COMPLIANCE REPORT

on the

MOUNT THOMLINSON PROPERT

Minfile No 393M080 Latitude 35.35 14N Longitude 127 29 19W Omineca Mining division British Columbia Canada

for

Cadre Capital Inc. Vancouver, British Columbia

by

Gold Commissioner's Office Gregory R. Thomson, P. Geo. **Thomson Geological Consulting** Langley, British Columbia

Dated: February 24, 2006

TABLE OF CONTENTS

Sectio	n e e e e e e e e e e e e e e e e e e e	Page
1.0	SUMMARY	1
2.0	INTRODUCTION AND TERMS OF REFERENCE	
	DISCLAIMER	
3.0		
4.0	PROPERTY DESCRIPTION AND LOCATION	
	4.2 Licenses and Title	3
	4.3 Ownership	4
5.0	ACCESS, CLIMATE, INFRASTRUCTURE AND PHYSIOGRAPHY	4
6.0	HISTORY	5
	6.1 Discussion	6
7.0	GEOLOGIC SETTING	
	7.1 Introduction	
	7.3 Property Geology	
8.0	MINERALIZATION	8
9.0	DEPOSIT TYPES	9
10.0	EXPLORATION	
	10.1 Diamond Drilling	
	10.2 2005 Rock Sampling Survey	
11.0	DATA VERIFICATION	16
12.0	ADJACENT PROPERTIES	17
13.0	MINERAL RESOURCE AND MINERAL RESERVE ESTIMATES	18
14.0	OTHER RELEVANT DATA AND INFORMATION	18
15.0	INTERPRETATION AND CONCLUSIONS	19
16.0	RECOMMENDATIONS	
	16.1 Discussion	
	16.2 Cost Estimate	
17.0	REFERENCES	23
18.0	SIGNATURE PAGE AND AUTHOR'S CERTIFICATE	25
19.0	STATEMENT OF COSTS	27

LIST OF FIGURES

<u>Figure</u>	***************************************	Following Page
Figure 1	Regional Property Location Map	
Figure 2	Claim Map	
Figure 3	Regional Geology Map	
Figure 4	Property Geology and Compilation Map	
Figure 5	2005 Rock Sample Location Map	
Figure 6	2005 Rock Sample Results (Molybdenum)	
Figure 7	2005 Rock Sample Results (Copper)	
Figure 8	2005 Rock sample results (Gold)	

LIST OF APPENDICES

Appendices |

Appendix A Appendix B	Mount Thomlinson Mineral Reserve (CIM Special Volume No.15, p. 422) 2005 Rock Sampling Summary and Assays
Appendix C Appendix D	Drill Hole T-2-81 Assay Table and Mean Totals
Appendix E	1981 Drill Hole Results with 1993 Duplicates in Blue 2005 Drill Hole Duplicates - Descriptions and Results
Appendix F Appendix G	Molybdenum in British Columbia (Information Circular 2005-3) Photographs of Mount Thomlinson Mineral Property
Appendix H Appendix I	1993 Rock and Drill Core Sampling Table (Discovery Consultants) Assay Certificates - 2005
Appendix J	TexasGulf Drill hole Sections
Appendix K	Mineral Tenures

Section 1.0

SUMMARY

This report summarizes all of the historical and recent exploration work carried out on the Mount Thomlinson porphyry molybdenum deposit. The deposit is located within the Omineca Mining Division of north-central British Columbia, approximately 38 kilometres northeast of the town of Hazelton. Hazelton lies on Highway 16, which is the primary route to the deep seaport of Prince Rupert, located 290 kilometres to the west.

The Mount Thomlinson deposit lies within relative proximity to several porphyry molybdenum prospects and past-producing mines that are currently receiving intense exploration interest resulting from the recent dramatic price increase in molybdenum.

The property consists of 6 contiguous mineral claims covering an area of 3912.5 hectares. The Mount Thomlinson claims are 100% owned by Cadre Capital Incorporated of Vancouver, British Columbia and contain no underlying property interests.

During the early 1960's and early 1980's major exploration programs were carried out by Buttle Lake Resources, Southwest Potash Corporation (AMAX), and Texasgulf Canada Limited The exploration work, consisting mainly of trenching and diamond drilling, outlined a 40.82 million tonne measured reserve of 0.071 per cent molybdenum with accessory grades in copper.

The majority of exploration on the property has been directed towards a mineralized zone of approximately 900 metres in length lying along the contact zone of a semi-circular Eocene age quartz monzonite porphyry stock, with surrounding Middle Jurassic to Lower Cretaceous Bowser Lake Group argillaceous sedimentary rocks.

Recent rock sampling of the Mount Thomlinson property has shown that significant molybdenum and copper values are also found in other areas along the prospective contact zone as far away as 1 kilometer from the main recognized molybdenum ore body. It has also been determined that sections of drill core containing significant visible molybdenum and copper mineralization were not thoroughly sampled by the previous operator, Texasgulf Canada Limited.

It is therefore recommended that the Mount Thomlinson property undergo a modern exploration program consisting of further rock sampling, prospecting, geologic mapping, geophysical surveys, and extensive diamond drilling. A program of Induced Polarizion geophysics should be carried out along the strike of the main mineralized contact zone. IP surveys will be followed by a comprehensive and consistently oriented diamond drill program to evaluate geophysical target anomalies and to confirm and expand upon the mineral grade and tonnage of the main ore body.

It is concluded that the Mount Thomlinson project is one of merit and that further work is recommended and justified. A work programme is proposed that comprises rock sampling and analysis, prospecting, grid establishment, IP surveys, and geological mapping for Phase I, to be followed by a comprehensive diamond drill program for Phase II. The cost of Phase I is estimated at \$409,750.00 with Phase II estimated at \$1,028,500.00, for total expenditures of \$1,405,250.00

Section 2.0

INTRODUCTION and TERMS OF REFERENCE

Cadre Capital Incorporated has retained Thomson Geological Consulting to prepare a report to determine whether the property is a property of merit as a requirement of National Instrument 43-101 in accordance with TSX Venture Exchange policies.

AMH Mining Corporation has signed an option agreement with Cadre Capital Incorporated to purchase a 100% interest in the Mt. Thomlinson molybdenum/copper project through issuance of cash and shares.

The Mount Thomlinson deposit is located 38 kilometres northeast of Hazleton, British Columbia, within 12 kilometres of recently built logging roads. A paved highway and rail lines run westward from Hazelton to the deep water Port of Prince Rupert.

The property has been located to cover the known extent of previously explored porphyry-style molybdenum—copper mineralization located along the contact between a body of Eocene age Babine Intrusives and middle Jurassic to lower Cretaceous age Bowser Lake Group sedimentary rocks. Exploration conducted to date indicates that the property has the potential to host a large porphyry molybdenum + copper deposit.

In order to prepare this report, Thomson Geological Consulting has relied almost exclusively on data collected and reports generated by others. A full set of references is presented in Section 17 of this report.

The author has not yet visited the property, but has examined rock and drill core samples collected during a 2005 property visit. As far as is known, exploration has been conducted on the property in the years from 1962 to 1980, 1993, and 2005.

In compiling this report, every effort has been made to follow Form 43-101F1 as closely as possible.

Section 3.0

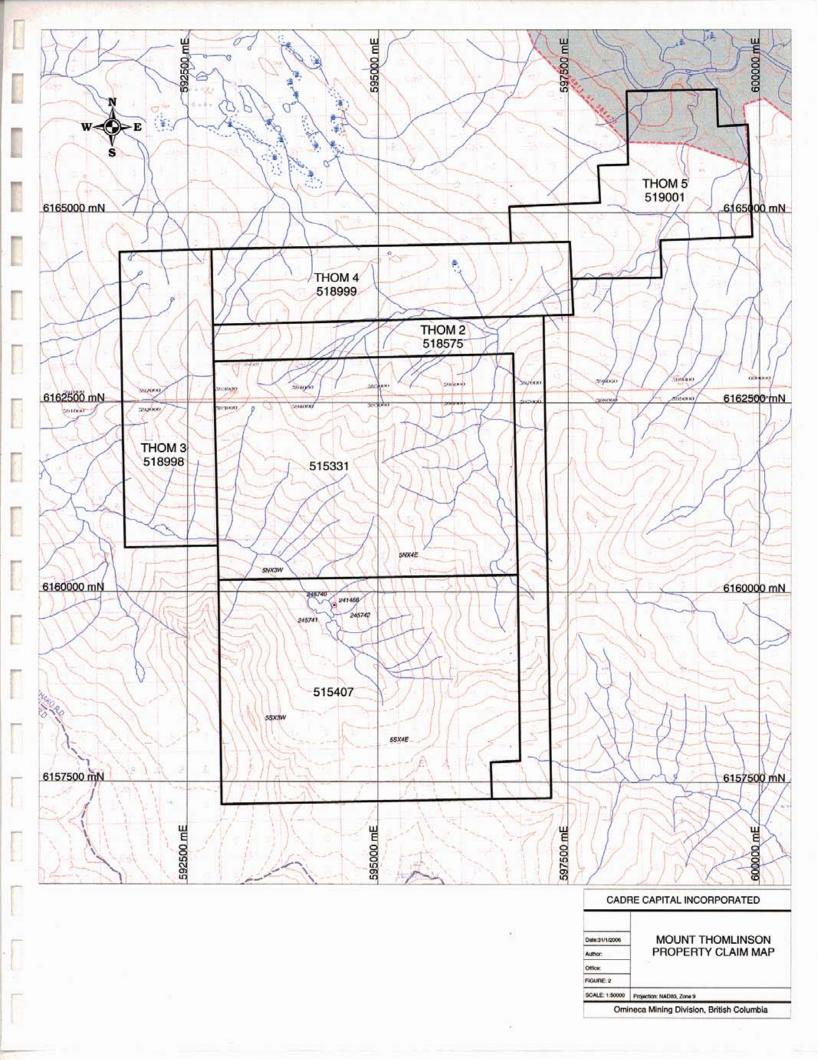
DISCLAIMER

In order to prepare this report, Thomson Geological Consulting has relied upon work and reports completed by others and has not completed any checks to confirm or otherwise the results of such work and reports. While Thomson Geological Consulting has no reason to doubt the correctness of such work and reports, Thomson Geological Consulting takes no responsibility for the accuracy of work completed by others.

Section 4.0

PROPERTY DESCRIPTION

4.1 Area and Location


The Mount Thomlinson property is located approximately 38 kilometres northeast of Hazelton, British Columbia. The property is approximately centered on Latitude 55° 35' N. and Longitude 127° 29' W and is located on NTS map sheet 093M/11W.

The property is presently accessible by helicopter. Recently built logging roads bring ground access to within 12 kilometres of the deposit area.

4.2 Licenses and Title

The Mount Thomlinson property comprises 6 contiguous mineral claims covering an area of approximately 3912.51 hectares which lie within the Omenica Mining District. Claim data and descriptions are summarized in the following table, while a map showing the claims is presented in Figure 2.

Claim #	Name	Area (ha)	Owner
515331		1096.93	Cadre Capital
515407		1079.45	"
518575	Thom 2	438.77	11
518998	Thom 3	438.7	77
518999	Thom 4	438.52	11
519001	Thom 5	420.14	. 11

As far as can be reasonably ascertained, the property appears to be free of any environmental liabilities associated with previous exploration activities. Permits necessary for any exploration activities recommended in this report have yet to be acquired.

4.3 Ownership

The property is 100% owned by Cadre Capital Incorporated of Vancouver, B.C., and is free from underlying interests or royalties. Mineral claim tenure status for the Mount Thomlinson property is shown in Appendix G.

Section 5.0

ACCESS, CLIMATE, INFRASTRUCTURE, AND PHYSIOGRAPHY

The property lies 38 kilometres northeast of Hazelton British Columbia, within the Babine Mountain Range, a region of generally rugged topography. The main area of past exploration was carried out at about 1850 metres elevation along a north trending ridge 4.5 kilometres north of the peak of Mount Thomlinson.

Access is by helicopter chartered from the town of Smithers which is located 90 kilometres south of the mineral property. Supplies and equipment can be flown from a staging area with logging road access located 15 kilometres northwest of the mineral showings or from farms located near Kispiox which lies 25 kilometres to the west of the property.

The topography of the property is moderate to extreme, with 850 metres of relief on the claims. The local tree line is about 1350 metres or 500 metres below the surface mineral zones. Isolated rugged mountain peaks separated by broad wooded valleys, characterize the regional topography. Many of the peaks are over 2000 metres in elevation and are surrounded by ice and snow fields. The mountain slopes are steep and generally covered by rock talus.

The region has a cool temperate climate with moderate snowfall, with the mountainous areas generally covered with snow until mid-June. High winds and local clouds are commonplace along the ridge, even during summer months

Future exploration of the mineral property will require the building of a helicoptersupported camp as was established by previous operators of the Mount Thomlinson property.

Section 6.0

HISTORY

The area was originally staked in 1962 by three prospectors from Hazelton and optioned to Buttle Lake Mining (later Stampede International Resources Ltd). In 1963 the property was mapped, trenched, and sampled by Buttle Lake Resources. In August of that year, the property was optioned by AMAX, then known as Southwest Potash Corporation. Loudin (1963) spent nine days on the property, produced a map, and recommended the option.

In 1964 and 1965, AMAX conducted programmes of geological mapping, surveying, geochemistry, and drilled nine BQ diamond drill holes totaling 2,459 meters. The property was subsequently allowed to lapse and re-staked by AMAX in 1975.

In 1975 AMAX tabled a measured, indicated, and inferred reserve of 40,820 kt of 0.12 per cent MoS2 conversion to 0.072 % Mo using the factor 1.6681. (CIM Special Volume 15 (1976), Table 3, page 422 and Porphyry Deposits of the Canadian Cordillera 1976, p. 425.) The core was not assayed for copper or gold at that time.

In 1979 the group was restaked as the Molly Tom claims by John Bot, an independent prospector from Smithers. Mr. Bot optioned the property to TexasGulf Canada Limited. On May 16, 1979, P.R. Delancy visited and examined the property in preparation for a planned drill programme in 1980.

Work performed by TexasGulf in 1980 included construction of a camp and drill site and diamond drilling of one NQ wire line hole that was abandoned at 213m, about 500 meters short of the projected target depth. This hole, DDH TH-1-80, penetrated strongly fractured Bowser Lake Group argillite/shales with sparse quartz and calcite veinlets and finely disseminated pyrite.

In 1981, TexasGulf repaired the camp and drilled four NQ diamond drill holes totaling 1632.3 meters from a common set-up location. Drill hole T-2-81 was collared at -45° and intersected 357 meters of 0.115% MoS2 and 0.11% Cu and was mineralized to the end of the hole at 769.3 meters, effectively confirming and doubling the extent of mineralization reported in the AMAX reserve calculation. The core was not assayed for gold.

In 1993, W.R. Gilmour engaged Discovery Consultants to re-sample surface showings and select core samples located on the property. 30 surface and 24 core samples were collected during this programme. Values of up to 7300 ppm Mo, 3400 ppm Cu, and 50ppb Au were obtained (see 1993 sample summary).

In September 2005, the claim owner, accompanied by David Gale, P.Geo and Kenneth Armstrong, P.Geo, performed a reconnaissance property exam which resulted in the collection of 33 rock samples. Results from the programme confirmed the presence of molybdenum, copper, and gold mineralization, and resulted in the verification of at least two additional mineralized areas previously described by TexasGulf (Delancy, 1981). Results range up to 2495 ppm Mo, 3081 ppm Cu, 745 ppb Au, and 161 ppm Ag. Please refer to tables summarizing the recent sampling and assay results in **Appendix B and D**.

