2004 Exploration Program
Assessment Report
For
514526 formerly Brett #5 Claim

Owner KYLE STANLEY MCCLAY

Work Completed Sept 30 to October 15, 2004

BRETT GOLD PROPERTY VERNON, BRITISH COLUMBIA

VERNON MINING DISTRICT

NTS MAP NO. 082L/03W

50 DEGREES 14 MINUTES NORTH LATITUDE 119 DEGREES 30 MINUTES WEST LONGITUDE

for

Mosquito Consolidated Gold Mines (operator) & Running Fox Resources Corp.

BY

Shaun M Dykes, M.Sc(eng), P. Geo. Geologic Systems Ltd. 514 East Columbia Street New Westminster, BC (604-520-6511)

Oct 5,2005 FINAL

SUMMARY

Running Fox Resource Corp ("Running Fox") holds an option, by agreement with Mosquito Consolidated Gold Mines Ltd. ("MSQ") dated January 30, 2004 to acquire a 50% interest in the Brett Property by incurring \$500,000 in cumulative exploration expenditures over one year to January 2005.

The 2,050 hectare Brett Gold Property is located at 50⁰ 14' North, 119⁰ 30' West on the west side of Okanagan Lake, B.C. North of Kelowna. Access to the property is by well maintained paved and gravel roads. Work on the property commenced in 1985 with the discovery of high-grade gold mineralization during road building, during a follow up of a soil geochemical survey.

Exploration work carried out to date on the Brett Property has confirmed the presence of a number of significant gold bearing mineralized zones associated with northerly trending altered shear/fracture zone(s). Previous work consisted of geochemical surveys, trenching, 10,000 meters (32,900 feet) of diamond drilling, 2,800 meters (9,300 feet) of reverse circulation drilling, and 459 meters (1506 feet) of underground development. The majority of work has been concentrated in a small area (200m strike and 76 meters depth) of the property, along what is known as the Main Shear Zone- RW vein. The last hole drilled prior to the 2004 exploration on the property Hole 93-19, a reverse circulation hole, returned an intersection of 16.76m grading 35.79 gms Au/tonne (1.045 oz Au/ton) including 3.048 m grading 57.88 gms Au/tonne (1.69 oz Au/ton) and 4.57 m grading 107.88 gms Au/tonne (3.15 oz Au/ton) within the Main Shear Zone. In 1996 a small (291 tonne) bulk sample, from the RW vein and Main Shear Zone, was shipped to Trail and returned an average grade 27.74 gms Au/tonne and 63.7 gms Ag /tonne. Work was stopped in late 1996 and the property was tied up in litigation for several years.

The 2004 exploration program on the Brett Project included the staking of 52 additional claim units, geochemical surveys, geological mapping, road construction, trenching, sampling and 9100 feet of NQ diamond drilling.

The overall soil geochemistry survey, which was a highlight of the 2004 program, consisted of 4,659 soil samples at 25 meter intervals on lines 100 meters apart. The survey totaled 144 line kilometers covering an area of approximately 15 square kilometers. The portion of the geochemical survey covered

in this report consists of the northern part of the survey only covering the Brett #5 claim. It consisted of 711 soil samples at 25 meter intervals on lines 100 meters apart covering a total of 18 line kilometers. Results indicate several local gold anomalies cover a eastern portion of the area to the northeast of the main work area. Eight values in excess of 100 ppb Au (0.1 grams) are considered extremely anomalous samples. One chip sample taken in an outcrop two meters away from a 41 ppb soil anomaly assayed 0.288 oz Au/ton indicating a good correlation between soil geochemistry and gold mineralization. Overall the soil geochemistry appears to indicate gold mineralization covering an unexplored area 1.5 kilometer wide and 2.0 kilometer long, trending northwest. The soil geochemical survey has revealed the presence of significant gold anomalies that require additional follow-up work.

TABLE OF CONTENTS

SUMMARY	ii
List of Appendices	iv
List of Figures	v
List of Tables	vi
INTRODUCTION	1
PROPERTY DISCRIPTION AND LOCATION	1
ACCESSABILITY, CLIMATE, LOCAL RESOURCES,	2
HISTORY (modified from Robb, 2004)	6
GEOLOGY SETTING	10
Regional GeologyProperty Geology	
2004 Geochemical Survey	12
Soil Sampling	
PROGRAM EXPENDITURES	17
RECOMMENDATIONS	
Stage 1 - Initial Work	18
REFERENCES	19
CERTIFICATE OF QUALIFICATIONS	20
List of Appendices	
APPENDIX A – 2004 Soil Sampling Program Results	attached

List of Figures

Figure 1:	Brett Property Location Map		3
Figure 2:	Brett Property Claim Map		4
Figure 3:	Brett Property Overview		5
Figure 4:	Soil Sample Block Locations		15
Figure 5:	2004 Soil Sample Gold Anomalies	1	6

2004 Brett #5 Ass	essment Renort	Brett Gold Prop	erty Vernon	British C	'olumbia
2007 DIGHT πJ 1133	Cooment report	Dick Gold Flop	city verileii,	Diffusii C	Olulliola

T	: 4	of 7	₋	1
•	ASU	OI I	ıan	ies

Table 1:	Property Work Summary	10
Table 2	Summary of 2004 Property Expenditures	17

vi

INTRODUCTION

This report summarizes the 2004 exploration work program on the Brett property. The work was completed by Mosquito Consolidated Gold Mines Ltd (operator) and Running Fox Resource Corp (JV Partner).

PROPERTY DISCRIPTION AND LOCATION

The Brett Property is comprised of five contiguous Modified Grid mineral claims totaling 82 claim units and covering an area of 2,050 hectares. The claims are all located in the Vernon Mining Division and are situated on NTS Map sheet 82L4E and B.C. Geographical System map sheet 082L.062 (Figure 1). The Property is centered at geographical coordinates of 50° 14′ 00″ North latitude; 119° 30′00″ West longitude with UTM coordinates of 5 567 660 N and 310 075 E in Zone 11.

The claims are registered to William Jefferies and Kyle McClay who holds the claims in trust for Mosquito Consolidated Gold Mines Ltd. The property was originally staked in 1983, since that time it has been held by several different companies. Brett 3 to 5 were staked as part of the 2004 exploration program. The details of the mineral claims that comprise the Property are set out in below:

Claim name	Tag. No.	<u>Tenure No.</u>	<u>Units</u>	Expiry date
Brett #1	87964	259182	15	July 16,2006
Brett #2	87963	259183	15	July 16,2006
Brett 3	243690	411181	20	June 9,2005
Brett 4	240937	411182	20	June 9,2005
Brett 5	246073	414736	12	Sept 9,2005

Under a February 2004 option agreement Running Fox Resources Corp. can earn a 50% interest in the property by spending \$500,000 on the property by end of February 2005.

The property is subject to a 2% net smelter royalty held by Vicore Mining Developments Ltd.

ACCESSABILITY, CLIMATE, LOCAL RESOURCES, AND INFRASTRUCTURE

The property is located approximately 29 kilometers West of Vernon in south-central British Columbia on the west side of Okanagan Lake. Vernon is approximately 400 km northeast of the city of Vancouver. Access to the property is via paved road around the north end of Okanagan Lake and down the west side of the lake to Whitman Creek (approx. 29 km). From there, gravel-logging road extends to the gate at the entrance to the claims, at kilometer 19.2. The main mine road into the property can be accessed by 2 wheel drive vehicle approximately three kilometers to the mine adit and is in excellent condition. Above the adit elevation a 4-wheel drive vehicle is recommended.

The property is situated immediately north of Whiteman Creek and is drained by several seasonally flowing streams bounded by relatively steep valley walls (figures 2 & 3). The topographic relief of the property ranges from 975 meters above sea level at Whiteman creek to 1830 meters at the northern boundary of the property. The area of greatest interest lies between elevations 1150 and 1300 meters on the Brett 1 claim. The property is situated on the south facing slope of the mountain and thus, the snow is normally melted by the end of April. The summers are warm and generally quite dry although summer showers frequently occur in late afternoon due to the mountain-type climate. The portion of the property located above 1025 meter elevation is forested with moderate to heavy stands of fir and pine, and light deciduous growth. Below 1025 meters, the air is cooler and moister, and this zone supports heavier undergrowth, with cedar trees common. Overburden thickness ranges from zero to 18 meters in depth.

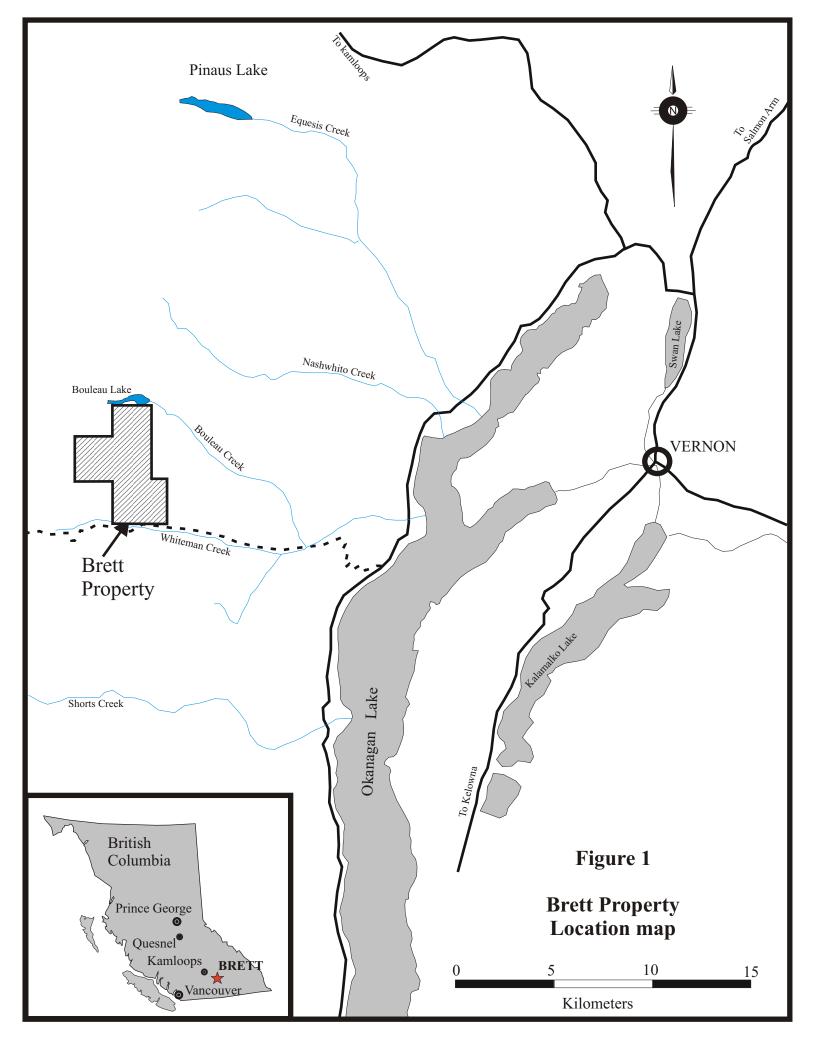


Figure 2: Brett Property: Claim Map

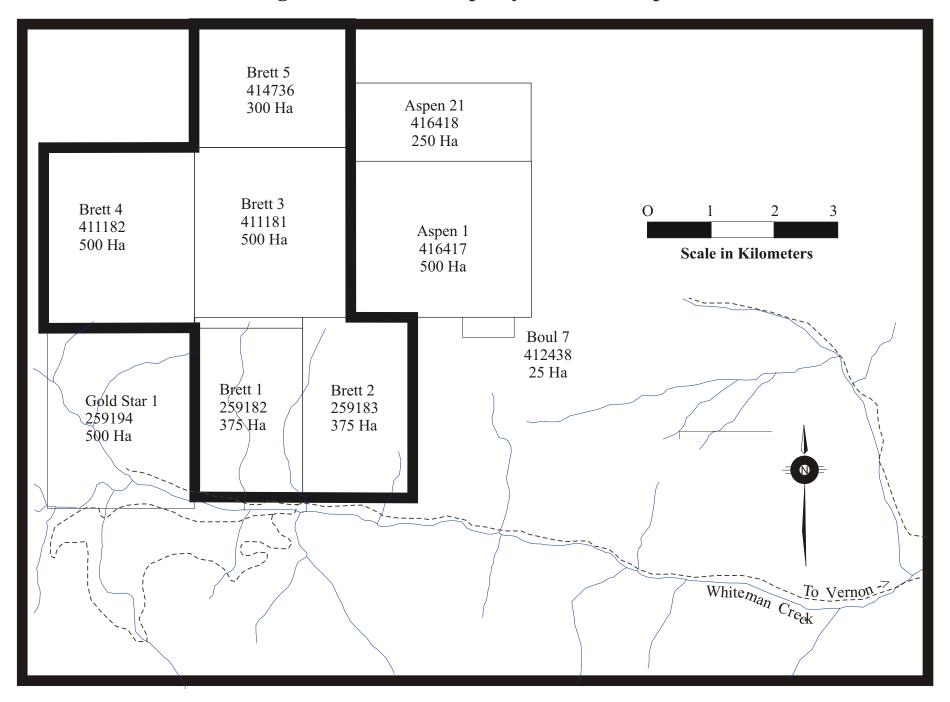
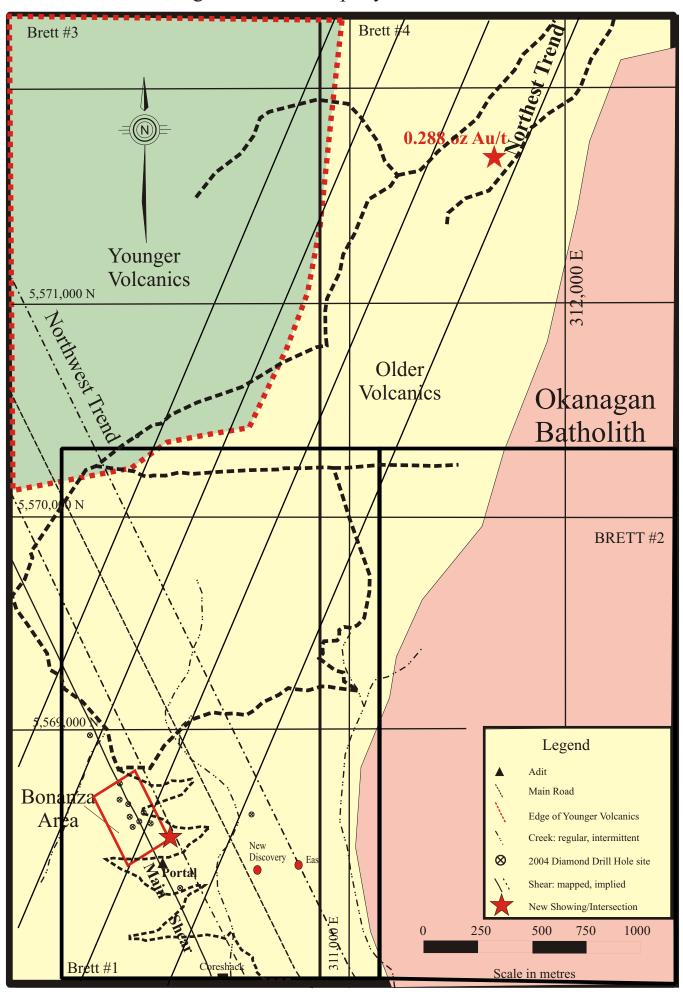



Figure 3 Brett Property Overview

HISTORY (modified from Robb, 2004)

Prior to 1939 no reports of significant lode discoveries have been found. However, minor placer gold was reported recovered from Whiteman Creek.

In 1939, A Vernon prospector discovered auriferous quartz veins in the Okanagan Batholith on what is now the Brett 2 claim, about one kilometer east of what is now termed the high-grade section of the Main Shear Zone. Assays of over one ounce gold per ton and several ounces of silver per ton were reported over a width of 0.3 meters (one foot) from these veins.

In 1983, Charles Brett encountered significant concentrations of angular gold while panning the subsidiary tributaries of Whiteman Creek and subsequently staked the present claim group, transferring the claim group to Huntington Resources Inc. the same year.

In 1985, detailed prospecting and sampling showed anomalous concentrations of gold in soils and scattered high-grade gold values in quartz float in the immediate area. A road constructed into the area uncovered a very strong, steeply dipping shear zone approximately 2 meters wide. This is now referred to as the Main Shear Zone. A significant quartz vein the RW Vein was also exposed during road construction. The vein strikes parallel to the Main Shear Zone approximately 15 meters to the West. A chip sample from the RW Vein assayed 62.9 gms Au/T over a width of 1.4m (1.84 oz Au/ton over 4.6 feet).

In 1986, sixteen NQ diamond drill holes totaling 795 meters (2,600 feet) were completed. Emphasis was on the "Main Shear Zone" and RW Vein resulting in approximately 100 meters of strike and 60 meters of vertical depth being explored. Drilling confirmed suspicions that the RW Vein was a splay vein off the Main Shear Zone. Gold values in individual samples ranging from trace to 13.7 gms Au/tonne (0.4 oz Au/ton) were intercepted in the shear zone, vein structure and hanging wall tuffs. A total of 25 significant intersections were identified during the program (Appendix 1, Table 1). For the purpose of this report a significant intersection is one that has a grade better than 0.6 gms Au/tonne (0.02 oz Au/ton) and/or has visible gold observed in the core or sample.

October 2005

In 1987, a joint venture, between Huntington Resources Inc. and Lancana Mining Corporation, completed thirty-two (32) NQ diamond drill holes totaling 2,900 meters (9,500 feet), of which twentyeight (28) were drilled along a 580 meter strike length of the Main Shear Zone. This drilling produced many significant gold intersections (Appendix 1, Table 1), of which the vast majority occurred along a 136m (450 foot) strike-length of the Main Shear Zone. Detailed geochemical sampling east of the Brett Creek yielded anomalous gold values in the "New Discovery Zone", a zone similar to the Main Shear Zone. Of note during 1987; two diamond drill holes completed on section 805 north intersected 5.25 meters of 25 gms Au/tonne (0.737 oz Au/ton,) including 1.60 m grading 78.42 gms Au/tonne (2.29 oz Au/ton) and 0.60 m grading 53.42 gms Au/tonne (1.56 oz Au/ton) in hole 87-29, and 0.9 meters of 33.6 gms Au/tonne (0.982 oz Au/ton,) including 0.30 m grading 82.19 gms Au/tonne (2.40 oz Au/ton) hole 87-47 and Hole 87-42 on section 510 north intersected 2.74 meters of 33.94 gms Au/tonne (0.991 oz Au/ton) individual assays for this interval were unavailable. Greunwald (1988) estimated an inferred resource of 171,600 tons with a high grade section of 11,550 tons grading in range 0.5 to 1.0 oz au/ton. Although the estimate appears reasonable it was prepared prior to the implementation of NI 43-101 and does not comply with the current 43-101 categories and standards for Mineral Resource or Reserves and is included for its historical context. The definition of the term inferred resource used by Greunwald is not included in the report and thus no comparison with 43-101 resource/reserve categories can be made.

In 1988, an exploration program consisting of 5,737.3m of diamond and 2834.7m of reverse circulation drilling was completed. One reverse circulation hole, RC88-11, which was drilled down dip on the Main Shear Zone intersected 69.6 gms Au/tonne (2.03 oz Au/ton) over an interval of 71.65 meters (235 feet). However, further drilling on this cross section failed to confirm the results and the large high grade intersection was attributed to inadvertent contamination of samples after the hole passed through two, narrower (3 to 5 meter) high grade intersections. Several other significant intersections were obtained from both the diamond and reverse circulation drilling (Appendix 1,Table 1). The drilling program continued into 1989.

In late 1991 the Beaton/Vicore Mining Contracting Group negotiated the mining rights to the property and Vicore commissioned Egil Livgard, P. Eng. to evaluate the high grade section of the property. Livgard (1992) estimated a drill-indicated mineral resource of some 12,000 tonnes averaging 39.4 gms Au/tonne (1.154 oz Au/ton). Livgard's parameters for calculating the resource included:

- blocks had to have a minimum width of 1.5 m, and an average grade of 0.400 oz Au/ton or greater
- blocks were defined halfway between drill intercepts or 10 meters which ever is less.
- Both diamond drill and Reverse Circulation intersections were used.
- Hole RC 88-11 was used as two narrower (3 to 5 meter) high grade intersections.
- High grade assays were not cut.

Although the estimate appears reasonable, it was prepared prior to the implementation of NI 43-101 and does not comply with the current 43-101 categories and standards for Mineral Resource or Reserves and is included for its historical context. The definition of the term drill-indicated resource used by Livgard is not included in the report and thus no comparison with 43-101 resource/reserve categories can be made. The Beaton/Vicore group was unable to raise financing for the project.

In 1993 an agreement was signed between Huntington and Liquid Gold Resources Ltd. and 24 trenches were excavated to bedrock and sampled along the Main Shear Zone. These were assayed and showed some areas of excellent potential. In November 1993, Liquid Gold drill nineteen reverse circulation drill holes on the RW Vein and Bonanza zones. Including the last hole RC93-19, which returned a significant intersection of 16.76m grading 35.79 gms Au/tonne (1.045 oz Au/ton) including 3.048 m grading 57.88 gms Au/tonne (1.69 oz Au/ton) and 4.57 m grading 107.88 gms Au/tonne (3.15 oz Au/ton) within the main shear zone. During the winter of 1993-1994, a new road was established to a portal site and buildings were installed at the site to support underground development. Underground development began in late November 1994 and continued until February 10,1995. Work completed consisted of 360 meters (1200 feet) of underground development.

During this period approximately 1400 tonnes grading four to five gms Au/tonne of mineralized development muck was stockpiled. However Huntington terminated the agreement with Liquid Gold, and shortly thereafter Vicore Mining Developments Ltd. placed a lien against the property due to unpaid bills.

In 1995 and 1996, Huntington Resources Inc excavated pits, over a 115 meter length of the RW Vein, and a 55 meter length of the Main Shear Zone. This produced approximately 291 tonnes of ore, which was shipped to the Cominco smelter at Trail for processing. The values recovered by the smelter averaged 27.74 gms Au/tonne and 63.7 gms Ag /tonne. In addition a 54 meter bypass drift was

constructed around the previous drift which had caved due to close proximity to the Main Shear, later approximately 45 meters of raising and sub-level drifting was completed. Vileneuve (1997) calculated a mineral inventory of 7,092 tonnes grading 30.14 gms Au/tonne (7,809 tons grading 0.880 oz Au/ton) for a small area around the main drilling. Vileneuve's parameters Included:

- Block dimensions were either 33m or 14m in length, 13 or 16 meters in height and ranged between 1.5 to 3.4 m thickness
- Specific Gravity of 2.6 for all blocks
- No lower cutoff was used and high grade assays were not cut

Although the estimate appears reasonable, it was prepared prior to the implementation of NI 43-101 and does not comply with the current 43-101 categories and standards for Mineral Resources or Reserves and is included for its historical context. The definition of the term mineral inventory used by Vileneuve is not included in the report and thus no comparison with 43-101 resource/reserve categories can be made.

He recommended that this should be examined using the new underground access.

The lien which Vicore Mine Development Ltd. placed against the property went to court in Mid 1998 and in December 1998, Vicore was awarded a 100% interest in the Brett property.

In 2001, Vicore conducted a small soil geochemical survey for assessment purposes. Several anomalous areas were identified for molybdenum, copper, lead and nickel. Gold anomalies were not detected due to the analytical technique used. The detection limit of 2 ppm (2,000 ppb) is an order of magnitude higher than previous surveys (anomalies identified as greater than 75 ppb). So it is very unlikely that any anomalies would be detected.

In February, 2004 Mosquito optioned a 50% interest in the Property to Running Fox Resources Ltd., in return for a \$500,000 expenditure on the property. Over \$500,000 was spent on the property and Running Fox has earned its 50% interest.

Table 1: Property Work Summary

	Di	amond Drill	ling		RC Drilling	9	Underg	round wo	rk
Year	# Holes	meters	feet	#holes	meters	feet	Туре	meters	feet
1984-1985									
1986	16	795.0	2,608.3						
1987	32	2,864.5	9,398.0						
1988	26	2,799.0	9,183.0	34.0	2,834.7	9,300.2			
1989	24	3,576.2	11,733.0						
1993				19.0	659.9	2,165.0	Drift/raise	360.0	1181.1
1996							bypass/raise	99.1	325.0
1999									
2001									
Total	98	10,034.7	32,922.3	53.0	2834.7	9,300.2		459.1	1506.1

Estimated total expenditures on the property to date are between \$3.5 and \$4.0 million dollars.

GEOLOGY SETTING

Regional Geology

The Brett Property is located in the eastern intermontane belt of the Canadian Cordillera. Geological mapping conducted by the Geological Survey of Canada and the British Columbia Geological Survey indicate this area west of the north end of Okanagan Lake is covered by thick sequences of Tertiary (Eocene) volcanic rocks with minor volcanicalstic sedimentary units. Beneath the Tertiary cover tightly folded volcanics and sediments of the Upper Paleozoic to Lower Mesozoic age (Nicola and Harper Ranch Groups) are intruded by rocks of the Mesozoic Okanagan Batholith.

Property Geology

The oldest formations within the claim group consist of Jurassic or Cretaceous granite rocks of the Okanagan Batholith, which cover the eastern half of the property. Overlying this formation on the western half of the claim group is a thick (500m) sequence of nearly flat lying Tertiary (Eocene) volcanics, in which all significant gold showings have been found to date. Amygdaloidal andesite makes up the largest proportion of the sequence, with lesser flows of basalt up to twenty meters thick,

plus several identified tuffaceous horizons ranging in thickness from two to forty meters. The andesite apparently contains up to 5% pyrite, while the basalt rarely contains more than two percent. Drilling at the north end of the property has revealed the presence of an intensely altered volcanosedimentary tuff unit with irregular beds of altered shale, chert and other chemical sediments. Overlying this unit is a thick sequence of massive, porphyritic andesite to basalt flows (?) that mark a younger series of volcanics (Miocene). Surface examination of the few outcrops to the north indicate that this younger volcanic sequence covers the western half of the property and caps the main gold bearing volcanic sequence. Work to the northeast of the property confirms the continuation of the older volcanic assemblages for at least 3 km (figure 3)

Numerous northwest striking, steeply dipping shear zones occur on the Brett claims. These vary in width from a few centimeters to several meters. The Main Shear Zone is the most significant shear zone identified to date, it is a zone that ranges from 1 to 10 meters wide, has been traced for over 1300 meters in strike length and has a slip-dip vertical displacement estimated at forty meters. In 2004 a second series of shears was identified striking northeast and dipping steeply south. Although observed discontinuously they have been traced over 4 km and appear to have an important relationship with the localization of mineralization (figure 3). Unlike previous postulations, it was determined during the 2004 drill program that the northwest striking shear zones (or faults) are not the main conduits for the epithermal gold-bearing solutions. Numerous intersections in the drill holes and observation on surface indicate several areas within the Main Shear that are barren and unaltered. The actual conduits remain undefined, however the discovery of a completely different set of shears may indicate that the intersection between the two shear trends may have some control over the distribution of the high grade gold values. On surface, the shear zones consist of yellowish to grey-brown gouge, limonitic fracturing and intense "soaking" are often evident in the andesite tuff sequences near surface and adjacent to these shear zones. The alteration consists of bleaching and is often accompanied by silicification. In the Main Shear Zone, the gouge often contains angular, highly auriferous quartz fragments displaying drusy, banded (epithermal) textures, which appear to be broken up remnants of pre-existing veins. In some instances, quartz veinlets and stockworks extend laterally into the wall rock for several meters. Splay veins off the Main Shear Zone (such as the RW Vein) also occur. The presence of gold mineralization along other northwest striking shears was confirmed by drilling on the shear discovered 45 m to the east of the Main Shear.

C 1 C 4 T 41	0 4 1 2005

A feldspar porphyry dyke swarm, parallel to the Main Shear Zone occurs throughout the area. Pinching, swelling and branching of these dykes are common. They often occur along the shear zones, at times completely eliminating traces of former shear zone contents and at other times leave gouge and earlier stage gold mineralization on either side of the dykes. Uncommon cases of intense bleaching, clay alteration and quartz veining observed in the dykes may be attributable to late stage hydrothermal activity (Gruenwald 1988).

2004 Geochemical Survey

The 2004 soil geochemical sampling program on the Brett #5 claim began on Sept 30, 2004 and lasted until October 15, 2004.

Soil Sampling

An extensive soil geochemical survey was completed to cover the area of the new claim (brett #5) extending the previous soils geochemical sampling approximately 1.1 km to the north. A total of 711 soil samples were collected at 25 meter intervals on lines 100m apart during the 2004 program. At each station, if possible, approximately 0.5 kilogram of B-horizon soil from depths of 15 to 20 centimeters was collected in a Kraft paper bag. Typically the B-horizon soil development was good except in areas of disturbance or outcrop exposure. Nearly all sites were able to sampled, with the exception of a few sites in flat areas were swamp head developed and there was not enough material to collected a representative sample. Sample line locations were adjusted as a result of completing a GPS survey of the various roads that cross cut the property. All lines crossing the roads were surveyed and plotted and samples taken between the survey points were equal spaced between the survey points. The result is a better understanding of where the samples are actually located. The sample locations can be found in Figure 4. All samples were shipped to Acme Laboratories in Vancouver. Acme reported that the samples were dried and sieved to recover an -80 mesh fraction sub sample. Approximately 0.50 grams of the sub sample was then leached with 3 milliliters of aqua regia diluted to 10 milliliters at 95 Degrees centigrade for one (1) hour and analyzed for 30 elements by inductively coupled plasma spectrometry (ICP). Copies of the analytical certificates are in Appendix D and the results are plotted in appendix D, figures D-1 to D-30. Duplicate analysis on random samples picked by the assay lab was automatically

C1: - C + I + 1	Oatahan 2005

done in order to determine variability between sample splits. Also the analytical laboratory included standards and blanks.

Results

Of all the elements analyzed gold was the only element showing consistent anomalous values covering large areas. A statistical Analysis of the results shows the following break down of gold values

< 5.0 ppb Au	Background
5.0 to 10.0 ppb Au	Weakly anomalous
10.1 to 25.0 ppb Au	Moderately anomalous
25.1 to 50.0 ppb Au	Highly anomalous
> 50.0 ppb Au	Extremely anomalous.

Gold values were contoured (figure 5) using these thresholds and plotted on the overall property map. The results divide the property into two distinct eastern and western halves. The eastern half is defined by numerous semi linear northwest and northeast trending anomalies with values as high as 800 ppb Au. The Western half is defined by a lack of anomalous values with the exception of a few isolated high values. Values within the northern claim (brett #5) are not as numerous as those in the southern block but still indicate significant potential. Examination of the geology reveals that the western half of the property is underlain by the younger volcanic sequence, which lies over what is interpreted as the gold bearing sequence. This would explain the scarcity of gold anomalies in soils covering the western part of the claim block. The estimated location of the contact between the two volcanic assemblages matches almost exactly the separation between the two areas outlined by the soil geochemical program. Duplicate analysis of the soils has revealed the presence of free gold in the soil samples due to large variations in sample splits. Despite the absence of outcrop exposure throughout the anomalous areas there appears to be an excellent correlation between the location of the gold bearing, lower volcanic, andesite sequence and the gold anomalies.

A good example is a grab sample grading 0.288 oz Au/ton across 1 meter, which was taken over one of the few bedrock exposures found in the northeast area within the Brett #5 claim area. The bedrock consisted of lower porphyritic andesite volcanic cut by several narrow quartz stockwork stringers. The soil sample taken a mere 2 meters away from this showing analyzed 41 ppb Au.

In addition to gold there was one interesting multi-element anomaly located at the north end of the claim block identified by elements arsenic, molybdenum, chromium, antimony and barite.

All elements are plotted on individual maps that can be found in appendix A. Below are some comments on the individual elements

Silver(Ag), Copper(Cu), Lead(Pb), Zinc(Zn)

Only isolated anomalous samples detected with non being of much significance at this time

Arsenic(As)

Interesting anomalous area to the extreme north of the property follows a northwest trend, no outcrop in area so source of this anomaly unknown, associated not with gold, but with Mo, Cr, Sb, Ba,. Also a minor anomalous area associated with gold located in the south part, ties in with highly anomalous gold samples taken in the same area.

Barium(Ba)

Scattered values with some anomalous areas located along the anomaly at the north end.

Molybdenum(Mo), Chromium(Cr), Antimony(Sb), Cobalt(Co).

Only values of interest in the extreme north anomalous area mentioned above. Other than that only scattered sporadic values

Remaining Elements

Remaining elements show sporadic isolated values, which appear to lack continuity and don't appear to be useful in delineating exploration targets.

FIGURE 4 2004 Soil Sample Block Locations

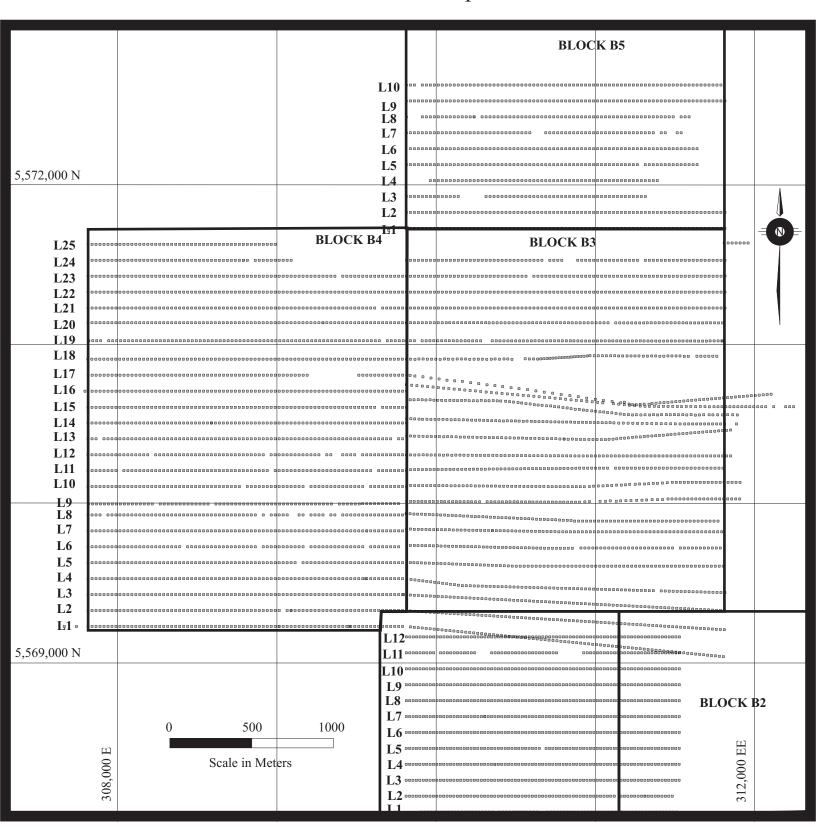
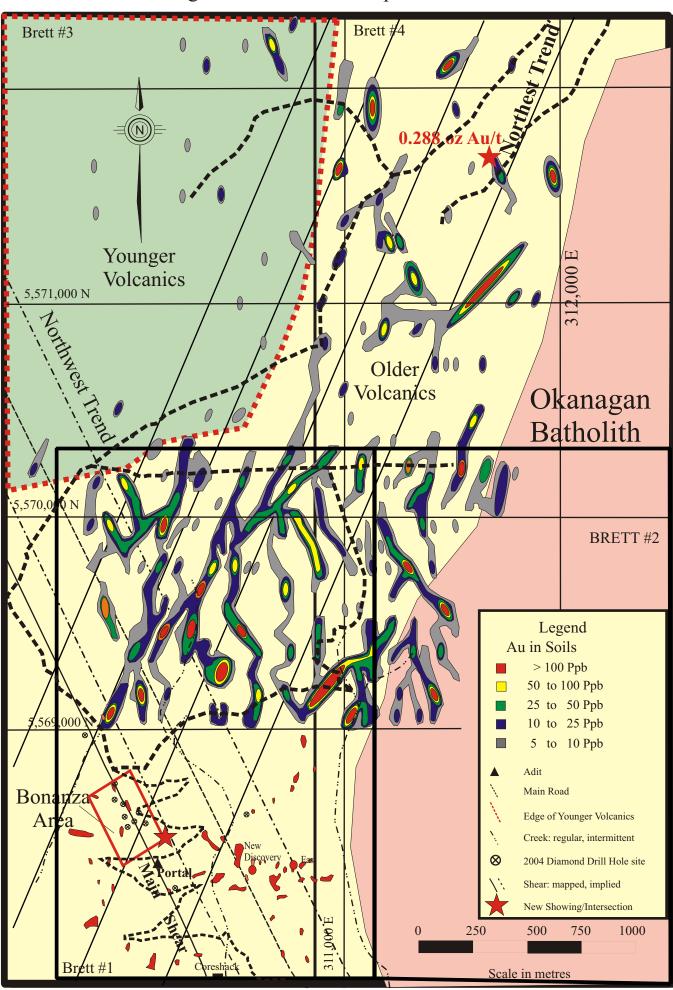



Figure 5 2004 Soil Sample Gold Anomalies

sub-category

638.00

256.00

800.00

\$

It is evident from the soil geochemistry that gold is the best element that can be used to define exploration targets, this matches the results of analyses from the drill core that show the main zone of interest to be defined by gold values with only sporadic values of silver and other elements. Arsenic locally may also give an indication of the presence of mineralization.

PROGRAM EXPENDITURES

A total of \$19,741 were spent on the property during 2004 exploration program. Table 2 gives a break down of expenditures for the property including all administration fees and equipment charges.

Table 2 Summary of 2004 Property Expenditures

category

Equipment rental truck \$ 500.00 Mobilization and demobilization \$ 650.00 food and accommodation \$ 650.00 assays 711 soils -varied costs \$ 12,847.00 Geology and supervision Shaun Dykes: supervision report writing. 1,000.00 Fred Harris - geologist 500.00 \$ George Krueckl - geologist \$ 200.00 contract labor soil samplers and core splitters 2 men – 17 days 1,700.00

Overall Total \$ 19,741.00

Note: above expenditures are for the northern claim brett#5 only and exclude money spent on remainder of the 2004 exploration program covered in separate assessment report

Supplies

Fuel

Report

Note: After first \$500,000 is spent by Running Fox Property becomes 50-50 joint venture

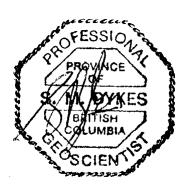
RECOMMENDATIONS

A Multi-stage approach to advance the property is recommended. The Brett #5 claim will be explored as part of the overall 2005 exploration program with the initial work as follows.

Stage 1 - Initial Work.

The initial stage should consist of road building, excavator trenching and geological mapping concentrating in the northern and northeast parts of the property.

- 1. New roads should be constructed to cut across the areas of gold soil anomalies to the north and northeast of the property.
- 2. Excavator trenching will be required to expose the bedrock in these anomalous areas. These trenches should be mapped and sampled.
- 3. Excavator trenching should also be completed in the area surrounding the 0.288 oz Au/ton grab sample in the extreme northeast of the property. It is also recommended that a continuous trench across the clear cut at the north end be completed to determine structure and geology in this area.
- 4. Detailed geological mapping of the entire property should be completed tying into the newly developed stratigraphy.
- 5. The main underground portal should be rehabilitated and level mapped and sample.


