20</td> <td>3.58</td> <td>8.02</td> <td></td> <td>0.64</td> <td>13.89</td> <td>26.17</td> <td>0.58</td> <td>0.87</td> <td>3.93</td> <td>0.04</td> <td>26.37</td> <td>97.47</td> <td>l</td>	R0540101	22222	13.18	0.20	3.58	8.02		0.64	13.89	26.17	0.58	0.87	3.93	0.04	26.37	97.47	l
R0540104 22225 3.09 0.05 0.23 7.86 0.86 15.02 29.56 0.37 0.10 3.83 0.01 36.18 97.16 R0540105 22226 1.60 0.03 0.23 7.65 0.83 15.61 29.66 0.37 0.10 3.23 0.01 39.00 98.31 R0540106 22227 1.80 0.05 0.27 7.28 0.87 15.43 29.90 0.37 0.10 3.23 0.01 39.00 98.31 R0540107 22228 2.82 0.05 0.33 7.15 0.87 15.60 29.69 0.15 0.10 2.44 0.01 38.47 97.68 R0540108 22229 2.82 0.05 0.33 7.15 0.87 15.60 29.69 0.15 0.10 2.44 0.01 38.41 98.10 R0540110 22230 2.21 0.03 0.74 7.57 0.79 15.22 29.02 0.07 0.31 3.25 0.01 35.16 97.30 R0540111 22233 12	R0540102	22223	2.83	0.03	0.44	7.30		0.87	16.02	29.27	0.15	0.10	1.38	0.01	39.13	97.53	
R0540105222261.600.030.237.650.8315.6129.650.360.102.790.0139.4998.35R0540106222271.800.050.177.280.8715.4329.900.370.103.230.0133.0098.31R0540106222292.820.570.050.377.590.8514.9729.290.520.123.210.013.8497.68R054010822292.820.550.337.150.8615.6730.040.110.112.440.0138.4797.68R0540109222302.210.030.347.010.8615.6730.040.110.112.800.013.8198.10R0540110222315.610.101.527.440.7014.8928.440.070.865.530.0331.7396.92R0540111222325.110.050.747.570.7715.1329.040.020.343.090.0135.1197.00R05401122223312.680.101.607.900.8613.9729.020.030.102.840.0139.6498.13R0540114222351.370.050.347.530.8515.4729.700.030.102.840.0139.6498.13R0540114222351.370.050.347.530.8515.47<	R0540103	22224	3.35	0.03	0.28	7.44		0.87	15.82	29.68	0.25	0.10	3.05	0.01	37.56	98.44	
R054010622271.800.050.277.280.8715.4329.900.370.103.230.0139.0098.31R0540107222286.570.050.377.590.8514.9729.290.520.123.210.0133.6397.18R0540108222292.620.050.337.150.8715.6029.690.150.102.440.0138.4797.68R0540109222302.210.030.347.010.8615.6730.040.110.112.800.0138.9198.10R0540110222315.610.101.527.440.7014.8928.440.070.865.530.0331.7396.92R0540111222325.110.050.747.570.7715.1329.040.020.343.090.0135.1197.00R0540112222331.2680.112.031.0980.7514.0725.650.900.641.440.0124.8493.29R0540113222346.940.101.607.900.8613.9729.020.270.503.530.0132.6397.33R0540116222371.370.050.347.530.8515.4729.700.030.102.460.0139.8498.13R0540116222372.400.090.668.140.8514.3529	R0540104	22225	3.09	0.05	0.23	7.86		0.86	15.02	29.56	0.37	0.10	3.83	0.01	36.18	97.16	l
R0540107222286.570.050.377.590.8514.9729.290.520.123.210.0133.6397.18R0540108222292.820.050.337.150.8715.6029.690.150.102.440.0138.4797.68R0540109222302.210.030.347.010.8615.6730.040.110.112.800.0138.4798.10R0540110222315.610.101.527.440.7014.8928.440.070.865.530.0331.7396.92R0540111222325.110.050.747.570.7915.2229.020.070.313.250.0135.1697.30R05401122223312.680.112.0310.980.7514.0725.650.990.641.440.0124.8493.29R0540113222346.940.101.607.900.8613.9729.020.270.503.530.0133.6397.33R0540114222351.370.050.347.530.8515.4729.700.030.102.640.0139.8498.13R0540114222361.830.030.338.600.8815.0029.130.370.102.650.0139.8498.13R0540116222372.400.090.668.140.8514.352	R0540105	22226	1.60	0.03	0.23	7.65		0.83	15.61	29.65	0.36	0.10	2.79	0.01	39.49	98.35	
R0540108222292.820.050.337.150.8715.6029.690.150.102.440.0138.4797.68R0540109222302.210.030.347.010.8615.6730.040.110.112.800.0138.9198.10R0540110222315.610.101.527.440.7014.8928.440.070.865.530.0331.7396.92R0540111222325.110.050.747.570.7915.2229.020.070.313.250.0135.1697.30R05401122223312.680.112.0310.980.7514.0725.650.090.641.440.0124.8493.29R0540113222346.940.101.607.900.8613.9729.020.270.503.530.0132.6397.33R0540114222351.370.050.347.530.8515.4729.700.030.102.640.1038.1897.11R0540115222372.400.090.668.140.8514.3529.940.120.284.300.0136.4397.57R0540116222372.400.090.668.140.8514.3529.940.120.284.300.0136.4397.57R0540116222381.830.050.278.100.9214.962	R0540106	22227	1.80	0.05	0.27	7.28		0.87	15.43	29.90	0.37	0.10	3.23	0.01	39.00	98.31	1
