TRENCHING AND DIAMOND DRILLING ASSESSMENT REPORT

ON THE

EXTRA HIGH PROPERTY

KAMLOOPS MINING DIVISION
B.C. CANADA

NTS 82M / 4W
Lat. $\quad 51^{\circ} 08$, North
Long. $119^{\circ}{ }^{\circ} 50^{\prime}$ West

Prepared for

BRONX VENTURES INC.

Ste. $600-1199$ West Hastings St.
Vancouver, B.C. V6E 3T5

By
J.W. Murton \& Associates
J.W. Murton P. Eng.

March 15, 2006

TABLE OF CONTENTS

page

0.0 SUMMARY 5
1.0 INTRODUCTION \& TERMS OF REFERENCE 7
2.0 PROPERTY DESCRIPTION AND LOCATION 9
3.0 ACCESSIBILTY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY 12
4.0 HISTORY 12
5.0 GEOLOGICAL SETTING 14
5.1 REGIONAL GEOLOGY 14
5.2 PROPERTY GEOLOGY 17
6.0 MINERALIZATION 19
7.0 EXPLORATION 23
7.1 TRENCHING 25
7.2 DRILLING 29
8.0 INTERPRETATION \& CONCLUSIONS 45
$9.0 \quad$ STATEMENT OF COSTS 46
10.0 REFERENCES 47
11.0 CERTIFICATE OF AUTHOR'S QUALIFICATIONS 48

TABULATION

TABLE	1		page
		CLAIM INFORMATION	9
TABLE	2	DIAMOND DRILL HOLE LOCATION DATA	29
		APPENDICES	
APPENDIX	1	TRENCH ASSAY DATA \& AVERAGE VALUES	follows text page 49
APPENDIX	2	DIAMOND DRILL HOLE LOGS including ROCK TYPE CODE \& DESCRIPTION	follows text page 54
APPENDIX	3	DIAMOND DRILL HOLE ASSAY AVERAGES AND AVERAGE VALUES	follows text page 104
APPENDIX	4	CERTIFICATES OF ANALYSIS	follows text page 123

ILLUSTRATIONS

Fig.	1	LOCATION MAP - EXTRA HIGH PROPERTY		8
Fig.	2	TENURE (CLAIM) LOCATION MAP	1:250,000	10
Fig.	3	TENURE (CLAIM) MAP	1: 40,000	11
Fig.	4	REGIONAL GEOLOGY	15
Fig.	5	PROPERTY GEOLOGY		16
Fig.	6	GRID LOCATION \& SAMPLE AREAS	$1: 10,000$	24
Fig.	7	DIAMOND DRILL HOLE \& TRENCH LOCATION PLAN	$1: 2,000$	31

Fig. 8 DIAMOND DRILL HOLE LONGITUDINAL
SECTION $1: 1500$...... 32
Fig. 9-17 DELETED
Fig. 18-29 TRENCH MAPS - PLAN \& SECTION 1:250 following Appendix 4
Fig. 18 Trench 1 page 166
Fig. 19 Trench 2
Fig. 20 Trench 3
Fig. 21 Trench 4
Fig. 22 Trench 5
Fig. 23 Trench 6
Fig. 24 Trench 7
Fig. 25 Trench 8
Fig. 26 Trench 9
Fig. 27 Trench 10
Fig. 28 Trench 11
Fig. 29 Trench 12

Fig. 30-41 DIAMOND DRILL HOLE CROSS SECTIONS 1:1,000 ... following
Fig 30 Section $89+75 \mathrm{~N}$
Fig. 31 Section 90+00N
Fig. 32 Section 90+25N
Fig. 33 Section $90+50 \mathrm{~N}$
Fig. 34 Section 90+75N
Fig. 35 Section 91+00N
Fig. 36 Section 91+25N
Fig. 37 Section 91+50N
Fig. 38 Section 91+75N
Fig. 39 Section 92+00N
Fig. 40 Section 92+25N
Fig. 41 Section 92+50N

0.0 SUMMARY

The Extra High property is located 60 km north from Kamloops B.C. and / or 22 km east from the town of Barriere B.C. via the paved Agate Bay road from Highway 5. Access to the property is then by good gravel logging roads to the 1,450 metre elevation. The main area of interest lies immediately south from the past producing Samatosum Mine.

Bronx Ventures Inc (previously Lucky 1 Enterprises Inc.) acquired 10 Extra High claims in March, 2004 from Mr. R. Wells of Kamloops B.C. Subsequently, an additional 25 mineral claims were located and became part of the option agreement. These 35 claims have now been converted under the new Minerals Titles system governed by the B.C. Minerals Titles Division into 9 separate, contiguous Mineral Tenures. Three additional contiguous Tenures named Super High 1-3 were acquired in September, 2005. The total land position now encompasses 12 Tenures with a total area of 1074.886 hectares centered at Latitude $51^{\circ} 08^{\prime} \mathrm{N}$, Longitude $119^{\circ} 48^{\prime}$ E in the NTS or N5668500, E304000 in the UTM system.

The Extra High property is underlain by a northwest trending package of rocks termed the Rea Assemblage. From east to west the package consist of limestone, overlain by mafic flows and pyroclastics, overlain by felsic volcanics, cherts and pyritic sediments (which host the massive sulphide mineralization), which is in turn overlain by turbidites, wackes and conglomerates.

Three mineralized structures cross the Extra High property with a northwest to southeast orientation. From west to east they are (1.) Rea Zone, (2.) Silver Zone, (3.) Twin Mountain Zone.
(1.) Rea Zone. This well mineralized structure hosts the mineralization that has been the target of much of the past exploration as well as the most recent work. Mineralization within this structure is confined to a metasedimentary and felsic metavolcanic package of rocks confined between an overlying hanging wall sedimentary unit consisting of wackes and argillite and a footwall unit of mafic volcanics. Polymetallic sulphide mineralization, in places occurring as lens varying in width of from less than 1 metre to 12.5 metres wide occurs within the uppermost pyritic sediment or pyritic siltite unit. Within this unit, solid sulphide zones consist of $80 \%-90 \%$ pyrite plus varying amount (up to $5 \%-10 \%$) of galena, sphalerite and chalcopyrite plus arsenopyrite. The sulphides may be variably banded, fine to medium grained and may be considered as lenses. Stringers of near solid sulphide may also occur in the underlying cherts, cherty sediments and silicified tuffs. These stringer zones vary in thickness from 1 cm to 30 cms and are often accompanied by an increase in silica and dolomitic alteration. Sulphide content may range from 30% 70\%.
(2.) Silver Zone. This structure lies about 300 metres to the east from the Rea Zone. It is parallel to and oriented northwest - southeast as is the Rea Zone. The stratigraphy is identical to that of the Rea Zone other than the fact that the Silver Zone is "right side up", rather than inverted as is the Rea Zone due to a proposed overturned isoclinal fold which
repeats the mineralized horizon. Mineralization in this structure, while similar to the Rea Zone, is less well developed with lesser widths and grades. Polymetallic sulphides are present however
(3.) Twin Mountain Zone. This structure, which lies approximately 300 metres to the east from the Silver Zone, is indicated by erratic but very anomalous lead and zinc soil geochemistry (up to 2000 ppm for both elements) and lesser gold, silver and copper geochemistry. Mineralization also appears to be slightly erratic but consists of disseminated and semi massive galena, sphalerite and pyrite with very slight chalcopyrite hosted in a quartz / carbonate / dolomite host. The quartz / sulphide lenses or concentrations are contained within and conformable with chlorite, sericite, and silica altered shear structures within mafic volcanics and lapilli tuffs with an easterly dip.

The exploration concept for the Extra High property was to attempt to increase the size of the geologically indicated mineralization revealed by previous operators on the K7 lens of the Rea Zone as well as to further investigate the other mineralization previously located on the property.

A diamond drilling program coupled with trenching was carried out during Sept. to Dec., 2005 with successful results. A total of 1,874.3 metres of NQ diamond drilling and 455 lineal metres of trenching were completed on the Rea Zone in the area of the K7 lens.

All work was completed on Tenures 509949 and 510214.

The positive results generated by the 2005 exploration program warrant additional work on the property to further define the K7 mineralized structure to enable a resource calculation to be completed.

1.0 INTRODUCTION \& TERMS OF REFERENCE

The Extra High property has been the object of mineral exploration in the past and those results were sufficiently encouraging to warrant additional work. This report will summarize the past exploration, detail the exploration program completed during 2005 and recommend further exploration on the property.

Data from earlier work is only partially available, as government assessment files, and as a result, much of the analytical data that would have been helpful in the property assessment and evaluation has not been accessed. Soil geochemical coverage of the property is fair to good, trench information is lacking and diamond drill information is partially available.

The initial land position of 35 mineral claims (now mineral tenures) was optioned from Mr. Ron Wells of Kamloops B.C., initially by Lucky 1 Enterprises Inc, now having undergone a name change to Bronx Ventures Inc. Additional mineral tenures have been acquired by Bronx Ventures Inc. The original claims were named the Extra High claims, and even though that name has not been carried forward with the new Mineral Tenure system of identification, the name "Extra High" will continue to be used in reference to the property.
J.W. Murton \& Associates were contracted to design and implement an exploration program on the Extra High property to assess and verify earlier diamond drill results as well as, if possible, increase the geologically indicated mineralization revealed by previous operators. This exploration program was completed during the period May to Dec., 2005.

SCALE 1: 12,000,000
N

FIG. 1

LOCATION MAP
EXTRA HIGH PROPERTY

2.0 PROPERTY DESCRIPTION AND LOCATION

The Extra High property is located on the south and western slopes of Samatosum Mountain east of Barriere, B.C. or north east of Kamloops B.C. The total area of the present land position is 1074.886 hectares and the center of the land position is Latitude $51^{\circ} 08^{\prime} \mathrm{N}$, Longitude $119^{\circ} 48^{\prime}$ E in the NTS or N5668500, E304000 in the NAD 83 UTM system.

Bronx Ventures Inc (previously Lucky 1 Enterprises Inc.) acquired 10 Extra High claims in March, 2004 from Mr. R. Wells of Kamloops B.C. Subsequently, an additional 25 mineral claims were located and became part of the option agreement. These 35 claims have now been converted under the new Minerals Titles system governed by the B.C. Minerals Titles Division into 9 separate, contiguous Mineral Tenures. Three additional contiguous Tenures named Super High 1-3 were acquired in September, 2005. The total land position now encompasses 12 Tenures. See Table 1 which information was copied from the B.C. Minerals Titles Division web site. Of note is the fact that the previously named "Extra High" claims 1 - 35 were not able to carry on with the "Extra High" name when the conversion was completed and thus are now identified only by a Tenure number.

Tenure \#	Claim Name	Owner	$\begin{aligned} & \text { Map } \\ & \# \\ & \hline \end{aligned}$	Good To Date	Status	Hectares
509949	Super High \#1	146501				
		(100\%)	082M	2006/APR/02	GOOD	60.829
		146501				
509952		(100\%)	082M	2006/MAR/31	GOOD	60.824
		146501				
509956		(100\%)	082M	2006/APR/02	GOOD	182.520
		146501				
509961		(100\%)	082M	2006/APR/02	GOOD	121.664
		146501				
509963		(100\%)	082M	2006/APR/02	GOOD	40.569
		146501				
509969		(100\%)	082M	2006/APR/02	GOOD	344.834
		146501				
510213		(100\%)	082M	2006/APR/02	GOOD	20.289
		146501				
510214		(100\%)	082M	2006/APR/02	GOOD	40.557
		146501				
510215		(100\%)	082M	2006/APR/02	GOOD	81.124
		146501				
510306		(100\%)	082M	2006/APR/02	GOOD	60.857
	SUPER	146501				
520184	HIGH \#2	(100\%)	082M	2006/SEP/20	GOOD	20.275
	SUPER	146501				
520186	HIGH \#3	(100\%)	082M	2006/SEP/20	GOOD	40.544
						1074.886

N

Bronx Ventures Inc. has the option to acquire a 100% interest in the Mineral Tenures listed above under the terms of an agreement with Mr. R. Wells of Kamloops B.C

As may be seen in Table 1, the expiry dates of the Tenures range from March 31, 2006 to Sept.20, 2006. Bronx Ventures Inc has filed the cost of the work program detailed in this assessment report to advance the new expiry dates of the tenures to the year 2016.

3.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Extra High property is located 60 km north from Kamloops B.C. and /or 22 km east from the town of Barriere B.C. via the paved Agate Bay road from Highway 5. Access to the property is then by good gravel logging roads to the 1,450 metre elevation. The highest elevation on the property is 1,580 metres approximately 1 km to the northeast from the main area of interest and the lowest elevation is 1,200 metres located on the southern boundary of the property. The main area of interest lies immediately south from the past producing Samatosum Mine. See Fig. \# 5.

The gently sloping hillsides are partially clear cut logged and the remainder contains virgin timber which is currently being harvested. Access may be gained year round providing that the roads are plowed in the winter months. Snowfall averages about 1-2 metres through the winter. Water is readily available from a number of $1-2$ metre wide creeks which run year round, while a small 1 hectare pond near the north boundary of the property runs water all year.

The town of Barriere is a good local source of labor and equipment contractors while Kamloops which lies less than 1 hour drive south, is a major supply centre as well as manpower centre.

4.0 HISTORY

The following is a partial summary from a report by Ron Wells, dated June 20, 2003 titled Geological Report for the Extra High Property.
"The property has had a long history of mineral exploration dating back to the 1890's. The Extra High property partially covers three south east trending mineralized horizons that are prospective for volcanogenic massive sulphide deposits containing gold, silver, copper, lead and zinc with occasional barite. From east to west the three horizons are called Twin Mountain Zone, Silver Zone, and Rea Zone.

The Twin Mountain Zone runs up the middle of the property area and is a northerly extension of the historic showing called the Twin Mountain showing on an adjacent property (not owned by Bronx Ventures Inc.). This zone has been explored intermittently since 1936 for copper, lead and zinc sulphides with barite. Extensive trenching with two exploration tunnels plus soil sampling on the adjacent property indicated a strike length of over 4.5 km . Exploration programs in the 1980’s by Apex Energy Corp / Austin Resources Corp followed by an option to Falconbridge Copper (later Minova Inc.) disclosed a number of soil geochemical anomalies which trended northwesterly across the Bronx Ventures Inc. ground. Prospecting by a prospector, Paul Watt, in the early 2000's revealed a mineral showing in a road cut on the Twin Mountain trend which carries values similar to the more southerly showing explored by adits o the adjacent ground. The soil anomalies contain copper, lead, silver and zinc values with lesser gold values and extend for 1.6 km across the property all the way to the northern boundary with the now closed Samatosum Mine.

The centrally located Silver Zone which is on the southeastern extension of the Samatosum Horizon was discovered in the 1980's following the discovery of the Rea Gold Zone and the Samatosum Zone adjacent to the north. This ground was named the Kamad claims and owned by the Kamad Silver Company Ltd. The Kamad claims were explored by Kamad Silver up to 1985 and then optioned to Esso Minerals up to 1989. This was followed by Homestake Canada Ltd. acquiring an interest up to 1992.

The Rea Zone which is located on the western portion of the property was similarly explored during the 1980's and early 1990's as part of a property wide program to attempt to extend the newly discovered Rea Horizon to the south east. This Rea Horizon on the now Bronx Venture Inc. ground contains the K7 zone which will be discussed following.

The Rea and Silver Zones were partially covered by the Twin 3 claim owned by Apex Energy Corp and optioned to Lincoln Resources Inc. in 1983 and an option to Falconbridge Copper in 1984. Between 1986 and 1992 the property, known as the Twin Property, was explored by Esso Minerals followed by Homestake Canada Ltd."
The following is an excerpt from a report for Homestake Canada Ltd. in 1991 by R.G.Carmichael.
"The discovery of the Rea Gold volcanogenic massive sulphide lenses in 1983 and the Samatosum massive sulphide deposit in 1986 shifted the focus of exploration from the Homestake Bluffs (south east of Bronx Ventures Inc. ground) to the plateau area. Geophysical surveys and diamond drilling were carried out on the Kamad 7 claim in 1983 and 1984 and identified massive sulphide mineralization on the Rea Horizon. In 1985, a company called 259146 B.C. Ltd. Drilled 5 holes totaling 369.7 metres into this new zone.

In 1986, Esso Minerals Canada conducted an extensive geological, geochemical and geophysical evaluation of the Rea Horizon on the Kamad 7 and 8 claims. This was
followed by trenching and 1814 metres of diamond drilling. An additional 1125 metres of diamond drilling were completed in 1987.

In 1988, 2,094 metres of diamond drilling were completed and resulted in the discovery of the K7 massive sulphide lens.

Homestake Canada Ltd. acquired Esso's interest in the property in 1989 and completed 4,972 metres of diamond drilling in 25 holes, 785 metres of trenching in 14 trenches, and 11 km of Genie EM geophysical surveys on the Kamad 7 and 8 claims. This work program tested the down dip continuation of the recently discovered K7 lens and successfully located the Rea horizon on the Kamad 8 claim to the east. Homestake completed 2,961 metres of diamond drilling in 1990 and attempted down hole pulse Em geophysics."

The claims which now form the Extra High property were allowed to lapse and were staked by Mr. P. Watt of Kamloops B.C. in 2000.

5.0 GEOLOGICAL SETTING

5.1 REGIONAL GEOLOGY

The Extra High property lies on the Adams Plateau which is located on the western edge of the Ominica Belt. In this area, the belt is comprised of a Lower Paleozoic succession of clastic metasediments, carbonate and mafic volcanic rocks, and an overlying Devonian - Mississipian succession of felsic to intermediate metavolcanics and clastic metsediments, termed the Eagle Bay Assemblage. The Eagle Bay Assemblage overlies the Devonian to Permian Fennell Formation comprised of bedded chert, gabbro, diabase, pillow basalt, clastic metasediments with minor limestone, quartz feldspar porphyritic rhyolite and conglomerate. The Eagle Bay and Fennell rocks are a fault imbricated

assemblage that has been subject to structural stacking. Stratigraphic units generally strike northwesterly and dip moderately northeasterly.

This metasediment / metavolcanic package of rocks is cut by Mid Cretaceous age granitic rocks belonging to the Raft and Baldy Batholiths.

Geological mapping in the area in 1987 - 1988 resulted in a modification of the Eagle Bay Assemblage geology from the above earlier work by Schiarizza and Preto. The Eagle Bay rocks were subdivided into four thrust bounded assemblages, each characterized by a unique internal stratigraphy.
1.)REA ASSEMBLAGE - consists mainly of felsic to mafic pyroclastics and flows which contain the Tshinakin limestone on the northeast portion of the property. The felsic to mafic series is typically structurally underlain (stratigraphically overlain) by a 350 metre thick sequence of clastic sediments informally named the Rea or Hanging Wall sediments. This is a turbidite sequence typified by quartz wackes, siltstones and argillites with lesser chert pebble conglomerate. This Rea Assemblage hosts the Samatosum deposit and the massive sulphide mineralization at the Rea Gold, K7 and Twin 3 zones.
2.) PLATEAU ASSEMBLAGE - lies immediately to the south west of the Rea Assemblage and consists of mafic, intermediate and felsic volcanics with lesser interbedded argillite.
3.) HOMESTAKE ASSEMBLAGE - lies immediately to the south west of the Plateau Assemblage and structurally underlies the Plateau package. It consists of calcareous sediments, mafic, intermediate and felsic volcanics and sericite schist.
4.) ACACIA ASSEMBLAGE - lies further to the south west of the Homestake Assemblage and contains quartzites, quartz wackes, siltstone and argillite.

5.2 PROPERTY GEOLOGY

The Extra High property is completely underlain by the northwest trending Rea Assemblage. From east to west the package consist of limestone, overlain by mafic flows and pyroclastics, overlain by felsic volcanics, cherts and pyritic sediments (which host the massive sulphide mineralization), which is in turn overlain by turbidites, wackes and conglomerates. This section of the stratigraphy has locally been overturned by isoclinal folding. Further west, a thick section of quartz eye felsic volcanics underlies the sediments and is believed to be in thrust contact with the turbidites.

Contacts between units strike at 135° to 160° and dip 45° to 60° northeast. At least one isoclinal anticline has been identified on the property and this fold is thought to repeat the mineralized horizon so that the Silver Zone is in the upright limb and the Rea Zone is in the overturned limb. The upright limb or Silver Zone is intensely disrupted and locally
truncated by a thrust fault which closely parallels the stratigraphy. The overturned limb or Rea Zone displays somewhat similar disruptions but is less fragmented.

Mafic flows and pyroclastics underlay approximately 90% of the property. The succession consists of interbedded mafic pyroclastics and flows with lapilli tuff being very common. Occasional graphitic argillite is present. The volcanic rocks are cut by semi-conformable diorite to hornblende diorite bodies that average between 20 and 40 metres thick. These units are likely subvolcanic sills and dykes. Tabular, foliation parallel zones of moderate to intense ankerite-dolomite-pyrite alteration occur within the mafic volcanics. These alteration zones are sometimes but not always related to an increase in quartz -dolomite veining, and may be related to low angle, foliation parallel faults within the mafics.

The Rea / Silver zone stratigraphically overlies (structurally underlies) the mafic volcanics and can be up to 150 metres thick. The stratigraphy of the zones is reasonably consistent north to south on a property scale although facies changes and variations are noted. The is a strong likelihood that the Rea and Silver Zones are the same zone on opposite limbs of an overturned isoclinal anticline and are described here as one unit from stratigraphic bottom to top.

1. Graphitic chert and argillite commonly form the base of the zones. Texturally this member ranges from a depositional breccia to a massive black chert. Pyrite is present in amounts up to 10% and traces of galena, sphalerite and chalcopyrite have been noted.
2. Sericitic tuff conformably overlies the graphitic chert and is locally interbedded with it. This member has a distinct yellow to green color, a chaotically banded or laminated texture and contains up to 40% sericite. Massive grey chert may be interbedded with the sericitic tuff and may contain well mineralized stringers of pyrite, chalcopyrite, galena, sphalerite and arsenopyrite.
3. Felsic pyroclastic rocks overlie the sericitic tuff. Sericite-pyrite alteration is intense throughout most of this member and sections of strong chlorite alteration are noted. Stringer sulphide mineralization may be present. Within these felsic rocks, volcanic cycles are evident with coarse fragmentals grading into lapilli and ash tuffs.
4. Pyritic sediments stratigraphically overlie the felsic volcanics. This unit contains abundant extremely fine grained pyrite (30-60\%) and a well developed sedimentary texture. Lithologies range from mudstone to conglomerate composed of grey, black and sericitic chert clasts in a matrix of pyritic mud. This unit is called pyrite siltite and is the stratigraphic equivalent of the K7 massive sulphide horizon.

The Hanging Wall Unit stratigraphically overlies the Rea / Silver Zone and is a monotonous succession of well bedded turbidites, calcareous greywackes, graphitic
argillites, and course chert pebble conglomerates. This unit usually contains less than 5 \% pyrite but is often anomalous in barium.

6.0 MINERALIZATION

Three mineralized structures cross the Extra High property with a northwest to southeast orientation. From west to east they are (1.) Rea Zone, (2.) Silver Zone, (3.) Twin Mountain Zone.
(1.) Rea Zone. This well mineralized structure hosts the significant mineralization that has been the target of much of past exploration as well as the most recent work.

The stratigraphy of the zones is reasonably consistent north to south on a property scale although facies changes and variations may be observed from drill hole and trench data.

Mineralization within this structure is confined to a metasedimentary and felsic metavolcanic package of rocks confined between an overlying Hanging Wall sedimentary unit consisting of wackes and argillite and a footwall unit of mafic volcanics as summarized below, listed from stratigraphic top to bottom. It must be noted that within the Rea Zone structure, this package of rocks has been overturned by a postulated isoclinal fold so that the Rea Zone is "upside down" while the adjoining Silver Zone is "right side up".

1. Hanging wall Sediments-wackes and argillite.
2. Pyritic sediments stratigraphically overlie the felsic volcanics. This unit contains abundant extremely fine grained pyrite ($30-60 \%$) and a well developed sedimentary texture. Lithologies range from mudstone to conglomerate composed of grey, black and sericitic chert clasts in a matrix of pyritic mud. This unit has been termed pyrite siltite and is the stratigraphic equivalent of the K7 massive sulphide horizon.

3 Felsic pyroclastic rocks overlie the sericitic tuff. Sericite-pyrite alteration is intense throughout most of this member and sections of strong chlorite alteration are noted. Stringer sulphide mineralization may be present. Within these felsic rocks, volcanic cycles are evident with coarse fragmentals grading into lapilli and ash tuffs.
4. Sericitic tuff conformably overlies the graphitic chert and is locally interbedded with it. This member has a distinct yellow to green color, a chaotically banded or laminated texture and contains up to 40% sericite. Massive grey chert may be interbedded with the
sericitic tuff and may contain well mineralized stringers of pyrite, chalcopyrite, galena, sphalerite and arsenopyrite.
5. Graphitic chert and argillite commonly form the base of the zones. Texturally this member ranges from a depositional breccia to a massive black chert. Pyrite is present in amounts up to 10% and traces of galena, sphalerite and chalcopyrite have been noted.
6. Mafic volcanics.

The majority of the polymetallic massive sulphides occur within the uppermost pyritic sediment or pyritic siltite unit. Within this unit, solid sulphide zones consist of 80% 90% pyrite plus varying amount (up to $5 \%-10 \%$) of galena, sphalerite and chalcopyrite plus arsenopyrite. The sulphides may be variably banded, fine to medium grained and may be considered as lenses.

Diamond drill intersections indicate that the lenses may vary from less than 1 metre to 12.54 metres thick as seen in diamond drill hole $05-10$. The strike extension of individual lenses is not well defined as yet, as the 2005 diamond drilling program targeted only the K7 lens and partially delimited this zone.

Stringers of near solid sulphide (NSS) may also occur in the underlying cherts, cherty sediments and silicified tuffs. These stringer zones vary in thickness from 1 cm to 30 cms and are often accompanied by an increase in silica and dolomitic alteration. Sulphide content may range from $30 \%-70 \%$.

Previous diamond drilling programs from 1986 - 1991 have indicated numerous intersections of weakly mineralized to narrow sections of solid sulphide (SS) extending over a strike length of 2 km within the total strike length of 3 km of the Rea Zone within the property boundaries. These sulphide zones are always pyrite rich with varying amount of galena, sphalerite and lesser chalcopyrite and arsenopyrite. Grades vary from: $\mathrm{Au} 0.5-4 \mathrm{~g} / \mathrm{t}, \mathrm{Ag} 2-38 \mathrm{~g} / \mathrm{t}$, $\mathrm{Cu} 0.02-0.2 \%$, $\mathrm{Pb} 0.2-2.5 \%$, Zn $0.4-4.7 \%$. It must be noted that data from the earlier diamond drilling programs is not complete. Many drill logs and assay data sets are missing or only partially reported in earlier assessment reports or news release formats. As such, the writer has not been able to confirm the accuracy of the assay data above.

Within the Rea Zone, the K7 lens is the most well defined and largest occurrence of massive sulphide located to date. This lens lies near the northern boundary of the Extra High property and has received the most extensive drilling of any area on the property.

Between 1985 and 1989, approximately 30 holes were completed, targeting an area 350 metres in strike length and 200 metres down dip. While there were some misses within this drilled area, incomplete assay data for 20 of the holes indicates SS to NSS intervals varying in width from 0.5 metre to 11.6 metres with grades from the 0.5 metre interval in hole 88044 assaying $\mathrm{Au} 5.0 \mathrm{~g} / \mathrm{t}$, $\mathrm{Ag} 92.0 \mathrm{~g} / \mathrm{t}$, $\mathrm{Cu} 0.1 \%$, $\mathrm{Pb} 1.5 \%$, Zn 1.5 \%, As 1.6%, to hole 88040 with 11.6 metres assaying Au $3.56 \mathrm{~g} / \mathrm{t}$, $\mathrm{Ag} 77.8 \mathrm{~g} / \mathrm{t}, \mathrm{Cu} 0.6 \%, \mathrm{~Pb} 6.8 \%$, Zn
8.4%, As 2.6%. This assay data is taken from old reports (J.M.Marr, 1989 Assessment Report) and while the writer has no reason to not accept the data, direct verification is not possible. The intersections noted are not necessarily representative of the complete K7 lens but are listed to give an indication of the grades of mineralization that might be expected.

A significant feature of the K7 lens and probably the complete Rea Zone, is the effect of faulting as a disruption of the strike and dip continuity of mineralization. A trenching program in 2005 was targeted at locating the K7 Zone on surface. Previous trenching information is not available, and while old trench locations may sometimes be located, there is no information to be gained. The 2005 trenching helped to explain some of the lack of drill intersections in previous and present drill holes and did disclose several locations of the K7 lens on surface.

At one point, in the 1988-1989 time period, there was a geological resource calculated by Kamad Silver and/or Homestake Canada from drill hole and trench data. While this resource is not 43-101 compliant, it is mentioned here to give some indication of the size potential of the massive sulphide target. The resource was measured from surface to 150 metres below surface and amounted to 375,000 tonnes of $4.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 55 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 0.5 \% \mathrm{Cu}$, $4.8 \% \mathrm{~Pb}$, and $6.1 \% \mathrm{Zn}$. This mineralized area was the focus of the 2005 exploration drilling program.

At a location approximately 1.2 km south of the K7 lens, diamond drilling in 1987 located a small high grade lens of SS (massive polymetallic sulphide) within the Rea Zone stratigraphy. This zone, called the Twin 3 lens, was intersected by 2 holes with the better grade intersection in hole 87-03 assaying 1.8 metres of $\mathrm{Au} 30.5 \mathrm{~g} / \mathrm{t}, \mathrm{Ag} 248.3 \mathrm{~g} / \mathrm{t}$, $\mathrm{Cu} .2 \%, \mathrm{~Pb} 2.0 \%, \mathrm{Zn} 0.7 \%$ (Heberlein, 1987). A significant difference between this sulphide zone and the K7 lens is the presence of a barite lens stratigraphically overlying the zone. Projections from two drill holes indicate a possible surface strike length of about 100 metres and a dip length of about 50-70 metres. Drilling around this intersection failed to locate a continuation of the mineralization, but extensive faulting was noted in the drill holes.

(2.) Silver Zone

The Silver Zone lies about 350 metres to the east from the Rea Zone. It is parallel to and oriented northwest - southeast as is the Rea Zone.

The stratigraphy is identical to that of the Rea Zone other than the fact that the Silver Zone is "right side up", rather than inverted as is the Rea Zone due to a proposed overturned isoclinal fold which repeats the mineralized horizon.

Drilling on the Silver Zone took place from 1986 - 1991 with somewhat less encouraging results than those from the Rea Zone. Approximately 23 holes were drilled. Strike length of the Zone on the property is approximately 2 km (similar to the Rea Zone).

Drill hole logs and analytical data is sparse for nearly all the holes, but where data is available from within the mineralized horizon, it indicates a possible range of thickness and grades from: 0.2 metres of $\mathrm{Au} 9.46 \mathrm{~g} / \mathrm{t}$, $\mathrm{Ag} 89.8 \mathrm{~g} / \mathrm{t}$, Cu 0.3\%, $\mathrm{Pb} 3.6 \%$, Zn 5.6% within a broader interval of 7.6 metres of $\mathrm{Au} 0.81 \mathrm{~g} / \mathrm{t}, \mathrm{Ag} 13.0 \mathrm{~g} / \mathrm{t}, \mathrm{Cu} 0.06 \%, \mathrm{~Pb}$ 0.2%, $\mathrm{Zn} 0.3 \%$, all in hole 91036 . This assay data is from a news release in George Cross News Letter of 1991 and as such the data can not be verified or the accuracy confirmed by the writer. It is listed here only to show that there is potential for mineralization within the Silver Zone.
(3.) Twin Mountain Zone has been explored in the past by geochemical surveys

It is a continuation of the well mineralized structure explored to the southeast on the adjacent SIN claims.

