TRENCHING AND DIAMOND DRILLING ASSESSMENT REPORT

ON THE

EXTRA HIGH PROPERTY

KAMLOOPS MINING DIVISION B.C. CANADA

NTS 82M/4W

Lat. 51° 08' North Long. 119° 50' West

Prepared for

BRONX VENTURES INC.

Ste. 600 – 1199 West Hastings St. Vancouver, B.C. V6E 3T5

By

J.W. Murton & Associates

J.W. Murton P. Eng.

March 15, 2006

TABLE OF CONTENTS

page

0.0	SUMMARY	5
1.0	INTRODUCTION & TERMS OF REFERENCE	7
2.0	PROPERTY DESCRIPTION AND LOCATION	9
3.0	ACCESSIBILTY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY	12
4.0	HISTORY	12
5.0	GEOLOGICAL SETTING 5.1 REGIONAL GEOLOGY 5.2 PROPERTY GEOLOGY	14 14 17
6.0	MINERALIZATION	19
7.0	EXPLORATION 7.1 TRENCHING 7.2 DRILLING	23 25 29
8.0	INTERPRETATION & CONCLUSIONS	45
9.0	STATEMENT OF COSTS	46
10.0	REFERENCES	47
11.0	CERTIFICATE OF AUTHOR'S QUALIFICATIONS	48

TABULATION

<u>page</u>

TABLE	1	CLAIM INFORMATION	9
TABLE	2	DIAMOND DRILL HOLE LOCATION DATA	29

APPENDICES

APPENDIX	1	TRENCH ASSAY DATA & AVERAGE VALUES	follows text page 49
APPENDIX	2	DIAMOND DRILL HOLE LOGS including ROCK TYPE CODE & DESCRIPTION	follows text page 54
APPENDIX	3	DIAMOND DRILL HOLE ASSAY AVERAGES AND AVERAGE VALUES	follows text page 104
APPENDIX	4	CERTIFICATES OF ANALYSIS	follows text page 123

ILLUSTRATIONS

<u>page</u>

Fig.	1	LOCATION MAP – EXTRA HIGH PRO	PERTY	8
Fig.	2	TENURE (CLAIM) LOCATION MAP	1:250,000	10
Fig.	3	TENURE (CLAIM) MAP	1: 40,000	11
Fig.	4	REGIONAL GEOLOGY		15
Fig.	5	PROPERTY GEOLOGY		16
Fig.	6	GRID LOCATION & SAMPLE AREAS	1:10,000	24
Fig.	7	DIAMOND DRILL HOLE & TRENCH LOCATION PLAN	1:2,000	31

Fig.	8	DIAMOND DRILL HOLE LONGITUDIN	AL	
		SECTION	1:1500	 32

Fig. 9 – 17 DELETED

Fig. 18-29 TRENCH MAPS - PLAN & SECTION 1:250....

following Appendix 4 page 166

Fig. 18 Trench 1 Fig. 19 Trench 2 Fig. 20 Trench 3 Fig. 21 Trench 4 Fig. 22 Trench 5 Fig. 23 Trench 6 Fig. 24 Trench 7 Trench 8 Fig. 25 Fig. 26 Trench 9 Fig. 27 Trench 10 Fig. 28 Trench 11 Fig. 29 Trench 12

Fig. 30 - 41 DIAMOND DRILL HOLE CROSS SECTIONS 1:1,000 ... following Appendix 4

page 178

- Section 89+75N Fig. 30 Fig. 31 Section 90+00N Fig. 32 Section 90+25N Fig. 33 Section 90+50N
- Fig. 34 Section 90+75N
- Fig. 35 Section 91+00N
- Fig. 36 Section 91+25N
- Fig. 37 Section 91+50N
- Fig. 38 Section 91+75N
- Fig. 39 Section 92+00N
- Fig. 40 Section 92+25N
- Fig. 41 Section 92+50N

0.0 SUMMARY

The Extra High property is located 60 km north from Kamloops B.C. and / or 22 km east from the town of Barriere B.C. via the paved Agate Bay road from Highway 5. Access to the property is then by good gravel logging roads to the 1,450 metre elevation. The main area of interest lies immediately south from the past producing Samatosum Mine.

Bronx Ventures Inc (previously Lucky 1 Enterprises Inc.) acquired 10 Extra High claims in March, 2004 from Mr. R. Wells of Kamloops B.C. Subsequently, an additional 25 mineral claims were located and became part of the option agreement. These 35 claims have now been converted under the new Minerals Titles system governed by the B.C. Minerals Titles Division into 9 separate, contiguous Mineral Tenures. Three additional contiguous Tenures named Super High 1 - 3 were acquired in September, 2005. The total land position now encompasses 12 Tenures with a total area of 1074.886 hectares centered at Latitude 51° 08'N, Longitude 119° 48'E in the NTS or N5668500, E304000 in the UTM system.

The Extra High property is underlain by a northwest trending package of rocks termed the Rea Assemblage. From east to west the package consist of limestone, overlain by mafic flows and pyroclastics, overlain by felsic volcanics, cherts and pyritic sediments (which host the massive sulphide mineralization), which is in turn overlain by turbidites, wackes and conglomerates.

Three mineralized structures cross the Extra High property with a northwest to southeast orientation. From west to east they are (1.) Rea Zone, (2.) Silver Zone, (3.) Twin Mountain Zone.

(1.) Rea Zone. This well mineralized structure hosts the mineralization that has been the target of much of the past exploration as well as the most recent work. Mineralization within this structure is confined to a metasedimentary and felsic metavolcanic package of rocks confined between an overlying hanging wall sedimentary unit consisting of wackes and argillite and a footwall unit of mafic volcanics. Polymetallic sulphide mineralization, in places occurring as lens varying in width of from less than 1 metre to 12.5 metres wide occurs within the uppermost pyritic sediment or pyritic siltite unit. Within this unit, solid sulphide zones consist of 80% - 90% pyrite plus varying amount (up to 5%-10%) of galena, sphalerite and chalcopyrite plus arsenopyrite. The sulphides may be variably banded, fine to medium grained and may be considered as lenses. Stringers of near solid sulphide may also occur in the underlying cherts, cherty sediments and silicified tuffs. These stringer zones vary in thickness from 1 cm to 30 cms and are often accompanied by an increase in silica and dolomitic alteration. Sulphide content may range from 30% - 70%.

(2.) Silver Zone. This structure lies about 300 metres to the east from the Rea Zone. It is parallel to and oriented northwest – southeast as is the Rea Zone. The stratigraphy is identical to that of the Rea Zone other than the fact that the Silver Zone is "right side up", rather than inverted as is the Rea Zone due to a proposed overturned isoclinal fold which

repeats the mineralized horizon. Mineralization in this structure, while similar to the Rea Zone, is less well developed with lesser widths and grades. Polymetallic sulphides are present however

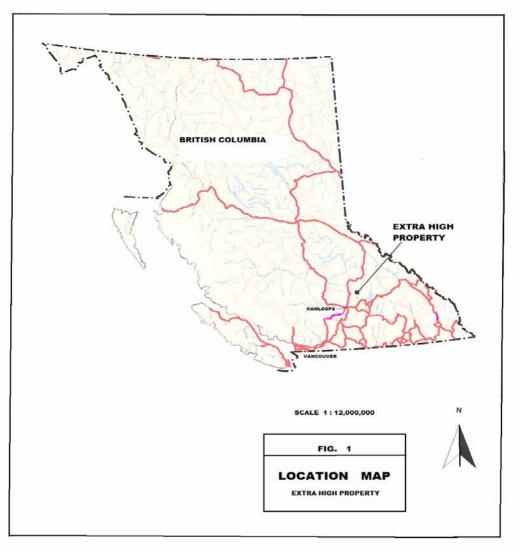
(3.) Twin Mountain Zone. This structure, which lies approximately 300 metres to the east from the Silver Zone, is indicated by erratic but very anomalous lead and zinc soil geochemistry (up to 2000 ppm for both elements) and lesser gold, silver and copper geochemistry. Mineralization also appears to be slightly erratic but consists of disseminated and semi massive galena, sphalerite and pyrite with very slight chalcopyrite hosted in a quartz / carbonate / dolomite host. The quartz / sulphide lenses or concentrations are contained within and conformable with chlorite, sericite, and silica altered shear structures within mafic volcanics and lapilli tuffs with an easterly dip.

The exploration concept for the Extra High property was to attempt to increase the size of the geologically indicated mineralization revealed by previous operators on the K7 lens of the Rea Zone as well as to further investigate the other mineralization previously located on the property.

A diamond drilling program coupled with trenching was carried out during Sept. to Dec., 2005 with successful results. A total of 1,874.3 metres of NQ diamond drilling and 455 lineal metres of trenching were completed on the Rea Zone in the area of the K7 lens.

All work was completed on Tenures 509949 and 510214.

The positive results generated by the 2005 exploration program warrant additional work on the property to further define the K7 mineralized structure to enable a resource calculation to be completed.

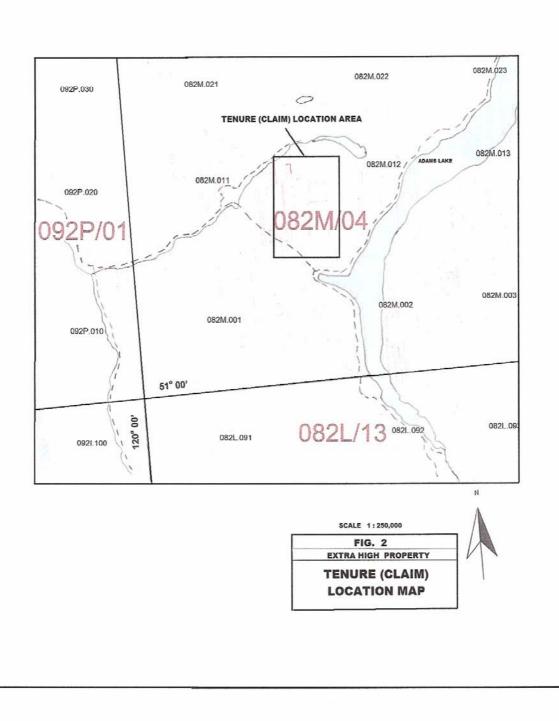

1.0 INTRODUCTION & TERMS OF REFERENCE

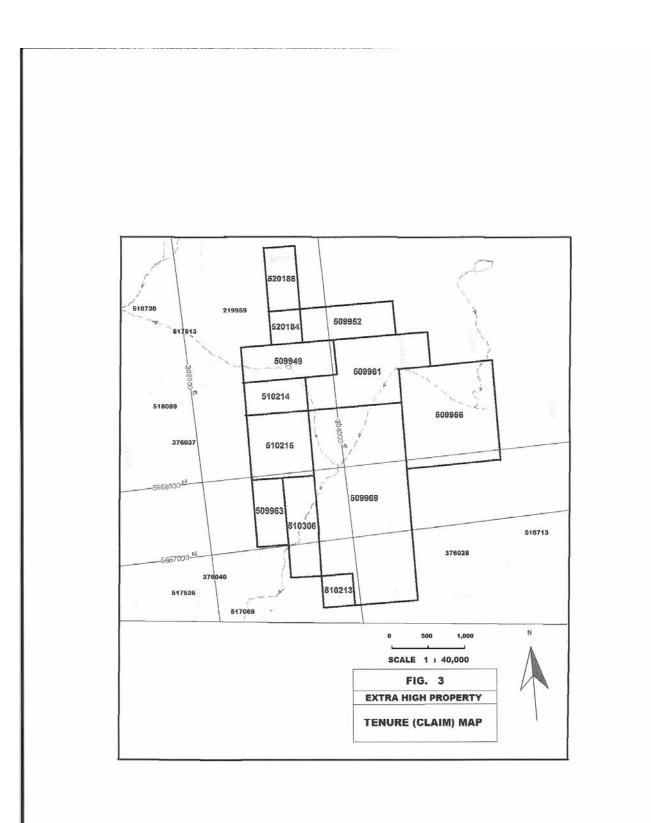
The Extra High property has been the object of mineral exploration in the past and those results were sufficiently encouraging to warrant additional work. This report will summarize the past exploration, detail the exploration program completed during 2005 and recommend further exploration on the property.

Data from earlier work is only partially available, as government assessment files, and as a result, much of the analytical data that would have been helpful in the property assessment and evaluation has not been accessed. Soil geochemical coverage of the property is fair to good, trench information is lacking and diamond drill information is partially available.

The initial land position of 35 mineral claims (now mineral tenures) was optioned from Mr. Ron Wells of Kamloops B.C., initially by Lucky 1 Enterprises Inc, now having undergone a name change to Bronx Ventures Inc. Additional mineral tenures have been acquired by Bronx Ventures Inc. The original claims were named the Extra High claims, and even though that name has not been carried forward with the new Mineral Tenure system of identification, the name "Extra High" will continue to be used in reference to the property.

J.W. Murton & Associates were contracted to design and implement an exploration program on the Extra High property to assess and verify earlier diamond drill results as well as, if possible, increase the geologically indicated mineralization revealed by previous operators. This exploration program was completed during the period May to Dec., 2005.




2.0 PROPERTY DESCRIPTION AND LOCATION

The Extra High property is located on the south and western slopes of Samatosum Mountain east of Barriere, B.C. or north east of Kamloops B.C. The total area of the present land position is 1074.886 hectares and the center of the land position is Latitude 51° 08'N, Longitude 119° 48'E in the NTS or N5668500, E304000 in the NAD 83 UTM system.

Bronx Ventures Inc (previously Lucky 1 Enterprises Inc.) acquired 10 Extra High claims in March, 2004 from Mr. R. Wells of Kamloops B.C. Subsequently, an additional 25 mineral claims were located and became part of the option agreement. These 35 claims have now been converted under the new Minerals Titles system governed by the B.C. Minerals Titles Division into 9 separate, contiguous Mineral Tenures. Three additional contiguous Tenures named Super High 1 - 3 were acquired in September, 2005. The total land position now encompasses 12 Tenures. See Table 1 which information was copied from the B.C. Minerals Titles Division web site. Of note is the fact that the previously named "Extra High" claims 1 - 35 were not able to carry on with the "Extra High" name when the conversion was completed and thus are now identified only by a Tenure number.

		TA	BLE	1			
Tenure #	Claim Name	Map Owner #		Good To Date	Status	Hectares	
		4.40504					
509949	Super	146501 (100%) 146501	082M	2006/APR/02	GOOD	60.829	
509952	High #1	(100%)	082M	2006/MAR/31	GOOD	60.824	
509956		(100%)	082M	2006/APR/02	GOOD	182.520	
509961		(100%) 146501	082M	2006/APR/02	GOOD	121.664	
509963		(100%) 146501	082M	2006/APR/02	GOOD	40.569	
509969		(100%) 146501	082M	2006/APR/02	GOOD	344.834	
510213		(100%) 146501	082M	2006/APR/02	GOOD	20.289	
510214		(100%) 146501	082M	2006/APR/02	GOOD	40.557	
510215		(100%) 146501	082M	2006/APR/02	GOOD	81.124	
510306	SUPER	(100%) 146501	082M	2006/APR/02	GOOD	60.857	
520184	HIGH #2 SUPER	(100%) 146501	082M	2006/SEP/20	GOOD	20.275	
520186	HIGH #3	(100%)	082M	2006/SEP/20	GOOD	<u>40.544</u> 1074.886	

Bronx Ventures Inc. has the option to acquire a 100% interest in the Mineral Tenures listed above under the terms of an agreement with Mr. R. Wells of Kamloops B.C

As may be seen in Table 1, the expiry dates of the Tenures range from March 31, 2006 to Sept.20, 2006. Bronx Ventures Inc has filed the cost of the work program detailed in this assessment report to advance the new expiry dates of the tenures to the year 2016.

3.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Extra High property is located 60 km north from Kamloops B.C. and /or 22 km east from the town of Barriere B.C. via the paved Agate Bay road from Highway 5. Access to the property is then by good gravel logging roads to the 1,450 metre elevation. The highest elevation on the property is 1,580 metres approximately 1 km to the northeast from the main area of interest and the lowest elevation is 1,200 metres located on the southern boundary of the property. The main area of interest lies immediately south from the past producing Samatosum Mine. See Fig. # 5.

The gently sloping hillsides are partially clear cut logged and the remainder contains virgin timber which is currently being harvested. Access may be gained year round providing that the roads are plowed in the winter months. Snowfall averages about 1-2 metres through the winter. Water is readily available from a number of 1 - 2 metre wide creeks which run year round, while a small 1 hectare pond near the north boundary of the property runs water all year.

The town of Barriere is a good local source of labor and equipment contractors while Kamloops which lies less than 1 hour drive south, is a major supply centre as well as manpower centre.

4.0 HISTORY

The following is a partial summary from a report by Ron Wells, dated June 20, 2003 titled Geological Report for the Extra High Property.

"The property has had a long history of mineral exploration dating back to the 1890's. The Extra High property partially covers three south east trending mineralized horizons that are prospective for volcanogenic massive sulphide deposits containing gold, silver, copper, lead and zinc with occasional barite. From east to west the three horizons are called Twin Mountain Zone, Silver Zone, and Rea Zone. The Twin Mountain Zone runs up the middle of the property area and is a northerly extension of the historic showing called the Twin Mountain showing on an adjacent property (not owned by Bronx Ventures Inc.). This zone has been explored intermittently since 1936 for copper, lead and zinc sulphides with barite. Extensive trenching with two exploration tunnels plus soil sampling on the adjacent property indicated a strike length of over 4.5 km. Exploration programs in the 1980's by Apex Energy Corp / Austin Resources Corp followed by an option to Falconbridge Copper (later Minova Inc.) disclosed a number of soil geochemical anomalies which trended northwesterly across the Bronx Ventures Inc. ground. Prospecting by a prospector, Paul Watt, in the early 2000's revealed a mineral showing in a road cut on the Twin Mountain trend which carries values similar to the more southerly showing explored by adits o the adjacent ground. The soil anomalies contain copper, lead, silver and zinc values with lesser gold values and extend for 1.6 km across the property all the way to the northern boundary with the now closed Samatosum Mine.

The centrally located Silver Zone which is on the southeastern extension of the Samatosum Horizon was discovered in the 1980's following the discovery of the Rea Gold Zone and the Samatosum Zone adjacent to the north. This ground was named the Kamad claims and owned by the Kamad Silver Company Ltd. The Kamad claims were explored by Kamad Silver up to 1985 and then optioned to Esso Minerals up to 1989. This was followed by Homestake Canada Ltd. acquiring an interest up to 1992.

The Rea Zone which is located on the western portion of the property was similarly explored during the 1980's and early 1990's as part of a property wide program to attempt to extend the newly discovered Rea Horizon to the south east. This Rea Horizon on the now Bronx Venture Inc. ground contains the K7 zone which will be discussed following.

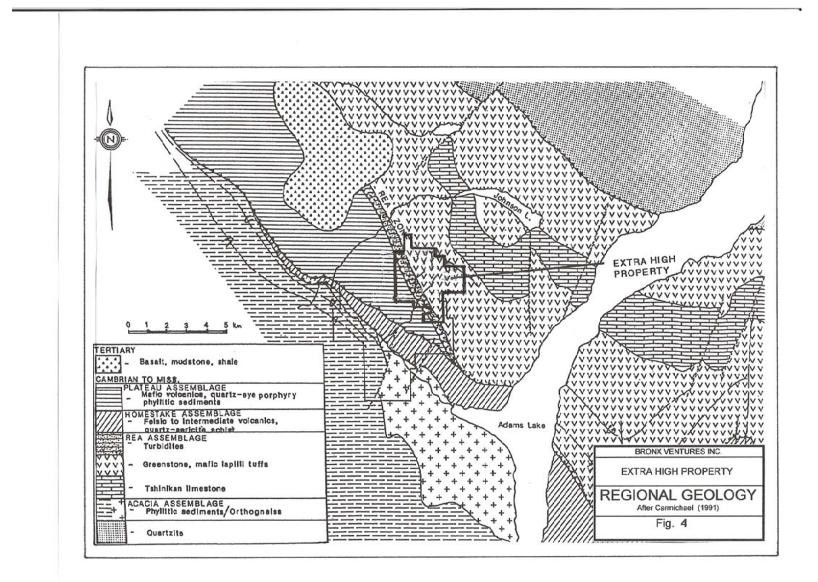
The Rea and Silver Zones were partially covered by the Twin 3 claim owned by Apex Energy Corp and optioned to Lincoln Resources Inc. in 1983 and an option to Falconbridge Copper in 1984. Between 1986 and 1992 the property, known as the Twin Property, was explored by Esso Minerals followed by Homestake Canada Ltd." The following is an excerpt from a report for Homestake Canada Ltd. in 1991 by R.G.Carmichael.

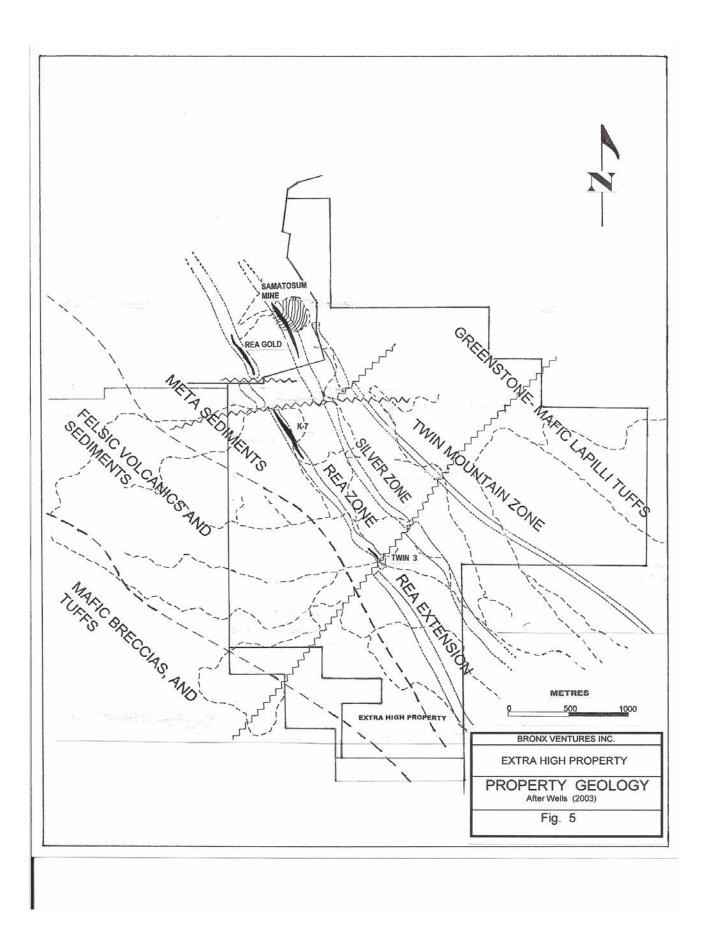
"The discovery of the Rea Gold volcanogenic massive sulphide lenses in 1983 and the Samatosum massive sulphide deposit in 1986 shifted the focus of exploration from the Homestake Bluffs (south east of Bronx Ventures Inc. ground) to the plateau area. Geophysical surveys and diamond drilling were carried out on the Kamad 7 claim in 1983 and 1984 and identified massive sulphide mineralization on the Rea Horizon. In 1985, a company called 259146 B.C. Ltd. Drilled 5 holes totaling 369.7 metres into this new zone.

In 1986, Esso Minerals Canada conducted an extensive geological, geochemical and geophysical evaluation of the Rea Horizon on the Kamad 7 and 8 claims. This was

followed by trenching and 1814 metres of diamond drilling. An additional 1125 metres of diamond drilling were completed in 1987.

In 1988, 2,094 metres of diamond drilling were completed and resulted in the discovery of the K7 massive sulphide lens.


Homestake Canada Ltd. acquired Esso's interest in the property in 1989 and completed 4,972 metres of diamond drilling in 25 holes, 785 metres of trenching in 14 trenches, and 11 km of Genie EM geophysical surveys on the Kamad 7 and 8 claims. This work program tested the down dip continuation of the recently discovered K7 lens and successfully located the Rea horizon on the Kamad 8 claim to the east. Homestake completed 2,961 metres of diamond drilling in 1990 and attempted down hole pulse Em geophysics."


The claims which now form the Extra High property were allowed to lapse and were staked by Mr. P. Watt of Kamloops B.C. in 2000.

5.0 GEOLOGICAL SETTING

5.1 REGIONAL GEOLOGY

The Extra High property lies on the Adams Plateau which is located on the western edge of the Ominica Belt. In this area, the belt is comprised of a Lower Paleozoic succession of clastic metasediments, carbonate and mafic volcanic rocks, and an overlying Devonian - Mississipian succession of felsic to intermediate metavolcanics and clastic metsediments, termed the Eagle Bay Assemblage. The Eagle Bay Assemblage overlies the Devonian to Permian Fennell Formation comprised of bedded chert, gabbro, diabase, pillow basalt, clastic metasediments with minor limestone, quartz feldspar porphyritic rhyolite and conglomerate. The Eagle Bay and Fennell rocks are a fault imbricated

assemblage that has been subject to structural stacking. Stratigraphic units generally strike northwesterly and dip moderately northeasterly.

This metasediment / metavolcanic package of rocks is cut by Mid Cretaceous age granitic rocks belonging to the Raft and Baldy Batholiths.

Geological mapping in the area in 1987 – 1988 resulted in a modification of the Eagle Bay Assemblage geology from the above earlier work by Schiarizza and Preto. The Eagle Bay rocks were subdivided into four thrust bounded assemblages, each characterized by a unique internal stratigraphy.

1.)REA ASSEMBLAGE – consists mainly of felsic to mafic pyroclastics and flows which contain the Tshinakin limestone on the northeast portion of the property. The felsic to mafic series is typically structurally underlain (stratigraphically overlain) by a 350 metre thick sequence of clastic sediments informally named the Rea or Hanging Wall sediments. This is a turbidite sequence typified by quartz wackes, siltstones and argillites with lesser chert pebble conglomerate. This Rea Assemblage hosts the Samatosum deposit and the massive sulphide mineralization at the Rea Gold, K7 and Twin 3 zones.

2.) PLATEAU ASSEMBLAGE – lies immediately to the south west of the Rea Assemblage and consists of mafic, intermediate and felsic volcanics with lesser interbedded argillite.

3.) HOMESTAKE ASSEMBLAGE – lies immediately to the south west of the Plateau Assemblage and structurally underlies the Plateau package. It consists of calcareous sediments, mafic, intermediate and felsic volcanics and sericite schist.

4.) ACACIA ASSEMBLAGE – lies further to the south west of the Homestake Assemblage and contains quartzites, quartz wackes, siltstone and argillite.

5.2 **PROPERTY GEOLOGY**

The Extra High property is completely underlain by the northwest trending Rea Assemblage. From east to west the package consist of limestone, overlain by mafic flows and pyroclastics, overlain by felsic volcanics, cherts and pyritic sediments (which host the massive sulphide mineralization), which is in turn overlain by turbidites, wackes and conglomerates. This section of the stratigraphy has locally been overturned by isoclinal folding. Further west, a thick section of quartz eye felsic volcanics underlies the sediments and is believed to be in thrust contact with the turbidites.

Contacts between units strike at 135° to 160° and dip 45° to 60° northeast. At least one isoclinal anticline has been identified on the property and this fold is thought to repeat the mineralized horizon so that the Silver Zone is in the upright limb and the Rea Zone is in the overturned limb. The upright limb or Silver Zone is intensely disrupted and locally

truncated by a thrust fault which closely parallels the stratigraphy. The overturned limb or Rea Zone displays somewhat similar disruptions but is less fragmented.

Mafic flows and pyroclastics underlay approximately 90% of the property. The succession consists of interbedded mafic pyroclastics and flows with lapilli tuff being very common. Occasional graphitic argillite is present. The volcanic rocks are cut by semi-conformable diorite to hornblende diorite bodies that average between 20 and 40 metres thick. These units are likely subvolcanic sills and dykes. Tabular, foliation parallel zones of moderate to intense ankerite-dolomite-pyrite alteration occur within the mafic volcanics. These alteration zones are sometimes but not always related to an increase in quartz –dolomite veining, and may be related to low angle, foliation parallel faults within the mafics.

The Rea / Silver zone stratigraphically overlies (structurally underlies) the mafic volcanics and can be up to 150 metres thick. The stratigraphy of the zones is reasonably consistent north to south on a property scale although facies changes and variations are noted. The is a strong likelihood that the Rea and Silver Zones are the same zone on opposite limbs of an overturned isoclinal anticline and are described here as one unit from stratigraphic bottom to top.

- 1. Graphitic chert and argillite commonly form the base of the zones. Texturally this member ranges from a depositional breccia to a massive black chert. Pyrite is present in amounts up to 10% and traces of galena, sphalerite and chalcopyrite have been noted.
- 2. Sericitic tuff conformably overlies the graphitic chert and is locally interbedded with it. This member has a distinct yellow to green color, a chaotically banded or laminated texture and contains up to 40% sericite. Massive grey chert may be interbedded with the sericitic tuff and may contain well mineralized stringers of pyrite, chalcopyrite, galena, sphalerite and arsenopyrite.
- 3. Felsic pyroclastic rocks overlie the sericitic tuff. Sericite-pyrite alteration is intense throughout most of this member and sections of strong chlorite alteration are noted. Stringer sulphide mineralization may be present. Within these felsic rocks, volcanic cycles are evident with coarse fragmentals grading into lapilli and ash tuffs.
- 4. Pyritic sediments stratigraphically overlie the felsic volcanics. This unit contains abundant extremely fine grained pyrite (30-60%) and a well developed sedimentary texture. Lithologies range from mudstone to conglomerate composed of grey, black and sericitic chert clasts in a matrix of pyritic mud. This unit is called pyrite siltite and is the stratigraphic equivalent of the K7 massive sulphide horizon.

The Hanging Wall Unit stratigraphically overlies the Rea / Silver Zone and is a monotonous succession of well bedded turbidites, calcareous greywackes, graphitic

argillites, and course chert pebble conglomerates. This unit usually contains less than 5 % pyrite but is often anomalous in barium.

6.0 MINERALIZATION

Three mineralized structures cross the Extra High property with a northwest to southeast orientation. From west to east they are (1.) Rea Zone, (2.) Silver Zone, (3.) Twin Mountain Zone.

(1.) **Rea Zone.** This well mineralized structure hosts the significant mineralization that has been the target of much of past exploration as well as the most recent work.

The stratigraphy of the zones is reasonably consistent north to south on a property scale although facies changes and variations may be observed from drill hole and trench data.

Mineralization within this structure is confined to a metasedimentary and felsic metavolcanic package of rocks confined between an overlying Hanging Wall sedimentary unit consisting of wackes and argillite and a footwall unit of mafic volcanics as summarized below, listed from stratigraphic top to bottom. It must be noted that within the Rea Zone structure, this package of rocks has been overturned by a postulated isoclinal fold so that the Rea Zone is "upside down" while the adjoining Silver Zone is "right side up".

1. Hanging wall Sediments-wackes and argillite.

2. Pyritic sediments stratigraphically overlie the felsic volcanics. This unit contains abundant extremely fine grained pyrite (30-60%) and a well developed sedimentary texture. Lithologies range from mudstone to conglomerate composed of grey, black and sericitic chert clasts in a matrix of pyritic mud. This unit has been termed pyrite siltite and is the stratigraphic equivalent of the K7 massive sulphide horizon.

3 Felsic pyroclastic rocks overlie the sericitic tuff. Sericite-pyrite alteration is intense throughout most of this member and sections of strong chlorite alteration are noted. Stringer sulphide mineralization may be present. Within these felsic rocks, volcanic cycles are evident with coarse fragmentals grading into lapilli and ash tuffs.

4. Sericitic tuff conformably overlies the graphitic chert and is locally interbedded with it. This member has a distinct yellow to green color, a chaotically banded or laminated texture and contains up to 40% sericite. Massive grey chert may be interbedded with the

sericitic tuff and may contain well mineralized stringers of pyrite, chalcopyrite, galena, sphalerite and arsenopyrite.

5. Graphitic chert and argillite commonly form the base of the zones. Texturally this member ranges from a depositional breccia to a massive black chert. Pyrite is present in amounts up to 10% and traces of galena, sphalerite and chalcopyrite have been noted.

6. Mafic volcanics.

The majority of the polymetallic massive sulphides occur within the uppermost pyritic sediment or pyritic siltite unit. Within this unit, solid sulphide zones consist of 80% - 90% pyrite plus varying amount (up to 5%-10%) of galena, sphalerite and chalcopyrite plus arsenopyrite. The sulphides may be variably banded, fine to medium grained and may be considered as lenses.

Diamond drill intersections indicate that the lenses may vary from less than 1 metre to 12.54 metres thick as seen in diamond drill hole 05-10. The strike extension of individual lenses is not well defined as yet, as the 2005 diamond drilling program targeted only the K7 lens and partially delimited this zone.

Stringers of near solid sulphide (NSS) may also occur in the underlying cherts, cherty sediments and silicified tuffs. These stringer zones vary in thickness from 1 cm to 30 cms and are often accompanied by an increase in silica and dolomitic alteration. Sulphide content may range from 30% - 70%.

Previous diamond drilling programs from 1986 - 1991 have indicated numerous intersections of weakly mineralized to narrow sections of solid sulphide (SS) extending over a strike length of 2 km within the total strike length of 3 km of the Rea Zone within the property boundaries. These sulphide zones are always pyrite rich with varying amount of galena, sphalerite and lesser chalcopyrite and arsenopyrite. Grades vary from: Au 0.5 - 4 g/t, Ag 2 - 38 g/t, Cu 0.02 - 0.2%, Pb 0.2 - 2.5%, Zn 0.4 - 4.7%. It must be noted that data from the earlier diamond drilling programs is not complete. Many drill logs and assay data sets are missing or only partially reported in earlier assessment reports or news release formats. As such, the writer has not been able to confirm the accuracy of the assay data above.

Within the Rea Zone, the K7 lens is the most well defined and largest occurrence of massive sulphide located to date. This lens lies near the northern boundary of the Extra High property and has received the most extensive drilling of any area on the property.

Between 1985 and 1989, approximately 30 holes were completed, targeting an area 350 metres in strike length and 200 metres down dip. While there were some misses within this drilled area, incomplete assay data for 20 of the holes indicates SS to NSS intervals varying in width from 0.5 metre to 11.6 metres with grades from the 0.5 metre interval in hole 88044 assaying Au 5.0 g/t, Ag 92.0 g/t, Cu 0.1%, Pb 1.5%, Zn 1.5 %, As 1.6%, to hole 88040 with 11.6 metres assaying Au 3.56 g/t, Ag 77.8 g/t, Cu 0.6%, Pb 6.8%, Zn

8.4%, As 2.6%. This assay data is taken from old reports (J.M.Marr,1989 Assessment Report) and while the writer has no reason to not accept the data, direct verification is not possible. The intersections noted are not necessarily representative of the complete K7 lens but are listed to give an indication of the grades of mineralization that might be expected.

A significant feature of the K7 lens and probably the complete Rea Zone, is the effect of faulting as a disruption of the strike and dip continuity of mineralization. A trenching program in 2005 was targeted at locating the K7 Zone on surface. Previous trenching information is not available, and while old trench locations may sometimes be located, there is no information to be gained. The 2005 trenching helped to explain some of the lack of drill intersections in previous and present drill holes and did disclose several locations of the K7 lens on surface.

At one point, in the 1988 - 1989 time period, there was a geological resource calculated by Kamad Silver and/or Homestake Canada from drill hole and trench data. While this resource is not 43-101 compliant, it is mentioned here to give some indication of the size potential of the massive sulphide target. The resource was measured from surface to 150 metres below surface and amounted to 375,000 tonnes of 4.0 g/t Au, 55 g/t Ag, 0.5% Cu, 4.8% Pb, and 6.1% Zn. This mineralized area was the focus of the 2005 exploration drilling program.

At a location approximately 1.2 km south of the K7 lens, diamond drilling in 1987 located a small high grade lens of SS (massive polymetallic sulphide) within the Rea Zone stratigraphy. This zone, called the Twin 3 lens, was intersected by 2 holes with the better grade intersection in hole 87-03 assaying 1.8 metres of Au 30.5 g/t, Ag 248.3 g/t, Cu .2%, Pb 2.0%, Zn 0.7% (Heberlein, 1987). A significant difference between this sulphide zone and the K7 lens is the presence of a barite lens stratigraphically overlying the zone. Projections from two drill holes indicate a possible surface strike length of about 100 metres and a dip length of about 50 - 70 metres. Drilling around this intersection failed to locate a continuation of the mineralization, but extensive faulting was noted in the drill holes.

(2.) Silver Zone

The Silver Zone lies about 350 metres to the east from the Rea Zone. It is parallel to and oriented northwest – southeast as is the Rea Zone.

The stratigraphy is identical to that of the Rea Zone other than the fact that the Silver Zone is "right side up", rather than inverted as is the Rea Zone due to a proposed overturned isoclinal fold which repeats the mineralized horizon.

Drilling on the Silver Zone took place from 1986 – 1991 with somewhat less encouraging results than those from the Rea Zone. Approximately 23 holes were drilled. Strike length of the Zone on the property is approximately 2 km (similar to the Rea Zone).

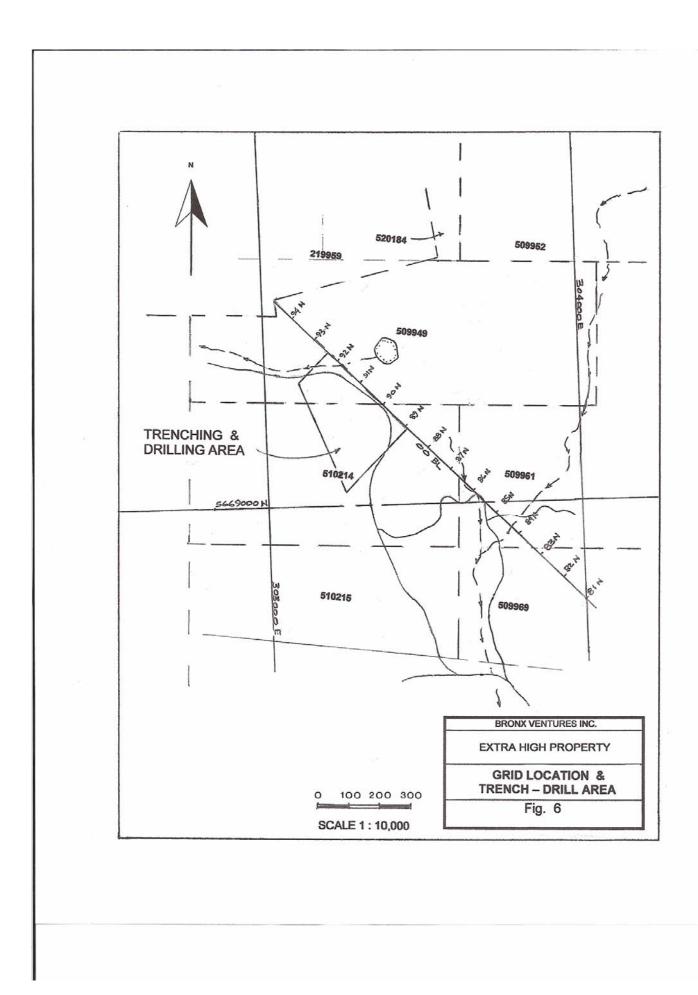
Drill hole logs and analytical data is sparse for nearly all the holes, but where data is available from within the mineralized horizon, it indicates a possible range of thickness and grades from: 0.2 metres of Au 9.46 g/t, Ag 89.8 g/t, Cu 0.3%, Pb 3.6%, Zn 5.6% within a broader interval of 7.6 metres of Au 0.81 g/t, Ag 13.0 g/t, Cu 0.06%, Pb 0.2%, Zn 0.3%, all in hole 91036. This assay data is from a news release in George Cross News Letter of 1991 and as such the data can not be verified or the accuracy confirmed by the writer. It is listed here only to show that there is potential for mineralization within the Silver Zone.

(3.) Twin Mountain Zone has been explored in the past by geochemical surveys It is a continuation of the well mineralized structure explored to the southeast on the adjacent SIN claims.

On the Extra High property, the structure is indicated by erratic but very anomalous lead and zinc soil geochemistry (up to 2000 ppm for both elements) and lesser gold, silver and copper geochemistry. Mineralization also appears to be slightly erratic but consists of disseminated and semi massive galena, sphalerite and pyrite with very slight chalcopyrite hosted in a quartz / carbonate / dolomite host. The quartz / sulphide lenses or concentrations are contained within and conformable with chlorite, sericite, and silica altered shear structures within mafic volcanics and lapilli tuffs. These shear structures have a northwest – southeast orientation $(135^{\circ} - 160^{\circ})$ with a shallow $(45^{\circ} - 60^{\circ})$ easterly dip.

The overall strike length of the Twin Mountain Zone on the Extra High property is approximately 2.3 km with observed widths of 1 - 20 metres.

Two exposures of the structure were sampled. The first was a large gossan in a road cut near the eastern property boundary which returned only background values for all elements. The second sample was from a newly discovered exposure (by Paul Watt) in a logging road cut at UTM co-ords N5668620, E304531. The quartz / carbonate vein? ran:


1 metre of Au- 62 ppb, Ag- 8.2 ppm, Cu- 85 ppm, Pb- 11,439 ppm, Zn - 4,449 ppm. This sample does not represent the true width of the structure as it is covered by overburden in all directions.

7.0 EXPLORATION

An exploration program of trenching and diamond drilling was carried out on selected areas of the Extra High property during the period September to December 2005.

All trenching and diamond drilling was completed on Tenures 509949 and 510214.

When all the earlier data was being assembled and analyzed, it was noted that the grid coordinates were confusing and not oriented in a logical manner. For instance, the original 00+00 baseline that has an orientation of 325° was depicted as having an easterly numbering system and increasing to the northwest. For instance, line 88+00E was followed 100 metres to the northwest by line 89+00E. This north and east designation was changed when the grid was re-established so that in all work completed in 2005 and referenced to previous work, the baseline will increase to the North with cross lines depicted as running to the east or west off the baseline.

7.1 TRENCHING

Trenching was completed over a section of the Rea Zone where better mineralization was indicated from previous work. A total of 12 trenches were excavated during the month of Sept. by an Hitachi 110 excavator contracted from Martin Caine of Chase B.C.

All trenches were excavated to at least 1 and up to 3 metres in depth where possible. Width was approximately 1 $\frac{1}{2}$ metres. A total of 455 lineal metres of trench were excavated. See Figs. 18 - 29 for plan and section plots of the trenches.

Samples were taken as channel samples from the wall of all trenches that exhibited potential mineralization. These sample numbers and locations are plotted on the accompanying trench drawings as plan and section.

A number of the trenches ended (at their western end) in ferricrete which precluded digging deep enough to get a meaningful sample of the underlying lithology. This ferricrete was sampled along with any potentially mineralized sections and results indicate that when ferricrete directly overlies or is in close proximity to a mineralized section of Rea Zone, the ferricrete exhibits highly anomalous values in gold, silver lead and arsenic as in Trench 8

Trench 1 (Fig. 18)

Trench 1 was excavated adjacent to an old road near 92+50N, 1+00W. A zone of ferricrete was evident in the road cut. The trench opened the ferricrete and extended to the east until deep overburden stopped further excavation. A strong fault zone structure was exposed in the complete trench after a short interval in the west end of ferricrete overlying a graphitic argillite at the meta sediment argillite / wacke contact. The fault zone is mildly anomalous in gold (200 - 300 ppb), and arsenic (460 - 790 ppm). Other elements are not anomalous. The ferricrete is only weakly anomalous and would indicate that no mineralization is close by.

Trench 2 (Fig. 19)

Trench 2 was cut in the area of 91+90N, 1+00W and extends 30 metres east and 40 metres west from that point at approximately 248° . It revealed from east to west: chloritic sericitic tuff, pyritic siltite, a 1 metres wide sulphide zone of completely oxidized and crushed material from 34.0 - 35.0 metres in the trench, pyritic siltite, a strong (3 metres wide) fault zone containing sulphide fragments, chloritic sericitic mudstone and ended in argillite contact material which forms the structural footwall of the Rea Zone.

The 1 metre sulphide rich section assayed- gold 2.32 g/t, silver 0.7 ppm, copper 474 ppm, lead 534 ppm, zinc 1,153 ppm, arsenic 1.23%. The preceding 2.3 metre interval was also anomalous: gold 0.96 ppb, silver 11.0 ppm, copper 884 ppm, lead 2,798 ppm, zinc 675 ppm, arsenic 5,120 ppm. The 3.3 metres section averages gold 1.37 g/t, silver 7.88 ppm, copper 760 ppm, lead 2,112 ppm, zinc 820 ppm. This trench intersection of the K7 zone lies approximately where it was expected to occur and ties in to the intersection obtained in DDH 05-15.

Trench 3 (Fig. 20)

Trench 3 was cut in the area of 91+50N, 1+00W and extends 50 metres to the west at approximately 230° This trench was cut to attempt to intersect the K7 lens in this area. It started in the east end with 16 metres of white quartz sericite schist followed by an oxidized quartzite (possibly chert) zone mixed with grey sericitic tuff. This mixed zone continued for 9 metres and then became mixed with silicified dusty pyrite siltite to a point at 31 metres. Overburden then became too deep to locate bedrock but a ferricrete zone was cut at the west end of the trench and returned slightly anomalous vales in zinc and arsenic.

No obvious sulphides were intersected but an oxidized quartzite or chert was located at 16 – 18 metres mixed with a grey sericitic tuff which together over 4 metres assayed: gold 0.69 g/t, silver 10.2 ppm, copper 444 ppm, lead 1,776 ppm, zinc 2,043 ppm, arsenic 4,455 ppm. The following 11 metres is also slightly less anomalous in all elements.

Trench 4 (Fig. 21)

Trench 4 was cut at approximately 91+00N, 1+00W and extends 60 metres to the west at approximately 230°. It cut 29 metres of mixed grey / yellow laminated chloritic sericitic tuff (schist) before cutting a high grade section of the K7 lens. This zone was composed of completely crushed, black, red, green, brown oxidized sulphides. The mineralized zone was fault bounded but the location is approximately where it should occur. This zone was followed by approximately 6 metres of white - grey talc sericite schist changing to a dusty pyritic laminated grey tuff before entering the structural footwall argillite.

A 5.5 metre interval which represent approximately a true width assayed: gold 51.2 g/t, silver 834 g/t, copper 3,092 ppm, lead 15.52%, zinc 3,931 ppm, arsenic 9.6%. The first 2 metres of the sulphide zone assayed 76.6 g/t gold, the highest gold value recorded in the 2005 program. This sulphide zone has undergone extreme oxidation and the resulting product is possibly enriched in gold, silver, lead and arsenic and depleted in zinc.

Trench 5 (Fig. 22)

Trench 5 was cut at approximately 90+50N, 1+25W and extends for 48 metres to the west at approximately 240°. It cut talc sericitic schist and tuff with siliceous sections before encountering a strong fault at 38 metres trending at 170°. West of the fault, the trench cut a grey chloritic mudstone with dusty pyrite. A ferricrete zone was encountered overlying a muddy tuff. A grab sample of the ferricrete ran: gold 0.07 g/t, silver 1.7 ppm, copper 311 ppm, lead 138 ppm, zinc 941 ppm, arsenic 1,065 ppm. These values would indicate that mineralization may be nearby.

Trench 6 (Fig. 23)

Trench 6 was cut at 90+39N, 1+59W and extended 14 metres to the west at 240° . Grey sericitic schist was cut in the first 5 meters of the trench and then ferricrete. The ferricrete ran: gold 0.10 g/t, silver 0.2 ppm, copper 175 ppm, lead 56 ppm, zinc 729 ppm, arsenic 785 ppm. These values indicate that mineralization may be nearby.

Trench 7 (Fig. 24)

Trench 7 was cut at 90+25N, 1+51W and extended 42 metres to the west at about 248° . It intersected a mixture of grey chloritic, sericitic tuff, graphitic chert, "white spotted" muddy tuff and then a ferricrete zone. Further to the west from the ferricrete was a grey chloritic mudstone or siltstone and then argillite. A grab sample of the ferricrete ran: gold <0.03 g/t, silver 1.2 ppm, copper 358 ppm, lead 228 ppm, zinc 834 ppm, arsenic 875 ppm. These values indicate that mineralization may be nearby.

Trench 8 (Fig. 25)

Trench 8 was cut about 10 metres to the east of 89+85N, 2+00W and extended about 20 metres to the east at 070° from that point. From east to west the trench cut light grey sericitic, chloritic tuff, grey silty tuff with dusty pyrite and then ferricrete. A strong fault zone was cut to the west of the ferricrete and fragments of mixed sulphides were observed mixed with pyritic siltite in the fault gouge material on the dump. Water inflow precluded obtaining a chip sample or mapping the sulphide zone. A grab sample of the sulphide and pyritic siltite fragments assayed: gold 7.96 g/t, silver 153.0 g/t, copper 1,123 ppm, lead 18.20%, zinc 2,683 ppm, arsenic 8.84%. The ferricrete assayed: gold 2.13 g/t, silver 69.0 g/t, copper 541 ppm, lead 8.25%, zinc 532 ppm, arsenic 1.48%. These ferricrete numbers indicate that the ferricrete is adjacent to or overlays a polymetallic sulphide zone as indicated by the grab sample values from the sulphides on the dump.

Trench 9 (Fig.26)

Trench 9 was cut to attempt to locate the sulphide zone located in trench 8 further to the south. The trench was cut 16 metres to the east from 89+85N, 2+00W and extended 20 metres to the east from that point at approximately 070° . From east to west the trench cut mixed grey / white sericitic tuff and cherty argillite and further west, graphitic argillite and pyritic siltite layers in a grey chloritic tuff. Heavy water inflow and deep overburden precluded digging further to the west and as a result the possible south extension of the mineralized zone located in trench 8 may have been missed. A section of graphitic argillite from 9.0m - 13.0m in the trench ran: gold 0.68 g/t, silver 5.1 ppm, copper 40 ppm, lead 746 ppm, zinc 55 ppm, arsenic 1,700 ppm.

Trench 10 (Fig 27)

Trench 10 was cut to attempt to tie together the mixed lithologies in adjacent trenches. The Rea Zone here is extensively faulted and difficult to tie together between trenches. Trench 10 was cut 10 metres to the east from 89+75N, 2+00W and extends 18 metres at 075° . Grey brown sericitic tuff and cherty argillite with graphitic sections were encountered. Quarts veins in trenches 9 - 11 while interesting looking and oxidized after pyrite do not carry any values. A section of graphitic cherty argillite ran: gold 0.53 g/t, silver 5.3 ppm, copper 256 ppm, lead 1,182 ppm, zinc 947 ppm, arsenic 3,135 ppm.

Trench 11 (Fig. 28)

Trench 11 was cut at 89+50N, 2+00W and extended about 30 metres to the east at 065° from that point. The trench exposed a complex assemblage of rock types that had been extensively faulted. Rock types included graphitic tuff / fault zone, cherty argillite, pyritic siltite and grey chloritic tuff. The only section of the trench that carried values was from 3.0 - 6.5 metres in a fault zone mixed with tuff and graphite that ran: gold 0.29 g/t, silver 5.4 ppm, copper 105 ppm, lead 2,410 ppm, zinc 277 ppm, arsenic 3,810 ppm.

Trench 12 (Fig. 29)

Trench 12 was the last trench cut to the south on the proposed extension of the Rea Zone. It was located about 8 metres to the south from 89+50N, 2+00W and extended 35 metres east and 20 metres west from that point oriented at about 80° . The trench cut light brown chloritic / dolomitic altered meta volcanics, yellow sericitic tuff, black pyritic muddy tuff, dark grey chloritic altered medium grained diorite, pyritic muddy tuff and ended on the west end in a strong white gouge fault zone oriented at 040° before cutting the structural footwall banded argillite. No samples were cut in this trench.

At the end of the program in late November, all trenches were reclaimed (backfilled and seeded) except a portion of trench 2 and trench 4, where significant assays had been returned from the exposed Rea Zone. Reclamation was contracted by Nu Creek Development of Enderby, B.C.

7.2 DRILLING

A diamond drilling program was completed in two phases during the period September 19th to November 25, 2005. A total of 18 holes totaling 1,874.3 metres of NQ core were completed by Frontier Drilling Corp. of Kamloops B.C. using a BB-56 diamond drill.

The target of the drilling program was to confirm the existence of the K7 high grade lens and increase both the confidence in the earlier drill results and to expand the possible resource base.

