2005 DIAMOND DRILLING ASSESSMENT REPORT ON THE COPPER CANYON PROPERTY

Liard Mining Division British Columbia, Canada

NTS 104G/3 and 104G/4 57° 07' North Latitude 131° 21' West Longitude

Owned by Eagle Plains Resources Ltd. Suite 200, 16-11th Ave. S. Cranbrook, B.C. V1C 2P1

Operated by NovaGold Canada Inc. Suite 2300, 200 Granville Street Vancouver, B.C. V6C 1S4

Prepared by

Donald F. Penner, P.Geo. Scott A. Petsel, CPG

February 2006

TABLE OF CONTENTS

		Page
1.0	INTRO	DUCTION
2.0	LOCAT	ION, ACCESS & PHYSIOGRAPHY2
3.0	EXPLO	RATION HISTORY2
4.0	LAND -	FENURE AND CLAIM STATUS
5.0	2005 S	UMMARY OF WORK7
6.0	REGIO	NAL GEOLOGY
	6.1	Stratigraphy
	6.2	Intrusives
	6.3	Structure9
7.0	DIAMO	ND DRILLING11
	7.1	Introduction11
	7.2	Lithologic Descriptions12
	7.3	Summary of Drill Results17
8.0	DISCU	SSION & RECOMMENDATIONS17

APPENDICES

APPENDIX I	References	20
APPENDIX II	Statement of Expenditures	25
APPENDIX III	Statements of Qualification	27
APPENDIX IV	Lithological Classification	0
APPENDIX V	Drill Sections and Maps - Plates 1-4	
APPENDIX VI	Copper Canyon Diamond Drill Logs	
APPENDIX VII	Analytical Procedures	

APPENDIX VII Assay Certificates

LIST OF TABLES

	-
Table 1 Copper Canyon Claim Status	.4
Table 2 2005 Copper Canyon – Diamond Drill Hole Summary	15
Table 3 2005 Copper Canyon – Individual Assay Composites	20

LIST OF FIGURES

<u>Page</u>

Page

Figure 1	Location Map
Figure 2	Claim Map5
Figure 3	Detailed Claim Map6
Figure 4	Regional Geology Map10

LIST OF PLATESScalePlate 1DDH CC05-0030 : Section 6333251 N1 : 2,500Plate 2DDH CC05-0031 : Section 6332857 N1 : 2,000Plate 3DDH GC05-0659 : Section 6333549 N1 : 2,000Plate 4Copper Canyon Project Geology1 : 2,000

1.0 INTRODUCTION

This report summarizes conclusions from a small diamond drilling program completed during 2005 on the Copper Canyon property, an alkaline porphyry-style copper-gold-silver occurrence located approximately 6 kilometers east of the Galore Creek deposits. Disseminated chalcopyrite mineralization occurs in surface exposures of syenite porphyry in Copper Canyon and Doghouse creeks, northerly tributaries of the East Fork of Galore Creek. This year's drilling program was designed to test a coincident magnetic and chargeability anomaly on the south side of the East Fork of Galore Creek and to test for extensions of known mineralization in the footwall of the Doghouse Fault and Copper Creek areas.

Drilling completed during 2005 consisted of 3 holes totaling 924 metres. It commenced on September 12th and finished on September 29th, 2005. Work proposed for 2006 will include additional drilling and surface mapping in order to provide closer spaced subsurface data within the area of the known Cu-Au-Ag resource and to explore the exterior limits of mineralization.

The multiphase Copper Canyon syenite porphyry and adjacent volcanic rocks host disseminated copper, gold, and silver mineralization. The volcanic strata progress from a basal sequence of alkaline lavas upward to an extensive pyroclastic section, thence to epiclastic sediments. The Copper Canyon porphyry intrudes these lithologies. The basal lavas accumulated during passive, non-pyroclastic eruptions. Venting during emplacement of the Copper Canyon porphyry produced the overlying pyroclastic rocks, and reworking of these strata produced the epiclastic section. Significant Cu-Au-Ag mineralization lies within the intrusive rocks and within an orthomagmatic breccia unit below the pyroclastic rocks. The hydrothermal system is centered in the Copper Canyon porphyry. Mineralized clasts in the pyroclastic section and alteration of this superjacent eruptive carapace indicate that the ore system started prior to eruption and continued through and past the eruptive episode. Structures include early compressional and later normal faults. The largest compressional structure truncates the volcanic section and mineral system to the north and east, and places older siliciclastic and carbonate strata above mineralized lavas. Several normal faults occur but generally show small displacement.

In August 2003, SpectrumGold Inc. (now NovaGold Canada Inc.) entered into an option agreement to acquire an 80% interest in the Copper Canyon Project from Eagle Plains Resources Ltd. Under the terms of the agreement, NovaGold must spend \$3million and issue 400,000 shares of NovaGold Resources Inc. by October 1, 2013 to earn a 60% interest. To earn an additional 20%, NovaGold must make a further payment of \$1million and complete a feasibility study within eight years of earning the 60% interest. NovaGold also assumes the commitments of the underlying agreement with Bernard Kreft, which include payments totalling \$250,000 and a 2% net smelter return held by Kreft.

Copper Canyon, an alkaline porphyry-style copper-gold-silver deposit, has a combined indicated and inferred resource of 384.7 million tonnes containing 5.2 million ounces of gold and 5.8 billion pounds of copper (LaCroix, 2004).

2.0 LOCATION, ACCESS & PHYSIOGRAPHY

The Galore Creek property (Figure 1) is located within the historic Stikine Gold Belt of northwestern British Columbia, approximately 75 kilometres northwest of Barrick Gold's Eskay Creek mine. The 11,344 hectare (28,020 acre) property lies 70 kilometres west of the Bob Quinn airstrip, 150 kilometres northwest of the tidewater port of Stewart, British Columbia, and 90 kilometres northeast of Wrangell, Alaska. The property is situated at the headwaters of Galore Creek, a tributary of the Scud River, which in turn flows into the Stikine River. The property is located within the Liard Mining Division at latitude 57°07'30''N and longitude 131°21'W, on NTS map sheets 104G/03 and 104G/04.

The town of Smithers, located 370 kilometres to the southeast, is the nearest major supply centre. Access to the property is presently by helicopter. During the 2005 program most personnel, supplies and equipment were staged from the Bob Quinn airstrip and transported via helicopter to the Galore Creek camp. A 500-meter gravel airstrip at Galore Creek was cleared of brush this year but used only as a staging area for the helicopters.

Copper Canyon is located in the humid continental climate zone of coastal BC. Summers are generally cool, and winters cold, with substantial snowfall. Property temperatures range from 20°C in the summer to well below -20°C in the winter. Annual precipitation is 76 centimetres with the majority (70%) falling as snow between September and February.

Physiographically, the Stikine-Iskut area is characterized by rugged mountains with elevations ranging between 500 to 2080 meters above sea level, active alpine glaciation and deep U-shaped valleys. Relief on the property varies from moderate to extreme. The tree line, located at an elevation of 1100 meters, divides the forests of balsam fir, Sitka spruce, alder, willow, devils club and cedar from the sparse grasses and brush above.

3.0 EXPLORATION HISTORY

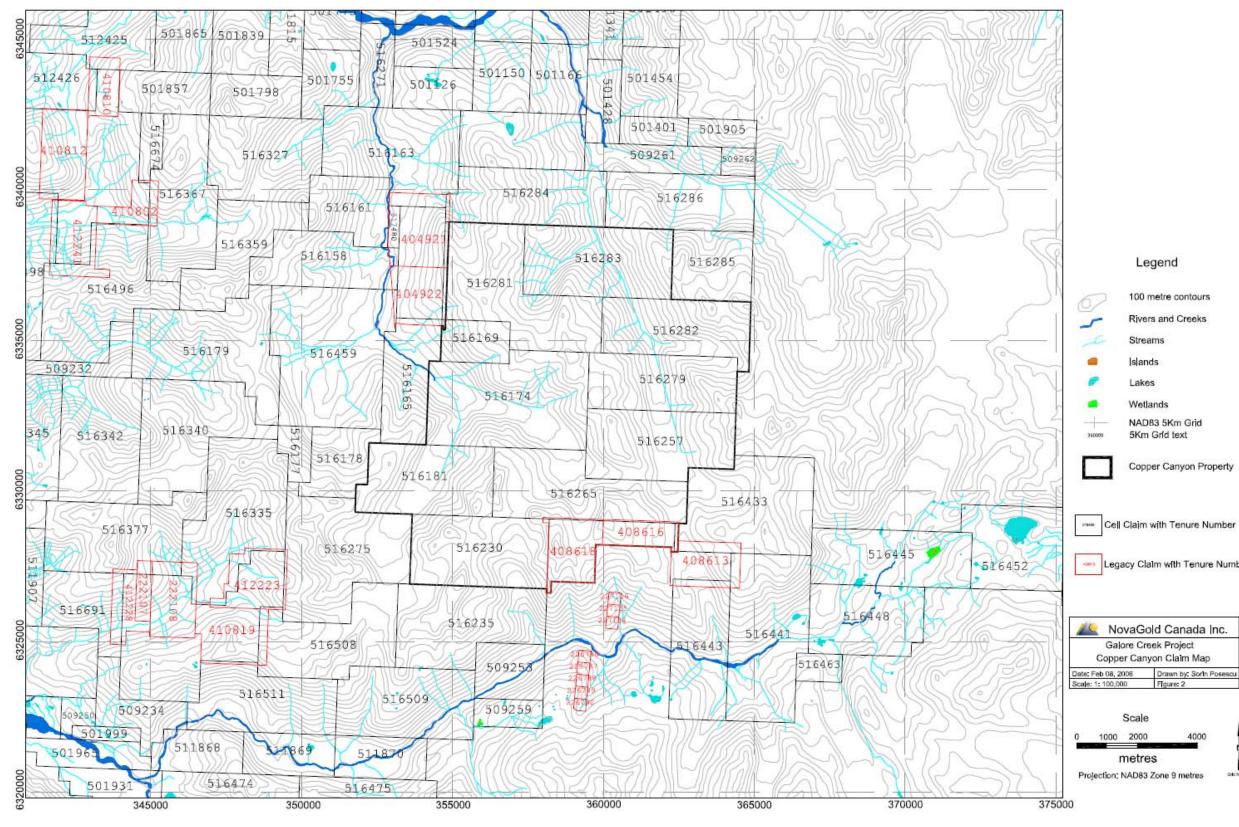
The following exploration history is an excerpt from Otto (2004).

The Copper Canyon property was first discovered and explored in the late 1950's. The first drill holes, completed in 1957, delineated an inferred resource of 27 million tonnes (Termuende, 2002). Sporadic exploration efforts occurred in the 1960's but due probably to a combination of market conditions and difficulty of access the property remained idle until the late 1980's when it was re-evaluated for possible precious metal credits. 1990 saw a major increase in activity with renewed geological mapping and completion of a 3785 meter core drilling program. Additional work was recommended based on favourable results from the 1990 effort, but due apparently to a hostile political climate following elections, exploration activities ceased. The property remained idle until the claims were allowed to lapse in 2001. Prospector Bernie Kreft initiated the most recent flurry of activity in 2001 by staking the Kopper King 1 and 2 claims immediately following the lapse of the claims originally staked by American Metals Company 44 years prior. Termuende (2002) and Bottomer and Leary (1995) discuss the complete property history and the reader is referred to these papers for their comprehensive discussion.

2005 Diamond Drilling Assessment Report on the Copper Canyon Property

4.0 LAND TENURE AND CLAIM STATUS

The Copper Canyon property originally consisted of 4 four-post claims comprising 71 units. In 2004, SpectrumGold Inc. (now NovaGold Canada, Inc.) entered into an option agreement to earn up to 80% interest in these claims from Eagle Plains Resources Ltd. NovaGold must make payments to the owners of 400,000 shares, and expenditures of \$3.0 million to earn 60% interest. To earn another 20%, NovaGold must make another payment of \$1.0 million and complete a feasibility study. NovaGold also assumed the commitments of the underlying agreement with Bernard Kreft.


In July 2005, NovaGold converted the mineral claims subject to the Copper Canyon option agreement into 10 cell claims with two claims remaining as legacy claims to hold an area of 11,344 hectares. Two claims are held by Eagle Plains Resources Ltd. And 10 claims are held by NovaGold Canada Inc. See Table 1 for a list of the Copper Canyon Property Claims and their expiry date after the filing of and approval of this report. Figures 2 and 3 show the details of the Copper Canyon claims including location of the drill holes with respect to the claims.

This report covers work completed on portions of the Copper Canyon Property which was carried out under BC Ministry of Energy, Mines and Petroleum Resources mine permit number MX-1-622. The work at Copper Canyon was conducted entirely within the boundaries of Cell Claim Tenure number 516174.

Tenure No.	Name	Owner	Area (ha.)	Expiry Date*
516169	Cell Claim	Eagle Plains Resources Ltd. Eagle Plains	316.102	2015/DEC/01
516174	Cell Claim	Resources Ltd.	1,598.830	2015/DEC/01
516181	Cell Claim	NovaGold Canada Inc.	1,002.122	2015/DEC/01
516230	Cell Claim	NovaGold Canada Inc.	1,055.420	2015/DEC/01
516257	Cell Claim	NovaGold Canada Inc.	1,072.055	2015/DEC/01
516265	Cell Claim	NovaGold Canada Inc.	1,177.971	2015/DEC/01
516279	Cell Claim	NovaGold Canada Inc.	913.438	2015/DEC/01
516281	Cell Claim	NovaGold Canada Inc.	1,386.770	2015/DEC/01
516282	Cell Claim	NovaGold Canada Inc.	930.595	2015/DEC/01
516283	Cell Claim	NovaGold Canada Inc.	1,140.709	2015/DEC/01
408616	VIA 35	NovaGold Canada Inc.	250.000	2015/DEC/01
408618	VIA 37	NovaGold Canada Inc.	500.000	2015/DEC/01
Totals:	12 claims		11,344.012	

Table 1 - Copper Canyon Property Claim Status

Note: * Date indicated is subject to government approval of the 2005 assessment report.

NovaGold Canada Inc.

2005 Diamond Drilling Assessment Report on the Copper Canyon Property

Legend

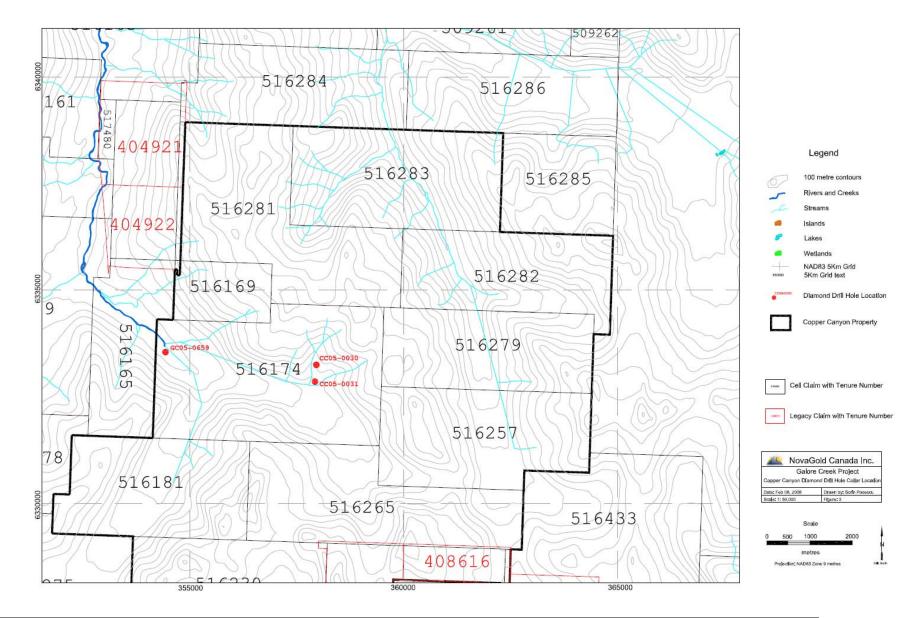
100 metre contours 6/ **Rivers and Creeks** 5 Streams slands 6 Lakes Wetlands -------NAD83 5Km Grid 5Km Grid text 350000 Copper Canyon Property

Cell Claim with Tenure Number

Legacy Claim with Tenure Number

4000

Gdd Not


Galore Creek Project

Scale

metres

1000 2000

Copper Canyon Claim Map

NovaGold Canada Inc.

2005 Diamond Drilling Assessment Report on the Copper Canyon Property 6

5.0 2005 SUMMARY OF WORK

The diamond drilling program was conducted between September 12, 2005 and September 29, 2005 at a cost of \$237,035.08. Details of the costs can be found in Appendix II. The program consisted of three diamond drill holes totalling 924 metres. Two holes were drilled to test the limit of known mineralization associated with the Doghouse Fault and in the main deposit in the Copper Creek area and the third hole tested a coincident magnetic/chargeability anomaly near the western property boundary on the south shore of East Fork Creek. This report discusses the work completed during this period.

The anniversary date of the claims on which assessment work was filed is December 1st, and all costs through to October 31st, 2005 were included in the 2005 assessment work filing. On November 29, 2005, under Event Number 4056640 assessment work totalling \$198,172.74 was applied to the claims listed in Table 1. The claim expiry dates were advanced to the year 2015 and are subject to government approval of this assessment report. The remaining portion of assessment work was credited to NovaGold portable assessment credit account.

Hy-Tech Drilling Ltd. of Smithers, BC provided two S-15 Custom Built fly rigs designed to drill HQ and NQ core. Drilling was conducted between September 12, 2005 and September 29, 2005.

The core recovered from each drill hole was flown to camp, where it was logged for lithology, alteration, mineralization, structure, core recovery and rock quality determination. In addition, geotechnical tests, such as specific gravity and point load strength, were performed. The core was cut in half using a diamond saw with half of the core taken as a sample and submitted to ALS Chemex Labs in North Vancouver, B.C. In addition to the core, control samples were inserted into the shipments at the approximate rate of one standard, one blank and one duplicate per 20 core samples. A total of 514 samples were collected and analysed for copper, gold, silver and 32 other elements. After the core was logged, cut, and sampled, the remaining half was stored at a designated location on the moraine near the Galore Creek camp.

Helicopter support for the project was provided by two companies: Quantum Helicopters Ltd, of Terrace, B.C., provided the following helicopters under charter arrangements or sublease: Two Bell 206B Jet Rangers; Three Bell 206LR Long Rangers; One Bell 205. Vancouver Island Helicopter Logging, of North Saanich, B.C. provided a Sikorsky S-61 for drill moves, crew changes and mobilizing equipment. These helicopters flew a total of 52.8 hours during the field season for the Copper Canyon Project. The total helicopter cost for this applied to assessment work is \$119,163.17.

6.0 REGIONAL GEOLOGY

The following description of the regional geology is an excerpt from Simpson (2003). It has been divided into three parts: stratigraphy, intrusives, and structure.

The Galore Creek deposits lie in Stikinia Terrane, an accreted package of Mesozoic volcanic and sedimentary rocks intruded by Cretaceous to Eocene plutonic and volcanic rocks. The eastern boundary of the Coast Plutonic complex lies about 7 kilometres to the west of the claims. The property lies within a regional transcurrent structure known as the Stikine Arch.

6.1 Stratigraphy

Stikine terrane at this latitude can be grouped into four tectonostratigraphic successions. The first, and most important one in this area, is a Late Paleozoic to Middle Jurassic island arc suite represented by the Stikine assemblage of Monger (1977), the Stuhini Group (Kerr, 1948) and Hazelton Group equivalent rocks. The other successions are; Middle Jurassic to early Late Cretaceous successor-basin sediments of the Bowser Lake Group (Tipper and Richards, 1976); Late Cretaceous to Tertiary transtensional continental volcanic-arc assemblages of the Sloko Group (Aiken, 1959); and Late Tertiary to Recent post-orogenic plateau basalt bimodal volcanic rocks of the Edziza and Spectrum ranges.

The oldest stratigraphy in the area is known as the Stikine assemblage and comprises Permian and older argillites, mafic to felsic flows and tuffs. These rocks grade upward into two distinctive Mississippian limestone members separated by intercalated volcanics and clastic sediments. The topmost stratigraphy consists of two regionally extensive Permian carbonate units which suggest a stable continental shelf depositional environment.

The Middle to Upper Triassic Stuhini Group unconformably overlies the Stikine assemblage. Stuhini Group rocks comprise a variety of flows, tuffs, volcanic breccia and sediments, and are important host rocks to the alkaline-intrusive related gold-silver-copper mineralization at Galore Creek. They define a volcanic edifice centered on Galore Creek and represent an emergent Upper Triassic island arc characterized by shoshonitic and leucitic volcanics (de Rosen-Spence, 1985), distal volcaniclastics and sedimentary turbidites. The succession at Galore Creek was divided by Panteleyev (1976) into a submarine basalt and andesite lower unit overlain by more differentiated, partly subaerial alkali-enriched flows and pyroclastic rocks.

A fault-bounded wedge of unnamed Jurassic sediments unconformably overlies the Stuhini Group rocks. Within this unnamed Jurassic succession is a basal purple to red polymictic boulder and cobble conglomerate with an arkosic matrix. It contains granitic clasts including distinctive Potassium feldspar porphyries that are Galore Creek equivalents.

6.2 Intrusives

Three intrusive episodes have been recognized in the region. The earliest and most important is the Middle Triassic to Middle Jurassic Hickman plutonic suite that is coeval with Upper Triassic Stuhini Group volcanic flows. The Mount Hickman batholith comprises three plutons known as Hickman, Yehino and Nightout. The latter two are exposed north of the map area. The Schaft Creek porphyry copper deposit is associated

with the Hickman stock, and is located 39 km northeast of Galore Creek. This stock is crudely zoned with a pyroxene diorite core and biotite granodiorite margins. Alkali syenites of the Galore complex like those found at the nearby Copper Canyon deposit and the pyroxene diorite bodies of the zoned Hickman pluton have been interpreted as differentiated end members of the Stuhini volcanic - Hickman plutonic suite by Souther (1972) and Barr (1966). The alkali syenites are associated with important gold-silver-copper mineralization at Galore Creek and at Copper Canyon. These rocks are believed to be at least as old as Early Jurassic in age, based on K-Ar dating of hydrothermal biotite in the syenites intruding the sequences (Allen, 1966). An Ar-Ar age of 212 Ma (Logan et al., 1989) in syenite may give the time of crystallization of the intrusive rocks at Copper Canyon, to the east of Galore Creek. More recent U-Pb dates of Galore Creek syenites have given ages ranging from 205-210 Ma (Mortensen, 1995).

Coast Range intrusions comprise the large plutonic mass west of the map area. Three texturally and compositionally distinct intrusive phases were mapped by previous workers. From inferred oldest to youngest, they are Potassium feldspar megacrystic granite to monzonite; biotite hornblende diorite to granodiorite; and biotite granite. Small tertiary intrusive stocks and dykes are structurally controlled in their distribution. At Galore Creek young post-mineral basalt and felsite dykes are abundant as a dyke swarm in the northwest part of the property. Elsewhere, Tertiary intrusions may be important in their association with small gold occurrences.

6.3 Structure

The regional geology has been affected by polyphase deformation and four main sets of faults. The oldest phase of folding is pre-Permian to post-Mississippian and affected the Paleozoic rocks between Round Lake and Sphaler Creek. This deformation is characterized by bedding plane parallel foliation in sediments and fragment flattening in volcaniclastics. Pre-Late Triassic folding is characterized by large, upright, tight to open folds with north to northwest trend of axial plane traces and westerly fold vergence. Metamorphism accompanying the first two phases of deformation reached greenschist facies. The third phase of folding is manifested as generally upright chevron folds with fold axes pointed west-northwesterly.

The oldest and longest-lived fault structures in the area have a north strike and subvertical dip. The best example occurs on the west flank of the Hickman batholith, where a major fault juxtaposes Permian limestone with a narrow belt of Stuhini Group volcanics. The second important fault type occurs at Copper Canyon as a west directed thrust fault with a north strike and east dip of 30 to 50 degrees. It juxtaposes overturned Permian limestone and Middle Triassic shale with Stuhini volcanics below. Early to Middle Jurassic syenite intrusions occupy this contact. A third important set of faults with northwest strike mark the boundary between Upper Triassic and Paleozoic rocks between Scud River and Jack Wilson Creek. The youngest faults have a northeast strike direction and are of great local importance. At Galore Creek, some of these faults show considerable post-mineral movement of up to 200 metres while others appear to control the emplacement of mineralized intrusive phases and breccia bodies.

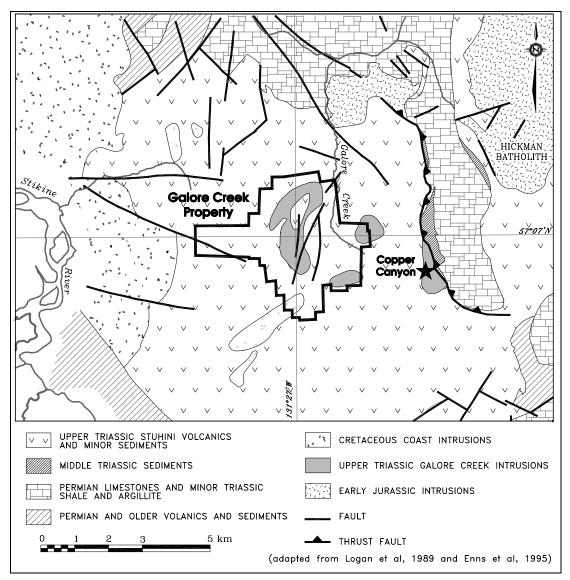


Figure 4 - Regional Geology (taken from Simpson, 2003)

7.0 DIAMOND DRILLING

7.1 Introduction

Diamond drilling at Copper Canyon was carried out in September, 2005, the main focus of which was to extend the presence of high-grade copper and gold mineralization within the Copper Canyon deposit as well as identify the cause of a local magnetic high and chargeability anomaly located in the East Fork Galore Creek valley within the Copper Canyon claims. Hole CC05-030 tested the northward continuity of strong mineralization encountered in holes CC04-023 and 025. It also explored the effects of the Doghouse Fault which cuts mineralization in this area. Hole CC05-031 tested for mineralization continuity at depth in the area near CC90-004. Previous drilling shows mineralization dipping moderately to the northeast.

Additional work was also completed within the claim group and included exploring near surface mineralization and alteration trends within the East Fork of Galore Creek valley, and graduate research on the zoning and fluid chemistry within the Copper Canyon deposit.

Drilling results from within the Copper Canyon deposit were added to the construction of the MineSight® 3-D wire frame model in order to further its geologic and mineralogic understanding.

Core drilled in 2005 was transported to the Galore Creek camp and logged in entirety. Logging included coded and textural descriptions of lithologies and a detailed geotechnical description of fracture styles and densities. Data were entered into an Access database using DDH Tool, an inhouse front-end data entry program. Once logged the core was sawn, half of which was sent to ALS Chemex Labs for analysis and the other half stored on the moraine near the Galore Creek camp. In addition to the core, control samples were inserted into the shipments at the approximate rate of one standard, one blank and one duplicate per 20 core samples.

Collar coordinates of the 2005 drill holes were initially located using hand-held GPS units. Upon completion, the holes were surveyed by differential GPS using an Ashtech ProMark II receiver. Downhole surveys were conducted using an Icefield M13 Autoshot Digital borehole tool.

Diamond drilling at Copper Canyon, summarized in Table 2 below, consisted of 3 holes totalling

924 metres.

Hole ID	UTM East	UTM North	Elevation	Azimuth	Dip	Actual depth
GC05-0659	354426.32	6333549.54	684.29	360	-90	194.77
CC05-0030	357953.99	6333251.01	1308.70	260	-65	441.66
CC05-0031	357922.02	6332857.42	1215.01	135	-65	287.80

Table 2 – 2005 Copper Canyon – Diamond Drill Hole Summary

7.2 Lithologic Descriptions

There are 107 different lithology codes for the Galore Creek area including Copper Canyon. Stikine Copper Limited delineated the first 100 codes in 1991 and seven additional codes were created in 2004 by NovaGold Canada Inc. The entire lithologic classification can be found in Appendix IV.

Roughly 30 primary rock types exist, most of which have subdivisions based on textural or temporal differences. Textural subdivisions exist for volcanics, intrusives, and breccias, and are self-explanatory. Temporal subdivisions exist for intrusives, and are based on mineralization. The necessity of such a detailed classification scheme is currently under review, as a simplified scheme will assist correlation of data within the model.

Each of the major rock types encountered on the project is described below. Many of the descriptions have been modified from Simpson (2003). Throughout this report the term orthoclase is used synonymously with potassium feldspar.

SEDIMENTARY ROCKS

(S1) CONGLOMERATE:

Conglomerates are common north of the Central Zone, in North Rim Creek and North Rim Zone, and in the North Junction Zone. The unit is heterolithic and unsorted. Fragments are subrounded to rounded, matrix supported by sand and silt sized grains. Fragments of volcanic and syenitic rocks are present and comprise up to 30% of the rock. Conglomerates contain local intercalations of argillite and greywacke. Channel scours and load casts are common.

(S2) GREYWACKE:

Grey-green, poorly sorted, medium to coarse grained greywackes are common north of the Central Zone, in North Rim Creek. They also appear rarely in drill core within the Central Zone as intercalations with lapilli tuffs. This unit is locally well bedded and graded. Fragments of argillite and volcanic material are subangular to subrounded.

(S3) SILTSTONE:

Siltstone is fine to medium grained, grey, massive to well bedded and locally contains graded bedding.

(S4) ARGILLITE:

Argillite occurs as alternating medium to dark grey and black, aphanitic, well bedded sequences. Beds vary in thickness from 0.5 to 1 cm. Local flame structures have been observed.

(S5) LIMESTONE:

Micritic or crystalline limestone; includes all variations of grain size and bed thickness. Lithology is sedimentary in origin and should not be confused with overprinted carbonate alteration.

(S6) EPICLASTIC SEDIMENTS:

Composite lithology consisting primarily of reworked volcanic material; includes clay-rich (lacustrine) beds, siltstone, fine- to course-grained sandstone, and conglomerate. Lithology should show clear evidence of fluvial reworking such as planar or cross bedding, sorting, normal or reverse-grading, etc.

(S7) DIAMICTITE:

Unsorted, mono- or polylithic fragments that are matrix supported. The matrix consists of a mixture of clay, silt or sand. Lithology commonly shows either normal or reverse grading. Probably forms due to mass gravity flows such as lahars or debris flows.

VOLCANIC ROCKS

(V1) AUGITE-BEARING VOLCANICS:

Augite-bearing flows contain porphyritic and, infrequently, amygdaloidal textures. Augite phenocrysts vary in size from 2-5 mm and are generally euhedral to subhedral, stubby and dark green to black. They comprise up to 30% of the rock and are supported in a medium to dark green, aphanitic groundmass. The augite phenocrysts are usually altered to biotite, epidote and chlorite. Locally, strong garnet-biotite-orthoclase alteration is also observed. Interbedded with the augite bearing flows are augite-bearing volcaniclastics in the form of fine and coarse lapilli tuffs, tuff breccias and flow breccias, containing subangular to subrounded fragments of augite porphyry. These volcaniclastics are generally matrix supported.

(V2) PSEUDOLEUCITE-BEARING VOLCANICS:

The original textures are often obliterated by intense orthoclase and sericite alteration. Copper/gold mineralization appears to occur preferentially in these rocks. In unaltered areas, euhedral and broken pseudoleucite phenocrysts up to 1.5 cm occur within a bluish grey to salmon pink groundmass. These phenocrysts often exhibit orthoclase-sericite altered cores. Rims are sometimes altered to sericite, magnetite and chlorite.

(V3) ORTOCLASE-BEARING VOLCANICS:

Orthoclase-bearing volcanics are predominantly fine to coarse crystal lithic tuffs, with possible subordinate flows. They are often strongly mineralized with disseminated bornite, chalcopyrite and gold. They appear to be cogenetic and coeval with dark syenite porphyry intrusives, which may be their subvolcanic equivalents. The crystal fragments in the tuffs are broken orthoclase shards up to 7 mm across and are supported by a highly altered biotite-orthoclase +/- garnet-anhydrite matrix. Rare bedding is preserved locally.

UNDIFFERENTIATED VOLCANICS (V4, V5, V6)

In some areas, intense alteration has obliterated original textures resulting in the more vague classification of "undifferentiated volcanics". Such rocks have been classified on the basis of colour and association.

(V4) MAFIC VOLCANICS:

Mafic volcanic rocks (V4) are dark green, chloritic flows and tuffs, common in the north part of the Central Zone. These are interbedded, and may in part be correlated with, unit V1 (augite-bearing volcanics). Porphyritic and amygdaloidal flow textures have been preserved locally and volcanic clasts are sometimes preserved in pyroclastic rocks.

(V5) INTERMEDIATE VOLCANICS:

Intermediate volcanic rocks (V5) are very common in the Central Zone. These rocks are medium greenish grey volcaniclastics and flows, and may be aphyric equivalents of the pseudoleucite bearing volcanic units. Included in this unit are possible trachy-andesites containing subrounded orthoclase phyric fragments. Aphanitic volcanic clasts up to 3 cm

across have also been observed within a fine grained to aphanitic matrix. Secondary biotite occurs both as a spotted to patchy alteration and as coarse aggregates and veins.

(V6) FELSIC VOLCANICS:

Intense orthoclase flooding has resulted in pale grey, felsic volcanic rocks (V6) which are fine to medium grained volcaniclastics and flows. V6 rocks are present in the north and central part of the Central Zone, often interbedded with pseudoleucite volcanic rocks which may be their equivalent.

INTRUSIVE ROCKS

(11) PSEUDOLEUCITE PORPHYRY & (12) MEGAPORPHYRY:

11 and 12 are relatively rare, and occur as thin dykes in the Central zone. Pseudoleucite porphyry is light grey to light greenish grey. Phenocrysts of euhedral pseudoleucite are set in a pale grey to pinkish grey, aphanitic, orthoclase rich matrix. Phenocrysts comprise 10-30% of the rock, and vary in size between 4-10 millimetres, and more rarely 10-20 millimetres. Distinct intrusive contacts and chill margins are observed. Pseudoleucite megaporphyry comprises 3-10% 2-4 centimetre, subhedral diffuse to euhedral pseudoleucite megacrysts and crystal fragments, and 3-5% 1-3 millimetre tabular orthoclase phenocrysts in a slate grey, fine grained matrix.

(I3) GREY SYENITE PORPHYRY:

13 rocks are commonly brecciated and intensely orthoclase altered. Well mineralized sections are brecciated by a garnet rich hydrothermal breccia. 13 is comprised of 5-7%, bimodally distributed orthoclase phenocrysts set in a fine grained, salt-and-pepper textured, hornblende-biotite rich, altered matrix. Phenocrysts are milky white, subhedral, equant and rarely tabular 4-7 millimetre and 10-15 millimetre bodies. Hornblende is generally altered to biotite and chlorite. This unit was previously named dark syenite porphyry.

(I4) DARK ORTHOCLASE SYENITE:

Early dark syenite porphyry (I4a) is medium to dark grey, porphyritic, with 3-7%, 2-5 millimetre and 10-20 millimetre, subhedral to rounded, orthoclase phenocrysts set in a dark grey to pale brown or pink, fine grained groundmass. This unit hosts abundant disseminated and veined bornite and chalcopyrite. It grades, in places imperceptibly, into crystal lithic tuffs of unit V3, described above, and may be the subvolcanic equivalent of unit V3. Fragments of unit I4a are commonly found in unit V3.

Late dark syenite porphyry (I4b) occurs as rounded outcrops on surface and as irregular to tabular east dipping dykes. It is dark grey-green, porphyritic, with infrequent large, zoned, euhedral pseudoleucite phenocrysts 2-4 centimetres in size. Orthoclase phenocrysts 3-15 millimetres in size comprise 10-40% of the rock, and are matrix supported by a mixture of fine grained orthoclase, biotite and chlorite as alteration products.

(15) FINE GRAINED ORTHOCLASE SYENITE MEGAPORPHYRY:

This unit is pale to medium brown, porphyritic, with 10-15%, 0.4-1.0 centimetre and rarely >3 centimetre sub- to euhedral orthoclase phenocrysts, and 5-7% 2-3 millimetre plagioclase phenocrysts. Also present and characteristic of this rock are euhedral 1-2 millimetre, and rarely 7-10 millimetre hornblende phenocrysts forming 3-5% of the rock. The groundmass is fine grained, brownish grey, and hematite rich. Pale brown, disseminated garnet is common as an alteration product. This unit is equivalent in large part to previously mapped "garnet syenite megaporphyry".

(I6/I8) EQUIGRANULAR AND PORPHYRITIC SYENITES:

This closely related family of syenites occur as tabular and irregular, anastomosing, steep dykes. They are distinguished primarily on matrix and phenocryst size differences.

Fine grained syenite (I6) is a medium green-grey, equigranular, fine grained intergrowth of orthoclase, altered hornblende and epidote.

Fine grained syenite porphyry (I7) is greenish grey, and composed of 2-5%, 2-10 millimetre, subhedral, tabular, and equant orthoclase phenocrysts set in a greenish, often epidote rich, fine grained groundmass of orthoclase altered hornblende and epidote. The rock is locally crystal poor, and texturally equivalent to I6 and I8.

Medium grained syenite (I8) is a medium green to grey, equigranular intergrowth of orthoclase, altered hornblende, epidote, and rare 2-5 millimetre orthoclase phenocrysts.

(19) MEDIUM GRAINED ORTHOCLASE SYENITE MEGAPORPHYRY:

This late to post-mineral unit contains 10-30%, euhedral, often tabular orthoclase megacrysts (1-3 centimetres) in a medium to rarely coarse grained, orthoclase rich groundmass. The orthoclase megacrysts are often zoned peristerite. Chlorite and biotite pseudomorphs after hornblende form 3-7% of the rock. Subhedral plagioclase occurs in the matrix, and occupies 5-10% of the rock. Epidote and garnet commonly occur as disseminated alteration phases, and locally in vugs. In thin section, the matrix also contains pseudoleucite, magnetite, zircon, sphene, apatite and pyroxene. This unit is equivalent to the epi-syenite megaporphyry of Allen (1966) and other past workers.

(I10) PLAGIOCLASE SYENITE PORPHYRY:

Unit 110 is brownish to brownish grey, and found as steep dykes. An aphanitic to fine grained matrix supports 3-10%, 3-5 millimetre plagioclase phenocrysts. The matrix is generally hematite altered. This unit may in large part be equivalent to unit 111.

(I11) MEDIUM GRAINED SYENITE PORPHYRY:

This unit is common as sub-vertical dykes. The rock is generally pinkish brown to grey, porphyritic, with 3-7% 2-3 millimetre and rarely 5-10 millimetre subhedral orthoclase phenocrysts, set in a fine to medium grained, orthoclase rich groundmass. Sericite patches, possibly after plagioclase, comprise 2-3% of the rock, and are composed of light green, felted masses 0.5-1 millimetre in diameter. Chloritized hornblendes or pyroxene 1-2 millimetres in size are rare.

(CCP) COPPER CANYON PORPHYRY:

Unit includes two primary textural phases, one is pseudoleucite dominant (CCPp) and the other K-feldspar dominant (CCPo). These two phases grade imperceptibly from one to the other, on the order of tens of centimetres to tens of meters. CCPp consists of 30-50% rounded to euhedral 0.2-0.6 centimetre phenocrysts of pseudoleucite with subordinate (10–25%) 0.2-1 centimetre tabular, euhedral K-feldspar crystals set in a fine-grained equigranular groundmass consisting primarily of K-feldspar and biotite. The K-feldspar-dominant phase (CCPo) consists of 30-50% euhedral tabular laths of orthoclase (0.3 - 2 cm), with subordinate pseudoleucite (5-20%) set in an aphanitic to microcrystalline K-feldspar-rich groundmass. This phase often shows a trachytic texture. K-feldspar alteration, where adjacent to discordant orthoclase-bearing veins, results in pervasive and selective styles of replacement. The strongest altered zones, however, include abundant secondary biotite that occurs as disseminations and veins; biotite

locally forms coarse-grained euhedral with clots and veins of chalcopyrite. Chalcopyrite also occurs as disseminations throughout the unit in amounts up to 10%.

(VJP) JUNCTION PORPHYRY & (WFP) WEST FORK PORPHYRY:

Visually the junction porphyry and west fork porphyry are similar, with the distinction between the names arising from the areas in which they occur. The porphyries are a dark grey-green colour. The aligned orthoclase and hornblende phenocrysts give the rock its characteristic trachytic texture. The orthoclase phenocrysts range from 0.3mm x 5mm up to 4mm x 15mm; orthoclase comprises up 5-10% of the rock. Fine grained biotite comprises 15-20% of the rock and is typically altered to chlorite. The hornblende content is absent to 5% and is often altered to chlorite and epidote. Fine grained magnetite is common.

BRECCIAS

(B1) HYDROTHERMAL BRECCIA:

Hydrothermal breccias are characterized by subangular, rotated clasts of grey syenite porphyry, pseudoleucite porphyry and intermediate and mafic volcanic rocks. In most cases, the breccias are framework supported, with an interstitial matrix of brown garnet, anhydrite, orthoclase, biotite +/-diopside. The breccia is moderately to strongly mineralized. The main copper mineral is chalcopyrite, which occurs as disseminations and stringers.

(B2) DIATREME BRECCIA:

Diatreme breccia clasts are rounded to subangular, and form lapilli-sized fragments to fragments several tens of centimetres across. Clasts are generally orthoclase altered, in places quite strongly, and sit in a matrix of sand and silt sized particles.

(B3) ORTHOMAGMATIC BRECCIA:

The term Orthomagmatic Breccia has been used in the past interchangeably with Hydrothermal Breccia, however the two units are distinctively different. Orthomagmatic Breccias are multi-lithic, unsorted, with rounded to angular clasts, which are found in a magmatic, often porphyritic, matrix.

POST-MINERAL DYKES

Mafic dykes (D2) are dark, reflecting a high mafic component. Intermediate dykes (D3) are medium to dark grey-green, and rarely porphyritic. Felsic dykes (D4) are aphanitic and more rarely porphyritic, light grey to buff, and contain no mafic minerals. Lamprophyre dykes (D1) are biotite and/or hornblende rich, and fine to medium grained.

7.3 Summary of Drill Results

The following section describes the geology and mineralization of the drill holes from the 2005 drilling program. Cross sections of each drill hole are plotted on Plates 1-3 in Appendix V. Copies of drill logs can be found in Appendix VI. These are accompanied by the analytical protocols and ALS Chemex assay certificates found in Appendices VII and VIII respectively. A map of the drill collar locations can be found in Figure 3 on page 6 of this report.