On the Extra High property, the structure is indicated by erratic but very anomalous lead and zinc soil geochemistry (up to 2000 ppm for both elements) and lesser gold, silver and copper geochemistry. Mineralization also appears to be slightly erratic but consists of disseminated and semi massive galena, sphalerite and pyrite with very slight chalcopyrite hosted in a quartz / carbonate / dolomite host. The quartz / sulphide lenses or concentrations are contained within and conformable with chlorite, sericite, and silica altered shear structures within mafic volcanics and lapilli tuffs. These shear structures have a northwest - southeast orientation $\left(135^{\circ}-160^{\circ}\right)$ with a shallow $\left(45^{\circ}-60^{\circ}\right)$ easterly dip.

The overall strike length of the Twin Mountain Zone on the Extra High property is approximately 2.3 km with observed widths of $1-20$ metres.

Two exposures of the structure were sampled. The first was a large gossan in a road cut near the eastern property boundary which returned only background values for all elements. The second sample was from a newly discovered exposure (by Paul Watt) in a logging road cut at UTM co-ords N5668620, E304531. The quartz / carbonate vein? ran:

1 metre of Au- 62 ppb, Ag- 8.2 ppm, Cu- 85 ppm, $\mathrm{Pb}-11,439 \mathrm{ppm}, \mathrm{Zn}-4,449 \mathrm{ppm}$.
This sample does not represent the true width of the structure as it is covered by overburden in all directions.

7.0 EXPLORATION

An exploration program of trenching and diamond drilling was carried out on selected areas of the Extra High property during the period September to December 2005.

All trenching and diamond drilling was completed on Tenures 509949 and 510214.
When all the earlier data was being assembled and analyzed, it was noted that the grid coordinates were confusing and not oriented in a logical manner. For instance, the original $00+00$ baseline that has an orientation of 325° was depicted as having an easterly numbering system and increasing to the northwest. For instance, line $88+00 \mathrm{E}$ was followed 100 metres to the northwest by line 89+00E. This north and east designation was changed when the grid was re-established so that in all work completed in 2005 and referenced to previous work, the baseline will increase to the North with cross lines depicted as running to the east or west off the baseline.

7.1 TRENCHING

Trenching was completed over a section of the Rea Zone where better mineralization was indicated from previous work. A total of 12 trenches were excavated during the month of Sept. by an Hitachi 110 excavator contracted from Martin Caine of Chase B.C.

All trenches were excavated to at least 1 and up to 3 metres in depth where possible. Width was approximately $1 \frac{1}{2}$ metres. A total of 455 lineal metres of trench were excavated. See Figs. 18-29 for plan and section plots of the trenches.

Samples were taken as channel samples from the wall of all trenches that exhibited potential mineralization. These sample numbers and locations are plotted on the accompanying trench drawings as plan and section.

A number of the trenches ended (at their western end) in ferricrete which precluded digging deep enough to get a meaningful sample of the underlying lithology. This ferricrete was sampled along with any potentially mineralized sections and results indicate that when ferricrete directly overlies or is in close proximity to a mineralized section of Rea Zone, the ferricrete exhibits highly anomalous values in gold, silver lead and arsenic as in Trench 8

Trench 1 (Fig. 18)

Trench 1 was excavated adjacent to an old road near $92+50 \mathrm{~N}, 1+00 \mathrm{~W}$. A zone of ferricrete was evident in the road cut. The trench opened the ferricrete and extended to the east until deep overburden stopped further excavation. A strong fault zone structure was exposed in the complete trench after a short interval in the west end of ferricrete overlying a graphitic argillite at the meta sediment argillite / wacke contact. The fault zone is mildly anomalous in gold ($200-300 \mathrm{ppb}$), and arsenic ($460-790 \mathrm{ppm}$). Other elements are not anomalous. The ferricrete is only weakly anomalous and would indicate that no mineralization is close by.

Trench 2 (Fig. 19)

Trench 2 was cut in the area of $91+90 \mathrm{~N}, 1+00 \mathrm{~W}$ and extends 30 metres east and 40 metres west from that point at approximately 248°. It revealed from east to west: chloritic sericitic tuff, pyritic siltite, a 1 metres wide sulphide zone of completely oxidized and crushed material from $34.0-35.0$ metres in the trench, pyritic siltite, a strong (3 metres wide) fault zone containing sulphide fragments, chloritic sericitic mudstone and ended in argillite contact material which forms the structural footwall of the Rea Zone.

The 1 metre sulphide rich section assayed- gold $2.32 \mathrm{~g} / \mathrm{t}$, silver 0.7 ppm , copper 474 ppm , lead 534 ppm , zinc $1,153 \mathrm{ppm}$, arsenic 1.23%. The preceding 2.3 metre interval was also anomalous: gold 0.96 ppb , silver 11.0 ppm , copper 884 ppm , lead 2,798 ppm, zinc 675 ppm , arsenic $5,120 \mathrm{ppm}$. The 3.3 metres section averages gold $1.37 \mathrm{~g} / \mathrm{t}$, silver 7.88 ppm , copper 760 ppm , lead $2,112 \mathrm{ppm}$, zinc 820 ppm . This trench intersection of the K7 zone lies approximately where it was expected to occur and ties in to the intersection obtained in DDH 05-15.

Trench 3 (Fig. 20)

Trench 3 was cut in the area of $91+50 \mathrm{~N}, 1+00 \mathrm{~W}$ and extends 50 metres to the west at approximately 230° This trench was cut to attempt to intersect the K7 lens in this area.
It started in the east end with 16 metres of white quartz sericite schist followed by an oxidized quartzite (possibly chert) zone mixed with grey sericitic tuff. This mixed zone continued for 9 metres and then became mixed with silicified dusty pyrite siltite to a point at 31 metres. Overburden then became too deep to locate bedrock but a ferricrete zone was cut at the west end of the trench and returned slightly anomalous vales in zinc and arsenic.

No obvious sulphides were intersected but an oxidized quartzite or chert was located at 16-18 metres mixed with a grey sericitic tuff which together over 4 metres assayed: gold $0.69 \mathrm{~g} / \mathrm{t}$, silver 10.2 ppm , copper 444 ppm , lead $1,776 \mathrm{ppm}$, zinc $2,043 \mathrm{ppm}$, arsenic $4,455 \mathrm{ppm}$. The following 11 metres is also slightly less anomalous in all elements.

Trench 4 (Fig. 21)

Trench 4 was cut at approximately $91+00 \mathrm{~N}, 1+00 \mathrm{~W}$ and extends 60 metres to the west at approximately 230°. It cut 29 metres of mixed grey / yellow laminated chloritic sericitic tuff (schist) before cutting a high grade section of the K7 lens. This zone was composed of completely crushed, black, red, green, brown oxidized sulphides. The mineralized zone was fault bounded but the location is approximately where it should occur. This zone was followed by approximately 6 metres of white - grey talc sericite schist changing to a dusty pyritic laminated grey tuff before entering the structural footwall argillite.

A 5.5 metre interval which represent approximately a true width assayed: gold $51.2 \mathrm{~g} / \mathrm{t}$, silver $834 \mathrm{~g} / \mathrm{t}$, copper $3,092 \mathrm{ppm}$, lead 15.52%, zinc $3,931 \mathrm{ppm}$, arsenic 9.6%. The first 2 metres of the sulphide zone assayed $76.6 \mathrm{~g} / \mathrm{t}$ gold, the highest gold value recorded in the 2005 program. This sulphide zone has undergone extreme oxidation and the resulting product is possibly enriched in gold, silver, lead and arsenic and depleted in zinc.

Trench 5 (Fig. 22)

Trench 5 was cut at approximately $90+50 \mathrm{~N}, 1+25 \mathrm{~W}$ and extends for 48 metres to the west at approximately 240°. It cut talc sericitic schist and tuff with siliceous sections before encountering a strong fault at 38 metres trending at 170°. West of the fault, the trench cut a grey chloritic mudstone with dusty pyrite. A ferricrete zone was encountered overlying a muddy tuff. A grab sample of the ferricrete ran: gold $0.07 \mathrm{~g} / \mathrm{t}$, silver 1.7 ppm , copper 311 ppm, lead 138 ppm, zinc 941 ppm, arsenic $1,065 \mathrm{ppm}$. These values would indicate that mineralization may be nearby.

Trench 6 (Fig. 23)

Trench 6 was cut at $90+39 \mathrm{~N}, 1+59 \mathrm{~W}$ and extended 14 metres to the west at 240°. Grey sericitic schist was cut in the first 5 meters of the trench and then ferricrete. The ferricrete ran: gold $0.10 \mathrm{~g} / \mathrm{t}$, silver 0.2 ppm , copper 175 ppm , lead 56 ppm , zinc 729 ppm , arsenic 785 ppm . These values indicate that mineralization may be nearby.

Trench 7 (Fig. 24)

Trench 7 was cut at $90+25 \mathrm{~N}, 1+51 \mathrm{~W}$ and extended 42 metres to the west at about 248°. It intersected a mixture of grey chloritic, sericitic tuff, graphitic chert, "white spotted" muddy tuff and then a ferricrete zone. Further to the west from the ferricrete was a grey chloritic mudstone or siltstone and then argillite. A grab sample of the ferricrete ran: gold $<0.03 \mathrm{~g} / \mathrm{t}$, silver 1.2 ppm , copper 358 ppm , lead 228 ppm , zinc 834 ppm , arsenic 875 ppm. These values indicate that mineralization may be nearby.

Trench 8 (Fig. 25)

Trench 8 was cut about 10 metres to the east of $89+85 \mathrm{~N}, 2+00 \mathrm{~W}$ and extended about 20 metres to the east at 070° from that point. From east to west the trench cut light grey sericitic, chloritic tuff, grey silty tuff with dusty pyrite and then ferricrete. A strong fault zone was cut to the west of the ferricrete and fragments of mixed sulphides were observed mixed with pyritic siltite in the fault gouge material on the dump. Water inflow precluded obtaining a chip sample or mapping the sulphide zone. A grab sample of the sulphide and pyritic siltite fragments assayed: gold $7.96 \mathrm{~g} / \mathrm{t}$, silver $153.0 \mathrm{~g} / \mathrm{t}$, copper $1,123 \mathrm{ppm}$, lead 18.20%, zinc $2,683 \mathrm{ppm}$, arsenic 8.84%. The ferricrete assayed: gold $2.13 \mathrm{~g} / \mathrm{t}$, silver $69.0 \mathrm{~g} / \mathrm{t}$, copper 541 ppm , lead 8.25%, zinc 532 ppm , arsenic 1.48%. These ferricrete numbers indicate that the ferricrete is adjacent to or overlays a polymetallic sulphide zone as indicated by the grab sample values from the sulphides on the dump.

Trench 9 (Fig.26)

Trench 9 was cut to attempt to locate the sulphide zone located in trench 8 further to the south. The trench was cut 16 metres to the east from $89+85 \mathrm{~N}, 2+00 \mathrm{~W}$ and extended 20 metres to the east from that point at approximately 070°. From east to west the trench cut mixed grey / white sericitic tuff and cherty argillite and further west, graphitic argillite and pyritic siltite layers in a grey chloritic tuff. Heavy water inflow and deep overburden precluded digging further to the west and as a result the possible south extension of the mineralized zone located in trench 8 may have been missed. A section of graphitic argillite from $9.0 \mathrm{~m}-13.0 \mathrm{~m}$ in the trench ran: gold $0.68 \mathrm{~g} / \mathrm{t}$, silver 5.1 ppm , copper 40 ppm , lead 746 ppm , zinc 55 ppm , arsenic 1,700 ppm.

Trench 10 (Fig 27)

Trench 10 was cut to attempt to tie together the mixed lithologies in adjacent trenches. The Rea Zone here is extensively faulted and difficult to tie together between trenches. Trench 10 was cut 10 metres to the east from $89+75 \mathrm{~N}, 2+00 \mathrm{~W}$ and extends 18 metres at 075°. Grey brown sericitic tuff and cherty argillite with graphitic sections were encountered. Quarts veins in trenches $9-11$ while interesting looking and oxidized after pyrite do not carry any values. A section of graphitic cherty argillite ran: gold $0.53 \mathrm{~g} / \mathrm{t}$, silver 5.3 ppm , copper 256 ppm , lead 1,182 ppm, zinc 947 ppm , arsenic $3,135 \mathrm{ppm}$.

Trench 11 (Fig. 28)

Trench 11 was cut at $89+50 \mathrm{~N}, 2+00 \mathrm{~W}$ and extended about 30 metres to the east at 065° from that point. The trench exposed a complex assemblage of rock types that had been extensively faulted. Rock types included graphitic tuff / fault zone, cherty argillite, pyritic siltite and grey chloritic tuff. The only section of the trench that carried values was from $3.0-6.5$ metres in a fault zone mixed with tuff and graphite that ran: gold 0.29 g / t, silver 5.4 ppm , copper 105 ppm , lead 2,410 ppm, zinc 277 ppm , arsenic 3,810 ppm.

Trench 12 (Fig. 29)

Trench 12 was the last trench cut to the south on the proposed extension of the Rea Zone. It was located about 8 metres to the south from $89+50 \mathrm{~N}, 2+00 \mathrm{~W}$ and extended 35 metres east and 20 metres west from that point oriented at about 80°. The trench cut light brown chloritic / dolomitic altered meta volcanics, yellow sericitic tuff, black pyritic muddy tuff, dark grey chloritic altered medium grained diorite, pyritic muddy tuff and ended on the west end in a strong white gouge fault zone oriented at 040° before cutting the structural footwall banded argillite. No samples were cut in this trench.

At the end of the program in late November, all trenches were reclaimed (backfilled and seeded) except a portion of trench 2 and trench 4, where significant assays had been returned from the exposed Rea Zone. Reclamation was contracted by Nu Creek Development of Enderby, B.C.

7.2 DRILLING

A diamond drilling program was completed in two phases during the period September 19th to November 25, 2005. A total of 18 holes totaling $1,874.3$ metres of NQ core were completed by Frontier Drilling Corp. of Kamloops B.C. using a BB-56 diamond drill.

The target of the drilling program was to confirm the existence of the K7 high grade lens and increase both the confidence in the earlier drill results and to expand the possible resource base.

The table below is a listing of all 2005 diamond drill holes and locations.

TABLE 3
DIAMOND DRILL HOLE LOCATION DATA

$\begin{gathered} \text { HOLE } \\ \# \\ \hline \end{gathered}$	$\underset{\mathrm{N}}{\text { COORD }}$	INATES w	AZM. TRUE N	ANGLE	$\begin{gathered} \text { ELEV. } \\ \mathrm{m} \end{gathered}$	LENGTH m
05-01	90+55	0+29	225	-46	1440	135.0
05-02	90+55	0+29	225	-61	1440	145.5
05-03	90+55	0+29	225	-80	1440	159.7
05-04	91+25	0+71	225	-45	1438	78.3
05-05	91+25	0+71	225	-64	1438	44.8
05-06	91+25	0+71	225	-90	1438	111.8
05-07	91+02	0+70	225	-55	1440	81.4
05-08	91+02	0+70	225	-72	1440	93.6
05-09	91+02	0+70	225	-90	1440	154.5
05-10	91+50	0+66	225	-50	1431	76.2
05-11	90+29	0+34	225	-45	1441	142.9
05-12	90+29	0+34	225	-60	1441	145.4
05-13	90+52	0+50	225	-45	1443	89.7
05-14	91+74	0+64	218	-45	1427	49.4
05-15	91+74	0+64	218	-75	1427	69.2
05-16	90+77	0+70	222	-47	1442	69.2
05-17	90+77	0+70	222	-70	1442	94.5
05-18	90+77	0+70	222	-90	1442	133.2
						1874.3

All new holes were located by the writer using a compass and chain based on the old grid that had been re-established. Where possible, old holes were located to assist in new hole location. When the new grid was re-established, the baseline was renumbered to show line numbers increasing to the north as one progressed northwest up the baseline. The original line numbering system was retained, just the naming, as to north was changed.

Drill core was logged on site, photographed and sample intervals split on site by the writer using a manual core splitter. Half core intervals were then submitted to the analytical lab. All sample intervals were marked in the core boxes including a duplicate assay tag to the tag that had been included with the sample shipped out. Drill core is stored on site at UTM coordinates 5669158N, 303370E, NAD 83.

All 2005 diamond drill holes intersected the Rea Zone and the majority intersected massive polymetallic sulphides of varying widths. Drill hole logs record the core angle of all sample intersections and this intersection interval has been factored by the recorded core angle and reported on the drill logs as "true width" as well as actual core length.

Drill holes logs are appended at the back of the report as are sample averaging data sheets. All drill holes have been plotted on plan (Fig. 7) and cross section (Figs. 30 41. A longitudinal section is included in the report as Fig. 8. It is a vertical plot of pierce points in the K7 massive sulphide zone. Old diamond drill hole pierce points have been included on the longitudinal section as an additional source of information. No corroboration of old assay data has been possible and the placement is a best fit as to location taken from 2005 field data.

All 2005 drill holes are described in numerical order, from top to bottom of the hole. Lithologic units are referred to with regard to their actual structural position in the hole rather than their stratigraphic position within the Rea Zone.

See page 44 for a detailed explanation of the term "equivalent gold grade" which has been used in the following descriptions of the 2005 diamond drill hole results. Briefly, each metal was calculated as to its gross metal value by taking the weighted average assay value of the sampled interval, multiplied by an assumed metal value without taking into consideration any recovery factors. These figures were then totaled and shown as "total metal value". This figure was then factored by the following formula to obtain "equivalent gold grade in grams / tonne (g/t).

Total Gross Metal Value x $34.3=$ equivalent gold grade in g/t. 475

This hole was drilled as part of a fan of three holes to corroborate an earlier drill hole (88040) and fill in a gap in information between 88040 and another deeper hole 88041.

The hole encountered 87.6 metres of pyroclastics / lapilli tuff and mafic tuff before entering the Rea horizon. The Rea horizon extended from 87.6 - 131.9, when the hole then cut the footwall metasediments extending to 135.0.

The Rea horizon consists of a sequence of graphitic chert, chloritic argillite, siliceous and sericitic medium grained tuff, near solid to solid sulphides, cherty argillites and heterolithic breccia. The interval from 85.5 - 117.6 metres is anomalous in gold, silver, copper, lead, zinc and arsenic with an interval from 105.8-115.1 assaying:

FROM	TO	CORE LENGTH	TRUE WIDTH	AU g/t	AG g/t	$\begin{gathered} \text { CU } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { PB } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { ZN } \\ \% \end{gathered}$	$\begin{aligned} & \text { AS } \\ & \% \end{aligned}$
105.8	115.1	9.3	9.14	4.28	92.1	0.44	5.43	6.42	3.49
Including									
110.0	115.1	5.1	5.01	6.96	148.1	0.61	8.47	9.55	3.51

The equivalent gold grade is:
105.8-115.1
9.14 m @ $18.45 \mathrm{~g} / \mathrm{t}$
Including
110.0-115.1 5.01 m @ $28.38 \mathrm{~g} / \mathrm{t}$

DDH 05-02 Section 90+50N
This hole was part of the fan of holes 05-01 to 05-03 to test the interval between hole 88040 and another deeper hole 88041.

The hole encountered 99.7 metres of pyroclastics / lapilli tuff and mafic tuff before entering the Rea horizon. The Rea horizon extended from 99.7 - 142.5, when the hole then cut a graphitic fault zone extending to 145.5 which marked the boundary with the footwall metasediments.

The Rea horizon consisted of a sequence of creamy, grey chert, chloritic and sericitic tuff, short sections of near solid to solid sulphides within a black fine grained chloritic tuff which is almost a pyritic siltite, more sericitic and silicified tuff, pyritic siltite and graphitic chert. The interval from 110.5 - 120.6 metres is anomalous in gold, silver, copper, lead, zinc and arsenic with an interval from 114.2-119.1 assaying:

FROM	TO	CORE LENGTH	TRUE WIDTH	AU g / t	AG g / t	CU $\%$	PB $\%$	ZN $\%$	AS $\%$
114.2	119.1	4.9	4.73	1.69	20.74	0.37	1.73	2.99	3.03

The equivalent gold grade is:
114.2-119.1 4.73m@7.79 g/t

DDH 05-03 Section 90+50N

This hole was the deepest of 3 holes drilled to test the interval between hole 88040 and another deeper hole 88041. The hole encountered 115.9 metres of lapilli tuff / pyroclastics before encountering a heterolithic breccia which marks the start of the Rea horizon at 115.9. The Rea horizon is slightly different in this hole in that it starts out as a heterolithic breccia with pyritic sections for 4 metres and then turns into a grey, white sericitic chert section from 119.8 - 142.7 which contains approximately 40% near solid sulphide fragments and stringers in the chert from 130.5 - 133.2 and from 135.8 - 140.0. Mineralization in this hole is not as strong as in the first 2 holes but shows continuity to the previously indicated mineralization.

FROM	TO	CORE LENGTH	TRUE WIDTH	AU g / t	AG g / t	CU $\%$	PB $\%$	ZN $\%$	AS $\%$
130.5	133.2	2.7	2.54	0.50	10.47	0.06	0.80	1.80	1.12

The equivalent gold grade is:
130.5-133.2 2.54 m @ $3.56 \mathrm{~g} / \mathrm{t}$

DDH 05-04 Section 91+25N

This hole was drilled as part of a fan of 3 holes to test a 50 metre gap between 2 previously drilled holes (88036 and 88047) which returned high grade values from the Rea horizon.

The hole encountered 17.5 metres of lapilli tuff before entering the Rea horizon. The Rea horizon extended from 17.5 - 53.0, when the hole then cut the footwall metasediments extending to 78.3.

The Rea horizon consists of a sequence of grey sericitic chert and chert breccia, near solid to solid sulphides from 24.9 - 30.2, a section of mudstone or siltstone and grey chert mixed with mudstone or siltstone. The interval from 22.4-30.2 metres is highly anomalous in gold, silver, copper, lead, zinc and arsenic with the following assays:

FROM	TO	CORE LENGTH	TRUE WIDTH	AU g / t	AG g / t	CU $\%$	PB $\%$	ZN $\%$	AS $\%$
$22.4 \quad 30.2$	7.8	7.78	6.89	112.10	0.59	3.56	4.50	1.15	
Including $24.9 \quad 30.2$ 5.3	5.28	9.84	161.98	0.81	5.00	6.21	0.89		

The equivalent gold grade is:
22.4-30.2
7.78 m @ 18.23 g/t

Including
24.9-30.2
5.28 m @ $25.67 \mathrm{~g} / \mathrm{t}$

DDH 05-05 $91+25 \mathrm{~N}$

This hole was drilled under 05-04 to attempt to extend down dip, the well mineralized section encountered in that hole.

The hole encountered lapilli tuff to a depth of 19.7 metres and then encountered the Rea horizon. The Rea horizon consists of chert and chert breccia with near solid to solid well banded sulphide sections from 26.7-35.6 metres. The hole then passed into pyritic siltite and ended in chert breccia at 44.8. The hole was stopped short of the footwall metasediments as the sulphide horizon had been crossed.

FROM	TO	CORE	TRUE	AU	AG	CU	PB	ZN	AS
		LENGTH	WIDTH	g / t	g / t	$\%$	$\%$	$\%$	$\%$

23.8	38.9	15.1	14.6	5.50	79.47	0.53	3.16	3.84	0.66
Including 26.7 35.6	8.9	8.61	7.72	122.02	0.85	5.09	6.18	0.54	

The equivalent gold grade is:
23.8-38.9
14.6 m @ 15.03 g/t

Including
26.7-35.6
8.61 m @ 22.99 g/t

DDH 05-06 Section 91+25N

This hole was drilled under 05-05 to attempt to extend down dip, the well mineralized section encountered in holes 05-04 and 05-05.

The hole encountered pyroclastics and lapilli tuff to a depth of 38.1 metres and then encountered the Rea horizon. The Rea horizon consists of chert and chert breccia with near solid to solid well banded sulphide sections from 43.2-56.8 metres. The hole then passed into pyritic siltite mixed with chert breccia until 67.8 and then cut a heterolithic breccia, chloritic argillite and pyritic siltite mix until a strong fault zone brought in the metasediments package. The hole ended at 111.8. The Rea zone in this hole is strongly anomalous for all elements from 38.1- 56.9 metres with the following section of higher grade core.

FROM	TO	CORE LENGTH	TRUE WIDTH	AU g / t	AG g / t	CU $\%$	PB $\%$	ZN $\%$	AS $\%$
43.2	56.9	13.7	9.69	7.82	67.82	0.64	4.30	5.16	0.97

The equivalent gold grade is:
43.2-56.9
$9.69 \mathrm{~m} @ 19.78 \mathrm{~g} / \mathrm{t}$

DDH 05-07 Section 91+00N

This hole was drilled as part of a fan of three holes designed to extend the mineralization encountered in holes 05-04 to 05-06 by 25 metres to the south as well as to corroborate the good values encountered in a previous hole 88036 which is in the vicinity of $05-07$. The collar of 88036 could not be located but the values encountered in $05-07$ are very similar to those encountered in 88036.

The hole encountered 26.6 metres of heterolithic breccia / pyroclastic tuff before entering a strong fault zone from 26.6 - 37.1 metres. This fault zone has moved mineralization as it had a number of black sulphide rich muddy crush zones. The Rea horizon was then cut and extended from 37.1 - 71.4 when the hole then passed into the footwall metasediments of banded argillite which extended to the end of the hole @ 81.4.

A massive sulphide section occurs at the top of the Rea horizon in this hole and extends from 37.1-47.9 and consists of near solid to solid polymetallic sulphides with faint banding. The sulphides are cut off by a strong fault which brings in heterolithic breccia, grey chert and pyritic siltite. Chloritic argillite mixed with muddy tuff and argillite breccia continue to 71.4 when the hole passes into the structural footwall banded argillite. The well defined sulphide section assayed as follows:

FROM	TO	CORE LENGTH	TRUE WIDTH	AU g / t	AG g / t	CU $\%$	PB $\%$	ZN $\%$	AS $\%$
37.1	47.9	10.8	8.64	5.07	50.96	0.42	3.89	5.45	2.80

The equivalent gold grade is:
37.1 - 47.9
8.64 m @ 16.26 g/t

DDH 05-08 Section 91+00N

This hole was drilled as part of the fan of three holes designed to extend the mineralization encountered in holes 05-04 to 05-06 by 25 metres to the south as well as to corroborate the good values encountered in a previous hole 88036 which is in the vicinity of $05-07$. The collar of 88036 could not be located but the values encountered in $05-$ 07 are very similar to those encountered in 88036.

The hole encountered 39.0 metres of pyroclastic breccia and grey laminated tuff before entering a strong fault zone from $39.0-45.1$ metres. This fault zone has moved mineralization as the last metre has a number of black sulphide rich muddy crush zones.

The Rea horizon was intersected from 45.1 - 88.0 after which the hole then passed into the footwall metasediments of banded argillite which extended to the end of the hole at 93.6. A massive sulphide section occurs at the structural top of the Rea horizon in this hole and extends from 45.1 - 52.2 and consists of near solid to solid polymetallic sulphides with brecciated sections. Of note is the presence of an abundance ($+/-10 \%$) granoblastic arsenopyrite from 46.3-47.4. The sulphide section grades into a sericitic tuff and then pyritic siltite until 72.3 metres. Chloritic argillite breccia, muddy tuff,, heterolithic breccia and pyritic siltite continue until the metasediments at the end of the hole.

The sulphide section assayed as follows:

FROM	TO	CORE LENGTH	TRUE WIDTH	AU g / t	AG g / t	CU $\%$	PB $\%$	ZN $\%$	AS $\%$
44.4	52.2	7.8	5.99	3.34	43.90	0.62	3.75	4.84	5.29

The equivalent gold grade is:
44.4-52.2 5.99 m @ $14.06 \mathrm{~g} / \mathrm{t}$

This hole was drilled as part of the fan of three holes designed to extend the mineralization encountered in holes 05-04 to 05-06 by 25 metres to the south.

The hole encountered 51.1 metres of lapilli tuff, pyroclastic and grey laminated tuff before entering a strong fault zone from 51.1 - 75.3 metres. This fault zone, running at 10° to the core has moved mineralization as the last 10 metres has a number of sulphide fragments and black sulphide rich muddy zones.

The Rea horizon was intersected from 75.3 - 128.3 after which the hole passed into the footwall metasediments of banded argillite which extended to the end of the hole at 154.5. A near solid to solid sulphide section occurred at the structural top of the Rea horizon in this hole and extended from $75.3-80.7$ consisting of near solid to solid sulphides mixed with chert breccia. The sulphide section grades into pyritic siltite mixed with heterolithic breccia which then becomes mixed with brecciated chloritic argillite and greywacke at 113.7.

The sulphide section assayed as follows:

FROM	TO	CORE LENGTH	TRUE WIDTH	AU g / t	AG g / t	CU $\%$	PB $\%$	ZN $\%$	AS $\%$
72.7	80.7	8.0	4.06	1.89	22.72	0.14	1.45	2.84	2.36

The equivalent gold grade is:
72.7 - 80.74 .06 m @ $7.09 \mathrm{~g} / \mathrm{t}$

DDH 05-10 Section 91+50N
This hole was drilled to undercut the good values reported in hole 88047 and to extend the values reported in the fan of holes $05-04$ to $05-06$ by 25 metres to the north.

The hole encountered 29.5 metres of medium grained ankerite / sericite altered tuff before entering the Rea horizon which extends from 27.0-67.6 when the hole then cut the footwall metasediments extending to 76.2.

The Rea zone consisted of a sequence of grey sericitic chert and chert breccia with a few sulphide bands, heterolithic breccia consisting of pyritic siltite, chert and medium grained dolomitic altered tuff. A section of banded polymetallic solid sulphide was cut from 31.7 - 35.7 followed by pyritic siltite, medium grained grey tuff, muddy tuff and slump breccia consisting of 5-20 cm blocks of pyritic black argillite and grey tuff. The massive
sulphide interval is highly anomalous in gold, silver, copper, lead, zinc and arsenic with the following assays:

FROM	TO	CORE LENGTH	TRUE WIDTH	AU g / t	AG g / t	CU $\%$	PB $\%$	ZN $\%$	AS $\%$
$27.0 \quad 39.6$	12.6	12.54	3.05	27.2	0.35	2.12	2.88	1.12	
Including $29.6 \quad 35.7$ 6.10 6.07 4.89 2 48.40 0.67 3.98				5.41	0.42				

The equivalent gold grade is:
27.0 - 39.612 .54 m @ $9.33 \mathrm{~g} / \mathrm{t}$

Including
29.6-35.7 6.07 m @ 16.68 g/t

DDH 05-11 Section 90+25N

This hole was drilled as part of a fan of two holes to attempt to extend the mineralization encountered in holes 05-01 to 05-03 to the south by 25 metres.

The hole encountered 54.2 metres of pyroclastics / lapilli tuff before entering the Rea horizon. The Rea horizon extends from 54.2 - 136.0 where the hole then cut a strong fault zone marking the beginning of the footwall metasediments extending to the end of the hole at 142.9 metres.

The Rea horizon consisted of a sequence of heterolithic breccia extending to 81.0, black, grey, cream colored chert breccia extending to 101.1, pale grey sericitic chert with a few $0.5-2 \mathrm{~cm}$ bands of NSS extending to 106.2, cherty argillite extending to 111.9, a fault repeated section of the grey sericitic chert with sulphide bands to 114.7 , heterolithic breccia to 129.2 and white grey chert to 136.0 The interval from $82.5-114.7$ metres is highly anomalous in gold, and slightly anomalous in silver, copper, lead, zinc and arsenic with an interval from 102.5-113.4 assaying:

FROM	TO	CORE LENGTH	TRUE WIDTH	AU g / t	AG g / t	CU $\%$	PB $\%$	ZN $\%$	AS $\%$
102.5	113.4	10.9	10.90	0.40	9.31	0.04	0.22	0.55	0.96

The equivalent gold grade is:
102.5 - 113.410 .90 m @ $1.49 \mathrm{~g} / \mathrm{t}$

DDH 05-12 Section 90+25N

This hole was part of the two hole fan including $05-11$ to attempt to extend the mineralized zone 25 metres to the south from holes 05-01 and 05-02.

The hole encountered 80.5 metres of pyroclastics / lapilli tuff before entering the Rea horizon. The Rea horizon extended from 80.5 - 143.8 where the hole then cut a black graphitic fault zone marking the beginning of the footwall metasediments extending to the end of the hole at 145.4 metres.