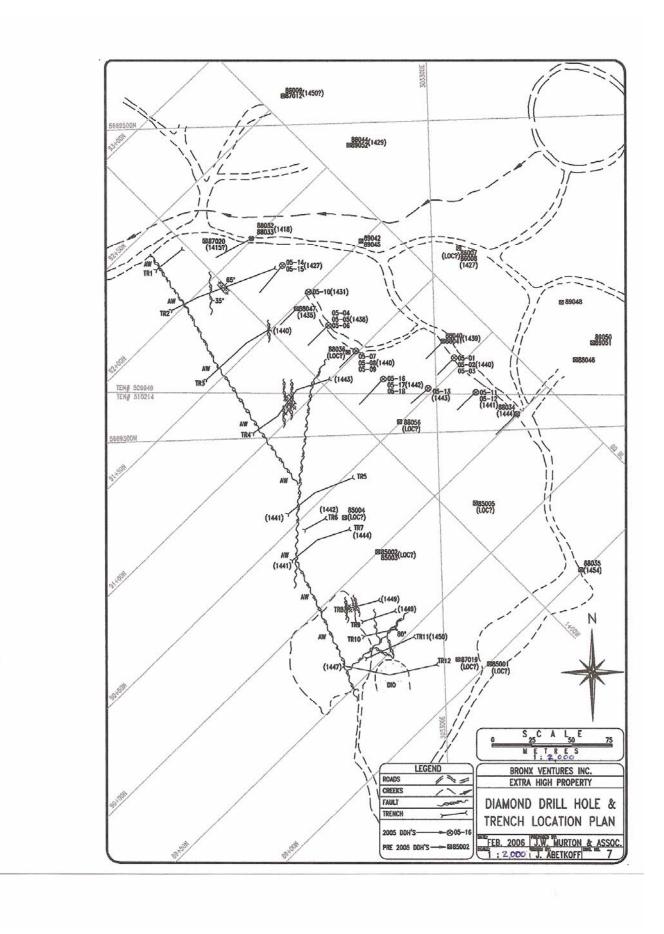
TABLE 3

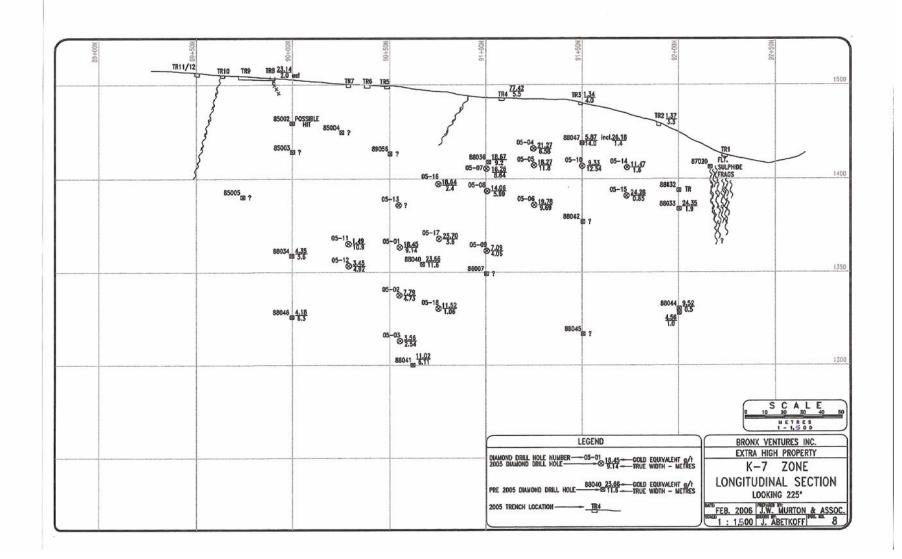
The table below is a listing of all 2005 diamond drill holes and locations.

DIAMOND DRILL HOLE LOCATION DATA											
HOLE #	COORD N	INATES W	AZM. TRUE N	ANGLE	ELEV. m	LENGTH m					
05 - 01	90+55	0+29	225	-46	1440	135.0					
05 - 02	90+55	0+29	225	-61	1440	145.5					
05 - 03	90+55	0+29	225	-80	1440	159.7					
05 - 04	91+25	0+71	225	-45	1438	78.3					
05 - 05	91+25	0+71	225	-64	1438	44.8					
05 - 06	91+25	0+71	225	-90	1438	111.8					
05 - 07	91+02	0+70	225	-55	1440	81.4					
05 - 08	91+02	0+70	225	-72	1440	93.6					
05 - 09	91+02	0+70	225	-90	1440	154.5					
05 - 10	91+50	0+66	225	-50	1431	76.2					
05 - 11	90+29	0+34	225	-45	1441	142.9					
05 - 12	90+29	0+34	225	-60	1441	145.4					
05 - 13	90+52	0+50	225	-45	1443	89.7					
05 - 14	91+74	0+64	218	-45	1427	49.4					
05 - 15	91+74	0+64	218	-75	1427	69.2					
05 - 16	90+77	0+70	222	-47	1442	69.2					
05 - 17	90+77	0+70	222	-70	1442	94.5					
05 - 18	90+77	0+70	222	-90	1442	<u>133.2</u>					
						1874.3					

All new holes were located by the writer using a compass and chain based on the old grid that had been re-established. Where possible, old holes were located to assist in new hole location. When the new grid was re-established, the baseline was renumbered to show line numbers increasing to the north as one progressed northwest up the baseline. The original line numbering system was retained, just the naming, as to north was changed.

Drill core was logged on site, photographed and sample intervals split on site by the writer using a manual core splitter. Half core intervals were then submitted to the analytical lab. All sample intervals were marked in the core boxes including a duplicate assay tag to the tag that had been included with the sample shipped out. Drill core is stored on site at UTM coordinates 5669158N, 303370E, NAD 83.


All 2005 diamond drill holes intersected the Rea Zone and the majority intersected massive polymetallic sulphides of varying widths. Drill hole logs record the core angle of all sample intersections and this intersection interval has been factored by the recorded core angle and reported on the drill logs as "true width" as well as actual core length.


Drill holes logs are appended at the back of the report as are sample averaging data sheets. All drill holes have been plotted on plan (Fig. 7) and cross section (Figs. 30 - 41. A longitudinal section is included in the report as Fig. 8. It is a vertical plot of pierce points in the K7 massive sulphide zone. Old diamond drill hole pierce points have been included on the longitudinal section as an additional source of information. No corroboration of old assay data has been possible and the placement is a best fit as to location taken from 2005 field data.

All 2005 drill holes are described in numerical order, from top to bottom of the hole. Lithologic units are referred to with regard to their actual structural position in the hole rather than their stratigraphic position within the Rea Zone.

See page 44 for a detailed explanation of the term "equivalent gold grade" which has been used in the following descriptions of the 2005 diamond drill hole results. Briefly, each metal was calculated as to its gross metal value by taking the weighted average assay value of the sampled interval, multiplied by an assumed metal value without taking into consideration any recovery factors. These figures were then totaled and shown as "total metal value". This figure was then factored by the following formula to obtain "equivalent gold grade in grams / tonne (g/t).

 $\frac{\text{Total Gross Metal Value}}{475} \times 34.3 = \text{equivalent gold grade in g/t.}$

(L

<u>DDH 05-01</u> Section 90+50N

This hole was drilled as part of a fan of three holes to corroborate an earlier drill hole (88040) and fill in a gap in information between 88040 and another deeper hole 88041.

The hole encountered 87.6 metres of pyroclastics / lapilli tuff and mafic tuff before entering the Rea horizon. The Rea horizon extended from 87.6 - 131.9, when the hole then cut the footwall metasediments extending to 135.0.

The Rea horizon consists of a sequence of graphitic chert, chloritic argillite, siliceous and sericitic medium grained tuff, near solid to solid sulphides, cherty argillites and heterolithic breccia. The interval from 85.5 - 117.6 metres is anomalous in gold, silver, copper, lead, zinc and arsenic with an interval from 105.8 - 115.1 assaying:

FROM	ТО	CORE LENGTH	TRUE WIDTH	AU g/t	AG g/t	CU %	PB %	ZN %	AS %		
105.8	115.1	9.3	9.14	4.28	92.1	0.44	5.43	6.42	3.49		
Includir	Including										
110.0	115.1	5.1	5.01	6.96	148.1	0.61	8.47	9.55	3.51		
The equ	ivalent	gold grade	is:								
105.8 -	115.1		9.14 m @	@ 18.45	g/t						
Includir	ng										
110.0 -	115.1		5.01 m	@ 28.38	g/t						

DDH 05-02 Section 90+50N

This hole was part of the fan of holes 05-01 to 05-03 to test the interval between hole 88040 and another deeper hole 88041.

The hole encountered 99.7 metres of pyroclastics / lapilli tuff and mafic tuff before entering the Rea horizon. The Rea horizon extended from 99.7 - 142.5, when the hole then cut a graphitic fault zone extending to 145.5 which marked the boundary with the footwall metasediments.

The Rea horizon consisted of a sequence of creamy, grey chert, chloritic and sericitic tuff, short sections of near solid to solid sulphides within a black fine grained chloritic tuff which is almost a pyritic siltite, more sericitic and silicified tuff, pyritic siltite and graphitic chert. The interval from 110.5 - 120.6 metres is anomalous in gold, silver, copper, lead, zinc and arsenic with an interval from 114.2 - 119.1 assaying:

FROM	ТО	CORE LENGTH	TRUE WIDTH		AG g/t		PB %	ZN %	AS %	
114.2	119.1	4.9	4.73	1.69	20.74	0.37	1.73	2.99	3.03	
The equivalent gold grade is:										

114.2 - 119.1 4.73 m @ 7.79 g/t

<u>DDH 05-03</u> Section 90+50N

This hole was the deepest of 3 holes drilled to test the interval between hole 88040 and another deeper hole 88041. The hole encountered 115.9 metres of lapilli tuff / pyroclastics before encountering a heterolithic breccia which marks the start of the Rea horizon at 115.9. The Rea horizon is slightly different in this hole in that it starts out as a heterolithic breccia with pyritic sections for 4 metres and then turns into a grey, white sericitic chert section from 119.8 - 142.7 which contains approximately 40% near solid sulphide fragments and stringers in the chert from 130.5 - 133.2 and from 135.8 - 140.0. Mineralization in this hole is not as strong as in the first 2 holes but shows continuity to the previously indicated mineralization.

FROM	ТО	CORE LENGTH	TRUE WIDTH	AU g/t	AG g/t	CU %	PB %	ZN %	AS %	
130.5	133.2	2.7	2.54	0.50	10.47	0.06	0.80	1.80	1.12	
The equivalent gold grade is: 130.5 - 133.2 2.54 m @ 3.56 g/t										

DDH 05-04 Section 91+25N

This hole was drilled as part of a fan of 3 holes to test a 50 metre gap between 2 previously drilled holes (88036 and 88047) which returned high grade values from the Rea horizon.

The hole encountered 17.5 metres of lapilli tuff before entering the Rea horizon. The Rea horizon extended from 17.5 - 53.0, when the hole then cut the footwall metasediments extending to 78.3.

The Rea horizon consists of a sequence of grey sericitic chert and chert breccia, near solid to solid sulphides from 24.9 - 30.2, a section of mudstone or siltstone and grey chert mixed with mudstone or siltstone. The interval from 22.4 - 30.2 metres is highly anomalous in gold, silver, copper, lead, zinc and arsenic with the following assays:

FROM TO	CORE	TRUE	AU	AG	CU	PB	ZN	AS	
	LENGTH	WIDTH	g/t	g/t	%	%	%	%	
22.4 30.2	7.8	7.78	6.89	112.10	0.59	3.56	4.50	1.15	
Including									
24.9 30.2	5.3	5.28	9.84	161.98	0.81	5.00	6.21	0.89	
The equivale	nt gold grade	is:							
22.4 - 30.2		7.78 m @	18.23	g/t					
Including									
24.9 - 30.2		5.28 m	@ 25.67	7 g/t					

<u>DDH 05-05</u> 91+25N

This hole was drilled under 05-04 to attempt to extend down dip, the well mineralized section encountered in that hole.

The hole encountered lapilli tuff to a depth of 19.7 metres and then encountered the Rea horizon. The Rea horizon consists of chert and chert breccia with near solid to solid well banded sulphide sections from 26.7 - 35.6 metres. The hole then passed into pyritic siltite and ended in chert breccia at 44.8. The hole was stopped short of the footwall metasediments as the sulphide horizon had been crossed.

FROM TO	CORE	TRUE	AU	AG	CU	PB	ZN	AS		
	LENGTH	WIDTH	g/t	g/t	%	%	%	%		
23.8 38.9 Including	15.1	14.6	5.50	79.47	0.53	3.16	3.84	0.66		
26.7 35.6	8.9	8.61	7.72	122.02	0.85	5.09	6.18	0.54		
Z0.7 55.0 0.9 0.01 7.72 122.02 0.05 5.09 0.10 0.94 The equivalent gold grade is: 23.8 - 38.9 14.6 m @ 15.03 g/t Including 14.6 m @ 15.03 g/t 14.6 m @ 15.03 g/t 14.6 m @ 15.03 g/t										

<u>DDH 05-06</u> Section 91+25N

This hole was drilled under 05-05 to attempt to extend down dip, the well mineralized section encountered in holes 05-04 and 05-05.

The hole encountered pyroclastics and lapilli tuff to a depth of 38.1 metres and then encountered the Rea horizon. The Rea horizon consists of chert and chert breccia with near solid to solid well banded sulphide sections from 43.2 - 56.8 metres. The hole then passed into pyritic siltite mixed with chert breccia until 67.8 and then cut a heterolithic breccia, chloritic argillite and pyritic siltite mix until a strong fault zone brought in the metasediments package. The hole ended at 111.8. The Rea zone in this hole is strongly anomalous for all elements from 38.1- 56.9 metres with the following section of higher grade core.

FROM	1 TO	CORE LENGTH								
43.2	56.9	13.7	9.69	7.82	67.82	0.64	4.30	5.16	0.97	

The equivalent gold grade is:

43.2 - 56.9 9.69 m @ 19.78 g/t

<u>DDH 05-07</u> Section 91+00N

This hole was drilled as part of a fan of three holes designed to extend the mineralization encountered in holes 05-04 to 05-06 by 25 metres to the south as well as to corroborate the good values encountered in a previous hole 88036 which is in the vicinity of 05 - 07. The collar of 88036 could not be located but the values encountered in 05 - 07 are very similar to those encountered in 88036.

The hole encountered 26.6 metres of heterolithic breccia / pyroclastic tuff before entering a strong fault zone from 26.6 - 37.1 metres. This fault zone has moved mineralization as it had a number of black sulphide rich muddy crush zones. The Rea horizon was then cut and extended from 37.1 - 71.4 when the hole then passed into the footwall metasediments of banded argillite which extended to the end of the hole @ 81.4.

A massive sulphide section occurs at the top of the Rea horizon in this hole and extends from 37.1 - 47.9 and consists of near solid to solid polymetallic sulphides with faint banding. The sulphides are cut off by a strong fault which brings in heterolithic breccia, grey chert and pyritic siltite. Chloritic argillite mixed with muddy tuff and argillite breccia continue to 71.4 when the hole passes into the structural footwall banded argillite. The well defined sulphide section assayed as follows:

FROM	ТО	CORE LENGTH	TRUE WIDTH	AU g/t	AG g/t	CU %	PB %	ZN %	AS %	
37.1	47.9	10.8	8.64	5.07	50.96	0.42	3.89	5.45	2.80	
The equ 37.1 -		t gold grade	is: 8.64 m	@ 16.26	ō g/t					

DDH 05-08 Section 91+00N

This hole was drilled as part of the fan of three holes designed to extend the mineralization encountered in holes 05-04 to 05-06 by 25 metres to the south as well as to corroborate the good values encountered in a previous hole 88036 which is in the vicinity of 05 - 07. The collar of 88036 could not be located but the values encountered in 05 - 07 are very similar to those encountered in 88036.

The hole encountered 39.0 metres of pyroclastic breccia and grey laminated tuff before entering a strong fault zone from 39.0 - 45.1 metres. This fault zone has moved mineralization as the last metre has a number of black sulphide rich muddy crush zones.

The Rea horizon was intersected from 45.1 - 88.0 after which the hole then passed into the footwall metasediments of banded argillite which extended to the end of the hole at 93.6. A massive sulphide section occurs at the structural top of the Rea horizon in this hole and extends from 45.1 - 52.2 and consists of near solid to solid polymetallic sulphides with brecciated sections. Of note is the presence of an abundance (+/-10%) granoblastic arsenopyrite from 46.3 - 47.4. The sulphide section grades into a sericitic tuff and then pyritic siltite until 72.3 metres. Chloritic argillite breccia, muddy tuff,, heterolithic breccia and pyritic siltite continue until the metasediments at the end of the hole.

The sulphide section assayed as follows:

FROM	ТО	CORE LENGTH	TRUE WIDTH	AU g/t	AG g/t	CU %	PB %	ZN %	AS %	
44.4	52.2	7.8	5.99	3.34	43.90	0.62	3.75	4.84	5.29	
The equ 44.4 -		t gold grade	is: 5.99 m (@ 14.06	g/t					

<u>DDH 05-09</u> Section 91+00N

This hole was drilled as part of the fan of three holes designed to extend the mineralization encountered in holes 05-04 to 05-06 by 25 metres to the south.

The hole encountered 51.1 metres of lapilli tuff, pyroclastic and grey laminated tuff before entering a strong fault zone from 51.1 - 75.3 metres. This fault zone, running at 10° to the core has moved mineralization as the last 10 metres has a number of sulphide fragments and black sulphide rich muddy zones.

The Rea horizon was intersected from 75.3 - 128.3 after which the hole passed into the footwall metasediments of banded argillite which extended to the end of the hole at 154.5. A near solid to solid sulphide section occurred at the structural top of the Rea horizon in this hole and extended from 75.3 - 80.7 consisting of near solid to solid sulphides mixed with chert breccia. The sulphide section grades into pyritic siltite mixed with heterolithic breccia which then becomes mixed with brecciated chloritic argillite and greywacke at 113.7.

The sulphide section assayed as follows:

FROM	TO	CORE	TRUE	AU	AG	CU	PB	ZN	AS	
		LENGTH	WIDTH	g/t	g/t	%	%	%	%	
72.7	80.7	8.0	4.06	1.89	22.72	0.14	1.45	2.84	2.36	
The equ 72.7 -		t gold grade	is: 4.06 m @	¢ 7.09 و	g/t					

<u>DDH 05-10</u> Section 91+50N

This hole was drilled to undercut the good values reported in hole 88047 and to extend the values reported in the fan of holes 05-04 to 05-06 by 25 metres to the north.

The hole encountered 29.5 metres of medium grained ankerite / sericite altered tuff before entering the Rea horizon which extends from 27.0 - 67.6 when the hole then cut the footwall metasediments extending to 76.2.

The Rea zone consisted of a sequence of grey sericitic chert and chert breccia with a few sulphide bands, heterolithic breccia consisting of pyritic siltite, chert and medium grained dolomitic altered tuff. A section of banded polymetallic solid sulphide was cut from 31.7 - 35.7 followed by pyritic siltite, medium grained grey tuff, muddy tuff and slump breccia consisting of 5 - 20 cm blocks of pyritic black argillite and grey tuff. The massive

the following t	-								
FROM TO	CORE	TRUE	AU	AG	CU	PB	ZN	AS	
	LENGTH	WIDTH	g/t	g/t	%	%	%	%	
27.0 39.6	12.6	12.54	3.05	27.2	0.35	2.12	2.88	1.12	
Including									
29.6 35.7	6.10	6.07	4.89	48.40	0.67	3.98	5.41	0.42	
2,10 000	0.10	0.07			0107	0.70	0111	01.2	
The equivalent	t gold grade	is:							
27.0 - 39.6	0 0		@ 9.33	o∕t					
Including		12.0 1 111	0 7.55	D, 1					
0		C 07	@ 1((0	- /4					
29.6 - 35.7		6.07 m	@ 16.68	g/t					

sulphide interval is highly anomalous in gold, silver, copper, lead, zinc and arsenic with the following assays:

<u>DDH 05-11</u> Section 90+25N

This hole was drilled as part of a fan of two holes to attempt to extend the mineralization encountered in holes 05-01 to 05-03 to the south by 25 metres.

The hole encountered 54.2 metres of pyroclastics / lapilli tuff before entering the Rea horizon. The Rea horizon extends from 54.2 - 136.0 where the hole then cut a strong fault zone marking the beginning of the footwall metasediments extending to the end of the hole at 142.9 metres.

The Rea horizon consisted of a sequence of heterolithic breccia extending to 81.0, black, grey, cream colored chert breccia extending to 101.1, pale grey sericitic chert with a few 0.5 - 2 cm bands of NSS extending to 106.2, cherty argillite extending to 111.9, a fault repeated section of the grey sericitic chert with sulphide bands to 114.7, heterolithic breccia to 129.2 and white grey chert to 136.0 The interval from 82.5 – 114.7 metres is highly anomalous in gold, and slightly anomalous in silver, copper, lead, zinc and arsenic with an interval from 102.5 - 113.4 assaying:

FROM	ТО	CORE	TRUE	AU	AG	CU	PB	ZN	AS	
		LENGTH	WIDTH	g/t	g/t	%	%	%	%	
102.5	113.4	10.9	10.90	0.40	9.31	0.04	0.22	0.55	0.96	
-		gold grade		@ 1.40	- /4					
102.5 -	113.4		10.90 m	@ 1.49	g/t					

<u>DDH 05-12</u> Section 90+25N

This hole was part of the two hole fan including 05-11 to attempt to extend the mineralized zone 25 metres to the south from holes 05-01 and 05-02.

The hole encountered 80.5 metres of pyroclastics / lapilli tuff before entering the Rea horizon. The Rea horizon extended from 80.5 - 143.8 where the hole then cut a black graphitic fault zone marking the beginning of the footwall metasediments extending to the end of the hole at 145.4 metres.

The Rea horizon consisted of a sequence of heterolithic breccia, graphitic chert, grey sericitic chert, mixed with heterolithic breccia, chert breccia, a strong fault zone from 117.4 - 127.0 and then pyritic siltite or mudstone to 131.0. A mixed zone of faulting followed and included chloritic muddy tuff, chloritic argillite and graphitic chert to 143.8 metres. The chert and chert breccia sections of the interval contain 1 - 2 cm bands of NSS to SS mainly pyrite.

The interval from 80.5 - 118.6 metres is highly anomalous in gold (0.14 - 5.70 g/t) and slightly to moderately anomalous in silver, copper, lead, zinc and arsenic with an interval from 101.2 - 106.2 assaying:

FROM	ТО	CORE LENGTH	TRUE WIDTH	AU g/t	AG g/t	CU %	PB %	ZN %	AS %	
101.2	106.2	5.0	4.92	1.36	7.27	0.06	0.61	1.16	2.57	
The equ 101.2 -		gold grade	is: 4.92 m	@ 3.45 g	g/t					

<u>DDH 05-13</u> Section 90+50N

This hole was drilled to attempt to extend the good grade intercepts in holes 05-16 and 05-17 to the south by 25 metres. A possible fault may have offset the better mineralized section of the Rea horizon to the west and the hole also may have been stopped too soon.

The hole encountered 46.7 metres of pyroclastics / lapilli tuff before entering the Rea horizon which continued to the end of the hole at 89.7 metres.

The Rea horizon consists of a sequence of heterolithic breccia consisting of pyroclastics, medium grained tuff, pyritic siltite and buff / grey sericitic chert. The final 10 metres of the hole was a faulted mixture of grey chert, chloritic argillite, grey tuff, and quartz / dolomite fragments.

The hole was uniformly non anomalous.

DDH 05-14 Section 91+75N

This hole was a part of a fan of 2 holes drilled to attempt to extend the well mineralized intercept in hole 05-10 to the north by 25 metres.

The hole encountered 25.3 metres of heterolithic breccia mixed with grey medium grained tuff and grey chert fragments. This may be part of Rea horizon but the composition of the unit is changing and becoming more mixed with the structurally overlying intermediate to mafic volcanic sequence. From 25.3 metres on, the hole cut a more typical Rea zone mixture of mudstone, pyritic siltite, grey / cream sericitic chert, pyritic siltite with 1 - 3 cm bands and a 0.5 metre section of banded NSS to SS, chloritic argillite / siltite mix, and a heterolithic breccia consisting of greywacke, argillite and tuff to the end of the hole at 49.4.

The interval from 25.3 - 32.3 metres is highly anomalous in gold (0.12 - 5.05 g/t) and slightly anomalous in silver, copper, lead, zinc and arsenic with an interval from 29.9 - 31.5 assaying:

FROM	ТО	CORE LENGTH	TRUE WIDTH	AU g/t	AG g/t	CU %	PB %	ZN %	AS %
29.9	31.5	1.6	1.6	4.96	44.16	0.30	2.33	2.82	0.29
The equ 29.9 -		t gold grade	is: 1.6 m @	11.47 g	g/t				

DDH 05-15 Section 91+75N

This hole was drilled to undercut 05-14 to attempt to extend down dip, the sulphide section cut in that hole.

The hole encountered pyroclastics and grey tuff to 29.5 metres and then a Rea zone assemblage of heterolithic breccia consisting of grey medium grained tuff, chert and chloritic argillite to 37.1 metres. From 37.1 - 38.0 was a polymetallic SS section of vaguely banded sulphides (90% pyrite with 5 - 10% galena, sphalerite and arsenopyrite plus a little chalcopyrite. This was followed by grey tuff, pyritic siltite mixed with greywacke / chert pebble conglomerate (or else just rounded milled chert fragments) and ending in a fault zone from 68.1 - 69.2 at the end of hole.

The interval from 33.3 - 37.1 metres is slightly anomalous in gold (0.06 - 0.19 g/t) but not anomalous in silver, copper, lead, zinc and arsenic. The interval from 37.1 - 38.0 assayed:

FROM	ТО	CORE LENGTH	TRUE WIDTH	AU g/t	AG g/t	CU %	PB %	ZN %	AS %	
37.1	38.0	0.9	0.85	12.20	59.10	0.61	4.24	5.48	7.15	
The equ 37.1 -		t gold grade	is: 0.85 m @	24.28	g/t					

<u>DDH 05-16</u> Section 90+75N

This hole was drilled as part of a 3 hole fan to fill in a 50 metre gap in data between the good grade intersections from holes 05-07 to 05-09 and 05-01.

The hole encountered pyroclastics and grey tuff to 42.0 metres followed by a Rea zone assemblage of muddy chloritic tuff, grey silicified tuff, cherty tuff, grey to black chert to chert breccia and argillite or mudstone from 68.6 to end of hole at 69.2.

While pyrite is ubiquitous from 33 - 64 metres, the only section that contains values is from 61.0 - 63.4 where several 2 - 3 cm bands of NSS pyrite with 5% galena and sphalerite occur in grey / black chert. This interval assayed:

FROM	ТО	CORE LENGTH	TRUE WIDTH	AU g/t	AG g/t	CU %	PB %	ZN %	AS %	
61.0	63.4	2.6	2.40	0.82	118.17	0.61	6.50	8.10	0.51	
-	ivalen 63.4	t gold grade	is: 2.40 m @	18.64	g/t					

<u>DDH 05-17</u> Section 90+75N

This hole was drilled to undercut hole 05-16 and to attempt to trace the Rea zone down dip.

The hole encountered pyroclastics and grey fine grained tuff to lapilli tuff to 37.2 when the pyroclastics became chloritic (40 - 50%) and cherty sections start to become evident. This is probably the start of the Rea zone. It is not a clear cut contact, but a gradational change. Muddy tuff follows to 68.0 metres and then black graphitic to grey / buff sericitic chert to 79.2. This chert section hosts several 4 cm SS stringers and one 20 cm NSS band

of pyrite with lesser other sulphides. Following the sulphide rich chert is chloritic black argillite mixed with a little wacke, pyritic siltite and grey fine grained tuff. This is probably a heterolithic breccia. From 88.0 - 89.8 the hole cut dark brown pyritic sulphide breccia cemented with fine grained pyrite. Open 1 - 2 cm long fractures are evident. A 5 metre fault zone full of sulphides ended this intersection and the hole terminated in graphitic chert at 94.5 metres.

The following interval assayed:

FROM		CORE NGTH	TRUE WIDTH	AU g/t	AG g/t	CU %	PB %	ZN %	AS %	
	39.8	15.7	14.83	1.35	39.45	0.19	1.67	2.11	0.13	
Includin	0									
86.0 8	39.8	3.8	3.6	5.50	158.63	0.77	6.21	7.64	0.52	
The equi	ivalent gol	ld grade i	is:							
74.1 - 8	39.8		14.83 m @	6.23 g	g/t					
Includin 86.0 - 8	0		3.6 m @ 2	23.70 g	g/t					

DDH 05-18 Section 90+75N

This hole is the lowest hole in the 3 hole fan and undercut hole 05-17 to attempt to trace the Rea zone further down dip.

The hole encountered pyroclastics and lapilli tuff to 26.0 followed by a cherty tuff with chloritic banding followed by light grey tuff to 52.0. This unit was followed by a cherty tuff to chert breccia becoming a heterolithic breccia with chloritic argillite and pyritic siltite fragments to 118.0. A strong fault brought in the argillite / wacke footwall zone to the end of the hole at 133.2 metres. The interval from 98.0 to 113.4 is highly anomalous in gold (0.07 - 3.39 g/t), and moderately anomalous for silver, lead, zinc, and arsenic, with the better section assaying:

FROM	ТО	CORE LENGTH	TRUE WIDTH	AU g/t	AG g/t	CU %	PB %	ZN %	AS %	
108.9	110.4	1.5	1.06	3.39	23.60	0.42	3.66	3.48	0.32	
The equ 108.9 -		gold grade	is: 1.06 m	@ 11.52	2 g/t					

A listing of all core samples, complete with analytical values is included under "Diamond Drill Hole Logs" as Appendix 2, while Diamond Drill Hole Assay Averages with corresponding true widths and composites is included under Appendix 3. All sample analytical datasheets are included as Appendix 4.

When plotting and assessing the analytical data for this polymetallic sulphide deposit, it was deemed necessary to arrive at an "equivalent grade" for one of the contained metals in order to convey values in a more simplified manner. To this end, it was determined to use gold as the "equivalent" metal, although zinc or silver could as easily have been used. When calculating the equivalent gold grade, it was necessary to use some value for each metal and apply a factor to arrive at the gold grade. For this purpose the following values in U.S. dollars were used without using any metallurgical recovery factors and as such the equivalent gold grade is a rough approximation only of total grade for the specific intersection or interval sampled.

Gold	\$475 per ounce.
Silver	\$8.50 per ounce.
Copper	\$1.75 per pound
Lead	\$0.45 per pound
Zinc	\$0.85 per pound.

It should be noted that on the sample assay average pages for diamond drill holes as well as trench assay average pages that the following formula was used.

Each metal was calculated as to its gross metal value from the weighted average assay value of the sampled interval, multiplied by the assumed metal value. These values were totaled and shown as "total gross metal value". This figure was then factored by the following formula to obtain "equivalent gold grade" in g/t:

 $\frac{\text{Total Gross Metal Value}}{475} \times 34.3 = \text{equivalent gold grade in g/t.}$

8.0 INTERPRETATION AND CONCLUSIONS

As a result of the exploration program completed on the Extra High property during 2005, a number of important conclusions may be drawn. The interpretation of the recently acquired data plus consideration and inclusion (where appropriate) of historical data has resulted in a better understanding of the massive sulphide mineralization and its continuity, especially on the K7 lens.

Work completed on the K7 area of the Rea Zone including trenching and diamond drilling revealed good continuity of mineralization within the K7 lens over a strike length of 175 metres with a fault offset section of the same zone extending an additional 100 metres to the south at a 75 metre lower elevation (see Longitudinal Section Fig 8). Dip lengths extend from surface to 75 metres below surface in the area from section 90+75N to 92+00N and from 100 - 150 metres below surface in the southern extension. These dimensions are open to depth and to the south.

The semi massive to massive polymetallic sulphide interval reaches thicknesses of up to 12.54 metres in hole 05-10 and 14.0 metres in an older hole (88047) which lies 10 metres higher in elevation than 05-10.

Faulting has played an important role in the disruption of the K7 lens and further work involving trenching and diamond drilling is required to more accurately locate these faults and their effect on continuity of the sulphide zones as well as the surrounding lower grade mineralized intervals.

The primary exploration target on the Extra High claims remains the K7 lens and its lateral and depth extensions. Additional mineralized areas on strike to the south host earlier intercepts of important mineralization that warrant detailed drilling and trenching.

9.0 STATEMENT OF COSTS

Labor – drilling and trench supervision, sampling and	
core split - 60 man-days @ \$400 / day	\$ 24,000
Food / accommodation	3,200
Vehicle Rental and Expense	3,600
Supplies	
Lab analysis	14,000
Contract trenching and reclamation – 455 lineal m	6,400
Diamond Drill Contract 1,874.3 m @ \$76.78 / m	143,900
Report preparation / drafting	13,000
TOTAL	\$ 210,800

Dated the 15th day of March, 2006

_

J.W.Murton & Associates

J.W.Murton P. Eng.

10.0 REFERENCES

Carmichael, R.G. (1991), 1991 Final Report on the Kamad Property, private report to Homestake Canada Ltd.

Heberlein, D.R. (1987), Fame Report on the 1987 Twin Property Diamond Drill Program For Esso Minerals Canada.

Hoy, T., and Goutier, F. (1986), Rea Gold (Hilton) and Homestake Volcanogenic Sulphide – Barite Deposits, Southern British Columbia in British Columbia Ministry of Energy, Mines and Petroleum Resources Geological Fieldwork 1985, Paper 1986-1.

Hoy, Trygve, (1986), Alteration, Chemistry and Tectonic Setting of Volcanogenic Massive Sulphide – Barite Deposits at Rea Gold and Homestake, Southeastern British Columbia, Exploration in British Columbia, Mineral Resources Division, Geological Survey Branch, Ministry of Energy, Mines and Petroleum Resources, Victoria.

(1991), Volcanogenic Massive Sulphide Deposits in British Columbia, in Notes to Accompany MDRU Short Course No. 3 – Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, U.B.C.

(1995), Noranda / Kuroko Massive Sulphide Cu-Pb-Zn in Selected British Columbia Mineral Deposit Profiles, Volume 1 – Metallic and Coal, Lefebure, D.V. and Hoy, ., editors, British Columbia Ministry of Energy, Employment and Investment, Open File 1995-20, pp 53-54.

Lyndon, J.W. (1984), Volcanogenic Massive Sulphide Deposits, Part 1; A Descriptive Model; Geoscience Canada, Volume 11, No. 4.

Marr, J.M. (1989), Assessment Report, 1988 Fieldwork on the Kamad Claims, for Esso Minerals Canada.

Minfile Capsule Geology and Bibliography – notes regarding Samatosum (082M-244), K7 (082M-277), Twin 3 (082M276), Minfile Database maintained by the Geological Survey Branch, British Columbia Ministry of Energy and Mines, accessible at The Map Place website.

Ostensoe, E.A. (2004), National Policy 43-101 Report, Extra High Property, private report to Lucky 1 Enterprises Inc.

Schiarizza, P. and Preto, V.A. (1984), Geology of the Adams Plateau – Clearwater Area, Preliminary Map No. 56, Ministry of Energy Mines and Petroleum Resources, Victoria.

(1987), Geology of the Adams Plateau – Clearwater Area- Vavenby Area: British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1987-2, 88pp.

Wells, R.C. (2001), Soil Geochemical and Prospecting Report for the Extra High Property, Assessment Report 26595.

(2003) Geological Report for the Extra High Property, private report for P. Watt.

11.0 CERTIFICATE OF AUTHOR'S QUALIFICATIONS

I, James Wayne Murton of 1567 McNaughton Road, Kelowna B.C., V1Z 2S2, President of J.W. Murton & Associates, do hereby certify that:

I am a graduate of the University of Manitoba in 1961 with a BSc. in Geology.

I am a member of the Association of Professional Engineers and Geoscientists of the Province of B.C., registered in 1972, No. 8324.

I have been a practicing Engineer and Geologist since 1961 in Ontario, Manitoba, Saskatchewan, British Columbia, Yukon, Southwestern U.S.A., Alaska, Ghana, Venezuela, Ecuador, Brazil and Peru.

I am not independent of Bronx Ventures Inc. as I am a director of the Company

As the author of this Trenching and Diamond Drilling Assessment Report, I was directly involved with the on site management of the exploration program completed during the period May to December, 2005.

Dated this 15th day of March, 2006.

J.W. Murton and Associates

J.W. Murton P. Eng.

APPENDIX 1

TRENCH ASSAY DATA & AVERAGE VALUES

								ICP			
						AU	AG	CU	РВ	ZN	AS
TRENCH	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	G/T	G/T	%	%	%	%
#	#	TYPE	DESCRIPTION	INTERVAL	WIDTH	ppb	ppm	ppm	ppm	ppm	ppm
				metres	metres						
1	28950	CHANNEL	Flt zone-grey white mud	12.0 - 14.0	2.0	0.21	3.1	14	146	76	790
	28951	CHANNEL	Flt zone-grey white mud	14.0 - 15.1	1.1	0.31	5.0	11	464	57	460
	28952	CHANNEL	Flt zone-graphitic	15.1 - 16.2	1.1	0.10	2.7	45	810	67	590
	28953	CHANNEL	Ferricrete	16.2 - 18.0	1.8	0.08	0.8	89	156	319	830
2	28954	GRAB	Qtz vein +10% pyrite		est 0.1	0.07	1.0	158	160	115	265
	28955	CHANNEL	Tuff-chl,blue grey	25.0 - 28.0	3.0	<0.03	0.2	143	36	232	750
	28956	CHANNEL	Tuff-chl,blue grey	28.0 - 30.2	2.2	<0.03	0.1	138	30	249	705
	28957	CHANNEL	Tuff-chl,blue grey incl qtz veinlets	30.2 - 31.7	1.5	0.26	0.5	234	226	441	4455
	28958	CHANNEL	Tuff-blue grey +Py siltite	31.7 - 34.0	2.3	0.96	11.0	884	2798	675	5120
	28959	CHANNEL	Sulphide zone-choc brown,oxide.	34.0 - 35.0	1.0	2.32	0.7	474	534	1153	1.23
	28960	CHANNEL	Py siltite	35.0 - 38.6	3.6	0.08	0.3	319	158	246	3230
	28961	CHANNEL	Py siltite + chl tuff	38.6 - 42.0	3.4	0.07	0.8	263	544	1177	1120
	28962	CHANNEL	Qtzy oxid zone	59.0 - 62.0	3.0	0.12	3.9	187	542	949	920
3	28963	CHANNEL	Tuff-grey / ser.	16.0 - 20.0	4.0	0.69	10.2	444	1776	2043	4455
	28964	CHANNEL	Tuff-grey / ser.	20.0 - 22.0	2.0	0.11	0.9	39	130	275	800
	28965	CHANNEL	Tuff-grey / ser+ few qtzite bands.	22.0 - 25.0	3.0	0.05	2.1	233	390	1389	2805
	28966	CHANNEL	Tuff-grey / ser+ few qtzite bands.	25.0 - 28.0	3.0	0.19	1.8	200	960	2020	3065
	28967	CHANNEL	Py siltite	28.0 - 31.0	3.0	0.09	1.0	214	206	1140	4430
	28968	GRAB	Ferricrete - west end Qtz vein on dump-west end, <1%			0.03	0.7	153	134	1465	1620
	28969	GRAB	ру.		est 0.5	0.93	0.2	205	16	626	165
4	28985	CHANNEL	Sulphide zone-total oxidation	29.0 - 31.0	2.0	76.60	1170.0	2696	18.20	6654	13.1
	28986	CHANNEL	Sulphide zone-total oxidation	31.0 - 33.0	2.0	48.60	880.0	2859	20.10	2666	12.7

EXTRA HIGH TRENCH DATA 2005

Bold #s - Assay Unbolded #s -ICP

	28987	CHANNEL	Sulphide zone-total oxidation	33.0 - 34.5	1.5	20.80	326.0	2948	5.83	1988	0.79
	28988	CHANNEL	Oxid siltite + grey schist.	43.5 - 47.0	3.5	0.10	1.6	117	642	681	485
	28989	CHANNEL	Pyritic tuff	47.0 - 48.0	1.0	0.26	1.5	48	182	103	430
5	28990	GRAB	Ferricrete - west end			0.07	1.7	311	138	941	1065
6	28992	GRAB	Ferricrete - west end			0.10	0.2	175	56	729	785
7	28991	GRAB	Ferricrete - middle west end			<0.03	1.2	358	228	834	875
8	28970	GRAB	West end, Py siltite+sulphide frags			7.96	153.0	1123	18.20	2683	8.84
	28971	GRAB	Ferricrete - west end			2.13	69.0	541	8.25	532	1.48
9	28972	GRAB	Qtz vein east end @ 5m.		est 0.05	<0.03	0.2	34	134	160	145
	28973	CHANNEL	Cherty arg+ qtz vein	3.0 - 6.0	3.0	0.29	1.4	67	276	156	540
	28974	CHANNEL	Graph arg.	9.0 - 13.0	4.0	0.68	5.1	40	746	55	1700
10	28975	GRAB	Qtz vein east face		est 0.1	<0.03	0.1	28	24	69	35
	28976	CHANNEL	Graph - cherty arg.	9.0 - 10.5	1.5	0.53	5.3	256	1182	947	3135
11	28977	GRAB	Dol qtz vein,east end		est 0.3	<0.03	0.3	17	240	158	60
	28978	GRAB	Qtz vein @ 2 m.		est 0.05	<0.03	<0.2	3	10	145	25
	28979	CHANNEL	Flt zone, tuff, graphitic	3.0 - 6.5	3.5	0.29	5.4	105	2410	277	3810
	28980	GRAB	Qtz vein in flt.		est 0.7	<0.03	0.1	7	10	34	30
	28981	CHANNEL	Py siltite	14.2 - 17.2	3.0	0.14	0.5	97	90	120	170
	28982	CHANNEL	Py siltite	17.2 - 19.2	2.0	0.10	0.4	110	176	260	180
	28983	CHANNEL	Oxidized zone + qtz vein Oxidized flt zone+qtz veins+py	19.2 - 21.2	2.0	0.04	1.1	204	996	831	165
	28984	CHANNEL	tuff	21.2 - 24.2	3.0	<0.03	0.2	45	192	513	70

no sample

TRENCH #	SAMPLE #	SAMPLE TYPE	SAMPLE DESCRIPTION	SAMPLE INTERVAL	SAMPLE WIDTH	АU G/T ppb		AG G/T ppm		CU % ppm		PB % ppm		ZN % ppm	
				metres	metres										
2	28958	CHIP	Tuff-blue grey +Py siltite Sulphide zone-choc	31.7 - 34.0	2.3	0.96	2.21	11.0	25.3	0.09	0.21	0.28	0.64	0.07	0.16
	28959	CHIP	brown,oxid.	34.0 - 35.0	1.0	2.32	2.32	0.7	0.7	0.05	0.05	0.05	0.05	0.11	0.11
					3.3		4.53		26.0		0.26		0.69		0.27
						1.37		7.88		0.08		0.21		0.08	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.			475		8.50		1.75		0.45		0.85	
GROSS	METAL	VALUE	US \$			19.00		1.95		2.73		1.89		1.40	
TOTAL GRO	SS METAL V	ALUE US \$				26.97									
EQUIVALEN	IT GOLD GR	ADE G/T			3.3 m	1.95									
3	28963	CHIP	Tuff-grey / ser.	16.0 - 20.0	4.0	0.69		10.2		0.04		0.18		0.2	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.			475		8.50		1.75		0.45		0.85	
GROSS	METAL	VALUE	US \$			9.56		2.53		1.40		1.62		3.40	
TOTAL GRO	SS METAL V	ALUE US \$				18.50									
EQUIVALEN	T GOLD GR	ADE G/T			4.0 m	1.34									

TRENCH AVERAGE VALUES

			TRENCH AVER.	VALUES											
						AU		AG		CU		PB		ZN	
TRENCH	SAMPLE	SAMPLE	SAMPLE	SAMPLE	SAMPLE	G/T		G/T		%		%		%	
#	#	TYPE	DESCRIPTION	INTERVAL	WIDTH	ppb		ppm		ppm		ppm		ppm	
				metres	metres										
4	28985	CHIP	Sulphide zone-total oxidation	29.0 - 31.0	2.0	76.60	153.20	1170.0	2340	0.27	0.54	18.20	36.40	0.67	1.34
	28986	CHIP	Sulphide zone-total oxidation	31.0 - 33.0	2.0	48.60	97.20	880.0	1760	0.29	0.58	20.10	40.20	0.27	0.54
	28987	CHIP	Sulphide zone-total oxidation	33.0 - 34.5	1.5	5 20.80	31.20	326.0	489	0.29	0.44	5.83	8.75	0.2	0.30
					5.5	5	281.60		4589.0		1.56		85.35		2.18
						51.20		834.36		0.28		15.52		0.40	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.			475		8.50		1.75		0.45		0.85	
GROSS	METAL	VALUE	US \$			709.04		206.77		9.90		139.66		6.74	
TOTAL GRO	SS METAL V	ALUE US \$				1072.09									
EQUIVALEN	NT GOLD GR	ADE G/T			5.5 m	77.42									
8	28970	GRAB	West end, Py siltite+		2.0 est	7.96		153.0		0.11		18.20		0.27	
-	2007.0	0.0.2	sulphide frags		2.0 00.					0				0.21	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.			475		8.50		1.75		0.45		0.85	
GROSS	METAL	VALUE	US \$			110.23		37.92		3.85		163.80		4.59	
TOTAL GRO	SS METAL V	ALUE US \$				320.39									
EQUIVALEN	T GOLD GR	ADE G/T			2.0 m est	23.14									

APPENDIX 2

DIAMOND DRILL HOLE LOGS including ROCK TYPE CODE AND DESCRIPTION

ROCK TYPE CODE AND DESCRIPTION

<u>CODE</u> <u>DESCRIPTION</u>

W	Wacke - graywacke
AW	Argillite / wacke
A	Argillite chloritic
AG	Argillite graphitic
AB	Argillite breccia
AP	Argillite pyritic
AC	Argillite cherty
G	Graphitic fault
HB	Heterolithic breccia
PS	Pyritic siltite
M	Mudstone / siltstone
SS	Solid sulphide
SSB	Solid sulphide breccia
NSS	Near solid sulphide
С	Chert grey
CS	Chert sericitic
СВ	Chert breccia
CG	Chert graphitic
CC	Chert conglomerate
TC	Tuff cherty
ТМ	Tuff muddy
TS	Tuff sericitic
TSS	Tuff siliceous
TP	Tuff pyritic
TL	Tuff lapilli
TG	Tuff grey
Р	Pyroclastic volcanic
VM	Volcanic mafic
VI	Volcanic intermediate
D	Diorite

DRILL H	OLE RECORD)											HOL	.E #	05	- 01
			CC	O ORDS			TEST									
COMPANY	Bronx Ventures Inc		GRID	GPS		DIP	BRG	TYPE	CORES	SIZE	NQ		SHEE	Г#	1 of	f 2
PROJECT	Extra High	Ν	90+55	N	COLLAR	-46	225		RECOV	ERY	99%					
CLAIM / TENUR	RE 509949	w	0+29	E	133 m	-41		acid	START	ED	Sept.	21	TOTAI DEPTI		135.0 J.W.	0 m
		ELEV BRG	/ 1440 225						COMPL	ETED	Sept. 2	22	LOGG	ED BY	MURT	ON
[•		INITED	VAL m	CORE	TRUE	AU	AG	CU	РВ	ZN	AS
INTERVAL						SAMPLE	FROM	TO	length	width	g/t	g/t	%	%	%	%
m						#	m	m	m	m	•	ppm	ppm ASSAY,	ppm STANDA	ppm .RD PRII	ppm NT-
0 - 4.6	Casing															
4.6 - 64.0	Pyroclastic - lapilli tuff															
	grey, orange with brown ankerit	ic and se	ericite lamina	tions every												
	2 mm. Lam. @ 90 deg.to core. I	Lap.frags	s vary from d	ust-ash-0.5cm frags.												
	Some frags stretched and pale	buff yello	w colored. C	ore more competent												
	and less sheeted (foliated) from	9.0 - 36	.0.													
	Recovery 50% 8.0-11.0, otherw	vise 100%	, o.													
	Qtz-dol veinlet (10cm) @12.2 @	0 80deg.	with 5%Py,<	: 0.5% Pb,Zn.												
	Similar qtz-dol vein @13.3-16.0	generall	y @80-90 de	eg. with stringers												
	and clots <5%Py,<0.5%Pb,Zn f	rom 0.5c	m-3cm.Thes	e stringers												
	continue throughout the interval	l. Similar	10 cm veinle	ts @ 90 deg @												
	22.5, 24.5, 26.8-27.6, 33.0, 34.0,	36.0 with	n <1% blebby	∕ Py, <0.5% Pb,Zn.		28993	26.6	27.6	1.0	1.0	0.03	<0.2	0.01	<0.01	0.01	0.01
	34.5-34.7 is 0.5x1.0 cm qtz frag	s with 50)-80% Py. Fr	ags 10% of rock.												
	Lap frags decreasing from 42.0	on with I	ess ank.folia	tion, more fg-mg												
	ash-dust tuff with fol.still @ 90 c	deg.														
	Qtz-dol veinlets @ 90 deg incre a few 10 mm SS Py laminations.	asing fro	m 53.0 on -u	p to 50% of core with	1	28994	53.2	55.0	1.8	1.8	<0.03	<0.2	0.01	<0.01	0.01	0.01
	Flt zone 5.8-6.4-grey mud @ 50) deg? to	core. Core b	adly broken on fol												

	up to 12.5. Flt @ 13(1cm) & 17.2-17.4 @ 90deg, 22.8-23.0 @ 80deg,											
	flt @27.6 @90deg (3cm), oxidized flt zone 41.4-41.9 (no angle).											
	Many 1 cm faults throughout the interval.											
64.0 - 87.6	Mafic tuff - fg - mg with slight ank alt. Grey with 1-2 mm white dolomitized											
	frags. Some frags stretched. No lamination. Py 0.5%. A little qtz-dol veining											
	throughout @ 90 deg. Slight Py and ank on lam 74.5-77.0 (Py 5%).											
	From 82.5 on patchy qtz-dol inclusions or frags, becoming a											
	silicified tuff - can still see frags,, silica 70%, dol 10%, py 1%.											
	Flts 77.0 (1cm), 77.2 (3cm), @ 65deg. 20cm NSS py in flt 89.4-89.6 @ 80deg.	28995	85.5	87.6	2.1	2.1	0.17	2.7	0.01	0.18	0.16	0.03

DRILL HOLE	ERECORD								HOL SHEET		05 - 2 of	
COMPANY PROJECT	Bronx Ventures Inc Extra High											
			INTER	VAL m	CORE	TRUE	AU	AG	CU	РВ	ZN	AS
INTERVAL		SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m		#	m	m	m	m	BOLD	ppm PRINT- /	ppm ASSAY,	ppm STANDA	ppm ARD PRIN	ppm NT-
87.6 - 91.3	Graphitic Chert - black. 1 cm qtz veining throughout. 2 - 4 cm patches	28996	87.6	89.1	1.5	1.48	0.48	11.8	0.06	1.64	1.75	0.92
	granoblastic py throughout. Crushed & faulted @70 - 80 deg.Flt @ 91.3.	28997	89.1	91.2	2.1	2.07	0.08	1.1	0.01	0.06	0.05	0.09
	2 - 4 cm inclusions of ank - ser tuff. A little Aspy + Pb in strs & wisps.	28998	91.2	92.6	1.4	1.38	0.05	2.1	0.02	0.12	0.13	0.13
91.3 - 93.3	Tuff - mg pale grey sil and ser. Few ank lamin. 1% diss py. Flts every	28999	92.3	93.5	0.9	0.89	0.17	22.1	0.22	1.46	1.85	0.41
	20 - 30 cm @ 80deg. Patchy py with v sl Pb & Zn over 1 - 2 cm from	29000	93.4	95.0	1.5	1.48	0.23	1.7	0.01	0.08	0.10	0.56
	92.6 - 93.3.	29101	95.0	96.5	1.5	1.48	0.16	1.2	<0.01	0.04	0.04	0.48
93.3 - 98.9	Flt zone - graphitic chert + sil grey tuff. Few ank lam in tuff frags. Py lam	29102	96.5	97.7	1.2	1.18	0.19	1.2	<0.01	0.01	0.01	0.36
	and patches throughout +/- 5%.	29103	97.7	98.8	1.2	1.18	0.15	1.5	<0.01	0.05	0.01	0.14
98.9 - 99.7	Flt zone - crushed and gouge @ 45 deg.	29104	98.9	100.4	1.5	1.48	0.39	2.8	0.01	0.10	0.15	0.38
99.7 - 105.8	Arg - chl + dol alt, mixed with chl and 70% sil alt sl ank mg tuff. Crushed	29105	100.4	101.7	1.3	1.28	0.36	11.6	0.14	0.48	0.61	0.06
	and broken to 101.7. 20 cm patchy py, v sl Pb, Zn @ 101.7 - 101.9 &	29106	101.7	103.1	1.4	1.38	0.54	11.4	0.09	0.65	0.71	0.11
	103.4 - 103.6 in tuff (30% py, <1% Pb.	29107	103.1	104.6	1.5	1.48	0.23	6.6	0.10		0.48	0.05
105.8 - 108.9	Mg tuff - chl,dol alt with 10 - 50% py bands and diss sect. Crushed &	29108	104.6	105.8	1.2	1.18	0.37	5.2	0.06		1.01	0.59
	faulted 105.8 - 107.7 @ 50 deg. Few 20mm frags spotted tuff.	29109	105.8	107.7	1.9	1.87	1.34	13.5	0.16		2.45	5.31
108.9 - 110.1	NSS fg Py 80%. Blk chl alt Arg as matrix with a few dol blobs and streaks.	29110	107.7	108.9	1.2	1.18	1.10	23.2	0.39	1.78	2.24	3.57
	Flt 108.8-109.3 @ 80deg.	29111	108.9	110.0	1.1	1.08	0.46	43.7	0.21	2.75	3.35	0.14
110.1 - 114.5	SS 95% fg Py, 5 - 10% Pb,Zn, 1% Chalco. 90 deg to core.	29112	110.0	111.0	1.0	0.98	4.49	114.0	0.69		9.17	3.52
	Flt @ 114.5 @ 85 deg with 2 cm black mud.	29113	111.0	112.0	1.0	0.98	8.96	173.0	0.70		10.10	3.41
114.5 - 115.1	NSS fg Py (50 - 70 % diss) in black cherty arg. Flt @ 115.1 (6cm).	29114	112.0	113.0	1.0	0.98	7.79	150.0	0.72	-	10.30	3.10
115.5 - 117.8	Chert arg - blk,graph. Few 1-3 cm Py bands - contorted about 80 deg. Fls 116.2 - 116.4 @ 45deg, 116.6 -117.2 @ 70deg.	29115 29116	113.0 114.5	114.5 115.1	1.5 0.6	1.48 0.59	8.23 3.15	171.0 103.0	0.56 0.26		10.50 5.64	4.17 2.69
117.8 - 124.8	Heterolithic Breccia. Mix of cherty arg, dusty py tuff, muddy fg tuff, all with	27215	115.1	117.8	2.7	2.70	0.85	3.6	0.01	0.02	0.05	0.02
111.0 121.0	dol porpyroblasts and ser bands. Few Py porphybl. Blocks / frags	21210	110.1	117.0	2.1	2.10		0.0	0.01	0.02	0.00	0.02
	30 - 40 cm. and rotated - fol 60 - 90 deg. Flted and crushed throughout.	29117	118.3	119.1	0.8	0.79	0.14	1.5	0.01	0.05	0.05	0.02

124.8 - 126.4	Pyritic Argillite Blk with 20 - 50% Py. Sheared and faulted, crushed.	29118	124.8	126.4	1.6	1.58	0.05	0.5	0.02	0.03	0.03	0.02
126.4 - 131.9	Heterolithic Breccia. Blocks to 20 cm. Wacke, Py Arg, little dusty py tuff,											
	Py porphroblasts 1-5% scattered throughout. Flt Zone 131.9-132.2. Arg -chl banded. Black grey bands @ 70 - 80											
131.9 - 135.0	deg.											
EOH												

DRILL HO	OLE RECORD)												HOL	E #	05	5 - 02
			(:0 OF	RDS			TEST									
COMPANY	Bronx Ventures Inc		GRID		GPS		DIP	BRG	TYPE	CORE	SIZE	NQ		SHEE	Т#	1 of	2
PROJECT	Extra High	Ν	90+55	Ν		COLLAR	-61	225		RECOV	/ERY	100%		TOTA			
CLAIM / TENURI	E 509949	w	0+29	Е		145 m	-60		acid	START	ED	Sept	22	TOTA DEPT LOGG	н	145.4	
		ELE\ BRG	-							COMPL	ETED	Sept	23	BY		J.W .M	IURTON
		Dito															
INTERVAL							SAMPLE	INTER FROM	VAL m TO	CORE length	TRUE width	AU q/t	AG g/t	сu %	РВ %	ZN %	AS %
m							#	m	m	m	m	y/i	g/t ppm	ppm	ppm	ppm	ppm
							"					BOLD ICP				IDARD PI	
0 - 6.0	Casing																
6.0 - 69.5	Pyroclastic - lapilli tuff																
	grey, orange with brown anker	itic and	sericite lan	inations	every												
	2 mm @ 80deg. Lap.frags vary	y from d	ust-ash-0.5	cm frage	6.												
	Some frags stretched and pale	e buff ye	llow colore	d. Core n	nore compete	ent											
	and less sheeted (foliated) from	n 9.0 - 3	36.0. 25 cn	h barren	qtz-dol vein												
	with <1/2% diss Py @27.9. Fl	lt zones	6.5-7.5,mu	iddy @70)deg,4 cm @												
	9.6 & 5 cm @ 23.8 @ 80deg.,2	2cm @ 2	28.0 @ 900	eg.,33.2	&33.6 @ 800	leg,											
	5 cm each, 2 cm @39.9 @ 900	-		50.7 @ 7	75deg. Crush	ed											
	and gougy, 53.1 -53.6 & 54.7-5		•														
	From 50 on becoming more m	-		-	-												
	Py lam 1-5 mm increasing up t		•														
	5 cm NSS granobl py @ 57.5. Flt 2cm @ 62.9, 10 cm @ 64.5 @	Py incre 5, 5 cm (easing up to @66.0 @ 5	o 10% up 0 deg., 4	to 69.5. cm @ 67.4												
	60 deg, 5cm @67.8 @ 70 deg deg.	g,69.2 -	69.7 @70														
69.5 - 99.7	Tuff - grey mg-sericitic with slig	ght chl a	lt, 1 - 3 cm	dolomitiz	ed sections.												
	SI fol @ 70 - 80 deg. Py 1%. 2	2 cm qtz	with 2% P	y, v sl Pb	and Cu @												
	74.2 @ 75 deg. Frags up to 2 r	mm and	sl stretche	d. 5 cm	flts @72.6 @												

80 deg, 75.3 @ 70 deg. 3 cm black gouge flt @85.6 @ 90 deg. (this moved mineral!). Qtz / dol vein 79.4 - 79.5 @ 70 deg. Py & sl Pb. 1 - 2 cm qtz dol veinlets every 5 - 10 cm starting @ 83.4 @ 90 deg.with 2 - 5% Py,<0.5% Pb. Tuff is generally more mineralized with py +/- 1%. Last 4.5 m up to 90.0 is heavily qtz / dol veined @ 60 - 80 deg with 1 - 5 % diss and wispy Py & diss v sl Pb. Flt at 90.0 ends the better min section - back to grey tuff with <1%Py. Flt 95.1 @ 90 deg.