The cross sections show the lithology, gold values greater than 0.1 g/t Au, and copper values greater than 0.1%. Copper Equivalent values were calculated using prices of \$375US/oz for gold, \$0.90US/lb copper and \$5.50US/oz silver. Criteria for establishing the following assay composites include averaging minimum 10m intervals of individual assay results over a 0.35% copper equivalent cut-off. Provision was made to allow for 2 consecutive sample intervals below the cut-off value within any given composite.

Individual assay composites for Copper Canyon are summarized in Table 3 below. Brief drill hole summaries for the 2005 Copper Canyon drill holes follow.

Hole ID	From	То	Assayed Length	CuEq %	Cu %	Au ppm	Ag ppm
GC05-0659	0	195	194	0	0	0	0
CC05-0030	238	254.5	16.5	0.33	0.182	0.166	5.352
CC05-0030	276	288.5	12.5	0.822	0.493	0.344	13.536
CC05-0030	294.9	308.5	13.6	0.586	0.36	0.232	9.516
CC05-0031	0	287.8	266.7	0	0	0	0

Table 3 – 2005 Copper Canyon – Individual Assay Composites

DDH CC05-0030 (plate 1)

DDH CC05-0030 was designed to test the continuity of good mineralization drilled last year in CC04-0023 and CC04-0025. This hole was collared (Table 2) approximately 140 meters northeast of the above mentioned holes and was angled towards our current model of the Doghouse Fault, which is of unknown importance to the deposit. The upper portion of the hole (to 182m) was dominated by unmineralized, moderately potassic altered pseudoleucite bearing volcanics (V2) and orthoclase bearing crystal lapilli tuffs (V3) both cut by orthoclase bearing Intrusions (i5). The lower portion contained a diatreme breccia (B1) above brecciated volcanics (V4) with late orthoclase and pseudoleucite bearing Intrusives (I5 & I5p) cutting both units. Low levels of disseminated chalcopyrite mineralization were observed within the i5p and local zones of the B1 unit. The Doghouse fault was intersected from 395m to 405m with preliminary findings suggesting an unknown amount of strike slip displacement.

Results in drill core from this hole confirmed that mineralization within the Copper Canyon Deposit continues to the north. Weaker mineralization may be a result of the higher elevation that this hole passed through the section relative to prior holes.

NovaGold Canada Inc.	2005 Diam

DDH CC05-0031 (plate 2)

DDH CC05-0031 was designed to test an area on the southeast margin of the Cu-Au mineralization that was open on strike, as well as test a 1960's IP anomaly in this area. The hole was dominated by strong potassically altered and brecciated pseudoleucite bearing Copper Canyon Porphyry (CCPp) with small intervals of Equigranular Copper Canyon Porphyry (CCPe) and late Orthoclase Syenite Megaporphyry (I9). Mineralization was observed mainly within the CCPp and brecciated zones and consisted of euhedral and very finely disseminated pyrite averaging approximately 4% throughout with local trace amounts of chalcopyrite. The abundance of pyrite appears to be the cause of the 1960's IP anomaly. The drill hole was terminated early due to stuck rods within a possible fault.

This hole collared near CC90-6 and was drilled southeast into untested terrain beneath Copper Creek. Additionally the hole was designed to test continuity of shallow mineralization encountered in nearby holes. It failed at both goals and no further drilling is planned for this area at this time.

DDH GC05-0659 (plate 3)

This hole was drilled vertically over a magnetic high at 354420E, 6333550N in order to test an Induced Polarization chargeability anomaly at 150m depth. The hole drilled through a moderate propylitically altered, bedded epiclastic volcanic sequence (S6). The upper section of the hole (to 137m) contained trace amounts of disseminated pyrite that grade into 1% disseminated pyrite within the anomalous zone. Moderate magnetic susceptibility values were recorded throughout the hole and correlates to the disseminated magnetite as well as the magnetic high recorded by the 2004 airborne magnetic survey. Trace amounts of specularite were also disseminated throughout the hole.

A second objective was to intersect the stratigraphic section near the contact of the augite bearing volcanics (V1) and pseudoleucite bearing volcanics (V2). This part of the section hosts much of the mineralization within the nearby Galore Creek deposit.

No significant copper mineralization and or potassic alteration similar to that at Galore Creek and main Copper Canyon deposit was observed within drill core. Instead, pyrite mineralization associated with the propylitic halo of a porphyry deposit was identified. The stratigraphic V1/V2 section was also not present; it is apparent that the location of the drill hole lies distal to the volcanic units. Due to lack of favourable mineralization and alteration assemblages observed at surface as well as in drill core, no future drilling is planned for this area at this time.

8.0 DISCUSSION & RECOMMENDATIONS

Drilling during the 2005 season confirmed results of past campaigns. Copper mineralization encountered thus far is hosted primarily by syenite intrusions of the Copper Canyon Porphyry complex. Mineralization appears to have a north-south trend, and both of these directions remain open. Drill hole CC05-0030 appears to close mineralization off to the east, though this interpretation is preliminary.

Future drilling should concentrate first on testing the north and south strike continuity. Holes drilled north of the present drill coverage should endeavour to penetrate mineralization deeper than that encountered in hole CC05-0031. Additionally, several holes should be completed east of known mineralization to confirm the extent of mineralization. Holes drilled in year 2004 penetrated significant mineralization on the western side of the Doghouse fault. Very little is known about this terrain so several deep holes should test the extent of this mineralization.

APPENDIX I

REFERENCES

References

Aiken, J.D. (1959); Atlin Map-area, British Columbia, *Geological Survey of Canada*, Memoir 307, 89 Pages.

Allen, D.G. (1966); Mineralogy of Stikine Copper's Galore Creek Deposits, Unpublished MSc Thesis UBC, 38 Pages.

Allen, D.G., Panteleyev, A. and Armstrong, A.T. (1976); Galore Creek, in *Porphyry Deposits of The Canadian Cordillera*, A Sutherland Brown, Editor, CIM Special Volume 15, Pages 402-414.

Anderson, R.G. (1984) ; Late Triassic and Jurassic Magmatism Along The Stikine Arch and the Geology of the Stikine Batholith, North Central British Columbia, *Geological Survey of Canada*, Paper 84-1A, Pages 67-73

Barr, D.A. (1966); The Galore Creek Copper Deposits, *CIM Bulletin*, Vol.59, Pages 841-853

Barr, D.A. (1998); Galore Creek Access Routes, *Kennecott Corporation internal* report

Beane, R.E. (1982); Hydrothermal Alteration in Silicate Rocks: Southwestern North America, in *Advances in Geology of the Porphyry Copper Deposits*, Southwestern North America, Spencer R. Titley, Editor, Pages 117-138

Best, M.G. (1982); Igneous and Metamorphic Petrology Pages 37-38

Bottomer, L.R. and Leary, G.M. (1995); Copper Canyon porphyry copper-gold deposit, Galore Creek area, northwestern British Columbia: Part C, Porphyry Copper (+/-Au) Deposits of the Alkalic Suite, *Paper 47, in Porphyry Deposits of the Northwestern Cordillera of North America*, CIM Special Volume 46.

Bradshaw, B.A. (1968); 1966-1967 Geology and Ore Reserves, Galore Creek Project, Liard M.D., B.C., *Internal Report*.

de Rosen-Spence, A. (1985); Shoshonites and Associated Rock of Central British Columbia, *B.C. Ministry of Mines and Petroleum Resources*, Paper 1985-1, Pages 426-442.

Einaudi, M.T. (1982); General Features and Origin of Skarns Associated With Porphyry Copper Plutons: Southwestern North America, in *Advances in Geology of the Porphyry Copper Deposits*, Southwestern North America, Spencer R. Titley, Editor, Pages 185-210 Enns, S.G., Thompson, J.F.H, Stanley, C.R. and Yarrow, E.W (1995); The Galore Creek porphyry copper-gold deposits, Northwestern British Columbia, in *'Porphyry Copper Deposits of the Northern Cordillera'*. ed. by Schroeter, T., Canadian Institute of Mining and Metallurgy Special Volume 46, Paper No. 46, Pages 630-644.

Falconer, R.D. (1965) Geophysical Report (Induced Polarization Survey) on Mineral Claims BIK 227-269 (inclusive) and BIK 1-3 (FR) (inclusive); *British Columbia Misery of Energy, Mines and Petroleum Resources Assessment Report* #688.

Fluor Daniel Wright Ltd.(1994); Project Review Galore Creek Property Oct. 1994, Kennecott Corporation internal report

Gale, R.E. (1964): Stikine North Group.

Heah, T. (1991); 1991 Preliminary Surface geotechnical data, *Kennecott* Corporation internal report

Inman, J. (1992); Geophysics at Galore Creek, Internal Kennecott Memorandum

McAusland, J.H., (1967); Underground Development and sampling at Galore Creek during the fall and winter of 1966-67, *Kennecott Corporation internal report*

Mortensen, J.K., Ghosh, D. and Ferri, F., 1995. U-Pb age constraints of intrusive rocks associated with copper-gold porphyry deposits in the Canadian Cordillera in *Porphyry Copper (\pm Au) Deposits of the Alkalic Suite – Paper 46*, CIM Special Volume 46, Pages 142-158.

Jeffery, W.G. (1965); Galore Creek (Stikine Copper Limited), *B.C. Minister of Mines, Annual Report*, 1964, Pages 19-40.

Kasper, B.J. (1991); 1991 Geological and Geochemical Report on the Grace 1-2 and Rim 1 Claims, *for Pioneer Metals Corporation. B.C. Assessment Report.*

Kerr, F.A. (1948); Lower Stikine and Western Iskut River Areas, B.C.; *Geological Survey of Canada*, Memoir 246.

LaCroix, P.A. (2004); Update on Resources, Galore Creek Project Northwestern British Columbia. *In-house publication by Hatch/Associated Mining consultants Ltd.*

LeMaitre, R.W. (1976); The Chemical Variability of Some Common Igneous Rocks, *Journal of Petrology* Vol.17.

Logan, J.M. and V.M. Koyanagi (1988); Geology and Mineral Deposits of The Galore Creek Area, North Western B.C. (104G/3,4), Pages 269-283, *British Columbia Ministry of Energy, Mines and Petroleum Resources*, Geological Fieldwork, 1988 Paper 1989-1.

Logan, J.M., Victor, M., Koyanagi and Rhys (1989); Geology and Mineral Occurrences of The Galore Creek Area, NTS 104G/03 and 04, *Province of British Columbia, Ministry of Energy, Mines and Petroleum Resources*, Mineral Resources Division, Geological Survey Branch, Open File 1989-8 (2 sheets).

Malmqvist, L. (1978); Some Applications of the IP Technique for Different Geophysical Prospecting Purposes, *Geophysical Prospecting*, Vol.26 Pages 97-121

Mine Reserve Associates, Inc. (1992), Pre-feasibility Mining Evaluation Galore Creek Project. *Kennecott Corporation internal report*

Monger, J.W.H.(1970); Upper Palaeozoic Rocks of Western Cordillera and Their Bearing on Cordillera Evolution. *Canadian Journal of Earth Sciences*, Vol. 14, Pages 1832-1859.

Moroney, M.J.(1969) Facts From Figures, Page 422

Otto, B.R. (2004); 2004 Geologic and Diamond Drilling Assessment Report on the Copper Canyon Property, *NovaGold Resources Inc. internal report*

Panteleyev, A (1975) Galore Creek Map-Area, *B.C. Dept. of Mines and Petroleum Resources*, Geological Field Work, 1975, In press.

St. Clair Dunn, D. (1992) Report on 1992 Trenching/Geochemical Program on the Grace 1 & 2 Claims, *A report prepared for Pioneer Metals Corporation*.

Sillitoe, R.H.(1985); Ore Related Breccias in Volcanoplutonic Arcs., *Economic Geology*, Vol 80, 1985, Pages 1467-1514.

Sillitoe, R.H.(1991a); Geological Reassessment of the Galore Creek Porphyry copper-gold Deposit, British Columbia, *A report prepared for Kennecott Canada Inc.*

Sillitoe, R.H.(1991b); Further Comments on Geology and Exploration of the Galore Creek copper-gold Deposit, British Columbia, *A report Prepared for Kennecott Canada Inc.*

Simpson, R.G. (2003), Independent Technical Report for the Galore Creek Property, *A report prepared for SpectrumGold Inc.*

Souther, J.G.(1972); Telegraph Creek Map Area, British Columbia, *Geological Survey of Canada*, Paper 71-44, 38 Pages.

Tipper, H.W., Richard, T.A.(1976); Jurassic Stratigraphy and History of North-Central British Columbia, *Geological Survey of Canada*, Bulletin 270, 73 Pages.

Termuende, T.J. (2002); Geological Report for the Copper Canyon Project, Kopper King 1-2, KK 3-4 Claims (Tenure numbers 389151-52; 395836-7) Liard Mining Division NTS Map Sheets 104G013, 014 UTM 6334000/357000, *Internal report prepared for Eagle Plains Resources Ltd.*

White, W.H., Harakal, J.E. and Carter, N.C. (1968) Potassium-Argon Ages of Some Ore Deposits in British Columbia, *CIM Bulletin*, Vol. 61, Pages 1326-1334.

Winn, G.C. (1988); Titanium Geophysics: The Application of Induced Polarization to Sea-Floor Mineral Exploration, *Geophysics*, Vol.53, Pages 386-401.

Wright Engineers Limited (1974), Stikine Copper Project - Technical and Economic Study for Hudson Bay Mining and Smelting Co. Limited, *Kennecott Corporation internal report*

Yarrow, E.W., Enns, S.G. (April 1992) Progress Report 1991 Galore Creek Project, *Kennecott Corporation internal report*

Zurowski, M.T. (1988); Gold Potential of the Galore Creek Deposit, Stikine River, Liard M.D., B.C., *Kennecott Corporation internal report*

APPENDIX II

STATEMENT OF EXPENDITURES

APPENDIX II

STATEMENT OF EXPENDITURES

<u>Copper Canyon Drilling Program</u> Period: September 12, 2005 to October 31, 2005	
Direct Drilling Expenditures (924 metres) Hy-Tech Drilling Ltd.	\$119,772.40
Indirect Drilling Expenditures (drill moves, drilling muds, core boxes, supplies)	\$9,392.40
Helicopter Costs (drill mobilization, support, demobilization))	\$119,163.17
Project Support (accommodation, drill fuel)	\$15,081.70
Assays (514 samples)	\$14,273.78
Personnel & report preparation	<u>\$9,351.63</u>
	\$287,035.08
TOTAL WORK AVAILABLE FOR ASSESSMENT CREDIT:	\$ 287,035.08
TOTAL WORK FILED FOR ASSESSMENT CREDIT:	\$198,172.74

APPENDIX III

STATEMENTS OF QUALIFICATION

I, Donald Franz Penner, of 6785 Brewer Road, Vernon, B.C., V1B 3H2, DO HERBEY CERTIFY THAT:

- I am a Geologist in the minerals exploration industry employed by Novagold Resources Inc., 2300-200 Granville Street, Vancouver, B.C. V6C 1S4
- 2) I am a 1976 graduate of the University of British Columbia with a Bachelors of Science in Geological Sciences.
- I have practiced my profession with various mining companies nationally and internationally since graduation.
- I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.
- This report is based on Copper Canyon Property work that I participated in and partially supervised from Sept 12 to Sept 29, 2005.
- 6) I have no interest in the property herein.

DATED at Vernon, B.C., this 31st day of January 2005.

PENNER Donald Franz Penner D. F.

CERTIFICATE

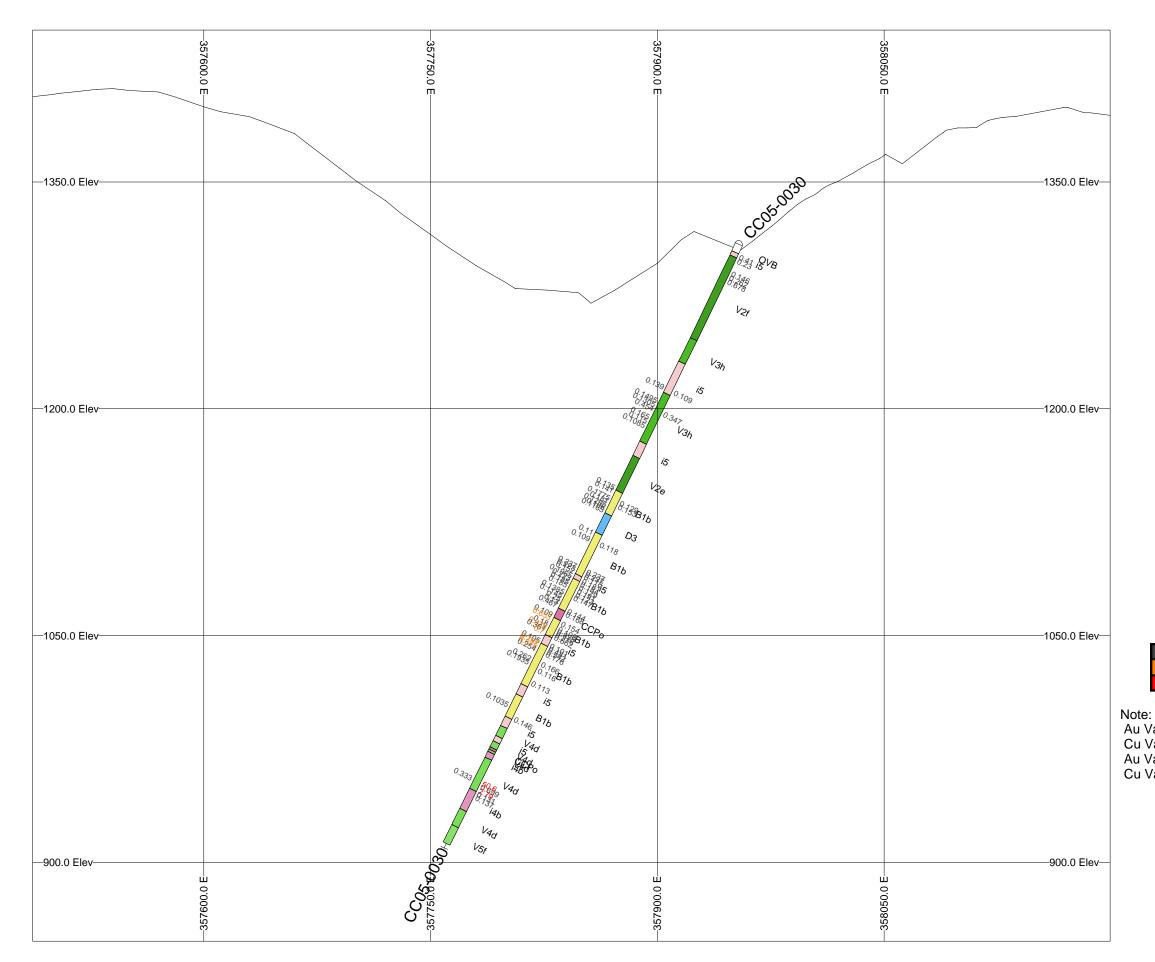
I, Scott Alan Petsel, of 10619 Horizon Drive, Juneau, Alaska, 99801, USA, DO HERBEY CERTIFY:

- THAT I am a geologist in the minerals exploration industry employed by Novagold Resources Inc., 2300-200 Granville Street, Vancouver, B.C. V6C 1S4.
- THAT I am a graduate of Fort Lewis College, Durango Colorado, USA(1987) and hold a Bachelors of Arts in Geology.
- THAT I have practiced my profession with various mining companies in Colorado, Arizona, Alaska, Nevada in the United States, internationally in the Philippines, Mexico, Russia and in Canada (Ontario and British Columbia) for 16 years.
- THAT I am a Certified professional geologist (CPG 10071), as certified by the American Institute of Professional Geologists (AIPG).
- THAT this report is based on the Copper Canyon Property work that I participated in and supervised from May 15, 2005 to Present, 2006.
- 6) THAT I have no interest in the property herein.

DATED at Juneau, Alaska, USA this 31st day of January, 2006.

Scott Alan Petsel

APPENDIX IV

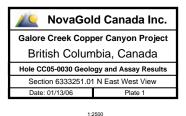

LITHOLOGIC CLASSIFICATION

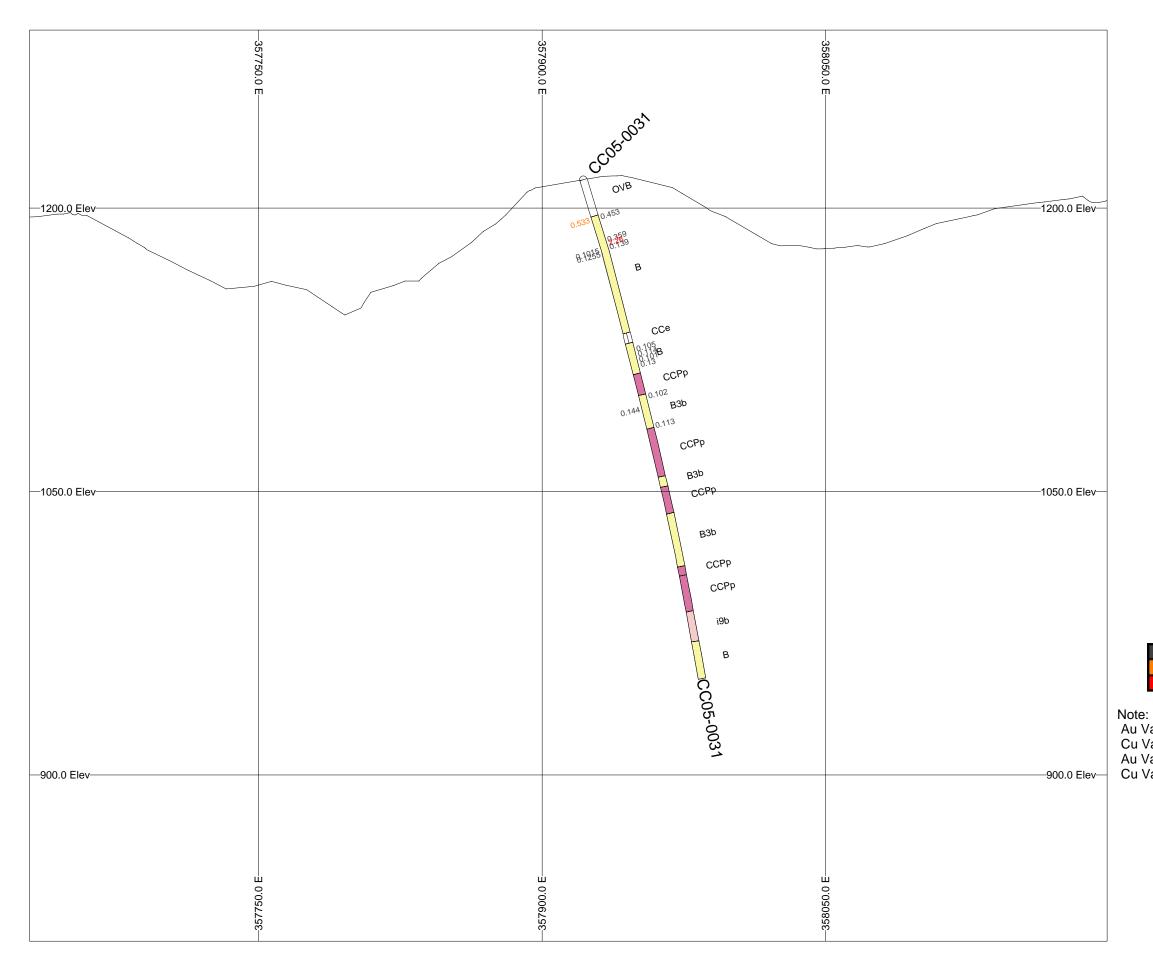
GALORE CREEK AND COPPER CANYON PROJECT ROCK CODES

Numeric	Alpha	Description	EK AND COPPE	Numeric	Alpha	Description	
100	S	Sedimentary	Rocks	300	Ι	Intrusive Rocks	
110	S 1	Conglomerate	NOCK3	310	11	Pseudoleucite Porphyry	
120	S2	Greywacke		320	12	Pseudoleucite Mega-Porphyry	
130	S3	Siltstone		330	12	Grey Syenite Porphyry	
140	55 S4	Argillite		331	CCPo	Copper Canyon Porphyry - Orth	oclaso
140	S5	Limestone		332	CCPp	Copper Canyon Porphyry - Pseu	
160	S6	Epiclastic		340	I4	Dark Orthoclase Syenite	uoleucite
170	30 S7	Diamictite		340	14 4a	Early Phase	
170	37	Diamicule		343	l4ab	Early/Late	
200	v	Voloonio Bool	ko	345	I4ab I4b	Late Phase	
200	V V1	Volcanic Roc Augite Bearin		345 350	140 15/19		
210	V1a	Augite bearing	Flow	350		Orthoclase Syenite Mega-Porphy Fine Grained (ea	
211	V1a V1b		Porphyryitic	352	15 19	Medium Grained (ea	
212	V1b V1c		Flow Breccia	353	19 19a	Medium Grained	Early Phase
213	V1c V1a/b		Porphyryitic Flow	353	I9a I9ab		Early /Late
214	V1a/D V1e		Coarse Lapilli Tuff	355	19ab 19b		Late Phase
215	V1e V1f		Fine Lapilli Tuff	360	190 16/18	Syenite	Late Fliase
210	V1g		Ash Tuff	361	16	Fine Grained	
217	V1g V1a/c		Flow/Flow Breccia	362	18	Medium Grained	
210	v 1a/C		Tuffs -	302	10	Medium Grained	
219	V1e/h		Mixed/Undiff	363	18a		Early Phase
219	V16/11 V2	Pseudoleucite		365	18b		Early /Late
220	V2 V2a	FSeudoleuciu	Flow	365	VJP	Junction Porphyry	Early /Late
221			-		WFP		
222	V2b V2a/b		Porphyritic Porphyritic Flow	368 370	17/111	West Fork Porphyry Syenite Porphyry	
223 224							
	V2c		Flow Breccia	371	l7 I7b	Fine Grained	Loto Dhooo
225	V2e		Coarse Lapilli Tuff	374		Madium Onsided	Late Phase
226	V2f		Fine Lapilli Tuff	372	111	Medium Grained	
227	V2g		Ash Tuff	373	111a	Disginalago Sygnite Demokyry	Early Phase
228	V2h		Crystal Lithic Tuff	380	l10	Plagioclase Syenite Porphyry	
229	V2e/h		Tuffs - Mixed/Undiff	202	l10a		Early Dhooo
				383			Early Phase
230	V3	Orthoclase Be	•	385	110b	Laurandan Guanita Dambumu	Late Phase
231	V3a		Flow	390	112	Lavender Syenite Porphyry	
232	V3b		Porphyritic	100	-	Descrit	
233	V3a/b		Porphyritic Flow Flow/Fine Lapilli	400	В	<u>Breccia</u>	
234	V3a/f		Tuff	410	B1	Diatreme	
235	V3e		Coarse Lapilli Tuff	413	B1a	Monolithic Diatreme	
236	V3f		Fine Lapilli Tuff	415	B1b	Heterolithic Diatreme	
237	V3g		Ash Tuff	420	B2	Hydrothermal	
238	V3h		Crystal Lithic Tuff	423	B2a	Monolithic Hydrothermal	
200	1011		Tuffs -	120	DLu	Mononialio Piyarotilonnia	
239	V3e/h		Mixed/Undiff	425	B2b	Heterolithic Hydrothermal	
240	V4	Mafic		430	B3	Orthomagmatic	
241	V4a	marie	Flow	433	B3a	Monolithic Orthomagmatic	
242	V4b		Porphyritic	435	B3b	Heterolithic Orthomagmatic	
243	V4a/b		Porphyritic Flow	100	200	lieterenine erniemaginatie	
244	V4d		Breccia	500	D	Dikes	
245	V4e		Coarse Lapilli Tuff	510	D1	Lamprophyre	
246	V4f		Fine Lapilli Tuff	520	D2	Mafic	
247	V4g		Ash Tuff	530	D3	Intermediate	
248	V4h		Crystal Lithic Tuff	540	D4	Felsic	
			Tuffs -				
249	V4e/h		Mixed/Undiff				
250	V5	Intermediate		700	FZN	Fault Zone	
251	V5a		Flow	900	OVB	Overburden	
252	V5b		Porphyritic	999	NR	No Recovery	
253	V5c		Flow Breccia				
254	V5d		Breccia				
255	V5e		Coarse Lapilli Tuff				
256	V5f		Fine Lapilli Tuff				
257	V5g		Ash Tuff				
258	V5h		Crystal Lithic Tuff				
	-		Tuffs -				
259	V5e/h		Mixed/Undiff				
260	V6	Felsic	-				
266	V6f		Fine Lapilli Tuff				
267	V6g		Ash Tuff				
	0		· · · · · · · · · · · · · · · · · · ·				

APPENDIX V

DRILL SECTIONS AND MAPS

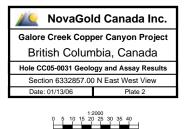

S SEDIMENTARY - Undivided
V1 VOLCANIC - Augite Bearing
V2 VOLCANIC - Psuedoleucite Bearing
V3 VOLCANIC - Orthoclase Bearing
V4 VOLCANIC - Mafic
V5 VOLCANIC - Intermediate
V6 VOLCANIC - Felsic
i1 INTRUSIVE - Psuedoleucite Porphyry
i2 INTRUSIVE - Psuedoleucite Megaporphyry
i3 INTRUSIVE - Grey Syenite Porphyry
i4 INTRUSIVE - Dark Orthoclase Syenite
i5 INTRUSIVE - Orthocalse Syenite Megaporphyry
i6 INTRUSIVE - Fine-grained Syenite
i7 INTRUSIVE - Syenite Porphyry
i8 INTRUSIVE - Medium-grained Syenite
i9 INTRUSIVE - Syenite Megaporphyry
i10 INTRUSIVE - Plagioclase Syenite Megaporphyry
i11 INTRUSIVE - Medium-grained Syenite Porphyry
i12 INTRUSIVE - Lavender Syenite Porphyry
CCP INTRUSIVE - Copper Canyon Porphyry
WFP INTRUSIVE - West Fork Porphyry
JP INTRUSIVE - Junction Porphyry
B1 BRECCIA - Diatreme
B2 BRECCIA - Hydrothermal
B3 BRECCIA - Orthomagmatic
D1 DIKES - Lamprophyre
D2 DIKES - Mafic
D3 DIKES - Intermediate
D4 DIKES - Felsic
OVB - Overburden

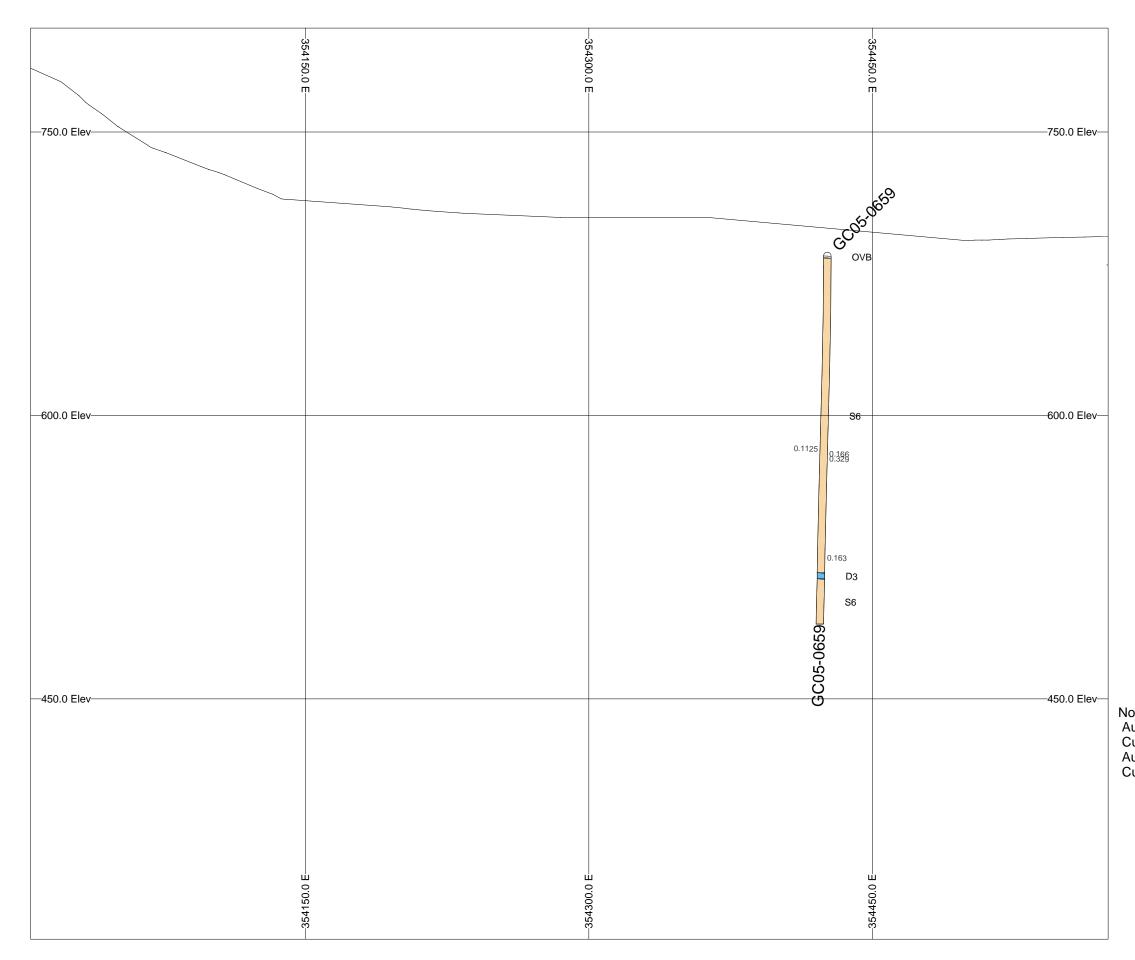

Cu Assay Values

Au Assay Values

0.1 to 0.49 (%)		0.1 to 0.99 (g/t)
0.5 to 1.99 (%)		1.0 to 1.99 (g/t)
> 2.0 (%)		> 2.0 (g/t)

Au Values located on right hand side of drill trace. Cu Values located on left hand side of drill trace. Au Values below 0.1g/t are not shown. Cu Values below 0.1 % are not shown.

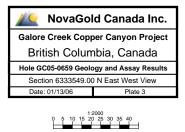

S SEDIMENTARY - Undivided
V1 VOLCANIC - Augite Bearing
V2 VOLCANIC - Psuedoleucite Bearing
V3 VOLCANIC - Orthoclase Bearing
V4 VOLCANIC - Mafic
V5 VOLCANIC - Intermediate
V6 VOLCANIC - Felsic
i1 INTRUSIVE - Psuedoleucite Porphyry
i2 INTRUSIVE - Psuedoleucite Megaporphyry
i3 INTRUSIVE - Grey Syenite Porphyry
i4 INTRUSIVE - Dark Orthoclase Syenite
i5 INTRUSIVE - Orthocalse Syenite Megaporphyry
i6 INTRUSIVE - Fine-grained Syenite
i7 INTRUSIVE - Syenite Porphyry
i8 INTRUSIVE - Medium-grained Syenite
i9 INTRUSIVE - Syenite Megaporphyry
i10 INTRUSIVE - Plagioclase Syenite Megaporphyry
i11 INTRUSIVE - Medium-grained Syenite Porphyry
i12 INTRUSIVE - Lavender Syenite Porphyry
CCP INTRUSIVE - Copper Canyon Porphyry
WFP INTRUSIVE - West Fork Porphyry
JP INTRUSIVE - Junction Porphyry
B1 BRECCIA - Diatreme
B2 BRECCIA - Hydrothermal
B3 BRECCIA - Orthomagmatic
D1 DIKES - Lamprophyre
D2 DIKES - Mafic
D3 DIKES - Intermediate
D4 DIKES - Felsic
OVB - Overburden


Cu Assay Values

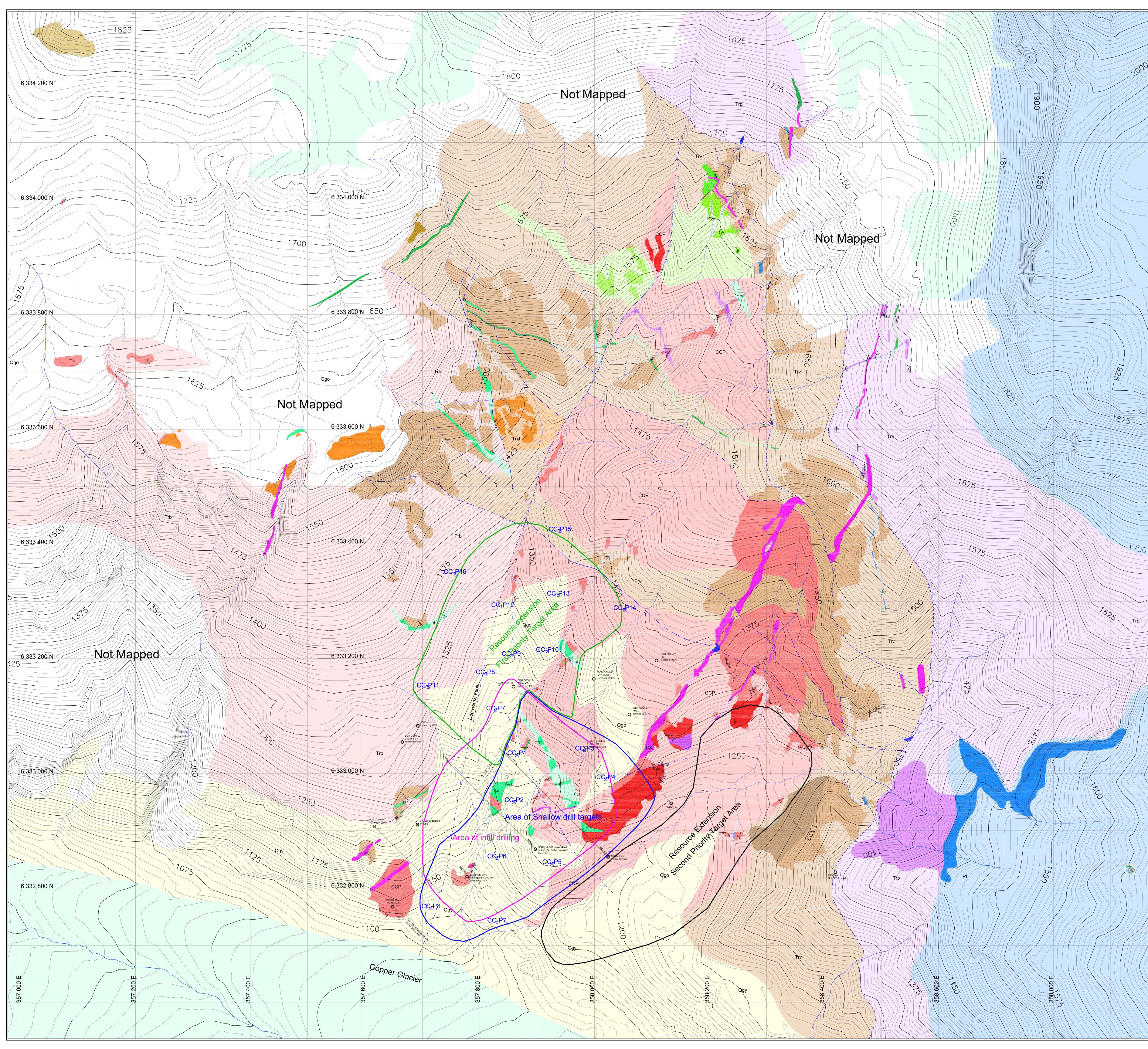
Au Assay Values

0.1 to 0.49 (%)		0.1 to 0.99 (g/t)
0.5 to 1.99 (%)		1.0 to 1.99 (g/t)
> 2.0 (%)		> 2.0 (g/t)

Au Values located on right hand side of drill trace. Cu Values located on left hand side of drill trace. Au Values below 0.1g/t are not shown. Cu Values below 0.1 % are not shown.

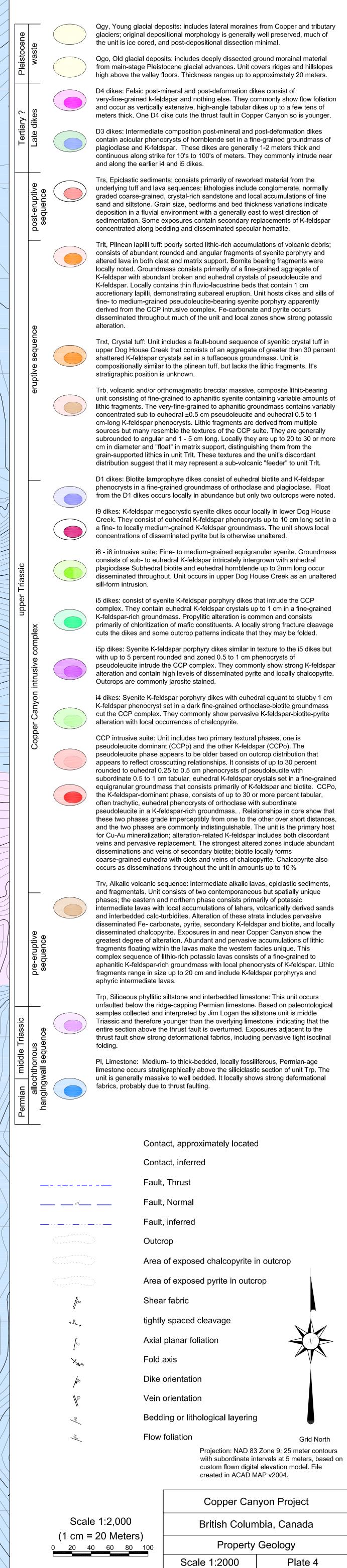

S SEDIMENTARY - Undivided
V1 VOLCANIC - Augite Bearing
V2 VOLCANIC - Psuedoleucite Bearing
V3 VOLCANIC - Orthoclase Bearing
V4 VOLCANIC - Mafic
V5 VOLCANIC - Intermediate
V6 VOLCANIC - Felsic
i1 INTRUSIVE - Psuedoleucite Porphyry
i2 INTRUSIVE - Psuedoleucite Megaporphyry
i3 INTRUSIVE - Grey Syenite Porphyry
i4 INTRUSIVE - Dark Orthoclase Syenite
i5 INTRUSIVE - Orthocalse Syenite Megaporphyry
i6 INTRUSIVE - Fine-grained Syenite
i7 INTRUSIVE - Syenite Porphyry
i8 INTRUSIVE - Medium-grained Syenite
i9 INTRUSIVE - Syenite Megaporphyry
i10 INTRUSIVE - Plagioclase Syenite Megaporphyry
i11 INTRUSIVE - Medium-grained Syenite Porphyry
i12 INTRUSIVE - Lavender Syenite Porphyry
CCP INTRUSIVE - Copper Canyon Porphyry
WFP INTRUSIVE - West Fork Porphyry
JP INTRUSIVE - Junction Porphyry
B1 BRECCIA - Diatreme
B2 BRECCIA - Hydrothermal
B3 BRECCIA - Orthomagmatic
D1 DIKES - Lamprophyre
D2 DIKES - Mafic
D3 DIKES - Intermediate
D4 DIKES - Felsic
OVB - Overburden

Cu Assay Values


Au Assay Values

0.1 to 0.49 (%)		0.1 to 0.99 (g/t)
0.5 to 1.99 (%)		1.0 to 1.99 (g/t)
> 2.0 (%)		> 2.0 (g/t)

Note: Au Values located on right hand side of drill trace. Cu Values located on left hand side of drill trace. Au Values below 0.1g/t are not shown. Cu Values below 0.1 % are not shown.