REFERENCES	
Ash, W.M. (1993)	Assessment Report on Phase one Development and Recommendations for Phase Two Development on the Brett Gold Project. Report for Liquid Gold Resources Inc.
Ash, W.M. (1999)	Assessment Work Report on work performed between July 15 and July 19,1999 on Brett #1 and Brett#2 claims for Vicore Mine Developments.
Dawson, J.M. (1983)	Report on the Brett Claims, Vernon M.D. Qualifying report to Huntington Resources Ltd.
Duba, D. (1988)	Geology of the Whiteman Creek Area. Mapping Project by Discovery Consultants for Brican Resources ltd., Chevron Minerals Ltd. And Corona Corporation.
Dykes, S.M. (2001)	Assessment Work Report on Work Performed Between July 10 and July 18, 2001 on the Brett #1 Claims.
Gruenwald, W. (1987)	Diamond Drilling report on the Brett Claims Assessment Report.
Gruenwald, W. (1988)	Report on the Brett property Exploration program. Joint venture Report, 1987, Huntington Resources Inc. and Lacana Mining Corp.
Gruenwald. W. and Walters, L. (1989)	Report on the Brett Property Exploration program. Joint venture Report, 1988, Huntington resources Inc. and Corona Corporation.
Gruenwald, W. (1989)	Exploration report on the Brett Property, Phase III Diamond Drilling for Huntington Resources Inc.
Livgard, E. (1992)	Report on the Brett Property for Beaton-Vicore Group.
Meyers, R.E. and Taylor, W.A (open file 1989)	Five Lode Gold and Silver Occurrences in the Okanagan Region, south Central British Columbia. MEMPR Geological Survey branch.
Robb, W. (2004),	TECHNICAL REPORT A Summary of the EXPLORATION PROGRAMS AND RESULTS On the BRETT GOLD PROPERTY VERNON, BRITISH COLUMBIA
Vileneuve, A.R. (1997)	Summary Report on the Brett Gold Project, Vernon M.D. for Huntington Resources Inc.
Wells,R.C. (1989)	Reports on Exploration, Phase 1 and II, 1989 for Huntington Resources Inc. and Corona Corporation.
Wells,R.C. (1995) Resources Inc.	Summary Report on the Brett property, Vernon M.D. for Huntington
Geologic Systems Ltd.	October 2005

CERTIFICATE OF QUALIFICATIONS

- I, Shaun M Dykes, resident of New Westminster, Province of British Columbia, hereby certify as follows:
 - 1) I am a consulting geologist with an office located at 514 East Columbia St., New Westminster, British Columbia.
 - I graduated with a degree of Bachelor of Science(engineering) in geology from Queen's University in 1976 and with a Master of Science(engineering) in geology from Queen's University in 1979 and have practiced my profession for 7 years on a seasonal and 24 years on a continuous basis and I am a "Qualified Person" under the terms and policies of National Instrument 43-101.
 - I am registered as Professional Geoscientist (No. 123245) by the Association of Professional Engineers and Geoscientists of British Columbia.
 - 4) This report, 2004 Exploration Program Summary Report, is based on examination of the available data and my experience working in exploration. I directly supervised the 2004 exploration program on the Brett project.
 - I am not aware of any material fact or material change with respect to the subject matter of the technical report, which is not reflected in the technical report, the omission to disclosure, which makes the technical report misleading.
 - I am currently a director of Mosquito Consolidated Gold Mines Ltd and the National Instrument 43-101 qualified person for the company. Mosquito is the operator of the joint venture with Running Fox Resources Ltd.
 - 7) The author has read National Instrument 43-101, "Standards Of Disclosure For Mineral Projects" and Form 43-101F1, and this report has been prepared in compliance with 43-101 and Form 43-101F, although it should be pointed out that the author although a professional in good standing is not independent of either Mosquito or Running Fox.
 - 8) Mosquito and/or Running Fox may use this report, or excerpts from it, for any legitimate corporate purposes, so long as the excerpts used do not detract from the meaning or purpose of this report as set out in the whole.

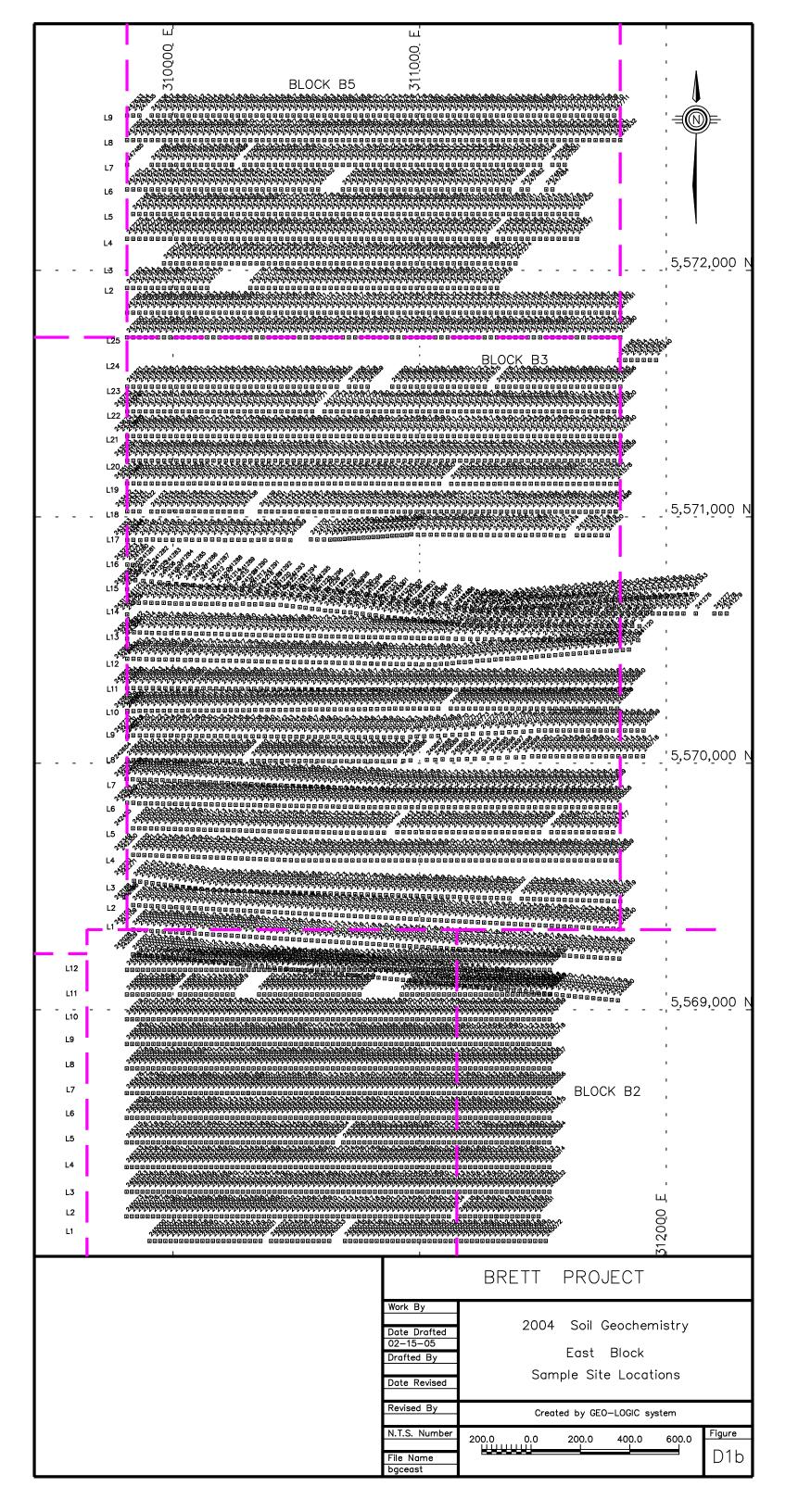
Dated at New Westminster, Province of British Columbia, this 5th day of October, 2005

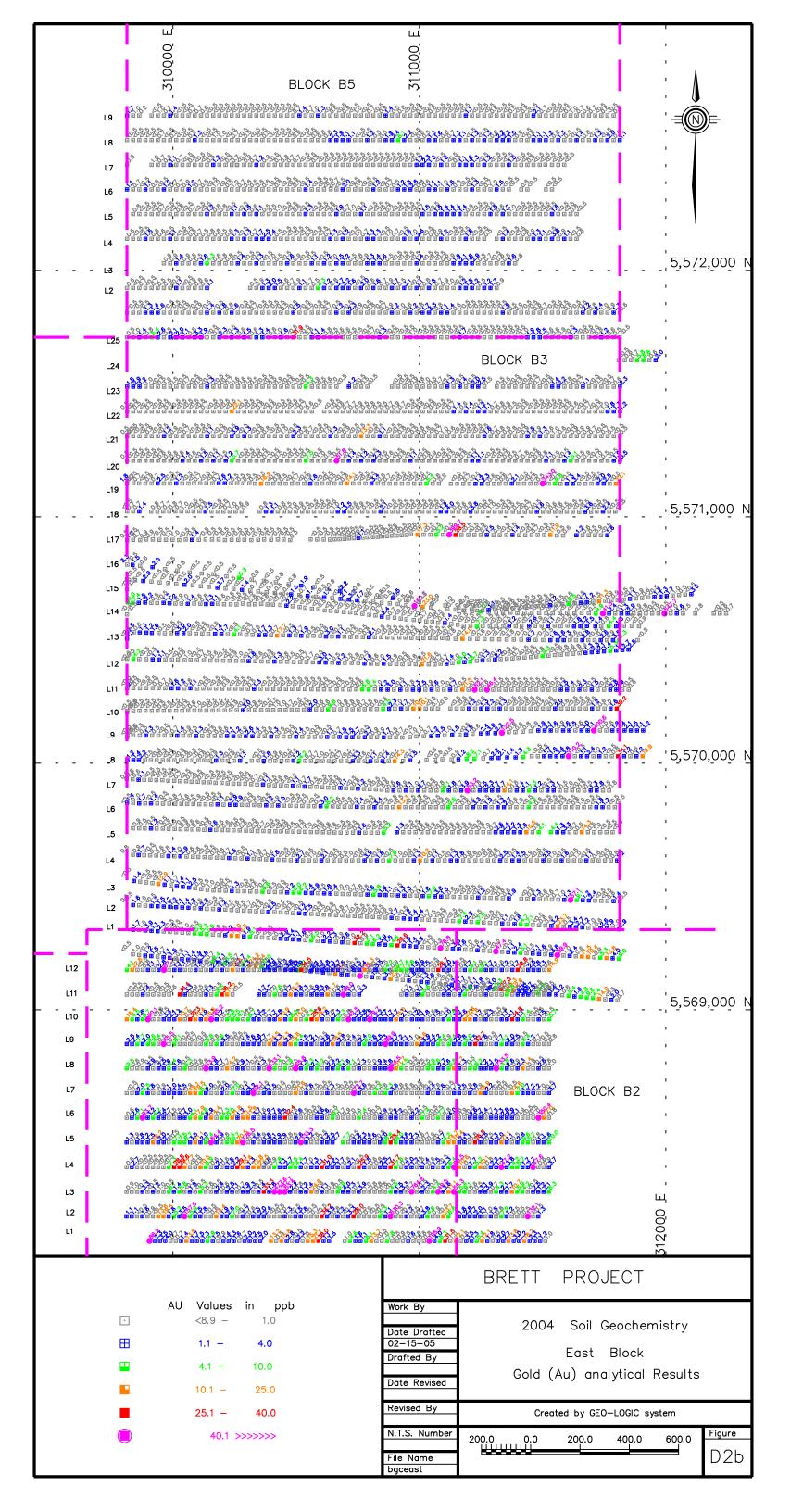
Shaun M. Dykes Shaun M Dykes, M.Sc(Eng), P. Geo Geologist

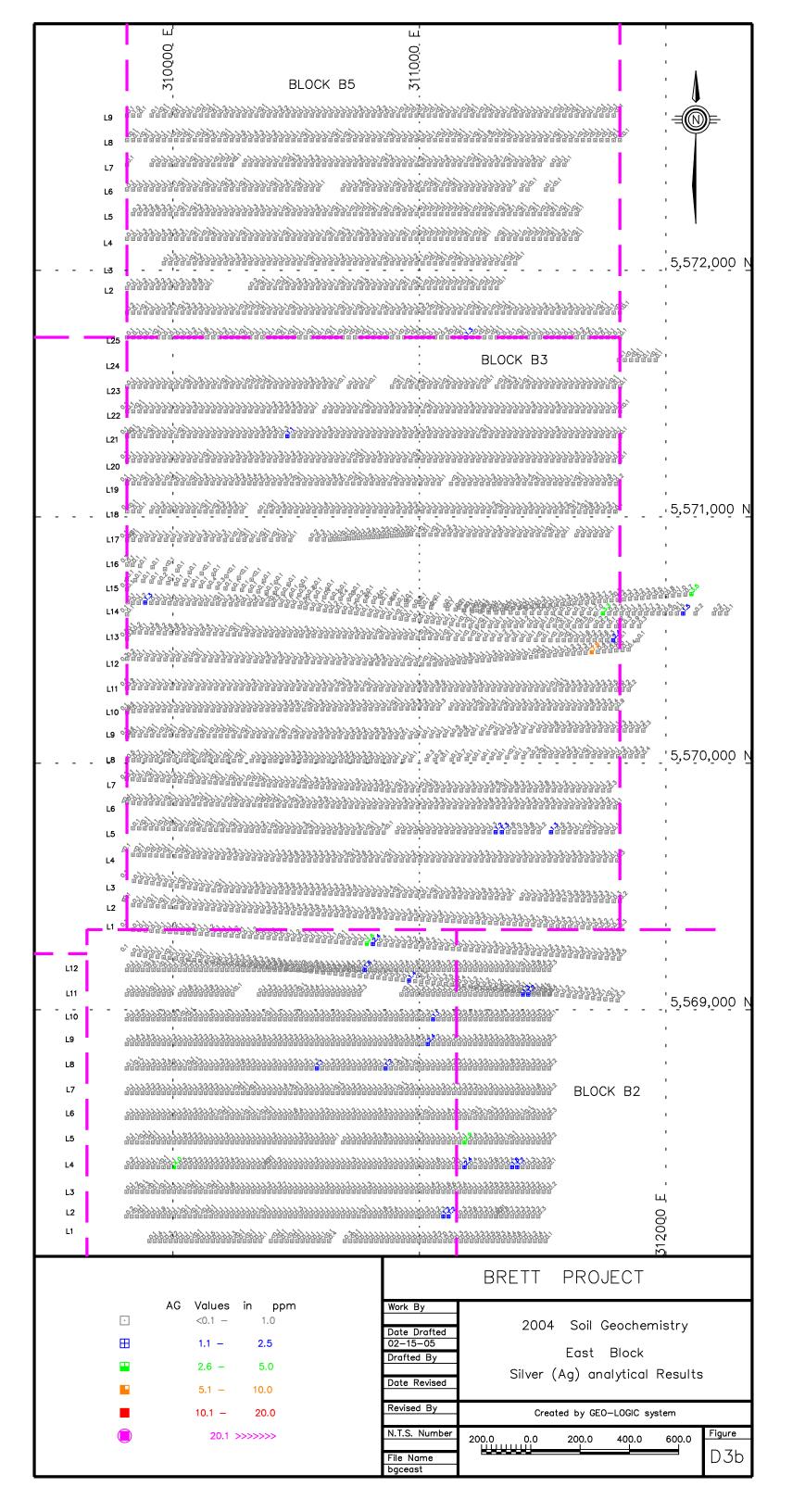
APPENDIX A - 2004 Soil Sampling Program Results for Brett #5

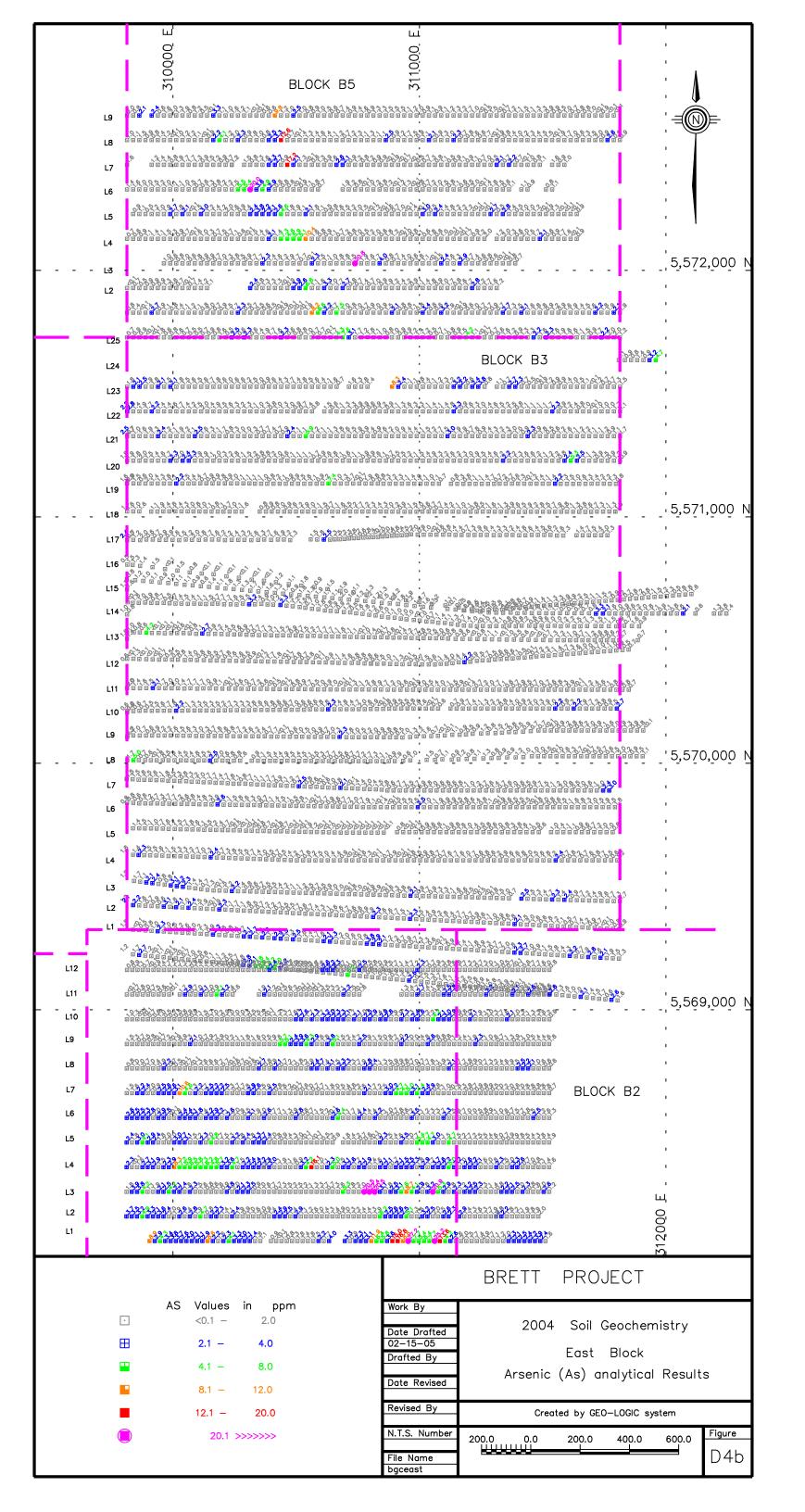
Note: on figures area covered by the report are identified as B5 on the north part of the soil geochemical grid.

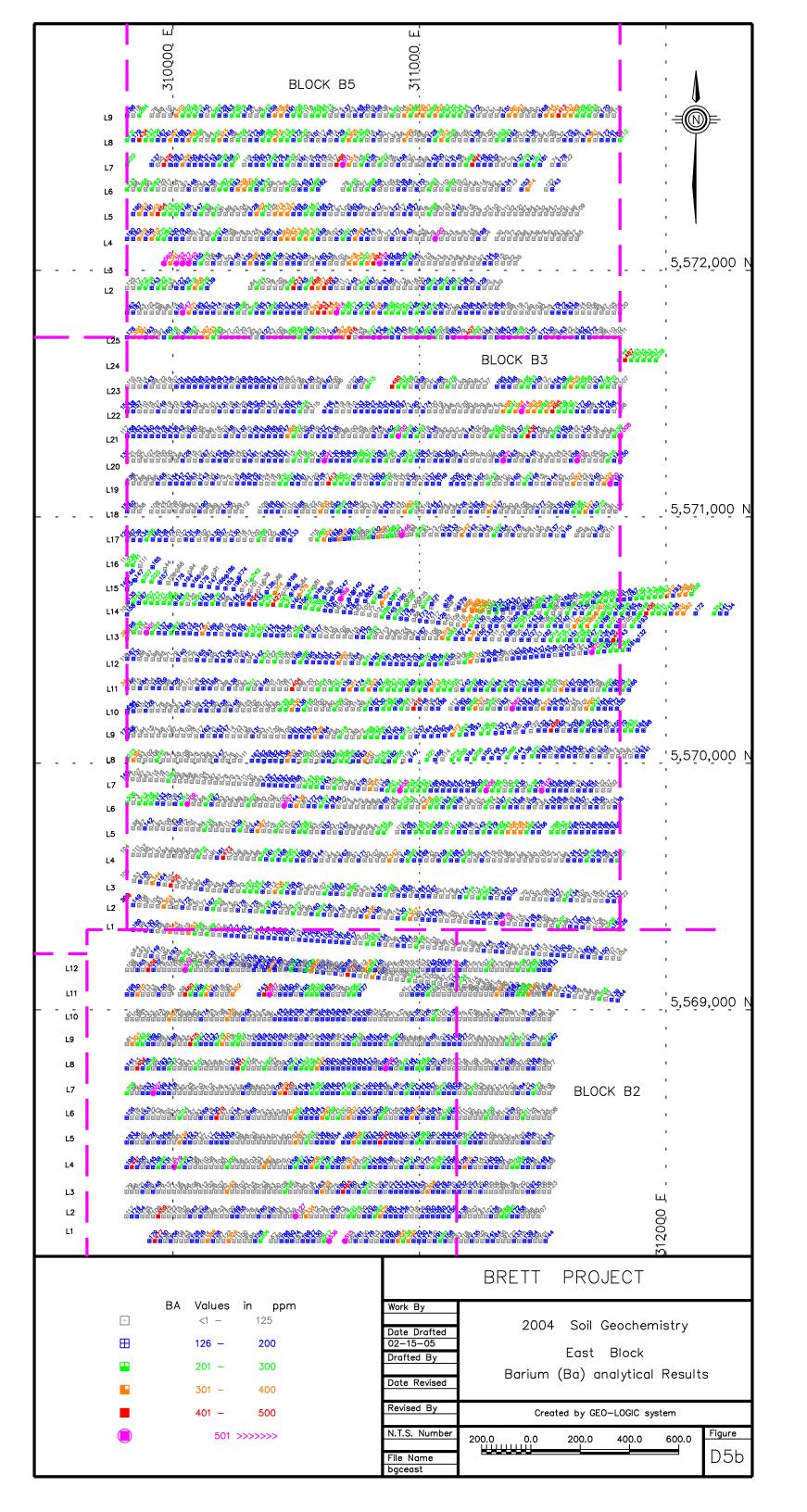
Soil sample Location Plan

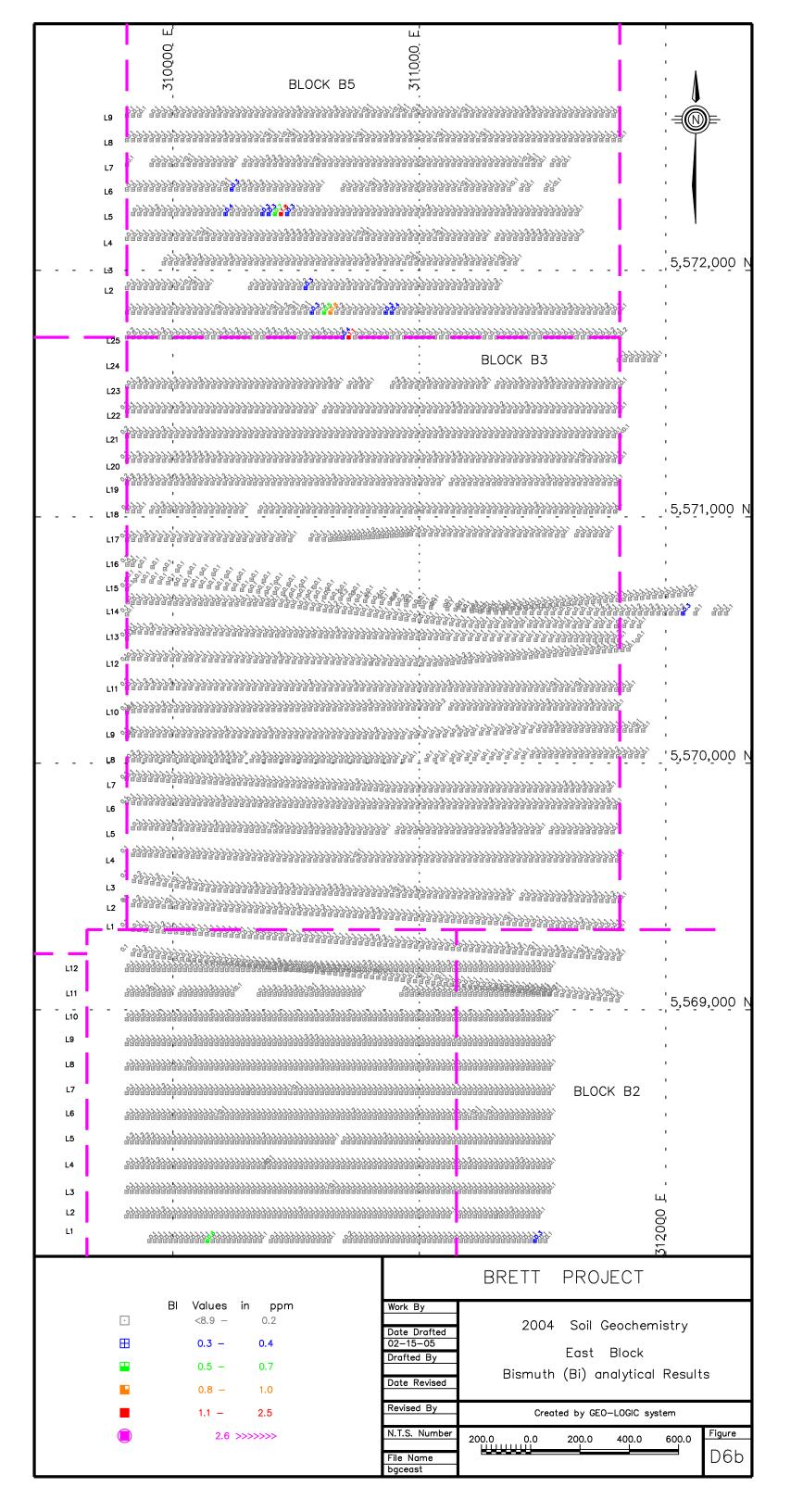

Soils sample elemental plots

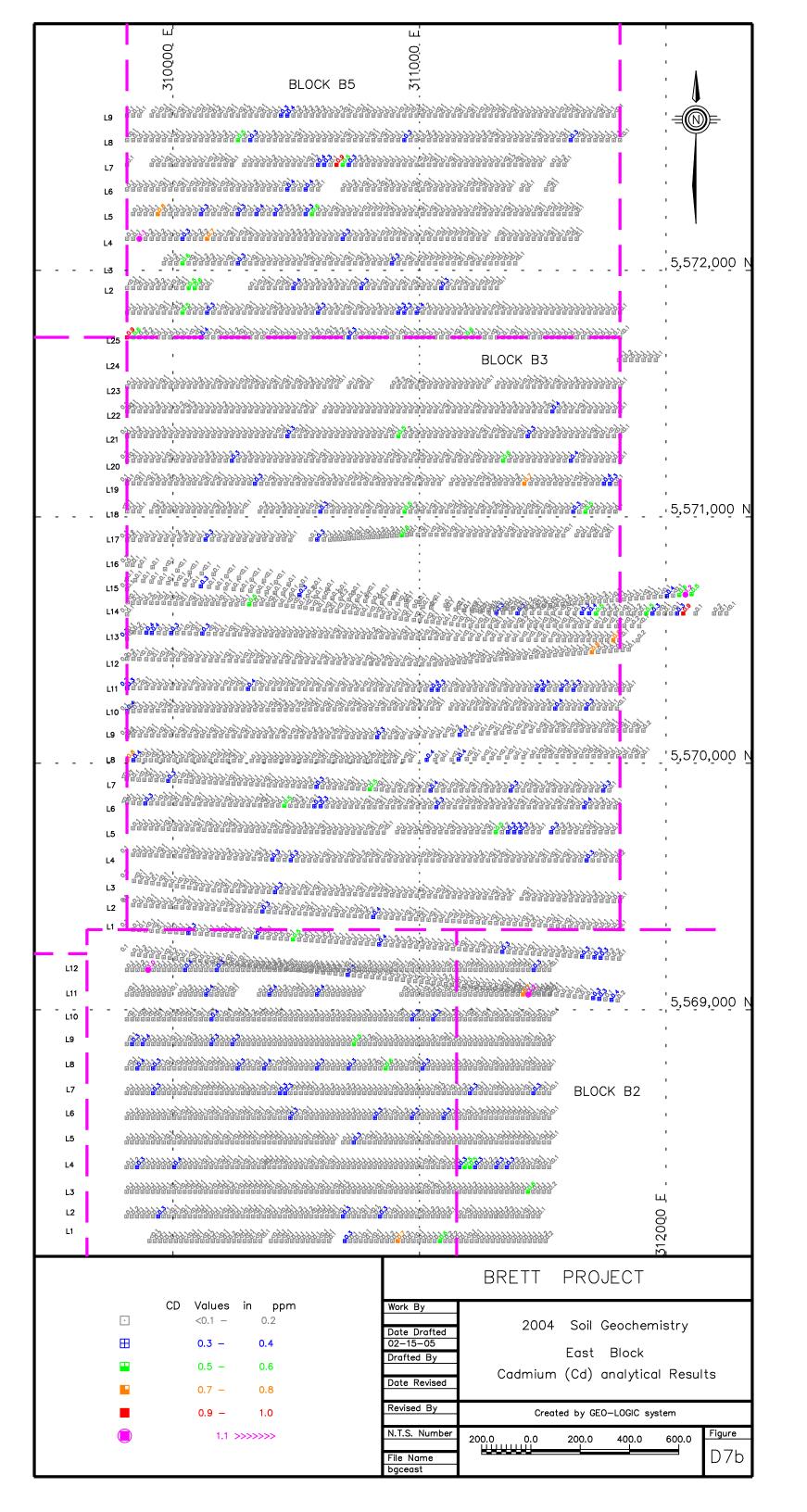

Soils sample analytical results

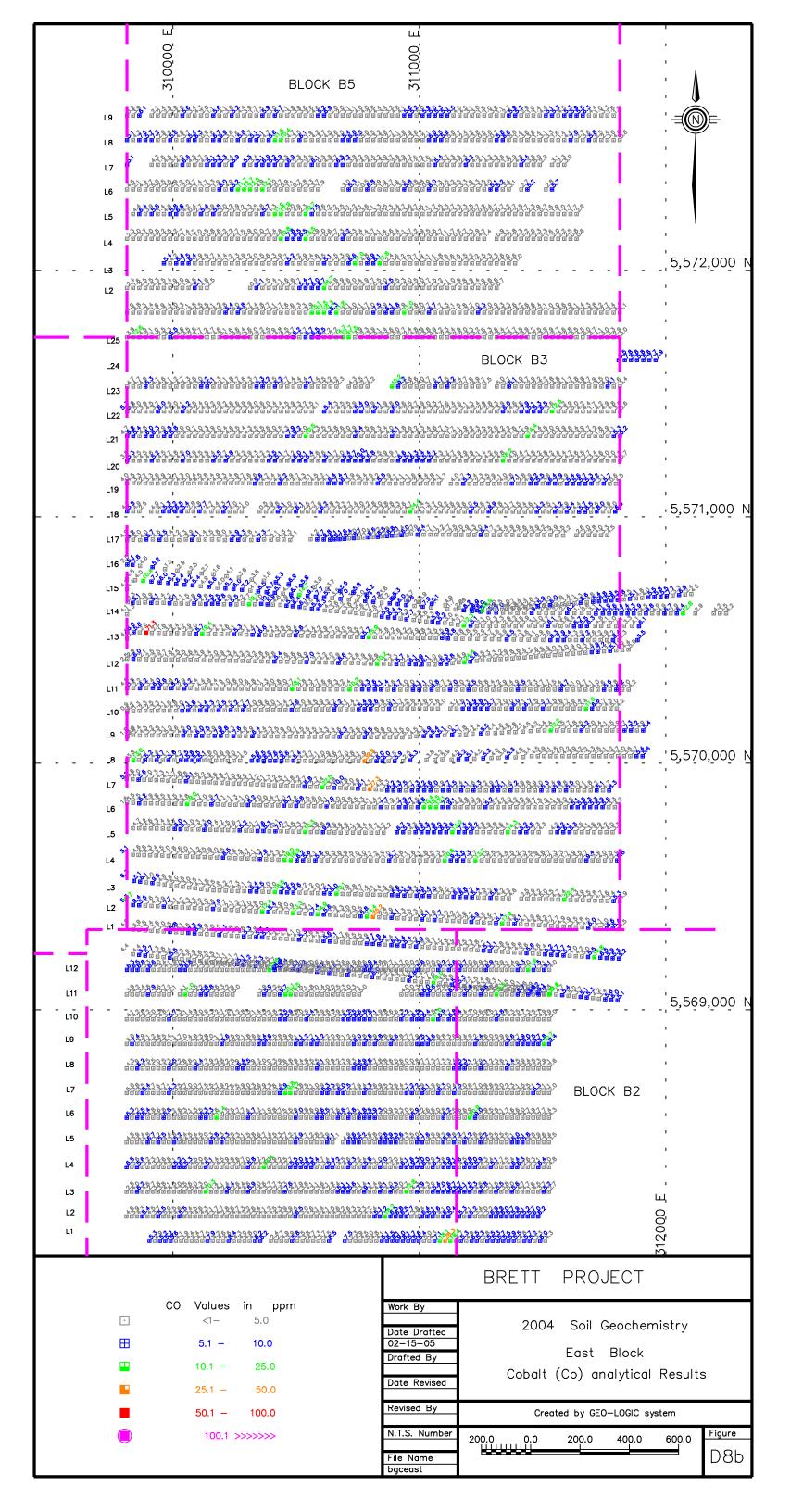

Appendix A 2004 Soil geochemical survey

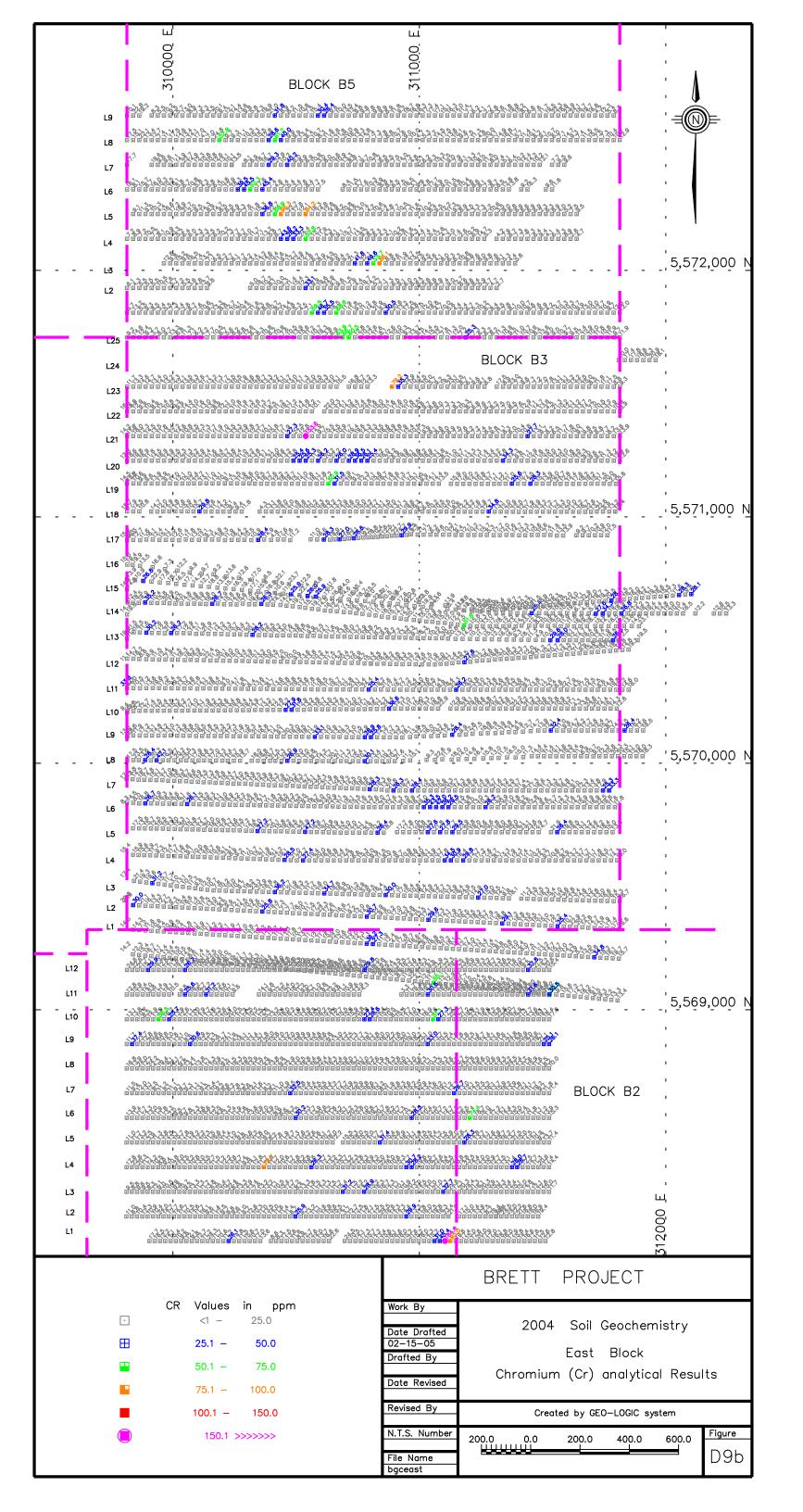

Part 1: Soil Sample Analytical Data Sheets

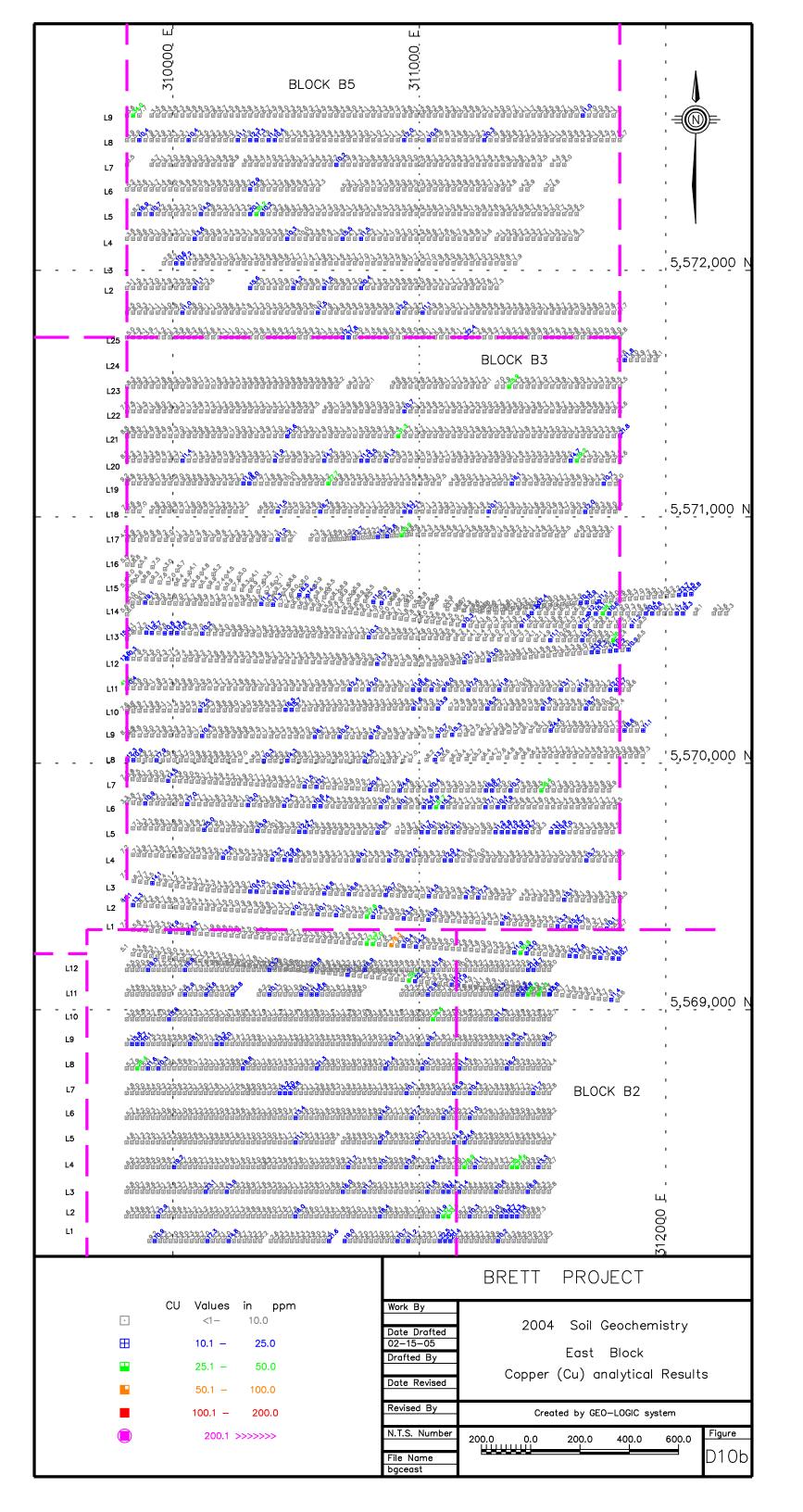

David O	Liot of Eigures
Рап 2	List of Figures
<u>Element</u>	East Block
	<u>figure</u>
Sample locations	D1B
Au	D2B
Ag	D3B
Al	NOT PLOTTED
As	D4B
Ва	D5B
Bi	D6B
Ca	NOT PLOTTED
Cd	D7B
Со	D8B
Cr	D9B
Cu	D10B
Fe	NOT PLOTTED
Ga	NOT PLOTTED
Hg	D11B
K	D12B
La	NOT PLOTTED
Mg	D13B
Mn	D14B
Мо	D15B
Na	D16B
Ni	D17B
Р	D18b
Pb	D19B
Sb	D20B
Sc	NOT PLOTTED
Sr	D21B
Th	D22B
Ti	D23B
TI	NOT PLOTTED
U	D24B
V	D25B
W	D26B
ZN	D27B