6.1 Discussion

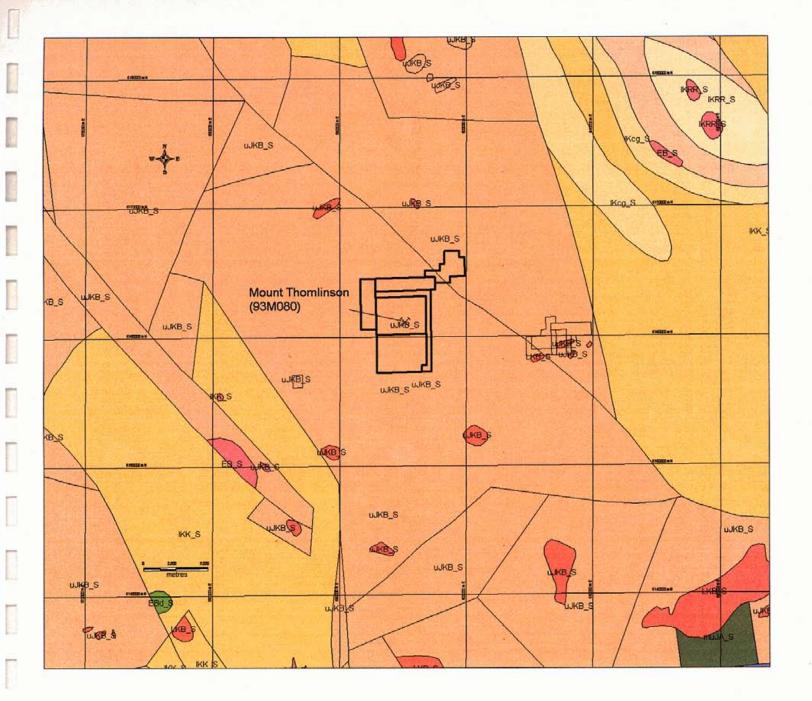
The results of the exploration carried out on the property to date are incorporated into Section 10.

The majority of the data obtained from previous work is available in reports prepared for past operators. Generally, the work is of good quality and forms a good foundation for further work. While some private data is missing; maps showing geology, trenching, and diamond drill hole locations are available for most of the exploration campaigns.

The lack of certain data is not considered to significantly impact evaluation of this project. It should be noted that each operator has verified earlier discoveries of mineralization with the later arrivals improving on the knowledge base. None of the past work has been conducted by the issuer or by a contractor acting on behalf of the issuer or its agents.

Section 7.0

GEOLOGY


7.1 Introduction

The overview of the regional geology provided below is taken from the B.C. Geological Survey mapping synopsis of the Hazelton map sheet 093M, while the description of the property geology and mineralization comes mostly from B.C. government annual reports and filed assessment reports. For brevity and ease of reading, passages that have been taken verbatim from these reports are not specifically quoted unless to draw attention to observations made or opinions expressed by one particular author.

7.2 Geological Setting

The main region surrounding the Mount Thomlinson deposit is underlain primarily by rocks of the Stikinia Terrain and an overlap assemblage.

The Stikinia Terrain consists of the Lower to Middle Jurassic Hazelton Group and the Upper Triassic Stuhini (Takla) Group island arc volcanic rocks. These are intruded by the Late Triassic to Middle Jurassic Omineca, Francois Lake, and Topley intrusions. The overlap assemblage consists of the Middle Jurassic to Upper Cretaceous Bowser Lake, Lower Cretaceous Skeena, and Cretaceous Sustut groups. These mainly comprise clastic sedimentary and minor volcanic rocks deposited in local fault-bounded successor basins and in the Bowser basin, a portion of which underlies much of the northwestern portion of the Hazelton map area. Upper Cretaceous calc-alkaline volcanic rocks of the Kasalka Group extruded from several volcanic centers, while coeval plutonic rocks formed the Bulkley Intrusions. During the Cenozoic Era, important igneous activity occurred in the Eocene stage, when the Babine, Kastberg and Nanika intrusions and the Ootsa Lake Group calc-alkaline volcanic suite formed. Structure is dominated by block faulting, which has controlled the location of the major mountain valley systems, as well as many of the intrusive rock suites and mineral deposits. Aside from contact effects near intrusive bodies, metamorphism is light, reaching prehnite-pumpellyite facies.

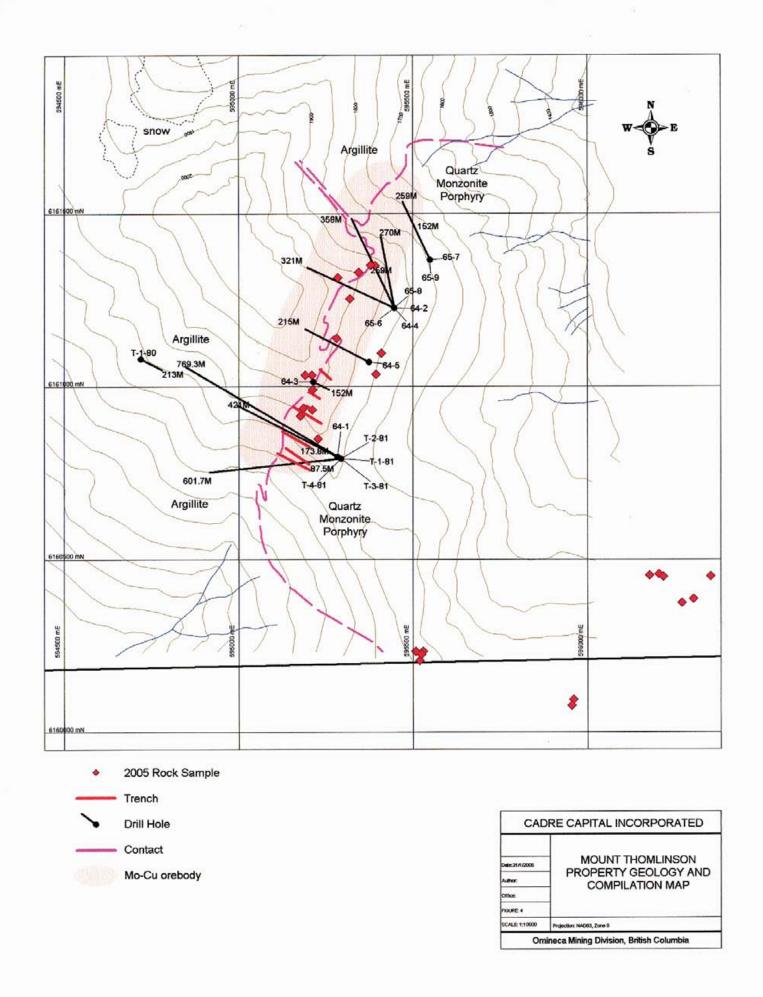
LEGEND

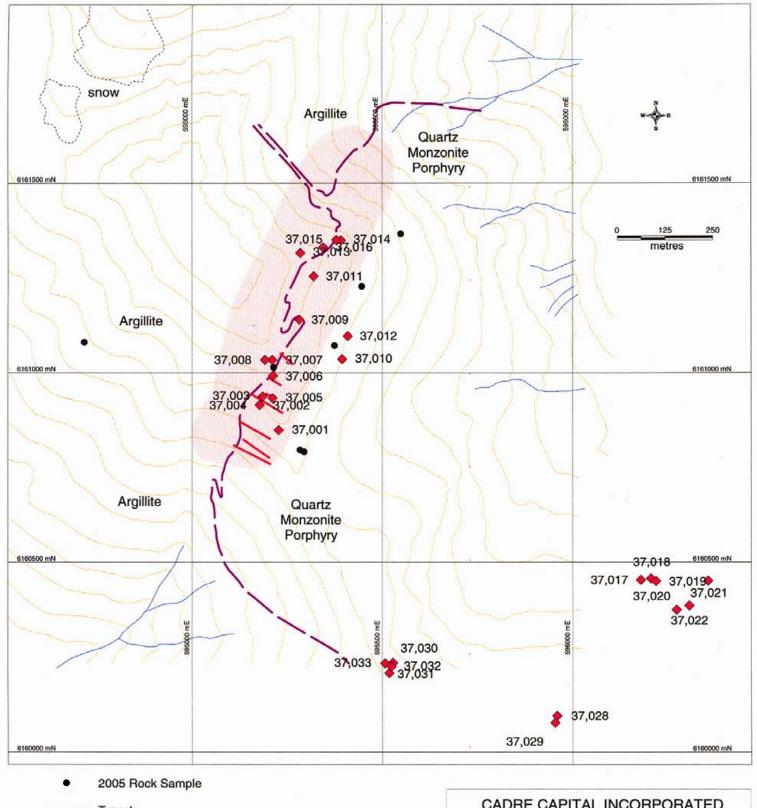
EOCENE (EBg_S)

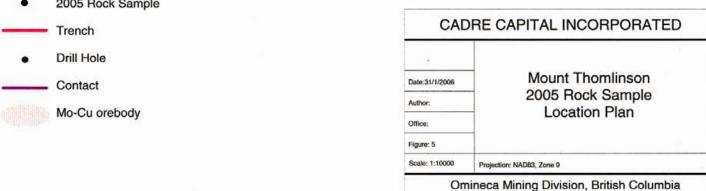
Babine Intrusions - biotite-hornblende-feldspar porphyries

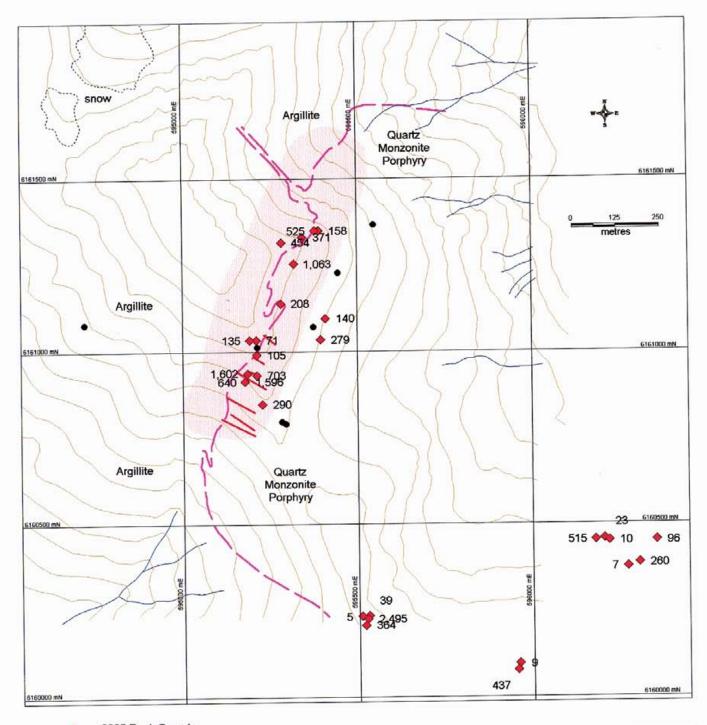
UPPER CRETACEOUS (LKB S)

Bulkley Intrusions - mainly granodiorite; lesser quartz monzonite, quartz diorite, granite

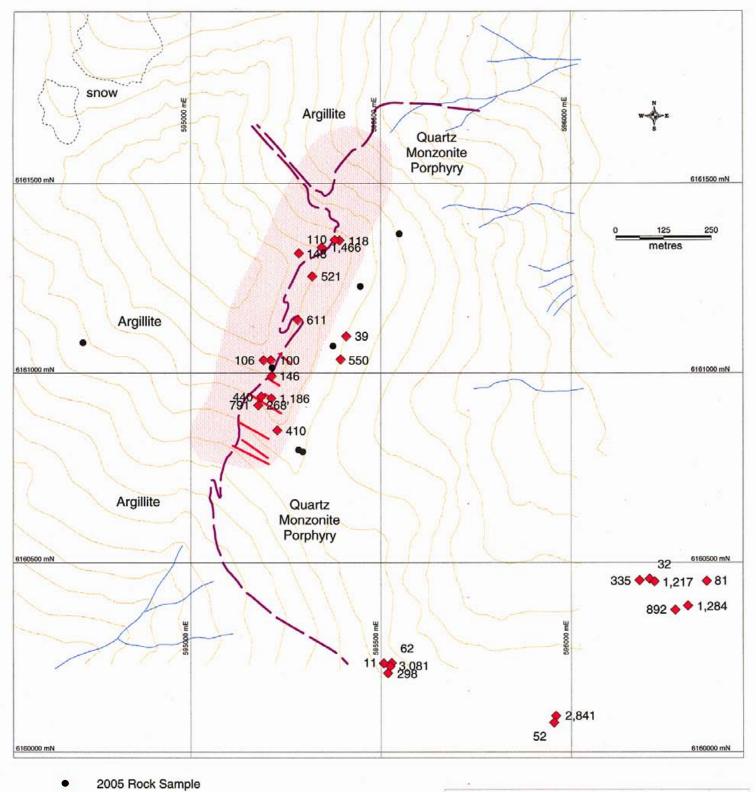

LOWER CRETACEOUS

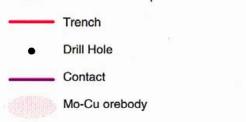

Kitsuns Creek Formation (IKK)- feldspathic and volcanic sandstone, siltstone, shale, volcaniclastic conglomerate, coal, carbonaceous sediments Hanawald conglomerate (IKcg) - chert pebble conglomerate


MIDDLE JURASSIC - LOWER CRETACEOUS (uJKB)

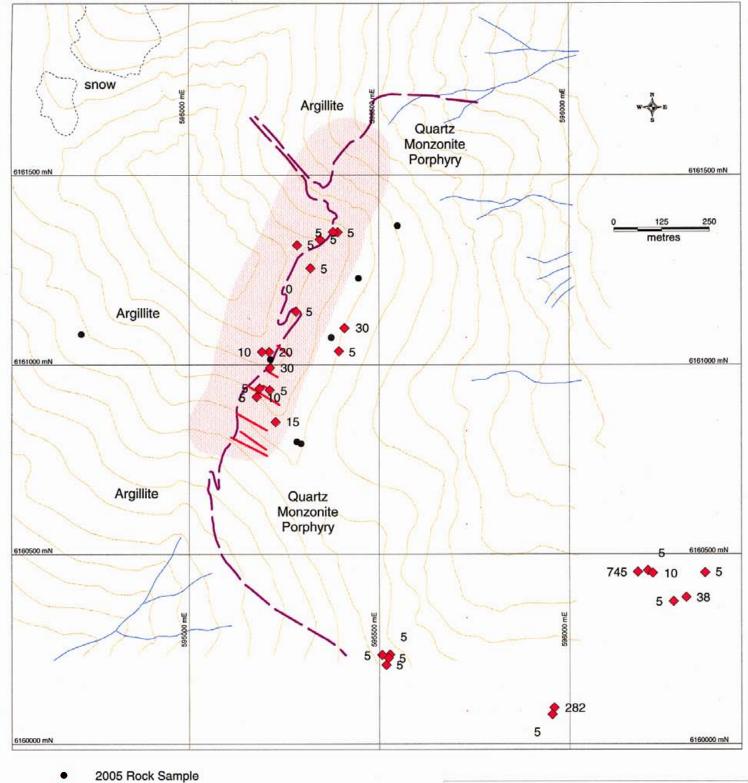

Bowser Lake Group - interbedded, epiclastic feldspathic and volcanic conglomerate, sandstone, siltstone, shale, argillaceous coal


CAD	RE CAPITAL INCORPORATED			
Date: 31/1/2006	Mount Thomlinson			
Author	Regional Geology Map			
Office:	regional Coolegy Map			
Figure: 3				
Scale: 1:300000	Projection: NAD63, Zone 9			

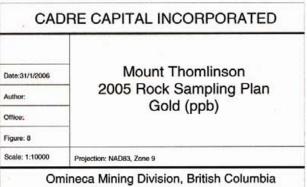



Drill Hole

Contact


Mo-Cu orebody

CAE	RE CAPITAL INCORPORATED	
Date:31/1/2006	Mount Thomlinson	
Author.	2005 Rock Sampling Plan	
Office:	Molybdenum (ppm)	
Figure: 6		
Scale: 1:10000	Projection: NAD83, Zone 9	



CAE	DRE CAPITAL INCORPORATED
Date:31/1/2006	Mount Thomlinson 2005 Rock Sampling Plan
Office:	Copper (ppm)
Figure: 7	
Scale: 1:10000	Projection: NAD83, Zone 9

7.3 Property Geology

On the property area, massive black sediments of the Bowser Lake Group have been intruded by a roughly circular stock of pale buff to light pinkish white quartz monzonite porphyry. Outside the contact aureole, the sediments tend to be massive and black with conchoidal and blocky fractures or a poorly developed slaty cleavage. Near the contact the sedimentary rocks have been deformed and metamorphosed. In most areas there is a well-defined schistosity approximately parallel to the contact over a zone 100 to 150 metres wide. Most of the rocks in this zone are medium to dark brownish gray biotiferous schists. Biotite, muscovite, cordierite, andalusite, and apatite have formed in the contact aureole.