0 5 10

GEOLOGY OF THE COPPER CANYON PROPERTY

EXPLANATION

APPENDIX VI

COPPER CANYON DIAMOND DRILL LOGS

<u>UTM N:</u> 6333549.54 <u>UTM E:</u> 35442	26.32		P	
			-	Projec
Lithology Structure				
Scale (m)Rock CodeRock TypeMod1DescriptionTypeAlpha	Width (m)	From (m)	To (m)	Au g
OVB / / OVERBURDEN		1.0	3.5	0.01
		3.5	6.0	0.01
		6.0	8.5	0.01
	0.005	8.5	11.0	0.01
		11.0	13.5 16.0	0.00
		13.5 16.0	18.5	0.01
		18.5	21.0	0.03
		21.0	23.5	0.02
		23.5	26.0	0.01
		26.0	28.5	0.00
		28.5	31.0	0.00
		31.0	33.5	0.00
		33.5	36.0	0.00
		36.0	38.5	0.01
		38.5	41.0	0.01
EPICLASTIC SEDIMENT, Green strongly chl and carbonate matrix containing 35-60% sub-angular to irregular shaped clasts. Clasts are volcanic in origin and occasionaly have chl alteration rims. Clasts also have reabsorbed looking		41.0	43.5	0.01
edges. Occasional fine to coarse gained intervals display parrallel bedding. At 85.5m bedding was observed to have		43.5	46.0	0.01
flame structures indicating tops uphole. Primary biotite found in unit as well as occasional tabular k-spar phenos.		46.0	48.5	0.00
S6 V3 no longer dominated be hem altered, possibly an alternation front and not bedding here (recorded as bedding in		48.5	51.0 53.5	0.01
structure columns). Epidote alteration in unit is blebby to tubular (plag phenos?). From 11.89-13.24m matrix becomes hem rich and less epidote is present. From 136 to 144.3m unit takes on pseudobreccia look due to carbonate + epidote FCL		51.0 53.5	53.5 56.0	0.00
veining. At 137 unit starts to get car veinlets and stringers throughout. Pyrite is disseminated in patchy high		56.0	58.5	0.00
-60 concentrations and trace else where. Spec is along fracture surfaces as well as splotches, Cp is along fracture surfaces as well as well as with some anh veins.		58.5	61.0	0.00
		61.0	63.5	0.01
		63.5	66.0	0.01
		66.0	68.5	0.02
		68.5	71.0	0.04
SO		71.0	73.5	0.01
		73.5	76.0	0.01
		76.0	78.5	0.03
-80		78.5	81.0	0.01
		81.0	83.5	0.01
SO		83.5	86.0	0.01
		86.0	88.5	0.01
-90		88.5 91.0	91.0 93.5	0.00
		91.0 93.5	93.5 96.0	0.02
282838888		95.5 96.0	98.5	0.01
		98.5	101.0	0.00
Scale 1:500 Galore Creek Project, BC, Canada 2005				

<u>ər</u>	N. Co	ommod	ore <u>[</u>	DDH N	<u>lo.:</u> G(C05-0	659
<u>ct:</u>	Galo	ore Cree	ek	<u>Shee</u>	<u>t No.:</u>	1	
S	amplir	ng and	Assay	/			
g/t	Cu %	Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eq %	Elev. (m)
)1	0.01	0.10	0.01				
1	0.00	0.10	0.01				
)1	0.01	0.20	0.02				
)1	0.00	0.10	0.01				- 674
0	0.00	0.10	0.00				0/4
1	0.05	0.20	0.06				
9	0.04	0.90	0.11				
2	0.00	0.30	0.02				- 664
1	0.00	0.10	0.01				004
)1	0.01	0.30	0.01				
0	0.00	0.10	0.00				
0	0.00	0.10	0.00				- 654
0	0.00	0.10	0.00				004
0	0.00	0.10	0.00				
)1	0.00	0.10	0.01				
1	0.01	0.10	0.01				- 644
)1	0.00	0.10	0.01				044
1	0.06	3.70	0.09				
0	0.00	0.10	0.00				
)1	0.01	0.30	0.01	0.0	195.0	0.00	- 634
0	0.00	0.10	0.00				004
0	0.00	0.10	0.00				
0	0.01	0.20	0.01				
)1	0.01	0.20	0.01				- 624
)1	0.01	0.20	0.02				021
)1	0.00	0.10	0.01				
2	0.02	0.20	0.04				
4	0.01	0.10	0.03				- 614
)1	0.02	0.10	0.02				
)1	0.04	0.40	0.05				
3	0.02	0.10	0.04				
1	0.08	1.00	0.10				- 604
1	0.01	0.10	0.02				
)1	0.03	0.30	0.04				
)1	0.01	0.10	0.01				
0	0.02	0.10	0.02				- 594
2	0.07	0.70	0.08				
1	0.00	0.10	0.01				
6	0.03	0.30	0.06				
2	0.01	0.10	0.03				
	19	9 Dec 2	005				

		\bigcirc	N	lovaGold Resources Inc	<u>Azimuth:</u> 360	<u>Dip:</u> -90	<u>`</u>		.00		.ogger
				Lithology	<u>UTM N:</u> 6333549.54		<u>TM E:</u> 35442 Structure	20.32		<u> </u>	Project:
Scale	Book	Rock	r	Lithology				Width	From	То	
	Code		Mod1	Desc	ription	Туре	Alpha	(m)	(m)	(m)	Au g/
		\circ \circ				VN	 12000000000000000000000000000000000000	0.02	<u>98.5</u> 101.0	101.0 103.5	0.02
		\mathcal{O}				VN		0.035	103.5	106.0	0.17
									106.0	108.5	0.33
-110		\mathcal{O}							108.5	111.0	0.01
		\tilde{O}							111.0	113.5	0.01
		\circ							113.5	116.0	0.02
100		\circ							116.0 118.5	118.5 121.0	0.02
-120		Ó Ó		EPICLASTIC SEDIMENT, Green strongly chl and carbonat	e matrix containing 35-60% sub-angular to irregular shap	ed			121.0	121.0	0.01
		<u>О</u> О		clasts. Clasts are volcanic in origin and occasionaly have c	hl alteration rims. Clasts also have reabsorbed looking				121.0	126.0	0.01
		<u>О</u> О.:		edges. Occasional fine to coarse gained intervals display p flame structures indicating tops uphole. Primary biotite four		S0			126.0	128.5	0.02
-130		О О		Bedding throughout unit is between 55-60 TCA. Top of uni	t contains a majority of hem altered clasts, @ 56.47m cla	sts			128.5	131.0	0.01
		Q.O.		no longer dominated be hem altered, possibly an alternatio structure columns). Epidote alteration in unit is blebby to tu		s VN		0.035	131.0	133.5	0.01
	S6	\mathcal{Q} O	V3	hem rich and less epidote is present. From 136 to 144.3m veining. At 137 unit starts to get car veinlets and stringers t	unit takes on pseudobreccia look due to carbonate + epid				133.5	136.0	0.01
				concentrations and trace else where. Spec is along fracture		ces			136.0	138.5	0.01
-140				as well as with some anh veins.					138.5	141.0	0.00
									141.0	143.5	0.01
									143.5	146.0	0.00
450		\dot{O}							146.0	148.5	0.00
-150						VN		0.01	148.5	151.0 153.5	0.00
		\circ					N .		153.5	156.0	0.01
		<u>o</u>							156.0	158.5	0.02
-160		Ó O				S0 VN		0.012	158.5	161.0	0.16
		00		Intermediate dyke, Grey micro-porphyritic rock consisting o	f sericiticaly altered plag, and chl altered hornblend lathe				161.0	163.5	0.06
		.О.:		set in a fine grained moderately k-spar altered groundmass	. Torwards contacts unit becomes aphanitic chl altered w				163.5	166.0	0.03
				3% epi blebs. Pyrite is disseminated as well as associated contact is lost due to broken rock. Lower contact @ 25 deg	with epi. Hem along fracture surfaces with spec, Upper rees TCA with associated parrallelish veinlets in lower ro	ct 🗌	-		166.0	167.7	0.02
-170	D3	al al al al al	?	unit.		СТ			167.7	170.9	0.00
		$\mathcal{Q}_{\mathcal{O}}$					\		170.9	173.5	0.03
		$\sum_{i=1}^{n} O_{i}$							173.5	176.0	0.04
100									176.0 178.5	178.5 181.0	0.02
-180									178.5	183.5	0.03
	S6		V3	EPICLASTIC SEDIMENT, Unit as above. EOH.				0.02	183.5	186.0	0.06
		\tilde{O}						/ 0.02	186.0	188.5	0.03
-190		0							188.5	191.0	0.02
		Ó							191.0	193.0	0.06
									193.0	194.8	0.02
				,			8000 8000 8000 8000 8000 8000 8000 800				
				Scale 1:500	Galore Creek Project, BC, C	anada 200)5				

<u>ər</u>	N. Co	ommod	ore <u>E</u>	DDH N	<u>lo.:</u> G(C05-0	659
<u>ct:</u>	Galc	ore Cree	ek	<u>Shee</u>	<u>t No.:</u>	2	
S	amplir	ng and	Assay	/			
g/t	Cu %	Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eq %	Elev. (m)
2	0.01	0.10	0.03				
9	0.11	4.00	0.20				
7	0.06	2.00	0.17				
3	0.01	0.70	0.22				
)1	0.03	0.90	0.04				- 574
1	0.02	0.90	0.04				
2	0.01	0.60	0.03				
2	0.01	0.70	0.03				
1	0.02	0.70	0.04				- 564
)1	0.03	1.50	0.05				
)1	0.01	0.50	0.02				
2	0.02	0.50	0.03				
)1	0.02	0.60	0.03				- 554
)1	0.02	0.50	0.03				
1	0.00	0.40	0.01				
1	0.02	0.60	0.03				
0	0.00	0.40	0.01				- 544
1	0.02	0.90	0.03				
0	0.00	0.30	0.01				
0	0.00	0.40	0.01	0.0	195.0	0.00	
0	0.01	0.70	0.01				- 534
)1	0.01	0.10	0.01				
4	0.00	0.40	0.03				
2	0.00	0.30	0.02				
6	0.01	0.70	0.11				- 524
6	0.00	0.70	0.05				
3	0.01	0.60	0.03				
2	0.01	0.60	0.03				
0	0.01	0.40	0.01				- 514
3	0.03	1.50	0.06				
4	0.03	3.70	0.08				
2	0.02	1.10	0.04				
3	0.00	0.30	0.02				- 504
3	0.00	0.50	0.03				
6	0.02	1.10	0.07				
3	0.04	1.00	0.07				
2	0.02	0.60	0.04				- 494
6	0.01	0.30	0.05				
2	0.02	0.60	0.03				
	19	9 Dec 2	005				

			NIc		Gold			Irco	s In	<u> </u>			<u>Azim</u>	uth: 3	60		Dip	<u>-90</u>	<u>D</u> e	epth (m	<u>):</u> 195	.00	Ĺ	ogger:	N. C	commod	ore	DDH	<u>No.:</u> G	GC05-0)659
		<	INC	Jvav	301		;500	IICE	5 111				<u>UTN</u>	<u>1 N:</u> (633354	19.54		<u>U</u>	<u>TM E:</u>	35442	6.32		<u> </u>	Project:	<u>:</u> Gal	lore Cre	ek	<u>She</u>	et No.:	1	
	L	Lithology	,						Alteration	on							Min	eraliza	tion					As	ssays			Co	ompos	ites	
Scale (m)	Rock Code	Rock Type	Mod1	Mod2	Or	Bio	Chl	Epi	Gar	Car	Anh	Gyp	Ser	Diop	Сру	Bn	Ру	Mag Sucp	Spec	Hem	Lim	From (m)	To (m)	Au g/t	Cu %	Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eqv %	Elev. (m)
—10	OVR				<u>→</u> Νω	→ N ω	→ N W	→ N ω	- N 3	→ N W	 →Νω	 →23	N W	 → № W	4 0 0 ←	1.5 0.5	 →234	40 	 1.5 0.5	- 1.5 0.5	 1 .5	1.0 3.5 6.0 8.5 11.0 13.5	3.5 6.0 8.5 11.0 13.5 16.0	0.01 0.01 0.01 0.01 0.00 0.00	0.01 0.00 0.01 0.00 0.00 0.05	0.10 0.10 0.20 0.10 0.10 0.20	0.01 0.01 0.02 0.01 0.00 0.06				674-
—20																		E				16.0 18.5 21.0 23.5	18.5 21.0 23.5 26.0	0.09 0.02 0.01 0.01	0.04 0.00 0.00 0.01	0.90 0.30 0.10 0.30	0.11 0.02 0.01 0.01	-			664-
—30																						26.0 28.5 31.0 33.5	28.5 31.0 33.5 36.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.10 0.10 0.10 0.10	0.00 0.00 0.00 0.00	-			654-
—40																		Ŀ				36.0 38.5 41.0 43.5	38.5 41.0 43.5 46.0	0.01 0.01 0.01 0.01	0.00 0.01 0.00 0.06	0.10 0.10 0.10 3.70	0.01 0.01 0.01 0.09	-			644-
—50	S6		V3	?														5				46.0 48.5 51.0 53.5	48.5 51.0 53.5 56.0	0.00 0.01 0.00 0.00	0.00 0.01 0.00 0.00	0.10 0.30 0.10 0.10	0.00 0.01 0.00 0.00	0.0	195.0	0.00	634-
—60																		ľ	L			56.0 58.5 61.0 63.5	58.5 61.0 63.5 66.0	0.00 0.01 0.01 0.01	0.01 0.01 0.01 0.00	0.20 0.20 0.20 0.10	0.01 0.01 0.02 0.01				624-
—70																						66.0 68.5 71.0 73.5	68.5 71.0 73.5 76.0	0.02 0.04 0.01 0.01	0.02 0.01 0.02 0.04	0.20 0.10 0.10 0.40	0.04 0.03 0.02 0.05				614-
—80																						76.0 78.5 81.0 83.5	78.5 81.0 83.5 86.0	0.03 0.01 0.01 0.01	0.02 0.08 0.01 0.03	0.10 1.00 0.10 0.30	0.04 0.10 0.02 0.04				604-
—90																						86.0 88.5 91.0 93.5	88.5 91.0 93.5 96.0	0.01 0.00 0.02 0.01	0.01 0.02 0.07 0.00	0.10 0.10 0.70 0.10	0.01 0.02 0.08 0.01	-			594-
—100					− <mark> </mark>		- N 0	ი ი , 	ი ი - ი ო	-იღ 	- N m	9777 1077			−0∞4						0.5 1 1.5	96.0 98.5 101.0	98.5 101.0 103.5	0.06 0.02 0.09 0.17	0.03 0.01 0.11 0.06	0.30 0.10 4.00 2.00	0.06 0.03 0.20 0.17	-			584-
				Sca	ale 1:5	00							Gal	ore Cr	eek Pr	oject, l	BC, Ca	nada							1	19 Dec 2	2005				

	10		NL		Gal	4 0/		irco	s In	<u> </u>			<u>Azim</u>	uth: 3	60		Dip	<u>.</u> -90) <u>D</u> e	epth (m	<u>n):</u> 195	5.00	<u> </u>	Logger:	N. C	Commoc	lore	<u>DDH</u>	<u>No.:</u> C	GC05-0)659
	C	<	INC	Jva	GUI		501	IICE	5 111				<u>UTN</u>	<u>1 N:</u>	633354	19.54		<u>U</u>	<u>TM E:</u>	35442	26.32			<u>Project</u>	<u>:</u> Gal	lore Cre	ek	<u>Shee</u>	et No.:	2	
		Lithology	/						Alterati	on							Mir	neraliza	ition					As	ssays			Co	mpos	ites	
Scale (m)	Rock Code	Rock Type	Mod1	Mod2	Or	Bio	Chl	Epi	Gar	Car	Anh	Gyp	Ser	Diop	Сру	Bn	Ру	Mag Sucp	Spec	Hem	Lim	From (m)	To (m)	Au g/t	Cu %	Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eqv %	Elev. (m)
					νω	 → Ν ω	 → N ω	 → N ω	 → N ω	 -→ \> 3	 → N ω	N - 2 - 3	- <u>-</u> 23	- <u>-</u> Nω	 4ωα←	 0.1 _1 .5 ா	4 60 CM			0 1 1. 0.5	 0.1 -1 .5 - 5	103.5	106.0	0.17	0.06	2.00	0.17				
—110																ਹਾ ਹਾ			ਹਾ ਹਾ	້ຫ້	ਹਾ ਹਾ		108.5 111.0	0.33	0.01	0.70 0.90	0.22				574-
110		\tilde{O}																					113.5	0.01	0.02	0.90	0.04				574
		Ó Ó																				113.5	116.0	0.02	0.01	0.60	0.03				
		О О																					118.5	0.02	0.01	0.70	0.03				
—120		\mathcal{Q}																					121.0	0.01	0.02	0.70	0.04				564-
																						121.0 123.5	123.5 126.0	0.01	0.03 0.01	1.50 0.50	0.05				
																						126.0	128.5	0.02	0.02	0.50	0.02				
—130		\dot{O}																				128.5	131.0	0.01	0.02	0.60	0.03				554-
		ÖÖ															ľ –					131.0	133.5	0.01	0.02	0.50	0.03				
	S6	Ó Ó	V3	?																		133.5	136.0	0.01	0.00	0.40	0.01				
		Ô.																				136.0	138.5	0.01	0.02	0.60	0.03				= 4 4
—140		00																				138.5 141.0	141.0 143.5	0.00 0.01	0.00	0.40	0.01				544-
		\mathcal{Q}																				143.5	146.0	0.00	0.02	0.30	0.03				
																						146.0	148.5	0.00	0.00	0.40	0.01				
—150																	Г					148.5	151.0	0.00	0.01	0.70	0.01	0.0	195.0	0.00	534-
																						151.0	153.5	0.01	0.01	0.10	0.01				
		0_0																				153.5	156.0	0.04	0.00	0.40	0.03				
1.00		Ó																				156.0	158.5	0.02	0.00	0.30	0.02				
—160		O O																				158.5	161.0	0.16	0.01	0.70	0.11				524-
		0_0_																				161.0 163.5	166.0	0.06	0.00	0.70	0.05 0.03				
																	C						167.7	0.02	0.01	0.60	0.03				
—170	D3	ם ם ם ם ם ם ם ם ם ם ם ם ם ם	?	?																		167.7	170.9	0.00	0.01	0.40	0.01				514-
		0=0-																					173.5		0.03	1.50	0.06				
		\mathcal{O}																					176.0	0.04	0.03	3.70	0.08				
100																							178.5 181.0	0.02	0.02	1.10 0.30	0.04				504
—180			Vo	0																			183.5		0.00	0.30	0.02				504-
	S6		V3	?																		183.5	186.0	0.06	0.02	1.10	0.07				
		Ó Ó							1								ľ						188.5	0.03	0.04	1.00	0.07				
—190		Ó Ó							L														191.0	0.02	0.02	0.60	0.04				494-
		\circ																				191.0 193.0	193.0 194.8	0.06	0.01 0.02	0.30 0.60	0.05 0.03				
																			1			100.0	104.0	0.02	0.02	0.00	0.00				
-200						1			1																						484-
					-α∞	, α ω	<u>−</u> α σ	<u>-</u> αლ	, α	<u>−</u> αღ	- α φ	0 0 0 - −	- 7 -	-α∞	<i>−</i> 004	- 0.5 - 1.5	<i>−</i> 0€4	10 20 30 40	- 0.5 - 1.5	- 1.5 - 1.5	- 0.5 - 1.5										
				LSc	ale 1:	500							 C.al	ore Cr		niect		L						I	1	I 19 Dec 2	2005				
				00									Gal		GER FI		50, 00	maua									2000				

	//	0	Γ	NovaGold Resources Inc	<u>Azimuth:</u> 260 <u>I</u> UTM N: 6333251.007	<u>Dip:</u> -65 U	5 <u>Depth (n</u> TM E: 3579		70		<u>.ogge</u> Projec
				Lithology	<u></u>		Structure			<u> </u>	
Scale (m)	Rock Code		Mod1		cription	Туре	Alpha	Width (m)	From (m)	To (m)	Au g
(11)	OVB	$\bigcirc \bigcirc$	4	Some faint primary zoning. Rare gractured crystals. Nea	megacrysts 1-3cm, tabular to equant. Pink ksp alteration, rer to lower contact (~50cm) abundant pinkish ksp 2-5mm,	-	- 			(11)	
10	i5			possibly chill margin. Groundmass is very fine grained, m calcite. (Possible replacements after biotite patches). Alth phenocrysts; and biotite destruction to py +/- hm and ser	eration is weak ksp replacement of groundmass and				5.8	8.8	0.41
-10		×°×°×				_			8.8	11.9	0.23
		×°×°×							11.9	14.9	0.08
		××××							14.9	18.0	0.06
-20		× × × ×							18.0	21.1	0.15
		ČoČoČi							21.1	24.1	0.26
		$\hat{x} \hat{y} \hat{x} \hat{y} \hat{x}$							24.1	27.1	0.68
-30		×°×°×						/ 0.002	27.1	30.2	0.07
		×°×°×			derately altered, faintly fragmental rock with sparse interval	s		/0.002	30.2	33.2	0.05
		×ŏ×ŏ×		minor anh dissiminated. Lithic fragments are 3-15mm and	ndary ksp (+/-ser), dissiminated secondary biotite, calcite a constitute appr. 1% of the rock, concentration varies over	nu			33.2	36.3	0.03
-40	V2f	ĴoĴoĴi	B1b?	the bench. Fragmental texture becomes more clear after bedding is apparent, though there are broad textural varia					36.3	39.3	0.03
40		ŶŎŶŎŶ		psuedoleucites 1-8mm. Alteration is more or less bio stab	le until aprrox. 30m. After that, bio seems partly replaced t ssibly associated flourite mineralization is dissimination py	py PA			39.3	42.4	0.02
		×°×°×		trace cp. Rare hairline pytire veins. At ~31.5m 1-2mm fl-r	by vn. @41m 3 or 4 ! 10cm dyklets of fg groundmass				42.4	45.4	0.01
				porphyry with ksp phenos 0.5-1cm tabular, euhedral, trach locally ~10% pyrite clots and subhedral cubes.	nytic. Much like i5 without megacrysts. Associated with	FCL		4	45.4	48.5	0.03
-50		×ŏ×ŏ×							48.5	51.5	0.03
		čočoči							51.5	54.6	0.01
		ŶOŶOŶ!							54.6	57.6	0.01
-60		$\hat{x} \hat{y} \hat{x} \hat{y} \hat{x}$				FCL		2	57.6	60.7	0.01
		×°×°×							60.7	63.7	0.01
		×××××							63.7	66.8	0.01
-70		×ŏ×ŏ×				СТ			66.8	69.8	0.01
Γ'		×_×_×	-						69.8	72.8	0.01
		x x x	1	ORTHOCLASE BEARING CRYSTAL LITHIC TUFF: As p	revious unit but anadually increasing clast density and				72.8	75.9	0.01
	V3h	××××	B1b	pseudoleucite is not visible anymore. Rock is strongly alte	ered to weak ksp, 1cm scale clots of mg secondary biotite				75.9	78.9	0.02
-80		xĨxĨxĬ		(possibly clasts themselves, or replacing clasts). Garnet a hypogene, replacing feldspars. Sulfides are nearly absent	alteration is finely dissiminated. Clay alteration is possibly t.				78.9	82.0	0.01
		×́×́×́×́				FCL		6	82.0	85.0	0.01
		X X X				СТ	L		85.0	87.1	0.04
-90		+	4	MEDIUM GRAINED SYENITE MEGAPORPHYRY: As pr	evious i5. This unit once again carries more purite than				87.1 89.1	89.1 91.1	0.01
	i5	+>+>		surrounding rocks. Center of unit is strongly bleached, alt	ered to white-gray kspar. Sericite alteration is present alon		-	/1	91.1	94.2	0.01
		+>+>	1+1	microfractures which are dense in this area. Hem also alc fault: increased fracture and gouge.	ong veinlets within ksp flooded zones. @92m possible mino	r			94.2	97.2	0.01
		\dot{t}	+				1000 1000 1000 1000 1000 1000 1000 100		97.2	100.3	0.01
				Scale 1:500	Galore Creek Project, BC, Ca	anada 20	05				

<u>er</u>	Е. Ти	velker	<u>[</u>	DDH N	<u>lo.:</u> C0	C05-0	030
<u>ct:</u>	Galo	ore Cree	ek	<u>Shee</u>	<u>t No.:</u>	1	
		ng and					
g/t	Cu %	Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eq %	Elev. (m)
1	0.05	0.50	0.30				
3	0.04	0.80	0.19				- 1299
8	0.04	1.10	0.11				
6	0.03	0.70	0.07				
5	0.04	0.90	0.14				- 1290
6	0.05	1.20	0.22				
8	0.05	1.60	0.47				
7	0.07	1.20	0.12				4004
5	0.07	1.40	0.12				- 1281
3	0.06	1.40	0.09				
3	0.09	1.40	0.12				
2	0.07	1.30	0.09				- 1272
1	0.03	0.60	0.04				
3	0.05	0.80	0.08				
3	0.05	0.90	0.07				- 1263
1	0.02	0.50	0.03				
1	0.03	0.70	0.04				
1	0.06	1.20	0.08				1254
1	0.03	0.90	0.05				- 1254
1	0.03	0.70	0.04				
1	0.01	0.60	0.02				
1	0.03	0.70	0.05				- 1245
1	0.02	0.50	0.03				
2	0.03	0.70	0.05				
1	0.02	0.60	0.03				- 1236
1	0.01	0.40	0.02				
4	0.07	1.00	0.11				
1 2	0.02	0.40	0.03				- 1227
1	0.01	0.30	0.01				· /
1	0.00	0.30	0.01				
1	0.01	0.50	0.02				
	20) Dec 2	005				

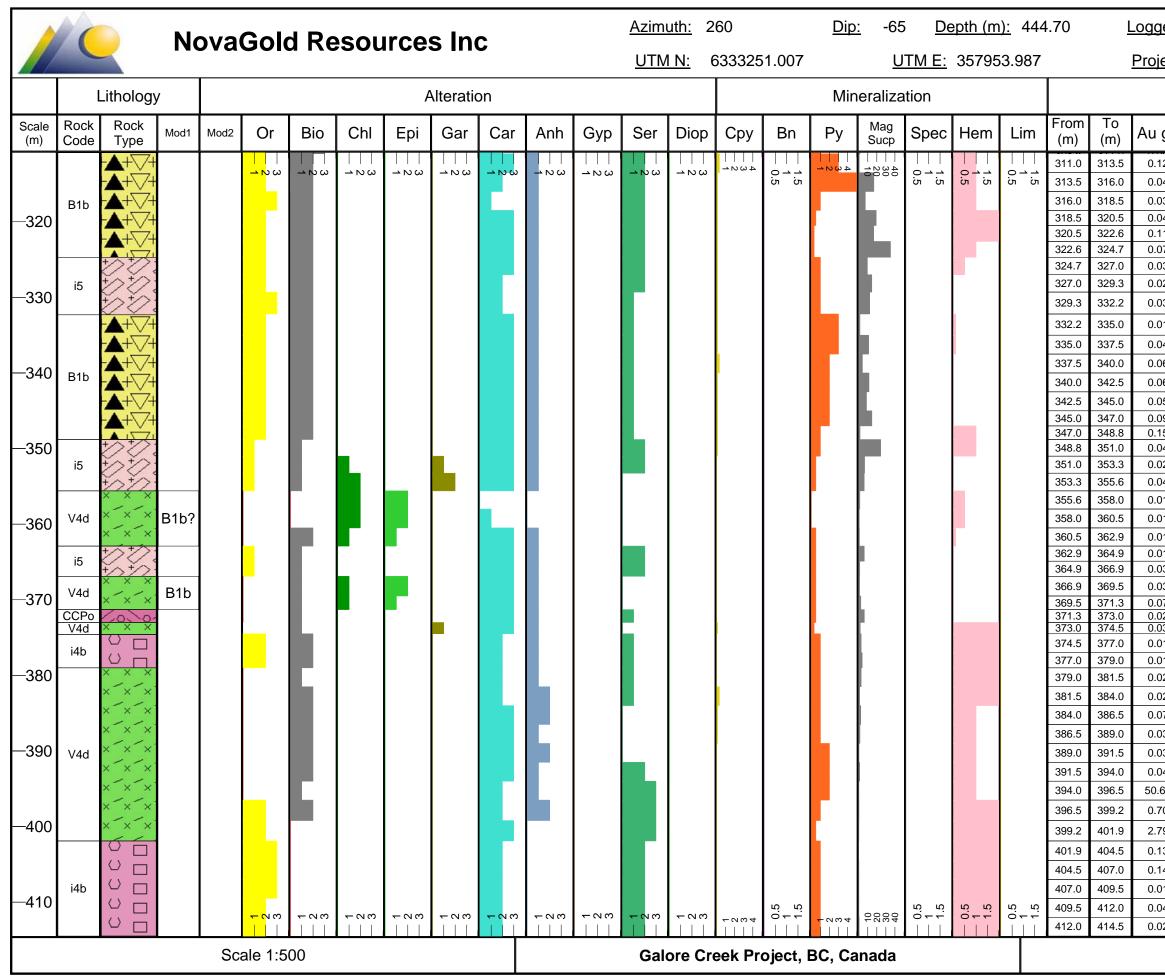
			Ν	NovaGold Resources Inc	<u>Azimuth:</u> 260 <u>D</u> UTM N: 6333251.007	i <u>p:</u> -65 U	<u>Depth (m</u> TM E: 35795		70		oggei Projec
				Lithology	<u></u>	<u> </u>	Structure			<u>.</u>	
Scale (m)	Rock Code	Rock Type	Mod1	Descrip	otion	Туре	Alpha	Width (m)	From (m)	To (m)	Au g
				MEDIUM GRAINED SYENITE MEGAPORPHYRY: As previo	ous i5. This unit once again carries more pyrite than				<u>97.2</u> 100.3	100.3 103.3	0.01
	i5	+>+>+		surrounding rocks. Center of unit is strongly bleached, altered microfractures which are dense in this area. Hem also along	d to white-gray kspar. Sericite alteration is present along	FCL		/ 2	103.3	106.4	0.01
				fault: increased fracture and gouge.				/	106.4	108.0 110.1	0.11 0.06
-110		XXXX						/ 2	110.1	112.5	0.02
		×́×́×́×́						/	112.5	115.5	0.06
		× × × ×							115.5	118.6	0.09
-120		ŶŢŶŢŶ				FCL		2	118.6	121.6	0.09
		×[×[×]		ORTHOCLASE BEARING CRYSTAL LITHIC TUFF: As previ					121.6	124.7	0.35
) (Ob	׎׎מ		@114.3-117.5m textural variation. Possible interval of CCPp: altered groundmass. Ambiguous contact relationships; possi		VN	- \	0.003	124.7	127.7	0.05
-130	V3h	XXXX	B1b	dyke, or conformable part of volcanic pile (V2 pile). To ~140n local, varies 0.5-50% within a sample. Bio is dominant nearer	n alteration continues strong bio, gar, ksp, mag is very		× ·		127.7	130.8	0.04
		× × × × × ×		Flourite is very wakly disseminated throughout infrequent clots					130.8	133.8	0.07
		××××				FCL		3	133.8	136.9	0.07
140		×[×[×]							136.9	139.9	0.01
-140		׎׎×							139.9	142.9	0.01
		× × × ×				СТ			142.9	146.0	0.01
									146.0	149.1	0.03
-150	i5		i5p	MEDIUM GRAINED SYENITE MEGAPORPHYRY: As previo euhedral, tabular range 1-3cm a few are equant ~1cm. Altera					149.1	152.1	0.01
		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		patchy garnet, sericite, calcite, groundmass dissiminated ser,					152.1	153.6	0.00
						JN CT			154.9	156.6	0.01
-160		× × × × × ×							156.6	160.1	0.03
		×0×0×0							162.2	165.0	0.03
		čočoč¢		PSEUDOLEUCITE BEARING COARSE LAPILLI TUFF: Cont				/ 0.02	165.0	167.5	0.02
-170	V2e	ŶOŶOŶ(moderately altered weakly pyritized rock gradational with units various units including many CCPp/V2-like rocks ~20-30% plc	c. Clasts frequently replaced by gar, ser, cal more than				167.5	170.0	0.01
		×°×°×°		matrix. Other clasts included mg ksp porphyry +/-plc. Matrix are ~5mm. Anhydrite +/-cal veins are hairline, sub parallel, ~		s <u>VN</u>		0.001	170.0	172.5	0.02
		× × × × ×							172.5 175.0	175.0 177.5	0.03
100		×0×0×0							177.5	180.0	0.06
-180		<u>*o*o*</u> c				СТ			180.0	182.2	0.06
									182.2	185.0	0.06
				HETEROLITHIC DIATREME BRECCIA: Moderately altered r	rock, similar to above in clast population, but has the				185.0 187.5	187.5 190.0	0.02
-190	B1b		V2e?	characteristics of intrusive/diatreme breccia. Has subrounded black (2nd bio) groundmass. Clast concentration is greater (>		VN \		0.001	190.0	190.0	0.13
		- A + V +							192.5	195.0	0.07
		- A + \ +		INTERMEDIATE DYKE: Dark green fg to aphanitic rock, phe	nocrysts biotite 1mm 1%. Possible pseudomorphs (gar,	СТ	80000000000000000000000000000000000000		195.0	197.0	0.08
<u> </u>	<u> </u>			cal, ser) after plag. 2-3% anhedral 3-5mm.					197.0 182.8	198.8 201 0	0.08
				Scale 1:500	Galore Creek Project, BC, Ca	nada 200	05				

<u>ər</u>	E. Tv	velker	<u>[</u>	DH N	<u>lo.:</u> C0	C05-0	030
<u>ct:</u>	Galo	ore Cree	ek	<u>Shee</u>	<u>t No.:</u>	2	
S	amplir	ng and	Assay	/			
		Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eq %	Elev. (m)
11	0.01	0.50	0.02				
1	0.01	0.40	0.02				
1	0.14	3.30	0.23				
6	0.07	1.50	0.12				- 1209
2	0.05	1.10	0.07				
6	0.08	1.70	0.13				
9	0.15	3.50	0.24				
9	0.13	3.20	0.22				- 1199
5	0.45	11.00	0.76				
5	0.08	2.20	0.13				
4	0.17	2.60	0.21				- 1190
7	0.12	3.20	0.19				1150
7	0.11	2.70	0.18				
1	0.00	0.40	0.01				
1	0.02	0.40	0.03				- 1181
1	0.01	0.40	0.03				
3	0.04	1.00	0.07				
1	0.03	0.80	0.04				- 1172
0	0.02	0.90	0.03				
1	0.02	1.60	0.04				
3	0.07	1.50	0.10				- 1163
							- 1103
3	0.05	1.30	0.08				
2	0.06	1.30	0.08				
1	0.04	0.70	0.05				- 1154
2	0.06	1.30	0.08				
3 1	0.05	1.10	0.07				
6	0.04	0.90 2.60	0.06				
6	0.00	3.40	0.12				- 1145
6	0.14	3.80	0.20				
2	0.06	1.70	0.09				
3	0.18	6.20	0.31				
5	0.18	4.60	0.32				- 1136
7	0.13	2.70	0.20				
8	0.11	1.80	0.17				
8	0.12	2.10	0.19				
	20) Dec 2	005				

	1	\bigcirc	N	IovaGold Resources Inc		<u>iip:</u> -65			70		ogge
				Lithology	<u>UTM N:</u> 6333251.007		<u>TM E:</u> 35795 Structure	53.987		<u>P</u>	rojec
Casta		Deals	<u> </u>	Litilology						Та	
Scale (m)	Rock Code	Rock Type	Mod1	Descri	ption	Туре	Alpha	Width (m)	From (m)	To (m)	Au g
		ו מו מו מו מו מו מו מו מו מו מו ו מו מו מו מו מו							198.8	201.0	0.02
		מו מו מו מו מו מו מו מו מו מו מו מו מו מו מו					00000000		201.0	203.5	0.04
	D3	מן מן מן מן מן		INTERMEDIATE DYKE: Dark green fg to aphanitic rock, pho cal, ser) after plag. 2-3% anhedral 3-5mm.	enocrysts biotite 1mm 1%. Possible pseudomorphs (gar,				203.5	206.0	0.02
0.4.0		מן מן מן מן מן מן מן מן מן מן		cal, sel) aller plag. 2-5% anneural 5-5mm.				0.005	206.0 208.5	208.5 210.9	0.04
-210		מו מו מו מו מו מו מו מו מו מו				СТ				210.9	0.03
									210.0	215.5	0.06
									215.5	218.0	0.06
000									218.0	220.5	0.12
-220									220.5	223.0	0.05
				DIATREME BRECCIA: As previous B1b. Texture is more va		VN \		0.002	223.0	225.5	0.02
				possibly some ~"i5p" like clasts. Alternates large (meter) sca	ale textures with smaller 1-10cm texutures: CCPp		Ň		225.5	228.0	0.03
220	B1b		V2?	dominates large.		VN		0.02	228.0	230.5	0.04
-230							\mathbf{X}		230.5	233.0	0.04
									233.0	235.5	0.06
									235.5	238.0	0.08
-240				FINE GRAINED SYENITE MEGAPORPHYRY: Pseudoleuci		-			238.0	240.0	0.24
240				cp mineralization. As previous i5p dykes. 10% plc phenos 1 semi-trachytic. Alteration is weak ksp of phenos, possible ht					240.0	241.9	0.24
		+/>+/>+		patches. Cp, py, hem are dissiminated or in a few stringers.		СТ			241.9 243.7	243.7 245.5	0.12
	i5	χ_{χ}		parallel to contacts.		СТ			245.5	247.0	0.18
-250							X	<u> </u>	247.0	249.5	0.18
230						VN \		/ 0.001	249.5	252.0	0.13
				DIATREME BRECCIA: As previous B1b. Strongly pyritized	with 1 5mm cubes and date 1/cp. Placks in brassia are	JN	` <		252.0	254.5	0.19
	D4h			to 50cm, dominated by plc bearing rocks: CCPp. Again clas	its of ksp plc porphyry, but different from i5p above				254.5	257.0	0.12
-260	B1b	+ + <u></u> + <u></u> +		(smaller ksp phenos, less plc). Cp mineralization is associat	ed py bio (intergrown) in interstices between ksp. @267m	VN \	\mathbf{X}	0.001	257.0	259.5	0.15
200				good cp min>py. Dissiminated, stringers and veinlets (1mm)			\backslash		259.5	262.0	0.07
									262.0	264.5	0.09
								0.001	264.5 267.0	267.0 269.0	0.08
-270			-	COPPER CANYON PORPHYRY (OR DOMINANT): Strongl	y ksp altered rock, 10% ksp, tabular phenos 0.5-1cm.	Ст			267.0	269.0	0.14 0.17
	CCPo	1000	-	sometimes trachytic. Plc phenos 5% 2-5mm. Groundmass i	s aphanitic gray to pink ksp and diss'd secondary biotite.	-4				274.0	0.03
		1000	-	Sericite partially replaces ksp along microfractures and dissered relationships are ambiguous. strongly altered. Possibly fault					274.0	276.0	0.03
									276.0	278.5	0.15
-280				DIATREME BRECCIA: As previous B1b.					278.5	280.5	0.04
	B1b					JN \			-	282.5	0.11
		$- + \sqrt{+}$	-	FINE GRAINED SYENITE MEGAPORPHYRY: As previous	i5p unit. Upper contact is possible minor fault, lower is	-			282.5 284.5	284.5 286.5	0.94
		$- + \sqrt{+}$		2cm fault, with gouge planar @ 50 degrees TCA. Strong pyr	ite mineralization from B1b sharply decrease in i5p. Cp is	ст			286.5	288.5	0.66
-290		*/*/		weak, in the form of diss'd medium grained clots. Anh, cal vi DIATREME BRECCIA: As previous breccias, but dominated					288.5	290.6	0.03
	i5	*/>*/>		interval 295-324.3m dominated by large (1-2m) scale runs of	CCPp-like rock, possible bedding or textural boundaries.				290.6	292.6	0.06
				Beyond, 1-5mm clasts, ksp frags, angular. Apparently grada	tional with i5p: chill margin of i5p goes into crystal frags of	of CT		0.02	292.6	294.9	0.10
	B1b			breccia, no distinct contact. @299.3-299.5m: possible heale cuts hm, cal vns (~35 degrees TCA) which are ~5-10/1m, <1			80 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8		294.9 297.0	297.0 299.0	0.48
				Scale 1:500	Galore Creek Project, BC, Ca	nada 200)5				
L											