R0540109222302.210.030.347.010.8615.6730.040.110.112.800.0138.9198.10R0540110222315.610.101.527.440.7014.8928.440.070.865.530.0331.7396.92R0540111222325.110.050.747.570.7915.2229.020.070.313.250.0135.1697.30R0540111 rpt5.130.050.747.570.7715.1329.040.020.343.090.0135.1197.00R05401122223312.680.112.0310.980.7514.0725.650.090.641.440.0124.8493.29R0540113222346.940.101.607.900.8615.4729.700.030.102.840.0138.4898.13R0540114222351.370.050.347.530.8515.4729.700.030.102.840.0138.4898.13R0540115222361.830.030.338.600.8815.0029.130.370.102.650.0138.1897.11R0540116222372.400.090.668.140.8514.3529.940.120.284.300.0136.4397.57R054011622238DUP1.750.050.278.110.9215.03 <th< td=""><td>R0540107</td><td>22228</td><td>6.57</td><td>0.05</td><td>0.37</td><td>7.59</td><td></td><td>0.85</td><td>14.97</td><td>29.29</td><td>0.52</td><td>0.12</td><td>3.21</td><td>0.01</td><td>33.63</td><td>97.18</td><td>]</td></th<>	R0540107	22228	6.57	0.05	0.37	7.59		0.85	14.97	29.29	0.52	0.12	3.21	0.01	33.63	97.18]
R0540110222315.610.101.527.440.7014.8928.440.070.865.530.0331.7396.92R054011122325.110.050.747.570.7915.2229.020.070.313.250.0135.1697.30R0540111 rpt5.130.050.747.570.7715.1329.040.020.343.090.0135.1197.00R05401122223312.680.112.0310.980.7514.0725.650.090.641.440.0124.8493.29R0540113222346.940.101.607.900.8613.9729.020.270.503.530.0132.6397.33R0540114222351.370.050.347.530.8515.4729.700.030.102.840.0139.8498.13R0540115222361.830.030.338.600.8815.0029.130.370.102.650.0138.1897.11R0540116222372.400.090.668.140.8514.3529.940.120.284.300.0136.4397.33R0540117222381.830.050.278.100.9215.0329.310.030.102.720.0138.9397.33R054011822238DUP1.750.050.278.110.9215.03	R0540108	22229	2.82	0.05	0.33	7.15		0.87	15.60	29.69	0.15	0.10	2.44	0.01	38.47	97.68	1
R0540111222325.110.050.747.570.7915.2229.020.070.313.250.0135.1697.30R0540111 rpt5.130.050.747.570.7715.1329.040.020.343.090.0135.1197.00R05401122223312.680.112.0310.980.7514.0725.650.090.641.440.0124.8493.29R0540113222346.940.101.607.900.8613.9729.020.270.503.530.0132.6397.33R0540114222351.370.050.347.530.8515.4729.700.030.102.840.0139.8498.13R0540115222372.300.668.140.8514.3529.940.120.284.300.0136.4397.57R0540116222372.400.090.668.140.8514.3529.940.120.284.300.0136.4397.33R054011722238DUP1.750.050.278.100.9214.9629.290.150.102.720.0138.9397.33R054011822238DUP1.750.050.278.110.9215.0329.310.030.102.720.0138.9797.27R0540119222392.060.050.238.180.9315.19	R0540109	22230	2.21	0.03	0.34	7.01		0.86	15.67	30.04	0.11	0.11	2.80	0.01	38.91	98.10	l
R0540111 rpt5.130.050.747.570.7715.1329.040.020.343.090.0135.1197.00R05401122223312.680.112.0310.980.7514.0725.650.090.641.440.0124.8493.29R0540113222346.940.101.607.900.8613.9729.020.270.503.530.0132.6397.33R0540114222351.370.050.347.530.8515.4729.700.030.102.840.0139.8498.13R0540115222361.830.030.338.600.8815.0029.130.370.102.650.0138.1897.11R0540116222372.400.090.668.140.8514.3529.940.120.284.300.0136.4397.57R0540117222381.830.050.278.100.9214.9629.390.150.102.720.0138.9997.27R054011822238DUP1.750.050.278.110.9215.0329.310.030.102.720.0138.9797.27R0540119222392.060.050.238.180.9315.1928.810.030.102.040.0139.0696.69R0540120222402.450.050.258.220.9114.88 <td< td=""><td>R0540110</td><td>22231</td><td>5.61</td><td>0.10</td><td>1.52</td><td>7.44</td><td></td><td>0.70</td><td>14.89</td><td>28.44</td><td>0.07</td><td>0.86</td><td>5.53</td><td>0.03</td><td>31.73</td><td>96.92</td><td></td></td<>	R0540110	22231	5.61	0.10	1.52	7.44		0.70	14.89	28.44	0.07	0.86	5.53	0.03	31.73	96.92	
R05401122223312.680.112.0310.980.7514.0725.650.090.641.440.0124.8493.29R0540113222346.940.101.607.900.8613.9729.020.270.503.530.0132.6397.33R0540114222351.370.050.347.530.8515.4729.700.030.102.840.0139.8498.13R0540115222361.830.030.338.600.8815.0029.130.370.102.650.0138.1897.11R0540116222372.400.090.668.140.8514.3529.940.120.284.300.0136.4397.57R0540117222381.830.050.278.100.9214.9629.290.150.102.720.0138.9397.33R054011822238DUP1.750.050.278.110.9215.0329.310.030.102.720.0138.9797.27R0540119222392.060.050.238.180.9315.1928.810.030.102.040.0139.0696.69R0540120222402.450.050.258.220.9114.8829.170.070.103.190.0137.7597.05	R0540111	22232	5.11	0.05	0.74	7.57		0.79	15.22	29.02	0.07	0.31	3.25	0.01	35.16	97.30	1
