ASSESSMENT REPORT

on

REVERSE CIRCULATION DRILL PROGRAMME MAY-JUNE 2005

at

SPANISH MOUNTAIN PROPERTY,

CARIBOO MINING DISTRICT, BRITISH COLUMBIA

NTS: 93A/11W Latitude 52⁰ 35'N, Longitude 121⁰ 26'W

Owner

Wildrose Resources Ltd. 110-325 Howe St. Vancouver, B.C. V6C 1Z7

R.J.Johnston, P.Geo.

By

January 31, 2006

VOLUME 1 Report Drill Logs Figures

TABLE OF CONTENTS

	Page
Introduction	ĩ
Accessibility, Climate, Local Resources, Infrastructure	
and Physiography	1
Property Description	3
History	5
Geological Setting	11
Regional Geology	11
Property Geology	11
Lithology	11
Structure	13
Alteration	14
Mineralization	14
2005 Work Programme	16
Interpretation and Conclusions	22
Cost Statement	22
Statement of Qualifications	23
References	23

APPENDICES

APPENDIX 1	Drill logs
APPENDIX 2	Analytical Results

LIST OF FIGURES

		Page
Figure 1	Location Map	$\overline{2}$
Figure 2	Claim Map	4
Figure 3	Drill Hole Locations	in pocket
Figure 4	Drill Holes 04SPRC-216, 05SPRC-235	in pocket
Figure 5	Drill Holes 04SPRC-202, 05SPRC-236	in pocket
Figure 6	Drill Hole 05SPRC-237	in pocket
Figure 7	Drill Hole 05SPRC-238	in pocket
Figure 8	Drill Holes 04SPRC-228, 05SPRC-239, 243, 248	in pocket
Figure 9	Drill Holes 04SPRC-205, 05SPRC-240, 241	in pocket
Figure 10	Drill Hole 05SPRC-242	in pocket
Figure 11	Drill Holes 04SPRC-204, 05SPRC-244	in pocket
Figure 12	Drill Holes 04SPRC-221, 229, 05SPRC-245, 246	in pocket
Figure 13	Drill Hole 05SPRC-247	in pocket
Figure 14	Drill Hole 04SPRC-249	in pocket
Figure 15	Drill Hole 05SPRC-250	in pocket

INTRODUCTION

The Spanish Mountain Property is located in the Cariboo Mining District in central BC, six kilometres east of the village of Likely. The property consists of a combination of legacy and converted claims totaling 4295 hectares, which are registered to Wildrose Resources Ltd. The work described in this report was funded by Skygold Ventures Ltd and Wildrose Resources Inc.

The area is situated near the eastern edge of the Quesnel Terrane near its eastern contact with the Omineca Terrane, and is underlain by folded and faulted Triassic sedimentary rocks of the lower Takla Group. Previous work on the Spanish Mountain Property has shown the presence of gold in quartz veins and in disseminated bodies in fine argillaceous rocks.

This report describes a 16 hole, 1677.02 metre, reverse-circulation drill programme which was carried out on the Spanish Mountain property from May 7- June 7, 2005. It was designed as a follow up to encouraging results returned from a similar reverse circulation drill programme in late 2004.

Results from the 2005 drilling can be described as very positive. Nine of the holes returned intervals of over 10 metres of >1g/t Au. The mineralization encountered in 2004 north of the LE pit, was confirmed and extended to over 330 metres from the pit. This zone remains open to the north, east, west and to depth, and further work is required to determine its size and geometry and to understand the controls on its emplacement.

Accessibility, Climate, Local Resources, Infrastructure and Physiography

The Spanish Mountain Property is located approximately six kilometres east of the village of Likely and 70 kilometres northeast of Williams Lake, British Columbia. The property covers the west side of Spanish Mountain and extends from north of Spanish Lake in the north, to the summit of Mount Warren in the south. Elevations range from approximately 910 metres on Spanish Lake up to 1470 metres on Spanish Mountain. Access to the area is provided by a 85 kilometre paved secondary road from 150 Mile House on Highway 97 to Likely, and then for approximately 10 kilometre by the gravel-surfaced Spanish Lake (1300) - Abbott Creek (northern claim area) or Cedar Creek (southern claim area) forestry roads. An extensive network of logging haul roads and skidder trails bisect the claim area, but are mostly unmaintained.

The climate of this area is modified continental, with cold, snowy winters and long warm summers. Being located just east of the BC interior dry belt, the area receives about 40 centimetres of precipitation, with most it falling in the winter as snow.

The village of Likely has basic amenities: a motel and cabins for rent, a corner store, gas pumps and a pub. Several hundred people live in the area with forestry, tourism and placer-gold mining providing the main employment opportunities. Some heavy equipment is available locally for hire but most equipment and supplies are sourced from the regional centre of Williams Lake.

The Spanish Mountain area is located in the Quesnel Highland of the Interior Plateau, an area that is characterised by a subdued and undulating, deeply-dissected topography. Ridge tops and low summits generally range from 1400 to 1800 metres while valley bottoms are commonly found below 1000 metres. This area of the Interior Plateau is part of the Quesnel River drainage that includes Spanish and Cedar Creeks that drain the Spanish Mountain claim area. Quaternary glaciation was extensive in this area with several advances and inter-glacial periods recognized. A general Pleistocene stratigraphy of this area attributes the thick gravels filling most valleys.

Property Description

The Spanish Mountain Property is 4295 hectares in size, and is composed of both legacy and converted claims. The claims are registered in the name of Wildrose Resources Ltd. of Vancouver, BC and are subject to a joint venture agreement with Skygold Ventures Ltd., also of Vancouver.

Claim Name	Record #	Converted	No. of	Area	Expiry	Name of Registration
		Record #	Units	Hectares	Date	Ŭ
CPW	204667		4	100	08.11.01	Wildrose Resources Ltd
ARMADA	373355		18	450	08.01.27	Wildrose Resources Ltd
ARMADA 2	399410		20	500	08.01.27	Wildrose Resources Ltd
ARMADA 4	399411		20	500	08.01.27	Wildrose Resources Ltd
ARMADA 5	399412		20	500	08.01.27	Wildrose Resources Ltd
ARMADA 6	399413		1	25	08.01.25	Wildrose Resources Ltd
ABARINGS (* 1		Converted In 512541			08.01.25	Wildrose Resources Ltd
ARMADA 8	399415		1	25	08.01.26	Wildrose Resources Ltd
ARABADA M		Converted In 512542			08.01.26	Wildrose Resources Ltd
ARMADA 10	399417		1	25	08.01.26	Wildrose Resources Ltd
ARMADA LI		Converted In 512549			08.01.26	Wildrose Resources Ltd
ARMADA 12	399419		1	25	08.01.26	Wildrose Resources Ltd
PESO	204021		9	225	06.11.01	Wildrose Resources Ltd
DON 1	204224		1	25	06.11.01	Wildrose Resources Ltd
DON 2	204225		1	25	06.11.01	Wildrose Resources Ltd
DON 3	204226		1	25	06.11.01	Wildrose Resources Ltd
DON 4	204227		1	25	06.11.01	Wildrose Resources Ltd
1-Mar	204274		20	500	06.11.01	Wildrose Resources Ltd
2-Mar	204275		4	100	06.11.01	Wildrose Resources Ltd
2-Jul	204334		9	225	06.11.01	Wildrose Resources Ltd
MY 1	204727		2	50	06.11.01	Wildrose Resources Ltd
MEY I	205151		20	500	06.11.01	Wildrose Resources Ltd
N.R.1	373415		1	25	07.11.01	Wildrose Resources Ltd
N.B.2	373416	Converted In 512544			07.11.01	Wildrose Resources Ltd
,ð,f; ∣	482300	Converted In 512541 512544 517446			06.08.06	Wildrose Resources Ltd
AG 2	404303		1	25	06.08.06	Wildrose Resources Ltd
	512541		+	118	08.01.25	Wildrose Resources Ltd
	512542			79	08.01.26	Wildrose Resources Ltd
	512544			79	08.11.01	Wildrose Resources Ltd
	512549			79	08.01.26	Wildrose Resources Ltd
	517446			20	08.07.12	Wildrose Resources Ltd
	512547	 	† · · · · · ·	20	06.08.06	Wildrose Resources Ltd
Total				4,295	<u> </u>	
				, .		

Spanish Mountain Claim Status Cariboo Mining Division

History

Placer gold has been mined from the creeks draining Spanish Mountain since before 1921, when rich discoveries were made in Cedar Creek, on the southwest side of the present Spanish Mountain property. In 1933, gold was discovered in quartz veins on the northwest flank of Spanish Mountain. Workings on the property in 1933, which at that time was known as the Mariner claim, consisted of an open-cut and trench. Prospecting and minor stripping was carried out on the property during the ensuing years between 1934 and 1938.

In 1938, the Mariner claim was optioned to the N.A. Timmins Corporation who stripped a large area of overburden and drove two short adits on the property. Of particular interest were two large quartz veins at what became known as the lower showings (at ~1200 metres elevation). These veins, 1.5 and 1.8 metres wide respectively, were reported to be sparsely mineralized with ankerite and pyrite. Both were exposed for 30 and 45 metres respectively in the open cuts. A short adit (12.8 metres) was driven into the footwall of the lower vein and an incline was driven an unknown distance down the dip of the vein. The results of this work are unknown, but in 1947 it was concluded that because the two vein-outcrops probably represented a single, faulted vein, the decline had not penetrated the vein at depth. The property appears to have been abandoned after the 1938 program.

In July 1946, eight claims, known as the Max Group, were staked in the vicinity of the 1938 adit (covering ground previously held as the Joe claims) and were transferred to El Toro B.C. Mines, Ltd. By July of 1947, El Toro had carried out a diamond-drill program consisting of 792 metres of drilling in 8 holes. In October 1947 the first production from the property was recorded when four tons of handpicked ore were shipped to the Tacoma smelter. In October 1947, the claims Mariner, Mariner 5 and 6, and the Mariner Fraction were staked over the ground covered by the original 1933 Mariner claim. The relationship of these claims to the Max claim group is unknown.

There is no recorded work from 1947 to 1971. In 1971, Spanallen Mining Limited carried out a magnetometer survey over the Marnier 1 - 25 claims, concentrated largely between 900 and 1060 metres elevation on the Cedar Creek drainage of Spanish Mountain. The survey was inconclusive.

In 1976, the Mariner II claim was staked over the historical showings by M. B. Neilson, and geological reconnaissance was carried out by N. W. Stacy, assisted by J. McMillian and M. Neilson. A few samples were collected, but assay values were low (Stacy, 1976). The 1976 claim map also shows subsequent staking of the six PESO claims (PESO and PESO B to PESO F) surrounding the Mariner II claim.

In 1977 and 1978, the Mariner II claim (now owned by LongBar Minerals Ltd.) and the optioned PESO (owned by R. E. Mickle) and PESO A to PESO B claims were explored by two small programs.

In 1979, Aquarius Resources Ltd. (a private company) carried out a surface exploration program on the PESO, PESO B and PESO E claims with most of the work focused on the PESO B claim. In November, 1979 Aquarius Resources Ltd. along with Carolin Mines Ltd. carried out a regional assessment of the Likely area. They concluded that the Spanish Mountain property was one of economic interest and worthy of continued exploration.

In 1979 the Mariner II claim was optioned to E. Schultz and P. Kutney, who contracted N. L. Tribe to prospect and sample the property. Road cuts and old pits were excavated by backhoe along an access road which switchbacked up across the Mariner II claim. Intermittently between 1980 and 1982, physical work consisting of stripping by D-7 and D-8 cats and the digging of

approximately 240 metres of backhoe trenches was carried out by R. E. Mickle and Norsemont Mining Corp. This work appears to have been primarily done on old workings on the DON and Mariner II claims. Little information exists on this program since no work or reports were filed.

In 1981, Aquarius Resources Ltd. carried out a geochemical and geophysical program on the PESO claim (owned by E. Lorentsen and optioned to Aquarius) and on the PESO B and PESO E claims (owned by Aquarius).

In 1982 the Marnier II claim lapsed and was re-staked in October 1982 by the Mariner Joint Venture as the CPW claim.

In 1983, Lacana Mining Corporation carried out an exploration program on the DON 1-4, Mar 1, PESO, JUL 2, MY, and Apr Fr. claims (not including the CPW claim). Work focused on the area north of the Spanish Lake road and the program found some strong gold anomalies coincident with silicified argillite, and recommended that these areas be stripped and trenched.

In March 1983 Whitecap Energy Inc. optioned the CPW claim. Exploration in 1983 consisted of a soil sample survey with ten east-west, soil sample lines covering most of the CPW claim. A total of 409 samples, at a 40 metre sampling spacing, were collected. Highly anomalous gold values, up to 5,100 ppb, were returned, mostly from the southwest quadrant of the claim. Aquarius Resources Ltd. also active in the area in 1983, and carried out a small program on the PESO B. Work consisted of 100 metres of trenching in 3 trenches and some limited soil sampling.

In 1984, JMT Services Ltd. optioned the PESO property and carried out a small geochemical program. Later in 1984, Hycroft Resources and Development Ltd. optioned the PESO and DON claim groups (DON 1-4, PESO, JUL 2, my, Mar 1-3, Fe 1, April Fr., De 2-3, and Nik claims) and carried out a combined trenching (and soil sample survey. They identified a northwesterly trending zone of anomalous gold values in soils on the PESO claim, along with elevated gold values in rock samples from trenches.

During the summer of 1984, Mt. Calvery Resources Ltd. optioned the claims surrounding the CPW claim and carried out a regional reconnaissance that included prospecting, geological mapping, and rock and soil sampling. In late July Mt. Calvery discovered free-gold within vuggy shale and siltstones in the 'Madre' area of the CPW claim. This, along with anomalous gold values in rocks, identified this area as having potential to host a replacement-type of gold-mineralization and opened up the possibility of a low-grade bulk tonnage deposit. As a result, in August 1984, Mt. Calvery Resources optioned the CPW claim from Whitecap Energy Ltd. and the Mariner Joint Venture. Later that fall in November, Mt. Calvery Resources and Teck Corporation entered into an agreement through which Teck would fund Mt. Calvery's exploration in the Spanish Mountain area by purchasing shares in Mt. Calvery. Welcome North Mines was to be the operator.

Exploration under the joint venture began in the fall of 1984, with the first of what would eventually become a three phase program over the next 2 years. The program in 1984 consisted of 2,225 metres of trenching including and/or subsequent to 45 trenches and pits, 467 metres of diamond-drilling in 10 holes (MD-1 to 10) and 589 metres of reverse circulation drilling in 10 holes (MR-1 to 10). The results of this work were encouraging; rotary drill-hole MR-7 intersected 26 metres of 0.19 oz. per ton (6.51 grams per tonne), including 4 metres of 0.49 oz. per ton (16.8 grams per tonne) in the Madre zone. In June, 1985 Mt. Calvery began a follow-up program in the Madre and LE areas consisting of 600 metres of excavator trenching and sampling, and 655 metres of rotary percussion (reverse circulation) drilling in 7 inclined holes in the Madre area and 1 hole in the LE area. The results of this work were positive, with surface trench assays to 0.28

oz. per ton (9.6 grams per tonne) over 13 metres and drill intersections to 0.16 oz. per ton (5.49 grams per tonne) over 11 metres in hole MR-11. These results demonstrated that the Madre zone extended to the northeast, southwest and was open to depth. Encouraged by the first phase of trenching and drilling, Mt. Calvery undertook a second phase of exploration during August and September of 1985. The objectives of which were to explore the Madre zone by grid drilling along the mineralized trend to the northeast and southwest, and to test the strike extensions of the LE and several other recently discovered mineralized zones parallel to and adjacent to the Madre. This comprehensive phase II program included approximately 820 metres of backhoe trenching and sampling (550 1-metre channel samples) and 2,521 metres of rotary percussion (reverse circulation) drilling in 29 inclined holes. Assay results continued to be encouraging and in the Madre zone included 14 metres of 0.33 oz. per ton (11.3 grams per tonne) in hole MR-20. Fill-in drilling and drilling on the strike extensions of all of the zones was recommended.

In August, 1985 Mt. Calvery Resources optioned the PESO property (DON 1-4, PESO, JUL 2, MY, MAR 1-3, FE 1, APRIL FR., DE 2-3, and NIK claims) from Hycroft Resources and Development Ltd. in order to fully evaluate the southern extension of the Madre zone. During October-November, 1985 Mt. Calvery Resources carried out a third phase of exploration, this time spread over both the CPW and PESO claims. Two diamond-drill holes were drilled on the CPW claim to twin existing rotary holes (MR-35 was twinned by MD-48/MD-11, and MR-13 was twinned by MD-49/MD-12), and five holes (MD-50/MD-13 to MD-54/MD-17) tested the extension of the Madre zone on the PESO claim. The funding was again provided by Teck Corp, and Welcome North Mines was the operator. The twinned diamond-drill 'core' holes returned lower assays than did the original rotary 'chip' holes. This was ascribed to the 'nugget-effect' of coarse particles of gold that was amplified by the smaller core size. The drilling on the PESO claim [option] extended the Madre zone approximately 100 metres to the southwest where it was found to be terminated by a post-mineralization normal fault. The five drill-holes returned anomalous assays with the best assay being 0.06 oz. per ton (1.7 grams per tonne) between 9 and 11 metres in hole MD-51.

In June 1986, Mandusa Resources Ltd. optioned a portion of the current Spanish Mountain property (not including the CPW claim which was at the same time optioned to Pundata Gold Corporation). Mandusa proceeded with an extensive exploration program during the summer of 1986, largely focused on the PESO and DON claims. Work consisted of geological mapping, an IP Survey, and percussion drilling on both the PESO and DON claims. Geological mapping, along with the IP survey identified a broad graphitic shear zone extending westerly from Spanish Lake. Percussion drilling on the DON claims, which consisted of 356.62 metres in 6 holes (310.92 metres if hole PH86-1 is excluded), traced part of a shear zone caring anomalous gold values. The best intersection was 1.29 grams per tonne between 6.10 and 7.62 metres in hole PH86. Percussion drilling on the PESO claim identified one area, called the "green pit", in which anomalous gold geochemistry is associated with an apparent horizontal structure related to shearing and /or fracturing. The best drill intersection in this area was between 10.67 and 13.72 metres (3.05 metres) in hole PH86-11 which assayed 18.25 grams per tonne gold.

In 1987, Placer Dome Inc. optioned a group of properties in the Quesnel Trough from Carolin Mines Ltd. One of these properties included the DOG, CAT, MARCH 1 and MARCH 2 claims which are adjacent to the CPW and PESO claims on the west and north sides. Placer carried out a limited percussion drill program on the DOG claim (now covered by the ARMADA claim) to follow-up anomalous gold soil geochemistry that had been discovered by earlier programs. They drilled 338.32 metres in 7 percussion holes. Five holes were drilled on the crest of the northwest ridge of Spanish Mountain and the remaining two were drilled approximately one kilometre south in the Cedar Creek drainage. The results were surprising; very high gold assays were returned from the overburden sections of several holes. Hole 87-P7 returned 22.86 metres of 8.06 grams

per tonne gold, including 10.67 metres of 14.87 grams per tonne. Other drill-holes and minor surface sampling returned anomalous gold geochemistry.

In 1986, Pundata Gold Corporation optioned the CPW claim from D.E. Wallster and optioned the PESO group (PESO, DON 1-4, MY 1, MEY 1-2, JUL 2 claims) from D.V. Mickle the following spring. During 1987 and early 1988, Pundata proceeded to embark on a major and comprehensive exploration program which involved a complete re-evaluation of the Spanish Mountain property. Work included 37 diamond-drill holes (3273 metres), 15 percussion (reverse-circulation) holes (1237 metres), trenching (848 metres), geological mapping, collection and analysis of 5,350 samples, metallurgical testing of 11 samples, and preliminary resource estimates. The primary focus of the Pundata 1987-88 program was to determine the grade and tonnage of the Madre Zone including testing for its extensions and to evaluate other mineralized zones, such as the LE Zone. The bulk of the work was carried out in the Main Zone. Diamond drilling confirmed the highly disruptive nature of the rocks in this area and outlined the presence of two subordinate splay faults of the Madre Fault. These faults trend through the Main Zone at about 060° and dip steeply to the northeast and were (at least the northern-most faults) found to contain zones of low-grade gold mineralization. Among the better analysis from the Main Zone are a 40 metre intersection of 0.050 oz. per ton (1.71 grams per tonne) and 21 metres of 0.085 oz. per ton (2.91 grams per tonne) in trenches, 10 metres of 0.848 oz. per ton (29.07 grams per tonne) in reverse circulation drill hole RCH-88-112, and 7 metres of 0.530 oz. per ton (18.17 grams per tonne) in diamonddrill hole DDH-87-104 between 44.75 and 51.75 metres.

Exploration on the adjacent LE Zone was more limited, with 42 metres of trenching, along with 267 metres of HQ diamond-drilling (3 holes) and 157 metres of NQ diamond-drilling (2 holes). During this period limited rock, soil and chip sampling, trenching and drilling were carried out on claims surrounding the CPW with most of this work directed at the PESO and DON claims. The best trenched interval on the PESO claims was 0.067 oz. per ton (2.297 grams per tonne) over 9 metres of sheared, phyllitic shaley siltstone in the "Cabin Trench", although a higher gold assay was reported from quartz veining in the LB trench where 0.209 oz. per ton (4.145 grams per tonne) was assayed over 1 metre. On the DON claim, 21 metres of fractured graphitic siltstone averaged 0.08 oz. per ton (2.74 grams per tonne) from Trench A, while similar material in Trench B returned 13 metres of 0.043 oz. per ton (1.474 grams per tonne. Reverse-circulation drilling on the DON claim was targeted to intersect mineralization exposed in Trench A and hole RCH-87-100 successfully intersected 20 metres of 0.035 oz. per ton (1.20 grams per tonne). On the PESO claim diamond-drilling at the "Green Pit" intersected 1 metre of 0.517 oz. per ton (17.740 oz. per tonne).

In 1992 Eastfield Resources Ltd. reassembled the Spanish Mountain property with option agreements with several individuals. During 1992 Renoble Holdings Incorporated (subleasing from Eastfield) mined and stockpiled 635 tonnes from a small open pit on the M1 vein in the Madre Zone (CPW claim). This material was processed in two separate mill runs: 318 tonnes were sent to the Premier mill and 105 tonnes were sent to the Bow Mines (Greenwood) mill. Schroeter estimated that 1431 grams (46 troy ounces) of gold were recovered from the Premier mill and 3266 grams (105 troy ounces) were recovered from the Greenwood mill.

In 1993, Cogema Canada Ltd. optioned the property from Eastfield and carried out an extensive trenching and sampling program over two years which consisted of digging 30 trenches, and collecting approximately 900 rock/channel samples. The trenching was largely concentrated in areas on the CPW claim (with a minor amount on the north end of the PESO claim) where previous work had indicated broad-scale disseminated mineralization in shaley siltstone. Many high assays were returned from trench channel sampling. During this period Renoble Mines set up a placer gold washing plant to mine gold contained in soils on the CPW claim area and covered by a placer claim.

Consolidated Logan Mines Ltd. optioned the Spanish Mountain property from Eastfield in 1995 and in turn optioned it the Cyprus Resources Ltd. in February 1996. In the following year Cyprus carried out an exploration program for a bulk-mineable, disseminated gold target on the property. Work consisted of 2,590 metres of semi-continuous trenching and 76 metres of test pit trenching in a series of 8 open cuts oriented perpendicular to the slope of Spanish Mountain and spaced 200 metres apart. Areas of known mineralization returned some good assays: in the LE zone, Trench TR 96-101 in the interval from 312 metres to 344 metres returned an average grade of 2.91 grams per tonne over 32 metres, and north of the Spanish Lake road the lower 64 metres of Trench TR 96-105 in the "Dodge Zone" assayed 0.716 grams per tonne. Cyprus Canada's operations were, at this same time being shut down, and the property was consequently returned to Eastfield.

In 1997, Eastfield Resources Ltd. was reorganised, through a Plan of Arrangement, into Eastfield Resources Ltd. and Wildrose Resources Ltd. A 100% interest in the Spanish Mountain property was allocated to Wildrose Resources Ltd.

In 1999, Imperial Metals Corporation optioned the Spanish Mountain property from Wildrose to determine if low-grade gold-mineralized sedimentary rock on the property could be used as millfeed "sweetener" for their Mount Polly Mine copper-gold concentrator located 15 kilometre away. Metallurgical testing was carried out in late 1999 on samples from the Madre and LE zones. Five prospective areas on the property were chosen for evaluation: the Madre, LE, M5, 103 and Dodge zones. The initial objective on the property was to determine if any of the areas had consistent, elevated gold values (greater than 1 gram per tonne). Each site was percussion drilled using an air-track drill in a grid-like, blast pattern. A total of 464 holes were drilled to a maximum depth of 13 metres for a tally of 2,542 metres drilled. The LE Zone produced the best analytical results; 107 of 201 samples collected graded better than 1 gram per tonne and 153 samples graded better than 0.5 grams per tonne. The area of the final blast encompassed 103 of these holes with an average assay of 2.20 grams per tonne gold. The LE zone blasted well, producing a fine muck pile that was amenable to screening. This was in contrast to the M5 Zone which produced large angular blocks and much fly rock, with the result that no further work was done with the material from the M5 Zone. The LE Zone muck was screened into four size fractions with the fine fraction (-3/8") being trucked to Mount Polley for further grinding and processing. A total of 64 truckloads, weighting 1,908 dry tonnes, were trucked to Mount Polley during the period July 24 - 29, 2000. The average gold content of this material was determined by mine staff to be 3.02 grams per tonne. The material was fed into the mill at a rate of approximately 50 - 100 tonnes per hour over a 2 day period, comprising a maximum of 10% of the total mill feed. Robertson (2001) reports that gold recovery in the milling circuit was good; however, boosting the amount of pyrite pulled off to increase gold recovery in the flotation circuit had an adverse effect on the copper concentrate grade. As a result it was concluded that the Spanish Mountain material was not suitable for blending with the Mount Polley mill feed owing to the fact that the added precious metals credits were more than offset by the reduced copper grade.

In 2003 Skygold Ventures Ltd. funded a soil geochemical and geophysical programme on the Spanish Mountain property. The 2003 work included establishing 30 kilometres of grid (23 cut), collecting and analyzing 1479 soil samples, completing 23 kilometres of induced polarization survey and brushing out the extensive, but overgrown, road system. \$182,000 was spent accomplishing this work.

The soil sampling revealed large areas of anomalous gold in soil, which were associated with anomalous arsenic and molybdenum values. The most prominent gold anomaly is over 1200 metres long and up to 500 metres wide and includes the areas of previously discovered mineralization. The soil anomalies trend WNW, the same as the stratigraphic grain of the rocks in

the area. The anomalous level of gold values was set at 300ppb, though many samples returned over 1000ppb. The highest Au result was 37,222ppb.

The IP survey measured both chargeability and resistivity, and a number of anomalies were discovered, many of them coincidental. These anomalies have the same WNW trend as the above soil geochemical anomalies.

