MINERAL CLAIM 509273

ASSESSMENT REPORT ON DIAMOND DRILLING PROGRAM September - October 2005

N.T.S. 93 F/2W

LATITUDE 53° 10' N, LONGITUDE 124° 53' W 📣

OMINECA MINING DIVISION,

Prepared for:

Silver Quest Resources Ltd. 1410 – 650 West Georgia Street VANCOUVER, British Columbia V6B 4N8

By:

David J. Pawliuk, P. G

January 16, 2006 / 4

Gold Commissioner's Office

TABLE OF CONTENTS

.

SUMMARY	1
INTRODUCTION AND TERMS OF REFERENCE	1
PROPERTY DESCRIPTION AND LOCATION	2
ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE	
AND PHYSIOGRAPHY	2
HISTORY	6
GEOLOGICAL SETTING	6
DRILLING	8
SAMPLING METHOD AND APPROACH	11
SAMPLE PREPARATION, ANALYSES AND SECURITY	11
DATA VERIFICATION	11
INTERPRETATION AND CONCLUSIONS	13
RECOMMENDATIONS	13
CERTIFICATE OF AUTHOR	14
BIBLIOGRAPHY	15
COST STATEMENT	17

LIST OF TABLES

1	Davidson Mineral Claims	2
2	Summary of September - October 2005 Diamond Drill Holes,	
	mineral claim 509273	8
3	Duplicate Assay Comparison	12

LIST OF FIGURES

1	Location Map	3
2	Access Map	4
3	Claim Map	5
4	Regional Geology Map	7
5	Property Geology and Diamond Drilling Plan Map (1:500 scale)	At End
6	Diamond Drill Cross Section DAV05-01 (1:500 scale)	At End
7	Diamond Drill Cross Section DAV05-02 (1:500 scale)	At End
8	Diamond Drill Cross Section Hole DAV05-03 (1:500 scale)	At End
9	Diamond Drill Cross Section Hole DAV05-04 (1:500 scale)	At End
10	Diamond Drill Cross Section Hole DAV05-05 (1:500 scale)	At End

APPENDICES

A Assay	Certificates
---------	--------------

B Diamond Drill Hole Logs

SUMMARY

Diamond drilling was performed on mineral claim 509273, part of the Davidson project, in central British Columbia. The field work was carried out between September 14 and October 12, 2005 on behalf of Silver Quest Resources Ltd. (Silver Quest) of Vancouver, British Columbia.

The Davidson property is located in central British Columbia, approximately 110 km southwest of the town of Vanderhoof. The property is comprised of contiguous cell claims covering approximately 2635.343 hectares. These mineral claims are partly under a sale and purchase agreement with West Range Exploration Ltd., and partly staked by Silver Quest. The mineral claims are 100 % owned by Silver Quest.

The Davidson project area has been explored since Granges Inc. discovered anomalous concentrations of silver, lead and zinc in silts from streams draining the Mt. Davidson area in 1973. Follow-up geochemical soil sampling was performed in 1973 and 1976; ground magnetometer surveying was also done during 1976 (Allen, 1993).

Granges Inc. and Kennecott Canada Exploration Inc. performed several episodes of geophysical surveying and drilling between 1977 and 1994. The last work on the property was diamond drilling of five holes totalling 759.36 m in 1994 (Van Damme, 1995).

Further diamond drilling has been done to test targets within the central Davidson property area. This diamond drilling is the subject of this technical report.

The Davidson project is located within the Nechako Uplift, a structurally raised block. This uplift provides a window through younger cover rocks to the underlying volcanic and sedimentary rocks of the Jurassic Hazelton and the Bowser Lake Groups. Cretaceous Capoose Batholith granitic rocks intrude these stratified rocks. Eocene volcanic rocks of the Ootsa Lake and Endako Groups locally overlie the older rocks. Younger basalt of the Chilcotin Group forms rare hill cappings within the Nechako Uplift.

A total of 938.65 metres was drilled in five holes at the Davidson property during September and October 2005. These drill holes were designed to test geochemical goldin-soil anomalies, geophysical anomalies and presumed northwesterly trending fault structures.

Drill hole DAV05-02 intercepted an interval of 4.94 g/t gold and 17.1 g/t silver across 14 m, in a part of the property that has previously received only limited drill-testing. The true width and orientation of this mineralized intercept are unknown. Further diamond drilling should be done to follow-up the mineralized intercept in drill hole DAV05-02.

The cost of the recommended exploration is estimated to be \$ 334,000.00.

INTRODUCTION AND TERMS OF REFERENCE

This report describes diamond drilling performed on mineral claim 509273 in central British Columbia. This work was carried out on behalf of Silver Quest Resources Ltd. (Silver Quest), formerly Southern Rio Resources Ltd., of Vancouver, British Columbia.

Mr. Robert Weicker, President of Silver Quest, contracted the writer to supervise the

diamond drilling on mineral claim 509273. The writer personally supervised the core logging and sampling on the property.

PROPERTY DESCRIPTION AND LOCATION

The Davidson property is located approximately 110 km southwest of the town of Vanderhoof in central British Columbia (Figure 1). The project area is centred at approximately 53° 10' N latitude and 124° 53' W longitude.

The diamond drilling that is the subject of this assessment report was performed within mineral claim 509273.

Claim tenure number	Number of cells (units)	Area (ha)	Expiry date
503050	18	348.759	January 13, 2007
509273	25	484.448	March 19, 2006
509274	2	38.750	March 19, 2006
509275	1	19.375	March 19, 2006
521778	4	77.525	November 2, 2006
521779	6	116.287	November 2, 2006
521780	10	193.767	November 2, 2006
521782	12	232.485	November 2, 2006
521920	16	309.923	November 4, 2006
521921	21	406.874	November 4, 2006
521923	21	407.150	November 4, 2006
	Total	2635.343	

Table 1. Davidson Mineral Claims

These mineral claims are partly under a sale and purchase agreement with West Range Exploration Ltd., and partly staked by Silver Quest. The mineral claims are 100 % owned by Silver Quest.

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Davidson property is located in central British Columbia, approximately 110 km southwest of the town of Vanderhoof (Figure 1).

A network of logging roads provides access to the property. The Kenney Dam Road extends southwesterly from Vanderhoof for 25 km to the Kluskus Forest Service Road. The turnoff to the property is located about 300 m southwest of the 146 km marker

along the Kluskus Road (Figure 2). The access road extends 18 km eastwards from the Kluskus Road into the central portion of the property; Granges, Inc. constructed this road in 1986.

Drill roads and buildozer tracks lead from the end of the access road into different parts of the Davidson property area.

Driving time from Vanderhoof to the property is 3.5 hours. Most of the trip is along the Kluskus Road, which is busy with heavy industrial traffic (logging trucks). Vehicles travelling the Kluskus Road should be radio-equipped, and should carry spare fuel.

The project area is within the Nechako Plateau of central British Columbia. Elevations in the property area range from about 1,340 metres to about 1,800 metres a.s.l. The terrain consists of rounded hills separated by swamps and small lakes. Pine, spruce, aspen and alder trees grow in the property area; the higher ground is above treeline. Most of the pine trees are dead or dying because of the mountain pine beetle infestation. Thick glacial till covers the bedrock in most places, and outcrop exposure is sparse. Soils are poorly developed. Summer weather is cloudy with frequent showers, and winters are dry and cold.

HISTORY

Tipper (1963) geologically mapped the region at 1:250,000 scale for the Geological Survey of Canada. Diakow, Webster, Levson and Giles (1994) of the British Columbia Geological Survey carried out more recent, detailed mapping in the area.

Allen (1993) summarized the exploration history of the Davidson property. The Davidson project area has been explored since the discovery of anomalous concentrations of silver, lead and zinc in silts from streams draining the Mt. Davidson area in 1973 by Granges Inc. Follow-up geochemical soil sampling was performed in 1973 and 1976; ground magnetometer surveying was also done during 1976 (Allen, 1993).

Granges Inc. and Kennecott Canada Exploration Inc. performed several episodes of geophysical surveying and drilling between 1977 and 1994. The last work in the property area was diamond drilling of five holes totalling 759.36 m in late 1994 (Van Damme, 1995). However, Kennecott Canada Exploration Inc. performed an induced polarization (IP) survey on the DAVE claim during 1997 (Verhiel and Blackwell, 1997). The DAVE claim is immediately south of the central part of Silver Quest's current Davidson property.

Further diamond drilling has been done to test targets within the central Davidson property area. This diamond drilling is the subject of this assessment report. These drill holes were designed to test geochemical gold-in-soil anomalies, geophysical anomalies and presumed northwesterly trending fault structures.

GEOLOGICAL SETTING

Regional Geology

The Davidson property is located within the southern Nechako Plateau. Igneous and sedimentary rocks of Jurassic to Tertiary age underlie the region. These rocks form part of the Stikine Terrane. The geology of the project region is shown on Figure 4.

The property is located within the Nechako Uplift, a northeast-trending, structurally raised block. The structural uplift provides a window through younger cover rocks to the underlying, regionally extensive, volcanic and sedimentary rocks of the Lower to Middle Jurassic Hazelton Group, and to the Late Jurassic Bowser Lake Group. These stratified rocks are intruded by granodiorite to granite of the Late Cretaceous Capoose Batholith. Eocene volcanic rocks of the Ootsa Lake and Endako Groups locally overlie the older rocks. Younger, Miocene olivine basalt of the Chilcotin Group forms rare cappings on hills within the Nechako Uplift.

Property Geology

The Davidson property is underlain by intercalated rhyolitic to andesitic lapilli tuffs, breccias and flows of the lower Hazelton Group. Exposures of possible Upper Cretaceous to Oligocene Ootsa Lake Group rhyolite lapilli tuff occur within the southern and southwestern portions of the property; these rocks are similar to garnet-bearing rhyolite tuffs found at the Capoose porphyry-precious metal prospect, which is located 28 km to the northwest of Davidson property. The Ootsa Lake Group rocks overlie the Hazelton Group rocks (Figure 4). Tertiary Endako Group amygdaloidal andesite flows unconformably overlie the Ootsa Lake Group rocks in the northeastern part of the property.

Rocks within the property area are variably sericite-altered, silicified, clay-altered and brecciated. Bedding or stratification generally strikes northwesterly (160 degrees) and dips about 32 degrees to the northeast (Van Damme, 1995).

DRILLING

A total of 938.65 m was cored in five holes at the Davidson property between September 17 and October 8, 2005. Falcon Drilling Ltd. of Prince George, British Columbia performed the drilling, using the Falcon 1000, a custom-built diamond drill rig.

The drill cores are stored in labelled wooden boxes that are stacked in a storage area on the property. The core boxes are covered with plywood sheeting, to protect them from rain and snow.

The writer supervised the diamond drilling. Drill hole orientation, depth and location are listed in the following table.

Table 2: Summary of September - October 2005Diamond Drill Holes, Davidson property

<u>Hole No.</u>	Collar Location (UTM)	Azimuth/		<u>Depth</u>
	Northing / Easting / elevation (m)	Inclination		<u>(m)</u>
DAV05-01	5893410 N / 375345 E / 1512	225º / 50º		302.97
DAV05-02	5892799 N / 375180 E / 1603	225° / 50°		237.60
DAV05-03	5893479 N / 375743 E / 1500	180º / 50º		52.43
DAV05-04	5893496 N / 375727 E / 1501	180º / 50º		209.40
DAV05-05	5892805 N / 375974 E / 1562	186° / 50°		136.25
			Total	938.65 m

Note: Collar locations surveyed by G.P.S.

Drill hole DAV05-01

This hole was drilled to test a presumed northwesterly trending fault structure, a magnetic contact feature and a VLF-EM conductor within the Silver Zone (Figures 5 and 6). The hole was also designed to confirm and extend the mineralized intercept within earlier drill hole DAV-15 that assayed 0.03 g/t gold and 36.1 g/t silver across 39.9 m (Zbitnoff, 1988). Hole DAV-15 is within the central part of the Silver Zone (Figure 5).

Drill hole DAV05-01 intersected felsic welded lapilli tuff from 3.90 m to 129.00 m depth; this rock is pale greenish cream to chalky white coloured and siliceous. Numerous faults occur throughout the interval, and local patches have been moderately silicified (Appendix B). Dacite was cored from 129.00 m to 132.60 m depth, this rock is medium brownish grey, fresh and competent with 2 to 3 % brown biotite.

From 132.60 m to 158.50 m depth the hole intersected dacite(?) lapilli tuff. The tuff is light greyish green and chalky with numerous faults. Polymictic lapilli average about 10 mm across. The rock contains traces to 1 % red-brown sphalerite as angular grains to 1 mm across.

A fault zone was intersected from 158.50 m to 166.73 m depth. The core is finely crushed, soft, finely broken dark greyish brown to greenish brown rock. Calcite veinlets form 3 % of the rock volume.

A dacite(?) or andesite flow was intersected from 166.73 m to 254.0 m depth. This rock is medium grey-brown and fine grained with 1 to 3 % pyrrhotite as blebby masses averaging about 3 mm across. Traces of chalocpyrite are present as irregular, wispy masses. The rock has been altered by very fine grained brown biotite. Local lithic ash tuff interbeds comprise about 10 % of the rock volume; these tuff bands are often moderately silicified and bleached.

Andesite porphyry was intersected from 254.0 m to 302.97 m depth. This rock is brownish green to dark green-grey, with plagioclase phenocrysts averaging about 2 mm by 4 mm across within an aphanitic matrix. The unit contains more pyrite and less pyrrhotite and chalcopyrite than the overlying dacite. The hole was stopped in a fault that extends from 300.0 to 302.97 m depth.

Analyzed core samples from drill hole DAV05-01 contain from 5 parts per billion (ppb) to 1.28 g/t gold and from zero to 23.4 g/t silver (Appendices A and B). Analyzed core samples contain 0.29 g/t gold and 12.9 g/t silver across 10.0 m, including the interval containing 1.28 g/t gold and 14.0 g/t silver from 134 m to 136 m depth in hole DAV05-01 (Appendices A and B).

Drill hole DAV05-02

This hole was drilled to test the bedrock underlying a geochemical gold-in-soil anomaly with a coincident high resistivity feature. This hole also was designed to test a northwesterly trending VLF-EM conductor along a presumed northwesterly trending fault (Figure 5).

Drill hole DAV05-02 intersected rhyolite lapilli tuff from 6.70 m to the bottom of the hole at 237.60 m depth (Figure 7). This rock is light greenish grey with 5 to 20 % lapilli, mainly of felsic composition, averaging about 12 mm across. The lapilli tuff is weakly sericite-altered

throughout the hole. Several faults occur within the interval. From 112.3 m to 125.7 m depth the core is a light green chert with 1 to 2 % pyrite and traces sphalerite (Appendix B); the chert also contains traces of blebby pyrrhotite with chalcopyrite inclusions.

Analyzed core samples from 136.0 m to 150.0 m depth contain 4.94 g/t gold and 17.1 g/t silver, within a wider interval from 96.0 m to 160.0 m depth containing 1.80 g/t gold and 6.5 g/t silver (Appendices A and B).

Drill hole DAV05-03

This hole was drilled to test the bedrock underlying a geochemical gold-in-soil anomaly with a coincident high resistivity feature (Figure 5). This hole also was designed to test a northwesterly trending VLF-EM conductor along a presumed northwesterly trending fault.

Drill hole DAV05-03 intersected greyish maroon, medium to fine grained andesite porphyry from 5.18 m to the bottom of the hole at 52.43 m depth (Figure 8). This rock contains light grey, blocky plagioclase phenocrysts averaging about 2.5 mm across; no sulphides were seen. Grey-green rhyodacite(?) tuff bands were intersected from 5.18 m to 11.08 m depth, and from 11.58 m to 16.64 m depth.

Hole DAV05-03 was abandoned before the target depth was reached, because of difficult drilling conditions. Several faults are present in the hole (Figure 8, Appendix B).

Core samples from this hole contain from zero to 10 parts per billion (ppb) gold and from zero to 2.1 g/t silver (Appendices A and B).

Drill hole DAV05-04

This hole was drilled to test the bedrock underlying the geochemical gold-in-soil anomaly and coincident easterly trending VLF-EM conductor that were the target for hole DAV05-03 above. This hole also was designed to test a presumed northwesterly trending fault (Figure 5).

Drill hole DAV05-04 intersected medium maroon grey, medium grained andesite porphyry from 3.65 m to the bottom of the hole at 209.40 m depth (Figure 9). This rock contains light grey, blocky plagioclase phenocrysts averaging about 3.5 mm across; it also contains 1 to 3 % bluish green chlorite as very fine grained, shreddy masses. Local traces of chalcopyrite occur as lensoid masses up to 4 mm long by 0.75 mm wide (Appendix B).

Core samples from this hole contain from zero to 30 ppb gold and from zero to 3.4 g/t silver (Appendices A and B).

Drill hole DAV05-05

This hole was drilled to test the bedrock underlying a geochemical gold-in-soil anomaly with a coincident, easterly trending VLF-EM conductor (Figure 5). This hole also was designed to test the margin of a zone of high chargeability.

Drill hole DAV05-05 intersected pale cream-grey, chalky, fine grained rhyolite from 20.82 m to the bottom of the hole at 136.25 m depth (Figure 10). The rhyolite is uniform, massive rock, likely a fine grained ash tuff. This rock is weakly sericite-altered throughout, and

contains occasional white, clay-altered feldspar grains. The rhyolite has locally been weakly to moderately silicified.

Numerous faults and intervals of moderately broken core are present above 90.70 m depth; below this depth the core is more competent. Local traces of dusty disseminated pyrite are visible within the core. Blue molybdenite (or galena?) occurs as a mass with faint margins 1 mm across at 130.11 m depth.

Core samples from this hole contain from zero to 530 ppb gold and from zero to 346 g/t silver (Appendices A and B). The core from 54.0 m to 56.0 m depth contains 130 ppb gold, 346 g/t silver and 1.64 % lead. The core from 124.0 m to 126.0 m depth contains 530 ppb gold, 42.5 g/t silver and 9,440 ppm lead (Appendix A). These mineralised intercepts are associated with intervals of moderately silicified rhyolite (Figure 10).

SAMPLING METHOD AND APPROACH

The sampling method and approach consisted of logging the core, during which intervals for sampling and analysis were marked out on the core in the core boxes. All of the core samples from the current drilling program were split and submitted to Eco Tech Laboratory Ltd.

SAMPLE PREPARATION, ANALYSES AND SECURITY

The writer geologically logged the drill core samples, assisted by Daniel Meldrum, M.Sc. and Anthony Margarit, B.Sc. The core intervals were then split lengthwise by using a Longyear wheel-type core splitter. The core samples were bagged, and then shipped via bus from Vanderhoof to Eco Tech Laboratory Ltd. in Kamloops, British Columbia.

The samples were geochemically analyzed for gold, and for 28 other elements by ICP analysis. Subsamples of 30 gm were analyzed.

Certificates of analysis form Appendix A. Geological logs of the diamond drill holes are presented in Appendix B.

DATA VERIFICATION

Routine duplicate samples were inserted into the sample stream about every 20 samples. Blank samples were inserted into the sample stream about every 40 samples. The analytical results for these duplicates and blanks are reported with the regular analyses in Appendices A and B.

A microdiorite sill rock unit was used for the blank samples in the sampling program. This blank rock was collected from diamond drill holes that intersected the sill during historical diamond drilling on Southern Rio's 3Ts property, located about 20 km southwest of the Davidson property. Laboratory results show that the ten blank samples contain from zero to 30 ppb gold and zero to 0.3 ppm silver (Appendices A, B), therefore no contamination within the laboratory is indicated by the blank sample results.

Duplicate samples were obtained by quartering the drill core sample from the selected interval (splitting one half of the core into two quarters). The two quarter-core samples were then submitted to the assay laboratory as a duplicate pair. Nineteen duplicate pairs

were analyzed. Duplicate sample results are listed with the other results in appendices A and B, and shown in Table 3 below. The variation between the duplicate sample results is not significant.

Table 3. Duplicate sample results

Sample	Au (g/t)	Ag (g/t)
12090	< 0.03	0.8
12091 (duplicate of 12090)	<0.03	0.9
12111	0.09	5.0
12112 (duplicate of 12111)	0.08	7.1
12131	<0.03	9.0
12132 (duplicate of 12131)	<0.03	7.8
12152	0.02	4.7
12153 (duplicate of 12152)	0.02	6.4
12172	0.015	0.2
12173 (duplicate of 12172)	0.02	<0.2
12191	0.03	<0.2
12192 (duplicate of 12191)	0.03	<0.2
12211	0.02	<0.2
12212 (duplicate of 12211)	0.02	<0.2
12231	0.02	<0.2
12232 (duplicate of 12231)	0.02	<0.2
12294	0.39	0.7
12296 (duplicate of 12294)	0.32	0.7
12337	< 0.03	0.8
12338 (duplicate of 12337)	<0.03	<0.2
47113	0.005	<0.2
47114 (duplicate of 47113)	0.005	<0.2
47063	0.050	2.2
47064 (duplicate of 47063)	0.085	1.9
47074	0.030	4.1
47075 (duplicate of 47074)	0.065	4.3
47083	0.070	3.7
47084 (duplicate of 47083)	0.060	2.8
47093	0.055	19.3
47094 (duplicate of 47093)	0.090	26.5

In addition, nineteen sample pulps from Eco Tech Laboratory were shipped to Acme Analytical Laboratories Ltd. for check analyses.

The diamond drilling program intersected a significant intercept of 4.94 g/t gold and 17.1 g/t silver across 14.0 m in hole DAV05-02. Check analyses of this intercept gave a result of 4.80 g/t gold and 13.2 g/t silver, well within acceptable Quality Control range.

INTERPRETATION AND CONCLUSIONS

The diamond drilling program intersected a significant intercept of 4.94 g/t gold and 17.1 g/t silver across 14.0 m in hole DAV05-02. This intercept is approximately 300 metres from the closest previous diamond drill hole, 92-35, which contained an intercept of 4.91 g/t gold and 1.9 g/t silver across 4.3 metres at the bottom of the hole. The true width of these intercepts is currently unknown. These intercepts indicate the presence of significant gold and silver mineralization within the south-central portion of the Davidson property.

The intercept of 0.29 g/t gold and 12.9 g/t silver across 10.0 m in hole DAV05-01 indicates that significant mineralization is not continuous within the central part of the Silver Zone.

RECOMMENDATIONS

Existing data pertaining to the Davidson property should be compiled and reinterpreted. Further diamond drilling should be done to follow-up on the mineralized intercept in diamond drill hole DAV05-02, and to test any targets that may be generated as a result of the data compilation and reinterpretation. Follow-up diamond drill holes should be drilled in the area between holes DAV05-02 and 92-35, and also along the presumed trend of the mineralization to the northwest of DAV05-02. A diamond drill capable of drilling NQ size core should be utilized for the proposed drilling.

The cost of the recommended exploration is \$ 334,000.00. A cost estimate for the recommended program is outlined below.

Cost Estimate	
Data compilation	\$ 5,000.00
Diamond drilling: 1,500 m @ \$ 175.00/m	\$ 262,500.00
Assays	\$ 20,000.00
Excavator: drill pads, road building	\$ 3,000.00
Engineering, supervision, reporting	\$ 10,000.00
Reclamation	<u>\$ 3,500.00</u>

Subtotal	\$ 304,000.00							
Contingency (10 %)	<u>\$ 30,000.00</u>							
Total	\$ 334,000.00							

Respectfully submitted,

PAWLIUK BRITISH CQLUMBI OSCIEN

David J. Pawliuk, P. Geo.

