

OWNER AND OPERATOR G. W. Kurz

Author: G. D. Bysouth

Submitted: January, 2006

TABLE OF CONTENTS

ſ

A REAL PROPERTY.

the second second second in the second s

. 2

. .

1.0 INTRODUCTION	.3
2.0 MINERAL CLAIMS	.4
3.0 GENERAL GEOLOGY	.4
4.0 DIAMOND DRILL PROGRAM	.5
4.1 INTRODUCTION	5
4.2 DRILL RESULTS	5
4.3 INTERPRETATION	.7
5.0 STATEMENT OF EXPENDITURES	.8
REFERENCES	.9

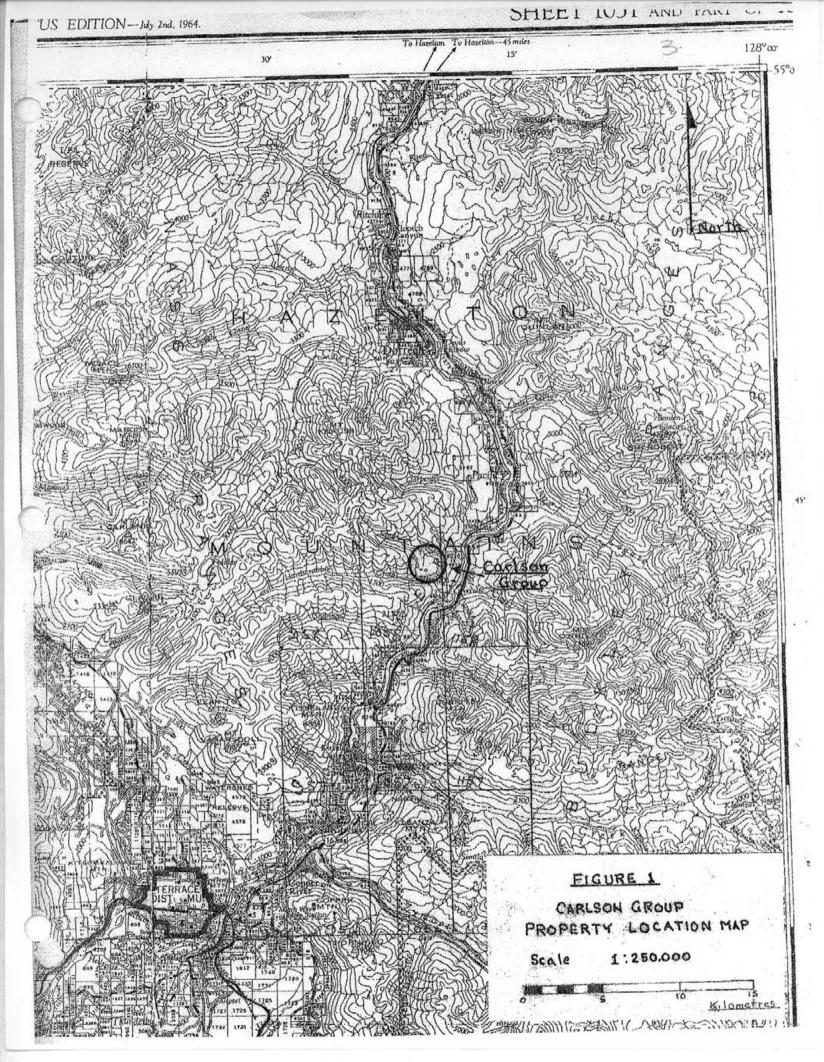
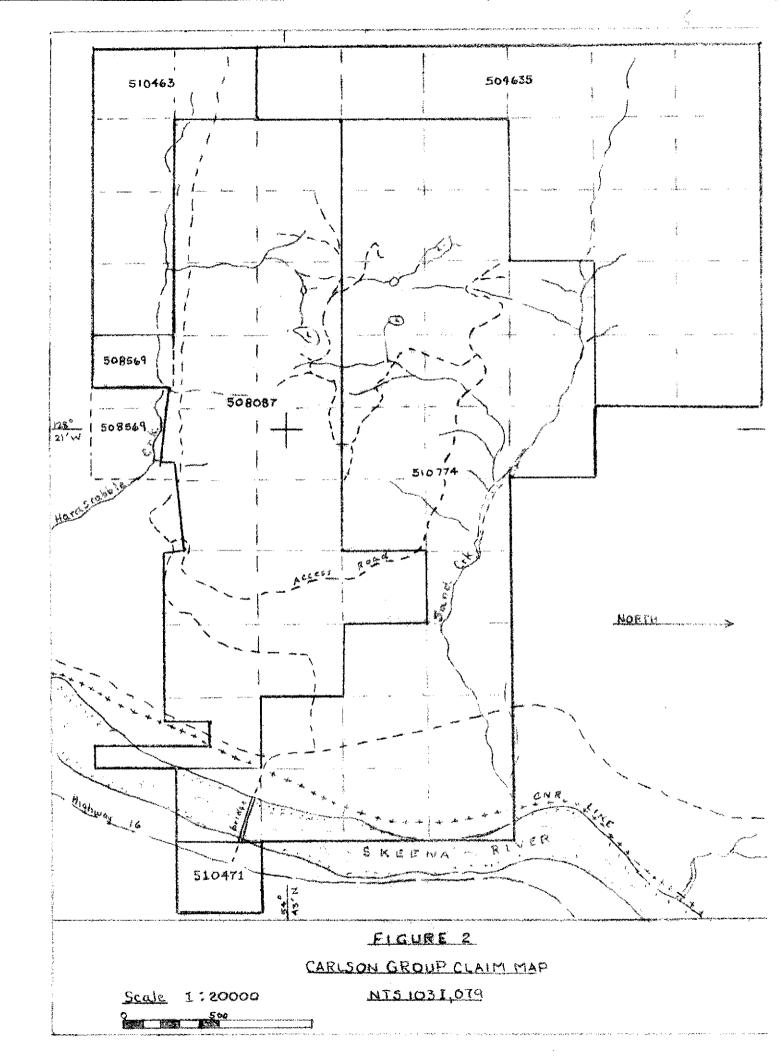

LIST OF FIGURES AND TABLES

FIGURE 1 - Property Location Map	in text
FIGURE 2 - Claim Location Map	in text
FIGURE 3 - Drill Hole Plan	in pocket
FIGURE 4 - Cross Section Drill Hole 05-01	in text
FIGURE 5 - Cross Section Drill Hole 05-02	in text

APPENDICES

A. STATEMENT OF QUALIFICATIONS - G.D. Bysouth	.10
B. LIST OF ABBREVIATIONS	.11
C. DIAMOND DRILL LOGS	.12

......


1.0 INTRODUCTION

The Carlson Group of Mineral Claims was staked in 2002 to cover a large area of pyrite mineralization. The property lies on the west side of the Skeena River valley, between Sand and Hardscrabble creeks, and about 2 kilometres northwest of the Pitman CNR stations. The nearest large settlement is Terrace, B.C. which lies about 40 kilometres to the southwest. Access to the property is provided by logging roads which link up with Highway 16 via a logging company bridge across the Skeena River near Pitman. Within the property, recent logging has created excellent access to the main showings; however, due to road deactivation, this access is limited to ATV-type transport.

The main mineral showings lie within an area of low relief made up of low rounded hills and broad drainage courses which form an unusually gentle terrain in an otherwise rugged, steep topography. To the north and south, this bench-like land drops off steeply into the deeply incised stream courses of Sand and Hardscrabble creeks. And to the west, the land rises rapidly to form a normal steep-sided divide between the two creek valleys. To the east, the valley wall of the Skeena River starts out on a very steep slope from the bench land to about the 400 metre elevation, then becomes progressively shallower as the alluvial plane of the river is approached. The elevation of the main showings range between 490 and 580 metres. The river flats lie at about 100 metres.

Rock exposure varies with topography, being more abundant on steep slopes and relatively scarce in flatter areas. Over most of the property, overburden depths appear quite shallow, probably less than three metres.

The area now covered by the Carlson Group claims was originally prospected by C.E. Carlson and his uncle during the 1920's and 1930's, but never developed. In 2002, bedrock prospecting and rock chip assaying indicated the property had a potential for significant copper, silver and molybdenum mineralization (Bysouth G.D., Kurz G.W., 2003). In 2003, the geological environment of the main showings was mapped on a scale of 1:5000 (Bysouth G.D., 2004). In 2004, a geochemical soil and silt sampling program was carried out in the vicinity of the main showings (Bysouth G.D., 2005). The present report covers a diamond drilling project conducted during the period July 5-8, 2005 and August 9-12, 2005. Two vertical B.Q. holes were drilled, one to 96m and the other to 150.2m (total drilling, 246.2m). Drilling contractor was Noble Contracting of Hudson Hope, B.C. The core is stored at Fraser Lake, B.C.

