2005 GEOCHEMICAL, GEOLOGICAL, PROSPECTING AND TRENCHING <u>REPORT</u> <u>NICOAMEN RIVER PROPERTY (Tenure nos. 511667, 511671, 506513, 508830)</u>

Kamloops Mining Division, British Columbia NTS: 92I/3W; BCGS: 092I014 Latitude 50°10'N, Longitude 144° 20'W UTM Zone 10: 619000E, 5559000N (NAD 83)

Edruary 2006

P

C 2005 ASSESSMENT)

E.A. Baron, P.Geo Almaden Minerals Ltd. 1103 – 750 West Pender St. Vancouver, BC, V6C 2T8

And

J.J. Hylands, P.Eng Hylands Geological Services Ltd. 1430 Inglewood Ave. West Vancouver, BC, V7T 1Z1

TABLE OF CONTENTS

,

		-
1.0	SUMMARY AND CONCLUSIONS	1
2.0	RECOMMENDATIONS	3
3.0	INTRODUCTION3.1Location, Access, Physiography and Climate3.2Claim Data3.3History3.42005 Exploration Program	4 5 5 6
4.0	 GEOLOGY 4.1 Regional Geology and Mineral Deposits 4.2 Property Geology, Alteration and Mineralisation 	7 7 8
5.0	 GEOCHEMISTRY 5.1 Introduction 5.2 Sampling and Analytical Procedures 5.2.1 Quality Control 5.3 Stream Sediment and Soil Geochemical Results 5.3.1 Stream Sediments 5.3.2 Reconnaissance Soil Samples 5.3.3 Coarse Grid Soil Samples 5.4 Prospecting and Reconnaissance Rock Geochemical Results 	9 9 10 11 11 12 13 14
6.0	PHYSICAL WORK6.1Hand Trenching6.1.1Trench DZT05-1 Results6.1.2Trench DZT05-2 Results6.1.3Trench DZT05-3 Results6.1.4Trench DZT05-4 Results6.1.5Trench DZT05-5 Results6.1.6Trench WZT05-1 Results	15 15 16 16 16 17 17
7.0	PERSONNEL AND CONTRACTORS	18
8.0	STATEMENT OF COSTS	19
9.0	STATEMENTS OF QUALIFICATIONS	20
10.0	REFERENCES	22

<u>Page</u>

TABLES

<u>Page</u>

Table 1	Mineral Claim Summary	5
Table 2	Geochemical Sample Summary	9
Table 3	Trench Summary	15

FIGURES

		Following Page
Figure 1	Property Location and Regional Geology Map	4
Figure 2	Claim Map and Work Distribution	5
Figure 3A	Soil Sample Histograms – Au, As, Sb	13
Figure 3B	Soil Sample Histograms – Hg, Mo	13
Figure 4A	Coarse Grid GOLD Soil Geochemistry	13
Figure 4B	Coarse Grid ARSENIC Soil Geochemistry	13
Figure 4C	Coarse Grid ANTIMONY Soil Geochemistry	13
Figure 4D	Coarse Grid MERCURY Geochemistry	14
Figure 4E	Coarse Grid MOLYBDENUM Soil Geochemistry	14
Figure 5	Discovery Zone Geology, Trench and Local Sample	Э
	Location Map	15
Figure 5A	Discovery Zone Trench DZT05-1 Plan	15
Figure 5B	Discovery Zone Trench DZT05-2 Plan	16
Figure 5C	Discovery Zone Trench DZT05-3 Plan	16
Figure 5D	Discovery Zone Trench DZT05-4 Plan	16
Figure 5E	Discovery Zone Trench DZT04-5 Plan	17
Figure 6	West Zone Trench WZT05-1 Plan	17

APPENDICES

- Appendix A Mineral Claim Exploration and Development Work/Expiry Date Change Confirmations
- Appendix B Nicoamen River Area Pre-Staking Recon Sample Summary Table & Acme Analytical Geochemical Certificates
- Appendix C Nicoamen River Area Post-Staking Recon Sample Summary Table & Acme Analytical Geochemical and Assay Certificates

PLATES

.

.

.....

(in pockets)

<u>Scale</u>

Plate 1	Compilation Map	1:15,000
Plate 2A	Reconnaissance Stream Sediment and Soil Sample Locations	1:15,000
Plate 2B	Reconnaissance Stream Sediment and Soil Sample	
	Gold Results	1:15,000
Plate 3A	Reconnaissance Rock Sample Locations	1:15,000
Plate 3B	Reconnaissance Rock Sample Gold Results	1:15,000

1.0 SUMMARY AND CONCLUSIONS

Between 2003 and 2005 Almaden Minerals Ltd. has explored for epithermal gold deposits on a parcel of ground underlain by the Lower Cretaceous Spences Bridge Group volcanic assemblage located south and east of Lytton, BC. This area was chosen for exploration because a BC RGS sample had identified a moderate gold-in-silt anomaly. Encouraging results from prospecting, reconnaissance stream sediment, soil and rock sampling led to the staking of the NICOAMEN RIVER property in late 2004. The southern half of the property has been covered with a relatively coarse soil grid (771 samples), and the main zone of mineralisation and alteration (Discovery Zone) has been geologically mapped and explored with additional rock grab samples and five short hand trenches which were mapped and channel sampled. The West Zone has also been explored by limited hand trenching with related mapping and rock sampling.

All stream sediment and soil samples were analysed for 36 elements by ICP-MS by Acme Analytical Laboratories Ltd. of Vancouver. The results show that the arsenic, antimony and molybdenum values correlate very well with the gold results. Five of the stream sediment samples collected on or around the property returned gold results >2.2ppb, which is considered to be anomalous for this area. Re-sampling of the BC RGS site (two samples) gave 2 and 2.1 ppb Au. Reconnaissance soil samples taken in 2004 highlighted the Discovery and West Zones. The results from additional soil samples taken during 2005 confirmed the earlier results and indicated an extension to the West Zone. Practically all reconnaissance soil samples with anomalous Au results are also highly anomalous in As, Sb and Mo. One major and four minor gold-in-soil anomalies were defined, with associated As and Sb anomalies. In general, elevated arsenic values coincide with, and may extend beyond, anomalous gold results, and anomalous antimony results coincide with arsenic anomalies, and have about the same extent. Some areas with higher mercury and molybdenum values correlate with gold, arsenic and antimony anomalies, but many do not.

All rock samples, reconnaissance (21 samples) and trench (15 samples), were also analysed for 36 elements using ICP-MS, but only the gold values have been studied statistically and displayed. Sixteen (76%) of the reconnaissance rocks returned >100ppb Au, and four (19%) reported over 1000ppb Au. The highest value is 55526.1 ppb Au (64.87 g/t after fire assay). Most of the reconnaissance rock samples comprised angular pieces of chalcedonic quartz vein material plus or minus altered host rock selvages or clasts.

Of the 15 samples taken from six trenches, 11 (73%) yielded >100ppb Au and two (13%) gave over 1000ppb Au. The highest value, 1828 ppb Au, which on assay gave 2.27 g/t Au, was from trench DZT05-3. Pulps of the five samples from DZT05-3 were assayed, and four reported over 1 g/t Au. The five contiguous samples yielded **1.77 g/t Au averaged over a length of 3.5m**. In the West Zone, two of the trench samples are grab samples of broken material

exposed while trenching, and the third is a channel sample taken with a hammer and chisel. The sample weights varied from 3.5 to 6kg. The West Zone trench samples returned only low gold values.

The work conducted during 2004 and 2005 has resulted in the discovery of goldquartz mineralisation in the Discovery Zone and a strong gold-in-soil anomaly 2.3 km to the west (West Zone). The presence of a well defined high gold soil anomaly southeast of the Discovery Zone indicates very prospective ground. The strong association of arsenic and antimony with gold and the presence of abundant chalcedony are typical of a low sulphidation epithermal gold environment. The characteristic trace element geochemistry and classic mineral textures observed to date are indicative of the upper portions of an epithermal system. This implies only shallow erosion of the source deposit(s). A prime target area is the gold anomaly southeast of the Discovery Zone.

Further exploration on the NICOAMEN RIVER property is definitely warranted, and is strongly recommended.

2.0 RECOMMENDATIONS

The following program is recommended for the NICOAMEN RIVER property:

- Detailed grids, with lines 50m apart and sample stations at 25m intervals, should be established and soil sampled in all areas where the Coarse Grid soil sampling results indicate a soil gold anomaly, particularly if there is a coincident arsenic and /or antimony anomaly.
- 2) Once detailed soil sampling has defined firm Au-As-Sb anomalies they should be further explored with magnetometer and VLF-EM surveys.
- 3) The Coarse Grid should be extended to the south by 900m in the area east of line 18000E, and soil sampled at 50m x 200m spacing. Any resulting gold +/arsenic +/- antimony anomalies should be followed up by detailed grid (25m x 50m) soil sampling.
- 4) A trench should be excavated parallel to the Detailed Soil Line in the Discovery Zone area between 0m and 40m. This will require the use of a small trenching machine.
- 5) Assuming success, an additional 40m long trench should be excavated 30m east of and parallel to the first trench. These trenches could lead to additional trenching for definition of drill targets.
- 6) All gold soil anomalies should be vigorously prospected.
- 7) The mineralised float cobbles found north and west of the Discovery Zone should be traced. It is suspected that the Nicoamen River Fault is the source.

Respectively submitted

ALMADEN MINERALS LTD.

E.A. Balon, P. Geo 16 February, 2006

HYLANDS GEOLOGICAL SERVICES LTD.

3.0 INTRODUCTION

This report describes the results of exploration work conducted during the initial (2004/05) anniversary year on the ZAK claim group, to substantiate the related expenditures applied for assessment credits.

3.1 Location, Access, Physiography and Climate (Figures 1 & 2)

In straight line distance the Nicoamen River Property (ZAK claim group) is centered 40km WNW of the city of Merritt, at latitude 50°10'N and longitude 121° 20'W (UTM Zone 10: 619000E, 5559000N) in NTS map area 92I/3 (Figure 1). Good ground access is afforded via the Nicoamen and Ainslie North – Mowhokam gravel forestry road systems, which link to the Trans-Canada Highway (Hwy 1) 15km east of Lytton and 10km north of Boston Bar, respectively. These forestry roads join near the southwest corner of the property, 47km southeast from Lytton and 38km northeast of Boston Bar. From this point the main branch roads lead to networks of logging spurs which extend for several kilometres northeasterly into the central and southern claim areas. The most northerly portion of the claim group is accessible by another logging spur road off the Nicoamen Main Trunk located about 6km north of the junction described above.

The ZAK claims are situated within the Intermontane physiographic region of rolling upland terrain on the southern Interior (Thompson) Plateau, on the west side of the Nicoamen Plateau and east of the Cascade Mountains. Topography is moderate to locally steep, with elevations ranging from 750m asl in the north in the steep-walled canyon of the Nicoamen River, climbing steadily to 1750m on the southern boundary of the claim group. The property covers part of the drainage of Nicoamen River, which flows northward to join the Thompson River 15km east of Lytton.

Soil and glacial till cover is extensive and generally shallow, but includes locally relatively deeper deposits. Overall bedrock exposure is moderate to locally abundant in road cuts and in some of the stream gullies, as well as on steep upper slopes, ridge crests and in the Nicoamen River canyon. Glacial striae have not been observed to date in outcrop on the property; however, the local ice flow direction is shown as southerly in the published literature (Ref GSC Paper 79-25, Figure 12, p 13).

The climate is semi-arid, with commonly hot dry summers having temperatures in the 25^oC to 45^oC range at Lytton. All areas of the property are generally free of snow from late May or early June through October.

Vegetation consists mainly of widely spaced lodgepole pine and Douglas fir changing to more dense balsam fir, spruce and cedar along creek valleys. Dense brush consisting of alder and willow is common along most of the stream

0

MIN O \Door\Bit.addige\SBC.comp.

gullies and road cuts, and in swales between topographic highs. Approximately 60% of the property area has been logged since 1990.

3.2 Claim Data

The present property consists of four contiguous mineral claims with an aggregate land area of 1945.16 hectares (~19.5 km²) in the Kamloops Mining Division, BCGS map areas 092I014 (Figure 2). An initial group of two 4-post claims (ZAK 1 & 2, Tenure Nos. 414882 & 414883) was acquired by physical staking during October 18-20, 2004.

Following implementation of the Mineral Titles Online (MTO) electronic acquisition system, two new BCGS grid cell claims – ZAK 3 & 4, Tenure Nos. 506513 and 508830– were acquired on February 10, 2005 and March 11, 2005, respectively. The ZAK 1-2 legacy claims described above were converted into cell claims (Tenure Nos. 511671 & 511667) on April 26, 2005.

Locations of the current claims are shown on Figure 2 and the respective claim data are summarized in Table 1. The expiry dates as listed in the table are subject to approval of the work filed in conjunction with this report (Event Nos. 4051847 and 4068129). Copies of the work filing confirmations are included in this report as Appendix A. All of the claims are 100% owned by Almaden Minerals Ltd. (FMC #144134).

Table 1:	Mineral Claim	I Summarv as at Janua	rv 1. 2006.
			., .,

Claim Name	Tenure No.	# Cells	Area, ha	Expiry Date
_	511667	20	413.93	2010/Dec 31
-	511671	25	517.42	2010/Dec 31
ZAK 3	506513	25	517.42	2008/Dec 31
ZAK 4	508830	24	496.39	2006/Dec 31

3.3 History

There are no published records of any prior mineral exploration work in the area covered by the NICOAMEN RIVER property, and there are no previously documented mineral occurrences for this locality in the BC Minfile database. No old claim posts have been found to date.

In 1981 a federal-provincial government Regional Geochemical Survey was carried out over the entire Ashcroft (NTS 92I) map area. The initial results of this survey were published in 1982 as BC RGS 8/GSC Open File 866. In 1994 the

sample pulps were re-analyzed by improved techniques and for additional elements, including gold. The new data were published as BC RGS 40/GSC Open File 2666 which identified one moderate gold-in-silt anomaly (6ppb) located in the Nicoamen River drainage, represented by sample site numbered 811017.

During the summer of 2003 six follow-up silt samples were collected in the vicinity and upstream of BC RGS sample 811017. These were submitted to Acme Analytical Laboratories Ltd. (Acme) of Vancouver, BC, for multi-element analysis. The results from these samples were not encouraging for gold, but two returned strongly anomalous arsenic results. The headwaters area of the Nicoamen River was re-visited twice during the 2004 exploration season before claims were staked. An additional 41 stream sediment, 15 reconnaissance soil and 16 rock grab samples were collected and analysed by Acme for 36 elements. The program included detailed road cut and stream gully prospecting in conjunction with further geochemical sampling. The 2004 work resulted in the identification of numerous significant gold-bearing quartz float occurrences and of two local strongly altered subcrop exposures (Discovery and West Zones) carrying anomalous multi-element values.

All of the 2003 – 2004 (pre-staking) sample locations, descriptions and selected analytical data are included in this report as Appendix B.

3.4 2005 Exploration Program

Post-staking fieldwork during 2005 consisted of an initial grid soil geochemical sampling survey (771 samples), further prospecting and reconnaissance geochemical sampling (7 stream sediment, 56 soil, 5 rock samples), and limited hand trenching with related bedrock mapping/sampling of the Discovery and West Zones (15 trench rock samples). All of the samples were delivered to Acme in Vancouver, BC, for 36-element geochemical analysis plus a few selected gold/silver assays.

The great majority of this program was conducted on the conversion claims with Tenure Nos. 511667 and 511671 prior to their first anniversary dates of October 20, 2005. The work was conducted by one company employee and four contract personnel, all based at the Green Canyon Motor Inn near Boston Bar, BC. The company employee acted as overall supervisor and Qualified Person (QP) for the project. All UTM grid locations were initially recorded in NAD 27 using Garmin 12XL handheld GPS receiver units; these readings were later converted to NAD 83 for presentation purposes. The work types and distribution are shown on Figure 2.

The 2005 post-staking reconnaissance sample locations, descriptions and selected analytical data are tabled in Appendix C.

4.0 GEOLOGY

4.1 **Regional Geology and Mineral Deposits** (Figure 1, Plate 1)

The regional bedrock geology is shown on Figure 1 and Plate 1. These maps cover part of the southern Intermontane Tectonic Belt of the Canadian Cordillera. Figure 1 was compiled and simplified from GSC Maps 42-1989 (Ashcroft, by J.W.H. Monger and W.J. McMillan, 1989) and 41-1989 (Hope, by J.W.H. Monger, 1989). The orthophoto base and geology for Plate 1 were obtained from the British Columbia MapPlace website. The geology is a compilation of work published by various British Columbia Geologic Survey members.

Lithologies within the immediate property area include Permian to Triassic Mount Lytton Complex granodiorite and diorite intrusive rocks, Lower Cretaceous Spences Bridge Group (Spius Creek Formation) andesitic volcanics and Eocene Kamloops Group undivided volcanic rocks.

The dominant rock assemblage underlying the NICOAMEN RIVER property is the Cretaceous Spius Creek Formation, a basaltic andesite unit (SBSva). This is the upper sequence of the Spences Bridge Group (IKSB / IKSBS) which is a broad northwest-trending thick sequence of gently folded volcanics with lesser sediments, dipping shallowly to the northeast. This assemblage includes intermediate, locally felsic and mafic flows and pyroclastics with some sandstone, shale and conglomerate (IKSB). The upper division was formerly called the Kingsvale Group by earlier government geologists (Rice, 1947; Duffell and McTaggart, 1952; and others before Thorkelson, 1985). The Spences Bridge Group unconformably overlies older plutonic rocks, mainly granodiorite to diorite of the Permian to Triassic Mount Lytton Complex (PTrMgd/dr) occupying the southwestern part of the property. The Spences Bridge Group is unconformably overlain by Eocene Kamloops Group (EKav) mafic and felsic volcanics.

The major structural features in the region are steeply dipping normal faults. The Nicoamen River Fault parallels the Nicoamen River which crosses the property from south to north. The Nicoamen West Fault is approximately parallel to the Nicoamen River Fault and lies along the west boundary of the property. These faults are parallel or subparallel to the Fraser River Fault System. Although faults have been mapped with a variety of attitudes, the dominant trends are north-south and $140^{\circ} - 150^{\circ}$ (Monger, 1981). It has been postulated that the rocks of the Spences Bridge Group formed as a chain of stratovolcanoes associated with subsiding, fault bounded basins (Souther, 1991 and Thorkelson, 1985).

Low sulphidation type epithermal gold mineralisation hosted by quartz veins and breccia in carbonate altered Spences Bridge volcanics has been found from the MERIT to the SKOONKA CREEK (formerly SAM) properties, a distance of 40 kilometres (Figure 1). Major producers and past-producers in the area include the Highland Valley Mine, Bethlehem Copper and Lornex (all large volume porphyry copper deposits), and Craigmont, a copper-iron skarn deposit northwest of Merritt.

4.2 Property Geology, Alteration and Mineralization

No effort has been made to date to geologically map the NICOAMEN RIVER property in a systematic manner. The Discovery Zone and West Zone road bank exposures were mapped while the trenches were being sampled.

In the trenches the most abundant mineral is quartz, as narrow veins in shears in altered granodiorite (Discovery Zone) and as clasts or "sweats" in brecciated quartzofeldspathic rock (QFR, West Zone). In many cases the quartz is rhythmically banded chalcedony. Sulphides are conspicuous by their absence in the Discovery Zone but up to 5% pyrite +/- arsenopyrite occurs locally in altered QFR in the West Zone. Native gold has not been seen, either with a hand lens or a microscope. Moderately abundant limonite and copiapite (after primary pyrite?) in the QFR host rock are probably the causes of the yellow to rusty-orange colour in the West Zone, and pyrolusite and limonite after magnetite in the granodiorite the causes of the colours in the Discovery Zone.

The narrow chalcedonic quartz veins mapped in trenches DZT05-3, -4 and -5 are confined to approximately parallel shear zones. They pinch and swell, and do not appear to have continuity. By projection these quartz vein/shears would cross the curve in the road west of the 130m point on the baseline. Chalcedonic quartz chips one to two centimetres across can be seen in the soil in the road cut between 0m and about 75m on the baseline. These chips would have migrated down hill from veins crossing the curve of the road, as would have the larger, angular pieces of quartz which were grab sampled. The Discovery Zone lies immediately west of the Nicoamen River Fault. It can be inferred from the presence of granodiorite in the Discovery Zone that the volcanic/intrusive contact shown south of the Discovery Zone (Plate 1) should be moved at least 750m to the north.

The geology of the West Zone is described in Section 6.1.6. The original composition of the QFR has not been determined. It is composed of equigranular quartz and feldspar without mafic minerals. Locally it exhibits a gneissic texture. It should probably be called a granulite.

5.0 GEOCHEMISTRY

5.1 Introduction

Geochemical sampling on and surrounding the present NICOAMEN RIVER property area between 2003 and 2005 included the collection of stream sediment, soil and rock samples in a number of localities. Table 2 lists the sample types, sample numbers and number of samples collected pre- and post-staking.

Table 2: Geochemical Sample Sum	mary
---	------

Sample type	Sample number series	Number of samples
Stream sediments	MC-xxx	47
Soils, recon	MC-Sxxx	15
Rocks, recon	MC-Rxxx	16
Stream sediments	MC-xxx	7
Soils, recon	MC-Sxxx	56
Soils, Main Grid	Grid coordinates	771
Rocks, recon and	MC-Rxxx	5
Trench	MC-Rxxx	15

Notes: Pre-staking samples are indicated by italics.

All samples were analysed for 36 elements. Complete results for these samples are listed on the Acme Analytical Laboratories Ltd. (Acme) Geochemical Analysis Certificates contained in Appendix B (Pre-Staking) and Appendix C (Post-Staking).

Also included are the Acme Assay Certificates for the selected rock samples submitted for assay. Tables in these Appendices list the samples, their UTM coordinates, brief descriptions and selected analytical results. Stream sediment and reconnaissance soil sample locations and numbers are plotted on Plate 2A; and Figures 5 and 6, and rock sample locations and numbers are shown on Plate 3A and Figures 5, 5A to 5E and 6.

5.2 Sampling and Analytical Procedures

Sample locations were marked in the field in two ways. Stream sediment and recon soil/rock sample locations were indicated using pink flagging and labelled Tyvek tags. The grid soil sample locations were marked with blue and orange flagging plus labelled Tyvek tags. UTM coordinates were determined for all of the reconnaissance sample locations using a handheld GPS instrument. The sample spacing on the grid was 50m, and the lines were nominally 200m apart. The start position of each grid cross line was determined with a GPS instrument, intermediate readings were taken on each line at approximately 500m intervals,

and the intervening sample locations calculated by interpolation. All readings were taken using the NAD 27 datum; these were later converted to the NAD 83 datum for presentation. The samples were shipped to Acme in Vancouver, BC, for 36-element analysis by Inductively Coupled Plasma – Mass Spectrometry (ICP-MS).

Stream sediment samples (about 1.0kg) were collected from the finest silt/sand material available in the active channel, with minimum organic matter. Soil sample holes were dug with a mattock or rock hammer, and about 0.5 kg of material collected. In most cases the B horizon was sampled, but in a few rocky locations the C or combined B/C horizon was sampled. Stream sediment samples were collected in labelled 14cm x 27cm Hubco cloth bags; soil samples were collected in labelled 10cm x 15cm Kraft paper bags. Sample preparation at the laboratory involved drying at up to 60°C and sieving up to 100 grams from each sample to -80 mesh. Depending on the amount of -80 mesh material obtained, a 7.5, 15 or 30 gram subsample was cut and then leached with 180ml of 2-2-2 HCI-HNO₃-H₂O solution at 95°C for one hour, followed by dilution to 600ml and 36 element ICP-MS analysis.

Rock sample individual weights varied from <1 - 3kgs for float samples to 2.5 - 10 kgs for bedrock (continuous chip or channel) samples. Float samples consisted of chips taken from one or two larger cobbles, or of several smaller fragments collected from an area of a few square metres. Individual samples were placed in labelled plastic bags, with a label also placed within the bag, and shipped to the Acme laboratory in Vancouver. At the lab each rock sample was crushed to 70% passing 10 mesh followed by pulverizing a 250gm split to 95% passing 150 mesh. A 30gm subsample of each was digested and analysed as above.

5.2.1 Quality Control Measures

All of the soil sampling was conducted by very experienced samplers, with spot field checks by the Qualified Person (QP). Stream sediment and rock samples were collected by or under the direct supervision of the QP. All samples were accounted for, packed with due diligence and personally delivered to the Acme laboratory by the QP or shipped to Acme by Greyhound Bus.

At the time site MC-187 was sampled, a bulk sample (~5kg) was also taken over 5m of stream bed and wet-sieved to collect more abundant fines for later (laboratory) generation of a -230 mesh subsample. This field-sieved sample (denoted with an S suffix in the sample number) was handled and analysed in the same fashion as the conventional smaller sized (unsieved) samples from which only -80 mesh subsamples were generated. The gold results from MC-187 and MC-187S were very similar - 2.0 ppb Au and 2.1 ppb Au, respectively. This technique was also tried on the MERIT property. At two locations (MC-127S, 2.3ppb Au; MC-138S, 11.8ppb Au) the gold results from the -230 mesh fractions were markedly better than those from the regular samples (MC-127, 1.1ppb Au; MC-138, 1.7ppb Au). At the other two locations the gold results for the field-sieved samples (-230 mesh fractions) were markedly lower. The additional time/cost of field sieving samples mitigated against using this technique on a regular basis.

There was no specific re-sampling of any of the previous soil sample sites on the property, but one soil sample, ZAK-S28 (27ppb Au), was taken within 4m of MC-S103 (26ppb Au). The first was at the top of a road-cut, the second at the bottom, in very similar material.

Acme runs standards and provides re-samples at varying intervals for each sample shipment analysed. A re-sample consists of analysing a second cut (subsample) from the same sample pulp (or occasionally reject portion), and is reported as a rerun (RE) or reject rerun (RRE) on the analysis certificate. In most cases there has been good reproducibility of results between the original subsamples and re-samples, with the exception of gold at the lower end of the detection range in some stream sediment and soil samples.

5.3 Stream Sediment and Soil Geochemical Results (Plates 2A, 2B, Figures 5 & 6)

5.3.1 Stream Sediment Samples (Plates 2A, 2B)

The attention of Almaden Minerals personnel was first drawn to this area by a 6 ppb Au result published for a Government Regional Geochemical Survey silt sample (92I811017) taken from Nicoamen River about 11 km (618940E, 5559692N, NAD83, UTM Zone 10) above its junction with the Thompson River . During the 2003 field season six reconnaissance stream sediment samples were taken from Nicoamen River and some of the tributaries in the same area as 92I811017; Almaden stream sediment samples MC-187 and MC-187S were obtained from the same site as the RGS sample. MC-187 and MC-187S returned 2.0 ppb Au and 2.1 ppb Au, respectively. The highest value, 2.8 ppb Au, came from sample MC-190, which was taken furthest upstream. Arsenic and antimony values also increased upstream.

Forty-one stream sediment samples were taken during 2004. Four of these were above the 2.2 ppb Au threshold – MC-285, 286, 287 and 290. MC-285 was taken from a tributary to the Nicoamen River, 1.7 km NNW of the Discovery Zone and west of the Nicoamen River Fault. The remaining samples were taken upstream of MC-190 and returned anomalous to high results in Au, As, Sb and Mo, which are common indicator elements for low sulphidation gold deposits. The anomalous drainage basin defined by these samples lies immediately east of the Discovery Zone and straddles the Nicoamen River Fault. The last sample taken during 2004, MC-310, was lost either in transit or at the laboratory.

Staking of the property began in October, 2004. During the 2005 field season seven stream sediment samples were taken in the southwestern corner of the property. Gold results were very low, but arsenic and antimony values were somewhat elevated.

Two areas of interest were indicated by the gold and arsenic results from the stream sediment sampling programs between 2003 and 2005. These are on the west side of Conversion Claim 511667 (West Zone) and in the centre of Conversion Claim 511671 (Discovery Zone). An area of potential interest lies upstream of stream sediment sample MC-285, about 1.7km northwest of the Discovery Zone and 1.0 to 1.5km northeast of the West Zone.

5.3.2 Reconnaissance Soil Samples (Plates 2A, 2B, Figures 5, 6)

Prospecting and reconnaissance soil sampling were carried out concurrently with stream sediment sampling. A soil grab sample was commonly taken from patches of soil or scree derived from altered rock. Any alteration noted in road cuts was similarly sampled.

Fifteen reconnaissance soil samples were taken before the property was staked. Ten of these were taken from two road cut colour anomalies, six from what is now called the Discovery Zone (MC-S101 – S106, Figure 5) at 25m intervals and four from the West Zone (MC-S97 – S100, Figure 6) at 10m intervals. All were very strongly anomalous in Au, As, Sb and Mo. The remaining five samples were from various patches of altered soil around the property. One was anomalous in As (MC-S107, 10.9ppm), and one was very anomalous in As (MC-S119, 234.3ppm).

Fifty-six soil samples (ZAK-Sxx series) were collected after the property was staked, during the 2005 exploration program. S1 to S15 (Plate 2A, 2B) were collected at 25m intervals from a road cut 600m northwest of the Discovery Zone (Discovery North area); only S1 returned a gold value above threshold (2.2ppb Au). S16 to S20 (Plate 2A, 2B) were taken at the same spacing along the road west of the Discovery Zone. S16, immediately west of MC-S106, and S20 were both highly anomalous in Au, As and Sb. A detailed soil sample line was established from south to north across the Discovery Zone (Figure 5). The southern 600m was sampled at 5m intervals (S21 to S30) with the exception of the road crossing. North of S30 the sample interval was 10m (S31 to S 38). Although most of the samples returned anomalous results for Au, three of the four strongly anomalous values (ZAK-S26, 10ppb Au; ZAK-S27, 14.7ppb Au; ZAK-S28, 27ppb Au) were given by the three samples collected over the projected location of the quartz-bearing shear exposed in DZT05-5 (ZAK-R15, 342.4ppb Au). All the soil samples are anomalous to highly anomalous in As and Mo; more than half are highly anomalous in Sb. The Mo anomaly is wider than the As anomaly which is wider than the Au and Sb anomalies.

The remaining reconnaissance soil samples were collected in the West Zone area. Two, ZAK-S39 and S40 (Plate 2A, 2B), were taken from exposures of rusty orange, iron-carbonate altered soil about 150m north of the Zone. Neither was anomalous in Au, As or Sb. The final 16 soil samplers were collected at approximately 25m intervals along the road-cut south of the Zone. Over half of these samples (ZAK-S43 to ZAK-S52) were generally strongly anomalous in Au, As, Sb and Mo.

The road-bank soil samples returned anomalous results in Au, As, Sb and Mo at the Discovery and West Zones, and south of the West Zone. The samples taken in the Discovery North area were uniformly low in these elements.

5.3.3 Coarse Grid Soil Samples (Figures 4A-4E)

A coarse grid soil sampling program over the southern part of the property was included in the 2005 exploration program (Figure 2). Twenty north-south lines at 200m spacing were soil sampled at 50m intervals, and 771 soil samples were collected. All were prepared as described in subsection 5.2, and analysed for 36 elements. The results for gold and the four chosen pathfinder elements are shown on Figures 4A to 4E. Histograms showing the distribution of Au, As, Sb, Hg and Mo were drawn using the analytical data from the 771 grid samples (Figures 3A, 3B).

One large and four small discrete gold-in-soil anomalies can be defined, each containing one or more strongly anomalous gold values (Figure 4A). The four small anomalies are in the southwestern part of the grid, with a number of single station anomalies. Each of the small anomalies owes its prominence to one or two anomalous to strongly anomalous gold values, and they are single line anomalies. The western small anomaly lies immediately south of the West Zone; the road bank sample results (ZAK-S41 – S56) confirm the validity of this anomaly. The large gold-in-soil anomaly lies south and east of the Discovery Zone, and has a horseshoe shape. The anomaly crosses five sample lines, and is defined by numerous anomalous to strongly anomalous gold values.

High arsenic values cluster in four anomalous areas (Figure 4B). The western anomaly coincides with the gold anomaly south of the West Zone, and crosses two sample lines. The largest arsenic anomaly lies south and west of the Discovery Zone. The eastern third of this anomaly overlies the large gold anomaly. The remaining two high arsenic-in-soil areas are east of the Discovery Zone and overlie sections of the large gold anomaly.

There are seven discrete antimony anomalies. Two of these are single station, single line anomalies, one of which lies immediately east of the Discovery Zone. Of the other five anomalies, two are well defined but only weakly anomalous; one coincides with the Au/As anomalies south of the West Zone; and two coincide with the arsenic anomalies south and east of the Discovery Zone. The largest

Au, ppb	Frequency	Cumulative %
0.25	277	35.97%
0.5	40	41.17%
0.75	83	51.95%
1	99	64.81%
1.5	129	81.56%
2.2	59	89.22%
3.2	35	93.77%
4.6	25	97.01%
6.7	10	98.31%
9.6	6	99.09%
14	3	99.48%
20	0	99.48%
30	3	99.87%
42	1	100.00%
More	0	100.00%

Nicoamen River Grid As

As, ppm	Frequency	Cumulative %
0.25	69	8.96%
1	132	26.10%
2	185	50.13%
3	134	67.53%
4	84	78.44%
5	47	84.55%
6	23	87.53%
7	18	89.87%
10	33	94.16%
15	18	96.49%
20	10	97.79%
30	9	98.96%
More	8	100.00%

Sb, ppm	Frequency	Cumulative %
0.05	70	9.09%
0.1	328	51.69%
0.3	241	82.99%
0.4	39	88.05%
0.5	30	91.95%
0.6	13	93.64%
0.7	9	94.81%
0.9	17	97.01%
1.2	13	98.70%
1.6	4	99.22%
2.5	4	99.74%
More	2	100.00%

Figure 3A: Soil Sample Histograms - Au, As, Sb

Nicoamen River Grid Hg				
Hg, ppb	Frequency	Cumulative %		
5	25	3.25%		
10	246	35.19%		
1 20	277	71.17%		
30	126	87.53%		
40	55	94.68%		
50	0	94.68%		
60	34	99.09%		
80	4	99.61%		
100	1	99.74%		
300	2	100.00%		
More	0	100.00%		

.

1

Mo, ppm	Frequency	Cumulative %
0.1	6	.78%
0.2	72	10.13%
0.3	178	33.25%
0.4	200	59.22%
0.5	129	75.97%
0.6	72	85.32%
0.7	34	89.74%
0.8	23	92.73%
0.9	12	94.29%
1.2	18	96.62%
1.6	13	98.31%
2.2	6	99.09%
More	7	100.00%

Figure 3B: Soil Sample Histograms - Hg, Mo

coincides with the largest arsenic anomaly, south and west of the Discovery Zone.

Mercury values are reported by Acme in ppm, but were converted to ppb for presentation purposes. There are a number of very irregular areas with elevated mercury values (Figure 4D). Three of these are peripheral to the West Zone Au/As/Sb anomaly. There is one in the southwest corner of the grid and one in the northeast corner. The remainder are either coincident with or peripheral to the largest As/Sb anomaly.

The molybdenum-in-soil results are ambiguous (Figure 4E). Three anomalous areas coincide with the soil Au/As/Sb anomalies east of the Discovery Zone, and one overlies a small Au/Sb anomaly between 18000E and 19000E on line 7800N. The large Mo anomaly in the southwest corner of the grid may be due to the Mount Lytton granodioritic intrusive complex which underlies this area.

5.4 Prospecting and Reconnaissance Rock Geochemical Results (Plates 3A, 3B)

Seventeen reconnaissance rock samples were collected before the property was staked. They were collected on road traverses, wherever altered or quartzbearing float or outcrop was seen. The majority of the material sampled was sub-angular to sub-rounded float fragments containing quartz. Over 50% were collected within 600m of the Discovery Zone, and all but one returned greater than 250ppb gold. The highest value was 55526.1ppb gold, yielded by a composite sample (MC-R194) of two small pieces of iron stained chalcedonic quartz found 600m northwest of the Discovery Zone. A subsequent fire assay of the reject portion of this sample gave 64.87 g/t Au. Two samples of float were collected adjacent to the West Zone – MC-R186, 19.3 ppb Au, and MC-R187, 414.9 ppb Au.

Two samples returned in excess of 1000 ppb Au. Sample MC-R198, 1076 ppb Au, was from chalcedonic quartz vein float found 200m east of the combined Au/As/Sb anomaly south of the West Zone. Sample MC-R224 (1017 ppb Au) was a small piece of MnO-stained chalcedony found about 150m north of sediment sample MC-285 (2.4 ppb Au).

Since the property was staked another four reconnaissance rock samples were taken, three from near the Discovery Zone and one from the West Zone. The Discovery Zone samples returned 217, 690 and 1176 ppb Au; the West Zone sample gave 16.5 ppb Au. The majority of the quartz vein float sampled returned encouraging results.

6.0 PHYSICAL WORK

6.1 Hand trenching

Physical work since the claims were staked in October, 2004 has consisted of hand trenching. Six trenches were excavated, five in the Discovery Zone and one in the West Zone. The relative locations of these trenched areas are shown on Plate 1 and Figures 2 and 5, and individually in greater detail on Figures 5A-5E and 6. Each of the trenches was excavated to bedrock. The exposures were thoroughly cleaned using whisk brooms and mapped before sampling. The sample intervals were determined from the geology of each exposure. A profile was drawn of each trench, after the sample intervals were decided, and the horizontal length of each sample determined. Each sample was taken using a hammer and moil or chisel to create a channel 5 – 7cm wide and up to 6cm deep for the length of each sample. Sample weights varied from 2.5kg to over 10kg. The physical work involved is summarised in Table 3. The analytical results for samples taken from each trench are listed on the drawing for each trench.

Trench No.	Length, m	Average Slope Width, m	Average Depth, m	Volume, m ³	# Rock Samples
DZT05-01	6.2	1.50	0.30	2.79	3
DZT05-02	3.3	2.13	0.16	1.12	1
DZT05-03	4.4	1.57	0.10	0.69	5
DZT05-04	5.9	1.80	0.20	2.12	2
DZT05-05	3.0	0.60	0.10	0.18	1
WZT05-01	25.2_	1.75	0.16	7.06	3
Total	48.0			13.96	15

Table 3: Trench Summary

6.1.1 Trench DZT05-1 Results (Figure 5A)

Five trenches were excavated in the Discovery Zone to expose solid rock. Trench DZT05-1 was sited to explore the area near reconnaissance rock sample MC-R190 (1604 ppb Au) and soil sample MC-S101 (94 ppb Au). Red to orangebrown, FeO and MnO stained weathered granodiorite was exposed. Pale yellowwhite, resistant, more silicious patches of granodiorite were found at each end of the trench. A channel was cut across the eastern patch which was highly silicious with chalcedonic quartz; three samples were taken (Figure 5A). The highest value was returned by ZAK-R6, 544 ppb Au, from weathered granodiorite containing pieces of irregular quartz below the silicious zone. An additional reconnaissance rock sample, ZAK-R4, was taken from a piece of angular granodiorite float containing chalcedonic quartz veins and masses. This sample gave 1176.1 ppb Au.

LEGEND ROCK TYPES SYMBOLS QV - Quartz Vein Geological boundary	ALMADEN MINERALS LTD. 1103 - 750 West Pender Street Vancouver, British Columbia VBC 2TB		
AD - Andesitic Dyke 10m Crab sample location XXa - Altered Baseline XXw - Weathered Detailed soil line	NICOAMEN RIVER PROPERTY Kamloops Mining Division, B.C. NTS 921/3W NAD83 UTM Grid		
MINERALOGY DZT05-1 Trench number with QZ - Quartz (R6-R6) sample numbers PY - Pyrite Trench details shown on Figures 5A to 5E ALTERATION SAMPLES	DISCOVERY ZONE GEOLOGY, TRENCH & LOCAL SAMPLE		
SI - Silica Rxxx - Rock Sample Number (ZAK-, MnO - Pyrotusite MC- omitted) FeO - Hematite +/- Limonite Sxxx - Soil Sample Number (ZAK-, MC- omitted) (94) - Au value, rounded to nearest 1 ppb	LOCATION MAP SCALE 1/600		
ANALYTICAL NOTES Initial analysis by ICP-MS, on 30gm subsample. Fire assay on 29.2gm (1AT) subsample for samples that returned >1000ppb Au by ICP-MS. Gold values rounded to nearest 1 ppb. Sample length is horizontal distance.	0 <u>5</u> 10 <u>15</u> 20 <u>2</u> 5m Drawn by JH JAN. 2006 Figure 5		

6.1.2 Trench DZT05-2 Results (Figure 5B)

Trench DZT05-2 was cleared to better expose patches of resistant-toweathering, red to orange-brown altered (silicified?) granodiorite. Granitic texture and biotite are still visible. The feldspars appear chalky, possibly due to incipient kaolinization. Channel sample ZAK-R8 was cut across the most silicious section (chalcedonic quartz?), Figure 5B. This sample yielded 498 ppb Au.

6.1.3 Trench DZT05-3 Results (Figure 5C)

This trench was dug between soil sample MC-S105 (48 ppb Au) and reconnaissance rock sample MC-R192 (843 ppb Au). The rock sample consisted of 12 pieces of silicious granodiorite and chalcedonic vein quartz. The trench exposes brown to red-brown weathered granodiorite cut by a shear zone 10 to 15cm wide striking 284°/20°S. The shear zone contains a banded chalcedony vein. A second, 1cm quartz vein lies 5-10cm above the main vein near the centre of the exposure. There is an elongate patch of altered, MnO stained silicious granodiorite (?) below the main vein in the same area.

Panel sample ZAK-R9P was established at the west end of the quartz zone. This panel measured 60cm horizontally (along the zone) by 30 cm on the sloping surface (20cm horizontally). The volume of material collected by chipping over the surface area of the east end of this panel dictated that it be divided in two – samples ZAK-R9P1 and R9P2. Two panels, 45cm horizontally by 30cm on the slope, were sampled starting 2m east of ZAK-R9P2 (Figure 5C). These were panel samples ZAK-R11P and R12P. Sample ZAK-R10 comprised multiple grabs along the quartz vein between the panel samples. The analytical results are presented on Figure 5C. After the 36-element ICP-MS analysis another cut of the pulp from each sample was taken for assay. The assay results are an average 25% higher than the ICP-MS results.

6.1.4 Trench DZT05-4 Results (Figure 5D)

Trench DZT05-4 was excavated to expose a narrow quartz vein seen in altered granodiorite in the road bank. Three narrow shears were uncovered, two of which contain quartz veins. The shears cut a block of yellow-grey silicious granodiorite with FeO and MnO stained patches. The granitic texture is almost obliterated. This altered block is hosted by recessively weathered, reddish to reddish-brown slightly silica altered granodiorite. The southern shear/vein pinches and swells between 1cm and 5cm in 20cm horizontally, the middle shear/vein is 5cm thick while the northern shear does not host a vein. The latter is 2-3cm wide at the western end, widening to 10-15cm at the eastern end. It contains grey-white to yellow-orange granular ankerite(?) altered granodiorite. North of the shear is strongly clay altered decomposed/weathered granodiorite. The first channel sample included the silicious granodiorite and the two quartz veins while the second consisted of the major shear and weathered granodiorite. The second,

,

R14, carried twice as much gold as the first (Figure 5D). Fire assay of the pulps reported 12.7% more gold than the ICP-MS analyses.

6.1.5 Trench DZT05-5 Results (Figure 5E)

A quartz-filled shear was noted in the road bank while mapping the road cut. This was further exposed by Trench DZT05-5. The attitude of the 1-2cm wide, 1m long shear/vein (282°/70°S) is semi-parallel to the average attitude of the shears and veins mapped locally. ZAK-R15, a grab sample over the length of the quartz exposure, returned 342 ppb Au. The host rock of the shear is grey-white granodiorite with reddish-orange patches.

6.1.6 Trench WZT05-1 Results (Figure 6)

The West Zone was first noted as a yellow to orange colour anomaly in a road cut on the west side of the property. Reconnaissance rock and soil samples were taken during the 2004 exploration program; these returned low but interesting values in gold and highly anomalous results for arsenic and antimony. In September, 2005, trench WZT05-1 was excavated to expose the bedrock in this road cut. A quartzofeldspathic rock (QFR) of unknown origin was found. At the north end of the trench this is white on the weathered surface and slightly silicious with trace pyrite and limonite in fractures. South of a shear the QFR has a gneissic fabric with thin quartz lenses parallel to the fabric. The white colour may be due to kaolinite or argillic alteration. To the south the colour changes gradually through yellow-orange to brown orange to orange with increasing limonite, copiapite and pyrolusite. South of the gneissic section the QFR is brecciated, altered (silica, minor ankerite?) and possibly metamorphosed. The original rock may have been a rhyolite, a tuff or fine grained intrusive rock.

Between 7m and 14m on the baseline is a strongly sheared section of yellow to yellow-orange QFR with patchy argillic and silica alteration. At 11.7m there is a 10cm area of highly silicious QFR with minor pyrite and arsenopyrite (sample WZT-R3). From 17m to 25m is an orange-brown faulted zone containing scattered blocks to 50x50cm of silicious QFR with 1 - 2% pyrite and minor ankerite, and MnO on fractures. The largest block, at 22m, looks like quartzite with ankerite veinlets. The north and south contacts of this fault zone are at $150^{\circ}/45^{\circ}W$ and $132^{\circ}/57^{\circ}W$, respectively.

Sample WZT-R1 was a grab from very locally derived silicious QFR rubble with dark grey patches and 1 – 3% pyrite and arsenopyrite. This was surrounded by orange-yellow ankeritic QFR. Locally highly silicious dark grey material has replaced QFR. Sample WZT-R2 was taken from a channel cut across silicious QFR containing minor pyrite.

7.0 PERSONNEL & CONTRACTORS

.

Company Personnel	Work Period (2005)	Field Time – Days (Includes travel)
E.A. Balon, P.Geo North Vancouver, BC Project Manager (QP) Prospector/Sampler	Sep. 08 – 25	17.0
Contract Personnel		
J.L. Tindle Whistler, BC Sampler/Prospector	Sep. 08 – 25	18.0
E.N. MacKenzie Vancouver, BC Sampler/Prospector	Sep. 08 – 22	14.0
J.J. Hylands, P.Eng (Hylands Geol. Services Ltd West Vancouver, BC Consulting Geologist	Sep. 19 – 24 .)	5.0
TOTAL		54.0 days

8.0 STATEMENT OF COSTS

.

(All items rounded to the nearest dollar; expenditures incurred for the assessment period October 20, 2004 to October 20, 2005.)

SALARY AND BENEFITS \$ 4,000 (E.A. Balon)
CONTRACT FIELD SERVICESHylands Geological Services Ltd.Eric MacKenzie.Jan Tindle.4,500
SAMPLE PREPARATION & GEOCHEMICAL ANALYSES (Acme Analytical Laboratories Ltd.)
TRUCK RENTALS, FUEL & MISCELLANEOUS TRAVEL EXPENSES
ACCOMMODATION & FOOD
COMMUNICATIONS
GENERAL FIELD SUPPLIES
MAPS, PHOTOS & REPRODUCTIONS 15

TOTAL EXPENDITURES \$ 30,860

(Exclusive of Report Preparation)

9.0 STATEMENT OF QUALIFICATIONS

- I, Edward A. Balon, of North Vancouver, British Columbia, hereby certify that:
 - 1. I am a prospector and geological/mining technician residing at 501-250 West First Street, North Vancouver, BC, and am employed by Almaden Minerals Ltd. of 1103-750 West Pender Street, Vancouver, British Columbia, V6C 2T8.
 - 2. I am a graduate of Northern College Haileybury School of Mines, Haileybury, Ontario (1970), with a diploma in Mining Engineering Technology (integrated Geology, Mining and Metallurgy)
 - 3. I have attended numerous Continuing Education Courses in Geoscience since 1970, including Exploration Geochemistry at the University of British Columbia, Vancouver, BC, in 1984/1985.
 - 4. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC), license number 20265, since 1993.
 - 5. I have worked continuously in mineral exploration for thirty-six years in British Columbia, Yukon, Northwest Territories, USA and Mexico.
 - I am a co-author and the editor of this report, and I have been the supervisor (Qualified Person) for all of the fieldwork performed to date on the NICOAMEN RIVER property.

ALMADEN MINERALS LTD.

Edward A. Balon, P.Geo

9.0 STATEMENT OF QUALIFICATIONS

I, James J. Hylands, of West Vancouver, British Columbia, hereby certify that:

- 1. I am a consulting geologist residing at 1430 Inglewood Avenue, West Vancouver, BC, V7T 1Z1, and am employed by Hylands Geological Services Ltd. of the same address.
- 2. I am a graduate of Northern College Haileybury School of Mines, Haileybury, Ontario (1958), with a diploma in Mining Engineering Technology (integrated Geology, Mining and Metallurgy)
- 3. I am a graduate of the University of British Columbia, Vancouver, BC, (1966) with a degree in Geological Engineering (BASc).
- 4. Between 1966 and 1970 I attended Stanford University, Palo Alto, California, and undertook post-graduate studies in geochemistry.
- 5. I have attended Continuing Education Courses in Geoscience since 1970, at the University of British Columbia, McGill University and various colloquia.
- 6. I have been a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC), license number 8177, since 1972.
- 7. I have worked continuously in mineral exploration and mining, including summer employment, since 1956 in Quebec, Ontario, British Columbia, Yukon, Northwest Territories, USA, Philippines, Jamaica and Tanzania.
- 8. I was employed by Almaden Minerals Ltd., 1103-750 West Pender Street, Vancouver, BC, V6C 2T8, during the period September 19 - 24, 2005, to geologically map portions of the NICOAMEN RIVER property.
- I am a co-author of this report.

HYLANDS **DGICAL SERVICES LTD.**

10.0 REFERENCES

BALON, E.A. AND HYLANDS, J.J.

2006: 2005 Geochemical, Geological, Prospecting and Trenching Report, MERIT Property, Nicola Mining Division, BC. (BCGS AR 28006)

BALON, E.A.

- 2005: 2004 Geochemical, Prospecting and Physical Work Report, SAM Property (SAM 1-10 Claim Group), Kamloops Mining Division, BC. (BCGS AR 27672)
- 2004: 2003 Geochemical and Geophysical Report, Prospect Valley (PV) Property, Nicola Mining Division, BC. (BCGS AR 27425)

BALON, E.A. AND JAKUBOWSKI, W.J.

2003: 2002 Geochemical and Trenching Report, Prospect Valley (PV) Property, Nicola Mining Division, BC. (BCGS AR 27048)

BRITISH COLUMBIA MAPPLACE website:

www.em.gov.bc.ca/Mining/Geolsurv/MapPlace

DUFFEL, S. AND MCTAGGART, K.C.

- 1952: Ashcroft Map-Area, British Columbia (BC); Geological Survey of Canada (GSC) Memoir 262, pp. 52-58 (Spenses Bridge Group and Kingsvale Group)
- 1951: GSC Map 1010A; Ashcroft, BC; scale 1:253,440

HOLLAND, S.S.

1950: Placer Gold Production of British Columbia; BCMEMPR Bulletin 28, reprinted 1980.

JACKAMAN, W. AND MATYSEK, P.F.

1994: British Columbia Regional Geochemical Survey, NTS 92I – Ashcroft, (BC RGS 40/GSC OF 2666), Stream Sediment and Water Geochemical Maps & Data.

MONGER, J.W.H. AND MCMILLAN, W.J.

1989: Geology, Ashcroft, BC; GSC Map 42-1989, sheet 1, scale 1:250,000

MONGER, J.W.H.

- 1989: Geology, Hope, BC; GSC Map 41-1989, sheet 1, scale 1:250,000
- 1985: Structural Evolution of the Southwestern Intermontane Belt, Ashcroft and Hope, Map Areas, in Current Research, Part A, GSC Paper 85-1A, pp. 349-358.

1981: Geology of Parts of Western Ashcroft Map Area, Southwestern BC; in Current Research, Part A, GSC Paper 81-1A, pp. 185-189.

RICE, H.M.A.

1947: Geology and Mineral Deposits of the Princeton Map-Area, BC; GSC Memoir 243.

RYDER, J.M.

1975: Quaternary Geology – Terrain Inventory, Lytton Map-Area, BC (92I/SW): in Current Research, Part A, GSC Paper 75-1A.

SOUTHER, J.G.; GABRIELSE, H AND YORATH, C.J. (ed.)

1991: Volcanic Regimes, Chapter 14 <u>in</u> Geology of the Cordilleran Orogen in Canada, Geology of Canada, no.4, pp.457-490 (<u>also</u> Geological Society of America, The Geology of North America, v. G-2).

THORKELSON, D.J.

1985: Geology of the Mid-Cretaceous Volcanic Units near Kingsvale, Southwestern BC; <u>in</u> Current Research, Part B, GSC Paper 85-1B, pp.333-339.

APPENDIX A

.

MINERAL CLAIM EXPLORATION and DEVELOPMENT WORK EXPIRY DATE CHANGE CONFIRMATIONS

Event No. 4051847 Event No. 4068129

.

Contant Us a

B.C. HOME

Mineral Titles

Mineral Titles Online

and the first of			••
10	- No		14 J. 14

GRITISH

Mineral Claim Exploration and Development Work/Expiry Date Confirmation

Change

Recorder: EDWARD AXEL BALON (101404) Submitter: EDWARD AXEL BALON (101404) Recorded: 2005/OCT/18 Effective:

Technical Items: Geochemical, Geological, Prospecting

D/E Date: 2005/OCT/18

Select Input Method Select/Input Tenures

Work/Expiry Date

Input Lots

Change

Mineral Claim Exploration and Development

- 记 Data Input Form
- Review Form Data
- Process Payment
- Confirmation

Event Number: 4051847

Work Start Date: 2005/SEP/01 Work Stop Date: 2005/OCT/15

Summary of the work value:

Work Type: Technical and Physical Work Physical Items: Tunneling Trenching

Total Value of Work: \$ 30859.90 Mine Permit No: N/A

2005/OCT/18

🖶 Main Menu

- Search Tenures
- View Mineral Tenures
- View Placer Tenures

New # of Good Area Work Sub-Claim Tenure Issue Good Davs То in Value misslon # Name/Property Date То For-Date Ha Due Fee Date ward 511667 2005/APR/262005/OCT/202010/DEC/31 1898 413.93 \$ 10537.69 \$ 860.98 511671 2005/APR/262005/OCT/202010/DEC/31 1898 517.42 \$ 13172.19\$ 1076.23 506513ZAK3 2005/FEB/10 2006/FEB/10 2008/DEC/31 1055 517.42 \$ 5977.18 \$ 598.22

Total required work value	e: \$	29687.06
PAC name:	Almad	en Minerals Ltd.
Debited PAC amount:	\$	0.00
Credited PAC amount:	\$	1172.84
Total Submission Fees:	\$	2535.43

http://www.mtonline.gov.bc.ca/mto/jsp/sow m c/sowEventConfirmation.jsp?ca.bc.gov.em.app.mto.shoppingItemIndex=0&org.apache.struts.t.. 18/10/2005

MT.online@gov.bc.ca, 03:03 PM 10/18/2005, Mineral Titles Online, Transaction event, Email confi... Page 1 of 2 Envelope-to: almaden07@uniserve.com Date: Tue, 18 Oct 2005 15:03:22 -0700 (PDT) From: MT.online@gov.bc.ca To: info@almadenminerals.com, hunter@almadenminerals.com - ubject: Mineral Titles Online, Transaction event, Email confirmation, Event 4051847, Work Type: B X-Scanner: OK. Scanned. X-NAS-Language: English X-NAS-Bayes: #0: 3.91489E-280; #1: 1 X-NAS-Classification: 0 X-NAS-MessageID: 714 X-NAS-Validation: {5692575C-2549-44B4-816F-D2676C27C45B} Event Number: 4051847 Event Type: Exploration and Development Work / Expiry Date Change Work Type Code: B Required Work Amount: 29687.06 Total Work Amount: 30859.90 Total Amount Paid: 2535.43 PAC Name: Almaden Minerals Ltd. PAC Debit: 0.00 . _nure Number: 511667 Tenure Type: M Tenure Subtype: C Claim Name: Old Good To Date: 2005/OCT/20 New Good To Date: 2010/DEC/31 Tenure Required Work Amount: 10537.69 Tenure Submission Fee: 860.98 Tenure Number: 511671 Tenure Type: M Tenure Subtype: C Claim Name: Old Good To Date: 2005/OCT/20 New Good To Date: 2010/DEC/31 Tenure Required Work Amount: 13172.19 Tenure Submission Fee: 1076.23 Tenure Number: 506513 Tenure Type: M Tenure Subtype: C Claim Name: ZAK3 Old Good To Date: 2006/FEB/10 New Good To Date: 2008/DEC/31 Tenure Required Work Amount: 5977.18 Tenure Submission Fee: 598.22

Help 😰

Contact Us +

ALMADEN MINERALS

LTD. (144134)

THE REPORT OF THE PARTY OF THE

B.C. HOME

Mineral Titles

Mineral Claim

Mineral Titles Online

Recorder:

Mineral Claim Exploration and Development Work/Expiry Date Change

Confirmation

Exploration and Development Work/Expiry Date Change

Select Input Method Select/Input Tenures

- 💮 Input Lots
- 🗟 Data Input Form
- Review Form Data
- S Process Payment
- Confirmation

🌲 <u>Main Menu</u>

Event Number: 4068129

Recorded: 2006/FEB/02

D/E Date: 2006/FEB/02

Work Start Date: 2005/SEP/08 Work Stop Date: 2005/SEP/30

Summary of the work value:

Total Value of Work: \$ 1172.84 **Mine Permit No:**

2005/MAR/112006/MAR/112006/DEC/31 295496.39\$ 1604.77\$ 160.48

Work Type: Technical and Physical Work Physical Items: Supply costs, Transportation / travel expenses

ALMADEN MINERALS

LTD. (144134)

Search Tenures

View Mineral Tenures

View Placer Tenures

MTO Help Tips

Exit this e-service ľ >

Fenure #	Claim Name/Property	Issue Date	Good To Date	New Good To Date	# of Days For- ward	Area in Ha	Work Value Due	Sub- mission Fee
508830	ZAK4	2005/MAR/11	2006/MAR/11	2006/DEC/31	295	496.39	\$ 1604.77	\$ 160.48

Technical Items: PAC Withdrawal (up to 30% of technical work performed), Prospecting

Submitter:

Effective: 2006/FEB/02

Total required work value	::\$	1604.77
PAC name:	A	lmaden Minerals Ltd.
Debited PAC amount:	\$	431.93
Credited PAC amount:	\$	0.00
Total Submission Fees:	\$	160.48
Total Paid:	\$	160.48

The event was successfully saved.

Please use Back button to go back to event confirmation index.

Back

http://www.mtonline.gov.bc.ca/mto/jsp/sow m c/sowEventConfirmation.jsp?ca.bc.gov.em.app.mto.sh... 02/02/2006

In

From: MT.online@gov.bc.ca To: info@almadenminerals.com Subject: Mineral Titles Online, Transaction event, Email confirmation, Event # 4068129, Work Type: B

Event Number: 4068129 Event Type: Exploration and Development Work / Expiry Date Change

Work Type Code: B

Required Work Amount: 1604.77

Total Work Amount: 1172.84

Total Amount Paid: 160.48

PAC Name: Almaden Minerals Ltd.

PAC Debit: 431.93

Tenure Number: 508830 Tenure Type: M Tenure Subtype: C Claim Name: ZAK4 Old Good To Date: 2006/MAR/11 New Good To Date: 2006/DEC/31 Tenure Required Work Amount: 1604.77 Tenure Submission Fee: 160.48

Server Name: PRODUCTION

APPENDIX B

.