DRILL HOLE RECORD

HOLE #	<u>05 - 02</u>
SHEET #	2 of 2

COMPANY	Bronx Ventures Inc								SHEET			2
PROJECT	Extra High											
				VAL m	CORE	TRUE	AU	AG	CU	PB	ZN	AS
INTERVAL		SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m		#	m	m	m	m	BOLD ICP	ppm PRINT-	ppm ASSAY,	ppm STANI	ppm DARD PF	ppm RINT-
99.7 - 101.90	Fault Zone - crushed light grey gouge with black sections (ground sulphides).											
	Few SS 1 - 2 cm frags in flt - Py + sl Pb.											
101.9 - 109.0	Chert - cream / grey color. Lt tan ser on lams. 2mm - 10 mm Py, Pb, As bands	29085	101.9	103.1	1.2	1.18	2.00	8.4	0.04	0.53	0.63	1.00
	throughout @ 80 deg. 2 cm - 3 cm bands of NSS - SS Py, As,sl Pb, Zn @											
	80 deg. @ 101.9, 102.0, 102.8, 106.0. These are in place and not faulted in.											
	Flt @ 108.2 (4 cm) black gouge @ 80 deg.											
109.0 - 114.2	Mixed zone - ser tuff, pervasive dolomitic alt and veinlets, frags											
	(lapilli?) 1 - 4 mm, faulted throughout, sections muddy tuff with black chl											
	sections. Py knots and veinlets. Dol porphyroblasts 2 - 4 mm. Flts @ 80 deg.	27216	110.5	112.6	2.1	2.03	0.27	3.0	0.03	0.18	0.08	0.29
	Large fault 111.3 - 111.7.	27217	112.6	114.2	1.6	1.55	0.34	5.5	0.05	0.39	0.32	0.74
114.2 - 119.1	Tuff - black chloritic alt mixed with sulphides, chiefly py with Cu, sl Pb,As, Zn.	29119	114.2	115.3	1.1	1.06	2.59	35.5	0.57	3.24	5.05	0.73
	Almost a Py siltite in places. Dol porphyroblasts 1 - 2 mm.All faulted and torn up.	29120	115.3	117.5	2.2	2.13	0.86	8.2	0.13	0.82	0.94	2.66
	SS sections 114.7 - 114.9, 115.0 - 115.2, 117.5 - 117.7,118.3 - 118.4,	29121	117.5	117.7	0.2	0.19	5.78	31.6	0.72	3.85	9.36	12.90
	118.5 - 118.9 with 70 % Py, 1% Pb,Zn,As,Cu. Flt zone 116.3 - 117.0, broken	29122	117.7	119.1	1.4	1.35	1.72	27.4	0.54	1.69	3.72	4.03
	with fits 117.8 - 119.0, 120.0 - 123.0.	27218	119.1	120.6	1.5	1.45	0.13	3.1	0.02	0.21	0.27	0.03
119.1 - 121.2	Tuff - mg, dk grey, ser lam @ 90 deg. Silicified. Dol porphyroblasts.											
	Wispy and diss Py throughout. Sect NSS Py 122.2 - 122.5 with dol porphyb.											
	Mixed with black chl tuff or mudstone with dusty Py - probably a Py siltite.											
	Flt @ 129.6 - 130.0.											
121.2 - 140.2	Py Siltite - chl muddy tuff with dusty Py. Spotty dol porphyb. 123.0 - 124.0,											
	and 130.8 - 131.0. Dk brown / black. Sl stretched porphyb up to 20 % in											
	black chl matrix 30% Py as stringers and blebs, not in lam from 134.7 - 135.2, 136.3 - 136.6 also as Py porphyb mixed with dol porphyb.	29086	134.7	135.2	0.5	0.49	0.03	0.4	0.01	0.01	0.01	0.0

Flt zone 140.2 - 141.0.

140.2 - 142.5 Chert - graphitic.

142.5 - 145.4 Graphitic fault zone - all black gouge.

EOH

DRILL HO	OLE RECORD)													HOL	E #	05 -	03
				со	OR	DS			TEST									
COMPANY	Bronx Ventures Inc		GRID			GPS		DIP	BRG	TYPE	CORES	SIZE	NQ		SHEET	· #	1 of	2
PROJECT	Extra High	Ν	90+55		Ν		COLLAR	-80	225		RECOV	ERY	99%					
CLAIM / TENUR	E 509949	w	0+29		Е		158 m	-67		acid	START	ED	Sept.	23	TOTAL	DEPTH	159.7	
											COMPI	ETED	Cont	05	1000		J.W.	
			EV 1440								COMPL	EIED	Sept.	25	LOGGI	DBI	MURTO	Л
		BR	G 225															
									INTER	VAL m	CORE	TRUE	AU	AG	CU	PB	ZN	AS
INTERVAL								SAMPLE	FROM	то	length	width	q/t	g/t	%	%	%	%
m								#	m	m	m	m	3.1	ppm	ppm	ppm	ppm	ppm
													BOLD		- ASSAY,			
0 - 6.5	Casing												-		,	-		
6.5 - 57.2	Pyroclastic - lapilli tuff - lam.																	
	grey, orange with brown anker	itic an	d sericite la	aminati	ons e	very												
	2 mm @ 50 deg. Lap.frags var 1 - 10 % diss Py on lams. This 29.0.																	
	30 cm barren qtz @ 31.1 and 4	41 - 43	3.															
	Flt zone 14.0 - 14.8 @ 60 & 20) deg,	17-18.4 @	45deg,	20.4	- 22.1 (70% re	ecov)											
	23.3 - 25.0 @ 50 deg, 26.6 - 2	8.3 @	65deg inc	ludes a	lot of	crushed py,												
	29.3 - 30.0, 54.4 - 55.6, 57,2 @	0 70d	eg, 67.1 (5	cm) @	60 de	eg.												
57.2 - 60.0	Tuff mg to lapilli tuff. Lam @ 6	0 deg.	Ser, dol <	1% py (on lar	n. Gradual												
	change back to lap pyroclastic	arour	nd 60.0 with	n increa	ased p	by on lam to 59	%.											
	5 cm qtz / dol veinlet @ 60.3 @	2 70 d	leg.with 5%	6 py stri	ingers	6.												
	1 cm SS py @ 66.2 @ 50 deg.	, 2 cm	n SS py 73.	.0 @ 70) deg,	1 cm SS py												
	73.9, 74.2 & 74.4 @ 70 deg.																	
60.0 - 115.9	Lapilli pyroclastic as above. Qt	z/ dol	vein 81.6 -	· 81.8 w	/ith< ^	1% py,												
	87.7 - 88.2 with rotated frags, I	am 50) deg @ 70) and 4	5 deg	@ 105.												
	Many crushed zones. Chlorite	starti	ng to come	e in arou	und 1	09.5 (10-30%)												
	Flt zone (crushed) 108.0 - 108	.8, 11	4.6 - 114.9	(80deg) , 11	5.5 - 115.9.												
115.9 - 117.7	Heterolithic breccia - chl matri	x, dol	and sl py r	natrix.	Frage	s py and dol												

	up to 3 cm, mg tuff,chl frags 2 - 4 cm. Sections with 5 - 10 % py, sl Pb, as												
	crushed frags, stringers and blebs. Usually with qtz / dol matrix in strgs.	29066	115.9	117.7	1.8	1.69	0.18	2.3	0.01	0.07	0.12	0.21	
117.7 - 119.8	Breccia continues but more sulphides - 2 - 4 cm sections NSS-Py 30 - 40%,	29067	117.7	119.8	2.1	1.97	0.14	1.1	0.01	0.05	0.05	0.05	
	Pb <1%, in frags and mixed with dol frags. Chl matrix, white chert												
	frags starting at 118.4												

DRILL HOLE RECORD

Bronx Ventures Inc

Hole # 05 - 03

SHEET # 2 of 2

PROJECT	Extra High											
			INTER	VAL m	CORE	TRUE	AU	AG	CU	PB	ZN	AS
INTERVAL		SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m		#	m	m	m	m		ppm	ppm	ppm	ppm	ppm
							BOLD	PRINT-	ASSAY, S	STANDA	RD PRIN	T- ICP
119.8 - 131.1	Chert - white. SI lam @ 80deg. With sI chl and ser on lams.	29068	119.8	120.8	1.0	0.94	1.67	9.2	0.14	0.53	0.92	2.51
	Brecciated 118.7 - 119.5 with sulphide strs and frags - Py 5 - 20%,											
	Pb +/- 1%, 1 - 2 - 4 cm bands and frags SS Py, some II foliation, others	29087	124.5	126.4	1.9	1.79	1.14	3.5	0.01	0.14	0.12	0.86
	fault frags. Heavy chl on lams from 128.5 on.											
131.1 - 132.2	NSS in fragmented chert matrix. 40% Py, 1 - 2% Pb, Zn?, all @ 70deg.	29069	130.5	131.5	1.0	0.94	0.39	8.4	0.04	0.58	1.29	0.64
	Some chl on lams.	29070	131.5	132.2	0.7	0.66	0.57	15.1	0.13	1.04	3.25	1.74
132.2 - 139.3	Chert - lam, grey-getting dirty with chlorite.Sulphide frags but weaker	29071	132.2	133.2	1.0	0.94	0.56	9.3	0.03	0.85	1.28	1.16
	than previous. Py / Pb with some 0.5 cm on lams. Lams @70 - 80deg.											
	Broken and crushed 134.7 - 135.5.											
	4 cm SS fg Py, v sl Pb,Zn,Cu @135.8, 2 cm @ 136.5, 141.1 - 141.3	29088	135.8	137.4	1.6	1.60	0.68	4.0	0.02	0.19	0.22	0.22
	(3 bands), scattered 1 - 2 cm bands to 140.1	29089	137.4	138.8	1.4	1.40	0.52	5.6	0.06	0.18	0.30	0.53
139.3 - 142.7	Chert breccia in very fg yellow - buff ser matrix. Frags 1 - 2 cm. Some	29090	138.8	140.4	1.6	1.60	0.77	4.5	0.05	0.34	0.35	1.53
	sulphide bands and frags to 140.1. Sections in last 0.5 m of											
	2 - 4 cm chl frags.											
142.7 - 153.8	Mixed chl black arg, fg wacke, arg / wacke breccia. Banding 70 - 80deg.											
	Few dol porphybl 144.0 - 145.2. A little (1 - 2%) fg diss Py 142.1 - 143.0.											
	A few scattered 1 cm vvfg Py bands II bedding.											
	Flt zone 150.3 - 153.8 - crushed and gouge.											
153.8 - 159.7	Chert - graphitic. Black. broken and faulted.											

EOH

COMPANY

DRILL I	HOLE RECORI	D										HOL	.E #	05	- 04
		СО	ORDS			TEST									
COMPANY	Bronx Ventures Inc	GRID	<u>GPS</u>		DIP	BRG	TYPE	CORES	SIZE	NQ		SHEE	Т#	1 of	i 1
PROJECT	Extra High	N 91+25	Ν	COLLAR	-45	225		RECOV	ERY	100%		TOTA			
CLAIM / TEN	URE 509949	W 0+71	E	78 m	-41		acid	START	ED	Sept. 2	25	TOTA DEPT		78.3 J.W.	
		ELEV 1438 BRG 225						COMPL	ETED	Sept. 2	25	LOGG	ED BY	J.W. MURT	ON
		· · · · · · · · · · · · · · · · · · ·				INTERV	/AL m	CORE	TRUE	AU	AG	CU	PB	ZN	AS
INTERVAL					SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m					#	m	m	m	m	BOLD	ppm PRINT-	ppm ASSAY,	ppm STAND	ppm ARD PR	ppm RINT-
0 - 6.5	Casing														
6.5 - 17.5	Lapilli tuff. Fg - mg. Lap up to 0. deg. SI Py on lams. Qtz / dol vein cut 16.1.														
	V sl Py on frac.														
17.5 - 24.9	Chert breccia. Grey, silica frags colored. Ank alt? V sl diss Py < end			buff											
	of section as 1 - 2 cm bands and	d strs. Both fg and	d granoblastic Py, se	ome	29123	22.4	23.6	1.2	1.20	0.35	5.5	0.09	0.27	0.62	0.79
	II to fol @ 75 deg. 4 cm flt @ 24 SS. sl banding @ 85 deg. Som				29124	23.6	24.9	1.3	1.30	0.95	7.9	0.14	0.76	1.18	2.51
24.9 - 26.1	Pb/Zn				29125	24.9	26.1	1.2	1.20	9.23	96.2	0.52	6.65	8.35	0.50
	Few 1% dol? or clay frags														
26.1 - 28.8	NSS - SS Py,Pb Zn as above. I in with sulphides. A lot of acid r		ser frags mixed		29126	26.1	27.6	1.5	1.49	8.96	228.0	1.05	5.72	6.85	0.54
	here. NSS Py 95% Few 3 cm bands a	0	l cm dirty atz vein		29127	27.6	28.6	1.0	1.00	6.09	133.0	0.65	3.03	4.24	0.25
28.8 - 30.2	@				29128	28.6	30.2	1.6	1.59	13.5	168.0	0.92	4.31	5.22	1.92
30.2 - 35.1	29.5 @ 90 deg. Sulphide frags. Mudstone or siltstone. SI lam @ 30.6 - 33.2 and then 20% - 80%	80 deg. Dol?por	phyrobl (10%) star	ting @	29072	30.2	31.7	1.5	1.49	1.94	4.3	0.01	0.02	0.01	0.17

.

33.2 - 34.5.

35.1 - 53.0	Chert - grey mixed with 2 - 4 cm sections mudstone or siltstone. 20 - 60% "wormy" dol bands 0.25 - 0.5 cm thick up to 34.5. Flt @ 37.2
	repeats the sequence. Strong flts @41.6 - 41.9 with SS py frags,
53.0 - 60.0	42.0 - 42.5, 44.5 - 44.7. Arg with sections grey fg wacke. 5 - 10 cm sections with up to 50% Py
60.0 - 78.3	Arg black banded @ 85 deg. Flt zone 59.0 - 60.0. Generaly broken.

EOH

DRILL F	IOLE RECORE)												HOL	.E #	05	- 05
			C	O OR	DS			TEST									<u></u>
COMPANY	Bronx Ventures Inc		GRID		GPS		DIP	BRG	TYPE	CORES	SIZE	NQ		SHEE	Т#	1 of	1
PROJECT	Extra High	Ν	91+25	Ν		COLLAR	-64	225		RECOV	'ERY	100%					
CLAIM / TENU	RE 509949	w	0+71	Е		44 m	-60		acid	START	ED	Sept.	26	TOTA DEPT		44.8	
		ELEV	1438							COMPL	FTED	Sept.	26	1066	ED BY	J.W. MURT	ON
		BRG	225									oept.	20	2000		MORT	
		Dite															
								INTER	VAL m	CORE	TRUE	AU	AG	CU	PB	ZN	AS
INTERVAL							SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m							#	m	m	m	m		ppm	ppm	ppm	ppm	ppm
												BOLD	PRINT- A	SSAY,	STANDA	RD PRI	NT- ICP
0 - 6.5	Casing	0	d atratabad (ar on lor	ma @ 75												
6.5 - 19.7	Lapilli tuff. Fg - mg. Lap up to deg.	z cm and	u stretched.	ber on lar	ns @ 75												
	Qtz / dol veins with 1 % Py as	strgs @	11.7 - 14.1,	18.0 - 19	9.0.												
	Flt zones 10.8 - 11.7 @ 75 de	g, 19.0 -	19.7 @ 80 c	leg, mud	dy with		29073	19.0	20.5	1.5	1.45	0.12	1.0	0.01	0.01	0.03	0.12
	1 - 3 cm qtz / SS frags, 70% F	⊃y with s	l Pb,Zn.				29074	20.5	22.1	1.6	1.55	0.07	1.5	0.01	0.02	0.02	0.03
19.7 - 26.7	Chert breccia mixed with lam	pyroclast	tics and mg	uff, all @	75 deg.		29075	22.1	23.8	1.7	1.64	0.13	1.9	0.01	0.02	0.02	0.03
	Crushed flt zone 25.0 - 26.7						29076	23.8	25.3	1.5	1.45	0.44	6.1	0.03	0.07	0.33	0.89
26.7 - 29.6	SS fg banded Py 90%, Pb1-29 broken.	%,ZN? FI	rac and				29077	25.3	26.7	1.4	1.35	0.63	5.6	0.04	0.25	0.55	0.99
	30 cm yellow gouge @ 20 deg	to core	29.4 - 29.6.	All 100 %	6 recov.		29129	26.7	28.2	1.5	1.45	11.30	158.0	0.82	6.97	8.44	0.99
29.6 - 35.6	NSS + a little mudstone mixed	l in. A litt	le dol in sec	tions. 10	- 20 cm		29130	28.2	29.6	1.4	1.35	9.96	149.0	0.62	7.29	9.50	0.67
	sections SS. Sulphides becor	ning por	ous and lead	hed - yel	low oxidized		29131	29.6	31.8	2.2	2.13	6.20	119.0	1.01	4.39	5.44	0.42
	something-mud, soft clay. 909	% soft ye	ellow clay wit	h qtz / do	ol frags		29132	31.8	32.8	1.0	0.97	3.99	89.4	0.50	3.77	4.56	0.26
	32.0 - 32.7. 90% qtz / dol zo	ne (not v	/ein) 34.4 - 3	5.1. SI di	iss Pb.(1%).		29133	32.8	34.0	1.2	1.16	5.20	91.5	0.90	4.26	5.03	0.36
	Last 50 cm of interval getting '	'dirty" wi	th Py siltite n	nixed in -	all @ 70 deg.		29134	34.0	35.6	1.6	1.55	8.76	129.0	1.02	3.84	4.05	0.49
	Gradual change to siltite - no f						29078	35.6	37.1	1.5	1.45	5.16	37.4	0.22	0.95	0.98	0.75
35.6 - 38.9	Pyritic Siltite. Grey brown v fg			-			29079	37.1	38.9	1.8	1.74	2.73	7.5	0.02	0.26	0.15	0.76
	Dusty Py throughout. Weakly		•	•			29080	38.9	41.2	2.3	2.22	0.22	1.2	0.01	0.03	0.03	0.87
	2 - 4 mm bands of dol?compre	essed & t	folded (ptygr	natic).													

38.9 - 44.8Chert Breccia, grey, mixed with dusty pyritic silitie banded @ 70 deg.
Few 5 cm dol bands - ank alt - buff to orange pink. Few Py frags to
2 - 3 mm + Arseno needles and crystals (1mm) from 39.5 - 41.0.
Diss Py & Aspy to 41.4. Strong fault 44.0 - 44.8 - grey mud and gouge.
10 cm barren qtz @ 44.5.

EOH

DRILL H)												HOL	.E #	05	- 06
				co c	RDS			TEST									
COMPANY	Bronx Ventures Inc		GRID		GPS		DIP	BRG	TYPE	CORE	SIZE	NQ		SHEE	Г#	1 of	2
PROJECT	Extra High	Ν	91+25	N		COLLAR	-90	225		RECOV	'ERY	1 00 %					
CLAIM / TENU	RE # 509949	w	0+71	E						START	ED	Sept. 2	26	TOTAI DEPTI		111.8 J.W.	
		ELEV BRG	1438 225							COMPL	ETED	Sept. 2	27	LOGG	ED BY	MURTC	N
								INTER	VAL m	CORE	TRUE	AU	AG	CU	PB	ZN	AS
INTERVAL							SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m							#	m	m	m	m		ppm	ppm	ppm	ppm	ppm
												BOLD	PRINT- A	SSAY,	STANDA		IT- ICP
0 - 6.0	Casing																
6.0 - 38.1	Pyroclastic - lapilli tuff - lam @	60 deg.	Oxidized	l to 8.0.													
	10 cm qtz veinlet with <5% Py	-															
	Grey, orange with brown anke	ritic and	sericite flo	boding 14	.3 - 16.5,												
	20.6 - 21.0. Flts 12.6 & 25.5	@ 45 de	g. Lams @	2 45 deg													
	Frags are ank & sericitized	V sI diss	Py throug	hout. Qt	z / dol vein												
	28.0 - 29.6 with 1 - 2 mm string larger from 32 on (1 - 4 cm).	gery, cor	itorted py	rite. Lapi	lli frags beco	ming											
38.1 - 41.6	Chert Breccia - grey mixed 50	/ 50 with	ser pyro	clastics a	nd tuff. Frag	s to	29081	38.1	39.6	1.5	1.06	0.44	5.5	0.05	0.82	1.44	0.82
	2 cm. Py increasing to 5 % in	frags an	d matrix		Ū		29082	39.6	41.6	2.0	1.41	0.53	6.2	0.08	0.41	0.54	0.36
41.6 - 43.2	Chert Breccia - grey. 90 % che	ert frags a	and 10 %	dol + sei	pyrocl. + tuff		29083	41.6	43.2	1.6	1.13	0.55	19.1	0.27	0.45	0.44	0.38
43.2 - 47.8	NSS to SS Py, v sl Pb, Zn. 90	% fg py	rite - band	ded. First	1 m is NSS		29135	43.2	44.8	1.6	1.13	2.86	49.5	0.63	3.55	4.15	0.61
	with 5% qtz and fault gouge.	Sulphide	s becomir	ng more o	:g, 2 - 3 mm f	rags	29136	44.8	46.3	1.5	1.06	6.76	55.4	0.77	5.83	8.13	2.45
	in fg matrix of sulphide. Pb inc	creasing	to 5% fro	m 45.0 oi	n. Banding @		29137	46.3	47.8	1.5	1.06	6.93	52.3	0.50	6.75	9.44	1.41
	45 deg. Strong flt 44.0 - 44.8-	grey, bla	ck mud a	nd gouge			29138	47.8	48.9	1.1	0.78	11.10	67.3	0.53	6.05	9.05	0.53
47.8 - 52.9	NSS- sections fg sulphide mixe	ed with q	tz / dol - i	up to 70%	6 qtz in place	S.	29139	48.9	51.2	2.3	1.63	0.47	25.2	0.25	0.37	0.39	0.11
52.9 - 56.8	NSS - SS. Fg banded Py(80%), 5% ea	ch Pb, Zr	. !% Cha	lco.Flt black ,		29140	51.2	52.8	1.6	1.13	2.67	37.4	0.31	1.58	2.54	0.26
	and gougy 54.0 - 55.0, 56.8 - 5	57.0 grey	/ @ 45 de	g.			29141	52.8	53.7	0.9	0.64	6.20	178.0	1.78	7.26	5.35	0.88

56.8 - 60.9	Mixed zone of Pyritic Siltite, grey Chert breccia, some orange dol, all in	29142	53.7	54.4	0.7	0.49	24.70	158.0	1.45	6.37	1.06	0.79
	fg Pyritic siltite matrix. Dusty pyrite in siltite. Not as much mineral as in	29143	54.4	55.3	0.9	0.64	25.30	86.2	0.74	4.05	5.54	0.60
	hole 05-05. Flt- mushy zone 61.3 - 62.1 @ 45 deg. 100% core recov!	29144	55.3	56.9	1.6	1.13	11.80	92.7	0.58	6.06	7.65	2.14
60.9 - 67.8	Pyritic Siltite - lam brown / grey + qtzy dol bands (1-2 mm) all @ 45 deg.	29084	56.9	58.3	1.4	0.99	1.48	11.2	0.05	0.25	0.32	0.44
	Dusty pyrite, not much else. 10 - 20% grey talc ser alt 66.6 - 68.2.											
	Flt zone 61.2 - 62.2 and 66.8 - 67.8. Black / grey with 20 cm blocks of NSS											
	Py 80%, sl Pb, Zn?. This flt moved ore. 45 deg. Few 4 - 5 cm qtz frags.											

—									HOI SHEE	<u> </u>	05 2 of	<u>- 06</u>
COMPANY PROJECT	Bronx Ventures Inc Extra High								UNE			<u> </u>
			INTER	VAL m	CORE	TRUE	AU	AG	CU	РВ	ZN	AS
INTERVAL		SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m		#	m	m	m	m		ppm	ppm	ppm	ppm	ppm
							BOLD	PRINT-	ASSAY,	STANDA	ARD PRIN	VT- ICP
67.8 - 79.6	Hetrolithic Breccia. Mix of Py siltite, mg tuff, dol alt mg tuff, large 0.5 m											
	blocks and< 1 cm frags. Flts 5 - 20 cm wide every 1 - 2 m @ 45 - 60 deg.											
	Patchy 5 - 10% diss Py.											
79.6 - 93.0	Sharp contact change to ChI Arg / Py Siltite with dusty py - flows from one											
	to the other.Contorted 1 cm Py bands similar to heavy py section in 05-07 but not as much pyrite here (5-10%). Lam @ 45 deg. Flt zone 92.0 - 93.0 @ 60 deg.											

93.0 - 111.8 EOH Wacke / chl Arg breccia. Wacke blocks 2 - 20 cm. Vague lamination @ 60 deg.

DRILL F	IOLE RECORD													HOL	E #	05	- 07
			CC) OF	RDS			TEST									
COMPANY	Bronx Ventures Inc		GRID		GPS		DIP	BRG	TYPE	CORES	SIZE	NQ		SHEET	Г#	1 of	1
PROJECT	Extra High	Ν	91+02	Ν		COLLAR	-55	225		RECOV	ERY	99%					
CLAIM / TENU	RE # 509949	w	0+70	Е		81 m	-48		acid	START	ED	Sept. 2	?7	TOTAL DEPTH		81.4 J.W.	
		ELE ^V BRG	-							COMPL	ETED	Sept. 2	27	LOGG	ED BY	MURT	NC
								INTER	VAL m	CORE	TRUE	AU	AG	CU	РВ	ZN	AS
INTERVAL							SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m							#	m	m	m	m	BOLD ICP	ppm PRINT-	ppm ASSAY,	ppm STAND	ppm ARD PRI	ppm NT-
0 - 6.0	Casing											-					
6.0 - 26.6	Hetro Breccia. SI lam @ 80 deg	g. SI ank	& ser on lam	s. Frag	gs of												
	fg dol alt ash tuff to mg tuff - 5	cm qtz d	lol frags with 5	5% py v	v sl Pb												
	diss and on lams as wisps from	n 6.0 - 10	0.0. 1 - 5% Py	/ throug	ghout.												
	Gradually becoming more cg (p	yroclasti	ic) with 1 - 4 c	m frage	s of dol ash												
	tuff +qtz / dol frags and up to 10) % Py ir	n matrix.														
26.6 - 37.1	Fault zone - crushed all of abov	e Few	1 -2 cm black	sulphic	de rich bands.												
	Mud and gouge. 32.6 - 35.7 ha	is 40% c	ore rec. All @	2 50 - 6	60 deg.		27222	35.4	37.1	1.7	1.67	<0.03	0.4	0.01	0.01	0.01	0.02
	Last 2 - 3 m has 1 - 5 mm frags	SS.					29145	37.1	38.6	1.5	1.20	4.94	54.1	0.30	3.08	3.85	2.01
37.1 - 43.4	NSS - mg Py frags in crushed v	fg Py ar	nd recemente	d in sili	ca / dol matrix.		29146	38.6	40.3	1.7	1.36	1.30	13.1	0.09	0.71	1.87	1.02
	All in a flt zone. NSS blocks 10			-			29147	40.3	41.7	1.4	1.12	5.23	35.4	0.46	3.24	5.98	4.66
	towards 41.0 - 43.4. 20 cm flt @						29148	41.7	43.4	1.7	1.36	1.87	23.2	0.18	2.18	3.44	1.93
43.4 - 47.9	SS - fg 90% Py, 5% Pb,Zn. Fa		0		0		29149	43.4	44.9	1.5	1.20	4.63	49.5	0.43	6.70	8.96	4.04
	Strong flt - black gouge -(move				-		29150	44.9	46.4	1.5	1.20	8.69	97.9	0.94	6.25	7.46	4.16
47.9 - 54.0	Fault zone with hetro breccia,gr	ey chert	, py siltite all (@ 80 d	eg with .		29051	46.4	47.9	1.5	1.20	9.75	91.2	0.63	5.65	7.35	2.27
	strong ser component.						27223	47.9	49.6	1.7	1.67	0.11	1.2	0.01	0.06	0.07	0.08
54.0 - 61.7	Py siltite mixed (interbeded) wit				0												
	Some "white spotted" tuff section																
	Siltite has dusty Py. Large blo	ocks(10 -	20 cm)of dol	tuff fro	m 61.3 - 61.7.												

61.7 - 64.7	Py siltite - v fg dusty Py.Spotted 5% with 1 - 3 mm white dol?, clay frags.											
64.7 - 68.9	Arg chl / mixed with muddy tuff - white spotted with 1 - 5 mm dol											
	porphyrobl. Flt @ 68.9.											
68.9 - 71.4	Arg breccia / dol alt muddy tuff with flow banded Pyrite to 60 %.	29099	68.9	71.4	2.5	2.46	0.16	0.8	0.01	0.02	0.01	0.01
	Possible chalco in Py flow bands. Some v fg Py and some more euhedral. Flt zone 71.4 - 75.0 crushed arg.											
71.4 - 81.4	Arg. banded. Crushed qtz vein with vv sl Py 77.4 - 77.9.											
	Nice slump breccia texture @ 81.2 in arg.											
5011												

DRILL	HOLE RECOR	ND											HOL	E #	05	<u>5 - 08</u>
			cc	ORDS			TEST									
COMPANY	Bronx Ventures Inc		GRID	GPS		DIP	BRG	TYPE	CORES	SIZE	NQ		SHEE	Г#	1 of	1
PROJECT	Extra High	Ν	91+02	Ν	COLLAR	-72	225		RECOV	'ERY	99%		TOTA			
CLAIM / TEN	URE 50949	w	0+70	E	93 m	-70		acid	START	ED	Sept	. 28	TOTA DEPT	_	93.6 J.W.	
		ELEV BRG	1440 225						COMPL	ETED	Sept	. 28	LOGG	ED BY	MURT	ON
							INTER	VAL m	CORE	TRUE	AU	AG	CU	PB	ZN	AS
INTERVAL						SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m						#	m	m	m	m	BOLI ICP	ppm D PRINT	ppm - ASSA1	ppm 1, STAN	ppm IDARD P	ppm PRINT-
0 - 6.0	Casing															
6.0 - 9.1	Pyroclastic breccia. Frags gre or frags. 5 mm scattered qtz /	•														
9.1 - 33.0	Tuff - grey, mg, lam with ser /	ank on 1	- I-2 mm lam	s. !% Py frags (1-2mm)											
33.0 - 39.0	Pyrocl- sect lam fg tuff. Dol al Increase in Py to 5%. Ank alt 39.0.			Qtz strs II to lam	S.											
39.0 - 45.1	Flt zone - gouge, mud frags -ł	now did t	hey core th	is? 20 cm rotated	d											
	blocks of pyrocl and mg tuff. E	Becoming	g black and	sulphide rich fro	m 44.4.	27220	42.9	44.4	1.5	1.15	0.08	1.2	0.03	0.08	0.10	0.05
45.1 - 46.3	NSS - SS. Sulphide breccia.	Large bl	ocks in a fa	ult? Py fg and dk	brown	29052	44.4	45.1	0.7	0.54	2.16	51.7	0.36	3.83	5.05	1.28
	with a few (2%) yellow 2mm q					29053	45.1	46.3	1.2	0.92	2.36	83.9	0.68	6.62	9.15	0.46
46.3 - 47.4	Fault zone mixed with NSS Py Py &	y in chi ti	uff. 50% silv	very white granot	SI	29054	46.3	47.4	1.1	0.84	1.09	11.1	0.16	1.23	2.65	1.67
	Arseno,(10%As?), !-5% Pb,Zr	n, 1% Cu	i, 10 cm seo	ction 10% Pb,		29055	47.4	49.3	1.9	1.46	4.38	52.9	0.90	4.34	5.03	8.82
47.4 - 51.2	NSS with sulphides as above.					29056	49.3	51.2	1.9	1.46	5.20	44.1	0.86	3.85	4.76	8.90
51.2 - 56.0	Gradual change to fg ser tuff i Flt zone 52.6 - 55.0, mud gou Pv				10% Py.	29094 27221	51.2 52.2	52.2 53.9	1.0 1.7	0.77 1.30	2.29 0.82	8.9 2.6	0.22 0.03	1.68 0.14	1.75 0.30	4.26 0.93
56.0 - 72.3	siltite in fault zone with spotty Py Siltite mixed with mg tuff, of Scattered			. Dusty Py.			02.2	00.0				2.0	0.00	0.1 1	0.00	0.00
	10 00 am agations with 1 0	امام محمد	nornhyrah	Du in orogoin a ta	E0/ CO O											

10 - 20 cm sections with 1 - 2 mm dol porphyrob. Py increasing to 5% 68.0-

75

	69.7 and then up to 30% to 72.3. 71.2 - 71.3 is NSS 80% Py, fg and granular,											
	pale brown.	29095	69.7	71.2	1.5	1.30	0.07	0.6	0.01	0.02	0.02	0.02
72.3 - 76.2	Arg breccia - dol muddy tuff & py matrix. Up to 30% Py. 10 - 20 cm sections 60% Py both fg and granular. Contorted matrix-almost	29096	71.2	72.7	1.0	0.87	0.08	3.7	0.08	0.03	0.28	0.04
	flow	29097	72.7	74.2	1.5	1.30	0.08	0.6	0.01	0.03	0.01	0.01
	banded. 1 cm frags dirty brown chalco. Muddy tuff / chl arg mix. Less py (1-5%) Scattered 1mm - 1 cm dol	29098	74.2	76.2	2.0	1.73	0.07	0.4	0.01	0.02	0.01	0.01
76.2 - 81.5	·											
81.5 - 84.6	porphyrobl. up to 81.4 SI lam @ 60deg. Hetro breccia, muddy tuff, grey chert, chl arg, mg tuff. Frags and blocks 10 cm - 1 m. Flts 81.5 - 82.5, 83.1 - 83.3, 84.4, 84.6											
84.6 - 88.0	Py siltite / muddy tuff @ 60 deg. Dusty py, tuff frags to 1 cm. Flt zone 88.0 - 88.5.											
88.0 - 93.6 EOH	Arg, black banded. 75 deg bedding.											
2011												

DRILL H	IOLE RECORD													HOL	.E #	05	- 09
			CC	OR	DS			TEST									
COMPANY	Bronx Ventures Inc	G	RID		GPS		DIP	BRG	TYPE	CORES	SIZE	NQ		SHEE	Т#	1 of	2
PROJECT	Extra High	N 9	91+02	Ν		COLLAR	-90	225		RECOV	ERY	99%					
CLAIM / TENU	RE 509949	w	0+70	Е						START	ED	Sept. 2	9	TOTAI DEPTI	_	154.5 J.W.	
		ELEV [·] BRG	1440 225							COMPL	ETED	Sept. 2	9	LOGG	ED BY	MURTO	N
		Bite	225														
									VAL m	CORE	TRUE	AU	AG	CU	PB	ZN	AS
INTERVAL							SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m							#	m	m	m	m	BOLD ICP	ppm PRINT-	ppm ASSAY,	ppm STAND	ppm ARD PRI	ppm NT-
0 - 6.0	Casing																
6.0 - 10.0	Tuff - mg, laminationes @ 60 deg	g. 1 - 3 mm a	nk alt on la	ams. C	tz / dol												
	vein9.5 - 10.0 with sl Py, v sl Pb.																
10.0 - 13.5	Hetrolithic Breccia - mg tuff, ser a	alt dust tuff, o	dol tuff frag	gs.													
13.5 - 32.0	Tuff - mg buff grey with ank alt.Do SI lam @ 60deg. Flt (5cm) @ 32.0.	ol tuff frags to	o 5 mm., 1	few Py	frags.												
32.0 - 39.7	Lap Tuff - 1 - 2 cm frags of qtz / d	lol tuff, stretc	hed all @	45 deg													
	Ank on lams. <0.5 % Py.																
39.7 - 41.9	Tuff, v fg, orange / buff ser alt, mi	xed with dol	tuff frags	1 - 3 cn	າ.												
	Py increasing to 5%. Minor flt @	41.9 over 2	cm.														
41.9 - 48.6	Lap tuff - many 2 - 5 cm qtz / dol	frags. Silica	50%, 5 - 1	0% Py,			27201	41.9	43.4	1.5	1.30	<0.03	0.5	0.01	0.01	0.01	0.01
	1% Pb. Sulphides droppping off	@ 46 to 1%.	Ank on 1-	5mm l	am in matrix		27202	43.4	44.9	1.5	1.30	0.13	0.4	0.01	0.01	0.01	0.01
48.6 - 51.1	Pyrocl / lap Tuff. Fg to mg with s Dol / qtz / Py, orange ank on lams.	section mg tu	uff. Stretch	ned frag	gs @ 60 deg		27203	44.9	46.4	1.5	1.30	1.06	0.3	0.01	0.01	0.01	0.01
51.1 - 75.3	Fault Zone - crushed all of above	plus mud, g	ouge. 10	deg to	core.												
	Few 1 - 2 cm SS frags,few black	chert frags,	1.5 m core	e loss 5	4 - 57,												
	otherwise 100%. Some of this fa	ult would car	rry good va	alues e	specially		27219	71.1	72.7	1.6	0.68	0.81	8.1	0.06	0.64	1.39	0.62
	from 60 - 70 m. Few 2.5 cm block	s of SS - NS	SS fg dk br	own Py	72.7 -75.3		29057	72.7	74.9	2.2	0.93	1.85	13.2	0.08	0.95	1.99	0.71

75.3 - 79.4	NSS grey chert breccia with Py siltite and gouge zones. 20% Aspy in spots mixed with SS - coarse (2mm) euhedral Py (90%), 5% Pb. Flt zone 79.2 - 79.4.	29058 29059 29060	74.9 76.4 78.0	76.4 78.0 79.4	1.5 1.6 1.4	0.63 0.68 0.59	0.80 2.31 2.47	7.6 11.6 19.2	0.04 0.10 0.15	0.45 1.38 2.09	1.01 4.32 4.15	0.15 4.38 7.36
79.4 - 80.7	SS - NSS 80% Py, 5 - 10% Pb,Zn? 1% Cu, All banded @ 25 deg. Flt 80.7 - 80.8 @ 40 deg.	29061	79.4	80.7	1.3	0.55	3.38	91.7	0.53	3.84	4.94	1.97
80.7 - 82.4	Py Siltite, brown with dusty Py Bedding @ 70 deg. Few stretched white dol? or clay frags or porphyrob. Flt zone 81.5 - 82.4 with grey ser, qtz, siltite, sulphide, mud gouge.	27204	80.7	82.4	1.7	1.60	0.14	1.8	0.01	0.09	0.08	1.00

DRILL HOLE RE	CORD
----------------------	------

Extra High

Bronx Ventures Inc

COMPANY

PROJECT

<u>HOLE # 05 - 0</u>	HOLE
SHEET # 2 of 2	SHEET #

			INTER	VAL m	CORE	TRUE	AU	AG	CU	РВ	ZN	AS
INTERVAL		SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m		#	m	m	m	m	BOLD I ICP	ppm PRINT-	ppm ASSAY,	ppm STAND	ppm ARD PRI	ppm NT-
82.4 - 105.8	Hetrolithic breccia -frags of chl arg with 5 - 30% Py, muddy tuff-fg											
	to mg with dol alt- py siltite banded @ 60 deg. Py in arg dropping off . @ 87 to <5%. Flt zone 96.8 - 98.5 @ 45deg, crushed above and gouge.	27205	82.4	84.6	2.2	1.90	0.22	0.5	0.01	0.01	0.01	0.02
	Gradual change to Py siltite. 50% core loss @ 101 between 99.7 - 102.7.	29206	105.8	107.3	1.5	1.30	0.45	5.8	0.11	0.25	0.08	0.08
105.8 - 113.7	Py Siltite - brown with 60%? dusty Py. 109.6 - 110.0 is dol sil mg tuff	29207	107.3	108.8	1.5	1.30	0.34	3.1	0.04	0.10	0.04	0.10
	with 5% Py, 1% Cu. 1% chl arg frags from 1-5mm up to 1 cm.	29208	108.8	110.3	1.5	1.30	0.11	9.9	0.29	0.64	0.86	0.05
	Gradual change to the following wack / arg breccia - no fault.	29209	110.3	111.8	1.5	1.30	0.15	10.3	0.11	0.28	0.40	0.05
113.7 - 122.3	Greywacke / chl arg breccia. 2 - 20 cm blocks of wacke. Gradual change back to Py siltite.	29210	111.8	113.7	1.9	1.65	0.54	4.7	0.03	0.14	0.20	0.07
122.3 - 128.3	Py Siltite with dusty Py. Mixed with dol mg tuff with 45 deg lams.	29211	122.3	123.8	1.5	1.06	0.39	6.5	0.03	0.21	0.21	0.11
	Pyritic zone 10 - 20 cm v fg brown Py mixed with euhedral granukar	29212	123.8	125.3	1.5	1.06	0.21	10.4	0.11	0.53	0.74	0.09
	pyrite. Looks dead. 127.1 - 127.5 NSS fg dusty and euhedral Py.	29213	125.3	126.8	1.5	1.06	0.36	17.1	0.18	1.07	1.53	0.17

	Graphitic flt zone 127.7 - 129.0.	29214	126.8	128.3	1.5	1.06	0.40	6.7	0.02	0.08	0.15	0.28
128.3 - 154.5	Arg - banded with qtz strs and veinlets in first 2m (barren) @45 deg.											
	Wacke sections 148 - 151.											
EOH												

DRILL H		۲D												HOL	<u>.E #</u>	05	-10
			C	O ORDS	S			TEST									
COMPANY PROJECT	Bronx Ventures Inc Extra High	N	<u>GRID</u> 91+50	<u>G</u> N	<u>SPS</u>	COLLAR	<u>DIP</u> -50	<u>BRG</u> 225	<u>TYPE</u>	CORE S RECOV		NQ 100%		SHEET		1 of	1
CLAIM / TENU	IRE # 509949	w	0+66	Е		76 m	-47		acid	STARTI	ED	Sept.	30	DEPTH		76.2	
		ELE\ BRG								COMPL	ETED	Sept.	30	LOGG	ED BY	J.W. MURT(ON
								INTER	VAL m	CORE	TRUE	AU	AG	CU	PB	ZN	AS
INTERVAL							SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m							#	m	m	m	m	BOLD ICP	ppm PRINT	ppm ASSAY,	ppm , STANI	ppm DARD Pf	ppm RINT-
0 - 6.0	Casing Tuff mg, lam, with sl ank & s diss Py.	er on le	ıms @ 80de	g. V sl (<0.	.5%)												
	Some frags of qtz / dol alt tu Qtz / dol vein with sl (5%) Py 13.2 sl				12.3 -												
	brecciated, and 17.7 - 18.0 v 20.0 - 22.0 has 1 - 2 cm ban 27.0 with crushed all of the above.																
27.0 - 29.5	Chert and chert breccia - cre SS bands scattered every +/ Cu																
	@ 85 deg. Sulphides scatte Hetrolithic breccia - Py siltite						29091	27.0	29.6	2.6	2.59	0.68	3.6	0.07	0.52	0.75	4.23
29.5 - 31.7	with						29062	29.6	31.7	2.1	2.09	1.84	15.8	0.20	1.32	1.74	0.33
	2 - 5 cm blocks of dol mg tu Py) as	n. 10 -	20% aiss si	iipniaes (cr	meny		29063	31.7	32.7	1.0	1.00	4.36	55.5	0.80	6.49	8.65	0.40
	diss and matrix SS - fg banded @ 90 deg. L	ovelv	80% Pv 10	6 Ph 7n wii	th a little		29064	32.7	34.2	1.5	1.49	7.23	61.7	0.93	4.86	6.96	0.47
31.7 - 35.7	Cu.		-	0 i D,∠ii Wi			29065	34.2	35.7	1.5	1.49	7.20	75.9	0.97	5.16	6.85	0.51
	Gradual change (no flt) into	Py siltite	Э.				29092	35.7	37.8	2.1	2.09	1.58	9.3	0.04	0.35	0.42	0.10

35.7 - 39.6	Py siltite - intebedded with Py muddy fg tuff all @ 80 deg. Py 20 - 50%. Tuff fg to mg. Few dol porphyrob & 1 - 2 cm strs. 1 - 2 % Py. Flt	29093	37.8	39.6	1.8	1.79	1.95	10.3	0.03	0.19	0.22	0.16
39.6 - 44.3	zone											
	43.0 - 44.3 @ 85 deg.											
44.3 - 49.6	MuddyTuff. Fg mixed with bands of grey fg tuff @ 90 deg. A little											
49.6 - 62.0	Py siltite 47.0 - 49.6. Tuff - grey mg.).5 - 1 cm bands of fg Py with 5%Py. 20 cm flt @ 61.4. Becoming brecciated last 2 m with arg & dol clasts.											
62.0 - 67.6	Slump Breccia - 5 - 20 cm blocks and frags of Py black arg.,											
	fg - mg grey tuff, sections of Py to 20% as frags 1 - 2 mm and											
	porphyroblasts 2 -3 mm. Flt zone 63.3 - 67.6 @ 85 deg. Mushed											
	all of the above.											
67.6 - 76.2	Arg - banded @ 75 deg. Black Py flt zone 69.2 - 70.2.											
EOH												

