Eve#4060600

DIAMOND DRILLING REPORT

ON THE

STEWART PROPERTY

NELSON MINING DIVISION, BC MAPSHEETS: 082F/3 and 82F/6 LATITUDE 49⁰16'N LONGITUDE 117⁰18'E

for

EMGOLD MINING CORPORATION 1400 - 570 GRANVILLE STREET VANCOUVER, BC V6C 3P1

by

PERRY GRUNENBERG, P.Geo. Consulting Geologist

GEOLOGICAL SURI March 2006 Gold Commissioner's Office BRANCH

SUMMARY

The Stewart Property contains several gold, molybdenum, zinc and tungsten prospects located near the town of Salmo, in southeastern British Columbia. The property lies predominantly within lower Jurassic Elise Formation (Rossland Group) mafic volcanics and associated mid Jurassic and younger intrusive rocks.

The Stewart Property was worked by a number of operators from 1974 to 1998. Emgold Mining Corporation acquired the Stewart Property in 2001. Previous work on the property includes geology, geochemistry, geophysics, trenching and drilling. The drilling was concentrated on the Stewart Moly Zone, with smaller programs carried out on the North and South Craigtown Grids (formerly known as the Minnova north and south grids). Emgold originally optioned the property in order to evaluate and expand the known gold mineralization and to test additional areas for gold.

In 1980-81 Shell Canada Resources Ltd. carried out a detailed evaluation of the property that included diamond drilling. The results of their work indicated that the property was host to ore grade concentrations of molybdenum within the Phase I and Phase II breccias. The most extensive zone of molybdenite mineralization is within the Phase II breccia and forms a podiform, vertically dipping zone. It is within this Phase II breccia zone that Shell Resources reported drill results outlining 204,125 tonnes grading 0.370% MoS₂. In 2005, the significant increase in molybdenum prices created renewed interest in the molybdenum potential of the property.

During October 2005, Emgold completed 404.47 metres of diamond drilling in five holes completed within a zone of molybdenum mineralization previously outlined by Shell Canada. This drill program was designed to verify the results of drilling by Shell, and to obtain further knowledge of the breccia body that hosts this mineralization.

Twinning of diamond drill holes indicates that potential molybdenum grades from drill results obtained by Emgold are lower than the historical results from Shell Mineral's exploration program. This may significantly impact the overall grade previously reported by Shell Minerals. However, drill hole SM05-05 was drilled down through the breccia body allowing a larger volume of the mineralized body to be sampled. This drill hole returned 0.313 % MoS₂ over the entire drill hole length of 75.29 metres. This compares well to the average grade determined by 4 drill holes completed by Shell Minerals, of 0.370 % MoS₂.

Additional modeling of the historic and current drilling should be undertaken by Emgold to validate the molybdenum resource within the mineralized breccia zone, as well as to determine the potential for a larger low grade enveloping deposit within the host quartz monzonite porphyry rocks. Results from this drill program are encouraging and justify additional exploratory drilling to expand knowledge of the promising molybdenum mineralization in both the Phase II and Phase I breccia zones and surrounding porphyry host rocks.

	Page
SUMMARY	. 1
1) INTRODUCTION	. 4
2) LOCATION AND ACCESS	. 4
3) PHYSIOGRAPHY	4
4) HISTORY	. 6
5) WORK DONE BY EMGOLD IN 2005	. 6
6) CLAIM INFORMATION	7
7) GEOLOGY	9
8) DRILLING	16
9) CONCLUSIONS AND RECOMMENDATIONS	. 21
10) REFERENCES	23
11) COST STATEMENT	. 24
12) QUALIFICATIONS	25
APPENDICES	26
APPENDIX I – DIAMOND DRILL CORE LOGS	

TABLE OF CONTENTS

APPENDIX II - TAG NUMBER / SAMPLE INTERVAL CHART - CERTIFICATES OF ANALYSES

TABLES

,

+---

TABLE I – CLAIM INFORMATION	Page 7
TABLE II – DRILL HOLE INFORMATION	16
TABLE III – SUMMARY OF DRILL RESULTS	19

FIGURES

FIGURE 1 – LOCATION MAP	5
FIGURE 2 – CLAIM AND DRILL HOLE LOCATION MAP	. 8
FIGURE 3 DRILL HOLE PLAN MAP	18
FIGURE 4 – GRADE COMPARISON 81-9 TO SM05-01	20
FIGURE 5 – GRADE COMPARISON 81-3 TO SM05-02	21

1) INTRODUCTION

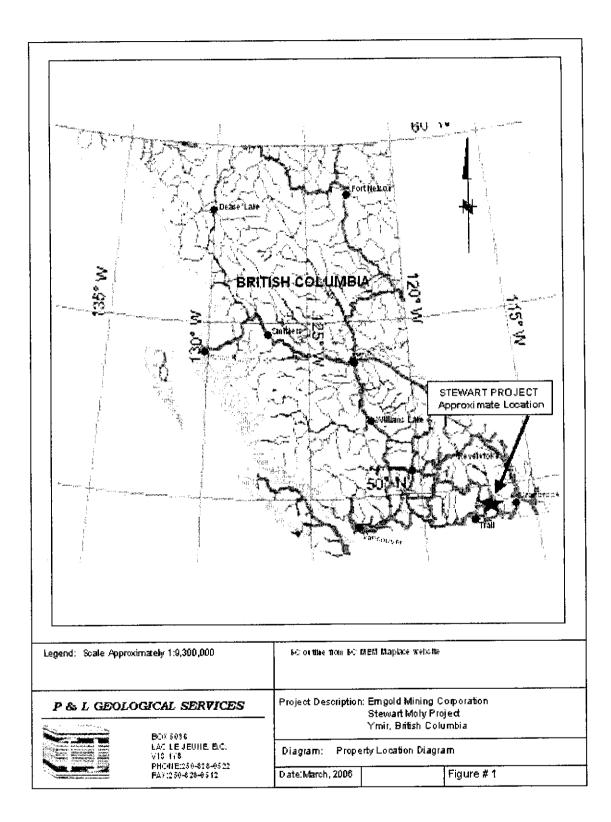
The Stewart Property contains a number of gold, molybdenum, tungsten and zinc prospects, located near Salmo in southeastern British Columbia. Emgold Mining Corporation acquired the property from vendors Jack and Eric Denny in mid 2001.

4

The Stewart Property was worked by a number of operators from 1974 to 1998. Previous work on the property was concentrated on the Stewart Moly Zone and defined zones of significant molybdenum and gold (+/- copper) mineralization. Emgold originally optioned the property in order to evaluate and expand the known gold mineralization and to test additional areas for gold. The significant increase in molybdenum prices in 2005 created interest in the molybdenum potential of the property. A small diamond drill program was recommended to confirm and expand the molybdenum mineralization discovered by previous workers. Emgold completed a 5-hole diamond drill program totaling 404.47 metres. The diamond-drilling program is summarized in this report.

2) LOCATION AND ACCESS

The Stewart Property is located 7 kilometres north of Salmo, and directly west of Ymir, in the Nelson Mining Division of southeastern British Columbia (Figure 1). The claims are centred at latitude 49°16'N and longitude 117°18'E within mapsheets 82F/3 and 82F/6.


Access to the Stewart Property is either via the Erie Creek Road, 4 kilometres west of Salmo on Highway 3, or by the Stewart Creek Road, 4 kilometres north of Ymir on Highway 6. A number of logging and old mining roads provide access throughout the claims. These roads are in various conditions, some being maintained and others being overgrown with brush and alder.

3) PHYSIOGRAPHY

The Stewart Property is located in an area of rugged terrain. Topography on the property is steep with elevations ranging from 750 metres to 1,950 metres. Outcrop exposure is generally limited, but ridge crest outcrops are fairly common. The lower slopes and valley bottoms have extensive deposits of till.

Several portions of the claim area have been recently logged, with the remainder being covered with first and second growth forest consisting dominantly of conifer stands, but also some deciduous stands and minor brush fields.

The climate is moderate. Precipitation can occur throughout the year, but is lightest during the summer months. Most of the property is snow covered during December to April, with the highest regions not melting off until June or July. Temperatures typically range from -15° to 20° C annually.

4) HISTORY

The Stewart Property is located in an area of much early mining activity, with the Ymir, Erie, Sheep Creek and Nelson districts being sites of extensive exploration and production for over 100 years.

Recorded work on the Stewart Property began with surface exploration and development of the Arrow Tungsten showing by Premier Gold Mining Co. in 1942. Tungsten mineralization was identified over a 1000 foot (300 metre) strike length, with samples up to a few feet wide of over 1% WO₃. In the late 1960s and early 1970s, the property was explored for copper by Quintana and Copper Horn. Prospectors Eric and Jack Denny staked the property in 1978, and Shell Canada, followed by Selco, explored the property for molybdenum. Most of this work (including extensive drilling) was focused on the Stewart Moly and Breccia Summit areas. Large areas of the property were also soil sampled on a wide grid, and covered by airborne magnetic and impulse EM surveys.

In 1980-81 Shell Canada Resources Ltd. carried out a detailed evaluation of the property that included diamond drilling. The results of their work indicated that the property was host to ore grade concentrations of molybdenum. Shell reported a resource of 204,125 tonnes grading 0.370% MoS₂ calculated from results of their drilling on the property.

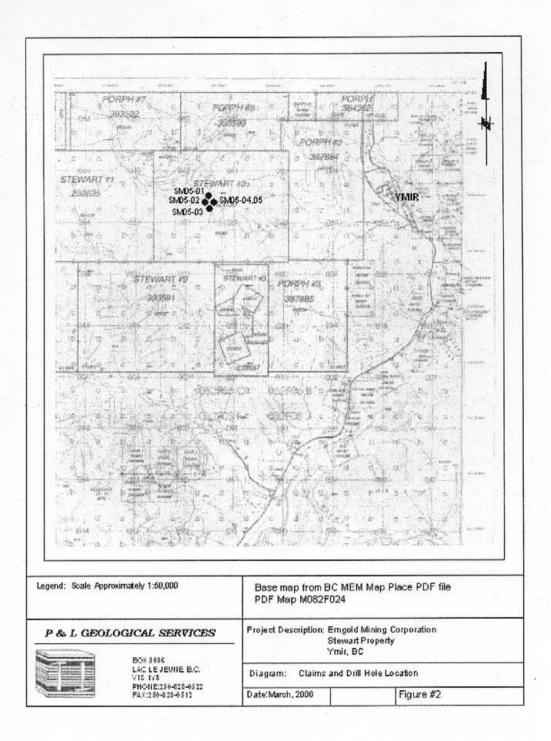
From the mid 1980s to the mid 1990s, several groups explored the property for gold. US Borax and Lacana conducted geochemical surveys, concentrating in the Rest Creek area. Minnova, followed by Cameco, explored the Craigtown Creek area with geochemistry and geophysics (induced polarization and magnetics). Cameco drilled four core holes into one of the targets identified by this work. The found extensive anomalous gold in altered andesite, diorite and feldspar porphyry (values in the low 10s to 100s of ppb, maximum 24,854 ppb over 1 metre in a quartz-sulphide vein). In 1996, Orvana Minerals conducted geologic mapping, rock, soil and moss mat sampling, and a ground magnetic and VLF-EM survey.

The most recent work done on the property prior to Emgold's option was in 1997 by Orvana Minerals. The Craigtown Creek grid area was extended and covered by soil geochemistry and geological mapping. Also road construction to the ridge between the south and main forks of Craigtown creek was completed in order to access drill target areas defined by previous work.

5) WORK DONE BY EMGOLD MINING CORPORATION IN 2005

In 2005, Emgold Mining Corporation conducted a diamond drill program in an effort to verify and possibly expand the molybdenum resource reported by Shell Canada Resources Ltd. A 5-hole diamond-drilling program was completed on the property in October 2005. A total of 404.47 metres of NQ size diamond drilling was completed. Work was carried out by a six person crew working out of the town of Salmo. Fieldwork was supervised by the author.

6) CLAIM INFORMATION


5

The Stewart Property is located within the Nelson Mining Division and consists of nine modified grid and six two post claims to total 127 units (Figure 2). Claim information is listed in Table I.

TABLE I CLAIM INFORMATION

Claim Name	Units	Record No.	Anniversary (Expiry) Date
PORPH	15	384362	March 7
PORPH 2	15	387884	July 6
PORPH 3	12	387885	July 4
PORPH 4	1	387886	July 3
PORPH 5	1	387887	July 3
PORPH 6	1	387888	July 10
FAIRVIEW L2903	3 1	234612	March 15
FREE SILVER L2	2902 1	232633	April 18
ROYAL L5322	1	232634	April 18
STEWART I	20	232635	April 28
STEWART 2	20	232636	April 28
STEWART 3	8	232637	May 8
STEWART 5	3	232697	November 28
STEWART 6	16	232698	November 28
STEWART 7	12	232699	November 28

7

7) GEOLOGY

Geology and mineralization of the Stewart Property is well described by Fredericks and Thomson (1998), and is summarized below:

REGIONAL GEOLOGY

The immediate region is underlain in the east by Paleozoic clastic and carbonate sedimentary rocks of the Kootenay Terrane, and in the west by Mesozoic volcanic rocks of the Quesnel Terrane. In this region, the stratigraphy of both the Kootenay and Quesnel Terranes have been folded and faulted along an east-west compressional axis. They are intruded by felsic volcanic rocks that range in age from Jurassic to Tertiary. Coeval dioritic intrusions are common in the mafic andesitic volcanic rocks of the Jurassic Rossland Group. These tend to be relatively small bodies. Extensive late Mesozoic intrusive activity produced the widely distributed Nelson Group of intrusives of granitic to dioritic compositions. Eocene age, typically potassic (monzonite) intrusive rocks of the Coryell Group are also widely distributed in the region. Young (Tertiary) dykes and sills of rhyolite and felsite are common, and some small, more mafic intrusives are present. Much older clastic sedimentary rocks of the Proterozoic Aldridge (Belt) Supergroup outcrop extensively to the east.

PROPERTY GEOLOGY

The Stewart Property is underlain by sedimentary and volcanic rocks of the Jurassic Rossland Group, and by intrusive rocks of various younger ages (Figure 3). The oldest rocks are of the Elise Formation, the volcanic component of the Rossland Group. The Archibald Formation, which is the basal unit of the Rossland Group and composed of fine clastic sediments, outcrops west of the Stewart Property. The volcanic rocks of the Elise Formation are basaltic to andesitic in composition, tend to porphyritic flows, breccias, pyroclastics and subvolcanic intrusives. A fairly significant component of this formation includes fine-grained, equigranular to porphyritic/aphanitic diorite/andesite. Phenocrysts of feldspar, augite and hornblende are common in some of the units.

Overlying the Elise Formation is the Hall Formation (also Jurassic Rossland Group). These rocks are mostly argillite, siltstone, fine-grained sandstone and minor conglomerate. They are rarely limy, but are commonly siliceous. Compositionally, the rocks are very heterolithic, with a variety of clasts, including a high percentage of volcanic fragments. The Elise and Hall Formations are folded into a broad north-south trending syncline (Hall Creek Syncline) that runs through the property and extends both north and south over a 20 kilometre strike length. This north-south structural feature is the strongest one on the property.

A variety of intrusive rock types and ages have intruded the older rocks. These belong to three major groups. The older group consists of coeval diorite intrusives in the andesite pile of the Elise Formation. These tend to be fine to medium-grained, equigranular and weakly porphyritic. They range from very weakly to moderately magnetic. They probably are not very large, occurring as dykes or sills a few metres thick. Flow lineation in feldspar or hornblende phenocrysts is seen near the intrusive contacts in drill core. The next set of intrusive rocks is the Cretaceous Nelson intrusive suite, mostly quartz monzonite on the property, but also monzonite, granite and diorite. These tend to be large, in places composite, intrusive masses outcropping most extensively in the northern portion of the property, in the Stewart and Craigtown Creek drainages. Smaller stocks occur in the western portion of the property. Rocks of these intrusives are generally medium-grained, equigranular to porphyritic. They seem to range from weakly to fairly strongly magnetic. Porphyry molybdenum mineralization on the property is thought to be related to these intrusives.

Younger intrusives of the Coryell Suite (Eocene or later?) are also monzonitic, but tend to be a little more quartz-poor and alkaline than the Nelson rocks. They are typically biotitic. They may be equigranular or porphyritic. They occur in both the east central and west central portions of the property. What are probably the youngest intrusives are rhyolite, latite and minor basalt sills/dykes that intrude the older Rossland rocks and both Nelson and Coryell intrusives. These cross-cutting intrusives are aphanitic to weakly porphyritic (rhyolite and latite may have quartz eyes), generally strike north-south and are widely scattered on the property. The rhyolite intrusives commonly have distinct flow banding near their contacts with the country rock.

The dominant structural grain on the property is north-south. The Rossland Group stratigraphy generally strikes north-south, as does the Hall Creek Syncline. Northwest and northeast faults and shear zones are known on the property; they appear to be significant controls to mineralization. The common young rhyolite dykes and sills also strike north-south and dip steeply. All of these features indicate that the deformation occurred within a stress regime with an east-west compressional axis that was probably long lasting and contemporaneous with accretion onto the North American continent.

CRAIGTOWN CREEK AREA GEOLOGY

Orvana conducted mapping in 1996 and 1997 along road cuts and stream drainages in the Craigtown Creek area. The following geological summary is from Fredericks and Thomson, 1998, and is reproduced below as this area contains important gold mineralization.

The Elise (Jurassic age Rossland Group) Formation volcanics underlie a large portion of the Craigtown Creek area, and hosts a significant part of the known mineralization. They strike generally north-south and dip moderately to steeply east. Lithologies of the Elise Formation are texturally highly variable. The rocks constitute essentially an andesitic volcanic pile, but include flows, clastics and intrusives. Colour varies from light to dark grey, green or almost black. Most of the rocks are either porphyritic/aphanitic andesite flows or tuffs. Feldspar, hornblende and augite phenocrysts are common. The tuffs vary from ashes to lapilli or even cobble tuffs. Rarely, bedding is visible in ashy beds. Dioritic, porphyritic coeval dykes and/or sills are also common. These commonly have flow lineations preserved in the phenocrysts, near the contacts with the country rock. Compositionally, rocks of the Elise Formation are seen to vary from andesite to gabbro. Some of the rocks are basalt, containing up to 25% dark green to black augite phenocrysts. In the western portion of the area, a narrow belt of fine-grained tuffaceous volcanics is exposed in road cuts. These rocks lie between the granite and diorite intrusives, and are hornfelsed. They possibly represent a small sliver of the Archibald Formation (rather than the Elise Formation), otherwise not represented in the area, caught between two intrusives. Alteration in the Elise Formation is widespread and commonly consists of a propylitic assemblage, with less common potassic, carbonate and silicification.

Overlying the Elise Formation on the east are argillite, siltstone and tuffaceous rocks of the Hall Formation. These rocks also strike north-south and dip steeply. They are dark grey, tan to black and thinly bedded. They nave not been identified as calcareous in the Craigtown Creek area although they are in other areas of the property. They are often graphitic. Mineralization of these rocks in the study area seems to be restricted to the contact aureole around the "West Moly Intrusion", which is mostly further east. This mineralization is limited to disseminated pyrite/pyrrhotite and minor small quartzsulphide veins. Alteration in this aureole includes silicification and hornfels (possible potassium metasomatism or silica flooding).

In the western portion of the area a variety of intrusive rocks occur. These probably represent in part a lobe of Nelson (Cretaceous) granite, quartz monzonite and diorite and extend eastward from the Bonnington pluton up Craigtown Creek. The granite is light speckled grey, pink and tan, medium to coarse-grained and unaltered. The diorite is medium to dark grey, medium to fine-grained, and tends to be more mafic in the west. It is generally unaltered to weakly propylitically altered. The monzonite and quartz monzonite outcrop extensively in the western portion of the grid area. This rock is medium to dark grey, medium-grained and generally equigranular to weakly porphyritic. It tends to be more quartz-rich in the southern portion of its distribution. It is generally unaltered or only weakly propylitically altered, except near its contact with the country rocks, where propylitic alteration is stronger. This rock intrudes the volcanic rocks of the Elise Formation.

Small monzonitic feldspar porphyry intrusive plugs occur in the Craigtown Creek area. These rocks were originally thought to belong to the Nelson intrusive group (Cretaceous). However, Hoy and Dunne (1988) suggest that rocks similar to these, including the Silver King porphyry, may be synvolcanic. One of these porphyries outcrops east of the 1996 grid on Anomaly Ridge, where Cameco drilled four holes. Other bodies are certain to underlie other areas, and the float is very common. These rocks are porphyritic, with 10-30% feldspar phenocrysts ¼ to 1 cm long, set in fine-grained, tannish grey groundmass. In places, anhedral quartz eyes constitute a few modal percent. Petrographic study indicates that the feldspar crystals are plagioclase. They are cream coloured and euhedral. In places they demonstrate a flow lineation. Mafics are mostly hornblende and minor biotite, and constitute a minor portion of the mode. The rocks often contain disseminated pyrite and in places are cut by stockwork quartz veinlets.