An extensive exploration programme was conducted in 2004, again funded by Skygold Ventures. This programme consisted of excavator trenching, reverse circulation drilling and mapping. The excavator trenching was conducted in June, with mapping and sampling of the trenches continuing into September. A total of 30 trenches were dug, to a total length of 2419 metres, which targeted the gold in soil and geophysical anomalies of the 2003 programme.

Trench mapping showed that the many of the resistivity breaks of the survey reflected geological contacts between black argillite and competent sericite-carbonate altered coarser units (wackes and debris flows). Trench sampling revealed a number of areas of gold mineralization both in apparently unaltered argillaceous rocks as well as in local discrete quartz veins. One of the more significant results was in trench 04_SPT_3, located 330 metres ESE of the LE Pit, which returned 22.1 metres of 1.21g/t Au from black argillite, which included a higher grade intersection of 2.36g/t Au. This mineralization is similar to that in the LE Pit from which Imperial Metals bulk sampled 1908 tonnes of material grading 3.02g/t Au in 2000.

In October and November of 2004 a reverse circulation drilling programme was conducted on the property to follow up on the trench results and other soil and geophysical anomalies from 2003 and earlier. A total of 2503.65 metres was drilled in 34 holes in a number of areas both within the areas of known mineralization on the CPW claim and on new targets up to 1.3 kilometres away. Some 55 intersections greater than 1g/t Au were obtained from the drilling, which included discoveries up to 1 kilometre from the main zones on the CPW claim.

The most important result from the drilling was the discovery of a northern extension to the LE Pit mineralization in holes 04SPRC-216, 221 and 229. Each of these holes returned long intersections of consistent 1-2g/t Au mineralization hosted in apparently unaltered argillite and siltstones. This area is referred to as the LE Zone.

Hole 04SPRC-216 was located 160 metres north of the LE Pit and returned 57.91 metres of 1.09g/t Au. This mineralization continues to the bottom of the hole and includes 18.28 metres of 2.05g/t. Hole 04SPRC-221 was located 50 metres north of the pit and returned intersections of 18.29 metres of 1.08g/t, and 39.62 metres of 1.72g/t to the bottom of the hole. This second interval included 27.43 metres of 2.08g/t Au. Hole 04SPRC-229, located 50 metres ENE of the LE Pit returned 56.39g/t Au with smaller >2g/t Au intervals included within it. Again this mineralization continued right to the end of the hole.

Similar argillite-hosted mineralization was encountered in hole 04SPRC-202 which targeted the Trench 04_SPT_03 mineralization 330 metres ESE of the LE Pit. The drillhole returned 16.76 metres of 1.51g/t Au from the top of the hole.

04SPRC-228 was a new discovery which returned 3.62g/t Au over 41.15 metres, including 13.72 metres of 8.02g/t Au from black argillaceous rocks in the footwall of a flat lying thick bull quartz vein (Mariner Vein). This hole is located 125 metres southwest of the LE Pit.

The 2004 drilling also discovered new zones of mineralization far from the previously known zones. Hole 04SPRC-210, collared 700 metres west of the LE Pit, returned 10.67 metres of

1.05g/t, while 04SPRC-212, 300 metres further west, returned 4.56 metres of 1.16g/t Au. This area is referred to as the Western Placer Area.

A number of holes were also drilled to search for mineralization reported from the Mt. Calvery and Pundata drilling, but these were all disappointments, probably because the exact location of the old drillholes in unknown.

GEOLOGICAL SETTING

Regional Geology

The Spanish Mountain area is situated on the eastern edge of the Triassic-Jurassic Quesnel Terrane of the Intermontane Belt, within 10 kilometres of the contact with the older Barkerville Terrane of the Proterozoic-Paleozoic Omineca Belt. This contact is a southwest dipping northwest trending thrust fault referred to as the Eureka Thrust. A parallel structure, the Spanish Lake Thrust, cuts through the northern part of the Spanish Mountain property (along Spanish Creek and through Spanish Lake). The mineralization of the Spanish Mountain property appears to be located in the hangingwall of this thrust.

In this area the Quesnel Terrane is composed of a lower pelitic unit near the terrane boundary which youngs to the west into a volcanic unit that underlies much of central British Columbia. Ultramafic rocks have been mapped in the Cedar Creek drainage, three kilometers west of the CPW claim area. Intrusive rocks are known from the Likely area, but not have been verified by the Wildrose or Skygold work.

The pelitic sediments in the hangingwall rocks of the thrust faults have been extensively and intensely deformed; Spanish Mountain is located within these rocks. Metamorphism in the Quesnel Terrane varies from lower greenschist to amphibolite, and is at the low end of this scale in the Spanish Mountain area.

Property Geology

The Spanish Mountain area is underlain by a sedimentary basin with a complex depositional history, which has been subjected to strong structural processes, all of which has been overprinted with pervasive alteration. All of the structural, alteration and mineralizing events of the Spanish Mountain area appear to have been long lasting, with numerous events occurring over long periods of time. Outcrop in the area is generally poor and large areas have been disturbed by previous work. The best exposures are in roadcuts or old trenches.

Lithology

The Spanish Mountain area is underlain by a euxinic sedimentary basin composed mostly of black argillite, silty argillite and argillaceous siltstone; into which was deposited coarser units (wackes) and debris flows made up of epiclastic material with a variable volcanic component.

These rocks can be lumped into just two units. The first and more common of these are argillaceous rocks which include argillite, graphitic argillite, silty argillite, argillaceous siltstone and siltstone. All of the units coarser than this are lumped into the MCA/wacke category. The WNW stratigraphic grain of the area is parallel to the terrane boundary thrust faults, as well as to the trend of geophysical and soil geochemical anomalies.

Argillaceous Rocks

On surface the most common rock types identified are black argillite (ARG) and argillaceous siltstone (ASL). These fine-grained sedimentary rocks commonly contain fine or coarse partings;

most of which are probably fracture cleavage. It is likely that some of these partings are bedding planes, but without evident sedimentary features, it is impossible to know.

In areas of pervasive shearing these fine sediments are commonly graphitic (GAR). A slightly coarser variant of the argillite is silty argillite (SAR). MAS is massive argillaceous siltstone which is more competent and without partings, which obviously cannot be mapped in RC chips. Contacts between these units tend to be gradational and the units are complexly interfingered with each other, as would be expected in such a depositional environment.

On surface these rocks commonly have 0.1-1 centimetre angular red-brown spots; some of which are weathered pyrite, but most of which is weathered Fe-carbonate (ankerite?). Pyrite is common throughout these rocks, as fine or coarse euhedral cubes and lesser pyritohedrons or masses, which are usually weathered out on surface. Pyrite was almost ubiquitous in argillaceous rocks encountered in the RC drilling; generally in the 0.1 to 0.5% range.

MCA/wacke unit

This unit lumps together all of the rock types that are coarser than siltstone. On surface, the MCA "type unit" rocks are buff to brown coloured, massive and very competent. This unit is generally very strongly sericite altered with common red-brown Fe-carbonate (ankerite) rhombs and local silicification. Weathered out pyrite cubes; locally to one centimetre are common on surface. Disseminated mariposite is locally very common.

Previous workers have described this unit as a volcanic rock or a dyke, but in the field any such identification is impossible. Bedding is rarely identifiable; either because the original rock was massive, or that alteration has destroyed original textures. Apart from local identifiable wacke (observed bedding), most of the MCA rocks are probably altered wacke/debris flows that were deposited in the argillaceous sedimentary basin. The debris flows probably contained both sedimentary and volcanic components. It may be that the mariposite indicates sections with a mafic volcanic component.

Black argillaceous wacke (ARWK) appears to be an unaltered variant of the MCA unit. It is similar to the MCA but with a matrix of black argillite rather than sericite. On surface the two units have the same distinctive brown (Fe-carbonate) weathering. The lack of alteration in the ARWK may be that it is lithologically/chemically different from the MCA. The ARWK appears to host the disseminated gold mineralization better then the altered MCA, where significant gold values are restricted to discrete quartz veins.

Local hornblende laths were noted in MCA outcrops near the south end of trench 04_SPT_03 at 604670 / 5827530. Some of the MCA rocks are quite talky, as in trench 04_SPT_08 (604300 / 5827430); suggesting the presence of some ultramafic component to the geology here.

Quartz Veins

Quartz veins are common throughout the property. In the reverse circulation drilling, intervals without any quartz chips were rare in both the argillaceous and MCA rocks. Northeast striking and northwest dipping is the most common quartz vein orientation in the area. These veins have a much steeper dip, up to vertical, in the southern CPW area as is apparent in trench 04_SPT_29 (604270 / 5827460) Northwest striking moderately southwest dipping veins are less common. These directions are both at high angles to the WNW trend of the regional thrust faults and the general stratigraphy of the Spanish Mountain area.

These veins are generally white and coarse grained with only local pyrite. Values in these veins range as high as 52g/t Au in 04_SPT_29, and 7-8g/t in the LE Pit. Not all veins carry gold values, though there is no obvious difference in appearance between auriferous and barren veins. In

trench 04_SPT_29 (604250 / 5827480) veins were observed that occur only in argillite and stop at MCA contacts, others that occur only in the MCA and others that cut through both units. No obvious differences in vein appearance or gold grades were noted between these different veins. Blue quartz fragments were noted in chips from a number of the reverse circulation drillholes, though no elevated gold values were noted with these.

Another major quartz vein type is the "flat veins", as occur near the Mariner Adit and in the southern CPW area. These are 0.5 to over 5 metre thick white bull quartz veins which contain rare 1-2 centimetre knots of pyrite and lesser galena, chalcopyrite and galena. Local vugs contain massive orange goethite/limonite. The quartz veins in the Mariner Adit area are up to 30 metres long and up to 4 metres thick, arranged in an en echelon pattern; with individual veins dipping shallow to the south. Similar veins were noted in the 2004 trenches 04_SPT_02 (604400 / 5827290) and 04_SPT_08 (604290 / 5827420). Another flat vein with minor galena was found at the north end of trench 04_SPT_13 (604150 / 5827750).

Pyrite, with lesser galena and chalcopyrite were locally noted in a both vein types. Anecdotal evidence suggests that these sulfides carry good gold values.

Structure

The structure of the Spanish Mountain area is very complicated, with widespread shearing and folding, at various orientations and at various scales. The CPW area is actually a huge WNW trending shear zone in which competent MCA unit rocks have been broken and moved about within sheared and variably graphitic black argillites. The graphitic rocks on the property are a product of shearing.

Any interpretation of the structure here must take into account the area's tectonic location near the Eureka Thrust, a regional tectonic suture zone between the Quesnel and Omineca Terranes. The main thrust fault outcrops 10 kilometres to the northeast of Spanish Mountain and another parallel regional thrust has been mapped in Spanish Creek. Graphitic foliation increases from the Spanish Lake Rd to the north to the creek, and the number of fault zones also appears to increase. The argillaceous rocks north of the creek are not strongly foliated or graphitic.

These thrust faults strike northwest and dip southwest, putting Spanish Mountain in the hangingwall, close to the sole of the fault. The stratigraphic grain of the argillaceous and MCA units also runs northwest, as do the trends of chargeability highs, resistivity breaks and Au in soil anomalies that were generated from the 2003 work.

Strong shear zones are also noted on surface, such as in the southern part of the CPW claim in the area of holes 05SPRC-205, 207, and 225. The trenches here revealed a zone of graphitic argillite over 50 metres wide and trending to the WNW. Pyrite and local broken quartz veins were common but gold grades were usually little more than anomalous.

A major factor in the structure of the Spanish Mountain area is the rheological difference between the plastically deforming argillaceous rocks and the competent altered MCA rocks which can only deform in a brittle fashion. In such an environment of strong deformation the argillites will flow around the competent units, which can be seen in exposures in the southern CPW area. As such, there are likely few original lithological contacts left in the area.

Another problem in the interpretation of the structure is the homogeneity of the argillaceous rock units. With no marker units folding and faulting would be unrecognizable due to the lack of marker units to show any offset or movement.

In most locations foliation was the only measurable structural feature. This can be extremely variable over short distances, though overall the most common strike was northwest, parallel to the major thrust. The dips of the foliation were highly variable, often tightly folded around northwest trending axes.

Low angle reverse (thrust) movement was noted during the 2004 trench mapping, with high angle quartz veins offset along low angle reverse structures, parallel to the Eureka and Spanish Creek Thrusts.

A number of north-south faults have also been noted in the CPW area. The Madre Fault some 50 metres west of the M-1 M-5 area was mapped by Mt. Calvary and Pundata and was probably the cause of the difficult drilling encountered in the bottom of the 2004 drillhole 04SPRC-223. Results from the 2003 geophysical survey also show offsets of conductors along north-south breaks, most notably on L97E of the southern CPW conductor at 604100/5827300 and on L89E of the Middle Conductor at 603400/5827800.

The rocks on the top of the Spanish Mountain ridge, south of the CPW claim, and to the north of Spanish Creek, are much less sheared and deformed.

Alteration

Carbonate alteration is pervasive across the project area, manifesting itself as red-brown spots on the weathered surfaces of outcrops of all rock types. Abundant sericite is a defining feature of the MCA unit, locally accompanied by strong silicification and local mariposite. The sericite alteration seems to increase with the coarseness of the rock units which is probably a function of increased permeability within rocks with larger grain size.

It would appear that the sericite-carbonate bearing fluids were the earliest to arrive and flooded into the coarser rocks, such as siltstone, wackes and debris flows where there was more permeability than in the surrounding argillaceous rocks. When the auriferous fluids showed up later the coarser units had been sealed and these fluids thus migrated into the broken and sheared argillaceous rocks.

Massive orange Fe-carbonate, referred to as limonite, is common throughout the area as fracture and shear zone fillings and also occurs commonly in vugs left by weathered pyrite, occasionally with visible gold. This feature is referred to as "aerobar" on the Spanish Mountain property.

White clay is common locally in sheared rocks, though no work has yet been carried out to more accurately identify its type.

Mariposite is common as disseminations in the MCA rocks, probably indicating a mafic volcanic component to local debris flows.

Mineralization

Two main types of gold mineralization have been noted on the Spanish Mountain property; "bulk tonnage" type disseminated gold in interbedded sedimentary rocks (LE Zone) and in discrete high grade quartz veins, such as were explored in the "Madre Zone".

Work to date has identified gold is the only mineral of economic value on the property though locally silver values reaches high as 24g/t. Base metals such as galena, chalcopyrite and sphalerite occur locally in the quartz veins and are usually indicative of high Au values, but are not themselves of any significance. Arsenic and molybdenum correlate well with gold in soil geochemistry on the property, but do not do so in the rock analyses.

The majority of the previous work on the Spanish Mountain property has been directed at the high grade quartz vein mineralization in the Madre Zone and elsewhere. The Madre Zone is located 220 metres south of the LE Pit and is comprised of northeast striking, northeast dipping quartz veins, locally with spectacular gold values. The M-1 Pit, from which C.A.Main recovered nearly 4700 grammes of gold in 1992, is part of this zone. The M-5 Pit is at the northern end of the Madre Zone.

Results from Madre Zone include 4 metres of 58.22g/t Au from RC-88-112, and 3.0 metres of 60.0g/t Au from MR-32. These quartz veins commonly strike to the NNE and dip moderately to the northwest and range in size from millimeters to nearly one metre in width. Gold values of up to 52g/t were returned in the 2004 work. The wallrock argillite of these auriferous veins commonly contain plus 1g/t gold, though generally for only 1-2 metres from the vein.

In the disseminated type mineralization, long intervals of consistent >1g/t Au occur in apparently unaltered argillaceous sediments. Examples of this mineralization include 53.34 metres of 2.05g/t Au from 05SPRC-249 in the LE Zone, and 33.53 metres of 1.01g/t Au from 05SPRC-236 drilled in the Trench 3 area, 330 metres ESE of the LE Pit. The host rocks are interbedded black argillites and argillaceous siltstones often with abundant pyrite. Quartz veins occur throughout the mineralized sections but it appears that most of the gold occurs as disseminations in the carbonaceous argillite rocks.

Overall, the two types of mineralization are very similar; both consisting of black argillite with quartz veins. The only real difference between the two types is that the disseminated type has (lower) gold values but over longer intervals. It would seem that the LE area argillaceous rocks are better at "soaking up" the mineralizing fluids; possibly because these rocks were more broken or chemically receptive, or that the area is closer to a feeder zone/structure.

Auriferous quartz veins are also common in the MCA rocks, often with impressive gold grades. These veins do not appear to have preferred or consistent orientations and the wallrocks are barren. In the 2004 trench 04_SPT_13 (604130 / 5827730), 1-2 centimetre limonitic quartz veins returned gold values up to 27g/t, but the impermeable MCA wallrocks contained only negligible Au. It does seem though that the areas adjacent to the MCA units are good locations for focusing gold mineralization

The MCA rocks also host the M-5 type of gold mineralization on the property; that of a fine quartz stockwork which contains high gold values, to over 34g/t. To date, this type is known only from the M-5 Pit.

LE Zone

This is the most important mineralization on the Spanish Mountain property and consists of disseminated gold in interbedded argillite and siltstone, which occurs in both the hangingwall and footwall of strongly folded MCA/wacke unit, which dips to the NNE subparallel to the slope of the hill. The host argillaceous rocks are also strongly folded. The mineralization is less stratabound and only generally follows the folding of the MCA unit. The >1g/t mineralization sits within a much larger zone of strongly anomalous (>0.3g/t) gold mineralization. Such anomalous zones ere an important exploration target on the Spanish Mountain Property.

The only outcrop (so far) of the LE Zone is in the LE Pit from which Imperial Metals mined a 1908 tonne, 3.02g/t Au bulk sample in 2000. The zone has been traced to the north by reverse circulation drillholes 04SPRC-216, 221, and 05SPRC-250 for over 300 metres and remains open to the north, east, west and at depth.

2005 WORK PROGRAMME

The May-June Wildrose Resources exploration programme at Spanish Mountain was composed of 16 reverse circulation drill holes drilled on the CPW and adjacent claims which were drilled between May 5 and June 10, 2005. A total of 1677.02 metres was drilled and a total of 1093 samples collected. Analytical work was performed by Eco-Tech Laboratories of Kamloops, BC. Gold analyses were done by metallic screen method on a 1000 gramme split, and 28 element ICP was also done on all samples.

The drilling was contracted to Drift Exploration Drilling of Alberta. The work went fairly well, though it did have its share of problems. The drill rig is large and heavy and requires a water truck and pickup onsite, requiring larger pads. The drill diameter was 139.7 millimetres (5.5").

Spanish Mountain Drilling May-June 2005							
	Ĭ						
Hole #	<u>UTM E</u>	<u>UTM N</u>	<u>elev</u> (m)	<u>azimuth</u>	<u>dip</u>	<u>depth</u> (m)	<u>Target Area</u>
05SPRC-235	604392	5827870	1123	080	-60	117.35	LE Zone
05SPRC-236	604674	5827514	1190	030	-60	100.58	Trench 3
05SPRC-237	603723	5827927	1135	060	-60	30.48	Western Placer
05SPRC-238	603794	5827869	1149	120	-60	115.82	Western Placer
05SPRC-239	604267	5827580	1229	110	-60	120.4	Mariner Adit
05SPRC-240	604410	5827436	1258	300	-45	120.4	M-1
05SPRC-241	604413	5827435	1258	325	-45	120.4	M-1
05SPRC-242	604294	5827411	1264	015	-60	97.23	South CPW
05SPRC-243	604307	5827587	1215		-90	60.96	Mariner Adit
05SPRC-244	604397	5827700	1183	120	-60	124.97	LE Zone
05SPRC-245	604453	5827714	1175	300	-60	107.59	LE Zone
05SPRC-246	604346	5827764	1173	120	-60	129.54	LE Zone
05SPRC-247	604367	5827810	1149	080	-60	118.87	LE Zone
05SPRC-248	604239	5827606	1225	110	-60	102.11	Mariner Adit
05SPRC-249	604388	5827774	1159	120	-60	89.92	LE Zone
05SPRC-250	604438	5828007	1090	080	-60	120.4	LE Zone
·····				Tota	1 m	1677.02	
All hole locatio	ns by diffe	rential GPS;	NAD 8	33, Zone 10			

A summary of the drill programme is shown below.

The 2005 drilling was designed as a follow up to results from the 2004 Wildrose reverse circulation drill programme. The main target of the 2005 drilling was the LE zone, where the 2004 work traced the mineralization in the LE Pit for 160 metres to the north. Four infill holes, 05SPRC-236, 243-246 and 249, were drilled in the area to test the continuity of mineralization. The final hole of the programme, 05SPRC-250, was a stepout hole drilled 330 metres north of the pit.

Three holes, 05SPRC-239, 243 and 248, were drilled in the Mariner Adit area to test the orientation of the mineralization discovered there in the 2004 hole 04SPRC-228. Hole 05SPRC-236 was drilled in the Trench 3 area to further follow up mineralization there located the 2004 trenching and drilling programmes. 05SPRC-240 and 241 were drilled in the M-1 pit area to locate high Au values returned from drilling in the 1980's. Holes 05SPRC-237 and 238 were

drilled in the Western Placer area, to follow up results from the 2004 drilling and 05SPRC-242 was drilled at the south edge of the CPW claim to test an interpretation of the historical drill hole mineralization in the southern part of the Madre Zone.

The samples were analyzed at Eco-Tech Laboratories in Kamloops BC, for metallic gold assay and a 28 element ICP.

The drill results from this work were mostly positive, with nine of the holes returning intersections of >10 metres of >1g/t Au. A detailed description of the drilling is given below. Gold values used in the calculations of mineralized intervals were not cut.

QA/QC

A comprehensive system of QA/QC was conducted as an important part of the programme to ensure the integrity of the results collected. This involved rigorous sample collection and handling procedures.

During the reverse circulation drill programme samples were collected every 1.524 metres (5') from the cyclone. This sample was then run through a riffle splitter until the desired size was obtained, which was either once or twice, depending on the original sample size. On the final split, both halves were bagged; one of these went to the lab for analysis and the other retained as a similarly numbered reject which was stored on site for further testing if required. The assay samples were closed with a plastic cable-lock and placed in similarly sealed sequentially numbered rice sacks for shipping to the lab. These sacks were removed from the field nightly and were shipped to Eco-Tech Laboratories in Kamloops via Van-Kam Freightways. As a precaution against contamination the splitter and buckets were cleaned out between each sample, and the cyclone also regularly checked and cleaned if required.

The field QA/QC procedures included the insertion of Wildrose Resources' own prepared standards, sample blanks and sample duplicates, at a rate of one each per thirty samples, into the sample stream. All of this was in addition to Eco-Tech's own in house QA/QC programme.

LE Zone

The LE zone extends north from the LE Pit, from which Imperial Metals mined a 1908 tonne bulk sample in 2000 that ran 3.02g/t Au. This zone is hosted by interbedded argillaceous rocks which contain consistent 1-2 g/t gold over intervals of up to 87 metres in bulk-tonnage type target. The farthest north intersection of this zone is 05SPRC-250, which located 310m north of the pit.

05SPRC-235

This hole was located 160 metres north of the LE Pit, 35 metres in front of the 2004 reverse circulation hole 04SPRC-216, which returned 1.09g/t Au over 57.91 metres. Both of these holes were drilled at the same az080, -60 orientation. Hole 05SPRC-235 was drilled to a depth of 117.35 metres and encountered black argillite and silty argillite to 85 metres, and black argillaceous siltstone and argillaceous wacke below this. The coarser units have weak-moderate carbonate-sericite-mariposite alteration. Good results were returned from this hole, with the better results appearing to occur within the finer argillaceous units.

05SPRC-235	22.86 - 88.39m; 65.53m @ 3.35g/t Au
which includes;	22.86 - 50.29m; 27.43m @ 1.12g/t Au
which includes;	22.86 - 39.63m; 16.8m @ 1.45g/t Au
which includes;	22.86 - 32.01m; 9.14m @ 2.01g/t Au
and includes	65.53 - 88.39m; 22.86m @ 5.04g/t Au
which includes	77.73 - 79.25m; 1.52m @ 53.7g/t Au
	105.16 - 109.73m; 4.57m @ 1.06g/t Au

05SPRC-244

This hole was located at the north end of LE Pit. It was oriented az120, -60 and drilled to a depth of 124.97 metres. The upper 51 metres of the hole was in black argillite with the rest of the hole encountering argillaceous wacke and lesser argillaceous siltstone. The argillaceous wackes at the bottom of the hole were very siliceous. This, combined with abundant water in the hole, resulted in drilling rates of less than three metres per hour at the bottom of the hole.

This hole returned significant Au results and ended in 9.14 metres of 1.30g/t at the bottom of the hole. In addition to the >1g/t Au intervals shown below, much of the hole was strongly anomalous in gold in both the argillites and coarser argillaceous wackes, typical of the disseminated "LE zone-type" mineralization.

05SPRC-244	3.05 - 13.72m; 10.67m @ 1.57g/t Au
	30.48 - 42.67m; 12.19m @ 1.00g/t Au
	54.86 - 59.44m; 4.57m @ 1.39g/t Au
	71.63 - 76.2m; 4.57m @ 1.28g/t Au
	97.54 - 103.66m; 6.10m @ 1.05g/t Au
	115.82 - 124.97m; 9.14m @ 1.30g/t Au (to bottom of hole)

05SPRC-245

This hole was located 40 metres north of the LE pit on an az120 section with the 2004 reverse circulation holes 04SPRC-221 and 229, as well as 05SPRC-246. 05SPRC-245 was a "scissor hole" drilled at az300 -60 to cut across the other holes, and was drilled to a depth of 107.59 metres. It intersected a sequence of argillite and argillaceous wacke. Pyrite was very abundant in the argillaceous rocks. As with the previous hole, the argillaceous wacke at the bottom was very silicified which again made for slow drilling progress.

05SPRC-245	3.05 - 9.15m; 6.10m @ 1.17g/t Au
	51.82 - 107.59m; 55.77m @ 1.48g/t Au (to bottom of hole)
includes;	51.82 - 76.2m; 24.38m @ 1.96g/t Au
which includes;	54.87 - 76.2m; 21.33m @ 2.09g/t Au

As with hole 05SPRC-244, this hole returned large intersections of >1g/t Au in both the argillite and argillaceous wacke. A higher grade intersection of 21.33 metres of 2.09g/tAu was also returned from this hole.

05SPRC-246

This hole was drilled on the same section as the above hole, 30 metres behind 04SPRC-221, which was one of the 2004 LE Zone discovery holes. Hole 04SPRC-221 returned mineralized intersections of 27.43 metres of 2.08g/t Au, within a larger interval of 39.62 metres of 1.72g/t Au. 05SPRC-246 was oriented az120 -60 and was drilled to a depth of 129.43 metres. As with the previous hole most of the rocks encountered were argillite and variably siliceous argillaceous wacke, though 12 metres of sericite-mariposite altered silicified MCA occurred from 91 metres.

05SPRC-246	32.01 - 35.05m; 3.05m @ 1.00 g/t Au
	94.49 - 124.97m; 30.48m @ 1.25g/t Au
which includes;	106.68 - 112.78m ; 6.10m @ 2.15g/t Au

As with the previous three holes, 05SPRC-246 returned large intersections of >1g/t Au, and again had a significant intersection of >2g/t Au. Also as with the previous holes, hard silicified rock and high water flow in the hole resulted in the hole being abandoned prior to the 150 metre target depth.