CERTIFICATE of AUTHOR

I, David J. Pawliuk, P.Geo. do hereby certify that:

- I am currently employed as a geologist by: Triex Minerals Corporation 1410 – 650 West Georgia Street VANCOUVER, British Columbia, Canada V6B 4N8
- 2. I graduated with a degree of Bachelor of Science with Specialization in Geology from the University of Alberta in 1975.
- 3. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia, and of the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 4. I have worked as a geologist for more than 20 years since my graduation from university.
- 5. I am responsible for the preparation of this assessment report. I was on-site at the Davidson property from October 3 to 10, 2005, and supervised the geological core logging and sampling.
- 6. I have had prior involvement with the property that is the subject of the assessment report. I visited the Davidson property during May 2005.

Dated this 16 Day of January, 2006. FESSIO PROVINCE J. PAWLIUK David Geo. [>]aw/kuk.

BIBLIOGRAPHY

Allen, G.J. (1992) Geology, geochemistry and geophysics report on the Blackwater-Davidson property, Omineca Mining Division, British Columbia; report prepared for Granges Inc.

Allen, G.J. (1993) Diamond drilling report on the Blackwater-Davidson property, Omineca Mining Division, British Columbia; report prepared for Granges Inc.

Diakow, L.J. and Webster, I.C.L. (1994) Geology of the Fawnie Creek map area (NTS 93F/3); in Geological Field Work 1993, British Columbia Ministry of Energy, Mines and Petroleum Resources Paper 1994 – 1, pages 15 - 26.

Diakow, L.J. and Levson, V.M. (1997) Bedrock and surficial geology of the southern Nechako Plateau, Central British Columbia (NTS 93F/2, 3, 6 and 7); British Columbia Ministry of Energy, Mines and Petroleum Resources Geoscience Map 1997 – 2.

Fleming, D.B. and Cole, A.G. (1997) Blackwater – Davidson project, DAVE claim, 1997 geophysical and physical assessment report; report prepared for Kennecott Canada Exploration Inc.

Mconnell, D.L. (1994) Dighem Survey for Granges Inc., Blackwater- Davidson Project, British Columbia; technical report prepared by Dighem, a division of CGG Canada Ltd., for Granges Inc.

Rozek, D.H. (1987) Prospectors report on 1986-1987 geochemical reconnaissance, geochemical survey, BECKY-JO mineral claim, Mt. Davidson Area, Omineca Mining Division; assessment report prepared by David H. Rozek.

Rozek, D.H. (1987) Prospectors report on 1986-1987 geochemical reconnaissance, geochemical survey, CHIEF mineral claim, Mt. Davidson Area, Omineca Mining Division; assessment report prepared by David H. Rozek.

Rozek, D.H. (1987) Prospectors report on 1986-1987 geochemical reconnaissance, geochemical survey, MARY-LOU mineral claim, Mt. Davidson Area, Omineca Mining Division; assessment report prepared by David H. Rozek.

Tipper, H.W. (1963) Nechako River map-area, British Columbia; Geological Survey of Canada Memoir 324.

Van Damme, V.P. (1995) Geophysical, geological and diamond drilling report on the Blackwater – Davidson project (MIKE, MO, DEB 1, KEN, NOODLE, DAVE, FAW 1 – 15 and BLACK 7 – 16 claims, Omineca Mining Division; report prepared for Granges Inc.

Verhiel, J.C. and Blackwell, J.K. (1997) Blackwater – Davidson project, DAVE claim, 1997 geophysical and physical assessment report; report prepared for Kennecott Canada Exploration Inc.

White, G.E. (1977) Geophysical report on a pulse electromagnetic survey, Granges Exploration AB, Mt. Davidson Area, Smithers Mining Division; report prepared by Glen E. White Geophysical Consulting & Services Ltd. for Granges Exploration AB. Zbitnoff, G.W. and Laite, A.L. (1988) Diamond drilling report on the PEM claim # 554, situated in the Nechako Hills area, British Columbia; report prepared for Granges Exploration Ltd.

Zbitnoff, G.W. and Williams, J.J. (1985) Work report on claim PEM 554 (3), Omineca Mining Division; report prepared for Granges Exploration Ltd.

COST STATEMENT

A breakdown of total costs incurred on the Davidson Project of Silver Quest Resources Ltd. is summarized below.

Direct Drilling Costs: (As Invoiced by Falcon Drilling)	\$132,978.11
Equipment Rentals: (Including truck, ATV and trailer)	\$3,906.60
Accommodation, meals and fuel:	\$16,655.82
Contract Field Labour:	\$6,660.75
Field Supplies:	\$7,938.96
Travel:	\$5,828.38
Geological and Technical Services, report writing:	\$22,498.59
Assays:	\$10,755.85
Field Freight and Transportation Costs:	\$4,089.96
Office Expenses/Supplies/Printing:	\$500.33
Technical Drafting Services:	<u>\$3,284.90</u>
Total Drilling Project Costs: (includes GST)	\$215,098.25

ASSAY CERTIFICATES

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2005-1262

SOUTHERN RIO RESOURCES

Suite 1410, 650 W Georgia Box 11584 **Vancouver, BC, V6B 4N8**

ATTENTION: LINDSAY BOTTOMER

No. of samples received: 112 Sample type: Core **Project #: Davidson Shipment #: n/a** Samples Submitted by: Dan Meldrum

ET #.	Tag #	Au (g/t)	Au (oz/t)	
7	12145	1.28	0.037	
QC DATA:				
7	12145	1.41	0.041	
<i>Standard:</i> OX140		1.86	0.054	
				andre Brace Ipor

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/ga XLS/05

Page 1

18-Oct-05

40.0

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

.

ICP CERTIFICATE OF ANALYSIS AK 2005-1262

1

SOUTHERN RIO RESOURCES Suite 1410, 650 W Georgia

1

ן ייי

1

1

Box 11584 Vancouver, BC, V6B 4N8

ATTENTION: LINDSAY BOTTOMER

No. of samples received: 112 Sample Type: Core Project #: Davidson Shipment #: n/a Samples submitted by:Dan Meldrum

<u>Et #.</u>	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	<u>Mo</u>	<u>Na %</u>	Ni	<u> </u>	Pb	Sb	Sn	Sr	TI %	U	<u>v</u>	W	Y	Zn
1	12139	20	3.9	0.28	540	20	<5	0.14	4	<1	85	7	0.56	10	0.02	6657	3	< 0.01	3	180	176	20	<20	10	<0.01	<10	1	<10	8	399
2	12140	20	1.4	0.38	425	45	5	0.38	2	3	73	15	1.45	<10	0.04	6144	3	<0.01	. 6	430	60	15	<20	10	<0.01	<10	4	<10	6	154
3	12141	25	1.5	0.29	20	55	<5	0.60	1	5	69	9	1.04	10	0.05	6371	1	<0.01	8	450	52	15	<20	20	0.01	<10	3	<10	10	349
4	12142	15	2.0	0.39	65	30	<5	0.32	2	3	48	14	0.91	10	0.04	3051	2	<0.01	6	460	98	15	<20	9	0.01	<10	4	<10	7	313
5	12143	20	1.5	0.48	185	40	5	0.48	2	9	58	37	1.72	<10	0.05	5166	11	<0.01	14	700	34	10	<20	8	0.02	<10	11	<10	4	116
6	12144	20	10.9	0.26	10	35	<5	0.47	3	2	63	18	0.74	<10	0.04	7692	7	<0.01	2	210	286	10	<20	8	0.01	<10	2	<10	7	451
7	12145	>1000	14.0	0.34	4115	35	<5	0.47	21	5	77	108	2.10	<10	0.05	8719	2	<0.01	6	300	244	20	<20	7	0.01	<10	3	<10	4	418
8	12146	20	4.7	0.33	5	30	<5	0.53	2	3	75	20	1.02	10	0.06	9592	<1	<0.01	7	510	88	10	<20	10	0.01	<10	4	<10	7	367
9	12147	30	11.7	0.28	15	30	<5	0.18	8	<1	67	30	0.90	<10	0.02	2375	2	< 0.01	4	210	296	15	<20	3	<0.01	<10	<1	<10	3	1075
10	12148	45	23.4	0.21	<5	40	5	0.16	14	<1	74	12	0.40	<10	0.01	1882	<1	<0.01	<1	50	966	10	<20	6	<0.01	<10	<1	<10	5	1702
11	12149	25	3.0	0.24	<5	35	<5	0.14	4	<1	83	10	0.40	<10	0.01	1376	<1	<0.01	2	50	74	10	<20	5	<0.01	<10	<1	<10	6	436
12	12150	15	1.9	0.19	<5	40	<5	0.11	8	<1	48	10	0.39	<10	<0.01	521	1	<0.01	<1	40	34	10	<20	1	<0.01	<10	<1	<10	3	821
13	12151	15	1.4	0.23	<5	35	<5	0.21	4	<1	77	12	0.41	<10	0.01	679	<1	<0.01	<1	60	16	<5	<20	4	<0.01	<10	<1	<10	3	414
14	12152	20	4.7	0.21	<5	35	<5	0.26	6	<1	79	17	0.39	<10	<0.01	1210	<1	<0.01	<1	110	118	50	<20	8	<0.01	<10	<1	<10	3	683
15	12153	20	6.4	0.21	<5	65	<5	0.22	4	<1	94	18	0.44	<10	<0.01	813	<1	<0.01	2	80	22	5	<20	10	<0.01	<10	<1	<10	4	437
16	12154	25	<0.2	0.72	<5	65	<5	1.59	<1	11	38	17	2.86	10	0.59	487	<1	0.04	4	1060	20	<5	<20	70	0 .07	<10	82	<10	8	62
17	12155	25	2.1	0.20	<5	40	<5	0.18	4	<1	84	18	0.37	<10	<0.01	607	<1	<0.01	2	60	18	<5	<20	3	<0.01	<10	<1	<10	4	448
18	12156	20	2.4	0.19	<5	40	<5	0.25	10	<1	62	24	0.50	<10	<0.01	596	<1	<0.01	<1	40	38	5	<20	5	<0.01	<10	<1	<10	3	983
19	12157	20	4.3	0.21	<5	80	<5	0.05	4	<1	58	35	0.80	<10	<0.01	93	1	<0.01	1	100	64	10	<20	7	<0.01	<10	<1	<10	4	332
20	12158	25	1.2	0.29	<5	60	<5	0.45	6	<1	103	13	0.38	<10	<0.01	318	<1	<0.01	1	60	28	<5	<20	20	<0.01	<10	<1	<10	7	595
																													_	
21	12159	25	0.6	2.06	40	180	10	2.60	<1	13	83	23	2.93	<10	0.67	871	1	<0.01	14	920	84	5	<20	79	0.05	<10	69	<10	5	145
22	12160	20	<0.2	2.69	50	170	10	3.45	<1	15	85	8	3.39	<10	0.97	816	<1	0.02	19	1170	60	<5	<20	103	0.10	<10	106	<10	4	60
23	12161	55	0.2	2.23	35	135	10	3.47	<1	14	57	17	3.44	<10	0.78	625	5	0.02	18	1200	52	<5	<20	136	0.04	<10	105	<10	3	51
24	12162	20	0.3	2.62	60	130	5	2.47	<1	14	62	16	3.14	<10	0.82	606	<1	0.02	20	1350	66	<5	<20	131	0.05	<10	92	<10	3	86
25	12163	20	<0.2	2.62	25	120	5	1.56	<1	12	77	7	2.48	<10	0.59	361	<1	0.35	20	1480	68	<5	<20	215	0.07	<10	105	<10	2	49
																						_								
26	12164	10	0.3	3.51	30	85	10	2.40	<1	14	68	30	4.50	<10	1.20	718	<1	0.44	22	1440	86	<5	<20	152	0,11	<10	114	<10	<1	69
27	12165	10	<0.2	2.16	55	110	5	2.15	<1	17	53	27	3.36	<10	0.48	410	<1	0.14	20	1420	56	<5	<20	119	0.07	<10	80	<10	4	42
28	12166	80	0.2	3.21	50	90	10	1.98	<1	14	57	48	4.49	<10	0.79	500	<1	0.38	19	1420	82	<5	<20	205	0.06	<10	122	<10	<1	57
29	12167	20	<0.2	3.29	15	125	10	2.88	<1	13	78	9	4.28	<10	1.38	855	<1	0.42	18	1430	76	<5	<20	131	0.16	<10	119	<10	<1	75
30	12168	25	0.2	2.83	<5	95	10	1.95	<1	8	81	23	4.15	<10	1.15	665	<1	0.35	.20	1450	70	<5	<20	102	0.12	<10	120	<10	<1	68

Values in ppm unless otherwise reported

1

,

,

ECO TECH LABORATORY LTD.

.

1

;

ICP CERTIFICATE OF ANALYSIS AK 2005-1262

SOUTHERN RIO RESOURCES

with the second s

1

1

 $\mathbb{S}_{n+1}^{m} \subset \mathbb{S}_{n}$

1 1 1

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	ប	v	w	Y	Zn
31	12169	20	0.2	2.73	25	60	15	1.58	<1	12	70	16	3.48	<10	0.89	527	<1	0.35	21	1490	70	<5	<20	124	0.08	<10	109	<10	1	60
32	12170	10	0.2	2.85	75	95	5	1.40	<1	19	88	43	4.15	<10	0.70	424	<1	0.32	23	1520	72	<5	<20	105	0.11	<10	86	<10	<1	51
33	12171	15	0.2	1.99	20	95	10	0.90	<1	16	58	26	3.66	<10	0.42	349	<1	0.07	20	1470	48	<5	<20	72	0.12	<10	52	<10	<1	41
34	12172	15	0.2	2.43	20	95	10	1.16	<1	20	81	42	4,49	<10	0.70	486	<1	0.11	30	1540	56	<5	<20	64	0.15	<10	75	<10	<1	39
35	12173	20	<0.2	2.15	35	80	<5	1.03	<1	18	68	27	3.37	<10	0.49	378	<1	0.11	22	1600	52	<5	<20	q 3	0.12	<10	60	<10	2	36
		-•			••	••		1.00	•	10			0.01	. I V		0.0	•,	Q . 11	~~	1000	02	-0	-20		0.12	-10	00	10	-	50
36	12174	25	<0.2	0.85	<5	55	<5	1 97	<1	11	53	24	3.02	10	n 59	562	د1	0.09	a	1140	20	c 5	<20	82	0.07	<10	92	<10	8	56
37	12175	25	<0.2	3 32	430	40	10	2 18	-1	25	80	25	4 46	<10	1 10	646	21	0.00	21	1490	20	~5	~20	120	0.01	~10	110	~10	~1	62
38	12176	60	<0.2	3 13	170	55	10	1 74	<1 <1	14	87	14	3.34	~10	90 N	504	~1	0.20	23	1400	69	~5	~20	156	0.00	~10	117	~10	~1	62
30	12170	30	<0.2	3.10	120	45	~5	1.99	~1	17	76	14	4 25	~10	1 07	406	~1	0.33	40	1690	70	~5	~20	100	0.10	~10	116	~10	24	60 60
40	12178	35	<0.2	4 20	510	4J 65	10	7.00	~1	20	01	44	4.20	~10	1.07	430	~1	0.39	19	1500	10	~5	~20	140	0.12	~10	124	~10	~1	50
40	12110	55	-0.2	4.50	010	05	10	2.25	~1	55	31	40	5.15	~10	1.47	0/5	<)	0.47	20	1550	00	<0	~20	140	0.15	~10	134	~10		90
41	12170	50	~0.2	E 30	110	110	10	3 24	~1	16	73	26	4 69	~10	1.56	707	~1	0.52	. 24	1500	404	~5	~20	260	0.47	~10	120	~10	-1	01
42	121/3	30	~0.2	1 1 2	125	446	5	3.24	~1	10	102	20	4.00	~10	1.00	101	4	0.52	21	1000	104	\0	~20	200	0.17	~10	1.00	~10	24	67
42	10104	40	~0.2	4.13	100	110	40	2.19	21	19	103	40	4.09	~10	1.07	543	<] 	0.72	20	1590	92	<0 	<20	164	0.14	<10 - 40	141	×10	S [57
43	12101	40	<0.2	3.84	125	100	10	2.21	<1	10	/9	39	4.17	<10	1.14	581	<1	0.62	23	1540	82	<5	<20	156	0.15	<10	140	<10	<1	70
44	12182	40	<0.2	3.80	155	08	5	2.13	<1	14	82	50	4.62	<10	1.25	591	<1	0.56	21	1530	84	<5	<20	135	0.13	<10	135	<10	<1	116
45	12183	55	<0.2	4.68	185	110	10	3.08	<1	15	80	38	5.00	<10	1.64	837	<1	0.57	19	1480	94	<5	<20	180	0.17	<10	136	<10	<1	92
				. =0								~ ~										_	•••		.					-
46	12184	45	<0.2	4.72	175	170	10	3.57	<1	16	83	26	5.18	<10	1.82	988	<1	0.61	20	1540	94	<5	<20	151	0.19	<10	140	<10	<1	71
47	12185	30	<0.2	4.99	100	85	20	2.97	<1	15	79	26	4.69	<10	1.58	782	<1	0.47	21	1580	110	<5	<20	161	0.16	<10	141	<10	<1	94
48	12186	40	<0.2	4.01	80	145	5	3.26	<1	14	94	16	4.43	<10	1.54	860	<1	0.57	19	1520	88	<5	<20	124	0.18	<10	135	<10	<1	69
49	12187	30	<0.2	4.72	25	115	15	3.17	<1	10	75	16	4.67	<10	1.60	845	<1	0.50	24	1570	98	<5	<20	135	0.18	<10	138	<10	<1	85
50	12188	30	0.2	3.74	425	65	5	2.28	<1	27	76	50	4.82	<10	1.34	695	<1	0.41	26	1610	84	<5	<20	106	0.14	<10	128	<10	<1	65
51	12189	35	0.2	3.13	200	65	<5	1.74	<1	16	92	29	3.78	<10	1.06	550	<1	0.35	24	1710	68	<5	<20	108	0.13	<10	129	<10	1	60
52	12190	30	<0.2	3.39	325	70	<5	2.46	<1	18	73	33	4.43	<10	1.34	767	<1	0.40	25	1650	70	<5	<20	118	0.12	<10	136	<10	<1	96
53	12191	30	<0.2	3.37	495	125	<5	2.43	<1	21	78	35	4.66	<10	1.42	791	<1	0.46	22	1650	72	<5	<20	152	0.16	<10	135	<10	<1	67
54	12192	30	<0.2	3.12	185	115	5	2.47	<1	12	75	38	4.56	<10	1.40	802	<1	0.40	20	1540	70	<5	<20	129	0.17	<10	132	<10	<1	85
55	12193	65	<0.2	0.82	<5	90	<5	2.25	<1	10	43	20	2.94	10	0.49	608	<1	0.09	4	1180	20	<5	<20	89	0.07	<10	89	<10	8	56
56	12194	35	Q.2	3.74	445	135	5	2.42	<1	21	91	56	5.01	<10	1.35	742	<1	0.57	21	1570	78	<5	<20	134	0.17	<10	136	<10	<1	68
57	12195	25	<0.2	4.24	635	110	5	2.07	<1	18	10 1	26	4.30	<10	1.28	568	<1	0.56	22	1690	88	<5	<20	174	0.17	<10	145	<10	<1	61
58	12196	50	<0.2	3.89	1560	115	5	1.72	3	60	81	78	5.55	<10	1.37	621	<1	0.60	20	1680	88	<5	<20	155	0.14	<10	138	<10	<1	73
59	12197	25	<0.2	3.24	295	110	<5	1.75	<1	21	83	42	4.86	<10	1.36	700	<1	0.47	26	1670	72	<5	<20	116	0.15	<10	135	<10	<1	73
60	12198	25	<0.2	3.40	130	120	10	2.25	<1	17	77	33	4.88	<10	1.49	865	<1	0.47	19	1670	74	<5	<20	118	0.19	<10	138	<10	<1	99
61	12199	25	<0.2	3.58	80	140	15	2.55	<1	15	71	27	4.66	<10	1.48	825	<1	0.45	21	1560	82	<5	<20	146	0.16	<10	136	<10	<1	80
62	12200	25	<0.2	3.38	85	115	10	2.51	<1	21	73	20	4.39	<10	1.36	899	<1	0.47	25	1590	70	<5	<20	108	0.20	<10	139	<10	<1	97
63	12201	30	<0.2	4.48	80	145	5	3.14	<1	18	79	26	4.77	<10	1,40	976	<1	0.55	21	1630	90	<5	<20	1 81	0.22	<10	144	<10	<1	83
64	12202	20	< 0.2	4.65	135	135	10	3.36	<1	18	77	28	4.67	<10	1.46	947	<1	0.41	20	1620	9 8	<5	<20	186	0.19	<10	140	<10	<1	88
65	12203	20	<0.2	4.95	265	90	10	3.60	<1	17	76	27	4.66	<10	1.56	961	<1	0.25	22	1690	104	<5	<20	219	0.20	<10	138	<10	<1	87
	12200	20		4.00	200	00	10	0.00		•••								0.20				•								
66	12204	30	<0.2	5 17	260	115	10	3 07	<1	18	84	33	4.81	<10	1.54	765	<1	0.35	25	1750	110	<5	<20	128	0.18	<10	141	<10	<1	86
67	12205	15	<0.2	5.06	60	90	10	2 91	<1	13	91	28	4 43	<10	1.35	658	<1	0.54	22	1710	112	<5	<20	123	0.18	<10	137	<10	<1	93
68	12206	25	<0.2	A 27	75	05	5	2.51	<1	14	77	27	4 20	<10	1 28	620	~1	0.47	22	1720	94	<5	<20	126	0.16	<10	134	<10	<1	79
60	12200	25	20.2	4.57	695	85	10	2.02	- 1	25	67	47	5 00	<10	1 22	550	- 21	0.21	22	1780	94	<5	<20	174	0.16	<10	128	<10	<1	76
70	12207	20	~0.2	4.07	000	00	10	1 40	1	20	50	20	2.09	240	0.20	274	24	0.21	24	1010	50	-5	200	67	0.10	210	65	~10	د ا	52
70	12208	20	<0.Z	2.62	55	80	10	1.40	S 1	22	50	32	5.94	~10	0.00	5/4	S I	0.10	24	1910	00	~0	~20	07	V. 14	-10	00	510	-1	55

í

,

.

