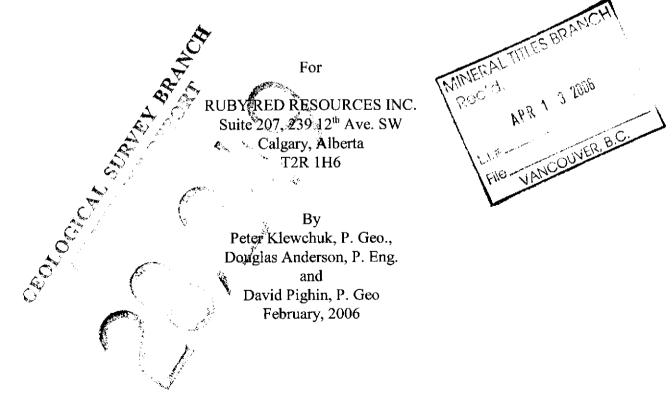
ASSESSMENT REPORT

on

GEOLOGIC COMPILATION GEOLOGIC MAPPING SOIL & ROCK GEOCHEMISTRY VLF-EM SURVEYING & DIAMOND DRILLING


PURCELL BLOCK CLAIMS

ZEUS, EDDY, HOPE, GAR AND LOV PROPERTIES

Fort Steele Mining Division, SE B.C.

UTM 567000E 5480000N

TRIM 82F.040, .050, 051, 060 & 82G.041

TABLE OF CONTENTS

	Page
INTRODUCTION	1
1.10 Location and Access	1
1.20 Property	1
1.30 Physiography	1
1.40 History	1
1.50 Scope of Present Program	2
GEOLOGY	5
REFERENCES	4
STATEMENT OF COSTS	5
	_
AUTHOR'S QUALIFICATIONS	7
	 1.10 Location and Access 1.20 Property 1.30 Physiography 1.40 History 1.50 Scope of Present Program GEOLOGY

PART A	ZEUS PROPERTY
PART B	EDDY PROPERTY
PART C	HOPE COPPER PROPERTY
PART D	GAR-LOV PROPERTY

25

į.

LIST OF ILLUSTRATIONS

Figure 1.	Purcell Block Claims location map	2
Figure A-1.	Zeus property geology and rock geochemistry map	In pocket
Figure A-2.	Zeus property, soil geochemistry, copper in ppm	A-4
Figure A-3.	Zeus property, soil geochemistry, gold in ppb	A-5
Figure A-4.	Zeus property, VLF-EM Data	In pocket
Figure A-5.	Zeus property, VLF-EM Data, north-south lines	A-7
Figure B-1.	Eddy property drillhole location map	
Figure B-2.	Diamond drill cross section, DDH E-05-1 & 2	
Figure B-3.	Diamond drill cross section, DDH E-05-3	
Figure B-4.	Diamond drill cross section, DDH E-05-4	
Figure B-5.	Diamond drill cross section, DDH E-05-5 & 6	
Figure B-6.	Diamond drill cross section, DDH E-05-8	
Figure B-7.	Diamond drill cross section, DDH E-05-9 & 10	
Figure C-1.	Hope property soil geochemistry, copper in ppm	In pocket
Figure C-2.	Hope property soil geochemistry, silver in ppm	In pocket
Figure C-3.	Hope property soil geochemistry, lead in ppm	In pocket
Figure C-4.	Hope property soil geochemistry, barium in ppm	In pocket
Figure D-1.	Gar property surface geology	In pocket
Figure D-2.	Gar property sampling and mag	In pocket
Figure D-3.	Gar property soil geochemistry, gold in ppb	In pocket
Figure D-4.	Lov property surface geology	In pocket
Figure D-5.	Lov property sampling and mag	In pocket
Figure D-6.	Lov property soil geochemistry, gold in ppb	In pocket

Appendix A-1.	Zeus property, description of rock samples	A-9
Appendix A-2.	Zeus property, rock geochemistry analyses	A-10
Appendix A-3.	Zeus property, soil geochemistry analyses	A-11
Appendix B-1.	Eddy property, diamond drill logs	
Appendix B-2.	Eddy property, diamond drill core geochemical analyses	
Appendix D-1.	Gar-Lov property, soil geochemistry analyses	

1.00 INTRODUCTION

1.10 Location and Access

The "Purcell Block" property is located in southeastern British Columbia between eight and 38 kilometers west of Cranbrook, B.C., and centered approximately at UTM coordinates 567000E 5480000N (Fig. 1). The large claim block covers parts of the drainages of Weaver Creek, Perry Creek, Angus Creek, Hellroaring Creek and the Goat River. These drainages and their tributaries are readily accessible via a network of forest service roads and thus fairly good road access exists to most of the claim block.

1.20 Property

The Purcell Block property is approximately 22,000 Ha in size and, for the purpose of this report, has been divided into four sub-property areas; Zeus, Eddy, Hope and Gar-Lov (Fig. 1).

1.30 Physiography

The Purcell Block claim area is within the Moyie Range of the Purcell Mountains. Elevations on the property range from 1060 to 2310 meters and topography varies from gentle and moderate wooded slopes to steep rocky slopes. Forest cover includes mainly pine, fir and larch. Areas within the claim block have been clear-cut logged within the past 30 years and are in various stages of regeneration.

1.40 History

Historic prospecting led to early discoveries of gold-bearing quartz veins and later road building activity related to logging exposed additional gold-bearing quartz veins in a few places. More recently, within the past few years, modern prospecting has led to the discovery of new lode gold occurrences within what is now the Purcell Block property. Gold mineralization is now recognized to be associated with felsic intrusions in the Lov, Gar and Zeus areas (potential "intrusion-related" gold model and porphyry copper-gold model) and small felsic dikes are present in the Eddy area. Gold also occurs within structural sites; in shear zones, fault zones, quartz vein breccias and quartz veins. These conform more to an "orogenic" gold model.

1.50 Scope of Present Program

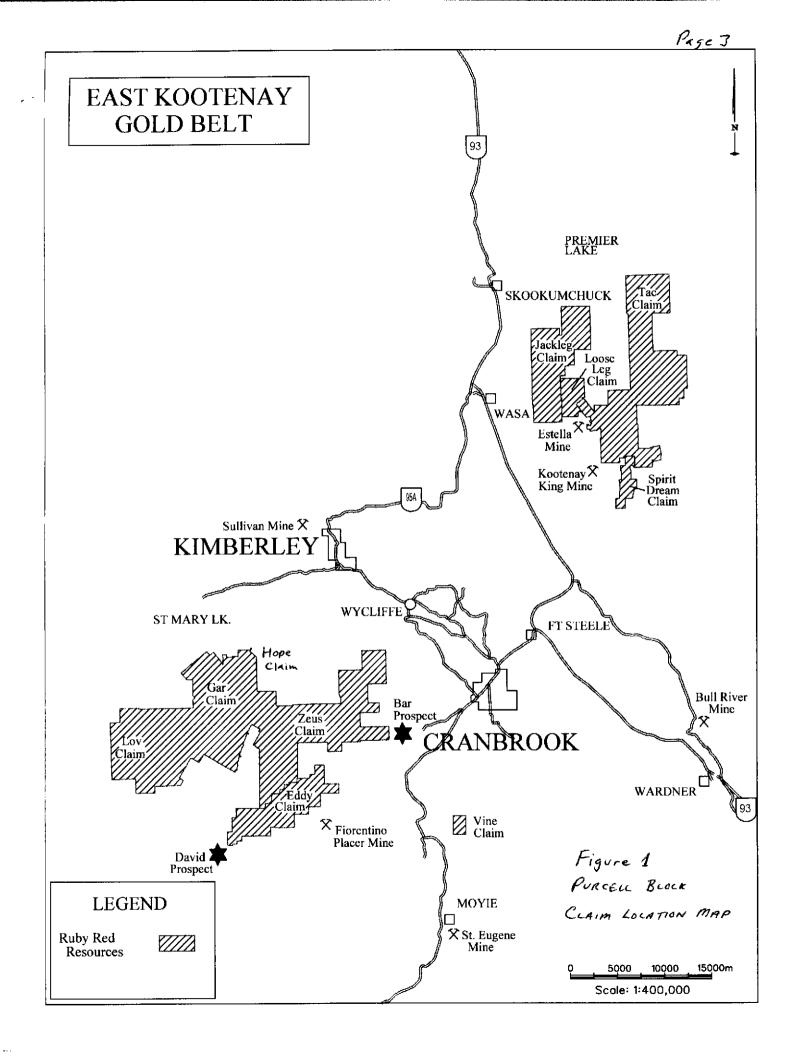
In 2005 exploration work was conducted on many different portions of the property.

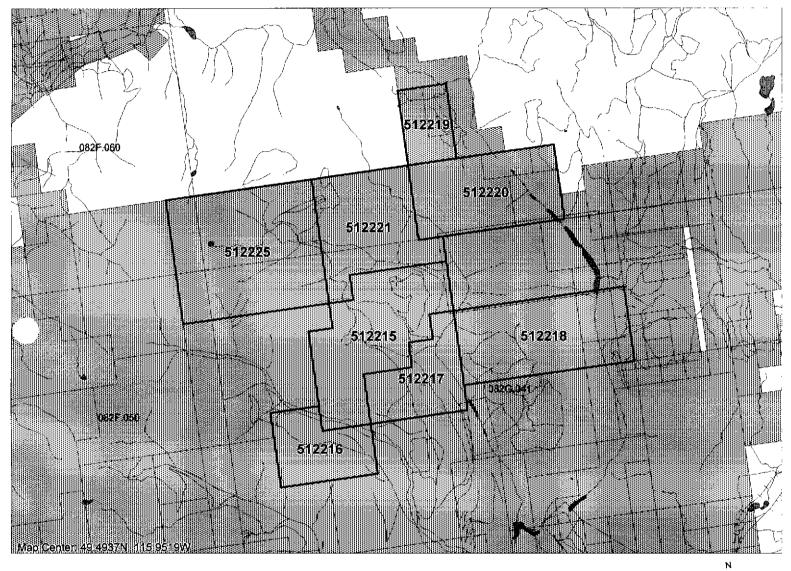
In the Zeus area geologic mapping, rock and soil geochemistry, ground VLF-EM surveying and trail access and drill site construction were completed (Part A of this report).

In the Eddy area eleven NQ diamond drill holes were completed (Part B of this report).

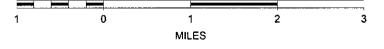
In the Hope area, geologic compilation of previous work and minor prospecting and geologic mapping were completed (Part C of this report).

In the Gar-Lov area geologic compilation of previous work, new geologic mapping and two large soil geochemistry grids were completed (Part D of this report).

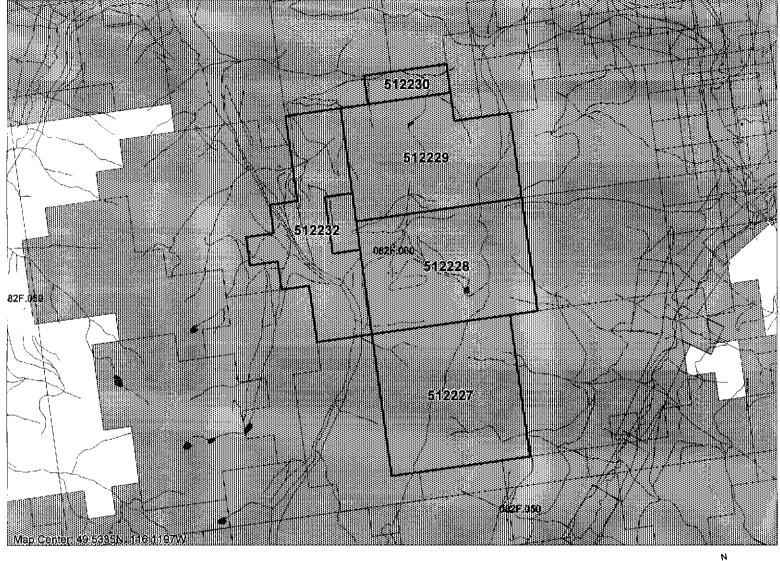

2.00 GEOLOGY


Mapping by Reesor (1981), Hoy and Diakow (1982) and Hoy (1984) has developed a good understanding of the geology and structure of the Cranbrook area of southeastern British Columbia. This area, which includes the "Purcell Block" claims, is part of the Purcell Anticlinorium, a geologic sub-province which lies between the Rocky Mountain Thrust and Fold Belt to the east and the Kootenay Arc to the west.

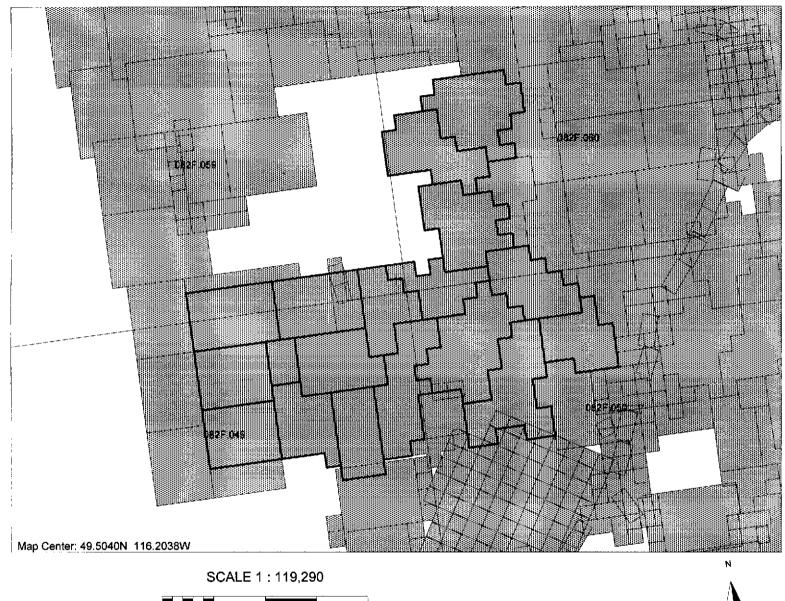
The mesoproterozoic Purcell Supergroup which occurs within the core of the anticlinorium includes up to 11 kilometers of dominantly fine-grained clastic and carbonate rocks.

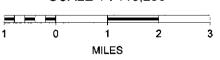

The Purcell Block claims are underlain by rocks ranging in age from Pre-Cambrian to Cambrian. These include the Aldridge, Creston, Kitchener, Cranbrook and Eager Formations. These formations are comprised of fine-grained clastic sedimentary rocks; the Aldridge is a thick succession of predominantly impure quartzites and siltstones of turbidite affinity; the Creston Formation is a shallower water sequence of cleaner quartzites but with considerable siltstone and argillite; the Kitchener Formation is a sequence of dolomitic siltstones; the Cranbrook Formation is characterized by thick, fairly clean white quartzites and the Eager Formation is largely laminated siltstones and srgillites with a minor carbonate component. The Aldridge Formation is intruded by a series of gabbro to diorite composition sills and dikes which are called the Moyie Intrusions; a few dikes extend into the Creston and Kitchener Formations.

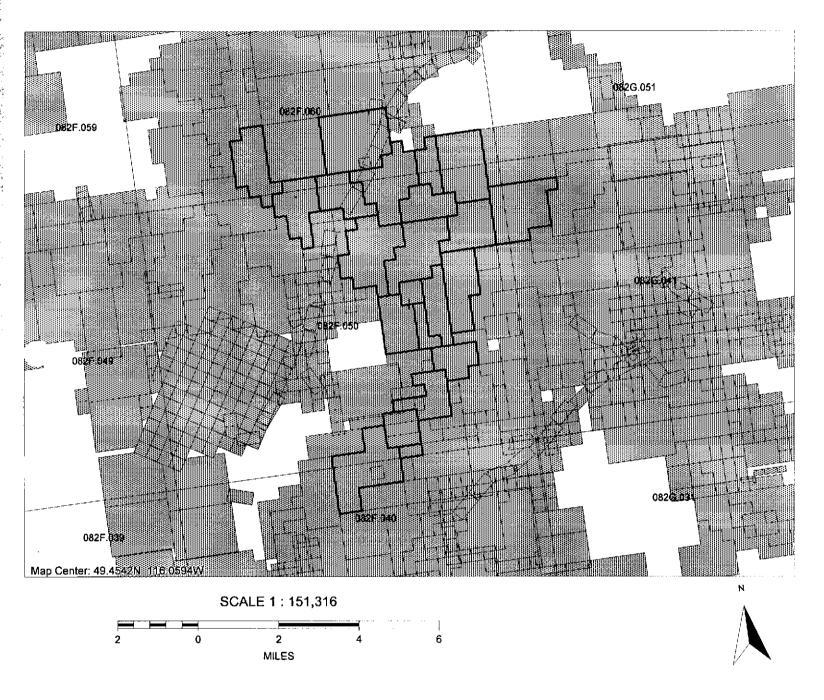
In a broad regional manner, structure of the Cranbrook area is dominated by a series of NNE oriented faults, at least some of which are believed to have been active during sedimentation in the Precambrian and thus have locally modified the type, distribution and thickness of late Proterozoic and Paleozoic rocks (Leech, 1958; Lis and Price, 1976).



SCALE 1 : 70,211


SCALE 1 : 61,636


MILES


] 3

A

LOV

EDDY

Page 4

The Purcell Block claims sit within an area of increased structural complexity which is more or less centered on the three prominent placer gold streams in the Cranbrook area, namely Perry Creek and the Moyie and Wild Horse Rivers (the Wildhorse is to the northeast in the Rocky Mountains). A series of NNE to NE oriented shear zones and a series of east to NE oriented transverse faults create the structurally complex, block-faulted area within which the placer gold occurs.

Cretaceous intrusions of granodiorite to syenite composition are scattered through the general area of placer gold occurrence near Cranbrook. These young rocks may be the eastern limit of the Bayonne Magmatic Belt. Some of the syenite and quartz monzonite stocks carry appreciable pyrite, pyrrhotite and chalcopyrite and tend to be associated with anomalous gold; gold mineralization has been found within intrusions, proximal to them and at some distance from known intrusions.

3.00 REFERENCES

- Hoy, T., 1984. Geology of the Cranbrook sheet and Sullivan Mine area. NTS 82G/12, 82F/9. BC MEMPR Preliminary Map No. 54.
- Hoy, T., and Diakow, L, 1982. Geology of the Moyie Lake area. BC MEMPR Preliminary Map No. 49.
- Klewchuk, P., 1990, Assessment report on diamond drill hole B-90-1, Bar Claims, Palmer Bar Creek area, Fort Steele Mining Division. BC MEMPR AR 20274.
- Leech, G.B., 1958. Fernie Map-Area, West-half, British Columbia. Geol. Surv. Can. Paper 58-10, 40pp.
- Lis, M.G., and Price, R., 1976. Large scale block faulting during deposition of the Windermere Supergroup (Hadrynian) in southeastern British Columbia. Geol. Surv. Can. Paper 76-1A p. 135-136
- Reesor, J.E., 1981. Geology of the Grassy Mountain Map Sheet. NTS 82F/8. Geol. Surv. Can. Open File 820.

4.00 STATEMENT OF COSTS

PART A ZEUS PROPERTY Event No. 4053224 by P. Klewchuk

Geologic mapping, geophysics; P. Klewchuk	\$9863.00
Geologic mapping, D. Anderson	612.50
Drafting, base map preparation, Kevin Franck and associates	2302.75
K. Sharpe, drafting	60.00
R. Klewchuk, soil collection, VLF-EM surveying	1639.65
Report preparation, P. Klewchuk, 7 days @ \$350/day	2450.00
Rock Geochemistry 16 samples @ \$19	304.00
Soil Analyses, 339 samples @ \$18	6102.00
Back Hoe; trail access and drill site preparation, not drilled in 2005;	
Mallard Logging; includes lowbed charges	1628.10
Sub-total	\$24,962.00
15% Administration, Calgary office	3744.30
Total Zeus Property	\$28,706.30

PART B EDDY PROPERTY Event No. 4053247 by P. Klewchuk

Diamond drilling; Lone Ranger Diamond Drilling Ltd., includes drill site preparation

	\$42,575.73
Geology, supervision, core logging, P. Klewchuk 21 days @ \$350/day	7350.00
4X4 truck, 21 days @ \$100/day	2100.00
Core sampling, B. Collison, 2 days @ \$250/day	500.00
Core sample analyses, 40 samples @ \$19	760.00
Report, P. Klewchuk, 2 days @ \$350/day	700.00
Drafting, base map, drill hole location and cross sections, K. Franck	700.00
Core storage racks, Vine Property	575.00
Field office rental; Vine facility; 10 days @ \$50/day	500.00
Back Hoe; trail access, Mallard Logging; includes lowbed charges	7184.31
Sub-total	\$62,945.04
5% Administration, Calgary office	3147.25
Total Eddy	\$66,092.29

PART C	HOPE COPPER PROPERTY	Event No. 40532	229 by D.L. Pighin
D. L. Pighin	, geologist; compilation, field w	ork and report	\$9800.00
Prospecting;	S. and M. Kennedy		625.00
Drafting; Ke	vin Franck and Associates		2780.00
	Sub-total		\$13,205.00
	15% Administration, Calgary	office	1980.75
	Total Hope Copper Property		\$15,185.75
PART D	GAR-LOV PROPERTY	Event No. 4053245 by	y D. Anderson
D. Anderson	, P. Eng., compilation, field wor	rk	\$7882.70
Drafting, Ke	vin Franck and Associates		3750.00
Prospecting,	S. and M. Kennedy		625.00
Soil collection	on, C. Johansen		8926.00
Helicopter s	upport		1435.00
Road access	work; B. Collison		1332.45
Soil analyses	s: 1367 samples @ \$18		24,606.00
	Sub-total		\$48,557.15
		00	

15% Administration, Calgary office\$40,357115Total Gar-Lov property\$55,840.72

TOTAL COST PURCELL'S BLOCK PROPERTY

\$165,825.06

5.00 AUTHOR'S QUALIFICATIONS

As author of this report I, Peter Klewchuk, certify that:

- 1. I am an independent consulting geologist with offices at 246 Moyie Street, Kimberley, B.C.
- 2. I am a graduate geologist with a B.Sc. degree (1969) from the University of British Columbia and an M.Sc. degree (1972) from the University of Calgary.
- 3. I am a Fellow of the Geological Association of Canada and a member of the Association of Professional Engineers and Geoscientists of British Columbia.
- 4. I have been actively involved in mining and exploration geology, primarily in the province of British Columbia, for the past 30 years.
- 5. I have been employed by major mining companies and provincial government geological departments.

Dated at Kimberley, British Columbia, this 16th day of February, 2006.

Pet. K Peter Klewchuk P. Geo.

PART A ZEUS PROPERTY by P. Klewchuk

Geologic Mapping

The Zeus claims (Fig. 1) cover one of the largest known argillic-altered zones within the Cranbrook area. Historic exploration work done in the mid 1980's by Chapleau Resources Ltd. identified a large sulfide-mineralized quartz flooded zone within the area of argillic alteration. The quartz flooding is associated with felsic syenite dikes and the system was interpreted to be at the junction of the E-W Cranbrook Fault and the NNE Palmer Bar Fault.

A series of diamond drill holes completed by Chapleau resources in 1985 defined the basic geometry of the Bar Deposit (Fig. A-1) and included a 50.5 meter drill intersection in DDH B-88-20 of 0.57% copper. A later drill hole by Swift Minerals Ltd (Klewchuk, 1990: AR 20274) intersected an apparently larger argillic altered syncite body at depth. This intrusion carries anomalous gold, copper, arsenic and lead and suggests a possibility for porphyry-style copper-gold mineralization.

Recent logging (late winter and spring of 2005) within the area has provided new bedrock exposures and made many of the smaller, previously unmapped, bedrock exposures more evident. In addition, exploration work carried out on the "Lookout" prospect to the east and the Eddy project to the southwest has provided a broader geologic framework for the Zeus area and allowed new geologic interpretation.

The large quartz flooded zone(Fig. A-1), which was originally called the "Bar Deposit", is now recognized as the westward coalescence of two east-west faults; the northern Cranbrook Fault and the southern Frisina Fault. The Frisina Fault arcs northward going to the west and joins the east-west Cranbrook Fault and the large wishbone-shaped quartz flooded zone and associated felsic dikes of the Bar Deposit (Fig. A-1) is developed at this juncture.

Bedding in the Zeus area generally strikes northeasterly with moderate to steep west dips.

A new exposure of the Cranbrook Fault was located about 600m almost due west of the Bar Deposit, demonstrating that this structure continues almost due west for at least this distance. Rusty upper middle Aldridge Formation siltstones (including the "Shaft" stratigraphic marker unit) occur on the south and middle Creston Formation quartzites occur to the north, indicating an apparent vertical displacement on the Cranbrook Fault here of at least 2000 meters.

A series of north-northeast faults, trending approximately 025° to 030° were mapped; a few others are inferred from detailed geologic mapping. The area south of the Bar Deposit (wishbone-shaped sulfide-bearing quartz flooded zone and associated felsic dikes) is underlain by the upper part of the middle Aldridge Formation which hosts a series of laminated "bar code like" stratigraphic marker units which have been demonstrated by Cominco Ltd. in their basin-

wide exploration activity to be unequivocal time-stratigraphic markers. Locating and matching these markers in the Zeus area has allowed a confidant interpretation of the approximate location and sense of motion of these NNE fault zones; all are high angle reverse faults with minor vertical displacement.

Extensive argillic and limonitic alteration and more local silicification is associated with most of the NNE fault structures. Similar alteration occurs within the Cranbrook Fault zone where it is exposed or has been drilled in the past. Thus the extensive zone of argillic, limonitic and local silicic alteration associated with the Bar Deposit is in part a consequence of the intersection of the Cranbrook Fault and the suite of NNE fault zones.

A northeast-trending 'M-style" fold zone of fairly symmetric anticlines and synclines was mapped near 574200E 5481600N. Fold axes parallel the trend of the suite of NNE faults and this fold zone is interpreted to be a more dramatic consequence of the reverse motion along one of the NNE faults; presumably the fold zone is on the immediate hangingwall side of one of these structures although the trace of the fault is covered. Weaker argillic and limonitic alteration is present within the exposed area of folding.

A new logging landing at 574750E 5482770N has exposed previously unknown argillic alteration in the Creston Formation, and broad swirly folds are exposed in the landing, indicating that the "M-style" fold zone extends this far north, giving it a minimum strike length of 1300 meters. Furthermore, if this northern fold area is the same fold zone as that to the south, as indicated in Fig. A-1 then the fold zone extends across the Cranbrook Fault and would be later than the Cranbrook Fault.

ROCK AND SOIL GEOCHEMISTRY

Rock Geochemistry

Sixteen rock samples were collected in 2005 during the course of geologic mapping in selected areas of the property. Rock samples were shipped to Acme Analytical Laboratories Ltd. at 852 East Hastings Street, Vancouver, B.C., and analyzed for a 30 element ICP package and geochemical gold by standard analytical techniques. Rock sample sites with gold values in ppb are shown in Figure A-1 with sample descriptions in Appendix A-1 and complete geochemical analyses in Appendix A-2.

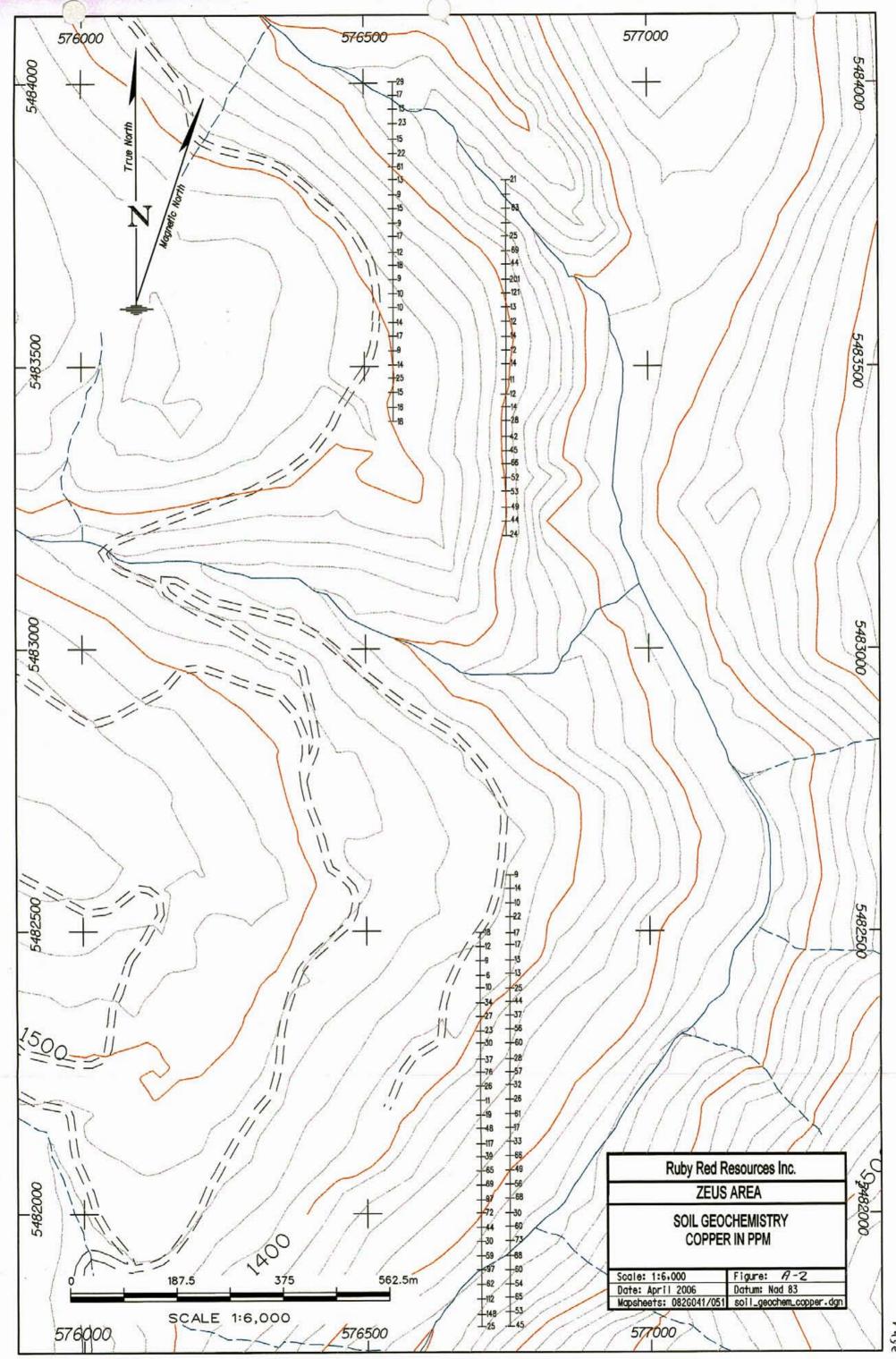
Only two samples have gold values above 100 ppb (samples Z-6 and Z-7; Appendix A-2); both were collected from an area of a previously established copper-in-soil anomaly and a weaker gold-in-soil anomaly (AR). Both are of northeast-striking quartz veins in narrow shear zones. A lack of anomalous copper in these samples suggests the source of the copper-in-soil anomaly is not the same zones.