05SPRC-247

This hole was located halfway between the 2004 LE Zone discovery drill holes 04SPRC-216 and 221 to test the continuity of the mineralization. 05SPRC-247 was oriented az080 -60 and was drilled to a depth of 118.87 metres. It encountered argillaceous rocks for the top 77 metres with interbedded argillite and argillaceous wacke below this. The argillaceous wacke was locally sericite-silica altered.

05SPRC-247	12.19 - 15.24m; 3.05m @ 1.38g/t Au
	32.01 - 118.87m; 86.96m @ 1.36g/t Au
includes	32.01 - 64.01; 32.0m @ 1.51g/t Au
which includes	36.58 - 41.15m; 4.57m @ 2.33g/t Au
and also includes	47.25 - 54.87m; 7.62m @ 2.17g/t Au
includes	86.87 - 89.92m; 3.05m @ 2.35g/t Au
	108.21 - 118.87m; 10.66m @ 3.63g/t Au (to bottom of hole)
includes	108.21 - 117.25m; 9.14m @ 4.11g/t Au

This hole was strongly mineralized and contained an intersection of 86.86 metres of 1.36g/t Au which included narrower sections of higher grade material including 7.62 metres of 2.17g/t Au and 10.67 metres of 3.63g/t Au to the bottom of the hole. Mineralization was strongest in the lower interbedded rocks, with values coming from both the argillite and the argillaceous wacke. Again water and hard silicified rocks slowed drill progress and the hole was abandoned short of the 150 metre target depth.

05SPRC-249

This hole was located in the southern part of the LE zone between 05SPRC-247 and 04SPRC-221, 229, 05SPRC-245,246 section, both which are described above. 05SPRC-249 was oriented az120 -60 and was drilled to a depth of 89.92 metres. As with these other holes, the rocks encountered were argillites with lesser argillaceous wacke interbeds. This hole returned one of the better intersections to date from this area; 53.34 metres of 2.05g/t Au, which went to the bottom of the hole and is open to depth. Significant higher grade intersections, including 15.24 metres of 4.28g/t were also returned.

05SPRC-249	36.58 - 89.92m; 53.34m @ 2.05g/t Au (to bottom of hole)
includes	51.82 - 85.35m; 33.53m @ 2.9g/t Au
which includes	51.82 - 71.63m; 19.81m @ 3.79g/t Au
which includes	51.82 - 67.06m; 15.24m @ 4.28g/t Au

05SPRC-250

This was the final hole of the May-June 2005 reverse circulation drilling programme and was planned to test the northern extension of the LE Zone mineralization. It was collared 310 metres north of the LE Pit, and 140 metres north of 04SPRC-216, and targeted a 4098ppb Au in soil anomaly. It was oriented az080 -60 and was drilled to depth of 120.40 metres. The hole encountered a mix of argillite and argillaceous wacke rocks, which were strongly interbedded in the bottom 60 metres of the hole, coincidental with the best mineralization. Limonite-sericite-carbonate altered wacke (MCA) was encountered near the top of the hole from 13-26 metres.

05SPRC-250	10.67 - 12.19m 1.52m @ 1.45g/t Au
	64.01 - 120.40m; 56.39m @ 1.17g/t Au (to bottom of hole)
includes	64.01 - 71.63m; 7.62m @ 2.02g/t Au
and	83.82 - 89.92m; 6.10m @ 1.22g/t Au
and	100.59 - 111.25m; 10.66m @ 1.58g/t Au

As with the other LE Zone holes, mineralization occurred over a long and consistent interval; 56.39 metres of 1.17g/t Au, and again was open at depth. No surface mineralization was encountered to explain the surface soil anomaly.

Mariner Adit Area

This area gained interest in 2004 with the results from reverse circulation hole 04SPRC-228, which returned high grade intersections which included 13.72m 0f 8.02g/t Au. This mineralization was located in black argillites in the footwall of the 1-3 metre thick flat quartz veins into which the Mariner Adit was driven. Three holes, 05SPRC-239, 243 and 248 were drilled here as a follow up to the 2004 intersection, but little of interest was found.

05SPRC-239

05SPRC-239 was collared 20 metres south of RC-228, was oriented az 090 -60 and drilled to a depth of 120.40 metres. This hole encountered both argillite and altered MCA/wacke rocks, but did not encounter the flat quartz veins. No >1g/t Au results were returned from the hole, but the lower section of black silty argillite from 96 metres to the bottom of the hole was strongly anomalous, and included gold values of 0.99 and 0.95g/t. This part of the hole was strongly pyritic, with amounts up to 10%.

05SPRC-243

This hole was a vertical hole located 35 metres in front of 05SPRC-228 and was drilled to depth of 60.96 metres. Both strongly altered argillaceous and MCA rocks were encountered, as was the flat quartz vein, at 12.19 metres. The only >1g/t Au sample was 1.52 metres of 5.13g/t from within altered MCA at 35.05 metres and was probably an auriferous quartz vein.

05SPRC-248

The third hole of the follow-up was 05SPRC-248, which was collared 26 metres behind 04SPRC-228 and drilled at the same az110 -60 orientation to a depth of 102.11 metres. This hole encountered mostly argillaceous rocks but did not intersect any major quartz veins. The only >1g/t Au result was 1.52 metres of 6.23 g/t from 16.77 metres in black argillite.

M-1 Area

The M-1 pit is part of the Madre Zone; a zone of northeast striking, northeast dipping quartz veins, which has been the focus of most of the earlier Spanish Mountain exploration. This pit is located at 604370 / 5827475, 220 metres south from the LE Pit. In 1992 C.A.Main mined a total of 625 tonnes from here from which an estimated 4700 grammes of gold were recovered.

05SPRC-240, 241

These two holes were designed as a test of mineralization discovered in the some of the earlier drill programmes, most notably RCH-88-112 (Pundata, 1980), a vertical hole which returned 10 metres of 29.07g/t Au. The two holes were collared 100 metres southeast of the estimated location of RCH-8-112. 05SPRC-240 was oriented az300 -45 and drilled to 120.40 metres, and 05SPRC-241, collared three metres east, was oriented az325, -45 and was also drilled to 120.40 metres.

Both of the 2005 holes encountered black argillaceous rocks with minor altered siltstone and wacke. Gold values were low, less than anomalous throughout most of both of the holes. Hole 05SPRC-241 returned 3.05 metres of 1.03g/t Au from 62.49 - 64.01 metres and 6.10 metres of 1.37g/t Au from 109.73 - 115.83 metres, from near the bottom of the hole. The best result from 05SPRC-240 was 0.56g/t Au. Wildrose's 2004 reverse circulation hole 04SPRC-205 also tested the RCH-88-112 mineralization from the west side, also with little success.

Southern CPW Area

05SPRC-242

This was the southernmost hole in the May-June 2005 programme, and was located on the 2004 access road on the southern boundary of the CPW claim, near the 2004 Wildrose holes 04SPRC-207, and 226. 05SPRC-242 was drilled to a depth of 97.23 metres, at az015 -60, perpendicular to the earlier holes and targeted an east-west trending zone of mineralization interpreted from the Mt. Calvary and Pundata drilling in the 1980's.

The 2005 hole encountered sericite-carbonate-mariposite altered MCA for much of its length and returned some very impressive Au values, the best being 21.34 metres of 4.33g/t Au, which included 9.15 metres of 8.78g/t Au. This mineralization was in the altered MCA rocks and is thought to be a zone of auriferous quartz veins.

05SPRC-242	45.72 - 67.06m; 21.34m @ 4.33g/t Au
which includes	45.72 - 56.39m; 10.65m @ 7.62g/t Au
which includes	47.25 - 56.39m; 9.15m @ 8.78g/t Au
which includes	47.25 - 53.34m; 6.10m @ 11.73g/t Au
which includes	47.25 - 51.82m; 4.57m @ 15.2g/t Au
	77.73 - 82.3m; 4.57m @ 1.01g/t Au

<u>Trench 3 Area</u>

05SPRC-236

This hole was located 330 metres ESE of the LE Pit and 25 metres south of the collar of 04SPRC-202. The target of these holes was the 2004 Wildrose Trench 3, which returned 22.1 metres of 1.60g/t Au and 8.9 metres of 2.36g/t Au in black argillite. Hole 04SPRC-202 returned various mineralized intervals, including 16.76 metres of 1.51g/t Au from the top of the hole.

05SPRC-236 was drilled at az030, -60, perpendicular to the 2004 hole, and went to a depth of 100.58 metres. The top 89 metres of 05SPRC-236 encountered argillaceous rocks, just as in 04SPRC-202, while the rest of the hole encountered carbonate-sericite-mariposite altered wacke (MCA). Both of the below mineralized sections were in the unaltered fine argillaceous rocks.

05SPRC-236	3.05 - 36.58m ; 33.53m @ 1.01g/t Au
	54.87 - 79.25m; 24.38m @ 1.28g/t Au

Western Placer Area

05SPRC-237

This was the first of two holes drilled in the western placer area on the Armada claim, both intended as follow-up to an intersection of 1.05g/t Au over 10.67 metres in the 2004 reverse circulation hole 04SPRC-210. Hole 05SPRC-237 was collared 55 metres west of 04SPRC-210 and was oriented az 060 -60. Overburden was deep in all of the holes in this area, with a depth of over 21 metres in this hole. Major problems were encountered with broken ground and the hole was abandoned at 30.48 metres in black argillite. The best result was 0.54g/t Au, still well within the range of anomalous values on the property.

05SPRC-238

The hole was the second one drilled in the western placer area, and was collared 65 metres south of 04SPRC-210. It was drilled at az120 and -60 to test a chargeability-resistivity anomaly from the 2003 geophysical survey and went to depth of 115.82 metres. The hole encountered both black argillite and carbonate-sericite-mariposite altered wacke (MCA). Gold values were low throughout most of the hole, with the highest being 0.67g/t.

INTERPRETATION AND CONCLUSIONS

The Spanish Mountain area is underlain by a package deformed Triassic age sedimentary rocks of the lower Takla Group which are located near to the Quesnel-Omineca Terrane boundary. Gold mineralization at Spanish Mountain occurs in high grade quartz veins and as disseminated "bulk-tonnage target" type bodies in argillaceous rocks.

Reverse circulation drilling programmes by Wildrose Resources in 2004 and 2005 have located a 330 metre long zone of consistent 1-2g/t gold mineralization the area north of the LE Pit, from which a 1908 tonne bulk sample returned 3.02g/t in 2000. The existing drill holes in this zone are widely spaced and more drilling needs to be done to determine the continuity of the mineralization within it, and further drilling needs to be carried out to determine the size of this zone, as it remains open in all directions.

Date	Item	Explanation	Cost (\$)
May 4,2005	analytical standards	CDN Resources Laboratories	224
June 30, 2005	GPS Survey	Durfeld Geological	1356
May 4-15, 2005	excavator rental @ \$145/hr	Gorden Graham contracting	12440
June 1-7, 2005	excavator rental @ \$145/hr	Gorden Graham contracting	4320
May-June 2005	37 days @ \$70/day	truck rental - RJ Johnston	2590
May 23, 2005	13 days @ \$80/day	truck rental - F. Larocque	1080
May 30, 2005	drafting	Terra Cognita	4950
May 1- July 15, 2005	house rent	Potter's sawmill	2500
May 7, 2005	field equipment	Deakin Equipment	696
May 11, 2005	field equipment	Deakin Equipment	1300
May 20, 2005	field equipment	Deakin Equipment	233
May 20, 2005	Van-Kam Freightways	freight	972
May 23, 2005	Van-Kam Freightways	freight	950
June 20, 2005	Van-Kam Freightways	freight	123
June 6, 2005	Van-Kam Freightways	freight	208
June 7, 2005	Van-Kam Freightways	freight	208
June 7, 2005	Van-Kam Freightways	freight	225
June 30, 2005	Van-Kam Freightways	freight	218
June 22, 2005	field expenses	R.J.Johnston	1028
June 9, 2005	groceries	Save-On foods	1686
May 30, 2005	ATV, trailer rent	Val-Geo-Tech	1425
June 22, 2005	field expenses	F. Larocque	1872
Personnel			
May-June 2005	J.W.Morton	3 days @ \$550	1650
May-July 2005	R.J.Johnston	49 days @ \$550	26950
Jun-05	G. Carter	1.5 days @ \$390	585
May- June 2005	J. P Charbonneau	33.5 days @ \$295	9883
May- June 2006	F. Larocque	33.5 days @ \$295	9883

COST STATEMENT

Analytical costs	1091 samples @ \$37.31/sample	Eco-Tech Labs	40707
Drilling	1677.m @ \$45.68/metre	Drift Exploration	76605
Total			206866

STATEMENT OF QUALIFICATIONS

I, R.J.Johnston, am a graduate of the University of Saskatchewan with a B.Sc. (Advanced) 1982, in Geological Science.

I, R.J.Johnston, am a member of the Association of Professional Engineers and Geoscientists of the Province of BC (P.Geo.), registration number 19253.

I have practiced my profession since graduation in Western Canada, Mexico and Central America.

I, R.J.Johnston, supervised the exploration programme outlined in this report and personally logged the reverse circulation chips from the drilling.

Dated this 31 day of January, 2006

REFERENCES

Bailey, D.G., (1990): *Geology of the Central Quesnel Belt, British Columbia*; B.C. Ministry of Energy Mines and Petroleum Resources, Open File 1990-31, Map with notes, 100,000.

Bloodgood, M.A., (1988): Geology of the Quesnel Terrane in the Spanish Lake area, Central British Columbia; B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1. pp. 139-145.

Campbell, R.R., (1978): Quesnel Lake; Geological Survey of Canada, Open File Map 574.

Clary, R., (1994): *Metallurgical Report on Eastfield Resources Ltd. Cariboo Operation Concentrate*; Westmin Resources Ltd., Premier Gold Project, Private Company Report, 3p.

Christie, J.S., (1986): *Diamond Drilling Report, PESO Mineral Claim*; Hycroft Resources and Development Ltd., Assessment Report No. 14,468 8 pages with attachments.

Cogema, (1995): Trench 29 - Section; Compilation of Trench Sections, Cogema Resources Ltd.

Dunn, D.C., (1983): Report on Line Cutting, Soil Sampling, Rock Sampling, VLF Survey and Geological Mapping on the DON 1-4, Mar 1, PESO, JUL 2, MY, APR. FR. Mineral Claims; Lacana Mining Corporation, Assessment Report No. 11,428 6 pages with attachments.

Eyles N. and S.P. Kocsis, (1988): Sedimentological Controls on Gold Distribution in Pleistocene Placer Deposits of the Cariboo Mining District, British Columbia; B.C. Ministry of Energy Mines and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1, pp. 377-385.

Gabrielse, H., J.W.H. Monger, J.O. Wheeler, and C.J. Yorath, (1991): *Part A. Morphogeological Belts, Tectonic Assemblages, and Terranes*; in Chapter 2 of Geology of the Cordilleran Orogen in Canada; Geological Survey of Canada, Geology of Canada, No. 4, pp.15-28.

Giroux, G.H., (1981): Geochemical and Geophysical Report on the PESO, PESO B and PESO E Mineral Claims; Aquarius Resources Ltd. 25 pages with attachments.

Godfrey, J.D., (1979): Survey of Mineral Prospects in the Likely District, British Columbia; Aquarius Resources Ltd. and Carolin Mines Ltd., Private Company Report, 31 p.

Goodall, G.N. and P.E. Fox, (1988): *Percussion Drilling Report on the Carolin Option, Cariboo Mining Division, British Columbia*; Fox Geological Consultants Ltd. for Placer Dome Inc., 13 pages with attachments.

Holland, S.S., (1987): *Placer Gold Production of British Columbia*; British Columbia Ministry of Energy, Mines and Petroleum Resources, Bulletin 28, 89p.

Honsinger, R. and K.V. Campbell, (1988): *Results of the 1987/88 Exploration Program*; Pundata Gold Corporation, Volume 1, Private Company Report, 93p.

Hurley, T. and M. Ben, (1996): Spanish Mountain Project, Report on the 1996 Exploration Program; Cyprus Canada Inc., Private Company Report, 25 pages with attachments.

Johnston, R.J., (2005); *Report on the 2004 Exploration on the Spanish Mountain Project*; Report for Wildrose Resources Ltd.

Livgard, E., (1995): Summary Report on the Spanish Mountain Property, Likely, British Columbia; Consolidated Logan Mines Ltd., Private Company report, 27 pages with attachments.

McClintock, J.A., (1985a): *Proposed 1986 Exploration Program Cariboo – Likely Project*; Mt. Calvery Resources Ltd. Private Company Report, 13 pages with attachments.

McClintock, J.A., (1985b): 1985 Phase III – Exploration Report on the PESO-CPW Gold Prospect, Spanish Mountain Area; Mt. Calvery Resources Ltd., Assessment Report No. 14,682 23 pages with attachments.

Morton, J.W., (2001): Geological Reconnaissance and soil sampling completed on Cedar Creek *Property*; Wildrose Resources Ltd., Private Company Report, 7 pages with attachments.

Morton, J.W., (2002): *Spanish Mountain Property, Cariboo Mining Division, BC*: Wildrose Resources Ltd., Private Company Report, 9 pages with attachments.

Morton, J.W., (2003): 2002 Rock sampling Program on the Armada Claim; Wildrose Resources Ltd., Private Company Report, 11p.

Nicholson, R.J. (1987): Report on 1986 Prospecting, Trenching, sampling, Line Cutting, Geophysical Surveying, Geological Mapping and Percussion Drilling; Mandusa Resources Ltd., Assessment Report No. 15,880, 12 pages with attachments.

Page, J. W., (April 30, 2003): The Spanish Mountain Property, Cariboo Mining Division, British Columbia, Recommendations for Further Exploration, for Skygold Ventures Ltd.,

Province of British Columbia, (1933): Cariboo District – Mariner I; Annual Report of the Minister of Mines for the Year Ended 31 of December 1933; pp. A134-A135.

Province of British Columbia, (1947): *El Toro Mines B. C. Ltd.*; Annual Report of the Minister of Mines for the Year Ended 31 of December 1947; pp. A123-A127.

Province of British Columbia, (1963): Notes on Placer Mining in British Columbia; Department of Mines and Petroleum Resources, Bulletin 21, 42p.

Rees, C.J.; (1987): The Intermontane – Omineca Belt boundary in the Quesnel Lake Area, East-Central British Columbia: Tectonic Implications Based on Geology, Structure and Paleomagnetism; Ph.D. Thesis; Carlton University, Ottawa, Ontario.

Robertson, S.B., (2001a): *Report on the Spanish Mountain property, British Columbia*; Imperial Metals Corporation, Private Company Report, 30p.

Robertson, S.B., (2001b): Report on the Placer Claims of the Spanish Mountain property, British Columbia; Imperial Metals Corporation, Private Company Report, 17p.

Stacy, N.W., (1976): *Preliminary Report on the Mariner II Property*; Assessment Report No. 6460, 3 pages with attachments.

Struik, L.C., (1988): Regional Imbrication within Quesnel Terrane, Central British Columbia, as Suggested by Conodont Ages; Canadian Journal of Earth Sci., Volume 25, pp.1608-1617.

Tribe, N.L., (1979): *Report on Reconnaissance Geological Mapping and Sampling, Mariner II Claim Group*; Assessment Report No. 8636, 12 pages with attachments.

Venkataramani, (1971): Magnetometer Survey; Spanallen Mining Ltd. Assessment Report 3121.

Wallster, D.E., (1984): Geochemical Report concerning a Soil Sampling Survey of the CPW Claim; Whitecap Energy Inc., Assessment Report No. 11,822, 25 pages with attachments.

APPENDIX 1

et:

. ·

REVERSE CIRCULATION DRILL LOGS

FOR

05SPRC-235-250

Hole #	0550PC 235			loc mothod: diff ans		drill moth	nd: rou		iroulation	
Property: C	Snanish Mtn		-			Start Data	May 7	2005	iculation	
Depth (m)	117 35			LITM N 5927970		Completie	Nay 7,	2005		
Elevation: 1	123 m			Azimuth: 080 °		Logged D		5, 2003		
Section:				Inclination: 60		Dete la re	7. John			
Notos	T	I				Date logge	ea: May	8, 2005	1	
INDIES	I				<u></u>	Drilled by	: Drift			
Dopti	nu (motros)	Same		Lithologic Description		Durito		Altorati		Δ.,
Erom		sample #	Imetres			rynte %	/ carb		UII	Au a/t
0.00	3.05	oumpic #	Inclica	casing no sample	70	70	Carb	51111	linoisite	y/i
3.05	<u> </u>	130471	1.52	bk silty arg no roject						0.06
3.03	6.10	130471	1.52	bk silty arg _ surface feex weath	2	0.1				0.00
6 10	7.62	130472	1.52	bk silty arg: tr mariposito in gtz		0.1				0.11
7.62	0.15	130473	1.52	araphitic bk silty ara	2	0.0				0.72
9.15	10.67	130474	1.52	graphitic bk silty arg	2	0.5				0.37
10.67	10.07	130475	1.52	graphitic bk silty arg	+r	0.0				0.04
12.19	12.13	130470	1.52	graphitic bk silty arg	0.1	U. 1				0.04
12.13	15.72	130477	1.52	graphitic bk silty arg	0.1	u 01		·· -		0.09
15.72	16.24	130470	1.52	graphitic bk silty arg	0.0	0.1				0.19
10.24	10.77	130479	1.52	Standard (Lorriane)	4	0.5		<u> </u>		* 0.13
16.77	18.20	130400	1.52	graphitic bk silty arg	0.1					0.13
18.29	19.23	130482	1.52	graphitic bk silty arg	0.1	0.5				0.27
19.23	21.34	130483	1.52	graphitic bk silty arg	0.5	0.5				0.00
21.34	22.86	130484	1.52	graphitic bk silty arg	0.3	0.5				0.14
22.86	22.00	130485	1.52	graphitic bk silty arg	1	0.5				0.00
24.39	25.00	130486	1.52	graphitic bk silty arg	02	0.0			+	1.41
25.01	27.43	130400	1.52	graphitic bk silty arg	0.2	0.1				2.17
27.43	28.96	130407	1.52	graphitic bk silty arg	0.5	. 0.0				2.17
28.96	30.48	130480	1.52	graphitic bk silty arg	0.0	2			+	2.7
30.48	32.01	130403	1.52	graphitic bk silty arg	0.5					1 75
32.01	33.53	130400	1.52	graphitic bk silty arg	1	1			+	0.50
33.53	35.05	130491	1.52	graphitic bk silty arg		2				0.33
35.05	36.58	130492	1.52	graphitic bk silty arg	05					0.41
36.58	38.10	130400	1.52	graphitic bk silty arg	0.5	0.5				0.20
38.10	39.63	130495	1.52	graphitic bk silty arg	1	0.5			-	2.46
39.63	41 15	130496	1.52	graphitic bk silty arg		0.0				0.63
41 15	42.67	130497	1.02	graphitic bk silty arg	0.1	0.5				0.00
42.67	44.20	130498	1.52	graphitic bk silty arg	0.0	1				0.32
44 20	45.72	130499	1.52	graphitic bk silty arg	0.1	'				0.02
	10.12	130500	1.92	Standard						* 0.13
45.72	47.25	102001	1.52	graphitic bk silty arg	0.5	3				0.57

05SPRC-23	5			-						
Depth	i (metres)	Samp	oles	Lithologic Description	Qtz Vn	Pyrite	A	Alterati	on	Au
From	То	sample #	metres	·····	%	%	carb	sil'n	limonite	g/t
47.25	48.77	102002	1.52	graphitic bk silty arg	0.5	2				0.58
48.77	50.29	102003	1.52	graphitic bk silty arg	0.5	2				1.71
50.29	51.82	102004	1.52	graphitic bk silty arg	1	1				0.57
51.82	53.34	102005	1.52	graphitic bk silty arg	7	0.5				0.46
53.34	54.87	102006	1.52	graphitic bk silty arg	3	1				0.60
54.87	56.39	102007	1.52	graphitic bk silty arg	10	1				0.60
56.39	57.91	102008	1.52	graphitic bk silty arg	2	1				0.90
57.91	59.44	102009	1.52	gy-bk argls sltn	2	2				0.49
59.44	60.96	102010	1.52	gy-bk argis sitn	3	2				0.49
60.96	62.49	102011	1.52	gy-bk argis sitn	1	2				0.52
62.49	64.01	102012	1.52	mixed bk silty arg, gy ARWK (alt	2	3	mod			
				sltn); v fine py						0.22
64.01	65.53	102013	1.52	bk silty arg; v fine py	0.5	2				0.33
65.53	67.06	102014	1.52	bk silty arg; v fine py	0.5	1				1.55
67.06	68.58	102015	1.52	bk silty arg; v fine py	5	5				2.97
68.58	70.11	102016	1.52	bk silty arg; v fine py	1	5				2.85
70.11	71.63	102017	1.52	bk silty arg; v fine py	0.5	3				0.87
71.63	73.15	102018	1.52	bk silty arg; v fine py	0.1	3				0.98
73.15	74.68	102019	1.52	bk silty arg; v fine py	3	1				3.45
74.68	76.20	102020	1.52	gy-bk silty arg, argls sltn; v fine py	5	1				
										2.51
76.20	77.73	102021	1.52	gy-bk silty arg, v fine py	2	1				1.66
77.73	79.25	102022	1.52	gy-bk silty arg, v fine py	0.1	5				53.7
80.77	82.30	102023	1.52	gy-bk silty arg, v fine py	0.1	10				0.39
79.25	80.77	102024	1.52	gy-bk silty arg, v fine py	0.1	5				1.41
82.30	83.82	102025	1.52	gy-bk silty arg, v fine py	10	0.5				0.53
83.82	85.35	102026	1.52	gy-bk silty arg, v fine py	0.5	2				1.02
85.35	86.87	102027	1.52	gy carb alt argls sltn, fg wacke;	3	1	mod		1	
				coarse qtz						0.61
86.87	88.39	102028	1.52	gy carb alt argls sltn, fg wacke;	3	2	mod			
				coarse qtz						1.08
		102029		no sample						
		102030		Standard						0.51
88.39	89.92	102031	1.52	gy carb alt fg wacke; coarse qtz	3	1	strong			0.52
89.92	91.44	102032	1.52	mixed bk silty arg, gy ARWK (alt	1	0.5	mod			
				sltn); v fine py						0.55
91.44	92.97	102033	1.52	mixed bk silty arg, gy ARWK (alt	1	3	mod			
				sltn); v fine py		ŀ				0.89