R0540113222346.940.101.607.900.8613.9729.020.270.503.530.0132.6397.33R0540114222351.370.050.347.530.8515.4729.700.030.102.840.0139.8498.13R0540115222361.830.030.338.600.8815.0029.130.370.102.650.0138.1897.11R0540116222372.400.090.668.140.8514.3529.940.120.284.300.0136.4397.57R0540117222381.830.050.278.100.9214.9629.290.150.102.720.0138.9397.33R054011822238DUP1.750.050.278.110.9215.0329.310.030.102.720.0138.9797.27R0540119222392.060.050.238.180.9315.1928.810.030.102.040.0139.0696.69R0540120222402.450.050.258.220.9114.8829.170.070.103.190.0137.7597.05	R0540111 rpt		5.13	0.05	0.74	7.57		0.77	15.13	29.04	0.02	0.34	3.09	0.01	35.11	97.00)
R0540114222351.370.050.347.530.8515.4729.700.030.102.840.0139.8498.13R0540115222361.830.030.338.600.8815.0029.130.370.102.650.0138.1897.11R0540116222372.400.090.668.140.8514.3529.940.120.284.300.0136.4397.57R0540117222381.830.050.278.100.9214.9629.290.150.102.720.0138.9397.33R054011822238DUP1.750.050.278.110.9215.0329.310.030.102.720.0138.9797.27R0540119222392.060.050.238.180.9315.1928.810.030.102.040.0139.0696.69R0540120222402.450.050.258.220.9114.8829.170.070.103.190.0137.7597.05	R0540112	22233	12.68	0.11	2.03	10.98		0.75	14.07	25.65	0.09	0.64	1.44	0.01	24.84	93.29	ł
R0540115222361.830.030.338.600.8815.0029.130.370.102.650.0138.1897.11R0540116222372.400.090.668.140.8514.3529.940.120.284.300.0136.4397.57R0540117222381.830.050.278.100.9214.9629.290.150.102.720.0138.9397.33R054011822238DUP1.750.050.278.110.9215.0329.310.030.102.720.0138.9797.27R0540119222392.060.050.238.180.9315.1928.810.030.102.040.0139.0696.69R0540120222402.450.050.258.220.9114.8829.170.070.103.190.0137.7597.05	R0540113	22234	6.94	0.10	1.60	7.90		0.86	13.97	29.02	0.27	0.50	3.53	0.01	32.63	97.33	-
R0540116222372.400.090.668.140.8514.3529.940.120.284.300.0136.4397.57R0540117222381.830.050.278.100.9214.9629.290.150.102.720.0138.9397.33R054011822238 DUP1.750.050.278.110.9215.0329.310.030.102.720.0138.9797.27R0540119222392.060.050.238.180.9315.1928.810.030.102.040.0139.0696.69R0540120222402.450.050.258.220.9114.8829.170.070.103.190.0137.7597.05	R0540114	22235	1.37	0.05	0.34	7.53		0.85	15.47	29.70	0.03	0.10	2.84	0.01	39.84	98.13	1
R0540117222381.830.050.278.100.9214.9629.290.150.102.720.0138.9397.33R054011822238 DUP1.750.050.278.110.9215.0329.310.030.102.720.0138.9797.27R0540119222392.060.050.238.180.9315.1928.810.030.102.040.0139.0696.69R0540120222402.450.050.258.220.9114.8829.170.070.103.190.0137.7597.05	R0540115	22236	1.83	0.03	0.33	8.60		0.88	15.00	29.13	0.37	0.10	2.65	0.01	38.18	97.11	1
R054011822238 DUP1.750.050.278.110.9215.0329.310.030.102.720.0138.9797.27R0540119222392.060.050.238.180.9315.1928.810.030.102.040.0139.0696.69R0540120222402.450.050.258.220.9114.8829.170.070.103.190.0137.7597.05	R0540116	22237	2.40	0.09	0.66	8.14		0.85	14.35	29.94	0.12	0.28	4.30	0.01	36.43	97.57	:
R0540119222392.060.050.238.180.9315.1928.810.030.102.040.0139.0696.69R0540120222402.450.050.258.220.9114.8829.170.070.103.190.0137.7597.05	R0540117	22238	1.83	0.05	0.27	8.10		0.92	14.96	29.29	0.15	0.10	2.72	0.01	38.93	97.33	1
R0540120 22240 2.45 0.05 0.25 8.22 0.91 14.88 29.17 0.07 0.10 3.19 0.01 37.75 97.05	R0540118	22238 DUP	1.75	0.05	0.27	8.11		0.92	15.03	29.31	0.03	0.10	2.72	0.01	38.97	97.27	ļ
	R0540119	22239	2.06	0.05	0.23	8.18		0.93	15.19	28.81	0.03	0.10	2.04	0.01	39.06	96.69	1
R0540121 22241 1.96 0.05 0.33 7.73 0.92 15.53 29.12 0.01 0.15 1.96 0.01 39.54 97.31	R0540120	22240	2.45	0.05	0.25	8.22		0.91	14.88	29.17	0.07	0.10	3.19	0.01	37.75	97.05	4
	R0540121	22241	1.96	0.05	0.33	7.73		0.92	15.53	29.12	0.01	0.15	1.96	0.01	39.54	97.31	l