The remaining samples have generally low gold and base metal values. Sample Z-1, from the eastern part of the map area and from a quartz vein breccia zone in Palmer Bar Creek, has 251

ppm Pb. This anomalous level may reflect a northeast-striking mineralized fault structure within the Palmer Bar Creek canyon.

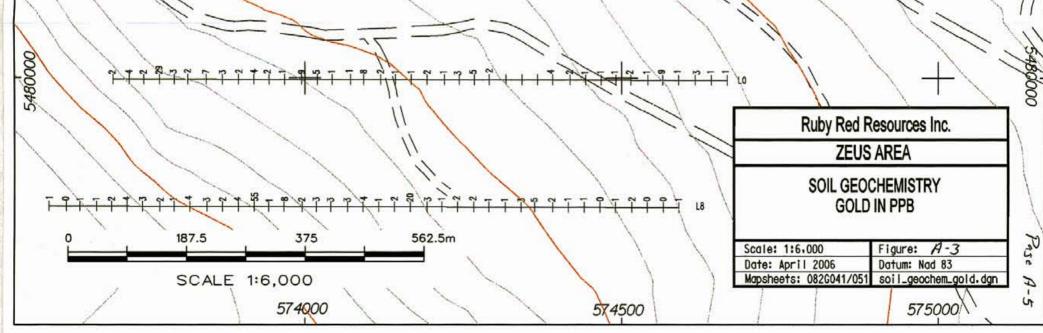
Soil Geochemistry

Two areas were sampled in 2005. Grid soil locations are shown in Figs. A-2 and A-3. A total of 339 soil samples were collected; soils were taken from the B Horizon at an approximate depth of 15 cm, placed in Kraft paper bags, dried and shipped to Acme Analytical Laboratories Ltd. at 852 East Hastings Street, Vancouver, B.C., where they were analyzed for a 30 element ICP package and geochemical gold by standard analytical techniques. Copper values in ppm are plotted in Fig. A-2 and gold values in ppb are shown in Fig. A-3. Complete geochemical analyses are provided in Appendix A-3.


Four north-south oriented fill-in lines were sampled from within the copper-in-soil anomalies established by Chapleau Resources Ltd. in 2004 (AR 27340), to verify the anomalies and provide additional definition. High copper values, up to 201 ppm (Fig. A-2), were obtained from the work and the results confirm a strong copper anomaly and generally support the Chapleau work. Detailed prospecting and rock geochemistry are required in the areas of these copper anomalies to define the source of the copper as the host stratigraphy is the Creston Formation and a possibility exists for sediment-hosted copper deposits (see section C of this report).

Seven east-west oriented lines in the southwest part of the Zeus map area (Fig. A-3) were soil sampled primarily for gold. These lines cross established northeast VLF-EM anomalies which are believed to reflect northeast structures that are part of the Old Baldy fault system. Generally, gold values in this survey area are low (Fig. A-3) with only a few samples between 10 and 50 ppb and only one above 100 ppb. The higher values do tend to correspond with VLF-EM anomalies and local occurrences of quartz float and are probably worth following up with trenching.

VLF-EM GEOPHYSICS


Introduction

Known gold mineralization on the Purcell Block claims is structurally-controlled and VLF-EM geophysical surveying can detect structures which may not be evident using any other type of geophysics so a program of VLF-EM surveying was initiated on the Zeus claim block in 2005, primarily to locate and trace northeast structures that are part of the Old Baldy fault system. In areas of interest, roads were typically surveyed first, in the hope of efficiently detecting anomalous responses which could then be surveyed in more detail. Subsequently, grid surveying was carried out on east-west and north-south lines using GPS as a control for starting points and for determining intermediate points on the survey lines. Surveys on grid lines were run using a hip chain and compass. A total of 17,975 meters of line were surveyed (Fig. A-4).

C H-

0 575000 574500 574000 1700-True North Mognetic North N 5481500 5481500 11 9777 L14 1111 9997 9/9 11/11/1 1600 17111 11 2 2 2 P T T T 2 P T T 2 P T T 2 P T T 2 P T T 2 P T T 2 P T T 2 P T T 2 P T T 2 P T T T 5481000 5481000 1977777777777777777777 -1500 원 9 9 7 9 ī 7 -T 17 15480500 5480500 T R LA 97977 979797 T 2 T T 2 III III

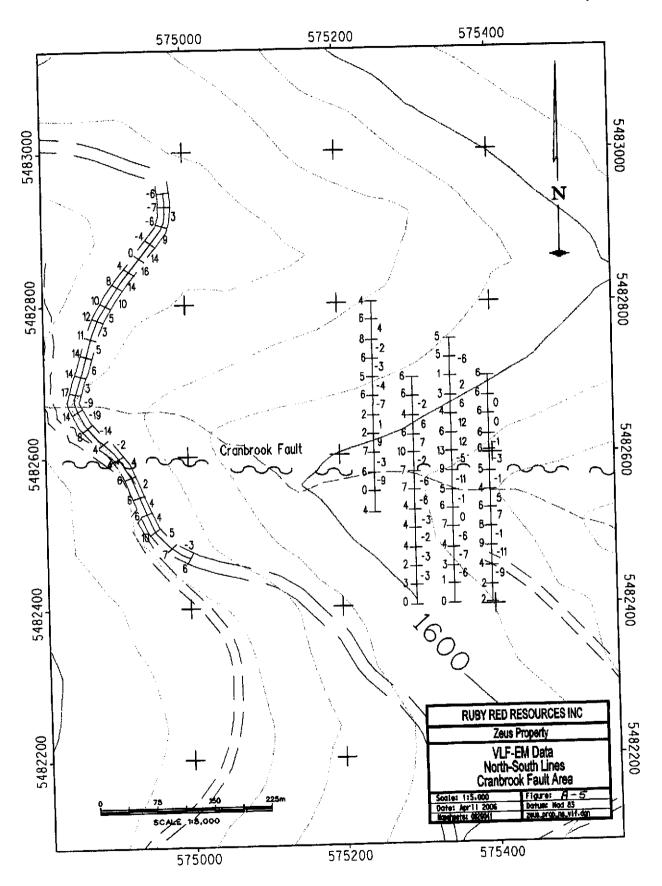
VLF-EM Survey

Instrumentation and Survey Procedure

The VLF-EM (Very Low Frequency Electromagnetics) method uses powerful radio transmitters set up in different parts of the world for military communication and navigation. In radio communication terminology, VLF means very low frequency, about 15 to 25 kHz. However, relative to frequencies generally used in geophysical exploration, the VLF technique actually uses very high frequencies.

A Crone Radem VLF-EM receiver, manufactured by Crone Geophysics Ltd. of Mississauga, Ontario, was used for the VLF-EM survey. Seattle, Washington, transmitting at 24.8 kHz and at an approximate azimuth of 249° from the survey area, was used as the transmitting station for the survey.

In all electromagnetic prospecting, a transmitter produces an alternating magnetic (primary) field by a strong alternating current usually through a coil of wire. If a conductive mass such as a sulfide body is within this magnetic field, a secondary alternating current is induced within it, which in turn induces a secondary magnetic field that distorts the primary magnetic field. The VLF-EM receiver measures the resultant field of the primary and secondary fields, and measures this as the tilt or 'dip angle'. The Crone Radem VLF-EM receiver measures both the total field strength and the dip angle.


The VLF-EM uses a frequency range from about 15 to 28 kHz, whereas most EM instruments use frequencies ranging from a few hundred to a few thousand Hz. Because of its relatively high frequency, the VLF-EM can detect zones of relatively lower conductivity. This results in it being a useful tool for geologic mapping in areas of overburden but it also often results in detection of weak anomalies that are difficult to explain. However the VLF-EM can also detect sulfide bodies that have too low a conductivity for other EM methods to pick up.

Survey lines on the grid were initially located by using a Garmin 76 hand-held GPS, then run by compass. All survey lines were measured with a hip-chain with VLF-EM readings (field strength and dip angle) taken at 25 meter spacings. Sufficient GPS readings were taken during VLF-EM surveying to provide confidence in plotting all survey lines on the base maps. A total of 17.975 kilometers of VLF-EM surveying was completed on the Zeus property in 2005, on various targets.

Results were reduced by applying the Fraser Filter and both dip angle and Fraser Filter values are shown on the survey lines in Figure A-4.

The Fraser Filter is essentially a 4-point difference operator which transforms zero crossings into peaks, and a low pass operator which induces the inherent high frequency noise in the data. Thus the noisy, often non-contourable data are transformed into less noisy, contourable data. Another advantage of this filter is that a conductor which does not show up as a zero crossover in the

Page A-7

J

unfiltered data quite often shows up in the filtered data.

4.22 Discussion of Results

In the southwest portion of the survey area, a NNE VLF-EM response coincides with quartz float present on the two roads which parallel Wuho Creek on its south side (Fig. A-4). These are believed to be the Palmer Bar fault or a related structure, and are considered part of the major Old Baldy Fault System.

In the central part of the map area, Nne trends were identified on both sides of the Cranbrook Fault. These probably also represent portions of the Palmer Bar / Old Baldy Fault. Detailed VLF-EM surveying on both sides of the Cranbrook Fault indicates these NNE structures are offset by the Cranbrook Fault.

Two known NNE fault zones were surveyed on roads - at 5483500N 574200E and 5481650N 575450E - and detected with the VLF-EM but no additional lines have been yet surveyed.

CONCLUSIONS

Geologic mapping on the Zeus property in 2005 has resulted in a much better understanding of the Bar Deposit and its environs. It is now evident that the Bar Deposit is developed at the westward coalescence of the Cranbrook and Frisina Faults. Furthermore, a series of northeast-striking high angle reverse faults appears to control development of quartz veining and argillic alteration zones and the intersection area of these structures and the Cranbrook / Frisina fault system has evidently focused the hydrothermal activity which resulted in the extensive argillic alteration zone that is present. The northeast-striking fault zones are considered related to the Old Baldy Fault system.

Rock samples collected in 2005 generally returned low metal values. The highest gold number comes from the area of a previously-defined strong copper anomaly. No corresponding high copper values were obtained from this area and the copper anomaly remains unexplained.

Soil sampling which provided additional detail on previously-defined copper-in-soil anomalies supports thye presence of the copper anomaly. Soil sampling across the inferred trace of the Palmer Bar / Old Baldy Fault shows only isolated, generally weaker gold anomalies although these do tend to correlate with the inferred trace of the NNE structures and trenching is warranted to better test these zones.

VLF-EM surveying has identified and traced a series of NNE anomalies which in places correlate with known NNE fault zones.

Appendix A-1 Description of Rock Samples

1

and the second second

Samp	le Loca	tion	Description
Z-1	577095E	5482285N	8cm wide vuggy, rusty quartz vein (101/60N); in poorly exposed possible fault zone in silicified, brecciated outcrop.
Z-2	574970E	5481566N	Sub-crop from ditch. Limonitic breccia, argillic-altered; fault or shear zone.
Z-3	574593E	5481535N	Silicified, angular float. Bleached, limonitic, yellow-white argillic altered siltstone with thin very rusty vuggy cross- cutting quartz veins. Probably part of a structure.
Z-4	576680E	5484004N	Vuggy, rodded quartz; looks bedding-parallel but not well exposed. 037/63W. Quartz veins are lensey, may be up to 15cm wide.
Z-5	576826E	5483820N	 1.5m wide shear / fault / breccia zone; silicified. Quartz veining variably limonitic; some strong, some weak. Crackle silicified breccia, weak vugs. No fresh sulfides but probable sulfides weathered in vugs.
Z-6	576780E	5483804N	Narrow 3-4cm wide quartz vein. Dissem pyrite, mostly oxidized. Also cross-cutting quartz veins.
Z-7	576800E	5483675N	Sample of narrow 3-5cm wide shear / quartz vein zone at base of cliffs, trends 016/44W. Area of high copper in soils.
Z-8	576800E	5483675N	Grab of shear zone, silicified, brecciated and foliated sediments (Siltstone, argillite) and vuggy, rusty quartz veins. Foliation planes can be very micaceous; see very fine-grained pyrite, no chalcopyrite.
Z-9	576775E	5483750N	Rusty, vuggy quartz vein, minor fresh pyrite.
Z-11	574214E	5483554N	Sample of coarse pyrite from narrow shear zone along joint / fracture at 114/72-90N.
Z-12	574190E	5483581N	Silicified fault zone with abundant coarse pyrite; vuggy quartz veins with open space crystallization. Pale greenish chloritic seds.
Z-13	574190E	5483581N	(Same loc as 12) Siliceous, intensely altered seds; pale green chloritic, dissem pyrite.
Z- 14	574190E	5483581N	Vuggy, rusty 114 ⁰ quartz veins which appear to cut the main zone that trends ~040/50-78NW. Quartz veins are vuggy, rusty with some fresh pyrite.
Z-15	574190E	5483581N	Narrow vuggy quartz vein at 004/56W. Scattered coarse limonitic (mostly leached out) pyrite.
Z-16	574277E	5482902N	Quartz vein breccia in felsite on edge of landing; irregular, limonitic quartz veins with coarse pyrite; felsite is massive, yellow-brown color; black specks may be manganese.
Z-17	573691E	5483718N	Chloritic, limonitic breccia with felsite fragments, quartz matrix and dissem pyrite. Trends 066/84N.

					Rul	20 20	<u>Re</u> 7 -	<u>1 R</u> 239	eso - 12t	urc 1 Ave	<u>ев</u> s.w	<u> </u>	1 <u>C.</u> Calga	_PI iry A	ROJ B TZ	<u>EC</u> ' R 1H	<u>r</u> z 16	EU Subr	<u>S</u> littec	Fil by:	e # Pete	A.	502 wchul	983							1	
SAMPLE#	Mo ppm			Zn ppm	_					As ppm									Ca %			Cr ppm		i 8a Sppm	Ti %	B ppm	Al %			W mqq	Au* ppb	
2-1 Z-2 RE Z-2 Z-3 Z-4	1 2 1		5 8	-	<.3 <.3 <.3	4 2	3 1	9 10 38	1.84 7.72 7.91 6.16 7.10	8 10 7	<8 <8 <8	<2 <2 <2	8 <2 <2	2 2 6	<.5 <.5	ব্য ব্য ব্য	4 6	8 6 10	.02 .02 .01	.013 .010 .010 .043 .045	63 64 8	13 7 6	. 14 . 14 . 01	12 11 11	<.01 <.01 <.01 .02 <.01	<3 <3 <3	.85 .87	.03 .04	.02	24 <2 <2	1.3 18.7 15.1 5.5 6.3	
Z-5 Z-6 Z-7 Z-8 Z-9	2	13	24 8	23 8 36 2 5	<.3 <.3	15	4 35 4	109 671 19	3,47 2,31 3,13 3,65 2,18	9 8 107	<8 <8	<2 <2	< < < < < < < < < < < <><><><><><><><><	2 7 12	<.5 <.5	<3 <3	<3	4 3 2	.01 .10 .09	.007 .014 .011 .053 .012	11 13 2	17	. 1	9 28 9	<.01 <.01 <.01 <.01 <.01	ও ও ও ও	.48 .75 .20	.05	.03 .18 .27	<2 <2	22.6 142.9 459.5 82.8 7.6	
2-11 2-12 2-13 2-14 2-15	<1	6 <1 50	19 10 22	10 14 37	<.3 <.3 <.3	9 23 15	1 13 14	69 100 182	4.64	4 9 8	<8 <8 <8	<2 <2	<2 3 <2	2 4 3	<.5 <.5	<3 4 <3	ও ও ও	11 15 2	<.01 <.01 .01	.044	6 7 27	21 61 4	3.78	8 3 33	<.01 <.01 <.01	ও ও ও	3.26 2.06 3.14 .47 2.12	<.01 <.01	14	<2 <2 <2	9.1 1.3 1.2 19.7 .8	
Z-16 Z-17 STANDARD_DS6/AU-R	<1	- 4	51	95	<.3	17	10	196	4.64	10	-8	<2	10	2	<.5	<3	<3	39	.01	.039 .021 .072	2	34	. 90	26	<.01	<3	1.17 1.64 1.84	.04	.01	<2	1.4 .8 446.5	
GROUP 1D - 0.50 GM S (>) CONCENTRATION EX ASSAY RECOMMENDED FO - SAMPLE TYPE: ROCK Samples beginning 'R ata FA	CEEDS R ROCK R150	UPP(ANI /	ER LI D COF AU* I	IMIT: RE S/ IGNII	S. AMPL TED,	SOME ES II ACII	MIN CU LE	ERALS PB Z ACHEC	MAY N AS , ANA	BE P/ > 1%, LYZE(ARTIA , AG) BY	ALLY > 3 ICP	ATT/ O PPI -MS.	ACKEI 1 & 7 (15), (AU > gm)	REFR/ 1000	ACTO D PPI	RY AI 3	ID GR/	APHITI	Ċ SA	MPLE	ED BY	ICP-LIMI	T AU	<u> </u>		75				Pauk

ł

Page A-10

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

				-	R	יפנ	7]	Rec																	e) # diby						age	≥ 1								E
SAMPLE#	Mo ppm	Cu ppr				Ag pm		-) 1 1 1 1 1										Sb ppm						Cr ppm						Na X								a Se: n ppm	Sampl gi
G-1 L6550 1000N L6550 975N L6550 950N L6550 925N	.4 .6 .4	1.7 28.5 16.9 12.5 23.2	16. 22. 17.	9 19 0 19 4 13	89 95 < 38	.1 1 .1 2 .1 3	12.6 28.7 37.8	6.4 12.4 6.9	4 34 4 168 5 56	101 122 1381	.46 .28 .79	5.6 4.9 4.4	1.2 .7 .5	1. 1. 2.	7 : 5 : 5 :	3.8 5.9 3.8	26 24 24	.3 .3 .2	.1 .2 .1	.3 .4 .3	14 15 16	.18 .10 .17	.368 .234 .133	12 13 9	8.3 11.3 9.4	.12 .21 .20	257 217 121	.051 .047 .061	2 2 2	1.72 1.93 2.02	.015 .012 .016	.07 .07 .08	.1 .1 .1	.03 .02 .03	1.5 1.4 1.3	.1	<.05 <.05 <.05		5 <.5 5 <.5 5 <.5	1 1 1 1 1
L6550 900N L6550 875N L6550 850N L6550 825N L6550 800N	.9 1.0 .7	15.3 22.1 60.6 12.5 8.9	23. 23. 17.	3 9 8 1 0 4	99 05 84 <	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 3 \end{array} $	24.0 70.3 33.7	11.(33.) 13.)) 30 . 64 . 29)02 152 142	.74 .89 .19	6.7 6.6 5.0	.5 2.6 .4	1. 21.	2 : 0 1: 6 :	5.2 8.6 3.7	8 15 13	.1 .1 .1	.3 .2 .2	.5 .6 .4	20 27 17	.06 .09 .07	.059 .094 .044	12 20 13	14.1 15.1 11.0	. 33 . 26 . 25	95 201 119	.029 .063 .033	1 1 1	1.89 3.69 1.76	.005 .011 .008	.06 .09 .07	.1 .2 .1	.02 .04 .02	1.1 2.2 1.0	1 1 1	<.05 <.05 <.05	5 6 5 9 5 6	5 <.5 9 <.5	14 14 14 14 14
L6550 775N L6550 750N L6550 725N L6550 700N L6550 675N	.5 .6 .6	15.4 9.4 17.4 11.9 17.7	15. 17. 18.	8 9 6 1 6 8	91 < 17 82 <	$ 1 1 \\ 1 2 \\ 1 1 $.8.5 37.1 .7.5	8.1 18.0 9.8	18 129 129	161 181 122	93 84 47	5.6 4.6 5.1	.2 .4 .3	1.	1 : 9 : 8 :	2.8 2.9 3.6	10 50 15	.1 .1 .1	.2 .2 .3	.7 .3 .4	14 16 18	.06 .25 .09	.048 .095 .037	9 11 13	9.9 13.3 14.1	. 25 . 27 . 43	93 171 102	.021 .036 .027	1 1 1	1.24 1.60 1.69	.006 .008 .006	.08 .10 .08	1 1 1	.02 .04 .03	.9 1.1 1.1	.1 .1 .1	<.05 <.05	5 5	3 <.5 5 <.5 5 <.5 5 <.5 7 <.5	1 1 1 1 1 1
L6550 650N L6550 625N L6550 600N RE L6550 600N L6550 575N	.6 .4 .4	9.2 9.6 10.3 10.5 14.4	16. 14. 14.	3 9 6 13 5 13	90 30 39	.1 2 .2 2 .2 2	22.0 21.3 21.6	29.4 23.5 23.7	89 129 129	141 181 121	. 64 . 55 . 57	4.4 3.5 3.7	.2 .3 .3		9 ; 9 ; 6 ;	2.4 2.6 2.7	10 · 13 15	<.1 .2 .2	.2 .1 .1	.3 .3 .3	19 16 18	.07 .09 .10	047 181 180	9 9 11	9.6 8.4 9.1	. 15 . 18 . 18	111 182 189	.043 .037 .048	<1 2 1	1.53 1.89 1.91	.010 .009 .011	.07 .07 .08	.1 .1 .1	.03 .03 .03	1.0 1.1 1.3	.1 .1 .1	<.05 <.05 <.05	5 E 5 E 5 7	5 <.5 5 <.5 7 <.5	19 19 19 19 19
L6550 550N L6550 525N L6550 500N L6550 475N L6550 450N	.5 .6 .9	17.1 9.2 13.8 25.4 15.1	9. 12. 18.	9 6 9 8 9 10	50 < 35 33	.1 2 .2 3 .2 4	29 57 91	30.1 40.8 65.4	33 72 74	61 11 32	80 82 50	4.6 6.2 7.0	.2 .4 .6		6 2 9 3 5 6	2.5 3.0 6.6	8 12 11	.1 .2 .1	.1 .2 .2	.3 .3 .5	17 28 24	.07 .10 .08	037 083 051	15 4 13	9.9 8.5 14.4	.19 .11 .30	111 120 140	.041 .109 .052	8 2 1	1.73 3.38 2.78	.010 .015 .009	.06 .05 .07	.1 .1 .1	.02 .04 .04	.9 1.3 1.3	.1	<.05 <.05 <.05	5 6 5 9 5 8	5 <.5	19 19 19 19 19 19 19 19 19
L6550 425N L6550 400N L6700 2500N L6700 2475N L6700 2450N	.7 .5 .5	15.6 17.7 17.9 11.8 9.2	10. 15. 12.	8 9 8 6 5 10	58 < 53 03	.1 2 .2 2 .1 2	20.1 20.0 28.4	13.8 10.9 12.4	35 11 98	41 61 51	.77 .92 .17	4.4 4.1 4.1	.3 .6 .4	1.	9 3 8 4 0 2	3.9 4.2 2.4	9 - 10 24	<.1 .1 .1	. 1 . 1 . 1	.3 .2 .2	13 17 17	.06 .06 .11	.028 .062 .157	21 20 9	10.5 12.3 7.8	. 25 . 26 . 15	93 101 168	.029 .022 .083	2 1 2	1.64 1.62 2.12	.008 .005 .018	.06 .05 .06	.1 <.1 .1	.01 .02 .02	.9 1.2 1.3	< 1 .1 .1	<.05 <.05 <.05	i 5 i 5 i 7	5 <.5 5 <.5	19 19 19 19
L6700 2425N L6700 2400N L6700 2375N L6700 2350N L6700 2325N	.5 .7 .7	5.6 10.2 34.4 26.7 23.4	11. 24. 38.	6 1(4 7 5 11)1 < 77 < 15 <	.11 .11 .11	7.7 6.7 8.2	7.7 12.4 19.6	31 19 64	71 82 62	.39 .90 .34	2.5 7.4 5.2	.4 .9 1.1	2. 4. 6.	$ \begin{array}{c} 1 & 0 \\ 7 & 9 \\ 1 & 9 \end{array} $	3.8 9.2 9.8	14 4 - 10	.1 <.1 .3	.1 .2 .3	.2 .4 .6	12 9 10	.09 .04 .11	.032 .020 .042	22 43 37	13.1 12.5	.24 .61 .51	100 16 63	.029 .002 .006	1 1 1	1.13 1.35 1.20	.002	. 07 . 04 . 09	<.1 <.1 .2	.02 .01 .02	1.2 .9 1.0	<.1 <.1	<.05 <.05 <.05	i 4	5 <.5 4 <.5 4 <.5 4 <.5 4 <.5	19 19 19 19 19
STANDARD DS6	11.7	122.9	29.	5 14	42	.3 2	4.8	10.8	68	82	.82 2	21.3	6.6	46.	7 3	3.1	40 (6.0	3.5 -	4.9	57	. 85	.078	14	183.8	.57	164	. 081	17	1.89	.073	. 15	3.5	. 22	3.3	1.8	<.05	6	5 4.6	1!
GROUP 1DX - 15 (>) CONCENTRAT - SAMPLE TYPE:	GM TION SOI	SAMPL Excee L SS&	EL DS 306	EAC UPP OC	HÉD ER	WIT LIMI <u>Sar</u>	TS. TS.	0 ML SC s be	2-2 ME I	2-2 MINU	HCL RAL <u>7 'R</u>	- HNC SMA E'a)3-H NY B are	20 / E P/ <u>Rer</u> i	AT 9 ART: Uns	95 D IALL ang	EG. Ya` <u> 'r</u> i	C F TTAC RE'	OR (KED are	DNE Rej	HOU REFR <u>(ect</u>	R, D ACTO <u>Rer</u>	ILUT RY A	ed t ND g	$\frac{0}{100}$	D ML Itic	, AN Sam	ALYS PLES	ED B Can	Y IC Lim	P-MS IT AI	J soi	LUBI	LIT		Mel	5	6 1		G