· · · ·

05SPRC-23	5									
Depth	(metres)	Sam	oles	Lithologic Description	Qtz Vn	Pyrite	ļ A	Alteratio	o n	Au
From	То	sample #	metres		%	%	carb	sil'n	limonite	g/t
92.97	94.49	102034	1.52	mixed bk silty arg, gy ARWK (alt	3	1	mod			
				sltn); v fine py						0.89
94.49	96.01	102035	1.52	bk argls sitn	1	2				0.33
96.01	97.54	102036	1.52	bk argls sltn	0.5	1				0.87
97.54	99.06	102037	1.52	gy-bk ARWK (alt sed), bk arg	0.5	0.1	mod			0.37
99.06	100.59	102038	1.52	gy-bk MCAV (tr mariposite), bk arg	1	0.5	mod			
										0.25
100.59	102.11	102039	1.52	gy-bk carb alt argls sltn	0.5	0.1				0.22
102.11	103.63	102040	1.52	gy-bk carb alt argls sitn	0.5	0.5				0.35
103.63	105.16	102041	1.52	gy-bk carb alt fg wacke (ARWK)	0.5	0.1	strong			0.10
105.16	106.68	102042	1.52	gy-bk argls sltn	1	2				1.09
106.68	108.21	102043	1.52	gy-bk argls sltn; tr mariposite in	5	0.1				
				coarse qtz						2.07
108.21	109.73	102044	1.52	bk argls sltn, tr blue qtz as in RC-	2	1				
				220						0.80
111.25	112.78	102045	1.52	bk argls sltn	2	0.5				0.31
109.73	111.25	102046	1.52	bk argls sltn	1	0.5				0.42
112.78	114.30	102047	1.52	gy ARWK (alt sed)	0.1	0.1	mod			0.18
114.30	115.83	102048	1.52	gy-bk argls sltn	0.5	0.1				0.43
115.83	117.35	102049	1.52	gy-bk MCA; tr mariposite	0.5	0.1				0.38
			Ι							
				EOH			<u> </u>			 .
			T							
			<u> </u>							

Hole #	05SPRC-236			loc method; diff gps		drill meth	nod: rev	erse cir	culation	
Property: S	panish Mtn			UTM E 604674	1	Start Date	: May 9, 1	2005		
Depth (m)	100.58		· · · · · · · · · · · · · · · · · · ·	UTM N 5827514		Completic	n: May 1	0, 2005		
Elevation: 11	90m			Azimuth: 030 °	1	Logged By	y: Johr	ston		
Section:			1	Inclination: -60		Date logge	ed: May	12, 2005		
Notes						Drilled by	: Drift		T	
05SPRC-23	6								<u> </u>	
Depth	(metres)	Sam	pies	Lithologic Description	Qtz Vn	Pyrite		Alteratio	on	Au
From	То	sample #	metres		%	%	carb	sil'n	limonite	g/t
0.00	3.05			casing - no sample						
3.05	4.57	102050	1.52	overburden						1.18
4.57	6.10	102051	1.52	overburden						0.71
6.10	7.62	102052	1.52	overburden						0.21
7.62	9.15	102053	1.52	bk silty arg - no reject						0.34
9.15	10.67	102054	1.52	bk silty arg; surface feox weath	tr	tr				1.06
10.67	12.19	102055	1.52	bk silty arg; surface feox weath	t	tr				1.42
12.19	13.72	102056	1.52	bk silty arg - no reject						1.65
13.72	15.24	102057	1.52	bk silty arg	1	0.1				1.40
15.24	16.77	102058	1.52	bk silty arg	0.5	tr		-	}	0.46
16.77	18.29	102059	1.52	bk silty arg	0.5	tr				1.22
		102060		Standard (Spanish Mtn)						4.99
18.29	19.81	102061	1.52	bk-gy silty arg	tr	tr				1.37
19.81	21.34	102062	1.52	bk-gy silty arg	5	0.1				1.74
21.34	22.86	102063	1.52	bk-gy silty arg; wk-mod y-or lim	0.5	tr			strong	0.96
22.86	24.39	102064	1.52	bk-gy silty arg; wk-mod y-or lim	1	tr			strong	1.49
24.39	25.91	102065	1.52	bk-gy silty arg; wk-mod y-or lim	0.5	tr			strong	0.68
25.91	27.43	102066	1.52	bk-gy silty arg; wk-mod y-or lim;	1	0.5			strong	
				coarse qtz						0.35
27.43	28.96	102067	1.52	bk silty arg	0.1	1				0.48
28.96	30.48	102068	1.52	bk silty arg	0.5	0.1				0.99
30.48	32.01	102069	1.52	bk silty arg	0.5	0.1			, i i i i i i i i i i i i i i i i i i i	1.22
32.01	33.53	102070	1.52	bk silty arg	0.5	tr				0.44
33.53	35.05	102071	1.52	bk silty arg; fine eu py	0.5	2				1.58
35.05	36.58	102072	1.52	bk silty arg; fine eu py	0.5	1				1.18
36.58	38.10	102073	1.52	bk silty arg	0.5	0.1				0.29
38.10	39.63	102074	1.52	bk silty arg	0.2	0.1				0.17
39.63	41.15	102075	1.52	bk silty arg	0.5	0.1			· · · · · · · · · · · · · · · · · · ·	0.29
41.15	42.67	102076	1.52	bk silty arg	0.5	0.1				0.30
42.67	44.20	102077	1.52	bk silty arg	0.5	0.1				0.65
44.20	45.72	102078	1.52	bk silty arg	0.1	0.1				0.68
45.72	47.25	102079	1.52	bk silty arg	0.1	0.1				0.31
47.25	48.77	102080	1.52	bk silty arg, argls sltn; coarse	tr	tr				
				frags, fracture zone?						0.40

· 1

05SPRC-23	6									
Depth	(metres)	Sam	oles	Lithologic Description	Qtz Vn	Pyrite		Alteratio	n	Au
From	То	sample #	metres		%	%	carb	sil'n	limonite	g/t
48.77	50.29	102081	1.52	bk silty arg, argls sltn; minor gy	tr	tr	mod			
				MCA; coarse frags, fracture zone?						
										0.13
50.29	51.82	102082	1.52	bk silty arg, gy argls sltn	tr	tr				0.27
51.82	53.34	102083	1.52	bk silty arg, gy argls sltn	tr	tr				0.40
53.34	54.87	102084	1.52	bk silty arg, gy argls sltn	0.5	0.1				1.28
54.87	56.39	102085	1.52	bk silty arg, gy argls sitn	1	0.1				0.24
56.39	57.91	102086	1.52	bk silty arg, gy argls sltn; minor gy	0.5	0.1	mod			
				(ARWK)						0.37
57.91	59.44	102087	1.52	bk silty arg, gy argls sltn; minor gy	0.5	0.5	mod			
				(ARWK)						1.64
59.44	60.96	102088	1.52	bk silty arg, argls sitn	0.5	0.5				4.22
60.96	62.49	102089	1.52	bk silty arg, argls sitn	0.2	0.2				1.33
		102090		Standard						4.87
62.49	64.01	102091	1.52	bk silty arg, argls sltn; minor lim	0.5	0.1			wk	0.52
64.01	65.53	102092	1.52	bk silty arg, argls sltn	0.5	0.5				0.72
65.53	67.06	102093	1.52	bk silty arg, argls sltn; v fine py	0.5	1				
				masses						2.12
67.06	68.58	102094	1.52	bk silty arg, argls sltn; v fine py	0.1	0.5				
				masses						0.99
68.58	70.11	102095	1.52	bk silty arg, argls sltn; v fine py	0.5	1				
ļ				masses						1.78
70.11	71.63	102096	1.52	bk silty arg, argls sltn; v fine py	0.5	1				
				masses						1.28
71.63	73.15	102097	1.52	bk silty arg, argls sltn; v fine py	0.1	2				
				masses						1.40
73.15	74.68	102098	1.52	bk silty arg, argls sltn; v fine py	0.5	1				
J				masses	·				;	1.84
74.68	76.20	102099	1.52	bk silty arg; v fine py masses	0.5	1			2	0.62
76.20	77.73	102100	1.52	bk silty arg; v fine py masses	0.1	5				0.66
//./3	/9.25	102101	1.52	bk silty arg; v fine py masses	0.5	1				0.70
80.77	82.30	102102	1.52	bk silty arg; v fine py masses	0.5	1				0.34
79.25	80.77	102103	1.52	bk silty arg; v fine py masses	0.1	2				0.17
82.30	83.82	102104	1.52	bk silty arg; v fine py masses	0.5	1				0.16
83.82	85.35	102105	1.52	bk silty arg; v fine py masses	0.5	1				0.39
85.35	86.87	102106	1.52	bk silty arg; v fine py masses	0.5	1				0.19
86.87	88.39	102107	1.52	bk silty arg; v fine py masses	0.5	0.2			ļ	0.19
88.39	89.92	102108	1.52	mixed silty arg, gy-gn alt volc	0.1	0.1	strong			
		400400		(MCA); tr mariposite						0.57
89.92	91.44	102109	1.52	gy-gn ait voic (MCA)	0.5	tr	strong			0.29
91.44	92.97	102110	1.52	gy-gn alt voic (MUCA)	U.1	<u>រ</u>	strong			0.09

05SPRC-23	6									
Depth	(metres)	Sam	oles	Lithologic Description	Qtz Vn	Pyrite	T	Alteratio	n	Au
From	То	sample #	metres		%	%	carb	sil'n	limonite	g/t
92.97	94.49	102111	1.52	gy-gn alt volc (MCA); tr mariposite	tr	tr	strong			
							Ĭ			0.27
94.49	96.01	102112	1.52	gy-on alt volc (MCA); tr mariposite	tr	tr	strong			
				3, 3	ſ	.,	ou ong	1		0.22
96.01	97.54	102113	1.52	mixed ay alt wacke, ay an alt volc	l tr	tr	etropa			0.23
30.01	37.54	102113	1.52	(MCA): tr marinosite	u	u	strong			0.24
97.54	99.06	102114	1.52	mixed av alt wacke, av-an alt volc	tr	tr	strong	<u> </u>		0.24
07.04	00.00	102111	1.02	(MCA): tr mariposite	"	u .	Strong			0.22
99.06	100 58	102115	1.52	mixed av alt wacke, av-an alt volc	fr	tr	strong			0.22
00.00	100.00	102110	1.02	(MCA): tr mariposite		u	Subirg			0.18
					{					0.10
				EOH						<u></u>
										·····
	·			·····				· · · ·		
							-		· · · ·	
				· · · · · · · · · · · · · · · · · · ·	1		1			
	·····		· ··· · · · · ·							
				· · · · · · · · · · · · · · · · · · ·						
				·····			1			
							1			
						1	1			
									į.	
									. ^.	
									9 5	

Hole #	05SPRC-237			loc method; diff gps		drill met	hod; rev	verse circ	ulation	
Property:	Spanish Mtn			UTM E 603723		Start Date	e: May 10	, 2005		
Depth (m)	30.48			UTM N 5827927		Completi	on: May 1	1, 2005		
Elevation:	1135 m			Azimuth: 060 °		Logged E	By: Johr	nston		
Section:				Inclination: -60		Date logo	ed: May	12, 2005		
Notes	unable to com	plete hole	due to cav	ving overburden		Drilled b	y: Drift	:		
			·····		•					
Dep	th (metres)	Sam	nples	Lithologic Description	Qtz Vn	Pyrite		Alteratio	n	Au
From	То	sample #	metres		%	%	carb	sil'n	limonite	g/t
0.0	0 21.34			overburden						
21.3	4 22.86	102116	1.52	mixed bk ar, gy-gn MCA	0.1	tr	mod			0.16
22.8	6 24.39	102117	1.52	bk arg, local lim; gy qtz	1	tr			wk	0.19
24.3	9 25.91	102118	1.52	bk arg, minor MCA	0.1	tr	mod			0.28
25.9	1 27.44	102119	1.52	bk arg, minor MCA	0.1	tr	mod		mod	0.54
		102120		Standard						4.72
27.4	4 28.96	102121	1.52	bk arg, minor MCA	0.5	tr	mod	1		0.09
28.9	6 30.48	102122	1.52	bk arg, minor MCA	0.1	tr	mod			0.06
						1				
				EOH						
			1							
			-)					
							1			
						1				
			-							
										•••
		1	<u> · · ·</u> -							
							1		1	
					· · · · · · · · · · · · · · · · · · ·		1			
	-					1			1	
			1			1	1		1	
				· · · · · · · · · · · · · · · · · · ·			1			
						· · ·				
						······			+	· · · · ·
			1			1			1	
		1	1							• • •
		1				1	1	!		
	<u> </u>	1	<u> </u>			1		1		
			· · · · · · · · · · · · · · · · · · ·	1		· · · · · · · · · · · · · · · · · · ·				

										1
Hole #	05SPRC-238			loc method: diff aps		drill met	hod: rev	erse circu	lation	
Property: S	Spanish Mtn			UTM E 603794		Start Date	: May 11	2005		
Depth (m)	115.82	·		UTM N 5827869		Completi	on: May 1	2, 2005		1
Elevation: 1	149m			Azimuth: 120 °	1	Loaged E	By: Johr	iston		
Section:				Inclination: -60		Date logo	ed: Mav 1	9, 2005		
Notes	T	L	<u>. </u>			Drilled b	v: Drift			
05SPRC-23	38						<u>, </u>	· · · · · ·		1
Dent	h (metres)	Sam	iples	Lithologic Description	Qtz Vn	Pyrite		Alteratio		Au
From	То	sample #	metres		%	%	carb	sil'n	limonite	g/t
0.00	18.29	··		casing - no sample						
18 29	19.81	102123	1 52	lt av MCA	0	ō			-	0.0
19.81	21 34	102124	1.52	gy-gn MCA tr mariposite	0.5	0	strona			0.2
21.34	22.86	102125	1.52	gy-gn MCA, tr mariposite	0.5	tr	strona		1	0.0
22.86	24 39	102126	1 52	gy-gn MCA tr mariposite	0.1	tr	strona			0.0
24.39	25.91	102127	1.52	mix argls sltn_MCA	0.1	0.1	mod			0.0
25.91	27.43	102128	1.52	mix argls sltn, MCA	0.5	tr	mod	<u> </u>	1	0.1
27 43	28.96	102129	1.52	mix argls sltn, MCA, tr mariposite	1 1	tr	mod		1	0.0
28,96	30,48	102130	1.52	bk arg, minor MCA	0.5	0.1	mod	t		0.0
30.48	32.01	102131	1.52	bk arg, minor MCA	0.5	0.1	mod			0.0
32.01	33,53	102132	1.52	mix arg, MCA with mariposite	0.1	0.1	mod	<u> </u>		0.0
33.53	35.05	102133	1.52	mix arg, MCA with mariposite	0.5	tr	mod			0.0
35.05	36,58	102134	1.52	bk arg, minor MCA with mariposite	1	0.1	mod			0.3
36.58	3 38,10	102135	1.52	MCA with mariposite, minor arg	1	0.1	strong			0.1
38.10	39,63	102136	1.52	bk arg	0.1	0.1	Ŭ			0.2
39.63	41.15	102137	1.52	bk arg	3	0.1				0.0
41.15	42.67	102138	1.52	mix bk arg, MCA	0.1	0.1	mod			0.0
42.67	44.20	102139	1.52	bk arg, minor lim stained gtz	2	0.1			local	0.0
44.20	45.72	102140	1.52	bk arg	2	0.5				0.0
45.72	47.25	102141	1.52	bk arg	1	0.5		<u> </u>		0.0
47.25	5 48.77	102142	1.52	bk arg	1 1	0.5				0.0
48.77	7 50.29	102143	1.52	bk arg	1	0.1				0.0
50.29	51.82	102144	1.52	bk arg	2	0.1		1		0.3
51.82	2 53.34	102145	1.52	bk arg, mnior MCA	1	0.1	wk			0.1
53.34	1 54.87	102146	1.52	bk arg	0.5	0.1				0.3
54.87	56.39	102147	1.52	mix bk arg, MCA with mariposite	0.1	0.1	wk			0.3
56.39	57.91	102148	1.52	bk arg, minor MCA	0.5	0.1	wk			0.6
57.91	1 59.44	102149	1.52	bk arg, minor MCA	0.5	tr	wk			0.1
		102150)	Standard						4.9
59.44	1 60.96	102151	1.52	mix arg, MCA with mariposite	0.1	0.1	mod			0.1
60.96	62.49	102152	1.52	It gy ARWK (alt wacke?)	0.1	tr	strong			0.0
62.49	64.01	102153	1.52	mix bk arg, ARWK	0.5	tr	mod			<0.0

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
Donth	(metroc)	Sam	nles	Lithologic Description	Qtz Vn	Pyrite		Alteration	1	Au
	To	sample #	metres		%	%	carb	sil'n	limonite	g/t
64.04	65.52	102154	1.52	gy ARWK (wacke)	0.5	tr	strong			0.03
65 52	67 AR	102155	1.52	mix bk arg. ARWK	0.5	0.1	mod			0.03
67.06	68.58	102156	1.52	bk arg	0.5	0.1				0.05
68 58	70 11	102157	1.52	bk arg	0.5	0.1				0.05
70.11	71 63	102158	1.52	bk arg; streaky gtz	15	0.1	l			0.05
71 62	73 15	102159	1.52	bk arg; streaky gtz	20	0.1				0.40
73 15	74 68	102160	1.52	bk arg; streaky gtz	50	0.1			L	< 0.03
74 68	76 20	102161	1.52	gy ARWK (wacke?)	50	0.1	strong	L	\square	0.05
76 201	77 73	102162	1,52	gy-gn MCA, tr mariposite	1	tr	strong	L	L	0.07
77 73	79 25	102163	1.52	gy-gn MCA, tr mariposite; minor arg	5	tr	strong		1	_
						'		L	↓	0.06
79 25	80.77	102164	1.52	bk arg	10	0.1		L	<u> </u>	0.04
80.77	82.30	102165	1.52	bk arg	5	0.1	ļ	<u> </u>		0.06
82,30	83.82	102166	1.52	bk arg	20	0.1	L	L	↓	0.29
83.82	85.35	102167	1.52	bk arg	5	tr			<u> </u>	
85.35	86.87	102168	1.52	mix arg, gy ARWK	$1 \overline{1}$	tr	mod	_	<u> </u>	
86.87	88.39	102169	1.52	mix arg, gy ARWK	1	tr	mod		_	
88.39	89.92	102170) 1.52	mix gy-gn MCA, bk arg	1	<u>tr</u>	strong	_	_	
89.92	91.44	102171	1.52	bk arg, minor MCA	1	tr	<u>wk</u>	<u> </u>	4	+
91.44	92.97	102172	2 1.52	bk arg	2	tr	I			+
92.97	94.49	102173	1.52	bk arg	0.5			+	-}	$+ \frac{0.04}{0.04}$
94.49	96.01	102174	1 1.52	bk arg	1 1	tr		_		
96.01	97.54	102175	5 1.52	bk arg	0.5	<u>tr</u>	 	 		+
97.54	99.0E	3 102176	3 1.52	bk arg	<u> 2</u>	tr	↓	_	+	+ 0.0
99.06	100.59	102177	7 1.52	bk arg	2	tr				
100.59	102.11	102178	3 1.52	bk arg	 1	<u>tr</u>		+		
102.11	103.63	3 102179	9 1.52	bk arg	+ <u></u>	<u> r</u>	╂───	+		
		102180		Standard	_		↓	+	- 	+00
103.63	105.16	<u>3 10218</u>	1 1.52	bk arg	40	<u>, tr</u>	-		- 	
105.16	106.68	3 102182	2 1.52	mix arg, gy ARWK	<u>+</u>	n r	<u></u>	+		
106.68	108.2	1 10218:	3 1.52	bk arg	<u> </u>	$\frac{1}{1}$ 0.1	\ 	+		
108.21	1 109.7:	3 102184	4 1.52	bk arg	4		'		+	+
109.73	3 111.2:	5 10218	5 1.52	2 bk arg			. 			
111.25	5 112.78	8 10218	6 1.52	2 bk arg	- 	$\frac{1}{1+r}$	'	+		1 0.0
112.78	3 114.3	0 10218	7 1.52	2 bk arg	+	<u>אר</u>			- 	+
114.30	115.8	2 10218	8 1.52	2 bk arg	- <u> </u>	<u>ין גר</u>		+	+	
		<u> </u>		L	- 		- {	+	_{	
	1	<u> </u>	<u> </u>	<u>LOH</u>			+			
-	1	1	1		I	_L	1		<u></u>	_ _

Hole #	05SPRC-239			loc method: diff gps		drill met	hod; rev	erse circu	lation	
Bronorty: 9	nanish Mtn			UTM E 604267		Start Date	e: May 13,	2005		
Dopth (m) 1	20 40			UTM N 5827580	1	Completi	on: May 1	4, 2005		
Elevation: 12	29 m			Azimuth: 090 °	1	Logged E	By: John	ston		
Section:	20 111			Inclination: -60		Date logg	jed: May 1	15,16, 2005		
Notes		<u> </u>	<u> </u>			Drilled b	y: Drift			
AFSPRC-23	 م									
Dopth	(metree)	Sam	inles	Lithologic Description	Qtz Vn	Pyrite		Alteration	1	Au
Depu		sample #	metres		%	%	carb	sil'n	limonite	g/t
0.00	3.05	oumpio		overburden		1				
3.05	4 57	102189	1.52	or surface weath gy carb alt wacke	0	0	strong			
0.00	4.07			(ARWK), tr cp?		1				0.04
4 57	6 10	102190	1.52	or surface weath gy carb alt wacke	0	tr	strong			
4.01	0			(ARWK)		<u> </u>		 		< 0.03
6 10	7.62	102191	1.52	or surface weath gy bk argls sltn,	0	0.1	strong			
				silty arg (ARWK)						0.04
7.62	9 15	102192	1.52	gy bk argls sltn, silty arg	10	0.1				0.91
9 15	10.67	102193	1.52	gy bk argls sitn	2	tr				0.04
-10.67	12.19	102194	1.52	gy bk argls sitn	0.5	tr				0.04
12 19	13.72	102195	1.52	gy bk argls sltn, silty arg	tr	0.1		ļ		0.09
13.72	15.24	102196	1.52	gy bk argis sitn	() tr	<u> </u>]		< 0.03
15.24	16.77	102197	1.52	bk silty arg	(0.1		<u> </u>		<0.03
16.77	18.29	102198	3 1.52	gy bk silty arg, argls sitn	tr	tr	ļ	<u> </u>		0.04
18.29	19.81	102199	1.52	bk silty arg	0.1	5		ļ	_ _	0.17
19.81	21.34	102200	1.52	bk silty arg	0.1	0.1				0.08
21.34	22.86	102201	1.52	bk silty arg, argls sltn	0.1	0.5	>			0.10
22.86	24.39	102202	1.52	bk silty arg	tr	0.5	<u> </u>			0.04
24.39	25.91	1 102203	3 1.52	bk silty arg	tr	0.5	2	<u> </u>		<0.03
25.91	27.43	3 102204	1 1.52	bk silty arg	tr	tr			_ _	<0.03
27.43	3 28.96	5 102205	5 1.52	bk silty arg	0.1	0.5	5	<u> </u>	<u> </u>	
28.96	30.48	8 102200	3 1.52	bk silty arg	0.8	5 0.5	<u> </u>	ļ		1 - 0.1/
30,48	3 32.0	1 10220	7 1.52	bk arg	0.1	1 0.	5			0.30
32.01	33.53	3 102208	8 1.52	bk arg	0.1	1 0.5	5			0.95
33.53	3 35.05	5 10220	9 1.52	bkarg	0.9	5 <u>0.</u>	5			
		10221	0	Standard						4.98
35.0	5 36.5	8 10221	1 1.52	bk arg	0.	12				
36.58	3 38.10	0 10221	2 1.52	bk arg	tr	0,	<u> </u>	<u> </u>		
38.1	0 39.6	3 10221	3 1.52	2 bk arg	tr	0,	b			
39.6	3 41.1	5 10221	4 1.52	2 bk arg	tr	0.	5	+		U.40
41.1	5 42.6	7 10221	5 1.52	2 bk arg	tr	tr	<u>_</u>			$\frac{1.01}{0.00}$
42.6	7 44 2	0 10221	6 1.52	2 bk arg	tr	0.	5			L 0.20

Depth	(metres)	Sam	ples	Lithologic Description	Qtz Vn	Pyrite		Alteratio	n	Au
From	То	sample #	metres		%	%	carb	sil'n	limonite	g/t
44.20	45.72	102217	1.52	wh qtz, bk arg	60	0.1				0.9
45.72	47.25	102218	1.52	gy-gn MCA	15	0.1	strong	·		0.4
47.25	48.77	102219	1.52	gy-gn MCA	1	0.1	strong			0.3
48.77	50.29	102220	1.52	gy-gn MCA	1	tr	strong			0.0
50.29	51.82	102221	1.52	gy-gn MCA	1	tr	strong			0.1
51.82	53.34	102222	1.52	gy-gn MCA; tr cp in qtz	0.1	0.1	strong			0.0
53.34	54.87	102223	1.52	gy-gn MCA	0.1	tr	strong			0.0
54.87	56.39	102224	1.52	gy-gn MCA	2	tr	strong			0.0
56.39	57.91	102225	1.52	gy-gn MCA	0.5	tr	strong			0.0
57.91	59.44	102226	1.52	gy-gn MCA	0.1	tr	strong			0.1
59.44	60.96	102227	1.52	gy carb alt wacke (ARWK)	0.1	0.1	strong			0.0
60.96	62.49	102228	1.52	gy carb alt wacke (ARWK)	0.5	tr	strong			0.0
62.49	64.01	102229	1.52	gy carb alt wacke (ARWK), argls sltn	0.5	tr	strong			
_							ľ			<0.0
64.01	65.53	102230	1.52	gy carb alt wacke (ARWK)	0.1	tr	strong			0.0
65.53	67.06	102231	1.52	gy carb alt wacke (ARWK), minor	2	tr	strong			
				MCA, tr mariposite			Ĭ	1		0.1
67.06	68.58	102232	1.52	gy-gn MCA with mariposite, minor	0.1	tr	strong			
				ARWK			Ū			<0.0
68.58	70.11	102233	1.52	gy carb alt wacke (ARWK), minor	0.1	tr	strong	<u> </u>		
				MCA, tr mariposite			Ŭ			0.1
70.11	71.63	102234	1.52	gy carb alt wacke (ARWK), minor	0.1	tr	strong			
				MCA, tr mariposite			Ŭ			<0.0
71.63	73.15	102235	1.52	d gy carb alt wacke (ARWK) with	0.5	tr	strong			· · .
				minor MCA with mariposite			Ĭ	ļ		0.0
73.15	74.68	102236	1.52	d gy carb alt wacke (ARWK) with	0.1	tr	strong		\$	
				minor MCA with mariposite			Ű			<0.0
74.68	76.20	102237	1.52	bk silty arg	1	0.2				0.0
76.20	77.73	102238	1.52	bk silty arg, tr MCA	0.1	0.1	mod	<u> </u>		<0.0
77.73	79.25	102239	1.52	bk silty arg	0.5	0.1				0.0
		102240		Standard (Spanish Mountain)						0.5
79.25	80.77	102241	1.52	bk silty arg, argls sltn	0.5	0.1	1		4.	0.0
80.77	82.30	102242	1.52	bk silty arg, argls sltn	0.1	0.1				0.1
82.30	83.82	102243	1.52	bk silty arg, argis sltn	0.5	0.1				0.0
83.82	85.35	102244	1.52	bk silty arg	0.5	0.5	j			0.6
85.35	86.87	102245	1.52	bk silty arg	0.1	0.1				0.0
86.87	88.39	102246	1.52	bk silty arg	0.5	0.1				0.1
88.39	89.92	102247	1.52	bk silty arg, argls sltn	0.1	0.1				0.1
89.92	91.44	102248	1.52	bk silty arg	3	0.1	1			0.2