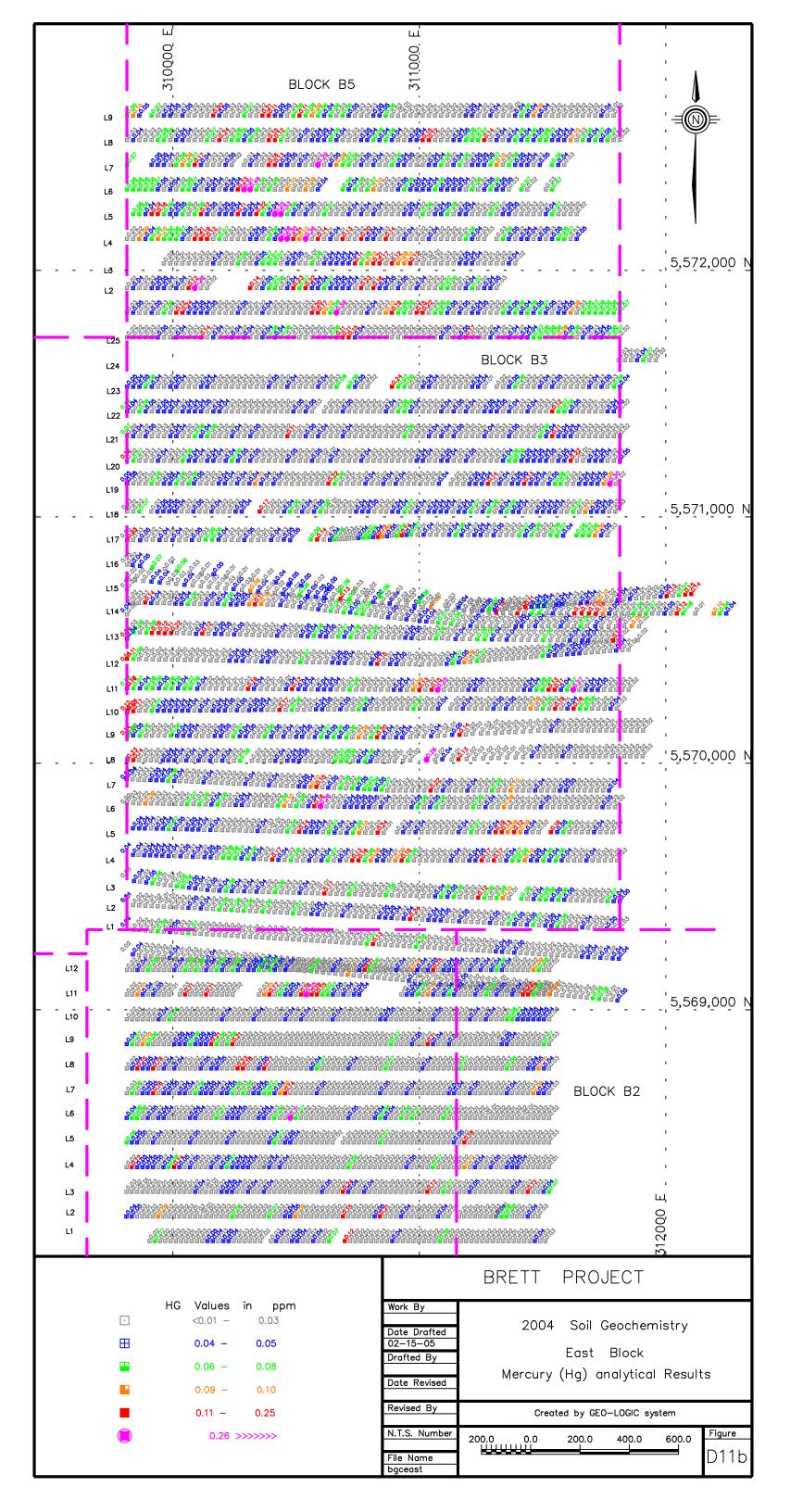


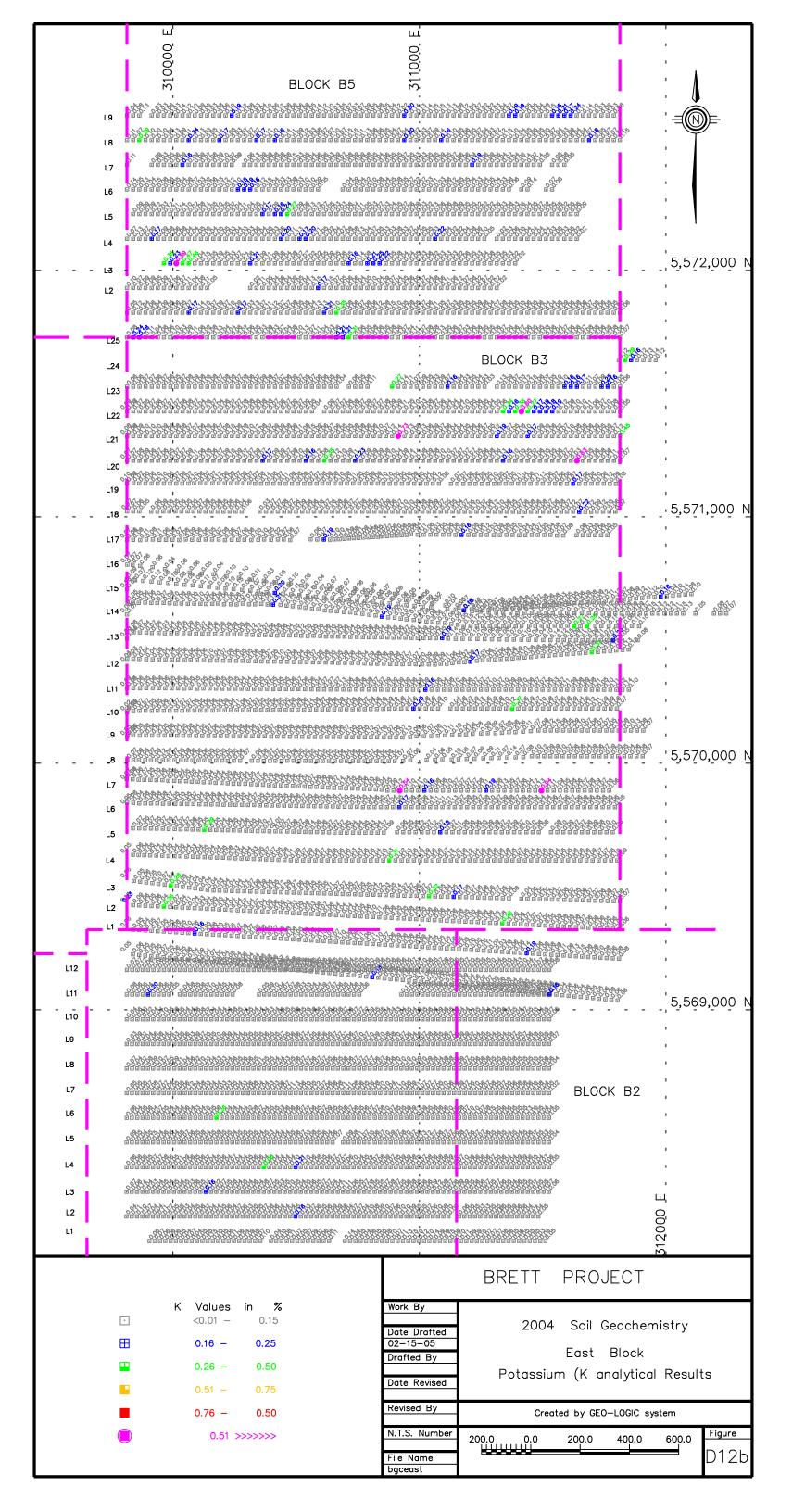


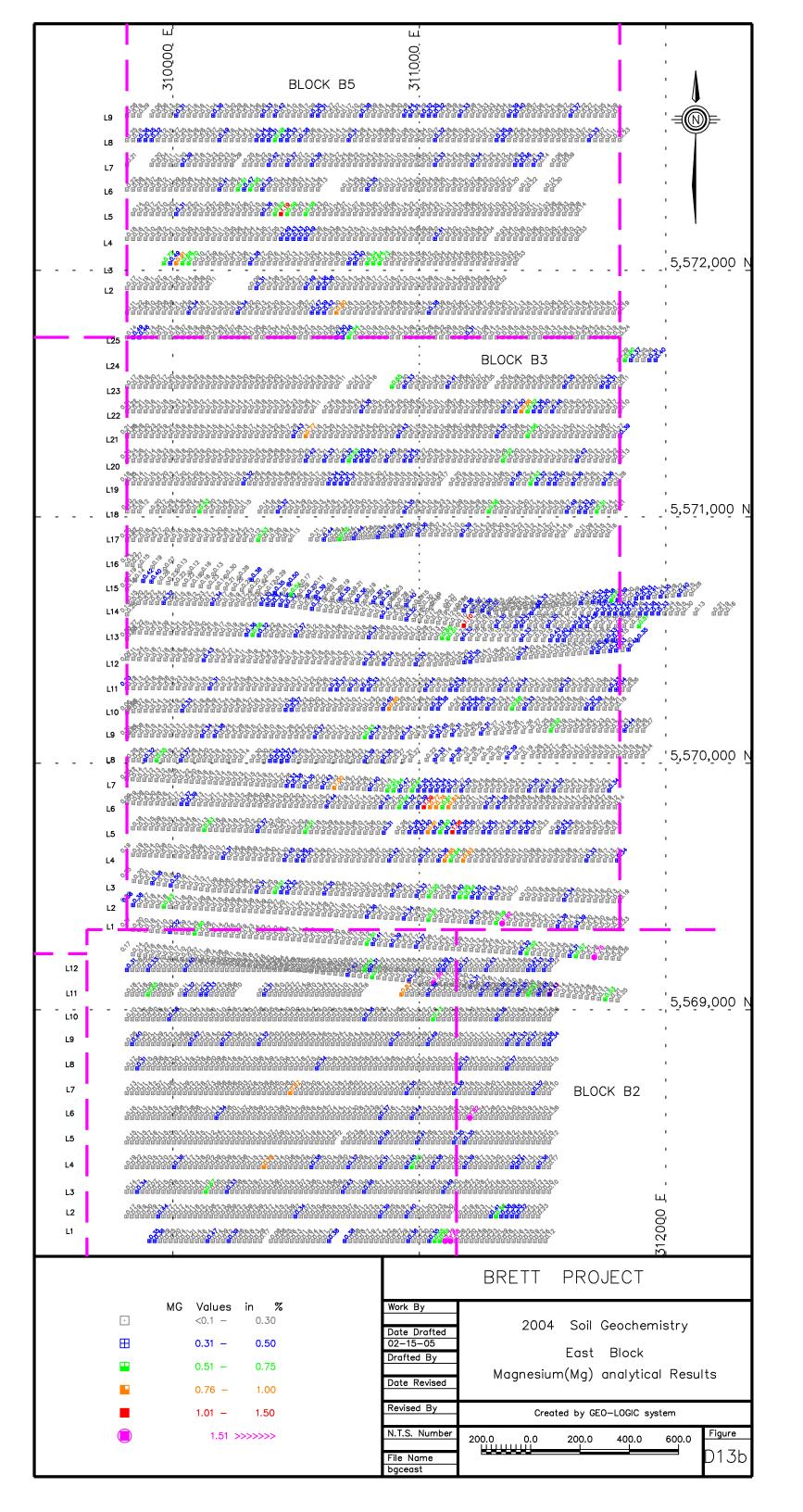


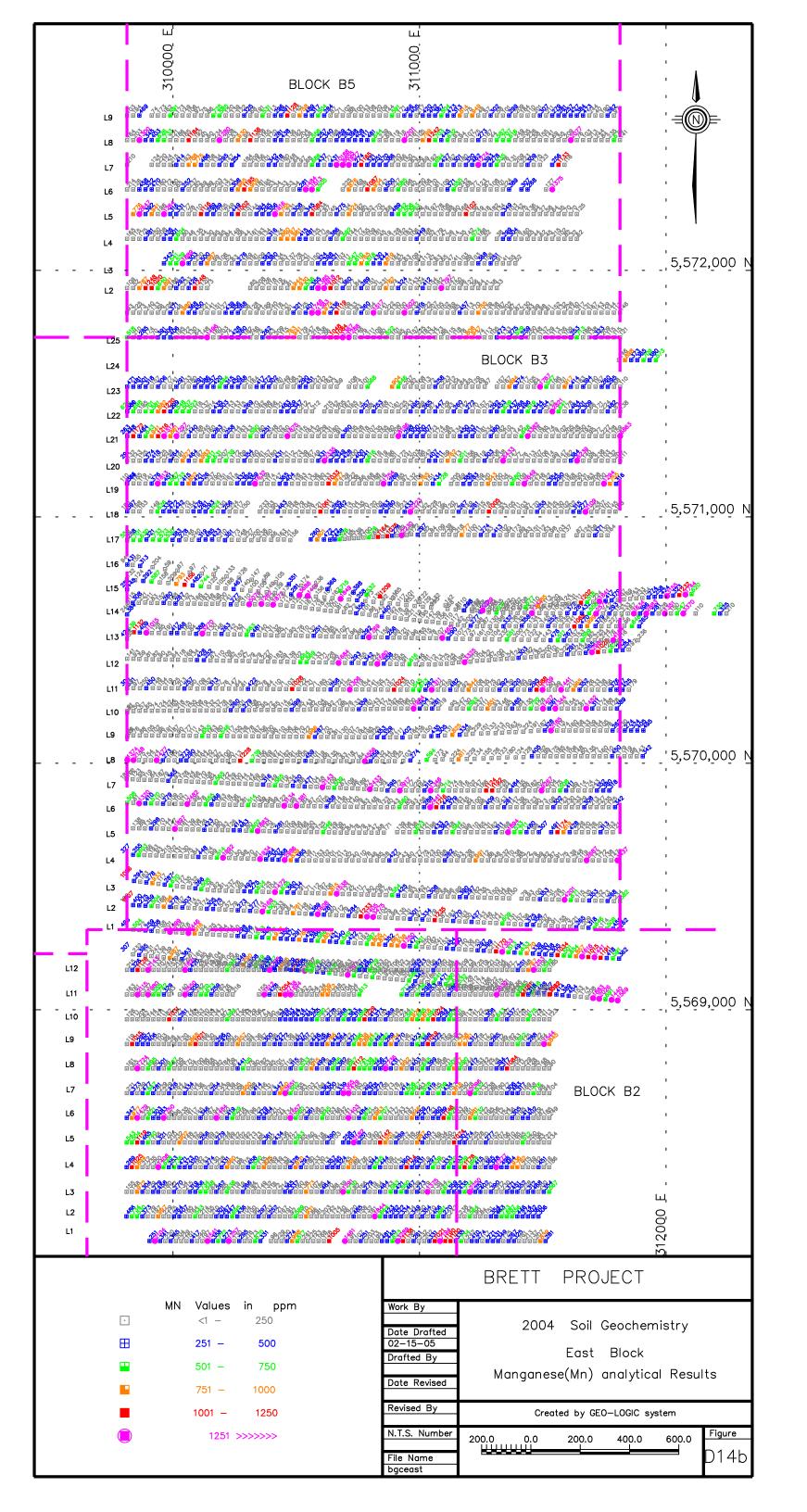


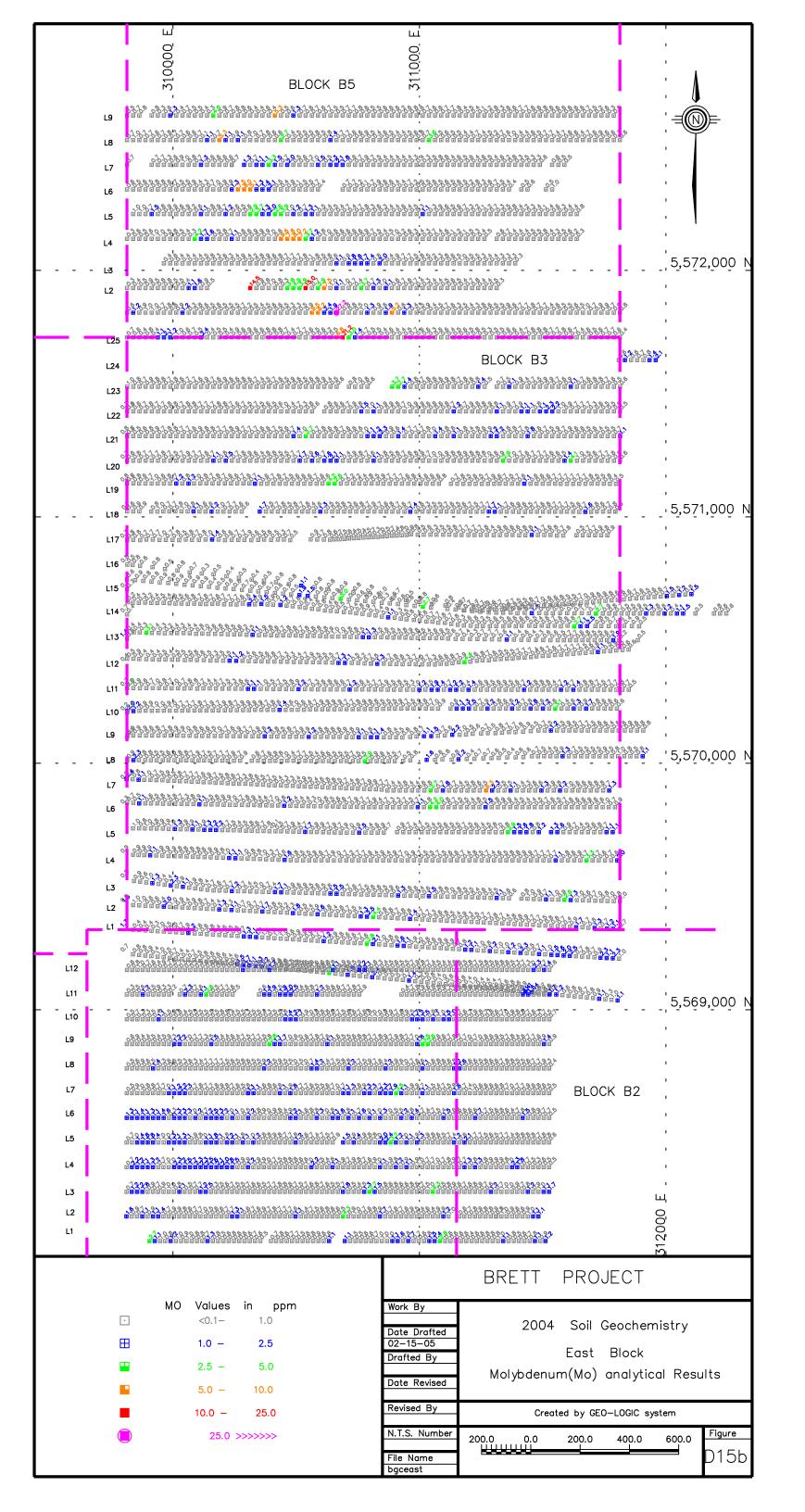


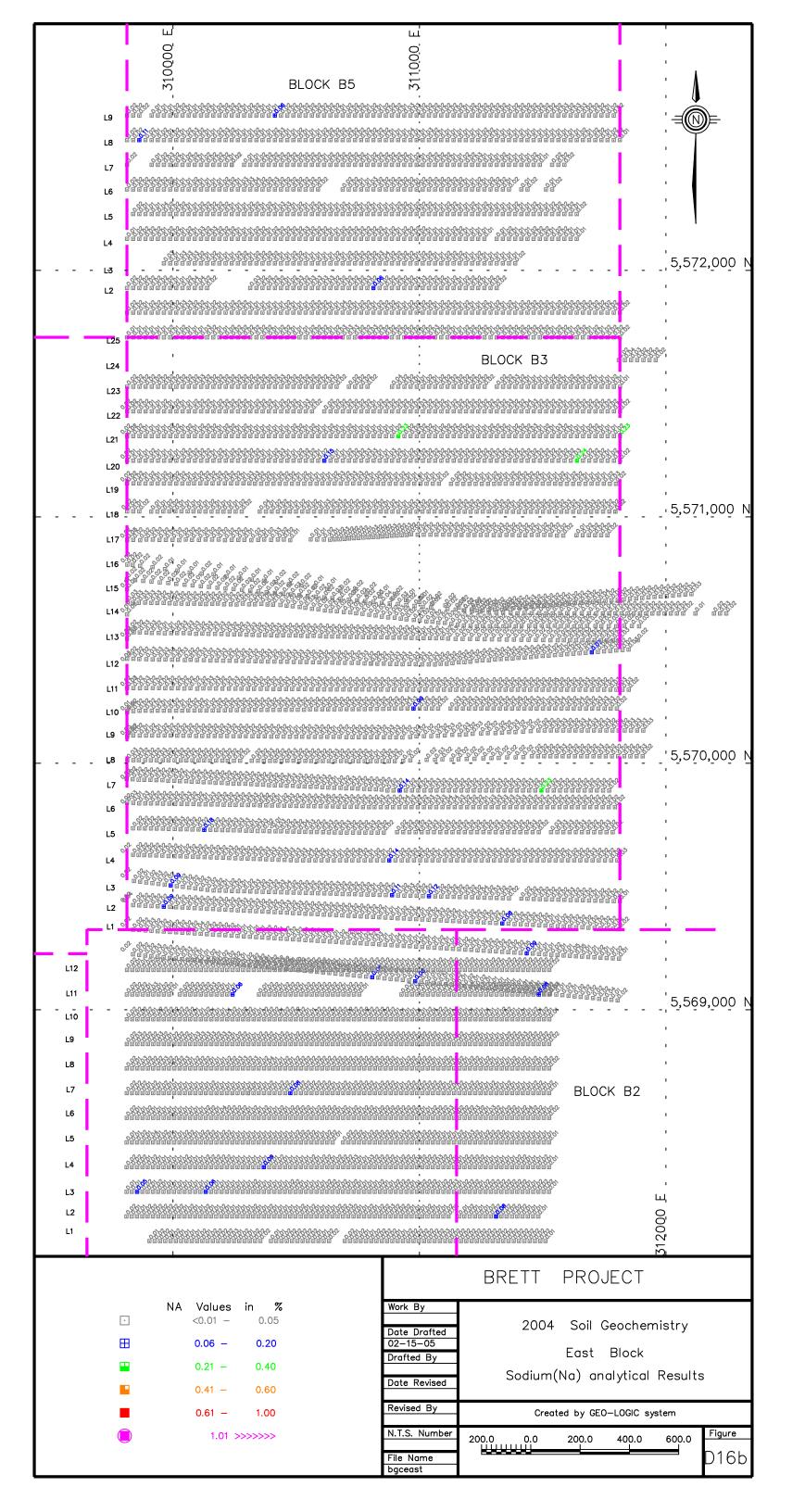


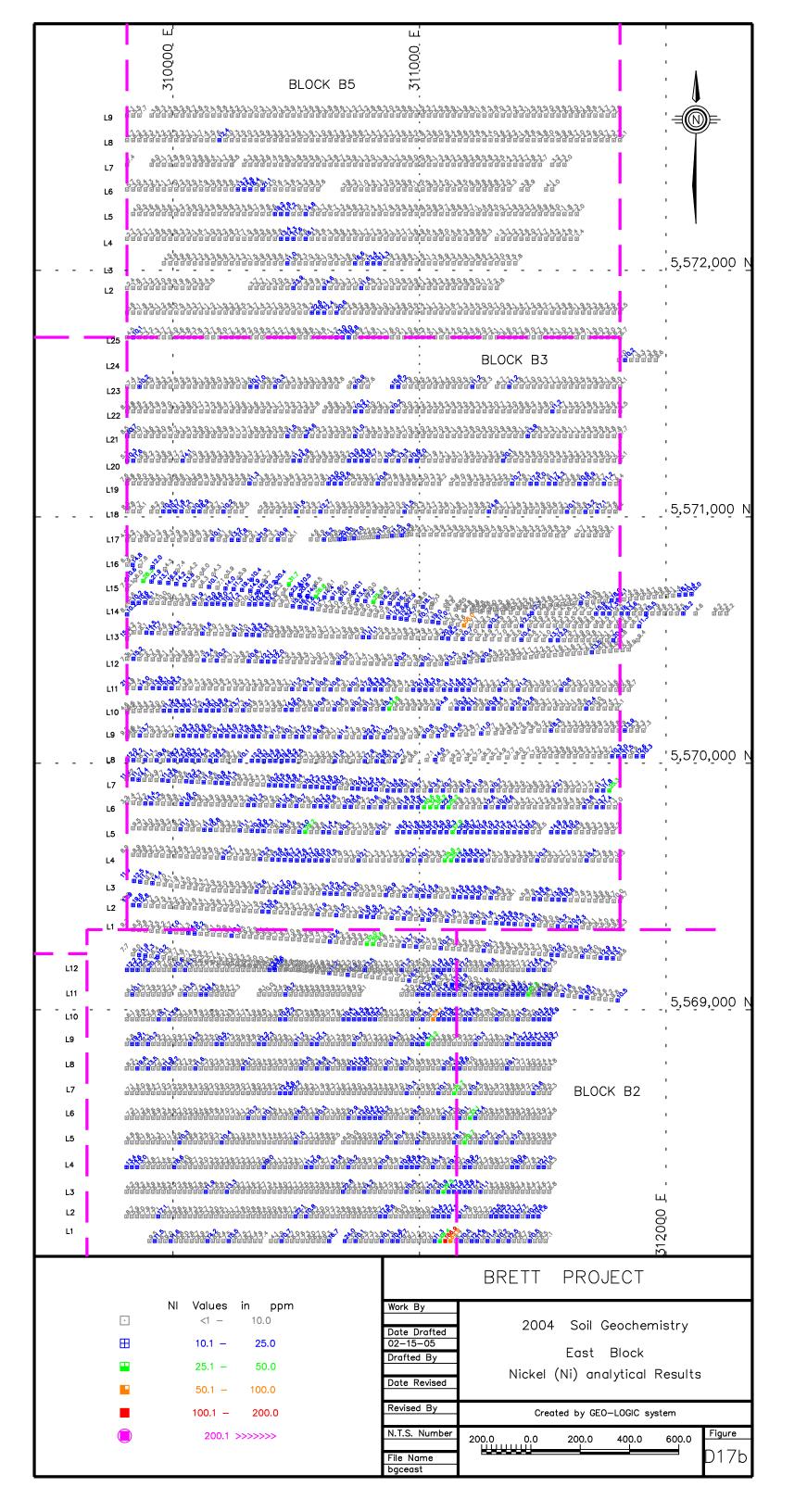


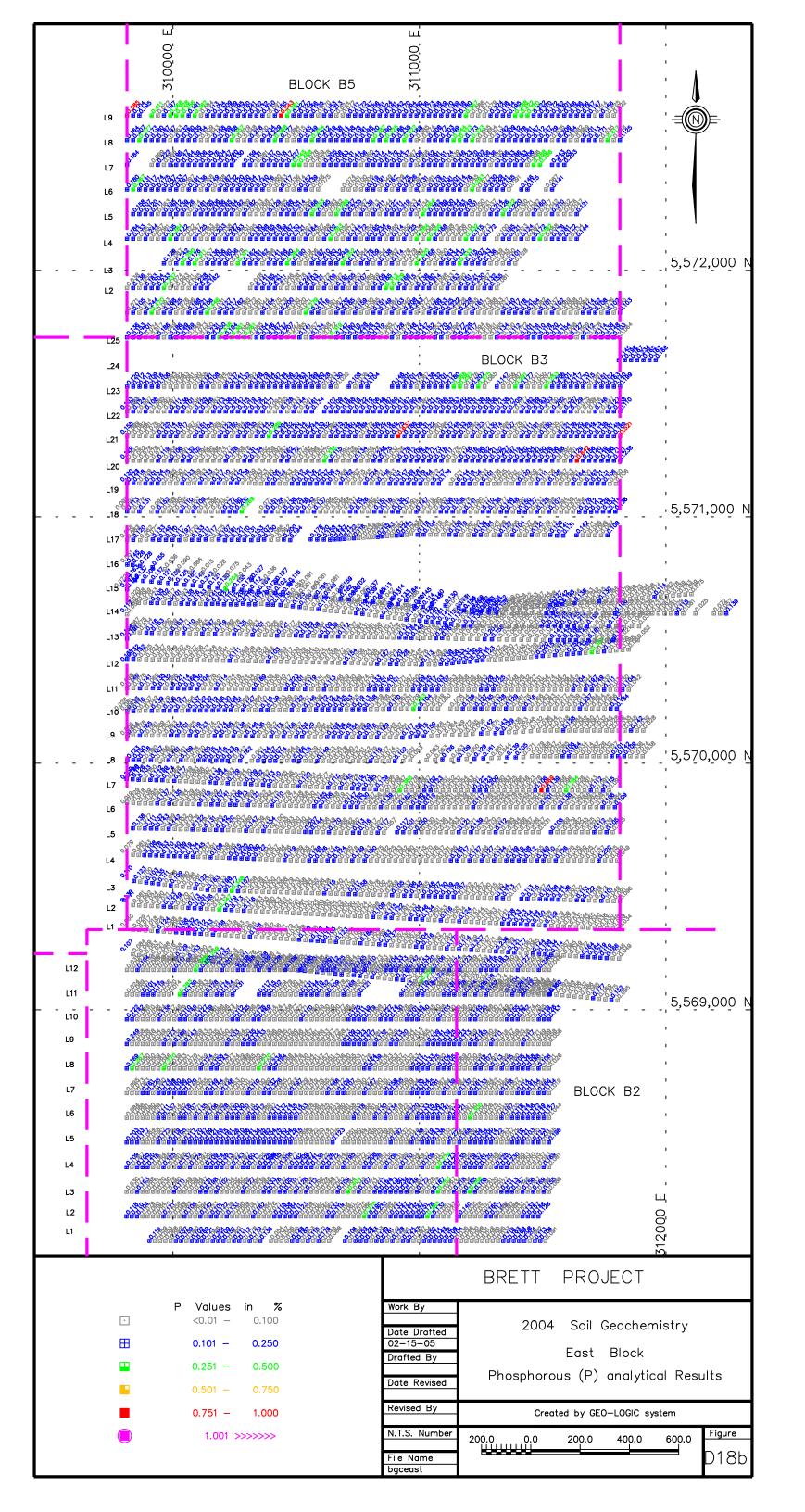


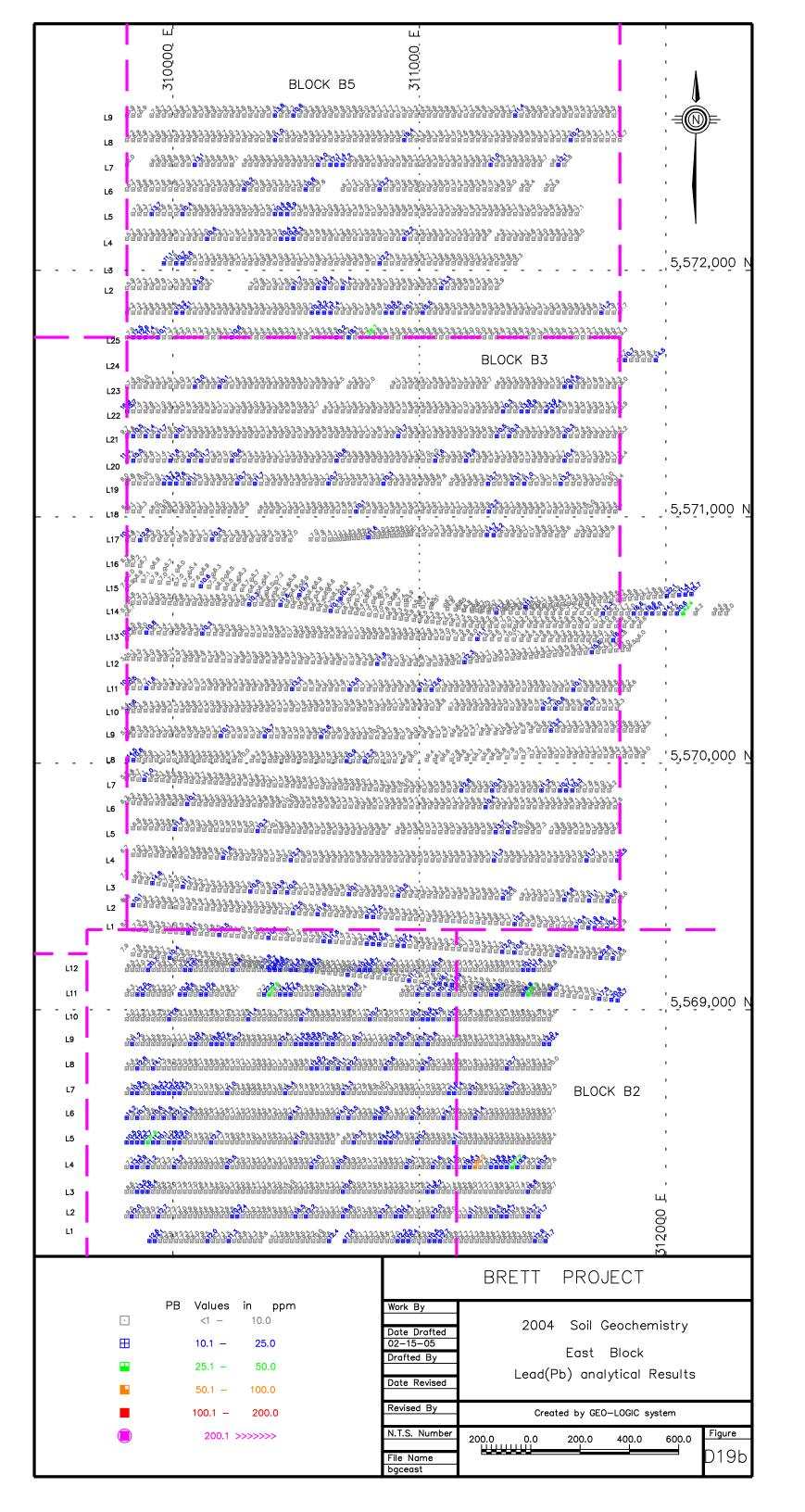


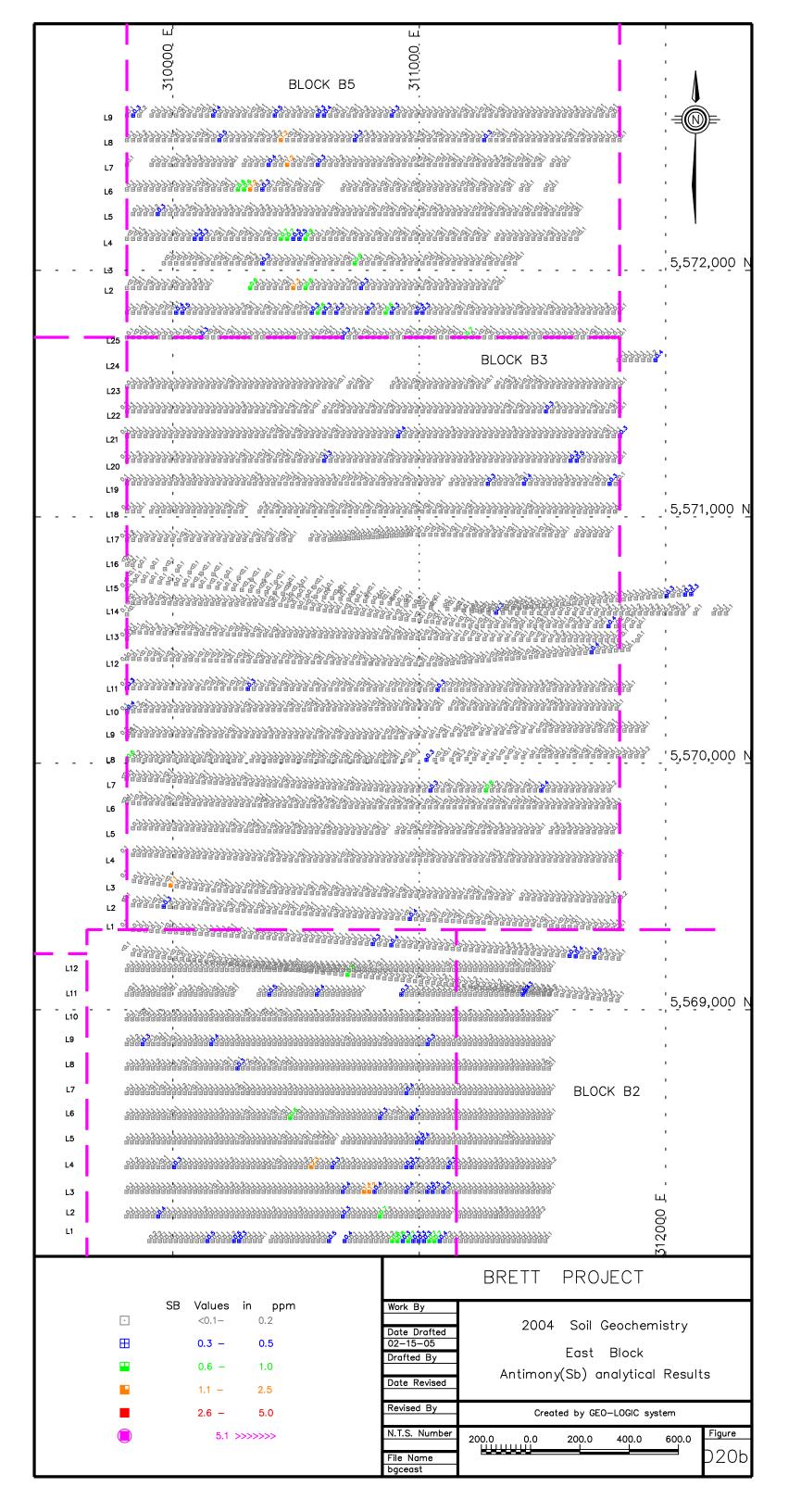


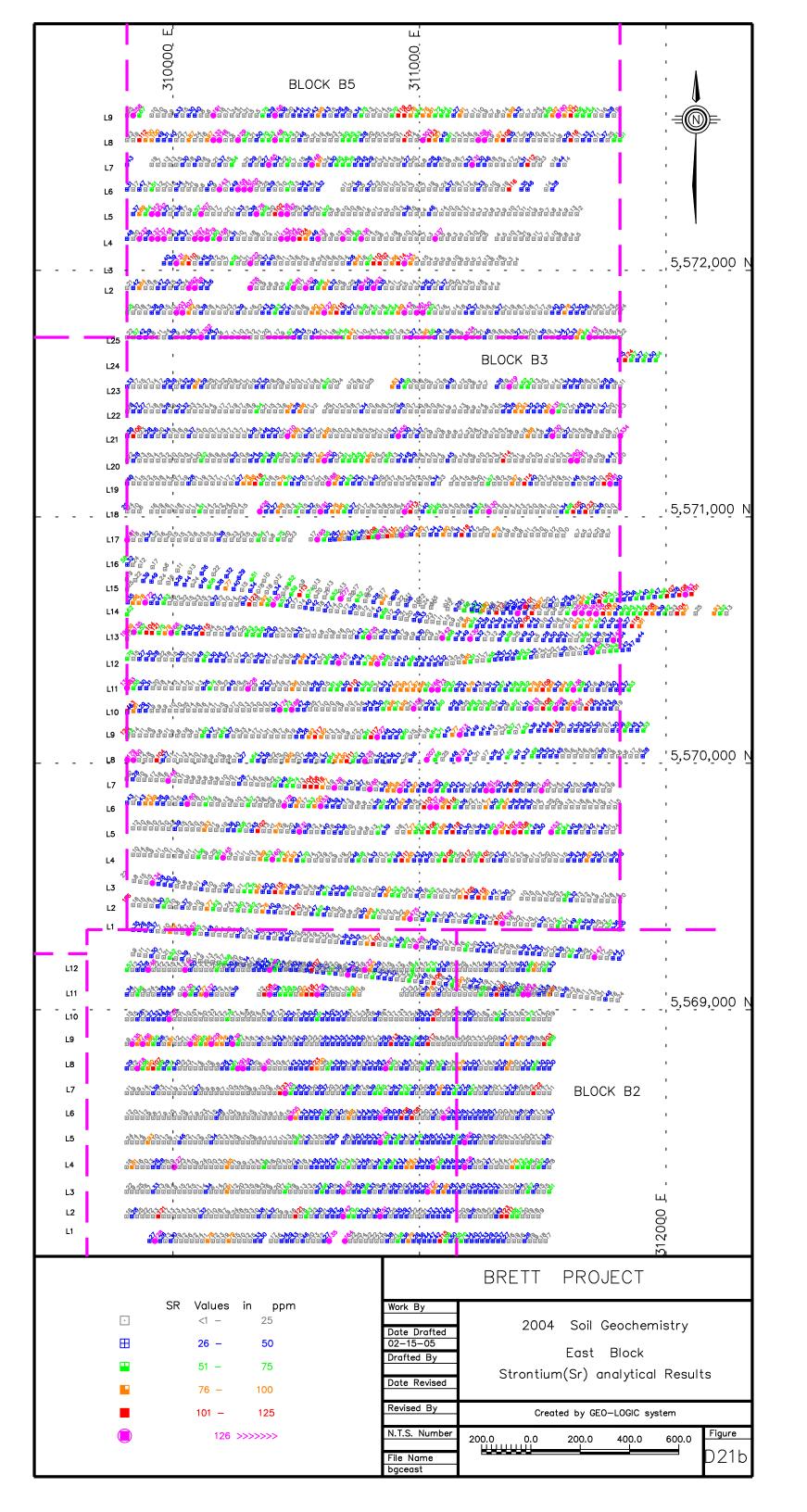


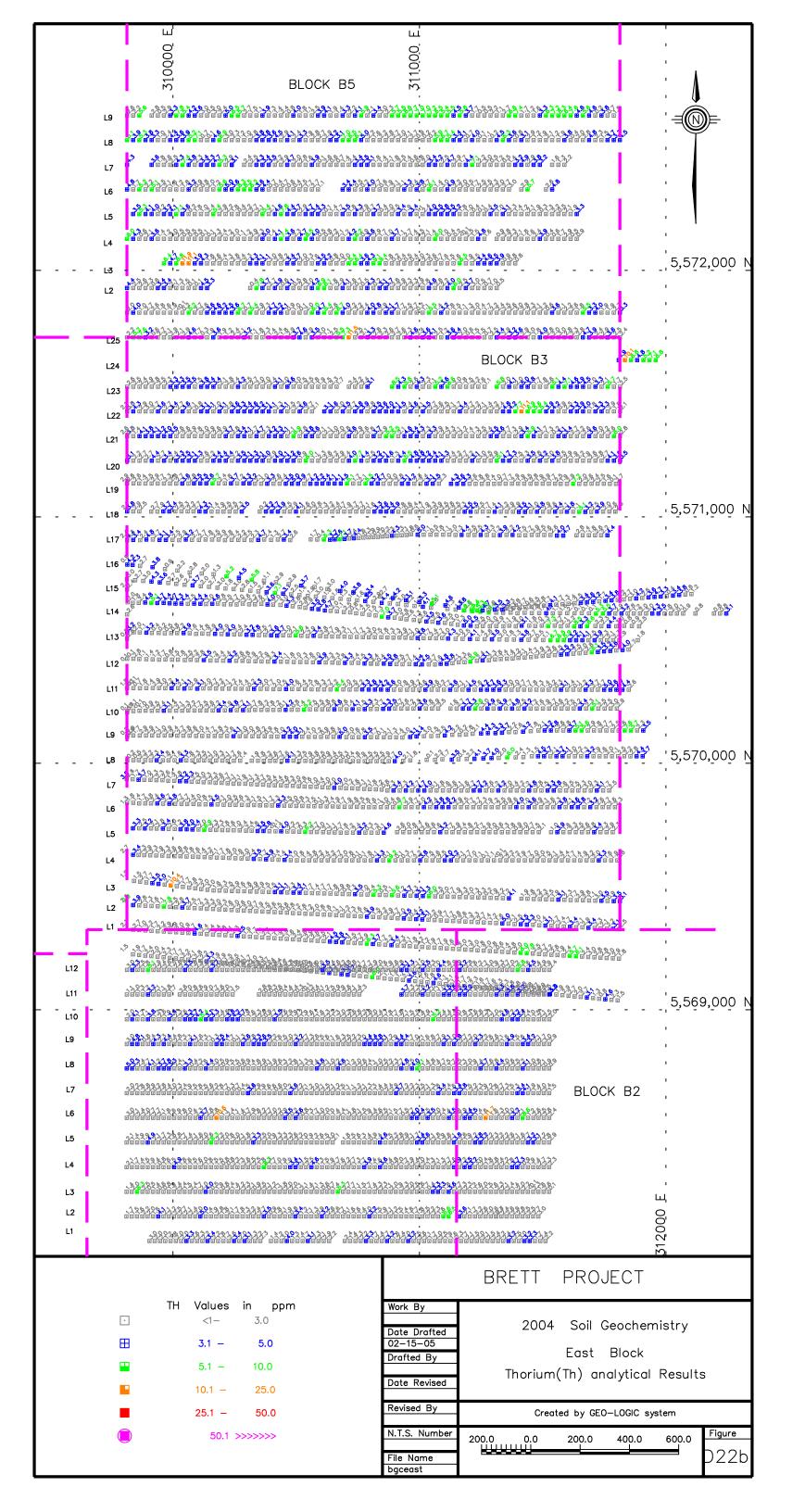


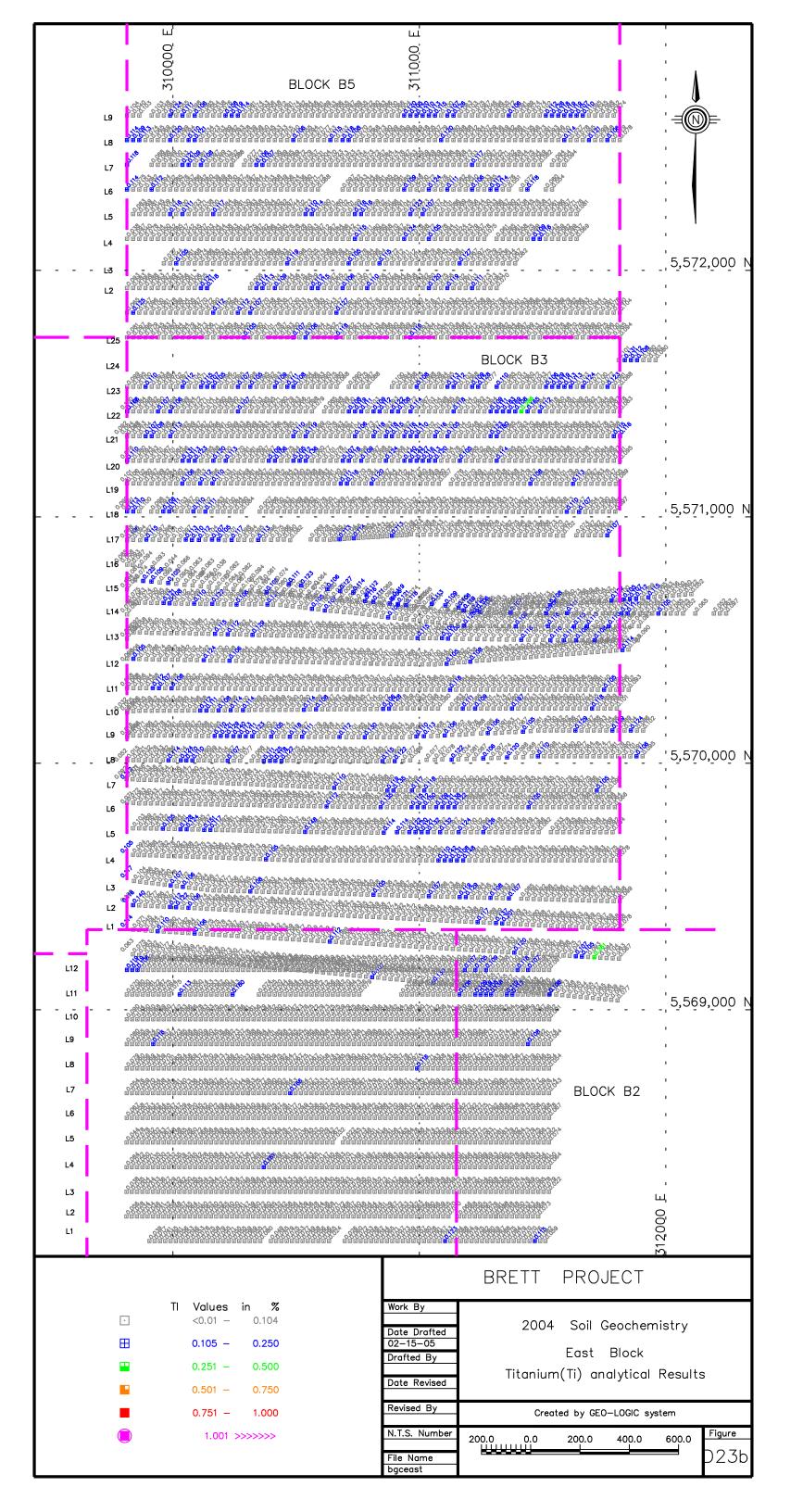


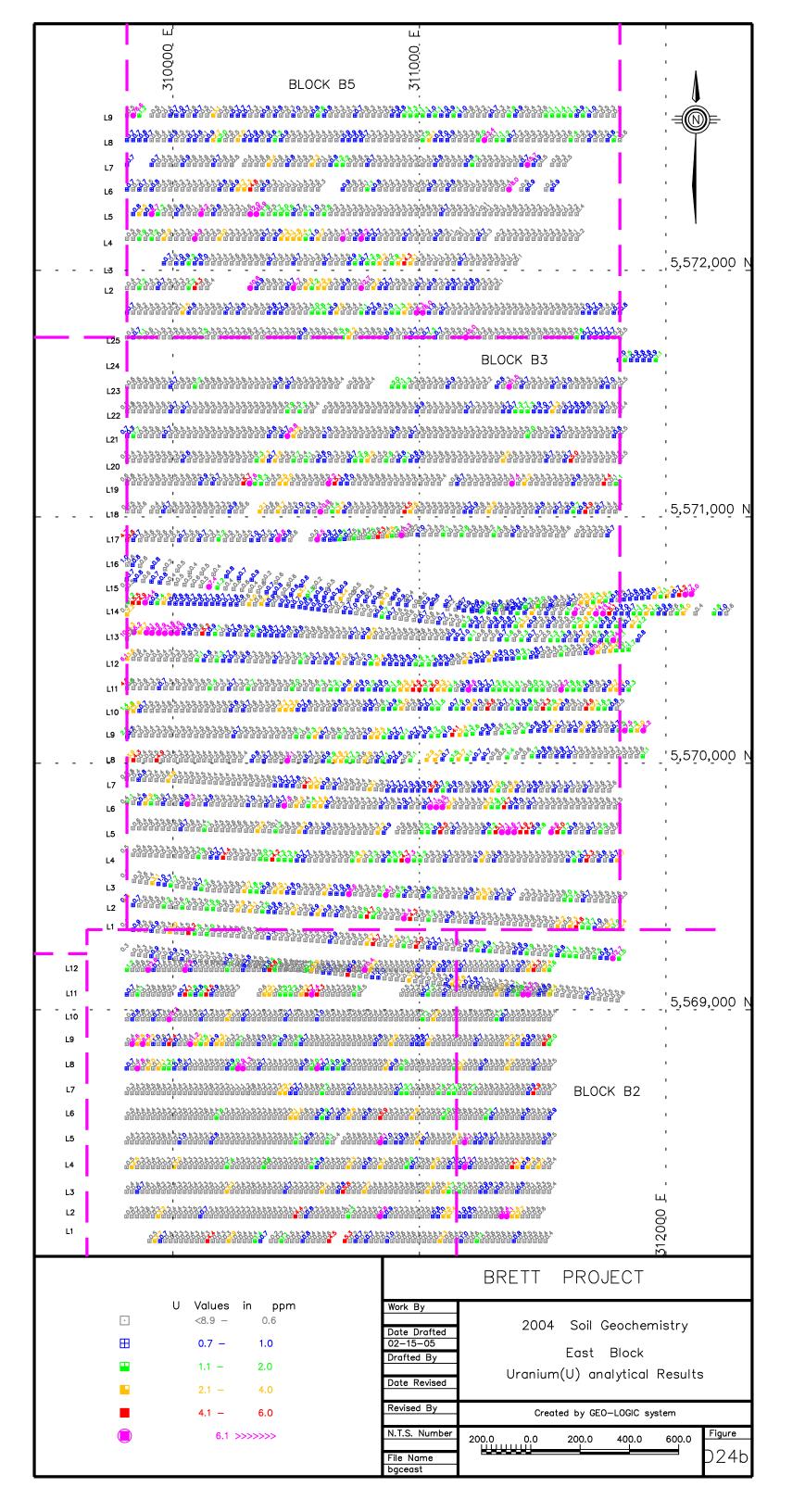


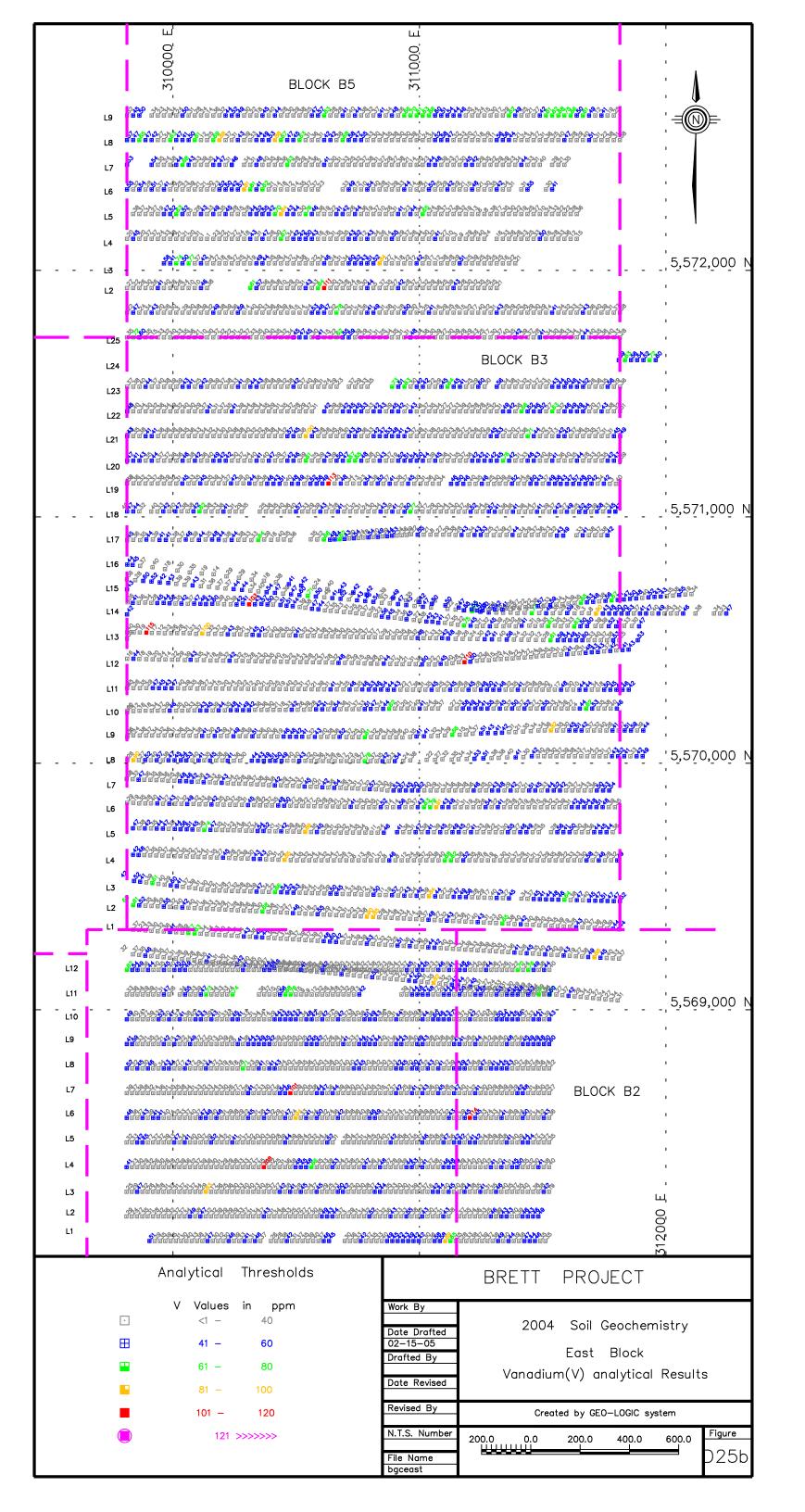


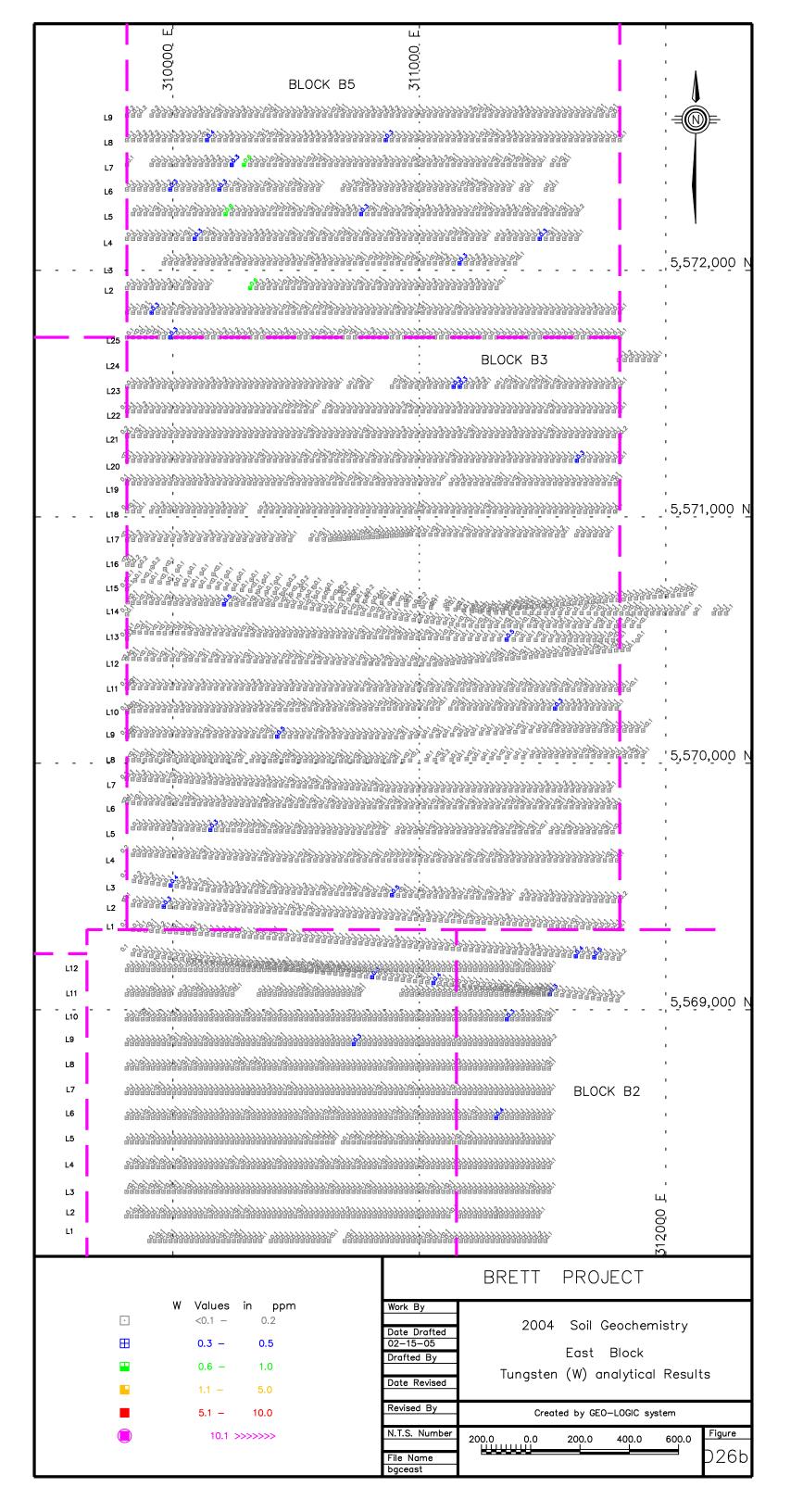


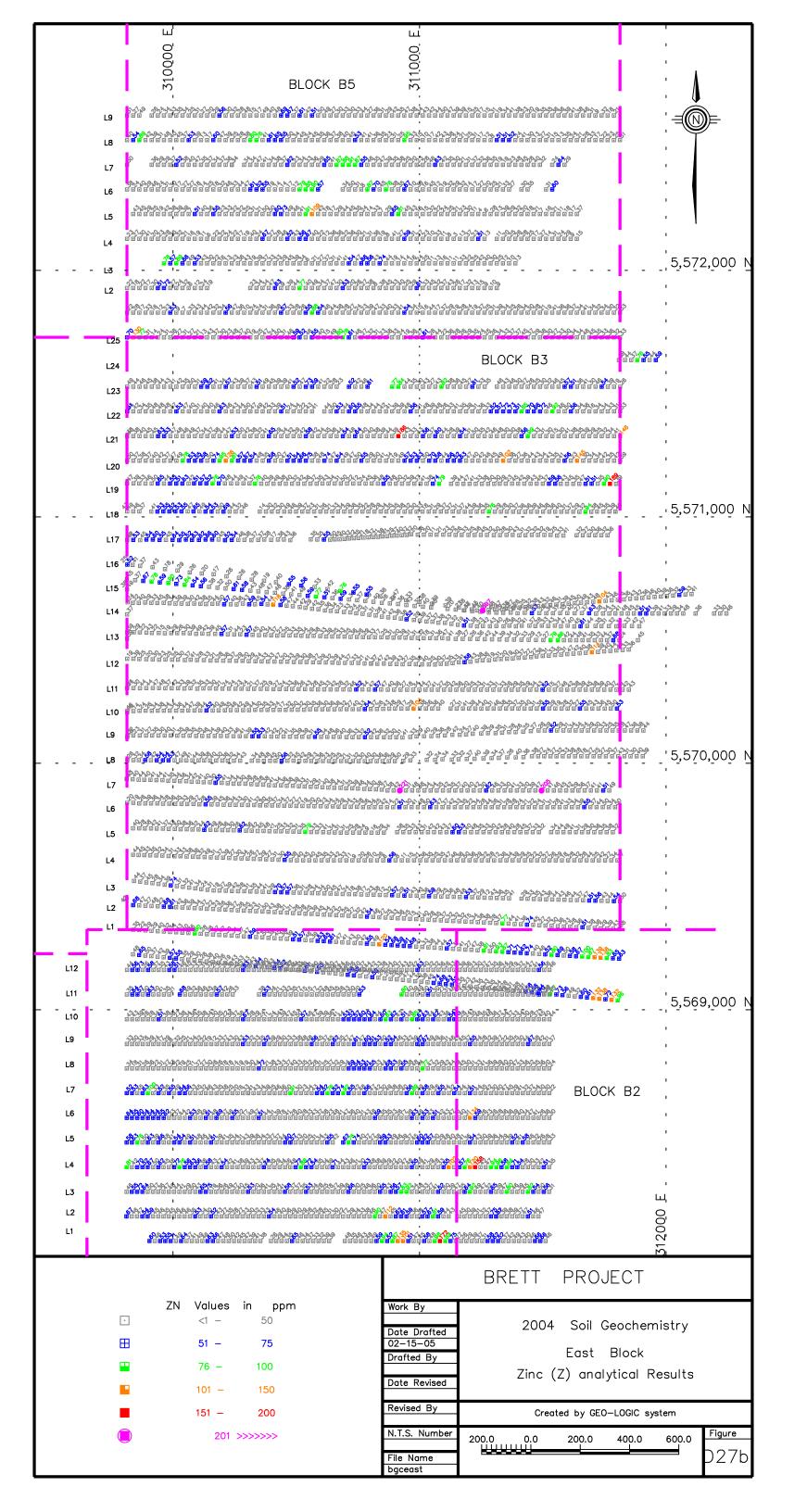












ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

Page 1

GEOCHEMICAL ANALYSIS CERTIFICATE

21

Mosquito Consolidated Gold Mines File # A404061

LL						<u>17.</u>	losc	in T	LO	COL	iso.						и <u>ли</u> t., \					11 11	406	1 Д	P	age	Т							. L	
SAMPLE#	Mo ppm		Pb ppm		-		Co ppm										Bi ppm		Ca %		La ppm	Cr ppm		Ba ppm		B ,						c T		Ga ppm p	
G-1 B3 L1 0+25 B3 L1 0+50 B3 L1 0+75 B3 L1 1+00	2.3 .8 .8 .9	5.4 5.8 5.3	2.6 7.8 9.4 8.9 8.3	45 48 65 50 37	.1 .1 .1	8.0 11.9 11.3	4.5 4.4 5.5 5.7 4.3	232 395 231	1.66 1.79 1.99	2.7	.4 .3 .4	1.0 <.5 1.2	1.9	9 11 11	.1 .2 .1	.1 .1 .1	.2	37 35 46	. 08 . 09 . 08	.084 .099 .053	8 5 8	19.7 12.3 15.4 16.7 14.1	.14 .22 .16	64 93 97	.075 .083 .092	1 1. 1 2.	47 .0. 00 .0. 64 .0.	.0 .7 .0 .8 .0	6 . 5 . 5 .	l .0 l .0 l .0	4 1. 3 1.) <.1 2 .1 3 <.1	3 .11 1 .07 1 .10 1 <.05 1 .11		.5
B3 L1 1+25 B3 L1 1+50 B3 L1 1+75 B3 L1 2+00 B3 L1 2+25	1.0 .5 .7 .4 .4	4.0 8.0 4.4	6.7 6.2 10.4 5.8 8.5	42 39 57 55 35	<.1 .1 .1	5.5 7.7 4.6	4.8 3.4 5.5 2.9 4.9	139 987 92	1.44 1.63 1.34	<.5 .5 <.5	.4 .9 .4	1.1 1.5 .8	2.4 2.3 1.7 1.7 2.2	17 21 52 10 39	<.1 .2 .1	.1 <.1 <.1 <.1	.1 .1 .1	31 26	.15 .46 .08	.098 .016 .058 .129 .034	11 55 13	14.4 13.4 15.5 10.5 14.8	.15 .17 .10	84 193	.081 .057 .055	<1 1.5 <1 .5 1 1.5 1 1.5	72 .0: 88 .02	.0 22 .0 20 .0	5 . 6 . 5 .	1 .0 1 .0 1 .0	4 2.]. (]. (]. (]. (1 <.05 1 .06 1 .09 1 <.05 1 <.05	8 <	.5 .5 .5
B3 L1 2+50 B3 L1 2+75 B3 L1 3+00 B3 L1 3+25 B3 L1 3+50	.7 .5 .8 .8	3.7 3.9 4.9	5.5 4.8 4.8 5.6 5.0	29 30 28 38 40	<.1 .1 .1	5.9 5.2 5.7	2.9 3.6 2.5 3.5 3.1	161 85 86	1.53 1.34 1.75		.4 .3 .4	1.9 3.8	2.2	7 14 9 13 12	.1 .1 .1	.1 .1 <.1	.1	38 35 41	.11 .06 .09	.153 .090 .062 .259 .173	10 8 11	8.6 11.4 11.4 12.5 10.0	.11 .08	92 53 133	.072 .072 .066 .078 .060		51 .01 28 .01	.5 .0 .5 .0 .9 .0	9	L .0 L .0 L .0	1 1. 2 .8 4 1.4	l <.] 3 <.]	<.05 <.05 <.05 <.05 <.05	4 < 6 <	.5
B3 L1 3+75 B3 L1 4+00 B3 L1 4+25 B3 L1 4+50 B3 L1 4+75	.6 .4 .6 1.5	3.9 6.1	4.8 5.8 7.3 5.8 9.2	26 19 43 43 43	.2 .2 .2	4.0 8.2 8.2	3.1 2.1 4.7 5.1 5.2	105 156 349	.99 1.71 1.80	1.8	.9 .5 .4	2.7		17 58 20 16 34	<.1	.1 .1 .1	.1 .1 .1	21 38 42	.43 .13 .13	.157 .023 .059 .111 .076	62 19 10	10.0 9.2 12.1 14.7 14.2	.11 .15 .16	104 137 122	.077	<1 1.5 1 .8 <1 1.5 1 1.6 <1 2.6	37 .01 91 .01 51 .01	.9 .0 .6 .0 .5 .0	5	L .0. L .0. L .0.	3 1.3	3 <.1 2 <.1 2 .1	. <.05 . <.05 06 . <.05 . <.05	7 < 6 <	.5 .5 .5 .5
RE B3 L1 4+75 B3 L1 5+00 B3 L1 5+25 B3 L1 5+50 B3 L1 5+75	1.1	5.8 7.1 5.1		46 43 54 50 43	.2 .3 .2	7.0 8.0 6.3	5.4 4.4 5.3 4.5 4.7	308 649 389	1.63 1.92 1.92	2.1 7.8	.4 .6 .3	10.0	2.0 2.3 1.7	34 17 18 32 63	.1	.1 .1	.1 .1 .1	35 40 37	.11 .17 .31		17 26 17	13.7 10.3 12.1 10.4 13.4	.12 .16 .21	145	.071 .076 .044	1 2.1 1 1.6 1 1.7 <1 1.7	51 .01 76 .01 34 .01	.9 .04 .9 .06 .3 .08	4 .: 5 .: 3 .:	.0.	3 1.7	3 < .1 7 .1 1 < .1	<.05 <.05 <.05 <.05 <.05	7 < 7 <	.5
B3 L1 6+00 B3 L1 6+25 B3 L1 6+50 B3 L1 6+75 B3 L1 7+00	.6 .8 .5 .8	6.3 6.0 7.2	14.4 9.6 7.2 8.4 6.6	54 52 42 44 44	.1 .1 .1	8.4 9.3 9.3	6.3 5.4 4.9 5.1 5.2	995 429 966	1.71 1.64 1.52	2.2 1.7 1.9	.3 .4	1.3 .6 3.1	1.8	30 16 23 23 25	.1 .1	.1 .1 .1	.1 .1 .1	38 34 33	.16 .26 .20	.081 .086 .060 .063	13 13 15	16.0 13.5 13.0 12.3 13.6	.17 .19 .18	111 155 193	.079 .068 .063	1 2.9 <1 1.6 <1 1.8 <1 1.8 <1 1.3	53 .01 39 .01 52 .01	6 .00 5 .00 8 .00	7 < 3 5	02	2 1.2	2 .1 2 <.1 2 .1	<.05 .07 .09 <.05	11 < 7 < 7 < 6 < 6 <	.5 .5 .5
B3 L1 7+25 B3 L1 7+50 B3 L1 7+75 B3 L1 8+00 B3 L1 8+25	.5		7.7	61 34 60 43 34	.2 .2 .4	5.4 9.8 6.6	4.7 3.4 5.2 3.7 5.8	174 341 413	1.37 1.80 1.52	.8 1.7 1.1	.6 .9	2.2 .8 1.1	.8 1.8 2.1 2.1 3.1	25 31 38 43 57	.1 .1 .1	.1 .1 .1	.1	29 33 25	.19 .34 .53	.103 .016 .157 .027 .017	8 12 24	12.8	.13 .17 .19	81 150 175	.057 .079 .056	1 1.0 <1 .8 <1 1.9 <1 1.7	38 .01 94 .01 71 .01	3 .06 8 .07 9 .06	5 <.] 7 .] 5 <.]	0:	1 1.0	.1 5 <.1 5 .1	.07 <.05 <.05 .07 <.05	- Contract of the Contract of	.5 .5 .5