Ruby Red Resources Inc. PROJECT ZEUS FILE # A600309

Page 2

ACHE ANALYTICAL																												<u></u>		ACME /	ANALYTICAL	
SAMPLE#	Мо	Cu			Ag N		Mn	Fe	As U	Au	Th	Sr	Cd	Sb !	Bi	۷	Са				Ba								S Ga		ample	
	ppm	ppm	ppm	ppm p	pm pp	m ppm	ррл	z	ppm ppm	ppb	ppm	ppm p	pm p	pm pj	pm pp) TT	ž	% ppr	n ppr	1 2	ppm	\$ pp	n 21	2	រ េខ	pm p	om ppm	i ppm	\$ ppm	ppm	ĝm	
G-1	1	1.8	3.5	47 <	.1 4.	1 4.3	539	1.87	<.5 2.1	.8	3.6	66 <	<.1 <	.1	.1 3	37.	52.0	071 9	9 8.7	.58	210 .1	20	1 1.01	.072	.46	.1<.()1 2.1	.3<.	05 5	<.5	15.0	
L6700 2300N						0 15.0			4.8 1.0	2.0	8.8	4	.1	.3	.6 3	3.	03 .0	031 33	3 14.1	50	28.0	05 <	1 1.29	.002	.05	.1.(01 1.0	<.1<.	05 4	<.5	15.0	
L6700 2275N						5 19.4			5.5 1.7	219.8	11.6	13	.2	.5 2	.8 1	5.	13 .0	060 39	5 15.6	5.58	73.0	08	1 1.65	.004	. 10	.1.0	3 1.5	.1<.	05 5	<.5	15.0	
L6700 2250N	16.6	76.4	39.7	79 <	.1 40.	2 23.6	390	3.49	5.3 1.8	3.9	11.9	16	.1	.4 2	.6 1	8.	20 .	114 30	0 16.0	. 62	54.0	12 <	1 1.68	.004	.15	.3.0)Z 1.4	. 1<.	05 5	<.5	15.0	
L6700 2225N						3 22.5			6.6 1.2	3.4	7.8	14	.1	.71	.5 1	.4 .	13.0	030 21	7 12.0	. 32	95.0	12 <	1 1.26	. 004	.13	.1.(03 1.5	.1<.	05 4	<.5	15.0	
L6700 2200N	6	11 /	10.7	26 r	1 10	Γ Ω 7	227	1 66	30.4.7	78	56	a	1	2	٨	a	11 1	n1a 2'	3 8 3	20	51 0	N8 <	1 88	002	11	1 ()2 8	< 1<	05 3	< 5	15.0	
L6700 2200N	.0 2	10.2	11 1	17 2	.1 10. 1 16	J 0.7 7 11 0	526	1.00	6.0 1.2	1 1	6 1	20	.1	.0	. ຊ ເຊິ່າ	」 1	20 1	017 20	7 11 0	1 20	aa n	12 <	1 1 11	003	12	1 0	112	1<	05 3		15.0	
L6700 2150N	.0	19.0	21 /	76	1 27	0 13 3	321	2 31	12.2 .9	37	5 0	28	1	.2	0 2	, i 1	28	173 14	5 12 8	34	103 0	77	3 2 61	017	12	2 0	117	1<	05 7		15.0	
L6700 2125N	.0	40.0	20 /	74 ~	1 27.	3 10.J	521	4 20	18.7 1.3	26	10.6	25	1	.5 2	a 2		19 1	n76 2'	3 21 0	1 70	106 0	57	1 2.47								15.0	
L6700 2125N	1.7	29 5	27.7	65 2	1 23	R 12 A	205	3 /1	13.8 1.2	4.6	9.0	10 <	: 1	41	A 1	7	15 1	050 20	0 15 7	36	91 0	33 <									15.0	
T0100 ST000	1.4	30.5	21.1	03 ~	.1 23.	0 12.4	295	0.41	10.0 1.2	4.0	Q.9	12 -	•.1	.4 1		., .	10 .	000 20	J 10.1		JL . U		1.00	.000				• • • •	•••••		10:0	
L6700 2075N	22	64.8	64 1	104	1.36	4 19 4	752	4 48	54.8 1.3	6.3	10.8	52	.2	.84	.4 2	23 .	34 .0	068 22	2 18.3	.64	134 .0	31	2 1.95	.008	.13	.2 .(3 2.1	.1<.	05 7	.5	15.0	
L6700 2050N	4 1	68.8	160.9	131	2 51	7 31 1	956	5.86	122.2 2.5	92.3	12.9	33	.4 1	73	.4 2	23	28 .	072 20	6 17.6	. 48	117 .0		1 1.97							<.5	15.0	
L6700 2025N	47	96.8	507 9	146	.2 65	5 42.3	1340	5.40	110.2 2.9	63.5	13.6	49	.6 2	0 4	.0 1	8	59	106 20	6 16.5	5.59	117 .0	21	2 1.66	.006	. 19	.3.(05 3.1	.2<.	05 4	.5	15.0	
1 6700 2000N	3.2	72.0	663.3	202	.5 71.	3 31.0	1115	5.05	141.5 2.2	62.4	11.6	55	.5 1	.4 2	.8 1	7.	46 .	106 20	6 17.6	5.56	151 .0	33	5 1.93	.008	. 26	.2 .0	3 2.8	.2<.	05 5	<.5	15.0	
1.6700 1975N	10	44 0	115.8	225	2 59	0 19.1	1239	2.98	47.3 1.0	4.8	7.2	67	.6	.61	.3 2	20 .	67 .	108 10	6 15.6	5.36	212 .D								05 7	.5	15.0	
RE L6700 2200N	.5	12.2	10.5	37 <	.1 11.	4 8.6	250	1.76	30.9 .8	1.3	6.0	9 <	4.1	.4	.4	9.	12 .0	020 20	68.9	5.21	54 .0	10 <	1.92	.003	.12	.1.0)2.9	.1<.	05 3	<.5	15.0	
L6700 1950N	1.5	29.6	114.7	168	.1 28.	614.4	1402	3.07	33.2.8	11.8	6.6	53	.4	.61	.7 1	.8	65 .0	054 19	9 14.9	. 36	186 .0	44	5 1.77							<.5		
L6700 1925N	1.3	58.9	91.0	609	.1 43.	7 21.0	4175	2.92	26.3 1.2	5.2	6.8	111 1	. 9	.61	.4 2	22.	96 . :	159 19	5 18.9	5.44	503.0	57	6 1.70								15.0	
L6700 1900N	1.7	97.1	104.7	499	.3 35.	0 35.3	8516	3.47	47.5 2.1	3.7	6.1	158 2	2.4	.81	.4]	81.	60 .:	247 10	5 16.	. 36	596.0	34	5 1.40								15.0	
L6700 1875N	1.6	62.3	129.6	603	.4 36.	3 36.0	6893	3.80	25.2 1.4	1.0	7.3	92 3	3.4	.71	.4 2	21 1.	10 .	147 19	9 19.8	3.57	547.0	58	3 1.68	.010	. 22	.Z .:	13 2.1	.2 .	12 5	.5	15.0	
L6700 1850N	17	111 9	141 9	361	4 37	3 58 1	5963	4 03	20.3 2.5	78	20	60.2	² 6	81	3 2	201.	09 .:	330 24	4 17.8	3.62	350 .0	28	5 1.69	.009	. 30	.1 .:	19 1.4	.2 .	22 5	.8	15.0	
L6700 1825N	1.3	147 6	108.7	349	5 70	9 54 8	3847	2 99	22.1 2.0	1.3	1.4	50 3	9	8 1	0 1	4	90	310 29	5 12.3	3 .21	208 .0	20	4.98	.005	. 14	.2 .2	26.9	.1.	26 2	.7	7.5	
L6700 1800N	, g	25.4	9.0	72	2 18	2 9.0	91	.52	2.1 .7	1.5	1.0	78	2	1	.2	31	18 .0	060 0			103 .0		3.38	.003	.03	.1.0	08.7	<.1 .	33 1	.5	15.0	
L6750 2600N	.3	9.4	9.2	156	.2 27.	2 9.0	486	1.28	4.0.4	<.5	2.4	28	.1	.1	.2 1	6.	21 .	125 10	0 9.0	1.17	124 .0	56	1 1.51							<.5	15.0	
L6750 2575N	.5	14.4	12.0	53 <	1 13.	0 8.1	271	1.75	3.9.7	1.1	5.5	14 <	4.1	.2	.3 1	3.	10 .0	033 29	5 11.2	2.26	58.0	20 <	1.98	.004	.07 <	.1.0	2 1.2	.1<.	05 4	<.5	15.0	
																															15 0	
L6750 2550N						8 7.7			3.1 .3	<.5	2.3	29	.2	.1	.2 1	.6.	17 .1	048 9	9 9.2	2 14	153 .0	60	1 1.71							<.5		
L6750 2525N	.5	22.1	13.1	59 <	.1 17.	1 8.0	199	2.23	5.0.8	1.7	6.5	11 <	4.1	.2	.4	9.	09 .1	028 3	2 12.9	9.50	40.0	12 <								<.5		
L6750 2500N									3.2 .7				.2	.1	.3 1	. 15	15 .1	070 19	5 10.6	5.21	161 .0	59	1 1.72							<.5		
L6750 2475N						98.8			4.1.6			33	.1	.2	.4 1	.3	20 .0	056 23	3 9.9	1.29	117 .0	28	1 1.22	.008	.10	.1.1	21.1	.1<.	05 4	<.5		
L6750 2450N	.3	12.7	14.7	119	.1 27.	4 9.7	434	1.61	4.6 .5	<.5	4.0	20	.1	.1	.3 1	.5	15 .0	057 20	0 11.3	.24	158 .0	44 <	1 1.75	.015	. 10	.1.0	JI 1.4	.1<.	05 5	<.5	15.0	
L6750 2425N	.5	12.6	12.3	70 <	.1 16	3 9.5	317	1.82	3.5.5	10.3	5.0	11	.1	.1	.3 1	. 10	11 .0	016 23	7 11.0	. 35	88.0	15 <	1 1.21	.004	. 10	.1.0	.9	<.1<.	05 4	<.5		
L6750 2400N						8 11.2		2.25	4.6.7	<.5	7.5	8	.1	.2	.5	9.	11 .1	024 32	2 11.8	3.56	36.0	03 <	1 1.24	.002	. 08	.20)1.9	<.1<.	05 3	<.5		
L6750 2375N						7 18.7		2.59	4.8 1.0	1.8	6.9	4 <	- 1	.3	.5 1	4.	04 .1	041 20	7 14.3	3.53	25 .0	03 <	1 1.60	.003	.06	.1.0	32 1.3	.1<.	05 5	-	15.0	
L6750 2350N						5 16.4			5.0 1.1	1.1	8.6	5	.2	.2	.5	9.	05.1	026 32	2 14.5	5.55	37 .0	04 <	1 1.29	.002	.04	.1.0	$)1 \ 1.1$	<.1<.	05 4	<.5		
L6750 2325N						8 16.3			4.9 1.3	3.7	9.5	5	.1	.2	.5	9.	05.0	031 32	2 14.5	5.56	35 .0	03 <	1 1.28	.002	.04	.1 .0	01 1.0	<.1<.	05 4	<.5	15.0	
STANDARD DS6	11 7	124 7	29.8	143	3 25	1 11 1	712	2 85	21.0 6.6	48 1	33	41 F	i.0.3	1.5.5	.0 5	58	86 1	078 14	4 187 9	5.59	167 .0	84 1	5 1.94	.075	.16 3	.4 .2	22 3.4	1.8<.	05 7	4.6	15.0	
	11.1	***.1	0.02	140			, 16	2.00	21.0 0.0		0.0																					

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data___ FA

ACHE ANALYTICAL]	Rub	ру	Re	d I	Res	our	cei	3 I	nc	. I	PRC	JE	СТ	ZE	US	F	ΊL	Е #	A	600)30	9				E	Page	e :	3	À	
SAMPLE#	Mo ppm					j N n pp			Mn ppm	Fe ۲	As ppn				n Sr rppm				V mqq	Ca %		La ppm	Cr ppm												Ga Se ppm ppm	
G-1 L6750 2300N L6750 2275N L6750 2250N L6750 2225N	1.5 .9 4.5	56.5	70. 40. 33.	9 124 5 112 7 - 82	4 <.] 2 <.] 7 <.]	22 19 44	5 2: 4 1: 9 3:	2.9 5.7 6.0	463 321 689	2.94 2.42 3.80	6.1 4.9 6.9	1.8 .9 2.4	3.7 7.4 3.3	11.7 9.4 14.2	7 9 4 6 2 14	.1 .1 .1	.4 .2 1.0	1.2 .6 1.8	10 9 15	.09 .04 .15	.040 .030 .056	36 32 56	16.3 13.4 17.5	. 65 . 49 . 68	52 43 67	.004 .004 .009	<1 1. <1 1. <1 1.	50 . 36 . 98 .	003 003 004	.07 .05 .08	.2 .1 .1<.1	02 1.2 01 1.0 02 1.8	2 .) <. 3 .	1<.05 1<.05 1<.05	5 <.5 4 <.5 4 <.5 5 <.5 4 <.5	15.0 15.0 15.0
RE L6750 2300N L6750 2200N L6750 2175N L6750 2150N L6750 2150N L6750 2125N	1.3 2.9 .4	60.4 25.5 61.0 16.7 33.2	17. 39. 12.	1 60 2 200 2 100	5 < 1 5 < 2 5 < 1	23. 31. 20.	3 1 3 3 0 1	7.8 4.1 - 8.1	616 3614 443	2.37 3.18 1.72	4.4 25.4 8.2	9 2.3 .6	8.1 2.7 1.2	8.1 10.2 4.6	1 26 7 41 5 33	.1 .8 <.1	.3 .8 .2	1.1 2.3 .6	10 14 9	.26 .38 .25	.046 .087 .072	26 27 18	12.1 15.9 10.5	.34 .29 .21	150 441 241	.014 .023 .039	21.	26 . 24 . 78 .	004 006 014	. 12 . 12 . 17	.1 . .1 . .1 .	03 1.2 11 1.9 02 1.3	2. 9 8	1<.05 2<.05 1<.05	5 <.5 4 <.5 4 <.5 4 <.5 7 <.5	15.0 7.5 15.0
L6750 2100N L6750 2075N L6750 2050N L6750 2025N L6750 2025N	3.7 3.6 2.6	66.4 49.2 55.5 67.9 29.7	47. 154. 56.	1 99 9 191 7 89	5 .1 L .3 5 < 1	65. 70. 42.	2 24 6 31 7 11	4.4 1.4 : 7.2	731 1853 573	4.80 4.95 4.44	80.3 167.4 54.6	2.2 2.1 1.1	7.6 9.6 12.6	15.0 11.1 10.0) 43 L 57 D 52	.2 .7 .2	1.0 1.1 1.0	4.4 2.8 2.6	25 17 19	.28 .52 .42	.066 .107 .090	21 40 18	25.3 18.1 22.3	.55 .44 .60	159 218 137	.060 .026 .045	32. 42. 42.	73 . 15 . 13 .	012 008 009	. 14 . 20 . 18	.2. .2. .3.	03 3.6 04 3.1 02 2.2	5. L.	2<.05 2<.05 1<.05	7 <.5 7 <.5 5 <.5 6 <.5 7 <.5	15.0 7.5 15.0
L6750 1975N L6750 1950N L6750 1925N L6750 1900N L6750 1875N	1.2 1.0 1.6		103. 63. 56.	0 317 5 219 6 181	7.3 5.5	92. 26. 25.	0 51 7 20 2 12	1.2 6.3 2.7	2208 3809 1119	4.91 2.50 2.07	42.5 24.9 21.5	3.1 1.4	8.6 1.2 3.3	7.8 2.5 3.7	3 106 5 227 7 35	.6 2.1 .4	.7 .5 .4	1.5 .9 5.7	25 16 1 16	.98 .53 .20	. 380 . 275 . 063	26 14 12	21.4 13.6 12.9	. 68 . 25 . 23	250 640 171	.068 .042 .053	73. 21. 21.	51. 57. 55.	011 009 016	. 16 . 12 . 09	.7 .0 .1 .1	08 2.9 15 1.9 06 1.9) . 5 . 5 .	2 .06 1 .13 1<.05	8 <.5 7 <.5 4 .6 5 <.5 4 <.5	15.0 15.0 15.0
L6750 1850N L6750 1825N L6750 1800N L6750 825N L6750 775N	.8 .6 .9	65.3 52.7 45.2 20.9 62.8	25. 27. 70.	6 134 5 108 1 79	4 .5 3 .2 9 .1	19. 23. 12.	8 4 3 7 5 14	4.2 7.5 4.6 :	113 104 1440	.46 1.77 1.84	2.9 4.6 7.4	.6	<.5 <.5 1.1		60 34 5 35	1.0 .5 .7	.4 .2 .6	.4 .7 .6	6 12 13	.67 .40 .47	. 086 . 084 . 134	6 17 10	10.1 11.2 13.6	. 05 . 28 . 25	110 85 162	.004 .004 .011	1.	31 . 13 . 02 .	004 003 005	.03 .05 .08	1.	10 .3 04 .2 19 .6	3 <, 2 <. 5 .	1.34 1.15	5 .7 1 <.5 4 <.5 3 <.5 3 .5	15.0 15.0 7.5
L6750 725N L6750 700N L6750 675N L6750 650N L6750 625N	1.9 1.1 2.5	25.1 69.2 44.0 201.1 121.1	28. 16. 50.	8 76 3 101 9 77	5 .3 L .3 7 .2	16. 15. 66.	9 24 1 12 8 177	4.62 2.52 7.33	2208 1556 3032	2.83 2.19 3.27	7.8 22.5 13.3	3.4 3.2 7.6	52.6 .7 1.6	2.1 .1 6.6	. 32 . 44 5 47	.5 .5 .4	.3 .3 .4	1.0 .7 4.7	27 20 22	. 30 . 45 . 55	. 099 . 288 . 171	15 9 30	14.3 12.1 19.8	.23 .21 .29	150 155 171	.042 .010 .033	1 1. 2 1. 3 3.	49 . 68 . 93 .	008 006 012	.07 .08 .15	1 1. 2.	11 1.7 10 .3 11 2.9	7. 3. 9.	1 .07 1 .07 1<.05	9 <.5 8 .7 8 .5 9 <.5 8 <.5	15.0 15.0 15.0
1.6750 600N 1.6750 575N 1.6750 550N 1.6750 525N 1.6750 500N	.5 .5 .3	13.0 11.8 14.4 12.3 14.4	16. 11. 10.	0 113 7 68 0 52	3 <.1 3 <.1 2 <.1	15. 22. 24.	$\begin{array}{c} 7 & 9 \\ 1 & 9 \\ 1 & 8 \end{array}$	9.7 : 9.5 8.8	1474 427 461	1.72 1.76 1.59	4.4 5.2 5.1	.4 .4 .4	3.3 5.6 3.5	3.8 3.7 3.4	26 28	.2 .1 .1	.1 .1	.5 .4 .4	15 14 12	. 22 . 14 . 13	. 101 . 078 . 099	12 13 11	10.9 9.7	. 24 . 29 . 20	293 163 142	. 043 . 045 . 060	21. 21.	61 . 86 . 91 .	008 009 015	.09 .08 .10	.1 .1 .1 .1	03 1.2 02 1.0 01 1.2	2 .] . 2 .	1<.05 1<.05 1<.05	5 <.5 5 <.5 6 <.5 5 <.5 5 <.5	15.0 15.0 15.0
STANDARD DS6	11.6	124.6	29.	6 144	.4	25.4	4 11	1.0	704	2.85	20.8	6.6	48.2	3.2	40	6.0	3.4	4.9	56	. 86	. 080	14	187.0	. 59	165	. 081	171,	93 .)74	16 3	.5.2	22 3.4	1.	8<.05	6 4.5	15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

1

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data___ FA

Lease where the state of the st

Ruby Red Resources Inc. PROJECT ZEUS FILE # A600309

Page 4

And the second se

ACHE ANALYTICAL																																		acme anal	YTICAL
SAMPLE#	Мо ррпп	Cu ppm			n Ag 11 ppn				Fe	As ppm	U DOM	Au ppb		Sr		Sb 8 pm pp		/Ca	P X	La ppm	nC DDM	Mg %tp	Ba pm	Ti %	8 ppm	A] %	Na X		W Hg m ppm	Sc Ippm			Ga Se pm ppm	Sample gm	
						· • • • •		F.F		FF	FF			FF 1	- F							•	,		<u></u>						<u> </u>				<u> </u>
G-1	.1	1.6	3.1	4	5 < .1	4.(4.1	554	1.94	<.5	1.9	<.5	3.7	62 <	<.1 <	.1 .	1 37	.50	.073	8	8.1	.57 2	. 00	130	Ζ.	92 .0	172 .5	55.	1<.01	2.2	.3 .	.06	5 <.5	15.0	
L6750 475N		10 6		5	5 < 1	22.8	8.2	495	1.48	6.5	.4	<.5	3.5	35 •	<.1	.1 .	3 17	7.18	.088	8	9.4	.20 1	24 .	083	32.	32.0	27.1	.2	1.02	1.5	.1<.	. 05	6 <.5	15.0	
L6750 450N	.2	12.2	6.8	3 57	7 < 1	18.8	3 7.8	237	1.53	3.6	.4	1.8		22 •	<.1	.1	3 14	12	.052	12	10.1	.24 1	30 .	044	1 1.4	49.0	17 .1	0.	1.02	1.2	.1<.	. 05	5 <.5	15.0	
L6750 425N	.3	13.7	7.9	4	7 < 1	18.7	8.8	409	1.69	3.9	.4	<.5		27	.1	.1 .	4 14	.16	.048	15	9.5	.26 1	19.	042	31.	75.0	18.1	.5	1.02	1.4	.1<.	. 05	5 <.5	15.0	
L6750 400N	.7	28.1	19.0	54	4 <.1	. 19.8	3 15.9	839	2.37	9.0	.6	10.2	6.4	18	.2	.2.	6 14	.17	.032	21	12.8	.42	70.	016	11.	59.0	104 .1	. 0	1.04	1.0	.1<.	. 05	5 <.5	15.0	
																															_				
L6750 375N	1.0	42.2	11.8	3	7 <.1	21.1	13.2	444	2.76	6.6	1.2	33.1	8.2	23	.1	.2.	8 13	3.24	.031					018			105 .1			1.5			5 < .5	15.0	
L6750 350N	1.2	45.1	12.3	3 44	4 <.1	. 22.4	19.9	467	2.83	10.1	1.6	23.1	9.0	17	.1	.2.	7 11	. 16	.031	24	13.2	. 54	41.	012	11.		03.1			1.3			4 <.5	15.0	
L6750 325N	2.3	65.8	15.1	. 44	4 <]	. 27.8	3 27.0	451	3.18	14.4	2.1	3.6	10.9	15 <	<.1	.31.	1 12	2.16	.037	29	16.7	.71	37.	007	11.	75 .0	03.0)8.		1.4			5 <.5	15.0	
L6750 300N	1.4	52.2	17.8	3 43	3 <.3	. 19.6	5 22.2	1001	2.69	11.0	1.9	1.1	8.7	25	.1	.31.	5 10	.23	.067	22	14.0	. 50	59.	007	11.	28.0	103 .0)8.		1.1			4 <.5	15.0	
L6750 275N	1.6	53.3	19.1	43	3 <.1	22.2	2 28.1	1103	3.02	14.7	3.1	6.4	10.6	15	.1	.31.	0 10	.18	.048	22	12.9	.49	53.	800	11.	43.0	03.0)9.	1.02	1.4	<.1<.	. 05	4 <.5	15.0	
L6750 250N	1 2	48.7	12 5	: 4	1 ~ 1	70 4	5 19.9	674	3.06	15.8	16	1 N	7.4	20	1	.3	8 11	1 21	051	21	12.6	48	48	008	21	79 N	03.1	n	1 02	1.2	< 1<	05	4 <.5	15.0	
L6750 230N		44.1					20.7			10.3			9.7	27	1		8 10							008	21.		03 .1			1.1			4 < 5	15.0	
		23.8					3 16.9				- · -	33.4	7.8	37	- 1	· <u>·</u> ··	7 10		076		11.3			009	31.		03 1				.1<		4 < 5	7.5	
L6750 200N							5 10.9 5 15 8				.0	1 6	7.0	37	. 2	.د. م	7 10 7 10		084	10	11.3			010	4 1.		03 1	-		1.1			4 < 5	75	
RE L6750 200N		23.2					10.8				.0	1.0	2.0	•••		. <u> </u>				4.	186.2				20 1.			•• •					7 4.4	15.0	
STANDARD DS6	12.0	122.4	29.0	144	4	3 25.3	<u> </u>	100	2.00	21.4	0.0	40.0	3.0	41 3	5.9.3	.0 3.	0 30	, ba	. 002	14	100.2		. 00	100	CV 1.	. v	1. 01			0.0	<u> </u>		, 4.4	10.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

CHE ANA						IES Co.		D.					STI) MI(BC RTI					PHO)	NE (604)	25	3-3	15	B FAI	C (60	<u> </u>	3-1710 A
22					<u>Ru</u>	by_	Reg	<u>l Re</u> 207	280 • 23	urc	es	Ιr	ıc.	PI	soa	ECI	י ז	EUS	5	Fil mitt	e #	A5	502	98 Klew	4 chuk	Pa	age	1						A A
SAMPLE#	Mo ppm		Pb ppm					Mn ppm																							Sc T1 xntppm		Ga Se ppm ppm	Sample gmi
L0 000E	1.1	8.5	9.9	31	<.1	7.5	3.9	66	2.14	6.3	.5	2.2	4.1	4	<.1	.2	3 1	6.03	. 023	22	9.2	.28	35.	012	<11	11 .	006 .	04	.1.0)1.	9 .1	<.05	4 < 5	15
L 0 25E	.8	10.4	8.7	25	<.1	6.1	3.1	54	1.44	6.5	.7	3.9	3.9	2	<.1	.1 .	3	7 .01	.015	13	6.5	. 22	18.	007	<1 .	65 .	003 .	02 <.	.1.0	11.	6 < 1	<.05	2 <.5	15
LO 50E																																	4 <.5	
L0 75E																																	4 <.5	
L0 100E	.9	11.5	17.5	38	<.1	8.9	4.6	65	1.98	6.5	.5	3.0	4.5	4	<.1	.2 .	3 1	6.02	. 026	17	9.5	. 20	40.	015	<11.	34 .	005 .1	05	.1.0	2 1.	1.1	<.05	4 <.5	15
L0 125E																																	4 <.5	
L0 150E	.7	14.1	12.6	30	<.1	9.5	4.1	75	1.70	5.3	.9	7.2	6.1	2	<.1	.2.	31	1 .01	.011	28	10.7	. 30	27.	020	1.	83 .	004 .	05 <	.1.0	11.	1 < 1	<.05	2 < .5	15
RE LO 150E																																	2 <.5	
L0 175E																																	3 <.5	
L0 200E	.9	8.4	10.6	26	.1	8.1	6.4	86	1.22	4.1	.5	1.9	2.9	5	.1	.1 .	2 1	7.04	. 025	11	6.0	.08	5 5 ,	031	<11.	70 .1	010 .(. 04	.1.0	13 1.	.4 .1	<.05	4 <.5	15
L0 225E																																	7 <.5	
LO 250E																																	8 <.5	
L0 275E																																	4 < 5	
L0 300E																																	3 < 5	
L0 325E	1.0	14.9	51.2	47	.1	15.9	16.8	144	z.13	6.0	.8	4.9	5.4	5	.1	.Z.	3 2	4.03	.027	17	12.2	. 21	83.	035	<12.	Z5 .I	010 .(JP .	.1.0	13 1.	1.1	<.U5	6 <.5	15
L0 350E																																	6 <.5	
LO 375E																																	5 <.5	
L0 400E	.9	15.2	37.2	38	.1	14.0	20.5	281	1.89	4.8	1.0	8.0	4.6	11	.1	.2.	4 1	B .07	. 020	22	13.0	. 31	89.	025									5.6	
L0 425E	1.2	23.7	34.5	95	.2	41.4	21.7	309	2.89	8.2	1.2	2.0	9.4	7	.1	.3.	5 2	9.05	. 046	13	17.9	.28 1	L46.	060									9.5	
LO 450E	1.0	14.7	19.6	54	.1	13.0	8.9	308	1.8/	5.5	.8	1.2	4.8	1	<. <u>1</u>	.3 .	3 1	8.05	. 029	22	12.0	. 28	82.	024	11.	49 .	. 100	. 80	.1.0	21.	3.1	<.U5	5 <.5	15
LO 475E								216												-													3 <.5	
LO 500E								233																							8.1		6 <.5	
L0 525E								400																									4 <.5	
L0 550E								324																									4.5	
L0 575E	.6	13.0	17.4	43	.1	11.2	6.5	247	1.55	4.0	.7	5.0	3.9	9	<.1	.2 .	2 1	5.08	,010	18	12.4	. 34	48.	034	11.	12 .0	006 .0)9 <	.1.0	11.	3.1	<.05	4 <.5	15
L0 600E								607																							2.1		6 <.5	
L0 700E								41																									4 <.5	
L0 725E								77																									4 <.5	
L0 750E								117																									4 <.5	
L0 775E	.8	27.5	13.7	21	.2	14.5	12.3	97 .	2.10	2.1	.6	1.0	4.8	8	.1	.2.	5 24	4.05	.018	17	11.2	. 19	73.	024	<1 1.	bb .1	010 .0	Jb .	1.0	21.	∙ [.> ژ	<.05	8 <.5	15
L0 800E																																	7 <.5	
L0 825E																																	9 <.5	
L0 850E																																	7 <.5	
LO 875E																																	3 < .5	
STANDARD DS6	11.9 1	26.8	29.9	145	3	25.4	10.5	703	2.87	21.1	6.3	43.5	3.1	38	5.3.3	.5 4.	9 5	/ .85	.0/8	16]	187.1	.58 1	168 .	080	18 I.	90 .0	0/5	16 3.	5 2	43.	51./	<.05	04.5	15

GROUP 10X - 15.0 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: SOIL SS80 60C Samples beginning <u>(RE</u>) are Reruns and <u>(RRE) are Reject Reruns.</u>

Clarence

l eo

Data FA

DATE RECEIVED: JUN 28 2005 DATE REPORT MAILED: 15.05

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ALL ANNLYTICAL						R	ub	y I	Red	1 F	les	ou	rc	es	In	с.	PI	ROJ	FEC	т	ZE	US	F	ILE	#	A5	502	984	-				Ē	2ag	e 2	2	`	ACHE ANALYT
SAMPLE#	Mo ppm		P pp			-	Ni ppm	Со ррп				As ppm	U ppm	Au ppb			Cd ppm			V ppm			La ppm	Cr ppm	Mg X		Ti %		Al لا	Na X	К % р	l ₩ pq maqc		Sc T pm pp		S Ga ≵ppnr		Sample gm
LO 900E LO 925E LO 950E LO 975E LA 25E	.9 .9 .6	9.3 15.7 18.4 6.7 21.5	14. 19. 7.	42 02 62	5. 9. 5.<	$ \begin{array}{c} 1 & 1 \\ 1 \\ 1 \\ 1 \end{array} $	1.4 9.2 5.0	10.4 11.9 2.9	7 7 4	71. 01. 81.	50 76 46	2.6 3.6 3.9	.5 1.0 .5	1.0 .9	3.1 4.7 2.8	7 7 3	<.1 .1 <.1	.1 .1 .1	.3 .4 .2	20 16 14	.04 .04 .02	.018	13 21 17	8.3 9.5 10.2 6.3 10.4	.25 .24 .17	75 . 64 . 43 .	.051 .016 .010	11 <11 <1	. 44 . 41 . 97	.007 .005	.04 .04 .03	.1 .0 .1 .0 .1 .0	01 1 01 1 02	.0 < 2 < 7	1 <.0 1 <.0 1 <.0	56 56 54	<.5 <.5 <.5 <.5 <.5	15.0 15.0 15.0 15.0 15.0
L4 50E L4 75E L4 100E L4 125E L4 150E	.6 .6	9.9	22 18 13	85 22 42	0. 7. 7.<	1 1 1 1	2.1 8.9 8.4	24.2 8.8 6.8	154 19 18	4 1.9 7 1.3 5 1.3	59 32 29	3.9 2.1 2.7	1.4 1.0 .6	2.3 1.6	3.5 4.0 3.8	13 8 7	.2 <.1 .1	.2 .1 .1	3 2 2	17 14 11	. 14 . 08 . 07	.035 .012 .013	26 22 21	12.3 10.3 9.7 9.3 9.5	. 22 . 30 . 30	156 . 71 . 56 .	.034 .022 .019	1 1 <1 1 <1	.41 .19 .92	.010 .009 .006	.08 .05 .06	.1 .6 .1 .0 .1 .0	02 1. 01 1 01 1	.3 .3 .0	1 <.0 1 <.0 1 <.0	55 55 53	<.5 <.5 <.5 <.5 <.5	15.0 15.0 15.0 15.0 15.0
L4 175E L4 200E L4 225E L4 250E L4 275E	.9 .5 .6	11.4	16 13 15	35 34 06	9. 8. 0.	1 1 2 1 2 1	4.7 1.4 0.8	21.2 9.6 11.2	34 34 28	8 2.3 D 1.3 3 1.4	36 (72 (85 (6.1 4.7 4.5	1.2 .8 .6	2.1 2.1 19.8	6.7 4.0 3.8	7 8 9	.1 .1 .1	.2 .2 .1	3 3 3	33 20 24	.06 .08 .08	.037 .047 .055	21 21 18	13.3 22.2 10.8 11.3 10.4	.54 .32 .31	74 . 82 . 71 .	.047 .027 .035	<1 1 <1 1 <1 1	.95 .40 .57	.009. .006. .009.	.07 .08 .06	.1 .0 .1 .0	032 021. 021.	.6. .6. .5.	1 <.0 1 <.0 1 <.0	56 54 56	<.5 <.5 <.5 <.5 <.5	15.0 15.0 15.0 15.0 15.0
L4 300E L4 325E L4 350E L4 375E L4 400E	.8 .7	16.1 6.0	22. 18. 14.	04 15 72	0, 1. 7.	$ \begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & - \end{array} $	1.5 1.6 6.0	6.6 7.6 2.8	10 19 9	7 1.9 2 1.0 9 1.3	92 : 95 : 30 :	5.9 6.4 5.5	1.1 .9 .5	1.6 11.4	6.5 6.5 3.6	4 5 3	.1 .1 <.1	.2 .3 .2	.3 .3 .3	16 15 14	.03 .04 .03	.032 .041 .016	28 25 19	13.0 10.6 11.9 7.5 10.8	.26 .36 .16	59 . 62 . 42 .	.026 .031 .021	<1 1 <1 1 <1	.30 .28 .70	.009. .004. .004.	08 11 05	.1 .0 .1 .0 .1 .0	01 1. 02 1. 01 .	6 4 9	1 <.0 1 <.0 1 <.0	54 53 53	<.5 <.5 <.5 <.5	15.0 15.0
L4 425E L4 450E L4 475E L4 500E L4 800E	.8 .6	16.6 16.8 9.3	21.) 34.: 18.)	05 33 02	4. 5. 8.<	21 21 1	2.1 4.6 8.2	9.7 8.7 4.4	145 19 11	3 1.! 7 2.1 3 1 .:	53 / 04 ! 28 :	4.1 5.2 3.7	.7 1.5 .7	15.6 1.1 1.6 2.7 <.5	1.8 6.3 3.8	12 6 5	.3 .1 .1	.2 .2 .2	.3 .4 .2	15 23 10	09 05 04	013	19 30 19	8.9 8.7 9.9 7.7 15.3	.23 .16 .22	120. 75. 34.	.021 .081 .025	<1 1 <1 2 <1	.09. .60.	.015 . .006 .	06 06 05	.1 .0 .2 .0 .1 .0	04 04 2. 01	.9 . .1 . .9 .	1 <.0 1 <.0 1 <.0	54 58 52	<.5 .5 <.5	15.0 15.0 15.0 15.0 7.5
RE L4 800E L4 825E L4 850E L4 875E L4 900E	.8 .3 .5	28.9 7.2	35.0 13.1 12.0	64 52 53	0. 5<. 9.	22 1 1	D.5 4.4 7.8	12.3 6.6 4.7	45 45 16	32.0 3.9	58 90 58	4.3 1.2 3.6	1.9 .5	.6 < .5 1.3	10.1 3.0 4.8	17 4 4	.1 .1 <.1	.2 .1 .2	.6 .2 .2	24 12 15	11 03 03	.022 .011 .024	44 21 17	14.8 15.4 7.1 9.1 7.8	.29 .16 .22	171 . 68 . 62 .	.043 .016 .026	12 <1 11	.77. .82 .35	.012 .	08 05 < 05	0, 1, 0, 1, 0, 1,	022. 02. 051.	.3 .9 .1	1 <.0 1 <.0 1 <.0	58 53 54	<.5	7.5 15.0 15.0 15.0 15.0
L4 925E L4 950E L4 975E L4 1000E STANDARD DS6	.5 .5 .5	50 94 107	10.0 14.0 14.0	62 84 52	D. D.	1 1 1	3.2 7.3 7.4	2.0 3.8 5.1	7 19 20	3 .9 1 1.9 7 1 .3	90 : 98 : 39 :	2.4 5.9 3.1	.3 .7 .8	< 5 3 2 < 5	1.8 5.3 3.4	6 6 14	<.1 .1 .1	.1 .2 .1	3 2 3	14 17 16	.05 .06 .11	,018 .064 .020	14 14 29	5.6 9.5 8.2	.10 .18 .17	58. 73. 115.	.016 .029 .030	<1 11 <11	.61 . .57 . .44 .	004 . 005 . 009 .	05 07 05	.1 .0 .1 .0 .1 .0	01 . 05 1. 05 1.	.7 . .2 . .1 .	1 <.0 1 <.0 1 <.0	54 55 55	<.5	15.0 15.0 15.0 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