NICOAMEN RIVER AREA Pre-Staking RECON SAMPLE SUMMARY TABLE & ACME ANALYTICAL GEOCHEMICAL & ASSAY CERTIFICATES

						NICO	AMEN	RIVE	R ARE	A Pre-S	Staking (20	003-2004) RECONNAISSANCE SAMPLE S	UMMARY
Sample	East	North	AU ppb N	IO ppm	CU ppm	PB ppm	ZN ppm	AG ppm	AS ppm	SB ppm B	Аррт НС ррт	Rock Type	Note
Number	NAD 83	NAD63										<u> </u>	
Stream S	ediment Si	amples											
MC-186	618879	5559694	0.8	0.4	30.4	3,8	70	-0.1	3.2	0.5	126	Dark grey maroon volcanics, diorite (DI)	Channel 80cm, dry trickler steep grade, boulder cobble bed
MC-187	618940	5559692	2	0.5	22.3	3.3	62	-0.1	4.2	0.4	167 (KSBS basalt, contact area w/ EK tuff(?) bodies & TJgd.	Nicoamen main trunk 3-5m wide, mod flow, sand/gravel/cobble base.
MC-1875	618940	5559692	2.1		00.4				~ ~		400	(KSBS basait, contact area w/ EK tuff(?) bodies & TJgd.	Nicoamen main trunk 3-5m wide, mod flow, sand/gravel/cobble base.
MC-188	619061	5559769	0.5	0.6	28.4	4	56	0.1	0.8	0.1	102 0	TKSBS basart, contact area w/ EK tuff(?) body.	E side br, dry channel 30-40cm wide, only minor transported seds.
MC-189	619081	55565944	0.7	0.4	20.0	2.0	11	-0.1	10.4	0.9	109 0	J Dank grey marcon voicanics, Di, minor tan pyrociastic	Chan Sucm, good flow, mod glade, givi sand bed. Two rd xings upstrm
MG-190	619451	55556/6/	2.0	0.7	20.0	3.1	67		10.3	0.5	<u>133</u>	A Vesicular BV Q/C, gry marcon BV, Di, tan Si tami rock, tan pyroci.	Channel 1.2m, mod tiow, steep grade, boulder/cobble bed.
MC-270	620301	5550092	0.5	0.4	30.1	5.0	57	0.1	2.3	0.2	04 0	y Sandygraver pase + pasaroc muo 200ant DV basildam valaama listtaa aalasad valaanian (CK2)	U.om wide theker. Disturbed ground from old logging
NU-271	0204/3	0000000	1.3	0.0	37.5		60	0.1	9.0	0.3	64 1	Dom booble veterals (D)0 feet, mines intrakte	2.0m. wde channel mou now
MC-273	820520	5558062	-0.5	0.0	28.1	23	49	-0.1	2.3	0.2	89 1	V Cominantly BV feat	0.2.0 Em wide trickler
MC-273	620331	5559092	-0.5	0.4	20.1	33	54	0.1	3.Z B.A	0.2	203 (2 Bounded intrusive (CD) float at least 95%	V.3-V.3III WKW UKKINI Main Isusk 2 fes wide boulden, shennal
MC-275	820100	5559709	2	0.5	20,0	3	52	.0.1	6.4	0.2	240 0	Granodiarite cuboran on SM hank >05% CD float in streamhed	Main 3 5m vide mederate flow
MC-278	620100	5558737	-0.5	0.0	25.0	32	56	-0.1	3	0.3	89 (Dominently BV float	Side branch mouth below MC-275, 1,5-2,5m wide mod flow
MC-277	818481	5550322	0.5	0.3	23.1	4	50	1	24	0.2	120 1	RV & grandiarite (CD) float	Dry channel 0.5.1 0m wide
MC-278	618306	5559372	-0.5	0.0	26.1	37	45	01	31	0.3	205	No sizable float	Dry channel <0.5m wide
MC-279	618616	5559032	-0.5	0.0	22.3	38	61	-01	43	0.2	225	AV/BV outcrop upstream & in mod out to SE	Dry channel 0.8m wide
MC-280	618816	5558752	-0.5	0.3	19.6	3.5	51	-01	14.9	14	248	GD/BV float	0.5.0 8m wide channel mere trickle
MC-281	618938	5558637	-0.5	0.4	22.4	4.2	67	0.1	9.5	0.4	208 0	AV/BV float round GD bidrs & equate/bigb level OV boulders	1 0.1 5m wide channel
MC-282	618419	5558452	0.6	0.4	20.7	3.9	49	0.1	12.5	0.5	281 0	Some BV/AV, plenty GD float	<0.3-0.5m wide channel
MC-283	618036	5558752	-0.5	0.7	30.4	3.3	109	-0.1	2.1	0.2	130	BV/AV bedrock	<0.5-1 0m wide channel
MC-284	618511	5558732	-0.5	0.4	23.1	4	61	0.1	6.4	0.3	250 (Dull grey-brown to red-brown BV/AV	0.5m wide channel.
MC-285	618324	5560077	2.4	0.4	26.6	3.2	53	0.1	3.2	0.4	124	Dominantly granitic (GR) float	<0.5m wide dry channel
MC-286	619436	5558375	3.5	0.7	24.9	3.6	54	0.1	26.1	0.7	244	Granitic & felsic volcanic float	10.5-0.8m wide channel.
MC-287	619506	5558492	3.5	0.7	21.7	3.2	51	-0.1	23.2	0.7	225 0	Granitic & volcanic float, some felsic	0.75 wide channel.
MC-288	619546	5558342	1	0.4	26.7	4.2	60	0.1	4,3	0.1	t15 (Felsic float. Small chips	0.3-0.5 wide dry channel.
MC-289	619526	5558332	1.1	0.4	21.3	3.9	53	0.1	4	0.2	83 (O Granitic & angular felsic volcanic float	0.3-0.5m wide dry channel.
MC-290	619521	5558347	3.1	0.6	21.3	4.1	61	-0.1	10.1	0.5	158 () Granitic & angular felsic volcanic float	0.75-1.25m wide dry channel.
MC-291	618731	5559262	0.8	0.4	25.3	3	55	-0.1	4	0.5	105 (Dominantly GD cobbles, lesser mafic volcanic	0.5m dry channel, till zone
MC-292	619052	5559377	-0.5	0.5	15.7	4.3	51	-0.1	4	0.2	218 (OGD/mafic volcanic some vesicular BV rubble	1.0m dry channel.
MC-293	618806	5559209	0.6	0.6	28.8	4.2	76	0.1	5.5	0.3	255 0	Mixed GD/mafic volcanic cobbles/bldrs.	0.3-0.5m wide dry channel.
MC-294	619256	5559002	0.5	0.4	22	3.5	69	-0.1	10.5	0.9	190 0	OGD/mafic volcanic boulders. Heavy till area	1.0m dry channel.
MC-295	618406	5560382	0.5	0.4	32.8	3.1	64	-0.1	3.1	0.4	104 (DGD/matic volcanic boulders	1-1.25m dry channel.
MC-296	618438	5560352	0.9	0.6	27.6	2.9	61	-0.1	4.4	0.4	110 (GD/mafic volcanic boulders	0.5m.dry channel.
MC-297	619022	5560139	1	0.3	25.3	2.8	45	-0.1	2.3	0.3	70 (Very thick >5m red-brown till banks both sides	<0.25m boggy intermitent trickler atop organic mat
MC-298	616961	5559390	-0.5	0.4	20.4	3.7	53	-0.1	4.6	0.3	250 (Round cobbles of GD within the GD groundmass	0.4m boggy trickler. Sample is fine (high-water) silt. Mod organics
MC-299	616956	5559062	1.2	0.6	40.8	3.1	70	-0.1	6.4	0.5	151	Abund strongly QZCB all'd GD float inci BX, some QVits.	0.75m dry channel.
MC-300	617031	5558942	-0.5	0.7	41	3.5	52	-0.1	4	0.3	138 0	Jintensely sheared/CB alt d GD in area	0.5m dry channel.
MC-301	616588	5558732	-0.5	1.9	26.9	2.5	59	-0.1	2.9	0.5	135	Unattered GD coobles	0.5-0.8m wet channel. Sand/gravel base.
MC-302	619206	5561785	-0,5	0.4	35.4	3.1	49	-0.1	-0.5	-0.1	4/ (Dank grey & marcon BV w/ agate.	0.5-0.8m side br. Trickle. Cgr seds atop org mat. Partial moss mat.
MC-303	619190	5561781	-0.5	0.4	26	3	60	-0.1	6.0	-0.1	94 (J Basar O/C blums in banks upstream.	Main 1.5-3.0m. Grave/cobble base, Gentle flow. Good clean fine seds.
MC 304	616039	20012U2	1.4	0.3	28	3.9	<u>64</u>		1.3	0.3	70 1	A III covereu terrain Uncenain by pasait	JV.em ory channel. Keo-prown sediments atop organic mát.
MC-303	600270	5560520	-0.0	0.4	20.0	3.D 3	59	-0.1	2	_0.⊻	104	A HII COVERED TERTAIN UNGERIAIN DY DASAIT	0.0m dry channel. Red-brown sediments atop organic mat.
MC-300	620001	5561242	-0.5	0.3	20.3	20	50	-0.1	 _ N P	-0.1	119 (a pasait peoples. 3 Recett & bacette anderite echlice	u.om sanorgravel base genoe now. Laft branch 0 S 1 0m condiers of boast day.
MC-304	620720	5561727	-0.0	0.3	20.0	2.0	62	-0.1	-05	_0.1	04 0	A Desaw of Desaw since we counted a DAD bouldary	Bight branch 1.1 5m channel cand/group base; trigite
MC-300	621322	5561024	-0.5	0.3	23.6		59	-0.1	0.8	-0.1	85	Bechrown hasalitic outcon on NE hank	nagin, orango session original sandigraval paras stangart writer.
000	JAN I VAL	2021204									. . .	They are not avoid or other of the series	Townson sources is electricities active freques neares are frequent written.

						NICO/	AMEN	i RIVE!	R ARE	A Pre-	-Stak	dng (20	003-2004) RECONNAISSANCE SAMPLE S	JUMMARY
	,,													Page 2
Sample	East	North	AU ppb	MO ppm	CU ppm	PB ppm	ZN ppm j	AG ppm	AS ppm	SB ppm	ВА ррп	n HG ppm	Rock Type	NOTO
Number	NAD 83	NAD83	L					<u> </u>						
o - 11 O														
Soil Samp	Hes	5560160	62		34.6				20.1	15	11	0		13 crahe mer 6m "35den sione, 10cm denth
MC-S9	610945	5509108	10.2	3./	35.3	2.2	55	1 01	23.7		12	17	A GER, granulite(?)	3 grabs over 6m -35deg shops, 10cm depth
MC-590	B16045	520391191	10.3	56	49.5	34	56	1 01	55.2	29	14	// ·	A GER areaulite(?)	3 grabs over 6m -35deg slope. 10cm depth
MU-395	010845	5550107	22.9	2.0	35.8	3.4	60	1 01	24	2.0	16	,0		2 grabs over 6m -35deg slope 10cm depth
MG-51001	610194	5559634	94	5.5	26.3	36	78	1 01	161 5	47	12	" ".	At contact of felsic volcanic and weathered intrusive	1 nit bottom 3m 40deg slope. Road cut.
MC-SIUT	610207	6559645	223		94	14		<u> </u>	164 7	39		<u>.</u>	Felsic vilcanic and weathered intrusive	1 oit bot 6m, 40deo sloos, Roed cut 25m at 66deo from \$101
MC-S102	610728	5558633	26	13.3	11.7	23	45	01	291.7	12 3	10	× ×	C Felsic volcanic and weathered intrusive	1 oit bot 6m. 25deg slope. Road cut 25m at 120deg from \$102
MC-\$104	619249	5558617	66.9	11	15.4	32	67	0.1	270.2		12	31	Felsic volcanic and weathered intrusive	1 pit bot 5m, 30deg slope. Road cut 25m at 130deg from \$103
MC-S105	619282	5558597	48.4	10.5	18.3	2.8	81	-0.1	182.9	4.8	ç	17	D Felsic volcanic and weathered intrusive	1 pit bot 6m. 40deg slope. Road cut 25m at 145deg from \$104
MC-S106	819280	5558580	618	5.6	24.1	5.6	54	1 -0.1	100.8	6.5	10	 11 ·	At contact of felsic volcanic and weathered intrusive	1 pit bot 7m. 40deg slope. Road cut 25m at 145deg from S105
MC-\$107	618276	5560789	1.3	1	24.2	2.9	112	-0.1	10.9	0.5	26	2	CB altered volcanic subcrop	B horizon on steep west bank
MC-\$108	618606	5560087	1.8	0.2	58.5	2.3	93	i -0.1	7	0.1	6	57	Blocky mafic volcanic subcrop	Rusty orange soil grabs in cut bank
MC-S117	618448	5561204	1.2	0.4	9.6	1.8	36	-0.1	4.9	1	8	30	1 CB altered massive BV	Subcrop w/ talus containing crystalline QZ masses
MC-S118	615622	5557890	-0.5	5.1	48.6	1.5	49	-0.1	1.8	-0.1	13	52	Probable contact GD/gzose-mica schist w/ dissem PY	Taken over 4m
MC-S119	616834	5558009	1 1	2.2	28.5	4.7	59 ¹	0.1	234.3	0.5	5	50	BV w/ chalcedony stringers to 0.5cm	Subcrop
Rock San	aples							•····				<u> </u>	·····	
MC-R186	616941	5559197	19.3	28.5	32.2	2.3	33/	0.2	108.7	3.5	19	1 5	0 QZCB altered volcanic breccia & intrusive	Subcrop rubble
MC-R187	616945	5559169	414,9	30.7	47.7	3.9	10/	0.8	440.8	7.5	Э	35	O Strongly sheared QFR, granulite(?)	Yellow-white Fe sulfates(?)
MC-R188	620376	5558775	-0.5	0.5	5.3	0.3	21	-0.1	2.9	0.3	1	10	9 Single piece high level QV.	Road/stream crossing, 5x8.5x12cm tabular-submd.
MC-R189	620066	5558852	300.8	1.8	13.4	1.5	14	0.4	7.5	0.8	4	10 ,	D 5 pcs QV/BX, 2 pcs high-level QV in basalt hostrock	Largest place 3x6x7cm. 5 places over 50m of old road base
MC-R190	619181	5558637	1604	9.2	5.6	0.7	<u>4</u>	0.9	65.6	5.4	9	<u>14</u>	O QV/silica-flooded GD, chalcedonic QZ.	Composite 12 pieces rubble/broken subcrop
MC-R191	619228	5558639	257.1	7.4	4.4	0.3	3	0.5	26.4	1.5	1	(4	QV. Dominantly massive white chalcedony	Composite 30 angular pieces 1-3cm (tw)
MC-R192	619266	5558602	843.1	30.2	22.3	0.3	21	0.7	39	3.6	5	50	1 QV & silica-flooded GD. Light-grey translucent chalcedony	12 pieces, largest 6-7cm. Nearby narrow in-situ veins 2cm (tw).
MC-R193	619273	5558595	332.9	15.9	10.9	1	1)	1.8	142.8	9,4	17	77	1 Msv It gy chalcedony w/mt cavs coated w/ FeO-MnD	1 pc 6(tw)x12x14cm sharp angular
MC-R194	618914	5559127	55526	1	2.7	0.2	1)	3.4	2.2	0.4	13	<i>1</i> 6	0 QV float msy opaque white chalcadony w/ rosy hue after hem.	5.5x7x12cm and 2x2x2cm angular pieces
MC-R195	619276	<u>5558997</u>	314.4	2.6	13.6	0.6	4	0.3	3.6	0.6	3	<u>13</u>	QV/BX, GD w/ vein cutting through.	5x6.5(tw)x9cm and 7x8.5x10cm angular pieces
MC-R196	619276	5558987	868.2	0.3	5	0.8	4	0.6	1.1	0.2	1	1 7	QQV, white & partly clear semi-chalcedonic QZ.	In-altu 6-10cm (tw) stringer 025/Dip 045 to ESE
MC-R197	619193	5658847	545	1.6	6	0.2	1/	0.5	1.7	0.3	1	12	O Tabular-angular piece QV float	Opaque white, lesser pale grey & light tan banded charcedony
MC-R198	617231	5558976	1076.1	36	7.8	0.4	2)	0.5	16.3	1.9	7	/4 !	0 Good banded chalcedony-type QV float.	10 angular/subangular pieces. Largest are 3xxyecm & 7.5x7.5x9cm
MC-R222	618971	5559095	1.8	5.4	105.4	0.8	13)	0.1	13.1	0.4	1	17 1	D Light grey very silic rock (qtz-ser-musc schist).	Prob contact-metamorphosed felsic voicanic. Vicinity of 14199.
MC-R223	618606	5560090	0.7	0.3	103.8	4.6	91/	0.1	7.4	0.4	22	22	O Purpley-grey-brown basaltic rocks	White & clear charcedonic Givita (minor AK); <5-8mm thick
MC-R224	618398	5560182	1017.3	143_	89.6	2.8	<u> </u>	<u> </u>	563.4	40.7	28	<u>96 1</u>	2 White & blue-grey chalcedony	One piece, 3.5x4x4cm

and the second of the second second second

and the second second

×.

NOTE: QFR = Quartzofeldspathic rock; SI = silice; AK = ankerite; CB = carbonate; BV = basaltic volcanic; AV = andesitic volcanic; GD = granodiorite; DI = diorite; GR = granite; QZ = quartz; QV = quartz vein; QVits = qua

ł

SAMPLE# Mo Cu Pb	Almader	Minerals Ltd. PROJEC 1103 - 750 W. Pender St., Vencouver	<u>CT BCR03-2</u> File # A302595 m BC V6C 218 Submitted by: Ed Balon	
SAMPLE# Mo Cu Pb ppm ppm ppm	b Zn Ag Ni Co Mn Fe			
	n ppm ppm ppm ppm spm s	e As U Au In Sr Co Sb & ppm ppm ppb ppm ppm ppm p	B1 V Ca P La Cr Mg Ba Ti B A1 Na K W Hg Sc T1 ppm ppm % % ppm ppm % ppm % ppm % % % %	S Ga Se * ppm ppm
G-11.31.91.4MC-171.422.66.5MC-172.424.47.7MC-173.425.411.3MC-174.423.04.3	4 25 <.1	6 <.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x.05 3 <.5
MC-175 .3 25.3 3.5 MC-176 .5 27.0 5.0 MC-177 .3 23.1 4.1 MC-178 .4 31.4 5.9 MC-179 .5 28.3 5.6	5 54 .1 53.4 16.1 466 3.09 0 59 .1 37.5 18.0 723 3.38 1 54 .1 40.2 15.0 546 2.88 9 51 .2 39.4 14.4 472 2.94 6 59 .1 38.7 17.8 727 3.38	9 1.4 .9 1.0 1.1 112 .1 .1 <	<.1	 .05 .05 .05 .05 .05 .05 .8 .05 .5 .5
MC-180 .7 42.3 6.1 MC-181 .7 35.7 7.7 MC-182 .6 44.9 8.0 RE MC-183 .6 27.5 5.8 MC-183 .6 28.5 6.0	1 68 .1 17.6 12.9 1312 3.33 7 73 .2 15.7 11.6 1613 3.06 0 72 .2 16.2 12.2 897 3.33 8 71 .1 12.1 10.4 1359 2.93 0 74 .1 12.5 10.7 1396 3.07	1 3.1 .6 .9 .7 48 .3 .4 5 3.4 .9 .5 .6 53 .5 .3 2 3.5 1.4 1.4 .6 48 .4 .3 7 2.9 .6 1.0 .6 42 .2 .3 7 3.0 .6 1.3 .6 42 .2 .3	.1 93 1.26 .064 8 32.2 .95 256 .114 4 1.83 .020 .06 .1 .06 8.4 <.1	 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.8 <.05 <.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 64 .3 12.0 8.9 945 2.64 1 65 .3 15.2 11.4 967 2.94 8 70 <.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.05 7 1.3 .05 7 1.9 .05 6 <.5
MC-189 .4 20.5 3.8 MC-190 .7 20.8 3.7 STANDARD DS5 12.3 144.6 25.6	3 71 <.1	1 10.4 1.0 .7 1.6 110 <.1	.1 99 .79 .076 10 41.0 1.01 189 .137 4 1.90 .045 .08 .1 .02 5.9 <.1 < <.1 82 .79 .072 10 46.9 1.34 133 .139 1 1.84 .061 .07 .1 .02 6.0 <.1 < 6.1 62 .72 .090 13 189.3 .69 141 .106 18 2.13 .034 .15 4.8 .17 3.8 1.1 <	<.05 6 .6 <.05 5 <.5 <.05 7 4.9

the second s

Data

UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: STREAM SED. <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

DATE RECEIVED: JUL 15 2003

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME AN' 'TICAL LABORATORIES LTD. 852 E. HASTINGS ST. 'COUV (If 002 Accredited Co.) GEOCHEMICAL ANALYSIS Almaden Minerals Ltd. PROJECT BC 1103 - 750 W. Pender St., Vancouver BC Voc	TER BC V6A 1R6 PHONE(604)253-3158 FAX(6 CERTIFICATE	253-1716 ÅÅ
SAMPLE#	Au* ppb	
G-1 MC-187S STANDARD AU-S	<.2 2.1 41.9	
AU* BY ACID LEACHED, ANALYZED BY - SAMPLE TYPE: STREAM SED. DATE RECEIVED: JUL 15 2003 DATE REPORT MAILED: July 25/03 SIGN REVISED COPY	ICP-MS. (15 gm) NED BY	C. ASSAYERS

Data AFA

ACME AP"	YTICA 002	AL I Aco	LAB(Te(DRA 11t	roi ed	CO.	3 1/. .) lms	rd. Idei	n 1	85 (inc	2 I GE ara	I. HAS OCHEI 18 LI	TII AIQ Ed	NGS S CAL . PR	T. AN OJI	s_4 ECT	ICO SI B	OVE SCRO	R В(ZER')4 -	: \ FIF 3	76A 1C7 Fil	1R6 TE	# A4	рн с 404	DNE (604) 25:	3-3	158	FA	<u>x (60</u>	75	3-1	716 AA
									-11	13 - 1	50 (i. Pencle	r s	t., Va	ncau	ver l	IC V	6C 2	18	Subm	itted	l by	EdB	alon										
SAMPLE#	Mo ppm p	Cu ppm	Pb ppm (Zn opm p	Ag pm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb j	Th pm	Sr Cd ppm ppm	Sb ppm	B1 ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg %	Ba T ppm	⊺i B ≵ippnn	۲A ۲	Na X	к % р	W panp	Hg So prin popr	c Ti n ppn	S I X	Ga S ppm pp	ie San m	mple kg
SI MC-R186 MC-R187 MC-R188 MC-R189 MC-R190 MC-R191 MC-R192 MC-R193 MC-R194	.2 28.5 30.7 5 5 1.8 30.2 5 7.4 4 30.2 22 15.9 1.0 2	.7 2.2 7.7 5.3 3.4 5.6 4.4 2.3 0.9 2.7	.2 2.3 3.9 .3 1.5 .7 .3 .3 1.0 .2	<1 < 33 10 2 < 14 4 3 2 1 1 1 3	.1 .2 1 .8 .1 .4 .9 .5 .7 .8 .4	.3 5.3 1.5 9.0 2.4 2.4 1.5 3.2 .9	<.1 10.3 21.5 .6 3.7 1.1 .6 .6 1.0 .2	4 430 2 21 4 27 377 70 56 55. 82	.09 2.26 1.19 .44 .91 .84 .37 .56 .49 .31	<.5 108.7 440.8 2.9 7.5 65.6 26.4 39.0 142.8 2.2	<.1 .7 3.0 <.1 .3 .1 .1 .1 .1 .1	<pre><.5 · 19.3 414.9 <.5 · 300.8 1604.0 257.1 · 843.1 · 332.9 55526.1 ·</pre>	<.1 .6 .8 .1 .2 .1 .1 .1 .1	2 <.1 36 .2 15 <.1 35 <.1 30 .1 9 <.1 6 <.1 7 .1 11 .3 7 <.1	<.1 3.5 7.5 .3 .8 5.4 1.5 3.6 9.4 .4	<.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1	<1 47 21 3 12 18 6 14 16 3	.08< 1.09 .12 .06 .12 .05 .04 .05 .02 .12	.001 .040 .053 .002 .006 .005 .004 .004 .004 .004	<1 4 3 <1 3 1 1 1 1 1 4	1.7< 6.9 2.3 1.8 10.2 3.3 6.0 3.0 8.2 2.6	.01 .49 .01 .03 .08 .04 .03 .02 .01 .01	3<.00 195<.00 35<.00 10 .00 40 .01 94 .00 14 .00 50 .00 177 .00 136 .00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.01 .36 .41 .12 .27 .17 .14 .14 .07 .10	.382< .010 .017 .010 .044 .005 .002 .002 .002 .002	.01 .06 < .05 .01 < .08 1 .07 .06 1 .07 .03 2 .09 <	.2<. .1 .5 .1<. .6 .1 .1 .1 .1 .1 .1	01 .1 11 7.2 17 6.2 01 .2 30 1.1 23 .4 09 .3 51 .3 88 .2 13 .2	1 <.1 7 .4 2 .2 2 <.1 1 <.1 4 <.1 3 <.1 3 <.1 2 .1 2 <.1	<.05 .27 3.18 <.05 <.05 <.05 <.05 .07 <.05	<1 <. 1 . 1 2. <1 <. 1 <.	5 6 1 5 5 5 5 5 5 5 2 6 1 5	1.95 1.50 .98 .59 1.78 1.59 2.23 1.63 .65
MC-R195 MC-R196 RE MC-R196 MC-R197 MC-R198 STANDARD DS5	2.6 13 .3 5 .2 5 1.6 6 36.0 7	3.6 5.0 5.2 6.0 7.8 2 7 2	.6 .8 .8 .2 .4	4 4 1 2 38	.3 .6 .5 .5 .3 2	3.9 1.3 1.5 2.7 3.3	1.0 1.8 1.6 .3 1.0	113 384 382 65 154 750 2	.56 .50 .50 .42 .86	3.6 1.1 1.0 1.7 16.3	.1 .1 <.1 <.1	314.4 866.2 809.7 546.0 1076.1	.1 .1 <.1	20 <.1 21 <.1 19 <.1 4 <.1 16 <.1	.6 .2 .3 1.9	<.1 <.1 <.1 <.1 <.1	7 11 11 3 6	.64 3.08 3.02 .04 .15	.004 .001 .001 .001 .005	1 3 <1 1	8.6 2.5 2.3 7.9 4.2	. 05 . 04 . 04 . 01 . 07	33 .00 17 .00 16 .00 12<.00 74 .00	12 1 12 2 11 3 11 <1 12 2 14 18	.18 .18 .18 .10 .11	.005 .003 .003 .003 .005	.05 2 .07 < .06 < .07 2 .06 <	.4 . .1 . .1 . .2 . .1 .	21 .4 15 .4 16 .4 12 .1 11 .4	4 <.1 4 <.1 4 <.1 1 <.1 4 .1	<.05 <.05 <.05 <.05 <.05	1 <. 1 <. 1 <. <1 <. <1 <.	5 1 5 1 5 5 5 1	1.12 1.38 .71 1.45

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

1

Sept. 11/04

Data / FA ____ DATE RECEIVED: AUG 25 2004 DATE REPORT MAILED: Assay recommend for Au > 1000 ppb

ACME PUTICA 9002	ACCIENTING LTD. 852 B. HASTIN ACCIENTING CO.)	IGB BT INCOUVER BC V6A 1R6 ISAY CERTIFICATE	PHONE (604) 253-3158 FAX ((253-1716
TT	Almaden Minerals Ltd. 1103 - 756 W. Pender St	PROJECT BCR04+3 File # A4 ., Vancouver BC V6C 218 Submitted by: Ed	104947R Balon	T T
	SAMPLE#	Ag** Au** gm/mt gm/mt		
<u></u>	MC-R194 STANDARD	6 64.87 0 R-2a/AU-1 157 3.35		
	GROUP 6 - PRECIOUS METALS BY FIRE ASSA' - Sample type: Rock Reject	Y FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES.		
Data M FA	DATE RECEIVED: FEB 17 2005 DATE R	EPORT MAILED : March 2/05	Ciarence Leong	
All results are cons	idered the confidential property of the client. Acm	ne assumes the liabilities for actual cost o	of the analysis only.	

.....

ACME (A*	YTIC JOO2	AL I Acc	ABC rec)RA lite	TORI ed C	es 1 20.)	JTD.		85.	2 B	. HA	STI	NG	; 91		V	cou	VER	BC	V62	A IRE	;	P	HONE	(60	4)2	53-3	158	Fa	X (6	<u> </u>	<u>)53</u> .	171	6
A A							<u>Alu</u>	ade	<u>n M</u>	ine	ra.	L <u>s</u>	smi <u>st</u> d	са [PRC	JE		BC	R04	<u>-3</u>	вт. F:	Lle	#_A	40	4948	3							,		
	T	<u></u>	DL.	<u> </u>	<u></u>		<u></u>			<u></u>		. Pen	ть	<u></u>	VERIN				. 210	<u> </u>		ea oy	EG I	5310	a •		•	<u></u>		<u></u>		<u>.</u>	-1		
SAMPLE#	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		ppm	mqq	ppb	ppm	ppm	ppm	ppm	ppm	v mqq	دع %	۲ %	ppm	ppm	Mg %	ррт ррт	%	ppm	%	ма %	к %	pbul bbul	нg ppm	sc ppm	ppm	s Ga % ppn	i Se ippni
MC-270 MC-271 MC-272 MC-273 MC-274	-4 .5 .5 .4 .5	33.1 31.2 37.5 28.1 20.8	3.6 4.0 2.7 3.3 3.3	57 60 60 48 54	.1 .1 <.1 .1	31.6 44.5 70.8 37.5 29.4	14.1 17.3 24.3 15.4 12.6	475 664 760 1468 673	3.11 3.30 3.92 3.64 2.78	2.3 4.3 2.3 5.2 8.4	1.0 3.8 1.2 .8 1.3	.5 1.3 .7 <.5 .7	.9 1.3 .8 1.0 1.0	93 126 102 126 130	.1 .1 <.1 .1 .1	.2 .3 .2 .2	.1 .1 .1 .1 .1	96 89 76 112 92	1.03 1.14 .88 1.14 .87	.058 .096 .063 .096 .084	8 13 7 12 10	50.7 41.8 24.8 43.2 43.5	1.23 1.50 1.74 1.06 1.04	54 91 64 89 293	.136 .136 .104 .100 .107	71 62 21 41 21	.74 .04 .62 .74 .88	.079 .114 .087 .067 .077	-06 -10 -06 -07 -07	< 1 < 1 < 1 < 1 < 1	.01 .03 .01 .02 .02	6.0 6.8 4.0 5.4 4.7	<.1 .0 <.1<.0 <.1<.0 <.1 .0 <.1<.0	18 5 15 6 15 5 17 4 15 5	.7 .5 .6 .7
MC-275 MC-276 MC-277 MC-278 MC-279	.5 .4 .3 .6 .4	27.0 25.9 23.1 26.1 22.3	3.0 3.2 4.0 3.7 3.8	53 56 59 45 61	<.1 <.1 <.1 .1 <.1	36.4 42.1 45.2 49.5 44.4	13.7 15.6 17.7 16.6 16.1	653 558 636 1220 575	2.72 3.10 3.39 3.08 3.26	6.1 3.0 2.4 3.1 4.3	1.0 1.6 .6 .5 .8	2.0 <.5 <.5 <.5	1.2 1.3 1.1 .9 1.3	142 122 119 142 170	<.1 .1 <.1 .1 .1	.3 .3 .2 .3 .2	1. 1 1. <.1 .1	83 87 76 74 76	.94 1.00 .78 1.21 .83	.088 .076 .068 .078 .076	11 11 13 16 14	39.9 42.6 53.3 46.5 38.4	1.19 1.30 1.34 1.11 1.24	240 88 120 205 225	.105 .129 .082 .086 .092	2 1 4 1 3 2 6 2 3 2	.78 .82 .74 .04 .41	.100 .107 .043 .059 .053	.08 .09 .07 .07 .07	<.1 <.1 <.1 <.1	.02 .01 .01 .03 .02	4.7 5.7 7.6 7.3 6.3	<.1<.(<.1<.(<.1 .(<.1<.(<.1<.(15 5 15 5 16 6 15 5 15 6	 <.5 <.5 <.5 .5 .5
MC-280 MC-281 MC-282 RE MC-281 MC-283	.3 .4 .4 .4 .4 .7	19.6 22.4 20.7 23.4 30.4	3.5 4.2 3.9 4.2 3.3	51 67 49 64 109	<.1 .1 .1 .1 <.1	25.9 29.4 28.0 29.6 59.0	11.5 14.6 12.0 14.6 22.2	498 657 655 635 771	2.67 3.11 2.94 3.01 3.74	14.9 9.5 12.5 8.8 2.1	1.6 1.0 1.5 1.0 .5	<.5 <.5 <.5 <.5	1.6 1.4 .9 1.3 1.0	100 146 114 140 134	.1 .1 .1 .1	1.4 .4 .5 .4 .2	.1 .1 .1 <.1 <.1	73 99 82 95 94	-80 1.00 -89 -98 1.04	.079 .068 .081 .064 .133	11 11 17 10 18	30.9 43.7 35.5 41.9 74.9	.79 1.15 .74 1.08 1.75	248 208 281 192 130	.075 .139 .062 .142 .126	2 1 2 2 3 2 2 2 3 2	2.40 2.46 2.31 2.92	.033 .062 .026 .057 .059	.06 .08 .06 .08 .07	_1 <.1 <.1 <.1	.02 .03 .04 .02 .03	4.6 6.8 6.4 6.7 7.0	<.1<.(.1<.(<.1<.(.1<.(.1<.(15 5 15 6 15 7 15 6 15 6	<pre> <.5 <.5 <.5 <.5 <.5 <.5 <.5 </pre>
MC-284 MC-285 MC-286 MC-287 MC-288	.4 .4 .7 .7 .4	23.1 26.6 24.9 21.7 26.7	4.0 3.2 3.6 3.2 4.2	61 53 54 51 60	.1 .1 <.1 <.1	44.2 44.2 34.0 28.9 46.6	16.6 13.7 14.5 12.9 17.5	731 755 567 502 618	3.31 3.11 3.00 2.65 3.51	6,4 3.2 26.1 23.2 4.3	1.0 .5 1.3 1.1 .9	<.5 2.4 3.5 3.5 1.0	1.1 1.1 1.2 1.1 1.2	126 101 119 120 124	.1 .1 <.1 .1 .1	.3 .4 .7 .7 .1	<.1 <.1 <.1 <.1	76 81 77 72 93	.98 .85 .80 .74 1.07	.101 .057 .060 .055 .060	17 16 10 9 10	40.4 50.4 43.8 40.9 59.9	1.10 1.05 1.06 1.02 1.51	250 124 244 225 115	.085 .113 .111 .111 .111 .143	2 2 5 2 1 1 1 1 1 2	2.52 2.25 1.96 1.80 2.78	.036 .051 .054 .051 .051 .073	.06 .09 .07 .07 .07	<.1 <.1 <.1 <.1	.03 .03 .02 .01 .01	6.6 7.2 5.5 4.7 8.1	1<.(<.1<.(.1<.(<.1<.(<.1<.(15 6 15 6 15 5 15 5 15 7	+ <.5 - <.5 - <.5 - <.5 - <.5
MC-289 MC-290 MC-291 MC-292 MC-293	.4 .6 .4 .5 .6	21.3 21.3 25.3 15.7 28.8	3.9 4.1 3.0 4.3 4.2	53 61 55 51 76	.1 <.1 <.1 <.1	45.1 45.0 36.7 13.8 49.2	17.8 17.6 14.9 8.7 19.4	563 648 724 477 1417	3.28 3.31 3.02 1.97 3.42	4.0 10.1 4.0 4.0 5.5	.8 .9 .5 .5 1.0	1.1 3.1 8 < 5 6	1.1 1.2 1.4 1.5 1.4	114 126 104 188 172	.1 .1 .1 .1	.2 .5 .5 .2 .3	<.1 <.1 <.1 .1 .1	86 88 82 55 84	.94 .87 .73 .79 .99	.065 .081 .074 .044 .091	10 12 11 16 19	55.3 47.5 53.1 22.6 45.5	1.72 1.56 .97 .55 1.14	83 158 105 218 255	.129 .137 .111 .033 .100	1 2 2 2 4 1 4 1 3 2	2.54 2.18 1.91 1.73 2.74	.069 .054 .062 .056 .050	-06 -08 -08 -10 -08	< 1 < 1 < 1 < 1 < 1	.02 .02 .02 .05 .03	7.7 6.2 7.3 4.6 8.9	<.1<.(<.1<.(<.1<.(.1<.(.1<.(15 6 15 6 15 5 15 5 15 7) <.5) <.5 <.5 <.5 <.5
MC-294 MC-295 MC-296 MC-297 MC-298	.4 .6 .3 .4	22.0 32.8 27.6 25.3 20.4	3.5 3.1 2.9 2.8 3.7	69 64 61 45 53	<.1 <.1 <.1 <.1 <.1	29.7 50.1 38.3 37.3 33.7	13.9 18.7 14.9 13.9 15.7	606 729 637 446 2510	2.98 3.53 2.99 2.90 3.08	10.5 3.1 4.4 2.3 4.6	1.2 .4 .4 2.8 .8	.5 .9 1.0 <.5	1.5 1.4 1.3 .9 .8	111 106 90 121 106	.1 .1 .1 .1 .1	.9 .4 .4 .3 .3	<.1 <.1 <.1 .1 <.1	93 110 89 105 101	.85 .92 .79 .96 .84	.080 .083 .072 .031 .080	11 12 12 7 8	45.7 66.6 50.6 82.2 51.5	.91 1.45 1.05 1.03 .63	190 104 110 70 250	.121 .125 .118 .171 .120	3 1 2 1 3 1 11 1 6 1	.88 .72 .72 .48 .83	.046 .089 .064 .101 .060	.07 .07 .08 .05 .08	<.1 <.1 <.1 <.1 <.1	.02 .01 .01 .01 .03	5.6 6.9 6.9 5.2 5.3	<.1<.(<.1<.(<.1<.(<.1<.(<.1<.(15 5 15 5 15 5 15 4 15 5	i <.5 i <.5 i <.5 i .7
MC-299 MC-300 MC-301 STANDARD	.6 .7 1.9 12.4	40.8 41.0 26.9 148.9	3.1 3.5 2.5 24.4	70 52 59 1 3 6	<.1 <.1 <.1 .3	34.1 34.0 21.5 25.1	16.7 16.4 11.7 11.8	804 785 521 776	3.30 3.07 2.71 3.02	6.4 4.0 2.9 19.0	.6 .9 .7 5.8	1.2 <.5 <.5 41.4	1.1 1.2 .8 2.7	77 78 53 49	.1 .1 .1 5.3	.5 .3 .5 3.8	<.1 <.1 <.1 6.2	90 83, 73 60	.77 .75 .66 .75	.068 .064 .068 .094	14 14 7 12	48.0 49.1 30.9 185.1	.99 1.00 .72 .68	151 138 135 135	.113 .117 .090 .094	5 2 4 2 3 1 17 2	2.06 2.05 1.66 2.04	.049 .045 .023 .034	.08 .06 .06 .15	<.1 <.1 <.1 5.3	.01 .01 .01 .16	7.0 7.3 4.5 3.4	<_1<.0 <_1<.0 <_1<.0 1.0<.0	15 6 15 5 15 5 15 7	i <.5 i <.5 i .5 7 5.0
Standard i GROUP (>) C - SAMi	S STAN 1dx - Oncent Ple ty	DARD D 30.0 RATION PE: ST	S5. GM S/ Exci Ream	AMPLE EEDS SED.	: Le <i>i</i> Uppe	ACHED ER LII <u>Sam</u>	WITH MITS. ples <u></u>	180 (SOM	HL 2-2 E MINI ning_1	2-2 HO ERALS	CL-HN MAY are R	103-H2 BE P/	20 A1 ARTI/	r 95 Ally <u>H 'R</u>	DEG. ATTA	C F CKED re R	OR C R ejec	DNE H LEFRA	IOUR, CTOR)	DILUI AND	ED T GRAP	0 600 HITIC	ML, A Sampl	ANALY .es c	(SED B CAN LI	Y ICP MIT A	-MS. NU SO	LUBIL			5	άŢ	7		

.

and the second second

Data _____ FA ____ DATE RECEIVED: AUG 25 2004 DATE REPORT MAILED: SUNT. 13/04...

ACME	4 (1	¥T1 900	CAL 2 A	LAI	BOR/ edit	ATOR	ies Co.)	LTD		8	52 C	E.	HAST HEM	TC	IS S	T. AN2	N LIST	COUN	TER CT	BC	¥6 דיד	A 1R Cat	6 F.		PHOI	¥E (60)4)2	53	-31	58 I	'AX ((<u>F</u>	<u>\53</u>	-17	16	
	l I						<u>A1</u>	mađ	en 1	<u>Mir</u> 103 •	ner 750	ale W. P	<u>Lt</u> ender	d. st.	PR , Va	<u>OJI</u> ncoun	CT er B	BC S V6C	R04 218	<u>1 - 3</u> St	F	ile ted b	- # /: Ec	A4(J Bal)49 on	49										.
sample#	Мо ррт	Cu ppm	Рb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррт	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	В1 ррт	V ppm	Ca ଅ	P X	La ppm	Cr ppm	Mg %	8а ррт	Ti %	B ppm	A1 %	Na X	К Ж	W ppm	Hg ppm	Sc ppm	T1 ppm	S ¥	Ga ppm	Se ppm
YC-S97 YC-S98 YC-S99 YC-S100 YC-S101 YC-S102 YC-S103 YC-S104 YC-S104	3.7 9.0 5.6 2.8 5.5 9.2 13.3 11.0	34.6 35.3 49.5 35.8 26.3 9.4 11.7 15.4	3.2 2.8 3.4 3.6 1.4 2.3 3.2	55 56 60 78 53 45 87	<.1 .1 .1 .1 .1 <.1 <.1 .1	34.1 33.3 36.9 35.2 21.1 10.5 8.4 18.0	17.7 19.1 19.2 20.1 15.7 9.7 6.9 16.6	554 569 739 959 692 577 379 727	4.28 5.01 4.14 4.64 3.69 2.19 1.92 3.37 2.10	20.1 23.7 55.2 24.0 181.5 164.7 291.7 270.2	.9 1.1 1.0 .7 .7 .5 .7 .7	5.2 16.3 15.9 22.8 94.0 32.3 26.0 66.9	1.8 2.0 1.8 1.6 1.6 1.0 1.0 1.2	87 86 89 82 76 47 39 54	.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1	1.5 2.0 2.9 1.0 4.7 3.9 12.3 9.0	.1 .1 .1 <.1 <.1 <.1 <.1	107 103 108 115 89 57 29 79	.56 .55 .66 .82 .76 .82 .64 .77	.067 .079 .079 .095 .128 .124 .110 .116	11 12 11 12 8 6 6	46.6 43.6 50.2 44.4 29.3 13.7 7.2 20.5	.78 .73 .89 .93 .86 .86 .44 .99	118 137 146 167 122 83 106 131	.119 .091 .110 .112 .030 .008 .008 .034	1 1 1 1 2 2 4 1 2 1 1 1 2 1 2 1	.99 . .94 . .11 . .83 . .69 . .52 . .07 .	048 041 059 068 012 007 004 009	.08 .05 .10 .09 .12 .14 .17 .19	<.1 <.1 <.1 <.1 .1 .1 .2 .2	.06 1 .06 1 .04 1 .03 1 .09 .11 .02 .08	0.5 1.5 1.9 2.8 6.0 4.5 1.6 5.0	.1 < .1 < .3 < .1 < .2 < .3 < .2 < .3 < .3 < .3 < .3 < .3	.05 .05 .05 .05 .05 .05 .05	65557 6487	< 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
4C-S105 4C-S106 RE MC-S106 4C-S107	5.3 1.0	24.1 24.7 24.2	5.6 5.2 2.9	54 53 112	<.1 <.1 <.1	21.7 21.8 12.4	12.6 13.3 13.3 13.5	563 562 957	3.83 3.94 5.58	97.6 10.9	.8 .8 .8	61.8 65.7 1.3	1.4 1.6 1.6 1.0	45 74 71 50	<.1 <.1 <.1	4.8 6.5 6.7 .5	.1 .1 .1	83 86 220	.40 .53 .54 .87	.044 .042 .108	11 12 12	39.1 37.5 17.0	.08 .65 .64 .18	101 106 262	.032 .031 .004	31 11 9	.47 . .51 . .53 . .96 .	020 020 020	.14 .14 .10	.1 .1 .1 <.1	.06 .06 .07 .16 1	4.5 7.1 6.9 8.6	.7 < .3 < .4 < .1 <	.05 .05 .05 .05	7 5 5 3	<.5 <.5 <.5
MC-S108 STANDARD DS5	.2 12.7	58.5 142.4	2.3 25.7	93 139	<.1 .3	145.2 24.2	48.9 12.7	738 796	5.24 3.06	7.0 18.3	.3 6.1	1.8 45.0	1.3 2.8	163 44	.1 5.5	.1 3.8	<.1 6.0	121 61	1.65 .73	.070 .092	7 12	67.7 190.6	.92 .68	67 135	.031 .104	23 171	.83 . .97 .	295 032	.06 .14	<.1 4.9	.02 2 .17	2.1 3.5	<.1 < 1.0 <	.05 .05	8 7	<.5 4.6

3ept 9/04

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: SOIL SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data (FA DATE RECEIVED: AUG 25 2004 DATE REPORT MAILED:

ACME AV**,YTICAL LABORATORIES LTD. 852 E. HASTINGS ST. NCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(6' 253-17 (J 7002 Accredited Co.) GEOCHEMICAL AN. (SIS CERTIFICATE	16
ALMA <u>ALMADEN Minerals Ltd. PROJECT BCR04-5</u> File # A406523 1103 - 750 W. Pender St., Vancouver BC V6C 278 Submitted by: Ed Belon	Å.
SAMPLE#F Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Tí B Al Na K W Hg Sc Tl S Ga ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	Se pm
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.5 4.3 4.5 4.4 5.1
GROUP 10X - 30 0 ON SAMPLE LECERD WITH 180 WL 2-2-2 UCL-NHO3-R2D AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 WL, AMALYSED BY ICP-HS. O'S CONCENTRATION EXCERDS LIMPTS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFACTORY AND GRAPHITIC SAMPLES CAN LIMIT AN SOLUBILITY. - SAMPLE TYPE: NOCK RISO GOC Data // PA DATE RECEIVED: OCT 21 2004 DATE REPORT MAILED:	
All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.	

:

acme A A	A*** (3	900	CAL 2 Ac	LAI 2CT (BOR	ATOR ted	ies Co.)	LTI).	8	52 I Ge	з. н ЮСН	ast: Emj	ing ECA	ss I.	t. An _r	N N ¥	ICOL SI	TVEI S C	BC ERJ	V 'IF'	6A 1 LCA'	R6 fe		PH	ONE	(604) 25:	9-31	58	Fax	(6	Ĭ	53-	171	5
<u> </u>	a.						<u>A1</u>	mad	len 1	<u>Min</u> 103 •	era 750	18 W. Per	<u>Ltc</u> wder	1. St.,	<u>PR(</u> Var	OJE Icouv	CT er B	BC NC Vé	2R.0 50 21	4+5 8	i Submi	File tted	Э # by:	A4 Ed Ba	106 alon	524										
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppn	Al %	Ne %	К %	W ppm p	Hg xpm	Sc ppm	T L ppm	s X	Ga ppm	Se ppm
G-1 MC-S117 MC-S118 MC-S119 STANDARD	1.5 .4 5.1 2.2 12.9	3.2 9.6 48.6 28.5 141.6	2.0 1.8 1.5 4.7 24.9	47 36 49 59 138	<.1 <.1 <.1 <.1 .3	4.4 23.1 11.5 16.0 25.0	4.4 7.5 12.6 12.5 12.0	566 350 437 376 783	1.93 3.50 3.61 4.06 2.95	<.5 4.9 1.8 234.3 18.5	1.6 .5 .5 1.0 6.1	.6 1.2 <.5 1.0 42.7	4.2 3.5 1.5 2.5 2.8	77 43 28 38 47	<.1 <.1 <.1 <.1 5.4	<.1 1.0 <.1 .5 3.8	<.1 <.1 <.1 <.1 5.9	40 82 80 100 61	.50 .47 .25 .15 .74	.080 .102 .040 .169 .090	8 20 5 10 13	12.9 34.6 17.8 20.1 185.9	.60 .24 .74 .51 .66	250 80 132 50 135	.129 .007 .066 .117 .098	2 2 <1 <1 17	.89 1.17 1.80 6.70 1.91	.075 .013 .009 .021 .033	.51 .05 .08 .05 .14	1.3<. <.1 . <.1 . <.1 . 4.9 .	.01 .78 1 .04 .16 .19	2.1 4.8 6.3 6.7 3,4	.4 <.1 <.1 <.1 1.1	<.05 <.05 <.05 <.05 <.05	5 3 6 11 7	<.5 <.5 .6 5.0
Standard GROUI (>) (- SAI	IS STA P 1DX Concen Mple t	NDARD - 30.0 TRATIC YPE: S	DS5. D GM DN EX SOIL	SAMPI Ceed: SS80	LE L S UP 60C	EACHEI Per L	D WIT Imits	H 180 . sc	IML 2 Me mi	2-2-2 INERAL	HCL-F S MAY	ino3-H f be p	20 A ARTI	T 95 ALLY	DEG ATT.	. C Ackei	FOR I	ONE REFR	HOUR ACTO	, DIL RY AN	UTED D GR	TO 60 APHITI	DO ME LC S/	L, AN Ample	ALYSE Is can	ED BY	ICP- It Au	MS. I SOLL	BILI	TY.						
Data	f	FA _			DA	TE R	ECE]	LARD): (DCT 21	2004	4 Di	ATE	RE	POR	гм	AIL	ED :	.Λ.	lov	. /?	<u>/.</u> ?	ł	•			UNE	A.	٥Ţ		ER					
																										AL CO		<u>C</u> . Clare		Leon	1	E AL	:			
																											× Z	L	Į.	F	B					
;																																				
Allre	sults	are c	consid	dered	d th	e con	fiden	tial	prope	erty o	f the	e clie	nt./	Acme	855I	umes	the	lia	bili	ties	for a	actual	cos	it of	the	anal	ysis	onty.								

.

	ACME <i>d'</i> (1	¥TIC 9002	AL L ACC	ABO red	RAT ite	ORI d C	55 '0.)	LTI).		852 G	e. Eo	HA CHI	9ti Smi	ng Ca	s s L	t. Ana	N Li Y	ICOU SIS	VE 3 (R BC	: FI:	V6A FIC	lr Ati	6 5		PHON	E (6	04)	253	-31	58	PAX	(6	253	-171 A /	6 A
	L T						Al	mać	len 1	<u>Mi</u> 103	ner - 750	al)w.	s I Peno	utd Ier	i. st.,	PR Vai	OJE Kouv	CT er B	BC V6	TR (c 2)4-9 18	<u>5</u> Sub	Fi mitte	le d by	∰ t Ed	A4(Bai)652 oh	5									
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Min ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb I ppm p	3i xm pj	V pin	Ca %	Р %р	La pm	Cr ppm	Mg X	ва ррт	Ti %	В ррт	A) %	Na %	K X p	W Ho Mappa) Sc 1 ppm	T] ppm	S %	Ga Se ppntppnn	Sammple gn	<u></u>
	G-1 AC-64	1.6 .6	3.1 29.0	2.0 2.8	49 44	<.1 <.1	4.4 7.9	4.6 8.1	571 1 549 1	1.99 1.85	<.5 4.2	1.6	<.5 1.2	4.4	80 37	<.1 <.1	<.1 < <.1 <	1	43 . 50 .	52. 45.	081 042	8 5	14.3 14.2	.61 .46	255 75	.138 .023	<1 . <1 1.	90.0 00.00	78 .! 16 .(50 1 06 <	4<.01 1.04	2.0 3.0	.4 < 1	<.05 <.05	5 <.5 4 <.5	30.0 30.0	
	AC-65 <u>AC-66</u>	.7 <u>3.2</u>	36.2 <u>43.3</u>	3.1 3.0	53 76	<.11 <.11	0.8	12.1 10.9	6/9 2 1483 2	2.86 2.56	5.4 <u>5.2</u>	13	6.5 <u>2.0</u>	.8	59 41	<.1	2 < < < < < < < < < < < < < < < < < < <	$\frac{1}{1}$	87 61	70 <u>66</u> .	062	7 6	28.0 18.5	.73	68 103	.081 .025	41.	15 .0 24 .0	30 .(12 .(06 < 04 <	1.0	5 4.5 <u>3.2</u>	< 1 < 1	<.05 <.05	4 <.5 <u>4 .7</u>	30.0 <u>30.0</u>	·
↓	MC-302	.4	35.4	3.1	49 ·	<.15	51.9 5 0	15.9	449 2 622 3	2.69	<.5	1.4	<.5	1.1	81 191	<.1 < 1	<.1 <. < 1 <	. 1 . 1 .	/4 1 R6 (13. 04	001	11 14	24.1 . 54 5 ·	1.40	4/ 0/	. 194	41.	35.U 71 1	059 06 .	12 < na 2	.1 .02 1< 01	24.3 61	<.i ·	<.05	5.6 5~5	30.0	
	MC-304 MC-305	.3	28.0	3.9 3.5	64 59	<.14 <.13	3.7 36.6	15.6 14.1	572 3 458 2	3.13	1.3 2.0	1.0	1.4 <.5	1.6 1.7	92 88	<.1 <.1	3 <		85 78	82. 90.	041 055	15 17	50.7 42.2	1.08	75 78	.105	41.	70.0 77.0	58 . I 155 . I	09 < 09 < 09 <	1<.01 1<.01	7.3	< 1	<.05 <.05 <.05	5 <.5 5 <.5 5 <.5	7.5	T
	MC-306 MC-307	_3 .3	20.3 25.8	3.0 2.9	55 52	<.1 3 <.1 4	37.7 15.7	14.6 16.9	665 2 613 3	2.65 3.06	2.0 .8	.9 .8	<.5 <.5	1.6 1.8	107 107	<.1 < 1	<.1 < <.1 <	1 (81 . 85 1.	85 . 00 .	075 061	12 14	36.8 41.8	1.16 1.24	104 113	. 154 . 144	21. 31.	99 .0 92 .1	99 . 02 .	08 < 09 <	1 0 1 0	2 6.0 2 7.3	<.1 <.1	<.05 <.05	6 <.5 5 <.5	30.0 15.0	
	RE MC-307	.4	25.5	3.0	52	<.14	15.7	15.7	603 2 591 3	2.99	.7	.8	<.5	1.7	105	<.1	< <u>.</u>] <	1 8	85 .	99. 02	061	15	40.4	1.21	113	.141	2 1.	90.0 85.0	97 .0	09 <	1.0	27.5	<.1	<.05	6 <.5	15.0	
	MC-309 STANDARD DS	.3 35 12.9	23.6 141.6	4.0 24.9	59 138	<.1 2 <.1 2 .3 2	28.9 25.0	13.6 12.0	477 2 783 2	2.79 2.95	.8 18.5	.6 6.1	< 5 42.7	1.6 2.8	67 47	<.1 <.1 5.4	< 1 < 3.8 5	1	, 78 61	97. 97. 74.	074 090	15 13 1	28.3 85.9	1.20	85 135	.145 .098	2 1. 17 1.	97 [°] .0 91 .0	66 .: 133 .:	10 < 10 < 14 4	1 .02	2 7.0 9 3.4	< 1 1 1	<.05 <.05 <.05	6 <.5 7 5.0	15.0 	,

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: STREAM SED. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data A FA ____ DATE RECEIVED: OCT 21 2004 DATE REPORT MAILED: NOV 10/04

APPENDIX C

.