Wherever seen, the contact of the stock is very sharp. The margin is foliated for 100 to 200 metres from the contact, parallel to the schistosity in the intruded rocks. The foliation and schistosity were probably developed during intrusion of the stock. Coarse potash feldspar phenocrysts characteristic in the core of the stock are much less abundant and smaller in size in the foliated contact zone.

The core of the stock is marked by 1 to 3 per cent of coarse, zoned potash, which can range up to over 5 cm at some localities. Quartz and plagioclase phenocrysts range up to 1.25 cm in diameter. The quartz monzonite porphyry is made up of 40-50% plagioclase and 10-25% potassic feldspar. The remainder constituents consist of quartz and accessory mafic minerals.

In many areas the stock is cut by narrow pale-buff to white aplite dikes. These dikes commonly occur in swarms and generally range from 2.5 to 10 cm in width and may be several metres long. One dike, located north of the AMAX camp area, measured approximately 2 meters in width. The dikes occupy well-defined fractures, are mainly restricted to the stock itself, and do not occur outside the contact aureole.

Section 8.0

MINERALIZATION

On the Mount Thomlinson property, concentrations of molybdenite, chalcopyrite, and pyrite are associated with a system of quartz veins, fractures, and aplite dykes, which cut the porphyry along the northwestern contact. There is no direct correlation between the intensity of veining and intensity of mineralization. Molybdenite is most common as fine flakes in quartz veinlets and as smears along fracture planes. Locally it occurs as coarse flakes in quartz veins. Minor yellow ferrimolybdite is noted along zones of oxidation. Although chalcopyrite is found in the same general areas as molybdenite, the two sulphides occur independently of each other.

Chalcopyrite, malachite, and azurite occur along fractures and veins. Pyrite (1-5%) is found as disseminations, fracture fillings, and patchy crystalline concentrations in the intrusive and adjacent argillites.

The mineralized zone is approximately parallel to the northwestern argillite-porphyry contact (Az 030°/65°NW); the better grade rock lies several meters from the contact within the intrusive rock. Mineralization has been found over a strike length of 900 meters and varies in width and grade.

Structure:

Examination of the southwestern portion of the mineralized zone suggests that the movement and precipitation of the hydrothermal fluids was largely controlled by a structurally prepared zone of fracturing, faulting, and shearing. The zone is parallel to the primary foliation along the northwest contact, and orientation of the zone was probably controlled by these planes of weakness. The shearing appears to be centered along the southern end of the mineralized zone and extends southwesterly into the argillites. The zone becomes less well defined to the northeast and appears to split into several narrower zones in the Red Canyon area.

Section 9.0

DEPOSIT TYPES

The Mount Thomlinson prospect is described as a porphyry molybdenum (Low-F-Type) deposit type. These deposit types contain stockworks of molybdenite-bearing quartz veinlets and fractures in intermediate to felsic intrusive rocks and associated country rocks. Molybdenite is the principal ore mineral with subordinate chalcopyrite +/-scheelite.

In these deposit types, molybdenite commonly occurs in fractures and in quartz veins within a differentiated, polyphase monzogranite suite of intrusive rocks and/or their surrounding hornfelsed country rocks. Deposits are typically low grade but large and amenable to bulk mining methods.

Given the tectonic setting, depositional environment, and age of mineralization, the Mount Thomlinson prospect fits the geological model for a porphyry Mo (low-F-type) deposit. These deposits types are mainly found throughout the Cordilleran region of North America, with several large economic deposits located in northern British Columbia.

The factors of age of mineralization and the general geologic environment, including mineralizing processes should be taken into consideration when comparing other molybdenum deposits to the Mount Thomlinson deposit.

Two molybdenum metallogenic episodes in British Columbia are recognized:

- 1) Early Cretaceous Miocene: 140 Ma to 8 Ma.
- 2) Late Triassic Middle Jurassic: 220 Ma to 195 Ma.

Mount Thomlinson would fit into the later age deposit grouping, having an Eccene age of 53.8 Ma (BCEMPR Bull. 64, 1981, pgs 123, 124, 126). Cordilleran porphyry molybdenum occurrences also show the full range of morphological and depth attributes found in molybdenum deposits worldwide. In British Columbia, both post-accretion and pre-accretion molybdenum-bearing calcalkaline occurrences occur in Wrangellia, Stikinia, Cache Creek, and Quesnellia terrains.

Significant British Columbia porphyry Mo (low-F-type) deposits showing their respective ages, include:

Endako	~145 Ma
Boss Mountain	~102 Ma
Kitsault	~ 51 Ma
Yorke-Hardy	~ 67 Ma
Max	~ 76 Ma
Adanac	~ 71 Ma
Mac	~136 Ma

With the recent dramatic price increase for molybdenum, numerous mineral prospects and past producers are receiving renewed exploration interest. The low-fluorine type molybdenum deposits similar to Mount Thomlinson are the focus of renewed exploration activity in the northern regions of British Columbia. Possible analogies may be made between Mount Thomlinson and other significant molybdenum deposits located in the north-central region of British Columbia.

With respect to the Mount Thomlinson deposit, the Alice Arm area molybdenum deposits, located approximately 100 kilometres to the west of Mount Thomlinson are considered analogous deposit types.

The Alice Arm region has recently seen a revival in exploration interest. Tenajon Resources (TJS-V) is exploring the Ajax property in order to bring the existing resource of 178.5 million tones grading 0.07% molybdenum into compliance with National Instrument 43-101. The Ajax deposit is located about 13 kilometres northeast of the town of Alice Arm. Newmont Exploration defined considerable reserves of molybdenum from extensive drilling carried out in the 1960's.

The mineralization at the Ajax deposit has formed in a similar manner to that at Mount Thomlinson. The deposit is a result of the intrusion of four closely spaced stocks of Eocene age into a sequence of Upper Triassic Stuhini sediments. The Eocene stocks are comprised of quartz feldspar porphyritic quartz monzonite and are of a similar age to Mount Thomlinson, dated at approximately 51 Ma. Mineralization occurs within the stocks and in the adjacent contact metamorphosed rocks as randomly oriented fractures filled with quartz and pyrrhotite and coatings and bands of molybdenite. Disseminated molybdenite also occurs in a stockwork of 3 to 6 millimeter diameter quartz veinlets and in silicified zones deeper within the stocks.

All of the molybdenum deposits of the Alice Arm area are related to porphyritic quartz monzonite stocks of Eocene Age (Alice Arm Intrusions), dated at between 51 to 54 Ma.

Other reactivated or large projects in the Alice Arm region include the Tidewater project, held by New Cantech Ventures, Roundy Creek, held by **SNL Enterprises**, and Kitsault, held by a unit of **Phelps Dodge** (PD-N). Kitsault operated intermittently from 1968 until 1982 and hosts a historic (pre NI-43-101) resource of 104.3 million tonnes grading 0.11% molybdenum.

Another project receiving considerable exploration is the Davidson (Yorke-Hardy) molybdenum deposit, optioned by Blue Pearl Mining Limited The deposit is located on Hudson Bay Mountain, 10 kilometres west of the town of Smithers, B.C. or approximately 90 kilometres south of the Mount Thomlinson deposit.

Between 1965 and 1980, the deposit was explored by 2600 metres of underground development and 50,000 metres of core drilling. Blue Pearl has used this data to establish a NI 43-101 compliant resource (measured plus indicated) of 230 million tonnes, grading 0.12% molybdenum.

The Davidson molybdenum deposit is genetically related to a blind multiphase intrusion two kilometers within Hudson Bay Mountain. The deposit contains a high-grade core of 4.9 million tonnes (measured plus indicated) averaging 0.39% molybdenum. *See Appendix D for map and reference material (information Circular 2005-3) pertaining to significant British Columbia molybdenum deposits.

Section 10.0

EXPLORATION

Exploration of the Mount Thomlinson property area has been carried out by several operators such as Buttle Lake Resources, Southwest Potash (AMAX), and TexasGulf Canada Limited. The main periods of exploration occurred from 1963 to 1965 and 1980 to 1981. Historical assay values for early trenching and diamond drilling work is not currently available, although drill core still remains on the property.

Exploration programs carried out to date include geological mapping, prospecting, topographic surveying, rock sampling, blast-trenching, and diamond drilling. To the author's knowledge, there have been no grid-related soil geochemical surveys or geophysical surveys carried out over the property area.

The author has reviewed the results of the rock-sampling program carried out in August, 2005 by the claim owner and professional geologists D. Gale and K. Armstrong. Sampling results returned values of up to 2495 ppm Mo, 3081 ppm Cu, 745 ppb Au and 161 ppm Ag. These assay results and rock descriptions are shown in table form as Appendix B.

10.1

Diamond Drilling

In 1964 and 1965, Southwest Potash (AMAX) carried out a nine-hole, BQ diamond drill program over the mineralized project area. The author does not currently have access to the data for the Southwest Potash drill program, however, drill logs and assay data are available for the TexasGulf drill programs carried out in 1980 and 1981.

In 1980 and 1981, TexasGulf Canada Limited carried out diamond drilling in the southwest area of the mineralized contact zone. Due to difficult ground conditions, only 2 of the 5 holes drilled by TexasGulf reached their proposed depth. Drill hole T-2-81 was collared at -45° and intersected 357 metres of 0.115% MoS2 and 0.11% Cu and was mineralized to the end of the hole at 769.3 metres. Assay data is available for drill hole T-2-81 and is displayed on drill sections (Figs. 9 and 10) as well as in table form in Appendix C. Drill holes T-1-80, T-1-81 and T-3-81 were not drilled to their proposed depth, thus did not receive any sampling. Drill hole T-4-81 received only sporadic sampling.

Mount Thomlinson - Diamond Drill Data Table

Hole No.	dip	Az.	Length (m)
64-1	-40	247	421
64-2	-30	295	321
64-3	-30	115	152
64-4	-40	350	270
64-5	-20	295	215
65-6	-37	335	358
65-7	-45	335	259
65-8	-58	335	259
65-9	-56	335	152
T-1-80	-80	117	213
T-1-81	-52	300	173.8
T-2-81	-44.5	300	769.3
T-3-81	-51	261	87.5
T-4-81	-52.5	265	601.7

Drill hole locations with surface projections are shown on Figure 4.

10.2

2005 Rock Sampling Survey

The author has reviewed the results of the rock-sampling program carried out from August 10 and 14, 2005 by the claim owner and professional geologists D. Gale and K. Armstrong.

Sampling results returned values of up to 2495 ppm Mo, 3081 ppm Cu, 745 ppb Au, and 161 ppm Ag. The assay results and rock descriptions for the 2005 sampling program are shown in table form as **Appendix B**. Sample locations and rock geochemical values for molybdenum, copper, and gold are represented in **Figures 5 to 8**.

Rock sampling consisted of a variety of chip and grab samples taken from prospective areas of mineralization located along the contact zone between the quartz monzonite stock and the surrounding Bowser Lake Group argillaceous sediments. The majority of samples were taken from mineralized areas within the contact zone quartz monzonites.

Sample Area 1 - Mount Thomlinson Deposit Area

The main area of rock sampling (16 samples) was carried out approximately 500 metres of the northeast-striking contact zone, which was previously investigated by Amax and TexasGulf during the 1960's and 1980's. The majority of samples (37001 to 37016), contain disseminated and vein-related mineralization (pyrite, chalcopyrite, and molybdenite) within quartz monzonites immediately adjacent to the argillite contact.

Samples 37001 to 37016 contain consistently anomalous molybdenum and copper values throughout the sampled area. Molybdenum values through this area ranged between 140 to 703 ppm Mo, with three samples (37002, 37003 and 37011) returning values of 1596, 1602, and 1063 Mo, respectively.

Copper values throughout this part of the mineral property ranged between 100 to 791 ppm Cu with two samples (37005 and 37016) returning values of 1186 and 1466, respectively.

As both strongly anomalous molybdenum and copper values were found at both ends of the 2005-sampled area, these samples provide validation for the economic grades of molybdenum and copper previously discovered throughout this area of the recognized Mt. Thomlinson ore body. The presence of economic molybdenum +/- copper has been borne out by the previous drilling and trenching programs carried out in this area of the mineral property.

Sample Area 2

This sample area, located approximately 600 metres south-southeast of TexasGulf drill site T-1-81, T-2-81, T-3-81 and T-4-81, is defined by four close-spaced samples, 37030 to 37033. This area also lies on the contact zone between the quartz monzonite body and surrounding argillites. Samples 37031 and 37032 contained strongly anomalous molybdenum and copper. Sample 37031 returned 364 pm molybdenum and 298 ppm copper, while the nearby sample 37032, returned 2495ppm molybdenum and 3081ppm copper.

Sample Area 3

Samples 37028 and 370929 were collected 500 metres east-southeast of Sample Area 2. Sample 37028 was a float sample and contained vein-related molybdenum with a value of 607 ppm Mo. Sample 37029 was located very near to sample 37028 and contained sulphide mineralization returning high values in copper (2841 ppm Cu), lead (24,070 ppm Pb) zinc (8778 ppm Zn), silver (41.5 ppm Ag), and gold (282 ppb Au).

Sample 37029 is likely derived from silver-lead-zinc veins, which are often associated with this type of porphyry environment.

Sample Area 4

A fourth area of prospecting and rock-sampling was carried out approximately 1 kilometer east-southeast of the TexasGulf drill-site location. Samples 37017 to 37022 were collected over an area of approximately 250 metres by 125 metres. Samples collected in this area contained anomalous copper values to 1284 ppm Cu and molybdenum to 515 ppm Mo. Float sample 37017 contained 745 ppb gold, 335 ppm copper, 1727 ppm lead, 161 ppm silver and 515 ppm molybdenum. As this was the highest gold value collected during the 2005 sampling survey, this area of the property should be thoroughly prospected to locate the source of the multi-element mineralization, as indicated by sample by sample 37017. It is believed that sample 37017 was derived from a silver-lead-zinc vein similar to sample 37029, sampled in Sample Area 3. The copper and molybdenum values associated with this mineralization have likely been scavenged from the monzonite host-rocks.

The Redbird molybdenum deposit (Minfile 093E-026) is located approximately 200 kilometres south of the Mount Thomlinson deposit. Like Mount Thomlinson, the Redbird deposit contains mineralization associated with an Eocene age stock of quartz monzonite porphyry intruding tuffaceous volcanic rocks of the Lower Jurassic age Telkwa Formation Hazelton Group. The Redbird deposit contains drill indicated reserves of 33.6 million tonnes grading 0.107 per cent molybdenum and underground reserves of 29.9 million tonnes grading 0.095 per cent molybdenum. Molybdenum mineralization is primarily associated with quartz-molybdenite pyrite veins with ore grades developed in an outer concentric annulus zone developed along the contact zone with the pyroclastic volcanic rocks. It is interesting to note that immediately beyond the ore zone, are found a number of late-stage veins containing galena (lead sulphide), sphalerite (zinc sulphide) and pyrite.

It is suggested that similar lead-zinc +/- silver veins occur at the Mount Thomlinson deposit area. Rock samples 37017 and 37029, as discussed above; indicate the presence of base metal vein mineralization. It remains to be determined whether the silver-lead-zinc veins occur in concentration that will be amenable to economic exploitation.