A LAN AL SAME AND A COURT AND A SECOND AND A S

Ruby Red Resources Inc. PROJECT ZEUS FILE # A502984

Page 3

ACHE ANALYTICAL																																	ACME ANALYTICAL
SAMPLE#	Mo ppm		Pb ppm					Mn ppm			U ppm			Sr Cd ppm ppm						La ppm	Cr ppm	Mg B Xipp		i B %ippnn	Al X				lg Sc mippm	T1 ippni		Ga SeS ppm ppm	ample gm
L7 00E L7 25E L7 50E L7 75E L7 100E	.4 .5 .7	14.1 15.6	13.5 13.6 13.8	33 41 49	.1 <.1 1 <.1 1	9.5 .6.8 .4.0	5.0 9.9 6.1	99 114 102	1.53 1.85 1.75	3.8 4.4 5.4	.6 .7 .8	12.5 1.2 2.2	4.2 5.2 5.7	7 <.1 6 <.1 7 <.1 6 <.1 12 .1	.2 .2 .3	.2 .2 .2	16 20 15	.05 .04 .05	.024 .034 .026	21 18 20	10.3 12.0 10.7	.26 5 .28 8 .31 4	9 .01: 5 .030 9 .020	31 01 61	1.22 1.93 1.37	.006 .009 .005	.07 .07 .07	.1 .0 .1 .0 .1 .0	1 1.2 3 1.6 1 1.1		<.05 <.05 <.05	4 < 5 5 < 5 3 < 5	15 15 15 15 15 15
L7 125E L7 150E L7 175E L7 200E RE L7 200E	.4 .4 .4	21.7 18.0 9.7 9.0 9.8	19.2 14.9 12.3	38 · 34 · 35 ·	<.1 2 <.1 1 <.1 1	21.8 1.1 1.8	6.6 4.5 5.7	206 135 226	1.50 1.06 1.44	2.9 1.5 2.8	.7 .4 .7	.7 <.5 .6	3.9 3.1 4.4	12 <.1 17 .1 13 <.1 13 <.1 13 <.1	.1 .1	.3 .2 .2	20 18 15	.17 .13 .15	.016 .008 .010	25 22 23	11.1 . 9.1 . 12.3 .	.27 9 .21 8 .31 8	4 .03 8 .02 0 .02	1 1 2 1 1 1	1.62 1.23 1.26	.009 .013 .010 .009 .009	.08 .07 .07 <	.1 .0 .1<.0 .1<.0	1 1.5 1 1.4 1 1.4	.1 .1 .1	<.05 <.05 <.05		15 15 15 15 15
L7 225E L7 250E L7 275E L7 300E L7 325E	.4 .4 .5	11.7	15.0 14.2 10.6	39 47 32	<.1 1 <.1 1 <.1	5.5 8.0 9.1	6.1 9.2 4.8	145 316 149	1.29 1.65 1.53	2.3 3.6 4.9	.5 .6 .6	<.5 1.5 1.3	3.2 4.0 4.1	19 <.1 12 <.1 11 .1 8 <.1 7 <.1	.1 .2 .2	.2 .3 .2	20 25 16	.12 .10 .09	.012 .054 .012	17 18 17	10.6 . 9.6 . 10.2 .	.26 8 15 10 .32 4	4 .020 0 .060 2 .029	8 1 0 1 9 <1	1.41 1.92 .87	.013 .013 .005	.06 < .08 .09 <	:.1<.0 .1 .0 :.1<.0	1 1.4 2 1.8 1 1.0	.1 · .1 ·	<.05 <.05 <.05	4 < 5 5 < 5 6 < 5 3 < 5 3 < 5	15 15 15 15 15
L7 350E L7 375E L7 400E L7 425E L7 450E	.5 .5 .5	17.5 13.1 12.7	13.0 12.9 17.6	42 · 64 45 ·	<.1 1 .1 2 <.1 1	.0.9 28.7 .6.2	5.2 8.5 5.4	136 204 235	1.80 1.62 1.61	8.3 4.3 6.4	1.1 .6 1.0	<.5 .7 1.7	5.9 4.2 5.7	15 .1 6 <.1 10 .1 13 .1 20 .1	.3 .1 .2	.2 .2 .3	17 22 18	. 05 . 09 . 20	.012 .068 .015	30 16 25	11.4 . 9.7 . 12.0 .	.33 4 20 11 31 9	1 .03) 7 .060 4 .029	72 62 91	.90 2.30 1.48	.010 .005 .016 .010 .010	.12 < .09 .11	.1<.0 .1 .0 .1 .0	1 1.5 2 1.8 2 2.0	.1 .1 .1	<.05 <.05 <.05	5 <.5 3 <.5 6 < 5 4 < 5 5 < 5	15 15 15 15 15
L7 475E L7 500E L7 525E L7 550E L7 575E	.4 .4 .6	9.8 8.9 10.5	13.8 14.8 12.1	63 · 34 · 27 ·	<.1 2 <.1 1 <.1	20.8 1.6 7.7	8.5 4.6 4.0	394 200 118	1.48 1.34 1.30	6.9 4.3 6.2	.5 .7 .7	<.5 1.1	3.4 4.7 4.8	12 <.1 6 .1 9 <.1 3 .1 4 .1	2 1 3	.2 .2 .2	17 15 10	.07 .13 .03	.027 .009 .014	18 23 19	8.8. 9,6. 6.6.	22 10 32 7 19 3	7 .03(9 .02) 1 .028	52 72 8<1	1.33 1.15 .64		.11 < .09 < .07 <	.1 .0 .1 .0 .1<.0	2 1.1 1 1.4 1 .7	.1 .1 .1	< .05 < .05 < .05	3 < 5 4 < 5 3 < 5 2 < 5 3 < 5	15 15 15 15 15
L7 600E L7 625E L7 650E L7 675E L7 700E	.8 .6 .5	15.2 14.3 14.7	17.8 16.8 15.2	81 · 65 · 91	<.1 3 <.1 3 .1 3	84.9 10.4 15.7	16.2 16.7 12.3	542 537 396	1.92 1.76 1.74	10.5 7.4 4.8	.7 .7 .5	130.4 2.9 <.5	5.1 5.1 4.3	8 .1 7 .1 8 <.1 9 .1 9 .1	.3 .2 .2	.3 .3 .2	23 17 18	.06 .07 .11	.057 .052 .068	15 20 13	11.5 . 10.3 . 10.3 .	24 10 24 11 23 12	0 .056 3 .042 6 .066	51 21 02	2.43 1.91 2.32	010 011 013	. 09 . 09 . 10	.1 .0 .1 .0 .1 .0	3 1.5 2 1.3 3 1.5	.1 .1 .1	< 05 < 05 < 05	7 < 5 7 < 5 5 < 5 7 < 5 5 < 5	15 15 15 15 15
L7 725E L7 750E L7 775E L7 800E STANDARD DS6	.2 .4 .4	10.3 5.6 9.4 14.1 123.1	14.7 14.2 22.8	36 · 39 · 46	<.1 <.1 .1 1	9.1 9.9 5.5	49 96 141	99 255 511	1.08 1.45 1.61	3.1 5.0 2.9	.3 .6 1.0	2.5 .9 .6	2.5 4.4 5.7	7 .1 7 <.1 7 .1 10 .1 38 5.9	1 .3 .1	.2 .2 .3	14 14 16	.06 .08 .09	.014 .023 .031	14 24 39	7.6. 8.6. 11.4.	19 6 25 6 25 11	3 .017 5 .024 4 .022	7 < <u>1</u> 4 1 2 <1	.97 .89 1.58	.009 .007 .009	.07 < .10 < .11	.1 .0 .1 .0 .1 .0	1 .9 1 1.1 1 1.8	.1	<.05 <.05 <.05	5 < 5	15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA

=

- 4 - दल्हरा ----

aa

ACHE ANALYTICAL			<u>-</u>			Rı	uby	r R	ed	Re:	30U	rc	ės	In	c.	PF	soj	ſEC	T	ZE	US	F	ILE	#	A!	502	98	4	-				Pa	ge	4			Ľ
SAMPLE#	Mo								Mn													La															Sample	
	ppm	ph	<u> </u>	an pt		, m	ppn	ppm	ppm		ppm	ррш	ppp	ppiii	ррю	ppm	ррш	ppn	ppm			ppm	ppm	\$	ppm	- L	ppm				ppm	ppm	ppm (ppn	ъ ppi	n ppm	gn	
L8 000E L8 025E																							10.1													4 <.5	15	
L8 050E									109 126														9.7 8.8											.1<.(5 < .5	15 15	
L8 075E									177														9.2													6<.5	15	
L8 100E									114														10.5													5 < 5	15	
125E																																					10	
L8 150E			19.						78														7.4 10.0													5 <.5	15 15	
L8 175E																							8.6													4 < 5	15	
L8 200E																							10.5													5 < 5	15	
L8 225E	.8	8.	3 15.	93	19	2	8.4	7.4	132	2.26	7.1	.4	1.1	3.8	4	.2	.2	.3	20	.03	.032	19	11.6	.19	65	.025	<1	1.45	.004	.05	.1	.04	1.2	.1<.()5 !		15	
L8 250E	0	17 /	1 10	~ /	0	1 1	0.2	11 6	120	ບ ບຸ	5 2	٥	17	с Л	6	1	2	2	20	0.2	016	10	13.5	26	70	046	1	1 07	007	07	,	02	1 2	.1<.(۱ <u>۲</u>	6 <.5	15	
L8 275E																							13.3											.1<.(5<.5	15	
L8 300E									165														17.0											.2<.() ~.5 9 < 5	15	
L8 325E																							11.2													4 < 5	15	
L8 350E																							11.3													4 < 5	15	
L8 375E	7	11 1	1 16	о <i>и</i>	4	1	۵۴	5.0	124	1 70	5.0	E	<u>م</u> د	1 2	c	- 1	2	2	10	62	027	10	11.7	20	40	020	~ 1	1 74	002	06	1/	01	1 2	10.1	، ۱۵	4 <.5	15	
L8 400E																							12.9													+ ~.5 5 <.5	15	
L8 425E																							12.7													5 < .5	15	
L8 450E																							15.0													5 < 5	15	
L8 475E																							11.9													5 <.5	15	
L8 500E	8	15.4	5 16	A 5	. 1	1 1	7 g	18 /	222	1 03	15	1 0	ז ח	63	7	c 1	2	2	10	04	028	22	13.3	20	76	050	د1	1 90	ሰበፍ	ne	< 1	02	16	1< ()5 4	5 <.5	15	
L8 525E																							10.7													3 < 5	15	
L8 550E																							11.5													4 < 5	15	
L8 575E																							14.5													5 < .5	15	
L8 600E																							11.4											.2<.(\$ <.5	15	
L8 625E	6	12	1 10	7 4	5	11	0.0	5.6	124	1 73	3.0	6	< 5	46	4	< 1	1	2	18	03	048	14	10.2	25	68	032	1	1 75	005	05	1	0 3	13	.1<.()5 ¢	5 < 5	15	
L8 650E									1122														10.5						.014					.1<.(15	
L8 675E									184												.129		10.0											1<.(15	
L8 700E																							9.9											.1<.(3 < 5	15	
RE L8 700E																							9.4													3 <.5	15	
L8 725E	.9	10 9	9 10.	95	2	1	8.4	7.0	332	2 04	28	4	43	3.6	6	<.1	.1	.3	26	05	158	11	10.2	.19	100	.043	1	1.74	.007	.04	. 1	.03	1.2	.]< {)5 7	/ <.5	15	
L8 750E	1.1			-																			13.6														15	
L8 775E																							10.7														15	
L8 800E																							13.2														15	
STANDARD DS6																																					15	
												· · ·																										

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA

Page 5

Ruby Red Resources Inc. PROJECT ZEUS FILE # A502984

ACME ANALYTICAL								- · ·									····										OME ANALYTICAL	
SAMPLE#	Mo			Zn Ag						Au Th						La	Cr Mg			B /			W Hg			Ga Se Sa	mple	7
	bbw	ppm	ррт	ppm ppm	ı ppm	ppm	ppm	% ррл	ppm	ppb ppm	ppm ppm	ррт рр	m ppm	2	žŗ	nqc	ppm 3	\$ ppm	ž	ррл	8 2	: 2	рртаррта	рртп ррт	8	ppm ppm	- Gau	
L8 825E L8 850E L8 875E L8 900E L8 925E	.7 .7 .8	7.9 20.3 8.3	13.0 11.9 9.3	20 <.1 30 .1 24 .1	3.9 5.9 5.6	2.3 4.3 3.2	62 1.2 83 1.3 57 1.3	23 2.2 36 2.1 50 2.0	.3 .4 .3	4.1 5.0 2.5 4.0 2.0 3.8 3.6 3.9 54.6 4.7	3 <.1 4 .1 3 <.1	.1 . .1 . .1 .	3 17 2 20 3 18	.02 .03 .02	.024 .033 .030	18 14 15	6.3 .18 7.5 .17 7.8 .24	B 30 7 37 4 31	.012 .020 .021	<] .8 <] 1.2 <] .9	39 .004 28 .006 98 .004	.04 .04 .03	.1 .02 .1 .02 .1 .03 .1 .03 .2 .05	.7 .1 .9 <.1 .8 .1	<.05 <.05 <.05	5 <.5	15 15 15 15 15	
LB 950E LB 975E LB 4600E L9 200E L9 220E	1.2 .5 .5	14.3 12.3 11.0	24.9 10.4 18.2	49 .1 59 .1 41 <.1	8.3 11.5 15.0	4.0 8.7 6.7	79 2.2 462 1.0 285 1.5	22 7.7 53 3.0 52 5.3	.7 .5 .5	1.4 3.8 7.8 5.5 1.1 2.7 1.6 3.7 3.9 6.7	3 .1 13 .1 9 <.1	.2 . .2 . .2 .	3 14 2 28 3 16	.01 .09 .08	.035 .161 .018	21 5 18	9.1 .29 7.9 .11 8.6 .21	9 29 1 94 1 65	.012 .106 .029	<1.9 13.0 11.1	05 .002 07 .016 13 .005	.04 .06 .09	.1 .02 .1 .02 .2 .04 <.1 .01 .1 .03	.9 <.1 1.5 .1 1.0 .1	<.05 <.05 <.05	3 <.5 9 <.5	15 15 15 15 15 15	
L9 240E L9 260E L9 280E L9 300E L9 320E	.6 .4 .6	14.8 11.7 18.1	17.7 18.1 24.1	40 < 1 47 .1	34.0 15.3 20.3	14.8 8.8 7.2	178 2.3 251 1.3 318 1.3	39 6.0 59 5.6 74 5.2	.5 .5 .8	.8 8.1 <.5 5.2 8.7 4.2 1.3 5.8 <.5 5.2	16 .1 10 .1 19 .1	.2 . .2 . .2 .	3 31 2 18 3 22	.13 .09 .20	.027 .016 .012	12 19 24	14.9.26 9.8.25 11.6.30	5 109 5 85 9 101	.055 .027 .036	<1 2.8 <1 1.3 <1 1.6	0 .012 4 .007 3 .011	.11 .09 .08	.1 .02 <.1 .02 .1 .01	2.0 .1 1.3 .1 1.9 .1	<.05 <.05 <.05	5 .5 8 <.5 4 <.5 5 <.5 6 <.5	15 15 15 15 15	
L9 340E L9 360E L9 380E L9 400E L9 420E	.4 .4 .6	6.0 20.0 11.8	14.6 16.5 16.2	62 <.1 52 <.1	11.1 27.4 20.6	4.4 9.3 9.0	76 1.3 195 1.3 223 1.4	39 3.8 72 6.7 36 8.2	.2 .5 .5	.7 4.0 <.5 2.0 <.5 4.4 .6 3.6 2.7 3.8	11 .1 10 <.1 9 <.1	.1 . .1 . .2 .	3 27 2 23 2 19	.09 .08 .08	,017 .018 .030	11 16 16	7.7.11 11.6.30 10.5.29	1 89 1117 9101	.031 .049 .034	<1 1.5 <1 1.6 1 1.5	3 .009 3 .009 4 .006	.07 .12 .10	.1 .01	1.2 .1 1.4 .1 1.1 .1	<.05 <.05 <.05	5 <.5 7 <.5 5 <.5 5 <.5 6 <.5	15 15 15 15 15	
L9 440E L9 460E L9 480E L9 500E L9 520E	4 5 6	8.7 24.4 14.5	12.2 21.2 15.0	33 .1 43 <.1	9.3 21.8 10.9	5.8 5.4 7.0	128 1.3 387 2.0 112 1.6	38 4.4 91 13.0 38 15.6	.5 1.8 .6	.6 6.0 <.5 3.4 1.1 2.1 2.8 4.4 2.6 5.9	5.1 90.3 6.1	.2. .4. .3.	2 15 4 8 2 19	.04 1.61 .07	.014 .065 .017	14 63 19	9.9.24 8.0.31 10.3.32	4 44 1 124 2 57	.026 .016 .027	<1.9 1.8 <1.9	16 .005 18 .013 18 .003	.10 · .08 .11	<.1 .01 .1 .23 .1 .01	1.0 .1 2.5 <.1 1.2 .1	<.05 .19 <.05	3 <.5 3 <.5 2 .8 3 <.5 5 <.5	15 15 1 15 15	
RE L9 520E L9 540E L9 560E L9 580E L9 60DE	5 1 1 3	9.6 2.9	14.5 22.1 9.6	107 .1 48 < 1 22 < 1	26,3 21,5 4,8	8.4 9.1 2.7	731 1.0 108 2.4 237 1.0	51 10.4 15 15.2)1 6.7	.6 .5 .3	.6 6.1 1.2 4.5 <.5 4.4 5.2 2.9 .8 4.3	10 .2 9 .1 3 <.1	.2 .2 .2	2 17 4 32 2 13	.10 .10 .03	.121 .025 .020	17 13 17	9.3 .20 10.4 .18 5.4 .15) 134 3 114 5 36	. 052 . 059 . 014	1 1.9 <1 2.3 <1 .6	6 .014 3 .011 6 .003	.10 .08 .06 •	.1 .02 .1 .03 <.1<.01	2.2 .1 1.6 .1 .8 .1	<.05 <.05 <.05	5 <.5 8 <,5 3 <.5	15 15 15 15 15	
L9 620E L9 640E L9 660E L9 680E Standard DS6	.7 .5 .7	10.4 9.2 14.5	15.5 14.6 15.9	61 < 1 55 < 1 49 < 1	29.3 25.9 15.6	9.0 9.6 8.1	385 1.0 560 1.0 152 1.0	34 8.6 52 5.1 36 9.7	.5 .3 .7	3.2 3.3 4.2 5.5	8 < 1 7 .1 8 < 1 5 < 1 41 6.0	.2 .1 .3	3 21 2 18 2 16	.05 .07 .04	.057 .029 .020	12 14 20	10.4 .26 8.9 .22 10.3 .33	598 2144 369	. 059 . 033 . 031	<1 2.1 <1 1.7 <1 1.1	7 .010 5 .009 8 .004	.09 .10 .07 <	<.1<.01 .1 .03 .1 .01 <.1 .01 3.6 .23	1.5 .1 1.3 .1 1.2 .1	<.05 <.05 <.05	6 <.5 5 <.5 3 <.5	15 15 15 15 15	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🕻 FA

ACHE ANALYTICAL

Ruby Red Resources Inc. PROJECT ZEUS FILE # A502984

ACHE ANALYTICAL																							<u> </u>		ACHE ANALYTICAL
SAMPLE#	Mo	Cu Pb		,			As								La		Mg Ba		B A		K W			Ga Se S	· (= · -
	рря	ppm ppm	ppii ppi	ppm	ppin j		ppm p	pan pr	bo ppin	ppiii ppi	ppm	ppm p	pm	<u> </u>	ppm	ppm	z ppr	*	ppm \$	*	X ppm p	bu bu t	spm z	ppm ppm	gm
L9 700E L9 720E L9 740E	.3	2.7 10.0 9.6 15.8 8.7 13.6	-58 <.1	27.l	9.6 4	404 1.73	6.9	.4.	.7 3.3	6.1	.1	.2	20 .0	5.044	11	9.1 .	16 141	.037	1 1.70	.012	.10 .1 .	01 1.4	.1 <.05	5 < 5	15 15 15
L9 760E L9 780E	.2	7.018.8 7.920.7	35 < 1	11.7	7.2	168 1.19	3.1	.2 <.	.5 2.6	10 < 1	<.1	.2	16 .0	9.007	14	9.3 .	27 81	. 018	<1 1.25	. 010	.06 <.1 .	01 1.3	.1 < 05	4 < 5	15 15
L9 800E L9 820E L9 840E L9 860E L9 880E	.8 .8 .5	7.5 18.2 9.8 12.6 12.9 17.3 8.6 15.8 6.6 12.8	27 <.1 43 <.1 52 <.1	8.9 19.0 14.8	3.9 3 9.0 3 8.6 3	114 1.61 388 1.82 304 1.37	8.0 6.2 3.2	.71. .6. .52.	.6 4.7 7 5.3 4 4.0	4 <.1 8 <.1 5 <.1	.2 .1 .1	.3 .3 .3	10 .0; 17 .0; 15 .0;	3 .019 5 .026 4 .017	18 18 19	8.5 . 11.5 . 9.9 .	26 42 28 85 27 65	.012 .029 .023	<1 .80 1 1.43 <1 1.16	002 007 005	.06 <.1<. .09 .1 . .06 .1 .	01 .9 01 1.3 01 1.2	.1 <.05 .1 <.05 .1 <.05	3 <.5 4 <.5 4 <.5	15 15 15 15 15
L9 900E L11 600E L11 620E L11 640E L11 660E	.5 .6 .7	9.0 16.9 15.7 14.9 14.4 15.6 13.5 14.6 11.1 11.7	77 .1 63 <.1 42 <.1	27.1 14.7 10.6	9.2 9 7.1 2 4.6 1	505 1.91 277 1.97 123 1.75	17.0 30.9 23.2	,51. .524. .61.	8 4.3 6 3.7 8 4.6	10 .1 11 .1 4 <.1	.2 .4 .4	.3 .3 .3	23 .09 32 .1 18 .04	9.049 3.025 4.019	17 16 19	9.4 . 9.1 . 9.1 .	30 76 30 76 27 38	.043 .022 .017	1 1.44 <1 1.30 <1 .95	.007 .005 .003	.13 < .1 . .12 < .1 . .06 < .1<.	01 1.4 01 1.9 01 1.4	.1 <.05 .1 <.05 .1 <.05	4 <.5 4 <.5 3 <.5	15 15 15 15 15 15
RE L11 660E L11 680E L11 700E L11 720E L11 740E	.6 .8 .7	10.7 11.5 8.7 14.4 11.9 16.1 12.6 15.1 9.7 15.6	97 .1 54 <.1 83 .1	42.9 19.0 30.7	9.7 4 9.4 3 9.4 4	487 1.82 323 1.87 406 1.84	13.9 14.2 11.1	.4. .61. .6.	6 3.7 1 4.8 7 4.1	14 .1 6 <.1 8 .1	.1 .3 .2	.2 .3 .2	20 .10 17 .03 20 .03) .053 5 .035 7 .121	12 19 14	9.8 / 11.0 / 9.9 /	23 122 29 66 22 96	.049 .021 .067	<1 1.94 <1 1.26 1 2.18	.010 .004 .011	.09 < 1 . .08 < 1 . .09 .1 .	01 1.3 01 1.3 02 1.8	.1 < .05 .1 < .05 .1 < .05	6 <.5 4 <.5 6 <.5	15 15 15 15 15
L11 760E L11 780E L11 800E L11 820E L11 840E	.6 .7 .5	18.6 21.3 8.6 13.6 11.8 16.3 6.5 15.5 9.3 17.4	85 .2 49 .1 45 .1	28.6 24.4 21.1	9.3 9 10.0 2 10.8 6	973 1.65 227 1.75 557 1.65	6.8 10.0 7.6	.43. .53. .33.	5 3.1 6 4.1 6 2.9	8 .1 10 <.1 10 <.1	.1 .2 .1	.2 .2 .3	22 .00 20 .01 23 .10	5 .060 3 .035 3 .026	11 14 12	9.2 . 9.4 . 8.8 .	17 112 22 91 17 102	.066 .047 .052	1 2.17 <1 1.78 1 1.61	.012 .008 .011	.07 .1 . .08 .1 . .09 .1 .	02 1.4 02 1.4 02 1.4	.1 <.05 .1 <.05 .1 <.05	6 <.5 5 <.5 5 <.5	15 15 15 15 15
L11 860E L11 880E L11 900E L11 920E L11 940E	.9 1.1 .9	8.2 14.0 9.1 22.4 8.5 53.7 11.5 31.4 9.8 32.9	74 .1 67 .1 52 .1	32.0 29.2 39.9	10.5 2 10.8 7 11.1 3	277 1.68 715 1.85 359 1.87	4.5 6.2 6.0	.42. .3.	3 3.3 6 3.4 5 3.5	11 .1 6 .1 11 .1	.1 .1 .1	.2 .3 .2	19 .0 22 .00 19 .09	7 .032 5 .033 9 .028	12 14 12	8.8 . 11.6 . 9.7 .	19 117 27 82 24 90	.059 .037 .057	<1 1.84 1 1.84 1 2.20	.012 .008 .012	.08 .1 . .09 < 1 .0 .09 < 1 .0	02 1.5 02 1.4 02 1.4	.1 <.05 .1 <.05 .1 <.05	6 <.5 6 <.5 6 <.5	15 15 15 15 15 15
L11 960E L11 980E L11 1000E L11 1020E STANDARD DS6	.9 1.1 1.0	12.6 53.4 8.6 35.0 9.1 47.2 11.9 84.9 23.0 28.3	70 .1 55 <.1 73 .2	34.1 25.5 28.7	9.7 2 9.7 4 10.4 5	221 1.70 156 1.68 580 1.84	5.1 5.8 6.3	.42. .42. .42.	0 3.3 2 3.2 5 3.6	8.1 7.1 9.1	.1 .2 .1	.3 .3 .3	19 .07 16 .00 21 .07	7 .064 5 .023 7 .069	11 16 11	9.5 . 9.1 . 11.2 .	23 92 28 95 25 100	.059 .029 .056	1 2.08 <1 1.62 <1 2.11	.011 .005 .012	.09 .1 .0 .07 <.1 .0 .09 .1 .0	02 1.5 01 1.3 03 1.9	.1 <.05 .1 <.05 .1 <.05	6 <.5 5 <.5 6 <.5	15 15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data___ FA