COMPANY PROJECT Bronx Ventures Inc Extra High CO ORDS TEST CORE SIZE NO CLAIM / TENURE # 509949 90429 N COLLAR 45 225 acid SRECVERY 99% TOTAL DEPT H DEPT H 142.9 CLAIM / TENURE # 509949 W 0434 E 106m 42 acid SRECVERY 99% TOTAL DEPT H 142.9 JW. BIG 225 106m 42 acid SRECVERY 99% TOTAL DEPT H 142.9 JW.	DRILL H	HOLE RECORE)											HOL	_E #	05	<u>- 11</u>
PROJECT Extra High CLAIM / TENURE # N 90-29 0 N COLLAR 435 225 RECOVERY 99% STARTED TOTAL DEPTH Nov. 20 TOTAL DEPTH STARTED Nov. 19 000000000000000000000000000000000000				C	O ORDS			TEST									
CLAIM / TENURE # 509949 W 0-34 E 106m -42 acid STARTED COMPLETED Nov. 19 COMPLETED TOTAL DEPTH UGGED J.W. BY H42.9 J.W. INTERVAL m BC 225 106m -42 acid STARTED COMPLETED Nov. 20 DEPTH UGGED J.W. BY MURTON INTERVAL m Complexity Nov. 19 (arg. COMPLETED Nov. 20 DEPTH UGGED J.W. BY NURTON 0 6.5 Casing Pproclassic- lapilit uf - strong lams @ 90 deg. Mg tuff with dol 6.5 - 54.2 Stranted 2.5 mm qt dol stra and veinlets continuing with few supplied colts and v a Py, wel PS-1.1. Less ank alt (10-20%) from 42 on. SI chi starting to come in on lams. Ft Zn 53.4 - 54.0 @ 45 deg. 2.5 cm fits @ 0.9 @ 06g 5A2 - 54.9. Less ank ank and 5 % chi on lams. 1% Py mostly on lams and few supplied colts to 5mm. Ft@ 20.7 (Toom ?20 and edg. Ft zon 78.3 - 64.0 @ 70 deg. Starter 1.5 1.5 0.05 0.6 0.01 0.01 0.01 54.2 - 81.0 Hetrofithoecia at oper opy produstic. Grey chert + tuff, qtz, dol frags. All stretched up to 10 mm thick , 2 cm long. SI laminated, with v sl ank and 5 % chi on lams. 1% Py mostly on lams and few supplied colts to 5mm. Ft@ 20.7 (Toom ?8.0 Reg. Qtz ven 08.2 - 30 Ms ez; 2 - 20 ms. 5% Py. SI laminated, not all breocia but more rushed. Frags to 2 - 30 ms. 5% Py. SI laminated, not	COMPANY	Bronx Ventures Inc		GRID	<u>GPS</u>		DIP	BRG	TYPE	CORES	SIZE	NQ		SHEE	Т#	1 of	2
CLAIM / TENUR ⊭ 509949 W 0-34 E 106m -42 acid STARTED No.7 DEPTH 142.9 142.9 LELE / LAIA BRG 2.25 0 0.006 ED No.7 0 0.007 ED 0.007 ED <td< th=""><th>PROJECT</th><th>Extra High</th><th>Ν</th><th>90+29</th><th>N</th><th>COLLAR</th><th>-45</th><th>225</th><th></th><th>RECOV</th><th>'ERY</th><th>99%</th><th></th><th></th><th></th><th></th><th></th></td<>	PROJECT	Extra High	Ν	90+29	N	COLLAR	-45	225		RECOV	'ERY	99%					
LEV 1441 BR 225 Nov. 20 BY MURTON INTERVAL n INTERVAL N Nov. 20 BY MURTON INTERVAL n Casing Pyroclastic - lapili tuff - strong lams @ 90 deg. Mg tuff with dol frags. INTERVAL (6,5 - 54.2) INTERVAL (7,9) Nov. 20 BY MURTON MURTON 0 6.5 Casing Pyroclastic - lapili tuff - strong lams @ 90 deg. Mg tuff with dol frags. INTERVAL (8,0) INTERVAL (9,0) INTERVAL (9,0) AS Nov. 20 BY MURTON 0 6.5 Casing Pyroclastic - lapili tuff - strong lams @ 90 deg. Mg tuff with dol frags. INTERVAL (8,0) INTERVAL (9,0) INTERVAL (9,0) INTERVAL (9,0) Nov. 20 BY Start Start </th <th>CLAIM / TENU</th> <th>JRE # 509949</th> <th>w</th> <th>0+34</th> <th>E</th> <th>106m</th> <th>-42</th> <th></th> <th>acid</th> <th>START</th> <th>ED</th> <th>Nov.</th> <th>19</th> <th>DEPT</th> <th>н</th> <th></th> <th></th>	CLAIM / TENU	JRE # 509949	w	0+34	E	106m	-42		acid	START	ED	Nov.	19	DEPT	н		
INTERVAL m SAMPLe FROM # 70 Iength m with m gr gr gr %										COMPL	ETED.	Nov.	20	BY			N
m # m								INTER	VAL m	CORE	TRUE	AU	AG	CU	РВ	ZN	AS
BOLD PRINT- ASSAY, STANDARD PRINT- ICP 0 - 6.5 Casing Pyroclastic - lapilli tuff - strong lams @ 90 deg. Mg tuff with dol 6.5 - 54.2 Grey, orange with brown ankeritic and sericite flooding, sections heavy (80%) and buff yellow. 2-4 cm scattered qtz dol strs 16.5-18.7 with 1% Py.<1% Pb,Zn,@90 deg. Scattered 2-5 mm qtz dol strs and veinlets continuing with few sulphide clots and v si Py, vv si Pb,Zn. Less ank alt (10-20%) from 42 on. S1 chl starting to come in on lams. Fit Zn 53.4 - 54.0 @ 45 deg. 2-5 cm fits @ 60 - 80 deg 54.2 - 54.9. 58.5 - 59.0 @ 45?deg. 54.2 - 81.0 Hetrollitic breccia to grey cg pyrodastic. Grey chert + tuff, qtz, dol frags. All stretched up to 10 mm thick, 2 cm long. S1 laminated, with v sl ank and 5 % chl on lams. 1% Py mostly on lams and few sulphide clots to 5 mm. Fit. @ 70.7 (15cm) @ 80 deg Fit zone 78.3 - 81.0 @ 70 deg. 81.0 - 101.1 Chert breccia with black, grey, cream frags. Scattered 1 - 2 cm sections 5% Py. S1 laminated, not all breccia but more crushed. Frags to 2 - 3 cms. Broken and faulted every 1 m @ 70 - 80 deg. 20 - 30% ser. Py bands as 27226 84.0 85.5 1.50 0.05 0.6 0.01	INTERVAL						SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
Pyroclastic - lapilli tuff - strong lams @ 90 deg. Mg tuff with dol frags. 6.5 - 54.2 Grey, orange with brown ankeritic and sericite flooding, sections heavy (80%) and buff yellow. 2-4 cm scattered qtz dol strs 16.5-18.7 with 1% Py, <1% Pb,Zn, @90 deg. Scattered 2-5 mm qtz dol strs and veinlets continuing with few sulphide clots and v sl Py, vv sl Pb,Zn. Less ank alt (10-20%) from 42 on. Sl chl starting to come in on lams. Flt Zn 53.4 - 54.0 @ 45 deg. 2-5 cm flts @ 60 - 80 deg 54.2 - 54.9, 58.5 - 59.0 @ 457deg. 54.2 - 81.0 Hetrolithic breccia to grey cg pyroclastic. Grey chert + tuff, qtz, dol frags. All stretched up to 10 mm thick, 2 cm long. Sl laminated, with v sl ank and 5 % chl on lams. 1% Py mostly on lams and few sulphide clots to 5mm. Flt.@ 70.7 (15cm) @ 80 deg. Flt zone 78.3 - 81.0 @ 41.0 endeg. 81.0 endeg. 81.0 endeg. 81.0 endeg. 82.5 endeg. 81.5 endeg. <th>m</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>#</th> <th>m</th> <th>m</th> <th>m</th> <th>m</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	m						#	m	m	m	m						
54.2 81.0 Hetrolithic breccia to grey og pyroclastic. Grey chert + tuff, qtz, dol frags. All stretched up to 10 mm thick , 2 cm long. Sl laminated, with v sl ank and 5 % chl on lams. 1% Py mostly on lams and few sulphide clots to 5 mm. Flt.@ 70.7 (15cm) @ 80 deg. Flt zone 78.3 - 81.0 @ 70 deg. 81.0 - 101.1 Chert breccia with black, grey, orcam frags. Scattered 1 - 2 cm sections 5% Py. Sl laminated, not all breccia but more crushed. Frags to 2 - 3 cms. 5% Py. Sl laminated, not all breccia but more crushed. Frags to 2 - 3 cms. 5% Py. Sl laminated, not all breccia but more crushed. Frags to 2 - 3 cms. 5% Py. Sl laminated, not all breccia but more crushed. Frags to 2 - 3 cms. 5% Py. Sl laminated, not all breccia but more crushed. Frags to 2 - 3 cms. 5% Py. Sl laminated, not all breccia but more crushed. Frags to 2 - 3 cms. 5% Py. Sl laminated, not all breccia but more crushed. Prags to 2 - 3 cms. 5% Py. Sl laminated, not all breccia but more crushed. Prags to 2 - 3 cms. 5% Py. Sl laminated, not all breccia but more crushed. Prags to 2 - 3 cms. 5% Py. Sl laminated, not all breccia but more crushed. Prags to 2 - 3 cms. 5% Py. Sl laminated, not all breccia but more crushed. Prags to 2 - 3 cms. 5% Py. Sl laminated, not all breccia but more crushed. Prags to 2 - 3 cms. 5% Py. Sl laminated, not all breccia but more crushed. Prags to 2 - 3 cms. 5% Py. Sl laminated, not all breccia but more crushed. Prags to 2 - 3 cms. 5% Py. Sl laminated, not all breccia but more crushed. Prags to 2 - 3 cms. 5% Py. Sl laminated, not all breccia but more crushed. Prags to 2 - 3 cms. 5% Py. Sl laminated, not all breccia but more crushed. Prags to 2 - 3 cms. 5% Py. Sl laminated, not all breccia but more crushed. Py bands as 27226 84.0 85.6 1.6 1.60 0.14 0.61 0.01 0.01 0.01 0.01 0.01	0 - 6.5		lams @	90 deg. N	lg tuff with dol												
 (80%) and buff yellow. 2-4 cm scattered qtz dol strs 16.5-18.7 with 1% Py,-1% Pb,Zn,@90 deg. Scattered 2-5 mm qtz dol strs and veinlets continuing with few sulphide clots and v sl Py, vv sl Pb,Zn. Less ank at (10-20%) from 42 on. Sl chl starting to come in on lams. Flt Zn 53.4 - 54.0 @ 45 deg, 2-5 cm flts @ 60 - 80 deg 54.2 - 54.9, 54.2 - 81.0 Hetrolithic breccia to grey cg pyroclastic. Grey chert + tuff, qtz, dol frags. All stretched up to 10 mm thick, 2 cm long. Sl laminated, with v sl ank and 5 % chl on lams. 1% Py mostly on lams and few sulphide clots and sand few sulphide clots 81.0 - 101.1 Chert breccia with black, grey, cream frags. Scattered 1 - 2 cm sections 27224 81.0 81.0 - 101.1 Chert breccia with black, grey, cream frags. Scattered 1 - 2 cm sections 27224 81.0 82.5 1.5 1.50 0.66 0.01 <l< td=""><td>6.5 - 54.2</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></l<>	6.5 - 54.2	5															
continuing with few sulphide clots and v sl Py, vv sl Pb,Zn. Less ank alt (10-20%) from 42 on. Sl chl starting to come in on lams. Flt Zn 53.4 - 54.0 @ 45 deg, 2-5 cm flts @ 60 - 80 deg 54.2 - 54.9, 58.5 - 59.0 @ 457deg. 58.5 - 59.0 @ 457deg. 58.5 - 59.0 @ 457deg. 54.2 - 81.0 Hetrolithic breccia to grey cg pyroclastic. Grey chert + tuff, qtz, dol frags. All stretched up to 10 mm thick , 2 cm long. Sl laminated, with v sl ank and 5 % chl on lams. 1% Py mostly on lams and few sulphide clots to 5 mm. Flt.@ 70.7 (15cm) @ 80 deg Flt zone 78.3 - 81.0 @ 70 deg. 57224 81.0 82.5 1.5 1.50 0.05 0.6 0.01 <td< td=""><td></td><td>(80%) and buff yellow. 2-4 cm</td><td></td><td></td><td></td><td>ivy</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		(80%) and buff yellow. 2-4 cm				ivy											
alt (10-20%) from 42 or. Sl chl starting to come in on lams. Fit Zn 53.4 - 54.0 @ 45 deg, 2-5 cm flts @ 60 - 80 deg 54.2 - 54.9, 58.5 - 59.0 @ 45?deg. 54.2 - 81.0 Hetrolithic breccia to grey cg pyroclastic. Grey chert + tuff, qtz, dol frags. All stretched up to 10 mm thick , 2 cm long. Sl laminated, with v sl ank and 5 % chl on lams. 1% Py mostly on lams and few sulphide clots to 5 mm. Flt.@ 70.7 (15cm) @ 80 deg Flt zone 78.3 - 81.0 @ 70 deg. 81.0 - 101.1 Chert breccia with black, grey, cream frags. Scattered 1 - 2 cm sections 5% Py. Sl laminated,not all breccia but more crushed. Frags to 2 - 3 cms. Broken and faulted every 1 m @ 70 - 80 deg. 20 - 30% ser. Py bands as lams starting at 89.5 (5 - 10mm) @ 90 deg. Qtz vein 90.2 - 90.4 @ 90 27227 85.6 87.2 1.6 1.60 0.14 0.6 0.01 0.01 0.01 0.10		1% Py,<1% Pb,Zn,@90 deg. \$	Scattered	d 2-5 mm (qtz dol strs and vein	lets											
Flt Žn 53.4 - 54.0 @ 45 deg, 2-5 cm flts @ 60 - 80 deg 54.2 - 54.9, 58.5 - 59.0 @ 45?deg. 54.2 - 81.0 Hetrolithic breccia to grey cg pyroclastic. Grey chert + tuff, qtz, dol frags. All stretched up to 10 mm thick , 2 cm long. Sl laminated, with v sl ank and 5 % chl on lams. 1% Py mostly on lams and few sulphide clots to 5 mm. Flt.@ 70.7 (15cm) @ 80 deg Flt zone 78.3 - 81.0 @ 70 deg. 81.0 - 101.1 Chert breccia with black, grey, cream frags. Scattered 1 - 2 cm sections 27224 81.0 82.5 1.5 1.50 0.66 0.01 0.01 0.01 0.01 0.10 S% Py. Sl laminated, not all breccia but more crushed. Frags to 2 - 3 cms. 27225 82.5 84.0 1.5 1.50 0.12 1.0 0.01<		continuing with few sulphide c	lots and	v sl Py, vv	sl Pb,Zn. Less ank	C C											
54.2 - 81.0 Hetrolithic breccia to grey cg pyroclastic. Grey chert + tuff, qtz, dol frags. All stretched up to 10 mm thick , 2 cm long. SI laminated, with v sl ank and 5 % chl on lams. 1% Py mostly on lams and few sulphide clots to 5 mm. Flt. @ 70.7 (15cm) @ 80 deg Flt zone 78.3 - 81.0 @ 70 deg. 81.0 - 101.1 Chert breccia with black, grey, cream frags. Scattered 1 - 2 cm sections 5% Py. SI laminated, not all breccia but more crushed. Frags to 2 - 3 cms. Broken and faulted every 1 m @ 70 - 80 deg. 20 - 30% ser. Py bands as lams starting at 89.5 (5 - 10mm) @ 90 deg. Qtz vein 90.2 - 90.4 @ 90 27227 85.6 87.2 1.6 1.60 0.14 0.6 0.01 0.01 0.01 0.01 0.01		Flt Zn 53.4 - 54.0 @ 45 deg, 2															
All stretched up to 10 mm thick , 2 cm long. SI laminated, with v sl ank and 5 % chl on lams. 1% Py mostly on lams and few sulphide clots to 5 mm. Flt.@ 70.7 (15cm) @ 80 deg Flt zone 78.3 - 81.0 @ 70 deg. 81.0 - 101.1 Chert breccia with black, grey, cream frags. Scattered 1 - 2 cm sections 5% Py. SI laminated, not all breccia but more crushed. Frags to 2 - 3 cms. 27225 82.5 84.0 1.5 1.50 0.12 1.0 0.01 0.01 0.01 <td></td> <td>58.5 - 59.0 @ 45?deg.</td> <td></td>		58.5 - 59.0 @ 45?deg.															
ank and 5 % chl on lams. 1% Py mostly on lams and few sulphide clots to 5 mm. Flt.@ 70.7 (15cm) @ 80 deg Flt zone 78.3 - 81.0 @ 70 deg. 81.0 - 101.1 Chert breccia with black, grey, cream frags. Scattered 1 - 2 cm sections 27224 81.0 82.5 1.5 1.50 0.05 0.6 0.01 0.01 0.01 0.10 5% Py. Sl laminated, not all breccia but more crushed. Frags to 2 - 3 cms. 27225 82.5 84.0 1.5 1.50 0.12 1.0 0.01 0.01 0.01 0.10 Broken and faulted every 1 m @ 70 - 80 deg. 20 - 30% ser. Py bands as 27226 84.0 85.6 1.6 1.60 0.17 1.1 0.01 0.01 0.01 0.01 0.01 0.10 lams starting at 89.5 (5 - 10mm) @ 90 deg. Qtz vein 90.2 - 90.4 @ 90 27227 85.6 87.2 1.6 1.60 0.14 0.6 0.01 0.01 0.01 0.15	54.2 - 81.0	Hetrolithic breccia to grey cg p	yroclast	ic. Grey ch	nert + tuff, qtz, dol fra	ags.											
to 5 mm. Flt.@ 70.7 (15cm) @ 80 deg Flt zone 78.3 - 81.0 @ 70 deg. 81.0 - 101.1 Chert breccia with black, grey, cream frags. Scattered 1 - 2 cm sections 27224 81.0 82.5 1.5 1.50 0.05 0.6 0.01 0.01 0.01 0.01 0.10 5% Py. Sl laminated,not all breccia but more crushed. Frags to 2 - 3 cms. 27225 82.5 84.0 1.5 1.50 0.12 1.0 0.01 0.02 0.04 0.17 Broken and faulted every 1 m @ 70 - 80 deg. 20 - 30% ser. Py bands as 27226 84.0 85.6 1.6 1.60 0.17 1.1 0.01 0.01 0.01 0.01 0.10 lams starting at 89.5 (5 - 10mm) @ 90 deg. Qtz vein 90.2 - 90.4 @ 90 27227 85.6 87.2 1.6 1.60 0.14 0.6 0.01 0.01 0.01 0.15		All stretched up to 10 mm thicl	k , 2 cm	long. SI lai	minated, with v sl												
81.0 - 101.1 Chert breccia with black, grey, cream frags. Scattered 1 - 2 cm sections 27224 81.0 82.5 1.5 1.50 0.05 0.6 0.01		ank and 5 % chl on lams. 1%	Py most	ly on lams	and few sulphide cl	lots											
5% Py. SI laminated, not all breccia but more crushed. Frags to 2 - 3 cms. 27225 82.5 84.0 1.5 1.50 0.12 1.0 0.01 0.02 0.04 0.17 Broken and faulted every 1 m @ 70 - 80 deg. 20 - 30% ser. Py bands as 27226 84.0 85.6 1.6 1.60 0.17 1.1 0.01 0.01 0.01 0.01 0.01 0.01 0.10 lams starting at 89.5 (5 - 10mm) @ 90 deg. Qtz vein 90.2 - 90.4 @ 90 27227 85.6 87.2 1.6 1.60 0.14 0.6 0.01 0.01 0.01 0.15		()	0			0											
Broken and faulted every 1 m @ 70 - 80 deg. 20 - 30% ser. Py bands as 27226 84.0 85.6 1.6 1.60 0.17 1.1 0.01 0.01 0.10 lams starting at 89.5 (5 - 10mm) @ 90 deg. Qtz vein 90.2 - 90.4 @ 90 27227 85.6 87.2 1.6 1.60 0.14 0.6 0.01 0.01 0.01 0.15	81.0 - 101.1			-													
lams starting at 89.5 (5 - 10mm) @ 90 deg. Qtz vein 90.2 - 90.4 @ 90 27227 85.6 87.2 1.6 1.60 0.14 0.6 0.01 0.01 0.01 0.15		•			•		-			-		-	-				-
				•						-		-					
		•	,	-													

lost core grey black mud @80deg., 95.4 - 95.6,	27229	88.7	90.2	1.5	1.50	0.41	1.6	0.01	0.04	0.03	0.25
91.7 - 92.3 10 - 15% Py (granoblastic or crushed) frags. 3 cm band NSS	27230	90.2	91.7	1.5	1.50	0.53	14.6	0.05	0.20	0.10	0.48
80% Py, 1% Pb,Zn,sl As. 96 - 100 has 1-3 cm qtz veins every 1 m @ 80 deg., contorted and	27231	91.7	92.3	0.6	0.60	1.28	14.7	0.03	0.19	0.13	0.71
broken.	27232	92.3	93.6	1.3	1.30	1.41	50.8	0.05	0.36	0.14	0.34
Chert - pale grey, sI banded with ser on lams @ 90 deg. 0.5 - 1 cm	27233	93.6	95.6	2.0	2.00	0.22	3.6	0.01	0.09	0.18	0.55
qtzy seams, some brecciation. Becoming more mineralized from 102.5. with 0.5 - 1 cm bands NSS Py, sl Pb.Zn. 2 cm NSS grano + fg	27234	95.6	96.6	1.0	1.00	0.19	2.0	0.01	0.01	0.01	0.04
Py	27235	96.6	98.1	1.5	1.50	0.09	0.9	0.01	0.01	0.01	0.02
sl Zn,Pb @ 103.5, 103.7, 105.9, 106.0. Flt 4 cm @106.2 @85 deg.	27236	98.1	99.6	1.5	1.50	0.14	2.1	0.01	0.05	0.03	0.04
with 1 - 3 cm frags SS fg Py,sl Pb,Zn.	27237	99.6	101.1	1.5	1.50	0.14	0.9	0.01	0.01	0.07	0.14
	27238	101.1	102.5	1.4	1.40	0.12	1.0	0.01	0.01	0.03	0.24

101.1 - 106.2

83

DRILL	HOLE RECORD											
COMPANY PROJECT	Bronx Ventures Inc Extra High								HOL SHEE	<u> </u>	05 2 of	5 - 11 f 2
INTERVAL m		SAMPLE #	INTER FROM m	VAL m TO m	CORE length m	TRUE width m	AU g/t	AG g/t ppm	CU % ppm	PB % ppm	ZN %	AS %
							BOLD ICP	PRINT-				
106.2 - 111.9	Cherty Argillite. Dk grey /black chl sections, fine lams 1 -2 mm & 1 -2 cms.	27239	102.5	104.3	1.8	1.80	0.95	9.6	0.04	0.53	1.88	3.23
111.9 - 114.7	Chert - It grey same as 101 - 106., flt repeated section. 90 deg lams.	27240	104.3	106.2	1.9	1.90	0.71	25.7	0.07	0.33	0.77	1.86
	1 - 3 cm patches (frags) NSS Py, Zn,Pb especially @ 113.2 - 113.4.	27241	106.2	109.0	2.8	2.80	0.08	2.0	0.01	0.01	0.01	0.01
	Becoming brecciated last 1 m. 10 - 20% yellow ser on lams 113.5-114.7.	27242	109.0	111.9	2.9	2.90	0.08	0.9	0.01	0.01	0.02	0.03
	Flt 114.7 (2cm) @ 90 deg.	27243	111.9	113.2	1.3	1.30	0.24	2.6	0.01	0.03	0.09	0.31
114.7 - 129.2	Hetro breccia. 1 - 10 cm frags dol spotted chl arg, fg tuff, grey chrt, sl py .	27244	113.2	113.4	0.2	0.20	2.64	119.0	0.61	3.65	4.84	2.88
	siltite. Lams @ 90 deg. 5% granobl Py 114.7 - 116.2. A few 2 - 4 cm wacke frags starting @ 121.0 A little py throughout as 1 - 2mm lams and strs. Dol porphyroblasts121.4 - 122.7 in py siltite with dusty Py. Flt 120.4 @ 90 deg (4cm). More arg and siltite bands last 2 m. Graph arg 128.0 - 128.4	27245	113.4	114.7	1.3	1.30	0.12	1.1	0.01	0.02	0.02	0.05
129.2 - 136.0	Chert, white / grey. A little brecciation. Few wisps Py (<1%).											
100 0 100 0	Elt Zana graphitic / nuritic 20.0/ Du in places in foult											

- 136.0 138.0 Flt Zone graphitic / pyritic. 30 % Py in places in fault.
- 138.0 142.9 Arg / wacke. 80 deg bands. Qtz breccia crushed in flt 141 142.

DRILL H	OLE RECORD										HOL	.E #	05	<u>- 12</u>
		CO ORDS			TEST									
COMPANY	Bronx Ventures Inc	GRID GPS		DIP	BRG	TYPE	CORE S	SIZE	NQ		SHEET	Г#	1 of 2	2
PROJECT	Extra High	N 90+29 N	COLLAR	-60	225		RECOV	ERY	98%		τοται			
CLAIM / TENU	RE # 509949	W 0+34 E	136m	-49		acid	STARTE	ED	Nov. 2	0	DEPTH	4	145.4	
		ELEV 1441					COMPL	ETED	Nov. 2	1	BY		J.W .MU	JRTON
		BRG 225												
					INTER	VAL m	CORE	TRUE	AU	AG	CU	РВ	ZN	AS
INTERVAL				SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m				#	m	m	m	m	-	ppm	ppm	ppm	ppm	ppm
									BOLD ICP	PRINT-	ASSAY,	, STANI	DARD PR	INT-
0 - 6.5	Casing													
6.5 - 80.5	Pyroclastic - lapilli tuff - strong la	ms @ 75 deg. mg tuff with dol frags.												
		ic and sericite flooding, sections heavy												
		z / dol veinlets with5% Py,vv sl Pb,Zn @												
		rren qtz vein 21.6 - 23.7 @ 70 deg.												
	(0 /)	- 16 @ 70 deg,47.0, 52.0 @ 80 deg.												
		63.8, with 5% Py. Becoming more chloritic												
	(10 - 20%) from 75 on.	boot, with 576 Fy. Decoming more chloride												
	()	eg,64.0-66.6,68.3-68.5 (70 deg),77.2												
		mud and gouge (strong flt), Wispy												
	and stringery brown Py (5%),78 -	- 79.2.												
80.5 - 85.6	Hetro breccia - grey chert, fg - m	g tuff, sl py siltite,chl arg as matrix and		28570	80.5	82.0	1.5	1.50	0.14	4.8	0.01	0.38	0.61	0.02
	bands, spotted dol tuff. Frags 1	- 5 cm. Dol as porphyrobl 1-3 mm up to		28571	82.0	83.7	1.7	1.70	0.35	1.2	0.01	0.06	0.01	0.02
	20% in places.Sulphides as ban	nds 5 - 20% and frags of NSS,		28572	83.7	85.6	1.9	1.90	0.36	1.2	0.01	0.05	0.01	0.03
	mainly fg dk brown Py.			28573	85.6	87.7	1.1	1.10	0.12	5.0	0.03	0.37	0.59	0.22

85.6 - 87.7	Graphitic chert - black, sl brecciated. Py as frags and diss 5%.	28574	87.7	89.4	1.7	1.70	0.49	3.5	0.05	0.24	0.31	0.99
87.7 - 93.5	Chert - grey sl creamy sections, lams @ 90 deg., fract and brecc.	28575	89.4	90.0	1.6	1.60	0.98	16.4	0.19	1.37	0.64	0.86
	5-20% sulphides. 1-2 cm bands SS. 10 cm SSPy, sl Pb,Zn @ 88.2-88.3	28576	90.0	91.2	1.2	1.20	0.40	2.7	0.01	0.12	0.19	0.54
	at 90 deg. Hetro breccia 91.7-92.7. Flt zn (80deg) 92.5-93.6.	28577	91.2	93.5	2.3	2.30	0.31	2.1	0.01	0.06	0.14	0.52
93.5 - 101.2	Chert - ser and cream color.Less sulphides (1%). 96.6-99.0 has 0.8m											
	core in fault zone (mud, gouge, chert frags) @ 70-80 deg 2.4 m core loss											
	in flt zone 96.5 - 101.2. all in cream color chert.											
101.2 - 106.2	Hetro breccia. Grey/black chert, chl black arg.,silicified with many qtz strs	28578	101.2	103.6	2.4	2.36	0.48	6.2	0.04	0.51	0.89	0.61
	1-5 cm @80 deg. 5-20% sulphides, pyrite mainly, fault repeat of previous	28579	103.6	104.0	0.4	0.39	5.70	16.8	0.18	2.85	5.75	15.50
	section. 30 cm NSS 80% Py,1% Pb,Zn, @ 103.6-103.9.Core loss .	28580	104.0	106.2	2.2	2.17	1.53	6.7	0.05	0.32	0.61	2.35
	0.5 m in box 104.5-105.8	28581	106.2	109.6	3.4	3.35	0.27	4.0	0.02	0.05	0.06	0.05
106.2 - 111.3	Chert - grey. Mixed with ser cream chert. 1-5% sulphides. Flt zn 106.7-106.9, 108.1-108.6 (80deg).	28582	109.6	111.8	2.2	2.17	0.22	1.7	0.01	0.05	0.04	0.06

DRILL HOLE RECORD

									HOL	E #	05	<u>- 12</u>
COMPANY PROJECT	Bronx Ventures Inc Extra High								SHEET	Γ#	2 of	2
INCOLOT												
			INTER		CORE	TRUE	AU	AG	CU	PB	ZN	AS
INTERVAL		SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m		#	m	m	m	m	BOLD ICP	ppm PRINT- /	ppm ASSAY,	ppm STAND	ppm ARD PRI	ppm NT-
111.3 - 117.4	Hetro breccia or chert breccia. Dk grey black chert mixed with pale	28583	111.8	113.4	1.6	1.58	0.42	1.8	0.01	0.02	0.36	0.32
	grey chert with 5-10% ser. Sil or qtz frags, 80 deg banding.	28584	113.4	116.3	2.9	2.86	0.36	2.1	0.02	0.14	0.19	0.70
	A little black cherty arg, chl 50% overall. 5mm - 10 cm bands NSS	28585	116.3	117.4	1.1	1.08	0.57	4.0	0.05	0.27	0.51	1.63
	80% Py, 10% Cu?, sl Pb,Zn from111.8-111.9,113.4, 113.5, 114.6,	28586	117.4	118.6	1.2	1.18	0.22	3.5	0.06	0.13	0.22	0.31
	117.2-117.4. This is a well mneralized chert to hetro breccia. Py is both											
	fg and mg porphyrobl and euhedral, - looks like crushed veinlets in places.											
	Euhedral As 1-5%, from 117.2 - 117.4. Flts 113.0 @ 45deg (2cm),											
	117.4 - 118.3 zone of crushing and faulting incl SS frags. 113.0-113.2											
	has 5% spotted stringery dol porphyrobl in chl arg.											
117.4 - 127.0	Fault zone with a mixture of all rock typesgrey chert, black graph chert,											
	mg tuff, yellow ser chert, chl arg, - 0.5 - 1m blocks-often lam $@$ 80 deg											
	not rotated. Flts 5-15 cm @ 45 - 80 deg. 121.3 - 123.3 has porphyrobl											
	dol and qtz frags, some 5mm cubic xtals?? in black chl arg. Sections 5 - 10% Py. Strong flt 126-127 -mud gouge @ 60 deg. Py looks	28587	123.2	124.0	0.8	0.79	0.10	1.0	0.01	0.02	0.04	0.01
	dead.											
127.0 - 131.0	Py siltite or mudstone. 10% fg brown py as wisps and bands. This is	28588	127.1	130.2	3.1	3.05	0.04	0.4	0.01	0.01	0.01	0.01
	almost a muddy tuff. Py in lams and 1-2 cm sections NSS. Vv fg py. Slump structures evident.											
131.0 - 135.2	Zone of faulting again-everything and now incl py siltite. Strong fault											

	134-135.3 grey mud @ 60 deg. Dol spotted chl arg again @ 131.4- 131.6											
	like earlier in hole.											
135.2 - 137.5	Chl muddy tuff. Grey tuff mixed with black chl arg and black											
	graph chert. Many faults every 1-2 m @ 80 deg.											
137.5 - 139.4	Arg-black chl with 10 - 60% py. No banding. 5cm barren qtz vein @ 139.3.	28589	137.5	139.1	1.6	1.58	<0.03	3.0	0.04	0.02	0.04	0.01
139.4 - 143.8	Chert - black, graph. 1% vv fg py. Few dol strs and porphyrobl.											
	Black graph flt zn 143.8-144.2											
143.8 - 145.4	Arg-black banded @ 60 deg.											
EOH												

DRILL H	OLE RECORI)												HOL	.E #	05	- <u>13</u>
			CC	OR	DS			TEST									
COMPANY PROJECT	Bronx Ventures Inc Extra High	N	<u>GRID</u> 90+52	N	<u>GPS</u>	COLLAR	<u>DIP</u> -45	<u>BRG</u> 225	<u>TYPE</u>	CORE SIZ RECOVE		NQ 98%		SHEE		1 of	2
CLAIM / TENUR	E # 509949	w	0+50	Е		87.5m	35		acid	STARTE)	Nov. 2	1	DEPT		89.7 J.W.	
		ELE BR(EV 1443 G 225							COMPLE	TED	Nov. 2	1	LOGG	ED BY	MURTO	N
								INTERV	AL m	CORE	TRUE	AU	AG	CU	PB	ZN	AS
INTERVAL							SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m							#	m	m	m	m	BOLD ICP	ppm PRINT-	ppm ASSAY,	ppm , STAND	ppm ARD PRI	ppm NT-
0 - 6.5 6.5 - 46.7	Casing Pyroclastic- sections fg - mg stretched frags incl SS py. 85 deg lam buff. 10 cm qtz / dol vein with 5-11 with few 1-2 mm angular sul to SS 70% Py,10% Zn,0.5% Pb, 5' Where did this come from? I pyrocl unit? The following 15-20 cm frags all in v fg bleached ser? tuff. (mud) 20 cm core loss,25.0- 28.5. @ 90 deg. End of buff ank/	s in pla 0% py phide % qtz. s there n conta Flt zr 25.2 @	aces. Ank / se , sl Pb,Zn, @ clasts. 16.1- Minor flts bo e an SS zone ains 3-5 mm a a 19.3-19.6 (8 9 70 deg,26.0	er alt bu 7.0 in f 16.3 is 2 unding f lurking angular 0deg), 2-26.1, 2	ff - yellow g bleached s 20 cm NSS this zone. in this sulphide 20.7-22.2 26.5, 28.3-	er tuff	28590 28591 28592 28593	6.7 15.0 16.1 16.3	7.5 16.1 16.3 16.9	0.8 1.1 0.2 0.6	0.80 1.10 0.20 0.60	0.03 <0.03 0.09 <0.03	0.2 0.2 1.4 0.2	0.01 0.01 0.02 0.01	0.01 0.01 <0.01 0.01	0.01 0.01 <0.01 0.01	60 50 0.03 60
	alt, v sl ank alt on fine 1mm lam	s. 1-3	3 cm qtz/dol s	trs and	veins @ 80-9	90 deg											
46.7 - 78.0	with1-5% py from 34.0-38.5. Flt 44.6?. Flt zn 46.4-46.7 Hetro breccia or Lap tuff. Si dol	@90 d	eg.														

ser (10%), frags stretched 2mm x 2cm. Py 1-5% on lams and as frags.										
1-2 m intervals mg dk grey tuff. Everything has 10% chl alt. Few py siltite frags and layers starting @ 58.0. From 57.8-65.4 the	28594	57.8	59.3	1.5	1.50	<0.03	0.3	0.01	0.01	0.01
sulphide content starting to increase to 5-10% py diss in 10-50 cm muddy tuff frags. 1-3 mm wispy py on lams. 5 cm NSS Py @ 58.1-	28595	59.3	61.1	1.8	1.80	0.05	0.2	0.01	0.01	0.01
like a shattered qtz / py vein. Few 1-5 cm buff chert sections 63-	28596	61.1	63.4	2.3	2.30	<0.03	0.3	0.01	0.01	0.01
65.4. From 65 on continues as mg chl muddy tuff. Few 5-10 cm	28597	63.4	64.7	1.3	1.30	0.10	0.5	0.01	0.01	0.01
sections cg	28598	64.7	65.4	0.7	0.70	<0.03	0.2	0.01	0.01	0.01
pyroclast or lapilli tuff. Frags to 2 cm-all mixed tuff. A little dol alt, silicified with a few grey cherty sections starting from 67. 10 cm NSS										
Py with qtz, shattered @ 63.8. The remainder of this section after sample # 28598 should run about the same. Similar mineralization. Barren 4 cm qtz vein @										

COMPANY PROJECT	Bronx Ventures Inc Extra High								HOL SHEET		05 - 2 of	<u>- 13</u> 2
INTERVAL m		SAMPLE #	INTER FROM m	VAL m TO m	CORE length m	TRUE width m	AU g/t	AG g/t ppm	CU % ppm	РВ % ppm	ZN %	AS % ppm

78.0 - 89.7 Gradual change to Chert-grey/ chl arg, dol mg grey tuff, qtz/dol frags 1-3 mm. Becoming very broken and faulted 83 on. 1 m gouge zones with all rock types in them. 2 m buff-pale grey ser chert with 1mm - 2 cm sulphide (py) frags 86.0-87.5. Flt zn 89.2 -89.7. Few sections with diss. py in frags and strs up to 1 cm.

DRILL H	IOLE RECORD											HOL	.E #	05	- 14
COMPANY PROJECT	Bronx Ventures Inc Extra High	CC <u>GRID</u> N 91+74	O ORDS <u>GPS</u> N	COLLAR	<u>DIP</u> -45	TEST <u>BRG</u> 218	<u>TYPE</u>	CORE S		NQ 98%		SHEE		1 of	
CLAIM / TENU	U	W 0+64 ELEV 1427 BRG 218	E	49.4m	-41	_	acid	START COMPL		Nov. 2 Nov. 2		TOTA DEPTI LOGG	_	49.4 J.W.MU	JRTON
						INTER	VAL m	CORE	TRUE	AU	AG	CU	РВ	ZN	AS
INTERVAL m					SAMPLE #	FROM m	TO m	length m	width m	g/t BOLD ICP	g/t ppm PRINT-	% ^{ppm} ASSAY,	% ppm STAND	ppm ARD PRII	% ppm NT-
0 - 6.5	Casing														
6.5 - 10.2	Hetrolithic breccia, grey 0.5-1cm	chert frags,white qtz f	rags to 2cm,mg		27246	6.5	8.2	1.7	1.7	0.04	0.3	0.01	0.01	0.01	0.01
	tuff frags and blocks to 10 cm, 1 contorted qtz and py @ 7-8,. At	•			27247	8.2	10.2	2.0	2.0	0.03	0.3	0.01	0.01	0.01	0.01
	qtz has been shattered and heal	ed with py, Flt @ 9.1	@ 80 deg on .												
	lower edge of this frag. Core los														
10.2 - 21.0	All broken and oxidized. 6.5-8.2 Tuff - mg grey. The change fron														
10.2 - 21.0	Tuff frags 0.5 - 2mm. SI lams @	•													
	and 17.7 @ 80 deg (1-2 cm).		2 3,												
21.0 - 25.3	Hetro breccia- sections mg tuff to	o 1 m, grey chert frags	to 5 cm, py 1- 5%.												
	A little py siltite or arg starting or	n fine lams. 1-3 cm gre	ey qtz strs & veinlets		27248	23.7	25.3	1.6	1.6	0.05	0.3	0.01	0.02	0.01	0.06
25.3 - 28.3	Arg fg or mudstone?, py siltite, la	•			27249	25.3	26.8	1.5	1.5	0.12	0.2	0.01	0.01	0.01	0.34
	deg in and through lams. Bands	of 20% v fg Py. Hetro	breccia 28-29.3, .		27250	26.8	28.3	1.5	1.5	0.45	2.4	0.01	0.08	0.15	0.53
	all rock types and 5-10% Py.	.			28551	28.3	29.9	1.6	1.6	0.29	3.5	0.01	0.05	0.02	0.03
28.3 - 29.9	Chert - grey and cream. Sericitic		0		28552	29.9 20.6	30.6	0.7	0.7	4.85 5.05	61.2 30.9	0.43	3.74 1.24	4.34 1.63	0.50
	3 cm NSS Py @ 28.6-all contact				28553	30.6	31.5	0.9	0.9			0.19			0.13
29.9 - 31.3	Py siltite, chl arg.,v fg tuff beds,	10% by NSS in places	CC 20 2 20 E		28554	31.5	32.3	0.8	0.8	0.28	1.5	0.01	0.05	0.06	0.03

	This flt moved the SS - frags in flt.	28556	35.8	38.0	2.2	2.2	<0.03	0.2	0.01	0.01	0.01	0.02
31.3 - 35.8	Chl arg-black / py siltite with dol porphyrobl to 1 cm. 15 m sections 80%	28557	38.0	39.5	1.5	1.5	<0.03	0.2	0.01	0.01	0.01	0.01
	dol as porphyrobl and contorted strs. Flt zn 32.0 - 32.6, 33.2 - 33.6,	28558	39.5	41.8	2.3	2.3	<0.03	0.2	0.01	0.01	0.01	0.01
	35.4 - 35.8. 1.5m core loss @+/- 35.5.											
35.8 - 43.9	Py siltite / white spotted fg chl tuff. White spots are dol? frags 1-3mm.											
	Flt 38.6 @ 80 deg (5cm), 42.4 @ 45 deg (10cm),, 43.9?(a little ground core).											
43.9 - 49.4	Hetro breccia -fg to mg grey tuff, wacke, chl arg, a little py black arg,											
	Flt zn 43.9-44.2 @ 80 deg, 44.6 - 45.1 mud, 49.1 - 49.4.											

DRILL	HOLE RECOR	D												HOI	LE #	05	<u>5 - 15</u>
COMPANY PROJECT CLAIM / TEN	Bronx Ventures Inc Extra High URE # 509949	N W	CO <u>GRID</u> 91+74 0+64		OS <u>GPS</u>	COLLAR 69.2m	<u>DIP</u> -75 -64	TEST <u>BRG</u> 218	<u>TYPE</u> acid	CORE S RECOV	ERY	NQ 100% Nov. 2	2	SHEE TOTA DEPT LOGG	NL "H	1 of 69.2 J.W.	1
		ELE\ BRG								COMPL	ETED	Nov. 2	2	BY	,ED	J.W. MURT(ON
								INTER	/AL m	CORE	TRUE	AU	AG	CU	PB	ZN	AS
INTERVAL							SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m							#	m	m	m	m	BOLD ICP	ppm PRINT-	ppm ASSAY	ppm 7, STANI	ppm DARD PF	ppm RINT-
0 - 6.5	Casing																
6.5 - 20.2	Pyroclastic-fg to mg dk grey w SI lam @ 70 deg. About 5% cl Flts @ 9.9 and 10.2 @ 60 deg	hl. Incre	asing to 10	-15% fro	m 15 - 23.	s on											
	lams. 2-4 cm dirty grey barrer Becoming sl dol with 2 - 4 cm qtz vein? (zone) with 5 - 10% Pb,Zn.	qtz /dol	strs 17.4 - 2		l a 10 cm		28559	19.0	20.2	1.2	1.13	0.10	0.9	0.02	0.06	0.07	0.09
20.2 - 29.5	Tuff - mg- It to dk grey section wisps and strs. From 26.6 on 27.2																
	at 60 deg (10cm), mixed with t Hetro breccia 1-10 cm frags o			rey cher	t.Vaque		28560	27.6	29.5	1.9	1.79	<0.03	0.2	0.01	0.01	0.01	0.01
29.5 - 37.1	fol				0		28561	29.5	30.3	0.8	0.75	0.06	0.3	0.01	0.01	0.01	0.01
	at 70 deg. Scattered strs and all in fg tuff. 5-10% diss euher NSS						28562	30.3	31.8	1.5	1.41 1.41	<0.03 <0.03	0.2	0.01	0.01	0.01	0.01
		2 2 2 0	25 / 25 6	25 9 26	9 26 0		28563 28564	31.8 33.3	33.3 34.8	1.5 1.5	1.41 1.41	<0.03 0.06	0.2 0.3	0.01 0.01	0.01 0.04	0.01 0.02	0.02 0.06
	30% fg Py, 0.5% Pb,Zn, at 33. Flt 35-35.2 broken.	.2-00.0,	55.4-55.0,	55.0, 30	.0 - 30.9.		28565	33.3 34.8	34.8 35.7	0.9	0.85	0.00	0.3	0.01	0.04	0.02	0.06
37.1 - 38.0	SS - vv fg Py(90%),10% Zn?,	sl Ph C	u verv slΔa	s Vaque	handing		28566	34.8 35.7	37.1	0.9 1.4	1.32	0.10	0.3	0.01	0.01	0.02	0.17
0.0	at 70 deg. 3 cm flt @ 38.0 cm		-	. vaguo	Janung		28567	37.1	38.0	0.9	0.85	12.20	59.1	0.61	4.24	5.48	7.15

38.0 - 40.7	Tuff, It grey, mg, ser, fits throughout, sulphide bands and frags,	28568	38.0	40.7	2.7	2.54	0.07	0.2	0.01	0.01	0.01	0.02
40.7 - 54.6	Py siltite. Dk brown - dk grey. 1-5% diss Py. Occasional 1 mm strs	28569	40.7	42.2	1.5	1.41	0.07	0.3	0.01	0.01	0.01	0.01
	wispy Py. Few pale grey 1 - 3 cm fg wacke? bands starting at 50.0. 2 - 6 per m. Sample 28569 is representative of whole section											
	for values.											
54.6 - 55.0	Wacke / chert pebble cong!. Rounded (milled?) 0.5-1 cm chert frags, few											
	angular ser tuff frags. Gradual change in and out - no flts.											
55.0 - 68.1	Py siltite as in 40.7-54.6. Few 1 - 2 cm flts @ 70 deg. 10 - 15 cm											
	wacke sections (1 to 2 / m), all gradational. 63.1 - 4 cm NSS Py (crushed vein)?, no other minerals, and 1 - 2cm NSS @ 63.7, and 67.0.											
68.1 - 69.2	Flt Zone. Wacke and grey chert frags and a little py siltite.											
EOH												

DRILL H)												HOL	.E #	05	- 16
			C	O OR	DS			TEST									
COMPANY	Bronx Ventures Inc		GRID		<u>GPS</u>		DIP	BRG	TYPE	CORES	SIZE	NQ		SHEE	Т#	1 of	1
PROJECT	Extra High	Ν	90+77	Ν		COLLAR	-47	222		RECOV	ERY	99%					
CLAIM / TENU	RE # 509949	w	0+70	Е		69m	-42	est	acid	START	ED	Nov. 22	2	TOTA DEPT		69.2 J.W.	
		ELEV BRG	1442 222							COMPL	ETED	Nov. 23	3	LOGG	ED BY	MURTO	N
								INTER	RVAL m	CORE	TRUE	AU	AG	CU	PB	ZN	AS
INTERVAL							SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m							#	m	m	m	m	BOLD ICP	ppm PRINT-	ppm ASSAY,	ppm STAND	ppm DARD PRI	ppm NT-
0 - 6.5	Casing																
6.5 - 33.5	Pyroclastic-fg to mg dk grey wi	th It grey	slightly stre	tched cla	asts												
	incl sulphide frags. SI lam @ 9	0 deg. 1	- 3 m mg tuf	f section	s.												
	sl - med ank / ser alt, < 0.5% s	sulphides	. 2 cm ban	d qtz and	d NSS												
	Py,Pb,Zn @ 15.7 @ 90 deg. Is	s this the	one in hole	05-13?													
	Becoming more qtz / dol rich w	vith veinle	ets and frags	from 16	6 - 19												
	with 10-20% qtz, and 23.0 - 25						28730	33.5	35.0	1.5	1.50	0.09	1.4	0.01	0.01	0.01	0.01
	Flts throughout @ 90 deg,10 c						28731	35.0	36.5	1.5	1.50	0.08	0.9	0.01	0.01	0.01	0.01
33.5 - 42.0	Pyroclastic same as above but		•	,			28732	36.5	38.0	1.5	1.50	0.04	0.1	0.01	0.01	0.01	0.01
	Becoming siliceous 36 - 38.0 (,				28733	38.0	40.0	2.0	2.00	< 0.03	0.4	0.01	0.01	0.01	0.01
40.0 54.0	mg grey tuff grading in and out				0		28734	40.0	42.6	2.6	2.60	<0.03 <0.03	0.3	0.01	0.01	0.01	0.01
42.0 - 51.2	Tuff, muddy chl mg. 1 - 2mm p	0,					28735	42.6	43.6	1.0	1.00	<0.03 <0.03	0.4	0.01	0.01	0.01	0.02
	diss euhedral and fg strs. 15 on edge of and inside flt. Mino						28736 28737	43.6 45.0	45.0 46.3	1.4 1.3	1.40 1.30	<0.03 <0.03	0.3 0.4	0.01 0.01	0.01 0.01	0.01 0.01	0.01 0.01
51.2 - 54.9	Tuff - It grey, sil, sections pyrod			•	00	•	28738	45.0 46.3	40.3	1.5 1.6	1.60	0.07	0.4 1.0	0.01	0.01	0.01	0.01
01.2 - 01.0	1 - 2 cm stretched @ 90 deg.	•			0		28739	40.3	49.4	1.0	1.50	0.04	0.4	0.01	0.04	0.04	0.04
	at 90 deg. Minor flts 54.8, 54.		•				28740	49.4	50.9	1.5	1.50	< 0.03	0.3	0.01	0.01	0.01	0.01
54.9 - 63.0	Cherty tuff. Could be silicified		U	des (Pv)	. Grey chert		28741	50.9	51.7	0.8	0.80	0.04	0.4	0.01	0.01	0.01	0.02

	2 cm NSS @ 60.0, 1 - 3 cm bands NSS fg brown Py from 61.1 - 63.0	28743	53.6	54.9	1.3	1.30	0.04	0.4	0.01	0.01	0.01	0.01	
	interbedded with chert and tuff. +50% euhedral Py and < 1% Aspy.	28744	54.9	56.5	1.6	1.60	0.08	0.7	0.01	0.01	0.01	0.01	
	Gradual change, no flt into	28745	56.5	58.0	1.5	1.50	0.03	0.6	0.01	0.01	0.01	0.01	
63.0 - 64.3	Chert - grey / black to chert breccia. 4 cm NSS Py with 5% Pb,Zn @ 63.2.	28746	58.0	59.5	1.5	1.50	0.03	0.5	0.01	0.01	0.01	0.02	
	1 - 10% Py as frag in the NSS. Chert breccia has 0.5 - 1 cm stretched	28747	59.5	61.0	1.5	1.50	0.06	0.8	0.01	0.01	0.04	0.03	
	frags. Mineral dropping off after 63.4 to 1% Py. Strong flt @ 64.3.	28748	61.0	63.0	2.0	2.00	0.74	5.5	0.08	0.39	0.50	2.13	
64.3 - 68.6	Chert Breccia - grey black. Few rounded 1 cm frags. <1% Py.	28749	63.0	63.4	0.4	0.40	1.23	24.9	0.45	2.73	2.25	1.66	
	Flt Zn 68.2 - 68.6. Arg or mudstone. Flt zn 68.8 - 69.2. Small 1 - 2mm dol porphyrobl @	28750	63.4	64.5	1.1	1.10	0.06	0.7	0.01	0.02	0.03	0.04	
68.6 - 69.2	69. All broken. Brown, grey, black.												