The Rea horizon consisted of a sequence of heterolithic breccia, graphitic chert, grey sericitic chert, mixed with heterolithic breccia, chert breccia, a strong fault zone from 117.4-127.0 and then pyritic siltite or mudstone to 131.0. A mixed zone of faulting followed and included chloritic muddy tuff, chloritic argillite and graphitic chert to 143.8 metres. The chert and chert breccia sections of the interval contain $1-2 \mathrm{~cm}$ bands of NSS to SS mainly pyrite.

The interval from 80.5 - 118.6 metres is highly anomalous in gold ($0.14-5.70 \mathrm{~g} / \mathrm{t}$) and slightly to moderately anomalous in silver, copper, lead, zinc and arsenic with an interval from 101.2-106.2 assaying:

FROM	TO	CORE LENGTH	TRUE WIDTH	AU g / t	AG g / t	CU $\%$	PB $\%$	ZN $\%$	AS $\%$
101.2	106.2	5.0	4.92	1.36	7.27	0.06	0.61	1.16	2.57

The equivalent gold grade is:
101.2-106.2 4.92 m @ $3.45 \mathrm{~g} / \mathrm{t}$

DDH 05-13 Section 90+50N

This hole was drilled to attempt to extend the good grade intercepts in holes 05-16 and $05-17$ to the south by 25 metres. A possible fault may have offset the better mineralized section of the Rea horizon to the west and the hole also may have been stopped too soon.

The hole encountered 46.7 metres of pyroclastics / lapilli tuff before entering the Rea horizon which continued to the end of the hole at 89.7 metres.

The Rea horizon consists of a sequence of heterolithic breccia consisting of pyroclastics, medium grained tuff, pyritic siltite and buff / grey sericitic chert. The final 10 metres of the hole was a faulted mixture of grey chert, chloritic argillite, grey tuff, and quartz / dolomite fragments.
The hole was uniformly non anomalous.

This hole was a part of a fan of 2 holes drilled to attempt to extend the well mineralized intercept in hole 05-10 to the north by 25 metres.

The hole encountered 25.3 metres of heterolithic breccia mixed with grey medium grained tuff and grey chert fragments. This may be part of Rea horizon but the composition of the unit is changing and becoming more mixed with the structurally overlying intermediate to mafic volcanic sequence. From 25.3 metres on, the hole cut a more typical Rea zone mixture of mudstone, pyritic siltite, grey / cream sericitic chert, pyritic siltite with $1-3 \mathrm{~cm}$ bands and a 0.5 metre section of banded NSS to SS, chloritic argillite / siltite mix, and a heterolithic breccia consisting of greywacke, argillite and tuff to the end of the hole at 49.4.

The interval from 25.3 - 32.3 metres is highly anomalous in gold ($0.12-5.05 \mathrm{~g} / \mathrm{t}$) and slightly anomalous in silver, copper, lead, zinc and arsenic with an interval from 29.9 31.5 assaying:

FROM	TO	CORE LENGTH	TRUE WIDTH	AU g / t	AG g / t	CU $\%$	PB $\%$	ZN $\%$	AS $\%$
29.9	31.5	1.6	1.6	4.96	44.16	0.30	2.33	2.82	0.29

The equivalent gold grade is:
29.9 - 31.51 .6 m @ $11.47 \mathrm{~g} / \mathrm{t}$

DDH 05-15 Section 91+75N

This hole was drilled to undercut 05-14 to attempt to extend down dip, the sulphide section cut in that hole.

The hole encountered pyroclastics and grey tuff to 29.5 metres and then a Rea zone assemblage of heterolithic breccia consisting of grey medium grained tuff, chert and chloritic argillite to 37.1 metres. From 37.1-38.0 was a polymetallic SS section of vaguely banded sulphides (90% pyrite with $5-10 \%$ galena, sphalerite and arsenopyrite plus a little chalcopyrite. This was followed by grey tuff, pyritic siltite mixed with greywacke / chert pebble conglomerate (or else just rounded milled chert fragments) and ending in a fault zone from 68.1-69.2 at the end of hole.

The interval from 33.3 - 37.1 metres is slightly anomalous in gold ($0.06-0.19 \mathrm{~g} / \mathrm{t}$) but not anomalous in silver, copper, lead, zinc and arsenic. The interval from 37.1-38.0 assayed:

FROM	TO	CORE LENGTH	TRUE WIDTH	AU g / t	AG g / t	CU $\%$	PB $\%$	ZN $\%$	AS $\%$
37.1	38.0	0.9	0.85	12.20	59.10	0.61	4.24	5.48	7.15

The equivalent gold grade is:
37.1 - 38.00 .85 m @ $24.28 \mathrm{~g} / \mathrm{t}$

DDH 05-16 Section 90+75N
This hole was drilled as part of a 3 hole fan to fill in a 50 metre gap in data between the good grade intersections from holes 05-07 to 05-09 and 05-01.

The hole encountered pyroclastics and grey tuff to 42.0 metres followed by a Rea zone assemblage of muddy chloritic tuff, grey silicified tuff, cherty tuff, grey to black chert to chert breccia and argillite or mudstone from 68.6 to end of hole at 69.2.

While pyrite is ubiquitous from 33-64 metres, the only section that contains values is from 61.0-63.4 where several $2-3 \mathrm{~cm}$ bands of NSS pyrite with 5% galena and sphalerite occur in grey / black chert. This interval assayed:

FROM	TO	CORE LENGTH	TRUE WIDTH	AU g / t	AG g / t	CU $\%$	PB $\%$	ZN $\%$	AS $\%$
61.0	63.4	2.6	2.40	0.82	118.17	0.61	6.50	8.10	0.51

The equivalent gold grade is:
61.0 - 63.42 .40 m @ $18.64 \mathrm{~g} / \mathrm{t}$

DDH 05-17 Section 90+75N

This hole was drilled to undercut hole 05-16 and to attempt to trace the Rea zone down dip.

The hole encountered pyroclastics and grey fine grained tuff to lapilli tuff to 37.2 when the pyroclastics became chloritic ($40-50 \%$) and cherty sections start to become evident. This is probably the start of the Rea zone. It is not a clear cut contact, but a gradational change. Muddy tuff follows to 68.0 metres and then black graphitic to grey / buff sericitic chert to 79.2. This chert section hosts several 4 cm SS stringers and one 20 cm NSS band
of pyrite with lesser other sulphides. Following the sulphide rich chert is chloritic black argillite mixed with a little wacke, pyritic siltite and grey fine grained tuff. This is probably a heterolithic breccia. From 88.0 - 89.8 the hole cut dark brown pyritic sulphide breccia cemented with fine grained pyrite. Open $1-2 \mathrm{~cm}$ long fractures are evident. A 5 metre fault zone full of sulphides ended this intersection and the hole terminated in graphitic chert at 94.5 metres.

The following interval assayed:

FROM	TO	CORE LENGTH	TRUE WIDTH	AU g / t	AG g / t	CU $\%$	PB $\%$	ZN $\%$	AS $\%$
$74.1 \quad 89.8$	15.7	14.83	1.35	39.45	0.19	1.67	2.11	0.13	
Including 86.0$\quad 89.8$	3.8	3.6	5.50	158.63	0.77	6.21	7.64	0.52	

The equivalent gold grade is:
74.1 - 89.8
14.83 m @ $6.23 \mathrm{~g} / \mathrm{t}$

Including
86.0-89.8
3.6 m @ 23.70 g/t

DDH 05-18 Section 90+75N

This hole is the lowest hole in the 3 hole fan and undercut hole 05-17 to attempt to trace the Rea zone further down dip.

The hole encountered pyroclastics and lapilli tuff to 26.0 followed by a cherty tuff with chloritic banding followed by light grey tuff to 52.0. This unit was followed by a cherty tuff to chert breccia becoming a heterolithic breccia with chloritic argillite and pyritic siltite fragments to 118.0. A strong fault brought in the argillite / wacke footwall zone to the end of the hole at 133.2 metres. The interval from 98.0 to 113.4 is highly anomalous in gold ($0.07-3.39 \mathrm{~g} / \mathrm{t}$), and moderately anomalous for silver, lead, zinc, and arsenic, with the better section assaying:

FROM	TO	CORE LENGTH	TRUE WIDTH	AU g / t	AG g / t	CU $\%$	PB $\%$	ZN $\%$	AS $\%$
108.9	110.4	1.5	1.06	3.39	23.60	0.42	3.66	3.48	0.32

The equivalent gold grade is:
108.9-110.4 1.06m@11.52g/t

A listing of all core samples, complete with analytical values is included under "Diamond Drill Hole Logs" as Appendix 2, while Diamond Drill Hole Assay Averages with corresponding true widths and composites is included under Appendix 3. All sample analytical datasheets are included as Appendix 4.

When plotting and assessing the analytical data for this polymetallic sulphide deposit, it was deemed necessary to arrive at an "equivalent grade" for one of the contained metals in order to convey values in a more simplified manner. To this end, it was determined to use gold as the "equivalent" metal, although zinc or silver could as easily have been used. When calculating the equivalent gold grade, it was necessary to use some value for each metal and apply a factor to arrive at the gold grade. For this purpose the following values in U.S. dollars were used without using any metallurgical recovery factors and as such the equivalent gold grade is a rough approximation only of total grade for the specific intersection or interval sampled.

Gold	$\$ 475$ per ounce. Silver $\$ 8.50$ per ounce
Copper	$\$ 1.75$ per pound
Lead	$\$ 0.45$ per pound
Zinc	$\$ 0.85$ per pound.

It should be noted that on the sample assay average pages for diamond drill holes as well as trench assay average pages that the following formula was used.

Each metal was calculated as to its gross metal value from the weighted average assay value of the sampled interval, multiplied by the assumed metal value. These values were totaled and shown as "total gross metal value". This figure was then factored by the following formula to obtain "equivalent gold grade" in g/t:

Total Gross Metal Value $x 34.3=$ equivalent gold grade in g/t. 475

8.0 INTERPRETATION AND CONCLUSIONS

As a result of the exploration program completed on the Extra High property during 2005, a number of important conclusions may be drawn. The interpretation of the recently acquired data plus consideration and inclusion (where appropriate) of historical data has resulted in a better understanding of the massive sulphide mineralization and its continuity, especially on the K7 lens.

Work completed on the K7 area of the Rea Zone including trenching and diamond drilling revealed good continuity of mineralization within the K7 lens over a strike length of 175 metres with a fault offset section of the same zone extending an additional 100 metres to the south at a 75 metre lower elevation (see Longitudinal Section Fig 8). Dip lengths extend from surface to 75 metres below surface in the area from section $90+75 \mathrm{~N}$ to $92+00 \mathrm{~N}$ and from $100-150$ metres below surface in the southern extension. These dimensions are open to depth and to the south.

The semi massive to massive polymetallic sulphide interval reaches thicknesses of up to 12.54 metres in hole 05-10 and 14.0 metres in an older hole (88047) which lies 10 metres higher in elevation than 05-10.

Faulting has played an important role in the disruption of the K7 lens and further work involving trenching and diamond drilling is required to more accurately locate these faults and their effect on continuity of the sulphide zones as well as the surrounding lower grade mineralized intervals.

The primary exploration target on the Extra High claims remains the K7 lens and its lateral and depth extensions. Additional mineralized areas on strike to the south host earlier intercepts of important mineralization that warrant detailed drilling and trenching.

9.0 STATEMENT OF COSTS

Labor - drilling and trench supervision, sampling and core split - 60 man-days @ \$400 / day \$ 24,000
Food / accommodation .. 3,200
Vehicle Rental and Expense ... 3,600
Supplies ... 2,700
Lab analysis ...14,000
Contract trenching and reclamation - 455 lineal m 6,400
Diamond Drill Contract 1,874.3 m @ \$76.78 / m 143,900
Report preparation / drafting ... 13,000

Dated the $15^{\text {th }}$ day of March, 2006
J.W.Murton \& Associates
J.W.Murton P. Eng.

10.0 REFERENCES

Carmichael, R.G. (1991), 1991 Final Report on the Kamad Property, private report to Homestake Canada Ltd.

Heberlein, D.R. (1987), Fame Report on the 1987 Twin Property Diamond Drill Program For Esso Minerals Canada.

Hoy, T., and Goutier, F. (1986), Rea Gold (Hilton) and Homestake Volcanogenic Sulphide Barite Deposits, Southern British Columbia in British Columbia Ministry of Energy, Mines and Petroleum Resources Geological Fieldwork 1985, Paper 1986-1.

Hoy, Trygve, (1986), Alteration, Chemistry and Tectonic Setting of Volcanogenic Massive Sulphide - Barite Deposits at Rea Gold and Homestake, Southeastern British Columbia, Exploration in British Columbia, Mineral Resources Division, Geological Survey Branch, Ministry of Energy, Mines and Petroleum Resources, Victoria.
(1991), Volcanogenic Massive Sulphide Deposits in British Columbia, in Notes to Accompany MDRU Short Course No. 3 - Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, U.B.C.
(1995), Noranda / Kuroko Massive Sulphide Cu-Pb-Zn in Selected British Columbia Mineral Deposit Profiles, Volume 1 - Metallic and Coal, Lefebure, D.V. and Hoy, ., editors, British Columbia Ministry of Energy, Employment and Investment, Open File 1995-20, pp 5354.

Lyndon, J.W. (1984),Volcanogenic Massive Sulphide Deposits, Part 1; A Descriptive Model; Geoscience Canada, Volume 11, No. 4.

Marr, J.M. (1989), Assessment Report, 1988 Fieldwork on the Kamad Claims, for Esso Minerals Canada.

Minfile Capsule Geology and Bibliography - notes regarding Samatosum (082M-244), K7 (082M-277), Twin 3 (082M276), Minfile Database maintained by the Geological Survey Branch, British Columbia Ministry of Energy and Mines, accessible at The Map Place website.

Ostensoe, E.A. (2004), National Policy 43-101 Report, Extra High Property, private report to Lucky 1 Enterprises Inc.

Schiarizza, P. and Preto, V.A. (1984), Geology of the Adams Plateau - Clearwater Area, Preliminary Map No. 56, Ministry of Energy Mines and Petroleum Resources, Victoria.
(1987), Geology of the Adams Plateau - Clearwater Area- Vavenby Area: British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1987-2, 88pp.

Wells, R.C. (2001), Soil Geochemical and Prospecting Report for the Extra High Property, Assessment Report 26595.
(2003) Geological Report for the Extra High Property, private report for P. Watt.

11.0 CERTIFICATE OF AUTHOR'S QUALIFICATIONS

I, James Wayne Murton of 1567 McNaughton Road, Kelowna B.C., V1Z 2S2, President of J.W. Murton \& Associates, do hereby certify that:

I am a graduate of the University of Manitoba in 1961 with a BSc. in Geology.
I am a member of the Association of Professional Engineers and Geoscientists of the Province of B.C., registered in 1972, No. 8324.

I have been a practicing Engineer and Geologist since 1961 in Ontario, Manitoba, Saskatchewan, British Columbia, Yukon, Southwestern U.S.A., Alaska, Ghana, Venezuela, Ecuador, Brazil and Peru.

I am not independent of Bronx Ventures Inc. as I am a director of the Company
As the author of this Trenching and Diamond Drilling Assessment Report, I was directly involved with the on site management of the exploration program completed during the period May to December, 2005.

Dated this $15^{\text {th }}$ day of March, 2006.
J.W. Murton and Associates
J.W. Murton P. Eng.

APPENDIX 1

TRENCH ASSAY DATA \& AVERAGE VALUES

EXTRA HIGH TRENCH DATA 2005
Bold \#s - Assay
Unbolded \#s -
ICP

TRENCH \#	SAMPLE \#	SAMPLE TYPE	SAMPLE DESCRIPTION	SAMPLE INTERVAL metres	SAMPLE WIDTH metres	AU G/T ppb	AG G/T ppm	$\begin{gathered} \text { CU } \\ \text { \% } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \text { PB } \\ \text { \% } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \text { ZN } \\ \text { \% } \\ \text { ppm } \end{gathered}$	AS \% ppm
1	28950	CHANNEL	Flt zone-grey white mud	12.0-14.0	2.0	0.21	3.1	14	146	76	790
	28951	CHANNEL	Flt zone-grey white mud	14.0-15.1	1.1	0.31	5.0	11	464	57	460
	28952	CHANNEL	Flt zone-graphitic	15.1-16.2	1.1	0.10	2.7	45	810	67	590
	28953	CHANNEL	Ferricrete	16.2-18.0	1.8	0.08	0.8	89	156	319	830
2	28954	GRAB	Qtz vein $+10 \%$ pyrite		est 0.1	0.07	1.0	158	160	115	265
	28955	CHANNEL	Tuff-chl,blue grey	25.0-28.0	3.0	<0.03	0.2	143	36	232	750
	28956	CHANNEL	Tuff-chl,blue grey	28.0-30.2	2.2	<0.03	0.1	138	30	249	705
	28957	CHANNEL	Tuff-chl,blue grey incl qtz veinlets	30.2-31.7	1.5	0.26	0.5	234	226	441	4455
	28958	CHANNEL	Tuff-blue grey +Py siltite	31.7-34.0	2.3	0.96	11.0	884	2798	675	5120
	28959	CHANNEL	Sulphide zone-choc brown,oxide.	34.0-35.0	1.0	2.32	0.7	474	534	1153	1.23
	28960	CHANNEL	Py siltite	35.0-38.6	3.6	0.08	0.3	319	158	246	3230
	28961	CHANNEL	Py silitite + chl tuff	38.6-42.0	3.4	0.07	0.8	263	544	1177	1120
	28962	CHANNEL	Qtzy oxid zone	59.0-62.0	3.0	0.12	3.9	187	542	949	920
3	28963	CHANNEL	Tuff-grey / ser.	16.0-20.0	4.0	0.69	10.2	444	1776	2043	4455
	28964	CHANNEL	Tuff-grey / ser.	20.0-22.0	2.0	0.11	0.9	39	130	275	800
	28965	CHANNEL	Tuff-grey / ser+ few qtzite bands.	22.0-25.0	3.0	0.05	2.1	233	390	1389	2805
	28966	CHANNEL	Tuff-grey / ser+ few qtzite bands.	25.0-28.0	3.0	0.19	1.8	200	960	2020	3065
	28967	CHANNEL	Py siltite	28.0-31.0	3.0	0.09	1.0	214	206	1140	4430
	28968	GRAB	Ferricrete - west end			0.03	0.7	153	134	1465	1620
	28969	GRAB	Qtz vein on dump-west end, $<1 \%$ py.		est 0.5	0.93	0.2	205	16	626	165
4	28985	CHANNEL	Sulphide zone-total oxidation	29.0-31.0	2.0	76.60	1170.0	2696	18.20	6654	13.1
	28986	CHANNEL	Sulphide zone-total oxidation	31.0-33.0	2.0	48.60	880.0	2859	20.10	2666	12.7

	28987	CHANNEL	Sulphide zone-total oxidation	33.0-34.5		1.5	20.80	326.0	2948	5.83	1988	0.79
	28988	CHANNEL	Oxid silitit + grey schist.	43.5-47.0		3.5	0.10	1.6	117	642	681	485
	28989	CHANNEL	Pyritic tuff	47.0-48.0		1.0	0.26	1.5	48	182	103	430
5	28990	GRAB	Ferricrete - west end				0.07	1.7	311	138	941	1065
6	28992	GRAB	Ferricrete - west end				0.10	0.2	175	56	729	785
7	28991	GRAB	Ferricrete - middle west end				<0.03	1.2	358	228	834	875
8	28970	GRAB	West end, Py siltite+sulphide frags				7.96	153.0	1123	18.20	2683	8.84
	28971	GRAB	Ferricrete - west end				2.13	69.0	541	8.25	532	1.48
9	28972	GRAB	Qtz vein east end @ 5m.		est	0.05	<0.03	0.2	34	134	160	145
	28973	CHANNEL	Cherty arg+ qtz vein	3.0-6.0		3.0	0.29	1.4	67	276	156	540
	28974	CHANNEL	Graph arg.	9.0-13.0		4.0	0.68	5.1	40	746	55	1700
10	28975	GRAB	Qtz vein east face		est	0.1	<0.03	0.1	28	24	69	35
	28976	CHANNEL	Graph - cherty arg.	9.0-10.5		1.5	0.53	5.3	256	1182	947	3135
11	28977	GRAB	Dol qtz vein, east end		est	0.3	<0.03	0.3	17	240	158	60
	28978	GRAB	Qtz vein @ 2 m .		est	0.05	<0.03	<0.2	3	10	145	25
	28979	CHANNEL	Flt zone, tuff, graphitic	3.0-6.5		3.5	0.29	5.4	105	2410	277	3810
	28980	GRAB	Qtz vein in flt.		est	0.7	<0.03	0.1	7	10	34	30
	28981	CHANNEL	Py siltite	14.2-17.2		3.0	0.14	0.5	97	90	120	170
	28982	CHANNEL	Py siltite	17.2-19.2		2.0	0.10	0.4	110	176	260	180
	28983	CHANNEL	Oxidized zone + qtz vein Oxidized flt zone+qtz veins+py	19.2-21.2		2.0	0.04	1.1	204	996	831	165
	28984	CHANNEL	tuff	21.2-24.2		3.0	<0.03	0.2	45	192	513	70

TRENCH AVERAGE VALUES

APPENDIX 2

DIAMOND DRILL HOLE LOGS including ROCK TYPE CODE AND DESCRIPTION

ROCK TYPE CODE AND DESCRIPTION

CODE		DESCRIPTION
W		Wacke - graywacke
AW		Argillite / wacke
A		Argillite chloritic
AG		Argillite graphitic
AB		Argillite breccia
AP		Argillite pyritic
AC		Argillite cherty
G		Graphitic fault
HB	Heterolithic breccia	
PS	Pyritic siltite	
M	Mudstone / siltstone	
SS	Solid sulphide	
SSB	Solid sulphide breccia	
NSS	Near solid sulphide	
C	Chert grey	
CS	Chert sericitic	
CB	Chert breccia	
CG	Chert graphitic	
CC	Chert conglomerate	
TC	Tuff cherty	
TM	Tuff muddy	
TS	Tuff sericitic	
TSS	Tuff siliceous	
TP	Tuff pyritic	
TL	Tuff lapilli	
TG	Tuff grey	
P	Pyroclastic volcanic	
VM	Volcanic mafic	
VI	Volcanic intermediate	
D	Diorite	

DRILL HOLE RECORD

COMPANY	Bronx Ventures Inc
PROJECT	Extra High
CLAIM / TENURE	509949

0-4.6
4.6-64.0

Casing
Pyroclastic - lapilli tuff
grey, orange with brown ankeritic and sericite laminations every
2 mm . Lam. @ 90 deg.to core. Lap.frags vary from dust-ash- 0.5 cm frags.
Some frags stretched and pale buff yellow colored. Core more competent
and less sheeted (foliated) from 9.0-36.0.
Recovery 50\% 8.0-11.0, otherwise 100\%.
Qtz-dol veinlet (10cm) @12.2 @ 80deg. with 5\%Py,< 0.5\% Pb,Zn.
Similar qtz-dol vein @13.3-16.0 generally @80-90 deg. with stringers and clots $<5 \% \mathrm{Py},<0.5 \% \mathrm{~Pb}, \mathrm{Zn}$ from $0.5 \mathrm{~cm}-3 \mathrm{~cm}$. These stringers continue throughout the interval. Similar10 cm veinlets @ 90 deg @ 22.5, 24.5, 26.8-27.6,33.0,34.0,36.0 with <1\% blebby Py, <0.5\% Pb,Zn. $34.5-34.7$ is $0.5 \times 1.0 \mathrm{~cm}$ qtz frags with $50-80 \%$ Py. Frags 10% of rock.
Lap frags decreasing from 42.0 on with less ank.foliation, more fg-mg ash-dust tuff with fol.still @ 90 deg.

28993	26.6	27.6	1.0	1.0	$\mathbf{0 . 0 3}$	<0.2	0.01	<0.01	0.01	0.01

laminations.

Flt zone 5.8-6.4-grey mud @ 50 deg? to core. Core badly broken on fol
up to 12.5. Flt @ 13(1cm) \& 17.2-17.4 @ 90deg, 22.8-23.0 @ 80deg, flt @27.6 @90deg (3cm), oxidized flt zone 41.4-41.9 (no angle).
Many 1 cm faults throughout the interval.
64.0-87.6 Mafic tuff - fg - mg with slight ank alt. Grey with 1-2 mm white dolomitized
frags. Some frags stretched. No lamination. Py 0.5\%. A little qtz-dol veining throughout @ 90 deg. Slight Py and ank on lam 74.5-77.0 (Py 5\%).
From 82.5 on patchy qtz-dol inclusions or frags, becoming a
silicified tuff - can still see frags,, silica 70%, dol 10%, py 1%.
Flts 77.0 (1cm), 77.2 (3cm), @ 65deg. 20cm NSS py in flt 89.4-89.6 @ 80deg.

DRILL HOLE RECORD

SHEET \# 2 of 2

COMPANY PROJECT	Bronx Ventures Inc Extra High											
$\begin{aligned} & \text { INTERVAL } \\ & \mathrm{m} \end{aligned}$		SAMPLE		AL m то m	CORE length m	TRUE width m	AU g / t	AG g/t ppm	$\begin{gathered} \text { cu } \\ \% \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \text { PB } \\ \text { \% } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \text { ZN } \\ \text { \% } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \text { AS } \\ \text { \% } \\ \text { ppm } \end{gathered}$
87.6-91.3	Graphitic Chert - black. 1 cm qtz veining throughout. $2-4 \mathrm{~cm}$ patches	28996	87.6	89.1	1.5	1.48	0.48	11.8	0.06	1.64	1.75	0.92
	granoblastic py throughout. Crushed \& faulted @ $70-80$ deg.Flt @ 91.3.	28997	89.1	91.2	2.1	2.07	0.08	1.1	0.01	0.06	0.05	0.09
	$2-4 \mathrm{~cm}$ inclusions of ank - ser tuff. A little Aspy + Pb in strs \& wisps.	28998	91.2	92.6	1.4	1.38	0.05	2.1	0.02	0.12	0.13	0.13
91.3-93.3	Tuff - mg pale grey sil and ser. Few ank lamin. 1\% diss py. Flts every	28999	92.3	93.5	0.9	0.89	0.17	22.1	0.22	1.46	1.85	0.41
	$20-30 \mathrm{~cm}$ @ 80deg. Patchy py with v sl Pb \& Zn over 1-2 cm from	29000	93.4	95.0	1.5	1.48	0.23	1.7	0.01	0.08	0.10	0.56
	92.6-93.3.	29101	95.0	96.5	1.5	1.48	0.16	1.2	<0.01	0.04	0.04	0.48
93.3-98.9	Flt zone - graphitic chert + sil grey tuff. Few ank lam in tuff frags. Py lam	29102	96.5	97.7	1.2	1.18	0.19	1.2	<0.01	0.01	0.01	0.36
	and patches throughout +/-5\%.	29103	97.7	98.8	1.2	1.18	0.15	1.5	<0.01	0.05	0.01	0.14
98.9-99.7	Flt zone - crushed and gouge @ 45 deg.	29104	98.9	100.4	1.5	1.48	0.39	2.8	0.01	0.10	0.15	0.38
99.7-105.8	Arg - chl + dol alt, mixed with chl and 70\% sil alt sl ank mg tuff. Crushed	29105	100.4	101.7	1.3	1.28	0.36	11.6	0.14	0.48	0.61	0.06
	and broken to 101.7. 20 cm patchy py, v sl Pb, $\mathrm{Zn} @ 101.7-101.9$ \&	29106	101.7	103.1	1.4	1.38	0.54	11.4	0.09	0.65	0.71	0.11
	103.4-103.6 in tuff ($30 \% \mathrm{py},<1 \% \mathrm{~Pb}$.	29107	103.1	104.6	1.5	1.48	0.23	6.6	0.10	0.39	0.48	0.05
105.8-108.9	Mg tuff - chl,dol alt with 10-50\% py bands and diss sect. Crushed \&	29108	104.6	105.8	1.2	1.18	0.37	5.2	0.06	0.48	1.01	0.59
	faulted 105.8-107.7 @ 50 deg. Few 20mm frags spotted tuff.	29109	105.8	107.7	1.9	1.87	1.34	13.5	0.16	1.16	2.45	5.31
108.9-110.1	NSS fg Py 80\%. Blk chl alt Arg as matrix with a few dol blobs and streaks.	29110	107.7	108.9	1.2	1.18	1.10	23.2	0.39	1.78	2.24	3.57
	Flt 108.8-109.3 @ 80deg.	29111	108.9	110.0	1.1	1.08	0.46	43.7	0.21	2.75	3.35	0.14
110.1-114.5	SS 95\% fg Py, 5-10\% Pb, Zn, 1\% Chalco. 90 deg to core.	29112	110.0	111.0	1.0	0.98	4.49	114.0	0.69	8.26	9.17	3.52
	Flt @ 114.5 @ 85 deg with 2 cm black mud.	29113	111.0	112.0	1.0	0.98	8.96	173.0	0.70	9.94	10.10	3.41
114.5-115.1	NSS fg Py (50-70 \% diss) in black cherty arg. FIt @ 115.1 (6cm).	29114	112.0	113.0	1.0	0.98	7.79	150.0	0.72	9.42	10.30	3.10
115.5-117.8	Chert arg - blk,graph. Few 1-3 cm Py bands - contorted about 80 deg. Fls 116.2-116.4 @ 45deg, 116.6-117.2 @	29115	113.0	114.5	1.5	1.48	8.23	171.0	0.56	8.74	10.50	4.17
	70deg.	29116	114.5	115.1	0.6	0.59	3.15	103.0	0.26	4.11	5.64	2.69
117.8-124.8	Heterolithic Breccia. Mix of cherty arg, dusty py tuff, muddy fg tuff, all with dol porpyroblasts and ser bands. Few Py porphybl. Blocks / frags	27215	115.1	117.8	2.7	2.70	0.85	3.6	0.01	0.02	0.05	0.02
	$30-40 \mathrm{~cm}$. and rotated - fol $60-90$ deg. Flted and crushed throughout.	29117	118.3	119.1	0.8	0.79	0.14	1.5	0.01	0.05	0.05	0.02

Pyritic Argillite. - Blk with 20-50\% Py. Sheared and faulted, crushed. Heterolithic Breccia. Blocks to 20 cm. Wacke, Py Arg, little dusty py tuff, Py porphroblasts 1-5\% scattered throughout. Flt Zone 131.9-132.2.
Arg -chl banded. Black grey bands @ 70-80
deg.

EOH

80 deg, 75.3 @ 70 deg. 3 cm black gouge flt @85.6 @ 90 deg. (this moved mineral!). Qtz / dol vein 79.4-79.5 @ 70 deg. Py \& sl Pb.
$1-2 \mathrm{~cm}$ qtz dol veinlets every 5-10 cm starting @ 83.4 @ 90 deg.with
$2-5 \% \mathrm{Py},<0.5 \% \mathrm{~Pb}$. Tuff is generally more mineralized with py $+/-1 \%$.
Last 4.5 m up to 90.0 is heavily qtz / dol veined @ 60-80 deg with
$1-5 \%$ diss and wispy Py \& diss v sl Pb. Flt at 90.0 ends the better min section - back to grey tuff with <1\%Py. Flt 95.1 @ 90 deg.