NICOAMEN RIVER AREA Post-Staking RECON SAMPLE SUMMARY TABLE & ACME ANALYTICAL GEOCHEMICAL & ASSAY CERTIFICATES

NICOAMEN RIVER AREA Post-Staking (2005) RECONNAISSANCE SAMPLE SUMMARY

														Page 1
SAMPLE	East	North	AU ppb MO	ppm (CU ppm	PB ppm	ZN ppm	AG ppm	AS ppm	SB ppm	BA ppm	HG ppm	Rock or Soil Type	Notes
Number	NAD 83 1	NAD 83												
	and the second secon													
Streem Ser	liment Samo	60												
MC-316	616840	5558500	0.6	0.6	27 B	29	60	<u></u> 1_1	54	03	246	0.02	Dominantly GD boulders	3.5m channel send/arsvel base Simon flow 325den
10 217	646670	5550110	0.6	0.0	20.0	2.2	70	0.1	2.4	0.0	167	0.02	CD and BV around	10.75 1 25m hmided sharest Day 255dee, Dave till ame
MC-017	010070	2029119	-0.5	0.5	20.0	0.0	/2	-0.1	3.1	0.4	10/	0.03	GD and DV graver	0.70-1.20m braided channel. Ury, 200deg. Deep till area
MC-318	516660	2228088	0.6	0.7	40.8	3.1	81	-0.1	7.2	0.9	1/1	0.03	GD and BV gravel	0.8-1.0m braided channel. Dry, 295deg. Deep till area
MC-319	616230	5559402	-0.5	0.4	25.2	2.8	54	-0.1	5	0.4	125	0.02	GD and BV cobbles	0.75m wide channel, dry. Fine gravel atop clay base. 275deg
MC-320	618010	5557260	-0.5	0.4	18.8	3.7	65	-0.1	5.9	0.4	595	0.07	Local GD outcrop	2-3m bouldery channel, sand/gravel base. Mod flow, 255deg
MC-321	617853	5557147	0,5	0.4	20	3.4	65	-0.1	6.5	0.3	558	0.06	Local GD outcrop	Main trunk, 1.5-3.5m, sand/gravel base, mod flow, 360deg
MC-322	617450	5557643	0.6	0.3	21.4	3.4	59	-0.1	7.3	0.3	442	0.06	Local GD outcroo	Main trunk below MC-321, 4-5m bouldery channel, mod-strong flow, 330deg
Soll Somok														
ZAK C1	040000	2220122	2.0	0.2	42.0	0.3	47	0.1	27	0.2	240	0.04	I John hanna within also sigh anil	25.20 am death, sente contemination from cond. till ensue
246-01	640040	5555105	2.2	0.0	0.0	0.0		-0.1	2.1	0.0	607	0.04	Charles and a second allowing and she	25-30 cm deput, some containination non: sandy un apron.
ZAK-52	010043	0009146	1.0	0.1	0.0	4,9	29	-0.1		-0.1	00/	0.02	vvnite pale green clayey material	15-25cm depth
ZAK-S3	618860	5559131	0.0	0.4	24.9	3.1	53	-0.1	4.2	0,4	128	0.02	Pale mauve clayey material	10-20cm depth
ZAK-S4	618886	5559128	0.5	0.2	13.1	4.4	27	-0.1	2.4	0.1	442	0.01	Dk red-brown w/ orng streaks, sandy clay	30cm deep, ground seep locale
ZAK-S5	618910	5559128	0.9	0.4	26.5	5.2	76	-0.1	3.4	0.3	88	0.03	Dark red-brown clay-rich layer	20cm thick, decomposed volcanic rubble below
ZAK-S6	618935	5559126	-0.5	0.3	21.7	3.8	55	-0.1	3.1	0.3	128	0.03	Dark brown fine gravel/clay	15-30cm depth, tocal AV/BV rubble.
ZAK-S7	618959	5559124	1.3	0.3	21	4.3	69	-0.1	3.4	0.2	189	0.03	Dark brown fine grave/clav	Sfc - 30cm depth
ZAK-SR	618965	5559100	-0.5	0.5	18.9	6.1	73	-0.1	4.6	0.3	62	0.01	Dark red-brown clavey material	Sic - 30cm denth
74K-59	618966	5550076	-05	0.3	20.6	51	51	-01		0.1	100	0.03	Dark hon & cushy oron, hon fine group/folgy	Sia - 30am depth
744 040	649070	5555070	47	0.0	20.0		60		e 4	0.1	100	0.03		Sic - Jocan depth
ZAK-510	0109/3	5559051	1.7	0.5	30.7		30	-0.1	. 0.1	0.4	100	0.03	Ruary onange-brown time grave/clay	10-25cm deptn
ZAK-511	018977	5559027	1.1	0.0	20.4	5.3	80	-0.1		U.5	16/	0.03	Dark prown tine gravevciay	o-250m depth
ZAK-S12	618982	5559002	1.8	0.3	31.4	4	55	-0.1	3.1	0.3	112	0.02	Dark brown fine grave/clay	10-25cm depth
ZAK-S13	618994	5558980	1.8	0.4	30.1	3.8	55	-0.1	3	0.2	116	0.02	Dark brown fine gravel/clay - silt	5-30cm depth
ZAK-S14	619012	5558963	1.8	0.3	32.3	4	53	-0.1	3.3	0.2	117	0.02	Orange-brown fine gravel/clay	10-20cm depth
ZAK-S15	619030	5558945	1.6	0.4	27.4	3.6	56	-0.1	3.7	0.4	129	0.02	Medium brown fine gravel/clay	15-40cm depth
ZAK-S16	619160	5558627	16.2	2.7	28,5	5.3	61	-0.1	62.2	1.7	198	0.04	Med brn to dk red-brn decomposed GD	Sfc-20cm depth local draping of angular talus it-med ov intermed tuff, looks like EK
ZAK-\$17	619135	5558629	1	0.6	34.5	4.8	56	-0.1	5.9	0.2	162	0.03	Red-brown fine grave/clay	Sic - 25cm denth
74K-\$18	619110	5558831	23	0.5	32.5	39	54	-01	47	02	163	0.02	Red-hown fine gravel/clay	10-30cm denth
74K-919	610086	5558632	12	0.5	31 2	30	53	-01	8.8	0.2	183	0.02	Ped brown fine gravel/clay	9fe - 25cm, local angular gravituff nibble
744.820	610060	EEEB834	10.6	0.7	13.1	41	74	-0.1	20.8	1 2	194	0.02	Decomposed red brown CD	Qia - 20ami, local angular grov ton sociolo.
ZAR-920	640000	55506004	0.0	2.7	10.1	70			03.0	1.4	100	0.02	Busha asagaa harwa alawaitt	20.40 and an effected light and address EM is Statistics
240-021	019233.1	5556605	0.0	0.2	23.3	1.0		0.1	0.7	0,3	120	0.02	Rusty orange-brown class-sit	So-rocall, surrical light grey placey EX (un rubble
ZAK-S22	619233	5556608	0.5	ō./	20.1	10.7	24	0.2	33.1	0.3	104	0.04	RUBTY OFENDE-DITOWITI CLEY-BIR	15-25cm. Altered GU with UV chips.
ZAK-S23	619233	5558613	5.8	5	30.5	5.8	62	-0.1	63.7	U.4	213	0.04	Hed-brown clay-rich material	10-20cm depth
ZAK-S24	619232.8	5558618	6.6	1.5	27	6.4	31	-0.1	22.5	0.6	208	0.02	Med brown clay-silt	10-25cm depth
ZAK-S25	619233	5558623	3.5	1.1	27.5	5.5	34	-0.1	15.1	0.6	223	0.02	Med brown clay-silt	10-25cm depth
ZAK-S26	619232.7	5558628	9.8	2	20.5	5.1	41	-0.1	36.9	2.2	200	0.01	Light brown clay-silt	15-25cm, red-brown altered GD in hole
ZAK-S27	619232.7	5558633	14.7	2.6	16.2	6.7	48	-0.1	52	1.4	163	0.02	Dk red-brown to orno-brn fine gravel/clay	7-20cm, silic GD chips in hole
ZAK-\$28	619232.6	5558638	27.2	3.9	22.9	6	78	-0.1	191.5	4.8	262	0.02	Dark red-brn to omg-brn fine gravel/clay	Sfc-5cm, at too edge of road cut
74K-\$29	619232.3	5558658	48	3.8	14.6	5	97	01	75.9	27	147	0.02	Dark red-brown fine gravel/clay	15-40cm denth
ZAK-\$30	619232.2	5559663	84	32	11	47	61	-01	53.3	17	104	0.01	Dark red & orange-howin fine oravel/clay	Sic 25cm denth
744 831	610202.2	6669673	7.0	42	10.0	12	97	0.2	104.9	- 24		0.07	Ded md 2 omne brown fine oraul/clov	Rea 25am Jobular piece banded OV Reat 2am Ibiol/
246-000	019232.1	5556673	10.2	4.0	14.0	7.4	100	0.2	104.3	0.4	448	0.02	Daix red a brance brown fine gravescay	ofe-zouri, tabular proce barloed ov stoat - ouri sinck
ZAK-532	619232	2008083	10.5	4.0	11.8	4	108	0.2	125,0	3.0	110	0.05	Dank red & orange-prown rine graveuciav	Sic-25cm, wanin 0.5m another plece banded write/grey UV - 2.5-3.5cm thick
ZAK-833	619231.8	2226683	5.6	3.6	11.6	4.8	118	0.4	35.2	7.9	131	0.03	Dank red & orange-prown tine gravevciav	5-25cm depth, UV chips neer aurrace, 1-2cm width
ZAK-\$34	619231.8	5558703	3.1	1.5	10.5	6.3	51	0.2	24.6	0.5	115	0.03	Dark red & orange-brown fine gravel/clay	10-25cm depth, 2cm thick QV chip in hole
ZAK-S35	619231.6	5558713	2.5	1.5	19	4.2	56	0.1	14.2	0.3	175	0.04	Dark red & orange-brown fine gravel/clay	15-35cm depth, altere GD zone apparently continues down slope to North
ZAK-S36	619231.5	5558723	2.9	1.1	16.2	5.1	55	0.1	11.3	0.3	104	0.03	Brown clayey material	20cm depth
ZAK-S37	619231.4	5558733	3.2	1.4	18.6	4.9	73	0.2	31.4	0.7	211	0.03	Yellow-brown clayey material	20cm depth
ZAK-S38	619231.2	5558743	1	1.6	19.9	4	43	-0.1	4.9	0.2	184	0.02	Yellow-brown clavey material	20cm depth
ZAK-S39	616952	5559255	0.7	3	30	3.9	80	-0.1	5.1	0.5	191	0.03	Orange-brown clay-silf	30-50cm depth, local rubble, subcrop is sheared/alt'd OFR as at the WZ Trench
74K-S40	616940	5559245	0.9	1	61 2	28	84	-01	9	0.4	107	0.02	Rusty orange.bmwn clavey material	30om denth, local rubble, suborno is sheared/ait'd OFP as at the W7 Trench
741 044	616900	6666000	16		24.5	24	56	0.1	6.2	0.4	147	0.02	Brown olay ait	S Warn death
ZAN-041	010000	5550000	1.0	0.4	04.0 00.5	3,1			9.2	0.4	170	0.00	Mollow bases along all	5-20cm depth
ZAN-342	610813	0000001	2.1	0.4	30.5	2.0	40	-0.1	4.0	0.5	110	0.02	Tendw brown clay-sill	5-20Cm depth
ZAK-843	616823	0000000	5.5	0.7	35.2	3.2	56	-0,1	13.7	0.8	207	0.03	DIOWU CIBA-PIIL	o-zuom deprin
ZAK-S44	616828	5558928	1.8	0.7	35.6	3.2	56	-0.1	9.6	0.8	139	0.03	Yellow brown clay-silt	5-20cm depth
ZAK-S45	616820	5558961	2.1	1.4	43.5	3	72	-0.1	10.4	1.5	231	0.04	Yellow brown clay-silt	5-20cm depth
ZAK-S46	616827	5558985	22.5	1.9	98.4	1.3	62	-0,1	135,5	1.4	99	0.08	Rusty yellow brown clay-silt	5-20cm depth
ZAK-S47	616833	5559009	14.8	2.3	97.4	2.3	57	-0.1	30.8	2.1	180	0.1	Yellow brown clay-silt	5-20cm depth
ZAK-S48	616842	5559032	21.5	11.8	101.6	2.1	47	0.1	38.5	1.5	187	0.15	Yellow brown clay-silt	5-20cm depth
ZAK-849	616852	5559055	73.3	5	91.8	47	eei	0.1	79.2	4.6	101	0.91	Orange-brown clay-silt	5-20cm death
74K-850	616973	5559062	13 1	1.4	37.5	43	73	-01	10.4	21	256	0.04	Brown clev-sitt	5-20cm depth
746.954	616906	SEEDINE	0.9		29.7	6.3	105	.0.1	0.0	1 6	142	0.04	Red Jymyn clay silt	5-20cm depth
744 050	010030	5550040	11	07	58.¢	30	70		10.0	1.0	220	0.04		5-20am depit
241-552	010924	0009046	1.1	v.1	00.0	5.2			10.0	· · · · · · · · · · · · · · · · · · ·	223	0.00	renow COWIT CREY-SIL	

					NICO	AMEN	RIVER	R ARE	Post-	Staking	y (2005)	RECO	NNAISSANCE SAMPLE	
SAMPLE Number	East NAD 83	North NAD 83	AU ppb	MO ppm	CU ppm	PB ppm	ZN ppm	AG ppm	AS ppm	SB ppm	8A ppm	HG ppm	Rock or Soil Type	Notes Page 2
Soil Sampk	<u>s</u>												B	
ZAK-S53	616944	5559062	0.9	0.4	29.4	3.3	58	-0.1	4.3	0.3	141	0.02	Brown clay-silt	5-20cm depth
ZAK-S54	616940	5559087	2.3	0.6	29.7	3	52	-0.1	9.4	0.5	202	0.02	Brown city-silt	5-20m depm
ZAK-\$55	616938	5559112	2.2	0.5	27.9	3	48	-0.1	6.6	0.5	197	0.03	Brown clay-sit	15-20m depth
ZAK-S56	616937	5559151	0.8	0.5	30.4	3.8	67	-0.1	5.5	0.4	211	0.02	Brown clay-sit	5-20m depth, location is 18m south of MC-S97.
Rock Same	les													· · · · · · · · · · · · · · · · · · ·
ZAK-R1	619249	5558631	659.6	23.5	95.8	0.5	3	0.4	46.7	4.4	1698	C	QZ Adularia(?) vein float; GD claats	Opaque wht & pale gy chalcedony. Chips from 11x19x23cm cobble. Discovery Zone
ZAK-R2	619439	5558135	217.1	6.6	20.3	1.3	5	0.5	55.9	3.7	22	0.41	Chalced QV rubble w/ attached alt'd GD	Composite of 3 pieces float; largest 5.5x5.5x8cm
ZAK-R3	619071	5558636	689.5	6.4	39.2	0.7	6	0.7	87.1	5.3	303	2.35	Chałced QV rubble w/ attached alt'd GD	Composite of 3 pieces and rubble; vein widths 8.5-11cm. Discovery Zone
ZAK-R4	619184	5558644	1176.1	54.7	9.2	1	7	1	103	8.3	39	0.47	Chalcedonic QV+ altered GD hostrock	Composite of ~25 pcs angular rubble near MC-190 & MC-S101. Discovery Zone
NOTE:	QFR = Qua	irtzofeldspa	athic rock;	SI = silica	i; AK = ani	kerite; CB	= carbonai	te; BV = ba	saltic volca	nic; AV = a	ndesitic volc	anic; GD =	granodiorite; DI = diorite; GR = granite; Q	Z = quantz; QV = quantz vein; QVIts = quantz veintets;

.

concernance and a second se

QFR = Quartzofeldspathic rock; SI = silica; AK = ankerite; QZCB = quartz carbonate; sfc = surface

ł

ACM	ANA (I	LYTI(900)	LAL LI 2 Acci	ABO) red	LATOR	186 L Co.)	TD.	8	52 E	. HA	STINC	38 ST 87. 3		NCO'	over S Ci	BC EPTT	V6A PTCI	1R5		PHONE	(604)	253-	3158	FAX (60	¥۲.	3-171	6
						<u>Alı</u>	nade	<u>n Mi</u> 1103 -	<u>ner</u> 750 w	als 1. Perc	Ltd ler St.	. PR , Venc	<u>ОЛЕ</u> ouver	ICT BC V	<u>NRO</u> 60 218	<u>5 - 1</u> 1 Sub	F12 mitte	Le #	A5 Ed Bal	0060(on)						Ĺ
SAMPLE#	Mo ppm	Cu ppm	Pto Z ppm pp	2n A om pp	g Ni m ppm	Co I ppm p	nin F Sm	e As % ppm	U ppm	Au ppbp	Th Sr xpm ppm	Cd. Ippm p	Sho Bi prn pp	i∜ V mippm	Ca %	PL %pp	a C m pp	r Mg m %	Be ppm	ті і %ррі	BAL n %	Na %	K W %ippmi	Hg Sc ppnippni	Tl ppm	S Ga %ippm	Se ppm
ZAK-R1 STANDARD	23.5 11.5	95.8 125.2	.5 28.7 14	3. 5.	4 1.2 3 25.4	.5 (10. <u>5 7</u> 2	54 .4 20 2.8	8 46.7 6 21.4	.16 6.7	59.6 45.1 2	.2 44 2.9 37	<.1 4 5.9 3	.4 <. .6 4.	1 12 9 57	.12. .87.	004 081 1	1 23. 4 187.	0.05	1968 170	.001 .083 1	1 .24 B 1.95	.004 .075	.09 .6 .16 3.5	.44 .6 .24 3.3	<.1 <. 1.7 <.	05 1 05 6	<.5 4.4
Standard GRO (>) - S Dat:	is STA JP 1DX CONCEN MPLE 1	NDARD - 30.0 TRATIO YPE: R FA	DS6. GM SAM N EXCEE Ock R15	iple Sos u Dj	LEACHEI PPER LI	WITH MITS. ECBIV	180 ml Some BED :	2-2-2 Mineral Feb 17	HCL-HI Is May 7 2005	NO3-H2 BE PA	RTIALL	5 DEG. Y ATTA BPORT	C FO CKED.	R ONE REFI	HOUR, RACTOR	bilut y and h. 2	ED TO GRAPHI	600 ML	-, ANA Amples	LYSED B	Y ICP-N MIT AU	IS. SOLUB		<u>Iò/c</u>	COLLER.		
					-							·											Clarenc	te Leong)	
																·											
							·	·											nt -f	the er-	dvoie	only					

- A - 11

 A second sec second sec

ACME AN (Il	TICA	L L Acc	ABO red	RA] ite	ror:	185 20.) }).		852	E.	HA	STI	NG	5 9 T	T.		'CO	UUVE	R E	C	V6A	. 1r	6		PHON	B (6	504)	253	-315	8 F.) XA	67	<u>)</u> 53	-1716	
AA					<u>Alr</u>	nad	en	Mir	<u>ier</u>	с als	EO L	td.	SMI P	RO	ц JE	AN. <u>CT</u>	ацу NF	(91 <u>205</u>	.9 2	CRr E	:11 '11	г ⊥с е #	AI.	в 505	95	3	Pa	.ge	1							
			8. j					1	103	- 750	Ψ.	Pèn	jer 3	st.,	Var	ncou	ver	BC V	/6C .	278	Sub	mitt	ed by	/n Ed	i Bal	on.										
SAMPLE#	Mo ppm	Cu ppm	Pt ppr) Zn ippn	n Ag n ppm	ppr	i Co n ppn) Mn 1 ppm	Fe ኔ	As ppm	U ppm	Au ppt	i Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca X	P %	La ppm	Cr ppm	Mg X	Ва ррт	Ti %	B ppm	A1 %	Na X	K ∦ %⊺ppr	W Hg nippm	Sc ppm -	T1 ppm	S %	Ga Se ppm ppm	Sample gm	-
G-1 16800£ 10000N 16800£ 9950N 16800£ 9900N 16800£ 9850N	.8 .3 .2 .3 .2	2.1 19.4 22.5 17.0 17.7	$3.3 \\ 5.0 \\ 4.1 \\ 6.1 \\ 6.5$	3 38 9 59 1 47 1 76 5 58	3 <.1 5 <.1 7 <.1 5 <.1 9 <.1	6.1 24.8 29.8 25.2 23.0	L 3.7 9 11.1 5 13.2 2 9.2) 8.2	480 383 451 483 330	1.65 3.18 3.44 2.51 2.51	<.5 .7 1.1 <.5 .7	2.5 .4 .3 .7	2.1 1.1 1.2 .6	3.9 1.1 1.5 .6	62 69 92 57 89	<.1 .1 .2 .1 <.1	< 1 < 1 < 1 < 1	.1 .1 .1 .1 .1	32 75 61 62 57	.51 .52 .81 .33 .58	.077 .023 .025 .048 .029	9 4 9 2 11	78.7 51.6 56.0 49.7 41.7	. 46 . 60 . 97 . 43 . 56	173 98 98 91 83	. 100 . 192 . 147 . 199 . 180	1 2 2 5 2 1 2 3 2	.81 . .24 . .34 . .43 . .21 .	082 080 088 051 085	.40 .06 < .07 < .09 < .07 <	1<.01 1.01 1.02 1.01 1.01	2.6 4.9 7.7 2.8 5.6	.3 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	5 <.5 7 <.5 7 <.5 7 <.5 7 <.5	15.0 15.0 7.5 15.0 15.0	
16800E 9800N 16800E 9750N 16800E 9700N 16800E 9650N 16800E 9600N	.4 .5 .2 .2	17.4 15.4 15.2 17.8 15.0	5.8 7.1 6.8 5.3 5.2	8 91 97 8 79 8 79 8 47 8 47 2 61	<.1 / <.1) <.1 / <.1 <.1	28.9 26.4 26.2 25.1 17.5	9 11.0 4 10.3 2 8.2 1 8.5 5 6.6	334 819 232 232 246 344	2.73 2.32 2.16 1.98 1.99	.8 .6 .5 .5	.3 .3 .4 .6 .4	8. 6. 3.5 2:9	.7 .7 .8 1.0 .8	68 59 61 80 73	.1 .1 .1 .1	.1 .1 .1 .1	.1 .1 .1 .1 .1	66 55 50 44 45	. 37 . 38 . 38 . 55 . 54	.084 .077 .034 .052 .042	3 4 5 14 7	44.6 34.3 32.8 34.5 30.9	.42 .38 .40 .53 .36	116 111 111 83 72	.179 .125 .160 .134 .133	1 2. 2 2. 1 2. 2 2. 3 1.	.70 . .34 . .09 . .19 . .64 .	036 045 046 065 090	.09 < .11 < .07 < .07 < .09 <	1 .01 1 .01 1 .01 1 .01 1 .01 1 .01	3.0 2.7 3.0 4.9 3.6	<.1 · <.1 · <.1 ·	<.05 <.05 <.05 <.05 <.05	8 <.5 8 <.5 7 <.5 6 <.5 5 <.5	15.0 15.0 15.0 7.5 15.0	I I I
16800E 9550N 16800E 9500N 16800E 9450N 16800E 9400N RE 16800E 9300N	.4 .5 .4 .3	21.9 19.1 20.1 19.5 22.0	5.3 5.7 5.2 5.4 4.4	94 72 84 89 89 89	4 <.1 2 <.1 4 <.1 9 <.1 7 <.1	42.3 28.4 24.4 35.8 32.9	3 14.9 4 12.0 4 9.8 9 11.7 9 11.7	5 309 662 1241 535 383	3.22 2.66 2.38 2.95 3.22	1.2 1.5 1.9 1.3 1.3	3 3 2 3 3	.8 1.3 <.5 1.4 1.1	3 .9 3 .9 5 .8 1 .9	56 59 94 69 73	.1 <.1 .1 .1	.1 .2 .1 .1	.1 .1 .1 .1 .1	73 62 59 69 81	. 34 . 40 . 96 . 45 . 43	. 108 . 059 . 115 . 135 . 102	3 4 3 3	49.0 41.2 36.2 47.5 50.7	.51 .47 .42 .47 .45	147 103 114 148 147	. 161 . 170 . 151 . 178 . 182	2 3 1 2 6 1 2 2 2 2	.61 . .25 . .90 . .71 . .90 .	030 046 068 048 050	.07 < .08 < .21 < .12 < .09 <	1 .01 1 .02 1 .01 1 .02 1 .02 1 .01	3.7 3.7 3.0 3.7 3.7 3.9	<.1 · <.1 · <.1 · <.1 ·	<.05 <.05 <.05 <.05 <.05	10 <.5 7 <.5 7 <.5 9 <.5 8 <.5	15.0 15.0 15.0 15.0 15.0	
16800E 9350N 16800E 9300N 16800E 9250N 16800E 9200N 16800E 9200N	.2 .3 .5 .4 .5	11.7 21.1 21.1 21.4 25.0	5.5 4.3 4.9 5.7 4.8	5 63 5 64 9 71 7 190 3 78	} <.1 <.1 <.1 <.1) <.1	17.4 31.8 31.9 31.7 38.3	4 5.6 3 11.7 5 12.1 7 12.4 3 13.3	5 271 379 414 747 3 432	1.73 3.14 3.08 2.58 3.55	<.5 1.4 1.7 2.8 2.7	3 3 3 3 4		.7 .9 1.0 1.0	45 71 77 39 76	<.1 <.1 <.1	.1 .1 .1 .2	.1 .1 .1 .1	41 81 78 56 90	. 31 . 44 . 47 . 31 . 50	.025 .103 .082 .245 .062	6 3 4 4	27.1 48.4 47.4 39.4 51.4	. 30 . 45 . 56 . 46 . 72	67 144 140 257 264	. 136 . 178 . 193 . 129 . 177	1 1. 1 2. 1 3. 2 2. 2 3.	.64 . .79 . .04 . .86 . .22 .	044 051 050 041 048	.05 < .09 < .12 < .10 < .08 <	1 .01 1 .02 1 .01 1 .03 1 .01	2.8 3.9 4.3 3.4 4.4	<.1 · <,1 · <,1 · <.1 ·	<.05 <.05 <.05 <.05 <.05	5 <.5 8 <.5 9 <.5 9 <.5 8 <.5	15.0 15.0 15.0 15.0 15.0	
16800E 9100N 16800E 9050N 16800E 9000N 16800E 8950N 16800E 8900N	.4 .4 .4 1.1 .4	26.5 16.5 23.3 107.0 36.7	3.9 5.4 3.6 5.1 6.8	9 77 84 6 60 91 8 250	/ <.1 <.1 <.1 .1 .1	43.0 33.3 32.2 40.7 36.0	5 15.4 3 11.6 2 14.6 7 17.7 3 14.9	412 537 424 1011 1357	3.47 2.36 3.25 3.67 3.58	4.2 2.7 3.8 13.3 7.7	.4 .3 .6 1.0	.9 .7 < .5 < .5	1.3 .8 .9 1.4 1.1	70 34 86 80 58	< 1 .1 <.1 .3 .5	.2 .1 .2 1.1 1.6	.1 .1 <.1 .1 .2	83 47 84 82 77	.49 .27 .56 .90 .76	.130 .213 .110 .031 .252	4 3 4 17 5	54.5 34.9 53.5 42.9 46.1	. 83 . 46 . 60 . 84 . 88	192 131 117 224 196	. 142 . 116 . 135 . 122 . 120	2 4. 2 2. 2 2. 4 2. 3 3.	21 89 40 88 80	057 032 085 068 030	.12 < .10 < .07 < .07 < .06	1 .02 1 .02 1 .01 1 .05 1 .03	6.7 3.3 6.0 10.3 6.0	<,1 <,1 <,1 ,1 ,1	<.05 <.05 <.05 <.05 <.05	10 <.5 9 <.5 7 <.5 9 .8 11 <.5	15.0 15.0 15.0 7.5 15.0	
16800E 8850N 16800E 8800N 16800E 8750N 16800E 8700N 16800E 8700N	.3 .5 .6 .3	17.9 25.1 25.5 16.0 23.5	11.6 4.2 4.5 4.8 3.3	5 148 2 73 5 66 8 82 8 53	3 <.1 3 <.1 5 <.1 2 <.1 3 <.1	25.2 34.2 32.2 27.9 31.2	2 11.7 2 14.7 2 14.2 9 12.2 2 11.3	394 532 311 908 319	2.69 3.24 2.77 2.28 2.75	2.5 4.7 3.4 5.1 2.9	.3 .4 .5 .2 .3		.7 1.1 1.1 .7 .8	58 66 63 29 51	.3 .1 <.1 .1	.3 .2 .2 .2	.1 .1 .1 .1 .1	63 83 70 56 67	.45 .46 .49 .24 .36	.057 .122 .114 .219 .089	3 4 8 3 3	39.3 46.3 42.4 32.1 40.5	.53 .73 .61 .36 .53	122 155 127 108 105	. 141 . 151 . 130 . 102 . 110	3 2. 3 2. 2 3. 2 2. 2 2.	.27 . .96 . .12 . .41 . .17 .	058 039 038 026 039	.08 <. .09 <. .08 <. .07 <. .09 <.	1 .01 1 .02 1 .03 1 .03 1 .03 1 .01	3.4 4.8 5.8 2.6 3.6	<,1 · <,1 · <,1 · <,1 ·	<.05 <.05 <.05 <.05 <.05	8 <.5 9 <.5 10 <.5 9 <.5 7 <.5	15.0 15.0 15.0 15.0 15.0	
16800E 8600N 16800E 8550N 16800E 8500N 16800E 8450N 16800E 8400N	.6 .6 .5 .5 .4	21.3 37.1 27.3 17.7 26.2	3.6 3.5 3.3 4.8 4.0	5 73 5 57 8 52 8 52 8 71 1 68	3 <.1 7 <.1 2 <.1 1 <.1 3 <.1	16.4 39.9 31.0 20.8 26.2	4 11.1 9 18.8 5 13.6 8 10.7 2 10.6	509 736 424 685 922	3.08 3.61 3.25 2.44 2.47	4.8 6.3 4.5 4.6 2.1	4 5 4 3 8	< 5 1.0 < 5 < 5 < 5	.8 1.4 1.1 .8	60 102 76 35 73	.1 .1 .1 .1	.3 .2 .3 .2 .3	.2 .1 .1 .1	79 92 87 62 62	.42 .71 .46 .25 .53	. 292 . 092 . 071 . 270 . 045	4 11 5 3 21	35.7 47.7 47.4 34.9 32.3	.46 1.06 .65 .36 .64	253 137 139 119 102	.085 .114 .122 .093 .105	2 1. 4 2. 2 2. 2 2. 2 1.	.72 . .28 . .55 . .04 . .90 .	026 072 038 021 041	.10 < .10 < .07 < .06 < .06 <	1 .03 1 .02 1 .01 1 .03 1 .02	3.6 8.5 4.6 2.6 6.0	<.1 · .1 · <.1 · <.1 · .1 ·	< 05 < 05 < 05 < 05 < 05	7 <.5 8 <.5 8 <.5 8 <.5 7 <.5	15.0 7.5 15.0 15.0 15.0	9 7 1
STANDARD DS6	11.5	121.9	29.3	3 149	5.3	25.2	2 10.8	3 711	2.85	21.3	6.6	44.8	3.2	42	5.9	3.4	5.0	57	.88	. 081	15	193.3	. 61	166	. 086	17 1	97.	080	. 17 3.	3 .23	3.5	1.7	<.05	74.4	15.0)
GROUP 1DX - (>) CONCENT! - SAMPLE TY! /	15 GM RATION PE: SOI	SAMPL Excee L SS&	.E LE EDS L 30 60	EACH JPPE JC	ED W RLI <u>S</u>	ITH MITS ampl	90 Mi SC es be	. 2-2 ME M ginn	-2 HC INERA ing /	L-HN LS M. <u>Re'</u>	03-H AY B are	20 A E PA <u>Reru</u>	T 95 RTIA ns a	DEI LLY Ind	G. C ATT 'RRE	FOR ACKE <u>' ar</u>	EONE D. <u>e Re</u>	E HO REFI ejec	UR, RACT <u>t Re</u>			to 30 GRAPH L / /2	0 ML 11110 8/0	, an sam	ALYSE PLES	ED BY Can L	ICP- IMIT	-MS. rau	SOLUB	ILITY	TCO.	JIME	in C	or L	70	
Data 📐 F	A	_	D.	ATI	s RI	SCE:	IVEI):	SEP 2	20 20	05	DA	TE	REI	POR	ΤM	1AII	LED	:.?	••••	• • •	• • •	<i>\</i>	• • •							No.		Clai	rence	Leong	K
All results a	re cor	sider	ed t	he	conf	iden	tīal	ргор	erty	of t	ne c	lien	t. A	cme	ass 	umes	; the	e li	abil	itie	s fo	r act	ual	cost	of t	he ar	alys	sis d	only.			~	7	Ţ,	5	9.5

44

Data / FA

.

Page 2

SAMPLE#	 Mo	 נו	<u></u> РЬ	 7n		Ni	<u></u>	Mn.	Fe	<u>Δ</u> ς	11	Δ	Th	Sr	Cd	۲h	Bi	V	Ca	P	 a	(r	Ma	Ba	Ti	8	۸1	Na	r	1.1	Ha	 ۲۰۰۱		5 63	C ^ C	
	ppm	ppm	ppm	ppm	ppm	ppm	ppn	ippm	12	ppm	ppm	ppb	ррт	ppm	ppm	ppm	ppm	ppm	2	ž	ppm	ppm	, 19 X	ppm	2	ppm	*	2	τ Σp	pm p	pnn p	pm pp	, , ЭШ	30a. %ppm p	зез рп	- unic - Gun
16800E 8350N 16800E 8300N 16800E 8250N 16800E 8200N 16800E 8150N	.6 .4 .8 1.7 3.8	28.4 34.7 21.7 30.6 19.2	3.8 3.0 3.7 3.4 4.2	73 55 68 64 47	< 1 < 1 < 1 < 1 < 1	35.0 33.6 32.9 30.8 23.4	16.3 15.7 13.0 13.7 11.3	492 566 400 336 406	3.34 3.34 2.94 3.06 2.58	5.3 5.2 4.0 5.7 2.4	.4 .5 .4 .6 1.6	.7 2.8 1.0 .8 1.7	1.0 1.3 .8 1.0 .8	51 85 49 45 59	.1 .1 <.1 <.1	.5 .2 .4 1.7 .4	.1 <.1 .1 .1 .1	89 83 74 80 69	.33 .62 .30 .32 .44	.169 .074 .130 .076 .031	3 10 3 4 4	38.8 38.5 36.1 36.4 32.9	.69 1.05 .62 .55 .63	138 121 201 245 201	.116 .076 .108 .119 .133	2 3 1 1 2 2 2 2 2 2	3.05 .98 .89 .66 .00	.024 .042 .027 .032 .037	.09 < .07 < .07 < .10 .08 <	.1. .1. .1. .1. .1. .1.	02 4 02 7 02 3 02 3 02 3 01 3	.1 <. .9 <. .5 <. .8 <. .0 <.	.1 <.0 .1 <.0 .1 <.0 .1 <.0 .1 <.0	5 9 < 5 6 < 5 8 < 5 8 < 5 6 <	.5 .5 .5 .5 .5	15.0 7.5 15.0 15.0 15.0
16800E 8100N 16800E 8050N 16800E 8000N 16800E 7950N 16800E 7900N	3.1 2.4 1.4 .8 .4	22.0 22.5 36.0 26.5 8.4	4.1 4.8 5.9 5.5 4.7	70 70 73 64 86	< 1 < 1 < 1 < 1 < 1	23.6 26.1 30.6 31.7 9.3	11.6 11.4 12.8 13.0 8.1	393 333 442 344 630	2.44 2.48 2.97 2.99 2.00	3.4 2.9 4.6 3.0 1.1	.7 1.1 1.1 .5 .4	8.6 1.7 1.2 2.4 2.2	.8 .9 1.1 1.3 2.8	40 33 29 26 15	.1 .1 .1 .1 .1	.3 .2 .3 .1	.1 .1 .1 .1 .1	61 56 69 72 54	.32 .33 .25 .19 .18	.149 .164 .129 .070 .128	3 3 4 4 4	28.6 29.9 35.8 38.3 15.7	. 39 . 44 . 56 . 65 . 56	213 161 213 209 160	. 099 . 103 . 122 . 131 . 181	2 2 2 2 2 3 2 3 1 1	2.23 4.48 5.50 .65 30	.024 .017 .019 .017 .016	.06 .08 < .06 .05 < .07 <	.1 . .1 . .1 . .1 .	03 2 05 2 06 3 04 3 02 2	.8 <. .7 <. .4 <. .4	.1 <.0 .1 <.0 .1 <.0 .1 <.0 .1 <.0	5 8 < 5 9 < 5 11 < 5 10 < 5 11 <	.5 .5 .5 .5	15.0 15.0 15.0 15.0 15.0
16800E 7850N RE 17000E 10000N 16800E 7800N 17000E 10000N 17000E 9950N	.3 .3 .8 .3 .2	26.4 15.8 20.8 16.8 20.6	3.8 4.8 4.2 4.4 4.7	72 78 77 81 113	< 1 < 1 < 1 < 1 < 1 < 1	27.7 28.4 29.3 29.2 33.7	14.1 9.6 12.0 9.6 12.2	540 307 341 302 357	3.19 2.44 3.14 2.48 3.21	3.7 1.7 4.7 1.7 2.8	.8 .5 .9 .3 .4	1.1 1.5 .5 1.9 1.8	2.5 .7 2.0 .7 1.5	55 42 104 43 79	<.1 <.1 .1 .1 .2	.2 <.1 .2 .1 .1	.1 .1 .1 .1 .1	80 56 71 56 59	. 39 . 33 . 26 . 36 . 70	.089 .078 .153 .079 .036	8 2 5 2 6	35.5 38.1 37.6 39.6 45.3	1.05 .41 .75 .43 .78	250 130 392 131 191	.140 .119 .146 .126 .122	2 3 2 2 2 3 2 2 5 2	. 14 . 68 . 35 . 82 . 71	.016 .040 .013 .048 .069	.13 < .07 < .06 .07 < .08 <	.1 . .1 . .1 . .1 . .1 .	02 4 01 3 07 3 02 3 01 7	.9 .3 < .2 .4 < .2 <	.1 <.0 .1 <.0 .1 <.0 .1 <.0 .1 <.0	5 11 < 5 7 < 5 11 < 5 8 < 5 7 <	.5 .5 .5 .5	15.0 15.0 15.0 15.0 7.5
17000E 9900N 17000E 9850N 17000E 9800N 17000E 9750N 17000E 9700N	.4 .4 .3 .3	16.1 21.8 22.8 21.1 17.3	6.7 4.8 5.6 5.3 5.1	67 63 81 62 62	< 1 < 1 < 1 < 1 < 1 < 1	26.4 34.2 38.9 30.8 23.0	10.4 11.8 13.2 12.0 8.2	696 287 484 438 367	2.81 3.49 3.15 3.06 2.58	2.5 3.0 1.3 1.7 1.4	4 3 5 5 5	1.5 1.3 1.1 1.4 1.1	1.5 1.1 1.4 1.3 1.1	72 69 65 100 93	<.1 <.1 .1 .1	.1 .2 .1 .1	.1 .1 .1 .1 .1	62 86 71 75 65	.61 .44 .41 .53 .54	.039 .077 .069 .033 .021	8 3 7 7 5	44.1 54.9 49.3 49.3 41.9	.50 .57 .65 .71 .52	129 127 116 112 93	.159 .167 .172 .199 .207	3 2 2 3 2 3 1 2 1 1	. 60 . 20 . 43 . 35 . 77	.062 .039 .045 .074 .082	.11 < .11 < .09 < .09 < .07 <	.1 . .1<. .1 . .1<. .1<.	02 5 01 4 02 5 01 5 01 4	.7 < .9 < .3 < .4 < .1 <	.1 <.0 .1 <.0 .1 <.0 .1 <.0 .1 <.0	5 7 < 5 8 < 5 8 < 5 6 < 5 5 <	.5	15.0 15.0 15.0 15.0 15.0
17000E 9650N 17000E 9600N 17000E 9550N 17000E 9500N 17000E 9450N	.3 .3 .4 .2 .4	21.4 22.9 16.2 14.5 11.2	5.2 5.0 6.4 5.3 5.2	91 70 102 60 58	<.1 <.1 <.1 <.1 <.1	39.2 36.8 32.9 21.5 19.2	12.6 14.7 10.6 7.3 8.0	305 382 352 224 205	2.98 3.38 2.54 2.50 2.15	2.1 1.4 1.1 .8 .8	4 5 3 2	.9 1.8 .5 1.2 1.7	1.0 1.4 .8 .7 .6	50 69 49 64 46	.1 .1 .1 .1 .1	.1 .1 .1 .1	.1 .1 .1 .1 .1	69 86 57 57 47	.35 .46 .36 .43 .28	. 113 . 050 . 121 . 026 . 084	4 5 3 4 2	46.9 53.9 38.4 42.8 33.8	.58 .75 .50 .40 .27	129 100 107 85 99	. 152 . 211 . 163 . 192 . 153	2 3 2 3 2 2 1 2 1 2	.29 .28 .91 .05 .08	.036 .047 .040 .067 .040	.08 < .08 < .10 < .06 < .07 <	.1 . .1 . .1 . .1<. .1	01 3 01 5 01 3 01 2 02 2	.8 <. .2 . .0 <_ .8 <. .1 <_	1 <.0 1 <.0 1 <.0 1 <.0 1 <.0	59< 58< 58< 55< 55<	.5 .5 .5 .5	15.0 15.0 15.0 15.0 15.0
17000E 9400N 17000E 9350N 17000E 9300N 17000E 9250N 17000E 9200N	.3 .3 .4 .3	17.9 14.9 11.1 22.5 18.2	5.5 5.4 4.9 3.9 4.0	80 55 57 60 74	< 1 < 1 < 1 < 1 < 1 < 1	33.0 18.3 15.5 36.7 29.3	10.3 7.4 6.0 12.7 10.5	252 223 254 291 360	2.76 2.61 1.97 3.51 2.74	1.5 1.4 1.3 3.6 2.1	3 4 2 4 3	1.0 1.6 1.2 .5	.9 .8 .5 1.0 .9	53 51 - 41 - 65 63	.1 <.1 <.1 .1	.1 .2 .1 .3 .1	.1 .1 .1 .1 .1	67 64 46 93 63	. 35 . 41 . 32 . 45 . 46	. 100 . 024 . 042 . 102 . 129	3 4 2 3 3	45.5 42.4 31.6 55.8 45.6	.43 .37 .27 .54 .45	112 65 79 122 126	.158 .170 .141 .165 .148	2 2 1 1 2 1 3 3 3 2	. 70 . 89 . 78 . 28 . 80	.042 .067 .049 .059 .054	.09 < .06 < .07 < .12 < .12 <	.1 .1 .1 .1<. .1<.	01 3 01 3 01 2 01 5 01 3	.1 <. .5 <. .2 <. .2 <. .9 <.	1 <.0 1 <.0 1 <.0 1 <.0 1 <.0	57< 55< 56< 58< 57<	.5 .5 .5 .5	15.0 15.0 15.0 15.0 15.0
17000E 9150N 17000E 91D0N 17000E 9050N 17000E 9000N STANDARD 056	.5 .4 .4 .5 11.6	18.3 22.1 22.7 18.3 121.9	5.0 4.0 4.5 4.5 28.6	84 75 88 74 143	<.1 <.1 <.1 <.1 .3	31.9 37.1 49.4 28.0 24.8	11.7 17.9 14.3 11.6 10.7	591 507 481 728 702	2.86 3.77 2.86 2.78 2.84	2.3 2.1 4.0 3.5 21.1	.3 .4 .3 6.5	<.5 <.5 <.5 <.5 46.5	.9 1.0 1.0 .6 3.2	52 64 62 69 42	.1 .1 .1 5.0	.1 .1 .3 3.5	.1 .1 .1 .1 4.9	66 69 58 67 58	.37 .51 .61 .63 .87	.130 .153 .251 .103 .077	3 4 3 3 15	47.1 48.4 39.1 42.9 191.0	.52 .97 .72 .51 .58	132 90 147 161 168	.146 .076 .087 .129 .085	2 3 6 2 5 3 4 2 17 1	. 12 . 78 . 33 . 54 . 95	.031 .029 .030 .053 .075	.12 < .12 < .16 < .12 < .12 3	.1 . .1 . .1 . .1 . .3 .	01 3 02 6 02 4 02 3 23 3	.8 <. .7 . .8 . .8 <. .4 1.	.1 <.0 1 <.0 1 <.0 1 <.0 8 <.0	5 8 < 5 8 < 5 9 < 5 7 < 5 7 4	.5 .5 .5 .5	15.0 15.0 15.0 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 3

																															· · ·				ANALYTICA	
SAMP! F#	Ma	Cu	Ph	Zn-	Aq	Ni	Co	Mn	Fe	As	11	Au	Th	Sr (Cid III	Sb	Ri	V C	a	PI	a	Cr	Ma	Ba	Ti	B A1	Na	ĸ	W	Ha		71	5	Ga Se	Samolo	
	nnm	nnma	nm	nnmr	ותחר המחר	nom	nnm	0.00T	¥	ותחח	ากต	nohi	נותחכ	יס וווסיס	י ההר	מ נסמ	om or	ຳຕັ	2	*	м П	nom	21	ດດຫ	Yr	nm 92	Ŷ	Ŷ	000	nnm	000		2.		Janih Le	
 · · · · · · · · · · · · · · · · ·			Pp.	Phu I		Phil	Ppin	ppin		- PE-1			PP"' 1	Phil 14		PPin P	Pin P)			~ ~		PPin	· ···-		~ +				PPin				~ 1	- ndr		
17000E 8050N	4	16-1	зp	28 4	c 1 3	21 2	05	265	2 42	27	5	1.0	A	81	1	٦	1 /	63 6	1 0	136	4 3	23.2	53	128	120	1 1 74	044	06	< 1	02	13	1	< 05	1 6 6	15.0	
170000 99000		22 5	12	50.	- 1	20.2.	12 6	500 3	7 90	37		1.0	1.0	75 ~	1	.u 2	1 7	76 JU	1.0 2.0	01 0	5 3	27 0	66	160.	120	2 2 50	074	.00	*,1	02	17	c 1	< 05	7 / 5	10.0	
170000 05000	.4	20.0	9.C	124	~ 1 4	20.0. 22 n 1	14.6	710 2	2.05	10.7	.7	4 0	1.0	22	1	.0 E	. 4 . 1 .	16 .7	2U 1.1	E0 -	5 0 3 3	37.0 34.4	.00. cc.4	100 . 970	110	2 2.00	.034	.07	~ 1	.00	4.1	~ 1	<.US	0 ~ 5	15.0	
17000E 0030N		34.7	J.4	134 5	5.1 s 2 1 s	10.01	14.0	1176	0.03 • 01 -	4.9 50 E	.0	4.0	1.0	00 . 62 /	1 1	 	. 1 1	10.0 Ac A	1.1 7 7	.JZ -	5 3	24.4	. 00 4	2/0. 104	119	2 3.07	.017	.00	<u>``</u>	.03	4.0	<. I	<.U5	0 5.5	15.0	
1/000E 8800N	.9	22.3	4.3	53 9	5.I I 	10,91	14.0	1000 4	+.92 : - 50	52.5	.83	5.3	۲.۲ م	02 5.	1 14	2.0	.1 14	40.4	/ .U	69 I:		20.9	.54 .	104 . 207	100	7 1.39	.021	.09		. UZ	10.0	.1	<.05	5 5.5	15.0	
1/000E 8/50N	.5	14.4	5.6	15/ *	<.1.	17.3	8.7	1803 4	2.52	4.2	.3	<.5	.9	20 .	. 1	.9	.1 t	50.Z	3.0	68	4 Z	22.1	. 30 ა	326 .	105	2 1.96	.012	.06	۲.>	.03	2.8	.1	<.05	/ <.5	15.0	
170005 07000								o1 E 1 /			~			10	_	~				<u>.</u>	-							10			~ ~					
1700UE 8700N	.6	11.2	3.9	14/ <	<.1	10.3	8.1	2151	3.10	13.8	.3	2.8	1.1	18 .	2	.9	.1 t	55.2	1.8	68	5	1.5	.20	313.	058	4 1.44	.010	.12	.1	.03	3.3	.1	<.05	6 <.5	15.0	
17000E 8650N	.6	26.5	3.7	70 <	<.1 3	26.6 1	14.0	437 3	3.42	4.1	.4	1.1	1.4	55 <.	1	.5	.1 9	97.3	1.0	53	53	36.7	.68	160.	154	2 2.35	.019	.08	<.1	.01	4./	<.1	<.05	7 <.5	15.0	
1700DE 8600N	.5	22.2	3.9	50 <	<.1 2	25.1 1	10.8	326 2	2.54	3.0	.3	.5	.9	54 <.	1	.3	.1 6	59.3	2.0	49	53	32.9	.57 .	102.	137	1 2.01	.028	.06	<.1	. 02	3.4	<.1	<.05	6 <.5	15.0	
17000E 8550N	.5	16.9	4.4	57 -	<.1 2	20.7 3	10.0	225 2	2.25	3.0	.3	<.5	.9	45	.1	.2	.1 5	53.2	9.1	.49	42	28.5	.45	96.	101	2 2.10	.021	. 05	<.1	.04	3.5	<.1	<.05	6 <.5	15.0	
17000E 8500N	.7	25.0	3.1	55 <	< 1 :	31.6 3	14.1	297 2	2.91	4.7	,4	<.5	1.2	58 .	.1	.2 <	.1 7	79.3	2.1	.40 /	43	37.1	.71	114 .	096	2 2.46	.023	. 04	<.1	. 02	4.3	<.1	<.05	6 <.5	15.0	
17000E 8450N	1.1	42.5	3.9	56 <	<.1 3	37.8 1	19.1	742 2	2.90	4.6	.6	.7	1.4	82 .	.1	.3	.1 2	75.7	8.0	77 13	23	38.51	.10 :	111 .	074	3 1.82	.025	.07	. 1	. 04	7.4	<.1	<.05	5 <.5	7.5	
17000E 8400N	.8	27.9	5.1	66 <	<.1 2	29.3 1	13.4	434 2	2.76	2.9	.4	.7	. 9	54 .	1	.2	.1 2	72.4	1.0	65 !	53	36.1	.78	96.	109	2 1.82	.028	.07	<.1	.02	4.2	< 1	<.05	6 <.5	15.0	
RE 17000E 8400N	.7	28.3	5.0	68 -	<.1 2	28.3 1	13.5	442 2	2.76	3.0	.3	<.5	1.0	56	1	.2	.1 7	71.4	1.0	67 !	53	36.5	.77	97.	111	3 1.84	.025	.07	<.1	.03	4.2	<.1	<.05	6 <.5	15.0	
17000E 8350N	.7	51.6	4.2	53	.1 :	34.6	12.7	466 2	2.39	3.0	.6	2.6	1.0	76	1	.1	.1 9	52.7	3.0	51 19	53	35.6	. 89	103.	075	4 2.07	.024	.07	<.1	.04	7.1	<.1	<.05	5 <.5	7.5	
17000E 8300N	.7	29.0	3.7	53 -	<.1 3	34.8	15.8	380 3	3.32	3.1	.5	<.5	1.6	75 .	1	.3	.1 7	78.5	3.0	90 (64	40.3	.99	129.	092	2 2.33	.027	.08	.1	.02	7.1	<.1	<.05	6 <.5	15.0	
17000E 8250N	1.1	23.5	3.8	50 <	< 1 3	26.2 1	14.8	635 3	3.37	7.9 3	L. D	<.5	1.2	41	1	.2	.1 8	37.3	2.1	Q2 4	43	36.9	74	138.	078	3 2.04	.021	.08	<.1	.02	5.7	<.1	<.05	6 <.5	15.0	
17000F 8200N	6	42.4	37	55 <	< 1 4	17.1	17 9	642 3	3.24	4.4	.2	1.1	1.5	74	1	.2	1 7	73.6	8.0	68 1	14	7.1 1	17	130	103	4 2.11	036	.07	<.1	.02	8.5	< 1	<.05	6 < 5	15.0	
17000F 8150N	5	33.0	2.8	50 <	< 1 :	35 8	15.4	449 3	3.12	5.5	6	1.3	1.4	95	1	.4 <	.1 (82.7	3 0	76 1	04	10.3 1	18	100	10B	6 1.78	054	07	< 1	.02	7.1	<.1	<.05	5 < 5	15.0	
17000E 8100N	Ă	29.9	3.2	57 -	< 1	36.2	17 2	376	3 72	8.0	3	7	1 0	67	1	3 <	1 1	19 4	4 1	55	4 3	1621	05	94	N96	3 2 43	032	08	< 1	n1	6.8	< 1	< 05	7 < 5	15 0	
17000E 8050N	4	38.5	3.0	54 <	< 1	36.3.1	17 4	630 3	3 20	7 0	6	1.6	15	87 <	1	3 <	1 (14 6	6 0	82 1	1 4	11 4 1	07	148	122	2 1 88	038	07	< 1	01	77	< 1	< 05	5 < 5	15 0	
1/0002 00000	• 7	00.0	0.0	94	·		17.7	000 0			. 🗸	1.0	1.0	01 -					• •	UC 4.					***	- 1.00								0 .0	10.0	
17000F 8000N	А	187	A A	55 4	- 1 3	73 n 1	11 7	461 3	> 20	4 1 3	12	7	1 1	56	1	2 <	1 6	56 4	1 0	79 1	53	2 7	70 (208	125	2 1 97	025	06	< 1	03	3.5	< 1	< 05	6 < 5	15.0	
17000E 0000H	.4	19.6	1 1	71	(1)	22 / 1	10.9	321 3	2 66	4.1	5	- , , . - 5	7	1 1	1	2	1 2	ד. טע ג חז	0 1	22	ว่า	12 0	52 1	344	110	1 2 13	021	.00 n4	< 1	02	27	< 1	< 05	7 < 5	15 0	
17000E 7500M	2	20.0	4.L	65	1 1	22.7.2	11 0	361 3	2 60	4.0	6	- J 6	ີ່	29	1		1 6	55 J	2 1	75	2 2	22 0	50 /	136	119	2 2 /1	021	.04	~ 1	.02	3.1	< 1	< 05	8 < 5	15 0	
17000E 7950M	.0	12 4	4.5	6 0 -	- 1 1	13 6	0 5	106 3	2.00	3.2		- E 1	1 0 4	280	1	1	1 1	50 /	6 2	92 9	2 1	02	72	100. 101	116	2 2 03	011	12	1	.00 n/i	21	1	05 - 05	0 < 5	15.0	
170005 70004		10,4	4.4	29 1	·	13.0	9.0	200 /	2.40	0.Z	. 0	>.0. 	1.54	200 . ว <i>с</i>	1	.1	.L . 1 4	.4 .0 י	0.2	74 4	5 D	19.2	.76 J 67 B	54 . 507	105	2 2.00	.014	.10	- 1	.04	3.1	~ 1	<.05	0 × 5	15.0	
TANANE ADANA	.4	24.0	4.7	4/	. 2 4	27.1	12.7	309 6	2.90	0.5	.0	<.s .	1.0	30 .	.T	· 1	.1 (J9 . Z	9.1	74 (u J	24.1	. 57 :	. יעכ	100	2 2.90	.014	.05	∼.1	.03	3.3	~. I	~.up	9 5.0	15.0	
17200E 10000N	2	24.0	1 2	71	- 1 -	17 2 1	10.0	402 7	275	10	2	0	6	25 <	1	,	1 0	:0 7	<u>م</u> م	01	1 2	776	25	05	006	2 1 67	022	no	~ 1.	c 01	2 2	~ 1	< 05	5 < 5	15 0	
172000 100000	. 3	14.9	4.2	71 1	. 1	17.02	10.0	473 4	2.70	4.0	. 4	.0	1.0	30 ~.	1	-1	. L C	27.55 27.6	0.0 1 1	01 . 07 (с с с с	1 6	. 39	- 55 . 166	0.00	2 2 06	.022	16	~ 1	~.UI	0.0	·. I 1	~ 05	0 ~ E	10.0	
17200E 9930N	.4	21.2	4.3	70 1		37.41	10.0	412 4	3.37/ 3.1m	3.4	 	. / .	1.U C	70 . 52 -	.1	.0	.1 0	ט. /כ מי חיי	4.1 6 A		ניט אימ	0 11	. 20 .	100.	005	1 2 40	.013	.10	~ 1	.02	E 0	- 1	<.05 <.05	6 ~ 5	10.0	
17200E 9900N	.3	15.7	3.4	74 *	5.1 i	20.1 1	10.9	413 0	0.10	4.0	. ა	.9	.0	00 5.	.1	.2 ~		19.J	0.0	20	3 4 7 F	+/.9	. JZ .		1/0	1 6.40	.03/	.00	2.1	. UZ	5.0	2.1	<.UD	0 \. 0	10.0	
1/200E 9850N	.ა	22.0	3.5	51 4	< 1 i	(9.3.	13.1	298 .	5.29	3.0	.2	.8	.9	45 <.	1.	- 1 -	.1 (1.3	0.U	71 6	2 3	00.0°.	.85	40	105	2 1.90	.044	. 14	S.1	. UI	5.5	S.1	<.UD	5 5.5	10.0	
1/200F 3800W	.2	14./	3.3	50 5	<.1	18.0	9.5	395 2	2.56	.7	.Z	<.5	.8	31 .	. 1	- 1 <	.1 (DI .3	U.Q.	23	د ٢	51./	. 50	42,	122	2 1.25	.044	.0/	<.1	.01	4.7	<.1	<.V5	4 <.5	19.0	
177005 07500	2	10.0	A 1	53	. 1 .	15 7	7 0	777 /		2 1	2	1 0	6	21	1	2		<u>-1</u> 0			1 2		20	6 1	120	2 1 47	022	ne	- 1	a 1	7 7	<u>ر</u> ا	< 06	1 ~ 5	15.0	
17200E 9750N	.3	12.0	4.1	53 4	<u>.</u>	15./	1.8	2// 1	2.30	2.1	.2	1.0	.0	31 . 40	.1	.3	.L t	51.Z	4.0	່ວ/ . 	1 3	34.5	.20	01.	137	2 1.4/	.033	.00	<.1	10.	2.1	×.1	<.05	4 5.5	10.0	
17200E 9700N	.4	16.0	4.6	61 <	< 1	22.91	11./	408 3	5.03	4.8	.2	<.5	.9	42 .	.1	.5	.1.	0.3	ა.0		ა 4 ი ი	+3.U	.41	09.	12/	21.73	026	.10	<.1	.02	5.3	< 1	<.U5	5 < 5	15.0	
1/200E 9650N	.3	11.0	4.4	- 60 <	< 1	17.4	8.1	308 2	2.21	2.1	.2	<.5	.8	35.	1.	.3	.1 !	. 80	ь.0	69 2	23	57.Z	.2/	73.	134	2 1.59	028	.07	<.1	.01	2.8	<.1	<.05	5 <.5	15.0	
1/200E 9600N	.3	14.5	3.7	51 <	<.1	14.1	6.9	343 2	2.Z3	1.6	.3	1.1	.8	45 <	1	.z <	.1 6	.4.3	9.0	39	5 2	(9.7 ·	.31	53.	152	2 1.19	.046	.0/	<.1	. 01	4.0	<.1	<.05	3 < 5	15.0	
 STANDARD DS6	11.4	122.4	28.6	142	.3 :	24.8 1	10.6	<u>699</u> 2	2.81	20.9 6	5.5 4	6.8	2.9	40.5	.9 :	3.5 4	.9 (5.8	4.0	77 1	3 18	39.4	.57 !	162 .	079	18 1.89	.073	.15	3.5	. 23	3.2	1.8	<.05	64.6	15.0	
																				-																

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data / FA

Page 4

NUME NIMALITICAL			-·							•								·								_					CHE ANALYI [CAL
SAMPLE#	Mo	Cu	Pb	Zn Aa	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd :	Sb (3i	V C	a	P La	i Ci	r Me	3 8a	Ti	6 A	1 Na	K 1	l Ha	Sc	T1 S	Ga Se	Sample
	DDM	DDM	DOT		DDIT	ממס	DDM	% D	om di	DM	a daa	DIT D	DR D	D Inci	מ חס	M DO	m	7	¥ 001	1 DDI	n j	DDm	*	DDM	8 2	8 000	ותמסו	DOM D	ວກ %		om
	FF***	FF	FF.	FF. FF.		FF.			<u> </u>			F 7			<u> </u>	F												F Prove F		FE PEN	<u></u>
17200E 9550N	3	14 4	47	51 < 1	16.7	75	233 2	33 1	.6	.3	1.0	.6	43 <	.1	.1	1 6	3.3	5.02	77 3	32.	1.3	9 43	.137	1 1.4	9 060	.06 < 1	01	29<	1 < 05	5<5	15.0
17200E 9500N	.0	9.6	43	19 < 1	11 8	19	222 1	63 1	1	2	1 4	ŝ	32 <	1	2	1 4	0 2	R OS	$\dot{\mathbf{p}}$	25 4	1 2	3 53	116	213	0 048	06 < 1	01	19<	1 < 05	4 < 5	15 0
17200E 0460W	2.	11 7	A A	56 2 1	12 /	7.7	205 2	10 1	6	· 2	- F	6	12 2	Ť	ີ. ຊ	1 5	и. И т	2 .01	0 2	, 10 , 17.6	c. 	1 2	155	213	A 046	07 < 1	01	2.2 -	1 2 05		15.0
172000 04000		17 1	4,4	57 < 1	10.4	10.2	203 2.	70 1	.0.	. C. 	~.J e	. U 0	40 ~	1	.ບຸ ວ	1 7	н.J. Е.Э	2 .00	.9 Z	. JZ.(J .20	2 00	170	21.0	4 .040 0 0E0		01	6.6 ~	1 - NC	9 4 ~ .3	10.0
17200E 9400N	. 3	1/.1	3.9	5/ 5/	19.7	10.5	200 2.	02 1	.0.	. 2	.0	.0	40 >	.1		1 /	J.J	0.UC	20 2	. 39.	1.0		.170	21.7	9.000		UI	0.2 ~	1 ~.05	5 .5	15.0
1/200E 9350N	.2	12.9	4./	57 <.1	13.8	6.4	191 2.	.03 1	.5	. 2	1.2	.0	39 <	. 1	. 4	1 5	1.3	ζ.υ.	53 d	5 30.0	J . Z	9 54	.135	2 1.5	0.050	.07 <.1	.01	2.5 <	.1 <.05	4 <.5	15.0
17200F 9300N	3	26.6	43	98 < 1	44 R	11.7	1511 2	80 2	7	R	1 4 1	3	75	2	1	1 6	1 6	7 03	0 15	38.3	8 5	1 107	111	328	4 054	07 < 1	03	84	1 < 05	7 < 5	15.0
172005 02508	2	23.7	35	67 - 1	20 A	14 4	633 3	1/1 2	6	5	1 0 1	2	, U 85	1	22	1 6	0 7	n n:		2 /5	7 8	7 77	112	110	1 065	<u> </u>	02	874	1 < 05	5 - 5	7 5
17200C 2230N		10 2	с. с. о	70 - 1	20.0	11 7	1072 2	57 2	.u .	. J A	1.0 1 1 7	7	72	5	· 2 ~	1 6	2 5	7 .00	C	/ 1 0.7	7 6	1 100	072	6 2 6	0 020	12 / 1	02	6.2 ·	1 ~ 05	7 - 5	15 0
17200E 9200N		10.0	3.9	$\frac{10}{51} \times 1$	29.0	12.7	246 2	. JC JC A	.0. .0	. 4	1.7 1.2.1	./	/と フコーン	1	· 4 7	1 0	0.0 K E	, 	0 0	941.7 5 5 7 6	יט. י	+ 100	112	4 2 3	C 020	.12 ~.1	09	5.1 6 1 ~	1 ~ 05	0 / 5.0	15.0
1720VE 9100W	. ა	19.0	4.0	100 - 1	35.0	12.3	340 3.	10 4	. 2	./	1.2 1	.0	// \ F0	. L 4		1 0	0.5	9.04	10 D	02.3	9.7.		.112	4 3.2	0.033	.09 <.1	01	0.1 ~	.1 ~.05	97.5	15.0
1/200E 9100N	.4	19.2	5.1	120 <.1	36.4	14.0	697 3.	10 1	.2	. 3	.9	.9	53	.1	.1	1 5	2.3	3 .11	19 3	\$ 48.	1.5	2 132	.103	33.1	4 .028	.08 <.1	02	5.4	.1 <.05	9 <.5	15.0
17200E 9050N	-3	11.5	39	66 < 1	25 Q	9.0	381-2	03	9	2	< 5	6	39 <	1	1	14	6 2	6 19	4 2	57 4	4 2	3 91	116	120	7 040	05 < 1	02	23<	1 < 05	6 < 5	15.0
17200E 9000N	6	28.4	ΔÑ	70 < 1	53.2	20 8	771 3	84 2	'n	Ă	1 1 1	21	ñ4	1	1 <	1 8	1 7	5 10	19 10	57 9	8 1 3	3 140	116	824	6 064	12 < 1	03	71 <	1 < 05	7 < 5	15 0
17200E 8950N	3	18.0	16	56 < 1	28.2	10 5	444 3	00 <	5	1	1 1 1	0	57 <	1	1	1 7	ก่า	2 0/	15 1	1 43	5 5	1 03	104	222	8 052	07 < 1	01	10<	1 < 05	6<5	15.0
17200E 9000M	 Ľ	10.5	2.0	10 - 1	10.2	14 6	266 2	.00 ·		. u 2	1.1.1	.0	57 ~ ~ 57 ~	1	1 ~	1 7	0.0	1 07	16 1	9 90.0	5 .5	7 67	177	2 2 . 2	0.052	0/ ~	01	2 5 2	1 2 00	5 - 5	15.0
17200E 0000M	.0	10.4	2.7	62 ~ 1	10.0	12 /	E02 2	06 ~	.U.	. <u>c</u>	1.44	./ 0	57 ~ En ~	1	1 2	1 7	0,44 0 10	1 .U	ы с и с	, 0/.0	, , , , , , , , , , , , , , , , , , ,		210	210	6 .007 6 .005	.04 .1	01	2.5 -	1 2 05	5 - 5 - 5	15.0
1/200E 0000M	. ა	21.7	3.0	55 <.1	20.0	12.4	JUZ Z.	.90 ~	.5	. 2	1.2	.0	27 ~	· T	. 1 ~	1 /	0.0	5.04	14 J	0 00.4	.0.	1 37	.219	2 1.0	0.000	.00 \.1	.01	3.0 \	.1 \.05	0 0 ~.0	10.0
17200E 8800N	.3	14.0	5.7	78 <.1	21.8	9.0	296 2.	02 1	.2	. 3	.8	.8	40	.1	.1	1 4	4.2	6.10)8 4	25.8	8.34	5 111	.085	1 2.0	5 .021	.07 <.1	02	2.9 <	.1 <.05	7 <.5	15.0
17200F 8750N	6	15.4	59	78 < 1	23.4	11 1	592 2	49 1	3	3	<.5	9	40	.1	.1	1 6	3 .3	2 .08	15 E	32.4	4 4	4 126	.110	2 2.5	0 016	10 < 1	.02	3.0	1 < .05	8 < 5	15.0
17200E 8700N	4	21.3	4 6	84 < 1	37 4	14 7	309.3	20 2	3	4	1 0 1	1	58	1	1	1 8	1 3	5 13	33 5	44	7 6	5 156	132	4 3 3	1 025	0.9 < 1	01	44<	1 < 05	10 < 5	15.0
17200E 8650N	5	22 A	4.6	120 < 1	27 /	13.0	472 2	81 1	1		P	à	68	1	1	ÎŔ	ς <u>Λ</u>	A 12	12 5	30	2 5	3 126	132	524	3 040	ng < 1	02	30<	1 < 05	8 < 5	15.0
17200E 8600N	۵. ۲	22.7	A 2	77 ~ 1	21.7	15 6	511 3	47 1	6	A .	- 5	ŏ	61	1	1	1 0	2 1	3 1/		15 5	2 7	7 108	150	128	7 041	08 < 1	02	184	1 < 05	0 < 5	15.0
172001. 000014	.5	20.0	4.2	// \.1	91.9	15.0	JII J.	-+/ I	.0	. 4	J		04	. 1	.т.	1 2	2.4		,	- 40.0	.	100	.100	4 2.0		.001	02	4.0 4	.105		13.0
17200E 8550N	.6	23.1	4.3	95 < 1	28.4	14.2	382-3.	13 3	.0	.3	1.9	.7	45 <	.1	.3	1 8	7.3	1.10	0 3	43.8	B.59	9 136	.157	3 2.2	2.043	.09 <.1	03	3.4 <	.1 <.05	7 <.5	15.0
17200F 8500N	4	17.8	5.6	119 < 1	27.0	12.4	321 2	26 1	6	.3	<.5.1	.1	34 <	.1	.1	1 5	0.2	5.22	9 4	31.8	3.42	2 134	.110	3 2.6	6.024	.07 <.1	.03	3.6 <	.1 <.05	9 < 5	15.0
17200F 8450N	6	22.6	4 7	104 < 1	36.7	16.2	499 3	12 3	1	4	< 5 1	n	38	1	2	1 7	3 2	8 25	5 4	41 8	3 6	1 1 26	127	334	0 025	08 < 1	07	44 <	1 < 05	11 < 5	15.0
17200E 8400N	.0	30 4	4 2	64 < 1	36.9	17 1	605 3	26 3	4	Δ.	< 5 1	1	72	1	2 <	1 A	7 5	1 00	15 B	47	5 . 90	114	134	525	6 038	11 < 1	03	59<	1 < 05	7 < 5	15 0
DE 17200E 04000	.0	177	4.1	60 / 1	10.6	10 6	272.2	71 2	.т. Л	3	- 5	Ŕ	18 ~	1	2	1 7	6 7	ч. С.	5 2		5 //	1 96	160	218	2 056	08 < 1		314	1 < 05	6<5	15.0
NE 17200E 3400M	.4	17.7	4.1	55 ~.1	17,0	10.0	612 2.	11 2	.4	. U	J	.0	40 \	. 1	. 2	т,	0.0			4 V. J	J	5 00	,105	2 1.0	2 .030	.00 4.1	.01	0.1 1	.105	00	10.0
17200E 8350N	6	27 0	4 1	62 < 1	37 4	16.2	531.3	31 3	0	4	< 5.1	.2	72 <	1	2 <	1 9	1 4	3 NG	95 7	47 3	386	5 110	128	2 2.2	9 .035	.10 < 1	.01	5.3 <	1 <.05	7 < 5	15.0
17200E 8300N	ιñ	22.5	4 0	62 < 1	36 1	15 1	578 3	06 3	1	۵.	< 5 1	0	55	1	2	า ค	1 4	ាត	19 1	42 0	เม	103	135	323	8 024	13 < 1	03	36<	1 < 05	7 < 5	15.0
17200F 8250N	1.U	76.2	20	85 < 1	31 8	16.0	530 3	54 2	2	Δ :	< 5 1	1	62	1	2	1 0	5 1	7 10	n 4	44	א מ	3 02	121	325	2 027	12 < 1		45<	1 < 05	7 < 5	15 0
17200C 0230R	, 5	20.2	1 1	67 - 1	A1 0	10.0	780 3	24 7	5	.т. Б	J L p 1	. <u>1</u> 6	02 07 ~	1	2 -	1 10	Λ. 4	2 10	10 11	5 A T	1 1 1	5 1 20	162	627	1 02/	12 - 1	02	832	1 < 05	ReF	15.0
17200E 0200R	.7	31.0	≁.1 ⊑ ∩	07 N.I 111 - 1	41.7	12.4	100 3.	6 00. 0 k0	0	. U . A	.01 / 11 /	0.0	יוכ אק	1	· L `.	1 10	v .//	5 11 5 11	10 TT 01	. 30.1	1 1.10 7 7	2 140	122	220	002 5 ภาว	00 2 1	. UC 02	27-	vo	0 ~ 0	15.0
17200E 8150N	.8	21.V	5.V	111 <.ł	30.0	10.1	43/ 3.	24 Z	.У.	.4	~.5 I	. u	4/	.1	. 2	τ /	ს.ქ	a .13	PC 4	37.0	o ./.	5 140	.144	J Z.Ö	J .UZZ	.03 5.1	. UZ	J./ <	.ı ~.05	· > ~.5	19.4
17200E 8100N	.8	19.4	3.6	55 < 1	28.7	18.2	776 3	73 6	.1	.4	<.5	.9	67	.1	.1	1 9	1.5	5.07	1 4	41.3	3.9) 90	,128	3 2.4	1.051	.06 < 1	. 01	4.6 <	.1 <.05	7 <.5	15.0
17200F 8050N	6	32.5	34	64 < 1	38 4	17.6	527 3	68 3	.6	.4	< 5 1	.3	79	.1	.3 <	1 10	0 5	0 0	59 A	50	1 1 0	3 119	.145	3 2.7	0 .032	.12 < 1	.01	5.1 <	.1 <.05	8 < 5	15.0
17200E 8000N	ģ	28.5	6 2	69 < 1	30 5	14 5	635 3	11 3	3	4	ิติเ	1	82	1	2	1 7	9 5	7 11	A DI	37 0	2 A/	137	090	323	8 022	12 < 1	05	47 <	1 < 05	7<5	7 5
17200E 00000	.0	25 /	3.4	51 2 1	20.0	17.9	137 2	95 7	ົດ	Δ.	< 5 1	1	92 ~	1	3 6	1 9	6. G	5 N	17 7	42	R R	2 07	126	419	2 063	14 < 1		50<	1 < 05	6<5	15.0
1720VE 73300	11 C	2J.4	0.4 20 E	142 2	27.0	10.7	701 2	95 0 95 00	0 6	.ч с л	J 1 5 1 7	- 1 1	JL № Л1 С	 	.U \.	1 C	7 0	ς ης	., / 7 10	74.0	, .00 5 E	2 162	. 120	1010	A 174	17 2 4		2 / 1	Q ~ 0E	7//	15.0
31ANDARD 020	11.3	122.0	60.0	140 .2	60.2	10.1	/01 2.	05 20	. 9 0	.5 4	5.1 J	<u>. L</u>	41 D	. 5 3	.5 4	3 3	v .o	.0/	/ 13	, Tàt'(<u>ہ</u> ج. پ	103	.003	10 1.9	+ .0/4	.1/ 3.0	. 23	9.4 <u>1</u>	.0 ~.05	, , 4,4	10.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