DRILL	HOLE RECOR	D											HOL	.E #	05 ·	- 17
			co	ORDS			TEST									
COMPANY	Bronx Ventures Inc		GRID	<u>GPS</u>		DIP	BRG	TYPE	CORES	SIZE	NQ		SHEET	Г#	1 of	2
PROJECT	Extra High	Ν	90+77	Ν	COLLAR	-70	222		RECOV	ERY	100%		τοται			
CLAIM / TEN	URE # 509949	w	0+70	E	93.6m	-59		acid	STARTI	ED	Nov. 2	3	DEPTH	4	94.5 J.W.	
		ELEV BRG	1442 222						COMPL	ETED	Nov. 2	3	BY		MURT	ON
							INTER	VAL m	CORE	TRUE	AU	AG	CU	PB	ZN	AS
INTERVAL						SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m						#	m	m	m	m	BOLD	ppm PRINT-	ppm ASSAY,	ppm STANE	ppm DARD PF	ppm RINT-
0 - 6.5	Casing															
6.5 - 37.2	Lap tuff / pyroclastic. Fg gry t med (10%) ank/ser/dol alt on fit at 7.5 @ 60 deg 1 - 5% Py strs at 14.0. Ank alt gone by 15.0 grey. Fits 20.3, 20.5 - 20.8,(60 deg) 25.5 (70 deg), 35.7 - 37.2.	75 deg la througou , only se	ams and thi t. Few 1 - r. Lt - dk	roughout. Strong 2 cm qtz / dol	ags)											
37.2 - 45.3	Pyrocl but darker and more su	•	•		cherty.	28701	37.2	38.8	1.6	1.58	0.03	1.0	0.01	0.01	0.09	0.01
	tuff frags. 1 - 10% sulphides a	• •		()		28702	38.8	40.3	1.5	1.48	0.03	0.7	0.01	0.01	0.01	0.01
	with qtz. Stretched clasts, lam		0	,	20.4	28703	40.3	41.8	1.5	1.48	0.14	1.0	0.01	0.01	0.01	0.02
45.3 - 68.0	similar to main section of 05-1			•	-	28704 28705	41.8 43.3	43.3 45.5	1.5 2.2	1.48 2.17	0.12 0.14	0.9 2.0	0.01 0.05	0.01 0.06	0.01 0.16	0.02 0.08
45.3 - 68.0	Muddy tuff, mg and grey.mixe frags, sl lam @ 80 deg. Grade				nea	28705	43.3	45.5	2.2	2.17	0.14	2.0	0.05	0.06	0.16	0.08
	Py),	,														
		·	m above u	nit. 20 - 40% dk gr	ey chl.	28706	52.2	53.7	1.5	1.45	<0.03	0.4	0.01	0.01	0.01	0.02
	Py),	nange fro		0	ey chl.	28706 28707	52.2 53.7	53.7 55.2	1.5 1.5	1.45 1.45	<0.03 <0.03 0.07	0.4 0.5	0.01 0.01	0.01 0.01	0.01 0.01	0.02 0.02

	More sulphides,Py 10 - 20%, Last few m more pyrocl (70%) than tuff. Flt zone 67.4 - 68.0 @ 70	28710	58.2	59.7	1.5	1.45	0.04	1.2	0.01	0.01	0.01	0.05
	deg. Chert - black graphitic. Sections brecciated. Bedding? @ 70 deg.	28711	59.7	61.2	1.5	1.45	0.07	1.2	0.01	0.01	0.02	0.06
68.0 - 70.2	White	28712	61.2	62.7	1.5	1.45	0.10	0.9	0.01	0.02	0.02	0.11
	qtz frags 1mm - 2cm. 1 - 5% Py frags and strs. <1% Aspy. Gradual	28713	62.7	64.2	1.5	1.45	0.07	1.3	0.01	0.07	0.19	0.04
	change to	28714	64.2	65.7	1.5	1.45	0.04	0.7	0.01	0.02	0.02	0.01
70.2 - 79.2	Chert - grey / buff / sericitic. Few black graph bands @ 80 deg. Flts every metre. 1 - 5% Py. Mineralization increasing from 74 on (5 - 20%	28715	65.7	67.8	2.1	2.03	0.16	2.1	0.02	0.13	0.17	0.15
	Py). Rounded fg Py clasts in flts. A little gypsum (selenite?) @ 70.7, 1	28716	67.8	70.2	2.4	2.32	0.21	2.1	0.03	0.17	0.45	0.46
	cm crystals. 20 cm NSS @ 74.5 - 74.7 Py 50%, Pb,Zn 1%, in chert	28717	70.2	72.2	2.0	1.93	<0.03	0.6	0.01	0.02	0.01	0.03
	breccia.	28718	72.2	74.1	1.9	1.84	0.03	0.5	0.01	0.02	0.05	0.08
	More (4 cm) SS @ 77.2, 78.0, 78.4 80% Py, 5% Pb,Zn. Cu, As.	28719	74.1	75.6	1.5	1.45	1.38	13.8	0.19	1.45	1.52	4.64
	Gradual change to	28720	75.6	77.1	1.5	1.45	0.44	3.9	0.02	0.30	0.25	1.40

									HOL	_E #	05	- 17
COMPANY PROJECT	Bronx Ventures Inc Extra High								SHEE	Τ#	2 of	2
			INTER	VAL m	CORE	TRUE	AU	AG	CU	РВ	ZN	AS
INTERVAL		SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m		#	m	m	m	m	BOLD	ppm PRINT-	ppm ASSAY	ppm , STANE	ppm DARD PR	ppm INT-
79.2 - 84.2	Arg - chl, black. 10 - 20% dol / qtz veinlets and frags. Gradually mixing at 79.7 with wacke? breccia or hetro breccia. Frags 1mm - 2 cm incl	28721	77.1	78.5	1.4	1.3	0.66	2.8	0.01	0.18	0.69	2.04
	Py siltite, pale grey fg tuff, sulphide bands and 1-2 mm frags(5%),	28722	78.5	80.0	1.5	1.4	0.14			0.03	0.01	0.10
	veinlets	28723	80.0	81.5	1.5	1.4	<0.03			0.03	0.01	0.01
	to 1 cm. at approx 70 deg. Flt 84.2 @ 75 deg.	28724	81.5	83.0	1.5	1.4	0.11	3.3	0.03	0.42	0.55	0.03
84.2 - 88.0	Arg, chl 20%., fg siltite?, qtz dol frags to 1cm and strs (20-30%) from	28725	83.0	84.5	1.5	1.4	0.05	2.5	0.01	0.24	0.16	0.02
	84.2 - 86.5. Almost a breccia. 1 - 2 cm bands @ 70 deg NSS Py 50%,Pb,	28726	84.5	86.0	1.5	1.4	0.14	6.9	0.03	1.14	2.15	0.03
	Zn,As <1%.at 84.5,85.7, 85.8, 85.9, 86.4. Flt @ 88.0 @ 60 deg. SS Py 80%,Pb,Zn,As 1%. This is a dark brown	28727	86.0	88.0	2.0	1.9	5.15			1.41	1.85	2.45
88.0 - 89.8	pyritic	28728	88.0	89.8	1.8	1.7	5.88	65.8	0.41	6.75	8.74	3.32
	sulphide breccia recemented with Py. Open fractures 2 -4 mm.	28729	89.8	91.3	1.5	1.4	0.07	0.9	0.01	0.02	0.02	0.02
89.8 - 93.6	Flt zone - all rock types, black, grey, brown with sulphides in flt.											
936 - 945	Chert graphitic											

DRILL H	HOLE RECOI	RD												HOL	E #	05	- 18
			C	O ORI	DS			TEST									
COMPANY PROJECT	Bronx Ventures Inc Extra High	N	<u>GRID</u> 90+77	N	<u>GPS</u>	COLLAR	<u>DIP</u> -90	BRG	<u>TYPE</u>	CORE S RECOV		NQ 100%		SHEE		1 of	2
CLAIM / TENU	JRE # 509949	W ELE ^V BRG		E					acid	STARTI COMPL		Nov. 2 Nov. 2		TOTA DEPT LOGG BY	н	133.2 J.W. MURT(
									VAL m	CORE	TRUE	AU	AG	CU	РВ	ZN	AS
INTERVAL							SAMPLE	FROM	TO	length	width	q/t	g/t	%	%	%	%
m							#	m	m	m	m	U	ppm	ppm	ppm	ppm DARD PI	ppm
0 - 6.5	Casing											101					
6.5 - 26.0	Pyroclastic / lap tuff like 05 Qtz/dol frags (5%). Py incl with					js Py.	28751	11.0	13.4	2.4	1.70	<0.03	0.4	0.01	0.01	0.01	0.01
	more qtz veining parallel to		•														
26.0 - 45.4	Flts 14 @ 45 deg, 14.6 @ Cherty tuff incl fg pale grey no more ank / ser. 1% diss P	tuff with	dark chl b	ands. 5 - 1	10% chl,	10 cm.											
	crenulations	y.one wi	th grey sinc	a (1078) a	and												
	on lams @ 60 deg. 10 cm	core los	s in fault @	32.0. 20) cm flt @ .												
	37.0 @ 70 deg. Chl increa					and											
	veinlets. Also sl increase ir interval 35.8 - 38.7 might a the	issay as	high as the	best from	n 05-17,												
	remainder is poor looking. and	Flt zn 38	8.7 - 39.5 v	ith grey cl	hert frags												
45.4 - 52.0	all above units., 45.2 - 45.4 Tuff mg It grey. No sulphid deg.			ol frags. F	îlt 52 @ 45												

Cherty tuff.Breccia sections, same as at 26-45.4. Grey cherty clasts

52.0 - 96.5

1 -3 cm. Weak banding @ 60 deg. Qtz / dol rich veinlets and frags	28752	66.6	68.1	1.5	1.06	0.03	0.4	0.01	0.01	0.01	0.02	
from 56.8.1 - 5% Py as wisps and frags to 3mm. Flt 57.2 then becoming more cg (chert frags to 1-2 cm). 5 cm 20% lt + dk	28753	68.1	70.0	1.9	1.34	0.08	0.5	0.01	0.01	0.01	0.02	
brown Py sl Zn?, fg and as strs @ 61.2 From 66.5 - 76 gradual change to	28754	70.0	71.5	1.5	1.06	<0.03	0.2	0.01	0.01	0.01	0.01	
more	28755	71.5	73.0	1.5	1.06	0.03	0.4	0.01	0.01	0.01	0.03	
cg_chert / tuff breccia, sl - med (10-30%) buff ser with qtz vein frags and strs (30 - 70% silica) @66.5. Qtz veins crushed and healed with	28756	73.0	74.5	1.5	1.06	0.03	0.3	0.01	0.01	0.01	0.03	
qtz @	28757	74.5	76.0	1.5	1.06	0.06	0.5	0.01	0.01	0.01	0.03	
69.0, 70.0, and 74.0(nearly barren). 10 - 20% Py, sl Zn,Pb? as strs	28758	76.0	77.5	1.5	1.06	0.03	0.3	0.01	0.01	0.01	0.01	
from 66.6 - 70.0, 77.5 - 77.8. From 76.0 on, chl 20 - 30% in tuff intervals, sulphides +/- 5%. 5 - 10 cm sections dusty brown Py siltite mixed	28759	77.5	79.0	1.5	1.06	0.11	0.7	0.01	0.01	0.01	0.02	
with	28760	79.0	80.5	1.5	1.06	<0.03	0.2	0.01	0.01	0.01	0.01	
chert and tuff. 45 deg lams in places. Sulphide content dropping off to 1%												

from 78 on. Flts 92.0 and 93.0 @ 40 deg, 96.5 (5cm) @ 80 deg.

DRILL HOLE RECORD

COMPANY PROJECT	Bronx Ventures Inc Extra High								HOL SHEET		05 2 o	<mark>- 18</mark> f 2
			INTER	VAL m	CORE	TRUE	AU	AG	CU	PB	ZN	AS
INTERVAL		SAMPLE	FROM	то	length	width	g/t	g/t	%	%	%	%
m		#	m	m	m	m	BOLD ICP	ppm PRINT-	ppm ASSAY,	ppm STAND	ppm ARD PR	ppm RINT-
96.5 - 99.1	Repeat of better mineralized section from above fault. Hetro breccia?											
	chert frags chl black arg, 10% brown Py siltite,frags dol to 5 mm and	28761	96.5	98.0	1.5	1.06	0.07	1.3	0.01	0.09	0.16	0.07
	strs qtz / dol 1 - 3mm random distribution.A little (<1%) Pb,Zn starting in	28762	98.0	99.1	1.1	0.78	0.27	6.3	0.06	0.45	0.68	0.37
	last 1 m. Gradual change to	28763	99.1	100.6	1.5	1.06	0.19	3.7	0.04	0.31	0.38	0.47
99.1 - 100.7	Chert, black, grey, graphitic breccia. 5 - 30% sulphides- Py, 1% Pb,Zn.	28764	100.6	102.1	1.5	1.06	0.07	0.5	0.01	0.02	0.02	0.15
	Randon (20%) 1 - 2cm qtz strs. Sharp contact with-	28765	102.1	103.6	1.5	1.06	0.20	2.5	0.02	0.19	0.15	0.61
100.7 - 105.7	Chert, chert breccia- buff(ser), grey, a little black. Bedding @ 45 deg.	28766	103.6	104.2	0.6	0.42	0.59	4.1	0.05	0.23	0.40	2.00
	1 - 5 % Py as frags and 1mm strs. 3 cm NSS Py, v sl Pb,Zn @ 104.0. Sharp 1mm contact with-	28767 28768	104.2 105.7	105.7 107.3	1.5	1.06 1.13	0.28 0.14	1.7 0.8	0.02	0.12 0.05	0.12	0.70 0.09
105.7 - 113.4		28768	105.7	107.3	1.6 1.6	1.13	0.14	0.8 4.7	0.01 0.04	0.05	0.07 0.13	0.09
105.7 - 115.4	Hetro breccia? - mixed dk grey mg tuff, chert frags,siltite bands, chl arg, 108.9 - 110.8 NSS to SS 80% Py,1- 5% Pb,Zn,Cu, sl 1-3mm banding.	28769	107.3	108.9	1.0	1.13	3.39	4.7 23.6	0.04 0.42	0.09 3.66	3.48	0.37 0.32
	Dol porphyrobl (1-5mm) starting @ 110.6 Fits 113.4 @ 80 deg.	28770	100.9	111.9	1.5	1.06	1.62	23.0 5.6	0.42	0.39	0.40	0.07
113.4 - 118.0	Chert breccia - buff sericitic alt, few Py siltite and few sulphide frags. All broken - almost a fault zone. Very little mineral (<1%), other than a	28772	111.9	113.4	1.5	1.06	0.51	5.6 2.9	0.08	0.39	0.40	0.07

few 1 - 2cm frags in flts.

118.0 - 121.5 Fault zone - grey mud.

121.5 - 133.2Breccia - wacke, chl arg frags. 5% Py in arg. Faults throughout @ 80 deg.Few 2 - 5 mm dol porphyrobl 132.5 - 133.0.

APPENDIX 3

DIAMOND DRILL HOLE ASSAY AVERAGES & AVERAGE VALUES

	AVE	RAGE V	ALUES						HOLE SHEET #		05 - 01 2 of 2					
	INTERV	/AL m	CORE	TRUE	AU		AG		CU		PB		ZN		AS	-
SAMPLE	FROM	то	length	width	g/t		g/t		%		%		%		%	
#	m	m	m	m			ppm		ppm		ppm		ppm		ppm	
29109	105.8	107.7	1.9	1.87	1.34	2.51	13.5	25.2	0.16	0.30	1.16	2.17	2.45	4.58	5.31	9.9
29110	107.7	108.9	1.2	1.18	1.10	1.30	23.2	27.4	0.39	0.46	1.78	2.10	2.24	2.64	3.57	4.2
29111	108.9	110.0	1.1	1.08	0.46	0.50	43.7	47.2	0.21	0.23	2.75	2.97	3.35	3.62	0.14	0.1
29112	110.0	111.0	1.0	0.98	4.49	4.40	114.0	111.7	0.69	0.68	8.26	8.09	9.17	8.99	3.52	3.4
29113	111.0	112.0	1.0	0.98	8.96	8.78	173.0	169.5	0.70	0.69	9.94	9.74	10.10	9.90	3.41	3.3
29114	112.0	113.0	1.0	0.98	7.79	7.63	150.0	147.0	0.72	0.71	9.42	9.23	10.30	10.09	3.10	3.0
29115	113.0	114.5	1.5	1.48	8.23	12.18	171.0	253.1	0.56	0.83	8.74	12.94	10.50	15.54	4.17	6.1
29116	114.5	115.1	0.6	0.59	3.15	1.86	103.0	60.8	0.26	0.15	4.11	2.42	5.64	3.33	2.69	1.5
	105.8	115.1		9.14		39.15		841.93		4.04		49.67		58.69		31.8
					4.28	4.28	92.1	92.11	0.44	0.44	5.43	5.43	6.42	6.42	3.49	3.4
ASSUMED	METAL	VALUE	US \$/Oz, Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		59.27		22.83		15.40		48.87		109.14			
TOTAL GROS	S METAL V	ALUE US \$			255.51											
EQUIVALENT	GOLD GR	ADE G/T		9.14 metres	18.45											
	110.0	115.1		5.01		34.85		742.1		3.05		42.43		47.85		17.5
					6.96	6.96	148.1	148.13	0.61	0.61	8.47	8.47	9.55	9.55	3.51	3.5
ASSUMED	METAL	VALUE	US \$/Oz, Lb.		475		8.50		1.75		0.45		0.85			
GROSS TOTAL GROS	METAL	VALUE	US \$		96.38 393.02		36.71		21.35		76.23		162.35			
EQUIVALENT	GOLD GR	ADE G/T		5.01 metres	28.38											

	AVE	RAGE VA	LUES						HOLE SHEET		05 - 0 2 of 2	<u>)2</u>				
SAMPLE	INTERV FROM	/AL m TO	CORE length	TRUE width	AU g/t		AG g/t		CU %		PB %		ZN %		AS %	
#	m	m	m	m			ppm		ppm		ppm		ppm		ppm]
29119	114.2	115.3	1.1	1.06	2.59	2.75	35.5	37.63	0.57	0.60	3.24	3.43	5.05	5.35	0.73	0.7
29120	115.3	117.5	2.2	2.13	0.86	1.83	8.2	17.47	0.13	0.28	0.82	1.75	0.94	2.00	2.66	5.6
29121	117.5	117.7	0.2	0.19	5.78	1.10	31.6	6.00	0.72	0.14	3.85	0.73	9.36	1.78	12.90	2.4
29122	117.7	119.1	1.4	1.35	1.72	2.32	27.4	36.99	0.54	0.73	1.69	2.28	3.72	5.02	4.03	5.4
	114.2	119.1		4.73		8.00		98.09		1.75		8.19		14.16		14.3
					1.69	1.69	20.74	20.74	0.37	0.37	1.73	1.73	2.99	2.99	3.03	3.0
ASSUMED	METAL	VALUE	US \$/Oz, Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		23.40		5.14		12.95		15.57		50.83			
TOTAL GRO	SS META	L VALUE US \$		4.73	107.89											
EQUIVALEN		GRADE G/T		4.73 metres	7.79											

	AVERAGE VALUES									HOLE # 05 - 03 SHEET # 2 of 2								
SAMPLE	INTERV FROM	AL m TO	CORE	TRUE	AU g/t		AG g/t		CU %		PB %		ZN %		AS %			
#	m	m	m	m	9/t		ppm		ppm		ppm		ppm		ppm			
29069	130.5	131.5	1.0	0.94	0.39	0.37	8.4	7.90	0.04	0.04	0.58	0.55	1.29	1.21	0.64	0.0		
29070	131.5	132.2	0.7	0.66	0.57	0.38	15.1	9.97	0.13	0.09	1.04	0.69	3.25	2.15	1.74	1.1		
29071	132.2	133.2	1.0	0.94	0.56	0.53	9.3	8.74	0.03	0.03	0.85	0.80	1.28	1.20	1.16	1.0		
				2.54		1.27		26.60		0.15		2.03		4.56		2.8		
	130.5	133.2		2.54	0.50		10.47		0.06		0.80		1.80		1.12			
ASSUMED	METAL	VALUE	US \$/Oz, Lb.		475		8.50		1.75		0.45		0.85					
GROSS	METAL	VALUE	US \$		6.92		2.60		2.09		7.20		30.53					
TOTAL GROSS METAL VALUE US \$				49.32														
EQUIVALENT GOLD GRADE - G/T			2.54metres	3.56														

	AVE	RAGE	VALUES						HOLE SHEET		05 - 1 of 1	<u>04</u>]
	INTERV	/AL m	CORE	TRUE	AU		AG		CU		РВ		ZN		AS]
SAMPLE	FROM	то	length	width	g/t		g/t		%		%		%		%	
#	m	m	m	m			ppm		ppm		ppm		ppm		ppm]
29123	22.4	23.6	1.2	1.20	0.35	0.42	5.5	6.6	0.09	0.11	0.27	0.32	0.62	0.74	0.79	0.95
29124	23.6	24.9	1.3	1.30	0.95	1.24	7.9	10.3	0.14	0.18	0.76	0.99	1.18	1.53	2.51	3.26
29125	24.9	26.1	1.2	1.20	9.23	11.08	96.2	115.4	0.52	0.62	6.65	7.98	8.35	10.02	0.50	0.60
29126	26.1	27.6	1.5	1.49	8.96	13.35	228.0	339.7	1.05	1.56	5.72	8.52	6.85	10.21	0.54	0.80
29127	27.6	28.6	1.0	1.00	6.09	6.09	133.0	133.0	0.65	0.65	3.03	3.03	4.24	4.24	0.25	0.25
29128	28.6	30.2	1.6	1.59	13.5	21.47	168.0	267.1	0.92	1.46	4.31	6.85	5.22	8.30	1.92	3.05
				6.58		53.22		865.55		4.48		27.37		34.30		7.97
	23.6	30.2		6.58	8.09		131.54		0.68		4.16		5.21		1.21	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		112.00		32.60		23.85		37.44		88.62			
TOTAL GROSS METAL VALUE US \$					294.50											
EQUIVALENT GOLD GRADE G/T			6.58metres	21.27												
				5.28		51.98		855.3		4.30		26.39		32.77		4.71
	24.9	30.2		5.28	9.84		161.98		0.81		5.00		6.21		0.89	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		136.34		40.14		28.51		44.98		105.50			
TOTAL GROSS METAL VALUE US \$					355.46											
EQUIVALENT GOLD GRADE				5.28metres	25.67											

	AVE	RAGE	VALUES						HOLE	E #	05 -	<u>05</u>				
									SHEET	#	1 of 2					
	INTERV	/AL m	CORE	TRUE	AU		AG		CU		PB		ZN		AS	
SAMPLE	FROM	то	length	width	g/t		g/t		%		%		%		%	
#	m	m	m	m			ppm		ppm		ppm		ppm		ppm	
29129	26.7	28.2	1.5	1.45	11.30	16.39	158.0	229.1	0.82	1.19	6.97	10.11	8.44	12.24	0.99	1.44
29120	28.2	29.6	1.4	1.35	9.96	13.45	149.0	201.2	0.62	0.84	7.29	9.84	9.50	12.83	0.67	0.90
29131	29.6	31.8	2.2	2.13	6.20	13.21	119.0	253.5	1.01	2.15	4.39	9.35	5.44	11.59	0.42	0.89
29132	31.8	32.8	1.0	0.97	3.99	3.89	89.4	87.1	0.50	0.49	3.77	3.67	4.56	4.44	0.26	0.25
29133	32.8	34.0	1.2	1.16	5.20	6.03	91.5	106.1	0.90	1.04	4.26	4.94	5.03	5.83	0.36	0.42
29134	34.0	35.6	1.6	1.55	8.76	13.58	129.0	200.0	1.02	1.58	3.84	5.95	4.05	6.28	0.49	0.76
29078	35.6	37.1	1.5	1.45	5.16	7.48	37.4	54.2	0.22	0.32	0.95	1.38	0.98	1.42	0.75	1.09
29079	37.1	38.9	1.8	1.74	2.73	4.75	7.5	13.1	0.02	0.03	0.26	0.45	0.15	0.26	0.76	1.32
				11.80		78.77		1144.2		7.64		45.69		54.89		7.07
	26.7	38.9		11.80	6.67		96.93		0.65		3.87		4.65		0.60	
ASSUMED	METAL	VALUE	U.S . \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		92.41		24.02		22.66		34.84		79.05			
TOTAL GRO	OSS META	L VALUE (JS \$		252.98											
EQUIVALEN	NT GOLD G	GRADE G/	т	11.8 metres	18.27											
	26.7	35.6		8.61		66.53		1076.89		7.29		43.86		53.20		4.66
				8.61	7.72		125.02		0.85		5.09		6.18		0.54	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		106.96		30.98		29.62		45.83		105.00			
TOTAL GRO	OSS META	L VALUE U			318.39											
EQUIVALEN			T	8.61 metres	22.99											
LQUIVALEN	GOLD	ADE G/	1	menes	22.33											

VAL m TO m 2 44.8 3 46.3 3 47.8 3 48.9 5 51.2	1.1	TRUE width m 1.13 1.06 1.06 0.78 1.63	AU g/t 2.86 6.76 6.93 11.10	3.23 7.17 7.35 8.66	AG g/t ppm 49.5 55.4 52.3 67.3	55.9 58.7 55.4	CU % ppm 0.63 0.77 0.50	0.71 0.82 0.53	PB % ppm 3.55 5.83 6.75	4.01 6.18 7.16	ZN % ppm 4.15 8.13 9.44	4.69 8.62 10.01	AS % ppm 0.61 2.45 1.41	
m 44.8 46.3 47.8 3 48.9	m 1.6 1.5 1.5 1.1	m 1.13 1.06 1.06 0.78	2.86 6.76 6.93	7.17 7.35	9pm 49.5 55.4 52.3	58.7 55.4	ppm 0.63 0.77	0.82	ppm 3.55 5.83	6.18	ppm 4.15 8.13	8.62	0.61 2.45	
2 44.8 46.3 47.8 47.8 48.9	1.6 1.5 1.5 1.1	1.13 1.06 1.06 0.78	6.76 6.93	7.17 7.35	49.5 55.4 52.3	58.7 55.4	0.63	0.82	3.55 5.83	6.18	4.15 8.13	8.62	0.61 2.45	
46.3 47.8 48.9	1.5 1.5 1.1	1.06 1.06 0.78	6.76 6.93	7.17 7.35	55.4 52.3	58.7 55.4	0.77	0.82	5.83	6.18	8.13	8.62	2.45	0. 2.
47.8 48.9	1.5 1.1	1.06 0.78	6.93	7.35	52.3	55.4								2.
48.9	1.1	0.78					0.50	0.53	6.75	7.16	9.44	10.01	1 4 1	
			11.10	8.66	673						÷		1.41	1.
51.2	2.3	1.62			07.5	52.5	0.53	0.41	6.05	4.72	9.05	7.06	0.53	0
		1.03	0.47	0.77	25.2	41.1	0.25	0.41	0.37	0.60	0.39	0.64	0.11	0.
52.8	1.6	1.13	2.67	3.02	37.4	42.3	0.31	0.35	1.58	1.79	2.54	2.87	0.26	0.
53.7	0.9	0.64	6.20	3.97	178.0	113.9	1.78	1.14	7.26	4.65	5.35	3.42	0.88	0.
54.4	0.7	0.49	24.70	12.10	158.0	77.4	1.45	0.71	6.37	3.12	1.06	0.52	0.79	0.
55.3	0.9	0.64	25.30	16.19	86.2	55.2	0.74	0.47	4.05	2.59	5.54	3.55	0.60	0.
56.9	1.6	1.13	11.80	13.33	92.7	104.8	0.58	0.66	6.06	6.85	7.65	8.64	2.14	2.
		9.69		75.78		657.2		6.21		41.66		50.01		9.
56.9		9.69	7.82		67.82		0.64		4.30		5.16		0.97	
VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
VALUE	US \$		108.30		16.81		22.42		38.69		87.74			
	56.9 VALUE	2 56.9 • VALUE US \$/Oz , Lb.	9.69 56.9 9.69 VALUE US \$/Oz , Lb. VALUE US \$	9.69 9.69 7.82 VALUE US \$/Oz , Lb. 475 VALUE US \$ 108.30	9.69 75.78 2 56.9 VALUE US \$/Oz , Lb. 475 VALUE US \$ 108.30	9.69 75.78 56.9 9.69 7.82 67.82 VALUE US \$/Oz , Lb. 475 8.50 VALUE US \$ 108.30 16.81	9.69 75.78 657.2 56.9 9.69 7.82 67.82 VALUE US \$/Oz , Lb. 475 8.50 VALUE US \$ 108.30 16.81	9.69 75.78 657.2 56.9 9.69 7.82 67.82 0.64 VALUE US \$/Oz , Lb. 475 8.50 1.75 VALUE US \$ 108.30 16.81 22.42	9.69 75.78 657.2 6.21 2 56.9 9.69 7.82 67.82 0.64 VALUE US \$/Oz , Lb. 475 8.50 1.75	9.69 75.78 657.2 6.21 9.69 7.82 67.82 0.64 4.30 VALUE US \$/Oz , Lb. 475 8.50 1.75 0.45 VALUE US \$ 108.30 16.81 22.42 38.69	9.69 75.78 657.2 6.21 41.66 56.9 9.69 7.82 67.82 0.64 4.30 VALUE US \$/Oz , Lb. 475 8.50 1.75 0.45 VALUE US \$ 108.30 16.81 22.42 38.69	9.69 75.78 657.2 6.21 41.66 56.9 9.69 7.82 67.82 0.64 4.30 5.16 VALUE US \$/Oz , Lb. 475 8.50 1.75 0.45 0.85 VALUE US \$ 108.30 16.81 22.42 38.69 87.74	9.69 75.78 657.2 6.21 41.66 50.01 2 56.9 9.69 7.82 67.82 0.64 4.30 5.16 VALUE US \$/Oz , Lb. 475 8.50 1.75 0.45 0.85 VALUE US \$ 108.30 16.81 22.42 38.69 87.74	9.69 75.78 657.2 6.21 41.66 50.01 56.9 9.69 7.82 67.82 0.64 4.30 5.16 0.97 VALUE US \$/Oz , Lb. 475 8.50 1.75 0.45 0.85 0.85 VALUE US \$ 108.30 16.81 22.42 38.69 87.74

EQUIVALENT GOLD GRADE

metres **19.78**

110

-	AVE	RAGE	VALUES						HOLE		05 - 0 1 of 1	7				
	INTERV	'AL m	CORE	TRUE	AU		AG		CU		PB		ZN		AS	
SAMPLE	FROM	то	length	width	g/t		g/t		%		%		%		%	
#	m	m	m	m			ppm		ppm		ppm		ppm		ppm	J
29145	37.1	38.6	1.5	1.20	4.94	5.93	54.1	64.9	0.30	0.36	3.08	3.70	3.85	4.62	2.01	2.
29146	38.6	40.3	1.7	1.36	1.30	1.77	13.1	17.8	0.09	0.12	0.71	0.97	1.87	2.54	1.02	1.
29147	40.3	41.7	1.4	1.12	5.23	5.86	35.4	39.6	0.46	0.52	3.24	3.63	5.98	6.70	4.66	5.
29148	41.7	43.4	1.7	1.36	1.87	2.54	23.2	31.6	0.18	0.24	2.18	2.96	3.44	4.68	1.93	2.
29149	43.4	44.9	1.5	1.20	4.63	5.56	49.5	59.4	0.43	0.52	6.70	8.04	8.96	10.75	4.04	4.8
29150	44.9	46.4	1.5	1.20	8.69	10.43	97.9	117.5	0.94	1.13	6.25	7.50	7.46	8.95	4.16	4.9
29051	46.4	47.9	1.5	1.20	9.75	11.70	91.2	109.4	0.63	0.76	5.65	6.78	7.35	8.82	2.27	2.
				8.64		43.78		440.3		3.64		33.58		47.06		24.2
	37.1	47.9		8.64	5.07		50.96		0.42		3.89		5.45		2.80	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		70.17		12.63		14.76		34.97		92.60			
TOTAL GRC	OSS META	L VALUE U	S \$	8.64	225.13											
EQUIVALEN		RADE G/T		metres	16.26											

-	AVE	RAGE	VALUES						HOLE Sheet		05 - 1 of 1	<u>08</u>				
	INTERV	'AL m	CORE	TRUE	AU		AG		CU		PB		ZN		AS	
SAMPLE	FROM	то	length	width	g/t		g/t		%		%		%		%	
#	m	m	m	m			ppm		ppm		ppm		ppm		ppm	
29052	44.4	45.1	0.7	0.54	2.16	1.17	51.7	27.9	0.36	0.19	3.83	2.07	5.05	2.73	1.28	0.69
29053	45.1	46.3	1.2	0.92	2.36	2.17	83.9	77.2	0.68	0.63	6.62	6.09	9.15	8.42	0.46	0.42
29054	46.3	47.4	1.1	0.84	1.09	0.92	11.1	9.3	0.16	0.13	1.23	1.03	2.65	2.23	1.67	1.40
29055	47.4	49.3	1.9	1.46	4.38	6.39	52.9	77.2	0.90	1.31	4.34	6.34	5.03	7.34	8.82	12.88
29056	49.3	51.2	1.9	1.46	5.20	7.59	44.1	64.4	0.86	1.26	3.85	5.62	4.76	6.95	8.90	12.99
29094	51.2	52.2	1.0	0.77	2.29	1.76	8.9	6.9	0.22	0.17	1.68	1.29	1.75	1.35	4.26	3.28
				5.99		20.00		262.9		3.69		22.44		29.01		31.67
	44.4	52.2		5.99	3.34		43.9		0.62		3.75		4.84		5.29	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		46.25		10.88		21.58		33.72		82.34			
TOTAL GRC	OSS META	L VALUE U	S \$	5.99	194.76											
EQUIVALEN		RADE G/T		metres	14.06											

-	AVE	RAGE	VALUES						HOL SHEET		05 - (<u>09</u>				
	INTERV	/AL m	CORE	TRUE	AU		AG		CU		PB		ZN		AS	-
SAMPLE	FROM	то	length	width	g/t		g/t		%		%		%		%	
#	m	m	m	m			ppm		ppm		ppm		ppm		ppm]
27219	71.1	72.7	1.6	0.68	0.81	0.55	8.1	5.5	0.06	0.04	0.64	0.44	1.39	0.95	0.62	
29057	72.7	74.9	2.2	0.93	1.85	1.72	13.2	12.3	0.08	0.07	0.95	0.88	1.99	1.85	0.71	
29058	74.9	76.4	1.5	0.63	0.80	0.50	7.6	4.8	0.04	0.03	0.45	0.28	1.01	0.64	0.15	
29059	76.4	78.0	1.6	0.68	2.31	1.57	11.6	7.9	0.10	0.07	1.38	0.94	4.32	2.94	4.38	
29060	78.0	79.4	1.4	0.59	2.47	1.46	19.2	11.3	0.15	0.09	2.09	1.23	4.15	2.45	7.36	
29061	79.4	80.7	1.3	0.55	3.38	1.86	91.7	50.4	0.53	0.29	3.84	2.11	4.94	2.72	1.97	
				4.06		7.66		92.2		0.59		5.89		11.54		
	72.7	80.7		4.06	1.89		22.72		0.14		1.45		2.84		2.36	
ASSUMED	METAL	VALUE	U.S. \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		26.14		5.63		5.07		13.05		48.30			
TOTAL GRO	SS META	L VALUE U	JS \$	4.00	98.19											
EQUIVALEN		RADE G/	г	4.06 metres	7.09											

	AVE	RAGE	VALUES						HOLE	Ξ#	05 -	<u>10</u>				
_									_ SHEET	#	1 of 1					
	INTERV	/AL m	CORE	TRUE	AU		AG		CU		РВ		ZN		AS	1
SAMPLE	FROM	то	length	width	g/t		g/t		%		%		%		%	ĺ
#	m	m	m	m			ppm		ppm		ppm		ppm		ppm	
29062	29.6	31.7	2.1	2.09	1.84	3.85	15.8	33.0	0.20	0.42	1.32	2.76	1.74	3.64	0.33	0.
29063	31.7	32.7	1.0	1.00	4.36	4.36	55.5	55.5	0.80	0.80	6.49	6.49	8.65	8.65	0.40	0.4
29064	32.7	34.2	1.5	1.49	7.23	10.77	61.7	91.9	0.93	1.39	4.86	7.24	6.96	10.37	0.47	0.
29065	34.2	35.7	1.5	1.49	7.20	10.73	75.9	113.1	0.97	1.45	5.16	7.69	6.85	10.21	0.51	0.7
				6.07		29.71		293.55		4.05		24.18		32.86		2.
	29.6	35.7		6.07	4.89		48.4		0.67		3.98		5.41		0.42	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		67.77		11.98		23.35		35.85		92.04			
TOTAL GRO	OSS META	L VALUE U	S \$		230.99											
	NT GOLD G	GRADE G/T		6.07metres	16.68											
29092	35.7	37.8	2.1	2.09	1.58	3.30	9.3	19.4	0.04	0.08	0.35	0.73	0.42	0.88	0.10	0.
29093	37.8	39.6	1.8	1.79	1.95	3.49	10.3	18.4	0.03	0.05	0.19	0.34	0.22	0.39	0.16	0.
				9.95		36.50		331.4		4.19		25.25		34.14		3.
	29.6	39.6		9.95	3.67		33.3		0.42		2.54		3.43		0.31	
SSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		50.80		8.25		14.73		22.84		58.32			
TOTAL GRO	OSS META	L VALUE U	S \$		154.94											
EQUIVALEN	NT GOLD G	GRADE G/T		9.95metres	11.19											

	AVE	RAGE	VALUES						HOLE #	#	<u>05 - 1</u>	<u>1</u>				
-	INTER	/AL m	CORE	TRUE	AU		AG		SHEET # CU		1 OF 2 PB		ZN		AS	
SAMPLE	FROM	то	length	width	g/t		g/t		%		%		%		%	
#	m	m	m	m			ppm		ppm		ppm		ppm		ppm	
27239	102.5	104.3	1.8	1.8	0.95	1.71	9.6	17.3	0.04	0.07	0.53	0.95	1.88	3.38	3.23	5.8
27240	104.3	106.2	1.9	1.9	0.71	1.35	25.7	48.8	0.07	0.13	0.33	0.63	0.77	1.46	1.86	3.5
27241	106.2	109.0	2.8	2.8	0.08	0.22	2.0	5.6	0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.0
27242	109.0	111.9	2.9	2.9	0.08	0.23	0.9	2.6	0.01	0.03	0.01	0.03	0.02	0.06	0.03	0.0
27243	111.9	113.2	1.3	1.3	0.24	0.31	2.6	3.4	0.01	0.01	0.03	0.04	0.09	0.12	0.31	0.4
27244	113.2	113.4	0.2	0.2	2.64	0.53	119.0	23.8	0.61	0.12	3.65	0.73	4.84	0.97	2.88	0.5
				10.9		4.36		101.5		0.40		2.41		6.02		10.4
	102.5	113.4		10.9	0.40		9.31		0.04		0.22		0.55		0.96	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		5.53		2.31		1.40		1.98		9.35			
TOTAL GRO EQUIVALEN			S \$	10.9	20.57											
G/T				metres	1.49											
27244	113.2	113.4	0.2	0.2	2.64	0.53	119.0	23.8	0.61	0.12	3.65	0.73	4.84	0.97	2.88	0.5
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS TOTAL GRO		VALUE US	US \$ S \$		36.56 202.53		29.49		21.35		32.85		82.28			
EQUIVALEN G/T	T GOLD G	RADE		0.2 metres	14.62											

	AVERA	GE VALI	UES					-	HOLE #	0	<u>)5 - 12</u>	<u>.</u>				1
	INTERVAL	-	-					!	SHEET #	<u> </u>	1 of 2]	1
	m		CORE	TRUE	AU		AG		CU		PB		ZN		AS	1
SAMPLE	FROM	то	length	width	g/t		g/t		%		%		%		%	1
#	m	m	m	m			ppm		ppm		ppm		ppm		ppm	L
28578	101.2	103.6	2.4	2.36	0.48	1.13	6.2	14.7	0.04	0.09	0.51	1.21	0.89	2.10	0.61	1.44
28579	103.6	104.0	0.4	0.39	5.70	2.25	16.8	6.6	0.18	0.07	2.85	1.12	5.75	2.27	15.50	6.11
28580	104.0	106.2	2.2	2.17	1.53	3.31	6.7	14.5	0.05	0.11	0.32	0.69	0.61	1.32	2.35	5.09
	101.2	106.2		4.92		6.69		35.8		0.27		3.02		5.69		12.64
					1.36		7.27		0.06		0.61		1.16		2.57	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		18.83		1.80		1.95		5.52		19.65			
TOTAL GR	OSS METAL V	ALUE US \$			47.74											
				4.92	0 AE											
EQUIVALE	NT GOLD GRA	DE G/I		metres	3.45											
28578	101.2	103.6	2.4	2.36	0.48	1.13	6.2	14.7	0.04	0.09	0.51	1.21	0.89	2.10	0.61	1.44
28579	103.6	104.0	0.4	0.39	5.70	2.25	16.8	6.6	0.18	0.07	2.85	1.12	5.75	2.27	15.50	6.11
28580	104.0	106.2	2.2	2.17	1.53	3.31	6.7	14.5	0.05	0.11	0.32	0.69	0.61	1.32	2.35	5.09
28581	106.2	109.6	3.4	3.35	0.27	0.90	4.0	13.4	0.02	0.07	0.05	0.17	0.06	0.20	0.05	0.17
28582	109.6	111.8	2.2	2.17	0.22	0.48	1.7	3.7	0.01	0.02	0.05	0.11	0.04	0.09	0.06	0.13
28583	111.8	113.4	1.6	1.58	0.42	0.66	1.8	2.8	0.01	0.02	0.02	0.03	0.36	0.57	0.32	0.50
28584	113.4	116.3	2.9	2.86	0.36	1.03	2.1	6.0	0.02	0.06	0.14	0.40	0.19	0.54	0.70	2.00
28585	116.3	117.4	1.1	1.08	0.57	0.62	4.0	4.3	0.05	0.05	0.27	0.29	0.51	0.55	1.63	1.77
28586	117.4	118.6	1.2	1.18	0.22	0.26	3.5	4.1	0.06	0.07	0.13	0.15	0.22	0.26	0.31	0.37
	101.2	118.6		17.14		10.64		70.2		0.56		4.17		5.80		17.57
					0.62		4.09		0.03		0.24		0.34		1.03	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		8.60		1.01		1.14		2.19		5.75			
TOTAL GR	OSS METAL V	ALUE US \$		17 4 4	18.70											
ΕΟUIVAL Ε	NT GOLD GRA	ADF G/T		17.14 meters	1.35											
	TI COLD CIT			meters	1.00											

	AVER	AGE VAL	JES						HOLE	#	05 - 14					
-									SHEET #		1 of 1					
	INTERV	AL m	CORE	TRUE	AU		AG		CU		РВ		ZN		AS	
SAMPLE	FROM	то	length	width	g/t		g/t		%		%		%		%	
#	m	m	m	m			ppm		ppm		ppm		ppm		ppm	
28552	29.9	30.6	0.7	0.7	4.85	3.40	61.2	42.8	0.43	0.30	3.74	2.62	4.34	3.04	0.50	0.3
28553	30.6	31.5	0.9	0.9	5.05	4.55	30.9	27.8	0.19	0.17	1.24	1.12	1.63	1.47	0.13	0.1
	29.6	31.5		1.6		7.94		70.7		0.47		3.73		4.51		0.4
					4.96		44.16		0.30		2.33		2.82		0.29	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		68.72		10.94		10.33		21.00		47.87			
TOTAL GROS	S METAL \	ALUE US \$		1.6	158.86											
EQUIVALENT	GOLD GR	ADE G/T		metres	11.47											

-	AVER	AGE VAL	JES				HOLE # SHEET #	05 - 15 1 of 1		
0.0MDI 5	INTERV		CORE	TRUE	AU	AG	CU %	PB %	ZN %	AS %
SAMPLE	FROM	то	length	width	g/t	g/t	70	70	70	70
#	m	m	m	m		ppm	ppm	ppm	ppm	ppm
28567	37.1	38.0	0.9	0.85	12.20	59.1	0.61	4.24	5.48	7.15
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475	8.50	1.75	0.45	0.85	
GROSS	METAL	VALUE	US \$		168.95	14.65	21.35	38.16	93.16	
TOTAL GROS	S METAL V	VALUE US \$		0.85	336.27					
EQUIVALENT	GOLD GR	ADE G/T		metres	24.28					

-	AVER	AGE VALUI	ES						HOLE #)5 - 16 1 of 1					
SAMPLE	INTERV FROM	AL m TO	CORE length	TRUE width	AU g/t		AG g/t		CU %		PB %		ZN %		AS %	
#	m	m	m	m	3		ppm		ppm		ppm		ppm		ppm	ļ
28748	61.0	63.0	2.0	2.00	0.74	1.48	96.2	192.4	0.52	1.04	6.65	13.30	8.35	16.70	0.50	1.0
28749	63.0	63.4	0.4	0.40	1.23	0.49	228.0	91.2	1.05	0.42	5.72	2.29	6.85	2.74	0.54	0.2
	61.1	63.4		2.40		1.97		283.6		1.46		15.59		19.44		1.2
					0.82		118.17		0.61		6.50		8.10		0.51	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		11.38		29.28		21.29		58.46		137.70			
TOTAL GROSS	S METAL \	ALUE US \$			258.11											
EQUIVALENT	GOLD GR	ADE G/T		2.4 metres	18.64											

	AVER	AGE VAL	UES						HOLE #	05	- 17					
									SHEET #		1 of 1					
	INTERV		CORE	TRUE	AU		AG		CU		PB		ZN		AS	
SAMPLE	FROM	то	length	width	g/t		g/t		%		%		%		%	
#	m	m	m	m			ppm		ppm		ppm		ppm		ppm	
28719	74.1	75.6	1.5	1.45	1.38	2.00	13.8	20.0	0.19	0.28	1.45	2.10	1.52	2.20	4.64	6
28720	75.6	77.1	1.5	1.45	0.44	0.64	3.9	5.7	0.02	0.03	0.30	0.43	0.25	0.36	1.40	2
28721	77.1	78.5	1.4	1.3	0.66	0.87	2.8	3.7	0.01	0.01	0.18	0.24	0.69	0.91	2.04	2
	74.1	78.5		4.2		3.51		29.3		0.32		2.77		3.47		11
					0.83		6.96		0.08		0.66		0.82		2.71	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS FOTAL GROS	METAL S METAL V	VALUE ALUE US	US \$		11.52		1.73		2.64		5.92		14.01			
5					35.81											
EQUIVALENT	GOLD GRA	ADE G/T		4.2 metres	2.59											
28727	86.0	88.0	2.0	1.9	5.15	9.68	96.2	180.8	0.52	0.98	6.65	12.50	8.35	15.69	0.50	C
28728	88.0	89.8	1.8	1.7	5.88	9.95	228.0	385.7	1.05	1.78	5.72	9.68	6.85	11.59	0.54	0
	86.0	89.8		3.6		19.62		566.45		2.75		22.17		27.28		1
					5.50		158.63		0.77		6.21		7.64		0.52	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS FOTAL GROS	METAL S METAL V	VALUE ALUE US	US \$		76.11		39.31		26.99		55.89		129.87			
\$					328.16											
EQUIVALENT	GOLD GRA	ADE G/T		3.6 metres	23.70											
28719	74.1	75.6	1.5	1.45	1.38	2.00	13.8	20.0	0.19	0.28	1.45	2.10	1.52	2.20	4.64	6
28720	75.6	77.1	1.5	1.45	0.44	0.64	3.9	5.7	0.02	0.03	0.30	0.43	0.25	0.36	1.40	2
28721	77.1	78.5	1.4	1.3	0.66	0.87	2.8	3.7	0.01	0.01	0.18	0.24	0.69	0.91	2.04	2
28722	78.5	80.0	1.5	1.4	0.14	0.20	1.1	1.6	0.01	0.01	0.03	0.04	0.01	0.01	0.10	C
28723	80.0	81.5	1.5	1.4	0.03	0.04	0.5	0.7	0.01	0.01	0.03	0.04	0.01	0.01	0.01	(

28725	83.0	84.5	1.5	1.4	0.05	0.07	2.5	3.5	0.01	0.01	0.24	0.34	0.16	0.23	0.02	0.03
28726	84.5	86.0	1.5	1.4	0.14	0.20	6.9	9.7	0.03	0.04	1.14	1.61	2.15	3.03	0.03	0.04
28727	86.0	88.0	2.0	1.9	5.15	9.68	96.2	180.8	0.52	0.98	6.65	12.50	8.35	15.69	0.50	0.94
28728	88.0	89.8	1.8	1.7	5.88	9.95	228.0	385.7	1.05	1.78	5.72	9.68	6.85	11.59	0.54	0.91
	74.1	89.8		14.83		20.09		585.06		2.87		24.75		31.32		1.98
					1.35		39.45		0.19		1.67		2.11		0.13	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		18.76		9.78		6.76		15.02		35.90			
TOTAL GROS \$	S METAL \	ALUE US		14.83	86.22											
EQUIVALENT	GOLD GR	ADE G/T		metres	6.23											

	AVERA	AGE VALUI	ES						HOLE	#	<u>05 - 18</u>					
-									SHEET #		1 of 1					
	INTERV	AL m	CORE	TRUE	AU		AG		CU		PB		ZN		AS	
SAMPLE	FROM	то	length	width	g/t		g/t		%		%		%		%	
#	m	m	m	m			ppm		ppm		ppm		ppm		ppm	
28762	98.0	99.1	1.1	0.78	0.27	0.21	6.3	4.9	0.06	0.05	0.45	0.35	0.68	0.53	0.37	
28763	99.1	100.6	1.5	1.06	0.19	0.20	3.7	3.9	0.04	0.04	0.31	0.33	0.38	0.40	0.47	
28764	100.6	102.1	1.5	1.06	0.07	0.07	0.5	0.5	0.01	0.01	0.02	0.02	0.02	0.02	0.15	
28765	102.1	103.6	1.5	1.06	0.20	0.21	2.5	2.7	0.02	0.02	0.19	0.20	0.15	0.16	0.61	
28766	103.6	104.2	0.6	0.42	0.59	0.25	4.1	1.7	0.05	0.02	0.23	0.10	0.40	0.17	2.00	
28767	104.2	105.7	1.5	1.06	0.28	0.30	1.7	1.8	0.02	0.02	0.12	0.13	0.12	0.13	0.70	
28768	105.7	107.3	1.6	1.13	0.14	0.16	0.8	0.9	0.01	0.01	0.05	0.06	0.07	0.08	0.09	
28769	107.3	108.9	1.6	1.13	0.26	0.29	4.7	5.4	0.04	0.05	0.09	0.10	0.13	0.15	0.37	
28770	108.9	110.4	1.5	1.06	3.39	3.60	23.6	25.0	0.42	0.45	3.66	3.88	3.48	3.69	0.32	
28771	110.4	111.9	1.5	1.06	1.62	1.72	5.6	5.9	0.06	0.06	0.39	0.41	0.40	0.42	0.07	
28772	111.9	113.4	1.5	1.06	0.51	0.54	2.9	3.1	0.02	0.02	0.18	0.19	0.22	0.23	0.06	
	98.0	113.4		10.9		7.55		55.9		0.75		5.77		5.98		
					0.69		5.13		0.07		0.53		0.55		0.38	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		9.60		1.27		2.41		4.77		9.34			
TOTAL GROS	S METAL \	ALUE US \$			27.40											
EQUIVALENT	GOLD GR	ADE G/T		10.9 metres	1.98											
28770	108.9	110.4	1.5	1.06	3.39	3.60	23.6	25.0	0.42	0.45	3.66	3.88	3.48	3.69	0.32	
ASSUMED	METAL	VALUE	US \$/Oz , Lb.		475		8.50		1.75		0.45		0.85			
GROSS	METAL	VALUE	US \$		46.95		5.85		14.70		32.94		59.16			
TOTAL GROS	S METAL \	ALUE US \$		1.06	159.59											
EQUIVALENT	GOLD GR	ADE G/T		metres	11.52											

APPENDIX 4

CERTIFICATES OF ANALYSIS

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2005-953

Bronx Ventures Inc. 6th Floor, 1199 W. Hastings Vancouver, BC V6E 3T5

No. of samples received: 43 Sample type:Rock Submitted by: J.W. Murton Project: Bronx

ET	#. Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	Pb (%)	
1	28950	0.21	0.006	10-1			
2	28951	0.31	0.009				
TRI 3	28952	0.10	0.003				
4	28953	0.08	0.002				
5	28954	0.07	0.002				
	28955	< 0.03	< 0.001				
6 7 8	28956	< 0.03	< 0.001				
8	28957	0.26	0.008				
TRZ 9	28958	0.96	0.028				
10		2.32	0.068				
11		0.08	0.002				
12		0.07	0.002				
13	28963	0.69	0.020				
14		0.11	0.003				
15		0.05	0.001				
16		0.19	0.006				
TR 3 17		0.09	0.003				
18		0.03	0.001				
19		0.93	0.027				
20		7.96	0.232	153	4.46	18.20	
R8 21	28971	2.13	0.062	69	2.01	8.25	
22		< 0.03	<0.001				
-		0.29	800.0				
R9 23		0.68	0.020				
25		< 0.03	< 0.001				\bigcirc
R 10 26		0.53	0.015			\frown	
rR 11 27		< 0.03	<0.001		/		

ABORATORY LTD. ECO, Jutta Jealouse 3.C. Certified Assaver

1-Sep-05

4	-S	01	1	n	5
- 8	-0	5	1-1	0	•

	ET #.	Tag #		Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	РЬ (%)	
	28	28978		<0.03	< 0.001				
	29	28979		0.29	0.008				
	30	28980		< 0.03	< 0.001				
TRI	31	28981		0.14	0.004				
	32	28982		0.10	0.003				
	33	28983		0.04	0.001				
	34	28984		< 0.03	< 0.001				
	35	28985		76.6	2.234	1170	34.12	18.2	
	36	28986		48.6	1.417	880	25.66	20.1	
TR	4 37	28987		20.8	0.607	326	9.51	5.83	
	38	28988		0.10	0.003				
	39	28989		0.26	0.008				
TR	5 40	28990		0.07	0.002				
TR	7 41	28991		0.10	0.003				
TR	6 42	28992		< 0.03	< 0.001				
TR	2 43	NO TAG #	28962	0.12	0.003				
	C DATA Repeat:	28950		0.49	0.005				
	10	28950		0.18 2.31	0.005				
	19	28969		1.03	0.067				
	20	28970		1.05	0.030	151	4.40	18.2	
	35	28985		75.3	2.196	101	4.40	10.2	
	36	28986		55.6	1.621				
	37	28987		19.4	0.566				
	57	20807		19.4	0.000				
	Resplit:								
	1	28950		0.22	0.006				
	36	28986		48.4	1.411				
		127							
3	tandard PB106					50.0	4 70	0.50	
				4.04	0.054	58.2	1.70	0.52	
	OX140			1.84	0.054				
	OX140 SN16			1.81	0.053				
	21410			8.36	0.244				

JJ/bw XLS/05

ECO TECH LABOZATORY LTD. Julia Jealouse B.C. Certified Assayer

Eco Tech LABORATORY LTD. Page 2

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2005-953AS

Bronx Ventures Inc. 6th Floor, 1199 W. Hastings Vancouver, BC V6E 3T5

No. of samples received: 43 Sample type:Rock Submitted by: J.W. Murton

Additional Assay Request:

Project: Bronx

		As	
ET #.	Tag #	(%)	
TR 2 10	28959	1.23	
20	28970	8.84	
TR8 21	28971	1.48	
35	28985	13.1	
TR 4 36	28986	12.7	
37	28987	0.79	

QC DATA:

Repeat:	2
10	28959

Standard:

PD-1

JJ/kk

XLS/04

0.79

1.28

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

Page 1

2-Feb-06

ECO TE	2-Sep-05	OBVI	TD					3	CPC	DTIE	ICAT				K 2005-9	53					5	Brony	Ventu	res In				
10041 D	CH LABORAT allas Drive OPS, B.C. 1	URTL	10.					1		_r() P	IGAT		UNAL I	313 AI	1 2000-9						e N	Sth Flo	oor, 119 ouver, E	9 W. I		igs		
Phone: 2	250-573-5700																											
Fax :2	250-573-4557																											
																					5	Sampl	sample le Type. itted by:	Rock				
Values	in ppm unless	otherv	vise I	reported																			t #:Broi		nanoi	'		
Et #.	Tag #	Ag A	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	_
1	28950	3.1 0	0.36	790	160	<5	0.05	3	5	28	14	4.38	<10	0.04	152	8 0.07			146	15	<20	007050	< 0.01	<10	24	<10	2	
2	28951 TR 1	5.0 0			330	1257	0.04	2	1	39	11	2.74	<10	0.03	18	10 0.02			464		<20		< 0.01	<10		<10	1	
3	28952	2.7 0		590	95	5	0.07	3	2	98	45	5.61	<10	0.04	59	17 0.07			810	- SSR -		473 136		<10 <10	25 47	<10 20	3	
4	28953	0.8			170	10	0.12	4		116 103	89 158	9.98 >10	<10 <10	0.57	208 >10000	7 0.02		1300 500	156 160		<20			<10	27	30		
5	28954	1.0 (0.30	265	70	20	3.92	2	29	103	100	>10	<10															
6	28955	0.2 3		750	65	10	0.17	4		130	143	8.54	<10	2.82	1050	2 0.0			36		<20			<10	88 73	10 10	4	
7	28956	0.1 2		705	75	10	0.07	4		118	138	9.15	<10	2.02	798	<1 0.02		1140	30 226	5 20	<20 <20			<10 <10	85	20		
8	28957	0.5 3		4455	105	10	0.07	21	40	136	234	>10	<10	3.17	1309	<1 <0.01 11 <0.01		1370 1690	2798					<10	68	20		6
9 10	28958 TR2 28959	11.0 0.7 2		5120 >10000	40 70	10 10	1.28 5.60	27 59	20 21	101 49	884 474	>10 8.01	<10 <10	2.13 5.61	1070 3103	1 < 0.0		1260	534		<20		<0.01	<10	38	10	14	
11	28960	0.3 3	3.32	3230	85	10	0.08	14	14	62	319	6.84	<10	3.56	1266	2 < 0.0	20	2040	158	15	<20			<10	53	10		
12	28961	0.8 3	3.07	1120	130	5	0.48	10	19	46	263	7.75	<10	4.03	2425	2 < 0.0		1700	544	10	<20	1.000	< 0.01	<10	49	10	10	
13	28963	10.2	1.87	4455	275	10	0.12	38	12	62	444	>10	<10	1.76	413	9 < 0.0		2020	1776		<20		< 0.01	<10	35	20	14 :	
14	28964	0.9 0	0.45	800	335	<5	0.03	6	2	30	39	2.39	<10	0.12	50	1 0.03		280	130		<20			<10	8	<10	3	
15	28965 TR3	2.1	2.63	2805	255	10	0.07	22	7	49	233	>10	<10	3.14	300	5 < 0.0	1 13	1500	390	30	<20	25	<0.01	<10	27	20	5	1.
16	28966	1.8	2.89	3165	235	15	0.08	25	16	81	200	>10	<10	3.13	404	12 < 0.0	33	1500	960	30	<20	25	< 0.01	<10	61	20	10 :	
17	28967	1.0 (4430	310	15	0.17	25	13	95	214	>10	<10	0.15	383	13 < 0.0		1810	206	10	<20		< 0.01	<10	30	20	6	
18	28968	0.7			205	15	0.15	15	320	121	153	>10	<10	0.39	6804	6 < 0.0		1440	134		<20	23	0.01	<10	36	20	19	
19	28969	0.2 0	0.29	165	90	5	0.15	4	21	115	205	5.33	<10	0.08	947	2 0.03			16	1.12.17.12	<20		< 0.01	<10	22	<10	9	
20	28970	>30 (0.09	>10000	20	20	0.45	142	3	96	1123	>10	<10	0.02	39	148 < 0.0	<1	4170	>10000	510	<20	83	<0.01	<10	20	40	<1 :	28
21	TKS 28971	>30 (0.69	>10000	50	20	0.23	61	15	134	541	>10	<10	0.38	127	76 0.0	5 32	7350	>10000	125	<20	149	0.09	<10	95	40	2	1
21	28972	0.2 (145	75	<5	0.02	<1	4	107	34	3.52	<10	<0.01	118	4 < 0.0			134	<5	<20		< 0.01	<10	6	<10	2	
22	28973 TR 9	1.4 (540	165	<5	0.05	3	3	80	67	3.77	<10	0.02	50	9 0.0			276	15	<20	44	< 0.01	<10	20	<10	3	
24	28974	5.1 (1700	290	<5	0.07	7	<1	26	40	3.99	<10	0.06	16	53 0.0	4 <1	110	746	50	<20	24	< 0.01	<10	25	<10	2	
25	28975	0.1		35	255	<5	4.32	1	6	115	28	1.48	<10	2.69	2418	1 0.03	2 14	760	24	<5	<20	296	<0.01	<10	2	<10	18	
26	TR 10 28976	5.3	0.64	3135	450	<5	0.34	18	13	58	256	6.68	<10	0.22	363	12 0.03		1040	1182	85	<20		<0.01	<10	20	10	8	
27	28977	0.3 (0.07	60	20	<5	>10	1	4	47	17	2.39	<10	8.24	7417	<1 0.0			240	<5	<20			<10	13	<10	9	
28	28978	<0.2 (0.09	25	25	<5	7.54	2	7	67	3	1.77	<10	4.65	6411	<1 <0.0			10	<5	<20			<10	13	<10	18	
29	28979 TR 11	5.4		3810	160	<5	0.27	17	13	87	105	3.63	<10	0.55	323	2 0.0			2410	35	<20	45	< 0.01	<10	16 2	<10 <10	2	
30	28980		0.09	30	40	<5	1.04	<1	6	114	7	0.97	<10	0.58	613	<1 <0.0	1 11	40	10	<5	<20	190	< 0.01	<10	6	510	2	

25-Aug-0	5
----------	---

	ECO TE	CH LABORAT	ORY	LTD.					I	ср с	ERTI	FICAT	E OF /	ANAL	YSIS A	K 2005-9	953							Bronz	x Ventu	ires In	ic.				a.
Ì.	Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	TI %	U	V	W	Y	Zn	
	31	28981		3.08			5	1.02	2	31	72	97	7.84	<10	4.15	1013		0.02		1370	90	10	<20	41	< 0.01	<10	49	10	6	120	
	32 33	28982 28983 TR 11		4.12				0.30	2	35	65 84	110 204	8.62 5.46	<10 <10	5.45 5.41	1386 6094		<0.01 <0.01		1620 1020	176 996	10 20	<20 <20	35	<0.01 <0.01		78 26	10 <10		260 831	
	33 34	28983		1.10 0.54		170 115	5 5	5.83 6.58	5 3	24 11	04 58	204 45	5.46 3.16	<10	5.41 4.63	3055		< 0.01		1020	192	20 5	<20		< 0.01	<10	13	<10		513	
	35	28985			>10000	60		0.30	295			2696	>10		0.05	170		< 0.01	<1		>10000	-			< 0.01		82	40		3654	
	36	28986 TR 4			>10000	40		0.44	170	3		2859	>10		0.04	340					>10000 :		<20		< 0.01	<10	27	40		2666	
	37	28987			>10000	610	20	0.31	49			2948	>10		0.04	312	0.000	< 0.01	28			935	<20		< 0.01	<10	105	40		1988 681	
	38	28988 28989		1.64		365 30	5 5	8.96 0.03	5 1	41 13	26 48	117 48	4.81 6.07	10 <10	7.83 2.42	7505 226		<0.01 0.02		340 230	642 182	15 10	<20 <20	136 14	<0.01 <0.01	<10 <10	46 50	<10 <10		103	
	39 40	28990 TR5		0.97		30 175	20	0.03	6	21	40 134	40 311	>10		2.42	690		<0.02		3170	138	<5	<20	338	0.09	<10	70	30		941	
	40	20000 183	1.7	0.57	1000	110	20	0.20	0	21	104	011	10	10	0.00	000	Ŭ	-0.01	40	0170	100	.0	20	000	0.00	10	10	00	U	011	
	41	28991 TR 7		1.55		245	10	0.13	10		108	358	>10		0.45	714		<0.01		1230	228	<5	<20	27	0.07	<10	42	20		834	
	42	28992 TR 6	0.2	1.11	785	230	20	0.15	6		149	175	>10	0.5%	0.30	327		0.01		2940	56	<5	<20	28	0.11	<10	62	40		729	
1	43	NO TAG # 289 62 TR		1.66	920	365	10	0.14	4	15	102	187	8.12	<10	1.19	2397	13	0.01	24	1170	542	10	<20	94	<0.01	<10	43	10	10	949	
	<u>QC DAT</u>	<u>A:</u>																													
	Resplit: 1	28950	31	0.40	790	165	<5	0.06	5	6	37	16	5.06	<10	0.05	182	10	0.09	6	470	152	20	<20	62	0.01	<10	28	<10	2	89	
	4	20950	5.1	0.40	750	100	-0	0.00	5	0	57	10	5.00	510	0.00	102	10	0.05	0	-170	102	20	-20	02	0.01	-10	20	.10	2	00	
	Repeats																			56755 Marc	10.000 (Dec	120227	6002	7257.28		0.07		1012			
	1	28950		0.37		175	<5	0.05	3	6	30	15	4.65		0.04	159				430	150	15	<20	55			25 39	<10 10	2	82 1192	
	10 19	28959 28969		0.26	>10000 140	70 80	10 <5	5.80 0.15	62 4	23	52 110	515	8.47 5.17	<10	5.80 0.08	3268 929		<0.01 0.02	36 35	1320 540	560 14	25 <5	<20 <20		<0.01 <0.01	<10		<10		608	
	19	20909	0.5	0.20	140	00	~5	0.15	4	21	110	192	5.17	510	0.00	929	2	0.02	55	540	14	-5	~20	10	-0.01	~10	20	\$10	0	000	
1	Standar	d:																													
	GEO '05		1.4	1.52	50	155	<5	1.71	<1	18	61	85	4.09	<10	1.06	747	<1	0.03	31	780	20	<5	<20	59	0.12	<10	70	<10	11	74	
																						/	1	-	1						
																					/			AN	(L					
																					(1	ECO	ECH	LABO	RATO	RY/LT	D.				
																						Juna .	lealoy	se	R	/					
	JJ/jm																				/	B.C. C	ertifie	Ass	sayer	/					
	df/																						1		/	/					
	XLS/05																				/		\land								

21-Oct-05

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2005-1225

Bronx Ventures Inc. 6th Floor, 1199 W. Hastings Vancouver, BC V6E 3T5

No. of samples received:15 Sample Type: Core Submitted by:J. W. Murton Project #:Bronx

ET #.	Tag #		Au (g/t)	Au (oz/t)	Pb (%)	Zn (%)	
1	28993		0.03	0.001			
2	28994	PDH	< 0.03	< 0.001			
2 3	28995	05-01	0.17	0.005			
4	28996	,	0.48	0.014	1.64	1.75	
5	28997	(0.08	0.002			
5 6	28998	1	0.05	0.001			
7	28999	1	0.17	0.005	1.46	1.85	
8	29900	1	0.23	0.007			
9	29101		0.16	0.005			
10	29102	1	0.19	0.006			
11	29103		0.15	0.004			
12	29104		0.39	0.011			
13	29105		0.36	0.010			
14	29106		0.54	0.016			
15	29107	+	0.23	0.007			

QC DATA	:				
Repeat:					
1	28993	< 0.03	< 0.001		
4	28996	0.47	0.014	1.64	1.75
12	29104	0.38	0.011		
13	29105	0.35	0.010		
14	29106	0.52	0.015		
Resplit:					
1	28993	< 0.03	<0.001		
Standard	ŧ				
OX140		1.84	0.054		
PB106				0.52	0.84

JJ/ga XLS/04 Jupan Brace / wes

ECO TECH LABORATORY LT Jutta Jealouse B.C. Certified Assayer

	17-Oct-05																												
ECO TECH 10041 Dalla KAMLOOP V2C 6T4	as Drive	TORY	LTD.					1	CP CI	ERTIF	ICAT	E OF /	ANAL	YSIS /	AK 200	05-122	25					1	6th Fle	t Ventu bor, 11 bouver, T5	99 W. I		ngs		
Phone: 250 Fax : 250 Values in p	-573-4557		rwise	repor	ted																		Samp. Subm	sample le Type itted by et :Bron	: Core :J. W.				
Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	۷	w	Y	Zn
1 bDH 2 050 3 4 (5	28993	<0.2 <0.2 2.7 11.8	0.41 0.39 1.83 0.16 0.52	90 70 300 9165	40 45 70 40 40	10 5 <5 <5	8.35 4.50 4.13 0.52 1.03	<1 <1 6 46 2	38 35 43 16 24	67 43 85 84 59	52 89 148 655 45	7.10 6.32 9.26 5.14 5.53	<10 <10 <10 <10	4.51 2.71 4.99 0.28 0.94	2250 1907 3580 376	5 5 6 <1	0.06 0.08 0.04 0.03 0.03	87 102 29	1200 590 520 370 310	10 8 1774 >10000 570	<5 <5 15 45 <5	<20 <20 <20 <20 <20	65 119 23	<0.01 <0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10 <10	58 4	<10 <10 <10 <10 <10	<1 <1 <1 <1 <1	57 76 1612 >10000 471
6 7 8 9 10	28998 28999 29900 29101 29102	22.1 1.7 1.2	0.24 0.25 0.35 0.34 0.24	4070 5545 4830	35 35 30 40 30	5	0.30 0.34 0.58 2.73 0.46	5 50 <1 <1 <1	14 20 25 12 20	58 73 56 74 55	181 2168 66 31 27	3.45 6.08 4.65 3.91 5.09		0.21 0.35 0.52 1.75 0.31	454 448 1874	2 <1 4 3 5	0.02 0.03 0.02 0.03 0.02	0.000	120 <10 370 200 260	1244 >10000 750 442 112	<5 45 10 20 5	<20 <20 <20 <20 <20	15 22 79	<0.01 <0.01 <0.01 <0.01 <0.01		3 8 8	<10 <10 <10 <10 <10	<1 <1 <1 <1 <1	1319 >10000 999 403 65
11 12 13 14 15	29103 29104 29105 29106 29107	2.8 11.6 11.4	0.19 0.21 0.21 0.59 1.21	3765 560 1105	40 50 30 50 55	<5 <5	0.30 0.19 0.21 1.80 7.32	<1 3 19 26 17	11 15 17 35 17	30		9.53	<10 <10 <10	0.19 0.13 0.14 1.61 5.99	131 101 501	2 2 3 7 <1	0.02 0.02 0.02 0.04 0.04	27 48	100 120 <10 290 120	472 1024 4776 6460 3944	<5 10 20 20 125	<20 <20 <20 <20 <20	12 12 52	<0.01 <0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10 <10	2 2 8	<10 <10 <10 <10 <10	<1 <1 <1 <1 <1	66 1451 6113 7076 4841
QC DATA:																													
Resplit:	28993	<0.2	0.38	100	55	10	8.15	<1	39	60	59	7.37	<10	4.28	2186	5	0.06	148	1230	10	5	<20	117	<0.01	<10	22	<10	<1	69
Repeat: 1	28993	<0.2	0.39	90	60	15	8.23	<1	39	67	51	6.97	<10	4.28	2198	5	0.06	143	1220	14	<5	<20	128	<0.01	<10	21	<10	3	59
Standard: GEO '05		1.5	1.33	50	150	<5	1.22	<1	19	60	86	3.45	<10	0.75	541	<1	0.02	28	570	24	<5	<20	54	0.11	<10	70	<10	9	74
																					1	1	7.	K) Aller	In	20		

ECO TECH LABORATORY LTD. Juita Jealouse B.C. Certified Assayer

131

JJ/ga df/1235a XLS/05

20-Oct-05

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2005-1279

Bronx Ventures Inc. 6th Floor, 1199 W. Hastings Vancouver, BC V6E 3T5

No. of samples received: 65 Sample type: Core Submitted by: J.W. Murton **Project: Bronx**

ET #.	Tag #		Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As (%)	Cu (%)	Pb (%)	Zn (%)
1	29108		0.37	0.011				()	()	1.01
2	29109	PD H	1.34	0.039			5.31		1.16	2.45
3	29110	05-01	1.10	0.032	23.2	0.68	3.57	0.39	1.78	2.24
4	29111	0,001	0.46	0.013	43.7	1.27	0.14	0.21	2.75	3.35
5	29112	1	4.49	0.131	114	3.33	3.52	0.69	8.26	9.17
6	29113		8.96	0.261	173	5.05	3.41	0.70	9.94	10.1
7	29114		7.79	0.227	150	4.37	3.10	0.72	9.42	10.3
8	29115		8.23	0.240	171	4.99	4.17	0.56	8.74	10.5
9	29116		3.15	0.092	103	3.00	2.69	0.26	4.11	5.64
10	29117		0.14	0.004	1.5	0.04	0.02	0.01	0.05	0.05
11	29118	1	0.05	0.001	0.5	0.02	0.02	0.02	0.03	0.03
12	29119	DDH	2.59	0.076	35.5	1.04	0.73	0.57	3.24	5.05
13	29120	05-02	0.86	0.025	8.2	0.24	2.66	0.13	0.82	0.94
14	29121	03-06	5.78	0.169	31.6	0.92	12.9	0.72	3.85	9.36
15	29122		1.72	0.050	27.4	0.80	4.03	0.54	1.69	3.72
16	29123	DA.I	0.35	0.010	5.5	0.16	0.79	0.09	0.27	0.62
17	29124	DDH	0.95	0.028	7.9	0.23	2.51	0.14	0.76	1.18
18	29125	05-04	9.23	0.269	96.2	2.81	6.50	0.52	6.65	8.35
19	29126	(8.96	0.261	228	6.65	0.54	1.05	5.72	6.85
20	29127		6.09	0.178	133	3.88	0.25	0.65	3.03	4.24
21	29128		13.5	0.394	168	4.90	1.92	0.92	4.31	5.22
22	29129	DDH	11.3	0.330	158	4.61	0.99	0.82	6.97	8.44
23	29130	05-05	9.96	0.290	149	4.35	0.67	0.62	7.29	9.50
24	29131	03-05	6.20	0.181	119	3.47	0.42	1.01	4.39	5.44

ECO TECHLABORATORY LTD. titta Jealbuse B.C. Certified Assave Page 1

20-Oct-05

		Au	Au	Ag	Ag	As	Cu	Pb	Zn
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)	(%)	(%)
25	29132 DDH	3.99	0.116	89.4	2.61	0.26	0.50	3.77	4.56
26	29133 05-05	5.20	0.152	91.5	2.67	0.36	0.90	4.26	5.03
27	29134	8.76	0.255	129	3.76	0.49	1.02	3.84	4.05
28	29135	2.86	0.083	49.5	1.44	0.61	0.63	3.55	4.15
29	29136 DDH	6.76	0.197	55.4	1.62	2.45	0.77	5.83	8.13
30	29137 05-06	6.93	0.202	52.3	1.53	1.41	0.50	6.75	9.44
31	29138 /	11.1	0.324	67.3	1.96	0.53	0.53	6.05	9.05
32	29139	0.47	0.014	25.2	0.74	0.11	0.25	0.37	0.39
33	29140	2.67	0.078	37.4	1.09	0.26	0.31	1.58	2.54
34	29141	6.20	0.181	178	5.19	0.88	1.78	7.25	5.35
35	29142	24.7	0.720	158	4.61	0.79	1.45	6.37	10.6
36	29143	25.3	0.738	86.2	2.51	0.60	0.74	4.05	5.54
37	29144	11.8	0.344	92.7	2.70	2.14	0.58	6.06	7.65
38	29145	4.94	0.144	54.1	1.58	2.01	0.30	3.08	3.85
39	29146 DDH	1.30	0.038	13.1	0.38	1.02	0.09	0.71	1.87
40	29147 05-07	5.23	0.153	35.4	1.03	4.33	0.46	3.24	5.98
41	29148	1.87	0.055	23.2	0.68	1.93	0.18	2.18	3.44
42	29149	4.63	0.135	49.5	1.44	4.04	0.43	6.7	8.96
43	29150	8.69	0.253	97.9	2.86	4.16	0.94	6.25	7.46
44	29051	9.75	0.284	91.2	2.66	2.27	0.63	5.65	7.35
45	29052	2.16	0.063	51.7	1.51	1.28	0.36	3.83	5.05
46	29052 DDH	2.36	0.069	83.9	2.45	0.46	0.68	6.62	9.15
47	29054 05-08	1.09	0.032	11.1	0.32	1.67	0.16	1.23	2.65
48	29055 (4.68	0.136	52.9	1.54	8.82	0.90	4.34	5.03
49	29056	5.20	0.152	44.1	1.29	8.90	0.86	3.85	4.76
50	29057 DDH	1.85	0.054	13.2	0.39	0.71	0.08	0.95	1.99
51	29058	0.80	0.023	7.6	0.22	0.15	0.04	0.45	1.01
52	29059 05-09	2.31	0.067	11.6	0.34	4.38	0.10	1.38	4.32
53	29060	2.47	0.072	19.2	0.56	7.36	0.15	2.09	4.15
54	29061	3.38	0.099	91.7	2.67	1.97	0.53	3.84	4.94
55	29062 DDH	1.84	0.054	15.8	0.46	0.33	0.20	1.32	1.74
56	29063	4.36	0.127	55.5	1.62	0.40	0.80	6.49	8.65
57	29064	7.23	0.211	61.7	1.80	0.47	0.93	4.86	6.96
58	29065	7.20	0.210	75.9	2.21	0.51	0.97	5.16	6.85
59	29066 NBH	0.18	0.005	2.3	0.07	0.21	0.01	0.07	0.12
60	29067	0.14	0.004	1.1	0.03	0.05	0.01	0.05	0.05
61	29068 05-03	1.67	0.049	9.2	0.27	2.51	0.14	0.53	0.92
62	29069	0.39	0.011	8.4	0.25	0.64	0.04	0.58	1.29
63	29070	0.57	0.017	15.1	0.44	1.74	0.13	1.04	3.25
64	29071	0.56	0.016	9.3	0.27	1.16	0.03	0.85	1.28
65	29068 Dup. No Tag	0.47	0.014			1			

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

Eco Tech LABORATORY LTD. Page 2

20-Oct-05

ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As (%)	Cu (%)	Pb (%)	(
QC DATA	.:								
Repeat:									
.1	29108	0.38	0.011						
6	29113	8.95	0.261						
7	29114	7.85	0.229						
8	29115	8.23	0.240						
10	29117	0.14	0.004	1.5	0.04	0.02	0.01	0.05	0
12	29119	2.76	0.080						
18	29125	9.26	0.270						
19	29126	8.86	0.258	234	6.82	0.53	1.05	5.72	6
21	29128	13.3	0.388						
22	29129	11.2	0.327						
30	29137	6.87	0.200						
35	29142	26.1	0.761						
35	29142	25.8	0.752						
36	29143	25.7	0.749	86.2	2.51	0.59	0.75	4.05	5
37	29144	11.8	0.344						
44	29051	9.70	0.283						
45	29052	2.10	0.061	51.7	1.51	1.19	0.35	3.84	5
48	29055	4.43	0.129						
54	29061	3.29	0.096	89.2	2.60	2.01	0.51	3.82	4
57	29064	7.06	0.206						
Beenlite									
Resplit: 1	29108	0.37	0.011						
36	29143	24.7	0.720	81.4	2.37	0.61	0.63	3.95	5
Standard		1.00	0.050						
OX140		1.83	0.053						
OX140		1.80	0.052						
SH13 CU106		1.35	0.039	120	4.00		1 40		
PB106				138 56.5	4.02 1.65		1.42	0.52	0
FBT00				50.5	1.05		0.62	0.52	0
							\frown		
					\bigcap		7		
				(DA	$\langle \rangle$		
							ATORY LT	D.	
JJ/kk					utta Jealo		~ /		
XLS/04				E	3.C. Certifi	ed Assaye	er		
			Fco 7	Tech LAB	ORATORY LTD				
			Lev	Page 3					

20-Oct-05

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 2005-1279

Bronx Ventures Inc. 6th Floor, 1199 W. Hastings Vancouver, BC V6E 3T5

No. of samples received: 65 Sample Type: Core Submitted by: J.W. Murton **Project #: Bronx**

Et #.	Tag #	Ag Al S	∕₀ As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo N	la %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y Zn
1	29108	5.2 1.1	7 5850	55	<5	2.90	2	21	26	585	7.40	<10	4.48	1442	3 (0.02	31	460	4806	35	<20	130	<0.01	<10	16	<10	<1 >10000
2	29109	13.5 0.3	3 >10000	40	<5	1.78	<1	20	23	1638	8.78	<10	2.23	1154	<1 (0.02	17	70	>10000	105	<20	80	<0.01	<10	6	<10	<1 >10000
3	29110	23.9 0.8	5 >10000	60	<5	1.74	<1	28	14	3688	>10	<10	2.81	1127	4 (0.01	24	970	>10000	145	<20	67	<0.01	<10	41	<10	<1 >10000
4	29111	>30 0.6	7 1390	70	<5	0.31	131	30	20	2013	>10	<10	0.90	300	1 (0.01	16	260	>10000	20	<20	13	<0.01	<10	24	<10	<1 >10000
5	29112 DDH	>30 0.2	2 >10000	110	<5	1.27	319	18	18	6694	>10	<10	1.22	1003	<1 <	0.01	8	620	>10000	195	<20	49	<0.01	<10	29	<10	<1 >10000
6	29113	>30 0.0	6 >10000	95	<5	0.84	369	18	13	6869	>10	<10	0.78	1160	12 <	0.01	26	<10	>10000	320	<20	30	<0.01	<10	21	<10	<1 >10000
7	29113		3 >10000	95	<5	0.89	315	13	10	6901	>10		1.03		<1 <				>10000	315			< 0.01			<10	<1 >10000
1	29114		7 >10000	95 95	<5	0.89	189	11	11	5399	12 10 100	<10	0.77		<1 <	200 C		1000	>10000		<20		< 0.01			<10	<1 >10000
0	29115		6 >10000	95 70	<5 <5	0.02	72	27	31	2422	>10	<10	0.05	62		0.01			>10000		<20		< 0.01			<10	<1 >10000
9		1.3 0.6		45	<5 5	1.64	<1	31	19	108	8.93		1.79	846	7 <			1160	474	<5	<20		< 0.01		50.22	<10	<1 384
10	29117	1.3 0.0	0 215	45	5	1.04	-1	51	19	100	0.95	-10	1.75	040	1 -	0.01	1.1	1100	7/7	.0	-20	02	0.01	10	20	10	
44	00110	0.6 2.4	0 220	75	15	1.03	<1	25	34	209	>10	-10	4.00	852	44 <	0.01	8	1010	338	<5	<20	48	<0.01	<10	40	<10	<1 241
11	29118			70	<5	2.05	<1	23	22	5546		<10	2.12			0.01			>10000	165	<20	- 3359		<10	10.00	<10	<1 >10000
12	29119 564	>30 0.6			<5 <5		<1	35	38	1201	>10		2.05	211		0.02		390	8236	35	<20			<10		<10	<1 9720
13	29120		7 >10000	50		0.22 0.54		33		7099		<10	0.63	523		0.02			>10000	285	<20			<10	3	<10	<1 >10000
14	29121 05-04		7 >10000	80	<5		210	32	23 55	7099 5296		<10	1.14	173		0.01			>10000		<20	2011 St. 1	< 0.01			<10	<1 >10000
15	29122	27.6 1.0	0 >10000	50	<5	0.19	<1	32	55	5296	9.60	~10	1.14	175	~ 1 1	0.02	55	200	~10000	200	~20		-0.01	-10	10	-10	1 10000
10	29123 DDH	F 4 0 0	1 7025	45	~E	0.12	-1	28	71	950	8.18	<10	-0.01	23	5 (0.01	68	510	2346	<5	<20	14	<0.01	<10	5	<10	<1 6221
16	29125	5.1 0.2		45	<5 <5		<1	20	75	1290	6.33	<10	0.41	290	6 <		69	500	7396	55	<20			<10		<10	<1 >10000
17			6 >10000	40		0.95 0.51	<1	16	20	5073		<10	0.41	400	7 <				>10000	245	<20		< 0.01	<10	21	<10	<1 >10000
18	29125		7 >10000	105	<5		<1 172	14		>10000		<10	2.12		46 <				>10000	550	<20		< 0.01	0.53		<10	<1 >10000
19	29126	>30 0.1		90 120	<5	2.41 1.70	109	31	23	6447	>10	100	1.60	486	36 <				>10000	200			< 0.01			<10	<1 >10000
20	29127	>30 0.6	9 2545	120	<5	1.70	109	51	23	0447	-10	10	1.00	400	30 4	0.01	51	-10	- 10000	200	-20	21	-0.01	10	22	.10	10000
21	29128	>30 0.3	6 >10000	120	<5	1.26	78	31	30	8808	>10	<10	1.18	403	48 <	0.01	102	<10	>10000	630	<20	34	< 0.01	<10	21	<10	<1 >10000
22	29129 DDH	>30 0.0	6 9785	105	<5	1.04	278	11	18	7923	>10	<10	0.83	799	<1 <	0.01	11	<10	>10000	220	<20	54	< 0.01	<10	27	<10	<1 >10000
23	29130 05-	>30 0.0		105	<5	1.61	372	10	17	6069	>10	<10	1.54	1092	28 <	0.01	102	<10	>10000	200	<20	94	< 0.01	<10	36	<10	<1 >10000
24	29131 05	>30 0.3				2.34	160	14	25	>10000	>10	<10	2.12	1066	36	0.01	72	<10	>10000	250	<20	58	< 0.01	<10	52	<10	<1 >10000
25	29132 /	>30 0.1				2.33		13	15	4859	>10	<10	2.81	982	51 <	0.01	70	<10	>10000	225	<20	24	< 0.01	<10	53	<10	<1 >10000
20	20102	00 0.1	2 2100	100	0	2.00																					
26	29133	>30 0.4	0 3525	125	<5	0.89	140	19	19	8930	>10	<10	1.11	472	59 <	0.01	83	800	>10000	300	<20	13	< 0.01	<10	40	<10	<1 >10000
20	29134	>30 0.4		100	<5	1.53	103	15		>10000	>10		1.86	949		0.01			>10000	420	<20	32	< 0.01	<10	58	<10	<1 >10000
28	29135 DDH	>30 0.3		75	<5	0.53	73	23	18	6130	>10			1187		0.02			>10000	35	<20	27	< 0.01	<10	10	<10	<1 >10000
	29135 05;		0 >10000	100	<5	0.36	197	19	29	7531	>10		0.87	809		0.01	27		>10000	95	<20			<10	15	<10	<1 >10000
29	20100		sec of sceneral set			0.88	295	13	30	4800	>10		0.87	900		0.01			>10000	90			< 0.01			<10	<1 >10000
30	29137	230 U.L	5 >10000	100	~5	0.00	290	15	30	4000	-10	~10	0.07	500	1 -	0.01	51	100	. 10000	50	20	54	0.01	10	20	. 0	

ECO TE	CH LABORAT	ORY LTD.					I	СРС	ERTI	FICATE C	OF AN	ALYSI	S AK	2005-1	279						Bronx	(Ventu	res In	ic.			
																									,		
Et #.	Tag #	Ag Al %	As	Ba		Ca %	Cd	Co	Cr		Fe %		Mg %	Mn	Mo Na %				Sb	Sn	Sr	Ti %	<u>U</u>	<u>V</u>	W	Y	Zn
31	29138 DDH	>30 0.11	5205	115	<5	1.09	314	14	23	5214	>10	<10	1.28	908	7 < 0.01	35			90	<20	52	< 0.01	<10	50	<10 <10	<1 6	>10000
32	20100	22.4 0.31	1100	130	<5	>10	4	3	53	2415	2.36	<10		1776	21 < 0.01	22			195	<20 <20			<10	144 93	<10 <10		3720 >10000
33		>30 0.40	2620	105	<5	5.27	63	12	51	3337	8.01	<10		1589	101 < 0.01) >10000) >10000	205 850	<20		< 0.01	<10 <10		<10		>10000
34	29141 06	>30 1.17	87,20	155	<5	2.59	147	16		>10000	>10	<10		1036 96	84 < 0.01	68 82	5 NOSOS	>10000	420	<20	1000 C		<10	57.023	<10		>10000
35	29142	>30 0.28	7855	125	<5	0.25	329	12	31	>10000	>10	<10	<0.01	90	17 <0.01	02											
36	29143	>30 0.42	5955	100	<5	0.12	123	17	15	7317	>10	<10	<0.01	39	20 < 0.01	52) >10000	165	<20	2		<10	13 년	<10		>10000
37	29144	>30 0.19	>10000	80	<5	0.35	169	26	34	5374	1.000	<10	0.08	174	<1 <0.01			>10000	130	<20			<10	11	<10		>10000
38 -	29145 DDH	>30 0.14		90	<5	0.39	15	21	26	2980	>10	<10	0.25	474	2 0.02			>10000	35	<20		< 0.01			<10		>10000
39	23140	9.0 0.84		55	<5	1.38	7	15	19	846	>10	<10	2.38	841	18 0.01	4			15	<20		< 0.01	3.57.5		<10		>10000
40	29147 <i>0</i> 5- 07	>30 0.44	>10000	70	<5	1.69	20	22	20	4206	>10	<10	2.14	1293	<1 <0.01	2	330) >10000	125	<20	74	<0.01	<10	2	<10		>10000
41	29148 /	20.1 0.86	>10000	80	<5	0.40	26	16	41	1790	>10	<10	1.42	551	14 <0.01	13	600	>10000	<5	<20	30	<0.01	<10	7	<10	<1	>10000
42	29149	>30 0.24	>10000	90	<5	0.33	127	16	31	4516	>10	<10	<0.01	108	<1 <0.01	29	1130	>10000	105	<20	21	< 0.01	<10	20	<10	1.27.1.811	>10000
43	29150	>30 0.14	>10000	75	<5	0.68	104	18	25	8848	>10	<10	0.51	1167	14 <0.01	41	2730	>10000	215	<20			<10	39	<10	151	>10000
44	29051	>30 0.18	>10000	115	<5	1.07	129	16	27	5753	>10	<10	0.83		6 <0.01			>10000	165	<20			<10	34	<10		>10000
45	29052 DDH	>30 0.33	>10000	75	<5	0.76	108	22	45	3586	>10	<10	0.82	514	7 0.01	31	1220	>10000	25	<20	28	<0.01	<10	27	<10	<1	>10000
	05-08																				~ 4	0.04		00	.10		10000
46	29053	>30 0.07	4485	55	<5	2.50	326	12	22	6290	- A-1550	1	2.36	1544	<1 <0.01	33) >10000	85	<20			<10	36	<10		>10000
47	29054	10.5 1.29		60	<5	0.58	<1	20	15	1479	>10	<10	2.06	266	11 < 0.01	9		>10000	30	<20			<10		<10		>10000
48	29055	>30 0.57		50	<5	2.03	<1	28	36	8845	>10		1.93		<1 0.01	24		>10000	225	<20	0.000	< 0.01		5 6	<10 <10		>10000 >10000
49	29056	>30 0.54		70	<5	1.53	<1	28	28	7995		<10	1.81		<1 <0.01	17) >10000) 9354	160 5	<20 <20		<0.01 <0.01		-	<10		>10000
50	29057 DDH	11.1 1.32	7135	55	<5	2.99	4	25	40	766	>10	<10	3.87	1366	<1 0.01	40	550	9354	5	~20	00	-0.01	<10	17	-10	~1	-10000
51	29058	7.8 0.85	1455	40	<5	2.16	26	19	45	417	7.50	<10	2.84	1429	5 0.02	34	230	4350	25	<20	58	<0.01	<10	9	<10	<1	>10000
52	29059	10.5 1.62	>10000	60	<5	0.53	<1	31	51	858	>10	<10	2.59	528	<1 0.01	48	330	>10000	25	<20	23	<0.01	<10	21	<10	253	>10000
53	29060	18.6 1.26	>10000	75	<5	1.79	<1	27	45	1289	>10	<10	2.46	999	<1 0.01	39	290) >10000	110	<20	53	<0.01	<10	17	<10	1.000	>10000
54	29061	>30 0.34	>10000	75	<5	2.05	37	11	20	5101	>10	<10	2.13	1446	30 < 0.01	65	<1(>10000	175	<20			<10	34	<10		>10000
55	29062 DDH	14.3 0.74	3250	35	<5	2.77	48	33	53	1906	>10	<10	2.85	1275	4 0.02	73	650) >10000	25	<20	59	<0.01	<10	15	<10	<1	>10000
	05-10		1000	100		4 00	077	45	0.4	7740	- 10	-10	4 40	750	-1 -0 01	20	200	>10000	10	~20	48	<0.01	~10	13	<10	-1	>10000
56	29063	>30 0.08	4020	100	<5	1.26	277	15	21	7716	>10		1.13	759	<1 <0.01	26) >10000) >10000	10 <5	<20 <20			<10	8	<10		>10000
57	29064	>30 0.12	4700	90	<5	0.66	168	13	29	9070	>10	<10	0.50	525	<1 0.01	28 72		>10000	<5	~20 <20			<10	11	<10		>10000
58	29065	>30 0.08	5130	95	<5	0.71	157	15	26	8952	>10	<10 <10	0.49	513 2392	<1 <0.01 7 0.02				10	<20			<10	67	<10	<1	973
59	29066	1.0 2.28	2135	45	<5	1.83	<1	44	107	98	9.25	100			7 0.02	- 35.5		5	10	<20			<10		<10	<1	485
60	29067 DDH	0.9 1.67 3	495	45	5	1.91	<1	40	93	85	7.16	<10	2.82	1933	7 0.02												0
61	29068	7.7 0.19	>10000	30	<5	0.34	<1	19	92	1262	6.17		0.18	257	6 0.02				45	<20			<10		<10	<1	9367
62	29069 (5.1 0.45	6390	30	<5	1.96	<1	19	31	309	6.44			2415	2 0.02				35	<20			<10	6	<10		>10000
63	29070	10.7 0.30	>10000	65	<5	2.66	6	49	37	1231	>10	<10		1969	6 0.02				35	<20		505.0	<10		<10		>10000
64	29071	7.0 0.10	>10000	25	<5	0.57	<1	7	73	358	3.93	<10	0.24	292	<1 <0.01				30	<20		<0.01	<10	<1	<10		>10000
65	29068	3.4 1.40	6130	65	<5	1.99	<1	41	83	309	>10	<10	2.83	2312	9 0.02	2 105	650) 2114	<5	<20	43	<0.01	<10	43	<10	<1	2474
	-																										

ECO TE	CH LABOR	ATORY LTD.					I	CP CI	ERTIF	ICATE (of an	ALYS	IS AK	2005-1	279						Bron	c Ventu	ires In	э.			
Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	2
	<u>ГА:</u>																										
Ponost																											
Repeat.	29108	5.2 1.14	5390	40	<5	3.27	1	21	27	525	6.78	<10	4.12	1322	<1	0.02	27 50	0 4306	25	<20	115	<0.01	<10	15	<10	<1 :	>1
10	29117	1.3 0.71	215	55	<5	1.52	<1	30	20	109	8.87	<10	1.98	855	7	0.01	9 110		<5	<20	58	<0.01	<10	29	<10	<1	
19	29126	>30 0.17	5075	80	<5	2.03	177	15		>10000	>10	<10	2.06	931	41	<0.01	97 <1	0 >10000	495	<20	76	<0.01	<10	72	<10	<1 :	>1
36	29143	>30 0.45		85	<5	0.12	133	20	18	7176	>10	<10	< 0.01	43	22	0.01	57 42	0 >10000	185	<20	<1	<0.01	<10	15	<10	<1 :	>1
45	29052	>30 0.36		80	<5	0.66	128	23	46	3560	>10	<10	0.87	514	7	0.01	25 120	0 >10000	25	<20	27	<0.01	<10	28	<10	<1 >	>1
54	29061	>30 0.36		80	<5	1.92	<1	11	20	5324	>10	<10	2.13	1442	20	<0.01	65 <1	0 >10000	160	<20	74	<0.01	<10	34	<10	<1 :	>1
Resplit:																											
1	29108	5.0 1.29	4080	50	<5	3.14	8	20	25	504	6.91	<10	4.70	1442	<1	0.02	28 41	0 4622	20	<20	137	<0.01	<10	17	<10	<1 >	
36	29143	>30 0.43		85	<5	0.12	103	18	28	7230	>10	<10	<0.01	42	19	<0.01	49 35	0 >10000	120	<20	<1	<0.01	<10	16	<10	<1 :	>1
Standaı	rd:									×																	
GEO '05	5	1.4 1.41	60	155	<5	1.39	<1	19	59	86	3.58	<10	0.58	502	<1	0.02	29 61		<5	<20	56	0.11	<10	68	<10	10	
GEO '05	5	1.5 1.46	60	140	<5	1.33	<1	19	60	84	3.53	<10	0.56	482	<1	0.02	28 57	0 22	<5	<20	53	0.11	<10	69	<10	9	

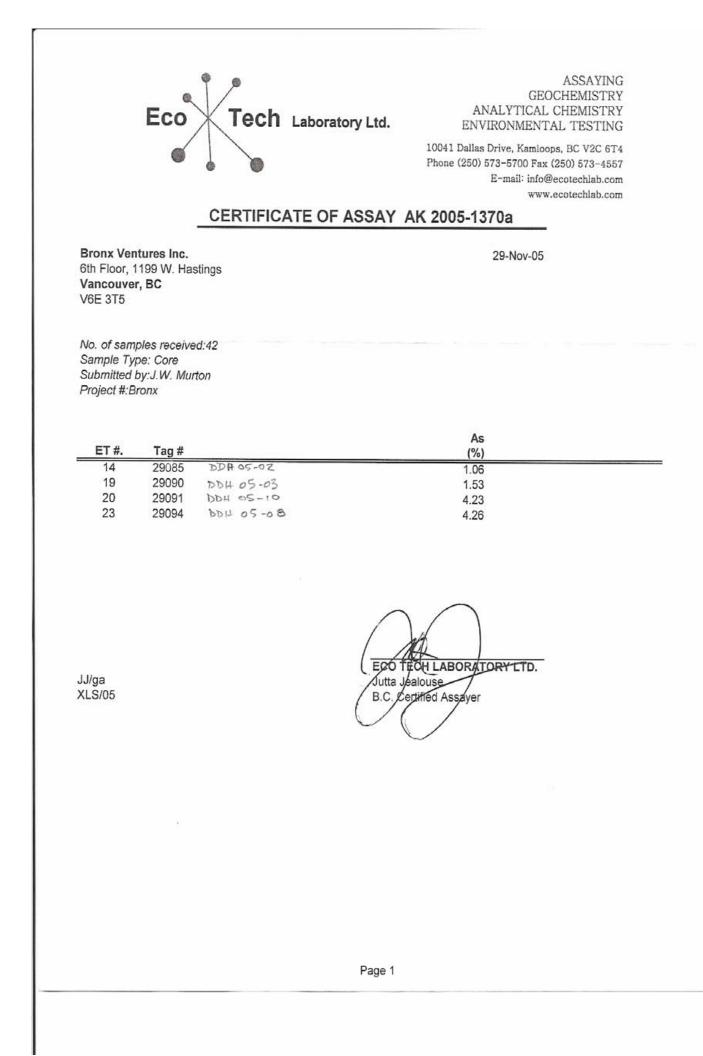
ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/kk df/1277 XLS/05

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

9-Nov-05

CERTIFICATE OF ASSAY AK 2005-1370


Bronx Ventures Inc. 6th Floor, 1199 W. Hastings Vancouver, BC V6E 3T5

No. of samples received:42 Sample Type: Core Submitted by:J.W. Murton Project #:Bronx

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ET #. WH Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As (%)	Cu (%)	Pb (%)	Zn (%)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				10-1	(()	(14)	(///	(10)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 29073								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 ADH_ 29074								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 ²⁵⁻⁰⁵ 29075	0.13							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 29076	0.44	0.013						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 29077	0.63	0.018						
9 129080 0.22 0.006 10 $\frac{1}{55H}$ 29081 0.44 0.013 1.4 11 $\frac{6}{5-64}$ 29082 0.53 0.015 12 (29083 0.55 0.016 13 $14 \frac{29084}{65-62}$ 29085 2.00 0.058 15 29086 0.03 0.001 16 $\frac{1}{55}$ 29088 0.68 0.020 18 $\frac{6}{5-62}$ 29099 0.52 0.015 19 29090 0.77 0.022 20 $\frac{1}{55+62}$ 29091 0.68 0.020 21 $\frac{6}{5-70}$ 29092 1.58 0.046 10.0 0.29 0.10 0.04 0.35 0.44 22 29093 1.95 0.057 23 $\frac{1}{55-2}$ 29094 2.29 0.067 1.68 1.75 24 $\frac{6}{65-2}$ 29095 0.07 0.002 25 $\frac{68}{29096}$ 0.08 0.002 26 29097 0.08 0.002 26 29097 0.08 0.002 27 $\frac{1}{55-62}$	7 / 29078	5.16	0.150	37.4	1.09				
10 bb# 29081 0.44 0.013 1.4 11 $o5-o6$ 29082 0.53 0.015 12 (29083 0.55 0.016 13 (29084 1.48 0.043 14 $o5-o2$ 29085 2.00 0.058 15 29086 0.03 0.001 16 bb H 29087 1.14 0.033 17 29088 0.68 0.020 18 $o5-o3$ 29089 0.52 0.015 19 29090 0.77 0.022 20 bb 29091 0.68 0.020 21 $o5-r0$ 29092 1.58 0.046 10.0 0.29 0.10 0.04 0.35 0.44 22 29093 1.95 0.057 23 bb 29094 2.29 0.067 1.68 1.75 24 $o5-$ 29095 0.07 0.002 26 29097 0.08 0.002 26 29097 0.08 0.002 27 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer		2.73	0.080						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.22	0.006						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.44	0.013						1.44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.53	0.015						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.55	0.016						
$15 \frac{65 \cdot 62}{29086} = 0.03 = 0.001$ $16 \frac{55 \cdot 62}{29087} = 1.14 = 0.033$ $17 = 29088 = 0.68 = 0.020$ $18 \cdot 65 \cdot 63 = 29089 = 0.52 = 0.015$ $19 = 29090 = 0.77 = 0.022$ $20 \frac{55 \cdot 62}{50992} = 1.58 = 0.046 = 10.0 = 0.29 = 0.10 = 0.04 = 0.35 = 0.44$ $22 = 29093 = 1.95 = 0.057$ $23 \frac{55 \cdot 62}{50994} = 2.29 = 0.067 = 1.68 = 1.76$ $24 \cdot 65 - 29095 = 0.07 = 0.002$ $25 = 68 = 29096 = 0.08 = 0.002$ $ECO \cdot TECH \text{ LABORATORY LTD.}$ $Jutta \text{ Jealouse}$ B.C. Certified Assayer			0.043						
15 29086 0.03 0.001 $16 b H 29087 1.14 0.033$ $17 29088 0.68 0.020$ $18 o 5 - o 3 29089 0.52 0.015$ $19 29090 0.77 0.022$ $20 b H 29091 0.68 0.020$ $21 o 5 - 10 29092 1.58 0.046 10.0 0.29 0.10 0.04 0.35 0.44$ $22 29093 1.95 0.057$ $23 b H 29094 2.29 0.067 1.68 1.75$ $24 o 5 - 29095 0.07 0.002$ $25 o 6 29096 0.08 0.002$ $26 29097 0.08 0.002$ $ECO TECH LABORATORY LTD.$ $Jutta Jealouse$ B.C. Certified Assayer	05-0/		0.058						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 29086								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DD Ht								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 29088								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
21 o5 -r0 29092 1.58 0.046 10.0 0.29 0.10 0.04 0.35 0.44 22 29093 1.95 0.057 1.68 1.75 23 b)H 29094 2.29 0.067 1.68 1.75 24 o5 - 29095 0.07 0.002 1.68 1.75 26 29097 0.08 0.002 1.68 1.75 26 29097 0.08 0.002 1.68 1.75 26 29097 0.08 0.002 1.68 1.75 26 29097 0.08 0.002 1.68 1.75 27 0.08 0.002 1.68 1.75			0.022						
22 29093 1.95 0.057 23 bpH 29094 2.29 0.067 24 o5- 29095 0.07 0.002 25 o8 29096 0.08 0.002 26 29097 0.08 0.002 ECO TECH LABORATORY LTD. Juita Jealouse B.C. Certified Assayer									
23 bbH 29094 2.29 0.067 1.68 1.75 24 o 5 - 29095 0.07 0.002 25 o8 29096 0.08 0.002 26 29097 0.08 0.002 0.002 0.002 0.002 0.002 ECOTECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer				10.0	0.29	0.10	0.04	0.35	0.44
24 05- 29095 0.07 0.002 25 08 29096 0.08 0.002 26 29097 0.08 0.002 ECOTECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer									
25 08 29096 0.08 0.002 26 29097 0.08 0.002 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer	99							1.68	1.75
26 29097 0.08 0.002 ECOTECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer									
ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer							\cap		
B.C. Certified Assayer	26 29097	0.08	0.002		/	$\bigcap n$			
B.C. Certified Assayer					/	AN			
B.C. Certified Assayer					EC	O TECH LA	BORATOR	Y LTD.	
					Jut	ta Jealouse			
Page 1					/B.C	C. Certified /	Assayer		
Page 1					(/		
i age i				Page 1		-			
				raye					

9-Nov-05

Dionx rei	interes inc. A	10-10/0					3-INOV-05		
ET #. 🕴	b⊮ Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As (%)	Сu (%)	Pb (%)	Zn (%)
	08 29098	0.07	0.002	(3, 4)	()	(70)	(70)	(70)	(70)
	-07 29099	0.16	0.005						
29 M	27201	< 0.03	< 0.001						
30	5_ 27202	0.13	0.004						
31 0	9 27203	0.16	0.005						
32 ,	27204	0.14	0.004						
33	27205	0.22	0.006						
34	27206	0.45	0.013						
35	27207	0.34	0.010						
36	27208	0.11	0.003						
37 38	27209	0.15	0.004						
39	27210 27211	0.54	0.016						
40	27211	0.39 0.21	0.011 0.006						
41	27213	0.21	0.008					4 07	4 50
42	27214	0.40	0.010					1.07	1.53
7		0.40	0.012						
OC DATA.						040			
QC DATA: Repeat:	=								
1	29072	2.03	0.059						
7	29072	4.96	0.059						
8	29079	2.75	0.080						
10	29081	0.43	0.013						1.44
13	29084	1.54	0.045						1.44
14	29085	1.93	0.056						
16	29087	1.15	0.034						
19	29090	0.77	0.022						
22	29093	1.94	0.057						
23	29094	2.30	0.067						
36	27208	0.11	0.003						
41	27213	0.37	0.011						
Resplit:									
1	29072	1.97	0.057						
36	27208	0.10	0.003						
Standard:									
SH13		1.31	0.038						
OX140		1.90	0.055						
PB106				58.10			0.62	0.52	0.84
				1914/1910/07/97			1000000		
						-			
JJ/ga XLS/05				Jutta	DTECH LAB	/	LTD.		
			Ec	o Tech	Certified As	şayer			
				Page 2					

0-11UV-UU

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

^{Phone:} 250-573-5700 ^{Fax} : 250-573-4557

DDA

ICP CERTIFICATE OF ANALYSIS AK 2005-1370

Bronx Ventures Inc. 6th Floor, 1199 W. Hastings Vancouver, BC V6E 3T5

Values in ppm unless otherwise reported

No. of samples received:42 Sample Type: Core Submitted by:J.W. Murton Project #:Bronx