DRILLHOLERECOR									HOLE \# 05-02			
									SHEET	\#	2	
$\begin{aligned} & \text { COMPANY } \\ & \text { PROJECT } \end{aligned}$	Bronx Ventures Inc											
INTERVAL m		SAMPLE \#	INTER FROM m	AL m TO m	CORE length m	TRUE width m	$\begin{aligned} & \mathrm{AU} \\ & \mathrm{~g} / \mathrm{t} \end{aligned}$	AG g/t ppm PRINT	$\begin{gathered} \text { CU } \\ \text { \% } \\ \text { ppm } \\ \text { ASSAY, } \end{gathered}$	ppm ppm ppm STANDARD PRINT-		$\begin{gathered} \text { AS } \\ \text { \% } \\ \text { ppm } \\ \text { RINT- } \end{gathered}$
99.7-101.90	Fault Zone - crushed light grey gouge with black sections (ground sulphides). Few SS 1-2 cm frags in flt - Py + sl Pb.											
101.9-109.0	Chert - cream / grey color. Lt tan ser on lams. 2mm-10 mm Py, Pb, As bands throughout @ 80 deg. 2 cm - 3 cm bands of NSS - SS Py, As,sl Pb, Zn @ 80 deg. @ 101.9, 102.0, 102.8, 106.0. These are in place and not faulted in. Flt @ 108.2 (4 cm) black gouge @ 80 deg.	29085	101.9	103.1	1.2	1.18	2.00	8.4	0.04	0.53	0.63	1.06
109.0-114.2	Mixed zone - ser tuff, pervasive dolomitic alt and veinlets, frags (lapilli?) 1-4 mm, faulted throughout, sections muddy tuff with black chl											
	sections. Py knots and veinlets. Dol porphyroblasts $2-4 \mathrm{~mm}$. Flts @ 80 deg .	27216	110.5	112.6	2.1	2.03	0.27	3.0	0.03	0.18	0.08	0.29
	Large fault 111.3-111.7.	27217	112.6	114.2	1.6	1.55	0.34	5.5	0.05	0.39	0.32	0.74
114.2-119.1	Tuff - black chloritic alt mixed with sulphides, chiefly py with $\mathrm{Cu}, \mathrm{sl} \mathrm{Pb}, \mathrm{As}, \mathrm{Zn}$.	29119	114.2	115.3	1.1	1.06	2.59	35.5	0.57	3.24	5.05	0.73
	Almost a Py siltite in places. Dol porphyroblasts 1-2 mm.All faulted and torn up.	29120	115.3	117.5	2.2	2.13	0.86	8.2	0.13	0.82	0.94	2.66
	SS sections 114.7-114.9, 115.0-115.2, 117.5-117.7,118.3-118.4,	29121	117.5	117.7	0.2	0.19	5.78	31.6	0.72	3.85	9.36	12.90
	118.5-118.9 with $70 \% \mathrm{Py}, 1 \% \mathrm{~Pb}, \mathrm{Zn}, \mathrm{As}, \mathrm{Cu}$. Flt zone 116.3-117.0, broken	29122	117.7	119.1	1.4	1.35	1.72	27.4	0.54	1.69	3.72	4.03
	with flts 117.8-119.0, 120.0-123.0.	27218	119.1	120.6	1.5	1.45	0.13	3.1	0.02	0.21	0.27	0.03
119.1-121.2	Tuff - mg, dk grey, ser lam @ 90 deg. Silicified. Dol porphyroblasts. Wispy and diss Py throughout. Sect NSS Py 122.2-122.5 with dol porphyb. Mixed with black chl tuff or mudstone with dusty Py - probably a Py siltite. FIt @ 129.6-130.0.											
121.2-140.2	Py Siltite - chl muddy tuff with dusty Py. Spotty dol porphyb. 123.0-124.0, and 130.8-131.0. Dk brown / black. Sl stretched porphyb up to 20% in black chl matrix.. 30\% Py as stringers and blebs, not in lam from 134.7-135.2, 136.3-136.6 also as Py porphyb mixed with dol porphyb.	29086	134.7	135.2	0.5	0.49	0.03	0.4	0.01	0.01	0.01	0.01

FIt zone 140.2-141.0
140.2-142.5 Chert - graphitic.
142.5-145.4

Graphitic fault zone - all black gouge.

DRILL HOLE RECORD

COMPANY	Bronx Ventures Inc
PROJECT	Extra High
CLAIM / TENURE	509949

0-6.5	Casing
6.5-57.2	Pyroclastic - lapilli tuff - lam.
	grey, orange with brown ankeritic and sericite laminations every
	$2 \mathrm{~mm} @ 50$ deg. Lap.frags vary from dust-ash- 0.5 cm frags. 1-10\% diss Py on lams. This hole has more Py than 01 \& 02 up to 29.0 .
	30 cm barren qtz @ 31.1 and 41-43.
	Flt zone 14.0-14.8 @ 60 \& 20 deg,17-18.4 @ 45deg, 20.4-22.1 (70\% recov)
	23.3-25.0@ 50 deg, 26.6-28.3@ 65deg includes a lot of crushed py,
	29.3-30.0, 54.4-55.6, 57,2 @ 70deg, 67.1 (5cm) @ 60 deg.
57.2-60.0	Tuff mg to lapilli tuff. Lam @ 60 deg. Ser, dol <1\% py on lam. Gradual change back to lap pyroclastic around 60.0 with increased py on lam to 5%.
	5 cm qtz / dol veinlet @ 60.3 @ 70 deg.with 5\% py stringers.
	1 cm SS py @ $66.2 @ 50$ deg., 2 cm SS py $73.0 @ 70 \mathrm{deg}, 1 \mathrm{~cm}$ SS py 73.9, 74.2 \& 74.4 @ 70 deg.
60.0-115.9	Lapilli pyroclastic as above. Qtz/ dol vein $81.6-81.8$ with< 1\% py,
	87.7-88.2 with rotated frags, lam 50 deg @ 70 and 45 deg @ 105.
	Many crushed zones. Chlorite starting to come in around 109.5 (10-30\%).
	Flt zone (crushed) 108.0-108.8, 114.6-114.9 (80deg), 115.5-115.9.
115.9-117.7	Heterolithic breccia - chl matrix, dol and sl py matrix. Frags py and dol

up to 3 cm , mg tuff,chl frags $2-4 \mathrm{~cm}$. Sections with $5-10 \% \mathrm{py}$, sl Pb, as crushed frags,stringers and blebs. Usually with qtz / dol matrix in strgs.
Breccia continues but more sulphides-2-4 cm sections NSS-Py 30-40\%, $\mathrm{Pb}<1 \%$, in frags and mixed with dol frags. Chl matrix, white chert frags starting at 118.4
$29066-115.9-117.7-18-1.69-0.18$
29067

DRILL HOLE RECORD

33.2-34.5.

38.9-44.8 Chert Breccia, grey, mixed with dusty pyritic siltite banded @ 70 deg

Few 5 cm dol bands - ank alt - buff to orange pink. Few Py frags to
2-3 mm + Arseno needles and crystals (1mm) from 39.5-41.0
Diss Py \& Aspy to 41.4. Strong fault 44.0-44.8-grey mud and gouge.
10 cm barren qtz @ 44.5
EOH

56.8-60.9	Mixed zone of Pyritic Siltite, grey Chert breccia, some orange dol, all in fg Pyritic siltite matrix. Dusty pyrite in siltite. Not as much mineral as in hole 05-05. Flt- mushy zone 61.3-62.1 @ 45 deg. 100\% core recov!
60.9-67.8	Pyritic Siltite - lam brown / grey + qtzy dol bands (1-2 mm) all @ 45 deg. Dusty pyrite, not much else. 10-20\% grey talc ser alt 66.6-68.2. Flt zone 61.2-62.2 and 66.8-67.8. Black / grey with 20 cm blocks of NSS
	Py 80% sl Pb, Zn ?. This flt moved ore. 45 deg. Few $4-5 \mathrm{~cm}$

29142	53.7	54.4	0.7	0.49	$\mathbf{2 4 . 7 0}$	$\mathbf{1 5 8 . 0}$	$\mathbf{1 . 4 5}$	$\mathbf{6 . 3 7}$	$\mathbf{1 . 0 6}$	$\mathbf{0 . 7 9}$
29143	54.4	55.3	0.9	0.64	$\mathbf{2 5 . 3 0}$	$\mathbf{8 6 . 2}$	$\mathbf{0 . 7 4}$	$\mathbf{4 . 0 5}$	$\mathbf{5 . 5 4}$	$\mathbf{0 . 6 0}$
29144	55.3	56.9	1.6	1.13	$\mathbf{1 1 . 8 0}$	$\mathbf{9 2 . 7}$	$\mathbf{0 . 5 8}$	$\mathbf{6 . 0 6}$	$\mathbf{7 . 6 5}$	$\mathbf{2 . 1 4}$
29084	56.9	58.3	1.4	0.99	$\mathbf{1 . 4 8}$	11.2	0.05	0.25	0.32	0.44

DRILL HOLE RECORD

SHEET \#
2 of 2

COMPANY	Bronx Ventures Inc
PROJECT	Extra High

INTERVAL	SAMPLE	INTERVAL m		CORE	TRUE	AU	AG	CU	PB	ZN	AS
		FROM	TO			g/t	g/t	\%	\%	\%	\%
m	\#	m	m	m	m		ppm	ppm	ppm	ppm	ppm
						BOL	RINT	SAY,	TAND	D PR	- ICP

$67.8-79.6$	Hetrolithic Breccia. Mix of Py siltite, mg tuff, dol alt mg tuff, large 0.5 m blocks and< 1 cm frags. Flts $5-20 \mathrm{~cm}$ wide every $1-2 \mathrm{~m} @ 45-60$ deg. Patchy $5-10 \%$ diss Py.
$79.6-93.0$	Sharp contact change to Chl Arg / Py Siltite with dusty py - flows from one to the other.Contorted 1 cm Py bands similar to heavy py section in 05-07 but not as much pyrite here (5-10\%). Lam @ 45 deg.
Flt zone 92.0-93.0@ @ deg. $93.0-111.8$ EOH\quadWacke / chl Arg breccia. Wacke blocks $2-20 \mathrm{~cm}$. Vague lamination @ 60 deg.	

DRILL HOLE RECORD

COMPANY	Bronx Ventures Inc
PROJECT	Extra High
CLAIM / TENURE \#	509949

CO ORDS				TEST				CORE SIZE RECOVERY	$\begin{array}{r} \text { NQ } \\ 99 \% \end{array}$	SHEET \#	1 of 1	
	GRID		GPS	COLLAR	DIP	BRG	TYPE					
N	91+02	N			-55	225						
W	0+70		E		81 m	-48		acid	STARTED	Sept. 27	TOTAL DEPTH	81.4
											J.W.	
ELEV	1440				COMPLETED				Sept. 27	LOGGED BY	MURTON	
BRG	225											

61.7-64.7	Py siltite -v fg dusty Py.Spotted 5\% with $1-3 \mathrm{~mm}$ white dol?, clay frags.											
64.7-68.9	Arg. - chl / mixed with muddy tuff - white spotted with 1-5 mm dol porphyrobl. FIt @ 68.9.											
68.9-71.4	Arg breccia / dol alt muddy tuff with flow banded Pyrite to 60%.	29099	68.9	71.4	2.5	2.46	0.16	0.8	0.01	0.02	0.01	0.01
	Possible chalco in Py flow bands. Some vfg Py and some more euhedral. FIt zone 71.4-75.0 crushed arg.											
71.4-81.4	Arg. banded. Crushed qtz vein with vv sl Py 77.4-77.9.											
	Nice slump breccia texture @ 81.2 in arg.											

Py Siltite mixed with mg tuff, crushed and broken. Dusty Py.
56.0-72.3 Scattered
$10-20 \mathrm{~cm}$ sections with $1-2 \mathrm{~mm}$ dol porphyrob. Py increasing to $5 \% 68.0-$

	pale brown.
72.3-76.2	Arg breccia - dol muddy tuff \& py matrix. Up to 30% Py. 10-20 cm sections 60% Py both fg and granular. Contorted matrix-almost flow banded. 1 cm frags dirty brown chalco. Muddy tuff / chl arg mix. Less py (1-5\%) Scattered $1 \mathrm{~mm}-1 \mathrm{~cm}$ dol
76.2-81.5	
81.5-84.6	porphyrobl. up to 81.4 SI lam @ 60deg. Hetro breccia, muddy tuff, grey chert, chl arg, mg tuff. Frags and blocks $\begin{aligned} & 10 \mathrm{~cm}-1 \mathrm{~m} . \text { Flts } 81.5-82.5,83.1-83.3,84.4, \\ & 84.6 \end{aligned}$
84.6-88.0	Py siltite / muddy tuff @ 60 deg. Dusty py, tuff frags to 1 cm . Flt zone 88.0-88.5.
88.0-93.6	Arg, black banded. 75 deg bedding.
EOH	

29095	69.7	71.2	1.5	1.30	$\mathbf{0 . 0 7}$	0.6	0.01	0.02	0.02	0.02
29096	71.2	72.7	1.0	0.87	$\mathbf{0 . 0 8}$	3.7	0.08	0.03	0.28	0.04
29097	72.7	74.2	1.5	1.30	$\mathbf{0 . 0 8}$	0.6	0.01	0.03	0.01	0.01
29098	74.2	76.2	2.0	1.73	$\mathbf{0 . 0 7}$	0.4	0.01	0.02	0.01	0.01

DRILL HOLE RECORD

COMPANY	Bronx Ventures Inc
PROJECT	Extra High
CLAIM / TENURE	509949

HOLE \#	$05-09$
SHEET \#	1 of 2
TOTAL	
DEPTH	154.5 LOGGED BY MURTON

CORE	TRUE	AU	AG	CU	PB	ZN	AS
length	width	g/t	g/t	$\%$	$\%$	$\%$	$\%$
\mathbf{m}	\mathbf{m}		ppm	ppm	ppm	ppm	ppm
			BOLD	PRINT- ASSAY,	STANDARD PRINT-		

0-6.0	Casing
6.0-10.0	Tuff - mg, laminationes @ 60 deg. 1-3 mm ank alt on lams. Qtz / dol vein9.5-10.0 with sl Py, v sl Pb.
10.0-13.5	Hetrolithic Breccia - mg tuff, ser alt dust tuff, dol tuff frags.
13.5-32.0	Tuff - mg buff grey with ank alt.Dol tuff frags to 5 mm ., few Py frags. SI lam @ 60deg. FIt (5cm) @ 32.0.
$32.0-39.7$	Lap Tuff - 1-2 cm frags of qtz / dol tuff, stretched all @ 45 deg. Ank on lams. <0.5 \% Py.
39.7-41.9	Tuff, vfg , orange / buff ser alt, mixed with dol tuff frags $1-3 \mathrm{~cm}$. Py increasing to 5%. Minor flt @ 41.9 over 2 cm.
41.9-48.6	Lap tuff - many 2-5 cm qtz / dol frags. Silica 50\%, 5-10\% Py, 1\% Pb. Sulphides droppping off @ 46 to 1\%. Ank on 1-5mm lam in matrix.
48.6-51.1	Pyrocl / lap Tuff. Fg to mg with section mg tuff. Stretched frags @ 60 deg. Dol / qtz / Py, orange ank on lams.
51.1-75.3	Fault Zone - crushed all of above plus mud, gouge. 10 deg to core. Few 1-2 cm SS frags,few black chert frags, 1.5 m core loss 54-57, otherwise 100\%. Some of this fault would carry good values especially from 60-70 m. Few 2.5 cm blocks of SS - NSS fg dk brown Py 72.7-75.3

27201	41.9	43.4	1.5	1.30	<0.03	0.5	0.01	0.01	0.01	0.01
27202	43.4	44.9	1.5	1.30	$\mathbf{0 . 1 3}$	0.4	0.01	0.01	0.01	0.01
27203	44.9	46.4	1.5	1.30	$\mathbf{1 . 0 6}$	0.3	0.01	0.01	0.01	0.01
27219	71.1	72.7	1.6	0.68	$\mathbf{0 . 8 1}$	8.1	0.06	0.64	$\mathbf{1 . 3 9}$	0.62
29057	72.7	74.9	2.2	0.93	$\mathbf{1 . 8 5}$	$\mathbf{1 3 . 2}$	$\mathbf{0 . 0 8}$	$\mathbf{0 . 9 5}$	$\mathbf{1 . 9 9}$	$\mathbf{0 . 7 1}$

75.3-79.4	NSS grey chert breccia with Py siltite and gouge zones. 20\% Aspy in	29058	74.9	76.4	1.5	0.63	0.80	7.6	0.04	0.45	1.01	0.15
	spots mixed with SS - coarse (2mm) euhedral Py (90\%), 5\% Pb.	29059	76.4	78.0	1.6	0.68	2.31	11.6	0.10	1.38	4.32	4.38
	Flt zone 79.2-79.4.	29060	78.0	79.4	1.4	0.59	2.47	19.2	0.15	2.09	4.15	7.36
79.4-80.7	SS - NSS 80\% Py, 5-10\% Pb,Zn? 1\% Cu, All banded @ 25 deg. Flt 80.7-80.8 @ 40 deg.	29061	79.4	80.7	1.3	0.55	3.38	91.7	0.53	3.84	4.94	1.97
80.7-82.4	Py Siltite, brown with dusty Py Bedding @ 70 deg. Few stretched white dol? or clay frags or porphyrob. Flt zone 81.5-82.4 with grey ser,	27204	80.7	82.4	1.7	1.60	0.14	1.8	0.01	0.09	0.08	1.00

DRILL HOLE RECORD

COMPANY	Bronx Ventures Inc
PROJECT	Extra High

INTERVAL		SAMPLE \#	INTERVAL m		CORE length m	TRUE width m	AU	AG	CU	PB	ZN	AS	
			TO	g/t			g / t	\%	\%	$\%$	\%		
m			m	m				ppm	ppm		ppm	ppm	
							BOLD PRINT- ASSAY, STANDARD PRINT-						
82.4-105.8	Hetrolithic breccia -frags of chl arg with 5-30\% Py, muddy tuff-fg												
	to mg with dol alt- py siltite banded @ 60 deg. Py in arg dropping off.	27205	82.4	84.6	2.2	1.90	0.22	0.5	0.01	0.01	0.01	0.02	
	@ 87 to <5\%. Flt zone 96.8-98.5 @ 45deg, crushed above and gouge.												
	Gradual change to Py siltite. 50\% core loss @ 101 between 99.7-102.7.	29206	105.8	107.3	1.5	1.30	0.45	5.8	0.11	0.25	0.08	0.08	
105.8-113.7	Py Siltite - brown with 60\%? dusty Py. 109.6-110.0 is dol sil mg tuff	29207	107.3	108.8	1.5	1.30	0.34	3.1	0.04	0.10	0.04	0.10	
	with $5 \% \mathrm{Py}, 1 \% \mathrm{Cu} .1 \% \mathrm{chl}$ arg frags from $1-5 \mathrm{~mm}$ up to 1 cm .	29208	108.8	110.3	1.5	1.30	0.11	9.9	0.29	0.64	0.86	0.05	
	Gradual change to the following wack / arg breccia - no fault.	29209	110.3	111.8	1.5	1.30	0.15	10.3	0.11	0.28	0.40	0.05	
113.7-122.3	Greywacke / chl arg breccia. 2-20 cm blocks of wacke. Gradual change back to Py siltite.	29210	111.8	113.7	1.9	1.65	0.54	4.7	0.03	0.14	0.20	0.07	
122.3-128.3	Py Siltite with dusty Py. Mixed with dol mg tuff with 45 deg lams.	29211	122.3	123.8	1.5	1.06	0.39	6.5	0.03	0.21	0.21	0.11	
	Pyritic zone 10-20 cm v fg brown Py mixed with euhedral granukar	29212	123.8	125.3	1.5	1.06	0.21	10.4	0.11	0.53	0.74	0.09	
	pyrite. Looks dead. 127.1-127.5 NSS fg dusty and euhedral Py.	29213	125.3	126.8	1.5	1.06	0.36	17.1	0.18	1.07	1.53	0.17	

Arg - banded with qtz strs and veinlets in first 2 m (barren) @45 deg. Wacke sections 148-151.
EOH

DRILL HOLE RECORD

	Py siltite - intebedded with Py muddy fg tuff all @ 80 deg. Py 20 -
35.7-39.6	Tuff fg to mg. Few dol porphyrob \& 1-2 cm strs. 1-2 \%
39.6-44.3	zone
	43.0-44.3@ 85 deg.
44.3-49.6	MuddyTuff. Fg mixed with bands of grey fg tuff @ 90 deg. A little
	Py siltite 47.0-49.6.
	Tuff - grey mg.).5-1 cm bands of fg Py with 5\%Py. 20 cm flt @
49.6-62.0	61.4.
	Becoming brecciated last 2 m with arg \& dol clasts.
62.0-67.6	Slump Breccia - 5-20 cm blocks and frags of Py black arg.,
	porphyroblasts $2-3 \mathrm{~mm}$. Flt zone 63.3-67.6 @ 85 deg. Mushed all of the above.
67.6-76.2	Arg - banded @ 75 deg. Black Py flt zone 69.2-70.2.
EOH	

MuddyTuff. Fg mixed with bands of grey fg tuff @ 90 deg. A little Py siltite 47.0-49.6.
Tuff - grey mg.).5-1 cm bands of fg Py with 5\%Py. 20 cm flt @ 61.4. clasts.
Slump Breccia - 5-20 cm blocks and frags of Py black arg., $\mathrm{fg}-\mathrm{mg}$ grey tuff, sections of Py to 20% as frags $1-2 \mathrm{~mm}$ and porphyroblasts $2-3 \mathrm{~mm}$. Flt zone 63.3-67.6@ 85 deg. Mushed all of the above.
Arg - banded @ 75 deg. Black Py flt zone 69.2-70.2.

lost core grey black mud @80deg., 95.4-95.6,
91.7-92.3 10-15\% Py (granoblastic or crushed) frags. 3 cm band NSS 80\% Py, 1\% Pb,Zn,sl As. 96-100 has 1-3 cm qtz veins every 1 m @ 80 deg., contorted and
broken.
Chert - pale grey, sl banded with ser on lams @ 90 deg. 0.5-1 cm
qtzy seams, some brecciation. Becoming more mineralized from 102.5 with 0.5-1 cm bands NSS Py, sl Pb,Zn. 2 cm NSS grano +fg

Py
I Zn,Pb @ 103.5, 103.7, 105.9, 106.0. Flt 4 cm @106.2 @85 deg.
with 1-3 cm frags SS fg Py,sl Pb,Zn.

27229	88.7	90.2	1.5	1.50	$\mathbf{0 . 4 1}$	1.6	0.01	0.04	0.03	0.25
27230	90.2	91.7	1.5	1.50	$\mathbf{0 . 5 3}$	14.6	0.05	0.20	0.10	0.48
27231	91.7	92.3	0.6	0.60	$\mathbf{1 . 2 8}$	14.7	0.03	0.19	0.13	0.71
27232	92.3	93.6	1.3	1.30	$\mathbf{1 . 4 1}$	$\mathbf{5 0 . 8}$	0.05	0.36	0.14	0.34
27233	93.6	95.6	2.0	2.00	$\mathbf{0 . 2 2}$	3.6	0.01	0.09	0.18	0.55
27234	95.6	96.6	1.0	1.00	$\mathbf{0 . 1 9}$	2.0	0.01	0.01	0.01	0.04
27235	96.6	98.1	1.5	1.50	$\mathbf{0 . 0 9}$	0.9	0.01	0.01	0.01	0.02
27236	98.1	99.6	1.5	1.50	$\mathbf{0 . 1 4}$	2.1	0.01	0.05	0.03	0.04
27237	99.6	101.1	1.5	1.50	$\mathbf{0 . 1 4}$	0.9	0.01	0.01	0.07	0.14
27238	101.1	102.5	1.4	1.40	$\mathbf{0 . 1 2}$	1.0	0.01	0.01	0.03	0.24

DRILL HOLE record

COMPANY PROJECT	Bronx Ventures Inc Extra High								HOLE \# 05-11 SHEET \# 2 of 2			
		SAMPLE \#	INTERVAL m		CORE length m	TRUE width m	$\begin{aligned} & \text { AU } \\ & \text { g/t } \end{aligned}$	$\begin{gathered} \mathrm{AG} \\ \mathrm{~g} / \mathrm{t} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \text { CU } \\ \text { \% } \\ \text { ppm } \\ \text { SSAY, } \end{gathered}$	$\begin{gathered} \text { PB } \\ \text { \% } \\ \text { ppm } \\ \text { STAND } \end{gathered}$	$\begin{array}{r} \text { zN } \\ \text { \% } \\ \text { ppm } \\ \text { ARD P } \end{array}$	AS \% ppm NT-
INTERVAL			FROM	то								
m			m	m								
								PRINT-			ARD PR	
106.2-111.9	Cherty Argillite. Dk grey /black chl sections, fine lams $1-2 \mathrm{~mm}$ \& 1-2 cms.	27239	102.5	104.3	1.8	1.80	0.95	9.6	0.04	0.53	1.88	3.23
111.9-114.7	Chert - It grey same as 101-106., flt repeated section. 90 deg lams.	27240	104.3	106.2	1.9	1.90	0.71	25.7	0.07	0.33	0.77	1.86
	$1-3 \mathrm{~cm}$ patches (frags) NSS Py, Zn, Pb especially @ 113.2-113.4.	27241	106.2	109.0	2.8	2.80	0.08	2.0	0.01	0.01	0.01	0.01
	Becoming brecciated last $1 \mathrm{~m} .10-20 \% y e l l o w ~ s e r ~ o n ~ l a m s ~ 113.5-114.7 . ~$	27242	109.0	111.9	2.9	2.90	0.08	0.9	0.01	0.01	0.02	0.03
	Flt 114.7 (2cm) @ 90 deg.	27243	111.9	113.2	1.3	1.30	0.24	2.6	0.01	0.03	0.09	0.31
114.7-129.2	Hetro breccia. 1-10 cm frags dol spotted chl arg, fg tuff, grey chrt, sl py .	27244	113.2	113.4	0.2	0.20	2.64	119.0	0.61	3.65	4.84	2.88
	siltite. Lams @ 90 deg. 5\% granobl Py 114.7-116.2. A few $2-4 \mathrm{~cm}$	27245	113.4	114.7	1.3	1.30	0.12	1.1	0.01	0.02	0.02	0.05

DRILL HOLE RECORD

COMPANY	Bronx Ventures Inc
PROJECT	Extra High
CLAIM / TENURE \#	509949

CO ORDS			TEST				CORE SIZE RECOVERY	$\begin{gathered} \text { NQ } \\ 98 \% \end{gathered}$
	GRID	GPS		DIP	BRG	TYPE		
N	90+29	N	COLLAR	-60	225			
w	0+34	E	136m	-49		acid	STARTED	Nov. 20
ELEV	$\begin{array}{r} 1441 \\ 225 \\ \hline \end{array}$						COMPLETED	Nov. 21

BY

HOLE \# 05-12
SHEET \# 1 of 2

TOTAL
DEPTH LOGGED

EET \# 1 of 2 145.4 J.W .MURTON

INTERVAL	SAMPLE	INTERVAL m		CORE length	TRUE	AU	AG	CU	PB	ZN AS	
		FROM	TO			g/t	g/t	\%	\%	\%	\%
m	\#	m	m	m	m	$\begin{aligned} & \mathrm{BOL} \\ & \mathrm{ICP} \end{aligned}$	ppm PRIN	$\begin{gathered} \text { ppm } \\ \text { ASSAY } \end{gathered}$	ppm	ppm ARD	$\begin{aligned} & \text { ppm } \\ & \text { vT- } \end{aligned}$

0 - 6.5 Casing
6.5-80.5 Pyroclastic - lapilli tuff - strong lams @ 75 deg. mg tuff with dol frags.

Grey, orange with brown ankeritic and sericite flooding, sections heavy (80\%) and buff yellow. 10 cm qtz / dol veinlets with5\% Py,vv sl Pb,Zn @ 7.0, 8.5, 15.8, 17.3, 24-25.5. Barren qtz vein 21.6-23.7 @ 70 deg Flts $3 \mathrm{~cm} @ 12.3$ (75 deg), 15.8-16@ 70 deg,47.0, 52.0 @ 80 deg More mg tuff coming in(20-50\%)from 39m on. Strong silicification (quartzy grey zone) @ 62, 63.6-63.8, with 5\% Py. Becoming more chloritic (10-20\%) from 75 on
Flt zone 54.3-57.0 @60-70 deg,64.0-66.6,68.3-68.5 (70 deg),77.2 (30-50deg). Flt zone79.2-80.5 mud and gouge (strong fit), Wispy
80.5-85.6 Hetro breccia - grey chert, fg - mg tuff, sl py siltite,chl arg as matrix and bands, spotted dol tuff. Frags $1-5 \mathrm{~cm}$. Dol as porphyrobl 1-3 mm up to 20\% in places.Sulphides as bands 5-20\% and frags of NSS,
mainly fg dk brown Py.

28570	80.5	82.0	1.5	1.50	$\mathbf{0 . 1 4}$	4.8	0.01	0.38	0.61	0.02
28571	82.0	83.7	1.7	1.70	$\mathbf{0 . 3 5}$	1.2	0.01	0.06	0.01	0.02
28572	83.7	85.6	1.9	1.90	$\mathbf{0 . 3 6}$	1.2	0.01	0.05	0.01	0.03
28573	85.6	87.7	1.1	1.10	$\mathbf{0 . 1 2}$	5.0	0.03	0.37	0.59	0.22

85.6-87.7	Graphitic chert - black, sl brecciated. Py as frags and diss 5\%.
87.7-93.5	Chert - grey sl creamy sections, lams @ 90 deg., fract and brecc. 5-20\% sulphides. 1-2 cm bands SS. 10 cm SSPy, sl Pb,Zn @ 88.2-88.3 at 90 deg. Hetro breccia 91.7-92.7. Flt zn (80deg) 92.5-93.6.
93.5-101.2	Chert - ser and cream color.Less sulphides (1\%). 96.6-99.0 has 0.8 m core in fault zone (mud, gouge, chert frags) @ 70-80 deg.- 2.4 m core loss in flt zone 96.5-101.2. all in cream color chert.
101.2-106.2	Hetro breccia. Grey/black chert, chl black arg.,silicified with many qtz strs 1-5 cm @80 deg. 5-20\% sulphides, pyrite mainly, fault repeat of previous section. 30 cm NSS 80\% Py,1\% Pb,Zn, @ 103.6-103.9.Core loss . 0.5 m in box 104.5-105.8
106.2-111.3	Chert - grey. Mixed with ser cream chert. 1-5\% sulphides. Flt zn 106.7-106.9, 108.1-108.6 (80deg).

28574	87.7	89.4	1.7	1.70	$\mathbf{0 . 4 9}$	3.5	0.05	0.24	0.31	0.99
28575	89.4	90.0	1.6	1.60	$\mathbf{0 . 9 8}$	16.4	0.19	$\mathbf{1 . 3 7}$	0.64	0.86
28576	90.0	91.2	1.2	1.20	$\mathbf{0 . 4 0}$	2.7	0.01	0.12	0.19	0.54
28577	91.2	93.5	2.3	2.30	$\mathbf{0 . 3 1}$	2.1	0.01	0.06	0.14	0.52

28578	101.2	103.6	2.4	2.36	$\mathbf{0 . 4 8}$	6.2	0.04	0.51	0.89	0.61
28579	103.6	104.0	0.4	0.39	$\mathbf{5 . 7 0}$	16.8	0.18	$\mathbf{2 . 8 5}$	$\mathbf{5 . 7 5}$	$\mathbf{1 5 . 5 0}$
28580	104.0	106.2	2.2	2.17	$\mathbf{1 . 5 3}$	6.7	0.05	0.32	0.61	$\mathbf{2 . 3 5}$
28581	106.2	109.6	3.4	3.35	$\mathbf{0 . 2 7}$	4.0	0.02	0.05	0.06	0.05
28582	109.6	111.8	2.2	2.17	$\mathbf{0 . 2 2}$	1.7	0.01	0.05	0.04	0.06

DRILL
 HOLE
 RECORD

COMPANY PROJECT	Bronx Ventures Inc Extra High								HOLE \# 05-12 SHEET \# 2 of 2			
INTERVAL m		SAMPLE \#		AL m то m	CORE length m	TRUE width m	AU g / t	AG g/t ppm	$\begin{gathered} \text { CU } \\ \text { \% } \\ \text { ppm } \\ \text { SSAY, } \end{gathered}$	$\begin{gathered} \text { PB } \\ \text { \% } \\ \text { ppm } \\ \text { STANDA } \end{gathered}$	$\begin{gathered} \text { ZN } \\ \text { \% } \\ \text { ppm } \\ \text { RD PRI } \end{gathered}$	$\begin{gathered} \text { AS } \\ \text { \% } \\ \text { ppm } \end{gathered}$
111.3-117.4	Hetro breccia or chert breccia. Dk grey black chert mixed with pale	28583	111.8	113.4	1.6	1.58	0.42	1.8	0.01	0.02	0.36	0.32
	grey chert with 5-10\% ser. Sil or qtz frags, 80 deg banding.	28584	113.4	116.3	2.9	2.86	0.36	2.1	0.02	0.14	0.19	0.70
	A little black cherty arg, chl 50% overall. $5 \mathrm{~mm}-10 \mathrm{~cm}$ bands NSS	28585	116.3	117.4	1.1	1.08	0.57	4.0	0.05	0.27	0.51	1.63
	80\% Py, 10\% Cu?, sl Pb,Zn from111.8-111.9,113.4, 113.5, 114.6,	28586	117.4	118.6	1.2	1.18	0.22	3.5	0.06	0.13	0.22	0.31
	117.2-117.4. This is a well mneralized chert to hetro breccia. Py is both fg and mg porphyrobl and euhedral, - looks like crushed veinlets in places. Euhedral As 1-5\%, from 117.2-117.4. Flts 113.0 @ 45deg (2cm), $117.4-118.3$ zone of crushing and faulting incl SS frags. 113.0-113.2 has 5% spotted stringery dol porphyrobl in chl arg.											
117.4-127.0	Fault zone with a mixture of all rock types.-grey chert, black graph chert, mg tuff, yellow ser chert, chl arg, - 0.5-1m blocks-often lam @ 80 deg not rotated. Flts $5-15 \mathrm{~cm} @ 45-80$ deg. 121.3-123.3 has porphyrobl											
	dol and qtz frags, some 5 mm cubic xtals?? in black chl arg. Sections 5-10\% Py. Strong flt 126-127-mud gouge @ 60 deg. Py looks dead.	28587	123.2	124.0	0.8	0.79	0.10	1.0	0.01	0.02	0.04	0.01
127.0-131.0	Py siltite or mudstone. $10 \% \mathrm{fg}$ brown py as wisps and bands. This is almost a muddy tuff. Py in lams and $1-2 \mathrm{~cm}$ sections NSS. Vv fg py. Slump structures evident.	28588	127.1	130.2	3.1	3.05	0.04	0.4	0.01	0.01	0.01	0.01
131.0-135.2	Zone of faulting again-everything and now incl py siltite. Strong fault											

$134-135.3$ grey mud @ 60 deg. Dol spotted chl arg again @ 131.4-
131.6
like earlier in hole.