Page 6

44
ACME ANALYTICAL

Ruby Red Resources Inc. PROJECT ZEUS FILE # A502984

ACHE ANALYTICAL																																		ACME ANALY	TIČAL
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V C	a f	, La	Cr	Mg	Ba	Ti	8	Al	Na	ĸ	WI	ig So	с T1		S Ga Se	Sample	
	ppm	ppm	ррп	ppm	ppm	ppm	ррт	ppm	2	ppm	ppm	ррь	ppm j	obu t	opm p	pm p	bu bb	m	2 3	s bbu	ррп	r	ррт	z	ppm	z	X	% p	pm pp	om ppr	n ppm	1	брртррт	gm	
L11 1040E L11 1060E RE L11 1060E L11 1080E L11 1100E	.5 .6 .6		48.1 48.4 17.7	82 79 63 ·	.1 2 .1 2 <.1 3	28.9 29.1 30.2	11.1 10.7 13.5	1331 1311 415	1.64 1.62 1.81	4.5 4.5 4.4	.4 .3 .4	.6 <.5 <.5	3.0 2.9 3.1	9 8 8 <	.1 .1 5.1	.2 .2 .2	.3 2 .3 2 .2 2	20 .00 20 .00 20 .00	5 .029	5 10 2 10 9 10		. 20 . 19 . 32	131 126 90	. 052 . 058	1 1 1 1 1 1	. 90 . 87 . 99	.014 .011 .010 .008 .012	.07 .07 < .10 <	.1 .0 .1 .0 .1 .0	$\begin{array}{c} 02 & 1.3 \\ 03 & 1.3 \\ 01 & 1.3 \end{array}$	3.1 3.1 3.1	<.0! <.0! <.0!	5 6 <.5 5 6 <.5 5 6 <.5	15.0 15.0 15.0	
L14 600E L14 620E L14 640E L14 660E L14 680E	.7 .7 .4	36.7 18.1 12.5	30.9 31.5 14.1	232 220 82	14 12	2.7 7.1 5.1	21.7 16.7 9.8	5840 5575 535	2.91 2.12 1.54	6,7 4,6 4,5	.5 .6 .4	<.5 <.5 1.4	3.2 2.7 2.9	13 38 1 12	.8 .4 .2	.3 .3 .1	.4 6 .4 2 .2 2	6.10 6.30	5 .119 4 .099 0 .056	5 17 5 21 5 10	11.3 11.8 11.1 7.9 8.1	. 39 . 30 . 18	195 334 113	.090 .065 .061	2 2 2 1 1 1	. 41 . 65 . 83	.011 . .008 . .010 . .015 . .016 .	13 < 10 < 07 <	.1 .0 .1 .0	06 3.3 07 1.0 01 1.7	3.3 5.2 7.1	<.0 <.0 <.0	5 8<.5 5 6<.5 5 6<.5	7.5 15.0 7.5 15.0 15.0	
L14 700E L14 720E L14 740E L14 760E L14 780E	.3 .7 2 <i>.</i> 1	40.3 11.2 23.5	20.1 14.5 87.1	127 162 168	.1 1 .1 1 .2 2	9.1 6.3 0.5	10.6 10.5 12.5	948 1264 888	2.06 2.21 3.76	8.1 25.2 33.8	.4 .8 .7	<.5 2.1 <.5	2.2 4.4 4.8	13 11 27	.3 .3 .5	.3 .4 .6	.2 5 .4 2 .7 3	60 .22 19 .10 14 .1	2 .069) .150 1 .077	5 7 10 24	7.3 7.1 9.8 15.6 9.8	.29 17 45	98 108 113	.077 .107 .083	1 2 2 2 2 2	.22 .74 .17	.020 .012 .007	10 08 10 <	.1 .0 .1 .0 .1 .0)1 2 9)5 1 8)5 1 9) .1 3 .1 3 .2	<.09 <.09 <.09	5 9<.5 5 9.5	15.0	
L14 800E L14 820E L14 840E L14 860E L14 880E	1.0 .5 .9	11.0 9.5	30.3 17.0 15.4	144 66 - 73 -	12 11 1<	5.7 9.4 4.8	12.4 6.5 11.2	3085 1114 901	2.30 1.64 2.25	7.5 68.0 8.5	.6 .3 .5	.7 10.7 <.5	4.3 3.0 5.3	15 14 7	.4 .2 .1	.4 .6 .2	.5 2 .3 1 .4 2	9 1 6 1 3 0	3 .081 1 .055 5 .033	10 17 17	12.8 10.7 5.4 11.3 10.0	. 25 . 09 . 27	157 92 101	.089 .034 .044	12 11 11	.27 .11 .83	.011 . .010 . .009 . .007 . .011 .	08 10 07 <	.1 .0 .1 .0 .1 .0)4 1 ()3 9)2 1 5	5 .1 9 .1 5 .1	<.09 <.09 <.09	5 8<.5 5 4<.5	15.0 15.0 15.0 15.0 15.0	
L14 900E L14 920E L14 940E L14 960E L14 980E	.7 .7 .5	6.5 8.8 12.1 7.9 7.5	11.0 10.7 20.6	47 < 43 < 111 <	< 1 1 < 1 1 < 1 1	3.0 0.9 6.7	6.2 5.4 10.6	140 336 1549	1.88 1.43 1.80	6.2 7.2 5.9	.7 .6 .5	1.0 .5 1.5	5.5 4.5 3.8	6 6 7	.1 .1 .1	.2 .3 .3	.2 1 .2 1 .3 2	5.04 5.09	4 .044 5 .027 5 .084	20 17 9	12.1 9.6 9.5 9.3 10.8	.48 .26 .18	81 73 91	.022 .020 .086	<1 1 <1 1 1 2	. 40 . 20 . 44	.004 . .003 . .012 .	06 < 08 < 08	.1<.0 .1 .0)1 1.3)1 1.1)3 1.7	} .1 .1 ! .1	<.05 <.05 <.05	5 3 < .5	15.0 15.0 15.0	
L14 1000E L14 1020E L14 1040E L14 1060E L14 1080E	.5 .8 .6	5.2 6.9 11.2	22.5 42.9 58.6	120 87 117	11 21 12	8.3 7.7 5.3	8.0 9.2 15.4	1132 711 612	1.25 1.63 3.08	2.7 4.2 5.7	.2 .3 .4	3.4 1.8 1.3	1.9 2.8 3.1	12 11 24	.3 .4 .4	.2 .2 .2	.32 .32 .23	0 10 3 0	0.071 7.061 5.187	9 10 10	12.2 7.8 8.6 20.0 12.1	14 17 77	91 90 120	.047 .061 .045	11 11 12	. 37 . 74 . 04	.004 . .009 . .009 . .005 . .011 .	07 07 11 <	.1 .0 .1 .0 .1 .0	411 313 228	1 3 .1 1 .1	< 05 < 05 < 05	5 6<.5 5 6<.5 5 8<.5	15.0 15.0 15.0	
L14 1100E STANDARD DS6																					9.0 180.9						.014 . .071 .								

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data [FA

State of the second second

Page 7

Page B-1

PART B EDDY DIAMOND DRILLING

Introduction

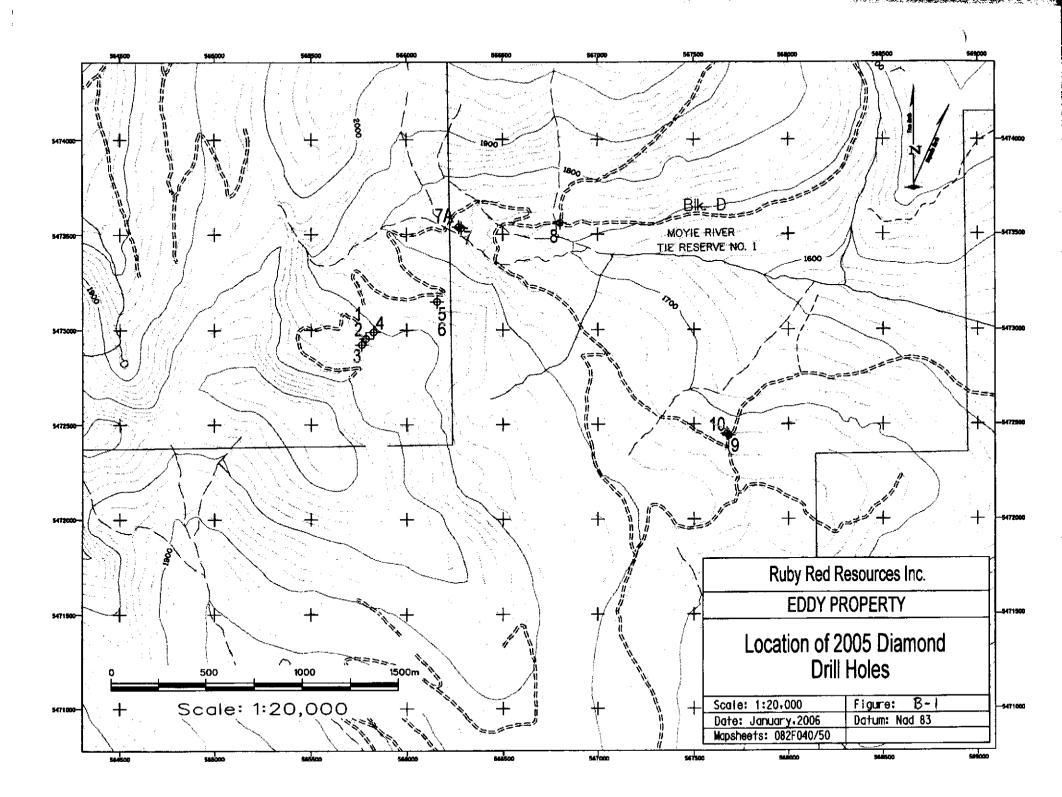
Eleven NQ diamond drill holes totalling 455.98 meters were completed on the Eddy property between September 25 and October 12, 2005.

Six holes (DDH E-05-1 to 6) were drilled on the Old Baldy Fault (OBF) and associated parallel structures, and two holes were drilled in the Hill Vein area where flat-lying gold-bearing quartz veins had been trenched.

One hole (DDH E-05 to 8) attempted to test part of the OBF north of Weaver Creek but intersected undeformed, unsheared gabbro and Aldridge metasedimentary rocks.

Two holes (DDH E-05-7A and & 7B) both attempted to test the OBF near its intersection with an inferred NE cross-cutting structure; both angle holes were unsuccessful at getting to bedrock.

Drill hole locations are shown on Figure B-1 and drill hole cross-sections are shown in Figures B-2 to B-7. Selected portions of the core were sampled by splitting and half sent to to Acme Analytical Laboratories Ltd. at 852 East Hastings Street, Vancouver, B.C., where they were analyzed for a 30 element ICP package and geochemical gold by standard analytical techniques. Gold analyses are shown in the drill logs and drill cross-sections and complete geochemical analyses are in Appendix B-1.


Results

DDH E-05-1 to 4

These holes tested a NE-trending structure parallel to the OBF. In 1989 this zone had been trenched and found to have significant gold in a quartz vein. Drill core is predominantly finegrained argillites, siltstones and quartzites. Extensive shearing is present in the core with numerous small pyritic and auriferous quartz veins and shear / breccia zones (Figs. B-2 to B-4). A number of narrow quartz veins, breccia zones and fault zones were sampled and show strongly anomalous gold with values up to 8100 ppb gold over 30 cm.

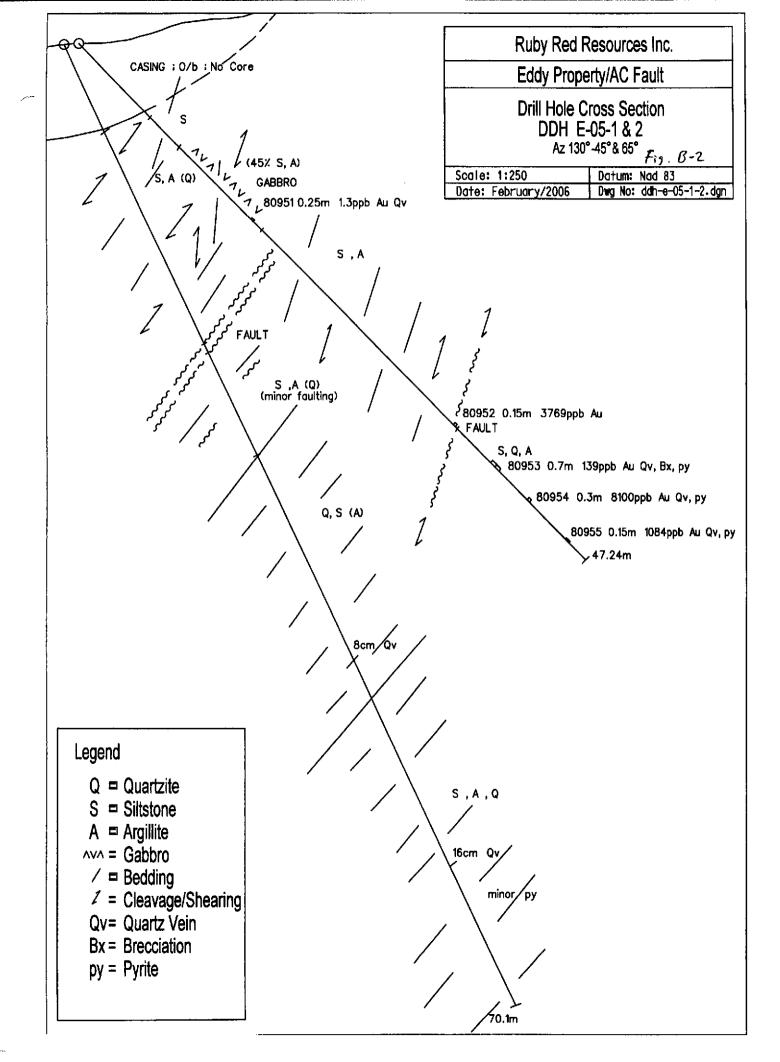
DDH E-05-5 & 6

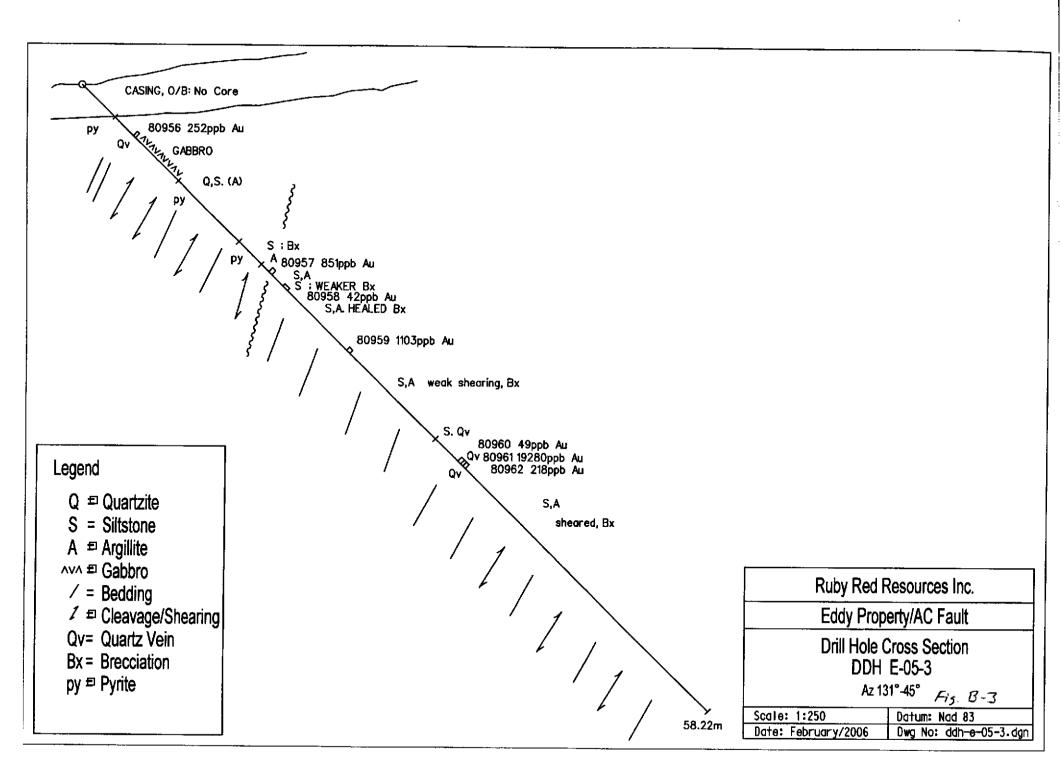
These holes tested the Old Baldy Fault system which here is a broad sheared zone about 25 to 30 meters wide. Both holes collared within the fault zone and drilled through it (Fig. B-5). The fault zone is sericitic and chloritic altered and hosts widespread minor fine-grained pyrite and numerous thin quartz veins. The highest gold value is 4.3 grams / tonne within a 40 cm wide quartz vein that is part of a 1.25 meter zone that grades 2.35 grams / tonne gold.

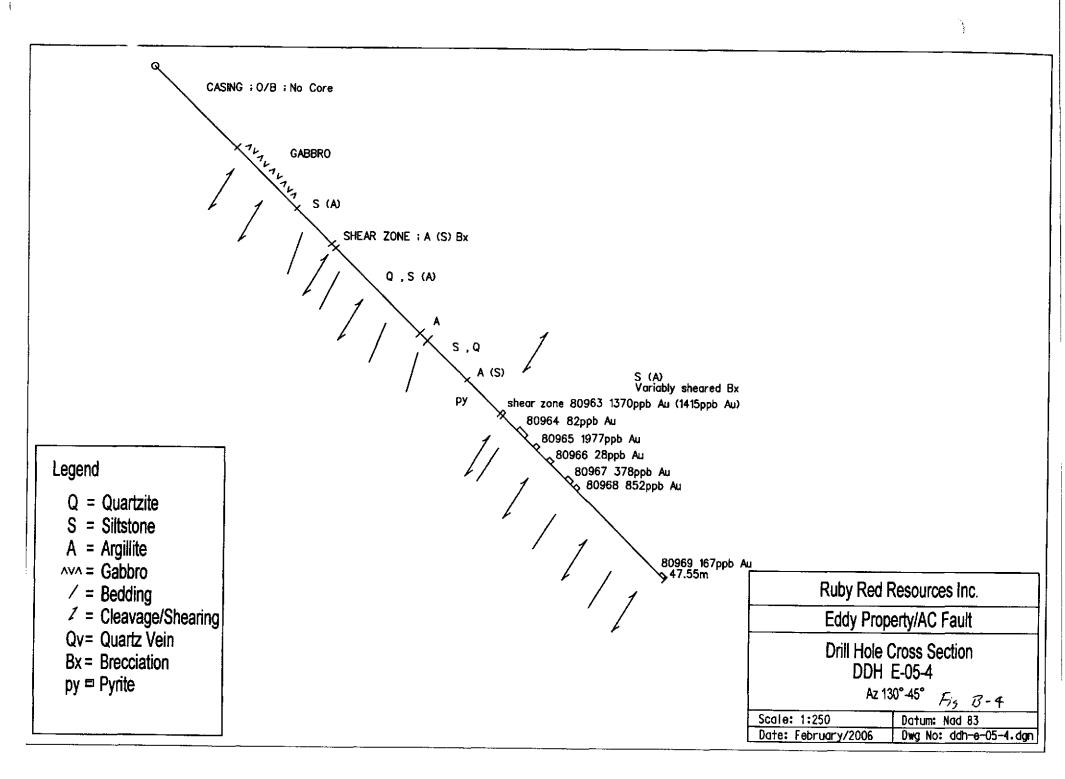
DDH E-05-7A & 7B

These holes were collared to test the OBF north of holes 5 and 6 (Fig. B-1) but neither hole was successful at getting to bedrock.

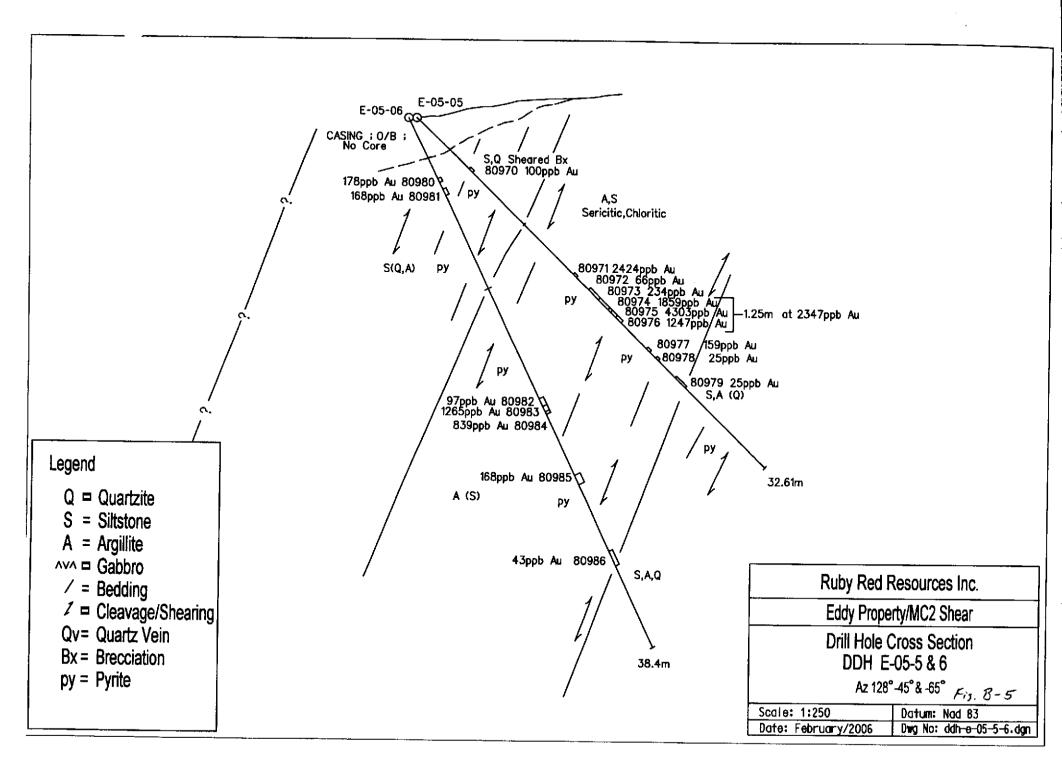
DDH E-05-8

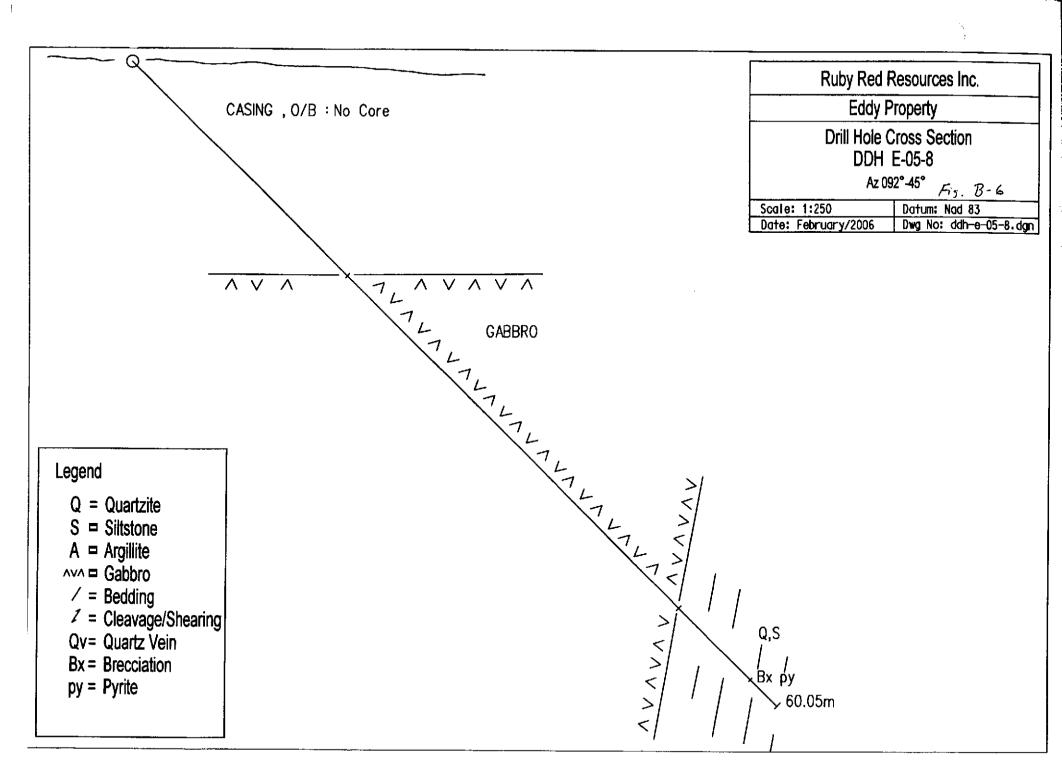

This hole was collared to test part of the OBF just north of Weaver Creek (Fig. B-1). The hole encountered undeformed gabbro, quartzite and siltstone (Fig. B-6) and thus appears to have not penetrated any part of the OBF system.

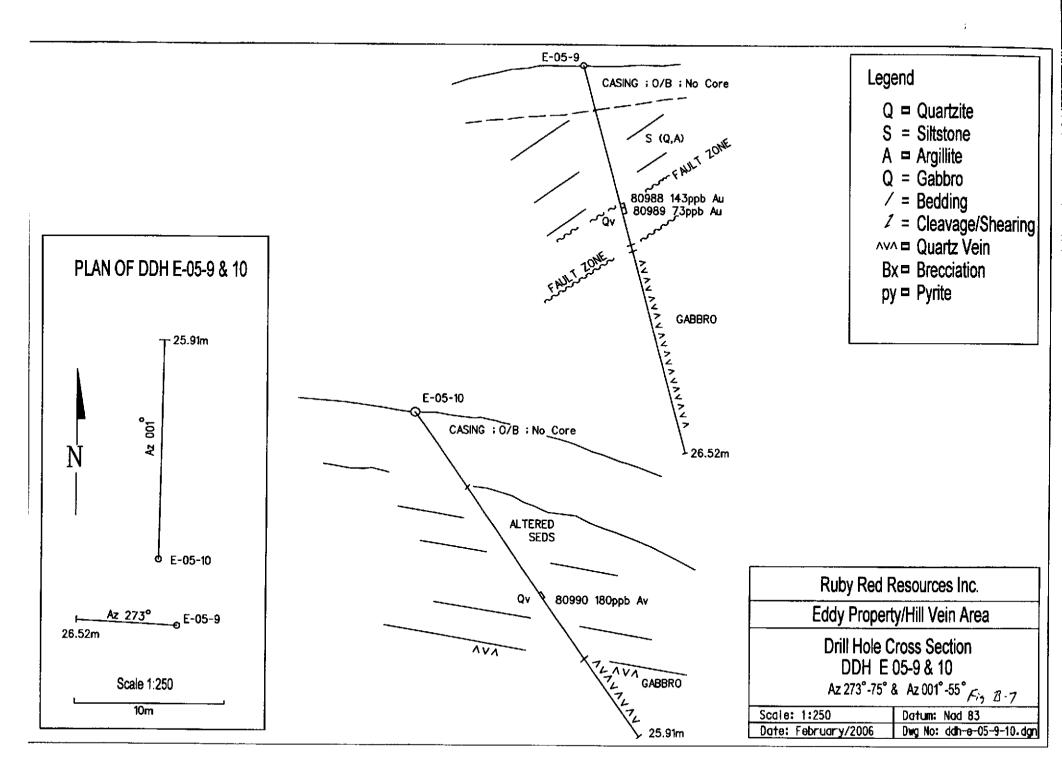

DDH E-05-9 & 10


These holes were collared to test the north part of the Hill Vein area for flat-lying quartz veins known from trenching. Only one distinct quartz vein, about 35 cm thick, was encountered in these two holes. Anomalous gold occurs within a clay-altered fault zone, within a quartz vein breccia zone, and within the quartz vein. Both holes ended in gabbro (Fig. B-7).

Conclusions


Eleven diamond drill holes totaling 455.98 meters tested targets on the Eddy property in late September and early October, 2005 and encountered multi-gram gold in numerous narrow zones. Anomalous gold occurs in narrow fault/shear zones, in quartz vein breccia zones and in distinct narrow quartz veins. The highest gold value intersected is 8.1 grams / tonne over 30 cm and the widest anomalous zone is 1.25 meters grading 2.35 grams gold / tonne. Gold is typically associated with pyrite and minor galena and chalcopyrite within silicified, sericite- and carbonate-altered sheared zones. The zones of anomalous gold mineralization intersected by drilling are narrow but they effectively demonstrate the gold-bearing nature of the structures. Significant (economic) concentrations of gold can be present where favorable structural sites exist.





and the second second

Appendix B-1 Diamond Drill Logs

Drill Hole Record

Hole No.:	E-05-1	Property:	Eddy
Commenced:	05-09-24	Owner:	Ruby Red resources
Completed:	05-09-25	Location:	Weaver Creek, ACF
Coordinates:	565787E 5472954N	Contractor:	Lone Ranger
Core Size:	NQ	Total Length	: 47.24m
Azimuth:	130	Logged by:	P. Klewchuk
Collar Dip:	-45	Date:	05-09-25
Objective:	Test ACF Zone		

Meters Description

0-6.7 CASING, no core

6.7-9.4 SILTSTONE, minor QUARTZITE & ARGILLITE

Med gray-green, somewhat mottled. Appears to be med and thin bedded but core is fairly broken. Argillite bands are soft, easily scratched; siltstone is silicified and hard. A few thin, irregular, somewhat vuggy and variably rusty QV are present. More massive quartz a mottled, healed breccia texture - occurs at 6.8m (12cm of core) and at 8.9m (~12cm of core). Both zones are weakly limonitic, both are chloritic with fine dissem py. Py is more abundant in lower zone. Bedding is at 60-65 to c/a.

9.4-17.1 MAFIC INTRUSION (est 55%) and SILTSTONE with minor ARGILLITE Mafic intrusion is dark green, moderately foliated or sheared at 60 to c/a; individual bands of intrusion occur from 9.4 to 9.67m, 9.95 to 10.5m, 11.95 to 14.4m and 16.35 to 17.1m. Thin lensey white to light gray calcite veinlets are common. Intervening sediments are med to darker gray-green, chlorite-altered, locally more mottled and silicified. Near 15m an argillite-rich zone is silvery gray-green, chloritic and phyllitic. 16.1-16.35 is more massive quartz; a complex vein with at least 3 types of quartz. Late thin veins are narrow (up to 3mm), lensey and vuggy, with crystalline quartz. Bedding is at ~50 to c/a. Local shearing is more commonly at 65 to c/a. SAMPLE 80951 16.1-16.35 (0.25m) 1.3 ppb Au

17.1-35.05 SILTSTONE & ARGILLITE, (may be minor QUARTZITE)

Med to darker gray and gray-green. Argillite zones appear less altered; siltstones are mottled and bleached to a more pale gray-green color. Minor, irregular quartx veining is present through parts of the zone; prominent on both sides of a narrow shear zone at 20.0m which has a 2cm QV centered in 3cm of more strongly foliated, pale gray-green phyllitic argillite. Scattered QV also occur from ~28.8m to 30.5m. Below ~33.0m pale gray-green bleaching intensifies toward fault zone at 35.05m. Lithology is mainly argillite with local shearing, fine dissem py and a few qtz-dol veins. Bedding and shearing at ~65 to c/a.