STANDARD DS5	12.9	147.1	24.9	141	.3	24.0	12.0	732	3.06	18.4	5.9	42.3	2.6	46	5.7	3.8	5.8	57	.78	.086	11	175.9	.62	132	. 094	16 1.9	95 .03	3 .19	5 4.9	.16	5 3.7	1.1	<.05	7 5	.2

GROUP 1DX - 7.5/1.0 GM SAMPLE LEACHED WITH 45 ML/6 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 150 ML/20 ML, ANALYSED BY ICP-M (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY - SAMPLE TYPE: SOIL SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ata_____ DATE RECEIVED: JUL 30 2004 DATE REPORT MAILED: H.y. 3

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Clarence Leong

Page 2

ACHE AMALTITICAL																																	ALME AN	ALTITUM	
SAMPLE#	Mo ppm		Pb ppm				Co ppm			As ppm					Cd ppm			V	Ca %	1150	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B A1		K %	W	170353	Sc ppm		-	Ga ppm j	8400
33 L1 8+50 33 L1 8+75 33 L1 9+00 33 L1 9+25 33 L1 9+50	.6	21.4 6.6	5.2	46 56 52	<.1 .6 .1	5.3 16.3 5.6	4.2 6.1 4.5	149 175 1597 696 239	1.77 2.36 1.51	1.0 5.2 1.2	.4 5.0 .4	12.9 2.7 1.6 <.5 73.5	3.3 3.7 2.3	30 12 164 38 13	.1 .3 .1	.1 .8 .1	.1 .1 .1 .1	42 32 36	.08 1.71 .24	.122 .150 .073 .128 .178	11 150 13	11.7 12.3 23.6 10.0 6.6	.12	116 470	.079 .043 .090	1 1.45 1 .97 1 3.50 3 1.20 1 .85	.011 .016 .019	.06 .11 .10	.1	.01	1.1 6.1 1.1	.1 <.1 < .3 .1 < <.1 <	.05	5 · 9	<.5 <.5 .6 <.5 <.5
33 L1 9+75 33 L1 10+25 33 L1 10+50 33 L1 10+75 33 L1 11+00	.5 .6 .7 .7	5.9 3.6 5.5	5.7 5.9 4.9 5.5 5.4	32 24 20 29 39	.2 .1 .2	5.1 4.2 7.3	2.9 2.7 4.0	136 123 92 169 186	1.16 1.18 1.48	1.0	1.0	<.5 1.0 3.0 22.3	2.7 1.7	21 35 34 32 23	.1 <.1 <.1 .1	.1 .1 .1	.1 .1 .1	27 32	.22	.077 .050 .040 .048 .101	48 16	12.7	.15 .11 .15	160 80	.054	<1 .92 1 1.16 <1 .76 <1 .94 <1 1.19	.015 .012 .013	.05 .06 .05 .05	.1 .1 .1	.02 .01 .02	1.8 .9 1.3	<.1 < .1 < .1 < .1 < .1 < .1 < .1 < .1	.05 .05 .05	4 .	<.5 <.5 <.5 <.5
33 L1 11+25 33 L1 11+50 33 L1 12+00 33 L1 12+25 33 L1 12+75	.7 1.4 .5 .8 1.0	28.4 5.5 5.3	5.2 11.7 7.2 7.6 16.1	44 38	1.4 .2 .1	16.8 8.2 6.5	6.8 4.7 4.0	204 588 201 188 471	2.47 1.61 1.40	2.6 1.5 1.3	3.9 .4 .3	<.5 1.8 1.3 1.6 <.5	3.6 1.6 1.8	22 68 48 16 16	.1 .1 .1 .1	.1 .1 .1	.1 .1 .1	47 31 35	.46 .28 .11	.160 .042 .258 .078 .095	77 8 8	11.3 22.4 12.9 11.7 12.1	.34 .15 .12	204 121 100	.073	<1 .91 1 2.82 <1 1.65 2 1.00 1 1.09	.023 .015 .012	.06 .08 .08 .06	.1 .1 .1	.04 .02 .01	4.8 1.4 1.1	<.1 < .1 < .1 < < .1 < < .1 < < .1 < < .1 <	. 05 . 05 . 05	6 -	<.5 .6 <.5 <.5
RE B3 L1 14+50 33 L1 13+00 33 L1 13+25 33 L1 13+50 33 L1 13+75	.8	75 (100)	7.8	34 63 52 35 23	.5 .8 .4	8.2 12.1 12.9	4.5 5.6 5.3	100000000000000000000000000000000000000	1.52 1.88 2.09	1.1 1.2 1.2	.8 2.6 3.8	2.0	2.1 1.8 1.7	19 33 65 90 25	.2	.1	.1 .1	32 43 44	.21 .41 .66	.116 .061 .044 .081	23 55 49	12.9	. 25	83 122 137 234 73	.064 .051	1 1.67 1 1.36 1 1.81 <1 2.63 <1 1.01	.014 .017 .013	.07 .06 .06 .09	.1 .1 .1	.02 .03 .05	1.5 2.9 4.2	<.1 < .1 < .1 < .1 < .1 < .1 <	.05 .05 .14	6 · 7	<.5 <.5 <.5 <.5
33 L1 14+00 33 L1 14+25 33 L1 14+50 33 L1 14+75 33 L1 15+00	1.0 .4 .4 .4 .7	6.1 4.8 2.9	6.4 5.9 6.6 6.4 5.0	42 35 33 35 34	.1 .2 .1	8.6 5.9	4.4 3.8 3.3	212 174 186 222 215	1.43 1.38 1.07	.9 1.4 .8	.7 .3 .2	1.1 1.8 .5 3.0 5.3	1.6 1.7 1.6	39 33 19 11 13	.1	.1		31 27 24	.14 .11	.027 .034 .118 .073 .074	11 8 5	14.5 10.8	.22 .16 .11	83 61	.080 .047 .055 .047	1 1.14 <1 1.37 1 1.60 <1 .77 <1 .92	.018 .013 .010	.06 .07 .07 .05 .06	.1 .1 .1	.01 .01	1.4 1.2 .9	.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 <	.05 .05 .05	6 <	<.5 <.5
33 L1 15+25 33 L1 15+50 33 L1 15+75 33 L1 16+00 33 L1 16+25	.6 .8 .6 .9	3.2 6.2 3.8	6.0 5.8 5.5 5.1 8.6	31	.1 .2 .1	4.8 5.4 4.7	3.0 3.1 3.6		1.25 1.23 1.24	<.5 1.2	.3 1.1 .4	27.5 15.3 12.6 1.4 1.7	1.8 1.8 1.8	18 11 28 15 15	<.1 <.1 <.1 .1	.1 .1 .1	.1 .1	30 29 29	.08 .20 .12	.084 .104 .019 .122 .055	6 19 7	9.0 12.4	.12 .10 .18 .10	73 69	.047 .061 .059 .057	<1 .70 <1 .92 <1 .89 <1 1.08 <1 1.36	.013 .014 .011	.04 .05 .05	.1 <.1 .1	.02 .01 .02	.8 1.3 1.1	<.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 <	.05 .05 .05	3 <	<.5 <.5
33 L1 16+50 33 L1 16+75 33 L1 17+00 33 L1 17+50 STANDARD DS5	1.4 .7 .5 1.2 12.7	6.3 7.7	7.3	66 64 39 73 137	.1 .2 .1	9.4 5.5 6.3	5.1 4.1 4.7	548 498 427 414 733	1.52 1.41 1.31	1.2	.5 .9 .5	<.5 5.9 <.5 3.2 40.6	2.0 1.5 1.9	17 17 48 15 47	.1 <.1 <.1 .1 5.3	.1 .1 .1	.1 .1 .1 .1 5.7	39 34 27	.13	.089	7 19 6	12.2	.19 .13 .14	116 166 84	.075 .057 .073	2 1.44 1 1.65 1 1.02 <1 1.79 17 1.96	.015 .013 .014	. 05 . 05 . 04	.1 .1 .1	.01	1.4 1.3 1.4	.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 <	.05 .05 .05	5 < 4 < 5 <	5.5 5.5 5.5 5.0

