

BRANCH

Sander Arthory

2005 DIAMOND DRILLING SIWASH GOLD MINE AREA ELK PROPERTY

Similkameen Mining Division Siwash Lake Area, British Columbia NTS: 92H/16W; Lat. 49⁰50'N, Long. 120⁰19'W

VOLUME I : TEXT, TABLES, FIGURES & APPENDICES

This report consists of three volumes: Volume I: Text, Tables, Figures & Appendices Volume II: Diamond Drill Logs Volume III: Plates 1 to 21

March, 2006

By W.J. Jakubowski, P.Geo. Almaden Minerals Ltd. 1103 – 750 West Pender St. Vancouver, B.C. V6C 2T8

GEOLO

Report Preparation: Original + 3 copies

TABLE OF CONTENTS

<u>Page</u>

<u>VOLUME I</u>

1.0	SUMMARY AND CONCLUSIONS		1
2.0	RECOMMENDATIONS		2
3.0	INTRODUCTION		5
	3.1 Location and Access		5
	3.2 Claim Data		5
	3.3 History		7
	3.4 2005 Exploration Program		10
4.0	GEOLOGY		11
	4.1 Regional Geology		11
	4.2 Property Geology	••••••	11
	4.3 Structural Geology		12
	4.4 Mineralization		12
	4.4.1 Alteration		13
	4.4.2 Genetic Considerations		14
5.0	DIAMOND DRILLING		15
	5.1 Introduction	,,	15
	5.2 Drilling Operations		16
	5.3 Drilling Results		16
6.0	GEOCHEMISTRY		18
	6.1 Introduction		18
	6.2 Rock Geochemistry		18
	6.3 Methods of Average Grade Calculation		19
	6.4 Quality Control Measures		19
7.0	LIST OF PERSONNEL AND CONTRACTOR	S	25
8.0	STATEMENT OF QUALIFICATIONS		26
9.0	STATEMENT OF COSTS		27
10.0	REFERENCES		28

TABLES

Table 1: Measured Indicated and Inferred Resource		1
Table 2: Mineral Claims as at Dec 1, 2005		6
Table 3: Elk Property 2005 Drill Summary		15
Table 4: 2005 Drill Intersection Summary		17
Table 5: Re-Assayed Sample Summary		19
Table 6: Drill Duplicate Sample Summary		20
Table 7: Drill Blank Sample Summary		21
Table 8: Drill Sample Rerun Summary	•••••	22
Table 9: Drill Sample Standard Summary		23
Table 10: Drill Check Sample Summary		24

FIGURES

Fig. 1: Property Location and Regional Geology Map	 3
Fig. 2: Claim and Area Location Map	 4

<u>Scale</u>

APPENDICES

Appendix "A": Assay and Analytical Results from Core Samples

VOLUME II

Appendix "B": Diamond Drill Hole Logs

VOLUME III

PLATES (in pockets)

Plate 1:	- Siwash North Mine Site Plan and Surface Drill	
	Hole Locations 1:2000)
Plate 2:	- WD Vein Longitudinal Section 1:1000)
Plate 3:	- B Vein Longitudinal Section 1:1000	
Plate 4:	- SL Vein Longitudinal Section1:1000)
Plate 5:	- Drill Section 1990E Zone DpB1:500	
Plate 6:	- Drill Section 2040E Zone DpB1:500	
Plate 7:	- Drill Section 2110E Zone WD 1:500	
Plate 8:	- Drill Section 2140E Zone DpB1:500	
Plate 9:	- Drill Section 2160E Zone WD 1:500	
Plate 10:	- Drill Section 2210E Zone WD 1:500	
Plate 11:	- Drill Section 2395E Zone WD1:500	
Plate 12:	- Drill Section 2445E Zone WD 1:500	
Plate 13:	- Drill Section 2495E Zone WD 1:500	
Plate 14:	- Drill Section 2545E Zone WD1:500	
<u>Plate 15</u> :	- Drill Section 2595E Zone WD 1:500	
Plate 16:	- Drill Section 2645E Zone WD1:500	
Plate 17:	- Drill Section 2695E Zone WD1:500	
Plate 18:	- Drill Section 2745E Zone WD1:500	
Plate 19:	- Drill Section 2210E Zone SL 1:250	
Plate 20:	- Drill Section 2260E Zone SL 1:250	
Plate 21:	- Drill Section 2460E Zone SL 1:250	

<u>Page</u>

SUMMARY AND CONCLUSIONS

1.0

The Elk property consists of 18 contiguous mineral claims and one mining lease covering 12,277 hectares located 40 kilometres west of Peachland, B.C., in the Similkameen Mining Division (NTS: 92H-16W). Initial staking was undertaken in November 1986 (160 units) with additions in 1987 (60 units), 1988 (32 units) and 1989 (199 units). A block comprising 72 units was optioned from Mr. Donald Agur of Summerland, B.C. in October, 1988. Claim acquisition and subsequent work were conducted by Cordilleran Engineering Ltd. for Fairfield Minerals Ltd. until April 1995 when Fairfield assumed operations. Placer Dome Inc. entered into an option agreement on the property in March 1988 and withdrew in March 1991. Fairfield Minerals merged with Almaden Resources Corporation in February 2002 and the claims were transferred to the amalgamated company Almaden Minerals Ltd. Almaden retains 100% interest. The claims were converted to the computer based MTO claim cells in 2005.

The Elk claims cover forested, gently rolling hills with fair to poor bedrock exposure. The property is accessible by paved highway, 50 km from Westbank, B.C., or 50 km. from Merritt, B.C.

The property is underlain by the Triassic Nicola Group volcano-sedimentary assemblage on the west and by granitic rocks of the Jurassic Osprey Lake Batholith on the east. Feldspar porphyry stocks of the Late Cretaceous Otter Intrusions cut both of these groups. Andesite dykes intrude all of the above units and are interpreted to be of Tertiary Age.

Gold-silver mineralization on the Elk property is hosted by pyritiferous quartz veins and pyritiferous altered granite. The mineralized features generally trend northeasterly and are thought to be Late Cretaceous or Tertiary in age. To date, mineralization has been located in ten areas of the Elk property: Siwash North, Siwash East, Bullion Creek, Gold Ceek West, South Showing, Discovery Showing, Lake Zone, End Zone, Great Wall Zone and Elusive Creek.

Work conducted on the property from 1986 to 1991 consisted of geological mapping, prospecting, linecutting, soil sampling, geophysics, excavator trenching, diamond drilling and road construction. During the 1992 to 1994 field seasons open pit and underground mining extracted 1.600.406 grams (51.460 ounces) of gold from the Siwash North vein system. Reverse circulation drilling, underground diamond drilling, reclamation, road construction, water sampling and aerial photography were also undertaken during this period. Surface and underground diamond drilling programs were carried out in the Siwash Mine area from 1994 to 1996 to define the resource. Exploration surface drilling was also carried out during the 1995 and 1996 field seasons to test vein targets between the Siwash mine site and the South Showing area 2.5 kilometres to the south. Limited prospecting and environmental monitoring were undertaken from 1997 to 1999. Surface diamond drilling totaling 1413.96m in 12 holes was completed on the Siwash Mining lease during 2000 testing the B, WD and Gold Creek West (GCW) zones. A trenching program was carried out in 2001 in the Siwash East Area consisting of six trenches totaling 202 meters. A 26 hole surface diamond drill program was undertaken in 2002 for a total of 4995.67m testing the B, WD, GCW and Bullion Creek zones. During the 2003 field season a 6570 meter, 30 hole, diamond drill program was carried out in the Siwash North area testing the WD zone. A total of10,265 meters of NQ diamond drilling in 44 holes was carried out in the Siwash North area testing the WD, B and BC zones in 2004.

Table 1	Measu	ed and Indica	ated Resource		Inferred Resource			
Area	Gold Cut off Grade	Tonnes	Gold Grade (g/t)	Contained Ounces Gold	Tonnés	Gold Grade (g/t)	Contained Ounces Gold	
B Flat Vein	7 g/t	19,100	26.70	16,400	500	7.74	100	
B Steep Vein	7 g/t	39,700	54.50	69,600	53,300	19.93	34,200	
B East Vein	7 g/t	2,800	19.43	1,700	25,800	14.98	12,400	
WD Veln	7 g/t	42,600	29.82	40,800	98,700	14.69	46,600	
1.0 cut off open pit	1.0 g/t	564,100	4.361	79,100	1,138,900	3.126	114,500	
Total		668,300	9.66	207,600	1,317,200	4.91	207,800	

A resource calculation was completed by Giroux Consultants Ltd. in May of 2004 as follows:

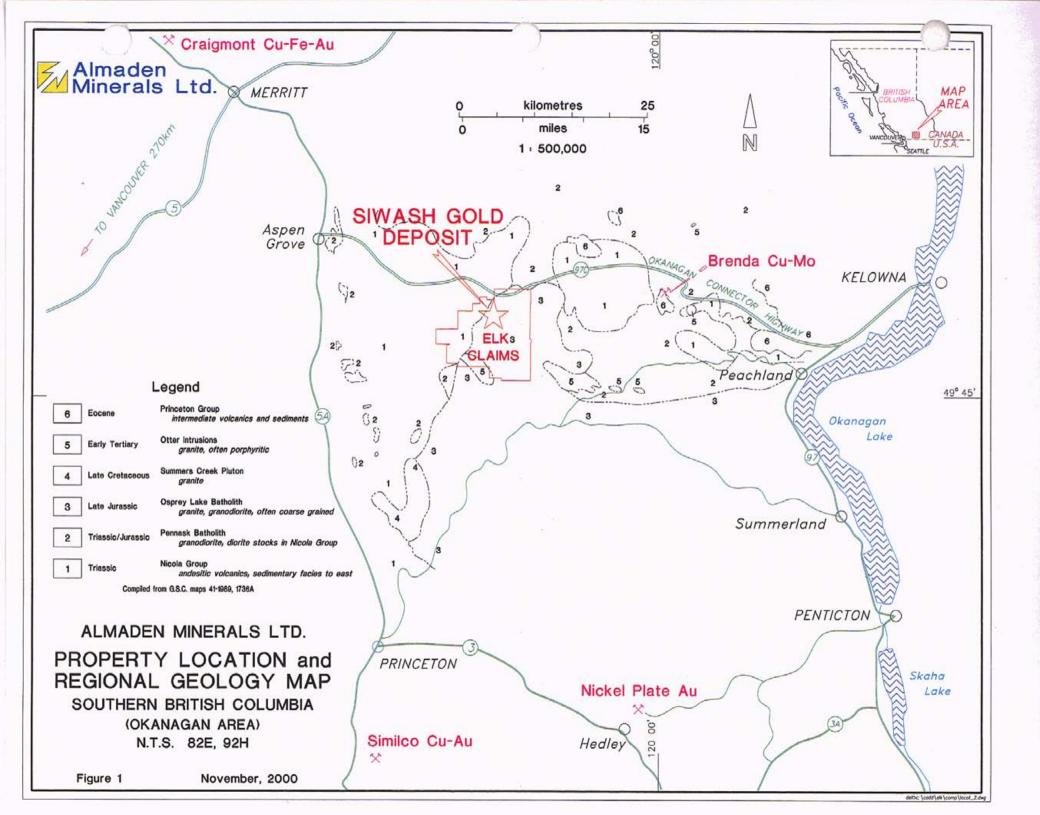
The 2005 exploration program consisted of 8395m of NQ diamond drilling in 36 holes testing the WD, B and Siwash Lake zones. The B vein was found to flatten at depth while maintaining good grades. The drill pattern on the WD vein was filled in to 25 by 50m in the area of the defined resource and the extent of the vein system was tested to the west and down dip.

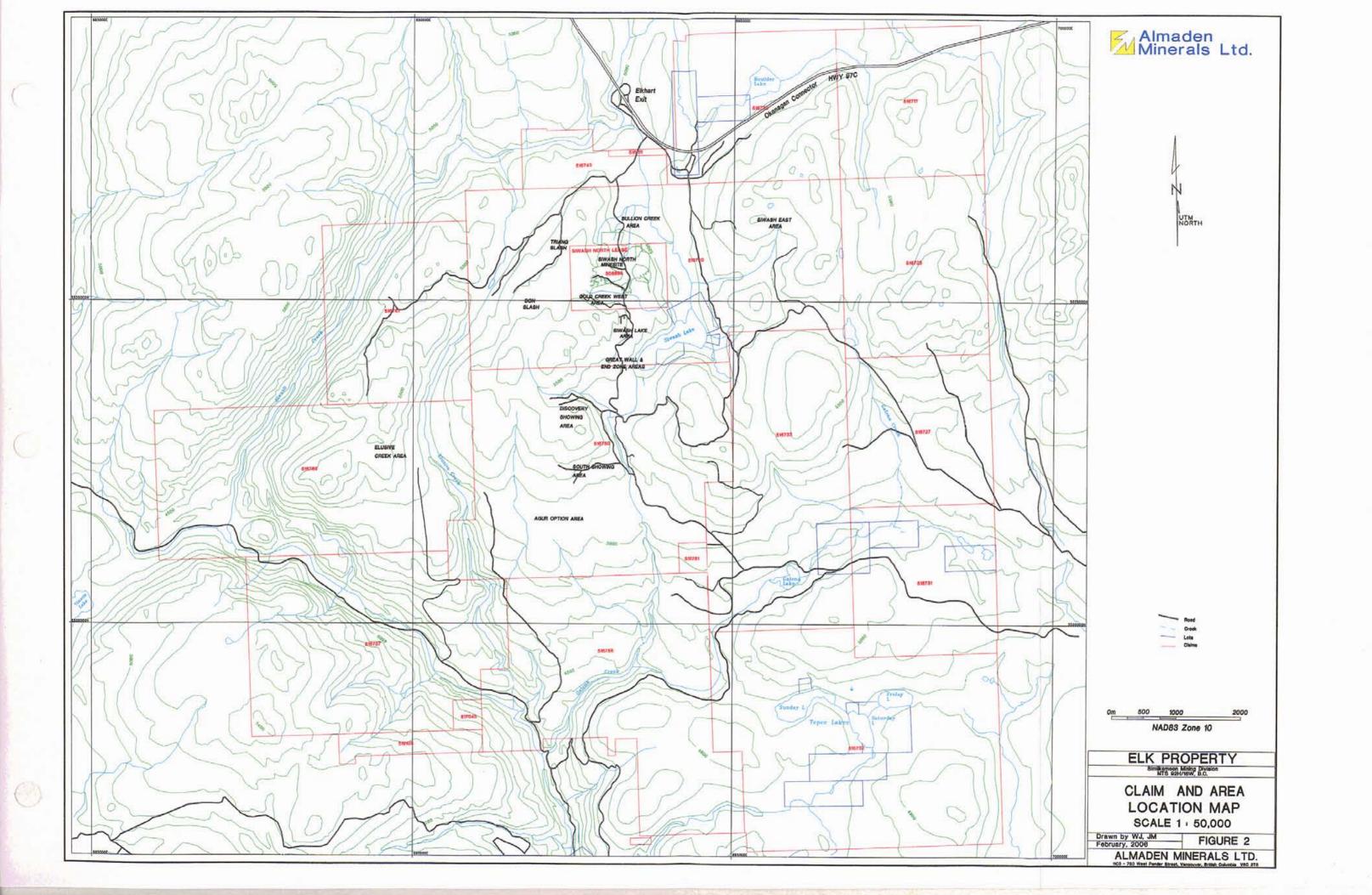
The results of exploration on the Elk Property are extremely encouraging. Potential for the definition of additional gold reserves in the immediate mine area remains strong in the B, WD vein and Bullion Creek structures. Promising vein structures are present in the Siwash East, Siwash Lake and Elusive Creek areas, and geophysical and geochemical anomalies in the Elk South area with similar signatures have yet to be tested. Excellent access to services is provided by the Okanagan Connector highway which passes two km north of the Siwash mine site. A pre-feasibility study of the deposit economics is recommended including a review of options for dewatering the mine workings and condemnation drilling of proposed mill and tailings sites. Continued aggressive exploration is warranted to fully define the extent of this gold resource.

2.0

RECOMMENDATIONS

The following exploration program is recommended:


- Carry out a pre-feasibility study of the deposit economics considering the various open pit and underground options. Determine dewatering rates and options in preparation for the rehabilitation of the existing workings.
- Drill five holes under the proposed tailings site and two holes under the proposed mill site to eliminate the possibility of mineralized zones in these areas.
- Sonic drill the Elusive creek area to the west of the existing trenches to define trench and diamond drill targets.
- Drill four deep holes to the west and west of the existing DeepB grid to test the continuity and grade at depth.
- Drill six holes in the Siwash East area to test the continuity of mineralized quartz veins exposed by trenching.
- Drill two holes in the Bullion Creek structure to the east of the existing holes to determine the orientation and extent of the known mineralization.
- Drill four holes in the Siwash Lake zone to test for continuity of structure and grade to the west
 of the present drilling.


Respectfully submitted

ALMADEN MINERALŜ LTD.

irrid. – Jokalyopat**ri**

Wojtek Jakubowski, B.Sc., P.Geo. Geologist

INTRODUCTION

This report describes the results of a diamond drill program conducted on the Elk property during the period June 6 to October 23, 2005. The work was managed by personnel of Almaden Minerals Ltd. with the intent to test the continuity and gold grade in the WD, B and Siwash Lake vein systems.

3.1 LOCATION AND ACCESS (Figure 1)

The Elk property is located 40 kilometres west of Okanagan Lake in southern British Columbia approximately midway between Merritt and Summerland, at latitude 49°50'N and longitude 120°19'W (Figure 1). The claims cover heavily forested rolling terrain of the Trepanege Plateau highlands. Elevations range from 1300 to 1750 metres above sea level. Access to the property is excellent, with the Okanagan Connector highway passing through the northern claims. Merritt and Kelowna are within one hour driving time from the mine location. Field operations in 2005 were based out of a field camp located on the property.

3.2 CLAIM DATA (Figure 2)

The Elk property consists of 18 contiguous mineral claims and one mining lease covering 12,277 hectares. (Table 2). Expiry dates listed are subject to acceptance of costs and the program summarized in this report. Initial staking was undertaken in November 1986 (160 units) with additions in 1987 (60 units), 1988 (32 units) and 1989 (199 units). A block comprising 72 units was optioned from Mr. Donald Agur of Summerland, B.C. in October, 1988. Claim acquisition and subsequent work were conducted by Cordilleran Engineering Ltd. for Fairfield Minerals Ltd. until April 1995 when Fairfield assumed operations. Placer Dome Inc. entered into an option agreement on the property in March 1988 and withdrew in March 1991. Fairfield Minerals merged with Almaden Resources Corporation in February 2002 and the claims were transferred to the amalgamated company Almaden Minerals Ltd. The claims are 100% owned by Almaden Minerals Ltd. with the exception of the Agur Option block (72 units) on the south side of the property, which is subject to 1% NSR from production. The Elk41 and Elk42 claims were allowed to lapse in 2000.

In preparation for the transition to a grid – cell computer staking system implemented in January 2005 in British Columbia, a program of relocating and re-establishing claim posts was initiated in 2003 and completed in 2004. The differential GPS survey of selected claim posts is described in the "2004 Claim Post Differential GPS Report" submitted in December 2004. The legacy claims were converted to the computer based MTO cell claim system in July and August of 2005.

Table 2

.

MINERAL CLAIMS AS AT DEC 31, 2005

Claim	Claim	No.	Record	Expiry
Name	Туре	Units	Number	Date
ELK05A	cell	1	516781	12/01/2015
ELK05B	cell	2	517116	12/01/2015
No Name	cell	1	517045	12/01/2015
NoNameConv	cell	25	516717	12/01/2015
NoNameConv	cell	30	516725	12/01/2015
NoNameConv	cell	25	516727	12/01/2015
NoNameConv	cell	25	516731	12/01/2015
NoNameConv	cell	71	516732	12/01/2015
NoNameConv	cell	45	516733	12/01/2015
NoNameConv	cell	30	516739	12/01/2015
NoNameConv	cell	70	516740	12/01/2015
NoNameConv	cell	8	516743	12/01/2015
NoNameConv	cell	61	516750	12/01/2015
NoNameConv	cell	57	516755	12/01/2015
NoNameConv	cell	49	516757	12/01/2015
NoNameConv	cell	54	516759	12/01/2015
NoNameConv	cell	30	516761	12/01/2015
NoNameConv	cell	5	519105	12/01/2015
SIWASH NORTH	lease	1	308695	14/09/2006

3.3 HISTORY

During the first half of the 20th century the El Paso adit was driven into volcanic rocks in the area currently covered by the claim with tenure number 516759. Quartz vein-hosted lead-zinc-silver-gold mineralization was encountered. No production of ore was achieved.

Between 1955 and 1995 Don Agur of Summerland, B.C. prospected and trenched the north and west parts of the present Elk property area, as well as to the south along Siwash Creek.

Phelps Dodge Corporation of Canada Ltd. carried out copper exploration during 1972 which included mapping and soil geochemistry in the area of the present claims with tenure #'s 516759 and 516757.

Utah Mines Ltd. conducted mapping, geochemistry, IP geophysics and trenching to evaluate copper mineralization on their Siwash claim group which, in part, covered the present tenure # 516759.

Brenda Mines Ltd. worked on the Siwash claim group, which included the area now comprising the southern part of the Elk property. A rigorous copper exploration program including mapping, soil geochemistry, geophysics, trenching and diamond drilling was undertaken between 1979 and 1981. Work was done on the area currently covered by the claims with tenure #'s 516755, 516757 and 516759.

Exploration for molybdenum was undertaken by Cominco Ltd. during 1980 on the claims with tenure #'s 516727, 516731, 516733 and 516740. Work included geological mapping and soil geochemistry.

No significant discoveries resulted from any of the above programs.

The Elk 1 to 27 claims (present claim tenure #'s 516733, 516740, 516743, 516759) were staked in November 1986 by Cordilleran Engineering Ltd. for Fairfield Minerals Ltd. to cover new showings of gold-silver mineralization hosted in pyritic quartz veins cutting a granite batholith and andesite dykes. Preliminary hand trenching and soil sampling were conducted.

During 1987, widespread and detailed grid soil sampling programs were undertaken to define areas anomalous in gold. Nine trenches, totaling 1528m, were excavated in two areas (Discovery and South Showings) to test soil geochemical targets, and exposed quartz veins and altered breccias hosted in granite. IP, magnetometer and VLF-EM geophysical surveys were carried out over the trenched areas. The Elk 28 to 30 claims (present claim tenure #'s 516740, 516759, 516761) were staked in September 1987 to acquire ground along projections of favourable geochemical trends.

The 1988 program included collection of 2246 soil samples on the claims acquired in 1987 and trenching in Siwash North and Elusive Creek areas. Four kilometres of road was constructed for access and eleven trenches totaling 2884 metres which exposed quartz vein-hosted gold mineralization were mapped and sampled. The Elk 31 to 37 claims (present claim tenure #'s 516732, 516757, 516759, 516755) were staked to cover adjacent favourable areas.

During the 1989 field season, the Elk 38 to 73 claims (present claim tenure #'s 516727, 516731, 516732, 516755, 516781) were staked to cover projections of anomalous soil geochemical trends. Fifty line-km of VLF-EM and magnetometer surveys were carried out in the Siwash Lake and Siwash North areas and 4865 soil samples were collected on the new claims. A total of 56.25 km of baseline was cut to provide control for soil sampling and geophysical surveys. In the South Showing, Siwash North and Siwash Lake areas 2223 linear metres of bedrock were exposed in 25 trenches. The high grade gold bearing quartz vein system in the Siwash North area was further delineated over a strike length of 750m. Twelve diamond drill holes (752m) tested the down dip continuity of this system. The drill core was logged, split sampled and photographed. Samples were shipped to Acme Analytical Labs for assay and analysis. All core has been stored on site.

During 1990 5168.34m of HQ diamond drilling in 58 holes was carried out in the Siwash North area on a 50m grid spacing. Quartz vein hosted gold mineralization in the Siwash North area was further exposed by seven

trenches and three stripped areas totaling 544 linear metres. Diamond drilling in the Siwash Lake area consisted of 259.08m of HQ core in four drill holes (SLD90-56 to 59). Six trenches and one stripped area totaling 607 linear metres of bedrock exposure were excavated in the Siwash Lake area. Soil sampling on the northern Elk claims was concentrated in the Siwash Lake area where 250 fill-in samples were collected around anomalous coarse grid stations. One thousand two hundred and fifty-four grid soil samples were collected on southern Elk claims. Magnetometer and VLF-EM surveys (50 line km) were carried out on the Agur Option area on flagged lines 100m apart.

Exploration on the Elk claims during the 1991 field season consisted of diamond drilling, trenching and aerial photography. Thirty seven new holes were drilled and two were deepened for a total of 6608.38m in the Siwash North area to test down dip and on-strike continuity of quartz vein-hosted gold mineralization discovered by previous work. The drill core was logged at 1:50 and 1:100 scales, photographed and sampled. Five hundred and ninety eight samples were taken and sent to Acme Analytical Labs for gold assay and analysis.

One trench was dug in the End Zone, 200m southwest of Siwash Lake, to further expose a quartz vein discovered by trenching in 1990. The vein is continuous across the entire length of the 45m trench. Thirty two rock chip samples were collected and sent to Acme for gold assay and analysis.

An area four by eight kilometres centered over the Siwash North area was aerially photographed in colour and black and white, at 1:8,000 and 1:15,000 scales.

During 1992, a bulk sample was extracted from an open pit on the Siwash vein in the Siwash North area. It totalled 2,040 tonnes (2240 tons) and averaged 137.7 g/t (4.016 oz/t) gold. A small crushing/sampling plant was installed for grade control.

The bulk sample was shipped to Noranda's Horne smelter in Rouyn-Noranda, PQ for metallurgical testing and smelting.

A total of 79 reverse-circulation holes were drilled in September and October to test for further open pitable reserves. A total of 223 reverse circulation chip samples were shipped to Acme Analytical Labs for assay and analysis.

In 1993 open pit mining continued with the extraction of 3,387 tonnes (3733 tons) of bulk sample material grading 105.6 g/t (3.080 oz/t) Au. Eleven reverse-circulation drill holes totaling 942 metres tested the vein to the south and east of the open pit. The material was crushed on site to minus 6 inches and then shipped to ASARCO's smelter in Helena, Montana.

A portal was collared on June 28 and 480 metres of decline was driven at ~15 percent to access high-grade shoots. Two vein drifts were developed for test mining, the 1570 level on the steeply dipping limb of the vein, and the 1611 level immediately downdip from the central core of the open pit on the flat dipping limb. Drifting on the 1570 level produced about 140 tonnes (154 tons) of ore grading 38 g/t (1.108oz/t), whereupon the drift was abandoned and refilled due to poor ground conditions. Three raises at 5 metre centres, totaling 36 metres in length, were driven up dip from the 1611 level drift. Following development of the raises, the quartz vein was stoped from the pillars producing about 315 tonnes (347 tons) of ore grading approximately 70 g/t (2.042 oz/t) Au.

In 1994 the Company received a small mine permit, the open pit was expanded and 9,180 tonnes (10,119 tons) of ore grading 91.5 g/t (2.669 oz/t) were extracted. Underground, the 1611 level drift was extended to the west. Five raises were added and the existing ones lengthened to the 1620m elevation. Approximately 1,200 tonnes (1323 tons) of quartz vein material grading about 78 g/ton (2.275 oz/t) Au was extracted. An underground diamond drilling program was carried out between April 7 and May 31, with 5,011m of core drilled in 84 holes from the existing decline to define ore reserves. A total of 448 core samples were collected.

Further underground development was undertaken on completion of the open pit, with the main decline being extended 330 metres. A second decline branched east from the main ramp, for a length of 185 metres. Test mining was carried out on two levels. A longhole stoping test on the 1584 level produced 95 tonnes (105 tons) at 16.5 g/t (0.481oz/t) from drifting on the ore. Longhole blasting produced excessive dilution and most of the material remains in the stope. On the 1589 level, a shrinkage stope test was undertaken. Stoping proceeded about 6 metres up dip along the 30 metre length of the drift. About 105 tonnes (116 tons) at 15 g/t (0.438 oz/t) Au were hauled to surface. However, much of the material remains in the stope.

Exploration on the Elk claims in 1995 consisted almost entirely of diamond drilling. Two hundred and seventeen underground diamond drill holes (7,612 m) were drilled from the decline ramp in the vein footwall, between April 13 and August 12, to test grade and continuity of the mineralized zone. A total of 918 core samples were collected from underground holes and sent to Acme Analytical Laboratories for gold assay and analysis.

Surface diamond drilling was undertaken between June 21 and September 22. In the Siwash North area, 70 holes were drilled (4,645 metres). In the Lake Zone area, 7 holes (477m) were completed. Two holes (102m) were drilled on the Great Wall Zone, and four holes on the End Zone (187m). Six holes were drilled on Discovery Showing and nine holes on the South Showing areas (397m and 481m respectively). In all, 6289 metres were drilled in 98 surface holes. A total of 581 core samples were collected and sent to Acme Analytical Labs for assay and analysis.

A small trench measuring about 10m along strike and 4m wide was dug at the Great Wall Zone to test the grade of a quartz vein encountered during road construction. A ten centimetre vein trending 55 degrees and dipping 60 degrees to the south was exposed. Two 0.5m square panel samples were taken across the vein and returned grades of 0.51g/t (0.015 oz/t) and 0.99 g/t (0.029 oz/t) Au.

A total of 38 soil geochemical samples were taken to the east of the clear-cut in the Siwash North area. Prospecting in areas of anomalous samples uncovered quartz vein float which assayed 47.35 g/t (1.381 oz/t) Au.

Two test pits were dug in the southern South Showing area.

The 1996 program consisted of 6,946.34m of NQ diamond drilling in 88 holes. Five holes were drilled in the Siwash North Deep B area (1120.14m). The mineralized structure was intersected in all holes. The proposed Phase 5.5 open pit, east of the existing pit, was detail drilled with 1997.02m of NQ core in 38 holes. This allowed the definition of an indicated resource of 503,000gm Au (16,200 oz) for the area of the proposed pit. The WD zone, located 200m north of the Siwash B zone structure, was tested with 25 holes in 2308.84m resulting in an inferred resource block of 569,000 gm Au (18,290 oz). The source of the anomalous soil geochemistry in the East Slope area was evaluated with 9 holes (564.39m) with poor results. Four holes (399.08m) were drilled to test the source of the anomalous soil geochemistry and VLF conductor in the Gold Creek East area. Numerous small veins with poor to moderate values were intersected. The source of the anomalous soil geochemistry in the Gold Creek West area was evaluated with 7 NQ holes (556.87m). A mineralized quartz vein was intersected with 11.8 g/t (0.381 oz) over a true width of 0.5m. A total of 1161 core samples were sent to Acme Analytical Laboratories for gold analysis.

The area immediately to the south and east of the Siwash North drill grid was detail soil sampled at 25 X 50m spacing for a total of 367samples.

Reclamation and site cleanup was undertaken during 1997. The overburden cover was completed on the East waste dump and much of the mine equipment was transported to Savona, B.C. for storage or sale. Limited prospecting, sampling and environmental monitoring were carried out between 1997 and 1999 on the Elk property.

During 2000 twelve NQ diamond drill holes (1414m) tested the WD, B Zone and Gold Creek vein systems. Four holes were drilled into the WD zone to expand the then current 18,000 oz inferred resource block. The WD veins were intersected in all holes close to the projected depths with grades up to 41.03 g/t Au over a true width of 0.50m. The area of the proposed Phase 5.5 open pit located about 200m to the east of the existing pit had been drilled extensively to establish a resource estimate for pit planning purposes. Three holes were drilled on the east side of the proposed pit to increase the sample density. The Gold Creek West vein, located approximately 450m southwest of the existing open pit, was first drilled in 1996. Five holes were drilled to test the vein continuity at 50m intervals between sections 1700E and 1890E. The vein was intersected at the projected location with grades up to 16.55g/t Au over a true width of 0.50m. The vein steepens from about -

30^o on sections 1750E and 1700E to -60^o on section 1840E and east. The exploration field camp located on Camp Creek that was used from 1987 to 1996 was completely disassembled.

A trenching program was carried out in the Siwash East area during October of 2001. A total of six trenches with a cumulative length of 202 meters located the source of mineralized quartz float discovered by

prospecting. The trenches exposed narrow quartz veins adjacent to an east-west trending andesite dyke with grades of up to 21.7 g/t Au from a 0.5 by 0.5 meter panel sample.

During the 2002 field season twenty six NQ diamond drill holes (4496m) tested the WD, B Zone, Gold Creek West and Bullion Creek vein systems. Seven holes were drilled into the WD zone to determine the extent of the known shoot. The WD veins were intersected in all holes close to the projected depths with grades up to 91.22 g/t Au over a true width of 0.50m. Eleven holes were drilled into the DeepB shoot located immediately below the existing underground development to fill-in the drill spacing to less than 25 meters and to define the perimeter of the known mineralization. Two holes were drilled on the west side of the existing open pit to help determine the feasibility of a pit expansion to the west. The Gold Creek West vein located approximately 450m southwest of the existing open pit was tested with four holes in two 50 meter step-outs to the west of the existing grid. Two holes were drilled into the Bullion Creek structure located 700 meters to the north of the open pit to test a geochemical anomaly.

In 2003, a total of 6570 meters of NQ diamond drilling in 30 holes was carried out in the Siwash North area to further test the WD zone. A subparallel vein, the WD2 vein, was intersected about 30m below the WD vein on the west side of the grid and found to contain significant gold grades.

In preparation for the transition to a computer based staking system (MTO), claim posts for the southern claims were located with a GPS and replaced where they had been destroyed by logging operations.

The 2004 program included a total of 10265 meters of NQ diamond drilling in 44 holes in the Siwash North area to further test the WD, B and Bullion Creek zones. In preparation for the transition to a computer based staking system (MTO), selected claim posts were located with a differential GPS. A road cut to a proposed drill site in the Siwash East area was mapped and sampled over a length of approximately 40 metres. A ground magnetometer survey was carried out over the Siwash East area for a total of 15.8 line kilometers

3.4 2005 EXPLORATION PROGRAM

The 2005 exploration program on the Elk claims consisted of diamond drilling, core logging and sampling. A total of 8395 meters of NQ diamond drilling in 36 holes was carried out in the Siwash North area to further test the WD, B and Siwash Lake zones. A field camp was built approximately two kilometers south of the mine site to house the crew during the drill program.

4.0 GEOLOGY

4.1 **REGIONAL GEOLOGY** (Figure 1)

The Elk property is located in the Intermontane tectonic belt of south central B.C. Hope Geological Map 41-1989 by J.W.H.Monger (1989) shows the area to be underlain by Upper Triassic volcanics and sediments of the Nicola Group and by Jurassic granites and granodiorites of the Osprey Lake Batholith. The contact between these units trends northeasterly across the property. Early Tertiary feldspar porphyry stocks and dykes of the Otter Intrusions occur throughout the claims and a large body to the south is spatially associated with many known showings of copper, lead, zinc and silver.

4.2 PROPERTY GEOLOGY

The western claims area is underlain by steeply west-dipping andesitic to basaltic flows, agglomerates, tuffs and minor siltstone and limestone units of the Upper Triassic Nicola Group. The eastern half of the property is underlain by Late Jurassic granitic rocks of the Osprey Lake Batholith. The contact between these two assemblages trends approximately north-northeast. Early Tertiary feldspar porphyry and quartz-feldspar porphyry stocks and dykes of the Otter Intrusions cut both of the above. Breccias containing rounded volcanic, dioritic and granitic fragments in a granitic matrix crosscut Nicola Group rocks, Osprey Lake and Otter Intrusions. Andesite dykes are the youngest units mapped, post dating all of the above. Mineralization appears to be spatially associated with these (Tertiary?) andesite dykes which are locally cut by quartz veins.

Overall, Nicola Group rocks found on the Elk property are massive, dark grayish-green basaltic andesites. In some exposures the andesite contains pyroxene and/or amphibole phenocrysts, or laminae of sand sized black grains. Interbedded, pale green siliceous laminated tuffs and brownish green to pale green agglomerates with clasts from five to 50 cm in size have been noted. Nicola Group rocks are occasionally silicified, carbonatized or epidotized. Iron oxide staining and finely disseminated pyrite are common.

The Osprey Lake granitic rocks on the Elk property are pinkish grey, medium- to coarse-grained, equigranular, and contain quartz, orthoclase, plagioclase and biotite. Petrographic analyses indicate the composition varies from quartz monzonite to granodiorite. Pink, sugary textured aplite and pegmatite dykes cut the quartz monzonite and were probably a late phase of the intrusive event. Quartz diorite related to the batholith is far less common and occurs as stocks. It is pale grey, generally medium to fine grained and contains visible quartz, plagioclase, biotite and amphiboles. Dykes of quartz monzonite and hornblende-biotite quartz monzonite have also been mapped. They are medium greenish-grey, medium grained and contain feldspar and occasionally hornblende phenocrysts. A fine grained granodiorite has been noted in the Siwash North area at the contact with the Nicola volcanics. It is most likely an early or late chilled intrusive event of the Osprey Lake intrusion. Alteration assemblages include weak to strong propylitic, argillic, phyllic and silicic, noted predominantly with vein structures in the trenched and drilled areas where these recessively weathering features have been exposed.

The Otter Intrusions comprise quartz-feldspar porphyry, feldspar porphyry and quartz-biotite-feldspar porphyry dykes and stocks. The quartz-feldspar porphyry mapped in the Discovery area is extensively clay altered and contains feldspar phenocrysts up to five cm, averaging about five mm. The altered groundmass is beige in colour and extremely friable. Feldspar porphyry rocks range from medium grey to red and contain feldspar phenocrysts 2 to 5 mm in size that vary in quantity from 3 to 40 percent. Petrographic examination of the red, medium packed feldspar porphyry indicated that it is syenitic in composition. Quartz-biotite-feldspar porphyry is greyish beige and is typified by small biotite grains with equal quantities of fine quartz and feldspar phenocrysts.

The breccias noted cutting the Osprey Lake rocks on the property have altered granitic matrices and contain rounded to sub-rounded granite, diorite and andesite clasts varying in size from 5 to 25 cm. The elongate breccia bodies vary in width from 5 to 30 metres and trend northeasterly. These zones may be portions of major fault structures, but displacement, if any, is not readily apparent. The brecciation events are most likely associated with the Early Tertiary Otter intrusions.

Andesite dykes are dark greyish-green, fine grained and vary in thickness from 30 cm to 8 metres. They are commonly muscovite altered and brown weathering. Strong orange and blue clay alteration has also been noted in these rocks.

4.3 STRUCTURAL GEOLOGY

Nicola Group rocks on the west side of the property dip approximately 60 degrees to the west forming the east limb of a syncline mapped by Rice. The syncline trends roughly north-south and its axis passes about five km west of the claims.

The Elk property topography reflects several linear structures, the most prominent being the north to northeast trending features occupied by Siwash Creek, Elusive Creek and a parallel creek 2.5 kilometres to the east. Subtle east-northeast trends are evident on aerial photographs and are commonly associated with mineralization. Structural deformation in the area appears to be minimal.

4.4 MINERALIZATION

Gold mineralization on the Elk property is hosted primarily by quartz veins and stringers in altered granitic and, less frequently, volcanic rocks. Cross- cutting relationships indicate that the veins are Tertiary in age; they may be related to EarlyTertiary Otter intrusive events.

In the Siwash North area, (Fig. 2) gold occurs in veins measuring 5cm to 70cm thick, hosted by a zone of strongly sericitic- to phyllic-altered granitic and, in the west, volcanic rocks. In general, the mineralized zones trend ENE with southerly dips from 20° to 80° (from east to west), and appear to be related to minor shearing. In the eastern parts of the area, up to six sub-parallel zones occur. Six of these zones are consistent enough to be labeled the A to E and X zones. Mineralization on the west side of the Siwash North area has been identified in up to four zones (B, C, PC and DeepC). The B zone is locally divided into several subzones, with each one locally auriferous. Another subparallel vein system, the WD zone, is located 200m north of the B vein system and has the same east west extent. It dips approximately 40° near surface and steepens to 70° at depth. The WD zone splays locally into two veins – the Wda and WDb usually 2 to 15 meters apart. The WD2 and WD3 veins are found running subparallel to the WD to the west of the RB fault about 10 to 20 meters below. The BC zone, located 500m north of the WD zone, has been traced over a strike length of 100m and trends about 080°.

From surface to a depth of several metres, oxidized groundwater has leached most of the sulfides with some pyrite and chalcopyrite remaining. Mineralization occurs primarily as native gold, occasionally as spectacular aggregates of coarse flakes in frothy quartz (strong pyrite boxwork) or in fractures in the vein. Electrum was noted in one area as very coarse-grained flakes associated with strong manganese staining. Gold was seen rarely in boxworks in phyllic alteration.

In drill core, mineralization has not been affected by supergene processes. Gold is strongly associated with pyrite and with a blue-grey mineral. Photomicrographs show the gold commonly in contact with this mineral, which may be an Au-Bi alloy (maldonite?) or a Cu-Bi-Sb sulfosalt. Au-Cu, Au-Bi, and Cu-Bi relationships have been shown by statistical analyses (Cordilleran Engineering Ltd. 1990). Metallic minerals in the core include pyrite, chalcopyrite, sphalerite, galena, tetrahedrite, maldonite(?), pyrrhotite, and native gold (in order of decreasing abundance).

Gangue mineralogy consists primarily of quartz and altered wall-rock fragments. Ankerite is commonly present, with lesser amounts of calcite. Minor barite is also present. Fluorite was noted in one vein as very small (<1mm) zoned purple cubes scattered in the quartz.

In the Siwash Lake area (Fig. 2), mineralization occurs mainly in quartz stringers and veins up to 35cm thick, hosted by strongly argillic- to phyllic-altered granitic rocks, closely associated with an andesite dyke. The zone trends easterly and dips about 60^o to the south. At surface and in drill core, the gold is associated with pyrite, chalcopyrite, and locally high concentrations of galena and sphalerite. Tetrahedrite and maldonite(?) are also locally present. Silver values are much higher than in Siwash North, probably associated with the greater galena content of the veins. The gangue mineralogy is similar to Siwash North.

Mineralization in the End Zone area is similar to that in the north, but trends approximately northeast dipping about 70° to the south. The quartz veins are 1 to 20cm in thickness and are hosted in strongly to moderately altered quartz monzonite (as seen in trenches). The dominant sulphide minerals noted in the quartz veins were pyrite, galena, sphalerite, chalcopyrite, tetrahedrite and arsenopyrite. Silver to gold ratios were also elevated, similar to the Lake Zone.

In the Discovery Showing area (previously called the North Showing), pyritic quartz veining occurs within a package of altered quartz monzonite, intruded by numerous feldspar, quartz-feldspar porphyry and andesite dykes, with local diatreme breccia bodies.

In the South Showing area, mineralization occurs mainly in quartz stringers in altered granitic rocks, in association with breccia or with intensely argillized andesite dykes. Gold is rarely visible, and is associated with pyrite and base-metal sulfides. The highest grade sample is from a zone of quartz stringers paralleling the breccia, accompanied by weak sericitic alteration.

4.4.1 <u>Alteration</u>

On the Elk property, higher grade gold mineralization generally accompanies stronger alteration.

Seven main types of alteration were recognized throughout the property: Propylitic, argillic, sericitic, K-spar stable phyllic, phyllic, advanced argillic and silicic. Locally, potassic alteration, skarnification, and silicification were noted, but were relatively minor and did not appear to be related to mineralization. The following descriptions refer to granitic rocks except as noted:

propylitic:

Generally light green, with biotite and hornblende altered to chlorite and saussuritization of plagioclase. In volcanics, colour is generally olive-green, and rock is soft.

argillic:

Rock is bleached, with plagioclase white and clay-altered; K-spar is slightly altered. Volcanics are bleached to light green or grey.

sericitic:

Typically pale green with a micaceous sheen, with plagioclase altered to sericite; trace disseminated pyrite may be present. Often associated with quartz veins, and appears to be the lowest grade alteration associated with gold mineralization. Not recognized in volcanics.

K-spar stable phyllic:

Light pink, green, or yellowish with K-spar fresh, pink and blocky. Plagioclase and mafic minerals are altered to fine-grained quartz-sericite-pyrite. Often occurs with veins and associated with gold mineralization. Not recognized in volcanics.

phyllic:

Generally grey, fine-grained quartz-sericite-pyrite alteration. Usually associated with veins often gradational to quartz and often auriferous.

advanced argillic:

Most or all of feldspar is destroyed, quartz is "free-floating"; rock is often sheared and white in colour. Volcanics are white or blue coloured. Often associated with quartz veins.

silicic:

Quartz veining or replacement. Hard with moderate conchoidal fracture. Textures may be blurred.

There is a strong symmetrical zoning of alteration around the quartz veins:

VEIN - ADVANCED - PHYLLIC - K-SPAR STABLE - ARGILLIC - PROPYLITIC ARGILLIC PHYLLIC

Secondary bands and zones of alteration may be present, and any of the alterations may be missing.

At surface, the alteration may produce a striking "rainbow" effect with the rock colour grading from white (vein) through grey, yellow, orange, rust, brown, and green (propylitic). In drill core, the effect is less striking and extensive, but the general pattern is still present.

4.4.2 Genetic Considerations

Gold mineralization on the Elk property appears to be related to Tertiary tectonic and intrusive events as inferred from crosscutting relationships.

At various locations on the property, quartz veins have been mapped cutting Tertiary(?) andesite dykes which intruded Tertiary Otter intrusions, Jurassic Osprey Lake Batholith and Triassic Nicola volcanics. In the Siwash North area one quartz vein was found crosscut by an andesite dyke. Cataclastic textures in the quartz veins mapped in the Siwash North and Discovery Showing areas suggest reactivation of the structures hosting the veins. Late stage Otter intrusive activity may have acted as the "heat pump" for the mineralizing fluids. Petrographic analyses indicate that the deposition of gold mineralization was a late-stage event in the hydrothermal system, with native gold and associated sulphide minerals filling fractures in pyrite.

During the mineralizing events, hydrothermal fluids permeated fractures in the host rock, depositing quartz and sulphides in the fractures and causing alteration of the wall rocks. These fluids probably had temperatures of about 300^o C during the initial stages of mineralization as indicated by sulphide and alteration mineralogy (Panteleyev, 1986).

Briefly, the genetic model for the deposits is thought to be as follows:

- 1) Deposition of the Nicola volcanics.
- 2) Emplacement of the Osprey Lake Batholith.
- 3) Emplacement of the Otter syenitic intrusions.
- 4) Fracturing possibly during the Osprey Lake and/or Otter intrusive events.
- 5) Intrusion of andesite dykes.
- 6) Precipitation of quartz veins with pyrite, base metal sulphides and late stage gold mineralization, with associated hydrothermal alteration.
- 7) Erosion to present level.

DIAMOND DRILLING

5.1 INTRODUCTION

5.0

Surface diamond drilling was carried out on the Siwash North Mining Lease between June 16 and October 19, 2005. A total of 8,395m of drilling in 36 NQ holes tested the WD Zone between 2160E and 2745E and to a depth of 320m down dip, the B zone was tested to 340m and the Siwash Lake zone was tested over a strike length of 240m to a depth of 130m. All holes were drilled on sections 50 or 25m apart. Drilling was performed by Leclerc Drilling Ltd. of Cranbrook, B.C. using skid-mounted Longyear 38. Drill hole locations and depths are summarized in Table 3.

Table 3	Table 3 ELK PROPERTY 2005 DRILL SUMMARY									
	DATE	DATE			COLLAR	COLLAR	COLLAR			
HOLE NO	START	FINISH	ZONE	SECTION	NORTH	EAST	ELEV	DEPTH		
SLD05436	29-Sep-05	30-Sep-05	SL	2460E	2477.06	2460.3	1643.8	117.96		
SLD05437	30-Sep-05	01-Oct-05	SL	2260E	2515.62	2260.6	1675.33	86.87		
SLD05438	01-Oct-05	02-Oct-05	SL	2260E	2487.09	2265.3	1675.94	121.01		
SLD05439	02-Oct-05	04-Oct-05	SL	2210E	2502.38	2215.3	1672.58	68.58		
SLD05440	02-Oct-05	06-Oct-05	SL.	2210E	2478.18	2218.7	1671.51	114.91		
SND05410	17-Jun-05	20-Jun-05	DpB	2040E	3207	2039.9	1656.64	241.4		
SND05411	20-Jun-05	23-Jun-05	DpB	2040E	3206.74	2040	1656.56	289.56		
SND05412	24-Jun-05	28-Jun-05	DpB	2040E	3172.08	2039.8	1652.57	334.37		
SND05413	28-Jun-05	02-Jul-05	WD	2160E	3430.14	2162.3	1644.42	294.74		
SND05414	02-Jul-05	08-Jul-05	WD	2160E	3429.33	2164.6	1644.44	228,3		
SND05415	08-Jul-05	14-Jui-05	WD	2210E	3418.97	2209.9	1639.4	302.67		
SND05416	15-Jul-05	18-Jul-05	WD	2110E	3433.14	2109.7	1650.39	179.22		
SND05417	18-Jul-05	22-Jul-05	WD	2395E	3443.9	2397.6	1629,46	288.04		
SND05418	22-Jul-05	27-Jul-05	WD	2445E	3414.77	2445.3	1634.23	322.17		
SND05419	28-Jul-05	07-Aug-05	WD	2445E	3456.42	2445	1636.47	291.69		
SND05420	07-Aug-05	09-Aug-05	WD	2495E	3515.09	2494	1642.47	204.52		
SND05421	09-Aug-05	13-Aug-05	WD	2495E	3476.32	2494.5	1643	270.36		
SND05422	13-Aug-05	19-Aug-05	WD	2495E	3452.49	2494.9	1643.3	309.37		
SND05423	19-Aug-05	24-Aug-05	DpB	2140E	3106.88	2139.8	1642.01	342.9		
SND05424	24-Aug-05	29-Aug-05	DpB	2140E	3106.71	2139.8	1641.99	364.24		
SND05425	29-Aug-05	01-Sep-05	WD	2545E	3541.35	2544.8	1643.47	188.06		
SND05426	01-Sep-05	06-Sep-05	WD	2545E	3403.65	2545	1648.65	330.86		
SND05427	06-Sep-05	08-Sep-05	WD	2545E	3451.85	2544.6	1648.61	299.31		
SND05428	08-Sep-05	14-Sep-05	WD	2595E	3421.12	2594.3	1652.12	289.26		
SND05429	15-Sep-05	16-Sep-05	WD	2595E	3470.82	2594.5	1650.02	227.08		
SND05430	16-Sep-05	17-Sep-05	WD	2595E	3533.06	2594.3	1 641.68	151.49		
SND05431	18-Sep-05	19-Sep-05	WD	2645E	3546.9	2645.3	1639.04	150.88		
SND05432	19-Sep-05	20-Sep-05	WD	2695E	3544.37	2695.6	1639.89	153.93		
SND05433	21-Sep-05	22-Sep-05	WD	2695E	3487.58	2695.3	1646.52	224.64		
SND05434	22-Sep-05	25-Sep-05	WD	2695E	3439.34	2694.5	1649.9	262.13		
SND05435	25-Sep-05	28-Sep-05	WD	2645E	3374.78	2643.7	1650.91	320.65		
SND05441	06-Oct-05	09-Oct-05	DpB	1990E	3198.08	1989.9	1656.29	252.07		
SND05442	09-Oct-05	12-Oct-05	DpB	1990E	3197.93	1989.9	1656.22	179.83		
SND05443	12-Oct-05	15-Oct-05	wD	2745E	3448.33	2743.9	1645.37	247.8		
SND05444	15-Oct-05	17-Oct-05	WD	2745E	3495.55	2743.2	1639.96	201.78		
SND05445	17-Oct-05	19-Oct-05	WD	2745E	3552.23	2743.9	1634.05	142.34		
							Total:	8394.99		

5.2 DRILLING OPERATIONS

÷

All holes in the 2005 drill program were drilled to the north on sections 50 and 25 meters apart. Holes SND05-414 and 442 were not drilled to completion due to poor ground conditions but all the remaining holes intersected their targets.

Drill sites were leveled and prepared using a John Deere 160 excavator contracted from Lower Nicola Backhoe. HaulRite Transport was contracted to log the right of way and drill sites in the Siwash Lake area and to process the logs cut for the B zone drill sites in 2004. Sumps were dug to contain cuttings. The drill was moved between sites using a D5 tractor. Water was pumped to the drill from the open pit.

Upon receipt, the core was washed, footage blocks converted to metres, and the recovery, RQD (rock quality determination), hardness, and degree of breakage were measured. All the core was photographed at four core boxes to the frame, and selected intervals were photographed at five frames per core box. The geology, geotechnical information, and sample intervals were logged onto hand-held HP200LX palm-top computers, and were later down-loaded onto a desktop computer. All samples were split and every twentieth sample was quartered for duplicate analysis as part of the quality control process. Gold standard pulps provided by CDN Resource Laboratories Ltd. were inserted into the sample stream as a check of lab procedures. Samples were shipped to Acme Analytical Laboratories Ltd. in Vancouver, B.C. and assayed or analyzed for gold. Thirty element ICP analysis was also performed on samples containing quartz vein material. Specific gravity measurements using a scale were made on selected mineralized zones at the site.

Drill hole orientations were measured at surface with a Brunton compass, and down-hole with an Icefield MI-3 multishot inclinometer/deviation tool. On completion of the hole, the casing was removed and replaced with a section of 2.5 inch diameter PVC pipe. The hole locations were surveyed relative to pre-established survey control points using a Leica TCR 405 Power theodolite equipped with an EDM.

5.3 DRILLING RESULTS

Surface drill hole collar locations are shown on Plate 1 and are listed below in Table 3. Summary drill logs, including geology and assay information for all 2005 drill holes, are included in Volume II, Appendix D. Subsurface geology, sample locations and selected assays are plotted on drill sections included in Plates 2 to 19. Averaged assay results with zone intercept coordinates are listed below in Table 4.

Seven holes were drilled into the B zone in the area below the existing mine workings to test the extent of mineralization intersected in 2004 (see plates 3, 5, 6, 8). The B zone was intersected in all but one hole which was not completed due to difficult ground conditions. The B zone appears to flatten at depth to -20 degrees (section 2140E) and a new vein, termed the DeepC zone, was intersected 33 meters below. The new drilling appears to define a southeast trending shoot that runs parallel to the one defined by holes 97 and 209.

The WD zones to the west of the north-northwest trending RB fault were tested by four holes, all of which intersected the WD system (see plates 2, 7, 9, 10). Hole SND05-414 was terminated prior to intersecting the WD2 zone due to poor ground conditions. The grade and structural continuity of the WD vein to the west of the RB fault (2280E 3160N) is less than that to the east but good grade intersections at depth suggest that more drilling is required.

Twenty holes were drilled into the WD vein system to the east of the RB fault to fill in the intersection density to 25 by 50m through the area of the mineralized shoot (see plates 2, 11-18). The structure was intersected at the projected locations in all the holes drilled and grade continuity was for the most part confirmed given the nugget effect of high grade systems.

Table 4

2005 DRILL INTERSECTION SUMMARY

Hole Num	From	То	int	TW	Zone	g/t	Ag g/t	SG	North	East	Elevation
SLD05438	87.60	88.10	0.50	0.50	LZ1	10.53	19.97	2.54	2515.15	2265.75	1592.97
SLD05439	37.30	38.29	0.99	0.75	LZ2	17.13	168.90	2.77	2524.59	2215.50	1642.62
SND05410	217.31	217.89	0.58	0.50	в	73.57	62.75	2.98	3263.40	2039.86	1446.33
SND05411	259.12	260.73	1.61	0.50	в	16.77	26.70	2.72	3235.08	2047.73	1399.06
SND05411	229.64	230.22	0.58	0.50	PC2	36.21	0.00	2.70	3231.94	2046.62	1428.09
SND05412	269.20	269.78	0.58	0.50	В	13.66	21.78	2.81	3209.77	2031.81	1385.90
SND05413	171.36	172.36	1.00	0.50	WD	13.80	37.08	2.75	3426.91	2164.36	1472.40
SND05415	280.99	281.70	0.71	0.50	WD2	21.67	26.58	2.91	3376.61	2201.05	1361.93
SND05417	249.45	249.98	0.53	0.50	WD2	16.28	90.71	2.75	3499,52	2402.22	1385. 97
SND05418	286.06	287.96	1.90	1.52	WD	4.00	13,34	2.81	3480.85	2452.26	1354.09
SND05419	222.36	223.66	1.30	1.18	WDb	6.28	36.45	2.81	3519.03	2445.43	1422.74
SND05419	26.25	26.76	0.51	0.50	Х	10.88	12.34	2.60	3463.74	2444.90	1610.89
SND05419	9.60	26.55	16.95	16.75	Х	0.37	0.62	2.68	3463.74	2444.90	1610.89
SND05420	169.47	170.25	0.78	0.50	Wda	15.40	35.85	2.67	3554.23	2491.21	1477.21
SND05421	23.15	23.76	0.61	0.60	В	16.34	3.95	2.62	3481.02	2494.72	1619.83
SND05421	228.06	228.77	0.71	0.50	WD	90.86	127.48	3.24	3519.29	2496.87	1418.44
SND05422	25.95	26.46	0.51	0.50	Ba	10.39	5.85	2.66	3457.91	2494.64	1617.55
SND05422	26.16	39.11	12.95	12.73	Bb	0.63	0.41	2.69	3458.55	2494.58	1614.42
SND05422	258.16	259.78	1.62	0.50	WD	10.05	11.76	2.66	3504.50	2493.49	1390.07
SND05423	225.03	225.53	0.50	0.50	PC	41.43	101.81	2.81	3173.53	2141.59	1427.08
SND05424	306.36	306.87	0.51	0.50	в	34.35	39.14	2.77	3157.35	2145.23	1339.84
SND05425	120.80	121.66	0.86	0.65	WD	23.46	43.50	2.67	3571.27	2545.51	1526.37
SND05426	52.24	52.75	0.51	0.50	в	31.09	67.92	2.74	3416.68	2544.00	1597.91
SND05426	52.45	64.13	11.68	11.42	в	1.46	3.67	2.69	3416.68	2544.00	1597.91
SND05426	305.03	305.76	0.73	0.50	WD	14.26	94.58	2.72	3475.61	2542.91	1352.34
SND05427	30.44	49.74	19.30	14.98	в	0.35	0.37	2.69	3462.23	2544.94	1608.20
SND05427	249.23	249.97	0.74	0.50	WD	46.07	86.82	2.77	3512.86	2549.19	1406.82
SND05428	90.61	91.66	1.05	1.00	D	6.09	10.52	2.67	3454.69	2595.77	1565.70
SND05429	31.95	50.11	18.16	17.33	В	0.37	0.50	2.69	3485.90	2594.49	1615.69
SND05429	195.23	196.65	1.42	0.50	WD	14.71	27.15	2.60	3547.03	2597.53	1468.89
SND05430	135.57	136.09	0.52	0.50	WDb	16.61	25.09	2.64	3578.94	2594.93	1514.11
SND05432	125.85	126.50	0.65	0.50	WD	19.08	19.64	2.61	3585.40	2701.80	1520.77
SND05434	233.48	234.05	0.57	0.50	WD	14.41	30.76	2.70	3523.18	2699.01	1432.14
SND05435	104.56	108.30	3.74	3.57	С	1.74	7.44	2.68	3419.60	2646.67	1556.50
SND05435	283.88	286.29	2.41	1.30	WDa	11.09	110.36	2.64	3497.90	2655.15	1394.30

Five holes were drilled into the Siwash Lake veins on fifty meter centers to test for grade and continuity to the west and to depth along the south dipping ninety degree trending structure (see plates 4 and 19-21). One hole was drilled 50m downdip from the existing intercepts on section 2460E and four holes were drilled on two new fences to the west of the grid. Mineralization was intersected in all holes adjacent to a south dipping andesite dyke. The dyke dips about 45 degrees on the east part of the drill grid and steepens to 70 degrees to the west. Moderate values were returned from sampling and the structure remains an interesting exploration target.