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2005-1262

SOUTHERN RIO RESOURCES

1

١

1

1

<u> </u>	Tag #	Au(ppb)	Ag	<u>AI %</u>	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
71	12209	25	<0.2	2.36	35	115	5	2.14	<1	19	60	24	4.18	<10	0.86	687	<1	0.15	20	1520	50	<5	<20	116	0.18	<10	121	<10	3	73
72	12210	75	<0.2	2.50	75	70	<5	1.60	<1	20	72	56	4.37	<10	0.67	486	<1	0.34	22	1610	54	<5	<20	160	0.13	<10	144	<10	2	54
73	12211	20	<0.2	2.87	20	180	15	2.55	<1	18	69	7	4.40	<10	1.07	931	<1	0.33	21	1500	62	<5	<20	173	0.22	<10	139	<10	4	96
74	12212	20	<0.2	2.67	30	165	15	2.36	<1	23	72	16	4.41	<10	0.93	847	<1	0.30	22	1510	66	<5	<20	145	0.21	<10	138	<10	7	90
75	12213	30	<0.2	0.53	<5	980	<5	3.24	<1	7	18	38	3.14	<10	0.78	549	2	0.03	3	1620	12	<5	<20	113	0.02	<10	81	<10	11	39
							•			•							_	0.00	-						0.02				••	
76	12214	20	<0.2	2.58	20	190	20	2.26	<1	18	67	11	4.24	<10	1.06	842	<1	0 27	21	1490	62	<5	<20	173	0.23	<10	138	<10	4	106
77	12215	25	<0.2	2.62	25	215	15	2.59	<1	22	66	14	4.21	<10	1.04	794	<1	0.28	21	1430	62	<5	<20	179	0.23	<10	133	<10	2	110
78	12216	20	<0.2	2.53	10	220	10	2 21	<1	18	65	14	4 31	<10	1 29	712	<1	0.20	20	1430	58	<5	<20	101	0.22	<10	132	<10	3	132
79	12217	15	<0.2	2 76	10	260	5	1.93	<1	19	67	, i	4 29	<10	1 70	613	<1	0.23	23	1480	62	<5	<20	111	0.22	<10	134	<10	5	114
80	12218	25	0.2	2.10	10	275	10	2 19	<1	10	67	54	4 22	<10	1 35	650	<1	0.20	21	1460	60	<5	<20	139	0.22	<10	132	<10	5	110
20	122,10	20	0.2	2.01	10	210		2.10			v ,	04		- 10	1.00	000		V.LL		1400		-••	-20	100	0.22			- 10	v	11.0
81	12219	30	<0.2	2 4 9	10	210	10	2 23	<1	19	70	27	4 22	<10	1.03	652	<1	0.23	20	1480	62	<5	<20	108	0.21	<10	134	<10	5	95
82	12220	20	<0.2	2.52	15	265	10	2 37	<1	16	63	11	4 02	<10	1.33	698	<1	0.18	21	1480	60	<5	<20	98	0.20	<10	129	<10	6	121
83	12221	20	<0.2	2 65	15	325	10	2 24	<1	17	65	6	4 24	<10	1 4 1	737	<1	0.19	21	1450	62	<5	<20	118	0.21	<10	133	<10	3	134
84	12222	10	<0.2	3.18	20	270	10	3 18	<1	21	55	ă	A A7	<10	1.53	784	<1	0.19	20	1410	72	<5	<20	200	0.19	<10	128	<10	4	149
85	12223	10	<0.2	3.04	15	165	<5	2 45	<1	10	67	10	4 43	<10	1 36	784	<1	0.32	20	1450	70	<5	<20	188	0.22	<10	130	<10	3	119
00	TELEO	10	-0.2	0.04	10	100	-0	2.40	- 1	10	01	10	7.70	10	1.00	104		0.02	20	1450		-0	-20	100	0.24	- 10	100	.10	U	110
86	12224	5	< 0.2	3.53	20	135	20	2 74	<1	18	66	6	4.41	<10	1.53	827	<1	0.40	20	1440	82	<5	<20	204	0.20	<10	133	<10	3	108
87	12225	10	<0.2	3.49	30	120	10	2.56	<1	22	60	5	4 18	<10	1.52	797	<1	0.31	21	1420	88	<5	<20	154	0.18	<10	132	<10	<1	110
88	12226	20	<0.2	3 60	25	145	10	2.53	<1	18	65	Ř	4.10	<10	1 47	855	<1	0.40	20	1460	86	<5	<20	187	0.19	<10	135	<10	<1	108
89	12220	20	<0.2	3.86	30	215	15	2.00	21	20	71	e e	A 34	<10	1.57	000	<1	0.40	24	1470	88	<5	<20	180	0.10	<10	138	<10	<1	129
90	17778	20	-0.2	3 76	50	200	10	2.00	-1	20	66	12	A 45	<10	1 38	870	21	0.40	25	1500	82	~5	<20	243	0.10	<10	140	<10	<1	96
50	12220	20	~υ.z	5.70	50	200	10	2.00	-1	21	00	12	4.45	~10	1.50	010	- 1	0.55	25	1000	04	-0	~20	240	0.10	-10	140	10		50
91	12229	30	<0.2	4 44	90	170	15	3.00	<1	24	71	22	4 80	<10	1.57	810	<1	0.57	24	1550	98	<5	<20	267	D.19	<10	148	<10	<1	84
92	12230	25	<0.2	3 78	30	155	10	3.01	<1	11	72	10	3.91	<10	1 37	695	<1	0.40	21	1470	88	<5	<20	214	0.17	<10	138	<10	1	68
93	12231	20	<0.2	4 18	50	155	15	2.55	<1	12	80	26	4 45	<10	1 4 9	739	<1	0.55	22	1550	98	<5	<20	172	0.18	<10	136	<10	<1	89
QA QA	12231	20	-0.2	1.10	180	135	10	2.00	e1	16	71	32	4 70	<10	1.55	750	<1	0.54	26	1520	92	<5	<20	201	0.17	<10	140	<10	<1	91
05 05	12232	20	0.2	0.60	5	1500	<5	2.00	21	10	27	30	2 01	10	0.74	540	2	0.04	ĩ	1570	18	<5	<20	130	0.02	<10	76	<10	9	35
30	12200	25	-0.2	0.00	5	1000	-0	0.00	~ 1	-	41	00	2.01		V.14	040	~	0.04	0	1570	.0	-0	~20	100	0.02	-10			Ũ	
96	12234	15	<0.2	4 16	115	135	10	2 72	<1	12	69	57	5 12	<10	1 52	756	<1	0.38	20	1430	88	<5	<20	377	0 15	<10	129	<10	<1	75
97	12235	10	<0.2	3 48	80	120	<5	2 04	<1	17	63	102	5.89	<10	1.50	701	<1	0.21	20	1410	76	<5	<20	227	0.15	<10	124	<10	<1	79
98	12236	25	<0.2	3.52	125	140	15	2.04	<1	17	62	39	4 81	<10	1.59	837	<1	0.17	21	1460	80	<5	<20	348	0.15	<10	130	<10	<1	70
<u>00</u>	12230	25	<0.2	3.47	50	95	15	3.00	<1	12	56	13	4 25	<10	1.54	781	<1	0.22	18	1430	80	<5	<20	192	0.12	<10	127	<10	<1	72
100	12237	25	<0.2	3 37	100	55	15	3 68	<1	13	64	17	3.81	<10	1 35	697	<1	0.10	19	1390	76	<5	<20	136	0.05	<10	122	<10	<1	75
100	12200	25	~0.2	0.07	150		15	0.00		10	04	.,	0.01	-10	1.00	007	- 1	0.10		1000		-0	-20	100	0.00	-1•				
101	12239	20	<0.2	3.86	70	140	10	5 37	<1	18	49	8	3 70	<10	1 17	1070	<1	0.19	19	1320	78	<5	<20	195	0.14	<10	117	<10	3	91
102	12240	20	0.6	0.41	245	80	<5	0.03	3	1	71	28	0.10	20	<0.01	332	<1	<0.01	1	120	34	<5	<20	11	< 0.01	<10	2	<10	9	101
102	12240	85	2.8	0.41	660	100	< 5	0.00	ă	i	96	27	0.79	<10	<0.01	598	<1	<0.01	2	120	278	<5	<20	9	<0.01	<10	<1	<10	6	102
104	10040	40	2.0 0.9	0.64	400	65	~5	0.02	2	4	56	13	0.10	~10	<0.01	317	- 1	<0.01	2	100	128	<5	<20	10	<0.01	<10	<1	<10	7	75
104	12242	40	0.0	0.04	4700	00	~0	0.01	10	, ,	00	40	1 00	~10	~0.01	204	~1	~0.01	2	160	776	10	~20	20	<0.01	<10	1	<10	7	127
105	12243	120	0.4	0.52	1700	00	~5	0.01	10	2	00	49	1.00	~10	-0.01	294	~ 1	-0.01	5	150	//0	10	~20	20	50.01	~10	•	-10	'	121
106	12244	85	26	0 32	1275	30	<5	0.01	8	2	78	48	1.08	10	<0.01	402	<1	<0.01	R	120	258	5	<20	20	<0.01	<10	2	<10	1	113
107	122/5	125	45	0.02	1265	50	<5	0.07	8	1	66	102	1 37	<10	<0.01	164	3	<0.01	<1	120	408	5	<20	10	<0.01	<10	<1	<10	<1	122
108	12246	100	7.5	0.00	1780	100	<5	0.02	13	2	68	40	2.52	<10	<0.01	584	2	<0.01	2	170	150	10	<20	8	<0.01	<10	3	<10	1	266
100	10047	70	2.1	0.40	626	55	~5	~0.02	 а	~1	72	16	0.87	~10	<0.01	102	1	<0.01	2	60	410	<5	<20	ā	<0.01	<10	<1	<10	3	204
110	12241	100	ວ.ວ ຣ ຣ	0.40	1726	00 4E	~0	~0.01	40	21	62	00	1.94	~10	~0.01	72	ן א	20.01	1	80	188	ר- ב	<20	, p	<0.01	<10	<1	<10	2	96
ΠŲ	12240	190	0.0	0.20	1735	40	~0	~ 0.01	IU	~1	05	an	1.51	~10	~u.u1	10	4	~v.u1	I	00	400	5	~20	0	~0.01	~10	~1	-10	2	50

1

ł

Ì

}

ļ

,

ECO TECI	H LABOR	ATORY LT	D.								ICP (ERT	IFICAT	FE OF		YSIS A	K 20	05-126	2				sou	JTHE	RN RI	O RE	sou	IRCES	3	
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Nì	Р	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
111	12249	825	2.6	0.39	620	50	<5	< 0.01	5	<1	76	20	1.05	10	<0.01	221	2	<0.01	1	70	152	<5	<20	7	<0.01	<10	<1	<10	3	77
112	12250	90	1.5	0.37	280	45	<5	0.01	2	<1	67	21	0.78	10	<0.01	195	3	<0.01	1	100	68	<5	<20	6	<0.01	<10	<1	<10	7	75
113	12251	45	1.4	0.37	300	40	<5	<0.01	3	<1	77	18	0.84	<10	<0.01	208	3	<0.01	<1	70	48	<5	<20	4	<0.01	<10	<1	<10	6	78
<u>QC DATA:</u> Resplit:	-																													
1	12139	45	3.4	0.27	640	30	<5	0.16	5	1	82	7	0.61	<10	0.02	7754	2	<0.01	4	200	152	15	<20	13	<0.01	<10	1	<10	6	351
36	12174	25	<0.2	0.84	5	55	<5	1.93	<1	11	47	21	3.07	10	0.49	563	<1	0.10	5	1300	20	<5	<20	84	0.07	<10	92	<10	8	59
71	12209	25	<0.2	2.49	25	130	10	2.16	<1	18	64	22	4.10	<10	0.89	708	<1	0.18	23	1470	54	<5	<20	151	0.19	<10	126	<10	5	74
106	12244	75	2.8	0.35	1110	45	<5	0.02	9	2	68	29	0.99	10	<0.01	485	<1	<0.01	7	110	260	<5	<20	27	<0.01	<10	2	<10	3	136
Repeat:																														
1	12139	20	3.9	0.27	530	35	<5	0.14	4	2	87	9	0.56	10	0.02	6629	2	<0.01	. 3	190	180	20	<20	12	<0.01	<10	<1	<10	12	398
10	12148	45	23.5	0.21	<5	35	<5	0.16	14	<1	72	12	0.40	<10	0.01	1862	<1	<0.01	1	50	958	10	<20	<1	<0.01	<10	<1	<10	3	1676
19	12157	15	4.6	0.20	<5	80	<5	0.05	3	<1	56	34	0.79	<10	< 0.01	92	2	<0.01	1	100	64	10	<20	9	<0.01	<10	<1	<10	4	331
36	12174	25	<0.2	0.84	<5	55	5	1.96	<1	10	52	23	3.01	10	0.58	559	<1	0.09	6	1180	20	<5	<20	82	0.07	<10	91	<10	8	57
45	12183	40	<0.2	4.52	205	105	5	3.01	<1	16	79	37	4.92	<10	1.58	824	<1	0.54	18	1520	98	<5	<20	173	0.17	<10	133	<10	<1	93
54	12192	30	<0.2	3 1 1	180	90	<5	2.45	<1	11	74	38	4.58	<10	1.42	806	<1	0.39	21	1610	66	<5	<20	120	0.16	<10	133	<10	<1	85
71	12209	25	<0.2	2 37	35	125	10	2.14	<1	20	62	24	4.18	<10	0.85	686	<1	0.15	21	1510	58	<5	<20	125	0.19	<10	120	<10	5	74
80	12218	20	0.3	2.51	5	265	10	2.19	<1	18	68	52	4.19	<10	1.34	644	<1	0.23	20	1460	58	<5	<20	135	0.23	<10	131	<10	2	119
89	12227	20	<0.2	4 06	30	235	10	2 74	<1	20	74	7	4.40	<10	1.61	940	<1	0.51	24	1480	94	<5	<20	191	0.20	<10	140	<10	2	130
105	12243	135							•		•••	-																		
106	12244		27	0.34	1295	45	<5	0.02	9	2	84	51	1.10	10	< 0.01	445	1	<0.01	7	130	260	5	<20	25	<0.01	<10	2	<10	2	114
111	12249	820	 , r	0.01					•	-																				
Standard																														
GEO '05			15	1 4 1	50	145	<5	1 24	<1	19	58	88	3.44	<10	0.75	530	<1	0.03	28	540	24	<5	<20	57	0.11	<10	67	<10	10	75
GEO '05			14	1 34	55	145	<5	1 30	<1	19	59	88	3.44	<10	0.83	522	<1	0.03	28	610	24	<5	<20	54	0.11	<10	65	<10	9	75
GEO '05			1.5	1 21	55	140	<5	140	<1	19	58	86	3.19	<10	0.86	492	-1	0.02	28	500	24	<5	<20	55	0.10	<10	67	<10	10	75
GEO '05			1.5	1.29	55	140	<5	1.44	<1	19	59	83	3.30	<10	0.89	506	<1	0.02	29	520	22	<5	<20	54	0.10	<10	70	<10	9	73

;

ł

1

٦

3

2 (A. 16) - J

]

- 10 C - 10

1

]

1 1

1

1

١

ber ric an

ECC TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/ga df/1226b/1272a/1272 XLS/05

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2005-1281

SOUTHERN RIO RESOURCES

Suite 1410, 650 W Georgia Box 11584 **Vancouver, BC, V6B 4N8**

ATTENTION: LINDSAY BOTTOMER

No. of samples received: 64 Sample Type: Core **Project #: Davidson Shipment #: n/a** Samples submitted by: A.Margarit

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
1	12252	0.03	0.001	
2	12253	0.15	0.004	
3	12254	0.12	0.003	
4	12255	0.07	0.002	
5	12256	0.16	0.005	
6	12257	0.11	0.003	
7	12258	0.14	0.004	
8	12259	0.18	0.005	
9	12260	0.60	0.017	
10	12261	0.15	0.004	
11	12262	0.22	0.006	
12	12263	0.25	0.007	
13	12264	0.48	0.014	
14	12265	0.33	0.010	
15	12266	0.19	0.006	
16	12267	0.61	0.018	
17	12268	0.15	0.004	
18	12269	0.19	0.006	
19	12270	0.10	0.003	
20	12271	0.09	0.003	
21	12272	0.31	0.009	
22	12273	0.18	0.005	
23	12274	0.29	0.008	\frown
24	12275	0.05	0.001	

ECO TECHLABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

20-Oct-05

SOUTHERN RIO RESOURCES AK5-1281

-

20-Oct-05

	ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)		
2	25	12276	0.36	0.010	<u>````````````````````````````````</u>			<u></u>
	26	12277	0.22	0.006				
	27	12278	0.12	0.003				
	28	12279	0.14	0.004				
	29	12280	0.05	0.001				
	30	12281	0.04	0.001				
• ·	31	12282	0.10	0.003				
	32	12283	0.22	0.006				
	33	12284	0.47	0.014				
	34	12285	1.80	0.052				
	35	12286	0.32	0.009				
	36	12289	0.94	0.027				
	37	12290	1.96	0.057				
	38	12291	0.28	0.008				
	39	12292	1.06	0.031				
- .	40	12293	0.65	0.019				
	41	12294	0.39	0.011				
	42	12295	3.30	0.096				
	43	12296	0.32	0.009				
	44	12297	0.23	0.007				
	45	12298	0.43	0.013				
	46	12299	0.28	0.008				
	47	12300	0.46	0.013				
	48	12301	0.29	0.008				
	49	12302	0.40	0.012				
	50	47004	0.27	0.008				
	51	47005	0.33	0.010				
	52	47006	0.83	0.024				
	53	47007	2.17	0.063				
	54	47008	3.58	0.104				
	55	47009	4.67	0.136				
	56	47010	6.87	0.200				
	57	47011	9.74	0.284	42.1	1.23		
	58	47012	4.75	0.139	35.3	1.03		
	59	47013	2.67	0.078				
	60	47014	1.89	0.055				
	61	47015	1.93	0.056				
	62	4/016	0.64	0.019			_	
	63	47017	1.07	0.031			\frown	
	64	47018	1.71	0.050	ECO	TECHLA	BORATORY LTD.	
					B.C.	Jealouse Certified A	Assayer	
						/		

Eco Tech LABORATORY LTD. Page 2

SOUTHERN RIO RESOURCES AK5-1281

20-Oct-05

ET #	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	
					<u> </u>	
QC DATA	A:					
Repeat:	=					
1	12252	0.03	0.001			
9	12260	0.59	0.017			
10	12261	0.18	0.005			
13	12264	0.44				
19	12270	0.10	0.003			
34	12285	1.68				
36	12289	1.01	0.029			
37	12290	2.06				
42	12295	3.24				
45	12298	0.50	0.015			
54	47008	3.76	0.110			
56	47010	7.05				
57	47011	9.87		42.4	1.24	
58	47012	4.44				
Resplit:						
1	12252	<0.03	<0.001			
36	12289	1.14	0.033			
Standard	l:					
SH13		1,34	0.039			
SH13		1.33	0.039			
PB106				59,6	1.74	

ECO TECHLABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/kk XLS/05

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

SOUTHERN RIO RESOURCES

Suite 1410, 650 W Georgia Box 11584 Vancouver, BC, V6B 4N8

ATTENTION: LINDSAY BOTTOMER

No. of samples received: 64 Sample Type: Core **Project #: Davidson** Shipment #: n/a Samples submitted by: A.Margarit

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %	As	Ba	BiCa%	Cd	Co	Cr	Cu	Fe %	La Mg %	<u>Mn</u>	<u>Mo Na%</u>	Ni	<u> </u>	Pb	Sb Sn	<u>Sr</u> Ti%	<u> </u>	<u></u>	W	<u>Y</u>	<u> </u>
1	12252	1.1	0.41	335	35	<5 0.02	2	1	82	32	1.25	<10 < 0.01	358	2 < 0.01	5	150	76	<5 <20	9 < 0.01	<10	2	<10	11	774
2	12253	6.9	0.31	915	5	<5 <0.01	2	<1	82	67	0.57	<10 <0.01	206	3 <0.01	2	30	94	5 <20	<1 <0.01	<10	<1	<10	2	302
3	12254	4.5	0.25	485	10	<5 0.01	1	<1	66	53	0.61	<10 <0.01	292	3 <0.01	1	30	70	<5 <20	2 <0.01	<10	<1	<10	2	307
4	12255	2.2	0.26	715	30	<5 <0.01	3	<1	64	38	0.36	<10 <0.01	82	2 <0.01	4	30	102	5 <20	4 < 0.01	<10	<1	<10	3	573
5	12256	1.4	0.26	545	20	<5 <0.01	2	<1	66	27	0.44	<10 <0.01	167	2 <0.01	2	40	80	5 <20	6 <0.01	<10	<1	<10	5	1534
-																								
6	12257	1.8	0.26	480	10	<5 <0.01	1	<1	87	55	0.62	<10 <0.01	83	3 < 0.01	5	40	82	10 <20	5 < 0.01	<10	<1	<10	5	631
7	12258	1.5	0.32	940	<5	<5 <0.01	5	<1	66	53	0.83	<10 <0.01	185	1 < 0.01	2	30	126	5 <20	2 < 0.01	<10	<1	<10	8	2622
8	12259	26	0.23	1720	<5	<5 < 0.01	2	1	58	79	1.15	<10 < 0.01	75	2 < 0.01	4	30	172	15 <20	2 < 0.01	<10	<1	<10	<1	758
ă	12260	11.5	0.23	3340	5	<5 <0.01	3	1	63	88	1.55	<10 < 0.01	52	4 < 0.01	4	20	1080	40 <20	4 < 0.01	<10	<1	<10	<1	685
in	12261	61	0.26	1260	15	<5 <0.01	2	<1	78	53	0.92	<10 <0.01	107	4 < 0.01	3	30	690	15 <20	3 < 0.01	<10	<1	<10	4	626
~~	12201	Q	0.20	1200	10	• • • • • •	-	•			*.*=				-						-		-	
11	12262	47	0.27	1055	50	<5 0.01	2	<1	69	30	1.37	<10 <0.01	166	5 <0.01	5	100	406	20 <20	16 <0.01	<10	<1	<10	3	557
12	12262	75	0.21	3110	<5	<5 <0.01	2	2	71	101	1.51	<10 <0.01	32	3 < 0.01	5	10	830	20 <20	2 <0.01	<10	<1	<10	2	684
13	12264	7.0 २२	0.20	>10000	15	<5 <0.01	<1	2	65	81	2.28	<10 <0.01	45	5 < 0.01	š	40	664	80 <20	14 < 0.01	<10	<1	<10	<1	306
14	12207	0.5	0.23	8/55	<5	<5 <0.01	e 1	ž	80	33	1 25		261	3 <0.01	Ă	20	32	20 <20	14 < 0.01	<10	<1	<10	3	273
16	12200	0.7	0.24	0400	~5	<5 0.01		- 1	82	31	1.20		370	2 <0.01	5	40	18	5 <20	<1 <0.01	<10	<1	<10	Ă	1890
15	12200	0.5	0.44	900	~0	<5 Q.01	4		02	51	1.50	10 10.01	510	2 \0.01	5	40	10	5 -20	-1 -0.01	-10	- 1	510	-	1030
16	10067	1.0	0.49	126	~5	<5 0.02	1	2	112	81	210	<10 <0.01	614	3 <0.01	6	70	20	<5 <20	2 <0.01	<10	2	<10	Δ	487
17	12269	0.7	0.40	675	<5	<5 <0.02	Å	1	84	04	1.46	<10 <0.01	63	4 <0.01	5	20	50	<5 <20	3 <0.01	<10	<1	<10	5	644
19	12200	25	0.20	415	15	<5 0.01	7	2	75	1/0	2.38		27	4 <0.01	2	50	440	15 <20	12 <0.01	<10	-1	<10	2	101
10	12209	2.0	0.23	70	20	<5 0.01	é	2	70 66	145	2.00		21	4 <0.01	5	20	369	20 <20	9 <0.01	~10	-1	~10	2	972
20	12270	2.0	0.10	1015	20	<5 <0.01	2	~1	70	40	2.29		20	4 <0.01	2	20	416	20 ~20	<1 <0.01	<10	<1	<10	<u>,</u>	1220
20	14271	5.5	0.20	1013	~5	40 40.01	5		12	20	0.00	10 50.01	20	0 -0.01	Ŭ	20	410	-0 -20	31 30.01	-10		-10	-	1200
21	10070	10.0	0.20	1280	c 5	<5 <0.01	ß	c 1	74	42	1.01	<10 <0.01	22	6 <0.01	3	10	1214	10 <20	<1 <0.01	<10	<1	<10	3	2520
22	12272	3.2	0.20	280	~5	<5 <0.01	7	<1	64	74	0.82	<10 <0.01	67	7 <0.01	ঁ	20	222	10 <20	<1 <0.01	<10	1	<10	ž	1300
22	12275	1.5	0.10	765	5	<5 <0.01	1	-1	73	35	1 03	<10 <0.01	44	7 <0.01	ŝ	10	60	<5 <20	1 <0.01	<10	<1	<10	5	780
24	12275	0.1	1 04	10	60	<5 235	-1	23	22	60	5.56	<10 <0.01	659	4 0.06	17	1520	24	10 <20	37 <0.01	<10	259	<10	a	36
25	12275	17	0.22	885	5	<5 <0.01	5	1	62	00 90	1 27		24	6 <0.00	4	30	84	<5 <20	<1 <0.01	<10	<1	<10	ő	1202
20	12270	1.7	0.22	005	0	-0 -0.01	5	•	02	50	1.27	10 -0.01	£7	0 .0.01	-		04	-0 -20	1 10.01	•10			Ų	140L
26	12277	22	0.30	610	5	<5 <0.01	3	<1	105	44	1 18	`<10_<0.01	27	5 <0.01	4	10	94	<5 <20	<1 <0.01	<10	<1	<10	4	766
27	12278	53	0.00	500	5	<5 <0.01	10	<1	70	37	1.10		24	3 <0.01	י ר	10	150	<5 <20	<1 <0.01	<10	<1	<10	2	1605
28	12270	0.0	0.20	135	10	<5 <0.01	3	1	61	41	1.02		15	3 < 0.01	2	10	116	<5 <20 <5 <20	1 <0.01	<10	-1	<10	5	478
29	12280	5.5 6.0	0.20	745	10	<5 <0.01	J 1	-1	78	47	1 1 2		10	3 <0.01	2	10	114	<5 <20	1 <0.01	~10	~1	<10	5	1144
30	12200	2.5	0.20	1110	<5	<5 <0.01	4	<1	65	42	0.83		20	2 <0.01	2	10	54	5 <20		<10	<1	<10	4	033
	12201	2.3	0.51	1110	~0	-0 -0.01	5		05	40	0.00	10 10 10	20	2 30.01	2	10		5 420	ST S0.01	~10	- 1	510	-	333
31	12282	24	0.27	1760	<5	<5 <0.01	<1	1	73	56	1 02	<10 <0.01	107	2 <0.01	2	20	48	10 <20	<1 <0.01	<10	<1	<10	8	852
32	12283	21	0.21	1085	<5	<5 <0.01	-1	<1	77	111	1 15	<10 <0.01	126	3 <0.01	ž	<10	112	5 <20	<1 <0.01	<10	<1	<10	Ă	850
33	12284	70	0.37	000	5	<5 <0.01	-1	1	62	136	1 16	<10 <0.01	162	4 <0.01	2	10	AAA	10 <20	2 <0.01	<10	<1	<10	ġ	1213
34	12285	17.8	0.52	6285	10	<5 <0.01	<1	4	82	70	2.64		/02	5 <0.01	2	20	1104	40 <20	8 <0.01	<10	-1	<10	5	1844
35	12205	18.0	0.20	1820	-5	<5 <0.01	~1	2	52	110	2.04		162	3 <0.01	2	~10	1524	30 <20	<1 <0.01	~10	~1	<10	~1	1263
	12200	10.0	0.24	1020		-0.01	*1	2	<u> </u>	114	2.92	-10 -0.01 Dama 4	1UZ	0 -0.01	~	-10	1027	00 ~20	ST SQ.Q1	~10	~ 1	-10	~ 1	1200
	1						1		1			Page 1												
	۰.	L		4	ł	. l	L		l		L	Ĺ	k.	i.	l		i	i	i					