Fine-grained, felsic monzonitic intrusives occur in several portions of the Craigtown Creek area. These rocks may be from the same magmatic event as the feldspar porphyry intrusive described above, as they are compositionally similar. These rocks are light tan or grey, with pinkish hue in places, and contain only minor mafic minerals (generally 5% biotite). In places, especially near the ridge crest, brecciation is strong in these rocks. These appear to be intrusive breccias and show several cross-cutting relations. They are altered and mineralized, and are associated with anomalous Au and Cu geochemistry in both soils and rocks. Several percent magnetite is a common component, both as fine to medium-grained disseminations and as stockwork veinlets, with or without quartz. Potassium feldspar and quartz veining and flooding are present in places. These rocks probably represent elongate intrusives, perhaps 100 metres wide by 400 metres long, which were emplaced along the contact between the Elise Formation and the body of medium-grained monzonite. The strong northwest elongation implies structural control.

Latite and quartz latite dykes and small plugs occur in the Craigtown Creek area. They are probably Tertiary in age; they intrude the Rossland Group and the diorite and mozonite intrusives. The dykes are only a few metres in width and have strikes that range from northwest to northeast with steep dips. They are usually not altered or mineralized. However, a small plug of a trachytic latite and quartz latite porphyry with quartz veinlet stockwork and anomalous Au (>1 g/t) outcrops in the area. This plug was intruded along the same northwest striking zone of weakness that parallels the contact between the monzonite intrusives and the volcanics.

Rhyolite dykes are common on the Stewart Property, and a few of these traverse the Craigtown Creek area. They are also probably Tertiary, as they intrude the Rossland Group and the diorite and monzonite intrusives. They generally strike north-south and dip near vertically. They are a few metres in thickness. Texturally, the rhyolite is aphanitic, with minor quartz eyes in places. They have been mapped and logged as tuffs, flows or intrusives by other workers. Based on flow lineations, and chilled lower and upper contacts as seen in core, we believe that they are later intrusives. They are little altered except for some minor late quartz-carbonate veinlets. Some of them contain disseminated pyrite; in fact some earlier workers concluded that they are the source of the Au soil geochemical anomalies at Craigtown Creek. In our experience, they contain very little Au except where accompanied by quartz veinlet stockwork and pyrite.

Minor lamprophyre or porphyritic basaltic dykes, sills, and small plugs are present in the area. They are dark grayish brown, unaltered, not magnetic, and aphanitic, with minor biotite phenocrysts in places. They have distinct chill margins along both contacts in core. They also intrude the Rossland Group and the diorite and monzonite intrusives. They are probably late and unrelated to mineralization.

MINERALIZATION

The following mineralization summaries are extracted from Fredericks and Thomson (1998) and Turner (1981).

Mineralization on the property is widespread and varied. Included are porphyry Mo (and Cu?) with high grade breccia (Stewart Moly), contact/skarn related Mo and W (Arrow Tungsten), porphyry stockwork Au/Cu (Craigtown Creek), stratabound sediment hosted Au-rich sulphide (replacement manto or exhalative, i.e. Arlington Mine, Gold Hill?),

quartz-pyrite-arsenopyrite stockwork in sediments (Trixi V), sediment hosted Ag-Zn-Pb (Free Silver), and quartz-pyrite veins with gold (Craigtown Creek). Additionally, disseminated pyrite is common in several rock types, including andesite, argillite rhyolite and diorite/monzonite intrusives.

Molybdenum

Two intrusive breccia types are represented on the property. These have been named Phase I and Phase II breccias. The most extensive zone of molybdenite mineralization found to date is within the Phase II breccia and forms a podiform, vertically dipping zone. Mineralization is primarily fine grained disseminations of molybdenite within the matrix but also occurs as selvages associated with quartz veinlets transecting fragments, and as fracture fillings within hornfelsed and skarnified fragments. It is within this Phase II breccia zone that Shell Resources reported drill results outlining 204,125 tonnes grading 0.370% MoS₂.

Gold, Copper

In the Craigtown Creek area, six types of mineralization are known. These include: 1) disseminated and fracture filling pyrite and/or pyrrhotite, +/- chalcopyrite, 2) quartz-magnetite veinlets, 3) quartz veinlet stockwork, 4) pyrite veinlets, 5) quartz-carbonate veins, and 6) quartz-sulphide veins. The first four types are associated with potentially economic, bulk tonnage style gold and copper mineralization. The last type could be associated with the same system that produced the former mineralization types, but is a distinctly different target type that also has economic potential.

Pyrite and pyrrhotite as disseminated grains and fracture fillings is common in the Craigtown Creek area. This type of mineralization is observed in all of the rock types mapped in the area, with the exception of the granite intrusive and basalt dykes. Traces of chalcopyrite are present in places with mineralization, where it occurs in intrusive or volcanic rocks, usually in association with shearing, brecciation or quartz veinlets. Propylitically altered quartz monzonite and diorite generally has only 0.5 to 2% sulphide. Andesite typically has more sulphide; 2-3% in propylitic rocks and 5-10% in silicified rocks, in relative proportion to the amount of alteration. Potassically altered intrusive and volcanic rocks have less sulphide, generally in the 0.5 to 4% range. This type of sulphide is also very common in feldspar porphyry. In one area of the grid, disseminated and fracture-filling pyrite and pyrrhotite in andesite tuff consistently yield 1-2 g/t gold in rock samples.

Quartz-magnetite veinlets are common in the north-northwest trending contact zone between the felsic monzonite intrusives and the Elise volcanics. This zone has strongly anomalous Au and Cu in soils. The host rocks are usually the intrusives and less commonly the volcanics. They are very rarely exposed in outcrop, mostly being seen in float or talus. The veinlets range from <1mm to 5mm in thickness, constitute 2-20% of the rocks and in places constitute a stockwork. Two or three stages of veining are visible in some hand samples; at least one stage is quartz only. Malachite stains are present in

places, though the rocks rarely contain sulphide. Where sampled on the surface, rocks containing this type of mineralization contain anomalous Au (100 to 300 ppb range) and Cu (200 to 500ppm range).

Quartz and quartz-pyrite veinlet stockwork was observed in feldspar porphyry float in several places, and in the small latite plug mapped in the southern portion of the northwest striking zone of alteration and anomalous geochemistry that bisects the central portion of the grid. The rocks hosting this stockwork generally are moderately silicified, and contain several percent disseminated pyrite. Pyrite may also have been a component of the veinlets in some samples, but has been oxidized to limonite. This mineralization represents the potential for discovery of a large tonnage Au deposit, as several samples have returned Au values >1 g/t. This mineralization may represent more than one stage, as some rock samples contain high Au and low Cu; others have high Cu with high Au.

Pyrite veinlets in mafic andesite-basalt contain highly anomalous Au values in the central portion of Minnova's southern grid, east of Craigtown Creek. Dark green to black augite porphyritic mafic andesite or basalt is exposed in a few small outcrops, subcrop and float. Petrographic study indicates that this rock is propylitically altered and fragmental. It typically contains a few percent disseminated pyrite. In a couple of small outcrops, vague pyrite veinlets and clots are present. These vague veinlets have northeast orientations. Samples of this material have run in the 8 to10 g/t Au range.

Quartz-carbonate veinlets are present in both the Bonnington Pluton monzonite-diorite intrusive rocks and the Elise volcanics. They seem to occur in sheared, weakly altered (propylitic) outcrops. Shear directions are either northeast or north-south, with near vertical dips. Minor amounts of pyrite and or magnetite are present in the host rocks. Samples of these rocks have weakly anomalous Au and Cu.

Quartz-calcite-sulphide veins occurring in Elise volcanic rocks were intersected in one of the 1994 Cameco drill holes. They range from 10-30 cm wide and contain mostly white quartz and calcite, with 10-30% sulphide (pyrite, pyrrhotite and minor chalcopyrite). One of these veins contains 24,854 ppb Au. They appear to have high enough grade potential to be considered as targets, even in an underground mining situation. They are not known to outcrop anywhere. It is possible that the northeast striking Au in soil anomalies located on the grid north of Craigtown Creek are related to this type of mineralization. These anomalies are fairly narrow and linear appearing to be derived of relatively narrow veins or structures. Veins like this have been demonstrated to occur around porphyry type mineral systems in other important mining camps in British Columbia.

ALTERATION

The following alteration summary is taken from Fredericks and Thomson (1998).

Various types of alteration are known on the Stewart Property. In the area of the porphyry molybdenum occurrences phyllic and potassic alterations are reported by earlier workers. Silicification is common in various rock types. Propylitic alteration of intrusive

and volcanic rocks is widespread on the property. In the Craigtown Creek area, the focus of work in 1996 and 1997, alteration types observed include propylitic, silicification, carbonate, potassic and skarn.

In the Craigtown Creek area propylitic alteration is common in andesitic volcanic rocks of the Elise Formation. Patchy, pervasive epidote and chlorite tint the rocks green. Fractures in the Elise volcanics have fillings, coatings or selvages of these minerals. Intrusive rocks, including monzonite and diorite, also commonly display pervasive to fracture-controlled propylitic alteration, where mafic crystals have altered to chlorite and/or epidote. This alteration is not as ubiquitous in the intrusive as it is in the volcanic rocks. The propylitic alteration may be related to the margins of the Bonnington intrusive rocks that invade from the west, and the later fine-grained monzonite plugs that intrude the Elise/Bonnington contacts.

Silicification is intense within the Elise Formation andesite near Craigtown Creek. These rocks typically have a mottled, bleached colouration. Silicification is pervasive, and mafic minerals are entirely chloritized. The silicification is usually accompanied by disseminated pyrite or pyrrhotite. It is also coincident with anomalous soil and rock geochemistry (Au, Cu, As) in places, and therefore is assumed to be a function of the mineralization system. On the surface, these silicifed rocks tend for form small, iron-stained ridges and knobs with sparse vegetation. They appear to be associated primarily with northwest structures, also possibly intrusive contacts and northeast structures. On the ridge crest, silicified rocks appear to extend 100 metres east of the saddle where several northwest structures are mapped. This is also within 100 metres of an intrusive contact where potassic alteration is present.

Carbonate alteration is present in places in the andesite of the Elise Formation. This alteration can be either pervasive or veinlet/fracture controlled. Where pervasive, it tends to be apparent only when the rocks are subjected to HCl acid, or with petrography. Petrographic study indicates that most of the carbonate is ferroan dolomite and is generally a late alteration product. A few outcrops were located containing small veinlets of calcite, commonly associated with north-south or northeast shearing. In the north Minnova grid area, a northeast trending zone of carbonate alteration, bleaching and pervasive hematite/limonite traverses the hillside just downhill and east of the Cameco drill holes. This zone is approximately 20 metres wide.

Potassic alteration is present in places in brecciated and veined fine-grained felsic monzonite intrusive rocks along the Bonnington Pluton – Elise Formation contact. This alteration is fairly weak, and consists of pinkish to grayish flooding and veinlets of potassium feldspar. Quartz +/- magnetite veinlets are commonly associated with this alteration.

Skarn alteration was observed in two locations in the Craigtown Creek area. A small outcrop of green calc-silicate skarn was found just off the western end of the 1996 grid. This rock contains green pyroxene, brownish garnet, and black amphibole (+/- chlorite). Similar skarn was found in float near the east end of the old road running up the north

side of the North Fork of Craigtown Creek. The protolith is probably andesitic fragmental volcanic rock.

8) DRILLING

During October 2005, Emgold completed 404.47 metres of diamond drilling in five holes completed within a zone of molybdenum mineralization previously outlined by Shell Canada. This drill program was designed to verify the results of drilling by Shell, and to obtain further knowledge of the breccia body that hosts this mineralization.

The Stewart Molybdenum Property was drilled during the early 1980s by Shell Minerals and Selco Inc. This work outlined three breccia zones that contain significant molybdenum mineralization. In 1980, Shell diamond drilled 3 holes and returned a best intercept of 57 metres grading 0.46% MoS₂. An additional 16 holes were drilled in 1981 by Shell Minerals, and 4 by Selco in 1983. The results of this drilling are summarized in the BC Ministry of Energy and Mines Minfile #082FSW229 Report which states that "the (Phase II) breccia zone contains 204,000 tonnes of 0.37% MoS₂". Reports by Selco indicated the potential for a porphyry style molybdenum deposit adjacent to this Phase II breccia zone. The historic resource calculation reported here is not NI 43-101 compliant and must not be relied upon for investment purposes.

In order for Emgold to verify the results of previous drilling by Shell Canada, several holes were place to twin holes drilled by Shell. Drill holes SM05-01 and SM05-02 were drilled to twin Shell holes 81-9 and 81-3 respectively. Drill hole SM05-03 was drilled to cross the breccia host structure in the opposite direction of previous drilling to further assess the orientation of the body. Drill holes SM05-04 and SM05-05 were drilled within the core of the mineralized breccia body for analysis and molybdenum grade assessing. Drill hole SM05-04 was discontinued at a shallow depth due to difficult drilling conditions

Drill hole information is provided in Table II. A plan of the drill layout is shown in Figure 3.

Hole #	UTM	UTM	Azimuth	Dip	Length
	Northing	Easting			(m)
SM05-01	5458970	0480799	157°	-45°	138.07
SM05-02	5458904	0480732	140°	-45°	92.35
SM05-03	5458874	0480771	322°	-50°	85.65
SM05-04	5458901	0480765	055°	-60°	13.11
SM05-05	5458897	0480764	047°	-55°	75.29

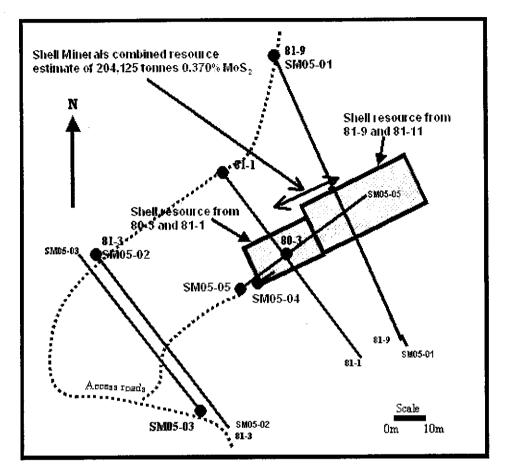
TABLE II DRILL HOLE INFORMATION

Drill core was removed from each drill site at the end of each shift. All drill core was logged at a secure facility in Salmo. Following drill core logging and sample layout, the

core was split using a standard manual core splitter, and, for some intervals by using a diamond saw. One half of the core was then placed in a sample bag labeled with an assay tag number and the second half returned to the core box with its location marked with the same assay tag number.

The core to be assayed was shipped by trucking company from site directly to ACME Labs Ltd. in Vancouver, BC. All sample preparation was done at the laboratory by their staff.

Acme is currently registered with ISO 9001:2000 accreditation. The International Standards Organization (ISO) adopted a series of guidelines (ISO 9000 to 9004) for the global standardization of Quality Assurance for products and services. A company seeking accreditation must implement and maintain a quality assurance system that is compliant with one of the three applicable models (i.e. ISO 9001, 9002 or 9003). Some of the aspects specifically addressed in a quality assurance system include:


- Responsibility of management in defining and achieving quality goals,
- Contract review to ensure customer needs are understood and met,
- Procurement of supplies and services capable of delivering the desired level of quality,
- Handling of material supplied by the customer to ensure integrity,
- Controlling processes to ensure consistency of quality,
- Inspection and testing to ensure that all work meets or exceeds quality criteria,
- Correction and prevention of non-conformities (errors),
- Training of staff, and
- Statistical analysis to ensure quality criteria are met.

Acme Labs utilized standards and duplicate analysis of samples as part of their quality assurance. The certificates of analysis indicate re-assay or duplicate analysis with the prefix "RE". Standards submitted during the analysis of samples are prefixed "STANDARD". The laboratory identifies and remedies situations where the analysis of duplicates or standards is not within allowable levels of variation.

Perry Grunenberg personally monitored procedures for sample collection and delivery to courier in either Salmo or Castlegar, BC. From point of collection until delivery to the courier, the samples were under complete control of Sultan Minerals contactors.

The assay laboratories catalogue all samples and assure a complete chain of custody of each sample through the analytical process. At Acme Labs the samples were analyzed by the labs Group 1F-15 analysis that includes 37 elements by ICP methodology. In the Group 1F-15 analysis a representative sample is crushed and pulverized to 95% passing 150 mesh. A split of 15 gram is leached in hot Aqua Regia. The resulting solution is analyzed by ICP-ES and ICP-MS. The lab reports that solubility of some elements will be limited depending on mineral species present. Samples that returned elevated levels of molybdenum were further analyzed by group 7AR analysis where the sample pulp is further leached and analyzed by ICP-ES.

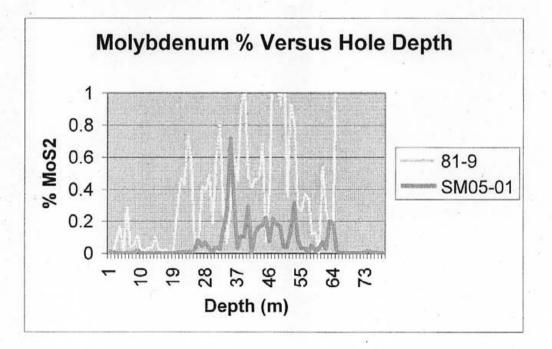
Drill Results

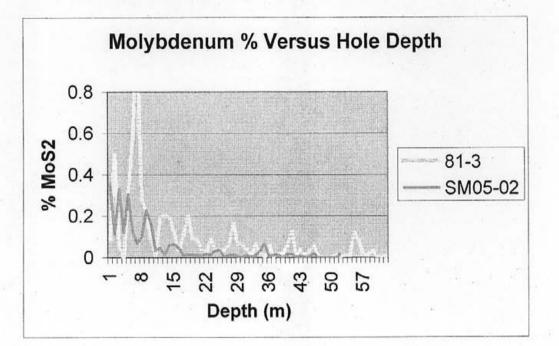
Results of Emgold's recent drilling are summarized in Table III.

	SUMMARY OF DRILL RESULTS							
HOLE NO	FROM (m)	TO (m)	WIDTH (m)	MoS2 (%)				
05SM-01	1.00	138.70	137.70	0.051				
Including	46.70	107.10	60,40	0,110				
Including	59.10	62.30	3.20	0.449				
05SM-02	0.00	92.35	92.35	0.059				
including	0.00	26.30	26.30	0.130				
including	0.00	16.15	16.15	0.189				
05SM-03	0.00	85.65	85.65	0.041				
including	66.40	83.80	17.40	0.088				
and	40.00	55.70	15.70	0.068				
and	32.65	36.88	4,23	0.067				
and	16.00	17.00	1.00	0.180				
05SM-04	0.00	13.11	13,11	0.118				
including	10.90	12.00	1.10	0.292				
05SM-05	0.00	75.29	75.29	0.313				
including	37.85	73.76	35.91	0.597				
and	0.00	20.50	20.50	0.091				

TABLE III SUMMARY OF DRILL RESULTS

Note: Results above presented as MoS_2 % calculated from Mo% for consistency with historic exploration results.


The most promising molybdenum results were returned from Hole SM05-05. This hole returned 0.313% MoS2 from surface to 75.29 metres, including 35.91 metres of 0.597% MoS2. This drill hole was drilled through the host breccia body parallel to the apparent strike of the body. This allowed a continuous sample of mineralized core for analysis of molybdenum content. The results from this hole indicate that the molybdenum content compares favourably to the results reported by Shell Minerals historic drilling in the mineralized breccia structure.


Holes SM05-01 and SM05-02 were designed to twin two of the historic drill holes completed by Shell Minerals. Plots of molybdenum percent versus hole depths are provided in Figures 4 and 5. The holes completed by Emgold generally returned lower values than those obtained by Shell Minerals drilling. This may be due to the differences of analysis technique, combined with the non-uniformity of the breccia body that hosts the mineralization.

Overall, the indicated potential molybdenum grades from drill results obtained by Emgold (especially hole SM05-05) compare well to the historical results from Shell Minerals exploration program.

Drill holes SM05-02 and SM05-03 were drilled in opposing azimuths to assist in determining the dip angle of the host breccia body. The result of this drilling indicates a steeply dipping body. This correlates with the orientation calculated and reported by Shell Minerals for the Phase II breccia.

FIGURE 4 – GRADE COMPARISON 81-9 TO SM05-01

FIGURE 5 - GRADE COMPARISON 81-3 TO SM05-02

9) CONCLUSIONS AND RECOMMENDATIONS

The Stewart Property lies within very prospective geology and hosts a variety of mineral occurrences. Previous work on the property defined zones of significant molybdenum and gold (+/- copper) mineralization. Emgold optioned the property in order to evaluate and expand the known gold mineralization and to test additional areas for gold, as many of the better molybdenum and tungsten anomalous areas were not historically tested for gold. In 2005, Emgold concentrated on the historically assessed molybdenum potential of the Phase II breccia outlined by Shell Minerals.

Twinning of diamond drill holes indicates that potential molybdenum grades from drill results obtained by Emgold are lower than the historical results from Shell Minerals exploration program. This may significantly impact the overall grade previously reported by Shell Minerals. However, drill hole SM05-05 was drilled down through the breccia

well to the average grade determined by 4 drill holes completed by Shell Minerals, of 0.370 $\%\,MoS_2.$

Additional modeling of the historic and current drilling should be undertaken by Emgold to validate the molybdenum resource within the mineralized breccia zone, as well as to determine the potential for a larger low grade enveloping deposit within the host quartz monzonite porphyry rocks. Results from this drill program are encouraging and justify additional exploratory drilling to expand knowledge of the promising molybdenum mineralization in both the Phase II and Phase I breccia zones and surrounding porphyry host rocks.

Respectfully submitted,

Perry Grunenberg, P.Geo.

10) REFERENCES

CARPENTER, T., and GRANT, B., 1985; Stewart Project (10138) Report on Activities and Results from 1984: BC Ministry of Energy and Mines Assessment Report.