C

2.0 MINERAL CLAIMS

Prior to implementation of the Mineral Titles Online system, the Carlson Claim Group consisted of 30 two-post claims. The ground these claims covered has now been re-staked under the new system, and additional ground has been staked, all by the original owner G.W. Kurz of Fraser Lake, B.C. The current tenure is as follows:

Tenure No.	<u>Claim Name</u>	Expiry Date	<u>Area</u>
504635	Carlson	2006/Jan/23	298.842
508087		2006/Oct/24	392.395
508569		2006/Oct/24	37.377
510463		2006/Apr/09	93.438
510471	Axe	2006/Apr/09	18.685
510774		2006/Oct/24	467.036

The diamond drilling covered in this report was done within tenure number 508087.

3.0 GENERAL GEOLOGY

The Carlson Group claims are underlain by a sequence of volcanic and sedimentary rocks that have been mapped as early Jurassic Hazelton Group (Duffel and Souther, 1964), or more recently as early Jurassic Kitselas Volcanics (Gareau et al., 1997). The Kitselas Volcanics are predominantly of felsic composition. The volcanic rocks we have encountered on the property were all of basic composition, probably ranging from andesite to olivine basalt. Both of the above references indicate the property lies close to a large granitic intrusive, which Gareau et al, 1997 show as the Hardscrabble pluton of probable Eocene age.

From the above, and until proven otherwise, the following assumptions will be made in this, and future reports:

- 1. The assemblage of volcanic rocks and associated sedimentary rocks underlying the claim group belong to the early Jurassic Hazelton Group.
- 2. The plutonic rocks that form a complex contact zone across much of the claim group are part of the Eocene Hardscrabble pluton.

Disseminated pyrite and, to a lesser extent, pyrrhotite occur along the plutonic contacts in both the intrusive and intruded rocks. In numerous locations, usually in quartz veins, these minerals are associated with various combinations of other minerals, most notable of which are: molybdenite, scheelite, native bismuth, bismuthinite, chalcopyrite and sphalerite.

Seven major showings have been identified. The most important of these are Site 13 and Site 31. At Site 13, chalcopyrite and pyrite, with minor molybdenite and rare sphalerite, occur in

volcanic rocks, with and without quartz gangue. At Site 31, molybdenite and pyrite occur in quartz vein systems associated with quartz-sericite-pyrite alteration.

A description of Carlson Group geology and mineralogy is given in a recent assessment report (Bysouth G.D., 2004)

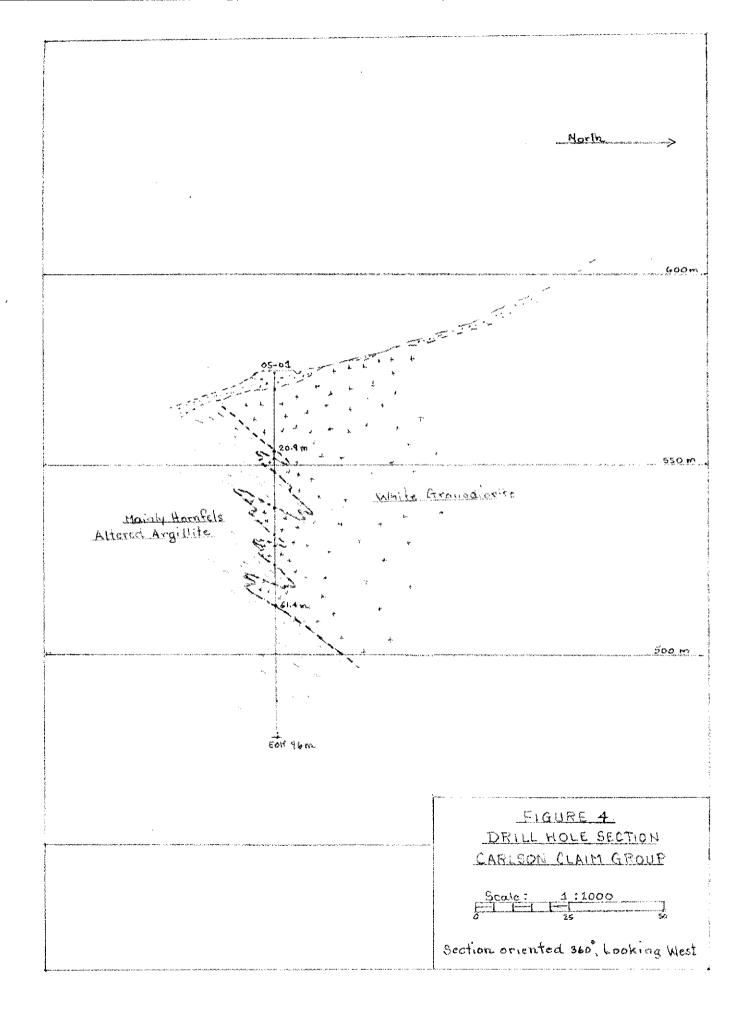
4.0 DIAMOND DRILL PROGRAM

4.1 INTRODUCTION

The project started on July 5, 2005 and was finished on August 13, 2005. A total of 246.2 meters of drilling was completed in two vertical B.Q. diamond drill holes. Survey control was by Garmin-etrex G.P.S. Drill hole locations are shown in Figure 3. Drill hole sections are given in Figures 4 and 5.

The objective of drill hole 05-01 was to test the westward extension of a quartz vein system located to the east in hornfels. (Site 17 -Bysouth and Kurz, 2003). It was collared on July 5, 2005, but due to breakdown was not finished until August 9, 2005, at a depth of 96 meters.

The objective of drill hole 05-02 was to test the depth of mineralization exposed at Site 13 (Bysouth and Kurz, 2003; Bysouth, 2004). It was collared on August 10, 2005, and completed on August 12, 2005, at a depth of 150.2 meters.


4.2 DRILL RESULTS

Hole 05-01

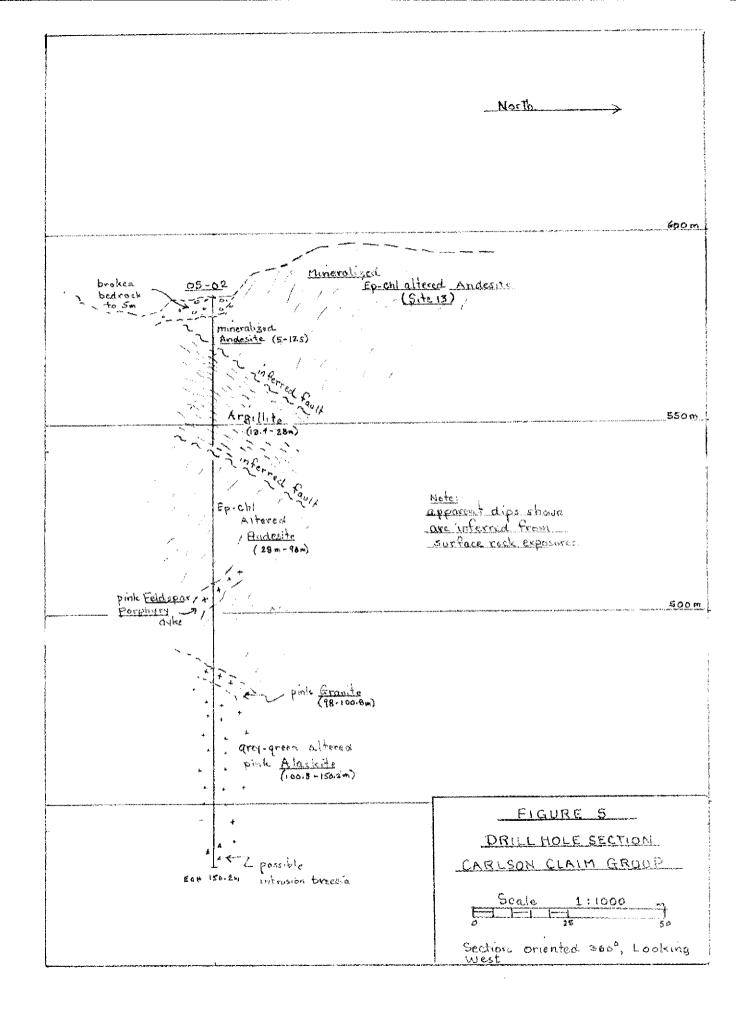
Hole 05-01 was cased to 4.0 m. A white granodiorite was intersected down to 20.9 m; this was followed by short alternating sections of hornfels and granodiorite down to 61.4 m. At 61.4 m an argillite sequence was intersected which was followed by a thin flow of epidote-altered andesitic lava at 86.4m - 95.0 m. Below that was a maroon colored argillite to the end of the hole at 96 m. Of significance to geophysical exploration was a layer of black graphitic argillite at 78 m - 85.3 m. The only significant sulfide mineralization noted were a few veinlets of massive pyrrhotite with blebs of chalcopyrite in the granodiorite at about 47 m. Pyrrhotite, minor pyrite and rare chalcopyrite were also noted in the granodiorite in the form of pervasive disseminations.