GEOCHEMISTRY

6.1 INTRODUCTION

A total of 982 drill core samples were collected from 36 holes on the Elk claims during the 2005 field season. Also analyzed/assayed were 57 standards, 57 blanks and 56 duplicates. The majority of the core samples were assayed by fire assay or metallics methods and a small number were analyzed for gold depending on visual estimation of potential gold grade.

6.2 ROCK GEOCHEMISTRY

Drill core samples were shipped to Acme Analytical Laboratories in Vancouver for gold analysis. Sample preparation and analysis methods varied based on material sampled. All samples were split and every twentieth sample was quartered to produce a duplicate for quality control purposes.

Samples that were expected to have significant gold content were split and half the core was submitted to the lab for metallics assay. Typically, this material consisted of quartz vein with or without wall rock, at least 10 to 15cm thick with a minimum of 10% sulfide (or traces of visible gold). These samples were crushed in their entirety to -3/16" and coarse pulverized to -1/16". Two kg of the -1/16" material was split out and pulverized to 99% finer than -150 mesh and sieved on a 150 mesh screen. One Assay Ton (1 AT) of the -150 mesh fraction was assayed for gold and silver, and was combined with the weighted result of gold and silver fire assays of the entire coarse fraction, to give total gold and silver values. ICP analysis for 35 elements was also carried out on a 0.50gm sample of -100 mesh material. Selected high grade intercepts were checked by resampling from the reject and assaying for gold by the same method.

Samples which were expected to be of lower grade were split and shipped to the lab for fire assay. This material usually consisted of quartz vein material less than 10cm thick with less than 10% sulfide. At the lab the entire sample was crushed to -3/16", then 2kg were split out and coarse pulverized to -1/16". A 250gm split was taken and pulverized to -100 mesh. A one-assay ton (1 AT) sample was fire assayed for gold and silver. Thirty-five element ICP analysis was usually carried out. Higher grade intercepts were reassayed using the metallics method described above.

Samples that were not expected to carry high gold values, typically stringers, strongly altered wallrock or blank samples flanking well mineralized samples, were split and analyzed for gold using a wet geochemical method. At the lab the entire sample was crushed to -3/16", 250 gm of sample split out and pulverized to -100 mesh. A 20 gm sample of the -100 mesh material was analyzed for Au by ICP-MS using acid extraction.

Samples that returned higher than expected values were assayed using the next higher confidence sampling procedure. The 2005 assays correlated very closely with the analyses but have in the past generally returned lower values. This may be due to the larger assay sample size reducing the nugget effect. The results of the upgraded assays are listed below in Table 5.

6.0

Table 5			ReAssay Samp Summary	ble				
Hole No	From (m)	To (m)	Sample No.	Au Wet Geochem (ppb)	Au Fire Assay (oz/t)	Au Metallics (oz/t)	Geochem/Assay , Variablilty %	Assay/Metallics Variabiility %
SND05410	169.23	169.53	SND05410-5	2586	0.080		0.11%	
SND05410	204.06	204.56	SND05410-7	7835.3	0.210		0.09%	
SND05411	180.22	180.52	SND05411-3 SND05411-	7369.2	0.200		0.09%	
SND05411	284.21	284.51	17	4583.4	0.100		0.07%	
SND05412	114	114.3	SND05412-2	2832	0.070		0.08%	
SND05414	23.33	23.83	SND05414-1	7735	0.220		0.10%	
SND05414	31.09	31.49	SND05414-3	16196.3	0.483		0.10%	
SND05414	32.61	32.91	SND05414-4	3167.3	0.090		0.10%	
SND05414	59.19	59.49	SND05414-5 SND05427-	3782	0.110		0.10%	
SND05427	245.23	245.53	40		0.006	0.010		165.28%
		Rav	v assay data is	presented in A	Appendix A			

6.3 METHODS OF AVERAGE GRADE CALCULATION

True widths of the sampled intervals were determined from core angles and from zone orientations determined by contouring the zone intercepts. Specific gravities were assumed to be 2.75 for sulfide ore, 2.5 for oxide ore, or were calculated from the Fe, Pb, Cu, Zn contents of the samples when these element analyses were available. The specific gravities of well-mineralized samples were measured at the exploration site with a scale using weights in air and water.

Average grades were weighted for true width and specific gravity over an interval of 0.50m or the vein thickness if greater than 0.50m. Averaged intervals, their zone designations, and true widths are included in Table 4.

6.4 QUALITY CONTROL MEASURES

All drill core samples were split in order to leave part of the sample for future check sampling or inspection. Every twentieth sample was duplicated by taking a quarter split and assigning it the next sequential sample number. Table 6 shows the results of the duplicate analyses. The variability of the 2005 sample values ranges from 0% to 100% with an average of 37.7% indicating a significant nugget effect.

Table 6			ELK DRILL D		MPLE SUMMARY		
		Geochem	nistry		,	Assay	
DUPLICATES		Sample	Duplicate		,	Sample	Duplicate
Orig	Dupl	Au ppb	Au ppb	Average	% Variablilty	Au g/t	Au g/t
SLD05436-6	SLD05436-5			0.2	20.0%	0.21	0.14
SLD05437-8	SLD05437-7			0.1	66.7%	0.17	0.03
SLD05439-7	SLD05439-6			0.1	20.0%	0.07	0.10
SND05411-6	SND05411-5	427.6	200.6	314.1	36.1%		
SND05412-9	SND05412-8	5.1	0.6	2.9	78.9%		
SND05413-10	SND05413-10	447.3	675.6	561.5	20.3%		
SND05415-27	SND05415-26			0.1	69.2%	0.02	0.11
SND05415-8	SND05415-7			1.9	17.7%	1.53	2.19
SND05417-52	SND05417-51			1.0	14.7%	1.17	0.87
SND05418-32	SND05418-31			1.6	68.8%	0.51	2.78
SND05418-52	SND05418-51			0.2	45.5%	0.10	0.27
SND05419-36	SND05419-35			0.1	33.3%	0.14	0.07
SND05420-19	SND05420-18			0.8	95.5%	0.03	1.47
SND05420-39	SND05420-38			0.0	0.0%	0.03	0.03
SND05421-2	SND05421-1			15.3	30.7%	10.59	19.99
SND05421-22	SND05421-21			0.0	0.0%	0.03	0.03
SND05421-42	SND05421-41			0.0	0.0%	0.03	0.03
SND05421-62	SND05421-61			0.0	0.0%	0.03	0.03
SND05421-82	SND05421-81			0.1	50.0%	0.03	0.10
SND05422-30	SND05422-29			0.2	11.1%	0.17	0.14
SND05422-50	SND05422-49			2.1	9.7%	1.92	2.33
SND05423-36	SND05423-35			0.2	20.0%	0.21	0.14
SND05424-19	SND05424-18			0.2	50.0%	0.10	0.31
SND05425-9	SND05425-8			4.1	85.1%	0.62	7.65
SND05426-24	SND05426-23			1.1	65.1%	0.38	1.78
SND05426-4	SND05426-3			0.1	14.3%	0.10	0.14
SND05426-44	SND05426-43			0.3	15.8%	0.27	0.38
SND05427-2	SND05427-1			0.9	74.5%	1.65	0.24
SND05427-22	SND05427-21			1.5	41.6%	2.16	0.89
SND05427-42	SND05427-41			0.0	0.0%	0.03	0.03
SND05428-30	SND05428-29			0.0	0.0%	0.03	0.03
SND05429-28	SND05429-27			0.2	100.0%	0.31	0.00
SND05429-20	SND05429-7			1.0	26.3%	1.23	0.72
SND05431-26	SND05431-25			0.0	0.0%	0.03	0.03
SND05431-20	SND05431-5			0.0	33.3%	0.03	0.07
SND05432-17	SND05432-16			0.0	0.0%	0.03	0.03
SND05433-13	SND05432-10 SND05433-12			5.2	6.6%	5.55	4.87
SND05433-33	SND05433-32			0.1	33.3%	0.07	0.03
SND05434-12	SND05434-11			0.0	100.0%	0.03	0.00
SND05434-32	SND05434-31			0.1	33.3%	0.03	0.07
SND05435-28	SND05435-27			0.2	60.0%	0.27	0.07
SND05435-28 SND05435-8	SND05435-27 SND05435-7			0.2	100.0%	0.03	0.00
SND05435-8 SND05441-8	SND05435-7 SND05441-7			17.5	47.7%	9.12	25.78
SND05441-8 SND05443-12	SND05441-7 SND05443-11			1.0	85.7%	0.14	1.78
SND05443-12 SND05444-24	SND05443-11 SND05444-23			0.6	35.3%	0.79	0.38
SND05444-24 SND05444-4	SND05444-23 SND05444-3			0.0	20.0%	0.07	0.10
	-				33.3%	1.95	3.91
SND05445-13	SND05445-12			2.9		1.50	3.91
				Average:	37.7%		

Blank samples were submitted to the lab at the same frequency as the duplicates. The blanks were taken from unaltered granodiorite or quartz monzonite core that contained no quartz veining. The purpose of including blanks in the sample stream was to confirm that no contamination occurred in the sampling or analysis procedures. Except for a single spike of 416 ppb from the 2003 sampling, the blanks indicate that contamination is not an issue. The results received since 2000 are shown in Table 7.

Table 7		Elk Sample			nmary					
Samp#	Au ppb	Samp#	Au ppb	Au g/t	Samp#	Au ppb	Au g/t	Samp#	Au ppb	Au g/t
SND02310-21	5.3	SND03339-41	0.5	0	SND04380-3	<0.5	•	SND05418-53	0.9	
SND02311-27	3.8	SND03339-60	5.2		SND04381-11	<0.5		SND05419-17	1.2	
SND02311-47	3.3	SND03341-5	-0.2		SND04381-31	1.2		SND05419-37	5.1	
SND02312-12	12.0	SND03342-24	2.2		SND04382-13	11.0		SND05420-20	2.5	
SND02313-18	6.2	SND03342-4	35		SND04382-33	1.3		SND05420-40	1.9	
SND02315-7	5.2	SND03343-16	3.9		SND04383-12	1.2		SND05421-23	7.5	
SND02317-4	14.0	SND03345-5	5.4		SND04384-13	1.0		SND05421-3	6.1	
SND02318-4	7.1	SND03346-10	416.2		SND04385-12	0.9		SND05421-43	4.9	
SND02319-5	1.6	SND03347-12	11.7		SND04385-32		0.07	SND05421-63	6.3	
SND02321-4	0.2	SND03349-11	5		SND04386-7	<0.5		SND05421-83	2.5	
SND02323-7	1.4	SND03349-31	1.9		SND04387-21	0.8		SND05422-11		0.00
SND02325-5	7.7	SND03351-16	2.3		SND04388-23	0.8		SND05422-31		0.07
SND02325-27	0.1	SND03351-36	9.7		SND04388-3	4.0		SND05422-51		0.00
SND02326-7	4.9	SND03352-4	0.7		SND04389-7	2.3		SND05423-17	8.2	
SND02327-11	5.6	SND03354-15	1.5		SND04390-9	9.0		SND05423-37	1.3	
SND02329-7	1.3	SND03354-35	3		SND04391-9	3.0		SND05424-20	3.9	
SND02330-5	4.6	SND03355-13	7		SND04392-11	<0.5		SND05425-10	86.9	
SND02331-14	1.3	SND03355-33	0.3		SND04393-15	2.0		SND05426-25	8.8	
SND02332-7	3.4	SND03356-20	10.5		SND04395-19	2.2		SND05426-45		0.00
SND02332-27	15.9	SND03358-11	62.3		SND04396-9	19.6		SND05426-5	9.0	
SND02334-6	1.0	SND03358-31	16.1		SND04398-14	<0.5		SND05427-23		0.00
SND02334-26	3.6	SND03359-8	2		SND04402-5	3.6		SND05427-3	1.7	
SND02335-5	12.0	SND03361-4	17.9		SND04403-8	7.5		SND05427-43	3.2	
SND02335-25	1.6	SND03362-7	14.7		SND04405-13	1.8		SND05428-11		0.00
		SND03364-9	5.6		SND04405-33		<0.01	SND05428-31	1.0	
SND00298-21	0.8	SND03365-9	17.7		SND04408-4	2.1		SND05429-29	2.0	
SND00298-41	4.4				SND04409-8	1.4		SND05429-49		0.00
SND00299-20	0.9	SND04366-21	9.2					SND05429-9		0.00
SND00299-40	2.9	SND04367-13	4.0		SLD05436-7	0.7		SND05430-14	1.0	
SND00300-7	3.7	SND04368-12	18.2		SLD05437-9	0.8		SND05431-27	3.0	
SND00301-8	8.9	SND04369-12	0.5		SLD05439-8	0.5		SND05431-7		0.03
SND00302-6	36.6	SND04371-28	4.5		SND05411-7	6.0		SND05432-18		0.00
SND00303-11	0.5	SND04371-9	<0.5		SND05412-10	1.3		SND05433-14	12.2	
SND00304-6	9.8	SND04373-17	0.7		SND05413-11	1.7		SND05433-34	11.3	
SND00308-5	0.4	SND04373-38	8.1		SND05415-28	8.4		SND05434-13		0.00
SND00309-18	0.3	SND04375-16	4.5		SND05415-9	1.4		SND05434-33	7.8	
SND03337-28	9.8	SND04375-36	<0.5		SND05417-12	1.1		SND05435-29	8.1	
SND03337-7	9.6	SND04375-56	3.8		SND05417-32	2.1		SND05435-9	5.6	
SND03338-29	1	SND04377-4	2.6		SND05417-53	5.6		SND05441-9	0.7	
SND03338-9	75	SND04379-9	0.5		SND05418-13	6.5		SND05443-13		0.00
SND03339-20	3.8	SND04380-23	0.6		SND05418-33	1.1		SND05444-25		0.00
								SND05444-5		0.00

SND05445-14

0.03

Acme Analytical Labs provides re-samples as part of their analytical procedure. The results are listed below in Table 8. The original analyses/assays are listed in the "Sample Au ppb" column. Re-analyses/assays with sample cuts taken from the pulp are listed in the "RE Au ppb" column and those with cuts taken from the reject are listed in the "RRE" column. The variability is calculated by taking the difference between the minimum and maximum values and dividing this by the mean of the sample results. The difference between results is due to the nugget effect typical of high grade gold systems.

.....

Table 8	AMPLE RE	ERUN SUMM	IARY							
	Wet Ge	ochen	า			Fire As	say			
	Sample	RE	RRE			Sample	RE	RRE		
		Au	Au		%					%
SAMPLE #	Au ppb	ppb	ppb	Average	Variablilty	Au g/t	Au g/t	Au g/t	Average	Variabliity
SLD05436-16						1.68	1.71	1.85	1.75	5.9%
SLD05440-7						0.14	0.10	0.21	0.15	38.5%
SND05415-21						0.49	0.57	0.46	0.51	12.5%
SND05417-19						0.13	0.13	0.20	0.15	30.4%
SND05417-35						0.02	0.03	0.02	0.02	28.6%
SND05418-48						0.03	0.03	0.03	0.03	0.0%
SND05418-8						0.24	0.51	0.31	0.35	45.2%
SND05419-28						0.00	0.03	0.00	0.01	200.0%
SND05420-40	3.2	1.9	1.9	2.33	37.1%					
SND05421-1						6.17	8.71	10.59	8.49	27.3%
SND05421-22						0.03	0.03	0.03	0.03	0.0%
SND05421-65						0.21	0.21	0.14	0.18	25.0%
SND05422-17						0.03	0.03	0.07	0.05	50.0%
SND05423-8						0.07	0.03	0.03	0.05	50.0%
SND05424-16						22.05	21.19	14.43	19.22	24.9%
SND05424-2						0.00	0.00	0.03	0.01	200.0%
SND05426-2						0.86	0.51	1.06	0.81	36.6%
SND05426-27						1.06	1.78	0.65	1.17	52.9%
SND05426-59						0.38	0.34	0.45	0.39	14.7%
SND05428-3						0.14	0.10	0.14	0.13	18.2%
SND05428-42						0.17	0.14	0.14	0.15	15.4%
SND05429-33						0.48	0.69	0.07	0.41	83.3%
SND05429-52						0.07	0.03	0.03	0.05	50.0%
SND05430-14	3	1	1	1.67	80.0%					
SND05431-26						0.03	0.03	0.03	0.03	0.0%
SND05432-10						0.27	0.24	0.24	0.25	9.1%
SND05433-12						6.10	6.75	5.55	6.14	10.1%
SND05434-22						0.31	0.34	0.24	0.30	19.2%
SND05435-12						4.90	5.18	4.66	4.91	5.3%
SND05435-24						0.86	0.89	2.13	1.29	64.6%
SND05443-10						0.03	0.00	0.03	0.02	100.0%
SND05445-12						2.37	1.92	1.95	2.08	13.7%
SND05445-3						0.41	0.24	0.21	0.29	44.0%
				Average:	58.6%	l			Average:	41.1%

Standard pulp samples were included in the sample stream to check the consistency of the assay lab procedures. Two standards (9.9 g/t Au and 33.5 g/t Au) were purchased from CDN Resource Laboratories Ltd. of Delta BC, and 10 gram samples were sent to Acme Analytical Labs at a frequency of about one per twenty drill core samples. Table 9 below lists the results of the standard assays and analyses.

Table 9		Drill Sample	Standard	Summary			Barrat
	Geochem		Au				Report
Sample#	Au ppb	Deviation	gm/t	Deviation	Assay/Analysis	Au Standard	Number
SND05411-8	10334.5	0.00%			Wet Geochem	9.9+5 gm/t	A503246
SND05417-13			9.96	0.00%	Fire Assay	9.9+5 gm/t	A503976
SND05417-33			21.72	0.00%	Fire Assay	21.7+5 gm/t	A503976
SND05417-54			10.38	0.00%	Fire Assay	9.9+5 gm/t	A503976
SND05418-14		<u> </u>	33.12	0.00%	Fire Assay	33.5+-1.7gm/t	A504437
SND05418-34	33201.2	0.00%			Wet Geochem	33.5+-1.7gm/t	A504439
SND05418-54	9957.7	0.00%			Wet Geochem	9.9+5 gm/t	A504439
SND05419-18	32938.5	0.00%			Wet Geochem	33.5+-1.7gm/t	A504439
SND05419-38	9581.3	0.00%			Wet Geochem	9.9+5 gm/t	A504439
SND05420-21	9298.2	1.08%			Wet Geochem	9.9+5 gm/t	A504818
SND05420-4	3230.2	1.00 /0	17.42	17.84%	Fire Assay	21.7+5 gm/t	A504816
SND05420-41	33709.3	0.00%	11.72	17.0470	Wet Geochem	33.5+-1.7gm/t	A504818
		0.00%			Wet Geochem	33.5+-1.7gm/t	A504818
SND05421-24	33384.4	0.00%			Wet Geochem	9.9+5 gm/t	A504818
SND05421-4	9525.0	0.00%			Wet Geochem	33.5+-1.7gm/t	A504818
SND05421-44	34261.0				Wet Geochem	9.9+5 gm/t	A504818
SND05421-64	10264.6	0.00%					A504818
SND05421-84	35160.4	0.00%	40.00	0.00%	Wet Geochem	33.5+-1.7gm/t	A505256
SND05422-12	-		10.08	0.00%	Fire Assay	9.9+5 gm/t	
SND05422-32			9.94	0.00%	Fire Assay	9.9+5 gm/t	A505256
SND05422-52			34.35	0.00%	Fire Assay	33.5+-1.7gm/t	A505256
SND05423-18	9877.3	0.00%			Wet Geochem	9.9+5 gm/t	A505258
SND05423-38	32044.9	0.00%			Wet Geochem	33.5+-1.7gm/t	A505258
SND05424-21	32590.8	0.00%			Wet Geochem	33.5+-1.7gm/t	A505258
SND05425-11	9685.7	0.00%			Wet Geochem	9.9+5 gm/t	A505550
SND05426-26	10696.9	2.85%			Wet Geochem	9.9+5 gm/t	A505550
SND05426-46			35.01	0.00%	Fire Assay	33.5+-1.7gm/t	A505548
SND05426-6	34144.4	0.00%			Wet Geochem	33.5+-1.7gm/t	A505550
SND05427-24			33.50	0.00%	Fire Assay	33.5+-1.7gm/t	A506092
SND05427-4			9.98	0.00%	Fire Assay	9.9+5 gm/t	A506092
SND05427-44	9842.9	0.00%			Wet Geochem	9.9+5 gm/t	A506094
SND05428-12			10.35	0.00%	Fire Assay	9.9+5 gm/t	A506092
SND05428-32	10216.5	0.00%			Wet Geochem	9.9+5 gm/t	A506094
SND05429-10			33.74	0.00%	Fire Assay	33.5+-1.7gm/t	A506092
SND05429-30	9962.9	0.00%			Wet Geochem	9.9+5 gm/t	A506094
SND05429-50			35.11	0.00%	Fire Assay	33.5+-1.7gm/t	A506092
SND05430-15	33255.3	0.00%			Wet Geochem	33.5+-1.7gm/t	A506094
SND05431-28	9952.7	0.00%			Wet Geochem	9.9+5 gm/t	A506094
SND05431-8			10.01	0.00%	Fire Assay	9.9+5 gm/t	A506092
SND05432-19			35.11	0.00%	Fire Assay	33.5+-1.7gm/t	A506092
SND05433-15	34123.7	0.00%			Wet Geochem	33.5+-1.7gm/t	A506334
SND05433-35	34974.4	0.00%			Wet Geochem	33.5+-1.7gm/t	A506334
SND05434-14			10.66	2.53%	Fire Assay	9.9+5 gm/t	A506332
SND05434-34	34446.0	0.00%			Wet Geochem	33.5+-1.7gm/t	A506334
SND05435-10	32557.6	0.00%			Wet Geochem	33.5+-1.7gm/t	A506334
SND05435-30	10081.2	0.00%			Wet Geochem	9.9+5 gm/t	A506334
SND05441-10	32861.4	0.00%			Wet Geochem	33.5+-1.7gm/t	A506919
SND05443-14	02001.4	0.00 //	10.83	4.18%	Fire Assay	9.9+5 gm/t	A506917
			33.09	0.00%	Fire Assay	33.5+-1.7gm/t	A506917
SND05444-26	+		10.22	0.00%	Fire Assay	9.9+5 gm/t	A506917
SND05444-6				0.00%	Fire Assay	33.5+-1.7gm/t	A506917
SND05445-15 Average		0.14%	33.81	1.17%	T IIC Assay		1 7000011

Average

A series of samples were selected for check assay at ALS Chemex Labs in Vancouver. The pulps were sent from Acme to Chemex and assayed for gold. The samples were then re-numbered and returned to Acme for re-assay. Correlation between assays is very good as shown below in Table 10.

į

Table 10		ELK DRIL	L CHECK SAMP	LE SUMMA	RY	
		Fi	re Assay			A A
	Acme	Chemex	Acme Blind			Avg Au g/t
SAMPLE #	Au g/t	Au g/t	Rerun Aug/t	Average	% Variablility	x % Var
SLD05436-17	10.64	9.73	49.17	23.18	112.1%	25.99
SLD05439-3	14.26	16.55	27.18	19.33	40.6%	7.85
SLD05439-5	1.06	1.38	1.88	1.44	30.5%	0.44
SLD05440-1	3.12	2.79	3.06	2.99	6.7%	0.20
SND05410-13	135.97	9 5.70	104.00	1 11.89	14.5%	16.19
SND05412-11	33.25	NSS	35.98	34.61	3.9%	1.37
SND05418-14	33.12	NSS	36.62	34.87	5.0%	1.75
SND05419-48	13.89	12.40	13.67	13.32	6.9%	0.92
SND05421-77	103.76	80.80	104.66	96.41	16.2%	15.61
SND05422-52	34.35	NSS	35.92	35.14	2.2%	0.78
SND05423-21	51.27	42.60	42.57	45.48	6.4%	2.91
SND05426-29	0.10	0.14	0.12	0.12	15.7%	0.02
SND05426-46	35.01	NSS	36.05	35.53	1.5%	0.52
SND05426-58	18.25	15.85	16.05	16.72	5.2%	0.87
SND05427-48	81.84	68.90	74.79	75.18	8.3%	6.28
SND05429-10	33.74	NSS	38.08	35.91	6.0%	2.17
SND05429-37	51.40	46.00	33.45	43.62	23.3%	10.17
SND05429-50	35.11	NSS	36.00	35.55	1.3%	0.45
SND05429-54	0.89	0.92	9.97	3.93	153.9%	6.04
SND05432-19	35.11	NSS	37.08	36.09	2.7%	0.99
SND05435-12	4.66	5.63	5.55	5.28	6.6%	0.35
SND05435-35	15.58	12.70	13.53	13.94	8.9%	1.24
SND05435-36	6.42	5.09	5.50	5.67	10.2%	0.58
SND05443-5	3.39	3.41	3.35	3.38	1.0%	0.03
SND05444-26	33.09	NSS	0.97	17.03	94.3%	16.06
SND05445-15	33.81	NSS	35.49	34.65	2.4%	0.84
	Note: Na sample	SS indicates	insufficient	Average:	22.6%	

LIST OF PERSONNEL & CONTRATORS

PERSONNEL: J. Hylands West Vancouver, B.C.

W. Jakubowski Vancouver, B.C.

E. MacKenzie Burnaby, B.C.

J. MacLean Burnaby, B.C.

D. Muir Edinburgh, Scotland.

D. Wyton Lake Cowichan, B.C.

CONTRACTORS

Leclerc Diamond Drilling Ltd Cranbrook, B.C.

LNB Construction Merritt, B.C.

Haul-Rite Transports Ltd. Merritt, B.C.

VSA Highway Maintenance Ltd. Merritt, B.C.

Position Camp Construction Surveyor	Field Dates Worked June 6 – June 11, 2005 Oct. 19 – Oct. 23, 2005
Geologist, Supervisor	June 6 – Oct. 23, 2005
Camp Construction	June 12 – June.23, 2005
Geologist	June 6 – Oct.23, 2005
Geologist	June 6 – Oct. 20, 2005
Cook	June 14 – Oct. 21, 2005

Position Diamond Drilling

Drill Site Prep, Reclamation and Road Construction John Deere 160 Excavator Hitachi EX150

Logging JD Grapple Skidder JD Processor

Grading Caterpillar 14 Grader White 12 ton Water truck Dates Worked 4 men: June. 16 – Oct 20, 2005

1-2 men: 9 days June 7- Sept 29, 2005

2 men: Sept 15-17, 2005

2 men: Sept 6, 2005

8.0 STATEMENT OF QUALIFICATIONS

I, Wojtek Jakubowski, of Vancouver, British Columbia, hereby certify that:

- I am a professional geoscientist residing at #303 639 West 14th Avenue and employed by Almaden Minerals Ltd. of 1103 - 750 West Pender Street, Vancouver, B.C., V6C 2T8.
- 2. I received a B.Sc. degree in Geological Sciences from McGill University, Montreal, Quebec in 1979.
- 3. I have practiced my profession for 28 years in Quebec, Northwest Territories, Yukon Territory, British Columbia and Mexico.
- 4. I am a member of the Association of Professional Engineers and Geoscientists of the province of British Columbia, registration number 19563.
- 5. I am the author of this report and the supervisor of the field work conducted on the ELK mineral claims by Almaden Minerals Ltd. during the period June 6, 2005 to October 23, 2005.

ALMADEN MINERALS LTD.

Wojtek Jakubowski, B.Sc., P. Geo

STATEMENT OF COSTS

Elk Property 2005 Diamond Drill Program Cost Summary

DIAMOND DRILLING Mob Demob Drill Site Prep Diamond Drill Holes 410-445 Downhole and Surface Survey Equip	82 8395 5	hr@ m@ mo@	Rate \$ \$110.00 \$61.50 \$1,926	Total \$2,000 \$8,274 \$516,315 \$9,630	\$536,219
SAMPLE ASSAY AND ANALYSIS Drill Core Au, Ag Metallics 500gm(6) Drill Core Au, Ag FA1AT(8) Drill Core 35 el ICP(1DX) Drill Core Au 15gm (3A) Sample Prep	41 992 1033 130 1095	smp@ smp@ smp@ smp@ smp@	Rate \$ \$22.40 \$13.20 \$8.93 \$7.23 \$4.46	Total \$918 \$13,094 \$9,225 \$940 \$4,884	\$29,061
PERSONNEL Geologist - Supervisor Feb - Oct Geologist - Core logger June - Oct Geologist - Core logger June - Oct Field Assistant - Camp Construction EAB Field Assistant - Camp Construction JJH Field Assistant - Camp Construction EM Surveyor Cook	178 129 127 6 5 15 6.5 119	days@ days@ days@ days@ days@ days@ days@	Rate \$ \$333.56 \$223.88 \$197.56 \$235.00 \$300.00 \$200.00 \$300.00 \$250.00	Total \$59,373 \$28,880 \$25,090 \$1,410 \$1,800 \$3,000 \$1,950 \$29,750	\$151,253
GENERAL EXPENSES Equipment and supplies Road Maintenance Accomodation Food Truck rental Fuel Freight Reclamation Office supplies and printing Recording fees Telephone and postage Travel	41 500 180	days@ days@ days@	Rate \$ \$61.59 \$19.52 \$58.98	Total \$9,304 \$5,550 \$2,525 \$9,761 \$10,616 \$3,351 \$1,295 \$5,797 \$1,684 \$8,312 \$1,991 \$2,040	\$62,226
	J			TOTAL:	\$778,759

10.0 REFERENCES

MONGER, J.W.H.:

Ξ.

1989: Geology, Hope, British Columbia; Geological Survey of Canada, Map 41-1989, sheet 1, scale 1:250,000

PANTLELEYEV, A .:

1986: Ore Deposits #10. A Canadian Cordilleran Model for Epithermal Gold Silver Deposits; Geoscience Canada, Vol. 13, No. 12, pp. 101-111.

RICE, H.M.A.:

1947: Geology and Mineral Deposits of the Princeton Map Area, British Columbia; G.S.C., Memoir 243.

Appendix "A"

;

Assay and Analytical Results from Core Samples

\ C		<u>Alm</u>	aden 1103	<u>Mine</u> - 750 W.	rals Pender	Ltd. St., Var	PROJE	CT EL V6C 218	CERI <u>KO5-1</u> Submi	L Fi	le #	A503 Jakubor	244 ski				ſ
SAMPLE#	Mo	Cu Pb Zr	n Ag 1	VI Ca Mo	Fe As	U Au	Th Sr Cd S	Sb 81 V	Ca P La	i Cr Mg	Ba Ti	B Al Na	K W	Hg Sc Tì	S Ga Se	Ag** Au**	
	mqq	çiçin ppri ppr	ע ואסים m	ותקים וייטק וייט	≵ β ρπ β	ם לכנו ודכו	om pom dom do	and bour dow	t t ppr	1 ppm 1	ppm 1	ppm X X	¥ ppm p	ingo ingo ingo	X ppm ppm	gni/mt_gni/mt	
SN05410	.10 13	249 5 14 2 90	9 4 9 9	1 12 2 1186	612 795 4	1 1369 9 R	2 18 .6 .	5 7 65 1	1.01 352 46	4 1 72	34 177	3 T AL 128	1.05 3	14 7 2 3 3	44 6 7	4 1.48	
SN05411							4 6 3.1 1									15 3.65	
							.6 18 .1 .									6 33.25	
SN05412							.0 5 .2 .									<2 .05	
5N05412	-16 3.5	168.4 533.9 451	1 3.2 3	7 6 0 1853	4.56 45.4 €	5.2 723,2 8	.1 8 4.1 .	.4 .4 20	,34 .048 13	4.1.24	35 .002	2 .54 .014	.35 .1 .	.01 5.3 .21	.34 1 <.5	4 .97	
5405412	-17 2.9	145.6 23.8 99	9 1.0 2	8 5.1 1062	3.98 40.0 2	2,8 200.9 9	.2 10 .3 .	.1 .4 21	.30 .049 15	3.3 .20	66 .024	3 .56 .037	.31 .4	.01 4.2 .21	.94 Z <.5	<2.33	
SN05413	-1 2.6	77.3 78.9 90	62.65	.0 7.1 218	2.01 80.3 2	2.6 1851.9 2	15 1.6 12	.0.84	.13 .045 7	6.8 .03	29 .001	2 .36 .005	.29 .1 .	.02 1.1 .1 1	.74 1 <.5	<2 2.06	
SN05413							.5 27 1.8 5.										
STANDAR	D DS6/R-2a/AU-1 11.6	125.4 29.6 15	1.4 24	6 11.0 723	2.86 21.1 6	5.6 41.8 2	.9 38 6.1 3.	.0 4.9 58	.68 .077 15	5 188.1 .58	162 .085	19 1.95 .074	.16 3.1	.22 3.5 1.7 <	05 6 4 5	159 3.38	
AG** & AU** BY FI - SAMPLE TYPE: DR Data _ FA _				: JUL	7 2005	DATE :	REPORT 1	MAILED		rly?	2.3/0.5	<u>.</u>	(4	SUMBLA (<u>515</u> 2.L		AD AS
- SAMPLE TYPE: DR	ILL CORE R150			: JUL	7 2005	DATE :	REPORT 1	MAILED	<i>J</i> a	rly.?	2.3 /0.5	<u>.</u>	(CI CI		eong the	in As
- SAMPLE TYPE: DR	ILL CORE R150			: JUL	7 2005	DATE :	REPORT 1	MAILED	<i>J</i> a	rly.?	2.3 / 0.5	<u>.</u>	(CI INTERNA		eong the	in As
- SAMPLE TYPE: DR	ILL CORE R150			: JUL	7 2005	DATE :	REPORT 1	MAILED	<i>J</i> a	r.l.y. ?	2.3 / 0.5	<u>.</u>	(CI LINE		eong At	
- SAMPLE TYPE: DR	ILL CORE R150			: JUL	7 2005	DATE :	REPORT 1	MAILED	<i>J</i> a	r.l.y. 7	2.3 /0.5	<u>.</u>	(CI CI		eong A	
- SAMPLE TYPE: DR	ILL CORE R150			: JUL	7 2005	DATE :	REPORT	MAILED	<i>J</i> a	r.l.y. 7	2.3 /0.5	<u>.</u>	(CI CI		eong A	
- SAMPLE TYPE: DR	ILL CORE R150			: JUL	7 2005	DATE :	REPORT	MAILED	<i>J</i> a	r.l.y. 7	2.3 /0.5	<u>.</u>	(CI CI	arence L	eong A	TO AR
- SAMPLE TYPE: DR	ILL CORE R150			: JUL	7 2005	DATE :	REPORT	MAILED	<i>J</i> a	r.l.y. 7	2.3 /0.9	<u>.</u>	(CI CI	arence L	eong At	TO AR
- SAMPLE TYPE: DR	ILL CORE R150			: JUL	7 2005	DATE :	REPORT 1	MAILED		r.l.y. ?	2.3 /0.9	<u>.</u>	(CI CI	arence L	eong At	TO AND
- SAMPLE TYPE: DR	ILL CORE R150			: JUL	7 2005	DATE :	REPORT 1	MAILED	<i>J</i> r	rly.	2.3 /0.9	<u>.</u>	(CI CI		eong the	ED AS
- SAMPLE TYPE: DR	ILL CORE R150			: JUL	7 2005	DATE :	REPORT 1	MAILED	<i>J</i> r	rly.	2.3 /0.9	<u>.</u>		CI CI		eong the	ED AS

-

3. S. M. MARKER, MARKER, 1992, Annual Strandback, Sciences and Scie

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

(I		CAL 1 Ac							85	i2 E. Gec	68		한 옷을	ė, ju			. P C	R BC		24.24) 242 - W			PH	ONE	(60	1)2	53-1	315	8 P.	4X (6	50	¥3-	171
			112484 6.77747								-187				고 있는	9843																	۵
						<u>Alr</u>	nade 11	9 n 3 -	<u>Mine</u> 750 W	eral Penc	. <mark>8</mark> ler S	<u>Ltd</u> it., V	• P ancou	ROC Iver	JEC. BC V6	Γ <u>E</u> ic 21	<u>LK(</u> 8	15-1 Sulomi 1	ted	File by:⊎	e # lojtel	A: Jai	i O 3 Wbol	245 vski	5								Ľ
AMPLE#	Мо ррп	Си ррп		Zn ppm	-	-	i Co n ppm			As ppm	U ppm				Cd ppm			V C pm		PLa %ippm											T1 דיד דיד		Ga ppm
ND05410-13	2.6	1084.4	230.9	70	94.8	3 10.1	L 31.6	1137	14.61	127.4	3.9	90387.	0 8.0	11	.6	.4 3	2.8	16 .5	7.16	59 21	8.9	5.16	12	.004	5	.59	.014	. 33 2	2.0.0	06 3.8	3.1	>10	2
ND05411-14 ND05411-15	2.5	518.7 251.5	44.3 24.7	31 19	18.5) 1.7 7 4 f	73.0 578	274	4.20	302.3	2.9	11546.	35.9 664	2	.4	.1	5.7 6.5	4 1	.2.00 3.04	53 5 11 6	10 4	2.05 1.08	22*	001	2	. 35 38	.005	.30	. ×2. ا >7 3	л., 1110	/.L 3, 1	3.65	1
ND05412-12 ND05413-4	6.6	444_8	556.1	2031	20.8	3 2.9	96.8	698	6.21	193.3	4.9	15864.	24.3	3	59.6	.3	9.3	2.1	4.02	8 11	2.3	3.10	11<	<.001	1	.32	.005	.28	.4 .1	05 1.3	3.1	5.09	1
TANDARD DS6																																	
																																	_
GROUP 1DX																																	
(>) CONCENT - SAMPLE T						MITS.	SOM	E MII	NERALS	S MAY	BE P	ARTIA	LY A	TTACI	KED.	REF	RACTO	RY AN	D GR	APHIT	IC SA	MPLE	S CA	N LI	MIT A	u so	DLUBI	LITY	•				
																		1	1	1													
Data <u>TK</u>	FA			٦A	TE	REC	EIVI	D:	.111	7 200	5 1	DATE	REF	POR	г ма	ILR	D: (hl	11	22/0	S					_		-					
Data 17	I.A.	· · · ·	•	DA		1.110		<u>.</u>	UUL							المت الما علم ا	- //		7	<u> </u>		••			-	25	ና ፐ ስ	Z	7				
																	V		•								_		Ľ	à			
																								67	. /	r	1			6			
																							ļ	M	- (-		h						
																								6	Ċ	larer	nce t	.eon	9 /	£/			
																								X	-	5		\checkmark	~33				
																											1	مكسر					

a series and a series of the s

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

	 SAMPLE#	S.Wt NAu gm mg	-Au gm/mt	TotAu gm/mt		<u></u>
	SND05410-13 SND05411-14 SND05411-15 SND05412-12 SND05413-4	776 28.50 701 5.48 429 .39 934 1.57 988 .97	10.49	35.97 22.17 11.40 15.67 22.70		
	STANDARD AU-1	- <.01	3.42	3.42	· · · · ·	
- SAMPLE TYPE: DR	: JUL 7 2005 DATE RE	PORT MAILED:	Jr. l. 7 . 2.3 /	le	Clarence Leong	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICAL LABORATORIES LTD.	852 E. HASTINGS	ST. WOUVE	R BC V6	A 1R6	PHONE (604) 253-3158 FAX (60 53-1716
(I' \001 Accredited Co.)		CL _IFIC			
Almaden	Minerals Ltd. P 750 W. Pender St., Vancou	ROJECT ELK	<u> 25-1</u> F	ile # A	503245
	SAMPLE#	S.Wt NA		TotAg	
		gm m	g gm/mt	gm/mt	
	SND05410-13 SND05411-14 SND05411-15 SND05412-12 SND05413-4	776 16.7 701 6.3 429 4.3 934 4.4 988 4.2	822 412	116 31 23 25 61	
	STANDARD R-2a	<1 <.0			
- SAMPLE TYPE: DRILL CORE M150 DataFA DATE RECEIVED:	JUL 7 2005 DATE REP	ORT MAILED:.	Jv.h.2	29/05	Clarence Leong

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME AND YYTICAL LABORATORIES L' (I' 001 Accredited Co.)	ID. 852 E. HASTINGS ST GEOCHEMICAL ANA			HONE (604) 253-3158 FAX (60	53-1716 A A
Almader Almader	Minerals Ltd. PROJECT EL 1103 - 750 W. Pender St., Vancouver BC V6C	<u>K05-1</u> Fil 278 Submitted	e # A50324 by: Wojtek Jakub	6 Page 1 Dwski	ŤŤ
	SAMPLE#	Au* S ppb	ample gm		
	SND05410-1 SND05410-2 SND05410-3 SND05410-4 SND05410-5	721.9 77.9 1.6 117.0 2586.0	30 30 30 30 30 30		
	SND05410-6 SND05410-7 SND05410-8 SND05410-9 SND05410-11	6.6 7835.3 17.4 359.9 45.4	30 30 30 30 30		
	SND05410-12 SND05410-14 SND05411-2 SND05411-3 SND05411-4	11.0 4.5 79.9 7369.2 476.6	30 30 30 30 30 30		
	SND05411-5 SND05411-6 SND05411-7 RE SND05411-7 SND05411-8(pulp)	427.6 200.6 11.6 6.0 10334.5	30 30 30 30 30		
	SND05411-9 SND05411-10 SND05411-11 SND05411-12 SND05411-13	2.071000.0852.0794.747.5	30 30 30 15 30		
	SND05411-16 SND05411-17 SND05412-1 SND05412-2 SND05412-3	122.84583.424.22832.0191.3	30 30 30 30 30 30		
	SND05412-4 SND05412-5 SND05412-6 SND05412-7 STANDARD AU-R	21.2 741.5 13.8 25.6 456.0	30 30 30 30 30	•• ;	

GROUP 3A - 30 GM SAMPLE LEACHED WITH 150 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. UPPER LIMITS - $AU^* = 100$ PPM.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: DRILL CORE R150 17/05 Data 🖉 FA DATE RECEIVED: JUL 7 2005 DATE REPORT MAILED:

D.S. 31307 #21 194802 404

Almaden Minerals Ltd. PROJECT ELK05-1 FILE # A503246

Page 2

· .

Data \mathcal{N}_{F}

 SAMPLE# Au* Sample ppb gm	
SND05412-85.130SND05412-9.630SND05412-101.330SND05412-1441.430SND05412-15287.630	
SND05412-18110.030SND05412-192.430SND05413-32.530SND05413-5.630SND05413-631.830	
SND05413-713.830RESND05413-714.230SND05413-813.930SND05413-9675.630SND05413-10447.330	
SND05413-111.730SND05413-12(pulp)32000.015SND05413-13650.330SND05413-1435.030SND05414-17735.030	
SND05414-230.930SND05414-316196.330SND05414-43167.330SND05414-53782.030SND05414-681.230	
SND05414-7621.130SND05414-867.930STANDARD AU-R461.030	

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME AN VTICAL LA (I. 001 Acco	BORATORIES LTD. 852 redited Co.)	E. HASTINGS ST. 70 ASSAY CL.(1)	COUVER BC V6A 1R6	PHONE (604) 253-3158 FAX (60	53-1716
44	<u>Almaden Minera</u> 1103 - 750 W. Pe		<u>BLK05-1</u> File # A5(218 Submitted by: Wojtek Jak)3246R ubowski	<u>t</u> t
		SAMPLE#	Au** gm/mt		
		SND05414-3 STANDARD AU	16.56 -1 3.27		
	GROUP 6 - PRECIOUS METALS B - SAMPLE TYPE: CORE PULP	Y FIRE ASSAY FROM 1/2 A.T.	SAMPLE, ANALYSIS BY ICP-ES.		
Data FA	DATE RECEIVED: AUG 1 2	005 DATE REPORT MAI	LED. Ang 9/05	Clarence Leone)
				A BAS	
: : : -		: : 		: : : :	
				•• .	
	ed the confidential property of th			tal a such a ta such a	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

.

į

	57 S	- C - C - C -	CAL 1 Ac	200 CO. 0	100000000000000000000000000000000000000	1.1.1.2.1.1.1.1.1.1.1.1.1		LTD)	r.	8		e. H Eoch		22								V6A PICZ				рноі	te (604)	25	3-31	58	Fax (60	79 53	-171	.6
						2	Aln			<u>Mine</u> - 750	-	l <u>s I</u> ender S	td.		ROC couve						1000 C 1000 C 10	²il∈ ∣by:	7 <i></i>					3							L	Ľ
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Žn ippm	Ag ppm	Ni ppm	Со ррт		۶e لا	As ppm	ປ ppm	Au ppb	Th pp=n	Sr ppm	Cd ppm	Sb ppm p	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	B ppm	A7 X	Na %	K % p	H W qq mq	· · · ·		Տ % լ	Ga Se ppm ppm	-	Au** gm/mt
SND05410-5 SND05410-7 SND05411-3 SND05411-17 SND05412-2	6.5 1.4 4.6	141.8 333.1 207.0 111.3 207.7	69.9 59.1	108 47 44	3.1 6.2 8.0 3.5 3.5	3.1 9.0 3.0 1.9 18.6	6.0 7.6 6.2	1186 1511 1183 526 1505	5.84 5.86 2.67	400.6 25.1 28.4	3.1 3.9 5.3	1735.8 7557.5 5498.9 2896.0 2370.6	7.6 6.1 8.8	6 10 6 11 52	.3 1.6 .7 .3 .3	.1 .5 .2 .1 .1	2.5	3 9 8 15 26 2	.46 .27 .29	.039 .144 .059 .054 .128	8 12 9 11 22	7.5 6.2 4.8 7.1 19.8	.32 .17 .28	47 48 121	.003 .012 .010 .013 .002	1 3 1 3 3	.78 .52 .63	.011 .015 .032	.29 .52 .37 1 .29 .23	.1 .0 .2<.0 .1 .0 .2<.0 .1 .0	1 2.5 1 1.7 1 2.3	.14	.58 .24 .04 .15 .15	1 <.5 2 <.5 1 <.5 2 <.5 2 <.5	7 11 3	2.73 7.13 6.89 3.47 2.57
SND05414-1 SND05414-4 SND05414-5 STANDARD DS	3.4 34.7	223.9 115.3 187.2 122.3	312.3 502.7	585 189	3.1 10.9	20.6 8.3	13.2 7.2	824 486	2.09 4.72	72.7	13.4 8.0	4351.0	1.5 16.9	176 2	7.7 13.9 5.5 6.1	4.2 3.7	1.5 1.5	4 16 1 56	.04	.091 .194 .002 .079	6 19 3 14	7.1 21.3 7.2 186.9		18<	.001 .001 .001 .082	2 5 1 16 1	.56 .25	.005 .004	.37 .23	.1 .0	54.6	.2	.57 .66 .29 .05	1 <.5 1 <.5 1 <.5 6 4.1	2 9	7.51 3.09 3.76 5.82

Standard is STANDARD DS6/R-2a/OxL34.

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

- SAMPLE TYPE: CORE PULP

5.2

ACME AN^{2 -} VTICAL LABORATORIES LTD. (If 901 Accredited Co.) 852 E. HASTINGS ST. " "COUVER BC V6A 1R6 GEOCHEMICAL ANA...SIS CERTIFICATE PHONE (604) 253-3158 FAX (60/ \$3-1716

Almaden Minerals Ltd. PROJECT ELK05-2 File # A503976 Page 1

1103 - 750 W. Pender St., Vancouver BC V6C 278 Submitted by: Woitek Jakubowski

s	ample#	Mo	Ću	P	b Z	n Ag	N	i Co	Hn.	Fe	As	U	Au	Th	Sr G	d Sb	81	٧	Ca	₽ La	Cr	r Mg	Ba	T1	B	A1 Na	ı X	H	Hg	Sc	TΙ	S Ga	Se	Ag** Au*	•
		ppm	ppm	pp	n pp	n ppm	pp	n ppn	n ppm	*	ppm	ppm	ppb	ppn j	opm pp	n ppri	ppm	ppm	1	t ppm) ppr	n X	ppm	x	ndia.	1 1	. 1	ppm	ppm	ppm	ppm	X ppm	ppm g	m/mt gm/m	t
s	ND05415-1	.7	67.B	46.1	8 276	5.B	z.	4 9.9	1638	2,89	5.2	3.7	414,7	5.1	9 85.1	1.4	.2	16	.30 .0	69 17	2.1	L.16	242	.019	3	.53 .029	.31	<.1	.10	3.7	.1 .4	62	<.5	<2 .1	5
	ND05415-2																									.71 .D14								3.0	
s	ND05415-3	.7	20,8	16.1	86	0.7	2.	6 9.8	1390	2.80	7.1	3.0	195.3	6.Z	13	4.1	.2	19	.38 .0	90 25	1.6	8.18	89	.014	2	.62 .023	. 29	<.1	<.01	4.6	.1 .4	9 2	<.5	2.5	0
s	ND05415-4	.5	29.1	35.3	7 33	0.5	2.	1 6.8	1175	2.03 2	23.9	2.2	35.2	7.2	12 5.4	4.1	<.1	16	.31 .0	68 24	2.3	3.15	70	.007	5	.57 .026	. 28	<.1	.01	3.6	.1 .6	92	<.5	<2 .0	5
	ND05415-5	2.1	302.0	343.3	1 37	0 4.6	19 .	0 13.9	1154	3.25 3	345.3	B.O 19	971.7	6.8	11 3.8	8.4	.9	12	.42 .0	90 9	9.1	l. 29	41	.001	3	.66 .011	37	.1	<,01	2.8	.1 .5	8 Z	<.5	5 2.5	z
-	ND05415-6	2.6	04.0	740	4 40		21	0 91 1	1074	4 41 I	02.9	× 0 ·	272 1	~ T	7E 7 1		,	, ,,	37 0	<u> - </u>	20 3	7 76	07	603	5	5 2 0 11	22	1	51	7 9	11:	1 5 2	e 6	3.4	6
		-																								.56 .033								3 1.5	
	ND05415-7																																	4 2.1	
	ND05415-8 ND05415-11																																	10 5.2	
	ND05415-12																																	<2 .1	
3	MUU5415-12	2.2	105.7	12.	2 4	с, в	1.	9 6.1	003	2.09	15.9	3.1	194.0	0.3	15 .	3.1	.2	0	. 21 .0	42 10	1.4	۷.24	43	.001	ч	.51 .01	• .30	1	~.01	2.3	.1 1.4		~.3	~2 .1	2
5	ND05415-13																																	2.6	
s	ND05415-14A	4.2	14.0	6.	15	1.1		93.4	891	1.78	5.11	2.2	20.3	7.3	51 .	4.1	.1	61	.46 .0	40 20	1.8	8.43	384	.001	5	.36 .02	.7.	<.1	<.01	3.3	.1 .0	7 1	<.5	<2 .0	4
S	ND05415-14B	5.0	10.9	5,	15	0.1	1.	1 3.	5 798	1.78	3.91	2.D	18.2	8.1	57	4.1	.1	71	.43 .0	40 20	1.5	9.43	507	.001	5	.38 .03	.23	<.1	<.01	3.2	.1 .0	9 1	<.5	<2 .0	7
s	ND05415-15	3.7	9.2	2 5.3	85	9.1		9 3.2	884	1.87	3.2	4.6	11.3	8.7	n .	4.1	.2	61	.94 .0	41 19	1.3	2 .54	1037-	.001	3	.35 .02	3.22	<.1	<.01	3.1	.1 .0	91	<.5	<2⊘	3
s	ND05415-16	3.7	88.9	э п.	74	7.5	1.	6 4.4	723	2.65	26.1	4.7	195.0	8.9	12 .	1.2	.3	18	.25 .0	49 13	2.0	6 .23	185	.011	3	.51 .036	5 .29	.1	<.01	3.6	.1 .	39 2	<.5	3.9	2
s	ND05415-17	3.5	201.7	10.	26	2 1.1	1.	7 6.4	905	3.77	18.0	3.B	994.6	9.0	9.	3.1	1.2	13	.24 .0	49 12	2 2.3	7.20	37	.004	3	.44 .02	5.30	.1	<.01	3.7	.1 1.3	2 1	<,5	2 1.1	0
	N005415-18																																	<z .1<="" td=""><td></td></z>	
																																		<2 .0	
																																		<2.4	
	E SND05415-21																																	2.5	
	L 31003413-21	2.2.	1000.0				•		, ,		10.1			•		• /•									•										
R	RE SND05415-21	3.3	985.4	12.	66	0 1.3	2.	0 4.9	527	3.60	14.9	3.5	535.5	9.0	10 .	6.1	.6	12	.20 .0	50 11	3.:	1.19	60	.006	4	.49 .02	.31	<.1	<.01	2.9	.11.	n 1	<.5	<2.4	6
S	ND05415-22	2.7	288.3	6.	75	7.9	٢.	1 3.6	561	2.47	6.2	1.0	230.2	9.2	12 .	2.6	.4	19	.22 .0	49 13	3.0	4.16	129	.009	2	.44 .03	1.25	<.i	<.01	3.8	.1 .:	6 1	<.5	2.3	4
S	ND05415-23	2.7	12.3	6.	64	5.1	2.	95.0	499	1.69	3.2	1.7	4.2	9.4	15 .	1,1	.1	23	. 23 . 0	52 16	i 3.:	1.16	240	.015	3	. 35 . 043	1.15	<.1	<,01	4.0	.2 <.)5 2	<.5	<2 <.(1
S	MD05415-24	2.8	835.4	9.	06	5 1.9	1.	B 4.4	460	3.74	17.3	3.5	950.9	8.5	6.	8.1	1.0	8	.17 .0	45 B	3 2.4	4.18	30	.002	1	.57 .01	3 .34	.1	<.01	2.1	.2 2.	4 1	<.5	3 1.2	0
5	ND05415-25	2.7	119.8	18.	76	2.5	1.	5 4.	3 558	2.06	7.0	2.3	246.4	8.9	12 .	z.ż	.5	17	. 21 .0	51 14	4,1	0.16	275	.010	Z	.40 .03	5.Z4	<.1	<.01	3.6	.1 .	18 2	<.5	<2 .7	3
2	SND05415-26	3.3	47.6	5 20.	16	2.1	2	0 4.8	3 661	2.11	7.1	2.2	17.0	9.5	10.	2.Z	.2	13	.20 .0	49 17	2.	7.16	229	.003	3	.37 .03	1,24	.1	<.01	3.5	.1 .	3B 1	<.5	<2.0	2
	ND05415-27	2,7	221.4	1 27.	5 é	4.8	1.	9 4.9	670	2.36	8.8	2.4	35.0	9.6	9.	3.2	.6	14	. 20 . 0	48 15	5 2.3	3.17	155	.003	Э	.36 .02	.24	.1	<.01	3.5	.1	55 1	<.5	<2 .1	1
2	SND05415-29(pu1p)	14.1	285.7	327.	3 34	0 4.6	170.	5 23.0	508	3.20	191.4	2.9 9	970.0	2.2	41 2.	4 13.6	4.1	48 1	.14 .0	38 6	5 284.	4.48	67	.034	3 1	.07 .03	2.3!	5.8	.38	4.4	.61.	29 4	1.5	69.9	4
	SND05415-30																									.36 .02							<.5	3.7	9
	5ND05415-31																									.52 .01							<.5	2.5	0
																																	· .		
Ś	SND05416-1	3.0	12.1	19.	8 5	1. 8	1	2 5.	1 852	2.01	2.5	2.3	2.3	9.1	40 .	1.1	2	23 2	.01 .0	149 19	2 .	4 .34	97	.003	3	.62 .03	2.1	9 <.1	< .01	3.2	.1 <.	05 3	<.5	· <2 .(91
9	SND05416-2	2.8	30.7	7 19.	64	2.3	1	3 3.1	B B87	1.70	7.1	2.7	11.0	7.9	88 .	2.1	2	92	. 66 .0	047 13	31.	3.23	436	.001	1	.61 .01	8.2	i <.1	<.01	1.8	.1 .	30 2	<.5	<2 .1	3
5	SND05416-3	4.4	74,7	7 35.	8 (i9 1.2	1	5 5.	1 803	2.19	40.0	6.8	113.8	9.0	65 1.	5.2	2 .3	62	.26 .0	12	21.	3.22	61	.001	2	.62 .01	6.2	.1	<.01	1.7	.1.	91 2	<.5	2	7
2	SND05416-4	3.7	65.0	6 95.	2 22	2 .9	2	6 7.	1 792	1.92	36.0	6.4	47.9	7.4	51 4.	5.1	4	5 2	.06 .0	047 11	1 1.	3.19	157	.001	2	.52 .01	3.2	s <.1	.02	1.6	.1 .	69 1	<.5	2.1	8
	STANDARD DS6/R-2a/OxL34	11.2	121.0	5 29.	7 14	и .3	24	2 10.	4 713	2.77	21.0	6.6	48.8	2.9	37 6.	2 3 0	4 9	57	83 (74 14	4 184	5.58	161	.081	16 1	.91 .07	3.1	5 3.D	. 22	3.4	17<	DS 6	4 4	160 5.5	5

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBI AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

- SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA DATE RECEIVED: JUL 29 2005 DATE REPORT MAILED:

Almaden Minerals Ltd. PROJECT ELK05-2 FILE # A503976

Page 2

Data [FA

ACME ANALYTICAL	<u> </u>		ACME ANALYTICA
	SAMPLE#	₩o Cu Pb Zn Ag N1 Co Nn Fe. As U. Au Th Sr Cd Sb B1 V. Ca. P. La. Cr Mg Ba T1 B. A.) Na. K. W. Hg Sc T1 5 Ga Se Ag** Au**	
		ppm	
	SND05416-5	3.4 371.3 8.8 33 1.0 1.2 3.9 628 4.87 36.5 6.7 288.2 8.1 15 .4 .1 .6 9 .95 .042 7 1.6 .29 41 .001 2 1.08 .009 .30 .7 < .01 1.5 .1 2.95 3 <.5 <2 .42	
	SND05417-1	.9 66.6 66.8 80 .5 1.4 2.3 555 1.45 13.9 3.6 279.4 9.6 4 .4 .1 .3 4 .08 .025 17 2.9 .04 33 .001 2 .27 .022 .21 .1 <.01 .8 .1 .68 i <.5 <2 .35	
	SND05417-2	.0 42.1 43.4 81 3 1.3 1.9 544 1.28 5.8 3.7 446.5 8.9 4 .4 .2 .3 4 .08 .021 19 4.0 .04 32 .004 1 .25 .029 .16 .1 < 0.1 .9 .1. 4.1 1 < .5 < 2 .44	
	SND05417-3	10 15.3 35.9 80 .1 1.1 1.7 526 .99 1.4 3.8 3.7 8.7 4 .3 .1 <.1 5 .08 .022 22 2.6 .05 36 .006 1 .24 .032 .15 .1 <.01 .9 .1 .11 1 <.5 <2 .02	
	SND05417-4	.9 10.8 31.7 74 <.1 1.2 1.6 560 1.03 2.5 3.6 4.3 10.1 5 .3 .1 <.1 6 .09 .024 25 4.3 .05 38 .008 1 .27 .042 .16 .1 <.01 1.0 .1 .07 1 <.5 <2 .02	
	SND05417-5	.9 12.3 23.0 51 .1 .9 1.5 491 1.01 1.9 3.1 43.1 8.9 4 .2 .1 .1 5 .08 .022 30 3.0 .03 32 .003 1 .21 .034 .12 .1 <.01 .8 .1 .18 1 <.5 <2 .11	
	SND05417-6	1.5 15.1 79.8 31 .1 .8 1.0 103 .59 10.5 3.6 6.2 8.4 9 .5 .1 .1 3 .07 .022 18 2.5 .04 70 .006 1 .30 .027 .21 <.1 <.01 .6 .1 .15 1 <.5 <2 .01	
	SND05417-7	1.3 8.1 75.7 83 .1 1.3 2.5 482 1.00 6.5 3.4 106.5 9.4 9 .4 .1 .1 3 .07 .023 17 3.0 .03 61 .003 1 .25 .028 .18 <.1 <.01 .8 .1 .21 1 <.5 <2 .12	
	SND05417-8	1.3 16.6 56.7 77 .1 1.2 1.2 353 .75 2.1 3.3 3.5 10.1 9 .4 .1 <.1 2 .07 .022 19 4.3 .03 72 .001 1 .29 .026 .19 <.1 <.01 .7 .1 <.05 1 <.5 <2 <.01	
	SND05417-9	1.3 7.9 50.4 149 .1 1.5 1.9 723 1.23 2.6 3.8 1.4 10.0 8 .7 .1 .1 5 .08 .022 22 4.1 .04 50 .002 1 .26 .029 .16 .1 <.01 1.1 .1 .06 1 <.5 <2 .01	
	SND05417-10	1.3 31.7 64.2 190 .3 1.8 2.6 966 1.78 17.8 2.7 24.2 9.8 7 .7 .1 .1 5 .08 .022 16 3.0 .04 52 .001 1 .27 .026 .18 .1 < .01 1.3 .1 .46 1 < .5 <2 .03	
	5ND05417-11	1.4 18.4 48.3 164 .2 1.9 2.0 867 1.46 9.1 2.4 4.3 8.4 9 .6 .1 .1 5 .08 .022 18 3.0 .04 59 .001 1 .23 .026 .15 .1 <.01 1.3 .1 .18 1 <.5 <2 .02	
	SND05417-13(pulp)	13.7 277.6 312.8 350 4.8 157.3 21.9 484 3.19 187.0 2.8 9471.0 2.0 40 2.4 14.3 3.7 45 1.12 .038 6 271.4 .48 62 .031 3 1.02 .031 .35 5.0 .39 4.2 .6 1.20 4 1.2 6 9.96	
	SND05417-14	1.0 25.8 49.1 131 .5 1.4 1.9 711 1.43 6.0 2.3 57.3 8.0 7 .8 .1 .2 5 .07 .019 17 2.5 .05 47 .006 2 .27 .030 .17 .1 <.01 .9 .1 2.5 1 <.5 <2 .14	
	SND05417-15	1.1 6.6 40.1 114 <.1 1.3 1.7 571 1.08 1.4 2.4 7.0 8.8 9 .5 .1 <.1 6 .07 .022 20 2.2 .04 51 .007 <1 .22 .031 .12 <.1 <.01 1.1 .1 <.05 1 <.5 <2 .02	
	5ND05417-16	1.5 59.9 149.2 144 .6 1.9 2.7 685 1.78 37.5 5.1 42.2 11.3 6 .7 .1 .3 4 .06 .019 13 3.4 .04 42 .001 <1 .27 .016 .21 .1 <.01 1.0 .1 .79 1 <.5 <2 .04	
	SND05417-17	1.6 42.7 50.7 109 .2 1.3 1.6 690 1.20 16.8 3.8 7.7 8.5 7 .5 .1 .1 2 .05 .018 14 3.4 .03 51 .001 1 .26 .013 .21 .1 <.01 .7 .1 .29 1 <.5 <2 .02	
	SND05417-18	3.1 20.0 10.6 49 .2 1.1 1.5 592 1.06 12.5 3.4 21.8 10.9 7 .3 <.1 .1 3 .08 .023 24 2.5 .03 34 .001 1 .25 .029 : .18 <.1 <.01 .9 .1 .23 1 <.5 <2 .02	
	SND05417-19	1.6 21.0 14.0 35 .3 1.0 1.7 484 1.14 13.5 3.1 49.1 9.8 7 .3 .1 .1 4 .07 .022 17 3.2 .04 46 .003 1 .27 .024 .20 <.1 <.01 .8 .1 .33 1 <.5 <2 .13	
	RE 5ND05417-19	1.4 19.3 14.4 35 .3 1.1 1.5 482 1.14 13.6 3.4 113.1 10.8 7 .3 .1 .1 4 .07 .021 17 3.2 .04 45 .003 2 .27 .024 .20 .1 <.01 .8 .1 .32 1 <.5 <2 .13	
	RRE SNDD5417-19	10.1 19.9 13.3 36 .4 1.0 1.6 488 1.15 14.2 3.6 101.9 10.6 7 .3 .1 .2 4 .07 .022 18 2.6 .04 46 .004 1 .29 .024 .20 .1 <.01 .8 .1 .34 1 <.5 <2 .20	
	SND05417-20	1.2 16.2 14.9 49 .1 1.1 1.6 600 1.06 5.7 2.8 6.1 10.4 7 .3 <.1 .1 4 .07 .021 19 2.8 .04 42 .004 1 .24 .027 .16 .1 <.01 .8 .1 .12 1 <.5 <2 .02	
	SND05417-21	2.9 109.1 54.6 58 2.2 1.1 2.2 331 1.30 13.6 3.5 1157.1 11.6 6 .3 .1 3.0 3 .07 .018 16 3.3 .05 41 .007 2 .27 .025 .20 .1 < 0.1 .7 .1 .53 1 <.5 3 .93	
	SND05417-22	1.6 11.7 5.7 34 .2 .8 1.9 554 1.33 4.2 2.8 6.0 9.6 4 .1 <.1 .1 B .07 .021 23 3.8 .11 48 .028 3 .29 .036 .19 <.1 <.01 1.0 .1 .06 2 <.5 <2 .01	
	SND05417-23	1.3 5.3 10.6 23 .1 .8 1.1 211 .81 4.2 1.9 51.1 9.2 8 .1 <.1 5 .07 .019 34 3.3 .06 43 .016 3 .23 .039 .15 <.1 <.01 .7 .1 <.05 1 <.5 <2 .04	
	SND05417-24	1.3 11.1 34.5 149 .2 1.7 2.7 1217 1.64 6.6 2.8 5.8 9.0 7 .7 .1 .1 5 .10 .034 25 4.3 .06 52 .004 2 .29 .016 .24 <.1 <.01 1.0 .1 <.05 1 <.5 <2 .04	
	SND05417-25	1.2 4.8 25.5 75 .1 1.2 2.2 644 1.48 2.1 2.8 6.3 6.9 9 .3 .1 <.1 10 .12 .032 25 4.2 .15 1.30 .044 2 .42 .042 .29 <.1 <.01 1.6 .1 <.05 2 <.5 <2 .01	
	SND05417-26	1.0 89.4 612.9 634 3.7 1.2 3.3 253 1.47 2499.2 3.4 1417.2 6.8 6 13.6 2.3 1.1 3 .07 .026 14 3.7 .05 107 .004 2 .30 .013 .27 .1 .02 .6 .1 .90 1 <.5 3 1.99	
	SND05417-27	.2 12.3 143.2 450 .1 61.5 21.8 2712 4.38 4.8 7.7 1.7 2.5 140 2.6 <.1 <.1 34 10.20 .137 32 37.8 2.59 628 .001 4 .54 .022 .25 <.1 <.01 10.3 .1 <.05 1 <.5 <2 .01	
	5ND05417-28	3.2 55.0 226.2 216 1.5 2.2 7.6 841 2.91 24.0 3.0 376.7 7.5 17 1.7 .4 .3 12 .48 .075 20 1.5 .32 110 .001 4 .48 .021 .28 .2 <.01 3.0 .1 .56 1 <.5 2 .53	
	SND05417-29	3.9 16.5 7.5 65 .2 2.2 7.9 1315 2.50 8.0 5.2 12.5 6.8 13 .2 <.1 .1 20 .37 .075 17 2.8 .27 125 .021 2 .63 .026 .33 <.1 <.01 3.5 .1 .12 2 <.5 <2 .02	
	SND05417-30	1.3 38.6 88.0 107 5.3 3.3 10.2 2235 3.70 22.5 5.9 774.9 5.6 14 .5 <1 2.7 17 .87 .063 16 3.2 .24 122 .010 2 .48 .022 .26 <1 <.01 3.6 .1 .69 1 <.5 8 2.62	
	SN005417-31	1.3 35.8 66.6 93 3.3 2.4 8.9 1973 3.39 24.8 4.8 1522.5 6.5 17 .5 <1 1.9 20 1.36 068 21 2.4 .24 143 0.15 4 .50 0.26 .26 .1 <0.1 3.7 .1 69 2 <.5 5 1.84	
	SND05417-33(pulp)	13.4 154.9 346.8 192 4.6 361.0 18.2 395 2.53 117.7 1.7 21586.7 2.7 29 1.3 7.7 4.1 25 .78 .033 8 511.3 .51 177 .036 4 .99 .038 .32 8.3 .19 3.2 .3 .59 3 .7 6 21.72	
	STANDARD D\$6/R-2a/OxL	34 11.4 119.7 29.7 144 .3 24.7 10.4 695 2.72 20.9 6.5 44.3 2.8 36 5.8 3.0 4.8 57 .82 .075 14 188.4 .58 162 .078 17 1.85 .073 .16 3.3 .22 3.4 1.8 < 0.5 6 4.4 159 5.87	

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

*

Almaden Minerals Ltd. PROJECT ELK05-2 FILE # A503976

Page 3

and the second second

ACME ANALYTICAL			ACHE ANALYTICA
	Sample#	Mo Cu Po Zn Ag Ní Co Mn Fe As U. Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Hg Sc Tl S Ga Se Ag++ Au++	
		ppin ppin ppin ppin ppin ppin ppin ppin	
	\$ND05417-34	1.1 9.6 5.9 49 .1 2.3 6.6 1837 2.50 5.2 4.1 11.6 5.8 11 .2 .1 .1 14 .30 .070 14 2.6 .21 313 .013 3 .66 .026 .34 <.1 <.01 2.6 .1 .16 2 <.5 <2 .01	
	SND05417-35	1.5 19.8 4.6 85 .1 2.4 9.7 2144 3.70 .8 2.2 15.5 5.8 16 .2 <.1 .1 25 .44 .068 19 2.5 .32 478 .002 2 .59 .029 .22 <.1 <.01 4.8 .1 .08 2 <.5 <2 .02	
	RE SND05417-35		
	RRE SND05417-35		
	SND05417-36	1.3 11.0 7.2 65 .2 3.0 10.8 2010 3.29 5.3 5.7 65.8 6.7 14 .3 .1 .1 18 .38 .066 23 2.3 .29 152 .013 4 .62 .029 .29 <.1 <.01 3.0 .1 .16 2 <.5 <2 .08	
	SND05417-37	.9 7.0 3.5 43 .1 1.8 6.7 831 2.23 .7 2.3 7.7 5.6 13 <.1 <.1 17 .29 .071 17 2.5 .32 424 .004 3 .70 .028 .23 .1 <.01 2.8 .1 .10 3 <.5 <2 .04	
	\$ND05417-38	2.6 4.0 25.0 191 <.1 1.5 5.2 831 2.58 <.5 .8 <.5 7.5 15 .5 .1 <1 22 .33 .071 19 2.6 .35 635 .006 3 .44 .039 .19 .1 <.01 3.8 .1 <.05 2 <.5 <2 .01	
	SND05417-39	6.3 5.9 21.2 113 <.1 1.3 4.8 909 2.52 .7 1.5 <.5 6.7 15 2 .1 <.1 29 .32 .072 20 3.4 .28 112 .047 2 .58 .043 .24 <.1 <.01 5.7 .2 <.05 3 <.5 <2 <.01	
	SND05417-40	1.5 86.4 7.4 48 2.0 1.8 6.0 682 2.71 17.7 2.6 2966.4 5.6 12 .2 .2 .4 17 .35 .066 15 2.7 .24 129 .009 4 .50 .035 .22 .1 .02 3.7 .2 .48 2 <.5 2 3.44	
	SND05417-41	4.7 77.9 50.0 88 .5 2.4 8.7 1146 3.48 6.8 7.7 370.0 7.2 12 .7 .1 19 .29 .067 21 2.0 .36 219 .008 2 .47 .030 .22 .3 .01 4.0 .2 .45 2 <.5 <2 .49	
	SND05417-42	2,9 42.9 6.4 48 .9 1.5 4.9 679 2.79 9.4 4.3 734.9 6.2 13 .1 .1 <.1 20 .31 .081 18 2.3 .27 88 .016 2 .57 .036 .24 .1 .01 4.0 .1 .40 3 <.5 <2 .13	
	\$ND05417-43	1.6 21.7 18.2 68 .2 1.9 6.5 914 2.37 2.8 2.9 38.3 5.3 9 .2 <.1 .1 7 .27 .065 16 1.4 .19 172 .001 3 .49 .019 .28 <.1 <.01 2.4 .2 .15 1 <.5 <2 .05	
	5ND05417-44	2.1 5.4 84.5 415 .1 2.5 6.5 1858 3.42 3.8 4.3 3.9 3.7 10 1.6 .1 <.1 13 .31 .061 16 2.1 .26 209 .007 4 .51 .028 .27 <.1 <.01 4.0 .2 .13 2 <.5 <2 .02	
	SND05417-45	23.2 124.5 41.8 63 3.1 .9 4.1 1261 2.75 61.7 3.4 395.7 6.3 5 1.0 .1 .5 3 .19 .042 10 2.0 .13 47 .002 3 .38 .015 .28 .1 .01 1.5 .1 1.01 1 <.5 4 .55	
	SND05417-46	1.7 22.0 7.9 23 .3 .6 1.9 684 2.00 22.9 1.2 67.7 2.7 5 .1 .1 .1 4 .14 .035 19 2.9 .12 49 .003 2 .35 .031 .22 .1 <.01 1.7 <.1 .43 1 <.5 <2 .07	
	SND05417-47	.7 12.2 16.2 65 .2 .6 1.9 1016 2.11 7.0 2.2 43.3 4.3 6 .4 <.1 <.1 3 .16 .036 17 2.2 .12 54 .001 4 .28 .026 .20 .1 <.01 2.1 <.1 .13 1 <.5 <2 .04	
	SND05417-48	6,3 514,5 339,7 608 19,0 3,4 5,3 818 4,89 121.0 5,8 6402.1 4,6 6 9,7 .2 6,5 3 .22 .064 7 2.4 .19 28 .001 1 .54 .007 .35 .2 .01 1,8 1.3,68 1 <.5 18 8,12	
	SND05417-49	2.3 274,7 541,9 866 1.9 29.9 24.0 3664 8.67 39.3 15.2 541,5 2.2 16 4.8 4 5 111 .67 .170 15 18.1 .88 42 .003 5 .80 020 .33 1 < 01 27.1 .2 2.03 3 .5 2 .54	
	SND05417-51	9 281 3 282 5 175 3.4 273 23.4 1484 5.88 46.0 5.7 786.8 1.9 17 2.4 .2 1.3 85 .55 175 9 35.1 .81 66 0.15 2 1.00 121 .39 <1 < 0.1 13.8 .4 2.4 2 :3 <.5 4 1.17	
	SND05417-52	1.0 330.9 384.9 125 2.8 30.2 23.8 1366 5.21 40.4 6.2 1199.6 2.0 17 2.34 1.1 92 .56 .180 10 52.8 .88 81 .020 4 1.00 .023 .41 <.1 <.01 13.4 .4 1.74 3 4.5 3 .87	
	SND05417-54(pulp)	13,6 277,5 326,0 354 4,8 156,1 19,8 489 3,22 188,3 3.0 8679,4 2.1 42 2.4 14,7 4.0 44 1.12 .038 6 262.9 .47 69 .033 5 1.06 .033 .36 5.2 .42 4.3 .6 1.21 4 1.5 6 10.38	
	SND05417-54 (purp7		
	SND05417-55	.8 140.1 204.1 130 14 29.1 22.9 122.4 4.03 10.2 3.7 13.2 2.4 19 1.0 .4 <1 140 .01 .155 11 35.1 1.13 231 1.23 0 1.51 .055 .91 <1 <.1 <.01 15.1 1.0 .23 3 <.5 <2 .03	
	SND05417-57 SND05417-58	.5 77.1 123.9 76 .1 30.0 16.9 822 3.79 5.2 1.5 7.9 2.2 19 .4 .1 <1.1 197 .35 .189 12 92.0 1.50 403 .200 4 1.63 .057 1.46 <.1 <.01 11.9 .7 .09 6 <.5 <2 .01	
	SND05417-59	7 11.5 29.9 148 .2 2.2 4.0 858 2.91 3.9 .7 49.8 5.7 9 .7 .1 .1 13 .24 .055 21 4.5 .17 49 .010 1 .32 .036 .14 <.1 <.01 3.1 .2 .32 2 <.5 <2 .14	
	SND05417-60	.9 13.7 237.9 1296 .9 5.6 10.4 1554 4.12 93.9 3.6 159.0 5.9 11 3.8 .2 .3 20 .26 .047 13 3.1 .36 70 .001 5 .42 .017 .26 .1 <.01 4.9 .2 .78 1 <.5 <2 .22	
	SND05417-61	6.1 80.7 7.8 106 .1 7.5 12.6 483 1.42 31.4 3.6 7.5 4.9 14 .5 .5 .1 37 .37 .084 18 7.8 .19 76 .019 2 .39 .052 .08 <.1 <.01 6.4 1.2 .18 i <.5 <2 .01	
	STANDARD DS6/R-2a/OxL34	4 11.3 121.8 30.0 145 .3 23.9 10.4 715 2.81 20.8 6.7 44.9 2.9 37 6.1 3.0 4.9 54 .84 .074 14 187.7 .57 162 .081 17 1.91 .073 .16 3.2 .24 3.4 1.7 < 0.5 6 4.4 159 5.82	

Sample type: ORILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

٠

Data FA

						<u>[A</u>				<u>Mine</u> 750 w.																									E	
MPLE#	Mo ppm	Си ррт			n Ag n ppm			Co opm p		Fe %		As l om ppr		Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V (mqc	Ca %	PLa % ppr	a C n pp	r Mg m %	Ва ррп	Ti %	B ppm	Al %	Na %	K X	W F ppm pp	lg S m pp	Sc T1 Xn ppn		S Ga % ppm	
D05417-50	1.3 ! 1.6 l(689.5	437.0 3515.2	0 625 2 608	5 10.2 8 28.5	2 30. 5 28.	.2 16 .9 20	5.2 15).7 14	561 450	12.32 7.94 9.34 1 2.79	116. 1462.	.0 6.2 .3 7.7	2 72 7 304	27.4 03.1	1.9 1.8	15 13	10.7 17.3	.5 3.4 :	3.5 16.6	98 . 77 .	54 .17 43 .13	75 9 39 8	938. 838.	2.89 0.72	64 50	.052	1 1 1	1.09 .77	.024 .015	.62 .38	.3<.0	1 12. 1 12.	.4 .3 .0 .3	3 4.03 3 5.93	14 32	<.5 .6
GROUP 1DX	- 0.5) GM 5		E LE/	ACHE	D WI	TH 3	ML	2-2	-2 HCL	L-HNC)3-H2	20 AT	95	DEG.	. C f	FOR (ONE H	OUR,	DILU		TO 10) ML,	ANALY	SED	BY I	CP-N	IS.								
(>) CONCEN - SAMPLE T			CORE	M150	0																				S CA	N LI	IMIT	AU S	OLUB.	ILIT	Y.					
Data <u>-157</u> (FA _		1	DAT	e rj	ECE	:IVI	3D:	JL	UL 29	2005	; I	DATH	E RI	EPO	RT	MAI	LED) !	Ţŀ	¥.!.	5./9	<u>?</u> .	••			6	ABLA	5	570	57	ER	2			
																											ß	7	0.	1			P			
																										,	E			nce	Leon		E			
4 2 -														• • • -															Z		1	9	•			
																															۰.					

•

	SAMPLE#	S.Wt NAU -AU To gm mg gm/mt gm	otAu n/mt	
	SND05415-19 SND05417-50 SND05417-56 STANDARD OxL3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.78 5.00 3.51 5.82	
-AU : -150 AU BY FIRE ASSAY FROM - SAMPLE TYPE: DRILL CORE M150	1 A.T. SAMPLE. DUPAU: AU DUPLIC	ATED FROM -150 MESH. NAU - NATIVE GO	DLD, TOTAL SAMPLE FIRE ASSAY.	
Data FA $\underline{\gamma}$ DATE RECENT	VED: JUL 29 2005 DATE RE	PORT MAILED: HAR 215 01	····	
			C.T.	
			Clarence Leong	
· : · ·		· · ·		•
			· .	

and the second ACME ANALYTICAL LABORATORIES LTD. 852 B. HASTINGS ST. "ANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (60 853-1716 (I 9001 Accredited Co.) ASSAY C. L'IFICATE Almaden Minerals Ltd. PROJECT ELK05-2 File # A503977 1103 - 750 W. Pender St., Vancouver BC V6C 218 Submitted by: Wojtek Jakubowski SAMPLE# S.Wt NAq -Ag TotAg mğ gm/mt gm/mt gm 688 1.44 42 9 SND05415-19 44 12 30 670 1.50 620 2.35 SND05417-50 SND05417-56 26 STANDARD R-2a <.06 159 159 -----AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAG: AG DUPLICATED FROM -150 MESH. NAG - NATIVE SILVER, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: DRILL CORE M150 DATE RECEIVED: JUL 29 2005 DATE REPORT MAILED: H. 2. 5. 05 Data FA Clarence Leono ۰.

51 mga

		ING R. FCEL	s Ltd. PROJECT ELI ier St., Vancouver BC V6C 218 SAMPLE#	Au*		
				dqq		
			SND05415-9 SND05415-10(pulp) SND05415-28 SND05417-12 SND05417-32	1.4 32936.3 8.4 1.1 2.1		
<u> </u>	<u></u>		SND05417-53 STANDARD AU-R	5.6 450.0		
GROUP 3A - 30 GM UPPER LIMITS - AU - SAMPLE TYPE: DF	J* = 100 PPM.		~HNO3-H2O AT 95 DEG. C FOR ONE		-	
Data FA	DATE RECEIVED:	JUL 29 2005	DATE REPORT MAILED:.	Mry 12/05	NEA OTO	CERT
		÷		V	S P 1	
		÷ 		:	Clarence Le	
						T.S.
						· · ·

ACME	ал» (I						es l' 0.)	rD.			E. Geog				1993) 1						5A 1	12		PH	ONE	:(60	4)2	53-	31	58 1	FAX (60	253	-17	16
							<u>Alma</u>	uden 1103		ine:	ral	3 L	td.	P	ROJ:	ECT	E	LKO	5 - °	3 1	7110	e #												Æ	A
SAMPLE#	Мо ррл	Си ррп	Pb ppm	-	Ад ррл	Ni ppm	••		-	As ppm pp		u Th bppm	-		Sb ppm p			a P 5 %		Cr ppm	Mg X		Ti % p	В эрт	Al X	Na %	K %		2	Sc T pm pp		S Ga % ppn			Au** gm/mt
BEN05-R1 Elk05-R1 Standard	6.7	47.2	7.2> 35.7 29.8	17	2.3	.8	760.6 5 .8 10.5 7	80 .	65	<.5 . 2.2 2. 1.6 6.	5 369.	0 2.8	11	.1		.2 5	5 .01	.010	7		.01		001	2	.14 .	006	11	.1<.	01	.3 <.	1 <.0	5 <1	49.1 <.5 4.5	-	.01 .89 3.37

Standard is STANDARD DS6/R-2a/AU-1.

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

- SAMPLE TYPE: ROCK R150

Data 87 FA ____ DATE RECEIVED: AUG 11 2005 DATE REPORT MAILED: AUg. 25/05

	GEOCHEMICAL AND SIS CERTIFICATE
	Almaden Minerals Ltd. PROJECT ELK05-3 File # A504437 Page 1 1103 - 750 W. Pender St., Vancouver BC V6C 218 Submitted by: Wojtek Jakubowski
SAMPLE#	NO CU PD ZN AG NI CO MIN FE AS U AU TH SN CCI SD BI V Ca P La CN MG Ba TI B AÌ NA K W HG SC TÌ S Ga Se Ag** Au**
	pom
SMD05418-1	1.4 152,9 115.2 38 5.9 1.8 2.1 451 1.86 20.6 9.4 1352.9 8.4 3 .7 .2 4.6 1 .05 .018 11 2.2 .03 25 .001 2 .29 .010 .23 .1 .02 .3 .1 1.61 1 <.5 5 10.02
SND05418-2	1.1 163.4 45.0 58 .9 1.3 2.1 857 2.01 18.4 3.0 169.2 10.3 5 .4 .2 1.3 3 .08 .025 18 3.3 .07 29 .003 2 .27 .01 .2 .0 .2 .01 .6 .1 .95 1 <.5 <2 .33
SND05418-3	.9 18.4 44.4 30 .3 1.6 3.5 446 .88 6.1 14.2 54.1 9.2 10 .2 .1 .2 2 .09.023 34 2.0 .04 32 .001 3 .30 .018 .16 .3 <.01 .5 .1 .29 1 <.5 <2 .07
SND05418-4	1.1 42.6 23.6 51 .3 1.3 1.5 648 1.12 14.6 4.3 6.0 10.7 6 .3 .4 .1 3 .08 .024 21 2.5 .05 34 .005 1 .25 .022 .16 .1 <.01 .7 .1 .20 1 <.5 <2 .01
SND05418-5	2.2 371.9 195.7 27 6.1 2.8 4.8 226 7.16 328.2 14.0 1466.7 14.0 9 .6 .6 3.5 1 .06 .018 16 1.3 .04 24 .001 3 .31 .005 .25 .2 .01 .2 .1 7.87 1 .5 7 1.73
SND05418-6	1.3 143.2 107.0 75 1.2 1.4 2.3 646 1.82 40.3 5.1 18.9 10.0 2 .8 .5 .2 1 .05 .017 9 2.2 .03 60<.001 2 .23 .007 .23 .1 <.01 .3 .1 1.33 1 <.5 <2 .03
SND05418-7	1.0 108.5 60.6 59 .3 1.2 1.6 503 1.83 70.1 3.1 71.1 8.1 5 .5 .4 .2 2 .07 .021 15 2.2 .04 33 .002 2 .25 .018 .18 .1 .01 .7 .1 .98 1 <.5 <2 .19
SND05418-8	1.1 68.4 73.7 68 .2 1.4 2.2 603 1.52 26.1 5.3 177.4 8.5 5 .8 .3 .3 3 .08 .024 16 2.0 .05 32 .003 1 .23 .019 .16 .1 <.0 .7 .2 .53 1 <.5 <2 .24
RE SNDQ541B-8	.9 65.8 70.0 66 .2 1.6 2.1 587 1.48 23.3 4.8 109.2 8.4 5 .6 .3 .4 3 .08 .022 16 2.0 .05 31 .003 1 .22 .019 .15 .1 <.01 .8 .2 .50 1 <.5 <2 .52
RRE_\$ND05418-8	1.0 65.1 72.2 72 .2 1.6 2.4 602 1.57 22.9 5.1 193.6 9.1 5 .7 .3 .4 3 .08 .024 17 2.0 .05 36 .003 <1 .26 .023 .18 .1 <.01 .8 .2 .56 1 <.5 <2 .31
SND05418-9	1.0 40.9 44.4 51 .3 1.5 2.0 440 1.12 9.7 7.1 118.1 8.9 9 .4 .3 .2 2 .07 .022 17 2.2 .04 37 .003 1 .23 .023 .13 .1 <.01 .6 .2 .41 1 <.5 <2 .13
SND05418-10	1.1 130.5 8.2 22 .9 1.0 1.7 495 1.67 18.8 3.4 786.6 9.7 4 .2 .2 1.3 2 .07 .022 19 1.8 .05 31 .004 2 .27 .023 .20 .1 .01 .6 .1 1.05 1 <.5 <2 2.07
SMD05418-11	1.0 49.6 4.5 30 .3 1.0 2.2 924 1.60 27.5 2.8 270.6 9.3 4 < 1. 2 .3 4 .08 .023 15 2.0 .09 47 .011 2 .27 .027 .18 .1 .01 .9 .1 .48 1 < 5 <2 .27
SND05418-12	1.1 49.0 5.6 31 .3 1.0 2.0 910 1.62 24.7 2.9 124.4 10.0 4 .1 .2 .3 5 .08 .023 16 2.0 .09 50 .011 3 .28 .030 .18 .1 .01 .9 .1 .49 1 <.5 <2 .23
SND05418-14(pulp)	19.8 52.4 427.8 33 5.0 1101.9 26.3 396 2.26 56.2 .4 38226.1 2.9 17 .1 .4 4.3 28 .49 .031 13 1492.0 .61 137 .042 5 1.08 .045 .29 12.5 .02 2.2 .1 <.05 3 <.5 4 33.12
SND05418-15	1.0 45.6 66.9 100 .4 1.5 2.5 679 1.37 24.8 5.3 45.0 9.2 9 .6 1.3 .2 2 .08 .024 21 1.9 .05 40 .003 3 .25 .016 .18 <.1 <.01 .6 .1 .44 1 <.5 <2 .07
SND05418-16	1.2 30.9 38.3 45 1.5 1.2 2.5 581 1.66 7.9 3.3 1176.1 11.5 6 .3 .2 1.3 3 .07 .025 17 2.1 .06 42 .008 4 .30 .026 .20 .1 <.01 .7 .1 .84 1 <.5 <2 1.06
SND05418-17	1.2 58.3 76.0 45 .5 1.2 2.8 756 1.53 30.1 6.4 25.1 9.6 3 .3 .2 .2 2 0.6 .022 17 1.6 .03 24<.001 <1 .21 .010 .20 .1 <.01 .5 .1 .90 <1 <.5 <2 .03
5ND05418-18	1.0 172.1 17.4 28 1.2 1.1 1.9 661 1.82 39.2 5.7 145.0 10.1 3 .3 .2 .8 2 .06 .021 15 1.3 .04 26 .001 2 .26 .014 .22 .2 <.01 .4 .1 1.08 1 <.5 <2 .35
SND05418-19	1.1 37.1 29.0 33 .1 1.7 1.1 466 .98 3.3 3.2 37.1 11.1 6 .1 .1 .1 4 .08 .025 22 1.9 .06 44 .011 3 .26 .027 .14 .1 <.01 .7 .1 .22 1 <.5 <2 .05
SND05418-20	1.1 13.6 27.9 71 <.1 9 1 2 593 .94 1.1 2.7 1.2 10.1 6 .2 .1 <.1 4 .07 022 20 1.9 .02 26 .001 1 .21 .038 .11 .1 <.01 .7 .1 .09 1 <.5 <2 <.01
SND05418-21	1.1 34.0 14.1 22 .2 1.2 1.8 281 .84 6.2 3.2 4.0 8.9 7 .1 .1 .2 4 .08 .027 22 2.1 .05 79 .009 <1 .26 .034 .16 .1 < .01 .7 .1 .31 1 < .5 <2 < .01
SND0541B-22	1.7 67.0 14.6 48 .5 1.5 2.2 548 1.38 13.5 3.7 3.7 10.0 6 .5 .1 .2 3 .08 .024 18 1.9 .05 41 .005 41 .29 .025 .19 .1 <.01 .7 .1 .59 1 <.5 <2 .01
SND05418-23	1.8 21.8 5.7 40 .2 1.0 1.7 677 1.13 5.2 3.2 57.4 10.7 7 .2 .1 .1 4 .08 .022 25 2.2 .06 49 .014 <1 .25 .032 .15 .1 <.01 .9 .1 .21 1 <.5 <2 .01
SND05418-24	1.5 17.6 9.9 38 .1 1.7 1.5 349 .76 3.1 2.6 2.6 9.4 8 .3 .1 <.1 4 .10 .023 24 2.2 .03 32 .004 <1 .23 .032 .12 <.1 <.01 .8 .1 .09 1 <.5 <2 <.01
SND05418-25	1.5 8.1 31.7 94 .1 1.8 1.7 713 1.03 2.3 3.0 36.9 9.0 11 .2 .1 <.1 4 .07 .019 19 2.3 .03 48 .001 <1 .19 .030 .11 .1 <.01 1.1 .1 .09 1 <.5 <2 <.01
5ND05418-26	1.4 13.2 74.1 133 .2 2.9 7.9 738 1.18 14.0 5.9 49.9 8.5 59 1.2 .2 <.1 6 .11 .034 18 5.4 .04 240 .003 <1 .31 .025 .14 .1 <.01 1.2 .1 .16 1 <.5 <2 .12
SND05418-27	2.3 37.3 54.5 116 .5 1.2 2.1 788 1.60 15.7 5.2 45.5 11.0 7 .4 .3 .3 4 .08 .024 32 2.2 .06 37 .006 <1 .24 .027 .15 .1 <.01 .8 .1 .56 1 <.5 <2 .06
SND05418-28	2.0 43.3 106.5 274 1.9 1.8 3.9 1081 1.88 22.6 6.7 861.8 49.5 6 1.0 .2 1.2 4 .08 .021 21 2.3 .05 83 .002 <1 .26 .025 .19 .2 .01 1.0 .1 .68 1 <.5 <2 1.54
SND05418-29	.9 22.5 33.8 134 .2 1.5 5.7 1620 2.33 3.0 3.7 56.5 8.0 10 .9 .2 .1 20 .26 .072 25 3.0 .23 123 .043 <1 .55 .033 .33 .1 <.01 4.3 .2 .13 3 <.5 <2 .07
SND05418-30	10.3 7.9 6.0 40 .6 1.5 7.2 1160 2.17 3.6 3.8 134.5 19.0 12 <.1 .1 .5 17 .22 .044 16 2.1 .19 667 016 <1 .39 .040 .15 .3 <.01 2.9 .1 .21 2 <.3 <2 .32
SND05418-31	3.6 50.8 223.4 264 1.5 2.0 4.0 1074 2.27 14.0 7.1 413.6 4.4 13 .9 .4 .1 4 .22 .063 17 1.5 .12 190 .001 2 .34 .017 .25 .1 < .01 2.8 .1 .46 1 < .5 <2 .50
SND05418-32	3 6 74.5 326.6 316 6.0 2.5 6.2 1223 2.76 21.7 10.0 2433.7 4.2 13 1.1 .6 .2 4 .25 .068 11 1.1 .14 97 .001 <1 .37 .017 .25 .5 <.01 2.8 .1 .72 1 <.5 7 2.78
SND05418-35	.8 367.5 136.7 70 12.4 2.1 3.1 679 2.76 48.4 4.0 6527.7 3.1 7 1.6 .2 5.9 6 .23 .074 8 1.4 .14 48 .005 <1 .35 .027 .22 .1 <.01 2.3 .2 1.58 1 <.5 17 9.26
STANDARD DS6/R-2a/Ox	xu34 11.3 117.9 29.6 144 .3 24.3 10.5 717 2.81 21.3 6.4 50.2 2.9 40 6.0 3.0 4.9 55 .84 .075 14 185.1 .59 173 .078 16 1.89 .074 .16 3.4 .24 3.3 1.7 <.05 6 4.5 161 5.75

AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. - SAMPLE TYPE: DRILL CORE R150 <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

Arg 25/05 Data 📐 FA DATE RECEIVED: AUG 11 2005 DATE REPORT MAILED

Almaden Minerals Ltd. PROJECT ELK05-3 FILE # A504437

Page 2

Data AFA

ANALYT]CAL	ACME ANALY	YTICAL
SAMPLE#	Mo Cu Pb Zn Ag N1 Co Mn Fe As Li Au Th Sn Cd Sb Bi V Ca P La Cn Mg Ba Ti B Al Na K w Hg Sc Tl S Ga Se Ag+* Au**	
·	ρριπ ρριπ ροπ ροπ ροπ ροπ ροπ ροπ βριπ βριπ βριπ βριπ βριπ βριπ βριπ βρι	
SND05418-36	1.9 488.6 435.8 93 1.9 17.5 17.9 1555 4.90 43.4 13.6 625.8 9.8 25 8.2 1.1 1.0 34 1.00 .359 64 12.4 .29 59 .014 3 .82 .030 .26 <.1 .04 7.0 .9 1.75 3 <.5 2 .75	
SND05418-37	1.0 301.9 286.3 76 .6 7.8 8.5 1137 4.53 51.1 6.4 711.9 11.0 21 .7 1.1 5.2 42 .97 .353 67 1.9 .24 56 .024 2 .81 .026 .28 <.1 .02 6.8 .7 1.98 3 <.5 <2 1.41	
SN005418-38	2.6 335.1 720.7 720 6.7 5.7 8.2 929 3.82 101.9 6.2 1544.3 7.8 28 15.9 1.0 2.4 15 .60 .235 27 1.1 .24 45 .003 3 .56 .009 .31 .1 .03 3.4 .1 2.08 2 <.5 12 1.64	
SND05418-39	1.7 111.4 388.0 552 .3 7.1 12.8 3554 7.09 18.4 25.2 130.0 10.3 30 3.9 .6 .1 27 .97 .333 47 <1 .77 52 .003 4 .77 .012 .33 .1 .03 7.7 .2 .22 2 .5 <2 .09	
SND05418-40	2.4 791.5 2314.3 846 17.4 4.5 12.6 220 3.37 162.7 20.5 4859.5 6.6 25 21.3 1.2 10.2 7 .38 .156 21 <1 .07 29 .002 1 .44 .006 28 .4 .04 1.3 .1 3.32 1 .9 25 6.49	
SND05418-41	2.0 406.7 374.0 237 5.3 6.3 22.1 1356 6.82 108.4 23.5 1373.8 10.1 16 2.7 1.0 2.2 19 .61 .229 35 <1 .53 35 .004 3 .71 .009 .35 .3 < .01 4.0 .1 3.31 2 .9 7 1.78	
SND05418-42	1.5 66.5 153.0 304 .3 6.0 16.0 1370 4.99 13.7 16.1 15.1 10.7 21 2.4 .6 .1 47 .76 .284 55 1.1 .72 46 .009 2 .70 .022 .24 .1 <.01 7.5 .3 .21 3 <.5 <2 .03	
SND05418-43	2.4 2033.1 671.2 263 29.5 5.4 15.5 685 6.95 1.30.3 13.5 6949.6 6.3 9 7.9 1.3 7.9 14 .53 .226 21 1.0 .19 28 .006 2 .65 .007 .41 .7 < 0.1 2.5 .2 6.36 2 .5 21 7.35	
SND05418-44	4.4 435.4 547.0 586 3.2 7.0 17.1 1310 7.92 187.5 17.5 1020.0 7.5 12 7.2 .8 2.0 18 .66 .264 25 <1 .19 32 .004 1 .60 .007 .36 .7 < .01 3.7 .1 5.97 2 .6 4 1.23	
SND05418-45	4,9 302.2 993.6 1881 3.1 14.3 15.7 2935 6.75 71.6 21.1 1201.4 9.5 17 15.6 1.8 .5 49 .85 .299 50 6.0 .30 56 .012 3 .74 .018 .36 .2 <.01 8.3 .8 1.73 3 .5 4 1.47	
SND05418-46	2,2 971,4 569,0 624 4.2 8.0 19.0 2429 8.82 69.2 16.6 3531.7 9.6 15 13.1 2.5 .4 43 .81 .302 40 1.0 .37 56 .021 4 .69 .014 .33 .1 .02 6.2 .6 3.30 3 .7 4 1.03	
SND05418-47	.7 42.9 132.9 168 .2 7.5 13.2 827 3.39 6.9 4.9 37.0 13.9 21 3.0 .5 .1 82 .96 .373 65 2.2 .57 162 .117 2 1.00 037 .65 <.1 .01 7.9 .7 .20 6 <.5 <2 .07	
SND05418-48	1.2 7.7 195.8 226 .1 8.7 15.5 1154 2.72 9.3 18.4 41.0 13.9 22 5.1 .7 < 1 56 .92 .347 69 1.4 .27 87 .023 2 .60 .028 .14 < 1 < 0.1 8.7 .8 .27 3 < .5 <2 .04	
RE SND05418-48	1.3 7.8 193.3 228 .1 0.7 15.5 1141 2.71 9.3 20.0 14.5 15.6 22 5.4 .7 <.1 57 .92 .351 72 1.5 .27 92 .022 1 .60 .027 .14 <.1 .01 8.4 .0 .29 3 <.5 <2 .03	
RRE SND05418-48	1.1 8.2 195.5 229 .1 8.4 15.4 1135 2.68 9.0 18.8 9.8 14.7 21 5.2 .7 <.1 56 91 .341 71 1.5 .28 90 .023 3 .63 .031 .14 <.1 <.01 8.5 .8 .27 3 <.5 <2 .02	
SN005418-49	.7 48.9 187.7 225 5.9 2.6 5.0 776 2.60 19.9 2.4 5885.6 4.3 6 4.2 .2 3.0 7 .17 .046 11 1.2 .16 40 .002 2 .27 .023 .16 .1 .01 2.1 .4 .82 1 <.5 10 8.52	
SND0541B-50	11.1 81.6 241.0 457 2.4 2.8 5.4 1460 3.96 38.2 5.3 1003.3 4.5 12 2.9 .9 .3 7 .27 .070 15 1.2 .26 41 .001 2 .30 .012 .21 .1 <.01 3.2 .2 .73 1 <.5 2 .59	
SND05418-51	3.1 26.7 57.7 219 .4 10.3 14.4 1693 4.78 28.0 3.9 25.8 6.0 13 1.6 .3 .1 67 .44 .104 19 5.1 .57 33 .001 2 .42 .033 .09 .5 <.01 8.0 1.2 .34 2 <.5 <2 .12	
SND05418-52	2.2 25.3 50.6 185 .4 9.5 13.4 1523 4.50 29.0 4.4 91.3 6.2 13 1.1 .3 .2 60 .42 .100 20 4.4 .53 31 .0D2 2 .43 .032 .10 .3 <.01 7.3 1.2 .41 2 <.5 <2 .26	
SND05418-55	.8 7.9 68.4 231 .1 14.1 8.8 876 2.13 12.3 7.7 4.2 4.1 15 2.4 .2 <.1 27 .26 .052 30 5.7 .24 48 .001 1 .30 .031 .07 <.1 .02 4.4 .5 .14 1 <.5 <2 .01	
SNDQ5418-56	5.9 194.0 527.0 143 .5 14.2 16.3 1152 3.32 37.2 11.4 13.9 4.6 24 5.4 .7 <.1 48 .42 .084 45 3.8 .44 57 .001 3 .46 .037 .10 <.1 .01 6.0 .3 .48 2 1.0 <2 .02	
SN005419-1	.9 16.4 36.3 85 .1 1.4 2.0 914 1.27 5.9 4.6 2.4 8.6 15 .4 .2 .1 3 .07 .023 19 1.7 .04 205 .001 2 .25 .01 5 .14 <.1 <.01 1.0 .1 .19 1 <.5 <2 .02	
SN005419-2	1.4 88.9 67.4 72 1.3 1.4 2.9 629 1.83 54.3 7.7 236.8 9.3 3 .6 .8 .5 2 .05 .019 9 1.7 .04 45 .001 2 .27 .066 .24 .1 .01 .5 .1 1.07 1 <.5 <2 .14	
SND05419-3	2.1 90.3 44.6 75 .6 1.4 2.0 677 1.55 26.1 3.8 110.0 10.4 8 .3 .6 .4 1 .06 .021 13 2.0 .05 44<.001 3 .23 .013 .18 .1 < 01 .6 .1 .63 1 <.5 <2 .20	
SND05419-4	1.1 68.0 63.1 89 .6 1.3 1.8 874 1.54 17.8 4.7 203.7 9.5 17 .5 .4 .2 3 .06 .022 14 1.6 .04 113 .001 1 .26 .015 .17 .1 <.01 .8 .1 .49 1 <.5 <2 .33	
SND05419-5	.7 27.3 49.3 72 1.2 1.2 2.8 493 1.24 13.9 4.2 1328.4 8.7 7 .6 .2 .5 2 .06 .021 12 1.9 .03 44 .001 1 .22 .020 .16 .1 <.01 .6 .1 .63 1 <.5 4 1.10	
SND05419-6	1.0 6.4 37.3 80 .1 .9 1.5 546 .98 1.1 3.0 7.4 9.3 9 .3 .2 <.1 2 .07 .023 21 2.4 .03 55 .001 2 .22 .029 .14 <.1 <.01 .7 .1 <.05 1 <.5 <2 .01	
SND05419-8	.9 13,2 23,0 50 .2 .9 1.2 431 .87 3.9 3,6 38,7 9.1 8 .3 1.7 .1 3 .08 .023 21 2.3 .03 48 .004 2 .21 .26 .12 .1 <.01 .7 .1 .16 1 <.5 <2 .12	
SND05419-9	1.1 146.9 37.0 77 .9 .9 1.6 566 1.40 12.1 3.6 114.3 9.4 6 .5 4.1 .4 2 .07 .021 15 1.9 .04 46 .002 3 .24 .019 .18 .1 <.01 .6 .1 .64 1 <.5 <2 .50	
SND05419-10	1.2 75.9 53.6 80 .4 1.3 1.5 569 1.49 21.2 3.9 176.9 9.4 8 .5 3.0 .2 3 .07 .023 17 2.4 .04 60 .002 3 .23 .021 .16 .1 <.01 .8 .1 .61 1 <.5 <2 .14	
SND05419-11	1.6 30.0 81.3 156 .6 1.8 2.8 743 1.45 10.5 16.8 142.8 10.0 8 1.0 2.3 .2 1 .06 .022 18 1.6 .04 144<.001 3 .24 .013 .16 .1 <.01 .7 .1 .35 1 <.5 <2 .29	
SND05419-12	1.1 5.9 677.3 69 .2 1.6 1.7 523 .84 4.2 15.4 41.6 7.0 24 .2 .7 <.1 <1 .04 .019 18 2.0 .02 130<.001 5 .20 .003 .14 .2 <.01 .6 .1 .08 <1 <.5 <2 .04	
SND05419-13	1.2 9.6 43.2 54 .1 .9 1.6 352 .75 2.5 3.9 2.1 9.0 9 .3 .5 .1 3 .07 .021 20 1.8 .03 63 .005 1 .23 .027 .14 .1 .01 .7 .1 .09 1 <.5 <2 .02	
SND05419-14	1.0 5.4 38.0 95 .2 .9 1.5 473 .75 1.0 4.2 450.1 10.0 8 .8 .3 <.1 1 .05 .019 22 1.8 .02 53<.001 3 .20 .021 .14 .1 <.01 .6 .1 <.05 <1 <.5 <2 .26	
STANDARD DS6/R-22	22/03/1.34 11.2 124.3 30.0 147 .3 24.8 10.5 720 2.90 20.8 6.5 46.0 2.9 43 6.1 2.7 4.8 58 .88 .078 15 184.2 .59 171 .083 15 1.96 .074 .16 3.2 .22 3.3 1.6 < 0.5 6 4.3 160 5.82	

Sample type. DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME AVALYTICAL	Almaden Minerals Ltd. PROJECT ELK05-3 FILE # A504437 Page 3
Sample#	Mo Cu Pb Zn Ag N1 Co Mπ Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Hg Sc Tl S Ga Se Ag≉≭ Au≪≉
	pom
SND05419-15	1.4 35.0 33.3 87 .2 .9 1.3 701 1.23 8.9 4.3 1.7 11.9 9 .3 .3 .1 3 .06 .021 19 2.0 .05 88 .004 1 .32 .019 .17 .1 <.01 .7 .1 .20 1 <.5 <2 <.01
SND05419-16	1.5 43.4 27.4 75 .3 .9 1.4 634 1.24 10.0 5.3 3.1 11.3 9 .3 .3 <.1 3 .07 021 20 2.0 .05 132 .005 2 .29 .022 .19 .1 <.01 7 .1 .27 1 <.5 <2 .01
SND05419-19	1,7 135,0 352,0 1549 3.8 1.2 2.4 612 1.41 19.9 3,7 117 8 10.2 10 41.3 1.4 4.7 4 0.8 028 20 2.2 04 74 0.04 3 28 0.19 22 1 02 9 1 77 1 < 5 3 .36
SND05419-20	1,4 18.8 45.8 87 .1 .9 1.5 593 1.07 2.4 3.8 4.7 10.0 9 .4 .4 .1 5 .08 .025 25 2.1 .06 64 .013 4 .31 .034 .18 .1 < 01 .9 .1 13 1 < 5 <2 03
SND05419-21	1.8 26.3 56.5 116 .5 1.1 7.0 734 1.21 8.2 3.9 247.2 9.5 7 .5 .6 .1 3 .08 025 19 2.0 .03 40 .001 2 .25 .022 .18 .1 < .01 .8 .1 .32 1 < .5 <2 .22
SND05419-22	1.4 282.4 105.0 103 4.8 1.0 1.7 666 1.81 22.8 2.9 769.4 10.3 6 .7 3.0 4.8 2 .07 .020 15 2.0 .03 35 .001 2 .26 .022 .19 .1 .01 .6 .1 .94 1 <.5 6 1.19
SND05419-23	1.5 148.0 41.5 58 .7 .7 1.4 741 1.88 26.0 5.1 10.7 9.5 5 .5 2.6 .9 3 08 0.21 14 2.1 0.6 35 0.02 2 .2 .7 0.14 .21 .2 <01 .6 .1 .72 1 <5 <2 .04
SND05419-24	1.7 306.2 288 1 193 3.1 1.3 2.2 667 2.62 74.5 3.2 60.1 8.4 3 4.4 1.4 2.2 2 05 0.17 9 2.9 0.4 48 0.01 1 3.0 108 25 1 .02 5 1 2.20 1 < 5 4 .21
SND05419-25	1.2 38.2 6.3 55 .2 .9 1.6 538 1.24 4.9 3.3 177 10.8 6 .1 1 .3 5 .08 021 22 2.9 .06 40 .012 1 .26 .032 .15 .1 .01 .9 .1 .25 1 <5 <2 .02
SND05419-26	
SND05419-27	.8 11.4 7.6 45 .1 .9 2.9 907 1.64 3.6 3.3 4.5 7.4 6 .2 .1 .1 10 .13 .037 26 2.8 .12 93 .033 1 .36 .032 .22 .1 .01 1.4 .1 .11 2 <.5 <2 .01
SND05419-28	.8 8.6 9.6 56 <1 .9 2.1 9061.68 1.4 2.8 3.0 9.3 8 .2 .1 <1 11 .17 051 44 2.1 08 54 001 3 .30 040 17 .1 <01 1.0 1 <05 1 <5 <2 .01
RE_SND05419-28	8 8,0 10,5 60 <1, 7 2,5 947 1.75 1.2 3.2 28,7 10,3 8 .2 .1 <1 11 .18 .053 47 2.7 .08 57 .011 2 .32 .041 .19 .1 <0.1 1.1 .1 <0.5 1 <.5 <2 .04
RRE SND05419-28	
SND05419-29	4.2 56.4 159.8 390 1.0 2.3 9.8 5357 6.81 49.3 6.8 250.1 9.3 10 1.2 .4 .5 43 .37 .114 45 3.0 .40 141 .121 2 .71 .025 .53 .2 <.01 3.7 .3 1.16 5 <.5 <2 .50
SND05419-30	1.6 55.8 87.8 206 1.7 1.6 9.5 1816 3.09 16.3 5.3 364.0 6.8 8 1.3 1.0 1.2 7 .25 .070 21 1.9 .15 35 .001 4 .43 .021 .31 .1 <.01 3.1 .1 .55 1 <.5 2 1.03
SND05419-31	1.3 9.2 3.7 47 .1 1.3 5.9 815 2.39 1.9 2.7 11.8 6.9 35 <1 .1 .1 33 1.33 069 17 3.0 48 131 056 <1 .87 042 .25 <1 <0.1 .7 .1 <0.5 4 <.5 <2 .02
SND05419-32	1.6 48.2 186.0 718 .8 2.7 7.0 1558 2.87 4.5 2.0 458 6 7.1 13 2.2 .2 <1 30 .37 085 30 2.6 .22 67 015 1 .52 039 .20 <1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.
SN005419-33	1.9 32.0 53.7 82 .2 1.4 4.5 1050 2.54 10.0 2.5 190.1 6.9 10 .2 .2 .1 19 .29 071 20 1.9 .26 87 .034 2 .59 .036 .28 <1 < 01 4.4 .2 .20 2 <.5 <2 .17
SND05419-34	2.9 285.5 281.0 294 18.8 2.2 5.3 1330 3.52 54.8 3.5 8952.4 5.6 9 2.8 .3 2.0 13 .27 .067 14 1.4 .25 43 .005 1 .45 .020 .27 .1 <.01 3.4 .4 1.09 2 <.5 25 13.72

SND05419-35 3.7 25.1 5.0 48 .1 1.6 4.6 1013 2.29 2.6 2.1 31.0 7.5 11 .1 .1 23 .30 .076 22 2.3 .23 97 .037 1 .55 .037 .25 < 1 < .01 4.9 .3 .13 3 < .5 < 2 .13 1.6 30.6 3.4 48 .1 1.5 3.9 1048 2.49 2.3 2.5 70.0 7.1 10 < 1 .1 .1 20 .29 .074 20 1.9 .24 94 .033 2 .55 .032 .27 < 1 .01 4.2 .2 .17 2 < 5 < 2 .07 SND05419-36 SND05419-39 12 41.9 4.9 61 .4 2.2 6.0 1297 3.25 5.0 4.3 303.2 5.7 8 .1 .1 19 .27 .072 19 1.6 .32 43 .003 <1 .43 .030 .20 <1 .01 4.1 .3 .32 2 <.5 <2 .27 SND05419-40 1.6 76.3 3.5 71 .2 1.9 5.4 1406 3.38 5.6 3.7 242.6 6.5 9 .1 .1 .1 17 .28 .072 20 2.1 .27 59 .012 <1 .46 .026 .24 <.1 <.01 3.9 .2 .62 2 <.5 <2 .16 1.6 165.1 5.2 82 .4 3.7 7.7 1284 4.03 12.2 4.9 640.3 6.2 9 .2 .5 28 .29 .069 19 2.3 .30 63 .018 1 .60 .027 .28 < 1 < 01 5.0 .3 1.02 2 < 5 <2 .88 SND05419-41 SND05419-42 1.4 78.1 2.5 74 .2 1.6 5.0 1219 2.78 3.2 3.3 71.5 7.7 10 .1 .1 .1 21 .28 .069 24 1.9 .25 68 .028 1 .46 .031 .22 <1.01 4.3 .3 .26 2 <5 <2 .14

1.6 70.8 6.3 72 .2 1.7 5.1 1172 2.71 14.7 6.9 106.4 7.0 10 .1 .1 .2 3.31 .086 25 2.0 .25 84 .045 <1 .62 .031 .32 <1.5 1.4 .0 4.8 .2 .39 3 <5.5 <2 .40 SND05419-43 SND05419-44 1.3 69.1 15.5 85 .6 1.4 4.4 843 2.25 6.0 2.2 598.2 6.5 11 1.1 .2 .1 21 .30 .078 17 1.8 .27 96 .051 3 .55 .035 .28 <.1 < .01 4.3 .2 .19 2 <.5 <2 .74 SND05419-45 2.8 46.2 40.5 78 .4 1.0 1.3 471 1.06 13.9 3.6 125.8 21.0 2 .3 .1 .2 1 .03 .003 10 1.7 .04 22 .001 1 .23 .017 .17 .1 < .01 .6 .1 .34 1 < .5 <2 .41 1.6 80.7 436.7 325 .7 2.7 2.7 775 1.71 20.0 11.9 88.9 22.4 5 1.8 .3 .1 3 .09 .018 12 2.1 .08 24<.001 <1 .28 .012 .21 .1 < .01 1.2 .1 .50 1 <.5 <2 .10 SND05419-46 SND05419-47 2.5 74.0 128.9 439 .7 2.6 6.0 1253 2.72 14.7 8.2 149.6 6.1 9 1.4 .2 .3 12 .28 .084 20 1.8 .16 43 .004 2 .47 .028 .24 < 1 < 01 3.5 .3 .58 1 < 5 <2 .22 SND05419-48 1.3 2683.4 674.2 292 92.1 1.1 5.9 581 4.77 112.0 3.1 20492.8 4.9 5 3.9 .4 27.8 3 .26 .108 9 1.1 .10 27 .002 1 .46 .007 .37 .2 .04 1.3 .2 4.39 1 < 5' 96 13.87 SND05419-49 1.7 624.5 188.6 92 13.8 1.6 5.8 282 4.01 91.2 3.6 1308.5 4.2 4 .9 .5 3.1 1 .15 .063 7 1.9 .05 19 .001 2 .32 .005 .30 .2 < .01 .8 .1 5.13 1 < .5 14 2.30 SND05419-50 1.9 410.0 501.5 379 7.0 2.3 6.0 532 6.03 141.8 4.5 1530.1 3.0 24 1.7 .5 1.9 2 .15 .051 7 1.4 .08 23 .001 2 .29 .006 .22 .2 < .01 1.1 .15.59 1 < .5 10 2.27 STANDARD DS6/R-2a/Dx134 11.8 125.9 30.2 147 .3 24.4 10.5 727 2.88 22.1 6.5 48.6 2.9 37 6.1 3.1 4.8 58 .87 .078 15 189.8 .59 163 .084 17 1.95 .075 .17 3.4 .23 3.5 1.7 < .05 6 4.6 157 5.79

Sample type: DRILL CORE RISO. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🏊 Fr

ACME ANALYTICAL						Aln	nad	en	Mir	heral	ls I	td.	PF	205	JECT	EI	'K0	5-3	3]	FIL	E ‡	<i>⋕ </i>	4504	443	37				F	ag	e 4	:	$\overline{)}$	ACINE	ANALYTIC
SAMPLE#	Mo ppm	Cu ppm		-	Ag ppm	Ni ppm		Min pprit	Fe %	As ppm pp	Lí Au m ppt				Sb Bi ppm ppm		Ca %		La ppm	Cr ppm	Mg %	Ba ppm	Ti % [B	A1 لا	Na %			Hg S pm pp			S Ga %:ppm		•	Au** gm/mt
SND05419-52 SND05419-53 SND05419-54 SND05419-55 SND05419-56	1.0 14.5	6.5 21.7 16.1	41.0	285 271 44	<.1 .2 .1	4.5 1.5 1.3	5.8	1145 637 948	2.26 1.94 2.83	65.9 6. 3.4 5. 4.9 2. 4.5 1. 5.4 1.	3 2.6 4 39.2 4 15.0	5 6.0 L 10.2) 6.9	19 7 6	.8 1.0 .1	.3 .6 .1 <.1 .3 .2 .1 .1 .1 <.1	13 4 13	.28 .14 .22		37 16 13	1.0 1.0 2.1 2.2 2.5	.20 .12 .17	234 100	.001 .002 .002	3 3 2	.33 . .46 . .26 . .21 . .20 .	020 037 029	.11 < .14 .10 <	. 1<. . 2<. . 1<.	01 2. 01 1. 01 2.	9 8 5 <	3 1.8 3 .1 2 .1 1 .3 4 .0	5 1 6 1 8 1	<.5 <.5 <.5 <.5 <.5	<2 <2 <2 <2 <2 <2	<.01 .09 .06
STANDARD DS	11.6	123.2	29.6	148	. 3	24.9	10.6	720	2.89	21.6 6.	6 46.2	2 2.9	38	5.8	3.1 4.9	57	. 88	.078	15 1	.88.2	.59	172	.086	19 1	.93 .	076	.16 3	.3.	24 3.	51	7 <.0	56	4.4	157	3.37

Standard is STANDARD DS6/R-2a/AU-1.