35.05-35.4 FAULT ZONE

Sheared phyllitic pale gray-green argillite mixed with a series of narrow (up to 2cm) QV with minor dissem py. ~6cm of the zone is a pale gray-green mottled, 'healed breccia'. Shearing and QV are at ~63 to c/a.

35.2 -35.4 is sheared argillite with minor dissem py, no QV.

 SAMPLE
 80952 35.05-35.2 (0.15m)
 3769.3 ppb Au

35.4-47.24 SILTSTONE, QUARTZITE & ARGILLITE

Mainly altered to a pale gray-green color but locally less altered and darker blue-gray (Aldridge Fm) color. Med and thin bedded but with lots of healed shearing and mottled brecciation which disrupts bedding. Shearing occurs in usually narrow bands but is scattered through the interval. Many of the narrow shear zones have associated quartz and quartz-dolomite veining, along with dissem py. Mottled, 'healed breccia' zones also have (irregular) quartz veining and dissep py. Shearing is typically at 55-65 to c/a. Bedding is at 65-70 to c/a.

 SAMPLING
 80953
 38.5-39.2 (0.7m) QV, shearing and mottled bx with dissem py

 139.2 ppb Au
 139.2 ppb Au

 80954
 41.9-42.2 (0.3m) QV, py
 8099.5 ppb Au

 80955
 45.65-45.8 (0.15m) Chloritic QV, minor py, shearing 1083.6ppb

 Au

47.24 End of Hole

Hole No.:	E-05-2	Property:	Eddy
Commenced:	05-09-25	Owner:	Ruby Red resources
Completed:	05-09-26	Location:	Weaver Creek, ACF
Coordinates:	565787E 5472954N	Contractor:	Lone Ranger
Core Size:	NQ	Total Length	: 70.1m
Azimuth:	130	Logged by:	P. Klewchuk
Collar Dip:	-65	Date:	05-09-26
Objective:	Test ACF Zone		

Meters Description

0-6.71 CASING, no core

6.71-21.65 SILTSTONE & ARGILLITE, minor QUARTZITE or SILICIFIED ILTSTONE Pale to med gray-green, thin and med bedded. A few quartzitic beds get up to 20 or 25cm thick. Bedding typically at 60 to c/a. A few irregular thin quartz and quartz-dolomite veins are present; most carry dissem py. Healed shearing is common; sub-// to bedding and results in discontinuous, lensey bedding.

21.65-22.8 FAULT (?) ZONE, QUARTZITE rubble and gouge

Pebbles of pale green quartzite; most are washed. ~10 cm has siliceous matrix. Fine dissem py occurs in matrix and in pebbles. Only 20cm recovered; est >1m core loss.

22.8-30.0 SILTSTONE & ARGILLITE, minor QUARTZITE

Pale to med gray-green, med and thin bedded, bedding typically at 55-70 to c/a. Core from 22.8 to 28.3 is fairly rubbly with minor faults; narrow zones of brecciation and clay gouge.

30.0-47.7 QUARTZITE & SILTSTONE, minor ARGILLITE

Pale to med gray-green, med and thin bedded, bedding at 60 to c/a. Quartzites are typically of mottled texture; they look like healed breccias with distinct to vague quartz veining and locally abundant py, dissem and in linear aggregates along healed fractures and margins of quartz veins. Narrow argillite bands are more sheared; along a 30cm core length at 40.3m; from 42.35 to 42.95m; over 5cm with 8cm wide shear-// QV (at 70 to c/a) at 44.9m.

47.7-70.1 SILTSTONE, ARGILLITE and QUARTZITE

Mixed lithologies; generally bleached; pale gray-green to light and med blue-gray. Med to thin bedded and laminated, with a few thicker beds. Bedding typically at 60-70 to c/a with sub-// shearing. Few, mainly narrow, cleavage-parallel quartz-dolomite veins. Most display some irregularities. Minor py is present but not common. At 59.8m a thicker 16cm QV has patchy yellowish dolomite and dull gray-green chlorite.

70.1 End of Hole

Hole No.:	E-05-3	Property:	Eddy
Commenced:	05-09-26	Owner:	Ruby Red resources
Completed:	05-09-27	Location:	Weaver Creek, ACF
Coordinates:	565765E 5472922N	Contractor:	Lone Ranger
Core Size:	NQ	Total Length	: 58.22m
Azimuth:	131	Logged by:	P. Klewchuk
Collar Dip:	-45	Date:	05-09-28
Objective:	Test ACF Zone		

Meters Description

. ...

0-3.05 CASING, no core

3.05-4.85 SILTSTONE, QUARTZITE

Pale green, med and thin bedded, bedding at 65-70 to c/a. Fine dissem py is present. Few QV, bed-// and cross-cutting, vuggy, limonitic (reddish brown; dol or py oxidized) with dissem py.

4.85-5.0 QUARTZ VEIN

Cloudy gray, mottled with pale greenish and pink discoloration. Separate piece of core but contacts are at ~60 to c/a - probably bedding- or cleavage-//. Thin light gray QV cut the larger vein - at ~25 to c/a. Numerous reddish-brown vugs and rusty patches - most at 45 to c/a - some more wavy and irregular. Dissem py is common, est 4%. SAMPLE 80956 4.85-5.0 (0.15m) 251.7 ppb Au

5.0-9.05 MAFIC DIKE; GABBRO

Dark green, fine to med grained. Strong swirly foliation / shearing at \sim 70 to c/a. Abundant white quartz veins, lensey and irregular; these tend to be at 70 to c/a but form a matrix to a healed breccia texture over most of the intrusion. Minor lensey calcite veins, parallel to foliation. Upper portion is quite vuggy (acid-leached?) With dark reddishbrown oxidation - from py and carbonate. Dissem py occurs throughout, slightly concentrated in some QV.

9.05-14.7 QUARTZITE AND SILTSTONE, minor ARGILLITE

Med green to gray-green, somewhat mottled. Quartzites and siltstones are more massive, silicified with indistinct light gray, irregular, discontinous quartz veins at 0 to 60 to c/a. A few more distinct narrow QV have yellowish Fe dolomite. Narrower argillite zones are thin bedded, at ~70 to c/a with pervasive shearing at ~80 to c/a disrupting bedding. Minor fine dissem py occurs mainly with silicified zones.

14.7-16.7 HEALED BRECCIA, mainly SILTSTONE

Med to darker green and gray-green. Contact at 14.7 is at 60 to c/a; at 16.7 at 45 to c/a. 14.7 to 15.65 and 15.8 to 16.15 is more mottled, bleached to pale gray-green, withvague clasts and foliation at ~60 to c/a. The remainder is a more distinct clast-supported breccia with sub-angular fragments ranging from 1mm to 4cm across. Matrix is darker green, chlorite-rich, Dissem py is more common in the distinct breccia, est 4 or 5% locally.

16.7-17.3 ARGILLITE

Med to dark gray-green, to darker blue-gray. Thin bedded and laminated, at 60 to c/a. Cleavage is sub-// to bedding, up to 50 to c/a. Minor py is common, in cleavage-// lenses with dark green chlorite.

FAULT ZONE 17.3-17.6

Lighter gray-green, silicified texture. Top 5 cm is a healed breccia, with strong fabric at 30 to c/a. Lower portion is a healed quartz vein breccia with fabric at 50 to 70 to c/a and close to 90 to upper breccia. Laminae of argillite(?) are pale gray-green and phyllitic or sericitic. Darker green chlorite is common in thin veinlets. Minor dissem py occurs mostly with OV (only 2-3%).

SAMPLE 80957 17.3-17.6 (0.3m) 851.2 ppb Au

SILTSTONE & ARGILLITE 17.6-18.7

Pale green to med blue-gray. Thin bedded to laminated, at 65 to c/a. Vague shearing sub-// to c/a, to 50 to c/a. Weakly brecciated with scattered thin white QV, mostly at 80-90 to c/a.

18.7-19.1 Weaker QUARTZ VEIN ZONE, silicified SILTSTONE

Pale green, bleached, massive to sheared at 65 to c/a. Three quartz and dolomite veins, up to 2 cm wide and at ~60 to c/a, occur within the interval. Minor dissem py. SAMPLE 80958 18.7-19.1 (0.4m)41.8 ppb Au

19.1-24.6 Altered SILTSTONE & ARGILLITE; Healed BRECCIA

Light gray-green to blue-gray, mottled and bleached. Mostly a healed breccia texture, shearing at 50-65 to c/a. Hairline fractures are darker green, chloritic. Minor scattered discontinuous yellowish quartz-dolomite veinlets. Very minor dissem py.

24.6-24.9 SHEAR ZONE; BRECCIATED ARGILLITE & SILTSTONE

Pale gray-green to blue-gray, mottled to strongly foliated / sheared. Phyllitic, sericiticaltered argillite lams common in upper 6cm. Few lensey QV, // to shearing at 60 to c/a, up to 2.5cm wide. Minor dissem py. 80959 24.6-24.9 SAMPLE 1103.0 ppb Au

(0.3m)

24.9-33.0 Altered SILTSTONE & ARGILLITE

Light to med blue-green to blue-gray. Thin and med bedded, may be a few thicker beds. Bedding typically at 65-70 to c/a. Narrow zones of shearing are common, at 60 to c/a. Weakly brecciated (healed) throughout with thin lensey irregular yellowish quartz-dol veins. Minor dissem py is concentrated in shear zones.

33.0-35.3 Altered SILTSTONE

Pale gray-green, thin and med bedded. Healed shearing and brecciation common, withlocal irregular light blue-gray quartz veins. Bedding at 70 to c/a, shearing at 80 to c/a.SAMPLE80960 35.15-35.3 (0.15)49.3 ppb Au

35.3-35.4 QUARTZ VEIN

Light gray, mottled. Contacts at 80 to c/a. Few internal lams of pale gray-green sericitic/phyllitic argillite. Few irregular patches of PbS in central part of vein. Abundant coarse irregular patches of Cpy in upper 1/3 of vein. SAMPLE 80961 35.3-35.4 (0.1m) 19279.5 ppb Au

35.4-58.22 SILTSTONE & ARGILLITE; variably sheared and brecciated

Mostly pale gray-green and bleached, to light and med blue-gray. Thin and med bedded with a few thicker beds. Bedding at 70-75 to c/a with sub-// shearing. Scattered irregular (shear-// and cross-cutting) quartz and quartz-dol veins, some with minor py. Alteration is fairly consistent throughout with pervasive bleaching, patchy silicification and widespread healed brecciation and shearing.

SAMPLE 80962 35.4-3.55 (0.15m) 218.1 ppb Au

58.22 End of Hole

Hole No.:	E-05-4	Property:	Eddy
Commenced:	05-09-28	Owner:	Ruby Red resources
Completed:	05-09-28	Location:	Weaver Creek, ACF
Coordinates:	565827E 5472988N	Contractor:	Lone Ranger
Core Size:	NQ	Total Length	: 47.55m
Azimuth:	130	Logged by:	P. Klewchuk
Collar Dip:	-45	Date:	05-10-02
Objective:	Test ACF Zone		

Meters Description

0-7.62 CASING, no core

7.62-13.3 MAFIC INTRUSION; GABBRO

Dark green, fine-grained, sheared at ~85 to c/a. Abundant light gray patchy to lensey calcite concentrations tend to be parallel to shearing (similar but whiter veins in DDH E-05-3 are predominantly quartz). A few light gray vuggy quartz veins are weakly reddishbrown limonitic. Contact at 13.3m is in broken core but appears to be at high angle to c/a.

13.3-16.5 SILTSTONE, minor ARGILLITE

Light to med green, thin and med bedded, at 65 to c/a. Patchy silicification with limonitic, lensey QV. Cleavage (shearing) sub-// at 30-50 to c/a. Local healed breccia - appears tectonic.

16.5-16.9 SHEAR ZONE; ARGILLITE, minor SILTSTONE

Med gray-green. More phyllitic, sericitic bands are lighter, yellowish-green. Mainly crushed, brecciated and healed seds. Minor quartz and dol veining as discontinuous lenses and patches.

16.9-24.7 QUARTZITE & SILTSTONE, minor ARGILLITE

Light to med gray-green, med & thick (?) Bedded; argillites are thin bedded. Scattered thin lensey QV, commonly rusty. Bedding and sub-// cleavage at 65-80 to c/a.

24.7-25.4 ARGILLITE

Dark gray to med gray-green. Thin bedded and laminated, bedding at 60 to c/a, disrupted by sub-// cleavage. Minor py occurs in bedding/cleavage-// lenses. Weak healed breccia in central part of zone; thin bedding-// and cross-cutting white dol veins.

25.4-29.1 SILTSTONE & QUARTZITE

Pale gray-green, somewhat mottled; quite massive. Mainly med bedded, few thin beds. Weak healed brecciation occurs throughout with thin lensey to irregular white quartz-dol veins. At 26.0m 15cm of core has a series of larger quartz-dol veins, up to 3cm wide and at 45 to c/a. 29.1-32.1 ARGILLITE, minor SILTSTONE

Generally similar to 24.7-25.4 interval, with stronger shearing. At 31.6m a 3cm wide shear zone has strongly folded seds, lensey white-gray QV and minor dissem py.

32.1-32.3	SHEAR ZO	DNE		
Mixt	ure of light gr	ay to tan phyllit	ic, argillic and seric	itic altered seds and lensey white
QV.	Shear fabric a	t ~75 to c/a, way	vy. Minor dissem py	y common throughout, concentrated
in qu	artz veins.			
SAM	IPLE 809	63 32.1-32.3	(0.2m)	1463.1 ppb Au
32.3-47.55	SILTSTON	IE, minor ARGI	LLITE, variably she	eared and brecciated
Mair	ily pale gray-g	reen (sericitical	ly altered) with narr	row medium to darker gray and
blue-	gray bands. B	edding, shearing	g and quartz veining	g are typically at 75-80 to c/a.
Varia	ably brecciate	d and sheared th	roughout, with asso	ciated quartz and quartz-dol
veini	ng.			
SAM	IPLING:			

 80964
 33.7-34.45
 (0.75m) Mottled, healed breccia, silicified. 3 narrow shear zones, dissem py.

 80965
 35.2-35.5
 (0.3m)
 65% QV, at 75 to c/a, sheared seds, minor py.

 1976.8 ppb Au
 1976.8 ppb Au

 80966
 36.45-36.8
 (0.35m) Healed breccia, minor py, thin QV.
 27.5 ppb Au

 80967
 38.15-38.7
 (0.45m) Mottled, healed breccia, minor QV, weak dissem py.
 377.7 ppb Au

 80968
 39.0-39.3
 (0.3m) Stronger bx, 25% QV, numerous thin QV, dissem py.
 851.5 ppb Au

 80969
 47.1-47.5
 (0.4m) Healed bx, 35% Qtx-dol veining, Very minor dissem py.
 167.1 ppb Au

47.55 End of Hole

Hole No.:	E-05-5	Property:	Eddy
Commenced:	05-09-29	Owner:	Ruby Red resources
Completed:	05-09-29	Location:	Weaver Creek, MC2
Coordinates:	566158E 5473147N	Contractor:	Lone Ranger
Core Size:	NQ	Total Length	: 32.61m
Azimuth:	128	Logged by:	P. Klewchuk
Collar Dip:	-45	Date:	05-10-11
Objective:	Test MC2 Zone		

Meters Description

0-3.05 CASING; no core

3.05-25.1

.....

"MC2 SHEAR ZONE"; Altered, sheared, brecciated SILTSTONE, ARGILLITE & QUARTZITE

3.05-10.15 Mainly siltstone and quartzite. Variably brecciated, silicified and bleached. Color ranges from med gray-green to pale brown-gray. Few QV, scattered irregularly through the interval. Some are // to shearing at 75-80 to c/a; others are more irregular, lensey and cross-cutting. At 7.0m ~15cm of core has more abundant QV, est 20%, mostly lensey at 30-35 to c/a.

4.8-5.1 is pink hematitic quartzite with thin rusty cross-cutting QV; basal 7cm is sheared with lensey QV, fine dissem py, at 85 to c/a.

SAMPLE 80970 4.8-5.1 (0.3m)

100.3 ppb Au

10.15-18.15 Sericitic & chlorite-altered argillite & siltstone. 10.15-14.9 is lighter gray & strongly sericitic altered & phyllitic. Recognized cbedding is thin bedded, at 70 to c/a & cleavage / shearing is sub-//, mainly at ~75 to c/a. Narrow, more intensely sheared zones carry minor pyrite and QV. 14.3-14.9 is more massive, biotite-rich at 14.3 then tan-gray. Fine, dissem py occurs through most of the lower 30cm in association with QV at 50 to c/a near 14.6m. 14.9-18.15 is darker gray-brown, green and green-brown; more strongly chloritic. Dissem py is common with scattered thin light gray QV SAMPLING:

80971	14.6-14.9 (0.1	3M)	2424.0 ppb Au
80972	16.0-17.0 (1.	0M)	65.6 ppb Au
80973	17.0-17.9 (0.9	9M)	234.4 ppb Au
80974	17.9-18.15 (0).25M)	1859.4 ppb Au

18.15-18.55 QUARTZ VEIN, ~15% brecciated seds. HW and FW contacts each at 65 to c/a, // to adjacent bedding / cleavage. White to slightly gray, fairly massive quartz, vaguely mottled. Internal fabric of pyritic lenses, bx seds and a band of PbS-py are ?? to contacts. PbS band is discontinuous, ~0.5cm wide and 8cm below HW contact.
SAMPLE 80975 18.15-18.55 (0.4m) 4303.5 ppb Au

18.55-25.1 Altered SILTSTONE & ARGILLITE

Light to med gray-green, thin and med bedded at \sim 70-75 to c/a with sub-// cleavage / shearing. Local narrow shear zones typically have lensey QV and dissem py. SAMPLING;

80976	18.55-19.15	(0.6m)	1247.2 ppb Au
80977	21.45-21.75	(0.3m)	158.8 ppb Au
80978	22.3-22.45	(0.15m)	25.0 ppb Au
80979	24.1-25.1	(1.0m)	25.0 ppb Au

25.1-32.61 Altered SILTSTONE & ARGILLITE, minor QUARTZITE

Light to med gray-green. Med and thin bedded, may be some thick beds, bedding at 75-80 to c/a. Scattered QV, some with py, occur through most of the interval; some are bedding-//, most are cross-cutting. One thicker QV (10-15cm ?; broken core) at 31.0m. No strong cleavage / shearing.

32.61m End of Hole.

トーン おいざん

с. С.

-

Hole No.:	E-05-6	Property:	Eddy
Commenced:	05-09-30	Owner:	Ruby Red resources
Completed:	05-09-30	Location:	Weaver Creek, MC2
Coordinates:	566158E 5473147N	Contractor:	Lone Ranger
Core Size:	NQ	Total Length	: 38.4m
Azimuth:	128	Logged by:	P. Klewchuk
Collar Dip:	-65	Date:	05-10-11
Objective:	Test MC2 Zone		

Meters

0-3.05 CASING, no core

3.05-12.4 Altered SILTSTONE, minor QUARTZITE & ARGILLITE

Light to med gray & gray-green with orange-pink limonite weathering diminishing downward but extending to ~8m. Bedding and sub-// cleavage at 40-55 to c/a. Scattered small lensey cleavage-// QV, Larger 8cm wide QV at 3.5m and 5.6m. More greenish, chlorite-altered below 7.5m. Narrow crush/fault zones at 3.6, 5.5, 5.7, 6.2, 6.7, 7.05, 8.2 and 9.3m. Extensive shearing through much of the interval; part of the MC@ shear zone. Relatively minor local pyrite.

SAMPLING;

80980	4.45-4.65	(0.2m)	QV + shearing	178.0 ppb Au
80981	5.3-5.7	(0.4m)	QV, bx, shear zones	167.5 ppb Au

12.4-21.05 Altered ARGILLITE, minor SILTSTONE

Description

Very pale gray-green and gray to med gray-green. Thin bedded, typically at 55 to c/a. Extensive bedding sub-// shearing; rock is talcose, sericitic and phyllitic. Minor local QV, up to ~6cm wide tend to be cleavage-// and have minor associated py. Dissem and vein py is also present locally in sheared seds. At 12.85m a 6mm wide dark green-black 'chlorite' vein cross-cuts shearing; re-orienting core indicates an E-W/90 attitude. Minor dissem py occurs with chlorite.

SAMPLING: 80982 20.5-21.05 (0.55m) 97.4 ppb Au

21.05-21.4 QUARTZ VEIN, 15% BRECCIATED SEDS

Milky white, massive, somewhat mottled texture. Contacts are sub-// to cleavage at ~ 60 to c/a. Dissem py is common in QV & at QV-sed contacts. SAMPLE 80983 21.05-21.4 (0.35m) 1264.9 ppb Au 21.4-32.45 Sheared and altered ARGILLITE & SILTSTONE; QUARTZ VEINING Med gray-green to pale gray-green. Thin bedded, at 60-65 to c/a. Scattered quartz veining and shearing with narrow more intense zones. Py is present, concentrated in narrow cleavage-// zones and with some QV. 32.45m appears to be base of main sheared zone. SAMPLING:
80984 21.4-21.6 (0.2M) Weak bx, sheared siltstone 838.9 ppb Au 80985 26.0-26.65 (0.65m) 30% QV, thin pyritic bands, QV bx, clay gouge fault zones 168.1 ppb Au 80986 31.55-32.45 (0.90m) QV & QV bx, dissem py, fault zone at 32.45m 42.8 ppb Au

32.45-38.4 SILTSTONE, ARGILLITE & QUARTZITE

Pale green to med gray; discolored / altered similar to shear zone but not noticeably sheared. Thin and med bedded, at 60-65 to c/a. Few white-yellow qtz-dol veins, to ~8mm wide, at 35 to c/a.

38.4 End of Hole

Hole No.:	E-05-7	Property:	Eddy
Commenced:	05-10-01	Owner:	Ruby Red resources
Completed:	05-10-02	Location:	Weaver Creek, MC2 / Red Zone
Coordinates:	566284E 5473532N	Contractor:	Lone Ranger
Core Size:	NQ	Total Length	: 21.95m
Azimuth:	130	Logged by:	P. Klewchuk
Collar Dip:	-50	Date:	05-10-05
Objective:	Test MC2 Zone near Weaver	r offset	

Meters Description

State State State

- 0-16.15 CASING, no core
- 16.15-21.95 Boulders; overburden. Mostly green, thin bedded Creston Fm. Some lavender quartzites; various lithologies and bedding attitudes. Hole dry and could not continue in boulders.

Drill Hole Record

Hole No.:	E-05-7A	Property:	Eddy
Commenced:	05-10-02	Owner:	Ruby Red resources
Completed:	05-10-03	Location:	Weaver Creek, MC2 / Red Zone
Coordinates:	566271E 5473538N	Contractor:	Lone Ranger
Core Size:	NQ	Total Length	: 27.43m
Azimuth:	130	Logged by:	n/a
Collar Dip:	-50	Date:	n/a
Objective:	Test MC2 Zone near Weaver	offset	

Meters Description

0-27.43 TRICONED; no core

Triconed to 27.43m in overburden; broke casing off 3m from tricone; tried to tap; could not because of too much cave; hole shut down.

Hole No.:	E-05-8	Property:	Eddy							
Commenced:	05-10-04	Owner:	Ruby Red resources							
Completed:	05-10-05	Location:	Weaver Creek, MC2 / Red Zone							
Coordinates:	566802E 5473559N	Contractor:	Lone Ranger							
Core Size:	NQ	Total Length	: 60.05m							
Azimuth:	092	Logged by:	P. Klewchuk							
Collar Dip:	-45	Date:	05-10-12							
Objective:	Test MC2 Zone north of Weaver offset									

Meters Description

0-20.1m CASING; no core

20.1-50.9 GABBRO

Dark to med green, medium grained, massive. From 42.2 to 42.33 is a QV / shear zone at 65-80 to c/a. Dissem py is common in narrow lenses // to QV. Below the QV / shear, to 47.9m are numerous gray-white calcite veins, mostly at 60-80 to c/a but with lots of irregularity. Minor py and epidote occur locally with calcite. A few quartz, quartz-calcite and quartz-dolomite veins occur below 47.9m. Contact at 50.9m is quite indistinct as underlying seds are chloritically altered to a dark green very similar to gabbro. SAMPLE 80987 42.2-42.33 (0.13m) 611.4 ppb Au

50.9-60.05 QUARTZITE & SILTSTONE

Dark green to med tan gray. Med, thick (?) And thin bedded, at 55 to c/a. Healed brecciation and chlorite alteration mask bedding. A few bedding-// QV, up to 2cm wide. At 57.7-58.0 is a fault zone; matrix-supported breccia with angular clasts of quartzite / siltstone in a matrix of crushed wallrock. Fabric is swirly but at close to parallel to c/a. Very minor fine-grained py occurs in matrix.

No prominent shearing or cleavage in any of the core, suggests this is not very close to major faulting.

60.05 End of Hole

Hole No.:	E-05-9	Property:	Eddy
Commenced:	05-10-05	Owner:	Ruby Red resources
Completed:	05-10-05	Location:	Weaver Creek, Hill Vein
Coordinates:	567685E 5472441N	Contractor:	Lone Ranger
Core Size:	NQ	Total Length	: 26.52m
Azimuth:	273	Logged by:	P. Klewchuk
Collar Dip:	-75	Date:	05-10-06
Objective:	Test Hill Vein zone for flat (QV	

Meters Description

0-3.05 CASING, no core

3.05-12.25 Altered SILTSTONE, minor QUARTZITE & ARGILLITE

Light to med gray-brown-green, 'punky' argillic altered. Med and thin bedded, may be a few thick beds. Bedding from 60-80 to c/a and locally folded - confined to bedding-// zones and evidently 'soft-sediment deformation'. Fractures are Mn and limonite-stained. Some fractures have associated pale brown-orange limonite alteration up to 1cm wide and some fractures have yellowish-orange clay alteration in narrow zones. From 9.5 to 9.8 is a more prominent crush/clay-altered zone - evidently a fault; mostly in broken core and attitude of fault is not obvious. 9.8 to 10.2 is a quartz vein breccia zone with abundant thin, vuggy, white to orange limonitic. A few coarse bulbous white granular quartz veins or lenses are also present - one is at \sim 70 to c/a. Fine dissem py is present.

SAMPLING;	80988	9.5-9.8 (0.3m)	143.2 ppb Au
	80989	9.8-10.2 (0.4m)	72.6 ppb Au

12.25-12.65 FAULT ZONE; Altered GABBRO, minor QUARTZ

Med to dark brown; orange-gray limonitic at the contact at 12.25m. Mostly rubbly, broken core. Minor white granular quartz in broken core. Contact at 12.25m is at 70 to c/a

12.65-26.52 GABBRO

Med to dark green; fine-grained in top 30cm; med grained to about 14m and coarsegrained to end at 26.52m

26.52 End of Hole

Hole No.:	E-05-10	Property:	Eddy
Commenced:	05-10-06	Owner:	Ruby Red resources
Completed:	05-10-06	Location:	Weaver Creek, Hill Vein
Coordinates:	567676E 5472450N	Contractor:	Lone Ranger
Core Size:	NQ	Total Length	: 25.91m
Azimuth:	001	Logged by:	P. Klewchuk
Collar Dip:	-55	Date:	05-10-12
Objective:	Test Hill Vein zone for flat Q)V	

Meters Description

0-6.1 CASING, no core

6.1-19.7 Altered Seds, Quartz vein

Variably tan, gray, green with a limonite stain overprint. Med and thin bedded, mainly at ~45 to c/a, locally to 25 to c/a. Mostly fairly broken core. Appears to be mainly siltstone with some argillite and quartzite; 'argillic' alteration has softened siltstones and quartzites. Limonite and Mn stained on most fractures. At 14.5 to 14.85 is a quartz vein, massive, cloudy white, with minor dissem, mostly oxidized fine to medium-grained py concentrated near upper and lower contacts. Both contacts appear to be bedding-sub-//; apparently a flat QV. At 10.7 a 3mm specular hematite veinlet is bedding-//. SAMPLE 80990 14.5-14.85 (0.35m) 179.5 ppb Au

19.7-25.91 GABBRO

Contact at 19.7 is in broken, rubbly core; 19.7 to 21.3 is dull greenish-orange altered, rubbly and soft with ~90cm to 1m of core loss. Fractures are Mn and limonite-stained. 21.3 to end of hole at 25.91m is med to coarse-grained.