Hole 05-02

Hole 05-02 was cased to 4.6 m. From the casing to 12.5 m, a mineralized andesite was intersected which was cut off by a fault at 12.5 to 13.4 m. The mineralization consisted of two parts separated at 9.0 m by a band of epidote-chlorite mineralization dipping at about 60-degrees. The upper mineralization was comprised of near-vertical pyrite-chalcopyrite veinlets in epidote-chlorite altered andesite. Its grade was estimated at .15 - .20 % copper. The lower mineralization

.

was mainly coarse fracture-fillings of chalcopyrite and lesser molybdenite in an altered augite andesite. The very hard nature of the host rock and its lighter coloration was suggestive of silicification; this may have been related to an irregular, steeply dipping quartz vein which lay along the general axis of mineralization. For the most part, the sulphides were free of any gangue mineral including quartz. The grade of mineralization was estimated to be 2.0% copper and .15% MoS₂. In overall aspect, the mineralized intersection appeared to have undergone multiple fracturing, healed first by alteration minerals, then by sulphides and quartz, followed by carbonate minerals.


Below the fault at 12.5 to 13.4 m, a grey argillite sequence was intersected that was largely barren of visible sulfide minerals. Bedding structures were not evident. The general fabric of the rock suggested soft deformation along a steeply inclined axis—possibly between 50- and 80- degrees. At 41.8 m, the argillite passed into another andesite unit similar to the first. This contact also may have been along a fault.

The second andesite unit was intersected from 41.8 m to 76.1 m. It was tentatively identified as a sequence of volcanic breccias and massive flows that had been altered by various combinations of epidote, chlorite and carbonate---this includes saussarite and scarn-like zones of massive epidote. The dark green alteration assume to be chlorite may also include actinolite, and certain unidentified cream colored segregations may be albite. Finely disseminated pyrite and veinlets of massive pyrite occur throughout the unit. Chalcopyrite was noted associated with quartz at 48 - 57 m. and at 69 - 75 m with calcite and quartz veining. A feldspar porphyry with distinctive pink feldspar phenocrysts cut the andesite at 76.1m - 81.4 m, and at 98 m the andesite was intruded by pink granite along a sharp low angle contact. Between the dyke and the intrusive contact, the andesite showed an increased degree of epidote and carbonate alteration.

The granite appeared as a medium grained granitic textured rock from 98 m to 100.8 m, then was intruded by, or graded into, a texturally complex siliceous rock tentatively identified as an alaskite due to its simple composition of feldspar and quartz. Textures varied mainly from porphyritic, with pink feldspar or quartz phenocrysts, to aphanitic without any visible crystal development. Although of normal pale pinkish coloration, most of the intersected alaskite showed various shades of grey or greenish-grey due to fracture-fillings of green clay and epidote-quartz, and in some cases, granulated rock. Very fine fracturing and brecciation was noted throughout the section. At the end of the hole, the texture became strongly fragmental with pieces of rounded aphanitic rock and subrounded pink feldspar crystals, both up to 1.4 cm diameter, contained in a siliceous matrix of fine white feldspar and quartz. Weak pyrite mineralization was noted throughout the alaskite, as disseminations associated with the alteration minerals, and as random hairline veinlets.

Diamond Drill Report on the Carlson Claim Group, January 2006

6

4.3 INTERPRETATION

Hole 05-01 intersected an irregular contact zone formed between the Hardscrabble granodiorite and Hazelton Group argillite. The interfingering of intrusive and intruded rock observed in this hole is considered to be a characteristic of the contact zone throughout the claim group. The presence of hornblende in some of the hornfels indicates a moderately high temperature of contact metamorphism had been reached. It suggests also that certain hornblende-feldspar porphyries observed in outcrop may in fact be hornfels rather than intrusive dykes. The almost total lack of quartz veining in the hole, and the weak mineralization encountered obviously indicates the vein systems of Site 17 were not intersected.

Hole 05-02 did not intersect the full width of mineralization indicated by Site 13 surface exposures. Evidence from the drilling and from surface exposures show the mineralization has a northerly strike and a steep easterly dip of about 60-degrees. The hole, therefore, intersected only the western edge of the mineralization.

The andesite host rock intersected in hole 05-02 is interpreted to represent a sequence of volcanic breccias and massive flows in which the flows show up as hard, compact less altered zones. The alteration is interpreted to be largely propylitic, with possibly some silicification associated with the larger quartz veins. The kaolin and green clay alteration, and the epidote-quartz alteration, in the granite and alaskite is interpreted to be of hydrothermal origin and is assumed to be related to the propylitic alteration of the andesites.

The alaskite is difficult to interpret. At this point it is assumed to represent the most evolved phase of a granitic magma. Its very fine grain size indicates a sudden loss of volatiles during emplacement---these volatiles may, in turn, be the source of the alteration and mineralization observed in nearby surface exposures and in drill hole 05-02.

5.0 STATEMENT OF EXPENDITURES

1.	Diamond DrillingJuly 5-8, 2005 and August 9-12, 2005	
	246.2 m @ an all-inclusive cost of \$78.72/m\$19,3	380.86
2	Core LoggingSeptember 16-17, 2005	
۷.		
	G. Bysouth - 16 hrs @\$60/hr\$9	960.00
3.	Report Preparation	
	G. Bysouth - 15 hrs @\$60/hr\$9	900.00
4.	Camp Costs\$	500.00
	Total Cost of Drilling \$21.7	40.86

ba The

Garry D.[/]Bysouth Geologist

Diamond Drill Report on the Carlson Claim Group, January 2006

8

REFERENCES

Duffel S. and Souther J.G., 1964. Geology of Terrace Map - Area British Columbia. Geological Survey of Canada. Map 1136A.

Gareau S.A., G.J. Woodsworth, and M. Ricki, 1997 Regional Geology of the Northeastern Quadrant of Terrace Map Area, West-Central B.C.; <u>in</u> Current Research 1997-A; Geological Survey of Canada.

Bysouth G.D. and Kurz G.W., 2003. Prospecting Report on the Carlson Claim Group, British Columbia Assessment Report.

Bysouth G.D., 2004. Geological Report on the Carlson Claim Group, British Columbia Assessment Report.

Bysouth G.D., 2005. Geochemical Survey Report on the Carlson Claim Group, British Columbia Assessment Report.

APPENDIX A

STATEMENT OF QUALIFICATIONS - Garry D. Bysouth

I, Garry D. Bysouth, of Boswell, British Columbia, do certify that:

- 1. I am a geologist.
- 2. I am a graduate of the University of British Columbia with a B.Sc. Degree in Geology (1966).
- From 1966 to the present I have been engaged in mining and exploration geology in British Columbia.
- 4. I have logged the diamond drill core described in this report, and have geologically mapped the surface area relevant to the diamond drilling.