•

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

• -

.						1103	- 750	I. Pende	er St.,	Vancouv	/er BC	V6C 2T8	l Sub	<u> (* 1</u> 251-022	2002-20	ojtek	Jakub	<u>(20.20), (*</u>							L
Sample#	Mo ppm	Cu ppm	Pb Z ppm pp		N1 ppm		Mn Fe pm %	As ppm:p	U A pm pp	u Th bppmp	Sr Cd pm ppm	Sb Bi ppm ppm	V C ppm	Ca P XX	la ppm p	Cr Mg opm %	г Ва Гррт	Ti ≵pp	BA1 m %	Na %	K Xipp	W Hg S m ppm pp	Sc T1 pm ppm	S Ga %⊀ppm	Se ppm
SND05419-7 SND05419-51 STANDARD DS6	.8	1400.3	315.7 9	821.2	1.7	5.0	93 5.63	207.6 1	.9 24952. .5 5720. .6 42.	42.1	22.0	.6 5.9) 3.0	8 . 028	3 3	3.8 .02	18.	.001 .	2.28	.004	. 28 .	5.01	.5.16	5.27 1	<.5
GROUP 1DX - (>) CONCENT	RATION	EXCEE	os uppei	R LIMI	ITH 3 Ts.	ML 2 Some i	-2-2 HC MINERAL	L-HNO3- S May B	HZO AT 9 E PARTIA	75 DEG. NLLY AT	C FOR TACKED	ONE HO REFR	UR, DI ACTORY	luted 1 And Gi	TO 10 M	4L, AN IC SAM	ALYSEI Ples 4	D BY I CAN LI	CP-MS. MIT AU	SOLU	BILIT	Y.			
- SAMPLE TY			RE M150			- - - - -	AUC 44	1 2005	DATE		DM 143	TT 1900 -	An	u 26	105	-				ε T	57				
ata <u>(</u> F	A		DATE			SD:	AUG I	1 2005	DATE	REPUI	KT MA	.1780 :	1	/	<i></i>	••••		(SH	ate 1	<u>01</u> 1			4		
																		UT-	(). 		Leor				
																		Ŵ	Ľ	, J	5	J SEL	•		
																			_						
																						• • •			

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ł

852 E. HASTINGS ST. VCOUVER BC V6A 1R6 ACME ANATYTICAL LABORATORIES LTD. PHONE (604) 253-3158 FAX (60 153-1716 (1 001 Accredited Co.) ASSAY CL. (IFICATE Almaden Minerals Ltd. PROJECT ELK05-3 File # A504438 1103 - 750 W. Pender St., Vancouver BC V6C 218 Submitted by: Woitek Jakubowski SAMPLE# S.Wt NAu -Au TotAu mg gm/mt gm/mt qm 715 6.35 SND05419-7 SND05419-51 1023 STANDARD AU-1 - <.01 -AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: DRILL CORE M150 DATE RECEIVED: AUG 11 2005 DATE REPORT MAILED: H19.26/05 Data FA Clarence Leon

852 E. HASTINGS ST. "NCOUVER BC V6A 1R6 PHONE (604) 253-3158 PAX (6) ACME ANALYTICAL LABORATORIES LTD. \$53-1716 (Т 1001 Accredited Co.) ASSAY CL __TFICATE Almaden Minerals Ltd. PROJECT ELK05-3 File # A504438 1103 - 750 W. Pender St., Vancouver BC V6C 218 Submitted by: Wojtek Jakubowski SAMPLE# S.Wt NAg NAg -Ag TotAg mg gm/mt gm/mt qm SND05419-7 715 6.70 $\frac{11}{22}$ 20 26 158 SND05419-51 1023 4.19 158 STANDARD R-2a - <.06 -AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAG: AG DUPLICATED FROM -150 MESH. NAG - NATIVE SILVER, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: DRILL CORE M150 DATE RECEIVED: AUG 11 2005 DATE REPORT MAILED: 1.1.9.26/05 Data FA Clarence Leon

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VAN (If 9001 Accredited Co.) GEOCHEMICAL AN. 1 Almaden Minerals Ltd. PROJECT 1103 - 750 W. Pender St., Vancouver BC V6C	SIS CERTIF ELK05-3	ICATE File #	PHONE (604) 253-3158 FAX (601 253-1716 A504439 Jakubowski
SAMPLE#	Au* S ppb	ample gm	
SND05418-13	6.5	30	
SND05418-33	1.1	30	
SND05418-34(pulp)	33201.2	15	
SND05418-53	9	30	
SND05418-54(pulp)	9957.7	15	
SND05419-17	1.2	30	
SND05419-18(pulp)	32938.5	15	
SND05419-37	5.1	30	
SND05419-38(pulp)	9581.3	15	
STANDARD AU-R	488.8	30	

GROUP 3A - IGNITED 30 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. UPPER LIMITS - $AU^* = 100$ PPM.

- SAMPLE TYPE: DRILL CORE R150

DATE RECEIVED: AUG 11 2005 DATE REPORT MAILED:

Data (y FA ____ DATE RECEIVED: AUG 11: Assay An if > 1000 ppb

ACMB	AN ^{» •} Ií		AL) AC							8		303 C			01.0g							A 1R CATI			PHON	乯 (6	04)	253	-319	58 1	'XX ((60	753	-17	16
						<u>Alı</u>	<u>nade</u>	ал 11	<u>Min</u> 03 -	era 750	ls	Lt	d.	PR	JJE	ĊT	ELI	K05	-3	F:	Lle	(A1) # 1 y: Woj	450	1444 Jaku	10 bowsk	P.	age	1							
MPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm		Mn ppm	Fe X		U ppm		Тh ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	B ppm	A1 لا	Na X	K %	W ppm	Hg ppm	Sc ppm	T1 ppm	<u>د دمن</u> ۲ ۲ ا	Ga ppm p
0E 3250S 0E 3300S 0E 3350S 0E 3400S 0E 3450S	.6 .7 .5	21.1	19.4 B.2 12.9 6.7 254.1	93 45 77 57 588	.1 .1 .1	12.9 16.8 13.0	77 75 97 75 72	375 501 279	3.07 2.25 2.67 2.16 2.97	4.1 5.8 3.3	.7 1.1 .3	9.7 20.5 <.5	2.9 3.9 1.5	32 31 34 16 131	1 1 2 < 1 .8	.3 .2 .2 .1 .2	.1 .1 .1 .1 3.0	101 68 74 63 42	. 56 . 67 . 24	.086 .078 .105 .098 .060	12 17 4	27.0 28.6 30.9 18.7 14.6	.55 .54 .66 .35 .26	88 116 58	. 105	4 1 2 1 1 1	L.17 L.03 L.38 L.51 2.11	.032 .035 .021	.07 .14 .16 .05 .15	.1 · .2 .1	<.01 .02 .01	4.1 1.8	.1 < .1 < .2 < <.1 < .2	.05 .05 .05	4 < 4 < 5 < 6 < 7
DE 3500S DE 3550S DE 3600S DE 3650S DE 3700S	1.2 3.0 2.3	15.3 7.8	257.8 89.9 54.7 82.8 45.4	223 84 45 67 60	1.2 .8 .3	5.4 6.4 5.6	3.6 3.4 4.1 4.2 6.9	161 137 131	1.58 2.30 3.05 1.82 2.28	4.3 4.2 3.6	.4 .3 .3	1.6 22.6 63.7 <.5 1.5	2.6 3.6 3.1	33 13 28 19 20	.1 <.1 <.1 <.1	.1 .2 .1 .1	1.2 .6 .8 .6 .4	30 46 60 43 59	.10 .13 .16	.082	9	8.3 9.8 13.3 10.3 15.1	.10 .18 .15	132	.063 .061 .068	<1 1 1 1 <1 1	L.17 L.47 L.50 L.19 L.45	.015 .017 .019	.06 .04 .06 .05 .05	.1 .1 <.1 .1 .1	.06 .05	1.6 1.1 1.3 1.1 1.6	.1 < .1 < .1 < .1 <	.05 .05 .05	5 < 6 < 5 < 5 <
0E 3750S 0E 3800S 0E 3250S 0E 3300S 0E 3350S	.7	9.5 9.7 50.1 30.4 28.5	17.8	87 71 97 138 84	.3 .3 .2	6.0 18.7 11.3	4.9 4.5 9.2 6.6 6.7	254 393 439	1.62 1.77 2.52 2.16 2.10	3.9 11.1 4.5	.3 4.2 1.7	1.5 1.2 1.5 1.2 <.5	2.1 3.0 2.7	15 22 43 29 15	.1 <.1 .2 .2 .1	.1 .3 .2 .1	.4 .5 .2 .3 .1	41 43 65 63 59		.071 .074 .085	10 21 16	11.2 10.9 36.4 24.5 17.2	15 13 59 41 32	104 103 75		1 1 1 1 2 1	1.33 1.12 1.66 1.08 2.13	.015 .029 .024	.05 .05 .14 .11 .04	.1 .1 .1 .1	.02 .0 6 .04	1.3 1.1 4.5 2.6 2.4	.1 < .1 < .1 < .1 <	.05 .05 .05	4 < 5 < 5 < 4 <
DE 3400S DE 3450S DE 3500S DE 3550S DE 3600S	.8 1.0 .7	19.9 34.9 42.7 4.7 11.1	23.6 27.7	234 162 198 75 201	.2 .3 .1	12.6 12.6 2.1	6.3 10.2 9.0 1.6 4.9	838 689 94		6.7 6.7 1.2	1.8 2.4 .6	.9	1.8 1.9 .9	16 43 45 9 24	.1 .4 .1 .1	.1 .2 .1 .1	.4 .2 .2 .2	51 85 74 23 50	. 82 . 08	.085 .101 .106 .024 .038	18 21 5	13.7 27.6 26.8 4.5 14.1	. 19 . 57 . 56 . 07 . 27	137 121 122 55 133	.083 .074 .025	2 : 1 : <1	2.12 1.52 1.35 .77 1.79	.024 .027 .017	.05 .14 .11 .03 .06	<.1 .1 <.1 .1 .1	.03 .03 .02	1.7 4.0 4.0 .7 1.4	.1 < .1 < .1 < .1 <	.05 .05 .05	6 < 4 5 < 6 <
0E 3650S 0E 3700S 0E 3750S 0E 3800S E 400E 3800S	.9 7.6 1.0	22.7 16.6 33.7 14.1 13.7	13.4 41.0 89.6 36.2 35.3	97 162 348 185 184	.2 .5 .1	8.3 7.1	6.0 8.3	299 455 332	2.03 2.22 2.65 1.92 1.79	5.1 4.2 3.8	.6		1.3 3.5 5.3 2.7 2.4	16 22 112 31 30	.1 .4 .1 .1	.1 .1 .3 .1 .1	.1 .3 .6 .2 .2	59 60 55 55 52	.21 .42 .23	.103 .121 .043 .069 .072	9 42 9	15.4 16.7 16.6 14.0 14.2	.26 .23 .30 .21 .23	104 252 88		$\begin{array}{c} 1 \\ 1 \\ 1 \end{array}$	1.74 1.46 1.74 1.34 1.41	.019 .037 .020	.05 .05 .10 .05 .05	.2 .2 <.1 <.1 .1	.02 .04 .02	1.8 2.7	<.1 < .1 < .1 < .1 <	.05 .09 .05	6 < 5 < 4 < 5 <
0E 3250S 0E 3300S 0E 3350S 0E 3400S 0E 3450S	.5 .5 .5	13.0 13.9 13.9 13.6 17.5	9.1 8.3 7.9 6.1 8.6	57 68 46 47 93	.1 .1 .1	9,7	5.3 5.7 5.7	300 205 268	1.83 1.63 1.73 1.80 1.78	2.2 2.5 2.0	.7 .5 .3	1.9	1.6 5.4 2.0	19 17 16 16 15	.1 .1 <.1 .1	.1 .1 .1 .1	.1 .1 .1 .1	50 44 49 48 46	.23 .25	.089 .118 .097 .101 .131	8 8 5	21.3 17.0 18.4 18.3 15.8	.29 .21 .26 .24 .24	87 74 84	.084 .072 .081 .081 .089	1 1 <1	1.26 1.13 1.23 1.24 1.70	.018 .024 .020	.07 .06 .08 .05 .07	.1 .1 .1 .1	.01 .02 .01	1.9 2.0	.1 < .1 < .1 < .1 <	4.05 4.05 4.05	4 < 4 < 4 < 5 <
00E 3500S 00E 3550S 00E 3600S 00E 3650S 7ANDARD DS6	1.0 1.6 .4	11.6 38.4 8.9 17.6 125.6	400.8	47 170 80 64 138	.2 1.3 .1	11.6 4.4 9.5	5.7 10.3 3.4 6.8 10.4	946 177 457	2.21	6.5 3.5 3.2	.6 .4	1.6 3.7 13.2	1.9 14.0 1.8	18 42 48 19 38	.1 .2 .1 .1 6.1	.1	.1 .2 2.9 .2 5.0	35 66	.72 .15 .24	.032 .106 .096 .077 .079	20 43 7	18.3 25.3 8.4 18.8 187.2	.26 .52 .12 .27 .60	143 413 92	.028 .081	<1 (<1 (<1 (.81 1.40 1.59 1.25 1.89	.022 .021 .018	.12 .13 .24 .08 .17	`.1 .1 <.1 .1 3.5	.09 .02	3.4 1.0 1.7	.1		3 < 4 5 < 4 < 6 4

Hrg 29/05

and the second second

Clarence

and the second second

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY
 SAMPLE TYPE: SOIL PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA

DATE RECEIVED: AUG 11 2005 DATE REPORT MAILED:

ACME ANALYTICAL						Alm	nade	en	Mine	era	ls	Lto	1.	PRO	JE	CT	EL	KO	5-3	F	'IL'	E #	A5	044	40				Pa	age	e 2			ACHE		TICAL
SAMPLE#	Mo ppm	Cu ppm		o Zr n ppm				o Mr appr		As ppm					Cd ppm		Bi ppm	V mqq	Ca %		La ppm	Cr ppm		8a ppm	Ti %	B ppm	Al %	Na %		W ppm	Hg ppm			S %	Ga ppm	Se ppm
600E 3700S 600E 3750S 600E 3800S STANDARD DS6	1.0	21.5 68.6 15.8 118.3	33.2	2 311 3 260	.1	15.5	17.	3 649 7 3 80	3.28	8.1 2.3	3.9 .3	1.3 <.5	6.6 1.0	39 31	.3 .3	.3 .1	.3 .1	97 53	.40 .32	.080 .078	25 4	28.5 13.2	.58 .27	139 74	.118 .079	1 2	2.08	.019 .016 .025 .077	.28 .10	.1	.04 .03	6.6 1.6	.2 .1	<.05 <.05	5	< 5 5 < 5 4 4

Sample type: SOIL PULP.

. .

.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

• •

and the second secon

. .

(1/ `001 A	credited Co.)	GEOCHEMI	CAL ANA SIS CE	RTIFICATE		
A						
	Almaden	<u>Minerals Ltd.</u> P 1103 - 750 W. Pender St., N	PROJECT ELK05-4	File # A50	4816 Page 1	
· 		1103 - 730 W. Pender St.,		omitted by: Wojtek		
SAMPLE	Mo Cu Po Zn		Au Th Sr Cd Sb Bi V Ca P	-	B Al Na K W Hg Sc Tl S Ga Se Ag≠+ Au++	
	ppri ppri ppri ppri	ppm ppm ppm ppm \$ ppm ppm ppm	pp bbut bbut bbut bbut bbut t	ppm ppm \$ ppm \$ pp	n X X ppm ppm ppm ppm X ppm ppm gm/mt gm/mt	
5ND05420-1	I.7 122.3 55.6 21	.8 .9 1.5 48 .82 39.0 6.7 151.3	.1 9.6 7 .6 1.3 .5 3 .06 .022	15 1.6 .02 46 .001	1 .32 .018 .22 .2 .01 .7 .1 .79 1 <.5 <2 .70	
SND05420-2		.4 .9 1.2 46 .75 32.4 7.4 63.1				
SND05420-4(p	1p) 20.9 55.3 432.7 33	5.1 1263.9 30.9 389 2.21 57.2 .5 35265.4	.4 2.8 17 .1 .5 4.2 29 .47 .031	12 1847.5 .58 139 .042	9 1.04 .037 .30 13.3 .02 2.2 .1 .07 3 <.5 6 17.42	
SND05420-5					4 .25 .026 .17 .1 <.01 .9 .1 .16 1 <.5 <2 .05	
SND05420-6	1.6 58,4 81,1 33	.3 1.1 1.9 159 .80 17.3 5.8 14.3	.2 10.4 9 .5 .3 .2 2 .07 .025	15 2.5 .02 97 .001	3 .28 .016 .22 .1 <.01 .6 .1 .68 1 <.5 <2 .03	
SND05420-7	1.0 16.1 31.1 66	.1 .9 2.0 769 1.12 2.7 3.1 12.	.3 8.9 5 .4 .1 .1 6 .08 .028	22 2.0 .06 43 .011 <	1 .27 .025 .15 .1 <.01 1.0 .1 .16 1 <.5 <2 .12	
SND05420-8		.2 1.0 2.3 636 1.09 5.5 4.2 7.4				
SND05420-9					2 .28 .018 .23 .1 <.01 .7 .1 .32 1 <.5 <2 .05	
5ND05420-10		.4 .9 1.4 724 .87 1.4 4.4 55.			2 .26 .028 .19 <.1 <.01 .7 .1 .11 1 <.5 <2 .15	
5ND05420-11					7 .25 .027 .18 .1 <.01 1.0 .1 .13 1 <.5 <2 .01	
SND05420-12] 3 , 13, 5, 34, ⊀ ≠3	.1 1.0 1.7 615 1.01 2.8 3.3 94.4	8 8 4 6 2 1 1 4 no	726 2.2 03 07 00*	6 .25 .028 .15 <.1 <.01 .8 .1 .19 1 <.5 <2 .02	
SN005420-12	1.0 4.4 5.7 24				5 .25 .033 .16 .1 <.01 1.0 .1 <.05 1 <.5 <2 .02	
SN005420-14						
5ND05420-15	1.5 6.3 5.9 24		.5 8.4 4 .1 .1 <.1 6 .09 .029			
RE SND05420-					2 .27 .027 .15 .1 <.01 .9 .1 .21 1 <.5 <2 .01	
RRE SND05420	15 14 44 50 74	.1 .9 2.2 896 1.20 4.9 3.4 2.3	2 0 2 5 1 1 - 1 5 10 492	10 2.0 00 41 000	1 .29 .028 .16 .2 <.01 1.0 .1 .14 1 <.5 <2 .01	
SND05420-16	1.4 14.6 25.4 31				1 .29 .028 .16 .2 <.01 1.0 .1 .14 1 <.5 <2 .01 2 .21 .027 .11 .1 <.01 .8 .1 .16 1 <.5 <2 .05	
SND05420-17	1.3 18.8 12.7 33		.3 8.9 5 .2 1.0 .1 5 .09 .025			
SND05420-18	1.6 30.7 61.5 35				2 .27 .020 .21 .2 .01 .8 .1 .37 1 <.5 <2 .02	
SND05420-19	1.1 31.8 73.1 35				4 .30 .013 .23 .2 .01 .6 .1 1.43 1 <.5 2 1.46	
SND05420-22	2.7 16.7 51.3 12	7 9 2 8 50 56 16 6 7 5 912	.7 7.4 3 .3 3.1 .2 1 .05 .020	12 2 4 01 20-001	4 .26 .009 .22 .1 ≤.01 .3 .1 .48 1 <.5 2 .92	
5ND05420-22	1.5 12.3 123.1 18		.0 9.4 10 .3 1.5 .1 2 .07 .023			
SND05420-24	1.1 2.9 18.5 16		.5 9.4 10 .3 .2 <.1 3 .08 .024		2 .22 .023 .16 .1 <.01 .7 .1 <.05 1 <.5 <2 .01	
SND05420-25	1.4 28.8 33.0 25		.2 8.1 4 .2 .2 .3 6 .08 .023			
SND05420+26	1.4 30.8 41.3 51				2 .02 .02 .1 .01 .7 .1 .46 1 <.5	
SND05420-27	2.2 115.3 366.4 831	4 1 7 2 2 828 1 68 33 7 3 1 234	.7 8.3 4 14.2 2.8 2.1 2 .06 .021	16 20 07 37 001	5 .31 .013 .25 .2 .06 .6 .1 1.15 1 <.5 6 .58	
SND05420-28		.2 1.0 1.9 783 1.23 13.9 4.7 2.4				
5ND05420-29	6.1 103.7 46.4 44		.9 8.7 5 .6 1.8 .2 3 .07 .021			
SN005420-20	2.8 114.1 23.4 229		.0 9.5 4 4.9 7.6 .4 1 .06 .023			
SND05420-31	1.5 7.7 5.6 30		.0 9.1 5 .2 .3 <.1 4 .08 .025		2 .31 .028 .20 .1 <.01 .9 .1 .10 1 <.5 <z .03<="" td=""><td></td></z>	
SN005420+32	2.6 113.1 76.6 76	κί ο 15 436 130 37 τ 2 ε αστο	199 9914815 1 05 006	14 2 3 62 20 - 001	3 .27 .010 .23 .1 .02 .5 .1 1.01 1 <.5 4 1.23	
SND05420-32	2.1 28.4 11.7 38		.5 9.8 7 .3 5.9 <.1 4 .09 .024			
SND05420-33 SND05420-34	2.1 28.4 11.7 38		.5 9.8 7 .3 5.9 <.1 4 .09 .024 .2 9.4 7 .2 2.1 <.1 4 .09 .023			
SND05420-34 SND05420-35					2 .24 .027 .15 .1 <.01 .8 .1 <.05 1 <.5 <2 .01 2 .24 .020 .20 .1 .01 .6 .1 .08 1 <.5 <2 .03	
					2 .24 .020 .20 .1 .01 .6 .1 .08 1 <.5 <2 .03 7 1.94 .075 .17 3.2 .23 3.4 1.7 <.05 6 4.5 156 5.81	
3 Millional 030			010 00 010 010 417 00 107 1078	. 13 191.0 .33 102 .0/0]	1.17 .010 .11 0.2 .20 0.4 1.1 5.00 0 4.0 106 5.81	

Clarence Leono

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE

- SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data / FA

DATE RECEIVED: AUG 22 2005 DATE REPORT MAILED: Sept. 12/05.

44	
ACHE ANALYTICAL	

Almaden Minerals Ltd. PROJECT ELK05-4 FILE # A504816

Page 2

and the second second

Data AFA

States and the second

ACHE ANALYTICAL																																ACHE	ANALYTIC	AL
Sample#	Мо ррт	Си ppm		Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb		Sr Co ppm ppr		b Bi nippmi		Ca %	P ۶۲			Mg E Xipp		Ti B %ippm				W Hg opm ppm			S Ga ≭ppmr			
5ND05420-36 SND05420-37 SND05420-38 SND05420-39 SND05420-42		6.1 7.5	7.2 37.0 24.1 19.3 9.7	83 72 74	.1 .1 .1	1.0 .8 .9	1.6 1.7 1.8 1.8 1.6	604 908 982	.94 1.08 1.15	3.7 3.2 3.1	2.1 2.5 3.1 3.8 3.3	32.0 7.2 7.9		7 . 10 . 10 . 7 . 7 .	7 .1 3 .1 3 .1	2 < 1 2 < 1 5 < 1 5 < 1 3 < 1	4 4 3	.09. .09.		20 19 22	2.3 1.8 2.6 2.3 1.8	.04 4 .05 5 .05 4	18 .0 50 .0 18 .0	05 <1 05 2 04 4	. 28 . 29 . 32	.038 .025 .025	.16 .20 .24	:.1<.01 .1<.01 .1<.01 .1<.01 .1<.01 .1<.01	.8 .7 .8	.1 . .1 <.	10 1 13 1 05 1	<.5 <.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.03 .03 .03 .02 .01
5ND05420-43 SND05420-44 SND05420-45 SND05420-46 SND05420-47	2.7 1.9 2.1	8.4		19 23 93	.1 <.1	.7 8. 1.0	1.2 1.5 1.4 4.6 6.8	356 327 1344	.75 .74 3.44	1.4 4.3 .8	9.0 3.5 3.0 1.9 1.9	22.5 <.5	9.2 9.7 6.5	7	3.	3.1 5.1	<1 1 18	.06 .05 .37	.016 .014 .098	29 26 21	3.7 2.3 2.9 2.7 2.8	04 19 .03 9 .27 53	91 .00 95 .00 30 .00	01 2 01 5 02 4	.24 .25 .37	.031 .033 .025	.22 .22 .26 <	.1<.01 .1<.01 .1<.01 .1<.01 .1 .01 .1 .01	.6 .6 1.7	.1 .1 .1 .	12 1 14 1 05 2	< 5 < 5 < 5 < 5 < 5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	.04 .01 .05 .02 .02
5ND05420-48 SND05420-49 SND05420-50 SND05420-52 SND05420-54	2.4 2.2 2.0 4	2.3 57.0 199.7	2.1 70.4 39.1	36 156 116	<.1 .8 5.6	.6 1.3 1.9	1.5 6.4 5.7	793 1033 495	1.41 2.34 2.23	.5 8.5 28.0	2.7 3.0 2.6	1714.0 6.4 142.9 2296.2 204.5	10.2 4.5 5.5	15 17 2.	2. 0.0	42.6	3 8 11	.10 . .27 . .24 .	084	50 12 12	2.0 2.1 1.9 2.0 2.1	.07 36 .13 32 .08 9	51 .0 21 .0 95 .0	01 9 01 5 02 2	.28 .44 .62	.023 .022 .017	.22 < .28 .31	.2 .03 .1<.01 .2 .03 .1 .01 .1 .02	.7 2.7 2.8	.1 <. .1 . .3 1.	05 1 41 1 45 2	<.5 <.5 <.5 <.5	<2 <2	3.35 .02 .21 5.30 .18
SND05420-55 SND05420-56 SND05420-57 SND05421-1 RE SND05421-1	1.9 2.3 2.7 5	20.4	8.7 5.2	79 87 71	.3 .1 14.3	2.4 2.0 .9	6.9	1075 924 26	2.58 2.54 2.77	10.1 27.6 117.8	4.5 2.9 10.5	124.7 46.1 7.2 4659.8 9568.6	6.0 4.2 6.6	11 1. 25 . 1 2.	3 .4 8 1.1 2 152.0	04.8	18 26 1	.26 .47 . .01 .	.073 .073 .006	17 12 6	1.7	.17 8 .30 15 .01 1	98 .02 52 .01 18 .04	23 2 78 <1	.62 .83 .30	.030 .037 .004	.27 < .40 < .25	.1<.01 .1 .01 .1 .01 .2 .30 .1 .35	4.3 3.6 .4		19 2 07 3 31 1	< 5 < 5 < 5 < 5 < 5		.59 .06 .02 6.17 8.70
RRE SND05421-1 SND05421-2 SND05421-5 SND05421-6 SND05421-7	2.2 4 1.2 3 1.2 2	422.8 302.5 266.7		53 17 28	17.5 4.3 3.0	1.2 1.1 1.3	3.1 2.2	28 54 354	2.74 1.76 2.15	119.2 60.4 26.6	14.8 7.1 3.5	4193.2 8118.0 1558.3 4308.6 155.0	7.1 8.0 7.8	2 1.9 5 1.3	5 90.0 7 2.1 5 3.0	04.7 11.2	1 1 1	. 02 . . 05 .	.006 .016 .019	6 11 9		.01 2 .02 3 .02 4	21 .00 30 .00 41 .00	01 <1 01 <1 01 2	. 34 . 32 . 34	.005 .005 .010 .012 .015	.27 .25 .25	.2 .32 .2 .28 .2 .03 .2 .10 .2 .03	.3 .5 .7	.13. .11. .11.	20 1 79 1	<.5 <.5 <.5	14 2 4	0.60 0.00 2.03 6.61 .26
SND05421-8 SND05421-9 SND05421-10 SND05421-11 SND05421-12	.8 1.0 1.2	5.4 4.7	43.7 138.7 47.1 18.7 23.8	6 43 22	.1 <.1	.7	6.4 2.0 1.1	369	.43 .79	7.9 2.6	7.7 3.2	182.0 28.0 3.3	1.5 8.0 9.8	12 . 11 . 5 . 9 <. 101 .	3 2.0 9 1.0 1 .:		2 1 5	.02 . .04 . .08 .	.017 .025	6 17 21	2.2 6.7 2.2 2.3 22.1	.02 7 .01 2 .05 6	73<.00 27<.00 57 .01	01 7 01 7	.26 .29 .32	.037	.17 .21 < .17	.1 .02 .1 .01 .1<.01 .1<.01 .1<.01	.7 .6 1.1	.1 . .1 <. .1 <.	25 1 05 1 05 1		<2 <2 <2 <2 <2 <2	.10 .11 .07 .02 .06
5ND05421-13 SND05421-14 SND05421-15 SND05421-16 STANDARD DS6/R	$1.3 \\ 1.1$	4.5 19.3 17.2		29 32 37	<.1 .2 .1	.6 1.0 1.2	2.6 3.2	708 887	.98 1.07 1.15	.9 4.9	4.3 3.7 3.3 4.5 6.3	2.1 46.6 21.7	11.4 8.5 10.0	10 6 7 38 6	1 .1 4 .4 2 .1		7 4 3	. 80.	.025 .023 .024	20 17 16	2.2 2.0 1.8	.09 6 .05 5 .04 4	52 .01 50 .01 40 .01	04 2 D1 2	.29 .33 .34	.039 .035 .027	.15 .20 .24	.1<.01 .1<.01 .1<.01 .1<.01 .1 .01 3.2 .23	1.1 .9 .8	.1 <. .1 . .1 .	05 1 19 1 23 1	<.5 <.5 <.5 <.5 4.1	<2 <2 <2 <2 <2 156	.02 .02 .11 .04 5.76

Standard is STANDARD DS6/R-2a/OxL34. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

AC	ME AN	AL YI	ICAL

Almaden Minerals Ltd. PROJECT ELK05-4 FILE # A504816

Page 3

ACME ANALYTICAL																														AC	ME ANALYTI	CAL
SAMPLE#	Mo ppm	Си ррт		Zn ppm	Ag ppm	Ni ppm	Co Mr ppm ppm			U mqq			Sr (ppm pp			Bi ppnrpp	V Ca xm %		La ppm		Mg X		Ti ≵pp				W Hg opmippm			Ga Se ppm ppm		
SND05421-17 SND05421-18 SND05421-19 SND05421-20 SND05421-21	1.3 .6	1.6 4.0	7.0 20.4 13.3 20.2 8.1	46 62 33	<.1	1.2 .9 .7	2.3 643 2.3 758 1.7 903 1.4 458 1.5 466	96 .96 3 1.03 3 .72	2.0	4.8 2.2 3.6		9.7 10.7 11.5	8. 11. 10.	.2 .4 .5	4 · 1 ·	<.1 <.1 .1	5.09 3.08 2.07 4.08 7.08	.022 .024 .025	20 27 30	2.9 2.2 1.8 2.3 2.6	.04 .04 1 .03	48 . 276 . 50 .	D04 < 001 004	1 22 4 22 2 18	2 .034 2 .023 3 .034	.14 .17 .10	.1<.01 <.1<.01 .1<.01 .1<.01 .1<.01 .1<.01	1.0 . .8 . .8 .	1 .06 1 <.05 1 <.05	1 <.5 1 <.5	<2	.06 <.01 .06 <.01 .04
SND05421-22 RE SND05421-22 RRE SND05421-22 SND05421-25 SND05421-26	1.3 1.3	18.4	8.4 8.1 8.5 47.0 64.6	22 23 23	.1 .1 .2 .1	.5 .6 .7	1.5 414 1.6 411 1.6 424 1.0 266 1.0 247	86 .90 5 .50	3.9 3.8 3.8 2.0 2.1	3.0 3.5 4.2	36.1 25.0 34.0 62.8 3.1	8.4 8.9	5. 5. 8.	.1 .1 .3 1	.2 •	<.1 <.1 <.1	6.07 5.07 5.07 3.06 4.08	,022 .023 .023	20 20 21	2.0 . 1.7 . 2.1 . 1.7 . 1.9 .	.08 .08 .02	46 (45) 50 (013 < 013 < 013 001 < 004 <	1.25 1.28 1.21	031 035 023	.15 .15 .15	.1<.01 .1<.01 .1<.01 <.1<.01 <.1<.01 .1 .01	1.1 . 1.1 . .7 .	1 .13 1 .12 1 < 05	1 <.5	<>> <>> <>> <>><><>><><><><><><><><><><	.05 .04 .03 .17 <.01
SND05421-27 SND05421-28 SND05421-29 SND05421-30 SND05421-31	.9 .9 1.0	68.8 22.0 9.2	245.5 64.8 71.0 49.5 60.6	46 47 55	16.0 .4 .2 .1 .2	.7 .9 .6	3.2 397 2.2 450 1.4 338 1.1 447 1.6 451) 1.18 3 .71 7 .76	37.1 5.6 2.2	3.9 4.6 3.1	153.6 2.4	8.8 10.4 9.8	8 13 10	.2 8 .6 1 .4 5 .3 1 .4 1	.5 .8 .0	.2 .1 .1	1 .05 1 .06 4 .08 3 .07 1 .07	.023 .024 .024	17 20 21	1.7 1.6	.03 .04 .03	46		1 .22 1 .25 1 .24	7 .022 5 .029 1 .032	.20 .14 .14	.1 .02 .1<.01 .1<.01 .1<.01 .1<.01 <.1<.01	.7 .9 .8	1 .71 1 .07 1 <.05	1 <.5 1 <.5 1 <.5	<2 <2 <2	1.38 .11 .05 .01 <.01
5ND05421-32 SND05421-33 SND05421-34 SND05421-35 SND05421-36	1.2 1.3 1.5	17.1 68.4 36.7	162.4 49.1 64.5 18.0 88.1	109 65 42	6.5 .2 .5 .9	.8 .7 .8	11.0 688 1.6 744 1.7 727 1.8 684 2.7 798	1.07 1.72 1.19	12.2 20.9 11.4	3.6 3.2 3.9		10.1 10.7 10.3	6 6	.8 1 .4 .3		.1 .2 .1	2 .06 3 .07 5 .08 4 .09 3 .13	.023 .025 .027	17 21 20	1.7 2.4 2.7 2.1 2.6	.04 .07 .06	76 85	002 < 002 < 011 < 006 < 002	<1.22 1.28 1.29		.19 .19 .17	.2 .02 .1 .01 .1<.01 .1<.01 .1<.01	.7 1.0 .9	1 .21 1 .81 1 .35	1 <.5 1 <.5	9 2 2 2 2 2 2 2	.32 <.01 .04 .02 .29
SND05421-37 SND05421-38 SND05421-39 SND05421-40 SND05421-41	1.5 1.3 1.9	23.0 13.8 5.6	52.3 9.7 11.7 4.9 39.4	48 48 30	.4 .1 <.1 .2	8. 8. 8.	1.7 598 1.9 896 1.6 798 1.6 639 1.8 490	5 1.36 3 1.29 9 1.15	1.5 1.7 <.5	3.4 4.7 4.1	.7 <.5	10.5 10.5 11.4	67	2	.1 .4 ~ .3 ~	.1 <.1 <.1	2 .08 7 .11 7 .11 7 .09 2 .07	.028 .029 .026	28 23 23	2.1 2.3 2.7 2.3 2.0	.09 .11 .11	76 71 81	024	1.29 2.29 4.29) .034) .037) .045	.17 .15 .17	.1 .02 .1<.01 .1<.01 .1<.01 .1<.01	1.1 1.3 1.2	1 <.05	1 <.5 2 <.5 2 <,5	~ ~ ~ ~ ~ ~ ~	.06 .02 .01 <.01 .04
SND05421-42 SND05421-45 SND05421-46 SND05421-47 SND05421-48	1.4 1.3			29 57 61	.1	.7 .7 1.1	1.7 478 1.5 319 2.2 564 1.6 613 1.5 573	9 .75 4 1.07 3 1.07	6.2 11.7 6.9	4.1 4.0 4.1	56.0 12.4 4151.4 15.7 18.9	10.8 11.2 10.2	8 6 6	.4 8 .5 1	.7 · 1.7 8	<.1 .9 .1	2 .07 4 .09 2 .08 5 .09 3 .09	.023 .020 .021	22 17 20	2.2 2.2 1.9 3.1 2.5	.05 .04 .04	46 38	005 -	<1.22 2.20 <1.20	2 .032 5 .027	2 .14 7 .19 9 .15	.1<.01 .1 .01 .1 .01 .1<.01 .1<.01	.9 .8 1.0	.1 .22 .1 .14 .1 .32 .1 .28 .1 .07	1 <.5 1 <.5 1 <.5	<2 <2 <2 <2 <2 <2	.05 .01 1.45 .06 .01
SND05421-49 SND05421-50 SND05421-51 SND05421-52 STANDARD DS6/R-	1.5 1.8 1.3	3.3 2.9 13.0	16.5	97 72 41	.1 <.1 .2	1.2 1.0 .9	1.9 779 2.2 759 1.5 713 1.6 700 10.8 713	9 1.09 7 1.03 5 .88	3.0 .8 5.1	5.8 4.6 7.4	2.8 30.9	10.1 10.3 9.1	9 5 5	.2 .3 1	.2 · .2 ·	<.1 <.1 .1	2 .07 1 .07	.019 .018 .021	23 23 18	1.9 2.6 2.2 2.1 .81.9	.05 .05 .03	80<. 51<. 154	001 001	4 .2 1 .2 1 .2	2 .019 5 .016) .16) .17 5 .20	.1 .01 <,1 .01 <.1<.01 .1<.01 .1 .01 3.3 .23	,9 1.0 .7	.1 .12	1 <.5 1 < 5 1 < 5	√ √ √ √ √ √	.10 <.01 <.01 .01 5.78

Standard is STANDARD DS6/R-2a/OxL34. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

Almaden Minerals Ltd. PROJECT ELK05-4 FILE # A504816

Data FA

15 . 55

Page 4

ACNE ANALYTICAL														<u>.</u>																			A	CHE ANALY	TICAL
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	Ų	Au	Th	Sr	Cd	Sb	Bi	V Ca	a P	Ĺa	Cr	Mg	Ba	Τí	В	A]	Na	K	W Hg	, Sc	Tl	S	Ga Se	Ag**	Au**
	ppm	ppm	ppm	ppm	ррт	ppm	ррт	ppm	*	ppm	ppm	ppb	ppm	ррп	ppm	ppm p	pm pp	ant 2	<u>۲</u>	ppm	ррп	8	ppm	វីរ	opm	z	x	۶p	pm ppn	ı ppm	ppm	۶ŗ	mqq mqc	gm/mt 🤉	m/mt
SND05421-53 SND05421-54 SND05421-55 SND05421-56 SND05421-57	1.6 1.7	19.9 5.0	48.9 29.3	50 128 114	.4 .2 .1	.9 2.5 1.0	1.6 1.9 2.4	793 552 689	1.06 .78 1.09	9.7 3.9 6.4	3.2 4.9 5.6	12.1 29.6 122.2 17.3 52.5	9.4 12.4 10.1	6 13 9	.6 : .8 .5	2.2 .4 .4	.1 .1 < .1	2 .07 1 .07 1 .07	3 .022 7 .020 7 .021 7 .019 3 .024	19 23 19	1.4 1.5 1.9 1.6 1.8	.05 .03 .04	183 54 40	.003 .001 .001 .001 .001 .010	<1 2 1	. 25 . 24 . 25	025 .	16 16 < 15	.1<.01 .1 .01 .1 .01 .1 .01 .1 .01 .2 .01	.7 .6 .7	.1 .1 .1 .1 .1	.08 .16 .11 .15 .24	1 .5 1 <.5 1 <.5 1 <.5 1 <.5	<2 <2 <2 <2 <2 <2 <2 <2 <2	.01 .04 .06 .04 .20
SND05421-58 SND05421-59 SND05421-60 SND05421-61 SND05421-62	1.7 3.9 1.9	55.5 13.0 6.6 19.3 22.9	9.5 174.7 47.4	52 172 83	.1 ,4	.7 1.4 1.1	2.0 2.9 2.2	835 1158	1.43 1.39 .89	6.7 17.5	3.2 12.3 4.2	760.6 43.5 81.6 34.5 9.4	10.2 8.6 10.4	8 4 11	.2 1.0 .4		.1 .1 .1	8 .14 1 .05 4 .08	3 .021 4 .040 5 .018 3 .026 9 .024	19 18 26	1.7 1.7 1.6 1.8 1.6	.10 .02 .03	69 44< 40	.008 .022 .001 .002 .002 .004	2 2 <1	.32. .25. .22.	037 .	16 23 14	.1 .01 .1<.01 .2 .01 .2<.03 .1<.01	1.3 6 6	.1 3 .1 .1 .1 .1	.18	1 <.5 2 <.5 <1 <.5 1 .5 1 <.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.62 .08 .12 .04 .03
SND05421-65 RE SND05421-65 RRE SND05421-65 SND05421-66 SND05421-67	3.3 2.9		28.6 29.0	56 56 109		.8 .8 1.2	1.8 1.9 2.9	480 511 460	.93 .99 .94	3.0 3.0 4.1	3.5 3.5 3.9	65.9 246.2 83.0 307.1 153.3	11.9 12.5 11.3	10 10 15	.6 .5	.2 < .2 < .4	.1 .1 .4	4 .01 5 .01 2 .01	3 .021 3 .023 3 .021 3 .021 3 .016 3 .039	27 28 28	1.5 1.7 2.2 1.7 1.5	.08 .08 .04	47 49	.018 .019 .019 .002 .002	<1 1 3	.28 .31 .23	039	16 16 12	.2 .01 .2<.01 .2<.01 .1<.01 .1 .01	l .8 l .9 l .7	.1 .1	.13 .14 .11 .14 .16	1 .5 1 .5 1 <.5 1 <.5 2 <.5	<> <> <> <> <> <> <> <> <> <> <> <> <> <	.19 .20 .14 .41 .17
SND05421-68 SND05421-69 SND05421-70 SND05421-71 SND05421-72	18.4 2.4 .7	11.2 19.1 5.8 2.5 36.5	22.5 7.5 4.4	45 43 34	1.2 <.1 .1	1.3 .9 .9	8.7 4.3 4.0	750 663 514	2.15 1.73 1.45	7.0 1.9 <.5	10.9 4.3 4.0		5.5 12.4 5.7	19 12	.8 .5 .3	.6 .2 < .2	.9 .1 .1	5.2 9.19 5.74	4 .083 L .060 9 .066 4 .060 5 .116	22 18 20	1.8 1.0 1.5 2.1 1.8	.16 .12 .25	995 537< 59 1046 456	.001 .001 .001	2 2 3	.36 .28 .31	022 012 025 018 026	.23 .17 .26	.1<.01 .1<.01 .1<.01 .201 .1 .01	1.5 1.4 2.0	.1 .1 .1 .1 .2	.29 .06	1 <.5 1 .5 1 <.5 1 .5 1 <.5	2	.02 1.09 <.01 .05 .18
SND05421-73 SND05421-74 SND05421-76 SND05421-78 SND05421-79	1.6 3.4 5.0	16.1 11.1 342.0 252.9 15.4	6.0 43.0 80.3	53 35 217	.1 3.5 3.2 4	1.4 2.1 45.4	4.9 5.0 18.0	1081 655 2743	2.64 3.09 5.61	2.2 43.3 58.6	3.1 4.1 8.2	127.5 510.4	7.3 7.5 7.0	6 37	.5 2.5	.2 < .2 1 .4 1	.1 2 .9 .6	23 .33 4 .23 9 .34	2 .062 3 .090 1 .079 4 .113 3 .085	16 9 12	1.4 2.1 1.3 13.6 1.4	.17 .09 .14	254 61	.001 .001	<1 3 2	.55. .51.	033 013 007	21 < .39 .32	.1 .0] .1<.0] .2 .0] .2 .02 .1 .0]	4.2 1.6 2.9	.1	2.49	1 <.5 2 <.5 1 <.5 1 <.5 1 <.5	<2 <2 5 4 <2	. 36 . 20 . 73 . 38 . 09
SND05421-80 SND05421-81 SND05421-82 SND05421-85 SND05421-86		101.6 11.9 9.1 7.5 4.8	4.2	47 43 35	.1 .2 .2	2.8 2.9 6.1	5.1 5.2 5.5	1445 1222 1365	2.86 2.61 2.63	2.3 3.0 1.7	2.3 2.1 1.7	122.4 13.6 138.0 79.7 34.1	6.1 5.5 5.5	14 17 15	.2 .2 .1	.1 < .1 < .1 <	.1 1 .1 1 .1 1	.4 .21 .4 .21 .7 .2		17 15 16	1.6 1.5 1.4 1.8 1.4	.14 .15 .15		.002	2 2 3	.40 .41 .51	.030	.25 .24 .25	.1 .01 .1<.01 .1<.01 .1<.01 .1<.01	L 3.6 L 3.6 L 4.1	.4 .1 .1 .2 .4	.83 .11 .23 .24 .36	1 <.5 1 <.5 2 .5 2 <.5 1 <.5	2 <2 <2 <2 <2 <2 <2	.20 .02 .10 .16 .04
SND05421-87 SND05421-88 SND05421-89 SND05421-90 STANDARD DS6/R-	2.2 2.8	6.6 7.0 26.7 52.1 122.6	34.0 99.2 178.6	76 51 170	.1 .4 1.0	7.0 6.2 3.5	7.0 6.7 7.8	527 323 522	1.62 1.15 1.46	5.6 15.0 29.7	5.7 6.4 8.7		4.7 7.4 7.6	10 13 8	.7 1.3 3.9	.2 .2 .4	.1 1 .1 .4	0.2 7.2 6.2	1 .076 0 .081	13 20 16	1.8 1.6 1.2 1.6 154.2	.06 .04 .06		.001 .001 .001	2 3 1	.38 .40 .37	.032 .024 .024	.19 < .24 < .29 <	.1<.0 .1 .0 .1 .0 .1 .0 .1 .0	1 2.1 1 1.7 1 1.6	:.5 .4 .2	.26 .64 .55 .71 <.05	2 <.5 1 .6 1 <.5 1 <.5 6 4.1	<2 <2 <2 <2 158	.01 .08 .21 .16 5.81

Standard is STANDARD DS6/R-2a/OxL34. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACHE AMALYTICAL						Al	ma	ıde	n	Mir	ıeı	al	.8	Lt	d.	Ē	?R	OJI	EC	т	EL	K0	5-4	4	F	IL	E #	ŧ 2	450	481	16					Pa	age	e 5)	ACHE AND		
SAMPLE#	Mo ppm		Cu pm				-		Со ррл	Mr ppr															₽Ľ %pp		Cr ppm				8 ppm	A1 %	Na 2				-	с Т пррг				-		Au** m/mt
SND05421-91 SND05421-92 STANDARD DS6/R-2a/AU-1	2.8	20	, 1	91.5	22	ł.	4	2.9	7.8	1374	2.8	1 15	5.7	11.3	41.	46	.4	18 4	1.3	.8	.1	15	.26	. 07	8 1	8	1.9	.17	400	.001	2 2 17	. 37	.021	,18	.2	2<.0	1 3.3	3.2	2.3	8 3	L <.5	i .	<2 <2 58	.01 .10 3.36

- 1. S. (1997) 198. 19

•• ;

Data K FA

Sample type: DRILL CORE R150.

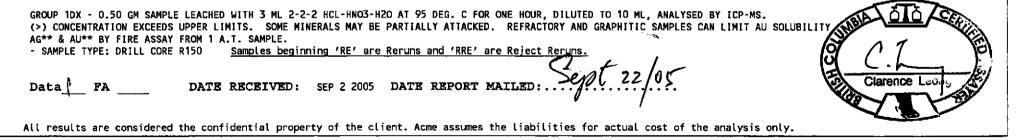
ACMB AN'		(CAL)1 Ac					TD.			0,000000		astin Iemic						! V FIF			F	HONE	(60	4)2	53-;	315	8 F	AX (60	7 53	-17	16
44					A							<u>Ltd.</u> St., Va											7								Ê	
SAMPLE#	Mo ppm	Сu ppm	Pb ppm		Ag ppm	Ni ppm	Со ррт	Mn ppm	Fe X	-	U maqq		Th ppm		 		-	vu	PLa %/ppm		Mg E %tpp;		B ppm	A1 %	Na %			-	Sc T pm ppm		S Ga %ippnn	~~
SND05420-51 SND05420-53		1502.3		135	10.7	2.3	5.5	40	3.54	105.0	2.1	18635.0 1594.0 6817.4	6.0	6	 1.5	15.8 1.7 3.9	3.	02 .00 18 .00 20 .05	56	4.0 2.6 2.5	.02 2	8 .001 4 .001 8 .001	2	. 38	.002 .004 .009	.28		02	.9 .1	1 4.7 1 3.8 1 6.1	0 1	<.5 <.5 < 5

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: DRILL CORE M150

A STATE STATE AND A STATE A

44		<pre>CLIFICATE OJECT_ELK05-4 File # A504817</pre>	A/
	1103 - 750 W. Pender St., Vancouv	ver BC V6C 218 Submitted by: Wojtek Jakubowski	L,
	SAMPLE#	S.Wt NAu -Au TotAu gm mg gm/mt gm/mt	
	SND05420-51 SND05420-53 SND05421-75 SND05421-77 STANDARD OxL34	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
- SAMPLE TYPE: DRILL CORE M150		FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE RT MAILED: Sept 9/05	ASSAY.
			Clarence Leong

	SAMPLE#	S.Wt NAg -Ag gm mg gm/mt	TotAg gm/mt	
	SND05420-51 SND05420-53 SND05421-75 SND05421-77 STANDARD R-2a	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	64 11 15 145 160	
-AG : -150 AG BY FIRE ASSAY FROM 1 A. - SAMPLE TYPE: DRILL CORE M150	T. SAMPLE. DUPAG: AG DUPLICATED	~	,	.Υ.
DataFA DATE RECEIVED	D: AUG 22 2005 DATE REPO	DRT MAILED: Sept 9	JUNBER	To CREEK
				ce Leong
				L SH


-

	SAMPLE#	Au* S	ample		
		ppb	gm		······································
	SND05420-3 SND05420-20 SND05420-21(pulp) SND05420-40 RE SND05420-40	1.2 2.5 9298.2 3.2 1.9	30 30 15 30 30		
	RRE SND05420-40 SND05420-41(pulp) SND05421-3 SND05421-4(pulp) SND05421-23	$ \begin{array}{r} 1.9\\ 33709.3\\ 6.1\\ 9525.0\\ 7.5 \end{array} $	30 15 30 15 30		
	SND05421-24 (pulp) SND05421-43 SND05421-44 (pulp) SND05421-63 SND05421-64 (pulp)	33384.4 4.9 34261.0 6.3 10264.6	15 30 15 30 15		
	SND05421-83 SND05421-84 (pulp) STANDARD AU-R	2.5 35160.4 452.6	30 15 30		
UPPER LIMITS - AU* = 100 PPM. - SAMPLE TYPE: DRILL CORE R150 <u>Sam</u>	D WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. poles beginning 'RE' are Reruns and 'RRE' ar /ED: AUG 22 2005 DATE REPORT MAIL	e Reject Reruns.	,	IL, ANALYSED BY ICP-MS.	