<u>ər</u>	E. Tv	velker	<u>[</u>	DDH N	<u>lo.:</u> C0	C05-0	030
<u>ct:</u>	Galo	ore Cree	ek	<u>Shee</u>	<u>t No.:</u>	3	
S	amplir	ng and	Assay	/			
g/t	Cu %	Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eq %	Elev. (m)
2	0.01	0.50	0.03				
4	0.04	1.30	0.07				
2	0.01	0.40	0.02				
4	0.06	1.80	0.10				
3	0.03	0.90	0.05				- 1118
1	0.02	1.00	0.04				1110
6	0.11	2.40	0.17				
6	0.05	3.50	0.12				
2	0.11	3.50	0.21				
5	0.04	2.50	0.09				- 1109
2	0.02	1.50	0.05				
3	0.05	2.20	0.09				
4	0.08	2.80	0.13				- 1100
4	0.09	2.70	0.14				
6	0.05	2.10	0.11				
8	0.06	4.20	0.14				
.4	0.24	5.10	0.43				- 1091
4	0.22	4.40	0.41				1001
2	0.15 0.03	3.00 1.80	0.25				
8	0.20	4.90	0.35	238.0	254.5	0.33	
8	0.22	7.40	0.40				
3	0.19	8.00	0.34				- 1082
9	0.19	6.10	0.35				
2	0.09	3.40	0.20				
5	0.14	4.10	0.26				
7	0.11	2.40	0.18				- 1073
9	0.25	3.10	0.33				
8	0.13	2.30	0.20				
4	0.47	5.30	0.60				
7	0.04	2.10	0.16				- 1063
3	0.10	2.90	0.14				
3	0.11	3.50	0.16				
5	0.65	10.40	0.84				
4	0.10	3.30	0.15				- 1054
1	0.18	5.30	0.29	276.0	288.5	0.82	
4	0.93	24.30	1.71				
2	0.36	12.10	0.60 1.34				
i6 13	0.70 0.07	26.60 1.90	0.10				1045
6	0.07	1.90	0.10				- 1045
0	0.00	3.40	0.10				
8	0.80	16.70	1.24				
4	0.88	22.10	1.40				
	20) Dec 2	005				
	20		000				
-							

			Ν	lovaGold Resources Inc	Azimuth: 260 Di	<u>p:</u> -65	Depth (n	<u>n):</u> 444.	70	L	ogger	Ε. Τ\	welker	<u>[</u>	DH N	<u>o.:</u> CC	05-0	030
					<u>UTM N:</u> 6333251.007	<u>U</u>	<u>TM E:</u> 3579	53.987	1	<u>F</u>	Project:	Galo	ore Cree	ek	<u>Sheet</u>	: No.:	4	
				Lithology			Structure				S	amplir	ng and	Assay	/			
Scale (m)	Rock Code	Rock Type	Mod1	Dese	cription	Туре	Alpha	Width (m)	From (m)	To (m)	Au g/t	Cu %	Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eq %	Elev. (m
		- A + <u>V</u> +					80 40 10 10	0.2	299.0	301.0 303.5	0.18	0.25	7.20 3.30	0.42				1
						VN \		0.005	301.0 303.5	305.5	0.07	0.06	3.40	0.13				I
				DIATREME RRECCIA: As provinus brassions but domina	ad by anyotal fragments from 204 224m. Upper partial of		X		306.0	308.5	0.17	0.26	7.60	0.43				1
-310		+++++++++++++++++++++++++++++++++++++++		DIATREME BRECCIA: As previous breccias, but domina interval 295-324.3m dominated by large (1-2m) scale runs	of CCPp-like rock, possible bedding or textural boundaries.				308.5	311.0	0.09	0.19	5.70	0.30				- 1027
	B1b			Beyond, 1-5mm clasts, ksp frags, angular. Apparently gra	idational with i5p: chill margin of i5p goes into crystal frags of aled fault gouge, 1cm, 60 degrees TCA, @304-306m anh vn	JN			311.0	313.5	0.12	0.04	3.40	0.14				1
		+++++		cuts hm, cal vns (~35 degrees TCA) which are ~5-10/1m,				/ 0.001	313.5	316.0	0.04	0.04	2.00	0.08				1
		+++++++++++++++++++++++++++++++++++++++						<i>.</i>	316.0	318.5	0.03	0.06	1.60	0.09				1
-320		-A + \ +				VN		0.003	318.5 320.5	320.5 322.6	0.04	0.04 0.02	1.50 3.10	0.08 0.12				- 1018
		-▲+▽+,				СТ			322.6	324.7	0.07	0.02	2.40	0.12				1
		2		FINE GRAINED SYENITE MEGAPORPHYRY: As previo	us i5p. good trachytic texture @ 40 degrees to axis.	PA >			324.7	327.0	0.03	0.05	1.30	0.08				1
-330	i5	*/*/*		Relatively fresh rock with weak py, cp intergrown in blegs	with magnetite. Patchey ksp flooding. Again lower contact				327.0	329.3	0.02	0.06	1.00	0.08				- 1009
-330		22		may be gradational with bressia of similar composition be	ow.	СТ			329.3	332.2	0.03	0.06	1.00	0.09				- 1009
									332.2	335.0	0.01	0.04	1.20	0.05				1
									335.0	337.5	0.04	0.08	1.60	0.12				1
-340	B1b			DIATREME BRECCIA: As previous interval B1b. Crystal	fragments decrease downhole. Breccia texture becomes i matrix supported. Rock is very dark, strongly altered to bio,		Δ.	0.002		340.0	0.06	0.07	2.80	0.14				- 1000
				mag. Py is diss and also veinlets. @340-340.9m small in				/ 0.002	340.0	342.5	0.06	0.10	2.50	0.16				1
						VN		0.002	342.5 345.0	345.0 347.0	0.05	0.05	1.80 2.30	0.09 0.14				1
						СТ			347.0	348.8	0.15	0.03	2.60	0.14				1
-350				FINE GRAINED SYENITE MEGAPORPHYRY: As previo	us i5p. possibly intrudes along a fault? Drastic change in		\backslash		348.8	351.0	0.04	0.05	1.20	0.08				- 991
	i5			alteration, lithology on either side of this dyke.					351.0 353.3	353.3 355.6	0.02	0.02	0.10 0.10	0.04 0.05				1
		× × ×				СТ \				358.0	0.04	0.02	0.10	0.03				1
-360	V4d	×´×´×`	B1b?	MAFIC VOLCANICS: BRECCIAS: Dark green rock, subr	ound clasts 1-10cm >50% of the rock. ~Uniform clast				358.0	360.5	0.01	0.01	0.10	0.01				- 982
300		× × ×		composition. Some similarities to parts of above B1b. Alt	eration is weak propylitic.	СТ	\sim		360.5	362.9	0.01	0.01	0.10	0.02				- 902
	i5	$\sqrt{2}$		FINE GRAINED SYENITE MEGAPORPHYRY: As previo	us. Clearly cuts hosting rocks.				362.9	364.9	0.01	0.02	0.10	0.03				1
		$\frac{+}{\times}$		MAFIC VOLCANICS: BRECCIAS: As previous moderate		СТ	-		364.9 366.9	366.9 369.5	0.03	0.02	0.10 0.10	0.04				1
-370	V4d	x x x	B1b	COPPER CANYON PORPHYRY: 10% ksp white, 0.5-1ci		ст \				371.3	0.03	0.01	0.10	0.03				973
	CCPo V4d	<u> </u>		dyke (flow???) Groundmass is 5% bio 1mm, aph ksp.	,,	CT CT				373.0	0.02 0.03	0.02 0.02	0.10 0.10	0.03				1
				MAFIC VOLCANIC BRECCIAS (?) As previous mag-hem. DARK ORTHOCLASE SYENITE. Mag-hem alteration sat	ne as rock as encountered in CC04-25. 20% ksp phenos					374.5	0.03	0.02	0.10	0.04				1
	i4b			1-2cm, euhedral, white. Some ksp frags. Rock clearly cu		СТ			377.0	379.0	0.01	0.01	0.10	0.01				1
-380		× × ×		(soft sed slump?)		1			379.0	381.5	0.02	0.01	0.20	0.03				- 964
		×´×´×´ ×´×´×							381.5	384.0	0.02	0.02	0.10	0.03				I
		× × × × × ×			cally more biotized. Minor cp mineralization associated hem,				384.0	386.5	0.07	0.02	0.10	0.06				I
-390	V4d	~_~~~		local strong magnetite replacements. @ 380.5-381.5m a	small dyke CCPo, as previous. @ 395.7-396.90m Fault zone				386.5	389.0	0.03	0.02	0.10	0.04				- 955
290		~_~~^		Some rehealed gouge some clay gouge. Local evidence faulting and shearing, stretched phenos, breccia (tectonic)					389.0 391.5	391.5 394.0	0.03	0.03	1.50 0.60	0.06				900
		x x x			-	FLT \		/ 1	391.5	394.0 396.5	50.60	0.03	71.60	31.72				1
		x x x					828289399 810289359	· · ·	1 1	399.2	0.70	0.03	1.10	0.46				I
				Scale 1:500	Galore Creek Project, BC, Car	ada 200)5					20	0 Dec 2	005				


	1		Ν	lovaGold Resources Inc	<u>Azimuth:</u> 2	260 <u>Di</u>	<u>p:</u> -65	<u>Depth (m</u>	<u>ı):</u> 444.	70	<u>L</u>	ogge
	/				<u>UTM N:</u> 6	6333251.007	<u>U</u>	<u>FM E:</u> 3579	53.987	1	<u>P</u>	rojeo
				Lithology				Structure				
Scale (m)	Rock Code		Mod1	Desc	cription		Туре	Alpha	Width (m)	From (m)	To (m)	Au ç
	V4d			MAFIC VOLCANIC: BRECCIAS: As previous texture. Loc local strong magnetite replacements. @ 380.5-381.5m a s Some rehealed gouge some clay gouge. Local evidence faulting and shearing, stretched phenos, breccia (tectonic)	small dyke CCPo, as previous. @ 39 for shearing surrounds. @399.2-40	95.7-396.90m Fault zone 1.9m zone healed	CT FLT FLT		0.05 0.01 0.02	<u>396.5</u> 399.2 401.9	399.2 401.9 404.5	0.70
-410	i4b			DARK ORTHOCLASE SYENITE: As previous. Groundmizones of slight shearing parallel to other faults. Lower cor	ass altered to almost exclusively ksp	and hem. Occassional				404.5 407.0 409.5 412.0 414.5	407.0 409.5 412.0 414.5 416.8	0.14 0.04 0.02 0.02 0.03
-420	V4d	× × × × × × × × × × × ×		MAFIC VOLCANICS: BRECCIAS: As previous V4d. Stro	ongly calcareous, poss secondary bio	otite.				416.8 419.5 422.0 424.5	419.5 422.0 424.5 426.5	0.02 0.03 0.09
-430	V5f	× × × × × × × × × × × × × × ×		INTERMEDIATE FINE LAPILLI TUFF: 10% subrounded f felsic intrusives, rare orthoclase frags and possible pseudo replacement patches and vein selvages. @432.8-433.2m flow???). @441.3-EOH mafic dyke. Note: Faults through	bleucite 1-3mm. @429-432m strong i5p dykelet, chilled margins. @433.	hem altereation as .2-434.7m Mafic dyke (or	СТ		/ 0.15	426.5 428.7 431.5 434.0 436.5	428.7 431.5 434.0 436.5 439.0	0.02 0.07 0.02 0.07 0.07
-440		×',×',×	-	Angles are consistant with this. Gypsum slicks on some s						439.0	439.0	0.02
-450												
-460												
-470												
-480												
-490								80000000000000000000000000000000000000				
				Scale 1:500	Galore Creek	k Project, BC, Can	ada 200)5				

er	Е. Tv	velker		DDH N	lo.: C	C05-0	030
<u>ct:</u>		ore Cree		Shee			
			Assay				
			Cu Eqv		То	Cu Ea	Elev. (m)
g/t	Cu %	Ag g/t	0.46	(m)	(m)	%	
79	0.05	7.40	1.81				
3	0.01	0.10	0.09				
4	0.01	0.10	0.09				
)1	0.01	0.10	0.02				0.07
)4	0.01	0.10	0.04				- 937
)2	0.01	0.10	0.02				
)3	0.01	0.10	0.02				
)2	0.02	0.10	0.03				000
)3	0.00	0.10	0.02				- 928
)1	0.01	0.10	0.01				
)9	0.02	0.10	0.08				
)2	0.04	0.10	0.05				- 918
)7	0.01	0.10	0.05				910
)2	0.03	0.10	0.04				
)1	0.04	0.10	0.04				
)1	0.03	0.10	0.03				- 909
)2	0.01	0.10	0.02				303
							- 900
							- 891
							- 882
							- 873
							- 864
	 ?(005		L		
	20) Dec 2	000				

	10		No	ova	Golo	d Re	esou	irce	s In	С			<u>Azim</u>	<u>uth:</u> 2	260		<u>Dip</u>	<u>:</u> -65	5 <u>D</u>	epth (m	<u>):</u> 444	1.70	Ĺ	<u>ogger:</u>	Е. Т [,]	welker		<u>DDH I</u>	<u>No.:</u> C0	C05-0	030
													<u>UTN</u>	<u>1 N:</u>	63332: 1	51.007		<u>U</u>	<u>TM E:</u>	35795	53.987	r		Project	<u>:</u> Gal	ore Cre	ek	Shee	et No.:	1	
	L	Lithology	,					ŀ	Alterati	on							Mir	eraliza	tion						ssays				mposit		
Scale (m)	Rock Code	Rock Type	Mod1	Mod2	Or	Bio	Chl	Epi	Gar	Car	Anh	Gyp	Ser	Diop	Сру	Bn	Ру	Mag Sucp	Spec	Hem	Lim	From (m)	To (m)	Au g/t	Cu %	Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eqv %	Elev. (m)
	OVB	\bigotimes			 → 2 3	 - <u>→</u> N 3	 → N 3	 → 2 3	<u> </u>	<u> </u>	 → 2 3	 → ≥ ω	 → № 3	→ N 3	 4 8 9 ←	0.5	 4804	40 30 10													
	i5	55														01 01			01 01			5.8	8.8	0.41	0.05	0.50	0.30				
—10	15	× × ×																				8.8	11.9	0.41	0.03	0.80	0.30	-			1299 [.]
		×o`o`i																				11.9	14.9	0.08	0.04	1.10	0.11				
		žožož(Γ.				14.9	18.0	0.06	0.03	0.70	0.07				
—20		×O×O×																Г – I				18.0	21.1	0.15	0.04	0.90	0.14				1290 ⁻
		×××××																				21.1	24.1	0.26	0.05	1.20	0.22				
		čočoč(24.1	27.1	0.68	0.05	1.60	0.47				
-30		$\hat{x} \circ \hat{x} \circ \hat{x} \circ \hat{x} \circ$																				27.1	30.2	0.07	0.07	1.20	0.12				1281 [.]
00		×°×°×																				30.2	33.2	0.05	0.07	1.40	0.12				1201
		×o×o×i																L				33.2	36.3	0.03	0.06	1.40	0.09				
-40	V2f	[×] o [×] o [×]	B1b?																			36.3	39.3	0.03	0.09	1.40	0.12				1272 [.]
-40		$\hat{x} \hat{o} \hat{x} \hat{o} \hat{x}$																				39.3	42.4	0.02	0.07	1.30	0.09				1212
		×°×°×																				42.4	45.4	0.01	0.03	0.60	0.04	-			
50		×o×o×i																				45.4	48.5	0.03	0.05	0.80	0.08	-			4000
-50		čočoč(48.5	51.5	0.03	0.05	0.90	0.07	-			1263 [.]
		$\hat{\mathbf{x}}$																				51.5 54.6	54.6 57.6	0.01	0.02 0.03	0.50 0.70	0.03	-			
		×Ö×Ö×																				57.6	60.7	0.01	0.03	1.20	0.04	-			
-60		×0×0×0																				60.7	63.7	0.01	0.00	0.90	0.08	-			1254 ⁻
		$x \circ x \circ x \circ x$																				63.7	66.8	0.01	0.03	0.70	0.04				
		×°×°×																				66.8	69.8	0.01	0.01	0.60	0.02	-			
—70																						69.8	72.8	0.01	0.03	0.70	0.05				1245 ⁻
		× × ×																				72.8	75.9	0.01	0.02	0.50	0.03	-			
	V3h	$\hat{\mathbf{x}} = \hat{\mathbf{x}} = \hat{\mathbf{x}}$	B1b															i				75.9	78.9	0.02	0.03	0.70	0.05				
-80	VOIT	×=×=×																í				78.9	82.0	0.01	0.02	0.60	0.03				1236 ⁻
		׎׎×																		Γ		82.0	85.0	0.01	0.01	0.40	0.02				
		\times \times \times \times																				85.0 87.1	87.1 89.1	0.04 0.01	0.07 0.02	1.00 0.40	0.11				
-90		+																				87.1 89.1	89.1 91.1	0.01	0.02	0.40	0.03 0.03				1227 [.]
		+>+>>																				91.1	94.2	0.01	0.01	0.30	0.01				
	i5	*/ */ ;																				94.2	97.2	0.01	0.00	0.30	0.01				
-100								_ 0/ 75				_ ~ ~ ~				0.5 1.5).5 .5	0.5 1.5	.5 .5	97.2	100.3	0.01	0.01	0.50	0.02				1218 [.]
		+>+>			- <u>- 0</u> 0	000 -	0 0 7	- (1 m) 	- (1 m		3 7 -			30 7	-0∞4		-0∞4					100.3	103.3 106.4	0.01	0.01	0.40	0.02				
				Sca	ale 1:5	00							Gal	ore Cr	eek Pi	oject, I	BC, Ca	inada							2	20 Dec 2	2005				

	1		NL		Gal			urce	e In	~			<u>Azim</u>	<u>uth:</u> 2	:60		Dip	<u>:</u> -65	5 <u>D</u> e	epth (m	n <u>):</u> 444	1.70	Ĺ	_ogger:	E. T	welker		DDH I	<u>No.:</u> C	C05-0	030
		_	INC	Jva	GUI		501		5 111				<u>UTN</u>	<u>1 N:</u> (633325	51.007		<u>U</u>	<u>TM E:</u>	35795	53.987			Project:	Gal	ore Cre	ek	<u>Shee</u>	et No.:	2	
	l	Lithology	/					A	Alteratio	on							Mir	neraliza	ation					As	ssays			Co	mposi	tes	
Scale (m)	Rock Code	Rock Type	Mod1	Mod2	Or	Bio	Chl	Epi	Gar	Car	Anh	Gyp	Ser	Diop	Сру	Bn	Ру	Mag Sucp	Spec	Hem	Lim	From (m)	To (m)	Au g/t	Cu %	Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eqv %	Elev. (m)
	:5					- N ω	- N ω	 → N ω	 → N ω	 → 2 3	<u>- Νω</u>	 → N ω	 Nω	 → N ω	 4℃≤1←	 0.1 _1 .5 _5	4ωα <mark>-</mark>	10 10 10				103.3	106.4	0.01	0.01	0.40	0.02				
110	i5															່ຫ່			່ຫ່ຫ	0 .5 5	່ຫ່ຫ	106.4 108.0	108.0 110.1	0.11 0.06	0.14 0.07	3.30 1.50	0.23 0.12				1000
-110		×_×_×					Г										Γ					110.1	112.5	0.02	0.05	1.10	0.07				1209
		×_×_×																				112.5	115.5	0.06	0.08	1.70	0.13				
		Č∉Č∉Č1																				115.5	118.6	0.09	0.15	3.50	0.24				
—120		ŶŹŶ																				118.6	121.6	0.09	0.13	3.20	0.22	1			1199-
		×																				121.6	124.7	0.35	0.45	11.00	0.76	1			
		×_×_×													•							124.7	127.7	0.05	0.08	2.20	0.13				
-130	V3h	×_×_×	B1b																			127.7	130.8	0.04	0.17	2.60	0.21				1190-
-130		×́į×́į×́																				130.8	133.8	0.07	0.12	3.20	0.19				1190
		×_×_×																				133.8	136.9	0.07	0.11	2.70	0.18				
		°≤°≤°,																				136.9	139.9	0.01	0.00	0.40	0.01				
—140		x ^e x ^e x ⁴																				139.9	142.9	0.01	0.02	0.40	0.03				1181-
		×[×[×																				142.9	146.0	0.01	0.01	0.40	0.03				
		+/>+/>																				146.0	140.0	0.01	0.04	1.00					
—150		+>+>																									0.07				1172-
150	i5		i5p																			149.1 152.1	152.1 153.6	0.01	0.03	0.80 0.90	0.04				1172
		ŤĮŤĮ																				154.9	156.6	0.00	0.02	1.60	0.03				
		× × ×																				156.6	160.1	0.03	0.02	1.50	0.04				
—160		×ŏ×ŏ×i																						0.00			0.1.0				1163-
		× × ×																				162.2	165.0	0.03	0.05	1.30	0.08				
		čočoč(165.0	167.5	0.02	0.06	1.30	0.08				
-170	V2e	ÇoÇoÇ(167.5	170.0	0.01	0.04	0.70	0.05				1154-
1/0		$x \circ x \circ x$																				170.0	172.5	0.02	0.06	1.30	0.08				1154
		×°×°×																				172.5	175.0	0.03	0.05	1.10	0.07				
		×××××																h –					177.5 180.0	0.01	0.04	0.90 2.60	0.06 0.12				
—180		×Ă×Ă×																				180.0	182.2	0.06	0.00	3.40	0.12				1145-
		-A + \ +																				182.2	185.0	0.06	0.14	3.80	0.21	1			
																	Г –	Γ				185.0	187.5	0.02	0.06	1.70	0.09	1			
—190		- + + + + + + + + + + + + + + + + + + +	1/202																			187.5	190.0	0.13	0.18	6.20	0.31				1136-
100	BID		vzer																			190.0	192.5	0.15	0.18	4.60	0.32				1100
																						192.5 195.0	195.0 197.0	0.07 0.08	0.13 0.11	2.70 1.80	0.20 0.17				
																						197.0	198.8	0.08	0.12	2.10	0.19				
-200		"ס) מרטרס סרסרסר סרסרסרסר																					201.0	0.02	0.01	0.50	0.03				1127-
	D3	מו מו מו מו מו מו מו מו מו מו מו מו מו מו מו			~~00	-αω	-αω	-Ω∞	-α∞		-αe	-00	-αe	~~~~~		0.5 1.5		0000	0.5 1.5	0.5 1.5	0.5 1.5	201.0 203.5	203.5	0.04	0.04	1.30	0.07				
															-004		-004	10 20 30 40				203.5	206.0	0.02	0.01	0.40 1.80	0.02 0.10				
				Sc	ale 1:5	00							Gal	ore Cr	eek Pr	oject,	BC, Ca	nada							2	20 Dec 2	2005				
				-											_	• • • •	,														

	10		Nc	Nya(2010		esou	irco	e In	~			Azim	uth: 2	60		Dip	<u>:</u> -65	5 <u>D</u> e	epth (m	<u>n):</u> 444	4.70	Ĺ	<u>ogger:</u>	Ε. Τι	welker		DDH	<u>No.:</u> C	C05-0)030
		<			501		5300		3 111				<u>UTN</u>	<u>1 N:</u> (633325	51.007		<u>U</u>	<u>TM E:</u>	35795	53.987	r		Project:	<u> </u>	ore Cre	ek	<u>Shee</u>	et No.:	3	
		Lithology	y					/	Alteratio	on							Mir	eraliza	ition					As	ssays			Co	mposi	tes	
Scale (m)	Rock Code	Туре	Mod1	Mod2	Or	Bio	Chl	Epi	Gar	Car	Anh	Gyp	Ser	Diop	Сру	Bn	Ру	Mag Sucp	Spec	Hem	Lim	From (m)	(,	Au g/t	Cu %	Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eqv %	Elev. (m)
-210	D3	מו מו מו מו מו מו מו מו מו מו מו מו מו מו מו מו מו מו מו מו			 → N 3	 → № 3	 → N 3	- N 3	- N 3	 → N 3		 → 2 3	 → \> \3	 23	 →234	1.5 0.5		40 30 20 10		1.5 0.5	1.5 0.5		208.5 210.9 213.0	0.04 0.03 0.01	0.06 0.03 0.02	1.80 0.90 1.00	0.10 0.05 0.04				1118 [.]
																						213.0		0.06	0.11	2.40 3.50	0.17				
-220																						218.0 220.5	220.5 223.0	0.12	0.11	3.50 2.50	0.21				1109-
																	L .					223.0 225.5	225.5 228.0	0.02	0.02	1.50 2.20	0.05				
-230	B1b		V2?																			228.0 230.5	230.5 233.0	0.04	0.08	2.80 2.70	0.13				1100-
																	C .					233.0 235.5	235.5 238.0	0.06	0.05	2.10 2.10 4.20	0.14				
-240																						238.0 240.0	240.0 241.9	0.24 0.24	0.24	5.10 4.40	0.43 0.41				1091-
	i5																						243.7 245.5 247.0	0.12 0.04 0.18	0.15 0.03 0.20	3.00 1.80 4.90	0.25 0.06 0.35	238.0	254.5	0.33	
-250																							249.5 252.0	0.18 0.13	0.22 0.19	7.40 8.00	0.40 0.34				1082-
																						252.0 254.5	254.5 257.0	0.19 0.12	0.19 0.09	6.10 3.40	0.35 0.20				
-260	B1b																					257.0 259.5	259.5 262.0	0.15 0.07	0.14 0.11	4.10 2.40	0.26 0.18				1073-
																						262.0 264.5	264.5 267.0	0.09 0.08	0.25 0.13	3.10 2.30	0.33 0.20				
-270																						269.0	269.0 271.5	0.14 0.17	0.47 0.04	5.30 2.10	0.60 0.16				1063-
	CCPo																						276.0	0.03	0.10	2.90 3.50	0.14				
-280																						276.0 278.5 280.5	278.5 280.5 282.5	0.15 0.04 0.11	0.65 0.10 0.18	10.40 3.30 5.30	0.84 0.15 0.29				1054-
	B1b										Γ.											282.5 284.5	284.5 286.5	0.94 0.22	0.93 0.36	24.30 12.10	1.71 0.60	276.0	288.5	0.82	
-290	i5																					286.5 288.5 290.6		0.66 0.03 0.06	0.70 0.07 0.05	26.60 1.90 1.90	1.34 0.10 0.10				1045
		+ > + > +																				292.6 294.9	294.9 297.0	0.10 0.48	0.11 0.80	3.40 16.70	0.20 1.24				
—300																	L					299.0		0.54	0.88	22.10 7.20	1.40 0.42				1036-
	B1b															2 2	Г		2 2	5	ى ب ى	301.0 303.5 306.0	303.5 306.0 308.5	0.07 0.05 0.17	0.06 0.06 0.26	3.30 3.40 7.60	0.13 0.12 0.43				
-310		- A + <u>V</u> +			0 0 <mark>7 7</mark>		იი 	000 	000 - 00	ი , , ,	007-000	00 00 0						10 10 10 10 10 10 10 10 10 10 10 10 10 1			0.5 1.5	306.0		0.17	0.19	5.70	0.30				1027-
				Sca	ale 1:5	00							Gal	ore Cr	eek Pr	oject,	BC, Ca	nada							2	20 Dec 2	2005				

<u>ger:</u>	Е. Т [.]	welker		<u>DDH I</u>	<u>No.:</u> C	C05-0	030
ect:	Gal	ore Cre	ek	<u>Shee</u>	et No.:	4	
As	ssays			Со	mposi	tes	
g/t	Cu %	Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eqv %	Elev. (m)
12	0.04	3.40	0.14				
04	0.04	2.00	0.08				
03	0.06	1.60	0.09				
04	0.04	1.50	0.08				1018
11	0.02	3.10	0.12				
)7	0.06	2.40	0.12				
)3	0.05	1.30	0.08				
)2	0.06	1.00	0.08				1009-
03	0.06	1.00	0.09				1005
01	0.04	1.20	0.05				
)4	0.08	1.60	0.12				
06	0.07	2.80	0.14				1000-
06	0.10	2.50	0.16				
05	0.05	1.80	0.09				
09 15	0.06	2.30 2.60	0.14 0.14				
)4	0.05	1.20	0.14				991-
)2	0.02	0.10	0.04				001
04	0.02	0.10	0.05				
D1	0.01	0.10	0.02				
D1	0.01	0.10	0.01				982-
D1	0.01	0.10	0.02				302
D1	0.02	0.10	0.03				
03	0.02	0.10	0.04				
03	0.01	0.10	0.03				973-
)7)2	0.03	0.10	0.07				913
03	0.02	0.10	0.04				
D1	0.01	0.10	0.02				
01	0.01	0.10	0.01				004
)2	0.01	0.20	0.03				964-
)2	0.02	0.10	0.03				
)7	0.02	0.10	0.06				
03	0.02	0.10	0.04				055
03	0.03	1.50	0.06				955-
)4	0.03	0.60	0.06				
60	0.33	71.60	31.72				
70	0.03	1.10	0.46				0.40
79	0.05	7.40	1.81				946-
13	0.01	0.10	0.09				
14	0.01	0.10	0.09				
01	0.01	0.10	0.02				~~~
04	0.01	0.10	0.04				937-
)2	0.01	0.10	0.02				
	0	0 Dec 2	2005				

	1		Nic		Gal			irce	e In				<u>Azim</u>	<u>uth:</u> 2	60		Dip	-65	5 <u>D</u> e	epth (m	<u>n):</u> 444	1.70	<u>l</u>	_ogger:	E. T	welker		DDH	<u>No.:</u> C	C05-0	030
				Jva	GUN		5301		5 111				<u>UTN</u>	<u>1 N:</u> 6	633325	51.007		<u>U</u>	<u>TM E:</u>	35795	53.987			<u>Project</u>	<u>:</u> Gal	lore Cre	ek	<u>Shee</u>	et No.:	5	
	L	_ithology	/					ŀ	Alteratio	on							Min	eraliza	tion						ssays				mposi	tes	
Scale (m)	Rock Code	Rock Type	Mod1	Mod2	Or	Bio	Chl	Ері	Gar	Car	Anh	Gyp	Ser	Diop	Сру	Bn	Ру	Mag Sucp	Spec	Hem	Lim	From (m)	To (m)	Au g/t	Cu %	Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eqv %	Elev. (m)
	i4b	× × ×				- N ω	- N ω	 → Nω		 → \> 33	- N ω	 → N ω	- N ω	 → N ω	 4ωα∟	0.5	4 & C A -		0.5	 1.5 0.5	0-1-1	414.5 416.8	416.8	0.03 0.02	0.01 0.02	0.10 0.10	0.02				
-420		×																	01 01			419.5		0.02	0.00	0.10	0.02				928 [.]
	V4d	× × × × × ×																				422.0 424.5	424.5 426.5	0.01 0.09	0.01	0.10 0.10	0.01	-			
420		x x x x																				426.5	428.7	0.02	0.04	0.10	0.05				010
—430		×′,×′,×																				428.7 431.5	431.5 434.0	0.07	0.01 0.03	0.10 0.10	0.05 0.04				918 [.]
	V5f	x x x x x x																				434.0	436.5		0.04	0.10	0.04				
-440		×́×́×́×																				436.5 439.0	439.0 441.7	0.01	0.03 0.01	0.10 0.10	0.03	-			909 [.]
																												_			
—450																															900
—460																															891 [.]
—470																															882 [.]
—480																															873 [.]
—490																															864 [.]
-500																															855 [.]
-510								τ ο ο		- − 0 00				τ 0 00	₩ ₩ ₩ ₩ ₩ ₩ ₩		−0€4	- 10 - 20 - 30													846
Scale 1:500									Gal	ore Cr	eek Pr	oject, I	BC, Ca	nada				1	1	1	2	20 Dec 2	2005	1		I					
	Scale 1:500														,																

		0	Ν	IovaGold Resources Inc	<u>Azimuth:</u> 135 UTM N: 6332857.4	<u>Di</u> p 415		<u>Depth (m</u> TM E: 35792		.80		<u>ogge</u> Projec
				Lithology	<u></u> 00020011			Structure			<u>.</u>	
Scale			Mod1		cription		Туре	Alpha	Width	From	То	Au ç
(m)	Code	Туре					турс		(m)	(m)	(m)	
-10 -20	OVB			OVERBURDEN				50 50 40 20 10		21.4	24.4	0.44
										21.1	24.1 27.1	0.45
										24.1	30.2	0.02
-30										30.2	31.7	0.02
										31.7	34.8	0.03
							FR			34.8	36.3	0.36
-40										36.3 39.0	39.0 41.5	2.26
40				BRECCIA: Variable altered matrix supported heterolithic			VN VN		0.003	41.5	41.5	0.14
				lithologies unknown) form 5-20% of unit, subangular to ro grained, composed primarily of 0.5-2mm ksp crystals and						44.0	46.5	0.02
				also contains pseudoleucite crystals (2-4mm, 5-10%) thro orthomagmatic breccia? Overall, unit has strong ksp flood	ughout, often ksp alt or carbonate alt. Possibly Co	Ce matrix,				46.5	49.0	0.02
-50				biotite alt (often chl alt), and slight sericitization of feldspa	rs. Dissem py throughout; earthy + spec hem.		JN			49.0	51.5	0.01
				@21.10-36.27m; Highly weathered friable orange-brown breccia. Mal + chalcopyrite on fracture surfaces in top 3m	ock. Small competent intervals show ksp-mag, he	em altered		\mathbf{X}		51.5	54.0	0.01
	В			with small clay altered zones, fracture controlled weather	ng. @41-49m; Strong ksp alteration with increase	ed mag +				54.0	56.5	0.01
				hem. 10-30cm intervals show packed 3mm ksp alt pseud cp (possible CCPp clasts?). Weathering along fractured s				× .	<u> </u>	56.5	59.0	0.01
-60				f.g. ksp alt interval with dissemchl-hem- py- carb. Metre	wide-zones of c.g. orange ksp-chl alt w/hem fract	ure infill.	VN FLT		0.002	59.0	61.5	0.01
				Interval is more massive looking with fewer clasts than subio-chl-py alteration. Ghosted clasts in breccia. @88.57-				\setminus		61.5 64.0	64.0 66.5	0.02
	1			brittle fractures w/cal-or +/- qtz -py infill. Ref sample @82		J				66.5	69.0	0.01
-70								<u>`</u>		69.0	71.5	0.01
							JN \			71.5	74.0	0.01
										74.0	76.5	0.01
										76.5	79.0	0.03
-80										79.0	81.5	0.01
										81.5	84.0	0.01
	1						VN \		/ 0.003	84.0	86.5	0.04
-90	 			COPPER CANYON PORPHYRY-EQUIGRANULAR?: Ma crystals (50%, 1-3mm) set in f.g. matrix of interlocking pir			FLT CT		0.43	86.5	89.0	0.09
90	CCPe	2010		interstitial calcite. Reference sample @93.5m.				, ,		89.0	91.8	0.07
	 	~~~~	-	/BRECCIA: Strongly ksp-chl alt breccia, with ghosted sub bio-chl rich). Clasts larger here than in breccia above (1- ²			СТ			91.8	94.8	0.10
	в			alt/veining, sometimes assoc with fluorite and v.f.g py. Br				400 200 800 800 800 800 800 800 800 800 8		94.8	97.2	0.10
	1			or-py- hem annealed fault (~8cm wide).						97.2	100.3	0.11
				Scale 1:500	Galore Creek Project,	, BC, Can	ada 200)5				

<u>ər</u>	M.Rc	berts	<u>[</u>	DDH N	<u>lo.:</u> C0	C05-0	031
<u>ct:</u>	Galo	ore Cree	ek	<u>Shee</u>	<u>t No.:</u>	1	
			Assay				
g/t	Cu %	Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eq %	Elev. (m)
							- 1205
							- 1196
5	0.53	3.20	0.84				
)4	0.05	0.70	0.08				
)3	0.03	0.20	0.04				- 1187
)2	0.03	0.30	0.04				- 1107
)3	0.02	0.20	0.03				
6 10	0.01	0.70	0.23				
26	0.07	1.10	1.45				- 1178
4	0.10	1.20	0.20				- 11/0
)3	0.13	0.30	0.14				
)2	0.04	0.10	0.05				
)2	0.04	0.20	0.05	0.0	287.8	0.00	- 1169
)1	0.01	0.10	0.02	0.0	207.0	0.00	1109
)1	0.01	0.10	0.02				
)1	0.01	0.10	0.02				
)1	0.02	0.10	0.03				1160
)1	0.02	0.10	0.03				- 1160
)2	0.03	0.10	0.04				
)1	0.03	0.10	0.04				
)1	0.03	0.10	0.04				- 1151
)1	0.02	0.10	0.02				1131
)1)1	0.01	0.10	0.01				
)1	0.03 0.05	0.10	0.04				
)3)1		0.10	0.07				- 1142
)1)1	0.02	0.10	0.03				1142
)1)4	0.02	0.10	0.03				
)4	0.03	0.10	0.06				
)9)7	0.04	0.50	0.10				- 1133
)7	0.05	0.70	0.10				1100
0	0.01	0.30	0.07				
0	0.02	0.50	0.08				
1	0.03	0.50	0.09				
	20) Dec 2	005				

				N	ovaGold Resources Inc	Azimuth: 135	<u>Dip:</u> -	65	<u>Depth (m</u>	<u>n):</u> 287.	80	L	<u>ogger</u>	M.R	oberts	[DDH I	<u>No.:</u> C	C05-0	031
	/					<u>UTM N:</u> 6332857.415		<u>UTI</u>	<u>M E:</u> 35792	22.023	r	<u>F</u>	Project:	Galo	ore Cree	ek	<u>Shee</u>	et No.:	2	
					Lithology				Structure				S	amplii	ng and	Assay	/			
Scale (m)	Rock Code	Rock Type	Mo	d1	Desc	ription	Тур	e	Alpha	Width (m)	From (m)	To (m)	Au g/t	Cu %	Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eq %	Elev. (m
					BRECCIA: Strongly ksp-chl alt breccia, with ghosted subro	unded f.g. clasts (generally finer grained than matrix, me	ro	i			<u>97.2</u> 100.3	100.3	0.11	0.03	0.30	0.11				
	в			t	bio-chl rich). Clasts larger here than in breccia above (1-10	cm, 10-15%). Small intervals of c.g. salmon pink ksp	FLT	_\		0.04	103.3	106.4	0.10	0.03	0.50	0.09				
4.4.0	_				alt/veining, sometimes assoc with fluorite and v.f.g py. Bre pr-py- hem annealed fault (~8cm wide).	ccia matrix enigmatic @106.1m; small gouge seam in lai	ger				106.4	109.4	0.13	0.04	0.60	0.13				
-110											109.4	112.5	0.10	0.05	0.80	0.11				- 1115
		~~~~					FLT			0.04	112.5	115.5	0.05	0.03	0.50	0.07				
	005	~~~~	-		COPPER CANYON PORPHYRY- PSEUDOLEUCITE DO				``		115.5	118.6	0.01	0.01	0.10	0.02				
-120	ССРр				hroughout (3-5mm, locally to 50%). Patchy bio alt. Dissem clasts, or probably a CCPp intrusion with minor f.g. zenolit		ideni				118.6	121.6	0.01	0.01	0.10	0.02				- 1106
			1				СТ				121.6	124.7	0.03	0.01	0.10	0.03				
											124.7	127.7	0.10	0.04	0.90	0.11				
-130											127.7	130.8	0.06	0.04	0.40	0.08				- 1097
100				r	DRTHOMAGMATIC BRECCIA- HETEROLITHIC (CCPp): ock fragments included f.g. or-chl-py clasts, c.g. pink ksp	+ ser alt feldspar + spotty hem (possible relic					130.8	133.8	0.09	0.14	0.90	0.20				1007
	B3b		CCI		pseudoleucites), and f.g. pink ksp clasts. Matrix is predomi contains possible sparse ksp alt pseudoleucite crystals and						133.8	136.8	0.05	0.04	0.50	0.07				
					byrite rich than matrix. Reference sample @127.6m Trace		516				136.8	139.9	0.06	0.03	0.70	0.07				
-140											139.9	142.0	0.07	0.03	0.60	0.08				- 1088
				_			СТ				142.0 144.0	144.0 146.0	0.11 0.05	0.06	1.10 0.20	0.14				
		~~~~									144.0	140.0	0.03	0.03	0.20	0.00				
-150		1000	7								149.1	152.1	0.01	0.03	0.10	0.03	0.0	287.8	0.00	- 1079
		1020	-		COPPER CANYON PORPHYRY- PSEUDOLEUCITE DOI	ANANT: Massive intrusive unit contains 50% 3-5mm					152.1	154.4	0.01	0.00	0.10	0.00				
		10/0		l p	oseudoleucites crystals and 5% 2-4mm feldspar crystals.	Dissem cubic+granular py throughout. Variably altered f.					154.4	156.7	0.02	0.02	0.10	0.03				
	ССРр	~~~~			natrix. @144-152m; Strong ksp alt of pseudoleucites, mat crystals ksp alt, matrix is f.g. ksp-chl-hem-car-anh altered.						156.7	159.1	0.06	0.03	0.10	0.07				4000
-160		~~~~	-		rystals slightly chl or hem alt. Patchy m.g. epidote alterati						159.1	161.5	0.03	0.03	0.20	0.05				- 1069
		~~~~									161.5 164.0	164.0 166.5	0.01	0.01	0.10 0.10	0.01				
											166.5	169.0	0.01	0.01	0.10	0.02				
-170		1000	1								169.0	171.7	0.02	0.04	0.30	0.05				- 1060
				v	DRTHOMAGMATIC BRECCIA (CCPp): Very disrupted intr very friable + broken rock. Some breccia textures in areas,	may contains clasts(?)/matrix(?) of CCPp . Variably stro	nalv				171.7	174.7	0.02	0.06	0.40	0.07				
	B3b		CCI	Pp k	sp-chl-bio-epidote- cal altered, also clay altered. @177-1 seems centred around fault zone.	78m clay altered friable to gouge fault zone, epidote alter	ation FZN	_		0.5	174.7	177.6	0.02	0.02	2.30	0.05				
100		10/0			COPPER CANYON PORPHYRY- PSEUDOLEUCITE DOI	/INANT: Same as above, massive but also brecciated in			$\backslash$	/0.0	177.6	180.5	0.01	0.01	0.50	0.02				1051
-180		10/0		l p	places, but most clasts appear to be CCPp (auto brecciate	d?) in CCPp matrix. Pervasive ksp-bio-py alteration, pate					180.5	182.7	0.01	0.01	0.20	0.02				- 1051
	CCPp	~~~~	-		bink ksp alt. Ref. sample @191.6m. Pervasive fracture cle	<b>.</b>					182.7	185.6	0.03	0.02	0.20	0.04				
	· P	~~~~~			DRTHOMAGMATIC BRECCIA- HETEROLITHIC (CCPp): CCPp into heterolithic breccia unit. Fragments in breccia ra	ange from 0.5cm up to 15cm, subrounded, from 20-50%	of		Λ.		185.6	187.8	0.02	0.07	0.20	0.08				
-190		~~~~~		r F	ock; lithologies included pseudoleucite packed in f.g. matr 5-10mm, 15% in m.g. or-bio matrix), f.g. or altered clasts, k	ix (CCPp?), ksp porphyry (ksp crystals, acicular to tabula bio alt clasts, possible argillite clast? Matrix composed of					187.8 190.2	190.2 192.9	0.01	0.03	0.20	0.04				- 1042
				— r	ounded rock fragments f.g. or-bio-chl +/- hem, ksp crystal	fragments (1-3mm) to euhedral ksp crystal (2-5mm, 2-10	)%). <mark></mark>	\			190.2 192.9	192.9 195.5	0.01	0.03	0.20	0.04				
	B3b		CCI	Po t	Dissem cubic and patchy py throughout. Trace dissem cp. hroughout, and anh-hem +/- bio-epi veining. Unit could be	Ref. sample @195.3m. Fracture cleavage w/anh infill highly altered orthomagmatic breccia with heterolithic cl	ASTS FCL		82665643020 87665643020		192.9	198.0	0.01	0.03	0.20	0.04				
				а	and CCPp matrix.	-				<u> </u>		200.6		0.01	0.10	0.01				<u> </u>
					Scale 1:500	Galore Creek Project, BC, (	Canada 2	2005	5					2	0 Dec 2	005				