· · · ·

1

!

1

Report date: 18 JAN 2006

Job V 05-1116R

;

1

ł

LAB NO	FIELD NUMBER	SiO2	TiO2	AI2O3	Fe2O3	FeO	MnQ	MgQ	CaO	Na2Q	K20	P205	Ba(F)	LOI	Total
		%	%	%	%	%	%	%	%	%	%	%	%	%	%
R0540122	22242	1.26	0.05	0.20	7.03		0.85	15.11	30.30	0.01	0.10	3.81	0.01	38.72	97.45
R0540123	22243	2.44	0.05	0.61	6.59		0.76	13.67	32.16	0.01	0.25	6.82	0.01	35.08	98.45
R0540124	22244	2.61	0.05	0.60	7.98		1.00	15.10	28.64	0.01	0.23	1.65	0.01	39.11	96.99
R0540125	22245	3.28	0.09	0.73	7.78		0.83	14.86	29.04	0.02	0.41	3.82	0.01	36.72	97.59
R0540126	22246	1.65	0.07	0.20	8.60		0.77	14.44	29.65	0.03	0.12	4.17	0.01	37.04	96.75
R0540126 rpt		1.98	0.10	0.25	8.59		0.79	14.72	29.63	0.02	0.14	4.07	0.01	37.06	97.36
R0540127	22247	2.20	0.10	0.20	8.69		0.73	12.25	32.52	0.02	0.12	4.42	0.01	35.90	97.16
R0540128	22248	1.49	0.05	0.27	8.35		0.76	13.78	30.79	0.03	0.10	4.34	0.01	37.88	97.85
R0540129	22249	1.01	0.05	0.27	8.07		0.70	13.22	32.00	0.01	0.10	6.30	0.01	35.43	97.17
R0540130	22250	1.67	0.05	0.18	7.38		0.72	14.02	31.23	0.03	0.10	5.21	0.01	36.90	97.50
R0540131	22251	1.66	0.05	0.20	7.34		0.80	14.73	30.40	0.03	0.10	3.83	0.01	38.66	97.81
R0540132	22252	10.18	0.10	0.60	8.47		0.66	16.37	24.95	1.00	0.17	2.66	0.01	32.88	98.05
R0540133	22253	9.43	0.21	2.57	9.35		0.69	12.88	27.48	0.41	1.40	4.86	0.04	28.30	97.62
R0540134	22254	9.07	0.20	2.50	8.35		0.77	14.15	26.87	0.31	1.15	3.66	0.04	30.15	97.22
R0540135	22255	13.59	0.25	4.34	8.59		0.74	13.28	23.89	0.93	1.40	2.66	0.06	27.43	97.16
R0540136	22256	1.60	0.05	0.25	7.40		0.87	15.22	29.86	0.07	0.14	3.22	0.01	38.63	97.32
R0540137	22257	3.75	0.09	0.93	7.63		0.80	15.03	28.86	0.02	0.50	4.11	0.03	35.34	97.09
R0540138	22258	3.01	0.05	0.55	7.61		0.88	15.76	28.70	0.01	0.15	1.60	0.01	39.33	97.66
R0540139	22260	7.88	0.07	0.62	7.71		0.89	15.19	28.23	0.01	0.25	1.95	0.01	34.02	96.83
STD: SY-4		49.84	0.28	20.72	6.13		0.10	0.51	8.06	6.98	1.61	0.11	0.03	4.80	99.17

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

FeO determined by acid digestion /volumetric.LOI determined gravimetrically

Other elements by Li borate fusion/XRF. Where no FeO value shown "Fe2O3" is total Fe as Fe2O3

APPENDIX 4 SGS LAKEFIELD METALLURGICAL TEST REPORTS FOR TANTALUM AND NIOBIUM LEACHING

.....

.....

January 7, 2005

Mr. Dave Hodge Commerce Resources

Email: dhodge@commerceresources.com

Dave,

Please see the report below for tantalum and niobium leaching from the upgraded Fir gravity concentrate.

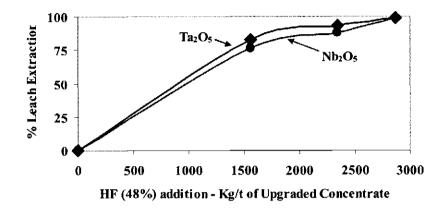
Tantalum and niobium leaching from the upgraded Fir gravity concentrate Letter Report #1 – SGSLR10673-002

1. Introduction

Latest results indicated that the Fir gravity concentrate, further upgraded by reverse pyrite flotation, responded well to the conventional HF/H₂SO₄ leach: in a single test, more than 99% of (Ta + Nb) were dissolved for acid additions of 293 and 2869 (kg/t of upgraded concentrate) of H₂SO₄ (100%) and HF (48%).

Two additional tests were conducted to examine the effect of lowering acid additions.

2. Results


The test details for the 2 additional tests are appended. Results are summarized in the following table, where they are compared with the previous results.

Test #	H ₂ SO ₄ (100%)	HF (48%)	% Extraction			
lest#	(kg/t)	(kg/t)	Nb ₂ O ₅	Ta₂O₅		
10	240	1560	76.1	82.7		
11	240	2340	88.1	93.0		
9	293	2869	>99	>99		

Lakefield Research

SGS Lakefield Research Limited P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada KOL 2H0 Tel: (705) 652-2000 Fax: (705) 652-6365 www.sgslakefield.com www.sgs.com

Member of SGS SA Group

Results are also illustrated graphically in Figure 1.

The results allow to better estimate the optimum economic addition of fluorhydric acid to leach (Ta + Nb) from the upgraded Fir concentrate.

Of note: all three leaches conducted on the upgraded Fir gravity concentrate indicated that most, if not all, of the uranium, was not dissolved during the leach. Because of the difficulties of analyzing small amounts of uranium in a concentrated HF solution containing >120 g/L (Ta_2O_5 + Nb₂O₅), this statement is based on residue assays only, and should be confirmed.