AND THE REPORT OF A DESCRIPTION OF A DES

T

TICAL LABOR 001 Accredi					D.				1	. HA)CH1	1.22			1894.) 1994.)	871 9	182					9.6				F	ю	NE	(60	4)2	253	1-3	158	E]	AX (60	53-17
	<u>,</u>	1	 	~~	M					ıtd		4. C.							1914		3 - C		00000	ΛF	<u>.</u> 7 E			Da	~~~							
		<u>* 1114</u>								ler S																	ki	Pa	ye							
 SAMPLE#	Ma	Cu	Pb	Zn	Ag	NI	Co	Ma	Fe	As i		Au 11	h Sr	• Cd	Sb	B1	¥	Ca	P	La	Cr I	Yig E	Ba Tí	B	A1	Na	ĸ	W	Hg S	Sc 1	11 \$	i Ga	Se	Ag**	Au**	<u></u>
 	ppm	ppm	ppm	ppm	ppm	opm	ppm	ppm	I.	ppm pp	D	ppb pp	n ppr	n ppm	ppm	ppm	ррв	¥	t p	ppm p	pa	t pp	1 m	ppm	x	I	¥	ppm p	pin pp	om pp	yn 1	t ppm	ppm g	gm/mt	gm/mt	
SND05422-1										5.6 4.2																							<.5	3	1.85	
SND05422-2	1.7	154.1	43.9	41	1.1	1.3	1.7	365 1.	86 7	5.3 8.0	3 4	6.0 B.	5 5	5.6	.5	.4	1	.07 .0	018	7 3	.5 .(03 2	26 .001	3	.31 .	.007	. 30	5	01.	.4.	1 1,67	7 1	<.5	<2	.15	
SND05422-3	1.4	68.3	41.2	60	.5	1.3	2.2	596 1.	7B 1	1.1 16.6	5 11	5.8 9.	6 6	5.6	14.5	.2	Э	.07 .0	023	17 3	.5 .0	05 3	36 ,003	3	.30.	02D	. 21	.2 .	02 .	8.	1 1.09	1	<.5	<2	. 22	
SND05422-4	3.1	678.3	438.0	104	8.4	1.5	3.1	702 Z.	99 5	2.8 6.3	7 706	7.9 7.9	97	3.1	9.6	4.5	2	.05 .0	18	13 2	.7 .0	02 4	14 .001	3	.31.	.015	.24	.2 .	08 .	.6.	1 2.74	1	<.5	8	7.57	
SND05422-5	1.11	126.8	186.2	73	16.7	1.5	2.9	618 2.	41 2	3.2 3.4	\$ 2707	9.0 8,	65	1.5	1.8	7.5	Э	.08 .0	020	11 3	.2.(05 E	30 .002	2	.28 .	.014	. 23	.2 .	14 .	.7 .	1 1.55	5 1	<.5	10	17.80	
SND05422-6	1.3	39.1	7.0	36	.1	1.1	1.8	956 1.	32	3.1 3.6	52	6.2 9,9	96	i.2	2.5	.1	6	.09.0	025	20 2	.0.0	07 d	13 .008	1	. 32 .	.035	. 20	.2 .	61 1.	.1.	1.12	2 1	<.5	<2	.03	
SND05422-7	1.1	87.3	85.7	129	.7	1.1	1.9	997 1.	85	9.7 3.5	5 126	1.0 9.4	88	3.5	.5	2.2	4	.07 .0	021	16 2	.1 .0	03 4	17 .002	1	. 28 .	030	. 19	.1 .	Q1 .	. 8	1,78	1	<.5	<2	2.38	
SND05422-8	1.3	59.9	69.3	78	1.9	1.1	1.7	738 1.	24	4.2 3.3	1 73	2.7 10.4	B 10	.7	.3	.2	4	.07 .0	024	19 3	.7 .0	03 6	53 .002	1	.29	031	. 18	.1 .	01 1.	.1 .	1.25	5 1	<.5	<2	.72	
SND05422-9	1.1	12.5	50.7	81	<.1	1.2	1.4	705 1.	10	2.5 3.3	21	5.9 10.	6 13	3.6	.3	<.1	6	.D7 .Q	023	20 2	.9 .1	03 5	98 .002	2	.31 .	048	.16	.1 <.	01 1.	.2 .	1 .12	2 1	<.5	<2	.01	
SND05422-10	1.2	12.9	48.3	78	.1	1.5	1.8	694 1.	12	2.6 2.1	83	1.7 10.	7 11	.4	.3	.1	5	.07 .0	022	19 2	.9.1	03 8	88 .003	2	.30 .	046	.17	.1 <.	01 1.	. 1 .	1.1	7 1	<,5	<2	.03	
SND05422-11	1.2	7.8	3.6	47	<.1	1.6	6.6	839-2.	75	.8 1.0	6	4.0 6.	1 29	.1	.1	.1	49 1	.09.0	079	20 4	.8	62 24	1 9 .159	· 1	1.07 .	064	.48	.1 <.	01 4.	.4 .	.2 < .09	56	<.5	<2	.01	
										B.4 3.3																									10.08	
SND05422-13										3.4 5.:																									.27	
SND05422-14										2.9 3.3																									.01	
SND05422-15										4,7 4.3																									.03	
SND05422-16	1.7	18.9	27.3	63	.8	1.3	2.5	856 1.	29	5.3 11.3	2 34	0.5 12.	16	3.2	3.4	.3	5	.08.0	027	19 3	.1.1	D8 é	54 .013	1	.29 .	.040	.20	.1 .	01 1.	.2	1 .19	9 1	<.5	<2	.15	•
SND05422-17	1.5	103.6	76.6	111	.3	1.5	2.3	993-1.	78 1	3.4 2.9	91	7.0 10.	2 10).6	.7	.3	4	.06 .0	022	18 2	.5 .1	03 e	53 .002	1	.27 .	.018	.19	.4 <.	01.	.9.	1.72	2 1	<.5	<2	.04	
RE SND05422-17	1.4	103.7	72.B	111	.3	1.6	2.3	971 1.	74 1	3.5 Z.I	84	3.4 11.	D 5	9.6	.6	.3	4	.06 .0	021	16 2	.9 .1	03 5	57 .002	1	.25 .	017	.17	.4 <,	01 .	.9	1.68	3 1	<.5	<2	.03	,
RRE SND05422-17	1.8	93.7	69.7	105	.2	1.4	1.9	926 1.	63 1	1.1 3.:	2	B.4 10.0	0 10) .6	.6	.2	4	.06.0	021	16 2	.3 .1	03 e	50 .002	1	.28	020	.19	.2 <	01 .	9	1.54	1 1	<.5	<2	.08	
SND05422-18										2.4 3.3																									. 02	
SND05422-19	9	8.1	94.0	132	.2	6.9	5.9	1543 1.	76 1	2.2 23.9	94	4.0 8.1	1 31	I.6	1.1	.1	6	.15 .0	051	24 5	.3 .1	05 102	24 .001	4	.31 .	.013	.17	.2 <.	01 1.	.8	1.11	. 1	<.5	<2	. 04	
SND05422-20	.7	3.8	B9.2	110	.2	2.9	6.2	598 .	96	4.4 15.4	4 8	4.0 7.4	4 16	5 1.0	.4	<.1	3	.07 .0	013	18 2	.7 .1	04 51	L4<.001	3	.29.	016	. 14	.2 <.	01 1.	.1 .	1 <.05	5 1	<.5	<2	. 02	
SND05422-21	1.2	10.3	143.0	123	.3	2.9	4.0	987 1.	34	2.1 7.5	93	7.2 12.	1 17	1.2	.3	.1	3	.08 .0	023	19 2	.5 .1	03 7	71 .001	3	.25 .	026	. 13	.1 <.	01 1.	.4 .	1.09	ə 1	<.5	<z< td=""><td>.06</td><td>,</td></z<>	.06	,
SND05422-22	1.2	4.0	109.9	114	.2	1.7	2.6	826 1.	09	1.7 5.3	2	.5 10.	6 35	5.5	.z	.1	3	.06 .0	017	15 a		03 14	23 .001	2	.30 .	023	. 14	.2 .	01 1.	.1.	1 <.09	5 1	<.5	<2	.01	
SND05422-23	1.4	16.3	123.5	128	.4	2.1	4.3	863 1.	27	8.2 9.4	4	7.8 9.	9 37	7.7	.3	.1	4	.06.0	019	12 2	.2 .1	03 13	37 .001	2	.37 .	.026	. 14	.1 <.	01 1.	.4 .	1.1	1 1	<.5	<2	.01	
5ND05422-24	1.0	3.2	70.5	141	.1	1.7	3.1	1013 1.	41	1.3 6.0	0	1.9 10.	6 16	1.6	.2	.1	3	.06 .0	017	20 2	.0	04 7	76 .001	z	,24 .	025	.12	.2 <.	01 1.	.2 .	1 <.05	5 1	<.5	<2	.01	
SND05422-25	.9	25.1	98.C	139	.5	1.8	2.3	709 1.	04	4.5 8.3																									.11	
SND05422-26										0.3 7.																								-	.16	
SND05422-27										1.7 4.1		6.3 11.																							.01	
SND05422-28								-		2,7 8,																						51			.03	
SND05422-29	1.4	95.9	92.4	79	.6	1.5	2.1	732 1	76 3	7.8 6.	15	4.6 8.	19	5.8	2.1	.3	1	.06 .0	020	11 2	2.8 .1	04 1;	25 .001	2	. 30	.011	.27	.2 <.	01	.7 .	.1 .84	41	< 5	<2	.16	j
SND05422-30										9.3 7.																							<.5		.13	
SND05422-31										.9 1.																									<.01	
										6.8 3.4																									9.95	
STANDARD DS5/R-2a/DxL34																																				

ACME ANALYTICAL

Almaden Minerals Ltd. PROJECT ELK05-5 FILE # A505256

74

Sector Sector

Page 2

L. CANCE

ACME ANALYTICAL		ACME ANALYTICAL
SAMPLE	No Cu Pb Zn Ag Ni Co Mn Fe As U Aw Th Sn Cd Sb Bi V Ca P La Cn Mg Ba Ti B Al Ka K w Hg Sc Tl S Ga Se Ag** Au**	
	pom pom pom ppm ppm ppm ppm ppm ppm ppm	
SND05422-33	1.4 232.6 65.2 79 1.8 1.1 1.8 550 2.12 46.7 4.8 365.3 7.1 4 1.4 22.6 .5 2 .06 .019 10 2.5 .05 82 .001 1 .33 .014 .28 .1 .01 .6 .1 1.44 1 <.5 2 .35	
SND05422-34	1.3 24.1 20.8 59 .5 1.0 1.8 771 1.14 6.2 3.1 517.2 9.7 9 .3 1.1 .1 3 .08 .023 19 3.8 .04 202 .002 2 .29 .030 .21 .1 .0 1.9 .1 <5 <2 .09	
SND05422-35	1.7 56.6 92.2 83 .7 1.0 3.2 587 1.71 35.1 3.9 29.1 7.2 5 .4 .6 .3 2 .05 .019 9 2.2 .03 43 .001 2 .34 .009 .31 .2 <.01 .6 .1 1.19 1 <.5 <2 .05	
5ND05422-36	1.4 44.1 14.5 73 .3 1.3 2.5 1342 1.79 15.5 5.0 8.1 9.0 6 .5 1.5 .1 4 .09 .023 23 3.1 .06 76 .006 2 .29 .031 .21 .1 .01 .9 .1 .37 1 <.5 <z .04<="" td=""><td></td></z>	
SND05422-37	1.3 60.6 56.6 60 1.9 .8 2.5 510 1.40 23.1 4.2 225.5 9.2 6 1.0 5.8 1.0 2 .06 .022 16 2.3 .04 44 .001 1 .30 .026 .24 .1 .01 .7 .1 .64 1 <.5 2 .32	
SND05422-38	1.4 42.3 21.2 43 .6 1.2 4.0 622 1.45 15.7 2.8 20.9 9.6 7 .3 .2 .5 3 .07 .021 16 3.5 .03 39 .002 1 .29 .023 .22 .1 < .01 .7 .1 .76 1 < .5 <2 .08	
SND05422-39	1.3 5.8 14.2 25 <.1 1.0 1.1 251 .63 .5 2.5 4.4 7.5 15 .1 .2 <.1 3 .08 .020 23 2.9 .04 86 .011 1 .30 .051 .18 .1 <.01 .9 .1 <.05 1 <.5 <2 .01	
SND05422-40	9.7 35.7 126.6 160 1.3 1.4 4.3 1017 2.09 87.8 5.5 397.8 8.7 4 .9 .5 .6 2 .06 .016 13 3.5 .04 33 .001 1 .30 .017 .23 .2 <.01 .6 .1 1.17 1 <.5 <2 .61	
SND05422-41	2.3 9.9 35.7 105 .3 .9 2.4 665 1.17 13.5 3.5 109.7 10.2 10 .4 .7 .1 3 .09.024 18 2.5 .04 52 .002 2 .27 .039 .19 .1 <.01 .9 .1 <.0 <.0 <.0 <.0 <.0 <.0 <.0 <.0 <.0 <.0	
SND05422-42	3,3 9.6 92.6 175 .6 1.5 3.6 1031 1.38 8.3 6.1 78.8 12.2 21 1.5 .3 .1 3 .09 .021 23 4.4 .04 132 .001 2 .28 .028 .17 .4 <.01 .9 .1 .15 1 <.5 <2 .13	
SND05422-43	2.1 31.9 61.0 82 .4 .9 1.9 496 1.21 9.0 3.5 132.5 11.0 12 .5 .4 .2 3 .08 .020 23 2.0 .05 56 .007 1 .29 .039 .18 .1 <.01 .8 .1 .49 1 <.5 <2 .51	
SND05422-44	15 6.6 11.3 50 .1 1.3 6.0 900 2.29 2.4 4.4 11.3 9.7 22 .1 .1 <1. 32 .64 .074 19 3.9 .45 200 .093 1 .73 .052 .40 .1 <.01 3.3 .2 <.05 4 <.5 <2 .02	
SND05422-45	1.6 19.7 46.7 40 1.3 1.4 7.8 798 2.00 4.3 5.8 2073.2 12.0 38 .2 .7 12 .99 .062 25 2.4 .28 70 .002 3 .44 .030 .26 .3 .01 2.5 .1 .23 2 <.5 <2 1.61	
SND05422-46	4.1 338.1 239.6 204 5.8 31.4 15.9 2349 4.96 62.2 6.4 1195.8 4.1 42 4.4 4.1 1.8 10 .67 .101 9 11.6 .22 18 .002 3 .45 .009 .31 .2 .03 4.4 .1 2.46 1 <.5 9 1.83	
SND05422-47	6.2 73.4 229.4 135 .7 2.9 6.0 1742 3.05 20.4 5.6 94.0 5.1 12 2.3 .3 .2 10 .27 .072 18 2.5 .12 140 .001 3 .62 .021 .45 .3 .01 3.6 .2 .89 z <.5 <z .14<="" td=""><td></td></z>	
SN005422-48	4.5 50.6 52.2 92 .2 1.0 3.1 1097 2.28 23.1 4.0 36.5 5.2 17 .8 .2 .2 6 .22 .061 15 2.5 .11 295 .001 2 .35 .024 .27 .1 < .01 2.4 .2 .39 1 < .5 <2 .03	
SND05422-49	2.3 88.2 250.1 155 4.4 1.4 3.2 254 2.96 85.9 4.0 2032.5 3.4 5 2.3 .3 1.3 1 .09 .027 7 2.4 .03 42<.001 1 .34 .010 .31 .3 .01 .7 .1 3.00 1 <.5 5 1.91	
SND05422-50	2.1 153.1 493.4 217 4.7 1.5 5.1 172 3.64 138.5 8.3 1569.6 3.5 6 3.8 .5 3.2 1 .09 .030 5 2.8 .03 26<.001 2 .34 .007 .31 .2 .02 .7 .1 3.90 1 <.5 7 2.32	
SN005422-51	1.2 2.0 5.4 36 <.1 1.0 2.4 550 1.39 1.1 3.9 7.3 11.7 8 <.1 .1 16 .25 .034 25 6.6 .24 80 .086 <1 .44 .068 .28 .1 <.01 1.7 .2 <.05 3 <.5 <2 .01	
SNDD5422-52(pu1p)	23.3 57.5 409.5 33 4.8 1190.2 31.4 406 2.30 57.9 .5 32409.4 3.6 19 .3 .5 5.1 32 .48 .033 14 1660.7 .60 150 .045 4 1.00 .041 .27 13.7 .01 2.4 .1 <.05 3 <.5 6 34.37	
SND05422-53	.8 291.5 222.3 83 17.2 1.4 2.6 299 2.45 59.1 4.0 7972.3 3.1 3 1.4 .3 5.8 1 .05 .020 5 3.3 .03 29<.001 2 .31 .006 .30 .2 .02 .6 .1 2.32 1 <.5 21 17.93	
SND05422-54	1.0 73.2 29.1 38 .3 1.0 1.9 575 1.86 24.0 2.0 28.6 4.8 7 .2 .2 .3 4 .12 .032 13 2.3 .07 55 .001 3 .31 .038 .22 .1 <.01 1.3 2 .54 1 <.5 <2 .05	
SND05423-1	1,2 28.9 30.1 18 1.2 1.2 1.9 477 1.18 21.5 2.6 63.8 10.9 4 .2 .1 .8 5 .00 .022 17 4.7 .08 118 .005 1 .32 .021 .21 .1<01 .9 .1 .38 1 <.5 <2 .16	
SND05423-2	1,6 20.2 25.9 34 .2 1.3 1.6 549 .95 16.3 2.7 7.3 9.9 5 .3 .1 .1 5 .08 .021 19 3.2 .05 152 .006 1 .29 .028 .22 .1 <0.1 -1 -1 -1 -5 <2 .01	
SND05423-3	1.5 11.4 7.4 19 .1 .7 2.0 471 .99 5.4 3.1 39.2 12.0 5 .1 .1 .1 5 .10 .026 21 3.4 .08 69 .005 2 .33 .030 .20 .1 <.01 1.0 .1 .11 1 <.5 <2 .12	
SND05423-4	11.7 7.3 3.3 13 .1 .8 2.1 566 1.09 .5 2.6 4.7 10.4 6 <.1 .1 .1 3 .12 .022 28 2.4 .09 60 .001 1 .27 .037 .16 .1 <.01 .7 .1 <.05 1 <.5 <2 .03	
SND05423-5	2.0 42.0 4.6 35 .3 1.5 5.7 1572 2.52 8.7 3.2 78.5 7.4 49 .2 .1 .2 25 1.97 .078 16 2.6 .47 114 .042 1 .80 .026 .34 <.1 <.01 3.5 .1 .41 3 <.5 <2 .09	
SND05423-6	2,8 71.5 5.4 32 .8 1.4 5.3 1119 2.66 7.1 3.2 323.4 7.7 39 .1 .1 .3 27 1.56 .077 15 2.5 .41 111 .031 2 .93 .02933 <.1 <.01 3.5 .1 .62 4 <.5 <z38< td=""><td></td></z38<>	
SND05423-7	1.3 119.7 7.1 35 .2 1.3 4.7 991 2.29 4.9 1.9 76.5 6.9 43 .3 .1 .3 28 1.49 .087 14 2.5 .42 94 .020 2 .96 .022 .29 <.1 <.01 3.4 .1 .37 4 <.5 <2 .10	
SND05423-8	1.3 37.5 7.5 102 .3 9.9 8.6 2076 2.13 13.6 1.6 43.4 6.6 71 2.3 .1 <.1 14 4.32 .099 19 6.2 .38 88 .008 2 .78 .018 .42 .1 <.01 3.5 .1 .30 2 <.5 <2 .06	
RE SND05423-8	1.3 33.2 7.2 100 .3 9.8 7.6 2003 2.05 12.1 2.2 52.7 6.2 67 2.2 .1 <.1 14 4.12 .092 18 6.2 .36 87 .008 1 .75 .017 .40 .1 <.01 3.3 .1 .28 2 <.5 <2 .05	
RRE SND05423-8	1.6 26.9 7.1 92 .3 14.6 9.6 2324 2.30 12.5 1.9 34.6 5.0 79 1.8 .1 <.1 14 5.30 .106 13 8.9 .39 86 .009 2 .73 .015 .39 .1 <.01 3.6 .1 .28 2 <.5 <2 .04	
SND05423-9	2.2 61.4 46.7 78 .6 2.6 5.2 1866 1.95 25.9 1.5 19.2 5.4 30 1.8 .1 .1 7 1.62 .083 11 1.2 .33 249 .003 1 .67 .010 .48 .7 <.01 2.3 .1 .42 2 <.5 <2 .04	
SND05423-10	1.4 482.7 6434.7 8282 33.2 4.0 5.2 2745 3.53 86.2 3.7 8169.5 8.1 5 248.4 1.2 4.1 4 .33 .080 13 2.5 .12 58 .001 1 .46 .007 .36 .2 .15 1.8 .1 2.55 1 <.5 37 10.67	
STANDARD DS6/R-2a/0	0ad 34 11.3 122.9 29.7 143 .3 24.7 10.5 702 2.80 21.0 6.5 46.3 7.9 40 6.0 3.0 5.0 55 .85 .078 14 182.7 .57 164 .081 17 1.89 .071 .15 3.3 .22 3.3 1.7 < .05 6 4.1 160 5.70	

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data (FA

SAMPLE#

SN005423-11

SN005423-12

SND05423-13

SND05423-14

SND05423-15

SND05423-16

SND05423-19

SND05423-20

SND05423-22

SND05423-23

SND05423-24

SND05423-25

SND05423-26

SND05423-27

SND05423-29

SND05423-30

SND05423-31

SND05423-32 SND05423-33

SND05423-34 SND05423-35

SND05423-36

SND05424-1

SND05424-2 RE SND05424-2

SND05424-3

SND05424-4

SND05424-5

SND05424-6

SND05424-7

SND05424-8

SND05424-9

SND05424-10 STANDARD DS6/R

RRE_SND05424-2

Almaden Minerals Ltd. PROJECT ELK05-5 FILE # A505256

Page 3

																										·····	AC	te analyt	ICAL
Мо Си ррт ррт	Pb Zn ppm ppm	Ag l ppm pj				As ppm					Sb Bi ppm ppm		Ca %	P % [Mg Ba %tppm						W Hg poprin popri				Ga Se opmippm	~	
1.4 95.2 3.8 520.3 1.2 15.7 3.5 100.7 2.0 15.7	30.5 68 31.1 52 2.0 44 2.9 31 2.6 48		.0 9.4 .3 5.3 .6 5.	4 1216 5 798 1 1307	8.38 2.59 2.37	10.7 2.2 7.7	3.2 3.8 4.3	3133.6 34.5 11.6	4.5 7.5 6.7	7.8 15.1 15.1	.3 .5 .1 .7 .1 .1 .2 .1 .1 <.1	20 36 14	.37 .57 .66	.069 .072 .067	10 17	2.7 4.0 2.6	18 73 25 31 47 193 25 82 37 188	.052 .131 .028	1 1 2	.54 . .77 . .53 .	018 . 037 . 013 .	40 46 37	.5<.01 .3<.01 .1<.01 .2<.01 <.1<.01	3.2 4.6 2.3	.35 .2 .2	. 32 . 15	2 <.5 2 <.5 4 <.5 2 <.5 3 <.5	14 <2 <2	1.16 4.34 .05 .02 <.01
1.8 11.6 1.7 5.6 .8 15.8 1.3 394.8 1.7 253.7	2.9 46 1.5 38 2.3 55 872.8 179 58.4 108	<.1 1 .1 2 6.7 4	.76. .98. .37.	6 911 0 1533 9 1545	2.66 3.19 2.64	.8 3.5 3.7	2.3 4.6 9.7	.7 10.7 13.6	8.0 7.9 7.2	23 <.1 13 .3 11 3.0	.1 <.1 .1 <.1 .1 .1 .4 9.2 .2 .8	43 34 18	1.16 .61 .32	.080 .084 .064	15 16 21	5.5 3.4 5.4	39 199 64 180 59 169 15 41 24 56	.132 .081 .005	1 <1 1	.92 . .97 . .22 .	038 . 025 . 018 .	50 43 09 <	.3<.01. 1<.01. 1<.01	5.5 4.9 5.0	.2 < .2 .5	.05 .22 .18	3 <.5 4 <.5 4 <.5 1 <.5 2 <.5	<2 <2 9 8	.01 .01 .03 .06 3.78
2.7 233.1 2.4 270.3 3.3 34.5 2.8 18.3 2.0 13.7		1.2 2 3.9 3 .2	.07. .05. .73.	0 1728 8 1755	4.35 3.28 1.64	85.3 31.3 3.1	5.6 3.1 6.6	479.1 2574.0 20.5	6.8 5.8 18.1	7 .6 13 .2 15 1.0	.2.8	5 14 11	.31 1.08 .57	.080 .063 .040	12 16 21	2.0 2.4 5.1		.001 .009 .010	1 <1 <1	.44 . .40 . .43 .	009 . 019 . 031 .	.31 .21 - .19	.2 .01 1 .01 .01 1<.01 .	2.3 3.6 2.5	.12 .1 .1	.57 .47 .06	1 <.5 1 <.5 1 <.5 2 <.5 4 <.5	<2	.95 .49 1.41 .08 <.01
2.5 6.9 2.3 23.1 4.2 9.7 7.7 35.0 2.0 32.6		.7 .2 1 1.8	.8 3. .7 3. .7 3.	4 1072 1 710	2.07 2.44 2.40	6.5 .7 10.8	2.7 2.0 2.3	215.0 32.3 736.2	11.4 8.4 8.6	9.1 11.8 7.2	.3 <.1 .1 .1 .1 <.1 .2 .3 .2 .3	8 13 8	.23 .25 .19	.045 .048 .044	26 28 22	3.3 2.8 4.0	12 45 16 96 15 295 15 58 12 41	.013 .015 .019	2 <1 1	.30 . .26 . .26 .	031 033 027	.17 .13 .16	.1<.01 .1<.01 .2<.01	2.0 3.2 2.7	.1 .2 < .1	.43 .05 .52	1 <.5 2 <.5 2 <.5 2 <.5 1 <.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.10 .34 .01 .88 .55
5.1 30.7 5.8 35.4 1.2 49.7 1.0 6.0 1.1 6.4	4.9 39 4.9 34 38.6 47 9.0 25 9.4 26	.7 1 1.6 <.1	.0 1. .7 1. .6 1.	3 535	1.71 1.80 .92	5.3 30.9 1.2	2.0 3.7 2.8	92.3 619.0 1.3	5.0	6.1 4.5 5.2	.2 .2 .2 .2 .1 .5 .1 <.1 .1 <.1	3 3 4	.14 .09 .09	.025 .022 .024	14 14 21	2.5 3.7 2.8	10 36 10 42 06 111 05 101 05 102	.003 .001 .001	3 <1 2	.24 . .19 . .21 ,	031 . 011 . 018 .	. 16 . 15 . 15	.2<.01 .3<.01 .1<.01	1.3 8 9	.1 .2 1 .1 <	.20 .00 .05	1 <.5 1 <.5 1 <.5 1 <.5 1 <.5	<2 3 <2	.22 .14 1.18 <.01 <.01
1.1 6.6 .9 21.3 1.2 28.8 .9 4.7 2.5 37.2	30.5 45 40.2 76 10.5 46	.2 .6 .1	.7 1. .5 1. .9 3.	3 697	1.37 1.45 1.28	61.4 15.3 2.4	4.0 2.3 3.4	22.5 172.5 46.4	10.8 11,1	5.3 5.8 6.2	.1 .1 .2 .2 .2 .5 .1 .1 .1 .2	4 6 3	.10 .11 .10	.025 .023 .023	18 19 19	2.5 3.0 2.5	.05 98 .05 295 .07 96 .07 172 .43 100	.003 .007 .001	1 <1 1	.25 . .22 . .18 .	015 024 025	. 18 . 13 . 12	.2<.01 .1 .01 .1<.01	L 1.0 L 1.0 L 1.0	.3 .1 .3	.53 .54 .28	1 <.5 1 <.5 1 <.5 1 <.5 2 <.5	<2 <2 <2 <2 <2 <2	.04 .04 .44 .03 .18
1.4 13.6 3.1 21.1 .9 64.7 1.4 86.2 11.4 122.3	8.2 57 4.0 38 2060.2 245	.2 11 .2 3 2.8 3	.9 10. .4 7. .2 8.	5 1387 7 991	2.55 2.40 4.13	17.2 6.1 41.9	4.3 1.9 4.6	161.9 7.3 1190.3	5.2 5.2 5.3	22 .7 15 .1 86.1	.1 .2 .1 .1 .1 .1 1.8 .3 3.1 5.0	14 27 5	1.93 .61 .48	.096 .081 .072	21 14 11	6.8 2.4 2.7	.21 122 .31 164 .13 35	.021 .073 .001	1 <1 2	.56 .67 .34	014 032 008	.37 .39 .26	.3 .03	1`3.0 1 3.5 1 2.1	.1 .2 .1 2	.41 .28 2.38	3 <.5 2 <.5 3 <.5 1 <.5 6 4.6	<2 <2 <2 3 159	.10 .30 .04 2.20 5.73

Standard is STANDARD DS6/R-2a/OxL34. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data (FA

Ł

Almaden Minerals Ltd. PROJECT ELK05-5 FILE # A505256

Page 4

INC MARLETI ICAL	· · · · · · · · · · · · · · · · · · ·	÷							===:::											· .														ALM	ANALYT:
	SAMPLE#	Мо	Cu	РБ	Zn ,	Ag N1	Co	Hn F	e As	i U	Au	Th	Sr	Cd	Sb B1	i V	Ça	₽	La	Çr	Mg B	la Ti	8	AT 1	ia K	¥	Hg	Sc	۳١	s c	ia Se	Ag**	Au**		
		ppm p	xpan p	ppm p	рт р	pin ppr	n rapan	ppn	t ppr	n ppm	ppb	ррп	ppn i	ppm ;	ррлі ррл	n pom	1 X	X	ррт	ppm	* pp	m X	рря	I	1 1	ppm	ppn (20m	ppm	t pr	an ppan	gm/mt	gm/mt		
	SN005424-11	5.0 23		4.1	60	2.26.4	101	A74 7 1			133.1	0 r	26	.1	2 1		1.27	404	21 1		6 2 3 4				r ra				•		r . r				
	SN005424-11 SN005424-12			4.1				.072 3.1 1588 2.8						.1	1. 2.										5.53		<.01 4				5 <.5				
		2.8 25		/.4								6.5	-	.4	1. 1.		1.89										<.01 4				4 <.5				
	SND05424-13	2.2 101									1958.1				.6 1.8						.48 17				1.64		.01 3		.3 .;	-	3 <.5				
	SN005424-14	2.5 109		2.3		-					454.6				.2 .1		1.12					9.041			.48				.2 1.5	52	3 <.5	~?	. 38		
	SND05424-15	1.3 32	2.7 10	0.1	53	.2 2.8	10.3 1	.846 2.9	5 8.9	4.9	49.5	7.1	15	.2	.1 .1	1 33	.43	. 107	18	3.1 .	.32 16	6.047	2	.86 .03	10 ,45	<.1	<.01 (5.1	.3 .4	54	3 <.5	<2	.04		
	SND05424-16	3.3 648	. 1 11	1.5	63 6	.7 3.5	5.91	312 5.5	7 45.9	4.8	11852.6	5.5	6	.7	.5 10.3	39	.28	.067	12	3.6 .	.15 4	3 .006	Z	.54 .00	9.36	.4	<.01 2	2.4	.4 3.9	92	1 <.5	10	22.05		
	RE SND05424-16	3.5 646	5.9 11	1.5	6Z 6	.0 3.3	5.51	309 5.5	6 45.9	4.5	9904.4	5.7	6	.7	.4 10.1	19	. 27	.067	12	4.2 .	15 4	1.006	2	.53 .00	9.37	.4	<.01 2	2.2	.4 3.3	77	2 <.5	7	21.20		
	RRE SND05424-16	2.9 407	.1 10	0,6	59 4	.4 3,8	6.61	233 5.5	5 42.2	2 4.5	7392.8	5.9	5	.5	.3 9.4	1 9	. 25	.065	13	6.4	15 4	4 .005	2	.59 .01	1 .40	.4 -	<.01 2	2.0	.4 3.3	75	1 <.5	10	14.44		
	SND05424-17	1.5 11	.5 14	2.3	60	.1 2.7	5.71	430 2.7	1 2.3	3 5.0	77.2	10.1	14	.3	.1 .1	l 21	42	.079	21	4.7	.24 7	9.020	2	.56 .03	2.30	.1	<.01 4	4.5	.4 .1	07	2 <.5	<2	.06		
	SND05424-18	3.5 65	6.8	2.8	33	.6 2.3	5.7 1	270 2.8	5 221.6	5 3.7	45.2	8.0	24	.1	.3 .1	1 33	1.26	.071	14	4.9	46 11	9 .094	1	.91 .04	4.59	.4	<.01 4	4.2	.4 .4	47	4 <.5	<	.12		
	SND05424-19	3.0 102	2.2	7.2	34	.8 3.8	6.4 1	245 3.7	8 264.4	1 3.3	172.9	7,0	22	.1	.4 .1	31	1.20	.066	13	5.6	.45 10	3 .091	2	.94 .04	5.57	.2	<.01 :	3.8	.4 1.5	59	4 <.5	<	.31		
	SND05424-22	2.6 35	.4	9.1	28	.3 1.5	4.5 1	464 2.5	5 28.0	3.9	9.6	9.2	21	.1	.1 .1	L 21	1.07	.072	16	2.6	.34 9	8.058	· 1	.79 .03	2.51	. Z ·	<.01 3	3.9	.2 .4	49	3 <.5	<	2 .03		
	SND05424-23	2.9 49	9.3	2.6	28	.4 4.0	11.1 1	301 3.1	8 26.8	3 6.9	63.2	8.1	14	.1	.1 <.1	L 18	. 62	.066	12	4.0 .	.30 8	5 .047	2	.70 .02	8 .43	.2	<.01 :	3.4	.4 1.1	04	2 <.5	<	2.06		
	SND05424-24	2.8 22	2.4 8	8.8	37	.2 2.2	5.3 1	338 2.3	4 31.3	1 3.8	37.0	8.6	20	.3	.1 <.1	L 26	.76	.078	18	5.1	.39 11	6 .078	2	.80 .04	8.49	<.1	<.01 4	4.0	.2 .:	10	4 <.5	<	2 .10		
	SND05424-26	2.8 7	.4	1.9	30 <	.1 1.8	5.3	956 2.3	7.	5 3.4	1.1	8.2	21	<.1	.1 <.1	1 35	.82	.071	20	4.9	.48 13	8 .113	<1	.84 .04	8 .43	<.1	<.01 4				4 <.5	<	< .01		
	SND05424-27	4.0 37	1 2	1.8 1	05	.7 1.4	5.4 1	234 2.3	5 36.0	3.7	544.1	7.3	16	1.5	.2.1	L 26	5.57	.091	18	2.7	.36 10	3 .063	2	.80 .03	4 .52	.1	c.01 4	4.1	.2 .1	19	3 <.5	<	. 66		
	SND05424-28	2.2 37	7.7	5.3	34	.4 2.2	5.0 1	538 2.2	7 4.4	4 3.3	2.3	6.3	38	.1	.1 .1	L 27	1.91	.082	16	4.1	51 9	7 .070	1	.88 .03	5.48	.1 -	<.01 3	8.E	.2 <.	05	3 <.5	<	2 .01		
	SND05424-29	2.1 13	B.O (6.7	43	.1 2.6	6.71	378 2.4	9 3,9	5 3.5	17.4	7.6	22	.2	.1 <.1	L 28	.76	.084	24	3.6	35 15	1 .071	6	.63 .04	6.37	<.1	<.01 5	5.2	.3 .	13	3 <.5	<	2 .01		
	SND05424-30	2.7 64	1.9 4	5.5 1	08 4	.8 1.7	5.7 1	070 2.8	1 14.9	3.1	4799.8	5.7	11 3	3.Z	.I 1.5	54	.34	, C3D	14	5.6	15 5	0.001	1	.39 .03	8.21	.1	<.01	2.0	.1 1.3	17	1 <.5	5	5.41		
	STANDARD 056/R-2a/0xL34	11.3 122	2.1 25	9.1 1	41	.3 24.2	10.5	699 2.7	8 20.8	3 6.5	46.0	2.9	40	6.0	3.2 5.0	54	. 84	.078	13 17	7.4	.57 16	1.081	18 1	.89 .07	3.14	3.3	.22 3	3.3	1.7 <.	05	6 4 2	158	5.75		

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

CME ANA' (If			LABO red				TD.				2000	asti) (Emi)			18					(88.)/93.)			PH	one (604) 2:	53-3	315	8 P)	7 X (601	763	-171
					2	<u>\1m</u> ;	<u>ade</u> 110	<u>n 1</u> 3 -	<u>Mine</u> 750 W	eral Penc	la ier s	<u>Ltd</u> st., v	• P ancol	<u>ROC</u> iver	JECT BC V6	<u>r e</u> 50 2 1	LKO 8 \$	<u>5-5</u> ubmii] ted	711 by: 4	e # Iojtel	A5 Jak	05 Jbow	257 ski									
SAMPLE#	Mo ppm	Cu ppm		o Zn ∖ppm		Ni ppm					U ppm	A pp	u Th bppm	ו Sr וppm	Cd ppm p	Sb ppm	Bi ppm p	V Ca xn 1a	t P 1. 2	, La (ppm	Ĉr ppm	Mg %p	Ba pm	Ti % p	B A pm	\] %	Na X	K X p	W Hy pm ppi	g So n ppr	: Tl n ppm		Ga Se opm ppm
SND05423-21 SND05423-28 SND05424-25 STANDARD DS6	3.2 2 2.0 3	294.2 321.6	1338.7 257.1	955 20	13.3 45.1	1.7 1.9	4.0 5.6	636 553	2.12 4.77	234.9 1382.3	2.5 4.2	31394. 6668. 55102. 46.	24.2 25.9	4	19.7 .5 1	.8 1.53	2.0 15.6	2.20	036. 0 .058	56 57	4.2 4.1	.08 .09	85. 33.	002 002	3.5 2.4	57 .(18 .(007 . 007 .	34 33	.3.0. .4<.0	2.8 1.9	3.1 7.1	1.61 4.59	1 <.5 1 <.5
GROUP 1DX (>) CONCEN																											LUBII	LITY					
- SAMPLE T															_		(\mathcal{D}_{l}	£	3	' 05	-											
Data_[FA			DAT	re r	ECE	IVE	D;	SEP	2 200	5	DATE	REJ	POR 7	r ma	ILE	D:		<u></u>			••					BIA	5	Яľ	7	CER		
																									le	ŝ	¥ (1	1		X		
																									Ś			lare	ince	Leo		E)	
																											Ľ	Z		2	190		
																													۰.				

	SAMPLE#	S.Wt NAG		TotAg		
	SND05423-21 SND05423-28 SND05424-25 STANDARD R-2a	914 8.7 649 1.22 1023 5.40 - <.00	$ \begin{array}{ccc} 117\\ 15\\ 44 \end{array} $	126 17 49 156		
-AG : -150 AG BY FIRE ASSAY FROM 1 A. - SAMPLE TYPE: DRILL CORE M150 Data FA DATE RECEI	WED: SEP 2 2005 DATE REPO		<u>Ot</u> 3		Clarence	e Laone
						· .

	SAMPLE#	S.Wt NAu -Au TotAu gm mg gm/mt gm/mt		
	SND05423-21 SND05423-28 SND05424-25 STANDARD OxL	914 12.24 37.88 51.27 649 .72 5.15 6.26 1023 13.81 29.47 42.97		
- SAMPLE TYPE. DRILL CORE M150		ATED FROM -150 MESH. NAU - NATIVE GOLD, TOT, REPORT MAILED: $O + 3 \int 0 + 3 \int $	AL SAMPLE FIRE ASSAY.	
			UNAL OTO COM	
			Clarence Leong	
			Lar	

and a second second

PLATE NO.

750 W. Pender St., Vancouver BC V&C SAMPLE#		
	Au* Sample ppb gm	
SND05423-17 SND05423-18(pulp) SND05423-37 SND05423-38(pulp) SND05424-20	8.2 30 9877.3 15 1.3 30 32044.9 15 3.9 30	
 SND05424-21(pulp) STANDARD AU-R	32590.8 15 453.5 30	
SEP 2 2005 DATE REPORT MAI		Clarence Leond

and the second second

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ļ

								GĽ	;OC	HE	MICA	L.	AN	A .	5	LS	CE.	КТ.	[F]	.CA	TE						asta a ta Sector							a	1
	A	lm	ad	٩n	Mİ	ne	ra	Ls	Lt	d .	PRC)JE	CT	E	LK	05-	-6	F	11ε	\$ #	A	505	54	8		Pa	σe	ine A					sia Cografia		
											, Vano														Ki										
SAMPLE#	Mo	Cu	 Pt	2n	Aq	Ni	Co	∙hn Fe	As		Au	Th	Sr C	d 5b	81	نىنىنىڭ V	Ca	P La	Cr	Ma	Ba	<u>са</u> Г1 I	3 A1	Na	<u>نديند.</u> K	<u>نېښنې</u> لا	Ha	Sc	نطن کن T1	<u>s Gr</u>	يتبديني Se	initiana Ac		**	==
	ppn	ррп			-				ppm								x			•															
SND05425-1	2.0	17.6	38.6	5 10	.Z	1.5	.5	79 1.03	17.4	3.2	14.2	8.9	10 <.	1.4	.1	3	.02 .02	4 17	4.0	.02	81.0	32 <	L.37	.018	.31	.1	.01	.7	.1 .2	1)	1 <.5	5	<2 .(02	
SN005425-2	1.2	107.4	58.1	29	.5	1.5	.4 3	45 1.63	25.5	4.5	692.6 18	9.9	9 .	2.8	.6	2	.04 .02	1 23	4.0	.04	81 .D	34 <	. 34	. 023	.25	.2 .	.01	9	.1 1.0	o ;	< 5	i	<2 2.3	11	
5ND05425-3	1.1	49.2	7.0	48	.4	.9	2.6 10	30 1.30	8.5	3.0	571.8	9.8	4 .	5.2	.1	5	.08 .02	5 19	2.9	.08	51 .0	L6 <	L .30	.031	.22	.1 .	01 1	.1	.2.3	0 1	L <.5	5	<2 .2	25	
SND05425-4	1.3	133.9	135.5	37	15.6	1.2	2.9 4	49 2 18	797.5	5.2	13933.7 9	9.5	6,	6 1.4	3.8	1	.04 .02	0 11	3.4	.02	71.0	11	.30	.016	. 28	.2	01	.7	.1 1.8	5 1	<.5	ز	13 7.9	11	
SND05425-5	1.2	67.6	64.9	34	.4	1.1	1.9 5	35 1.51	18.1	3.9	370,7 13	1.7	9.	4.9	.7	3	.07 .D2	2 18	3.0	.04	95.0)3 <	. 35	.024	.24	.2 <	01	.8	.1 .5	7]	<.5	; ·	<2 .1	17	
SND05425-6	1.2	98.0	88,5	51	.1	1,1	2.6 6	31 1.87	34.6	4.6	659.5 11	1.1	8.	6.8	1.0	2	.06 .02	2 15	4.5	.05	77 .0)4 <	L.33	.017	.25	.1 <	01	.8	.1 1.0	2 1	<.5	5	<2 .3	34	
SND05425-7	1.4	104.0	146.€	37	1.5	1.2	2.9 6	16 2.00	41.3	3.7	721.9 10	0.1	7.	6 1.3	1.3	2	.06 .02	2 13	3.3	.03	68.0	11 <	.30	.015	.25	.1	02	.7	.1 1.3	2 }	L <.5	i	3 2.5	50	
SND05425-8	1.1	151.9	134.9	45	.9	1.1	2.8 5	68 1.48	25.8	4.0	580.7 1	D.4	9.	4 1.5	.6	z	.06 .02	2 15	4.4	. 53	89.0)3 <	L . 31	.021	. 25	.1	.01	.8	.1.8	1)	1 <.5	i	2.4	53	
SND05425-9	1.1	71.0	216.6	i 40	19.4	1.4	2.9 4	85 1.94	37.5	3.4	2243.0 10	0.4	9.	3 1.3	2.0	2	.06 .02	3 14	4.4	. 03	86 .D	02 <	1.30	. 021	. 23	.1 <	.01	.8	.1 1.4	3 1	1 <.5	i	5 7.0	63	
SN005425-12	1.3	22.6	32.1	45	.1	.8	1.3 2	77.92	4.5	2.7	33.0	9.8	δ.	3.2	.1	5	.09 .02	6 29	4.2	. 06	50.0	12 <	1.30	. 043	. 18	.1 <	.01 1	.1	.1.2	7]	<.5	۱	<2 .1	25	
SN005425-13	2.2	92.1	154.9	67	2.3	1.1	2.9 3	76 1.75	57.5	3.4	289.7 1	1.0	7.	6 2.3	2.5	2	.08 .02	7 17	4,0	. 02	122 .0	02 <	1.28	. 030	. 21	.1 <	.01	.8	.1 1.2	6 :	i <.5	ċ	4 1.3	13	
SND05425-14	3.4	11.0	55.9) 19	<.1	.9	L.8 1	35 .68	2.2	2.9	6.1 1	0.3	8.	3.5	<.1	5	.10 .02	9 29	5.0	.06	63.0	17 <	1 .33	. 039	. 24	.1	.01 1	1	.2.0	8 7	1 <.5	;	<2 .	02	
5ND05425-15	2.2	33.1	255.0	127	.3	1.1	1.9 3	31 .62	2 6.2	13.5	72.2.1	3.5	26 .	9.9	.1	<1	.09 .00	9 29	3.1	.03	102<.0	01	1.29	.019	. 19	.2	.02	.7	.1 .1	0 1	<.5	ذ	<2 .	10	
SND05425-17	2.3	15.7	86.7	106	. 2	1.2	1.4 6	43 .97	5.9	7.3	200.3 10	0.9	15 1.	0.2	.1	<1	.06 .01	6 26	4.0	.03	62<.0	01 :	2.25	.024	. 23	.1	.61	.6	.1 .1	5 !	1 <.5	i i	<2 .	18	
SND05425-18	2.6	43.9	69.1	81	.3	.8	1.5 7	56 1.40	21.8	5.0	55.3	9.3	8.	5 1.4	.2	1	.06 01	5 18	5.0	.04	61.0	D1	1.27	021	. 23	.1 <	01	.5	.1 .4	Q 7	<.5	j -	<2	19	
SND05425-19	2.1	5.4	206.3	103	.2	1.3	2.5 5	01 .7]	5.0	11.4	16.2 1	1.6	35.	3.5	<.1	1	.08 .01	5 25	4.2	.03	1616 .0	10	4 .27	. 029	. 16	.1 <	.01	.8	.2 .0	8 :	1 <.5	i	<2 .(02	
SN005425-20	2.8	51.4	183 .5	22	.3	1.2	1.8 2	67 .68	18.6	6.1	15.3 1	0.3	17.	9.7	.1	<1	.04 .01	4 22	3.3	.02	130<.0	01 .	2.25	. 022	. 23	.2 <	.01	.4	.2.3	2 3	1 <.5	ė	<2 .1	J2	
SND05425-21	3.7	9.B	42.6	i 26							9.9 1																				1 <.5	•	2.0)1	
SND05425-22			286.3								280.0 1																						2.3		
SN005425-23	1.4	79.4	161.4	248	<.1	2.2	3.2 11	80 2.90	7.6	5.7	13.1	7.6	13 .	9.2	.1	33	.45 .08	2 22	2.9	. 36	218 .0	85	2 .81	038	.41	<.1 <.	01 5	.4	.3.2	4 4	ı <.5	ý.	2.1)1	
SND05425-24											678.7																						<2 1.3		
SND05425-25			242.6								663.9																		.3 .6		3 <.5		2 .:		
SN005426-1											485.5																						<2 .		
SND05426-2											529.0																						<2 .		
RE SND05426-2	1.0	207.1	31.4	34	1.3	1.1	2.4 6	47 2.37	52.8	3.4	242.7	9.1	Э.	5.3	1.8	2	.07 .02	21 13	3.5	.05	35.0	02	1.33	.013	.27	.1 <	01	.6	.1 1.4	5 1	1 <.5	1	<2 1.1	78	
RRE SND05426-2	1.1	201.4	28.6	33	1.0	.9	2.3 6	37 2.36	5 53.9	3.7	378.1	9.3	3.	6.3	1.7	2	.07 .02	2 14	3.6	.05	36.0	03 <	1.31	014	. 27	.1	.01	.7	.1 1.4	7 1	1 <.5	;	<z< td=""><td>56</td><td></td></z<>	56	
5ND05426-3	1.1	40.Z	214.9	125	.4	1.1	3.2 4	73 1.04	469.7	60.2	66.0 1	0.8	71.	9.9	.2	2	.06 .02	9 21	3.1	.03	53 .0	01	1.28	.018	.23	.1	.02	. 8	.1.5	3 1	1 <.5	ذ	<2 .	10	
SND05426-4	1.3	35.3	264.(128	.4	.9	2.8 4	54 1.12	7 384.4	47.1	102.0	8.9	72.	0.9	.1	1	.05 .02	3 18	2.7	.03	48.0	02 <	1.30	.019	. 23	.1	. D1	.8	.1 .6	0	1 <.5	5	<2 .	13	
SND05426-7	1.4	45.8	62.0	52	.4	.9	1.9 5	64 1.Z4	23.5	8.4	90.5 1	0.6	9.	5 1.9	.3	2	.07 .02	0 18	2.6	.03	196 .0	01	1.26	. 024	.17	.1	.01	.8	.1 .6	z :	L <.5	5	<2.	18	
5ND05426-8	14.8	2975.8	1519.3	153	>100	1.4	3.4 2	38 4.96	5 250.4	11.3	45B22.5	5.2	910.	0 23.9	36.6	<1	.03 .01	.06	6.4	. 01	13<.0	01	1.19	.010	.17	.1	10	.4	.2 5.0	6 1	. <.5	i 1	.14 52.	18	
5ND05426-9	1.3	957.2	153.3	3 127	3.6	1.0	1.8 5	84 2.89	9 75.5	4.3	567.3 1	0.2	31.	8.4	3.5	1	.06 .02	22 9	4.6	.03	31.0	01	1.31	.010	.26	.1	. 01	.6	.1 2.5	з`.	1 <.5	5	6.	57	
SND05426-10	1.7	741.5	133.2	2 47	2.9	.9	1.7 1	50 Z.32	2 60.9	4.Z	1224.3	9.7	21.	6.3	3 2.1	<1	.05 .02	21 7	3.9	.02	46.0	01	1.33	.006	, 30	.2	.01	.4	.1 2.3	2	1, <.5	5	4	51	
5ND05426-11	1.4	25.5	6.9	30	.1	1.1	1.8 6	26 1.27	6.2	3.3	51.8 1	1.1	5.	1.1	1	6	.08 .02	24 27	4.7	.09	171 .0	17	3.Z	.042	. 20	.2 <	.01 1	1	.12	1 .	1 <.5	ذ	<2 .1	02	
SND05426-12	2.0	88.2	15.4	243	1.3	1.6	3.4 4	20 1.43	3 25.7	7.9	1425.9 1	1.0	54.	8.4	1.6	3	.08 .02	4 38	3.6	.05	51.0	08	1.30	.031	.19	.1	.01	.9	.3 .5	5	1 <.5	5	<2 1.3	31	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruper - SAMPLE TYPE: DRILL CORE R150

Data FA

t5/05 DATE RECEIVED: SEP 9 2005 DATE REPORT MAILED:

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

1.10

ΔΔ
TT
ACME ANALYTICAL

i

Almaden Minerals Ltd. PROJECT ELK05-6 FILE # A505548

Page 2

ACME ANALYTICAL			ACHE ANALYTICA
	SAMPLE	No Cu Pb Zn Ag N1 Co Mn Fe As U Au Th Sn Cd Sb B1 V Ca P La Cn Mg Ba T1 B A1 Na K W Hg Sc Tì S Ga Se Ag*≉ Au*≉	
		ρριπ φρή ροπ ροπ φρή φρή φρή φρή αν το	
	SND05426-13	1,2 165.2 91.6 22 1.0 .9 1.8 51 1.15 23.3 5.6 286.2 11.3 6 .5 .3 1.1 3 .07 .026 15 1.7 .03 38 .002 2 .30 .015 .26 .1 <.01 .4 .1 1.08 1 <.5 2 .96	
	SND05426-14	2.2 25.7 8.6 39 .4 2.0 2.0 333 1.23 8.8 4.4 102.3 10.9 6 .1 1.1 7.6 9 .09.032 58 3.2 .14 286 .026 2 .31 .033 .20 .1 < .01 1.0 .1 .28 2 < .5 2 .46	
	SND05426-15	1.6 29.1 32.6 67 .2 .8 1.7 677 1.00 9.2 3.5 6.1 11.0 7 .4 7.4 .1 3 .07 .023 15 2.6 .04 183 .001 5 .27 .020 .21 <.1 .03 .7 .1 .19 1 <.5 <2 .02	
	SND05426-16	1.5 64.6 61.3 71 .6 .7 1.8 745 1.49 24.8 3.3 33.8 9.7 5 .7 4.4 .4 3 .07 .022 13 2.7 .04 111 .002 1 .23 .018 .20 <.1 .03 .7 .1 .73 1 <.5 <2 .05	
	SND05426-17	2.4 38.4 106.7 75 .9 .8 2.3 720 1.33 9.9 6.7 19.6 11.0 8 .B 12.9 1.0 5 .09 .025 21 5.4 .06 105 .008 3 .26 .037 .16 .1 .02 .9 .1 .36 1 <.5 <2 .04	
	SND05426-18	1.2 93.3 53.7 70 .4 .9 1.6 647 1.12 13.8 6.4 3.5 11.2 8 .5 26.6 .5 3 .08 .021 21 4.7 .03 42 .002 3 .22 .029 .14 <.1 .03 .7 .1 .29 1 <.5 <2 .03	
	SND05426-19	1.3 89.3 181.2 80 1.2 1.7 8.2 701 1.76 59.9 42.8 57.7 8.0 8 1.2 2.0 .8 2 .06 .019 11 4.4 .03 51 .001 1 .24 .012 .18 .1 .01 .6 .1 1.16 1 <.5 3 .17	
	SND05426-20	1.4 145.1 68.7 72 1.4 1.1 1.3 670 1.87 45.2 3.0 12.3 8.4 6 .6 1.6 .4 2 .08 .021 11 2.7 .05 100 .001 2 .26 .016 .21 .1 .01 .6 .1 .81 1 <.5 2 .02	
	SND05426-21	1.6 132.7 64.9 90 1.9 1.1 1.6 760 2.23 40.8 2.8 36.4 9.2 5 .5 1.2 1.0 4 .08 .021 16 3.6 .06 73 .005 1 .29 .019 .20 .1 < .01 .7 .1 1.05 1 <.5 5 .04	
	SND05426-22	1.4 62.4 41.6 77 1.3 .6 1.7 745 1.55 12.3 3.1 13.9 9.3 5 .4 1.1 .9 5 .09 .021 17 3.2 .07 48 .011 2 .25 .022 .17 .1 .01 .9 .1 .42 1 <.5 2 .05	
	SND05426-23	1.5 42.7 49.2 61 .6 1.1 1.7 424 1.20 12.5 5.2 154.1 9.0 10 .5 6.0 .2 4 .09 .023 19 3.7 .04 55 .005 3 .25 .031 .18 .1 <.01 .8 .1 .51 1 <.5 <2 .38	
	SND05426-24	1.4 19.1 44.1 56 .5 1.1 1.6 403 1.09 7.0 5.4 603.5 9.4 10 .3 3.0 .2 4 .08 .022 19 3.0 .04 49 .005 3 .22 .031 .14 < 1 .01 .9 .1 .43 1 < .5 <2 1.78	
	SND05426-27	1.4 61.2 60.3 53 4.6 .7 7.0 547 2.84 25.4 2.6 275.8 11.6 5 .3 .7 4.2 3 .06 .018 14 3.3 .04 45 .002 2 .21 .017 .17 .2 < .01 .6 .1 2.26 1 < .5 6 1.05	
	RE SND05426-27	1.5 61.9 63.6 57 4.8 .6 7.6 557 2.90 26.4 2.6 221.4 11.8 6 .3 .7 4.1 3 .06 .018 16 3.3 .04 50 .002 1 .21 .017 .18 .2 <.01 .6 .1 2.40 1 <.5 6 .50	
	RRE 5ND05426-27	1.9 58.9 65.0 55 5.1 .8 7.4 547 2.89 26.4 2.7 288.1 12.1 6 .3 .7 4.2 2 .07 .018 15 3.2 .04 48 .002 1 .23 .018 .18 .2 .01 .6 .1 2.33 1 <.5 6 1.08	
	SND05426-28	1.6 49.6 4.7 46 .5 1.0 1.6 1128 1.81 10.9 3.3 8.5 10.8 5 .1 .7 .1 .027 20 4.1 .11 64 .015 2 .34 .038 .22 .1 <.01 1.4 .1 .42 2 <.5 <2 .02	
	SND05426-29	1.3 344.8 18.0 34 3.5 .7 1.5 460 1.55 8.2 3.1 71.4 9.3 5 .5 .2 13.7 6 .08 .024 17 5.0 .12 84 .022 1 .31 .031 .20 <.1 <.01 i.1 .1 .66 2 <.5 4 .11	
	SND05426-30	2.5 196.1 23.7 22 2.3 1.1 1.7 544 2.37 34.9 3.3 240.1 9.0 4 .3 .2 2.6 2 .08 .023 12 3.6 .06 86 .002 1 .30 .014 .26 .2 <.01 .6 .1 1.62 1 <.5 4 .11	
	SND05426-31	1.6 100.7 30.1 22 .7 .9 2.0 336 1.52 34.9 3.5 27.0 9.5 7 .3 .3 .7 2 .07 .024 15 3.7 .02 40 .001 3 .25 .023 .21 .1 <.01 .4 .1 1.10 1 <.5 <2 .13	
	SND05426-32	3.1 24.2 3.6 37 <.1 .9 1.9 905 1.30 1.4 2.1 <.5 11.8 7 .1 .2 .2 5 .12 .031 19 4.7 .05 141 .005 1 .25 .034 .15 .1 .01 1.0 .1 <.05 1 <.5 <2 .01	
	SND05426-33	2.2 67.6 26.3 51 .7 1.3 3.0 700 1.81 14.8 7.4 11.6 10.9 6 .3 .3 .3 3 .09 .022 16 3.2 .06 37 .003 1 .27 .023 .19 .1 <.01 .7 .1 .67 1 <.5 <2 .03	
	SN005426-34	3.2 21.1 22.3 66 .2 1.1 1.6 754 .99 4.0 3.6 118.2 11.7 6 .3 5.8 .1 3 .09 .024 22 4.1 .05 41 .003 3 .28 .023 .22 .1 .01 .6 .1 <.05 1 <.5 <2 .01	
	SND05426-35	4.6 30.1 135.0 110 .6 1.3 3.9 917 1.22 25.4 4.8 145.6 10.8 5 .8 2.6 .5 1 .09 .022 18 4.1 .04 98<.001 3 .25 .011 .22 .1 <.01 .5 .1 .92 1 <.5 <2 .28	
	SND05426-36	1.6 62.1 93.2 51 .6 .8 2.3 439 1.30 19.0 3.3 62.0 11.2 10 .5 .6 .3 4 .10 .023 18 3.5 .05 62 .008 2 .31 .024 .22 .1 <.01 .8 .1 .56 1 <.5 <2 .06	
	SND05426-37	2.4 11.3 18.0 59 <.1 1.0 1.2 620 .95 2.6 4.6 1.9 13.2 8 .2 1.7 <.1 4 .11 .024 24 4.4 .04 93 .003 2 .22 .036 .15 .1 <.01 .9 .1 <.05 1 <.5 <2 <.01	
	SND05426-38	3.7 3.9 80.7 54 .2 1.0 2.0 370 .75 1.4 6.5 55.2 10.8 4 .4 .8 .1 1 .06 .013 24 3.9 .03 18<.001 6 .22 .006 .21 <.1 .01 .4 .1 .09 <1 <.5 <2 .14	
	SND05426-39	1.7 204.6 492.8 349 10.5 2.0 3.2 1247 1.71 12.7 6.5 263.1 7.9 12 5.6 65.1 .3 3 .07 .010 21 4.1 .08 852<.001 4 .21 .007 .19 .1 .08 .9 .1 .13 1 <.5 10 .42	
	SND05426-40	1.8 21.5 183.1 155 1.5 2.0 2.9 430 1.43 41.1 6.7 2819.1 7.7 4 1.3 1.4 .5 2 .05 .013 11 5.4 .03 49<.001 3 .22 .016 .18 .1 .01 .4 .1 .85 1 <.5 <2 .97	
	SNDD5426-41	1.7 5.9 56.6 170 .2 1.0 1.7 512 .94 3.5 6.3 73.6 8.7 7 .7 1.1 .2 2 .07 .018 21 4.9 .03 341<.001 4 .21 .020 .18 .1 <.01 .5 .1 .12 <1 <.5 <2 .11	
	SND05426-42	2.3 9.1 73.2 224 ,2 1.0 2.2 503 1.05 12.7 6.1 46.9 11.0 9 .9 1.0 .1 1 .06 .017 17 3.8 .03 50<.001 3 .23 .026 .17 .1 <.01 .6 .1 .22 1 <.5 <2 .10	
	SND05426-43	1.8 8.9 71.1 220 .2 1.1 1.7 622 1.05 5.1 4.2 190.7 10.4 12 1.3 .5 .2 2 .08 .019 20 3.6 .04 48 .001 3 .23 .029 .16 .1 <.01 .9 .1 09 1 <.5 <2 .28	
	SND05426-44	1.4 15.5 139.6 203 .3 1.0 1.6 565 1.17 11.6 3.8 206.6 11.2 10 1.0 .5 .1 2 .07 .017 15 2.4 .04 48 .001 2 .21 .025 .14 .1 < .01 .7 .1 .24 1 < .5 <2 .39	
	SND05426-45	1.4 4.4 3.1 21 <.1 .7 1.5 472 1.11 <.5 2.2 5.4 10.9 5 <.1 .2 <.1 10 .10 .022 24 3.6 .17 55 .040 1 .37 .047 .21 .1 <.01 1.3 .1 <.05 2 <.5 <2 .01	
	SND05426-46(pulp)	23.4 59.3 397.6 35 4.9 1167.8 30.6 393 2.24 59.5 .5 31256.8 3.3 19 .1 .5 4.7 32 .45 .035 15 1547.8 .60 149 .047 7 .99 .046 .30 13.7 .02 2.5 .1 <.05 3 <.5 6 35.00	

STANDARD D56/R-2a/DxL34 11.5 124.4 30.0 146 .3 25.1 10.9 717 2.83 21.2 6.8 48.5 3.0 40 6.1 3.3 5.1 56 .83 .079 14 186.9 .59 163 .081 17 1.93 .074 .16 3.5 .22 3.3 1.7 < 0.5 7 4.3 157 5.80

Sample type: DRILL CORE RISD. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data [FA

Page 3

AGRE ARACTITUAL							_							_																						
	SAMPLE#	Mo	Cu	Pb	Ζn	Ag	Ni	Ca	Mn F	e As	U	Au	Th	Sr	Cd S	b B1	۷	Ca	Ρ	La	Cr	Mg	Ba T	(B	8 A1	Na	ĸ	н н	lg S	κn	I S	i Ga	Se	Ag**	Au**	
		ppm	ppa	pp®	ppm	ppm	ppm p	opm p	pm	t ppm	ррп	ppb	ppm i	p p ri	рра рр	a ppos	ррп	*	2	ppm	ppm	\$ p	рп	t ppn	۲ T	*	X p	pm pp	m pp	ла рря	n 1	ррт	п рря (9m/mt	gm/nt	
	CND05 436 43	2.0	20.7	115 0	201	14	1 2 4		77 1 0		601		a 7	5	1.4 Z.	7 6	,	05	014	16 1		04	31 .00	1 3) 7E	.021	20	.1 .0	1	.5 .1		чт	<.5	,	2 75	
	SND05426-47													2													.20									
	SND05426-48	1.6		39.7	105				-			121.1		5	.5 3.			.08 .				-	59.00			. 037	.19	.1 .0	-	.6 .1	10	1	<.5		.96	
	SND05426-49	1.5	20.4	32.2	209							291.5			1.0 1.	1.5		.08 .					95 .00			. 034	.18	.1 <.0	1.	.9 .1	24	1	<.5		. 14	
	SND05426+50	1.5	22.7	58.B	232	.4	1.3 1	1.6 5	65 1.1	4 6.7	3.1	36.1	10.9	12	1.4 3.	1.2	3	.07 .	019	19	4.7.	.05 4	77 .00	22	2.28	. 034	.18	.1 .0	1.	8.1	. 23	1	< 5	2	. 13	
	SND05426-51	2.6	67.9	329.2	453	2.3	.9 1	1.4 1	31 .9	3 40.0	8.11	.227 . 1	8.5	4	7.3 14.	7.7	1	.04 .	014	11	5.2.	02 1	48 .00	1 3	.30	. 006	.30	.2 .0	6.	.3 .1	. 80	1	<.5	3	.92	
	SND05426-52	B.9 1	85.8 2	2152.6	8395	10.4	1.2 2	2.6 5	92 1.2	3 12.0	4.5 2	611.9	8.3	7 26	9.0 58.	2 1.7	2	.06 .	015	15	4.5.	.04	99<.00	1 2	2.22	. 028	.16	.1 1.7	9.	.6 .1	.72	: 1	. <.5	11	2.48	
	SND05426-53	2.4	47.0	214.6	873	1.1	1.5 3	3.4 7	65 1.4	9 19.1	4.5	237.1	9.4	B 2	1.3 1.	0.6	2	.07 .	015	19	5.1 .	04	52 .00	1 2	2.29	.025	.21	.1 .0	5.	9.1	I.43	, 1	<.5	2	1.17	
	SND05426-54	3.6	13.3	163.9	96	.8	1.6 5	5.5 7	38 1.4	6 5.3	8.5	80.0	4.6	9	1.8 1.	9 1.1	4	.15	04D	12	3.2 .	09 2	54 .00	1 3	3.33	.009	.31	.1 .0	1 1.	.3 .1	.43	. 1	<.5	~2	. 28	
	SND05426-55	.9	24.2	18.9	55	.4	1.8 8	9.9 11	93 2.7	3 2.8	5.6	19.8	8.6	19	.B.	5.1	8	. 58 .	068	21	3.4 .	26 8	44 .00	4 4	.53	.024	.36	.1 .0	1 2.	.3 .1	0 9	, 2	2 <.5	<2	.03	
	SND05426-56	1.8	59.6	26.0	1062	.8	1.3 7	7.2 17	07 2.7	4 23.4	3.0	213.7	6.2	65 Z	0.4 1.	5.4	6	1.46 .	057	14	3.4 .	44 2	62 .00	1 5	5 .40	.017	.32	.1 .2	1 2.	.91	L .50	1	۱ ≺.5	<2	. 22	
	\$ND05426-57	3.2	76.7	95.5	141	2.3	1.9 4	4.9 16	65 2.9	2 34.9	3.2	311.4	6.5	23	2.8 5.	3 1.1	3	. 24 .	058	14	2.0 .	12	92 .00	1 3	3 .4Z	.011	.33	.2 .0	4 2.	.0.1	L.74	, 1	۱ <.5	3	. 46	
	SND05426-59	4.5.2	59.2	32.7	69	Z.9	1.9 5	5.1 7	44 3.0	9 35.0	3.7	718.5	5.2	20	1.8 12.	6 1.1	4	.22 .	076	14	2.2	14	38 .00	1 : 3	3.48	.018	.41	.1 .0	3 2.	.0.2	2 1.79	1	L <.5	3	. 39	
	RE SND05426-59	4.2.2	61.4	33.9	72	2.5	2.2 4	4.9 7	55 3.1	6 35.0	3.0	261.7	5.1	19	1.9 13.	0 1.2	4	.23 .	073	14	2.3 .	.14	36 .00	1 5	5.51	.017	.41	.2 .0	31	.81	1 1.73	; 1	L <.5	3	.34	
	RRE SND05426-59	432	64 2	33 5	74	2.8	19 3	537	64 3.1	5 34 3	3.8	301 D	57	20	1.6 12.	1 1.1	4	22	072	13	2.6	14	38 .00	1 4	1.50	.017	.38	.2 .0	4 1	.e	1.72	1	L < 5	3	.45	
	SND05426-60														2.6 12.						1.9		39 .00		1 60	.009	.39	.4 .0	4 1	6 1	1 2.83	4 - 1	2 <.5	10	1 20	
	58003420-00	3.77	9V.9	211.2	độ	Q.4	J.J 5	<i>υ</i> .υ c	4.1	2 00.0		-30.1	9.4	44	2.0 12.	5 3.0	•			,			05 .VU			.005		.4 .0	- 1.			2		10	7.20	
	SND05426-61	4.84	192.6	187.7	113	2.9	6.5 9	9.3 13	34 5.1	5 76.5	9.2	998.2	4.4	18	1.6 9.	3 1.9	3	.17 .	044	8	2.0	12	15 .00	1 3	.42	.007	.34	.5 .0	2 1.	.9 .1	1 3.72	: 1	۱ <.5	3	1.16	
	SN005426-62	19.4-1	38.2	184.6	47	28.2	9.8 1	8.3 5	695 3.4	2 58.4	16.4 2	836.2	3.1	4	1.3 27.	7 6.9	1	.10 .	029	7	4.2	03	19 .00	1 2	2.33	.005	.30	.1 .0	13 I.	.1 .3	1 3.00	, 1	l <.5	28	3.60	
	STANDARD DS6/R-2a/OxL34	11.7.1	23.4	29.7	142	.3 2	4.7 1	0.6 7	16 2.8	4 21.1	6.8	46. Q	3.0	40	6.1 3.	3 5.1	55	. 86 .	07 9	15 18	4.3	59 1	64 .08	2 18	3 1.93	.072	.16 3	.4 .2	3 3.	3 1.7	7 <.05	, f	5 4.5	161	5.73	

Sample type: ORILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

	1103 - 750 W. Pender St., Vancour SAMPLE#	er BC V6C 2T8 Submitted by: Wojtek Jakubowski S.Wt NAU -AU TOLAU	
		gm mg gm/mt gm/mt	
	SND05426-8 STANDARD OxL34	462 2.21 41.90 46.68 - <.01 5.73 5.73	
-AU : -150 AU BY FIRE ASSAY FROM	1 A.T. SAMPLE. DUPAU: AU DUPLICATED	FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY.	
- SAMPLE TYPE: CORE REJ. M150			
Data FA DATE RECEI	VED: OCT 12 2005 DATE REPO	T MAILED. NOV 4/05	
		Clarence Leong	

	SAMPLE#	S.Wt NAg -Ag TotAg gm mg gm/mt gm/mt	
	SND05426-8 STANDARD R-2a	462 1.06 104 107 - <.06 157 157	
- SAMPLE TYPE: CORE REJ. M150	A.T. SAMPLE. DUPAG: AG DUPLICATED F /ED: OCT 12 2005 DATE REPOR	ROM -150 MESH. NAG - NATIVE SILVER, TOT T MAILED: $10\sqrt{4/35}$	AL SAMPLE FIRE ASSAY.
			Clarence Leong

			CL 7						r St.,											1 1	2021 - 124 		<u></u>	
ample#	Mo ppm	Cu ppm	Pb Z ppm pp		g Ni m ppm	Со ррт р					Sr Co ppm ppm	l Sb 1 ppm	Bi ppm p	V Ca opm %	P L እpp	a Cr mi ppm	mgr≞ ⊧%tpp	m %	BA ppm			Hg Sc ppm ppm p		Ga ppm p
ND05425-16 ND05426-58 TANDARD DS6	31.9 4	4202.5	959.0 22	8 >10	0 5.0	18.8	33 6.17	248.2 2.	2 16691.	51.9	14 17.4	342.3	21.1	3.05	.021	6 6.6	.02 1	1 .001	2.3	5.006	.25 .1	.12 .3 .32 .5 .23 3.3 1	.1 6,63	1 •
GROUP 1DX (>) CONCEN - SAMPLE 1	TRATIC	N EXCE	EDS UPP	ER LIM	WITH I NITS.	3 ml 2 Some	-2-2 HC MINERAL	L-HNO3-I S May Bi	H2O AT S E PARTI	75 DÉG. Ally At	. C FOR	ONE H	IOUR, I RACTO	RY AND	GRAPHI	TIC SA	MPLES (D BY I CAN LI	CP-MS. Mit au :	SOLUBI	LITY.			
Data [FA		D	ATE	RECE	IVED	: SEP	9 2005	DATI	e rep	ORT	MAILE	sD:(<u> </u>	te	/25						•		
																			UMB	A A	<u>51</u> 6/	SERIE	3	
																			<u>Ö</u>	C.	.1)	Ê A	
																			HE CONTRACT		nce Leo	ong s	9	
																						7		
																					• •			

ACME ANATYTICAL LABORATORIES LTD. (If 001 Accredited Co.) AA Almaden M	ASSAY Minerals Ltd. PR	CLII OJECT I	FICAT	e -6 F:	ile # 2	PHONE (604) 253-3158 FAX (604	⁵³⁻¹⁷¹⁶ ДД
1103	750 W. Pender St., Vancouv SAMPLE#	S.Wt			TOLAg gm/mt	akubowski	
	SND05425-16 SND05426-58 STANDARD R-2a	962 1061	.31 .13	46 121	46 121		
-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAMP - SAMPLE TYPE: DRILL CORE M150 Data FA DATE RECEIVED:		FROM -150 M		-	158 SILVER, TO	DTAL SAMPLE FIRE ASSAY.	
						Clarence Leony	
						·· .	
All results are considered the confidential proper	rty of the client. Acme as:	sumes the l	iabiliti	es for ac	tual cost o	of the analysis only.	