05SPRC-239										
Depth	(metres)	Sam	ples	Lithologic Description	Qtz Vn	Pyrite		Alteration	ſ	Au
From	Го	sample #	metres		%	%	carb	sil'n	limonite	g/t
91.44	92.97	102249	1.52	bk silty arg	1	1				0.24
92.97	94.49	102250	1.52	bk silty arg	0.5	0.1				0.18
94.49	96.01	102251	1.52	bk silty arg	0.5	0.1				0.07
96.01	97.54	102252	1.52	bk argls sltn, silty arg	1	1				0.99
97.54	99.06	_ 102253	1.52	bk silty arg	0.5	0.1				0.32
99.06	100.59	102254	1.52	bk silty arg	0.5	1				0.58
100.59	102.11	102255	1.52	bk silty arg	0.1	1				0.41
102.11	103.63	102256	1.52	bk silty arg	0.1	5				0.44
103.63	105.16	102257	1.52	bk silty arg	0.1	2				0.28
105.16	106.68	102258	1.52	bk silty arg	20	0.5				0.07
106.68	108.21	102259	1.52	bk silty arg	0.5	2				0.48
108.21	109.73	102260	1.52	bk silty arg	0.1	10				0.75
109.73	111.25	102261	1.52	bk silty arg	0.1	5				0.79
111.25	112.78	102262	1.52	bk silty arg	0.1	5				0.57
112.78	114.30	102263	1.52	bk silty arg	2	2				0.19
114.30	115.83	102264	1.52	bk silty arg	0.5	· 2				0.19
115.83	117.35	102265	1.52	bk silty arg	0.1	2				0.08
117.35	118.87	102266	1.52	bk silty arg	5	1				0.95
118.87	120.40	102267	1.52	bk silty arg	2	2				0.11
				EOH						
								-		
					•					
								,		
									u:	
									,	· · · · · ·

Hole #	05SPRC-240			loc method; diff gps		drill me	thod: re	verse cirr	culation	
Property: 🧧	Spanish Mtn		[UTM E 604410	+	Start Date	: May 15	2005	Jaiation	
Depth (m) 1	120.40		(UTM N 5827436	+	Completic	on: May 1	6.2005	+	
Elevation: 1/	258 m			Azimuth: 300 °		Logged B	v: Johr	iston		
Section:		,	1	Inclination: -45		Date logg	<u>ed: Mav 1</u>	17 2005		
Notes	Τ	1	L		+	Drilled b	v: Drift	11,2000	T	
05SPRC-24	40	<u></u>		······		Diniou	<u>y. uni</u>			
Deptł	n (metres)	Sam	ples	Lithologic Description	Qtz Vn	Pvrite	<u></u>	Alteration	1	Au
From	То	sample #	metres	· · · · · · · · · · · · · · · · · · ·	%	%	carb	sil'n	l limonite	a/t
0.00	3.05	,		overburden	1					
3.05	4.57	102268	1.52	bn surface weath gy-bk argls sltn,	tr	ol			++	
1 '	'	1		silty arg			1			0.46
4.57	6.10	102269	1.52	bn surface weath gy-bk argls sitn.	3	tr			╂────┼	
1	'	l '		silty arg	-					0 10
<u>}</u> •	†	102270		Standard		<u> </u>			╂────┼	5.01
6.10	7.62	102271	1.52	bn surface weath av-bk arals sitn.	0,1	tr			╉━━━┼	0.01
1 '	1	1		silty ard	1	l"	ļ			0.10
7.62	. 9.15	102272	1.52	bn surface weath gy-bk argis sitn.	1 0.1	tr		·	┢┉╌╁	
'	1 '			silty ard	U	1				0 11
9.15	10.67	102273	1.52	ov-bk arols sith, silty aro	0.1	0.5			++	0.05
10.67	12.19	102274	1.52	ov-bk argis sitn. silty arg	0.1	0.1			<u> </u>	0.00
12.19	13.72	102275	1.52	bk aro	0.1	0.2		r	╉╼╼╍╌╞╴	0.00
13.72	. 16.78	, ;	3.05	no sample, drilled through old hole				l	┨───┤	
'	1 '	1 1	ł	(MR-11?)				l		
16.78	18.30	102276	1.52	bk arg	0.5	0.5			┼───┼	0 14
18.30	19.82	102277	1.52	bk arg	1-0.1	0.5			╉┈╼┯╋	0.09
19.82	21.35	102278	1.52	bk aro		0.1		j	╉┈┈┯╋	0.00
21.35	22.87	102279	1.52	bk arg. vfg silver pv	1 0.1	0.5				0.00
22.87	24.40	102280	1.52	bk aro: vfg silver pv	0.1	0.5			<u></u> <u> </u> +	0.00
24.40	25.92	102281	1.52	bk arg	0.5	0.5			<u> </u>	0.04
25.92	27.44	102282	1.52	ov-bk arols sitn		0.5			┢───┼	-0.00
27.44	28.97	102283	1,52	bk silty aro		0.0			<u>┼</u> ╌╴	
28.97	30.49	102284	1.52	ov-bk silty arg. argls sltn		0.1			╆━━━╋	0.00
30.49	32.02	102285	1.52	bk silty arg	2	0.1			<u> </u>	0.00
32.02	33.54	102286	1.52	ov-bk silty are arels site		U. 1			<u> </u>	0.00
33.54	35.06	102287	1.52	dv-bk silty ard, ardis sitn	॑ ───┤	01			<u>├</u>	0.03
35.06	36.59	102288	1.52	ov-bk silty arg, argls sitn		0.1			łł	0.00
36.59	38.11	102289	1.52	ov-bk silty arg, argls sitn	7	0.1	<u> </u>		┟╶╍╍╸┠╸	0.02
38.11	39.64	102290	1.52	hk silty aro	0.5	0.1			<u>├</u>	0.01
39.64	41.16	102291	1.52	gy-bk silty arg_argls sitn		0.1	 †		├	0.17
41.16	42.68	102292	1.52	av-bk silty arg. argls sitn		0.1	<u> </u>		┟╌╾╾╾╴╂╼╸	0.00
	1			gy-bk silly alg, algis sill	<u>v. q</u>	0.01	1	, j	1 1	U.UZ

05SPRC-24	0										
Depth	(metres)	Sam	ples	Lithologic Description	Qtz	Vn	Pyrite	<u> </u>	Alteratio	n	Au
From	То	sample #	metres		%	,	%	carb	sil'n	limonite	g/t
42.68	44.21	102293	1.52	bk silty arg, minor gy carb alt wacke		0.5	0.5	mod			
											0.05
44.21	45.73	102294	1.52	gy-bk silty arg, argls sitn		0.5	0.1				0.00
45.73	47.26	102295	1.52	mix bk silty arg, gy argls sltn		0.1	0.1		_		0.11
47.26	48.78	102296	1.52	gy-bk silty arg, argls sltn		0.1	0.1				0.39
48.78	50.30	102297	1.52	mix gy carb alt wacke, gy-gn MCA		0.1	0.1	strong			
				with tr mariposite							0.01
50.30	51.83	102298	1.52	gy-gn MCA with mariposite	tr		0.1	strong			0.03
51.83	53.35	102299	1.52	gy-gn MCA with mariposite	tr		tr	strong			0.54
		102300		Standard							4.75
53.35	54.88	102301	1.52	bk arg		0.1	0.1				0.56
54.88	56.40	102302	1.52	bk arg	tr		0.1				0.11
56.40	57.92	102303	1.52	bk arg	tr		0.1				0.09
57.92	59.45	102304	1.52	bk arg		0.1	0.1				0.12
59.45	60.97	102305	1.52	bk arg	-	0.2	0.1				0.06
60.97	62.50	102306	1.52	bk arg		0.1	0.1				0.07
62.50	64.02	102307	1.52	bk arg		0.1	0.1				0.18
64.02	65.54	102308	1.52	bk arg, coarse qtz frags		1	0.1				0.08
65.54	67.07	102309	1.52	bk arg		0.1	tr				0.12
67.07	68.59	102310	1.52	bk arg	tr		tr				0.13
68.59	70.12	102311	1.52	bk arg, tr MCA with mariposite		0.1	0.1	tr			0.10
70.12	71.64	102312	1.52	bk arg	tr		0.1				0.10
71.64	73.16	102313	1.52	bk arg		0.1	0.1				0.08
73.16	74.69	102314	1.52	bk arg		0.5	0.1				0.11
74.69	76.21	102315	1.52	bk arg	•	0.2	0.1				0.08
76.21	77.74	102316	1.52	bk arg		0.1	0.5				0.12
77.74	79.26	102317	1.52	bk arg, v fine py		0.1	0.5				0.17
79.26	80.78	102318	1.52	bk arg, v fine py		0.1	0.2				0.07
80.78	82.31	102319	1.52	bk arg	tr		0.1				0.01
82.31	83.83	102320	1.52	bk arg		0.5	0.1				0.11
83.83	85.36	102321	1.52	bk arg	tr		0.1			*	0.10
85.36	86.88	102322	1.52	bk arg	tr		0.2		_		0.08
86.88	88.40	102323	1.52	bk arg; v fine py	tr		0.5				0.06
88.40	89.93	102324	1.52	bk arg; v fine py	tr		0.5				0.06
89.93	91.45	102325	1.52	bk arg; v fine py	1	0.1	0.5				0.05
91.45	92.98	102326	1.52	bk arg; v fine py	I	0.1	0.1		l		0.07
92.98	94.50	102327	1.52	bk arg	I	0.5	0.2				0.07
94.50	96.02	102328	1.52	bk arg	<u> </u>	0.1	0.5				0.07
96.02	97.55	102329	1.52	bk silty arg		0.1	0.5		1		0.07

.

05SPRC-24)					-	-			
Depth	(metres)	Sam	ples	Lithologic Description	Qtz Vn	Pyrite		Alteration	1	Au
From	То	sample #	metres		%	%	carb	sil'n	limonite	g/t
		102330		Standard						4.76
97.55	99.07	102331	1.52	bk silty arg	tr	0.2				0.08
99.07	100.60	102332	1.52	bk arg	0.1	0.1				0.11
100.60	102.12	102333	1.52	bk arg	0.5	0.1				0.09
102.12	103.64	102334	1.52	bk arg	0.1	0.1				0.10
103.64	105.17	102335	1.52	bk arg	0.1	0.1				0.12
105.17	106.69	102336	1.52	bk arg	0.1	0.5				0.06
106.69	108.22	102337	1.52	bk arg	0.5	0.5				0.12
108.22	109.74	102338	1.52	bk arg, tr gy-gn MCA	0.5	0.5	tr			0.11
109.74	111.26	102339	1.52	bk arg, minor MCA	0.1	tr	tr			0.08
111.26	112.79	102340	1.52	bk arg, tr MCA	0.5	0.5	tr			0.10
112.79	114.31	102341	1.52	bk arg	0.1	0.5				0.12
114.31	115.84	102342	1.52	bk arg	10	0.5				0.19
115.84	117.36	102343	1.52	gy-bk silty arg	10	0.5				0.07
117.36	118.88	102344	1.52	gy-bk silty arg	7	0.5				0.12
118.88	120.40	102345	1.52	gy-bk silty arg	5	0.5				0.05
				EOH						
										_
										· · · · ·
				· · · · · · · · · · · · · · · · · · ·						
	· · · · · · · · · · · · · · · · · · ·		1							
			T							
										· · · ·
		Î	1							
			1	······································						

Hole #	05SPRC-241			loc method; diff gps			drill me	thod; re	everse ci	rculation	
Property: S	Spanish Mtn			UTM E 6044435			Start Date	e: May 16	, 2005	-	
Depth (m) 1	20.40			UTM N 5827413			Completi	on: May 1	7,2005		
Elevation: 12	258 m			Azimuth: 325 °			Logged E	By: Johr	nston		
Section:				Inclination: -45	1		Date logo	ed: May	18, 2005		
Notes		·	·	a			Drilled b	y: Drift			
05SPRC-24	1										
Depth	(metres)	Sam	ples	Lithologic Description	Qt	z Vn	Pyrite		Alteratio	n	Au
From	То	sample #	metres			%	%	carb	sil'n	limonite	g/t
0.00	3.05			overburden							
3.05	4.57	102346	1.52	bn surface weath bk silty arg, argls	tr		0				
			1	sltn							0.05
4.57	6.10	102347	1.52	bn surface weath bk silty arg, argls	1	0.5	0				
\$				sitn							0.31
6.10	7.62	102348	1.52	bn surface weath bk silty arg, argis		0.1	tr				
				sltn							0.14
7.62	9.15	102349	1.52	gy-bk silty arg	1	0.1	0.5				0.12
9.15	10.67	102350	1.52	gy-bk silty arg	tr		0.1				0.07
10.67	12.19	102351	1.52	ov-bk silty arg		0.1	0.1				0.28
12,19	13.72	102352	1.52	bk graph arg		0.1	0.5				0.22
13.72	15.24	102353	1.52	bk graph arg		0.1	0.1		1		< 0.03
15.24	16.77	102354	1.52	bk silty arg	tr	1	0.1		<u> </u>		< 0.03
16.77	18.29	102355	1.52	bk silty arg; v fine py	tr		0.5				< 0.03
18.29	19.81	102356	1.52	bk silty arg		0	0.2		ĺ		< 0.03
19.81	21.34	102357	1.52	bk silty arg	tr		0.2		1		0.11
21.34	22.86	102358	1.52	bk silty arg	tr		1				0.12
22.86	24.39	102359	1.52	bk silty arg		2	0.1		<u> </u>		< 0.03
		102360		Standard		-			t	ł	4.71
24.39	25.91	102361	1.52	bk graph arg		3	0.1				0.10
25.91	27.43	102362	1.52	bk arg		0.5	0.5				0.03
27.43	28.96	102363	1.52	bk arg		3	0.1				< 0.03
28.96	30.48	102364	1.52	bk arg		2	0.1		<u> </u>		0.05
30.48	32.01	102365	1.52	bk arg		1	0.1				0.03
32.01	33.53	102366	1.52	gy-bk silty arg, argls sitn		0.1	0.1				< 0.03
33.53	35.05	102367	1.52	gy-bk argls sltn, wk carb alt	tr		tr	wk			< 0.03
35.05	36.58	102368	1.52	gy-bk argls sltn, wk carb alt	tr		tr	wk	<u> </u>		< 0.03
36.58	38.10	102369	1.52	gy-bk silty arg, argls sltn		0.5	tr				< 0.03
38.10	39.63	102370	1.52	gy-bk silty arg, argls sltn	1	5	0.1				<0.03
39.63	41.15	102371	1.52	bk silty arg		1	0.1		1		0.05
41.15	42.67	102372	1.52	bk silty arg		0.5	0.1				0.13
42.67	44.20	102373	1.52	gy-bk silty arg, argls sitn		0.5	0.1	wk			< 0.03

Donth	(metres)	Sam	ples	Lithologic Description	Qtz Vn	Pyrite		Alteration	n	Au
From	To	sample #	metres		%	%	carb	sil'n	limonite	g/t
44 20	45 72	102374	1.52	gy-bk silty arg	0.1	0.1	wk			<0.03
45 72	47 25	102375	1.52	gy-bk silty arg	0,1	tr	wk			<0.03
47.25	48 77	102376	1.52	gy-bk silty arg	0,1	0.1	wk			<0.03
48 77	50 29	102377	1.52	gy-bk silty arg, argls sltn	0.5	0.1	wk	ļ		0.61
50 29	51.82	102378	1.52	gy-bk silty arg, argls sltn	0.5	0.1	wk		<u> </u>	0.15
51 82	53.34	102379	1.52	gy-bk silty arg, argls sltn	0.1	0.1	wk			0.12
53.34	54.87	102380	1.52	gy-bk silty arg, argls sltn, minor gn	0.1	0.1	wk			. .
	1			MCA with mariposite		L	L			0.45
54 87	56.39	102381	1.52	gy-bk silty arg, argls sltn, minor gn	0.5	0.5	wk			
				MCA with mariposite	<u> </u>	L	L	1		0.11
56 39	57.91	102382	1.52	gy-bk silty arg, minor gn MCA with	0.1	0.5	wk			- -
		1		mariposite	1	<u> </u>	Ļ	1	↓↓	0.82
57.91	59.44	102383	1.52	bk silty arg	0.1	0.1		<u> </u>	┼──╄	0.27
59.44	60.96	102384	1.52	bk graph arg	0.5	0.1		ļ	┼╌╌╸╉	0.23
60.96	62.49	102385	1.52	bk graph arg	0.5	0.1	 	<u> </u>	╷╷╷╷╷	0.27
62.49	64.01	102386	3 1.52	bk arg	5	0.5			-∔∔	1.09
64.01	65.53	102387	1.52	bk arg	0,1	0.1	I	- 	-∔₽	0.97
65.53	67.06	102388	3 1.52	bk silty arg	0.5	0.5			<u></u> ∔ ∔	0.27
67.06	68.58	3 102389	9 1.52	bk silty arg	0.2	0.5	<u>'</u>		∔ł	0.30
		102390)	Standard	_	<u> </u>	I	+	┼──┤	4.97
68.58	70.11	102391	1 1.52	bk graph arg	0.1	0.1	I	- <u> </u>	┼╼╍╌╉	0.44
70.11	71.63	3 102392	2 1.52	bk silty arg	0.1	0.1	·			0.25
71.63	3 73.15	5 102393	3 1.52	bk silty arg	0.1	0.1		+		0.17
73.15	5 74.68	3 102394	4 1.52	bk silty arg	0.1	0.1			+	0.1/
74.68	3 76.20	102395	5 1.52	bk silty arg	0.1	0.1	·]	+	+	0.16
76.20) 77.73	3 102396	6 1.52	bk silty arg	0.1	0.1	<u>'</u>	+	<u> </u>	0.17
77.73	3 79.25	5 102397	7 1.52	bk silty arg, argls sitn	0.1	0.1	!		┼── ┨	0.20
79.25	5 80.77	7 102398	B 1.52	2 bk silty arg	0.1	0.5	2		┼──┨	0.14
80.77	7 82.30	0 102399	9 1.52	2 bk silty arg	0,1	0.8	2	<u></u>		0.1
82.30	3 83.8	2 10240	0 1.52	2 bk silty arg	0.1		<u></u>			0.12
83.82	2 85.3	5 10240	1 1.52	2 bk silty arg	0.1	<u> 0.</u>	2			0.1
85.38	5 86.8	7 10240	2 1.52	2 bk silty arg	0.	0.	1			0.1
86.8	7 88.3	9 10240	3 1.52	2 bk graph arg			¦ 			0.14
88.3	9 89.9	2 10240	4 1.52	2 bk graph arg		$\frac{1}{2}$	<u>-</u>			0.10
89.92	2 91.4	4 10240	5 1.5	2 bk graph arg	- 0.1		2		- 	0.1
91.4	4 92.9	7 10240	6 1.5	2 bk graph arg	0.		 	+		0.1
92.9	7 94.4	9 10240	7 1.5	2 bk graph arg	0.		 			0.1
94.4	9 96.0	1 10240	8 1.5	2 bk graph arg	0.	2 0.				0.0
96.0	1 97.5	4 10240	9 1.5	2 bk graph arg	0.5	<u>) D.</u>	2			0.14

05SPRC-24	1				·····					
Depth	(metres)	Sam	ples	Lithologic Description	Qtz Vn	Pyrite		Alteratio	n]	Au
From	То	sample #	metres		%	%	carb	sil'n	limonite	g/t
97.54	99.06	102410	1.52	bk graph silty arg	7	0.1				0.10
99.06	100.59	102411	1.52	bk graph silty arg	3	0.5				0.12
100.59	102.11	102412	1.52	bk graph silty arg	3	0.5				0.12
102.11	103.63	102413	1.52	bk graph silty arg	1	0.5				0.07
103.63	105.16	102414	1.52	bk silty arg	0.5	0.1				0.07
105.16	106.68	102415	1.52	bk silty arg	0.5	0.1				0.09
106.68	108.21	102416	1.52	bk silty arg	0.1	2				0.48
108.21	109.73	102417	1.52	bk silty arg	0.5	0.5				0.31
109.73	111.25	102418	1.52	bk silty arg	0.1	1				0.98
111.25	112.78	102419	1.52	bk silty arg	0.1	0.5				1.14
		102420		Standard						4.85
112.78	114.30	102421	1.52	bk silty arg	tr	0.1				1.04
114.30	115.83	102422	1.52	bk silty arg	tr	2				_2.36
115.83	117.35	102423	1.52	bk silty arg	tr	1				0.38
117.35	118.87	102424	1.52	bk silty arg	tr	1				0.34
118.87	120.40	102425	1.52	bk silty arg	tr	. 1				0.29
				EOH						
					Ĩ					
								1		····
· · · · · · · · · · · · · · · · · · ·								1		
						1				
	·····					 				
						1		1	1	
									1	
	······································									
						1				
			· · · · ·	· · · · · · · · · · · · · · · · · · ·						·
·····								···· ··		
		<u> </u>	+			1		1	· · ·	, * . /
			<u> </u>							· · · ·
<u> </u>		1						1		
	1		t	[1		1		
	1	<u> </u>	1	n*****				1		
	1	1	†		t	1		<u> </u>		
		1		i		1		1		
·	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>	+	

<u> </u>	1	[r –	1				
Hole #	05SPRC-242			loc method; diff gps		drill me	thod ; re	verse cir	culation	
Property: S	Spanish Mtn			UTM E 604294		Start Dat	e: May 17,	2005		
Depth (m) 9	7.23			UTM N 5827411		Completi	on: May 1	8, 2005		
Elevation: 12	264m			Azimuth: 015 °		Logged I	By: Johr	ston		
Section:				Inclination: -60		Date log	ged: May *	19, 2005		· · · · · · · · · · · · · · · · · · ·
Notes		·	•			Drilled b	y: Drift		1	
05SPRC-24	2				.	•				
Depth	n (metres)	Sam	ples	Lithologic Description	Qtz Vn	Pyrite		Alteratio	n	Au
From	То	sample #	metres		%	%	carb	siln	limonite	g/t
0.00	3.05			overburden						
3.05	4.57	102426	1.52	bn surface weath MCA, tr mariposite	0.1	0	strong			0.62
4.57	6.10	102427	1.52	bn surface weath MCA, tr mariposite	tr	0	strong			0.12
6 10	7.62	102428	1.52	bn surface weath MCA_mariposite	tr		strong	 	<u>├</u> ───┤	0.12
7.62	9 15	102429	1.02	bn surface weath MCA mariposite	0.5	0	strong		1	0.00
9 15	10.67	102430	1.52	whight gy-gn MCA mariposite	40	tr	strong	<u> </u>		0 15
10.67	12 19	102431	1.52	whatz av an MCA mariposite bk	50	01	strong		<u> </u>	
10.01				aro			ou ong	{	1	0.59
12.19	13.72	102432	1.52	bk silty arg	0.5	0.5		<u> · · </u>		0.09
13.72	15.24	102433	1.52	bk silty arg	0.5	0.1				0.13
15.24	16.77	102434	1.52	bk silty arg	tr	1		<u> </u>		0.07
16.77	18.29	102435	1.52	bk silty arg	0.5	0.1			1	0.05
18.29	19.81	102436	1.52	bk silty arg	3	0.1				< 0.03
19.81	21.34	102437	1.52	bk silty arg, minor MCA	0.1	0.5	local			0.03
21.34	22.86	102438	1.52	bk silty arg	0.1	3				< 0.03
22.86	24.39	102439	1.52	bk silty arg	0.1	3				0.03
24.39	25.91	102440	1.52	bk silty arg	0.1	0.5				< 0.03
25.91	27.43	102441	1.52	bk silty arg	0.5	0.5	1		1	0.03
27.43	28.96	102442	1.52	mix bk silty arg, MCA	1	0.1	mod	[0.04
28.96	30.48	102443	1.52	mix bk silty arg, MCA	0.5	0.1	mod			0.04
30.48	32.01	102444	1.52	mix bk silty arg, MCA with mariposite	0.5	0.1	mod			<0.03
32.01	33.53	102445	1.52	mix bk silty arg, MCA with mariposite	0.5	0.1	mod			<0.03
33.53	35.05	102446	1.52	mix bk silty arg, MCA, tr mariposite, local lim	1	0.1	mod		minor	0.05
35.05	36.58	102447	1.52	gy MCA	0.5	0.1	strona			< 0.03
36.58	38.10	102448	1.52	gy-gn MCA, tr mariposite	0.1	tr	strong	 		< 0.03
38.10	39.63	102449	1.52	gy-gn MCA, tr mariposite	1	tr	strong			0.19
		102450	1	Standard		<u> </u>	l J		1	4.82

,

05SPRC-242	2		_							
Depth	(metres)	Sam	ples	Lithologic Description	Qtz Vn	Pyrite		Alteration		Au
From	То	sample #	metres		%	%	carb	sil'n	limonite	g/t
39.63	41.15	102451	1.52	gy MCA	0.5	0.1	strong			0.03
41.15	42.67	102452	1.52	gy MCA, local mariposite	0.5	0.1	strong			0.08
42.67	44.20	102453	1.52	gy MCA, local mariposite	0.1	0.1	strong			0.29
44.20	45.72	102454	1.52	gy MCA, local mariposite	0.1	tr	strong			0.16
45.72	47.25	102455	1.52	gy MCA, local mariposite	1	0.1	strong			0.93
47.25	48.77	102456	1.52	gy MCA, tr mariposite	1	1	strong			6.49
48.77	50.29	102457	1.52	gy MCA with eu py, tr mariposite, tr	1	5	strong			
				blue qtz			_			26.7
50.29	51.82	102458	1.52	gy MCA, tr mariposite	5	5	strong			12.4
51.82	53.34	102459	1.52	gy-gn MCA	5	1	strong			1.33
53.34	54.87	102460	1.52	gy-gn MCA	2	0.5	strong			0.53
54.87	56.39	102461	1.52	gy-gn MCA	2	2	strong			4.93
56.39	57.91	102462	1.52	ду МСА	1	1	strong			0.23
57.91	59.44	102463	1.52	gy-gn MCA	0.1	1	strong			0.40
59.44	60.96	102464	1.52	gy-gn MCA with mariposite	0.1	1	strong			0.89
60.96	62.49	102465	1.52	gy-gn MCA, tr mariposite	3	0.5	strong			0.42
62.49	64.01	102466	1.52	gy-gn MCA with mariposite	0.5	0.1	strong			0.35
64.01	65.53	102467	1.52	gy-gn MCA with mariposite	2	0.5	strong			1.35
65.53	67.06	102468	1.52	gy-gn MCA with mariposite	2	0.5	strong			3.71
67.06	68.58	102469	1.52	gy-gn MCA with mariposite, tr blue	0.1	0.1	strong			
				qtz						0.31
68.58	70.11	102470	1.52	gy-gn MCA with mariposite	1	0.1	strong			< 0.03
70.11	71.63	102471	1.52	gy-gn MCA	0.1	0.1	strong			< 0.03
71.63	73.15	102472	1.52	gy-gn MCA, tr mariposite	0.1	0.1	strong			0.12
73.15	74.68	102473	1.52	gy-gn MCA with mariposite	0.5	0.1	strong			0.20
74.68	76.20	102474	1.52	gy-gn MCA w/ mariposite	0.5	0.1	strong			0.04
76.20	77.73	102475	1.52	gy-gn MCA w/ mariposite	0.1	0.1	strong			0.11
77.73	79.25	102476	1.52	gy-gn MCA w/ mariposite	20	0.5	strong			1.79
79.25	80.77	102477	1.52	gy-gn MCA w/ mariposite	3	0.1	strong			0.40
80.77	82.30	102478	1.52	gy-gn MCA w/ mariposite	1	0.1	strong			0.85
82.30	83.82	102479	1.52	gy-gn MCA w/ mariposite	1	1	strong			0.61
		102480		Standard		l 				4.86
83.82	85.35	102481	1.52	gy-gn MCA	0.1	0.5	strong			0.08
85.35	86.87	102482	1.52	gy-gn MCA	0.1	0.5	strong			<0.03
86.87	88.39	102483	1.52	gy MCA	0.1	0.1	strong		ļ	0.04
88.39	89.92	102484	1.52	gy MCA	tr	tr	strong			<0.03
89.92	91.44	102485	1.52	gy MCA	0.1	tr	strong			< 0.03
91.44	92.97	102486	1.52	gy MCA; tr mariposite	0.1	tr	strong		 _	<0.03
92.97	94.49	102487	1.52	gy MCA; tr mariposite	0.1	tr	strong			<0.03