Drill Core Resampling

During the 2005 rock-sampling program, five sections of TexasGulf drill core were collected and re-sampled. Samples 37023 to 37027 showed anomalous copper values to 2482 ppm Cu and molybdenum values to 159 ppm Mo.

During examination of the drill core, it was noted that the upper 318 metres of drill hole T-81-2 had not been sampled by TexasGulf, although sections of both molybdenum and chalcopyrite were clearly observed in the unsampled drill core. Future drilling programs should carefully assess the presence of potentially economic zones by sampling all sections of drill core that contain any level of molybdenum +/- chalcopyrite mineralization.

Discovery Consultants also carried out a rock and drill core re-sampling program in 1993. This sampling work also determined the presence of consistent molybdenum and copper grades in the drill core. Core re-sampling was carried out at regular intervals for drill hole T-81-2. The sampling was carried out at 10 meter intervals from 610 metres to the end of the hole at 769 metres. Resampled drill core assays and surface rock sampling by Discovery Consultants are presented in **Appendix G**.

Of the 17 core samples that were assayed by Discovery Consultants, 8 samples returned molybdenum values of between 151 to 580 ppm Mo and four samples between 1022 to 7272 ppm Mo. Copper values through this sampling interval were also significant, with 7 samples returning 614 to 953 ppm Cu, 4 samples returning 1094 to 2196 ppm Cu, and one sample returning 3417 ppm Cu.

Discussion

Rock and drill core sampling on the Mount Thomlinson property have demonstrated the presence of widespread porphyry-related molybdenum-copper mineralization found at several locations along the periphery of the intrusive-sediment contact. Future planned exploration programs should initially focus on the main historically recognized molybdenum-copper ore body, however, it is recommended that the entire periphery of the 1.3 kilometer diameter intrusive body be thoroughly prospected and sampled in an attempt to locate other areas of economic interest on the Mount Thomlinson property.

Section 11.0

DATA VERIFICATION

As the majority of the exploration work carried out on the Mount Thomlinson property was carried out in the early 1960's and early 1980's, the author cannot make a statement regarding the nature or process of this work.

The companies involved, such as Southwest Potash (AMAX) and TexasGulf Canada, were well-respected exploration companies and the author has no reason to doubt the quality of the work carried out by these companies.

Section 12.0

ADJACENT PROPERTIES

There are no known mineral occurrences contiguous or in close proximity to the Mount Thomlinson mineral prospect.

The **Thomlinson Creek** mineral showing (Minfile No. 093M122), is located 11 kilometres east of Mount Thomlinson, 42 kilometres north-northeast of Hazelton. The property is underlain by carbonaceous sandstone, shale, and conglomerate of the Middle Jurassic to Lower Cretaceous Bowser Lake Group intruded by a small multi-phase intrusive body of Eocene Babine Intrusions, which intrude granodiorite, quartz monzonite, and biotite hornblende quartz diorite.

The intrusive body is 600 metres wide and at least 4 kilometres long. It is extensively fractured and mineralized with pyrrhotite and chalcopyrite as well as less common molybdenite and scheelite. Mineralization also extends into the hornfels zone, which is up to 300 metres wide adjacent to the intrusive.

Biotite feldspar porphyry and quartz porphyry dike rocks intrude the hornfels and quartz diorite. Silicification, together with kaolinitic, chloritic, and sericitic alteration, are characteristic of the property. Drill hole TC-81-6 returned an assay of 0.10% copper and 0.03% molybdenum over 72 metres.

The Laura property (Minfile No. 093M079), is located approximately 10 kilometres west-southwest of the Mount Thomlinson mineral prospect. The Laura property lies in a somewhat different geological environment to that of Mount Thomlinson. A two-phase granodioritic plug of Late Cretaceous Bulkley Intrusions cuts sediments of the Bowser Lake Group. Low-grade molybdenum, copper, and tungsten mineralization is widespread in the granodiorite and locally in the hornfelsed sedimentary rocks adjacent to the stock with the best grades lying in the margins of the stock.

Four stages of mineralization are evident. An early disseminated and fracture-controlled pyrite mineralization with chalcopyrite and amphibole was succeeded by a quartz vein stockwork carrying pyrite, chalcopyrite, and molybdenite. The third phase consists of hairline quartz veins with pyrite, pyrrhotite, molybdenite, and chalcopyrite; and finally wide-spaced late vuggy flat-lying quartz-carbonate-feldspar veins carrying pyrite, arsenopyrite, sphalerite, chalcopyrite, and locally jamesonite and stibnite.

Section 13.0

MINERAL RESOURCE AND MINERAL RESERVE ESTIMATES

The Mount Thomlinson mineral prospect contains a measured, indicated, and inferred reserve of 40.82 million tonnes grading 0.12 % MoS2, (0.072 per cent molybdenum, using a conversion factor of 1.6681)

This reserve estimate is stated in CIM Special Volume 15 (1976) and is shown as a reference in Appendix A.

This reserve estimate was derived from combined drill hole and trenching data obtained by operators of the mineral property over the period 1963 to 1965.

While previous operators have prepared what can be called historical resource estimates, these are not compliant with the NI 43-101 resource reporting regulations.

Section 14.0

OTHER RELEVANT DATA AND INFORMATION

At the time of writing this report, the author was in the process of locating specific data pertaining to geological, trenching, rock sampling, and diamond drill work carried out on the Mount Thomlinson project area by Buttle Lake Resources (1963) and Southwest Potash Limited (1964, 1965). When and if this information becomes availilable, it could be submitted as an addendum to the present report.

Section 15.0

INTERPRETATION AND CONCLUSIONS

Mount Thomlinson hosts a measured, indicated, and inferred reserve of 40,820 kt of 0.12 per cent MoS2. This resource has been confirmed and the mineralization extended by drilling by TexasGulf in 1981. The AMAX core was not assayed for copper or gold while the TexasGulf drilling shows prospective copper grades throughout sampled drill core intervals. Re-sampling of core and surface showings in 1993 by Discovery Consultants repeated grades and realized gold values of up to 50ppb. Re-sampling of core and surrounding areas in 2005 resulted in values of up to 2495 ppm Mo, 3081 ppm Cu, 745 ppb Au, and 161 ppm Ag.

A modern program of Induced Polarization surveys will be useful in delineating areas of conductive mineralized rock masses and subsequent drill targets. In conjunction, an extensive and comprehensive diamond drill program will improve upon the technically less efficient drill programs of the past. Future diamond drill programs will also be useful to properly assess the economic contribution of copper and/or gold credits that are associated with the recognized molybdenum resource, thereby expanding and refining the resource.

Based on a preliminary review of available data, the main potential for the property lies with mineralization contained within, and immediately adjacent to, a northwest striking steeply northwest dipping sediment-intrusive contact zone of approximately 900 metres length and one to two hundred metres in width.

Potential exists for other areas of economic mineral zones located around the periphery of the main body of the quartz monzonite stock.

Work performed by previous operators has demonstrated that significant potential exists for a classic disseminated, low grade, porphyry Mo (low-F-type) mineral deposit.

Based upon the foregoing, it is concluded that the project is one of merit and that further work is justified.

Section 16.0

RECOMMENDATIONS

16.1 Discussion

It is recommended that further work be conducted on the property. This work comprises two phases, which are outlined below; cost estimates for each phase are presented in Section 8.2.

Phase I

Tasks recommended for this phase primarily relate to additional rock sampling and geological mapping to confirm and expand on areas of known mineralization. Specifically, the fieldwork would focus on the following:

- i) Prospecting and sampling are proposed to follow up on the results obtained from previous workers and on previously untested showings and potentially mineralized areas. Another aspect of this work would be to obtain samples from fresh exposures in otherwise barren-looking rock to evaluate the extent of any leaching of molybdenite that may have occurred at surface. Important showings would be re-sampled for confirmatory assaying and description.
- ii) A surveyed grid baseline should be established approximately one kilometer long, trending northeasterly along the intrusive-sediment contact in the area of the main molybdenum ore body. Cross-lines should be established at 100-meter line spacings with line lengths of approximately 1000 metres straddling the contact zone.
- iii) Carry out Induced Polarization surveys over the established grid area of approximately 3.3 kilometres of grid length (33000m).

16.2 Cost Estimates

Phase I

Program planning, sourcing, permitting	\$ 7,500
Camp purchase/rental	
Food/Consumables	
Communications	7,500
IP Surveys	\$45,000
Helicopter	# # # # # # # # #
Field Crew	
Geological Consulting	
Assays	
Vehicle/Rentals	
Mobilization/Demobilization	
Reports	
Sub-total	
Contingency	
TOTAL	

Phase II

Pre-field Data Compilation, program planning, sourcing, permi	tting\$ 15,000
Additional Camp Facilities	
Food/Consumables	
Geochemical sampling/Rock blasting (follow-up)	
Diamond drilling (8 holes totaling 5000m)	
Helicopter	
Vehicle/Rentals	
Assays	\$115,000
Field Crew	
Field Consulting (mapping, core logging, etc)	
Communications	\$15,000
Mobilization/Demobilization	
Report	
Sub-total	
Contingency	
TOTAL	\$1,028,500.00

Section 17.0

REFERENCES

Bending, D.A. (1981)

Diamond Drill Report on the Molly and Tom Claims for TexasGulf Canada Limited (Assessment Report No. 9002)

Carithers, W. (1965)

Report on the Buttle Lake Molybdenite Project, Mount Thomlinson, B.C. (unpublished AMAX company report, 15 pages)

Carpenter, T.H. (1994)

Mineral Claims Rock Sampling Program on the Mt. Thomlinson Property Tom 1-6 for Discovery Consultants (W.R. Gilmour) (Assessment Report No. 23578)

Carter, N.C. (1981)

Porphyry Copper and Molybdenum Deposits, West-Central British Columbia (EMPR Bulletin 64, pgs. 123, 124, 126)

CIM Special Volume 15 (1976), Table 3, pg 422

Delancey, P.R. (1980)

Geological Report on the Thom Group for TexasGulf Canada Limited (Assessment Report No. 7916)

Delancey, P.R. (1982)

Report on Diamond Drilling on the Molly Tom 1&2 Mineral Claims for TexasGulf Canada Limited (Assessment Report No. 10,188)

EMPR EXPL (1975-E150), (1979-232,233)

GSC Open File # 2322 (Regional Geology Map)

Holland, S. (1963)

Molly, Moly, Red Canyon, Len (The Buttle Lake Mining Company Limited) EMPR AR, pgs. 24-25

Section 18.0

SIGNATURE PAGE

Herewith, my report on the Mount Thomlinson property, respectfully submitted by:

G. R. THOMSON

Thomson Geological Consulting

Gregory R. Thomson, P. Geo.

Signed in Vancouver on February 24, 2006

CERTIFICATE OF AUTHOR

I, Gregory R. Thomson, P.Geo. am a Professional Geoscientist, and President of Thomson Geological Consulting of 40-21928-48th Avenue, Langley, B.C.

I am a member of the Association of Professional Engineers and Geoscientists of British Columbia, with Certificate No. 20649

I graduated from the University of British Columbia with a Bachelor of Science degree in Geology in 1970. I have practiced my profession for over 25 years both as an independent consultant and as a senior project geologist for a major mining company in Canada. My experience includes various levels of base metal and precious metal exploration

As a result of my experience and qualification I am a Qualified Person as defined in N. I. 43-101.

The sources of information not based on personal examination are quoted in the report. The information provided by the various parties is to the best of my knowledge and experience correct.

In the disclosure of information relating to permitting, agreements, and title, I have relied on information provided to me by the company. The author disclaims responsibility for such information. The information referred to is to be found under item PROPERTY DESCRIPTION.

I am not aware of any material fact or material change with respect to the subject matter of this technical report that is not reflected in this report, the omission to disclose which would make this report misleading.

I am independent of Cadre Capital Incorporated in accordance with the application of Section 1.5 of National Instrument 43-101.

I have read National Instrument 43-101, Form 43-101FI and this report has been prepared in compliance with NI 43-101 and Form 43-101FI.

This report on the Mount Thomlinson Property has been prepared solely for use by Cadre Capital Incorporated and may not be reproduced in whole or in part without permission of the author. Permission is hereby granted to Cadre Capital Incorporated for the inclusion of this report in support of any filings with the Canadian Venture Exchange (CDNX), British Columbia Securities Commission, and/or other regulatory bodies.

Dated this 24th day of February, 2006 in Vancouver, B. C.

Rio Minerals Limited

Mineral Exploration and Development

910-475 Howe Street Vancouver, British Columbia

Canada. V6C 2B3

email: info@riominerals.com Telephone: (604) 671-2245 Fax: (604) 871-0231

Section 19.0

STATEMENT OF COSTS MOUNT THOMLINSON PROJECT

Item	Description	Billing Method	Cost per	Mandays/k	m Total
Geology	Geology and sampling	Per day	\$ 500.00	04	\$ 2000.00
Field	Sampling-prospecting	Per day	\$ 300.00	02	\$ 600.00
Helicopter	Mount Thomlinson	75%	\$ -	·	\$ 4006.83
Report	Compliance	Cost	\$ 5594.99	-	\$ 5594.99
Travel @ 20%	Travel	20%	\$	-	\$ 2440.36
Subtotal	-	-		-	\$14642.18
Management	Project management/ misc. costs.	Percentage	5%	-	\$ 732.11
TOTAL	_	-	-	_	\$15374.29

Appendix A

Mount Thomlinson Mineral Reserve CIM Special Volume No. 15, p. 422

TABLE 3 — Significant Undeveloped Molybdenum - Bearing Deposits of the Canadian Cordillera

Property	Company	NTS	Class*	Mis	nerals		Metals	Size** (tonnes × 106)	Grade (% MoS ₂)	Metal Conten (tonnes × 10 ³ M	it o) Ty	pe***	Remarks
					BRIT	ISH C	OLUMBI.	4					
10. Cascade Moly 11. Giant, etc. 12. Highmont 13. J-Å 14. Gnawed Mtn. 15. Maggie 16. Gem 17. Poison Mtn.	Scurry-Rainbow Teck Bethlehem Minex Bethlehem Gemex Copper Giant	82K/12E 82K/12E 92I/7W 92I/7W 92I/7W 92I/14W 92H/12E 920/2E	SK SK PIII PIII PI	cp, cp, cp, mo	cp, bn bn, mo bn, mo mo		Mo Mo Cu, Mo Cu, Mo Cu, Mo Cu, Mo Mo Cu, Mo	1.36 0.73 136.0 259.4 32.66 181.4	0.27 0.39 0.051 0.030 0.016 0.017	2.20 1.70 41.64 46.70 3.13 18.51 42.18	MI M M M M MI	(SM)	Ecological problems in exploitation (0.28 % Cu).
18. Salal Cr. 19. OK 20. Carmi	B P Minerals Granite Mtn. Vestor, Kennco	92J/14W 92K/2E 82E/11E	PI PI PI?	mo cp,	mo		Mo Cu, Mo	90.7	0.022 0.03	10.18 16.33	MI	• •	(0.33 % Cu) No reserve established; large low-grade potential. (0.30 % Cu)
21. Red Bird 22. Ox Lake	Phelps Dodge Asarco, Silver	93E/6E 93E/11E	Pľ Pl	mo	ur mo		Mo (U) Mo Cu, Mo	27.2 + ca 54.4 27.2	0.25 0.1 0.07	40.82 32.66 11.43	MI M	;	(0.26 % Cu)
23. Huckleberry 24. Berg	Standard Granby, Kennco Placer, Kennco	93E/11E 93E/14W	P I P I	cp,	bn, mo	, mo	Cu, Mo Cu, Mo	78.92 357.4	0.025 0.054	11.43 11.84 115.81	M		(0.41 % Cu) (0.41 % Cu) (0.25% cutoff, but only 226.8 × 10° tonnes with 2.75:1
25. Lucky Ship 26. Glacier Gulch 27. Serb Cr.	Amax Climax Amax	93L/3W 93L/14W 93L/12W	PI PI PI	mo mo,			Mo Mo (W) Mo	18.0 90.72	0.17 0.29	18.36 157.85	M	(SM)	stripping ratio (0.40 % Cu),
28. Mt. Thomlinson	Amax	93M/12W	PI	mo	وهداء المحمد	فسيأ لحيك الإنسان الديد	Mo	40.82	0.12	29.39	SI M	I (SM	. · · · · · · · · · · · · · · · · · · ·
29. Ben Moly 30. Ajax	Newmont	103P/6W 103P/11E	PI	mo mo			Mo Mo	31./5 178.54	0.11 0.121	20.96 129.62	M		Very high stripping ratio, with total reserves of 417.3 × 10° tonnes 0.09 MoS ₂
31. Roundy Cr.	Climax	103P/6W	PΙ	mo			Mo	1.36	0.347	7.45	M		417.5 10 10111165 0.05 111052
32. Schaft Creek	Hecla, Silver Standard	104G/6E, 7\	WPI	cp,	bn, m	0	Cu, Mo	+7.0 266.7 90.72	0.11 0.036 0.047	57.61	М	I	(0.40 % Cu)
33. Joem (Mt. Haskins)		104P/6W	P !?		si, cp		Mo, Cu	12.25	0.15	11.02		ii (SN	i) Molybdenum-bearing stockwork with adjacent skarn.
34. Storie 35. Adanac	New Jersey Zinc Noranda	104P/5W 104N/11W	P 17 P 1	mo mo,	sc		Mo (W)	94.53	0.16	90.75	M		Recent drilling added minor new tonnage and slight increase in grade. Low stripping ratio, 0.63:1
	•			··		YU	KON						
36. Casino	Teck	115J/10W	P·I	cp,	cc, m	0	Cu, Mo	161.1	0.023	22.23	N	ii (Sn	1) (0.37 % Cu)
									Sub-Total Mines				
						٠			TOTAL	- 1,340.98			