DANDY, L., 2002; Geological and Geochemical Report on the Stewart Property, BC: BC Ministry of Energy and Mines Assessment Report

FREDERICKS, ROBERT, T., and THOMSON, I., 1997; Report of 1996 Geological, Geochemical and Geophysical Exploration Program, Stewart Property, BC: BC Ministry of Energy and Mines Assessment Report.

FREDERICKS, ROBERT, T. and **THOMSON, I.**, 1998; Report of 1997 Geological, Geochemical, and Physical Work Program, Stewart Property, BC: BC Ministry of Energy and Mines Assessment Report.

HOY, T. and ANDREW, K., 1989; Geology of the Nelson Map Area, Southeastern British Columbia: BC Ministry of Energy, Mines and Petroleum Resources, Open File 1989-11.

HOY, T. and ANDREW, K., 1989; The Rossland Group, Nelson Map Area, Southeastern British Columbia: BC Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1988, Paper 1989-1.

HUMPHREYS, N., 1992; Final Report on the Geology, Geochemistry and Trenching on the Denny Prospect, Cameco Corp.: BC Ministry of Energy and Mines Assessment Report #22829.

HUMPHREYS, N., 1993; Report on the Diamond Drilling on the Denny Prospect for Cameco Corp.: BC Ministry of Energy and Mines Assessment Report.

11.0COST STATEMENTEmgold Mining CorporationStewart Claims Diamond Drilling1 August - 24 November 2005

General Cost

Food & Accommodation, 2 pers., 34.5 mdays @ \$30.03		\$ 1,035.87
Rental Equipment		
Pickup Trucks, 28 days @ \$62.50	\$ 1,750.00	
Field Office	500.00	2,250.00
Fuel		573.30
Supplies and Sundry		795.72
Report Preparation		4,600.00
Total General Cost		\$ 9.254.89
Diamond Drilling Cost		
Saleries & Wages: 2 pers., 30.5 mdays @ \$370.29		\$ 11,293.85
Benefits @ 20%		2,258.77
Casual Labour		100.00
Advance Diamond Drilling Ltd., 404.47m @ \$112.22		45,388.13
Mob/Demob		8,881.97
Rock Saw		339.73
ATV		50.00
Westarm Truck Lines		234.98
West-Gate Cat and LowBed		5,663.51
Assays and Analyses - Acme Labs:		
226 Core for 37-element ICP and Au @ \$33.60	\$ 7,593.99	
4 Rejects for W @ \$8.71	37.28	
5 Rejects for W and Mo @ \$17.42	93.20	
21 Rejects for Mo @ \$8.71	182.91	7,907.38
General Cost Apportioned (30.5/34.5 * \$9,254.89)		8,181.86
TOTAL DIAMOND DRILLING COST		\$ 90,300.18

Reclamation

Saleries & Wages: 2 pers., 4mdays @ \$370.29	\$ 1,481.16
Benefits @ 20%	296.23
West-Gate Cat and LowBed	2,789.49
General Cost Apportioned (4/34.5 * \$9,254.89)	 1,073.03
TOTAL RECLAMATION COST	\$ 5,639.91

Summary

Diamond Drilling	\$ 90,300.18
Reclamation	5,639.91
Grand Total	\$ 95,940.09

24

12) QUALIFICATIONS

I, Perry Grunenberg, hereby certify that:

- 1) I am an independent Consulting Geologist with P&L Geological Services having an office at 3728 Ridgemont Road, Lac Le Jeune, British Columbia, V1S 1Y8.
- 2) I am a graduate of the University of British Columbia with the degree of Bachelor of Science in Geology (1982).
- I am a member of the Association of Professional Engineers and Geoscientists of British Columbia (Registration No. 19246) and a Fellow of the Geological Association of Canada (Membership No. F5203).
- 4) I have practiced my profession in North America since 1982, having worked as an employee and consultant for major mining corporations, junior resource companies and BC government ministries.
- 5) This report is based upon a personal examination of company and government reports pertinent to the subject property. I personally managed and conducted work performed by Emgold Mining Corporation on the Stewart Property in 2005.
- 6) I have prepared all sections of this report as well as the illustrations. Sources of information are noted on the illustrations.
- 7) In the disclosure of information relating to title of the optioned claims I have relied on the information provided to me by Emgold Mining Corporation and the property vendors. I disclaim responsibility for such information.
- 8) As of the date of the certificate, I am not aware of any material fact or material change with respect to the subject matter of this report that is not reflected in this report.

March 20, 2006 P.Geo. Lac Le Jeune, B.C. Consulting Geologist

APPENDIX I

DIAMOND DRILLING CORE LOGS

EMGOLD MINING CORP- Stewart Moly Project Geological Log Hole - ID: SM 05-01 Page / of 6

GEOLC INTE		LITHO			VEINING/MINERALIZATION				
From (m)	To (m)	CODE	LITHOLOGY BRIEF	ALTERATIONS	>, Vein Gangue Minerals	Ore Minerals,%	Angle tca	Abundance of veins/ft	Notes
0	3,05	2	Casing.						
									·
3,05	58,10		Feldsoar Meggenust Porphyry	-strong iron unide to 9m,		1-2% disso	4		
			Feldspar Negocryst Porphyry 3 to 10% Espar megacryst,	patchy to 11.5m.	- few 1-2 cm	atz broken, r	$4s+y, 40^{\circ}$	Ivn/m.	
			5-15mm, enhedral to	- core is all hard,		Ľ,			
			rounded subhedrol K-spor	pervasive silicification.				······	
			rounded subhedrol K-spor 5-10% matiks, mostly Holende, 2-3	- green pervasile color, sericitic.					
			mm enhedrol grains, evenly	Sericitic.					
			distributed, initial grains, evenly distributed, initian bistite 80% initiation 60 - 70% guartz with plug interstitial, grany zmin grains, white to	- minor hiebs purplish second biofite from mafics. ur - mafics all to chlorite,	ary				
			<u> </u>	biotite from matics.	· · · · · · · · · · · · · · · · · · ·				·
••••			with plug interstitial, granul	ur - mofics all to chlorite,		 			
			Z min grains, white to	dark green.	, <u> </u>				
			-patchy alterations (silica, Kalt.	- aparent pervosive weak propylitic > sericitic > weak to strong silicification pervosive	•			······································	· · · · · · · · · · · · · · · · · · ·
			-patchy alterations (suice, Kalt.	propylitic > sericitic ->					· · · · · · · · · · · · · · · · · · ·
			in places. Possible different	bleak to strong silicitication					
		· · · · · · · · · · · · · · · · · · ·	in places. Lossible different	E L I I L L		11	12	0 115° 1	1.1217.1
			granite phases, or alterations. No contacts Visible	- Sadium cobaltinitrate staining indicates week, patch	- weat subt	e grey gtz st	$\frac{1}{1000}$	m, TD, early	fall a Veinr
			100 CONTACTS VISIBLE	potassium alterations	Y				
				0 05-151 54 marshi	·····				
				9,05-15,1 strong seric tsilica altin					
				- Very minor Venna	at 10 6 - 0 + 2 2		25°		ch/margins
				- Acid mure Activity	at 10,6 - 972 20 at 1/m-972,10	an 20th Crs Di	30°	<u> </u>	
				15.1-22.8 weak to most	near 15m - SI	the fine in	Ke masses	fer pringe	Very Vuggy course py
	1			sericite, chloritic matrice,		1	F		1
		· · · ·		Kupar phenos > service					
				22,8 to strong service - sile 25,2 t kalt	4. C	2018. bleb spi	habrite.		
				125,2 ± K'alt					

EMGOLD MINING CORP- Stewart Moly Project Geological Log Hole - ID: SM 05-01 Page 2 of 6

1

......

GEOLOGICAL INTERVAL		LITHO				VEINING/MINERALIZATION					
From (m)	To (m) CO	CODE	LITHOLOGY BRIEF	ALTERATIONS	>, Vein Gangue Minerals	Ore Minerals,%	Angle tca	Abundance of veins/ft	Notes		
305	58.12 co.			- sulpharstained fractures,							
<u> </u>			at 25.7- 3 cm felsic dykelet,	some rusty to 23m.							
			45°tca	26.0-31.2- pmkish core,							
	┝────┤		A 25 PC 0 AL	altd? Fspars - pinkish							
j	+		e 35.85 - 2cm felsich, cet, 45° e 36.05 - 2cm felsic dyklet, glassyalta, 45° tes	large phenocrysts.							
	<u> </u>		@ 30.05 - 2cm + eisic dykelet,	- minor secondary garnet m small blobs purplish color,	asses,	·					
			giassyalia, 45°tcs	small blobs purplish color,					····		
<u> </u>	h						11.	-			
			Core recovery 95-100% - competent thoud except for your for where weathered	- minor chloritic fractures	- Minor Pyris	ic fracture,	thin Coat	ingr.			
			from the dealer of the start	31,2-35,28-strong Serie (green) - Silica ± Kspar?							
			Tor white Fra where weather a	alt o							
— —	† †				assed 11 + too						
			* overail maly contents	- C 31.5 -0.5cm band purple 37-39 - increased pervasive	Carnet 40 Car	/			·		
<u> </u>			Very but, maybe up to 0.1%	Seric - silica t kspar alterati							
			Over I'm sections? after	obliterates textures, section	× · · · · · · · · · · · · · · · · · · ·						
			40.00					· · · · ·			
	·			chl-carb on fractures. 38:5-40:5-blebby garnet (pu	*/						
			e 42.5 - 3 cm felsic dikelet. 50	38,5-40,5 - blabbie an et (au	Latit blake)						
				Clessy garner pu				· · ·			
				C 39.8 - X-a	t gtz - Icm gre	daure auto	Icn white	- 1 h. I. 45	0		
					n h h h h h h h h h h h	1 and carls	7000 000000	95 ey 30°			
				41-44.5 increased Serie -	/	- There					
				41-44.5 increased serie- silicantto with Dis-Icm	- grey otz	vnl+s have	fine nis	V. to 3% of	Vn17.?		
				pyrite bands /units.		(vc.y.v	1/ fun Vn	11-1			
					C 4/m- Fine o	rev banding.	moly?, -	2mm			
			· · · · · · · · · · · · · · · · · · ·	44.5-483 1. Creamy	-grey gtz 0 4/m-fine o 3-0.5 cm py	bands, 30° t	ca and 5	p°tca.			
			······	colored pervasive (K'alt)	- very fine sp	ecs disr mol	(c.1%),	in patchy Kn	Harcus		

Ś

EMGOLD MINING CORP- Stewart Moly Project Geological Log Hole - ID: <u>SM05-01</u> Page <u>3</u> of <u>6</u>

	DGICAL RVAL	LITHO		ALTERATIONS		VEINING	MINERALIZA	TION	
From (m)	To (m)	CODE	LITHOLOGY BRIEF	ALTERATIONS	>, Vein Gangue Minerals	Ore Minerals,%	Angle tca	Abundance of veins/ft	Notes
<u> </u>	58136	n hone of)	- stair refor Kot not					
· · · · · · · · · · · · · · · · · · ·	l		- Fracturing in rack and	Conclusive - Nouris hours	047.2- silica-	mole stringe	+ 2Mr1,50°	darkorey f.	۹
		<u>-</u>	aterations increasing moli-	Serie + Silica . , phyllic?)	e 47.2 - silica - 47.0 - 47.1 - py e 49.7 - may - si - few grains	mostite blebsa	ions fractu	re, 40° W Py	I mola
			silica stringer unit into	48-49,5- mod-strip serie	@49.7-moly-si	lica stringers.	weak bry	prinfills, 5%	moly over 5 cm
			fractures opprex. 40-50°tca.	49,6-49,8 crean-silica	- few arains	maly disn			· · · · · ·
	<u> </u>			If spar alt in envelope to	0	, í			
	 			Silver pack - recover blaza	garret				
				51.8-52.7- strong seric	<u> </u>				l
·	}			alteration, miner spece m	Jy py.			L	
			· · · · · · · · · · · · · · · · · · ·	<u> </u>	55.9-9-mostr	inger 20° tea	, dk are	1, t. 3.	
,	<u> </u>	· _ ·		53-58 patchy silca - secu	- ene brene ly			l 	
			· · · · · · · · · · · · · · · · · · ·	() - () _ () _ ()	57.7 - X-C Ich	gv/+s 30'	00,100-4	a mara	2% over 50
	├ ───			58-581	- mol dissemina	te, t.g., 5%,	noly		
58,10	67.9		Breccia.						<u> </u>
					······································	Salaalie	- 1124	1% 58.10-	7(120
····			Fragment supported to weakly	-Variably a tercal fragmont mostly sericific t silica		Jeneem C	Porkati	in quartz ric	- 61.20
			-q. matrix supported, arey dense -q. matrix with lesser white	- horfelsed purplish f.g.	<u>}</u>	·······		111 90001 2110	<u> </u>
			quartz matrix, predoniciontly	Sed inentary frags > Inc	<u></u>		+		
			angular 2-5cm alt d granitic	seament aig to =gs = 2no			+	<u>}</u>	<u> </u>
			fragments with lesser (10-15%)		ZZY 3cmg+z	lood a loop of the			<u>}</u>
			fine grained green to purplish	58.4-	58,60 - strong	pogs, sear o		7% 12/ 42/ 59	dva 20cm
			horn flight rounded (seds) fragme	$-\frac{1}{590-591}$	+ locm white g	11 50 too			1
				591-59.6	diss. moly 1=	R% at 2 0m	1/4 to 20	Va a core	+
			* Variable moly as fig diss	59,6-60,0	strong moly m	priv lo	Peore ove	x 4 cm	
			and stringers silica-moly, to	CI-CI.9	strong moly J	ay matin	fine Qrow	TANS COMP	PY >5% Mol
			>15% in Dem sections, ~ 1%		1	$1/ \cdot \cdot$	1		
			through threesin zone		1	1			

EMGOLD MINING CORP- Stewart Moly Project Geological Log Hole - ID: <u>SM05-01</u> Page <u>4</u> of <u>6</u>

1

	GEOLOGICAL INTERVAL			ALTERATIONS		VEINING	MINERALIZ	INERALIZATION		
From (m)	To (m)	CODE	LITHO CODE	LITHOLOGY BRIEF	ALTERATIONS	>, Vein Gangue Minerals	Ore Minerals,%	Angle tca	Abundance of veins/ft	Notes
ļ	ļ		620-65,3 - little to no .	62-65 - strong seriet	· · · · · · · · · · · · · · · · · · ·					
	L		Drecciation, few fractures	at the said the same	-fracture films	Py-mois-7	12 3.5%	mals ?		
	<u> </u>		J py-gtz-main infills	645- COOTSE grashic Q-F		1. /		· ·		
				intergrowth over 20c	m.			<u> </u>	· · · · · · · · · · · · · · · · · · ·	
	<u>}</u>		65.4-660-higher & hornfelord	66,5-66,6- strong moly	matrix precisia-	20%, 100 7 213	<u>, 1,170, 5</u>	20 moly over	50cm	
			sed fragments	645- coarse graphic O-E intercrowth over 20c 66:5-66:6- strong mole 67:2-67:3- strong mole	matrix, 10% ove	lucm	<u> </u>	ļ		
67.9	69.3		Educe Dela			· · · · · · · · · · · · · · · · · · ·			ļ	
- <u>-</u>	10 (()		Felsic Dyke	shafter ?	<u> </u> −		Ì	<u> </u>		
}			fine grained, light great ocream, siliceous, dense hard	few specks - late donse quartz fractur	Wolg III	<u></u>	3	<u></u>	↓	
			= icres war was say to t	- late donse quartz tractur	e in Fill (crackled	per contract	<u>,</u> ,,,		<u> </u>	
		_	- Icregular uppir so tact - lower entet sheared - chl -	- stran chloritic stick and	}		<u>+</u>			
ļ			I moly 40°t ca	-strong chloriticslips over 12 cm at niver contact,	Dossible multime	hear sur faces	- Thursd C is	4/113		
			······································				<u> </u>			
69,3	89.3		Breccia	- patche arean and crean						
			- matrix supported of previous	- Patchy green and crean						
}			pressie, same rection in to	alterations -	1-2% blen/ (3,)	Water Lang DY 4	1. 11-1	NY 10 - 178		
·			O.S. W Little or no Derectorian	·	l		L			
<u>}</u>			intel much porphyry	70-70,6- strong maly - f.	9. Distrix 5-6	12				
┝	<u>}</u> }		-more prontunce angular	71,5-73,9- Strong maly-	F.g. matrix U 2	Hz, Ver, 9. 5	105.651, 37	ey was, an for	5% moly	
<u> </u>			areuria tratural areas people	73.9-75.1- mod to stron	p f.g. moly mat	trx, more frag	mentr, les	- ina trix - 2-	BY maly	
<u> </u>	} ─ · · - · · - 		- lesser homeland sectionation	e 77:4- locuatz	me tis may no	triy 2-3%			+	
[F. g. fragen 153	2715-785- continued 5	pod, So Tca.	4 20 0 051	+			
				113-10,3- Continued 3	11. n. 16 31121 - 11. 12/10	<u> WYX, ストンルー</u>				
			* 3-5% mal, arec 1-2 in section	·····					· [
L			us f.g. specs in silicenus man	יוא.	+		1			
Ľ										

EMGOLD MINING CORP- Stewart Moly Project Geological Log Hole - ID: SM 05-01 Page 5 of 6

,

	GEOLOGICAL INTERVAL		тно	ALTERATIONS	VEINING/MINERALIZATION							
From (m)	To (m)	CODE	LITHO CODE			LITHOLOGY BRIEF	ALIEKATIONS	>, Vein Gangue Minerals	Ore Minerals,%	Angle tca	Abundance of veins/ft	Notes
			78.5- 89.3 - Jest Pressing									
			Fured Sure crackled silice	- W02 no	ted by black	who near Z	9m - nut	all cure the	Contractor			
			gravitic with fine stringers	- continued out chy green		, <u></u> ,						
			Soil lesser masses of grey	and cream serie altr.	· · · · · · · · · · · · · · · · · · ·			· · · ·	<u> </u>			
			moly-bearing matrix.	20,5-81,2 - 2-	3% moly in mater	x-fa Dre.	621 A.2.2 E.L.					
				© 3218 - chloritic, shiney slickenside 15°t ca								
				slickenside 15°tca		 <mark>∤</mark>	<u>.</u>					
l				51,2-88,4- jess maly, 88,4-89,1- moderate maj	few finestring	ers, lesser pa	tery morr	X				
	ļ			88,4-89,1-moderate mol	y as patchy in f. il	+ through weak	arts and y	0.5-12.00.04	***			
003	138.07		English Marine Marine			<u> </u>	1	+				
	1.50.0 t		Fspar Mussersstic for invery moderate to highly altered to green and pleached, crystals obliterated to rozen mich of core.	strong seric + silica								
	t		arpen and pleached crustale	patchy green + cream								
	<u> </u>	 	putersated to correct of core	colored.	-mila-ble	s, lesser fra	cture fin	a fine maky, «	50.1%			
	- ·		Same rock as top of have above	92.2-93.7- weak argil	ilic			· · ·				
			breccia.	overprinting, slight pocky clay altered. feldspors.								
			5-10% hornbleide	clay altered feldspars.								
			2-10% Icm F-spar (icspar)	94.3 - pervosive male serie - silica alteration (p)	ete							
			matrix 50-70% 9+2	serie - silica alteration (D)	nullic)							
			20-30% ifeldspar, inter	hard competent cure.	at 102,5	5-2 1cm py	rrhatite w	sser				
			grown 1-2mm pressid ratains	-minor blens purplish garn		· · · · · · · · · · · · · · · · · · ·						
					Ing I continue in	regular/awa	ngle to co	te.				
			Decreased Frour meancivits	-minor wispy molustri	eaks few grains	discem.	,					
			Decreased Figur megaciynts 110-129, more equiprantlar	e 103,6 - moly-py string	er fracture Mf	Nagarox 45'z	1 - 2m	m.				
			granitic w 1% Icm F-spar.	-minor wispy Molystri C. 103,6 - moly-py string 105,6-105,8 - increased fi	-act-filling wispy	moly infilt	12 to over	20400				
				106-115 - accreased								
				alteration to propylitic (altid matics)					_			
				(alt'd matics)								

EMGOLD MINING CORP- Stewart Moly Project Geological Log Hole - ID: SMOS-OI Page 6 of 6

1

	GEOLOGICAL INTERVAL			ALTERATIONS	VEINING/MINERALIZATION					
From (m)	To (m)	CODE	LITHOLOGY BRIEF		>, Vein Gangue Minerals	Ore Minerals,%	Angle tca	Abundance of veins/ft	Notes	
	L		few Icm Felsic Dyke's - so - sharp contacts	- fresh looking granitic 1185-1255 - few patchy red gomet infills				······································		
	ļ		Sharp Contacts	118.5-125.5 - few patchy		·				
	<u> </u>							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	ļ			- Minor chloritic fractures - minor chloritic fractures - moly stringer - few wispy stringers are - Increasing green altid Core, Serie - silica 125A Very minor lipply - stringer - increasing altin (39 - 135 - poilt	- py to lor 2%	bebby win	, Pø			
 	<u> </u>			- moly stringer	2.109.8. Imm-WI	5py, 20° -				
<u>۱</u>			· · · · · · · · · · · · · · · · · · ·	- few wispy stringers and	blotchy infills	moly < 0.1%	110-12	7		
}	<u> </u>			-Increasing green altd	/					
				core, Serie - silica 125A	-128,9,					
				Very minor maly - stringer	16ebs <<0.1%	l				
				-increasing altin 139 -> 135						
	<u> </u>				- 1 35		ļ			
	<u> </u>				15 cm quartz, poddy g. vn, irr	white, Davie	~ 35°	· · · · · · · · · · · · · · · · · · ·	py blebs mass	
				-chloritic fract surfaces.	poady g. vn , irr	Roular, pyriti	<u>E12</u> ,	}	py buor mass	
				- called ract surtices	0 125-1265	}	·		<u>+</u>	
	1			- weak propyllitic w ± series - weak propyllitic 136,5-1	2807-504					
				- weak propatitie 13615 /	<u> </u>					
[<u> </u>	<u> </u>				
						<u> </u>		<u> </u>		
				•	· · · · · · ·					
						<u></u>	·	1		
						· <u> </u>				
					t	1	1			
					+	1	1	1		
ļ						+	1	1		
ļ					· · · · · · · · · · · · · · · · · · ·					
L										