Page 3

ACME ANALYTICAL																																	ACME ANAL	LYTICAL
AMPLE#	Mo ppm	Cu ppm	Pb ppm		Ag ppm	Ni ppm	Co ppm	0.000	Fe %		U ppm	Au ppb		Sr ppm	Cd ppm			V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B Al	- VV-3533	K %	W ppm			T1 ppm		Ga Se pm ppm
3 L1 17+75 3 L1 18+00 3 L1 18+25 3 L1 18+50 3 L1 18+75	.6 .8 .6 .7	5.6 5.4 6.9	6.2 6.7 5.9 7.5 7.0	49 32 60	.1 .3 .4	11.6 8.9 8.8 12.8 12.1	5.0 3.7 5.1	454 153 174	1.72 1.36 1.76	1.0 1.0 2.1	.4 .5	.8 5.4 1.6 4.8 9.6	2.0	26 23 16 11 13	.1 <.1 .1 .1	.1 .1 .2 .1	.1 .1 .1 .1	42 29 34	.21 .12 .10	.098 .056 .032 .086	11 10 8	15.6 17.2 14.7 18.2 18.1	. 23 . 24 . 28	78		<1 1.48 <1 1.11 <1 .96 <1 1.73 2 1.33	.015 .017 .016	.06 .06 .04 .06	.1 .1 .1	.01	1.0 1.1 1.4	.1 < <.1 < <.1 < .1 < .1 <	. 05 . 05 . 05	6 .5 5 .5 4 .5 7 .5 6 .5
3 L1 19+00 3 L1 19+25 3 L1 19+75 3 L1 20+00 3 L2 0+25	.9 1.1 1.0 1.1	4.7 11.4 8.6	20.9		.1 .2 .3	6.9 6.6 9.8 10.5 6.5	3.4 6.0 5.1	2026 1440 1569	1.13 1.83 1.60	1.7 2.6 1.6	.2 .5 .6	4.4 14.0 2.0 .7 1.7	.8 2.3 1.5	15 21 16 24 35	.3 .4 .2	.1 .2 .1 .1	.2 .2 .1	27 24 34 31 37	. 23 . 15 . 25	.177 .069 .152 .095 .029	4 7 8	8.5 9.3 13.3 13.4 14.3	.13 .21 .25	96 205 139 164 189	.095 .077	1 1.19 1 .74 1 1.95 2 1.99 1 1.69	.016 .015 .016	.05 .06 .06 .06	.1 .1 .2	.06 .06 .03 .05		.1 < .1 < .1 < .1 <	. 05 . 05 . 05	6 <.5 5 <.5 8 .5 7 .6 6 .6
3 L2 0+50 3 L2 0+75 3 L2 1+00 3 L2 1+25 3 L2 1+50	.4 .4 .3 1.0	4.7 6.2	9.3 8.5	22 29 29 40 32	.1 .1 .1	2.8 5.3 6.5 6.2 5.7	3.4 3.8 3.0	308 158	1.31 1.28		.6 .9 .5	1.0 3.9 1.1 2.3 <.5	2.2 1.7 2.2	26 28 37 7 10	-	.1 .1 .1 .1 <.1	.1	33 30 32	.17 .19 .06	.017 .018 .026 .124 .088	17 23 7	11.6 10.9	.18	130 152 66		1 .65 <1 1.30 <1 1.65 <1 2.40 <1 1.26	.026 .021 .018	.04 .05 .07 .05	<.1 .1 .2	.01 .02 .06	1.4 1.7 1.3	<.1 < .1 < .1 < .1 < < .1 < < .1 < < .1 < < .1 <	. 05 . 05 . 05	3 .5 5 .5 6 .6 8 .6 5 .5
3 L2 1+75 3 L2 2+00 E B3 L3 18+50 3 L2 2+25 3 L2 2+50	.7 .7 .9		6.5 7.2 5.8	34 43 56 40 36	.1 .4 .1	11.0 7.1 12.2 6.3 14.5	3.1 5.5 3.6	125 169 118	1.43 1.74 1.71	1.2 1.8 1.6	.4 .5	.7 1.8 1.0	2.0	92 12 10 13 157	.1 .1 .1 .1	.1 .1 .1 .1	.1 .1 .1 .1	41 28 32 39 67	.10 .09 .12	.058 .156 .090 .232 .112	8 8 10	20.5 9.4 16.7 11.8 21.1	.09 .28 .12		.082 .053 .084	<1 2.39 1 1.94 <1 1.70 <1 1.74 1 2.57	.018 .015 .016	.08 .05 .06 .10		.03 .01 .03		.3 < <.1 < .1 < <.1 < .2 <	. 05 . 05 . 05	8 .7 8 <.5 7 <.5 6 <.5 8 .6
3 L2 3+00 3 L2 3+25 3 L2 3+50 3 L2 3+75 3 L2 4+00	.6 .8 .4 .6	7.9 4.6 5.8	5.0 8.8 7.5 10.5 5.9	28 26 37 47 30	.2 .1	4.6 8.1 7.5 7.9 9.1	4.0 3.5 5.3	225 173 154		.9 2.2	2.0 .4 .4	.9	2.4 2.4 1.8	13 48 22 14 20		.1 .1 .1 <.1	.1 .1 .1 .1	34 33 40	. 29 . 17 . 11	.143 .031 .158 .093 .048	161 14 13	16.1	.14 .22	65 299 107 106 127	.078	<1 1.21 1 1.79 <1 1.46 <1 1.93 <1 1.27	.020 .016 .017	.05 .06 .05 .05	.1 .1 .1	.02 .02 .02	2.6 1.1 1.4	<.1 < .1 < <.1 < .1 < <.1 < .1 < .1 < .	.05 .05 .05	5 .5 6 .6 7 <.5 8 <.5 5 <.5
3 L2 4+25 3 L2 4+50 3 L2 4+75 3 L2 5+00 3 L2 5+25	.6 .7 1.3 1.1	5.5 5.0	7.6 9.4	34 37 47 59 42	.1 .1 .2	10.1 8.5 9.2 6.9 8.4	4.6 5.3 3.8	298 366 174	1.51 1.81 1.71	.7 2.1 2.7	.6 .6	19.0 16.5 1.9 5.1	3.5	21 26 22 11 37	.1 .1 .1 .3	.1 .1 .1 .1	.1 .1 .1 .1	43 38	. 17 . 18 . 09	.083 .042 .065 .118 .056	34 30 8	14.7 14.0 15.8 12.7 16.2	. 19 . 23 . 14	147 140 154 75 172	.057 .060 .080	1 1.58 <1 1.27 <1 1.62 1 1.08 <1 1.10	.015 .015 .015	. 07 . 08 . 07 . 05 . 08	.1 .1 .1	.01 .01 .02	1.1 1.3 .9	<.1 < <.1 < .1 < <.1 < <.1 <	.05 .05 .05	6 .5 5 <.5 7 .6 7 <.5 5 .8
3 L2 5+50 3 L2 5+75 3 L2 6+00 3 L2 6+25 TANDARD DS5	1.0 .9 1.0 1.0	5.6 6.1 7.4 4.6 146.4	7.9 10.0	50 39 45 38 137	.3 .2 .1	8.6 9.2 7.2 8.4 24.4	4.9 4.4 4.1	712 937 355	1.56 1.73	1.7 2.6 2.5	1.0 .4 .5	.7 2.6	1.5 1.8 2.0	23 43 24 27 44	<.1 .1 .2 .1 5.3	.1 .1 .1 .1	.1 .1 .1 .1 5.6	36 34 37	.32 .21 .24	.092 .036 .071 .079	132 16 49	14.6 12.7 11.4 14.3 187.2	. 22 . 15 . 18	148 179 189 164 132	.062 .062 .059	<1 1.91 <1 1.45 1 1.38 <1 1.62 16 1.93	.020 .015 .016	.05 .07 .06 .08	<.1 .1 .1	.02 .03 .02	1.5 1.0 1.2	<.1 <. <.1 <. <.1 <. <.1 <. 1.0 <.	05 05 05	8 .6 6 .7 6 <.5 7 .7 6 5.2

Page 4

ALME ANALYTICAL																						-											ACME	E ANALYTICAL
SAMPLE#	Mo ppm	Cu ppm		Zn ppm		Ni ppm	Co	Mn ppm		As ppm									Ca %		La ppm	Cr ppm	Mg %	Ba ppm		B	Al %				-	Sc .		Ga Se ppm ppm
B3 L2 6+50 B3 L2 6+75 B3 L2 7+00 B3 L2 7+25 B3 L2 7+50	.6 .9 .9 .9	4.7 5.5 5.1	7.2 7.6 7.4	51 57 46	.2 .1 .1	6.8 8.3 6.8	4.0 5.3 4.8	291 766 429	1.61	2.5 1.8 1.4	.4 .5 .4	1.1 1.6	2.4 2.8 2.9	20 25 22	.5 .2 .1	.1 .1 .1	.1 .1 .1	37 39 37	.17 .21 .16	.089 .118 .086	9 15 13	11.8 10.7 13.1 11.5 12.3	.14 .20 .20	115 146 146	.077 .080 .069	1 <1	1.40 1.70 1.45	.016	.05 .09 .08	.1 .1 .1	.02 1	1.2 < 1.6 1.4	.1<.05 .1<.05 .1<.05 .1<.05	5 <.5 7 <.5 6 <.5
B3 L2 7+75 B3 L2 8+00 B3 L2 8+25 B3 L2 8+50 B3 L2 8+75	.7 1.2 .9 .8	8.3 8.9 5.2		65 61 47	.1	9.3 12.6	5.6 7.1 4.7	853 421 340	2.51 1.67	2.1	.5 .9	1.0 2.2 1.3 .9 2.6	2.1 4.5 3.8		.2 .1	.1 .1 .1	.1 .1 .1	48 60 42	.21 .14 .17	.105 .075 .123	13 21 16	11.9 15.6 22.0 12.6 12.0	.23 .30 .19	155 173 181	.095 .112 .089	3 7 1 7	2.16 2.83 1.31	.016 .015 .013 .016	.07 .07 .10	.1 .1 .1	.02 1 .02 2 .01 1	1.8 2.3 1.5	.1<.05 .1<.05 .1<.05 .1<.05	8 <.5 9 <.5 5 <.5
B3 L2 9+00 B3 L2 9+25 B3 L2 9+50 B3 L2 9+75 B3 L3 0+25	.6 .7 .6 2.8 1.0	3.8 4.7 47.3		30 42 55	.1 .1 2.6	6.9 6.5 32.0	3.5 3.9 7.7	173 193 687	1.60 3.19	1.0 1.8 3.8	.4 .5 3.7	5.1	2.7 2.9 6.3	32 15 77	.1 .1 .1	.1 .1 .1	.1 .1 .2	39 39 53	.26 .14 .57	.065 .188 .054	13 12 137	13.0 14.3 11.3 36.2 30.0	.15 .12 .51	82 102 252	.074 .079 .082	1 1 1 1	.85 1.36 4.38	.019 .015 .016 .022 .019	.11 .06 .11	.1 .1 .1	.01 1 .03 1 .07 9	1.2 < 1.4 < 9.4	.1<.05 .1<.05 .1<.05 .3<.05 .1<.05	4 <.5 5 <.5 13 .6
B3 L3 0+50 B3 L3 0+75 B3 L3 1+00 B3 L3 1+25 B3 L3 1+75	1.0 .6 .6 .4 1.0	4.2 5.8 4.7	7.9 6.2 6.3 6.8 8.2	27 48 22	<.1 .1 <.1	7.7 8.2 7.5	3.6 4.3 3.9	259 504 188	1.47 1.06	1.6 .7 .9 .6 1.8	.6 .5	1.0 <.5 1.2 1.5 1.2	1.3 1.6 1.1	16 18	<.1 .1 .1	.1 <.1 <.1	.1 .1 .1	35 36 29	.09 .13 .18	.024	17 9 15	21.1 16.4 13.3 12.7 9.3	.18 .14 .18	91 104 82	.077 .086 .087	1 · <1 ·	1.24 1.53 1.26	.019 .019 .021 .024 .022	.05 .06 .04	.1 .1 .1<	.01 1 .02 1 .01 1	1.3 < 1.4 1.5	.1<.05 .1<.05 .1<.05 .1<.05	5 <.5 7 <.5 4 <.5
RE B3 L3 1+75 B3 L3 2+00 B3 L3 2+25 B3 L3 2+50 B3 L3 2+75		7.3 7.2 5.5	7.0 7.3 6.6	42 36 39	<.1 .1 .1	9.2 8.1 6.6	4.2 4.3 3.3	107 303 114		2.1 1.0 2.4	.6 1.2 .5	1.3	2.8 3.7	8 37 8	<.1 <.1	.1 .1 .1		40 42 40	.07 .28 .06	.070 .067 .113	7 24 7	10.4 15.4 18.6 11.4 10.8	.18 .29 .11	76 172 62	.100 .106	1 ' <1 '	1.91 1.56 1.86		.04 .11 .04	.1 .1 .1	.03 2 .02 2 .05 1	2.1 <. 2.7 1.6 <.	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	7 <.5 5 <.5 7 <.5
B3 L3 3+00 B3 L3 3+25 B3 L3 3+50 B3 L3 3+75 B3 L3 4+00	.7 .4 .4 1.3	6.1 6.7 3.5	6.9 8.2 6.2	22 23 26	.1 .1 .1	5.5 6.6 3.7	3.6 7.0 1.7	305 475 54		<.5 .9 2.3	1.5 1.6 .5	<.5 1.2	2.3 2.0 2.3	9 77 63 7 24	.1 .1 <.1	.1 .1 .1	.1 .1 .1	33 33 29	.37 .31 .06		44 48° 5		.14 .15 .06	167 203 49	.065 .066 .086	<1 ' <1 ' <1 2	1.30 1.68 2.07	.023 .028 .017	.05 .05 .04	.1 .1	.02 1 .03 2 .06 1	1.6 2.0 <. 1.3 <.	.1 .07 .1<.05 .1<.05 .1<.05	5 <.5 7 <.5 7 <.5
B3 L3 4+25 B3 L3 4+50 B3 L3 4+75 B3 L3 5+00 STANDARD DS5		7.9 3.9 7.9		26 25 23	.1 .1 .1	7.1 5.1 7.5	3.7 2.0 3.8	273 73 277		1.1 1.8 .5	2.9 .4 3.1	.5 .7 <.5	2.0	60 13 62	.1 .1 .1	<.1 .1 .1	.1 .1 .1	36 26 36	.35 .09 .34	.116	59 7 60	12.1 14.5 10.9 14.6 191.0	.19 .08 .19	176 81 175	.072 .062 .070	2 ′ <1 ′ <1 ′	1.51 1.09 1.48	.026	.07 .04 .07	.1 .1 .1	.03 2 .06 1 .03 2	2.7 . 1.0 <. 2.6 .	.1<.05 .1<.05 .1<.05 .1 .06 .1<.05	5 <.5 5 <.5 5 <.5

Page 5

ACHE AMALTITICAL	•																						-	out to the					_				,	CME ANAL	TITICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	-	9	Ni ppm	Co		100000	As ppm			Th ppm					V	Ca %		La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %			Sc ppm			Ga Se pm ppm
B3 L3 5+25 B3 L3 5+50 B3 L3 5+75 B3 L3 6+00 B3 L3 6+25	.7 1.7 .8 .5	3.5 9.8 8.1 7.3 3.1	8.0	31 50 43 38 21	.3 .3	13.5 10.8	12.4 5.4 3.9	114 3168 503 233 68	2.11 1.83		1.5 .9 .8	.6 <.5 2.5 <.5 <.5	1.5 2.6	12 76 40 39 15	<.1 .3 .1 .1 <.1	.1 .1 .1	.1 .1 .1 .2	68 38 31	. 38	.045 .090 .063 .052	23 16	10.1 25.8 19.4 17.3 7.1	. 27	235 146 137	.084	2 2. 2 2. 1 2.	69 .0 38 .0 08 .0 26 .0 88 .0	20 22 23	. 04 . 08 . 06 . 05 . 03	.1 .1 .1	.01 .06 .02 .02 .03	3.2 1.7 1.4	<.1 <. .2 . .1 . .1 <. <.1 .	06 08 05	4 <.5 7 <.5 7 <.5 8 <.5 4 <.5
B3 L3 6+50 B3 L3 6+75 B3 L3 7+00 B3 L3 7+25 B3 L3 7+50	.3 1.8 .5 .4	3.7 10.1 4.5 5.3 6.8	12.5 6.6 5.5	21 26 28 25 39	.4 .2 .3	5.2 5.9	13.3 3.2 3.1	64 761 148 191 389	1.07 1.00	.5 1.7 .6 .7 1.4	.5 .5	.5 <.5 1.2 1.5 <.5	1.8 1.2	21 121 24 24 47	.1 <.1 <.1 <.1		.1 .2 .1 .1	46 21 18	.11 .54 .13 .13	.061 .031 .024	50 11 9	7.7 18.0 10.1 11.5 17.2	. 22 . 14 . 14	277 84	.072 .051	1 2. 1 1. <1 1.	99 .0 23 .0 24 .0 54 .0 78 .0	25 23 23	. 05 . 04	<.1	.07	1.7 1.1 1.1	<.1 <. <.1 <. <.1 <. <.1 <. <.1 <.	05 05 05	5 <.5 9 <.5 5 <.5 6 <.5 7 <.5
B3 L3 7+75 B3 L3 8+00 B3 L3 8+25 B3 L3 8+50 B3 L3 8+75	.8 .4 .6	10.1 7.5 3.5 11.1 6.0	8.8 5.5 9.4	45 34 22 32 25	.4 .2 .3	9.3 3.8	5.6 1.9 4.3	112	1.52 .70	1.1 .6 1.6		<.5 .7 .8	1.8 1.8 1.1 2.1 2.2	62 36 15 25 9	.1 <.1 <.1 .1	.1 .1 <.1 .1 .1	.2 .1 .1 .1	29 14 33		.054 .022 .061	14 7 16	100	.23 .11 .19	143	.071 .056	1 2. 1 . 1 2.	42 .0 11 .0 94 .0 54 .0 93 .0	23 19 20	. 07 . 06 . 04 . 04	.1 .1 .1	. 03 . 02 . 03	.8 1.9	.1 <. <.1 <. <.1 <. <.1 <.	05 05 05	10 <.5 8 <.5 5 <.5 9 <.5 7 <.5
B3 L3 9+00 RE B3 L3 9+00 B3 L3 9+25 B3 L3 9+50 B3 L3 9+75	.6 .4 1.3	3.5 3.7 4.4 9.5 27.6	7.8 6.5 8.3	27 29 32 42 54	.1 .1 .2	6.5 11.6	2.3 2.5 5.8	288	.88 1.02 1.43		.3 .6 1.6		1.4 1.6 1.6	8 8 25 50 98	<.1 .1 <.1 .2 .2	.1 <.1 .1 .1	.1 .1 .1 .1	21 23 38		.029 .024 .041	7 10 21	9.2 8.7 12.0 14.6 30.7		85 92 154		1 . 11. 21.	86 .0 91 .0 35 .0 63 .0 12 .0	19 . 18 . 21 .	.04 .04 .05 .06	.1 .1 .1	.01	1.0 1.3 1.8	<.1 . <.1 . <.1 <. .1 .	10 05 07	6 <.5 6 <.5 5 <.5 6 <.5 12 .6
B3 L3 10+00 B3 L4 0+25 B3 L4 0+50 B3 L4 0+75 B3 L4 1+00	.9 .6 1.0		8.5 6.1 8.2	46 44 37 45 28	.1 .1 .1	12.5 11.4 9.5	5.1 6.1 4.0	3475 294 183 278 933	2.24 1.78 1.71	1.7 1.1 2.1	.3 .6 .4	1.4 <.5 <.5	1.5 2.7 1.7	54 8 15 15 134	.4 <.1 .1 .2 .1	.1 .1 .1 .1	.2 .2 .1 .1	52 41 39	.31 .08 .10 .16 .73	.123 .100 .103	5 13 7	22.9 21.4 19.3 19.6 31.2	.20 .21 .18	130 80	.104 .086 .095	2 1. <1 2.	63 .0	16 . 14 . 21 .	. 11 . 05 . 06 . 05 . 10	.2 .1 .2	.03 .04 .03 .05	1.4 1.6 1.2	.1 . <.1 . <.1 . .1 .	16 06 11	11 .5 9 <.5 8 <.5 7 <.5 11 .6
B3 L4 1+25 B3 L4 1+50 B3 L4 2+00 B3 L4 2+25 B3 L4 2+50	.4 .9 1.1	6.4 6.1 6.3 4.4 5.3	7.4 7.0 11.1	34 39 31 32 41	.1 <.1 .1	8.1 7.4 6.0	3.9 3.6 3.0	117 287 127 135 232	1.45 1.82 1.75	.8 2.2 2.3	.5 .4	12.9 1.1 1.4 1.1 2.5	2.1 2.7 1.7	30 8 8	<.1 <.1 <.1 <.1 <.1 <.1 <.1		.1 .1 .2 .1	29 41 37	.15 .17 .06 .07	.056 .080 .096	15 10 6	13.1	.16 .11	125 67 57		1 1. 2 1.	76 .0. 95 .0. 95 .0 71 .0. 41 .0	21 . 18 . 20 .	.07 .04 .05 .04	.1 .2 .2	.06	1.5 1.5 1.3	.1 .1 <. <.1 . .1 . <.1 .	05 12 12	5 <.5 7 <.5 7 <.5 8 <.5 6 <.5
B3 L4 2+75 B3 L4 3+00 B3 L4 3+25 B3 L4 3+50 STANDARD DS5	.8 .4 .7 .6 13.1	6.7 5.4 5.3 2.4 143.3	6.7 5.5 6.2		.1 .1 <.1	5.7 5.9 3.5	3.8 3.5 1.6	76	1.30 1.51 .92	.7 1.3 <.5	.2	.5 1.0 <.5	1.6	100	100	.1 .1 .1 <.1 4.0	.1 .1 .1 .1 6.1	21	.26		33 10 7	10.7	.17 .09 .06	156 92 45	.067 .067		58 .0	25 . 17 . 17 .	04	<.1 .1 .1	.03 .05 .01	1.9 1.3 .7	<.1 <. .1 <. <.1 <. <.1 . 1.0 .)5)5 10	7 <.5 6 <.5 6 <.5 5 <.5 7 4.9

Zn Ag

Ni Co Mn Fe As

SAMPLE#

Mosquito Consolidated Gold Mines FILE # A404061

P La

Page 6

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SAULELII	ppm	ppm	ppm	ppm	ppm			ppm	% ppm			ppm		ppm			ppm	%		ppm	ppm	%	ppm		ppm		8 8		ppm	ppm		%	ppm	bbw
B3 L4 5+25	B3 L4 3+75 B3 L4 4+00 B3 L4 4+25 B3 L4 4+50 B3 L4 4+75	.7 1.2 .7	6.2 4.9 4.0	5.9 6.0 5.7	39 42 28	.1 .1 .1	4.6 5.0 4.9	3.7 4.3 2.1	237 1.3 176 1.6 69 1.2	4 1.2 5 2.2 1 1.4	.5 .6 .3	.7 1.3 <.5	1.5 2.9 1.6	26 7 11	.1 <.1 <.1	.1 .1 .1	.1 .1 .1	27 32 28	.12 .06 .07	.177 .348 .107	10 5 6	10.0 10.4 9.7	.07 .08 .08	138 52 70	.056 .097 .065	<1 1.3 1 2.5 1 .6	31 .02 57 .01 68 .01	1 .04 7 .04 3 .04	.1	.06 .04 .03	1.2 1.5 .9	<.1 < <.1 < <.1 <	. 05 . 05 . 05	5 7 5	<.5 <.5 <.5
B3 L4 6+50	B3 L4 5+00 B3 L4 5+25 B3 L4 5+50 B3 L4 5+75 B3 L4 6+00	1.0 .7 .4	11.0 7.3 4.9	7.0 7.8 6.0	44 41 29	.2 .1 .1	12.6 8.7 6.1	6.5 4.0 3.0	624 1.9 125 1.5 104 1.1	0 .7 8 .5 2 .5	1.5 .9 .6	<.5 6.6 .5	2.9 1.5 1.5	81 50 40	.1 .1 .1	<.1 .1 <.1	.1 .1 .1	47 34 22	.38 .26 .21	.067 .050 .022	26 15 12	24.9 16.8 11.8	.31 .25 .19	224 135 113	.087 .083 .064	1 2.1 <1 1.6 <1 1.2	19 .02 69 .02 26 .02	4 .09 5 .06 2 .05	<.1 .1 <.1	.04 .02 .02	2.9 1.6 1.2	.1 <.1 < <.1 <	.08 :.05 :.05	8 7 6	<.5 <.5 <.5
B3 L4 7+50	B3 L4 6+25 B3 L4 6+50 RE B3 L4 6+50 B3 L4 6+75 B3 L4 7+00	.9 1.2 .6	11.4 11.7 7.6	10.5 10.6 8.1	57 54 36	.5 .5 .2	12.9 12.9 8.9	9.5 9.8 6.6	360 2.5 390 2.5 334 2.1	6 1.1 9 1.0 4 1.1	.8 .9 1.0	1.2 1.2 8.0	2.3 2.4 3.4	46 47 39	.1 <.1 .1	.1 .1 .1	.2 .1 .1	52 56 53	.23 .24 .18	.070 .066 .058	15 15 20	21.9 21.8 19.3	.32 .33 .25	159 171 145	.088 .089 .086	1 3.3 1 2.8 <1 1.8	16 .02 82 .02 83 .02	3 .07 3 .07 1 .06	.1 .1	.03 .03 .02	2.2 2.1 2.6	.1 .1 < .1 <	.06 :.05 :.05	12 12 7	<.5 <.5 <.5
B3 L4 8+75	B3 L4 7+25 B3 L4 7+50 B3 L4 7+75 B3 L4 8+00 B3 L4 8+25	.6 .5 .8	5.7 6.1 16.8	7.4 6.9 8.6	34 34 50	.3 .2 .7	8.1 6.8 17.5	3.0 4.2 5.1	112 1.2 197 1.3 106 2.4	4 .7 1 .5 1 .9	.5 .5 3.4	2.9 .5 1.8	1.4 1.7 1.7	16 26 71	<.1 .1 .1	.1 <.1 .1	.1 .1 .2	21 25 29	.10 .13 .34	.028 .038 .116	7 10 28	12.6 12.0 34.7	.18 .22 .35	76 107 244	.074 .072 .036	1 1.4 <1 1.4 1 4.1	49 .02 40 .02 19 .02	4 .05 3 .05 1 .11	.1 <.1 .1	.01 <.01 .17	1.5 1.3 3.9	<.1 < <.1 < .1	.05 .05 .08	6 6 16	<.5 <.5 <.5
B3 L4 10+00	B3 L4 8+50 B3 L4 8+75 B3 L4 9+00 B3 L4 9+25 B3 L4 9+50	.7 .6	6.4 16.6 5.4	7.9 10.1 6.1	24 18 38	.2 .4 .1	6.5 13.0 6.0	1.9 2.8 3.7	123 .7 42 1.4 111 1.6	4 <.5 2 .8 3 1.0	.8 8.6 .6	1.0 .7 .8	.8 1.3 3.5	39 52 10	.1 .1 <.1	.1 .1 .1	.1 .1 .1	14 23 35	.21 .27 .09	.039 .111 .158	12 70 11	9.0 21.2 10.9	.12 .13 .13	123 280 97	.045 .030 .084	1 1.3 <1 3.8 <1 1.7	33 .02 88 .01 78 .01	0 .05 7 .07 3 .05	<.1 <.1 .1	. 03 . 07 . 03	1.1 4.9 1.7	.1 < .1 < < .1 <	.05 .05 .05	6 13 6	<.5 .5 <.5
B3 L4 11+50	B3 L4 9+75 B3 L4 10+00 B3 L4 10+25 B3 L4 10+50 B3 L4 11+00	.5	5.7 6.5 20.7	6.8 6.0 7.0	38 12 32	.1 .1 .4	7.0 4.0 20.9	4.4 1.3 3.8	209 2.0 67 .4 76 1.3	8 .9 7 <.5 0 .6	.6 1.7 8.1	5.8 1.6 1.1	5.3 .5 1.1	20 30 82	<.1 <.1 .1	.1 <.1 .1	.1 .1 .2	50 11 19	.19 .15 .50	.100 .025 .069	19 21 36	16.4 7.4 30.0	. 21 . 08 . 28	137 131 299	.105 .036 .042	1 1.2 <1 1.1 1 3.6	21 .01 10 .02 50 .02	3 .12 3 .03 4 .05	.1 <.1 .1	.03 .03 .06	2.0 1.5 4.7	.1 < .1 < .1 <	.05 .05 .05	5 4 11	<.5 <.5 <.5
	B3 L4 11+25 B3 L4 11+50 B3 L4 11+75 B3 L4 12+00 STANDARD DS5	.6	5.3 7.4 7.5	9.1 5.7 6.1	43 43 36	.1 .1 .1	7.6 10.7 11.4	3.3 5.5 5.4	93 1.5 152 1.8 121 1.8	5 2.1 1 .9 7 1.7	.3 .6 .8	.7 .7 1.8	2.3 3.1 3.3	11 32 16	.1 <.1 .1	.1 .1 .1	.2 .1 .1	34 42 39	.07 .16 .10	.140 .065 .148	6 12 9	10.8 18.4 14.9	. 13 . 33 . 17	87 184 127	.082 .091 .088	1 1.7 1 1.7 1 2.5	71 .01 74 .01 56 .02	7 .06 9 .07 0 .07	.1 <.1 .1	.02 .02 .03	1.2 2.0 2.5	<.1 < .1 < <.1 <	.05 .05 .05	8 6 7	<.5 <.5 <.5

Sb

Cd

Page 7

ACME ANALTITUAL		10.7 6.5												-																			ALME A	WALYTIC	L
SAMPLE#	Mo ppm		Pb ppm		-	Ni ppm	Co		Fe %						Cd ppm			V	Ca %		La ppm	Cr ppm	Mg - %	Ba ppm	Ti %	B Al		K %	W		Sc ppm		S %	Ga ppm	
33 L4 12+50 33 L4 12+75 33 L4 13+00 33 L4 13+25 33 L4 13+50	.8 .8 1.0 .8	7.8	6.6 7.1 6.5	29 25 36 48 48	.1 .3 .3	8.0 5.9 7.9 14.5 14.9	2.5 3.2 6.6	58 96 199		1.3 1.1	.5 .4 .4	1.3	1.7 1.9	12 10 14 25 77	<.1 <.1 .1 .1	.1 .1 .1	.1 .1 .1 .1	44 27 38 47 49	.06 .11 .13	.139 .129	6 6 5	12.7 10.3 14.9 19.4 24.9	.09 .18 .40	77 79	.086 .073 .086 .096	1 1.94 <1 2.32 <1 1.98 1 2.17 <1 2.17	.023 .021 .017	.05 .04 .05 .17	.1 .2 .1	.06	1.2 2.0	<.1 <.1 .1	.07	7 7 7	<.5 <.5 <.5 <.5 <.5
33 L4 13+75 33 L4 14+00 33 L4 14+25 33 L4 14+50 33 L4 14+75	.4 .6	11.5 8.0 17.3 7.2 8.8	6.5 7.8 6.9	53 37 29 12 43	.1 .5 .4	13.2 10.9 21.8 7.6 16.5	5.4 4.8 2.2	182 135 73	1.51 1.52 .97	. 5	.4 2.6 2.2	<.5 1.2	2.0 1.3 .3 .2 1.9	*39 115 81	.1 .1 .1	<.1 <.1 .1 <.1	.1 .1 .1 .1	28 29 17	.14 .52 .34	.062 .057 .090 .045	7 58 79	14.9 27.0	.41 .16	113 227	. 094 . 046 . 024	<1 2.12 <1 2.21 2 3.07 1 2.13 1 2.65	.024 .037 .024	.07 .06 .08 .05	.1 <.1	.03 .12 .06	1.9 3.0	.1 .1 .1	<.05 <.05 .06 .06 <.05	8	.5 <.5 <.5 <.5
33 L4 15+00 33 L4 15+25 33 L4 15+50 33 L4 16+00 33 L4 16+25	1.1 .6 .6 .8 1.0	5.5	12.5 6.6 9.7	36 35 41 29 33	.3 .1 .1	8.9 6.5 8.1 5.8 7.8	3.2 4.6 2.5	156 150 79	1.36	1.0 .7 2.5	.7 .6 .7 .3	.6 1.9 <.5	4.1	12 30 23 10 15	.1 .2 .1 <.1	.1 .1 .1 .1	.1 .2 .1 .1	27 45 34	.18 .17 .08	.134 .113 .077 .113 .115	24 17 6	11.3	.10 .27	157 150 70		1 2.43 1 1.67 1 1.67 1 1.40 <1 1.28	.024 .019 .020	.05 .06 .08 .04	.1 .1 .2	.10 .01 .06	1.8 1.3 1.7 1.1	<.1 .1 <.1	<.05 <.05 <.05	7 5 7	<.5 .5 <.5 <.5 <.5
33 L4 16+50 33 L4 16+75 33 L4 17+00 33 L4 17+25 33 L4 17+50	.9 .7 1.1 1.0 .9	6.1 6.5 4.8 6.8 7.4	6.4 7.7 7.8	35 43 36 44 43	.3 .2 .2	13.8 13.8 8.7 13.5 19.0	5.0 3.5 4.7	353 131 226	1.81 1.89 1.94	1.4 1.7 2.3	.4 .4 .4	.6	2.3 2.5 1.9	10 14 10 25 12	.1 .1 .1 .1	.1 .1 .1 .1	.1 .1 .1 .1	41 44 48		.107 .158 .144	6 8 7	16.3 15.4 21.0	.18	109 103 127	.082	<1 1.74 1 2.06 2 1.43 2 1.42 1 1.92	.016 .017 .018	.05 .05 .04 .07	.1 .2 .1	.06	1.2 1.6 1.4 1.3	.1 <.1 <.1	<.05 <.05	6 6 6	<.5' <.5 <.5 <.5
B3 L4 17+75 B3 L4 18+00 RE B3 L4 18+00 B3 L4 18+25 B3 L4 18+50	2.6 1.3 1.3 1.0	6.3 6.1	8.3 8.1 7.5	46 44 43 37 47	.5 .4 .5	13.8 7.4 6.4 7.6 7.5	4.3 4.6 3.9	671 704 115	1.46 1.45 1.93	.9 1.2 1.7	1.4 1.5 .6	57.1 .7	1.7 1.7 2.9	66 32 33 13 12	.2 .1 .1 .1	.1 .1 .1 .1	.2 .1 .1 .1	64 38 37 47 40	. 23 . 22 . 08	.087 .032 .034 .113 .122	20 20 10	22.8 13.4 12.6 14.6 13.2	.20 .20 .15	254 134 132 107 95	.073	1 3.14 2 1.28 1 1.43 2 1.38 1 1.80	.024 .024 .017	.07 .05 .05 .06	.1 .1 .1	.01 .01 .03	2.7 1.6 1.5 1.4 1.4	.1 <.1	<.05		.6 .5 .6 <.5 <.5
B3 L4 18+75 B3 L4 19+00 B3 L4 19+25 B3 L4 19+50 B3 L4 19+75	.7 1.0 .8 1.0	6.6 6.3 4.9	6.4	56 43 44	.3 .3 .1	7.4 8.9 8.6 8.7 10.0	4.7 4.6 3.4	132 173 268	2.00 1.98 1.58	1.9 1.6 1.7	.6 .5 .4	2.4 <.5 <.5 .6 1.4	3.0 3.5 .9	14 9 12 18 14	.2 .1 .1 .1	.1 .1 .2 .1	.2 .1 .1 .2	47 51 47	2345000	.073 .101 .049	10 12 9	-1 6.6	.16 .20 .13	102 112 137	. 099 . 087 . 069	<pre><1 1.02 2 1.78 1 1.46 3 .81 2 2.14</pre>	.019 .016 .020	.07 .06 .08 .07	.1 .1 .1		1.1	<.1 .1 .1	<.05 <.05	7 6 4	<.5 <.5 <.5 <.5
B3 L4 20+00 B3 L8 10+25 B3 L8 10+50 B3 L8 10+75 STANDARD DS5	.7 .7	20.4	7.4 8.1	50 30 38 27 132	.3 .2 .2	9.7 21.4 13.5 9.4 24.6	27.3 4.5 3.3	2433 138 74	2.02 1.68 1.37	1.4 1.5 1.8	.5 .3	<.5 <.5 .6	1.2	10 185 14 29 45	.1 .5 <.1 .1 5.6	.2 .1 .1 .1 4.0	.1 .1 .1 .1 5.8	33 30	.77 .07 .13	.129	96 6 5	28.3 16.3	.40 .21 .14		.055 .088 .080	2 1.63 1 2.86 3 2.14 1 1.49 16 2.00	.019 .018 .018	.07 .06 .04 .05	<.1 .1 .1	. 07	6.5 1.6 1.4	.1 < <.1 < <.1	<.05	7 8 7	<.5 1.0 <.5 <.5 5.1

Page 8

ACME AWALTITICAL													-																				TIL MINLIT	roi ii.
SAMPLE#	Mo ppm	Cu ppm			-	Ni ppm			4.00	As ppm	10.55	20 10000		2000	Cd ppm				Ca %		La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B A1 ppm %		K %		Hg ppm	Sc ppm		200	Se ppm
B3 L8 11+00 B3 L8 11+25 B3 L8 11+50 B3 L8 11+75 B3 L8 12+00	.4 .8 .4	7.7 7.8 24.6 7.8 8.0	6.8 10.0 5.4	42	<.1 .2 .1	13.4 15.5 15.1 9.0 19.7	6.3 7.5 4.7	172 3917 177	2.30 2.13 1.72		.7 .7 1.0	1.6	2.3	98 322	.1 <.1 <.1 <.1	.1 .1 .1	.1 .1 .1 .1	53 57 45	3.76	. 087 . 366	15 12 28	21.8 26.3 19.2 17.1 28.4	.64 .47	244 655 203	. 135 . 094 . 099	2 1.89 1 2.11 27 2.47 1 1.44 1 2.51	.016 .141 .020	.09 .12 .54 .10	.1 .1 .1	.02 .01 .03 .01	2.7	.1 <.0 .1 <.0 .1 <.0 .1 <.0	05 6 05 8 05 5	<.5 <.5 <.5
33 L8 12+25 33 L8 12+50 33 L8 12+75 33 L8 13+00 33 L8 13+25	.8 2.7	10.4	7.6 8.5 7.8		<.1 .5	7.7 6.6 13.4 9.2 10.7	5.6 6.0 3.9	315 1346 98	1.52 1.24 1.48	1.0	1.0	3.7 <.5 .5 .8 6.1	4.0 .1 2.8	49 46 228 30 69	.4 <.1	.1 .3 .1 <.1	.1 .1 .1 .1	40 29 31	.32 .36 1.68 .19 .44	.123	26 40 13	16.4	.37 .33 .34	251 188 149	.118 .020 .090	2 1.19 1 1.34 2 1.91 1 1.84 2 2.28	.021 .033 .019	.10 .16 .08 .08	.1 .1 .1	.01 .01 .22 .02	1.9 1.7 1.5	.1 <.0 .1 <.0 .1 .0 .1 <.0 .1 <.0)5 5)8 5)5 7	<.5 .5 <.5
33 L8 13+50 33 L8 13+75 33 L8 14+00 33 L8 14+25 33 L8 14+50	.4 .5 .8	7.1 5.5	6.6 12.8 6.6	40	.1 .1	8.3 8.8 11.6 6.1 11.9	4.4 5.1 3.6	119 116 102	1.53 1.78 1.70	1.1 1.0	1.0 .6 .6	1.8 .7 3.9 53.2.	2.1 2.6 2.7	42 31	<.1 <.1 <.1 <.1	<.1 .1 .1	.1 .1 .1 .1	38 36	.21 .21 .18 .14 .19	.063 .091	15 12 13		.27 .32 .16	136	.087 .080 .082	2 1.61 1 1.54 <1 1.95 1 1.38 1 1.62	.022 .022 .019	.07 .07 .07 .07	.1 .1 .1	.01 .02 .03 .04 .02	1.7 1.9 1.5	.1 <.0 .1 <.0 .1 <.0 <.1 <.0 .1 <.0	05 6 05 7 05 7	
B3 L8 14+75 RE B3 L8 14+75 B3 L8 15+00 B3 L8 15+25 B3 L8 15+50	2.3		6.3 8.0 10.3	30 31 62 46 33	.1	5.9 6.4 7.3 10.7 6.3	4.5 3.9 6.7	192 1124 1192	1.51 1.36 2.00	.7 .8 .6 1.4	.8 .7 3.5	1.7	3.9	36 161 125	<.1 .1 .1 .2 .1	.1 .8 .2	.1 .1 .1 .1	38 30 43	.37 .38 2.02 1.18 .32	.117 .200 .080	28 19 32	12.9 14.0 12.7 21.6 14.2	. 28	208 215 506 285 270	. 094 . 079 . 048	<1 1.31 2 1.34 13 1.25 1 2.69 1 1.35	.018 .020 .026	.11 .12 .19 .08 .13	.1 .1 .1	.02 .01 .02 .08	1.5 1.4 3.6	.1 <.0 .1 <.0 .1 <.0 .2 <.0 .1 <.0)5 5)5 5)5 10	<.5 .5
B3 L8 15+75 B3 L8 16+00 B3 L8 16+25 B3 L8 16+50 B3 L8 16+75	.4	10.3 7.4	7.5 6.5		.6 .3	5.2 8.4 5.5 5.1 8.6	7.2 3.9 2.8	484 135 68	1.54 1.06	.6 1.0 .6 .5	2.8 .7 .5	14.1 .8 1.4 1.1 7.3	.4 2.2 1.2		.1 .3 .1 <.1 <.1		.1 .1 .1 .1	42 37 21	.16 .89 .16 .13 .20	. 096 . 046 . 023	42 13 7	12.5 13.7 11.4 8.3 17.3	.23 .23 .15	1000	.032 .078 .065	1 1.16 2 1.99 1 1.51 <1 1.87 <1 1.68	.027 .023 .032	.05 .07 .06 .04 .12	.1 .1 .1	.02 .10 .01 .01	1.8 1.4 1.2	.1 <.0 .1 <.0 .1 <.0 <.1 <.0 .1 <.0	.1 6 05 6 05 7	<.5 <.5
B3 L8 17+00 B3 L8 17+25 B3 L8 17+50 B3 L8 17+75 B3 L8 18+00		8.5 38.4 6.0 7.7 6.9	11.2 6.8 7.1	205 41 46	.8 .4 .1	9.3 9.3 6.7 12.1 7.9	5.3 4.4 5.9	9267 204 175	1.36 2.01 2.17	1.5 1.1 1.2	. 4	1.2 <.5 1.3 1.1	1.5 3.3	21 482 21 24 21	.2	.1 .4 .1 .1	.1 .1 .1 .1	33 44 52	.16 7.17 .14 .17 .18	.669 .139 .066	15 17 15	11.3	.32	1415 184	.065 .073 .101	<1 2.69 46 1.68 1 1.63 <1 2.24 2 1.90	.226 .017 .021	.13 .94 .11 .09 .05	.2 .1 .1	.04 .03 .03 .02 .05	2.3 1.7 1.8	.1 <.0 .1 <.0 .1 <.0 .1 <.0 .1 <.0	5 7 5 7 5 7	<.5 <.5
B3 L8 18+25 B3 L8 18+50 B3 L8 18+75 B3 L8 19+00 STANDARD DS5	1.0 .6 .6 .6 12.6	4.3 5.5	11.7 10.3 9.1 7.8 24.8	29 36 37	.1 .1 .1	8.7 5.2 7.1 7.2 24.6	3.0 4.1 4.8	89 114 174	1.25 1.60 1.57	.5 1.0 .6	.4 .6 .7	.8 .5	1.5 2.3 3.0	37 15 15 29 48	.1 <.1 .1 5.6	.1 .1 .1	.2 .1 .2 .1 6.2	33 27 34 33 62	.08	.284 .026 .081 .043	10 22 15	12.3	.14 .14 .26	123 141 165	.067 .075 .086	<1 2.84 1 1.29 1 1.49 <1 1.90 18 2.01	.021 .018 .022	.08 .06 .07 .08 .15	.1 .1 .1	.02	1.1 1.7 1.6	.1 <.0 .1 <.0 <.1 <.0 .1 <.0 1.1 <.0	5 6 5 8 5 7	<.5