05SPRC-24	2									
Depth	(metres)	Sam	ples	Lithologic Description	Qtz Vn	Pyrite		Alteration	i T	Au
From	То	sample #	metres		%	%	carb	sil'n	limonite	g/t
94.49	96.01	102488	1.52	gy MCA; tr mariposite	0.1	tr	strong		T	0.09
96.01	97.23	102489	1.22	gy MCA; tr mariposite	0.1	tr	strong			0.07
							<u>~</u>			
				EOH					-	
ii									1	
			_							
	· · · · · · · · · · · · · · · · · · ·									
							T			
									11	
						···-				
							<u> </u>			
										-
		· · · · ·	<u> </u>							
	······									
							<u> </u>			
	······			· · · · · · · · · · · · · · · · · · ·						
			-							
					- 1		1		† †	
				·····			1			
	_			······			1		1	
		1				1		1		
		1	<u> </u>			1				
		1					1			

Hole #	05SPRC-243			loc method; diff gps		drill me	thod; re	verse cicul	ation	
Property: S	panish Mtn			UTM E 604307		Start Date	e: May 19,	2005		
Depth (m)	60.96			UTM N 5827587		Completi	on: May 1	9, 2005		
Elevation: 12	215m			Azimuth: °		Logged E	By: John	ston		
Section:				Inclination: -90		Date logg	ed: May 2	20, 2005		
Notes			•			Drilled b	y: Drift			
05SPRC-24	3				.					
Depth	i (metres)	Sam	ples	Lithologic Description	Qtz Vn	Pyrite		Alteration		Âu
From	То	sample #	metres	······································	%	%	carb	sil'n	limonite	g/t
0.00	3.05			casing - no sample						
3.05	4.57	102490	1.52	bn surface weath carb alt wacke (ARWK)	0.1	0	strong			0.18
4.57	6.10	102491	1.52	bn surface weath carb alt argls sltn, wacke (ARWK)	0.1	tr	strong			0.12
6.10	7.62	102492	1.52	bn surface weath ARWK, MCA	2	tr	strong			0.28
7.62	9.15	102493	1.52	white gtz vn, minor bk silty arg	95	0.1				0.33
9.15	10.67	102494	1.52	bk silty arg	2	0.1				0.08
10.67	12.19	102495	1.52	bk silty arg	10	0.1				<0.03
12.19	13.72	102496	1.52	white qtz vn	100	tr				<0.03
13.72	15.24	102497	1.52	gy-bk carb alt argls sltn (ARWK)	10	tr	strong			0.16
15.24	16.77	102498	1.52	mix bk silty arg, gy ARWK	2	tr	strong			0.17
16.77	18.29	102499	1.52	mix bk silty arg, gy-gn MCA	1	0.1	strong			0.30
18.29	19.81	102500	1.52	gy-gn MCA	5	0.1	strong			0.17
19.81	21.34	102501	1.52	gy-gn MCA	10	0.1	strong			0.26
21.34	22.86	102502	1.52	gy-gn MCA	10	0,1	strong			0.23
22.86	24.39	102503	1.52	mix gy ARWK, gy-gn MCA	5	0.1	strong			0.15
24.39	25.91	102504	1.52	mix gy ARWK, gy-gn MCA	5	0.1	strong			0.08
25.91	27.43	102505	1.52	mix gy ARWK, gy-gn MCA, wh qtz vn	25	0.1	strong			0.43
27.43	28.96	102506	1.52	mix gy ARWK, gy-gn MCA	10	0.1	strong			0.71
28.96	30.48	102507	1.52	gy-gn MCA, local lim	2	0.1	strong		local	0.42
30.48	32.01	102508	1.52	gn MCA, lim st qtz	0.5	0.1	strong		local	0.05
32.01	33.53	102509	1.52	gn MCA, lim st qtz	0.5	0.1	strong		local	0.09
		102510		Standard						4.67
33.53	35.05	102511	1.52	gy MCA with mariposite	0.5	tr	strong			0.06
35.05	36.58	102512	1.52	gy MCA with mariposite, lim st gtz	2	tr	strong		local	5.13
36.58	38.10	102513	1.52	gy MCA with mariposite	0.5	tr	strong			0.13
38.10	39.63	102514	1.52	gy-gn MCA	0.1	tr	strong			0.08
39.63	41.15	102515	1.52	mix gy-gn MCA, gy ARWK	0.5	tr	strong			<0.03
41.15	42.67	102516	1.52	mix gy-gn MCA, gy ARWK	0.5	0.1	strong			0.09

D5SPRC-24	3									
Depth	n (metres)	Sam	ples	Lithologic Description	Qtz Vn	Pyrite		Alteratio	n	Au
From	То	sample #	metres		%	%	carb	sil'n	limonite	g/t
42.67	44.20	102517	1.52	gy-bk carb alt argls sltn, wacke	0.5	0.1	mod			
				(ARWK), tr blue qtz						0.12
44.20	45.72	102518	1.52	bk silty arg, wh qtz	40	1				0.79
45.72	47.25	102519	1.52	mix gy-gn MCA, gy ARWK	3	0.1	strong			0.08
47.25	48.77	102520	1.52	mix gy ARWK, bk argls sltn	1	0.5	mod			0.06
48.77	50.29	102521	1.52	bk-gy carb alt argls sltn, minor carb	0.1	0.1	mod			
				alt wacke						<0.03
50.29	51.82	102522	1.52	bk silty arg	0.5	0.1				0.14
51.82	53.34	102523	1.52	bk silty arg	0.5	0.1				0.21
53.34	54.87	102524	1.52	bk arg	0.5	0.1				0.13
54.87	56.39	102525	1.52	bk arg	0.5	0.1				0.36
56.39	57.91	102526	1.52	bk arg	0.5	0.1				0.23
57.91	59.44	102527	1.52	bk arg	0.1	0.1	<u> </u>			0.11
59.44	60.96	102528	1.52	bk arg	0.5	0.1				0.08
				EOH						
										•
		1								
		1				1				
						1		1		
		1				1	1	Γ		
······································		1			1	1	1			
			1		-	1				
		1	1		1	1	1	1	1	
			1		1		1	1		
	1	t			1		1	1	1	.,

Hole #	05SPRC-244			loc method: diff aps		drill me	thod: re	verse ciro	culation	
Property: S	Spanish Mtn			UTM E 604397		Start Date	: May 19	2005		
Depth (m)	24.97			UTM N 5827700		Completio	on: May 2	1, 2005	f-	
Elevation: 1	183m			Azimuth: 120 °		Logged B	y: Johr	ston		
Section:				Inclination: -60		Date logg	ed: May 3	21, 2005		
Notes	did not reach 15	0m target c	L	dant water, and y bard rock		Drilled b	v Drift			
05SPRC-24		om arger e				Dimed b	<i>j. D</i>			
Dentl	(metres)	Sam	inies	Lithologic Description	Otz Vn	Pyrite		Alteration	- T	
From		sample #	metres		<u> </u>	1 ync	carb	sil'n	limonite	
0.00	1 52	oumpro "		overburden						
1 52	3.05	102529	1.52	no reject: bk silty ard	2	2			+	0.38
3.05	4.57	102520	1.52	hk silty ard wh atz		· 01				2.54
1.57	6.10	102530	1.52	bk silty arg, argle sitp		tr 0.1			+	1 60
6 10	7.62	102537	1.52	hk silty arg, argis sith	0.1	0.1		<u> </u>	<u> </u>	1.03
7.62	9.14	102532	1.52	bk silty arg	0.1	0.1		·····		0.47
0.14	9.14	102000	1.52	bk silty arg	2	0.1			┼──╋	0.47
3, 14 10 67	10.07	102034	1.52	bk silty arg	0.5	0.1		<u>├</u> ──-	- <u>├</u> ┣ -	2.67
12.10	12.19	102535	1.52	bk silty arg	0.5	0.1		<u> </u>	+	1.53
13 72	15.72	102537	1.52	bk silty arg	0.0	0.1		<u> </u>		0.16
15.72	16.76	102539	1.52	bk silty arg	0.1	0.1		<u> </u>		0.10
16.76	18.20	102530	1.52	bk ara	0.1	0.1				0.31
10.70	10.29	102539	1.52	Standard	<u></u>	0.1			+	<u> </u>
19.20	10.91	102540	1.50	ble org	+-	0.1				0.00
10.29	19.01	102041	1.52	DK alg	LI 4 m	0.1		<u> </u>		0.09
21.24	21.34	102542	1.52	bk arg	<u> </u>	0,1				0.03
21.34	22.00	102543	1.52	DK arg	0.1	0.5		<u> </u>		0.14
22.00	24.38	102544	1.52	DK arg	0.5	0.1				0.11
24.38	25.91	102545	1.52	ok arg	0.5	0.1		 	┥──┦	0.11
25.91	27.43	102546	1.52	bk arg	0.5	0.1				0.59
27 43	28.96	102547	1.52	bk arg, v fine py	1	1				0.36
28.96	30.48	102548	1.52	bk arg	0.5	0.1		<u> </u>		80.0
30.48	32.00	102549	1.52	bk arg, v fine py	1	1		<u> </u>		1.06
32.00	33.53	102550	1.52	bk arg	1	0.1				0.31
33.53	35.05	102551	1.52	bk arg	0.1	0.5		·		0.37
35.05	36.58	102552	1.52	bk arg	0.1	0.5				0.47
36.58	38.10	102553	1.52	bk arg	0.1	0.5		 	↓↓	2.07
38.10	39.62	102554	1.52	bk arg	0.5	0.5				1.28
39.62	41.15	102555	1.52	bk arg	15	1				1.44
41.15	42.67	102556	1.52	bk arg	0.1	0.1				1.02
42.67	44.20	102557	1.52	bk arg	1	0.5		<u> </u>		0.62
44.20	45.72	102558	1.52	bk arg	0.5	0.5		L		0.23
45.72	47.24	102559	1.52	bk arg	0.5	0.1				0.33

•

05SPRC-24	4								·	
Depth	(metres)	Sam	ples	Lithologic Description	Qtz Vn	Pyrite		Alteration		Au
From	То	sample #	metres		%	%	carb	sil'n	limonite	g/t
47.24	48.77	102560	1.52	bk arg	5	0.5				0.35
48.77	50.29	102561	1.52	bk arg	1	0.1				0.51
50.29	51.82	102562	1.52	gy-bk silty arg, argls sitn	0.1	0.5				0.81
51.82	53.34	102563	1.52	gy-bk carb alt argls sltn, wacke	0.5	0.1	mod			
				(ARWK)						0.30
53.34	54.86	102564	1.52	gy-bk carb alt argls sltn, wacke	0.1	0.1	mod		:	
				(ARWK)						0.17
54.86	56.39	102565	1.52	bk silty arg	5	0.1				1.59
56.39	57.91	102566	1.52	mix bk silty arg, gy carb alt AS	1	1	mod			1.20
57.91	59.44	102567	1.52	mix bk silty arg, gy carb alt AS,	2	2	mod			
				wacke (ARWK)						1.37
59.44	60.96	102568	1.52	mix bk silty arg, gy carb alt AS,	1	0.5	mod			
				wacke (ARWK)						0.43
60.96	62.48	102569	1.52	mix bk silty arg, gy carb alt AS,	0.5	0.1	mod			
				wacke (ARWK)						0.08
		102570		Standard						4.75
62.48	64.01	102571	1.52	bk silty arg, minor gy ARWK	0.5	0.1	mod			0.07
64.01	65.53	102572	1.52	gy carb alt SA, wacke (ARWK)	0.1	0.1	strong			0.06
65.53	67.06	102573	1.52	gy carb alt wacke (ARWK)	0.1	0.1	strong			0.11
67.06	68.58	102574	1.52	gy-bk carb alt argls sltn, wacke	0.5	0.5	mod			
				(ARWK)						0.06
68.58	70.10	102575	1.52	bk silty arg, v fine py	0.5	2				0.09
70.10	71.63	102576	1.52	bk silty arg, v fine py	0.5	2				0.17
71.63	73.15	102577	1.52	gy-bk carb alt wacke (ARWK)	0.5	0.1	strong			0.52
73.15	74.68	102578	1.52	gy-bk carb alt wacke (ARWK)	3	0.5	strong			2.01
74.68	76.20	102579	1.52	gy-bk carb alt wacke (ARWK)	0.5	0.1	strong			1.30
76.20	77.72	102580	1.52	gy carb alt wacke (ARWK)	0.5	0.1	strong			0.24
77.72	79.25	102581	1.52	gy carb alt wacke (ARWK)	0.1	0.1	strong			0.14
79.25	80.77	102582	1.52	gy carb alt wacke (ARWK)	0.1	0.1	strong			0.19
80.77	82.30	102583	1.52	gy ARWK, tr gy-gn MCA	0.5	0.1	strong			0.38
82.30	83.82	102584	1.52	gy ARWK, tr gy-gn MCA	0.1	0.1	strong			0.11
83.82	85.34	102585	1.52	mix gy ARWK, gy-gn MCA	0.1	0.1	strong			0.22
85.34	86.87	102586	1.52	mix gy ARWK, gy-gn MCA	10	0.1	strong			0.33
86.87	88.39	102587	1.52	mix gy ARWK, gy-gn MCA	2	0.1	strong			0.28
88.39	89.92	102588	1.52	mix gy ARWK, gy-gn MCA	1	0.1	strong			0.43
89.92	91.44	102589	1.52	gy ARWK	0.5	0.1	strong			0.20
91.44	92.96	102590	1.52	gy ARWK	0.1	0.1	strong			0.85
92.96	94.49	102591	1.52	gy ARWK; v hard, silicified or	0.5	0.1	strong	strong?		
	1		1	siliceous?						0.77

05SP	RC-24	4									· · · · · · · · · · · · · · · · · · ·
	Depth	(metres)	Sam	nples	Lithologic Description	Qtz Vn	Pyrite		Alteration		Au
From		То	sample #	metres		%	%	carb	sil'n	limonite	g/t
	94.49	96.01	102592	1.52	gy ARWK; v hard, silicified or	0.1	0.1	strong	strong?		0.08
	96.01	97.54	102593	1.52	gy ARWK; v hard, silicified or	0.1	0.1	strong	strong?		
					siliceous?		-				0.05
	97.54	99.06	102594	1.52	gy ARWK; v hard, silicified or	0.1	0.1	strong	strong?		
					siliceous?						0.37
	99.06	100.58	102595	1.52	gy ARWK; v hard, silicified or	0.1	0.5	strong	strong?		
					siliceous?						0.24
1	00.58	102.11	102596	1.52	gy-bk ARWK, v hard, silicified or	0.5	2	strong	strong?		
				1	siliceous?						0.48
1	02.11	103.63	102597	1.52	mix ARWK, MCA, v hard, silicified?	2	1	strong	strong?		
											3.10
1	03.63	105.16	102598	1.52	mix ARWK, MCA, v hard, silicified?	tr	tr	strong	strong?		
											0.11
1	05.16	106.68	102599	1.52	gy-gn MCA, v hard, silicified or	tr	tr	strong	strong?		
					siliceous?						0.34
			102600		Standard				strong?		4.74
1	06.68	108.20	102601	1.52	gy-gn MCA, v hard, silicified or	tr	tr	strong	strong?		
					siliceous?						0.97
1	08.20	109.73	102602	1.52	gy-gn MCA, v hard, silicified or	tr	tr	strong	strong?		
		-			siliceous?						<0.03
1	09.73	111.25	102603	1.52	gy-gn MCA, v hard, silicified or	tr	tr	strong	strong?		
Ì					siliceous?				<u> </u>		<0.03
1	11.25	112.78	102604	1.52	gy-gn MCA, tr mariposite; v hard,	tr	tr	strong	strong?		
					silicified?			<u> </u>	ļ		<0.03
1	12.78	114.30	102605	5 1.52	gy MCA, v hard, silicified or	tr ·	ltr	strong	strong?		
					siliceous?					ł.	<0.03
1	14.30	115.82	102606	5 1.52	gy-gn MCA, v hard, silicified or	tr	tr	strong	strong?		
1					siliceous?						0.27
1	15.82	117.35	102607	7 1.52	gy-gn MCA, v hard, silicified or	5	tr	strong	strong?		
					siliceous?						1.23
1	17.35	118.87	102608	3 1.52	gy-gn MCA, v hard, silicified?; wh	40	1	strong	strong?		
					qtz with minor ga, sp						0.73
1	18.87	120.40	102609	1.52	gy-gn MCA, tr mariposite; v hard,	2	0.5	strong	strong?		
					silicified?						0.95
1	20.40	121.92	102610	1.52	gy-bk ARWK; v hard, silicified or	0.5	0.1	strong	strong?		
					siliceous?	ļ	ļ	ļ			0.78
1	21.92	123.44	102611	1 1.52	gy-bk ARWK; v hard, silicified or	0.5	ij 0.1	strong	strong?		
1			1		siliceous?						3.25

-

• • •

Hole #	05SPRC-2	247	loc metho	od; diff gps	drill me	thod; re	everse ci	rculation		
Property: S	panish Mt	n	UTME 6	04367	Start Date	: Jun 2, 2	005			
Depth (m) 1	18.87		UTM N	5827810	Completio	n: Jun 3,	2005			
Elevation: 11	49 m		Azimuth:	080 °	Logged B	y: John	ston			
Section:			Inclinatio	n: -60 [°]	Date logg	ed: Jun 4	,5, 2005			
Notes	unable to	reach 150m ta	rget depth	due to water, hard rock	Drilled b	y: Drift				
05SPRC-24	7									
Sample #	Depth	(metres)	sample	Lithologic Description	ļ ,	Alteratio	1	Qtz Vn	Pyrite	Au
•	·	· ·	length							
	From	То	(m)		carb	sil'n	limonite	%	%	g/t
	0.00	3.05	3.05	overburden						
102770	3.05	4.57	1.52	bn surface ox'd bk silty arg, argls sltn				tr	0	
										0.11
102771	4.57	6.10	1.52	bn surface ox'd bk silty arg, argls sltn				tr	0	
										0.05
102772	6.10	7.62	1.52	bn surface ox'd bk silty arg, argls sltn				tr	0	
										0.05
102773	7.62	9.15	1.52	bk silty arg				0.5	0	<0.03
102774	9.15	10.67	1.52	bk graph arg				0.5	0.1	0.15
102775	10.67	12.19	1.52	bk graph arg				1	0.5	0.14
102776	12.19	13.72	1.52	bk graph arg			1	2	0.5	0.80
102777	13.72	15.24	1.52	bk arg				7	1	1.95
102778	15.24	16.77	1.52	gy-bk arg				2	0.5	0.18
102779	16.77	18.29	1.52	bk arg				5	2	0.39
102780				Standard						4.76
102781	18.29	19.81	1.52	gy-bk arg			-	1	2	0.56
102782	19.81	21.34	1.52	gy-bk arg				0.5	0.5	0.30
102783	21.34	22.86	1.52	bk arg				10	1	0.80
102784	22.86	24.39	1.52	bk arg				7	1	0.22
102785	24.39	25.91	1.52	bk arg				0.1	0.1	0.10
102786	25.91	27.43	1.52	bk arg, local lim, eu py			local	1	1	0.13
102787	27.43	28.96	1.52	bk silty arg, eu py				2	1	0.07
102788	28.96	30.48	1.52	bk arg, eu py				2	1	0.06
102789	30.48	32.01	1.52	bk arg, eu py				1	1	0.17
102790	32.01	33.53	1.52	bk arg, fine eu py	i			10	2	1.47
102791	33.53	35.05	1.52	bk arg, eu py				2	2	0.98
102792	35.05	36.58	1.52	bk arg, eu py			ļ	1	5	0.86
102793	36.58	38.10	1.52	bk arg, v fine eu py				1	10	1.37
102794	38.10	39.63	1.52	bk arg, v fine yellow eu & non eu py	<u> </u>			0.5	5	3.80
102795	39.63	41.15	1.52	bk arg, v fine yellow eu & non eu py				0.5	5	1.83
102796	41.15	42.67	1.52	bk arg, v fine yellow eu & non eu py				0.5	2	0.22

05SPRC-247	/									
Sample #	Depth	(metres)	sample length	Lithologic Description		Alteratior	I	Qtz Vn	Pyrite	Au
	From	То	(m)		carb	sil'n	limonite	%	%	g/t
102797	42.67	44.20	1.52	bk arg, v fine yellow eu & non eu py				0.1	7	0.40
102798	44.20	45.72	1.52	bk arg, v fine yellow eu & non eu py				0.1	2	0.17
102799	45.72	47.25	1.52	bk arg, v fine yellow eu & non eu py				0.5	1	0.86
102800	47.25	48.77	1.52	bk arg, v fine yellow eu & non eu py				0.5	10	2.18
102801	48.77	50.29	1.52	bk arg, v fine yellow eu & non eu py				30	7	2.99
102802	50.29	51.82	1.52	bk arg, v fine yellow eu & non eu py				1	2	2.30
102803	51.82	53.34	1.52	bk arg, v fine yellow eu & non eu py				0.1	5	1.35
102804	53.34	54.87	1.52	bk arg, v fine yellow eu & non eu py				0.1	5	2.01
102805	54.87	56.39	1.52	bk arg, v fine yellow eu & non eu py				tr	10	0.93
102806	56.39	57.91	1.52	bk arg, v fine yellow eu & non eu py				3	5	1.56
102807	57.91	59.44	1.52	bk arg, v fine yellow eu & non eu py				0.1	10	1.91
102808	59.44	60.96	1.52	bk arg, v fine yellow eu & non eu py				1	3	2.18
102809	60.96	62.49	1.52	bk arg, v fine yellow eu & non eu py				0.1	2	1.62
102810				Standard						4.73
102811	62.49	64.01	1.52	bk arg, v fine yellow eu py				0.1	3	0.72
102812	64.01	65.53	1.52	bk arg, v fine yellow eu py				0.5	7	0.34
102813	65.53	67.06	1.52	bk arg, v fine yellow eu & non eu py				0.5	10	0.31
102814	67.06	68.58	1.52	bk arg, v fine yellow eu & non eu py				0.5	2	0.18
102815	68.58	70.11	1.52	bk arg, v fine yellow eu & non eu py			<u> </u>	0.1	5	0.18
102816	70.11	71.63	1.52	bk arg, v fine yellow eu & non eu py				0.5	1	0.16
102817	71.63	73.15	1.52	bk arg, v fine yellow eu & non eu py				0.1	7	0.37
102818	73.15	74.68	1.52	bk arg, v fine yellow eu & non eu py				0.1	3	0.36
102819	74.68	76.20	1.52	bk arg, v fine yellow eu & non eu py				0.1	3	0.27
102820	76.20	77.73	1.52	bk arg, v fine yellow eu & non eu py, gv atz				0.5	1	0.40
102821	77.73	79.25	1.52	gy-bk carb alt argls sltn, wacke	strong	strong		20	2	0.65
102822	79.25	80.77	1.52	av ARWK, whigtz fine silver pv	strong	strong		25	1	0.80
102823	80.77	82.30	1.52	gy-bk carb alt argls sltn, sl coarser	mod	strong		1	5	0.53
102824	82.30	83.82	1.52	gy-bk carb alt argls sltn, wacke	mod	strong		0.5	5	0.56
102825	83.82	85.35	1.52	gy-bk carb alt argls sitn, wacke	strong	strong		10	10	0.25
102826	85.35	86.87	1.52	ov-bk wk carb alt arols sitn	mod	1		7	′ <u>5</u>	0.74
102020	86.87	88.30	1.52	bk silty arg. fg vellow eu pv			1	1 1	10	1.12
102828	88 30	80.00	1.52	bk silty arg, fg yellow eu py		1			10	3.58

05SPRC-247	,				1					
Sample #	Depth	(metres)	sample length	Lithologic Description		Alteration	1	Qtz Vn	Pyrite	Au
	From	То	(m)		carb	sil'n	limonite	%	%	g/t
102829	89.92	91.44	1.52	gy-bk argls sltn, wk carb alt	wk			0.5	0.5	0.55
102830	91.44	92.97	1.52	gy ARWK, wh qtz, fine yellow py	strong	strong		0.1	2	0.19
102831	92.97	94.49	1.52	gy-bk argls ARWK	strong	strong		tr	2	0.81
102832	94.49	96.01	1.52	gy ARWK	strong	strong		0.1	0.5	0.64
102833	96.01	97.54	1.52	gy ARWK	strong	strong		tr	0.1	0.32
102834	97.54	99.06	1.52	gy ARWK	strong	strong		tr	0.1	0.17
102835	99.06	100.59	1.52	gy ARWK	strong	strong		0.1	0.1	0.93
102836	100.59	102.11	1.52	gy ARWK, minor bk arg	strong	strong		0.1	0.5	0.92
102837	102.11	103.63	1.52	d gy ARWK	strong	strong		0.1	0.1	0.38
102838	103.63	105.16	1.52	d gy ARWK	strong	strong		0.1	0.1	0.24
102839	105.16	106.68	1.52	d gy ARWK	strong	strong		0.1	tr	0.37
102840										4.66
102841	106.68	108.21	1.52	gy ARWK	strong	strong		0.1	0.1	0.61
102842	108.21	109.73	1.52	It gy ARWK, gy qtz	strong	strong		1	0.5	2.36
102843	109.73	111.25	1.52	It gy ARWK, wh qtz with visible gold,	strong	strong		20	3	
				silver mg py						13.0
102844	111.25	112.78	1.52	It gy ARWK, silver mg py	strong	strong		1 1	1	3.94
102845	112.78	114.30	1.52	It gy ARWK, silver mg py	strong	strong		1	1	0.35
102846	114.30	115.83	1.52	mix ARWK, bk arg	strong	strong		1	1	2.20
102847	115.83	117.35	1.52	gy ARWK, silver py, wh qtz	strong	strong		5	0.5	2.80
102848	117.35	118.87	1.52	gy ARWK, silver py, wh qtz	strong	strong		2	1	0.79
				EOH						
							I			
						1				
						1				