ł

Almaden Minerals Ltd. PROJECT NR05-2 FILE # A505953

Page 5

Data_/_FA

													· · · · · ·																		~		7000, 1110AL	
SAMP! F#	Mo	Cu	Pb	Zn	Aa	Ni	Co	Мn	Fe	As	U	Au	Ծի	Sr	Cđ	Sb	Bi	٧	Са	Р	La	Cr	Μα	Ba	Ŧi	B Al	Na	ĸ	W Ha	Sc. T	1 5	Ga Se (Sample	-
	DDM	חמת	יייי	ם תממ	ו החת	DDM	חתמ	DDm	x	000	nom	npb	DDM	DOM	DOM	DOM	DDM	DOM	x	2	non	ทุกศา	ĩ	DDa	- X I	x moo	X	2 Dr	תמם הא				nm nm	
 	P.P	FF	PP	FF F			FF	FF		PP	PP		P P		FF						PP											bhu bhu		
17200F 7900N	3	23.0	4 4	78 <	: 1 1	7 1 1	2.6	750 3	2 23	10.9	25	8	15	107	1	1	1	54 1	08	106	7	21.7	1 09	431	082	3 2 03	n14	10	1 05	48<	1 < 05	8 < 5	15.0	
17200E 7850N	2	21.2	3 5	51	1 1	17	07	633 3	2 06	8.6	22	< 5	7	104	1	1	1	52	96	181	10	17.6	81	505	078	4 2 27	011	na <	1 04	334		10 < 5	15.0	
17200E 7000M	. 2	£1.2	5.5	26 2	. 1 .	6.2 6.3	<i>3.1</i>	127	1.00	16	1 0	~.5	. '	16	- 1	. L T	. 1	32	.00	1/7	10	12.0	.01	100	076	~1 1 17	012	03 ~	1 07	142		10 ~.0 6 < E	10.0	
1/200E /000M		0.0	5.1		. 1	0.2	4.0	107 .	1.30	4.0	1.0	.0	.0	10	~ 1	.1	.1	20	. 11	147	2	12.0	. 22	100	070	2 1 12	012	.03 ~.	1 .04	192		0 ~ .5	15.0	
KE 17200E 7800N	. 2	10.0	5.4	 		D./	4.0	135 3	1.34	4.0	1.0	. 5	./	10 1	<u>, 1</u>	.1	1.	32	.11	.140	2	11.9	. 22	90	.075	2 1.13	.012	.03 <.	1 .01	1.3 5.	1 ~ 05	0 5.0	15.0	
17400E 10000N	.3	15.4	5.0	/8 <	L JI	0.41	0.0	405 4	2.91	2.1	.4	. 9	.0	30	. 1	. 1	. 1	00	. 31	.08/	3	34.4	.42	120	. 120	1 3.3/	.UZO	.05 <.	1.03	5.0 <.	1 <.05	9 <.5	15.0	
134005 00504				<i>c</i> .			~ ~			~ ~	~	~		~~			1	70		051	-	40.0	~~	107	1.40	1 4 60	000	۵ <i>۲</i> -	1 00					
17400E 9950N	્ય	22.4	5.2	50 <	. 1 4	2.1 1	.8.3	3/9	3.44	2.3	.5	.5	1.4	62	-1	. Ł	.1	18	. 32	.051		48.2	.90	18/	. 143	1 4.82	.032	.06 <.	1.03	6.0 <.	1 <.05	11 <.5	15.0	
17400£ 9900N	.3	23.3	4.1	5/ <	.13	3.01	.0.4	370 2	2.91	8.9	2.3	1.0	1.3	83	. 1	.1	.1	62	. 84	.050	14	42.7	.88	101	. 105	2 2.64	.052	.08 <.	1.03	9.8 <.	1 <.05	/ <.5	7.5	
17400E 9850N	.2	9.1	2.9	58 <	:11	7.2	8.7	472 2	2.25	<.5	.2	<.5	.7	35	<.1	<.1	.1	51	. 26	032	2	26.7	.56	61	.149	1 1.46	.049	.05 <.	1.01	3.0 <.	1 <.05	4 <.5	15.0	
17400E 9800N	.2	12.5	3.1	43 <	:.1 1	5.1	9.1	388 2	2.10	.5	.2	. 8	.5	38 -	<.1	<.1 •	<.1	56	.26	.016	2	32.7	. 38	53	. 137	1.91	.053	.05 <.	1.01	3.0 <.	1 <.05	3 <.5	15.0	
17400E 9750N	.3	16.0	4.2	47 <	:12	3.5 1	.2.7	492 3	3.13	1.2	.4	<.5	1.3	48	.1	.1	.1	61	. 38	.022	7	35.8	.42	79	. 148	21.27	. 050	.11 <.	1 .01	6.7 <.	1 <.05	4 <.5	15.0	
17400E 9700N	.4	17.1	4.1	53 <	:12	6.01	0.2	364 2	2.78	. 9	.3	1.0	1.1	57	. 1	.1 •	<.1	76	. 35	. 057	3	40.1	.56	87	. 181	1 2.13	.051	.08 <.	1 .01	4.4 <.	1 <.05	6 < 5	15.0	
17400E 9650N	,3	18.2	4.3	55 <	: 1 2	0.61	0.1	317 2	2.95	1.1	.4	1.2	1.2	54	<.1	. 1	.1	87	. 34	029	3	39.1	.51	60	. 205	1 1.49	. 055	.07 <.	1.01	4.6 <.	1 <.05	5 < .5	15.0	
17400E 9600N	.2	12.3	5.0	47 <	11	5.3	6.6	231 2	2.01	.7	.2	.5	.6	40	<.1	.1	.1	50	.28	031	4	28.5	.33	70	.137	1 1.36	.037	.07 <.	1.01	2.6 <.	1 <.05	4 <.5	15.0	
17400E 9550N	.3	23.9	4.2	72 <	1 2	8.8 1	3.1	490 (3.21	1.0	.3	.5	1.0	55	.1 .	<.1	.1	71	.35	058	2	43.1	.80	92	. 165	1 2.19	.034	.12 <.	1.02	5.3 <.	1 <.05	6 < .5	15.0	
17400E 9500N	3	18.3	4.6	71 <	1 2	3.1.1	0.4	371 2	2.64	.7	.2	.6	.7	47 ·	<.1	<.1	.1	58	.34	.081	2	37.5	.53	79	173	1 1.82	046	.14 <.	1.02	3.6 <	1 < 05	5 < 5	15.0	
	• -				•= -						. –						. –				_													
17400E 9450N	.3	22.3	4.6	59 <	1 2	5.31	2.8	413 3	3.03	.8	.3	.8	.8	59 ·	<.1	.1	.1	73	. 39	081	2	40.0	.67	65	. 196	1 1.93	.049	.11 <.	1.02	4.1 <.	1 <.05	5 <.5	15.0	
17400F 9400N	4	17.3	4.7	63 <	1 2	5.3.1	0.3	348 2	2.80	1.0	.3	.6	1.0	49	.1	.1	.1	77	.31	072	3	39.2	.47	109	175	1 1.85	.034	.07 <.	1.01	3.3 <	1 < 05	5 < 5	15.0	
17400F 9350N	4	16.6	51	65 <	1 2	67	9.8	387 2	2 65	12	3	7	9	51	1	1	.1	73	30	083	3	38.3	41	100	174	1 1 93	035	08 <	1 01	32 <	1 < 05	5 < 5	15.0	
17400F 9300N	ι, Γ	25.3	5 2	78 <	1 4	3 4 1	7.6	696 3	3 25	9	5	5.6	11	97	2	1	1	66	73	104	6	41 7	1 11	104	099	3 2 47	033	13 <	1 06	58<	1 < 05	6 < 5	7 5	
17400E 9250N	2	29.6	47	69 <	1 2	4 0 1	1.8	442 3	3 23	< 5	4	11	1 0	85	< 1 •	< 1	1	57	43	052	5	32.3	59	80	177	1 1 72	046	11 <	1 01	57<	1 < 05	5 < 5	15 0	
		20.0					1.0				•••	2		**	. –			•.			*							• •						
17400F 9200N	4	31 1	44	54 <	1 4	R 0 2	0 4	615 3	8.83	7	5	11	13	85	1.	< 1 •	< 1	72	67	075	10	40 0 ¹	1 75	48	166	2 2 24	038	12 <	1 02	79<	1 < 05	7 < 5	75	
17400F 9150N	2	28.0	43	60 <	1 3	671	3.6	634 3	3 25	8	3	6	1 1	96	1.	< 1	1	68	47	060	6	46 4	87	95	159	2 2 04	043	22 <	1 02	61	1 < 05	6 < 5	15 0	
17400E 9100N		24 9	4.3	71 <	1 40	991	7.8	449 3	3 58	, v		5	12	Δ7	1	1.	< 1	87	29	147	š	57 1	84	125	216	1 3 65	024	Π7 <	1 02	44<	1 < 05	9 < 5	15.0	
17/00E 0050N	3	18 0	3.2	86 2	1 2	5 1 1	12	703 3	2 16	. 7	· 7		1.2	16	1.	c 1 .	c 1	87	22	057	Š	78.0	-06	61	202	2165	022	. ng <	1 01	10<	1 < 05	5 < 5	15.0	
174002 30300	.0	10.0	17	60 ~	. 1 24	5 0 1	10	601 3	2 20	1 1	. О Л	5.6	1 4	56	1	1	1	64	75	160	a a	36.2	54	112	142	1 2 22	024	12 ~	1 01	512		7 < 5	15.0	
11-1000 30000		10.4	4.7	03 1		0.01	1.0	001 2		1.7	. 7	5.0	1.7	00		. 1	• 1	~	.00	105	U	00.2		102	172	4 E.00		. 10	1 .01	J.I -,	105	/	10.0	
17400F 8950N	з	25.5	12	6A <	1 24	กตา	53	813.1	2.0.2	1 8	я	< 5	12	99	1	1	1	71	82	063	13	42 2	73	177	071	7 1 60	n27	N7 <	1 02	794	1 < 15	5 < 5	15 0	
17400C 09300	.5	20.0	4.2	77 ~	1 /	2 2 1	70	641 3	2 20	1 1	.0	5	1.2	00.	~ 1	1	1	Q1	102	1/17	10	76.1	00	121	205	1 2 75	046	07 ~	1 02	20-		7 < 5	15.0	
17400C 0500M		20.7	4.2	66 2	1 1	0.21	1.7 5 3	EUC 3	2.52	1 1	. U A	.0	1 6	03	~. <u>1</u>	.1	1	on	.40	110	7	12 2	. 30	167	197	2 2 1 5	070		1 02	5.5 -		0 - E	15.0	
174000 00000	.5	12 0	5.7	- 00 N	1 1	0.2 I 7 7	0.0	401 1	3.02	1.4	. 4	.J 2 E	1.0	24 CC .	- 1	. 1	1	60 64	. 32.	046	Å	27 /	20	120	147	2 2 01	025	.00 ~.	1 02	202		6 4 5	15.0	
174000 00000	. כ.	10.4	0.9	02 ~	1 2	(.) () () ()	9.1	491 4	2.00	.0	. उ ४	N.0 C	1.0	20	~.1 1	. L 1	.1 1	04	. JC.	040	4	42 0	.00	149	. 14/	2 1 01	.023	.05 .	1 02	3.0 ~.		0 \.0	15.0	
1/400E 0/50N	. 3	19.4	5.5	110 <	L Z	2.01	1.4	400 .	0.20	1.0	.4	.0	1.2	79	- 1	.1	. 1	93	.29	.v;;4	D	49.2	. 30	1/2	. 101	9 T.01	.01/	.00 <,	1.01	3.3 <.	1 2.05	0 \.0	12.0	
174005 07000	2	21.2	6 1	on ~	י רי		02	471	2 04	1 /	٨	ρ	1 1	40	1	1	1	۵ń	27	041	7	51 2	40	1/6	215	2 1 97	022	05 <	1 01	27/	1 < 06	6 c 6	15 0	
17400E 0700N	. 3	47.0	0.1	0U <	. 1 2	5.41 c11	.V.Z	4/1 v 11/0 /	J.V4	1.4	.4	.0	1.4 1 E	49	. 1	.1	. 1	50 21 1	.21	0EE	67	JL.Z	.40	140	.C13	31.0/	.023	.05 <.	1 01	3./ <.	L N.UD	0 ~ . O 0 ~ r	10.U	
17400E BCORN	.ა	47.0	5.0	74 <	.144	4 U 1	.J.Z.	1145 Z 100 '	2.30	1.2	2.9	1.1	1.3	133	۲. ۲	.1	1.	01 1		023	0/	41.2	.04	107	174	33.23	.022	.vo <.	1 .03	14.0 -	1 ~ 00	0 ~ . 5	7.J	
17400E 8600N	د.	21.2	4./	/8 <	.1 2	4.8 I 0 0 1	1.5	503 0	5.13	1.2	.5	<u>о</u> .	1.2	8/	.1	.1	. L 1	00	.4/	V24	ð	41.0	.00	10/	140	3 1.00	.041	. U/ <.	1 .02	0.0 <.	1 5.05	55.5	12.0	
1/400E 8550N		21.5	5.4	/U <	. 1 43	2.81	3.3	621 2	2.94	1./	.4	./	.9	64 40	.1	.1	.1	72	.55	091	5	45.2	- 59	221	. 142	3 Z./1	.022	.10 <.	1.02	3.5 <.	1 5.05	9 <.5	15.0	
STANDARU US6	11.5	124.3	29.5	145	.3 2	4./1	<u>.v./</u>	69/ 2	2.82	21.1	b./	46.0	3.0	40	Б. 0 -	3.5 !	5.0	5/	.85	.0//	14 .	187.2	.58	164	.081	17 1.90	.0/2	.15 3.	5 .23	3.31.	⊎ <.U5	<u> </u>	15.0	-
											-																							

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALYTICAL											· ··																			ACH	E ANALYTICAL	
SAMPLE#	Mo	Cu	Pb	Zn	la Ni	Co	Mn	Fe	As	U	Au Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mq	Ba	Ti	B A	Na	K W Ha	Sc	: T1	S	Ga Se S	Samole	-
	ppm	ppm	ppm	ppm pp	nī ppa	ı ppm	ppm	X	ppm pg	m	ppb ppm	ppm	ррт	ppm p	pm p	opm	2	វរ	opm	ррт	ž	ppm	2	ppm ;	5 2	% ppm ppm	ррп	пррил	x	ppm ppm	gm	
17400E 8500N 17400E 8450N 17400E 8450N 17400E 8400N 17400E 8350N	1.7 1.2 4.4 4.2	32.0 23.9 17.8 38.0	4.3 5.3 4.4 3.2	72 < 85 < 42 < 52 <	1 45.9 1 32.9 1 21.5 1 37.4	16.3 13.3 12.3 18.1	463 994 1007 606	3.78 3.02 3.39 4.08	2.6 1.7 2.8 2.8	.6 .4 .3 .8	<.5 1.8 <.5 .9 <.5 .7 <.5 2.5	81 64 26 55	.1 .2 .1 <.1	.2 .1 .5 .3	.1 .1 .1	92 . 17 . 17 . 92 .	43 . 47 . 30 . 41 .	063 068 054 070	12 5 6 14	52.1 40.9 23.1 40.8	1.05 .63 .48 1.15	331 252 118 164	.108 .120 .065 .101	1 3.6 2 2.6 1 1.7 1 2.6	017 016 008 008	.07 <.1 .02 .06 <.1 .03 .04 <.1 .05 .07 <.1 .02	6.6 3.9 5.0	5 <.1 < 5 <.1 <) <.1 <	<.05 <.05 <.05 <.05	9 < 5 7 < 5 7 < 5 7 < 5 7 < 5	15.0 15.0 15.0 7.5	
17400E 8300N	2.2	20.1	5.4	58 <	1 26.2	14.0	959	3.10	2.3	4	1.6 .9	31	.1	.2	.1	68 .	24 .	081	5	28.3	.49	121	.093	2 2.58	.012	.06 < 1 .05	3.8	3 <.1 <	. 05	8 < 5	15.0	
17400E 8250N 17400E 8200N 17400E 8150N 17400E 8100N 17400E 8100N 17400E 8050N	1.7 4.9 1.1 1.3 .5	18.0 28.8 26.2 32.6 25.7	4.3 3.5 4.4 3.5 3.1	53 < 52 < 58 < 61 < 55 <	1 29.3 1 32.3 1 32.2 1 35.3 1 32.8	11.8 15.1 14.8 14.4 13.1	586 562 642 496 458	2.69 3.62 3.63 3.57 3.25	1.9 3.2 1.9 2.4 2.3	.3 .6 .4 .5	<.5 .9 <.5 1.6 <.5 1.6 <.5 1.6 <.5 1.3	44 72 81 79 86	.1 <.1 <.1 .1 <.1	.2 .3 .2 .2 <	.1 .1 .1 1 .1 1	68 . 93 . 111 . 100 . 98 .	29 . 48 . 46 . 41 . 49 .	103 075 048 069 046	4 10 6 7 6	30.9 36.1 43.9 43.5 45.1	. 50 . 80 . 87 . 89 . 94	111 111 115 149 131	.104 .094 .143 .140 .156	1 2.4 2 2.1 2 2.3 1 2.6 2 1.9	3 .015 3 .017 3 .022 5 .023 4 .039	.07 <.1 .03 .08 <.1 .04 .10 <.1 .02 .09 <.1 .01 .06 <.1 .01	3.3 8.6 5.6 5.8 6.4	8 <.1 < 5 <.1 < 5 <.1 < 8 <.1 < 4 <.1 <	<.05 <.05 <.05 <.05 <.05	7 <,5 6 <.5 6 <.5 7 <.5 6 <.5	15.0 15.0 15.0 15.0 15.0	
17400E 8000N 17400E 7950N 17400E 7900N 17400E 7850N 17400E 7850N 17400E 7800N	.4 .3 .4 .5	19.6 32.1 19.4 19.7 23.6	4.4 3.6 4.7 4.9 4.1	52 < 54 < 53 < 93 < 60 <	1 28.4 1 42.6 1 26.4 1 27.7 1 33.1	11.1 16.6 9.6 13.5 13.8	330 573 297 339 474	2.77 3.58 2.30 2.88 3.27	1.3 2.5 1.3 1.9 2.0	.3 .6 .4 .4	<.5 .8 1.4 2.0 <.5 .8 <.5 1.0 <.5 1.1	82 110 73 52 72	<.1 .1 <.1 <.1	.1 .2 < .2 .1	.1 .1 .1 .1	80 . 96 . 59 . 73 . 95 .	42 . 66 . 51 . 30 . 36 .	063 083 032 134 073	5 13 8 4 5	39.1 49.7 32.7 35.5 41.6	.67 1.24 .72 .65 .79	141 119 93 112 108	.157 .148 .128 .127 .145	1 2.1 2 2.4 1 1.7 2 2.2 2 2.7	5 .030 3 .045 5 .044 4 .027 9 .025	.06 <.1 .01 .07 <.1 .01 .04 <.1 .02 .05 <.1 .01 .07 <.1 .01	3,3 9,6 5,2 3,7 4,3	8 <.1 < 5 <.1 < 2 <.1 < 7 <.1 < 8 <.1 <	<.05 <.05 <.05 <.05 <.05	6 < 5 6 < 5 5 < 5 7 < 5 7 < 5	15.0 7.5 15.0 15.0 15.0	
17600E 10000N 17600E 9950N 17600E 9900N 17600E 9850N 17600E 9850N	.3 .2 .2 .4	9.2 15.3 12.5 14.0 17.4	3.3 5.9 6.0 4.7 5.7	54 <. 85 < 57 <. 57 <. 64 <.	1 17.6 1 35.1 1 21.3 1 21.1 1 28.9	7.7 11.3 9.5 11.7 12.1	317 144 327 481 409	2.06 2.27 2.19 2.78 2.58	2.3 1.2 <.5 <.5 1.2	.2 .3 .3 .3	<.5 .7 <.5 1.2 <.5 .7 <.5 .8 <.5 1.1	22 32 51 57 41	<.1 <.1 .1 .1 .1	<.1 <.1 <.1 .1 <.1	.1 .1 .1 .1	25 . 51 . 53 . 77 . 54 .	15 . 18 . 28 . 41 . 21 .	091 200 034 027 094	2 3 3 3 3	27.4 29.5 29.2 31.1 32.9	.20 .42 .39 .56 .51	82 121 94 61 110	.095 .131 .168 .176 .130	<1 1.50 1 4.00 <1 2.82 1 2.25 1 3.42	5 .022 .021 2 .031 5 .064 2 .023	.04 <.1 .01 .04 <.1 .02 .04 <.1 .02 .04 <.1 .02 .04 <.1 .01 .05 <.1 .03	2.9 3.4 2.8 3.5 3.2) <.1 < 1 <.1 < 3 <.1 < 5 <.1 < 2 <.1 <	<.05 <.05 <.05 <.05 <.05	6 <.5 10 <.5 7 <.5 6 <.5 9 <.5	15.0 15.0 15.0 15.0 15.0	
17600E 9750N 17600E 9700N 17600E 9650N 17600E 9600N 17600E 9550N	.4 .3 .2 .2	17.3 16.9 18.4 17.1 32.3	4.4 5.1 4.3 4.9 5.9	68 <. 73 <. 63 <. 63 <. 81 <.	1 41.7 1 54.7 1 40.1 1 30.5 1 65.4	16.5 21.7 18.2 13.5 22.2	731 1169 783 661 840	2.67 3.45 3.42 2.67 3.30	.7 .6 .7 .7 .5	.3 .4 .5 .4	.9 .9 <.5 .8 .6 1.5 .7 1.1 1.1 1.6	42 63 83 71 103	<.1 .1 .1 .1	<.1 .1 < .1 <.1	.1 .1 .1 .1	60 . 90 . 86 . 52 . 84 .	26 . 62 . 48 . 30 . 57 .	172 117 054 078 077	2 9 11 4 9	34.6 52.0 55.4 29.2 36.7	.79 1.83 1.06 .58 1.64	91 55 99 121 90	.115 .091 .130 .117 .123	1 3.27 1 2.19 1 3.07 <1 3.12 1 2.24	.035 .070 .048 .034 .034	.05 <.1 .02 .05 <.1 .01 .05 <.1 .01 .05 <.1 .01 .05 <.1 .01 .10 <.1 .01	3.0 6.1 11.0 3.6 9.7) <.1 < . <.1 <) <.1 < } <.1 < } <.1 <	:.05 :.05 :.05 :.05 :.05	9 < 5 5 < 5 7 < 5 8 < 5 6 < 5	15.0 15.0 15.0 15.0 15.0	
17600E 9500N 17600E 9450N RE 17600E 9700N 17600E 9400N 17600E 9350N	.2 .2 .3 .2 .3	22.0 18.6 16.2 34.5 37.6	4.2 4.4 5.1 4.6 3.7	65 <. 47 <. 71 <. 64 <. 57 <.	1 58.€ 1 32.3 1 51.9 1 47.6 1 49.5	21.2 13.2 20.9 20.1 19.3	648 436 1127 765 678	3.76 2.92 3.32 3.80 3.56	<.5 .6 .5 <.5 <.5	.4 .3 .4 4 .5 .5	.7 1.4 1.1 1.2 7.5 .8 1.7 1.4 2.0 1.4	67 73 60 60 75	.1 .1 .2 .1	<.1 < .1 < .1 < <.1 .1 <	.1 1 .1 .1 .1 .1	.02 . 83 . 84 . 85 . 88 .	50 . 40 . 58 . 54 . 64 .	049 035 116 045 055	8 6 9 9 11	51.7 43.2 49.2 40.1 39.0	1.42 .86 1.77 1.39 1.60	69 75 52 51 46	.123 .145 .085 .211 .206	1 2.20 2 1.57 1 2.12 1 2.03 1 1.84	0.058 0.058 0.067 0.045 0.045	.07 < 1 .01 .11 < 1 .01 .04 < 1 .01 .11 < .1<.01 .13 < .1 .01	10.1 7.0 6.0 10.6 7.8	<pre><.1 < .1 <</pre>	<.05<.05<.05<.05<.05<.05<.05	6 < 5 4 < 5 6 < 5 6 < 5 5 < 5	15.0 15.0 15.0 15.0 15.0	
17600E 9300N 17600E 9250N 17600E 9200N 17600E 9150N STANDARD DS6	.2 .3 .4 .2 11.5	31.7 52.5 38.3 30.2 122.9	4.4 2.6 3.3 4.6 28.7	65 < 62 < 60 < 106 < 142	1 50.7 1 63.9 1 61.9 1 40.2 2 24.7	22.1 25.6 22.5 18.7 10.8	611 755 560 756 702	3.44 4.17 3.67 3.48 2.82	<.5 <.5 <.5 .7 20.8 6	.4 .3 .3 .5 4	1.5 1.4 1.5 .9 1.6 1.1 .7 .7 9.7 2.9	85 62 58 63 39	.1 .1 .1 .1 5.9	.1 <.1 < <.1 < <.1 3.5 4	.1 .1 .1 .9	87 07 87 77 55	51 . 66 . 77 . 38 . 85 .	056 059 080 072 077	8 6 8 3 13 1	41.4 48.3 41.4 39.1 .89.0	1.49 2.03 2.25 1.12 .58	62 30 32 109 162	.138 .240 .185 .188 .078	2 1.7 1 1.59 1 1.59 1 2.22 17 1.89	3 .061 9 .082 9 .068 2 .054 3 .072	.09 <.1<.01 .06 < .1<.01 .09 < 1 .01 .06 < .1 .01 .06 < .1 .01 .15 3.6 .22	7.6 5.0 5.7 3.7 3.2	5 <.1 <) .1 < / .1 < / .1 < ? .1 < ? .1 <	<.05 <.05 <.05 <.05 <.05	6 < 5 5 < 5 5 < 5 7 < 5 6 4 4	15.0 15.0 15.0 15.0 15.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_ / FA

Page 7

AUME ANALYTILAL								· · · · .														·····													AUNE	ANALYTICAL	
SAMPLE#	Mo	Cu	Pb	Zn	Aq	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	- Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ba	Ti	в	A]	Na	K	WH	a	Sc	T1	s Ga Si	- San	mle	-
· · - ·	ppm	ppm	ppnt	ppm r	opai	ppm	ррп	ppm	2	ppm p	рт	ppb	р п	ppm	ррт	ppm	ррт	ppm	2	2	ppm	ppm	ž	ppm	*	ppm	*	*	X ()	og ng	m,	ngc	moc	אממ האמם לא	n		
					··															-	<u> </u>								·				<u> </u>				
1760DE 9100N	.2	16.6	3.6	S5 <	<.1 2	2.1	10.9	279 2	2.54	<.5	.3	<.5	.8	71	<.1	<.1	.1	48	. 38	.039	3	31.4	. 70	53	.162	11	44	.054	.11 <	.1.0	1 4	4.0 <	<.1<.0	5 4 < .!	51	l5.0	
17600E 9050N	.2	29.7	7.0	80 <	<.14	9.5 3	24.4	774 (3.78	.5	.4	.6	1.3	70	.1	.1	.1	69	.61	.064	8	30.1	1.58	50	.163	21	65	.047	.27 <	.1 .0	3 2	7.3	.1<.0	56<.	5 1	15.0	
17600E 9000N	.2	19.3	3.8	47 <	<.1.1	5.7	8.4	333 2	2.10	<.5	.1	1.0	.7	74	<.1	<.1	<.1	51	. 30	. 026	3	43.5	. 27	61	.178	11	11	.054	.06 <	.1.0	1 3	2.1 <	<.1<.0	5 4 <.!	51	L5.0	
17600E 8950N	.2	23.4	49	75 <	<.1 2	1.5	9.0	393 2	2.92	<.5	.3	1.0	1.2	72	.1	.1	.1	58	.42	.046	4	40.6	. 46	83	.190	21.	63	.045	.13 <	.1 .0	1 4	4.4 <	<.1<.0	5 5 <.5	51	L5.0	
17600E 8900N	.3	26.3	3.8	63 <	<.1 5	6.2 2	20.5	686 3	3.85	<.5	.4	.5	1.8	97	. 1	.1	<.1	84	.57	.050	13	45.1	1.24	105	.127	41	96	.053	.14 <	.1.0	1 8	8.0 <	<.1<.0	5 6 <.!	5 1	15.0	
										_	_				_		-																				
17600E 8850N	.3	29.4	4.8	80 -	<.16	0.5	22.0	843 4	4.65	<.5	.5	1.5	2.4	63	.1	.1	.1	88	1.06	.050	19	53.7	. 86	179	.057	9 2	.47	.030	.13 <	.1.0	1 13	2.5	.1<.0	5 7 <.	51	15.0	
17600E 8800N	.3	22.9	6.3	64 <	<.16	4.2 2	29.4	629 4	4.82	5.4	.6	1.0	1.7	129	<.1	.4	.1	54	.78	.064	17	41.2	1.34	148	.015	93	.58	.016	.15 <	.1<.0	1 1	1.2	.1<.0	58<.	5 1	15.0	
17600E 8750N	.3	13.8	3.0	110 <	<16	2.4 2	24.6	639 4	1.22	.6	.2	<.5	.7	75	.1	.1	.1	60	.57	. 087	5	43.4	1.83	112	.074	24	18	,020	.11 <	.1.0	2 !	5.9 <	<.1<,0	5 10 <.5	5]	15.0	
17600E 8700N	.3	10.8	3.1	52 -	<.1 2	6.7	10.5	275 2	2.70	.7	.2	.6	,7	50	<.1	.1	.1	66	. 30	.061	2	46.5	.48	81	.112	12	.31	.031	.06 <	.1.0	1 3	3.2 <	<.1<.0	5 5 <,	5 1	15.0	
17600E 8650N	.4	16.4	5.3	64 <	<.1 2	3.8	10.7	454 3	3.16	<.5	.2	1.2	1.2	61	<.1	.1	.1	77	. 34	.047	4	45.9	. 38	114	.180	22	.01	.032	.09 <	.1.0	1	3.2 <	<.1<.0	5 6 <.:	51	15.0	
170005 00000	-	15 5	<i>с</i> 0	c 0		~ ~		001 /	0	F	2				- 1			~	-01	050		47 4	40		1 47			0.00	05			• •	- 1 - 0				
17600E 8600N	.3	15.6	5.3	68 *	< 1 Z	0.0	9.7	291 2	2.79	.5	.3	<.5. 	1.1 	54	<.1	.1	.1	68	.31	.058	4	42.4	.40	96	.14/	22	. 80.	.032	.05 <	.1.0	1 1	2.9 <	<.1<.0	5 6 < .!		15.0	
17600E 8550N	.4	10.8	5.5	82 <	<.1 3	8.3	12.9	344 .	5.10	1.0	.3	<.5	1.5	00	1.	.1	.1	64	.40	.270	4	42.5	.48	104	.107	23	.07	.019	.1/ <	.1.0	2 4	4.2 °	<.1<.U	5 8<.		15.0	
17600E 8500N	.3	26.9	5.5	11 <	<.1.3	9.3	17.3	/18 3	3.72	./	./	.0	1./	104	.1	.1	.1	8/	.63	.U/1	1/	49.3	. 92	103	.15/	32	. 18 .	.052	.09 <	.1.0	1.	/.2 <	<.1<.0	5 / <.:	53	15.0	
1/600E 8450N	.4	19.3	5.2	5/ *	<13	3.9.	14.Z	360 0	3.23	1.0	.5	1.6	1.4	68	<.1	.1	.1	/8	.45	.143	5	48.9	.61	98	.130	22	85.	.039	.08 <	.1.0	2 4	4.7 <	<.1<.0	5 8<.	5]	15.0	
17600E 8400N	.7	23.2	3.8	50 <	< 1 4	0.7 :	16.8	828 3	3.32	1.3 1	.8	<.5	1.7	97	<.1	. Ł	< 1	100	.64	.080	13	49.0	1.16	96	.165	21	.94	.056	.08 <	.1.0	1	7.9	.1<.0	5 6 <.	5]	15.0	
176005 8350N	5	00.3	47	63	1 3	07	16 6	561 4	2 24	17	6	5	1 7	80	з	1	1	03	54	104	٥	15 2	1 06	173	150	12	Q 1	024	00 -	1 0	2 /	62.	< 1~ 0	= 0 / 1	- 1		
17600E 0330N	.5	26 5	2.0	10.	.10	02	7 6	505 1	1 70	1.7	.0 А	1.6	1.5	42	.1	1	1	46	- 20	034	6	2/ 8	1.00	164	.105	12	10	024	.00 ~	1 0	1 1	262	~ 1~ 0	5 0 N.	. 1	10.0	
176000 92500	.0	50.J	5.9 5.0	57 4	-12	5.0 00'	11 0	172 2	2 70	1 2	.0	2.0 2.6	ι, ι ή	64	- 1	.1	1	70	-25	010	6	11 0	72	112	167	12	12	024	~ 00.	1 N	2	3.U M 1 2 2	< 1< 0	5 0 5.3		15.V 15 0	
170000 02000		750	2.0	5/ 5	- 1 2	20.0	11.9	536 1	2.72	2.0	.7	>.0. ∕ ⊑ '	1.0	72	`.⊥ 1	. 1	1	00	.00	040	o o	91.7 20 E	.72	112	116	7 2	10 . 24	0.04	, UD > >	v 1 0	2 '	4.6 ~	<1.03	コーファン コーファン		10.U 7 E	
17600E 0200N	.3	22.7	3.9	40	- 1 2	0.0.	10 1	167 4	2.02	1 6	., E	~.5	1 0	60	- 1	.1	1	76	.55	034	7	20.3	.00	140	170	22	04 .	040	.00 ~	1.0	2	1.0 -	<. L . 01	2 / N.S) . 1	7.3	
TAOANE OTONA	.4	24.4	4.0	49 *	- I Z	1.7 .	16.1	407 4	\$.71	1.5	, 5	.0	1.0	co	\.1	• 1	.1	70	.40	.025		35.9	.03	140	.1/0	٤ ٢.	01	.040	.05 <	.1.0	<u> </u>	4.7 ~	·. I · . U:	o o .:	2 1	15.0	
17600F 8100N	4	25.5	3.8	62 <	< 1.3	28	13.2	489	3 20	17	3	1.0	13	79	< 1	2	1	87	48	088	5	43.5	83	111	164	12	23	035	15 <	1 0	2 1	54 <	< 1< 0	5 6 < ¹	5 1	15.0	
17600E 8050N	3	18 3	4 5	63 <	13	59	11 7	331 3	3 05	12	3	7	11	64	< 1	1	1	81	36	122	4	39.5	65	111	164	12	77	031	08 <	1 0	2	4 / 1 <	< 1< 0	5 7 <	5 1	15 0	
17600E 8000N	4	26 1	31	50 <	:13	13	14.3	389 3	3 07	19	5	< 5	13	Ã6	1	2	< 1	84	53	083	8	42.8	90	111	150	21	95	050	10 <	1 0	2 1	55<	< 1< 0	5 6 < 9	5 1	15 0	
17600E 7950N	4	21 4	3 0	59 4	1 3	5 1	14 1	340 3	2 21	1 7	Δ	< 5	13	74	< 1	1	< 1	87	42	139	5	43 5	78	100	354	22	67	641	<u> </u>	1 0	2 0	с. 5 б <	< 1< 1	5 7 < 1	5 1	5 0	
17600E 7900N	5	20 1	10	67	13	0 A	12 5	312 3	2 07	21	4	< 5	1 3	59	1	1	1	71	46	252	6	41 n	70	112	113	23	64	026	<u>08 <</u>	1 0	4	1 G <	< 1< 0	5 9 <	5 1	15 0	
110005 12001	.0	20.1	7.2	0,	.1 0	9. 7 .	10.0	VIC 0		4. · 4.	,					• 1				.202	Ŭ	11.0		110		20						*					
17600E 7850N	.5	25.4	4.3	67 <	< 1.4	2.8	15.1	365 3	3.63	2.1	.5	.7	1.8	60	.1	.2	.1	89	.27	.135	7	49.8	.80	186	.137	23.	94	025	.09 <	.1.0	4 (5.1 <	<.1<.0	5 10 <.8	5 1	15.0	
17600E 7800N	5	19.6	4 5	72 .	< <u>1</u> 3	81	14 4	480 (3 29	20	4	< 5	1 2	62	ī	2	1	86	36	164	4	42.9	77	156	144	13	27	025	07 <	1 0	2	3 9 4	< 1< 0	5 9 <	5 1	15.0	
17800E 10000N	ă	11 1	24	Δ4 -	(12	3.6	7 2	223	2 14	7	2	7	7	66	1	< 1	1	57	49	042	3	36.0	51	98	148	12	03	058	09 <	1 0	2	3.3 <	< 1< 0	5 5 <	5 1	5 0	
17800E 9950N		21 0	1 0	76	1 3	2 n -	12.1	863 3	76		4	< 5	11	86	1	< 1	1	72	65	053	12	39.3	04	83	163	1 1	96	061	ng <	1 0	4	6.4 <	< 1< 0	5 5 < 1	5	75	
17800E 0000N	.7	10 2	4.0	10	-13	29.	1/ 0	739 1	2 00	~ 5	6	5	1 5	76	1	< 1	< 1	84	50	037	12	11 8		66	152	c1 2	72	058	D6 -	1 0	21	2.4 2.0 <	< 1< 0		, , 1	י.5 והח	
270000 22000	, 2	12.6	4.V	77 `	-,10	c.0.	17.V	,00 1					K.U	70	. 1	I	·. I	70	. JU		τ¢	-TI.0	.07	70	. 106	~1 Ľ.		. 000	.00 ~		- 11	w.v ~	·	· / `.			
17800E 9850N	.2	17.2	4.4	45 <	<.1.2	5.3	8.5	343 2	2.76	<.5	.2	1.0	1.0	61	.1	<.1	<.1	81	. 38	.033	2	28.8	.48	55	.178	1 2	04	061	.06 <	.1 .0	1 3	3.8 <	<.1<.0	5 5 <	5 1	15.0	
17800E 9800N	.2	18.9	3.1	65 <	<.13	6.9	13.8	462 3	3.02	<.5	.3	.7	1.2	69	.1	<.1	<.1	74	. 48	.040	6	39.7	. 89	69	158	1 2	14	058	.09 <	.1.0	1 (6.8 <	<.1<.0	5 6 <.	5 1	15.0	
RE 17800E 9850N	.2	17.0	4.5	46 <	< 1 2	4.4	8.5	340	2.69	<.5	.2	.9	1.0	60	.1	< 1	<.1	80	. 37	033	2	27.4	.50	56	.173	<1 2	02	056	.06 <	.1 .0	1	3.8 <	<.1<.0	5 5 <.	51	15.0	
17800E 9750N	.3	21.4	4.0	55 <	(.13)	5.8	13.5	356	3.46	.9	3	.5	1.5	81	.1	< 1	< 1	96	.49	.069	3	48.3	.85	98	.194	<1 2	53	043	.10 <	.1 .0	1	5.2 <	<.1<.0	5 7 <	5 1	15.0	
STANDARD DS6	11.5	124.8	29.3	144	.3 2	5.3	10.9	711 2	2 87	21.5 6	.64	8.7	2.9	40	6.0	3.4	5.D	56	.87	080	13	194.1	.60	166	080	17 1	96	076	.17 3	4 2	3 3	3.3 1	1.7 .0	5 6 4	5 1	15.0	
																															-						

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data / FA

Data / FA

Page 8

					-									_		-																				
SAMPLE#	Mo	Cu	Pb	Zπ	Aq	Ni	Со	Mn	Fe	As	υ	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р	La	Cr	Ma	Ba	Ti	8	A1	Na	К	W	Ha	Sc T1	S	Ga Se	Sample	
	ODM	nda	DDM	DDIT D	เอกิเ	ວກຫ	ODI	DOM	8	DDM	oom	dad	mad	ו תכס	Domini	oom c	DM F	DOM	2	X	DDM	DDm	ž	DDm	*	DOM .	2	8	% n	om n	unan Dr	001 000	Ĩ		ດຫ	
	P.F			FF P			<u> </u>			- FF	FF -		FF	FF (- F- P	P P		· · · ·		19 p					P P			P					PP''' PP'''		<u> </u>
17800E 9700N	2	15.6	4 1	50 <	1 22	77	79	265 2	2 48	< 5	3	11	6	57	1	1	1	55	34	044	3	32.3	45	86	150	1 :	2 02	053	06 <	1	02.2	7 < 1	< 05	6 < 5	15 N	
178005 96508		16 1	4 5	71 /	1 1	 2 a 1	2 6	228 2	7 17	< 5	ž	< 5	à	۸۸ .	- 1	1	1	\$2.	29	124	ž	36.2	76	06	175	5	2 22	031	00 -	1	01 2	7 - 1	< 05	0 ~ 5	15.0	
178000 06000		10.1	-T.J A C		1 7/	4 N I	77	210 2	2.0/	J	.0	~.J	ر. ت	12	`.⊥ 1.	- 1	. 1	52.	.40. 27	001	2	22 0	2/	20 75	162	1	2 00	1001	06 2	ւլ ։ 1	VI 2, A7 7	/ `.i	~ 00	5 ~ 5	10.0	
17000E 9000N	.0	12.3	4.0	50 1	1 24	+.V	0.1	010 4	2.20	N.0	. ረ	~.0	./	40 20	.1`	·.1	1.	32 .	. 27 .	1001	2	00.0	. 04	/0	102	1 1	2.09	.052	.00 ~		02 2.	.4.1	~.05	0 <.5	15.0	
17800E 9550N	. 3	13.2	4.3	52 <	1 28	5.V	9.1	210 6	2.30	<.5	. 2	.8	./	30 1	. 1	۲.۲ ۱	.1	49.	. 27 .	.093	2	33.1	. 30	60	. 150	22	2.43	.039	.06 <	. 1 .	02 2.	4.1	<.05	/ <.5	15.0	
1/800F 3200N	.3	23.6	4.3	102 <	.1 52	2.6 1	5.3	281 3	3,43	.7	.Z	<.5	.6	59	.1	.1	.1	8/ .	51.	.139	Z	53.3	. 80	84	. 246	2.	5.54	.043	.10 <	. 1 .	04 3.	1. 1.	<.U5	10 <.5	15.0	
170005 01500				~~						-		_			-			~ ~	~~						1.07									~ ~		
17800E 9450N	.3	18.1	5.4	60 <	. 1 Z	5.51	0.8	349 2	2.95	<.5	.4	<.5	1.0	68 -	<.i •	۲.>	. I	68.	. 38 :	:029	4	39.9	.51	116	. 197	1 2	2.37	. 052	.0/ <	.1 .	02/3.	.2 <.1	<.05	6 <.5	15.0	
17800E 9400N	.3	23.4	4.7	81 <	1 37	7.31	3.5	442 2	2.86	.6	.6	<.5	1.2	67	.1 •	< 1	.1	67.	. 48 .	. 092	8	44.9	. 78	91	.175	2 2	2.86	. 048	.08 <	.1.	03 5.	.3 <.1	<.05	8 <.5	7.5	
17800E 9350N	.4	24.0	5.6	78 <	.1 46	5.51	8.6	416 3	3.09	.7	.4	.7	1.2	40	.1 •	<.1	.1	57.	. 31 .	. 098	3	42.6	. 99	97	. 149	24	4.51	.039	.12 <	.1.	03 3.	.7 <.1	<.05	12 < 5	15.0	
17800E 9300N	.3	29.1	4.3	86 <	.1 50).91	9.1	490 3	3.03	.8	.4	<.5	.9	114	.1 .	<.1	.1	62 .	50.	120	6	36.2	1.20	152	. 147	2 3	3.83	.045	.13 <	.1 .	03 4.	.4 < .1	<.05	11 <.5	15.0	
17800E 9250N	.2	23.4	4.5	68 <	1 4	9.1 1	7.2	398 (3.25	.5	.4	<.5	1.1	73	.1 .	<.1	.1	72 .	.43 .	.081	3	43.1	1.03	126	.183	2 3	3.64	.057	.14 <	.1 .	02 3	.9 <.1	<.05	9 <.5	15.0	
17800E 9200N	.2	21.0	3.7	83 <	1 4	5 1	4.9	461 3	3.20	<.5	.3	<.5	.8	69	.1 •	<.1	.1	83.	45	074	3	45.8	. 80	82	.184	1 2	2.83	.064	.12 <	1.	02.3	4 < 1	<.05	8 < 5	15.0	
17800F 9150N	3	30.5	3.9	71 <	1.51	111	8.8	566 3	3.92	< 5	2	< 5	.8	68	<u>.</u> 1.	< 1	11	00	54	045	2	54.2	1.19	86	292	1 2	2.94	081	07 <	1	01 3	7 < 1	< 05	B < 5	15 0	
17800F 9100N	2	31 1	Δ Δ	85 <	1 54	เติเ	8.8	538 '	3 81	< 5		< 5	1 0	84	1.	<u>د 1</u>	1	้ด้า	5.8	070	5	50.3	1 27	iñà	211	ĵ.	2 00	056	 NR <	1	02 5	2 < 1	< 05	10 < 5	15 0	
17800E 9100N	. L 5	2/ 0	45	00 -	1 /1	7 1	6.8	1275 3	2 05	- 5		< 5	1 0	62	· 1 .	1	1	64	- 19 - 19	001	6	20.0	22	131	146		2 15	0.000		1	02 J.	9 ~ 1	< 05	10 < 5	15.0	
179000 90000		24.3	7.0		1 20	1.7 1	0.0.		2.02	~.5	. 7	~ 5	1.0	20	1	- 1	1	21	20.	040	2	42.2	. 00 EQ	114	154	1 1).4J) 67	056	10 ~	1 .	02 4.	1 < 1	~.05	7 ~ 6	15.0	
1/000C 3000M	. 2	22.3	3.9	11 5	.1.30	J. U 1	0.5	440 2	2,92	×.0	.5	~ .5	.9	09	. 1 .	<.⊥	• 1	01.	37.	.040	\$	43.3	. 50	114	.104	14	2.07	.050	.10 <	. 1 .	VI 4.	. 1 、 1	<.up	/ 5.5	15.0	
179005 90500	з	26 A	A 1	76 /	1 44	1 2 1	6 6	696 3	2 60	< 5	4	6	1 1	74	1.	~ 1	1	76	40	090	5	51 7	1 04	114	169	1 4	2 02	0.41	11 /	1	07.6	2 - 1	< 05	10 - 5	15.0	
170000 00000		20.4	4.1	- F7 -	1 7/	н. С. I 1 л I	2 0	107 1	J.UU J.12	J - E	.4	1.0	1.1	ά Γ .	- 1	~ 1	. 1	70.	.43. An	007	Č	51.7 E1 A	1.04	114	170	1	7.72	.041	~ 11 ~	· 4 · • 1 • •	02 0.	. Z \ . I	<.US	10	15.0	
170000 00000	. 2	20.0	5.2	57 5	. L 34	+.V I	4.0	407 3	0.10	×.5		1.0	.9	20	·. I `	۲.۲ ۱	.1	12 .	40.	0.032	0	51.4	. 90	100	100	1 4	2.02	.000	.09 <	. 1	01 D.	.01	~.05	0 < . 5	15.0	
17800E 8850N	.4	20.8	5.2	66 <	1 3	0.81	.4.0	520 3	5.22	.8	.4		1.1	/0	.1	.1	.1	86 .	4/.	LOU	8	50.3	.12	102	.180	38	2.57	.050	. 07 <		02 4.	.4 <.1	<.05	8 <.5	15.0	
17800E 8800N	.4	24.5	5.4	89 <	.1 4(1.61	.5.0	581 3	3.08	.8	.4	<.5	1.1	50	.1	1.	.1	60.	.32 .	124	5	46.5	. 64	135	.108	Ζ.	5.93	.040	. 10 <	.1.1	02 4.	1 < 1	<.05	10 <.5	15.0	
1/800F 8/20M	.4	23.6	4.8	90 <	.1 49	9.2 1	5.9	544 3	8.08	.9	.4	1.3	.9	6Z	.1 •	<.1	.1	6/.	31.	133	4	43.3	. 64	1//	, 155	14	4./4	.029	.09 <	.1!	02 4.	.0 <.1	<.05	12 <.5	7.5	
120005 0-000	•										•		~	~~			1		~					100	100			0.00	10					0.5	15 0	
1/800E 8/00N	.3	27.0	5.2	61 <	1 3	5.61	3.0	500 3	3,28	<.5	.3	<.5	.9	88	· ! *	<.1	-1	13 -	.310.	053	4	44,1	.86	128	,189	1.	3.04	.035	.10 <	. 1 .	UZ 4.	.2 .1	<.05	8 <.5	15.0	
17800£ 8650N	.2	21.3	3.7	/1 <	.1 48	3.4 2	0.6	682 3	5.71	.5	.3	<.5	1.0	/6	.1	.1	.1	83.	45 .	090	6	69.0	1.19	11	.139	1.	3.50	.063	.06 <	.1.1	02 5.	2 <.1	<.05	8 <.5	15.0	
17800E 8600N	. 2	21.5	5.0	54 <	.1 31	.41	.2.4	357 2	2.94	.6	.3	<.5	.8	84 <	<.1	.1	.1	73 .	39 .	035	5	50.3	.76	139	.217	12	2.54	.051	.06 <	.1	01 3.	.6 <.1	<.05	6 <.5	15.0	
17800E 8550N	.2	16.7	5.4	43 <	.1 26	5.0	9.1	261 2	2,26	.5	.4	29.9	.7	6 6	.1	.1	.1	56.	.32 .	031	4	39.9	. 58	130	, 188	1 2	2.15	.043	.05 <	.1	01 2.	6 <.1	<.05	6 <.5	15.0	
17800E 8500N	. 3	25.3	4.5	56 <	.1 32	2.91	2.5	427 3	3.31	.9	.4	1.5	. 8	93	.1	.1	.11	.01 .	.41 .	044	5	49.3	.73	147	. 224	1 2	2.19	. 055	.07 <	.1.1	02 3.	.2 <.1	<.05	6 <.5	15.0	
17800E 8450N	.3	21.0	5.6	51 <	.1 27	2.01	2.5	404 3	3.06	.5	.4	10.9	.9	86 <	۲.1	.1	.1	83.	.39 .	030	5	47.4	.63	121	. 221	2 2	2.18	. 057	.06 <	.1.1	01 3.	5 < 1	<.05	6 < 5	15.0	
17800E 8400N	.3	30.5	4.0	52 <	.1 42	2.61	6.2	497 3	3.57	1.2	.6	<.5	1.8	114	.1	.1 <	.1	85.	.79 .	880	15	55.5	1.24	146	.120	7 2	2.69	.065	.09 <	.1 .	02 9.	.9.1	<.05	8 <.5	7.5	
17800E 8350N	.4	24.7	5.1	67 <	.1 43	3.81	4.6	468 3	3.75	.8	.4	<.5	1.2	76 •	<.1	.1	.1	93.	43 .	065	8	50.4	.78	174	. 191	3 2	2.92	.045	.07 <	.1.0	01 4.	8 < 1	<.05	8 <.5	15.0	
17800E 8300N	.4	25.9	4.4	75 <	1 36	5.0.1	5.9	622 3	3.34	<.5	4	<.5	1.0	79	.1 <	- 1	.1	74 .	46.	074	7	48.5	. 98	100	162	22	2.66	.050	.10 <	.1 .1	01 5.	6 < 1	<.05	7 <.5	15.0	
17800F 8250N	5	27 6	4.9	67 <	1 43	191	7.4	534 4	1.03	1.3	4	< 5	14	96	1	1	1 1	11	47	056	8	57.6	1.07	162	192	33	3.36	0.39	D7 <	1	03 5	5 < 1	< 05	10 < 5	15.0	
110000 02000		L/ . V		¥7 -						1.0	• •		<u> </u>		• •	• •	• • •				-	57.0				~ `			,					-0 .0		
RE 17800E 8100N	4	19.9	5.7	95 <	1.34	1.6.1	2.6	421	3.12	.0	3	5	1.1	38	.1 •	< 1	.1	63	24	223	6	43.0	. 46	135	143	2 3	3.48	.027	.06 <	.1	03 4	5 < 1	<.05	12 < 5	15.0	
17800F 8200N	2	20 1	5 3	72 <	1 12	, 0, 1	6.8	439	3 65	1.3		< 5	1 1	66	1	1	ī	86	49	146	ĥ	48 N	71	115	157	3 3	3 70	031	<u> 18 <</u>	1	n2 4	6 < 1	< 05	10 < 5	15.0	
17800E 0200N		20.1	1.6	67 -	1 50		0.0	sna /	1 35	1.0		- 5	1 A	101 -	- 1	1	1 1	ης.	53	081	ŏ	53 1	1 22	171	166	2 2	3 17	0.001	10 <	1 1	0.7 ⊏	0 < 1	< 05	Q < F	15.0	
170000 01000	.4	10 /	+.0 E 0	02 -	1 30	1.7 L 1 2 1	י.ב ס ב	100 -	7.00	1.6	2	~ 5	1 1	. 101 101	<u>r</u> 1	1	1	61	22.	220	5	JU.I	1.22	124	175	2 2	2 67	0.04	.10 ~	1 1	00 J. 02 A	A ~ 1	~ 05	12 2 5	15.0	
TANDADD DCC	.4	19.4	0.9 10 0	93 S	ຸເປ4 ລຸດທ	+.3 L 	2.J	409 3	3.13	21 1		C. A	1.1	30	.1	. <u>)</u>	.1	ບເ.	. <u>∠</u> .3.	ሪዲን በንከ	16 1	91.4	.40	1.04	1002	10 2	3.04 E OE	.020	17 0	· · · ·	00 4.	4 1 1	~.00	12 2.3	10.0	
STANUARD US6	11.0	123.0	20.8	145	.s 2:	5.2 I	.U.ð	706 2	4.00	<u> 21.1</u>	0.0	40.4	<u>3.1</u>	41 (D.U .	2, 3 4	.9	<u> 3/ .</u>	. 07 .	0/0	15 .	192.2	.50	102	.083	19.	1.90	.075	.1/ 3	.5.	<u> 22 3.</u>	4 1.8	<.05	/ 4.5	12.0	

Sample type: SOIL SSB0 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
	A,	A
	L	L
ACH	E ANV	ALYTIC/