EMGOLD MINING CORP- Stewart Moly Project Geological Log Hole - ID: SM 05-02 Page 1 of 3

GEOLOGICAL INTERVAL	LITHO			VEINING/MINERALIZATION						
From (m)	10 (m)	CODE	CODE	LITHOLOGY BRIEF	ALTERATIONS	>, Vein Gangue Minerals	Ore Minerals,%	Angle tca	Abundance of veins/ft	Notes
$\left(\circ \right)$	1.52	<u> </u>	Casing - Coved advance)	patchy silica - sericite						
$\overline{0}$	41.80	B	Breccia	alterations, preen within						
			- fractured F-sper porphyty, measurystic, apsular fragment	Constitute	· ·				_	
			measurystic, angular fragment	Feox strong to Gidmin						
			Supported INY boundation	patches to 21.5m., orange			· · ·			
			tounder S-15cm fragments,	DEMOSIVE ALTERS ANTE VER	- pyrite b	ebs and masse	s, pocky c	ore to 3 or 4	15 of core	
			Grey T. 9, Matrix Veining (Silicat	pervante patiens and red oxidized fractures (sider	11,27	ļ		,		
			moly)	4.8-5.1- strong moly m 5.6-5.8- strong moly m	Vica > 1% of core				×	
			0-6-large % sedimentary	4.8- 5.1 - strong molym	trix 5% of cor	2				
			<u> </u>	5.6-5.8 - Strong work 1	natry 7% of co	e.				
			2 2 - 30 " introck	7.3-7.5-5% Moy-SH B.F- 8.0- milor graphic	kaj ofris - few	KKOP P& 1	1-110-1-1-1	-5 2 %		
			- fragmenter quartz veines.	2.7- 8.0 - million graphic	Kspar- Qtz inter	prowths, few	bens spr	ajerite		
			remnants as fragments in breecia	C10,30 - large mass pyr	ite, course grains	# cavity - vu	9,3cm.		L	
				<u>C10,80 - large mass pyr</u> 13-19 - weak patchy m	ply-silica floodin	1.1 preccia,	Zones up	to 1% over 5	km,	
			18-22 - predopingatly fractured	O.5%	þ	<u></u>	ļ'	<u> </u>	ļ	
			f-par porphyry, weak precciat							
			Very little matrix heating.	0 2012 - 5cm Q-Fspar	graphic interprovit	<u>h-</u>			L	
	+		23-25- increased fragmentation,	20,5-21,3-orange stained"	ustycore,	+	<u> </u>			
			Sediments 10%, 5% matrix	open oxidized fracture 10	m wide @ 20,75	2	1		L	
				@ 2217 - Q-Fspar graphic 1	Hurgrowth, 5ch	wide				
			29.7-34.4 - high % sectionent	20,5-21.3 - orange stained' open oxinized tracture IC C 22.7 - Q-Fspar graphic C 24.7 - late infilling angul 25-26.8 - strong pervasive r	ar masses py + p	Ø, Dom qu	artz wed	ge" to 24.8.		
			fragments 5-20cm rounded	25-26.8-strong pervasive r	astiness, Soft poc.	ky core, sideri	e?			
			<u> </u>	21-21,2- Datches (2-Ksno	V graphic with	lesser purite	araphic	intergrowthi		
				19-27-lesser silice-mo	Vy infile <01	c./	l ×			
				27,5-29.7- Strong Drxx, +	urty oxidized ,r	ninor moly			·	
				27.5 - 29.7 - Strong Drxx, r 230.4-5cm Q-Ksp&r graph 31.4-33.3- patchy rusty-pc	1- to px-py 0,5.	tem infills (Hew)	<u></u>	ļ	
				314-3313- patchy rusty-pc	dry core fron s	tained				
				34,5- graphic Kipar-Q-	- py - sphal inter	trouth over t	JCM		<u> </u>	

 \sim

EMGOLD MINING CORP- Stewart Moly Project Geological Log Hole - ID: <u>SM05-02</u> Page <u>2</u> of <u>3</u>

GEOLOGICAL INTERVAL		LITHO	тно		VEINING/MINERALIZATION					
From (m)	To (m)	CODE	LITHOLOGY BRIEF	ALTERATIONS	>, Vein Gangue Minerals	Ore Minerals,%	Angle tca	Abundance of veins/ft	Notes	
	[]	['	36-41.8- principa grapitic	1 - Datchy Serie - areen with						
	//	.[36-41.8- prissing grapitic breeces find set fragments	- patchy serie - green, with silica, pard core			······································			
'	Į'	· · · · · · · · · · · · · · · · · · ·	tura treection reacture is	······································	· · · · ·		<u> </u>			
	Į	'	1 the treecher to serve a	(′	<u> </u>		
'	1'	'	- strong pressia with f.g. servicitize	ti'	I		'	1		
'	·	I'	- strong herecia with f.g. serieitze matrix to 30%, arey calor, - - apparent sharp contact 30°tca	- possible V. B.g. Molans - rix	41.3-4.3.		·′			
'	+'	 '	- apparent sharp contact 30°tca	1	<u></u>		'	++		
<u>.</u>	100.00	↓ ′			L	· · · · ·				
-1.80	92.35	↓ '	F-spar Megacrystic Porphyry - variably fextured with	42-45- mod strong greenisk serie al-re-Time C. 45.1- hairline mod	1					
'	f'	 '	- variably fextured with	Arechisk Serie Al-FEATIN	+ patchy			++		
'	+	t'	alterations, possible multiple phases intrustive with different	1 C 45.1 - hairline midi	+ stringers, appr:	2 015% over 12	1cm	++	(
'		 '	phoses intrustive with different	+ 45.5-54-few hairlines	tringers at =-moi	x, 30° - ca, -	< 015 % ma	1		
'	t	<u> </u> '	percentage large F-spor phenocrys	t. <u>C45.8-2cm qvnlt, 30</u> ;	fine moly margins	· · · · · · · · · · · · · · · · · · ·		++		
'	1	 '		1 45.9-460- patchy reddist	garnet (spessur	<u>:me/</u>		++		
'	├	t'	-banding of f.g. felsic and lesser	45.5-54-few hairline s 45.5-54-few hairline s 45.9-460-patchy reddish pyrite on fracture, and	biebr to lor 2	4	+		(
'	1!	t'	-quartz Veins/pods, 30-40 tca	1 3/-63 - increased patch				++	·	
'	t	t'	F25 - 50 2	biege alteration, Calbitized?	the second			++		
'	t	├ ────′	52.5-56.3-Core 50% fine grained	f garnet pods/vienlets - Im	into Icm width, o	Ho in section	, So tea			
'	1	t'	feisic banding, 1cm - 10cm wide, 40-50° t.ca.	1 @ 58,5 - 2cm gtz, moly ma	gib and within	+ py - 30 0'	29, 3/6 me	of over Isch.	t	
'	t	t'	<u>40-50° tča.</u>	garnet pods/vienlets - /m @58,5 - 2cm gtz, moly may -minor 0:5-Icm smalley	grey quartz V	11 (+r, 12 a) 55	ire		1	
······································	tl	t'		- decreasing of teratice					1	
'	├ ───	† '	- less measuretic apparence with deth, pateny equisrantar to purphentite texture, feur maanysta	with digth			25040	~ 5% many orth	+	
<u> </u>	f	 '	the dist particip equisitar	71.1-71.2-4cm gt= VI 71.8-71.9-3cm gt= VI	1/t, mal, string?	Amarane .	20 000		fc /C SIM	
'	t!	t'	to proprietic tenture, ten	1-1.8-71.9- 3 cm g. + 21	Init, mak, pate	hes, prite pr	show Intills	4-7-7-7	+	
·'	tl	{'	· · · · · · · · · · · · · · · · · · ·	1077.9 - 0.0000 + 0.011	11-2cm with pat	reny gameter	- WHA (Year-	THUR NISA		
'	fl	t`	75.6-76.2-felsic section(dyte?)	4 C.78.3 - 4+2- chi-py	Apoddy Vnit, -	tam, to ca	<u></u>		+	
'	t!		fuzzy contact ~ to tea	17.0-83- Greener Serici	Hic		1		1	
	<u>ل</u>	·'		Section, quart + siliceon	<u></u>					

EMGOLD MINING CORP- Stewart Moly Project Geological Log Hole - ID: SM05-01

GEOLO	GICAL					VEINING	MINERALIZA	TION			
INTEI	RVAL	LITHO		ALTERATIONS	VEINING/MINERALIZATION						
From (m)	To (m.)	CODE	LITHOLOGY BRIEF		>, Vein Gangue Minerals	Ore Minerals,%	Angle tca	Abundance of veins/ft	Notes		
			-few 2-3 cm felsic bands 86-89.5 - Felsite 90.6-90.9, 40°tca	81,7-8.2,4-	quart vein, 700 - grey patche	m. fractured	with fin	chlorite, coa	NE py hfills		
			86-89,5			warpy shall	ow conta	ctr (poddy)			
			- Felsite 90:6-90,9,40°tca	- C 89.0 - garnet pod, 1cm 89.3 - 91.8 . 40°	- greypatche	z in quar-2-	- (fine mo	23.			
					1	1		sper pyrite			
				- dark atz imm-zmm string C. 9/13- moly-py-gtz,/	ers 16 , 20 a	na /0 (less)	, with 10	Sacr pyrite			
				<u> </u>	mine a reinger of	2 9.,					
						·					
				······	<u> </u>	<u>}</u>	}	;			
						[
								<u> </u>			
					,	·····	+	<u> </u>			
							<u>}</u> .				
				· · · · · · · · · · · · · · · · · · ·			1				
						· · · · · · · · · · · · · · · · · · ·					
							<u> </u>				
					<u> </u>	<u> </u>	╂────	<u> </u>	<u> </u>		
						<u>+</u>	+	<u> </u>	<u> </u>		
				· · · · · · · · · · · · · · · · · · ·			<u>+</u>				
							·				

Page <u>3</u> of <u>3</u>

À

EMGOLD MINING CORP- Stewart Moly Project Geological Log Hole - ID: SM05-03 Page 1 of 3

	OGICAL RVAL	LITHO		ALTERATIONS	VEINING/MINERALIZAT		TION		
From (m)	To (m)	CODE	LITHOLOGY BRIEF	ALIERATIONS	>, Vein Gangue Minerals	Ore Minerals,%	Angle tca	Abundance of veins/ft	Notes
	32,65	FP	Espar Messing Streets	0-4.8 Measteri				· CH3/10	
			Espar Manager Largores	to brege color, deeping	pyrite disier	+ + 3	2 Locally	anter to 5°	/
	L		texture with a terations	weathered Series Ge	- parte dine	<u></u>	/ , () <u>()</u> () / / / / / / / / / / / / / / / / / /	Participa in a second	<u>_</u>
l	I			- grada to orey arapitic					
<u> </u>	[-mostly construct con with 98-100% recovery, few	- grada. to grey grantic with chloritic matics					
. . .	<u> </u>		rubbly sections, more fractured	6-11 granitic, connetent		·			
— —			where surface weathered.	core / 1					
	┼───┦		patchy weath rest to 39,5.	@ 11.7 - 5cm patch garne	ts, irregular she	<u></u>	I		
	<u>}</u> −−−−- <u> </u>		- 145% 1 5 1						
			- 1 to 5% Icm F-spar phenos - 5-7% mafie (1) phenos	rusty patchy weathered.				· · · · · · · · · · · · · · · · · · ·	
			1-2 mm. granitic.	Cracking weak.	ed.,		<u> </u>		
					uh malto-stringer	50-50'	tea	-105%	shorer Im.
				16.6-16.7-	disceminated m	al. specs	12% / 10cr		<u> </u>
				- verse few darkare. O.Ser	hausitz valte	any space,	76		
<u> </u>	<u> </u>			-very few darkgrey Orser 20.9-23,30 - weathered,					
				weak rusty broken core.					
				weak rusty, broken core, rusty oxidized fractures	228,2-2+z-			zγ.	
			- contact to breccia weathered	<u> </u>	gtz-py-chl-	- py to 20%	70°		
	[and broken	_ 32-32.65 pocky weather	ed /				
	├			-rusty, siliceous, crackled					
3265	36,88	_ <u>B</u>	Breccia						
01.00	50,00		irregular, predentionantly fragment	-rusty stained 32,65-33,70	p				
			Supported, grey f.a. matrix in	- siliceous, sericitic, pale				· · · ·	
			places, siliceous servicitic <1%	green to green-grey.	·····				
			places, silicenus servicitic <1% matrix in places.						
							1		

Ì

EMGOLD MINING CORP- Stewart Moly Project Geological Log Hole - ID: <u>SM05-03</u> Page <u>2</u> of <u>3</u>

GEOLO INTEF		LITHO		ALTERATIONS		VEINING	/MINERALIZ/	TION	VEINING/MINERALIZATION						
From (m)	To (m)	CODE	LITHOLOGY BRIEF	ALTERATIONS	>, Vein Gangue Minerals	Ore Minerals,%	Angle tca	Abundance of	Notes						
			34.3-35,0-Felvic dya, precession	w/				veins/ft							
			with a reamative parts his as	34:5-36-54000			7 % 201	and Harm							
			fine graining.	34.5-36-strong m 35.6-36.5-moderat	e mal for inmo	Hair Cine and	2.10 10014 0	2 maly 2000	2h						
			-primarily granitic fragmented	35.3-36.8 increasing	C 11014-11-2 11110	<u>, </u>									
			7.0	tustiness weathered			<u> </u>								
- 00				- oxidized, pocky from	py erasion		ļ								
2,88	38,13		Lomprophyz_Lyce		-										
			Lamprophye Dyce. - grey. the matrix, blutite policie 45 5%.	- rusty sections, weathered			ļ		moly						
			$-\frac{\rho_{2}}{103} + \frac{5\%}{100}$	along fractures.					Zone						
13	85.65	B	Breccia												
			High Irregular anoular francis	, + n		-									
			Highly Irregular, angular fragmer mostly fractured wallrock	- Silicitication, weak					· · · · · · · · · · · · · · · · · · ·						
			aranitic lesper continuitary	to moderate securite											
			fragment supported with less than 5% matrix - late infilling	- 38.3-43 - /ighter are	motrix w?f.s.n	al- Onscioly	61-0.2%	maly							
			than 5% matrix-late infilling	- 38.3-43- lighter gre - increasing moly content in (42.8-5cm Otz- 42.5-44.6- moderate to stra	Silica-maly Man	rix	1	1	<i></i>						
			grey f.g. and lesser quartz.	@42,8- 5cm @+2-	Kspai graphic in	ergrowth -	Note pos	able whereast to	Pegnietit yr						
			fragments Icm to 30cm size	42.5 - 44.6 - moderate to stra	nomoly - silica ma	Frix f.g. moly	. to 3 or	1% over 2m.							
				C++, /- Q+2- KrDar	araphic in the cout	4s 4cm.									
			- 38.3-42.5- primarily Silica-		2 2 cm pyrite ban	1. 70° tea			· · · · · · · · · · · · · · · · · · ·						
			healed angular precess, in places	0.10-46.80 increased	y married + blebs	pocky - 0X1	dized	<u></u>							
-+			matrix supported	44.6- e.o.h less molu ma	4rix			ļ							
			46.5- insteasing f.g. sectiment	= moly more related.	to brecciated/	tractured a	pranitic,	less to no mo	<u></u>						
			46.5 - increasing f.g. sediment		where fragme	# = of section	it were	hourdant - W	0300,000						
			part - () ve (2 at agricents , 5-30Ch	- patchy iron staking, min.			+	+	<u> </u>						
			47,8-48.6- Large Sectimentary	where py-pocky core instea	ROURALANT (5-100	m Sections)	<u>}</u>	+	<u>}_</u>						
			Xenslith / Ergs montary		·				<u> </u>						

EMGOLD MINING CORP- Stewart Moly Project Geological Log Hole - ID: <u>SM 05-03</u> Page <u>3</u> of <u>3</u>

	DGICAL RVAL	LITHO				VEINING/	MINERALIZA	TION	
From (m)	To (m)	CODE	LITHOLOGY BRIEF	ALTERATIONS	>, Vein Gangue Minerals	Ore Minerals,%	Angle tca	Abundance of veins/ft	Notes
	L			49.3-49.4- increases	1. , - Si ca shat	12 :- 25mg	2)		
			-55-60-15-20% Sedment	e 50,8 - coarse gtz-	pyrile pod, rix	A. A. A.	· · · · · · · · · · · · · · · · · · ·		
			Arozanto-s (Xenoliths.	<u>e 50,8 - coarse gtz-</u> 52,0-5211 - weak gri	1 may - Silico n.	-irix			
				- 51,5-58,0 - cream-colo	rea patches (Wi	(1)?			
			- 61.5-eon Vern irrentar	55,5-59.7- 4×2cm Kar	ar - Qtz graphic	intergrowths.	IN one pe	(n))	
<u> </u>			to an tracture availate and	60,5-61,2 - fracture 1.		<i>C</i>			
			Seds, possibly near contact effect,	Quartzrich section, heavy Oxidation - Non stained.					
			transferring to more algoridant	oxidation - Non stained	<u> </u>				
	r		set stary - skarky component.	61.5-3 cm coarregular	tz-rusty oxide	zea poi/vein			
		·		61.5 - 3 cm Coarte quar - 32-5	1. disteriorated	pyrite, lesis	1 COUTSE	o u jvein .	
			<u>95.65 - 5.7 5 54</u>	66.4-67.6 patchy cream 67.6-72.0 - preconstitiont	colored oreccia,	with wispy no	ory stringer	Py DENT-0,	51
				67,6-12.0 - precional want	Section - tragmin	T. TEWS SPE	r_{2} WO_{3}	little to no moi	¢,
				720-800 - few py + p&	11135525, <1%.		6 2 2 %		
				73-74,5- granitic section 76,6-76,7 - 1% may infil	h, tew matrix Sili	Ka-moly intills	, ~0.2%,	10(7	
			······································	78.5 - 10.1 - 10.10.1 10.11	+·9	1. 10 5 1	·····		
				77.1 - 78.5 - weak moly, f.g. 78.5 - 82.5 - high Sedin 2 - 5	diss specs through in	1271X, 50,5/3	10110492 19 19 11	DITIS ETTA SECT	<u>0-</u>
				\$2.5 - 85.65 - mixed sedime	b tragning - Cr	tening Towar (autor pay	1 - 1 - 11	5.1 ···
				12,3 - 25103 - mixed Sedime	Scar - ic/matrix	mented, tems	pecs noly	<u> 0.1/- UNTH</u>	K- HICEUU
				<u> </u>	Sear / hiately	· · · · · · · · · · · · · · · · · · ·			
				·····		1	<u>}</u>		<u> </u>
				· · · · · · · · · · · · · · · · · · ·	<u> </u>	1	<u> </u>	<u> </u>	
					<u>+</u>		<u> </u>	·····	
					<u> </u>	·] · · · · · · · · ·			
					+				1
							<u> </u>	1	
						· · · · ·	<u> </u>	<u> </u>	
					 		1	1	

EMGOLD MINING CORP- Stewart Moly Project Geological Log Hole - ID: 5M05-04

Page _____ of

	GEOLOGICAL INTERVAL			ALTERATIONS	VEINING/MINERALIZATION						
From (m)	To (m)	CODE	LITHOLOGY BRIEF		>, Vein Gangue Minerals	Ore Minerals,%	Angle tca	Abundance of veins/ft	Notes		
$\left 0 \right $	13.11	·	Breccia	- Silicified, minac serieite				Venaste			
	<u> </u>		- 30 to 70% subrounded	- rusty fractures moderate							
	<u> </u>	i	fragments, to angular, worthy granitic, micor sediments.	to strong and pervasive	·						
<u> </u>		<u> </u>	granitic, minor sediments.	weathering to 8.2							
			Matrix supported through 30 to Soch segment, medium to dark grey silica - moly matrix, Very fine grained.	0 - 3.5 - :00-led, high :0	rite blebr, dirsemi	hate 3 to 5%	throughout				
			SUCH segment, medium to dark	0 - 3.5 - 10- led, high is 0	kidized to orange,	moly ? < 0.5	%		<u></u> -		
	1		file around I have matrix, Very	4.10-5.0-5+ronger grew 5.6-8.2 mothed, rusty	moly - silica ma	trix, to 2% m	01.		····.		
			3.75-4.10 - arean F.a. Sodiment	3.6 - 3.2 more 3.6 , Furty, $8.9 - 9.6$	farlable silics moly	notry 1/0	moly				
			3.75-4.10 - green f.g. sediment Xenslith	<u>3.6 8.2 mortal, fusty</u> <u>8.9 - 9.6 mostly granite</u> <u>9.6 - 10,5 strong moly</u> <u>10,5 - 13,11 strong moly</u>	possible that the	of dear fi		2 6 3 1 1 20			
ļ			812-8185-grey-green fig. Sectionent Marshall	10,5 - 13,11 strong main -	silica matrix, da	the occurs h	icher Canic	1 to 3% ort	2m		
		<u> </u>	Sectiment King 12		1			ð, <u> </u>			
	<u> </u>		9.6-9.7 - Sediment xentith chloritig	12.6-12.7 - tusty pocky in	eathered cute.				··		
	<u> </u>		f.s green;	· · · · ·							
	╏╼╍───┤				ļ						
			This hole stopped due to drill breakdown. Could not get back on hole to complete,		;	· · · · · · · · · · · · · · · · · · ·	ļ				
	[[of back on hale to can det					·			
			moved to hole - 05, back	<u> </u>		<u> </u>	<u></u>	<u>}</u>			
			5m, to continue.				<u> </u>				
					+						
			Good recovery, 95-100%.				1				
			/ 1								
			· · · · · · · · · · · · · · · · · · ·		ļ	<u> </u>	ļ	<u> </u>	ļ		
				L		· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>			
							<u> </u>	·	<u></u>		
• I		ł		L	·	L.,	<u> </u>	J	l		