Garry D. Bysouth Geologist

APPENDIX B

LIST OF ABBREVIATIONS

,

alt'n	alteration
arseno	arsenopyrite
bx	broken rock
carb	.undefined carbonate minerals
ср	chalcopyrite
gal	galena
ру	pyrite
pyr	pyrrhotite
qtz	quartz
rx	.rock
sphal	sphalerite
()	minor concentration
ер	epidote
chl	chlorite

APPENDIX C

ŝ

restant from a street, or a

DIAMOND DRILL LOGS

LOCATION Carlson Gr				UTM	+ef. + 0 4" _	606 3	340 N	······································	CORE	2 312	E	BO			•
DATE COLLARED July 5, 1 (drill breakdown	2005 1 July	LENG	96m		THRE .	<u>54 II</u>	74 E		DAT		Sept	16,2	005		<u>.</u>
DATE COMPLETED Aug. 9	2005	5/ <i>1</i> 2	<u> </u>	ELSYA	TION _	<u>574</u>	<u>m.</u>	. <u>.</u>	L060		17 <u>G</u>	arry I	<u>). Bys</u>	outh	•
GEOLOGY	FOLN.	OSPIN	MINERALIZATION	REMARKS	aloca	% 800	% SULF	SAMPLE No.		A 3.	SAY	VALU	es		
Casing to 4.6m	-														
White Granodiorite	┢╴	6.0		WK line to 18.	4.6	100	1.5								
(+.6-20.9m)	 			WA UN. ID ISI	60		<u>}</u>								
35% at as 2-3mm ovoid arms 5-10% bio as regard plates t numor chil. his relicts	- -	9.0					.5		·						
almin long l	4				વત	100	╆────								
250 % white feldspar as subhedral to annedrol	- -	12.0	30° 3mm qt3-maq			100	• 5								
prisme up to 5 mm long	┣ ⊮_	12.0			12.2		}								
. 50% assessory pyrrhotite overall frech hard granitic			clay lined joints			93	د ،							1	i
textured rx.	┝┥╼╍╼╍╸	15.0	Duy men joints		15.2		<u> </u>	 							
	F.					90	.5								
		18.0			18.3		<u> </u>							e	
texture becomes porphyritic s contact is approached 20.9 m	Ţ					90	.5	•							
Dark Grey Hornfels		<u>e</u>		sharp contact	21.3		<u> </u>								
(20.9 - 23 m)						80	<i><</i> .5					•			
Grey Granachiorite	<u>ا</u>	24			24.3	00		ļ							· ·
a border phase of above	i	-					٢,5								4
Hornfels (26.5-35.8m)		27				80				·					
Seguence of bedded	80				27.4		1.								
Sequence of bedded argillite and greywacke dork - light grey	1	30	80° . scm qtz		1	95	2.5								

EXPLORATION DIAMOND DRILL LOG

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SCALE of LOG	0			EXPLORAT	ION DIAMON			~~~~	- н	OLE		05-1			•f.	3_
Geology John Dermin MuserAcitation REMARKS Suboxic RC But S Ac. 33 33 33 33 33 33 33 33 35 33 33 33 33 33 33 33 35 33 33 33 33 33 33 33 35 36 32 33 33 33 33 33 35 36 36 34 34 34 34 34 35 38 32 34 34 34 34 34 35 39 32 34 34 34 35 35 35 35 39 32 32 35 35 35 35 36 36 35 35 36 36 35 35 35 36 <t< th=""><th></th><th></th><th></th><th></th><th>•</th><th></th><th></th><th>%</th><th>%</th><th>SAMPLE</th><th></th><th>AJ.</th><th>SAY</th><th>VALU</th><th>ES.</th><th>r</th><th></th></t<>					•			%	%	SAMPLE		AJ.	SAY	VALU	ES.	r	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GEOLOGY	FOLN.	DEPTH		MINERALIZATION	REMARKS											
35.6m = 33.5 White Granodiante $35.6m = 33.5$ $35.6m = 33.5$ $95 = 4.5$ 9		-		Π	·		30.5										,
$33.3 \\ 33.5 \\ $			7					95	۲, ۲						ľ		
35.8 m $35.8 m$ 3			32					1.									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A		Ħ			33.5						<u> </u>				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	•	11					2.5				ł				
White Granoclibrite $\frac{(35.8 - 43.2m)}{(35.8 - 43.2m)}$ as above $\frac{42}{42}$ $\frac{42}{42}$	35.8m	-		1				95		· ·							1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	White Granocliorite	1	- 38-	Ħ	,		36.6						1				
as above $\frac{1}{42}$ $\frac{39}{42}$ $\frac{95}{100}$	(358-43.2m)		•	11		•			1.5	1			1				İ
$\frac{42}{42}$ $\frac{42}{4}$ $\frac{42}{42}$ $\frac{42}{4}$ $\frac{42}{4}$ $\frac{42}{4}$ $\frac{42}{4}$ $\frac{42}{4}$ $\frac{42}{4}$ $\frac{42}{4}$ $\frac{42}{4}$ \frac	as above	ł	20 -	11				95				1	1				
$\frac{13 \cdot 2}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{142}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 46 \cdot 10n) + 42}$ $\frac{143}{(43 $		+	1 21	Ħ			59.6			1		<u>├</u> ──	+	1			
$\frac{13 \cdot 2}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{142}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 45 \cdot 10n) + 42}$ $\frac{143}{(43 \cdot 2 - 46 \cdot 10n) + 42}$ $\frac{143}{(43 $		₁⊢ I	•	11					.5					1	•		· ·
$\frac{13 \cdot 2}{(43 \cdot 2 - 43 \cdot 7 \cdot m) \cdot 4}$ $\frac{12 \cdot 7}{(43 \cdot 2 - 43 \cdot 7 \cdot m) \cdot m}$ $\frac{145}{(43 \cdot 2 - 43 \cdot 7 \cdot m) \cdot m}$ $\frac{145}{(43 \cdot 2 - 43 \cdot 7 \cdot m) \cdot m}$ $\frac{145}{(43 \cdot 2 - 43 \cdot 7 \cdot m) \cdot m}$ $\frac{145}{(43 \cdot 2 - 43 \cdot 7 \cdot m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyrr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ $\frac{170 \ 1 \text{ Im pyr.}}{(5 \cdot 6 \cdot 1 + m) \cdot m}$ \frac	1	+	1	11				100						Í	1		ł
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 		┢╋			42.7			+	 		+				
$\frac{300}{(43.7-45.7m)} + 45$ $\frac{45}{(45.7-50.8m)} + 45$ $\frac{45}{(45.7-50.8m)} + 45$ $\frac{100}{(45.7-50.8m)} + 45$ $\frac{100}{(45.7-50.8m)} + 45$ $\frac{100}{(50.8-56m)} + 48$ $\frac{100}{(50.8-56m)} + 51$ $\frac{100}{($			<u> </u>	╉╂					1,.	1	·	ļ				ľ.	
dk. grey hard dense rx $\frac{1}{1000}$ with outid perphyrablasty $\frac{1}{1000}$ $\frac{1}{10000}$ $\frac{1}{1000}$ $\frac{1}$	Spotted Horntels	-		$\{ \}$				100	1 < , 2	ł		1.1			1		
With could perphytocollastar of white feldspar? 45.7 White Granodiorite (45.7 - 50.8 m) as above 52.8 m set 51 Spatted. Hornfels * (50.8 - 56 m) as above (see notes at cal of log) White Granodiorite (50.8 - 56 m) as above (see notes at cal of log) Sem so Sem so (50.8 - 56 m) (50.8 - 56 m)	(43.2 - 45. Tm) *		42	++		· · ·	4.7			+		┼╌──		+	ł		+
White Grandolorite * * 503 *	ok, grey hard dense in	2-	+	甘	70 IMM PYPT.		13.0	1									
White Grandolorite *	of white felds our?	÷-		-KI	15 3mn þýrt. 2 mm Dunn (co										1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		7	48	++			-	18	·			ł					╂──
as above Som ise SI Spatted. Harnfels *	White Grandcubrite	1		41													
Spatted. Hamfels * (50.8-56m) as above (see notes at cal of leg) Nelhite Grandodiarite . (56-61.4m) as above except the rx become porphyritic at contacts with rounded plag. phenocrysts 61.8 V steep (ns*) carb vein system almost vertical contacts here all contacts here assimilation of contactad rx. 90 51.8 V (.5 90 51.8 V 90 51.8 V 51.8 V	45, (- 50.0m)	<u>+</u>	1.	41		wrong	50.3	1.3	-1,2		1	1	1				
(50.8-56 m) % steep (*s*) carb Contacts 90 as. above (see notes 54 vein system 61 at cad of leg) 56 m 20° 54.9 Alhite Granodiarite 4 57 and above are . (56-61.4 m) 57 and above are 98 as above except the 57 51.9 57.9 as above except the 57 51.9 57.9 rx become porphyritic at 57.9 60 ghenocrysts 60 60		5	151	Ħ				ĸ						+			_
(50.8-56 m) % steep (*s*) carb Contacts as. above (see notes 54 % vein system Contacts at cad of leg) 56 m 20° 81 Alhite Granodiarite 4 57 Alhite Granodiarite 57 and above are . (56-61.4 m) 57 31 and above are as above except the 57 51 and above are rx become porphyritic at 57 60 (add above are to the	_Spotted_ Horntels *			- 1		almost vertical	51.8	↓ *	-		1.		ŀ			1	
at and of log) 56m 20" all contacts here and above are . 98 <.s				17	steep (~s*) carb		1		<.5								
Valbite Granodiarite + 57 all contacts here . (56-61.4m) + 57 and above are 98 as above except the + Sharp with little 57.9 rx become porphyritic at + - - contacts with rounded plag. + - - phenocrysts + - -	as above (see notes	<u> </u>	54	n	VEIR SYSTEM		-	90								<u> </u>	<u> </u>
Valbite Granodiarite + 57 all contacts here . (56-61.4m) + 57 and above are 98 as above except the + Sharp with little 57.9 rx become porphyritic at + - - contacts with rounded plag. + - - phenocrysts + - -	at end of log) 56m	200		11			54.9		_			1				· ·	· ·
. (56-61.4 m) 1 57 and above are 98 as above except the 1 Sharp with little 57.9 rx become porphyritic at 1 60 phenocrysts 60 60	White Granodiocite	+L]]					<.5							· ·	
as above except the the string sharp with little assimilation of contacts with rounded plag. phenocrysts Glam to Glam		+	57	\square			· ·	98									
rx become porphyritic at contacts with rounded plag. phenocrysts 61. 2- 2- 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5		+				Sharp with little	\$7.9										
contacts with rounded plag. 4 60 phenocrysts 61 61 70 70 70 70 70 70 70 70 70 70		ŧ٢		71		assimilation of			- ∠.s					'			
phenocrysts 61.4 61.	contacts with rounded plag.	1	60	71				98					1				
61.4m 70 90 <.5	phenocrysts	+		T			61										1
		70		1				+	- <.5		1 .						
			63	11				98			1						