Chl muddy tuff. Grey tuff mixed with black chl arg and black
graph chert. Many faults every 1-2 m @ 80 deg.
Arg-black chl with 10-60\% py. No banding. 5cm barren qtz vein @ 139.3.
28589
137.5
139.1
1.6
1.58 <0.03
3.0

Chert - black, graph. 1\% vv fg py. Few dol strs and porphyrobl
Black graph flt zn 143.8-144.2

DRILL HOLE RECORD

fg and mg tuff,qtz strs and frags, py frags and on lams, sl ank and ser (10\%), frags stretched $2 \mathrm{~mm} \times 2 \mathrm{~cm}$. Py 1-5\% on lams and as frags.
1-2 m intervals mg dk grey tuff. Everything has 10% chl alt.
Few py siltite frags and layers starting @ 58.0. From 57.8-65.4 the
sulphide content starting to increase to $5-10 \%$ py diss in 10-50 cm muddy
tuff frags. 1-3 mm wispy py on lams. 5 cm NSS Py @ 58.1-
looks
ike a shattered qtz / py vein. Few 1-5 cm buff chert sections 6365.4 .

From 65 on continues as mg chl muddy tuff. Few 5-10 cm sections cg
pyroclast or lapilli tuff. Frags to 2 cm -all mixed tuff. A little dol alt, silicified with a few grey cherty sections starting from 67. 10 cm NSS
Py with qtz, shattered @ 63.8. The remainder of this section after sample \# 28598 should run about the same. Similar
mineralization.
Barren 4 cm qtz vein @
69.9 .

28594	57.8	59.3	1.5	1.50	<0.03	0.3	0.01	0.01	0.01	135
28595	59.3	61.1	1.8	1.80	$\mathbf{0 . 0 5}$	0.2	0.01	0.01	0.01	120
28596	61.1	63.4	2.3	2.30	<0.03	0.3	0.01	0.01	0.01	130
28597	63.4	64.7	1.3	1.30	$\mathbf{0 . 1 0}$	0.5	0.01	0.01	0.01	245
28598	64.7	65.4	0.7	0.70	<0.03	0.2	0.01	0.01	0.01	110

COMPANY	Bronx Ventures Inc Extra High								HOLE \# $05-13$ SHEET \# 2 of 2			
INTERVAL			INTER	L m	CORE	TRUE	AU	AG	CU	PB	ZN	AS
m		SAMPLE \#	FROM m	$\begin{aligned} & \text { TO } \\ & \text { m } \\ & \hline \end{aligned}$	length m	width m	g/t	g/t ppm	$\begin{gathered} \text { \% } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { ppm } \end{gathered}$

78.0-89.7 Gradual change to Chert-grey/ chl arg, dol mg grey tuff, qtz/dol
frags 1-3 mm. Becoming very broken and faulted 83 on .1 m gouge zones
with all rock types in them. 2 m buff-pale grey ser chert with $1 \mathrm{~mm}-2 \mathrm{~cm}$ sulphide (py) frags 86.0-87.5. Flt zn 89.2-89.7. Few sections with diss. py in frags and strs up to 1 cm .
EOH

DRILL HOLE RECORD

CO ORDS			TEST				CORE SIZE	NQ
	GRID	GPS		DIP	BRG	TYPE		
N	91+74	N	COLLAR	-45	218		RECOVERY	98\%
w	0+64	E	49.4 m	-41		acid	StARTED	Nov. 22
ELEV	1427						COMPLETED	Nov. 22
BRG	218							

HOLE \#
05-14

SHEET \#	1 of 1
TOTAL	
DEPTH	49.4

TOTAL
DEPTH 49.4
LOGGED BY J.W.MURTON

INTERVAL m		SAMPLE \#	INTER FROM m	$\begin{gathered} \text { AL m } \\ \text { TO } \\ \text { m } \end{gathered}$	CORE length m	TRUE width m	$\begin{aligned} & \text { AU } \\ & \text { g/t } \\ & \text { BOLD } \\ & \text { ICP } \\ & \hline \end{aligned}$	AG g/t ppm PRINT-	$\begin{gathered} \text { CU } \\ \% \\ \text { ppm } \\ \text { ASSAY, } \end{gathered}$	$\begin{gathered} \text { PB } \\ \% \\ \text { ppm } \\ \text { STANDA } \end{gathered}$	$\begin{gathered} \text { ZN } \\ \mathbf{\%} \\ \text { ppm } \\ \text { RD PRIN } \end{gathered}$	AS \% ppm T-
0-6.5	Casing											
6.5-10.2	Hetrolithic breccia, grey $0.5-1 \mathrm{~cm}$ chert frags, white qtz frags to $2 \mathrm{~cm}, \mathrm{mg}$	27246	6.5	8.2	1.7	1.7	0.04	0.3	0.01	0.01	0.01	0.01
	tuff frags and blocks to $10 \mathrm{~cm}, 10-20 \%$ Py diss and in lams, contorted qtz and py @ 7-8,. At 9.0 is 3 cm qtz +NSS fg py (looks good) qtz has been shattered and healed with py, Flt @ 9.1 @ 80 deg on . lower edge of this frag. Core loss beetween 6.5-10.0 has 1.3 m in box. All broken and oxidized. 6.5-8.2 has $0.8 \mathrm{~m}, 8.2-10.0$ has 0.5 m .	27247	8.2	10.2	2.0	2.0	0.03	0.3	0.01	0.01	0.01	0.01
10.2-21.0	Tuff - mg grey. The change from hetro breccia is gradational-no fault. Tuff frags 0.5-2mm. Sl lams @ 90 deg. Minor flt 17.0 @ 80 deg, and 17.7 @ $80 \mathrm{deg}(1-2 \mathrm{~cm})$.											
21.0-25.3	Hetro breccia-sections mg tuff to 1 m , grey chert frags to 5 cm , py 1-5\%.											
	A little py siltite or arg starting on fine lams. $1-3 \mathrm{~cm}$ grey qtz strs \& veinlets.	27248	23.7	25.3	1.6	1.6	0.05	0.3	0.01	0.02	0.01	0.06
25.3-28.3	Arg fg or mudstone?, py siltite, laminated, qtz / dol veinlets 1-5 mm @ 90	27249	25.3	26.8	1.5	1.5	0.12	0.2	0.01	0.01	0.01	0.34
	deg in and through lams. Bands of 20\% v fg Py. Hetro breccia 28-29.3, .	27250	26.8	28.3	1.5	1.5	0.45	2.4	0.01	0.08	0.15	0.53
	all rock types and 5-10\% Py.	28551	28.3	29.9	1.6	1.6	0.29	3.5	0.01	0.05	0.02	0.03
28.3-29.9	Chert - grey and cream. Sericitic. Broken and sheared @ 80 deg.	28552	29.9	30.6	0.7	0.7	4.85	61.2	0.43	3.74	4.34	0.50
	3 cm NSS Py @ 28.6-all contacts very gradual- no flts.	28553	30.6	31.5	0.9	0.9	5.05	30.9	0.19	1.24	1.63	0.13
29.9-31.3	Py siltite, chl arg.,v fg tuff beds, 10\% py,NSS in places. SS 30.3-30.5	28554	31.5	32.3	0.8	0.8	0.28	1.5	0.01	0.05	0.06	0.03
	$v \mathrm{fg} \mathrm{Py}, \mathrm{Pb}, \mathrm{Zn}$ banded @ 90 deg. Strong graph flt 30.8-31.1 @ 85 deg.	28555	32.3	35.8	3.5	3.5	0.06	0.3	0.01	0.01	0.02	0.01

	This flt moved the SS - frags in flt.	28556	35.8	38.0	2.2	2.2	<0.03	0.2	0.01	0.01	0.01	0.02
31.3-35.8	Chl arg-black / py silite with dol porphyrobl to 1 cm .15 m sections 80%	28557	38.0	39.5	1.5	1.5	<0.03	0.2	0.01	0.01	0.01	0.01
	dol as porphyrobl and contorted strs. Flt zn 32.0-32.6, 33.2-33.6, 35.4-35.8. 1.5m core loss @+/- 35.5.	28558	39.5	41.8	2.3	2.3	<0.03	0.2	0.01	0.01	0.01	0.01
35.8-43.9	Py siltite / white spotted fg chl tuff. White spots are dol? frags 1-3mm. FIt 38.6 @ 80 deg (5 cm), 42.4 @ 45 deg (10 cm),, 43.9 ?(a little ground core).											
43.9-49.4	Hetro breccia -fg to mg grey tuff, wacke, chl arg, a little py black arg, FIt zn 43.9-44.2 @ 80 deg, 44.6-45.1 mud, 49.1-49.4.											

DRILL HOLE RECORD

DRILL HOLE RECORD

COMPANY	Bronx Ventures Inc
PROJECT	Extra High
CLAIM / TENURE \#	509949

	2 cm NSS @ 60.0, 1-3 cm bands NSS fg brown Py from 61.1-63.0	28743	53.6	54.9	1.3	1.30	0.04	0.4	0.01	0.01	0.01	0.01
	interbedded with chert and tuff. $+50 \%$ euhedral Py and < 1\% Aspy.	28744	54.9	56.5	1.6	1.60	0.08	0.7	0.01	0.01	0.01	0.01
	Gradual change, no flt into	28745	56.5	58.0	1.5	1.50	0.03	0.6	0.01	0.01	0.01	0.01
63.0-64.3	Chert - grey / black to chert breccia. 4 cm NSS Py with 5\% Pb, Zn @ 63.2.	28746	58.0	59.5	1.5	1.50	0.03	0.5	0.01	0.01	0.01	0.02
	1-10\% Py as frag in the NSS. Chert breccia has 0.5-1 cm stretched	28747	59.5	61.0	1.5	1.50	0.06	0.8	0.01	0.01	0.04	0.03
	frags. Mineral dropping off after 63.4 to 1% Py. Strong flt @ 64.3.	28748	61.0	63.0	2.0	2.00	0.74	5.5	0.08	0.39	0.50	2.13
64.3-68.6	Chert Breccia - grey black. Few rounded 1 cm frags. $<1 \%$ Py	28749	63.0	63.4	0.4	0.40	1.23	24.9	0.45	2.73	2.25	1.66
	Flt Zn 68.2-68.6. Arg or mudstone. FIt zn 68.8-69.2. Small 1-2mm dol porphyrobl @	28750	63.4	64.5	1.1	1.10	0.06	0.7	0.01	0.02	0.03	0.04
68.6-69.2	69. All broken. Brown, grey, black.											

	More sulphides,Py 10-20\%, Last few m more pyrocl (70\%) than tuff.
	FIt zone 67.4-68.0 @ 70 deg.
68.0-70.2	Chert - black graphitic. Sections brecciated. Bedding? @ 70 deg. White
	qtz frags $1 \mathrm{~mm}-2 \mathrm{~cm}$. 1-5\% Py frags and strs. $<1 \%$ Aspy. Gradual change to
70.2-79.2	Chert - grey / buff / sericitic. Few black graph bands @ 80 deg. Flts every metre. $1-5 \%$ Py. Mineralization increasing from 74 on (5-20\% Py).
	Rounded fg Py clasts in flts. A little gypsum (selenite?) @ 70.7, 1 cm crystals. 20 cm NSS @ 74.5-74.7 Py 50\%, Pb,Zn 1\%, in chert breccia.
	More (4cm) SS @ 77.2, 78.0, 78.4 80\% Py, 5\% Pb,Zn. Cu, As.
	Gradual change to

More sulphides,Py 10-20\%, Last few m more pyrocl (70\%) than
Flt zone 67.4-68.0 @ 70
Chert - black graphitic. Sections brecciated. Bedding? @ 70 deg. change to

Py).
Rounded fg Py clasts in flts. A little gypsum (selenite?) @ 70.7, 1 cm
breccia.
Gradual change to

28710	58.2	59.7	1.5	1.45	$\mathbf{0 . 0 4}$	1.2	0.01	0.01	0.01	0.05
28711	59.7	61.2	1.5	1.45	$\mathbf{0 . 0 7}$	1.2	0.01	0.01	0.02	0.06
28712	61.2	62.7	1.5	1.45	$\mathbf{0 . 1 0}$	0.9	0.01	0.02	0.02	0.11
28713	62.7	64.2	1.5	1.45	$\mathbf{0 . 0 7}$	1.3	0.01	0.07	0.19	0.04
28714	64.2	65.7	1.5	1.45	$\mathbf{0 . 0 4}$	0.7	0.01	0.02	0.02	0.01
28715	65.7	67.8	2.1	2.03	$\mathbf{0 . 1 6}$	2.1	0.02	0.13	0.17	0.15
28716	67.8	70.2	2.4	2.32	$\mathbf{0 . 2 1}$	2.1	0.03	0.17	0.45	0.46
28717	70.2	72.2	2.0	1.93	$<\mathbf{0 . 0 3}$	0.6	0.01	0.02	0.01	0.03
28718	72.2	74.1	1.9	1.84	$\mathbf{0 . 0 3}$	0.5	0.01	0.02	0.05	0.08
28719	74.1	75.6	1.5	1.45	$\mathbf{1 . 3 8}$	$\mathbf{1 3 . 8}$	$\mathbf{0 . 1 9}$	$\mathbf{1 . 4 5}$	$\mathbf{1 . 5 2}$	$\mathbf{4 . 6 4}$
28720	75.6	77.1	1.5	1.45	$\mathbf{0 . 4 4}$	3.9	0.02	0.30	0.25	$\mathbf{1 . 4 0}$

COMPANY PROJECT	Bronx Ventures Inc Extra High								$\begin{array}{ll} \text { HOLE \# } & 05-17 \\ \hline \text { SHEET } \# & 2 \text { of } 2 \end{array}$			
		SAMPLE\#	INTERVAL m		CORE length m	TRUE width m	AU g/t	AG g/t ppm	$\begin{gathered} \text { CU } \\ \text { \% } \\ \text { ppm } \\ \text { ASSAY, } \end{gathered}$	$\begin{gathered} \text { PB } \\ \% \\ \text { ppm } \\ \text { STAND } \end{gathered}$	$\begin{array}{cc} \text { ZN } & \text { AS } \\ \% & \% \\ \text { ppm } & \text { ppm } \\ \text { ARD PRINT- } \end{array}$	
INTERVAL			FROM	то								
m			m	m								
							BOLD PRINT-ICP					
79.2-84.2	Arg - chl, black. 10-20\% dol / qtz veinlets and frags. Gradually	28721	77.1	78.5	1.4	1.3	0.66	2.8	0.01	0.18	0.69	2.04
	at 79.7 with wacke? breccia or hetro breccia. Frags $1 \mathrm{~mm}-2 \mathrm{~cm}$ incl	28721	77.1									
		28722	78.5	80.0	1.5	1.4	0.14	1.1	0.01	0.03	0.01	0.10
	siltite, pale grey fg tuff, sulphide bands and 1-2 mm frags(5\%), veinlets	28723	80.0	81.5	1.5	1.4	<0.03	0.5	0.01	0.03	0.01	0.01
84.2-88.0	to 1 cm . at approx 70 deg . Flt $84.2 @ 75 \mathrm{deg}$.	28724	81.5	83.0	1.5	1.4	0.11	3.3	0.03	0.42	0.55	0.03
	Arg, chl 20%., fg siltite?, qtz dol frags to 1 cm and strs (20-30\%) from	28725	83.0	84.5	1.5	1.4	0.05	2.5	0.01	0.24	0.16	0.02
	84.2-86.5. Almost a breccia. 1-2 cm bands @ 70 deg NSS Py $50 \%, \mathrm{~Pb}$,	28726	84.5	86.0	1.5	1.4	0.14	6.9	0.03	1.14	2.15	0.03
88.0-89.8	Zn,As <1\%.at 84.5,85.7, 85.8, 85.9, 86.4. Flt @ 88.0 @ 60 deg. SS Py $80 \%, \mathrm{~Pb}, \mathrm{Zn}, \mathrm{As} 1 \%$. This is a dark brown	28727	86.0	88.0	2.0	1.9	5.15	12.8	0.10	1.41	1.85	2.45
	pyritic	28728	88.0	89.8	1.8	1.7	5.88	65.8	0.41	6.75	8.74	3.32
	sulphide breccia recemented with Py. Open fractures $2-4 \mathrm{~mm}$.	28729	89.8	91.3	1.5	1.4	0.07	0.9	0.01	0.02	0.02	0.02
89.8-93.6	Flt zone - all rock types, black, grey, brown with sulphides in flt.											

Cherty tuff.Breccia sections, same as at 26-45.4. Grey cherty clasts
$1-3 \mathrm{~cm}$. Weak banding @ 60 deg. Qtz / dol rich veinlets and frags
from 56.8. 1-5\% Py as wisps and frags to 3 mm . Flt 57.2 then becoming more cg (chert frags to $1-2 \mathrm{~cm}$). $5 \mathrm{~cm} \mathrm{20} \mathrm{\%} \mathrm{lt} \mathrm{+} \mathrm{dk}$ brown Py
sl Zn ?, fg and as strs @ 61.2.. From 66.5-76 gradual change to more
cg chert / tuff breccia, sl - med (10-30\%) buff ser with qtz vein frags and strs (30-70\% silica) @66.5. Qtz veins crushed and healed with qtz @
69.0, 70.0, and 74.0(nearly barren). 10-20\% Py , sl Zn, Pb ? as strs from 66.6-70.0, 77.5-77.8. From 76.0 on, chl 20-30\% in tuff intervals, sulphides +/-5\%. 5-10 cm sections dusty brown Py siltite mixed with
chert and tuff. 45 deg lams in places. Sulphide content dropping off to 1\% from 78 on. Flts 92.0 and $93.0 @ 40$ deg, 96.5 (5cm) @ 80 deg

28752	66.6	68.1	1.5	1.06	$\mathbf{0 . 0 3}$	0.4	0.01	0.01	0.01	0.02
28753	68.1	70.0	1.9	1.34	$\mathbf{0 . 0 8}$	0.5	0.01	0.01	0.01	0.02
28754	70.0	71.5	1.5	1.06	<0.03	0.2	0.01	0.01	0.01	0.01
28755	71.5	73.0	1.5	1.06	$\mathbf{0 . 0 3}$	0.4	0.01	0.01	0.01	0.03
28756	73.0	74.5	1.5	1.06	$\mathbf{0 . 0 3}$	0.3	0.01	0.01	0.01	0.03
28757	74.5	76.0	1.5	1.06	$\mathbf{0 . 0 6}$	0.5	0.01	0.01	0.01	0.03
28758	76.0	77.5	1.5	1.06	$\mathbf{0 . 0 3}$	0.3	0.01	0.01	0.01	0.01
28759	77.5	79.0	1.5	1.06	$\mathbf{0 . 1 1}$	0.7	0.01	0.01	0.01	0.02
28760	79.0	80.5	1.5	1.06	<0.03	0.2	0.01	0.01	0.01	0.01

DRILL
 HOLE RECORD

COMPANY PROJECT	Bronx Ventures Inc Extra High								HOL	$\frac{\mathrm{E}}{\mathrm{E}}$	$\frac{05}{20}$	$\frac{-18}{2}$
INTERVAL m		SAMPLE	INTERVAL m		CORE length m	TRUE width m	AUg/t	AG g/t ppm	$\begin{gathered} \text { CU } \\ \text { \% } \\ \text { ppm } \\ \text { ASSAY, } \end{gathered}$	$\begin{gathered} \text { PB } \\ \% \\ \text { ppm } \\ \text { STAND } \end{gathered}$	ZN\%ppmRD PR	$\begin{gathered} \text { AS } \\ \% \\ \text { ppm } \\ \text { NT- } \end{gathered}$
			FROM	то								
			m	m								
							BOLD PRINT-ICP					
96.5-99.1	Repeat of better mineralized section from above fault. Hetro breccia?											
	chert frags chl black arg, 10\% brown Py silitite,frags dol to 5 mm and	28761	96.5	98.0	1.5	1.06	0.07	1.3	0.01	0.09	0.16	0.07
	strs qtz / dol 1 -3mm random distribution.A little ($<1 \%$) Pb, Zn starting in	28762	98.0	99.1	1.1	0.78	0.27	6.3	0.06	0.45	0.68	0.37
	last 1 m . Gradual change to	28763	99.1	100.6	1.5	1.06	0.19	3.7	0.04	0.31	0.38	0.47
99.1-100.7	Chert, black, grey, graphitic breccia. 5-30\% sulphides- $\mathrm{Py}, 1 \% \mathrm{~Pb}, \mathrm{Zn}$.	28764	100.6	102.1	1.5	1.06	0.07	0.5	0.01	0.02	0.02	0.15
	Randon (20\%) 1-2cm qtz strs. Sharp contact with-	28765	102.1	103.6	1.5	1.06	0.20	2.5	0.02	0.19	0.15	0.61
100.7-105.7	Chert, chert breccia- buff(ser), grey, a little black. Bedding @ 45 deg.	28766	103.6	104.2	0.6	0.42	0.59	4.1	0.05	0.23	0.40	2.00
	$1-5 \%$ Py as frags and 1 mm strs. 3 cm NSS Py, v sl Pb,Zn @ 104.0. Sharp 1mm contact	28767	104.2	105.7	1.5	1.06	0.28	1.7	0.02	0.12	0.12	0.70
	with-	28768	105.7	107.3	1.6	1.13	0.14	0.8	0.01	0.05	0.07	0.09
105.7-113.4	Hetro breccia? - mixed dk grey mg tuff, chert frags,siltite bands, chl arg,	28769	107.3	108.9	1.6	1.13	0.26	4.7	0.04	0.09	0.13	0.37
	108.9-110.8 NSS to SS 80% Py,1-5\% Pb, Zn,Cu, sl 1-3mm banding.	28770	108.9	110.4	1.5	1.06	3.39	23.6	0.42	3.66	3.48	0.32
	Dol porphyrobl (1-5mm) starting @ 110.6 Flts 113.4 @ 80 deg.	28771	110.4	111.9	1.5	1.06	1.62	5.6	0.06	0.39	0.40	0.07
113.4-118.0	Chert breccia - buff sericitic alt, few Py siltite and few sulphide frags.	28772	111.9	113.4	1.5	1.06	0.51	2.9	0.02	0.18	0.22	0.06

118.0-121.5
121.5-133.2

EOH
few 1-2cm frags in flts.
Fault zone - grey mud.
Breccia - wacke, chl arg frags. 5\% Py in arg. Faults throughout @ 80 deg. Few 2-5 mm dol porphyrobl 132.5-133.0.

APPENDIX 3

DIAMOND DRILL HOLE ASSAY

 AVERAGES \& AVERAGE VALUES| AVERAGE VALUES | | | | | | | | | | HOLE \# $05-01$
 SHEET \# 2 of 2 | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | INTERVAL m | | CORE
 length
 m | TRUE
 width
 m | | AU
 g/t | AG
 g/t
 ppm | | $\begin{gathered} \text { CU } \\ \% \\ \mathrm{ppm} \end{gathered}$ | | $\begin{gathered} \text { PB } \\ \% \\ \mathrm{ppm} \end{gathered}$ | | $\begin{gathered} \text { ZN } \\ \% \\ \mathrm{ppm} \\ \hline \end{gathered}$ | | $\begin{gathered} \text { AS } \\ \% \\ \mathrm{ppm} \end{gathered}$ | | |
| SAMPLE \# | FROM m | $\begin{gathered} \text { TO } \\ \text { m } \\ \hline \end{gathered}$ | | | | | | | | | | | | | | |
| 29109 | 105.8 | 107.7 | | 1.9 | 1.87 | | 1.34 | 2.51 | 13.5 | 25.2 | 0.16 | 0.30 | 1.16 | 2.17 | 2.45 | 4.58 | 5.31 | 9.93 |
| 29110 | 107.7 | 108.9 | | 1.2 | 1.18 | 1.10 | 1.30 | 23.2 | 27.4 | 0.39 | 0.46 | 1.78 | 2.10 | 2.24 | 2.64 | 3.57 | 4.21 |
| 29111 | 108.9 | 110.0 | | 1.1 | 1.08 | 0.46 | 0.50 | 43.7 | 47.2 | 0.21 | 0.23 | 2.75 | 2.97 | 3.35 | 3.62 | 0.14 | 0.15 |
| 29112 | 110.0 | 111.0 | | 1.0 | 0.98 | 4.49 | 4.40 | 114.0 | 111.7 | 0.69 | 0.68 | 8.26 | 8.09 | 9.17 | 8.99 | 3.52 | 3.45 |
| 29113 | 111.0 | 112.0 | | 1.0 | 0.98 | 8.96 | 8.78 | 173.0 | 169.5 | 0.70 | 0.69 | 9.94 | 9.74 | 10.10 | 9.90 | 3.41 | 3.34 |
| 29114 | 112.0 | 113.0 | | 1.0 | 0.98 | 7.79 | 7.63 | 150.0 | 147.0 | 0.72 | 0.71 | 9.42 | 9.23 | 10.30 | 10.09 | 3.10 | 3.04 |
| 29115 | 113.0 | 114.5 | | 1.5 | 1.48 | 8.23 | 12.18 | 171.0 | 253.1 | 0.56 | 0.83 | 8.74 | 12.94 | 10.50 | 15.54 | 4.17 | 6.17 |
| 29116 | 114.5 | 115.1 | | 0.6 | 0.59 | 3.15 | 1.86 | 103.0 | 60.8 | 0.26 | 0.15 | 4.11 | 2.42 | 5.64 | 3.33 | 2.69 | 1.59 |
| | 105.8 | 115.1 | | | 9.14 | | 39.15 | | 841.93 | | 4.04 | | 49.67 | | 58.69 | | 31.88 |
| | | | | | | 4.28 | 4.28 | 92.1 | 92.11 | 0.44 | 0.44 | 5.43 | 5.43 | 6.42 | 6.42 | 3.49 | 3.49 |
| ASSUMED | METAL | VALUE | US \$/ Lb. | | | 475 | | 8.50 | | 1.75 | | 0.45 | | 0.85 | | | |
| GROSS | METAL | VALUE | US \$ | | | 59.27 | | 22.83 | | 15.40 | | 48.87 | | 109.14 | | | |
| TOTAL GROS | METAL VAL | ALUE US | | | | 255.51 | | | | | | | | | | | |
| EQUIVALENT | GOLD GRA | DE G/T | | | 9.14
 metres | 18.45 | | | | | | | | | | | |
| | 110.0 | 115.1 | | | 5.01 | | 34.85 | | 742.1 | | 3.05 | | 42.43 | | 47.85 | | 17.59 |
| | | | | | | 6.96 | 6.96 | 148.1 | 148.13 | 0.61 | 0.61 | 8.47 | 8.47 | 9.55 | 9.55 | 3.51 | 3.51 |
| ASSUMED | METAL | VALUE | US \$/ Lb. | | | 475 | | 8.50 | | 1.75 | | 0.45 | | 0.85 | | | |
| GROSS | METAL | VALUE | US \$ | | | 96.38 | | 36.71 | | 21.35 | | 76.23 | | 162.35 | | | |
| TOTAL GROS | METAL VAL | ALUE US | | | | 393.02 | | | | | | | | | | | |
| EQUIVALENT | GOLD GRA | DE G/T | 5.01 metres | | | 28.38 | | | | | | | | | | | |

AVERAGE VALUES $\quad \begin{aligned} & \text { HOLE \# } \\ & \text { SHEET \# - } \\ & \text { S }\end{aligned}$																	
$\begin{gathered} \text { SAMPLE } \\ \# \\ \hline \end{gathered}$	INTER FROM m	$\begin{gathered} \text { AL m } \\ \text { TO } \\ \text { m } \\ \hline \end{gathered}$	CORE length m	TRUE width m		AU g/t	AG g/t ppm		$\begin{gathered} \mathrm{CU} \\ \% \\ \mathrm{ppm} \\ \hline \end{gathered}$			$\begin{gathered} \text { PB } \\ \% \\ \mathrm{ppm} \\ \hline \end{gathered}$	$\begin{gathered} \text { ZN } \\ \text { \% } \\ \text { ppm } \\ \hline \end{gathered}$		$\begin{gathered} \text { AS } \\ \% \\ \mathrm{ppm} \end{gathered}$		
29119	114.2	115.3		1.1	1.06	2.59	2.75	35.5	37.63	0.57	0.60	3.24	3.43	5.05	5.35	0.73	0.77
29120	115.3	117.5		2.2	2.13	0.86	1.83	8.2	17.47	0.13	0.28	0.82	1.75	0.94	2.00	2.66	5.67
29121	117.5	117.7		0.2	0.19	5.78	1.10	31.6	6.00	0.72	0.14	3.85	0.73	9.36	1.78	12.90	2.45
29122	117.7	119.1		1.4	1.35	1.72	2.32	27.4	36.99	0.54	0.73	1.69	2.28	3.72	5.02	4.03	5.44
	114.2	119.1			4.73		8.00		98.09		1.75		8.19		14.16		14.33
						1.69	1.69	20.74	20.74	0.37	0.37	1.73	1.73	2.99	2.99	3.03	3.03
ASSUMED	METAL	VALUE	US \$/Oz Lb.			475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$			23.40		5.14		12.95		15.57		50.83			
TOTAL GROSS METAL VALUE US \$					107.89												
EQUIVALEN	T GOLD	RADE G/	4.73 metres			7.79											