Page 9

ACHE ANALYTICAL																														A	THE ANALYTIC	AL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm p	Ag open p	Ni opmi	Co ppm p	Min F pom	e As ≰ppm	U ppm	Au ppb ş	Th pm-p	Sr C pm pp	col S xm pp	b Bi mippm	V ppm	Ca %	P X	La ppm	Cr ppm	Mig Ba Хгррл	Ti 1 X	B ppm	A1 2	Na %	K W Xippn	Hg ppm	Sc. T ppm pp	1 S ៣ ដី	Ga Se ppm ppm	Sample gm	
17800E 8050N 17800E 8000N 17800E 7950N 17800E 7950N 17800E 7900N 17800E 7850N	4 3 4 4 4	18.2 18.3 21.8 14.5 25.4	5.1 5.6 4.7 4.6 3.8	54 < 60 < 68 < 57 < 68 <	1 31 1 27 1 34 1 22 1 22	.2 1 .6 1 .1 1 .5 1	1.7 5 0.2 4 3.9 5 9.4 3 6.4 5	38 2,9 36 2.8 62 3.6 57 2.9 96 3.7	1.2 1.2 1.3 1.3 5 .9 8 2.1	.5 .5 .4 .3	7 1 1 3 1 2 8 1 9 7 1	1 2 4 9 5	80 . 78 <. 90 . 56 . 81 .	1 1 1 1 1	2 .1 2 .1 2 .1 2 .1 4 .1	72 74 101 76 99	.45 .41 .41 .30 .51	.040 .032 .048 .040 .072	8 9 8 3 12	41.1 37.6 48.3 39.2 55.2	.83 114 .66 117 .75 133 .47 105 .96 112	. 153 . 178 . 195 . 174 . 180	2 2 2 2 2 1 2 1 2 1 4 1	.23 . .08 . .92 . .70 . .97 .	033 035 041 032 048	.05 <.1 .05 <.1 .08 <.1 .08 <.1 .08 <.1 .16 <.1	.03 .02 .01 .01 .01	4.9 <. 4.8 <. 5.7 <. 3.3 <. 7.8 <.	1 <.05 1 <.05 1 <.05 1 <.05 1 <.05	6 <.5 6 <.5 6 <.5 5 <.5 6 <.5	15 15 15 15 15	
1780DE 7800N 1800DE 10000N 1800DE 9950N 1800DE 9900N 1800DE 9850N	.4 .1 .2 .2 .4	27.0 24.6 33.6 23.0 19.6	3.6 3.2 3.0 5.2 5.1	56 < 61 < 72 < 55 < 66 <	1 43 1 46 1 72 1 26 1 31	5.2 1 5.4 20 2.2 20 5.4 1 5.4 1	7.77 .65 6.34 1.43 1.24	08 3.5 29 3.3 87 4.2 79 3.5 83 2.8	2 3.0 3 <.5 4 <.5 5 <.5 3 .7	1 1 6 5 3 3	1.5 1 .7 1 .6 1 1.5 .5 1	2 1 4 9 0	17 41 74 54 < 63	1 1 < 1 1	4 .1 1 <.1 1 <.1 1 .1 1 .1	96 87 116 80 66	.69 .72 .71 .32 .34	.082 .126 .092 .029 .061	16 12 10 3 4	53.1 1 32.8 2 80.1 2 42.2 40.9	1 16 122 2 37 29 2 98 35 79 78 .65 121	.140 .114 .124 .157 .200	32 31 22 22 13	.29 . .55 . .00 . .21 . .24 .	044 023 063 037 030	.06 <.1 .04 <.1 .09 <.1 .05 <.1 .06 <.1	.02 .02 <.01 .01 .02	7.2 <. 13.0 <. 15.1 <. 5.5 <. 3.9 <.	1 <.05 1 <.05 1 <.05 1 <.05 1 <.05	7 <.5 5 <.5 7 <.5 6 <.5 8 <.5	15 15 15 15 15	
18000E 9800N 18000E 9750N 18000E 9700N 18000E 9650N 18000E 9600N	4 2 3 3	14.5 12.9 24.2 12.1 18.9	5.3 4.4 4.4 4.1 4.9	56 < 55 < 66 < 54 < 81 <	1 22 1 27 1 36 1 21 1 43	2.8 7.4 5.0 1 .9 8.1 1	9.1 3 9.2 4 4.5 4 9.5 2 3.1 2	83 2.5 40 2.3 66 3.3 52 2.1 94 2.4	2 1.1 5 .5 7 .9 9 .9 7 1.6	3 2 3 3 3	<.5 1.0 5 1 <.5 .7 1	.9 .6 .0 .8 .2	50 40 69 < 43 38	1 < 1 < 1 . 1 .	$\begin{array}{cccc} 1 & .1 \\ 1 & .1 \\ 1 & .1 \\ 1 & .1 \\ 1 & .1 \\ 1 & .1 \end{array}$	66 47 82 55 52	. 30 . 29 . 42 . 23 . 27	.051 .085 .111 .124 .214	2 2 3 3	34.4 36.9 38.6 27.7 34.5	.42 104 .51 66 .81 78 .35 83 .49 151	. 187 . 130 . 222 . 129 . 121	1 2 2 2 1 3 1 1 2 3	.29 . .22 . .10 . .99 . .20 .	027 034 044 027 025	.09 <.1 .07 <.1 .11 <.1 .07 <.1 .08 <.1	.01 .02 .02 .01 .03	2.5 <. 2.9 <. 4.7 <. 3.1 <. 3.8 <.	1 < 05 1 < 05 1 < 05 1 < 05 1 < 05	6 <.5 6 <.5 8 <.5 6 <.5 8 <.5	15 15 15 15 15	
RE 18000E 9600N 18000E 9550N 18000E 9500N 18000E 9450N 18000E 9450N 18000E 9400N	.3 .1 .2 .4	18.2 18.9 13.9 21.1 31.9	5.3 5.5 4,4 3.7 3.5	78 < 38 < 47 < 36 < 59 <	1 40 1 21 1 22 1 24 1 24	.7 1 .3 .3 .6 .8 1	2.72 7.12 7.54 8.12 9.16	87 2.4 15 2.2 06 1.8 75 2.4 72 3.6	L 1.6) .5 5 .5) .5) 1.3	3 9 4 5	9 1 <.5 1 <.5 1.5 1.3 1	1 5 .9 7 5	38 67 59 64 97	1 . 1 . 1 <. 1 . 1 .	1 .1 1 .1 1 .1 1 <.1 2 <.1	49 55 46 72 88	.26 .48 .43 .41 .71	.217 .014 .013 .019 .095	3 7 6 12	33.5 37.7 30.1 34.2 44.3	.48 153 .60 57 .47 55 .56 51 1.38 78	.113 .190 .137 .166 .152	23 21 11 11 32	.19 . .68 . .54 . .71 . .19 .	024 069 060 056 055	.08 <.1 .04 <.1 .04 <.1 .05 <.1 .12 <.1	.02 .01 .01 .01 .01	3.8 <. 6.0 <. 5.3 <. 5.0 <. 9.9 <.	1 <.05 1 <.05 1 <.05 1 <.05 1 <.05	8 <.5 5 <.5 4 <.5 5 <.5 6 <.5	15 15 15 15 15	
18000E 9350N 18000E 9300N 18000E 9250N 18000E 9200N 18000E 9150N	.3 .5 .4 .3	30.3 21.7 20.8 21.9 17.7	3.4 3.6 6.4 4.3 6.4	53 < 63 < 61 < 58 < 66 <	.1 43 .1 34 .1 38 .1 34 .1 34	6 18 4 14 14 14 15 13 1.5 13	8.26 4.85 4.26 3.54 3.15	26 3.4 26 3.1 79 3.0 97 3.2 57 2.8	5 1.7 7 1.1 5 .6 7 <.5 9 .9	1.0 .6 .3 .3 .3	.9 1 <.5 1 .8 1 <.5 1 1.0 1	6 1 2 0 1 1	09 . 83 . 76 <. 87 <. 65 .	1 . 1 . 1 . 1 . 1 .	1 <.1 1 <.1 1 .1 1 <.1 1 <.1	87 76 75 77 69	.73 .55 .43 .46 .43	.093 .107 .095 .069 .181	12 6 4 5 5	46.7 1 45.5 42.1 47.9 39.4	1.32 87 .86 102 .79 82 .81 89 .56 106	.144 .160 .177 .184 .152	3 2 2 2 1 2 2 2 2 2	.00 . .29 . .91 . .50 . .67 .	053 . 045 . 040 . 036 . 030 .	.11 <.1 .10 <.1 .09 <.1 .14 <.1 .10 <.1	.01 .03 .04 .01 .04	9.0 <. 6.5 <, 5.1 <. 5.4 <. 5.1 <.	1 <.05 1 <.05 1 <.05 1 <.05 1 <.05	6 <.5 6 <.5 8 <.5 7 <.5 8 <.5	15 15 15 15 15	
18000E 9100N 18000E 9050N 18000E 9000N 18000E 8950N 18000E 8900N	.4 .3 .4 .6	16.2 19.5 17.5 18.3 19.5	5.7 4.5 5.8 4.6 5.8	83 < 65 < 62 < 67 < 74 <	1 37 1 35 1 34 1 37 1 37 1 38	7.6 1 5.3 1 1.2 1 7.3 1 3.0 1	4.3 4 4.5 4 3.7 6 3.5 3 3.6 5	10 2.6 17 3.3 34 2.7 97 2.9 33 2.9	4 1.0 5 1.1 7 .8 9 1.3 1 1.0	.2 .3 .3 .4	<.5 1 <.5 .5 2.6 <.5 1	0 .8 .9 .9	27 . 56 <. 55 . 38 . 52 .	1 <. 1 <. 1 . 1 . 1 .	1 .1 1 .1 1 .1 1 .1 1 .1	51 82 66 64 58	.18 .35 .31 .21 .26	.442 .182 .108 .243 .187	2 2 3 5	39.2 49.1 44.1 37.3 37.5	.34 94 .79 143 .62 101 .57 97 .73 124	. 143 . 210 . 150 . 132 . 131	23 13 13 13 13	.01 . .10 . .36 . .55 . .86 .	021 047 023 021 026	.07 <.1 .07 <.1 .08 <.1 .07 <.1 .07 <.1	.02 .02 .02 .02 .03	3.2 <. 3.9 <. 3.5 <. 4.4 <. 5.4 <.	1 <.05 1 <.05 1 <.05 1 <.05 1 <.05	9 <.5 8 <.5 9 <.5 10 <.5 10 <.5	15 15 15 15 15	
18000E 8850N 18000E 8800N 18000E 8750N 18000E 8700N STANDARD DS6	.4 .3 .7 .6 11.4	19.8 29.1 17.5 19.9 121.7	4.8 4.3 5.5 5.7 28.6	75 < 64 < 72 < 72 < 141	.1 37 .1 47 .1 45 .1 49 .3 25	.6 1 .4 2 5.7 1 5.2 1 5.1 1	3.67 0.06 3.82 6.42 0.67	42 2.8 15 3.9 74 3.1 03 3.1 00 2.8	1 .9 4 .8 2 1.5 2 1.9 2 21.1	.4 .5 .5 6.4	<.5 1 <.5 1 <.5 1 <.5 1 46.3 3	1 5 1 7 7 1.0	43 12 . 29 . 33 . 40 6.	1 <. 1 . 1 . 1 . 0 3.	1 .1 1 .1 1 .1 1 .1 5 4.9	61 98 58 56 55	.27 .59 .17 .22 .85	.199 .090 .283 .238 .077	4 10 3 4 13	40.9 55.8 40.0 40.4 189.0	.62 90 1.40 117 .52 111 .79 193 .58 162	.164 .166 .142 .111 .078	1 3 1 3 2 4 1 6 17 1	.83 . .28 . .84 . .08 . .89 .	027 033 021 015 073	.07 <.1 .08 <.1 .08 <.1 .10 <.1 .15 3.5	.02 .01 .06 .04 .23	5.4 <. 9.5 <, 4.6 <, 5.3 <. 3.2 1.	1 <.05 1 <.05 1 <.05 1 <.05 9 <.05	10 <.5 9 <.5 12 <.5 14 <.5 6 4.4	15 15 15 15 15	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA

Page 10

																							======										
SAMPLE#	Mo	Cu	Pb	Lu h	Ag N	h C M DD	o min minorom	⊦e ¥	AS I	U A m on	Ա ՌՈ ՌԵՌՈ	ነ ነ ነ ኮኮኮল		SD	81	V	Ca %	9 971	La	Cr nom	Mg Ƴ	Ba	1 92	BA	l Na	. K. 9	W DDM D	Hg	SC II	5	Ga Se	Sample	
	- PPRI	- phu	pp	ppii pi		nn hh		^0					, hhu	իխա ի	hhur h	γµn	-	4	phe	hhui		ppir		ppn -			ppii p		hhu hhu		phi phi	gm	
18000E 8650N	.3	29.2	4.2	55 <	1 44.	4 18.	2 664	3.56	1.6	8 <.	5 1.6	5 111	<.1	.1	.1	91.	.68	.093	13	48.7	1.35	114	.132	3 2.3	7.044	.07	<.1 .	01	8.2 <.1	<.05	6 < 5	15	
18000E 8600N	.3	24.9	5.6	69 <	1 54.	3 17.	6 269	3.57	3.2	5.	61.8	67	<.1	.1	.1	72.	.35	.177	5	42.7	.94	192	. 118	2 5.5	5.019	.07	<.1 .	03	6.1 <.1	<.05	13 <.5	15	
18000E 8550N	.3	20.8	5.4	87 <	1 50.	916.	4 428	3.50	1.8 .4	41.	5 1.2	65	.1	.1	.1	68.	.38	. 160	5	42.7	1.09	156	.121	1 5.0	2.023	.06	<.1 .	03	4.9 <.1	<.05	12 <.5	15	
18000E 8500N	.3	23.0	4.5	49 <	1 40.	5 16.	1 357	3.33	2.0 .	51.	0 1.6	92	.1	.2	.1	76.	.53	. 093	7	40.9	1.21	141	.130	2 3.2	.027	.07	<.1 .	03	5.3 <.1	<.05	8 <.5	15	
18000E 8450N	.4	26.4	4.6	58 <.	.1 42.	6 15.	8 365	3.71	2.7 .	5 <.	5 1.6	80	.1	.2	. 1	95.	.39	. 067	8	46.1	1.05	169	. 139	2 3.5	3 .022	.06	<.1 .	02	6.2 <.1	<.05	9 <.5	15	
18000E 8400N	.2	12.8	5.8	52 <	1 22.	69.	0 397	2.16	1.3 .	5 <.	5 1.0	55	.1	.1	.1	50.	.32	.031	5	28.0	.60	92	.135	1 2.2	.025	.04	<.1 .	01	3.5 <.1	<.05	6 <.5	15	
18000E 8350N	.4	16.9	5.9	61 <	1 34.	811.	9 268	2.95	1.8 .0	6.	71. 1	. 60	<.1	.1	. 1	69.	.34	. 067	5	36.8	.71	160	. 136	2 3.2	.022	.05	<.1 .	02	4.0 < 1	<.05	9 <.5	15	
18000E 8300N	.3	16.3	5.4	46 <	1 34.	2 12.	3 323	2.98	1.4 .	5 <.	5 1.2	84	.1	.2	.1	68.	.49	.048	6	40.6	.91	93	.130	2 2.5	.027	.05	<.1.	01	4.4 <.1	<.05	7 <.5	15	
18000E 8250N	.2	14.5	6.1	49 <	1 23.	9 8.	3 322	2.29	1.1 .	6 <.	51.1	. 62	<.1	.1	.1	53.	.38	.033	1	32.2	.66	94	123	32.2	028	.04	<.1 .	01	4.3 <.1	<.05	7 <.5	15	
THUNDE READIN	.4	20.4	4.9	12 <	1 35.	8 13.	/ 21/	3.25	2.5 .	5 <.	5 1.1	. 72	1.	.1	.1	00.	. 34	. 310	b	39.1	.75	103	. 104	24.3	0 .UL/	.00	<.I .	05	2.0 <.1	<.05	12 <.5	15	
18000E 8150N	.4	20.4	5.2	69 <	1 38.	2 15.	0 400	3.47	2.8 .	4 <.	5 1.2	51	.1	. 3	.1	76.	30	156	5	41.3	.75	130	.093	2 3.3	.015	. 07	<.1 .	02	4.8 <.1	<.05	10 <.5	15	
18000E 8100N	.4	15.8	5.8	61 <	1 29.	5 11.	4 265	2.88	2.5	4 <.	5 1.1	. 52	<.1	.2	.1	71 .	.33	. 105	5	35.7	.58	113	.116	1 3.1	5.016	. 06	<.1 .	02	3.6 < 1	<.05	10 < .5	15	
18000E 8050N	.3	14.2	6.0	52 <	1 25.	1 12.	4 554	2.41	1.5	/ <.	5 1.2	2 /2	1.	.1	.1	60.	42	.032	5	31.6	./5	110	.13/	1 2.4) .023	.04	<.1.	02	4.2 <.1	<.05	/ <.5	15	
18000E 8000N	.3	23.7	4.4	- 59 S. - 60 Z	1 31.	6 1J.	8 400 6 319	3.21	4.9 .	0 5. 6 2	5 1.3 5 2 0) 97 54	- 1	.3	.1	93. 84	23	112	1	25.0	- 99	142	150	2/0	029 013	0.07	 1 	05	5.95.1	<.UD	13 < 6	15	
100002 75500		24.1	5.7		.1 00.	0 17.	0 010	0.04	4.0 .	v	5 2.0			. 2		U . .		. 110	7	00.0	.00	1.55	. 100	2 4.7	010		·.1 ·	0.0	4.2 .1	05	10 ~.0	13	
18000E 7900N	.7	17.2	5.1	80 <.	1 21.	4 13.	7 405	3.00	3.7 .4	4.	51.7	103	.1	.2	.1	75.	20	.094	3	23.5	.81	264	.178	2 3.2	5 .010	.07	.1 .	05	3.0 .1	<.05	13 <.5	15	
18000E /850N	.2	18.2	4.0	62 <	1 11.	9 10.	1 512	2.00	1.8 .	4 <.	51.4	322	<.1	.1 •	<.1	53.	92 .	. 161	4	13.6	.87	588	108	32.7	.010	.16	<.1.	02	3.1 .1	<.05	12 <.5	15	
18000E /800N	.1	31.2	7.9	/8 <. 79 /	1 10.	1 11.	5 935 n 020	2.70	2.1 .	8<. 0/	53.4 522	229	<.L	.i 1	-1	11.	. 56 . E0	122	5	17.7	.85 00	670	155	32.3	5 .010 7 010	.10	<.1. 1	05 06	3.4 .L 22 1	<.05	11 < .5	15	
182005 10000	. 2	33.5	7.0	- 10 N. - 53 K	1 64	7 18	9 500 8 673	3 60	14	5. 5	53.2 618	242	1	1.	. ۱ د ۱	90 ·	75	080	12	45.6	1 51	61	141	319	L 056	- 10	< 1	00 61	86<1	< 05	6 < 5	15	
100000 100000		00.0	Q. 1	00 .	1	, 10.	0.0	0.00	±., .,		v 1.5		• •	• •		50 .			10	10.0	1.01			0 2.0				~-	0.0 .1		0.0	10	
18200E 9950N	.2	30.2	3.6	57 <.	1 54.	1 19.	5 496	3.73	<.5 .	7 <.	51.8	1 71	<.1	<.1 •	<.1	78.	.54	.050	15	60.6	1.79	53	.140	2 2.5	3.032	.12	<.1.	01 1	10.8 < 1	<.05	7 < 5	15	
18200E 9900N	.3	15.3	5.5	59 <	1 23.	1 9.	5 359	2.70	./ .4	41.	41.1	. 69	'.l	.1	.1	/0.	39.	.042	3	36.5	.60	9/	.191	2 2.0	039	.08	<.1.	01	3.4 <.1	<.05	6 <.5	15	
10200E 9090N	.3	10.7	4.5	09 S. 45 c	1 16	0 10. 5 6	1 000 0 107	2.00	4. 19.1 A	4. c	91.2 510	00	.1	.1	.1 1	72. 52	. ວ໐. 31	.044 n10	4 1	20.2	.00	63 63	161	21.9	040.040 101/1	- 07	<.⊥. ∠1	01 01	26<1	< 05	0 N.D 5 < 5	15	
18200E 9000N	1	8.6	51	-40 ×. -59 <	1 10.	0 5	5 189	1 63	.0	21	4 f	41	< 1	1	1	40	28	015	3	20.4	33	47	133	212	040	05	< 1	01	2.3 < 1	< 05	4 < 5	15	
		0.0	0.1			• •.							•-						Ť														
18200E 9700N	.3	18.6	4.7	58 <.	1 33.	3 11.	1 273	2.70	1.2 .	41.	11.3	55	.1	.1	.1	67.	35 .	.093	3	39.4	.51	115	.148	12.8	5.029	.09	<.1 .	01	5.2 <.1	<.05	7 < 5	15	
18200E 9650N	.3	18.5	5.5	50 <.	1 32.	5 9.	3 23/	2.55	1./ .	5.	81.4	60	1.	.1	.1	62.	.35 .	.078	6	35.0	.50	125	.13/	2 2.4	042	.07	<.1.	02	4.9 <.1	<.05	/ <.5	15	
10200E 9000N	.4	17 Q	3.9	00 ×.	1 20	0 10. 0 11	L 299 6 201	2.40	2.2	22. 12.	3.3 011	າ ວວ ເຊ	~ 1	.2	.1	70 .	. 40. ລະ	107	3	30.0	.40	160	156	22.2).V23) N25	09 09	~ 1	01 01	3.7 5.1	< 05	0 N.S 6 < 5	15	
18200E 9500N	.4	14 5	4.5	- 50 ×. - 50 <	1 23	6 8	6 212	2.00	12	4J. 41	2 1.1 4 8	. 50	< 1	1	-1	57 .	33	031	4	33.2	53	77	148	216	1 020	.00	< 1	01	29<1	< 05	5<5	15	
1020VC 2000H	.0	17.J	4.5			J U.	~ _16	4 , 17	A. 64 - 71				·	• •		<i>.</i>					. 34			- 1.0			• • •				-		
18200E 9450N	.5	31.2	4.3	62 <	1 49.	2 19.	1 694	3.62	3.7 .	61.	61.8	109	.1	.2 •	<.1	92.	75	.095	12	48.7	1.35	107	.133	5 2.1	5.053	. 09	<.1 .	01	8.3 <.1	<.05	7 <.5	15	
18200E 9400N	.5	23.4	4.5	-58 <.	1 32.	4 13.	8 430	3.58	3.6 .	41.	41.4	74	.1	.2	.11	.16 .	41	.067	7	43.4	.79	119	.167	2 2.2	≠.030	.07	< 1 .	01	6.1 <.1	<.05	6 <.5	15	
18200E 9350N	.4 F	20.8	4.0	- 60 <.	1 31.	1 13.	U 359	3.13	2.4 .4	4 <u>1</u> . 01	91.3) 50 ⊨100	. L 1	.2	.i ~ 1	00. 76	. 34 02	075	4	40.2	.00	121	122	22.3	023 7 051	- 07	<.1<.	UJ UT	3.9 <.1	<.05	/ <.5 Б ~ Б	15	
TOZAAG BOANN	د. ۱۱ ۸	20.7 121 Q	3.0 28.4	- ⊃∠ ≤. 142	3 25	1 13. N 10	7 702 7 702	2.10	21.2.6	οι. Δ. Δ.7	∠ 1.3 1 3 A	1 700 1 100	6.0	354	~.1 4.0	70. 56	85	078	14 1	90.0 190.1	1.00	92 164	080	4 1 0	074	16	25	23	3318	< 05	0 N. 5 7 4 5	15	
		161.7	LU.4	174	. 0 2.0.	<u></u>		<u> </u>	CARE 0.		<u> </u>	- - -	0.0	0.0 -	1.0				14 1			104		1 1.2		- 10	<u></u>		0.0 1.0		/ ٦.3		

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data & FA

Data / FA

Page 11

								~ · ·							·	<u></u>																	
SAMPLE#	Mo	Cu	Pb	Zn <i>i</i>	Ag l	Ni (Co M	in Fe	As	U	Au	Th S	sr co	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	B A	i Na	ĸ	W	Hg	Sc 1	n s	Ga Se	Sample	
	ppm	ppm	ppm	ppm pl	par pj	pm pl	pm pp	xm %	ppm p	pm	ppb p	bw bt	m ppn	i ppm	ppm	ррп	*	%	ppm	ppm	×	ppm	Χp	nqq	5 8	ž	ppm	bbw t	obus bb	आ दि	ppm ppm	gm	
19200E 02E0M	1	22.7	27	55 /	1 20	7 14	Q /7	0 3 24	27	7	191	2 9	on 3	2	1	96	EJ	044	Q	15.7	67 .	00	163) nac	no	~ 1	02.4	: 1 /	1 ~ 05	6 7 5	1f A	
18200E 9230M	्म २	19.3	J./	55 × 77 <	1 30	6 12	.04/ 627	03.34	2.1	3	1.01		52 1	0	.1	68	.00	157	4	40.7	- 57 . - 52 1	109 ING 1	161	228) .040) A22	00	1	.02 0). J \. 2	1 < 05	0 \.D 9 < 5	15.0	
18200E 9200N		19.4	4.7	59 <	1 37	8 15	7 69	6344	2.1	4	.0	í ;	74 1	1	1	60	47	082	6	41 6	. 55 I 84 I	28	184	127	032 7 858	07	< 1	.02 C).0 ~. 1 8 <	1 < 05	9 < 5	15.0	
18200E 9100N	.5	21 5	52	68 <	1 36	8 14	1 53	03.44	15	Δ.	81	0 2	<u>.</u> 1 1	2	1	75	. 47	124	7	44.2	86 3	03	170	228	3 NA4	07	< 1	0.00 -	*,0 *. 1 K <	1 < 05	0 ~.J 8 < 5	15.0	
18200E 9050N		29.5	35	55 <	1 53	9 19	5 65	53.00	1.0	۰ ٦	121	4 10	18 1		1	96	. 77	096	14	50.9	1 68 1	26	168	425	/ .0 11	11	< 1	01 8	, o 17 <	1 < 05	7 < 5	15.0	
102000 00000		20.0	0.0					5 0.00	1.0		1.61				••	50			1,	50.5	1.00		100	- L.V	. 07 0		- , .L	.01 (,, .	1 4.00	/	10.0	
18200E 9000N	.3	24.9	5.3	81 <	.1 43	.0 17	.0 73	4 3.52	2.1	.5	1.5 1	.4 9	. 00	.3	.1	93	.64	.136	12	49.2	1.09 3	45 .:	173	4 2.6	.071	.17	<.1<	.01 é	5.7.	1 <.05	8 < 5	15.0	
18200E 8950N	.3	23.4	4.4	59 <	1 52	.6 18	.7 56	6 4.30	1.1	.5	.61	.4 8	30.1	.1	.1	78	.59	.108	11	44.6	1.00	35 .(089	1 4.0	3.027	.07	<.1	.02 8	3.7 <.	1 <.05	10 < 5	15.0	
18200E 8900N	.5	19.2	4.4	65 <	.1 36.	.8 14	.1 53	8 3.13	1.9	.4	<.51	1 2	.1	.1	.1	64	.22	. 125	5	39.5	. 84	98 .:	148	2 3.6	5.030	. 06	.1	.03 4	1.5 <.	1 <.05	10 <.5	15.0	
18200E 8850N	.2	16.8	3.2	64 <	.1 34	.7 13	.1 56	5 3.65	3.1	.3	<.5	.9 5	i6.1	.1	<.1	67	.51	.030	5	37.7	. 82	84 .:	111	2 2.2	.031	. 04	<.1	.01 €	5.7 <.	1 <.05	6 <.5	15.0	
18200E 8800N	.2	18.2	4.8	64 <	.1 35	.6 14	.0 68	5 3.38	1.2	.5	<.51	.2 9	9.1	.1	.1	75	.65	.027	5	49.9	1.08	93 .:	161	4 2.3	.083	. 06	<.1	.02 7	7.7 <.	1 <.05	6 <.5	15.0	
18200E 8750N	.2	17.8	5.4	44 <	.1 24	.19	.6 27	6 2.74	.8	.5	.81	.27	6.1	.1	.1	55	.45	.017	7	39.2	. 66 .	102 .	167	31.9	. 060	. 05	<.1	.01 4	1,7 <.	1 <.05	5 <.5	15.0	
18200E 8700N	.4	27.5	6.8	68 <	.1 55	.5 21	.0 35	7 4.78	2.6	.6	<.5 1	.6 8	36.1	. 1	.1	88	.49	.139	7	52.7	.96 1	. 94	127	4 5.4	.022	.11	<.1	.02 8	3.7 <.	1 <.05	14 <.5	15.0	
1820DE 8650N	.4	27.2	5.8	65 <	.1 59	.3 19	.2 53	3 4.26	1.8	.5	<.51	.7 12	26.1	.1	.1	78	.52	.110	11	50.2	1.12 1	.94 .:	119	4 4.5	.024	. 09	<.1	04 (3.2.	1 <.05	12 <.5	15.0	
18200E 8600N	.3	20.0	6.3	64 <	.1 39	.1 16	.6 38	1 3.38	2.3	.6	<.51	.2 8	33.1	1	.1	78	.48	.101	8	46.4	.83 1	.31	147	4 3.1	.031	. 06	<.1	.03 5	5.7 <.	1 <.05	10 <.5	15.0	
18200E 8550N	.4	33.2	5.3	86 <	,1 50	.9 21	.0 80	7 3.99	1.5	.5	<.5 1	.4 7	7 <.1	.1	.1	86	.46	. 203	6	58.9	1.07	.64 .:	184	2 4.2	.027	. 10	<.1	.02 6	5.7 <.	1 <.05	12 <.5	15.0	
101005 05000	4	74.4	2 1	< 2 ~	1 40	n 19	0.41	0 2 40	1 1	2	01		1	,	<i>د</i> ۱	02	56	110	10	71 0	1 04 1		174	a a a	007	07	,	07.0	· · ·	1 ~ 05	0 < 0	15.0	
102000 00000	.4	24.4	J.I 57		1 40.	2 16	、デ 41 ウ 51	03.40 02.20	1.1	. 3	.01	.U : ו ו	11 .1 22 1	ية. 1	<u>, 1</u>	93 £7	.00	222	10	71.0	1.04 J 61 1	14	162	23.6		.07	.1	.02 0).0 \. 1 A ~	1 < 05	10 < 5	15.0	
18200E 8400N	.u 3	10 /	5.7	03 N	1 20	.2 10. E 13	5 20 5 20	6 2 01	1.0	.5	.0 I.	. 1 i	12 .I	.1	.1	71	.00	120	6	27 0	70 1	ut+ n⊏o :	103	125	032 1 016	00.	> 1	.04 4	+.V ∿. I Ω	1 < 05	10 ~.5	15.0	
18200E 8350N	.5	19.4	5.0	72	1 40	1 15	03 C. 9 30	1 2 05	3.4	.4 2	~.5	0 0	12 1	· 1	. 1	5R	.00	153	4	MA 0	76	07 .	140	9 2 7	1 030	00.	~ 1	05 0	. o .) o .	1 < 05	11 < 5	15.0	
18200E 8300N	11	22.3	1 0	70	1 48	7 17	6 31	1 3 88	21		< 5	0	12 1	1	1	76	-21	147	4	56.6	or	8/ 3		2 1 7	.000 1000	.00	1.7	05 3	2.2 ~. 2 A <	1 < 05	11 < 5	15.0	
102002 00000	T . T	20.0	7.7	15		., .,	.0 01	1 0.00	C · 1	.0				.1		10	.25	- T-L	5	50.0		UT	1.50	2 7.7		.07	. 1		J. 7 °.	105	105	15.0	
18200E 8250N	.3	26.1	5.0	64 <	1 44.	7 17	.0 82	3 3.51	19.3 3	3.3	<.51	3 12	20 .2	.3	.1	85	1.25	.054	27	49.1	1.03 5	529 .3	129	8 3.6	.049	.08	<.1	.05 9	9.9.	1 <.05	9 <.5	7.5	
18200E 8200N	.6	23.3	5.5	83 <	1 47	3 18	.5 64	8 3.84	4.5	4	<.5 1	.1 4	1.1	.2	.1	87	.32	.076	6	50.5	. 94 2	222 .1	65	34.6	2 .019	.10	<.1	.04 4	7 <	1 < 05	12 < 5	15.0	
18200E 8150N	.6	23.0	7.1	97 <	1 41.	4 20	.8 74	2 4.68	14.5	.8	<.5 1	9 4	2.1	.5	. 1	107	. 33	.149	12	47.9	1.16 2	243 .1	105	7 4.5	.014	.08	<.1	.03 7	.5.	1 <.05	15 <.5	15.0	
18200E 8100N	.6	24.7	4.9	76 <.	1 43.	0 18	.6 47	7 3.87	6.8	.5	<.5 1	.4 4	19. 1	.4	. 1	91	.37	.073	6	42.4	. 95 1	62 . 3	133	4 4.6	.016	. 07	<.1	.03 5	5.4.	1 <.05	13 <.5	15.0	
18200E 8050N	.7	19.9	5.4	69 <.	.1 46	.4 17	.6 34	5 3.86	4.0	.5	.51	.2 6	51.1	.3	.1	85	. 31	.106	7	46.5	. 82 1	. 51 .1	139	3 5.0	.017	.08	<.1	.04 5	5.2 <.	1 <.05	14 <.5	15.0	
																			_														
18200E 8000N	.6	23.7	5.3	93 <.	.1 48.	.7 21	.8 48	4 4.32	5.5	.6	1.11	.1 5	2.1	.4	.1	97	. 39	,172	5	46.7	1.06 1	.72 .1	156	5 5.3	.016	.09	.1	.04 €	5.1 <.	1 <.05	15 <.5	15.0	
18200E /950N	.5	16.1	5.5	60 <.	.1 28.	.9 11	.9 24	8 2.99	2.8	.5	.5 .	.9 3	5/ .1	.2	. 1	12	.24	.083	5	35.6	. 59 3	11 .1	157	2 3.6	.016	.05	<.1	.03 4	11<.	1 <.05	12 < 5	15.0	
18200E 7900N	.6	15.1	5.7	60 <.	.1 25.	.9 1Z	.1 25	6 2.95	3.7	.5	.61	.03	. 99	.2	.1	70	.26	.089	5	30.6	.57 1	.09 .1	130	2 3.5	.014	.07	<.1	.06 3	3.7 <.	1 < .05	12 <.5	15.0	
18200E 7850N	.6	17.8	5.4	92 <	.1 29.	.3 13	.5 3/	0 3.53	4.2	.5	<.51	.3 3	82.1	.3	1,	87	.21	.138	4	38.3	.68]	16 .	145	33.7	.014	.06	<.1	.04 4	1,4,	1 <.05	13 <.5	15.0	
18200E /800N	.0	28.5	5.1	11 .	.1 34.	.5 15.	.5 6/	4 3.61	3.8	.5	.81	.4 .	54 .I	.3	. 1	89	151	,08/	5	41.4	.72 1	59 .1	1/3	3 3.9	F .015	.08	.1	.05 4	ŀ.2'.	1 <.05	13 <.5	15.0	
RE 18200E 7800N	7	28.3	4.8	79	1.34	6 15	7 67	4 3 66	4 2	5	< 5 1	3 3	13 1	3	1	89	22	087	5	41 0	71 1	59	170	330	016	08	< 1	06 4	12	1 < 05	13 < 5	15.0	
18400F 10000N	3	32.7	3 6	79 <	1 6/	9 22	9 65	2 4 14	11	. 3	< 5.1		10 .1	. J	1	83		058	Я	80.0	1.81	80 1	135	827	010 064	13	< 1	02 9	, <u>,</u> , ,	1 < 05	A < 5	15.0	
18400E 9950N	4	24.8	4 2	60 <	1 39	7 14	0 43	6 3 62	19	5	< 5 1	4 9	15 < 1	3	1	99	51	056	8	57 1	85 1	13 1	98	425	1.004	11	< 1	01 6	51<	1 < 05	7 < 5	15.0	
18400F 9900N	4	21.8	30	55 <	1.31	9 13	0.31	9343	2.5	3	< 5 1	1 7	7 < 1	.0	1	90	44	090	4	51 0	69	96 1	171	326	. 044	11	< 1	01 4	14 <	1 < 05	7 < 5	15.0	
STANDARD DS6	11 7	172 4	28.7	142	3 25	2 10	8 70	6 2 85	21.0 6	64	823	2 2	1 6.1	34	5.0	56	87	078	15	191 7	59 1	67 1	79	16 1 9/	075	17	3 2	.24	31	8 < 05	744	15.0	
			-9.7		. 5 2.5.				0		<u> </u>	-			<u> </u>																		

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 12

SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Hg Sc TI S Ga Se Sample gpm ppm ppm <th< th=""></th<>
ppm p
18400E 9800N .2 13.2 3.9 56 .1 26 .3 .5 1.2 .3 .4 .3 .4 .5 .6 .4 .1 .1 .1 .4 .2 .1 .1 .1 .1 .4 .2 .3 .1 .1 .1 .4 .2 .3 .1 .1 .1 .4 .2 .1 .1 .1 .4 .2 .3 .1 .1 .1 .4 .2 .3 .1 .1 .1 .4 .2 .3 .1 .1 .1 .4 .2 .3 .1 .1 .1 .4 .2 .3 .1 .1 .1 .4 .2 .3 .1 .1 .1 .4 .2 .3 .1 .1 .1 .4 .2 .1 .1 .1 .4 .2 .1 .1 .1 .4 .2 .1 .2 .1
18400E 9850N .2 13.2 3.9 56 .1 26 .3 $<.5$ 1.2 .3 .4 .4 .4 .5 .5 .1 .1 .1 .4 .4 .2 .13.2 .02 .07 .1 .03 .03 .07 .1 .01 3.7 .1 .05 .15 .15 .14 .1 .1 .1 .40 .23 .186 .3 .27.6 .36 .108 .099 <1 2.03 .023 .07 .1 .05 .6 .5 .15 18400E 9800N .3 14.5 3.5 57 .1 27.6 .36 .10 .40 97 .086 1 2.22 .022 .08 .1 .02 .7 .1 .05 .15 .15 .15 .16 .36 .16 .42 .97 .13 .1 .10 .1 .1 .10 .1 .1 .10 .1 .1 .10 .1 .1 .10 .1 .1 .1 .1<
$\begin{array}{c} 164002 \ 9600N \\ 18400E \ 9700N \\ 18400E \ 9700N \\ 2 \ 10.4 \ 6.1 \ 85 < 1 \ 22.1 \ 7.6 \ 167 \ 1.90 \ 1.9 \ 2.5 \ .8 \ 35 < 1 \ .2 \ .1 \ 47 \ .2 \ .1 \ 47 \ .2 \ .1 \ 47 \ .2 \ .1 \ .4 \ .02 \ .0$
164002 96001 .3 14, 5 5, 5 5, 7 127, 6 9, 5 210 2.1 2.5 1, 5 3, 5 5, 7 1, 12 1, 10 3 1, 10 3 1, 10 3 1, 10 3 1, 10 3 1, 10 3 1, 10 10 1, 10 1, 10 1, 10 1, 10 1, 10 1, 10 1, 10 1, 10 10 1, 10 10 1, 10 10 11 10 10 11 10 10 10 11 10 10 10 11 10 10 10 11 10 10 10 11 10
18400E 9750N .2 10.4 4.2 50 5.4 1.5 .6 47 .1 .2 .1 46 .34 .029 3 28.4 .42 79 .11.3 51 .035 .04 .1 .05 4 .5 15 18400E 9700N .2 10.4 6.1 85 .1 2.1 .6 .39 .1 .2 .1 35 .32 .161 3 28.0 .30 151 .101 <1
18400E 9700N .2 10.4 6.1 85 <.1 22.1 7.6 16/ 1.90 1.9 .2 <.5 .8 39 <.1 .2 .1 35 .32 .161 3 28.0 .30 151 .101 <1 2.11 .018 .05 <.1 .01 2.7 <.1 <.05 8 <.5 15 18400E 9650N .3 14.4 5.5 62 <.1 22.8 8.1 222 2.54 1.6 .3 <.5 .8 48 .1 .3 .1 60 .27 .078 3 34.5 .37 110 .155 <1 2.11 .036 .06 <.1 .01 3.1 <.1 <.05 6 <.5 15
18400E 9650N .3 14.4 5.5 62 <.1 22.8 8.1 222 2.54 1.6 .3 <.5 .8 48 .1 .3 .1 60 .27 .078 3 34.5 .37 110 .155 <1 2.11 .036 .06 <.1 .01 3.1 <.1 <.05 6 <.5 15
18400E 9600N .3 11.2 5.1 64 <.1 20.0 7.2 169 2.08 1.7 .2 <.5 .7 44 .1 .2 .1 45 .34 .068 3 28.7 .37 104 .117 <1 1.69 .029 .05 <.1 .01 2.8 <.1 <.05 6 <.5 15
18400F 9550N 5 22 1 3 9 58 < 1 33 4 13 3 375 3 19 4 0 4 6 1 1 69 < 1 .8 .1 84 .40 .072 4 44 2 .68 115 .127 1 2 .14 .025 .07 < 1 .02 4 .5 < 1 < .05 7 < .5 15
18400F 9500N 3 12 5 6 0 77 < 1 23 7 7 6 197 2 20 1 8 2 < 5 9 45 1 2 1 47 32 125 3 30 7 34 139 134 1 2 15 025 05 < 1 01 2 9 < 1 < 05 8 < 5 15
184005 9450N 3 18 1 3 8 81 < 1 30 1 10 0 275 2 55 1 4 2 < 5 8 64 1 2 1 53 44 062 3 38 9 51 92 115 2 1 78 037 05 < 1 01 3 9 < 1 < 05 6 < 5 15
18400E 9350N .4 17.0 3.9 56 <.1 37.2 11.8 246 2.72 3.4 .3 <.5 .9 51 .1 .4 .1 67 .20 .105 2 39.3 .54 144 .143 1 2.74 .025 .09 <.1 .01 3.1 <.1 <.05 7 <.5 15
18400E 9300N .2 13.7 5.4 52 < 1 25.8 7.1 173 2.28 1.6 .4 < 5. 9 46 .1 .3 .1 50 .36 .033 7 34.3 .40 117 .123 <1 1.70 .028 .07 < 1 .01 3.2 < 1 < .05 6 < 5 15
18400E 9250N .4 18.1 4.9 49 <.1 33.3 12.1 301 2.59 2.1 .4 1.0 1.1 42 .1 .3 .1 58 .26 .124 4 39.4 .50 119 .128 <1 2.81 .023 .07 <.1 .02 3.5 <.1 <.05 8 <.5 15
18400E 9200N .3 14,3 4.1 80 <.1 34.6 10.8 344 2.26 2.5 .3 <.5 1.0 49 .1 .5 .1 49 .33 .227 3 34.1 .34 134 .105 1 2.43 .020 .09 <.1 .01 3.3 <.1 <.05 8 <.5 15
18400E 9150N .4 18.6 4.7 85 <.1 45.9 12.8 301 2.76 2.9 .4 <.5 1.3 43 <.1 .3 .1 54 .31 .201 4 38.2 .51 159 .089 <1 3.15 .016 .10 <.1 .02 4.4 <.1 <.05 9 <.5 15
18400F 9100N 2 12 5 5 3 51 < 1 25 4 7 8 21 2 08 1.2 3 < 5 .9 50 < 1 .3 .1 47 .32 .035 4 33.7 .42 91 .130 1 1.72 .030 .04 < 1 .01 3.3 < 1 < .05 5 < 5 .15
184006 89000 .4 23.7 3.7 52 < 1 37.9 13.2 381 3.29 2.9 .4 < 5 1.5 80 < 1 .4 .1 89 .43 .044 / 49.7 .87 184 .150 <1 2.75 .022 .08 < 1 .01 5.8 < 1 < 0.5 / < 5 15
18400E 8850N .5 20.6 5.4 63 <.1 54.5 16.8 605 3.16 2.0 .3 <.5 1.1 69 .1 .2 .1 72 .36 .107 6 39.6 1.10 185 .112 1 3.31 .023 .07 <.1 .04 4.5 <.1 <.05 9 <.5 15
18400E 8800N .5 18.3 3.9 65 <.1 40.3 13.6 288 2.60 2.5 .4 .7 1.2 71 .1 .2 .1 62 .29 .110 5 36.7 .68 164 .110 2 2.97 .019 .07 <.1 .02 4.0 <.1 <.05 9 <.5 15
18400E 8750N .4 27.1 3.9 68 .1 68.4 20.6 261 3.42 2.7 .5 <.5 1.6 160 .1 .1 .1 63 .40 .179 5 35.6 1.08 225 .115 1 4.29 .026 .08 <.1 .04 5.4 <.1 <.05 11 <.5 15
18400E 8700N .4 19.5 3.4 67 < 1 73.9 17.4 369 3.65 1.6 .4 < 5 1.0 67 .1 .1 .1 67 .49 .071 6 34.2 1.41 69 .095 1 3.71 .037 .04 .1 .02 3.7 < 1 < .05 9 < .5 15
18400F 8650N 3 20 8 4 9 58 < 1 48 6 15 0 532 3 38 2 1 4 7 1 3 97 1 2 1 76 48 077 7 39 9 1 03 122 144 <1 2 89 030 05 < 1 02 4 9 < 1 < 05 8 < 5 15
194005 8600M 3 30 9 4 2 67 < 1 74 0 24 1 985 4 16 1 7 6 5 2 3 139 1 1 < 1 83 90 127 19 44 1 1 74 152 094 2 2 92 029 08 < 1 02 10 2 < 1 < 05 8 < 5 15
18400E 8450N .2 19.5 5.5 81 <.1 34.9 12.7 419 2.70 2.1 .7 .6 1.2 113 .1 .3 .1 60 .78 .036 6 34.2 .89 187 .121 2 2.24 .039 .05 <.1 .03 5.5 <.1 <.05 7 <.5 15
18400E 8400N .4 15.0 5.5 95 <.1 23.2 12.8 313 3.46 14.9 .7 .6 1.4 49 .1 .4 .1 75 .25 .127 5 30.1 .53 218 .050 1 2.52 .011 .05 <.1 .02 3.7 <.1 <.05 9 <.5 15
18400E 8350N .5 14.4 6.7 74 <.1 17.3 9.8 411 2.74 5.7 .5 <.5 .7 48 .2 .2 .1 64 .35 .152 4 21.7 .50 197 .045 1 3.14 .010 .06 <.1 .04 3.B <.1 <.05 10 <.5 15
18400E 8300N .3 18.2 5.2 64 < 1 30.6 10.1 322 2.70 5.5 .8 < .5 1.0 95 .1 .2 .1 64 .60 .040 9 37.6 .75 308 .106 1 2.30 .035 .06 < 1 .02 5.3 < .1 < .05 7 < .5 15
RE 18400E 8300N 2 18.6 4.9 65 < 1 29.8 10.2 314 2.65 5.8 .7 < 5 1.0 97 .1 .2 .1 63 .61 .040 9 36.9 .72 317 .107 1 2.29 .032 .06 < 1 .02 5.2 < 1 < .05 7 < 5 15
18400F 8250N 3 27 7 4 3 64 < 1 38 1 17 1 821 3 51 15 1 1 6 1 3 1 7 129 1 6 1 90 91 085 18 39 5 1 13 364 082 3 2 16 035 10 1 02 9 2 1 < 05 7 < 5 15
STANDADD 056 11 7 123 0 29 0 1/4 3 24 9 10 9 703 2 83 21 0 6 6 51 2 3 1 40 6 0 3 5 5 0 5 86 078 14 190 1 58 164 081 17 1 84 071 16 3 4 2 3 3 1 7 < 05 7 4 3 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data / FA

ACME ANALYTICAL											······																			/	cme anal	TICAL
Sampl F#	Mo	Cu	Ph	7n /	4a	Ni Co) Mn	Fe	As	<u> </u>	Au Th	u Sr	. Cd	Sb	Bi	V	∼ Ca	Ρ	la	Cr	Ma	Ba	Ti	8 A	1 N	a	K W Ho	 Sr	T] '	S Gal Se	Samol	
	DDM	DDM	DDM	DDM D	יס ודאס	DAN DDI	n Dom	8	ppm i	ppm	opb ppr	וממ ו	1 DDm	DDM D	an D	DM	*	វព្	m	ppm	ž	ppm	8	DDM .	2	ž	1 nog mog 1	DOMI	in no	ממ והסמ הממ והסמ		JAR D
				<u> </u>		·		•					<u> </u>		<u> </u>	·		· · ·	<u> </u>			<u> </u>				-	- FF FF		<u> </u>			
18400E 8200N	.6	12.9	5.6	104 <	.1 30	.9 13.3	l 322	3.80	18.4	.6	2.1 .9	22	. 2	.3	.1	91.	16.	103	5	27.5	. 45	193	. 033	4 2.5	7.01	1.0	06 .1 .04	4.0 <	.1 <.0	5 8 < 5	1	.5
18400E 8150N	. 4	16.5	3.2	82 <	1 31	.0 16.4	1 397	3.49	12.9	.7	<.5 1.2	. 49	1 <.1	.3	.1	79	46.	115	5	28.4	1.09	257	.043	2 3.3	7 .00	9.0	07 .1 .01	5.2 <	.1 <.0	5 11 <.5	1	5
18400E 8100N	. 4	9.9	5.0	46 <	.1 11	.7 7.2	2 248	1.75	3.8	.3	1.0 .7	22	2.1	. 8	.1	46.	17.	036	3	16.6	. 38	63	. 063	11.5	7 .01	1.0	03 < 1 .01	2.1 <	.1 <.0	6 < 5	1	.5
18400E 8050N	. 3	15.0	4.7	74 <	1 24	.1 12.8	3 474	2.83	5.0	1.4	1.2 1.1	. 119	1 <.1	.4 <	:.1	73 .	57.	082	7	30,2	. 87	179	. 096	22.2	0.02	4.0	06 < .1 .02	4.6 <	:1 <.0	5 7 <.5	1	.5
18400E 8000N	.9	47.8	8.3	72 <	.1 13	.0 21.3	3 1723	3.92	44.9	1.7	2.0 6.8	33	.1	7.9	.4	86.	86.	204	33	18.7	. 31	171	.011	4 1.4	1.00	7.1	.2 .1 .05	11.1	.1 <.0	5 8 <.5	1	.5
																			-	~~ ~												-
18400E 7950N	.4	19.5	5.8	73 <	.1 23	.9 10.9	3/4	2.62	3.6	.4	.5.8	71		.3	.1	68	35.	068	5	29.Z	.66	136	.104	1 2.2	3 .02	1.0	04 < .1 .01	3.4 <	.1 <.0	> 8<.5	1	.5
18400E /900N	.6	18.2	5.4	69 <	1 21	.9 9.8	5 241	2.98	5.2	.4	.6.5	45	1. (.3	.1	/1 FC	22 .	140	4	29.6	.4/	149	.086	1 2.9	0.014	4.0	15 1.02	3.2 <	.1 <.0) 10 <.5	1	.5
18400E 7850N	.4	11.3	5.8	46 <	.1 13	.7 9.0) 352	2.11	3.3	.5	1.3 ./	35		.3	.1	50.	24.	048	3	19.7	.42	1/3	.093	11./	2 .017	2.0	15 < 1 .02	2.1 <	.1 < 0	8<.5	1	.5
1040UE /800N	.8	20.4	30.5	106 <	.1 25	.6 14.5	- 400	3.05	0.9	.6	5.5 2.0	1 21	1	2.3	.1	85. 70	17.	103	4	31.2	./3	TOT	.131	33.0	1.000	8.U	15 .1 .01	4.5 <	.1 <.0	5 12 < 5	1	.5 r
1990AF 10000W	د.	22.0	6.1	38 <	.1.34	. / 12.:	o 402	2.78	1.5	.4	1.1 1.3	135	1. 1	.1 <	.1	/8 .	68.	064	10	49.I	. 80	95	.133	21.8	3.08	5.0	1/ <.1<.01	5./ <	.1 <.0) 4 <.5	1	.5
18600E 0050N	1	12 0	ΛQ	56 ~	1 22	6 Q .	7 210	2 56	22	2	1111	1 52	l e 1	1	1	57	26	191	2	<u>40</u> 0	20	120	126	220	2 02	7 0	10 ~ 1 02	22.	1 ~ 0		1	۲.
18600E 9900N	. J 2	25.7	4.7 Л 1	22 -	1 /6	2 12 1	5 543	2.30	1 2	. J ຊ	1010	02 1077	1	.1	1	32 , 75 ,	33. 45	101	с р	40.0 61 Q	. 39	100	10/	22.3	2 .UZ. D NCI	/ .0 5 0	19 < 1 .02	702	1 < 0) 0 ~.0 ; 7 / 6	1	.C.
18600F 9950N	.5	19.6	1 1	A6 <	1 32	5 11 /	5 272	3 10	22	. J	1112	72	. 1	6 <	1	82	. 50 <i>i</i> n	047	4	43.5	58	138	146	121	0.00	0.0 n n	17 < 1 01	124	1 < 0	, , 	1	5
18600E 9800N	4	20 3	4.1	90×. 87 <	1 24	2 9 3	304	2 96	17	.0	<u> </u>	יי. נג	1	. U ` ?	1	63	90. 99	047 034	a .	38.1	70	87	130	520	0.03	7.0 7.0	N ~ 1 .01	4.2	1 < 10	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1	5
18600E 9350N		20.0	27	10 <	1 40	A 14 3	> 559	2 21	4 7	5	2416		1		1	<u>а</u> л	77	100	11	45 5	1 14	102	122	115	2.00 0 กณ	5 0	16 < 1< 01	770	1 < 04	5 5 2 5	1	5
100000 37300	. 7	69.4	2.1	43 -	.1 40	1	. 555	0.21	4.1		2.7 1.0	, ,(•••			<i>.</i>	•••••	100	11	40.0	1,14	102	. 100	4 1.5	, 0 0,	5.0	10101	1.2	·		1	
18600F 9700N	3	14.6	46	39 <	1 22	2 8.5	5 153	2.07	1.6	.3	2.0 .7	45	<.1	2	.1	48	29.	091	3	29.2	.39	86	.129	220	2 02	9.0	3 < 1 01	22 <	1 < .05	6 < 5	1	5
18600F 9650N		24 9	8 2	78 <	1 36	2 8 4	695	2 16	ĩă	4	< 5 1 7	82	2	2	ĩ	35	85	032	16	24 1	52	174	091	429	7 03	6 D	4 < 1 04	58	1 < 0	6 < 5	1	Š
18600F 9600N	4	15.4	47	53 <	1 25	1 10	260	2.41	2.2	3	2.5 .8	52	< 1	.3	1	57	33	116	3	35.5	46	118	133	122	2 02	5 0	5 < 1 02	28	1 < 0	6<5	1	5
18600F 9550N	4	22.3	4 7	64 <	1 50	1 14.6	5 255	3.39	3.6	.4	1.7 1.5	56	.1	.2	1	75	37	180	3	50.4	.67	172	134	242	3 024	4 0	9 < 1 03	48 <	1 < 0	10 < 5	1	5
18600E 9500N	3	19.1	4.8	65 <	1 31	1 13.4	717	2.94	2.1	4	2.2 1.3	67	.1	.2	.1	68	58	067	7	43.8	.58	121	.136	2 2 3	3 .03	7.0	8 < 1 .01	5.7 <	1 < 09	5 6 < 5	i	5
18600E 9450N	.4	25.5	3.2	49 <	1 35	7 13.8	454	3.36	2.9	.5	2.1 1.7	85	<.1	.4 <	.1	92 .	56.	035	10 .	51.1	. 82	121	.137	2 1.9	2.04	5.0	6 < .1 .01	8.1 <	.1 <.05	5 - 5 - 5 - 5	1	.5
18600E 9400N	_4	22.4	4.9	87 <.	1 38	.6 15.3	526	3.28	1.9	.5	1.7 1.3	57	<.1	.3	.1	78	45.	102	5	55.6	. 80	164	. 156	1 3.0	1 .02	2.0	8 <.1<.01	5.6 <	.1 <.09	5 8 < 5	1	.5
18600E 9350N	_4	11.5	5.2	99 <	.1 23	.4 8.6	468 (2.19	1.6	.2	2.3 .7	30	<.1	.5	.1	49 .:	26.	235	3	31.2	. 22	129	. 095	21.8	5 .010	7.0	6 <.1 .04	3.1 <	.1 < 0	5 7 <.5	1	.5
18600E 9300N	.3	16.8	5.1	82 <	1 25	.2 9.5	5 194	2.5B	1.7	.2	1.3 .9	56	.1	.2	.1	46 .:	36.	225	3	35.8	.43	195	. 106	22.3	4.020	6.0	6 <.1<.01	3.8 <	.1 <.05	5 7 <.5	1	.5
18600E 9250N	.5	20.9	4.1	67 <	1 28	.3 12.5	5 302	3.35	4.4	.3	2.1 1.1	. 71	. 1	.9	.1	93 .:	39.	078	4	48.7	. 63	119	. 159	21.8	9.03	3.0	6 < 1 .01	4.3 <	.1 <.0	6 < 5	1	.5
																																-
18600E 9200N	.6	29.3	3.6	58 <	.1 48	.8 20.6	5 903	3.82	7.5	.5	3.7 1.5	102	.1	.7 <	.1	92 .	81.	104	13	52.9	1.26	139	. 095	3 2.1	3 .03	9.1	.0 <.1 .02	9.0 <	1 < .09	6<.5	1	.5
18600E 9150N	.7	17.4	5.2	94 <	.1 39	.1 13.4	396	2.92	3.6	.4	.8 1.3	29	<.1	.5	,1	62 .	21.	209	3	42.4	.41	146	. 118	1 3.4	4 .019	9.1	.0 .1 .02	3.9 <	.1 <.09	5 9 < 5	1	.5
18600E 9100N	.5	16.9	4.8	87 <	.1 35	.3 12.0) 397	2.66	2.9	.3	.91.0	33	1.1	.3	,1	58	23.	175	4	39.6	.41	170	. 110	2 3.0	7.02	3.0	6 < 1 .02	3.6 <	1 <.05	5 8 < .5	1	.5
RE 18600E 9100N	.4	16.4	4.7	88 <.	1 34	.4 12.0	388	2.63	3.1	.3	2.6 1.1	. 34	• .1	.3	.1	57 .3	24.	177	4	38.6	.42	169	.110	2 3.0	4 .02	3.0	6 < .1 .02	3.7 <	.1 <.0	8<5	1	.5
18600E 9050N	.5	17.4	4.9	69 <	.1 38	.9 13.0) 396	2.95	2.8	.3	<.5 1.1	41	1	.4	.1	68 .	25 .	171	3	44.6	. 47	107	. 119	2 3.2	/ .02	1.0	19 <.1 .03	3.7 <	.1 <.0	o 9<.5	1	.5
100005 00000	r	10 0		70 -	1 32	A 11 -	41.4	2 55	2.4	2	1 2 1 1		- 1	2	1	F0	21	160		20.2	40	124	110	1 2 0	0 0.00	<u> </u>	0 - 1 00	26	1 ~ 0	. 0 - 0	1	E
10000E 9000N	-5	16.0	5.0	72 <	1 34	.4 11.	414	2.55	2.4	.3	1715	, 44) 20	· ~.1	. 3	.1	00 . C0 ·	31. 22	164 164	4 .	37.3 76 6	.49	104	102	12.0	ວ .021 4 ຄວາ	υ.Ψ 1 Λ	10 N. I UZ	3.0 4	.1 ~ 00	. 0	1	.J
100001 0000M	.0 1	10.9	4./	/3 <.	1 07	.4 11.l	1 100	2.00	2.1	. J 2	1./ 1.2	30	⊥. I	.ა ი	.1	. OC . 23	∠J. ⊃n	131 131	ວ າ	20.0 20.2	.41 AT	00 100	120	13.2	+.UZ. 2.07	ι.U Δ Ο	IC N. L. UZ	3.35	1 2 0) ON.3 : 625	1	.ə .c
100000 0000N	.4	10.1	4.3	- 29 K. - E1 -	1 25	.5 9.5 6 14 1	7 190 1 144	2.13	2.3	. 3 T	4./ ./	02 04	· ~.1	.5	.1	00 96	29. 60.	000 030	ა. ი	50.Z	.45	90 10	122	22.2	ε.νζι 1 δεί	0.0 7 0	10 S.L .UL	J.2 °	、エト.U: ・1 > 0:	, 05.0 , 62.0	1	.5
TOOLE OCONN	نۍ. ۱۱ ۴	22.2	ა.i იი ი	51 <.	2 2/	.014 // 10 '	1 444 1 COA	3.4/	2.4	./ C F -	2.2 1.5	294	1.~ 1	.4 < 2 E ^	0	. 00	00. 00	039 076	. ים יכו	92.0 96 E	. 94	162	070	16 1 0	יסיט. ב ידי ס	∠.U 2_1	10 ~ 1 .02	2.0 *	······) ON.5 CAA	1	.a .c
STANDARD D26	11.4	119.0	<u> 28.2</u>	139	. <u>5</u> 24	.4 10.3	064	2.78	20.8	0.5 4	0.0 3.0		5.9	J.54	.9	55 .	ರ್ <u>.</u>	0/0	13 1	00.5	.57	103	.079	10 1.9	5.073	<u>۱. د</u>	5 3.5 .23	<u></u> 3.∠ 1	./ <.0:	0 4.0		.7