٦)

EXPLORATION DIAMOND DRILL LOG

SCALE of LOG						7				022		SRY		-	¥	
							%	%	SAMPLE		- 45	2 AY	VALG	<u> </u>		
GEOLOGY	FOLN	DEPTH		MINERALIZATION	REMARKS	Grock	REC	BULF	No.							
Araillite Sequence	1	1.	11			64									.	•
Argillite Sequence (61.4-86.4)	1]					2.5								
normal hornfelsic contact	<u>ال</u>	66					100									·
			Π			67										
to \sim com then grades to	1	· ·	11			·		<.5				ł				
a sequence of grey-green, dk grey and black argillite with increasing softwest from	- F	69	11				100		1 () ()					· ·		•
all grey and Duick asguine	1		\mathbf{T}	•		70.1			1			1	1		1	
contact.	*		11		•	1011		2.5	1				1	1	•	
	}	72					100			1	1	ł			1	
Note: the spotted hornfels :		1	++			┫					<u> </u>	+		<u> </u>		<u> </u>
appears as a granular ra under magnification with	. -	·	11			73-2		1,0			{	1		1		· ·
under magnification with	}		++			1		2,5				1			1	1
porphyroblasts of white spar,		75	÷,			4	95	 		 	 				+	┢
black hornblende and bio.		. I · ·	-131			76.2	<u> </u>		1						ł	
in a finer seriate tex. matrix	-		-U					2.5			1					
and is thus a high grade hornfel.	3	78	-141-			1	95			· ·	ļ		<u> </u>			<u> </u>
black hornblende and bio. in a finer serials tex. matrix and is thus a high grade hornfelr. The granitic side of the control can be taken as 4.6-20.9m; the arguillite side as 61.4-EOH with that in between as complex contact zore.			X	cal. stkuks.		79.3						1			I	1 ·
argullite side as GI.4-EOH with	۶.	1	K	>		14.5	1	4.5								
that in between as complex (81	72				95									
			K)		٦	13							1	T	T
black graphitic).			1/]·			82.3		4.5			1					
argullite		84	41							ł					li i	
		1-87-	++			-	95			1	+	1	+			<u>+</u>
	-		-			85.4	1			l ·		ľ				
864	-		41					<.5	I .		1				1 .	1
Andeilie/Basalt Unit		87	++			-	95			+	+					+
(86.4 - 95 m)	Ĭ,		-11			88.4					1			1	· ·	•
dk green by with clots and	Ĺ		11			-	1	- <.5		1					· ·	
somes of ep, and with	r	90				·	95									1
somes and patches of	v		11				1 15			1						
dioritic - looking tx.	1,1		11			91.5		- 4.5					'			
		93	11		0	1	+	1				1		·		
			11			tour	P 95	-		1						1
	й н		-		$\square \square \square$	94.5	·	- 2.5								
95			-	E a b b c / 	hang D. +		.90	1		•						
Maroon Argillite 95.96m	4	96		E.O.H 96 m	100	96		_		1	1	_				<u> </u>

SCALE of LOG _____

HOLE NO_05-1 Page 3 of 3

DATE COLLARED Aug. 10	<u>,</u>	2005	L	CNO	TH 150.2 m					м	COA	ری چر	05_2 2e Sept	BG)		
DATE COMPLETED AUG. 12	2 <u>,</u> 2	.005	0	ج ، 	90°	ELOV							в <i>у</i> <u></u>				-
GEOLOGY	┯┥	FOLN.	061	774	MINERALIZATION	REMARKS	BLOCK	% REC	% SULF	SAMPLE NO.	-	<u> </u>	SAY	VAL	ues.	T	T
<u>Casing To 5.0m</u> <u>Andesite (50-12.5m)</u>	ļļ		5.0	_			5.m									 	+
the green, saus, - chl. altn. lots and zones of ep-in laces a bx. texture. H 5-6	ÿ		<u>.6.0</u>	-1/	broken 30me 10° 3mm Cp-Py) dissen 10° 2mm Cp-Py (along	Poss. fault limonite to 2.5m		30		7			ļ				L
At 9.2-12.5m-lighter color	4		٥.٥		10° 2mm CP-Py) trocs	+ border of alt'n zone	<u>7.6 m</u>	95	140	> Min	craliz	ed s	ection	5-0-	17.5m		
t 6-7, sl. pinkish cast, round ric reliets (augite -> chl. ?); and healed tex with frag's	1 1			ť	associated coarse cp	broken rx heal by gts, then c	ed .	9.0	40%				e gra	de .8	0 0/0	Ċu	\vdash
and healed fex with frag's atrix same. (silicification??)12.5 ault Zone (12.5-13.4m)			12.0		80°.50m Mo-cp 60°.50m Mo-cp broken rx, 99 Carb Vening) and then carb.	12.5	90						<u>.1</u>	00 0/0	M • 52	
rey Aroillite (13.4. 28m)	77		15.0	-X	Strong Carb. veining	63 % lost core	13.4	35	٤،5								
ned dk grey argill with raphitic partings. H.3-5,	Ĩ	10-20		-/		Ry Z. Solo thru	16.8	100									_
oln mainly 10-20°.			18m	$\frac{1}{1}$				98	<.5								
a few Immscm reddish		10-20	21 m]	good solid		19.5		<.5								
H-7 - poss. acidic vol.	-	10-20			Carb, Veinlets		22.3	85									
· · · ·		2	2 <u>1 m</u>			-		100	<.5					ſ			,
ļ				11	· · · · · · · · · · · · · · · · · · ·		25.3		<.5								
28 m	+	2	27 m	╂┼				90									
Spotted Grey Argillite	\mathbf{F}	3	30 m				<u>28.4</u> 30.5	95	<.s								