25.91 End of Hole

m ppn 1 4 1 116 1 6 1 10	-	2 23	<.3	5	99m 12	ppm 2223		ppm	ppm	bbu	ppm	DDM					۵۷	6/			B.4		6.4		6 .2					
1 116 1 6	5 5	23			15		2 81	<2	<8	<2			<.5		ppni 5		% 5.70	.014	ppm 5	<u>ppm</u> 7	2.16	ppm 7	<.01	ppm	% .20	<u>%</u> .04	.02	<u>ppm</u> <2	pp 1.1	
		10		15 15	9 14	506	3.28	2 <2	<8 <8	<2		51	<.5	<3	4	7	1.10	.023	9	7	1.28	46	<_01 <_01	<3 6	.37	.02	.20	<2 <2	3769 139	3
	53	12	.3	9	9	141	1.98	<2	<8	<2	7		<.5	<3	<3	5	.14	.006	12	10	.30		<.01	<3	.26	.03	. 14	<2	8099	5
6 2	2 3	20	.6	9	7	180	1.98	2	<8	<2	13	1 9	<.5	<3	3	5	.51	.024	12	6	.95	35	<.01	<3	.36	.01	.21	<2	1083.4	6
				6	14				<8	<2	4			<3	3	2	2.11	-016	6	10	.73			<3	.14	.05	.03	<2	251	
-	-	6		8	7			3	<0 <8	<2 <2	11			<3 <3	3	5	.60	.020		7	.75			-	.40	.02	.21	<2	41.3	
								7	<8	<2	10			<3	3	5	.49	.054							.46	.02	.22	<2	1103.0	
	-							_			-			_	-	4			_	-				_						
								_			-					4 5		.002	_	9				<3 <3		.02	.17	<2 <2	218	1 Ì
• • • •	· · ·	24	<.3	17	9	364	3.49	3	<8	<2	13	16	<.5	<3	5	6	.49	.026	17	8	1.55	32	<.01	<3	.51	.01	-25	<2	1463.1	1 2
	-			18 18	9 9			2	<8 <8	<2 <2	13 13			<3 <3	<3 <3	5	.50	.025 .027	17 18	8 6	1.56			<5 3	.52 .48	.01	.25 .23	<2 <2	1414_0	6
:1 3	i 4	6	<.3	8	11	108	1.76	<2	<8	<2	10	8	<.5	<3	<3	4	.20	.016	15	9	.76			<3	.30	.02	.15	<2	81.5	5 [
	-	-		7	12			<z< td=""><td><8</td><td><2</td><td>8</td><td>-</td><td></td><td><3</td><td>4</td><td>4</td><td>.08</td><td>.009</td><td>14</td><td>7</td><td>.40</td><td></td><td></td><td><3</td><td>.32</td><td>.01 02</td><td>. 18</td><td><2 <2</td><td>1976.8</td><td><u>s</u> (</td></z<>	<8	<2	8	-		<3	4	4	.08	.009	14	7	.40			<3	.32	.01 02	. 18	<2 <2	1976.8	<u>s</u> (
		-		7	8 11			<2 <2	<ð <8	<2 <2	8			<3 <3	3	3	.22	.014	16	8	.77			<3	.24	.03	.10	<2	377.7	7 '
2 2	2 5	22	<.3	8	4	138	1.59	<2	<8	<2	7	6	<.5	<3	<3	4	- 17	.012	11	4	.72	15	<.01	<3	- 22	.03	.10	<2	851.5	5 t
	-	12		9	7			8	<8	<2	8			<3	<3	5	.24	.016	16					<3 .7	.31	.03			1 67 .1	
								<2 35	<୪ <୪	<2 <2			<.5 .5	<3 <3				. 147	4	9	2.78	12	<.01	3	.55	.02	.20	<2 <2	2424.0	
	-			17 23	13			<2 /	<8 <8	<2				<3	4	5	.67 71	.049	9 10					<3 3	.61 53	.02	.20	<2 <2	65.6 234./	5
														_		-				-				ر.				_		
				23 8	12		-	<2 23	<8 <8	<2 <2	7 2			3 <3	6 <3	9 3	.38 .99	.069 .017	11 4	5 8	1.77			<3 <3	.51 .24	.02 .01	.25	<2 <2	4303.5	5
	35	76	1.2	21	8	445	3.20	2	8	<2	7	19		<3	5	5	.76	.049	8					<3	.45	.02	. 19	<2 ~2	1247.2	
				22				4 <2	<8 <8	<2 <2				<3 <3	<5 7		2.06	.035	11					<3	. 55	.02	.24	<2	25.0	3
1 4	17	8	.5	7	9	105	1.80	2	<8	<2	7	14	<.5	<3	<3	3	.42	.011	6	7	.35	15	<.01	5	.47	.01	. 12	<2	25.0	
1 1	10			9 17											5	2	.61 05			3					.33				178.0	
	17	46	.4	19	16	393	3.74	<2	<8	<2	6	23 ·	<.5	<3	<3	4	1.00	.047	7	6	2.11	14	<.01	<3	.52	.03	. 16	<2	97.4	÷.
1121 11111 11112 11112 20242 1111	9 1 415 5 415 6 1 6564 6 6 1 0 9 21 33 17 1 2 34 129 20 19 122 18 132 18 133 18 134 18 235 4 1 24	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 5 18 \cdot .3 13 5 503 3.20 1 5 6 \cdot .3 8 7 487 2.01 415 12 10 \cdot .3 18 11 279 2.77 5 \cdot .3 15 \cdot .3 12 26 173 1.89 1 64 18 \cdot .3 13 9 231 2.40 10 13 24 \cdot .3 17 9 364 3.49 9 9 24 \cdot .3 18 9 370 3.53 21 17 24 \cdot .3 18 9 339 3.32 3 4 6 \cdot .3 8 11 108 1.76 17 3 \cdot .3 7 12 69 1.27 1 3 12 \cdot .3 9 8 168 2.27 1 3 12 \cdot .3 7 11 126 1.51 2 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 5 18 <.3	9 5 18 \cdot .3 13 5 503 3.20 4 \cdot .8 \cdot .2 1 5 6 \cdot .3 8 7 487 2.01 3 \cdot .8 \cdot .2 415 12 10 \cdot .3 18 11 279 2.77 7 \cdot .8 \cdot .2 5 \cdot .3 15 \cdot .3 12 26 173 1.89 3 \cdot .8 \cdot .2 1 6 4 18 \cdot .3 13 9 231 2.40 \cdot .2 \cdot .8 \cdot .2 10 13 24 \cdot .3 18 9 370 3.53 2 \cdot .8 \cdot .2 2 1 17 24 \cdot .3 18 9 339 3.32 4 \cdot .8 \cdot .2 1 3 12 \cdot .3 18 9 339 3.32 4 \cdot .2	9 5 18 \cdot .3 13 5 503 3.20 4 \cdot .8 \cdot 2 9 1 5 6 \cdot .3 8 7 487 2.01 3 \cdot .8 \cdot 2 11 415 12 10 \cdot .3 18 11 279 2.77 7 \cdot .8 \cdot 2 10 5 \cdot .3 15 \cdot .3 12 26 173 1.89 3 \cdot 8 \cdot 2 9 1 5 \cdot .3 15 \cdot .3 12 26 173 1.89 3 \cdot 8 \cdot 2 9 1 13 24 \cdot .3 17 9 364 3.49 3 \cdot 8 \cdot 2 13 21 17 24 \cdot .3 18 9 370 3.53 2 \cdot 8 \cdot 2 13 3 4 6 \cdot .3 8 11 108 1.76 \cdot 2 \cdot 8 \cdot 2 13 21 17 3	9 5 18 < 3 13 5 503 3.20 4 < 8 < 2 9 40 1 5 6<<	9518 $< .3$ 135503 3.20 4 $< .8$ $< .2$ 9 40 .6156 $< .3$ 87 487 2.01 3 $< .8$ < 2 11 17 $< .5$ 4151210 $< .3$ 1811 279 2.77 7 $< .8$ < 2 10 18 $< .5$ 5 < 3 15 $< .3$ 12 26 173 1.89 3 $< .8$ < 2 9 11 $< .5$ 16 6 18 $< .3$ 139 231 2.40 < 2 $< .8$ < 2 9 19 $< .5$ 1013 24 $< .3$ 179 364 3.49 3 $< .8$ < 2 13 16 $< .5$ 9 9 24 $< .3$ 18 9 370 3.53 2 $< .8$ < 2 13 16 $< .5$ 2117 24 $< .3$ 18 9 370 3.53 2 $< .8$ < 2 13 17 $< .5$ 2117 24 $< .3$ 811 108 1.76 < 2 $< .8$ < 2 10 8 $< .5$ 13 4 6 $< .3$ 811 108 1.76 < 2 $< .8$ < 2 10 8 $< .5$ 14 3 $3 < .3$ 7 12 69 1.27 < 2 $< .8$ < 2 <t< td=""><td>9518$< 3$135503$3.20$4$< 8$$< 2$9$40$.6$< 3$1156$< 3$87$487$$2.01$3$< 8$$< 2$11$17$$< 5$$< 3$4151210$< 3$1811$279$$2.77$7$< 8$$< 2$10$18$$< 5$$< 3$5$< 3$15$< 3$12$26$$173$$1.89$$3$$< 8$$< 2$$9$$11$$< 5$$< 3$16564$2727$7$7.3$65$58$$1.50$$< 2$$< 8$$< 2$$9$$11$$< 5$$< 3$16564$2727$7$7.3$65$58$$1.50$$< 2$$< 8$$< 2$$9$$19$$< 5$$< 3$1013$24$$< 3$17$9$$364$$3.49$$3$$< 8$$< 2$$13$$16$$< 5$$< 3$2117$24$$< 3$18$9$$370$$3.53$$2$$< 8$$< 2$$13$$17$$< 5$$< 3$2117$24$$< 3$18$9$$370$$3.53$$2$$< 8$$< 2$$13$$17$$< 5$$< 3$2117$24$$< 3$8$11$$108$$1.76$$< 2$$< 8$$< 2$$10$$8$$< 5$<</td><td>9 5 18<</td> 3 13 5 503 3.20 4 <8</t<>	9518 < 3 135503 3.20 4 < 8 < 2 9 40 .6 < 3 1156 < 3 87 487 2.01 3 < 8 < 2 11 17 < 5 < 3 4151210 < 3 1811 279 2.77 7 < 8 < 2 10 18 < 5 < 3 5 < 3 15 < 3 12 26 173 1.89 3 < 8 < 2 9 11 < 5 < 3 16564 2727 7 7.3 65 58 1.50 < 2 < 8 < 2 9 11 < 5 < 3 16564 2727 7 7.3 65 58 1.50 < 2 < 8 < 2 9 19 < 5 < 3 1013 24 < 3 17 9 364 3.49 3 < 8 < 2 13 16 < 5 < 3 2117 24 < 3 18 9 370 3.53 2 < 8 < 2 13 17 < 5 < 3 2117 24 < 3 18 9 370 3.53 2 < 8 < 2 13 17 < 5 < 3 2117 24 < 3 8 11 108 1.76 < 2 < 8 < 2 10 8 < 5 <	9 5 18<	9518<	9 5 18 \cdot .3 13 5 503 3.20 4 \cdot .88 \cdot 2 9 40 .6 \cdot 3 4 6 1.13 1 5 6<<.3	9 5 18 \cdot .3 13 5 503 3.20 4 \cdot .8 \cdot .2 9 40 .6 \cdot .3 4 6 1.13 .020 1 5 6<	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 5 18 <.3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Ruby Red Resources Inc. PROJECT EDDY FILE # A506649

Page 2

Data / FA

								_																							ALME ANALYTICAL
SAMPLE#	Mo ppm	Cu ppm	. –		Ag ppm		Ca ppm	Mn ppm		As ppri	-	Au ppm	Th ppm		Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm		Mg %	Ba ppm	Ti %	B PPm	Al %	Na %	К %	W ppm	Au* ppb
80983 80984 80985 80985 80986 80987	<1	75	480 4	78 32 34	.6 <.3 <.3 <.3 <.3	21 11	12 11	342 270 425		10 7 9	- <8 <8 <8	<2 <2 <2	-7 -4 -4	91 116	1.0 <.5 <.5 <.5 <.5	3 3 4 3 3	4 3 <3 5 6	4 5 6 4 60	1.50 .52 1.80 2.30 1.08	.020 .053 .049 .028 .038	13 8 6	3	2.41	23 25 29	<.01 <.01 <.01 <.01 <.01	13 4 12 5 3	.53 .76	.01 <.01 <.01	.10 .20 .15 .14 .20	_	1264.9 838.9 168.1 42.8 611.4
80988 80989 80990 Standard DS6/AU-R	3	270 6	<3	192 14	.7 <.3 .8 <.3	3	1	2492 23	1.60 10.61 .47 2.68	22 <2	<8 <8	<2	<2	25 1	<.5 9.2 <.5 6.0	8 16 <3 4	-उ <उ	11 249 <1 67	<.01 .28 .01 .81	.024 .102 .003 .073	28 1	6 161 3 157	.06 2.19 .01 .52	62	<.01 .02 <.01 .09			.01 <.01	.14 .11 .02 .15	<2 6 <2 3	143.2 72.6 179.5 457.7

Sample type: DRILL CORE R150.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

PART C

Hope Copper Property by D.L. Pighin

1.00 TARGET

State of the state

Sediment-hosted copper-silver deposit.

2.00 ECONOMIC FACTORS AND MODEL TYPE

The Spar Lake, Montanore and Rock Creek orebodies are typical of copper-silver sediment hosted deposits. These deposits are located in Montana approximately 120 kilometers south of the Hope Copper Property.

The Spar Lake deposit is 58 million tonnes at 0.76% Cu and 54 g/tonne silver, for an in ground value of \$1.784 billion.

The Montanore deposit is 134.5 million tonnes at 0.74% Cu and 60 g/tonne silver, for an in ground value of \$3.752 billion.

The Rock Creek deposit is 143.7 million tonnes for an in ground value of \$3.766 billion.

3.00 IMPORTANCE

Sediment hosted copper deposits are the second most important source of copper in the world.

4.00 HOPE COPPER PROPERTY

4.10 Location and Access

The Hope copper property is situated in the Perry Creek drainage approximately 45 minute driving distance northwest of Cranbrook, B.C. Access to the property and on the property is provided for by abundant all weather forestry roads.

4.20 History

In 2004 Chapleau Resources Ltd. Recorded the Hope soil geochemical grid showing only gold values.

4.30 Property

The Hope copper property is part of a large claim block in the Purcell Mountains held by Ruby Red Resources (Figure 2). The Hope copper property is contiguous with other Ruby Red Resources claim holdings to the west south and east. The property is adjoined on the north by both Ruby Red Resources and competitor claims.

5.00 EXPLORATION WORK COMPLETED TO DATE

5.10 Grid Soil Geochemistry

A grid soil geochemical survey totaling 2484 samples was completed by Chapleau resources Ltd. All the soil samples were analyzed for a 34 element ICP package as well as geochemical gold.

Results

Three large copper, silver, lead and barium soil anomalies were located on the Hope copper property. The soil anomalies are spaced approximately 500 meters apart along a line which is parallel to the strike of the underlying Creston Formation siltstone and quartzite beds. Each copper anomaly is approximately 1.5 km by 0.5 km in size (Fig. C-1).

5.20 Prospecting

Prospecting on the property to date has been limited to just a few man-days.

Results

Prospecting located a showing of disseminated bornite and chalcocite in siltstone beds. The mineralized siltstone beds are exposed along a road cut for approximately 50 meters. Most of the disseminated bornite and chalcocite in the siltstone beds has been leached out by surface weathering. However, disseminated bornite and chalcocite can be observed near the center of some siltstone beds. One grab sample of leached copper mineralization ran 0.23% Cu. This showing is 800 meters down slope from a major soil anomaly.

6.00 GEOLOGICAL COMPARISON BETWEEN THE HOPE COPPER PROPERTY AND THE MONTANA SEDIMENT HOSTED COPPER OREBODIES

6.10 Host Stratigraphy

The Montana copper deposits are hosted by Middle Proterozoic siltstone and quartzite of the Revett Formation which is equivalent to the Creston Formation in Canada. The Hope copper property is underlain by the Creston Formation.

6.20 Ore Mineralogy

The Montana copper deposits are formed by disseminated chalcocite, bornite, chalcopyrite and

native silver. On the Hope copper property, at least some of the copper mineralization is known to be bornite and chalcocite in siltstone beds.

6.30 Gangue Mineralogy

Gangue mineralogy at the Montana orebodies includes carbonates, iron-titanium oxides, chlorite, barite, authigenic feldspar and apatite. On the Hope copper property strong barium soil anomalies co-exist with copper, silver and lead anomalies (Figs. C-1, C-2 & C-3).

7.00 CONCLUSIONS

The Hope property copper-silvert showings and soil anomalies correlate stratigraphically, geochemically and mineralogically with Montana's sediment-hosted copper-silver deposits.

The probability of locating a large sediment-hosted copper-silver deposit on the Hope copper property is strongly supported by an in-place showing of bornite-chalcopyrite and by large co-existing Cu, Ag, Pb and Ba soil anomalies

8.00 RECOMMENDATIONS

To develop drill targets on the Hope copper property the following is recommended:

1. Follow-up grid soil geochemistry

2. Geological Mapping

3. Prospecting

9.00 PROPOSED BUDGET

A total of 3068 soil samples at an all-in cost (labour, assay, transportation)	\$50,00
	0
Geological Mapping 3 man-months	24,000
Transportation 4X4 truck, 3 months	6,750
Prospectors one month, including truck	8,500
Drafting	5,000
Sub-total	\$94,250
10% overhead	9,425
Total Budget	\$103,675

PART D GAR-LOV PROPERTY

Maps to accompany the compilation report are Figures D-1 to D-4. These were originally compiled at 1:10,000scale but are provided here as 1:20,000 scale maps to reduce the size.

1. N. 1.

Comments to accompany the filing of an assessment report for the Super Group Holdings Claims:

Gar Property – The compilation work for this property included preparation by computer-assisted drafting of a 1:10000 scale geology map and a Mag and Sampling Map at 1:10000.

Geology Compilation Comments:

The work recorded on these compilations was mostly done in 2001 and 2002. It is the subject of an assessment report filed by National Gold in 2003 - AR # 27242. The CADD maps enhance the representation and provide an improved representation of the property geology. The geology compilation also incorporates a small amount of work done in 2005 for Ruby Red Resources Inc.

The Gar is a large block of north-northeast oriented claims covering the upper portion of the Angus Creek drainage and east and west from it. Total core area is approximately 5500 hectares. Approximately centered on UTMs 5484000N and 562000E, the core claims numbers include: 512232, 521766, 515847, 512766, 515850, 515846, 515853, 515854, 515855, 515849, 512233.

Access is gained from the St.Mary river logging road or the St.Mary Lake road west from Highway 95 up the major St.Mary river valley. Secondary logging roads leave the above roads into the Angus Creek and Hellroaring Creek drainages. The property is accessed most readily by 4x4 truck a total of about 50-60 kilometres from Cranbrook, B.C. The exploration operating season is mid-May to the end of October where the relief is from 1500 to 2500 metres.

The regional geological setting is as follows. The Gar claims are within the Moyie structural block which is a northeast-trending block of ground between two major reverse faults - the St.Mary and Moyie faults. This block, moreso than others in the Purcell Anticlinorium, has apparently been rotated clockwise exposing the deepest stratigraphic level of Lower Aldridge Formation rocks in a northeast-southwest orientation. Overall the sedimentary rocks young to the northwest/west but at various stratigraphic levels the sequence is repeated by reverse faults. Across the Gar alone there a number of younging sequences from east to west. The Gar is underlain by predominantly Mesoproterozoic sedimentary rocks of the Creston and Kitchener Formations. These are dominantly light colored, grey to green, fine clastic rocks succeeded by darker colored, silty argillaceous rocks mixed with carbonates. Granitic intrusions were known to be present in the area and now more have been located. These form small stocks and elongate bodies trending northeast on the property. Structurally the geology is dominated by northeast-trending fault panels. The faults are predominantly reverse faults sympathetic to the bounding major faults. There is small to medium-scale folding which seems restricted to ground adjacent to faults.

The sedimentary sequence is worthy of discussion, as the nature of the rocks does influence the potential for mineralization along with other factors. The lowest sedimentary rocks exposed on the property are close to the base of the Creston Formation. The Middle Creston is a grey to greenish weathering sequence dominated by thin to thick bedded, fine-grained quartzitic wackes to quartz wackes. Interbedded argillites are laminated to thin-bedded rocks. Sedimentary features include flame structures, graded bedding, cross-bedding and lenticular bedding. On a fresh surface the quartzites vary from grey to green to mauve colors with shallow water depositional conditions dominant. The overlying Upper Creston is greenish-grey to green argillite sequence with some intermixed siltstones. Thin and wavy bedded, these rocks form a transition to the rocks above. The Kitchener Formation has basically two divisions. The lower division is not as well exposed but is green weathering argillite and siltstone which are thin bedded. Characteristic of Kitchener is presence of carbonate and this shows as buff weathering interbeds of dolomitic siltsone. The upper portion of the Kitchener is a darker grey to black or buff weathering thin bedded succession of argillite, carbonate, and dolomitic siltstone.

These sedimentary rocks have been intruded by granitic-type intrusions such as the Leader stock in the north and the Angus Creek stock in mid-property. Other similar but smaller bodies of intrusive rocks have been located on the property. It is important to note that the intrusions are aligned along the northeast structural fabric as if emplaced along some of the faults. The Leader stock has been dated as Cretaceous. The intrusions are granodiorites or quartz monzonites which are leucocratic, medium to coarse-grained, containing plagioclase, quartz, orthoclase, biotite, and sericite in order of abundance. Petrographic work on a few samples shows lesser epidote, chlorite, apatite and zircon with minor pyrite, hematite, and leucoxene. Near the contact with the sediments locally, these intrusions can be more altered including: coarse phases (almost pegmatitic)with increased K-feldspar; sericitization of the plagioclase; muscovite; and chlorite after biotite. There is an increase in quartz veining, silicification, and alteration of the sediments as well.

da

Comments to accompany the filing of an assessment report for the Super Group Holdings Claims.

Lov Property – The compilation for this property included preparation by computerassisted drafting of a 1:10000 scale geology map and a Mag and Sampling Map at 1:10000 scale.

Geology Compilation Comments:

The geological mapping was mostly completed in 2002. The northern portion of the map was recorded in an assessment report on the Lov 19 claim in 2002. (AR# 26971 Geological Assessment Report for the Lov 19 Claim)The rest of the geology map has not been filed for assessment. The Mag and Sampling map represents the magnetic character of the rocks on the claims with weak anomalies as recorded on the airborne survey completed by Noranda Inc.(AR#14533). The rock sample locations show gold values in ppb for hand samples collected by Super Group Holdings prospectors.

The cost of compilation and getting the map posted to a computer assisted drawing for plotting purposes is what has been recorded for assessment. A brief description of the area, claims and geology as represented on the map is as follows:

Eight core claims, 3211 hectares in total area centered on UTMs 5482000N and 553000E. Claim numbers include 515858, 515859, 515861 through 515866.

The property has ready access to its outer perimeter through use of logging roads up the main St. Mary valley and the Hellroaring Creek road network. It is about 65-70 kilometres from Cranbrook, B.C. by road. Relief is from 1600 to 2300 metres, so moderately mountainous and tree covered with some logging clearcuts at lower elevations on the north and east. The exploration season is mid-May to the end of October. The property boundaries are determined by the presence of the intrusions and gold located in outcrop.

There are no known old showings on the claims. The only prior claim ownership was by Noranda Inc. who flew airborne mag and EM, completed partial stream and soil geochem surveys, subsequently abandoning their search for massive sulphides of the Sullivan type. (Assessment Report #14,533). The airborne survey did identify numerous conductors but the host rocks are not Aldridge Formation which hosts the sedex Sullivan deposit.

The Lov property is within the core of the Purcell Anticlinorium and its northern boundary is within one kilometer of the major transcurrent (to the PA and Purcell sedimentary basin) St. Mary Fault. The rocks are predominantly sedimentary striking approximately north and dipping to the west. Oldest rocks exposed on the property are Mesoproterozoic Kitchener Formation on the east flank. These argillaceous and partly carbonate-rich sediments are overlain unconformably on the west by quartzitic sediments of the basal Cambrian Cranbrook Formation. The overlying Lower Cambrian Eager Formation can be sub-divided into a lower section of greenish, thin to medium bedded argillites and siltstones (quartzites) with interbedded limestone near the base. The upper section is more typical Eager with monotonous grey weathering, grey argillites and limey argillites with some siltstones. These rocks are often highly cleaved with bedding obscured. Pyrite cubes are widespread. The lower division has been separated into three intervals based on their metamorphic character. Numerous, likely Cretaceous-age plugs, dykes, and lenses of granite to granodiorite intrude the Eager Formation along a strike length of 3.5 to 4 kilometres. On the east, the Eager on approaching the cupolas ranges from least metamorphosed green argillite and siltstones with some interbedded carbonate to grey, massive siltstones with increased iron sulphide to a darker grey, spotted hornfels containing pyrrhotite.

The mapping is first pass and lacks sufficient detail for evaluation. Structural detail is lacking. Significant faults have not been noted nor are they implied by the geology to date.

da

10.00

GAR-LOV PROPERTY

SOIL GEOCHEMISTRY

Two large areas were grid soil sampled on the Gar-Lov property in 2005. Location of soil lines and sample locations are shown in Figures D-5 and D-6. Lines and sample locations were determined by using a hand-held GPS unit; lines were run using a hip-chain and compass. Samples were generally collected at 50 meter spacings; initially 100m spaced samples were analyzed and subsequently, in areas of higher gold values, the intermediate 50m samples were analyzed.

A total of 1367 of the soil samples collected were analyzed; soils were taken from the B Horizon at an approximate depth of 15 cm, placed in Kraft paper bags, dried and shipped to Acme Analytical Laboratories Ltd. at 852 East Hastings Street, Vancouver, B.C., where they were analyzed for a 30 element ICP package and geochemical gold by standard analytical techniques. Soil lines and sample locations are shown on Figures D-5 and D-6 with gold values in ppb. Complete geochemical analyses are provided in Appendix D-1.

Results; LOV PROPERTY

Widespread moderate to more strongly anomalous gold, up to 168.3 ppb, is present on the Lov Grid (Fig. D-5). Higher gold values occur with the central, western occurrence of intrusion (see also Fig. D-1).

Moderately strong gold values (up to just above 100 ppb) tend to occur peripheral to the northern and southern intrusion occurrences.

Geologic understanding of the property is at an early stage and the widespread anomalous gold warrants considerable detailed follow-up work which should include additional close-spaced soil sampling to delineate individual anomalies. Further prospecting, geologic mapping and rock geochemistry should be done using the higher gold-in-soil anomalies as a focus. An Induced Polarization geophysical survey should also be considered as an exploration tool to define areas of disseminated sulfides.

Results; GAR PROPERTY

Three separate soil grids have been completed on the Gar property (Fig. D-6). Most of the central grid was previously sampled.

The northern grid (Lines 0N to 3200N) shows a narrow northeast-striking gold anomaly with values up to 70.2 ppb Au on the east side of a NNE-striking tributary drainage of Angus Creek. This anomaly coincides with a small granitic intrusion exposed between the Angus Creek and Grassy Mountain intrusions (Fig. D-3). The NNE trend of the anomaly suggests a NNE structural control.

The central soil grid covers most of the Grassy Mountain stock. It shows a fairly strong continuation of the northeast anomaly defined within the northern soil grid; gold values range up to 195 ppb. A few, more isolated, moderate anomalous values are also present.

The south grid covers a small granitic intrusion, the "GM" stock. Moderate gold values, up to 86 ppb, are present in the immediate vicinity of the intrusion. Weaker to moderate anomalous values are also present within the host stratigraphy peripheral to the intrusion.

CONCLUSIONS

Soil geochemistry surveys over large parts of the Lov and Gar properties have defined widespread anomalous gold. Although line spacings for these reconnaissance soil surveys are up to 300 meters, some northeast trends are evident. Anomalous gold is associated both with granitic intrusions and with surrounding host stratigraphy.

Based on the soil survey results, considerable further work is warranted and should include additional detailed soil sampling near areas of known gold-in-soil anomalies to better delineate these anomalies. Further prospecting, geologic mapping and rock geochemistry should also be done and ground geophysics such as Induced Polarization should be considered as well.