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

Page 14

																																		KEME ANALYTICAL	•
SAMPLE#	Mo	Cu	Pb	Zn	Aq	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	8i	٧	Ca	Р	La	Cr	Ma	Ba	Ti	B A	1 N	a k	(ม	На	Sc 1	7 5	Ga Se	Samula	
	DDM	DDM	DDM	о паа	iom	DOM	DOM	DDM	8	pom	DDM	opb	DOM	DDIT	ppm	nom	DOM	DDm	x	2	nom	חתם	2	DOM	8	nnii	2	<u> </u>	ະດ	กากส		. ວັ ນາ 2		am	
	- F #***			FFF				P P								FF	FF	PP			FF			PP		PP				P.	Phin PF		Phil Phil		
18600F 8800N	5	23.0	46	71 <	: 1 :	38.3	14 7	573	3 32	27	3	< 5	1 0	61	1	4	1	81	36	089	5	49.6	66	119	137	233	7 03	3 07	7 < 1	03.	45 <	1 < 05	9 < 5	15	
18600E 8750N		21 1	6.4	47 <	1	20.3	6 9	200	2 22	7	1 0	1 1	1 4	77	1	1	1	28	57	016	10	20.8	59	- FF	100	125	2 06	0.0/ 0.0/	$\frac{1}{2} > 1$	00	4.J~. 6.6./	1 ~ DC	3 ~.0 6 ~ E	15	
18600E 8700N	. 1	22 6	1 5	72 ~	. 1 6	67.0	16.3	200	2 25	1 0	1.0	2 1	1 2	74	.1	• 1 1	- 1	20	. 37	160	10	10 2	. 30	152	110	12.0	2,00 0,00	0.00) ~ . I	.01 1	0.0 \. 1 7 ~	1 < 00	11 2 5	15	
195005 95504	. J n	20.0	4.5	- 10 - - 12	· L 3	0Z.7	10.0	202	3.20	1.2	.4	2.1	1 1	00	.1	.1	- 1	55	.00	.109	4	40.0	. / /	100	.110	04.4	9.03	0. C	2 < 1	.00	4./ <.	1 <.05	11 <.5	15	
1000VE 0000N	. 3	20.3	4.5	01 ~	.1 4	40.1	12.7	330	3.33	1.2	.4	5.5	1.1	00	.1	. 2	.1	00	.40	.05/	4	39.7	./1	124	.149	2 3.1	3.04	4.00	2 < . 1	-02 /	4.4 <.	1 <.05	8 <.5	15	
18000F 8000N	.6	17.5	3.0	73 <	.17	//.6	23.0	903	3.93	1.4	.3	<.5	1.1	68	.1	. 1	- 1	67	.42	. 100	b	36.0	1.31	-89	.115	2 3.7	9.05	7.05	5.1	.02 3	3.0 <.	1 < .05	9 <.5	15	
105005 05500	•			<i></i>					•			_																							
18600E 8550N	.3	40.0	2.7	51 <	.1 6	67.9	24.3	545	3.85	2.3	.4	<.5	1.4	327	<.1	.1	<.1	/1	.75	.101	13	32.6	1.91	233	. 089	24.6	2.17	9.15	5 <.1	.02	7.2.	1 < .05	10 <.5	15	
RE 18600E 8550N	.4	40.3	2.9	53 <	1.17	71.4	25.8	573	4.03	2.2	.6	1.2	1.5	334	.1	. 1	<.1	72	.77	. 105	14	33.0	2.07	235	. 087	2 4.7	4.18	5.15	5 <.1	.02 1	7.4.	1 < .05	10 <.5	15	
18600E 8500N	. 4	20.8	3.9	62 <	.1 3	33.9	15.8	919	3.54	8.1	1.1	1.4	1.3	118	.1	.4	<.1	85	.79	. 087	12	37.0	. 96	226	. 058	2 2.3	3.04	5.06	5 < 1	.03 (5. 3 .	1 <.05	6 <.5	15	
18600E 8450N	.3	18.4	4.5	65 <	.1 3	34.7	12.9	375	3.06	3.9	.4	<.5	. 8	88	. 1	.4	.1	71	.54	045	6	40.3	. 87	129	.140	2 2.8	5.04	5.06	5 <.1	.02 4	4.0 <.	1 <.05	8 < 5	15	
18600E 8400N	. 6	24.3	3.7	64 <	1 3	32.0	14.9	462	3.29	13.2	.4	3.6	.8	108	.1	.5	.1	85	.62	056	4	37.6	. 88	154	.076	2 3.0	9 .03	5.10	(< 1)	.05	4.9 <	1 < 05	8 < 5	15	
																																	0.0		
18600E 8350N	.4	17.7	5.1	98	2 3	30.0	12.9	490	2.89	8.4	.4	6	1 1	42	3	7	1	64	32	192	5	31 1	52	311	077	228	9 02	3 08	1 < 1	04	34<	1 < 05	10 < 5	15	
18600E 8300N	4	13.4	5.0	90 <	1 2	29.2	11.6	343	3 00	84	4	12	1 2	30	1	15	1	63	24	181	4	32 5	48	118	077	2 3 1	4 11	R n/	- 1	03	3 1 6	1 < 05	11 < 5	36	
18600E 8250N	Å	20.7	3.4	53 <	1 /	10.3	16 1	506	3 58	73	1 1	< 5	1 8	165	1	5	1	ăñ	72	062	12	53.5	1 06	205	107	201	0 01	7 11		.00.).++ •. 5 n	1 ~ 05		15	
18600E 8200M	2	12 1	1 1	50 ×	1	70.0	2 0	126	1 00	20.0	1.1	~ 5	1 0	11	~ 1	1 2	1	20	10	. 002.	10	00.0	1.00	200	014	2 2.0	7 00	.11		.000). . .	1 ~ 00	0 \.)	15	
10000C 0200H		10.1	4.1	100 -	.1	1.0	0.0	100	1.00	20.3	.4	p	1.7	20	<u>, i</u>	1.4	.1	59	.10	.000	0	9.2	. 21	/0	.014	61.0	7.00	5.00	2 <.1	.03	2.7 5.	1 <.05	/ 5.5	15	
TOONNE OTONIA	.0	13.7	0.0	108 <	.1 4	24.8	9.0	100	2.78	7.0	.4	<.5	1.0	22	.1	.0	.1	58	.19	.083	4	26.2	. 30	103	.0/1	1 2.8	5.01	3 .05	> <.1	.05 2	2.7 <.	1 <.05	11 <.5	15	
100000 01000	~	10.2		71 .	1.4		14.0	400	a r 7		~		1 0	F7	,			00		050				61 4						~~ .					
1860VE 8100N	.0	19.3	4.3	/1 <	.12	28.7	14.Z	430	3.5/	8.7	.5	<.5	1.0	5/	.1	1.1	.1	93	.31	.053	4	39.2	.73	214	.104	1 3.0	1.02	J .08	3 <.1	.02 :	3.7 <.	1 < .05	11 <.5	15	
18600E 8050N	.5	22.0	4.9	75 <	.1 3	32.8	12.5	355	3.08	10.6	-8	1.5	1.0	55	.1	1.0	.1	77	.56	.073	6	35.2	.59	377	.093	3 3.1	7.02	7.08	3 <.1	.03 (3.9 <.	1 < .05	10 <.5	15	
18600E 8000N	.6	23.3	4.2	60 <	.1	32.4	13.5	382	3.18	8.2	.6	2.2	1.0	68	.1	.9	.1	80	. 42	.082	6	36.7	.74	245	.111	3 3.4	2 .03	30. 0	3 <.1	.02 4	4.2 <.	1 <.05	11 <.5	15	
18600E 7950N	1.2	21.4	5.1	65 <	.1 1	18.3	12.4	496	3.19	21.0	.6	.5	.7	72	.1	1.1	.1	93	. 42	.069	4	27.4	. 70	173	.123	3 2.9	2.02	7.08	3.1	.02 4	4.0 <.	1 <.05	10 <.5	15	
18600E 7900N	1.4	22.6	7.1	70 <	.1 1	15.7	13.0	502	3.49	4.8	.7	<.5	1.5	34	.1	.3	.1	89	. 22	. 100	4	20.5	. 47	132	. 149	34.4	2.02	1.08	3.1	.06 4	4.5 <.	1 <.05	13 <.5	15	
18600E 7850N	1.6	26.2	6.6	64 <	.1 1	16.5	12.5	402	3.49	6.2	.8	1.3	1.6	31	.1	.4	.1	94	.19	.079	6	21.3	. 52	127	.154	2 4.5	6.02	07	1.> 1	.06 !	5.4	1 < 05	13 < 5	15	
18600E 7800N	.7	32.1	6.8	59 <	1 1	13.2	16.2	456	4.43	5.6	9	3.1	2.3	74	1	3	1	128	36	071	3	19 4	59	410	223	277	7 02	1 00	$\hat{i} < \hat{1}$	06 7	71	1 < 05	16 < 5	15	
18800F 10000N	3	7 6	4 9	72 <	11	13.1	5 7	201	1 37	14	2	7	7	28	< 1	< 1	ī	31	20	197	ă	19 0	21	QN	084	112	8 03	0	1	02 1		1 < 05	5 < 5	15	
18800E 9950N	ĩ	22 0	27	60 -	1 2	24 5	11 E	474	2 10	1 0		6	1 4	101	< 1	5	1	74	71	020	ŏ	E1 0	70	144	121	2 2 2	0.00	: 10	. 1	01 4		1 - 05	5 - 5 5 - 5	10	
19800E 99500	.0	24 4	47	75 -	1 4	44.2	12.0	561	2 75	57	. 7	1 0	1 2	77	~,1	. 2	1	70	07	107	0	51.0	.70	244	060	4 2 2	4 05	7 10	2 - 1	06 0	J.U ~. 1 1	1 < 00	0 ~.J	15	
100001 33000	.4	24.4	4.7	/0 ~	.1 "	14 .3	13.0	004	J.70	5.7	. ა	1.0	1.4		. 1	. J	- 1	13	. 07	. uo/	0	57.7	. 51	344	.009	4 2.2	4.05	.10	2 < 1	.00 :	9.I .	1 <.05	0 5.5	15	
100005 00500		11 C		00 <		00 E	70	262	2 20	1 0	2	~ C	1 0	40	1	1	1	٨C	21	003	2	10.2	22	116	1 20	0.0 5	1 04	,	1	0.0		1 - 00	7 . 5	15	
10000E 9000N	.4	11.5	4.9	99 <	.1.2	20.5	17.0	302	2.20	1.0	.3	5.5	1.0	40	.1	.1	.1	45	. 31	. 002	<u> </u>	39.3	. 33	110	.139	2 2.5	1.04	.00	\$ <.1	.0Z 2	<u> </u>	1 <.05	1 <.5	15	
1080VE 9600N	.4	31.0	4.2	104 <	.1 :	54.5	17.3	693	4.28	.0	. 2	1.0	./	134	.1	. L	-1.	114	.6/	.055	61	105.7	1.03	114	.1/1	3 2.5	3 .10	1.10	1 <.1	.01 8	3.1 <.	1 <.05	8 <.5	15	
18800F 3/20N	.3	18.0	4.5	65 <	.11	19.1	8.1	403	2.68	.9	.3	1.6	.8	93	.1	.1	.1	62	.55	. 025	5	41.7	.47	106	. 192	3 2.0	5.07	3.05) < 1	.02 4	1.0 < .	1 < .05	6 <.5	15	
18800E 9700N	.5	12.6	4.8	66 <	.1 2	21.2	8.0	379	2.18	1.6	.3	<.5	.8	49	<.1	.2	.1	48	. 31	. 060	3	34.5	. 33	124	141	2 2.3	4 .04	L .08	3 <.1	.03 2	2.7 <.	1 < 05	7 <.5	15	
18800E 9650N	. 2	10.5	4.5	52 <	1 2	20.8	7.1	144	1.75	1.3	.2	1.6	.7	47	<.1	.1	.1	38	. 28	.061	2	26.8	. 30	98	. 117	2 2.0	1.04	5.06	5 <.1	.01 2	2.1 <.	1 <.05	6 <.5	15	
18800E 9600N	.2	12.4	4.6	31 <	.1 2	23.0	8.8	436	2.27	1.5	.3	3.9	. 9	87	.1	.1	.1	46	.60	. 013	6	33.7	.47	127	.125	61.9	9.07	4.07	<.1	.01 4	1.2 <.	1 <.05	6 <.5	15	
18800E 9550N	.2	14.3	5.2	65 <	12	28.3	8.5	363	2.43	.8	.4	1.2	1.1	48	<.1	.1	.1	48	.36	.043	4	41.0	.52	100	. 118	1 2.4	0.04	L . DE	3 < 1	.02 :	3.9 <	1 < 05	7 <.5	15	
18800E 9500N	.6	18.9	3.9	80 <	1	27.0	10.8	635	2.82	.8	.3	2.0	1.1	42	<.1	.1	.1	66	.30	086	2	51.0	.82	57	197	2 1 9	1 .05	10) < 1	.02 4	1.8 <	1 < 05	6 < 5	15	
18800E 9450N	.5	29.7	3.0	74 <	1 4	47 5	18.4	894	3.80	6	.5	1.4	1.5	55	< 1	1	$<\overline{1}$	84	45	081	ō,	70.5	1 63	55	189	222	1 05	14	1<1	02 0	20 <	1 < 05	7 < 5	15	
STANDARD DS6	11 6	121 9	28 5	143	3	75 1	10 8	706	2 86	21 0	6.5	46 P	3.3	42	5 9	ΞÂ.	4 Q	58	87	077	15 1	192.2	58	169	085	17 1 0	7 117	· 	33	22 1	7.0 ~. 2 / 1	בייב 8 < ח⊂	715	15	
	AL.0.		20.0	170	. 0 2	-0.1	10.0	,00	2.00	LT.0	0.0	10.0	0.0	ΤL	5.5	0.0	1.2				13.1	.,	.00	100	. 000	1, 1.3		,	0.0		J. 4 I.	0 - 03	7 4.0	LJ	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

Page 15

Data A FA

																																		LINE ANAL	YTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppr	Mn ppm	Fe گ	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cdi ppm j	Sb ppm g	Bi ppm p	V ppm	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti گړ	B A1 opm %	Na X	۲ ۲	W pm p	Hg : Tg mgc	Sc TT pm ppr	l S	Ga Se ppm ppm	Samp	le gm
18800E 9400N 18800E 9300N 18800E 9250N 18800E 9200N 18800E 9150N	.2 .4 .2 .4 .5	20.1 27.7 15.3 20.9 20.9	4.8 2.4 5.0 3.9 4.0	53 51 74 58 66	<.1 <.1 <.1 <.1 <.1	28.7 37.0 24.0 32.6 32.4	7.1 13.0 7.0 13.0 12.0	318 391 255 317 290	2.36 3.32 2.30 3.23 3.18	1.7 4.1 1.5 3.5 3.5	.7 .5 .4 .4	.8 2.0 <.5 7.6 <.5	1.0 1.3 .9 1.2 1.0	69 70 60 73 66	.1 <.1 .1 <.1 .1	.2 .2 .3 .6	.1 .1 .1 .1 .1	50 95 47 87 87	. 62 . 46 . 48 . 40 . 35	.029 .034 .054 .064 .084	14 10 8 5 3	36.7 52.0 35.1 49.6 47.0	.51 1.00 .44 .70 .52	98 109 89 115 110	. 113 . 156 . 117 . 158 . 157	3 2.29 2 2.02 3 2.07 2 2.37 2 2.38	.041 .032 .044 .032 .033	.06 < .07 .06 < .10 < .10 <	.1 . .1 . .1 . .1 .	02 5. 02 8. 02 5. 02 5. 02 5. 02 4	.6 <.1 .1 <.1 .0 <.1 .2 <.1 .1 <.1	 <.05 <.05 <.05 <.05 <.05 <.05 	6 <.5 5 <.5 6 <.5 7 <.5 6 <.5		15 15 15 15 15
18800E 9100N 18800E 9050N 18800E 9000N 18800E 8950N 18800E 8950N	.4 .2 .4 .4	21.1 23.4 36.4 13.1 19.4	3.7 3.1 3.4 3.6 4.5	58 58 82 91 63	<.1 .1 <.1 <.1 <.1	32.5 31.7 21.4 26.4 36.4	13.3 10.7 13.1 11.9 13.1	391 346 704 390 265	3.34 3.01 4.58 3.28 3.17	2.8 1.7 3.6 3.2 5.3	.3 .7 .4 .8 .7	<.5 <.5 1.6 .5 2.5	1.1 1.1 1.4 1.4 1.1	77 98 81 154 74	.1 .1 .1 <.1 <.1	.7 .4 .3 .3	.1 <.1 .1 .1	81 65 82 90 72	.51 .67 .80 .58 .46	.065 .026 .078 .054 .101	5 11 14 6 4	48.7 47.1 33.9 44.0 41.6	. 75 . 83 . 80 . 59 . 64	101 87 92 271 176	. 144 . 136 . 094 . 085 . 118	3 2.01 3 1.94 4 1.92 3 2.29 3 3.04	.045 .067 .030 .035 .028	.12 < .06 < .17 < .18 < .09 <	.1 . .1 . .1 .	02 5. 03 7. 02 9. 02 8. 02 4.	.6 <.1 .4 <.1 .6 .1 .5 .1 .6 <.1	<pre><.05 <.05 <.05 <.05 <.05 <.05 <.05 </pre>	6 <.5 5 <.5 7 <.5 6 <.5 9 <.5		15 15 15 15 15
18800E 8850N 18800E 8800N 18800E 8750N 18800E 8700N 18800E 8650N	.4 .3 .4 .5	16.5 15.6 27.7 30.3 22.4	4.7 4.8 3.7 3.2 5.2	66 74 60 57 86	<.1 <.1 <.1 <.1 <.1	32.0 27.1 40.1 37.0 41.8	12.6 10.0 17.3 15.2 14.4	272 345 691 436 594	2.80 2.32 3.37 3.58 3.09	3.2 1.9 4.0 3.8 3.2	.3 .5 .3 .4	<.5 1.1 .8 <.5	.8 .6 1.2 1.1 1.2	51 41 97 105 53	.1 <.1 .1 .1 .1	.3 .2 .3 .3 .2	.1 .1 .1 <.1 :	69 55 92 102 74	.29 .33 .57 .50 .31	.150 .093 .091 .066 .150	3 5 10 8 5	41.8 35.9 55.4 57.0 46.8	. 48 . 46 . 97 . 99 . 62	113 82 121 124 130	.141 .129 .157 .160 .139	1 2.85 2 2.43 2 2.55 2 2.51 2 3.15	.024 .032 .048 .042 .024	.07 < .05 < .09 < .08 < .10 <	-1 . -1 . -1 . -1 .	03 3. 03 3. 01 7. 01 6. 01 4	.3 <.1 .1 <.1 .0 <.1 .0 <.1 .0 <.1	<pre><.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05</pre>	8 <.5 7 <.5 7 <.5 7 <.5 9 <.5	-	15 15 15 15 15
18800E 8600N 18800E 8550N RE 18800E 8550N 18800E 8500N 18800E 8450N	.5 .4 .4 .4 .4	17.4 14.5 14.8 27.7 18.8	5.3 4.3 4.1 3.6 3.7	71 58 59 55 41	<.1 <.1 <.1 <.1 <.1	31.8 21.3 21.8 51.1 52.8	11.8 10.5 10.5 20.2 18.4	426 245 253 685 405	2.69 2.48 2.53 3.71 3.67	3.0 1.4 1.5 2.6 9.0	.3 .4 .3 .6 1.2	<.5 1.0 <.5 .9 1.4	.8 .8 1.6 1.5	36 60 61 147 110	.1 <.1 .1 <.1 .1	.2 .2 .2 .2 .5	.1 .1 .1 .1	64 58 58 92 93	. 22 . 38 . 40 . 81 . 67	.134 .077 .078 .108 .032	4 4 15 6	42.6 36.9 37.6 43.7 37.9	. 45 . 58 . 58 1. 47 1. 32	105 93 96 111 339	126 140 149 153 113	2 2.72 1 1.93 2 2.02 3 2.23 2 3.43	.023 .042 .046 .063 .088	.06 < .04 < .05 < .11 < .10 <	.1 . .1 . .1 .	02 3. 02 3. 02 3. 01 7. 01 6	1 <.1 .4 <.1 .5 <.1 .6 <.1 .6 .1	. <.05 . <.05 . <.05 . <.05 . <.05	8 <.5 6 <.5 6 <.5 7 <.5 8 <.5		15 15 15 15 15
18800E 8400N 18800E 8350N 18800E 8300N 18800E 8250N 18800E 8250N	.2 .5 .7 .5	14.0 18.9 23.5 19.1 16.0	4.4 5.3 4.1 4.3 4.3	56 51 52 75 56	<.1 <.1 <.1 .1 <.1	27.6 41.4 63.1 25.5 23.3	9.7 15.3 22.2 11.5 10.6	292 249 464 311 240	2.58 2.88 3.83 2.76 2.67	1.2 2.5 2.5 8.9 5.5	.5 .4 .6 .4 .4	.9 2.6 1.0 2.8 1.5	1.0 1.1 1.4 1.0 .8	101 52 123 38 41	.1 .1 .1 .1 .1	.2 .2 .1 < .7 .5	.1 -1 -1 -1	60 62 80 65 66	.60 .26 .63 .35 .30	.018 .118 .077 .155 .128	4 7 4 4	38.0 42.7 51.0 29.4 30.8	.83 .73 1.62 .54 .46	88 . 115 . 170 . 145 . 131 .	. 185 . 175 . 233 . 097 . 099	2 1.99 1 3.91 1 4.29 3 3.05 2 2.72	.069 .028 .052 .016 .020	.05 < .07 < .09 < .08 .06 <	.1 . .1 . .1 .	01 4. 04 3. 02 7. 06 3. 03 2	5 <.1 8 <.1 1 <.1 .0 <.1 .8 <.1	<pre>. <.05 . <.05 . <.05 . <.05 . <.05 . <.05 . <.05</pre>	6 <.5 10 <.5 9 <.5 9 <.5 9 <.5		15 15 15 15 15
18800E 8150N 18800E 8100N 18800E 8050N 18800E 8000N 18800E 7950N	.6 .4 .5 .6	18.9 21.0 11.6 20.2 21.8	4.4 4.2 5.1 4.8 4.5	128 39 72 42 84	<.1 .2 <.1 <.1 <.1	30.2 14.9 9.5 17.6 29.0	13.1 9.4 7.2 11.9 13.1	521 252 298 540 631	3.01 2.35 2.65 2.58 3.20	15.7 83.5 24.3 14.3 6.2	1.1 12.1 .6 1.0 .4	1.1 1.0 2.3 1.5 1.1	1.2 .4 1.5 1.6 1.2	65 118 10 45 42	.1 .2 <.1 : .1 .1	.8 7 2.0 .7 .8	.1 .1 .1 .1 .1	87 62 1 71 91 83	.64 1.00 .13 .31 .29	. 066 . 064 . 093 . 024 . 086	6 12 7 7 5	30.9 21.1 15.9 26.7 36.0	. 64 . 35 . 23 . 62 . 68	248 339 87 228 185	107 059 050 133 135	3 3.08 3 2.27 4 1.65 2 2.06 3 3.04	.023 .023 .009 .034 .018	.06 .03 < .06 .04 .09 <	.1 . .1 . .1 . .1 .	04 4 08 3 04 2 02 3 02 3	3 <.1 0 .1 .8 <.1 .8 .1 .6 .1	<pre><.05 <.05 <.05 <.05 <.05 <.05 <.05</pre>	10 <.5 8 .7 10 <.5 8 <.5 11 <.5	-	15 15 15 15 15
18800E 7900N 18800E 7850N 18800E 7800N 19000E 10000N STANDARD DS6	.5 .7 .5 .4 11.6	16.6 17.4 31.6 16.7 122.2	5.1 6.2 5.1 3.6 28.9	56 66 71 62 143	<.1 .1 <.1 <.1 .3	16.1 14.9 24.1 29.9 25.2	9.5 10.1 13.8 9.7 10.8	639 359 406 300 698	2.29 2.80 3.51 3.05 2.84	9.8 4.8 6.3 .6 21.0	.5 .4 .9 .3 6.5	3.1 1.2 2.2 1.5 46.0	.8 .9 1.6 1.4 3.2	70 91 68 105 40	.1 .1 .1 .1 5.9	1.0 .5 .9 1 3.5 4	.1 .1 .1 .1	76 83 98 65 56	.69 .25 .42 .51 .86	.041 .139 .073 .084 .077	6 3 10 4 14	26.8 25.4 33.8 57.7 190.3	.60 .54 .78 .52 .58	101 205 183 80 165	135 141 149 163 .080	2 1.95 1 3.08 1 4.20 3 2.22 17 1.92	.038 .016 .019 .056 .074	.06 < .12 < .08 .16 < .16 3	.1 . .1 . .1 .	03 3 03 4 03 6 01 4 22 3	.9 <.1 .1 <.1 .6 <.1 .1 <.1 .3 1.{	<.05 <.05 <.05 <.05 <.05 <.05	7 < 5 11 < 5 12 < 5 6 < 5 7 4 2		15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 16

																														C ANNETTICAL	
SAMPLE#	Mo	Cu	Pb	Zn Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr C	d S	b Bi	٧	Са	P	La	Cr	Mg	Ba	Ti	B A	Na	κı	i Hog Sc T	1 S	Ga Se	Sample	
	ppm	ppm	ррл	ppm ppm	ppm	ррп	ppm	x	ppm p)pm	орь р	pm p	pm pp	m pp	m ppm	ppm	2	X	ppm	ррт	*	ррт	8	ррп 5	\$	% ppr	ppm ppm pp	m %	ppm ppm	gn	
1900DE 9950N 1900DE 9900N 1900DE 9850N 1900DE 9860N 1900DE 9800N 1900DE 9750N	.4 .3 .5 .4 .7	22.9 21.4 17.5 8.9 18.5	3.2 3.2 3.7 4.6 4.5	67 <.1 49 <.1 48 <.1 42 <.1 69 <.1	44.3 38.8 30.7 20.2 31.9	15.4 13.8 11.6 7.0 13.2	744 3 499 3 634 2 309 2 357 3	8.26 8.13 2.95 2.11 8.23	<.5 .5 <.5 <.5 .0	.3 .4 .3 .2 .4	<.5 1 <.5 1 <.5 1 1.6 <.5 1	.21 .41 .11 .7 .4	14 . 23 . 09 . 52 . 85 <.	1 . 1 . 1 . 1 <. 1 .	1 <.1 1 <.1 1 .1 1 .1 1 .1	69 68 81 45 74	.62 .73 .53 .26 .36	.037 .072 .033 .037 .090	9 12 7 2 3	59.9 48.4 77.4 48.2 49.6	. 68 . 88 . 54 . 29 . 62	82 93 79 84 124	.133 .149 .142 .135 .162	3 1.60 2 1.98 2 1.40 1 1.84 2 2.20	062 062 059 031 032	.16 <.1 .15 <.1 .13 <.1 .06 <.1 .11 <.1	.01 8.1 <. .02 6.8 <. .03 4.5 <. .02 2.0 <. .01 3.9 <.	1 <.05 1 <.05 1 <.05 1 <.05 1 <.05 1 <.05	5 < 5 5 < 5 4 < 5 5 < 5 6 < 5	15 15 15 15 15	
19000E 9700N 19000E 9650N 19000E 9600N 19000E 9550N 19000E 9500N	.5 .5 .7 .5 .4	13.9 24.5 19.9 26.7 35.1	4.5 2.7 7.2 4.0 3.0	59 <.1 50 <.1 42 <.1 57 <.1 59 <.1	25.3 41.3 30.1 44.2 61.7	9.6 13.7 11.4 17.3 22.7	376 2 393 3 1530 2 634 3 772 3	2.83 3.21 2.16 3.56 3.66	.7 1.8 1.8 3 2.8 3 1.8	.5 .5 .9 .8 .6	<.5 1 1.5 1 <.5 1.4 1 1.6 1	.2 .7 1 .9 1 .4 1 .9 1	88 . 30 <. 40 . 08 . 46 .	1. 1. 1. 1.	1 .3 2 .1 1 .1 3 .1 2 <.1	66 87 54 93 89	.45 .63 1.07 .76 1.07	.051 .109 .063 .077 .104	4 10 6 12 15	47.4 58.6 42.9 50.1 51.9	.48 .93 .70 1.24 1.89	110 80 83 105 114	. 148 . 126 . 090 . 106 . 115	3 2.12 2 2.00 5 1.44 4 1.80 2 2.02	2 .033 5 .054 1 .055 1 .071 2 .097	.07 <.1 .13 <.1 .10 <.1 .09 <.1 .10 <.1	.02 3.7 <. .01 6.2 <. .10 4.1 <. .03 6.3 <. .01 8.3 <.	1 <,05 1 <.05 1 <.05 1 <.05 1 <.05 1 <.05	6 <.5 5 <.5 4 <.5 5 <.5 6 <.5	15 15 15 15 15	
19000E 9450N 19000E 9400N 19000E 9350N 19000E 9300N 19000E 9250N	.4 .3 .4 .6	19.3 11.8 14.6 29.8 26.0	3.6 4.2 3.5 3.4 3.7	57 <.1 46 <.1 34 <.1 73 <.1 48 <.1	36.7 23.7 26.4 52.5 31.3	11.6 7.7 9.0 21.5 11.8	243 2 326 2 228 2 581 4 205 4	2.89 2.26 2.58 1.58 1.24	2.7 1.1 1.8 3.1 2.9	.3 .2 .3 .3 .2	1.9 1 .7 .9 .9 1.7	.1 .8 .9 .8 .9	77 59 < 96 < 84 64 <	1 . 1 . 1 . 1 . 1 .	3 .1 1 .1 1 .1 1 .1 2 .3	70 47 61 89 92	.39 .32 .41 .64 .42	.175 .093 .062 .114 .054	3 2 3 9 4	47.7 36.0 44.9 69.3 66.9	.51 .37 .52 1.05 .30	131 91 109 69 67	.121 .120 .128 .069 .087	1 3.04 <1 2.03 1 2.19 3 2.14 3 1.99	.031 .032 .046 .060 .040	.10 <.1 .09 <.1 .07 <.1 .05 <.1 .03 <.1	.02 4.3 <. .01 2.9 <. .01 3.2 <. .01 6.9 <. .02 7.0 <.	1 <.05 1 <.05 1 <.05 1 <.05 1 <.05 1 <.05	8 <.5 6 <.5 5 <.5 5 <.5 5 <.5	15 15 15 15 15	
RE 19000E 9250N 19000E 9200N 19000E 9150N 19000E 9150N 19000E 9100N 19000E 9050N	.5 .3 .4 .3 .4	26.2 29.9 28.9 21.8 37.7	3.7 4.6 2.7 3.1 5.0	47 <.1 69 <.1 51 <.1 54 <.1 33 .1	30.4 44.2 37.5 32.5 12.7	11.5 15.2 13.9 12.2 4.8	204 4 461 4 534 3 436 3 278 1	4.15 4.19 3.12 3.05 1.09	2.8 2.5 3.3 2.5 2.3 4	.2 .3 .4 .8	.6 1.2 1.0 1 1.2 1 1.6 1	.9 .8 .3 1 .4 1 .0 1	65 < 70 10 03 50	1. 1. 1. 1. 2.	1 .3 1 .1 3 .1 4 <.1 1 .1	87 64 85 71 29	.41 .52 .72 .66 1.15	. 055 . 083 . 088 . 045 . 040	4 5 11 8 29	64.9 48.9 45.9 47.2 11.1	.29 .99 1.06 .86 .22	68 86 94 109 172	.077 .115 .118 .118 .118 .010	3 1.87 7 2.58 3 1.50 3 1.72 1 1.28	.036 .030 .068 .051 .011	.03 <.1 .14 <.1 .09 .1 .08 <.1 .05 <.1	.01 7.1 <. .01 5.4 .02 7.1 <. .03 7.7 <. .04 2.4 <.	1 <.05 1 <.05 1 <.05 1 <.05 1 <.05 1 <.05	5 <.5 7 <.5 5 <.5 5 <.5 4 <.5	15 15 15 15 15	
19000E 9000N 19000E 8950N 19000E 8900N 19000E 8850N 19000E 8850N	.4 .5 .5 .5	12.9 22.2 17.3 22.5 20.9	4.9 3.4 5.0 4.1 3.6	36 <.1 61 <.1 53 <.1 53 <.1 53 <.1	13.0 27.9 22.7 33.5 28.6	6.2 11.0 10.9 12.6 12.6	281 1 716 2 381 2 363 3 281 2	2.73 2.74 2.71 3.11 2.92	2.5 6.6 5.0 3.3 3.3	.5 .5 .3 .3	1.0 1 1.1 1 1.7 1 <.5 .9	.13 .3 .0 .9 .8	08 71 64 < 79 < 72 <	1. 1. 1. 1.	2 .1 5 .1 3 .1 2 .1 3 .1	33 72 68 82 75	.72 .46 .43 .35 .39	.053 .115 .076 .089 .129	16 11 7 4 4	17.9 37.1 33.1 48.0 46.3	.47 .55 .55 .63 .61	418 135 130 158 134	. 012 . 075 . 068 . 126 . 128	1 1.89 2 2.21 2 2.00 1 2.74 1 2.19	015 026 023 023 023 023 036	.12 <.1 .10 <.1 .09 <.1 .07 <.1 .08 <.1	.03 4.0 <. .02 6.3 . .03 3.9 <. .03 3.6 <. .02 4.0 <.	1 <.05 1 <.05 1 <.05 1 <.05 1 <.05 1 <.05	5 <.5 6 <.5 6 <.5 7 <.5 6 <.5	15 15 15 15 15	
19000E 8750N 1900DE 8700N 1900DE 8650N 1900DE 8600N 1900DE 8550N	.5 .5 .4 .5	26.2 34.2 17.7 26.6 16.9	3.6 3.2 4.2 3.2 6.4	57 <.1 52 <.1 63 <.1 51 <.1 56 <.1	36.1 40.7 28.5 34.2 41.3	14.5 15.8 12.5 13.2 10.7	394 3 577 3 559 2 450 3 177 3	3.35 3.40 2.71 3.24 3.11	3.1 3.9 3.2 3.3 7.6	.4 .7 .3 .5 .6	2.5 1 3.6 1 4.1 1.1 1 .8 1	.2 1 .5 1 .8 .3 1 .7	01 20 51 <. 02 47	1. 1. 1. 1.	2 .1 3 <.1 2 .1 4 <.1 2 .1	91 86 62 90 77	. 49 . 71 . 31 . 50 . 33	.088 .094 .292 .070 .399	9 14 4 10 5	52.2 52.1 40.9 49.2 39.1	.93 1.19 .45 .83 .48	123 122 122 117 166	. 134 . 115 . 100 . 130 . 136	1 2.18 2 1.96 1 2.43 1 2.01 2 4.23	i .037 5 .048 3 .020 035 1 .020	.06 <.1 .13 <.1 .07 <.1 .07 <.1 .06 .1	.01 5.7 <. .02 9.0 <. .04 3.8 <. .02 7.5 <. .02 4.2 <.	1 <.05 1 <.05 1 <.05 1 <.05 1 <.05 1 <.05	6 <.5 6 <.5 7 <.5 6 <.5 11 <.5	15 15 15 15 15	
19000E 8500N 19000E 8450N 19000E 8400N 19000E 8350N STANDARD DS6	.5 .5 .3 .3 11.6	22.2 20.7 21.1 18.4 122.4	5.5 4.6 4.4 4.5 28.7	71 <.1 60 <.1 52 <.1 51 <.1 143 .3	27.0 29.9 52.3 65.0 25.3	10.6 13.9 17.1 20.5 10.8	340 2 369 3 421 3 354 3 707 2	2.72 3.16 3.25 3.35 2.84	2.9 2.5 1.4 .8 20.9 6	.5 .5 .5 .4 .5 4	.7 1.4 1 .5 1 .7 1 8.3 3	.8 .1 .0 .1 1 .1	61 <. 63 . 83 . 18 . 40 5.	1 . 1 . 1 . 1 <, 9 3 .	1 .1 1 <.1 1 <.1 1 <.1 5 5.0	66 83 72 71 56	. 38 . 31 . 54 . 57 . 86	.107 .126 .094 .110 .078	4 7 4 9 14	33.2 19.3 37.7 43.6 190.8	.59 .81 1.24 1.68 .58	160 101 113 60 163	. 141 . 159 . 179 . 125 . 082	1 2.83 1 3.09 <1 2.80 <1 2.93 17 1.92	.022 .043 .041 .053 .074	.09 < 1 .05 < 1 .07 < 1 .05 < 1 .16 3.7	.02 3.3 <. .01 3.7 <. .02 4.1 <. .02 4.4 <. .23 3.3 1.	1 <.05 1 <.05 1 <.05 1 <.05 8 <.05	9 <.5 9 <.5 7 <.5 7 <.5 7 4.5	15 15 15 15 15	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

1

Almaden Minerals Ltd. PROJECT NR05-2 FILE # A505953

Page 17

								_																									^		_AL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ba	Ti	В	Al	Na	к	W Hg	Sc T	1 S	Ga Se	Sample	
	ppm	ngq	ppm	ppm (ppm	ngg	ppm	ppm	2	ррт	ppm	ppb	mqq	ppm (ppm	ppm p	mac	nqq	2	ጜ	nqq	πqq	2	ppm	z	nqq	8	8	% pp	nn pom	ppm pp	m %	DDM DDM	Qm	
				<u> </u>				<u> </u>			<u> </u>		· ·								·			· · · · ·											
19000E 8300N	.3	18.8	5.0	52 -	<.1	27.3	10.0	328	2.40	1.5	.6	1.0	1.1	58	.1	.1	.1	65	.41	.170	7	27.8	. 54	83	.120	1 3	3.28	.070	.03 <.	1.03	3.1 <.	1 <.05	8 < 5	15.0	
19000E 8250N	3	21.8	4 7	60 •	< 1	31 1	13 1	405	2.98	2.8	6	6.0	12	87	. 1	.3	.1	82	49	059	9	40 1	82	173	141	2 3	2 55	040	08 <	1 01	46<	1 < 05	7 < 5	15 0	
19000E 8200N	4	23 4	4 4	59 4	< 1	40 7	16.4	359	3 23	3.3	6	< 5	12	81	ĩ	3	1	73	45	082	5	42 8	1 09	291	144	1	3 39	028	08 <	1 03	41 <	1 < 05	8 < 5	15 N	
19000E 8150N	5	23.6	4 8	61	1	34 4	13 7	274	3 10	57	٠,	53	7	61	ĩ	5	1	72	36	130	Š	34.7	71	237	107	ĩ	3 23	026	05 <	1 04	352	1 < 05	Q < 5	15.0	
100000 91000	.5	10 /	16	CC .	- 1	27.4	10.7	274	2 02	10		5.5	. 'o	76	1	.2	1	Q1	.00	100	Ē,	27.7	.71	207	121	2	2.02	020	07 ~	1 04	21/	1 / 05	D / C	10.0	
13000C 0100M	.5	19.4	4.0	55 1	~.±	02.4	12.2	524	0.UJ	4.0	. ວ	./	.9	75	. 1	.4	· T	01	.47	. 0.94	5	37.4	.00	302	.121	2 1	2.90	,025	.07 ~.	1.04	0.1 ~.	1 ~.05	0 ~.5	15.0	
10000F 0050N	-	20 0	сı	41	1	70 F	10.1	707	÷	0.0		- F	1 F	70	1		1	70	65	022	10	22 C	6 7	F76	114	1 4	0 00	0.05	oc -	1 0.2	c 1 /	1 - 05	0 - F	15 0	
19000E 8050N	. 3	29.0	5.1	41	.1	29.5	10.1	28/	2.00	9.0	1.8	`. э	1.5	19	۲.	.4	.1	/0	.00	.033	13	33.0	. 65	5/0	.114	1 1	2.93	.025	.00 <.	1.00	0.1 <.	1 5.05	9 <.5	15.0	
RE 19000E 8300N	.4	20.6	5.5	56 1	<.1	29.4	10.7	342	2.49	1.6	./	./	1.1	64	4	.1	.1	66	.45	.1/8	1	29.8	. 50	89	128	1.	3.51	.076	.04 <.	1.02	3.4 <.	1 <.05	9 <.5	15.0	
1000F 9000N	.8	27.3	5.1	45	.1	25.2	10.5	301	2.76	33.1	.6	-5	.9	38	.1	.4	.1	11	.20	.038	6	31.4	. 56	288	.114	17	2.83	.022	.06.	1.04	3.2 <.	1 <.05	10 < .5	15.0	
19000E 7950N	1.2	12.1	6.4	48 -	<.1	15.4	6.4	171	2.57	22.3	.3	1.1	.5	23	.1	.5	.1	85	.18	.044	3	21.8	.42	121	.137	1	1.97	.011	.04.	1.03	2.2 <.	1 <.05	12 <.5	15.0	
19000E 7900N	.7	12.3	6.1	59 -	<.1	13,8	9.2	345	2.21	14.2	.4	1.2	. 8	49	.1	.9	.1	68	.34	. 030	4	21.9	. 57	140	.120	1	1.72	.017	.06 <.	1 .02	2.6 <.	1 <.05	8 <.5	15.0	
19000E 7850N	.5	7.9	4.9	49 <	<.1	10.6	7.8	349	2.07	22.4	.4	<.5	.8	- 93 ·	<.1	.5	.1	66	,44	. 023	4	18.3	, 55	110	.078	2 :	1.65	.018	.04 <.	1.02	2.8 <.	1 <.05	7 <.5	15.0	
19000E 7800N	.6	17.1	5.2	42 <	<.1	19.6	11.0	575	2.75	74.8	. 8	.7	1.2	114	.1	1.0	.1	98	.65	. 023	6	30.3	.78	107	.116	2 3	2.32	.049	.03 <.	1.01	5.3 <.	1 <.05	7 <.5	15.0	
19200E 10000N	.3	11.3	2.3	51 <	<.1	17.8	7.6	355	2.33	<.5	.2	<.5	.7	106 .	<.1 ·	<.1 <	<.1	47	.44	. 029	3.	47.5	. 34	76	.156	2	1.29	.066	.10 <.	1.02	3.3 <.	1 <.05	3 <.5	15.0	
1920DE 9950N	.3	14.3	2.4	62 <	<.1	20.0	8.5	597	2.42	<.5	.1	<.5	.8	102	.1 •	<.1 <	<.1	50	.42	.041	3	47.9	.41	82	.147	2	1.28	.055	.15 <.	1 .01	3.7 <.	1 <.05	3 <.5	15.0	
19200F 9900N	5	18 7	23	65 4	< 1	34 1	11 9	450	2 88	< 5	3	< 5	12	126	1 -	< 1 <	< 1	54	60	050	5	47 6	76	97	149	3	1 74	064	12 <	1 02	51<	1 < 05	4 < 5	15.0	
192002 99000	.0	10.7	÷.0	00		01	11.2		2.00	.0				100		••	••				v				. 1 . 5	•				1.02	0.1	1 .00	,	10.0	
19200F 9850N	3	14 2	36	50 •	< 1	20.5	8.0	392	2 48	< 5	4	< 5	10	65 -	< 1	1	1	60	38	025	4	38.0	45	71	170	1 .	1 68	063	11 <	1 01	39<	1 < 05	5 < 5	15.0	
192002 90000	6	16.4	20	52	c 1	19.6	0.0	363	2 30	< 6		1 1	1 1	50	e 1	1	1	70		025	2	37 0	2/	70	160	1	1 71	057	<u>08</u> <	1 01	10.5	1 < 05	5 ~ 5	15.0	
102006 07508	.0	10.4	20	77 .	~ 1	14 0	5.7	422	1 DA	~ 5	.7	1 0	1.1	10	1.1	1	ì	47	21	020	3	57.0 57.4	20	70	120	1	1.71	050	07 ~	1 01	20-	1 ~ 05	1 - 5	15 0	
10200E 9730N	.J 	10.7	2.0	- 11 - E2 -	>.1 > 1	14.7	2.7	704	2.24	~.5	. 4	1.0		47 50.	.1	-1	.1	67	24	022	2	16 2	. 23	70	160	1	1 /0	053	.07 ~.	1 .01	2.0 ~.	1 ~.05 1 ~ AE	4 5.5	15.0	
19200E 9700M	.5	10.0	3.9	52 .	. 1	10.4	10.7	290	2.00	~.5	.0	.5	1.0	110	·.1	.1	.1	02	.04	. 944	21	40.0	1.01	110	.100	+ -	1.49	.052	. 0/ ~.	1.01	3,0 1.	1 ~ 05	4 5.0	15.0	
192006 90900	.4	32.4	3.4	- OC	<.1	30.5	10.7	390	3.93	. /	.,	~. 0	1.9	110	.1	.1 •	·.1	90	-0/	. 032	21	19.3	1.0/	110	.1/5	T,	5.14	.057	, 14 <.	1 .01	11.5 .	1 ~.05	0 4.5	1.5	
100005 0000		10.0		60		~ ~		~~~			~			00		•	1	<u>ог</u>		0.00	-	FO 4	40		170	<u>.</u>	1 40	000	10 -	1 00		1 . 05	4 - 5	15 0	
19200E 9600N	.4	18.0	3.8	59 *	<. <u>1</u> .	24.0	10.0	500	2.03	5.5	.3	5.5	1.1	100	. L	.1	.1	00	-55	.035		59.4	.43	00	.172	<u> </u>	1.49	.083	.10 <.	1.02	4.0 <.	1 5.05	4 5.5	15.0	
19200E 9550N	.4	1/.6	4.0	50 *	<.1	30.3	12.7	545	2.91	<.5	.4	1.6	1.1	105	1.	1.	.1	72	.48	.044	0	53.8	. 66	91	.1/1	2.	1.85	.060	.11 <.	1.02	4.6 <.	20.>1	5 5.5	15.0	
19200£ 9500N	.4	19.8	3.9	63 -	<.1	34.7	12.7	49/	3.15	.6	.6	<.5	1.4	101	.1.	<.1	.1	59	.6/	.113	6	49.8	. 82	140	.159	6.	2.27	.056	.23 <.	1.01	5.7 <.	1 <.05	b <.5	15.0	
19200E 9450N	.4	19.0	3.2	40 -	<.1	35.3	12.9	451	3.48	<.5	.4	<.5	1.3	120 •	<.1	.1 <	٤.1	84	.51	.037	7	83.7	. 60	88	.178	1 :	1.80	.059	.11 <.	1 .01	4.8 <.	1 <.05	5 <.5	15.0	
19200E 9400N	.3	29.6	2.6	53 -	<.1	55.6	21.2	665	3.76	.6	2.7	<.5	1.6	179	.1	.1	.1	88	. 98	.084	13	62.4	1.70	101	.150	3 2	2.20	.110	. 11 <.	1 .01	7.5 <.	1 <.05	6 <.5	15.0	
1920DE 9350N	.5	15.6	2.8	50 -	< 1	25.8	10.4	366	2.87	<.5	.2	<.5	.8	125	.1	.1 <	<.1	65	.53	. 048	3	63.0	. 53	98	.166	3 :	1.63	.077	.14 <.	1.01	3.6 <.	1 <.05	4 <.5	15.0	
19200E 9300N	.2	34.1	3.7	70 <	<.1	56.7	25.3	657	4.30	1.1	7.1	. 9	1.4	124	. 1	.1 <	<.1	84	.79	. 090	14	59.5	1.93	68	.183	7 :	2.26	.067	.22 <.	1 .01	11.4.	1 <.05	7 <.5	15.0	
19200E 9250N	.3	27.7	2.4	44 •	<.1	44.3	14.6	420	3.38	.5	3.5	<.5	1.5	174	.1	.1 <	<.1	76 1	L.Q5	.073	14	62.2	1.20	79	.146	6	1.96	.122	.07 <.	1.01	6.2 <.	1 <.05	5 <.5	15.0	
19200E 9200N	.4	33.1	3.3	58 -	<.1	60.0	21.1	749	3.73	.7	.5	. 8	1.7	170	.1	.1	.1	85 1	1.20	. 114	14	57.7	1.83	88	. 143	3 3	2.28	.138	.12 <.	I .01	7.2 <.	1 <.05	6 <.5	7.5	
19200E 9150N	.4	16.3	4.2	65 -	<.1	38.5	12.7	431	3.33	. 5	.3	<.5	1.1	81 ·	<.1 ·	<.1	.1	67	.43	.100	3	66.0	.61	113	.182	1 3	3.03	.055	.08 <.	1.01	4.4 <.	1 <.05	7 <.5	15.0	
19200E 9100N	.3	13.4	3.6	63 -	<.1	23.9	8.2	435	2.68	<.5	.2	<.5	.8	73 ·	<.1 ·	<.1	.1	55	.37	. 058	3	59.1	.44	96	.173	1 :	2.25	.051	.05 <.	1.01	3.5 <,	1 <.05	6 <.5	15.0	
19200E 9050N	.3	46.4	1.2	70 -	<.1	59.9	22.7	474	5.13	1.2	.3	1.2	.8	68 ·	<.1	.1 <	<.1 1	143	.63	156	11	100.7	1.55	66	.209	1 1	1.78	.064	.15 <.	1<.01	3.3 <.	1 <.05	7 <.5	15.0	
19200E 9000N	4	15.5	4.5	57 <	<.1	20.9	11.1	275	2.76	3.1	.4	< 5	.9	66 •	<.1	.2	.1	60	. 37	068	6	34.9	.49	120	.090	1	2.19	.028	.07 <	1.01	4.0 <	1 < 05	7 < 5	15.0	
19200F 8950N	5	18 4	41	55 -	< 1	23.6	10 1	360	2 92	2.5	5	14	12	83 .	< 1	.2 <	< 1	76	42	062	6	40.7	56	156	.112	1	2.12	026	.08	1 02	4.0	1 < 05	6 < 5	15.0	
STANDARD DS6	11 7	122 6	28 8	142	3	25.2	10 9	707	2 86	21 1	6 6	45 6	31	41	5 9 :	3 6 9	5 0	56	86	078	14	191 5	59	166	081	16	95	075	16.3	5 24	331	8 < 05	745	15.0	
			40.0	1.47			10.9	107	2.00		0.0		<u></u>			0.0.		50					. 33	100	.001	10	1.75	.0/0	. 10 0.			505		10.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖉 FA