Regards

C. J. Ferron, Ph.D. V.P. Metallurgical Operations

cc. Steve Williams

Project 10673-002

Test No. 9

Purpose:

HF Leach

Procedure: Stage 1

30.0 grams of feed was transferred to a 150 mL teflon beaker.

7.2 grams of concentrated H₂SO₄ was added.

After the mineral/acid reaction subsided, 46.8 grams of 48% HF was added slowly.

To repeat conditions of Test 7 and 8 on Test F-1 pyrite rougher flotation tailings.

The beaker was covered with a Teflon watch glass and placed on a hot plate.

The pulp was mixed with a magnetic stir bar and heated to a boil (~80 °C).

After 1 hour of boiling, 62.4 grams of DI water was added to the beaker.

The pulp was then boiled for 4 hours.

After 4 hours, the beaker was removed from the hot plate and cooled.

The solution was decanted (PLS1) and filtered through low ash PVC membrane (5 µm)

Stage 2

45 grams DI water was added to the Teflon beaker containing the solids. 23.4 grams of 48% HF was added.

The beaker was covered and the pulp was reheated to a boil (~80° C).

After 4 hours of boiling, the beaker was removed from the hot plate and cooled. The pulp was filtered through low ash PVC membrane (5 µm).

The solution (PLS2) and PLS1 were combined and submitted for Nb and Ta analyses.

The solids were displacement washed three times with 25 mL DI water. The residue and wash solution were submitted for Nb and Ta analyses.

Stage 3

6.7 grams of feed was transferred to a 150 mL teflon beaker.

1.61 grams of concentrated H₂SO₄ was added.

After the mineral/acid reaction subsided, 10.5 grams of 48% HF was added slowly.

The beaker was covered with a Teflon watch glass and placed on a hot plate.

The pulp was mixed with a magnetic stir bar and heated to a boil (~80 °C).

After 1 hour of boiling, 14.1 grams of DI water was added to the beaker.

The pulp was then boiled for 4 hours.

After 4 hours, the beaker was removed from the hot plate and cooled.

The solution was decanted (PLS1) and filtered through low ash PVC membrane (5 µm]

Stage 4

6.7 grams of feed was transferred to a 150 mL teflon beaker.

10.1 grams DI water was added to the Teflon beaker containing the solids.

5.23 grams of 48% HF was added.

The beaker was covered and the pulp was reheated to a boil (~80° C).

After 4 hours of boiling, the beaker was removed from the hot plate and cooled.

The pulp was filtered through low ash PVC membrane (5 µm).

The solution (PLS2) and PLS1 were combined and submitted for Nb and Ta analyses. The solids were displacement washed three times with 10,1 mL DI water.

The residue and wash solution were submitted for Nb and Ta analyses.

Feed: 30 grams Test F-1 pyrite rougher flotation tailings (pulverized 30 seconds/100 grams)

Metallurgical Balance:

Product	Amount	Assay	s (mg/L, %	%, g/t)	% Distribution				
	g, mL	Nb ₂ O ₅	Ta ₂ O ₅	U_3O_8	Nb ₂ O ₅	Ta ₂ O.	U ₃ O ₈		
HF PLS 1-4	130	106000	12400	-	98.7	98.8	-		
Wash Solution	30	5240	440	-	1.1	0.8	-		
Residue	5.2	0.38	0.11	4.23	0.1	0.4	-		
Head (calculated)	30.0	46.5	5.44	-	100.0	100.0	-		
Head (assayed)		52.20	6.5	0.43					

Observations: Stage 3

After 2.5 hours of boiling in stage 3, 10 mL of DI was added due to evaporation. Stage 4

After 1 hour of boiling in stages 4, 10 mL of DI was added due to evaporation. After 2 hours of boiling in stage 4, 10 mL of DI was added due to evaporation.

After 3 hours of boiling in stage 4, 12 mL of DI was added due to evaporation.

Project 10673-002	
-------------------	--

<u>Test No. 10</u>

Purpose: To repeat co

onditions of Test 9 with 1st stag	ige only	•
-----------------------------------	----------	---

Procedure:	HF LeachStage 130.0 grams of feed was transferred to a 150 mL teflon beaker.7.2 grams of concentrated H_2SO_4 was added.After the mineral/acid reaction subsided, 46.8 grams of 48% HF was added slowly.The beaker was covered with a Teflon watch glass and placed on a hot plate.The pulp was mixed with a magnetic stir bar and heated to a boil (~80 °C).After 1 hour of boiling, 62.4 grams of DI water was added to the beaker.The pulp was then boiled for 4 hours.After 4 hours, the beaker was removed from the hot plate and cooled.The pulp was filtered through low ash PVC membrane (5 μ m).The PLS was submitted for Nb and Ta analyses.The solids were displacement washed three times with DI water.
	•

Feed: 30 grams Test F-1 pyrite rougher flotation tailings (pulverized 30 seconds/100 grams)

Metallurgical Balance:

Product	Amount	Assay	s (mg/L, %	∕₀, g/t)	% Distribution				
	g, mL	Nb ₂ O ₅	Ta ₂ O ₅	U_3O_8	Nb ₂ O ₅	Ta ₂ O ₅	U ₃ O ₈		
HF PLS 1	68	142000	17900	-	68.3	74.1	-		
Wash Solution	26	42800	5450	-	7.9	8.6	-		
Residue	9.9	34.2	2.87	1.67	23.9	17.3	-		
Head (calculated)	30.0	47.2	5.47	-	100.0	100.0	-		
Head (assayed)		52.2	6.5	0.43					

Observations: There was no precipitate present.