AVERAGE VALUES

INTERVAL m			CORE length m	TRUE width m	AU g/t	AG g/t ppm		$\begin{gathered} \text { CU } \\ \% \\ \mathrm{ppm} \end{gathered}$			$\begin{gathered} \text { PB } \\ \% \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \text { ZN } \\ \text { \% } \\ \text { ppm } \end{gathered}$		$\begin{gathered} \text { AS } \\ \% \\ \mathrm{ppm} \end{gathered}$					
$\begin{gathered} \text { SAMPLE } \\ \# \\ \hline \end{gathered}$	$\begin{gathered} \text { FROM } \\ \mathbf{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { TO } \\ \text { m } \\ \hline \end{gathered}$																	
29123	22.4	23.6	1.2	1.20	0.35	0.42	5.5				6.6	0.09	0.11	0.27	0.32	0.62	0.74	0.79	0.95
29124	23.6	24.9	1.3	1.30	0.95	1.24	7.9	10.3	0.14	0.18	0.76	0.99	1.18	1.53	2.51	3.26			
29125	24.9	26.1	1.2	1.20	9.23	11.08	96.2	115.4	0.52	0.62	6.65	7.98	8.35	10.02	0.50	0.60			
29126	26.1	27.6	1.5	1.49	8.96	13.35	228.0	339.7	1.05	1.56	5.72	8.52	6.85	10.21	0.54	0.80			
29127	27.6	28.6	1.0	1.00	6.09	6.09	133.0	133.0	0.65	0.65	3.03	3.03	4.24	4.24	0.25	0.25			
29128	28.6	30.2	1.6	1.59	13.5	21.47	168.0	267.1	0.92	1.46	4.31	6.85	5.22	8.30	1.92	3.05			
				6.58		53.22		865.55		4.48		27.37		34.30		7.97			
	23.6	30.2		6.58	8.09		131.54		0.68		4.16		5.21		1.21				
ASSUMED	METAL	VALUE	US \$/Oz, Lb.		475		8.50		1.75		0.45		0.85						
GROSS	METAL	VALUE	US \$		112.00		32.60		23.85		37.44		88.62						
TOTAL GRO	SS METAL	VALUE			294.50														
EQUIVALEN	T GOLD	RADE G/		6.58metres	21.27														
				5.28		51.98		855.3		4.30		26.39		32.77		4.71			
	24.9	30.2		5.28	9.84		161.98		0.81		5.00		6.21		0.89				
ASSUMED	METAL	VALUE	US \$/Oz, Lb.		475		8.50		1.75		0.45		0.85						
GROSS	METAL	VALUE	US \$		136.34		40.14		28.51		44.98		105.50						
TOTAL GROSS METAL VALUE US \$					355.46														
EQUIVALENT GOLD GRADE				5.28metres	25.67														

AVERAGE VALUES									HOLE \# $05-06$ SHEET \# 1 of 2							
	INTERVAL m		CORE	TRUE width	AU		AG		CU		PB		ZN		AS	
SAMPLE \#	FROM m	$\begin{gathered} \text { TO } \\ \text { m } \\ \hline \end{gathered}$	length m	width m	g/t	g/t			\%		\%		\%		\%	
29135	43.2	44.8	1.6	1.13	2.86	3.23	49.5	55.9	0.63	0.71	3.55	4.01	4.15	4.69	0.61	0.69
29136	44.8	46.3	1.5	1.06	6.76	7.17	55.4	58.7	0.77	0.82	5.83	6.18	8.13	8.62	2.45	2.60
29137	46.3	47.8	1.5	1.06	6.93	7.35	52.3	55.4	0.50	0.53	6.75	7.16	9.44	10.01	1.41	1.49
29138	47.8	48.9	1.1	0.78	11.10	8.66	67.3	52.5	0.53	0.41	6.05	4.72	9.05	7.06	0.53	0.41
29139	48.9	51.2	2.3	1.63	0.47	0.77	25.2	41.1	0.25	0.41	0.37	0.60	0.39	0.64	0.11	0.18
29140	51.2	52.8	1.6	1.13	2.67	3.02	37.4	42.3	0.31	0.35	1.58	1.79	2.54	2.87	0.26	0.29
29141	52.8	53.7	0.9	0.64	6.20	3.97	178.0	113.9	1.78	1.14	7.26	4.65	5.35	3.42	0.88	0.56
29142	53.7	54.4	0.7	0.49	24.70	12.10	158.0	77.4	1.45	0.71	6.37	3.12	1.06	0.52	0.79	0.39
29143	54.4	55.3	0.9	0.64	25.30	16.19	86.2	55.2	0.74	0.47	4.05	2.59	5.54	3.55	0.60	0.38
29144	55.3	56.9	1.6	1.13	11.80	13.33	92.7	104.8	0.58	0.66	6.06	6.85	7.65	8.64	2.14	2.42
				9.69		75.78		657.2		6.21		41.66		50.01		9.42
	43.2	56.9		9.69	7.82		67.82		0.64		4.30		5.16		0.97	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		108.30		16.81		22.42		38.69		87.74			
EQUIVALEN	T GOLD	RADE		9.7 metres	19.78											

AVERAGE VALUES									HOLE \# 05-10							
			CORE	TRUE					SHEET \#		1 of 1					0.69
INTERVAL m					AU	AG			CU		PB	ZN				
SAMPLE\#	FROM		length	width	g/t		g/t		$\%$		\%		\%		\%	
	m	m	m	m			ppm									
29062	29.6	31.7	2.1	2.09	1.84	3.85	15.8	33.0	0.20	0.42	1.32	2.76	1.74	3.64	0.33	
29063	31.7	32.7	1.0	1.00	4.36	4.36	55.5	55.5	0.80	0.80	6.49	6.49	8.65	8.65	0.40	0.40
29064	32.7	34.2	1.5	1.49	7.23	10.77	61.7	91.9	0.93	1.39	4.86	7.24	6.96	10.37	0.47	0.70
29065	34.2	35.7	1.5	1.49	7.20	10.73	75.9	113.1	0.97	1.45	5.16	7.69	6.85	10.21	0.51	0.76
				6.07		29.71		293.55		4.05		24.18		32.86		2.55
	29.6	35.7		6.07	4.89		48.4		0.67		3.98		5.41		0.42	
ASSUMED	METAL	VALUE	US \$/Oz, Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		67.77		11.98		23.35		35.85		92.04			
TOTAL GROSS METAL VALUE US \$					230.99											
EQUIVALENT GOLD GRADE G/T				6.07metres	16.68											
29092	35.7	37.8	2.1	2.09	1.58	3.30	9.3	19.4	0.04	0.08	0.35	0.73	0.42	0.88	0.10	0.21
29093	37.8	39.6	1.8	1.79	1.95	3.49	10.3	18.4	0.03	0.05	0.19	0.34	0.22	0.39	0.16	0.29
				9.95		36.50		331.4		4.19		25.25		34.14		3.05
	29.6	39.6		9.95	3.67		33.3		0.42		2.54		3.43		0.31	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		50.80		8.25		14.73		22.84		58.32			
TOTAL GROSS METAL VALUE US \$					154.94											
EQUIVALENT GOLD GRADE G/T				9.95 metres	11.19											

APPENDIX 4
 CERTIFICATES OF ANALYSIS

ASSAYING
GEOCHEMISTRY
ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2005-953

Bronx Ventures Inc.
1-Sep-05
6th Floor, 1199 W. Hastings
Vancouver, BC
V6E 3T5
No. of samples received: 43
Sample type:Rock
Submitted by: J.W. Murton
Project: Bronx

Page 1

J/bw
XLS/05

Eco Tech u bortiory lto.
Page 2

ASSAYING GEOCHEMISTRY

CERTIFICATE OF ASSAY AK 2005-953AS

Bronx Ventures Inc.

6th Floor, 1199 W. Hastings
Vancouver, BC
V6E 3T5

No. of samples received: 43
Sample type:Rock
Submitted by: J.W. Murton
Project: Bronx
Additional Assay Request:

2-Sep-05
ECO TECH LABORATORY LTD.
10041 Dalias Drive
KAMLOOPS, B.C.
V2C 6 T4
Phone: 250-573-57n0

Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 2005-953

Bronx Ventures Inc.
6th Floor, 1199 W. Hastings Vancouver, BC
V6E 3 T5

No. of samples received: 43 Sample Type: Rock Submitted by:J.W. Murton Project \#:Bronx

Et \#.	Tag \#		Al \%	As	Ba	Bi	Ca \%	Cd	Co	Cr	Cu	$\mathrm{Fe} \%$	La	Mg \%	Mn	Mo	$\mathrm{Na} \%$	Ni	P	Pb	Sb	Sn	Sr	11\%	U	V	W	Y	$\frac{\mathrm{Zn}}{70}$
1	28950	3.1	0.36	790	160	<5	0.05	3	5	28	14	4.38	<10	0.04	152	8	0.07	5	410	146	15	<20	53	<0.01	<10	24	<10	2	76
2	28951	5.0	0.25	460	330	<5	0.04	2	1	39	11	2.74	<10	0.03	18	10	0.02	2	300	464	15	<20	32	<0.01	<10	27	<10	1	57
3	28952	2.7	0.19	590	95	5	0.07	3	2	98	45	5.61	<10	0.04	59	17	0.07	2	970	810	10	<20	473	<0.01	<10	25	<10	1	67
4	28953	0.8	1.00	830	170	10	0.12	4	12	116	89	9.98	<10	0.57	208	7	0.02	38	1300	156	10	<20	136	0.06	<10	47	20	3	319
5	28954	1.0	0.30	265	70	20	3.92	2	29	103	158	>10	<10	2.24	>10000	<1	<0.01	73	500	160	10	<20	106	<0.01	<10	27	30	22	115
6	28955	0.2	3.33	750	65	10	0.17	4	38	130	143	8.54	<10	2.82	1050	2	0.01	103	940	36	10	<20	19	<0.01	<10	88	10	4	232
7	28956	0.1	2.58	705	75	10	0.07	4	35	118	138	9.15	<10	2.02	798	<1	0.02	81	1140	30	5	<20	14	<0.01	<10	73	10	3	249
8	28957	0.5	3.44	4455	105	10	0.07	21	40	136	234	>10	<10	3.17	1309	<1	<0.01	81	1370	226	20	<20	73	<0.01	<10	85	20	7	441
9	28958 TR2	11.0	1.75	5120	40	10	1.28	27	20	101	884	>10	<10	2.13	1070	11	<0.01	44	1690	2798	140	<20	118	<0.01	<10	68	20	5	675
10	28959	0.7	2.32	>10000	70	10	5.60	59	21	49	474	8.01	<10	5.61	3103	1	<0.01	34	1260	534	25	<20	133	<0.01	<10	38	10		1153
11	28960	0.3	3.32	3230	85	10	0.08	14	14	62	319	6.84	<10	3.56	1266	2	<0.01	20	2040	158	15	<20	48	<0.01	<10	53	10	6	246
12	28961	0.8	3.07	1120	130	5	0.48	10	19	46	263	7.75	<10	4.03	2425	2	<0.01	21	1700	544	10	<20	34	<0.01	<10	49	10		77
13	28963	10.2	1.87	4455	275	10	0.12	38	12	62	444	>10	<10	1.76	413	9	<0.01	19	2020	1776	55	<20	93	<0.01	<10	35	20		2043
14	28964	0.9	0.45	800	335	<5	0.03	6	2	30	39	2.39	<10	0.12	50	1	0.03	3	280	130	10	<20	24	<0.01	<10	8	<10	3	275
15	28965	2.1	2.63	2805	255	10	0.07	22	7	49	233	>10	<10	3.14	300	5	<0.01	13	1500	390	30	<20	25	<0.01	<10	27	20	5	1389
16	$28966^{\text {TR3 }}$	1.8	2.89	3165	235	15	0.08	25	16	81	200	>10	<10	3.13	404	12	<0.01	33	1500	960	30	<20	25	<0.01	<10	61	20		2020
17	28967	1.0	0.68	4430	310	15	0.17	25	13	95	214	>10	<10	0.15	383	13	<0.01	27	1810	206	10	<20	25	<0.01	<10	30	20	6	1140
18	28968	0.7	1.66	1620	205	15	0.15	15	320	121	153	>10	<10	0.39	6804	6	<0.01	296	1440	134	<5	<20	23	0.01	<10	36	20	19	1465
19	28969	0.2	0.29	165	90	5	0.15	4	21	115	205	5.33	<10	0.08	947	2	0.02	36	590	16	<	<20	9	<0.01	<10	22	<10	9	626
20	28970	>30	0.09	>10000	20	20	0.45	142	3	96	1123	>10	<10	0.02	39	148	<0.01	<1	4170	>10000	510	<20	83	<0.01	<10	20	40		2683
21	28971	>30	0.69	>10000	50	20	0.23	61	15	134	541	>10	<10	0.38	127	76	0.05	32	7350	>10000	125	<20	149	0.09	<10	95	40	2	532
22	28972	0.2	0.17	145	75	<5	0.02	<1	4	107	34	3.52	<10	<0.01	118	4	<0.01	10	620	134	<	<20	7	<0.01	<10	6	<10	2	160
23	28973 TR 9	1.4	0.27	540	165	<5	0.05	3	3	80	67	3.77	<10	0.02	50	,	0.01	8	480	276	15	<20	44	<0.01	<10	20	<10	3	156
24	28974	5.1	0.31	1700	290	<	0.07	7	<1	26	40	3.99	<10	0.06	16	53	0.04	<1	110	746	50	<20	24	<0.01	<10	25	<10	2	55
25	28975	0.1	0.28	35	255	<5	4.32	1	6	115	28	1.48	<10	2.69	2418	1	0.02	14	760	24	<	<20	296	<0.01	<10	2	<10	18	69
26	$28976{ }^{T R 10}$	5.3	0.64	3135	450	< 5	0.34	18	13	58	256	6.68	<10	0.22	363	12	0.02	29	1040	1182	85	<20	63	<0.01	<10	20	10	8	947
27	28977	0.3	0.07	60	20	< 5	>10	1	4	47	17	2.39	<10	8.24	7417	<1	0.01	9	210	240	<	<20	404	<0.01	<10	13	<10	9	158
28	28978	<0.2	0.09	25	25	<	7.54	2	7	67	3	1.77	<10	4.65	6411	<1	<0.01	17	90	10	<5	<20	385	<0.01	<10	13	<10	18	145
29	28979 TR II	5.4	0.72	3810	160	<	0.27	17	13	87	105	3.63	<10	0.55	323	2	0.03	26	470	2410	35	<20	45	<0.01	<10	16	<10	2	277
30	28980	0.1	0.09	30	40	<5	1.04	<1	6	114	7	0.97	<10	0.58	613	<1	<0.01	11	40	10	<5	<20	190	<0.01	<10	2	<10	2	34

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2005-953

Bronx Ventures Inc.

Et \#\#.	Tag \#	Ag	Al \%	As	Ba	8 Bi	Ca \%	Cd	Co	Cr	Cu	Fe \%	La	Mg \%	Mn	Mo	$\mathrm{Na} \%$	Ni	P	Pb	Sb	Sn	Sr	Ti \%	U	V	W	Y	Zn
31	28981	0.5	3.08	170	35	5	1.02	2	31	72	97	7.84	<10	4.15	1013	3	0.02	38	1370	90	10	<20	41	<0.01	<10	49	10	6	120
32	28982	0.4	4.12	180	145	5	0.30	2	35	65	110	8.62	<10	5.45	1386	3	<0.01	43	1620	176	10	<20	35	<0.01	<10	78	10	9	260
33	28983 TRII	1.1	1.10	165	170	5	5.83	5	24	84	204	5.46	<10	5.41	6094	3	<0.01	47	1020	996	20	<20	605	<0.01	<10	26	<10	25	831
34	28984	0.2	0.54	70	115	5	6.58	3	11	58	45	3.16	<10	4.63	3055	<1	<0.01	22	150	192	5	<20	724	<0.01	<10	13	<10	11	513
35	28985	>30	0.21	>10000	60	15	0.30	295	3	104	2696	>10	<10	0.05	170	533	<0.01	<1	420	>10000	4855	<20	203	<0.01	<10	82	40	<1	6654
36	28986 TR 4	>30	0.12	>10000	40	15	0.44	170	3	91	2859	>10	<10	0.04	340	175	<0.01	<1	110	>10000	2325	<20	339	<0.01	<10	27	40	1	2666
37	28987 T	>30	1.13	>10000	610	20	0.31	49	8	133	2948	>10	<10	0.04	312	138	<0.01	28	940	>10000	935	<20	55	<0.01	<10	105	40	1	1988
38	28988	1.6	1.64	485	365	5	8.96	5	41	26	117	4.81	10	7.83	7505	7	<0.01	42	340	642	15	<20	136	<0.01	<10	46	<10	23	681
39	28989	1.5	2.18	430	30	5	0.03	1	13	48	48	6.07	<10	2.42	226	12	0.02	13	230	182	10	<20	14	<0.01	<10	50	<10	2	103
40	28990 TR 5	1.7	0.97	1065	175	20	0.20	6	21	134	311	>10	<10	0.39	690	3	<0.01	43	3170	138	<5	<20	338	0.09	<10	70	30	5	941
41	28991 TR 7	1.2	1.55	875	245	10	0.13	10	40	108	358	>10	<10	0.45	714	2	<0.01	54	1230	228	<5	<20	27	0.07	<10	42	20	8	834
42	28992 TB 6	0.2	1.11	785	230	20	0.15	6	23	149	175	>10	<10	0.30	327	2	0.01	33	2940	56	<5	<20	28	0.11	<10	62	40	7	729
43	NOTAG \# 28912	3.9	1.66	920	365	10	0.14	4	15	102	187	8.12	<10	1.19	2397	13	0.01	24	1170	542	10	<20	94	<0.01	<10	43	10	10	949

QC DATA:

CERTIFICATE OF ASSAY AK 2005-1225

Bronx Ventures Inc.
6th Floor, 1199 W. Hastings
Vancouver, BC
V6E 3T5

No. of samples received:15
Sample Type: Core
Submitted by:J. W. Murton
Project \#:Bronx

ET \#.	Tag\#		$\begin{array}{r} \mathrm{Au} \\ (\mathrm{~g} / \mathrm{t}) \end{array}$	$\begin{array}{r} \mathrm{Au} \\ (\mathrm{oz} / \mathrm{t}) \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ (\%) \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ (\%) \\ \hline \end{array}$
1	28993		0.03	0.001		
2	28994	DDH	<0.03	<0.001		
3	28995	05-01	0.17	0.005		
4	28996		0.48	0.014	1.64	1.75
5	28997		0.08	0.002		
6	28998		0.05	0.001		
7	28999		0.17	0.005	1.46	1.85
8	29900		0.23	0.007		
9	29101		0.16	0.005		
10	29102		0.19	0.006		
11	29103		0.15	0.004		
12	29104		0.39	0.011		
13	29105		0.36	0.010		
14	29106		0.54	0.016		
15	29107		0.23	0.007		

QC DATA:					
Repeat:			0.03	<0.001	
1	28993	0.47	0.014	1.64	1.75
4	28996	0.38	0.011		
12	29104	0.35	0.010		
13	29105	0.52	0.015		
14	29106				
Resplit:		<0.03	<0.001		
1	28993				
Standard:		1.84	0.054		
OX140				0.52	0.84
PB106					

JJ/ga
XLS/04

ECD TECH LABORATORY LTD.
Jutha Jealouse
B.C. Certified Assayer

ECO TECH LABORATORY LTD.
10041 Dallas Drive
KAMLOOPS, B.C.
V2C 6 T4

ICP CERTIFICATE OF ANALYSIS AK 2005-1225

Bronx Ventures Inc
6th Floor, 1199 W. Hastings
Vancouver, BC
V6E 3T5

Phone: 250-573-5700
Fax : 250-573-4557
No. of samples received: 15 Sample Type: Core
Submitted by:J. W. Murton
Project :Bronx
Values in ppm unless otherwise reported

Et \#.	Tag\#		Al \%	As	Ba	Bi	$\mathrm{Ca} \%$	Cd	Co	Cr	Cu	$\mathrm{Fe} \%$	La	Mg \%	Mn	Mo	Na \%	Ni	P	Pb	Sb	Sn	Sr	Ti \%	U	V	W	Y	Zn
DD	28993	<0.2	0.41	90	40	10	8.35	<1	38	67	52	7.10	<10	4.51	2250	5	0.06	145	1200	10	<5	<20	122	<0.01	<10	23	<10	1	57
2050	28994	<0.2	0.39	70	45	5	4.50	<1	35	43	89	6.32	<10	2.71	1907	5	0.08	87	590	8	<	<20	65	<0.01	<10	23	<10	<1	76
3	28995	2.7	1.83	300	70	< 5	4.13	6	43	85	148	9.26	<10	4.99	3580	6	0.04	102	520	1774	15	<20	119	<0.01	<10	58	<10	<1	1612
4	28996	11.8	0.16	9165	40	<5	0.52	46	16	84	655	5.14	<10	0.28	376	<1	0.03	29	370	>10000	45	<20	23	<0.01	<10	4	<10	<1	>10000
5	28997	1.1	0.52	885	40	<5	1.03	2	24	59	45	5.53	<10	0.94	868	6	0.03	45	310	570	<	<20	25	<0.01	<10	8	<10	<1	47
6	28998	2.1	0.2	1280	35	< 5	0.30	5	14	58	181	3.45		0.21	26	2	0.02	28	120	124	<5	<20	8	<0.01	<10	3	<10	<1	1319
7	28999	22.1	0.25	4070	35	<5	0.34	50	20	73	2168	6.08	<10	0.35	454	<1	0.03	32	<10	>10000	45	<20	15	<0.01	<10	3	<10	<1	10000
8	29900	1.7	0.35	5545	30	5	0.58	<1	25	56	66	4.65	<10	0.52	448	4	0.02	69	370	750	10	<20	22	<0.01	<10	8	<10	<1	999
9	29101	1.2	0.3	4830	40	<5	2.73	<1	12	74	31	3.91	<10	1.75	1874	3	0.03	29	200	442	20	<20	79	<0.01	<10	8	<10	<1	403
10	29102	1.2	0.24	3605	30	10	0.46	<1	20	55	27	5.09	<10	0.31	308	5	0.02	57	260	112	5	<20	23	<0.01	<10	3	<10	<1	65
11	29103	1.5	0.19	1430	40	5	0.30	<1	11	77	26	3.29	<10	0.19	213	2	0.02	21	100	472	<	<20	15	<0.01	<10	1	<10	<1	66
12	29104	2.8	0.21	3765	50	< 5	0.19	3	15	49	83	3.66	<10	0.13	131	2	0.02	25	120	1024	10	<20	12	<0.01	<10	2	<10	<1	1451
13	29105	11.6	0.21	560	30	<	0.21	19	17	92	1422	4.21	<10	0.14	101	3	0.02	27	<10	4776	20	<20	12	<0.01	<10	2	<10	<1	6113
14	29106	11.4	0.59	1105	50	< 5	1.80	26	35	30	917	9.53	<10	1.61	501	7	0.04	48	290	6460	20	<20	52	<0.01	<10	8	<10	<1	7076
15	29107	6.6	1.21	540	55	< 5	7.32	17	17	25	946	5.41	<10	5.99	1470	<1	0.04	22	120	3944	125	<20	189	<0.01	<10	18	<10	<1	84

QC DATA:

Resplit: 1	28993	<0.2	0.38	100	55	10	8.15	<1	39	60	59	7.37	<10	4.282186	5	0.06	1481230	10	5	<20	117	<0.01	<10	22	<10	<1	69
Repeat: 1	28993	<0.2	0.39	90	60	15	8.23	<1	39	67	51	6.97	<10	4.282198	5	0.06	1431220	14	<	<20	128	<0.01	<10	21	<10	3	59
Standard GEO '05		1.5	1.33	50	150	<5	1.22	<1	19	60	86	3.45	<10	0.75541	<1	0.02	28570	24	<5	<20	54	0.11	<10	70	<10	9	74

ASSAYING
GEOCHEMISTRY
ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING 10041 Dallas Drive, Kamloops, BC V2C $6 T 4$ Phone (250) 573-5700 Fax (250) 573-4557

E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2005-1279

Bronx Ventures Inc.
20-Oct-05
6th Floor, 1199 W. Hastings
Vancouver, BC
V6E 3T5

No. of samples received: 65
Sample type: Core
Submitted by: J.W. Murton
Project: Bronx

ET\#.	Tag \#		$\begin{array}{r} \mathrm{Au} \\ (\mathrm{~g} / \mathrm{t}) \end{array}$	$\begin{array}{r} \mathrm{Au} \\ (\mathrm{oz} / \mathrm{t}) \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{t}) \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ (\mathrm{oz} / \mathrm{t}) \end{array}$	As (\%)	$\begin{gathered} \mathrm{Cu} \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ (\%) \end{gathered}$	$\begin{gathered} \mathrm{Zn} \\ (\%) \end{gathered}$
25	29132	DDH	3.99	0.116	89.4	2.61	0.26	0.50	3.77	4.56
26	29133	05.05	5.20	0.152	91.5	2.67	0.36	0.90	4.26	5.03
27	29134		8.76	0.255	129	3.76	0.49	1.02	3.84	4.05
28	29135		2.86	0.083	49.5	1.44	0.61	0.63	3.55	4.15
29	29136	DbH	6.76	0.197	55.4	1.62	2.45	0.77	5.83	8.13
30	29137	05-66	6.93	0.202	52.3	1.53	1.41	0.50	6.75	9.44
31	29138		11.1	0.324	67.3	1.96	0.53	0.53	6.05	9.05
32	29139		0.47	0.014	25.2	0.74	0.11	0.25	0.37	0.39
33	29140		2.67	0.078	37.4	1.09	0.26	0.31	1.58	2.54
34	29141		6.20	0.181	178	5.19	0.88	1.78	7.25	5.35
35	29142		24.7	0.720	158	4.61	0.79	1.45	6.37	10.6
36	29143		25.3	0.738	86.2	2.51	0.60	0.74	4.05	5.54
37	29144		11.8	0.344	92.7	2.70	2.14	0.58	6.06	7.65
38	29145		4.94	0.144	54.1	1.58	2.01	0.30	3.08	3.85
39	29146	DDH	1.30	0.038	13.1	0.38	1.02	0.09	0.71	1.87
40	29147	05.07	5.23	0.153	35.4	1.03	4.33	0.46	3.24	5.98
41	29148		1.87	0.055	23.2	0.68	1.93	0.18	2.18	3.44
42	29149		4.63	0.135	49.5	1.44	4.04	0.43	6.7	8.96
43	29150		8.69	0.253	97.9	2.86	4.16	0.94	6.25	7.46
44	29051		9.75	0.284	91.2	2.66	2.27	0.63	5.65	7.35
45	29052		2.16	0.063	51.7	1.51	1.28	0.36	3.83	5.05
46	29053	DDH	2.36	0.069	83.9	2.45	0.46	0.68	6.62	9.15
47	29054	65-08	1.09	0.032	11.1	0.32	1.67	0.16	1.23	2.65
48	29055		4.68	0.136	52.9	1.54	8.82	0.90	4.34	5.03
49	$\underline{29056}$		5.20	0.152	44.1	1.29	8.90	0.86	3.85	4.76
50	29057	SDH	1.85	0.054	13.2	0.39	0.71	0.08	0.95	1.99
51	29058	DDH	0.80	0.023	7.6	0.22	0.15	0.04	0.45	1.01
52	29059	05-09	2.31	0.067	11.6	0.34	4.38	0.10	1.38	4.32
53	29060		2.47	0.072	19.2	0.56	7.36	0.15	2.09	4.15
54	29061		3.38	0.099	91.7	2.67	1.97	0.53	3.84	4.94
55	29062	DDH	1.84	0.054	15.8	0.46	0.33	0.20	1.32	1.74
56	29063	O5-10	4.36	0.127	55.5	1.62	0.40	0.80	6.49	8.65
57	29064		7.23	0.211	61.7	1.80	0.47	0.93	4.86	6.96
58	29065	S	7.20	0.210	75.9	2.21	0.51	0.97	5.16	6.85
59	29066	S8H	0.18	0.005	2.3	0.07	0.21	0.01	0.07	0.12
60	29067		0.14	0.004	1.1	0.03	0.05	0.01	0.05	0.05
61	29068	05.03	1.67	0.049	9.2	0.27	2.51	0.14	0.53	0.92
62	29069		0.39	0.011	8.4	0.25	0.64	0.04	0.58	1.29
63	29070		0.57	0.017	15.1	0.44	1.74	0.13	1.04	3.25
64	29071		0.56	0.016	9.3	0.27	1.16	0.03	0.85	1.28

Page 2

ECO TECH LABORATORY LTD.
10041 Dallas Drive
KAMLOOPS, B.C.
V2C 6 T4

Phone: 250-573-5700
Fax : 250-573-4557

Values in ppm unless otherwise reported

Bronx Ventures Inc.
6th Floor, 1199 W. Hastings
Vancouver, BC
V6E 3T5

No. of samples received: 65
Sample Type: Core
Submitted by: J.W. Murton
Project \#: Bronx

Et \#.	Tag \#		Ag	Al \%	As	Ba	Bi	$\mathrm{Ca} \%$	Cd	Co	Cr	Cu	Fe \%	La	Mg \%	Mn	Mo	Na \%	Ni	P	Pb	Sb	Sn	Sr	Ti \%	U	V	W	Y	Zn
	29108		5.2	1.17	5850	55	<5	2.90	2	21	26	585	7.40	<10	4.48	1442	3	0.02	31	460	4806	35	<20	130	<0.01	<10	16	<10	<1	>10000
2	29109		13.5	0.33	>10000	40	<5	1.78	<1	20	23	1638	8.78	<10	2.23	1154	<1	0.02	17	70	>10000	105	<20	80	<0.01	<10	6	<10	<1	>10000
3	29110		23.9	0.85	>10000	60	<5	1.74	<1	28	14	3688	>10	<10	2.81	1127	4	0.01	24	970	>10000	145	<20	67	<0.01	<10	41	<10	<1	>10000
4	29111		>30	0.67	1390	70	<5	0.31	131	30	20	2013	>10	<10	0.90	300	1	0.01	16	260	>10000	20	<20	13	<0.01	<10	24	<10	<1	>10000
5	29112		>30	0.22	>10000	110	<5	1.27	319	18	18	6694	>10	<10	1.22	1003	<1	<0.01	8	620	>10000	195	<20	49	<0.01	<10	29	<10	<1	>10000
6	29113	OS-01	>30	0.06	>10000	95	<5	0.84	369	18	13	6869	>10	<10	0.78	1160	12	<0.01	26	<10	>10000	320	<20	30	<0.01	<10	21	<10	<1	>10000
7	29114		>30	0.03	>10000	95	<5	0.89	315	13	10	6901	>10	<10	1.03	1296	<1	<0.01	16	<10	>10000	315	<20	30	<0.01	<10	25	<10	<1	>10000
8	29115		>30	0.07	>10000	95	<5	0.82	189	11	11	5399	>10	<10	0.77	1013	<1	<0.01	36	<10	>10000	360	<20	32	<0.01	<10	20	<10	<1	>10000
9	29116		>30	0.26	>10000	70	<5	0.13	72	27	31	2422	>10	<10	0.05	62	25	0.01	76	220	>10000	155	<20	7	<0.01	<10	13	<10	<1	>10000
10	29117		1.3	0.68	215	45	5	1.64	<1	31	19	108	8.93	<10	1.79	846	7	<0.01	11	1160	474	<5	<20	52	<0.01	<10	25	<10	<1	384
11	29118		0.6	2.40	220	75	15	1.03	<1	25	34	209	>10	<10	4.00	852	44	<0.01	8	1010	338	<5	<20	48	<0.01	<10	40	<10	<1	241
12	29119		>30	0.62	7350	70	<5	2.05	<1	23	22	5546	>10	<10	2.12	1100	<1	0.01	21	630	>10000	165	<20	61	<0.01	<10	6	<10	<1	>10000
13	29120		7.5	1.67	>10000	50	<5	0.22	<1	35	38	1201	>10	<10	2.05	211	7	0.02	69	390	8236	35	<20	8	<0.01	<10	15	<10	<1	9720
14	29121	O2	>30	0.37	>10000	80	<5	0.54	210	33	23	7099	>10	<10	0.63	523	<1	0.01	14	<10	>10000	285	<20	23	<0.01	<10	3	<10	<1	>10000
15	29122		27.6	1.00	>10000	50	<5	0.19	<1	32	55	5296	9.60	<10	1.14	173	<1	0.02	55	260	>10000	205	<20	11	<0.01	<10	15	<10	<1	>10000
16	29123	BDCH	5.1	0.21	7935	45	<5	0.12	<1	28	71	852	8.18	<10	<0.01	23	5	0.01	68	510	2346	<5	<20	14	<0.01	<10	5	<10	<1	6221
17	29124		7.7	0.36	>10000	40	<5	0.95	<1	22	75	1290	6.33	<10	0.41	290	6	<0.01	69	500	7396	55	<20	39	<0.01	<10	11	<10	<1	>10000
18	29125		>30	0.07	>10000	105	<5	0.51	<1	16	20	5073	>10	<10	0.37	400	7	<0.01	38	<10	>10000	245	<20	41	<0.01	<10	21	<10	<1	>10000
19	29126		>30	0.16	5590	90	<5	2.41	172	14	18	>10000	>10	<10	2.12	965	46	<0.01	105	<10	>10000	550	<20	88	<0.01	<10	70	<10	<1	>10000
20	29127		> 30	0.69	2545	120	<5	1.70	109	31	23	6447	>10	<10	1.60	486	36	<0.01	91	<10	>10000	200	<20	21	<0.01	<10	22	<10	<1	>10000
21	29128		>30	0.36	>10000	120	<5	1.26	78	31	30	8808	>10	<10	1.18	403	48	<0.01	102	<10	>10000	630	<20	34	<0.01	<10	21	<10	<1	>10000
22	29129	DDH	>30	0.06	9785	105	<5	1.04	278	11	18	7923	>10	<10	0.83	799	<1	<0.01	11	<10	>10000	220	<20	54	<0.01	<10	27	<10	<1	>10000
23	29130		>30	0.06	6785	105	<5	1.61	372	10	17	6069	>10	<10	1.54	1092	28	<0.01	102	<10	>10000	200	<20	94	<0.01	<10	36	<10	<1	>10000
24	29131		>30	0.34	4120	140	<5	2.34	160	14	25	>10000	>10	<10	2.12	1066	36	0.01	72	<10	>10000	250	<20	58	<0.01	<10	52	<10	<1	>10000
25	29132		>30	0.13	2450	135	<5	2.33	121	13	15	4859	>10	<10	2.81	982	51	<0.01	70	<10	>10000	225	<20	24	<0.01	<10	53	<10	<1	>10000
26	29133		>30	0.40	3525	125	<5	0.89	140	19	19	8930	>10	<10	1.11	472	59	<0.01	83	800	>10000	300	<20	13	<0.01	<10	40	<10	<1	>10000
27	29134		>30	0.34	4770	100	<5	1.53	103	15	19	>10000	>10	<10	1.86	949	80	0.01	78	<10	>10000	420	<20	32	<0.01	<10	58	<10	<1	>10000
28	29135	DDH	>30	0.15	6015	75	<5	0.53	73	23	18	6130	>10	<10	1.84	1187	12	0.02	51	150	>10000	35	<20	27	<0.01	<10	10	<10	<1	>10000
29	29136	05.	>30	0.10	>10000	100	<5	0.36	197	19	29	7531	>10	<10	0.87	809	<1	0.01	27	190	>10000	95	<20	18	<0.01	<10	15	<10	<1	>10000
30	29137	06	>30	0.05	>10000	100	<5	0.88	295	13	30	4800	>10	<10	0.87	900	1	<0.01	31	180	>10000	90	<20	54	<0.01	<10	26	<10	<1	>10000