Et #	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P Pb	Sb	C		T1 6 /					
1	05-04 29072	4.3	1.57	1670	50	<5	1.83	<1	24	7		7.73	<10	2.81	235	22	0.02	13 17	1.12		Sn	Sr	TI %	<u> </u>	<u>v</u>	W	Y	Zn
2	29073	1.0	0.64	1245	45	10	0.69	2	43	79	67	8.04	<10	0.65	354	6	0.02	95 7		10	<20		< 0.01	<10	1.	<10	<1	117
3	29074	1.5	0.61	305	30	10	0.38	<1	44	92	38	6.79	<10	0.46	175	6	0.03	98 100	States - States	<5	<20		< 0.01	<10	20	<10	<1	307
4	29075	1.9	0.36	290	35	5	0.18	2	33	73	63	8.66	<10	0.19	80	8	0.04	79 29		<5	<20		< 0.01	<10	17		<1	241
5	29076	6.1	0.35	8900	45	<5	0.19	18	34	113	0.000.000	9.42		0.13	94	5	0.03	68 38		<5	<20		< 0.01	<10	10	<10	<1	188
	05-05							19.5	7.3	0.00		0.12	10	0.10	54		0.05	00 30	50 /10	10	<20	11	<0.01	<10	10	<10	<1	3320
6	29077	5.6	0.23	9860	30	<5	0.28	30	22	81	353	5.67	<10	0.14	129	2	0.02	63 22	20 2488	20	<20	45	-0.04				0.02	- and a second
7	29078	>30	1.32	7540	40	<5	1.08	37	25		2166	9.58		1.97	376	41	0.02	31 87		20 85	<20 <20		< 0.01	<10	6	<10	<1	5492
8	29079	7.5	1.80	7610	35	<5	1.04	11	23	14		8.58	<10	2.70	321	13	0.01	9 94		15	<20	68		<10	48	<10	<1	9777
9	29080	1.2	1.65	8735	50	<5	2.14	10	17	39	69	6.25	<10	3.54		11	0.02	6 98		5	<20	151	<0.01 <0.01	<10	38	<10	<1	1529
10	29081	5.5	1.33	8225	40	<5	2.24	54	34	117	477	7.82			2039	<1	0.03	97 132		30	<20	82		<10 <10	22 39	<10	<1	317
	05-06														2000		0.00	57 152	0110	50	-20	02	-0.01	~10	29	<10	<1	>10000
11	29082	6.2	0.52	3630	55	<5	4.39	22	35	55	813	8.24	<10	5.30	4093	<1	0.04	74 90	00 4132	35	<20	204	< 0.01	<10	37	<10	<1	5404
12	29083	19.1	0.23	3785	45	<5	2.76	19	30	75	2666	8.61	<10	2.67		4	0.03	57 1	1000 Contraction (1997)	165	<20		< 0.01	<10	25	<10 <10	22.2	5434
13	29084	11.2	0.38	4400	45	<5	1.95	19	25	26	462	8.49	<10	1.11	648	16	0.02	16 95		15	<20		< 0.01	<10	15	<10	<1 <1	4443
14	05- 29085	8.4	0.57	>10000	35	<5	0.23	102	20	76	371	7.00	<10	0.52	129	3	0.03	25 12		60	<20		<0.01	<10	5	<10	<1	3216 6347
15	02. 29086	0.4	3.66	145	65	30	2.04	<1	26	53	89	>10	<10	6.29	938	25	0.01	9 18		<5	<20		< 0.01	<10	61	<10	<1	108
																		0 100	104	-0	-20	.4	-0.01	-10	01	-10	-1	108
16	05- 29087	3.5		8610	25	<5	0.07	15	14	70	65	4.89	<10	0.06	41	4	0.02	20 19	0 1424	20	<20	4	< 0.01	<10	2	<10	<1	1187
17	29088	4.0		2195	30	<5	0.18	12	18	109	228	6.70	<10	0.20	90	4	0.02	28 10		<5	<20		<0.01	<10	3	<10	<1	2231
18	/ 29089	5.6	10.000	5260	20	<5	0.28	17	8	107	628	3.06	<10	0.16	130	<1	0.02	15 <		30	<20	1.151	<0.01	<10	1	<10	<1	3023
19	29090			>10000	30	<5	0.45	28	20	120	473	5.39	<10	0.41	217	2	0.03	40 27	70 3382	25	<20		< 0.01	<10	5	<10	<1	3518
20	(29091	3.6	0.46	>10000	30	<5	2.42	46	16	98	693	4.48	<10	1.50	1568	<1	0.02	48 35	50 5212	35	<20	72	< 0.01	<10	13	20	<1	7472
	05-10																											
21	(29092	9.3		1030	65	<5	0.43	16	35	32	399	>10	<10	0.37	269	27	0.02	68 72	20 3540	<5	<20	21	< 0.01	<10	30	<10	<1	4241
22	29093	10.3		1615	60	<5	0.96	9	25	29	261	9.46	<10	1.99	501	16	0.02	23 95	50 1942	25	<20	39	< 0.01	<10	51	<10	<1	2155
23	29094	8.9	-	>10000	45	<5	0.43	258	27	47	2213	9.46	<10	3.34	371	<1	0.02	35 11	0 >10000	65	<20	16	< 0.01	<10	16	<10	<1	>10000
24	29095	0.6		185	70	<5	1.89	1	40	29	113	>10	<10	2.83	1198	12	0.03	12 129	0 232	<5	<20	94	< 0.01	<10	33	<10	<1	215
25	29096	3.7	1.19	375	80	<5	1.71	15	43	49	762	>10	<10	2.68	989	12	0.02	12 102	20 324	120	<20	78	< 0.01	<10	29	<10	<1	2751
	05-08																											10500500
26	29097	0.6		130	80	25	3.02	4	18	40	43	>10	<10	5.74	1634	39	0.02	15 156	60 252	20	<20	161	< 0.01	<10	38	<10	<1	127
27	29098	0.4		145	90	<5	4.12	<1	13	39	86	>10	<10	7.98	2588	32	0.01	3 82	20 220	<5	<20	212	< 0.01	<10	48	<10	<1	143
28	05-07 29099	0.8		140	80	25	1.71	<1	22	46	48	>10	<10	6.47	1360	32	0.01	5 73	30 186	<5	<20		< 0.01	<10	53	<10	<1	115
29	15- 27201	0.5		135	50	10	4.52	<1	49	88	116	8.30	<10	2.90	2017	7	0.05	115 67	70 30	<5	<20	81	< 0.01	<10	30	<10	<1	74
30	69 27202	0.4	1.07	105	40	10	2.89	<1	48	120	104	7.98	<10	2.58	1599	4	0.06	97 74	40 42	<5	<20	59	< 0.01	<10	44	<10	<1	82

CO TECH	LABORA	TOR	LTD.					1	ICP C	ERTI	FICAT	EOF	ANAL	YSIS .	AK 200	5-137	0						Bron	x Vent	ures li	1C.			
Et #.	Tag #		I AI %		_	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	e.	6 -	0-	T ' 0/					
31	27203		3 1.10			<5		<1	46	104	121	7.57		2.44		6	0.07	101	740	40	Sb	_		Ti %		<u>v</u>		Y	-
32	27204		0.83			10		5	28	37	144	>10		1.51	622		0.04	11	540	908	<5 <5	<20 <20	61			50		<1	
34	27205		3.03			<5		<1	42	33	89	>10	<10	5.55	1403	9	0.03		1400	134	<5			< 0.01		16		<1	
0.5	27206		3.77			<5		2	65	218	1111	>10	<10		1051		0.02		1180	2472	10	<20		< 0.01		123		<1	
35 064	27207	3.1	2.84	1030	60	<5	2.47	5	55	190	379	>10	<10	4.51	1436		0.03		1420	1004	<5	<20 <20		< 0.01			<10	<1	
05-0			2 20													Ū	0.00	100	1420	1004	-5	~20	113	<0.01	<10	65	<10	<1	2
36	27208		2.26	1 13553	1.527	<5	2.28	37	34	113	2935	9.14	<10	5.64	2971	4	0.04	106	830	6360	55	-20	101			-			
37	27209		2.09		50	<5	2.13	34	37	107	1067	9.09	<10		2630		0.04	105	900	2786		<20		< 0.01		52	0.00	<1	
38	27210		1.63		55	<5	1.06	10	31	100	346	>10	<10		2480	21	0.03				20	<20		< 0.01		48	<10	<1	40
39	27211		0.32		65	<5	0.54	13	30	70	346		<10	1.10	635		0.02	104		1400	<5	<20		< 0.01			<10	<1	20
40	27212	10.4	0.37	935	50	<5	1.33	34	25	60	1053	9.34			1759		0.02		660	2096	<5	<20		< 0.01			<10	<1	20
and I										0.0		0.01	.10	6.64	1755	0	0.03	69	630	5348	5	<20	107	<0.01	<10	12	<10	<1	74
41	27213		0.36		50	<5	0.78	62	26	106	1770	>10	<10	0.37	227	8	0.03	70	4770	- 10000				3.5					
42	27214	6.7	0.34	2780	65	5	0.60	16	61		185	>10	1.1.1.7.1	0.16			0.03	200	1//0	>10000	<5	<20		< 0.01			<10	<1	>100
										1000		10	.10	0.10	102	17	0.05	206	1970	768	<5	<20	72	< 0.01	<10	20	<10	<1	15
DATA:																													
split:	λ.																												
1	29072	3.8	1.60	1320	30	20	1.78	4	27	14	92	7.69	<10	2.76	243	18	0.02	10	2070	288	<5	<20	88	< 0.01	<10	36	<10	5	1
peat:																						20	00	-0.01	410	50	-10	5	1
1	29072	13	1.40	1/10	45	-F	1.00	9		22																			
10	29081		1.33	1410	45	<5	1.68	1	24	7		7.37	<10	2.57	227	20	0.02	11	1720	220	10	<20	90	< 0.01	<10	32	<10	<1	1
19	29090			6760 >10000	45	<5	2.47	50		118		7.20	<10	4.26	2117	<1	0.03	91	1290	8714		<20		< 0.01	<10		<10		>100
36	27208		2.08	450	20	<5	0.49	30		128		5.79		0.43		6	0.03	44	310	3832	50	<20	15	< 0.01	<10		<10	<1	34
00	27200	5.5	2.00	400	50	<5	2.09	34	35	110	2875	8.85	<10	5.12	2809	3	0.03	100	810	5862	30	<20		<0.01			<10	<1	84
ndard:																													
O '05		1.5	1.57	55	170	<5	1.50	<1	19	60	84	4.03	<10	0.79	617	<1	0.04	29	690	22	<5	<20	54	0.10	<10	69	<10	10	
																									~				
																					/	\sum	n						
																					CQ7	ECH	LABO	RATO	RYLT	D.			
ga																					utta J	ealbu	se		1				

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2005-1614

Bronx Ventures Inc. 6th Floor, 1199 W. Hastings Vancouver, BC V6E 3T5

No. of samples received: 75 Sample Type: Core Submitted by: Wayne Murton **Project #: Bronx**

ET #.	Tag #		Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As (%)	Pb (%)	Zr (%)
1		DDH 05-01	0.85	0.025					
2	27216		0.27	0.008					
3	27217	604 05-02	0.34	0.010					
4	27218		0.13	0.004					
5	27219	DDH 05-09	0.81	0.024					1.39
6	27220	DDH 05-08	0.08	0.002					
7	27221	JUR CJ - C	0.82	0.024					
8	27222	00H 05-07	< 0.03	< 0.001					
9	27223	ODH. DA1	0.11	0.003					
10 🗂	27224	Calment at the	0.05	0.001					
11	27225	1	0.12	0.003					
12	27226		0.17	0.005					
13	27227		0.14	0.004					
14	27228		0.32	0.009					
15	27229	DBH	0.41	0.012					
16	27230		0.53	0.015					
17	27231	05-11	1.28	0.037					
18	27232		1.41	0.041	50.8	1.48			
19	27233		0.22	0.006					
20	27234		0.19	0.006					
21	27235		0.09	0.003					
22	27236		0.14	0.004					
23	27237		0.14	0.004					
24	27238		0.12	0.003					
25	27239		0.95	0.028			3.23		1.8
26	27240		0.71	0.021			1.86		
27	27241		0.08	0.002	Ju	CO TECH LA tta Jealouse C. Certified A	/	Y LTD.	
				Page 1	C		/		

19-Jan-06

19-Jan-06

ET #.	Tag #		Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As (%)	Pb (%)	Zn (%)
	27242			0.002	(9/1)	(02/1)	(78)	(70)	(70)
28 29	27242	DBH 05-11	0.08 0.24	0.002					
30	27243	1	2.64	0.077	119	3.47	2.88	3.65	4.84
31	27245	<pre></pre>	0.12	0.003	110	0.41	2.00	0.00	
32	27246	(0.04	0.001					
33	27247	DDH	0.03	0.001					
34	27248	05-14	0.05	0.001					
35	27249	03-14	0.12	0.003					
36	27250		0.46	0.013					
37	28551		0.29	0.008					
38	28552		4.85	0.141	61.2	1.79		3.74	4.34
39	28553		5.05	0.147	30.9	0.90		1.24	1.63
40	28554		0.28	0.008					
41	28555		0.06	0.002					
42	28556		<0.03	<0.001					
43	28557		<0.03	<0.001					
44	28558		<0.03	< 0.001					
45	28559		0.10	0.003					
46	28560		< 0.03	< 0.001					
47	28561	L	0.06	0.002					
48	28562	DDH	< 0.03	< 0.001					
49	28563	05-15	< 0.03	< 0.001					
50	28564	03-1)	0.06	0.002					
51	28565	1	0.16	0.005					
52 53	28566 28567		0.19 12.2	0.006 0.356	59.1	1.72	7.15	4.24	5.48
54	28568		0.07	0.002	00.1	1.72	1.10	1.2.1	0.10
55	28569		0.07	0.002					
56	28570		0.14	0.004					
57	28571	1	0.35	0.010					
58	28572		0.36	0.010					
59	28573		0.12	0.003					
60	28574	\ \	0.49	0.014					
61	28575	DD17	0.98	0.029				1.37	
62	28576	05-12	0.40	0.012					
63	28577	1	0.31	0.009					
64	28578	1	0.48	0.014					
65	28579		5.70	0.166			15.5	2.85	5.75
66	28580		1.53	0.045			2.35		
67	28581		0.27	0.008					
68	28582		0.22	0.006					
69	28583		0.42	0.012					
70	28584		0.36	0.010					
						-	$\langle \rangle$		
							./		
					/	10	\$/ _		
					f	Att			
					E	CO TECH L	ABORATOR	Y LTD.	
						utta Jealouse			
					B	C. Certified			
		() ()	Ec	o Tech LABO Page 2	RATORY LTD.				
				Fage 2			New Po		

Bronx Ventures Inc. AK5-1614

19-Jan-06

71 28586 bbH 0.67 0.017 1.63 72 28587 0.10 0.003 1.63 74 28589 0.04 0.001 1.63 75 28589 -0.03 -0.001 0.003 90 20 DATA: -0.03 -0.001 0.001 91 27219 0.85 0.024 0.024 10 27224 0.05 0.001 1.7 118 27232 1.39 0.041 19 19 27233 0.22 0.006 0.03 38 28553 5.14 0.150 0.53 39 28553 5.14 0.160 0.53 53 28567 11.9 0.347 53 53 28567 12.5 0.365 0.58 0.017 71 28585 0.58 0.017 0.55 0.75 0.168 66 28569 1.54 0.024 0.76 0.78 Standard: 0X140 1.87 0.055 0.78	ET #.	Tag #		Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As (%)	Pb (%)	2 (%
72 28586 e ⁵ -f ² 0.00 0.003 74 28588 0.04 0.001 75 28589 <0.03			DDH					1.63		
74 28588 0.04 0.001 75 28589 <0.03			05-12							
75 28589 <0.03			1							
D2C DATA: Repeat: No. 1 27215 0.85 0.025 5 27219 0.82 0.024 10 27224 0.05 0.001 17 2731 1.31 0.038 18 27232 1.39 0.041 19 27233 0.22 0.006 30 27244 2.65 0.077 36 27250 0.45 0.013 38 28552 4.74 0.138 39 28567 1.19 0.347 53 28567 1.5 0.365 54 28568 0.07 0.002 65 28579 5.75 0.168 66 28580 1.54 0.042 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: 0X140 1.87 0.055 0X140 1.85 0.054 PD10.5 </td <td></td> <td></td> <td>(</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			(
Repeat: 1 27215 0.85 0.025 5 27219 0.82 0.024 10 27224 0.05 0.001 17 27231 1.31 0.038 18 27232 1.39 0.041 19 27233 0.22 0.006 30 27244 2.65 0.077 36 27250 0.445 0.103 38 28552 4.74 0.138 39 28553 5.14 0.160 53 28567 1.9 0.347 53 28567 1.5 0.365 54 28568 0.07 0.002 65 2859 5.75 0.168 66 28580 1.54 0.024 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: 0.055 0.78 OX140 1.87 0.055 OX140	75	28589	_	<0.03	<0.001					
1 27215 0.85 0.025 5 27219 0.82 0.024 10 27224 0.05 0.001 17 27231 1.31 0.038 18 27232 1.39 0.041 19 27233 0.22 0.006 30 27244 2.65 0.077 36 27250 0.45 0.013 38 28552 4.74 0.138 39 28553 5.14 0.150 45 28559 0.10 0.003 53 28567 11.9 0.347 53 28567 12.5 0.365 54 28588 0.077 0.002 65 28579 5.75 0.168 66 28580 1.54 0.045 71 28585 0.58 0.017 Resplit: 1 27215 0.84 0.024 36 27250 0.42 0.012 71 28585 0.52 0.018 Standard: OX140 1.87 0.055 OX140 1.85 0.054 PD10.5 0.78										
5 27219 0.82 0.024 10 27224 0.05 0.001 17 2723 1.31 0.038 18 27232 1.39 0.041 19 27233 0.22 0.006 30 27244 2.65 0.077 36 27250 0.45 0.013 38 28552 4.74 0.138 39 28553 5.14 0.150 45 28559 0.10 0.003 53 28567 11.9 0.347 53 28567 12.5 0.365 54 28568 0.07 0.002 65 28579 5.75 0.168 66 28580 1.54 0.045 71 28585 0.58 0.017 Resplit: 1 27215 0.84 0.024 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: OX140 1.87 0.055 OX140 1.85 0.054 PD10.5 0.78 ECO TECH LABORATORY LTD. Juta Jealouse B.C. Certified Assayer										
10 27224 0.05 0.001 17 27231 1.31 0.038 18 27232 1.39 0.041 19 27233 0.22 0.006 30 27244 2.65 0.077 36 27250 0.45 0.013 38 28552 4.74 0.138 39 28553 5.14 0.150 45 28569 0.10 0.003 53 28567 12.5 0.385 54 28568 0.07 0.002 65 28579 5.75 0.168 66 28580 1.54 0.024 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: OX140 1.87 0.055 OX140 1.89 0.055 OX140 1.85 0.054 PD10.5 0.78 ECO TECH LABORATORY LTD. Julta Jealouse B.C. Certified Assayer										
17 27231 1.31 0.038 18 27232 1.39 0.041 19 27233 0.22 0.006 30 27244 2.65 0.077 36 27250 0.45 0.013 38 28552 4.74 0.138 39 28553 5.14 0.150 45 28559 0.10 0.003 53 28567 11.9 0.347 53 28567 12.5 0.365 54 28568 0.07 0.002 65 28579 5.75 0.168 66 28580 1.54 0.045 71 28585 0.58 0.017 Resplit: 1 27215 0.84 0.024 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: 0X140 1.87 0.055 0X140 1.89 0.055 0X140 1.87 0.055 0.78										1.
18 27232 1.33 0.041 19 27233 0.22 0.006 30 27244 2.65 0.077 36 27250 0.45 0.013 38 28552 4.74 0.138 39 28553 5.14 0.150 45 28559 0.00 0.003 53 28567 12.5 0.365 54 28568 0.07 0.002 65 28579 5.75 0.168 66 23580 1.54 0.045 71 28585 0.62 0.018 Standard: 0X140 1.87 0.055 0.78 UJ/kk kLS/04 Likk KLS/04										
19 27233 0.22 0.006 30 27244 2.65 0.077 36 27250 0.45 0.013 38 28652 4.74 0.138 39 28653 5.14 0.150 45 28559 0.10 0.003 53 28567 12.5 0.365 54 28568 0.07 0.002 65 28579 5.75 0.168 66 28580 1.54 0.045 71 28585 0.58 0.017 Resplit: 1 27215 0.84 0.024 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: 0X140 1.87 0.055 0X140 1.87 0.055 0X140 1.85 0.054 0.78 ECO TECH LABORATORY LTD. JUKk KLSJ04										
30 27244 2.65 0.077 36 27250 0.45 0.013 38 28552 4.74 0.138 39 28553 5.14 0.150 45 28559 0.10 0.003 53 28567 12.5 0.385 54 28568 0.07 0.002 65 28579 5.75 0.168 66 28580 1.54 0.045 71 28585 0.58 0.017 Resplit: 1 27215 0.84 0.024 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: OX140 1.87 0.055 OX140 1.85 0.054 PD10.5 0.78 0.78										
36 27250 0.45 0.013 38 28552 4.74 0.138 39 28553 5.14 0.150 45 28559 0.10 0.003 53 28567 11.9 0.347 53 28567 12.5 0.365 54 28568 0.07 0.002 65 28579 5.75 0.168 66 28580 1.54 0.024 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: 0X140 1.87 0.055 0.78 0X140 1.89 0.055 0.78 0JJkk KLS/04 1.85 0.054										
38 28552 4.74 0.138 39 28553 5.14 0.160 45 28559 0.10 0.003 53 28567 12.5 0.365 54 28568 0.07 0.002 65 28579 5.75 0.168 66 28580 1.54 0.045 71 28585 0.58 0.017 Resplit: 1 27215 0.84 0.024 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: 0X140 1.87 0.055 0X140 1.85 0.054 PD10.5 0.78 0.78										
39 28553 5.14 0.150 45 28559 0.10 0.003 53 28567 12.5 0.365 54 28568 0.07 0.002 65 28579 5.75 0.168 66 28580 1.54 0.045 71 28585 0.58 0.017 Resplit: 1 27215 0.84 0.024 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: 0X140 1.87 0.055 0X140 1.89 0.055 0X140 1.85 0.054 PD10.5 0.78 0.78										
45 28559 0.10 0.003 53 28567 11.9 0.347 53 28567 12.5 0.365 54 28588 0.07 0.002 65 28579 5.75 0.168 66 28580 1.54 0.045 71 28585 0.58 0.017 Resplit: 1 27215 0.84 0.024 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: OX140 1.87 0.055 OX140 1.89 0.055 OX140 1.85 0.054 PD10.5 0.78 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer										
53 28567 11.9 0.347 53 28567 12.5 0.365 54 28568 0.07 0.002 65 28579 5.75 0.168 66 28580 1.54 0.045 71 28585 0.58 0.017 Resplit: 1 27215 0.84 0.024 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: 0X140 1.87 0.055 0X140 1.85 0.054 PD10.5 0.78 0.78										
53 28567 12.5 0.365 54 28588 0.07 0.002 65 28579 5.75 0.168 66 28580 1.54 0.045 71 28585 0.58 0.017 Resplit: 1 27215 0.84 0.024 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: 0X140 1.87 0.055 0X140 1.89 0.055 0X140 1.85 0.054 PD10.5 0.78										
54 28568 0.07 0.002 65 28579 5.75 0.188 66 28580 1.54 0.045 71 28585 0.58 0.017 Resplit: 1 27215 0.84 0.024 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: OX140 1.87 0.055 OX140 1.85 0.054 PD10.5 0.78										
65 28579 5.75 0.168 66 28580 1.54 0.045 71 28585 0.58 0.017 Resplit: 1 27215 0.84 0.024 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: OX140 1.87 0.055 OX140 1.85 0.054 PD10.5 0.78 0.78										
66 28580 1.54 0.045 71 28585 0.58 0.017 Resplit: 1 27215 0.84 0.024 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: OX140 1.87 0.055 OX140 1.89 0.055 OX140 1.85 0.054 PD10.5 0.78										
71 28585 0.58 0.017 Resplit: 1 27215 0.84 0.024 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: OX140 1.87 0.055 OX140 1.89 0.054 PD10.5 0.78										
1 27215 0.84 0.024 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: OX140 1.87 0.055 OX140 1.89 0.055 OX140 1.85 0.054 PD10.5 0.78 IJJ/kk KLS/04 B.C. Certified Assayer										
1 27215 0.84 0.024 36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: OX140 1.87 0.055 OX140 1.89 0.055 OX140 1.85 0.054 PD10.5 0.78	ocnlit.									
36 27250 0.42 0.012 71 28585 0.62 0.018 Standard: 0X140 1.87 0.055 0X140 1.85 0.054 0X140 1.85 0.054 0D10.5 0.78 JJ/kk KLS/04 OLY 10.5		27215		0.84	0.024					
71 28585 0.62 0.018 Standard: 0X140 1.87 0.055 0X140 1.89 0.054 0X140 1.85 0.054 0D10.5 0.78										
OX140 OX140 OX140 PD10.5 1.87 0.055 1.89 0.054 0.78 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer										
OX140 OX140 PD10.5 1.85 0.054 0.78 I.85 0.054 0.78 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer	andard:									
0X140 PD10.5 0.054 0.78	OX140			1.87	0.055					
PD10.5 0.78	OX140			1.89	0.055					
JJ/kk KLS/04 JUITA Jealouse B.C. Certified Assayer	OX140				0.054					
JJ/kk Jutta Jealouse KLS/04 B.C. Certified Assayer								0.78		
JJ/kk Jutta Jealouse KLS/04 B.C. Certified Assayer										
JJ/kk Jutta Jealouse XLS/04 B.C. Certified Assayer										
JJ/kk Jutta Jealouse KLS/04 B.C. Certified Assayer								\cap		
JJ/kk Jutta Jealouse KLS/04 B.C. Certified Assayer						/	A			
JJ/kk Jutta Jealouse KLS/04 B.C. Certified Assayer							0)G	R	_	
KLS/04 B.C. Certified Assayer						E	CO TECH LÀ	BORATOR	Y LTD.	
						Ju	itta Jealouse	/		
Eco Tech LABORATORY LTD. Page 3	S/04					B.	C. Certified A	Assayér		
Eco Tech LABORATORY LTD. Page 3						(
Page 3				Ec	o Tech LABO	RATORY LTD.				
					Page 3					

20-Dec-05

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2005-1614

Bronx Ventures Inc. 6th Floor, 1199 W. Hastings Vancouver, BC V6E 3T5

Attention: Wayne Murton

No. of samples received: 75 Sample Type: Core Submitted by: Wayne Murton **Project #: Bronx**

Values in ppm unless otherwise reported

	PP	11																											
Et #.	Tag #		AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	27215 05	-013.6	0.25	235	50	5	2.51	5	7	50	69	5.87	<10	1.13	381	13	0.02	38	1860	158	<5	<20	69	< 0.01	<10	27	<10	<1	503
2	27216	3.0	3.61	2900	65	<5	3.94	24	27	40	267	8.09	<10	7.32	1049	9	0.01	43	540	1784	10	<20	112	< 0.01	<10	81	<10	<1	810
3	27217	5.5	3.68	7355	55	<5	1.99	73	25	39	519	9.51	<10	5.96	630	5	0.02	45	650	3876	20	<20	43	< 0.01	<10	37	<10	<1	3237
4	27218	3.1	0.37	345	35	<5	0.67	15	24	75	226	4.53	<10	0.63	366	4	0.02	38	150	2066	20	<20	21	<0.01	<10	6	<10	<1	2713
5	27219 05	8.1	1.17	6225	75	<5	3.01	98	21	37	572	8.33	<10	3.02	1000	<1	0.02	30	300	6404	20	<20	81	<0.01	<10	13	<10	<1	>10000
6	27220 05			475	60	<5	3.49	8	38	86	130	8.51	<10	3.32	1445	6	0.02	71	550	822	<5	<20	63	<0.01	<10	58	<10	<1	1002
7	27221 🍳	8 2.6	2.28	9300	80	<5	0.18	86	38	39	272	>10	<10	2.83	156	8	0.02	78	410	1390	<5	<20	5	<0.01	<10	23	<10	<1	3045
8	27222 65			235	55	15	4.81	2	40	83	54	8.27	<10	3.73		-	0.02	72		56	<5	<20		< 0.01	<10		<10	<1	149
9	27223 0			815	55	<5	1.94	10	8	28	70	5.06	<10	1.37	1538		0.02	3	130	592		<20		<0.01	<10	3	<10	<1	717
10	27224	0.6	0.29	980	45	5	2.21	8	18	66	15	4.14	<10	1.68	1518	4	0.02	29	190	134	5	<20	59	<0.01	<10	8	<10	<1	71
		-11	000000000000	962.cm+24774.271	1		1000 100-000			200223000				alas en services	and the second sec		West and the			5.5 Mar 10	100 A 400	100404000	1000	100000 - 1000000	10 × 10 ±10 ×	aller i	17.00 million		XIVIND.
11	27225		0.23	1665	35	5		16	18	70	1000	4.74	0.000	0.48	333		0.02	36	260	224	10000	<20		< 0.01		1.0200	<10	<1	413
12	27226		0.20	1045	35	5	0.19	8	18	73	22	4.09	<10	0.15	108		0.02	39	380	98		<20		<0.01	<10	35	<10	<1	56
13	27227		0.18	1475	40	5	0.22	14	16	58	16	3.62		0.25	122		0.01	33	270	56		<20		< 0.01	<10		<10	<1	45
14	27228		0.19	2755	35	<5	0.11	31	16	76	146	3.62		0.11	70	4	0.01	27	240	2138		<20		< 0.01	<10		<10	<1	733
15	27229	1.6	0.18	2500	45	<5	0.15	25	15	78	29	3.27	<10	0.09	83	3	0.01	31	190	404	<5	<20	3	<0.01	<10	4	<10	<1	268
10				1000		-		50	~ 1				40		100		0.04	10	400	1001	470			0.04	10	_	10		050
16	27230		0.18	4800	35	<5	0.35	50	24	85		5.20		0.22	188		0.01	49	180	1984	170			< 0.01			<10	<1	952
17	27231		0.24	7050	50	<5	0.20	76	47	90	266	9.18	<10	0.08	95	7		155	380	1858		<20		1000	<10	1000	<10	<1	1285
18	27232		0.16	3415	40	<5	0.20	36	13	80	514	3.08	<10	0.13	132	1	0.01	22	50	3628	275				<10		<10	<1	1436
19	27233		0.23	5520	30	<5	0.10	58	15	75	82	4.62	<10	0.08	79		0.01	22	120	932	10000	<20			<10		<10	<1	1811
20	27234	2.0	0.35	435	40	15	0.12	5	25	76	39	8.78	<10	0.17	79	9	0.02	37	210	150	<5	<20	3	<0.01	<10	4	<10	<1	73
21	27235	0.9	0.23	170	30	<5	0.10	2	15	77	19	3.53	<10	0.09	68	3	0.02	22	100	74	<5	<20	1	<0.01	<10	3	<10	<1	30
22	27236		0.29		40	<5	0.11	6	19	82		6.51	<10	0.14	84	7		29	100	534	<5	<20		< 0.01		4	<10	<1	299
23	27237		0.19	1435	30	<5	0.08	17	13	77			<10	0.07	67	3		18	80	152		<20		< 0.01			<10	<1	686
24	27238		0.19	2375	50	<5	0.10	24	12	85	28	2.30	<10	0.10	74	2	0.01	18	80	176		<20			<10		<10	<1	324
25	27239			>10000	40	<5	0.09	310	10	76	387	4.52		0.07	81	<1	0.01	9	150	5314	40	<20	-	< 0.01	<10		<10	<1	>10000
											1000					200		070			A	1 (0.000			1.0000			
26	27240	25.7	0.17	>10000	35	<5	0.15	211	11	93	743	4.57	<10	0.06	67	<1	0.01	11	310	3302	300	<20	5	< 0.01	<10	2	<10	<1	7662
27	27241		0.19		45	<5	0.10	1	8	58	12	2.43	<10	0.07	53	2	0.01	16	150	136		<20		< 0.01	<10	2	<10	<1	126
28	27242		0.17	285	45	<5	0.29	4	9	63	15	2.04	<10	0.17	90		0.01	16	140	82		1000	6	< 0.01	<10	2	<10	<1	214
29	27243		0.11	3070	30	<5	0.20	34	6	75	71	1.72	<10	0.11	75		< 0.01	13	20	360			1	< 0.01	<10	2	<10	<1	862
30	27244			>10000	115	<5	0.86	449	15		6076	>10		0.40	371		< 0.01						38	and Some	<10	3	<10	<1	>10000
		50				5																				2			

ECO TE	CH LABO	RATOR	Y LTD					1	СР С	ERTI	FICAT	EOF	ANAL	YSIS /	AK 200	5-161	4						Bron	k Ventu	ires In	c.			
Et #.	Tag #	D4 Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	υ	v	w	Y	Zn
31	27245 05	-11 1.1	0.24	465	45	10	0.42	6	22	52	52	5.58	<10	0.22	142	6	0.02	35	320	242	<5	<20	14	< 0.01	<10	4	<10	<1	218
32	27246	0.3	0.41	115	50	10	6.11	2	36	40	86	9.25	<10	4.01	3494	8	0.02	72	440	86	<5	<20	103	< 0.01	<10	19	<10	<1	75
33	27247	0.3	1.59	135	50	15	4.63	2	41	72	113	>10	<10		2386	9	0.02	78	480	58	<5	<20	94	<0.01	<10	0.750	<10	<1	70
34	27248	0.3	2.27	565	55	10	5.37	7	32	89	56	7.24	<10	5.43	2590	5	0.02	63	660	156	<5	<20	123	< 0.01	<10	60	<10	<1	114
35	27249	0.2	4.63	3395	70	15	3.42	36	52	120	38	8.99	<10	7.43	1733	6	0.02	92	790	102	<5	<20	70	< 0.01	<10	129	<10	<1	145
		-14																											
36	27250	1.000	1.64	5285	65	5	3.66	70	41	91	154	9.73	<10		2476	8	0.02	88	640	818	20	<20		<0.01	<10		<10	<1	1492
37	28551	3.5	0.23	325	40	<5	0.54	4	17	59	132	3.75	<10	0.34	246	4	0.02	29	100	530	<5	<20		< 0.01	<10	4	<10	<1	237
38	28552	>30	1.41	5015	115	<5	1.54	210	38	65	4254	>10	<10	2.48	646	17	0.02	114			60	<20		< 0.01	<10	52	<10		>10000
39	28553	>30	1.37	1330	85	<5	0.76	74	33		1878	>10	<10	1.82	414	53	0.03	88	330	>10000	60	<20		<0.01	<10	47	<10	<1	>10000
40	28554	1.5	2.41	310	55	5	2.33	5	25	30	100	7.68	<10	4.19	1095	8	0.01	38	1330	474	<5	<20	72	<0.01	<10	45	<10	<1	573
41	28555	0.3	2.96	90	60	10	5.19	<1	17	17	29	6.07	<10	6.63	2055	4	0.01	6	1090	124	<5	<20	129	<0.01	<10	51	<10	<1	181
42	28556		0.45	150	65	25	2.41	2	21	55	20	9.60	<10	1.32	552	10	0.05	5		46	<5	<20	118	<0.01	<10	26	<10	<1	108
43	28557	<0.2		90	55	15	2.18	1	27	49	28	7.63	<10	1.80	550	7	0.04	19		68	<5	<20	97	< 0.01	<10		<10	<1	80
44	28558	<0.2		70	55	15	1.39	<1	25	38	23	8.60	<10	1.10	224	9	0.06	6	630	46	<5	<20	77	< 0.01	<10	15.5.1	<10	<1	58
45	28559	-	1.06	870	60	<5	>10	17	26	64	161	6.89	<10		6217	4	0.02	46	410	554	25	<20		< 0.01	<10		<10	<1	698
200					0.00	- 55		550	1997	03233		122222	100	0.1772		35	5155	197.1		10000	10.00	125-12	0775010	012.05			10.1		(1973) 1973
46	28560	<0.2	2.01	90	70	10	5.03	1	30	86	26	6.07	<10	4.89	2369	4	0.02	56	470	68	<5	<20	109	< 0.01	<10	50	<10	<1	93
47	28561	0.3	3.40	120	80	15	3.99	2	46	108	61	>10	<10	6.22	2134	7	0.02	83	660	116	<5	<20	98	< 0.01	<10	93	<10	<1	128
48	28562	<0.2	2.87	90	70	10	4.53	2	38	106	53	7.96	<10	5.56	2117	6	0.03	72	620	66	<5	<20	103	< 0.01	<10	81	<10	<1	81
49	28563	<0.2	3.07	175	55	<5	3.33	2	38	112	72	6.45	<10	5.07	1615	8	0.02	65	630	40	<5	<20	78	< 0.01	<10	84	<10	<1	140
50	28564		3.99	620	55	10	1.83	7	42	136	65	7.56	<10	5.50	1327	6	0.02	82	710	148	<5	<20	57	< 0.01	<10	107	<10	<1	174
	05	-15																											
51	28565	0.3	3.99	1670	65	5	2.81	17	40	115	58	8.46	<10	6.20	1942	5	0.02	78	620	146	<5	<20	69	< 0.01	<10	103	<10	<1	202
52	28566	0.3	3.28	2975	55	10	1.63	30	42	112	70	8.64	<10	4.68	1186	7	0.02	79	630	134	<5	<20	42	< 0.01	<10	87	<10	<1	174
53	28567	>30	1.07	>10000	100	<5	0.85	725	23	44	6133	>10	<10	1.39	430	57	0.02	95	340	>10000	300	<20	34	< 0.01	<10	67	<10	<1	>10000
54	28568	0.2	1.09	195	50	<5	2.92	2	9	36	41	4.09	<10	2.77	1234	4	0.03	3	360	124	5	<20	76	< 0.01	<10	8	<10	<1	116
55	28569	0.3	0.35	80	50	10	3.26	1	20	37	29	7.31	<10	2.08	1070	7	0.06	7	390	42	<5	<20	110	< 0.01	<10	21	<10	<1	90
56	29570	TAR	1 02	240	45	<5	0 20	20	28	71	116	6.98	<10	7.66	5595	<1	0.02	55	590	3762	15	<20	120	<0.01	<10	52	<10	<1	6111
56 57	28570 28571		1.93	240 225	45 80	<5 25	8.39 3.25	30 3	28 44	88	70	>10	<10		3524	8	0.02		480	566	<5	<20	56	< 0.01	<10		<10	<1	75
58	28572	1 1 1 2 2 2 2 2 2	2.20	265	60	10	3.25	4	39	130	49	9.01	<10		3264	7	0.03	103		502	<5	<20	69	< 0.01	<10		<10	<1	89
58 59	28572		1.07	205	65	<5	6.54	4 51	12	112	301	5.10	<10		3296	4	0.02		6590	3728	80	<20		< 0.01	<10		<10	14	5853
60	28574		0.53	9950	40	<5	1.46	128	23	95	509	5.88	<10	1.20	974	3	0.02	48	410	2428	40	<20	33	< 0.01	<10	0.0000	<10	<1	3114
00		-12	0.55	5550	40	-5	1.40	120	23	30	508	0.00	10	1.20	014	5	0.02	40	410	2420	40	-20	00	-0.01	510	10	A IV	21	0114
61	28575	16.4	0.21	8570	65	<5	0.88	122	17	104	1870	>10	<10	0.57	583	9	0.01	30	<10	>10000	95	<20	22	<0.01	<10	6	<10	<1	6356
62	28576	0.053.022	0.27	5430	30	<5	0.20	65	19	95	127	4.95	<10	0.16	149	4	0.02	35	250	1158	5	<20		<0.01	<10	5	<10	<1	1850
63	28577		0.52	5230	35	5	0.20	60	20	97	38	5.17	<10	0.55	203	3	0.02	31	320	614	5	<20	2173	<0.01	<10		<10	<1	1406
64	28578		0.15	6075	30	<5	0.11	107	11	107	410	4.05	<10	0.06	70	<1	0.01	10	210	5094	10	<20		<0.01	<10	2	<10	<1	8899
65	28579			>10000	80	<5		>1000	35		1799	>10	<10	0.06	66	<1	0.03	13		>10000	185	<20		<0.01	<10	2	<10		>10000
122		1000			112				100							2							12		10		10	13	0050
66	28580			>10000	40	<5	0.14	221	8	123	523	3.32	<10	0.09	104	<1	0.01	9	140	3194	130	<20		< 0.01	<10		<10	<1	6052
67	28581		0.19	460	30	<5	0.16	7	11	98	172	2.89	<10	0.12	99	2	0.02	17	100	462	35	<20	2.051	<0.01	<10	2	<10	<1	588
68	28582		0.31	580	30	5	0.09	7	17	65	55	4.23	<10	0.15	75	4	0.02	26	130	540	<5	<20		< 0.01	<10	5	<10	<1	357
69	28583	0.372	0.65	3235	55	<5	0.89	56	22	73	125	8.57	<10	1.02	681	5	0.02	23	490	242	5	<20	21	< 0.01	<10	6	<10	<1	3603
70	28584	2.1	0.19	6975	40	<5	0.26	85	11	100	162	3.29	<10	0.16	219	1	0.01	13	200	1362	5	<20	8	<0.01	<10	2	<10	<1	1914

ECO TE	ECH LAB	ORATO	DRY	LTD					1	СР С	ERTI	FICAT	TE OF	ANAL	YSIS	AK 200	5-161	4						Bron	x Ventu	ires In	IC.			
Et #.	Tag #	DBH A	۸g /	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
71	28585				>10000	40	<5	0.50	178	18	109	456	6.12	<10	0.26	291	3	0.02	21	350	2654	5	<20	11	< 0.01	<10	4	<10	<1	5078
72	28586	12 3	.5	0.39	3085	50	<5	1.63	45	24	63	564	7.00	<10	1.05	778	5	0.02	36	210	1334	35	<20	34	< 0.01	<10	6	<10	<1	2224
73	28587			0.69	90	50	10	1.15	4	17	49	39	7.78	<10	0.98	302	7	0.03	8	1210	214	<5	<20	34	< 0.01	<10	8	<10	<1	441
74	28588	0	.4	0.81	60	65	10	0.36	1	39	30	109	>10	<10	0.68	78	11	0.02	17	1260	74	<5	<20	14	< 0.01	<10	27	<10	<1	72
75	28589	3	.0	3.63	135	75	<5	4.49	5	19	34	353	>10	<10	8.28	1281	28	0.01	34	1430	188	40	<20	113	<0.01	<10	138	<10	<1	402
Repeat			~	0.00	005	50		0.40		~			5.05		4.40	070	40		0.7	4070	400			07						
1	27215			0.26	235	50	<5	2.49	5	1	51	66	5.85	<10	1.12	379	13	0.02	1000	1870	160	<5	<20	67	< 0.01	<10	28	<10	<1	511
10	27224			0.30	985	45	5	2.19	10	18	67	14	4.11	<10	1.63	1494	4	0.02	29	200	138	<5	<20	55	< 0.01	<10	8	<10	<1	72
19	27233			0.25	5380	35	<5	0.10	63	15	78	86	4.62	<10	0.08	80	3	0.02	22	120	912	30	<20		< 0.01	<10	3	<10	<1	1740
36	27250			1.50	5885	55	<5	3.11	74	39	84	155	9.28	<10		2350	8	0.02	82	610	764	15	<20	70	< 0.01	<10	39	<10	<1	1379
45	28559			1.00	825	60	<5	>10	16	24	59	161	6.37	<10	2,000,74	5806	3	0.02		370	562	20	<20	264	< 0.01	<10	36	<10	<1	629
54	28568			1.06	185	45	5	2.92	2	9	35	40	4.05	<10		1229	4	0.03	3	370	114	<5	<20	77	< 0.01	<10	8	<10	<1	107
71	28585	4	.3 (0.24	>10000	40	<5	0.50	177	19	107	481	6.47	<10	0.26	289	3	0.02	22	350	2666	10	<20	11	<0.01	<10	4	<10	<1	5136
Resplit.	:																													
1	27215	3	.6 (0.27	245	55	<5	2.61	7	7	48	69	5.70	<10	1.17	389	13	0.02	39	1870	172	<5	<20	69	< 0.01	<10	30	<10	<1	738
36	27250	2	.5	1.50	4385	60	<5	3.68	64	36	84	156	8.50	<10	3.66	2209	8	0.02	75	560	772	15	<20	71	< 0.01	<10	38	<10	<1	1322
71	28585	3	.8 (0.22	>10000	40	<5	0.57	213	22	91	384	6.21	<10	0.28	327	2	0.02	23	280	2962	5	<20	11	<0.01	<10	4	<10	<1	6211
Standa	rd:																													
GEO '0		1	.5	1.64	60	165	5	1.70	1	19	59	84	4.07	<10	0.92	651	<1	0.03	28	620	24	<5	<20	56	0.11	<10	70	<10	10	76
GEO '0				1.59	55	150	<5	1.49	<1	19	59	84	3.83	<10	0.89	599	<1	0.02	29	540	24	<5	<20	52	0.09	<10	70	<10	9	77
GEO '05	5.			1.60	50	145	<5	1.50	4	18	59	86	3.86	<10	0.88	599	<1	0.02	29	550	24	<5	<20	52	0.11	<10	70	<10	10	75

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/kk df/1614 XLS/05

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2005-1662

4-Jan-06

Bronx Ventures Inc. 6th Floor, 1199 W. Hastings Vancouver, BC V6E 3T5

No. of samples received:81 Sample Type: Core Submitted by:J.W. Murton Project #:Bronx

ET #.	Tag #		Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As (%)	Cu (%)	Pb (%)	Zn (%)
1	28590	1	0.03	0.001						
	28591	DBH	< 0.03	< 0.001						
2 3	28592		0.09	0.003	1.4	0.04	0.03	0.02	< 0.01	< 0.01
4	28593	05-13	< 0.03	< 0.001						
5	28594	7	< 0.03	< 0.001						
5 6	28595		0.05	0.001						
7	28596		< 0.03	< 0.001						
8	28597		0.10	0.003						
9	28598		< 0.03	< 0.001						
10	28701		0.03	0.001						
11	28702		0.03	0.001						
12	28703		0.14	0.004						
13	28704		0.12	0.003						
14	28705	DDH	0.14	0.004						
15	28706	05-17	< 0.03	< 0.001						
16	28707	03-1	< 0.03	< 0.001						
17	28708		0.07	0.002						
18	28709		< 0.03	< 0.001						
19	28710		0.04	0.001						
20	28711		0.07	0.002						
21	28712		0.10	0.003						
22	28713		0.07	0.002						
23	28714		0.04	0.001						
24	28715		0.16	0.005						
25	28716		0.21	0.006					\sim	
26	28717		< 0.03	< 0.001				- /		
27	28718		0.06	0.002			/	\frown /		
							1	CO TECH utta Jealou: a.C. Certifier		RY LTD.