Lakefield Research

SGS Lakefield Research Limited

P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0 Tel: (705) 652-2000 Fax: (705) 652-6365 www.sgslakefield.com www.sgs.com

Member of SGS SA Group

Project 10673-002

Operator: LP

25-Nov-04

Purpose: To repeat conditions of Test 10 with 1st stage and 2nd stage only.

Procedure: HF Leach

Stage 130.0 grams of feed was transferred to a 150 mL teflon beaker.7.2 grams of concentrated H_2SO_4 was added.After the mineral/acid reaction subsided, 46.8 grams of 48% HF was added slowly.The beaker was covered with a Teflon watch glass and placed on a hot plate.The pulp was mixed with a magnetic stir bar and heated to a boil (~80 °C).After 1 hour of boiling, 62.4 grams of DI water was added to the beaker.The pulp was then boiled for 4 hours.After 4 hours, the beaker was removed from the hot plate and cooled.The solution was decanted (PLS1) and filtered through low ash PVC membrane (5 μ m)Stage 245 grams DI water was added to the Teflon beaker containing the solids.23.4 grams of 48% HF was added.

The beaker was covered and the pulp was reheated to a boil (~80° C).

After 4 hours of boiling, the beaker was removed from the hot plate and cooled.

The pulp was filtered through low ash PVC membrane (5 μ m).

The solution (PLS2) and PLS1 were combined and submitted for Nb and Ta analyses.

The solids were displacement washed three times with 25 mL DI water.

The residue and wash solution were submitted for Nb and Ta analyses.

Feed: 30 grams Test F-1 pyrite rougher flotation tailings (pulverized 30 seconds/100 grams)

Metallurgical Balance:

Product	Amount	Assay	's (mg/L, %	∕₀, g/t)	% Distribution				
	g, mL	Nb ₂ O ₅	Ta ₂ O ₅	U_3O_8	Nb ₂ O ₅	Ta ₂ O ₅	U_3O_8		
HF PLS 1+2	127	111000	13300	-	86.4	91.6	-		
Wash Solution	74	3700	350	-	1.7	1.4	-		
Residue	8.3	23.4	1.55	1.54	11.9	7.0	-		
Head (calculated)	30.0	54.4	6.15	-	100.0	100.0	-		
Head (assayed)		52.2	6.5	0.43					

Observations: There was no precipitate present.

SGS Lakefield Research Limited

A Preliminary Investigation of

THE EXTRACTION OF TANTALUM AND NIOBIUM from

FIR CONCENTRATE SAMPLES

prepared for

Commerce Resources

LR 10673-002 - Progress Report No. 3 Upgrading of the Gravity Concentrate and HF/H₂SO₄ leaching of the upgraded concentrate

November 12, 2004

NOTE: This report refers to the samples as received. The practice of this Company in issuing reports of this nature is to require the recipient not to publish the report or any part thereof without the written consent of SGS Lakefield Research Limited.

Abstract

Preliminary tests were conducted to examine whether Fir gravity concentrate could be upgraded prior to leaching.

A WHIMS test indicated poor selectivity between magnetics removal and tantalum. Reverse sulphide flotation was very successful: the desulphurized concentrate (41% wgt of the gravity concentrate) assayed >58% (Nb₂O₅ + Ta₂O₅), with only a few percents (Ta + Nb) losses to the flotation concentrate.

The desulphurized concentrate responded well to the HF/H₂SO₄ leach. For a total addition of 160 kg H₂SO₄ (100%) and 1175 kg HF (48%) per ton of gravity concentrate, greater than 99% of the (Nb₂O₅ + Ta₂O₅) were extracted.

INTRODUCTION

Mineralogical information provided by Commerce Resources in July 2004 indicated the presence of significant quantities of sulphide minerals (mostly pyrite and pyrrhotite) in the gravity concentrate under testing at Lakefield.

As an alternative to the successful but reagent-intensive HCI leach developed to remove iron minerals prior to HF/H_2SO_4 leaching, sighter tests were conducted to examine the feasibility of using wet high intensity magnetic separation (WHIMS) and sulphide flotation to upgrade the Fir gravity concentrate prior to HF/H_2SO_4 leach. A single HF/H_2SO_4 leach was conducted on the upgraded (by S²⁻ flotation) concentrate.

SGS LAKEFIELD RESEARCH LIMITED

Joe Ferron, Ph.D. V.P. Metallurgical Technology

Steve Williams Director - Metallurgical Operations

Report Preparation By: C. Pilley

RESULTS AND DISCUSSIONS

1. WHIMS

One sample of the FIR concentrate from the first shipment (i.e. the same as what has been used so far) was passed through our laboratory Eriez L-4-20 WHIMS separator at increasing field intensities. Results are presented in Table 1.

Products	Wgt	4	Assays (%)	% Distribution				
Products	(%)	Fe	Ta ₂ O ₅	Nb ₂ O ₅	Fe	Ta ₂ O ₅	Nb ₂ O ₅	
Magnetics 1A	6.0	52.1	0.93	5.5	8.2	1.9	1.4	
Magnetics 3A	24.6	42.6	2.12	21.9	27.6	18.1	23.6	
Magnetics 5A	32.8	38.8	2.48	27.1	33.7	28.3	39.0	
Magnetics 10A	23.6	37.2	2.80	26.2	23.2	23.0	27.2	
Magnetics 20A	6.2	33.5	3.96	16.3	5.5	8.5	4.4	
Non-Magnetics 20A	6.8	9.81	8.61	14.5	1.8	20.2	4.3	
Feed	100.0	37.86	2.88	22.79	1400.0	100.0	100	

Table 1: WHIMS Results for the FIR Gravity Concentrate

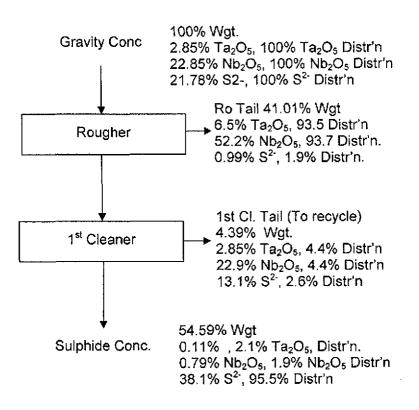
Results indicate that the selectivity between iron and tantalum is only acceptable at low intensity (1A), where likely magnetite and pyrrhotite were pulled out; at higher intensities, the selectivity is not acceptable.