. . .

· · ·

. .

ACME AN" VTICAL LABORATORIES LTD. (I: 001 Accredited Co.)	852 B. HASTINGS ST. V		PHONE (604) 253-3158 FAX (60**	\$53-1716
Almaden N 1103 - 7	tinerals Ltd. PROJECT 50 V. Pender St., Vancouver BC V6	CELK05-6 File # A	505549 Kubowski	<u>AA</u>
	SAMPLE# S.Wt	t NAu -Au TotAu n mg gm/mt gm/mt		<u></u>
	SND05425-16 962 SND05426-58 1061 STANDARD AU-1	2 .70 24.07 24.80 13 18.13 18.25 - <.01 3.35 3.35		
-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAM - SAMPLE TYPE: DRILL CORE M150	PLE. DUPAU: AU DUPLICATED FROM -1 SEP 9 2005 DATE REPORT MA	_	AL SAMPLE FIRE ASSAY.	
Data FA DATE RECEIVED:	S., / LUUS BAID ABFORT HA		Clarence Leons	
			•••	

(I7 \001 Accredited Co.)	GEOCHEMICAL ANA	SIS CERTIFICATE	
Almaden	Minerals Ltd. PROJECT	<u> </u>	A505550
1103	750 W. Pender St., Vancouver BC V60		CJakubowski
	SAMPLE#	Au* Sample ppb gm	
	SND05425-10 SND05425-11(pulp) SND05426-5 SND05426-6(pulp) SND05426-25	86.9 30 9685.7 15 9.0 30 34144.4 15 8.8 30	
	SND05426-26(pulp) STANDARD AU-R	10696.9 15 477.2 30	
Data_jy FA DATE RECEIVED:		U	
		U	Clarence Leong
		U	
		U	

- N.

The second s

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1 1 0/0 1 1 0/0 1 1 0/0 1 1 0/0 0/0 0/0 0/0 0/0 0/0 1 1 0/0 0/0 0/0 0/0 1 1 0/0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0								87		EMI				-							0.99	Koxe		866 - ³	신성					
All No G D J No No <th></th> <th><u>A</u>]</th> <th>mac</th> <th>len</th> <th></th> <th>Pa</th> <th>ge</th> <th>1</th> <th></th> <th></th> <th>koristik occision occision</th> <th></th>		<u>A</u>]	mac	len																				Pa	ge	1			koristik occision occision	
0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1 1 0/0 1 1 0/0 1 1 0/0 1 1 0/0 0/0 0/0 0/0 0/0 0/0 1 1 0/0 0/0 0/0 0/0 1 1 0/0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0		: زرجینی کر			1103	* (10 W.	Per	der S	t., V	anco	uver	BC	V6C	278	SU	ibini t	ted	by:	Wojte	k Jak	ubow	ski							
427-1 12 12 103 15 10 20 10	SAMPLE#				-																				-					
yap-2 10 889 92.4 10		ррт р	ndiq miq	ppm	ppn	ppm pp	ni ppa	7	ppa ppa	n ppb	ppm	ppn pp	m ppm	ppm	ppm	* :	t ppm	ppm	1	ppm I	ppm	<u> </u>	X	ppm pg	m ppm) ppm	t p	ipin ppin	gn)/mt.	gni/nt.
Approprint 1.1 1.1 9.03 4.1 9.03 4.10 9.03 4.10 9.03 4.10 9.01 4.10 9.01 4.10 9.01 4.10 9.01 4.10 9.01 4.10 9.01 4.10 9.01 4.10 9.01 4.10 9.01 4.10 9.01 4.10 9.01 4.10 9.01 4.10 9.01 4.10 9.01 4.10 9.01 4.10 9.01 4.10 9.01 4.10 9.01 4.10 4.10 4.01 4.01 4.01 <	SND05427-1																				2.3	5 .02B	.18	.1 <.(11 .9	.1	.98	1 <.5	<2	1.63
427-5 .9 5 2.8 10 1.7 1.3 37 8 7 1.4 1.4 1.7 0.8 2.8 0.8 1.2 2.073 2 7 0.9 1.4 1.4 1.4 1.4 7 0.8 2.8 0.0 1.5 1.4 1.4 1.4 7 0.8 2.8 0.0 1.5 1.4	SND05427-2	1.0 88	3.9 20.8	15	.5	1.0 1.	8 193	1.04 2	6.2 5.2	165.3	11.3	5.	3.2	. 5	4	.08 .02	5 25	4.1	.07	36 .007	1.3	12 .029	.17	.10	9. IL	.1 .	. 69	1 <.5	<2	. 25
447-6 10 3.6 6.1 1 4.7 7 9 2.6 5 1.2 5.4 1.1 1.4 7 9 2.6 5.6 3.9 1.6 3.9 1.6 3.9 1.6 1.9 1.4 3.0 5.0 7.2 3.8 0.1 1.0	SMD05427-4(pulp)	14.1 293	3.0 318.6	366	4.4 14	7.7 23.	2 514 .	3.41 19	0.0 3.4	9385.5	2,3	45 2.	6 14.5	4.1	46 i	.20 .041	16	245.7	.48	56 .034	41.6	6 .031	.32	5.3	40 4.1	.6 1	. 47	4 1.5	5	9.98
427-7 27 165 6 103 3 46 5 3 9 6 9 10 10 6 112 1 40 3 465 5 11 9 6 1 4 2 1 4 4 13 66 9 58 4 0 75 5 003 2 37 023 21 3 < 61 1 0	SN005427-5	.9 5	5.4 2.8	18	<.1	.7 1.	3 372	. 85	.7 3.4	4,4	11.6	5 <.	1.1	<.1	7	.08 .023	3 28	3.6	.12	52 .023	2.3	.043	.14	.1 <.0	01 1.1	<.1 <.	.05	2 <.5	<2	.01
422-6 1.2 6.1 8.9 7 1.1 1.0 9 6.7 2.5 10.1 7 1.1 1.1 1.1 1.2 0.6 0.2 27 6.8 6.5 90 0.00 1.3 2.00 1.5 1.4 0.1 1.1 1.0 0.6 1.2 2 6.8 6.5 90 0.00 1.3 2.00 1.5 1.4 0.1 1.5 2.4 0.0 1.5 1.4 0.1 1.1 1.0 0.0 2 7 4.0 6.5 90 0.0 1.0	SN005427-6	1.0 35	5.4 6.1	19	.2	.8 3.	6 392	. 22	6.4 4.4	479.3	11.6	θ,	1 .1	.4	7	.09 .020	6 56	3.9	.14	58 .027	2.3	.041	.15	<.1 <.0	n 1.3	.1	.47	2 <.5	<2	,74
422-6 1.2 6.1 8.0 7 1 1.0 9 6.7 2.5 1.0 1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 2.0 0.00 2.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.1 1.1 2.0 0.00 2.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.0 0.00 1.0<	SND05427-7	2.7 165	5.6 35.3	46	5.3	.96.	9 110 3	3.06 11	2.1 40.3	456.5	11.9	61.	4.2	1.4	4	.13 .050	0 59	4.0	.07	35 .009	2.3	7 .023	.21	.3 <.(). E E E	.1 3	.45	1 <.5	8	3.10
063427-9 1.3 6.4 9.1 9 1.3 6.4 9.1 1.5 1.5 1.6 9 1.0 7 1.1 1.	SND05427-8	1.2 f	5.1 8.9	7	<.1	.7 1.	0 197	.51	.9 6.7	2.5	10.1	7.	1.1	<.1	3	.06 .02														<.01
9403427-0 1.3 6.4 7.6 7 1.1 7.0 3.1 9.7 1.1 1.1 1.1 2.0 2.0 2.0 1.1 1.2 5.0 2.0 2.0 1.1 2.0 1.1 2.0 2.0 2.0 1.1 1.1 2.0 0.0 2.0 2.0 2.0 1.1 1.1 2.0 2.0 2.0 2.0 1.1 1.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <th2.0< th=""> 2.0 <th2.0< th=""> <th< td=""><td>RE 5ND05427-8</td><td>1.3 F</td><td>5.4 9.1</td><td>8</td><td><.1</td><td>.9 1.</td><td>1 195</td><td>.51</td><td>.8 6.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></th2.0<></th2.0<>	RE 5ND05427-8	1.3 F	5.4 9.1	8	<.1	.9 1.	1 195	.51	.8 6.9																					
9427-9 1.5 10.4 8.0 22 2 6 2.0 6291.10 2.9 2.8 64.5 10.1 2.9 6 9.0 2.4 4.9 10 54.07 5 3.2 2.41 1.4 <1.4	RRE SND05427-8																													
4427-11 1.3 757.0 118.5 43 6.2 1.2 3.0 117 2.23 342.5 5.1 51797.3 10.0 10 1.8 1.6 6.5 1 0.6 0.2 1 3.4 .01 30 0.01 1 29 0.07 23 1.0 5.1 2.66 1.4 5 5 5 0.01 1 29 0.07 23 1.0 9 1.0 1.4 5 5 0.01 1 29 0.07 23 1.0 9 1.0 1.4 5 4 6 0.01 1 4 0.0 1 1.0 1.0 1.5 2 0.2 0.7 0.0 1 30 1.0 1.2 1.5 1.4 5 1.0 1.0 1.5 1.4 1 1.0 0.0 1.0 1.2 1.0 1.1 1.3 1.4 1.5 1.0 1.5 1.0 1.5 1.4 1.5 1.0 1.5 1.4 1.5 1.0 1.5 1.4 1.5 1.0 1.5 1.5 1.5 1.0 1.5 1.5 1.6 1.0 1.5 1.5	SND05427-9																													
4427-11 1.3 757.0 118.5 43 6.2 1.2 3.0 117 2.23 342.5 5.1 51797.3 10.0 10 1.8 1.6 6.5 1 0.6 0.2 1 3.4 .01 30 0.01 1 29 0.07 23 1.0 5.1 2.66 1.4 5 5 5 0.01 1 29 0.07 23 1.0 9 1.0 1.4 5 5 0.01 1 29 0.07 23 1.0 9 1.0 1.4 5 4 6 0.01 1 4 0.0 1 1.0 1.0 1.5 2 0.2 0.7 0.0 1 30 1.0 1.2 1.5 1.4 5 1.0 1.0 1.5 1.4 1 1.0 0.0 1.0 1.2 1.0 1.1 1.3 1.4 1.5 1.0 1.5 1.0 1.5 1.4 1.5 1.0 1.5 1.4 1.5 1.0 1.5 1.4 1.5 1.0 1.5 1.5 1.5 1.0 1.5 1.5 1.6 1.0 1.5 1.5	SND05427-10] Q 7:	7.8 RG R	57	2 4	1.3 2	3 1269	2.05.24	6.7 7 2	200 4	10 0	4	3 1 1	11	,	Π6 Λ 2'	2 13	A P	03	27 DOI		16 D.1.4	96	بر و	ð1 ,		10	1 ~ 5	¢	57
\$427-12 15 \$25,9 26.8 44 1.1 7 1.2 60 96 6.4 3.4 5.0 11.1 10 5 2.9 1.3 3 0.7 0.1 3 0.7 0.1 3 0.7 0.1 1.0 1.1 1.2 1.5 670 1.1 1.1 1.4 1.4 1.4 1.4 0.6 0.6 1.5 1.6 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.4 1.4 0.6 0.6 1.6 1.0 1.0 1.1 1.1 1.4 1.4 1.4 0.6 0.6 1.6 1.0 1.4 1.4 0.6	SND05427-11																												-	
5427-13 13 38.3 43 43 1 1.2 1.5 670 1.0 8.1 37 5.8 1.1 13 4 1.0 4.0 6.25 19 5.8 0.3 12.0 0.1 1.0 1.1 1.1 1.3 1 <.5																														
5427-14 2.3 1.5 1.7 1.5 3.3 453 1.7 1.7 1.7 1.7 1.7 1.5 3.3 453 1.8 1.9 1.0 1.9 1.0 1.9 1.0 1.1 1.5 3.3 3.3 453 1.8 1.9 1.0 1.9 1.5 1.8 1.4 1.0 0.0 1.0 2.0 0.2 2.0 0.2 1.0 1.5 1.5 1.5 1.5 1.4 1.7 1.7 1.7 1.7 1.7 1.5 2.0 1.5 1.6 1.0 1.7 1.2 1.5 1.6 1.5 1.7 <																													-	
5427-16 1.5 25.7 33.2 99 .3 1.0 2.7 71 15 13.8 4.7 157.2 9.2 6 1.7 4 .2 3 0.6 0.21 1.6 4.9 0.4 47.003 2 .0 0.7 1.9 1 <5	SND05427-13 SND05427-14																												-	
5427-16 1.5 25.7 33.2 99 .3 1.0 2.7 71 15 13.8 4.7 157.2 9.2 6 1.7 4 .2 3 0.6 0.21 1.6 4.9 0.4 47.003 2 .0 0.7 1.9 1 <5					_																									
5427-17 1.7 86.9 47.7 48 2.3 1.2 1.8 1.080 1.78 34.9 5.1 427.7 11.3 5 4 .3 2.6 4 .08 .023 15 5.0 .06 44 .005 7 .90 7 .1 .01 .1 .01 .1	SND05427-15																													
5427-18 2.0 187.6 33 1.8 1.0 2.3 750 2.1 5 535.5 8.4 3 6 2 1.7 1 0.6 0.0 8 4.8 0.4 2.8 0.01 2 28 0.05 2.5 2.4 1.5 1.1 1 <.5	SND05427-16																											1 < 5	<2	. 10
5427-19 1,4 103.3 17.6 44 8 .9 2.6 946 1.86 23.7 3.1 443.0 8.9 4 .4 1 .3 3 .07 .023 15 4.7 .05 35 .003 3 .44 .61 .7 .1 .80 1 <.5	SND05427-17																												-	2.27
5427-20 1.5 128.5 6.7 53 .8 1.1 2.7 668 1.76 28.7 6.4 244.6 9.0 4 .3 .2 .4 2 .07 .024 14 4.9 .06 35 .003 2 .33 .022 .23 .1 .01 .7 .2 .87 1 <.5	\$ND05427-18																											1 <.5	Z	1,06
5427-21 3.7 255.4 34.4 45 2.8 .8 1.9 506 2.13 30.2 4.4 3078 5 9.0 7 .5 4 3.9 2 .07 .024 15 4.2 .05 45 .004 1 .30 .018 .02 .1 < <.01	SND05427-19	1.4 103	3.3 17.6	44	.8	.9 2.	6 946	1.86 2	3.7 3.1	. 443.0	8.9	4.	4.1	.3	3	.07 .023	3 15	4.7	.05	35 .003	3.3	.022	. 24	.1 <.0	11 .7	.1	.80	1 <.5	<2	.39
5427-22 1.2 1.2 1.3 1.6 474 1.9 27.3 3.8 84.1 8.5 7 .5 .4 1.5 3 .07 .023 16 3.6 .66 52 .05 2 .38 .024 .25 .1 .01 .8 .1 1.0 1 <.5	SND05427-20	1.5 128	8.5 6.7	53	.8	1.1 2.	7 658	1.76 2	8.7 6.4	244.6	9.0	4.	3.2	.4	2	.07 .024	4 14	4.9	.06	36 .003	2.3	13 .022	. 23	.1 .0	JI .7	.2	.87	1 <.5	<2	.86
5427-23 1.8 5.6 2.6 1.8 $<.1$ 8 1.3 631 2.7 3 6.3 1.2.8 5 $<.1$ 1 $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ $<.1$ </td <td>SND05427-21</td> <td>3.7 255</td> <td>5.4 34.4</td> <td>45</td> <td>2.8</td> <td>.8 1.</td> <td>9 506</td> <td>2.13 3</td> <td>0.2 4.4</td> <td>3078.5</td> <td>9.0</td> <td>7.</td> <td>5.4</td> <td>3.9</td> <td>2</td> <td>.07 .024</td> <td>4 15</td> <td>4.2</td> <td>.05</td> <td>45 .D04</td> <td>1.3</td> <td>.018</td> <td>. 20</td> <td>.1 <.(</td> <td>j1 .€</td> <td>.11</td> <td>.54</td> <td>1 <.5</td> <td>3</td> <td>Z.16</td>	SND05427-21	3.7 255	5.4 34.4	45	2.8	.8 1.	9 506	2.13 3	0.2 4.4	3078.5	9.0	7.	5.4	3.9	2	.07 .024	4 15	4.2	.05	45 .D04	1.3	.018	. 20	.1 <.(j1 .€	.11	.54	1 <.5	3	Z.16
5427-24 (pulp) 19.7 53.9 389.4 34 4.2 893.8 25.5 381 2.16 59.3 .4 31476.1 3.6 17 .1 .5 4.7 30 .47 .034 14 1127.8 .59 151 .045 6 1.0 0.4 .28 12.4 .02 2.5 .1 .05 3 <.5 5 33.51 5427-26 1.1 1.4 15.2 7.3 10 .6 1.0 2.4 202 .82 7.9 3.0 461.4 9.9 6 .1 .2 .3 5 .08 .026 28 5.3 .16 53.011 3 .44 .02 2.5 .1<	SND05427-22	1.2 418	3.3 36.3	39	.9	1.3 1.	6 474	1.91 2	27.3 3.8	84.1	8.5	7.	5.4	1.5	3	.07 .023	3 16	3.6	.06	52 .005	2.3	8 .024	. 25	.1.(n .e	.11	. 10	1 <.5	<2	.90
5427-25 1.4 15.2 7.3 10 .6 1.0 2.4 202 .82 7.9 3.0 461.4 9.9 6 .1 .2 .3 5 .05 .025 28 5.3 .06 53 .01 3 .34 .042 .20 .1 <.01	SND05427-23	1.8 5	5.6 2.6	18	<.1	.8 1.	3 631	1.20	.6 2.3	6.3	12.8	5 <.	1.1	<.1	10	.09 .02	3 23	5.3	.16	62 .040	1.4	11 .051	. 18	.1 <.(JI 1.2	.1 <	. 05	2 <.5	<2	<.01
5427-26 1.1 14.8 3.0 12 <1.	\$N005427-24(pu1p)	19.7 52	8.9 389.4	34	4.2 B	3.8 25.	5 381	2.16 9	9.3 ,4	31476.1	3.6	17 .	1.5	4.7	30	.47 .034	4 14	1127.8	. 59	151 .045	6 1.0	11 .044	. 28	12.4 .1)2 2.5	.1 <	. 05	3 <.5	5	33.51
5427-26 1.1 14.8 3.0 12 <1.	SND05427-25	1.4 1	5.2 7.3	10	.6	1.0 2.	4 202	.82	7.9 3.0	461.4	9.9	6.	1.2	.3	5	.08 .02	6 28	5.3	.06	53 .011	3.:	34 .042	.20	.1 <.	01 .9	.1	. 33	1 <.5	<2	.68
5427-27 1.0 22.1 5.8 53 .2 .9 1.5 584 1.1.5 9.3 5 1.0 .1 .2 5 .07 .025 18 5.5 .08 58 .010 1 .60 .030 .22 .1 <.01	SND05427-26																											1 <.5	<2	.01
5427-28 1 2 217.6 15.6 33 1.5 1.2 2.0 613 2.60 26.2 4.0 99.7 10.8 6 .5 2.7 1.1 5 09.029 19 5.6 .06 55 .07 2 .34 .032 .21 .1 <.01	SND05427-27																													
5427-29 1.3 95.5 23.4 27 1.5 1.2 2.0 695 1.4 2.3 2.7 214.2 9.1 5 .4 4.7 .9 3 .08 .025 15 4.4 .04 34 .001 4 .32 .026 .21 .1 .01 .9 .1 .81 1 <.5	SND05427-28																													
5427-31 1.3 82.6 64.4 99 .6 1.0 2.1 681 1.37 22.5 6.2 6.1 11.4 11 1.5 .3 .4 4 .11 .032 14 4.4 .06 51 .006 3 .34 .021 .21 <.1	SND05427-29																													
5427-31 1.3 82.6 64.4 99 .6 1.0 2.1 681 1.37 22.5 6.2 6.1 11.4 11 1.5 .3 .4 4 .11 .032 14 4.4 .06 51 .006 3 .34 .021 .21 <.1	SN005427-30	14 2	37 10 4	60	1	5)	8 787	.91	6.9 4 4	5.2	10.0	6	8 3	1	z	08 07	3 17	60	p4	41 004	,	30 0.75	10	1	01 (1 1	06	• • 1 • •		01
5427-32 2.1 53.0 71.2 72 2.7 1.3 2.1 644 1.80 22.6 3.7 716.1 9.4 19 .6 1.3 6.5 4 .07 .021 14 4.7 .05 124 .003 2 .32 .025 .16 .1 .01 1.0 .1 1.05 1 <.5 5 1.25	SND05427-31																													
	5ND05427-31																													
	SND05427-32 SND05427-33																													
5427-33 1.4 139.5 224.0 219 1.2 4.6 6.6 2117 3.33 75.5 8.3 202.7 9.0 50 1.4 3.8 .6 10 .08 .027 12 12.9 .05 123 .003 4 .38 .013 .20 .1 < 01 2.8 .1 1.76 1 <.5 <2 .20																														

Clarence Leono

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY, AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Resuns. - SAMPLE TYPE: DRILL CORE R150

Data V FA

I

DATE RECEIVED: SEP 26 2005 DATE REPORT MAILED:

Page 2

CME ANALYTICAL		ACME ANALYTICAL
SAMPLE#	Mo Cu Pb Zn Ag N1 Co Mn Fe As U Au Th Sn Cd Sb Bi V Ca P La Cn Mg Ba Ti B Al Na K W Hg Sc Tl S Ga Se Ag** Au**	
	ppm	
SND05427-34	1.6 23.1 50.3 11 .7 .8 1.2 70 .76 18.7 2.9 47.3 8.8 8 .5 .5 .4 3 .06 .017 16 6.9 .03 41 .004 2 .28 .029 .16 .1 <.01 .6 .1 .49 1 <.5 <2 .33	
SND05427-35	1.4 5.1 16.9 53 <.1 .7 1.1 485 .80 1.0 2.3 5.8 9.5 11 .1 .3 <.1 4 .08 .021 24 5.5 .05 46 .009 2 .29 .033 .14 .1 <.01 .8 .1 <.05 1 <.5 <2 .02	
SND05427-36	1.7 7.6 45.2 134 <.1 1.0 1.7 684 1.04 3.7 3.9 <.5 10.0 7 .9 .3 .1 5 .07 .021 27 4.5 .07 50 .015 2 .31 .034 .18 .1 <.01 .9 .1 .09 1 <.5 <2 <.01	
SND05427-37	1.9 13.0 22.3 107 .4 .9 1.5 728 1.02 .8 2.9 < 5 10.6 11 .4 2.3 < .1 3 .07 .016 25 5.0 .05 75 .002 5 .22 .032 .12 < .1 < .01 .7 .1 < .05 1 < .5 < 2 .01	
SND05427-38	2.9 86.3 25.8 60 1.8 1.6 6.7 1782 3.35 26.7 3.5 723.4 6.9 10 .8 2.0 1.1 10 .23 .078 15 4.7 .11 52 .001 3 .43 .016 .27 .4 .01 1.4 .1 1.06 1 <.5 3 1.09	
SND05427-39	8.1 465.3 71.1 75 5.0 2.0 8.2 621 3.89 73.1 9.3 607.0 7.5 37 1.3 3.2 2.8 9 .28 .110 9 5.0 .11 17 .002 4 .58 .009 .35 .2 .02 1.4 .1 3.25 1 <.5 6 .86	
SND05427-39 SND05427-40		
SND05427-40 SND05427-41		
SND05427-41 SND05427-42	2.1 19.6 16.9 97 .4 1.4 4.4 1716 2.73 5.3 4.9 13.2 5.5 35 .9 1.4 .2 4 .22 .057 21 2.4 .12 1114<.001 5 .42 .012 .25 .1 < .01 2.6 .1 .15 1 < .5 <2 .03 2.5 22.9 21.4 103 .3 1.7 4.2 1553 2.56 7.1 5.0 15.5 3.9 33 .9 1.1 .2 4 .21 .051 13 2.8 .13 924<.001 5 .45 .013 .26 .1 .01 2.3 .1 .10 1 < .5 <2 .03	
SND05427-42 SND05427-45		
SNEU5427-45	5.5 25.2 62.4 83 .7 1.0 2.1 650 1.14 7.5 3.3 149.3 8.9 5 1.9 1.2 .5 2 .06 .017 19 5.6 .04 43 .001 2 .28 .024 .21 <.1 .01 .6 .1 .22 1 <.5 <2 .11	
SND05427-46	1.1 56.7 22.7 11 .4 .8 1.7 139 1.03 9.3 3.4 25.5 10.1 16 .2 .2 1.6 3 .08 .021 21 4.7 .07 114 .016 2 .31 .029 .14 <.1 <.01 .8 .1 .71 1 <.5 <2 .06	
SND05427-47	4.1 773.6 77.1 127 7.9 2.0 9.3 1010 3.72 87.3 2.2 1053.7 5.3 10 3.8 121.0 1.5 3 .20 .060 8 4.1 .09 19 .001 3 .50 .006 .35 .2 .10 1.7 .1 2.89 1 <.5 9 1.31	
SND05427-49	7.1 116.7 39.5 74 3.7 2.0 7.9 1063 3.66 51.7 3.9 645.2 7.6 20 .8 11.9 1.2 13 .27 .066 14 3.3 .20 33 .008 3 .59 .024 .31 .1 .03 3.4 .1 2.14 2 <.5 4 .74	
SND05427-50	1.7 325.9 20.8 92 5.6 2.2 9.4 2186 5.31 51.8 5.4 1966.0 6.8 6 1.3 5.3 5.6 5 .29 .067 12 3.5 .15 27 .001 4 .52 .011 .32 .2 .01 2.0 .1 2.39 1 <.5 6 3.50	
SND05427-51	1.3 45.3 11.3 47 1.2 1.5 4.7 1138 2.63 9.3 4.5 41.5 8.1 12 .3 3.1 .9 13 .26 .069 17 4.7 .17 345 .009 3 .51 .030 .29 <.1 .01 3.2 .1 .38 2 <.5 <2 .09	
SND05427-52	1.0 18.6 9.7 56 .2 1.3 5.6 1067 2.52 6.3 3.3 59.3 6.8 15 .6 1.9 .2 13 .25 .066 18 4.5 .16 242 .005 4 .42 .031 .24 <.1 <.01 3.6 .1 .34 2 <.5 <2 .08	
SND05428-1	1.3 16.8 6.4 25 .1 1.2 2.2 935 1.22 8.3 3.2 14.3 9.0 5 .2 2.8 .1 4 .08 .022 19 4.9 .06 52 .004 2 .28 .030 .17 .1 < .01 .9 .1 .21 1 < .5 <2 .03	
SND05428-2	2.0 418.0 178.1 38 3.8 1.0 1.9 430 2.37 72.6 4.7 1047.8 8.5 3 .9 2.8 1.7 1 .05 .018 8 4.6 .02 25 .001 2 .31 .009 .24 .2 .01 .5 .1 2.30 1 < 5 6 2.21	
SND05428-3	1.6 140.0 147.9 58 .8 1.5 2.1 490 1.63 305.8 7.1 101.5 8.7 11 .7 1.7 .3 2 .04 .013 11 5.1 .02 44<.001 3 .35 .007 .20 .1 .01 .8 .1 1.28 1 <.5 <2 .14	
RE SND05428-3	1.8 149.6 154.9 59 .9 1.4 2.4 506 1.69 325.6 7.8 103.5 9.4 12 .6 1.7 .4 2 .04 .015 12 4.6 .02 44<.001 4 .36 .007 .20 <.1 .01 .8 .1 1.35 1 <.5 <2 .12	
RRE SND05428-3	1,3142,7147,0 57 .9 1,6 2,2 484 1.63 290.1 7.0 67.9 8.1 11 .6 1.6 .3 2 .04 .013 11 4.8 .02 43<.001 3 .37 .006 .21 .1 .01 .8 .1 1.28 1 <.5 <2 .13	
SND05428-4	1.5 76.9 38.8 48 .6 1.2 1.7 740 1.44 26.4 3.7 41.2 9.4 6 .4 6.6 .2 2 .07 .021 18 5.2 .05 107 .003 2 .29 .021 .18 .1 .02 .8 .1 .48 1 <5 <2 .13	
SND05428-5		
SND05428-6		
SND05428-7	1.2 153.6 77.6 81 2.0 1.3 1.7 513 2.09 99.8 3.6 1151.7 8.6 8 1.3 1.6 1.6 3 .07 .020 13 4.9 .04 48 .004 1 .30 .022 .21 <.1 <.01 .8 .1 1.48 1 <.5 2 1.63	
CND45400 D	1 0 46 9 6 3 17 .2 1.1 1.7 646 1.20 12.4 3.5 5.5 9.2 4 .2 .1 .2 4 .07 .020 20 4.9 .04 31 .002 1 .26 .033 .15 < 1 < 01 .8 .1 .40 1 < 5 <2 .03	
SND05428-8		
SND05428-9		
SND05428-10	1.5 147.2 74.9 59 .9 1.3 2.4 421 1.81 41.5 4.9 15.0 9.2 7 .8 1.2 .2 3 .07 .023 12 4.8 .05 44 .004 2 .33 .023 .22 .1 < 01 .9 .21.11 1 < 5 < 2 .03	
SND05428-11	2.1 4.7 3.0 18 <.1 .8 1.4 613 1.18 <.5 2.5 <.5 11.0 6 <.1 .1 <.1 10 .22 .019 21 6.4 .17 61 .042 1 .41 .049 .18 .1 <.01 1.3 .1 <.05 2 <.5 <2 <.01	
SND05428-12(pulp)	14.5 277.3 302.9 356 4.7 159.8 24.1 496 3.31 194.4 3.1 9693.4 2.3 47 2.6 16.1 4.3 45 1.17 .040 6 282.0 .48 80 .034 4 1.06 .032 .35 5.1 .35 4.4 .6 1.40 4 .7 6 10.34	
SND05428-13	1.1 179.3 178.6 23 .8 1.2 1.7 107 1.52 35.6 6.0 18.6 8.7 16 1.4 1.2 .3 4 .06 .022 15 4.2 .04 83 .008 1 .30 .027 .15 .2 <.01 .9 .1 1.40 1 <.5 <2 .03	
SND05428-14	1.4 205.5 85.5 38 1.4 1.2 1.3 392 1.54 23.4 3.8 139.3 9.4 9 .3 .4 1.8 3 .07 .023 25 6.8 .04 48 .003 2 .31 .023 .19 .1 <.01 .9 .1 <.5 <2 .47	
SND05428-15	1.4 616.9 232.0 106 11.0 .9 1.7 324 3.07 70.2 3.6 5236.7 8.5 2 1.8 .5 18.1 1 .04 .017 6 6.3 .03 21 .001 2 .33 .005 .26 .1 < .01 .5 .1 3.26 1 < .5 11 6.37	
SND05428-16	1.1 56.3 104.5 301 .8 .9 1.5 797 1.46 489.4 2.6 94.9 10.9 5 5.5 .5 .8 7 .09 .024 19 6.0 .10 45 .015 1 .32 .034 .20 .1 .01 1.1 .1 .44 1 <.5 <2 .15	
STANDARD DS6/R-2a/0xL3	4 11.4 122.0 29.1 141 .3 24.7 10.5 700 2.79 20.6 6.7 46.8 3.0 40 6.0 3.1 5.1 56 .85 .078 14 187.1 .57 162 .080 14 1.89 .072 .14 3.5 .23 3.3 1.7 < 0.5 6 4.4 153 5.77	

Sample type: DRILL CORE RISO. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖌 FA

Page 3

Data AFA

SAMPLE#	Mo Cu Pb Zn Ag N1 Co Mn Fe As U Au Th S⊓ Cd Sb B1 V Ca P La Cr Mg Ba Ti B Al Na K W Hg Sc Ti S Ga Se Ag++ Au+++
	ppm
SND05428-17	.9 202,2 157.4 59 2,8 1,3 2,2 308 2,10 119.3 3.6 271.2 8.5 7 .9 1.0 2.6 3 .07 .022 13 4.5 .03 41 .004 <1 .26 .024 .16 .1 <.01 .6 .2 1.77 1 <.5 4 .40
SND05428-18	1.1 24.5 37.7 62 .1 .9 1.1 481 .99 17.8 2.2 2.4 8.6 9 .3 .4 .1 5 .08 .023 18 7.4 .05 61 .011 <1 .27 .043 .16 .1 <.01 .8 .1 .11 1 <.5 <2 <.01
SND05428-19	1.1 139.7 89.6 57 1.3 1.1 2.5 413 2.57 46.2 3.5 323.6 10.5 11 1.1 17.2 .4 3 .07 .020 11 5.8 .03 20 .002 <1 .25 .027 .14 <.1 .04 .7 .1 2.17 1 <.5 2 .19
SND05428-20	1.6 29.5 49.6 18 .5 1.0 2.1 58 .81 21.0 4.9 22.0 8.0 22 .6 2.6 .2 3 .07 .023 15 4.7 .03 147 .003 1 .31 .028 .19 .1 <.01 .6 .1 .55 1 <.5 <2 .09
SND05428-21	1.8 31.5 265.5 366 .9 .8 2.0 443 .98 9.3 2.7 128.3 9.5 5 10.0 .2 .5 4 .08 .022 19 5.9 .05 41 .009 <1 .27 .037 .18 .1 .02 .7 .1 .33 1 <.5 <2 .18
SND05428-22	2 3 94.2 90.1 120 .9 .9 1.7 542 1.36 40.7 5.6 24.0 12.1 5 1.5 3.6 .3 1 .05 .015 11 6.8 .04 50 .001 <1 .30 .014 .29 .1 .01 .4 .1 .62 1 <.5 <2 .06
SWD05428-23	1.8 49.1 97.5 130 1.2 1.0 1.6 397 1.02 15.5 4.8 171.2 12.7 16 .8 .7 .9 1 .05 .012 12 6.2 .02 166<.001 <1 .27 .023 .20 .1 .01 .4 .1 .49 1 <.5 <2 .19
SND05428-25	2.0 64.1 43.5 71 .5 .7 .9 401 1.06 14.1 4.6 37.9 10.4 6 .4 .4 .4 1 .06 .014 16 6.6 .03 48 .001 <1 .23 .031 .18 .1 .01 .4 .1 .40 1 <.5 <2 .08
SND05428-26	2.5 48.3 53.9 70 .3 .9 1.2 480 1.12 12.7 4.1 56.2 11.6 6 .4 2.2 .1 1 .05 .012 17 5.3 .03 46 .001 <1 .22 .033 .18 .1 <.01 .5 .1 .34 1 <.5 <2 .11
SND05428-27	2.1 5.0 37.7 86 <.1 .8 1.5 504 1.12 1.2 4.5 21.5 8.9 6 .2 .2 .1 2 .06 .015 23 8.8 .04 82 .001 <1 .19 .035 .14 <.1 <.01 .5 .1 .10 1 <.5 <2 .06
SND05428-28	1.0 19.3 26.6 63 .3 .8 1.0 329 .91 8.4 3.3 16.2 7.8 4 .3 1.7 .2 1 .04 .010 16 7.9 .02 176 .001 <1 .25 .022 .19 .1 <.01 .4 .1 .26 1 <.5 <2 .05
SND05428-29	.9 51.9 33.1 51 .2 .8 .9 368 1 16 16.2 3.8 28.4 11.0 4 .2 .5 .1 2 .07 .015 20 5.9 .04 44 .001 <1 .20 .032 16 .1 < .01 .5 .1 .37 1 <.5 <2 .02
SND05428-30	.8 36.2 28.9 55 .1 .7 1.1 394 1.19 14.0 3.5 9.5 11.3 4 .2 .4 .1 2 .07 .014 20 5.5 .04 43 .001 <1 .24 .039 .17 .1 <.01 .6 .1 .31 1 <.5 <2 .02
SND05428-33	1.2 24.6 29.4 53 .1 .8 .7 322 1.09 16.6 7.2 168.7 14.8 5 .4 1.8 .2 3 .07 .015 22 4.5 .03 67 .02 <1 .21 .034 .14 .1 .01 .6 .1 .30 1 <.5 <2 .07
SNDD5428-34	1.3 16,4 54,4 105 .2 .9 1.0 308 .93 2.1 5.4 29.7 10.6 6 .3 .4 .1 3 .07 .014 25 5.3 .03 36 .001 <1 .22 .040 .14 .1 <.01 .5 .1 .07 1 <.5 <2 .05
SND05428-35	1.6 52.9 32.8 56 .6 .7 2.0 514 1.76 14.4 2.2 86.9 10.0 6 .3 .2 1.0 3 .08 .020 29 5.6 .06 82 .001 <1 .20 .034 .14 .1 <.01 .6 .1 .50 1 <.5 <2 .07
\$ND05428-36	3.2 36.4 74.3 48 .6 .9 1.6 253 1.00 8.7 6.7 167.6 9.1 8 .6 1.6 .6 2 .07 .020 18 5.1 .04 249<.001 1 .25 .029 .19 <.1 <.01 .5 .1 .32 1 <.5 <2 .09
SNDD5428-37	1.0 79.0 79.3 56 1.8 .7 2.4 636 1.84 25.9 4.3 97.8 9.5 5 .6 1.9 2.3 2 .07 .023 14 5.2 .05 101 .001 1 .31 .013 .25 .1 <.01 .6 .1 .76 1 <.5 2 .19
SMD05428-38	1.1 29.4 32.8 69 .9 .8 1.9 512 1.44 10.7 3.3 50.2 8.1 6 .3 1.1 .9 3 .08 .022 17 6.2 .05 227 .001 <1 .24 .035 .17 .1 <.01 .6 .1 .41 1 ×.5 <2 .06
SND05428-39	2.7 12.0 31.3 227 .1 1.3 6.1 1910 4.05 1.4 2.4 14.9 10.7 29 .6 .4 .2 20 .36 .106 30 4.3 .35 1091 .001 1 .29 .024 .20 .1 .01 2.6 .1 .06 1 <.5 <2 .02
SND05428-41	6.2 59.5 329.9 136 11.8 2.3 7.5 1181 3.48 54.2 2.0 2097,6 4.4 8 1.4 .4 7.8 7 .20 .056 12 3.5 .10 25 .003 1 .43 .019 .30 .3 .01 2.2 .1 1.91 1 <.5 11 2.30
SND05428-42	6.6 31.7 139.5 368 .3 1.7 6.2 1662 3.35 13.9 2.2 48.8 6.1 27 1.7 .5 .2 15 .32 .089 22 2.9 .20 179 .008 1 .67 .029 .34 .2 <.01 3.5 .2 .55 2 <.5 <2 .17
RE SND05428-42	4.1 35.4 143.7 374 .3 1.7 7.0 1689 3.40 14.9 3.7 69.1 6.9 29 1.8 .5 .2 15 .32 .094 23 3.1 .20 192 .009 3 .68 .033 .37 .1 < .01 3.7 .2 .59 2 < .5 <2 .15
RRE SND05428-42	2,1 32,2 145,5 358 ,3 1,6 6,7 1632 3.32 13.4 2.2 64.7 7.0 29 1,7 .4 .2 15 .32 .091 23 3.5 .20 197 .009 <1 .60 .025 .30 .2 <.01 3.6 .2 .56 2 <.5 <2 .14
SND05429-1	.9 197.0 15.0 22 5.5 .7 2.2 489 1.67 35.4 4.1 938.9 8.5 4 .3 .1 9.3 3 .07 .025 20 5.3 .04 39 .004 1 .33 .027 .22 .1 <.01 .7 .1 1.17 1 <.5 4 1.45
SN005429-2	1.1 11.6 2.7 24 <.1 .8 1.7 1258 1.08 1.2 3.3 7.9 9.2 4 <.1 .1 .1 6 .08 .026 25 5.2 .09 42 .009 1 .33 .033 .19 .1 <.01 .8 .1 <.05 1 <.5 <2 .01
SND05429-3	1.2 242.1 191.9 24 2.3 .9 3.8 69 1.28 59.2 12.2 619.5 8.8 5 1.2 .6 1.3 2 .03 .007 9 5.4 .02 44 .001 1 .30 .014 .24 .i <.01 .4 .i 1.16 i <.5 3 .50
SN005429-4	1.2 103.5 64.8 34 18.0 .9 7.2 521 3.06 30.1 4.6 9990.7 9.7 3 .5 .6 20.1 3 .05 .018 9 3.9 .02 35 .001 <1 .31 .017 .25 .1 .03 .5 .1 2.60 1 <.5 14 13.36
SN005429-5	1.5 218.1 76.2 33 4.9 .8 1.2 721 2.86 200.4 4.7 785.1 9.8 2 .5 1.1 4.0 2 .05 .019 7 5.1 .03 26 .001 <1 .29 .004 .27 .2 .01 .4 .1 2.21 1 <.5 6 3 .93
SND05429-6	1.2 101.3 104.3 44 1.1 .8 2.1 468 1.68 148.1 5.4 68.3 9.1 3 .8 1.2 .4 2 .04 .020 9 4.6 .02 37 .001 2 .29 .007 .25 .2 <.01 .5 .1 1.25 1 <.5 <2 .13
SND05429-7	1.0 98.7 25.1 43 1.9 .9 1.6 780 1.85 94.9 3.4 1419.2 9.5 6 .3 .5 .8 3 .07 .022 14 5.6 .04 50 .004 <1 .32 .021 .23 .1 .01 .7 .1 1.10 1 <5.5 <2 1.22
SND05429-8	1.0 94.3 21.7 42 1.9 1.1 1.5 700 1.60 124.4 3.6 506.8 11.0 6 .4 .6 .9 3 .07 .023 17 3.3 .04 52 .004 <1 .29 .021 .21 .1 <.01 .7 .1 .83 1 <.5 2 .72
SND05429-9	1.2 5.7 3.2 20 <.1 .8 1.7 642 1.30 1.0 2.9 1.3 11.5 6 <.1 .1 <.1 12 .20 .023 27 5.4 .19 75 .046 <1 .41 .056 .21 .1 <.01 1.5 .1 <.05 2 <.5 <2 <.01
SND05429-10(pulp)	21.5 53.9 417.5 32 5.0 1169.4 28.5 397 2.29 58.0 .5 31173.0 3.3 19 .1 .6 4.4 30 .49 .032 14 1455.6 .61 151 .044 4 1.01 .044 .29 13.3 .01 2.2 .1 <.05 3 <.5 5 33.75
STANDARD DS6/R-2a/0x	134 11.5 124.0 29.2 146 .3 24.8 10.7 716 2.84 21.1 6.6 45.9 3.0 40 6.0 3.2 5.0 56 .86 .077 14 187.8 .59 162 .082 16 1.94 .073 .16 3.3 .23 3.3 1.7 < .05 6 4.5 154 5.75

Sample_type: DRILL_CORE_R150. Samples beginning _RE' are Reruns and _RRE' are Reject Reruns.

A A
444
LL
ACHE ANALYTICAL

Page 4

AA	
ACHE ANALYTICAL	

Data FA

SAMPLE#	Mo	Си	Pt	, Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd S	Sb Bi	i V	Ca	P	La	Сг	Mg	Ba	Ti B	A]	Na	ĸ	W	Hg So	: T1	S	Ga Se	Ag**	Auto
	ppm	ррл	ррл	ı ppm	ppm	ppm	ppm	ppm	2	ррл	ppm	ppb	ppm	ppm	ppm pp	л рр	n ppm	2	\$ 1	ppm	ppm	Хр	pm	% ppm	z	2	វីរ	ppm p	ртіррі	п ррп	1 %	ppm ppm	ı gm∕mt	gm/mt
SND05429-11 SND05429-12 SND05429-13 SND05429-14 SND05429-15	1.0 4.4 1.4	103.8 82.9 44.1 13.6 577.4	56.5 294.9 19.4	5 58 9 103 1 17	.6 2.0 .2	.9 1.6 .5	1.6 3.0 1.4	74 112	1.61 1.21 .41	24.8 1351.5 9.0	3.4 16.5 3.5	327.9 803.7 33.7	10.0 9.5 8.7	6 12 8	.4 Z. 2.4 3. .2	.6 .5 .0 .3 .2 .1	54 32 2	. D7 . D6 . D7	. 024 . 025 . 025	16 11 20	2.2 3.2 3.6	.05 1 .02 .04	26 .0 72 .0 48 .0	04 1 01 2 08 1	.20 .35 .20	.015 .011 .023	.16 .32 .15	.1 . .2 . .1<.	01 . 03 . 01 .	7.1 5.1 5.1	.74 1.18 .15	1 <.5 1 <.5 1 <.5 1 <.5 1 <.5	<2 2 <2	1.18 .24 1.77 .13 3.11
SND05429-16 SND05429-17 SND05429-18 SND05429-19 SND05429-20	2.0 1.6 1.5	153.9 106.8 62.8 137.2 155.0	80.6 15.8 227.2	5 69 3 46 2 55	.5 .5 10.6	7 7 7	1.7 1.8	643 752 713 318 983	1.41 1.72	16.9 21.5 60.9	4.1 3.9 3.1	7.5 10.9 11851.3	9.7 9.7 9.8	7 4 11	.7 .6 .9 1	5 .3 1 .1 8 3.9	3 3 3 4	.06 .07 .06	.019 .024 .022	15 19 16	2.9 2.9 2.9	.04 .06 .05	62 .0 39 .0 72 .0	03 1 09 1 11 1	. 29 . 25 . 29	.019 .021 .024	.19 .19 .22	.1 . .1<. .1 .	01 .: 01 .: 01 .:	8.1 8.1 8.1	11 53 . 1.41	1 < 5 1 < 5 1 < 5 1 < 5 1 < 5	<pre><2 <<rp>< <2 </rp></pre> <pre></pre>	.02 .02 6.38
5ND05429-21 SND05429-22 SND05429-23 SND05429-24 SND05429-25	1.6 1.4 1.5	18.0 28.2 20.9 96.3 53.2	3.3 4.7 5.4		.1 .3 .8	.5 .5 .6	1.8 2.0 2.0	1348 1780 578 1236 700	1.60 .99 1.83	5.6		.7 12.7 102.2		4 4 3	<.1 .1 .2 <	1 .1 1 .2 1 .4	18 26 14	.10 .08 .08	.025 .024 .022	20 23 14	4.1 5.4 2.7	.11 1 .09 .07	26 .0 50 .0 34 .0	25 4 20 2	.27 .27 .25	.034 .040 .018	.18 .18 .19	.1<. .1<. .1<.	01 1. 01 1. 01	1.1 0.1 7.1	.26 .15 .57	2 <.5	√2 √2 √2 √2	.0 .0
SND05429-26 SND05429-27 SND05429-28 SND05429-31 SND05429-32	1.4 1.3 1.5	14.9 33.7 18.8 54.6 23.7	67.9 58.3 475.7) 72 3 75 107	1.9 .1 1.5	.9 .6 3.4	3.5 1.7	478 651 675 533 458	1.50 .87 .94	19.5 8.3 15.6	6.2	183.0	9.6 10.3 12.7	20 23 10	.61. .7. 1.47	11.8 6.1 0.1	3 13 15	.07 .06 .07	.021	15 16 22	3.4 2.2 3.7	.04 1 .03 1 .06 5	35 .0 60 .0 15 .0		.26 .25 .24	.020 .017 .033	.15 .14 .15	.1<. .1<. .1 .	01 01 02	7.1 7.1 9.2	07	1 <.5 1 <.5 1 <.5	3 ~2 ~2	.3 .0 1.8
5ND05429-33 RE SND05429-33 RRE SND05429-33 5ND05429-34 SND05429-35	1.2 1.3	8.1 7.7 7.1 23.6 11.1	42.5 33.8 47.5	5 103 3 100 5 95	.2 <.1 .1	.8 .8 .7	1.6 1.3 1.6	618 617 591 610 523	1.00 .95 .88	2.5 1.6 4.3	2.9 2.8 3.0 3.0 7.5	13.4	9.8 9.6 9.0	6 6 6	.4 .5 .7 1	.4 .2 .4 .1 .1 < .1	2 5 L 5 L 2	.07 .07 .06	.018	23 22 16	3.5 2.8 3.3	.07 2 .07 2 .04	79.0 35.0 78.0	22 1 04 1	.23 .23 .23	.035 .033 .028	.16 .15 .15	.1< .1< .1	01 1. 01 . 01 .	0 .1 9 .1 7 .1	.10		<2 <2 <2 <2	.7 .0 .D
SND05429-36 SND05429-38 SND05429-39 SND05429-40 SND05429-41	2.0 2.3 2.4	2.6 40.3 15.6	21.7 183.7 136.7	7 63 7 102 7 56	<.1 .5 .1	.6 .8 .6	1.0 1.4 1.4	398 659 430 200 520	.74 .98 .45	.9 27.1 8.1	2.4 3.7 6.2 7.5 4.0	3.0 137.1 36.5	11.4 9.7 8.5	10 12 18	.2 1.3 2 .4	.1 <.1 .4 .3 .7 <.1	1 3 1 1 1	.06 .06 .06		23 15 23	4.0 2.8 2.7	. 02 . 03 . 02	94<.0 62 .0 77<.0	01 Z 01 2 01 1	.15 .20 .19	.025 .020 .022	.11 .17 .15	<.1 . .1 . .1<.	01 02 01	5. 4. 4.	L <.05 L .47 L .13	1 <.5 <1 <.5 1 <.5 1 <.5 1 <.5	5 <2 5 <2 5 <2	0. 0. 0.
5ND05429-42 5ND05429-43 5ND05429-44 5ND05429-45 5TANDARD DS6/R-	2.7 2.8 .9	11.8 30.9 9.7 21.9 121.6	66.2 92.6 55.0	2 54 5 185 0 145	.3 .5 .1	.5 .6 .7	1.3 1.9 2.9	246 300 421 876 703	.74 .82 1.61	13.8 3.7	14.7 5.1	32.8 50.7 5.1	8.0 9.4 19.4	12 40 12	.41 1.2 .91	.8 .2 .8 .4 .1 .2	2 1 4 1 2 7	.04 .06 .14	.013 .013 .041	20 19 13	2.4 2.6 1.8	.03 .04 6 .09 4	80<.0 88<.0 08 .0	01 3 01 5 01 3 01 2 82 17	. 20 . 26 . 24	.024 .013 .025	.15 .15 .16	.<	01 01 01 1.	4. 5 3	1 .16 1 .07 1 .12	1 <.5 1 <.5 1 <.5		.0

Standard is STANDARD DS6/R-2a/OxL34. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 5