Et \#.	Tag \#		Ag	AI \%	As	Ba	Bi	Ca \%	Cd	Co	Cr	Cu	Fe \%	La	Mg \%	Min	Mo	Na \%	Ni	P	Pb	Sb	Sn	Sr	Ti \%	U	V	W	Y	Zn
31	29138		>30	0.11	5205	115	<5	1.09	314	14	23	5214	>10	<10	1.28	908	7	<0.01	35	100	>10000	90	<20	52	<0.01	<10	50	<10	<1	>10000
32	29139	DDH	22.4	0.31	1100	130	<5	>10	4	3	53	2415	2.36	<10	7.28	1776	21	<0.01	22	<10	3366	195	<20	886	<0.01	<10	144	<10	6	3720
33	29140	05	>30	0.40	2620	105	<5	5.27	63	12	51	3337	8.01	<10	5.49	1589	101	<0.01	87	10	>10000	205	<20	410	<0.01	<10	93	<10	<1	>10000
34	29141	06	>30	1.17	87.20	155	<5	2.59	147	16	38	>10000	>10	<10	2.48	1036	84	<0.01	68	<10	>10000	850	<20	23	<0.01	<10	53	<10	<1	>10000
35	29142		>30	0.28	7855	125	<5	0.25	329	12	31	>10000	>10	<10	<0.01	96	17	<0.01	82	80	>10000	420	<20	16	<0.01	<10	14	<10	<1	>10000
36	29143		>30	0.42	5955	100	<5	0.12	123	17	15	7317	>10	<10	<0.01	39	20	<0.01	52	330	>10000	165	<20	<1	<0.01	<10	14	<10	<1	>10000
37	29144		>30	0.19	>10000	80	<5	0.35	169	26	34	5374	>10	<10	0.08	174	<1	<0.01	62	290	>10000	130	<20	9	<0.01	<10	11	<10	<1	>10000
38	29145		>30	0.14	>10000	90	<5	0.39	15	21	26	2980	>10	<10	0.25	474	2	0.02	15	<10	>10000	35	<20	24	<0.01	<10	1	<10	<1	>10000
39	29146		9.0	0.84	>10000	55	<5	1.38	7	15	19	846	>10	<10	2.38	841	18	0.01	4	300	6818	15	<20	38	<0.01	<10	3	<10	<1	>10000
40	29147	$\begin{gathered} 05- \\ 07 \end{gathered}$	>30	0.44	>10000	70	<5	1.69	20	22	20	4206	>10	<10	2.14	1293	<1	<0.01	2	330	>10000	125	<20	74	<0.01	<10	2	<10	<1	>10000
41	29148		20.1	0.86	>10000	80	<5	0.40	26	16	41	1790	10	<10	1.42	51	14	<0.01	13	600	>10000	<	<20	30	<0.01	<10	7	<10	<1	>10000
42	29149		>30	0.24	>10000	90	<5	0.33	127	16	31	4516	>10	<10	<0.01	108	<1	<0.01	29	1130	>10000	105	<20	21	<0.01	<10	20	<10	<1	>10000
43	29150		>30	0.14	>10000	75	<5	0.68	104	18	25	8848	>10	<10	0.51	1167	14	<0.01	41	2730	>10000	215	<20	44	<0.01	<10	39	<10	<1	>10000
44	29051		>30	0.18	>10000	115	<5	1.07	129	16	27	5753	>10	<10	0.83	1217	6	<0.01	49	<10	>10000	165	<20	66	<0.01	<10	34	<10	<1	>10000
45	29052		>30	0.33	>10000	75	<5	0.76	108	22	45	3586	>10	<10	0.82	514	7	0.01	31	1220	>10000	25	<20	28	<0.01	<10	27	<10	<1	>10000
46	29053		>30	0.07	4485	55	<5	2.50	326	12	22	6290	>10	<10	2.36	1544	<1	<0.01	33	<10	>10000	85	<20	64	<0.01	<10	36	<10	<1	>10000
47	29054		10.5	1.29	>10000	60	<5	0.58	<1	20	15	1479	>10	<10	2.06	266	11	<0.01	9	500	>10000	30	<20	17	<0.01	<10	5	<10	<1	>10000
48	29055		>30	0.57	>10000	50	<5	2.03	<1	28	36	8845	>10	<10	1.93	1068	<1	0.01	24	<10	>10000	225	<20	59	<0.01	<10	5	<10	<1	>10000
49	29056		>30	0.54	>10000	70	<5	1.53	<1	28	28	7995	>10	<10	1.81	1081	<1	<0.01	17	<10	>10000	160	<20	55	<0.01	<10	6	<10	<1	>10000
50	29057		11.1	1.32	7135	55	<5	2.99	4	25	40	766	>10	<10	3.87	1388	<1	0.01	40	550	9354	5	<20	66	<0.01	<10	17	<10	<1	>10000
51	29058		7.8	0.85	1455	40	<5	2.16	26	19	45	17	7.50	<10	2.84	1429	5	0.02	34	230	4350	25	<20	58	<0.01	<10	9	<10	<1	>10000
52	29059		10.5	1.62	>10000	60	<5	0.53	<1	31	51	858	>10	<10	2.59	528	<1	0.01	48	330	>10000	25	<20	23	<0.01	<10	21	<10	<1	>10000
53	29060		18.6	1.26	>10000	75	<5	1.79	<1	27	45	1289	>10	<10	2.46	999	<1	0.01	39	290	>10000	110	<20	53	<0.01	<10	17	<10	<1	>10000
54	29061		>30	0.34	>10000	75	<5	2.05	37	11	20	5101	>10	<10	2.13	1446	30	<0.01	65	<10	>10000	175	<20	80	<0.01	<10	34	<10	<1	>10000
55	29062	$\begin{aligned} & \Delta D H \\ & 05-1 c \end{aligned}$	14.3	0.74	3250	35	<5	2.77	48	33	53	1906	>10	<10	2.85	1275	4	0.02	73	650	>10000	25	<20	59	<0.01	<10	15	<10	<1	>10000
56	29063		>30	0.08	4020	100	<5	1.26	277	15	21	7716	>10	<10	1.13	759	<1	<0.01	26	360	>10000	10	<20	48	<0.01	<10	13	<10	<1	>10000
57	29064		>30	0.12	4700	90	<5	0.66	168	13	29	9070	>10	<10	0.50	525	<1	0.01	28	<10	>10000	<5	<20	28	<0.01	<10	8	<10	<1	>10000
58	29065		>30	0.08	5130	95	<5	0.71	157	15	26	8952	>10	<10	0.49	513	<1	<0.01	72	80	>10000	<5	<20	35	<0.01	<10	11	<10	<1	>10000
59	29066		1.0	2.28	2135	45	<5	1.83	<1	44	107	98	9.25	<10	3.84	2392	7	0.02	96	900	628	10	<20	44	<0.01	<10	67	<10	<1	973
60	29067	$\begin{gathered} \text { DDH } \\ 05-03 \end{gathered}$	0.9	1.67	495	45	5	1.91	<1	40	93	85	7.16	<10	2.82	1935	7	0.02	93	830	402	10	<20	41	<0.01	<10	51	<10	<1	48
61	29068		7.7	0.19	>10000	30	<5	0.34	<1	19	92	1262	6.17	<10	0.18	257	6	0.02	34	120	5136	45	<20	11	<0.01	<10	3	<10	<1	9367
62	29069		5.1	0.45	6390	30	<5	1.96	<1	19	31	309	6.44	<10	2.77	2415	2	0.02	25	600	5706	35	<20	71	<0.01	<10	6	<10	<1	>10000
63	29070		10.7	0.30	>10000	65	<5	2.66	6	49	37	1231	>10	<10	2.47	1969	6	0.02	21	190	>10000	35	<20	58	<0.01	<10	5	<10	<1	>10000
64	29071		7.0	0.10	>10000	25	<5	0.57	<1	7	73	358	3.93	<10	0.24	292	<1	<0.01	11	200	8366	30	<20	16	<0.01	<10	<1	<10	<1	>10000
65	29068		3.4	1.40	6130	65	<5	1.99	<1	41	83	309	>10	<10	2.83	2312	9	0.02	105	650	2114	<5	<20	43	<0.01	<10	43	<10	<1	2474

ECO TECH LABORATORY LTD.

QC DATA:

Repeat:	
1	29108
10	29117
19	29126
36	29143
45	29052
54	29061

Resplit:
129108
3629143

Standard:
GEO '05
GEO '05

5.2	1.14	5390	40	<5	3.27	1	21	27	525
1.3	0.71	215	55	<5	1.52	<1	30	20	109
>30	0.17	5075	80	<5	2.03	177	15	18	>10000
>30	0.45	5685	85	<5	0.12	133	20	18	7176
>30	0.36	>10000	80	<5	0.66	128	23	46	3560
>30	0.36	>10000	80	<5	1.92	<1	11	20	5324
5.0	1.29	4080	50	<5	3.14	8	20	25	504
>30	0.43	5745	85	<5	0.12	103	18	28	7230
1.4	1.41	60	155	<5	1.39	<1	19	59	86
1.5	1.46	60	140	<5	1.33	<1	19	60	84

$525 \quad 6.78<10 \quad 4.12 \quad 1322<1 \quad 0.02 \quad 27 \quad 500 \quad 4306 \quad 25<20 ~ 115<0.01<$
$1098.87<$
\qquad
\qquad
9110
97

9110046
462

$$
\begin{aligned}
& 15<0.01<1 \\
& 58<0.01<1
\end{aligned}
$$

$$
\begin{aligned}
& >10000 \\
& >10000
\end{aligned}
$$

0	76
0	<1

$$
\begin{array}{llrl}
1 & 25 & 1200>10000 \\
01 & 25 & <10>10000
\end{array}
$$

$$
\begin{array}{rrl}
0 & 185 & <2 \\
0 & 25 & <2
\end{array}
$$

<1
27
27$20<0.01$$65<10>1000$$160<20$

$$
84 \quad 3.53<10 \quad 0.56 \quad 482<1 \quad 0.02 \quad 28 \quad 570
$$

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

CERTIFICATE OF ASSAY AK 2005-1370

Bronx Ventures Inc.
6th Floor, 1199 W. Hastings
Vancouver, BC
V6E 3T5

No. of samples received:42
Sample Type: Core
Submitted by:J.W. Murton
Project \#:Bronx

Paqe 1

| ET \#. DDH Tag \# | Au
 (g/t) | Au
 (oz/t) | Ag
 $(\mathrm{g} / \mathrm{t})$ | Ag
 $(\mathrm{oz} / \mathrm{t})$ | As
 $(\%)$ | Cu
 $(\%)$ | Pb
 $(\%)$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | | Zn |
| ---: |
| $(\%)$ |

QC DATA:

Bronx Ventures Inc.
29-Nov-05
6th Floor, 1199 W. Hastings
Vancouver, BC
V6E 3 T5

No. of samples received:42
Sample Type: Core
Submitted by:J.W. Murton
Project \#:Bronx

ET\#.	Tag\#	As $(\%)$	
14	29085	DDA $05-02$	1.06
19	29090	DDH $05-03$	1.53
20	29091	DDH $05-10$	4.23
23	29094	DDH $05-08$	4.26

JJ/ga
XLS/05

Jutta Jealouse
B.C. Lertifed Assayer
e-ivur-uo
三CO TECH LABORATORY LTD.
10041 Dallas Drive ICP CERTIFICATE OF ANALYSIS AK 2005-1370
,
$\sqrt{ } 2 \mathrm{C} 6 \mathrm{~T} 4$

Bronx Ventures Inc.
 6 th Floor, 1199 W. Hastings Vancouver, BC V6E 3T5

Thone: 250-573-5700
=ax : 250-573-4557

Values in ppm unless otherwise reported

	${ }^{\text {DDH }} \text { Tag \# }$	Ag	Al \%	As	Ba	Bi	Ca \%	Cd	Co	Cr	Cu	$\mathrm{Fe} \%$	La	Mg \%
1	-55.0429072	4.3	1.57	1670	50	<5	1.83	<1	24	7	106	7.73	<10	2.81
2	29073	1.0	0.64	1245	45	10	0.69	2	43	79	67	8.04	<10	0.65
3	29074	1.5	0.61	305	30	10	0.38	<1	44	92	38	6.79	<10	0.46
4	29075	1.9	0.36	290	35	5	0.18	2	33	73	63	8.66	<10	0.19
5	29076	6.1	0.35	8900	45	<5	0.19	18	34	113	332	9.42	<10	0.13
6	29077	5.6	0.23	9860	30	<5	0.28	30	22	81	353	5.67	<10	0.14
7	29078	>30	1.32	7540	40	< 5	1.08	37	25	20	2166	9.58	<10	1.97
8	29079	7.5	1.80	7610	35	<5	1.04	11	23	14	190	8.58	<10	2.70
9	29080	1.2	1.65	8735	50	<5	2.14	10	17	39	69	6.25	<10	3.54
10	$\begin{aligned} & 29081 \\ & 05-06 \end{aligned}$	5.5	1.33	8225	40	<5	2.24	54	34	117	477	7.82	<10	4.20
11	29082	6.2	0.52	3530	55	<5	4.39	22	35	55	813	8.24	<10	5.30
12	29083	19.1	0.23	3785	45	<5	2.76	19	30	75	2666	8.61	<10	2.67
13	29084	11.2	0.38	4400	45	<5	1.95	19	25	26	462	8.49	<10	1.11
14	$05-29085$	8.4	0.57	>10000	35	<5	0.23	102	20	76	371	7.00	<10	0.52
15	02 29086	0.4	3.66	145	65	30	2.04	<1	26	53	89	>10	<10	6.29
16	05-29087	3.5	0.21	8610	25	<5	0.07	15	14	70	65	4.89	<10	0.06
17	03-29088	4.0	0.28	2195	30	<5	0.18	12	18	109	228	6.70	<10	0.20
18	O 29089	5.6	0.16	5260	20	< 5	0.28	17	8	107	628	3.06	<10	. 16
19	29090	4.5	0.41	>10000	30	<5	0.45	28	20	120	473	5.39	<10	0.41
	$05-10^{29091}$	3.6	0.46	>10000	30	<5	2.42	46	16	98	693	4.48	<10	1.50
21	29092	9.3	0.50	1030	65	<5	0.43	16	35	32	399	>10	<10	0.37
22	29093	10.3	1.37	1615	60	<5	0.96	9	25	29	261	9.46	<10	1.99
23	29094	8.9	2.44	>10000	45	<5	0.43	258	27	47	2213	9.46	<10	3.34
24	29095	0.6	0.92	185	70	<5	1.89	1	40	29	113	>10	<10	2.83
25	$\begin{gathered} 29096 \\ 05-08 \end{gathered}$	3.7	1.19	375	80	<5	1.71	15	43	49	762	>10	<10	2.68
26	29097	0.6	2.46	130	80	25	3.02	4	18	40	43	>10	<10	5.74
27	29098	0.4	2.96	145	90	<5	4.12	<1	13	39	86	>10	<10	7.98
	05-0729099	0.8	3.44	140	80	25	1.71	<1	22	46	48	>10	<10	6.47
29	55-27201	0.5	0.68	135	50	10	4.52	<1	49	88	116	8.30	<10	2.90
30	\%9 27202	0.4	1.07	105	40	10	2.89	<1	48	120	104	7.98	<10	2.58

Page 1

ICP CERTIFICATE OF ANALYSIS AK 2005-1370

Bronx Ventures Inc.

Et \#.	Tag \#		AI \%	As	Ba	Bi	Ca \%	Cd	Co	Cr	Cu	$\mathrm{Fe} \%$	La																
31	27203	0.3	1.10	85	50	<5	2.88	<1	46	104	121	757	<10	M	促	Mo	Na \%	Ni	P	Pb	Sb	Sn	Sr	Ti \%	U	V	W	Y	Zn
32	27204	1.8	0.83	980	50	10	1.52	-	28	104 37	144	7.57 >10	<10	2.44 1.51	1646	9	0.07	101	740	40	<	<20	61	<0.01	<10	50	<10	<1	81
33	27205	0.5	3.03	220	55	< 5	2.63	<1	42	33	89	>10	<10	1.51 5.55	622 1403	9	0.04 0.03	11	540	908	<5	<20	49	<0.01	<10	16	<10	<1	795
34	27206	5.8	3.77	820	100	<5	1.22	,	65	218	1111	>10	<10	5.16	14031	10	0.03	13	1400	134	<5	<20	77	<0.01	<10	123	<10	<1	117
$\begin{aligned} & 35 \mathrm{Db4} \\ & 027 \end{aligned}$		3.1	2.84	1030	60	<5	2.47	5	55	190	379	>10	<10	5.16	1436	8	0.02	203	1180	2472	10	<20	79	<0.01	<10	91	<10	<1	846
										190	379	>10	<10	4.51	1436	8	0.03	199	1420	1004	<	<20	113	<0.01	<10	65	<10	<1	442
36	27208	9.9	2.26	460	40	<5	2.28	37	34	113	2935	9.14	<10	5.64	2971														
37	27209	10.3	2.09	450	50	<5	2.13	34	37	107	1067	9.09	<10	5.60	2630	3	0.04 0.04	106	900	6360	55	<20	164	<0.01	<10	52	<10	<1	8619
38	27210	4.7	1.63	720	55	< 5	1.06	10	31	100	346	>10	<10	3.51	2480	31 2	0.04 0.03	105	900	2786	20	<20	152	<0.01	<10	48	<10	<1	4039
39	27211	6.5	0.32	1060	65	<	0.54	13	30	70	346	>10	<10	3.51 1.10	2480 635	15	0.03 0.02	99 104	1480	1400	<5	<20	69	<0.01	<10	42	<10	<1	2044
40	27212	10.4	0.37	935	50	<5	1.33	34	25	60	1053	9.34	<10	2.24	1759	6	0.03	69	630	2096 5348	<5	<20	52	<0.01	<10	14	<10	<1 <1	2065
41	27213	17.1	0.36	1700	50	<5	0.78	62	26	106	1770	>10														12		<1 7430	
42	27214	6.7	0.34	2780	65	5	0.60	16	61	117	185		<10			17	0.03	72	1770	>10000	< 5	<20	67	<0.01	<10	12	<10	<1	>10000
									,	117	18	>10	<10	0.16	162	17	0.03	206	1970	768	<5	<20	72	<0.01	<10	20	<10	<1	1527

$2 C$ DATA:

Resplit: 1	29072	3.8	1.60	1320	30	20	1.78	4	27	14	92	7.69	<10	2.76	243	18	0.02	10	2070	288	<5	<20	88	<0.01	<10	36	<10	5	133
Repeat:																													
1	29072	4.3	1.40	1410	45	<5	1.68	1	24	7	97	737	<10																
10	29081	5.0	1.33	6760	45	<	2.47	50	31	118	425	7.20	<10	2.57 4.26	227	20	0.02	11	1720	220	10	<20	90	<0.01	<10	32	<10	<1	123
19	29090	4.5	0.42	>10000	20	<	0.49	30	21	128	485	5.79	<10	0.43	232	< 6	0.03	41	1290	8714	30	<20	93	<0.01	<10	39	<10	<1	>10000
36	27208	9.9	2.08	450	50	<5	2.09	34	35	110	2875	8.85	<10	5.12	2809	6	0.03	44	310	3832	50	<20	15	<0.01	<10	6	<10	<1	3491

itandard

; EO '05

ASSAYING
GEOCHEMISTRY
ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ASSAY AK 2005-1614

Bronx Ventures Inc.
6th Floor, 1199 W. Hastings
Vancouver, BC
V6E 3T5

No. of samples received: 75
Sample Type: Core
Submitted by: Wayne Murton
Project \#: Bronx

ET\#.	Tag \#		$\begin{array}{r} \mathrm{Au} \\ (\mathrm{~g} / \mathrm{t}) \end{array}$	$\begin{array}{r} \mathrm{Au} \\ (\mathrm{oz} / \mathrm{t}) \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{t}) \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ (\mathrm{oz} / \mathrm{t}) \\ \hline \end{array}$	$\begin{array}{r} \text { As } \\ (\%) \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ (\%) \\ \hline \hline \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ (\%) \\ \hline \end{array}$
1	27215	DDH 05-01	0.85	0.025					
2	27216		0.27	0.008					
3	27217	b) 40.05 .02	0.34	0.010					
4	27218		0.13	0.004					
5	27219	DDI $05-07$	0.81	0.024					1.39
6	27220	DDIH 05-08	0.08	0.002					
7	27221		0.82	0.024					
8	27222	104 405.07	<0.03	<0.001					
9	27223		0.11	0.003					
10	27224		0.05	0.001					
11	27225		0.12	0.003					
12	27226		0.17	0.005					
13	27227		0.14	0.004					
14	27228		0.32	0.009					
15	27229	DSH	0.41	0.012					
16	27230	5-11	0.53	0.015					
17	27231	-11	1.28	0.037					
18	27232		1.41	0.041	50.8	1.48			
19	27233		0.22	0.006					
20	27234		0.19	0.006					
21	27235		0.09	0.003					
22	27236		0.14	0.004					
23	27237		0.14	0.004					
24	27238		0.12	0.003					
25	27239		0.95	0.028			3.23		1.88
26	27240		0.71	0.021			1.86		
27	27241		0.08	0.002					

Bronx Ventures Inc. AK5-1614
19-Jan-06

ET \#.	Tag \#		$\begin{array}{r} \mathrm{Au} \\ (\mathrm{~g} / \mathrm{t}) \end{array}$	$\begin{array}{r} \mathrm{Au} \\ (\mathrm{oz} / \mathrm{t}) \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{t}) \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ (\mathrm{oz} / \mathrm{t}) \end{array}$	As (\%)	$\begin{array}{r} \mathrm{Pb} \\ (\%) \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ (\%) \\ \hline \end{array}$
28	27242		0.08	0.002					
29	27243	DSH OS-11	0.24	0.007					
30	27244		2.64	0.077	119	3.47	2.88	3.65	4.84
31	27245		0.12	0.003					
32	27246		0.04	0.001					
33	27247	D) ${ }^{\text {H }}$	0.03	0.001					
34	27248	05-14	0.05	0.001					
35	27249		0.12	0.003					
36	27250		0.46	0.013					
37	28.551		0.29	0.008					
38	28552		4.85	0.141	61.2	1.79		3.74	4.34
39	28553		5.05	0.147	30.9	0.90		1.24	1.63
40	28554		0.28	0.008					
41	28555		0.06	0.002					
42	28556		<0.03	<0.001					
43	28557		<0.03	<0.001					
44	28558		<0.03	<0.001					
45	28559		0.10	0.003					
46	28560		<0.03	<0.001					
47	28561		0.06	0.002					
48	28562	Db	<0.03	<0.001					
49	28563		<0.03	<0.001					
50	28564	05.15	0.06	0.002					
51	28565		0.16	0.005					
52	28566		0.19	0.006					
53	28567		12.2	0.356	59.1	1.72	7.15	4.24	5.48
54	28568		0.07	0.002					
55	28569		0.07	0.002					
56	28570		0.14	0.004					
57	28571		0.35	0.010					
58	28572		0.36	0.010					
59	28573		0.12	0.003					
60	28574	D)	0.49	0.014					
61	28575	DDH	0.98	0.029				1.37	
62	28576	05-12	0.40	0.012					
63	28577		0.31	0.009					
64	28578		0.48	0.014					
65	28579		5.70	0.166			15.5	2.85	5.75
66	28580		1.53	0.045			2.35		
67	28581		0.27	0.008					
68	28582		0.22	0.006					
69	28583		0.42	0.012					
70	28584		0.36	0.010					

ECO TECA LABORATORY LTD.
Jutta Jealouse B.C. Certified Assayer

Eco Tech 么moratory lto.
efage 2

Eco Tech Labonatory lto.

20-Dec-05

ECO TECH LABORATORY LTD.
10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4
ICP CERTIFICATE OF ANALYSIS AK 2005-1614

Phone: 250-573-5700
Fax : 250-573-4557

Values in ppm unless otherwise reported

Bronx Ventures Inc.
6th Floor, 1199 W. Hastings
Vancouver, BC
V6E 3T5
Attention: Wayne Murton

No. of samples received: 75
Sample Type: Core
Submitted by: Wayne Murton
Project \#: Bronx

Et \#.	Tag \#	DDH	Ag	Al \%	As	Ba	Bi	Ca \%	Cd	Co	Cr	Cu	Fe \%	La	Mg \%	Mn	Mo	Na \%	Ni	P	Pb	Sb	Sn	Sr	Ti \%	U	V	W	Y	Zn
1	27215	05-01	13.6	0.25	235	50	5	2.51	5	7	50	69	5.87	<10	1.13	381	13	0.02	38	1860	158	<5	<20	69	<0.01	<10	27	<10	<1	503
2	27216		3.0	3.61	2900	65	<5	3.94	24	27	40	267	8.09	<10	7.32	1049	9	0.01	43	540	1784	10	<20	112	<0.01	<10	81	<10	<1	810
3	27217		5.5	3.68	7355	55	<5	1.99	73	25	39	519	9.51	<10	5.96	630	5	0.02	45	650	3876	20	<20	43	<0.01	<10	37	<10	<1	3237
4	27218		3.1	0.37	345	35	<5	0.67	15	24	75	226	4.53	<10	0.63	366	4	0.02	38	150	2066	20	<20	21	<0.01	<10	6	<10	<1	2713
5	27219	0509	8.1	1.17	6225	75	<5	3.01	98	21	37	572	8.33	<10	3.02	1000	<1	0.02	30	300	6404	20	<20	81	<0.01	<10	13	<10	<1	>10000
6	27220	05	1.2	2.10	475	60	<5	3.49	8	38	86	130	8.51	<10	3.32	1445	6	0.02	71	550	822	<5	<20	63	<0.01	<10	58	<10	<1	1002
7	27221	08	2.6	2.28	9300	80	<5	0.18	86	38	39	272	>10	<10	2.83	156	8	0.02	78	410	1390	<5	<20	5	<0.01	<10	23	<10	<1	3045
8	27222	05-	0.4	1.58	235	55	15	4.81	2	40	83	54	8.27	<10	3.73	2517	6	0.02	72	480	56	<5	<20	97	<0.01	<10	42	<10	<1	149
9	27223	07	1.2	0.51	815	55	<5	1.94	10	8	28	70	5.06	<10	1.37	1538	5	0.02	3	130	592	<5	<20	36	<0.01	<10	3	<10	<1	717
10	27224		0.6	0.29	980	45	5	2.21	8	18	66	15	4.14	<10	1.68	1518	4	0.02	29	190	134	5	<20	59	<0.01	<10	8	<10	<1	71
11	27225	0	1.0	0.23	1665	35	5	0.33	16	18	70	18	4.74	<10	0.48	333	4	0.02	36	260	224	<5	<20	8	<0.01	<10	5	<10	<1	413
12	27226		1.1	0.20	1045	35	5	0.19	8	18	73	22	4.09	<10	0.15	108	6	0.02	39	380	98	<5	<20	6	<0.01	<10	4	<10	<1	56
13	27227		0.6	0.18	1475	40	5	0.22	14	16	58	16	3.62	<10	0.25	122	3	0.01	33	270	56	<5	<20	5	<0.01	<10	3	<10	<1	45
14	27228		4.8	0.19	2755	35	<5	0.11	31	16	76	146	3.62	<10	0.11	70	4	0.01	27	240	2138	45	<20	4	<0.01	<10	4	<10	<1	733
15	27229		1.6	0.18	2500	45	<	0.15	25	15	78	29	3.27	<10	0.09	83	3	0.01	31	190	404	<5	<20	3	<0.01	<10	4	<10	<1	268
16	27230		14.6	0.18	4800	35	<5	0.35	50	24	85	515	5.20	<10	0.22	188	4	0.01	49	180	1984	170	<20	8	<0.01	<10	5	<10	<1	952
17	27231		14.7	0.24	7050	50	<5	0.20	76	47	90	266	9.18	<10	0.08	95	7	0.02	155	380	1858	85	<20	4	<0.01	<10	10	<10	<1	1285
18	27232		>30	0.16	3415	40	<5	0.20	36	13	80	514	3.08	<10	0.13	132	1	0.01	22	50	3628	275	<20	7	<0.01	<10	2	<10	<1	1436
19	27233		3.6	0.23	5520	30	<5	0.10	58	15	75	82	4.62	<10	0.08	79	2	0.01	22	120	932	25	<20	5	<0.01	<10	3	<10	<1	1811
20	27234		2.0	0.35	435	40	15	0.12	5	25	76	39	8.78	<10	0.17	79	9	0.02	37	210	150	<5	<20	3	<0.01	<10	4	<10	<1	73
21	27235		0.9	0.23	170	30	<5	0.10	2	15	77	19	3.53	<10	0.09	68	3	0.02	22	100	74	<5	<20	1	<0.01	<10	3	<10	<1	30
22	27236		2.1	0.29	445	40	<5	0.11	6	19	82	56	6.51	<10	0.14	84	7	0.02	29	100	534	<5	<20	3	<0.01	<10	4	<10	<1	299
23	27237		0.9	0.19	1435	30	< 5	0.08	17	13	77	33	3.90	<10	0.07	67	3	0.02	18	80	152	<5	<20	<1	<0.01	<10	2	<10	<1	686
24	27238		1.0	0.19	2375	50	<5	0.10	24	12	85	28	2.30	<10	0.10	74	2	0.01	18	80	176	<5	<20	3	<0.01	<10	2	<10	<1	324
25	27239		9.6	0.16	>10000	40	<5	0.09	310	10	76	387	4.52	<10	0.07	81	<1	0.01	9	150	5314	40	<20	<1	<0.01	<10	2	<10	<1	>10000
26	27240		25.7	0.17	>10000	35	<5	0.15	211	11	93	743	4.57	<10	0.06	67	<1	0.01	11	310	3302	300	<20	5	<0.01	<10	2	<10	<1	7662
27	27241		2.0	0.19	80	45	<5	0.10	1	8	58	12	2.43	<10	0.07	53	2	0.01	16	150	136	<5	<20	3	<0.01	<10	2	<10	<1	126
28	27242		0.9	0.17	285	45	<5	0.29	4	9	63	15	2.04	<10	0.17	90	2	0.01	16	140	82	<5	<20	6	<0.01	<10	2	<10	<1	214
29	27243		2.6	0.11	3070	30	<5	0.20	34	6	75	71	1.72	<10	0.11	75	<1	<0.01	13	20	360	15	<20	1	<0.01	<10	2	<10	<1	862
30	27244		>30	0.11	>10000	115	<5	0.86	449	15		6076	>10	<10	0.40	371	<1	<0.01	7	<10	>10000	1200	<20	38	<0.01	<10	3	<10	<1	>10000