^{* —} Geological class, P I, P II and P III - porphyry deposits; SK — skarn; PEG — pegmatite

** — Maximum size indicated on initial or subsequent exploration

*** — Reserve at 31/12/74, Type M — measured; MI — measured and indicated; MII — measured, indicated and inferred; SM — submarginal Data from B.C. Department of Mines and Petroleum Resources

Niav	MA 28-Dui	quartz monzonite; alaskite								ser, py, car	2. stockwork, qz, mo, py veins
Ajax 103P/11W (Carter, 1974)	Mt. McGuire stocks and dykes	quartz monzonite; granodiorite porphyry	elongate- rectilinear contacts (4 stocks plus dykes)	450 × 300 to 300 × 150	53.5 ± 3	Hazelton Gp. siltst., gwke, augite andesite	M. Jur,	circular plan	stockwork, quartz veins	A. bi hornfels -i skarn B. i. K.fs, bi silic 2. qz, ab, ep 3. py halo	1. qz, po 2. qz, mo 3. qz, mo 4. qz. sp, py, gn, cp
Bell Molybdenum 103P/GW (Carter, 1974)	Clary Creek stock	1. quartz monzonite porphyry; grano- diorite porphyry 2. quartz- feldspar porphyry (quartz monz.)	elliptical	670 × 300	52.9 ± 2 51.7 ± 2.2 48.7 ± 1.5	Bowser assemblage (U. Hazelton) argil. siltst.	U. Jur- L. Cret.	crescentic around eastern part of stock	stockwork, quartz yeins	A. bi hornfels B. l. inner K-fs, bi 2. peripheral ser, py	1. barren qz 2. qz, mo (py) 3. qz, car, py, po, gn, sp 4. qz, car, py, po, gn, sp
Red Bird 93E/6E (Sutherland Brown, 1972)	Red Bird stack	quariz monzonite porphyry	cylindrical	1000 × 1000	49.0 ± 2 50.0 ± 2	Hazelton Gp. andesitic pyrocl.	M. Jur.	annular cylindrical	stockwork, fract. filling, quartz veins	A. bi (act) horn- fels B. 1. inner K-fs, ser 2. peripheral qz, ser, py + irregular silicification 3. outer chi, ep	1. barren qz 2. qz, mo, (py) 3. qz, mo, (py) 4. qz, mo, (py) 5. barren qz 6. mo, py ("dry" fract.)
Lucky Ship 93L/3W (Carter, 1974)	Lucky Ship stock	quartz porphyry (alaskite)	elliptical plan, formed of non-coaxial cylinders	1200 × 600	49.9 ± 3	Hazelton Gp. andesitic pyrocl. & argillite	Jur.	1. early shelf largely destroyed by later intrusion 2. annular shelf on youngest intrusion 1. annular shelf on youngest intrusion	stockwork	A. bi (act) horn- fels B. 1, inner K-fs 2. peripheral qz, ser, (py) 3. outer chi, cp	1. mo ("dry" fract 2. qz, K-fs, ser, py, cp, gn, sp
Mount Thomlinson 93M/13W (Kirkham, 1965)	Total Control	quartz monzonite porphyry; quartz monzonite porphyry dyke; aplite-peg.	elliptical	1200 × 1500	53.8	Hazelton Gp. argillite	U. Jur- L. Cret.	ellipical (along NW contact)	słockwork; gz vein	A. bi hornfels B. (not recorded)	mo, cp, py, mt, sc, qz
Gem 92H/12E (Young and Aird, 1969)	Gem stock	composite; quartz monz. breccia; granite; aplite-peg.	roughly elliptical	1200 × 520 breccia 300 × 450	20-30(?)	granodiorite schist gneiss	?	arcuate- peripheral to breccia	gz veins (stock- work?)	silcification argillization or sericitization propylitic	qz, K·fs, car, mo, (cp, py, sc, po, sp, gn, mt, bis)

^{*}National Topographic System

^{**}A = metamorphism of host rocks; B = alteration sequence from interior to exterior.

^{***}Vein sequence from oldest to youngest.

Appendix B 2005 Rock Sampling Summary and Assays Mo - Cu

2005 Rock Sampling Summary and Assays Mo-Cu

Sample	Sampler	SampleType	Easting	Northing	Datum	RockSampleType	RockType	A 1stQualifier	Comments	Mo ppm	Cu ppm
37001	DFG	Rock	595118	6161045	Nad83	chip over 60 cm	Quartz Monzonite	veined	Veins 2-8 cm thick and comprising 50 % of the sample. Veins are unmin'n but the intrusive wall-rock. Possibly some moly but could be tarnished py.	290	410
37002	DFG	Rock	595068	6161111	Nad83	grab	Quartz Monzonite	porphyritic	Veins are present but hard to define margins within sample. Biotite forms 0.5-1 cm xtls. Moly is visible within intrusive and veins.	1596	268
37003	KAA	Rock	595076	6161134	Nad83	channel	Quartz Monzonite	porphyritic	Composite sample along trench. End of trench is 595126E 6161104N. SE end is weakly min'n. Only o/c was sampled.	1602	440
37004	DFG	Rock	595068	6161111	Nad83	grab	Vein Material	vein - quartz	Cu staining on fracture surfaces. Moly both diss and within 1-2 cm long, 5mm thick veinlets.	640	791
37005	KAA	Rock	595102	6161129	Nad83	grab	Quartz Monzonite	porphyritic		703	1186
3700 6	AWM	Rock	595103	6161188	Nad83	grab	Vein Material	vein - quartz	6cm wide vein from trench within sediments. No other sulphides.	105	143
37007	DFG	Rock	595101	6161230	Nad83	grab	Vein Material	vein - quartz	1-3 cm wide veins of qtz within silicified sediments. Well developed gossan in area. Veins comprise 5-15% of rock.	71	100
37008	AWM	Rock	595082	6161230	Nad83	grab	Siltstone	Weakly banded	Taken from Seds app. 20-30m from contact. Py occurs up to 15% in cubes, blebs and disseminations.	135	106
37009	AWM	Rock	595172	6161336	Nad83	float	Quartz Monzonite	porphyritic		208	611
37010	KAA	Rock	595285	6161232	Nad83	float	Ouartz Monzonite	porphyritic	Coord in lat long: 55 35.263, 127 29.292	279	550
37011	DFG	Rock	595210	6161451	Nad83	grab	Ouartz Monzonite		Thin veinlets sub-mm thick to diss min on fracture faces	1063	521
37012	AWM	Rock	595300	6161293	Nad83	grab	Ouartz Monzonite	1		140	39
37013	AWM	Rock	595175	6161512	Nad83	grab	Ouartz Monzonite			454	148
37014	AWM	Rock	595282	6161546	Nad83	chip	Vein Material	vein- quartz		158	118
37015	DFG	Rock	595270	6161547	Nad83	grab	Vein Material	vein - quartz		525	110
37016	AWM	Rock	595235	6161527	Nad83	chip	Quartz Monzonite515			371	1466
37017	DFG	Rock	596069	6160650	Nad83	float	Siltstone	vein - quartz	Veins are 1-2cm thick and cutting sediments. Blueish grey mineral moly? assoc with vein.	23	335
37018	AWM	Rock	596095	6160654	Nad83	float	Vein Material	vein - quartz		10	32
37019	AWM	Rock	596108	6160647	Nad83	grah	Vein Material	vein - quartz		7	1217

37020	DFG	Rock	596162	6160572	Nad83	subcrop	Quartz Monzonite	porphyritic	Extensive Cu staining (malachite) on weathered surface of 1.5x1.5m oc. Cpy is diss within the qtz mon. Numerous float of malachite stained rock.	96	892
37021	AWM	Rock	596244	6160648	Nad83	grab	Vein Material	vein - quartz		260	81
37022	DFG	Rock	596195	6160583	Nad83	grab	Sandstone	muddy	Muddy fine grd. sandstone with both diss, py up to 35% in places but typically 5-10 and also massive 1-2 cm veins. Rock is app 20 west of the contact. Extensive gossaning within sediments.	159	1284
										607	110
37028	KAA	Rock	595850	6160292	Nad83	float	Vein Material	vein - quartz	5% sulphides, mostly pyrite but possibly Mo.		
37029	KAA	Rock	595845	6160274	Nad83	grab	Quartz Monzonite	porphyritic	20m uphill from 37028. Sample contains Py and Cpy and Fluorite +/- Mo.	9	2841
37030	DFG	Rock	595419	6160432	Nad83	float	Sandstone	foliated	Qtz veins are 0.5-1 cm thick and contain blebs of moly.	437	52
37031	KAA	Rock	595409	6160405	Nad83	erab	Quartz Monzonite		Limited qtz veining within intrusive.	39	62
37032	DFG	Rock	595415	6160423	Nad83	float	Ouartz Monzonite		Single fracture/veined surface gives impression of disseminations. Float is close to contact with sediments.	364	298
37033	AWM	Rock	595398	6160431	Nad83	chip	Quartz Monzonite		Veins and fractures containing trace vis moly and pyrite. qtz vein 8 cm thick within mineralized fracture. Fracture in 246/85.	2495	3081

Appendix C

Drillhole T-2-81 Assay Table and Mean Totals

Drillhole T-2-81 Assay Table and Mean Totals

1 T_2 81	ASSAY (1	1981) TABLE				= > 0.15%	=> 0.10%				
rom m	Tom	Number	Width m	Au ppm	Ag ppm	Cu %	MoS2 %	Au (w*a)	Ag (w*a)	Cu(w*a)	Mo(w*
318	321	60001	3			0.07	0.003	0	0	0.21	0.00
321	324	60002	3			0.19	0.010	0	0	0.57	0.0
324	327	60003	3			0.10	0.010	0	0	0.3	0.0
327	330	60004	3			0.12	0.010	0	0	0.36	0.
330	333	60005	3			0.13	0.005	0	0	0.39	0.0
333	336	60006	3			0.46	0.007	0	0	1.38	0.0
336	339	60007	3			0.19	0.017	0	0	0.57	0.0
339	342	60008	3			0.13	0.020	0	0	0.39	0.
342	345	60009	3			0.10	0.003	0	0	0.3	0.0
345	348	60010	3			0.08	0.025	0	0	0.24	0.0
348	351	60011	3			0.08	0.010	0	0	0.24	0.
351	354	60012	3			0.10	0.007	0	0	0.3	0.0
354	357	60013	3			0.16	0.010	0	0	0.48	0.
357	360	60014	3			0.11	0.017	0	0	0.33	0.0
360	363	60015	3			0.09	0.025	0	0	0.27	0.0
363	366	60016	3			0.06	0.013	0	0	0.18	0.0
366	369	60017	3			0.09	0.037	0	0	0.27	0.1
369	372	60018	3			0.01	0.003	0	0	0.03	0.0
372	375	60019	3			0.12	0.032	0	0	0.36	0.0
375	378	60020	3			0.10	0.028	0	0	0.3	0.0
378	381	60021	3			0.09	0.022	0	0	0.27	0.0
381	384	60022	3			0.10	0.050	0	0	0.3	0.0
384	387	60023	3			0.14	0.088	0	0	0.42	0.2
		60024	3	-		0.15	0.068	0	0	0.45	0.2
387	390		3			0.13	0.000	0	0	0.36	0.2
390	393	60025				0.12	0.090	0	0	0.30	0.2
393	396	60026	3			0.07	0.092	0	0	0.09	0.0
396	399	60027	3			0.10	0.013	0	0	0.09	0.1
399	402	60028	3					0	0	0.42	0.5
402	405	60029	3			0.14	0.185 0.053	0	0	0.42	0.1
405	408	60030	3								0.1
408	411	60031	3			0.11	0.057	0	0	0.33	
411	414	60032	3	-		0.28	0.030	0	0	0.84	0
414	417	60033	3			0.12	0.042	0	0	0.36	0.
417	420	60034	3			0.11	0.065	0	0	0.33	0.1
420	423	60035	3			0.09	0.023	0	0	0.27	0.0
423	426	60036	3			0.10	0.030	0	0	0.3	0
426	429	60037	3			0.08	0.050	0	0	0.24	0
429	432	60038	3			0.10	0.020	0	0	0.3	0
432	435	60039	3			0.11	0.042	0	0	0.33	0.
435	438	60040	3			0.11	0.067	0	0	0.33	0.:
438	441	60041	3			0.12	0.107	0	0	0.36	0.3
441	444	60042	3			0.18	0.103	0	0	0.54	0.3
444	447	60043	3			0.17	0.132	0	0	0.51	0.3
447	450	60044	3			0.15	0.127	0	0	0.45	0.3
450	453	60045	3			0.13	0.070	0	0	0.39	
453	456	60046	3			0.17	0.088	0	0	0.51	0.:
456	459	60047	3			0.15	0.067	0	0	0.45	0.:
459	462	60048	3			0.11	0.035	0	0	0.33	0.
462	465	60049	3			0.08	0.023	0	0	0.24	0.0
465	468	60050	3			0.09	0.015	0	0	0.27	0.0
468	471	60051	3			0.16	0.113	0	0	0.48	0.3
471	474	60052	3			0.11	0.040	0	0	0.33	
474	477	60053	3			0.18	0.067	0	0	0.54	0.3
477	480	60054	3			0.15	0.095	0	0	0.45	0.3