			N	Vo	vaGold Resources Inc	Azimuth: 135	<u>Dip:</u> -6	5 <u>Depth (r</u>	n <u>):</u> 287.	80	L	.ogger	M.R	oberts	<u>[</u>	DHN	<u>lo.:</u> C	C05-0	031
			-			<u>UTM N:</u> 6332857.415	<u>L</u>	<u>ITM E:</u> 3579	22.023		<u>F</u>	Project:	Gale	ore Cree	ek	<u>Shee</u>	<u>et No.:</u>	3	
					Lithology			Structure				S	Samplii	ng and	Assay	/			
Scale (m)	Rock Code	Rock Type	Mod1	1	Desci	iption	Туре	Alpha	Width (m)	From (m)	To (m)		Cu %	Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eq %	Elev. (m)
-210 -220 -230 -240	B3b CCPp CCPp		CCPo B3b	CCF rock 5-10 rour Diss thro and COF phet crys grar shat	Pp into heterolithic breccia unit. Fragments in breccia ra k; lithologies included pseudoleucite packed in f.g. matri: 0mm, 15% in m.g. or-bio matrix), f.g. or altered clasts, bi nded rock fragments f.g. or-bio-chl +/- hem, ksp crystal f sem cubic and patchy py throughout. Trace dissem cp. F bughout, and anh-hem +/- bio-epi veining. Unit could be d CCPp matrix. PPER CANYON PORPHYRY- PSEUDOLEUCITE DOM enocrysts (sub- to anhedral or(?) crystals, 2-4mm, ghoste stals, acicular, 7-15mm), octagonal biotite books (1-2mm eudoleucite?, <5%, 1-3mm), in f.g. pink ksp, bio-chl-anh i nular py patches. Dissem spotty py. Anh infill in fractures arp contact, much less altered, no clasts/zenoliths, increa	ragments (1-3mm) to euhedral ksp crystal (2-5mm, 2-10% Ref. sample @195.3m. Fracture cleavage w/anh infill highly altered orthomagmatic breccia with heterolithic class IINANT: Massive intrusive unit consists of feldspar ed, 50%; acicular or crystals 4-8mm, 5%; rare subhedral of h, look primarily, 3%), rounded ksp crystals (ksp alt matrix. Patchy/spotty epi alteration often associated with s. Ref. sample @225m. Unit intrudes into breccia. Fairly used porphyritic clasts.	S VN CT VN CT		<ul> <li>0.006</li> <li>0.025</li> <li>0.014</li> </ul>	198.0           200.6           203.0           205.5           208.0           210.5           213.0           215.5           220.9           223.3           225.9           228.5           231.3           234.4           237.4           243.5           243.5           243.5	200.6 203.0 205.5 218.0 210.5 213.0 215.5 218.2 220.9 223.3 225.9 228.5 231.3 234.4 237.4 237.4 240.5 244.0 249.2	0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02	0.01           0.02           0.01           0.03           0.04           0.03           0.03           0.03           0.04           0.03           0.03           0.04           0.02           0.02           0.01           0.02           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03	0.10           0.10           0.10           0.30           0.10           0.20           0.30           0.30           0.30           0.30           0.30           0.30           0.30           0.20           0.30           0.20           0.30           0.20           0.10           0.20           0.10           0.20           0.20           0.20           0.20           0.20           0.20           0.20           0.20           0.20           0.20           0.20           0.20           0.20           0.20           0.20           0.30           0.40	0.01           0.02           0.04           0.05           0.04           0.05           0.04           0.05           0.04           0.05           0.04           0.05           0.03           0.03           0.03           0.04           0.04           0.04           0.04           0.04           0.04           0.04           0.04           0.04           0.04           0.04           0.04           0.04           0.04           0.04           0.04           0.05	0.0	287.8	0.00	- 1024 - 1015 - 1006 - 997
-250 -260	i9b			2-40	THOCLASE SYENITE MEGAPORPHYRY: Ksp crystals cm, euhedral) and plag (30%, ghosted subhedral, 2-6mr tty epi alt. Patchy ksp+hem+bio alteration floods matrix,		СТ	7		249.2 252.0 254.5 257.0 259.5 262.0 264.2	252.0 254.5 257.0 259.5 262.0 264.2 266.4	0.01 0.00 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01 0.02 0.01	0.20 0.10 0.10 0.10 0.10 0.20 0.10	0.02 0.01 0.01 0.01 0.01 0.03 0.02				- 988 - 979
-270 -280	В			<2ci (5-1 alter abov	cm), reduced CCPp clast population and increased f.g. c 10%, generally <3mm) and rare pseudoleucite crystals in ared CCPp+rock flour? May represent phreato-magmatic	ologies similar, but average clast size reduced (generally lasts (volcanics?). Matrix consists of ksp crystal fragments highly altered v.f.g ksp-chl-epi-anh-mag matrix>milled breccia marginal to CCPp othomagmatic breccia/intrusio oxidized. Hole ended due to drilling problems, probably in	+ IS		0.004	274.0 276.5 279.0	269.0 271.5 274.0 276.5 279.0 281.5	0.01 0.01 0.05 0.04 0.02 0.02	0.02 0.02 0.02 0.02 0.02 0.02	0.10 0.10 0.20 0.30 0.10 0.30	0.02 0.03 0.05 0.05 0.03 0.04				- 970 - 961
-290								8 7 6 6 7 9 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		284.0 286.0	286.0 287.8	0.02	0.02	0.20	0.04				- 952
			1		Scale 1:500	Galore Creek Project, BC, Ca	inada 20	05		1		1	2	0 Dec 2	005		1		L



#### **NovaGold Resources Inc**

<u>Azimuth:</u> 135

-65 <u>Depth (m):</u> 287.80

<u>Dip:</u>

Logge

<u>UTM N:</u> 6332857.415 <u>UTM E:</u> 357922.023 <u>Proj</u>e Lithology Alteration Mineralization From То Rock Rock Scale Mag Sucp Diop Сру Au Chl Epi Car Gyp Ру Spec Hem Mod1 Mod2 Or Bio Gar Anh Ser Bn Lim (m) (m) (m) Code Туре - N 3 | | | | 4 ω α ← | | | | 4 ∞ α ← 40 20 10 --->ω -→ Nω -<u></u>-νω  $\rightarrow N \omega$  $\rightarrow N \omega$  $\rightarrow N \omega$  $\rightarrow N \omega$ -> Nω  $\rightarrow N \omega$ 0 <u>1</u> 5 5 O [ -10 OVB Ē () $\bigcirc$ -20 21.1 24.1 0.45 24.1 27.1 0.04 27.1 30.2 0.03 -30 30.2 31.7 0.0 31.7 34.8 0.03 34.8 36.3 0.3 36.3 39.0 2.26 -40 39.0 0.14 41.5 41.5 0.0 44.0 44.0 46.5 0.0 46.5 49.0 0.0 -50 49.0 51.5 0.01 51.5 54.0 0.0 В 54.0 56.5 0.01 56.5 59.0 0.01 -60 59.0 61.5 0.0 61.5 64.0 0.0 64.0 0.0 66.5 66.5 69.0 0.0 -70 69.0 71.5 0.0 71.5 74.0 0.01 74.0 76.5 0.0 76.5 79.0 0.03 -80 79.0 0.01 81.5 81.5 0.0 84.0 84.0 86.5 0.04 86.5 0.0 89.0 -90 89.0 0.07 91.8 CCPe 91.8 94.8 0.10 94.8 97.2 0.10 97.2 100.3 0.1 В -100 0.5 1.5 0.5 1.5 0.5 1 5 0.5 S ŝ <mark>ო ო -</mark> ~ N M ~~~~∞ ~~~∞ ო ო <del>-</del> ~~~∞  $\omega \sim$ ი <mark>ი -</mark> ~ ∩ ∾ 432d NΩ - 0 0 <del>4</del> 100.3 103.3 0.1 1.1 Scale 1:500 Galore Creek Project, BC, Canada

		مام میں -					004
<u>jer:</u>	M.R	oberts		υυΗ	<u>No.:</u> C	05-0	1031
ect:	Gal	ore Cre	ek	<u>Shee</u>	et No.:	1	
As	says				mposi	tes	
g/t	Cu %	Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eqv %	Elev. (m)
							1205-
45	0.53	3.20	0.84				1196 ⁻
04 03	0.05 0.03	0.70 0.20	0.08				
)2	0.03	0.30	0.04				1187-
03 36	0.02	0.20	0.03				
26	0.07	1.10	1.45				
14	0.10	1.20	0.20				1178 ⁻
)3	0.13	0.30	0.14				
)2	0.04	0.10	0.05				
)2	0.04	0.20	0.05				
D1	0.01	0.10	0.02				1169 ⁻
01	0.01	0.10	0.02	0.0	287.8	0.00	
01	0.01	0.10	0.02				
01	0.02	0.10	0.03				
D1	0.02	0.10	0.03				1160
)2	0.03	0.10	0.04				
D1	0.03	0.10	0.04				
01	0.03	0.10	0.04				
01	0.02	0.10	0.02				1151 [.]
01	0.01	0.10	0.01				
01	0.03	0.10	0.04				
03	0.05	0.10	0.07				
01	0.02	0.10	0.03				1142 ⁻
01	0.02	0.10	0.03				
04	0.03	0.10	0.06				
09	0.04	0.50	0.10				1100
07	0.05	0.70	0.10				1133 ⁻
10	0.01	0.30	0.07				
10	0.02	0.50	0.08				
11	0.03	0.50	0.09				1104
11	0.04	0.70	0.11				1124 [.]
		0 Dec 2	2005				

	N		Nic		Gal		esol	irco	s Ind	~			Azim	<u>uth:</u> 1	35		Dip	<u>:</u> -65	5 <u>D</u> e	epth (m	<u>ı):</u> 287	7.80	Ĺ	.ogger:	M.Ro	oberts		DDH	<u>No.:</u> C	C05-0	031
		<		Jva			500		5 111				<u>UTN</u>	<u>1 N:</u> 6	63328	57.415		<u>U</u>	<u>TM E:</u>	35792	22.023	W		Project:	Gal	ore Cre	ek	Shee	et No.:	2	
	L	Lithology	/					ŀ	Alteratio	on			u	u			Mir	eraliza	ation	u				As	says				mposi		
Scale (m)	Rock Code	Rock Type	Mod1	Mod2	Or	Bio	Chl	Epi	Gar	Car	Anh	Gyp	Ser	Diop	Сру	Bn	Ру	Mag Sucp	Spec	Hem	Lim	From (m)	To (m)	Au g/t	Cu %	Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eqv %	Elev. (m)
					<u>→ № </u> ω	- 23	Nω	 → ≥ 3	 → 2 3	- N ω	 _→ № ω	 → N 3	- N 3	 → 2 3	 4 & Ω 4	0.5	4 C C ←		1.5 0.5	0	1.5 0.5	103.3	106.4	0.10	0.03	0.50	0.09				
-110	В															ט ט			ਯਯ	5 5	01 01	106.4	109.4	0.13	0.04	0.60	0.13				1115-
110																						109.4	112.5	0.10	0.05	0.80	0.11				1115
																						112.5	115.5	0.05	0.03	0.50	0.07				
	CCPp																					115.5	118.6	0.01	0.01	0.10	0.02				
—120	COLD																					118.6	121.6	0.01	0.01	0.10	0.02				1106-
																						121.6	124.7	0.03	0.01	0.10	0.03				
																						124.7	127.7	0.10	0.04	0.90	0.11				
—130																						127.7	130.8	0.06	0.04	0.40	0.08				1097-
130																						130.8	133.8	0.09	0.14	0.90	0.20				1097
	B3b		ССРр																			133.8	136.8	0.05	0.04	0.50	0.07				
																						136.8	139.9	0.06	0.03	0.70	0.07				
—140																						139.9	142.0	0.07	0.03	0.60	0.08				1088 <del>-</del>
																						142.0	144.0	0.11	0.06	1.10	0.14				
		$\langle \circ \rangle \circ \rangle$																				144.0	146.0	0.05	0.03	0.20	0.06				
150		$\langle \circ \rangle \circ$																				146.0	149.1	0.02	0.03	0.20	0.04				1070
—150																						149.1	152.1	0.01	0.03	0.10	0.03				1079-
																						152.1	154.4	0.01	0.01	0.10	0.02	0.0	207.0	0.00	
	CCPp																					154.4 156.7	156.7 159.1	0.02	0.02	0.10 0.10	0.03	0.0	287.8	0.00	
—160																							161.5	0.00	0.03	0.10	0.05				1069-
		Kono																					164.0	0.01	0.01	0.10	0.01				
		1000																				164.0	166.5	0.01	0.01	0.10	0.02				
		10/01																				166.5	169.0	0.01	0.01	0.20	0.03				
—170		10/01																				169.0	171.7	0.02	0.04	0.30	0.05				1060-
	B3b		ССРр																			171.7	174.7	0.02	0.06	0.40	0.07				
	530		ССГР																			174.7	177.6	0.02	0.02	2.30	0.05				
—180		10/01																				177.6	180.5	0.01	0.01	0.50	0.02				1051-
100		$\langle \circ \rangle \circ$																				180.5	182.7	0.01	0.01	0.20	0.02				1001
	CCPp	$\langle \circ \rangle \circ \rangle$																				182.7	185.6	0.03	0.02	0.20	0.04				
																							187.8	0.02	0.07	0.20	0.08				
—190		$\sum_{i=1}^{n}$																				187.8	190.2	0.01	0.03	0.20	0.04				1042-
																						190.2	192.9 195.5	0.01	0.03	0.20 0.30	0.04				
																						192.9 195.5	195.5 198.0	0.01	0.03	0.30	0.04				
	DC																						200.6	0.01	0.03	0.20	0.04				1000
—200	B3b		CCPo																			200.6	200.0	0.01	0.01	0.10	0.01				1033 <del>-</del>
					<del>, </del>	-αω	<b>−</b> οι σ	- ∼ 0 00	- 0 00	<del>, </del> ч ю	<del>,</del> − 0 ∞	~~~∞	- N W	~~~00	<i>−</i> 004	0.5 1.5	<u>- 00</u> 4	40 30 40	0.5 1.5	0.5 1.5 1.5	0.5 1.5 1.5	203.0	205.5	0.01	0.01	0.10	0.02	1			
																							208.0	0.02	0.03	0.30	0.04	]			
				Sc	ale 1:5	00							Gal	ore Cr	eek Pr	oject,	BC, Ca	nada							2	0 Dec 2	2005				
																	-														

	1				Gol			iroo	c In	•			<u>Azim</u>	<u>uth:</u> 1	35		Dip	<u>:</u> -65	5 <u>D</u> e	epth (m	<u>ı):</u> 287	7.80	<u>l</u>	_ogger:	M.R	oberts		<u>DDH</u>	<u>No.:</u> C	C05-0	031
		<	INC	Jva	GOI		301	lice	2 111				<u>UTM</u>	<u>1 N:</u> (	633285	57.415		<u>U</u>	<u>TM E:</u>	35792	22.023			<u>Project</u>	<u>:</u> Gal	ore Cre	ek	<u>Shee</u>	et No.:	3	
	l	Litholog	у					1	Alteratio	on							Mir	eraliza	ation					As	ssays			Co	mpos	tes	
Scale (m)	Rock Code	Rock Type	Mod1	Mod2	Or	Bio	Chl	Epi	Gar	Car	Anh	Gyp	Ser	Diop	Сру	Bn	Ру	Mag Sucp	Spec	Hem	Lim	From (m)	To (m)	Au g/t	Cu %	Ag g/t	Cu Eqv %	From (m)	To (m)	Cu Eqv %	Elev. (m)
-210					<u> → № ω</u>	<u>→</u> N) ω	∾ ω	 → ≥ ω	<u> </u>	- <u>→</u> N W	 -→ N ω	 → ≥ ω	 → N ω	 → N ω	 4ωα⊢	0 <u>1</u> .5 5	 4 ω α ←	40 - 40 - 10	0 <u>1</u> .5 .5	0.5	0 1 .5 0.5	208.0		0.02	0.03 0.04	0.30 0.10	0.04 0.05				1024-
	Dah					L																	213.0 215.5	0.02	0.03 0.03	0.20 0.30	0.04 0.04				
	B3b		CCPo																			215.5	218.2	0.02	0.03	0.30	0.04				
-220																						218.2	220.9	0.02	0.04	0.20	0.05	-			1015-
																						220.9	223.3	0.01	0.02	0.30	0.03				
	ССРр		-																			223.3 225.9	225.9 228.5	0.01 0.01	0.02 0.01	0.20 0.10	0.03				
-230		1000																				228.5	231.3	0.01	0.01	0.10	0.02				1006-
200		10/0	-																			231.3		0.01	0.02	0.20	0.04				1000
		10/0																				234.4	237.4	0.01	0.03	0.20	0.04				
	CCPp	$\sum_{i} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j$	B3b																			237.4	240.5	0.01	0.03	0.20	0.04				
-240	сс. р		200																				243.5	0.01	0.03	0.30	0.04				997-
		1010	-																			243.5	246.0	0.01	0.03	0.40	0.04				
		1010	-																			246.0	249.2	0.02	0.03	0.80	0.05	0.0	287.8	0.00	
—250		5	C																			249.2		0.01	0.01	0.20	0.02	-			988-
		ĎĽ)	6																			252.0	254.5	0.00	0.01	0.10	0.01				
																		[				254.5	257.0	0.01	0.01	0.10	0.01				
-260	i9b																	L				257.0	259.5	0.01	0.01	0.10	0.01	-			979-
-200																						259.5 262.0	262.0	0.01	0.01	0.10	0.01				979
		55	c																			262.0	264.2 266.4	0.01 0.01	0.02	0.20 0.10	0.03 0.02				
																	Γ						269.0	0.01	0.02	0.10	0.02				
—270																							271.5	0.01	0.02	0.10	0.03				970-
																							274.0	0.05	0.02	0.20	0.05				
	В																						276.5 279.0	0.04	0.02	0.30 0.10	0.05 0.03				
-280																							279.0	0.02	0.02	0.10	0.03				961-
																						284.0	286.0	0.02	0.02	0.20	0.04				
200																						280.0	287.8	0.02	0.02	0.20	0.03				050
—290																															952-
—300																															943-
—310					იი <del>,</del>	- 0 ω	ით <del>,</del> 	ო <i>ი</i> ⊣ 	300-	35 <del>7</del>	007-	0007	-αε	000 <del>-</del> 00	+064		←0%4				0.5 1.5 1.5										934
				Sc	cale 1:5	500							Gal	ore Cr	eek Pr	oject, I	BC, Ca	inada							2	20 Dec 2	2005				
																,, ·	-, -•														

### **APPENDIX VII**

ANALYTICAL PROCEDURES

Specifications for sampling, assaying and analysis

ALS Chemex. 212 Brooksbank Ave North Vancouver, BC V7J 2C1 Canada

Sample Preparation Package – PREP-31 Standard Sample Preparation: Dry, Crush, Split and Pulverize

Sample is dried and the entire sample is crushed to better than 70% passing a 2 mm (Tyler 10 mesh) screen. A split of up to 250 grams is taken and pulverized to better than 85% passing a 75 micron (Tyler 200 mesh) screen.

ALS Chemex Method Code	Description
LOG-22	Sample is logged in tracking system and a bar code label is attached.
CRU-31	Fine crushing of rock chip and drill samples to better than 70% of the sample passing 2 mm.
SPL-21	Split sample using riffle splitter.
PUL-31	A sample split of up to 250 g is pulverized to better than 85% of the sample passing 75 microns.

Fire Assay Procedure – Au-AA23 and Au-AA24:

Fire Assay Fusion, AAS Finish Sample Decomposition: Fire Assay Fusion Analytical Method: Atomic Absorption Spectroscopy (AAS)

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required, inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested in 0.5 ml dilute nitric acid in the microwave oven, 0.5 ml concentrated hydrochloric acid is then added and the bead is further digested in the microwave at a lower power setting. The digested solution is cooled, diluted to a total volume of 4 ml with de-mineralized water, and analyzed by atomic absorption spectroscopy against matrix-matched standards.

ALS Chemex Method Code	Element	Symbo I	Sampl e Weigh t	Lower Reportin g Limit	Upper Reporting Limit	Units
Au-AA23	Gold	Au	30 g	0.005	10.0	ppm
Au-AA24	Gold	Au	50g	0.005	10.0	ppm

Geochemical Procedure - ME-ICP41:

Trace Level Methods Using Conventional ICP-AES Analysis Sample Decomposition: Nitric Aqua Regia Digestion Analytical Method: Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP -AES)

A prepared sample (0.50 grams) is digested with aqua regia for at least one hour in a graphite heating block. After cooling, the resulting solution is diluted to 12.5 ml with demineralized water, mixed and analyzed by inductively coupled plasmaatomic emission spectrometry. The analytical results are corrected for inter-element spectral interferences.

Element	Symbol	Detection Limit	Upper Limit	Units
Aluminum*	Al	0.01	15	%
Antimony	Sb	2	10,000	ppm
Arsenic	As	2	10,000	ppm
Barium*	Ba	10	10,000	ppm
Beryllium*	Be	0.5	100	ppm
Bismuth	Bi	2	10,000	ppm
Boron*	В	10	10,000 ppm	ppm
Cadmium	Cd	0.5	500	ppm
Calcium*	Ca	0.01	15	%
Chromium*	Cr	1	10,000	ppm
Cobalt	Со	1	10,000	ppm
Copper	Cu	1	10,000	ppm
Gallium*	Ga	10	10,000	ppm
Iron	Fe	0.01	15	%
Lanthanum*	La	10	10,000	ppm
Lead	Pb	2	10,000	ppm
Magnesium*	Mg	0.01	15	%
Manganese	Mn	5	10,000	ppm
Mercury	Hg	1	10,000	ppm
Molybdenum	Мо	1	10,000	ppm

Element	Symbol	Detection Limit	Upper Limit	Units
Nickel	Ni	1	10,000	ppm
Phosphorus	Р	10	10,000	ppm
Potassium*	K	0.01	10	%
Scandium*	Sc	1	10,000	ppm
Silver	Ag	0.2	100	ppm
Sodium*	Na	0.01	10 %	%
Strontium*	Sr	1	10,000	ppm
Sulfur	S	0.01	10	%
Thallium*	TI	10	10,000	ppm
Titanium*	Ti	0.01	10	%
Tungsten*	W	10	10,000	ppm
Uranium	U	10	10,000	ppm
Vanadium	V	1	10,000	ppm
Zinc	Zn	2	10,000	ppm

Geochemical Procedure - ME-ICP41: Trace Level Methods Using Conventional ICP-AES Analysis (con't)

*Elements for which the digestion is possibly incomplete.

Assay Procedure – ME-AA46:

Evaluation of Ores and High Grade Materials by Aqua Regia Digestion – AAS Sample Decomposition: Aqua Regia Digestion Analytical Method: Atomic Absorption Spectroscopy (AAS)

A prepared sample (0.4 to 2.00 grams) is digested with concentrated nitric acid for one half hour. After cooling, hydrochloric acid is added to produce aqua regia and the mixture is then digested for an additional hour and a half. An ionization suppressant is added if molybdenum is to be measured. The resulting solution is diluted to volume (100 or 250 ml) with demineralized water, mixed and then analyzed by atomic absorption spectrometry against matrix-matched standards.

ALS Chemex Method Code	Element	Symbol	Detection Limit	Upper Limit	Units
As-AA46	Arsenic	As	0.01	30	%
Bi-AA46	Bismuth	Bi	0.001	30	%
Cd-AA46	Cadmium	Cd	0.001	10	%
Co-AA46	Cobalt	Со	0.01	50	%
Cu-AA46	Copper	Cu	0.01	50	%

Fe-AA46	Iron	Fe	0.01	30	%
Pb-AA46	Lead	Pb	0.01	30	%
Mo-AA46	Molybdenum	Мо	0.001	10	%
Mn-AA46	Manganese	Mn	0.01	50	%
Ni-AA46	Nickel	Ni	0.01	50	%
Ag-AA46	Silver	Ag	1	1500	ppm
Zn-AA46	Zinc	Zn	0.01	30	%

Fire Assay Procedure – Ag-GRA21, Ag-GRA22, Au-GRA21 & Au-GRA22:

Precious Metals Gravimetric Analysis Methods Sample Decomposition: Fire Assay Fusion Analytical Method: Gravimetric

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents in order to produce a lead button. The lead button containing the precious metals is cupelled to remove the lead. The remaining gold and silver bead is parted in dilute nitric acid, annealed and weighed as gold. Silver, if requested, is then determined by the difference in weights.

Method Code	Element	Sample Weight	Lower Reporting Limit	Upper Reporting Limit	Units
Ag-GRA21	Silver	30 grams	5	10,000	ppm
Ag-GRA22	Silver	50 grams	5	10,000	ppm
Au-GRA21	Gold	30 grams	0.05	1000	ppm
Au-GRA22	Gold	50 grams	0.05	1000	ppm

Quality control procedures during sample preparation and analysis:

ALS Chemex laboratories in North America are registered to ISO 9001:2000 for the "provision of assay and geochemical analytical services" by QMI Management Systems Registrars. In addition to ISO 9001:2000 registration, ALS Chemex has successfully completed the audit required for accreditation to ISO 17025 under CAN-P-1579 "Guidelines for Accreditation of Mineral Analysis Testing Laboratories", and is in the final stages of completing the accreditation process. CAN-P-1579 is the Amplification and Interpretation of CAN-P-4 "General Requirements for the Accreditation of Calibration and Testing Laboratories" (Standards Council of Canada ISO/IEC Guide 25:1997(E)). The scope of accreditation includes the following methods offered by ALS Chemex:

- Au by Fire Assay/AAS
- Au and Ag by Fire Assay/Gravimetric
- Au, Pt & Pd by Fire Assay/ICP
- Cu, Ni & Co by Sodium Peroxide Fusion/ICP
- Co & Ni by 4-Acid Digestion/AAS
- Ag, Cu, Pb & Zn by Aqua Regia Digestion/AAS
- Multi-Element package by Aqua Regia Digestion/ICP

The ISO 9001:2000 registration provides evidence of a quality management system covering all aspects of our organization. ISO 17025 accreditation provides specific assessment of the laboratory's analytical capabilities. The combination of the two ISO standards provides complete assurance regarding the quality of every aspect of ALS Chemex operations.

Quality assurance program:

The quality function is an integral part of all day-to-day activities at ALS Chemex and involves all levels of staff. Responsibilities are formally assigned for all aspects of the quality assurance program. As well, all senior staff are expected to actively participate in the quality program through regular Quality Assurance and Technical Meetings.

Sample Preparation Quality Specifications:

Standard specifications for sample preparation are clearly defined and monitored. The specifications are as follows:

- Crushing
  - > 70% of the crushed sample passes through a 2 mm screen
- Ringing
  - > 85% of the ring pulverized sample passes through a 75 micron screen (Tyler 200 mesh)
- Samples Received as Pulps

>80% of the sample passes through a 75 micron screen (Tyler 200 mesh)

These characteristics are measured and results reported and logged to verify the quality of sample preparation. ALS Chemex standard operating procedures require that at least one sample per day be taken from each sample preparation

station. Measurement of sample preparation quality allows the identification of equipment, operators and processes that are not operating within specifications.

QC results from all sample preparation laboratories are reported to the QC department monthly. The data is combined and reported to senior management. Review of the performance of each laboratory branch takes place as part of the quarterly Quality Assurance meeting.

#### Other Sample Preparation Specifications:

Sample preparation is a vital part of any analysis protocol. Many projects require sample preparation to other specifications, for instance > 90% of the crushed sample to pass through a 2 mm screen. These procedures can easily be accommodated and the Prep QC monitoring system is essential in ensuring the required specifications are routinely met.

Analytical Quality Control – Reference Materials, Blanks & Duplicates:

The Laboratory Information Management System (LIMS) inserts quality control samples (reference materials, blanks and duplicates) on each analytical run, based on the rack sizes associated with the method. The rack size is the number of sample including QC samples included in a batch. The blank is inserted at the beginning, standards are inserted at random intervals, and duplicates are analysed at the end of the batch. Quality control samples are inserted based on the following rack sizes specific to the method:

Rack Size	Methods	Quality Control Sample Allocation	
20	Specialty methods including specific gravity, bulk density, and acid insolubility	2 standards, 1 duplicate, 1 blank	
28	Specialty fire assay, assay- grade, umpire and concentrate methods	1 standard, 1 duplicate, 1 blank	
39	XRF methods	2 standards, 1 duplicate, 1 blank	
40	Regular AAS, ICP-AES and ICP-MS methods	2 standards, 1 duplicate, 1 blank	
84	Regular fire assay methods	2 standards, 3 duplicates, 1 blank	

The laboratory staff analyses quality control samples at least at the frequency specified above. If necessary, laboratory staff may include additional quality control samples above the minimum specifications.

All data gathered for quality control samples – blanks, duplicates and reference materials – are automatically captured, sorted and retained in the QC Database.

Quality Control Limits and Evaluation:

Quality Control Limits for reference materials and duplicate analyses are established according to the precision and accuracy requirements of the particular method. Data outside control limits are identified and investigated and require corrective actions to be taken. Quality control data is scrutinised at a number of levels. Each ALS analyst is responsible for ensuring the data submitted is within control specifications. In addition, there are a number of other checks.

Certificate Approval:

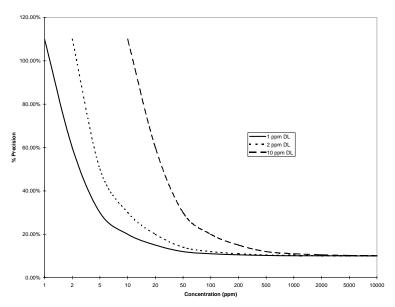
If any data for reference materials, duplicates, or blanks falls beyond the control limits established, it is automatically flagged red by the ALS computer system for serious failures, and yellow for borderline results. The Department Manager(s) conducting the final review of the Certificate is thus made aware that a problem may exist with the data set.

Precision Specifications and Definitions:

Most geochemical procedures are specified to have a precision of  $\pm$  10%, and assay procedures  $\pm$  5%. The precision of Au analyses is dominated by the sampling precision.

Precision can be expressed as a function of concentration:

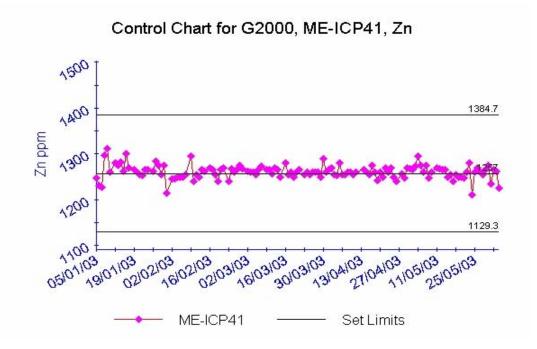
$$P_c = \left(\frac{DetectionLimit}{c} + P\right) \times 100\%$$


where  $P_c$ 

*P_c* - the precision at concentration c
c - concentration of the element

*P* - the "Precision Factor" of the element. This is the precision of the method at very high concentrations, i.e. 0.05 for 5%.

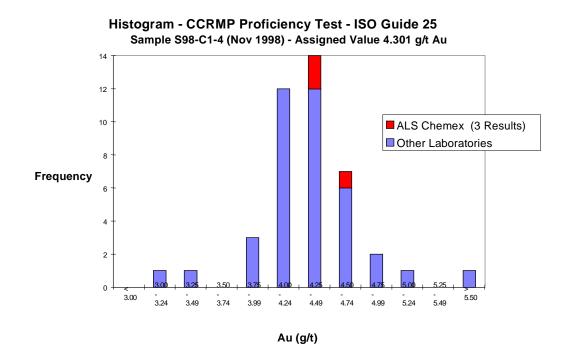
⁽M. Thompson, 1988. Variation of precision with concentration in an analytical system. Analyst, 113: 1579-1587.)


%Precision as a Function of Detection Limit



As an example, precision as a function of concentration (10% precision) is plotted for three different detection limits. The impact of detection limit on precision of results for low-level determinations can be dramatic.

Evaluation of Trends:


Control charts for frequently used method codes are generated and evaluated by the QA Department and distributed to Departmental managers for posting in the lab and review on a weekly basis. The control charts are evaluated to ensure internal specifications for precision and accuracy are met. The data is also reviewed for any long-term trends and drifts.



External Proficiency Tests:

Proficiency testing provides an independent assessment of laboratory performance by an outside agency. Test materials are regularly distributed to the participants, ideally four times a year, and results are processed by a central agency. The results are usually converted to some kind of score, such as Z-scores.

All ALS Chemex analytical facilities in North America participate in proficiency tests for the analytical procedures routinely done at each laboratory. ALS Chemex has participated in several rounds of proficiency tests organized by organizations such as Canadian Certified Reference Materials Projects, and Geostats as well as a number of independent studies organized by consultants for specific clients. ALS has also participated in several certification studies for new certified reference materials by CANMET and Rocklabs.



ALS Chemex has obtained the highest rating for the results submitted, with a few minor exceptions. Feedback from these studies is invaluable in ensuring our continuing accuracy and validation of method.

Quality Assurance Meetings:

A review of quality assurance issues is held regularly at Technical and Quality Assurance Meetings. The meetings cover such topics as:

- Results of internal round robin exchanges, external proficiency tests and performance evaluation samples
- Monitoring of control charts for reference materials
- Review of sample preparation quality control results from all branch offices
- Review of quality system failures
- Incidents raised by clients
- Results of internal quality audits
- Other quality assurance issues

The Quality Assurance Department and senior management participate in these meetings, either in person or by teleconference.

#### **APPENDIX VIII**

### ASSAY CERTIFICATES



### ALS Chemex **EXCELLENCE IN ANALYTICAL CHEMISTRY**

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 1 Finalized Date: 14-OCT-2005 Account: SPEGOL

CEI	RTIFICATE VA050848	95		SAMPLE PREPARATION	
			ALS CODE	DESCRIPTION	
29-SEP-2005.	samples submitted to our lab in to data associated with this c JIM MUNTZERT		WEI-21 LOG-24 LOG-22 CRU-QC CRU-31 SPL-21 PUL-31 SPL-21d PUL-31d	Received Sample Weight Pulp Login - Rcd w/o Barcode Sample login - Rcd w/o BarCode Crushing QC Test Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um Split sample - duplicate Pulverize Split - duplicate	

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Cu-AA46	Ore grade Cu - aqua regia/AA	AAS
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41	34 Element Aqua Regia ICP-AES	ICP-AES

To: SPECTRUMGOLD INC. ATTN: JOE PIEKENBROCK #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Read Dog



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 14-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
137187 137188		9.52 9.70	0.166 0.329	2.0 0.7	1.21 1.24	25 16	<10 <10	50 30	0.5 0.5	<2 <2	3.54 3.55	2.3 <0.5	22 21	16 16	557 108	6.03 5.63
137189		10.14	0.009	0.9	1.19	14	<10	20	0.6	<2	4.33	<0.5	22	18	259	6.58
137190		0.12	1.550	0.7	1.14	2460	30	20	<0.5	26	5.54	0.5	75	24	122	3.13
137191		8.66	0.007	0.9	1.26	27	<10	20	0.6	<2	3.75	<0.5	19	16	224	5.70
137192		10.62	0.018	0.6	1.41	13	<10	70	0.7	<2	5.25	<0.5	19	18	145	6.66
137193		9.90	0.016	0.7	1.48	14	<10	50	0.7	<2	3.87	<0.5	19	14	105	5.73
137194		8.70	0.012	0.7	1.26	21	<10	30	0.9	<2	3.64	<0.5	17	14	238	5.96
137195		8.48	0.013	1.5	1.31	31	<10	160	0.9	<2	4.49	<0.5 <0.5	19 18	13 12	326 313	6.12 5.91
137196		<0.02	0.015	1.5	1.24	25	<10	190	0.9	<2	4.34		-			
137197		10.20	0.009	0.5	1.57	11	<10	70	0.9	<2	4.77	<0.5	20	13	92	6.09
137198		9.32	0.020	0.5	1.48	8	<10	80	0.7	<2	4.65	<0.5	19	14 15	169 170	5.99 6.17
137199		8.54	0.011	0.6	1.54	14 16	<10 <10	70 70	0.6 <0.5	<2 <2	4.47 3.01	<0.5 <0.5	21 16	15	170	4.97
137200		10.62 9.14	0.005 0.008	0.5 0.4	1.24 1.28	10	40	60	<0.5	<2	2.76	<0.5	18	13	11	4.31
137201		-			1.20	27	<10	50	<0.5	<2	2.70	<0.5	18	10	152	3.74
137202		8.98 10.50	0.013 <0.005	0.6 0.4	1.49	18	<10 <10	50 60	<0.5 <0.5	<2	2.70	<0.5 <0.5	16	14	152	4.03
137203 137204		9.70	0.005	0.4	1.43	27	<10	70	~0.5 0.6	<2	2.93	<0.5	24	16	170	4.67
137205		8.50	< 0.005	0.3	1.39	8	<10	40	0.6	<2	3.21	<0.5	20	15	14	4.24
137206		8.50	< 0.005	0.4	1.20	11	<10	40	0.5	<2	2.74	<0.5	16	14	32	4.66
137207		0.12	0.044	73.3	0.34	72	<10	100	<0.5	10	0.28	0.7	2	16	>10000	1.44
137208		10.16	<0.005	0.7	1.31	7	<10	50	0.6	<2	3.41	<0.5	14	10	65	4.82
137209		10.94	0.011	<0.2	1.30	10	<10	30	0.7	<2	3.52	<0.5	16	13	57	5.77
137210		9.44	0.038	0.4	1.40	8	<10	50	0.7	<2	3.93	< 0.5	16	9	24	5.15
137211		10.06	0.017	0.3	1.31	7	<10	40	0.8	<2	3.71	<0.5	17	12	44	5.78
137212		10.04	0.163	0.7	1.50	9	<10	80	0.9	<2	3.90	<0.5	20	10	52	5.53
137213		10.02	0.064	0.7	1.23	28	<10	70	0.7	<2 <2	3.60 >25.0	0.5 <0.5	26 1	12 <1	29 1	5.04 0.05
137214		1.06	<0.005 0.025	2.8 0.6	0.04 1.50	<2 11	<10 <10	<10 50	<0.5 0.7	<2	3.48	<0.5 0.5	19	13	95	4.69
137215 137216		9.46 6.38	0.025	0.6	1.64	6	<10	30	0.7	<2	3.86	<0.5	17	13	137	5.08
137217		11.86	< 0.005	0.4	1.91	8	<10	50	<0.5	<2	2.42	<0.5	22	55	50	5.20
137218		<0.02	< 0.005	0.5	2.08	6	<10	60	<0.5	<2	2.64	<0.5	23	58	52	5.54
137219		10.16	0.030	1.5	1.30	12	<10	60	0.6	<2	3.94	0.9	17	11	291	4.24
137220		9.92	0.040	3.7	1.52	8	<10	70	0.8	<2	4.18	0.6	20	12	257	4.94
137221		9.28	0.016	1.1	1.48	9	<10	80	0.6	<2	3.68	0.8	17	11	239	4.60
137222		10.68	0.027	0.3	1.75	15	<10	70	0.9	<2	3.03	< 0.5	19	11	21	5.55
137223		9.88	0.033	0.5	1.75	22	<10	60	0.7	<2	3.36	1.2	23	14	47	5.41
137224		9.20	0.060	1.1	1.53	19	<10	80	0.6	<2	3.74 4.00	0.5 <0.5	19 18	10 10	194 399	4.92 4.73
137225		9.96	0.030	1.0	1.42	10 <2	<10 <10	80 10	0.6 <0.5	<2 <2	4.00 >25.0	<0.5 <0.5	18	10 <1	399 1	4.73 0.06
137226		1.32	<0.005	3.3	0.04	<2	<10	10	×0.5	~~	~20.0	<b>~0.0</b>	1	~ 1	1	0.00