 $\overline{}$

÷

•

ì

SCALE of LOG			·····					H-	01E			P		•f.	5
GEOLOGY	Fold.	DEFTH	MINERALIZATION	REMARKS	BLOCKS	% REC	% BULF	SAMPLE No.		A33	AY	VALU	e <u>s</u>		
same unit, but with s rounded 2-5 cm. dia. clots s	-	33	random cal. Veinlets	contact gradational	32.3	95	۰,5								•
of dk grey material H 4-3 for overall rx but the clots are	-			fine py as dissent's and	<u>35.1</u>	90	•5								<u>.</u>
Grey Acquilite (32-418)	- -		S small fault ~.3m gg + bx / 20°, 4 mm - qt3-carb (pr)	Fractures fractures + green clay seivage	.38.1	55	1.0								
Same as 12.5-28m 41.8	-		highly broken core in place healed by cal.	this may be a fault sone	41.2	75	.5								
Basalt/Andesite (41.8-76.1m) - Same as 5-9.2m - Pass- a volcaric breccia		45			44.2	85	1-2		 .						 ,
in places - ep commons as clots and zones often forming 30-40 %		48	25°,5mm qt3-ep cut by 5° 3mm carb vein		47.2	98	1-2								•
of rx - pervasive dissem-py and common veinlets + hle's of py	<u>}</u>	51	bx 20°, Scw frqs y carb+.	minor cp with The py.	50.3	98	1-2								
- cal veins + veinlets common Throughout - barren			V 5-10° bir zone healed V by gtz + loter cal		58.4	98	1-2					1			
		57	40° 1 cm qt3-cal with halo of dissen cp) +x resembles a } fine grn cliorit	- 	100	2.0							·	
		60	handon blebs S)cp. Žbx healed by carb)	59.5	100	1.0								
		42	/ 40° .3cm chl-py x2 (1.2 cm 10° - 9tz / 35° .2cm - 9tz		61.5	100	1-2								

EXPLORATION DIAMOND DRILL LOG

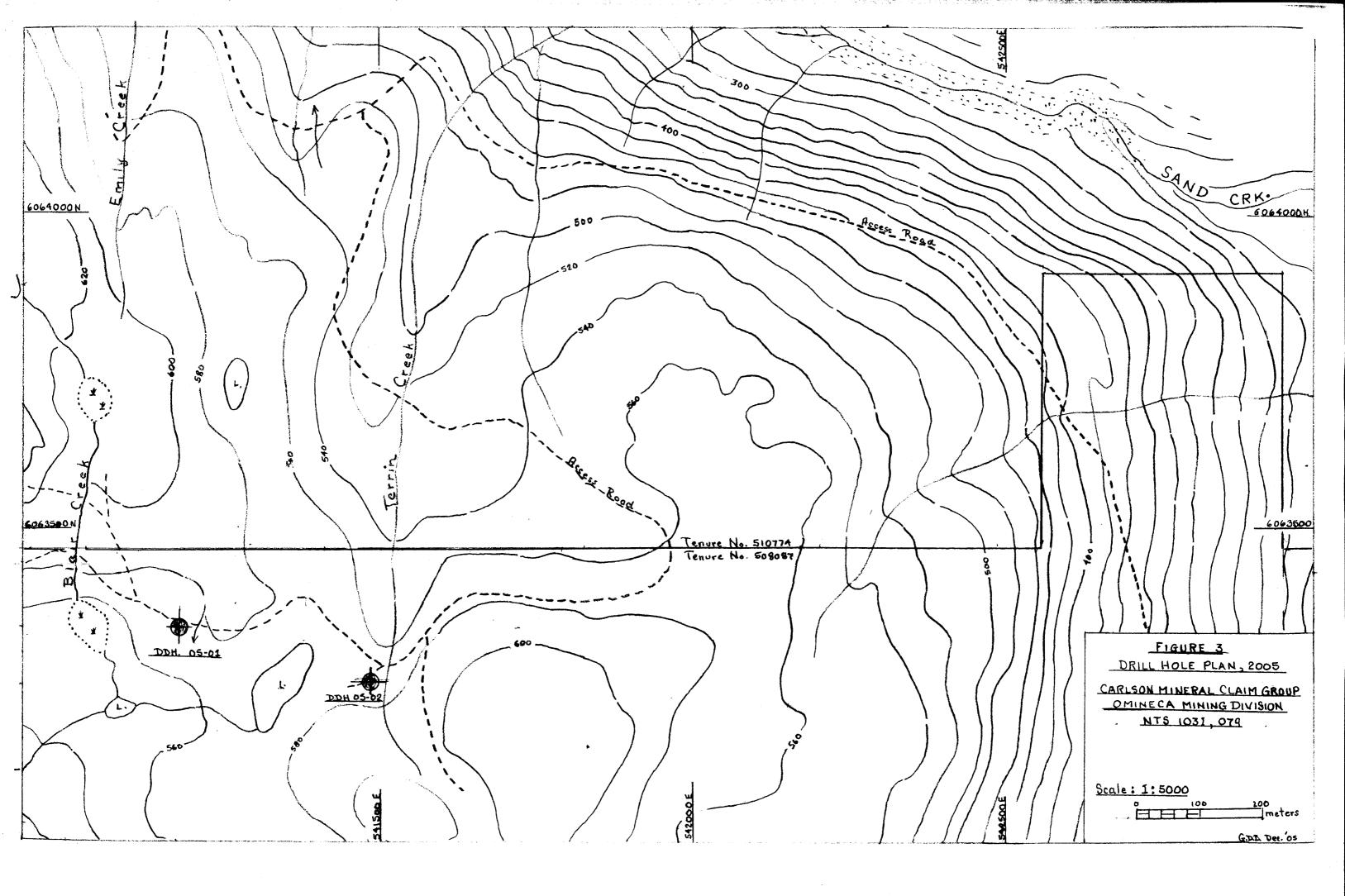
EXPLORATION DIAMOND DRILL LOG

HOLE NO 05-2 Page 3 of 5 ASSAY VALUES % 1. SAMPLE FOLN. DEPTH GEOLOGY BLOCK REC MINERALIZATION REMARKS SULF No. 80°10 cm ep-chi eal. stKwks 80 scn ep-chi 15° i.scm ep-chi 95 1.0 Maches of his py 65.5 rx @ 62-65.2 may be a 66 diabase dytre with saus. steep stkuk of cal vallet 95 Phenocrysts. .5 5° 2cm Cal 68.6 stiente cal 10-5" 2cm stuk cal k- Webs of Py (CP) 98 1/ 15 . son cp-carba - clots of cp in carb 71.6 .5 72 To hic cp to .2 cm gtz.cal col cuts gtz 50 3.cm cal 85 <.5 75 74.7 fault 10 ? .5m qq+bx 76.1 80 40° 2 cm cal ty in places Feldspor Porphyry Dyke +5-6 (76.1-81.4) <.5 clay altid. 77.7 72 5° 1-3 cm cal H 5-6 # the fragmental pink spar phenos Z-3mm dia tex. is healed by 90 <5 in ophanitic pinkislitan . grey-green mineral 80.8 Âί. matrix; strong Frag. texture Basalt/Andesite (81.4-98m) 85 ...5 highly altered and replaced 30° 1.4 m ep zone 84 83-8 by ep. - highly frac. and 30ne of hard, ,46-7, fine grn. diorite ? 186.9 mainly healed by cal and in 101 bx. ep 3one 85 places call-hem healed by 97 with the ep. cal, hem minor blebs of 1.0 100 cp in ep • · . 89.9 90 60° 3 cm ep zone carb stkwk. 160 **3** 93 93 600 . 3m Ep 3one Saussaritized diorite 95 <.5 stuk cal veinlets