Bronx Ventures Inc. AK5-1662

4-Jan-06

ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As (%)	Cu (%)	Pb (%)	Zn (%)
28	28719	1.38	0.040	13.8	0.40	4.64	0.19	1.45	(%) 1.52
29	28720	0.44	0.013			1.40			
30	28721	0.66	0.019			2.04			
31	28722 BBH	0.14	0.004						
32	28723 000	< 0.03	< 0.001						
33	28724 05-17	0.11	0.003						
34	28725	0.05	0.001						
35	28726	0.14	0.004					1.14	2.15
36	28727	5.15	0.150	12.8	0.37	2.45	0.11	1.41	1.85
37	28728	5.88	0.171	65.8	1.92	3.32	0.43	6.75	8.74
38	28729	0.07	0.002						
39	28730	0.09	0.003						
40	28731	0.08	0.002						
41	28732	0.04	0.001						
42	28733	< 0.03	< 0.001						
43	28734	< 0.03	< 0.001						
44	28735	< 0.03	< 0.001						
45	28736	< 0.03	< 0.001						
46	28737	<0.03	< 0.001						
47	28738	0.07	0.002						
48	28739 624	0.04	0.001						
49	28740 05-16	< 0.03	< 0.001						
50	28741	0.04	0.001						
51	28742	0.05	0.001						
52	28743	0.04	0.001						
53	28744	0.08	0.002						
54	28745	0.03	0.001						
55	28746	0.03	0.001						
56	28747	0.06	0.002						
57	28748	0.74	0.022			2.13			
58	28749	1.23	0.036			1.66		2.73	2.25
59	28750	0.06	0.002						
60	28751	< 0.03	< 0.001						
61	28752	0.03	0.001						
62	28753	0.08	0.002						
63	28754	< 0.03	< 0.001						
64	28755	0.03	0.001						
65	28756 554	0.03	0.001						
66	28757	0.06	0.002						
67	28758 05-18	0.03	0.001						
68	28759 /	0.11	0.003						
69	28760	< 0.03	< 0.001						
70	28761	0.07	0.002						
71	28762	0.27	0.008					\cap	
72	28763	0.19	0.006			/	1		
73	28764	0.07	0.002					ABORATOR	Y LTD.
							tta Jealouse		
			Fe	o Tech LA	BORATORY LTD.	(B.	C. Certified	Assayer	
			200	U A VUII					

Eco Tech LABORATORY LTD Page 2

Bronx Ventures Inc. AK5-1662

4-Jan-06

ET #.	Tag	4	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As (%)	Cu (%)	Pb (%)	Zn (%)
74	Tag # 28765	7	0.20	0.006	(9/1)	(02/1)	(70)	(70)	(70)	(70)
75		DDI	0.20	0.000			2.00			
	28766	DDH					2.00			
76	28767	05-18	0.28	0.008						
77	28768	1	0.14	0.004						
78	28769		0.26	0.008				0.40	2.00	0.40
79	28770		3.39	0.099	23.6	0.69	0.32	0.42	3.66	3.48
80	28771		1.62	0.047						
81	28772	1	0.51	0.015						
C DATA										
Repeat:	-									
1	28590		< 0.03	< 0.001						
3	28592						0.02			
10	28701		0.03	0.001			1999 C			
19	28710		0.04	0.001						
28	28719		1.44	0.042					1.45	1.52
29	28720		0.44	0.012						
			0.68	0.013						
30	28721									
36	28727		5.13	0.150						
37	28728		5.65	0.165						
54	28745		0.03	0.001						
57	28748		0.79	0.023						
58	28749		1.25	0.036						
71	28762		0.27	0.008						
79	28770		2.97	0.087						
80	28771		1.63	0.048						
81	28772		0.49	0.01						
Resplit:	00500		-0.00	-0.001						
1	28590		< 0.03	< 0.001						
36	28727		4.35	0.127						
71	28762		0.31	0.009						
OX140	:		1.87	0.055						
OX140			1.86	0.054						
OX140			1.84	0.054						
PB106				2.000	58.6	1.71		0.62	0.52	0.8
PD-10.5					0010		0.78			
10-10.0							0.10			
								\cap	\cap	
							/	A		
							E	MA COTECHI	ABORATOR	
J/ga (LS/05							Jd	tta Jealouse C. Certified	e /	
10/00				Fco	Tech LABO Page 3	RATORVITD	C.	o. oeruneu	, isouyor	

4-Jan-06

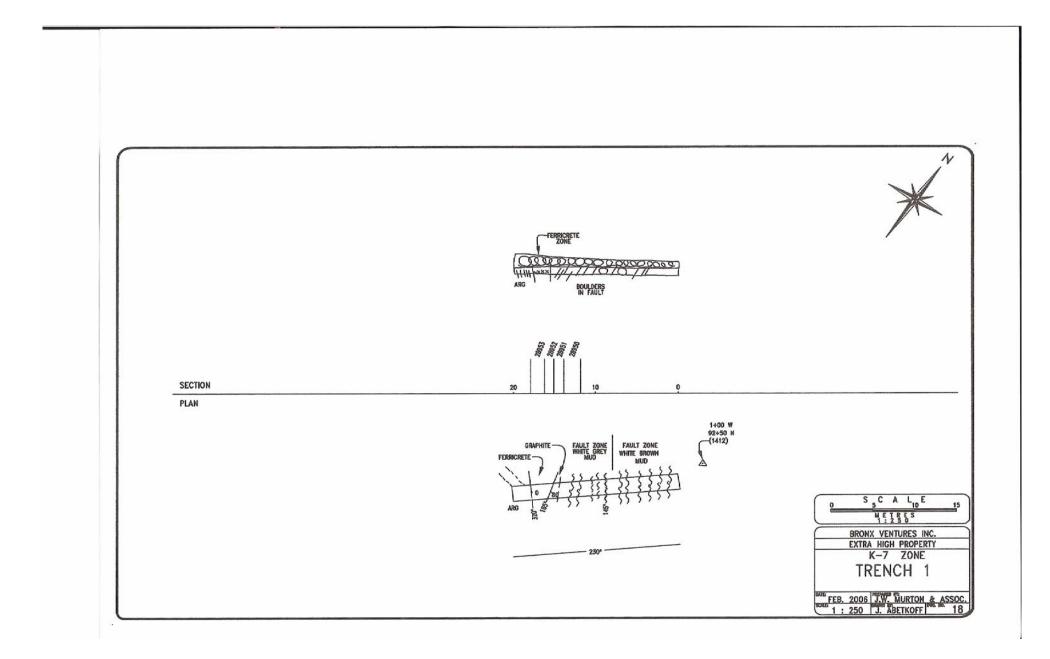
ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

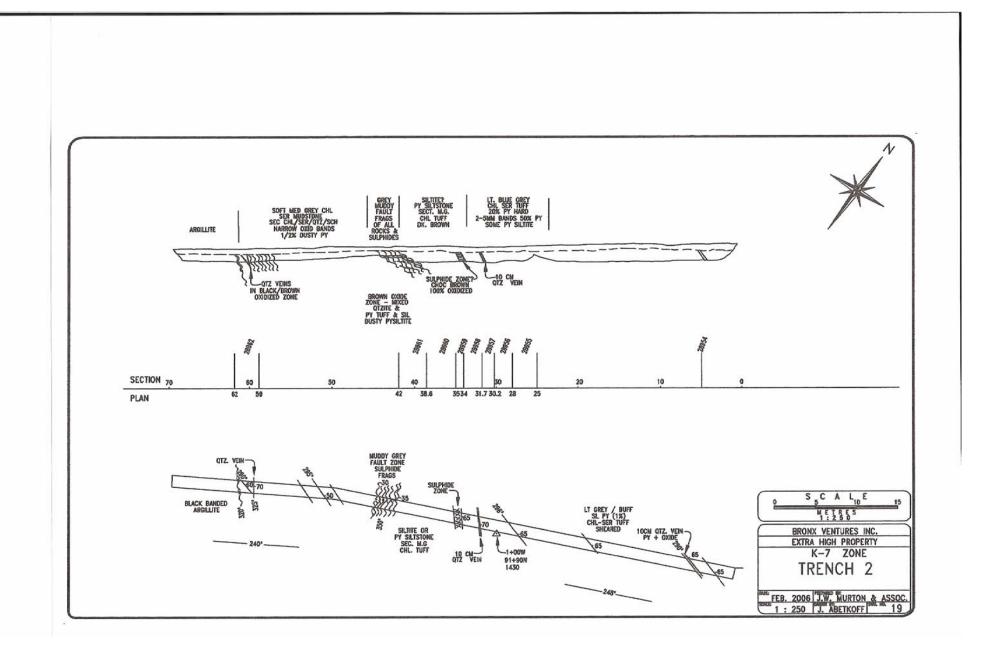
Phone: 250-573-5700 Fax : 250-573-4557

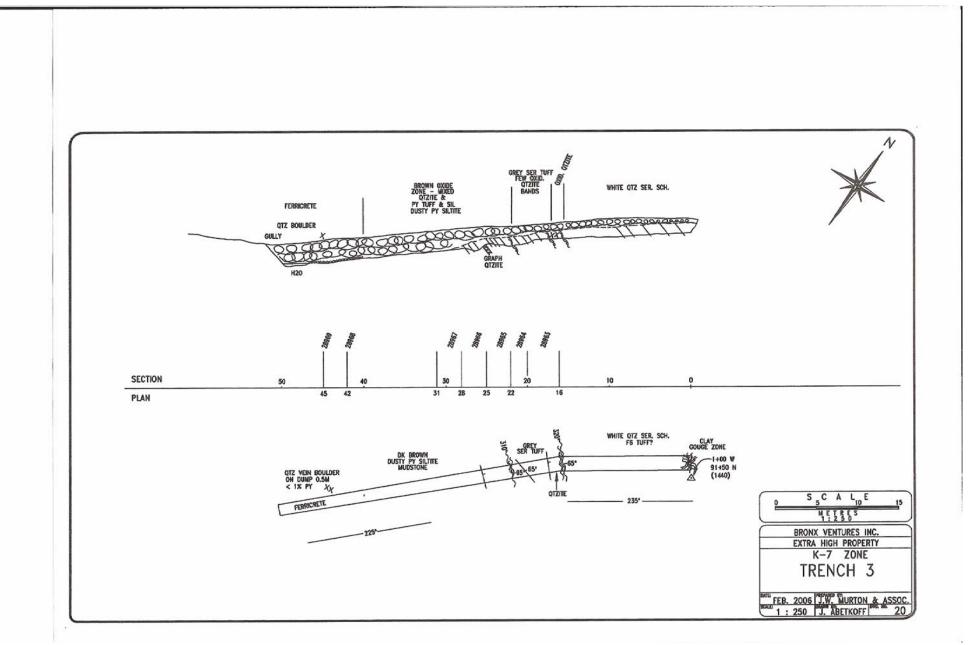
Values in ppm unless otherwise reported

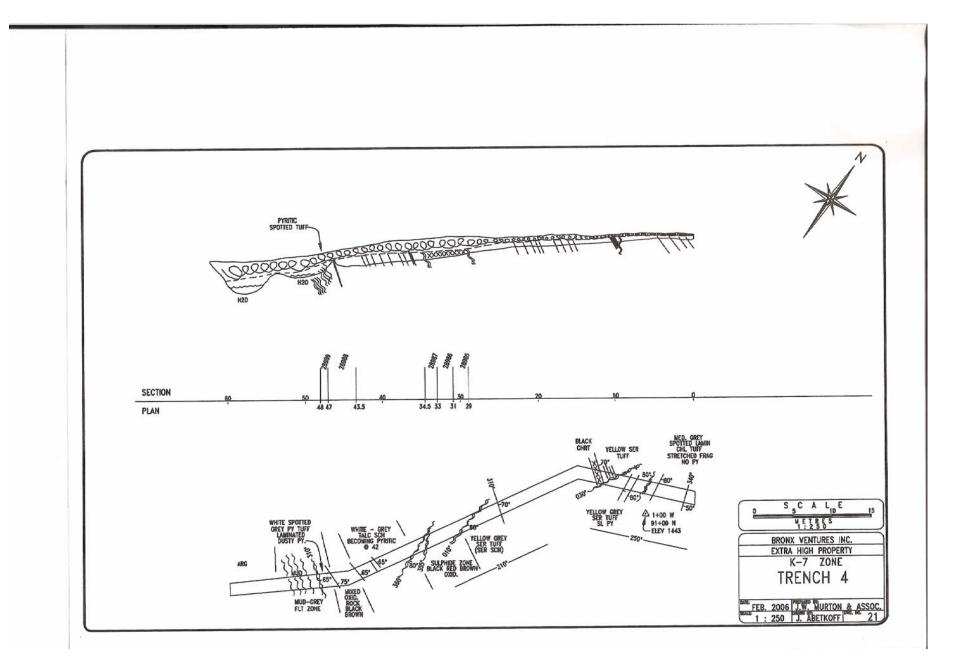
ICP CERTIFICATE OF ANALYSIS AK 2005-1662

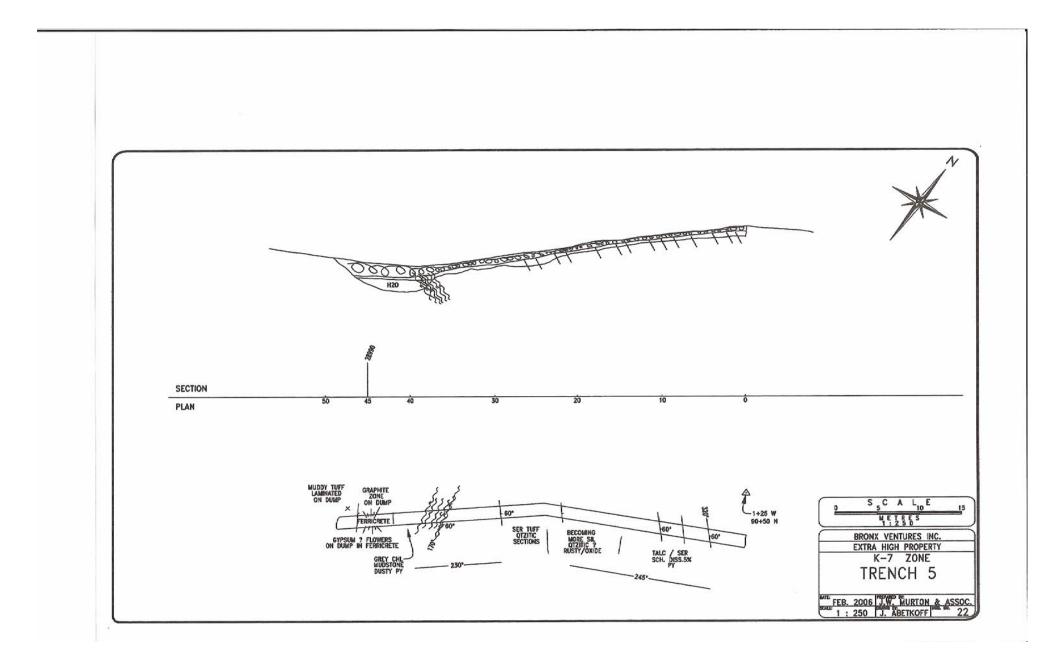
Bronx Ventures Inc. 6th Floor, 1199 W. Hastings Vancouver, BC V6E 3T5

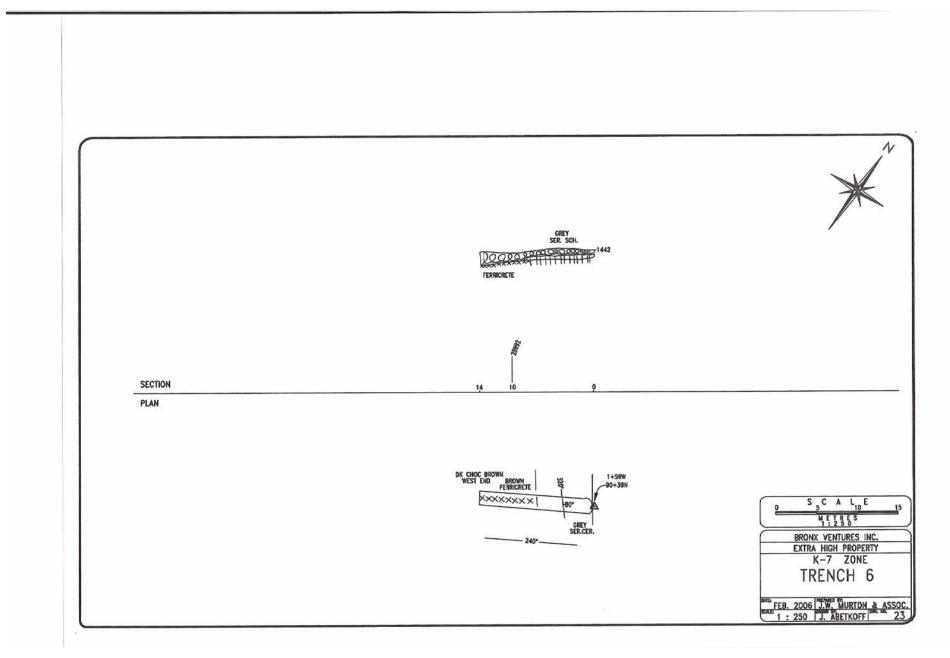

No. of samples received:81 Sample Type: Core Submitted by:J.W. Murton Project #:Bronx

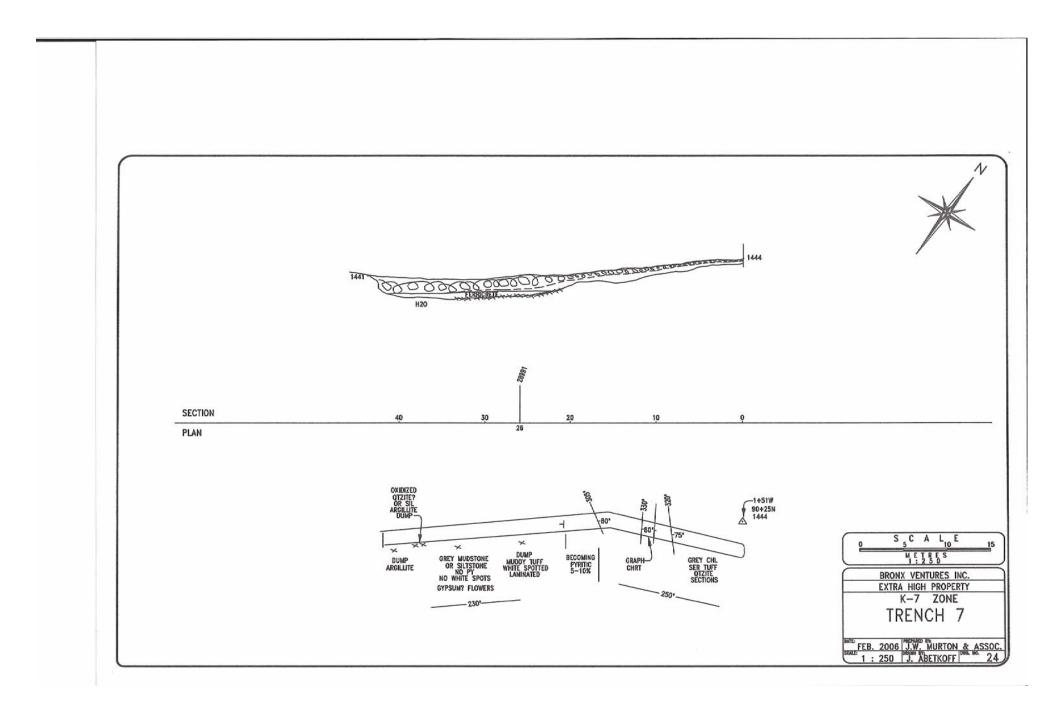

D	LH																											
Et #.	Tag #	Ag A	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr		Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr		U	V	w	Y
1 /	28590	0.2 (60	55	10	9.95	<1	35	57		7.80	<10	5.88	1849	6	0.04	123	1222	4	<5	<20		< 0.01	<10		<10	<1
2	28591	<0.2 (50	60	25	7.60	<1	42	101	42	>10	<10	6.13	3595	10	0.04	180	1872	8	<5	<20	96	< 0.01	<10	48	<10	<1
3 (28592	1.0 (125	80	25	1.63	1	33	66	196	>10	<10	1.62	724	19	0.02	139	170	32	<5	<20	35	< 0.01	40	12	<10	<1
4	28593	<0.2 (60	40	10	>10	<1	33	60	22	7.27	<10	5.43	2576	6	0.04	128	1573	4	<5	<20			<10	21	<10	<1
505-	-13 28594	0.3 (0.55	135	40	15	0.57	2	56	79	120	>10	<10	0.87	1018	9	0.04	95	1001	26	<5	<20	12	<0.01	<10	23	<10	<1
6 /	28595	0.2 (0 55	120	40	15	0.32	<1	54	83	92	>10	<10	0.36	374	8	0.04	96	975	24	<5	<20	11	<0.01	<10	23	<10	<1
7	28596	0.3 (130	40	15	0.27	1	59	102	89	9.34	<10	0.54	535	7	0.05	106	975	28	<5	<20		<0.01	<10	35	<10	<1
8	28597	0.5 (245	50	20	0.67	2	54	82	102	>10	<10	0.46	576	10	0.04	105	741	54	<5	<20		100 CONT. 100	<10	1000	<10	<1
9	28598	0.2 (110	40	10	0.30	<1	55	102	121	8.09	<10	0.73	657	6	0.05	96	1183	30	<5	<20		< 0.01	<10		<10	<1
10	28701	1.0 0		140	55	5	1.22	3	59	76	145	9.73		0.58	449	8	0.03	107	1144	122	<5	<20			<10		<10	<1
05	-17																											
11 (28702	0.7 (0.28	145	50	<5	1.64	1	56	63	107	>10	<10	0.78	612	9	0.03	109	1053	40	<5	<20	31	< 0.01	<10	11	<10	<1
12	28703	1.0 (0.24	155	45	15	1.35	1	55	59	110	>10	<10	0.57	505	10	0.03	106	975	100	<5	<20	27	< 0.01	<10	8	<10	<1
13	28704	0.9 (0.23	165	40	15	0.99	1	56	48	100	>10	<10	0.36	391	9	0.03	105	1157	92	<5	<20	15	< 0.01	<10	7	<10	<1
14	28705	2.0 (0.28	830	45	<5	1.62	11	40	71	493	>10	<10	0.81	716	9	0.03	78	585	618	<5	<20	37	< 0.01	<10	9	<10	<1
15	28706	0.4 (0.52	180	40	15	0.23	1	52	72	124	>10	<10	0.58	952	8	0.03	99	676	30	<5	<20	7	< 0.01	<10	26	<10	<1
					32.25		121210	125	120			3.1	115		1000	12	2012/2012	1000	1000		12	232				5223	121-2	15
16	28707	0.5 (185	45	10	0.34	2	51	73	102	>10		0.38	576	9	0.03	100	1183	36	<5	<20		< 0.01	<10		<10	<1
17	28708	0.4 (145	40	10	0.25	<1	55	79	117	9.53	<10	0.45	492	8	0.03	105	663	34	<5	<20	0.57		<10		<10	<1
18	28709	0.5 (185	45	10	0.22	2	59	80	119	9.06	<10	0.75	807	8	0.03	117	481	34	<5	<20	1000	< 0.01	<10		<10	<1
19	28710	1.2 (510	40	<5	0.36	4	51	74	130	7.57		0.32	427	6	0.03	88	1118	30	<5	<20		< 0.01	<10		<10	<1
20	28711	1.2 (0.34	600	45	20	0.28	4	49	67	60	>10	<10	0.19	382	9	0.03	99	819	136	<5	<20	11	<0.01	<10	18	<10	<1
21	28712	0.9 (0.33	1090	35	20	0.29	8	44	74	39	8.55	<10	0.24	357	7	0.02	82	676	184	<5	<20	11	<0.01	<10	14	<10	<1
22	28713	1.3 (0.41	385	45	15	0.38	9	45	66	61	9.46	<10	0.32	422	8	0.02	80	1092	710	<5	<20	16	< 0.01	<10	18	<10	<1
23	28714	0.7 (0.44	140	40	10	0.33	1	48	75	89	7.63	<10	0.34	520	6	0.03	91	1053	152	<5	<20	10	< 0.01	<10	22	<10	<1
24	28715	2.1 (0.36	1530	45	10	0.43	15	51	73	157	9.96	<10	0.30	407	8	0.03	130	1027	1288	<5	<20	18	< 0.01	<10	15	<10	<1
25	28716	2.1 (0.19	4620	40	<5	1.47	53	14	82	284	4.23	<10	0.55	550	2	0.02	39	2431	1710	5	<20	51	<0.01	<10	11	10	<1
26	28717	0.6 (0 21	280	15	20	1.39	3	23	55	29	4.90	<10	0.75	739	5	0.03	37	312	234	<5	<20	27	< 0.01	<10	5	<10	<1
27	28718	0.5 (815	35	5	0.30	7	20	53	56	3.84	<10	0.19	174	3	0.02	28	195	150	<5	<20			<10	2	<10	<1
28	28719			>10000	40	<5	0.47	481	15	78	1741	7.05	<10	0.21	272	<1	0.01	15	10.000	>10000	260	<20			<10	2	30	<1
29	28720			>10000	40	<5	0.18	91	11	65	171	2.91	<10	0.08	82	<1	0.02	15	78	3046	45	<20			<10	1	<10	<1
30	28720			>10000	35	<5	0.50	141	14	53	126	4.38		0.00	185	1	0.02	22	234	1818	40	<20			<10	2	10	<1
30	20121	2.0 (0.11	~10000	55	-5	0.50	141	14	55	120	4.00	-10	0.24	105	8	0.02	22	204	1010	40	-20	10	-0.01	-10	4	10	

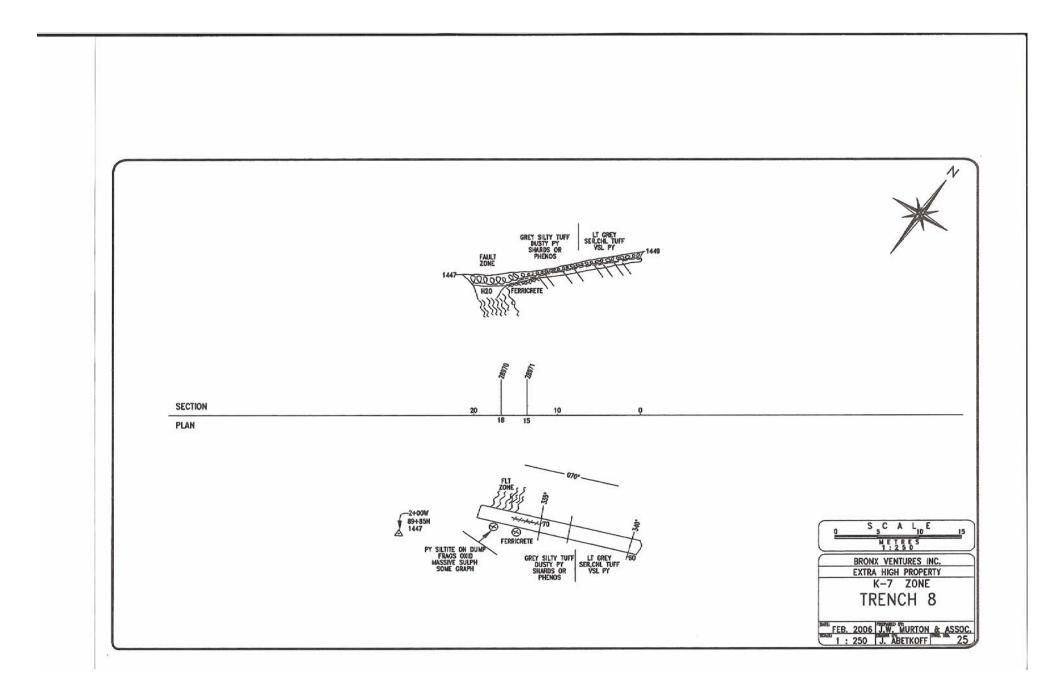

Eth Tag # Ag Al % As Bs Bi Ca % Cd Co Cr Cu Fa % La Mg % M No Ni P Pb Sb Sn Sr Ti % U V W Y Zn 31 28722 15.0.1 10.03 975 0.0 10.0 15 246 248 228 288 10.0 201 10.0	ECO TEC	CH LABOR	ATOR	Y LTD).				1	СР С	ERTII	FICATE	OF A	NALY	SIS A	K 2005-	1662							Bron	x Ventu	ires In	C.			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Et #.D	H Tag #	Aq	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 A A A A A A A A A A A A A A A A A A A								<1			27	3.99	<10	8.53								100000						<1	
$ \begin{array}{c} 36 \\ c = 1 \\ c$	33	28724			340	50		6.11	28	9	15	261	6.98	<10	6.05	1735		0.02	9	325	4194		<20	187	< 0.01	<10		10	<1	
$ \begin{array}{c} 36 \\ c = 1 \\ c$	34						10		9	8	13	113	7.09	<10	5.87		6	0.02	<1							<10			<1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	35								76			307	8.92	<10			<1		3										<1 >	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	05-	-17																					1000			9496				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	36	28727	12.4	0.55	>10000	70	<5	2.89	268	11	22	1039	>10	<10	3.84	1325	3	0.02	2	182	>10000	95	<20	153	< 0.01	<10	3	30	<1 >	10000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	37	28728	>30	0.07	>10000	70	<5	1.67	613	9	28	4141	>10	<10	2.19	1704	<1	<0.01	15	<10	>10000	220	<20	80	< 0.01	<10	18	190	<1 >	10000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	38	28729	0.9	1.03	210	50	15	1.19	3	24	23	62	9.91	<10	1.70	346	19	0.02	9	858	226	<5	<20	43	< 0.01	<10	17	<10	<1	234
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	39	28730	1.4	0.25	130	40	10	0.33	1	53	56	95	7.74	<10	0.07	66	7	0.03	94	988	48	<5	<20	9	< 0.01	<10	7	<10	<1	109
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	40	28731	0.9	0.22	145	35	10	0.79	1	39	73	67	7.02	<10	0.39	353	6	0.02	73	468	34	<5	<20	17	< 0.01	<10	6	<10	<1	87
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$)																													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										1000	2020																		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- 0.656 11								5					100			357				5.5		0.000			1070				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1																													
$ \begin{array}{c} \sigma \\ S = 1 \\ c \\ 6 \\ \hline \\ S \\ S$																														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.3	0.80	140	35	10	0.19	1	46	115	91	7.97	<10	0.79	696	6	0.04	84	650	28	<5	<20	9	<0.01	<10	25	<10	<1	78
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	0.4	0.40	105	40	15	0.40	-1	47	444	00	0.44	~10	0.40	020	7	0.04	00	745	10	۶E	<00	0	<0.01	-10	24	<10	-1	60
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14/10/11/												100 C 100 C 100 C		100.010.000															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1122 m																													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																						-							1.170	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		20711	0.1	0.12	210	10	10	0.10	-	10		00	0.00		0.00			0.0L	00		00		20	10	0.01	10	10	10		110
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	28742	0.5	0.61	245	40	10	0.47	2	51	46	81	7.52	<10	0.73	446	6	0.01	82	832	44	<5	<20	20	< 0.01	<10	12	<10	<1	79
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52	28743	0.4	0.73	100	35	15	0.47	<1	48	80	85	7.89	<10	0.80	388	6	0.02	84	598	16	<5	<20	20	< 0.01	<10	12	<10	<1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	53	28744	0.7	0.72	135	45	10	0.46	1	46	53	101	8.43	<10	0.69	234	7	0.01	84	806	36	<5	<20	22	< 0.01	<10	12	<10	<1	75
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	28745	0.6	0.63	90	35	10	0.55	<1	27	79	78	5.81	<10	0.70	251	4	0.01	59	429	36	<5	<20	23	<0.01	<10	14	<10	<1	91
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	55	28746	0.5	0.86	240	40	10	0.38	2	29	88	51	6.59	<10	0.80	211	6	0.01	66	429	32	<5	<20	15	<0.01	<10	24	<10	<1	69
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	2.25										-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									27.96.0																					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200 B											1000		12450																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	Contraction of the second second second																												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									27.000.025																					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	28751	0.4	0.61	95	45	10	5.90	<1	44	82	88	7.02	<10	4.31	2411	6	0.03	140	1794	16	<5	<20	68	<0.01	<10	29	<10	<1	35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	61	28752	04	0.62	230	45	15	273	1	41	54	73	7 82	<10	2 16	1502	7	0.03	73	637	24	<5	<20	53	<0.01	<10	20	<10	<1	35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																														
o5-18 66 28757 0.5 0.33 320 50 15 5.10 3 29 56 46 8.03 <10 3.20 2684 7 0.03 54 442 64 <5 <20 111 <0.01 <10 14 <10 <1 74																														
																									an anna faithean fa					
67 28758 0.3 0.49 115 45 15 4.99 1 38 54 60 7.02 <10 3.21 2567 6 0.03 71 793 30 <5 <20 91 <0.01 <10 22 <10 <1 44	66	28757	0.5	0.33	320	50	15	5.10	3	29	56	46	8.03	<10	3.20	2684	7	0.03	54	442	64	<5	<20	111	<0.01	<10	14	<10	<1	74
	67	28758			115	45		4.99				60	7.02	<10	3.21	2567	6	0.03		793	30	<5	<20	91	<0.01	<10	22	<10	<1	44
68 28759 0.7 0.26 185 35 15 1.92 2 32 50 82 9.21 <10 1.10 966 8 0.02 62 390 50 <5 <20 33 <0.01 <10 9 <10 <1 37	68		0.7	0.26	185	35		1.92	2		100005	82	9.21	<10	1.10			0.02			50	<5	<20	33	<0.01	<10	9	<10	<1	
69 28760 0.2 1.19 95 45 5 2.43 <1 42 68 73 7.12 <10 2.29 1204 6 0.03 75 507 22 <5 <20 52 <0.01 <10 34 <10 <1 47																								52	<0.01	<10	34	<10	<1	
70 28761 1.3 2.30 730 45 15 3.08 12 52 219 69 7.53 <10 4.71 1991 4 0.01 188 1729 932 <5 <20 62 <0.01 <10 80 <10 <1 1584	70	28761	1.3	2.30	730	45	15	3.08	12	52	219	69	7.53	<10	4.71	1991	4	0.01	188	1729	932	<5	<20	62	<0.01	<10	80	<10	<1	1584

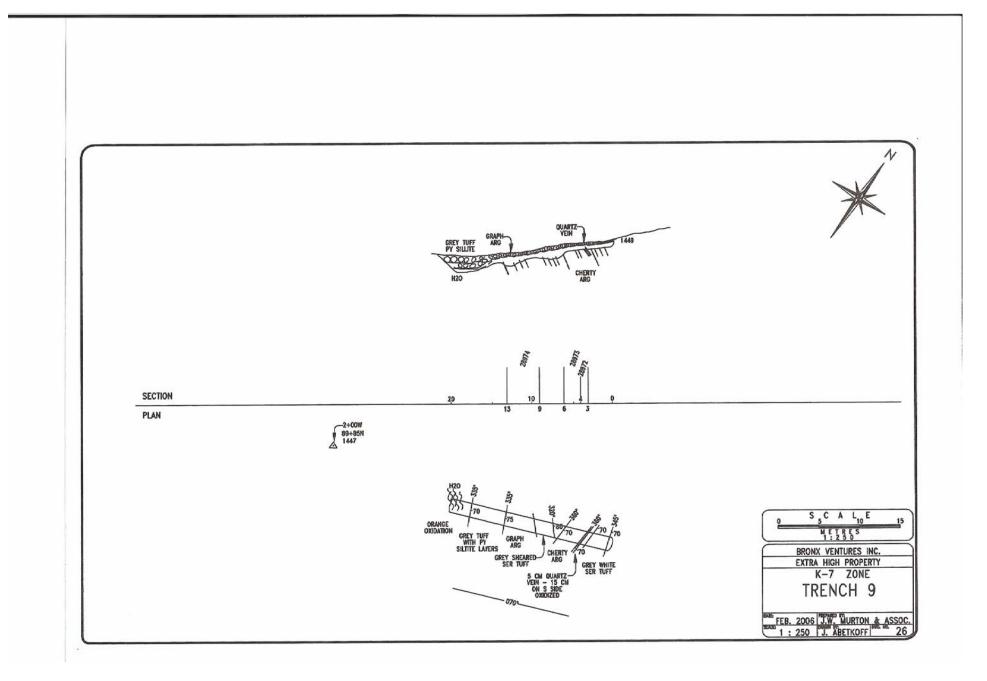

ECO TEC	CH LABOR	ATOR	Y LTD						CP C	ERTI	FICATE	OF A	NALY	SIS A	K 2005	1662							Bron	x Ventu	ures In	IC.			
Et #.	H Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
71	28762	6.3	1.08	3725	60	<5	2.23	54	55	146	643	>10	<10	2.84	2019	3	0.03	194	1833	4452	15	<20	58	< 0.01	<10	41	20	<1	6819
72	28763		0.19	4695	35	<5	0.83	48	11	124	414	4.12	<10	0.49	382	1	0.02	29	442	3070	15	<20	26	< 0.01	<10	6	<10	<1	3842
73	28764	0.5	0.23	1470	35	10	0.59	11	17	80	28	3.51	<10	0.36	308	3	0.02	28	312	236	<5	<20	16	< 0.01	<10	4	<10	<1	164
74	28765	2.5	0.22	6085	30	<5	0.33	55	21	74	183	5.16	<10	0.21	191	5	0.02	35	234	1948	<5	<20	11	< 0.01	<10	4	<10	<1	1516
75	28766	4.1	0.27	>10000	35	<5	0.34	143	33	79	465	7.25	<10	0.24	150	4	0.02	74	650	2270	20	<20	13	< 0.01	<10	6	<10	<1	3989
05-	-18																												
76	28767	1.7	0.18	6950	25	<5	0.27	57	15	79	181	4.23	<10	0.16	135	3	0.02	20	143	1244	10	<20	6	< 0.01	<10	2	<10	<1	1236
77	28768	0.8	1.13	915	50	15	4.35	9	28	80	48	5.86	<10	3.73	2026	4	0.02	65	988	482	5	<20	96	< 0.01	<10	33	<10	<1	681
78	28769	4.7	1.09	3695	35	<5	7.95	36	25	72	431	5.37	<10	5.81	2993	3	0.02	42	559	850	40	<20	176	< 0.01	<10	35	<10	<1	1296
79	28770	22.3	0.37	2390	60	<5	2.71	119	22	52	4075	>10	<10	3.15	1289	14	0.02	35	<10	>10000	10	<20	71	< 0.01	<10	14	90	<1 3	10000
80	28771	5.6	1.03	670	45	<5	3.90	24	19	57	578	7.10	<10	5.43	1374	6	0.02	43	2106	3918	10	<20	144	< 0.01	<10	33	<10	<1	4003
81	28772	2.9	1.02	620	45	<5	5.94	15	22	60	217	6.68	<10	5.35	1221	5	0.03	51	403	1846	<5	<20	147	<0.01	<10	25	<10	<1	2218
QC DATA	<u> </u>																												
Resplit:																													
1	28590	0.2	0.39	50	45	10	8.60	<1	31	61	40	7.12	<10	5.63	1702	5		111	897	4	<5	<20	92	< 0.01	<10	19	<10	<1	41
36	28727			>10000	55	<5	3.36	207	8	24	994	8.41	<10	3.90	1285	1		1		>10000	75	<20		< 0.01	<10	3	30	<1 >	>10000
71	28762	7.2	1.04	3940	45	<5	2.64	57	50	136	739	9.50	<10	2.63	1795	4	0.03	164	1625	4396	15	<20	53	< 0.01	<10	38	20	<1	6192
Repeat:																													
1	28590	0.2	0.44	65	55	20	>10	<1	36	59	45	7.89	<10	5.84	1866	6	0.04	127	1287	4	<5	<20	125	< 0.01	<10	21	<10	<1	44
10	28701	1.0	0.38	145	50	5	1.22	4	59	78	146	9.80	<10	0.59	451	8	0.03	108	1144	122	<5	<20	23	< 0.01	<10	12	<10	<1	886
19	28710	1.2	0.45	495	35	10	0.35	4	51	74	134	7.50	<10	0.33	426	6	0.03	87	1118	28	<5	<20	11	< 0.01	<10	18	<10	<1	119
36	28727	12.1	0.57	>10000	60	<5	3.85	266	12	24	1006	>10	<10	3.90	1364	3	0.02	<1	221	>10000	90	<20	166	< 0.01	<10	3	30	<1 >	10000
45	28736	0.3	0.91	130	40	10	0.19	<1	47	121	91	8.14	<10	0.84	714	6	0.04	86	689	26	<5	<20	8	< 0.01	<10	28	<10	<1	70
54	28745	0.6	0.65	85	40	10	0.53	<1	26	78	74	5.63	<10	0.69	246	4	0.01	58	403	34	<5	<20	22	< 0.01	10	15	<10	<1	92
71	28762	6.7	0.98	3495	45	<5	2.87	51	52	130	660	9.48	<10	2.69	1884	3	0.03	180	1664	4302	15	<20	61	< 0.01	<10	38	10	<1	6579
Standard	1:																												
GEO '05		1.4	1.31	55	135	<5	1.37	<1	18	62	87	3.61	<10	0.81	567	<1	0.02	20	637	20	<5	<20	53	0.11	<10	73	<10	10	76
GEO '05			1.32	55	130	<5	1.36	<1	19	60	85	3.61	<10	0.80	555	<1	0.02	20	637	24	<5	<20	56	0.10	<10	73		9	73
GEO '05			1.20	50	145	5		<1	19	58	86	3.56	<10	0.74	512	<1	0.02	18	585		<5	<20	54	0.11	<10	69	<10	10	74

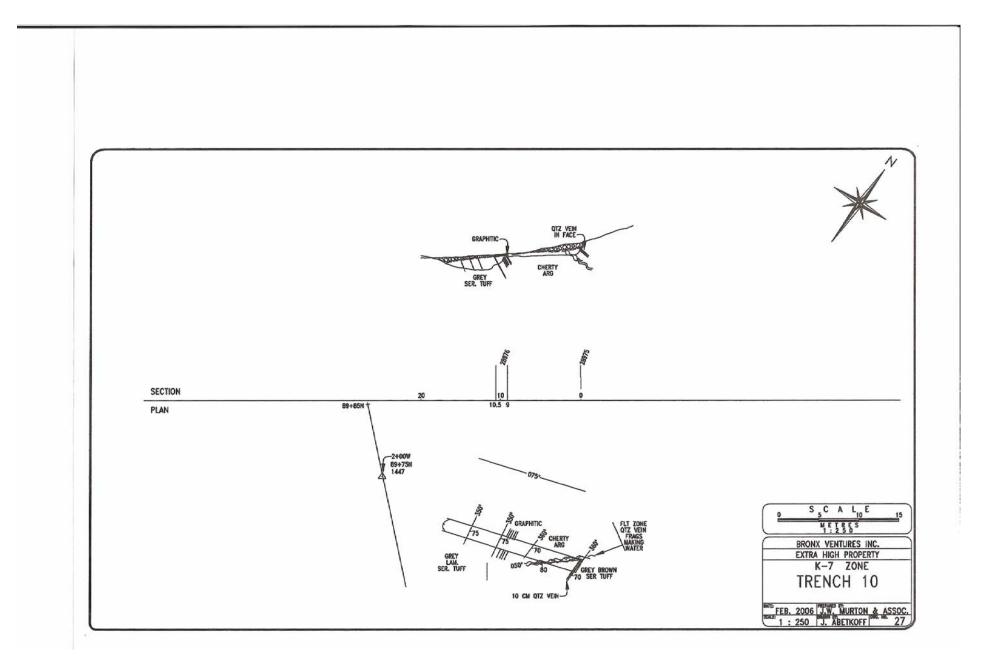

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

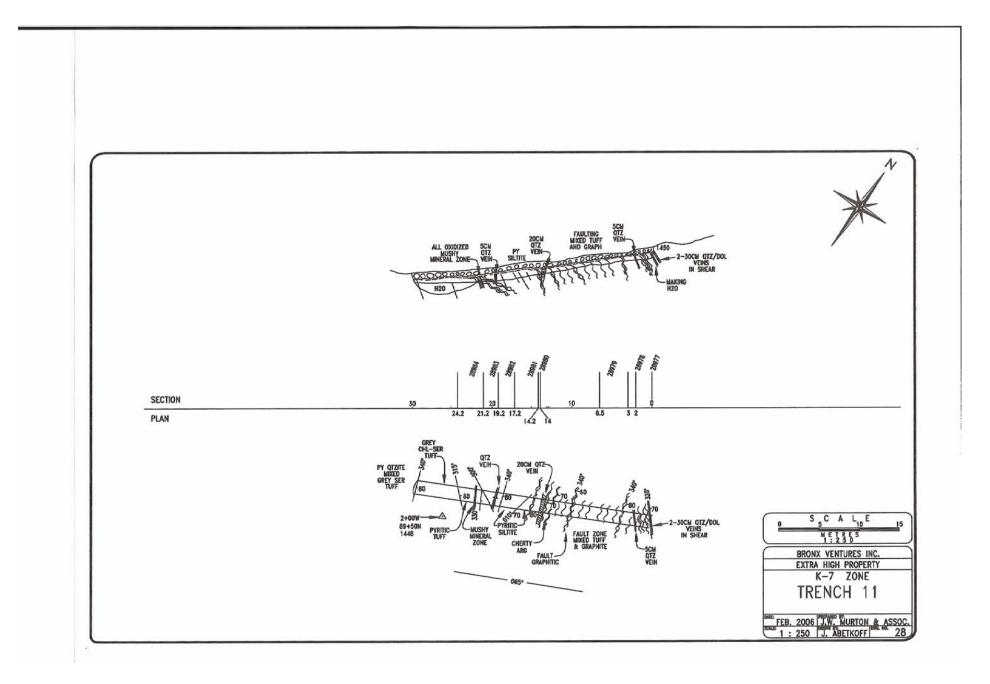


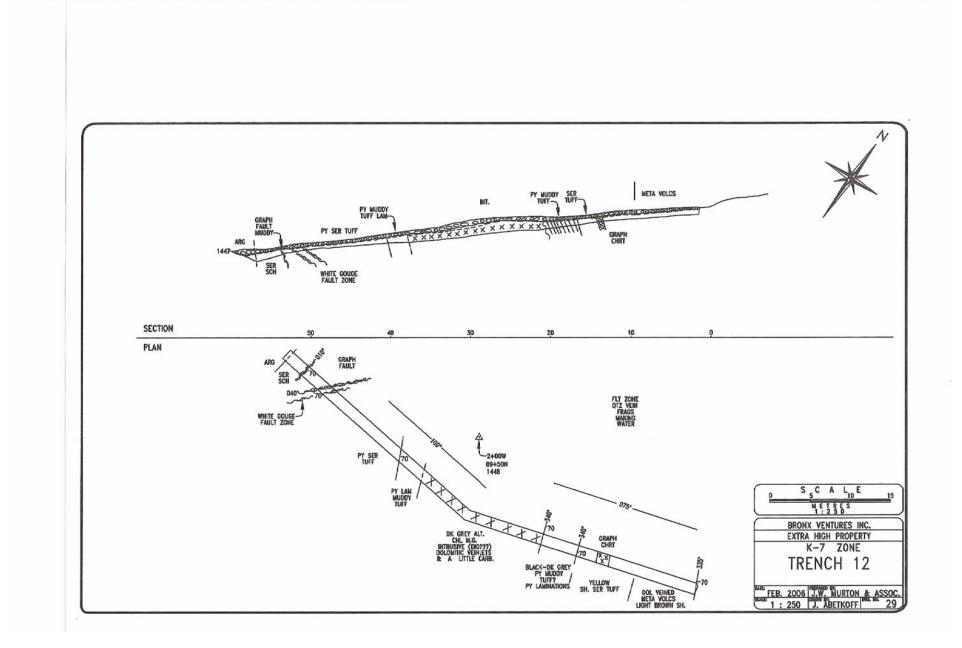




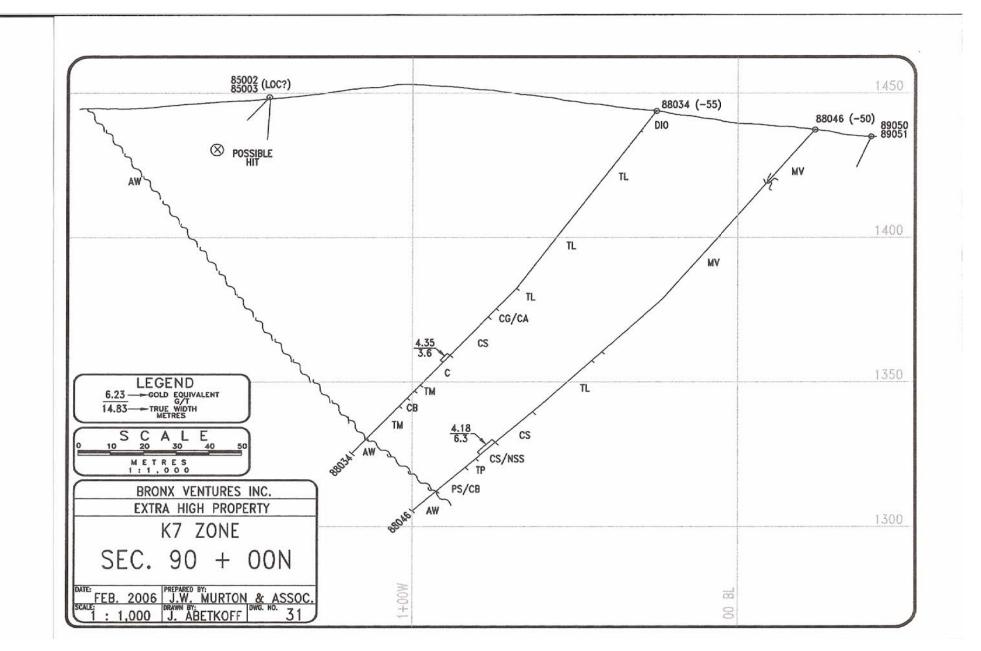


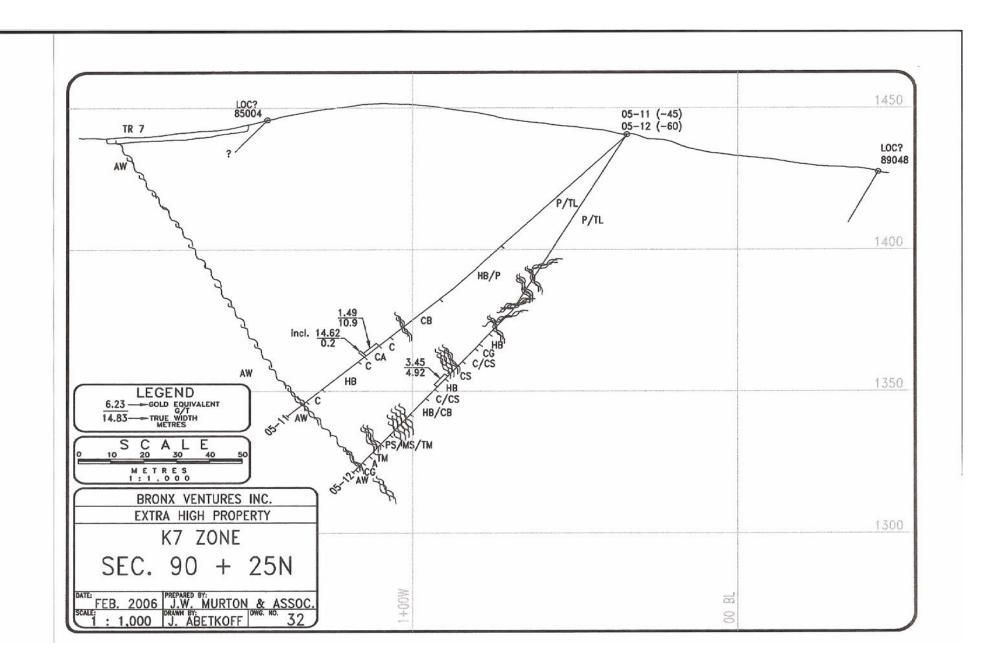


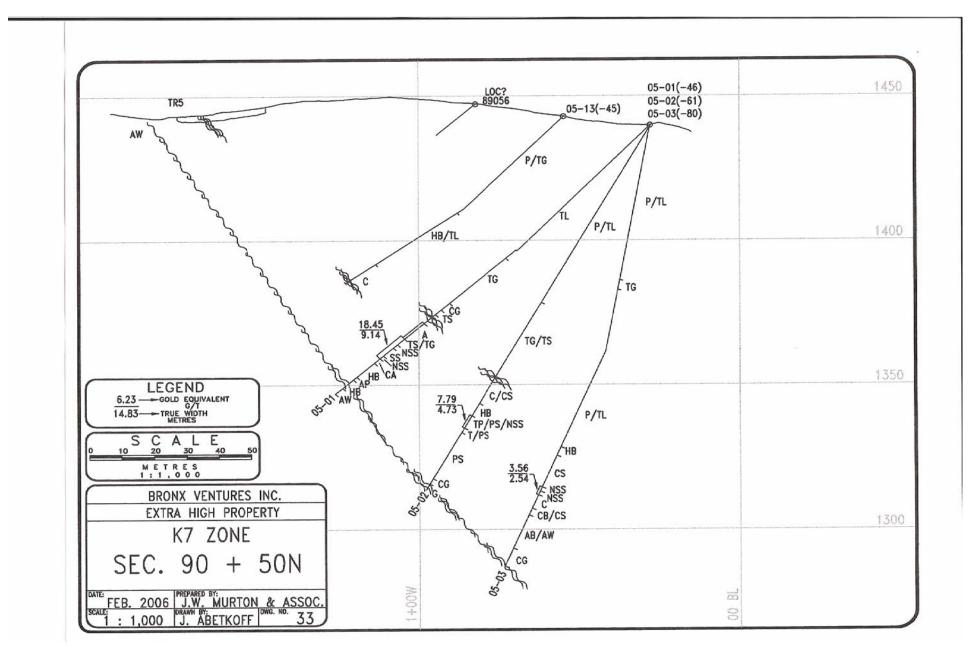


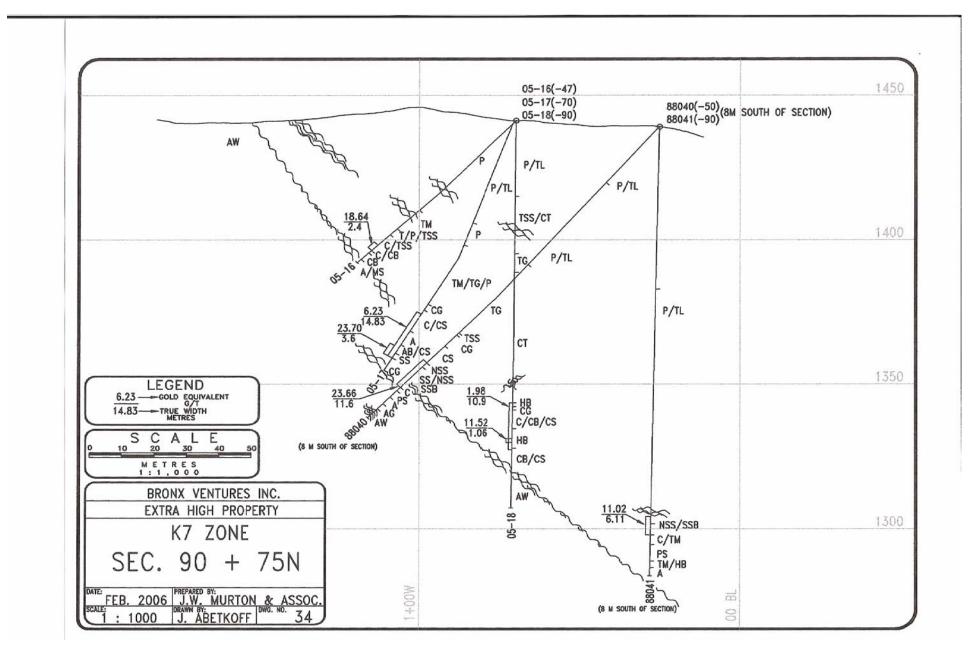


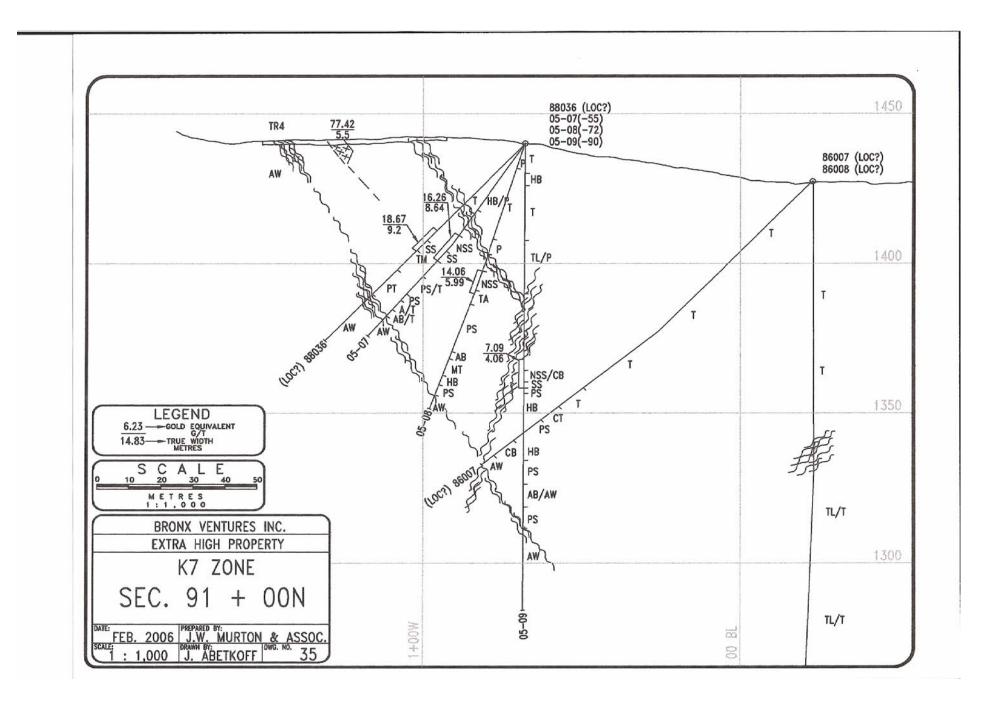


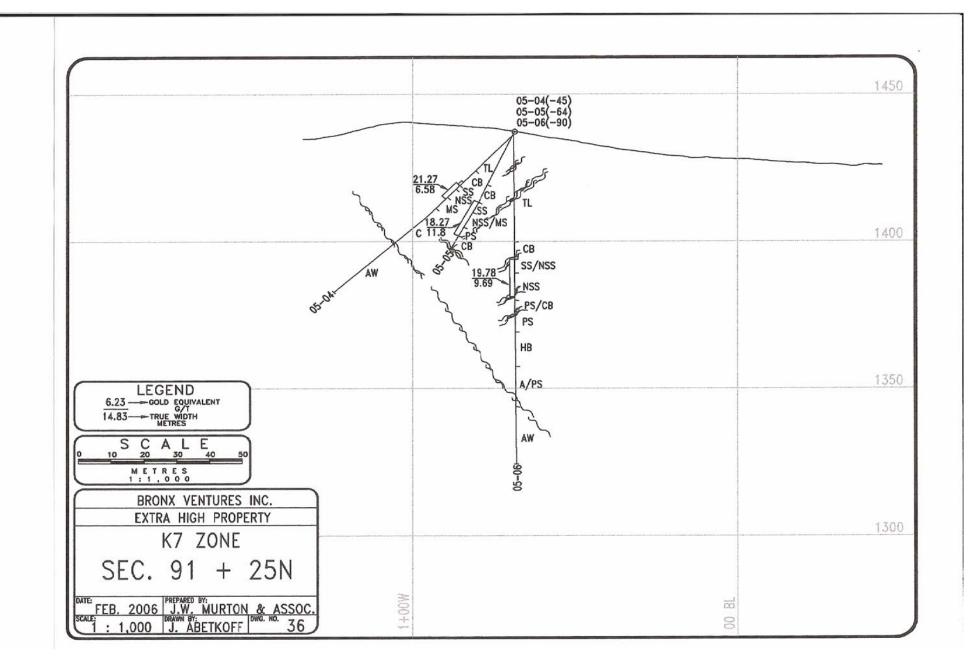







8/.T




6/.1