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

#### To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 14-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
137187		10	<1	0.26	10	1.38	973	1	0.02	11	2440	14	0.93	<2	7	285
137188		10	<1	0.20	10	1.40	969	<1	0.03	10	2290	5	0.35	<2	7	317
137189		10	<1	0.26	10	1.46	1010	<1	0.02	12	2400	11	0.48	<2	9	266
137190		<10	<1	0.05	10	0.27	771	8	0.08	28	1120	12	0.63	6	2	98
137191		10	<1	0.33	10	1.56	918	1	0.05	11	2330	6	0.30	<2	8	279
137192		10	<1	0.31	10	1.90	1165	1	0.04	11	2420	5	0.13	<2	11	500
137193		10	<1	0.40	10	1.85	1035	1	0.07	13	2750	9	0.31	<2	8	361
137194		10	<1	0.15	10	1.43	1075	1	0.05	9	2540	8	0.55	<2	9	345
137195		10	<1	0.09	10	1.68	1305	1	0.05	10	2610	37	0.60	<2	9 8	830
137196		10	<1	0.09	10	1.60	1245	1	0.05	10	2470	36	0.59	<2	_	921
137197		10	<1	0.23	10	2.04	1265	<1	0.06	12	2820	5	0.07	<2	14	453
137198		10	<1	0.21	10	1.96	1100	<1	0.05	10	2570	3	0.05	<2	12	497
137199		10	1	0.24	10	1.99	1050	<1	0.05	12	2570	5	0.04	<2	11	448
137200		10	<1	0.23	10	1.34	746	<1	0.05	11	2520	5	0.04	<2	5	633
137201		10	1	0.22	10	1.52	795	<1	0.05	11	2150	2	0.03	<2	4	455
137202		10	<1	0.43	10	1.68	863	<1	0.04	14	2250	3	0.03	<2	4	534
137203		10	<1	0.33	10	1.56	829	<1	0.05	12	2180	3	0.02	2	5	500
137204		10	<1	0.38	10	1.66	1030	1	0.05	11	2350	29	1.22	<2	6	462
137205		10	<1	0.42	10	1.56	989	<1	0.05	10	2190	29	0.50	<2	6	377
137206		10	<1	0.28	10	1.31	827	<1	0.05	9	2240	27	0.18	<2	4	407
137207		<10	<1	0.21	<10	0.15	227	416	0.04	4	170	156	0.60	156	2	29
137208		10	1	0.34	10	1.42	917	2	0.05	10	2210	18	0.21	<2	5	502
137209		10	1	0.36	10	1.52	1005	1	0.04	11	2530	5	0.20	<2	5	391
137210		10	<1	0.49	10	1.64	1070	2	0.05	7	2340	2	0.27	<2	6 7	443
137211		10	1	0.50	10	1.64	1105	1	0.04	10	2680	7	0.21	<2	-	426
137212		10	<1	0.86	10	1.90	1145	1	0.05	9	2340	9	0.48	<2	9	502
137213		10	<1	0.75	10	1.46	960	<1	0.04	9	2310	17	1.59	<2	5	350
137214		<10	<1	0.01	<10	2.17	27	<1	0.02	<1	60	<2	< 0.01	<2	<1	4920
137215		10	<1	0.80	10	1.75	1035	<1	0.04	9	2280	12	0.42	<2	5	330
137216		10	1	0.46	10	1.78	980	1	0.04	11	2410	8	0.12	<2	5	299
137217		10	<1	0.08	10	2.01	787	1	0.11	21	1250	8	0.17	<2	5	179
137218		10	<1	0.10	10	2.15	837	1	0.14	16	1320	9	0.18	<2	6	201
137219		10	<1	0.47	10	1.48	898	1	0.04	7	2120	23	0.59	<2	5	392
137220		10	<1	0.85	10	1.74	1065	1	0.05	10	2280	18	0.68	<2	6 6	443 471
137221		10	<1	0.75	10	1.68	961	1	0.05	9	2110	16	0.66	<2		
137222		10	<1	1.09	10	1.98	1055	<1	0.06	11	2440	8	0.36	<2	7	345
137223		10	1	1.06	10	2.01	1095	<1	0.05	9	2390	17	0.78	<2	8	308
137224		10	<1	0.77	10	1.79	1035	1	0.04	8	2370	17	0.64	<2	7	424
137225		10	<1	0.66	10	1.72	1030	1	0.04	10	2320	26	0.66	<2 <2	6 <1	452 5430
137226		<10	<1	0.01	<10	2.12	25	<1	0.02	<1	40	<2	<0.01	<2	<1	5430



**EXCELLENCE IN ANALYTICAL CHEMISTRY** ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 14-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Cu-AA46 Cu % 0.01	
137187		0.19	<10	<10	258	<10	78		
137188		0.17	<10	<10	249	<10	74		
137189		0.16	<10	<10	291	<10	76		
137190		0.04	<10	<10	23	10	62		
137191		0.15	<10	<10	259	<10	72		
137192		0.12	<10	<10	320	<10	81		
137193		0.14	<10	<10	255	<10	88		
137194		0.16	<10	<10	259	<10	69		
137195		0.10	<10	<10	268	<10	71		
137196	0	0.11	<10	<10	258	<10	69		
137197		0.08	<10	<10	294	<10	88		
137198		0.10	<10	<10	281	<10	73		
137199		0.17	<10	<10	291	<10	87		
137200		0.18	<10	<10	219	<10	68 76		
137201		0.18	<10	<10	164	<10			
137202		0.19	<10	<10	146	<10	87		
137203		0.20	<10	<10	160	<10	83		
137204		0.18	<10	<10	167	<10	90		
137205		0.17	<10	<10	165	<10	80 66		
137206		0.15	<10	<10	186	<10			
137207		0.05	<10	<10	10	<10	83	1.10	
137208		0.15	<10	<10	199	<10	73		
137209		0.15	<10	<10	241	<10	79		
137210		0.14	<10	<10	222	<10	81		
137211		0.13	<10	<10	252	<10	79		
137212		0.14	<10	<10	245	<10	90		
137213		0.14	<10	<10	192	<10	69		
137214		<0.01	<10	<10	<1	<10	<2		
137215		0.15	<10	<10	199	<10	81		
137216		0.17	<10	<10	211	<10	84		
137217		0.36	<10	<10	111	<10	79		
137218		0.42	<10	<10	125	<10	85		
137219		0.15	<10	<10	169	<10	70		
137220		0.15	<10	<10	209	<10	88		
137221		0.14	<10	<10	200	<10	81		
137222		0.18	<10	<10	230	<10	96		
137223		0.17	<10	<10	220	<10	104		
137224		0.18	<10	<10	216	<10	96		
137225		0.16	<10	<10	210	<10	91		
137226		<0.01	<10	<10	<1	<10	2		



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 14-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
137227 137228 137229		10.22 8.28 6.40	0.024 0.062 0.016	0.6 0.3 0.6	1.69 1.72 1.75	17 22 15	<10 <10 <10	50 60 60	0.8 0.9 1.4	<2 <2 <2	4.47 4.92 4.67	<0.5 <0.5 <0.5	21 20 19	13 13 12	190 130 168	5.55 5.82 5.60



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 14-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
Sample Description	LOR	10 10 10 10	1 <1 1	0.01	10 10 10 10	0.01 2.13 2.04 2.06	5 1385 1460 2120	1 2 3 1	0.01	1 12 10 12	10 2580 2590 2460	2 8 11 5	0.01	2 <2 <2 <2	1 9 8 15	1 374 464 379



137227

137228

137229

## **ALS Chemex**

**EXCELLENCE IN ANALYTICAL CHEMISTRY** ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 14-OCT-2005 Account: SPEGOL

CERTIFICATE OF ANALYSIS VA05084895

Project: Galore Creek

#### ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 Cu-AA46 Method w Zn Cu υ V Ti Τł Analyte % Units % ppm ppm ppm ppm ppm Sample Description LOR 10 2 0.01 0.01 10 10 1 132 <10 <10 261 <10 0.21 274 <10 109 0.23 <10 <10 0.21 <10 <10 265 <10 102



### ALS Chemex **EXCELLENCE IN ANALYTICAL CHEMISTRY**

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 1 Finalized Date: 14-OCT-2005 Account: SPEGOL

ALS CODE WEI-21 LOG-24	DESCRIPTION Received Sample Weight
LOG-22 CRU-QC CRU-31 SPL-21 PUL-31 SPL-21d	Pulp Login - Rcd w/o Barcode Sample login - Rcd w/o BarCode Crushing QC Test Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um Split sample - duplicate
	CRU-31 SPL-21

	ANALYTICAL PROCEDURI	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Cu-AA46	Ore grade Cu - aqua regia/AA	AAS
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41	34 Element Aqua Regia ICP-AES	ICP-AES

To: SPECTRUMGOLD INC. ATTN: JOE PIEKENBROCK #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Rest Com



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 14-OCT-2005 Account: SPEGOL

CERTIFICATE OF ANALYSIS VA05085512

Project: Galore Creek

								L	<u> </u>		CATEC			VAUSU	00012	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
137139 137140 137141 137142 137143	<u></u>	8.38 8.86 9.38 10.74 8.90	0.007 0.009 0.012 0.005 <0.005	<0.2 <0.2 0.2 <0.2 <0.2 <0.2	1.84 1.64 1.81 1.72 1.85	23 30 30 32 29	<10 <10 <10 <10 <10	130 230 160 200 210	0.6 0.5 0.5 0.5 0.6	2 <2 <2 3 2	4.19 3.67 4.29 4.18 4.88	<0.5 <0.5 <0.5 <0.5 <0.5	20 18 21 21 21 21	27 20 13 17 12	66 42 65 8 11	5.22 4.85 5.03 5.82 5.50
137144 137145 137146 137147 137148		0.12 9.86 10.14 1.30 9.66	0.042 0.013 0.094 <0.005 0.020	74.8 0.2 0.9 <0.2 0.3	0.36 1.90 1.64 0.08 1.82	73 16 43 5 18	<10 <10 <10 <10 <10 <10	100 120 80 10 120	<0.5 0.9 0.7 <0.5 0.6	4 2 2 <2 <2 <2	0.30 5.69 4.87 >25.0 5.81	0.9 <0.5 0.6 <0.5 <0.5	2 21 23 <1 20	12 15 12 <1 14	>10000 506 441 14 45	1.48 5.99 5.64 0.11 6.09
137149 137150 137151 137152 137153		9.10 10.44 9.04 11.38 10.84	0.011 0.005 <0.005 <0.005 <0.005	<0.2 0.3 <0.2 <0.2 <0.2 <0.2	1.86 1.76 1.77 1.76 2.02	20 17 17 16 18	<10 <10 <10 <10 <10	170 170 170 170 170 190	0.6 0.5 <0.5 0.5 0.5	<2 <2 <2 <2 <2 2	5.31 4.54 3.75 4.10 4.04	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	22 23 24 23 25	14 13 18 14 16	18 56 6 7 4	5.70 6.24 6.43 6.42 5.57
137154 137155 137156 137157 137157 137158		10.06 10.14 11.24 12.28 0.08	<0.005 0.013 0.006 0.005 <0.005	<0.2 <0.2 <0.2 <0.2 0.2	1.79 1.96 2.09 2.12 2.00	22 20 9 20 21	<10 <10 <10 <10 <10	190 220 260 170 160	<0.5 0.6 0.8 0.8 0.7	<2 2 <2 <2 <2 <2	3.05 4.12 5.33 5.14 4.94	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	22 21 23 21 21	12 15 12 14 12	7 27 56 45 42	5.44 5.34 6.05 5.65 5.47
137159 137160 137161 137162 137163		5.80 9.98 10.14 10.40 0.08	0.007 <0.005 0.005 <0.005 <0.005	3.7 <0.2 0.3 <0.2 <0.2	1.97 1.80 1.83 1.90 1.98	26 27 27 27 30	10 <10 <10 <10 <10	180 150 170 170 170	0.6 0.6 0.6 0.6 0.7	2 <2 2 2 2	3.95 4.71 4.02 3.71 3.84	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	21 22 21 21 21 21	12 16 12 11 14	560 16 64 13 19	4.75 6.47 5.85 5.38 5.45
137164 137165 137166 137167 137167		10.66 9.94 9.38 9.06 9.78	<0.005 <0.005 0.006 0.010 0.009	<0.2 0.2 0.2 0.2 <0.2	1.77 1.94 1.88 1.86 1.82	28 31 31 24 22	<10 10 <10 <10 <10	190 210 160 160 190	0.5 0.5 0.6 0.7	<2 <2 2 <2 <2 <2	3.59 3.90 3.51 3.78 4.01	<0.5 <0.5 <0.5 <0.5 <0.5	22 23 22 22 19	11 14 14 15 11	11 52 100 123 15	5.38 5.12 6.19 5.62 4.54
137169 137170 137171 137172 137173		9.80 12.02 9.98 1.66 9.86	0.020 0.039 0.006 <0.005 0.006	0.2 <0.2 <0.2 <0.2 0.4	1.88 1.78 1.72 0.05 1.75	18 12 14 7 10	<10 <10 <10 <10 20	100 100 130 <10 100	0.9 0.6 0.5 <0.5 0.7	<2 2 <2 <2 <2 <2	4.31 4.78 3.40 >25.0 4.57	0.5 <0.5 <0.5 <0.5 <0.5	22 17 18 <1 19	19 15 16 <1 15	232 63 160 1 403	5.39 5.73 5.40 0.07 5.57
137174 137175 137176 137177 137178		11.38 9.50 10.06 9.68 0.12	0.033 0.007 0.012 0.011 0.019	<0.2 1.0 <0.2 0.3 3.4	1.72 1.62 1.86 2.03 0.33	7 14 14 10 9	<10 <10 <10 <10 <10	70 60 50 50 110	0.6 0.7 1.0 1.1 <0.5	<2 2 <2 <2 <2 <2	5.43 4.42 5.14 5.02 1.10	<0.5 <0.5 <0.5 <0.5 <0.5	19 19 20 20 2	14 17 20 18 4	156 824 124 268 4500	5.82 6.28 6.75 5.96 1.15



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 14-OCT-2005 Account: SPEGOL

Project: Galore Creek

									C	ERTIFI	CATE C	of Anai	YSIS	VA050	85512	
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
137139 137140 137141 137142		10 10 10 10	1 <1 <1 <1	0.49 0.78 0.74 0.76	10 10 10 10	2.25 1.94 2.23 2.11	984 856 1010 973	<1 <1 <1 <1	0.07 0.07 0.05 0.07	26 11 13 12	2700 2860 3070 3210	8 15 6 9	0.04 0.02 0.01 0.01	3 3 <2 3	10 9 10 10	305 353 364 352
137143 137144 137145 137146		10 <10 10 10	<1 <1 <1 <1	0.45 0.22 0.69 0.43	10 <10 10 10	2.57 0.15 2.68 2.02	1130 233 1320 1450	<1 455 <1 <1	0.05 0.04 0.07 0.06	16 3 17 11	2860 150 2720 3010	6 156 58 116	0.01 0.62 0.06 2.76	<2 159 <2 <2	13 2 18 14	306 31 276 237
137147 137148 137149 137150		<10 10 10 10	<1 <1 <1 <1	0.02 0.32 0.36 0.63	<10 10 10 10	2.06 2.52 2.52 2.29	51 1355 1385 1180	<1 <1 <1 <1	0.02 0.06 0.07 0.06	2 16 14 12	80 2830 2980 3260	2 20 6 6	<0.01 0.03 0.01 0.01	<2 <2 <2 <2 <2	1 15 13 10	5820 291 300 314
137151 137152 137153		10 10 10	1 <1 <1	0.87 1.10 1.28	10 10 10	2.19 2.32 2.51	1085 1150 1140	<1 <1 <1	0.07 0.07 0.08	14 16 15	2710 2650 2530	3 6 4 9	0.01 0.01 0.01 0.01	2 <2 4 <2	9 9 9 7	368 271 340 397
137154 137155 137156 137157		10 10 10 10 10	<1 1 <1 <1 <1	1.10 1.28 1.12 0.92 0.88	10 10 10 10 10	2.04 2.30 2.79 2.69 2.58	936 1175 1720 1465 1395	<1 <1 <1 <1 <1	0.06 0.07 0.06 0.06 0.05	13 13 12 14 12	2320 2440 2560 2590 2550	9 8 10 9 11	0.01 0.02 0.01 0.01	<2 <2 <2 <2 <2 2	7 11 16 16 14	430 370 360 341
137158 137159 137160 137161 137162		10 10 10 10 10	<1 <1 <1 <1 <1	1.10 0.89 1.16 1.13	10 10 10 10 10	2.17 2.17 2.20 2.22	945 1150 987 967	<1 <1 <1 <1 <1	0.08 0.07 0.07 0.07	12 15 12 12 12	2700 2890 3210 2870	14 5 5 6	0.03 0.01 0.01 0.01	3 <2 3 <2	9 13 9 10	457 362 352 413
137163 137164 137165 137166		10 10 10 10 10	1 1 <1 <1	1.15 1.14 1.19 1.11	10 10 10 10	2.26 2.08 2.17 2.13	985 880 900 926	<1 <1 <1 <1	0.08 0.07 0.07 0.07	13 12 9 15	2970 3050 3070 3300	11 <2 5 4	0.01 0.01 0.01 0.01	2 <2 <2 5	10 8 9 8	436 383 413 451
137167 137168 137169 137170		10 10 10 10	1 <1 <1 <1 <1	0.98 0.90 0.66 0.70	10 10 10 10	2.01 2.15 2.27 2.15	927 973 1155 1120	<1 <1 <1 <1 <1	0.07 0.06 0.06 0.06	13 12 12 12 12	3130 2870 2380 2470	3 <2 6 10	0.02 0.01 0.25 0.06	<2 <2 <2 <2 <2	8 10 13 11	577 475 280 372
137171 137172 137173		10 <10 10	<1 <1 1	0.69 0.01 0.66	10 <10 10	1.80 1.90 2.04	866 31 1000	<1 <1 <1	0.07 0.01 0.05	13 2 13 12	2540 50 2040 2700	<2 2 8 3	0.02 <0.01 0.05 0.03	<2 <2 2 <2	9 <1 10 12	473 5350 431 537
137174 137175 137176 137177 137177 137178		10 10 10 10 <10	<1 <1 1 <1 <1	0.47 0.40 0.36 0.37 0.14	10 10 10 10 <10	2.22 1.99 2.43 2.59 0.08	1100 1055 1425 1580 231	<1 <1 <1 <1 401	0.05 0.05 0.04 0.05 0.02	12 14 15 12 1	2490 2400 2030 320	16 2 10 7	0.03 0.09 0.03 0.06 0.60	<2 <2 <2 3	11 15 20 <1	380 538 290 148



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 14-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Cu-AA46 Cu % 0.01
137139 137140		0.20 0.21	<10 <10	<10 <10	218 217	<10 <10	73 66	
137141		0.22	<10	<10	223	<10	74	
137142 137143		0.23 0.24	<10 <10	<10 <10	257 270	<10 <10	70 94	
137144		0.05	<10	<10	11	<10	74	1.08
137145		0.23 0.18	<10 <10	<10 <10	313 238	<10 <10	92 65	
137146 137147		0.18	<10 <10	<10	230 6	<10	3	
137148		0.20	<10	<10	303	<10	68	
137149		0.20	<10	<10	282	<10	91 75	
137150 137151		0.21 0.24	<10 <10	<10 <10	285 288	<10 <10	65	
137152		0.24	<10	<10	291	<10	73	
137153		0.24	<10	<10	258	<10	78	
137154		0.24	<10	<10	242	<10	67	
137155		0.25	<10	<10	245	<10	82	
137156 137157		0.23 0.24	<10 <10	<10 <10	296 287	<10 <10	96 90	
137157		0.24	<10 <10	<10	275	<10	87	
137159		0.25	<10	<10	224	<10	83	
137160		0.25	<10	<10	308	<10	72	
137161 137162		0.23 0.25	<10 <10	<10 <10	263 258	<10 <10	81 87	
137162		0.25	<10	<10	260	<10	88	
137164		0.23	<10	<10	255	<10	67	
137165		0.25	<10	<10	249	<10	70	
137166		0.24	<10	<10	287 267	<10 <10	78 78	
137167 137168		0.23 0.22	<10 <10	<10 <10	207	<10 <10	82	
137169		0.23	<10	<10	264	<10	90	
137170		0.21	<10	<10	251	<10	74 70	
137171		0.25 <0.01	<10 <10	<10 <10	260 3	<10 <10	70 <2	
137172 137173		<0.01 0.24	<10 <10	<10 <10	276	<10	78	
137174		0.18	<10	<10	295	<10	86	
137175		0.15	<10	<10	298	<10	80 96	
137176		0.13 0.15	<10 <10	<10 <10	338 307	<10 <10	96 116	
137177 137178		0.15	<10 <10	<10	7	<10 <10	18	
					-			



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 14-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
137179		9.42	0.008	<0.2	1.80	7	<10	70	0.8	2	5.28	<0.5	18	24	58	5.97
137180		7.78	<0.005	<0.2	1.48	12	<10	70	0.6	<2	5.12	<0.5	17	21	185	6.60
137181		10.38	0.018	0.7	1.56	18	<10	80	0.7	<2	5.32	0.5	19	18	673	6.56
137182		1.12	<0.005	<0.2	0.11	5	<10	10	<0.5	<2	>25.0	<0.5	<1	1	11	0.20
137183		11.56	0.008	<0.2	1.61	17	<10	90	0.6	<2	5.21	<0.5	21	20	23	6.77
137184		10.20	0.057	0.3	1.70	32	<10	70	0.6	3	5.78	<0.5	23	19	257	6.92
137185		8.12	0.022	<0.2	1.41	13	<10	80	0.6	<2	4.86	<0.5	19	25	131	7.90
137186		10.50	0.085	4.0	1.58	24	<10	70	0.7	<2	4.45	0.9	20	18	1125	7.71



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 14-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
137179	Î	10	1	0.28	10	2.32	1200	<1	0.05	16	2170	3	0.02	<2	13	503
137180		10	<1	0.30	10	1.80	1025	<1	0.06	15	2400	8	0.03	3	10	359
137181		10	<1	0.38	10	1.97	1220	<1	0.05	11	2400	23	0.55	<2	13	504
137182		<10	<1	0.02	<10	1.74	63	<1	0.01	2	130	<2	<0.01	<2	1	4930
137183		10	<1	0.27	10	2.02	1240	<1	0.05	17	2430	3	0.02	4	11	481
137184		10	<1	0.38	10	2.16	1850	<1	0.05	13	2270	24	1.36	3	14	542
137185		10	<1	0.27	10	1.70	1420	<1	0.06	14	2280	10	0.22	<2	11	564
137186		10	<1	0.26	10	1.87	1300	<1	0.05	13	2380	28	1.14	<2	10	428



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 14-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Cu-AA46 Cu % 0.01
137179	Ī	0.18	<10	<10	305	<10	85	
137180		0.21	<10	<10	318	<10	66	
137181		0.18	<10	<10	311	<10	73	
137182		0.01	<10	<10	10	<10	3	
137183		0.21	<10	<10	318	<10	70	
137184		0.19	<10	<10	312	<10	86	
137185		0.19	<10	<10	387	<10	78	
137186		0.20	<10	<10	337	<10	89	



Project: Galore Creek

JACK COTE JOE PIEKENBROCK

P.O. No.:

6-OCT-2005.

al la da a

**ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY** 

CERTIFICATE VA05086830

This report is for 48 Drill Core samples submitted to our lab in Vancouver, BC, Canada on

JIM MUNTZERT

SCOTT PETSEL

The following have access to data associated with this certificate:

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

#### To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 1 Finalized Date: 17-OCT-2005 Account: SPEGOL

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-24	Pulp Login - Rcd w/o Barcode
LOG-22	Sample login - Rcd w/o BarCode
CRU-31	Fine crushing - 70% <2mm
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% <75 um
SPL-21d	Split sample - duplicate
PUL-31d	Pulverize Split - duplicate

	ANALYTICAL PROCEDURI	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Cu-AA46	Ore grade Cu - aqua regia/AA	AAS
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41	34 Element Aqua Regia ICP-AES	ICP-AES

To: SPECTRUMGOLD INC. ATTN: JOE PIEKENBROCK #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Please Com

WEI-21

10.10

8.44

8.40

7.86

0.10

133988

133989

133990

133991

133992

0.154

0.035

0.108

0.935

0.041

10.4

3.3

5.3

24.3

68.4

0.83

0.75

0.90

0.82

0.34

102

31

72

140

77

<10

10

<10

<10

<10

20

30

20

10

100

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

Method

Au-AA23

ALS Chemex

**EXCELLENCE IN ANALYTICAL CHEMISTRY** ALS Canada Ltd

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ME-ICP41

ME-ICP41

ME-ICP41

ME-ICP41

ME-ICP41

To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 17-OCT-2005 Account: SPEGOL

ME-ICP41

ME-ICP41

Fe

%

0.01

4.83

4.83

4.64

4.68

4.72

4.04

4.12

4.61

3.62

4.78

5.13

5 18

0.07

4.63

2.69

4.75

5.10

4.68

1.40

3.07

3.19

4.78

4.82

4.49

4.46

2.51

5.21

5.48

5.42

4.59

3.53

1.20

1.58

2.75

0.03

4.30

4.15

5.44

7.36

1.39

Project: Galore Creek

ME-ICP41

Сг Cu Bí Ca Cd Co AI в Ba Re Analyte Recvd Wt. Au Ag As % ppm % ppm ppm ppm ppm Units kg ppm ppm ppm ppm ppm ppm Sample Description LOR 0.01 0.5 0.005 0.2 0.01 2 10 10 0.5 2 1 1 1 0.02 23 10 <2 5.67 3.1 24 8 583 2.18 150 0.8 133953 10.30 0.041 1.8 22 2 250 10.00 0.027 0.9 2.20 33 10 150 0.8 <2 4.37 1.0 133954 <2 5.22 1.8 19 2 193 24 10 80 0.8 133955 8.40 0.014 1.0 2.01 22 10 30 0.6 2 6.02 3.3 13 8 1100 133956 10.74 0.063 2.4 1.73 14 <10 40 0.6 2 5.94 31 11 3 1000 0.067 2.3 1.70 133957 < 0.02 10 30 0.6 3 6.38 1.4 14 9 477 1.54 48 10.50 0.064 3.5 133958 27 2 1090 4.82 0.118 3.5 1.40 156 10 20 0.5 <2 5.57 7.3 133959 <2 360 10 20 0.6 6.65 5.8 15 8 0.052 2.5 1.58 51 133960 4.82 243 20 10 20 <2 7.68 2.4 9 2 133961 11.12 0.024 1.5 1.37 0.6 10 30 0.5 2 6.13 5.0 18 9 522 9.72 0.030 2.2 1.66 22 133962 22 773 32 10 20 < 0.5 <2 6.78 2.0 2 0.043 2.8 1.58 10.84 133963 <0.5 <2 2.7 23 9 898 10.58 0.036 2.7 1.72 29 10 20 5.74 133964 <2 <1 0.04 3 <10 10 < 0.5 >25.0 < 0.5 1 14 1.26 < 0.005 4.1 133965 20 10 20 <0.5 <2 6.32 9.7 20 7 543 1.80 133966 11.60 0.063 2.1 10 572 0.078 4.2 0.95 23 10 20 < 0.5 4 6.19 4.6 6 9.84 133967 17 2370 19 10 30 3 6.65 5.5 8 0.237 5.1 1.81 < 0.5133968 9.46 22 <10 20 < 0.5 2 5.97 10.8 29 3 2230 8.54 0.237 4.4 1.81 133969 <2 7.36 8.9 13 1520 0.118 3.0 2.18 16 10 40 < 0.5 4 133970 7.42 21 100 <0.5 8 0.30 0.8 3 >10000 68.3 0.34 76 <10 133971 0.10 0.044 1.76 16 10 40 < 0.5 <2 5.96 3.0 5 2 263 7.62 0.036 1.8 133972 21 10 30 <0.5 2 5.37 6.4 23 7 1965 1.36 6.68 0.181 4.9 133973 25 10 20 <0.5 5 4.91 7.5 22 3 2230 10.32 0.184 7.4 1.45 133974 27 10 20 <0.5 6 4.98 7.4 22 10 2280 0.188 7.4 1.45 0.08 133975 10 5.69 7.8 20 2 1850 1.08 28 10 20 < 0.5 133976 10.86 0.129 8.0 1.00 30 10 20 < 0.5 3 5.77 5.6 27 9 1850 0.191 6.1 133977 10.44 <2 5.34 2.4 19 2 922 0.59 23 10 20 < 0.5 0.123 3.4 133978 9.88 2 5.28 5.5 41 9 1385 133979 10.60 0.147 4.1 0.90 66 10 20 < 0.5 <2 5.5 46 3 1145 0.066 1.04 64 <10 20 <0.5 4.69 2.4 133980 10.90 67 20 <2 7.5 53 13 2500 <10 < 0.5 4.31 133981 11.04 0.093 3.1 0.97 0.081 0.81 84 <10 20 < 0.5 2 4.06 5.8 61 3 1300 10.48 2.3 133982 78 72 2 4.12 3.0 11 4670 0.144 5.3 0.78 <10 30 < 0.5 8.46 133983 2 357 9.94 0.168 2.1 0.53 19 10 30 < 0.5 <2 3.40 0.7 18 133984 0.025 2.9 0.64 16 10 30 <0.5 2 3.25 0.8 19 10 971 10.16 133985 50 2 27 1090 20 <0.5 3.60 0.5 133986 7.86 0.025 3.5 0.91 19 1 7 <10 10 < 0.5 <2 >25.0 <0.5 1 1 15 1.26 < 0.005 4.7 0.03 133987

ME-ICP41

**CERTIFICATE OF ANALYSIS** 

ME-ICP41

ME-ICP41

ME-ICP41

4.55

3.61

3.75

3.56

0.29

<2

<2

3

10

8

9.0

1.5

3.3

27.3

0.9

116

45

47

72

2

2

12

2

20

21

6530

980

1800

9250

>10000

VA05086830

ME-ICP41

**EXCELLENCE IN ANALYTICAL CHEMISTRY** ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

#### To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 17-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
133953		10	<1	0.99	<10	1.55	2470	3	0.03	5	1800	10	2.06	<2	14	825
133954		10	<1	0.90	<10	1.59	1915	3	0.03	6	1710	20	1.93	<2	14	540
133955		10	<1	0.95	<10	1.57	1850	8	0.04	5	1650	30	3.80	<2	12	791
133956		10	<1	1.69	10	1.68	3410	1	0.03	3	1800	9	3.62	<2	14	1870
133957		10	<1	1.69	10	1.66	3360	2	0.03	4	1770	12	3.49	<2	14	1915
133958		10	<1	1.45	10	1.37	2870	1	0.02	6	1800	9	3.53	<2	11	1820
133959		10	<1	1.28	20	1.14	1785	15	0.02	5	2070	17	6.18	<2	5	1885
133960		10	<1	1.34	<10	1.30	2080	23	0.02	1	1640	34	5.74	<2	11	2130
133961		10	<1	1.31	10	1.29	2770	4	0.02	1	1750	9	4.33	<2 <2	12 10	2120 2080
133962		10	<1	1.14	10	1.26	2460	24	0.02	4	1680	20	4.91			
133963		10	<1	1.36	<10	1.37	2450	5	0.02	2	1740	17	6.54	<2	8	2210
133964		10	<1	1.71	10	1.48	2940	17	0.02	3	1770	12	5.15	<2	12	1880
133965		<10	<1	0.01	<10	1.91	32	<1	0.01	<1	50	3	< 0.01	<2	1	5150
133966		10	<1	1.59	10	1.55	3040	1	0.02	3	1710	33	4.89	<2	12	2090 2260
133967		10	<1	0.82	10	0.66	1350	18	0.02	5	2200	43	5.29	<2	6	
133968		10	<1	1.71	10	1.72	3170	<1	0.03	3	2220	38	4.42	<2	11	2010
133969		10	<1	1.74	10	1.57	2650	7	0.02	6	2100	65	5.79	<2	12	1955
133970		10	<1	2.10	10	1.93	3900	2	0.03	1	1910	29	3.86	<2	16	2090
133971		<10	<1	0.21	<10	0.14	224	435	0.04	3	160	150	0.62	149	2 10	32 2280
133972		10	1	1.16	10	1.09	2740	1	0.04	3	1530	27	2.73	<2		
133973		10	<1	0.94	10	0.86	2110	104	0.02	2	1550	49	3.73	<2	6	2100
133974		10	<1	1.48	10	1.43	2690	6	0.02	6	1990	226	5.75	<2 2	12 12	1955 1915
133975		10	<1	1.48	10	1.45	2710	5	0.02	5	2030	233	5.87 6.20	<2	12	2180
133976		10	<1	1.06	10	1.24	2300	14	0.02	1	1940	235 57	6.78	<2	11	2100
133977		10	<1	0.97	<10	1.24	2250	61	0.02	6	1920					
133978		<10	<1	0.57	<10	0.62	1265	33	0.01	2	1590	39	5.23	<2	5	2250
133979		<10	<1	0.88	<10	1.18	2320	14	0.02	4	1900	83	7.04	<2	8	1865
133980		<10	<1	1.04	<10	1.36	2530	21	0.02	4	1840	27	6.66	<2 <2	13 10	1825 1700
133981		10	<1	0.92	<10	1.29	2610	6	0.02	3 3	1930	42 35	5.53 4.68	<2 <2	10	1780
133982		<10	<1	0.74	<10	0.98	2150	2	0.02		1970					
133983		<10	<1	0.78	10	1.09	2210	<1	0.01	4	2290	85	3.16	<2	11	2110
133984		<10	<1	0.46	10	0.25	674	1	0.02	1	920	35	2.67	<2	2	2520
133985		<10	<1	0.51	10	0.37	944	2	0.02	4	990	39	2.08	<2	2 5	2560 2470
133986		<10	<1	0.68	10	0.72	1895	48	0.02	<1 <1	1340 30	33 <2	1.64 <0.01	<2 <2	5	2470 5450
133987	·	<10	<1	0.01	<10	1.73	22	<1	0.01							
133988		10	<1	0.82	10	0.97	1925	4	0.02	5	2060	144	3.33	<2	8	1920
133989		<10	<1	0.69	10	1.05	2330	1	0.02	3	1860	77	2.70	<2	11 10	2030 1545
133990		10	<1	0.84	10	1.19	2210	22	0.02	1	2030	155	5.08	<2	9	
133991		10	<1	0.77	10	1.18	2000	44	0.02	4	2190	1220	7.70	<2 148	9 2	1325 31
133992		<10	<1	0.21	<10	0.14	220	437	0.04	1	150	155	0.61	148	2	31





ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 17-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Cu-AA46 Cu % 0.01	
133953		0.26	<10	<10	266	10	371		
133954		0.26	10	<10	211	<10	182		
133955		0.22	<10	<10	187	10	225		
133956 133957		0.25 0.25	<10 <10	<10 <10	459 478	<10 <10	425 413		
133958		0.17	<10	<10	344	<10	216		
133959		0.06	<10	<10 <10	98	<10	695		
133960		0.11	<10	<10	222	<10	517		
133961		0.12	<10	<10	261	<10	349		
133962		0.19	<10	<10	227	<10	495		
133963		0.21	<10	<10	215	<10	259		
133964		0.17	<10	<10	311	<10	346		
133965		0.01	<10	<10	2	<10	2		
133966		0.14	<10	<10	259	<10	968		
133967		0.07	<10	<10	120	<10	431		
133968		0.25	10	<10	348	<10	582		
133969		0.21	<10	<10	230	<10	1040		
133970 133971		0.24 0.05	<10 <10	<10 <10	398 10	<10 <10	890 71	1.10	
133972		0.05	<10	<10	271	<10 <10	369	1.10	
133973		0.14	<10	<10	170	<10	593		
133974		0.08	<10	<10	190	10	637		
133975		0.08	<10	<10	194	<10	643		
133976		0.05	10	<10	173	<10	707		
133977		0.04	<10	<10	140	<10	510		
133978		0.02	<10	<10	98	<10	230		
133979		0.04	<10	<10	160	<10	499		
133980		0.05	<10	<10	167	<10	494		
133981		0.04	<10 <10	<10	173	<10	679 535		
133982		0.02		<10	131	<10			
133983		0.03	<10	<10 <10	109	<10 <10	283 77		
133984 133985		0.01 0.01	<10 <10	<10 <10	40 48	<10 <10	86		
133986		0.01	<10	<10 <10	40 93	<10 <10	118		
133987		<0.02	<10	<10	<1	<10	<2		
133988		0.03	<10	<10	114	<10	668		
133989		0.02	<10	<10	120	<10	181		
133990		0.03	<10	<10	148	<10	322		
133991		0.03	<10	<10	141	<10	2010		
133992		0.05	<10	<10	10	<10	75	1.11	



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 17-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
133993		8.58	0.216	12.1	0.96	119	10	20	<0.5	7	5.01	9.5	54	2	3610	5.67
133994		8.88	0.662	26.6	1.18	126	10	20	<0.5	2	5.03	15.2	64	15	7000	7.27
133995		8.08	0.030	1.9	0.84	12	10	50	<0.5	<2	5.76	1.4	17	1	651	3.21
133996		8.16	0.055	1.9	1.58	24	10	70	0.5	<2	6.12	2.0	29	8	540	3.71
133997		8.78	0.101	3.4	1.20	12	20	80	0.6	<2	5.23	2.6	18	1	1050	3.55
133998		8.42	0.481	16.7	1.52	68	10	30	0.5	2	5.75	9.3	52	10	7970	6.60
133999		7.62	0.542	22.1	1.46	50	10	30	0.5	6	5.08	13.4	50	2	8780	5.33
134000		<0.02	0.471	22.3	1.45	46	10	30	0.5	<2	5.15	13.5	47	12	9000	5.30



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

#### To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 17-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
133993		<10	1	0.83	10	1.08	2040	55	0.02	6	1940	614	6.94	<2	11	1725
133994		10	1	1.15	20	1.76	2690	20	0.02	8	2850	467	7.32	<2	12	1630
133995		<10	2	0.62	10	0.82	2170	5	0.03	3	1290	53	2.65	<2	7	2390
133996		10	1	0.83	20	0.92	2190	3	0.03	5	1400	84	2.20	<2	7	1995
133997		10	<1	0.91	10	0.85	2090	2	0.03	3	1370	103	1.59	<2	7	1920
133998		10	1	1.51	20	2.03	3270	1	0.03	12	3390	27	5.01	<2	9	1405
133999		10	2	1.51	20	1.99	2960	1	0.03	9	2950	79	4.25	<2	7	1545
134000		10	1	1.49	20	1.98	3000	1	0.03	10	3010	80	4.20	<2	7	1490



**EXCELLENCE IN ANALYTICAL CHEMISTRY** ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 17-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Cu-AA46 Cu % 0.01	
133993		0.03	<10	<10	164	<10	692		
133994		0.06	<10	<10	285	<10	1140		
133995		0.04	<10	<10	184	<10	134		
133996		0.09	<10	<10	266	<10	196		
133997		0.07	<10	<10	242	<10	267		
133998		0.09	<10	<10	285	<10	717		
133999		0.08	<10	<10	223	<10	1045		
134000		0.08	<10	<10	221	<10	1050		



**EXCELLENCE IN ANALYTICAL CHEMISTRY** ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

### **CERTIFICATE VA05089246**

Project: Galore Creek

P.O. No.:

This report is for 84 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 17-OCT-2005.

The following have access to data associated with this certificate:

JACK COTE	JIM MUNTZERT	SCOTT PETSEL
JOE PIEKENBROCK		

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-24	Pulp Login - Rcd w/o Barcode	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-QC	Crushing QC Test	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	
SPL-21d	Split sample - duplicate	
PUL-31d	Pulverize Split - duplicate	

To: SPECTRUMGOLD INC.