EMGOLD MINING CORP- Stewart Moly Project Geological Log Hole - ID: <u>SM05-05</u> Page _____ of _____

ı

GEOLOGICAL INTERVAL		LITHO			VEINING/MINERALIZATION						
rom (m)	To (m)	CODE	LITHOLOGY BRIEF	ALTERATIONS	>, Vein Gangue Minerals	Ore Minerals,%	Angle tca	Abundance of veins/ft	Notes		
0	34,80		Breccia.	- primarily sile field with				- Childred			
			- Drilling through breccia zone	patchy minut serieite	······						
			to transect from one end to	(green) alteration of	,						
			other where block estimate	fragments.							
			performed:	- rusty oxidized core							
			- mostly granitic fragments.	mostly to 7.0m. Datchy							
			- mostly granitic fragments, or fractured granitic.	Section nucky turty					,,		
<u> </u>			- tropments angular to sub-	cure down to end o hole			ļ				
			rounded, Icm to 10 cm size	(groundwater in FiltGration)							
			with section of granite greater	- Py blees and disse.	inate to 2 or 3	7.			<u></u>		
			than 50 cm (wall rock, fractured)	- Variade moy conte	it, generally hig	her with high	er matri	Kcontent in	pressia		
			- arey, variable silica - moly matrix, from <1% to 50% d	A 26 11 1				·			
			matrix, from \$1% to Solo of	0-3.6-weak rust, pock	ycore	1 . 2000	1	1			
			small sections to solen matrix	- weak mat 3.6- 2.7 - increased by	ty, tew partches	mary spect	<u> </u>	₽// ₩			
			supported (up to sol matrix)		ecciation and i	MATTIC CONT		4 9			
			support toe (up to save man ty)	- maly specs d 8.7-9.7- granite, low to 9.7-10.1 - ~ 1% moly in	SSCHUMAR TRIDAR	The True L	<u></u>				
				97 - 10 + - 10	pho moly, slight	-USTY OF 7.5	- (1 /		<u> </u>		
				10.1-11.3 - altered (silia	Dreccia mairy	10000					
				10:1-11.3- a Ferear Sille	mquartz veinle	+ ou block	33°				
				113-118- motive to prosted	brecara 0.5-19	man fine coe	eks in mot				
				119-12.95-418sk bressin	Jour chlaiti	Sulic Carl S	anitic	<u></u>	· · · ·		
				11.3 - 11.8 - matrix supported 11.8 - 12.95 - weak breccie 12.95 - 13.30 - breccie with	30% motrix -	N1% mole?					
				13.30 - 16.75 - mixed bree	cie granitic with	h minor serime	+ fragm	entsixenshiths	1)		
				- rusty, Dock	& core 15.8-16.7.	few rennant	blebr or	harser py			
				12:03 - 16:75 - mixed prec - rusty, pock - low % mol	,			· · · · · · · · · · · · · · · · · · ·			
				16.75-21.7 - Weak bred	tia, lease make mo	tox.					
				18.0-18,1-molyr	ich pod/lente.	Park aren Poch	4. 5-10%	Moly/lacm			

)

EMGOLD MINING CORP- Stewart Moly Project Geological Log Hole - ID: SM 05-05 Page 2 of 4

ંગ્

GEOLOGICAL INTERVAL		LITHO		ALTERATIONS	VEINING/MINERALIZATION					
From (m)	To (m)	CODE	LITHOLOGY BRIEF		>, Vein Gangue Minerals	Ore Minerals,%	Angle tca	Abundance of veins/ft	Notes	
			e 23.9 - 2cm felsic f.g. Unltor band, 30° t ca	21.7-34.85 - patchy strong						
			hand. 30°tica	bleaching - sticitication, plus						
				Iconstaining, approx 10-200	m longthr each 1-	-2m				
	<u> </u>	r <u> </u>		- few OIS-lemigtz Vnlt	r. 30° ten, ok	proprite_				
				- million wispy hair line silica	moly infills in f	ractures are	nite, wea	Kmoly (<015	*)	
	<u>}</u>			C 28.1 - warpy coarse qui	artz pod	· · · · ·				
				@ 28,8-quartz chlorite-	py poddying in a	ver Scm				
_				- tew OIS-lem gtz Vnlt - milior wispy hairline silica C 28.1 - warpy coarse qui C 28.8 - guartz chlorite- 31-31.1 - Coarse Qtz-k 32.6 - 34.2 - strong bleachin - chloritized mat	spar graphic Vnit	or pox, 25-6	<u>ca</u> -			
	1			32,6-37,2- Strong bleaching	0- seric + silica	····				
				0 72 P - 4cm Coasta	rice in the interest w			·		
				C 32,8 - 4 cm coarte p C 33,3 - 33,5 - 9 tz pods/Vn 34,2 - 34,25 - 9 tz pod i 34,5 - 34,3 - quart pod,	17. 40° 400% ente	L. WOFOY # SK	al'un lowe	ď,		
				34,2-34,25- 9+2 pod t	5 py mass inter	Hitial to frac	fured atz			
	ļ			345-34,3- quart hod.	white cracked	finchairlacon	ly margin	1(=0.1%)		
240	0000					1	0	· · · ·		
37.80	37,85	<u> </u>	Lamprophyre Dyke							
	<u> </u>		Lamprophyre Dyke -med grey, 1% biotite, 3% philosopite in f.g. weating altered (Sexp) motrix	·	·		l			
		- <u> </u>	int's weatly altered (serp) matrix							
			with remnant a litered of vite (Imm)		<u> </u>	. <u> </u>				
77.85	75,29	B	Breccia				+	<u> </u>	<u> </u>	
	1-12		Preduces the area His Grade wool	patchy moderate to			1			
			with lesser any ar Company to	strong Seric - silica bleaching. Grey silica-mol					1	
			Predminanth aranitic fractured with lesser and ar fragmental lesser sedimentary - reduced	matrix of variable % through	12 MA		1			
			- area mou pairs into Xensein	the contract of the contract						
			prior to hudro there breened				1			
			and en placement of silica-mol	/						
	I		hostrik.							

242'

1

EMGOLD MINING CORP- Stewart Moly Project Geological Log Hole - ID: SM05-05

ł

Page <u>3</u> of <u>4</u>

GEOLC INTEI	OGICAL RVAL	LITHO				VEINING/	MINERALIZ.	ATION	
From (m)	To (m)	CODE	LITHOLOGY BRIEF	ALTERATIONS	>, Vein Gangue Minerals	Ore Minerals,%	Angle tca	Abundance of veins/ft	Notes
			- Section And Provide the Sent	40.7-40.8- 4+2-Ksparg	ranhic and				
			to 35 cm site, again	40.1-40.2-5cm cogra	frank at a	Doct-			
		·		40 -42.9 - Versussi lie	cecita wisou ate	may freetow	inside X	O.S. S. O.A.	
			patery agreets in places.	42.9-43.28- 20% may	+ silies mustrix	34, 11, 11, 1)			
			- mastly from our - supported,	43.3 - 44. 0 - mostly se	diment weak A	factured			
· · · · · · · · · · · · · · · · · · ·			-two places 5-20 cm la find	43.3 - 44. 0 - mostly se 44.10 - 44.7 - strong bre	Eciation, Maly-SI	ice to 20% -	2-3% #	2	
			si ca - prova aren su portid	<u>045.30 - Scm Qt:</u>	- Kopar graphi	pod.			
				45.4 - 46.7 - mortly wea	E Fracturer SI	rea - sericite			
				altered gr	anitic, patchy 6	recciated			
				46.7 - 48.1 - increasing histor % 25	maly -silicà prec	cià moly beca	ming		
				higher 10 25	matrix (derker,	reasy) - 3	6 moly in	Rect on	
				48.1-49.28 - strong 5 49.28-49.63 - homelele	Vice matrix	preceie, - SX	m 5 10	Bert Ma	···
				<u>49,28-44,63-horn-elaco</u>	Section - rap	₽ <u> </u>			
				49.63 -53.23 - mattled t	extured breccio	with strong	Slice - 12	17 matrix, 3-	5% moly
				50.7-51.1- 9.00 - milie 53.23-55.1 - greusedim - few silice	ptzvein ar pod	procen infi	led in the	fl.g. maly wikes	llica
				- mihe	pritic mased	4, irresular	Lebr with	th matrix.	
					ent, muor pyrite be	and is and b	eos, 30	dcg, To 3 /3 P)	1
				- few silice	tholy matrix bre	eccia over (Ser	$\frac{1}{2}$	1/ is many	<u> </u>
				55,1-55,6-granitic wit	hquartz podr, V	pinor moly.	<u> </u>	<u> </u>	1 4
			Stronger section of maly (55.6-56.7- mixed gran	itic - sedimont mo	denote to strong	preccia, w	1th Stoguartz	pda Oi>Tome
			where silica - moly is 2	5617 - 59.32 - larce soc \$ 59.32 - 6/, 22 - moder	linent Xeholith, go	thet - actinolite	at upper	pcm, bandled.	hor welveg
1			further separated to quartz	+ 37152-61, 22 - moder	ATE Dreccia To high	1 tractura gr		Trong maly	1
			matrix and may masses,	* Much	higher % moly in 90 - 4cm mas	martix (smear	Le male	- mary over 1	el c. a.
			Versus previous sections where		$\frac{1}{1} = \frac{1}{1} = \frac{1}$	0 / 95% Rec 5	\$ 57 - CP	47)	The GWAY
			matrix is f.g moly-silica combil	ed - 0+2	reining /pods with	y (y > 10 hec >	0122-01.	- 1 ha ma and 1 1	make
			<u></u>	61,22-61.87-f.g.	Arev sodinon +	Joranine Pr	AD HORNA 1	I DIM MICCE ON THE	The second secon
					-y seringal.				-

EMGOLD MINING CORP- Stewart Moly Project Geological Log Hole - ID: SM05-05 Page 4 of

INTE	GEOLOGICAL INTERVAL		LITHOLOGY BRIEF	LITHOLOGY BRIEF ALTERATIONS	VEINING/MINERALIZATION					
From (m)	To (m)	CODE			>, Vein Gangue Minerals	Ore Minerals,%	Angle tca	Abundance of veins/ft	Notes	
				61.87-64.09 - granted	reccia Seric-sil	the altered.				
			75,29 - e.o.h.	61.87-64.09 - gracited - patchy ma G4.09-64.91 - sediment	k-sika matri	N 015 /3m3	14			
				64,09-64,91- sediment	Kenstith/Fragme	h.t				
				64.91-66.7 - bleached and spe 66.7-70.4 - patchy brecc patchy crea 70.4-74.5- hore felsed	Silica-seric gra	itiz preccia	strongn	dy as fragmen	t rims	
ļ				and spe	ckly matrix, pa	tchy light/d	ark	Emply to 2	%	
				66.7-70.4 - patchy brecc	leted aranific 1	it 1= cm se	diagon to in	during, moi	fled fine	
				patchwark	to weak stocky	rk in mat	Mix to 1%	imaly		
<u>}</u>			······································	70.4-71.5- horr felred	sediment				l 	
<u>├───</u>				71.5 - 73.2 - weak pate weaker m 73.2 - 75.29 - weakly	habreccive - a	an-tik, 50-6	225 500000	the mountany	· · · · · · · · · · · · · · · · · · ·	
				weakerm	1, in this (< e	5%)	╄────		<u></u>	
				13,2-13,29 - Weakly	preceinted a	rlan: tic	· · · ·	1 70.	701	
			······································	- Iron 540	med fracture mottled fine m	<u></u>	1. weat	R120 15,0-	13.8	
			· · · · · · · · · · · · · · · · · · ·	- mely 93	mottled the m	ATTIX, WORTLY.	in 12-6-	(3,0,N,0,2/2)	over rocm	
					<u></u>					
					· · · · · · · · · · · · · · · · · · ·	·	<u> </u>		1	
					·	<u> </u>	- <u> </u>			
					<u>+</u>					
]					1				
]									
					+	1			1	
				· · · · ·			-			
	l									

APPENDIX II

TAG NUMBER / SAMPLE INTERVAL CHART

CERTIFICATES OF ANALYSES

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V1S 1Y8 Phone: 250-828-0522 Fax:250-828-0512

		From	to	width	Мо			From	to	width	Мо
Tag	Hoie	(m)	(m)	(m)	ppm	Tag	Hole	(m)	(m)	<u>(m)</u>	ppm
308301	SM05-01	1.00	3.00	2.00	92.29	308379	SM05-02	0.00	2.70	2.70	2170.00
308302	SM05-01	3.00	5.50	2.50	38.55	308380	SM05-02	2.70	4.30	1.60	685.00
308303	SM05-01	5.50	7.50	2.00	14.01	308381	SM05-02	4.30	5.60	1.30	2000.00
308304	SM05-01	7.50	9.00	1.50	9.38	308382	SM05-02	5.60	7.00	1.40	718.77
308305	SM05-01	9.00	10.55	1.55	5.08	308383	SM05-02	7.00	8.00	1.00	1824.88
308306	SM05-01	10.55	11.58	1.03	20.53	308384	SM05-02	8.00	10.06	2.06	755.48
308307	SM05-01	11.58	14.00	2.42	29.18	308385	SM05-02	10.06	11.50	1,44	411.16
308308	SM05-01	14.00	16.60	2.60	22.39	308386	SM05-02	11.50	13.11	1.61	591.51
308309	SM05-01	16.60	17.60	1.00	125.17	308387	SM05-02	13.11	14.60	1.49	1377.76
308310	SM05-01	17.60	19.75	2.15	6.57	308388	SM05-02	14.60	16.15	1.55	999.53
308311	SM05-01	19.75	22.00	2.25	4.63	308389	SM05-02	16.15	17.60	1.45	209.73
308312	SM05-01	22.00	24.20	2.20	2.34	308390	SM05-02	17.60	18.60	1.00	277.93
308313	SM05-01	24.20	26.82	2.62	1.60	308391	SM05-02	18.60	20.73	2.13	81.70
308314	SM05-01	26.82	29.30	2.48	8.67	308392	SM05-02	20.73	22.25	1.52	356.30
308315	SM05-01	29.30	31.00	1.70	7.56	308393	SM05-02	22.25	24.00	1.75	380.64
308316	SM05-01	31.00	33.00	2.00	0.91	308394	SM05-02	24.00	26.30	2.30	291.89
308317	SM05-01	33.00	34.80	1.80	1.92	308395	SM05-02	26.30	28.00	1.70	68.70
308318	SM05-01	34.80	35.80	1.00	10.61	308396	SM05-02	28.00	29.30	1.30	82.86
308319	SM05-01	35.80	37.50	1.70	5.98	308397	SM05-02	29.30	31.00	1.70	81.79
308320	SM05-01	37.50	39.25	1.75	4.72	308398	SM05-02	31.00	32.70	1.70	61.48
308321	SM05-01	39.25	40.25	1.00	70.75	308399	SM05-02	32.70	34.30	1.60	51.96
308322	SM05-01	40.25	41.75	1.50	44.36	308400	SM05-02	34.30	36.20	1.90	99.78
308323	SM05-01	41.75	43.40	1.65	93.26	308401	SM05-02	36.20	38.00	1.80	79.95
308324	SM05-01	43.40	45.11	1.71	33.19	308402	SM05-02	38.00	40, <u>00</u>	2.00	182.92
308325	SM05-01	45.11	46.70	1.59	137.73	308403	SM05-02	40.00	41.50	1.50	219.07
308326	SM05-01	46.70	47.70	1.00	508.18	308404	SM05-02	41.50	43.30	1.80	14.31
308327	SM05-01	47.70	49.20	1.50	270.96	308405	SM05-02	43.30	45.20	1.90	65.76
308328	SM05-01	49.20	50.40	1.20	428.35	308406	SM05-02	45.20	46.90	1.70	68.76
308329	SM05-01	50.40	52.70	2.30	195.35	308407	SM05-02	46.90	49.50	2.60	39.29
308330	SM05-01	52.70	55.10	2.40	49.06	308408	SM05-02	49.50	51.21	1.71	5.81
308331	SM05-01	55.10	56.50	1.40	265.19	308409	SM05-02	51.21	53.30	2.09	65.64
308332	SM05-01	56.50	58.10	1.60	167.55	308410	SM05-02	53.30	54.80	1.50	16.13
308333	SM05-01	58.10	59.10	1.00	913.83	308411	SM05-02	54.80	56.70	1.90	55.34
308334	SM05-01	59.10	60.10	1.00	1611.84	308412	SM05-02	56.70	57.90	1.20	179.54
308335	SM05-01	60.10	61.20	1.10	4310.00	308413	SM05-02	57.90	58.90	1.00	411.92
308336	SM05-01	61.20	62.30	1.10	1948.21	308414	SM05-02	58.90	60.80	1.90	32.53
308337	SM05-01	62.30	63.70	1.40	194.17	308415	SM05-02	60.80	63.40	2.60	73.36
308338	SM05-01	63.70	65.40	1.70	645.33	308416	SM05-02	63.40	66.10	2.70	69.76
308339	SM05-01	65.40	66.45	1.05	636.51	308417	SM05-02	66.10	68.50	2.40	9.78
308340	SM05-01	66.45	67.90	1.45	1805.40	308418	SM05-02	68.50	70.50	2.00	79.78
308341	SM05-01	67.90	69.30	1.40	7.96	308419	SM05-02	70.50	72.54	2.04	110.03
308342	SM05-01	69.30	71.30	2.00	749.55		SM05-02	72.54	74.40	1.86	13.24
308343	SM05-01	71.30	72.80	1.50	1004.19	308421	SM05-02	74.40	77.00	2.60	43.51
308344	SM05-01	72.80	73.90	1.10	1051.88	308422	SM05-02	77.00	79.00	2.00	19.11

, ----, _____,

2

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V15 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