Page 9

ACTIE ARMETTECAL																														STATE		Al	ME ANALYI	ICAL
SAMPLE#	Mo ppm	0000000	Pb ppm			Ni ppm	Co ppm		2.00	As ppm						Sb		V	Ca %		La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B A1		K %	W	-	Sc ppm		S Ga % ppn	Se ppm
B3 L8 19+25 B3 L8 19+50 B3 L8 19+75 B3 L8 20+00 B3 L9 0+00	.8 .8 .7 1.3	7.8 9.0	9.1 8.2	41 41 51 49 26	.1 .2 .3	7.4 11.7 11.8 25.3 12.0	5.1 4.7 8.3	352 380 318	2.02 2.16 2.34	2.0 2.4 3.0	.6 .3 .6	1.8 .5 .8	1.7 2.5	26 14 23 19 179	.1 .3 .1 .8	.1 .1 .1 .2 .6	.1 .1 .2 .1	36 50 53 54 26		.091	14 7 11	13.8 17.9 25.3 33.3 17.5	.22 .21 .34		.105 .104 .099	<1 1.70 1 2.31 3 1.87 1 2.26 2 1.81	.022	.09 .07 .06 .06	.1 .2	.04	1.9 1.7 2.4	.1 <.0 <.1 <.0 <.1 <.0 <.1 <.0 <.4 <.0	15 8 15 9 15 9	<.5 3 <.5 4 <.5 5 <.5 6 1.1
B3 L9 0+25 B3 L9 0+50 B3 L9 0+75 B3 L9 1+00 B3 L9 1+25	.8 .8 .5	6.2	6.8 5.9 6.1	32 34 58 42 54	.1 .1 .1	14.2 6.3 11.1 7.2 19.6	2.7 5.2 4.4	75 154 124	1.34 1.90 1.51	.7 .6 <.5	.4 .5 .5	2.2 .5 <.5	2.2 2.2 2.3	18	.4 <.1 <.1 <.1	.2 .1 .1 .1	.2 .1 .1 .1	27 52	.11 .07	.118	10 11 9	23.5 13.6 28.4 20.2 42.1	.13 .32	102 106	.032 .076 .043	1 2.22 1 1.02 <1 1.32 <1 1.53 <1 3.10	.016 .016 .016	.05	<.1 <.1	.01	1.1 1.8 1.5	.2 <.0 <.1 <.0 <.1 <.0 <.1 <.0 <.2 <.0	5 5 5 6 5 4	<.5
B3 L9 1+50 B3 L9 1+75 B3 L9 2+00 B3 L9 2+25 B3 L9 2+50	.6 .8 .8 .8	7.8 6.7 9.2	7.3 7.2 7.4 6.6 6.2	53 47 49	.1 .1 <.1	7.8 18.3 17.3 23.0 19.3	5.8 4.2 7.5	190 121 273	1.97 1.65 2.31	1.4 1.5	.4 .3 .5	<.5	2.1 1.6 3.3	27 11 11 13 14	.1 .1 .1 .1 <.1	.1 .1 .1 .1	.1 .1 .1 .1	38 47 45 54 53		.101 .061 .109	6 6 10	20.2 24.5	. 27	74 55 109	.086 .114 .104 .124 .110	<1 .92 1 2.06 1 1.50 <1 2.53 <1 1.77	.019 .017 .019	.07 .07 .05 .08	.1 .1	.04 .04 .04 .03 .04	1.6 1.1 2.3	.1 <.(.1 <.(.1 <.(.1 <.(.1 <.(5 7 5 8 5 8	<.5
B3 L9 2+75 B3 L9 3+00 B3 L9 3+25 RE B3 L9 4+75 B3 L9 3+50	.9 .7 .5 .8	6.6 6.3	6.2 6.5 5.5 9.8 8.3	38 40	<.1 <.1 .1	15.7 14.5 9.7 9.3 12.6	5.1 3.8 4.2	164 140 1253	1.74 1.41 1.33	1.5 1.3 1.7	.4 .4 .4	<.5 .6 <.5 <.5	2.5 2.1 1.4	10 11 8 27 9	.1 .1 .1 .1 <.1	.1 <.1 <.1 .1	.1 .1 .1 .1	35 29	.08 .09 .06 .17 .07	.105 .115 .161	8 6 6	17.9 16.6 13.3 11.8 17.0	.14	75 68 108	.110 .090 .099 .072 .104	1 1.93 <1 1.58 1 1.76 <1 1.70 1 2.09	.016	.06 .06 .05 .07	.1 .1 <.1	.03	1.4 1.6 1.1	.1 <.0 <.1 <.0 <.1 <.0 .1 <.0 <.1 <.0	5 7 5 6 5 7	<.5 <.5 <.5 <.5 <.5
B3 L9 3+75 B3 L9 4+00 B3 L9 4+25 B3 L9 4+50 B3 L9 4+75	.7 .7 .9 .7	5.6 5.2 4.0	8.2 6.6 7.7 6.8 10.0	32	<.1 .1 <.1	12.3 9.9 8.7 6.6 10.1	3.9 4.0 3.1	100 80 113		1.6 1.8 .8	.4 .5 .4	1.3 <.5 .9 <.5 1.1	2.1 2.7 2.6	8	<.1 <.1 <.1 .1	.1 .1 .1 .1	.2 .2 .2 .1	36 41 36	.05 .06 .05 .08	.123 .119 .042	7 7 10		.15 .12 .13	76 81	.087 .107 .104	<1 2.87 <1 1.83 <1 2.38 <1 1.10 2 1.71	.019 .019 .016	.05 .05 .05 .06	.1 .1 <.1	.04	1.5 1.6 1.0	<.1 <.0 <.1 <.0 <.1 <.0 .1 <.0	5 7 5 9 7 6	
B3 L9 5+25 B3 L9 5+50 B3 L9 5+75 B3 L9 6+00 B3 L9 6+25	.6 .7 .6 .9	7.7 10.3 8.2	7.2	34 48 48 45 50	.1 .1 .1	12.0 13.1 15.4 17.9 22.1	6.5 6.9 7.6	156 169 197	1.93 2.23 2.22	1.5 1.4	.5	1.8	1.8	64 33 39 22 15	.1 .1 .1 .1	.1 .1 .1	.1 .2 .1 .1	43 49 51	.31 .12 .18 .10 .07	.124 .137 .107	9 11 7	18.8 20.7	.30 .25 .35	167 162 169 182 146	.104 .111 .125	<1 2.30 <1 2.36 <1 2.97 1 2.61 <1 2.76	.019 .026 .021	.08 .08 .07 .07	.1 .1 <.1	.03 .03 .03 .03	2.1 2.6 2.4	.1 < .0 .1 < .0 .1 < .0 .1 < .0	5 8 5 10 5 9	<.5 <.5
B3 L9 6+50 B3 L9 6+75 B3 L9 7+00 B3 L9 7+25 STANDARD DS5	.7 .7	14.3 8.6	6.5 6.5	56 32 45 42 128	.3 .3 .3	19.6 13.2 12.5 8.3 23.3	4.7 5.4 4.2	191 156 105	1.88 1.90 1.88	1.5 1.4 1.5	6.1 .5 .5	1.2 4.2	4.1 2.3 2.5	20 85 20 17 45	.1 .1 .1 .1 5.4	.1 .1 .1 .1 3.6	.1 .1 .1 .1 5.7	40 40 43	.09	.038	121. 8 9	24.0 26.9 15.0 13.0 176.3	. 42 . 25 . 19		.075 .092 .094	<1 2.44 <1 2.79 <1 2.47 <1 2.15 18 1.88	.027 .017 .022	.08 .05 .05	<.1 .1 .1	. 04 . 05 . 05	9.7 2.0 1.7	<.1 <.0 .2 <.0 <.1 <.0 <.1 <.0 1.0 <.0	5 8 5 7 5 9	<.5

ANALYTICAL

Page 10

SAMPLE#	Mo Cu ppm ppr		Ag Ni Co ppm ppm ppm				Sr Cd Sb ppm ppm ppm p		Ca P % % p		Mg Ba Ti % ppm %		K W Hg Sc Tl % ppm ppm ppm ppm		
B3 L9 7+50 B3 L9 7+75 B3 L9 8+00 B3 L9 8+25 B3 L9 8+50	.4 4.5 .6 6.1	6.0 23 6.4 36 7.6 23	.1 5.2 2.1	101 .82 119 1.57 66 1.02	.5 .4 1.3 .5 .7 .9	.7 .8 1.0 2.5 <.5 .9	28 < .1 < .1 14 < .1 < .1 37 .1 .1	.1 20 .1 36 .1 24	.12 .021 .08 .149 .16 .033	7 9.2 9 14.2 17 11.7	.13 107 .065 .13 109 .063 .15 150 .075	5 <1 .83 .020 3 <1 2.10 .016 5 1 1.54 .019	.05 .1 .01 1.6 .1 .04 .1 .01 .8 < .1 .05 .1 .03 1.5 < .1 .05 .1 .02 1.2 .1 .05 .1 .02 2.2 .1	<.05 4 <.5 <.05 8 <.5 <.05 6 <.5	
B3 L9 8+75 B3 L9 9+00 B3 L9 9+25 B3 L9 9+50 B3 L9 9+75	.5 7.0 .7 7.3 .5 6.7	5.9 21 3 10.9 31 7 7.1 32	.2 11.5 2.7 .2 8.1 2.0 .2 8.2 3.8 .1 7.2 3.1 .3 5.2 2.9	63 1.13 118 1.13 77 1.05		<.5 .3 <.5 .4 3.3 1.8	90 .1 <.1 111 .1 .1 57 .1 <.1	.1 17 .1 23 .1 19	.36 .090 .42 .057 .24 .041	26 17.3 26 17.2 17 15.4	.16 208 .019 .23 225 .051 .23 182 .060	1 2.65 .021 1 2.17 .023 <1 2.10 .020	.06 < .1 .07 2.3 .1 .1 .04 .1 .08 1.7 .1 .1 .06 .1 .06 1.6 .1 .06 < .1 .05 .1 .05 .1 .05 .1 .04 1.4 < .1 .05 .1 .04 1.4 < .1 .05 .1 .04 1.4 < .1 .05 .1 .04 1.4 < .1 .05 .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .04 1.4 < .1 .0	<.05 8 <.5 <.05 8 .6 <.05 7 <.5	
B3 L9 10+00 B3 L9 10+25 B3 L9 10+50 B3 L9 10+75 RE B3 L9 10+75	.9 5.7 .6 7.1 .4 7.8	5.8 30 7.3 36 7.0 36	.1 6.3 3.5 .1 12.6 6.0 .1 15.1 6.0	259 1.48 132 1.60 144 1.71	1.3 .5 1.1 .7 1.1 1.1	1.1 2.5 <.5 2.5 1.4 2.9	14 < .1 .1 32 < .1 < .1 42 < .1 < .1	.1 37 .1 35 .1 42	.09 .115 .13 .077 .23 .074	9 13.4 11 17.1 15 19.2	.12 91 .085 .23 214 .097 .35 235 .115	<1 2.76 .022 1 2.21 .022	.07 .1 .06 4.3 .3 .06 .1 .04 1.3 < .1 .06 .1 .02 2.2 .1 .08 .1 .01 2.3 .1 .08 .1 .01 2.5 .1	<.05 6 <.5 <.05 8 <.5 <.05 7 <.5	
B3 L9 11+00 B3 L9 11+25 B3 L9 11+50 B3 L9 11+75 B3 L9 12+00 N.S.	.7 6.7 .5 4.1	6.5 29	.1 8.3 3.5 .1 12.7 5.9 .1 6.6 2.5 .1 8.6 5.3	125 2.25 103 1.09	1.9 .8 .6 .5	14.3 4.0 < .5 2.1	25 < .1 < .1 38 .1 < .1	.1 54 .1 24	.18 .102 .12 .021 .20 .053	15 21.6 11 11.4	.27 258 .122 .21 119 .077	1 2.89 .015 1 1.10 .015	.05 < .1 .02 1.7 .1 .07 .1 .07 .1 .01 2.3 .1 .07 < .1 .02 1.3 .1 .06 < .1 .02 1.3 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	<.05 9 <.5 <.05 5 <.5	
B3 L9 12+25 B3 L9 12+50 B3 L9 12+75 B3 L9 13+00 B3 L9 13+25	.6 13.7 .8 5.6 .8 6.7	7 7.8 33	.1 6.2 2.9 .1 9.3 4.5	173 1.50 94 1.38 224 1.52	.7 3.3 1.1 .7 .9 1.5	.6 2.2 <.5 1.7 .9 3.5	66 .1 <.1 25 .1 <.1 48 <.1 <.1	.1 27 .1 32 .1 35	.43 .053 .14 .126 .35 .053	19 22.6 12 11.9 18 18.0	.14 114 .078 .39 214 .122	1 2.34 .027 3 1.45 .016 2 1.80 .024	.04 .1 .26 1.4 .1 .06 <.1 .02 4.7 .1 .05 .2 .04 1.5 <.1 .10 .1 .01 2.5 .1 .06 .1 .13 2.3 .1	<.05 7 <.5 <.05 6 <.5 <.05 5 .5	
B3 L9 13+50 B3 L9 13+75 B3 L9 14+00 B3 L9 14+25 B3 L9 14+50	.7 5.2 .7 6.4 .6 4.7	5.8 39 6.5 34	.1 8.7 5.1 .1 7.2 4.5 .1 8.3 5.2 .1 5.7 4.0 .1 4.9 3.8	134 1.98 155 1.97 126 1.68	1.1 .7 1.3 .7 .8 .6	7.1 4.1 .7 3.7 2.2 4.0	17 < .1 .1 26 .1 .1	.1 53 .1 51 .1 38	.18 .129 . .11 .161 . .21 .051 .	23 16.4 15 15.8 15 13.0	.20 150 .106 .25 149 .097	1 1.62 .016 1 2.01 .017 2 1.45 .015	.07 < .1 .02 1.7 .14 .09 .1 .03 1.8 .14 .09 .1 .02 2.1 .14 .11 .1 .02 1.5 .14 .07 < .1 .02 1.3 .14	5.055.057.50565	
B3 L9 14+75 B3 L9 15+00 B3 L9 15+25 B3 L9 15+50 STANDARD DS5	.6 6.8 .6 6.6 .7 6.4	3 7.0 40 5 7.3 36 4 7.7 38		124 1.80 128 1.40 405 1.66	1.2 .6 1.0 .6 1.0 1.7	1.3 2.4 4.3 1.3 <.5 1.5	31 .1 .1 33 .1 .1 68 .1 .1	.1 41 .1 30 .1 42	.16 .105 . .18 .071 . .55 .079 .	11 15.0 16 11.3 30 14.4	.21 144 .098 .19 139 .068 .26 221 .072	3 2.43 .024 2 1.63 .019 3 1.69 .020	.14 .1 .01 1.9 .14 .07 .1 .02 1.7 <.14 .08 .1 .03 1.4 .14 .10 .1 .04 1.9 .14 .16 4.7 .16 3.6 1.14	5.05 9 < .55.05 6 .55.05 5 < .5	

Mosquito Consolidated Gold Mines

FILE # A404061

Page 11

SAMPLE#	Mo	Cu	Pb ppm	Zn	Aç	g N	i (Co I		e As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Ma	Da	T.					1:		ACM	ANALYT	ICAL
3 L9 15+75	E									₹ ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm		*	ppm	ppm	Mg %	Ba ppm	Ti %	B A			W	Hg	Sc			a
L9 16+00 L9 16+25 L9 16+50 L9 16+75	.9 1.3	4.7 5.7 6.5	7.5 6.1 7.1 7.3	24 27 32 33	.1 .1 .2	1 5.8 1 4.3 1 8.8 2 9.6	5 3. 3 2. 3 4. 5 4.	.1 9 .6 17 .0 18	9 1.35 5 1.26 5 1.51 6 1.87	5 <.5 1.0 1.6	.8 .6 .9	1.7 1.6 3.4	4.5 3.7 2.1 3.7 3.1	32 31 45	<.1 .1 <.1	.1	.1 .1 .1	29 30 37	.20	047 027 085	16 13 21	10.4 11.4 10.1 14.6 15.5	.27 .17 .28	156 115 198	.110 .098 .071	1 1.1 <1 1.3 1 .9 <1 1.36 <1 2.01	4 .019 2 .022 1 .017 5 .025	.12 .09 .09	.1 .1 .1	.02 .02 .02	1.6 1.4 1.3 1.6	.1 <.0 .1 <.0 <.1 .0 .1 <.0	2 E	4 · 5 · 5 · 5
L9 17+00 L9 17+25 L9 17+50 L9 17+75 L9 18+00	.5 .5 .5	6.1 3.4 3.4 3.8	6.1 6.7 6.3 4.7 6.7	28 18 27 25	.1 <.1 .1	5.8 3.2 4.4 4.7	3. 1. 3. 2.	2 14 2 6 3 13 6 7	8 1.38 0 .64 5 1.38 7 .99	<.5 .7 .5	.5 .2 .4 .4	1.1 2.4 1.0	2.2 1.3 3.2 1.9	24 16 19	.1 <.1 <.1	<.1 <.1 <.1 <.1	. 1	33 17 34	.10 . .13 . .09 . .15 .	164 034 014 067	12 14 6 13	13.4 11.9 6.9 10.7 9.0	.14 .17 .07	129 130 63 161	.080 .077 .064 .078	<1 2.07 <1 1.16 <1 .51 <1 .94 <1 1.11	.018 .022 .017	.06 .06 .04	.1 .1 <.1 <.1	.02 .02 .01	1.5 .7 1.2	.1 <.0 <.1 <.0 .1 <.0 <.1 <.0 .1 <.0 .1 <.0	6 6 5 4 4	
L9 18+50 L9 18+75 L9 19+00 L9 19+25	.5 .8 1.0	5.3 5.9 6.0 6.9	7.8 8.5 7.2 6.3	43	.1 .2 .1	5.7 10.3 15.0 11.5	3.7 5.0 3.6	2 110 7 450 0 179 6 119	1.43 1.16 1.86 2.15 1.84	.6 1.5 2.0 1.2	.3 .4		2.0 1.1 2.5	26 10 8 8 8	.1 .1 .1 .1	.1 .1 .1 .1	.1 .2 .1 .1	27 43 52	.14 .06 .06 .07 .10 .08 .10	027 101 142	12 7 8	12.3 10.8 20.3 20.3 15.1	. 13 . 14 . 18	99	077 081 076 090	1 1.29 <1 1.47 1 1.26 <1 2.12 2 2.06	.018 .022 .016 .016	.07 .09 .05	.1 .1 .1	.02 .02 .03	1.1 1.1 1.1 1.2	.1 < .05 < .1 < .05 < .1 < .05 < .1 < .05 < .1 < .05 < .1 < .05 < .1 < .05	6 6 8 10	< < <
L9 19+75 L9 20+00 L10 0+00 L10 0+25 B3 L10 2+75		8.8 7.3 5.9 4.8	8.1 9.0 5.9 7.3	40 39 32 23	.3 .4 .1 .1	10.3 9.5 6.4	5.4 5.6 3.9 2.4	143 342 78 76	1.46 1.96 2.00 1.64 1.17	1.5 1.1 1.2 1.0	1.1 .5 .3	1.2 19.9 <.5 <.5	4.4 3.7 2.9 1.7	17 16 28 11 14	.1 .1 .1 .1	<.1	.1	42 49 36	.12 .0 .14 .0 .23 .0 .09 .1 .09 .0	74 38 14	14] 24] 10]	18.3	24 24 14	124 .0 163 .1 141 .0 105 .0	106 095 086	1 1.53 <1 2.14 2 1.59 1 1.84 <1 .76	.025 .024 .017	.06 .08 .07	<.1 .1 .1	.02 .02 .03	1.4 1.5 1.9 1.5	.1 < .05 .1 < .05 .1 < .05 .1 < .05 < .1 < .05	6 8 6	< < < < < <
L10 0+50 L10 0+75 L10 1+00 L10 1+25 L10 1+50	.9 .6 .8	7.0 5.0 5.3	5.8 4.5 4.7 8.1	31 27 35 30	.1 : <.1 .1 <.1	13.7 7.5 9.3 6.7	4.5 3.2 3.8 3.1	88 105 102 96	1 72	1.7 .6 .9 1.2	.4 .4 .3	1.6 .5 1.3 .5 <.5	2.9 2.9 2.1 2.0		.1 <.1 .1 <.1	.1 .1 .1	.1 .1 .1	38 37 34	.07 .1 .07 .1 .10 .09 .05 .08	65 91 1 39	8 1 .0 1 7 1	7.8 . 7.2 . 3.1 . 4.8 . 3.2 .	18 15 14	94 0	86 82 78	<1 2.34 <1 1.64 1 .96 <1 1.33 <1 1.18	.014 .016 .015	. 08 . 06 . 04	.1 .1 .1	.03 .06 .02	2.2 · 1.6 · 1.1	<.1 <.05 <.1 <.05 .1 <.05 .1 <.05 <.1 <.05	7	<. <. <.
110 1+75 110 2+00 110 2+25 110 2+50 110 2+75	.9	5.9 6.3 7.3 5.1	6.6 5.6 7.8 5.6	35 39 35	.1 <.1 1 .1 1 .1 1	7.3 12.9 14.3 .2.0	3.6 4.6 6.0 4.3	187 90 177 111	1.47 1.73 1.75 1.62	1.6 1.5 1.6 1.3	.5 .4	.7 .7 1.4 .9 .5	2.4 2.7 2.8 2.6	9 8 16 8	<.1 .1 <.1	.1 .1 .1	.1 .1 .1	31 . 36 . 35 .	08 .09 07 .10 06 .10 12 .08 06 .11	1 5	6 1: 7 1: 7 1:	3.0 1.3 4.9 5.8	13 17 .9 1	87 .09 76 .09	90 90 97	1 2.12 1 1.89 1 2.15 1 2.53	017 . 017 . 018 .	06 04 05 08	.1 . .1 . .1 .	02 1 06 1 04 1 05 1	1.6 1.2 1.8 <	.1 < .05 .1 < .05 .1 < .05 .1 < .05 .1 < .05	6 7 6 8 7	<.! <.! <.! <.!
.10 3+00 .10 3+25 .10 3+50 IDARD DS5 1	.6 10 .5 5 1.0 7 13.3 143).4 9 5.5 7	9.0 7.7 3.7	46 34 < 39 <	.1 1 : 1 : : 1 1:	6.0 8.4 4.7	7.5 3.9 7.9	655 163 180	1.99 1.35 2.17	1.3	.6	1.3 3 <.5 1 .5 1 .6 2 0.6 2	.4 .7 .8	60 47 < 24	.1 .1 .1	. 1	.1 .1 .1	41 . 30 . 42 .	06 .12 22 .07 16 .03 11 .17 73 .09	4 20 2 9 4 6) 21) 14 5 17	3.5 .2 .8 .3 .5 .2 .3 .3 .2 .6	4 1: 4 1: 8 1:	62 .09 21 .09 63 .11)1)5 < 0	1 2.45 . 1 2.13 . 1 1.31 . 1 2.58 . 6 1.97 .	022 019 018	05 . 07 <. 06 .	.1 1 1	03 2 02 2 02 1	.1 < .0 .4	.1 < .05 .1 < .05 .1 < .05	7 8 6 8 7	<.5 <.5 <.5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data & FA

Page 12

SAMPLE#	Mo ppm		Pb ppm		-												Bi ppm			P %						B Al	Na %				Sc ppm			Ga ppm	
33 L10 3+75 33 L10 4+00 33 L10 4+25 33 L10 4+50 33 L10 4+75	.7 .6 .9 .7	6.5 9.6 6.8	10.1 9.3 7.9 7.0 7.3	33 46	<.1 .1 <.1	13.0 17.3 11.5	4.3 7.6 4.6	117 155 126	1.90 1.56 2.27 1.73 1.85	.8 1.7 1.2	.4 .7 .5	1.1 1.2	3.1	37 19	.1 <.1 <.1 <.1	.1 .1	.2 .1 .1 .1	34 49 38	.17 .11 .11	.166 .085 .138 .091 .146	7 11 8	21.9	.21	114 123 113	. 129 . 140	1 2.50 1 1.73 1 2.64 <1 1.86 1 2.05	.018 .020 .020	.06 .08 .06	.1 .1 .1	.07	2.5 1.6 2.3 1.4 1.5	.1 · .1 · <.1 ·	<.05	9 9 8	<.5 <.5 <.5 <.5
33 L10 5+00 33 L10 5+25 33 L10 5+50 33 L10 5+75 33 L10 6+00	.9 .8 1.2 .8 .5	7.1 7.4 8.4	7.1 6.5 15.7 7.4 7.5	53 42 42	.1 .1 .1	11.4 6.7 11.5	4.4 2.3 4.5	156 200 98	2.31 1.75 1.17 1.69 .74	1.4 .7 1.7	.4	.6 1.3	2.2	17 11 21 18 17	.1 .2 .1 <.1	.1 .2 .1	.1 .2 .1	36 30	.06 .17 .09	.135 .079 .052 .113 .027	7 6 9	21.4 16.8 14.1 14.0 9.1	.18 .10 .18	93 111 120	.090 .065 .105	1 2.43 1 1.86 2 .66 1 2.07 <1 .76	.016 .019 .020	.05 .07 .06	<.1 <.1 .1	.06	1.2 1.0 1.4	<.1 ·	<.05 <.05	8 5 7	<.5 <.5 <.5 <.5
33 L10 6+25 33 L10 6+50 33 L10 6+75 33 L10 7+00 33 L10 7+25	.8 .7 .9 .9	4.8 9.2 7.0	7.0 7.0 7.3 8.8	41 35 39 39 31	<.1 .1 .1	8.2 11.2 11.5	3.7 4.5 4.6	156 170 122	1.82 1.78	.6 1.0	.6 1.1 .6	.5 1.4 .5	2.4	19	<.1 <.1		.1	46 42 41	.09 .34 .15	.105 .057 .153 .120 .042	15 34 14	20.3 16.0 18.5 18.1 13.9	.27 .20	161 181	.118 .097 .111	1 1.58 <1 1.36 <1 1.93 <1 2.20 1 1.37	.013 .017 .022	.09	.1 .1 .1	.04 .02 .04 .05	1.4 2.2 1.7	.1 .1 .1 .1 .1 .	<.05 <.05 <.05 <.05 <.05	6 7 9	<.5 <.5 <.5 <.5 <.5
33 L10 7+50 33 L10 7+75 33 L10 8+00 RE B3 L10 8+00 33 L10 8+25	.8 .8 .8 .8	6.7 6.2 6.2	8.5 12.8 9.7 8.7 5.8	55 34 48 46 36	.2 .1 .1	8.3	3.4	170 92 94	2.33 1.06 1.73 1.67 1.67	.7 2.0 2.2	.6 .5	.5 <.5 1.1 2.1 .7	2.8	92 13 13	.2 .1 .2 .1 <.1	.1	.1 .1 .1 .1	36	.39 .09 .08	.081 .064 .153 .154 .156	15 9 9		.23 .17 .15	91		1 3.48 <1 1.43 1 2.05 1 1.92 2 2.14	.019 .015 .018	.08	.1 .2 .1	.05	1.5 1.7	.1 · .1 ·	<.05 <.05 <.05 <.05 <.05	6 9 8	<.5 <.5 <.5 <.5
33 L10 8+50 33 L10 8+75 33 L10 9+00 33 L10 9+25 33 L10 9+50	.9 .8 .9 1.1 .8	10.5 5.4 4.7 6.4 9.4	6.4 6.7 6.7	40 36 33 32 52	.2 .2	7.7 6.9 7.0	3.2 2.5 3.0	107 112 164	1.73 1.20 1.45	1.0	.5 .3 .5	1.5 2.7 <.5	2.0 1.8 1.8	19 9 12 12 61	<.1 .1 .1 .1	.1 .1 .1 .1	.1 .1 .1 .1	37 25	.06 .07 .10	.145 .154 .085 .159 .118	8 7 6	18.3 14.0 11.5 12.9 28.9	.21 .14 .12 .10 .63	73 85	.101 .085 .084	<1 3.64 1 2.05 2 1.29 2 2.21 2 2.92	.020 .020 .021	. 05 . 05 . 05	.1 .1 .1		1.2 1.3 1.3	.1 · <.1 ·		7 7 8	<.5 <.5 <.5 <.5
33 L10 9+75 33 L10 10+00 33 L10 10+25 33 L10 10+50 33 L10 10+75	1.1 1.4 .8 .4	9.6 7.6	10.0 7.2 8.7 7.8 6.1	42 36 32 30 31	.5 .2 .1	10.2 7.9	3.6 5.0	353 329 97	1.12 1.64 1.47		2.5	.9 1.7 .8	1.7 .1 2.1 1.3 1.4	127 48	<.1	.1 <.1 <.1 <.1		28 34 29	.59 .22 .16	.080 .129 .042 .057	27 15 12	25.8 14.2 17.7 12.3 12.7	. 19 . 28	262 205 187 140 136	.016 .085 .093	1 3.50 3 2.33 <1 2.47 <1 2.13 1 1.94	.020 .025 .025	.07 .06 .07 .06	.1 .1 .1		1.0	.1 .1 · <.1 ·		9 8	<.5 <.5 <.5 <.5 <.5
33 L10 11+00 33 L10 11+25 33 L10 11+50 33 L10 11+75 STANDARD DS5	.8 .7 1.1 12.7	6.4 6.2	5.5 6.9	29 40	.1 .1 .1	7.6 6.2 10.8	4.5 4.2 5.9	184 126 150	1.64 1.78 1.87	1.2 1.6	.7 .7 .9	1.0 1.0 .7	3.1 3.4 3.0	60 15 16 18 46	.1 .1 .1 .1 5.5	.1	.1 .1 .1 .1 6.3	41	.08 .10 .10		13 15 15	18.1 13.9 12.5 16.0 192.0	.14 .16 .20	137 164	.096 .110 .113	2 1.64 1 2.58 1 1.85 1 3.07 16 2.11	.017 .022 .023	.13 .06 .06 .07 .16	.1 .1 .1	.04 .03 .03 .03 .16	2.1 2.0 2.7	.1 < .1 <		8 7 8	<.5 <.5 <.5 <.5 4.8
Sample	type:	SOIL S	SS80 6	50C.	Samp	les be	eginni	ng 'F	RE' ar	e Rer	uns a	nd 'R	RE' a	re Re	ject	Rerun	<u>s.</u>																		

Page 13

ACME ANALYTICAL				ACME ANALYTICAL
SAMPLE#		Sr Cd Sb Bi V Ca P La om ppm ppm ppm ppm % % ppm		K W Hg Sc T1 S Ga Se % ppm ppm ppm ppm % ppm ppm
B3 L10 12+00 B3 L10 12+25 B3 L10 12+50 B3 L10 12+75 B3 L10 13+00	7.4 6.7 29 .1 9.9 5.4 435 1.40 .7 1.7 1.2 1.5 6 10.7 7.5 36 .1 13.0 5.1 305 1.72 <.5 2.0 1.5 2.5 7 5.6 7.1 28 .1 6.6 3.0 131 1.18 <.5 1.0 1.0 4.2 4 15.3 9.6 42 .5 13.6 5.7 825 3.05 1.1 4.1 1.5 2.2 7 7.3 5.2 24 .6 5.3 1.8 334 .75 .9 2.4 <.5 .2 21	71 .1 < 1 .1 34 .48 .073 22 2 42 < 1 .1 .1 29 .30 .064 20 1 77 .2 < 1 .2 66 .55 .069 35 2	24.6 .45 192 .073 <1 2.38 .022 .1 14.4 .28 199 .106 1 1.48 .028 .1 28.4 .31 312 .052 1 3.86 .021 .1	11 .1 .03 3.2 .1<.05 7 <.5 11 .1<.01 1.8 .1<.05 5 <.5 10 <.1 .05 4.7 .1<<.05 12 <.5
B3 L10 13+25 B3 L10 13+50 B3 L10 13+75 B3 L10 14+00 B3 L10 14+25		3 < .1 .1 .1 43 .24 .071 20 1	17.5 .29 193 .088 <1 2.10 .030 .0 18.8 .31 236 .096 <1 2.29 .020 .0 16.9 .27 235 .106 <1 1.38 .022 .0	08
B3 L10 14+50 B3 L10 14+75 B3 L10 15+00 B3 L10 15+25 B3 L10 15+50	3.8 5.9 26 .1 4.2 2.1 75 .99 .5 .5 .6 1.6 1 6.1 7.9 25 .1 5.8 4.6 224 1.45 .9 1.5 .8 3.2 5	23 < .1 .1 .1 .42 .16 .129 17 1 57 .1 < 1 .1 31 .32 .036 15 1 .7 < .1 .1 .1 21 .11 .063 7 .3 < .1 .1 .1 35 .32 .046 20 1 .66 .1 .1 .1 34 .21 .032 11 1	14.4 .26 149 .071 <1 2.06 .025 .0 9.9 .11 85 .067 <1 1.09 .019 .0 12.7 .26 180 .105 <1 1.68 .023 .1	08 .1 .02 2.0 .1<.05 6 <.5 06 <.1 .03 .9 <.1<.05 6 <.5 11 .1 .02 2.1 .1<.05 6 <.5
RE B3 L10 16+50 B3 L10 15+75 B3 L10 16+00 B3 L10 16+25 B3 L10 16+50		.4 .2 .1 .2 82 .65 .071 38 3	13.9 .25 132 .083 <1 1.32 .021 .0 12.1 .26 163 .100 1 1.07 .023 .1 32.4 .52 488 .062 <1 5.49 .023 .1	08 .1 .02 1.4 .1<.05 5 < .5 12 .1 .01 1.6 .1<.05 4 < .5 15 < .1 .05 7.2 .3<.05 16 < .5
B3 L10 16+75 B3 L10 17+00 B3 L10 17+25 B3 L10 17+50 B3 L10 17+75	5.7 6.7 31 .2 4.4 2.7 74 1.42 1.2 .5 1.6 2.8 5.8 5.9 34 .1 5.3 4.8 160 1.68 .8 .7 1.5 3.7 3 5.9 6.7 34 .1 5.2 4.5 158 1.94 .6 1.0 .6 5.1 3 9.5 7.9 24 .2 8.5 5.2 133 2.05 1.2 2.4 3.0 5.6 4 5.7 6.9 29 .1 5.5 4.0 109 1.61 1.0 .8 1.1 2.9 3	31 < .1 .1 .1 45 .21 .084 18 1 30 < .1 .1 .1 51 .16 .062 21 1 15 .1 .1 .1 42 .25 .060 35 1	14.7 .24 200 .097 1 1.43 .023 .0 16.2 .24 198 .129 1 1.40 .029 .1 17.7 .25 229 .097 <1 3.14 .035 .0	09 .1 .03 1.5 .1<.05 5 < .5 10 .1 .02 2.2 .1<.05 5 < .5 07 .1 .03 3.7 .1<.05 9 < .5
B3 L10 18+00 B3 L10 18+25 B3 L10 18+50 B3 L10 18+75 B3 L10 19+00		.6 < .1 .1 .1 .40 .08 .046 9 1 .7 < .1 < .1 .1 .26 .08 .028 8 .0 .1 .1 .1 .41 .20 .046 13 1	15.2 .20 128 .104 <1 2.01 .025 .0 8.7 .13 87 .086 <1 1.46 .021 .0 14.8 .29 159 .109 1 2.24 .029 .1	07 < .1 .03 1.7 .1<.05 7 < .5 05 .1 .01 1.0 .1<.05 7 < .5 10 .1 .03 2.0 .1<.05 7 < .5
B3 L10 19+25 B3 L10 19+50 B3 L10 19+75 B3 L10 20+00 STANDARD DS5	18.6 9.6 47 .4 13.9 7.3 274 2.67 1.3 7.5 2.1 7.6 6 4.6 5.0 36 .1 6.3 5.2 324 1.96 .9 1.2 1.5 5.7 4 7.7 8.7 38 .2 6.3 4.9 405 1.66 .8 3.0 1.1 2.3 4 11.1 8.5 44 .3 7.3 5.4 495 1.95 <.5	15 < .1 .1 < .1 59 .45 .142 32 1 .3 .1 .1 .1 39 .34 .039 28 1 .3 .2 .1 .1 44 .40 .028 51 1	18.2 .28 231 .124 <1 .81 .028 .1 13.6 .26 164 .086 1 1.56 .027 .0 16.5 .27 198 .102 1 1.81 .029 .0	13 .1 .02 2.1 .1<.05 3 <.5 08 .1 .02 2.2 .1 .07 6 <.5 07 <.1 .02 3.4 .1<.05 6 <.5