ICP CERTIFICATE OF ANALYSIS AK 2005-1281

ECO TECH LABORATORY LTD.

i

ICP CERTIFICATE OF ANALYSIS AK 2005-1281

SOUTHERN RIO RESOURCES

÷

Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr Ti%	U	v	W	<u>Y</u>	Zn
36	12289	8.6	0.27	320	10	<5	<0.01	<1	1	70	26	1.41	<10 <0.01	991	2 < 0.01	<1	<10	300	5	<20	<1 <0.01	<10	<1	<10	10	1355
37	12290	2.3	0.28	910	10	<5	<0.01	<1	<1	48	70	0.98	<10 <0.01	869	5 <0.01	<1	<10	24	<5	<20	<1 <0.01	<10	<1	<10	5	814
38	12291	1.3	0.33	1145	<5	<5	0.02	<1	<1	53	79	0.63	<10 <0.01	2391	4 <0.01	<1	10	18	5	<20	<1 <0.01	<10	<1	<10	6	729
39	12292	1.8	0.34	1585	15	<5	0.01	<1	<1	58	121	0.97	<10 <0.01	1256	4 <0.01	<1	20	32	10	<20	3 <0.01	<10	<1	<10	8	396
40	12293	0.9	0.30	1330	10	<5	0.02	<1	<1	4 1	67	0.68	<10 <0.01	1288	2 <0.01	<1	50	18	5	<20	1 <0.01	<10	<1	<10	7	309
	12204	07	0.40	1075	10	~5	0.02	-1	~ 1	54	70	0.74	~10 ~0 01	2242	2 <0.01	-1	20	16	10	~20	2 ~0.01	~10	~1	~10		000
41	12234	0.7	0.40	1620	10	~5	0.02	~1	~1	54	122	1 1 6	<10 <0.01	2242	2 <0.01	~1	20	20	5	~20	2 ~0.01	<10	~1	<10	4	4050
42	12280	0.9	0.44	000	10 ~5	~0 ~E	0.02	~1	~1	60	152	0.76	<10 <0.01	1710	1 <0.01	~1	20	20	-5	~20	<1 <0.01	~10	~1	~10	4	1202
43	12290	0.7	0.30	900 770	10	~0 <5	0.01	~1	~1	44	34 400	0.70	<10 <0.01	1/10	1 <0.01	~1	20	20	<0 <5	~20	1 -0.01	<10		~10	5	1028
44 45	12297	0.9	0.37	1195	20	<5	0.01	7	1	44 49	100	1.37	<10 <0.01	1562	2 < 0.01	<1	20	24	<5 <5	<20 <20	4 < 0.01	<10	<1	<10	6	1293
																									-	
46	12299	0.7	0.22	965	10	<5	< 0.01	<1	<1	67	108	1.01	<10 <0.01	128	4 < 0.01	<1	<10	14	<5	<20	3 < 0.01	<10	<1	<10	3	558
47	12300	0.4	0.20	2600	<0 4 E	<0 ~5	<0.01	< 1 4	~1	70	04	0.69	<10 <0.01	109	10 <0.01		10	10	20	<20	<1 <0.01	<10	<1 	<10	4	1427
48	12301	0.7	0.21	000	10	<5	<0.01	1	~1	04	04	0.67	<10 <0.01	200	5 < 0.01	<1	30	24	<0 <5	<20	<1 <0.01	<10	<1 	<10	11	538
49	12302	0.0	0.18	400	~D 4 E	<0 <5	-0.01	3	~1	62	404	0.01	<10 <0.01	1055	5 < 0.01	<1 - 1	40	20	<0 -5	<20	<1 <0.01	<10	<1 	<10	9	527
50	47004	1.2	0.17	515	15	<5	<0.01	<1	<1	58	104	0.73	<10 <0.01	36	2 <0.01	<1	20	22	<0	<20	2 <0.01	<10	<1	<10	1	298
51	47005	1.3	0.20	500	15	<5	<0.01	<1	1	71	107	0.66	<10 <0.01	30	4 < 0.01	<1	20	26	<5	<20	1 < 0.01	<10	<1	<10	6	161
52	47006	1.6	0.14	210	10	<5	0.01	<1	1	80	200	1.15	<10 <0.01	1121	4 < 0.01	<1	20	22	<5	<20	<1 <0.01	<10	<1	<10	3	228
53	47007	1.6	0.15	290	15	<5	0.02	1	2	79	177	1.16	<10 <0.01	1817	4 < 0.01	<1	30	20	<5	<20	<1 <0.01	<10	<1	<10	5	233
54	47008	2.5	0.18	370	10	<5	0.02	3	2	68	220	1.43	<10 <0.01	1271	4 < 0.01	<1	30	22	<5	<20	2 < 0.01	<10	<1	<10	6	661
55	47009	6.5	0.14	275	10	<5	0.01	3	2	75	359	0.94	<10 <0.01	1110	3 < 0.01	<1	10	28	<5	<20	2 < 0.01	<10	<1	<10	4	399
						_		_											-							
56	47010	11.6	0.13	485	15	<5	<0.01	<1	3	67	514	1.15	<10 <0.01	618	3 <0.01	<1	<10	20	<5	<20	<1 <0.01	<10	<1	<10	5	668
57	47011	>30	0.25	880	10	<5	<0.01	3	4	61	1331	1.28	<10 <0.01	785	3 <0.01	4	<10	22	5	<20	<1 <0.01	<10	<1	<10	3	2602
58	47012	>30	0.21	1260	10	<5	<0.01	12	2	73	1786	1.27	<10 <0.01	394	3 <0.01	1	<10	30	<5	<20	<1 <0.01	<10	<1	<10	6	2411
59	47013	20.1	0.17	620	<5	<5	0.02	16	2	75	791	1.35	<10 <0.01	1649	3 <0.01	<1	<10	26	<5	<20	<1 <0.01	<10	<1	<10	5	1529
60	47014	7.4	0.18	670	10	<5	0.01	21	2	70	580	1.24	<10 <0.01	452	<1 <0.01	<1	10	24	<5	<20	<1 <0.01	<10	<1	<10	4	2732
61	47015	3.0	0.23	610	10	<5	0.01	31	2	73	273	0.95	<10 <0.01	1004	2 <0.01	3	<10	26	<5	<20	<1 <0.01	<10	· <1	<10	5	3985
62	47016	1.2	0.18	660	5	<5	<0.01	8	1	81	145	0.66	<10 <0.01	630	3 < 0.01	2	20	18	<5	<20	1 < 0.01	<10	<1	<10	- 6	1554
63	47017	1.4	0.19	935	10	<5	0.01	16	1	82	134	0.74	<10 <0.01	717	3 < 0.01	2	20	22	5	<20	<1 <0.01	<10	<1	<10	5	1626
64	47018	3.6	0.19	945	10	<5	<0.01	40	2	74	320	1.03	<10 <0.01	250	2 <0.01	1	<10	28	<5	<20	3 < 0.01	<10	<1	<10	6	3125
<u>QC DATA:</u> Resolit:																										
1	12252	11	0.40	315	25	<5	0.02	2	<1	74	20	1 30	<10 <0.01	280	2 <0.01	٨	170	66	~ 5	<20	7 <0.01	~10	2	~10	7	760
36	12289	9.3	0.28	330	10	<5	<0.02	<1	1	71	25 25	1.43	<10 <0.01	1017	2 < 0.01	3	10	336	10	<20	<1 <0.01	<10	<1	<10	9	1526
D																										
repeat:	40050		0.00	005	05	-5	0.00				-			0.5.5				70				10				
10	12202	1.1	0.38	320	20	< 5	0.02	3	1	81	33	1.24	<10 <0.01	355	2 < 0.01	4	140	76	<5	<20	6 < 0.01	<10	2	<10	10	/41
10	12201	0.1	0.22	1260	10	<5	<0.01	1	<1	74	51	0.90	<10 <0.01	98	4 < 0.01	2	30	6/4	20	<20	4 < 0.01	<10	<1	<10	3	633
19	12270	2.7	0.15	01	10	<0	<0.01	8	1	54	44	2.29	<10 <0.01	23	4 < 0.01	4	20	360	20	<20	5 < 0.01	<10	<1	<10	<1	833
30	12289	8.5	0.23	310	10	<5	<0.01	<1	1	65	24	1.36	<10 <0.01	909	2 < 0.01	<1	<10	294	5	<20	<1 <0.01	<10	<1	<10	9	1413
45 54	12298	0.9	0.39	1245 385	10 20	<5 <5	0.02	9 9	1	51 68	166 210	1.44	<10 <0.01	1508	3 < 0.01	<1	20	24 22	<5 <6	<20	1 < 0.01	<10	<1 ~1	<10	5	1333
•••	47000	2.7	Q. 11	505	20	~~	0.02	Ų	2	00	213	1.47		1275	4 \0.01	~1	30	22	~ 0	~20	~1 ~0.01	~10	~1	~10	5	019
Standard:																										
GEO '05		1.5	1.45	55	155	<5	1.25	<1	19	59	87	3.49	<10 0.77	539	<1 0.03	29	590	24	<5	<20	53 0.10	\<10	70	<10	10	73
GEO '05		1.5	1.25	60	140	<5	1.20	1	18	60	86	3.40	<10 0.67	510	1 0.02	30	600	22	<5	$\tilde{20}$	51 0.11	k10	71	<10	9	75
									-					- • -					- 1	, _+	A				Ũ	
																			1	1	AV12-	1				
JJ/ga																			- Cī	ECO T	ECH LABOR	TORY	LTD.	<u> </u>		
df/1281																			- 7.	Jutta	ealouse	/				
XLS/05		,	,		1	,				,			Page 2						(30/Ce	ertified Assays	er				

. 31-(

· •

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2005-1346

}

ţ

1

ŗ

1

ł

1

SOUTHERN RIO RESOURCES

1

1

1

1

er et es a

1

1

Suite 1410, 650 W Georgia Box 11584 **Vancouver, BC, V6B 4N8**

ATTENTION: LINDSAY BOTTOMER

No. of samples received: 89 Sample Type: Core **Project #: Davidson** Shipment #: 2005-03 Samples submitted by:David Pawliuk

Values in ppm unless otherwise reported

<u> </u>	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Çu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
1	46469	5	0.2	1.37	15	125	10	3.98	4	14	47	25	3.39	10	0.80	806	3	0.02	17	1710	156	10	<20	130	0.02	<10	44	<10	7	718
2	46470	<5	0.3	1.62	15	100	<5	4,47	5	18	52	22	4.21	10	1.31	890	2	0.02	21	1760	180	5	<20	199	0.01	<10	51	<10	6	920
3	46471	5	0.4	1.60	15	95	5	3.67	3	18	53	27	4.14	10	1.14	842	4	0.03	21	1770	148	10	<20	195	0.01	<10	53	<10	7	918
4	46472	5	0.6	1.72	25	150	5	3.14	2	16	65	29	3.96	20	0.77	843	2	0.04	22	2000	128	10	<20	144	0.01	<10	49	<10	8	879
5	46473	5	1.3	1.50	20	75	<5	4.11	4	18	44	51	4.03	10	1.04	1020	1	0.02	22	1840	134	5	<20	142	0.02	<10	39	<10	8	1014
6	46474	5	1.3	1.63	20	70	5	3,99	4	19	49	60	4.84	10	0.91	1019	4	0.02	23	2000	152	15	<20	123	0.02	<10	47	<10	5	1209
7	46475	5	0.3	1.33	25	105	5	3.13	4	19	52	9	4.67	10	0.59	942	3	0.02	22	1840	88	<5	<20	53	0.01	<10	51	<10	10	1294
8	46476	5	0.6	1.05	20	50	<5	2.76	4	17	15	22	4.06	10	0.48	840	3	0.01	23	1720	100	10	<20	44	<0.01	<10	38	<10	8	1513
9	46477	5	1.2	1.29	15	120	<5	2.02	3	15	53	37	3.66	10	0.45	845	3	0.02	19	1820	62	15	<20	33	0.02	<10	30	<10	8	1662
10	46478	5	0.7	1.56	20	135	5	1.08	15	19	50	20	4.14	10	0.5 0	1085	2	0.02	25	1530	82	<5	<20	23	0.02	<10	29	<10	8	2779
14	40470	r		4.05	45	400	40		~			•••	~ ~~		.	204		~ ~~	40				-00						_	~
10	40479	5	1.3	1.25	15	120	10	2.55	Z	10	44	28	3.40	10	0.41	894	<1	0.03	19	1850	116	<5	<20	97	0.05	<10	31	<10	9	947
12	40480	5	0.7	0.90	15	145	<5 	2.08	4	11	51	5/	2.35	10	0.24	/91	<1	0.03	17	1820	202	5	<20	67	0.05	<10	25	<10	11	750
14	40401	10	0.4	0.70	10	130	<0 E	2.60	5 7	10	40	/0	2.60	<10	0.25	5/1	51	0.03	21	1840	162	5	<20	1/0	0.06	<10	35	<10	12	1017
15	40402	ວ 	<0.2	4.00	10	200	10	2.09		10	20	13	3.07	10	0.25	030	N	0.03	20	1090	04	<0 	<20 	113	0.06	<10	40	<10	10	1231
15	40404	5	< 0.2	1.09	20	150	10	1.77	3	10	43	20	4.07	10	0.47	604	4	0.04	22	1800	60	<0	<20	65	0.02	<10	11	<10	12	264
16	46485	5	0.3	1.10	15	90	10	3.18	3	14	59	26	4.12	10	0.60	630	3	0.03	21	1880	130	<5	<20	142	0.04	<10	84	<10	13	250
17	46486	5	2.4	1.62	25	95	<5	2.32	11	24	49	48	4.30	10	0.86	616	4	0.03	29	1880	774	10	<20	50	0.02	<10	62	<10	14	1115
18	46487	10	1.8	1.71	20	75	10	3.42	16	20	41	49	4.39	10	1.03	761	5	0.03	26	1800	926	5	<20	211	0.01	<10	61	<10	13	1146
19	46488	5	0.9	1.54	20	155	<5	2.06	7	19	44	104	4.16	10	0.75	656	1	0.03	20	1880	314	<5	<20	42	0.02	<10	59	<10	12	734
20	46489	<5	0.6	1.24	15	120	<5	2.08	10	15	43	109	3.92	10	0.60	571	3	0.03	22	1960	224	5	<20	87	0.02	<10	62	<10	14	932
-	40.400	-	4 -	4.04	45	400			40	47			o o =			-04	~		~		700					-10	~~		40	4000
21	46490	5	1.5	1,31	15	100	<0	3.10	10	17	4/	91	3.97	10	0.76	591	3	0.04	21	1900	186	<5	<20	234	0.02	<10	60	<10	10	1660
22	46491	<5	1.3	1.29	15	115	<5	3.28	8	17	41	12	4.49	<10	0.87	600	4	0.04	20	1930	408	- 0 - F	<20	242	0.04	<10	68	<10	11	12/5
23	46492	5	1.8	1.39	15	125		3,50	10	17	4/	104	4.62	<10	0.86	5/3	3	0.03	21	1890	1102	<5	<20	220	0.02	<10	67	<10	11	2505
24	46493	5	3.2	1.45	15	150	<5 -5	3.30	27	17	34	104	4.02	<10	0.76	622	<1	0.02	23	1860	1604	<5	<20	254	0.04	<10	54	10	10	4466
25	46494	5	3.4	1.37	20	245	<5	3.17	23	17	42	76	3.82	<10	0.76	551	2	0.03	24	1870	1934	10	<20	343	0.04	<10	51	10	8	4763
26	46495	5	1.9	1.55	20	165	<5	3.77	16	17	50	113	3.79	10	0.80	815	<1	0.03	25	1870	1042	5	<20	218	0.03	<10	46	10	9	3429
27	46496	<5	0.4	1.34	15	145	<5	3.85	8	17	44	104	4.04	10	1.01	919	<1	0.03	22	1860	254	<5	<20	230	0.04	<10	46	<10	6	1376
28	46497	5	0.2	1.27	10	110	<5	3.38	12	16	42	12	3.96	10	1.12	774	2	0.02	20	1680	182	10	<20	149	0.02	<10	48	<10	5	1780
29	46498	5	0.4	1.49	15	95	<5	4.19	15	16	46	14	4.00	10	0.96	968	<1	0.02	19	1700	256	<5	<20	169	<0.01	<10	41	<10	3	2300
30	46499	<5	0.3	1.46	10	65	<5	4.28	16	17	35	14	3.94	<10	1.04	924	<1	0.01	21	1780	152	<5	<20	199	<0.01	<10	33	<10	6	3380
31	46500	5	03	1 30	15	35	10	3 23	4	16	41	12	3 56	10	0.81	851	3	0.02	22	1990	104	5	<20	104	0.01	<10	31	<10	7	1264
		Ū	÷.•					¥#	-	••	••			. 🗸			-					-					÷.		•	
32	47019	680	4.3	0.23	615	<5	<5	0.03	3	1	73	317	0.62	<10	<0.01	783	4	<0.01	2	40	20	<5	<20	<1	<0.01	<10	1	<10	8	269
33	47020	110	0.9	0.20	350	<5	<5	0.02	<1	<1	78	97	0.48	<10	<0.01	1070	2	<0.01	2	60	20	<5	<20	<1	<0.01	<10	<1	<10	9	219
34	47021	255	0.7	0.26	545	5	<5	0.02	1	<1	85	57	0.55	<10	<0.01	1494	2	<0.01	3	50	18	<5	<20	3	<0.01	<10	<1	<10	9	319
35	47022	500	0.6	0.26	585	<5	<5	0.03	5	1	75	80	0.88	10 Page	<0.01 1	1907	2	<0.01	<1	70	14	<5	<20	<1	<0.01	<10	<1	<10	8	442

;

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2005-1346

SOUTHERN RIO RESOURCES

1 1

ł

.

i

)

<u> </u>	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	<u>Mn</u>	Mo	Na %	Ni	<u> </u>	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	W	<u>Y</u>	Zn
76	46463	5	1.0	1.28	15	105	<5	1.92	10	13	30	103	3.26	10	0.67	410	1	0.02	15	1400	272	<5	<20	78	0.02	<10	49	<10	9	844
77	46464	5	1.3	1.33	15	105	<5	1.80	8	14	31	116	3.46	<10	0.72	424	3	0.02	19	1370	568	5	<20	118	<0.01	<10	47	<10	8	1557
78	46465	5	0.6	1.15	20	125	<5	2.58	8	12	34	99	3.14	10	0.64	481	2	0.03	15	1370	286	<5	<20	172	0.01	<10	45	<10	8	1437
79	46466	5	0.4	1.17	<5	135	<5	2.48	9	14	35	74	3.46	<10	0.78	492	<1	0.03	17	1410	202	<5	<20	193	0.05	<10	50	<10	8	1862
80	46467	5	1.3	1.20	10	130	<5	2.29	14	15	31	107	3.34	<10	0.79	564	2	0.02	18	1340	636	<5	<20	147	0.03	<10	49	<10	7	2965
81	46468	5	0.2	1.18	5	125	<5	2.75	8	15	26	43	3.22	10	0.80	591	<1	0.02	18	1350	126	<5	<20	163	0.04	<10	40	<10	6	1637
82	47101	5	<0.2	1.20	10	110	<5	2.68	<1	22	41	11	3.07	<10	0.73	533	2	0.02	16	1400	24	5	<20	158	0.03	<10	43	<10	9	263
83	47102	<5	<0.2	1.21	5	160	<5	2.83	<1	16	38	24	3.18	<10	0.79	529	<1	0.02	17	1380	22	<5	<20	164	0.06	<10	59	<10	9	292
84	47103	5	<0.2	1.27	5	140	5	2.89	<1	16	50	4	3.26	<10	0.87	555	<1	0.03	18	1350	20	<5	<20	213	0.08	<10	67	<10	10	372
85	47104	<5	<0.2	1.25	<5	140	5	3.05	<1	15	46	4	3.24	10	0.82	617	<1	0.03	16	1390	22	<5	<20	230	0.07	<10	69	<10	10	370
86	47105	10	<0.2	1.23	<5	130	5	2.73	<1	14	55	6	3.16	10	0.84	546	<1	0.03	16	1370	20	<5	<20	182	0.06	<10	66	<10	10	453
87	47106	5	<0.2	1.25	5	135	10	2.18	<1	14	53	3	3.25	<10	0.83	414	<1	0.03	17	1390	20	<5	<20	147	0.07	<10	68	<10	11	245
88	47107	5	0.4	1.18	10	150	5	2.76	<1	14	49	10	3.10	10	0.81	497	<1	0.03	17	1360	20	<5	<20	171	0.06	<10	69	<10	10	243
89	47108	10	<0.2	1.28	5	120	<5	2.51	<1	13	43	32	3.22	10	88.0	462	<1	0.03	16	1390	18	<5	<20	136	0.07	<10	68	<10	10	250
Resplit:	6																													
1	46469	5	0.2	1.32	20	115	<5	3.91	5	14	43	20	3.43	10	0.81	805	2	0.02	20	1680	152	10	<20	125	0.02	<10	42	<10	7	729
36	47023	240	0.5	0.19	360	5	<5	0.02	<1	1	72	85	0.74	<10	<0.01	1268	2	< 0.01	2	30	6	<5	<20	2	<0.01	<10	<1	<10	5	185
71	46458	475	0.7	0.21	535	20	<5	0.04	4	1	57	102	0.93	<10	0.03	1309	2	<0.01	2	50	14	<5	<20	4	<0.01	<10	1	<10	5	346
Reneat:																														
1	46469	5	02	1 28	15	125	<5	3.98	4	14	46	25	3 37	10	0 79	807	2	0.02	18	1720	154	<5	<20	127	0.02	<10	41	<10	7	722
10	46478	5	0.2	1.54	20	145	10	1.08	15	20	49	21	4.13	10	0.50	1086	4	0.01	27	1560	82	<5	<20	22	0.01	<10	28	<10	8	2722
19	46488	5	0.1	1.56	20	160	<5	2 11	6	20	44	108	4.24	10	0.77	665	<1	0.03	18	1880	318	<5	<20	43	0.02	<10	60	<10	13	736
32	47019	740	0.0	1.00	20	100		2	Ŭ	20	••				••••		•					-								
33	47020	150																												
34	47021	255																												
35	47022	425																												
36	47023	290	0.5	0.18	345	<5	<5	0.02	<1	<1	68	73	0.65	<10	<0.01	1204	2	<0.01	1	40	8	<5	<20	1	<0.01	<10	<1	<10	5	173
39	47026	550	-1-	••		-																								
45	47032	245	0.7	0.19	140	20	<5	0.02	29	1	63	107	1.02	<10	<0.01	1062	2	<0.01	2	30	10	<5	<20	3	<0.01	<10	<1	<10	6	2032
53	47040	530		••••																										
54	47041	810	1.1	0.22	470	15	<5	0.02	3	1	70	154	1.03	10	<0.01	2107	3	<0.01	<1	40	18	5	<20	4	<0.01	<10	<1	<10	9	325
64	46451	580					-		-	-	-		•																	
67	46454	770																												
68	46455	830																												
69	46456	860																												
70	46457	680																												
71	46458	390	0.7	0.24	515	20	<5	0.06	2	1	54	91	0.89	<10	0.05	1335	2	<0.01	3	60	14	<5	<20	3	<0.01	<10	2	<10	5	301
80	46467	5	1.3	1.22	5	130	<5	2.29	13	15	32	126	3.37	<10	0.79	563	2	0.02	18	1340	638	<5	<20	146	0.03	<10	50	<10	7	3005

CERTIFICATE OF ASSAY AK 2005-1346

SOUTHERN RIO RESOURCES

Suite 1410, 650 W Georgia Box 11584 Vancouver, BC, V6B 4N8

ATTENTION: LINDSAY BOTTOMER.