8.18	2.00	81.00	79.00	SM05-02	308423	1346.72	1.20	75.10	73.90	SM05-01	308345
127.99	1.70	82.70	81.00	SM05-02		449.01	2.00	77.10	75.10	SM05-01	
4.52	2.10	84.80	82.70	SM05-02		1312.93	2.20	79.30	77.10	SM05-01	
11.17	1.70	86.50	84.80	SM05-02		1122.83	1.90	81.20	79.30	SM05-01	
7.33	2,00	88.50	86.50	SM05-02	····· 1	1024.76	1.70	82.90	81.20	SM05-01	
12.34	0.81	89.31	88.50	SM05-02		259.36	1.83	84.73	82.90	SM05-01	
9.04	1.69	91.00	89.31	SM05-02		236.32	1.77	86.50	84.73	SM05-01	
99.24	1.35	92.35	91.00	SM05-02	308430		1.80	88.30	[····	SM05-01	
				- .			1.00	89.30	88.30	SM05-01	
567.93	2.70	2.70	0.00	SM05-04		527.64	1.60	90.90		SM05-01	
424.64	1.60	4.30	2.70	SM05-04			1.70	92.60		SM05-01	
702.67	1.40	5.70	4.30	SM05-04	308479	201.43	1.80	94.40	92.60	SM05-01	308356
424.17	1.10	6.80	5.70	SM05-04		46.25	1.90	96.30	94.40	SM05-01	308357
953.05	1.25	8.05	6.80	SM05-04	308481	342.71	2.20		96.30	SM05-01	308358
789.57	1.80	9.85	8.05	SM05-04	308482	86.00	1.90	100.40	98.50	SM05-01	308359
738.25	1.05	10.90	9.85	SM05-04	308483	198.46	1.40	101.80	100.40	SM05-01	308360
1780.87	1.10	12.00	10.90	SM05-04	308484	437.04	1.22	103.02	101.80	SM05-01	308361
956.33	1.11	13.11	12.00	SM05-04	308485	174.95	1. 9 8	105.00	103.02	SM05-01	308362
						1209.42	1.07	106.07	105.00	SM05-01	308363
713.41	1.90	1.90	0.00	SM05-05	308486	1130.38	1.03	107.10	106.07	SM05-01	308364
928.88	1.90	3.80	1.90	SM05-05	308487	87.68	2.50	109.60	107.10	SM05-01	308365
447.56	2.40	6.20	3.80	SM05-05	308488	34.18	2.40	112.00	109.60	SM05-01	308366
1118.22	2,60	8.80	6.20	SM05-05	308489	29.55	2.50	114.50	112.00	SM05-01	_308367
425.62	1.15	9.95	8.80	SM05-05	308490	4.77	2.50	117.00	114.50	SM05-01	308368
208.92	1.35	11.30	9.95	SM05-05	308491	4.93	2.50	119.50	117.00	SM05-01	308369
342.02	1.63	12.93	11.30	SM05-05	308492	11.64	2.10	121.60	119.50	SM05-01	308370
660.66	1.62	14.55	12.93	SM05-05	308493	8.24	2.40	124.00	121.60	SM05-01	308371
238.78	2.20	16.75	14.55	SM05-05	308494	7.73	1.70	125.70	124.00	SM05-01	308372
422.74	1.45	18.20	16.75	SM05-05	308495	54.07	2.30	128.00	125.70	SM05-01	308373
209.17	2.30	20.50	18.20	SM05-05	308496	113.15	2.10	130.10	128.00	SM05-01	308374
30.73	3.00	23.50	20.50	SM05-05	308497	38.04	2.50	132.60	130.10	SM05-01	308375
273.71	2.60	26.10	23.50	SM05-05	308498	46.97	2.00	134.60	132.60	SM05-01	308376
77.51	1.80	27.90	26.10	SM05-05	308499	20.42	1.40	136.00	134.60	SM05-01	308377
122.57	1.10	29.00	27.90	SM05-05	308500	11.12	2.07	138.07	136.00	SM05-01	308378
63.63	2.00	31.00	29.00	SM05-05	45251						
69.22	1.61	32.61	31.00	SM05-05	45252	5.05	2.90	2.90	0.00	SM05-03	308431
93.55	2.19	34.80	32.61	SM05-05	45253	11.18	2.70	5.60	2.90	SM05-03	308432
4.55	3.05	37.85	34.80	SM05-05	45254	16.54	2.40	8.00	5.60	SM05-03	308433
598.61	2.15	40.00	37.85	SM05-05	45255	22.78	2.60	10.60	8.00	SM05-03	308434
835.48	1.60	41.60	40.00	SM05-05	45256	104.54	2.40	13.00	10.60	SM05-03	308435
1198.66	2.66	44.26	41.60	SM05-05	45257	114.77	1.50	14.50	13.00	SM05-03	308436
883.44	1.84	46.10	44.26	SM05-05	45258	81.57	1.50	16.00	14.50	SM05-03	308437
5540.00	1.90	48.00	46.10	SM05-05	45259	1126.81	1.00	17.00	16.00	SM05-03	308438
1417.89	1.50	49.50	48.00	SM05-05	45260	8.27	2.00	19.00	17.00	SM05-03	308439
11970.00	1.10	50.60	49.50	SM05-05	45261	16.62	2.64	21.64	19.00	SM05-03	308440
6050.00	2.65	53.25	50.60	SM05-05	45262	43.95	1.76	23.40	21.64	SM05-03	308441
3030.00	2.25	55.50	53.25	SM05-05	45263	71.31	2.60	26.00	23.40	SM05-03	308442

_

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V1S 1Y8 Phone: 250-828-0522 Fax:250-828-0512

47

308443	SM05-03	26.00	28.00	2.00	180.67		45264	SM05-05	55.50	56.60	1.10	823.88
308444	SM05-03	28.00	29.20	1.20	117.99		45265	SM05-05	56.60	57.70	1.10	4660.00
308445	SM05-03	29.20	30.50	1.30	182.95		45266	SM05-05	57.70	59.32	1.62	388.11
308446	SM05-03	30.50	32.65	2.15	34.11		45267	SM05-05	59.32	61.22	1.90	7030.00
308447	SM05-03	32.65	34.00	1.35	267.70		45268	SM05-05	61.22	62.60	1.38	1379.36
308448	SM05-03	34.00	35.20	1.20	691.24		45269	SM05-05	62.60	64.00	1.40	4590.00
308449	SM05-03	35.20	36.88	1.68	302.17		45270	SM05-05	64.00	64.90	0.90	254.20
308450	SM05-03	36.88	38.13	1.25	8.81		45271	SM05-05	64.90	66.70	1.80	8750.00
308451	SM05-03	38.13	40.00	1.87	95.33		45272	SM05-05	66.70	68.80	2.10	4330.00
308452	SM05-03	40.00	41.50	1.50	209.10		45273	SM05-05	68.80	70.40	1.60	8290.00
308453	SM05-03	41.50	43.00	1.50	421.55		45274	SM05-05	70.40	71.50	1.10	83.08
308454	SM05-03	43.00	44.50	1.50	908.08		45275	SM05-05	71.50	73.76	2.26	2360.00
308455	SM05-03	44.50	46.00	1.50	323.46		45276	SM05-05	73.76	75.29	1.53	147.77
308456	SM05-03	46.00	47.90	1.90	180.62							
308457	SM05-03	47.90	48.90	1.00	449.06							
308458	SM05-03	48.90	50.90	2.00	473.33							
308459	SM05-03	50.90	53.20	2.30	410.19							
308460	SM05-03	53.20	55.70	2.50	349.48						-	
308461	SM05-03	55.70	57.70	2.00	103.24							
308462	SM05-03	57.70	59.60	1.90	33.90							
308463	SM05-03	59.60	62.00	2.40	40.77							
308464	SM05-03	62.00	64.60	2.60	49.86							
308465	SM05-03	64.60	66.40	1.80	· 85.93							
308466	SM05-03	66.40	67.60	1.20	483.70							
308467	SM05-03	67.60	69.10	1.50	211.44							
308468	SM05-03	69.10	70.70	1.60	227.02							
308469	SM05-03	70.70	72.70	2.00	412.28							
308470	SM05-03	72.70	74.40	1.70	431.79			<u> </u>				
308471	SM05-03	74.40	76.51	2.11	572.59							
308472	SM05-03	76.51	78.40	1.89	1231.31							
	SM05-03	78.40	80.40	2.00	785.24							
	SM05-03	80.40	82.60	2.20	444.23							
	SM05-03	82.60	83.80	1.20	223.72			· · · ·				
308476	SM05-03	83.80	85.65	1.85	114.54]						

-

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V1S 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

P&L
Geological Services, Box 5
Вох
5036,
Lac
LeJ
eune,
B.C.,
VIS
8,17.
Phone:
250-820
9-0522
Box 5036, Lac Le Jeune, B.C., VIS 1Y8 Phone: 250-828-0522 Fax:250-828-0512
828-051
Ŋ

<u></u>	<u></u>	<u></u>			<u></u>				<u>iniini</u>											<u> </u>	زمنت	<u> </u>	ŝ	****		<u></u>									<u></u>		
SAPLE																				.) (4 X1 (20)																	
	92.39																																				
	38.55																																				
305353	14.81 a 34																			2 2.5 0 2.5																	
308195																				.0 3.1																	
208906	æ.s	55.99	4.65	9.	299	.8	3,4	55§ I	a 10	S 1.	5 23.1	E LA	101.5	5 1.81	1.75	.61	J7	. 68 .	938 13 .	6 3.2	B . 10	65.7	.814	2	.34 .1	. ек	11 71	CO 1.	0.0	4 .72	166	1.1	.06	1.3	.03	1.9	2
	29.11																																				
	お.号 15.17																																				
338310																				,4 5.6 .) 3.7																	
309311	4.63	25.37	3.64	90.C	i M	9	1.8	436 3	.49 3	11	5 4.8	8 3.3	97. 9	1.76	.18	.61	41	.93 .	049 25	5 5.1	1 3	41.4	. 162	1		. 076	98 Z	.3.).Q	2.45	5	.5	.62	1.8	<.91	4.1	ŧ
308312																				5 3.5																	
308333																				3 4.3																	
308314 308315																				93.5 53.6																	
206313	1.99	17.91	3.90	- 44-1	•••	9,	6-6	G 1 1	.10 4			2 5.4	62,4		1.41	.13	67		QQ4 12	3 9.0	2.20	10.3		۱	. 63 .1	M .			a 1.0	. ya	,		•.46	4.4	*. 4 1	3.1	
308315																				I 3.4																	
368317																				6 20																	
308313 308333	16.61 5 08																			5 C.4 8 3.3	-	-															
308329																				3 3,6																	
X838 1	19.75	49.0K	3 39	39.	91	,	2.1	547 1	62 3	5 1	5.5	5 3.3	109.4		.24	.8	36	1.06 ;	om 16.	1 3.4	i .15	53.2	.049	2	. 35 . 1	158 .I		. 8 1.	ι.α	2 .61	45	.;	- 52	2.E	4.¢]	2,2	5
	AA. 36																																				
	55 25 33.19																																				
	137.73																																				
388325	548.HL	<u>원.0</u> 2	14.57	26.0	(21	3.2	E.S	641 2	45 5	2 2.	1 2.1	6 5 2	225.5	32	1.76	1.76	. 14	1.23	012 15.	1 2.1	5.15	69.1	.011	2	в.	35 .3	a 20	.8	9.3	1.39	11	2.6	12	1.4	61	1.8	3
	278.96																																				
328325	428.35	45.85	10.32	16.	24	.7	2,7	567 1	.13 H	2 3.	\$ E.I	1 5.8	231.3	1 <.01	1.55	1.75	2	142.	037 <u>1</u> 4.	\$ 2.)	16	i 53.6	,929	Ż	я,	14	75 50	.3 1.	9. Q	. 58	X	\$.¢	.97	1.5	< 🕅	2.2	1
	410.16																																				•
981 J08128	477 . 02	<i>\$</i> 2 99	18.20	15.5	261	t.	27	£34)	.45 10	\$ 2.	F 3.1	5.2	216.3	*.02	1.45	1.62	19	3.41 .	93 5 16.	\$ 2.3	7 .1\$	91,4	. 019	1	. 22 .1	N3 .	18 62	.3.	8.C	н. н	34	1.6	.08	1.3	<.01		
	1%.35																																				
	49.86																																				
	265.19 147.55																																				
STACARD DISIDULA GROUP 1F1 - 1.00 GM SAMP (>) CONCENTRATION EXCEED AU** BY FIRE ASSAY FROM • SAMPLE TYPE: DRILL COR	PLE L DS UP 1 A.	EACH PER T.S	IED I LIN ANPI	NITH ITS. LE.	(6) S	ml 2 Ome	2-2- MIN	2 H Era	CL-H L S M	NO3- AY E	₩20 9E P	AT	95 1ALL	DEG Y A	L C	for Cked	ore . F	e ho Refr	UR, I ACTO	DILU	ted Ng G	TO 2	20 ¥	R., 1	INAL	YSEC	BY	10	/ES	81	45,			s.r ABI	<u>ב</u> ב	<u>s</u> 1	6

ADA ANALYTICA			B	mg	old	1 1	fir	i.	ıg	Co	rp.	. 1	?R(JJE	CT	S	rew	AR	т	MOL	Y	F	11	E ‡	I A	50	66	59					Paç	ge	2		AAA ADE ANALTIER
	SHILL	Ho POR						ی جھ		Fe 1	As Dom po		. –	7n (kr G yn ppe			-	Ca 2	P 1 1 93			: N			4 (A 3			Sec. 1909			-			Aij** 9%/%€		
	258313	913.83	47.73	14.5	20.4	483	1 1 9	2.6	8±8)	4		, ,	6.4	1 100	4 .1	; 2 68	1 #2	76	1.62	MB 17.	• 1	5 21	38.4	1.057	,	v #	H 1	\$ 22		18	74	<u>جا</u>	1 14	1.6	.01	1.75	
	202334	1611 24						-																	-	2 1							7 01			1.98	
	308335																			543 6.																	
	308336	1948.21																																			
	328337	194.37																																			
	308338	545.33	36.75	27 . 73	110.1	12/3	5.9	3.5	1429 1	.83 11	7.1 Z.	, 3		.4 244	12.3	1.96	11.20	26	1.93	.047 B	a s.:		49.9	.003	3	.49 .23	.9 .2	4 <u>5</u> .5	2.0	. 11	75	€ I.	1.21	2.7	.03	3.27	
	308339	475.53																																	.01	7.93	
	308349	1875.40	57,54	10.9	50.6	455	19.6	\$,7	1095 2	31 1	4.7 3.	9 15	.9 4	6 X6	2 < 4	3.69	3.49	64	2.08	Dit 10.	1 27.1		57.4	5.040	4	.56 .01	1) .I	n 5.4	5,4	74	83	7 1.	8 .13	2.4	.02	2.76	
	368341				48.2															064 18																	
	FL 308341	7.67	1.42	5.2	48.7	64	2.5	.9	295	58	5.2 12	, ,	.1 16	.9 274	8	5 2.70	.13	3	2.96	.994 17.	2 6.9	.10	30,9	.001	2	.17 .63	1. 1	5.5	.5	D4	19	< 5 .	2 4.02	2 .7	4.01	•	
	RRE 308341	11.24	8.X	4,81	57.8	М	2.3	1.0	263	50	4.1-13		.8 15	4 225	4.5	F 3.47	. п	3.	2.02	.004 15.	7 4.9	5 .05	29.3		z	.19 .11	36 .J	5 1.3	.5	. ¢4	64	ج .	z < 92	s. 1	4.0)		
	308342	749.55	75.43	31.8	295.3	2214	17.8	7.3	1438 2	41 2	0.2 3,	. 2	7 4	.7 569	z 1.9	12.70	×.18	H	3.5#	.968 7.	6 11.4	5 .68	59.1	1001	6	.35 .51	16 .2	5 1.8	5.5	.20	65	s 1.	5 .1E	1.9	.03	3.71	
	305342	1954.19	58 82	17.5	92.0	1013	17.3	6.2	1915 2	/5 E	154.	s 18	.6 2	9 932	31.0	5 15.06	2.N	54 3	5.49	.062 6.	. 14 1	\$ 1.29	105.5	190.	6	.26 .81	15. J	5 4,4	1.3	12	73	91.	4 .13	1.0	.02	3.11	
	395344	1951.86	68_46	10.5	57.3	675	21.6	8.5	14Z 2	9Z 5	2.3 J.	t is	1 3	7 462	54	12.64	3.49	39 -	4.04	.075 7.	0 22.9	.74	61.3	.013	5	.58 .83	12.3	1 13.9	6.2	.10 1.	39	16 Z.	1 . 21	2.1	.0Z	3.23	
	308345	1345.72	35.32	21.5	145.6	876	1.74	3.8	1739 1	.92 8	3.4 a.	U 21	.6 5	,z 479.	38.14	10.46	¥.15	13	1,6	.051 9.	§ 7.1	.51	71.1	.001	5	.15 .10	18 .Z	5 13,5	3.1	. 19	74	15 1.	1 . 16	1.2	.02	2.46	
	308346	449.02	46.37	14,3	127.6	601	9.5	5.5	1754 Z	35 1	8.9 3.	7 18	.1 9	.3 649	11.8	5 5.15	1.28	36	4.66	.071 9.	3 9.3		#4.5	.014	5	.80 .13	90 .2	6 15.8	5.2	.15	12	5 1.	Q .Q7	Z.4	67	3.71	
	308342	1312.93	55 4 4	38.2	33.3	1315	9.0	\$,9	83 1	.0J 2	2.6 3.	9 13	.6 5	.5 217	7.9	2.87	5.51	19	1, 49	Øft 9.	0 18 1	1.22	66.0	i.0011	2	47 ,82	23 .2	7 16.1	1.8	14.3.	0 7	15 1.	4 . 23	1.1	.02	2.93	
	308348	1122.83	55.36	Z3.54	95,7	767	3.8	1.9	3636 E	у г	2.6 2.	8 17	.4 5	.z 245	31.9	1,77	2.05	1	1.4	.053 10.	F 4 (1.30	97.5	5 .002	2	.38 .92	21 .2	5 13.3	1.#	-12 -	66	13 .	8 09	F 1.4	.02	3.76	
	308349	1924.76					-	-									-								-	.62 .02								-	. \$1		
	306350	255.36	39.15	11.2	57.7	a 10	2.5	2.4	937 1	.17 1	3.6 4.	• •	.7 7	.7 220	\$ 1 6	1.53	.14	11	1.45	.032 12	5 3.6	F . 16	\$0.5	: .087	1	.37 .12	*. 45	7 2.1	1.1	11	60	<s.< td=""><td>7.04</td><td>1.1</td><td>≺.0Ł</td><td>3.90</td><td></td></s.<>	7.04	1.1	≺.0Ł	3.90	
	3092353	234,32	41.款	р.в	- 1 9.7	333	2.7	3.3	854 J	-40	6.J 6.	2 2		.1 252	e	. 49	. 66	11	1.27	.925 17.	1 5.1	1.15	47,5	E.062	3	.34 .64	13 .2	3 5? 1	3.6	.11	65	31.	9 94	E.4	01	3.87	
	308352	791.34																																			
	308353	2898_34																		029 31.																	
	306314	527.64																																			
	308335	213.02	詩.符	ð.3	33.6	334	1.1	2.\$	en 1	.14	6.Z Z.	9 2	.9 4	.9 415	,4 40	.41	.66	?	3.49	.988 21	2 2.4	4 .11	146.4	i .023	1	.H .R	30.2	1 3,8	.7	. 19	45	s.	\$.04	1.4	< 斜	1.22	
	308356	201.43	31.54	37,76	65.9	363	1.6	1.9	942 3	.06	3.1 2 .	1 2	.7 3	.9 279	6	29	,74	,	1.33	.026 31.	3 2.	5.32	e 60.i	£00. 1	3	.31 .52	22 .2	9 2.6	,1	.05	43	- 5 .	6 04	1.1	• .01	3.71	
	208357																			.827 32.													1 1.89			2,76	
	305358	342.71																																			
	302359																			.027 16.																	
	306360	198.46	22.01	11.9	11.9	217		3.5	1042	.86	1.3 2.	ę		.\$ 273	.6 . 6 :	32, 12	.42	6	1.05	.029 15.	9.1	E .35	15.	,965	1	.24 .11	17.2	2,5	.s	.05	34	s.	\$ 96	i .#	4,01	2.46	
	38855)	437.04	82.67	13.5	27.¢	51	5 Z,3	3.5	670 Z	.31 1	1.4 2	1.1		.6 229	.4 .4	. 23	1.79	12	2.99	. 428 14.	8 5.:	£ .11	. 11.3	.987	1	N .X	32 .2	1 4.2	.9	.07 1	43	<s i.<="" td=""><td>9.10</td><td>1 1,2</td><td><.01</td><td>2.41</td><td></td></s>	9.10	1 1,2	<.01	2.41	
	346362	174.95	29.71	18.5	24.8	29	k .8	1.8	726 ŝ	.09	.1.2	4)	4.5	4 207	.3 .5	1,12	63	ម	.87	025 14.	2 J.I	8	72.2	≥.414	ı	.25 .53	33.1	5 2.2	.1	.07	39	< 5 .	5 .04	1.0	<.01	3.83	
	302353	1209.42	33.55	26.7	28.7	194	1.0	Z.3	705 1	.26	.6 2.	6 8	.2 4	.1 267	.4 .3	3,24	10.05	14	1.66	.025 16.	ð 2.	6 .10	E 70.I	.012	1	.28 .54)§ . 2	1.3	.7	.09	55	8 .	\$. ?9	1.1	.61	1,75	
	308364	1139.36																																		£.83	
· · · · · · · · · · · · · · · · · · ·	STANDARD DSGADA 34	11.55	122.22	7.2	141,2	#14	t 2€.6	10.6	201 2	.80 3	\$.7 <u>6</u> .	5 41	.) 2	.9 39	.66 Ş	5 2.4	4,92	55	.15	.678 13	9 3 8 9.I	5 57	163.1	. 077	- 16 J	. 69 . 57	12 .1	4 3,4	3.5	1,72	07 2	27 4.	4 2 13	5.5	5.83	-	

.