Page 18

SMPEF PD Cu Pp box Cu Pp box Pp box <																														ACHE	ANALYTICAL
ppi ppi ppi ppi ppi ppi t t ppi t ppi <t< th=""><th>Sampi F#</th><th>Mo</th><th>Сц</th><th>Ph</th><th>7n Aa</th><th>Ni</th><th>Co</th><th>Mn I</th><th>e A</th><th>s U</th><th>Au</th><th>Th</th><th>Sr Cd</th><th>Sb</th><th>Bi</th><th>v</th><th>Ca</th><th>p</th><th>1 a</th><th>Cr</th><th>Ma</th><th>Ba</th><th>Ti</th><th>B A</th><th>l Na</th><th> K ₩</th><th>Нα</th><th>SC TI</th><th>S Ga</th><th>5 A 7</th><th>umnlo</th></t<>	Sampi F#	Mo	Сц	Ph	7n Aa	Ni	Co	Mn I	e A	s U	Au	Th	Sr Cd	Sb	Bi	v	Ca	p	1 a	Cr	Ma	Ba	Ti	B A	l Na	 K ₩	Нα	SC TI	S Ga	5 A 7	umnlo
192006 9900h 4 17.0 4.5 65 1.6 1.9 1.1 <t< th=""><th></th><th>ngq</th><th>DDm</th><th>ppm</th><th>DDM DDM</th><th>рол</th><th>mqq</th><th>DDM</th><th>× DD</th><th>ת מכומ</th><th>ppb p</th><th>DAN D</th><th>DRI DDRI</th><th>ppm</th><th>DDI</th><th>DDM</th><th>2</th><th>z</th><th>DDM</th><th>DDM</th><th>2</th><th>ppm</th><th>8</th><th>DDM 3</th><th>5 8</th><th>\$ DON 1</th><th>מסכ</th><th>DOM DOM</th><th>χ ΩDU ΠICU χ</th><th>on o</th><th>001</th></t<>		ngq	DDm	ppm	DDM DDM	рол	mqq	DDM	× DD	ת מכומ	ppb p	DAN D	DRI DDRI	ppm	DDI	DDM	2	z	DDM	DDM	2	ppm	8	DDM 3	5 8	\$ DON 1	מסכ	DOM DOM	χ ΩDU ΠICU χ	on o	001
19200E 6900h .4 17.0 4.5 6.1 9.2 1.5		F F ····	FF	<u> </u>	FF. FF.	F.F	1 1 1 1 1	FF			FF- F	F	en FF						(* (****										• pp p		
19200E 26800H 13 12.0 4.4 47 2.27 4.6 6.9 97 1.4 1.4 1.2 1.4 1.0 1.	19200E 8900N	.4	17.0	4.5	65 < 1	23.9	11.2	187 2.8	3 5.	5.4	.61	.9	41 <.1	.5	.1	59	.32	.210	4	30.1	.52	130	.075	1 2.72	2.01B	.07 < 1	02	47<.3<	057<	5	15.0
1920012 192001 14 19 18 1 19 12 10 10 2 12 10 10 2 10 10 2 10 <t< td=""><td>19200F 8850N</td><td>3</td><td>12.0</td><td>44</td><td>57 1</td><td>17 0</td><td>8 4</td><td>417 2 2</td><td>7 4</td><td>5 4</td><td>.6</td><td>9</td><td>37 .1</td><td>4</td><td>1</td><td>52</td><td>25</td><td>151</td><td>4</td><td>24.2</td><td>41</td><td>146</td><td>079</td><td>1 1 79</td><td>9 020</td><td>06 1</td><td>01</td><td>29<1<</td><td>05 6 <</td><td>ŝ</td><td>15 0</td></t<>	19200F 8850N	3	12.0	44	57 1	17 0	8 4	417 2 2	7 4	5 4	.6	9	37 .1	4	1	52	25	151	4	24.2	41	146	079	1 1 79	9 020	06 1	01	29<1<	05 6 <	ŝ	15 0
19200E 2750W 5 17 5 12 17 5 12 17 5 12 17 5 12 17 5 12 17 5 12 16 12 14	19200E 8800N	.0	14 9	3.8	45 < 1	26.6	97	263 2 6	6 2	2 3	< 5	ġ.	75 < 1	3	1	69	32	078	Å	37 8	51	140	105	2 2 7	5 021	19 < 1	02	30<1<	05 6 <	 Б	15.0
19200E 87000 5 24.3 3.4 49 112.2 12.3 592.4 3.4 5 12.9 1 2.1 12.2 1 12.2 1 12.2 130 100 12.2 130 100 12.2 130 100 12.2 130 100 12.2 130 100 12.2 130 100 12.2 130 100 12.2 130 100 12.2 130 100 13.5 1.2 1.5	19200E 8750N	۰۰. ج	37 1	5 1	97 < 1	26.2	11 7	766 2 6	in 3	0 1 A	111	n i	52 1	.3	1	58	32	111	7	24 2	59	125	117	1 2 11	021	06 < 1	02	35 < 1 <	00 0- NG 7-2	ני. ג	15.0
192000 50 50 54 54 54 54 54 15 15 15 15 192000 56 50 54 55 67 16 64 15 16	102002 07500		24 2	2 4	$\frac{10}{10} < 1$	27 2	12 2	502.0	ы з. аз	лт 1 Б	201	6 1	23 I	.0	< 1	92	61	002	11	12 0	.00 0n	100	117	2170	2 067	07 < 1	02 02	59/1/	00 /~ 05 5~		15.0
12000 6650N 5 16.7 3.4 4.4 1.7 1.0 1.0 9 4.4.3 51 100 100 4.5 51 6.5 15.0 19200F B500N 5 5.7 1.7 6 1.0 9 4.4 1.1 1.5 4.0 2.22 0.30 0.4 1.0 0.3 0.5 1.0 0.5 1.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.22 0.22 1.1 1.4 1.5 0.22 0.5 1.2 2.23 2.5 9 1.1 1.6 2.4 1.2 1.0 0.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 0.5 1.5 0.5	192006 07000	. 5	24.0	0.4	49 ~.1	52.2	12.0	J32 C.	1 0.4	+	2.91	.0 1	20 .1	. 2	·. I	02	.01	.052	11	43.9	.00	101	/	2 1.70	0.000	.0/ ~.1	. UZ	0.01	00 0 ~	. 9	12.0
13/2000 B3/2001 3 10 1.0	10200C 0650N	c	16 7	2 4	11 - 1	97 C	10.0	256 2 -	0 1		6 1	τ.	60 ~ 1	1	~ 1	71	20	100	c	11 2	C 1	100	102	1 2 2	מכת ז	04 < 2	01	25212		c	15 0
B2000 B0000 A B2 Columbra B4 Columbra Columbra <thcolu< td=""><td>192002 00000</td><td>.5</td><td>10.7</td><td>3.4</td><td>44 \.1</td><td>27.0</td><td>10.9</td><td>200 4.7</td><td>0 1.</td><td>- 1 0</td><td>.01</td><td></td><td></td><td>. 1</td><td>×.1</td><td>71</td><td>. 30</td><td>.102</td><td>5</td><td>44.0</td><td>. 51</td><td>100</td><td>102</td><td>1 2.2/</td><td>.000</td><td>.04 ~.1 .</td><td>. UI</td><td>3.5 \.1 \.</td><td></td><td>. ວ</td><td>15.0</td></thcolu<>	192002 00000	.5	10.7	3.4	44 \.1	27.0	10.9	200 4.7	0 1.	- 1 0	.01			. 1	×.1	71	. 30	.102	5	44.0	. 51	100	102	1 2.2/	.000	.04 ~.1 .	. UI	3.5 \.1 \.		. ວ	15.0
hc 12200E 2850M .4 12.7 4.3 57 17.6 8.7 9.5 15.0 19200E 8500M .5 13.8 69 12.6 12.4 22.9 22.1 12.1 14.8 8.6 61.4 13.1 12.1 17.8 12.1 17.8 12.1 17.8 12.1 17.8 12.1 17.8 12.1 17.8 12.1 17.8 12.1 17.8 12.1 17.8 12.1 17.8 12.1 17.8 12.1 17.8 12.1 17.8 12.1 17.8 18.8 16.4 12.2 12.9	19200E 8600M	.3	22.2	5.3	53 <.1	31.0	10.0	364 2.0	1.1	5 I.U	.91	.4	90 .1	.1	. 1	54	.60	.022	10	41.1	.83	104	. 162	1 2.22	0.038	.04 <.1	.UZ	8.9 < 1 <	05 6 <	. 5	15.0
192006 15 19.1 3.8 9 1 2.4 2.4 2.4 2.4 2.4 2.5 9 7 1<	KE 19200E 8850N	.4	12.7	4.3	5/ .1	17.6	8.7	443 2.2	. 4.	5.4	.51	.0	38 .1	. 5	. 4	54	.26	. 156	4	25.5	-40	153	.090	1 1.8	.U21	.06 < 1	.01	3.0 <.1 <.	05 6 <	.5	15.0
19200E 8900N .6 17.2 4.9 5.4 1.3 1.1 1.6 1.2 1.1 1.6 1.2 1.1 1.6 1.2 1.1 1.6 1.2 1.1 1.6 1.2 1.1 1.6 1.2 1.1 1.6 1.1 1.6 1.1 1.6 1.1 1.6 1.1 1.6 1.1 1.6 1.3 1.6 2.7 2.2 0.7 1.0 2.3 2.4 0.5 0.4 1.0 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.0 0.3 0.5 0.4 0.0 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 <th0.3< th=""> 0.6 0.3 <</th0.3<>	19200E 8550N	.5	19.1	3.8	49 < 1	32.6	12.4	324 2.8	34 3.	2.3	2.5	.9.	/1 <.1	.2	. 1	/8	34	.088	4	45.8	. 66	144	.134	1 2.57	.026	.08 <.1	.03	3.6 <.1 <.	05 6 <	.5	15.0
19206 8450N .4 18.0 5.4 5.3 .1 1.1 1.6 1.3 .1 1.6 1.3 .1 1.6 1.3 .1 1.6 1.3 .1 1.6 1.3 .1 1.6 1.3 .1 1.6 1.3 1.6 1.3 1.6 1.4 1.8 1.0 1.6 1.3 1.5 1.4 1.6 1.0 1.6 1.3 1.6 1.1 1.6 1.1 1.6 1.1 1.6 1.2 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.1 1.6 1.1 1.6 1.1 1.6 1.1 1.1 1.6 1.1 1.1 1.6 1.1 1.1 1.6 1.1 1.1 1.6 1.1 1.6 1.1 1.1 1.6 1.1 1.1 1.6 <td< td=""><td>19200E 8500N</td><td>.6</td><td>17.2</td><td>4.9</td><td>54 < 1</td><td>36.1</td><td>12.0</td><td>219 2.6</td><td>58 3.</td><td>5.3</td><td>1.2 1</td><td>.1 4</td><td>46 <.1</td><td>.1</td><td>.1</td><td>61</td><td>. 24</td><td>. 188</td><td>4</td><td>40.2</td><td>- 52</td><td>92</td><td>.121</td><td><1 3.19</td><td>9.022</td><td>.06 <.1</td><td>. 02</td><td>3.6 <.1 <.</td><td>058<</td><td>.5</td><td>15.0</td></td<>	19200E 8500N	.6	17.2	4.9	54 < 1	36.1	12.0	219 2.6	58 3.	5.3	1.2 1	.1 4	46 <.1	.1	.1	61	. 24	. 188	4	40.2	- 52	92	.121	<1 3.19	9.022	.06 <.1	. 02	3.6 <.1 <.	058<	.5	15.0
19200E 450N .4 18.0 5.4 53 1.1 1.6 1.3 1.7 1.6 11.9 1.2 1.2 0.2 <th0.2< th=""> 0.2 0.2 <</th0.2<>																															
12200E 8400M 3 25.0 4.5 53 1.5 54.9 1.1 1.6 85 0.4 10 57.3 1.6	19200E 8450N	.4	18.0	5.4	53 <.1	41.4	15.7	398 2.8	35 2.5	5.4	1.11	.1 (65.1	.1	.1	61	. 37	. 155	3	41.7	.85	110	,159	1 2.97	.022	.07 <.1	.02	3.9 <.1 <.	05 8 <	.5	15.0
19200E 8350M .4 20.0 5.2 56<	19200E 8400N	.3	25.0	4.5	53 < 1	58.3	19.5	549 3.8	3 9 .:	3.6	1.41	.81	20 <.1	.1	< 1	88	. 55	.044	10	57.3	1.63	136	.248	<1 2.72	2.036	.06 <.1 .	.01	10.4 <.1 <.	057<	. 5	15.0
19200E 3300N 3 19.4 6.5 61. 156.4 22.2 64.3.86 .7 5.7 1.7 114 1.4 1.1 74 50 0.60 9 51.4 61.6 124 149 <1.4	19200E 8350N	.4	20.0	5.2	56 <.1	57.6	19.0	403 3.6	50 1.4).3	1.51	.0	53 .1	<.1	.1	88	, 32	. 093	3	65.8	1.27	78	. 258	<1 3.78	3 .028	.03 <.1 .	. 02	3.7 <.1 <.	05 10 <	.5	15.0
19200E 8250N .5 2.6.2 4.8 51 1 0.1 8 9 1.1 4 .1 66 .0 9 5.1 1 9 4 1 4 .1 66 .0 9 5.1 4 .1 1 .0 5 1.2 1 1.4 .2 1.1 .1	19200E 8300N	.3	19.4	6.5	61 < 1	56.4	22.2	664 3.8	36.	7.5	.71	.7 1	14.1	<.1	.1	74	. 50	.080	4	48.6	1.66	124	.149	<1 4.4	5.042	.12 <.1	.03	8.2 .1 <.	05 11 <	. 5	15.0
19200E 8200N .6 24.7 5.1 53.4 3.6 8.8 .7 1.5 1.8 95.1 .4 .1 00.32 .072 10 45.8 83211 .115 1.4 1.8 .015 .1 .5 1.5 .0 5.0 10 .5 1.5 .0 5.0 .1 .4 1.8 0.13 .5 .1 .1 .1 .6 6.7 .10 .1 .1 .5 .2 .1	19200E 8250N	.5	26.2	4.8	51 < 1	40.1	15.1	300 3.4	8 3.	5.5	1.01	.8	94 <.1	.4	.1	86	. 30	. 060	9	51.4	. 91	262	.127	1 4.32	2.019	.05 <.1	.04	6.1 .1 <.	05 9 <	.5	15.0
19200E 8200N .6 24.7 5.1 5.3 1.3 1.4 .1 80 32.072 10 45.8 .83 211 115 <1.4																															
192006 8150N .5 21.9 5.7 56 .1 0.6 6.9 .1 1 1 68 .27 1.08 5 45.6 60 102 2.0 7 1.04 5.1 1.1 .1 .5 21.08 5 45.6 60 102 5.1 2.4 3.3 3.2 3.3 3.1 1.2 1.3 3.3 3.1 1.6 2.3 1.1 9 1.2 1.1 1.7 2.2 1.4 4 44.0 5.6 104 1.14 3.9 1.1 1.7 7.5 2.1 1.4 3.3 3.3 3.1 6 2.3 1.1 9 1.2 1.4 4.4 4.4 0.5 6 1.4 1.5 9 1.1 1.7 7.5 5 0.4 0.4 1.0 1.0 0.7 1.3 1 7.6 50 0.53 5 40.3 3.22 1.4 0.7 7.5 15.0 1.02 3.2 1.1 0.1 0.7 1.3 1.5 7.6 2.1 0	19200E 8200N	.6	24.7	5.1	53 <.1	36.8	14.7	304 3.3	6 8.3	3.7	1.51	.8	85.1	.4	.1	80	. 32	.072	10	45.8	. 83	211	.115	<1 4.18	3.018	.05 <.1	.05	6.4 < 1 <.	05 10 <	.5	15.0
19200E 8100N .4 16.6 6.7 65 13.2 343 3.26 1.8 .4 1.2 1.3 39 .1 1 17 5.2 5.44 4 44.0 .56 104 114 1 3.96 0.16 0.08 <1	19200E 8150N	.5	21.9	5.7	56 < 1	40.6	16.9	336 3.4	9 1	4.5	2.31	8	70 < 1	1	.1	68	27	108	5	45.6	.80	157	125	<1 4 68	3 .023	.07 < 1	04	51<.1<	05 11 <	5	15.0
19200E 8050N 4 20.1 6.1 66 35.1 1.6 2.3 1.0 9 1.2 1.0 1.55 050 8 44.5 .0 1101 1.52 1.30.1 028 .07 <1.02	19200F 8100N	4	16.6	67	65 < 1	35.9	13.2	343 3 2	6 1	a 4	121	3	39 .1	1	1	75	25	141	4	44 0	56	104	114	1396	5 016	08 < 1	ñ1	43<1<	05 11 <	5	15 0
19200E 8000N .4 10.1 0.1 0.4 2.7 0.1 <th0.1< th=""> 0.1 0.1</th0.1<>	19200E 8050N	. 4	20 1	6 1	66 < 1	35 1	13 4	543 3 3	6 3	6	231	1 0	99 1	2	1	สบั	55	050	8	44 5	.00	181	152	1 3 02	1010	07 < 1	02	51<1<	05 11 -	5	15.0
19200E 108 108 108 107 13 11 17 13 11 14 14 14 10 10 11 17 13 15 12 12 14 100 11 10 13 11 12 15 14 100 11 11 11 13 11 12 16 103 105 100 11 100 11 <td>19200F 800DN</td> <td>.4</td> <td>17 8</td> <td>s n</td> <td>58 < 1</td> <td>31 2</td> <td>13.6</td> <td>427 3 1</td> <td>4 4</td> <td>2 6</td> <td>1 4 1</td> <td>5 1</td> <td>92 < 1</td> <td>3</td> <td>1</td> <td>76</td> <td>50</td> <td>053</td> <td>5</td> <td>40 3</td> <td>85</td> <td>246</td> <td>144</td> <td>1 2 30</td> <td>1020</td> <td>19 < 1</td> <td>02</td> <td>49414</td> <td>05 0-</td> <td>5</td> <td>15.0</td>	19200F 800DN	.4	17 8	s n	58 < 1	31 2	13.6	427 3 1	4 4	2 6	1 4 1	5 1	92 < 1	3	1	76	50	053	5	40 3	85	246	144	1 2 30	1020	19 < 1	02	49414	05 0-	5	15.0
19200E 7950N .4 40.2 4.7 53 .1 2.9 419 2.97 51.3 2.1 2.5 1.4 86 .1 5 .1 78 68 .026 8 37.5 .78 458 .099 1 2.65 .033 .05 .1 .02 6.2 .1 .05 7 .5 15.0 19200E 7950N .6 192 5.3 82 .1 1.0 .6 37 .1 .3 .1 .4 .01 .05 .06 .02 .0 .1 .02 .0 .1 .02 .0 <td< td=""><td>132000 00000</td><td>. 4</td><td>17.0</td><td>J.U</td><td>JO ~.1</td><td>01.2</td><td>10.0</td><td>427 0.1</td><td>.4</td><td></td><td>7.47</td><td></td><td>JC ~,1</td><td>.0</td><td>. 1</td><td>10</td><td>. 30</td><td>. 000</td><td>5</td><td>40.0</td><td>. 00</td><td>240</td><td>. 144</td><td>1 4.03</td><td>7.004</td><td></td><td>. uz</td><td>4.91</td><td></td><td>. J</td><td>13.0</td></td<>	132000 00000	. 4	17.0	J.U	JO ~.1	01.2	10.0	427 0.1	.4		7.47		JC ~,1	.0	. 1	10	. 30	. 000	5	40.0	. 00	240	. 144	1 4.03	7.004		. uz	4.91		. J	13.0
19200E 7800N .4 1.2 2.1	10200E 7050N	4	10.2	17	53 1	20.0	12 0	110 2 0	7 51	2 2 1	251	A 9	96 < 1	5	1	79	68	026	g	37 6	79	159	000	1 2 68		05 < 1	02	62 14	ns 7 <	5	15.0
19200E 7950N .4 10.5 5.0 1.1 2.7 5.0 2.3 1.0 1.0 1.1 1.1 1.1 2.3 2.1 2.3 2.1 1.0 1.0 1.1 1.1 2.3 2.1 1.0 1.1	102000 70000	. 4	12 6	/ E O	67 1	15 0	7 5	20/ 2 /		ງ <u>2</u> .1	1.0	6	27 1	. 2	1	54	20	120	2	22 1	.70	701	122	-1 1 40	1 000	06 < 1	02	20 < 1 <	05 0-	. J E	15.0
192002 7500N .6 192.2 .6 .6 .6 .6 .6 .7 .7 .7 .6 .7 .6 .7 .7 .7 .6 .7 .7 .7 .6 .7 .7 .7 .6 .7 <td>10200E 7900M</td> <td>.4</td> <td>10.0</td> <td>5.0</td> <td>1, 10</td> <td>20.0</td> <td>12 6</td> <td>E20 2 C</td> <td>NG 4.4</td> <td>ວ .ວ ເ</td> <td>2 2 1</td> <td>.0.</td> <td>C1 1</td> <td>. 3</td> <td>. 1</td> <td>72</td> <td>25 25</td> <td>145</td> <td>3</td> <td>20.4</td> <td>. 33</td> <td>261</td> <td>120</td> <td>~1 2 16</td> <td>010 710</td> <td>.00 <.1 .</td> <td>.UC </td> <td>2.0 ~.1 ~.</td> <td>00 3 ~ NE 0 ~</td> <td>. 0 E</td> <td>15.0</td>	10200E 7900M	.4	10.0	5.0	1, 10	20.0	12 6	E20 2 C	NG 4.4	ວ .ວ ເ	2 2 1	.0.	C1 1	. 3	. 1	72	25 25	145	3	20.4	. 33	261	120	~1 2 16	010 710	.00 <.1 .	.UC 	2.0 ~.1 ~.	00 3 ~ NE 0 ~	. 0 E	15.0
19200E 7800N .4 13.3 3.9 $72 < 113.3$ 8.3 2292.39 6.6 .5 1.1 .9 28 .110 .1 66 .29 .112 3 19.7 .42 105 .056 <1	10000E 7000N	.0	19.2	3.3	02 ~.1	10.0	13.0	000 2.5	0 4.1		2.01		01 .1	1.0	. L 1	10	. 00 .	. 140	4	10 7	. 0/	100	.120	-1 9.15	1.017	.00 \.1 .	. U.C.	3.2 .1 .	0 9 4		10.0
19400E 19400E 19400E 19400E 114 11 <th< td=""><td>1920UE /800N</td><td>.4</td><td>13.3</td><td>3.9</td><td>12 < 1</td><td>13.3</td><td>0.3</td><td>329 2.3</td><td>9 0.</td><td>с. с</td><td>1.1</td><td>. 9</td><td>20 .1</td><td>1.0</td><td>.1</td><td>70</td><td>. 29</td><td>. 112</td><td>3</td><td>19.7</td><td>. 42</td><td>100</td><td>.050</td><td><1 1.8/</td><td>.012</td><td>.06 .1</td><td>.03</td><td>2.0 <.1 <.</td><td>אי כט</td><td>. D</td><td>15.0</td></th<>	1920UE /800N	.4	13.3	3.9	12 < 1	13.3	0.3	329 2.3	9 0.	с. с	1.1	. 9	20 .1	1.0	.1	70	. 29	. 112	3	19.7	. 42	100	.050	<1 1.8/	.012	.06 .1	.03	2.0 <.1 <.	אי כט	. D	15.0
19400E 9950N .3 16.1 3.1 44 <.1	19400E 10000N	.2	15.4	3.1	48 <.1	24.8	10.2	339 2.8	ю <.:	o .2	1.4	.8	// <.1	<.1	. 1	79	.53	. 031	5	57.8	. 58	49	. 149	1 1.3/	.0/6	.10 <.1 .	. U L	5.1 <.1 <.	05 4 <	. 5	15.0
19400E 9950N .3 16.1 3.1 44 4.1 22.2 9.8 365 2.77 <.5	104005 00500			A 1			~ ~		-						-	0.1		0.01	~	40.4	~ 1	~ 0				10 . 1	A 1	C O - 1 -	or 4 -	-	15 0
19400E 9900N .5 27.6 2.9 54 .1 3.1 .1 <td>19400E 9950N</td> <td>. 3</td> <td>10.1</td> <td>3.1</td> <td>44 < 1</td> <td>22.2</td> <td>9.8</td> <td>365 Z.7</td> <td>/ <.</td> <td>.4</td> <td>1.0 1</td> <td>.1</td> <td>90 .1</td> <td>1.</td> <td>.1</td> <td>81</td> <td>.52</td> <td>.021</td> <td>8</td> <td>42.1</td> <td>. 61</td> <td>60</td> <td>.240</td> <td>1 1,4</td> <td>1.059</td> <td>.10 < 1</td> <td>. 01</td> <td>b.U <.I <.</td> <td>05 4 <</td> <td>.5</td> <td>15.0</td>	19400E 9950N	. 3	10.1	3.1	44 < 1	22.2	9.8	365 Z.7	/ <.	.4	1.0 1	.1	90 .1	1.	.1	81	.52	.021	8	42.1	. 61	60	.240	1 1,4	1.059	.10 < 1	. 01	b.U <.I <.	05 4 <	.5	15.0
19400E 9850N .3 12.8 3.6 49 < 1	19400E 9900N	.5	27.6	2.9	54 <.1	39.2	16.5	534 3.1		5.5	1.91	.4 1	15 .1	, 1	<.1	/1	.80	.0/6	8	48.2	1.20	72	. 158	3 1.8	.051	.13 <.1	. 02	6.9 <.1 <	05 5 <	.5	7.5
19400E 9800N .4 11.0 5.8 54 < 1	19400E 9850N	.3	12.8	3.6	49 < 1	29.6	9.0	282 2.4	0 <.	5.3	1.81	.0	79 .1	<.1	.1	52	.35	. 060	3	47.0	. 48	95	. 137	1 2.33	3.040	.07 <.1 .	.01	3.3 <.1 <.	05 6 <	. 5	15.0
19400E 9750N .7 14.0 7.0 75 124.4 8.6 804 2.62 .8 .6 1.4 1.4 53 .1 .3 .3 .74 .38 .038 7 51.9 .43 170 .169 2 1.55 .035 .11 .1 .02 4.7 <.1 .05 5 <.5 15.0 19400E 9700N .9 13.8 6.1 54 <.1 21.1 8.3 842 2.41 .5 .9 1.0 1.7 68 .1 .3 .2 70 .41 .029 7 46.9 .35 128 .14 1 1.9 .42 <.1 .05 5 <.5 15.0 19400E 9600N .5 35.2 3.9 65 1.5 .9 1.7 2.1 108 1 .2 2 80 .70 .79 2.2 .6 1.41 82 .13 .14 1.1 .15 .102 4.2 .1 .102 4.2 .13 .10	19400E 9800N	. 4	11.0	5.8	54 <.1	23.2	7.6	506 2.4	15 <.!	5.2	1.1	.9 (68 .1	. 1	.1	59	. 38	. 026	3	54.8	. 38	147	. 154	1 1 .91	L.039	.09 <.1 .	.02	2.8 <.1 <.	05 5 <	. 5	15.0
19400E 9700N .9 13.8 6.1 54 < 1	19400E 9750N	.7	14.0	7.0	75 <.1	24.4	8.6	804 2.6	2.	3.6	1.41	.4	53.1	.3	.3	74	.38	.038	7	51.9	.43	170	.169	Z 1.55	5.035	.11 .1 .	.02	4.7 <.1 <.	05 5 <	. 5	15,0
19400E 9700N .9 13.8 6.1 54 < 1.21.1																															
19400E 9600N .5 35.2 3.9 65 < 1.52.0	19400E 9700N	.9	13.8	6.1	54 < 1	21.1	8.3	842 2.4	и.,	5.9	1.0 1	.7 (68 ,1	.3	.2	70	41	. 029	7	46.9	. 35	128	. 144	1 1.19	.045	.11 .1 .	.02	4.2 <.1 <.	05 4 <	.5	15.0
19400E 9550N .4 15.6 4.2 112 .1 30.3 9.8 595 2.81 .8 .6 1.5 1.9 133 .1 .1 .6 59 .057 6 52.4 .62 134 .148 3 2.10 .041 .15 .1 .02 4.8 <.1	19400E 9600N	.5	35.2	3,9	65 < 1	52.0	17.3	548 3.5	9 1.	7.9	1.7 2	.11	08 .1	.2	.2	80	.70	. 079	13	50.8	1.41	82	.139	2 2.20	. 045	.17 < 1 .	.02	9.7 <.1 <.	05 6 <	. 5	15.0
19400E 9500N 1.0 22.4 11.8 294 <.1 39.7 12.3 2978 2.76 1.0 2.0 1.2 3.3 91 .8 .2 .4 61 .62 .101 8 45.7 .52 329 .129 3 2.91 .023 .16 .1 .04 4.4 .1 <.05 8 <.5 15.0 STANDARD DS6 11.6 123.0 29.2 142 .3 24.8 10.8 694 2.81 21.0 6.6 45.8 3.0 40 6.0 3.5 5.0 55 .85 .078 13 188.3 .57 163 .076 17 1.89 .073 .15 3.6 .23 3.2 1.8 < 05 6 4.3 15.0	19400E 9550N	.4	15.6	4.2	112 <.1	30.3	9.8	595 2.8	31 .3	3.6	1.51	.9 1	33 .1	. 1	. 1	56	. 59	. 057	6	52.4	. 62	134	. 148	3 2.10	.041	.15 .1 .	02	4.8 <.1 <.	05 5 <	. 5	15.0
STANDARD DS6 11.6 123.0 29.2 142 .3 24.8 10.8 694 2.81 21.0 6.6 45.8 3.0 40 6.0 3.5 5.0 55 .85 .078 13 188.3 .57 163 .076 17 1.89 .073 .15 3.6 .23 3.2 1.8 < 05 6 4.3 15.0	19400E 9500N	1.0	22.4	11.8	294 < 1	39.7	12.3	2978 2.7	6 1.0	2.0	1.2 3	.3	91.8	.2	.4	61	.62	. 101	8	45.7	.52	329	.129	3 2.91	. 023	.16 .1	04	4.4 .1 <.	058<	.5	15.0
	STANDARD DS6	11.6	123.0	29.2	142 .3	24.8	10.8	694 Z.8	1 21.	6.6	45.8 3	.0	40 6.0	3.5	5.0	55	. 85	078	13 I	188.3	. 57	163	.076	17 1.89	9.073	.15 3.6	.23	3.2 1.8 <.	05 64	. 3	15.0

Sample type: SOIL SSB0 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

Page 19

Data AFA

																							····							~^	ATC ANALTIN	ж
SAMPLE#	Mo	Cu	Pb	Zn	Aa N	i Co	Mn	Fe	As	U	Au	Th	Sr	Cd S	Sb B	٧	Ca	P	La	Cr	Mq	Ba	Ti	B Al	Na	ĸ	W	Ha Sc T	5	Ga Se S	Sample	
	DOM	DDM	DDM	DOM D	om DD	I DDI	DDM	2	DDT	ppm	ppb i	DOM	סחתכ	DIT INC	אמ הת		8	2	ותכס	DDm	ž	DDm	2	00m %	2		ים וחסכ	ומס הסמ הכ	ĩ	החמ הממ	am	l
	FI			FF F					· · ·		PP-			1-m [**					F.F			FF		PP		~ P	-p P	pen pp		ppin ppin		
19400F 9450N	14	37.5	73	154 <	1.50	7 17 4	2039	3 30	1.5	29	< 5	43	74	4	3 .3	3 76	73	055	8	62 1	80	162	107	3 2 25	062	Ng	1	0668 1	< 05	7 < 5	15 N	l
19400E 9350N	4	12.8	3.5	44 <	1 25	2 8 1	264	2 53	< 5	3	ġ.	מז	76	1	1	60	35	035	ž	58.7	41	71	166	2 1 67	051	.05 NG <	: 1 4	1131 < 1	< 05	4 < 5	15.0	
19400E 9000N	. 7	17 6	20	68 <	1 36	4 1 7 1	628	2 02	ŏ	. Q	1 0	12	55	1	1 3	65	71	150	Š	45 n	- 40	54	174	5 1 54	0.001	17 <	1 1	1255 < 1	< 05		10.0 7 E	
10/00E 0050N	1 0	17.0	65	107 ~	1 55	4 10.1 4 12 0	AS1 -	2 05	1.8	1.6	25	2 0	50	1	2 3	67	10	107	3	64 0	50	112	160	9 1.34 9 7 70	045	12	1	12 3 B < 1	~ 05	0 ~ 5	1 . 0	
104000 32304	1.0	10.2	6.5	201 ~	1 10	7 12.9 7 6 0	206	1 02	1.0	7.0	~.5 / 2 E	U	10 -	• 1 ·	1 5) /C	20	021	2	26 1	. 35	210	127	6102.75	.040	.13	· 1 · 1	10 1 0 - 1	< NE	9 ~ . J E ~ E	15.0 15 n	1
194005 91004	.0	10.2	0.5	30 ~	.1 10.	/ 0.9	200	1.90	./	. /	~ .5	.9	40 \	·· L ·	. 1 . 4	. 40	. 39	.031	2	30.4	. 31	. 00	.13/	0 1.54	. 035	.0/ ~	·. L . I	JZ 1.9 ~.1	<.vo	5 \ .5	12.0	
		10.4	<i>c r</i>	20 -	1 10		204	1 00			1 2	0	47 -	. 1			20	0.31	n	51° A	21	co	100	7 1 6 3	0.51	07 -		10 0 0 - 1	~ 00	F < F	10 0	i
KE 1940VE 915	UN .8	11.4	0.5	29 <	.1 18.	0.0	204	1.69	.8	. 0	1.2		4/ 5	·	. 1.	: 40	. 30	.031	2	35.4	. 31	50	.132	/ 1.53	.031	. U/ S	. 1 .	J3 Z.U <.]	. <.05	55.5	15.0	
194DUE 9100N	. 3	11.4	5.0	54 <	.1 19.	2 7.0	439	2.13	./	.4	1.3	1.0	68 <	. 1 .	2.1	. 50	.41	.027	4	40.1	. 39	/1	.167	1 1.69	.043	.0/ <	S. L !	1 3.3 <.1	<.05	5 <.5	15.0	1
19400E 9050N	.5	12.5	3.8	82 <	1 30.	3 9.4	541	2.31	.5	.4	1.2	1.2	53	. L .	1 .!	. 51	. 34	.082	- 3	42.7	.41	96	.121	2 2.25	.031	.10 <	. 1.	3.1 <.1	. <.05	6 <.5	15.0	l
19400E 9000N	.4	23.7	3.2	59 <	.1 41.	2 14.7	489	3.37	.6	.6	<.5	1.81	119 <	.1 .	1.1	. 81	. 60	.063	12	69.1	. 84	79	. 151	2 2.11	.061	.10 <	·.1 .	J1 7.0 <.]	<.05	6 <.5	15.0	l
19400E 8950N	.3	13.2	3.9	71 <	.1 37.	08.7	303	2.54	.7	.5	.7 :	1.6	85	.1	.1 .1	. 52	.49	.132	5	47.0	. 44	91	.149	2 2.70	. 050	.15	.1 .1	32 4,1 <.1	. <.05	7 <.5	15.0	i
																																ľ
19400E 8900N	.6	16.8	4.2	69 <	.1 37.	7 13.6	466	2.84	.9	.4	<.5	1.4	95 <	.1	1 .1	. 58	.48	.183	4	47.3	. 66	102	.143	2 2.39	.049	.12 <	ا، 1.	33 4.8 <.3	. <.05	6 <.5	15.0	
19400E 8850N	.6	23.5	3.2	66 <	.1 46.	5 16.0	676	3.44	.7	1.1	<.5	1.5	99	.1 .	.1 .1	. 75	, 57	.091	8	63.5	1.02	87	. 155	2 2.46	. 055	.11 <	<.1 .I	02 6 1 < 1	. <.05	6 <.5	15.0	I
19400E 8800N	.4	11.2	3.4	41 <	.1 22.	08.6	279	2.34	<.5	.2	<.5	.8	87 <	.1 <	.1 .1	. 44	. 35	.033	2	39.9	.43	76	.139	1 1.52	. 050	.08 <	·.1 .()2 3.3 <.1	. <.05	4 <.5	7.5	
19400E 8750N	.6	25.3	3.9	53 <	.1 42.	4 14.7	505	3.22	4.8	.7	1.5	1.5 :	120	.1 .	3.1	75	. 68	.064	12	53.1	1.10	103	.160	3 2.16	. 064	.09 <	:.1)2 7.3 <.1	<.05	6 <.5	7.5	l
19400E 8700N	.5	28.6	3.8	68 <	.1 53.	7 18.5	516 -	4.00	2.5	.9	.7	1.7 1	194	.1	1.1	. 91	.76	.048	12	55.9	1.32	161	.202	2 2.77	.072	.11 <	<.1 .H	02 6.4 <.3	<.05	7 <.5	15.0	
19400E 8650N	.7	19.0	5.2	78 <	.1 37.	8 12.7	273	2.44	1.3	.3	<.5	.7	40	.1 .	.1 ,1	44	. 29	.154	3	32.5	.58	69	.119	2 1.97	.043	.06 <	.1 .I	01 2.3 <.3	<.05	8 <.5	15.0	
19400E 8600N	.9	19.5	3.9	52 <	.1 40.	2 12.7	303	2.88	4.9	.3	1.4	1.1	99	.1 .	.2 .1	63	.49	.096	4	53.2	. 68	118	.159	3 2.85	.054	.09 <	·.1 .I	3.7 < .1	<.05	7 <.5	15.0	!
19400E 8550N	1.9	17.4	4.4	80 <	1 31.	9 12.2	546	2.71	6.7	.4	1.2	1.3	48 <	.1	2 1	. 58	.29	.260	5	45.6	.51	105	.108	2 2.54	.027	.07 <	:1.1	3 3.7 <.1	<.05	8 <.5	15.0	l
19400E 8500N	1.3	22.5	3.1	42 <	.1 32.	9 12.5	437	2.98	9.6	.7	2.6	1.4	156 <	.1	3 < 1	. 84	.79	.069	14	57.6	. 82	148	.149	2 1 85	. 098	.07 <	(1)	325.8 < 1	<.05	5 <.5	15.0	
19400E 8450N	4.2	17.8	4.2	68 <	1 32.	1 12.5	337	3.06	55.2	.4	7.6	1.3	50 <	.11	5	76	.30	.207	4	39.8	48	128	090	2 3 17	024	10 <	1	337	<.05	9 < 5	15.0	
																_			-													
1940DF 8400N	9	28.5	67	51 <	1 36	5 12.1	421	3.06	20.8	1.6	2.4	16	86	.1	5 1	73	.59	020	12	46.3	79	130	190	4 2 38	068	05 <	:1 (1381<1	< 05	7 < 5	15.0	
19400E 8350N	5	26.6	34	47 <	1 39	0 14.9	534	3.33	4.9	9	1.4	1.8 1	39 <	.1	3 < 1	87	77	084	14	53.3	99	130	130	3 1 93	082	07 <	:1 (175<1	<.05	5 < 5	15.0	
19400F B300N	5	27 1	5.2	75 <	1 62	5 23 3	726	4 09	2.5	6	< 5	16	67	1	1 1	74	46	181	7	51 0	1 74	108	193	2 4 11	037	10 <	:1 (1283 1	< 05	10 < 5	15.0	
19400E 8250N	7	10 0	6.3	62 <	1 58	1 20 3	366	3 43	2.2	. 4	< 5	1 2	67	1	1 1	63	36	1/1	ว่	A6 6	1 12	12/	233	2 / 13	037	10 <	1 1	1237<1	< 05	11 < 5	15.0	
19400E 8200N	7	24.6	6.7	60 <	1 /6	1 20.0	561	2 20	5 /	5	51	5 6 1	137	1	A 1	. 00 70	78	1000	õ	51 Q	1 00	154	171	2 3 17	041	11 6		1571	< 05	8 < 5	15.0	
134000 02000	.1	24.0	0.7	00 4	.1 40.	- 17.0	501	0.05	0.4	. J	J.I .		107			. ,,	.70	. 050	2	JI - 7	1.03	104	. 17 1	2 0.17	.041	. 11 -	ч. ц .,		05	0 4.5	10.0	
19400F 8150N	1 0	16.2	A 1	50 <	1 29	7 11 5	386	2 85	9.6	5	36	1.0	108 <	1	6 1	70	56	034	6	12 3	84	105	159	1 2 07	055	08 <	: 1	12 1 3 < 1	< 05	6 < 5	15 N	
10/00E 9100N	1.0	22.2	1 0	7/ <	1 /5	4 19 0	300	2 66	11 2	, c	1 2	1 /	86	1	1 1	70	18	189	5	51 3	- 00	1/6	164	2367	.035	12 -	· 1	12 5 2 2 1	< 05	10 < 5	15.0	l
10400E 0100R	.0 ב	10 5	4.9	77 ~	1 20	+ 10.0 5 12 D	442	2 61	76	.5	1.0	0	62	1	2 1	50	- 26	125	с Г	27 1		170	122	23.0/	.000 024	. 12 ~	·. L .	10 J.Z ~. 1	~ 05	10 ~ 5	15.0	l
104000 90000	1.0	19.0	2.0		1 20.	0 16 7	610	2.01	21.2	.0	1.0		171	- <u>-</u>	0 1		.00	. 123	10	57.1	1 16	100	127	2 2.00	.000	. 07 ~	· · · ·	2 3.0 1	~.00	6 ~ 6	7 6	
10400E 0000N	1.0	20.2	3.9	- 00 ×	1 20.	9 10.7	010	ე.4/ ე.00	14.0	. 7 .	2.0	L.7.	07 ~	• L •	2, 2. 1	. 00	.00	103	10	24.3	1.10	120	.13/	3 2.29	.075	.10 ~	·	130.3.1		0 ~ 0	10.0	
19400E /95014	1.2	18.5	4,4	> 10	,1 30.	1 15.3	392	3.28	10.9	.4	3.4	1.1	0/ 5	· . L .	0.1	. 70	.42	. 103	5	47.1	. 60	130	.100	2 3.30	.034	.12 5	·. 1 .9)4 4 .1 <.)	<.v5	9 4.5	15.0	
10/00E 7000N	14	10.0	16	E1 -	1 22	0 12 7	626	2 21	10 0	7	95		110	1 1	2 1	74	61	034	0	16 2	02	162	1.22	1 2 22	057	10 -	· 1 ·	3260 1	< 0E	6 Z F	15.0	
10400E 7000N	1.4	13.3	4.0	- 54 S	1 27	U 13./ 7 16 1	- 020 - 620 -	0.21	17.7 77 E	./	0.0.	1.41 1.01	10 151 -	.11. .11	2.1	. 74	.01	.034	12	40.2	.92	102	115	1 2.22	.002	.10 <	·.1	ו. עוכים יייאו		0 5.0 7 2 5	10.0	i
104005 70000	1.5	27.1	4.0	00 <	1 37.	/ 10.1	400	0.00	JZ.J	1.U J	3,9.	1.01	101 5	·. 1 1.	 	. 02	.92	.031	13	47.4	1.10	202	.115	4 2.32	.001	.15 <	· 1 · 4	147.D	UD	7 ~ . 5	1.0	l
19400E /800N	.6	22.1	4.1	40 <	.1 30.	1 13.4	408	2.9/	7.1	1.2	S.D .	ι.4.3 	110	. 1	5.1	. 73	.09	.025	1	43.3	.93	205	.132	1 2.50	.049	.11 <	.1.1	JI 4.Z .J	<.05	/ <.5	15.0	
19600E 9000N	.6	10.4	5.2	119 <	1 22.	9 /.9	1140	1./4	1.2	.5	<.5	L./	15	.1 .	. L . 2	: 40	.58	.099	5	24.2	.40	136	.119	4 1.72	.034	.12	.1.	JZ Z B . 1	<.05	5 <.5	15.0	l
STANUAKU DS6	11.8	122.7	28.8	144	.3 25.	2 10.8		2.84	21.3	0.0 4	10.0	3./	42.6	0.03.	0 5.0	57	.85	.078	15	191.0	. 58	108	.080	1/ 1.93	.0/4	.17 3	5.Z.	23 3.3 1.8	<.05	<u> </u>		

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 20

 $_{Data}N_{FA}$

																																AUUU	ANALTILA	-
SAMPLE#	Mo	Cu	Pb	Zn A	a Ni	Co	Mn.	Fe	As	U	Au	Th	Sr	Cď	Sb	Bi	٧	Са	P	1.a	Сг	Ma	Ba	Ti	B A1	Na	ĸ	W Ho	i Sc	T1	S Gé	1 Se 5	amole	
	nga	DDIT	DOM	ODTI DO	הסס הא	ווסס ו	DDm	*	DDM	DDm	opb	DDm	DDM	DDm	DDM	DDM	DDm	2	2	הסס	המס	2	DDM		x000 X	X	8 00	สา การ	กออก	DDm	\$ D00	. 000 00000	on pirc nm	
·····																		_													·····			
19600F 8950N	4	16.6	3.8	52 <	1 36 2	12.8	368	3.37	< 5	4	5	15	111	< 1	1	1	84	47	053	5	77 1	58	98	184	2 2 27	057	10 <	1< 01	155	< 1 <	05 5	5 < 5	15.6	
19600E 8900N	ς.	17 0	29	60 <	1 39 1	12 7	506	3 08	< 5	4	< 5	1 1	105	< 1	1	1	74	58	040	10	76 0	67	76	156	2 1 80	068	12 ~	1 02	2 6 9	< 1 <	Δ <u>Γ</u>	/5 < 5	15.0	
19600E 0950N		10 0	27	10 ~	1 11 6	14 2	417	3 67	c 5	. т Б	1 0	1 6	107	< T	1	1	70	. 50	0.20	11	77 4	.07	60	150	1 2 20	064	12 -	1~ 01	0.2	~ 1 ~	NC C		15.0	
106005 99004	 c	22.2	2.1	сс /	1 46 4	17.2	707	2 20	- 5		1 1	1 4	116	1	1	1	60	. 30	030	11	57 0	.00	74	122	2 2 0 0 2	004	10 ~.	1 0/	1 6 0	~ 1 ~	00 U	· ~ · ·	10.0	
106005 00000	.5	20.0	3.0	00 ~.	1 40.4	10.0	575	0.20	~.5	1.0	2.1	1.4	112	- 4	. 1	. 1	00	./0	. 1/1	11	37.0	. 50	170	175	2 2.02	.003	.12 5.	1 .04	+ 0.9	~ 1 ~	.VO 3) ~.5 ·	1.5	
19000E 9120M	, 5	20.3	3.1	51 ~.	1 41.0	10.9	5/5	3.21	5.0	1.0	ζ.4	1.4	112	, 1	,4	. 1	67	.03	.009	11	43.7.	1.23	1/3	125	3 2.0/	.097	.08 .	1.02	2 5.9	<.1 <.	.05 0	0 < .5	15.0	
19600F 8700N	1	23 /	16	102 c	1 12 0	172	400	2 10	7	6	7	Q	64	1	1	1	57	42	200	٨	17 3	70	112	156	1 2 07	042	09 <	1 03		e 1 e	<u>Λ</u> Γ () < 5	15.0	
19600E 9650N		20.4 71 C	35	A7 2	1 42.3	1/ 2	1400	3 37	./	5.0	11	16	1/12	. 1	1	1	78	90	032	10	55.3	. 75	176	174	2 2 20	000	.00 ~.	1 01	177	~ 1 ~	-νJ Ξ		10.0	
10600E 0030N	.4	10 1	1.0	71 /	1 97 5	10.0	1000	5.57	2.0	1 1	1.1	1.0	20	. 1	1	. 1	50	.00	107	10	20.0	. 50	1/0	.1/4	2 2.27	.030	.07 ~.	1 .01	1 1.2	~ 1 ~	00 (0F () ~ .)) ~ F	15.0	
100005 000014	.4	10.1	4.9	11 .	1 07.5	12.0	227	2.00	3.0	1.1	4.2	1.0	110	. 1	. 1	. 1	00 70	.41	.10/	4	50.7	. 39	201	100	1 0 40	.030	.09 .	1 .02	4.1	~ 1 ~	.vo c) ~ .) 	10.0	
19000E 8350M	.5	20.5	4.0	48 <	1 32.1	13.2	389	3.03	3.1	-5	<.5 C 0	1.1	110	1.	. ა	1.	/5	.49	.047	5	50.4	.04	125	102	1 2.43	.048	.07 <.	1.01	4.2	5.15.	.05 0	5.5	15.0	
19000E 8000N	.4	9.0	3.9	JO <.	1 15.5	6.Z	136	1.53	4.3	.4	5.0	1.1	\$Z	<.1	.4	.1	40	.17	. 129	5	22.7	.25	62	.091	1 1.69	.030	.05 <.	1 .01	1 3.5	<.1 <	.05 5	\$ <.5	15.0	
19600F 8450N	8	27.2	3.1	41 <	1 32 7	13.0	366	3 17	66	4	35	1.3	133	1	5	< 1	90	55	048	8	59.3	83	124	134	1 2 17	063	07 <	1 02	753	< 1 <	05 P	5 < 5	15.0	
19600E 8400N	6	22 0	3.4	50 <	1 41 0	16.1	442	3 74	6.8	7	3.3	1 2	105	1	3	< 1	85	76	085	ä	52.3	1 20	117	126	2 1 94	053	.07 <	1 02	256	< 1 <	05 4	5 < 5	76	
19600E 8350N	7	21 0	3 5	51 <	1 33 6	1122	316	3 03	10.4	1	7 3	1 0	113	< 1		< 1	81	51	115	7	52.0	70	116	110	2 2 35	050	07 /	1 01	1 1 2	-1-	05 6	2 2 2	15 0	
106006 92000	./	22.2	16	71 2	1 21 0	15.6	0/0	3 16	20.7		17	1.0	00	1	.0	1	73	.00	102	÷	52.2	.17 CD	140	166	2 2.00	.000		1.03	2 1 2	~ 1 ~	05 0) ~. J) ~ E	10.0	
10600E 0000M	.0	20.2	4.0	64 ×	1 40 0	16.0	712	2 26	17	.4	1.7	1.0	1 / E	. 1	. 2	. 1	00	. 42	107	12	53.3	1 10	100	140	4 1 00	145	.00 ~.	1 .00	94.2	· · · · ·	.UD C		15.0	
TROVIE OFRING	.0	20.2	3.2	54 <.	1 44.0	10.3	/12	5,50	4./	.5	4.2	1.9	140	.1	. J	. 1	00	1.20	.107	14	55.7	1.19	100	. 140	4 1.99	. 145	.09 <.	1.01	1 5.0	<.1 <.	.05 3	> <.>	15.0	
19600E 8200N	.9	20.7	3.4	44 <	1 29.2	12.3	364	3.11	9.3	.4	3.4	1.2	140	<.1	.6	<.1	93	.51	.038	7	51.6	.76	130	152	1 2.24	.060	.06 <.	1.01	L 4.5	<.1 <.	.05 6	5 <.5	15.0	
19600E 8150N	1.0	19.2	4.4	56 <.	1 31.2	14.0	314	3.17	19.8	.4	3.9	.7	64	.1	.6	.1	76	. 31	146	3	45.5	.66	218	114	1 3.11	033	05 <	1 03	3 3 2	< 1 <	05 8	3 < 5	15.0	
19600E 8100N	9	17.4	5.9	72 <	1 19 4	8.1	176	2.20	8.9	.3	3.3	7	64	< 1	5	1	45	.36	146	4	29.6	44	132	081	2 2 22	022	07 <	1 04	129	< 1 <	05 8	3 < 5	15.0	
19600F 8050N	5	20 9	4 0	42 <	1 45 1	17 3	398	3 27	6 9	14	2.0	13	121	< 1	3	1	114	71	055	10	64.7	1 31	110	179	2 2 82	058	07 <	1 02	203	< 1 <	05 7	7 < 5	15 0	
19600F 8000N	14	22 7	4 4	60 <	1 33 0	13.4	375	3 09	18.9	- 4	27	10	66	1	7	1	82	33	164	5	48.4	61	167	107	2 3 34	026	08 <	1 04	136	< 1 <	05 8	، ۲ < 5	15 0	
250002 00001	2				1 00.0	10.1	0,0	0.05	10.5	• •	L	1.0	00		.,	• •	ŰC.	, 00		Ŭ		. 01	10,		L 0.01			1.04	0.0	··•			10.0	
19600E 7950N	.5	24.6	4.7	54 <.	1 46.7	18.0	700	3.46	7.4	.9	3.8	1.2	95	.1	.2	.1	99	. 82	.054	9	51.0 3	1.41	94	161	2 2.80	.056	.07 <.	1.03	37.5	<.1 <.	.05 7	/ <.5	15.0	
19600E 7900N	.6	32.2	3.5	51 <.	1 48.9	18.5	565	3.52	8.1	.6	3.1	1.5	147	.1	.4	.1	99	.67	.066	8	60.0 1	1.26	140	138	1 2,81	.059	.07 <.	1.02	27.7	.1 <.	05 7	! <.5	15.0	
19600E 7850N	.6	25.5	3.8	52 <.	1 47.2	19.0	285	3.57	5.7	.4	1.0	1.1	111	.1	.1	.1	73	. 39	096	4	33.6	.94	137	112	1 4 41	048	.06 <	1.04	4.4	<.1 <.	05 11	<.5	15.0	
19600E 7800N	9	18.5	5.2	48	1 43.3	15.7	273	3.38	13.5	.5	3.0	1.1	50	1	.4	.1	78	.31	128	4	39.8	76	93	120	1 3.77	033	.05 <	1 03	3 4 0	< 1 <	05 10) <.5	15.0	
19800F 8750N	4	25.1	24	50 <	1 52 3	17 7	468	3 53	.7	7	<.5	1.8	137	1	1	1	72	.76	046	17	63 5 1	1 19	83	162	3211	082	16 <	1 03	8 7	< 1 <	05 f	5 < 5	15.0	
			-		- 00.0		100	0.00				1.0	20.		•-	• -									•								10.0	
1980DE 8700N	.4	33.6	2.8	56 <.	1 58.5	21.1	747	3.72	1.7	1.1	1.3	1.8	174	. 1	.1	.1	92 (1.31	.103	14	53.7 1	1.75	111	159	4 2.28	.154	.13 <.	1.01	17.5	<.1 <.	.05 (5 <.5	15.0	
19800E 8650N	.7	27.1	4.6	55 <	1 47 6	18.6	538	3.66	1.3	13.2	1.1	1.9	172	1	.1	.1	83	.81	034	9	49.9	1.15	246	165	4 2 37	080	11 <	1 .03	17.2	< 1 <	05 (i <.5	15.0	
RE 1980DE 8600N	4	10.7	6 0	71 <	1 19 7	7 6	246	1 70	1.8	3	9	.8	52	1	1	1	38	32	202	3	26.6	30	143	121	3 1 84	039	N9 <	1 02	222	< 1 <	05 0) < 5	15 0	
19800E 8600N	3	10 2	6.4	70 <	1 10 /	73	235	1 64	1.6	. 3		Ř	50	1	Ť	1	34	31	108	ž	25.2	30	178	102	2 1 70	021	na	1 02	221	< 1 <	05 5	, २ < 5	15 0	
19800E 9660M	. U F	24 7	6.2	70	1 20 7	126	426	2 82	7 0	, U E	1 6	ŏ	47	. 1	6	1	65	32	104	Å	23 1	.00	230	110	3 3 20	010	07 -	1 0/	1 3 6	1 2	05 11		15.0	
10000 00000		67.1	0.0	/+ ~,	1 27.1	10.0	720		7.0	. J	1.0	. 9	41	. 1	.0	. 1	00	. 02	. 107	-	00.1	.01	203		0 0.20	,019	. uz 🔨	1 . UK	, U, J	.1			10.0	
19800E 8500N	.4	16.2	5.8	110 <.	1 33.5	14.9	732	3.34	3,4	.3	1.0	,9	28	.1	.3	.1	78	. 25	.137	3	38.5	.74	138	. 167	2 3.33	.015	.07 <.	1.03	3 3.5	<.1 <.	.05 12	2 <.5	15.0	
19800E 8450N	. 5	26.8	4.9	66 <.	1 42.4	14.9	487	3.50	5.1	.6	4.3	1.5	103	.1	.3	.1	87	.51	. 094	8	51.8	. 92	182	154	1 3.19	.034	.> 80.	1.02	2 6.2	<.1 <.	.05 9	€.5	15.0	
19800E 8400N	.6	20.3	5.1	64 <	1 41 4	15.5	315	3.49	3.3	.4	1.7	1.3	60	.1	.3	.1	77	.26	.150	4	47.5	. 66	193	.137	1 3.73	.016	.07 <	1 .02	2 3.5	<.1 <	05 16) <.5	15.0	
19800E 8350N	.5	11.4	6.4	75 <	1 28 4	11.2	333	2.52	1.6	.2	.5	.8	34	<.1	.1	.1	59	.29	139	3	43.1	.37	96	140	2 2 44	025	09 <	1 .02	2.5	<.1 <	.05 8	3 < 5	15.0	
STANDARD DS6	11.7	122 1	28.9	143	3 24 9	10.7	702	2.84	21.2	6.6	46.5	3.1	41	6.0	3.5	5.0	57	85	078	15	190 5	.58	166	082	18 1 93	.073	16 3	4 23	3 3 3	1.8 <	05 7	4.4	15.0	
2.000						10.1						<u> </u>			0.0		<u></u>																	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 21

Data / FA

					:		`													·															ACM	E ANALYTIC	AL.
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cđ	Sb	Bi	۷	Ca	Ρ	La	Cr	Mo	a Ba	Ti	B	A1	Na	ĸ	W	Ha	Sc	[]	S Ga	Se Sz	ample	
	ppm	ppm	∙ррп	ppm p	opin p	pm	ppm	ррт	*	ppm	ppm	ррЪ	ррт	ppm	ppm	ppm	ррт	ppm	*	X	ppm	ppm	5	, ppm	z	орт	r	2	2	ppm p	ppm j	וס וויסכ	om	t dom d	DM DM		
·····						-										<u> </u>		<u> </u>											·					· +F… F			
19800E 8300N	.7	14.7	5.5	79 <	s.1 31	.51	1.0	362	2.72	2.2	.3	1.3	1.1	41	. 1	.3	.2	60	. 25	.104	4	37.6	. 47	/ 129	.103	12	. 86	.017	.07	<.1	.02 2	2.7 <	1 < 0	5 9 <	.5	15.0	
19800E 8250N	.5	19.0	4.3	52 <	<.1 29	9.71	1.9	487	2.97	6.0	1.1	4.3	1.2	101	< 1	. 5	. 1	64	.63	.025	14	48.6	.79	9 140	.147	22	. 35	049	.06 ·	<.1 .	.03 0	7.5 <	1 < 0	56<	.5	7.5	
19800E 8200N	.4	31.7	4.3	55	.1 49	1.6	6.9	496	3,51	2.4	.7	<.5	1.2	105	.1	.1	.1	91	.76	.057	10	58.1	1.34	¥ 91	.115	33	.13	.042	.08	<.1 .	.05 8	3.4 <	1 < 0	5 8 <	5	15.0	
19800E 8150N	.5	14.6	5.5	66 <	:1 38	1.7 1	3.1	422	2.68	2.2	.4	<.5	1.1	36	.1	.1	.1	49	.26	.174	3	35.9	. 60	85	.094	13	. 86	.020	.08	<1	.04	3.2 <	1 < 0	5 10 <	5	15.0	
19800E 8100N	.4	21.9	4.0	53 <	s.1 41	91	8.0	388	3.72	1.3	.4	<.5	1.3	109	<.1	.1	.1	77	.44	.071	4	61.1	1.32	2 196	.126	<14	. 44	036	.06	< 1	02	.1 <	1 < 0	5 10 <	5	15 0	
																																				10.0	
19800E 8050N	.3	20.7	4.8	61 <	c.1 47	.21	9.1	279	4.03	2.6	.5	<.5	1.4	84	.1	.1	.1	71	.57	.156	3	63.1	1.06	5 201	.101	24	.67	.028	.08 •	<.1 .	.02 f	5.2 <	1 < 0	5 11 <	.5	15.0	
19800E 8000N	.6	18.8	5.2	68 <	1 33	8.0 1	2.9	246	3.09	4.6	.5	1.5	1.2	69	.1	.2	.1	65	.43	136	5	44.0	. 63	3 144	.081	13	. 44	.022	.08	<.1.	.03 4	4.5 <	1 < 0	<u>;</u> 9 <	5	15.0	
19800E 7950N	.3	21.0	4.5	64 <	<.1 26	i.4 1	1.1	292	2.69	3.8	.6	1.6	.7	73	.1	.1	.1	63	.68	048	11	33.3	.68	3 74	078	1 2	.30	029	05	<1	.02 !	5.1 <	1 < 0		5	15.0	
19800E 7900N	.4	16.9	5.0	54 <	:.1 29	1.1 1	1.7	269	3.03	2.9	.3	.5	1.0	49	.1	.1	.1	63	.21	083	4	37.9	.59) 113	097	<1 3	.49	023	04	<1	02	3.9 <	1 < 0	5 10 <	5	15.0	
19800E 7850N	.4	20.1	5.2	55 <	:.1 36	5.1 1	5.2	267	3.55	3.0	.5	.6	1.0	89	.1	.1	.1	69	.50	123	4	45.2	.71	157	083	14	00	018	07	<1	04 9	5.0 <	1 < 0	5 10 <	5	15.0	
																			-																	10.0	
19800E 7800N	.5	17.7	6.5	66 <	:.1 31		2.5	382	2.89	3.7	.4	.7	.9	58	.1	.2	.1	64	.30	105	4	38.8	. 68	3 102	.117	12	. 98	026	.07 -	<.1	.03 (3.4 <	1 < 0	5 9 <	5	15.0	
20000E 9000N	.8	12.3	5.8	171 <	<.1 3 ⁴	.8 1	0.6 1	1456	2.34	.9	.4	<.5	1.3	44	.2	.1	.2	54	. 31	110	3	61.8	.48	3 149	.110	2 2	.23	.025	08	<.1	.03 2	2.5 <	1 < 0	, , , , , , , ,	5	15.0	
20000E 8950N	.7	11.2	4.0	83 <	1 37	.41	0.8	772	2.67	<.5	.2	<.5	.7	39	< 1	1	.1	69	.26	041	2	96.4	48	3 86	148	12	31	029	. OA -	<1	01 2	75<	1 < 0		5	15 0	
20000E 8900N	.7	16.8	2.9	46 <	<.1 4ž	2.9.1	4.1	518	3.12	<.5	.2	<.5	1.0	80	<.1	.1	.1	80	.49	033	5	85.1	. 87	67	154	21	.69	059	12 .	<1	01	1.6 <	1 < 0	5 5 <	5	15.0	
20000E 8850N	.5	9.8	4.0	65 <	<.1 32	2.0	9.0	431	2.23	.5	.2	< 5	.8	36	.1	.1	.1	50	.26	053	2	62.8	4(81	129	12	.23	026	10	<u>í</u>	01 2	2.5 <	1 < 0	5 6 <	5	15 0	
																											. 20									10.0	
20000E 8800N	.4	26.0	2.6	56 <	:.1 55	5.31	7.9	526	3.73	.6	.5	<.5	1.6	97	<.1	.1	<.1	85	.59	.057	10	67.2	1.28	69	.147	31	. 90	.065	.17 •	<.1 .	.01 7	7.0 <	1 <.0	5 - 5 - 5	.5	15.0	
20000E B750N	.4	27.5	3.2	65 <	:.1 58	3.3 1	9.2	541	3.83	.9	.5	<.5	1.5	93	.1	.1	.1	85	.66	.081	9	61.3	1.57	60	.170	22	. 09	.071	.12 •	<.1.	.01 7	1.5 <	1 < . 0	5 6 <	.5	15.0	
20000E 8700N	.5	31.3	3.3	58 <	:.1 61	71	9.0	510	3.96	1.0	.5	.7	1.6	95	.1	.1	.2	90	.64	.072	10	77.4	1.53	57	.139	22	. 25	.061	.12 •	<.1.	.02 8	3.6 <	1 < 0	5 6 <	.5	15.0	
20000E 8650N	.4	25.7	3.0	55 <	1 47	.71	7.3	511	3.39	1.1	1.0	<.5	1.5	117	.1	.1	.1	84	. 82	.099	9	53.5	1.38	84	.137	31	. 91	. 095	.10 •	<,1.	.03 5	5.8 <.	1 < 0	5 6 <	.5	15.0	
RE 20000E 8650N	.4	26.0	2.9	53 <	:1 47	.51	7.4	500	3.30	1.1	1.0	<.5	1.4	116	.1	.1	.1	81	. 80	. 098	9	52.7	1.38	85	.134	31	. 89	. 092	.10 •	<.1 .	.02 5	5.7 <.	1 < 0	5 <	. 5	15.0	
20000E 8600N	.4	14.8	4.6	40 <	:.1 32	.51	2.4	289	2.52	3.8	1.1	1.3	.7	54	.1	.1	.1	57	. 32	.035	3	44.6	.65	227	.139	32	.66	.042	.08 •	<.1 .	01 2	2.7 <.	1 <.09	57<	. 5	15.0	
20000E 8550N	.5	23.4	3.9	82 <	:.1 44	.61	7.9	487	3.34	5.4	.4	<.5	1.0	55	.1	.4	.1	77	. 42	.146	4	44.3	1.02	! 169	. 169	43	.70	.024	.14	.1.	.04 4	4.0 <	1 <.09	5 11 <	.5	15.0	
20000E 8500N	.6	28.1	4.4	72 <	:.1 49	0.0 1	6.8	331	3.38	4.7	.5	3.9	1.2	42	.1	.2	.1	76	. 27	. 098	5	53.9	. 88	172	. 160	24	.03	. 021	.07 •	<.1 .	.04 3	3.9 <.	1 < .05	5 12 <	. 5	15.0	
20000E 8450N	.6	23.3	4.7	60 <	43	1.91	5.0	415	3.11	3.6	.3	1.6	1.1	45	.1	.2	.1	71	. 24	.077	3	49.0	. 82	205	.132	23	.84	. 020	.07 -	<.1 .	.03 🤇	3.0.	1 <.09	5 10 <	.5	15.0	
20000E 8400N	.7	22.4	5.5	92	.1 30	.61	5.1	551	3.61	9.7	.5	6.5	1.4	105	.1	.5	.1	87	. 31	. 124	4	37.6	. 86	i 255	. 180	33	. 51	.013	.08	.1.	.06 4	1.2 .	1 <.05	5 12 <	.5	15.0	
000005 0050U	_							~ ~ ~			•					~ ~														_					_		
20000E 8350N	.8	10.5	5.4	104	.1 20	.0 ł	5.0	961	3.30	24.7	.3	3.7	1.0	17	.1	2.3	.1	81	.25	.128	- 3	23.8		66	.140	32	. 35	.009	.06	.1 .	.03 4	1.6	1 < .05	5 12 <	.5	15.0	
20000E 8300N	8,	19.4	7.3	137	.1 35	.01	4.4]	1812	3.23	15.0	.7	1.9	1.5	34	.1	.5	.2	72	.31	.113	6	32.7	.76	181	.155	23	.67	.012	.07	.1 .	03 4	1.2 .	2 < .0	5 13 <	.5	15.0	
20000E 8250N	1.0	31.0	6.0	84	.1 37	.81	1.1	550	4.05	20.3	.8	8.2	2.1	25	.1	.9	.1	92	.21	.117	8	43 3	1.09	231	.126	24	.36	.011	.08	.1 .	.04 5	5.0	1 < .0	5 13 <	.5	15.0	
20000E 8200N	.7	17.6	5.2	85 <	1 29	1.7 1	6.3	855	3.59	9.7	.4	29.1	1.2	42	.1	1.0	8.	84	. 39	.070	5	38.9	. 94	191	.095	22	.77	.010	.08 <	<.1 .	.04	3.4 .	1 <.09	5 10 <	.5	15.0	
20000E 8150N	.6	18.2	4.1	62 <	:.1 34	.31	4.8	487	3.26	8.7	.4	21.2	1.0	74	.1	.8	.1	78	.43	. 094	5	42.8	. 85	112	.116	22	. 49	.020	.12 -	<.1 <i>.</i>	.03 3	3.7.	1 <.09	i 7<	.5	15.0	
200005 01004		14 0	10	co -	1 40	n 1	04	697	0 70	1 0	2	F	ĥ	40	1		1	FF	76	0.00	2	25 9	1 00	. 70	5 90		10	004	~	. 1	00 /		1 . ^		-	15 0	
20000E 0000N	.4	14.0	4.2 1 p	00 S	· 1 43	.U I : 0 1	7.4 7.0	55/	2./J 1 07	1.0	.3 E	.5 6	.9	40 101	· 1	.1	.1	20	.20	000.	ن 10	30.3	1.20	1 79 1 1 AF	.130	23	.10	.024	.04 1	·.1 .	.UZ 3	. 2 < .	1 < .03	> 10 <	. D	10.0	
200000 00000	.5	20.2	4.0	- 2/ S - 64 -	•.1 40 • 1 90	1.4	7.9 20	30Z	9.07	2.1	. כ.	0.	1./	101	.1	. 2	- 1	101	. 37	104	70 10	0/ 0	1.20	145	.1/3	13	. 29	.020	. 10 *	5.1. . 1	02 /	1.4 <.	1 < 0	>ט יווי	. " F	10.0	
20000E 0000N	.0 F	17.6	0./ r n	04 <	- L 30). L L) E 1	ວ.0 ດຸດ	200	0.04 0.00	1.0	.0	1.0	1.U	40	, I - 1	- 1	. L 1	70	.10	.104	3	39.1	.00	101	.10/	13	.05	.019	.00 *	ч. Ц - Л	03 2	≤.8 <.	1 < 0) <u>11</u> <	.5	15.0	
STANDARD DSC	 11 0	17.0 121 -	5.C 700	140 5	50 I	0.5 1	9.V 0 7	402	0.09 2 01	1.1	.3 5 5	5.5 16 7	.0 วา	40	1	1.	1. 0 k	19	. 30 05	070	3	01./ 100 4	.9/	114	.002	<1 J	.ວ. ດ/	.015	.04 *	•.L.	.UZ 5	, אַנ. ייי	1 <.03	, 10 <	.5 E	15.0	
JIANUARD 030	11.0	121.0	20.0	140	.J 24	.01	U./	090	2.01	21.1	0.0	40.Z	3.1	41	9.9	9.0	4.9	5/	.00	. 070	14	190,4	. 56	100	.003	1/1	. 94	. 4/4	. 10 .	5,4.	23 0		0 <.0:	0 4	.o	13.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 22