96

SCALE of LOG _____

EXPLOBATION DIAMOND DRILL LOG


SCALE of LOG _____

HOLE NO 05-2 Page tof 5

GEOLOGYFOLM DEFINAUVERALIZATIONREMARKSSUCA REGSULFAG.18Contact $\neg 20^{\circ}$ snorp. sl. chilling of intrustice98<5Circonite (98-100.8m)Pink change of antrusticePink change of antrusticeContact $\neg 20^{\circ}$ snorp. sl. chilling of intrusticePink change of antrusticePink change of antrustice				• ,			%	%	SAMPLE		AS.	SRY	VALU	ES.		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GEOLOGY	FOLN.	QEPTH	MINERALIZATION	REMARKS	فتمطع										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		†		T							_					•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1 1		1.1.1.1	1 1	Qo	25				Į į		ŀ		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Contact ~70° sha	rp. Sl. Chilling	ł.	10					1	[]	1	1	
do of pulk Spart addisonal to b inate i grey feldspar parp of pilk phases and i grey deline and	<u>Granite (98-100.8m)</u>		99		OT IRCTOSINE	J ð'I						<u> </u>				
$K^{(sper)}_{sper}_{sp$	Pinkish med an granitic rock	L						·							l l	
-All just 28 weak - 1 <td>60 0/0 pink spar-assumed to b</td> <td>100.8 m</td> <td></td> <td></td> <td></td> <td>1 · 1</td> <td>98</td> <td><.5</td> <td></td> <td></td> <td></td> <td>ſ</td> <td></td> <td></td> <td>1</td> <td></td>	60 0/0 pink spar-assumed to b	100.8 m				1 · 1	98	<.5				ſ			1	
-All just 28 weak - 1 <td>K'spar, 30% gts and Soloplag.</td> <td><u> </u></td> <td>102</td> <td>f grey feldspar porp</td> <td>ight grey instric</td> <td>102.1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ł –</td> <td>1 </td> <td>· ·</td> <td> }</td> <td>•</td>	K'spar, 30% gts and Soloplag.	<u> </u>	102	f grey feldspar porp	ight grey instric	102.1						ł –	1	· ·	}	•
Iteal in allon ////////////////////////////////////	his or two Slokes Menle		}	•								1				
Park Alaskitz (100.8-150-2)105 2 the 4 referage.Inter of the second the dark same (berring dame).pale pink a phoninke reskof (6 - 7; hut most of theof the first same clay-cart if is also cart by 108-2The number of the second for the	Kastin alter	Γ		1 bx - motion of arees			98	.5				1	1 1			
Hink Alaskie (100.8-150.2)Intervent (100.2)Low (100.2)Low (100.2)the unaltered rock is a pale pink for rock is a phonic rock is a phonic rock is an object and the same (brir?)90:5-10of (t 6.7; but most of the sector defined and the same (brir?)108is hen grees clay-cart it is also cut brir?90sector defined and breacted is composed of fractured and breacted in the same (brir?)108is hen grees clay-cart it is also cut brir?90rock is which tractures and preceded and breact is and breacted in the same breacted in the same breacted in the same of the same of the same defined is a first is also cut brir?108is is i				4 clay 4 rx Frages.			•••					1	i			
the unaltered rock is a pair is a solution in the characteristic matrix $2 = 120$ is an arrival the solution is a point in the solution is a solution in the solution is a solution is	Pink Alaskite (160.8-150.2)			· · · · · · · · · · · · · · · · · · ·		105.2		}			<u> </u>		{····-			···
pale pink aphanitic rock of 4 6.7; but most of the section is camposed of fractured and precented trock is while fractures and breeciar have been filled with green clay, or ep-qty, and ground-up tx fract. The very 114 b bolks and 117 b request charter 118 b is a fraction 119 b is a fraction 110 b is a fraction 111 b bolks and 112 b is a fraction 112 b is a fraction 112 b is a fraction 113 b is a fraction 114 b of the 115 c is a fraction 115 c is a fraction 116 b is a fraction 117 b is a fraction 118 b is a fraction 119 c is a fraction 110 b is a fraction 119 c is a fraction 110 c is a fraction 110 c is a fraction 110 c is a fraction 111 c is a fraction 112 c is a fraction 113 c is a fraction 114 c is a fraction 115 c is a fraction 115 c is a fraction 116 c is a fraction 117 c is a fraction 118 c is a fraction 119 c is a fraction 110 c is a fraction 110 c is a fraction 110 c is a fraction 111 c is a fraction 112 c is a fraction 113 c is a fraction 114 c is a fraction 115 c is a fraction 115 c is a fraction 116 c is a fraction 117 c is a fraction 118 c is a fraction 119 c is a fraction 110 c is a fraction 111 c is a fraction 112 c is a fraction 112 c is a fraction 113 c is a fraction 114 c is a fraction 115 c is a fraction 115 c is a fraction 116 c is a fraction 117 c is a fraction 118 c is a fraction 119 c is a fraction 110 c is a fraction 111 c is a fraction 112 c is a fraction 112 c is	the unaltered rock is a	F		30, 2en, gtz-co/or	in and around the					ł		1	ł '			· .
of (t 6-7; but most of the section. is composed of fractured and breecated track in which tractures and breecia: have been filled with green clay, or ep-gly, and ground-up rx frag. The very fill as sime chi-py xz ground-up rx frag. The very fill as sime chi-py xz ground-up rx frag. The very fill as sime chi-py xz irregular chi-carb-py very patcher of dy or geographic the hole fraction frag. of the hole fraction frag. of the approximation of the provide Bat at the end of the hole fraction frag. of the hole fraction fr	pale pink aphanitic rock	-			-	4	90	·5-LO	ł	!		1				
section is composed of fractured and brecculted. trock in which fractures and breccult have beer filled with green clay, or ep-qty, and green clay on slipe for the tractive bree for th	E 1+ 6-7; but most of the -		801		it is also cut by	108.2					Į	<u> </u>				
fractured and breechted rock in which fractures and breechas have beer filled with green clay, or ep-gty, and green clay or sp-gty, and green clay on slips feldsper parp. - composed of read- of spent clay of green clay on slips - composed of read- green clay on slips - composed of green draw of green clay on slips - composed of read- green clay on slips - composed of read- green clay on slips - composed of read- - composed of green draw of - composed of read- - composed of	sonting is composed of				hie to 2mm veine	4		1		•	1					
tock in which fractures and breecia: have been filled with green clay, or ep-qty, and ground-up tx fragr. The very life green clay, or ep-qty, and ground-up tx fragr. The very life green the transformed induces in 2 in green clay on stripe of the fractures induces induces philes introduce of the rock a gree-area as a stilecoust philes introduce brocking for each introduce brocking for each introduce of the stilecoust of the string index of the rock a gree-area as a stilecoust for each introduce brocking for each introduce fragg of part for green clay on slips for each introduce fragg of part for each in the introduce fragg of part for each introduce fragg of part for green clay on slips for each in the introduce fragg of part for each in the introduce fragg of part for each in the introduce for for each in the introduce of for each in the introduce fragg of part for each in the introduce for for each in the introduce for for each in the introduce fragg of for each in the introduce for for each in the				•	of 9t3, 5-50 and	104.8	100	.5-1.0		1 1	ł	Į	l			
breccia: have been filled with green clay, or ep-qtz, and ground-up tx thrag. The very tine qre nature of the tx and of the fracturing index ideal of the fracturing index ideal of the fracturing index ideal tiffe. Overall much of the pinkist to qrei-qareenish altered dyle. But at the end of the hole from 145 - 150.2 m, it, passes into a distinctive breezed formed during the intrusion of pack is in a watrix of white phenocrysts & ima and to sem it due stime and the hole stime and of the the set of of the traps of pink start, cheety "rock of various shades of grey - all imm to sem it due stime and the hole fire of yery - all imm to sem it due stime and the hole fire of yery - all imm to sem it due stime and the hole fire of grey - all imm to sem it due stime and the hole fire of yery - all imm to sem it due stime and the hole fire of yery - all imm to sem it due stime and the hole fire of yery - all imm to sem it due stime and the rock is how of H = 7. Hence the the how of H = 7. Hence the how of H	practived what precedences and	Γ	Lui T	A protect mane	minor slips or	ļ	[1		Ι.		1	1			