1. 1 State 1. 1991

ACME ANALYTICAL																																						ACHE ANALYTICAL	
	SAMPLE#	Ma	Cu	Р	њ 7i	n 4		Ni	Co M) Fe	As	U	A	i Th	Sr	Cd	Sh	Ðí	v c	à	P La		r M	4a E	Ba T1	B	Al	Na	*	W 1	Ha Sr	: T1	,	Ga	50 41	*** &u	**	· · · · · · · · · · · · · · · · · · ·	
			ppm		п рря		- 4		071 DD								 ррт р				t opm			1 m					х п.		-		-	000 0			-		
										·																													
	SND05429-46	2.7	122.0	54.	9 23	θ.	.3 7	.3 7	.8 183	5 4.78	20.8	3.1	39.5	10.1	13	.7	.7	.2	28 .3	36 .11	2 21	4.	.8.3	38 16	05 .052	2 4	.57 .	028	. 35	.3 .0	01 3.8	1.2	1.06	3 <	.5	<2 .	.04		
	SND05429-48	5,5	11.7	9.3	8 1	1 <.	1	.5	.8 7	2 .58	1.1	1.2	2.3	6.9	7	<.1	.2 <	.1	5.0	05 .01	1 23	4.	6.0	14 8	59 .011	1	.18 .	026	.09	.1 <.0	01 .6	5.1	<.05	1 <	.5	<2 <.	.01		
	SN005429-49	1,1	26.9	2	7 4	6 <.	1 1	.3 6	.4 108	2.94	.8	3.1		8.4	25	<.1	.2 <	.1 4	49 1.1	LS .09	4 24	4,	z.,7	77 25	54 .185	5 2	1.05 .	058	.48	.1 <.0	01 5.0	J .2	<.05	6 <	.5	<z .<="" td=""><td>. 01</td><td></td><td></td></z>	. 01		
	SND05429-50(pu1p)	17.4	49.2	402./	3 3	14.	5 893	.5 23	.9 36	2 2.10	54.6	.5	30488.7	3.3	19	,1	.54	.7 3	28 .4	17 .03	80 13	1103.	.4 .5	57 14	10 .044	6	.97 .	044	. 27 13	.3 .1	01 2.4	i .i	<.05	3	.5	535.	. 10		
	SND05429-51	1.7	9.6	61.	4 7	0 <.	1	.8 1	.8 25	.77	2.3	6.1	24.7	8.8	26	. 3	.7	.1	3.0	97 .01	2 23	3.	9.0	14 16	53 .001	. 3	. 27 .	027	.15	.1 <.{	01 .6	i.1	.07	1 <	.5	<2 .	.06		
	SND05429-52	4.7	124.4	65.1	8 4	1.	7]	.1 6	.2 39	1.48	24.1	2.0	32.1	7.0	10	.7	.4 2	.7	4.0)5 .01	1 28	3.	.5 .0	NS 13	30 .001	1	.21 .	029	.13	.1 <.1	01.4	1.1	.54	1	.5	<2 .	.06		
	RE SND05429-52	4.7	123.8	69.5	9 4	ι.	.6 1	.1 6	.3 39	5 1.49	25.7	2.4	36.4	7.5	10	.9	.4 2	.5	4.0)5 .01	2 28	4.	.6.0	35 14	45 .001	5	. 21 .	031	.14	.1 <.1	01.4	i .1	. 58	1 <	.5	<2 .	.05		
	RRE SND05429-52	5.7	130.7	68.	9 4	١ .	7	.7 (.0 40	2 1.45	26.8	2.5	28.E	7.6	10	.9	.5 2	.1	4.0) 6 .01	2 30	3.	.6.0	05 17	78 .001	4	.19.	029	.13	.1 <.1	01 .4	1.1	.54	<ì <	5	<2.	.04		
	SN005429-53																				13 19															<2 <.	.01		
	SND05429-54	2.5	304.2	389./	6 58	1 10.	7 2	.9 1(.1 133	4 6.24	24.3	3.5	676.4	5.3	11	2.4	.8 42	.2 :	52 .4	14 .10	06 16	4.	.1 .4	45 2	29 .140	1 3	.83 .	038	.50	.2 <.1	01 4.6	5.3	2.89	5	.5	10 .	.89		
	SND05429-55																																	5 •		<2.			
	SND05430-1																				8 19															<2 .			
	SND05430-2																				17 12															61.			
	SND05430-3																																	1 <		<2 .			
	SND05430-4	1.0	55.1	/8.	9 8	5,	4 I	.4 .	.6 122	11.62	89.1	4.1	10.4	9.7	8	.9	.2	.1	4.	11 .03	15 14	3.	.5.6	35 1	64 .UUI	. 1	.33 .	024	.23	.1 <.1	UI I.A	£.1	.38	1 <		<2 .	.02		
	SND05430-5	1.3	724 R	R	4 7	13	8	a 1	9.125	5 2 36	15.2	3.6	1318 A		a	9	1 2		7 0	na 102	× 10	3	5 1		so nie	; ,	35	6an	24	2 < 1	ינוח	1	97	2 <	. 6	53.	17		
	SMD05430-6																				27 20													1 <		2 1.			
	SND05430-7		8.0																		25 20															<2			
	SND05430-8																																	2 •		<2 .			
	SN005430-9		6.7																															1 <		<2 <			ļ
	SND05430-10	1.0	13.4	4.4	03	2 <.	.1 1	.1 2	.0 110	0 1.35	1.3	3.5	109.9	11.3	5	.1	.2 <	.1	θ.,	11 .02	28 26	3.	.5.1	12 !	55 .023	1 1	. 34 .	050	.18	.1 <.1	01 1.1	1	.09	2 <	.5	<2 .	.01		
	SND05430-11	1.0	9.1	4.	32	6 <.	. 1	.8 2	.7 77	5 1.21	2.8	3.0	18.0	9.5	5	.1	.1	.1	8.8	07 .02	23 25	4.	.1 .1	14 5	57 .028	3 2	.36.	041	.20	.1 <.0	01 1.3	1.1	.11	2 -	- 5	<2 <.	.01		
	\$ND05430-12	1.1	4.9	7,	1 4	0 <.	. 1	.6	.9 113	7 1.40	1.9	3.1	4.0	11.2	4	.1	.1	.1	9.1	10 .02	24 18	4.	2.1	13 20	04 .025	i 1	.33.	036	.18	.1 .1	01 1.3	1.1	.09	z <	:.5	<2 .	.01		1
	SND05430-13	1.3	16.7	20.4	44	1.	.4	.9 1	.2 111	0 1.62	7.5	3.4	76.4	10.4	5	.2	.1	.2	8.0	08 .02	23 18	4.	.3.1	13 6	89 .025	5 1	. 35 .	047	.20	.1 <.0	01 1.1	1	.37	2 <	5	<2 .	. 12		
	SNDD5430-16	11	40.7	125.1	2 4	δ.	3 1	.1 i	.8 6	6 .67	19.7	9.5	24.0	10.3	21	.6	.5	.1	2.0	03 .02	22 14	2.	.9 .0	02 23	33 .001	<1	. 31 .	020	. 18	.1 .1	02 .1	1.2	.48	1 <	5	<2.	.04		
																		-																					
	SND05430-17																																	1 -		4 1.	-		
	SND05430-18																				21 14													1 4		4.			
	SND05430-19																				18 20															<2.			
	SND05430-20																				14 15															<2.			
	SND05430-21	2.3	68.5	385.	4 1/	υ.	4		.3 101	7 1.82	34.1	5.0	105.9	, y./	10	1.3	1.0	.3	1.1	10. CL	L2 14	3.	.ə .t	UZ {	08<.UUI	. 3	. 36 .	. 010	.22 <	.1.	uz .I	5 .L	.87	1 •	.5	<2 .	. 24		
	SND05430-22	,,,	27 G	162	A 11	۹ <i>-</i>	1 .		0 4.9	n pa	11 G	13.6	52	5 11 4	10	4	7	1	1 1	16 01	15 17		2 r	n2 1	50~ <u>0</u> 01	. ,	22	016	17 -	1	02 1		24	J.	e 5	<2	ПА		
	SND05430-22 SND05430-24																				15 17 16 21													-		<2			
	SND05430-24 SND05430-25																				17 25															<2			
	SND05430-26																				15 11															26 17			
	STANDARD 056/R-28/0xL34																																						
						· · · ·	_	_																															

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

Almaden Minerals Ltd. PROJECT ELK05-7 FILE # A506092

Page 6

·······		ACME ANALYT
MPLE#	Ho Cu Pb Zn Ag Ni Co H⁄n Fe As U. Au Th Sn Cd Sb Bi V Ca P La Cn Mg Ba Ti B Ail Na K. W Hg Sc Ti S Ga Se Ag** Au** pem pem pem pem pem pem pem pem pem pem	
ND05430-27	3.4 267.0 297.4 147 4.8 9 1.6 757 2.06 54.8 2.8 3924.3 8.6 10 1.2 2.2 3.5 1 .04 .013 10 4.4 .03 73 .001 4 .31 .011 .25 .2 .07 .5 .1 1.33 1 <.5 6 6.13	
ND05431-1	1.9 72.4 143.5 10 13.8 .5 1.0 28 1.49 87.4 2.3 7872.2 7.8 6 .1 2.2 9.8 1 .01 .008 9 3.2 .01 45 .001 <1 .26 .009 .20 .1 .02 .5 .11 .08 1 <.5 8 5.23	
ND05431+2	.7 22.5 67.7 11 .6 .5 .3 31 .56 9.5 2.8 107.0 11.0 8 .1 .8 .6 4 .03 .013 20 2.3 .01 53 .002 4 .25 .026 .13 .1 .01 .9 .1 .26 1 <.5 <2 .26	
ND05431-3	1.1 121.3 66.3 43 2.8 .8 1.1 354 1.35 26.1 3.4 389.2 11.3 7 .5 .8 1.5 2 .07 .023 21 2.8 .03 123 .001 5 .24 .021 .18 .1 <.01 .6 .1 .81 1 <.5 <2 .88	
ND05431-4	1.4 30.9 4.2 31 1.8 .8 3.4 1141 1.42 29.1 3.5 874.3 11.1 4 .1 .4 .9 7 .08 .026 21 3.4 .11 79 .014 <1 .27 .033 .18 .1 <.01 1.0 .1 .41 1 <.5 2 1.25	
ND05431-5	.9 50.8 7.3 30 .5 .7 2.4 1507 1.68 77.7 4.1 9.0 10.4 4 .1 .2 .4 8 .08 .024 23 4.0 .12 45 .018 <1 .28 .028 .17 .1 <.01 1.0 .1 .37 2 <.5 <2 .02	
D05431-6	1.1 39.9 13.2 30 1.4 .7 2.3 1922 1.88 64.5 3.7 42.5 11.1 4 .1 .2 .9 7 .08 .024 21 3.4 .12 42 .017 6 .28 .031 .17 .1 < .01 1.0 .1 .43 2 <.5 <2 .06	
ND05431-7	1.0 4.3 2.5 29 <.1 .8 3.6 635 1.89 .8 2.2 1.7 6.0 13 <.1 .1 .1 23 .48 .063 13 4.0 34 172 .115 2 .55 .055 .39 .1 .01 1.9 .2 <.05 3 <.5 <2 .03	
ND05431-8(pulp)	15.0 281.3 316.7 347 4.7 168.7 23.4 496 3.30 194.0 3.3 10669.9 2.2 45 2.3 15.1 4.2 44 1.15 .040 5 276.8 .46 60 .032 3 .97 .029 .32 6.2 .39 4.2 .6 1.24 4 1.3 6 10.01	
ND05431-9	1.2 34.6 3.2 42 .1 .9 2.2 1061 1.49 2.1 3.7 2.0 11.8 5 .1 .2 .2 8 .10 .024 14 3.1 .10 99 .013 1 .27 .032 .16 .1 < .01 1.1 .1 .14 2 < .5 <2 .01	
ND05431-10	.9 42.7 58.0 71 .4 .9 1.9 876 1.18 33.4 2.8 17.6 9.1 7 .5 .4 .2 2 .05 .022 13 3.2 .02 64 .001 6 .24 .015 .18 .2 <.01 .7 .1 .46 1 <.5 <2 .08	
ND05431-11	1.3 13.5 113.4 43 .3 1.0 2.3 343 .65 45.5 12.1 95.4 9.9 8 .7 .2 .1 3 .07 022 18 3.5 .02 57 .003 7 .22 .025 .15 .1 < .01 .7 .1 .21 1 < .5 <2 .14	
N005431-12	1.1 99.1 73.8 47 1.0 .7 2.1 543 1.57 68.3 4.2 216.1 7.3 5 .8 .7 .4 2 .04 .017 9 2.8 .02 47 .001 3 .24 010 .1 9.1 .02 .4 .11.05 1 <.5 <2 .27	
ND05431-13	1.0 10.0 47.7 66 <.1 .8 2.0 607 .92 3.1 4.2 7.1 11.2 7 .4 .5 <.1 6 .10 .033 23 2.7 .06 56 .011 6 .22 .028 .14 <.1 <.01 1.2 .1 .08 1 <.5 <2 .05	
ND05431-14	1.3 5.0 81.4 63 <.1 .7 2.1 744 .73 5.2 9.7 24.3 8.6 15 .3 .2 <.1 2 .05 .023 19 2.7 .02 161<.001 5 .22 .020 .14 .1 .01 .6 .1 .09 1 <.5 <2 .06	
ND05431-15	1.5 89.6 91.1 39 .9 .7 1.4 543 1.35 27.7 4.4 102.7 8.9 9 .4 1.0 .3 2 .06 .019 13 2.9 .03 81 .091 3 .23 .018 .18 .1 <.01 .6 .1 .70 1 <.5 <2 .15	
ND05431-16	2,0190,91397 94 13 9 29 1297 2.20 62.0 2.9 75.0 8.8 10 1.0 1.6 .2 3 .11 .038 11 2.5 .04 89 .001 5 .30 .015 .24 1 .01 .9 .11.22 1 <.5 <2 .14	
ND05431-17	1.5 18.2 68.9 66 .2 .7 2.1 526 .87 9.9 4.2 66.1 9.4 11 .5 .4 .1 3 .06 .019 15 3.7 .02 106 .001 1 .22 .023 .15 .1 .01 .6 .1 .26 1 <.5 <2 .07	
ND05431-18	1.9 113.8 177.9 62 4.5 .6 2.2 564 1.30 40.1 4.5 915.7 10.7 9 .7 2.2 1.7 2 .06 .020 16 3.6 .03 68 .001 2 .22 .023 16 .1 .02 .7 .1 .65 1 <.5 7 1.86	
ND05431-19	1.3 17.7 87.0 77 <1 6 1.6 472 .71 2.9 3.7 5.9 9.5 14 .7 .2 <1 5 .07 .023 22 2.2 .03 1176 .005 5 .22 .032 .13 <1 .01 .9 .1 .06 1 <.5 <2 .06	
ND05431-20	1.3 11.5 118.4 104 <.1 .7 1.8 663 .90 2.0 3.9 15.7 9.9 13 .5 .2 .1 5 .08 .023 23 3.0 .03 964 .005 7 .20 .031 .12 <.1 .01 .9 .1 <.05 1 <.5 <2 .04	
ND05431-21	1.4 9.3 59.0 153 <.1 .5 1.5 1011 .99 2.5 7.0 41.9 9.0 5 .6 .5 <.1 2 .07 .021 18 3.3 .03 1026<.001 4 .20 .027 .15 <.1 .01 .6 .1 .07 1 <.5 <2 .02	
ND05431-23	4.2 53.0 241.4 236 .9 .9 1.7 1156 1.31 12.6 7.0 109.4 9.5 18 1.2 6.4 .2 1 .06 .016 19 2.1 .02 59<.001 3 .25 .022 .18 .1 .02 .7 .1 .15 1 <.5 <2 .15	
ND05431-24	1.6 9.1 49.1 128 <.1 .6 1.1 519 .79 1.4 2.2 14.5 8.5 13 .5 4 .1 3 .06 .017 21 5.4 .03 75 .002 3 .21 .034 .13 <.1 <.01 .7 .1 <.05 1 <.5 <2 .03	
ND05431-25	2.4 55.3 263.7 119 .3 .6 1.6 405 .72 11.9 2.2 11.1 7.4 20 2.0 1.9 .3 1 .06 .017 18 2.3 .02 92<.001 1 .24 .017 .20 .1 .01 .4 .1 .26 1 <.5 <2 .02	
ND05431-26	2.0 77.6 363.0 113 .4 .8 2.0 365 .93 17.8 2.4 20.5 8.1 18 3.6 1.9 .4 1 .05 .017 16 2.0 .02 93 .001 1 .27 .024 .22 <.1 .01 .6 .2 .55 1 <.5 <2 .04	
E SND05431-26	2.0 79.0 362.6 111 .5 .7 1.8 368 .93 17.1 2.2 19.4 7.9 17 3.2 1.8 .4 1 .04 .016 16 1.9 .02 88<.001 2 .27 .023 .20 .1 .01 .4 .1 .50 1 <.5 <2 .03	
RE SN005431-26	1.7 69.6 370.2 108 .6 .9 1.8 379 .97 16.6 2.1 29.1 7.6 17 3.0 1.8 .5 1 .04 .015 16 2.7 .02 88<.001 5 .26 .020 .1 9 .1 .01 .4 .1 .48 1 <.5 <2 .04	
ND05432-1	1.1 30.8 8.2 49 .3 .7 2.1 960 1.37 7.1 3.2 31.9 10.4 4 .2 .1 .1 7 .08 .024 10 2.6 .10 46 .017 <1 .27 .033 .15 .1 <.01 1.0 .1 .30 2 <.5 <2 .03	
ND05432-2	1.1 10.7 5.4 31 .2 .7 2.1 2084 1.60 2.5 2.7 17.4 10.6 4 .1 .1 .1 7 .10 .023 18 4.3 .12 65 .021 5 .29 .036 .18 <.1 <.01 1.0 .1 .10 2 <.5 <2 .18	
SND05432-3	.9 76.5 49.5 19 .5 .6 .9 87 .60 22.5 3.8 9.7 8.6 3 .5 .1 .1 3 .04 .017 19 3.4 .04 41 .005 1 .28 .017 .21 .1 <.01 .6 .1 .22 1 <.5 <2 .01	
SND05432-4	1.5 272 7 245.9 42 2.4 .5 1.5 341 2.19 111.8 3.1 271.7 9.6 5 .7 1.0 1.7 2 07 027 10 2.3 .02 42 .001 5 .28 .012 .24 .1 .01 .6 .1 2.13 1 <.5 3 .58	
ND05432-5	1.5 45,3 99,8 56 .6 .8 1.7 430 .91 22.4 4.0 533.2 8.6 8 .6 .2 .2 1 .06 .024 12 3.0 .02 54 .001 4 .26 .012 .23 .1 .01 .4 .1 .56 1 <5 <2 .04	
ND05432-6	1,7 133,7 148,1 73 13,4 1,0 3.5 643 2,01 36,4 4,6 5827.5 7.9 12 .7 1.3 1.9 2 .06 .022 10 3.1 .03 70<.001 2 .25 .014 .19 .1 .04 .5 .2 1.38 1 <.5 8 5.48	
	bil 12 2 6 29.3 142 .3 24 6 10.6 704 2.81 20.6 6.6 46.0 2.9 40 6.0 3.1 4.9 55 .85 .079 13 186.5 .57 162 .081 18 1.90 .075 .15 3.3 .23 3.3 1.7 < .05 6 4.5 156 5.95	

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

Page 7

ΑСΜΕ ΑΝΔΙ ΥΤΙΛΑ

5AMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd S	b Bi	¥	Ca	Ρ	La	Çr	Mg	Ba T	i 8	Al	Na	K	M	Hg	Sc	n	\$	Ga	Se /	Ag**	Au**	
 	ррп	ррпя	ppm :	ppm	ppn	ppm	ppn	pp#	*	ppm	ppsa	ppb	ppm p	g mqt	per pp	m ppm	ррт	x	* ;	ppm	ppm	x	ppm	¢ ppm		1	*	ppm	ppm	ppm	ppn	*	ppm	ppm g	n/mt y	ga/nt	
5ND05432-7	1.0	9.5 5	0.5	73	.1	. 8	1.6	718	.97	4.3	3.D	5.11	Q.2	10	.3.	4.1	5	.08 .	025	22	1.6	. 03	155 .00	1 <1	.19	. 030	. 10	.1	.01	.9	.1	.10	1	<.5	<2	. 03	
SMD05432-8	1.7	19.6.24	2.4	45	1.0	1.1	3.7	116	.69 2	1.6 1	5.8	354.2	7.2	11	.5.	7.8	1	.05 .	013	12	2.7	.02	77 .00	<1	. 23	.010	. 18	.1	.02	.2	.1	.62	1	<.5	<2	.72	
SND05432-9	2.1	30.2 8	8.5	47	.6	.7	3.0	478	.98-1	8.7 ·	5.4	96.9	8.5	6	.6 5.	5.1	2	.06 .	020	15	2.3	.03	40 .00	9 1	.22	.023	. 15	.1 <	. 01	.6	.1	.42	1	<.5	<2	. 18	
SND05432-10	1.5	8.8 14	5.7	50	.4	.4	1.5	52	.39 2	0.5 1	3.2	99.5	5.9	8	.6.	6 <.1	1	.04 .	014	12	4.0	.01	46<.00	13	.17	.014	.12	≺.1	. 01	.2	.1	.29	<1	<.5	<2	. 26	
RE SND05432-10	4.2	9.0 14	3.9	53	.6	.6	1.7	50	.38 2	2.1 1	4.1	301.9	5.9	9	.7.	6 <.1	1	.04	015	12	4.0	.01	47<.00	1	. 16	.015	.13	<.1	. 01	.2	.1	. 28	<1	<.5	<2	. Z4	
RRE SND05432-10	1.4	9.5 15	3.0	54	.4	.5	1.6	53	.39 2	1.7 1	3.7	102.6	5.9	9	6.	6 <.1	1	.04 .	0 15	13	3.7	.01	52<.00	. ⊲	.18	.016	.14	<.1	.01	.3	.1	.30	<1	<.5	<2	. 24	
SND05432-11	1.0	6.7 26	2.7	220 ·	<.1	.6	1.6	1210	1.20	1.3 1	9.1	2.2.1	1.0	21	.6.	2.1	1	.07 .	014	18	2.1	.03 1	169<.00	-1	.17	.022	.11	.1	.01	.6	,1 <	<.05	<1	<.5	<2	<.01	
SND05432-13	1.0	5.8 1	8.6	120	<.1	.5	1.4	811	.97	.8	2.9	1.3	9.1	18	.2.	1 < 1	2	.07.	<u>9</u> 20	25	2.5	. 03	45.00	1 2	.19	.034	.12	<.1	.01	.8	.2 <	<.05	1	<.5	<2	<.01	
SND05432-14	1.5	16.8 8	9.4	197	<.I	.7	2.1	1024	.98	6.0	9.5	28.6	9.2	27	.8 .	6.1	1	.06 .	Ø15	23	1.3	.03	765<.00	2	.23	.015	. 15	<.1	.01	.5	.1	. 10	<1	<.5	~2	.06	
SND05432-15	2.3	21.7 9	9.6	160	.2	.1	2.4	741	.98	7.1 1	0.2	22.9 1	1.2	35 1	.0.	6.1	1	.07 .	Ø15	21	1.2	. 04	50×.00	15	.25	.017	. 18	<.1	.01	.5	.1	. 13	1	<.5	<2	.03	
SND05432-16	1.8	28.9 13	1.5	118	.2	.7	2.9	715	1.08	9.5	5.2	18.9 1	Q.7	19	.8.	7.1	2	.08 .	020	17	2.3	. 05	120<.00	L 4	. 20	.024	.16	<.1 <	.01	,7	.1	. 24	1	<.5	<2	.04	
SND05432-17	1.7	26.9 12	6.1	102	.2	.7	2.7	652	. 99	7.0	5.0	37.3	9.3	20	.7 1,	0.1	2	.06 .	016	17	1.4	. 04	36<.00	່ 3	. 21	.024	.15	<.1 <	.01	.6	.1	. 15	1	<.5	2	.04	
SND05432-18	1.4	5.4	3.4	39	<.1	1.1	5.3	814	2.35	.7	2.4	<.5	6.5	18	.1.	1 <.1	36	. 85 .	075	21	3.2	. 55	227 .14	ə 2	. 85	. 053	.45	. 2 <	.01	3.5	.2 •	<.05	4	<.5	<2	<.01	
SND05432-19(pulp)	19.2	53.9 40	3.2	33	4.6 1	001.2	26.8	386	2.24 5	5.6	.4 31	475.0	3.2	18	.2.	5 4.5	27	. 48 .	032	12 13	37.6	. 59	144 .04	2 7	.99	.047	. 25	12.3	.02	2.2	.1 •	<.05	3	<.5	5 :	35.10	
SND05432-20	2.2 1	20.7 11	4.1	149	.5	.8	1.4	771	1.82 4	5.1	3.0	27.5	9.8	61	.2 5.	0.4	Z	.08 .	Q20	13	5.D	.03	102 .00	4	. 21	. 020	. 16	.1	.01	.6	.1	.92	1	<.5	<2	.05	
SN005432-21	1.8	23.6 10	2.1	196	.4	.7	2.0	897	1.14 1	4.0	3.6	26.4	9.4	12	.9	6.2	1	.06 .	021	13	2.5	.03	302 .00	L 3	. 23	.013	.19	.1	.01	.6	.1	. 25	1	<.5	~2	.01	
SND05432-22	1.4	75.5 6	8.4	182	.9	.6	1.3	967	1.45 2	0.3	2.9	89.0	9.5	9	.9 1.	0.2.0	2	.06 .	p16	12	3.4	. 04	132<.00	l <1	. 20	.019	.14	.1	.01	. 5	.1	. 34	1	<.5	<2	.12	
SND05432-23	1.8	27.5 10	1.9	114	1.8	.4	2.2	381	1.01 1	0.6	5.6	78.21	0.7	7	.9.	6 4.0	1	.06 .	016	15	2.0	.03	131<.00	L 1	. 18	.018	.13	<.1 <	.01	.4	.1	. 39	<1	<.5	2	.08	
SND05432-24	2.0	36.5 6	8.0	150	.2	.5	1.2	530	.97	7.4	3.2	5.91	1.0	6	.6.	8.Z	2	.07.	p18	17	2.5	. 04	75 ,00	l 1	. 18	.026	.12	.1 <	.01	,7	.1	. 10	1	<.5	<2	.01	
STANDARD DS6/R-2a/OxL34	11.4.1	22.1 2	8.9	142	.3	24.5	10.5	700	2.79.2	0.7	6.5	47.0	2.9	40 5	9 3	2 4 9	55	84	D78	13 1	83.9	57	161 .08) 16	1.68	.073	14	3.3	22	3.2	1.7 •	< 05	6	4.3	155	5.81	

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

• •

ACME AN		TCAL 01 A					LTD		85		80 C.	ASTING EMICI			12)	COT JIS		2.00		6A Ica	<u>.</u>		P	HONI	3 (6 ()4)2	53.	315	8 F	AX (60⁄	Y	53-1	1716	
						<u>Al</u> n				era	l,s	Ltd. It., Van	PR	oJ	ECT	EL	<u>K05</u>	-7		Fil	e	# A		C 14.7 A 77 A 4											
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррт	Min ppm	Fe گ	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P Xi	La ppm	Cr ppm		Ba Spm	Ti % p	8 / cm	เ] %	Na X	K k %ippn	l Hg i ppm				Ga ippm	
SND05427-48	34.2 (6654.7	212.3	254	>100	6.2	22.2	1	12.29	451.1	2.8	65921.4	.9	37	9.4	198.0	26.7	3	.04	010	2	4.8	.03	3.(102	3.1	9.0	06.1	2 < .]	. 34	.4	.2	>10	1	<.5
SND05427-24		213.0	61.7	73	21.3	2.8	3.6	23	2.09	40.9	3.2	10212.8	7.3	3	1.2	2.3	6.0	1	.01	004	5	10.5	.01	34 .(001	2 .1	9.0	04 .1	9.1	.04	.3	.1	1.92		<.5
SND05427-40	5.2	137.1	140.2	168	1.1	4.9	6.6	1252	2.76	20.3	6.6	205.3	5.7	49		14.7	1.1	7		.075	17	7.8		152 .0		· ·			37 .2		2.6	.1	. 38	-	<.{
SND05429-37	6.5		2768.1		5011	3.8		70		270.9			1.5		27.9	8.9		1		.002	2	11.0			001	2.1		05.1	.1 .1	23		.4	7.68		<.!
SND05429-47	28.4	122.8	53.2	19	.6	4.5	3.0	99	.96	5.5	2.3	161.6	9.9	13	.4	1.0	.5	8	. 10	. 036	31	12.1	.05 1	116 .0	11/	5.2	6.0	31 .1	.4	<.01	1.0	.1	.08	1	<.!
SND05430-23	6.3	312.9	301.0	153	5.5	6.0	3.5	578	2.07	33.9	9.2	2570.3	9.9	29	1.4	.9	2.1	3	. 08	.015	16	13.3	.04 1	. 105	001	7.6	5.0	22 .3	36.1	.02	.9	.2	.85	i 1	<.5
SND05431-22	5.9	147.4	395.4	338	2.2	3.0	4.1	1296	1.63	29.9	17.6	552.5	10.9	18	2.0	15.5	.7	<1	. 14	.012	16	2.9	.04 1	185<.(001	4.1	90	09 .1	.6.1	04	.6	.1	. 54	<1	<.
SND05431-29	4.6	114.9	258.7	238	1.5	6.3	4.9	614	2.28	37.8	4.8	505.8	10.4	12	3.0	1.2	1.1	6	. 11	.018	14	14.2)03	4.4	0.0	29 .2	28 .1	02	.8	.1	1.17	-	<.
SND05432-12			1522.6		43.0		13.4	277	5.78		4.7	38487.5	5.1	13	8.1		23.9	5	.08	.010	8	12.0)03		·· ··		25.3	33		.2	5.47	-	<,
STANDARD DS6	11.3	122.3	29.4	142	.3	24.6	10.6	700	2.79	21.0	6.5	45.8	2.7	40	6.1	3.1	5.1	55	. 85	.078	13	184.3	.57 1	L66 .(080	17 1.8	. 89	71 .	LS 3.2	22	3.2	1.7	<.05	6 (4,

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-HZO AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: DRILL CORE M150

Data 35 FA ____ DATE RECEIVED: SEP 26 2005 DATE REPORT MAILED: OCT 28/05

Almad		CB. IFICATE OJECT ELKO5-7 File # A506093
	103 - 750 W. Pender St., Vancouv	er BC V6C 218 Submitted by: Wojtek Jakubowski
	SAMPLE#	S.Wt NAu -Au TotAu gm mg gm/mt gm/mt
	SND05427-48 SND05427-24 SND05427-40 SND05429-37 SND05429-47	946 1.94 79.79 81.84 935 .25 6.25 6.52 531 <.01 .34 .34 772 1.01 50.09 51.40 845 <.01 .21 .21
	SND05430-23 SND05431-22 SND05431-29 SND05432-12 STANDARD OxL34	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
DataFA DATE RECEIVED	D: SEP 26 2005 DATE REPOI	AT MAILED: Oct 28/05
		Clarence Leong
		Clarence Leong

{	SAMPLE#	S.Wt gm	NAg mg	-Ag gm/mt	TotAg gm/mt	
	SND05427-48 SND05427-24 SND05427-40 SND05429-37 SND05429-47	946 935 531 772 845	<.06	149 19 2 95 1	149 19 2 95 1	
	SND05430-23 SND05431-22 SND05431-29 SND05432-12 STANDARD R-2a	606 955 646 553	<.06	6 2 42 156	6 2 42 156	
Data FA DATE RECEIVED: SEP 2	26 2005 Date Repor	T MAILE		A 26	0/05	Clarence Leong
Data FA DATE RECEIVED: SEP ;	26 2005 Date Refor	T MAILE		ct al	p/05	

.

1103 - 750 W. Pender St., Vancouver BC V6		perios en conservas	
 SAMPLE#	Au* ppb	Sample gm	
SND05427-3 SND05427-43 SND05427-44 (pulp) SND05428-31 SND05428-32 (pulp)	1.73.29842.91.010216.5	30 30 15 30 15	
SND05429-29 SND05429-30(pulp) SND05430-14 RE SND05430-14 RRE SND05430-14	2.0 9962.9 3.0 1.0 1.0	30 15 30 30	
SND05430-15(pulp) SND05431-27 SND05431-28(pulp) STANDARD AU-R	33255.3 3.0 9952.7 470.5	15 30 15 30	
		,	
			•• .
			CUMBER OTO CER

ACME AN			L L Acc					TD.		çşa		. HA OCHE												PE	ONE	(604) 25	3-31	58 7	'AX ((50	7 83-	1716	
.					2	<u>.1ma</u>	<u>ide</u>			eral	. 8	<u>Ltd.</u> der St	PR	OJE	CT	EI	-K0	5-8) 	711	e #	AS				Paç	je i	L						
SAMPLE#	Мо ррлп	Си ррт			Ag ppm		Co ppm		Fe %	As ppm	U ppm		Th ppm			Sb E xpm pp				La ppm	Cr ppm	Mg % p		Ti %P				W H ppm pp				Ga Se pm ppm g		
SND05433-1 SND05433-3 SND05433-4 SND05433-5 SND05433-6	1.6 1.4 1.8	37.7 27.4 26.2	27.1 14.9	116 46 32	.7 .7 .2	1.2 1.1 1.2	1.7 1.9 2.1	903 816 656	1.17 1.39 1.13	33.7 25.3 77.6	5.5 3.6 3.8	261.3 217.6 237.0 197.2 443.8	9.6 10.0 9.9	51 5 6	.7 .6 .2	.1 . .1 . .2 .	.5 .6 .2	4 .11 6 .10 6 .09	.022 .022 .026	16 19 44	6.5 7.0 5.6	.03 .07 .08	32 . 43 . 51 .	002 010 013	<1 .2 <1 .3 <1 .3	29 .02 36 .03 36 .04	3.21 7.24 6.24	.1<.0 .2<.0	1.7 1.9 11.0	.1 .1 .1	.52 .58 .33	1 <.5 1 <.5 2 <.5	4 2 2 2 2 2	. 46 , 34 . 32 . 20 . 50
SND05433-7 SND05433-8 SND05433-9 SND05433-10 SND05433-11	1.6 3.6 1.5	207.0 8.6	114.9	67 53 56	.5 2.1 2.2	1.3 1.2 1.1	3.1 2.1 1.7	674 89 51.0	1.45 4.97 .78	386.0 16.9	10.1 17.8 3.3	5.5 99.8 1055.4 22.3 53.4	9.1 11.0	71 31 10	.1 .5 2 .6	.8 . 2.5 . .3 <.	1 5 1	3 .13 2 .07 5 .09	.047 .026 .025	18 7 21	3.8 3.1 6.0	.02 .02 .03	33 . 22 . 74 .	001 001 006	<1 .2 <1 .3 <1 .3	29 .02 34 .00 23 .03	8 .22 5 .31 1 .15	.1<.0 .1<.0 .3 .0 .1 .0 .1<.0	1.8 1.5 1.9	.1 1 .1 5 .1	.10 .73 .13	1 <.5 1 <.5 1 <.5 1 <.5 1 <.5 1 <.5	<2	.02 .12 1.38 .04 .10
SND05433-12 RE SND05433-12 RRE SND05433-12 SND05433-13 SND05433-16	2.7 16.7 1.5	431.5 410.9 456.2	120.6 123.6 118.6	65 65 81	12.2 16.7 12.4	1.2 1.4 1.5	4.6 4.2 4.6	593 603 652	2.01 2.09 2.05	68.5 73.8 63.9	6.0 5.8 8.1	3080.2 3192.0 5430.4 2283.2 584.2	8.3 8.3 9.2	10 1 10 1 14 1	.2 1 .2 1 .7 2	L.7 3. L.7 1. 2.0 1.	.1 .6 .9	3 .07 3 .07 3 .07	.022 .022 .022	11 11 13	4.9 4.4 4.4	.02 .02 .02	68 . 70 . 84 .	001 001 001	<1 . <1 . 3 .	32 .01 32 .01 32 .01	5.26 5.26 8.24	.1.1	9.6 0.6 2.7	.11 .11 .11	. 69 . 82 . 63	1 <.5	13 12	6.12 6.76 5.55 4.86 .56
SND05433-17 SND05433-18 SND05433-19 SND05433-20 SND05433-21	1.3 1.4 1.4	43.8 17.4	34.0 44.4 62.6 121.2 80.2	76 98 59	.3	.8 1.1 1.0	2.1 2.5 1.6	945 1171 399		6.7	2.8 4.1 4.1	22.4 13.5		7 11 24	.3 .7 2 .7 2	.2 . 2.5 . 2.1 .	.2 .1 .3	7 .10 4 .11 5 .08	.026	24 21 19	4.3 4.7 3.5	.03 .06 :	47 . 58 . 179 .	015 001 013	1 .: <1 .: 2 .:	29 .03 30 .04 35 .02	6.17 4.18 9.21	.1 .0 .1 .0 .1 .0 .1 .0 .1 .0	1 1.0 1 1.0 1 1.1	.1 .2 .1	. 47 . 28 . 39	2 <.5 1 <.5 1 <.5 1 <.5 1 <.5	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	.13 .02 .03 .01 .02
SND05433-22 SND05433-23 SND05433-24 SND05433-25 SND05433-26 SND05433-26	1.6 1.5 1.6	30.7 10.1 21.2	69.4 46.9 885.3 147.7 35.7	80 132 42	.1 1.8 .9	1.1 1.1 1.0	1.5 4.2 2.3	697 643 245		7.8 24.8 6.9	7.9	10.3 769.4 257.8	10.2	11 82 13	.5 .4 .7	.7. .5. .4.	.1 .2 .3	3 .09 3 .09 2 .06	.023 .022 .020 .020 .018 .024	20 19 21	6.7 4.5	.04 .03 .02	85 . 48 . 67 .	004 004 001	<1 .: 2 .: <1 .:	29 .02 30 .02 24 .02	8.20 9.22 7.17	.I .0 .1 .0 .1 .0 .1 .0 <.1<.0	1.9 4.8 1.6	.1 .1 .1	.20 .45 .32	1 <.5	᠕᠕᠕ᠺ	.01 .01 1.08 .16 <.01
SND05433-27 SND05433-29 SND05433-30 SND05433-31 SND05433-31 SND05433-32	1.5 1.4 1.1	24.2 21.2	91.9 54.1 120.0 35.3 52.4	76 91 85	.2 .4 .1	.7 .8 1.0	1.3 1.4	424	. 92 . 90 . 86	12.3 8.8	3.6 6.0 4.1	57.3 35.0	23.0 7.9 8.7 10.4 10.8	9 10 12	.4 .6 .4	.4 .9	.1 .7 .1	3.08 3.09 3.08	.007 .019 .021 .021 .020 .021	16 17 17	5.7 5.4 6.0	.03 .03 .03	190 . 135 . 78 .	001 001 001	<1 .: <1 .: <1 .:	25 .03 25 .04 26 .03	13 .18 1 .19 16 .16	.1 .0 <.1<.0 .1<.0 <.1 .0 .1<.0	1.7 1.6 1.7	.1 .1	.22 .28 .17	1 <.5 1 <.5 1 <.5 1 <.5 1 <.5	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.26 .12 .24 .06 .07
SND05433-33 SND05433-36 SND05433-37 SND05433-38 STANDARD DS6/R-	1.5 1.7 3.4	10.5 39.3 322.0	37.6 125.3	3 221 5 120 3 112	<.1 1.2 3.5	.7 1.1 .8	1.5 1.1 2.5	665 496 578	1.00 1.22 1.66	10.8 37.5	2.9 3.2 3.7	46.1 49.5 274.5	11.3 9.4 10.7	6 13 1 7 1	.8 .1 .0 19	.8 .72 9.64	.1 .9 .9	4 .09 2 .12 3 .09	020. 0 2 .018 9 .019	21 17 18	5.1 6.1 6.9	.04 .05 .03	115 . 148 . 102 .	001 001 001	<1 . 1 . <1 ,	20 .03 29 .03 25 .03	81 .13 80 .20 84 .19	.1<.0 .1 .0	1 .8 11 1.4 14 .6	.1 .1 .1	.09 .43 .93	1 <.5 1 <.5 1 <.5 1 <.5 6 4.3	<2 <2 <2 3 156	.05 .08 .04 .32 5.86
Standard is ST/ GROUP 11 (>) CONU AG** & / - SAMPLI Data	DX - I CENTR AU** I E TYPI	0.50 ATION BY F1 E: DR	GM SAI Excei RE AS Ill C	MPLE Eds Say	LEAC UPPER FROM R150	LIM 1 A.	ITS. T. S/ <u>Samp</u>	SOM MPLE Les b	E MIN	IERALS	6 MAY ' <u>RE'</u>	BE PA are Re	RTIAL	LY AT and /	TACK	ED.	REFI Rejo	RACTO ect /	DRY Al	ND GR	о 10 арніт 27	IC S	SAMPL	.YSED .Es Ci	BY I An Li	CP-MS Mit A	U SOL	UBILII	THEO,	JUNEV				

and the second
1. 1. 1. 1. 1.

Page 2

.....

The second second second second

		<u> </u>
SAMPLE#	Mo Cu Pb Zn Ag N1 Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Hg Sc Tl S Ga Se Ag** Au**	
	pom	
5ND05433-39	2.1 10.1 34.0 113 .4 .9 1.5 456 1.05 2.7 3.9 38.6 13.0 10 .6 .6 .3 4 .18 .019 18 2.8 .04 318 .001 2 .23 .032 .16 .1 .01 .6 .1 .33 1 <.5 <2 .05	
SND05433-40	2.8 131.3 97.0 143 .9 1.0 1.6 714 1.82 25.6 2.1 23.8 8.4 9 2.1 27.9 .6 3 .14 .015 14 2.2 .03 75 .001 <1 .26 .032 .19 .2 .02 .6 1 .88 1 <.5 <2 .05	
SND05433-41	1.5 31.1 108.5 117 .2 .8 1.0 525 1.03 14.5 3.2 3.6 8.6 9 1.2 1.0 .1 2 .08 .015 16 3.3 04 36 .001 <1 .24 .023 1.8 1 .01 .5 .1 .29 1 <5 <2 .01	
SND05434-1	6.6 68.6 76.2 57 5.8 1.0 2.5 836 1.53 14.3 8.1 3939.2 9.0 8 .9 9.2 3.7 3 .11 .023 21 3.3 .04 176 .001 <1 .28 .026 .19 .1 .01 .7 1 .63 1 <5 6 6.21	
SND05434-2	1.5 43.9 30.3 132 7 .8 2.3 942 1.29 127.1 3.1 122.0 9.1 7 2.1 .3 7 5 .11 .023 19 3.4 .04 144 .005 3 .26 .032 .17 .3 .01 .8 .1 .29 1 <.5 2 .50	
SND05434-3	1.1 50.9 25.0 33 .1 .9 1.6 646 1.09 11.6 4.5 6.1 8.7 7 .3 .1 .3 4 .09 .022 22 3.2 .04 43 .005 <1 .29 .030 .20 .1 .01 .8 .1 .28 1 <.5 <2 .02	
SND05434-4	1.4 106.6 13.0 31 1.2 .9 1.7 644 1.42 14.3 4.1 151.0 9.9 5 .4 .1 3.2 3 .08 .023 18 2.5 .04 37 .002 1 .26 .022 .20 .1 .01 .7 .1 .72 1 <.5 <2 .33	
SND05434-5	1.5 218.0 96.0 48 3.5 .9 1.9 393 1.87 121.5 4.5 153.9 8.4 5 .7 .5 3.4 2 .06 .022 11 3.1 .02 41 .001 <1 .34 .011 .27 .3 .01 .5 .1 1.66 1 <.5 5 .49	
5ND05434-6	1.7 135.7 85.9 46 1.5 1.0 1.4 609 1.35 53.1 4.3 168.7 8.9 6 .6 .8 1.1 1 .06 .019 12 2.6 .03 44 .001 <1 .28 .013 .24 .1 < .01 .5 .1 .88 1 < .5 2 .13	
SN005434-7	1.9 272.1 98.6 41 6.8 1.1 1.9 484 1.64 70.5 10.0 2287.7 9.3 11 7 7 5.9 2 08 021 14 2.9 03 67 003 1 32 017 22 1 02 6 1 1.18 1 < 5 11 3.81	
SND05434-8	1.4 73.6 40.7 61 .9 .9 1.9 1163 1.77 17.3 3.3 26.0 9.8 6 .4 .2 .4 4 .10 .024 16 3.0 .05 130 .001 <1 .30 .025 .21 .2 .01 .8 .1 .59 1 < 5 <2 .07	
SND05434-9	1.4 60.2 47.5 76 .6 .9 1.7 624 1.13 20.2 4.1 137.1 9.4 4 .5 .3 .3 1 .07 .022 10 3.8 .02 35 .001 1 .33 .008 .28 .1<01 .3 .1 .46 1 <.5 <2 .17	
SND05434-10	1.5 84.9 161.9 54 3.9 1.1 1.8 280 .97 50.9 6.3 1800.0 9.1 15 .8 .8 3.2 2 .07 .021 17 2.3 .02 110 .002 <1 .28 .020 .1 9.1 .0 .6 .2 .63 1 <.5 4 2.66	
SN005434-11	1.3 18.7 11.4 11 .2 .8 1.5 346 .76 11.2 4.1 65.4 9.6 7 .7 .1 .2 5 .10 .026 22 3.8 .05 43 .007 <1 .30 .028 .22 .2 <5.01 .8 .1 .18 1 <.5 <2 .04	
SND05434-12	1.5 20.3 9.0 14 .2 .8 1.7 391 .80 13.8 3.6 7.6 9.5 8 .1 .1 .1 5 .10 .028 25 3.9 .05 45 .007 1 .31 .030 .23 .1 .01 .8 .1 .19 1 <.5 <2 .01	
SND05434-13	1.7 8.1 3.0 45 <.1 1.4 6.2 879 2.63 .9 1.9 3.2 5.6 24 <.1 <.1 <.1 41 1.12 .078 19 2.8 .64 212 .134 <11.05 .065 .42 <.1 <.01 4.2 .2 <.05 5 <.5 <2 .01	
SND05434-14(pulp)	15.3 296.7 329.5 358 5.6 165.6 21.9 515 3.41 191.8 3.5 9211.3 2.5 49 2.8 15.4 4.3 45 1.20 .042 6 272.4 .49 59 035 <1 1.06 .030 .37 5.1 .42 4.2 .7 1.39 4 1.3 5 10.67	
SND05434-15	1.5 45.3 81.1 47 2.3 1.5 1.7 385 1.08 185.9 10.4 714.9 8.3 9 .5 .5 .4 3 .07 .021 22 2.7 .03 47 .004 <1 .28 .020 .20 .2 <.01 .6 .3 .47 1 <.5 4 1.07	
SND05434-16	1.4 27.7 20.9 69 .2 8 1.8 721 1.28 10.1 3.5 30.9 8.4 5 .5 .1 .2 6 .09 .024 27 3.3 .09 50 .016 <1 .33 .031 .25 .1 .01 .9 .1 .31 1 <.5 <2 .04	
SND05434-17	1.4 39.9 38.9 99 .2 1.2 2.1 868 1.34 13.2 3.9 39.2 9.9 6 .5 .3 < 1 6 .0.027 23 3.3 .09 61 .021 <1 .31 .036 .22 .1 <.01 1.1 .1 .33 1 <.5 <2 .01	
SND05434-18	2.3 206.7 219.2 69 7.6 1.2 4.0 262 1.78 219.1 10.7 5452.5 10.5 14 1.3 1.5 3.6 2 .06 .020 1.3 2.8 .02 34 .001 <1 .30 .019 .24 .2 .10 .5 .1 1.71 1 <.5 10 3.46	
SND05434-19	2.1 35.2 71.5 51 .9 .9 2.0 327 1.00 32.4 4.3 63.0 9.7 14 .9 .5 .6 4 .08 .022 19 4.0 .02 135 .001 5 .26 .027 .17 .1 .01 .7 .1 .53 1 <.5 <2 .06	
SND05434-20	2.2 66.9 75.0 93 1.0 1.0 1.6 625 1.65 28.4 4.5 100.4 8.9 11 1.1 .6 1.2 3 .07 .020 14 2.4 .04 91 .003 <1 .32 .027 .20 .1 .01 .7 .1 .88 1 <.5 <2 .07	
SND05434-21	1.3 65.1 75.4 73 .6 .9 1.3 524 1.17 20.4 6.1 12.8 7.4 10 .8 1.0 .8 2 .06 .017 13 1.9 .03 91 .001 1 .29 .023 .20 .2 .01 .6 .1 .50 1 <.5 <2 .06	
SND05434-22	1.9 380.6 242.5 93 5.8 1.0 3.1 759 3.56 83.3 3.2 273.2 8.9 11 1.0 3.8 12.8 2 .08 .019 13 3.6 .05 53 .002 <1 .29 .030 .20 .1 .01 .7 .2 2.98 1 <.5 5 .30	
RE SND05434-22	1.8 378.5 238.7 94 4.0 1.1 2.9 758 3.53 83.9 3.0 242.1 9.0 11 1.0 4.0 12.6 3 .08 .020 13 3.3 .06 53 .002 <1 .29 .030 .21 .1 .01 .7 .2 2.92 1 < 5 5 .36	
RRE SND05434-22	1.7 351.0 199.5 86 2.6 1.1 2.8 691 3.45 72.3 3.0 172.8 9.3 10 7 3.4 8.4 2 .08 018 11 3.4 .05 54 .001 <1 .26 .025 .19 .1 .01 .7 .1 2.80 1 <.5 4 .23	
SND05434-23	4.7 237.0 95.6 75 3.7 1.2 2.8 690 3.16 54.8 3.9 74.8 8.3 12 .9 1.1 2.4 2 .07 .021 13 2.2 .04 48 .002 <1 .34 .022 .23 .2 .01 .7 .1 2.50 1 <.5 3 .09	
SND05434-24	2 2 31.3 89.7 129 .4 1.2 2.4 660 1.17 17.5 6.5 198.9 11.0 13 .7 .8 .2 3 .08 .021 16 3.6 .04 75 .008 <1 .30 .026 .19 .1 <01 .8 .1 .35 1 <5 <2 .07	
SND05434-25		
-		
SND05434+26	1.6 42.0 105.5 753 1.1 .7 1.1 97 .82 8.4 2.7 234.6 9.8 6 23.2 .2 .2 4 .10 .024 33 2.6 .06 340 .012 <1 .27 .034 .13 .1 .01 .6 .1 .27 1 <.5 <2 .17	
SND05434-27	3.7 262.9 195.7 189 4.7 .9 2.1 303 1.79 110.0 4.5 459.8 10.8 5 3.7 7.6 1.1 1 .06 .018 10 3.5 .02 34 .001 1 .33 .010 .29 .1 .11 .4 .1 1.62 1 <.5 5 1.43	
SND05434-28	2.0 27.3 47.2 85 2.3 .6 1.1 447 1.02 9.0 2.5 70.1 11.2 7 .3 .2 2.4 4 .09 .021 21 2.8 .05 42 .010 <1 .24 .035 .15 .1 .01 .8 .1 .24 1 <.5 2 .08	
SND05434-29	1.6 12.6 35.0 162 .3 .9 2.0 581 1.20 6.2 5.9 359.7 11.2 9 .5 .5 .2 5 .09 .023 26 3.1 .07 58 .018 <1 .30 .039 .17 .1 .01 1.0 1.0 1.24 1 <.5 <2 .55	
STANDARD DS6/R-2a/Q	xl.34 11.3 121.4 30.0 142 .3 24.6 10.7 704 2.81 21.3 6.7 45.5 3.0 41 5.9 3.0 5.1 57 .85 .079 14 190.3 .57 167 .083 15 1.90 .078 .17 3.3 .23 3.4 1.7 < 05 7 4.5 156 5.75	

Sample type: ORILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

44
ACME ANALYTICAL

Page 3

AT AT STREET, BARRIER, BA

Data (FA

ACME ANALYTICAL																															ACHE ANAL	YTICAL
SAMPLE#	Mo ppm	Cu ppm		Zn ppm		Ni ppm	Со ррт	Mn ppm	Fe ۲	As ppm	U ppn	Au ppb		Sr (ppm pp					La ppm	Cr ppm			Ti E %Ippn				W Hg opm ppm				Se Ag**∕ prngm/mt	
5ND05434-30 5ND05434-31 5ND05434-32 5ND05434-36 5ND05434-37	1.6 1.6 2.0	29.1 30.3 196.4	577.8 221.6 211.2 142.5 262.1	368 379 222	4 3 1.4	1.0 1.6 .8	1.8 1.8 1.5	730 723 618	1.01 .98 1.66	15.7 14.0 62.6	6.1 6.5 3.6		9.4 10.2 9.5	11 1. 12 1. 6 1.	6.3	.2 .2 1.2	3 .10 2 .08 2 .07 1 .06 1 .05	.018 .018 .020	16	4.4	.03 3 .04 4 .03	79<.0 13 .0 53<.0		.25 .26 .27	.017 .018 .010	.21 .22 .26	<pre>4.1 .07 .1 .02 .1 .02 .1 .02 .1 .02 .1 .02 .1 .02</pre>	6 6 4		27 1 <	.5 < .5 < .5 2	2 .05
5ND05434-38 5ND05434-39 5ND05434-40 5ND05434-41 5ND05434-42	1.5 1.4 1.9	52.5 34.4 56.1	26.0 19.1 47.3 121.6 36.6	54 129 69	12 9 50	.7 .8 .8	1.5		L.00 1.27	1.2 13.6 10.3 26.4 2.6	4.3 4.5 6.7		8.5 9.5	7. 6. 51.	3 .1 6 .6 5 .5 1 1.4 5 .4	1.0 5.2	3 .09 3 .08 2 .07 1 .06 3 .09	018 018 019	14 16 10	5.0 5.0 4.8	.04 1 .04 .02	.08 .0 94 .0 68 .0		.24 .21 .26	.029 .021 .026 .020 .030	.19 .16 .22	.1 .01 .1<.01 .1<.01 .1 .01 .1 .01	.6 .6 .4	.1 <.(.1 .2 .1 .4 .1 1.2 .1	28 1 < 44 1 < 27 1 <	.5 2 .5 3	2 <.01 2 1.15 3 .80 8 .91 3 .07
SND05434-43 SND05434-44 SND05435-1 SND05435-2 SND05435-3	1.2 1.3 1.7	15.9 12.4 152.4	17.4 11.6 51.5 126.0 39.6	5 26 5 49 9 32	.6 1.4	.8 .7 .8	1.8 1.8	720 403	.96 1.04 1.68	3.9 6.0	3.6 2.4 6.4	716.4 15.6 13.8 100.3 47.3	9.6 8.7 9.1	5. 5. 3.	2 4.0 3 2.1 3 .1 5 2.5 3 2.6	5.1 .3 1.4		019 026 024	18 23 15	5.0 4.3	.04 1 .08 .05	.11 .0 49 .0 32 .0	16 3 01 2	. 18 . 27 . 25	.026 .027	.16 .19 .22	.1 .02 .1 .02 .1<.01 .1<.01 .1<.01	.6 1.0 .4	1 . 1 . 1 . 1 . .1 .	36 1 < 13 1 < 16 1 <	5 < 5 <	2 .01 2 .06 2 .13
5ND05435-4 SND05435-5 SND05435-6 SND05435-7 SND05435-8	1.2 1.8 1.5	19.9 25.5 58.9	57.0 54.0 697.9 41.3 43.2	95 9 199 9 61	. 3	.7 .9 .7	2.0	799 736 584	1.20 1.12 .91	27.1 12.4 7.6 28.7 21.6	7.8 12.1 3.7	5305.1 58.9 76.7 19.4 9.8	8.0 8.7 9.0	6. 74. 7.	3 .5 7 .3 6 .9 4 .3 3 .2	.1 2.6 .3	2 .06 4 .08 2 .09 3 .08 3 .08	.023 .022 .024	18 19 20	2.3 2.6 4.3	.03 .04 .04	48 .0 55 .0 41 .0 45 .0 46 .0	103 <1 102 1 106 1	.26 .24 .26	.022	.16 .15 · .17 ·	1 .02. 1<.01. <.1 .01 <.1<.01 .1<.01 .1<.01	.7 .7 .7	.1 .	89 1 < 42 1 < 41 1 < 21 1 < 23 1 <	<.5 < <.5 < <.5 <	2 .13 2 .03
SND05435-11 SND05435-12 RE SND05435-12 RRE SND05435-12 SND05435-13	3.0 3.5 2.6	139.4 135.2 129.3	106.4 143.8 144.5 143.2 24.5	100 98 105	32.0 33.0 45.0	.5 .9 .9	4.8 4.8 5.0	483 472 481	2.36 2.30 2.29	90.9 86.0 85.0	5.5 5.1 5.5	1502.0 3250.7 6330.1 2496.9 171.5	8.0 8.0 8.0	61. 61.	8 .2 5 .3 5 .3 5 .3 2 .1	35.2 25.4 27.2	3 .07 1 .07 1 .06 1 .06 3 .09	.020 .021 .020	11 10 11	4.6 4.2 3.6 4.6 3.6	.02 .02 .02	34 .0 33 .0 37 .0	01 2 101 3	. 22 . 21 . 24	.017 .013 .013 .015 .015	.20 .18 .21	.1<.01 .2<.01 .2<.01 .2<.01 .1<.01	.6 .5 .5	.1 1. .1 2. .1 2. .1 2. .1 2. .1 1.	28 1 < 15 1 • 16 1 •	<.5 3 <.5 3 <.5 4	4 2.38 3 4.92 3 5.19 8 4.65 2 .48
SND05435-14 SND05435-15 SND05435-16 SND05435-17 SND05435-18	1.3 1.3 1.5	45.6 69.6 18.1	165.8 40.4 4.2 44.6 28.6	69 17 59	.4 .4	.7	1.6 1.9 .8	890 230	1.44 1.13 .50	917.5 5.0 8.4 9.6 36.5	4.1 3.9 3.9	6381.1 37.9 18.2 7.8 19.8	8.8 9.4 9.2	4. 6. 8.	4.1	.4 1.9	1 .04 5 .09 4 .08 1 .07 5 .08	.025 .025 .026	19 13	4.9 4.3 4.1	.09 .06 .02	14 .0 40 .0 50 .0 56 .0 46 .0)12 :)12 :)01 :	.29 .29 .29	.009 .022 .024 .008 .026	.19 .20 .24	.1<.01 .1<.01 .1<.01 .1<.01 .1<.01	.9 .7 .4	.1 . .1 . .1 <.	14 1 · 62 1 ·	<.5 < <.5 < <.5 <	2 5.58 2 .03 2 .05 2 .01 2 .02
SND05435-19 SND05435-20 SND05435-21 SND05435-22 STANDARD DS6/R-	1.9 1.6 1.3	15.5 49.5 22.7	32.5 15.6 34.2 76.6 30.3	5 43 2 43 5 102	.3 .4 1.1	.9 .9 .6	1.5 1.9 2.3	553 489 566	1.12 1.07 1.06	12.7 7.9 29.9 16.5 21.3	2.5 3.7 2.8	5.3 43.3 52.3	9.3	7. 7. 51.		.6 .2 .7	5 .09 5 .09 4 .09 3 .08 56 .85	.026 .027 .023	19 19 21	5.6 5.6 4.2	.08 .06 .06	47 .0 48 .0 54 .0 41 .0 165 .0)16)13)07	2 .28 27 3 .27		.19 .20 .20	.1<.01 .1<.01 .1<.01 .1<.01 3.3 .23	.9 .9 .6	.1 . .1 . .1 .	35 1	<.5 < <.5 < <.5 <	2 .01 2 .01 2 .06 2 .27 50 5.89

Standard is STANDARD DS6/R-2a/OxL34. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 4

ACME ANALYTICAL																																		ANALYT	ICAL
SAMPLE#	Mo ppm	Çu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr C ppm pp			V ppm	Ca %	P Xi	La ppm	Cr ppm	Mg Ba % ppr		i B Lippm	A1 %	Na %	K X	W Hi ppin ppi	g So m ppr		-		Se Ag pringina		
SND05435-23 SND05435-24 RE SND05435-24 RRE SND05435-24 SND05435-25	1.5 1.4 1.4	4.1 170.9 179.0 237.9 41.0	77 1 15 9 17 3 25 3 65 5	102 109 132	1.2 4.3	.9 .9	1.7 2.0	641 658 635	1.32 2.56 2.65 3.38 1.29	38.4 39.3 56.5	3.9 3.9 3.7 2	62.5 216.5 753.0 2225.0 762.4	8.5 9.4	19 1. 4 2. 4 2. 4 3. 6 .	4 7	3 <.1 1 .3 1 .4 1 .8 7 .8	4 3 3 4	.21 .13 .13 .11 .10	.021 .021 .020 .020 .021	11	7.3 4.3 4.4 4.7 4.5	.05 56 .05 39	3 .004 5 .004 9 .004	4 <1 4 2 4 1	.27 .28 .31	.015 .016 .018	.22 .23 .26	.1 .0 .2<.0 .2<.0 .2<.0 .2 .0 .1<.0	1 .5 1 .5 1 .6	5.1 5.1	.11 2.08 2.17 3.17 .55	1 < 1 < 1 < 1 < 1 <	.5 .5 .5	<2 2 2 2 3 2	.43 .85 .90 2.14 .13
SND05435-26 SND05435-27 SND05435-28 SND05435-31 SND05435-32	2.2 3.1 2.7	29.8 29.2 54.3 32.2 117.3		151 158 121	.8 1.0 .8 .4 .8	1.0	2.4	771 714 679	1.28 1.28 1.22 1.14 1.75	17.9 14.4 13.6	3.9 3.6 4.5	14.0 188.8 41.4 444.8 45.8	11.4 10.8 11.4	5. 5. 6.	6 8 3	3 .6 3 .3 4 .3 4 .2 9 .9	6 3 4 3 3	.12 .09 .10 .10 .08	.022 .021 .021 .018 .018	18 19 16	6.4 4.1 7.8		3.004 7.004 5.00	4 1 4 2 L 1	.25 .26 .22	.021	.21 .21	.1 .0 .1 .0 .1<.0 .1<.0 .1<.0 .1<.0	1 .(1 .1 1 .(6 .1 7 .1 6 .1	.35 .50 .44 .32 .90	1 < 1 < 1 < 1 <	.5 .5 .5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.03 .28 .06 .10 .09
SND05435-33 SND05435-34 SND05435-37 SND05435-38 SND05435-39	1.7 2.1 1.7	37.9 75.6 34.8 33.1 19.1	149.9	210 87 119	2.3 .4	1.0 .7 .7	1.8 1.8 1.3 1.2 1.6	913 582 438 520 593	1.41 .97 1.00	5.7 36.3 10.2 5.8 5.9	6.9 4.5 2.7	14.0 66.5 101.0 88.6 17.7	10.6 9.5 9.1		44 41. 5.	1.4 6.7	2 2 3 2	.08 .07 .07 .08 .08	.017 .017 .018 .018 .018 .019	15 17 17	6.8	.05 77 .04 179 .03 180 .04 109 .04 54	00.00 9.00	1 6 1 3 1 4	. 30 . 25 . 21	.031	.25 .21	.1 .0 .1 .0 .1 .0 .1 .0 .1 .0	2 .4 1 .4 1 .4	4 .1 5 .1 5 .1	.22 .64 .30 .18 .30	1 < 1 < 1 < 1 <	.5 .5 .5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.02 .09 .17 .13 .02
SND05435-40 SND05435-41 SND05435-42 ELK05-R2(rock) STANDARD DS6/R-	2.2 3.4	54.6 70.9		279 45 9	.2 .5 .8 1.3 .3		.6	134		10.0 10.2 5.5	3.1 3.6 1.2		10.2 6.9	6 . 61. 68 . 4 . 41 6.	1. 2. 1.	2 .1 6 .7 4 1.3 2 .8 3 5.1	4 14 2 55	.09 1.59 .02	.018 .020 .086 .005 .080	18 18 21	5.4 13.6	.04 10 .52 38	5 .00 1 .00 8 .00	4 2 1 5 1 1	.24 .41	.025 .003	.15 .30 .11	.1<.0. 2.0.2.0 <.1.0 .1<.0 3.2.2	1 . 4 2. 1 .:	7 .1 7 .1 2 <.1	. 12 . 47 . 39 . 06 <.05	1 < 1 < 1 < <1 < 6 4	5 5 5	<2 <2 <2 <2 <2 <2 <56	.27 .06 .10 .16 5.75

Standard is STANDARD D56/R-2a/OxL34. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data (FA

SAMPLE#	Mo			Zn			Co	Mn	Fe	As	U	Au	in I Th	Sr	BC V6C Cd Sb	n Bi	V Ca	a P	· La	Cr	Mg	Ba T	i B				W Hg			S Ga Se
	ppr	ppm	ррг	ppm	ppm	ppm	ppm	ppm	2	ррт	ррп	ppb	ppm	ppm p	pm ppm	n opm	ppm \$	2 %	ppm	ppm	% p	pm	% ppm	ž	2	% pp	m ppm p	opm pp	, mc	t ppm ppm
SND05433-2 SND05433-28	1.7	117.8	139.6	89 216	2.1	2.6	2.6	107 1	.55 4	41.0 8 49 8	84.4 9 n	203.3	3 9.3	17 1	.3 .3	i .3	3.81	1.026	23	4.0	.04	86.00 46.00	l <1	. 44	.031 .	27.	3.01	.6.	.1 1.5	8 1<.5 9 1<.5
SND05434-35	4.8	372.0	386.3	224	35.0	2.0	10.9	47 3	.69 11	13.2	7.7	12977.1	4.6	75	.6 13.5	12.3	2.19	9.009) 6	8.9	. 02	15 .00	1 1	. 35	.006 .	30 .	1 .10	.3.	14.4	3 1 < 5
SND05435-35 SND05435-36															.4 5.0 .6 1.2															1 1 < 5
STANDARD DS		122.1	31.0	142		24.8	10.5	/U4 Z	.81 .	21.2	0.0	47.4	+ 3.0	40 5	.9 3.4	· 5.0	55 .85	5 .078	<u> </u>	167.5	.5/ 1	/2 .0/	9 16	1.90	.0/3 .	16 3.	4 .22 3	5.3 1.	./ <.0	5 64./
GROUP 1DX	0.50	GM SA	MPLE	LEAC	NED '	WITH	3 ML	2-2-2	2 HCL	-HNO	3-H20) AT 9	5 DEG	G. C I	FOR ONE	HOUR	. DILU	JTED T	ro 10	ML.	ANALY	SED B	Y ICP	-MS.						
(>) CONCEN	TRATIO	N EXCE	EDS L	PPER																					SOLUB	LITY	'-			
- SAMPLE T	MPE: D	RILL	UREM	150													T	74												
Data <u>IS</u>	FA			יאת	ן איז	RRCI	TVR	D.	001	3 20	05	DATE	RE	PORT	MAI		U	1 d	28	105				~	1	TX	7~			
							/ _			0 20	••									T				STIP						
																							ß	Υ,	γ	/		V.	A I	
																							1.976							
																							101)۔ `	<u> </u>	·	Þ		
																							C C C C C C C C C C C C C C C C C C C) 5-7	<u> </u>		eond		1	
																							STEP.)~ (Xaren	ce L	eong		7	
																							SIE				0010		9	
																							SIE		laren	ce L	eong		9	
																							SIE				eong		2	
																							SIL			ce L	eong		9	
																							SIL			ce L	eong		7	
																							SIL				eong		ダ	
																							STR				eong		\$	
																							SIL				eong		7	
																							STR				eong		\$	
																							STIP				eong		\$	
																											eong		*	
																											eong		\$	
																											aong		\$	
																											eong		\$	

	er BC V6C 218 Submitted by: Wojtek Jakubowski S.Wt NAu -Au TOţAu	
 SAMPLE#	gm mg gm/mt gm/mt	
SND05433-2 SND05433-28 SND05434-35 SND05435-35 SND05435-36	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
 STANDARD OxL34	- <.01 5.70 5.70	······································
		Clarence Leon

 SAMPLE#	S.Wt gm	NAg mg	-Ag gm/mt	TotAg gm/mt		
SND05433-2 SND05433-28 SND05434-35 SND05435-35 SND05435-36	285 734 946 1024 950	<.06 <.06 <.06 13.18 3.72	2 6 35 56 42	2 6 35 69 46		
 STANDARD R-2a		<.06	156	156		<u> </u>
				1	Clarence Leong	
					••• _i	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ţ.