No. of samples received: 89 Sample Type: Core **Project #: Davidson Shipment #: 2005-03** Samples submitted by:David Pawliuk

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
38	47025	1.03	0.030	

QC DATA:

SH13

0.038

1.31

JJ/ga XLS/05

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

31-Oct-05

SOUTHERN RIO RESOURCES

Suite 1410, 650 W Georgia Box 11584 Vancouver, BC, V6B 4N8

ATTENTION: LINDSAY BOTTOMER

No. of samples received: 65 Sample Type: Core **Project #: Davidson Shipment #: 1** Samples submitted by: Dan Meldrum

		Au	Au	Ag	Ag	
<u> </u>	Tag #	(g/t)	(oz/t)	<u>(g/t)</u>	(oz/t)	
1	12074	<0.03	<0.001			
2	12075	<0.03	<0.001			
3	12076	<0.03	<0.001			
4	12077	<0.03	<0.001			
5	12078	<0.03	<0.001			
6	12079	<0.03	<0.001			
7	12080	<0.03	<0.001			
8	12081	<0.03	<0.001			
9	12082	<0.03	<0.001			
10	12083	<0.03	<0.001		·	
11	12084	<0.03	<0.001			
12	12085	<0.03	<0.001			
13	12086	<0.03	<0.001			
14	12087	0.07	0.002			
15	12088	0.03	0.001			
16	12089	<0.03	<0.001			
17	12090	<0.03	<0.001			
18	12091	<0.03	<0.001			
19	12092	<0.03	<0.001			
20	12093	<0.03	<0.001			
21	12094	0.08	0.002			
22	12095	0.11	0.003	31.4	0.92	
23	12096	0.06	0.002			
24	12097	0.06	0.002			
25	12098	0.16	0.005			

13-Oct-05

ECO TECH LABORATORY LTD. Jutta Jealouse

B.C. Certified Assayer

SOUTHERN RIO RESOURCES AK5-1256

13-Oct-05

		Au	Au	Ag	Ag	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	1.0. <u></u>
QC DATA	:					
Repeat:	-					
1	12074	< 0.03	<0.001			
10	12083	<0.03	<0.001			
19	12092	<0.03	<0.001			
22	12095			31.4	0.92	
25	12098	0.16	0.005			
33	12106	0.22	0.006			
34	12107	0.18	0.005			
35	12108	0.23	0.007			
45	12118	0.04	0.001			
54	12127	<0.03	<0.001			
Standard:	•					
PG114		0.45	0.013			
PG114		0.46	0.013			
Cu106				136	3.97	
Pb106				59.1	1.72	

JJ/kk XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer
13-

.

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2005-1256

1

1

1

1

]

1

SOUTHERN RIO RESOURCES

1

Suite 1410, 650 W Georgia Box 11584 Vancouver, BC, V6B 4N8

1997 - S. 1998

1

ATTENTION: LINDSAY BOTTOMI

No. of samples received: 65 Sample Type: Core **Project #: Davidson Shipment #: 1** Samples submitted by: Dan Meldru

Values in ppm unless otherwise reported

<u> </u>	Tag #	Ag	Cu	Zn	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Fe %	La Mg %	Mn	Mo Na%	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	w
1	12074	1.1	3	279	0.25	85	30	<5	0.03	<1	<1	107	0.46	20 < 0.01	5728	5 < 0.01	3	70	20	20	<20	23	< 0.01	<10	<1	<10
2	12075	1.3	2	281	0.32	60	40	<5	0.03	<1	<1	127	0.41	10 <0.01	9568	5 0.01	5	60	30	10	<20	40	0.01	<10	<1	<10
3	12076	3.2	3	393	0.21	75	25	<5	0.03	<1	<1	92	0.41	10 <0.01	>10000	5 < 0.01	3	60	138	50	<20	42	0.01	<10	<1	<10
4	12077	1.8	2	289	0.19	35	25	<5	0.03	<1	<1	94	0.38	10 <0.01	>10000	4 < 0.01	3	80	100	35	<20	33	0.02	<10	<1	<10
5	12078	0.6	2	198	0.19	25	20	<5	0.02	<1	<1	76	0.35	10 <0.01	5300	1 <0.01	2	50	42	25	<20	14	<0.01	<10	<1	<10
6	12079	0.6	1	146	0.20	50	25	<5	0.01	<1	<1	97	0.29	10 <0.01	2824	1 <0.01	4	40	36	25	<20	9	<0.01	<10	<1	<10
7	12080	0.3	1	336	0.20	80	10	<5	0.01	<1	<1	75	0.24	<10 <0.01	1375	2 <0.01	2	50	42	15	<20	<1	<0.01	<10	<1	<10
8	12081	0.4	2	282	0.18	35	20	<5	0.04	<1	<1	84	0.33	10 <0.01	5226	5 < 0.01	2	60	40	15	<20	<1	<0.01	<10	<1	<10
9	12082	0.2	<1	180	0.20	20	10	<5	0.05	<1	<1	73	0.37	<10 <0.01	7834	4 < 0.01	2	70	22	<5	<20	<1	0.01	<10	<1	<10
10	12083	0.4	3	223	0.19	50	10	<5	0.06	<1	<1	87	0.40	<10 <0.01	9388	3 <0.01	4	60	42	10	<20	<1	0.01	<10	<1	<10
11	12084	0.5	3	167	0.19	270	20	<5	0.04	<1	<1	73	0.38	<10 <0.01	5878	4 <0.01	2	50	30	10	<20	<1	<0.01	<10	<1	<10
12	12085	1.8	2	1046	0.17	240	20	<5	0.01	4	<1	86	0.24	<10 <0.01	813	4 < 0.01	2	20	588	250	<20	<1	< 0.01	<10	<1	<10
13	12086	1.5	3	1915	0.19	405	15	<5	0.03	7	<1	62	0.30	10 <0.01	2808	6 <0.01	2	40	904	285	<20	<1	<0.01	<10	<1	<10
14	12087	0.6	2	256	0.19	190	20	<5	0.04	<1	<1	84	0.29	10 <0.01	5097	4 <0.01	3	50	50	10	<20	<1	<0.01	<10	<1	<10
15	12088	1.6	3	410	0.19	185	20	<5	0.02	<1	<1	66	0.28	<10 <0.01	2184	3 <0.01	3	30	206	40	<20	<1	<0.01	<10	<1	<10
16	12089	0.9	3	263	0.20	190	25	<5	0.03	<1	<1	93	0.27	<10 <0.01	2414	7 <0.01	4	40	52	10	<20	<1	<0.01	<10	<1	<10
17	12090	0.8	4	161	0.18	95	25	<5	0.06	<1	<1	75	0.43	<10 <0.01	6416	4 <0.01	3	50	46	5	<20	<1	<0.01	<10	<1	<10
18	12091	0.9	3	166	0.16	115	10	<5	0.07	<1	<1	69	0.46	<10 <0.01	7115	5 <0.01	2	50	46	<5	<20	<1	<0.01	<10	<1	<10
19	12092	<0.2	21	65	0.79	<5	70	<5	1.99	<1	11	52	3.00	10 0.48	549	<1 0.08	7	1150	18	<5	<20	81	0.07	<10	87	<10
20	12093	0.7	3	133	0.21	100	15	<5	0.07	<1	<1	78	0.46	<10 <0.01	9023	5 <0.01	2	50	20	<5	<20	<1	0.01	<10	<1	<10
21	12094	5.3	10	424	0.19	80	10	<5	0.06	<1	<1	83	0.33	<10 <0.01	4869	4 <0.01	2	50	272	65	<20	<1	<0.01	<10	<1	<10
22	12095	>30	22	1252	0.21	60	10	<5	0.15	4	<1	78	0.48	<10 0.01	>10000	2 < 0.01	4	50	728	95	<20	<1	0.02	<10	1	<10
23	12096	2.3	5	230	0.29	50	10	<5	0.13	<1	<1	116	0.39	10 0.01	>10000	5 <0.01	3	50	72	5	<20	<1	0.02	<10	<1	<10
24	12097	23.3	17	787	0.17	70	20	<5	0.12	2	<1	79	0.38	<10 <0.01	>10000	2 <0.01	2	50	418	40	<20	2	0.02	<10	<1	<10
25	12098	27.1	19	369	0.17	100	10	<5	0.13	<1	<1	74	0.37	<10 <0.01	>10000	2 <0.01	2	50	332	35	<20	<1	0.02	<10	1	<10
26	12099	4.0	4	191	0.19	75	10	<5	0.14	<1	<1	75	0.36	<10 <0.01	>10000	2 <0.01	1	50	124	<5	<20	<1	0.02	<10	1	<10
27	12100	5.2	5	433	0.18	<5	10	<5	0.09	1	<1	89	0.34	<10 <0.01	>10000	2 <0.01	2	60	252	<5	<20	<1	0.02	<10	1	<10
28	12101	5.7	6	483	0.20	<5	5	<5	0.11	2	<1	79	0.37	<10 <0.01	>10000	<1 <0.01	2	50	268	10	<20	<1	0.02	<10	1	<10
29	12102	7.2	30	1054	0.16	15	5	<5	0.07	4	<1	69	0.43	<10 <0.01	>10000	1 <0.01	2	50	474	50	<20	<1	0.01	<10	<1	<10
30	12103	7.3	35	1136	0.17	10	<5	<5	0.06	4	<1	76	0.42	<10 <0.01	9210	1 <0.01	3	70	754	40	<20	<1	0.01	<10	<1	<10

ECUTECH LADONATON LTD.

1

1

÷

•

Ì.

1

_buti] RIO DUR____

and the second sec

)

Et #.	Tag #	Ag	Cu	Zn	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	Ti %	U	v	W
31	12104	5.2	28	903	0.17	10	<5	<5	0.07	3	<1	73	0.49	<10	<0.01	>10000	1	<0.01	2	70	592	40	<20	<1	0.01	<10	<1	<10
32	12105	10.7	56	1595	0.17	45	10	<5	0.06	6	<1	79	0.54	<10	<0.01	>10000	3	<0.01	3	60	1288	85	<20	<1	0.01	<10	<1	<10
33	12106	7.7	48	1514	0.16	210	<5	<5	0.06	5	<1	65	0.51	<10	<0.01	9577	2	< 0.01	1	50	1038	120	<20	<1	0.01	<10	<1	<10
34	12107	4.2	26	1297	0.17	305	10	<5	0.06	5	<1	83	0.48	<10	< 0.01	>10000	4	<0.01	3	60	570	50	<20	<1	0.01	<10	<1	<10
35	12108	16.7	111	2588	0.25	230	10	<5	0.06	10	<1	135	0.64	<10	<0.01	>10000	<1	<0.01	4	70	2210	215	<20	<1	0.02	<10	<1	<10
			•••		- +			•											•		22.10				0.01		- 1	-10
36	12109	7.9	55	1554	0.17	410	<5	<5	0.07	5	<1	81	0.53	<10	<0.01	>10000	2	<0.01	2	80	1142	155	<20	<1	0.02	<10	<1	<10
37	12110	5.0	25	1190	0.27	260	10	<5	0.07	4	<1	87	0,50	<10	<0.01	9057	2	<0.01	4	70	522	40	<20	<1	0.01	<10	<1	<10
38	12111	5.0	20	973	0.19	465	10	<5	0.07	3	<1	68	0.45	<10	<0.01	>10000	<1	<0.01	1	70	392	90	<20	<1	0.01	<10	<1	<10
39	12112	7.1	36	1183	0.17	305	10	<5	0.07	4	<1	66	0.41	<10	<0.01	>10000	<1	< 0.01	3	80	644	140	<20	2	0.01	<10	<1	<10
40	12113	<0.2	18	66	0.83	<5	55	5	1.58	<1	11	40	3.12	10	0.71	491	<1	0.07	6	1140	14	<5	<20	78	0.08	<10	91	<10
			-											-					_			-						
41	12114	5.6	26	1162	0.18	455	10	<5	0.07	4	<1	73	0.44	<10	<0.01	9729	<1	<0.01	<1	60	372	170	<20	<1	0.01	<10	<1	<10
42	12115	5.6	20	936	0.32	480	<5	<5	0.08	3	<1	119	0.56	<10	<0.01	>10000	<1	<0.01	1	80	374	145	<20	<1	0.02	<10	<1	<10
43	12116	7.9	36	1100	0.17	555	10	<5	0.07	4	<1	73	0.47	<10	<0.01	>10000	_ 2	<0.01	<1	80	786	325	<20	<1	0.01	<10	<1	<10
44	12117	2.7	12	729	0.17	290	<5	<5	0.08	3	<1	64	0.42	<10	<0.01	>10000	1	<0.01	2	70	290	105	<20	<1	0.02	<10	<1	<10
45	12118	6.5	25	1180	0.15	150	<5	<5	0.07	4	<1	76	0.42	<10	<0.01	>10000	<1	<0.01	3	70	960	335	<20	<1	0.02	<10	<1	<10
46	12119	2.3	15	988	0.17	180	<5	<5	0.09	4	<1	76	0.53	<10	<0.01	>10000	<1	<0.01	3	60	384	130	<20	<1	0.03	<10	1	<10
47	12120	3.2	16	1221	0.15	80	<5	<5	0.08	5	<1	64	0.44	<10	<0.01	>10000	1	<0.01	2	70	424	115	<20	<1	0.02	<10	<1	<10
48	12121	4.7	15	1008	0.17	275	15	<5	0.09	3	<1	82	0.54	<10	<0.01	>10000	<1	<0.01	3	70	442	135	<20	<1	0.02	<10	1	<10
49	12122	5.1	15	1678	0.15	185	<5	<5	0.08	6	<1	73	0.45	<10	<0.01	>10000	<1	<0.01	3	70	700	185	<20	<1	0.02	<10	<1	<10
50					0.24	370	10	<5	0.09	5	<1	115	0.56	<10	<0.01	>10000	<1	<0.01	3	80	768	60	<20	1	0.02	<10	1	<10
51	12124	19.5	34	1373	0.21	185	<5	<5	0.10	4	<1	91	0.47	<10	<0.01	>10000	2	<0.01	2	70	806	60	<20	<1	0.02	<10	1	<10
52	12125	13.8	28	924	0.15	125	<5	<5	0.09	3	<1	77	0.44	<10	<0.01	>10000	2	<0.01	1	50	718	40	<20	<1	0.03	<10	2	<10
53	12126	10.9	23	911	0.14	85	<5	<5	0.10	2	<1	60	0.43	<10	<0.01	>10000	1	<0.01	3	50	486	35	<20	<1	0.03	<10	1	<10
54	12127	9.7	18	783	0.12	85	<5	<5	80.0	2	<1	56	0.40	<10	<0.01	>10000	<1	<0.01	1	60	354	25	<20	<1	0.02	<10	1	<10
55	12128	12.2	6	583	0.13	210	<5	<5	0.08	<1	<1	62	0.38	<10	<0.01	>10000	2	<0.01	2	50	646	25	<20	<1	0.02	<10	1	<10
56	12129	20.7	21	1128	0.12	40	<5	<5	0.08	3	<1	62	0.32	<10	<0.01	>10000	<1	<0.01	<1	40	512	35	<20	<1	0.02	<10	<1	<10
57	12130	1 7.1	7	1519	0.19	40	<5	<5	0.10	4	<1	86	0.41	<10	<0.01	>10000	<1	<0.01	1	40	786	20	<20	<1	0.02	<10	1	<10
58	12131	9.0	4	1172	0.19	130	<5	<5	0.10	2	<1	79	0.35	<10	<0.01	>10000	5	<0.01	2	60	366	10	<20	<1	0.02	<10	1	<10
59	12132	7.8	3	1046	0.13	90	<5	<5	0.09	3	<1	54	0.28	<10	<0.01	>10000	<1	<0.01	3	60	376	10	<20	<1	0.02	<10	2	<10
60	12133	0.2	14	66	0.61	<5	35	<5	1.27	<1	9	32	2.45	<10	0.53	406	<1	0.05	3	1200	22	<5	<20	49	0.05	<10	65	<10
64	10104	00.0	40	1900	0.45	470	~5	~F	0.14		~1	65	0.33	~10	-0.04	>10000		-0.01	2	20	666	25	~20	-1	0.02	<10	2	<10
01	12134	∠3.8 25.4	13	1002	0.15	170	50 4 E	~0 ~6	0.11	4		60	0.33	~10	~0.01	>10000		~0.01	4	00	1160	20	~20	~	0.02	~10	-1	~10
٥ <u>٢</u>	12135	25.1	11	1028	0.17	115	10	<0 	0.13	0	51	03	0.30	510	<u.u1< td=""><td>>10000</td><td>ا ا</td><td>NU.U1</td><td>1</td><td>50</td><td>720</td><td>30</td><td>~20</td><td>4</td><td>0.02</td><td><10</td><td>21</td><td>~10</td></u.u1<>	>10000	ا ا	NU.U1	1	50	720	30	~20	4	0.02	<10	21	~10
63	12136	13.1	5	915	0.18	60	10	<5	0.18	3	<1	68 57	0.36	510	0.01	210000	<1 	<0.01	1	50	120	10	<∠∪ ∠20	ا ا	0.02	<10 <10	~ I ~ 1	~10
64	12137	12.0	3	1231	0.18	210	<5	<5	0.20	4	<1	5/	0.38	<10	0.02	>10000	<1	<0.01	Z	50	000	25	<20	S1 4	0.02	510	S 24	~10
65	12138	5.1	2	648	0.18	285	10	<5	0.16	- 2	<1	57	0.40	10	0.02	9239	1	<0.01	3	60	316	10	<20	1	0.01	<10	<1	<'iu

:																												
EC.,	-3H Lauoi		D.									iur vER	Tl، المحمد Ē O	Foix	LYSIE	2005	5-1201	, ,		1	١		ърп	Դուս) RIC)	bur	<u></u>
Et #.	Tag #	Ag	Cu	Zn	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Fe %	La	<u>Mg %</u>	Mn	<u>Mo</u>	Na %	Ni	Р	Pb	Sb	Sn	Sr	<u>Ti %</u>	<u> </u>	<u>v</u>	_ <u>w</u>
<u>QC DA'</u> Rece <i>ll</i> i	<u>ГА:</u>																											
respin	, 12074	12	2	267	0.21	80	25	<5	0.03	<1	<1	99	0.41	10	<0.01	4969	5	<0.01	વ	70	22	15	<20	17	<0.01	<10	c 1	~10
36	12109	8.8	52	1244	0.14	255	<5	<5	0.05	5	<1	69	0.43	<10	<0.01	9149	2	<0.01	2	60	1046	150	<20	<1	0.01	<10	<1	<10
Repeat	:																											
1	12074	1.1	3	276	0.22	80	25	<5	0.03	<1	<1	99	0.43	10	<0.01	5449	5	<0.01	2	80	20	15	<20	20	< 0.01	<10	<1	<10
10	12083	0.4	3	231	0.18	50	10	<5	0.06	<1	<1	89	0.41	<10	<0.01	9572	4	<0.01	3	60	40	10	<20	<1	0.01	<10	<1	<10
19	12092	<0.2	21	63	0.76	<5	65	<5	1.96	<1	10	50	2.95	10	0.48	542	<1	0.07	6	1090	16	<5	<20	82	0.07	<10	86	<10
36	12109	8.0	51	1508	0.16	410	5	<5	0.06	5	<1	76	0.51	<10	<0.01	>10000	_ 2	<0.01	2	80	1072	150	<20	<1	0.01	<10	<1	<10
45	12118	6.5	22	1171	0.14	145	10	<5	0.06	4	<1	67	0.37	<10	<0.01	>10000	<1	<0.01	1	70	834	290	<20	<1	0.01	<10	<1	<10
54	12127	10.2	19	787	0.17	85	10	<5	0.11	3	<1	70	0.49	10	0.01	>10000	1	<0.01	2	60	440	30	<20	5	0.03	<10	1	<10
Standa	rd:																											
GEO '0	5	1.4	87	74	1.39	55	145	<5	1.23	<1	18	59	3.51	<10	0.72	532	<1	0.02	28	570	22	<5	<20	54	0.11	<10	70	<10
GEO '0	5	1.5	86	76	1.27	50	140	<5	1.30	<1	19	58	3.09	<10	0.67	503	<1	0.02	29	510	24	<5	<20	53	0.10	<10	69	<10

JJ/kk df/1256 XLS/05

.

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

. . .

• • • • i i j j j j j j j Y 7 5 6 5 3 5 5 5

ER

m

and the second second

]

				ì	i	i	× .) 1	}	`	١
Y											
5											
+ 5 3											
4 5 6											
6 10											
5 6 4											
5 4						·					
4 4 5											
4 5 5											
5 4 4											
2											
3 3 4											
7 3											
7 7 6											
0											

Į.

) 1)

1

6 1

. 6 5 9 3 5

1-Nu-00

ECO TECH LABORATORY LTD.