#2300 - 200 GRANVILLE STREET

VANCOUVER BC V6C 1S4

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41	34 Element Aqua Regia ICP-AES	ICP-AES

To: SPECTRUMGOLD INC. ATTN: JOE PIEKENBROCK #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Rest Com



1 I.

# ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

#### To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 2 - A Total # Pages: 4 (A - C) Finalized Date: 24-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	nalyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
133869 133870 133871 133872		10.00 7.24 0.10 10.96	0.410 0.230 1.785 0.084	0.5 0.8 0.7 1.1	1.06 1.36 1.12 1.39	29 65 2370 37	10 10 20 10	70 50 20 40	0.9 0.9 <0.5 0.6	<2 <2 28 <2	0.84 2.33 5.46 1.77	4.2 3.4 0.5 3.6	9 13 74 20	2 4 24 16	479 418 122 446	3.17 5.68 3.12 5.17
133873 133874 133875 133876		9.34 9.28 <0.02 10.62	0.062 0.146 0.148 0.262	0.7 0.9 1.1 1.2	1.42 1.16 1.14 1.01	43 56 60 55	10 10 10 10	70 30 20 20	0.7 0.6 0.6 0.6	<2 <2 <2 <2 <2	3.45 2.29 2.22 2.89	0.6 <0.5 <0.5 <0.5	18 23 23 23	3 3 10 2	310 446 448 538	5.17 4.88 4.83 5.87
133877 133878 133879 133880		9.68 12.92 10.34 11.22	0.678 0.074 0.047 0.031	1.6 1.2 1.4 1.4	1.20 1.27 1.10 0.67	46 43 108 83	10 10 10 10 10	30 40 30 30	0.8 0.7 0.8 0.5	<2 <2 <2 <2 <2	2.45 2.16 2.50 2.33	<0.5 0.8 <0.5 1.2	21 24 28 23	3 6 2 1	471 656 746 605	6.79 6.45 8.29 5.81
133881 133882 133883		11.28 10.74 10.70	0.028 0.020 0.011	1.4 1.3 0.6	1.42 1.34 1.42	49 26 25	10 10 10	40 50 110	0.5 0.8 0.6	<2 <2 <2	3.03 2.47 4.39	<0.5 0.5 <0.5	35 22 17	5 2 2	896 678 327	5.91 6.73 5.60
133884 133885 133886 133887		0.10 11.66 11.98 12.34 11.44	0.013 0.030 0.027 0.005 0.011	2.6 0.8 0.9 0.5 0.7	0.32 1.31 1.03 1.55 1.36	5 34 53 24 20	<10 10 10 10 10	100 90 70 500 810	<0.5 0.8 0.7 0.7 0.8	<2 <2 <2 <2 <2 <2	1.07 3.49 4.71 5.58 4.69	<0.5 <0.5 0.7 <0.5 <0.5	1 26 18 13 12	7 5 2 2 7	4240 547 459 196 313	1.14 5.92 5.50 5.27 4.84
133888 133889 133890 133891		11.78 11.92 12.60	0.013 0.010 0.013	1.2 0.9 0.7	1.24 1.32 1.32	16 16 15	10 10 10	950 1090 940	0.6 0.8 0.7	<2 <2 <2	4.52 4.24 5.94	<0.5 0.8 0.7	10 13 11	6 4 8	624 321 269	4.13 4.09 4.45
133892 133893 133894 133895		12.14 12.46 12.04 1.16	0.011 0.012 0.008 <0.005	0.6 0.7 0.5 <0.2	1.80 1.74 2.08 0.04	20 21 19 <2	<10 10 10 <10	1340 1070 1120 10	1.2 1.0 1.4 <0.5	<2 <2 <2 <2 <2	5.78 6.03 5.89 >25.0	<0.5 0.5 0.6 <0.5	8 9 12 <1	4 5 8 <1	100 321 182 2	4.22 4.57 4.62 0.04
133896 133897 133898		10.50 10.84 11.08	0.019 0.011 0.008	0.7 0.6 0.4	1.66 1.56 1.78	18 31 19	10 <10 <10	960 1030 1060	0.8 0.7 0.8	<2 <2 <2	6.97 6.53 6.25	<0.5 <0.5 <0.5	12 11 11	5 13 4	331 222 135	5.52 5.32 5.15
133899 133900 133901 133902 133903		6.94 <0.02 7.60 6.50 1.00	0.040 0.042 0.011 0.016 <0.005	1.0 1.2 0.4 <0.2 <0.2	2.04 2.02 1.64 1.46 0.04	23 17 12 22 <2	10 10 10 10 <10	970 930 780 200 10	1.0 1.0 1.3 <0.5	<2 <2 <2 <2 <2 <2	5.88 5.90 5.32 3.55 >25.0	2.9 3.4 2.3 3.8 <0.5	16 16 9 8 <1	6 11 3 2 <1	724 759 178 235 3	5.37 5.27 4.64 3.48 0.04
133904 133905 133906 133907 133908		11.60 11.22 9.36 9.94 0.10	0.006 0.007 0.006 0.010 0.459	0.3 0.3 0.5 0.4 0.5	0.60 0.49 1.24 1.36 1.07	16 6 16 25 7610	<10 <10 <10 10 50	190 190 70 90 20	0.9 0.7 1.0 1.2 <0.5	<2 <2 <2 <2 <2 15	2.75 2.55 2.97 2.98 6.11	1.0 0.5 1.7 1.5 <0.5	3 4 12 8 177	1 1 9 3 11	64 45 132 99 81	1.42 1.62 4.08 3.20 3.87



cl 1, 46 4

11

# **ALS Chemex**

**EXCELLENCE IN ANALYTICAL CHEMISTRY** ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

#### To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 2 - B Total # Pages: 4 (A - C) Finalized Date: 24-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
133869		10	1	0.68	30	0.52	1035	2	0.02	2	660	5	1.32	2	4	255
133870		10	1	1.27	30	1.15	1855	2	0.02	4	1730	6	1.88	2	12	233
133871		<10	<1	0.04	10	0.26	746	8	0.07	26	1040	10	0.65	8	2	99
133872		10	<1	1.34	20	1.46	1395	1	0.02	4	1990	3	1.80	3	14 13	241 249
133873		10	<1	1.28	20	1.49	1930	2	0.03	3	1560	4	1.51	3		
133874		10	<1	0.99	20	1.17	1385	60	0.02	4	1830	8	2.15	4	11	231
133875		10	<1	0.96	20	1.17	1370	69	0.02	3	1870	8	2.25	3	11	227
133876		10	1	0.94	20	1.36	1730	5	0.02	4	1870	8 7	2.58	8	14 13	250 242
133877		10	<1	0.95	20	1.17	1650 1540	2 3	0.02 0.02	2 3	1670 1680	5	2.26 1.96	<2 3	13	242
133878		10	<1	1.05	20	1.12				_		-				
133879		10	<1	1.04	20	1.23	1435	2	0.01	3	1860	11	2.62	6	14	227
133880		<10	<1	0.59	20	1.07	1435	4	0.01	3	1950	21	1.96	64	12	253 303
133881		10	<1	1.43	20	1.48	1765 1760	2 2	0.01 0.01	3 3	2470 2060	6 5	1.56 1.42	<2 <2	16 12	253
133882		10	<1 <1	1.17 1.16	20 20	1.26 1.28	2310	2	0.01	2	2060	3	0.97	<2	12	289
133883		10	-					•								
133884		<10	<1	0.13	<10	0.08	225	404	0.02	1	320	6	0.61	<2	<1	147
133885		10	<1	1.14	20	1.32	1995	4 5	0.02	5	2250	6	1.08	<2	14 14	258 295
133886		10	<1	0.86	20	1.19	2110	-	0.01	4 5	2080	14	1.34 0.52	13 <2	14	295
133887		10 10	<1	0.93 0.85	20 20	1.19 1.12	2440 2150	3 1	0.02 0.01	5 5	1900 1780	12 7	0.32	<2	13	363
133888			<1									-				
133889		10	<1	0.91	10	0.99	2040	1	0.01	4	1470	10	0.16	<2 5	10 8	391 445
133890		10	<1	0.83	20	0.92	2070 2180	3 2	0.02 0.02	4 4	1260 1630	10 9	0.24 0.18	5 <2	o 9	445 643
133891		10	<1 <1	0.83	10 10	1.05 0.94	2180	2 <1	0.02	4 5	1590	9 7	0.18	<2	9 11	1020
133892 133893		10 10	1	0.97 1.08	10	1.02	2250	1	0.02	5	1600	10	0.20	<2	11	2950
			•					· · · · · · · · · · · · · · · · · · ·			1590	10	0.16	<2	11	2400
133894		10	1	1.00	10 <10	1.01 1.73	2350 26	<1 <1	0.05 0.01	6 <1	1590 40	10	0.16 <0.01	<2 <2	<1	2400 5640
133895		<10 10	<1 <1	0.01 1.20	20	1.73	2620	2	0.01	4	1970	2	0.26	<2	12	3230
133896 133897		10	<1	1.20	20	1.10	2020	2	<0.01	4	2090	11	0.28	<2	12	3580
133897		10	<1	1.04	20	1.25	2660	2	<0.01	5	1810	8	0.18	<2	13	3080
												10	0.27	<2	13	2780
133899		10	<1	1.73	20	1.62	3420	2	<0.01	8 8	2340 2350	7	0.27	<2 <2	13	2760
133900		10	<1	1.69 0.94	20 20	1.62 1.03	3440 2730	2 1	<0.01 <0.01	8 5	2350	7 10	0.27	<2 <2	9	2190
133901		10 10	<1 <1	0.94 0.76	20 10	0.75	1855	17	<0.01	<1	760	10	1.36	<2	5 6	>10000
133902 133903		<10	<1	0.76	<10	1.91	32	<1	< 0.01	<1	40	3	<0.01	<2	<1	5780
										1	400	37	0.82	<2	1	1650
133904		<10	<1	0.49 0.40	20 20	0.17 0.23	856 909	5 4	0.01 0.01	1	400 440	37 47	0.82	<2 <2	2	1970
133905		<10	<1 <1	0.40 0.74	20 20	0.23	909 1645	4 19	0.01	2 5	440 1610	47	2.00	<2 <2	11	1895
133906		10 10	<1	0.74 0.99	20 20	0.96	1645	19 21	<0.01	5	1290	40 25	1.42	<2	7	3070
133907 133908		<10 <10	<1	0.99	20 10	0.74	683	∠ı 13	0.01	30	1290	12	1.42	12	2	107
100000			<u> </u>	0.00	10	0.24		15	0.00		10/0	۲ ک <u>ہ</u>			-	



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - C Total # Pages: 4 (A - C) Finalized Date: 24-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
133869		0.02	<10	<10	135	<10	187	
133870		0.13	<10	<10	364	<10	212	
133871		0.04	<10	<10	23	10	59	
133872		0.10	<10	<10	262	<10	132	
133873		0.13	<10	<10	310	<10	153	
133874		0.07	<10	<10	236	<10	113	
133875		0.07	<10	<10	232	<10	115	
133876		0.06	<10	<10	252	<10	108	
133877		0.06	<10	<10	320	<10	100	
133878		0.07	<10	<10	249	<10	160	
133879		0.07	<10	<10	447	<10	98	
133880		0.02	<10	<10	210	<10	151	
133881		0.09	<10	<10	298	<10	134	
133882		0.12	<10	<10	281	<10	172	
133883		0.26	<10	<10	357	<10	146	
133884		0.01	<10	<10	7	<10	22	
133885		0.26	<10	<10	283	<10	163	
133886		0.16	<10	<10	280	<10	168	
133887		0.30	10	<10	357	<10	138	
133888		0.27	10	<10	381	<10	116	
133889		0.26	<10	<10	393	<10	104	
133890		0.18	<10	<10	277	<10	150	
133891		0.25	<10	<10	351	<10	150	
133892		0.29	<10	<10	403	<10	118	
133893		0.30	<10	<10	409	<10	160	
133894		0.30	<10	<10	441	<10	172	
133895		<0.01	<10	<10	3	<10	<2	
133896		0.33	<10	<10	442	<10	112	
133897		0.32	<10	<10	455	<10	122	
133898		0.34	10	<10	395	<10	116	
133899		0.35	<10	<10	266	<10	495	
133900		0.33	<10	<10	255	<10	522	
133901		0.23	<10	<10	298	<10	353	
133902		0.13	<10	<10	207	<10	503	
133903		<0.01	<10	<10	3	<10	3	
133904		0.01	10	<10	23	<10	91	
133905		<0.01	<10	<10	17	<10	56	
133906		0.15	<10	<10	176	<10	255	
133907		0.11	<10	<10	138	<10	192	
133908		0.05	<10	<10	34	<10	95	



a kata it

11

# ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

#### To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 3 - A Total # Pages: 4 (A - C) Finalized Date: 24-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
133909		9.04	0.013	0.4	1.08	21	10	80	1.2	<2	2.54	<0.5	5	2	123	2.22
133910		5.70	0.109	3.3	1.52	17	10	40	0.9	<2	2.68	1.6	26	8	1390	4.49
133911		5.26	0.058	1.5	1.29	20	10	80	0.8	<2	3.18	3.7	16	2	701	3.72
133912		8.18	0.019	1.1	2.03	24	20	70	1.3	<2	7.43	0.7	7	11	457 790	6.97 6.55
133913		11.74	0.058	1.7	2.73	25	20	730	1.2	<2	7.08	0.7	6	15		
133914		9.82	0.094	3.5	1.74	31	10	60	1.2	<2	2.98	1.1	21	2	1495	4.91
133915		<0.02	0.086	3.2	1.75	26	10	50	1.2	<2	3.01	0.9	20	3	1415	5.00 5.56
133916		8.60	0.093	3.2	1.47	19	10	610	0.8	<2	3.96	1.7	16	13	1305 4540	5.56 5.50
133917		8.42	0.347	11.0	1.98	32	10	130	0.8	<2	3.99	4.4 9.4	22 14	6 8	4540 838	6.82
133918		12.70	0.047	2.2	3.82	30	20	1020	1.3	<2	7.89			-		
133919		11.08	0.042	2.6	3.86	33	10	560	1.2	<2	8.38	23.1	26	13	1650	7.50 7.35
133920		10.90	0.072	3.2	3.87	32	<10	530	1.1	<2	8.28	21.8	19	6	1150	
133921		10.26	0.072	2.7	2.48	16	10	620	1.0	<2	6.17	4.0	9	5	1085 38	5.19 7.43
133922		11.32	0.008	0.4	5.15	31	10	450	1.5	<2	9.09	6.3 0.8	13 7	23 3	176	4.94
133923		6.10	0.006	0.4	1.86	27	10	830	0.8	<2	5.95		•	-		
133924		8.88	0.011	0.4	2.10	39	10	800	0.8	<2	5.35	2.0	8	28 4	144 3	5.53 0.07
133925		1.02	<0.005	<0.2	0.05	6	<10	10	<0.5	<2	>25.0	<0.5	<1 13	4	3 394	0.07 3.97
133926		7.32	0.028	1.0	1.30	20	10	440	0.6	<2	3.70	3.3		4	282	3.50
133927		9.28	0.011	0.8	1.08	15	10	290	0.7	<2 2	3.31 3.43	3.0 2.9	10 8	2 12	158	4.16
133928		5.36	<0.005	0.9	1.94	12	10	590	1.0				-			
133929		6.30	0.005	1.6	1.59	22	10	250	0.9	2	3.33	1.0	9 1	2 8	176 4510	4.03 1.20
133930		0.10	0.016	2.8	0.35	12	<10	110	<0.5	<2 <2	1.12 4.45	<0.5 1.2	18	o 4	721	6.06
133931		10.90	0.031	1.5	1.44	26	<10	30	0.5	<2 <2	4.45 7.03	4.1	12	4 11	503	4.89
133932		11.82	0.025	1.3	1.82	18	10 10	50 40	0.6 0.5	<2 <2	7.03	4.1 5.0	12	3	555	4.05
133933		9.70	0.021	1.3	1.65	18								_		
133934		9.46	0.013	0.7	1.78	20	10	40	0.7	<2	7.50 5.86	3.0 2.4	19 20	3 5	356 580	4.76 5.43
133935		10.74	0.019	1.3	1.69	32	10	30	0.6	<2	5.86 5.73	2.4 2.4	20 18	3	559	5.32
133936		<0.02	0.018	1.4	1.68	30	10	30	0.6	<2 <2	5.73 6.00	2.4	22	3	474	5.28
133937		9.40	0.027	1.1	1.64	26	10	30	0.6	<2 <2	6.23	2.2	22	11	403	4.32
133938		10.26	0.015	0.9	1.31	25	10	40	0.5							
133939		10.06	0.062	2.6	1.08	60	10	30	0.5	<2	5.97	1.1	22	2 3	611 1350	3.95 5.25
133940		9.06	0.061	3.4	1.31	19	10	30	0.5	<2	5.41	2.7 3.8	35 33	3 11	1350	5.25
133941		11.78	0.060	3.8	1.29	30	<10	30	<0.5	<2	5.66	3.8 2.2	33 14	1	645	4.93
133942		10.28	0.019	1.7	1.76	13	10	40	< 0.5	<2 <2	6.01	2.2 5.5	14	1	1775	4.93
133943		9.98	0.129	6.2	1.47	17	10	40	<0.5		6.95					
133944		10.58	0.153	4.6	1.81	23	10	50	< 0.5	<2	8.16	5.7	20	6	1810	5.01
133945		0.98	<0.005	0.2	0.04	3	<10	10	<0.5	<2	>25.0	<0.5	<1	<1 3	6 1295	0.06 4.64
133946		9.38	0.072	2.7	1.56	33	10	40	0.5	<2	6.75	2.5	28	-		4.64 4.36
133947		8.12	0.077	1.8	1.59	30	10	40	0.6	<2	6.70	3.1	19 17	2	1060 1165	4.36 4.29
133948		7.36	0.083	2.1	1.51	19	10	40	0.6	<2	6.70	1.3	17	2	1165	4.29



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

#### To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 3 - B Total # Pages: 4 (A - C) Finalized Date: 24-OCT-2005 Account: SPEGOL

Project: Galore Creek

							•									
		ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41								
	Method Analyte	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	Р	Pb	S	Sb	Sc	Sr
	Units	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample Description	LOR	10	1	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2	1	1
			- 4	0.70	40	0.00	000	00	0.01	0	CE0	15	1.52	<2	2	1620
133909		10	<1	0.78	10	0.33	603	20	0.01	2	650	15			2	1825
133910		10	<1	1.22	10	1.06	1460	11	< 0.01	4	1300	11	2.21	<2	6 5	1625
133911		10	<1	1.07	10	0.87	1670	18	< 0.01	3	1380	23	1.09	<2	5 9	
133912		10	<1	1.46	10	1.36	3220	23	0.01	4 7	710	19	1.70 0.40	<2	-	3340 3370
133913		10	<1	1.57	10	1.46	3330	4	0.14	· · · · · · · · · · · · · · · · · · ·	1350	19		<2	13	
133914		10	<1	1.14	10	0.95	1550	4	0.08	4	1180	16	1.74	<2	7	2010
133915		10	<1	1.12	10	0.90	1525	4	0.09	4	1140	13	1.82	<2	7	1915
133916		10	<1	1.31	10	1.12	2070	11	<0.01	3	1500	11	0.39	<2	9	3400
133917		10	<1	1.54	20	1.30	2240	4	0.04	8	2140	10	0.80	<2	12	4070
133918		10	<1	1.95	50	1.69	3510	1	0.62	6	2060	21	0.27	<2	14	2950
133919		10	<1	2.04	20	1.78	3850	34	0.61	8	2050	15	0.43	<2	12	2220
133920		10	<1	1.45	20	1.30	3260	529	1.10	7	2120	14	0.42	<2	12	2750
133921		10	<1	1.48	20	1.29	2920	64	0.42	6	1800	10	0.28	<2	12	2620
133922		20	<1	2.40	20	2.53	4810	<1	1.54	9	2630	17	0.12	<2	20	2030
133923		10	<1	1.60	20	1.49	3100	2	0.07	8	2260	14	0.17	<2	13	2720
133924		10	<1	2.23	20	2.08	3440	2	0.01	18	3220	9	0.18	<2	19	2200
133925		<10	<1	0.02	<10	1.98	38	<1	<0.01	<1	50	<2	<0.01	<2	<1	5340
133926		10	<1	1.26	20	1.12	2300	3	<0.01	6	1960	13	0.39	<2	8	2630
133927		10	<1	0.87	20	0.75	1785	21	<0.01	2	1350	28	0.45	<2	6	2550
133928		10	<1	1.21	20	0.90	2090	37	0.39	4	1440	41	0.46	<2	8	2600
133929		10	<1	1.16	20	0.90	2150	62	0.01	5	1490	137	0.69	<2	9	2120
133930		<10	<1	0.15	<10	0.09	238	418	0.01	<1	360	7	0.63	<2	<1	161
133931		10	<1	1.54	10	1.37	1700	365	0.01	6	2210	10	4.29	<2	10	1615
133932		10	2	1.34	10	1.30	2770	4	0.02	5	1910	16	2.36	<2	12	1520
133933		10	1	1.23	10	1.20	2500	2	0.02	5	1600	11	2.87	<2	11	1725
133934		10	2	1.19	10	1.37	2720	3	0.02	5	1940	21	3.28	<2	13	1885
133935		10	1	1.36	10	1.52	2430	27	0.02	5	1880	- 16	4.72	2	10	1925
133936		10	1	1.36	10	1.51	2420	27	0.02	6	1890	16	4.56	<2	10	1910
133937		10	<1	1.38	20	1.38	2490	100	0.02	7	1870	26	3.80	<2	11	1870
133938		10	2	1.22	10	1.18	2330	7	0.03	5	1660	17	3.69	<2	10	1845
133939		10	1	1.12	10	1.17	1720	13	0.01	4	1990	25	5.18	<2	9	1850
133940		10	2	1.10	10	1.16	1835	24	0.01	8	1810	13	5.57	<2	10	1910
133941		10	<1	0.85	10	1.03	1760	10	0.01	7	1580	16	5.65	<2	9	1935
133942		10	<1	1.13	10	1.24	2530	1	0.02	5	1350	16	3.77	<2	10	1950
133943		10	2	1.00	10	1.03	2230	1	0.03	6	1760	12	3.53	<2	10	2170
133944		10	1	1.27	10	1.20	2590	2	0.03	5	1730	9	3.79	<2	12	1970
133945		<10	2	0.01	<10	1.60	43	<1	<0.01	<1	50	3	<0.01	<2	<1	5370
133946		10	2	1.15	10	1.16	2160	2	0.02	6	1780	7	3.42	<2	11	2120
133947		10	1	1.32	10	1.36	2300	2	0.02	5	1870	12	3.26	<2	10	2070
133948		10	1	1.24	10	1.30	2200	1	0.02	7	2020	10	3.13	<2	10	2310



a la da d

1

ALS Chemex

**EXCELLENCE IN ANALYTICAL CHEMISTRY** ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 3 - C Total # Pages: 4 (A - C) Finalized Date: 24-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
133909		0.03	<10	<10	76	<10	58	
133910		0.12	<10	<10	257	<10	224	
133911		0.08	<10	<10	199	<10	414	
133912		0.28	<10	<10	631	<10	174	
133913		0.32	<10	<10	698	<10	207	
133914		0.25	<10	<10	264	<10	182	
133915		0.25	<10	<10	266	<10	161	
133916		0.29	<10	<10	341	<10	302	
133917		0.30 0.32	<10 <10	<10 10	421 720	<10 <10	529 1270	
133918								
133919		0.30	10	10	1090	<10	2480	
133920		0.27	<10	10 ~10	983 510	<10 <10	2590 516	
133921 133922		0.28 0.33	<10 <10	<10 10	519 716	<10	1025	
133922		0.33	<10	<10	420	10	206	
133924		0.32 <0.01	<10 <10	<10 <10	476 5	10 <10	411 4	
133925		<0.01 0.11	<10	<10 <10	5 277	<10 <10	4 400	
133926 133927		0.06	<10	<10	198	<10	307	
133928		0.00	<10	<10	252	<10	328	
133929		0.22	<10	<10	257	<10	142	
133929		0.22	<10	<10	7	<10	22	
133931		0.18	<10	<10	270	<10	204	
133932		0.28	<10	<10	358	<10	451	
133933		0.26	<10	<10	319	<10	534	
133934		0.27	<10	<10	344	<10	354	
133935		0.24	<10	<10	284	<10	314	
133936		0.24	<10	<10	284	<10	314	
133937		0.25	<10	<10	311	<10	295	
133938		0.19	<10	<10	261	<10	280	
133939		0.10	<10	<10	205	<10	169	
133940		0.23	<10	<10	262	<10	323	
133941		0.22	<10	<10	265	<10	395	
133942		0.25	<10	<10	367	<10	281	
133943		0.26	<10	<10	382	<10	589	
133944		0.28	<10	<10	470	<10	617	
133945		<0.01	<10	<10	3	<10	2	
133946		0.25	<10	<10	376	<10	313	
133947		0.25	<10	<10	344	<10	372	
133948		0.24	<10	<10	295	<10	222	



214 4 4 4 4

# ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 4 - A Total # Pages: 4 (A - C) Finalized Date: 24-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
133949 133950 133951 133952		7.84 0.10 9.54 9.62	0.019 0.447 0.038 0.016	0.5 0.5 1.3 0.4	2.03 1.04 2.12 2.27	15 6930 21 27	10 50 10 10	160 20 140 140	0.6 <0.5 0.7 0.7	<2 19 <2 <2	4.91 5.75 5.01 5.05	1.5 <0.5 2.1 <0.5	18 170 20 17	2 10 2 2	130 78 368 75	4.71 3.60 4.84 4.99



1 1 1 1 1 1

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 4 - B Total # Pages: 4 (A - C) Finalized Date: 24-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
Sample Description          133949         133950         133951         133952	LOR	10 <10 10 10	1 <1 1 2	0.01 1.23 0.04 1.03 1.19	10 10 10 10	0.01 1.48 0.24 1.60 1.72	5 2160 656 2190 2210	1 2 13 <1 <1	0.01 0.06 0.01 0.01	1 5 31 6 5	10 1660 1210 1680 1710	2 6 13 15 14	0.01 1.80 1.34 1.98 1.95	2 12 2 <2	1 14 13 15	1 1165 101 844 785



I Laborat

# ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 4 - C Total # Pages: 4 (A - C) Finalized Date: 24-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Tl ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
133949 133950 133951 133952		0.25 0.04 0.25 0.26	<10 <10 <10 <10	<10 <10 <10 <10	195 31 212 203	<10 <10 <10 <10	268 90 316 202	



**EXCELLENCE IN ANALYTICAL CHEMISTRY** ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

### **CERTIFICATE VA05092159**

Project: Galore Creek

P.O. No.:

This report is for 71 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 21-OCT-2005.

The following have access to data associated with this certificate:

JACK COTE	JIM MUNTZERT	SCOTT PETSEL
JOE PIEKENBROCK		

TO: SPECTRUMGOLD INC.	
#2300 - 200 GRANVILLE STREET	
VANCOUVER BC V6C 1S4	

Page: 1 Finalized Date: 13-NOV-2005 This copy reported on 14-NOV-2005 Account: SPEGOL

	SAMPLE PREPARATION										
ALS CODE	DESCRIPTION										
WEI-21	Received Sample Weight										
LOG-24	Pulp Login - Rcd w/o Barcode										
LOG-22	Sample login - Rcd w/o BarCode										
CRU-QC	Crushing QC Test										
PUL-QC	Pulverizing QC Test										
CRU-31	Fine crushing - 70% <2mm										
SPL-21	Split sample - riffle splitter										
PUL-31	Pulverize split to 85% <75 um										
SPL-21d	Split sample - duplicate										
PUL-31d	Pulverize Split - duplicate										

	ANALYTICAL PROCEDURI	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-GRA21	Au 30g FA-GRAV finish	WST-SIM
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41	34 Element Aqua Regia ICP-AES	ICP-AES

To: SPECTRUMGOLD INC. ATTN: JOE PIEKENBROCK #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Head Com



1 1 1 1 4 4

5 I.

### ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 13-NOV-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1
139001		8.48	0.176		7.2	1.54	25	10	120	0.9	<2	7.27	8.3	20	2	2540
139002		10.32	0.066		3.3	2.09	34	20	140	1.1	<2	7.04	4.4	34	11	621
139003		10.26	0.054		3.4	1.85	20	10	140	0.8	<2	7.27	5.0	13	8	604
139004 139005		9.78 0.84	0.166 <0.005		7.6 <0.2	1.54 0.05	26 3	20 <10	100 10	0.8 <0.5	<2 <2	6.37 >25.0	8.9 <0.5	17 <1	5 <1	2620 24
139006		9.94	0.089		5.7	1.40	24	10	90	0.6	<2	5.92	3.3	15	6	1935
139007		9.70	0.116		3.4	1.48	16	10	90	0.7	<2	4.61	1.7	10	3	433
139008		9.90	0.036		2.0	1.69	41	20	100	0.9	<2	4.69	1.0	33	7	438
139009		9.92	0.032		1.6	1.54	19	20	140	0.9	<2	3.76	1.3	24	7	594
139010		7.90	0.042		1.5	1.55	18	20	120	0.8	<2	5.13	<0.5	17	6	413
139011		0.10	1.600		0.6	1.16	2530	30	20	<0.5	31	6.01	0.5	76	25	129
139012		8.60	0.113		3.1	1.24	19	20	50	0.6	<2	5.70	0.5	11	6	241
139013		8.38	0.071		2.4	1.32	36	10	30	0.8	<2	4.36	<0.5	22	7	553
139014 139015		8.50 8.30	0.033 0.020		1.3 1.0	1.60 1.64	42 36	10 10	40 30	0.6 0.6	<2 <2	2.98 2.86	0.8 <0.5	28 23	2 2	473 560
139016		11.02	0.029		1.0	1.70	57	10	30	0.8	<2	2.50	1.0	33	2	605
139017		< 0.02	0.031		1.0	1.70	57	10	30	0.8	<2	2.46	0.8	32	2	573
139018		10.98	0.009		1.2	1.73	18	10	30	0.6	<2	3.95	3.7	19	24	382
139019		9.92	0.044		1.6	1.60	27	20	40	0.8	<2	3.00	4.7	26	10	759
139020		9.66	0.060		2.8	2.10	28	20	50	0.8	<2	2.84	8.1	25	7	737
139021		9.76	0.058		2.5	1.93	27	20	40	0.9	<2	3.12	6.4	36	14	1035
139022		9.76	0.047		1.8	1.83	21	10	70	0.7	<2	4.39	3.5	30	9	457
139023		7.72	0.092		2.3	1.98	19	10	80 70	0.6	<2 <2	2.61 2.77	6.3 6.4	23 24	12 12	618 603
139024 139025		<0.02 7.28	0.091 0.146		2.2 2.6	2.09 2.63	17 26	<10 <10	70 100	0.6 0.7	<2	4.79	1.7	24	31	262
139026		8.68	0.036		1.2	1.55	20	10	70	0.8	<2	3.46	<0.5	35	2	471
139027		8.92	0.018		<0.2	1.66	17	10	120	0.8	<2	5.08	<0.5	14	2	227
139028		0.10	0.025		2.5	0.38	5	<10	110	<0.5	<2	1.16	<0.5	2	9	4460
139029		9.10	0.041		<0.2	1.96	12	20	350	0.7	<2	4.78	1.0	13	2	244
139030		9.70	0.012		<0.2	2.75	24	10	270	0.9	<2	6.67	4.8	14	15	91
139031		9.42	0.006		<0.2	2.90	30	10	200	0.8	<2	6.93	<0.5	19	18	94
139032		9.58	0.014		<0.2	2.53	14	10	430	1.0	<2	6.63	< 0.5	15	16	90
139033		7.96	0.011		<0.2	1.52	11	10	180	0.9	<2 <2	4.57 4.89	<0.5 0.5	10 9	2 2	197 218
139034 139035		7.86 10.64	0.034 0.029		<0.2 <0.2	1.72 2.63	4 13	10 10	660 410	0.9 1.2	<2 <2	4.69 6.21	0.5 2.9	9 14	17	76
139036		7.70	0.071		<0.2	2.34	31	10	140	1.1	<2	5.17	0.5	33	15	254
139037		1.10	<0.005		<0.2	0.09	<2	<10	20	<0.5	<2	>25.0	<0.5	<1	1	5
139038		7.08	0.020		<0.2	1.93	12	10	160	1.0	<2	4.70	<0.5	10	2	198
139039		6.14	0.026		<0.2	2.63	14	10	560	1.1	<2	5.50	<0.5	13	17	224
139040		10.82	0.009		<0.2	1.42	12	10	660	0.8	<2	3.32	0.6	6	1	92



al I. Ila il

11

# ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

#### To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 13-NOV-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1
139001		4.83	10	<1	1.32	10	1.14	2610	70	0.03	5	2010	370	3.08	<2	11
139002		5.11	10	1	1.36	10	1.02	2440	11	0.04	10	1450	309	2.13	<2	10
139003		4.44	10	1	0.93	10	0.68	2090	5	0.03	8	1230	333	2.18	<2	9
139004		4.25	10	<1	0.89	10	0.48	1645	3	0.04	5	1160	293	2.93	<2	7
139005		0.05	<10	1	0.01	<10	1.80	26	<1	<0.01	<1	40	4	<0.01	<2	<1
139006		4.10	10	<1	0.89	10	0.57	1545	31	0.04	4	1430	154	2.84	<2	8
139007		3.16	10	<1	1.04	<10	0.47	1345	613	0.04	4	900	499	2.67	<2	3
139008		4.11	10	<1	1.22	10	0.58	1420	20	0.04	6	1310	138	2.69	<2	6
139009		3.49	<10	<1	1.11	10	0.64	1295	11	0.04	7	1350	75	1.51	4	5
139010		3.49	10	<1	1.14	10	0.64	1750	100	0.04	5	1140	45	1.70	2	5
139011		3.38	<10	<1	0.05	10	0.28	813	9	0.08	29	1140	13	0.67	9	2
139012		3.47	10	2	1.00	10	0.61	1750	14	0.04	8	1130	94	1.92	6	6
139013		4.09	10	<1	1.10	10	0.67	1090	5	0.04	7	1290	187	2.88	6	4
139014		3.57	10	1	1.21	10	0.87	1235	3	0.04	3	1210	176	2.30	3	5
139015		3.59	10	1	1.20	10	0.85	1035	1	0.05	3	1260	59	2.85	3	4
139016		3.70	10	<1	1.31	10	0.91	1025	55	0.05	4	1310	92	2.64	4	4
139017		3.57	10	1	1.30	10	0.89	1000	49	0.05	4	1280	91	2.58	2	4
139018		4.17	10	<1	1.40	<10	1.13	1325	52	0.05	11	1290	693	3.78	3	7
139019		3.24	10	<1	1.21	10	0.77	979	33	0.04	8	1540	700	2.44	3	4
139020		3.32	10	<1	1.70	10	1.29	1420	378	0.04	9	1700	1070	1.82	2	4
139021		3.98	10	<1	1.62	10	1.10	1485	40	0.04	11	1720	590	2.00	3	9
139022		4.71	10	<1	1.72	10	1.53	2010	354	0.04	7	1710	974	2.79	<2	11
139023		4.76	10	<1	2.05	10	1.77	1605	219	0.04	8	1580	946	2.64	2	9
139024		5.17	10	<1	2.00	<10	1.81	1670	239	0.05	13	1670	970	2.80	4	10
139025		4.55	10	1	2.66	10	2.70	2610	1175	0.06	18	2120	477	1.82	4	14
139026		3.49	10	1	1.26	10	0.83	1100	96	0.04	4	1320	47	1.68	<2	5
139027		3.42	10	<1	1.26	10	0.83	1410	18	0.06	3	1330	25	1.41	<2	6
139028		1.20	<10	<1	0.16	<10	0.09	239	407	0.04	1	330	10	0.64	3	1
139029		3.59	10	<1	1.14	10	0.86	1675	12	0.06	3	1270	85	1.02	2	8
139030		5.02	10	1	1.84	10	1.56	2550	12	0.09	16	1550	630	1.13	<2	22
139031		5.02	10	<1	1.92	10	1.60	2480	1	0.14	15	1620	52	1.14	<2	26
139032		4.79	10	1	1.90	10	1.58	2420	2	0.06	16	1530	35	0.86	<2	22
139033		3.34	10	<1	1.27	20	0.74	1745	1	0.06	1	1220	18	0.72	<2	6
139034		3.29	10	<1	1.34	20	0.82	1845	1	0.07	5	1210	78	0.58	<2	7
139035		4.87	10	<1	2.06	10	1.81	2630	1	0.05	16	1550	730	0.46	<2	22
139036		4.41	10	<1	2.12	10	1.66	2430	1	0.06	17	1700	200	1.16	<2	16
139037		0.09	<10	<1	0.05	<10	1.82	61	<1	0.02	<1	60	13	<0.01	<2	<1
139038		3.18	10	<1	1.66	10	1.02	1815	1	0.06	2	1390	27	0.87	<2	8
139039		4.56	10	<1	2.39	10	1.87	2640	1	0.06	15	1580	279	0.73	<2	21
139040		1.83	10	<1	0.98	20	0.33	930	<1	0.16	<1	460	94	0.52	2	3



al | 46.4

# ALS Chemex

**EXCELLENCE IN ANALYTICAL CHEMISTRY** ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 13-NOV-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Sr ppm 1	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
139001		1785	0.11	<10 <10	<10 <10	364 341	<10 <10	643 345	
139002 139003		1455 1785	0.23 0.20	<10 <10	<10	341	<10	345	
139003		2060	0.20	<10	<10	319	<10	634	
139005		5310	<0.01	<10	<10	3	<10	5	
139006		1820	0.07	<10	<10	250	<10	250	
139007		1870	0.06	<10	<10	174	<10	159	
139008		1955	0.07	<10	<10 <10	237 131	<10 <10	121 132	
139009 139010		2190 1990	0.04 0.07	<10 <10	<10 <10	182	<10 <10	65	
139011		102	0.05	<10	<10	27	10	62	
139012		2090	0.08	<10	<10	208	<10	88	
139013		2240	0.05	<10	<10	126	<10	67	
139014		1735	0.06	<10	<10	149	<10	95	
139015		2020	0.07	<10	<10	127	<10	79	
139016		1805	0.07	<10	<10	118	<10	115	
139017		1780	0.07	<10 <10	<10 <10	116 188	<10 <10	114 336	
139018 139019		1775 1885	0.11 0.06	<10	<10	100	<10	429	
139020		1755	0.08	<10	<10	102	<10	725	
139021		1490	0.09	<10	<10	141	<10	553	
139022		1305	0.12	<10	<10	199	<10	384	
139023		1350	0.13	<10	<10	152	<10	592	
139024 139025		1445 1710	0.14 0.17	<10 <10	<10 <10	162 243	<10 <10	580 300	
139026		1810	0.06	<10	<10	140	<10	112	
139027		1785	0.12	<10	<10	196	<10	70	
139028		156	0.01	<10	<10	7	<10	25	
139029		1540	0.23	<10	<10	245	<10	120	
139030		1135	0.27	<10	<10	254	<10	415	
139031		1080	0.30	<10	<10	227 232	<10	121 108	
139032 139033		1180 1850	0.25 0.10	<10 <10	<10 <10	232 188	<10 <10	108 59	
139033		1620	0.10	<10	<10 <10	212	<10 <10	83	
139035		996	0.25	<10	<10	215	<10	358	
139036		1445	0.16	<10	<10	180	<10	136	
139037		5110	<0.01	<10	<10	5	<10	5	
139038		1870	0.15	<10	<10	184	<10	82	
139039		1290 1490	0.26 0.04	<10 <10	<10 <10	249 79	10 <10	156 47	
139040		1490	0.04	<u> </u>	<u> </u>	19	~10	41	



al 1 da d

## ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 13-NOV-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1
139041 139042 139043		7.70 9.34 9.98	0.008 0.023 0.017		<0.2 0.2 <0.2	1.21 2.40 2.37	7 14 10	10 10 10	590 320 170	0.7 0.8 0.8	<2 <2 <2	2.96 5.54 5.38	<0.5 <0.5 0.6	3 14 19	2 10 15	84 132 230
139044 139045		5.00 <0.02	0.066 0.067		<0.2 <0.2	2.70 2.62	22 12	10 10	280 250	0.9 0.8	<2 <2	4.92 4.79	3.0 3.4	20 19	16 15	218 208
139046 139047 139048		10.28 4.98 9.98	0.025 0.034 0.040		<0.2 1.5 0.6	2.34 2.44 2.23	20 29 26	10 10 10	120 80 260	0.9 0.9 0.8	<2 3 2	5.78 5.49 6.27	2.5 4.6 2.7	19 25 17	14 15 15	198 273 318
139049 139050		9.84 0.10	>10.0 0.034	50.6	71.6	1.49 0.38	924	20 <10	30 110	0.9 <0.5	<2 <2	5.77	23.2	26 2	5 9	3330 4470
139051 139052 139053 139054 139055		11.06 10.84 10.62 9.24 10.16	0.699 2.79 0.131 0.137 0.013		1.1 7.4 <0.2 <0.2 <0.2	1.53 1.07 1.03 0.95 0.82	133 121 25 7 6	10 10 10 10 10	60 60 50 130 70	0.7 0.6 0.5 0.5 <0.5	<2 4 <2 <2 <2	5.42 7.30 4.36 3.40 3.78	2.7 12.8 2.9 1.5 0.9	23 18 6 4 4	11 5 1 1 1	296 485 130 84 81
139056 139057 139058 139059 139060		1.04 9.08 9.58 8.76 11.12	0.021 0.038 0.018 0.025 0.016		<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.65 1.24 1.61 1.95 2.66	6 11 14 12 18	<10 10 10 10 <10	270 100 100 150 110	<0.5 0.6 0.8 0.8 1.0	<2 <2 <2 <2 <2 <2 <2	22.1 3.35 3.29 2.94 6.53	<0.5 0.7 <0.5 <0.5 1.1	2 6 5 5 19	1 2 2 2 16	50 115 101 82 165
139061 139062 139063 139064 139065		10.14 9.38 8.78 9.36 <0.02	0.026 0.006 0.087 0.016 0.013		<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	3.23 3.38 3.68 3.07 3.34	10 13 14 13 16	<10 <10 <10 10 <10	270 190 160 150 160	1.1 1.0 0.9 1.2 1.1	<2 <2 <2 <2 <2 <2	6.28 5.86 5.09 6.34 6.80	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	18 20 23 20 19	17 17 18 15 15	48 66 218 396 393
139066 139067 139068 139069 139070		11.26 10.50 8.98 0.10 10.10	0.075 0.017 0.010 0.461 0.005		<0.2 <0.2 <0.2 0.3 <0.2	2.35 2.10 1.71 1.10 2.04	11 8 14 7150 14	<10 <10 <10 50 <10	120 150 250 20 140	0.7 0.7 0.5 <0.5 0.5	<2 <2 <2 19 <2	8.47 6.29 5.36 5.94 5.98	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	11 12 14 174 17	17 16 20 11 25	71 311 365 79 282
139071		10.98	0.024		<0.2	2.79	17	<10	130	0.8	<2	6.80	<0.5	12	16	71



કો તે તેમ તે

# ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

#### To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 13-NOV-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Analyte	Fe	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sc
	Units	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm
	LOR	0.01	10	1	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2	1
139041		1.69	<10	<1	0.91	10	0.25	765	1	0.08	<1	410	24	0.61	<2	2
139042		4.28	10	<1	2.05	20	1.52	2320	<1	0.05	9	1400	246	1.05	<2	16
139043		4.46	10	<1	2.18	10	1.84	2440	1	0.05	15	1540	39	1.07	<2	19
139044		4.91	10	1	2.39	10	2.25	2700	17	0.05	16	1590	828	1.21	<2	19
139045		4.75	10	<1	2.25	10	2.20	2620	18	0.05	12	1540	754	1.17	<2	18
139046		4.59	10	<1	1.98	10	1.85	2650	10	0.05	15	1510	326	1.76	<2	18
139047		4.81	10	<1	2.02	10	1.88	3010	84	0.05	17	1580	779	2.23	2	20
139048		4.67	10	<1	1.74	10	1.86	3500	18	0.06	12	1510	553	2.22	2	19
139049		5.03	<10	22	1.00	10	1.33	3510	87	0.04	9	1360	799	5.06	441	11
139050		1.22	<10	<1	0.16	<10	0.09	241	420	0.04	2	340	8	0.65	4	1 18
139051		4.75	<10	2	1.24	10	1.60	3120	28	0.05	13	1490	684	2.52	2	18
139052		3.96	<10	1	0.75	10	0.99	2580	88	0.05	7	1160	1620	5.20	10	11
139053		2.23	<10	<1	0.74	10	0.36	1395	14	0.04	<1	490	505	2.74	<2	3
139054		1.93	<10	<1	0.72	10	0.34	1140	10	0.04	<1	460	177	1.22	<2	2
139055		1.82	<10	<1	0.63	10	0.30	1205	18	0.05	<1	490	158	2.01	<2	2
139056		0.93	<10	<1	0.44	<10	1.40	480	1	0.04	<1	260	23	0.6	<2	2
139057		2.11	10	<1	0.93	10	0.39	1115	1	0.06	<1	500	53	1.28	2	3
139058		2.25	10	<1	0.96	10	0.42	982	1	0.32	2	530	100	1.60	<2	3
139059		2.22	10	<1	0.91	10	0.42	920	2	0.62	1	510	86	1.44	<2	3
139060		4.86	10	<1	2.20	10	1.92	3380	6	0.06	17 15	1520 1590	700	2.40	<2 <2	20
139061 139062 139963		4.96 4.89 4.60	10 10 10	1 <1 <1	2.72 2.62 2.52	10 10 10	2.36 2.20 2.19	3510 3130 2920	5 1 1	0.07 0.28 0.70	15 13 16	1590 1520 1580	119 29 22	0.93 0.99	<2 <2 <2	23 23 24
139063 139064 139065		4.00 4.24 4.62	10 10 10	<1 <1	2.16 2.17	10 10 10	1.95 2.12	2480 2710	1 <1	0.33 0.39	13 14	1460 1600	36 47	1.28 1.36	<2 <2	22 24
139066		4.87	10	<1	1.50	10	1.54	2510	1	0.25	12	1450	55	1.87	<2	18
139067		4.07	10	<1	1.64	10	1.31	2290	3	0.10	9	1330	79	1.37	<2	12
139067 139068 139069		3.49 3.62	10 10 <10	<1 <1	1.50 0.06	10 10 10	1.08 0.23	2010 642	6 12	0.06 0.08	10 31	1260 1250	107 12	1.38 1.38	<2 13	13 2
139070		4.17	10	1	1.78	10	1.46	2220	1	0.07	15	1320	35	1.54	<2	17
139071		4.21	10	<1	1.40	10	1.19	2050	<1	0.87	10	1230	82	1.70	<2	15



4 4 4 6 4

1.1

ALS Chemex

**EXCELLENCE IN ANALYTICAL CHEMISTRY** ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 13-NOV-2005 Account: SPEGOL

Project: Galore Creek

	Method	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	
	Analyte	Sr	Tì	TI	U	V	W	Zn	
Sample Description	Units LOR	ppm 1	% 0.01	ppm 10	ррт 10	ppm 1	ppm 10	ppm 2	
				10	10				
139041		1470	0.04	<10	<10	85	<10	28	
139042		1395	0.25	<10	<10	265	<10	118	
139043		1310	0.21	<10	<10	231	<10	168	
139044		1220	0.20	<10	<10	206	<10	379	
139045		1180	0.18	<10	<10	190	<10	362	
139046		1180	0.17	<10	<10	196	<10	296	
139047		1440	0.15	<10	<10	198	<10	454	
139048		1120	0.14	<10	<10	201	<10	317	
139049		1465	0.03	<10	<10	144	<10	1450	
139050		152	0.01	<10	<10	6	<10	25	
139051		1280	0.06	<10	<10	157	<10	277	
139052		2340	0.02	<10	<10	106	<10	913	
139053		1865	0.01	<10	<10	70	<10	203	
139054		1310	0.01	<10	<10	76	<10	116	
139055		1810	0.01	<10	<10	40	<10	85	
139056		3640	0.01	<10	<10	42	<10	23	
139057		1625	0.03	<10	<10	93	<10	61	
139058		1700	0.05	<10	<10	100	<10	57	
139059		1490	0.08	<10	<10	112	<10	45	
139060		1635	0.22	<10	<10	192	<10	184	
139061		1175	0.26	<10	<10	212	<10	126	
139062		728	0.27	<10	<10	232	<10	122	
139063		887	0.27	<10	<10	211	<10	114	
139064		694	0.17	<10	<10	170	<10	100	
139065		749	0.17	<10	<10	168	<10	102	
139066		1655	0.16	<10	<10	333	<10	77	
139067		1645	0.21	<10	<10	296	<10	71	
139068		1345	0.24	<10	<10	220	<10	58	
139069		104	0.05	<10	<10	34	<10	92	
139070		1535	0.25	<10	<10	230	<10	105	
139071		1930	0.22	<10	<10	217	<10	91	



al I. Us il

11

# **ALS Chemex**

**EXCELLENCE IN ANALYTICAL CHEMISTRY** ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

## CERTIFICATE VA05089722

Project: Galore Creek

P.O. No.:

This report is for 64 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 18-OCT-2005.