Hole #	05SPRC-	248	loc meth	od; diff gps	drill me	ethod;	reverse c	circulation	<u> </u>	
Property: S	Spanish Mt	.n	UTM E @	j04239	Start Dat	.e: Jun 4,	2005		1	1
Depth (m) 1	102.11	[]	UTM N	5827606	Completi	on: Jun 5	. 2005		1	tI
Elevation: 12	225 m		Azimuth:	110 °	Logged I	By: Joh	inston		<u> </u>	<u>├</u>
Section:		[Inclinatio	איז -60 [•]	Date log	aed: Jun	5.6. 2005		<u> </u>	t1
Notes			B		Drilled I	ov: Drif	t			11
05SPRC-24	/8					<u> </u>		L	L	<u> </u>
Sample #	Depth	(metres)	sample	Lithologic Description		Alteratic		lQtz Vn	Pvrite	Au
l!	1	`'	length							
	From	<u> </u>	(m)		carb	sil'n	limonite	%	%	g/t
	0.00	3.05	3.05	overburden		—	†	<u> </u>		
102849	3.05	4.57	1.52	bn surface weath'd bk silty arg	-	[+	0.1	0	0.06
102850	4.57	6.10	1.52	bn surface weath'd bk silty arg			1	tr	0	0.30
102851	6.10	7.62	1.52	bn surface weath'd bk silty arg		<u> </u>	+	0	0	0.09
102852	7.62	9.15	1.52	bn surface weath'd bk arg		[†	0.1	0	0.08
102853	9.15	10.67	1.52	bk arg			+	0.1	tr	0.09
102854	10.67	12.19	1.52	bk arg			1	tr	0.1	0.07
102855	12.19	13.72	1.52	bk arg			1 1	tr	0.5	0.49
102856	13.72	15.24	1.52	bk arg		[1 1	tr	0.1	0.17
102857	15.24	16.77	1.52	bk arg, fine yellow py, wh qtz		「 <u> </u>	<u>† </u>	5	3	0.35
102858	16.77	18.29	1.52	bk arg, fine yellow py, wh qtz				0.5	3	6.23
102859	18.29	19.81	1.52	wh qtz, bk arg			1	60	0.5	0.74
102860	19.81	21.34	1.52	bk arg				1	0.1	0.79
102861	21.34	22.86	1.52	bk arg, y-wh qtz				0.5	0.5	0.25
102862	22.86	24.39	1.52	bk silty arg			1	0.5	1	0.29
102863	24.39	25.91	1.52	bk arg		[0.1	0.5	0.12
102864	25.91	27.43	1.52	bk arg			1	0.1	1	0.12
102865	27.43	28.96	1.52	bk arg				0.1	0.5	0.05
102866	28.96	30.48	1.52	bk arg				0.1	0.1	0.10
102867	30.48	32.01	1.52	bk arg, v fine py		[1 7	0.1	1	0.05
102868	32.01	33.53	1.52	bk arg, v fine py		I		1	1	0.08
102869	33.53	35.05	1.52	bk silty arg, v fine py		l		1	1	0.09
102870		!		Standard	-1 -1	[]	1 1	l,		4.64
102871	35.05	36.58	1.52	bk silty arg		1	1	3	0.5	0.09
102872	36.58	38.10	1.52	bk arg		I	1	1	1	0.12
102873	38.10	39.63	1.52	bk silty arg		í	1	0.1	0.1	0.05
102874	39.63	41.15	1.52	bk silty arg		í		0.1	0.1	0.03
102875	41.15	42.67	1.52	bk arg, v fine py, minor lim		ī	minor	0.1	0.5	0.07
102876	42.67	44.20	1.52	bk arg, tr limonitic qtz		í — — — — — — — — — — — — — — — — — — —	qtz	tr	0.5	0.04
102877	44.20	45.72	1.52	gy-bk silty arg, fine-med eu py		1	1	tr	3	0.14
102878	45.72	47.25	1.52	bk silty arg		I		0.5	0.5	0.07

05SPRC-248	3	· · · ·		······································						
Sample #	Depth	(metres)	sample	Lithologic Description	,	Alteratio	n	Qtz Vn	Pyrite	Au
	_		length							
	From	То	(m)		carb	sil'n	limonite	%	%	g/t
102879	47.25	48.77	1.52	gy-bk silty arg, fine yellow eu py,				2	1	
				coarse frags - frac zone						0.76
102880	48.77	50.29	1.52	gy-bk carb alt argls sltn, coarse frags -	mod			0.5	0.1	
				frac zone						0.17
102881	50.29	51.82	1.52	gy-bk carb alt argls sltn, coarse frags -	mod		local	1	0.1	
				frac zone, local lim						0.09
102882	51.82	53.34	1.52	gy ARWK, coarse frags - frac zone,	strong		local	5	1	
				local lim; v fine py						0.58
102883	53.34	54.87	1.52	mix gn MCA with mariposite, wh qtz;	strong			40	0.1	
				coarse frags - frac zone; local lim; tr						
				ga-sp in qtz			}			0.49
102884	54.87	56.39	1.52	gn MCA with mariposite	strong			0.5	0.1	0.14
102885	56.39	57.91	1.52	gn MCA with mariposite, wh qtz	strong			10	0.1	0.12
102886	57.91	59.44	1.52	mix gn MCA, bk arg	strong			0.1	0.1	0.28
102887	59.44	60.96	1.52	bk silty arg, silver py				2	1	0.23
102888	60.96	62.49	1.52	gy-bk silty arg, argls sltn				1	0.5	0.11
102889	62.49	64.01	1.52	gy-bk silty arg, argls sltn				tr	0.5	0.08
102890	64.01	65.53	1.52	gy-bk silty arg, argls sltn				0.1	2	0.21
102891	65.53	67.06	1.52	gy-bk silty arg, argls sltn				0.1	1	0.16
102892	67.06	68.58	1.52	bk silty arg, fine yellow py				0.1	1	0.09
102893	68.58	70.11	1.52	bk silty arg, fine yellow py				0.1	0.5	0.04
102894	70.11	71.63	1.52	bk silty arg, fine yellow py				tr	1	0.08
102895	71.63	73.15	1.52	bk silty arg, fine yellow py				0.5	0.5	0.04
102896	73.15	74.68	1.52	bk silty arg, fine yellow py				0.1	2	0.06
102897	74.68	76.20	1.52	gy-bk silty arg, argls sltn, fine y py				0.5	5	0.10
102898	76.20	77.73	1.52	gy-bk silty arg, argls sltn, fine y py				0.5	1	0.05
102899	77.73	79.25	1.52	gy-bk silty arg, fine y py				0.5	2	0.07
102900				Standard						4.77
102901	79.25	80.77	1.52	bk silty arg, fine y py				0.5	1	0.05
102902	80.77	82.30	1.52	bk silty arg, fine y py	1		1	0.5	0.5	0.06
102903	82.30	83.82	1.52	bk silty arg, fine y py			1	0.1	0.5	0.03
102904	83.82	85.35	1.52	bk silty arg, fine y py				0.5	0.5	0.05
102905	85.35	86.87	1.52	bk silty arg, fine y py				0.1	5	0.19
102906	86.87	88.39	1.52	bk arg, fine y py				0.5	3	0.06
102907	88.39	89.92	1.52	bk arg, fine y py				0.5	5	0.03
102908	89.92	91.44	1.52	gy-bk silty arg, argls sltn, fine y py				0.5	2	0.05
102909	91.44	92.97	1.52	bk arg, fine y py				0.1	2	< 0.03
102910	92.97	94.49	1.52	bk arg				0.5	1	0.09

05SPRC-248	3	7.								
Sample #	Depth ((metres)	sample length	Lithologic Description	1	Alteratio	n	Qtz Vn	Pyrite	Au
	From	То	(m)		carb	sil'n	limonite	%	%	g/t
102911	94.49	96.01	1.52	bk arg				0.1	0.5	< 0.03
102912	96.01	97.54	1.52	bk arg				1	0.1	0.08
102913	97.54	99.06	1.52	bk arg				0.1	0.1	0.06
102914	99.06	100.59	1.52	gy-bk silty arg, argls sltn, wk carb alt	wk			0.1	0.1	0.06
102915	100.59	102.11	1.52	gy ARWK	strong			0.1	0.1	0.28
				ЕОН						
				<u></u>	1	L				
						_				
							<u> </u>			
							<u> </u>			
								L		
						<u> </u>				
		<u> </u>		·····						
						L	ļ			
						ļ				
							<u> </u>			
						<u> </u>	<u> </u>			
					_		<u> </u>			
					. 	<u> </u>	·			
					_	ļ				·
						<u> </u>				
		·				<u> </u>				
					<u> </u>		ļ			
						L				
				·····						
					<u> </u>					——————————————————————————————————————
						- <u>-</u>	 		··	
										
					┨────	╂	 		_	
·				······································		 	<u> </u>		ļ	L
┝────┤						<u> </u>	<u> </u>		ļ	
							<u> </u>		 	
_			I	1	I	L			1	l l

Hole #	05SPRC	-249	loc metho	d; diff gps	drill me	thod; re	verse cir	culation		
Property:	Spanish M	tn	UTM E 60	4388	Start Date	e: Jun 5, 20	005			
Depth (m) 8	39.92		UTM N 5	5827774	Completi	on: Jun 6, .	2005			
Elevation:11	59 m		Azimuth:	120 °	Logged E	ly: Johns	ston			
Section:			Inclination	: -60 °	Date logg	jed: Jun 8,	2005			
Notes		· · · · ·			Drilled b	y: Drift				
05SPRC-24	19									
Sample #	Depth	(metres)	sample	Lithologic Description		Alteratio	<u>ווויי</u> יי	Qtz Vn	Pyrite	Au
		(length	Ū I					-	
	From	То	(m)		carb	sil'n	limonite	%	%	g/t
<u>_</u>	0.00	3.05	3.05	overburden						
102916	3.05	4.57	1.52	bn surface weathered bk silty arg,				tr	0	
				argis sitn					l	0.13
102917	4.57	6.10	1.52	bn surface weathered bk silty arg,				tr	0.1	
				argls sltn					l	0.20
102918	6.10	7.62	1.52	bn surface weathered bk silty arg,				tr	0.1	
				argls sltn						0.09
102919	7.62	9.15	1.52	bk silty arg, argls sltn				1	0.1	0.43
102920	9.15	10.67	1.52	bk silty arg, argls sltn; fg silver eu py				0.5	0.5	
					_					0.15
102921	10.67	12.19	1.52	bk silty arg, argls sltn; fg silver eu py				0.1	0.5	
										0.24
102922	2 12.19	13.72	1.52	bk silty arg, argls sltn; wk carb-sil alt;	wk	mod?		0.1	0.5	
	1			fg silver eu py						0.10
102923	3 13.72	15.24	1.52	bk silty arg, argls sltn; wk carb-sil alt;	wk	mod?		0.1	0.5	
				fg silver eu py						0.05
102924	15.24	16.77	1.52	bk silty arg, fine yellow py				0.1	0.5	0.04
102925	5 16.77	18.29	1.52	bk arg, fine yellow py				0.5	11	0.50
102926	6 18.29	19.81	1.52	gy carb alt sltn, wacke (ARWK), fine y	strong	mod		0.1	2	
				ру					L	0.30
102927	7 19.81	21.34	1.52	mix bk arg, ARWK	strong	mod		0.1	0.5	0.06
102928	3 21.34	22.86	1.52	mix bk arg, ARWK, fine y py	strong	mod	<u> </u>	0.1	11	0.05
102929	22.86	24.39	1.52	gy carb alt sltn (ARWK), fine y py	strong	mod		0.1	0.5	0.16
102930)			Standard			<u> </u>		L	4.95
102931	1 24.39	25.91	1.52	bk silty arg, fine yellow py				0.1	11	0.21
102932	2 25.91	27.43	1.52	bk silty arg, fine yellow py				0.1	0.5	0.13
102933	3 27.43	28.96	1.52	bk silty arg, fine yellow py		ļ		0.1	<u> </u>	0.12
102934	4 28.96	30.48	1.52	bk arg, fine yellow py	_	1	<u> </u>	0.5	<u> 2</u>	0.07
10293	5 30.48	32.01	1.52	bk arg, fine yellow py		<u> </u>		0.5	0.5	0.00
102936	32.01	33.53	1.52	bk arg, fine yellow py	.l		<u> </u>	0.1	11	0.07
102937	7 33.53	35.05	1.52	bk arg, fine yellow py				0.1	2 2	. 0.07

05SPRC-249	Э				T		_	· · · · ·		
Sample #	Depth	(metres)	sample	Lithologic Description	1	Alteratio	n	Qtz Vn	Pyrite	Au
			length	~					,	
	From	To	(m)		carb	sil'n	limonite	%	%	g/t
102938	35.05	36.58	1.52	bk arg, fine yellow py				0.1	1	< 0.03
102939	36.58	38.10	1.52	bk arg, fine yellow py	1			1	2	1.58
102940	38.10	39.63	1.52	bk arg, fine yellow py	Ι			0.1	1	0.22
102941	39.63	41.15	1.52	bk arg, fine yellow py				0.1	2	0.89
102942	41.15	42.67	1.52	bk arg, fine yellow py	T			0.5	5	0.46
102943	42.67	44.20	1.52	bk arg, fine yellow py	T			0.1	3	2.41
102944	44.20	45.72	1.52	bk arg, fine yellow py				0.1	1	0.46
102945	45.72	47.25	1.52	bk arg, fine yellow py				0.1	2	0.09
102946	47.25	48.77	1.52	bk arg, fine yellow py				0.1	5	0.46
102947	48.77	50.29	1.52	bk arg, fine yellow py				0.1	3	0.07
102948	50.29	51.82	1.52	bk arg, fine yellow py	1		1	0.1	3	0.20
102949	51.82	53.34	1.52	bk arg, fine yellow py	T	1		1	7	8.45
102950	53.34	54.87	1.52	bk arg, fine yellow py	T	· · · ·		0.1	10	4.28
102951	54.87	56.39	1.52	bk arg, fine yellow py; minor lim	T		minor	0.1	10	1.42
102952	56.39	57.91	1.52	bk arg, fine yellow py; minor lim	Ţ		minor	tr	7	5.06
102953	57.91	59.44	1.52	bk arg, fine yellow py	T			0.5	7	5.71
102954	59.44	60.96	1.52	bk silty arg, fine yellow py; minor lim	1		minor	0.5	10	
										1.67
102955	60.96	62.49	1.52	bk silty arg, fine yellow py	1			0.5	7	0.61
102956	62.49	64.01	1.52	bk silty arg, fine yellow py				0.1	10	1.17
102957	64.01	65.53	1.52	bk arg, fine yellow py				0.1	3	5.20
102958	65.53	67.06	1.52	bk arg, fine yellow py				0.5	5	9.24
102959	67.06	68.58	1.52	gy-bk silty arg, argls sltn; wk carb alt;	wk		minor	2	3	
				minor lim						1.82
102960				Standard						4.65
102961	68.58	70.11	1.52	bk silty arg, fine yellow py				2	3	2.49
102962	70.11	71.63	1.52	bk silty arg, fine yellow py				0.1	3	2.20
102963	71.63	73.15	1.52	bk silty arg, fine yellow py				0.1	5	0.81
102964	73.15	74.68	1.52	bk silty arg, fine yellow, silver py				0.1	1	0.31
102965	74.68	76.20	1.52	bk silty arg, fine yellow, silver py;				0.5	0.5	
				coarse frags - frac zone						2.09
102966	76.20	77.73	1.52	bk arg; wh, gy qtz; vfg y py		[2	5	2.00
102967	77.73	79.25	1.52	bk arg; wh, gy qtz; vfg y py				1	0.5	1.87
102968	79.25	80.77	1.52	bk arg; wh, tr lim; vfg y py			tr	0.5	5	2.05
102969	80.77	82.30	1.52	bk silty arg; wh, gy qtz; vfg y py				7	1	1.39
102970	82,30	83.82	1.52	bk silty arg; gy qtz; vfg y py				1	3	2.77
102971	83.82	85.35	1.52	gy-bk silty arg, argls sltn, wk carb alt;	wk			2	1	
				gy-wh qtz		ļ				1.19

1. N. 1.

÷.

05SPRC-249)	···					:			
Sample #	Depth	(metres)	sample length	Lithologic Description		Alteration	١	Qtz Vn	Pyrite	Au
	From	То	(m)		carb	sil'n	limonite	%	%	g/t
102972	85.35	86.87	1.52	gy-bk ARWK; fg y py	strong	strong?		2	1	0.45
102973	86.87	88.39	1.52	gy-bk ARWK; fg y py	strong	strong?		0.1	1	0.48
102974	88.39	89.92	1.52	gy-bk ARWK; fg y py	strong	strong?		0.1	1	0.26
				EOH						
						l				
						:				
	,								l 	
· · · · ·									<u> </u>	
										· · · · · · · · · · · · · · · · · · ·
		<u></u>					<u> </u>			
								·		<u> </u>
			 							· · · ·
 									<u> </u>	
						1				
						1	[
									1	
									ļ	ļ
				· · · · · · · · · · · · · · · · · · ·		_				
			L			_		ļ	 	ļ
			ļ						<u> </u>	<u> </u>
			 	l		<u> </u>	 	ļ		
L		ļ	ļ			_	1	<u> </u>		<u> </u>
		1	1			1		1		

Hole #	05SPRC-	250	loc metho	od; diff gps	drill me	thod;	reverse	circulatior	1	
Property: S	Spanish Mt	n	UTME 6	04438	Start Date	e: Jun 6,	2005			
Depth (m) 1	20.4		UTM N	5828007	Completi	on: Jun '	7, 2005			
Elevation: 10)90 m		Azimuth:	080 °	Logged E	3y: Joł	Inston			
Section:			Inclinatio	n: -60 °	Date logo	jed: Jun	8, 2005			
Notes			.		Drilled b	y: Dri	ft			•
05SPRC-25	0	,								
Sample #	Depth	(metres)	sample	Lithologic Description	A	Iteratic	n	Qtz Vn	Pyrite	Au
		. ,	length						-	
	From	То	(m)		carb	sil'n	limonite	%	%	g/t
	0.00	3.05	3.05	overburden			[
102975	3.05	4.57	1.52	bn surface weathered gy-bk silty arg				tr	0	0.24
102976	4.57	6.10	1.52	bn surface weathered gy-bk silty arg				0.1	0	0.11
102977	6.10	7.62	1.52	bn surface weathered gy-bk silty arg			<u> </u>	0.1	0	0.05
102978	7.62	9.15	1.52	bn surface weathered gy-bk silty arg:	1 1			5	tr	
				coarse wh atz						0.15
102979	9.15	10.67	1.52	gy-bk silty arg: coarse wh-gy gtz	t 1			3	tr	0.67
102980	10.67	12.19	1.52	av-bk silty arg	 		<u> </u>	1	0.5	1.45
102981	12 19	13.72	1.52	gy-bk argis sitn: wk carb alt	wk		t	0.5	0.5	0.34
102982	13.72	15.24	1.52	gy-bk carb alt sitn (ARWK); wh gtz	strong		ł	5	0.1	0.41
102983	15 24	16.77	1.52	mix v-bn limonitic MCA (with			Imod	1	0.1	
102000		,		marinosite) and bk arg: wh-gy gtz		1				0.14
102984	16 77	18 29	1.52	mix y-bn limonitic MCA (with	strong		Imod	3	0.1	
TOLOG :				marinosite) and bk arg. wh-gy limonitic	Gui ang	l		-		
				ntz		l				0.09
102985	18 29	19.81	1.52	mix limonitic carb alt sltn (ARWK) and	strong		mod	2	01	
102300	10.20	10.01	1.02	hk ara	Suchg	1		-		0.03
102986	19.81	21 34	1.52	be weathered av carb alt site (ARWK)	mod		mod	0.5	01	
102300	13.01	21.07	1.92	minor an MCA: wh atz				0.0		0 10
102087	21.34	22.86	1.52	mix bk silty ard, wy carb alt sitn	mod		mod	2		
102301	<u> </u>	22.00	1.02	(ARM/K): limonitic: wh atz	mod	1		-	v	<0.03
102088	22.86	24 30	1 52	awb atz with av carb alt site (ARWK): tr	strong		mod	50	01	
102500	22.00	24.00	1.02	an MCA	Subirg	1				0.03
102080	24 30	25.01	1.52	limonitic av carb alt silty ard, sltn	mod	<u> </u>	mod	0.5	0.5	0.00
102909	24.39	20.91	1.52		mou	Í	mou	0.0	0.0	0.06
102000				Standard	.		+			4.68
102990	25.01	27 43	1.52	mix av bk silty arg, av carb alt sitn	mod	l	mod	10	0.5	1.00
102991	23.31	27.43	1.52	(AP)(K); while at a	inou		linea	10		0.12
102002	27 43	28.06	1.52	ov-bk ARWK site: whatz local lim	mod	h	local	2	0.5	0.41
102992	27.43	20.90	1.52	av-bk ARM/K site; whatz local lim	mod	<u> </u>	llocal		0.0	0.7
102993	20.30	22.01	1.02	av ARM/K	strong	<u> </u>		0.5	0.5	0.07
IU2994	r JU.40	1 JZ.UI	. 1.0Z		Tanona			0.0	1 <u>v. i</u>	0.00

· •

05SPRC-250	0				<u> </u>				· · · · · · · · · · · · · · · · · · ·	[]
Sample #	Depth ((metres)	sample	Lithologic Description		Alteratio	on	Qtz Vn	Pyrite	Au
			length							
	From	То	(m)		carb	sil'n	limonite	%	%	g/t
102995	32.01	33.53	1.52	gy-bn ARWK	strong			0.1	0.1	0.04
102996	33.53	35.05	1.52	gy ARWK, wk lim	strong		wk	0.1	0.1	< 0.03
102997	35.05	36.58	1.52	gy ARWK, wh qtz	strong			2	0.1	< 0.03
102998	36.58	38.10	1.52	gy-bk ARWK	mod			0.5	0.1	< 0.03
102999	38.10	39.63	1.52	gy-bk ARWK sltn	mod			0.5	0.1	0.08
103000	39.63	41.15	1.52	gy-bk ARWK sltn	mod			0.5	0.5	< 0.03
103001	41.15	42.67	1.52	gy-bK ARWK sltn, minor MCA with	strong		strong	30	0.1	
				mariposite, wh qtz; strong lim	Ŭ		Ŭ		j I	< 0.03
103002	42.67	44.20	1.52	bk silty arg; minor ARWK sltn	minor			10	0.1	0.63
103003	44.20	45.72	1.52	bk arg; wh qtz; fg y py				5	1	0.74
103004	45.72	47.25	1.52	bk arg; wh qtz; fg y py		· · ·		1	1	0.43
103005	47.25	48.77	1.52	bk arg; gy-wh qtz; fg y py				2	2	0.26
103006	48.77	50.29	1.52	bk arg; wh qtz; fg y py	 			10	1	0.60
103007	50.29	51.82	1.52	bk arg; fg y py				1	1	0.25
103008	51.82	53.34	1.52	bk arg; fg y py	i			0.1	0.5	0.21
103009	53.34	54.87	1.52	bk arg; fg y py				0.5	0.5	0.30
103010	54.87	56.39	1.52	bk arg; fg y py				1	1	0.29
103011	56.39	57.91	1.52	bk arg; wh, gy qtz; fg y py				2	2	0.15
103012	57.91	59.44	1.52	bk arg; wh, gy qtz				2	0.5	0.36
103013	59.44	60.96	1.52	bk arg; wh, gy qtz				2	0.5	0.08
103014	60.96	62.49	1.52	bk arg; wh qtz	— ———			15	0.1	0.51
103015	62.49	64.01	1.52	bk arg; wh qtz			<u> </u>	20	0.5	0.72
103016	64.01	65.53	1.52	wh qtz, bk arg				60	0.5	3.81
103017	65.53	67.06	1.52	bk arg; wh, gy qtz				3	0.5	2.06
103018	67.06	68.58	1.52	bk arg; wh, gy qtz				2	0.1	1.44
103019	68.58	70.11	1.52	bk arg; wh, gy qtz, fg y py				1	1	1.19
103020			_	Standard						4.65
103021	70.11	71.63	1.52	gy-bk silty arg; wk carb alt?	wk			1	0.5	1.59
103022	71.63	73.15	1.52	gy carb alt sitn (ARWK)	strong			0.5	0.5	0.58
103023	73.15	74.68	1.52	gy carb alt sltn (ARWK); silver eu py	mod		[0.5	0.1	0.43
103024	74.68	76.20	1.52	gy carb alt sltn (ARWK); silver eu py	mod			0.5	0.1	0.75
103025	76.20	77.73	1.52	gy carb alt sltn (ARWK); silver eu py	mod			0.5	0.1	0.25
103026	77.73	79.25	1.52	gy carb alt sitn (ARWK); silver eu py	mod			0.5	0.1	0.59
103027	79.25	80.77	1.52	gy carb alt sltn (ARWK); silver eu py	mod			0.5	0.1	0.56
103028	80.77	82.30	1.52	bk-gy carb alt sitn (ARWK); silver eu py	mod			3	0.1	
										0.92
103029	82.30	83.82	1.52	bk-gy silty arg, minor ARWK	minor			0.5	0.5	0.40
103030	83.82	85.35	1.52	bk-gy silty arg, minor ARWK; fg y py	minor			0.5	1	1.16

05SPRC-250)				- <u></u> _					
Sample #	Depth	(metres)	sample	Lithologic Description		Alteratio	n	Qtz Vn	Pyrite	Au
			length							
	From	То	(m)		carb	sil'n	limonite	%	%	g/t
103031	85.35	86.87	1.52	bk ARWK sltn	mod			2	0.5	0.81
103032	86.87	88.39	1.52	bk arg; minor ARWK sltn; mg eu py	minor			10	1	1.60
103033	88.39	89.92	1.52	bk arg; gy qtz stringers; mg eu py				5	2	1.29
103034	89.92	91.44	1.52	gy-bk arg with gy qtz stringers				2	1	0.87
103035	91.44	92.97	1.52	gy ARWK	strong			1	0.5	0.57
103036	92.97	94.49	1.52	gy ARWK	strong			0.1	0.5	0.73
103037	94.49	96.01	1.52	gy-bk silty arg, argls sltn				0.5	1	0.98
103038	96.01	97.54	1.52	bk silty arg				0.5	1	0.93
103039	97.54	99.06	1.52	bk arg				0.5	3	1.26
103040	99.06	100.59	1.52	bk arg				0.5	1	0.65
103041	100.59	102.11	1.52	mix bk arg, gy carb alt sltn (ARWK)				0.1	0.5	1.27
103042	102.11	103.63	1.52	gy-bk ARWK; v fine py				1	1	1.40
103043	103.63	105.16	1.52	gy-bk ARWK; v fine py				0.5	2	1.03
103044	105.16	106.68	1.52	bk arg; wh qtz; v fine py				5	2	2.07
103045	106.68	108.21	1.52	bk arg; v fine py				2	3	2.12
103046	108.21	109.73	1.52	gy-bk ARWK				0.5	0.5	1.66
103047	109.73	111.25	1.52	gy-bk ARWK				2	2	1.49
103048	111.25	112.78	1.52	gy-bk ARWK				3	1	0.91
103049	112.78	114.30	1.52	gy-bk ARWK				3	1	0.96
103050				Standard						*
103051	114.30	115.83	1.52	gy-bk ARWK, minor arg				0.5	0.5	0.74
103052	115.83	117.35	1.52	gy-bk ARWK	1			1	2	1.35
103053	117.35	118.87	1.52	gy-bk ARWK				2	1	1.36
103054	1 18.87	120.40	1.52	gy-bk ARWK, minor arg				3	1	1.45
	. .			501						
		·		EOH						
										