10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

ļ

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2005-1355

3

SOUTHERN RIO RESOURCES Suite 1410, 650 W Georgia Box 11584

1

)

Vancouver, BC, V6B 4N8

1

3

1

ATTENTION: LINDSAY BOTTOMER

No. of samples received: 76 Sample Type: Core Project #: Davidson Shipment #: 2005-04 Samples submitted by:David Pawliuk

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi Ca %	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Tì %	Ų	V	w	Y	Zn
1	47051	20	13.2	0.23	490	15	<5 <0.01	<1	<1	57	31	0.83	<10 <0.01	24	1	<0.01	1	50	1368	20	<20	<1	<0.01	<10	<1	<10	3	86
2	47052	15	2.8	0.27	65	15	<5 <0.01	<1	<1	48	19	0.45	10 <0.01	52	<1	<0.01	<1	70	438	20	<20	<1	<0.01	<10	<1	<10	7	62
3	47053	5	3.1	0.29	100	15	<5 0.01	<1	<1	45	26	0.47	10 <0.01	72	<1	<0.01	2	110	716	35	<20	<1	<0.01	<10	<1	<10	10	62
4	47054	15	2.9	0.29	50	15	<5 <0.01	<1	<1	41	14	0.30	<10 <0.01	19	<1	<0.01	<1	50	336	20	<20	<1	<0.01	<10	<1	<10	8	43
5	47055	15	3.0	0.31	295	15	<5 <0.01	<1	<1	47	26	0.49	<10 <0.01	61	1	<0.01	2	80	1048	20	<20	<1	<0.01	<10	<1	<10	7	65
6	47056	130	>30	0.26	6235	120	<5 0.01	<1	<1	46	180	0.78	<10 <0.01	32	2	<0.01	<1	60	>10000	30	<20	<1	<0.01	<10	<1	<10	12	205
7	47057	10	2.9	0.38	255	15	<5 0.01	<1	<1	41	31	0.62	<10 <0.01	105	2	<0.01	<1	50	918	10	<20	<1	<0.01	<10	<1	<10	7	77
8	47058	15	6.6	0.24	120	20	<5 <0.01	<1	<1	43	22	0.42	<10 <0.01	66	2	<0.01	<1	30	500	15	<20	<1	<0.01	<10	<1	<10	6	53
9	47059	30	7.3	0.25	130	15	<5 <0.01	<1	<1	39	22	0.43	10 <0.01	41	1	<0.01	<1	30	474	20	<20	<1	<0.01	<10	<1	<10	6	56
10	47060	45	5.4	0.34	110	15	<5 0.01	<1	<1	73	41	0.79	<10 <0.01	135	1	<0.01	1	60	696	10	<20	<1	<0.01	<10	<1	<10	7	97
11	47061	90	2.2	0.33	105	15	<5 0.01	<1	<1	42	46	0.77	10 <0.01	420	2	<0.01	<1	80	856	10	<20	<1	<0.01	<10	<1	<10	9	98
12	47062	30	2.1	0.33	75	15	<5 0.01	<1	<1	70	41	0.77	10 <0.01	275	1	<0.01	2	60	724	10	<20	<1	<0.01	<10	<1	<10	5	91
13	47063	50	2.2	0.26	170	15	<5 0.01	<1	<1	50	38	0.68	10 <0.01	77	2	<0.01	<1	90	882	10	<20	`_<1	<0.01	<10	<1	<10	8	93
14	47064	85	1.9	0.30	220	15	<5 0.01	<1	<1	59	35	0.63	10 <0.01	77	2	<0.01	<1	90	878	10	<20	<1	<0.01	<10	<1	<10	8	84
15	47065	5	<0.2	0.74	5	65	5 1.70	<1	11	39	24	2.90	<10 0.55	492	<1	0.07	5	1170	26	<5	<20	78	0.07	<10	85	<10	9	65
16	47066	15	1.2	0.35	330	15	<5 0.02	<1	<1	34	56	0.88	10 <0.01	158	4	<0.01	2	160	1408	20	<20	<1	<0.01	<10	<1	<10	8	123
17	47067	155	1.9	0.35	275	15	<5 0.01	<1	<1	31	47	0.61	10 <0.01	165	3	<0.01	2	160	1232	15	<20	<1	<0.01	<10	<1	<10	15	101
18	47068	<5	2.1	0.25	35	20	<5 <0.01	<1	<1	57	17	0.31	10 <0.01	48	2	<0.01	<1	50	302	10	<20	<1	<0.01	<10	<1	<10	7	42
19	47069	5	1.7	0.36	60	20	<5 0.01	<1	<1	42	41	0.63	10 <0.01	82	3	<0.01	1	130	642	15	<20	2	<0.01	<10	<1	<10	17	96
20	47070	15	2.1	0.27	40	20	<5 <0.01	<1	<1	59	25	0.46	10 <0.01	86	1	<0.01	<1	80	536	5	<20	<1	<0.01	<10	<1	<10	10	62
21	47071	35	2.2	0.28	45	20	<5 <0.01	<1	<1	49	34	0.65	10 <0.01	46	3	<0.01	2	90	540	20	<20	<1	<0.01	<10	<1	<10	13	84
22	47072	45	2.1	0.34	50	15	<5 <0.01	1	<1	38	56	1.08	10 <0.01	239	4	<0.01	2	150	1108	15	<20	<1	<0.01	<10	<1	<10	22	141
23	47073	90	1.7	0.25	25	10	<5 0.01	<1	<1	22	41	0.53	10 <0.01	146	2	<0.01	1	60	608	20	<20	<1	<0.01	<10	<1	<10	16	82
24	4707 4	30	4.1	0.26	20	20	<5 0.01	<1	<1	47	18	0.22	10 <0.01	21	3	<0.01	2	30	260	15	<20	2	<0.01	<10	<1	<10	14	41
25	47075	65	4.3	0.37	20	20	<5 0.01	<1	<1	48	22	0.23	20 <0.01	21	2	<0.01	<1	40	282	15	<20	<1	<0.01	<10	<1	<10	20	47
26	47076	80	3.6	0.29	25	15	<5 <0.01	<1	<1	42	37	0.32	10 <0.01	20	3	<0.01	<1	30	858	15	<20	<1	<0.01	<10	<1	<10	12	49
27	47077	40	9.6	0.30	20	1000	<5 <0.01	<1	<1	58	46	0.41	<10 <0.01	26	2	<0.01	2	30	766	15	<20	<1	<0.01	<10	<1	<10	9	46
28	47078	50	5.0	0.23	10	95	<5 <0.01	<1	<1	45	35	0.34	10 <0.01	12	4	<0.01	<1	20	388	10	<20	<1	<0.01	<10	<1	<10	12	40
29	47079	105	6.3	0.22	35	20	<5 <0.01	<1	<1	48	25	0,35	10 <0.01	13	1	<0.01	<1	20	324	10	<20	<1	<0.01	<10	<1	<10	10	44
30	47080	<5	<0.2	0,71	5	80	<5 1.98	<1	11	51	24	2.90	<10 0.49	573	<1	0.08	8	1120	16	<5	<20	80	0.06	<10	80	<10	8	64
31	47081	25	3.0	0.26	15	20	<5 <0.01	<1	<1	47	19	0.37	10 <0.01	15	2	<0.01	<1	20	316	20	<20	<1	<0.01	<10	<1	<10	10	47
32	47082	25	1.5	0.34	40	15	<5 0.01	<1	<1	28	34	0.54	10 <0.01	94	2	<0.01	<1	30	556	30	<20	<1	<0.01	<10	<1	<10	14	- 77
33	47083	70	3.7	0.34	50	5	<5 <0.01	<1	<1	57	34	0.54	10 < 0.01	116	3	<0.01	<1	20	558	30	<20	<1	<0.01	<10	<1	<10	13	69
34	47084	60	2.8	0.33	55	10	<5 <0.01	<1	<1	41	36	0.56	10 < 0.01	59	3	<0.01	<1	30	538	35	<20	<1	<0.01	<10	<1	<10	15	74
35	47109	<5	<0.2	1.36	10	125	5 2.71	<1	12	57	31	3.33 _F	age19 0.99	564	1	0.03	17	1460	32	<5	<20	151	0.06	<10	68	<10	9	212

ECO TECH LABORATORY LTD.

×.

1

ICP CERTIFICATE OF ANALYSIS AK 2005-1355

SOUTHERN RIO RESOURCES

. . . .

Et #.	Tag #	Au(ppb)	Ag	<u>Al %</u>	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
36	47110	<5	<0.2	1.33	10	135	<5	2.61	<1	12	50	43	3.38	<10	0.84	550	1	0.03	16	1450	28	<5	<20	145	0.06	<10	67	<10	8	176
37	47111	<5	<0.2	1.22	30	125	<5	2.84	<1	11	56	20	3.49	<10	0.81	558	<1	0.04	17	1430	30	<5	<20	197	0.06	<10	73	<10	7	209
38	47112	5	<0.2	0.53	10	755	<5	3.35	<1	8	30	40	2.95	10	0.75	554	3	0.04	4	1660	10	<5	<20	125	0.02	<10	72	<10	9	40
39	47113	5	<0.2	1.25	5	175	<5	2.75	<1	13	58	24	3.44	<10	0.81	539	1	0.03	19	1410	38	<5	<20	232	0.06	<10	75	<10	8	372
40	47114	5	<0.2	1.29	5	155	<5	2.64	1	14	57	36	3.55	<10	0.83	505	1	0.03	18	1420	38	<5	<20	192	0.06	<10	76	<10	7	441
41	47116	~F	0.2	1 20	_	450	~5	2 50	^	12	0 2	4.4	2 27	~10	0.69	502	4	0.02	40	1400	00	40	~20	100	0.06	~10	67	-10	~	504
41	47115	~ 5	-0.2	1.20	р г	100	<0 45	2.00	~~~~	13	62	14	3.27	<10	0.00	593	ا ا	0.03	19	1420	98	10	<20	100	0.06	<10	70	<10	8	501
42	47110	5	<0.2	1.13	5	130	<0 	2.00	~1	14	57	4/	3.20	<10	0.76	501	< 	0.03	10	1470	52	10	<20	108	0.06	<10 - 40	70	<10		328
43	47117	5	<0.2	1.32	10.	150	<0 <5	2.69	51	15	15	10	3.45	<10	0.85	506	<1 - 4	0.04	20	1510	42	<0	<20	139	0.08	<10	79	<10	8	335
44	47118	<5	<0.2	1.32	5	160	<0 	2.55	51	15	5/	43	3.45	<10	0.83	490	<1 - 4	0.03	18	1500	40	5	<20	1/4	0.07	<10	70	510	10	345
40	47119	<0	<0.2	1.27	10	145	<0	2.67	<1	15	63	18	3.20	<10	0.93	495	<1	0.03	17	1470	44	10	<20	141	0.07	<10	69	<10	10	304
46	47120	<5	<0.2	1.51	5	105	<5	2.60	<1	16	66	6	3.61	<10	1.22	587	<1	0.04	19	1470	44	10	<20	114	0.06	<10	80	<10	8	260
47	47121	5	<0.2	1.30	10	105	<5	2.80	<1	15	68	7	3.36	<10	0.98	594	<1	0.04	18	1490	32	5	<20	142	0.07	<10	77	<10	8	171
48	47122	<5	<0.2	1.43	5	135	<5	3.20	<1	15	53	10	3.34	<10	1.06	687	<1	0.04	17	1430	30	5	<20	190	0.07	<10	72	<10	8	130
49	47123	5	<0.2	1.56	10	205	<5	3.09	1	13	59	8	3.22	<10	0.96	786	<1	0.03	20	1520	28	<5	<20	180	0.09	<10	74	<10	8	175
50	47124	<5	0.4	1.48	10	125	<5	3.00	3	14	41	24	3.34	<10	0.99	936	3	0.02	18	1550	128	25	<20	106	0.02	<10	38	<10	6	395
51	47125	<5	0.4	1.45	15	185	<5	2.92	3	15	52	35	3.57	<10	0.89	779	1	0.03	19	1510	120	20	<20	137	0.05	<10	56	<10	6	461
52	47126	<5	<0.2	1.47	5	195	<5	3.23	<1	15	54	13	3.64	<10	0.97	649	<1	0.03	21	1490	34	<5	<20	108	0.09	<10	75	<10	7	191
53	47127	<5	<0.2	1.43	10	135	<5	2.63	<1	15	65	29	3.57	<10	1.16	519	<1	0.04	19	1500	36	<5	<20	95	0.07	<10	76	<10	7	180
54	47128	<5	<0.2	1.37	5	315	<5	2.88	<1	12	56	8	3.20	<10	0.97	542	<1	0.04	17	1470	40	<5	<20	370	0.07	<10	71	<10	8	184
55	47129	5	<0.2	1.30	10	100	<5	2.84	<1	14	53	12	3.21	<10	0.97	542	<1	0.03	19	1520	44	<5	<20	114	0.06	<10	69	<10	8	195
		_			_		_						.									_							_	
- 56	47130	<5	<0.2	1.34	5	100	<5	2.94	<1	14	49	26	3.15	<10	0.87	565	<1	0.03	18	1490	46	<5	<20	124	0.06	<10	69	<10	- 7	181
57	47131	<5	<0.2	1.30	5	525	<5	2.64	1	11	64	20	3.10	<10	0.85	519	<1	0.04	18	1460	54	<5	<20	131	0.06	<10	80	<10	7	234
58	47132	<5	<0.2	1.54	10	135	<5	3.08	<1	14	47	17	3.32	<10	0.97	627	1	0.03	18	1480	78	5	<20	180	0.06	<10	78	<10	7	222
59	47133	<5	1.0	1.43	10	295	<5	2.51	2	15	53	32	3,43	<10	0.84	584	1	0.02	20	1560	298	<5	<20	106	0.06	<10	48	<10	6	567
60	47134	<5	0.8	1.49	10	325	<5	2.50	3	13	46	34	3.46	<10	0.85	599	2	0.02	18	1560	300	<5	<20	113	0.06	<10	4/	<10	1	730
61	47135	<5	0.4	1.47	5	205	5	3.26	1	16	42	11	3.15	<10	0.98	849	<1	0.02	20	1510	62	10	<20	97	0.07	<10	45	<10	6	498
62	47136	<5	0.4	1.67	10	320	<5	2.16	2	14	42	16	3.35	<10	0.85	902	2	0.02	23	1520	62	5	<20	74	0.08	<10	54	<10	6	1270
63	47137	<5	1.4	1.90	35	230	<5	2.34	4	22	51	10	4.05	<10	0.87	1451	1	0.03	27	1550	160	<5	<20	147	0.08	<10	64	<10	3	1621
64	47138	<5	0.7	0.60	15	60	<5	0.45	2	7	50	20	1.44	<10	0.14	247	2	0.02	9	700	52	10	<20	26	0.02	<10	12	<10	8	350
65	47139	<5	1.2	0.23	20	30	<5	0.16	1	<1	78	14	0.27	<10	0.02	41	6	0.03	2	30	76	<5	<20	9	<0.01	<10	<1	<10	7	175
66	47140	30	2.0	2.34	40	435	<5	3.16	<1	17	46	12	3.62	<10	1.10	761	<1	0.08	22	1380	180	<5	<20	122	0.10	<10	72	<10	7	144
67	47141	15	22	0.20	35	10	، ۲۶	0.02	ء ا	<1	21	13	0 34	<10	<0.01	90	<1	<0.01	<1	40	216	20	<20	<1	<0.01	<10	5	<10	4	48
68	47140	15	2.2	0.20	45	10	~5	0.02	~1	21	10	10	0.34	<10	<0.01	168	<1	<0.01	<1	60	480	45	<20	<1	<0.01	<10	Ř	<10	6	56
60	47143	, F	17	0.20	35	10	<5	0.02	<1	<1	20	16	0.00	<10	<0.01	301	<1	<0.01	<1	40	662	20	<20	<1	<0.01	<10	3	<10	5	39
70	47143	5	1.r 2.1	0.31	25	5	<5	0.01	~1	21	20	14	0.20	10	<0.01	490	<1	<0.01	<1	40	748	15	<20	<1	<0.01	<10	ž	<10	6	38
10	4/144	5	2.1	0.50	25	5	~5	0.02			21	14	0.21	10	~0.01	450	~1	-0.01	~,	40	740	15	~20		-0.01	-10	-		Ŷ	00
71	47145	5	1.9	0.24	25	10	<5	0.01	<1	<1	20	13	0.23	<10	<0.01	348	<1	<0.01	<1	40	518	15	<20	1	<0.01	<10	2	<10	8	42
72	47146	5	2.3	0.23	15	10	<5	<0.01	<1	<1	17	11	0.18	10	<0.01	346	<1	<0.01	<1	40	572	15	<20	<1	<0.01	<10	1	<10	8	34
73	47147	5	2.4	0.26	45	5	<5	0.01	<1	<1	17	23	0.29	10	<0.01	774	<1	<0.01	<1	50	1042	20	<20	<1	<0.01	<10	<1	<10	7	49
74	47148	10	2,3	0.27	40	10	<5	0.01	<1	<1	27	13	0.24	10	<0.01	272	<1	<0.01	1	40	428	10	<20	<1	<0.01	<10	1	<10	8	43
75	47149	5	1.8	0.26	90	5	<5	0.01	<1	<1	22	25	0.55	<10	<0.01	74	<1	<0.01	1	60	456	10	<20	<1	<0.01	<10	<1	<10	7	75
76	47150	15	4.7	0.27	105	15	<5	0.01	<1	<1	24	32	0.77	<10	<0.01	39	<1	<0.01	<1	70	524	10	<20	<1	<0.01	<10	<1	<10	10	97