SCOTT PETSEL

The following have access to data associated with this certificate:

JACK COTE	
JOE PIEKENBROCK	

JIM MUNTZERT

To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 1 Finalized Date: 31-OCT-2005 Account: SPEGOL

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-24	Pulp Login - Rcd w/o Barcode
LOG-22	Sample login - Rcd w/o BarCode
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
CRU-31	Fine crushing - 70% <2mm
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% <75 um
SPL-21d	Split sample - duplicate
PUL-31d	Pulverize Split - duplicate

	ANALYTICAL PROCEDURI	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Cu-AA46	Ore grade Cu - aqua regia/AA	AAS
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41	34 Element Aqua Regia ICP-AES	ICP-AES

To: SPECTRUMGOLD INC. ATTN: JOE PIEKENBROCK #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Recel Com



al I. da i

ALS Chemex

**EXCELLENCE IN ANALYTICAL CHEMISTRY** ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

#### To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 31-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method	WEI-21	Au-AA23	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Analyte	Recvd Wt.	Au	Ag	Al	As	B	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
	LOR	0.02	0.005	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01
131959		6.82	0.453	3.2	1.38	86	10	860	1.5	<2	5.42	1.9	28	7	5330	5.49
131960		12.30	0.039	0.7	0.97	72	10	1230	2.2	<2	0.43	2.6	23	5	503	7.49
131961		5.04	0.027	0.2	1.42	13	10	1660	3.1	<2	0.81	1.3	22	10	257	7.12
131963		4.18	0.020	0.3	1.02	28	10	1320	1.5	<2	0.52	1.5	34	39	267	6.67
131962 131963 131964		4.18	0.025	0.3	0.88	40	10	1920	1.6	<2	0.27	<0.5	13	8	174	5.13
131965 131966 131967		10.04 10.28 11.30	2.26 0.139 0.025	1.1 1.2 0.3	1.02 1.68 1.33	148 227 46	10 10 10	90 80 40	0.6 1.0 0.9	<2 <2 <2 <2	0.16 0.67 1.18	1.2 1.4 1.6	6 6 13	11 7 9	680 1015 1255	4.23 5.10 4.00
131969 131969		0.76	0.006	<0.2	0.09	13 11	<10 10	60 320	<0.5	<2 <2 <2	>25.0	<0.5	<1 17	<1 6	46 354	0.13 9.75
131970		4.32	0.018	0.2	1.14	8	10	250	2.8	<2	0.74	8.6	12	5	370	5.65
131971		10.78	0.011	<0.2	1.50	23	20	440	2.1	<2	2.46	4.9	16	1	142	5.34
131972		<0.02	0.018	<0.2	1.53	17	20	420	2.2	<2	2.43	5.0	16	4	144	5.35
131973		9.84	0.015	<0.2	1.45	13	20	620	2.0	<2	3.69	<0.5	11	6	97	5.06
131974		8.32	0.011	<0.2	1.36	11	20	480	1.9	<2	3.13	<0.5	7	4	104	5.20
131975		0.10	0.464	0.3	0.99	6960	40	20	<0.5	19	5.74	<0.5	169	10	77	3.54
131976		10.54	0.011	<0.2	1.08	15	20	240	1.7	<2	2.20	2.3	11	1	185	6.08
131977		10.30	0.010	<0.2	1.72	22	<10	80	2.9	<2	2.13	5.9	27	17	247	7.33
131978		11.20	0.017	<0.2	1.30	31	<10	60	2.4	<2	2.49	0.7	33	14	336	8.08
131979		9.82	0.013	<0.2	1.33	32	<10	70	2.5	<2	2.37	4.4	27	17	288	7.18
131980		10.06	0.012	<0.2	1.79	34	<10	60	2.7	<2	2.28	6.0	27	18	277	7.18
131981		12.18	0.008	<0.2	1.56	19	<10	140	2.6	<2	2.04	1.5	19	24	174	8.18
131982		<0.02	0.010	<0.2	1.57	23	<10	140	2.6	<2	2.06	1.2	18	22	172	8.26
131983		11.30	0.007	<0.2	1.77	19	<10	1010	3.5	<2	2.94	2.3	22	19	93	6.47
131984 131985 131986		10.08 12.02 10.82	0.014 0.028 0.012	<0.2 <0.2 <0.2	1.70 1.47 1.29 1.30	22 43 34 32	<10 <10 <10 <10	80 90 320 160	3.2 1.7 2.2 2.3	<2 <2 <2 <2 <2	2.47 2.83 3.48 3.68	13.8 3.6 4.7 5.3	24 27 21 27	17 18 15 15	267 474 193 219	6.67 6.17 5.61 5.97
131987 131988 131989		10.74 10.02 11.08	0.014 0.042 0.092	<0.2 <0.2 0.5	1.50	76	<10 <10 <10	40	1.5 1.6	<2 <2 <2	2.60	1.2 <0.5	19	7	330	7.18 6.67
131990 131991 131992		1.16 11.38 11.96	<0.005 <0.005 0.074 0.095	<0.2 0.7 0.3	0.06 1.13 1.14	<2 109 162	<10 <10 <10	40 30 40	<0.5 1.9 1.7	<2 <2 <2	>25.0 3.50 4.01	<0.5 12.7 2.8	<1 27 21	1 20 20	12 478 143	0.24 7.94 6.56
131993 131994 131995		9.80 9.54 0.10	0.095	0.5 0.5 71.9	1.25 1.31 0.33	133 273 72	10 10 <10	30 30 100	2.1 1.6 <0.5	<2 <2 <2	3.95 3.21 0.29	1.5 3.2 0.7	23 17 2	11 15 21	209 256 >10000	6.21 5.79 1.44
131996		11.88	0.114	0.7	1.23	404	20	30	1.5	<2	2.31	<0.5	17	5	356	4.43
131997		14.68	0.101	0.5	1.13	310	10	40	1.2	<2	2.40	<0.5	16	9	271	4.69
131998		10.62	0.130	0.6	1.09	240	10	60	1.0	<2	2.18	<0.5	18	4	420	4.59



**EXCELLENCE IN ANALYTICAL CHEMISTRY** ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

#### To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 31-OCT-2005 Account: SPEGOL

Project: Galore Creek

	1															
	Method	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41						
	Analyte	Ga	Hg	к	La	Mg	Mn	Мо	Na	Ni	P	Pb	S	Sb	Sc	Sr
	Units	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample Description	LOR	10	1	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2	1	1
131959		10	<1	0.80	30	0.58	3070	12	0.03	4	2250	22	0.21	5	11	333
131960		10	1	0.67	60	0.24	1560	22	0.03	5	1040	10	0.33	<2	10	317
131961		10	<1	0.87	80	0.96	1700	5	0.04	7	1840	5	0.18	<2	12	385
131962		10	1	0.70	40	0.28	2550	15	0.02	8	1760	7	0.22	<2	10	367
131963		10	<1	0.65	10	0.25	315	25	0.02	4	1280	8	0.16	<2	9	299
131964		10	1	0.72	10	0.24	382	36	0.02	3	450	9 17	0.15 1.32	<2 <2	8 6	333 265
131965		10	<1	0.76	70	0.21	183	459	0.01	3 5	1620		1.52	~2 7	0 14	265
131966		10	1	0.93	80	0.40	164	44	0.01	5	2690 1370	117 11	2.37	<2	8	244 204
131967		<10	1	0.50	80	0.40	492	18	0.02	-		4		<2	° <1	204 4470
131968		<10	1	0.02	<10	1.60	32	1	0.01	<1	70		<0.01			
131969		10	1	0.45	20	0.53	1455	10	0.02	1	130	10	0.69	<2	10	151
131970		10	<1	0.50	90	0.59	1840	2	0.02	3	240	8	0.87	2	9	160
131971		10	<1	0.53	70	0.80	2400	2	0.04	3	740	7	0.78	<2	8	217
131972		10	1	0.55	70	0.80	2400	2	0.04	4	730	5	0.77	3	8	215
131973		10	<1	0.56	30	0.82	2300	2	0.03	2	910	6	0.52	<2	8	241
131974		10	2	0.55	20	0.55	1670	2	0.04	3	190	6	0.64	<2	6	167
131975		<10	<1	0.04	10	0.22	629	12	0.07	31	1210	10	1.28	10	1	94
131976		10	<1	0.54	20	0.46	1705	5	0.03	2	290	9	0.90	<2	4	148
131977		10	1	0.98	30	1.68	4020	1	0.04	14	2600	4	1.98	<2	17	261
131978		10	<1	0.84	50	1.60	2980	9	0.03	14	2760	6	2.68	<2	16	245
131979		10	1	0.87	80	1.55	2330	2	0.03	13	2390 2880	7 3	2.04 2.88	<2 <2	16 17	297 309
131980		10	<1	1.12	60	2.06	2270	2	0.03	14 13	2000	2	2.00	<2	17	295
131981		10	1	1.20	40	1.69	1730	1	0.03			2		<2 <2	15	295
131982		10	1	1.20	40	1.70	1745	1	0.03	13	3050	3	1.14 0.24	<2 <2	15	299 331
131983		10	<1	1.25	50	2.13	3100	<1	0.04	13	2830					277
131984		10	2	1.08	80	1.92	2450	3	0.03	11	2660	9	1.82	<2	15	
131985		10	1	1.03	20	1.74	2470	30	0.03	12	3030	8	1.96	<2	16	258
131986		10	1	0.79	20	1.66	3080	1	0.03	11	2840	2	0.97	<2	15	288
131987		10	1	0.72	30	1.65	3000	1	0.02	10	2700	8	1.07	<2	15	262
131988		10	1	1.30	20	1.86	1410	4	0.02	7	2910	8	3.44	<2	17	256
131989		<10	<1	0.68	20	1.90	1495	14	0.03	9	2780	18	4.58	8	15 1	241
131990		<10	1	0.03	<10	1.85	70	1	0.02	<1	110	3	< 0.01	<2	19	4570 236
131991		10	2	1.06	70	1.92	1375	1	0.02	15	2970	11	5.54	2		
131992		10	1	1.14	40	2.21	1725	2	0.03	14	2940	7	4.71	<2	16 15	186 236
131993		10	<1	0.95	50	1.29	1870	13	0.02	10	2810	14	4.72	2	-	
131994		10	1	1.10	40	1.37	1680	99 410	0.02	10	2680	22 155	4.65	<2	15 2	277 28
131995		<10	1	0.21	<10	0.14	224	410	0.04	3	150	155	0.59	152	2 10	28 98
131996		10	<1	0.99	10	1.01	1065	37	0.03	6	1420	14	3.89	3	10	
131997		10	1	0.89	20	1.29	1390	21	0.03	4	1660	13	3.34	<2	9 8	112 97
131998		<10	1	0.77	20	1.10	1350	30	0.05	7	1550	19	3.26	<2	ð	97



al L do d

11

# ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 31-OCT-2005 Account: SPEGOL

Project: Galore Creek

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Cu-AA46 Cu % 0.01	
131959 131960		0.06 0.03	<10 <10	<10 <10	334 313	10 <10	262 564		
131961		0.07	<10	<10	352	<10	418		
131962		0.02	<10	<10	268	<10	341		
131963		0.03	<10	<10	258	<10	401		
131964		0.03	<10	<10	167	<10	156		
131965		0.02	<10	<10	149	<10	49		
131966		0.02	<10	<10	330 373	<10 <10	62 137		
131967 131968		0.01 <0.01	<10 <10	<10 <10	373 11	<10	6		
131969		0.02	<10	<10	257	<10	336		
131970		0.06	<10	<10	193	<10	966		
131971		0.11	<10	<10	251	<10	701		
131972		0.11	<10	<10	251	<10	710		
131973		0.06	<10	<10	264	<10	170		
131974		0.15	<10	<10	289	<10	127		
131975		0.04	<10	<10	31	<10	89		
131976		0.06	<10	<10	197	<10	433		
131977		0.10	<10 <10	<10 <10	265 254	<10 <10	1105 323		
131978		0.06				-			
131979		0.05 0.09	<10 <10	<10 <10	265 269	<10 <10	714 894		
131980 131981		0.09	<10	<10	203	<10	319		
131982		0.11	<10	<10	287	<10	312		
131983		0.10	<10	<10	309	<10	536		
131984		0.08	<10	<10	288	<10	1750		
131985		0.07	<10	<10	233	<10	720		
131986		0.06	<10	<10	252	<10	827		
131987		0.05	<10	<10	263	<10	660		
131988		0.08	<10	<10	241	<10	223		
131989		0.02	<10	<10	187	<10	107		
131990		< 0.01	<10	<10	9 207	<10 <10	13 2040		
131991 131992		0.05 0.05	<10 <10	<10 <10	207 218	<10 <10	2040 521		
131992		0.05	<10 <10	<10 <10	191	<10	257		
131994		0.05	<10	<10	243	<10	422		
131995		0.05	<10	<10	11	<10	79	1.16	
131996		0.03	<10	<10	169	<10	67		
131997		0.04	<10	<10	134	<10	99		
131998		0.02	<10	<10	117	<10	79		



s. 4 (ko d

# ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

#### To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 31-OCT-2005 Account: SPEGOL

Project: Galore Creek

		WEI-21	Au-AA23	ME-ICP41	ME-ICP41											
	Method Analyte	Recvd Wt.	Au	Ag	Ai	As	в	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
Sample Description	LOR	0.02	0.005	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01
131999		12.36	0.097	0.8	1.23	216	10	40	1.1	<2	1.99	<0.5	19	8	466	4.53
132000		10.70	0.052	0.5	1.11	106	10	60	1.1	<2	2.30	<0.5	15	3	297	4.18
140501		13.00	0.010	<0.2	1.33	23	20	40	0.8	<2	2.55	<0.5	13	9	117	4.94
140502		11.40	0.012	<0.2	1.59	24	20	30	1.0	<2	1.44	<0.5	13	5	102	6.89
140503		9.94	0.027	<0.2	1.25	40	30	30	1.3	<2	2.32	<0.5	12	6	80	5.91
140504		12.58	0.102	0.9	0.91	137	20	40	1.2	<2	3.57	< 0.5	13 <1	4 1	410 2	4.34 0.07
140505		0.96	< 0.005	<0.2	0.08	10	<10	20	<0.5	<2	>25.0	< 0.5			412	3.76
140506		12.16	0.059	0.4	0.73	144	10	40	1.0	<2	2.19	< 0.5	12	3	412 1440	3.76 4.22
140507		13.40	0.086	0.9	0.85	174	10	30	0.9	<2	2.49	<0.5	16	5		
140508		11.42	0.048	0.5	0.89	143	10	30	0.8	<2	1.54	<0.5	13	10	393	3.84
140509		13.48	0.057	0.7	0.99	200	20	30	0.9	<2	1.75	<0.5	15	3	340	4.27
140510		8.68	0.073	0.6	1.21	223	10	50	1.0	<2	1.90	<0.5	16	12	281	4.65
140511		9.34	0.113	1.1	1.15	320	10	30	1.2	<2	2.40	2.3	18	3	632	4.83
140512		0.10	1.555	0.5	1.13	2400	20	20	<0.5	30	5.59	<0.5	74	24 7	128	3.14
140513		6.64	0.053	0.2	1.13	90	20	30	1.0	<2	1.80	<0.5	14		250	4.34
140514		10.82	0.017	0.2	1.38	23	30	50	1.6	<2	1.72	<0.5	16	2	290	5.44
140515		11.30	0.007	<0.2	1.35	18	20	50	1.4	<2	3.02	<0.5	10	8	279	4.72
140516		8.30	0.007	<0.2	1.49	13	20	70	1.2	<2	4.63	0.8	10	2	115	4.66
140517		9.18	0.020	<0.2	1.48	28	20	40	1.5	<2	3.35	<0.5	13	6	206	4.69
140518		7.60	0.061	<0.2	1.49	115	20	30	1.2	<2	3.33	<0.5	13	2	330	4.63
140519		<0.02	0.067	0.4	1.62	123	30	30	1.3	<2	3.62	< 0.5	14	6 1	329 276	4.74
140520		7.14	0.027	0.2	1.40	35	30	30	1.3	<2	2.76	<0.5	9 10	9	276 95	3.40 3.10
140521		13.56	0.007	<0.2	1.43	19	20	40	0.9	<2	2.04	<0.5		9		
140522		8.56	0.008	<0.2	1.37	22	20	30	1.0	2	1.82	<0.5	11	2	100	3.94
1		1														



4 1 1 2 2

# ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

#### To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 31-OCT-2005 Account: SPEGOL

Project: Galore Creek

		ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Method	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	Р	Pb	S	Sb	Sc	Sr
	Analyte Units			%		%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample Description	LOR	ppm 10	ppm 1	0.01	ррт 10	0.01	5	1 1	0.01	1	10	2	0.01	2	1	1
		10		0.01		0.01		•	0.01						-	
131999		<10	1	0.77	20	1.00	1235	30	0.05	7	1600	14	3.29	<2	6	109
132000		10	<1	0.68	20	1.01	1285	21	0.04	6	1520	13	2.20	2	6	113
140501		10	1	0.56	20	0.85	1095	3	0.04	5	1720	5	2.64	<2	5	108
140502		10	1	0.54	20	1.03	1110	2	0.04	3	1910	9	4.03	<2	5	88
140503		10	<1	0.60	30	0.63	1465	3	0.04	4	1520	5	3.12	<2	3	129
140504		<10	1	0.68	20	1.40	1540	29	0.05	5	1400	11	3.46	<2	6	148
140505		<10	<1	0.02	<10	2.01	23	<1	0.03	<1	50	<2	<0.01	<2	<1	5080
140506		<10	<1	0.57	20	0.82	1015	16	0.05	6	1130	14	3.14	<2	4	148
140507		10	<1	0.69	10	1.08	1040	193	0.03	4	1260	26	3.19	<2	6	149
140508		<10	<1	0.72	10	0.72	734	17	0.03	5	1240	10	3.08	<2	6	216
140509		<10	1	0.79	10	0.94	990	26	0.03	5	1340	13	3.14	<2	7	185
140510		10	1	0.66	20	1.18	1565	12	0.06	6	1400	16	3.01	<2	7	114
140511		10	<1	0.70	10	0.86	1780	33	0.04	4	1500	41	3.71	<2	6	127
140512		<10	1	0.05	10	0.27	770	9	0.07	25	1060	10	0.61	5	2	97
140513		10	1	0.63	20	0.57	1185	7	0.03	3	1080	14	2.69	<2	4	196
140514		10	1	0.62	20	0.66	1115	3	0.03	3	990	7	2.06	<2	4	277
140515		10	1	0.51	20	0.66	1620	4	0.02	2	1010	6	2.39	<2	4	291
140516		10	1	0.56	20	0.64	2140	3	0.03	<1	1020	4	1.95	<2	4	322
140517		10	1	0.55	20	0.71	1525	2	0.02	2	1020	3	2.87	2	4	343
140518		10	<1	0.60	20	0.83	1255	4	0.02	1	1200	12	3.18	<2	5	279
140519		10	<1	0.59	20	0.92	1380	7	0.02	2	1300	8	3.45	<2	6	300
140520		10	<1	0.63	30	0.71	758	2	0.02	2	1300	6	2.66	<2	4	254
140520		10	<1	0.61	20	0.81	403	5	0.03	2	1520	9	2.58	<2	6	250
140522		10	<1	0.57	10	0.89	408	3	0.00	2	1360	7	3.82	<2	7	136
140522		10		0.57	10	0.09	400	5	0.04	2	1300	'	0.02	~2	1	100
L		<u> </u>														



**Sample Description** 

131999

132000

140501

140502

140503

al I. I.a. I

Method

Analyte

Units

LOR

11

# ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 31-OCT-2005 Account: SPEGOL

CERTIFICATE OF ANALYSIS VA05089722

Project: Galore Creek

ME-ICP41 ME-ICP41 Cu-AA46 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 TI υ v W Zn Cu Ti % % ppm ppm ppm ppm ppm 0.01 0.01 10 10 1 10 2 <10 76 0.02 <10 <10 110 <10 98 <10 82 0.01 <10 51 173 <10 0.02 <10 <10 232 <10 55 <10 <10 0.02 <10 68 <10 <10 204 0.02 117 <10 61 0.01 <10 <10

140504	0.01	<10	<10	117	<10	61
140505	<0.01	<10	<10	4	<10	<2
140506	0.01	<10	<10	90	<10	60
140507	0.02	<10	<10	113	<10	75
140508	0.02	<10	<10	135	<10	47
140509	0.03	<10	<10	133	<10	70
140510	0.02	<10	<10	143	<10	99
140511	0.02	<10	<10	137	<10	173
140512	0.04	<10	<10	25	10	58
140513	0.01	<10	<10	143	<10	67
140514	0.02	<10	<10	175	<10	77
140515	0.12	<10	<10	202	<10	117
140516	0.07	<10	<10	185	<10	126
140517	0.07	<10	<10	176	<10	110
140518	0.02	<10	<10	204	<10	65
140519	0.02	<10	<10	206	<10	66
140520	0.06	<10	<10	132	<10	46
140521	0.23	<10	10	192	<10	22
140522	0.21	<10	10	240	<10	24



### **ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY**

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 1 Finalized Date: 5-NOV-2005 Account: SPEGOL

CER	TIFICATE VA0509128	34		SAMPLE PREPARATION	
			ALS CODE	DESCRIPTION	
	amples submitted to our lab in \	/ancouver, BC, Canada on	WEI-21 LOG-24 LOG-22 CRU-QC	Received Sample Weight Pulp Login - Rcd w/o Barcode Sample login - Rcd w/o BarCode Crushing QC Test	
18-OCT-2005. The following have access to JACK COTE JOE PIEKENBROCK	D data associated with this ce JIM MUNTZERT	ertificate: SCOTT PETSEL	CRU-31 SPL-21 PUL-31 SPL-21d PUL-31d	Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um Split sample - duplicate Pulverize Split - duplicate	

ANALYTICAL PROCEDURE	S
DESCRIPTION	INSTRUMENT
Au 30g FA-AA finish 34 Element Agua Begia ICP-AES	AAS ICP-AES
	DESCRIPTION

To: SPECTRUMGOLD INC. ATTN: JOE PIEKENBROCK #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Reset Com

8 · · · · · ·



**EXCELLENCE IN ANALYTICAL CHEMISTRY** ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 5-NOV-2005 Account: SPEGOL

Project: Galore Creek

CERTIFICATE OF ANALYSIS VA05091284

		WEI-21	Au-AA23	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Method Analyte	Recvd Wt.	Au-AA23 Au	Ag	AI	As	B	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
Sample Description	LOR	0.02	0.005	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01
140523		8.96	0.014	0.2	1.12	31	20	20	0.8	<2	1.42	<0.5	13	3	150	5.19
140524		11.10	0.021	0.3	1.00	26	10	20	0.7	<2	1.14	<0.5	14	8	368	4.47
140525		0.10	0.043	67.4	0.32	70	<10	90	<0.5	4	0.27	0.7	2	20	9990	1.35
140526		11.60	0.021	0.4	1.26	23	10	20	1.1	<2	1.92	<0.5	15	13	553	6.35
140527		10.60	0.019	2.3	1.34	23	10	50	1.3	<2	3.37	<0.5	12	12	176	5.73
140528		8.48	0.007	0.5	1.20 1.20	9 10	30 10	50 30	0.9 0.9	<2 <2	1.96 1.28	<0.5 <0.5	10 11	2 7	87 109	4.16 4.55
140529		6.58 1.24	0.011 <0.005	0.2 <0.2	0.03	6	<10	30 10	<0.9 <0.5	<2	>25.0	<0.5 <0.5	<1	<1	2	4.55
140530 140531		6.16	0.005	0.2	1.48	100	10	40	1.0	<2	1.04	<0.5	7	13	172	4.31
140532		2.20	0.032	0.2	1.62	21	10	40	0.9	<2	0.73	<0.5	15	16	667	5.03
140532		10.78	0.023	0.2	1.49	13	10	40	1.1	<2	2.46	<0.5	13	16	317	5.24
140533		9.54	0.012	0.2	1.49	13	<10	30	1.1	<2	5.25	<0.5	20	10	279	5.99
140535		9.04 9.02	0.003	0.2	1.11	3	10	20	1.1	<2	3.99	<0.5	20	15	316	5.12
140536		9.34	0.011	0.2	1.61	12	<10	40	1.0	<2	3.38	<0.5	8	17	289	6.14
140537		<0.02	0.016	0.2	1.56	18	<10	40	1.0	<2	3.32	<0.5	9	19	283	5.85
140538		8.16	0.009	<0.2	1.38	4	10	40	0.9	<2	3.44	<0.5	7	13	82	5.67
140539		9.22	0.011	<0.2	1.24	2	10	40	0.9	<2	4.26	<0.5	9	11	164	3.97
140540		7.80	0.011	<0.2	1.37	12	<10	40	0.9	<2	4.07	<0.5	10	12	84	4.40
140541		8.86	0.018	0.3	1.03	7	10	30	0.9	<2	4.61	<0.5	14	12	314	4.32
140542		8.76	0.014	<0.2	1.06	<2	10	30	1.2	<2	4.44	<0.5	14	10	369	4.58
140543		12.40	0.018	0.2	1.10	13	10	30	0.9	<2	4.71	<0.5	12	14	325	4.58
140544		<0.02	0.015	0.2	1.11	15	10	30	1.0	<2	4.79	<0.5	12	11	321	4.61
140545		6.16	0.016	0.3	1.02	16	10	40	0.8	<2	4.40	<0.5	13	17	260 277	4.40
140546		9.40	0.016	0.3	1.22	17 15	10 10	40 40	0.9	<2 3	4.24 4.55	<0.5 <0.5	15 12	11 12	381	4.75 4.56
140547		10.04	0.020	0.2	1.26				1.1							
140548		0.10	0.016	2.9	0.34	9	<10	100	<0.5	2 2	1.12 4.23	<0.5 <0.5	2 13	8 11	4430 240	1.14 4.03
140549		10.44	0.009	0.3	1.18 1.40	11 24	10 10	30 70	0.8 0.9	2 <2	4.23	<0.5	15	7	240	4.03
140550		7.52	0.011	0.2 <0.2	1.40	24 14	10	80	0.9	3	3.34	<0.5	15	11	135	3.63
140551 140552		9.30 6.74	0.007 0.014	<0.2 <0.2	1.30	9	10	110	1.3	2	1.72	<0.5 <0.5	14	13	213	5.10
140553		11.76	0.011	0.2	1.54	26	10	40	1.3	<2	1.83	<0.5	19	14	267	5.62
1405554		<0.02	0.011	0.2	1.46	16	10	30	1.2	2	1.72	<0.5	18	8	265	5.32
140555		11.00	0.013	0.2	1.41	21	10	70	1.2	<2	1.56	<0.5	16	16	261	5.13
140556		13.36	0.011	0.2	1.40	10	10	60	1.0	<2	1.40	<0.5	17	9	271	5.43
140557		10.78	0.015	0.3	1.10	13	<10	70	0.8	<2	1.54	<0.5	14	17	282	4.60
140558		9.72	0.011	0.4	1.38	14	10	50	1.0	<2	1.30	0.5	16	14	300	5.18
140559		14.26	0.021	0.8	1.32	12	10	60	1.0	<2	1.87	0.9	15	17	273	5.18
140560		11.40	0.007	0.2	1.22	15	10	80	1.1	<2	1.62	<0.5	8	7	110	2.76
140561		9.92	<0.005	<0.2	1.20	7	10	40	1.6	<2	1.79	<0.5	7	9	93	2.40
140562		12.70	0.009	<0.2	1.04	12	10	40	1.2	<2	1.64	<0.5	7	5	67	2.44



**EXCELLENCE IN ANALYTICAL CHEMISTRY** ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 5-NOV-2005 Account: SPEGOL

Project: Galore Creek

CERTIFICATE OF ANALYSIS VA05091284

		ME-ICP41														
	Method Analyte	Ga	Hg	к.	La	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sc	Sr
	Units	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	, ppm	ppm	%	ppm	ppm	ppm
Sample Description	LOR	10	1	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2	1	1
		10		0.01					0.01			-	0.01	-	•	· · ·
140523		10	<1	0.38	10	0.95	502	2	0.04	4	1480	13	5.06	<2	7	129
140524		10	<1	0.44	20	0.88	442	1	0.05	4	1380	12	4.51	<2	7	188
140525		<10	<1	0.20	<10	0.14	215	383	0.04	3	140	151	0.58	145	2	28
140526		10	<1	0.37	20	1.22	760	3	0.04	11	1780	10	5.05	<2	11	330
140527		10	<1	0.25	20	1.07	1145	2	0.03	6	2310	9	4.54	2	6	131
140528		10	<1	0.35	10	0.87	883	2	0.03	4	1220	9	3.00	<2	5	166
140529		10	<1	0.36	10	0.85	866	3	0.03	3	1130	10	3.25	<2	5	239
140530		<10	<1	0.01	<10	1.86	24	<1	0.02	<1	50	<2	0.19	<2	<1	5200
140531		10	<1	0.89	10	1.28	636	1	0.02	6	1490	11	2.07	<2	8	663
140532		10	<1	0.86	10	1.35	532	2	0.02	6	1530	10	2.23	<2	9	658
140533		10	<1	1.01	10	1.53	575	5	0.02	10	2190	11	2.67	<2	14	881
140534		10	<1	1.22	20	1.70	664	12	0.02	11	2600	11	5.80	<2	16	1125
140535		10	1	0.93	20	1.22	408	6	0.02	9	1720	9	5.03	<2	11	1015
140536		10	<1	0.84	50	1.56	548	40	0.02	8	1340	16	3.52	2	15	1210
140537		10	1	0.86	50	1.50	525	42	0.02	7	1280	17	3.51	<2	14	1195
140538		10	<1	0.59	20	1.16	549	15	0.02	7	1360	11	3.28	3	10	1215
140539		10	<1	0.60	20	1.11	617	12	0.02	5	1280	34	2.84	<2	8	1360
140540		10	<1	0.62	20	1.24	435	1	0.02	6	1340	6	3.15	<2	9	1145
140541		10	<1	0.62	10	1.02	695	1	0.03	5	1420	16	5.10	2	8	1080
140542		10	1	0.64	10	1.02	1145	2	0.03	6	1350	12	4.30	<2	8	1080
140543		10	<1	0.47	10	1.01	1375	5	0.03	8	1350	14	5.85	<2	8	1075
140544		10	2	0.47	10	1.02	1385	5	0.03	6	1370	12	5.94	<2	8	1075
140545		10	<1	0.56	10	1.12	1125	2	0.03	8	1380	11	5.70	2	8	1055
140546		10	1	0.55	10	1.14	1165	7	0.03	6	1420	15	5.87	3	9	1055
140547		10	<1	0.55	20	1.12	808	10	0.02	5	1330	11	5.43	<2	9	1185
140548		<10	<1	0.15	<10	0.08	225	402	0.03	2	310	6	0.63	2	<1	149
140549		10	1	0.37	10	1.16	886	6	0.03	5	1450	11	4.82	<2	9	902
140550		10	<1	0.35	10	1.44	1060	12	0.04	6	1670	8	5.13	<2	9	661
140551		10	<1	0.41	10	1.40	997	3	0.04	6	1690	17	3.60	2	10	507
140552		10	1	0.78	20	1.21	869	4	0.03	9	1710	22	2.10	2	12	645
140553		10	<1	0.89	10	1.22	1035	11	0.03	6	1740	14	3.27	2	11	837
140554		10	<1	0.84	10	1.19	989	10	0.03	6	1690	11	3.16	2	11	805
140555		10	<1	0.73	10	1.12	1005	5	0.03	13	1810	19	2.75	<2	12	600
140556		10	<1	0.78	10	1.20	839	8	0.03	8	1720	12	3.17	<2	11	519
140557		10	<1	0.42	10	0.93	731	11	0.03	6	1380	14	2.55	<2	9	458
140558		10	<1	0.41	20	1.17	1005	19	0.03	7	1500	15	2.73	<2	10	474
140559		10	<1	0.32	20	1.20	1400	21	0.03	7	1480	13	2.63	2	10	649
140560		10	<1	0.17	10	0.77	829	11	0.05	4	900	21	1.04	<2	5	237
140561		10	<1	0.18	10	0.61	724	1	0.06	4	770	15	0.90	<2	4	146
140562		10	<1	0.21	10	0.63	862	3	0.06	3	700	19	1.14	<2	4	137
		I														



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 5-NOV-2005 Account: SPEGOL

Project: Galore Creek

### CERTIFICATE OF ANALYSIS VA05091284

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
140523 140524 140525 140526		0.21 0.10 0.04 0.12	<10 <10 <10 <10	<10 <10 <10 <10	255 213 10 326	<10 <10 <10 <10	25 30 71 35	
140527 140528 140529 140530 140531		0.17 0.19 0.18 <0.01 0.11	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	281 196 194 4 254	50 30 40 <10 <10	27 28 37 <2 47	
140531 140532 140533 140534 140535		0.11 0.09 0.11 0.17 0.13	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	303 291 288 258	10 <10 <10 <10	46 49 48 37	
140536 140537 140538 140539 140540		0.11 0.11 0.07 0.06 0.08	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	308 302 241 212 264	<10 <10 <10 <10 <10 <10	46 45 39 51 44	
140541 140542 140543 140544		0.06 0.07 0.04 0.04	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10	181 219 206 206	<10 <10 <10 <10 <10	53 57 64 63	
140545 140546 140547 140548		0.04 0.13 0.15 0.01	<10 <10 <10 <10	<10 <10 <10 <10	186 224 227 6	<10 10 <10 <10	48 67 53 21	
140549 140550 140551 140552		0.11 0.12 0.10 0.22	<10 <10 <10 <10	<10 <10 <10 <10	160 148 123 267 261	<10 <10 <10 <10 <10	51 53 58 58 72	
140553 140554 140555 140556 140557		0.21 0.20 0.19 0.19 0.12	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	261 249 250 248 192	<10 <10 <10 <10 90	72 69 75 57 56	
140558 140559 140560 140561		0.16 0.11 0.12 0.11	<10 <10 <10 <10	<10 <10 <10 <10 <10	250 229 113 92 78	10 10 <10 <10	101 165 64 48 63	



**EXCELLENCE IN ANALYTICAL CHEMISTRY** ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 5-NOV-2005 Account: SPEGOL

VA05091284

Project: Galore Creek

**CERTIFICATE OF ANALYSIS** ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 WEI-21 Au-AA23 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 Method в Ba Be Bi Са Cď Co Cr Cu Fe Recvd Wt. Au Ag AI As Analyte % % ppm % ppm ppm ppm ppm Units pom DDM mag ppm kg ppm ppm **Sample Description** LOR 0.01 0.5 0.01 0.02 0.005 0.2 0.01 2 10 10 0.5 2 1 1 1 7 68 2.64 50 <2 1.84 0.5 8 10.20 0.006 < 0.2 1.08 4 10 1.0 140563 7 104 2.68 8 10 40 1.3 <2 1.81 < 0.5 6 0.005 <0.2 1.16 8.50 140564 < 0.5 1 0.04 <2 <10 <10 < 0.5 <2 >25.0 <1 <1 140565 1.14 < 0.005 <0.2 0.02 <2 1.93 < 0.5 7 5 214 2.55 9.52 0.010 0.2 1.18 6 10 40 1.3 140566 126 2.98 1.22 7 10 60 1.3 <2 2.01 < 0.5 8 9 140567 8.26 0.010 < 0.2 12 10 154 10 300 1.4 <2 2.86 <0.5 3.51 11.48 0.008 <0.2 1.16 7 140568 <2 < 0.5 13 13 199 3.46 2.91 8.78 0.010 < 0.2 1.13 11 10 140 1.3 140569 206 3.57 10 140 1.4 <2 3.01 < 0.5 14 11 < 0.02 0.014 0.2 1.16 5 140570 156 3.73 <2 3.99 < 0.5 13 13 0.2 1.18 23 10 140 1.2 10.66 0.048 140571 11 208 4.16 1.0 <2 3.51 < 0.5 13 1.17 15 10 150 140572 10.70 0.037 0.3 12 177 3.82 <2 2.59 <0.5 14 0.020 <0.2 1.40 15 70 150 1.2 140573 10.64 6.00 <0.5 172 11 80 3.70 20 <0.5 18 0.10 0.465 0.6 1.06 7290 50 140574 248 3.99 3.28 < 0.5 13 14 17 10 210 1.4 <2 10.22 0.024 0.3 1.62 140575 NSS 140576 9.88 NSS <0.5 11 14 228 3.75 <2 3.18 9.44 0.023 0.2 1.42 6 10 120 1.3 140577 8 226 3.56 3.56 < 0.5 11 5 10 90 1.9 <2 7.56 0.016 0.2 1.10 140578



EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 5-NOV-2005 Account: SPEGOL

Project: Galore Creek

CERTIFICATE OF ANALYSIS VA05091284

Un	hod	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	lyte	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sc	Sr
	its	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm
	)R	10	1	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2	1	1
140563		10	<1	0.26	10	0.70	1010	2	0.06	4	790	18	0.76	<2	4	193
140564		10	<1	0.20	10	0.66	875	7	0.07	4	780	14	0.51	<2	4	173
140565		<10	<1	0.01	<10	2.04	25	<1	0.02	<1	40	<2	0.14	<2	<1	5160
140566		10	<1	0.20	10	0.64	862	9	0.06	2	780	13	0.44	<2	4	208
140567		10	<1	0.28	10	0.74	819	1	0.07	4	870	15	0.51	<2	5	196
140568		10	<1	0.19	10	0.85	842	5	0.04	5	1270	8	0.85	<2	6	483
140569		10	<1	0.18	10	0.82	875	2	0.04	4	1240	6	0.64	<2	6	427
140570		10	<1	0.19	10	0.84	907	2	0.04	6	1300	7	0.66	<2	6	444
140571		10	<1	0.22	10	0.94	1020	13	0.04	5	1260	7	1.48	<2	7	470
140572		10	<1	0.21	10	1.08	1105	8	0.04	4	1260	3	0.89	3	7	488
140573		10	<1	0.29	10	0.98	892	3	0.04	6	1310	5	0.25	<2	6	349
140574		<10	<1	0.05	10	0.23	669	12	0.08	32	1240	13	1.33	11	2	100
140575		10	1	0.26	10	1.14	1055	2	0.04	5	1360	4	0.14	<2	8	453
140575 140576 140577		NSS 10	NSS <1	0.20 NSS 0.44	NSS 10 20	NSS 0.98	NSS 1015	NSS 3	0.04 NSS 0.05	NSS 6 4	NSS 1280 1260	NSS 29 2	0.09 0.05	NSS <2 <2	NSS 7 8	NSS 312 433



EXCELLENCE IN ANALYTICAL CHEMISTRY

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: SPECTRUMGOLD INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 5-NOV-2005 Account: SPEGOL

Project: Galore Creek

### CERTIFICATE OF ANALYSIS VA05091284

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
140563 140564 140565		0.07 0.12 <0.01	<10 <10 <10	<10 <10 <10	83 106 2	<10 <10 <10	81 77 <2	
140565 140566 140567		0.12 0.14	<10 <10 <10	<10 <10 <10	97 131	<10 <10 <10	80 73	
140568 140569 140570		0.15 0.14 0.14	<10 <10 <10	<10 <10 <10	180 192 196	<10 <10 <10	61 63 63	
140571 140572		0.13 0.13	<10 <10	<10 <10	195 217	<10 <10	56 63	
140573 140574 140575		0.22 0.05 0.21	<10 <10 <10	<10 <10 <10	229 33 234	<10 <10 <10	77 91 80	
140576 140577 140578		NSS 0.20 0.07	NSS <10 <10	NSS <10 <10	NSS 228 185	NSS <10 <10	NSS 76 61	