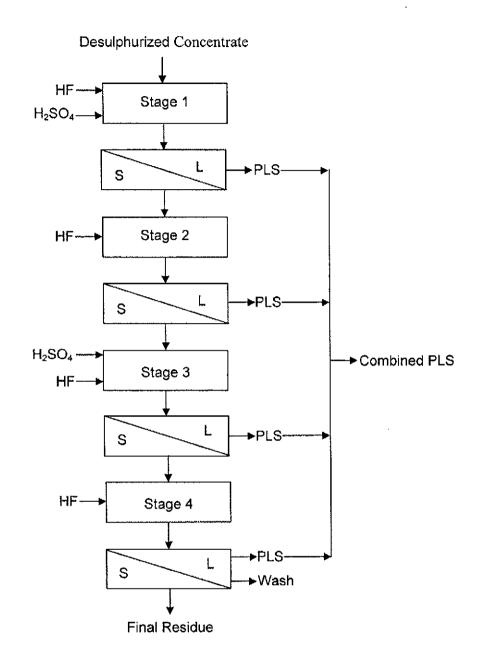
2. SULPHIDE FLOTATION

One single flotation test was conducted on the new gravity concentrate shipped to Lakefield in August.

Flotation details are appended.

Results can be summarized in the Figure 1 below.




Figure 1: Results of Sighter Sulphide Flotation Test

Although not optimized, and without recycling of cleaner tails, results showed excellent promises with an excellent selectivity between sulphides and $(Ta_2O_5 + Nb_2O_5)$ concentrate: only 1% S²⁻ is left in the $(Ta_2O_5 + Nb_2O_5)$ upgraded product, with minimum $(Ta_2O_5 + Nb_2O_5)$ losses in the flotation product (~2%), producing a $(Ta_2O_5 + Nb_2O_5)$ upgraded concentrate representing only 41% of the original mass and assaying 58-59% $(Ta_2O_5 + Nb_2O_5)$.

Unfortunately, as expected from the known mineralogical association, the uranium minerals remain with the $(Ta_2O_5 + Nb_2O_5)$ concentrate.

3. Ta_2O_5/Nb_2O_5 Leach

A single HF/H₂SO₄ leach was conducted on the sulphide flotation residue, i.e. the Ta/Nb concentrate. Test details are appended. The test was conducted in 4 stages, as indicated in Figure 2. Because of the small scale of the test, no subsamples were taken of the intermediate steps residues.

.. .

Figure 2: Desulphurized Concentrate HF/H₂SO₄ Leaching Procedure Results are presented in Table 2.

Product	Amount	Assa	ys (mg/L,	%)	% Distribution			
Produce	g, mL	Nb ₂ O ₅	Ta ₂ O ₅	U ₃ O ₈	Nb ₂ O ₅	Ta₂O₅	U ₃ O ₈	
HF PLS 1-4	130	106000	12400	-	98.7	98.8	-	
Wash Solution	30	5240	440	-	1.1	0.8	-	
Residue	5.2	0.38	0.11	4.23	0.1	0.4	-	
Head (calculated)	30.0	46.5	5.44	-	100.0	100.0	-	
Head (assayed)		52.20	6.5	0.43				

Table 2: Leach Results

The calculated heads are low because of the imprecision on the concentrated solutions (>115 g/L ($Ta_2O_5 + Nb_2O_5$)). However, leach extractions are greater than 99% for both the tantalum and the niobium. Table 3 presents reagent additions at each stage.

	H ₂ SO ₄ (1	100%)	HF (48%)				
Stage	kg/t Upgraded Conc	kg/t Gravity Conc.	kg/t Upgraded Conc	kg/t Gravity Conc.			
1	240	131	1565	641			
2	0	0	781	320			
3	53	28.9	350	144			
4	0	0	175	72			
Total	293	160	2869	1176			

Table 3: Acid Additions at each Step

Acid additions were not optimized, and it is possible that acceptable leach extractions could be achieved after fewer stages.

Conclusions and Recommendations

I

These preliminary results indicated that the gravity concentrate could be easily upgraded to >58% (Nb₂O₅ + Ta₂O₅) with minimum losses (a few percents) by reverse sulphide flotation. The so upgraded desulphurized concentrate responded well to the traditional HF/H₂SO₄.

Greater than 99% (Ta + Nb) extractions were achieved with total acid additions of 160 kg of 100% H₂SO₄ per ton of gravity concentrate and 1176 kg of 48% (HF) per ton of gravity concentrate.

Further tests are required to better define the relation between acid additions and leach extractions.

APPENDIX

.

Test No: F-1 Project No. 10673-001

Purpose: To examine pyrite flotation from a sample of Ta/Nb concentrate

Feed: 500 g of Ta/Nb Concentrate

. .