													:								١		ì	•))		1		
ECO TEC) .							l		RTIF	CATE	OF ANAL	YSIS	AK 20)05-	1355					sout	HERI	N RIO	RESO	URC	ES		
<u> </u>	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Сг	Cu	Fe %	La Mg	g %	Mn	Mo	<u>Na %</u>	Ni	Р	Pb	Sb	Sn	<u>Sr</u>	<u>Ti %</u>	<u> </u>	v	w	<u> </u>	Zn
~~~~																														
<u>QC DATA</u> Resplit:	<u>li</u>																													
1	47051	25	16.2	0.24	645	15	<5	0.01	<1	<1	49	36	0.86	<10 <0	).01	27	<1	<0.01	<1	50	1488	15	<20	<1	<0.01	<10	<1	<10	з	90
36	47110	<5	<0.2	1.38	10	130	<5	2.69	<1	12	53	55	3.54	<10 0	.86	573	1	0.03	17	1490	32	<5	<20	147	0.06	<10	71	<10	9	184
71	47145	5	1.8	0.23	25	10	<5	0.01	<1	<1	17	12	0.22	10 <0	).01	313	<1	<0.01	<1	40	502	15	<20	<1	<0.01	<10	2	<10	8	42
Repeat:																														
1	47051	15	13.2	0.24	510	20	<5	<0.01	<1	<1	60	32	0.84	<10 <0	). <b>0</b> 1	24	<1	<0.01	<1	50	1388	20	<20	<1	<0.01	<10	<1	<10	4	87
10	47060	35	5.4	0.33	110	25	<5	0.01	<1	<1	73	40	0.78	<10 <0	1.01	135	4	<0.01	2	60	696	15	<20	1	<0.01	<10	<1	<10	8	100
19	47069	5	1.7	0.37	60	15	<5	0.01	<1	<1	43	41	0.64	10 <0	1 <b>.0</b> 1	84	2	<0.01	<1	130	644	5	<20	<1	<0.01	<10	<1	<10	17	97
36	47110	<5	<0.2	1.41	15	145	<5	2.71	<1	12	55	44	3.5 <del>9</del>	<10 0	.87	570	<1	0.03	17	1530	34	<5	<20	151	0.07	<10	72	<10	8	188
45	47119	<5	<0.2	1.32	5	145	<5	2.73	<1	15	64	18	3.40	<10 0	.96	507	<1	0.03	20	1500	44	10	<20	146	0.08	<10	73	<10	9	310
54	47128	<5	<0.2	1.38	10	315	<5	2.88	<1	13	58	8	3.34	<10 0	.95	543	<1	0.04	19	1450	44	<5	<20	359	0.07	<10	75	<10	8	194
71	47145	5	1.9	0.26	25	10	<5	0.01	<1	<1	20	13	0.23	10 <0	0.01	307	<1	<0.01	<1	40	488	15	<20	<1	<0.01	<10	2	<10	8	42
Standard																														
GEO '05			1.5	1.32	60	145	<5	1.19	<1	19	59	84	3.39	<10 0	.69	521	<1	0.03	28	600	20	<5	<20	54	0.11	<10	70	<10	10	74
GEO '05			1.5	1.36	60	155	<5	1.23	<1	20	58	86	3.49	<10 0	1.71	535	<1	0.03	29	600	20	<5	<20	56	0.11	<10	70	<10	10	73
GEO '05			1.5	1.29	60	140	<5	1.17	<1	19	59	85	3.39	<10 0	.67	520	<1	0.02	28	620	20	<5	<20	53	0.10	<10	70	<10	9	72
SH13 SH13 SH13		1290 1275 1305																												

JJ/ga df/1332 XLS/05

÷

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

27-C ....

10041 Dallas Drive KAMLOOPS, B.C.

Phone: 250-573-5700

Fax : 250-573-4557

V2C 6T4

ECO TECH LABORATORY LTD.

1

ICP CERTIFICATE OF ANALYSIS AK 2005-1354

1

2

1 SOUTHERN RIO RESOURCES

1

1

- 1 S ...

1

1

1

1

Suite 1410, 650 W Georgia Box 11584 Vancouver, BC, V6B 4N8

ATTENTION: LINDSAY BOTTOMER

No. of samples received: 19 Sample Type: Core Project #: n/a Shipment #: n/a Samples submitted by:n/a

Values in ppm unless otherwise reported

ł

ì

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi Ca %	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn	Mo Na%	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	W	Y	_Zn
1	E47085	85	2.2	0.42	65	15	<5 <0.01	1	<1	18	40	0.70	20 < 0.01	95	4 <0.01	2	20	624	35	<20	2	<0.01	<10	<1	<10	13	82
2	E47086	190	3.6	0.42	115	15	<5 <0.01	1	4	35	40	0.49	20 <0.01	1747	3 <0.01	3	20	2006	35	<20	1	<0.01	<10	<1	<10	14	72
3	E47087	225	4.6	0.45	35	15	<5 <0.01	<1	<1	30	21	0.43	20 <0.01	314	2 <0.01	2	<10	638	35	<20	1	<0.01	<10	<1	<10	12	· 70
4	E47088	335	4.3	0.41	60	15	<5 <0.01	1	<1	33	27	0.78	20 <0.01	104	3 <0.01	.2	20	546	45	<20	1	<0.01	<10	<1	<10	11	90
5	E47089	110	2.2	0.45	80	10	<5 <0.01	1	<1	27	18	0.52	20 <0.01	349	2 <0.01	1	<10	690	25	<20	2	<0.01	<10	<1	<10	13	73
6	E47090	105	1.9	0.53	100	10	<5 <0.01	1	1	31	19	0.49	20 <0.01	483	3 <0.01	1	30	1032	25	<20	2	<0.01	<10	<1	<10	11	71
7	E47091	190	14.6	0.45	35	15	<5 <0.01	<1	<1	28	22	0.40	20 <0.01	36	2 <0.01	1	20	354	25	<20	1	<0.01	<10	<1	<10	9	58
8	E47092	265	6.2	0.54	70	10	<5 <0.01	1	1	26	29	0.63	20 <0.01	608	4 <0.01	2	40	1098	35	<20	1	<0.01	<10	<1	<10	9	73
9	E47093	55	19.3	0.42	35	100	<5 <0.01	<1	<1	28	27	0.71	20 <0.01	20	2 <0.01	2	<10	408	20	<20	1	<0.01	<10	<1	<10	7	51
10	E47094	90	26.5	0.42	30	85	<5 <0.01	<1	<1	27	35	0.69	20 <0.01	35	3 <0.01	2	40	434	20	<20	1	<0.01	<10	<1	<10	7	53
11	E47095	5	0.3	0.91	<5	60	<5 2.25	<1	11	37	19	2.93	20 0.70	639	<1 0.07	4	1330	10	<5	<20	88	0.09	<10	80	<10	11	54
12	E47096	35	17.3	0.40	185	430	<5 <0.01	2	<1	19	95	0.69	10 <0.01	16	1 <0.01	5	20	672	10	<20	1	<0.01	<10	<1	<10	6	83
13	E47097	95	2.7	0.49	965	25	<5 <0.01	6	<1	32	36	0.85	10 <0.01	520	2 <0.01	2	10	2164	15	<20	2	<0.01	<10	<1	<10	6	99
14	E47098	530	>30	0.37	4780	375	15 <0.01	40	<1	31	178	1.39	<10 <0.01	42	2 <0.01	10	<10	9440	30	<20	4	<0.01	<10	<1	<10	8	261
15	E47099	390	9.5	0.45	485	20	<5 <0.01	6	2	33	43	1.60	20 <0.01	1036	4 <0.01	2	30	1706	55	<20	2	<0.01	<10	<1	<10	7	162
16	E47100	165	10.1	0.49	2010	25	15 <0.01	17	<1	30	41	1.79	10 <0.01	794	2 <0.01	1	20	3694	45	<20	5	<0.01	<10	<1	<10	7	162
17	E11671	70	9.4	0.49	95	575	<5 <0.01	2	<1	37	37	1.23	10 <0.01	156	6 <0.01	2	60	542	45	<20	2	<0.01	<10	<1	<10	7	108
18	E11672	185	6.6	0.52	150	40	<5 <0.01	2	<1	28	21	0.98	20 <0.01	31	3 <0.01	<1	10	504	55	<20	2	<0.01	<10	<1	<10	7	85
19	E11673	165	6.7	0.58	65	90	<5 <0.01	1	<1	27	24	0.96	10 <0.01	95	6 <0.01	1	<10	492	20	<20	2	<0.01	<10	<1	<10	7	88
QC DATA																											
1	E47085	90	2.3	0.40	65	20	<5 <0.01	1	1	17	40	0.70	20 <0.01	165	4 <0.01	2	50	698	40	<20	1	<0.01	<10	<1	<10	13	83

26-C

÷

_____

I

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

#### ICP CERTIFICATE OF ANALYSIS AK 2005-1345

1

ł

1

1

1

1

SOUTHERN RIO RESOURCES Suite 1410, 650 W Georgia Box 11584 Vancouver, BC, V6B 4N8

1

1

#### ATTENTION: LINDSAY BOTTOMER

~ - - -

ì

No. of samples received: 52 Sample Type: Core **Project #: Davidson** Shipment #: 2005-03 Samples submitted by: David Pawliuk

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	<u>Sr</u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u>Y</u>	<u>     Zn</u>
1	12301	0.3	1.36	5	140	5	2.60	3	15	48	17	4.05	10	0.66	834	3	0.03	19	1550	110	<5	<20	98	<0.01	<10	52	<10	7	885
2	12302	0.8	1.30	5	195	<5	2.36	5	18	47	78	3.46	10	0.45	1225	2	0.03	20	1420	98	25	<20	81	0.04	<10	33	<10	6	951
3	12303	0.5	1.53	5	165	<5	1.16	4	19	43	7	3.85	20	0.51	988	3	0.02	23	1530	64	<5	<20	32	0.01	<10	28	<10	7	1249
4	12304	0.8	1.37	10	125	<5	1.75	2	15	37	27	3.28	10	0.61	815	3	0.02	20	1530	70	5	<20	57	<0.01	<10	30	<10	5	907
5	12305	0.2	1.28	5	110	5	2.64	4	16	38	6	3.93	10	0.59	841	3	0.03	20	1490	98	<5	<20	139	<0.01	<10	49	<10	8	1096
6	12306	0.7	1.21	5	130	<5	2.11	3	15	50	25	3.65	10	0.49	911	3	0.03	20	1470	96	5	<20	52	<0.01	<10	41	<10	8	1093
7	12307	0.7	0.94	<5	120	<5	1.98	3	12	43	81	2.67	10	0.30	674	1	0.03	18	1500	166	10	<20	143	0.04	<10	32	<10	8	730
8	12308	0.3	0.82	<5	155	<5	1.70	5	12	53	18	2.36	10	0.22	636	<1	0.03	18	1610	100	<5	<20	129	0.06	<10	28	<10	10	618
9	12309	0.2	1.08	5	130	5	2.30	3	14	42	13	3.30	10	0.44	784	1	0.03	18	1500	108	<5	<20	166	0.05	<10	41	<10	8	590
10	12310	0.3	1.25	5	130	<5	2.62	2	15	52	26	3.66	10	0.71	819	2	0.03	17	1540	118	<5	<20	239	0.04	<10	54	<10	9	484
11	12311	0.2	1.22	5	120	10	2.83	3	15	46	14	3.56	10	0.69	784	2	0.03	18	1520	126	<5	<20	152	0.04	<10	52	<10	9	524
12	12312	0.2	0.99	5	100	5	2.10	3	16	56	16	3.39	10	0.53	656	2	0.03	18	1550	134	<5	<20	237	0.06	<10	47	<10	8	480
13	12313	0.2	1.28	5	100	5	3.09	4	17	49	11	3.88	10	0.95	941	1	0.03	18	1530	142	<5	<20	283	0.05	<10	61	<10	9	474
14	12314	0.2	1.42	10	185	10	2.74	3	18	54	13	3.93	10	0.89	1040	1	0.03	18	1540	130	<5	<20	232	0.04	<10	58	<10	7	609
15	12315	0.3	1. <b>12</b>	5	170	5	2.61	3	15	44	18	3.77	10	0.60	854	<1	0.03	18	1530	140	<5	<20	213	0.06	<10	57	<10	9	466
16	12316	0.3	1.06	<5	105	<5	2.50	3	14	60	17	3.45	10	0.64	779	<1	0.03	17	1510	132	<5	<20	262	0.08	<10	54	<10	10	434
17	12317	0.4	0.94	<5	130	5	2.09	3	14	52	19	3.50	10	0.39	770	2	0.03	17	1580	124	<5	<20	271	0.06	<10	49	<10	11	525
18	12318	0.4	1.18	<5	140	5	1.88	5	20	53	16	3.85	10	0.46	885	2	0.03	19	1560	120	<5	<20	212	0.02	<10	41	<10	9	905
19	12319	0.6	0.77	<5	115	<5	1.46	3	11	37	16	2.57	10	0.21	573	<1	0.02	13	1650	64	<5	<20	99	0.05	<10	30	<10	11	733
20	12320	0.7	0.84	<5	105	<5	2.05	4	15	57	25	3.26	10	0.28	835	1	0.03	17	1550	58	<5	<20	180	0.06	<10	35	<10	10	721
																					_								
21	12321	0.7	0.82	<5	115	<5	1.68	2	12	41	25	2.62	10	0.23	746	<1	0.03	14	1540	60	<5	<20	165	0.06	<10	29	<10	12	610
22	12322	1.8	0.80	5	120	<5	1.45	4	10	55	55	2.71	10	0.21	608	<1	0.02	14	1580	78	<5	<20	78	0.04	<10	25	<10	10	759
23	12323	2.1	0.88	<5	125	<5	1.72	5	11	46	51	2.63	10	0.29	852	<1	0.02	15	1490	86	5	<20	99	0.03	<10	26	<10	9	906
24	12324	1.0	1.18	<5	105	5	1.94	2	14	42	26	3.16	10	0.46	1069	3	0.02	15	1490	64	5	<20	135	0.01	<10	30	<10	8	658
25	12325	1.7	1.28	15	95	<5	1.86	2	16	46	33	3.78	10	0.61	1412	3	0.02	19	1520	90	<5	<20	129	0.02	<10	36	<10	6	842
				_		_										~			4500			-00	4.40	0.00	-40	24	~10	E	549
26	12326	0.6	1.30	5	105	5	1.88	1	16	43	13	3.43	10	0.61	1015	3	0.02	19	1520	98	<0	<20	140	0.02	<10	24	<10	- U - U	603
27	12327	1.3	1.04	10	105	<5	1.98	3	15	45	48	3.02	<10	0.44	924	ა ი	0.03	19	1640	140	<0 ~E	<20	247	0.02	<10	32	<10	o p	333
28	12328	0.7	0.92	5	110	<5	2.38	2	13	30	29	3.41	10	0.50	09/	4	0.02	10	1000	142	~0 ~E	~20	04/ 070	0.04	<10	30	<10	10	207
29	12329	0.4	1.02	<5	115	<5	2,23	3	14	46	22	3.65	<10	0.47	731	3	0.03	17	1010	160	<0 ~F	<20	210	0.05	~10	41	~10	10	604
30	12330	0.8	1.05	5	105	5	2.25	3	14	44	35	3.74	<10	0.57	743	2	0.02	16	1240	102	S0	<2U	220	0.04	×10	40	~10	э	034

# CERTIFICATE OF ASSAY AK 2005-1345

## SOUTHERN RIO RESOURCES

Suite 1410, 650 W Georgia Box 11584 **Vancouver, BC, V6B 4N8** 

ATTENTION: LINDSAY BOTTOMER

No. of samples received: 52 Sample Type: Core **Project #: Davidson Shipment #: 2005-03** Samples submitted by: David Pawliuk

		Au	Au	
ET #.	Tag #	(g/t)	<u>(oz/t)</u>	
1	12301	< 0.03	<0.001	
2	12302	<0.03	<0.001	
3	12303	<0.03	<0.001	
4	12304	<0.03	<0.001	
5	12305	<0.03	<0.001	
6	12306	<0.03	<0.001	
7	12307	<0.03	<0.001	
8	12308	<0.03	<0.001	
9	12309	<0.03	<0.001	
10	12310	<0.03	<0.001	
11	12311	<0.03	<0.001	
12	12312	<0.03	<0.001	
13	12313	<0.03	<0.001	
14	12314	<0.03	<0.001	
15	12315	<0.03	<0.001	
16	12316	<0.03	<0.001	
17	12317	<0.03	<0.001	
18	12318	<0.03	<0.001	
19	12319	<0.03	<0.001	
20	12320	<0.03	<0.001	
21	12321	<0.03	<0.001	
22	12322	<0.03	<0.001	
23	12323	<0.03	<0.001	
24	12324	<0.03	<0.001	
25	12325	<0.03	<0.001	
26	12326	<0.03	<0.001	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

26-Oct-05

~

36	12336	<0.03	<0.001
Standaro	l:		
OX140		1.84	0.054
OX140		1.89	0.055

JJ/kk XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

## DIAMOND DRILL HOLE LOGS

ز

DAV05-01		logged by Dan Meldrum and Dave Pawliuk
started Sept 17,	2005	completed Sept 23, 2005
Core BTW		Length 302.97 m
Northing 5,893,4	10m	Easting 375,345m
Target: Presum	ed NW trend	ling fault, magnetic contact feature, and VLF-EM conductor within "Zinc Zone". Same collar site as earlier hole DAV-15. Collar azimuth 225 degrees, inclination -50 degrees.
DAV 05-01 Fron	То	Description
Major 0	3.9	CASING; gravel and rubble.
Survey 0		Az 225; dip -50 head
Major 3.9	72.54	Rhyolite (felsic) welded lapilli tuff. Pale greenish cream to chalky white. 5% to 10% lensoid lapilli average 10 to 12 mm across (max. 7 cm across). Matrix mainly medium grained ash tuff with finely laminated (mm scale) interbeds up to 8 cm thick. Wispy, glassy shards have locally been welded together to form rock. Siliceous rock unit comprised of 40 % to 50 % silica overall. Traces to 0.5 % pyrite as dusty disseminations and as blebby masses to 2.5 mm across. Pyrite also occurs as subhedral cubes up to 3 mm across. Local traces galena as blebs 1 to 2 mm across and as sooty smears 1 mm by 5 or 6 mm across. Local traces sphalerite occurring as smears much like galena within hole. Very dark brown to black manganese(?) oxides coat weathered fracture surfaces above 21.0 m depth. Lapilli-size clasts generally appear to be more sericite-altered than the ash tuff matrix within this rock unit.
Minor 17	34.3	Traces disseminated pyrite. Galena clot at 27.82 m depth (photo taken) surrounded by pinkish carbonate. Finely disseminated specks of blackish mineral (galena?) form up to 0.5 % rock volume. Rock locally brecciated and healed by pale grey silica. Bedding attitudes range from perpendicular to parallel the core axis, and bedding is locally very contorted.
Minor 34.3	42	FAULT ZONE. Finely broken core. Cannot determine orientation.
Point 34.5		Watery grey, fine chalcedonic banding.
Minor 42	69	Local intervals of finely broken core.
Point 45.45	5	Dark grey-black submetallic hematite(?) or galena, finely disseminated within elongate masses up to 8 mm in length.
Point 48.6		Narrow feldspar porphyry dyke(?). Euhedral feldspar crystals up to 3 or 4 mm across within greenish, soft, waxy, clay- altered matrix.
Point 58.8		Photo taken of galena smears. Here also is reddish brown sphalerite.
Minor 69	72.4	Finely to moderately broken core. Probable fault.
Major 72.54	73.52	Fault. Soft, finely crushed core and clayey gouge.
Major 73.52	129	FELSIC LAPILLI TUFF. Pale greyish cream colour, soft, chalky, clay-rich rock; brecciated. Generally moderately broken core. Local to 0.5 % dark grey metallic hematite or galena. Local traces reddish brown sphalerite.
Minor 120.4	121.62	Moderately silicified patches.
Minor 123.1	4 124.05	Moderately silicified patches.
Major 129	132.6	DACITE(?). Medium brownish grey, non-magnetic, fresh, competent rock with 2 to 3 % shreddy brown biotite.
Major 132.6	5 158.5	DACITE(?) LAPILLI TUFF. Light greyish green, chalky. Numerous faults marked by intervals of finely broken core. Black, dark green and pale green polymictic lapilli average about 10 mm across. 1 to 2 % finely disseminated pyrite; traces to 1 % red-brown sphalerite as angular grains to 1 mm across.
18/01/200	3	Page 1 of 6

į

L

The state of the second s

ι

1.112

L

· · · · ·

L

ţ

Ŀ.

TK05-09

i

DAV 05-0	1 From	To	Description
Point	133.7		Fault. Graphitic slip at about 80 degrees to c.a.
Minor	143.7	143.8	White and pale grey, finely banded (mm scale) ash tuff (or siltstone).
Minor	149.8	150.15	As for 143.7 - 143.8 m depth above, except here rock pale green-grey, brecciated and healed by fine, grey carbonate veinlets. Trace to 1 % pyrite, 1 to 2 % red-brown sphalerite or garnet grains to 1 mm across.
Point	158.3		Fault. Graphite(?) within soft, dark grey-black gouge band 1 cm wide at 75 to 80 degrees to core axis.
Major	158.5	166.73	FAULT ZONE. 80 to 90 % of interval crushed, very finely broken, dark greyish brown to greenish brown rock. White to greenish white calcite veinlets, randomly oriented, mostly 1 to 2 mm wide form say 3 % rock volume. Traces py often in or near calcite veins; pyrite as disseminated grains up to 2 mm across.
Major	166.73	254	DACITE(?) OR ANDESITE FLOW. Medium grey-brown, fine grained with 1 to 3 % pyrrhotite as blebby masses average about 3 mm across. Traces chalcopyrite throughout as irregular, wispy masses. Biotite-altered rock. Biotite very fine grained, gives rock brown colour. Rock often weakly magnetic. Flow contains calcite amygdules up to 5 mm across that form up to 5 % of rock volume. Local lithic ash tuff / lapilli tuff interbeds comprise up to 10 % of rock unit volume; these tuff interbeds generally pervasively moderately silicified and also have bleached patches.
Point	225.98		Milky white calcite yein contains pyrite clot 3 to 4 cm wide.
Minor	249.38	250.68	Moderately sheared and brecciated interval healed by milky white calcite that contains pyrite veinlets up to 3 mm wide. Pyrite mainly as irregular masses 2 to 4 mm across.
Major	254	302.97	ANDESITE PORPHYRY. Brownish green to dark green-grey. Light grey, blocky plagioclase phenocrysts average 2 mm by 4 mm across, and form 5 % to 35 % of rock volume. Matrix very fine grained, aphanitic, weakly biotite-altered. More pyrite and less pyrrhotite and chalcopyrite than within overlying dacite. Fresh, competent rock. Excellent core recovery.
Minor	283.25	286	Numerous calcite-filled amyodules 10 mm across.
Point	286.5		Pale green, very soft mineral (dickite?) forms vein 4 mm wide; no reaction to HCI.
Point	297.4		Pyrite mass 3 mm by 50 mm across within calcite vein.
Minor	300	302.97	FAULT. Bleached light grey, moderately sericite- and clay-altered, very finely broken and crushed core.
Major	302.97		end of hole.
			Collar azimuth 225 degrees, inclination -50 degrees.
			Inclination -48.5 degrees at 163.68 m depth (acid test).
			Inclination -45.5 degrees at 252.07 m depth (acid test).
Sample	3.9	6	12074
Sample	6	8	12075
Sample	8	10	12076
Sample	10	12	12077
Sample	12	14	12078
Sample	14	16	12079
Sample	16	18	12080
Sample	18	20	12081
Sample	20	22	12082
Sample	22	24	12083
Sample	24	26	12084

i

i

....

ł

ì

L 1

į

i.

i

÷.

ί

÷.

÷

i l

DAV 05-0	1 From	То	Description	
Sample	26	27	12085	
Sample	27	28	12086	
Sample	28	30	12087	
Sample	30	32	12088	
Sample	32	34	12089	
Sample	34	36	12090 duplicate pair	
Sample	34	36	12091 duplicate pair	
Sample			12092 BLANK	
Sample	36	38	12093	
Sample	38	40	12094	
Sample	40	42	12095	
Sample	42	44	12096	
Sample	44	46	12097	
Sample	46	48	12098	
Sample	48	50	12099	
Sample	50	52	12100	
Sample	52	54	12101	
Sample	54	56	12102	
Sample	56	58	12103	
Sample	58	60	12104	
Sample	60	62	12105	
Sample	62	64	12106	
_	64	66.59	LOST CORE, NO SAMPLE.	
Sample	66.59	68	12107	
Sample	68	70	12108	
Sample	70	72	12109	
Sample	72	74	12110	
Sample	74	76	12111 duplicate pair	
Sample	/4	76	12112 duplicate pair	
Sample	70	70	12113 BLANK SAMPLE	
Sample	/6	78		
Sample	78	80.	12115	
Sample	80	82	12110	
Sample	82	84	12117	
Sample	84 96	00	12118	
Sample	00	00		
Sample	00	90 00		
Sample	90 90	92		
Sample	92	94 06		
Sample	94 06	00 90	1212J 1212A	
Cample	90	20		

t t

L L L L L

DAV 05-0	1 From	То	Description
Sample	98	100	12125
Sample	100	102	12126
Sample	102	104	12127
Sample	104	106	12128
Sample	106	108	12129
Sample	108	1 <b>1</b> 0	12130
Sample	110	112	12131 duplicate pair
Sample	110	112	12132 duplicate pair
Sample			12133 BLANK SAMPLE
Sample	112	114	12134
Sample	114	116	12135
Sample	116	118	12136
Sample	118	120	12137
Sample	120	122	12138
Sample	122	124	12139
Sample	124	126	12140
Sample	126	128	12141
Sample	128	130	12142
Sample	130	132	12143
Sample	132	134	12144
Sample	134	136	12145
Sample	136	138	12146
Sample	138	140	12147
Sample	140	142	12148
Sample	142	144	12149
Sample	144	146	12150
Sample	146	147.52	12151
Sample	147.52	149	LOST CORE. NO SAMPLE.
Sample	149	150	12152
Sample	149	150	12153
Sample			12154 BLANK SAMPLE
Sample	150	152	12155
Sample	152	154	12156
Sample	154	156	12157
Sample	156	158	12158
Sample	158	160	12159
Sample	160	162	12160
Sample	162	164	12161
Sample	1 <b>64</b>	166	12162
Sample	166	168	12163
Sample	168	170	12164

L L

(a) Sector Sector (a) Anna (a)

Page 4 of 6

the total the terms of the formation of the

4

i

DAV 05-0	1 From	То	Description
Sample	170	172	12165
Sample	172	174	12166
Sample	174	176	12167
Sample	176	178	12168
Sample	178	180	12169
Sample	180	182	12170
Sample	182	184	12171
Sample	184	186	12172 duplicate pair
Sample	184	186	12173 duplicate pair
Sample			12174 BLANK SAMPLE
Sample	186	188	12175
Sample	188	190	12176
Sample	190	192	12177
Sample	192	194	12178
Sample	194	196	12179
Sample	196	198	12180
Sample	198	200	12181
Sample	200	202	12182
Sample	202	204	12183
Sample	204	206	12184
Sample	206	208	12185
Sample	208	210	12186
Sample	210	212	12187
Sample	212	214	12188
Sample	214	216	12189
Sample	216	218	12190
Sample	218	220	12191 duplicate
Sample	218	220	12192 duplicate
Sample			12193 BLANK SAMPLE
Sample	220	222	12194
Sample	222	224	12195
Sample	224	226	12196
Sample	226	228	12197
Sample	228	230	12198
Sample	230	232	12199
Sample	232	234	12200
Sample	234	236	12201
Sample	236	238	12202
Sample	238	240	12203
Sample	240	242	12204
Sample	242	244	12205
	DAV 05-0 Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample	DAV 05-01 From       Sample     170       Sample     172       Sample     174       Sample     176       Sample     178       Sample     180       Sample     180       Sample     182       Sample     184       Sample     184       Sample     186       Sample     190       Sample     192       Sample     192       Sample     194       Sample     192       Sample     194       Sample     196       Sample     196       Sample     196       Sample     196       Sample     200       Sample     200       Sample     201       Sample     204       Sample     205       Sample     210       Sample     210       Sample     210       Sample     214       Sample     218  S	DAV 05-01 From     To       Sample     170     172       Sample     172     174       Sample     174     176       Sample     176     178       Sample     176     178       Sample     176     178       Sample     180     182       Sample     180     182       Sample     184     186       Sample     190     192       Sample     190     192       Sample     194     196       Sample     198     200       Sample     198     200       Sample     200     202       Sample     204     206       Sample     205     208       Sample     210     212       Sample     210     212       <

k

. 1 i i

÷

Page 5 of 6

DAV 05-0	DAV 05-01 From		Description
Sample	244	246	12206
Sample	246	248	12207
Sample	248	250	12208
Sample	250	252	12209
Sample	252	254	12210
Sample	254	256	12211 duplicate pair
Sample	254	256	12212 duplicate pair
Sample			12213 BLANK
Sample	256	258	12214
Sample	258	260	12215
Sample	260	262	12216
Sample	262	264	12217
Sample	264	266	12218
Sample	266	268	12219
Sample	268	270	12220
Sample	270	272	12221
Sample	272	274	12222
Sample	274	276	12223
Sample	276	278	12224
Sample	278	280	12225
Sample	280	282	12226
Sample	282	284	12227