480	483	60055	3		0.18	0.332	0	0	0.54	0.996
483	486	60056	3		0.06	0.053	0	0	0.18	0.159
486	489	60057	3		0.13	0.277	0	0	0.39	0.83
489	492	60058	3		0.12	0.165	0	0	0.36	0.495
492	495	60059	3		0.10	0.252	0	0	0.3	0.756
495	498	60060	3		0.09	0.070	0	0	0.27	0.2
498	501	60061	3		0.18	0.147	0	0	0.54	0.44
501	504	60062	3		0.09	0.068	0	0	0.27	0.20
504	507	60063	3		0.15	0.102	0	0	0.45	0.30
507	510	60064	3		0.11	0.102	0	0	0.33	0.30
		60065	3		0.10	0.065	0	0	0.3	0.19
510	513 516	60066	3		0.12	0.162	0	0	0.36	0.48
513		60067	3		0.14	0.187	0	0	0.42	0.56
516	519				0.14	0.123	0	0	0.54	0.36
519	522	60068	3		0.18	0.095	0	0	0.39	0.28
522	525	60069	3		0.13	0.130	0	0	0.42	0.3
525	528	60070	3							0.5
528	531	60071	3		0.10	0.190	0	0	0.36	0.26
531	534	60072	3		0.12	0.087	0			0.29
534	537	60073	3		0.15	0.097	0	0	0.45	
537	540	60074	3		0.15	0.193	0	0	0.45	0.57
540	543	60075	3		0.13	0.152	0	0	0.39	0.45
543	546	60076	3		0.06	0.042	0	0	0.18	0.12
546	549	60077	3		0.10	0.055	0	0	0.3	0.16
549	552	60078	3		0.08	0.138	0	0	0.24	0.41
552	555	60079	3		0.10	0.115	0	0	0.3	0.34
555	558	60080	3		0.08	0.138	0	0	0.24	0.4
558	561	60081	3		0.13	0.177	0	0	0.39	0.53
561	564	60082	3		0.10	0.067	0	0	0.3	0.20
564	567	60083	3		0.18	0.225	0	0	0.54	0.67
567	570	60084	3		0.13	0.567	0	0	0.39	1.70
570	573	60085	3		0.05	0.022	0	0	0.15	0.06
					0.10	0.103	0	0	0.3	0.30
573	576	60086	3		0.10	0.103	0	0	0.33	0.59
576	579	60087	3	11.00	0.08	0.138	0	0	0.24	0.4
579	582	60088	3							0.26
582	585	60089	3		0.07	0.088	0	0	0.21	0.20
585	588	60090	3		0.06	0.060	0			0.0
588	591	60091	3		0.07	0.030	0	0	0.21	
591	594	60092	3		0.09	0.108	0	0	0.27	0.3
594	597	60093	3		0.06	0.060	0	0	0.18	0.
597	600	60094	3		0.10	0.085	0	0	0.3	0.2
600	603	60095	3		0.06	0.173	0	0	0.18	0.5
603	606	60096	3		0.05	0.075	0	0	0.15	0.2
606	609	60097	3		0.08	0.160	0	0	0.24	0.
609	612	60098	3		0.09	0.375	0	0	0.27	1.13
612	615	60099	3		80.0	0.102	0	0	0.24	0.3
615	618	60100	3		0.05	0.060	0	0	0.15	0.
618	621	60951	3		0.22	0.542	0	0	0.66	1.62
621	624	60952	3		0.10	0.163	0	0	0.3	0.4
624	627	60953	3		0.11	0.152	0	0	0.33	0.4
		60954	3		0.08	0.188	0	0	0.24	0.5
627	630		3	-	0.12	0.160	0	ő	0.36	0.
630	633	60955	3		0.12	0.160	0	0	0.33	0.1
633	636	60956		-						
636	639	60957	3		0.07	0.052	0	0	0.21	0.1
639	642	60958	3		0.07	0.040	0	0	0.21	0.
642	645	60959	3		0.07	0.037	0	0	0.21	0.1
645	648	60960	3		0.07	0.117	0	0	0.21	0.3
648	651	60961	3		0.06	0.042	0	0	0.18	0.1
651	654	60962	3		0.07	0.122	0	0	0.21	0.3

654	657	60963	3	0.08	0.227	0	0	0.24	0.681
657	660	60964	3	0.10	0.127	0	0	0.3	0.381
660	663	60965	3	0.07	0.244	0	0	0.21	0.732
663	666	60966	3	0.07	0.250	0	0	0.21	0.75
666	669	60967	3	0.07	0.072	0	0	0.21	0.216
669	672	60968	3	0.07	0.053	0	0	0.21	0.159
672	675	60969	3	0.04	0.030	0	0	0.12	0.09
675	678	60970	3	0.11	0.095	0	0	0.33	0.285
678	681	60971	3	0.03	0.035	0	0	0.09	0.105
681	684	60972	3	0.12	0.267	0	0	0.36	0.801
684	687	60973	3	0.31	0.190	0	0	0.93	0.57
687	690	60974	3	0.13	0.093	0	0	0.39	0.279
690	693	60975	3	0.08	0.145	0	0	0.24	0.435
693	696	60976	3	0.10	0.037	0	0	0.3	0.111
696	699	60977	3	0.05	0.040	0	0	0.15	0.12
699	702	60978	3	0.08	0.027	0	0	0.24	0.081
702	705	60979	3	0.09	0.205	0	0	0.27	0.615
705	708	60980	3	0.05	0.062	0	0	0.15	0.186
708	711	60981	3	0.06	0.072	0	0	0.18	0.216
711	714	60982	3	0.07	0.107	0	0	0.21	0.321
714	717	60983	3	0.05	0.080	0	0	0.15	0.24
717	720	60984	3	0.05	0.203	0	0	0.15	0.609
720	723	60985	3	0.03	0.170	0	0	0.09	0.51
723	726	60986	3	0.08	0.062	0	0	0.24	0.186
726	729	60987	3	0.11	0.087	0	0	0.33	0.261
729	732	60988	3	0.16	0.200	0	0	0.48	0.6
732	735	60989	3	0.07	0.097	0	0	0.21	0.291
735	738	60990	3	0.04	0.080	0	0	0.12	0.24
738	741	60991	3	0.08	0.025	0	0	0.24	0.075
741	744	60992	3	0.07	0.048	0	0	0.21	0.144
744	747	60993	3	0.04	0.022	0	0	0.12	0.066
747	750	60994	3	0.06	0.052	0	0	0.18	0.156
750	753	60995	3	0.01	0.017	0	0	0.03	0.051
753	756	60996	3	0.02	0.068	0	0	0.06	0.204
756	759	60997	3	0.02	0.098	0	0	0.06	0.294
759	762	60998	3	0.05	0.013	0	0	0.15	0.039
762	765	60999	3	0.05	0.083	0	0	0.15	0.249
765	768	61000	3	0.04	0.053	0	0	0.12	0.159
768	769.3	61001	1.3	0.08	0.032	0	0	0.104	0.0416

Mean Totals

318 m - 438 m	Meters			Mos2	Cu
Total (w*a)	120.0	0.00	0.0	14.400	4.278
Mean		0.00	0.0	0.12	0.036
438 m - 609 m					
Total (w*a)	171.0	0.00	0.0	19.7	20.9
Mean		0.00	0.0	0.12	0.122
609 m - 666 m				•	
Total (w*a)	57.0	0.00	0.0	5.280	9.402
Mean		0.00	0.0	0.09	0.165
666 m - 732 m			-		
Total (w*a)	66.0	0.00	0.0	5.820	6.996
Mean		0.00	0.0	0.09	0.106
732 m - 769.3 m				1	
Total (w*a)	37.3	0.00	0.0	1.754	2.010
Mean		0.00	0.0	0.05	0.054
438 m - 732 m					
Total (w*a)	294.0	0.00	0.0	30.570	37.044
Mean		0.00	0.0	0.10	0.126
318 m - 769.3 m			 		
Total (w*a)	451.3	0.00	0.0	46.724	43.332
Mean		0.00	0.0	0.10	0.096

Appendix D
1981 Drill Hole Results with
1993 Duplicates in Blue

1981 DRILL HOLE RESULTS WITH 1993 DUPLICATES IN BLUE

DDH T 2 81	ASSAY (1981)	TABLE				=> 0.15%	=> 0.10%		
II. p No. 0									LENGTH CONTROL
From m	To m	Number	Width m	Au ppm	Ag ppm	Cu %	MoS2 %	Cu(w*a)	Mo(w*a)
594	597	60093	3			0.06	0.060	0.18	0.18
597	600	60094	3			0.10	0.085	0.3	0.255
600	603	60095	3			0.06	0.173	0.18	0.519
603	606	60096	3			0.05	0.075	0.15	0.225
606	609	60097	3			0.08	0.160	0.24	0.48
609	612	60098	3		201	0.09	0.375	0.27	1.125
610	4	198	1	14	3.1	0.22	0,371		10000
612	615	60099	3			0.08	0,102	0.24	0.306
615	618	60100	3			0.05	0.060	0.15	0.18
618	621	60951	3			0.22	0,542	0.66	1.626
620			1	20	3.0	0.34	0.73		
621	624	60952	3			0.10	0.163	0.3	0.489
624	627	60953	3			0.11	0.152	0.33	0.456
627	630	60954	3			0.08	0.188	0.24	0.564
630	633	60955	3			0.12	0.160	0.36	0.48
630			1	<5	0.4	0.17	0.058		
633	636	60956	3			0.11	0.062	0.33	0.186
636	639	60957	3			0.07	0.052	0.21	0.156
639	642	60958	3			0.07	0.040	0.21	0.12
640		160	1	<5	<0.2	0.06	0.020		
642	645	60959	3			0,07	0.037	0.21	0.111
645	648	60960	3			0.07	0.117	0.21	0.351
648	651	60961	3			0.06	0.042	0,18	0.126
650			1	7	<0.2	0.09	0.028		
651	654	60962	3			0.07	0.122	0.21	0.366
654	657	60963	3			0.08	0.227	0.24	0.681
657	660	60964	3			0.10	0.127	0.3	0.38
660	663	60965	3			0.07	0.244	0.21	0.732
660		141	1	24	0.4	0.09	0.002		
663	666	60966	3			0.07	0.250	0.21	0.75
666	669	60967	3			0.07	0.072	0.21	0.216
669	672	60968	3			0.07	0.053	0.21	0.159
670			1	<5	<0.2	0.12	0.033		
672	675	60969	3			0.04	0.030	0.12	0.09
675	678	60970	3			0.11	0.095	0.33	0.28
678	681	60971	3			0.03	0.035	0.09	0.10
680			1	<5	<0.2	0.02	0.004		See Total
681	684	60972	3			0.12	0.267	0.36	0.80
684	687	60973	3			0.31	0.190	0.93	0.5
687	690	60974	3			0.13	0.093	0.39	0.279
690	693	60975	3			0.08	0.145	0.24	0.435
690			1	21	1.4	0.07	0.467	MET SE	

693	696	60976	3			0.10	0.037	0.3	0.111
696	699	60977	3			0.05	0.040	0.15	0.12
699	702	60978	3	V		0.08	0.027	0.24	0.081
700			_1	19	<0.2	0.07	0.004		
702	705	60979	3		31	0.09	0.205	0.27	0.615
705	708	60980	3			0.05	0.062	0.15	0.186
708	711	60981	3			0.06	0.072	0.18	0.216
711	714	60982	3	1	1	0.07	0.107	0.21	0.321
712			- 1	14	<0.2	0.08	0.058		
714	717	60983	3			0.05	0.080	0.15	0.24
717	720	60984	3			0.05	0.203	0.15	0.609
720	723	60985	3			0.03	0,170	0.09	0.51
720			1	<5	<0.2	0.03	0.147		
723	726	60986	3			0.08	0.062	0.24	0.186
726	729	60987	3			0.11	0.087	0.33	0.261
729	732	60988	3			0.16	0.200	0.48	0.6
730	-	*	1	15	<0.2	0.04	0.102		1,194
732	735	60989	3			0.07	0.097	0.21	0.291
735	738	60990	3			0.04	0.080	0.12	0.24
738	741	60991	3			0.08	0.025	0.24	0.075
740			1	6	0.6	0.09	0.004		
741	744	60992	3			0.07	0.048	0.21	0.144
744	747	60993	3			0.04	0.022	0.12	0.066
747	750	60994	3			0.06	0.052	0.18	0.156
750	753	60995	3			0.01	0.017	0.03	0.051
750			1	11	0.4	0.03	0.033		
753	756	60996	3			0.02	0.068	0.06	0.204
756	759	60997	3			0.02	0.098	0.06	0.294
759	762	60998	3			0.05	0.013	0.15	0.039
760	140		1	<5	<0.2	0.04	0.049		
762	765	60999	3			0.05	0.083	0.15	0.249
765	768	61000	3			0.04	0.053	0.12	0.159
768	769.3	61001	1.3			0.08	0.032	0.104	0.0416
769			1	21	10.2	0.11	0.09	0.337	0,0110

П

Appendix E 2005 Drill Hole Duplicates - Descriptions and Results

The following table summarizes descriptions of randomly selected Texasgulf drill core sections. Samples were collected and described by D. Gale, P.Geo., during the 2005 property visit and rock sampling program.

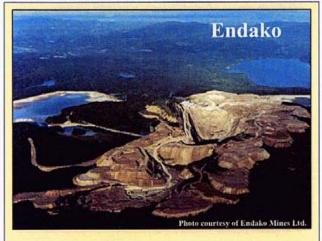
DRILL HOLE	SAMPLE NUMBER	INTERVAL (FT)	DESCRIPTION	MO (PPM)	CU (PPM)
T-4-81	37023	1946-1947	Sample taken within sediments, sample mainly composed of foliation aligned vein w. tro-1% pyrite w. 5-7% wispy to msv chalcopyrite, cpy is fine grained and forms clots/vns 1-3 cm	159	2482
T-4-81	37024	1955-1956.5	Veins within sediments (as above), 1-2% dissem chalcopyrite within quartz vein, cpy forms 0.5cm clots within vn, weathered-out pyrite vugs, approx 0.5-1% pyrite within rock	104	972
T-2-81	37025	280.2-286.5'	Porphyritic monzonite, 3-5% biotite, 1% fracture fill pyrite	77	146
T-2-81	37026	296,3-296.6'	Porphyritic monzonite, mod. silicification, 5% biotite, 1-2% dissem pyrite, tre molybdenum, tre fluorite	6	498
T-2-81	37027	307.05-307.35	Porphyritic monzonite, 1% dissem. pyrite	<2	863

Appendix F Molybdenum in British Columbia Information Circular 2005-3

BC Molybdenum Deposits

The British Columbia Ministry of Energy and Mines' MINFILE database lists 1350 molybdenum-bearing occurrences in the province; 430 of these list molybdenum as the primary commodity. Total molybdenum production (1915-2004) from nearly 100 deposits is 320 300 tonnes; and, total resources in 60 deposits are estimated at 1 900 000 tonnes. Some deposits with higher-grade cores have the potential to facilitate production to proceed relatively quickly [e.g. Yorke-Hardy: 20.6 Mt @ 0.24% Mo + 0.041% WO₃ (@ 0.12% Mo cutoff); Max: 260 Kt @ 1.17% Mo (@ 0.6% Mo cutoff)].

Two molybdenum metallogenic episodes are recognized:


- i) Early Cretaceous Miocene: 140 Ma to 8 Ma
- ii) Late Triassic Middle Jurassic: 220 Ma to 195 Ma

The exploration and development of porphyry deposits during the 1960s and 1970s had a profound effect on the mining community in British Columbia. Nearly all the molybdenumbearing deposits were explored for and inventories identified up until the early 1980s when the molybdenum price dropped from ~US\$30 /lb to below US\$3 /lb.

Currently molybdenum is mainly used as an alloy to strengthen iron and steel. Rapidly expanding markets in China and rising oil prices, which may precipitate future pipeline construction, have led to a significant price increase in Mo - once again fueling exploration and development in BC.