green clay, or ep-qtz, and qround-up tx thaqr. The Very114 112.8 .5-10Ground-up tx thaqr. The Very114 114 114 112.8 .5-10Che are nature of the tx and of the fracturing inakes ideat. cliffe. Overall makes ideat. requiar chl-carb-py vein + patcher100.5Che appears as a siliceous pinkisk to grey-greenisk altered dyke. But at the end of formed during the intrusion precisa. formed during the intrusion of the require clay on slips118.3.5120 117 irregular chl-carb-py vein + patcher95.5120 117 irregular chl-carb-py vein + patcher95120 118.3 118.3 .5120 118.3 119.5 .5120 118.3 119.5 .5120 112.6 112.5 .5120 122.6 122.6 .5121 120 122.6 .5122.6 122.6 122.6 .5123 120 122.6 .5124 126 122.6 .5125 126 126 .5126 126 126 .5127 126 122.6 .5128 126 122.6 .5129 126 126 .5120 126 126 .5120 126 126 .5121 118.4 126 .5123 118.4 .5.5124 118.4 .6.5125	FOCK WE WINDE Frankled with			a so icm ste		1	65		<u> </u>	 		†	f			
ground-up rx fragr. The very 114 dk zone (inclusion ²) fine grunature of the rx and 30° icm qtz 100 of the fracturing makes liked. 117 inregular chl-carb-pr 115.8 cliff Overall much of the 117 inregular chl-carb-pr venu + patcher rock appears as a siliceous 117 inregular chl-carb-pr venu + patcher prinkisk to grey-areenish bx. healed by chl+ 118.3 118.3 altered clyke. But at the end of file on slips 119.5 50 posses with a difference 120 feldspar porp. 119.5 50 formed during the intrusion of rock a firege of 120 feldspar porp. 122.6 122.6 various shades of grey - all Imm 120 green clay on slips 122.6 122.6 various shades of grey - all Imm j grey green clay on slips 123.6 of white phenocrysts < inva and		F				112.9	!			1		1	1			•
fine que nature of the rx and of the fracturing indues ideal. 130° icm qty ishi-py hles 100 alfb. Overall much of the clifb. Overall much of the rock appears as a siliceous pinkeish to qrcy-qreenish altered dyke. But at the end of the hole from 145 - 150.2 m, it 117 irregular chl-carb-py vens + patches gs 118.8 .5 pinkeish to qrcy-qreenish altered dyke. But at the end of the hole from 145 - 150.2 m, it 120 118.3 green clay on slips 118.3 118.3 formed during the intrusion of rock- ie an intrusion of rock of neonderl frags of ynk kisper?, cherty rock of various shades of grey - all Imm of white phenocrysts < imu and of white phenocrysts < imu and of ubite phenocrysts < imu and of ubite phenocrysts < imu and of ubite phenocrysts < imu and following the rock is hard HZT. 120	green cuy, or ep-grz, und	F	-			118.8		1.2-1.0		1			i i			
tive gru nature of the rx and of the fracturing induces fideal. cliff. Overall much of the rock appears as a siliceous pinkesk to gree-optication the hole from 145 - 150.2 m, it, passes into a distinctive breecia formed during the intrusion of rock of pask Kspar?, cherty" rock of various shades of grey - all Imm of white phenocrysts clima and of white phenocrysts clima	ground-up tx trags. The very	+				4	100	J		ļ	<u> </u>	<u> </u>	<u></u>			
cliff. Overall much of the 117 irregular chl-carb-py veins + patches rock appears as a siliceous 117 irregular chl-carb-py veins + patches pinleish ta groy-areenish a bx. healed by chl+ altered clyke. But at the end of P the hole from 145 - 150.2 m, it // 120 passes into a distinctive breezeia 120 formed during the intrusion of rockia. 120 formed during the intrusion breezeia. 120 rock is an intrusion breezeia. 123 formed during the intrusion and the formation breezeia. 123 formed during the intrusion breezeia. 123 formed during the intrusion and the formation breezeia. 123 formed during the intrusion breezeia. 123 formed during the intrusion breezeia. 123 formed during of the intrusion breezeia. 123 formed during a formation breezeia. 123 green clay an ships 122.6 green clay an ships 125.6 formed for the fore	fine gra nature of the rx and	F				1	100	1		1	1	1	1			-
rock appears as a Siliceous pinkisk to grey-areenisk altered dyke. But at the end of the hole from 145 - 150.2 m, it, passes into a distrinctive "breecia" formed during the intrusion of rock- ie, an intrusion breecia. - Composed of rounder frags of pink kspar?, cheerty rock of i 23 / ii 23 / ii 2 a phanite to sem in dia set in a matrix of white phenocrysts < Inma and siliceous aphanitic groundmass The rock is hard H=7. Passes is hard H=7. III - III - III - III - IIII bx. healed by chlt PI IIII - IIII bx. healed by chlt PI IIII - IIII bx. healed by chlt PI IIII - IIII IIII - IIII IIII - IIII IIII - IIII IIII - IIIII IIII - IIIII IIII - IIIIIII IIII - IIIIIIIIII	of the tracturing makes (dea).	L		4		115.8	I	.5		1		1	1			
pinkisk to grey-areenisk altered dyke. But at the end of the hole from 145-150.2 m, it, passes into a distinctive breecia formed during the intrusion of rock- ie an intrusion breecia. - Composed of rounderl frags of pink Kspar?, cheerty rock of to 1 cm in dia set in a matrix of white phenocrysts < lime and siliceous aphanitic groundmass The rock is hard HZ7. bx. healed by chlt Pr 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 	rock concers as a siliceous			irregular chl-carb-pr	veins + patches	E	1		1	ł	1	1			ŀ '	
altered dyke. But at the end of the hole from 145-150.2m, it, passes into a distinctive breceia formed during the intrusion of rock-ie, an intrusion breceia. - composed of rounderl frags of pink Kspar?, cheerty rock of various shades of grey - all Imme to 1 cm in dia set in a matrix of white phenocrysts < Imm and siliceous a phanitic groundmass The rock is hard Hž7, 120 120 120 120 120 120 120 120	pinkisk to grey-greenish			to be bealed by child		1	95		†	1	1	1	1			
the hole from 145 - 150.2 m, it , passes into a distinctive breezeig 120 green clay on slips 119.5 50 19.5 10.5 50 19.5 10.5 50 10.5	altered dyke. But at the end of	ſ	1	/ · · · · · · · · · · · · · · · · · · ·		118.3	╆	· 2.2	1		1	ſ	1	} '	1	
Prosses into a distinctive breecea formed during the intrusion precia. - composed of rounded frags of pink Kspar?, cheerty rock of to s cm in dia set in a matrix of white phenocrysts < lime and siliceous aphanitic groundmass The rock is hard HZT, Particular and the set of the s	the hole from 145 - 150.2 m, it ,,	F	•	green clay on slips		119.5	50	1	I .		1	1	1			
rock_ ie, an intrusion breecia. - composed of rounder frage of 1- pink K'spar?, cheerty" rock of 123 + 123 + 112 a Phanitic various shades of grey - all Imm+ to s cm in dia set in a matrix of white phenocrysts < Imm and siliceous aphanitic groundmass The rock is hard HZT, 95 <.5 95 <.5 90	passes into a distinctive breceia	┨━┅━╍╍	1.20	<u>// · · · · · · · · · · · · · · · · · · </u>		-		Ъ			┨───		┨━━━━━			
- composed of rounderly frags of pink Kspar?, cherty" rock of various Shades of grey - all Imm+ to s cm in dia set in a matrix of white phenocrysts < lime and siliceous aphanitic groundmass 126 green clay on slips The rock is hard H=7. 90	tormed during the intrusion of		-	4.2.0.1			0.5		1		1				•	· -
pink Kspar?, cheerty rock of <u>A 123 (12 a Phanite</u> various Shades of grey - all Imm + <u>A</u>) grey to sem in dia set in a matrix of white phenocrysts < Imm and <u>A</u> green clay on slips siliceous aphanitic groundmass <u>126</u> The rock is hard H=7. 90		1	! .	+ teldspar porp			13	<.5	1	1		1				
various shades of grey - all Imm+ to s cm in dia set in a matrix of white phenocrysts < lime and siliceous aphanitic groundmass The rock is hard HZT. 90	pink Kispar? cherty rock of	+ F	123	+ / in a phanitic		. 122.6		4	1	1	1		1	1		
of white phenocrysts < line and qreen clay on slips 125.6	various shades of grey - all Imm	+				1			1	1	1	1.	1	1	 	_
ot while phenocrysts 2 line and sign of green clay on slips 123.6 The rock is hard HZ7. 90		オー	"	H	,	1	95	1 4.5		ĺ	Í		.	1	1	
The rock is hard H=7. 90	ot white phenocrysts & line and	\mathbf{F}	•	green clay on slips	1	125.6			ł	ł		1	i .	ł	1	
		+	126			-	<u> </u>	Ţ					<u> </u>			
inclusion.	I'VE NOCK is hard H= 1.	L I	1.			1	90	1		1				ł		
		L		.7m 8° green ,		127.4	+	<.5							1	
		<u> </u>	129	inclusion.		1		1	1	ľ			1	1		

EXPLOBATION DIAMOND DRILL LOG

SCALE of LOG 1:200 HOLE NO 05-2 Page 5 of 5 ASSAY VALUES % % GAMPLE FOLN. DEPTH GEOLOGY MINERALIZATION GLOCIO REC REMARKS SULF No. 5" Icm Carb vein 98 130.5 system < 5 brown gts. porp. 2 132 50 132-3) irreg. Segregations of grey siliceous material incr. green 40 brown qt3. porp. 2 clay on <.s 100 slips 135.4 40° < 5 80 7 45+80, 3mu+ Sun, 9tx 2 138 138.4 alt'd andesite 町な <.5 95 141 141.5 45 darle zone (chl.?) .5 95 19 ... 144.5 80", 1cm, 973-cmy-py 41 95 . 5 Printrusion preceig? 147 rounded frags Imm - I cm dia d) Pink Kiper and chilled rhyolite? in silicour OFP matrix. 147.6 50 .5 100 0 150 EOH 150.2m 150.2 Note: there is a poss. the Pink alaskite is part of an acidic volcanic seguence and as such, consists of both intruded and extruded tx. ben OBym