Page 14

NOTE MINETTICAL																																	AUTIE /	ANALTILL	1L
SAMPLE#	Mo ppm		Pb ppm												Cd ppm			· V	Ca %		La ppm	Cr ppm		Ba ppm		B Al			W				257.00	Ga ppm	655250
B3 L11 0+00 B3 L11 0+25 B3 L11 0+50 B3 L11 0+75 B3 L11 1+00	2.0 1.2 .9 .9	8.8 6.7 4.9	11.6 8.1 6.8 7.4 6.3	16 14 24 26 34	.1 .1 .1	3.5 5.4 8.4 8.3 8.0	1.3 2.3 2.5	50 57 65	. 29 . 44 . 89 . 88 1 . 57	.6 .7 .5	2.9 .7 .5		1.0	113 81 29 31 9		.4 .2 <.1 .1	.1 .1 .1	12 16 18	.40 .14 .16	.133 .116 .037 .042 .139	9 13	11.4	.07 .16	161 104	.005 .059 .062	2 .63 2 1.29 1 1.47 <1 1.32 1 1.90	.020 .020 .020	.07 .07 .05	<.1 .1 .1	. 24 . 17 . 03 . 03 . 07	.4 1.4 1.0	.1	.13	5 6 6	.5 <.5 <.5 <.5 <.5
B3 L11 1+25 B3 L11 1+50 B3 L11 1+75 B3 L11 2+00 B3 L11 2+25	1.0 .9 1.0 .7	6.1 7.1 7.2 7.4 9.5	7.7 7.2	38 34 34 36 44	.1 .1 .1	11.3 10.9 13.4	4.8 4.8 5.0	124 122 165 218 115	1.77 1.78 1.65	1.7 1.8 2.2		.5 <.5 <.5	2.4		<.1 <.1 .1 .1	.1 .1 .1 .1	.1 .1 .1	39 46 35	.06 .07 .06	.079 .105 .119 .117 .096	9 8 4		.21 .19 .22	95 83	.095	2 1.31 1 2.52 1 1.73 1 1.84 1 3.03	.015 .016 .014	.07 .07 .07	.1 .1 .2	67.5	1.8 1.4 1.4		<.05	7 7 7	<.5 <.5 <.5 <.5
B3 L11 2+50 B3 L11 2+75 B3 L11 3+00 B3 L11 3+25 B3 L11 3+50	.8 .7 .9	7.5 7.4 12.5 9.3 7.8	6.2 7.2 7.0	47 39 44 52 40	.1 .1 .1	9.5 14.2 16.1	4.1 5.4 6.3	155 108 119 132 137	1.59 2.03 2.00	1.3 1.5 1.3	.5 .6		2.5	14 16 16 14 11	.1 .1 .1	.1	.1 .1 .1	35 43 45		.122 .132 .119	6 7 7	14.0 14.1 17.9 19.2 15.3	.29		.088 .112 .111	<1 2.63 1 1.73 1 2.40 1 2.79 <1 1.88	.016 .015 .018	. 05 . 06 . 06	.1 .1 .1	.04	1.2 1.9 2.3	.1 < .1 < .1 · .1 · .1 · .1 · .1 · .1 ·	<.05 <.05 <.05	6 8 7	<.5 <.5 <.5 <.5 <.5
B3 L11 3+75 B3 L11 4+00 RE B3 L11 4+00 B3 L11 4+25 B3 L11 4+50	.8 .7 .7	8.8 5.9 6.5 8.0 7.1	6.1 6.2 6.3	49 35 38 46 42	.1 .1 .1	8.3 9.3 13.7	4.5 4.7 6.2	176 218 230 260 201	1.60 1.65 2.02	1.7 1.6 1.3	.5 .6 .8	<.5 <.5 <.5 .9 <.5	1.9 2.2 3.8	15 9 9 17 10	.1 .1 .1 .1	.1 .1 .1	.1 .1 .1	35 37 48	.05 .05 .12		7 7 16	16.6 13.4 14.1 19.8 13.4	.13 .14 .26		.088 .092 .114	1 2.32 <1 2.51 1 2.57 <1 2.54 1 2.40	.017 .020 .018	.05 .11	.1 .1 .1	. 05	1.6 1.6 2.7	.1 · · · · · · · · · · · · · · · · · · ·	<.05 <.05 <.05	7 7 7	<.5 <.5 <.5 <.5 <.5
B3 L11 4+75 B3 L11 5+00 B3 L11 5+25 B3 L11 5+50 B3 L11 5+75		8.0 7.5 5.8 5.6 4.9	6.7 6.5 6.4	49 44 30 35 33	.1 .1 .1	15.1 9.6 7.5 7.2 7.2	4.0 3.9 3.6	95		1.8 1.6 1.6	.6 .4 .4		2.7 1.8 2.2	13 12 10 10	.1 .2 .1 .1 <.1	.1	.1 .1 .1	42 36 36		.088 .100 .116	11 8 8	19.4 14.9 11.7 13.2 12.1	.19 .14 .15		. 099 . 090 . 093	1 2.73 1 2.31 1 1.98 <1 1.91 1 1.97	.017 .017 .017	.07 .05 .05	.1 .2 .1	.05	1.6 1.4 1.5	.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < <.1 < < < <	<.05<.05<.05	6 7 7	<.5 <.5 <.5 <.5 <.5
B3 L11 6+00 B3 L11 6+25 B3 L11 6+50 B3 L11 6+75 B3 L11 7+00		4.3 9.2 16.5 15.7 6.4	7.7 7.8 9.1	24 17 32 50 32	.3 .2 .5	6.6 8.7 14.2 16.0 6.9	2.4 4.7 7.6	65 114 187 399 95	1.75 2.42	.7	2.7 3.3 3.6	.7	.1 4.2 .8	31 174 73 188 47	.2 .1 .2	.1 <.1 <.1 .1	.1 .1 .1 .1	18 33 42	.80 .30 .66	.089	47 27 31	12.8 14.2 27.9 31.8 12.9	.15 .35	230 268 330	.090	1 1.02 1 2.23 1 2.72 <1 4.45 <1 1.81	.030 .023 .024	.05 .08 .09	<.1 <.1	.17 .02 .08	1.3 5.2 3.8	<.1 < .1 < .1 < .1 < .1 < .1 < .1 <	.06 <.05 <.05	6 7 14	<.5
B3 L11 7+25 B3 L11 7+50 B3 L11 7+75 B3 L11 8+00 STANDARD DS5	.4 .7 .9 .9	6.5	6.6 8.2 7.8	35 36 30	.1 .2 .1	9.1 10.8 7.2	3.5 3.9 3.2	143 : 82 : 104 : 86 : 740 :	1.31 1.91 1.67	1.8	.4	2.0 .6 .6	2.5	25 17 10	<.1 <.1 <.1 <.1 5.8	<.1 .1 .2	.1	28 42	.09 .09 .05		7 8 9		.20 .21 .14	102 100 84	. 089 . 108 . 097	1 1.51 <1 1.83 <1 1.84 <1 1.81 16 2.06	.020 .019 .018	.07 .06	<.1 .1 .2		1.2 1.6 1.2	.1 < <.1 < .1 < <.1 < 1.1 <	<.05 <.05 <.05	8	<.5 <.5

Page 15

A CONTRACTOR OF THE PARTY OF TH	-				~~~~							*****											-											NOTIC MIN	LITTONE	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	-	-		Co ppm			As ppm	U ppm		Th ppm				Bi ppm	V ppm	Ca %		La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B	A1 %	Na %	K %		-	Sc ppm		S %	Ga ppm	Se ppm
33 L11 8+25 33 L11 8+50 33 L11 8+75 33 L11 9+00 33 L11 9+25	.9 .9 .7 .7	8.0	5.9	36 36 32 27 40	.1 .1 .2	10.4 6.8 7.0	6.2 3.1 2.4		2.12 1.66 1.14	1.4 1.8 1.4		1.0 .9 .8	2.8 4.6 2.6 1.4 4.1	19 9 10	.1 <.1 <.1 <.1	.1 .1 .1 .1	.1 .1 .1 .1	36 31	.13	.103	20 9 6	12.1	.24 .12 .10	259 103 58	.096	1 2 <1 2 <1	2.09 2.45 2.04 .93 1.88	.018	.08	.1 .1 <.1	.03 .05 .02	2.3	<.1 · .1 · .1 · .1 · .1 · .1 · .1 · .1 ·	<.05<.05<.05<.05	6 8 6	<.5 <.5 <.5 <.5
33 L11 9+50 33 L11 9+75 33 L11 10+00 33 L11 10+25 33 L11 10+50	.9 .8 .8 .5	8.3	7.8 7.1 6.7	33 54 37 26 43	.1 .1 .1	11.1 8.9 6.8	5.9 5.6 2.8	359 1 161 2 243 1 147 1 174 1	2.21 65	1.6 .9 <.5	.4 .8 .7 .6	.5 .6 <.5	1.7	34 48 30	.1 .1 <.1 <.1	.1 <.1 <.1	.1 .2 .1 .1	51 47 24	.15		14 17 10	11.1 19.2 16.1 12.2 24.4	.23 .22 .19	89 242 182 130 235	.104 .100 .072	1 3 <1 2 <1 1	1.46 3.20 2.00 1.61 1.97	.021 .019 .021		.1 .1 <.1	.04	1.8 1.7 1.3	<.1 < .1 < .1 < .1 < .1 < .1 <	<.05<.05<.05	11 7 6	<.5 <.5 <.5 <.5
33 L11 10+75 33 L11 11+00 33 L11 11+25 33 L11 11+50 33 L11 11+75		8.0 5.2 8.9 5.9 11.6	7.7 9.8 7.2	29 17 29	.1 .1 .2	6.6 5.3 6.9	3.7 2.5 2.8	192 2 185 1 196 100 1 1984 1	.00 .88 .02	.5 .8	1.6 3.0 .5	1.0 1.7 .9	3.5 .7 2.6 1.2 2.5	71 95 21	<.1 .1 .1 <.1 .2	.1 <.1 .1	.1 .1 .1 .1	21 20 21	.41 .31 .32 .09	.052 .031 .029	23 54 8	36.6 14.3 11.0 11.7 15.0	. 25 . 18 . 17	265 189 264 114 410	.018 .059 .070	<1 2 <1 1 <1 1	2.68 2.01 1.41 1.90 1.79	.018 .044	. 08 . 04 . 06	.1 .1 .1	.02 .02 .02 .03 .07	1.6 3.1 1.3	.1 < .1 < .1 < .1 < .1 < .1 <	<.05	6 4 7	<.5 <.5 <.5 <.5
33 L11 12+00 33 L11 12+25 33 L11 12+50 33 L11 12+75 33 L11 13+25	.7 1.0 .9	13.9	6.1 7.9 8.8	38 26 36 40 27	.1 .1 .3	5.4 9.5	2.5 4.6 4.0	254 1 133 281 1 219 1 95 1	.96 .37 .86	<.5 .7	.7 1.1 1.5	<.5 .7		22 30 47 60 28	.1 <.1 <.1 .1	.1	.1 .1 .2 .1	24 36 37	.18 .15 .27 .38 .19	.019 .049 .050	10 15 14	11.0 18.8 22.9	. 20 . 36 . 38	146 106 172 186 117	.098 .104 .080	<1 1 <1 1 <1 3	2.05 . 1.16 . 1.88 . 3.13 . 2.06 .	.023 .023	.09 .10	<.1 <.1 <.1	.03 .01 .02 .04	1.3 2.0 3.1	.1 < .1 < .1 < .1 < .1 < .1 <	<.05	4 6 10	<.5 <.5 <.5 <.5
33 L11 13+50 RE B3 L11 13+50 33 L11 13+75 33 L11 14+00 33 L11 14+25	1.0 1.3 1.5	7.8	8.3 6.0 9.0	31 29 41 39 44	.1 .1 .2	10.7 19.1 13.1	5.0 7.1 6.9	247 1 258 1 130 2 593 1 237 2	.42 .33 .78	.6 1.7 1.4	1.0	<.5 <.5 1.2	2.6 3.7 3.3	49 50 25 68 53	.1 .1 <.1 <.1	.1	.1 .1 .1 .1	35 58 49	.24 .26 .13 .31	.045 .129 .044	17 18 26	16.9 17.8 23.1 19.6 18.6	.30 .32 .36	190 184 185 255 337	.095 .111 .086	<1 2 1 3 <1 2	2.13 . 2.21 . 3.06 . 2.39 .	.028 .020 .028	.08 .08 .07 .09	.1 .1 .1	.02 .02 .04 .03	2.2 2.5 2.7	.1 < .1 < .1 < .1 < .1 < .1 < .1 <	.05 .05 .05	7 7 6	<.5 <.5 <.5 <.5
33 L11 14+50 33 L11 14+75 33 L11 15+00 33 L11 15+25 33 L11 15+50	1.2 .8 .6	6.4 16.2 6.5 4.7 4.9	8.3 6.4	40 31 46 38 35	.3 .1 <.1	10.9 13.4	5.7 4.3 4.0	111 1 851 1 93 1 146 1 95 1	.94 .73 .66	1.2 1.2 .8	5.6 .5 .7	1.3 1.2 <.5 1.3 <.5	4.9 1.8 3.9	10 68 21 35 9	<.1 .1 .1 <.1 .1	.1	.1 .1 .1 .1	55 38 45	.07 .47 .14 .28	.070 .128 .094	38 8 25		.31 .23 .24	104 225 110 183 72	. 074 . 074 . 097	<1 2 1 1 <1 1	2.40 . 2.32 . .85 . .28 .	027 016 019	.06 .09 .08 .10	.1 <.1 .1	.03 .02 .05 .02 .05	5.2 1.3 1.4	.1 < .1 < .1 < .1 < .1 < .1 < .1 <	.05 .05	7 4	<.5
33 L11 15+75 33 L11 16+00 33 L11 16+25 33 L11 16+50 STANDARD DS5	.7 .8	7.0 7.6	6.5 6.6 7.4	37 35 40 31 135	.2 .1 .2	8.4 12.8 9.6	4.1 6.7 4.5	485 1 84 1 135 2 720 1 777 3	.56 .06 .17	.9 1.2 1.0	1.0 .9 1.6	<.5 <.5 <.5	2.5 3.2 1.2	11 31 133	<.1 <.1 .1 .1 5.4	<.1 <.1 .1 .1 3.8	.1 .1 .1 .1 6.1	37 52	.41 .06 .17 .87 .76	.076 .116 .066	15 18 27	21.2	. 18 . 33 . 23	582 133 197 196 138	. 087 . 093 . 043	<1 1 1 2 3 1	.39 . .78 . .17 . .21 .	016 029	.06 .09 .07	<.1 .1 .1	.09	1.5 2.1 1.7	.2 < <.1 < .1 < .1 1.0 <	.05 .05 .06	6	<.5 <.5 <.5 <.5

061 Page 16

SAMPLE#	Mo ppm		Pb ppm				Co ppm	Mn ppm								Sb ppm			Ca %		La ppm	Cr ppm	-	Ba ppm	Ti %	B A1 ppm %		K %	W ppm	-	Sc ppm		100	Ga Se om ppm	
33 L11 16+75 33 L11 17+00 33 L11 17+25 33 L11 17+50 33 L11 17+75	1.2 .6 3.1	5.8 11.8 7.0 9.3 5.3	11.2 7.5 10.6	55 29 19	.2 .1 .1	8.7 7.2 6.1	7.7 3.5 3.6	128 1407 261 1344 79	1.85 1.44 .73	1.9 1.0 2.2	4.3 1.5	<.5 .8 2.0	1.9 2.7	108 51	.2 .1 .4	.2 <.1	.2 .1 .1	55 33 24 2	.12 .60 .33 2.40 .25	. 083 . 031 . 077	37 15 19	10.9	. 26 . 23 . 22	152	.056 .082 .020	1 1.55 <1 2.69 <1 2.16 3 .95 <1 1.26	.024 .028 .038	.10 .08 .07 .06	.1 .1 .3	.06	2.7 2.2 1.6	<.11 <1 <21 <1 <	05 05 20	7 < .5 8 < .5 7 < .5 3 .5 5 < .5	
33 L11 18+00 33 L11 18+25 33 L11 18+50 33 L11 18+75 33 L11 19+00		4.6	6.8 12.9	27 55 45	.1 .1 .6	2.8 5.6 12.4	.4 3.4 11.0	154 42 87 1452 311	.12 2.05 2.62	2.2 1.9 1.7	.1 .6 4.6	<.5 <.5 <.5	2.3	9	.1	.1 .1	.1	44	.74 1.89 .08 .74 .29	.043 .237 .084	1 10 75	11.1 4.3 13.6 24.6 20.1	.09 .11 .37	65 101 390	.007 .094 .055	1 .83 6 .13 1 2.78 <1 3.67 <1 1.86	.035 .018 .023	.09 .04 .06 .12	.2 .2 .1	.16 .06	.3 1.7 5.3	<.1 . <.1 . <.1 <. .2 <. .1 <.	24 < 05 1	4 <.5 1 <.5 8 <.5 11 .5 6 <.5	
33 L11 19+25 RE B3 L11 19+25 33 L11 19+50 33 L11 19+75 33 L11 20+00	.7 .6 .6	9.0 9.3 10.0 8.3 7.4	8.5 7.4 7.3	50	.3 .2 .4	7.3 7.4 9.7	4.1 4.3 5.0	174 174 188 128 389	1.65 1.77 1.88	.8 .9 1.5	.8	2.4 1.0	2.6 2.5 3.0	42 47 43 29 19	.1 .1	.1 .1 .1 .1	.1 .1	37 38 40	.30 .32 .28 .20 .16	.026 .056 .142	23 18 14	14.4 14.1 16.1 14.3 12.8	. 26 . 26 . 21	198 180 172	. 093 . 089 . 088	<1 1.54 <1 1.71 <1 1.77 <1 2.38 <1 1.52	.026 .025 .021	. 09 . 10 . 09 . 08 . 07	.1 .1 .1	.02 .01 .02 .04	1.9 1.9 1.9	.1 <. .1 <. .1 <. .1 <. .1 <.	05 05 05	7 <.5 6 <.5 6 <.5 8 <.5 9 <.5	
33 L12 0+00 33 L12 0+25 33 L12 0+50 33 L12 0+75 33 L12 1+00	2.9 .9 .6 .7	8.0 6.1	10.5 7.6 7.7 11.6 8.1	30 44 44	.1 .1 .1	7.4 14.0 8.6	2.2 6.2 3.4	371 97 250 450 148	1.11 1.66 1.24	1.4 1.6 1.5	.4 .6 .3		.7 1.8 1.4	55	.3 .2 <.1 .1	.1	.1 .2 .2	26 35 29	.42 . .20 . .10 . .18 .	.078 .141 .069	5 8 5	14.0 10.5 17.2 13.6 19.6	.13 .22 .18	115 184 104	. 066 . 094 . 088	2 1.30 1 1.10 <1 2.83 1 1.47 <1 2.30	.023 .026 .022	.15 .06 .05 .06	.1 .1 .1		1.8	.1 <.1 <1 <1 <1 <1 <1 <1 <1 <.	05 05 05	4 .7 6 <.5 9 <.5 8 <.5 8 <.5	
33 L12 1+25 33 L12 1+50 33 L12 1+75 33 L12 2+00 33 L12 2+25	.7 1.0	8.6 4.9	9.3 8.1	42 33	.1 .1 .1	10.5 13.3 7.4	3.8 5.2 2.9	154 2 119 2 125 2 213 2 257 2	1.73 2.01 1.54	2.0 2.0 1.4	.4 .6 .3	.8 1.6 1.2	2.2	18 14 13 14 12	.1 .1	.1 .1 .1	.2 .1	43 47 40	.08 . .07 . .06 . .10 .	.086 .121 .114	7 11 8	17.2 15.4 19.5 13.7 15.6	.19 .23 .13	98 126 84	.098 .108 .090	1 2.59 <1 1.48 <1 2.20 1 1.18 <1 2.37	.017 .019 .018	.05 .06 .06	.1 .1 .1		1.2 1.9 .9	.1 <. .1 <. .1 <. <.1 <. <.1 <.	05 05 05	8 <.5 7 <.5 7 <.5 6 <.5 7 <.5	
33 L12 2+50 33 L12 2+75 33 L12 3+00 33 L12 3+25 33 L12 3+50	. 4	5.5 5.5 7.2	7.2 7.9	32 35 33 30 21	.1 .1 .1	7.2 6.5 9.0	4.4 3.8 4.4	90 : 109 : 152 : 313 : 57	1.61 1.34 1.54	1.7 1.0 .9	.6 .5 1.4	<.5 .5 <.5	3.1 2.0 2.7	13 26 74	.1 .1	.1 <.1 <.1	.1 .1 .1	38 27 34	.06 . .07 . .12 . .29 .	104 076 031	12 9 18	12.8 14.1 12.9 18.4 10.4	.15 .15 .31	130 141	.093 .085 .091	<1 1.76 <1 2.15 <1 1.70 <1 2.05 <1 1.11	.019 .025 .034	.05 .05 .06	.2 .1 .1	.04 .02 .02	1.1 2.6	.1 <. .1 <. .1 <. .1 <. <.1 <.	05 05 05	7 <.5 7 <.5 8 <.5 7 <.5 6 <.5	
B3 L12 3+75 B3 L12 4+00 B3 L12 4+25 B3 L12 4+50 STANDARD DS5	.5 .3 .6 .6	3.2 5.3 4.8 3.8 141.9	8.2 7.3 6.5	24 24 23 24 135	.1 .1 .1	7.0 5.5 3.3	2.8 2.0 1.6	76 147 64 61 755	1.19 .89 .97	.7 .6 1.0	.7 .3 .3	<.5 <.5 <.5	2.2 1.4 1.4	45 19 25	<.1 <.1 .1	<.1 <.1 <.1	.1 .1 .1	24 20 22	.08 . .20 . .08 . .10 . .74 .	018 024 034	9 5 5	9.0 14.1 11.8 9.1 84.1	.24 .15 .08	136 . 60 . 82 .	097 080 076	1 .88 <1 1.55 <1 1.04 <1 .80 16 2.00	.029 .022 .018	. 05 . 04 . 04	.1 .1 .1	.01 .01 .03	1.4 .9 .6	<.1 <. .1 <. <.1 <. <.1 <. 1.1 <.	05 05 05	5 <.5 6 <.5 5 <.5 7 <.5 6 5.2	

E # A404061 Page 17

					- Advanced									-																						
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm			Mn ppm	11000	As ppm	1753	Au ppb		Sr ppm	Cd ppm	Sb ppm		V	Ca %		La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K %	W ppm	Hg ppm		T1 ppm	S %	Ga ppm	Se ppm
33 L12 4+75 33 L12 5+00 33 L12 5+25 33 L12 5+50 33 L12 5+75	1.1 1.1 1.0 .5	6.1 5.7 4.0	8.2 6.1 6.8 6.9 8.2	37 25 19	.1 .1 .1	4.4 6.3 6.9 3.3 7.6	3.1 2.3 2.0	95 78 64	The second second			1.3		9 32 37	.4 <.1 <.1 <.1	.1 .1 <.1	.1 .1 .1 .1	40 21 20	1.16 .05 .16 .13 .12	.036	13 10	6.4 13.6 13.1 8.7 13.6	.14	93 146 101	.091 .080 .079	1 1. 1 1. 1 .	12 .0 77 .0 19 .0 94 .0 39 .0)16)22)20	.05 .05 .07 .05	.2 .1 .1	.04 .02 .01	1.3 1.2		<.05 <.05 <.05	7 5 5	<.5 <.5 <.5 <.5
33 L12 6+00 33 L12 6+25 33 L12 6+50 33 L12 6+75 33 L12 7+00	.5 .8 .9 1.2	4.6	6.0 13.2 7.1	24 33 36 26 43	.1 .4 .1	6.6	2.7 18.1 2.8	103 1028	1.84 1.23	1.2 .8 .9	.5 2.0 .4	200	4.0 1.6 2.4	19 12 96 10 16	<.1 <.1 .2 <.1 <.1	<.1 .1 .1 .1	.1 .1 .1 .1	19 40 32 31 37	.11 .07 .59 .07	.223 .101 .066	13 42 9	10.8 12.8 19.5 13.6 17.8	.13 .27 .13	106 117 404 86 120	.093 .043 .078	1 1.)19)19)17	.05 .06 .07 .06	.2 .1 .1	<.01 .04 .12 .04 .04	1.4 3.0 1.0	.1 ·		6 8 7	<.5 <.5 <.5 <.5
33 L12 7+25 33 L12 7+50 33 L12 7+75 33 L12 8+00 33 L12 8+25	.6 .8 .6	6.0 8.9 5.8 9.7 3.6	9.1 8.0 8.2		.2 .1 .2	5.1 10.6	4.6 2.8 4.3	185 103	1.47 1.86	.9 1.0	1.3 .4 1.2	.5 <.5	2.3 2.7	50 15 61	<.1		.1 .1 .1 .1	21 39 31 41 34	.12 .22 .07 .27 .30	.076 .113 .046	17 9 16	11.8 18.5 11.5 19.7 12.1	.31	121 204 119 221 213	.079 .091 .081	<1 1. <1 3. 1 1. <1 3. <1 1.	25 .0 39 .0 13 .0)23)16)24	.04 .07 .07 .07	.1 .1 .1	.01 .04 .04 .04 .01	2.1 1.0 2.3	.1 .	<.05 <.05 <.05 <.05 <.05	11 8 9	<.5 <.5 <.5 <.5
B3 L12 8+50 B3 L12 8+75 B3 L12 9+00 B3 L12 9+25 B3 L12 9+50	1.2 .6 .4	5.2 12.4 7.2 7.2 12.0	13.5 7.1 7.1	46 52 44	.4 .1 <.1	10.7 9.4 17.9	10.2 3.9 5.3	125 1306 119 154 141	2.24 1.65 1.94	1.3 1.1 1.2	2.4 .9 1.0	.6 6.8	2.5 2.2 3.3	50 110 41 55 52	.2 .1 <.1	<.1 <.1	.1 .2 .1 .1	25 46 35 46 53	. 20 . 44 . 18 . 28 . 17	.089 .074 .079	35 11 16	12.8 23.1 15.4 24.4 25.4	.31 .21 .46	135 311 174 249 323	.052 .079 .103	<1 1. 1 3. <1 2. <1 2. <1 3.	88 .0 42 .0 39 .0	24 21 22	.06 .08 .06 .08	.1 .1 <.1	.06	3.2 1.8 2.4	<.1 < .1 < .1 < .1 < .1 < .1 < .1 < .1	<.05 <.05	12 9 7	<.5 .5 <.5 <.5 <.5
B3 L12 9+75 B3 L12 10+00 B3 L12 10+25 RE B3 L12 10+25 B3 L12 10+50		8.4 9.4 6.7 7.3 8.6	7.0 6.5 6.7 6.6 8.9	57 47 40 44 36	.1 .1 .1	13.3 8.8 8.8	7.4 4.6 4.9	155 173 157 156 1024	2.34 1.75 1.85	1.7 1.2 1.1	1.0 1.1 1.1	3.0	4.2 3.6 3.6	33 47 49	<.1 .1 .1 <.1 <.1	.1 <.1 <.1	.1 .1 .1 .1	54 44 43	.13 .16 .26 .25 .36	.140 .101 .107	18 22 22	19.2 21.6 17.4 17.0 16.7		197 259 227 236 242	.097 .094 .091	<1 3. <1 3. <1 2. <1 2. <1 2.	11 .0 20 .0 19 .0	17 23 24	.07 .09 .09 .09	.2 .1 .1	.03 .03 .01 .02 .04	2.7 2.2 2.2	.1 · .1 ·		8 7 7	<.5 <.5 <.5 <.5 <.5
B3 L12 10+75 B3 L12 11+00 B3 L12 11+25 B3 L12 11+50 B3 L12 11+75	.3 1.0 1.2	9.1 7.7 11.9 10.6 5.2	6.9 9.2 11.1	27 18 34 44 37	.1 .5 .5	4.9 12.1 11.9	2.0 6.1 7.1	135 110 545 673 262	.76 1.67 1.89	<.5 .9 1.0	2.5 3.4 4.5 4.3 1.3	.8 1.3	1.8 2.9 .7 .6 3.9	99 77 87 96 51	.2	<.1 <.1	.1 .1 .1 .1	22 17 36 31 35		.050 .109 .125	28 32* 30	12.4 25.0	.13 .23 .26		.052 .024 .019	<1 2. <1 1. <1 3. <1 3. <1 1.	71 .0 77 .0 98 .0	28 23 21	.09	.1 <.1	.13	3.9 3.3 2.6	.1 · .2 ·	<.05 <.05 <.05 <.05 <.05	6 10 12	<.5 <.5 <.5 .5
B3 L12 12+00 B3 L12 12+25 B3 L12 12+50 B3 L12 12+75 STANDARD DS5	1.4	11.1 8.1 16.0 6.9 142.8	7.7 9.1 8.5	41 27 35 42 138	.5 .1 .1	5.3 11.4 11.4	2.7 4.3 7.0		.95 1.61 1.76	1.0 1.1 .5	3.3 2.1 1.4	1.0 <.5 1.7	2707000000	166 173 59 57 47	97773	.1 .3 <.1 <.1 4.0	.1 .2 .1 6.3	25 33 45	1.23 1.22 .28 .26 .75	.107 .053 .058	39 16 17	8.9 18.4 22.3	.28	219 241 205	.015 .066 .118	<1 3. 1 1. <1 3. <1 1. 16 2.	56 .0 23 .0 86 .0	17 27 20	.10	.1 <.1 <.1 .1 5.1	.03	1.3 2.6 2.3	.2 .1 .1 < .1 <	<.05<.05	10 6	<.5 <.5 <.5 <.5

Page 18

SAMPLE#	Mo ppm		Pb ppm														Bi ppm		Ca %		La ppm	Cr ppm		Ba ppm	Ti %	B A1 ppm %				-	Sc ppm			Ga ppm p	
33 L12 13+00 33 L12 13+25 33 L12 13+50 33 L12 13+75 33 L12 14+00	.4 1.4	17.5 7.9	5.9 8.5 6.7	36 20 25 33 31	.1	11.3 14.2 7.2	3.3 5.5 3.6	92 844 108	1.42	<.5 1.4 .7	.9 6.6 1.0	<.5 21.5 <.5 52.1 .8	4.5 1.6	30 41 76 43 16	.1 .2	<.1 <.1 <.1 .1	. 1	26 45 28	.20 .43 .20	.058 .026 .056 .063 .128	14 43 21	23.8	. 25 . 26 . 21	142 249 186	.086 .053 .057	2 2.12 1 1.21 1 2.42 1 1.97 1 1.75	.021 .023 .017	. 06 . 07 . 07	<.1 <.1 .1	.02 .04 .05	1.7 6.1 1.8	.1 < .1 < .1 < .1 < .1 < .1 < .1 <	<.05<.05<.05<.05	8 -	<.5 <.5 <.5 <.5 <.5
33 L12 14+25 33 L12 14+50 33 L12 14+75 33 L12 15+00 33 L12 15+25	. 5	5.7 8.7 11.8 5.4 6.7	7.1 8.4 6.5	33 31 33 26 29	.1 .1 .1	6.7	4.2 4.9 3.4	192 392 139	1.70 2.13 1.29	1.7 1.1 .6	1.2 1.6 1.1	46.4 <.5 <.5 <.5 <.5	3.6 3.3 3.0	33	.1 <.1 .1	.1 .1 <.1 <.1	.1	41 46 32	.16 .33 .27	.104 .125 .047 .048 .028	28 16 17	14.8 14.6 23.8 14.5 13.6	. 19 . 37 . 27	184 231 175	.072 .073 .093	1 1.38 1 2.12 1 2.76 <1 1.42 <1 1.69	.021 .024 .019	.07	.1 .1 <.1	.01 .03 .03 .02 .03	2.3 2.7 1.7	.1 < .1 < .1 < .1 < .1 < .1 <	<.05	9 <	<.5 <.5 <.5 <.5 <.5
33 L12 15+50 33 L12 15+75 33 L12 16+00 33 L12 16+25 33 L12 16+50	1.2 .8 .8	10.0 5.8 6.1 5.0 5.2	7.0 6.9 5.8	35 29 34 43 52	.1 .1 .1	11.3 3.9 6.1 5.0 5.6	2.2 3.3 4.7	169 295 1088	.82 1.33 1.15	.5 .7 1.0	.6 2.0 1.3	<.5 <.5 <.5 <.6	1.7 1.8	59 52 76 98 109	.1 .1 .3 .4	.1 .1 .2 .2	.1	25 38 29	.33 .47 .74	.031	11 17 19	20.4 9.7 13.8 11.1 12.0	.13 .21 .17	143 158 191	. 053 . 070 . 041	1 2.17 1 .67 1 1.48 2 .86 3 .72	.020 .022 .019	.06 .07 .07	<.1 .1 .1		1.0 1.7 1.8	.1 < .1 < .1 < .1 < .1 .1	.05 .05 .07	5 < 3 <	<.5 <.5 <.5 <.5 <.5
33 L12 16+75 33 L12 17+00 33 L12 17+25 33 L12 17+50 RE B3 L12 17+50	.7 1.2 .7	6.1 3.5 13.1 7.1 6.9	9.1 9.2 7.5		<.1 .3 .4	1.7 2.7 10.8 5.2 5.2	1.4 8.7 3.1	99 1441 211	.60 2.15 1.22	.8 1.3 .9	.2 6.2 1.8	<.5 <.5 1.5 1.4 1.8	2.4	84 33 94 59 61	.1 .3 .2 .2	.1 .1 .1	.1	17 48 30		.052	5 59 22	3.4 6.6 22.7 11.9 11.6	.06 .33 .21	115 301 187	. 030 . 066 . 062	3 .19 3 .38 1 2.98 2 1.22 2 1.16	.018 .024 .018	.07 .11 .09	.1 <.1 .1	.11	.5 4.9 2.0	<.1 <.1 .2 < .1 <	.10 :.05 :.05	8 <	<.5 <.5 <.5 <.5 <.5
33 L12 17+75 33 L12 18+00 33 L12 18+25 33 L12 18+50 33 L12 18+75	.8	11.4	6.6	38 39 45 38 39	.3 .1 .2	8.7 7.0	4.7 4.1 4.0	352 126 133	1.94 1.60	1.1 1.2	1.8 .8 .6	.6 2.3 <.5 1.5 <.5	3.3	136 56 27 16 46	.1 .1 .1	.1 .1 .1	.1	44 44	.33 .17 .09	.044 .197 .149	22 18 11	4.5 17.5 14.5 11.5 6.6	. 28 . 17 . 15	198 . 172 .	. 075 . 089 . 081	6 .32 <1 2.35 1 1.99 2 1.88 2 .54	.029 .019 .017	.09 .08 .11	<.1 .1 .1	.03	2.8 1.8 1.4	.1 < <.1 < <.1 < <.1 < <.1 < <.1 <	.05 ° .05	8 < 7 < 8 <	.5 <.5 <.5 <.5
33 L12 19+00 33 L12 19+25 33 L12 19+50 33 L12 19+75 33 L12 20+00	.7 .8 .7	6.2 12.0 15.7 7.0 8.6	6.8 7.9 6.2	40 37 38 42 43	.5 .5 .2	8.6	4.8 6.2 5.0	376 397 425	1.98 2.03 1.74	.8 1.2	2.7 2.2 1.0	<.5 2.8 2.9 <.5 .6	3.6 4.7	25 50 49 37 53	.1 .1 .1 .1	.1 .1 .1	.1	45 46 46	.34 .32 .30	.030	36 27° 25	14.8 19.8 17.2 14.6 16.0	.33 .34 .29	185 . 195 . 274 .	.094 .096 .102	1 1.91 1 1.86 <1 2.04 <1 1.20 <1 1.20	.030 .026 .025	.11 .12 .14	.1 .1 .1	.03 .03 .02 .03	3.2 3.2 2.0	.1 < .1 < .1 < .1 < .1 < .1 <	.05 .05 .05	6 < 4 <	5.5
33 L13 0+00 33 L13 0+25 33 L13 0+50 33 L13 0+75 STANDARD DS5	.9 .4 .4	10.3 7.6 3.5 4.5 141.0	6.5 7.2 6.0	19 39 25 20 139	.1 .1 .1	15.2 5.2 6.7	6.0 2.1 2.5	93 : 59 81	.75 1.87 .83 .93 3.01	1.3 <.5 <.5	.6 .4 .4	.5 4.2 <.5 <.5 42.0	1.1	15 27 30	.1 <.1 <.1	.1 <.1 <.1	.1 .1 .1 .1 6.2	44 18 19	.08 .12 .13	.152 .025 .023	8 6 6	14.7 18.2 8.6 9.9 196.3	.24 .15 .18	131 . 88 . 97 .	105 078 086	<1 2.20 2 2.61 <1 1.23 <1 1.43 16 1.97	.020 .024 .025	.07 .04 .04	.1 <.1 <.1	.06 .02 .01	2.2 .9 1.1	.1 .1 < <.1 < <.1 < 1.1 <	.05 .05 .05	5 <	5 5

Page 19

SAMPLE#	Mo ppm	Cu ppm					Co ppm		Fe A % pp												Cr ppm				B A	Na %		W				S Ga	a Se m ppm
33 L13 1+00 33 L13 1+25 33 L13 1+50 33 L13 1+75 33 L13 2+00	-	5.0 4.3 3.7 4.2 7.4	6.7 7.5	30 23 25 25 30	.1 .1 .1	4.4 6.1	2.7 1.6 2.5	82 . 90 1. 45 . 64 1. 118 1.	10 . 67 . 01 .	7 .4 5 .5	1 1.1 2 .5 3 <.5	1.2 1.7 .8 1.5 1.8	22 18 15	<.1 <.1 .1	.1 <.1	.1 .1 .1		.10 .08 .06	.019 .019 .027	7 4 6	11.5 12.4 7.9 11.5 16.3	.18 .10 .16	95 . 71 . 79 .	089 062 084	<1 1.15 <1 1.15 <1 .93 <1 1.22 <1 1.96	.026 3 .027 2 .022	.04 .03 .05	<.1 .1 .1	.01 .01 .02	1.1 .8 1.0	.1 <.0 .1 <.0 <.1 <.0 <.1 <.0 <.1 <.0	5 6 5 7	5 <.5 6 <.5 4 <.5 7 <.5 7 <.5
33 L13 2+25 33 L13 2+50 33 L13 2+75 33 L13 3+00 33 L13 3+25	.5 .8 .6 .5	100000	7.4	37 41 28 33 21	<.1 .1 .1	8.4 7.8 12.4	3.4 3.9	169 1. 134 1. 428 1. 252 1. 67 .	55 1. 45 . 52 .) .; 3 1.: 6 .8	3 <.5 L .7 B .5	2.5 2.2 2.8 3.5 1.2	15 48 63	.1 .1 .1	.1 <.1 <.1		43 35 34	.09 .22 .29	.056 .037 .068	8 16 19	18.2 16.9 16.1 22.4 11.5	.16 .26 .43	75 . 165 . 193 .	104 092 124	<1 1.82 <1 1.09 <1 1.70 <1 1.55 <1 1.16	0.017 0.027 0.021	.06 .06 .10	.1 <.1 .1	.02 .02 .02	1.2 2.4 2.2	.1 < .0 < .1 < .0 < .1 < .0 .1 < .0 .1 < .0 .1 < .0	5 7 5 6 5 5	8 <.5 7 <.5 6 <.5 5 <.5 5 <.5
33 L13 3+50 33 L13 3+75 33 L13 4+00 33 L13 4+25 RE B3 L13 4+25	.5 .5 1.1 1.2 1.1	8.8 6.4 5.9 4.5 4.3	7.1 6.8	28 36 37 29 30	.1 .1 .1	9.1 7.1 5.8	3.3 3.4 3.2	110 1. 109 1. 82 1. 152 1. 157 1.	64 . 84 1. 42 1.	3. 8 3. 6	7 <.5 3 .9 5 1.0	2.4 2.4 3.2 2.6 2.6	27 17 12	<.1 .1 .1	<.1 .1 <.1		32 42 32	.11 .09 .06	.034 .111 .098	10 15 12	20.1 18.0 15.0 13.4 13.1	.27 .14 .11	136 . 142 . 105 .	098 106 084	<1 1.98 <1 1.87 <1 2.20 <1 2.11 <1 2.15	.023	. 08 . 06 . 05	.1 .1 .1	.03 .02 .04 .05	1.7 1.9 1.4	.1 < .0 .1 < .0 .1 < .0 .1 < .0	5 7 5 9 5 7	7 <.5 7 <.5 9 <.5 7 <.5 7 <.5
33 L13 4+50 33 L13 4+75 33 L13 5+00 33 L13 5+25 33 L13 5+50	.4 .6 .5 .6	5.3 4.8 4.9 7.6 5.7	7.5 8.0 8.8	20 29 24 33 33	.1 .1 .2	8.2 10.6 8.7 12.1 13.2	3.2 2.8 4.6	79 1. 79 1. 227 1.	06 <.	3. E 5. E 2. E	3 1.8 5 .6 5 <.5	.8 1.9 2.2 1.9 2.3	12 26 34	<.1 <.1 .1	.1 <.1 .1	.1 .1 .1 .1	28 23 30	.07 .13 .22	. 049 . 023 . 063	7 10 16	12.9 15.1 13.2 15.0 16.5	.19 .24 .24	94 . 142 . 237 .	098 096 079	<1 1.83 <1 1.83 <1 1.36 <1 2.27 <1 2.53	.021	.06 .06 .07	.1 .1	.02 .02 .05	1.3 1.3 1.9	.1 <.0 .1 <.0 .1 <.0 .1 <.0 <.1 <.0	5 8 5 5	3 <.5 3 <.5 5 <.5 8 <.5 9 <.5
33 L13 5+75 33 L13 6+00 33 L13 6+25 33 L13 6+50 33 L13 6+75	.3	6.3 3.2 4.4 4.2 6.2	6.8 7.3 7.0	47 20 33 29 30	.1 .1 .1	4.5 5.4 5.9	1.6 2.6 2.6	183 2. 59 . 139 1. 102 1. 664 1.	72 <. 04 . 06 .	5 .2 7 .3 3 .5	2 .8 3 .5 5 <.5	3.4 1.1 1.8 1.0 1.3	16 15 26	<.1 .1 <.1	<.1 <.1 <.1	.2 .1 .1 .1	15 22 24	.09 .09 .13	.017 .030 .029	5 8 12	17.0 8.0 10.0 9.9 13.6	.11 .16 .14	106 . 108 . 189 .	064 085 068	<1 3.00 <1 .88 <1 1.36 <1 1.44 <1 1.48	.028 .027 .026	.03 .06 .04	<.1 <.1 <.1	.02 .02 .02	1.0 1.1 1.4	.1 <.0 <.1 <.0 <.1 <.0 <.1 <.0 <.1 <.0 <.1 <.0 <.1 <.0 <.1 <.0 <.1 <.0	5 4 5 6	0 <.5 4 <.5 5 <.5 5 <.5 6 <.5
33 L13 7+00 33 L13 7+25 33 L13 7+50 33 L13 7+75 33 L13 8+00		4.8 5.6 4.4 5.2 5.6	7.3 6.7 6.4	38 27 29 32 29	.1 .1 .1	5.0 6.7 7.9	2.3 4.2 4.0	569 1. 133 . 171 1. 226 1. 96 1.	97 < 59 1. 33	5 .7 L .6	<.5 3.0 1.1	1.8 2.0 3.9 2.3 2.3	37 23 60	.1 <.1 .1	<.1 .1 <.1	.1 .1 .1 .1	22 37 28	.17 . .17 .	.024 .076 .059	12 18 19	13.8 10.2 13.4 11.5 14.2	.18 .25 .16	164	072 089 059	<1 1.50 <1 1.35 <1 1.46 <1 1.54 <1 1.69	.026 .019 .022	. 05 . 08 . 05	<.1 .1 .1	.02 .02 .03	1.4 1.5 1.6	.1 <.0 .1 <.0 .1 <.0 <.1 <.0 <.1 <.0	5 5 5 6	5 <.5 5 <.5 5 <.5 6 <.5 7 <.5
33 L13 8+25 33 L13 8+50 33 L13 8+75 33 L13 9+00 TANDARD DS5	120,000	6.2 6.8 5.0	7.6 6.3	37 33 21	.1 .1 .1	8.4 7.7 4.4	3.3 4.6 1.9	1684 2. 101 1. 293 1. 155 . 820 3.	61 1. 37 . 83 .	5 .6 3 .7 3 .5	.5 .8 .5	3.3 2.4 1.5	12 48 44	.1 .1 .1	.1 <.1 <.1	.1 .1 .1	35 29 15	.07 . .17 . .16 .	.154 .056 .024	13 20 9	20.4 13.2 10.9 8.2 194.6	.17 .19 .13	106 .0 154 .0 96 .0	084 080 059	<1 3.01 <1 1.91 <1 1.69 <1 1.32 18 2.03	.018 .024 .026	.06 .06 .04	.1 .1 <.1	. 04 . 02 . 02	1.3 1.4 1.1		5 7 5 6 5 5	<.5<.5<.5<.5<.5<.5