ECO TEC	CH LAB	ORAT	ORY	Y LTD						ICP C	ERTIF	FICAT	TE OF A	ANAL	YSIS A	AK 200	5-161							Bronx	x Ventu	res In				
Et \#.	Tag \#	1) SH	Ag	Al \%	As	Ba	Bi	Ca \%	Cd	Co	Cr	Cu	$\mathrm{Fe} \%$	La	Mg \%	Mn	Mo	$\mathrm{Na} \%$	Ni	P	Pb	Sb	Sn	Sr	Ti \%	U	V	W	Y	Zn
71	28585	05.	4.0	0.24	>10000	40	<5	0.50	178	18	109	456	6.12	<10	0.26	291	3	0.02	21	350	2654	5	<20	11	<0.01	<10	4	<10	<1	5078
72	28586	12	3.5	0.39	3085	50	<5	1.63	45	24	63	564	7.00	<10	1.05	778	5	0.02	36	210	1334	35	<20	34	<0.01	<10	6	<10	<1	2224
73	28587		1.0	0.69	90	50	10	1.15	4	17	49	39	7.78	<10	0.98	302	7	0.03	8	1210	214	<5	<20	34	<0.01	<10	8	<10	<1	441
74	28588		0.4	0.81	60	65	10	0.36	1	39	30	109	>10	<10	0.68	78	11	0.02		1260	74	< 5	<20	14	<0.01	<10	27	<10	<1	72
75	28589		3.0	3.63	135	75	<5	4.49	5	19	34	353	>10	<10	8.28	1281	28	0.01		1430	188	40	<20	113	<0.01	<10	138	<10	<1	402
QC DATA:																														
Repeat:																														
1	27215		3.6	0.26	235	50	<5	2.49	5	7	51	66	5.85	<10	1.12	379	13	0.02	37	1870	160	<5	<20	67	<0.01	<10	28	<10	<1	511
10	27224		0.6	0.30	985	45	5	2.19	10	18	67	14	4.11	<10	1.63	1494	4	0.02	29	200	138	<5	<20	55	<0.01	<10	8	<10	<1	72
19	27233		3.7	0.25	5380	35	<5	0.10	63	15	78	86	4.62	<10	0.08	80	3	0.02	22	120	912	30	<20	2	<0.01	<10	3	<10	<1	1740
36	27250		2.4	1.50	5885	55	<5	3.11	74	39	84	155	9.28	<10	3.66	2350	8	0.02	82	610	764	15	<20	70	<0.01	<10	39	<10	<1	1379
45	28559		0.9	1.00	825	60	<5	>10	16	24	59	161	6.37	<10	7.04	5806	3	0.02	42	370	562	20	<20	264	<0.01	<10	36	<10	<1	629
54	28568		0.2	1.06	185	45	5	2.92	2	9	35	40	4.05	<10	2.77	1229	4	0.03	3	370	114	<5	<20	77	<0.01	<10	8	<10	<1	107
71	28585		4.3	0.24	>10000	40	<5	0.50	177	19	107	481	6.47	<10	0.26	289	3	0.02	22	350	2666	10	<20	11	<0.01	<10	4	<10	<1	5136
Resplit:																														
1	27215		3.6	0.27	245	55	<5	2.61	7	7	48	69	5.70	<10	1.17	389	13	0.02	39	1870	172	<5	<20	69	<0.01	<10	30	<10	<1	738
36	27250		2.5	1.50	4385	60	<5	3.68	64	36	84	156	8.50	<10	3.66	2209	8	0.02	75	560	772	15	<20	71	<0.01	<10	38	<10	<1	1322
71	28585		3.8	0.22	>10000	40	<5	0.57	213	22	91	384	6.21	<10	0.28	327	2	0.02	23	280	2962	5	<20	11	<0.01	<10	4	<10	<1	6211
Standard:																														
GEO '05			1.5	1.64	60	165	5	1.70	1	19	59	84	4.07	<10	0.92	651	<1	0.03	28	620	24	<5	<20	56	0.11	<10	70	<10	10	76
GEO '05			1.5	1.59	55	150	<5	1.49	<1	19	59	84	3.83	<10	0.89	599	<1	0.02	29	540	24	<5	<20	52	0.09	<10	70	<10	9	77
GEO '05			1.5	1.60	50	145	<	1.50	1	18	59	86	3.86	<10	0.88	599	<1	0.02	29	550	24	<5	<20	52	0.11	<10	70	<10	10	75

[^0]

ASSAYING
GEOCHEMISTRY
ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamioops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com
CERTIFICATE OF ASSAY AK 2005-1662
Bronx Ventures Inc.
6 th Floor, 1199 W. Hastings
Vancouver, BC
V6E 3T5

No. of samples received:81
Sample Type: Core
Submitted by:J.W. Murton
Project \#:Bronx

ET\#.	Tag \#		$\begin{array}{r} \mathrm{Au} \\ (\mathrm{~g} / \mathrm{t}) \end{array}$	$\begin{array}{r} \mathrm{Au} \\ (\mathrm{oz} / \mathrm{t}) \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{t}) \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ (\mathrm{oz} / \mathrm{t}) \end{array}$	As (\%)	$\begin{gathered} \mathrm{Cu} \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ (\%) \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{Zn} \\ (\%) \\ \hline \end{array}$
1	28590		0.03	0.001						
2	28591	DBH	<0.03	<0.001						
3	28592		0.09	0.003	1.4	0.04	0.03	0.02	<0.01	<0.01
4	28593	os-13	<0.03	<0.001						
5	28594		<0.03	<0.001						
6	28595		0.05	0.001						
7	28596		<0.03	<0.001						
8	28597		0.10	0.003						
9	28598		<0.03	<0.001						
10	28701		0.03	0.001						
11	28702		0.03	0.001						
12	28703		0.14	0.004						
13	28704		0.12	0.003						
14	28705	DDH	0.14	0.004						
15	28706	05-17	<0.03	<0.001						
16	28707		<0.03	<0.001						
17	28708		0.07	0.002						
18	28709		<0.03	<0.001						
19	28710		0.04	0.001						
20	28711		0.07	0.002						
21	28712		0.10	0.003						
22	28713		0.07	0.002						
23	28714		0.04	0.001						
24	28715		0.16	0.005						
25	28716		0.21	0.006						
26	28717		<0.03	<0.001						
27	28718		0.06	0.002						

Page 1

Bronx Ventures Inc. AK5-1662
4-Jan-06

ET\#.	Tag\#		$\begin{array}{r} \mathrm{Au} \\ (\mathrm{~g} / \mathrm{t}) \end{array}$	$\begin{array}{r} \mathrm{Au} \\ (\mathrm{oz} / \mathrm{t}) \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{t}) \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ (\mathrm{oz} / \mathrm{t}) \end{array}$	As (\%)	Cu (\%)	$\begin{gathered} \mathrm{Pb} \\ (\%) \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{Zn} \\ (\%) \\ \hline \end{array}$
28	28719		1.38	0.040	13.8	0.40	4.64	0.19	1.45	1.52
29	28720		0.44	0.013			1.40			
30	28721		0.66	0.019			2.04			
31	28722	SDCt	0.14	0.004						
32	28723		<0.03	<0.001						
33	28724	05-17	0.11	0.003						
34	28725		0.05	0.001						
35	28726		0.14	0.004					1.14	2.15
36	28727		5.15	0.150	12.8	0.37	2.45	0.11	1.41	1.85
37	28728		5.88	0.171	65.8	1.92	3.32	0.43	6.75	8.74
38	28729	1	0.07	0.002						
39	28730		0.09	0.003						
40	28731		0.08	0.002						
41	28732		0.04	0.001						
42	28733		<0.03	<0.001						
43	28734		<0.03	<0.001						
44	28735		<0.03	<0.001						
45	28736		<0.03	<0.001						
46	28737		<0.03	<0.001						
47	28738		0.07	0.002						
48	28739	bDH	0.04	0.001						
49	28740	05-16	<0.03	<0.001						
50	28741		0.04	0.001						
51	28742		0.05	0.001						
52	28743		0.04	0.001						
53	28744		0.08	0.002						
54	28745		0.03	0.001						
55	28746		0.03	0.001						
56	28747		0.06	0.002						
57	28748		0.74	0.022			2.13			
58	28749		1.23	0.036			1.66		2.73	2.25
59	28750		0.06	0.002						
60	28751		<0.03	<0.001						
61	28752		0.03	0.001						
62	28753		0.08	0.002						
63	28754		<0.03	<0.001						
64	28755		0.03	0.001						
65	28756	184	0.03	0.001						
66	28757		0.06	0.002						
67	28758	05-18	0.03	0.001						
68	28759		0.11	0.003						
69	28760		<0.03	<0.001						
70	28761		0.07	0.002						
71	28762		0.27	0.008						
72	28763		0.19	0.006						
73	28764		0.07	0.002						

ET \#.	Tag\#		$\begin{array}{r} \mathrm{Au} \\ (\mathrm{~g} / \mathrm{t}) \end{array}$	$\begin{array}{r} \mathrm{Au} \\ (\mathrm{oz} / \mathrm{t}) \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{t}) \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ (\mathrm{oz} / \mathrm{t}) \end{array}$	$\begin{array}{r} \text { As } \\ (\%) \\ \hline \end{array}$	$\begin{gathered} \mathrm{Cu} \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ (\%) \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{Zn} \\ (\%) \\ \hline \end{array}$
74	28765		0.20	0.006						
75	28766	DDH	0.59	0.017			2.00			
76	28767	-5-18	0.28	0.008						
77	28768	05-18	0.14	0.004						
78	28769		0.26	0.008						
79	28770		3.39	0.099	23.6	0.69	0.32	0.42	3.66	3.48
80	28771		1.62	0.047						
81	28772)	0.51	0.015						

QC DATA:

Repeat:									
1	28590	<0.03	<0.001						
3	28592					0.02			
10	28701	0.03	0.001						
19	28710	0.04	0.001						
28	28719	1.44	0.042					1.45	1.52
29	28720	0.44	0.013						
30	28721	0.68	0.020						
36	28727	5.13	0.150						
37	28728	5.65	0.165						
54	28745	0.03	0.001						
57	28748	0.79	0.023						
58	28749	1.25	0.036						
71	28762	0.27	0.008						
79	28770	2.97	0.087						
80	28771	1.63	0.048						
81	28772	0.49	0.01						
Resplit:									
1	28590	<0.03	<0.001						
36	28727	4.35	0.127						
71	28762	0.31	0.009						
Standard:									
OX140		1.87	0.055						
OX140		1.86	0.054						
OX140		1.84	0.054						
PB106				58.6	1.71		0.62	0.52	0.84
PD-10.5						0.78			

ECO TECH LABORATORY LTD.
10041 Dallas Drive
KAMLOOPS, B.C.
V2C 6T4

Phone: 250-573-5700
Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 2005-1662
6th Floor, 1199 W. Hastings
Vancouver, BC
V6E 3 T5

No. of samples received:81
Sample Type: Core
Submitted by:J.W. Murton
Project \#:Bronx

Et \#.	Tag \#	Ag	Al \%	As	Ba	Bi	Ca\%	Cd	Co	Cr	Cu	$\mathrm{Fe} \%$	La	Mg \%	Mn	Mo	$\mathrm{Na} \%$	Ni	P	Pb	Sb	Sn	Sr	Ti\%	U	V	W	Y
1	28590	0.2	0.43	60	55	10	9.95	<1	35	57	45	7.80	<10	5.88	1849	6	0.04	123	1222	4	<5	<20	118	<0.01	<10	21	<10	<1
2	28591	<0.2	0.79	50	60	25	7.60	<1	42	101	42	>10	<10	6.13	3595	10	0.04	180	1872	8	<5	<20	96	<0.01	<10	48	<10	<1
3	28592	1.0	0.30	125	80	25	1.63	1	33	66	196	>10	<10	1.62	724	19	0.02	139	170	32	<	<20	35	<0.01	40	12	<10	<1
$4)$	28593	<0.2	0.38	60	40	10	>10	<1	33	60	22	7.27	<10	5.43	2576	6	0.04	128	1573	4	<5	<20	116	<0.01	<10	21	<10	<1
${ }^{5} 05-12$	28594	0.3	0.55	135	40	15	0.57	2	56	79	120	>10	<10	0.87	1018	9	0.04	95	1001	26	<5	<20	12	<0.01	<10	23	<10	<1
6	28595	0.2	0.55	120	40	15	0.32	<1	54	83	92	>10	<10	0.36	374	8	0.04	96	975	24	<5	<20	11	<0.01	<10	23	<10	<1
7	28596	0.3	0.67	130	40	15	0.27	1	59	102	89	9.34	<10	0.54	535	7	0.05	106	975	28	<5	<20	11	<0.01	<10	35	<10	<1
8	28597	0.5	0.43	245	50	20	0.67	2	54	82	102	>10	<10	0.46	576	10	0.04	105	741	54	<5	<20	23	<0.01	<10	23	<10	<1
9	28598	0.2	0.71	110	40	10	0.30	<1	55	102	121	8.09	<10	0.73	657	6	0.05	96	1183	30	<5	<20	13	<0.01	<10	33	<10	<1
10	28701	1.0	0.36	140	55	5	1.22	3	59	76	145	9.73	<10	0.58	449	8	0.03	107	1144	122	<5	<20	25	<0.01	<10	11	<10	<1
05-17																												
11	28702	0.7	0.28	145	50	<5	1.64	1	56	63	107	>10	<10	0.78	612	9	0.03	109	1053	40	<5	<20	31	<0.01	<10	11	<10	<1
12	28703	1.0	0.24	155	45	15	1.35	1	55	59	110	>10	<10	0.57	505	10	0.03	106	975	100	< 5	<20	27	<0.01	<10	8	<10	<1
13	28704	0.9	0.23	165	40	15	0.99	1	56	48	100	>10	<10	0.36	391	9	0.03	105	1157	92	<5	<20	15	<0.01	<10	7	<10	<1
14	28705	2.0	0.28	830	45	<5	1.62	11	40	71	493	>10	<10	0.81	716	9	0.03	78	585	618	<5	<20	37	<0.01	<10	9	<10	<1
15	28706	0.4	0.52	180	40	15	0.23	1	52	72	124	>10	<10	0.58	952	8	0.03	99	676	30	<5	<20	7	<0.01	<10	26	<10	<1
16	28707	0.5	0.48	185	45	10	0.34	2	51	73	102	>10	<10	0.38	576	9	0.03	100	1183	36	<5	<20	11	<0.01	<10	22	<10	<1
17	28708	0.4	0.53	145	40	10	0.25	<1	55	79	117	9.53	<10	0.45	492	8	0.03	105	663	34	<5	<20	9	<0.01	<10	23	<10	<1
18	28709	0.5	0.73	185	45	10	0.22	2	59	80	119	9.06	<10	0.75	807	8	0.03	117	481	34	<5	<20	8	<0.01	<10	26	<10	<1
19	28710	1.2	0.44	510	40	<5	0.36	4	51	74	130	7.57	<10	0.32	427	6	0.03	88	1118	30	< 5	<20	14	<0.01	<10	18	<10	<1
20	28711	1.2	0.34	600	45	20	0.28	4	49	67	60	>10	<10	0.19	382	9	0.03	99	819	136	<5	<20	11	<0.01	<10	18	<10	<1
21	28712	0.9	0.33	1090	35	20	0.29	8	44	74	39	8.55	<10	0.24	357	7	0.02	82	676	184	<5	<20	11	<0.01	<10	14	<10	<1
22	28713	1.3	0.41	385	45	15	0.38	9	45	66	61	9.46	<10	0.32	422	8	0.02	80	1092	710	<5	<20	16	<0.01	<10	18	<10	<1
23	28714	0.7	0.44	140	40	10	0.33	1	48	75	89	7.63	<10	0.34	520	6	0.03	91	1053	152	<5	<20	10	<0.01	<10	22	<10	<1
24	28715	2.1	0.36	1530	45	10	0.43	15	51	73	157	9.96	<10	0.30	407	8	0.03	130	1027	1288	<5	<20	18	<0.01	<10	15	<10	<1
25	28716	2.1	0.19	4620	40	<5	1.47	53	14	82	284	4.23	<10	0.55	550	2	0.02	39	2431	1710	5	<20	51	<0.01	<10	11	10	<1
26	28717	0.6	0.21	280	15	20	1.39	3	23	55	29	4.90	<10	0.75	739	5	0.03	37	312	234	<5	<20	27	<0.01	<10	5	<10	<1
27	28718	0.5	0.19	815	35	5	0.30	7	20	53	56	3.84	<10	0.19	174	3	0.02	28	195	150	<5	<20	11	<0.01	<10	2	<10	<1
28	28719	13.3	0.10	>10000	40	< 5	0.47	481	15	78	1741	7.05	<10	0.21	272	<1	0.01	15	<10	>10000	260	<20	16	<0.01	<10	2	30	<1
29	28720	3.9	0.11	>10000	40	<5	0.18	91	11	65	171	2.91	<10	0.08	82	<1	0.02	15	78	3046	45	<20	8	<0.01	<10	1	<10	<1
30	28721	2.8	11	>10000	35	<5	0.50	41	14	53	126	4.38	<10	0.24	185	1	0.02	22	234	1818	40	<20	18	<0.01	<10	2	10	<1

ECO TECH LABORATORY LTD.

Et\#.	Tag \#		Al \%	As	Ba	Bi	Ca \%	Cd	Co	Cr	Cu	Fe \%	La	Mg \%	Mn	Mo	Na \%	Ni	P	Pb	Sb	Sn	Sr	Ti \%	U	V	W	Y	Zn
31	28722	1.1	1.03	975	40	15	3.48	8	22	31	41	5.80	<10	3.48	851	6	0.02	28	429	268	10	<20	77	<0.01	<10	12	<10	<1	118
32	28723	0.5	0.71	95	60	10	>10	<1	5	8	27	3.99	<10	8.53	2468	4	0.02	<1	169	316	15	<20	281	<0.01	<10	6	<10	<1	35
33	28724	3.3	0.68	340	50	<5	6.11	28	9	15	261	6.98	<10	6.05	1735	2	0.02	9	325	4194	20	<20	187	<0.01	<10	6	10	<1	5497
34	28725	2.5	0.88	180	35	10	5.46	9	8	13	113	7.09	<10	5.87	1537	6	0.02	<1	143	2442	<5	<20	146	<0.01	<10	5	<10	<1	1640
${ }^{35} 05-1$	$\frac{28726}{7}$	6.9	1.16	290	50	<	2.94	76	11	13	307	8.92	<10	4.96	895	<1	0.02	3	195	>10000	<5	<20	114	<0.01	<10	6	40		>10000
36	28727	12.4	0.55	>10000	70	<5	2.89	268	11	22	1039	>10	<10	3.84	1325	3	0.02	2	182	>10000	95	<20	153	<0.01	<10	3	30		>10000
37	28728	>30	0.07	>10000	70	<	1.67	613	9	28	4141	>10	<10	2.19	1704	<1	<0.01	15	<10	>10000	220	<20	80	<0.01	<10	18	190		>10000
38	28729	0.9	1.03	210	50	15	1.19	3	24	23	62	9.91	<10	1.70	346	19	0.02	9	858	226	<5	<20	43	<0.01	<10	17	<10	<1	234
39	28730	1.4	0.25	130	40	10	0.33	1	53	56	95	7.74	<10	0.07	66	7	0.03	94	988	48	<5	<20	9	<0.01	<10	7	<10	<1	109
40	28731	0.9	0.22	145	35	10	0.79	1	39	73	67	7.02	<10	0.39	353	6	0.02	73	468	34	<5	<20	17	<0.01	<10	6	<10	<1	87
41	28732	0.5	0.39	105	45	10	3.62	<1	38	68	60	8.08	<10	2.32	1832	6	0.03	68	533	22	<5	<20	66	<0.01	<10	14	<10	<1	33
42	28733	0.4	1.20	115	45	10	1.58	<1	44	96	90	7.74	<10	2.06	1370	6	0.03	78	832	30	<5	<20	34	<0.01	<10	39	<10	<1	81
43	28734	0.3	0.77	110	40	10	0.30	1	47	82	93	8.28	<10	1.05	919	7	0.03	85	819	20	<5	<20	6	<0.01	<10	28	<10	<1	68
44	28735	0.4	0.59	165	45	15	0.28	1	48	81	100	9.67	<10	0.53	479	8	0.03	98	988	22	<5	<20	11	<0.01	<10	23	<10	<1	57
$4505-1$	$\begin{aligned} & 28736 \\ & \varphi^{287} \end{aligned}$	0.3	0.80	140	35	10	0.19	1	46	115	91	7.97	<10	0.79	696	6	0.04	84	650	28	<5	<20	9	<0.01	<10	25	<10	<1	78
46	28737	0.4	0.48	105	40	15	0.19	<1	47	111	98	9.44	<10	0.49	920	7	0.04	90	715	18	<5	<20	8	<0.01	<10	24	<10	<1	68
47	28738	1.0	0.34	435	40	5	0.44	5	40	81	131	9.76	<10	0.39	705	8	0.03	75	715	462	<5	<20	16	<0.01	<10	14	<10	<1	454
48	28739	0.4	0.31	120	35	10	0.23	<1	49	61	112	7.74	<10	0.41	876	7	0.02	84	546	20	<5	<20	9	<0.01	<10	17	<10	<1	74
49	28740	0.3	0.37	110	40	10	0.37	1	48	52	107	8.19	<10	0.73	1398	7	0.02	81	871	16	<5	<20	13	<0.01	<10	19	<10	<1	81
50	28741	0.4	0.42	240	40	10	0.16	2	46	73	96	8.63	<10	0.30	447	7	0.02	86	351	30	<5	<20	10	<0.01	<10	16	<10	<1	143
51	28742	0.5	0.61	245	40	10	0.47	2	51	46	81	7.52	<10	0.73	446	6	0.01	82	832	44	<5	<20	20	<0.01	<10	12	<10	<1	79
52	28743	0.4	0.73	100	35	15	0.47	<1	48	80	85	7.89	<10	0.80	388	6	0.02	84	598	16	<5	<20	20	<0.01	<10	12	<10	<1	61
53	28744	0.7	0.72	135	45	10	0.46	1	46	53	101	8.43	<10	0.69	234	7	0.01	84	806	36	<5	<20	22	<0.01	<10	12	<10	<1	75
54	28745	0.6	0.63	90	35	10	0.55	<1	27	79	78	5.81	<10	0.70	251	4	0.01	59	429	36	<5	<20	23	<0.01	<10	14	<10	<1	91
55	28746	0.5	0.86	240	40	10	0.38	2	29	88	51	6.59	<10	0.80	211	6	0.01	66	429	32	<5	<20	15	<0.01	<10	24	<10	<1	69
56	28747	0.8	0.58	255	40	5	0.29	4	26	76	97	5.82	<10	0.53	167	4	0.02	53	377	120	<5	<20	9	<0.01	<10	21	<10	<1	386
57	28748	5.5	0.38	>10000	60	<5	2.20	156	59	77	834	>10	<10	2.45	2084	6	0.02	216	1183	3912	20	<20	80	<0.01	<10	25	10	<1	4998
58	28749	24.9	0.21	>10000	50	<5	0.81	174	27	62	4524	7.83	<10	0.42	432	<1	0.02	52	520	>10000	65	<20	32	<0.01	<10	6	70	<1	>10000
59	28750	0.7	0.21	425	30	<5	0.19	4	18	49	50	3.33	<10	0.13	101	3	0.02	29	260	186	<5	<20	8	<0.01	<10	3	<10	<1	289
60	28751	0.4	0.61	95	45	10	5.90	<1	44	82	88	7.02	<10	4.31	2411	6	0.03	146	1794	16	<5	<20	68	<0.01	<10	29	<10	<1	35
61	28752	0.4	0.62	230	45	15	2.73	1	41	54	73	7.82	<10	2.16	1502	7	0.03	73	637	24	<5	<20	53	<0.01	<10	20	<10	<1	35
62	28753	0.5	0.19	190	45	10	4.54	2	25	30	45	7.55	<10	4.42	4120	6	0.02	44	312	36	<5	<20	78	<0.01	<10	10	<10	<1	45
63	28754	0.2	1.79	105	45	10	4.13	<1	35	80	45	6.16	<10	3.63	2111	4	0.02	55	637	22	<5	<20	67	<0.01	<10	54	<10	<1	70
64	28755	0.4	1.72	265	45	15	3.03	2	36	80	56	8.02	<10	3.23	2015	7	0.02	65	299	38	<5	<20	55	<0.01	<10	51	<10	<1	80
65	28756	0.3	0.51	255	45	15	>10	2	23	48	25	6.24	<10	6.33	5320	5	0.03	43	325	28	<5	<20	196	<0.01	<10	25	<10	<1	40
05-18																													
66	28757	0.5	0.33	320	50	15	5.10	3	29	56	46	8.03	<10	3.20	2684	7	0.03	54	442	64	<5	<20	111	<0.01	<10	14	<10	<1	74
67	28758	0.3	0.49	115	45	15	4.99	1	38	54	60	7.02	<10	3.21	2567	6	0.03	71	793	30	<5	<20	91	<0.01	<10	22	<10	<1	44
68	28759	0.7	0.26	185	35	15	1.92	2	32	50	82	9.21	<10	1.10	966	8	0.02	62	390	50	<5	<20	33	<0.01	<10	9	<10	<1	37
69	28760	0.2	1.19	95	45	5	2.43	<1	42	68	73	7.12	<10	2.29	1204	6	0.03	75	507	22	<5	<20	52	<0.01	<10	34	<10	<1	47
70	28761	1.3	2.30	730	45	15	3.08	12	52	219	69	7.53	<10	4.71	1991	4	0.01	188	1729	932	<5	<20	62	<0.01	<10	80	<10	<1	1584

ECO TECH LABORATORY LTD.

Et \#. ${ }^{\text {H }}$	Tag \#	Ag	AI \%	As	Ba	Bi	Ca \%	Cd	Co	Cr	Cu	$\mathrm{Fe} \%$	La	Mg \%	Mn	Mo	Na \%	Ni	P	Pb	Sb	Sn	Sr	Ti \%	U	V	W	Y	Zn
71	28762	6.3	1.08	3725	60	<	2.23	54	55	146	643	>10	<10	2.84	2019	3	0.03	194	1833	4452	15	<20	58	<0.01	<10	41	20	<1	6819
72	28763	3.7	0.19	4695	35	<5	0.83	48	11	124	414	4.12	<10	0.49	382	1	0.02	29	442	3070	15	<20	26	<0.01	<10	6	<10	<1	3842
73	28764	0.5	0.23	1470	35	10	0.59	11	17	80	28	3.51	<10	0.36	308	3	0.02	28	312	236	<	<20	16	<0.01	<10	4	<10	<1	164
74	28765	2.5	0.22	6085	30	<5	0.33	55	21	74	183	5.16	<10	0.21	191	5	0.02	35	234	1948	< 5	<20	11	<0.01	<10	4	<10	<1	1516
$75 \text { o5 }-18$	28766	4.1	0.27	>10000	35	<5	0.34	143	33	79	465	7.25	<10	0.24	150	4	0.02	74	650	2270	20	<20	13	<0.01	<10	6	<10	<1	3989
76	28767	1.7	0.18	6950	25	<5	0.27	57	15	79	181	4.23	<10	0.16	135	3	0.02	20	143	1244	10	<20	6	<0.01	<10	2	<10	<1	1236
77	28768	0.8	1.13	915	50	15	4.35	9	28	80	48	5.86	<10	3.73	2026	4	0.02	65	988	482	5	<20	96	<0.01	<10	33	<10	<1	681
78	28769	4.7	1.09	3695	35	<5	7.95	36	25	72	431	5.37	<10	5.81	2993	3	0.02	42	559	850	40	<20	176	<0.01	<10	35	<10	<1	1296
79	28770	22.3	0.37	2390	60	<5	2.71	119	22	52	4075	>10	<10	3.15	1289	14	0.02	35	<10	>10000	10	<20	71	<0.01	<10	14	90	<1	>10000
80	28771	5.6	1.03	670	45	<5	3.90	24	19	57	578	7.10	<10	5.43	1374	6	0.02	43	2106	3918	10	<20	144	<0.01	<10	33	<10	<1	4003
81	28772	2.9	1.02	620	45	<5	5.94	15	22	60	217	6.68	<10	5.35	1221	5	0.03	51	403	1846	<5	<20	147	<0.01	<10	25	<10	<1	2218

QC DATA:

Resplit:

Resplit:																													
1	28590	0.2	0.39	50	45	10	8.60	<1	31	61	40	7.12	<10	5.63	1702	5	0.03	111	897	4	<5	<20	92	<0.01	<10	19	<10	<1	41
36	28727	10.0	0.68	>10000	55	<5	3.36	207	8	24	994	8.41	<10	3.90	1285	1	0.02	1	234	>10000	75	<20	137	<0.01	<10	3	30		>10000
71	28762	7.2	1.04	3940	45	<5	2.64	57	50	136	739	9.50	<10	2.63	1795	4	0.03	164	1625	4396	15	<20	53	<0.01	<10	38	20	<1	6192

Repeat:																													
1	28590	0.2	0.44	65	55	20	>10	<1	36	59	45	7.89	<10	5.84	1866	6	0.04	127	1287	4	<5	<20	125	<0.01	<10	21	<10	<1	44
10	28701	1.0	0.38	145	50	5	1.22	4	59	78	146	9.80	<10	0.59	451	8	0.03	108	1144	122	<5	<20	23	<0.01	<10	12	<10	<1	886
19	28710	1.2	0.45	495	35	10	0.35	4	51	74	134	7.50	<10	0.33	426	6	0.03	87	1118	28	<5	<20	11	<0.01	<10	18	<10	<1	119
36	28727	12.1	0.57	>10000	60	<5	3.85	266	12	24	1006	>10	<10	3.90	1364	3	0.02	<1	221	>10000	90	<20	166	<0.01	<10	3	30	$<1>$	>10000
45	28736	0.3	0.91	130	40	10	0.19	<1	47	121	91	8.14	<10	0.84	714	6	0.04	86	689	26	<5	<20	8	<0.01	<10	28	<10	<1	70
54	28745	0.6	0.65	85	40	10	0.53	<1	26	78	74	5.63	<10	0.69	246	4	0.01	58	403	34	<5	<20	22	<0.01	10	15	<10	<1	92
71	28762	6.7	0.98	3495	45	<5	2.87	51	52	130	660	9.48	<10	2.69	1884	3	0.03	180	1664	4302	15	<20	61	<0.01	<10	38	10	<1	6579
Standard:																													
GEO '05		1.4	1.31	55	135	<5	1.37	<1	18	62	87	3.61	<10	0.81	567	<1	0.02	20	637	20	<5	<20	53	0.11	<10	73	<10	10	76
GEO '05		1.5	1.32	55	130	<5	1.36	<1	19	60	85	3.61	<10	0.80	555	<1	0.02	20	637	24	<5	<20	56	0.10	<10	73	<10	9	73
GEO '05		1.5	1.20	50	145	5	1.22	<1	19	58	86	3.56	<10	0.74	512	<1	0.02	18	585	24	<5	<20	54	0.11	<10	69	<10	10	74

[^0]: JJ/kk
 df/1614
 XLS/05