																																RUNE A	
SAMPLE#	Мо	Cu	Pb	Zn	Aq	Ni (Co M	1n F	e As	5 U	Au	Th	Sr	Cd	Sb	8i	٧	Ca	Р	La	Cr	Ma	Ba	Ti	B A1	Na	ĸ	W	Ha Sc	<u>T1</u>	S Ga	Se Sa	mole
	DDI	DOT	DDM	DDR D	ם את	וס הגב	מ מכ	m	X DD1	าออกเ	oob	maa	DDM	DDM	DOM	nom	Dom	2	ž	ppm	mag	¥ 0) DITI	% D	លា ដំ	2	X (ז מתמם מתמם	 10171	\$ DDm	nom	000
· · · · · · · · · · · · · · · · · · ·				FE FI						- FF-0	FF-	P	P P ····	P P							F.F	· r	-	- F.					PP P.P P		~ ppm	ppm	3
20000F 7900N	16	18.8	5.8	63	1 44	4 14	5 28	634	7 4.7	5	я	11	51	1	2	.2	76	33	048	3	44 7	72 7	16	098	1388	015	10 <	: 1	0449	: 1 < {	15 10	< 5	15
20000E 7850N	ΞĞ	24 1	4 5	53 <	1 41	7 16	7 34	038	8 5 1	1 5	 Q	1 4	114	1	2	1	94	56	045	ă	58.1	1 05 2	23	142	1 3 52	020	07 4	: 1	0257	1 < 1	15 8	c 5	15
200002 78000		26.1	3 1	56 2	1 20	7 17	0 99	a 2 A	9 A 3	, .J	21	1 0	170		2	1	95 1	1 11	040	12	12 6	1 20 1	11	109	5 2 04	1/10	06 4	- 1	01704	1 < 1	15 5	~.J ~ E	15
202005 00000	.4	11 2	1.0	50 ~	1 03	0 0	.9 U. .9 DC	2 9 7	C 4.2		2.1	1.0	27	~ 1	.0	. 1	20	2.11	00/	10	42.0 EC A	1,231	02	120	1 1 04	.103	00 -	· 1	.01 2 2 .	. 1 ~ 0	10 J	5 - F	15
20200E 9000N	. כ.	10.0	4.9	20 <	1 40	.0 0	1 40	0 2.7	о.с пто	0.0 A	>.0	1.0	37	>.⊥ ∞1	. 1	. 2	00	. JC	.030	ن ۸	0.00	.40	93	103	1 1.94	.034	.00 -	⊥ - 1	02 4 0 .	.1 >.0	10 0' NE E	<.5 - E	15
20200E 8950N	. /	10.9	4.0	64 <	.1 40	./ 14	.1 42	4 3.7	0 1.0	.4	.8	1.1	78	S. 1	.1	- 1	90	. 38	.069	4	74.0	.78	87 .	101	2 2.40	.025	.13 *	·. 1	.02 4.2 9	·.1 ~.i	05 6	<.5	15
000005 00000	1.0			<i>co</i> .	1 40		~ 4r				-	1 0	714	1	,	1	re	F 1	000	F	F1 7	70.0	00		4 0 50	005		•	00 4 1		.r -,		10
20200E 8900N	1.0	1/.1	4.1	60 <	.1 40	.1 13	.9 45	22.0	2 1.5	/	./	1.0	/4	.1	.1	.1	50	.51	. 258	5	51.7	.70 2	05 .	119	4 2.53	.025	.15	. 1	.03 4.1 4	.1 <.6	15 /	<.5	15
20200E 8850N	./	16.8	3.5	80 <	1 48	.5 15	5 38	53 2.9	8 1.2	.3	1.0	.9	4/	.1	.1	-1	63	. 34	. 180	4	/1.0	.75	91.	123	2 2.78	.024	.10 4	.1	.02 3.4 4	. <u>1</u> <.L	15 8	<.5	15
20200E 8800N	.5	22.6	3.5	58 <	1 41	.9 13	.9 43	SI 3.0	2 1.0	.3	<.5	1.3	101	.1	.1	.1	/6	.59	. 091	5	46.9	. 98	93 .	138	1 2.48	.047	.12 <	-1	.02 5.4 •	.1 <.0	15 6	<.5	15
20200E 8750N	.5	24.3	3.4	49 <	.1 43	.2 14	.3 37	0 3.2	8.8	₹,4	1.1	1.6	124	. 1	.1	<.1	84	.64	065	5	42.3	1.001	10 .	159	2 2.35	.061	.11 <	5.1	.01 6.8 <	:.1 <.0	15 6	<.5	15
20200E 8700N	.5	24.7	3.8	55 <	.1 44	.8 14	.7 45	0 3.1	4 1.4	.4	1.2	1.3	105	-1	.1	.1	81	.51	. 122	8	47.9	1.001	01 .	138	23.37	.039	.11 <	4.1	.03 6.1 •	:1<.0	15 8	< 5	15
20200E 8650N	.6	28.5	4.2	62 <	.1 48	.2 16	.8 51	4 3.3	7 1.9	7, (2.0	1.5	108	<.1	.1	.1	83	.60	.143	9	48.1	1.10 1	21 .	150	2 3.08	050	.09 4	5.1	.02 6.5 •	.1 < 0	15 8	<.5	15
20200E 8600N	.6	31.5	3.5	53 <	.1 48	.2 18	.0 64	8 3.3	8 2.9	2.1	.6	1.6	116	.1	.2	.2	87	. 84	.077	12	50.2	1,22 1	01 .	148	3 2.02	.079	.11 <	- 1	.02 7.6 •	.1<.0	15 5	<.5	15
RE 20200E 8600N	.6	29.7	3.6	53 <	.1 47	9 17	.6 64	1 3.2	9 2.8	3 2.1	1.1	1.7	112	.1	.2	.2	84	.78	.075	11	47.6	1.21	98 .:	135	3 1.94	.075	.10 <	5.1	.01 7.5 •	.1<.0	15 5	<.5	15
20200E 8550N	3	21.8	4 4	66 <	1 38	4 14	2 37	93.2	8 .6	4	1.4	1.3	74	1	1	1	67	.50	068	5	38.6	.89 1	01	188	2 2.63	043	.11	1	.01 5.4 •	1 < 0	5 7	< 5	15
20200F 8500N	5	30 3	4 0	57 <	1 47	3 17	0 54	534	1 4 2	,	12	1 7	123	1	4	1	80	93	100	14	41 1	1 41	97	134	3 2 37	064	15 <	:1	0378	(1 < 1	5 6	< 5	15
		00.0	1.0	0,				0.1	+		-		120		• •	• -			. 100					101	0 2.0/		. 10						10
20200F 8450N	4	23.3	5.0	61	1 46	5 15	8 48	631	3 2 1	6	5	1.0	97	1	1	1	71	64	115	7	49 N	94 2	27	158	2 3 52	038	N9 <	: 1	0345	1 < 0	5 9	< 5	15
20200E 8400N	, +	20.0	3.0	51 ~	1 70	5 17		1 2 0	5 1 (25	1 1	oo.	- î	- î	1	79	. 12	1/0	Å	53.2	0/1	68	157	1 2 34	020	07 4	1	. 02 7 0 .		15 8	25	15
202001 04001	.7	14 0	5.4 E 7	110	1 75	7 11	0 72	NE 2 6	2 2 2 1	, . 4 2	2.5	1.1	15	1	.1	1	56	20	204	7	25.7	.50 1	57	160	2 2 22	0.009	no 2	- 1	02202	1 - 1	15 0. 16 0.	J - E	15
20200% 0000M		14.3	3.2	100 ~	1 16	2 12	2 40	32.3	2 2.J D 7 0	c. 1 1		.0	27	• +	.د م	- 1	50	.00	163	2	30.7 22 C	. 32 1	07 . 07	103	2 2.00	012	.09 ~ nc	1.1	ຸບລຸວຸບຸ ກາງຊີ ເ	.10	15 5 16 0.	~.J 2 E	15
202002 00000		9.0	3.0	109 ~	1 10	0 17	. 2 40	52.7	37.0 471	יב. (א	1.7	1.0	40	. 1	.9	.1	07	. 33	1 70	3	22.0	1 01 2	02 .	101	2 1.90	.013	.00	, L - 1	.02 3.0 *	.1 - 1	10 9 10 NE 10	~.5	10
ZUZUUE OZDUN	.5	20.1	4.9	120 <	.1 24	.2 17	,4 00	5 3.2	4 7.1	4	1.3	1.2	42	. 1	.0	.1	79	. 50	.170	3	25.4	1.01 2	00 .	191	3 2.19	.014	. 10 *	. 1	.02 4.4	.1 ~.0	5 12	<.5	15
000005 00000	,	10 5		170 .	1 00		2 100		n 4 -		• •	<u>م</u>	60	1	~	7	~ ~	00	170		<u></u>	00.0	11	1 9 9	A 2 20	D1 C	17	.,	00 2 4	1 ~ 0	E 10	- F	15
20200E 8200N	.4	18.5	7.5	1/3 <	.1 20	4 14	3 100	3 2.6	8 4./		2.1	.9	00	.1	.0	.1	00	.93	.170	4	22.2	.80 5	11	123	4 2.00	.015	.1/	.1	.08 3.4	.1 5.0	01 20	5.D	12
20200E 8150N	./	13.4	5.3	118 <	.1 1/	.6 11	.1 102	824	6 11.3	4,4	2.0	1.0	39	.2	1.0	.1	58	.45	121	4	22.7	.05 2	20 .	0/2	2 1.74	.013	. 12	.1	.04 2.9	.1 < 1	5 8	< 5	15
2020UE 8100N	.8	8.0	6.5	63	.2 10	.5 6	.3 2t	4 2.0	3 12.5	.3	1.8	.8	25	.1	.8	.1	46	.24	135	4	16.2	.27 1	48 .	063	2 1.76	.014	.06	.1	.03 1.9 4	.1<.0	5 9	<.5	15
20200E 8050N	.9	12.9	6.0	152	.5 16	0 13	.1 111	8 3.0	8 17.2	.5	1.0	1.5	39	.2	1.5	.1	73	.46	.201	6	19.6	.51 2	33 .	051	3 2.10	011	.07	.1	.04 3.3	.1 <.0	5 11	<.5	15
20200E 8000N	1.0	23.7	4.2	73 <	.1 41	.3 17	.4 46	8 4.0	3 10.2	2.5	3.7	1.3	78	.1	1.0	.1	90	. 35	.100	5	48.9	1.15 2	29 .	090	2 3.64	.020	.08 <	-1	.02 4.4	.1 <.0	5 9	<.5	15
20200E 7950N	1.7	16.4	8.1	152	.2 31	0 13	.3 70	2 3.2	4 5.8	3.4	2.2	1.1	35	. 2	.5	.2	73	. 22	.121	4	41.5	.59 1	48	129	2 3.24	.018	.06 <	:.1	.05 3.3 <	.1 < 0	5 10	<.5	15
20200E 7900N	.8	12.7	7.9	158	.2 27	0 11	.4 79	2 2.7	2 3.8	3.3	.7	.9	42	. 2	.2	.2	65	. 38	.128	3	35.8	.48 1	32 .:	142	22.66	018	.09 <	: 1	.03 2.6	.1 <.0	5 10	<.5	15
20200E 7850N	.6	10.9	9.7	126	.1 25	.4 10	,5 39	8 2.4	4 2.€	5.4	5.1	1.2	42	.2	. 3	.2	47	. 31	.116	3	30.9	.47 1	40 .	128	2 2.88	.021	.07 <	:1	.03 2.7	.1 <.0	15 9	<.5	15
20200E 7800N	.8	18.8	6.2	83 <	.1 28	4 16	6 90	4 4.5	64.0	.5	. 6	1.6	76	.1	.1	.1	88	.74	. 097	6	47.5	. 59	94 .	020	4 3.46	.013	.12 <	.1	.03 7.4 <	.1 < 0	15 9	<.5	15
20400E 9000N	.4	23.0	4.4	63 <	1 43	7 18	5 51	2 4.1	5.9	3.4	<.5	1.0	148	.1	.1	.1	88	.77	.049	7	54.5	1.65	58 .:	231	2 2.72	050	.06 <	.1	.01 8.7 -	.1 <.0	5 8	<.5	15
	• •				2					- /			-	-	-		-					-			_	·	-						
20400E 8950N	.5	22.6	3.4	65 <	1 37	1 13	7 44	0 3.2	6.7	.4	1.0	1.4	116	.1	.1	.1	80	.54	.092	6	44.4	.93 1	37 .:	179	2 2.50	.052	.15 <	.1	.01 6.1 <	.1 < 0	5 6	<.5	15
20400E 8900N	1.5	7.6	7 8	113 <	1 21	9 16	7 135	1 3 2	4 13 1	5	2.4	1.9	36	1	9	1	83	43	065	ġ	36.2	88 2	09	042	4 1.86	015	.23	1	03 2 9	1 < 0	5 9	<.5	15
20400F 8850N	1.3	11 1	4.9	R2 <	1 24	0 15	1 110	1 3 0	5 4 1	4	. я	16	54	1	5	1	80	47	056	6	46.3	79 1	89	129	4 1.75	031	27 <	. ī	03 3 4	1 < 1	5 7	< 5	15
20400F 8800N	۲.5 ۸	18 1	τ.υ 5. C	91 <	1 42	8 14	3 04	730	7 1 4	.	0. ح آم	12	88	1	1	1	66	53	149	ă	53.7	77 1	29	133	2 2 76	031	14	: 1	0239	1 < 1	5 7	< 5	15
	11 5	122 4	28.0	141	2 24	0 10	24 8	12 0.0	1 20 0		A6 0	3.0	40	5 a .	3 6	4 9	56	85	078	13 3	198 1	57 1	63	n70 ·	16 1 80	073	15 3	i Ĝ	23 3 3 1	7 < 1	ю, 15 б.	л. Л. Л.	15
	11.3	144.4	20.9	T+T	.5 64	9 10		0 2.0	1 20.3	. 0.0	-0.5	0.0	40	9.9	0.0	7.2		.00	.0/0	10 .			00.1	012.	10 1.03	.010	.13 0		. 20 0.0 3			T, T	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data & FA

22

Page 23

ACRE REALFITICAL			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		·																		<u> </u>										AUM	ANALYTICAL
SAMPLE#	Мо	Cu	Рb	Zn	Aa	Ni	Со	Mn	Fe	As	U	Au	Th	Sn	Cd	Sb	Bi	V	Ca	P	La	Cr	Ma	Ba	Ti	B Al	Na	ĸ	W Hg	Sc	T)	5	Ga Se S	Samole
	ppm	ppm	ppm	ppm (ppm p	DOT	ppm	DDM	2	ppm	DDM	ppb	DDM	DDI	ngq	ррл	ppm	ppm	*	2	DDM	DDIII	X	DDM	8	2000 2	8	% D	om dom		DDm	ž		ampre
			<u> </u>	<u> </u>	·	<u>.</u>	<u> </u>				···		<u> </u>		<u> </u>	<u> </u>	<u> </u>														<u> </u>		F)-F	
20400E 8750N	.5	17.6	5.1	91 <	:1 4]	. 9 1	2.6	545 2	2.58	1.1	.3	4.5	. 9	43	.1	.1	.1	56	. 30	. 229	3	50.3	.51	97	110	2 2.88	.032	.10 <	.1 .01	3.3	<.1	<.05	8 <.5	15.0
20400E 8700N	.5	25.6	4.3	-52 ×	:.1 41	8 1	5.1	589 3	3.06	3.5	1.4	.7	1.3	102	.1	.1	.1	72	.82	.059	8	55.0	1.05	91 .	. 141	5 2.57	.088	.15 <	.1 .02	7.7	<.1	<.05	7 <.5	15.0
20400E 8650N	.3	17.3	4.9	50 <	:1 35	5.2.1	0.5	188 2	2.41	1.8	.5	1.1	1.1	65	.1	.1	.1	52	.42	. 127	4	33.4	. 52	100 .	144	2 2.87	.061	.07 <	.1 .02	3.5	<.1	<.05	8 <.5	15.0
20400E 8600N	.3	29.6	3.7	51 4	:150	1.2.1	7.0	518 3	3.41	2.1	.8	.6	1.5	110	.1	.1	.1	75	.69	. 083	9	44.0	1.21	77	132	2 2.67	.082	.11	.1 .02	7.2	<.1	<.05	7 <.5	15.0
20400E 8550N	.6	23.1	4.3	68 <	.1 37	.4 1	5.1	341 3	3.19	3.2	4	.6	1.1	65	.1	.1	. 1	68	. 48	.274	3	38.0	.77	98	126	3 3.44	.057	.12 <	.1 .03	3.9	<.1	<.05	9 <.5	15.0
20400E 8500N	.8	27.5	3.7	55 <	1 41	.01	6.3	700 3	3.06	6.3	7.6	.6	1.5	132	.1	.2	. 1	83	. 89	. 091	10	43.9	1.14	100 .	.142	3 2.10	.116	.11 <	.1 .01	6.3	<.1	<.05	5 <.5	15.0
20400E 8450N	1.2	22.1	3.8	45 <	:1 32	2.81	3.2	717 2	2.48	16.1	13.0	<.5	1.1	109	.1	.4	.1	63	. 88	. 057	8	41.1	. 84	92 .	114	5 2.01	.098	.09	.1 .03	5.4	<.1	<.05	6 <.5	15.0
20400E 8400N	.3	21.6	3.8	46 <	: 1 41	4 1	3.4	371 2	2,95	1.9	. 8	.8	1.1	100	1	. 1	.1	75	. 66	.061	6	56.9	.95	104 .	.157	32.39	.081	.10 <	.1 .01	4.6	<.1	<.05	6 <.5	15.0
20400E 8350N	.5	39.6	3.2	49 <	<.1 4 7	7.6 1	7.8	660 3	3.29	2.5	1.1	1.0	1.3	115	.1	.2	.1	75	.93	. 088	11	43.7	1.26	88	. 114	2 1.96	.120	.07 <	.1 .01	5.7	<.1	<.05	5 <.5	15.0
20400E 8300N	.5	68.2	2.9	52 <	1 65	5.8 2	23.9	666 3	3.83	1.8	.8	1.4	1.2	95	<.1	.2	.1	62	.94	. 088	9	25.0	1.51	66	. 097	2 2.35	.142	.08 <	.1 .01	4.9	<.1	<.05	6 <.5	15.0
20400E 8250N	.4	91.3	2.5	55 <	:184	.3 2	29.2	617 4	1.51	4.7	.8	. 5	.8	80	.1	.1	.1	63 1	1.09	. 092	7	20.6	1.90	52	.083	2 2.73	.131	.05 <	.1 .01	4.0	<.1	<.05	6 <.5	15.0
20400E 8200N	.4	88.7	3.1	-58 <	: 1 75	5.2.2	26.7	635 4	1.44	1.9	.7	1.3	1.2	94	.1	.1	.1	64	. 88	. 096	9	26.2	1.74	70.	.104	1 2.86	.115	.09	.1 .01	5.9	<.1	<.05	7 <.5	15.0
20400E 8150N	.7	90.5	2.9	81 <	:.1 94	.73	34.6	702 4	1.79	3.3	.5	<.5	.8	52	.1	.1	.1	43	.66	. 143	6	13.3	1.68	55	. 069	1 3.41	.092	.09	.1 .02	2.9	<.1	<.05	8 < 5	15.0
20400E 8100N	.4	82.6	3.2	56 -	177	.02	29.2	740 4	1.18	2.7	1.1	1.1	. 9	84	.1	.2	.1	57	. 96	. 092	8	18.0	1.69	51 .	068	1 2.20	. 140	.06 <	.1 .01	3.6	<.1	<.05	6 <.5	15.0
20400E 8050N	.4]	100.6	3.7	65	.1 84	1.5 3	30.0	864 4	1.65	2.3	1.4	1.0	1.0	84	.1	.1	.1	54	. 88	. 079	10	19.2	1.75	59	. 087	1 2.60	. 110	.08 <	.1 .01	4.6	<.1	<.05	7 <.5	15.0
20400E 8000N	.4	27.7	4.3	54	.1 38	0.01	6.7	441 3	3.79	2.3	.8	<.5	1.0	104	.1	.2	.2	89	. 94	. 152	7	53.4	1.06	83 .	. 082	3 2.27	.071	.07 <	.1 .03	5.9	<.1	<.05	6 <.5	15.0
20400E 7950N	.5	28.6	4.5	64 <	1 42	2.21	5.2	520 3	3.27	2.2	.7	.7	1.3	107	.1	.1	.1	77	.74	.101	9	43.6	1.07	104	.136	22.79	. 069	.14 <	.1 .02	6.4	<.1	<.05	7 <.5	15.0
20400E 7900N	.6	24.1	5.1	65	.1 33	3.01	4.3	444 3	3.00	3.0	1.5	<.5	.8	99	. 3	.2	.2	72	.83	.077	5	40.9	. 88	81 .	.112	32.35	.053	.09 <	.1 .05	4.7	<.1	<.05	7 <.5	15.0
20400E 7850N	.6	27.2	4.7	47	.1 40	.61	5.0	554 3	3.08	9.9	10.2	<.5	1.2	135	.1	. 3	.1	83 1	1.06	.053	10	46.9	1.18	145 .	. 133	2 2.56	. 087	.08 <	.1 .04	6.9	<.1	<.05	7 <.5	15.0
RE 20400E 7800N	.5	23.2	4.2	51 <	1 34	.41	2.7	532 2	2.59	3.3	1.9	.7	1.0	133	.1	. 2	.1	70	. 86	.071	8	37.4	. 92	135 .	.128	2 2.23	. 096	.09 <	.1 .03	4.7	<.1	<.05	6 <.5	15.0
204005 70000		22 A	4 1	FA	. 1 . 01	0.1	2.4	E07 0		2.4	- n	- E	1 0	1.04	1	,	7	66	OF	nec	•	25.2	01	100	111	<u>-</u>	000	00 4	1 00		. 1	~ 00	6	15 0
20400E / 000N	.5	23.0	4.1	20 9	1 42		2.4	527 2	1.00	3.4	2.0	5, D	1.0	100	.1	. 1	1.	60	.00	.000	0	35.2	1 42	132 .	200	2 2.00	.009	.09 <	1 .02	4.0	<.↓ ∠ 1	<.U0	0 5.0	10.0
	.0	27.3	3.8	/2 *	1 40	0.31	./.1 c.c.	334 Z	.0L	3.L	. ა	5.5	.0	100	.1	.4	1.0	02	. 33	.0/0	4	43.0	1.43	00.	. 208	3 3.43	.029	.07 <	1 .02	4.0	<.⊥ ∠ 1	<.U5	11 < 5	15.0
2000VE 0900N	.5	40.2	0.9	08 <	.1 33	.4 1	.D.D.	061 4	1.10	4.4	.4	2.1	0.	104	.1	. כ	1.1 1 c	04	./4	.080		39.4	1.13	52.	240	2 3.72	. 1/27	.10 <	1 .03	4.0	<.1	<.US	11 ~ 5	15.0
20000E 0900M	.5	24.0	3.8	10 5	.1 00	2.7 2	4.5 1.4	901 9 1611 A	1.15	3.0	.4	<, 5 	.9	104	۰. د	. '	1.5	90 100 1	.97	.038	8	50.0	2.04	51.	201	2 3.19	.075	0/ <	1 .02	/.4	.1	<.UD	11 5.5	15.0
200000 00000	. 5	54.5	9.2	92 <	. 1 / 1	.33	1.4.	1011 4	1.04	3.4	. 5	\. 5	.0	104	.2	.0	.9	100 1	1.15	. 000	У	57.0 /	2.01	32.	. 301	3 2.9/	.u/2	.00 <	.1 .03	0.0	~.1	~.05	G. 11	15.0
20600F 8800N	6	53 1	14.9	81 <	1 52	1 2	6 Q ·	1856 3	5.9	27	7	< 5	1 1	128	3	3	4	72 1	17	100	21	45.5	1 83	52	162	1 2 30	042	10 <	1 12	10.4	< 1	< 85	95	75
20600E 8750N	.0	24 R	4.3	57 4	1 33	4 1	53	AAA 3	1.30	1 8	.,	< 5	10	73	.0		1	70	73	106	5	43.5	1 00	67	127	4 2,00	062	0.9 <	1 03	6.4	< 1	< 05	7 < 5	15.0
20600E 8700N		16.3	1.0	71 4	1 44	5 1	1 3	244 2	70	1.0		~ 5	1.0	45	1	1	1	48	24	102	2	24.3	50	129	110	2 2 99	032	17 <	1 00	3.2	< 1	< 05	9 < 5	15.0
20600E 8650N	.4	26.6	4.0	55 2	1 44	. 0 1	5.6	545 3	1 21	1.2	.0	~ 5	15	101	1	1	1	70	67	097	10	12 0	1 16	- an	1/12	2 2 70	067	15 <	1 02	75	< 1	< 05	7 < 5	15.0
20600E 8600N	.4	17 0	4.5	65 <	1 20	1.0 1	11	361 2	2.01	24	.0	< 5	1 2	40	1	. 1	1	53	27	170	6	72.8	47	83	117	1308	040	08 <	1 02	37	< 1	< 05	8<5	15.0
	+	17.0	4.0	00 ~	. 1 23	. ב 1		OOT C		L.4	7		1.6	-40	.т	, т		50	. []	. 170	0	02.0	. 47	00	/	1 0.00	. 040	.00 ~		0.7	∼,1	-,05	0 - 0	10.0
20600E 8550N	.4	15.0	6.1	108	.1 23	5.9	9.7	540 2	2.17	1.5	.3	<.5	.7	25	.1	.1	.1	44	.27	. 218	4	33.1	. 38	84	. 114	1 2.38	.027	.07 <	.1 .03	2.9	<.1	<.05	9 <.5	15.0
20600E 8500N	.4	20.0	6.3	101 <	1 29	.2 1	0.9	209 2	2.31	3.0	.3	<.5	1.0	28	.1	.1	.1	44	.28	. 195	3	29.9	.47	110	083	1 2.94	.025	.07 <	1 .02	3.3	<.1	<.05	9 < 5	15.0
20600E 8450N	.9	92.5	3.7	113 <	1 98	5.1 3	4.2	819 4	88.4	2.1	.2	< 5	.5	32	.1	.1	.1	39	.58	. 193	5	6.5	1.66	54	048	1 2.19	.092	04 <	1 .03	1.6	<.1	<.05	6 < 5	15.0
20600E 8400N	.9	58.5	2.9	111 <	1 79	.6 2	5.0	612 3	3.91	2.8	.3	< 5	.7	31	.1	.1	.1	46	.44	175	3	14.6	1.12	85	075	2 3.08	070	06	1 .01	2.0	<.1	<.05	7 < 5	15.0
STANDARD DS6	11.5 1	22.1	28.9	142	.3 24	81	0.7	700 2	2.85	20.9	6.5	48.2	3.3	42	6.0	3.6	4.9	57	.87	.077	15	191.3	.58	167	084	18 1.94	.076	.16 3	3 .23	3.4	1.8	<.05	64.2	15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

																		,																			C /4040(111)	
S	AMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cđ	Sb	Bi	۷	Ca	þ	La	Cr	Mg	Ва	Τi	В	A1	Na	Κ	W	Hg	Sc T	1	S	Ga Se S	ample	
		ppm	ppm	ppm	ppm	ррт	ррт	ppm	ррл	2	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ž	8	ppm	ppm	2	ррт	8	ppm	z	*	*	ppmi	ppm p	pm pp	M	% p	pm ppm	gm	
2	0600E 8350N	. 5	35.3	4.2	67	<.1	47.1	14.4	319	2.80	1.7	.4	.5	1.1	73	.1	.1	.1	56	.41	. 189	3	28.6	.70	148	. 108	1	3.85	029	12	< 1	03.3	2 <	1 <	05	9 < 5	15	
20	0600E 8300N	.4	22.6	3.9	53	< 1	38.4	12.9	322	2.90	1.0	.4	< 5	1.0	81	.1	1	.1	67	.41	.101	3	28.6	73	117	.142	<1	3.18	.041	.11	<.1	.01 3	2 <	î <	05	7 < 5	15	
20	0600E 8250N	.4	27.9	4.4	62	<.1	48.5	16.3	351	3.24	1.1	.4	.6	1.3	76	.1	<.1	.1	71	.41	. 138	4	35.4	. 99	128	.151	<1	4.01	.032	.09	<.1	.01 3	.8 <.	1 <	05	9 < 5	15	
2	0600E 8200N	.5	28.5	4,7	63	<.1	40.5	14.6	450	3.11	.9	.4	1.5	1.4	94	.1	.1	.1	73	.47	. 106	7	37.3	. 91	142	.155	1	3.85	.042	.11	<.1	.01 4	.8 <.	ī <.	05	9 < 5	15	
21	0600E 8150N	.4	22. 8	4.2	56	<.1	34.6	13.8	343	2.96	1.5	.3	<.5	1.0	76	.1	.1	.1	66	. 38	. 144	3	28.8	. 83	106	. 167	1	3.32	.034	.14	<_1	.02 3	.4 <.	1 <.	05	8 <.5	15	
_																																						
21	0600E 8100N	.5	94.9	3.1	62	<.1	85.7	31.8	724	5.07	3.3	.4	. 5	.9	81	<.1	.1	.1	46	. 87	. 108	8	13.1	1.90	51	.069	<1	2.37	.075	. 09	<.1<	.01 3	1.3 <.	1 <.	05	6 <.5	15	
21	0600E 8050N	.6	22.0	4.1	53	<.1	35.4	12.9	349	2.99	1.2	.5	<.5	1.2	83	.1	.1	.1	69	.48	. 162	4	31.4	. 70	119	.130	2	3.45	.038	. 12	<.1<	.01 3	1.7 <,	1 <.	05	8 < 5	15	
21	0600E 8000N	.7	31.1	4.9	39	.1	37.6	14.7	572	3.15	2.5	3.3	<.5	1.0	95	.2	.2	.4	91	.99	. 046	9	41.3	.94	93	.109	4	2.61	.066	.06	<.1	.02 6	i.2 <.	1 <.	05	7 < 5	15	
20	0600E 7950N	.6	19.5	4.2	50	<.1	37.9	13.3	324	2.89	1.6	.4	<.5	1.0	73	.1	.1	.1	67	. 35	. 106	4	33.7	.71	94	.143	1	3.39	.033	.11	<.1	.02 3	.2 <.	1 <.	05	9 < 5	15	
2	06D0E 7900N	.3	20.0	4.0	66	<.1	33.0	11.5	546	2.64	1.7	.4	<.5	1.1	57	.1	.1	.1	59	. 52	. 368	5	31.4	. 56	100	.123	3	3.02	.035	.10	<.1	.01 3	1.8 <.	1 <.	05	8 < 5	15	
~	ACOAC SOCAL	_	00.1						510			-	-		4 7 0				~~																			
2	U600E /850N	.3	29.1	2.9	46	<.1	40.6	14.4	513	3.20	1.3	.5	<.5	1.9	170	.1	.1	.1	88	.77	. 079	13	40.3	1.18	116	.152	<1	2.62	.072	. 12	<.1<	.01 7	.4 <.	1 <.	05	6 <.5	15	
2	0600E 7800N	.3	14.0	4.4	50	<.1	25.0	8.8	278	2.40	1.5	.3	. 6	1.0	46	.1	.1	.1	57	.30	. 203	4	27.8	. 43	75	.126	1	2.44	.034	. 07	<.1	.01 2	.,7 <,	1 <.	05	8 < 5	15	
R	E 20600E 7800N	.3	12.7	4.5	48	<.1	24.2	8.8	277	2.34	1.5	.3	. 9	1.0	46	.1	.1	.1	55	. 32	. 202	4	27.5	. 40	75	.122	1	2.46	.030	.08	<.1	.01 2	.8 <.	1 <.	05	7 <.5	15	
5.	Tandard DS6	11.6	123.7	29.1	145	.3	25.1	10.8	703	2.85	21.3	6.6	45.6	2.9	40	6.1	3.4	5.0	57	. 87	.079	13	192.4	. 59	164	.080	18	1.90	.075	.16	3.4	.22.3	.31.	7 <.	05	64.7	15	

Page 24

Data / FA

Sample type: SOIL SSB0 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACUE AF	TIC 001	'AL L A	Ľ. CCI	.BO ed	RAI ite	OR	IE: Co	I L	TD			85	2 E	. 1	'AS'	CIN	igs	SJ	.		ĊŌ	UVI	SR)	BC	V62	A 1	R6		PI	ONE	(60	4) 2	53-	31	58 1	*AX	(6)	7	53-	1716	
AA													GE	oCI	IEN	[](AL	. 7	NA.	LY	SI	S	CEI	RT']	CFI(CA.	re														
LL						Al	mad	dei	n l	<u>411</u> 1	<u>ler</u> 103	al - 7	8 50 W	<u>Lto</u> . Pe	1. nde	PF • st	.,) .,)	EC Vane	COUV	NR er E	<u>.05</u> 30 V	- <u>- 2</u> /60	218	F1. Su	LC ; ibmiti	# 2 ted	450 by:	59! Ed Bi	54 alon]	Pag	е.	L								
 Sampl.e#	Mo ppm	C PP	u m p	Pb pm p	Zn pm p	Ag pm	Ni ppm	C pp	o M mpp	n I m	e %	As ppm	U ppm	Aı ppt	Tł ppn	∣Sr ∣ppn	Сс прря	IS 1pp	b B nippi	i nppi	V M	Ca X	P X	La ppm	Cr ppm	Mç	g Ba Kippm	Ti 1	B ppm	A1 لا	Na %	К Х	W mqq	Hg ppm	Sc ppm	T1 ppm	S %	Ga ppm	Se S ppm	ample gm	-
G-1 ZAK-51 ZAK-52 ZAK-53 ZAK-54	.8 .3 .1 .4 .2	2. 13. 6. 24. 13.	02 85 54 93 14	.8 .9 .7 .4	38 < 47 < 29 < 53 < 27 <	.1 .1 .1 .1	6.1 10.6 2.7 25.6 6.4	3. 6. 2. 13. 5.	7 47 6 37 4 31 6 63 5 21	8 1.0 1 1.7 9 .8 7 2.7 5 1.3	51 76 31 75 30	<.5 2.7 1.0 4.2 2.4	2.7 .7 .3 .6	<.9 2.2 1.6 .8	4.8 2.0 1.8 1.9 2.3	56 361 870 81 205	5 <.1 1 1 1 5 <.1	<. 	1 . 3 . 1 . 4 .	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 21. 11. 9. 81.	49 . 01 . 37 . 58 . 08 .	082 064 048 046 026	9 18 20 15 23	88.9 16.4 3.1 43.9 10.4	. 48 . 61 . 38 . 72 . 58	B 161 L 342 B 667 2 128 B 442	. 102 . 013 . 001 . 083 . 002	1 2 1 4 2	.82 2.21 2.36 1.91 2.26	.060 .068 .085 .093 .128	.40 .08 .07 .10 .09	.1 6.8 <.1 <.1 <.1	.01 .04 .02 .02 .01	1.9 4.5 2.5 8.4 3.7	.3 .1 <.1 .1 .1	<.05 <.05 <.05 <.05 <.05	4 6 5 6 5	<.5 .5 <.5 <.5 <.5	30.0 15.0 7.5 30.0 30.0	
ZAK-S5 ZAK-S6 ZAK-S7 ZAK-S8 ZAK-S9	.4 .3 .5 .3	26. 21. 21. 18. 20.	55 73 04 96 55	.2 .8 .3 .1 .1	76 < 55 < 69 < 73 < 51 <	.1	15.8 22.1 16.3 11.7 34.0	12. 10. 11. 11. 15.	5 57 9 44 3 63 2 46 6 33	7 3.0 3 2.7 5 3.0 8 3.0 3 3.2)6 72)3)7 20	3.4 3.1 3.4 4.6 2.0	.7 .6 .6 1.0 .7	 <,§ 1.3 <,§ <,§	2.4 1.7 1.8 3.3 1.5	48 105 182 61 95	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· · ·	3. 3. 2. 3. 1.	1 60 1 7 1 7 1 60 1 7	6. 1. 3. 2. 0.	69 78 78 62 64	035 068 059 022 090	13 12 14 15 9	27.7 42.1 29.9 22.0 58.7	. 66 . 69 . 78 . 59	5 88 9 128 9 189 5 62 5 100	. 021 . 101 . 092 . 014 . 145	5 1 2 4 2	2.02 2.13 2.51 1.89 2.29	.014 .055 .037 .007 .065	.18 .09 .12 .19 .08	<.1 <.1 <.1 <.1 <.1	.03 .03 .03 .01 .03	8.5 7.0 8.5 8.1 6.8	.2 .1 .2 <.1	<.05 <.05 <.05 <.05 <.05	7 6 7 7 6	<.5 <.5 <.5 <.5	30.0 30.0 15.0 30.0 30.0	
ZAK-SB .5 18.9 6.1 /3 <.1 1.1 1.1 3 1.62 .62 .022 15 22.0 .55 62 .014 4 1.89 .007 .19 <.1 .01 8.1 .2 < .05 7 <.5 30.0 ZAK-S9 .3 20.6 5.1 51 <.1 34.0 15.6 333 3.20 2.0 .7 <.5 1.5 95 .1 .1 .1 70 .64 .090 9 58.7 .96 100 .145 2 2.29 .065 .08 <.1 .03 6.8 <.1 <.05 6 <.5 30.0 ZAK-S10 .5 30.7 4.0 56 <1 35.9 18.17 .1 .4< .19 .73 .072 13 52.8 .96 166 .127 2 2.33 .056 .09 .1 .05 6 .5 30.0 .02 .04 .1 .5 .1 .07 12 41.4 .96 187 .128 3 2.88 .031 .14															30.0 30.0 30.0 30.0 30.0 30.0																										
ZAK-S15 ZAK-S16 ZAK-S17 ZAK-S18 ZAK-S19	.4 2.7 .6 .5	27. 28. 34. 32. 31.	43 55 54 53 23	.6 .3 .8 .9	56 < 61 < 56 < 54 < 53 <		34.4 33.6 42.0 45.2 49.6	14. 14. 15. 16. 18.	1 48 9 46 6 55 2 59 9 62	3 3.3 8 3.2 4 3.6 2 3.7 6 3.9	32 26 (56 75 92	3.7 52.2 5.9 4.7 8.8	.5 .6 .6 .8	1.6 16.2 1.0 2.3 1.2	1.5 1.6 1.7 2.0	108 96 125 159 147	3 .1 5 .1 5 .1 5 .1 7 .1	1.	4 7 < 2 < 2 <	1 8/ 1 7: 1 9/ 1 9/ 1 9/	8. 7. 2. 2. 1.	63 56 65 72 81	073 070 089 078 077	10 7 11 15 13	55.3 42.4 63.0 66.4 67.6	.88 1.01 1.02 1.21 1.40	3 129 1 198 2 162 1 163 1 183	.141 .115 .165 .154 .175	2 2 1 2	2.29 2.86 2.88 2.96 2.75	.059 .028 .058 .061 .075	.08 .12 .09 .10 .09	<.1 <.1 <.1 <.1 <.1	.02 .04 .03 .02 .02	6.8 5.1 8.0 10.7 10.5	<.1 .1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	6 9 7 7 7	<.5 <.5 <.5 <.5	30.0 30.0 30.0 30.0 30.0 30.0	
ZAK-S20 ZAK-S21 ZAK-S22 ZAK-S23 ZAK-S24	.7 3.2 8.7 5.0 1.5	13. 23. 25. 30. 27.	1 4 3 7 1 10 5 6 0 6	.1 .6 .7 .8 .4	74 < 67 54 62 < 31 <	.1 .2 .1	17.8 30.4 35.6 40.6 24.8	14. 10. 11. 13. 9.	1 48 6 31 7 16 3 23 2 29	8 2.6 9 2.6 8 2.7 1 3.1 3 2.5	52 3 50 77 3 15 6 53 2	39.8 8.7 33.1 53.7 22.5	.7 .3 .3 .5 .9	10.6 .8 .5 5.8 6.6	1.8 1.2 1.4 1.4	72 38 39 56 96	2 <.1 3 .1 9 <.1 5 .1 5 <.1	1.	2 <. 3 4 6	l 64 l 51 l 69 l 70 l 60	4. 7. 5. 6. 0.	41 . 19 . 19 . 30 . 55 .	057 286 243 132 015	9 4 5 5 8	22.7 38.3 47.2 48.2 42.3	.48 .40 .35 .53	3 124) 120 5 154 3 213) 208	.023 .136 .147 .149 .165	2 2 2 2 1	1.57 2.69 3.36 3.60 1.91	.008 .022 .020 .030 .031	.09 .06 .06 .06 .05	<.1 <.1 <.1 <.1 <.1	. 02 . 02 . 04 . 04 . 02	4.0 2.7 3.1 3.6 5.0	1 < 1 < 1 < 1 1	<.05 <.05 <.05 <.05 <.05	8 10 15 11 5	<.5 <.5 <.5 <.5	30.0 30.0 30.0 30.0 30.0 30.0	
ZAK-S25 ZAK-S26 RE ZAK-S17 ZAK-S27 ZAK-S28	1.1 2.0 .5 2.6 3.9	27. 20. 35. 16. 22.	55 55 14 26 96	.5 .1 .5 .7	34 < 41 < 56 < 48 < 78 <	.1 .1 .1	21.5 20.8 41.5 15.8 20.8	8. 8. 15. 7. 16.	729 530 654 317 860	6 2.6 6 2.6 1 3.6 5 2.6 4 3.8	53 59 51 04 80 19	15.1 36.9 6.0 52.0 91,5	.8 .5 .6 .4	3.5 9.8 1.5 14.7 27.2	1.3 .9 1.7 1.1 1.2	102 72 130 33 72	2 .1 2 <.1 2 .1 3 .1 2 <.1	2. 1. 4.	6 . 2 . 2 . 4 . 8 .	1 7: 1 7: 1 9: 1 5: 1 8:	1. 1. 1. 1. 4.	55 40 61 22 54	017 019 086 096 033	8 6 12 7 8	45.5 44.1 62.1 26.1 33.8	.56 .49 1.03 .28	5 223 9 200 1 162 3 163 5 262	.174 .093 .162 .035 .025	2 1 2 <1 1	1.70 1.83 2.76 2.26 2.30	.072 .040 .063 .018 .018	.06 .07 .09 .07 .17	<.1 <.1 .4 .1 .1	.02 .01 .02 .02 .02	4.6 3.3 7.9 2.9 4.8	.1 <.1 .1 .3	<.05 <.05 <.05 <.05 <.05	5 6 8 9	<.5 <.5 <.5 <.5	30.0 30.0 30.0 30.0 30.0 30.0	
ZAK-S29 ZAK-S30 ZAK-S31 ZAK-S32 ZAK-S33	3.8 3.2 4.3 4.6 3.6	14. 11. 10. 11. 11.	65 484 94 64	.0 .7 .2 .0 1 .8 1	97 61 < 87 09 18	1 2 2 3	23.1 19.6 18.6 24.9 26.3	15. 12. 14. 18. 19.	7 39 2 28 3 42 6 53 3 46	6 3.2 9 2.7 8 3.2 6 3.9 5 4.0	20 72 26 10 25 12 25 1	75.9 53.3 04.9 25.6 95.2	.4 .4 .5 .4	4.8 8.4 7.2 10.3 5.8	1.1 1.3 1.3 1.4	34 39 24 29 30	.1 <.1 .1 <.1 <.1	2. 1. 3. 3. 2.	7 7 4 8	1 79 1 62 1 70 1 92 1 93	9. 2. 6. 1. 2.	33 . 26 . 28 . 30 . 31 .	113 148 185 146 190	4 3 4 3 4	27.1 26.0 22.9 28.7 28.4	. 86 . 62 . 79 . 89 . 86	5 147 2 104 9 91 9 118 5 131	.125 .107 .052 .104 .149	1 1 <1 2	2.88 2.34 3.30 3.56 3.42	.013 .016 .008 .010 .011	.09 .07 .08 .08 .09	.1 .1 <.1 .1 .1	.02 .01 .02 .03 .03	4.9 3.5 6.2 5.6 5.3	.1 .1 .1 .1	<.05 <.05 <.05 <.05 <.05 <.05	13 10 13 15 15	<.5 <.5 <.5 <.5	30.0 30.0 30.0 30.0 30.0 30.0	
STANDARD DS6	AK-S33 3.6 11.6 4.8 118 .3 26.3 19.3 465 4.05 95.2 .4 5.8 1.4 30 <.1 2.9 .1 92 .31 .190 4 28.4 .86 131 .149 2 3.42 .011 .09 .1 .03 5.3 .1 <.05 15 <.5 30.0 STANDARD DS6 11.5 123.4 30.4 144 .3 25.4 10.9 705 2.86 21.6 6.7 47.1 3.6 44 6.0 3.7 5.1 57 .86 .079 15 191.1 .58 16 1.95 .076 .17 3.3 .23 3.4 1.7< .05 7 4.5 30.0															30.0																									
GROUP 1DX - (>) CONCENT - SAMPLE TY	30.0 RATIO PE: S	0 GM N EX DIL	SAI CEEI SS8(MPLE DS L D 60	e le; Jppei)C	ACHI R L	ED W IMIT Samp	ITH S. les	180 SOM beg	ML E MI	2-2 NER. ng	-2 H Als <u>'Re'</u>	CL-I MAY are	1NO3 8E 2 Re	- H2C PART runs	AT IAL an	95 LYA <u>d'R</u>	DEG TTA RE!	i. C ICKEE are	FOR e Re	ONI REFI	E HC RACI <u>t Re</u>	UR, ORY	DILU AND 3.	UTED GRAP	то е ніті	500 M IC SA	IL, A Mple	NALY S CA	SED I	BY IC Mit #	P-MS	S. DLUB	ILIT		ME	ET C	<u>ठ</u> 1	Δ/	CERTIFIC	
Data [F	'A			Ð.	ATE	R	BCE	SIV	ED :	: 5	SEP	20 2	2005	Ľ	ATI	S R	EPC	RI	M	AIL	ED	. <u>C</u>	×.(Ņ	.!?	<u> </u> 0	ż	•							HE	$\overline{\mathbf{x}}$	Clar	ence	Lec	ing 13	
 All results	are c	onsi	dere	ed t	he i	con	fide	ntia	al p	rope	rty	of	the	cli	ent.	Acr	ne a	ssu	mes	the	lia	abil	itie	es fo) or ac	tual	cos	t of	the	ana	lysis	onl	у.			Q	レ	T	\sum	- KEIL	

Page 2

Sample#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au T	h Sr	r Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg Ba	Ti	B A	l Na	K	W	Hg	Sc T	1 S	Ga Se	Sample	
 	ppm	ррт	ppm	рряп	ppm	ppm	ppm	ppm	Z	ppm p	pm	dd add	m ppn	пррп	ppm	ppm	ppm	z	Χp	pm p	opm	% ppm	8	ppm	<u> </u>	7	ppm	ppm p	pm ppi	Π δ	ppm ppm		
ZAK-S34	1.5	10.5	6.3	51	.2 1	19.3	8.9	319 2	.13 2	4.6	.3	3.1 1.	1 26	5.1	.5	.1	48	.18.	220	3 24	1.2	24 115	. 114	1 2.5	2.019	.05	.1	.03 2	.6 .	1 <.05	9 <.5	30	
ZAK-S35	1.5	19.0	4 .2	56	.13	30.5	12.2	336 2	.70 1	4.2	.4	2.5 1.	2 45	5.1	.3	.1	64	.24 .	124	4 39	9.5 .	56 175	. 131	1 3.1	5 . 024	.07	<.1	.04 3	.4 .:	1 <.05	8 <.5	30	
STANDARD DS6	11.5	24.1	30.3	143	.3 2	25.2	10.9	714 2	.85 2	1.4 6	.7 4	16.7 3.	1 49	9.6.0	3.6	5.1	58	. 88 .	079	15 191	7	59 165	092	17 1 9	5 078	17	34	23.3	4 1	7 < 05	643	30	

Sample type: SOIL SS80 60C.

ACME A*	YTIC/)001	AL L Acc	ABO red	RAT(ite	DRI 1 C	es 0.)	LTU			852 (E. JEÇ	HA DCH1	ST) Emi	eng ECA	s s L	T. AN/	УЦУ	ICOL SI	JVE S (r Bo 'Er	2 TI)	V6A FIC	lr(ATE	5		PHO	NE (6.0.4) 25	3-3	158	3 гах	<u>.</u> (6	253	-17 A	16 A
						<u>A</u>]	lma	<u>.dei</u> 1	<u>1 M</u> 103	<u>ine</u> - 75	<u>era</u> 0 W.	1 <u>8</u> Peri	<u>Lt</u> der	<u>:d.</u> st.,	P , Var	<u>ROi</u> ncour	JEC ver B	' <u>T 1</u> 30 Ve	<u>NR (</u> SC 2) <u>5 -</u> 18	3 Subi	F1 nitte	le d by	# : Ed	A5(^{Bal})61 m	79								4	Ê
SAMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm p	Ag pm	Ni ppm	Co ppm	Mn ppm	Fe گ	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm p	Bi xpm p	V pm	Ca X	ئ گ	La pm	Cr ppm	Mg X	Ва ррл	Ti X	8 ppm	A1 2	Na X	K X	W ppm p	Hg pm p	Sc Tl pm ppm	S X	Ga Se ppm ppm	Samp1	le Jm
G-1 MC-316 MC-317 MC-318 MC-319	.6 .6 .3 .7 .4	2.0 27.6 26.6 40.8 25.2	2.7 2.9 3.3 3.1 2.8	46 < 60 < 72 < 81 < 54 <	.1 .1 2 .1 3 .1 3 .1 2	6.3 9.6 1 3.0 1 4.5 1 9.9 1	4.3 15.5 13.7 17.7 19.4	563 737 797 825 1340	1.79 3.32 2.88 3.66 3.10	<.5 5.4 3.1 7.2 5.0	2.1 .8 .6 .4	<.5 .6 <.5 <.5	3.5 1.2 .9 1.1 1.2	58 119 103 89 101	<.1 .1 .1 <.1 <.1	< 1 .3 < .4 < .9 <	.1 <.1 <.1 <.1 1 <.1	34 . 94 . 85 . 01 . 90 .	. 46 . 82 . 94 . 83 . 66	078 113 067 076 101	7 10 11 11 9	73.6 44.5 47.1 45.9 43.1	.60 1.02 .79 .96 .90	243 246 167 171 125	. 114 . 099 . 110 . 105 . 118	1 1 5 1 5 1 4 2 3 2	04 68 91 17 00	. 103 . 055 . 072 . 060 . 046	,61 .07 .07 .08 .08	.1<. 1 . < 1 . <.1 . < 1 .	01 3 02 5 03 6 03 8 02 6	.3 .4 .0 <.1 .5 <.1 .1 <.1 .3 <.1	<.05 <.05 <.05 <.05 <.05	5 <.5 5 <.5 5 <.5 6 <.5 6 <.5	30 15 30 30 30	0 0 0 0 0
MC-320 MC-321 MC-322 STANDARD DS	.4 .4 .3 6 11.7 1	18.8 20.0 21.4 122.5	3.7 3.4 3.4 29.2	65 < 65 < 59 < 145	.1 1 .1 2 .1 2 .3 2	9.8 1 5.1 1 7.4 1 5.1 1	2.6 4.0 3.9 0.8	913 1324 1214 701	3.11 2.99 3.04 2.84	5.9 6.5 7.3 20.8	1.3 1.0 1.1 6.6	<.5 .5 .6 47.4	.8 .6 .8 3.0	294 224 173 40	.1 .1 .2 6.0	.4 .3 .3 3.5	.1 .1 .1 .9	85 1. 76 1. 81 1. 55 <i>.</i>	.04 . .05 . .00 . .84 .	184 140 130 078	11 9 11 15 1	33.9 34.1 39.1 92.4	. 74 . 84 . 84 . 59	595 558 442 164	070 092 090 091	3 2 4 2 4 2 17 1	.40 .17 .09 .96	.021 .038 .044 .075	.12 .08 .08 .16	<.1 . <.1 . <.1 . 3.5 .	07 4 06 4 06 4 23 3	.4 .1 .2 <.1 .3 .1 .4 1.8	<.05 <.05 <.05 <.05	7 <.5 6 <.5 6 <.5 6 4.4	15 7. 7. 30.	0 5 5 0
GROUP 1DX (>) CONCEN - SAMPLE T	- 30.00 ITRATION YPE: STE	GM S. Exce Ream	AMPLE EDS L SED.	E LEA JPPER	CHED	WIT IITS,	H 18 SO	0 ML Me M	2-2 Iner/	-2 HC Als M	CL-HI May e	NO3-H BE PA	120 / ARTI/	AT 9 ALLY	5 DE ATT	G. C ACKE	FOR	ONE REFR	HOL	IR, D IRY A	ILUT ND G	ED TO RAPHI	006 CO 171C) ML Samp	ANA PLES	LYSE CAN	D BY LIMI	'ICP TAU	-MS. SOL	UBIL	ITY.					
Data_	fa		D.	ATE	RE	CEI.	VED	:	SEP	29 20	005	DA	TE	RE:	POR	тм	AIL	ED:	<u>(C</u>		t.	<u>/?</u> [05	·			A CON		C		e L	Pony S				
																													7		<u>.</u>	- de la construcción de la const				
																								-								·				

198 C 1 1 1 1 1

1. 2. 2.

10 A. 10 T. T. C.

in the second second

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

1

ACME AF	CME AF VIICAL LABORATORIES LID. 852 E. HASTINGS ST. VCOUVER BC VGA 1R6 PHONE(604)253-3158 FAX(6 (I 1001 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE Almaden Minerals Ltd. PROJECT NR05-3 File # A506180														
A A	GEOCHEMICAL ANALYSIS CERTIFICATE <u>Almaden Minerals Ltd. PROJECT NR05-3</u> File # A506180 1103 - 750 W. Pender St., Vancouver BC V6C 218 Submitted by: Ed Balon IPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Hg Sc Ti														
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn	Fe As U Au Th Sr Cd Sb Bi V Ca P	P La Cr Mg Ba Ti B Al Na K W Hq Sc Ti S	Ga Se Sample											
	ppm ppm ppm ppm ppm ppm ppm	X рратрот ровратротратратратра 2 2	sppm ppm \$ppm \$ppm \$ \$ \$ppm ppm ppm \$pm	ppm ppm gm											
G-1 ZAK-S36 ZAK-S37 ZAK-S38 ZAK-S38	.6 2.1 2.8 44 <.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 < .5 30.0 9 < .5 30.0 10 < .5 30.0 9 < .5 30.0 9 < .5 30.0 8 < .5 30.0											
ZAK-540 ZAK-541 ZAK-542 ZAK-543 RE ZAK-538	1.0 61.2 2.8 64 <.1	04 9.0 .6 .9 1.5 73 <.1	4 13 37.1 $.67$ 107 $.069$ 4 1.66 $.051$ $.06 < .1$ $.02$ 12.4 $.1 < .05$ 1 3 49.3 1.13 147 $.132$ 3 2.71 $.047$ $.07 < .1$ $.03$ $9.4 < .1 < .05$ 4 10 42.0 $.88$ 170 $.132$ 4 2.09 $.070$ $.06 < .1$ $.02$ $8.3 < .1 < .05$ 7 54 41.7 1.06 207 $.125$ 3 1.83 $.073$ $.09 < .1$ $.03$ 10.6 $.1 < .05$ 5 4 47.1 $.56$ 188 $.147$ 3 $.36$ $.031$ $.08 < .1$ $.02$ $3.3 < .1 < .05$	5 <.5 15.0 7 <.5 15.0 6 <.5 15.0 6 <.5 15.0 8 <.5 30.0											
ZAK-S44 ZAK-S45 ZAK-S46 ZAK-S47 ZAK-S48	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69 9.6 .4 1.8 1.5 102 .1 .8 .1 103 .77 .082 10 10.4 .5 2.1 1.5 66 <.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 <.5 15.0 7 <.5 15.0 9 .8 30.0 5 1.0 15.0 3 1.6 15.0											
ZAK-S49 ZAK-S50 ZAK-S51 ZAK-S52 ZAK-S53	5.0 91.8 4.7 86 .1 16.4 22.3 519 9. 1.4 37.5 4.3 73 <.1	57 79.2 .9 73.3 4.1 14 <.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 2.8 15.0 7 <.5 30.0 7 <.5 15.0 4 <.5 7.5 5 <.5 30.0											
ZAK-S54 ZAK-S55 ZAK-S56 STANDARD DS6	.6 29.7 3.0 52 <.1	54 9.4 .6 2.3 1.4 96 .1 .5 .1 94 .65 .074 42 6.6 .9 2.2 1.6 135 .1 .5 .1 94 .80 .076 52 5.5 .4 .8 1.5 105 .1 .4 .1 94 .59 .090 84 20.8 6.6 47.4 3.0 40 6.0 3.5 4.9 55 .84 .078	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 <.5 30.0 6 <.5 15.0 8 <.5 30.0 6 4.4 30.0											

19/05

GROUP 1DX - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: SOIL SS80 60C Samples beginning <u>'RE'</u> are Reruns and 'RRE' are <u>Reject Reruns</u>.

Data (FA

DATE RECEIVED: SEP 29 2005 DATE REPORT MAILED:

ACME	A ^{1*}	YTIC	'AL	LAB	ORA	TOR	IES	<u>L</u> T	D.		85:	2 B	. HA	STI	NGS	SI		Y	COL	JVE	R B(2 1	76A	lr	5		рно	ne (604	25	3-3	158	FA	X ((253	-1716	5
AA	I	1001	L Ac	cre	dit	eđ	Co.	}				Ge(oche	MI(CAL	. A	NA	цŶ	SI	9 ('ER'	FIF	'IC	ATE												A A	
								<u>\lm</u>	ade	en 110	Min	era	ils	Lto	<u>1.</u>	PR	OJ	EC'	<u>T 1</u>	NR ()5-	3	Fi	le	#	A5(061	81									
					7		<u></u>	<u> </u>		-1-1-U		10- 11	A.	ер 5 	5-		Ch	D:	UVD	<u> </u>		Subi	n t ter	a .oy	<u>ео</u>	Bat Ti		<u> </u>		<u></u>		<u> </u>	<u></u>				
SAMPLE#		ppn	ppm	PD PPM	ppm	ppm	ррп	ppm	ppm	re X	ррт ррт	ppm	ppb	ppm	ppm p	opma –	ppm	ppm	ppm	ta t	*	ppm	ppm	ny %	ppm	۱۲ ۲	ppm	АI %	19d	<u>ک</u>	w ppm	ppa 1	opin pp	n S M X	ppm ppm	sampie kg	
ZAK-R2	•	6.6	20.3	1.3	5	.4	1.3	.6	54	.58	55.9	.1	217.1	.1	5 <	1	3.7	<.1	11	. 05	.005	1	14.3	. 04	22	.001	2	.23	.004	.10	.1	.41	.5	1<.05	1 <.5	. 41	
KE ZAK-R ZAK-R3	2	6.4 6.4	20.1 39.2	1.3	6 6	.4 .7	1.2 2.3	.ь 1.8	52 56	.58 .52	55.7 87.1	.1	689.5	.1	17	.5	3.5 5.3	<.1 <.1	76	.05	.004	3	14.7	.03	303	.001	2	.24 .25	.004	.10 .11 ·	.1 <.1 2	.40 2.35	.4	1<.05	1 <.5	.00 1.53	
ZAK-R4 7AK-R5		54.7 22.5	9.2 8.2	1.0	7 30	1.0	2.6	1.6	94 279	.88 1.62	103.0	2 4	1176.1 359.8	.1 7	7 <	: 1 : 1	8.3 8.1	<.1 <.1	18 39	.07 .36	.015	1 4	15.3	.05 28	39 57	.002	2 3	. 25	.005 030	.08	.1 1	.47	.6. 2.1	4.06	1.7 4<.5	2.11	
74K-P6		61.0	9.5	2.0	22	.0 2	8.0	5.5	302	2 13	272.8	, i 5	544 0	8	57 <	1	12.3	< 1	47	.34	027	, 5	я 2	26	۰. ۱۸7	000	4	1.1.3	028	20	2	16 3	23	4< 05	5<5	3 62	
ZAK-RO		8.7	9.2	2.0	55	.2	9.7	10.1	392	2.19	140.0	.6	95.2	.8	66 <	.1	4.5	<.1	50	.58	.060	5	12.4	.54	88	.050	3	1.35	.038	.21	.1	.08 4	1.0	4<.05	7 <.5	2.87	
ZAK-R8 ZAK-R9P1		79.0 59.2	13.8 16.0	1.7	20 26	.3	4.7	4.5	149 275 2	1.38	165.1 474.3	.5 .4	497.8	.7	17 < 26 <		10.4 21.7	<.1 <.1	30 67	.12	.007	2 3	13.9 14.0	.10	49 63	.004	3	.64 .98	.004	.20 .22	.1 .5	.43 1	.8 3.3	.3<.05	3 <.5 4 <.5	7.95	
ZAK-R9P2		61.1	18.0	1.6	23	.4	4.1	4.2	223	2.01	331.1	.3	960.9	.3	23 <	:. 1]	16.1	<.1	52	.22	. 007	2	12.4	. 20	57	.005	2	. 85	. 010	.19	.4	.66 2	2.5	3<.05	3 <.5	8.91	
ZAK-R10		24.2	7.3	.6	7	.6	1.6	1.0	56	.52	55.7	.1	1827.6	.1	10 <	.1	5.2	<.1	27	.09	.005	1	10.3	.07	38	.002	1	.41	.005	.11	.1	. 37	.8	1<.05	1 <.5	10.31	
ZAK-RIIP ZAK-R12P		46.3 51.5	12.8 9.8	3.3	28 28	.4 .3	2.6	3.9	267	1.66	243.8	.6 .6	892.6 908.7	$1.0 \\ 1.1$	20 19	.1	9.5	<.1	48 43	.19 .16	.015	5 4	6.1 7.8	.15	66 66	.005	2	.88 .85	.007	.18 .20	.2	.69 /	2.5.	. 4<.05	4 <.5	14.56	
ZAK-R13 74K-R14		36.8	14.5 20 4	4.0 6.8	16 35	.4	2.0	2.6	144 532 (1.38	277.7	.4	496.8	.4 6	11 25 <	.31	17.1	<.1 < 1	35 103	.09	.012	75	9.8 18.4	.08 14	33 55	.005	2	.55	.005	.21 28	.21 101	1.09 I 03 I	1.8. 3.0.	1<.05	2.5	5.63 4.25	
744 016		27 7	10 0	1 2	20	، د ۵	э., эл	2 6	10/	1 02	155 /	1.U 2	242.0	.0	23 4	· 1	9 G	1 2 1	100	. 27	040	3	10.4	10	A1	010	2	82	000	.20.		15 1		1 < 05	2 < 5	7.20	
WZT-R1		3.0	10.9	.9	24	<.1	9.4	10.4	326	2.06	28.4	1.6	7.5	.7	67	.1	1.8	<.1	22	. 88	.049	2	4.1	. 37	218<	.001	6	.79	.018	.06	<.1	.07 4	1.2	1.57	2 <.5	3.52	
WZT-R2 WZT-R3		13.6 8.1	28.2	1.0	17 35	<.1	6.6 12.5	6.9 14.0	131 : 243 :	1.46	102.0	3.4	22.3 63.2	1.1	35 < 36 <	:.1 :.1	4.7 6.4	<.1 <.1	31 52	.06	.021	5 2	8.5 16.8	.04	206 416	.002	4 5 1	.80 1.00	.016	.05 · .10 ·	<.1 <.1	.22 {	5.3 5.9	.2<.05	2 <.5	5.96 4.21	
WZ-R4		1.2	18.9	.8	6	<.1	1.4	4.9	199	1.83	16.5	.3	16.3	.5	15 <	.1	4.8	<.1	59	.04	.015	4	9.9	. 02	33	.009	7	.45	.013	.05	.4	.04 3	3.8 <	1<.05	2 <.5	3.22	
STANDARD	DS6	11.6	122.6	29.6	143	.3	25 <u>.</u> 0	10.6	706	2.82	21.2	6.6	46.3	3.1	42 6	6.0	3.5	5.0	57	. 86	.078	15	88.7	.58	164	.083	17 i	l.91	.073	.16	3.3	.23	3.3 1	7<.05	7 4.4	.00	
GROUP (>) CC - SAMS Data_	1DX - DNCENT PLE TY	30.0 RATIO PE: R A	0 GM N EXC OCK R	SAMPI EEDS 150	UPPI	EACH ERL <u>Samp</u> ER	ED W IMIT Les ECE	ITH ' S. S pegin	180 ME SOME Ming	IL 2- M1NE <u>'RE</u> SEF	2-2 H RALS <u>' are</u> 29 2	CL-H MAY <u>Rer</u> 2005	NO3-Hi BE PAI <u>uns a</u> DA [*]	20 A1 RTIAL nd 'F	95 .LY A RE'_ REP(DEG TTA are	. C CKED <u>Rej</u>	FOR	ONE REFR <u>Ref</u>		ir, d iry ai		ED TO RAPHI		SAMI	, ANA Ples	ALYSE CAN		T AU				Ze eong		5 4 6		
																													~		Z	%	L.				

ACME AWALYTICAL LABORATORIES LTD. 852 B. HASTINGS ST. "ANCOUVER BC V6A 1R6 PHONE (604) 253-3158 PAX (60* 253-1716 9001 Accredited Co.) ASSAY C .FIFICATE Almaden Minerals Ltd. PROJECT NR05+3 File # A506181R 1103 - 750 W. Pender Sti, Vancouver BC V6C 278 Submitted by: Ed Belon Aa** Au** SAMPLE# gm/mt gm/mt ZAK-R9P1 ZAK-R9P2 × × × × × .86
 1.16
 2.27ZAK-R10 ZAK-R11P 1.17 ZAK-R12P ī 18 ZAK-R13 ZAK-R14 <2 <2 156 .58 1.16 5.78 STANDARD R-2a/OxL34 GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: Rock Pulp Data JAN 24 2006 DATE REPORT MATLED . FA DATE RECEIVED: Clarence Leond All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