14.1 Chells Construction (17.1.4

Sample troe: DRILL CORE RISO. Samples beginning "RE" are Recurs and "BRE" are Reject Renuns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data _ FA

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., VIS 1Y8 Phone: 250-828-0522 Fax:250-828-0512

50

`,

	Emgold Mining Corp. PROJECT STEWART MOLY FILE # A506659 Page 3
SMPLEN	Ηδι Cur Pho Zn Ag H* Co H* Fe Ag U Ag 14 5- Cd So 8* e (e P (e Cr H*g se T (ε A) Na K H Sc T) 5 Hg 54 Te Ca 4u* Sahple στην βραι βραι βραι όρο μαι χομιρμα 1 οραι χραιορό βραι βραιας και μαρι του ε 1 δραι το Σραί 1 1 ερχαιορό του 1 αρο γραι βραιορό που 4 του Κ
338745	87.54 33 55 3.79 14.0 94 .7 1.9 492 1.25 .9 2.7 1.1 6.3 167.0 .06 .13 .79 22 1.02 12.1 4.3 19 92.6 026 1 37 059 12 7.5 .6 .55 .49 45 .7 .06 1.4 «.01 4.51
308256	34-314 32-42 7.99 28.6 127 .5 1.4 639 1.27 3.5 4.1 2.5 7.5 304.7 1.9 .35 1.69 29 1.17 0.27 9.5 4.2 7.0 61.6 6.28 1.3 65 1.6 4 31 4.52 5.
305257	29.55 \$188 4.34 161 54. 54 2.5 \$4.5 2. \$2. \$2. \$2. \$2. \$2. \$2. \$2. \$2. \$2.
305368	\$ 77 13.59 3.42 14.5 34. 45 13.7 35 45 4.6 1.5 388. 57 138.2 138.2 138.2 138. 20 40 40 15 12 23 13.2 13.1 57 19 45.1 14.155 14.15 14.15 14.15
308,949	4.50 11.85 2.26 36.4 31 .5 9 486 .79 4 20 1.3 3.8 291.8 .36 .95 .36 16 42 .025 16 2 4.9 .11 44 4.838 1 .32 .865 .69 2.7 .6 .32 .15 +5 .3 +.87 1.6 +01 4.42
308270	1).64 19.48 3.07 24.6 38 .8 .8 476 .87 .5 3.4 2.1 5.7 197.1 .31 .94 .17 38 .69 .625 11.4 5.1 .09 53.5 ,046 1 .01 .061 .18 0.2 .5 .02 .25 45 .3 4.82 1.7 <.01 3.74
ML \$29370	11.09 19.10 5.13 22, 7 37 . 8 37 45 87 . 5 3,3 . 1 5 3,4 105.6 .29 . 34 . 18 . 38 ,09 ,524 12.3 5 . 10 51.2 . 284 1 . 13 . 057 1 . 58 . 57 . 7.5 . 1 . 10 . 51.2 . 58
RME 308370	13.21.23.48 33.34 23.7 40 .7 .6 4.9 .45 .45 .45 .45 .102.3 .50 .83 .129 32 .66 .828 12.6 5.7 .98 59.42 3.24 5.26 .02 3.7 .4 .45 .27 .45 .4 .45 12.5 .4.01
308371	4.25 21.63 3.08 35.8 35 7 1.9 305 ,68 ,4 2.8 .3 4.4 2.9 .3 4.4 2.9 .14 .54 .24 .54 .25 1.27 .5.7 .65 47.6 2.47 3 .34 .562 .19 7.6 .5 .52 .20 45 .4 4.62 1.3 4.01 4.3
308372	7.71 14 22 2,78 14 15 16 15 15 564 168 14 2,4 15 15 12 165 11 15 15 167 11,7 4.8 167 11,7 4.8 168 1, 28 166 14 18 14 14 12 14 16 14 13 15 15 15 15 15 15 15 15 15 15 15 15 15
308?73	54.07 15.87 6.02 16.8 112 4 .9: £14 .92 7 8 2.5 5 8 5.6 3.63 13. 21 .38 251.17 .804 153 3.7 .08 52.4 81.0 0 .31 654 .13 .6 .8 .05 .29 4 4 .02 1.4 4.09 4.23
308374	131.38 12,66 3.92 28.2 47 6 1.9 532 .98 1.7 3.4 2 5.1 197 8 .06 .21 1.8 1.8 1.9 1.06 .21 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
308375	39.04 18,16 5,57 20,8 66 .6 1 1 532 99 7.5 2,8 L7 5,9 223,6 .13 .39 .21 19 1,12 .839 15.L 4,9 .33 64 #.816 2 .34 66L .32 7,7 .# .61 .32 .45 .42 L5 × 03 4.43
3383/6	46.97 129.597 119.587 109.2 4527 1.3 5.3 720 3.44 10.5 2.4 22.9 2.9 312.1 1.52 .76 60.00 5 1.49 .019 6.1 4.7 .10 27.4 .005 3. 424 .034 .14 1.5 .7 .05 2.72 .45 3.0 2.46 3.1 .03 3.41
308317	23.47 26:00 10.54 44.1 294 .4 1.2 699 1.11 4.7 2.9 2.6 5.7 299 1.35 .45. 45.179 464 15.7 3.4 10 73.5 102 2 .54 .45 45 45 45 45 4.15 4.15 4.15 4.15
302376	11.12 14.27 5.52 26.1 166 .8 1.4 554 1.32 1.7 3.1 .9 5.3 254.5 .22 .31 .29 20 1.14 .026 13.7 3.0 .12 121 4 617 1 .34 .661 .14 64 .1 9 .64 .28 -5 .2 4.03 1.7 4.01 2.22
338379	-2000 64.23 44.91 55 ± 1740 & F 4 # 1516 2,87 26,3 5 £ 85 F 4 2 £1,2 < 63 8,36 4,47 78 3,64 ,848 16.7 12.3 106 76,5 3,122 4 35 ,018 78 169 16 18 185 58 1 8 32 3 F 103 4.83
396363	485.00 46.02 25.45 58.6 557 7.4 3.3 1235 1.55 22.4 4.9 9.5 5.2 123.6 .64 3.75 1.78 23 93.638 9.1 18.7 .17 54.8 521 2 .52 .617 .23 5.8 1.4 .19 .57 6 1.0 .09 3 3 .01 2.87
300031	>2000 128.64 15.64 73 5 905 37.5 18.1 1481 3 38 33.9 4.3 31 6 4.9 128 1 4.01 3.48 5.57 73 7.31. 138 12.5 38.9 55 73.4 629 2 .83 .657 33.4 629 .2 .83 .657 33.4 629 .2 .83
308.342	235.77 382.64 37.62 84.2 1657 24.6 9.7 3237 3.16 76.1 3.5 19.1 5.9 95.9 1.03 4.62 3.19 43 1.25 497 9.4 36.8 47 95.5 683 2 .65 47 57 50 4 2 1 .37 7.9 02 2.71
308.443	1828 (18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19
308.954	156.48 154.28 36.34 473.2 1332 9.0 5.4 976 2.56 23.5 2.6 12.7 5.4 139.6 9.56 5.20 3.28 23 .91 .046 12.8 6.2 .22 73 J 122 2 .58 131 .21 11.7 1.4 19 1 20 3 1.4 .16 1.7 .01 3.49
308365	433.46 49.53 56.31 63.7 877 3.4 4.5 552 2.9 3.6 2.4 31.5 5.8 33.6 2.33 4.25 2.42 21 .68 .047 35.6 4.1 .35 99.6 .052 3 .39 .043 .39 5.6 1.2 .25 .56 6 1.2 .35 1.5 .04 .5.8
308365	591.54 82.18 64.79 64 9 3224 7 5 4.9 1558 2.53 19.6 3.3 13.9 6 7 128 1 2.15 7.27 8.77 25 .78 .058 9.2 9.8 124 126.2 .055 2 .46 .035 .27 2.4 2.3 13 .56 -5 1.4 .35 1.7 .52 2.61
3033\$7	1377.75 147.84 87.38 128.5 135 135 135 1 9.4 3.4 20.4 3.7 136.3 1.99 1.46 29.68 60 1.68 .699 9.5 12.8 .47 12.4 .056 2 .62 .031 .30 49.4 3.6 .71 2.07 19 1.3 .48 3 0 03 2.88
305388	999.55 92.44 75,77 91.9 2949 94. 54. 1172 2.77 28.6 3.8 13.9 7.1 306.7 1.37 2.84 7.72 33 1.41 647 9.5 8.4 .35 52.7 614 2 .42 .021 .24 1.72 3.3 1.35 1.32 13 1.6 .41 3.962 3 75
301.595	2016.73 33.53 33.63 3.7 1.8 64. 5,7 3,7 739 1.37 5,0 4 3 7,9 6,1 3,4 5 4,9 1,54 1,54 1,54 2,7 2,9 1,54 0,46 28,4 3,1 6 65,8 0.001 1, 0 40 0,46 1,7 1,8 1,5 0,7 4,6 .7 5 .04 1.8 0.18
306 390	27 53 51,38 7,53 21,0 294 2,0 2,1 495 1,35 21,6 2,7 4,8 4,9 132, 2, 9,0 49, 19, 940 15,8 10, 19 40 15,8 1,5 1,5 10,1 1,5 10,1 1,8 10,4 15,8 1,2 1,0 1,2 1,0 1,2 1,0 1,2 1,0 1,2 1,0 1,2 1,0 1,2 1,0 1,2 1,0 1,2 1,0 1,2 1,0 1,2 1,0 1,2 1,0 1,2 1,0 1,2 1,0 1,2 1,0 1,2 1,0 1,2 1,0 1,2 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
306391	41.70 42.45 45.57 1847.7 2668 1.3 7,6 1415 1.71 5 0 1 / 47,4 3 9 159.1 5 05 2 52 95.48 20 1.56 .044 16 6 3.8 .50 52 4 .502 1 46.042 .10 1.6 11 .07 44 -45 1.0 .04 -45 1.0 .04
305392	356.30 5).32 5).23 36.2 3347 7 4 5.4 376 2.43 2.6 345 2.47 26.4 3.8 347 2 40 120 1 388 2.11 4.82 22 .72 .041 9.4 164 .72 87 7 008 3 .52 .016 .27 .51 1.7 .12 1.25 *5 1.6 .15 3.9 .54 2.85
308333	380.64 79.94 57.30 222.0 3645 51.5 5 8.2777 2.91 48.6 3 4 34.9 5.9 241.0 4 03 9 1.9 4.31 23 1.83 0.05 6.1 38.6 49 74.5 41.2 4.5 2.02 3.24 5.1.8 4.1 11 1.22 11 1.2 1.3 1.8 .41 3.30
398394	291.99 113.47 61.70 213.2 2203 31.9 14.9 2259 4.98 45 4 5.8 78.7 2.2 237 8 4.08 18,54 5.62 54 3.90 ,099 8.0 37.9 .44 99.8 .008 8 ,80 .91831 55.5 (0.9 3 7 3 20 19 8.3 .28 1.033 4.37
305195	68. 07 58. 65 12.47 582 76.7 582 15.8 5.4 1320 7.36 17.2 4 1 15.8 7 4.355 18 1.28 24 7.25 (346 20.8 18. 365 55.7 .608 4 .36 (336 - 2.2 16.7 8.3 -8 4 5 1.1 07 1.4 - 07 3.47
30539E	82.86 82.05 26.77 154.1 3029 14.6 9.5 2264 3.35 33.9 4.2 25 3 6.2 123.3 2.47 3.50 3.91 38 1.38 .058 2.7 18.7 .28 59.4 .005 3 .52 .020 .24 64.2 5.0 19 95 12 1.6 .16 16 03 2.21
STANDARD DSA/CAL34	11.24 122.34 29 22 142.7 273 24.8 10.5 708 2.82 20.5 4.6 44.9 3.8 41.1 6.09 3.55 4.97 56 .86 (029 14.1 182.5 .58 166.5 078 18 1.91 (072 .15 3.4 3.8 1.7? 47 227 4.4 2.16 5.2 5.75

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., VIS 1Y8 Phone: 250-828-0522 Fax:250-828-0512

ŧ

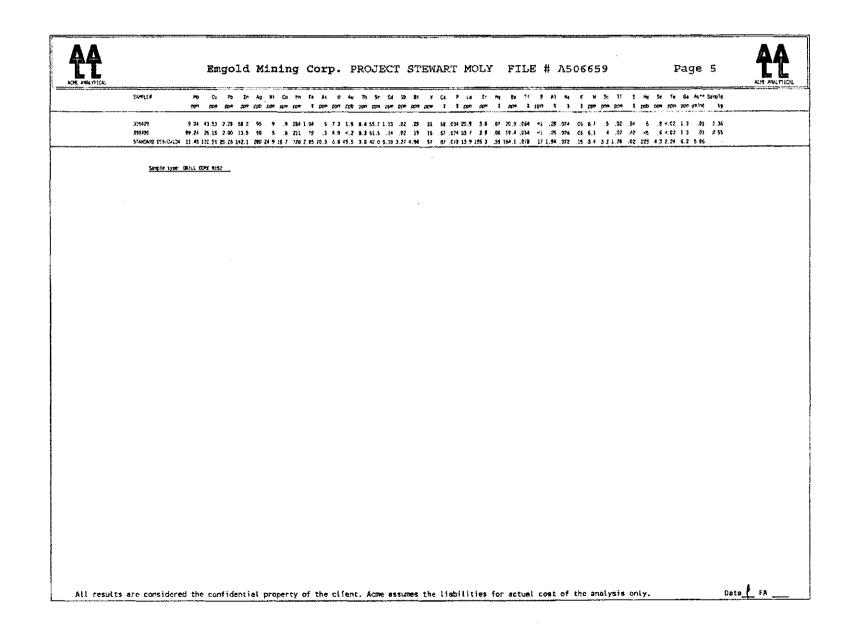
ł

51

,

Data FA

ARALY TICK.			Eı	ngc) 1ć	1 2	(i)	1İ)	ng	C	or	р.	P	RO	JE	СТ	S	TE	WA	RT	ŀ	IOI	-Y	F	, II	Ē	#	A	50	66	59						Pa	ıge	3	4		A L	
y.	m11	Ħo.	Ľ9	6	, v	1 44	2 M	4	ter,	fe	As	ų.	j,	D	Şr	ده	\$3	\$1	۷	¢,	p	ų,	Er	Hq	Ŀ	÷1	B	A1	fi a	£	¥	5:	*1	5	Hig	5#	Te	- 44	- A.J	** 5	arole	 	
contract contract contracts about		ppe	×,*	25*	рқи	\$D) pp		ppe	1	pen.	(7)®	509	600	13 .77	pon	009	201	900	1	1	E2M	207	I	DDR	۲	600	3	3	t	12/11	0,7	RP.	1	609	87 *	pon	- AD	, 6 .5, 1		tę.	 	_
2/	8357	51.79	12 64			1.10			11.44			, ,			×2 9		* 62		78	÷ (1	44.7		77 8	58	<i>4</i> 6 0			**	** 2	14	43 E	43		19	16	14	87			61	* 64		
-	£398	61-10														-																											
	\$359	51.96																																									
3	8400	95.78																																									
	8401	33 35																																									
																							•• •											•									
		102.92																																									
	8403 8404	239 07																																									
	84 <u>64</u> 6406	14.31 65.76																																									
	5405 8406	65.76 54.75																																									
		48.78	-9.44	1 30	- 19	. 1.5		3.1		e.14	£.3	2	3.6	4.3	<i>y</i> , 1	, 94		1.42	38	1.11	.937	10.3	•.•	. 14	47.9	#34	·			26	•.•	. 7	.40	. 71	-9	هه		4.5			a. 21		
30	840?	29 29	48.87	2.73	14.	1 7		7.3	3/3	1.55	.6	3.5	5.0	4.3	27 A	94	.04	.44	38	1.61	.841	16.2	4.9	. 12	34.7	.059	ı	.31	.958	.17	.\$.5	.95	. 67	~\$.8	.03	3.6		51	3.85		
20	RACO	5.41	28.34	7.37	31.	1 1.	F	2.3	2/5	1.09	.4	3.9	<.2	٤.5	66.8	.94	.63	. 15	30	.54	.63?	53.6	4.8	.97	28 5	354	L	.23	861	\$?	8.8	.4	.07	. 4D	~\$	\$	07	1.3	K.I	ŧ:	4.14		
35	6469	65.64	24.63	E. 19	14.	⊁ #e	9.1	3.8	- 45	1.07	.3	4.5	.,	¥.6	74,0	.97	. PE	4,85	30	.22	85B.	15.8	\$.\$. 11	39.0	.951	1	.17	857	Ľ	41,2	. ?	.05	. 36	23	.\$. 02	15	- - 1	91	4.23		
30	8419	18 13																																									
30	6411	\$5.34	约.09	4.63	1.39.1	5 7.	i .f	1.1	307	¥.LS	1,7	10.1	.1	12.7	64.8	<u>к</u>	. 67	. n	21	. 57	.920	14 5	4,9	.te	32,4	.946	2	.25	. 8945	.14	2.5	.9	.83	.53	~5	.9	. 83	1.3	i ∢ ,I	¢1	3,49		
x	\$412	179.54	52.78	7.44	1.	12		3.5	5 81	1.65	1.0	6.9	2.3	18.1 1	1.76	.19	14	.27	<i>8</i> 5	1.59	360.	14.9	3.6	. 34	31 I	837	4	. 16	832	v	13.1	.9	.06	.92	~5	12	5F	7.5		51	7.75		
3		432.92																																									
34	84]#	32.53	21.75	7,38	193	24	5.4	2.2	204	1.33	5.2	9 3	1.2	12 4 1	78.3	.9%	42	2.12	58	1.21	.030	15.1	43	13	8 î	929	2	.31	135	. 13	5.1	.5	.04	.5Z	-5	.8	,06	1.3	۲.	29	3.52		
3	8415	73.36	50.81	5.60	15.1		L .3	3.7	427	1.n	7.1	5.4	3.2	6.9 1	32.2	. 35	. 25	.19	25	. 99	336.	12.7	7.7	. 35	31.8	.019	ı	.21	84E	.ì€	4.6	.)	.04		-5	1.5	. 53	1.2	. ∢ ,I	98	4.97		
×	5415	69.78	\$2.81	с.9	F 34.1	1 77	t .1	2.4	£45	£,43	.5	5.B	1.3	9.5	91,6	, 8 5	.62	.42	20	.72	.024	12.7	6.9	. 10	38.0	025	4	. 29	.941	. 17	9.8	.6	.64	. 65	45	1.1	,53	47.6	- - , I	8L	4.87		
	8417	9.76	39 17	4.15					474	1 74	25			1.6		-		31	28	**	829	12 N	,,	18	27 E	6 37	1	78	357	15	1 2	5	.03	.45		,	.87	1.4		01	4.33		
	8418	19.7																																									
		114 #3																																									
	8423	12.24																																									
x	8122	43.51																																									
м	308423	42,80	0.0	4.14	. 36					۰ <i>۵</i>	ж,	.,			a k c	-	,.	72	.	32	474	30 3		17	24.1	627	,	~	RL2	-	20 ≜	.1	67	47	16	10		1.5		01			
	E 338421	24.11																																									
	8422	19.11																																							4.33		
x	8423	8 18																																									
ज	8 124	127.99																																									
~	8423	4,52	*1 **						100-	1 34		2 P			-	7		**		1 43	a 365	14 1	.,	17	n 4	***		21		54			n^.		~	¢	. Ar			Dł	4 36		
	8126 8126	31.17										-																															
	642J		40.12																																								
	8425	11.34																																									
	ANOSSID 056/041.34																																										


Service and the service of the servi

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Deta FA

ł

52

.

A REAL PROPERTY OF A REA

1

53

	L	mc	01	<u>a</u> 	<u>M</u> :																ы ЭГУ										Ţ	ag	e	1						
ડસ્ક્રાફ			Ce pas p																																					
\$·1	i.	F 1.	87 2.	75 :	19.J	13	6.5	E1 :	528 1.	מ	,2 i	.9		.? 6	ii.9 <	c, 61	<.52	(\$.	25	.19	672	7.8 1	9.E	.60 11	12,7 .	n	<1	98 .01	7.4	1.4.3	1.7	39	¢.03	11	«.} «	c. 92	4.7	e 81		
326431			81 6 .																																					
368432			75 3,																																					
338433 388434			终了. 622.																																					
3584,35	104.5	ŧ 49.	65 3.	42 3	2.1	9 5	1.2	5	784 1.	5J Z	.3 5.	.2	.8 7	.8 4	17.5	.23	.10	36	95	.54	1 CED.	7.4	5.9	.11 3	s7.4 .	662	<	ж.ж	¢.,	9 41.5		.07	.56	28	1.0	.03	2.5	.01	4.2	
308435			33 4.																																					
308437			10 4.																																					
328438 308435	1125 R 3.2		98 3. 91 2,																																					
368446	16 .5	2 24.	673	23 2	13.2	81	1.4		559 3.	siz	.63	.1	.2 8	1.2 6	94.1	.65	.21	, 2 0	31	.30	.034 3	4 .5	4.8	.15 10	X.J .	852	4	47 .81	a .c	8 Z.I	E 1.1	.97	.75	-	5 4	: 02	24	€,8)	4.0	
358441			6 3 5.																																					
306442			% 3.																																					
508443 358444			94 4. 64 \$.																																					
RE 305444	114 4	K 111	લ દ	76. 1		141	• •			34 31			· · ·			-	*	12			*17 7			18 5		h1.4	,		• •	• •	•				14	85	28	< 61		
RRE 308444			97 6																																					,
308445	182,9	5 25.	47 4.	\$ 9]	15.1	191	1.8	1.2	293 Z	16 \$.) 5	a d	1.1 1	1,6 7	t, 5	.83	,6\$	7.39	2	.61	.037 1	8.9	4.9	.12 7	11.5 .	035	ч г ,	50 .01	5.1	5 23	9, 1	. 10	1.V	-15	2.9	.34	2.\$,01	2.2	,
328446			转站.																																					
338447	267.7	17.	CR 99	38 2	12.4 3	113	2.2 1	5.1 1	304 2	87 7E	.4 6	1 11	4. 8 5	5,9 1	13.1 3	1.53	3.27	33.93	5	, 2 1	.937 1	3.6	4.8	.840 9	99.5 .	061	4.	44 .01	2.2	2 7.	i .6	.11	1.23	45	1.6	.75	3.2	.14	1.9	1
338448			47 4].								-		*** **						-						-					-										
309149 389450			23 48. 48 7																																					
308451			66 4																																					
308452			1 4 16.																																					
362453			54 EI.																																					
308454 308455			87 18. 47 31.																																					
328455 188456			4732. 第13.																																					
318457			39 22.																																					
205458			33 M.																																					
308459			74 34.																																					
352.460 354.461			84 43. 68 17.																																					
206462			95 26																																					
STANDARD DS&/Ox1.34	11.4	¢ 12Z	58 33.	51 B	13.6	274 2	4.6 5	6.a	703 2	82 22	.8 6		5.5 3	3.1 4	续 14	6.26	3.42	5.09	55	.84	.981 1	A.4 3	14.Z	,57 16	65.6	380	15 1	.91 .03	5.1	6 J.	1 3.4	1.15	.82	220	4.3 (2.23	6.2	5 \$1		
UP 1F1 - 1.00 GM SAN CONCENTRATION EXCEP * BY FIRE ASSAY FROM AMPLE TYPE: DRILL CO	NPLE EDS UI	LEAC PPEI	HED	VI II T PLE Sal	TH (S.	5 Mi SOF	. 2- (E M	2-2 INE	HC RAL	L-HH S NU / RE/	103- 17 E	H2C SE P	AT ART	95 1AL	DE: LY J	G. (ATI	C FC ACKE RE/	DR C ED.	RE RE	HOU FRA	R, D CTOR t Re	ILU Y A	red ND G	TO : Rapi	20 1 HIT	NL, IC:	ANA	LYSE	DE	ΥI	CP/E	5 &	MS				SF SF	ELA (5	<u>л</u> 1

ļ

•

.