- · Phelps Dodge Corp.
- Since 1967, produced ~13 600 t Mo (30 M lbs Mo)
- Operated 1967-1972 @ 5500 tpd; 1981-1982 @ 10 900 tpd
- Capital cost ~ \$200 M (Sept. '78); ~500 employees with annual payroll ~\$10 M (town built for 2000 people)
- 1982: Mo price plunged (US\$35 to US\$2 /lb)
- Current Resources: 104.3 Mt @ 0.112% Mo

- Thompson Creek Mining (60%), Sojitz Moly Res. (40%)
- Canada's top low-cost molybdenum producer, and one of the world's largest primary producers. Employment ~250
- Since 1965, produced ~191 000 t Mo (422 M lbs Mo)
- 2004 i) Production ~5000 t Mo (av. millfeed ~0.066% Mo), from daily mill throughput ~28 000 t
 - ii) Reserves (end-2004) = 80.7 Mt @ 0.063% Mo
 - iii) Mine life (before pit expansion) 2011
 - iv) Began major push back of south wall pit expansion

BC Molybdenum Deposit Types

- Porphyry Mo (low-F-type): BC Mineral Deposit Profile L08 [e.g. Endako (~145 Ma), Boss Mountain (~102 Ma), Kitsault (~51 Ma), Yorke-Hardy (~67 Ma), Max (76 Ma?), Adanac (~71 Ma), Ajax, Mac (~136 Ma), Storie, Logtung (~118 Ma), Lucky Ship, Carmi, Salal (~8 Ma)]
- Porphyry Cu-Mo: BC Mineral Deposit Profile L06
 [e.g. Brenda (210 Ma?), Island Copper (~167 Ma),
 Highland Valley Copper (~210 Ma), Schaft Creek
 (~220 Ma), Gibraltar (~217 Ma), Berg (~49 Ma), Catface
 (36 Ma?), Huckleberry (~82 Ma)]
- Occur in a variety of tectonic terranes
- · Differentiated polyphase monzogranite suite
- Possible rhenium (e.g. Island Copper and Schaft Creek) and tungsten (e.g. Yorke-Hardy and Logtung) credits

For More Information

http://www.em.gov.bc.ca/Mining/Geolsury

Telephone: (604) 660-2812

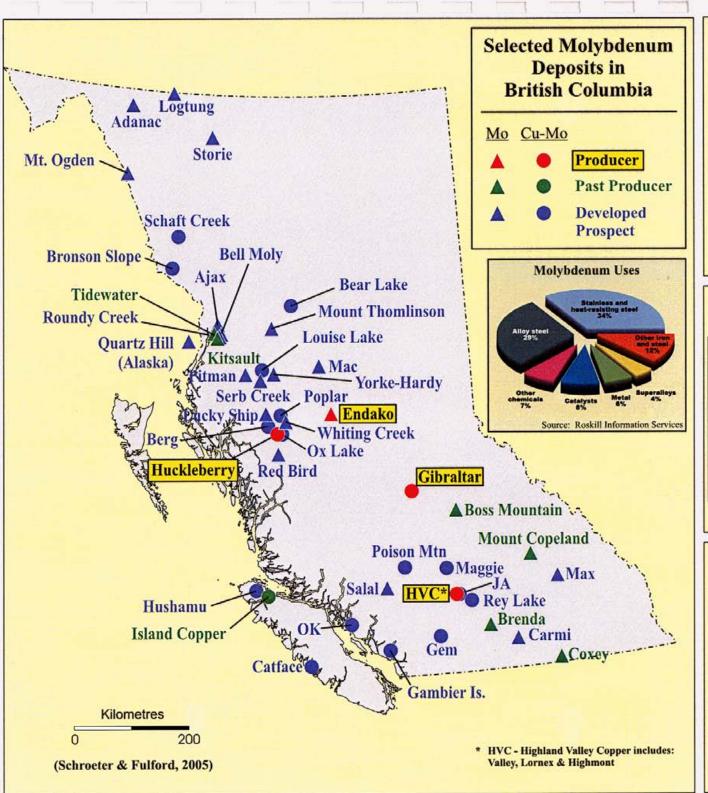
Canadian Institute of Mining, Metallurgy and Petroleum

Special Volumes 15 (1976) and 46 (1995)
 Molybdenum, the British Columbia Perspective

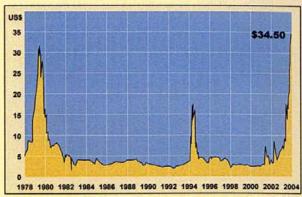
- BCMEM, Paper 1980-2

Molybdenum in British Columbia

Stockwork Moly (Endako)



Ribbon Moly (Yorke-Hardy)



Ministry of Energy and Mines Mines and Minerals Division

Information Circular 2005-3

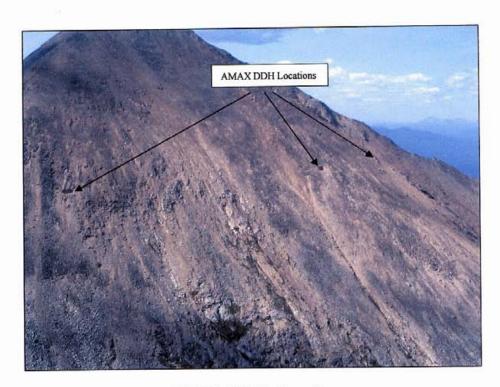
Molybdenum Price (US\$/lb Mo)

Source: Roskill Information Services

Selected BC Molybdenum Producers (1915-2004)

Mine / Deposit Name	Years of Production (* = Producing)	Mo Produced (t) (103)	Other Products
Endako	1965-1998; 2002-2004*	191.3	
Highland Valley Copper	1972-2004*	75.3	Cu-Ag-Au
Brenda	1070-1990	67.9	Cu-Ag-Au
Island Copper	1971-1995	32.0	Cu-Ag-Au-Re
Boss Mtn.	1965-1983	15.5	
Kitsault	1967-1972; 1981-1982	13.6	
Gibraltar	1972-1998; 2004*	9.1	Ag

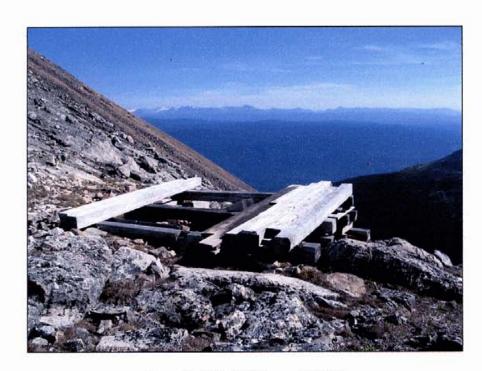
Note: At US\$20 per pound molybdenum, the total value of BC molybdenum production (320 300 tonnes) is approximately US\$14 billion.


Selected BC Molybdenum Resources (2004)

Mine / Deposit Name	Resources (t) (10 ⁶)	Resources (% Mo)	Contained Mo (t) (10 ³)
*Yorke-Hardy	75.3	0.177	133.2
Ajax	174.1	0.074	128.9
*Adanac	199.3	0.062	123.6
Kitsault	104.3	0,112	116.8
Schaft Creek	402.7	0.022	88.6
Mac	99.9	0.072	71.9
Storie	100.5	0.070	70.4
*Max	42.9	0.120	51.5

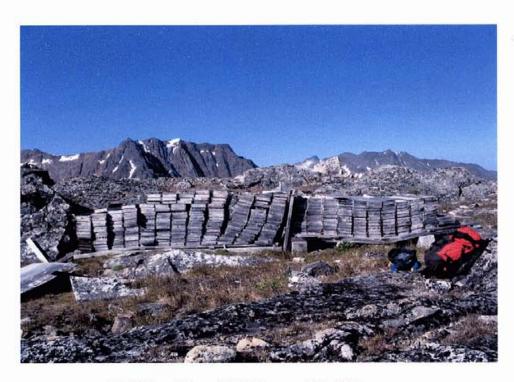
Note: 60 deposits have been outlined with resources (all categories) of approximately 1.9 million tonnes of molybdenum, valued at over US\$100 billion (at US\$20 per pound).

* NI 43-101 compliant, measured and indicated resources


Appendix G Photographs of Mount Thomlinson Mineral Property

AMAX Drill Hole Locations

Un-assayed Molybdenum-Copper Bearing Drill core


TexasGulf Drill Set-up - T-2-81

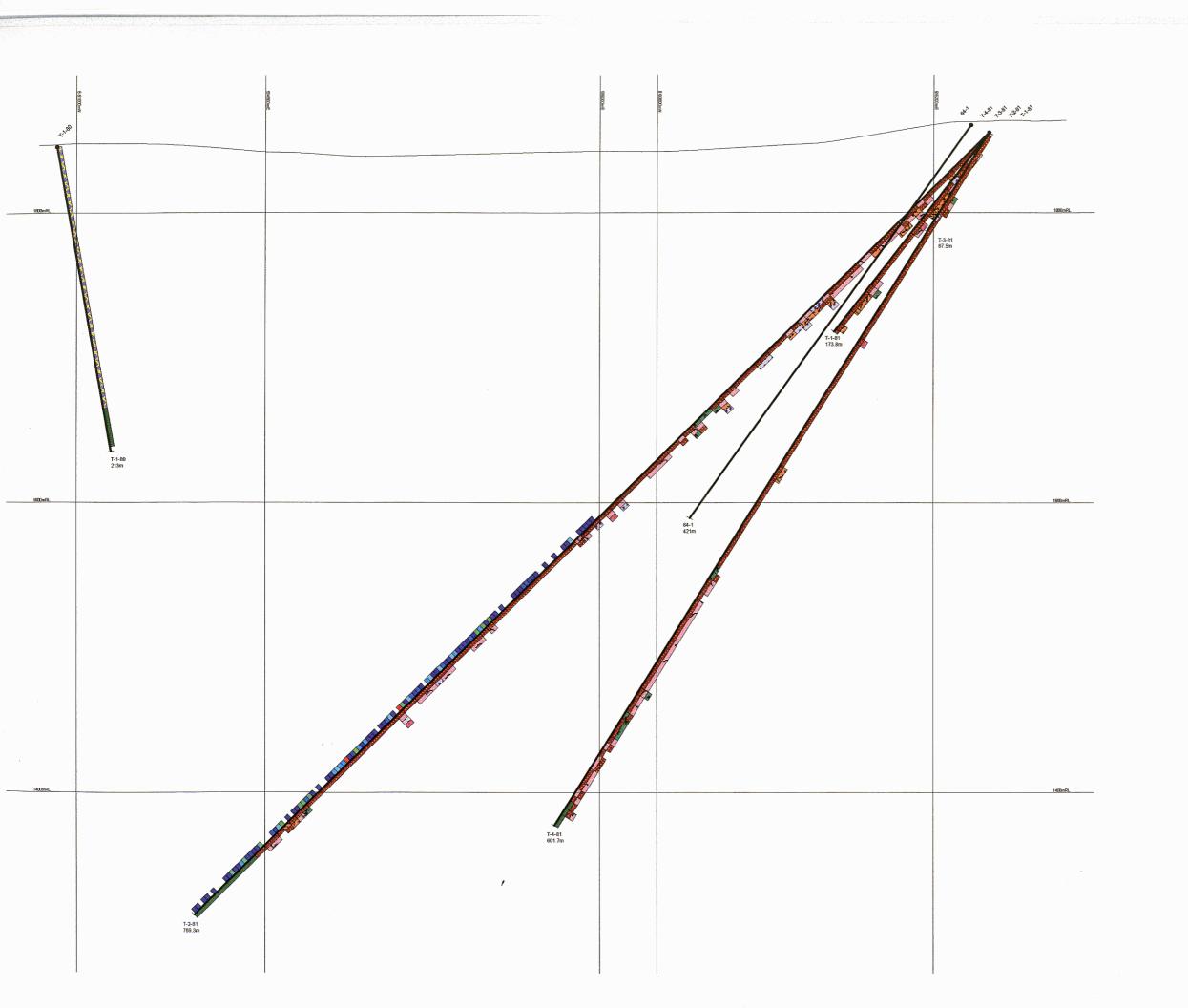
Twinned Drill Holes

Drill Core Sampling - 2005 Property Visit

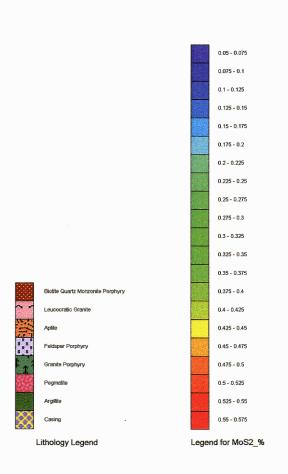
Drill Core From 1981 Texasgulf Drill Program

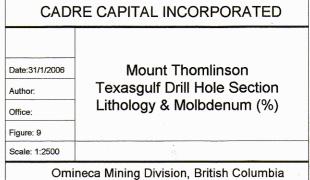
Appendix H 1993 Rock and Drill Core Sampling Table Discovery Consultants

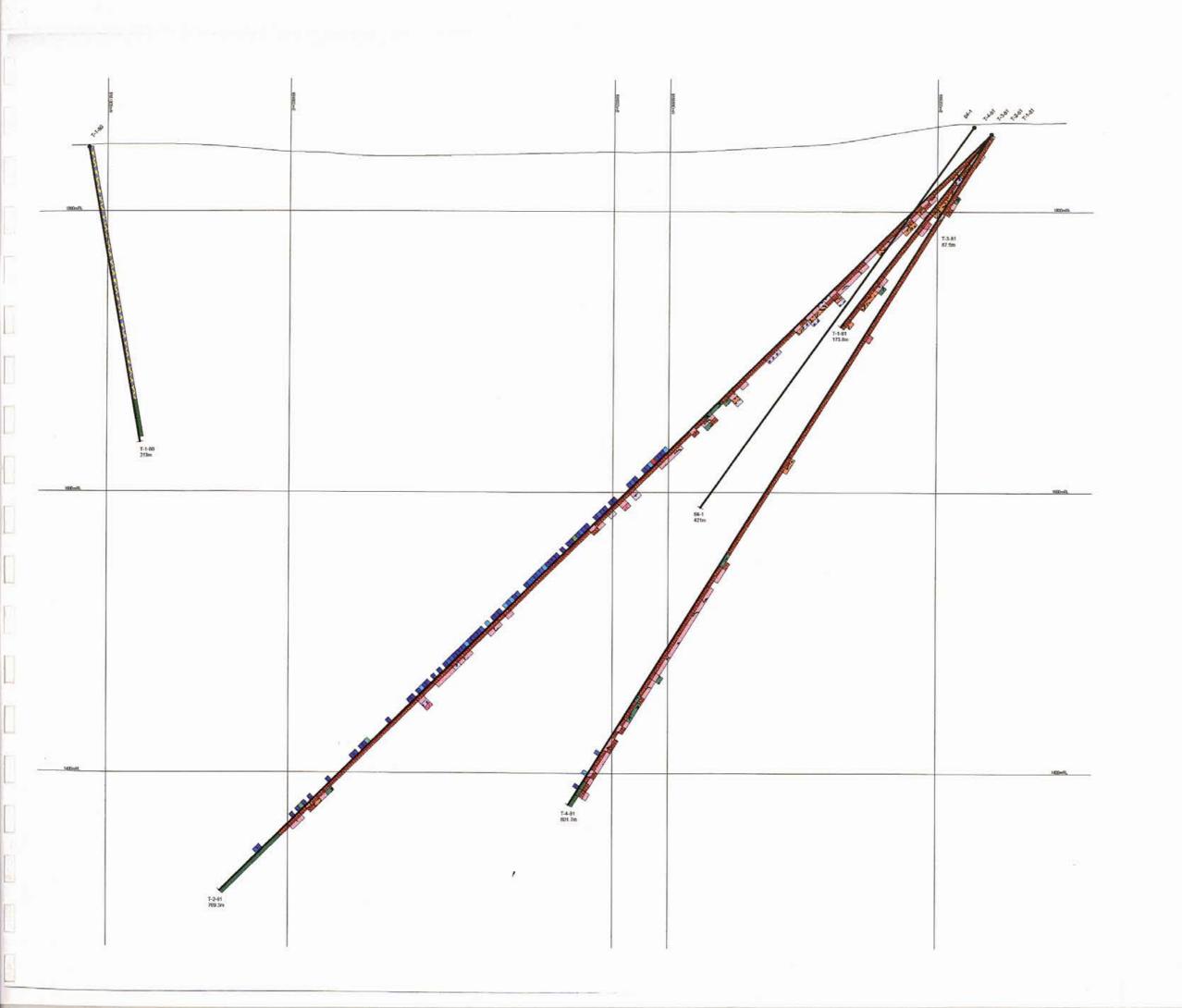
1993 ROCK +CORE SAMPLE RESULTS (Discovery Consultants)