			 							
		ļ								ļ
			<u> </u>							
			┨────							
			 						L	
		1	┣───	······			 			
			L			ļ			ļ	
				l		ł	1			

x •

Hole #	05SPRC-24	15		loc method; diff gps		drill me	thod; re	verse ci	irculation	 า	
Property: S	panish Mtn			UTM E 604453		Start Date	e: May 21,	2005	·····		
Depth (m) 1	07.59			UTM N 5827714		Completi	on: May 2	2, 2005			
Elevation: 11	75 m			Azimuth: 300 °		Logged E	By: John	iston			
Section:				Inclination: -60		Date logo	ed: May 2	23, 2005			
Notes	did not reach	150m tar	get due to a	abundant water		Drilled b	y: Drift				
05SPRC-24	5		-				•				
Depth ((metres)	San	nples	Lithologic Description	Qtz Vn	Pyrite	, A	Alteration	n	Au	
From	То	sample #	metres		%	%	carb	sii'n	limonite	g/t	
0.00	3.05			overburden							
3.05	4.57	102613	1.52	surface weath gy-bk silty arg, argis sltn	0.1	Ó					1.28
4.57	6.10	102614	1.52	surface weath gy-bk silty arg	0.1	0					0.80
6.10	7.62	102615	1.52	surface weath gy-bk silty arg, argls sltn in hole	0.1	0					0.92
7.62	9.15	102616	1.52	surface weath gy-bk silty arg, argls sltn	0.1	0					1.67
9.15	10.67	102617	1.52	surface weath gy-bk silty arg, argls sltn	5	0					0.26
10.67	12.19	102618	1.52	gy-bk silty arg, argls sltn	1	0.1					0.24
12.19	13.72	102619	1.52	gy-bk silty arg, argls sltn	0.1	0.1					0.22
13.72	15.24	102620	1.52	bk silty arg	5	0.5					0.39
15.24	16.77	102621	1.52	bk silty arg	2	0.5					0.25
16.77	18.29	102622	1.52	bk silty arg	0.5	0.5					0.16
18.29	19.81	102623	1.52	bk silty arg	0.1	0.5					0.42
19.81	21.34	102624	1.52	gy-bk carb alt argls sltn, fine wacke (ARWK)	0.5	0.5	strong				0.14
21.34	22.86	102625	1.52	gy-bk carb alt argls sltn, fine wacke (ARWK)	0.1	0.5	strong		ł,		0.23
22.86	24.39	102626	1.52	gy-bk carb alt argls sltn, fine wacke (ARWK)	0.1	0.1	strong				0.10
24.39	25.91	102627	1.52	bk silty arg, v fine py	0.5	1				[0.06
25.91	27.43	102628	1.52	bk silty arg, v fine py, abund lim	0.5	1			strong		0.31
27.43	28.96	102629	1.52	gy silty arg, argls sltn, mod carb alt	0.5	1	mod		4.	\ \	0.52
	1	102630		Standard	1				1		4.89
28.96	30.48	102631	1.52	bk silty arg, v fine py	0.5	2			1		0.50
30.48	32.01	102632	1.52	bk silty arg, v fine py	0.5	5					0.34
32.01	33.53	102633	1.52	bk silty arg, v fine py, minor lim	0.5	5			mod		0.14
33.53	35.05	102634	1.52	bk silty arg, argis sltn, minor lim, v fine eu yellow py	2	2					0.27

05SPRC-24	5									
Depth (metres)	San	nples	Lithologic Description	Qtz Vn	Pyrite		Alteratio	n	Au
From	То	sample #	metres		%	%	carb	sil'n	limonite	g/t
35.05	36.58	102635	1.52	bk silty arg, argls sltn, minor lim, v	1	3				
				fine py						0.44
36.58	38.10	102636	1.52	bk silty arg, argls sltn, minor lim, v	0.5	1			1	
				fine py						0.35
38.10	39.63	102637	1.52	bk silty arg, minor gy ARWK, v fine	0.5	1	wk			
				ру						0.29
39.63	41.15	102638	1.52	bk silty arg argsl sltn, v fine py	0.5	1				0.33
41.15	42.67	102639	1.52	bk silty arg, v fine py, minor lim	0.5	2			1	0.27
42.67	44.20	102640	1.52	bk silty arg, v fine py	0.5	2				0.72
44.20	45.72	102641	1.52	bk silty arg, v fine py, minor lim	0.1	5	1			0.26
45.72	47.25	102642	1.52	bk silty arg, v fine py, minor lim	2	5				0.24
47.25	48.77	102643	1.52	bk silty arg, v fine py, minor lim	1	7				0.76
48.77	50.29	102644	1.52	gy-bk argls sltn, wk carb alt, v fine py	0.1	1	wk			
										0.27
50.29	51.82	102645	1.52	gy-bk silty arg, wk carb alt, v fine py	0.5	2	wk			
										0.54
51.82	53.34	102646	1.52	bk arg, v fine py	0.1	7	[1.44
53.34	54.87	102647	1.52	gy-bk silty arg, argls sltn, v fine py	7	5	1		1	0.74
54.87	56.39	102648	1.52	bk silty arg, v fine py	2	7				1.15
56.39	57.91	102649	1.52	bk silty arg, v fine py	5	10			1	2.27
57.91	59.44	102650	1.52	bk silty arg, v fine py	10	10			1	2.84
59.44	60.96	102651	1.52	bk arg, v fine py	5	10				3.09
60.96	62.49	102652	1.52	bk arg, v fine py	2	10				2.40
62.49	64.01	102653	1.52	bk arg, v fine py	1	10				1.37
64.01	65.53	102654	1.52	bk arg, v fine py	0.1	10			\	2.15
65.53	67.06	102655	1.52	bk silty arg, v fine py	1	5			2	1.81
67.06	68.58	102656	1.52	bk silty arg, v fine py	1	5				2.87
68.58	70.11	102657	1.52	bk silty arg, tr gy ARWK, v fine py	0.5	5	local			0.80
70.11	71.63	102658	1.52	bk arg, v fine py	0.1	3				1.11
71.63	73.15	102659	1.52	bk arg, v fine yellow eu py	1	10				2.41
		102660		Standard						4.85
73.15	74.68	102661	1.52	bk arg, v fine yellow eu py	0.1	10				3.44
74.68	76.20	102662	1.52	bk silty arg, v fine py	0.1	10				1.54
76.20	77.73	102663	1.52	gy ARWK; v fine eu py	0.1	7	strong			0.29
77.73	79.25	102664	1.52	gy ARWK, minor gy-gn MCA; v fine	0.1	2	strong			
				eu py						0.26
79.25	80.77	102665	1.52	gy-bk ARWK; v fine eu py	0.1	5	strong			0.50
80.77	82.30	102666	1.52	mix bk silty arg, gy-bk ARWK; v fine	0.5	7	strong			
				eu py						0.57

•

4 i i i i

05SPRC-24	5			·····		<u> </u>		<u> </u>		·
Depth	(metres)	San	nples	Lithologic Description	Qtz Vn	Pyrite	I A	Alteratio	n	Au
From	То	sample #	metres		%	%	carb	sil'n	limonite	g/t
82.30	83.82	102667	1.52	mix bk silty arg, gy-bk ARWK; v fine	5	3	strong			
				eu py						3.02
83.82	85.35	102668	1.52	mix bk silty arg, gy-bk ARWK; v fine	0.5	2	strong			
				eu py	l					0.78
85.35	86.87	102669	1.52	gy, gy-gn MCA. v fine py	0.5	1	strong			0.38
86.87	88.39	102670	1.52	gy ARWK, minor gy-gn MCA; v fine	0.1	1	strong			
	······································			eu py			L			0.15
88.39	89.92	102671	1.52	gy ARWK, minor gy-gn MCA; v fine	0.5	1	strong			
				eu py	[<u> </u>	0.15
89.92	91.44	102672	1.52	bk argls sltn, silty arg; v fine py	0.1	10			<u> </u>	0.64
91.44	92.97	102673	1.52	gy-bk carb alt argls sltn, fg wacke	0.1	7	strong		-	
				(ARWK), v fine py			L			0.65
92.97	94.49	102674	1.52	mis bk arg, ARWK, v fine py	0.5	5	strong		<u> </u>	1.03
94.49	96.01	102675	1.52	mis bk arg, ARWK, v fine py	1	10	strong		<u> </u>	1.25
96.01	97.54	102676	1.52	bk silty arg, argls sltn; v fine py	5	10				2.40
97.54	99.06	102677	1.52	bk silty arg, argls sltn, tr lim; v fine py	0.5	10	1	1	wk	
<u></u>										1.94
99.06	100.59	102678	1.52	bk silty arg, argls sltn, tr lim; v fine py	0.5	10			1	
			 							1.97
100.59	102.11	102679	1.52	mix bk silty arg, gy-bk ARWK; v fine	1	10	local			
				eu py						1.33
102.11	103.63	102680	1.52	mix bk silty arg, gy-bk ARWK; v fine	10	10	local			
<u></u>				eu py					L	1.64
103.63	105.16	102681	1.52	fracture zone; coarse chips of gy	40	2	strong		j	
				ARWK, wh qtz				l	<u> </u>	0.27
105.16	106.68	102682	1.52	fracture zone; coarse chips of gy	40	2	strong			
				ARWK, wh qtz					[3.29
106.68	107.59	102683	0.91	gy ARWK, though prob	20	2	strong		1	
		<u> </u>		contaminated from fracture above						0,66
		L			L				<u> </u>	
			ļ	EOH						
		Į	ļ		L		 		ļ	
		ļ							<u> </u>	
		 	<u> </u>		 		ŀ	ļ	<u> </u> _	
		 			┠────					·
		 	<u> </u>		 		 		i	
		 	<u> </u>		 	└── ~	}		<u> </u>	
ļ		<u> </u>	<u> </u>		ļ	<u> </u>	ļ		 	
					l					

Hole #	05SPRC-	246	loc metho	od; diff gps	drill met	thod; re	everse o	rculation		-
Property: S	Spanish Mt	n	UTME 6	04346	Start Date	e: May 23	, 2005			
Depth (m) 1	29.54		UTM N	5827764	Completio	n: Jun 2	2, 2005			
Elevation: 11	173 m		Azimuth:	120 °	Logged B	y: Johr	iston			
Section:			Inclinatio	n: -60 °	Date logg	ed: May	24, Jun 3	2005		
Notes	unable to r	each 150m ta	rget depth	due to water, hard rock	Drilled b	y: Drift	<u> </u>			
}	drillers on	break May 2	24 - 30			<u></u>				
05SPRC-24	.6									
Sample #	Depth	(metres)	sample	Lithologic Description	A	Iteratio	n	Qtz Vn	Pyrite	Au
		(,	length							
	From	То	(m)		carb	sil'n	limonite	%	%	g/t
	0.00	3.05	3.05	overburden			-			
102684	3.05	4.57	1.52	gy-bk silty arg, argls sltn, surface				tr	0	
				weath						0.07
102685	4.57	6.10	1.52	gy-bk silty arg, argls sltn, surface			1	tr	0	
				weath						0.02
102686	6.10	7.62	1.52	gy-bk silty arg, argls sitn, surface				tr	0	
ļ				weath				l		0.05
102687	7.62	9.15	1.52	gy-bk silty arg, argls sltn				1	tr	0.10
102688	9.15	10.67	1.52	bk silty arg, argls sltn				1	tr	0.05
102689	10.67	12.19	1.52	bk silty arg				0.1	tr	0.31
102690	12.19	13.72	1.52	bk silty arg				1	tr	0.11
102691				Standard						4.85
102692	13.72	15.24	1.52	gy ARWK	strong		<u> </u>	0.5	0.1	0.06
102693	15.24		1.52	gy-bk argls sitn	wk			0.5	0.1	0.06
102694	16.77	18.29	1.52	gy-bk argls sltn	wk	L	L	0.1	tr	0.25
102695	18.29	19.81	1.52	bk silty arg				0.5	0.1	0.40
102696	19.81	21.34	1.52	gy-bk silty arg, argls sltn	wk 👘			0.1	j0.1	0.14
102697	21.34	22.86	1.52	gy-bk silty arg, argls sltn		<u> </u>		0.5	[°] 0.1	0.05
102698	22.86	24.39	1.52	bk silty arg; vfg yellow eu py				2	0.5	0.05
102699	24.39	25.91	1.52	bk silty arg; vfg yellow eu py	L		L .	5	1	0.18
102700	25.91	27.43	1.52	bk silty arg; vfg yellow eu py	ļ	ļ		0.5	1	0.11
102701	27.43	28.96	1.52	bk silty arg; vfg yellow eu py		L		0.5	7	0.18
102702	28.96	30.48	1.52	bk silty arg; vfg yellow eu py		<u> </u>		0.5	<u>~~5</u>	0.27
102703	30.48	32.01	1.52	bk silty arg; vfg yellow eu py	ļ		<u> </u>	0.5	5	0.17
102704	32.01	33.53	1.52	bk silty arg; vfg yellow eu py			ļ	0.1	10	0.84
102705	33.53	35.05	1.52	bk silty arg; vfg yellow eu py	_		ļ	<u> </u>	5	1.16
102706	35.05	36.58	1.52	bk silty arg; vfg yellow eu py	_	┞		0.5	3	0.33
102707	<u> </u>	38.10	1.52	bk silty arg; vfg yellow eu py	.	 ~		1	10	0.19
102708	38.10	39.63	1.52	bk-gy silty arg, argls sltn; vfg yellow		ł	1	1	5	
	1	l		eu py	<u> </u>	<u> </u>	<u> </u>	L		0.17

05SPRC-246	5									
Sample #	Depth	(metres)	sample	Lithologic Description	A A	Iteratio	n	Qtz Vn	Pyrite	Au
			length							<u> </u>
	From	То	(m)		carb	sil'n	limonite	%	%	g/t
102709	39.63	41.15	1.52	bk-gy argis sitn, fg wacke; vfg yellow	mod			0.1	0.1	
				eu py						<0.03
102710	41.15	42.67	1.52	bk-gy silty arg, argls sltn; vfg yellow				0.5	1	
				eu py						0.05
102711	42.67	44.20	1.52	bk-gy argls sitn; vfg yellow eu py	mod			0.5	1	0.15
102712	44.20	45.72	1.52	bk silty arg; vfg yellow eu py		L		tr	5	0.09
102713	45.72	47.25	1.52	bk silty arg; vfg yellow eu py				0.1	10	0.10
102714	47.25	48.77	1.52	bk arg; vfg yellow eu py				0.1	10	0.18
102715	48.77	50.29	1.52	bk arg; vfg yellow eu py				0.1	3	0.08
102716	50.29	51.82	1.52	bk arg; vfg yellow eu py				0.5	2	0.29
102717	51.82	53.34	1.52	bk silty arg; vfg yellow eu py				0.1	3	0.15
102718	53.34	54.87	1.52	bk-gy argls sltn, fg wacke; fg yellow			[0.1	5	
				eu py						0.40
102719	54.87	56.39	1.52	gy-bk ARWK	strong			0.1	0.1	0.06
102720				Standard						4.75
102721	56.39	57.91	1.52	gy-bk argls sltn; vfg yellow eu py				0.5	1	0.12
102722	57.91	59.44	1.52	bk silty arg; vfg yellow eu py				1	2	0.18
102723	59.44	60.96	1.52	bk silty arg; vfg yellow eu py				1	1	0.51
102724	60.96	62.49	1.52	gy-bk silty arg, argls sltn				1	0.5	0.11
102725	62.49	64.01	1.52	gy-bk silty arg, argls sltn; vfg yellow				0.1	10	
\				eu py						0.09
102726	64.01	65.53	1.52	gy-bk silty arg, argls sltn; vfg yellow				5	2	
				eu py						0.12
102727	65.53	67.06	1.52	gy argls sltn, wacke (ARWK)	strong	mod?		7	0.5	0.16
102728	67.06	68.58	1.52	gy-bk argls sitn, wacke (ARWK)	strong	mod?		2	<u></u> \$0.1	0.07
102729	68.58	70.11	1.52	gy argls sltn, wacke (ARWK)	strong	mod?		1	2	0.08
102730	70.11	71.63	1.52	gy argls sltn, wacke (ARWK)	strong	mod?		0.5	0.5	0.19
102731	71.63	73.15	1.52	gy-gn MCA, minor arg	strong	mod?		1	0.1	0.37
102732	73.15	74.68	1.52	gy-gn MCA, minor arg	strong	mod?		1	0.5	0.12
102733	74.68	76.20	1.52	mix MCA-bk arg	strong	mod?		1	0.5	0.36
102734	76.20	77.73	1.52	mix MCA-bk arg	strong	mod?]	0.5	0.1	0.14
102735	77.73	79.25	1.52	gy-gn MCA, minor mariposite	strong	mod?	minor	1	0.1	0.17
102736	79.25	80.77	1.52	mix MCA-bk arg	strong	mod?		0.5	0.1	0.16
102737	80.77	82.30	1.52	gy-bk argls ARWK; v fine py	strong	mod?		1	2	0.67
102738	82.30	83.82	1.52	gy-gn MCA, gy argls ARWK	strong	mod?		2	1	0.77
102739	83.82	85.35	1.52	gy-gn MCA, gy argis ARWK	strong	mod?		0.1	0.1	0.31
102740	85.35	86.87	1.52	gy ARWK, v fine eu py	strong	mod?	I	0.1	1	0.64

05SPRC-246	5									
Sample #	Depth ((metres)	sample iength	Lithologic Description	F	Iteratio	1	Qtz Vn	Pyrite	Au
	From	То	(m)		carb	sil'n	limonite	%	%	g/t
102741	86.87	88.39	1.52	gy ARWK, local gy-bk argls ARWK	strong	mod?		0.1	0.5	0.23
102742	88.39	89.92	1.52	gy-bk argls ARWK; v fine py	strong	mod?		1	2	0.26
102743	89.92	91.44	1.52	gy-bk argls ARWK; v fine py	strong	mod?		1	2	0.23
102744	91.44	92.97	1.52	mix gy, gy-gn ARWK	strong	mod?		0.5	0.5	0.47
102745	92.97	94.49	1.52	gy-gn MCA	strong	mod?		0.1	0.5	0.20
102746	94,49	96.01	1.52	gy-gn MCA	strong	mod?		0.1	0.5	0.65
102747	96.01	97.54	1.52	gy-gn MCA	strong	mod?		0.1	0.1	0.63
102748	97.54	99.06	1.52	gy-gn MCA, minor mariposite	strong	mod?		0.1	0.5	0.88
102749	99.06	100.59	1.52	gy-gn MCA	strong	mod?		2	0.5	1.39
102750			· · · · · · · · · · · · · · · · · · ·	Standard	j					4.80
102751	100.59	102.11	1.52	gy-gn MCA; fg eu py	strong	strong		5	2	1.31
102752	102.11	103.63	1.52	gy-gn MCA	strong	strong		0.5	0.1	1.49
102753	103.63	105.16	1.52	gy-gn MCA	strong	strong		1	0.5	1.16
102754	105.16	106.68	1.52	gy-bk argls ARWK	strong	strong		0.5	0.1	0.42
102755	106.68	108.21	1.52	mix gy-bk argls ARWK, gy MCA,	strong	strong		7	2	
				coarse wh qtz, eu py						4.19
102756	108.21	109.73	1.52	mix bk arg, bk-gy ARWK	strong	strong		10	2	2.17
102757	109.73	111.25	1.52	gy-bk argls sltn, sil, carb alt	strong	strong		1	0.5	1.54
102758	111.25	112.78	1.52	gy-bk argls sltn, sil, carb alt	strong	strong		0.5	2	0.70
102759	112.78	114.30	1.52	gy-bk argls sltn, sil, carb alt	strong	strong		0.5	0.5	0.70
102760	114.30	115.83	1.52	gy-bk argls sltn, sil, carb alt	strong	strong		1	1	2.28
102761	115.83	117.35	1.52	gy-bk argls sltn, sil, carb alt	strong	strong		0.5	0.1	0.34
102762	117.35	118.87	1.52	gy-bk argls sltn, sil, carb alt	strong	strong		2	0.5	0.66
102763	118.87	120.40	1.52	gy-bk argls ARWK	strong	strong		0.5	2 1	0.70
102764	120.40	121.92	1.52	gy-bk argls ARWK, minor bk arg, wh qtz	strong	strong		5	1	1.43
102765	121.92	123.45	1.52	gy ARWK, wh qtz	strong	strong		5	2	0.95
102766	123.45	124.97	1.52	gy ARWK, wh qtz	strong	strong		1	1	1.42
102767	124.97	126.49	1.52	gy ARWK	strong	strong		0.5	Q.1	0.24
102768	126.49	128.02	1.52	gy-bk ARWK, minor bk arg	strong	strong		0.1	0.1	0.29
102769	128.02	129.54	1.52	gy-bk ARWK, minor bk arg	strong	strong		0.1	0.1	0.35
				ЕОН						
		· · · · · · · · · · · · · · · · · · ·	 							
		·	<u> </u>			<u> </u>				

* <u></u>

Azimuth 080° 🛌
CICAL SURVEY BRANCH
LEGEND
APC black arcillite
GAR graphitic arcillite
SAR silty black argillite
ASL black & argillaceous siltstone
ARWK argillaceous wacke
MCA sericite-carbonate altered wacke
QVN quartz vein
0 10 20 metres
Wildrose Resources Ltd.
Spanish Mtn. Property
Section Looking North LE ZONE 04SPRC-216 05SPRC-235
Scale 1:500 N.T.S. 93A/11W Figure Date Jan 2005 U.T.M. Zone 10 4
By R. Johnston, P.Geo. Mincord Exploration Consultants

	Azimuth 030° 🛏
DIOGICAL ST ASSREET	marganancu Manaka 113
and the second s	LEGEND
	OVB overburden
	ARG black argillite
	GAR graphitic argillite
	SAR silty black argillite
	ASL black & argillaceous siltstone
	ARWK argillaceous wacke
	MCA sericite-carbonate altered wacke
	QVN quartz vein
	0 10 20 metres
	Wildrose Resources Ltd.
	Spanish Mtn. Property
	Section Looking N.W. TR3 AREA 04SPRC-202 05SPRC-236
	Scale 1:500 N.T.S. 93A/11W Figure Date Jan 2005 U.T.M. Zone 10 5
	By R. Johnston, P.Geo. Mincord Exploration Consultants

Azimuth 240°

LEGE	ND
OVB	overburden
ARG	black argillite
GAR	graphitic argillite
SAR	silty black argillite
ASL	black & argillaceous siltstone
ARWK	argillaceous wacke
MCA	sericite-carbonate altered wacke
QVN	quartz vein

Azimuth 120° 🛏
0.Y
201

LEGEND		
OVB	overburden	
ARG	black argillite	
GAR	graphitic argillite	
SAR	silty black argillite	
ASL	black & argillaceous siltstone	
ARWK	argillaceous wacke	
MCA	sericite-carbonate altered wacke	
QVN	quartz vein	

	0	10 20	b
		metres	
	Wildrose	Resources L	td.
	Spanish Quesnel Min	Mtn. Proper	ty
	Section	n Looking N.E.	
	WESTER	N PLACER AR	REA
	05	SPRC-238	
Scale	1:500	N.T.S. 93A/11W	Figure
Date	Jan 2005	U.T.M. Zone 10	/
By	R. Johnston, PGeo.	Mincord Exploration	Consultants

ARG	black argillite
GAR	graphitic argillite
SAR	silty black argillite
ASL	black & argillaceous siltstone
ARWK	argillaceous wacke
MCA	sericite-carbonate altered wacke
QVN	quartz vein

Azimuth 015° -

LEGE	ND .
OVB	overburden
ARG	black argillite
GAR	graphitic argillite
SAR	silty black argillite
ASL	black & argillaceous siltstone
ARWK	argillaceous wacke
MCA	sericite-carbonate altered wacke
QVN	quartz vein

0	10 20	0
	metres	
Wildrose	Resources L	td.
Spanish Quesnel Mir	Mtn. Proper	ty
Section	Looking West	
SOUTHE	RN CPW AR	EA
05	SPRC-242	
Scale 1:500	N.T.S. 93A/11W	Figure
By R. Johnston, P.Geo.	Mincord Exploration	Consultants

		Azimuth 120° >	-
AL SURVEY	BRANCH	3	
	LEGE	ND	
	OVB	overburden	
	ARG	black argillite	
	GAR	graphitic argillite	
	SAR	silty black argillite	
	ASL	black & argillaceous siltsto	one
	ARWK	argillaceous wacke	
	MCA	sericite-carbonate altered	wacke
	QVN	quartz vein	
	°==- Wildr	10 20 metres	
	Span	ish Mtn. Property	
	Quest	nel Mining District, B.C., Canada	
	Sect	tion Looking N.E.	
		LE PIT AREA	
		05SPRC-244	
	Scale 1:500 Date Jan 2005	N.T.S. 93A/11W U.T.M. Zone 10	Figure 11

By R. Johnston, P.Geo. Mincord Exploration Consultants

LEGE	ND
OVB	overburden
ARG	black argillite
GAR	graphitic argillite
SAR	silty black argillite
ASL	black & argillaceous siltstone
ARWK	argillaceous wacke
MCA	sericite-carbonate altered wacke
QVN	quartz vein

LEGEN	ND
OVB	overburden
ARG	black argillite
GAR	graphitic argillite
SAR	silty black argillite
ASL	black & argillaceous siltstone
ARWK	argillaceous wacke
MCA	sericite-carbonate altered wacke
QVN	quartz vein

Wildrose	Resources L	td.
Spanish Quesnel Min	Mtn. Proper	by 🛛
Section	Looking N.E.	
L	E ZONE	
05	SPRC-249	
Scale 1:500	N.T.S. 93A/11W	Figure
Date Jan 2005	U.T.M. Zone 10	14
By R. Johnston, P.Geo.	Mincord Exploration Consultants	

LEGE	ND
OVB	overburden
ARG	black argillite
GAR	graphitic argillite
SAR	silty black argillite
ASL	black & argillaceous siltstone
ARWK	argillaceous wacke
MCA	sericite-carbonate altered wacke
QVN	quartz vein