``.

AA OF ANY FICK			En	ngc	ld	м	in	ing	ą C	lor	p.	F	PRC	JE	CT	s:	rev	VAR	т	MOI	LY	Ē	FII	Æ	#	A5	06	76	4					Pa	ıge	2	!		405 /440	
	SAMPLEN	Ho pp#				•			Hin F Spet			-	a Th RCG C		کی اندون ا		8,5 p::#	v c spa		P (a 1 spm				ts 2		лі I 1											Samphe Ag			
	388463	49.77	82.¢8	23.15	59.9	452	14 9	6.6 10	196 2.6	8 20.	9 2 :	7 6.1	, s .	163.4	1.48	2.21	1. 49	51 1,7	\$.05	7 14.0	22.9	.49	63.0	. 029	41	62 . 53	13 .3	11 2.1	1 3.4		. 90	45	1.8	.12	2.7	4.01	3.95	•		
	398464	伊赫	朝 23	15.27	69,4	671	8.3	558	107 Z.Z	1 25.	F 3,4	r 9.5	6.0	174.1	10	1.95	7.43	29 1.8	6 .05	5 14.Z	17.8	. 38	44,ġ	.035	<1	.50 53	NS . 2	14 20.	. 23	. 15	1.07	-5	5.6	.11	2.2	.02	A 76			
	285465	85.93	59.84	13.66	205.6	1757	8.5	4.8 12	22 2.)	5 59.	1 3.	19.3	5 6,7	252.2	2.72	4.23	1.28	81.7	8 .054	9 10.1	9.5	. 54	60.5	500	ż	.32 .91	a .2	5 1.	3 3 1	. 19	.64	4	11	.06	11	.16	2.45			
	308466	A83.70	117.49	55.61	334.3	12%	19.8 1	6.2.31	05 4.8	1 194.	6 3.)	2 82.4	1 3.7	500.8	1 16.54	23.80	3.70	25 4.3	\$.05	3 4.5	2.2	1.93	43.5	.902	2	.36 .00	4,1	8 2.	5 6,4	14	2.58	9	3.0	.34	1.3	.н	2.30			
	388467	271.44	96.F2	18.22	325.1	528	29.7	7.9 H	\$7 3.1	3 Y.	\$ 3.	3 25.5	9 5.6	452.8	5 3.54	5,18	2.01	41, 4.8	6 .07	3 12.9	22.1	. 66	49,9	.011	3	.54 .93	\$.4	8 110	2 5.1	.15	1.33	5	1.9	. 10	2.1	.02	3.43			
	398446	ZØJ 62																																						
	208459	412 28																																						
	308470	431.79																																						
	109471	577 39																																						
	398472	1231.31	9 .4	14,78	41,4	480	12.7	6.4 [5	æ9 2.5	9 \$.	1 4.4	L 17,0	9 6 .4	236.9) .36	1.33	1 %	69 3.1	5.06	6 12 7	36.9	.64	63.1	645	<1	.57 .64	a .4	IS 2.4	1 4,8	5 .38	1.04	10	1.7	.11	1.Q	< 01	3.34			
	368473	785.24																																						
	308474	444.23																																						
	308425	723 72																																						
	208476	114.54																																						
	306477	567.93	106.43	14.12	38.5	344	18. 5	1.6 1	51	Ζ €.	a (),	1 7.4	6.9	\$2.4	i .41	. 47	2. 14	48 .2	4 .95	1 15.2	21.9	, 30	95. 3	.833	<}	. 62 . 02	2.1	NG 3.1	1 2.9	.17	. £ 7	٠	2.3	.99	2,3	< 93	2.92			
	305478	424.64	130.95	6.02	66.4	385	92.4 L		133 <u>).</u> ¢	z .	£ 3.)	L 9.6	6 A.9	54.0	s e	.41 3	2 51	16 .B	1.06	5 14.6	40.5	.43	75.5	573	-1	.76 .64	2.2	n 3 .	4.3	.21	. 86	\$	3.0	лĹ	3.1	. 42	2.45			
	398479	702 67	5i 53	5.#Z	23.9	Z37	18.1		55 L.B	8 3.	2 4.1	5.6	5.1.2	141.6		.23	1 43	34 1.5	z .04	5 17 7	13.2	. 31	65 .3	\$17	<١	47 67	а.а	e 1.9	2.2	.20	78	4	1.4	.97	2.2	< 01	2.68			
	206432	424.17	51.36	7.39	23.5	344	8.E	K.G. 3	00 I.4	F 1.	6 3,4	6.5	F 7.9	\$1.5	. 62	.34 3	1.75	24 .2	8.05	22.8	7.4	.15	14.2	.\$14	<1	43 .03	t_z	s 2.1	2.0	.15	. 27	\$.9	.48	1 9	<.01	1.95			
	RE \$38450	427.9Z	52.30	7.44	31.3	345	83	1.9 1	15 T.S	1 I.	¢ 3.4	U 5.9	E 11.3	82.S	.66	. 52	3.76	24 .2	e . 54	8 26.0	7.6	.15	119.9	.\$34	=3	44 .03	Z .3	2.1	1 2 4	16. 1	, 26	38	.9	.89	5 0	<.62				
	885 358460	419.65	50.99	7.14	23.3	334	7.6	4.0 8	89 J.4	5 1.	\$ 3.3	F 5.8	5-3.7	79.6	5. 45	.82	1.95	24 .2	\$.04	7 23.0	7.6	.15	E10.4	.834	<1	.42 .01	n .2	7 2.1	9 I.I	. 16	.25	5	.0	.95	L.9	< ¢i	-			
	305483	953 05	49.56	8.74	55.3	354	7.9	3.Z)	82 1.4	33.	7 3.9	5 9.6	5.0	71.2	1.47	.45	2.39	27 .2	s .94	+ 18.8	9.5	. 15	55.2	.\$13	4 1	.41 .62	10.Z	3 7.5	5 2.7	.13	. 34	12	.9	. 19	1.6	4.03	2 34			
	308*82	769.57	107 <u>\$</u> 4	11.12	SI.1	440 :	33 3 1	6.3 H	09 3.4	5 1.	3 7.3	2 9.6	F 5.9	146,3	1.58	.43 -	L 17	105 2.1	9 .1£	7 37 3	44,0	.68	£9.5	\$39	<1	66 .02	2.4	1 \$3.:	2 5.4	.35	3.55	23	2.6	. 20	3.4	< 61	2.76			
	308483	7姓,然														-						-	-		-				-			-								
		1780.97																																						
	305435	956 33	76.33	4.39	25.4	171	7.3	5.9 6	35 1.9	6 .	7 2.4	10.5	5.9	禄.4	19	.10	1 39	59 1.3	9.56	9 15.3	10.3	4	40.3	. 668	<ł	.49 .04	4.1	7 15 1	2.3	5 .23	.72	22	1.4	.57	2.6	×.01	5.94			
	208435	713 41	51.89	14.31	31.9	361	2.8	1.2	31 1.5	8 ¥.	1 Z.:	8 6,3	5 6.3	170.6	. 63	.55	1 53	н.,	9 .03	0 35.0	5.6	. 15	₩.Z	235	1	.34 .02	2 2	9 9,1	1 14	.13	.66	~5	1.2	.16	£.4	< c)	2.87			
	308467	525.35	47.25	13.57	28.4	453	57	4.2 3	32 3.5	67.	6 2.1	19.4	5 <u>6.6</u>	160.5	64	40	1.86	21 .9	6.94	17.2	8.1	. 22	YE S	\$ <u>]</u> #	1	38 .02	10 Z	9 S.	1.5	st. 4	.70	38	t.a	,05	1.3	(a, e)	3.40			
	308488	447 36	56 .13	11.63	32.2	396	£ f	4,7 3	18 1.7	4 A.	9 3,1	2.5	3 7 8	96.6	.57	.43	7.64	32.5	9 .04	2 29 3	17.9	.28	132.6	029	<1	60 .02	16 , 2	7 7.1	5 2.0	. 14	. 48		1.1	.9E	2.4	<.@3	3,75			
	308482	2118 22	51 47	12.94	25.7	451	3.3	3 8 1	its 1.4	6 6.	1 3 3	\$ 9.9	5 6.9	197.5	i .41	.38 1	2 26	18 .8	7 .53	15.5	7.9	.17	1.00	, 1 18	<}	19 .DZ	× .2	s, s	1.4	1.13	'n,	11	12	.33	1.\$	22	4 37			
	308495	425 62	38,94	9.83	X. I	259	1.9	2.3 5	87 1.1	5 3.	1 4.1	7 5,1	8.3	196.3	н. н	.20	1,37	22 .6	2 .03	3 18.C	5.5	.12	归.2	.18	1	. 11 . 8I	н.,2	3 3.1	5 1.3	ta. 19	.36	4	3.	. Q 1 5	1.5	<.Q)	2.60			
	308491	259 92	31.4 3	7,98	21	1 21	23	2.7 1	21 : .2		s 5.1	3 J.1	10.5	10.5	40	36	.85	16 ,3	9 .23	1 19.4	5.9	.10	79.4	. \$12	ı	24 .04	4.1	9.1	1.1	.04	.24	5	.7	.97	3.4	4 QJ	2.37			
	308492	342 OZ	34 45	7.45	23,6	182	28	2.4 4	59 1.C	5 6.	8 6.3	a 2.1	12.5	\$4.5	. 47	.32	. 79	17 .4	5.03	29.6	6.7	.10	83.5	817	1	34 .04	3.7	3 3.3	1.1	. 69	, 3 3	5	.6	.84	\$.\$	< 63	2.94			
	108493	1630 645	% 15	6.97	20.1	2 95	i1.9	4 5 5	166 1.9	2.	9 3.	€,S	6.5	124.2	. 35		8 ()#	43.1.2	5 65	9 17,4	34,9	. 32	50.9	032	\$	Ø .03	6.2	7 \$.	F 2.2	v	.16	35	1,6	.10	Z.1	4.\$}	2.79			
	308494	738.78	4.35	\$.35	35.1	255	6.4	4512	63 1.1	0 S.	4 3.5	1 A.U	\$ \$.5	\$1,1	, 4 3	. 20 1	1.74	27 .3	6.04	9 15.5	13.9	, 23	87 2	625	3	46 .03	9 .Z	16 JJ.) Z.₹	51. S	57	13	1.8	.96	19	\$ 2	4.95			
	STANDARD DS4/CH 34	31 51	122.11	20 CS	141 5	275 -	24 3 3	6.8 C	62 2.8	21.	9 6.1	45.2	2 3.0	29.7	6 31	3.29	\$ 18	56 .8	5.08	34,3	183.3	57	167 S	,690	18 1	89 .67	5.1	s 1.:	3.3	F L.7ž	.02	224	4.2 1	.94	5 9	5.16	1.1			

Simple spret SRIEL CORE RISG - Samples beginning TRET are Reruns and TRRET are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

'n,

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V1S 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

1

55

AA KME DIR TTER			Eng	old	M	ini	ng	Co	rp.	. F	RO	JEC	T	STE	ewa	RT	MOI	Y	F	ILE	#	AS	606	576	4				Pa	ge	3		AA ACA ACA ACA ACA ACA ACA ACA
	s*a()		9 53 19 19 19																-														
	301495	422.24	6.73 9.4	3 22.5	203	7.4 4.	4 454	1 77 7	3 4,3	11.2	7.9	93 9	.86	.65 2.1	55 ZI	\$ 3.05	.042 22.4		, 71 1	33.5 £	13 3	- 45	. 337	.74 16	1 1.7	.17.1	.08	19 2.4	5 .08	2.0 -	<.01	7.62	
	NE 308135	425.43	9.05 9.6	2 21.5	205	7.6 4.	5 464	L.78 7.	5 4.1	10,3	7.5	94.6	.98	66 2.1	55 Z	5 1.05	642 23.3	9.0	. 21 13	34.3 .E	33 7		.02#	21 17	2 3.6	.18 1	. 98	19 3.1	5.09	Z.Q -	<,01		
	9-1 301475	434.劳 4	4 25 19.5	7 26.3	205	7.9 4.	4 623	1.78 6.	8 4,3	8,9	7.3	95.9	.Q4	.79 1.1	5E 21	6 1.05	(*1 23.)	8.8	.22 1	12 8 .S	ş4 - 2	2 .45	. 039	.25 23	9 3.6	.17.1	.82	41 1.4	5 .05	2.1	<.01	•	
	308496		14 49 6 I																													3.83	
	368497	30.73	2 19 7,4	9 82.9	192	1.7 8.	9 393	1,20 3.	7 4.1	2.9	9.¢ -	97,1	.38	23	78 1	\$.76	G28 15.1	5.8	.14	76.4 . q	er 1	1.39	,04s	,20 44	0 1.0	.09	.54	ы ,	. 13	1.7	<,01	4,93	
	308498	273.71	2.14 8.2	4 17 B	209	4.8 5.	1 359	L.B) 5.	8 3.7	8.9	6.8	75.2 ×	.91	.35 2.1	15 23	3.55	.834 17.6	5.5	.20	94.6.0	37 1	.6	.055	.17 13	5 1.1	.10 1	.90	• 1.4	F .11	1.5	.02	4.99	
	K8499	17.51	14,78 26,3	1 76 4	236	2.6 3	3 495	135 12.	1 3.5	4,9	6 6 8	24 4	52	43 ,1	16 II	1.12	632 18 2	11	18 1	19.8 .C	16 2	50	013	.19	6 1.1	.65	47	*5 .1	5 64	7.0	K.01	3.87	
	308508	122 57 1	7.71 58.4	8 346.C	512	4.4 6.	5 500	1,61 29	9 4 9	12,9	781	55.8	. 18	. 52 .	89 5	5 1.14	624 10.6	2.3	. 23-32	35.1.0	0: á	47	.020	.23	6.1	. 18	.96	-5 2.3	£ .05	1.6	.92	1.78	
	45751	6) 61 🤇	5.60 22.6	e 163	285	2.6 2.	9 622	E.45 39.	5 2.5	9,4	5.2 1	9.9	. 56	28 .	95 I	2 1,44	.035 18.3	3.6	.27	77.8.0	99 I	42	945	.19	5.12	68	55	7 .3	7 .05	3.8	. 21	371	
	45252	\$1.72	01.57 13,5	1 29 3	275	3.4 3	2 793	L 48 85.	3 3.8	12,0	5 4 2	\$ 2.8	.65 1	.10 .3	93 <u>]</u> I	6 1.68	.034 15.5	4.5	.22	90,3 .E	96 1	1.49	.929	.71	€ 1.3	.11	.42	s .:	9 .05	1.8	.\$2	2.98	
	45253	93.55 14	8,29 99.2	7 196 2	2849	8,4 E.	6 893 .	9. 20 66.	2 2.3	17,3	381	HJ.9 Z	F 1	.95 5.1	ж ,	\$ 1.37 .	651 4.0	>.1	.2	44, Z . G	01 5	99	. 0 19	.25 1	2 2.2	.12 2	.25	5 2.6	6 .19	1.6	.07	3.85	
	45754	4.55	13.37 13.5	8 372.3	359 3	4 4 23.	5 996	e 21 - 4	5.5	Z1.9	323	u.4 1	45 2	24 .	27 78	4.35	338 21.5	44.6	z.09 Z	ed.s d	6 4	21.15	010	39	4 12.7	.8	. 60	13	1.82	3.1	62	542	
	45255	595 61	4.25 25.1	3 55.5	654 1	4.7 5.	2 3423	z 50 19.	7 4.5	17.5	5.6 2	21.3	.56 3.	.s tt	91 Z	5 2.65	.162 J.(13.8	.58 1	39.7.¢	as a	.71	.969	.8 X5	4 2.7	1 tl.	, 26	10 I.	.09	2.8	.02	3,75	
	452%	KA 48 6	8.23 66.5	8 363.4	2240 1	2.5 4.	8 1348	2.29 26	1 4.8	75 -	5.1 2	U.2 1	.81	11 6.	77 1	2.63	69 11.1	. I .0	相目	95 7 .C	až 3	s , 78	. 610	.73	.) 2.1	. 15	.82	8 1.4	.15	1.9	.92	2.83	
	45257	1198 66 1	18,15 39.5	1 14 6	1923 2	a.5 7.	0 1703	2.76 34	\$ \$,1	25.4	5.6 3	8.7 1	,34 2	51 5.	18 28	0 3.01	.079 11.3	30.5	.54 1	92.4 .9	az 4	.50	.013	.26)	.2 4.1	.13 3	. N	14 1.3	21. 7	1.5	. 62	4.59	
	45758	183.44 53	2.68 39.3	7 451.2	3475 3	E.1. 7.	7 1923 -	2,73 52	1 1.8	49,5	5,1 3	91.8 HZ	.17 7.	.ør 5.:	2 1	1 2.43	552 S.A	6. #	.4	9. Q. M	e; 5	. 30	. \$]\$.8 2	1 1.5	, ii i	.42	1 2 1.0	e , 19	1.0	,#S	3 57	
	45259	~2000 S	8.23 40.7	3 371.4	1813 1	8,4-4.	7 1819 -	2 12 25	9 3.5	49,5	5.1 3	55.2 5	.11 2	.79 10.1	9K 43	2 2 26	053 F.	21.Z	.60 (6, A .E	\$2 B	43	. 9 13	.30 18	9 4.6	.20 1	.30	40 Z.S	1 .42	1.8	.05	3.29	
	45,260	1417.89																															
	45261		62.57 42.1																														
	45262	>2506	5.90 23.5	9 38.2	1061 2	9.4 6.	5 3789 -	2.65 12	3 4.5	48,3	4.4 2	30.5 1	.06 4	.87 39.1	65 74	L 3.49	.064 18.	33.6	.81	11.7 .ê	25 1	E64	.011	.34 22	8 6.1	.32 1	.50	36 2.4	t <u>,5</u> 7	3.1	.85	4,69	1
	45763		2.91 22.9																														
	45254		ST.42 53.3																														
	4575		Q.66 27.9																														
	45756		¥.38 13.0																														
	#5267	>2000	(1.23 20)	5 36 9	1768 1	6.9 5	1 1502 :	2 37 35	€ 5.2	43,1	649	18.5 1	.53 1	32 12.	64 63	13.25	.075 15.3	31 7	.75 L	34.6.9	18 2	2 .9 2	.931	.31 3	2 5,9	. 34 L	27	53 1.3	z .\$4	3.9	.05	3 43	
	49268	1379 36																															
	45.269		15.41 23.9																														
	45.270		5.04 8.0																														
	49271		s al 30.0																														
	45772	>2000 Y	M.77 12.8	6 30.6	<u>\$94</u> 2	30.0	4 1355	2.61.24	3 3.5	5L.8	6.5 3	93.2 1	.02 1	.57 24.3	22 50	2.59	.055 18.1	21.5	.71 1	96.5 .0	16 1	.91	021	.23 H	.2 4.3	1 15.	.43	20 2.1	F .50	3.3	.67	3.59	
	45273		51 63 23.1																														
	45274		97.45 3.3																														
	45275		计卸始表																														
	4276		14.0 1 13.1																													2.56	
	STANDARD DS&/CAL34	12.49.1	22 16 29.3	19 142.1	213 2	4.7 18	8 304	2 80 20	4 67	45.0	3.2	31.8 6	.16 3	.45 5.1	03 54	6.85	477 14.2	164.1	.57 3	54.7 Q	79 17	1.89	. 07 Z	.15 3	2 3.4	1.73	.02 1	229 4.3	3 2.04	6.0 1	5.65	•	

.

Sample type, DRILL COEL AIED. Samples beginning "4E" are Reruns and "RME" are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., VIS 1Y8 Phone: 250-828-0522 Fax:250-828-0512

1

56

`

	SAMPLE#	Mo	
	G-1 308438 308472 RE 308472 308484	<.001 .105 .125 .125 .125 .172	
	308489 45257 45259 45260 45261	.113 .122 .554 .146 1.197	
	45262 45263 45265 45265 45267 45268	.605 .303 .466 .703 .140	
	45269 45271 45272 45273 45273 45273	.459 .875 .433 .229 .236	
GROUP 7AR - 1.500 GM SAMPLE, AQUA - REGIA - Sample Type: Core Pulp <u>Samplus begi</u>	nning 'AE' are Reruns	Alar 18/05	WHEA DIO COM
Data (FA DATE RECEIVED: NOV 14 2005 D.	NTE REPORT MAILE		Clarence Leong
Data (FA DATE RECEIVED: NOV 14 2005 D.	ATE REPORT MAILE		

٦ì

.

•