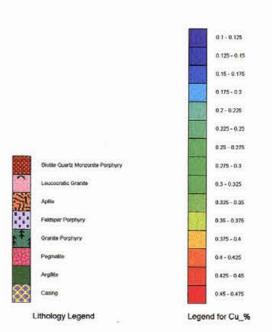

Sample #	Au ppb	Ag ppm	Си ррш	Мо ррт	
M-1	5	0.3	344	65	
M-2	28	2.3	193	119	
M-3	34	8.9	267	235	
M-4	11	4.3	255	1110	
M-5	15	2.8	127	743	
M-6	9	2.5	1233	321	
M-7	50	-	117	46	
1-2	16	1.5	199	122	
1-4	11 -	2.5	155	844	
1-5	7	-	132	913	
1-8	7	0.4	111	204	
1-10	6		153	148	
2-1	11	2.1	117	361	
2.2	9	0.9	96	442	
2-3	7	0.5	153	684	
2-4	7	1.6	180	1095	
2-5	6	0.5	200	763	
2-6	22	3.2	139	529	
2-7	7	2.0	139	268	
2-8	9	0,2	154	619	
2-9	6	1.2	131	343	
2-10	26	2.2	61	1575	
H T-81-02 (Depth)	Au ppb	Ag ppm	Си рре	Mo ppm	
610 (m)	14	3.1	2196	368	
620	20	3.0	3417	7272	
630	<5	0.4	1744	580	
640	<5	<0.2	614	151	
650	7	<0.2	876	280	
660	24	0.4	879	23	
670	<5	<0.2	1183	326	
680	<5	<0.2	146	36	
690	21	1.4	659	4674	
_700	19	<0.2	677	38	
712	14	<0.2	776	498	
720	<5	<0.2	229	1376	
			420	1022	
730	15	<0.2	438	1022	
730 740	15 6	<0.2 0.6	953	40	
		1			
740	6	0.6	953	40	

Appendix I Assay Certificates - 2005


	.,					Ī				\neg									\Box				$-\Gamma$	\$ne	رما	ഹവ്	nco		\neg
																				\rightarrow	-		-1	ıec	M C(JEH	HOU	-	
													-			-	\dashv		-		-	-+	-1	Gobail	Discovery	r_abs		\neg	\neg
fount	THOMLINSON	CADREC	APITAL											-					-	+	-+		'.					$\overline{}$	
											-					\rightarrow	_		-	\neg	_						$=$ \bot	=	П
		\vdash			_		\vdash	_	- 1	\neg			_									$\neg \neg$				Job	V 05-07071	R	
	Report date:	D7 SEPT	2094		-		_	_									==		⇛	=	⇉		N.		= 7	Ce	Na	7	
AB NO	FIELD	Cu	Pb	Zn	Ag	A	34	Cd	Co	Ni.	Fa	3	Cr	<u> </u>	86	Y	- Sn	. #	\$1			pper	- 10	 " 	् श	- %		- %	99m
	NUMBER	ppm	ppm	ppm	pom	pptn	P#M	pown.	ppm	DDID	- 1	99/7	ppm	pom	20 PO P	ppm	ppm	ppm	ppm	ppm	ppm						===	#	_
							Ш									13	ß	a	25	- 2	17	61	0.16	0.01	0,43	0.11	0.67	8.29	624
R9625196	37981	410	334	207	12.9	- 4		51		্ব	1,39	296 1806	90 96	- 20 <3	<u>- व</u>	12	4	- 3	- 17	췹	16	61	9.09		0.33	0.11	0.87	0.29	442
R0625187	37002	261	ય	14	3,8	- 5	71	<1	<1	_	1,76	1002	100	4	4	14	- 4	4	34	- 3	16	66	0.13		0,30	0,09	0,87	0,23	122
R0625184	37003	440	- 4		- 3-1	10	71	্ব	<u> </u>	<u>্ব</u>	2.71	946	93	- 3	- 3		7	ব	28	2	23	319	0,09	1,31	0.61	0.30		0.38	316
R0428189	37984	781	લ		1.7		37	~	- 1	न	2.48	783	78	<5	d	_	2	4	*	3	31	378	0,24	0,81	8,42	0.62		0,32	627
R0525190	37006	1106	74	148	2,8 1,8			_	_	1	2,87	198	128	4	d		4	21	2	₫	4	- 44	0.00		0,30	0,04		8,21	189
R0625191	37006	100	E19	143	4.1	29	25	7		4		71	51	<\$	4		٧	12	- 8	2	- 7	24	1.03		1,21	9.02	6,87	0.23	364
N9625192	37967	_	42		1.1	145	-44	ব	10		4.27	136	\$7	ı	4	40	Q	4	10	- 4	_18	#19	0.91		148	9,49	0.11	1.15	778 404
R9626193 R9626194	27000 27000	196 611	21		1,8	2	29		_	1	3,32	280	114	<8	4		7	4	18	3	16	- 80	0.10		0.44	0,22	0.07	9.34	737
R0428194	37010	840		38	0.7	•	- 01	্ৰ	3	4		279	67	વ	4			- 3	15	- 4	- 20	- 71	0.29			0.18	0.12	0.36	718
R9525196	37011	621	- 4		0,5	10	99	্ব	3	7	_	1963	89		4		- ₹	_	24	3	26	107	0.02		9,31	0.04		0,29	437
R9425197	37012	39	194	67	1,8	14	60	<1			1,50	140	84	< 5	4		<u> </u>	212	7 17	2	18	13	0,11		1.44	9.82	0.88	0.20	271
PI0825196	57613	148			1,4		_	_	_	_1	7,90	444	6.5		ব		_	***		4	- *1	- 3	8.09		1.23	0.02	0.87	0.12	183
R082,5100	27014	118	- 4		4	•					124	188 528	147	4							- 7	- 4	6.02		9,12	<,01	0.07	8,04	284
R652.5200	37018	1110	<4					্ব				371	97	7	4		- ~	- 2	81	7	18	100	0,55	0.00	1.98	0.62	9.26	0,41	461
R0525201	37016	1466	4		0.0	4	_	_	_	14	1,80	515	106		4			16	14		17	225	0.45	1.05	0.71	9.16	0.00	9.88	344
R0825202	37817	111	1727				_			-		23					_	_	27	7	14	265	0.29	0.84	8,48	0,10	0,12	0.41	414
R0828203	27018	1 22			_	-		_	_	_		10	_				ī	⋖	23	2	31	293			8,44	0.51		9.29	343
R0626204	37019	1217										1 7				84	3	4	•	۵	19	342	0,10		8,24	0.07		0.16	97
R0826205	D7021	81				61		-		_	-	34		44	4	31			.10		14	184	0,44		9,71	9,14		9,41	434 2064
R052.5296 R052.5297	37022	1284				- 2			13	22	8,83	284	41				-		38	10	28	283	94		2.82	1,38		1.08	622
R8525266	37023	2482			1,6	1	11	<1	19	13		160	45					14	27	<u>.</u>	19	264 537	0,81		1,30			0.39	637
R9626298	37024	972					41	<1	11	_,	3,50	194					_	_	108		29	237	0.34		1.00	_		0.43	44
R0626210	27924	144		76	<.4	.10	102	<1	. 4	_		-77					_	_		3	25	210	9.14		0.32	_		0.25	37
R0628211	37026	490		103	0,7							1	46	<6				4	37	- 4	29	262	0.17		9,30			0.27	43
R9628212	27027	(63			3.4							⊴	_				_	_	33	-	19	206	0.44	_	1.41			0,62	27
R8626213	37025	110					4				2.23				11			321	32		24	121			0.56			8,44	29
R8626214	37020	2841					_	111		_	+	497		•	_	_	-	4	11	2		265	0.84	9,17	1,44			1,07	44
R0526215	57930	<u> 52</u>					111			-		3									21	229	0.31		1.44			0,38	73
R0628216	27031	62					_	-		_		394				32	4		20	2	22	170	0,31		8,67				67
R6525217	27032	3051					1 1	_		1	1.97	240	_		9	20	4	<2	1	4	2	13	0.0	<u> <#1</u>	101	0.01	0.06	6,03	2
R0026210	27033	- 	ᢡ	\	T **	\vdash	+ '	T-	T	Ш									<u> </u>	—	<u> </u>		⊢-	-	-	+	+-+		
la la cultila in - 2 -	ampia Xesmail u	male Fr	exceeds	calleration	Cubeln	a checked	Reger	ised								1	₩-	╙	╙	├			⊢	+	 	+-	╆═┿		
if requested an	allyses are not sho	WN, resu	ts ere to	ollow			F	F				-	_	 - -		+	+	+	 	┢	├─		 	+-	t	1	╆═╅		
		1-	₩	┼ ┈─		├	+-	┿	+	+-	┿	\vdash	\vdash	┼┈╌										$oldsymbol{\Box}$			\Box		_
ANALYTICAL I	RE : 0,6 prem samp	In eligant	d in het s	averse en	u reale (solluiti or	hot Aa	us Rec	le(rocks	<u>. </u>	1							\Box	1_	ļ	 		ļ. —	+	├	+	╇╾╃		
ICP PACKAG	RE: U.S DAMES COME	- u-3+3 #		diam's and			1										\perp	1	↓	↓	—	L	-	4	-		+	\vdash	$\overline{}$
-		+	+	†	†			Τ.					\perp	ļ	↓	 	1_	 	├	\vdash	 		├	+	 	+	+	\vdash	_
		1 -	1				Ľ					ļ		 	↓		+-	\vdash	-		├	<u> </u>	ļ	+	+	+-	+		
		_		_	$\tau -$	T		1			1	1	1		1	- 1	1		1	1			4	1	1	1			


						. ted	kcon	ninco		
Mount	THOMLINSONCAL	RE CAPITAL			Global Discovery Labs					
	Report deta	: 25 AUG 2005	3				Job	V 05-0707R		
LAB NO	FIELD NUMBER	Au.	Wt Au		<u> </u>					
		ppb	græm		 		 	<u> </u>		
R0525186	37001	15	10	ļ	 		ļ			
R0525187	37002	10	10		ļ		 	 		
R0525188	37003	<10	10	ļ <u>.</u>		 	 	 		
R0525189	37004	<10	10	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 		
R0525190	37006	<10	10	 .	 		-	 		
R0525191	37006	30		ļ	 		 			
R0525192	37007	20	10 10	ļ	 		+	 		
R0525193 R0525194		<10	10		├ ──	+	 	_		
	37009			<u> </u>	 	 	1	-		
R0525195	37010	<10	10		-	-	 -	├		
R0525196	37011	<10	10	ļ		 	 -	 -		
R0525197	37012	30	10	 	-	╄	 -	 -		
R0525198	37013	<10	10	 	 			 		
R0525199	37014	<10	10		 			 		
R0525200	37015	<10	10	 		-	+			
R0525201 R0525202	37016 37017	<10 745	10		<u> </u>	 	+	-		
R0525202	37018	/45 <10	10	<u> </u>	 	-	1			
R0525203	37019	10	10		 	-		 		
R0525205	37020	<10	10		-	 		 -		
R0525206	37021	<10	10		-	 	 	 -		
R0525206	37022	38	10		-		 	 		
R0525207	37023	<10	10	<u> </u>	 	-	 -	 -		
					 	-	+	 -		
R0 <u>525209</u> R0525210	37024 37025	<10 <10	10			 				
R0525211	37026	<10	10 10	L	 		· 	-		
STD: M400	3/026	376	10		 	 				
R0525192 rpt		20	10		 		i i	 		
R0525206 rpt		<10	10		 		+			
R0525212	37027	<10	10		 	 				
R0625213	37028	65	10			-	-			
R0525214	37029	282	10			 	+	-		
R0525215	37030	<10	10		 	 	+	 		
R0525216	37031	<10	10		 	 	 	 		
R0525217	37032	<10	10		 		 	 		
R0525218	37033	<10	10							
100000 10	4.444	 ```			t		†			
einsufficient ser	nple X=smail sampi	Faerceeris	calibration	Cabelng ch	cked Reres	risad	1	 		
	yses are not shown, r				110	1	1	 		
	, The man in the second of	1		···	 	t	†	 		
ANALYTICAL ME	THOOS	1			 	 	1			
	a decomposition / so	ivent extraction	n/AAS	·		t	1	<u> </u>		
	eight of sample taken			nem)		†	+	 		
							1	t		


Appendix J TexasGulf Drillhole Sections


Looking Northeast

Looking Northeast

Appendix K Mineral Tenures

Tenure Number ID

515331 View Tenure

9

Tenure Type

Mineral (M)

Tenure Sub Type

Claim (C)

Title Type

Mineral Cell Title Submission (MCX)

Mining Division

Good To Date

2006/NOV/27

Issue Date

2005/JUN/27

Termination Type

Termination Comments

Termination Date

Tag Number

Claim Name

Old Tenure Code

Area In Hectares

1096.933

Map Numbers:

093M

Owners:

146984 CADRE CAPITAL INC. 100.0%

Agents:

146984 CADRE CAPITAL INC. CONV (4037752) 146984 CADRE CAPITAL INC. CIL (4043797) 146984 CADRE CAPITAL INC. SOW (4054448)

Tenure Number ID 515407 <u>View Tenure</u>

9

Tenure Type

Mineral (M)

Tenure Sub Type

Claim (C)

Title Type

Mineral Cell Title Submission (MCX)

Mining Division

Good To Date

2006/NOV/27

Issue Date

2005/JUN/27

Termination Type

Termination Comments

Termination Date

Tag Number

Claim Name

Old Tenure Code

Area In Hectares

1079.455

Map Numbers:

093M

Owners:

146984 CADRE CAPITAL INC. 100.0%

Agents:

146984 CADRE CAPITAL INC. CONV (4037873) 146984 CADRE CAPITAL INC. SOW (4054448)

Tenure Number ID

518575 View Tenure

9

Tenure Type

Mineral (M)

Tenure Sub Type

Claim (C)

Title Type

Mineral Cell Title Submission (MCX)

Mining Division

Good To Date

2006/JUL/31

Issue Date

2005/JUL/31

Termination Type

Termination Comments

Termination Date

Tag Number

Claim Name

THOM 2

Old Tenure Code

Area In Hectares

438.772

Map Numbers:

093M

Owners:

146984 CADRE CAPITAL INC. 100.0%

Agents:

146984 CADRE CAPITAL INC. CEXT (4043993)

Tenure Number ID 518998 View Tenure

9

Tenure Type

Mineral (M)

Tenure Sub Type

Claim (C)

Title Type

Mineral Cell Title Submission (MCX)

Mining Division

Good To Date

2006/AUG/13

Issue Date

2005/AUG/13

Termination Type

Termination Comments

Termination Date

Tag Number

Claim Name

THOM 3

Old Tenure Code

Area In Hectares

438.689

Map Numbers:

<u>093M</u>

Owners:

146984 CADRE CAPITAL INC. 100.0%

Agents:

146984 CADRE CAPITAL INC. CEXT (4045258)

Tenure Number ID 518999 <u>View Tenure</u>

9

Tenure Type

Mineral (M)

Tenure Sub Type

Claim (C)

Title Type

Mineral Cell Title Submission (MCX)

Mining Division

Good To Date

2006/AUG/13

Issue Date

2005/AUG/13

Termination Type

Termination Comments

Termination Date

Tag Number

Claim Name

THOM 4

Old Tenure Code

Area In Hectares

438.522

Map Numbers:

093M

Owners:

146984 CADRE CAPITAL INC. 100.0%

Agents:

146984 CADRE CAPITAL INC. CEXT (4045259)

519001 View Tenure

9

Tenure Type

Mineral (M)

Tenure Sub Type

Tenure Number ID

Claim (C)

Title Type

Mineral Cell Title Submission (MCX)

Mining Division

Good To Date

2006/AUG/13

Issue Date

2005/AUG/13

Termination Type

Termination Comments

Termination Date

Tag Number

Claim Name

THOM 5

Old Tenure Code

Area In Hectares

420.139

Map Numbers:

<u>093M</u>

Owners:

146984 CADRE CAPITAL INC. 100.0%

Agents:

146984 CADRE CAPITAL INC. CEXT (4045261)