Grind: 6 minutes at 50% solids in the S.S. Rod mill

	Re	agents ad	ded, g/]	Time, Minutes					
	WW 82	H ₂ SO ₄	PAX	3501	Grind	Cond.	Froth	pН	
Grind					6				
Condition	100	100				3		6.5	
Py Rougher 1 Py Rougher 2			50 50	50 50		1 1	3 3		
Py Cleaner	50		10	20		1	2 2	6.5	

Product	Wei	ght		Assays %			% Distribution					
	g	%	Ta ₂ O ₃	Nb2O5	Fe	s^	U3O8	Ta ₂ O ₅	Nb2O3	Fe	s"	U ₂ O ₆
I Py Cl Cone	273.4	54.59	0.11	0 79	59.8	38.1	0.017	2.1	1.9	84.3	95.5	4.7
2 Py Cl Tail	22	4.39	2.85	22.9	27.8	13.1	0.28	44	4.4	3.2	2.6	6.2
3 Py Ro Tail	205.4	43.01	6.5	52.2	11.9	0.99	0.43	93.5	937	12.6	1.9	89.1
Head (cale)	\$90.8	100.0	2.85	22.85	38.75	21.78	02	100.0	100.0	100.0	100.0	100.0

Combined Products

1-2 Py Ro Conc 58.99 0.3 2.44 57.42 35.24	0.0	6.5	6.3	\$7.4	98.1	10.9
Z-3 Py Ro+Cl Tails 45.41 6 t 49.37 13 44 2.16	0.4	97.9	981	15.7	4.5	95.3

Procedure: HF Leach

Stage 1

30.0 grams of feed was transferred to a 150 mL teflon beaker. 7.2 grams of concentrated H_2SO_4 was added.

After the mineral/acid reaction subsided, 46.8 grams of 48% HF was added slowly.

The beaker was covered with a Teflon watch glass and placed on a hot plate.

To repeat conditions of Test 7 and 8 on Test F-1 pyrite rougher flotation tailings.

The pulp was mixed with a magnetic stir bar and heated to a boil (~80 °C).

After 1 hour of boiling, 62.4 grams of DI water was added to the beaker.

The pulp was then boiled for 4 hours.

After 4 hours, the beaker was removed from the hot plate and cooled.

The solution was decanted (PLS1) and filtered through low ash PVC membrane (5 μm).

Stage 2

45 grams DI water was added to the Teflon beaker containing the solids. 23.4 grams of 48% HF was added.

The beaker was covered and the pulp was reheated to a boil (~80° C).

After 4 hours of boiling, the beaker was removed from the hot plate and cooled.

The pulp was filtered through low ash PVC membrane (5 µm).

The solution (PLS2) and PLS1 were combined and submitted for Nb and Ta analyses.

The solids were displacement washed three times with 25 mL DI water.

The residue and wash solution were submitted for Nb and Ta analyses.

Stage 3

6.7 grams of feed was transferred to a 150 mL teflon beaker.

1.61 grams of concentrated H₂SO₄ was added.

After the mineral/acid reaction subsided, 10.5 grams of 48% HF was added slowly.

The beaker was covered with a Teflon watch glass and placed on a hot plate.

The pulp was mixed with a magnetic stir bar and heated to a boil (~80 °C).

After 1 hour of boiling, 14.1 grams of DI water was added to the beaker.

The pulp was then boiled for 4 hours.

After 4 hours, the beaker was removed from the hot plate and cooled.

The solution was decanted (PLS1) and filtered through low ash PVC membrane (5 µm).

Stage 4

6.7 grams of feed was transferred to a 150 mL teflon beaker.

10.1 grams DI water was added to the Teflon beaker containing the solids.

5.23 grams of 48% HF was added.

The beaker was covered and the pulp was reheated to a boil (~80° C).

After 4 hours of boiling, the beaker was removed from the hot plate and cooled.

The pulp was filtered through low ash PVC membrane (5 µm).

The solution (PLS2) and PLS1 were combined and submitted for Nb and Ta analyses.

The solids were displacement washed three times with 10.1 mL DI water.

The residue and wash solution were submitted for Nb and Ta analyses.

Feed: 30 grams Test F-1 pyrite rougher flotation tailings (pulverized 30 seconds/100 grams)

Metallurgical Balance:

Product	Amount	Assay	s (mg/L, %	%, g/t)	% Distribution			
	g, mL	Nb ₂ O ₅	Ta ₂ O ₅	\overline{U}_3O_8	Nb_2O_5	Ta ₂ O ₅	U_3O_8	
HF PLS 1-4	130	106000	12400	-	98.7	98.8	-	
Wash Solution	30	5240	440	-	1.1	0.8	-	
Residue	5.2	0.38	0.11	4.23	0.1	0.4	-	
Head (calculated)	30.0	46.5	5.44	-	100.0	100.0	-	
Head (assayed)		52.20	6.5	0.43				

Observations: Stage 3

After 2.5 hours of boiling in stage 3, 10 mL of DI was added due to evaporation. Stage 4

After 1 hour of boiling in stages 4, 10 mL of DI was added due to evaporation. After 2 hours of boiling in stage 4, 10 mL of DI was added due to evaporation. After 3 hours of boiling in stage 4, 12 mL of DI was added due to evaporation.

A56 APPENDIX 5: STATEMENT OF QUALIFICATIONS

The field work described in this report was supervised by Clinton Davis.

Clinton Davis is a geological consultant with Dahrouge Geological Consulting Ltd. He obtained a Bachelor of Science (Honours) degree in geology from the Carleton University, Ottawa, Ontario in 1997 and studied graduate level mineral economics at the Colorado School of Mines. He has more than 7 years of experience in mineral exploration. He is registered as P. Geo. with the Association of Professional Geoscientists of Ontario.