Sample	284	286	12228
Sample	286	288	12229
Sample	288	290	12230
Sample	290	292	12231 duplicate pair
Sample	290	292	12232 duplicate pair
Sample			12233 BLANK
Sample	292	294	12234
Sample	294	296	12235
Sample	296	298	12236
Sample	298	300	12237
Sample	300	302	
Sample	302	302.97	12239 END OF HOLE

l i

and the second second

L L L L L L

ί

i.

DAV05-02			logged by Dave Pawliuk and Anthony Margarit completed Sept 27, 2005						
started Sept :	23, 2005								
Core BTW			Length 237.6 m						
Northing 5,89	92,799m		Easting 375,180m						
Target: With	in zone of	f high res	istivity and coincident gold in soil anomaly. SE trending VLF-EM conductor and SE trending fault.						
			Collar azimuth 225 degrees; inclination -50 degrees.						
DAV 05-02	From	То	Description	_					
Major	0	6.7	CASING ; Overburden; sandy till						
Major	6.7	64.8	RHYOLITE TUFF. Light greenish grey, medium to coarse grained, matrix supported lapilli tuff with 5 to 20% angular, mainly felsic lapilli averaging about 12mm across, max 6 cm. Weakly chlorite - altered throughout (greenish cast to rock). Local poorly developed stratification or bedding at ~50 degrees to core axis. Abundant orange-brown lmnt coats fracture sfcs down to 35.66 m depth; local lmnt coating fractures down to 82 m depth. Traces to local 4 % diss py throughout. Locally po as blebby masses up to 7 x 2.5 mm across; these often contain inclusions of irregular cp masses up to 2 mm across, as at 56.4m depth. Py mostly within irregular, branching masses. Weakly sericite-altered some carbonate present.	;					
Minor	14.33	51	Traces to 2% reddish-brown sphalerite as subhedral xtals to 5 mm across.						
Minor	64.64	64.8	It; soft, finely crushed core.						
Major	64.8	98.2	Rhyodacite(?) lapilli tuff. Locally weakly chlorite-altered.						
Major	98.2	237.6	RHYOLITE TUFF. As for 6.7 to 64.8 m depth above.						
Minor	106.1	106.4	Fault; finely crushed, soft, broken core.						
Minor	108,8	110	5% py within diss mass 28 x 14 mm across; here 2% sphalerite as masses to few mm across.						
Minor	112.3	125.7	Intensely silicified, light green chert interval with 1% to 2% each pyrite (finely diss within blocky masses averaging 3 to 5 mm across), sphalerite (reddish-brown subhedral xtals to 7 mm). Traces po as blebby masses which include irregular, branching inclusions of chalcopyrite. Cherty interval faintly laminated at about 40 degrees to c.a.						
Minor	148,44	148.8	Fault; soft, finely crushed core and clayey gouge; cannot determine orientation.						
Minor	154	158	1 to 2 % finely disseminated chalcopyrite as irregular, wispy masses. 1 % pyrite, traces pryrrhotite.						
Minor	157.5	175.6	2 to 3 % reddish-brown garnet with traces sphalerite as blocky masses up to 25 or 30 mm across, usually with inclusions of cpy.						
Point		165	Sphalerite (garnet?) band 4mm wide replacing band within cherty, finely laminated ryholite; laminae at 28 degrees to c.a.						
Minor	175.6	217.7	1% reddish brown garnet / sphalerite(?).						
Point		181	Sph(?) masses up to 5 cm long x 1 cm wide						
Point		199.6	10% reddish brown garnet or sph(?) across 10 cm; 1% py irreg v/ts to 1.5 mm wide .						
Minor	209.4	210	GROUND CORE; pea-sized core pieces in box						
Minor	217.7	237.6	2 to 3% dark brown garnet (sphalerite ?) mostly as blocky masses 3 to 4 mm across, locally with cpy inclusions.						
Major	237	237.6	FAULT. 20 cm light green clayey and sandy gouge. Also core with pea-size gravel from bottom of interval. Cannot determine orientation.						
Major			237.6 m END OF HOLE.						
18/01/2006			Page 1 of 4						

the test of te

DAV 05-02	From	То	Description
Survey			Acid test -46 degrees at 106.68 m depth. Acid test -49 degrees at 227.69 m depth.
Sample	6.63	8	12240 - TOP OF HOLE
Sample	8	10	12241
Sample	10	12	12242
Sample	12	14	12243
Sample	14	16	12244
Sample	16	18	12245
Sample	18	20	12246
Sample	20	22	12247
Sample	22	24	12248
Sample	24	26	12249
Sample	26	28	12250
Sample	28	30	12251
Sample	30	32	12252
Sample	32	34	12253
Sample	34	36	12254
Sample	36	38	12255
Sample	38	40	12256
Sample	40	42	12257
Sample	42	44	12258
Sample	44	46	12259
Sample	46	48	12260
Sample	48	50	12261
Sample	50	52	12262
Sample	52	54	12263
Sample	54	56	12264
Sample	50	58	
Sample	50	60	
Sample	60	02 64	12207
Sample	0Z 64	04 66	
Sample	04 66	60	12209
Sample	69	70	12270
Sample	70	70	12271
Sample	70	74	12273
Sample	74	76	19974
Sample	76	78	12275
Sample	78	80	12276
Sample	80	82	12277

ĺ

and the subscreen

ι...ι

l

i.

.

t

i,

Į

÷

DAV 05-02	From	То	Description							
Sample	82	84	12278							
Sample	84	86	12279							
Sample	86	88	12280							
Sample	88	90	12281							
Sample	90	92	12282							
Sample	92	94	12283							
Sample	94	96	12284							
Sample	96	98	12285							
Sample	98	100	12286							
Sample	100	102	12287							
Sample	102	104	12288							
Sample	104	106	12289							
Sample	106	108	12290							
Sample	108	110	12291							
Sample	110	112	12292							
Sample	112	114	12293							
Sample	114	116	12294 duplicate pair with 12296							
Sample	116	118	12295							
Sample	114	116	12296 duplicate pair with 12294							
Sample	118	120	12297							
Sample	120	122	12298							
Sample	122	124	12299							
Sample	124	126	12300							
Sample	126	128	12302							
Sample	128	130	12303							
Sample	130	132	47004							
Sample	132	134	47005							
Sample	134	136	47006							
Sample	136	138	47007							
Sample	138	140	47008							
Sample	140	142	47009							
Sample	142	144	47010							
Sample	144	146	47011							
Sample	146	148	47012							
Sample	148	150	47013							
Sample	150	152	47014							
Sample	152	154	47015							
Sample	154	156	47016							
Sample	156	158	47017							
Sample	158	160	47018							
Sample	160	162	47019							
40/04/										

t t t t t i i i .

Page 3 of 4

DAV 05-02	From	То	Description
Sample	162	164	47020
Sample	164	166	47021
Sample	166	168	47022
Sample	168	170	47023
Sample	170	172	47024
Sample	172	174	47025
Sample	174	176	47026
Sample	176	178	47027
Sample	178	180	47028
Sample	180	182	47029
Sample	182	184	47030
Sample	184	186	47031
Sample	186	188	47032
Sample	188	190	47033
Sample	190	192	47034
Sample	192	194	47035
Sample	194	196	47036
Sample	196	198	47037
Sample	198	200	47038
Sample	200	202	47039
Sample	202	204	47040
Sample	204	206	47041
Sample	206	208	47042
Sample	208	210	47043
Sample	210	212	47044
Sample	212	214	47045
Sample	214	216	47046
Sample	216	218	47047
Sample	218	220	47048
Sample	220	222	47049
Sample	222	224	47050
Sample	224	226	46451
Sample	226	228	46452
Sample	228	230	46453
Sample	230	232	46454
Sample	232	236.5	46455

ł

Ĺ

i.

ł

i

Į

I l

DAV05-03			logged by Dave Pawliuk and Anthony Margarit						
started Sept 27, 2005			completed Sept 29, 2005						
Core BTW			Length 52.43 m						
Northing 5,89	3,479m		Easting 375,743 m						
Elevation: 15	00 m		Hole azimuth 180 degrees. Inclination: -50 degrees at collar; no acid test because hole abandoned.						
Target:			coincident gold-in-soil anomaly, high resistivity feature, NW trending VLF-EM conductor, NW trending faul	t					
DAV 05-03	From	То	Description						
Major	0	5.18	CASING	_					
Major	5.18	52.43	ANDESITE PORPHYRY. Medium greyish maroon, medium to fine grained andesite porophy with squarish light grey plaglioclase phenos averaging about 2.5 mm across forming 10 to 25% rock volume. Dusty disseminated pervasive hematite throughout matrix. Orange limonite stain along wxd fracture sfcs down to 11.0 m depth. Ands porphyry massive, uniform, monotonous rock. Traces to 2% dark green chlorite. No sulphides seen. Rare off-white calcite veinlets. Several faults marked by sandy gouge and bkn core throughout interval.						
Minor	5.18	11.08	Grey-green mafic tuff (rhyodacite?)						
Minor	11.58	16.64	Grey-green matic tuff(?);(rhyodacite?)						
Minor	31	38	~1% orange zeolite(?) as irregular masses.						
Minor	35.66	44.81	Finely broken, rubbly interval; probable fault zone.						
Major	52.43	EOH	END OF HOLE.						
Sample	0	2	46459						
Sample	2	4	46460						
Sample	4	6	46461						
Sample	6	8	46462						
Sample	8	10	46463						
Sample	10	12	46464						
Sample	12	14	46465						
Sample	14	16	46466						
Sample	16	18	46467						
Sample	18	20	46468						
Sample	20	22	46469						
Sample	22	24	46470						
Sample	24	26	46471						
Sample	26	28	46472						
Sample	28	30	46473						
Sample	30	32	46474						
Sample	32	34	46475						
Sample	34	36	46476						
Sample	36	38	46477						
10/04/0	000			тν					

and the second

l L

Page 1 of 2

DAV 05-03	From	То	Description			
Sample	38	40	46478	 		
Sample	40	42	46479			
Sample	42	44	46480			
Sample	44	46	46481			
Sample	46	48	46482			
Sample	48	52.43	46483			

1

Page 2 of 2

TK05-09

.

the list of the second se

DAV05-04	logged by Dave Pawliuk and Anthony Margarit
started Sept 29, 2005	completed October 3, 2005
Core BTW	Length 209.40 m
Northing 5,893,496m	Easting 375,727m (NAD 27)
Elevation: 1501m	Inclination: -50 degrees at collar; -43 degrees at 209.40 m depth (acid test). Azimuth 180 degrees.

Target: Coincident geochemical gold-in-soil anomaly and easterly trending VLF-EM conductor; also southeasterly trending fault structure.

DAV 05-04	From	То	Description
Major	0	3.65	CASING
Major	3.65	209.4	ANDESITE. Medium maroon-grey, medium grained, porphyritic with squarish, light grey plagioclase phenos average about 3.5 mm across. Finely diss hematite throughout rock matrix forms say 2 to 4% rock volume. Plag phenos 10 to 25% rock volume. Local traces chalcopyrite as elongate, lensoid masses to 3 or 4 mm long x about 0.75 mm wide. Massive, uniform rock. Good core recovery. 1 to 3% bluish green chlorite as very fine, shreddy masses. Almost nil py seen Likely andesite porphyry flow
Point		22.16	Vein calcite mass 15 x 8 mm across, watery grey and lensoid. Galena(75 %)-chalcopyrite(25 %) mass ~ 15 x 4 mm across along one side of this calcite vein.
Minor	33	33.4	Fault; soft, crushed, very fine bkn core and silty gouge
Minor	45.52	46.06	Plagioclase phenos almost completely replaced by dark green chlorite.
Point		46.09	Fault; 4 cm greyish brown sandy gouge.
Point		81.93	Fault; 4 mm soft, finely crushed core along fracture at ~45 degrees
Minor	102.75	104.5	Fault; intervals of finely bkn core. 2 % greyish-white calcite-filled amygdules and local traces py as subhedral cubes average 2.5 mm across below this fault.
Point		115.8	Local 7% py across 3 cm.
Point		129.24	Fault(?); 22 cm sand and rounded, pea-sized gravel.
Point		137.6	Fault; 3 cm grey-green, sandy gouge.
Minor	147.6	149.1	Traces chalcopyrite as small, irregular masses up to 2 mm across.
Point		170.7	Greenish white calcite veinlet 4 mm wide subparallel c.a.
Minor	175.2	179.3	Bleached light greenish grey andesite. Few intervals of finely broken core present; these probably mark faults which have acted as conduits for hot water (bleaching agent). Weakly to moderately sericite-altered.
Minor	195	199.5	Fault zone; numerous intervals crushed finely to moderately broken core
Minor	203.3	207.14	Fault. Bleached, weakly sericite-altered, pale greyish green, soft, often finely crushed core. Moderately silicified prior to latest episode of faulting.
Minor	207.14	209.4	Dark greenish grey andesite; moderately to finely broken core below bleached fault zone.
Major		EOH	209.40 - END OF HOLE
Sample	0	3.65	46484
Sample	3.65	6.1	46485
Sample	6.1	8	46486

## 18/01/2006

l li i i i

the traction of the second second

DAV 05-04	From	To	Description					
Sample	8	10	46487				· · · · · · · · · · · · · · · · · · ·	
Sample	10	12	46488					
Sample	12	14	46489					
Sample	14	16	46490					
Sample	16	18	46491					
Sample	18	20	46492					
Sample	20	22	46493					
Sample	22	24	46494					
Sample	24	26	46495					
Sample	26	28	46496					
Sample	28	30	46497					
Sample	30	32	46498					
Sample	32	34	46499					
Sample	34	36	46500					
Sample	36	38	12301					
Sample	38	40	12302					
Sample	40	42	12303					
Sample	42	44	12304					
Sample	44	46	12305					
Sample	46	48	12306					
Sample	48	50	12307					
Sample	50	52	12308					
Sample	52	54	12309					
Sample	54	56	12310					
Sample	56	58	12311					
Sample	58	60	12312					
Sample	60	62	12313					
Sample	62	64	12314					
Sample	64	66	12315					
Sample	66	68	12316					
Sample	68	70	12317					
Sample	70	72	12318					
Sample	72	74	12319					
Sample	74	76	12320					
Sample	76	78	12321					
Sample	78	80	12322					
Sample	80	82	12323					
Sample	82	84	12324					
Sample	84	86	12325					
Sample	86	88	12326					
Sample	88	90	12327					
18/01/2	006			Page 2 of	1			TK05-09
ι	ł	l	l l i			1		
ut toget			an a		· .			

DAV 05-04	From	То	Description
Sample	90	92	12328
Sample	92	94	12329
Sample	94	96	12330
Sample	96	98	12331
Sample	98	100	12332
Sample	100	102	12333
Sample	102	104	12334
Sample	104	106	12335
Sample	106	108	12336
Sample	108	110	12337 - DUPLICATE PAIR
Sample	108	110	12338 - DUPLICATE PAIR
Sample	110	112	12339 -
Sample	112	114	12340
Sample	114	116	12341
Sample	116	118	12342
Sample	118	120	12343
Sample	120	122	12344
Sample	122	124	12345
Sample	124	126	12346
Sample	126	128	12347
Sample	128	130	12348
Sample	130	132	12349
Sample	132	134	12350
Sample	134	136	47101
Sample	136	138	47102
Sample	138	140	47103
Sample	140	142	47104
Sample	142	144	47105
Sample	1 <b>44</b>	146	47106
Sample	146	148	47107
Sample	148	150	46108
Sample	150	152	47109
Sample	152	155	47110 (3m width)
Sample	155	157	47111
Sample	BLANK		47112
Sample	157	159	47113 - DUPLICATE PAIR
Sample	157	159	47114 - DUPLICATE PAIR
Sample	159	161	47115
Sample	161	163	47116
Sample	163	165	47117
Sample	165	167	47118

L. L. L. C.

l

.

DAV 05-04	From	То	Description
Sample	167	169	47119
Sample	169	171	47120
Sample	171	173	47121
Sample	173	175	47122
Sample	175	177	47123
Sample	177	179	47124
Sample	179	181	47125
Sample	181	183	47126
Sample	183	185	47127
Sample	185	187	47128
Sample	187	189	47129
Sample	189	191	47130
Sample	191	193	47131
Sample	193	195	47132
Sample	195	197	47133 - DUPLICATE PAIR
Sample	195	197	47134 - DUPLICATE PAIR
Sample	197	199	47135
Sample	199	201	47136
Sample	201	203	47137
Sample	203	205	47138
Sample	205	207	47139
Sample	207	209.4	47140 - END OF HOLE

t . t

.

1 1

DAV05-05logged by Dave Pawliukstarted October 3, 2005completed October 8, 2005Core BTWLength 136.25 mNorthing 8,892,805 mEasting 375,974 mElevation: 1562 mInclination: -50 degrees at collar.Dip: -50 collar inclinationDip Tests: -44 degrees at 136.25 m depth (acid test).

Target: Coincident easterly trending VLF-EM conductor and geochemical gold-in-soil anomaly at margin of zone of high chargeability.

DAV 05-05	From	То	Description
Major	0	20.82	CASING; OVERBURDEN; till. Boulders cored include andesite feldspar porphyry, granitic rocks, rhyolite. Till matrix
			medium brown and sandy. Difficult for drillers to penetrate till.
	20.82	136.25	RHYOLITE. Pale cream-grey, chalky. Fractures throughout coated by brownish orange limonite. Limonite also
			present as irregular patches and spots with faint margins. Limonite forms 1 to 2 % rock volume. Rhyolite is fine-
			grained. White, clay-altered feldspar grains up to 3 mm across occasionally visible. Local traces dusty diss py, with py
			more easily seen where rhyolite is more siliceous (tight). Rhyolite most likely fine-grained ash tuff. Uniform, massive,
			monotonous rock. Generally enough feldspar (now clay-altered) present so that rock can be readily scratched using
			scriber. No bedding nor stratification seen. Fractures generally spaced 4 to 10 cm apart, and most fractures oriented
			at about 50 degrees to c.a. though many are irregular and randomly oriented. Numerous intervals of moderately
			broken core down to 90.7 m depth. Rock more competent and less broken below 90.7 m depth. Weakly sericite-
			altered throughout; very fine sericite flakes.
Point		30.01	FAULT. Very finely broken core between fractures at 30 degrees to core axis.
Point		32.1	FAULT, 18 mm off-white clay and sandy gouge between fractures at 18 degrees.
Point		33.74	FAULT, 9 cm son, mely crushed core. Fault onemed at about 50 degrees to c.a.
Point		30.13	FAULT, 10 cm mely proken, sandy core. Cannot determine onentation.
Point		37.20	FALLET: O mm polo brown sith gouge plong fracture at 62 degrees
Minor	20.0	30.17	Probably fault: mederately broken core
Point	39.9	40.7	Flubably laun, modelately block cole.
Minor	447	42.5	Weakly to leadly interpoly nervesively silicified. Traces dusty pink hemotite as very fine disseminations along
MILLOL	44.7	4/	freetures
Point		47 11	Fault 3 mm cream coloured clav along slip at 75 degrees
Minor	48 4	50.9	Fault zone Moderately to finely broken core. Fault along fracture at 20 degrees at top of interval. Ground core
	40.4	00.0	between 47.85 m and 50.60 m depth.
Minor	52.46	53	Intensely brecciated. Soft, finely crushed core.
Minor	53.34	56.2	Moderately, pervasively silicified. Fault from 54.83 m to 55.30 m depth where interval 25 to 35% clayey and sandy
			gouge; cannot determine orientation. Silicification possibly occurred as alteration envelope along fault. If silicification
			related to fault, then fault has been reactivated after introduction of silica.
Point		58.5	Traces sooty, disseminated pyrite.
Minor	62.28	62.5	Fault; moderately fractured and broken intervals; fractures at about 60 degrees to c.a.
Point		64	Fault; 5 cm finely crushed core along fracture at 48 degrees.
Minor	64	65.1	Moderately to intensely fractured; fractures mostly at 15 to 20 degrees to core axis.

## 18/01/2006

#### Page 1 of 4

and the second second

DAV 05-05	From	То	Description	
Minor	65.8	66.05	Fault; finely broken core and sandy, rusty gouge between fractures at about 60 degrees.	
Point	67.5		Traces very fine, sooty py.	
Minor	68.3	68.52	Fault; soft, clayey limonitic gouge and finely broken core; cannot determine orientation.	
Point		<b>72</b> .7	Fault; 8 cm light brown silty gouge; cannot determine orientation.	
Point		73.7	Fault; 12+ cm light brown-orange silty gouge and finely broken core between fractures at 40 degrees.	J <b></b>
Minor	85.56	86.36	Fault. Soft, finely crushed sandy gouge and cream-coloured clayey gouge (~25%). Fracture at bottom of fault interva	al
			at 35 degrees to c.a.; unsure if this is orientation of fault.	
Minor	89.96	90.7	Fault. Soft, finely crushed core and cream-coloured, clayey gouge along fracture at 15 degrees to c.a.	
Point		99.48	Fault; smear black, silty material coating fracture at 22 degrees.	
			About 20 % of rhyolite below 104.7 m depth is weakly silicified within patches up to to 60 cm wide where rock is a ligh	t
<b>.</b>			grey colour.	
Point		112.17	Fault; 3 mm sandy gouge on slip at 30 degrees.	
Minor	123.4	126.5	Moderately, pervasively silicified.	
Minor	123.83	124.5	3% pale green epidote as irregular veinlets to 5mm wide.	
Point		124	Cavities to 3 mm across where euhedral pyrite(?) crystals have been weathered-out and replaced by dark brown limonite.	
Minor	125.03	123.6	Weakly brecciated, moderately fractured; healed by limonite and late silica. Probable healed fault at ~20 degrees to	
Minor	126	129.3	0.5 to 1% brick red bematite mostly as faint_irregular_bairline veinlets_Hematite also disseminated	
Point	120	126.66	Fault: 5 cm finely crushed nale brown-cream coloured core: cannot determine fault orientation	
Point		130 11	Trace blue molybdenite (or 2galena) as mass 1 mm across with faint margins	
Point		130.7	Faint laminae or banding at 52 degrees	
Point		133.62	Cavity 15 mm across lined by subhedral, very fine, druzy quartz crystals	
Point		135.25	Finely laminated (mm scale) at 45 degrees to core axis. Traces very finely disseminated pyrite up to 0.5 mm across.	
Major		136.25	END OF HOLE. Hole abandoned because crown of bit torn off within hole during drilling.	
sample	20.82	26	47141 - Top of hole; poor recovery.	
sample	26	28	47142	
sample	28	30	47143	
sample	30	32	47144	
sample	-32	34	47145	
sample	34	36	47146	
sample	36	38	47147	
sample	38	40	47148	
sample	40	42	47149	
sample	42	44	47150	
sample	44	46	47051	
sample	46	48	47052	
sample	48	50	47053	
18/01/:	2006		Page 2 of 4	TK05-08

t to the test of the second se

the second second second second

ł

DAV 05-05	From	To	Description
sample	50	52	47054
sample	52	54	47055
sample	54	56	47056
sample	56	58	47057
sample	58	60	47058
sample	60	62	47059
sample	62	64	47060
sample	64	66	47061
sample	66	68	47062
sample	68	70	47063 - DUPLICATE
sample	68	70	47064 - DUPLICATE
sample	BLANK		47065
sample	70	72	47066
sample	72	74	47067
sample	74	76	47068
sample	76	78	47069
sample	78	80	47070
sample	80	82	47071
sample	82	84	47072
sample	84	86	47073
sample	86	88	47074 - DUPLICATE
sample	86	88	47075 - DUPLICATE
sample	88	90	47076
sample	90	92	47077
sample	92	94	47078
sample	94	<del>9</del> 6	47079
sample	BLANK		47080
sample	96	98	47081
sample	98	100	47082
sample	100	102	47083 - DUPLICATE
sample	100	102	47084 - DUPLICATE
sample	102	104	47085
sample	104	106	47086
sample	106	108	47087
sample	108	110	47088
sample	110	112	47089
sample	112	114	47090
sample	114	116	47091
sample	116	118	47092
sample	118	120	47093- DUPLICATE
sample	118	120	47094- DUPLICATE

and the second second

l i

. .

. S. 635

L L

· . . .

(

I E

.

DAV 05-05	From	То	Description
sample	BLANK		47095
sample	120	122	47096
sample	122	124	47097
sample	124	126	17098
sample	126	128	47099
sample	128	130	47100
sample	130	132	11671
sample	132	134	11672
sample	134	136.25	11673

ł

l

ł

L

i

.

L L

A STATE AND A STAT








## LEGEND

FAULT

TO ACCOMPANY A REPORT BY DAVID PAWLIUK, P.GEO

az. 180°



.. .







and the second second

a tau