Page 20

ACME ANALYTICAL																				-										10000000	1000		AL	4E ANALYI	ICAL
SAMPLE#	Mo ppm	1000	Pb ppm	Zn ppm	-	Ni ppm	Co ppm			As ppm		Au ppb	Th ppm	Sr ppm		Sb ppm		V ppm	Ca %		La ppm	Cr ppm	Mg %	Ba ppm	Ti %		A1 %	Na %	K %	W	Hg ppm	Sc ppm			ia Se om ppm
33 L13 9+25 33 L13 9+50 33 L13 9+75 33 L13 10+00 33 L13 10+25	.5 1.3 .7	6.5 9.3 11.3 7.6 6.5	6.3 11.8	41 37 47 42 39	.2 .2 .1	7.9 9.7 8.5	2.9 10.2 4.3	342 1 224 1 1580 1 258 1 105 1	.41 .92 .66	.6 1.5	1.4 2.4	.6 1.0	3.3 2.4 .4 3.5 3.8	73 95 183 68 15	<.1 .2 <.1 .1	.1 .1 .1 .1	.1 .1 .1 .1	39 28 40 44 37	.31 .69 .26	.068 .044 .127 .054 .120	30 41 16	15.4 13.5 19.4 18.2 13.8	. 29 . 34	193 282	.077 .031 .103	2 1 1 2 <1 1	.54 . .60 . .55 . .86 .	. 022 . 019 . 027	.09 .08 .08 .09	.1 .1 .2 <.1 .1	.02	2.4	.1 <. .1 <. .1 <. .1 <.	05 05 05	5 <.5 6 <.5 8 <.5 6 <.5 6 <.5
33 L13 10+50 33 L13 10+75 33 L13 11+00 33 L13 11+25 33 L13 11+50	.3 .7	7.7 5.8 7.8 8.8 7.6	6.1 6.7	43 27 35 38 40	<.1 .1 .1	5.4 7.8 8.5	2.4 6.1 5.9	165 1 91 1 616 1 246 1 181 2	.05 .53 .56	<.5 .5 .7	.8 .8 1.2	<.5 .8 .8 <.5 21.6	2.7 1.4 3.4	41 42 66 50 44	.1 <.1 .1 .1	<.1 .1	.1 .1 .1 .1	21 31		.034	14 14 17	18.3 13.5 17.5 17.6 21.5	. 22 . 25 . 33	175 134 170 195 270	.088 .067 .104	1 2 1 2	.44 . .35 . .05 . .06 .	. 027 . 028 . 027	.07 .07 .07 .10	.1 <.1 .1	.05 .02 .03 .03	1.7 2.0 2.2	.1 <. .1 <. .1 <. .1 <. .1 <.	05 05 05	8 <.5 5 <.5 7 <.5 6 <.5 7 <.5
B3 L13 11+75 B3 L13 12+00 B3 L13 12+25 B3 L13 12+50 B3 L13 12+75	.6 .6	4.4 5.5 8.0 7.6 6.3	6.3	25 30 37 35 33	.1 .1 .1	4.9 9.5	2.6 5.3 5.8	112 1 113 1 175 1 125 1 81 1	.49 .97 .85	1.1 1.4 2.0	.8 1.0 .9	<.5 .7 .7 1.4 1.0	1.6 4.8 3.8	47 27 32 13 12	<.1 .1 .1 .1	<.1 <.1 .1 .1	.1 .1 .1 .1	27 45 40	.20 .15 .23 .06	.069 .138 .156	14 23 10	100000	.15 .26 .17	188 126 246 155 103	.064 .090 .105	2 3	0.000	. 022 . 018 . 024	.09 .09 .11 .06	.1	.01 .03 .03 .04 .07	1.4 2.3 2.8	.1 <. .1 <. .1 <. .1 <.	05 05 05 1	5 <.5 8 <.5 6 <.5 0 <.5 7 <.5
B3 L13 13+00 B3 L13 13+25 B3 L13 13+50 B3 L13 13+75 RE B3 L13 13+75	4.4	6.0 12.1 7.7 6.4 6.7	12.3 6.8 6.1	41 58 43 38 37	.4 .1 .1	6.9 8.2	24.4 5.6 3.5	98 1 3325 3 219 1 104 1 106 1	. 24 . 95 . 53	2.2 .9 1.5	3.3	8.7 <.5	1.6 5.9	18 85 51 11 12	.1 2 <.1 <.1	.1 .1 .1	.2 .1 .1	50 32	.09 .49 .38 .09	.130 .150 .144	29 32 10	15.5 27.8 16.1 12.7 12.3	.31 .35 .14	119 296 311 104 104	.038 .108 .078	<1 4 1 1 1 2	.41 . .28 . .65 . .32 .	. 021 . 023 . 017	.07 .09 .17 .07	.1 .1 .1	.05 .09 .02 .07	4.6 2.9 1.9	.1 <. .3 <. .1 <. <.1 <. <.1 <.	05 1 05 05	9 <.5 3 <.5 5 <.5 7 <.5 7 <.5
B3 L13 14+00 B3 L13 14+25 B3 L13 14+50 B3 L13 14+75 B3 L13 15+00	.6 .5 .5	7.6 13.0 6.8 5.4 5.1	7.1 6.9 7.3	36 19 31 20 19	.2 .1 .1		1.9	87 1 100 1 61	.00	.5 .6 .6	3.6 .9 1.0	1.3 <.5 2.2 <.5 <.5	1.8 1.4	17 55 38 37 37	<.1 <.1	<.1 <.1	.1 .1 .1 .1	15 25 14	.10 .33 .23 .22 .22	.047 .025 .020	27 12 11	19.6 15.1 10.6	.19		.044 .076 .062	1 2 <1 1 <1 1		. 025 . 023 . 026	.06	.1 <.1 <.1 .1 <.1	.03 .03 .03 .03	3.6 1.9 1.6	.1 <. .1 <. .1 <. .1 <.	05 05 05	8 <.5 7 <.5 7 <.5 6 <.5 6 <.5
33 L13 15+25 33 L13 15+50 33 L13 15+75 33 L13 16+00 33 L13 16+25	.7 .7 .7 .4	6.7 4.6	6.7	30 37 27 27 36	.1	4.7 3.7	4.4 3.3 2.6	74 1	.56 .16	.5 <.5 .7	1.2	<.5 <.5 .7	2.2 2.1 2.4 1.7 2.9	48 60 53 32 13	.1 .1	<.1	.1 .1 .1 .1	34 27 24	.31 .36 .33 .19	.021 .020 .050	14 15 15		.34	-	.090 .087 .064	1 1 1 1 <1 1	.21 .	. 028 . 024 . 020	.09 .10 .08 .08	<.1 .1 .1	.03 .03 .02 .02	2.3 1.7 1.6	.1 <. .1 <. .1 <. .1 <. <.1 <.	05 05 05	7 <.5 6 <.5 4 <.5 6 <.5 7 <.5
33 L13 16+50 33 L13 16+75 33 L13 17+00 33 L13 17+25 STANDARD DS5	.6 .7 .7	4.8 4.9 5.1 6.4 142.2	5.1 5.9 6.5	31 33 35 31 134	.1 .1 .1	4.7 4.6 6.1	2.3	110 1	.45 .46 .56	1.1 1.4 .7	.4 .5 1.3	.6 .8	2.6 2.5 3.5	21 22 17 35 44	.1 .1 .1 .1 5.3	.1 .1 .1 .1 3.7	.1 .1 .1 .1 6.0	40	.22 .18 .17 .24 .73	.090 .114 .037	12 8 20	10.7 10.7 11.2 14.5 188.4		139 109 172	.068 .080 .079	1 1 1	. 36 . . 58 .	018 015 020		.1 .1 <.1	. 05 . 05 . 02	1.3 1.4 2.3	<.1 <. .1 <. <.1 <. .1 <. 1.0 <.	05 05 05	4 < .5 4 < .5 6 < .5 5 < .5 6 4.7

Page 21

SAMPLE#	Mo ppm	Cu ppm	Pb ppm		Ag ppm	Ni ppm		Mn ppm	Fe %						Cd ppm			V	Ca %		La ppm	Cr ppm		Ba ppm	Ti %	B Al		K %	W	-	Sc ppm			Ga ppm j	Se ppm
33 L13 17+50 33 L13 17+75 33 L13 18+00 33 L13 18+25 33 L13 18+50	.7 .7 .5 .6	5.6 6.0 7.0		47 42 40 38 114	.3 .3 .2	5.6 5.2 4.7 6.8 13.5	4.0 3.3 4.4	224 124	1.87 1.73 1.57 1.85 2.41	1.6 2.0 1.0		.8 .9 1.3	3.2 2.5 2.0 2.8 6.1	18 11 12 33 645	.1 .1 .1 .1	.1 .1 .1 .1	.1 .1 .1 .1	39 31 48	.18 .12 .11 .20 5.74	.144 .163 .048	11 9 16	12.1 11.2 9.9 15.6 15.2	.15 .11 .25	97 . 148 .	.079 .082 .089	1 1.40 1 1.80 1 1.97 1 1.52 13 3.24	.014 .017 .021	.07 .06 .05 .08	.1 .1	.05	1.3 1.2 1.6	.1 < <.1 < <.1 < .1 <	.05 .05 .05		<.5 <.5 <.5
33 L13 18+75 33 L13 19+00 33 L13 19+25 33 L13 19+50 33 L13 19+75	.5 .9 .5	11.3 5.8 14.0 12.2 5.0	5.4 7.4 7.4	39 40 44 46 33	.2 .6 .5	8.6 4.9 8.6 7.7 5.4	3.5 5.1 4.6		1.64 2.04 1.86	1.1 1.0 .9	.6 2.5 1.5	1.4	3.2 3.6 2.1	54 15 53 54 42	.1 .1 .1 .1	.1 .1 .1 .1	.1 .1 .1 .1	37 42 31	.38 .11 .41 .42 .36	.145 .063 .056	14 35 20		.15 .36 .33	165 . 244 . 215 .	. 085 . 079 . 062	1 1.96 1 1.13 1 2.12 1 2.00 <1 1.00	.019 .023 .020	.10 .09 .12 .12 .13	.1 <.1 .1	.03 .03 .02 .04	3.3 2.5	.2 < .1 < .1 < .1 <	.05 .05 .05	7 <	<.5 <.5 <.5 <.5 <.5
33 L13 20+00 33 L14 0+00 33 L14 0+25 33 L14 0+50 33 L14 0+75	.4 .4 .3	7.7	6.5 6.8 5.0	36 39 29 22 43	.1 .2 .1	6.1	6.0 5.8 2.6	197 639 1132 409 11015	1.87 1.35 .81	1.0	3.3 6.2 2.7	1.5 .6 1.3	2.0 1.1	89 135 52	.1 .2 .1	.1 .1 <.1	.1 .1 .1	30	.48 .72 .29	. 087 . 075 . 034	30 42 15	19.1 21.5 16.5 11.6 30.2	.27 .22 .15	198 . 238 . 124 .	. 092 . 058 . 046	1 1.82 1 1.28 1 1.42 <1 1.28 <1 2.36	.022 .022 .034		.1 <.1 <.1		3.1 3.8 2.9	.1 < .1 < .2 < .1 < .1 < .1 < .1 < .1 <	.05 .05 .05	4 < 5 <	<.5 <.5 <.5 <.5 <.5
33 L14 1+00 RE B3 L14 1+25 33 L14 1+25 33 L14 1+50 33 L14 1+75	.3 .3 .2	15.7 10.0 9.8 10.8 14.3	3.2 3.4 5.7	22 14 15 19 29	.1 .2 .6	11.7 6.3 6.6 7.8 14.3	1.5 1.6 3.9	88 85 191	.82 .60 .59 1.05	<.5 <.5 <.5	7.0 6.9 13.8	.7 .5 <.5	.2	121 78 75 79 166	.4 .1 .1 .1	.2 .1 .1 .1	.1 .1 .1 .1	12 23	.61 .39 .37 .40 .83	. 082 . 080 . 089	34 34 63	17.6 12.7 12.9 21.8 26.2	.09 .09 .14	141 . 137 . 186 .	.010 .009 .016	<1 2.54 <1 1.61 <1 1.59 <1 2.20 <1 2.98	.015 .014 .015	.03 .03 .04		.11 .12 .11	1.5 1.5 3.2	.1 < .1 < .1 < .1 < .1 < .1 <	. 05 . 05 . 05	5 <	<.5 <.5 <.6 .5
33 L14 2+00 33 L14 2+25 33 L14 2+50 33 L14 2+75 33 L14 3+00	.4 .4 .8	0.01(0.00)	5.3 6.4 8.4	26 30 39 49 42	.1 .1 .2	6.4 5.3 5.5 6.6 11.6	2.9 2.0 5.7	84	1.23 1.27 1.62	<.5 .8 1.1	.9 .8 .6	2.0 <.5 <.5	1.6	45 32 35	.1 <.1 <.1 .1	<.1	.1	31 23	.34 .33 .17 .18 .52	. 110 . 086 . 065	26 10 12	14.1	.23 .15 .20	173 . 145 . 172 .	103 088 077	1 1.45 1 1.07 <1 1.60 <1 1.86 1 2.77	.025 .027 .023	.05 .09 .05 .07	.1	.01	1.5 1.5 1.4	.2 < .1 < <.1 < .1 < .7	. 05 . 05 . 05	10 < 9 <	<.5
33 L14 3+25 33 L14 3+50 33 L14 3+75 33 L14 4+00 33 L14 4+25	.6 .8 .8 .5	8.4	7.3 6.5 6.0 4.5 6.0	39 45 57 31 44	.1 .1 <.1	6.0 7.7 7.6 5.5 11.1	4.4 4.6 3.1	146 263 142	1.65 1.73	1.2 1.4 .5	1.1 .6 .7		4.0 2.9 4.0	15 12		.1 .1 <.1	.1	39 43	.14 .07 .07 .20	. 119 . 089 . 078	19 11° 21	11.2 14.2 13.3 15.7 16.4	.17 .15 .19	160 . 110 . 175 .	115 096 112	<1 2.27 <1 2.55 1 2.36 <1 1.15 <1 2.80	.026 .017 .018	.06 .05 .05 .08	.1 .1 .1	.02 .05 .05 .01	2.5 1.5 1.4	.1 < .1 < <.1 < .1 < .1 < .1 < .1 <	.05 .05 .05	7 < 4 <	<.5 <.5 <.5 <.5 <.5
33 L14 4+50 33 L14 4+75 33 L14 5+00 33 L14 5+25 STANDARD DS5	.2 .5 1.1 .9 12.5	8.1		57 45 40	.1 .1 .1	8.0 11.3 16.5 13.3 24.6	4.4 7.1 6.6	663 481	1.80 2.12	1.7	.9 1.2 .9	.7 .6 1.7	2.5	63 52 55	.1 .1	.1 <.1 .1	.1 .1 .1	45 42	.46 .34 .21	. 083 . 101 . 071	16 25 12	12.3 20.1 28.2 19.2 186.6	.36 .56 .32	214 . 237 . 242 .	101 129 064	<1 2.55 2 1.81 <1 2.02 <1 3.14 17 1.97	. 025 . 023 . 025	.12 .12 .07	.1 .1	.02 .01 .02	2.0 2.7 2.0	.1 < .1 < .1 < .1 < .1 < .1 < .1 < .1 <	. 05 . 05 . 05	5 < 10 <	<.5<.5<.5<.5<.5

Page 22

ACME ANALTTICAL																																		ACME AN	IALYTICAL	
SAMPLE#	Mo ppm		Pb ppm		Ag ppm	Ni ppm		Mn ppm	Fe % p		ppm t					Sb	Bi ppm		Ca %		La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K %	W	Hg ppm	Sc ppm		S %		Se
33 L14 5+50 33 L14 5+75 33 L14 6+00 33 L14 6+25 33 L14 6+50	0.000		7.6 6.2	34 37 27 25 33	.1 .1 .1	8.3 6.9 6.6	4.4 3.8	132 1 85 1	.71 1 .66 1 .60 1 .44 1	.1	.7 17 .8 <	.7 7.7 <.5	3.6 3.7	29 30 13 13 16	.1 .1 .1 .1	.1 <.1 .1 .1	.1 .1 .1 .1	37 40 39 35 30	. 20 . 06 . 06	.086 .069 .121 .077	16 11 11	11.6	.29 .14 .12	179 133	.103 .084 .085	<1 2 <1 2 <1 2	1.85 2.46 2.38		.06 .08 .06 .04	.1 .1 .1		1.8 2.3 2.0	.1 .1 .1	<.05 <.05 <.05 <.05 <.05	7 7 8	<.5 <.5 <.5 <.5
33 L14 6+75 33 L14 7+00 33 L14 7+25 33 L14 7+50 33 L14 7+75	.7 .8 .8 .8	5.3	6.0 6.8 6.0 6.9 6.5	35 34 29 38 33	.2 .1 .1	7.5 5.4	3.7 3.4 4.2	132 1 251 1	.86 .51 1 .40 1 .60 1	.2 .7	.5 1 .6	1.9 .5 <.5	5.6 2.4 2.9 3.4 2.8	33 13 7 7 8	.1 .1 .1 .1	.1 .1 .1 .1	.1 .1 .1 .1	32 33	. 08 . 06 . 05	.110 .129 .108 .091 .109	10 10 16	18.8 11.9 9.9 12.5 14.1	.15 .12 .15	282 148 94 127 118	.077 .079 .085	<1 2 <1 1	2.29 1.79 2.15	.018 .022 .018 .018	.12 .05 .05 .06	.1 .1	.04	1.3 1.3 1.6	<.1 .1 .1	<.05 <.05 <.05 <.05 <.05	7 6 7	<.5 <.5 <.5 <.5
33 L14 8+00 33 L14 8+25 33 L14 8+50 33 L14 8+75 33 L14 9+00	1.0 1.0	6.5 4.0 6.1 4.7 6.7	7.5	39 25 33 25 36	.1 .1 .1	7.2 4.1 7.5 5.6 8.8	2.0 3.0 2.5	94 1 102 1 77 1	.57 1 .10 1 .47 1 .14 1	.1	.4 1 .4 <	<.5 l.1 <.5	1.9	10 6 16 10 21	.1 <.1 .1 .1	.1 .1 .1 .1	.1 .2 .1 .1		.04 .11 .05	.139 .092 .112 .037 .094	6 7 7	7.9	.11	59 102 89	.080 .074 .059	1 <1 2 <1 1	.99 2.03 L.43	.019 .017 .018 .019	.05 .05 .06 .04	.1 .1 .1	.05 .03 .07 .04 .08	.9 1.3 .9	<.1	<.05 <.05	7 9 6	<.5 <.5 <.5 <.5
33 L14 9+25 33 L14 9+50 33 L14 9+75 33 L14 10+00 33 L14 10+25	1.1 1.3 .5		8.6 9.6 9.5	26 29 33 17 25	.1 .1 <.1	11.1 2.5	5.7 15.9 1.4	292 1 1769 1	.65 <	.0	2.5 2	.8 2.1 <.5	2.3 2.0 1.5	42 53 125 12 35	.1 .2 <.1 .1	.1 .1 .1 .1 <.1	.1 .1 .1 .1	25 37 37 17 29	.20 .39 .05	.031 .051 .058 .013	15	12.9 18.8 17.2 6.2 9.5	.26		.074 .072 .061	<1	1.94 1.73 .55	.023 .023 .019 .019	.06 .08 .04	<.1 .1 <.1 <.1	.03 .06 .01	1.8 2.4 .7	.1	<.05 <.05 <.05 <.05 <.05	6 6 4	<.5 <.5 <.5 <.5
33 L14 10+50 RE B3 L14 10+50 33 L14 10+75 33 L14 11+00 33 L14 11+25	.6 .4 .8	4.4 4.9 3.6 5.9 5.5	6.8	31 31 20 39 31	.1 .1 .1	4.4 4.9 3.4 7.8 6.3	2.3 1.8 4.2	275 98 121 1	.98		.6 <	<.5 <.5	1.3 1.3 2.9	16 17 36 17 9	.1 .1 <.1 <.1	.1 <.1 <.1 .1	.1 .1 .1 .1	21 23 20 35 36	.09 .16	.028 .029 .018 .143 .164		9.0		65 85 124	.063 .065 .068 .086	1 1 <1 <1 2	. 10 . 84 2. 07	.020	.05 .06 .07	<.1 <.1 <.1 .1	.03 .02 .03	.8 .9 1.5	<.1 < .1 < .1 < .1 < .1 < .1 < .1 <	<.05 <.05 <.05	6 4 8	<.5 <.5 <.5 <.5
33 L14 11+50 33 L14 11+75 33 L14 12+00 33 L14 12+25 33 L14 12+50	.5 .4 .6	4.7 4.6 3.0 5.0 6.2	5.7 6.9	31 32 18 31 36	<.1 <.1 .1	3.4 7.2	3.8 2.3 3.5	165 1 115 78 1		.8 .5 .5	.6 < .4 <	<.5 <.5 <.5	3.8 1.7	9 30 20 9 14	.1 <.1 <.1 <.1	.1 <.1 <.1 <.1	.1 .1 .1 .1	32 46 21 33 33	.20 .09 .04	.146 .053 .016 .097 .206	19 10 ° 9		.28	187 81 106	.077	<1 1 <1 <1 1	.10 .63	.015 .020 .017	.04 .09 .05 .05	.1 .1 <.1 .1	.02 .01 .03	1.3 1.0 1.3	.1 · <.1 ·	<.05 <.05 <.05	4 4 8	<.5 <.5 <.5 <.5
33 L14 12+75 33 L14 13+00 33 L14 13+25 33 L14 13+50 STANDARD DS5	.6 .7		7.6 7.5 6.9	41 38 27	.1 .1 <.1	18.2 8.9 10.7	5.8 3.8 3.8	1465 1 290 1 107 1 173 1 790 2	.93 .45 .14		.6 < .9 .7 < 1.0 14 6.0 42	.8 <.5 1.0	4.3 3.0 2.5	66 34 49	.1 .1 <.1 <.3	.1 .1 .1 <.1 3.8	.1 .1 .1 .1 6.0	48 36 26	1.44 .43 .18 .25 .77	.098 .086 .045	27 17 13	20.4 20.6 13.8 14.5 189.4	.51 .23 .32	319 263 187 144 135	.108 .082 .081	<1 1 <1 1 <1 1	69 89 49	.027 .021 .028	.14 .09 .07	.1 .1	.04	2.2 1.5 1.9	.1 .	<.05 <.05 <.05 <.05 <.05	5 7 5	<.5 <.5 <.5 <.5 4.9

Page 23

																																		THE MINETI	.07.12
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm		Ni ppm	Co ppm						Th ppm			Sb ppm	Bi ppm	V	Ca %		La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K %	W		Sc ppm	T1 ppm		ia Se m ppm
33 L14 13+75 33 L14 14+00 33 L14 14+25 33 L14 14+50 33 L14 14+75	.7 .7 .7	4.1 5.4 5.7 6.0 5.7	11.1 5.5 6.6	26 36 42 44 39	.1 .1 .1	6.9 5.7	2.9 3.7 3.6	97 161 103 104 232	1.83 1.77	.8 1.1 1.1	.6 .6		1.4 2.8 3.5	130 32 13 12 28	.1 <.1 <.1 .1	.1	.1 .1 .1 .1	30 42 41	.35 .17 .13 .09 .18	.204 .158	14 13 12	11.3 15.0 12.3	.16	150 133 111	.072 .078 .094	<1 1. <1 1. 2 1. <1 1. 1 1.	54 . 73 . 92 .	018 017 019	.15 .09 .06 .08	.1 .1 .1	.02 .06 .06 .04	1.1 1.2 1.6	.1 < .1 < .1 < .1 < .1 < .1 < .1 < .1 <	.06 .05 .05	4 <.5 6 <.5 6 <.5 7 <.5 6 <.5
33 L14 15+00 33 L14 15+25 33 L14 15+50 33 L14 15+75 33 L14 16+00	.4 .6 .4	7.0 5.2 7.3 4.1 2.1	7.1 8.4 6.4	34 32 33 29 12	.1 .1 .1	5.5 10.4	2.3 3.6 3.1	551 200 173 122 34	1.06 1.39	.5 .6 <.5	.6 1.3 .7	<.5 <.5	3.8 2.7		.1 <.1	.1 <.1	.1 .1 .1 .1	24 32 32	.35 .16 .31 .18 .03	.048 .029 .034	10 17 15	11.3	.14	185 105 167 127 33	.066	<1 2. <1 1. <1 1. <1 1.	24 84 04	020 023 019	.10 .09	<.1 .1	.03	1.0 2.3 1.2	.1 < .1 < .1 < .1 < .1 < .1 < .1 < .1 <	05 05 05	8 <.5 6 <.5 6 <.5 4 <.5 4 <.5
33 L14 16+25 33 L14 16+50 33 L14 16+75 33 L14 17+00 33 L14 17+25	.6 .5 .7	4.9 11.1 10.0 6.8 5.7	5.9 6.2 6.5	86	<.1 <.1 <.1	13.7 12.5 7.5	8.3 7.9 5.4	143 476 511 267 157	2.24 2.20 2.09	1.2 1.1	1.3	2.6 1.3	6.7 6.5	28 50 50 41 11	.1 <.1 .1 .1	.1 .2 .2 .1	.1 .1 .1 .1	61 59 54	.20 .50 .51 .44 .10	.141 .142 .149	35 33 33	10.8 29.6 28.0 18.1 12.7	. 43 . 40 . 36	182 214 215 277 151	.110 .101 .117	1 <1 1. 1 1. <1 1. <1 1.	16 .1 67 .1	020 021 022	.10 .14 .12 .15	.2 .1 .2	.06 .02 .02 .03 .04	3.7 3.5 2.1	<.1 <. .2 <. .1 <. .1 <. .1 <.	05 05 05	4 <.5 4 <.5 4 <.5 5 <.5 6 <.5
33 L14 17+50 33 L14 17+75 33 L14 18+00 33 L14 18+25 33 L14 18+50	.8 .5 .5	6.4 12.5 5.0 6.8 6.5	9.4 5.4 6.0	48 41 35 33 44	.6 .2 .2	8.0 3.8 5.1	7.2 2.6 4.2	153 599 82 225 244	2.22 1.58 1.69	1.2	3.6 .6 1.2	<.5	4.1 2.5 3.9	23 56 21 36 18	.1 .2 .1 .1	.1	.1 .1 .1 .1	60 33	.21 .42 .17 .30 .14	.071 .181 .073	42 11 25	14.7 19.4 10.9 13.4 11.9	.30 .12	206 147 219	.083 .079 .108	<1 1. 1 1. 1 1. <1 1. 1 1.	72 .0 51 .0 26 .0	021 016 024	.11 .10 .06 .11	.1 .1 .1	.02 .04 .04 .02 .03	3.8 1.2 1.8	.1 <. .1 <. <.1 <. .1 <. .1 <.	05 05 05	5 <.5 5 <.5 6 <.5 5 <.5 6 <.5
33 L14 18+75 33 L14 19+00 RE B3 L14 18+75 33 L14 19+25 33 L14 20+00	.5 .2	9.1 26.2 8.3 5.4 6.5	5.5 5.8	37 68 37 24 45	2.4 .3 .1	20.9 8.3 5.8	8.4 4.0 2.3	176 4164 172 116 236	2.69 1.51 1.10	1.2	1.2 1.1	1.5	2.1	34 147 33 34 44	.1 .8 <.1 <.1 .2	.1 .2 .1 <.1 .1	.1 .2 .1 .1	53 1 35 25	.21 1.13 .19 .18 .22	.107 .025 .021	107 13 9	26.6 17.5 12.5	.31 .15	441 133	.047 .077 .076	<1 1. <1 3. <1 1. <1 1. 1 1.	59 .0 48 .0 27 .0	021 020 030	.20	. 1		6.4 2.2 1.6	.1 <. .3 . .1 <. .1 <. .1 <.	08 1 05 05	6 <.5 2 .7 5 <.5 4 <.5 4 <.5
33 L15 0+00 33 L15 0+25 33 L15 0+50 33 L15 0+75 33 L15 1+00	.4 .3 .2	5.0 10.0 9.3 19.1 4.9	7.2 7.3 7.7	40	.1 .2 1.3	10.2 10.6	5.1 4.0 3.9	115 308 221 211 83	1.49 1.44	1.8 1.0	5.5 4.9	7.4 1.5 2.2	1.8 2.4	86 78 172	<.1 .1 .1 .2 <.1	<.1 .1 .1 .2 .1	.1 .1 .1 .1	41 36 34	.18 .43 .44 1.04	. 068 . 049 . 043	29 28° 96	18.5 16.9	.20 .22 .27	135 243 187 207 277	.063 .074 .050	<1 1. <1 1. <1 1. <1 2. <1 1.	80 .0 72 .0 33 .0)29)29)31	.05	<.1 .1 <.1 <.1 <.1	.03 .03 .14	9.0	.1 <. .1 <. .1 <. .1 <. <.1 <.	05 05 05	4 <.5 6 <.5 6 <.5 7 1.0 6 <.5
33 L15 1+25 33 L15 1+50 33 L15 1+75 33 L15 2+00 STANDARD DS5	207017	7.0	5.4 5.2 6.8	45 38 34 39 131	.1 .1 .1	9.0 8.1 5.7	4.2 5.1 4.1	152 260 158 267 764	1.78 1.94 1.60	.5 .7 1.4	2.8	1.2 1.2 .9	4.4 4.7 4.3	63 25 12	<.1 <.1 <.1 <.1 5.3	<.1 .1 .1 .1 3.7	.1 .1 .1 .1 6.0	44 52	.21 .26 .18 .08 .72	.017 .101 .093	16 21 19	20.9	.32 .21 .15	271 208 296 194 132	.121 .108 .102	<1 2. <1 1. 1 1. <1 2. 19 1.	33 .0 70 .0 18 .0)40)18)22	.10	.1 .1	.03 .02 .04	1.6	.1 <. .1 <. .1 <. <.1 <. 1.0 <.	05 4 05 5 05 8	7 <.5 4 <.5 5 <.5 8 <.5 6 4.8

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Mosquito Consolidated Gold Mines File # A404062

Page 1

															ZIIIVIII.			aricot	ivei	BC VI)														
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm		As ppm			Th ppm	565.0	9199	Sb ppm		V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K %		Hg ppm	Sc ppm			a Se n ppm
33 L15 2+25 33 L15 2+50 33 L15 2+75 33 L15 3+00 33 L15 3+25	.8 .7 .8	5.7 6.7 8.6 6.9 7.4	6.1 5.3 6.1	39 30 42 38 35	.1 .1 .1	6.0 11.9 8.7	3.8 5.9 4.8	132 73 166 183 148	1.51 1.91 1.93	1.4 1.1 1.1	.7 .8 .7	1.0 1.4 .6 .8 1.3	2.5 4.4 3.4	22 15 23 15 13	.1 <.1 .1 .1	.1 .1 .1	.1 .1 .1 .1	37 47 46	.16 .07 .16 .09 .08	. 116 . 133 . 088	11	18.9 13.8	.12 .23 .17	120 227 163	.089 .110 .100	1 1. <1 2. 1 2. 1 2. <1 2.	25 .0 17 .0)22)20)20	.09 .05 .10 .07	.1 .1 .1		1.7 2.6 1.9	<.1 <.0 <.1 <.0 .1 <.0 .1 <.0 .1 <.0	5 6 5 6	5 .6
33 L15 3+50 33 L15 3+75 33 L15 4+00 33 L15 4+25 33 L15 4+50	.7 .7 .7	7.7 7.6	6.3 6.0 6.7	44 50 57 40 36	.1 .2 .2	12.0 10.7 11.2	6.8 4.9 5.5	158 2 200 1 141 1 277 1 96 1	1.76 1.75 1.86	1.7 1.6	.7 .7 .8		2.8 2.5 2.7	32 12 10 14 20	.1 <.1 .1 .1	.1 .1 .1 .1	.1 .1 .1 .1	39 40 39	.20 .09 .07 .07 .11	.122 .118 .120	20 2 10 1 12 1 15 1 14 1	15.8 14.6	.17 .18 .19	127 98 144	.103 .091 .098	<1 2.	04 .0 76 .0)21)20)20	. 09 . 06 . 06 . 06	.1 .5 <.1	.02 .04 .06 .05	1.8 2.0 2.2	.1 <.0 .1 <.0 .1 <.0 .1 <.0 .1 <.0	5 8 5 8 5 8	3 <.5 3 .5
3 L15 4+75 3 L15 5+00 E B3 L15 5+00 3 L15 5+25 3 L15 5+50	2.4 2.2 .9	6.6 9.1 9.4 6.6 11.2	10.3 9.5 7.0	43 59 59 45 54	.2 .2 .1	12.5 12.0 10.2	19.1 19.5 4.0	110 1 5076 3 4809 3 130 1 1262 2	3.67 3.54 1.82	3.2 2.9	4.0 3.7 .6	<.5	2.2	31 123 119 18 92	.1 .5 .4 .1	.1 .1 .1 .1	.1 .1 .1 .1	103 99 43	.16 . .66 . .60 . .11 .	. 195 . 188 . 171	16 1 48 1 48 1 12 1 26 2	19.0 18.6 16.7	.25 .25 .21	454 436 133	.039 .040 .087	1 2. 1 2. 1 2. 1 1. 1 3.	36 .0 69 .0)23 .)21 .)18 .	. 09 . 09 . 08	<.1 .1 .1	.04 .09 .07 .11	4.8 4.4 1.6	.1 < .0 .8 < .0 .7 < .0 .1 < .0 .2 < .0	5 7 5 7 5 6	7 .7 7 .7 5 .5
33 L15 5+75 33 L15 6+00 33 L15 6+25 33 L15 6+50 33 L15 6+75	1.0 1.2 .7	5.8 11.3 7.7 4.5 6.8	8.2 11.6 9.0		.2 .1 .1	9.3 6.9 7.0	4.6 4.9 5.8	164 2 1872 1 171 2 149 2 125 1	1.40 2.37 2.04	1.2 2.3 1.2	.6 .9 .7	<.5 <.5 <.5 2.2 <.5	2.0 3.0 3.3	182 57 27		.1 <.1 <.1	.1 .2 .1	33 1 51	.36 . .68 . .25 . .21 .	.192 .131 .096		14.1	.34 .36 .32	273 427 261 271 160	. 065 . 026 . 067	<1 1. 8 1. <1 2. <1 1. 1 2.	55 .0 00 .0 94 .0	26 . 20 . 20 .		<.1 <.1 .1		1.7 1.6 1.5	.1 <.0 .1 .0 .1 <.0 .1 <.0 .1 <.0	5 6 5 6	<.5
3 L15 7+00 3 L15 7+25 3 L15 7+50 3 L15 7+75 3 L15 8+00	.4 .6 .8	6.7 6.6 6.0 9.1 5.6	6.5 6.4 8.2	42 29 42 35 36	.1 .1 .1	11.6 11.2 9.7	5.0 5.4 6.3	113 1 167 1 176 1 184 2 150 1	1.46 1.90 2.04	.7 1.0	.9 .8 .9	<.5 <.5 <.5 .5	2.9 3.5 3.8	42 18	.1 <.1 <.1 .1 <.1	.1 <.1 .1 .1	.1 .1 .1 .1	38 47 44	.09 . .19 . .25 . .12 .	043 077 116	12 1 18 1 22 1 13 1 23 1	L5.4 L9.0 L4.5	.26 .34 .19		.086 .105 .100	1 2. <1 1. <1 1. <1 3. <1 1.	57 .0 36 .0 17 .0	28 . 20 . 24 .	.06 .06 .11 .08	<.1 .1 .1	.05 .01 .02 .04	2.2 1.9 2.2	.1 < .0 .1 < .0 .1 < .0 .1 < .0 .1 < .0	5 6 5 6 5 10	<.5 .5 .5
33 L15 8+25 33 L15 8+50 33 L15 8+75 33 L15 9+00 33 L15 9+25	.5 .7 .4	7.6 4.3 6.5 9.8 4.6	5.6 8.7	34 23 33 24 25	.1 .1 .2	8.0 4.5 9.2 8.9 6.8	2.2 3.8 3.2	101 1 81 1 82 1 72 1 356 1	L.00 L.48 L.43	.5	.7 1.0	<.5 <.5	2.5	14 10 17 28 16	.1 <.1 <.1 <.1	.1 <.1 <.1 .1	.2 .1 .1 .1	23 31 25	.08 . .08 . .09 . .10 .	053 096 050	11 1 5 11 1 14 1 6	7.7 l3.6 l6.1	.08 .18	161 . 62 . 145 . 183 . 82 .	. 069 . 081 . 062	<1 2. 1 1. 1 2. <1 2. 1 1.	05 .00 58 .00 91 .00	20 . 23 . 24 .	05 07	<.1		.8 1.8 1.8	.1 < .09 <.1 < .09 .1 < .09 .1 < .09 .1 < .09	6 6 5 9 5 11	<.5
3 L15 9+50 3 L15 9+75 3 L15 10+00 3 L15 10+25 TANDARD DS5	. 7 . 4	6.0 4.8 7.0 8.0 140.4	7.5 7.0 7.8	31 31 26 41 136	.1 .1 .1	7.8	2.8 2.7 6.5	101 1 86 1 242 1 460 2 768 2	1.26 1.04 2.08	1.2 .6 1.0	.3 .8 1.7		1.5 1.3 7.0	42 68	.1 <.1 <.1 .1 5.4	.1 .1 .1 .1 3.8,	.1 .1 .1 .1 6.0	26 23	.08 . .07 . .17 . .72 . .74 .	049 032 189		8.5	.18 .19 .43	102 . 77 . 124 . 286 . 138 .	. 086 . 067 . 103	<1 2 1 1 <1 1 2 1 17 1	54 .00 71 .00 32 .00	21 . 34 . 32 .	04 19	<.1 <.1 .1	.02	1.2 1.9 4.0	<.1 <.09 .1 <.09 .1 <.09 .2 <.09 1.1 <.09	5 9 5 6 5 4	<.5 <.5

GROUP 1DX - 7.5/1.0 GM SAMPLE LEACHED WITH 45 ML/6 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 150 ML/20 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY.

SAMPLE TYPE: SOIL SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ata / FA ___ DATE RECEIVED: JUL 30 2004 DATE REPORT MAILED: AM 24/04