L. L. 110:	SAMPLE#	Au* S	ample	DWSK1		
	SND05433-14	ppb				
	ŠND05433-15 (pulp) SND05433-34 SND05433-35 (pulp) SND05434-33	34123.7 11.3 34974.4 7.8	30 15 30 15 30			
	SND05434-34(pulp) SND05435-9 SND05435-10(pulp) SND05435-29(pulp)	34446.0 5.6 32557.6 8.1	15 30 15 30 15			
	SND05435-30(pulp) STANDARD AU-R	10081.2	15 30			
- SAMPLE TYPE: DRILL CORE R150 Data DATE RECEIVE	D: OCT 3 2005 DATE REPORT MA	11ed: . O. A	25/05	C.T.	CERTIFICATION OF THE PARTY OF T	
	D: OCT 3 2005 DATE REPORT MA	iled:	25/05	Clarence	e Leong	
	D: OCT 3 2005 DATE REPORT MA	iled: . (). ()	25/05	Clarence	e Leong	
	D: OCT 3 2005 DATE REPORT MA	iled: . O. A	25/05	Clarence	e Leong	

-

A CALL AND THE REAL PARTY AND A CALL AND A

	Almaden Minerals Ltd. PROJECT ELKO5-9 File # A506917 Page 1 1103 - 750 W. Pender St., Vancouver BC V6C 278 Submitted by: Wojtek Jakubowski
SAMPLE#	Mo Cu Po Zn Ag N1 Co Mn Fe As. U Au Th Sr Cd Sb B1 V Ca P La Cr Mg Ba Ti B Al Na K W Hg Sc Ti S Ga Se Ag** Au** ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
G-1	.1 5.3 3.8 44 <.1 4.9 3.9 507 1.71 1.4 1.8 <.5 4.2 46 <.1 <.1 .1 32 .42 .075 6 10.8 .59 197 .109 1 .85 .038 .43 .1 <.01 1.6 .3 <.05 4 <.5 <2 <.01
SLD05436-1	.7 62.2 112.1 115 2.2 10.8 3.5 1564 4.15 181.7 16.3 547.1 11.6 5 2.0 .3 .4 11 .10 .031 4 6.2 .14 32 .001 <1 .40 .019 .24 .1 .01 .5 .1 3.39 1 <.5 3 1.33
SL005436-2	
SLD05436-3 SLD05436-4	.5 68.5 77.3 53 3.6 1.9 7.11140 3.11 75.7 14.0 934.8 11.0 4 .9 .7 .8 4 .09 .028 10 7.2 .04 32 .001 <1 .38 .021 .26 .1 <0.1 1.0 .1 2.81 1 <.5 5 .74 .5 8.4 6.7 14 .1 .9 .4 177 .58 3.1 9.2 2.1 30.5 3 .1 .2 .1 1 .03 .003 19 5.6 .03 19 .003 <1 .19 .057 .10 .3 <01 .7 <.1 .10 1 <.5 <2 .01
SLD05436-5	1.3 32.9 408.3 525 1.2 1.5 1.9 904 1.09 29.6 5.9 82.6 10.0 4 11.0 .2 .1 3 .07 .022 15 4.7 .03 29 .001 <1 .30 .019 .23 .1 .05 .6 .1 .67 1 <.5 <2 .22
SLD05436-6	
SLD05436-9 SLD05436-10	2,0 200,7 184,9 171 5.1 1.2 2,9 591 1.24 23.2 8.4 2610.8 9.8 3 3.8 .2 1.1 2 .10 .037 14 3.5 .03 29 .001 <1 .35 .014 .28 .1 .52 .8 .1 .95 1 <.5 7 1.05 1.0 267.0 2081.7 307 7.9 1,2 2,2 1073 2.07 67.0 3.9 1928.7 11.7 4 7.4 1.4 4 .07 .023 13 4.1 .05 33 .003 <1 .34 .020 .24 .2 <.01 .9 .1 1.70 1 <.5 11 2.64
SLD05436-11	
SLD05436-12	1.4 591.0 33.3 71 10.3 1.0 2.4 962 1.57 19.1 3.7 3580.2 10.4 13 1.5 .1 4.1 4 .46 .023 14 7.2 .09 37 .003 <1 .33 .020 .24 .2 <.01 .8 .1 1.21 1 <.5 15 4.70
SLD05436-13	
SLD05436-15 SLD05436-16	1.0 70.1 33.6 121 .6 102.3 32.2 4240 6.79 12.1 5.2 780.9 .7 40 .7 .1 .1 60 1.02 .152 10 128.6 1.41 319 .010 1 1.65 .006 .31 .1 .01 11.8 .3 .38 5 <.5 <2 1.01 1.9 249.7 81.6 85 4.8 124.9 45.7 4158 6.46 30.2 4.4 1386.4 .7 38 .5 .3 2.4 68 .69 .164 10 134.3 .54 92 .016 <1 1.21 .006 .34 .1 .08 10.9 .8 1.13 4 <.5 4 1.67
RE SLD05436-16	
RRE SLD05436-16	
5LD05436-18	2.2 12.3 9.0 18 .1 5.3 2.4 330 1.07 4.1 3.8 29.8 11.1 7 .2 .1 .1 6 .12 .025 22 4.6 .05 43 .001 <1 .40 .030 .15 <.1 .10 1.1 .2 .16 1 <.5 <2 .06
SL005437-1 5L005437-3	8.0 28.5 63.9 114 .9 2.5 1.7 555 .93 20.6 6.4 31.6 10.2 5 2.4 .3 .1 2 .07 .022 16 3.5 .03 26<.001 <1 .30 .015 .19 .1 <.01 .7 .1 .46 1 <.5 2 .04 7.1 62.3 214.3 627 2.8 39.9 13.2 115 2.43 163.0 28.3 456.0 7.4 30 14.7 .7 .7 13 .38 .169 6 16.5 .07 35 .004 <1 .64 .005 .43 .3 .04 1.9 .2 2.78 2 <.5 3 .45
SLD05437-4	2.5 154.7 389.4 139 14.1 114.2 21.6 1389 6.26 468.1 102.2 681.7 1.5 29 4.5 1.7 1.1 18 .41 .171 7 31.6 .10 33 .004 <1 .61 .004 .35 .3 .05 3.0 .2 6.00 2 <.5 13 .76
SLD05437-5	119.6 14.4 484.1 222 1.0 9.2 1.2 260 62 19.8 23.9 46.7 9.1 41 6.1 .2 .3 3 .06 .025 14 4.3 .03 28 .001 <1 .36 .003 .27 .2 .03 .5 .1 .35 1 <.5 2 .11
SL005437-6	
SLD05437-7 SLD05437-8	1.3 22.7 426.0 932 3.8 1.3 1.6 554 1.26 140.0 2.6 111.0 8.8 5 15.8 1.5 <.1 2 .06 .016 14 2.9 .01 23<.001 <1 .18 .018 .14 .1 .03 .5 .1 .90 <1 <.5 6 .17 1.1 7.6 210.3 385 .9 1.6 1.5 711 1.07 39.7 3.0 35.3 9.5 7 6.3 .4 <.1 2 .07 .021 17 3.7 .02 30<.001 <1 .26 .025 .17 .1 .02 .7 .1 .32 1 <.5 <2 .05
SL005437-11	1.2 8.9 147.3 136 .4 1.3 1.6 889 .94 29.2 10.5 27.1 9.3 5 3.3 .2 <.1 1 .06 .019 17 3.8 .02 21<.001 <1 .27 .013 .20 .1 .01 .6 .1 .28 1 <.5 <2 .06
SL005437-12	3.5 45.4 1224.0 3179 1.6 1.2 2.2 2004 1.36 72.1 18.9 90.5 9.7 6 62.6 .5 <.1 1 .06 .019 13 3.0 .03 29<.001 <1 .27 .003 .25 .2 .22 .7 .1 .73 1 <.5 2 .10
5LD05437-13 SLD05438-1	4,2 140,7 5987,3>10000 6.5 .8 2,2 7032 2.65 153,4 6,7 184,5 12.5 10 224,5 1.4 <.1 1 .10 .030 8 3.0 .05 21<,001 <1 .31 .003 .28 .2 .41 .6 .1 1.77 1 <.5 8 .25 2.0 7.2 38.0 75 .2 .9 2.4 99 .86 15.4 7.5 91.6 11.4 4 .5 .1 <.1 3 .05 .026 18 3.3 .03 27 .002 <1 .26 .021 .19 <.1 <.01 .6 .1 .34 1 <.5 <2 .24
SL005438-2	
SLD05438-4	9.0 56.1 8.9 67 .3 71.1 31.4 3519 4.07 24.8 2.0 8.5 3.0 26 .3 .3 <.1 \$8 .44 .125 13 51.4 .27 146 .034 2 .99 .006 .54 .2 <.01 11.1 .3 .40 3 <.5 <2 .03
SLD05438-6	
SLD05438-7 SLD05438-8	.9 4.0 738.6 21 1.5 2.3 2.1 600 1.08 6.3 1.7 649.0 9.8 8 .3 .2 .8 4 .10 .022 18 3.3 .03 56 .002 3 .27 .034 .13 .1 .01 1.0 .1 .22 1 <.5 <2 .65 2.0 34.2 645.4 2064 3.0 1.5 2.3 2364 1.92 1402.1 6.0 286.3 10.3 3 35.7 2.3 .1 1 .06 .019 11 4.4 .03 32<.001 4 .32 .006 .28 .1 .02 .5 .1 1.23 1 <.5 4 .32
SLD05439-1	3.6 44.9 42.4 40 .4 9.9 4.1 651 1.06 14.8 45.7 128.8 11.7 10 1.3 .4 .2 2 .11 .021 22 3.2 .03 32<.001 3 .27 .025 .15 .1 <.01 .9 .2 .39 1 <.5 <2 .21
SL005439-2	1.5 87.8 169.3 377 1.3 97.3 42.8 6376 7.23 21.5 3.5 83.7 1.2 15 8.6 .4 1.0 52 .50 .148 11 88.7 1.03 30 .010 3 1.46 .004 .40 .2 .01 10.3 .2 .98 4 <.5 <2 .15
STANDARD DS6/R-	R-2a/0xL34 11.3 120.6 29.2 141 .3 24.3 10.7 701 2.80 21.2 6.6 47.5 2.9 40 6.1 3.3 5.0 55 .85 .078 13 175.7 .57 166 .081 16 1.90 .074 .15 3.3 .23 3.4 1.7 <.05 6 4.3 157 5.88
CONCENTRATION EXC	
L FA	DATE RECEIVED: OCT 21 2005 DATE REPORT MAILED: NOV 23/05.

AA E ANALYTICAL			A	lma	ade	en	Mi	nei	ral	. 9	Ltd	. PI	ROJ	JECI	' E:	LK(05-	- 9	F	ILF	s #	‡ A	50	69:	17					Pa	.ge	2		ACHE ANALYTI
	SAMPLE#	Mo ppm	Сы ррт		Zn ppm	-	Ni opm	Со ррп	Min Sporth	Fe X	As U ppm ppm			Şr Col ppm ppm		B1 ppm		Ca F X X			Mg X	Ba ppm	Ti I pp	B A1 m J		к ¥		Hg Sc pm ppn					g** Au** /mt gn/#it	
	G-1	.2	6.1	3.2	41	<.1	4.0	4.1	506 :	. 84	<.5 1.7	<.5	4.1	61 <.1	<.1	.1	37	.47 .073	3 7	10.8	.56	189 .1	27	4 .9E	5.073	.47	<.1 <.	01 1.9	.3 <	<.05	5 <	.5	<2 .01	
	SLD05439-3	6.5 a	087.6	2746.9	715	>100	34.3	16.7	674 (5.15	115.0 8.1	42050.7	7.4	16 21.7	5.Z	62.0	1	17 .061	L 4	7.6	. 06	12.0	02	4 .36	5 .006	. 28	.2 .	07 1.0	.2 6	5.93	1	.5	234 14 25	
	SLD05439-4	2.3 2	884.8	540.8	157	65.5	3.2	1.1	107 3	3.28	115.6 4.1	13457.4	12.2	19 4.7	1.1	19.4	2.	.07 .025	5 5	3.1	.03	20.0	01	3.30	. 004	.27	.1 .	01 .4	.13	3.72	1 <	.5	75 21 26	
	SLD05439-5	1.6 1	442.0	301.6	353	55.7	1.9	1.6	371 3	L.06	79.0 3.9	395.0	10.1	5 8.0	2.8	12.2	1.	07 .023	3 11	3.1	.02	20 .0	01	3.25	5 .005	. 24	.1 .	02 .4	.1	.90	1 <	.5	64 1.08	
	SLD05439-6	1.3	20.6	131.6	174	1.6	1.0	2.0	762	.94	34.8 5.0	33.6	11.3	10 3.0	.3	.2	2.	.10 .027	18	2.9	.03	21<.0	01 .	2.24	.018	. 16	.1 .1	01 .7	.1	.29	<1 <	.5	2 .07	
	SLD05439-7	1.3	21.2	142.2	167	1.0	.8	1.9	705	.90	38.4 5.3	38.3	10.5	8 3.1	.3	.1	2.	.09 .024	1 17	2.7	. 02	19<.D	01	3.22	2 ,016	. 17	.1 <.(01 .E	.1	.31	<1 <	.5	2.12	
	SL005440-1	2.1	271.4	4986.1	1723	>100	1.2	2.4	63	1.79 8	619.5 7.8	1973.5	11.6	3 35.1	142.3	.2	2.	.07 .023	3 16	2.5	.03	25 .D	01	3.24	.016	. 21	.1 .	04 .E	.11	1.64	1 <	.5	270 3.11	
	5L005440-2	1.0	6.2	199,9	24	.7	1.0	1.8	239	1.09	14.8 4.6	6.2	12.1	5.3	.6	.1	n.	.07 .027	29	3.7	. 17	59 ,0	27	1.32	2 .043	.15	<.1 <.I	01 1.1	1	.06	2 <	.5	2.38	
	SL005440-3	1.4	6.0	42.1	53	.1	1.0	1.4	289	.64	2.9 3.2	3.0	11.8	5 1.4	.1	<.1	6.	.10 .027	7 23	5.0	.04	31 .0	07	2.21	L .032	.13	.1 .	01 .6	.1	.07	1 <	.5	<2 .03	
	SLD05440-4	1.4	23.0	33.6	27	1.0	3.5	2,4	805	.92	36.2 8.9	14.9	12.1	6.3	.6	. 1	1	.09 .024	16	3.7	.02	27<.0	01	1.2	3 .020	. 19	<.1 < <i>;</i>	01 .5	1.	.34	<1 <	.5	<2 .03	
	SLD05440-5	1.6	77.1	45.9	73	1.5	11.9	7. 6 1	.043 ;	2.81	70.6 4.9	742.4	10.1	4 1.1	.3	.5	1	.06 .020) 7	3.2	.03	34<.0	01	2.26	A .005	.28	.1 .	01.5	.12	2.47	1 <	.5	2.94	
	SL005440-6	.8	56.4	9.2	73	.2	07.3	34.1 3	925	4.14	11.9 9.9	2.0	1.0	20 .3	.2	.1	51	.52 .190) 13	46.4	.44	63.0	20	4 .92	2 .005	.58	.1 <.	01 7.0	.3	.45	3 <	.5	<2 .01	
	SLD05440-7	.8	88.0	11.3	92	.6	94.7	39,4 5	603 (5.02	10.5 2.9	84.6	.9	16.2	.2	.4	49	.54 .196	5 13	74.7	.82	40.0	11	2 1.09	9 .005	.48	1 <	01 9.1	2	. 69	3 <	.5	<2 .15	
	RE SL005440-7	.9	81.9	10.7	92	.6	95.0	39.2 5	481 (5.07	11.0 2.9	71,1	.9	16 .2	.2	.5	47	.55 .188	3 13	75.2	.81	40.0	10	3 1.1	L .005	.48	.1 <.	01 9.2	.2	.66	3 <	.5	<2 .12	
	RRE SL005440-7	.8	88.4	11.2	90	.6	96.7	39.4 3	686	5.05	10.1 2.8	130.0	.9	16 .3	.2	.5	47	.46 .187	/ 12	75.3	.84	41.0	11	4 1.11	1 .004	.48	.1 <.	01 9.1	2	.68	4 <	.5	<2 .20	
	SLD05440-8	7.1	63.9	1358.3	3844	17.3	62.7	17.6 7	074	5.63	129.2 19.7	558.3	4.4	32 76.3	1.3	.3	8	.24 .027	, ,	6.4	.15	44 .0	01	2.3	0.005	.16	.2.	14 3.1	2 1	1.67	1 <	.5	19 .63	
	SLD05440+9	.9	3.7	17.5	17	.2	5.7	2.5	211	.57	5.4 3.4	14.1	11.3	10 .2	1	<.1	3	10 .026	5 18	3.5	.03	23<.0	01	2.22	2 .021	.12	<.1 <.	01.7	.1	.17	1 <	.5	<2 .06	
	SL005440-10	1.8	18.5	196.3	478	1.7	1.9	1.91	.024	L.20	54.5 16.2	212.9	9.7	7 8.7	.2	.1	1.	.09 .023	L 13	3.2	.03	24<.0	01	1.24	4 .007	.21	.1 .	01.6	.1	.58	1 <	.5	2.43	
	SND05441-1	1.1	31.5	134.2	204	1.1	3.1	7.7 2	342 3	3.48	25.8 4.3	140.7	5.6	13 3.0	.3	.3	26	.43 .074	\$ 16	2.7	. 25	114 .0	33	Z .49	9 .024	.29	.1 .	02 4.7	.9	.45	2 <	.5	3.28	
	SND05441-2	1.0	B.9	134.0	198	.5	2.0	8.51	.847 :	2.76	9.1 3.3	188.3	7.1	11 2.4	.1	.1	15	.40 .078	3 18	1.7	.22	178 .0	11	1.40	5 .020	. 29	.1 .	01 3.3	.3	.42	1 <	.5	<2 .11	
	SND05441-3	2.7	108.2	89.2	181	1.2	4.0	9.2 2	717	4.38	13.9 7.1	73.6	7.4	12 .8	.4	.1	13	40 .067	7 20	1.9	.27	162 .0	05	2.49	9 .017	.28	.1 <.	01 3.7	.1	.52	1 <	.5	3.19	
	SND05441-4	.2 3	9554.0	4.2	110	6.4	85.8	185.8 1	290	7.64	109.9 .6	141.3	2.9	46 3	.2	.1	89 2	.77 .226	5 18	11.3	.49	23.1	63	2 1.24	4 .096	.14	.2 < ,	01 5.9	+ <.1 3	3.40	5 13	.9	8.23	
	SND05441-5	.94	1733.6	5.5	308	4.0	152.5	160_3	951 /	3.25	32.0 1.7	6 8.6	3.0	29 1.9	.3	. 6	81 1	.29 .085	5 13	7.8	.41	42.1	18	4 1.2	. 116	.12	.1 .	01 3.6	i .13	3.58	δ5	.5	5.15	
	SND05441-6										26.7 .7																						<2 .07	
	SND05441-7	.4	779.3	21.2	156	21.6	52.1	28,7 2	2842	7.10	60.5 7.9	11128.0	1.7	15 .8	.5	1.0	63	.77 .190) 13	18.7	.48	31 .0	06	3.8	7 .012	.37	.1 .	01 14.6	.2 1	2.64	2 <	.5	22 9.13	
	SND05441-8										94,1 9.4																							
	SND05441-11	.6	394.6	43.1	53	3.0	46.4	36.8	889 -	4.93	154.7 4.0	367.6	1.9	39 .4	.7	1.5	49 1	.16 .273	3 14	26.7	.42	46.0)19	3 I.14	4 .030	. 27	,1 <.	01 0.1	.1;	3.59	3	.7	4 .49	
	SND05441-12										86.2 2.0																						0 1.13	
	SND05441-13										94.4 2.8																						9 5.48	
	SND05441-14	1.2	1227.3	B.1	135	1.8	28.0	26.3 1	1326	6.55	39.3 1.9	143.1	2.9	77 .3	.4	.3	644	.14 .24	4 20	23.9	.84	45.1	.20	8 2.3	5.171	. 29	.5 <.	01 5.3	3 <.1	. 89	82	2.1	3.15	
	SND05442-1	1.0	19.2	5.0	38	.1	2.2	6.9	944	2.46	3.8 6.1	18.0	7.2	14 .1	1	<.1	34	.52 .08	0 19	3.7	. 38	143 .D)78 <	1.6	2.030	. 28	<.1 <.	01 3.4	.1	<.05	<u></u> 3 <	:.5	<2 .03	
	SND05442-2	1.6	45,4	65.5	195	.9	3.1	9.3 1	1541	Z,98	53.5 4.2	270.4	4.7	14 .9	.2	.1	23	. 35 . 073	7 21	3.3	. 25	88.0	36	Z .5	5 .022	. 29	< .1 .	02 4.0) .7	. 65	2 . <	:.5	<2 .76	
	SND05443-1	1.7	106.7	69.3	46	1.3	1.7	5.3	580	1.90	21.2 4.0	278.2	10.9	1.3	.2	.5	5	.16 .02	5 17	4.5	. D5	40.0	06	1.2	6.027	.14	.1.	61 .8	3.1	1.21	1 <	.5	3.40	
	\$ND05443-2	1.3	27.1	12.6	14	.1	.6	1.4	366	.54	4.7 3.7	16.6	11.0	7.1	3	.1	4	.08 .02	2 22	3.8	.02	40.0	102 <	a .1	8 .029	.09	.1 <	01 .9	.1	.10	1 <	.5	<2 .02	
	SND05443-3	1.9	52.6	7.6	21	.2	.8	2.1	681	1.30	12.4 4.0	5.3	11.0	5.1	.2	.1	4	.08 .02	3 23	3.1	. 04	34.0	104	1.1	9 .028	.12	.1 <.	01 . 1	3 .1	.48	1 <	:.5	<2 .02	
	STANDARD D56/R-2a/OxL34	13 5	12) 8	29.7	142	3	24 F	10.8	702	2 81	21967	45 7	3.0	41 6 1	34	5.0	56	85 074	a 14	184 0	57	165 0	191 1	6 1 9	0 072	15	2 3	 .		~ 05			159 5 82	

. .

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data L FA

ł

Page 3

A DOMESTIC TO THE REPORT

ACME ANALYTICAL												<u></u>																			·			ACME ANA
	SAMPLE#	Мо	Cu	РЪ	Zn	Ag	N1	Со	Min Fe	As	U	Au Th	ı Sr	Cd	Sb	Bí	v c	a P	La	Cr	Mg	Ba Ti	B	A1	Na	к	W	Hg S	ic T	1 S	5 Ga	Se	Ag** Au**	
		ppm	ppm	ррт	ppm p	opm	ppm p	opm p	pm x	ppm	ppm	ppb ppm	n ppm	ррт	ppm p	ipm pp	m.	x x	ppm	ppm	x	ppm 3	s ppm	X	x	X	ppm p	pm pţ	xm pp	n 1	i ppm	ppm ç	m/mt gm/mt	
																													_					
	G-1								70 1.56																								<2 <.01	
	SND05443-4											2947.1 9.4																					11 4.41	
	SND05443-5											12273.5 8.4																					7 3.38	
	SND05443-6											1543.5 9.1																					<2 1.31	
	SND05443-7	2.7	97.31	04.6	38 1	1.7	1.1 3	3.5 3	31 1.86	49.3	9.6	140.8 11.4	5	.6	1.0 3	.1	1 .0	6 .020	10	3.8	.02	28 .001	<1	. 20	.010	. 19	.1 .	01	4.	1 1.82	2 1	<.5	<2 .42	
	SND05443-8	2.3 1	62.91	57.5	64 3	3.1	1.0 2	2.8 2	272 1.48	71.2	23.8	898.2 8.4	12	1.2	5.8 1	.6	1.0	6 .022	10	2.3	.02	46<.001	<1	. 19	.008	.16	<.1	12	.5.	1 1.32	2 1	<.5	3 1.63	
	SND05443-9	1.8	41.6	73.5	104	.4	.7 1	1.7 €	535 1.11	10.3	5.3	19.6 8.4	9	.5	.3	.3	3.0	8 .021	16	3.8	.03	56 .002	2 <1	.23	.030	.16	.1 <.	01	.7 .	1.33	3 1	<.5	<2 .04	
	SND05443-10	1.9	6.5	63.5	114 <	<.1	.8 1	1.4 4	185 .85	6.6	3.5	6.2 8.8	9	.6	.4 <	.1	3.0	8 .020	18	2.6	.05	55 .010) <1	.18	.020	.14	.1 <.	01	. 8	1 .09) 1	<.5	<2 .02	
	RE SND05443-10	1.5	5.9	62.4	112 <	<.1	.7 1	1.3 4	183 .82	6.1	3.5	8.2 9.0	9	.6	.4 <	.1	3.0	8 .021	18	5.6	.05	54 .010	1 <1	. 18	.021	.14	<.1 <.	01	.9	1.09) 1	<.5	<2 .01	
	RRE SND05443-10	1.5	6.5	63.3	113 -	<.1	.7 1	1.5 4	189 .87	7.2	3.7	3.5 9.0) 9	.5	.3	.1	3.0	9.021	18	2.8	. 05	58 .010) <1	. 21	.025	.16	.1 <.	01	.9	1.10	0 1	<.5	<2 .02	
															•					• •							• •		•				-0 15	
	SND05443-11											44.3 10.2																						
	SND05443-12											1596.4 10.1																						
	SND05443-13											<.5 8.2																					<2 .01	
	SND05443-14 (pulp)											13506.1 2.2																					5 10.83	
	SND05443-15	1.5	9.4 1	63.5	230	.2	.8 2	2.3 8	398 1.33	7.7	2.6	31.0 10.4	19	.8	.9	.2	7.1	1 .027	17	4.0	.04	91 .006	5 <1	. 18	.027	.12	.1 <.	01 1	.2	1 .18	3 1	<.5	<2 .11	
	SND05443-16	1.4	40.21	46.0	591	.2	.9 2	2.0 10	058 1.44	10.9	5.1	22.9 9.8	85	2.3	.5	.1	1.0	7.020	13	2.8	.03	43 .001	I <1	. 20	.018	.17	.1 .	01	.7	1.29	9 1	<.5	<2 .07	
	SND05443-17	1.3	38.6 4	20.7	575	.8	.8 3	3.1 8	884 1.3	18.5	12.3	157.0 10.0) 9	4.2	3.7	.4	1.0	7 .016	12	3.4	.04	238<.003	l 1	.18	.019	.15	.2.	01	.5	1.45	5 <1	<.5	<2 .41	
	SND05443-18	1.9	11.7	30.0	120 •	<.1	.8 1	1.6 6	526 1.05	3.6	3.2	4.6 11.8	37	.4	.6 <	1	4 .1	0 .021	19	4.8	.04	52 .003	31	.16	.027	.09	.1 <.	01 1	.0.	1 .08	81	<.5	<2 .02	
	SND05443-19	1.6	55.2	34.8	18 3	3.3	.7 3	2.4 1	1.2	16.9	1.9	842.6 4.6	5 1	.2	.2 14	1.2 <	<1 .0	2 .008	4	4.8	.01	31<.001	ı <1	.14	.004	.17	.1 .	01	.3 <	1 1.15	5 <1	<.5	4 1.73	
	SND05443-20	1.5	19.5	28.1	91	.2	.8	1.7 5	547 .92	5.6	3.6	29.0 11.5	57	.4	.5	.1	2.0	9 .021	17	3.9	. 03	90 .001	1 <1	.16	.026	.12	<.1 .	01	.8	1.20	0 1	<.5	<2 .11	
	SND05443-21	1 / 1	64 O 1	573	288		۰ o	176	535 1 AG	60.3	44	75.4 10.3	1 7	10	3.8	6	1 0	6 020	8	47	03	34< 001	1 <1	21	007	23	1	01	5	1 1 41	1 1	< 5	2.09	
	SND05443-23											941.2 10.6																					<2 .75	
	SND05443-24											84.7 9.4																					<2 .06	
																																	7,25	
	SND05443-25											140.9 8.7																						
	SND05443-26	1.3	43.5	31.8	123	.3	./ .	1.4 (001 1.44	15.5	4.0	70.9 9.0		.3	4.9	.4	2 .0	0.019	10	2.9	.04	156 .004	2 1	. 17	.027	.13	.1 ~.	01	.0	1.0	5 1	5	~2 .11	
	SND05443-27	1.4	56.1 6	10.4	380	1.1	1.0	2.6 (681 1.4	12.7	3.9	79.0 10.1	1 8	2.4	15.0 2	2.3	1.0	7 .017	16	2.3	.05	193 .00	12	. 19	.021	.16	.1 .	11	.8	.1 .55	51	<.5	<2 .11	
	SND05443-28	1.4	18.9	99.8	222	.1	1.0	1.6	784 1.1	6.4	5.8	14.4 9.4	46	.7	6.2	.2	1.0	7 .017	16	2.7	.03	216<.00	1 1	.16	.023	.13	.1 .	01	.7	.1 .1	51	<.5	<2 .04	
	SND05444-1	2.2	84.6	69.6	50	3.2	1.2	2.8	138 1.1	9 19.6	9.3	301.9 10.2	25	2.1	.27	7.7	3.0	6 .025	27	3.3	. 05	115 .00	72	. 31	.024	.15	.1 .	01 1	.1	.2.6	81	<.5	3 1.47	
	SND05444-2	1.7	21.0	10.7	49	.1	.8	1.7	773 1.3	3.8	3.6	3.4 10.0	0 4	.1	.1	.3	9.0	7 .026	18	3.9	.14	65.02	8 <1	. 30	.033	. 19	.1 <.	01 1	.4	.1 .12	22	<.5	<2 .03	
	SND05444-3	1.2	51.0	76.1	61	1.1	1.7	2.0	785 1.4	20.6	2.8	531.8 9.6	57	.3	.2	.6	2.0	8 .026	14	3.8	.04	52.00	2 1	.21	.020	. 16	.1 <.	01	.9	.1 .6	0 1	<.5	<2 .06	
	SND05444-4	15	67.2	86.0	60	1.7	1.7	2.3	700 1.6	2 33 8	2.5	61.4 8.5	57	.3	.3 1	1.1	3.0	9 .034	13	3.0	.03	48 .00	3 <1	.19	.018	.14	.1 .	01	.8	.1 .9	71	<.5	3.12	
	SND05444-5											<.5 9.9																				-	<2 <.01	
	SND05444-5 (pulp)											10217.5 2.2																					6 10.22	
	SND05444-8 (putp)											145.1 9.4																						
	SND05444-7 SND05444-8											946.6 9.6																						
	3 RUU3444-0	1.0	10.01	JH . J	02	1.4	1.1	1.7 4	44J I.U	20.5	J.Z	340.0 9.0	. ,	.0	.0	.0	<u>и</u> .ч	.023	13	2.3	.03	-+J .0U		. 20	.023	.13			.0		. 1		~L .UJ	
	STANDARD DS6/R-2a/OxL34	11.3	122.6	29.3	142	.3 2	24.6 1	0.6	703 2.8	20.8	6.6	44.9 2.9	9 40	6.0	3.3 5	5.0 5	55.8	5.078	13	182.0	.57	163 .08	1 16	1.90	.074	.14	3.3 .	23 3	.2 1	.7 <.0	56	4.3	161 5.80	

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

Almaden Minerals Ltd. PROJECT ELK05-9 FILE # A506917

C 3 222 24 1071

Page 4

SAMPLE#	Mo Cu Po Zn Ag Ní Co Mn Fe As. U. Au Th Sr Cd Sb B1. V Ca P La. Cr Mg Ba Tí B A1 Na K W Hg Sc Tì S Ga Se Ag*≭ Au≉≭
	the start and and and and and and and a start and a start and a start and a start and
G-1	.1 1.8 2.9 41 <.1 3.6 3.8 468 1.57 <.5 1.6 <.5 3.2 46 <.1 <.1 .1 31 .40 .066 6 9.4 .52 178 .106 3 .77 .039 .40 .1 <.01 1.4 .3 <.05 4 <.5 <2 <.01
SND05444-9	1.3 22.9 111.4 72 .2 1.2 2.1 527 .99 7.9 4.7 23.9 9.1 12 .8 1.0 1 5 .08 .022 18 2.9 .03 72 .004 1 .19 .026 1.2 .1 .01 .8 .1 .16 1 <.5 <2 .10
SND05444-10	
SN005444-11	
SND05444-12	
34043444*12	
SND05444-13	1.5 12.7 73.3 40 .1 .8 1.2 289 .67 9.4 3.6 3.9 9.8 10 .3 .3 .1 2 .08 .021 17 2.7 .03 55 .006 1 .16 .024 .10 .1 .01 .7 .1 .14 1 <.5 <2 < 01
SND05444-14	2.0 13.1 52.3 78 .2 .8 1.7 829 1.19 6.8 4.5 5.1 10.4 8 .3 .2 .1 3 .08 .023 18 2.8 .06 101 .011 3 .24 .029 .17 .1 .01 .8 .1 .10 1 <.5 <2 .01
SND05444-15	1.6 11.0 73.5 75 <.1 .8 1.5 520 .94 2.6 3.7 3.5 11.6 8 .3 .2 <.1 5 .07 .022 18 2.8 .09 115 .023 1 .20 .023 .15 .2 <.01 1.0 .1 <.05 1 <.5 <2 <.01
SND05444-16	1.2 17.0 47.4 117 <.1 .8 1.8 610 1.12 5.7 2.6 2.3 8.6 6 .5 .3 <.1 5 .08 .022 16 2.5 .07 45 .016 1 .21 .026 .14 .1 <.01 1.1 .1 .1 .1 1 <.5 <2 <.01
SND05444-17	1.7 11.3 1028.2 113 .2 .7 1.7 415 .94 7.4 9.2 55.1 10.0 11 .5 .4 .1 3 .08 .024 39 3.2 .06 41 .009 3 .21 .029 .13 .1 <.01 .8 .2 .10 1 <.5 <2 .03
SND05444-18	1,4 33.3 243.4 172 .4 1.1 2.9 798 1.29 25.5 5.9 7.1 8.9 5 .9 1.6 .2 1 .08 .022 12 2.7 .03 33 .001 2 .19 .020 .15 .1 < .01 .6 .2 .34 1 < .5 <2 .01
SND05444-19	1.5 33.0 96.7 130 .3 1.1 2.2 497 .91 8.3 10.3 7.0 8.9 12 .8 1.3 .2 2 .08 .020 13 2.1 04 196 .001 1 .22 .021 .16 .1 .01 .7 .1 .18 1 <.5 <2 .04
SND05444-20	21 28.7 108.5 200 3 9 1.7 574 1.05 9.6 10.1 25.5 8.5 16 .8 .5 .2 2 .08 .017 16 3.0 .04 200 .001 1 .17 .022 .11 1 .02 .6 .1 .18 <1 <.5 <2 .04
SND05444-22	2.3 51.1 98.6 124 .6 .8 1.0 403 .94 19.5 8.4 235.3 9.2 7 .7 1.4 .3 <1 .05 .016 12 2.6 .02 205<.001 3 .21 .015 .16 .1 .02 .4 .1 .37 1 <.5 <2 .65
SND05444-23	1.6 56.1 95.5 58 .6 .7 1.6 291 1.09 31.5 7.6 732.8 9.1 6 .5 2.1 .2 <1 .05 .017 10 3.0 .02 88<.001 3 .16 .020 .15 .1 < .01 .3 .1 .76 <1 <.5 <2 .78
SND05444-24	1.6 50.5 100.1 67 .4 .6 1.2 331 1.04 27.3 6.9 321.7 8.8 6 .5 2.3 .3 <1 .05 .018 9 2.2 .01 96<.001 1 .13 .017 .13 .1 .01 .3 .1 .72 <1 <.5 <2 .37
\$ND05444-25	5.6 7.3 3.3 36 <.1 1.4 6.3 629 2.54 1.0 1.6 .8 6.1 16 <.1 .1 <.1 44 .68 .083 16 5.3 .60 251 .183 3 .85 .057 .51 .2 <.01 2.5 .3 <.05 5 <.6 <2 <.01
SND05444-26 (pulp)	19.7 53.3 401.3 32 4.5 1160.1 27.4 377 2.11 57.3 .4 30305.6 3.2 18 .1 .5 4.3 29 .45 .031 13 1449.5 .55 144 .043 4 .88 .040 .25 13.6 .02 2.2 .1 < .05 3 < .5 6 33.10
SND05444-27	1.8 19.7 488.0 120 .4 .7 1.6 446 .84 8.9 9.7 231.3 8.4 17 .6 1.3 .1 2 .07 .014 14 4.7 .03 328<.001 3 .17 .011 .13 .1 .01 .5 .1 .26 <1 <.5 <2 .27
SND05444-29	1.6 28.8 113.1 132 .4 .6 1.4 444 .99 7.2 5.5 130.4 9.5 6 .7 2.0 .2 2 .07 .021 17 2.6 .04 96 .002 1 .14 .022 .11 .1 .01 .7 .1 .27 1 <.5 <2 .19
SND05444-29	2,2 83.0 84.2 107 1.0 .8 1.4 524 1.52 16.9 3.9 67.6 10.3 7 .6 1.1 1.0 2 .08 .020 17 2.5 .04 100 .001 2 .14 .025 .13 .1 < .01 .7 .1 .71 <1 <.5 <2 .18
SN005444-30	1.3 29.4 32.5 141 .1 .7 1.7 661 1.15 5.7 3.6 12.7 9.5 7 .6 1.1 1.5 3 .09 .021 19 3.8 .04 119 .002 2 .16 .027 .11 .3 < 0.1 .9 .1 .17 1 <.5 <2 .01
SND05444-31	1.4 34.8 30.2 70 .4 .6 1.4 448 .94 6.9 3.3 29.4 9.9 7 .5 1.3 .2 2 .07 .020 16 3.2 .04 149 .001 2 .15 .025 .13 .2 < 01 .7 .1 .18 <1 <.5 <2 .11
\$ND05445-1	1.7 15.4 62.5 26 .5 .6 .8 145 .63 3.5 4.1 126.9 10.2 6 .1 4 .1 5 .07 .026 31 2.8 .07 64 .018 1 .25 .024 .18 .1 < .01 .9 .1 < .05 1 < .5 <2 .08
SND05445-2	1.2 62.5 123.3 96 .5 1.2 3.5 617 1.25 6.1 3.5 41.3 11.7 9 1.0 1.0 .2 4 .08 .025 19 2.5 .03 68 .003 2 .16 .029 .10 .1 <.01 1.0 .1 .41 1 <.5 <2 .06
SND05445-3	1.7 3.7 89.2 80 <.1 .7 1.7 538 .87 .9 3.9 14.3 10.4 8 .6 .2 <.1 4 .08 .023 27 2.4 .03 46 .003 2 .15 .026 .09 .1 .01 .7 .1 <.05 1 <.5 <2 .42
RE SND05445-3	
RRE SN005445-3	2.0 3.5 88.8 79 <.1 .8 2.0 536 .93 1.6 3.7 19.4 11.2 8 .5 .2 <.1 4 .08 .024 28 2.5 .03 49 .004 1 .15 .028 .10 .1 <.01 .8 .1 .07 1 <.5 <2 .20
SND05445-4	
SND05445-5	
3M205445-5	1.5 2.7 2.7 2.1 10, 1, 21, 220, 01, 2, 10, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
SND05445-6	2.0 7.9 405.2 81 .4 .7 2.3 391 .91 20.0 7.4 245.7 8.6 15 1.1 .6 < 1 3 .07 .019 26 3.0 .02 69 .001 2 .18 .026 .10 .1 .02 .6 .2 .44 .1 <.5 <2 .34
SN005445-7	1.7 9.7 210.6 98 «.1 .8 2.3 460 .69 7.9 8.6 7.7 10.5 13 .9 .5 «.1 5 .08 .024 25 3.3 .06 63 .012 4 .22 .023 .16 .1 «.01 .9 .1 .13 1 ÷.5 «2 .03
SND05445-8	1.3 5.4 76.0 147 <.1 .6 1.7 776 1.07 4.1 2.6 16.2 8.8 7 .9 .3 .1 4 .09 .021 16 2.6 .02 79 .002 1 .17 .025 .11 .1 <.01 .7 .1 .06 1 <.5 <2 .03
SND05445-9	1.4 3.9 178.8 246 <.1 .8 1.3 806 1.00 1.2 7.0 2.7 10.1 14 1.0 .2 <.1 1 .07 .020 24 1.6 .03 120<.001 2 .19 .015 .14 .1 <.01 .8 .1 <.05 <1 <.5 <2 <.01
SND05445-10	1.8 392.1 854.6 549 2.9 .8 2.4 362 1.33 96.5 14.7 1022.4 8.9 16 14.3 .8 2.0 1 .05 .015 15 1.9 .02 43<.001 3 .25 .009 .20 .1 .06 .6 .1 .96 1 <.5 4 1.40
STANDARD (05670-2470v)	34 11.4 123.5 29.7 141 .3 24.7 10.8 703 2.80 21.0 6.7 47.7 3.0 40 6.0 3.4 5.0 55 .85 .077 13 189.2 .57 163 .082 16 1.80 .072 .15 3.3 .23 3.2 1.7 < .05 6 4.3 163 5.82

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

Almaden Minerals Ltd. PROJECT ELK05-9 FILE # A506917

Page 5

•••

 															_																						
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Ş٢	Сd	Şb	81	Y	Ca	P	La	Cr	Mg	Ва Т	1 B	Al	Na	ĸ	W	Hg	Sc	n	S I	Sa S	e Ag*	* Au**	
 	ррт	ppm	рра	ppm	ррл	ррл	ppm	ppm	x	ppn	ppm	ppb	ppm	ppm	ppm	фрт.	ppm	ррп	¥	*	ppm	ppm	1	ppm	X ppm	1	ĩ	ĩ	ppm	ppm	ppm	ppm	¥ 0	om pp	a gm/a	t gm/mt	
G-1	. 2	8.0	2.9	45	<.1	4.1	4.0	502	1.68	<.5	1.9	1.8	3.5	47	<.1	<.1	.1	33	.41	.070	6	10.6	.56	192 .11	61	. 87	.047	.45	.1 ·	<.01	1.6	.3.	80	4 <.	5 <	2 <.01	
SND05445-11	1.2	7.9	173,2	246	<.1					2.5 1		40.0	9.4	16	,7	.1	<.1	2	. 09	.021	22	2.0	.03	59×.00	1 3	. 25	.026	.17	< 1	.01	.9	.1 .	15	1 <.	5	3,04	
SND05445-12	2.8	350.1	976.6	328	2.2	1.5	5.0	1129	2.59	83.4	9.6	1795.1	7.5	18	2.5	1.3	.9	2	. 17	.017	12	2.4	.04	32 .00	15	. 28	.019	.19	.1	. 05	1.0	.21.	54	1 <.	5	3 2.37	
RE SND05445-12	2.1	337.1	958.6	318	2.1	1.4	4.5	1101	2.52	79.4	9.5	1815.6	7.8	17	2.4	1.4	. 9	2	. 17	.017	12	1.6	.04	35<.00	1 3	. 28	.019	.17	.1	.05	.9	.21.	46	1 <.	5	3 I. 93	
RRE SND05445-12	2.8	343.9	980.6	325	2.3	1.5	4.7	1087	2.64	88.7 1	10.3	1819.6	7.9	18	2.5	1.3	1.0	2	. 08	.017	13	2.4	.04	32<.00	15	.31	.019	. 20	.1	.05	.9	.21.	67	1 <.	5	3 1.96	
SND05445-13	3.2	440.9	1208.5	314	3.0	1.4	5.0	1172	2.67	97.3 1	10.8	3909.1	8.8	211	2.8	1.6	12	2	.10	023	16	1.8	04	38<.00	1 4	27	.019	17	1	.04	11	.2 1.	F4 -	<1 <.;	5	4 3.90	
\$ND05445-14	1.6	11.4	12.4	41	< 1					1.3			6.3	19	1		<.1	48		.087	17			278 .19				.55		< 01		.3 <		4 <		2 .02	
SND05445-15 (pulp)	• • •	56.4	389.7							55.9		26208.0			1		4.6		. 45			483.3		144 .04		.96			13.3					3 <.		6 33,80	
SND05445-16		18.5	235.1	295						6.3		10.0				.2		3	.10		19			314 .00			.018		13.3	.02	1.1		17	1 <.		2.04	
SND05445-17			368.1							31.3		90.3					1.0		. 07		19			36 .00					.1		.9						
38003443-17	2.7	03.3	300.1	230	. 7	1,1	3.2	/23	1.74	31.3	0.3	90.3	7.4	19	1.1	.9	1.0	2	. 07	.014	12	1.6	.04	35 .00	1 3	. 32	.011	.21	.1	. 05	. /		86	1 <.	5	2.11	
SND05445-18	2.9	8.7	202.9	245	<.1	.7	1.4	727	1.01	2.5	4.0	30.1	8.8	22	1.0	.1	.1	3	. 08	.019	19	1.9	.04	49 .00	1 2	. 25	. 025	.12	<.1	.04	.9	.2 .	09 ·	<1 <.	5 <	2.04	
SND05445-19	Z.2	58.9	258.8	201	.3	.6	1.2	462	1.23	15.2	2.2	15.9	9.7	11	3.1	1.8	.9	5	.09	.022	16	2.7	.04	140 .00	7 1	. 25	.035	.14	.2	.02	.9	.2 .	48	1 <.	5 <	Z .05	
SM005445-20	1.7	39.8	302.8	193	.3	.7	1.7	545	1.29	17.7	3.1	8.7	9.3	9	1.7	.5	.2	2	.07	.022	12	2.3	.03	147 .00	1 2	. 24	.020	.19	.1	<.01	.7	.1 .	61	1 <.	5 <	2 .02	
SN005445-21	1.3	29.4	101.2	170	1.1	.6	1.2	516	1.14	13.5	2.4	937.5	10.3	11	.8	1.2	.5	4	.08	.024	16	2.5	.04	146 .00	31	.24	.036	.14	.1	<.01	.9	.1 .	29	1 <.	5	2 1.60	
SND05445-22	1.5	7.0	82.4	154	<.1	.7	1.9	531	.96	3.3	2.2	2.2	10.5	10	.7	. 2	.1	4	. 08	.021	15	3.3	.03	139 .00	31	. 22	.029	. 15	.1	.01	.7	.1 .	18	1 <.	5 <	2 .02	
SND05445-23	2.3	23.5	61.5	153	.5	.9	1.3	462	1.00	4.6	2.5	25.3	10.5	9	.6	.5	.8	3	.08	.019	17	3.2	.04	79.00	1 1	.22	.034	. 14	.1	<.01	.8	.1	12	1 <	5 <	2.04	
SND05445-24			1007.4			1.6	3.4	1016	1.92	22.5	2.8	2994.9		12	38.4		4.1	3		.018	12			138<.00			.025	.15	.1	.26	.7		81	1 <.		5 3,53	
STANDARD D\$6/R-2a/OxL34												44.3						•	.85					161 .08					3 3		3.2	1.7 <.		6 4.		9 5.B1	

Sample type: DRILL CORE R150. Samples beginning [RE] are Reruns and [RRE] are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

ACME A'			LAB CCTE					•	85			STINC			500					6A Ica			PĦ	ONE (604)	25	3-31	58	F ax	(60	7	53-1	716	
<u>î</u>						<u>Alr</u>						<u>itd.</u> t., Var																						
Sample#	Мо ррлп	Cu ppm				Ni ppm	Со ррл	Min ppm	Fe گ	As ppm	U Maqq	Au	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X		La ppm	Cr ppm	Mg I Xip	Ba Ti pan Xa	B ppm	A1 %	Na %	K لا لا	W H pm pp	-	T1 ppm	-	Ga ppm	
G-1 SLD05436-14 SLD05436-17 SLD05437-2 SLD05438-3		242.3		2091 4042 1422	4.0 85.7 29.5	20.6 64.7	7.7	547 3829 39 1118 220	1.79 4.95 3.05 16.25 7.42	1.3 84.5 106.1 319.3 928.4	28.2 2.4 23.9	4457.6 6088.6 12032.9	3.1 2.9	51 54 7 30 8	<.1 38.0 87.9 30.2 45.5	<.1 .3 1.2 1.0 2.0	.1 .6 43.2 3.1 .6	27 1 11	.47 .10 .20	.068 .108 .007 .021 .009	7 11 3 4 7	5.9 13.4	42 02 11	22 .131 57 .002 13 .001 3 .001 13<.001	8 3 4	.80 .12	.008 .005 .005	.42 .46 .11 .20 .13	.1 .2	95.9 9.3 92.9	.4	<.05 1.43 3.65 >10 7.83	3 <1 2	<.5 <.5 <.5 1.5 <.5
SLD05438-5 SND05443-22 SND05444-21 STANDARD DS6	16.6 5.6 17.7 11.5	345.8 1252.8	1001.4	967 974	10.9 27.5	11.0	9.8 7.8	3155 616 426 703	4.84 4.76	226.8	5.1 22.9	2085.7 5871.5	9.2	10 11	18.8 21.5	5.9 4.3 82.5 3.3	2.8 12.3	1 3	.06	.043 .011 .006 .065	9 3	10.5 . 10.5 .	04 03	8 .001 23<.001 9 .001 63 .081	5 4	.36 .29	.006 .015 .004 .070	.21 .16	.4 .2 .3 .0 .2 .2	5.6 1.7	.1	6.81 4.32 4.67 <.05	1 1	.5 <.5 <.5 3,9

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: DRILL CORE M150

Data___ FA ____

DATE RECEIVED: OCI 21 2005 DATE REPORT MAILED:

Dec 2/05

REVISED COPY An for 256.

(] 9001 Accredited Co.) A A <u>Almade</u> 110	ASSAY an Minerals Ltd. PR 13 - 750 W. Pender St., Vancouv	ChfT OJECT er BC V6C 2	ELK05	-9 Fi	.le # A : Wojtek Ja	06918 ubowski			A
	SAMPLE#	S.Wt gm	NAu mg g	-Au gm/mt	TotAu gm/mt				
	SLD05436-14 SLD05436-17 SLD05437-2 SLD05438-3 SLD05438-5	123 498 151 289 959	.03 .30 .25 .17 .60	4.48 10.04 12.07 17.84 8.34	4.72 10.64 13.73 18.43 8.97				
	SND05443-22 SND05444-21 STANDARD OxL34	702 1015 -	.09 .06 <.01	2.96 6.69 5.78	3.09 6.75 5.78				
DataFADATE RECEIVED:	: OCT 21 2005 DATE REPOR	RT MAILE	D:	<u>e.c.</u> 1.	/05		WEA O		
Data FA DATE RECEIVED:	: OCT 21 2005 DATE REPOR	T MAILE	D	<u>e.c. 1</u>	<u>/əs</u>	ALCON.	Clarent	C Leong	
Data FA DATE RECEIVED:	: OCT 21 2005 DATE REPOR	T MAILE	D	<u>e.c. 1</u>	<u>/os</u>	A CON	United C	De Leong	
Data FA DATE RECEIVED:	: OCT 21 2005 DATE REPOR	T MAILE	D	<u>e.c. 1</u>	<u>/əš</u>	ALCON.	Clarent	De Leong	

	W. Pender St., Vancouve	r BC V6C 2T8 Sub	nitted by:		15918 powski		
	SAMPLE#	S.Wt NAg gm mg g	-Ag 1 gm/mt g	m/mt	, _, _, _, _, _		
S	SLD05436-14 SLD05436-17 SLD05437-2 SLD05438-3 SLD05438-5	123 <.06 498 <.06 151 <.06 289 <.06 959 <.06	5 93 30 35 28	5 93 30 35 28			
S	ND05443-22 ND05444-21 TANDARD R-2a	702 <.06 1015 <.06 - <.06	11 30 155	11 30 155			
-AG : -150 AG BY FIRE ASSAY FROM 3 A.T. SAMPLE. - SAMPLE TYPE: DRILL CORE M150 Data FA DATE RECEIVED: OCT 21		_		ILVER, TOTAL	SAMPLE FIRE ASSA	Y.	
						ince Leong	ļ
					×Z	A at	
					×7	And	

A 2.3 A 19 A 201 A

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

1

(I: 001 Accredited Co.)	852 E. HASTINGS ST NC		PHONE (604) 253-3	158 PAX (60 53-1716
	GEOCHEMICAL ANA S			
LC	Minerals Ltd. PROJECT 750 W. Pender St., Vancouver BC V6C :	<u>ELK05-9</u> File : 278 Submitted by: Wojt	: A506919 k Jakubowski	
	SAMPLE#	Au* Sample		
	G-1			
	SLD05436-7	<.5 .7 32621.7 1		
	SLD05436-8 (pulp) SLD05437-9 SLD05437-10 (pulp)	<pre><.5 3 .7 3 32621.7 1 31870.9 1</pre>		
	SLD05439-8 SLD05439-9 (pulp)	9157.7 1		
	SLD05441-9	$\begin{array}{cccc} 9157.7 & 1 \\ 9157.7 & 1 \\ .7 & 3 \\ 32861.4 & 1 \\ \end{array}$		
	SLD05441-10 (pulp) STANDARD AU-R	452.0 3)	
				Sungla Dic Control

(7)9001 Accredited Co.) AAA Almaden Minerals Ltd	ANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(60 253-1716 A A A A A A A A A A A A A A A A A A A
	6C 218 Submitted by: Wojtek Jakubowski
SAMPLE#	Au** Sample gm/mt gm
AMM098 AMM714 AMM379 AMM547 AMM25	35.98 3.71 104.00 29.20 36.62 5.00 13.67 29.20 104.66 14.60
AMM386 AMM128 AMM615 AMM685 AMM330	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
AMM898 AMM644 AMM183 AMM50 AMM473	38.08 4.01 36.00 7.30 .97 29.20 37.08 4.51 74.79 29.20
AMM168 AMM481 AMM413 RE AMM413 AMM32	49.17 29.20 5.55 29.20 13.53 29.20 13.40 29.20 5.50 29.20
AMM132 AMM523 AMM781 AMM153 AMM172	27.18 29.20 1.88 29.20 3.06 29.20 3.35 29.20 33.45 4.96
AMM51 AMM184 STANDARD OxL34	35.49 5.00 9.97 29.20 5.79 29.20

GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM TOTAL SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: Rock Pulp

Samples beginning (RE' are Reruns and 'RRE' are Reject Reruns.

Data JY FA _____