							207	- 23	9 -	12th	Ave	Ś.W	<u> </u>	algar	'y Al	B T2R	1#6	S	udat	ttec	l by:	R.	Tron	sgar	- -									
SAMPLE#	Мо ррті	Cu ppm				Ni ppm										Sb ppm						Cr ppm		8а ррт		B ppm					-			Ga S ppm pp
G-1 Al L1600N 1850E Al L1600N 1950E Al L1600N 2050E Al L1600N 2150E	2.7 1.8 4.0	3.7 17.0	6.7 10.0 25.5	28 19 53	<.1 <.1 <.1 }	6.4 2.9 0.6	3.3 1.4 6.3	97 46 286	1.49 .92 1.67	1.0 .7 1.9	.8 7 1.3	1.9 3.8 2.0	94.1 33.0 2.2	9 7 14	.1 .1 .1	.1 <.1 .1	.7 .6 .7	20 16 29	.22 .13 .46	.018 .010 .033	15 12 13	11,1 6.4 14.6	.52 .18 .60	45 43 81	.087 .067 .073	<1 1 1	1.29 1.21 2.05	.007 .012 .016	.05 .04 .08	.5 .1 .4	02 1 03 03 1	.1 . .9 . .5 .	l<.05 l<.05 l<.05	5 <, 5 <. 6 <. 8 <. 11 .
A1 L1600N 2250E A1 L1400N 1850E A1 L1400N 1950E A1 L1400N 2050E A1 L1400N 2050E A1 L1400N 2150E	1.0 .6 1.8		8.3 6.7 31.8	24 18 61	<.1 <.1 .2	4.8 2.6 7.5	2.4 .9 4.3	58 52 147	2.54 .67 1.71	3.4 <.5 4.8	.9 .5 7.1	1.1 1.2 .9	3.5 2.1 2.5	6 6 17	.1 .1 .2	.1 .1 .2	.4 .4 .8	37 13 26	.08 .11 .86	.113 .017 .042	6 16 11	11.7 6.2 13.1	.21 .16 .39	27 33 63	.155 .060 .083	<1 3 <1 3 2 2	3.07 1.07 2.67	.015 .007 .022	.03 .03 .06	.3 .1 .3	.08 1 .03 .07 1	.4 .1 .6 .1 .8 .2	.<.05 .<.05 .<.05	10 <. 13 <. 5 <. 7 10
AI L1400N 2350E AI L1400N 2450E AI L1200N 1450E AI L1200N 1550E AI L1200N 1650E AI L1200N 1650E	.8 3.8 2.8	13.8 39.1 16.6	14.4 10.3 6.8	48 49 58	.1 <.1] <.1]	9.1 2.0 3.1	4.7 6.9 7.5	97 415 225	2.01 1.75 2.04	3.6 1.9 1.3	.7 3.4 3.1	}. }. ; >	34.5 3.9 4.0	6 14 13	.2 .1 .1	.2 .1 .1	.4 .8 .7	28 30 26	.09 .33 .36	.047 .024 .028	7 16 16	14.3 23.0 21.2	.54 1.11 1.14	49 68 66	.120 .143 .095	<1 3 1 2 <1 2	3.41 2.88 2.47	.013 .023 .017	.06 .09 : .12	.2. 1.1.	08 1 03 2 03 2	.9 .1 .6 .2 .3 .2	<.05 <.05 <.05	12 <. 10 <. 11 <. 9 <. 12 <.
A1 L1200N 1750E RE A1 L1200N 1750E A1 L1200N 1850E A1 L1200N 1950E A1 L1200N 2050E	1.1 12.6 3.9	15.8	6.7 54.0 16.8	29 61 125	<.1 .2 <.1 1	7.5 8.3 0.1	4.6 8.5 3.5	145 451 185	1.67 1.58	.6 1.2 9	1.2 1.1 1.9	1.4 <.5	4.4 2.8 2.7	13 12 24	<.1 .3 .2	.1 .1 .1	.6 .8 .2	15 26 29	. 25 . 16 . 68	.026 .034 .030	19 18 7	11.3 14.0 24.0	.65 .63 1.54	42 68 50	.064 .090 .145	<1 1 1 1 1 2	1.18 1.70 2.21	.008 .013 .031	.07 .07 .13	.4 . .3 . .2 .	02 1. 04 1. 02 2.	.2 .1 .5 .1 .8 .2	<.05 <.05 <.05	5 <. 4 <. 8 <. 11 <. 12 <.
AI L1200N 2150E AI L1000N 1450E AI L1000N 1550E AI L1000N 1650E AI L1000N 1750E	1.1 1.0 7.3	16.6 8.6 5.6 4.0 165.3	16.1 6.6 20.3	79 50 13	<.1 <.1	9.4 8.1 1.6	8.3 3.8 .6	609 107 : 27	1.61 2.15 .59	1.1 2.4 .8	.7 .6 .6	.7 <.5 <.5	2.2	12 8 9	.1 .1 .2	.1 .1 .1	.9 .6 3.4	31 36 17	.23 .21 .06	.034 .034 .014	14 16 14	15.1 15.5 3.9	.63 .67 .07	79 49 42	.104 .128 .098	<1 2 <1 1 <1	2.24 1.44 .59	015 009 013	.10 .08 .04	.3. .4.	03 1. 03 1. 02 .	.7 .2 5 .1 .6 .1	<.05 <.05 <.05	10 < . 9 < . 11 < . 8 < . 7
AI L1000N 1850E AI L1000N 1950E AI L1000N 2050E AI L1000N 2150E AI L1000N 2150E AI L800N 1350E	5.0 8.9 .5	30.6 14.1	80.9 42.1 14.5	156 166 117	< 1 2 < 1 1 < 1 1	0.2 1.8 3.9	11.9 6.8 7.5	529 262 188	2.49 2.30 1.71	2.3 2.2 1.4	1.4 1.4 .8	5.4 64.9 <.5	75 54 54	24 23 13	.2 .2 .1	.2 .2 .1	2.1 2.6 1.0	30 32 28	. 29 . 28 . 22	.036 .033 .022	16 14 16	23.7 19.4 22.9	1.48 1.16 1.34	143 61 51	.145 .139 .139	$12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\$	2.88 2.41 2.60	012 010 007	. 15 . 08 . 07	.4 .6 .3	02 2. 03 2. 02 2.	9 .2 6 .2 9 .2	<.05 <.05 <.05	6 < 1 9 < 1 10 < 1 9 < 1 13 < 1
AI LBOON 1550E AI LBOON 1650E AI LBOON 1750E AI LBOON 1850E AI LBOON 1950E	23.0 128.9	32.7 62.7	299.2 624.6	47 89	.6 1.3	8.2 9.3	3.5 5.8	123 . 509 2	1.95 2.95	5.2 11.7	4.2 9.0	4.7 33.0	6.7 8.6	19 37 -	.1 <.1 :	.5 16.2 ·	8.0 44.6	27 22	.07 .08	.033 .075	17 18	11.0 9.3	. 35 . 34	95 106	.100 .066	22	2.02 2.51	.018 .021	.09 .10 2	2.6.	05 1. 10 1.	7 2	<.05 .09	8 < 9 9 < 9 7 8 8 < 9
STANDARD DS6	11.5	123.8	29.5	143	.3 2	5.4 1	11.2	706 2	2.85	21.2	6.6	45.9	3.1	41	6.2	3.5	5.0	58	. 88	080	14 1	85 4	. 59	166	.081	16 1	. 92	. 074	. 16 🗧	3.4.	23 3.	4 1.7	<.05	64.3
GROUP 1DX - 15.0 (>) CONCENTRATION - SAMPLE TYPE: SO	N EXCEE	DS UP	PER L	IMIT	s.	SOME	MIN	ERAL	S MA	Y BE	PART	IAL	Y AT	TACK	CED.		RACT	ORY	AND									LUBI	LITY		MBLA	5	5 1 6	70

- -

. 35.12

Page 2

ACME ANALYTICAL															ACHE ANALYTICAL
SAMPLE#	Μο Οι		g Ni Co m ppm ppm				Sr Cđ Sb E ppm ppm ppm pp			La (ppm op		Ti B A %iddmi		K W Hg Sc Tl % ppm ppm ppm ppm	
A1 L600N 1050E A1 L600N 1150E	.7 3.5 4.1 18.0	7 3.4 45 <. 7 6.4 16 <. 5 5.3 34 <. 7 22.6 45	1 4.1 4.6 1 6.7 2.1 1 8.8 4.5 2 9.7 2.7	543 2.03 54 2.12 122 2.13 90 1.37	<.5 2.1 2.0 1.0 1.5 .6 1.7 2.0	<.5 4.0 2.5 7.1 <.5 5.4 <.5 1.0	59 < 1 < 1 4 < 1 .2 1 3 .1 .1	1 38 1 25 4 18 6 25	.57 .080 .01 .027 .04 .020 .34 .032	9 7. 21 7. 23 9. 12 12.	2 .61 196 . 7 .32 42 . 5 .46 31 . 7 .39 59 .	120 2 1.0 059 1 .9 050 1 1.1 106 1 1.7	5 .073 7 .004 1 .002 7 .015	.45 .1<.01 2.2 .3	10 5 <.5 10 6 <.5 .06 5 <.5 .08 14 <.5
A1 L600N 1450E A1 L600N 1650E 1 A1 L600N 1750E	5.2 25.3 8.9 4.2 2.1 3.7	3 53.5 106 . 2 5.7 30 <. 7 4.9 52 <.	2 10.4 5.3 1 5.7 2.7 1 12.6 5.9	780 1.25 88 1.61 243 2.31	3.2 25.7 1.5 1.0 1.1 1.3	3.4 .3 <.5 8.7 <.5 8.3	2 <.I .1 3. 5 <.1 .1 3.	5 17 1 7 19 0 20	.07 .137 .02 .029 .03 .032	17 18. 25 7. 20 10.	0 .67 119 . 2 .22 42 . 4 .39 55 .	031 3 2.1 078 1 1.1 083 1 1.6	1 .014 9 .006 1 .006	.08 .2 .07 1.9 .2 .09 .6 .16 1.0 .3 .08 .1 .03 .9 .2 .14 .1 .04 1.1 .3 .17 .1 .03 1.1 .3	.19 5 2.4 <.05 6 <.5 <.05 6 .5
A1 L400N 850E A1 L400N 950E 1 A1 L400N 1050E	7.3 28.7 2.2 17.5 3.3 6.6	i 28.9 80 <. i 6.7 14 .	1 18.7 12.4 1 12.5 7.5 1 3.4 1.4	674 2.97 252 2.31 29 1.55	7.5 5.8 1.5 4.1 2.1 .9	<.5 5.8 <.5 5.5 <.5 2.9	11 .2 .2 . 14 .1 .1 . 4 .1 .1 .	8 47 3 22 2 23	.29 .059 .17 .027 .03 .030	14 25. 17 16. 5 6.	2 1.55 82 . 5 1.11 103 . 9 .08 28 .	149 2 4.0 110 <1 2.2 084 1 3.2	4 .013 4 .008 3 .016	.04 .1 .07 1.8 .2 .09 .9 .05 3.6 .2 .15 .3 .04 2.3 .1 .02 .1 .08 1.5 .1 .09 .1 .03 .7 .2	<.05 14 .6 <.05 7 .6 <.05 9 <.5
A1 L400N 1350E 1 A1 L400N 1450E 1 A1 L400N 1550E	.6.6 3.8 7.4 3.2	2 4.1 11 <. 3 33.9 19 <. 2 39.1 14 <.	1 7.3 3.7 1 5.9 2.9 1 6.9 4.2	37 .74 104 1.08 38 .83	<.5 1.0 .8 1.6 .9 .9	<.57.1 <.54.0 57.67.0		5 10 9 8 7 15	.01 .008 .01 .026 .01 .010	24 5. 23 5. 31 4.	2 .33 16 . 6 .31 25 . 9 .25 23 .	058 2 .5 038 <1 .8 070 1 .6	7.004 3.004 1.003	.07 .2 .12 1.8 .2 .15 .1 .02 .5 .2 .09 .4 .02 .5 .2 .09 .3 .01 .5 .1 .03 .2 .13 2.2 .1	<.05 3 <.5 <.05 4 <.5 <.05 5 <.5
A1 L200N 550E A1 L200N 650E A1 L200N 750E	4.7 26.3 3.2 33.5 2.9 31.6		1 15.0 9.5 3 8.7 4.6 1 12.7 6.7	1520 2.22 895 2.60 772 2.36	1.9 1.9 2.7 1.5 1.5 1.4	.6 2.7 4.4 2.6 3.5 2.8	30 .2 .1 . 11 .2 .8	3 34 3 16 4 35	.51 .060 .20 .097 .11 .079	16 21 22 12 15 21		106 3 3.0 014 2 1.6 122 2 2.7	5 .013 2 .003 9 .010	10 .8 .02 3.1 .1 .17 .4 .03 2.4 .2 .08 .2 .06 1.3 .1 .31 .2 .04 3.2 .3 .05 .3 .06 2.1 .1	<.05 12 .6 <.05 5 .5 <.05 11 <.5
A1 L200N 1050E 1 A1 L200N 1150E A1 L0N 450E	7.7 20.5 9.1 3.2 3.9 14.7	10.7 65 <. 5.7 31 <. 6.4 64 <.	1 13.9 9.0 1 6.1 2.9 1 11.7 5.7	509 2.51 116 2.08 273 1.90	2.1 2.0 1.8 1.8 2.4 1.3	1.5 8.3 .9 9.4 1.9 6.2	21 .1 .1 .	2 25 4 17 2 27	.05 .054 .01 .025 .32 .048	22 16. 25 9. 19 18.	91.03 76.	108 1 1.8 069 <1 1.4 110 2 2.6	5 .008 9 .004 6 .007	34 .1 .05 3.1 .3 36 .1 .03 2.0 .4 .08 .1 .05 1.0 .2 .10 .3 .92 2.4 .1 .26 .2 .04 2.8 .2	<.05 7 .5 <.05 5 <.5 <.05 10 <.5
A1 LON 750E 2 A1 LON 850E 1 A1 LON 950E	25.5 22.9 7.8 9.0	328.2 28 . 21.8 32 . 56.3 72 .	8 4.5 2.3 1 4.9 3.2 2 8.1 4.3	162 2.08 302 2.25 182 2.72	3.0 3.2 4.5 8.5 4.5 1.4	3.4 5.2 <.5 6.9 2.4 6.6		536 930 348	.09 .066 .10 .090 .09 .086	11 7. 14 6. 10 11.	2 .17 62 . 8 .25 81 . 8 .25 96 .	121 2 2.6 096 2 2.0 135 2 3.6	5 .017 5 .014 9 .016 .	16 .2 .05 2.0 .2 07 .7 .10 2.2 .2 .14 .2 .12 2.1 .2 .09 .2 .06 2.8 .2 .06 .2 .04 1.4 .1	<.05 11 .6 <.05 8 6 <.05 12 <.5
STANDARD DS6 1	1.6 119.8	29.8 143	3 24.8 10.5	717 2.88	21.7 6.8	48.1 3.2	41 6.2 3.6 5.	1 55	.88 .080	15 161.	3 .59 168 .	083 20 1.9	3 . 078 .	17 3.4 .24 3.4 1.8	<.05 7 4.4

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

1

Ruby Red Resources Inc. FILE # A600275

Data_/-FA

Page 3

ALME ANALYTICAL																																A.	PE ANALYT	
SAMPLE#	Мо	Cu	Pb) Zn	Aq	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb 8i	۷	Ca	Ρ	La	Cr	Mq	Ва	Ti	В	A1	Na	K	W }	lg Sc	TI	S G	ia Se	
	ppm						ppm									om pom			2	ppm	ppm	2	DDm	ž						on don				
			E I.	+ F	F.F.		r r		· · · · ·				1º 1º	<u> </u>		F FF	F 1			FF ··		- 1						· · ·	F FI		111	· //	- P#	
G-1	.1	1.5	3.2	2 42	<.1	3.9	3.9	527	1.84	<.5	2.0	<.5	3.4	62	<.1 <	.1 .1	36	.50	.072	9	7.9	.56	194	. 114	1	.98	. 075	. 48	.1<.(01 1.9	.3.	08	5 < 5	
A2 L250N 1200E																.1 .6																		
A2 L250N 1300E																.1 .3																		
A2 L25DN 1400E																.2 .3																		
A2 L250N 1500E	.5															.1 .4																		
			<i></i>	<i>v</i> ′		10.1	.		1.00	1.0	1.0		0.0	Ť	• •		+0		. 100	-4	10.0		.01							10 1.0	• • •			
A2 L250N 1600E	.6	6.8	11.7	41	< 1	14.5	6.5	450	1.85	1.8	я	1.7	4 1	5	1	.25	25	.04	.030	20	17 8	33 1	170	059	11	.86	008	.11	2 (03 1.4	1<	05	8 < 5	I
A2 L250N 1700E		5.6														.2 .5																		
A2 L250N 1800E		8.6														.2 .7																		
A2 L250N 1900E																.2 .5																		I
A2 L250N 2000E		2.9											5.5			.14																		
AL LEUVIL LUVUL	.+	2.3	4.1	ψ٩	^. г	5.5	7.1	50	1.01	T .T	. –	7.3	J.J	2	.1	+	11	. 02	.019	70	10.4	.70	50		.1 1	.00				JL .U		vu	3	1
A2 L250N 2070-2100E	я	16-1	12.6	67	< 1	12.8	70	1055	2 36	42	23	4 1	6.5	10	2	.2.4	32	14	202	15	12 7	25_1	110	129	14	.81	015	06	2 (18 2.3	1<	05 1	3 9	i
A2 L250N 2200E																.2 .6																		I
A2 L250N 2300E	7	56.7	20 1	106	1	17 9	10.5	951	2 7R	1.8	11	10 0	50	5	1	.3 2.7	18	12	060	27	18.7	1 86 1	160	027	22	82	007	15	2 1	14 2 0	2<	05	8 6	1
A2 L250N 2400E	1 4	20.7	15 9	1 97	1	20.2	20.7	222	3 70	2.6	7	3.0	5.0	4	1	.3 1.2	20	04	125	30	29.6	1 97 1	160	014	23	58	006	21	1 (1231	2<	05 1	2 < 5	
L L4300N QE	- 2 4	45 0	27 9	7 92	~1	29.2	17.3	1173	<u> 4 AR</u>	18.3	22	< 5	24	Ā	1	.5 .5	30	02	166	32	37 5	69	44	028	12	22	007	<u>na</u>	1 (1319	2	07 1	010	
2 2 700011 82	0.1	10.0					17.0	11,0	1.00	10.0	E.E		6	Ū	•	.0 .0	00		.100	0L	0,.0	.05			1							· ·	• 1.0	ŀ
L L4300N 100E	2.4	33.2	22.0	78	.3	39.4	13.4	536	3.98	16.6	1.6	1.1	4.7	6	.1	.5.5	26	03	080	18	30.8	.65	38	041	12	.24	007	05	.2.0	04 1.7	1<	05	8 8	ł
L L4300N 200E		29.5														.3 .4																		
L L4300N 300E																4 4																		ľ
L L4300N 400E																.2 .5																		1
L L4300N 500E																.3 .3																		I
L L4300N 600E	10.0	38.1	20.3	108	<.1	31.7	10.7	439	8.01	21.4	1.2	2.2	8.1	9	.1	.5.7	47	.05	.076	23	42.3	. 57	51	062	12	.45	800	12 1	.3.0	05 2.8	.2<.	05 1	1.9	
L L4300N 700E	13.8	26.3	19.7	91	.2	20.6	43.7	2569	3.79	7.0	2.5	5.3	2.6	17	.3	.2.5	42	.11	088	34	26.9	.42	78	089	22	.86	.012	.11 2	.3.0	04 2.8	.6<	05 1	1.9	1
L L4300N 800E																.5 .5									11	.43	.010	05	.6.0	6 1.6	.1<.	05 1	1.6	
L L4300N 900E																.3 .6)4 1.8				
L L4300N 1000E	8.9	11.2	22.3	50	1	15.8	8.0	197	2.93	5.2	2.3	1.1	1.5	12	.3	.3 .4	28	.08	032	16	20.2	. 35	72	056										۱
					. 2																		_							_				ļ
L L4300N 1100E	30.0	12.6	25.1	91	.2	16.5	11.0	1025	3.00	6.7	22.6	1.6	1.2	45	.3	.5.6	32	. 17	.055	24	17.5	.25 1	38	071	22	.29	. 024	.06	.7.0	6 1.7	.1<.	05 1	3 1.2	
L L4300N 1200E	39.7	23.6	22.5	80	.3	28.8	27.9	1642	3.55	8.1	2.2	1.1	1.2	18	.2	.3 .6	30	.16	.063	23	27.1	. 42	65	037	22	. 31 .	. 014	.07	.8.0	61.6	. 2< .1	05	9.8	- 1
L L4300N 1300E	4.5	19.6	14.0	50	.1	15.8	7.1	193	3.98	4.8	1.0	1.6	4.2	7	.2	.2.5	44	.04	.044	16	23.9	.27	40	107	22	. 57	.014	.05	4.(07 2.3	.1<.	05 1	4.6	1
	16.9	27.7	20.2	143	.2	29.8	19.8	1336	5.26	24.4	. 9	1000	3.5	26	.1	.3 1.5	52	.15	.097	11	31.9	. 39-1	801	118	Ζ3	.03	015	.08.2	.3.0	06 2.7	.3<	05 1	5.7	
																.4 1.2																		
RE 14300N 1500E	26.2	50.8	20.5	87	.2	31.2	11.9	315	7.81	14.2	1.7	4.9	12.4	11	.1	.4 1.2	41	.05	.086	21	44.3	.44	45	059	24	.06	.014	.08 2	.3.0	37 4.0	. 2< .(05 1	2.9	!
L L4300N 1600E	9.5	34.8	14.2	65	. Z	19.6	7.7	244	7.16	7.5	1.1	7.6	6.6	8	<.1	.4 1.1	46	.02	.065	18	28.6	. 20	33	067	21	. 99	. 010 .	.04 2	.0.0)6 2.1		05 1	1 7	
L L4050N DE	3.1	53.4	22.1	124	.1	43.8	27.9	1175	4.82	16.5	2.5	<.5	2.3	10	.2	.5.5	35	.03	. 17İ	35	35.5	. 68	55	031	22	.73	006	.09 `	1.0	4 2.1	. 2< .1	05 1	0 1.1	
L L4050N 100E																.4 .3																		
L L4050N 200E																.3 .4																		
STANDARD DS6	11.5	122.0	30.0	145	. 3	24.7	10.8	735	2.93	22.0	6.7	49.1	3.0	41	6.33	.6 5.2	56	. 89	. 081	15 I	83.6	.59 1	69	082	18 1	. 98 .	. 076 .	16 3	.4 .2	24 3.4	1.8<.0	05	74.5	
				-				,																		 •								

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Page 4

Data 🖊 FA

CHE ANALYTICAL											•							•										_				ME ANALYTICA
SAMPLE#	Mo ppm					Ni ppm	Co ppm	Min ppm	Fe %												Cr ppm	· · · ·							Hg So ppm ppi			
G-1	-	nin junij		9		ofer Carlos	an gaage	-		5 - SA - S				2. 1 . 1					1 178 8		NO725(60)	.		2 1) - 1 .			- 7 - 7					
L L4050N 300E L L4050N 400E L L4050N 500E L L4050N 600E	4,3 2.9	47.9 32.1 21.1	19. 12. 13.	885 577 349	<.1 .2 <.1	37.8 41.1 17.4	12.8 12.7 5.4	272 190 145	3.74 3.52 2.98	12.7 6.1	1.8 2.0 1.3	1.0 .9 1.0	6.5 5.9	15 10 7	.3 . .1 . .1 .	5.4 2.3 2.5	43 34 45	.09 .07 .10	144 141 089	12 6 5	26.1 20.0 19.5 10.2	.53 .42 .20	76 .13 54 .14 31 .14	39 15 15	4 5.02 2 6.44 1 4.86	010. 2 011. 4 011. 5	.09 .07 .03	.7 .4 1.0	.13 3.3 .11 3.6 .06 3.3	3.2 5.2 7.1<	08 1 06 1 05 1	1 1.5 0 1.3 0 .6
L L4050N 700E L L4050N 800E L L4050N 900E L L4050N 1000E L L4050N 1100E	31.6 28.0 8.4	80.9 83.5 21.2	32 24. 20.	0 66 2 84 0 65	.3 .4 .1	39.4 31.5 21.6	12.6 19.7 7.5	215 360 297	4.88 3.58 6.52	9.9 8.9 9.7	5.7 5.9 1.0	3.5 4.5 3.7	8.1 5.3 7.1	9 < 14 8	.1 . .1 . .2 .	4.5 4.4 5.7	33 26 40	.04 .08 .04	.080 .156 .049	15 24 16	31.4 27.8 17.3 38.0 20.4	.44 .28 .45	93 .08 39 .06 33 .06	39 58 51 <	1 4.14 2 5.55 1 2.09	4 .014 5 .013 9 .006	.10 .08 .05	2.2 1.7 1.6	.04 4.0 .09 3.1 .05 2.5) .2 L .1<. 5 .1<.	08 9 05 0 05 1	91.3 62.3 1.5
L L4050N 1200E L L4050N 1300E L L4050N 1400E L L4050N 1400E L L4050N 1500E L L4050N 1600E	6.7 70.0 115.4	21.1 94.7 64.7	15. 58. 33.	239 599 0120	.1 .4 .5	13.3 34.0 51.0	4.7 11.2 26.3	130 362 1833	5.63 15.30 7.39	8.9 165.0 47.4	.9 1.9 1.4	3.4 10*1 18:4	5.5 17.2 5.6	6 21 < 27	.3 . .1 1. .2 1.	5 .6 3 2.8 2 1.1	54 37 44	.02 .01 .09	.051 .175 .112	10 13 10	25.4 20.9 40.8 34.1 31.3	24 32 44	41 .08 32 .04 75 .08	98 < 41 85 ::	1 2.03 1 2.50 2 3.44	3 .005 .006 .007	.04 .07 .07	.5 2.5 7.4	.11 1.8 .06 3.2 .10 3.6] .1<. 2 .1 .) .2<.	05 14 09 9 05 10	4 .5 9 1.2 0 1.2
L L3800N 0E L L3800N 100E L L3800N 200E L L3800N 300E L L3800N 400E	7.7 9.7 19.6	26.0 31.7 49.4	13. 20. 32.	5 54 7 62 0 74	.1 .2 .2	13.2 19.0 17.7	4.1 6.0 7.2	213 214 295	4.35 5.52 6.00	5.0 17.8 25.2	1.1 1.2 1.2	1.3 4.0 5.7	6.8 8.8 9.3	9 6 6	.1 . .1 . .1 .	3.4 5.4 6.5	37 48 44	.03 . .03 . .02 .	086 069 098	7 9 11	38.1 23.4 32.9 31.0 23.4	31 9 .35 4 36 9	52 .09 14 .10 57 .09	99)1 53 <	1 4.33 1 3.47 1 2.17	010 .010 .007 .006	.05 .08 .09	.3 .9 1.1	.05 2.6	3 .1<. 7 .2<. 5 .1<.	05 10 05 11 05 8	1.9 8.7
L 13800N 500E L L3800N 600E L L3800N <u>200E</u> L L3800N 900E L L3800N 1000E	92.4 129-0 10.5	149.5 123.5 27.6	24 32 30	2 85 5 72 5 51	.2 .2 .5	36.2 35.8 16.1	14.6 16.1 9.2	487 640 395	14.54 14.94 4.06	22.5 20.0 12.0	3.9 3.9 1.4	5.8 3.9 3.8	18.4 14.1 5.7	12 < 34 < 6	.1 . .11.	7 .9 0 1.0 4 .7	63 53 49	.02 . .03 . .04 .	104 161 058	9 11 11	37.5 35.2 47.0 20.0 17.7	37 2 58 5 25 5	29 .06 52 .05 53 .05	5 < 2 : 6 :	1 3.26 2 2.83 1 2.59	5.007 5.012 9.008	.10 .25 .06	5.4 6.7 1.7	.08 4.6 .03 4.4 .10 2.5	5 .2 . 1 .3 . 5 .2<.	15 10 22 10 05 11	03.6 03.4 1.7
L L3800N 1100E L L3800N 1200E		50.7	13.	9 48	.3	18.1	8.2	282	8.58	35.7	1.6	5.0	8.3	5	.1.	6.7	45	.02 .	081	7	30.8	31	9.07	3	1 2.86	.006	.05	3.8	.12 2.8	3.1.	06 12	2 1 1
RE C CONTRACTOR 1300E L L3800N 1300E L L3800N 1400E	44.2	52.2	19.3	296	.1	39.9	22.0	1910	8.54	44.1	1.5	5.5	10.8	11	.1.	5 1.4	48	.04 .	129	14	30.3 . 27.8 .	32 (53 .08	85	1 2.52	. 006	.08	4.7	04 3.1	.2<.	05 10	9.0
E L3800N 1500E L L3800N 1600E L L3800N 1700E L L3800N 1765E L L3800N 1900E	2.9 10.5 3.9	21.6 70.9 74.7	15.4 27.1 17.1	4 98 0 135 5 143	.1 .2 .1	22.4 94.9 64.2	7.9 55.8 39.1	217 949 1177	3.86 6.13 6.91	6.7 13.7 5.8	1.3 2.0 1.9	3.8 92.1 26.7	5.4 11.0 11.0	6 31 40	.2 . .2 . .2 .	4 1.1 4 2.9 2 5.3	43 33 38	.04 . .11 . .11 .	089 086 106	8 39 29	17.2 . 22.8 . 38.9 . 47.8 . 9.0 .	28 4 62 7 65 6	13 .13 1 .04 5 .04	19 12 15	2 4.46 1 3.85 2 3.93	.009 .008 .010	.05 .06 .06	1.8 7.6 11.9	13 2.5 08 3.8 07 4.4) .1 . .1<. .2<.	06 14 05 11 05 12	4.9 1.8 21.0
standard ds6	11.7	121.5	29.0	5 143	.3	25.0	10.9	698	2.81	21.7	6.7	45.9	3.1	416	.13.	7 5.2	55	.86 .	080	13 1	. 83.9	58-16	8.07	8 1	5 1.90	.073	.15	3.5	23 3.2	1.8.	06 6	5 4.4

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

1

Ruby Red Resources Inc. FILE # A600275

Page 5

ACINE ANALYTICAL	ACHE ANALYTICAL
SAMPLE#	Mo Cu Pb Zn Ag. Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca. P La Cr Mg Ba Ti B Al Na K W Hg Sc Tl S Ga Se
	pom pom pom pom pom pom pom pom 2 pom pom pom pom pom pom pom pom 2 2 pom 2 pom 2 pom 2 2 2 pom pom pom pom pom 2 pom pom pom pom pom 2
	ti t
G-1	
L L3800N 2000E	2.0 26.4 16.8 120 .1 38.1 13.6 337 3.85 5.0 1.1 .7 8.7 6 .1 .2 .6 34 .04 .098 12 36.9 .55 46 .069 2 4.03 .007 .05 .7 .09 2.8 .1<05 10 .6
L L3800N 2100E	6.8 19.5 12.0 88 .3 32.2 11.7 257 4.18 5.5 .8 2.3 6.9 6 .1 .2 .9 36 .04 .055 12 35.3 .51 57 .040 1 3.01 .008 .06 2.1 .07 2.4 .1< .05 10 <.5
L L3800N 2200E	2.4 31.0 34.7 153 .1 87.8 18.9 312 3.80 5.6 1.7 .6 8.8 11 .1 .1 .7 34 .06 .122 54 29.8 .34 127 .080 1 4.88 .017 .06 .8 .05 3.5 .1<.05 12 .5
L L3800N 2300E	7.9 23.6 18.9 138 .1 56.0 20.9 339 4.32 9.8 1.1 .8 7.7 11 .1 .2 .9 31 .07 .147 18 40.8 .64 65 .041 1 3.86 .009 .09 3.5 .05 2.7 .1<0.5 9 .5
L L3800N 2400E	6.1 19.7 15.7 106 < 1 36.9 17.4 586 4.02 6.2 .8 4.2 6.7 12 .1 .2 1.0 33 .09 .077 15 33.8 .54 72 .051 1 3.13 .008 .09 2.6 .04 2.5 .1< .05 9 < .5
L L3600N DE	4.9 23.8 13.6 87 < 1 41.5 12.0 173 3.58 6.6 1.0 2.8 7.0 12 1 1 4 47 21 041 10 29.3 35 54 089 1 3.52 008 07 8 03 2.7 1<05 8 6
L L3600N 100E	53.4 49.1 19.3 109 .1 36.6 11.6 345 6.75 6.6 1.2 2.5 7.8 13 .1 .3 .6 43 .07 .094 9 33.0 .52 63 .089 2 4.56 .007 .08 .8 .10 3.3 .2<.05 12 1.4
L L3600N 200E	7.1 36.2 16.1 66 .3 19.4 6.0 186 4.52 10.3 1.3 2.3 7.5 7 .1 .4 .3 43 .04 .060 10 26.4 .25 45 .103 1 4.40 .008 .07 .6 .10 3.8 .1<0.5 10 .9
L L3600N 300E	10.1 38.9 33.2 107 .1 43.9 12.3 385 5.30 13.4 2.2 6.0 8.4 10 .1 .5 .7 48 .04 .098 17 37.0 .58 57 .058 1 3.02 .007 .10 2.1 .06 3.2 .2<.05 9 .9
L L3600N 400E	6.4 18.5 19.9 41 .2 9.4 4.1 238 5.31 8.6 .9 <.5 3.6 6 .2 .4 .6 79 .03 .062 9 29.8 .24 35 .140 1 2.38 .007 .07 .4 .08 2.7 .1<0.5 20 .8
L L3600N 500E	10.0 22.6 13.5 44 <.1 14.8 4.9 235 3.68 6.5 1.1 1.1 3.4 11 .1 .2 .4 34 .04 .088 6 17.7 .18 41 .099 1 3.81 .010 .05 1.0 .09 2.1 .1<05 11 .7
L L3600N 600E	15.8 23.8 14.2 47 .2 11.2 4.6 287 4.27 5.2 1.0 2.7 4.1 16 .2 .4 .4 43 .06 .076 6 19.2 .19 42 .126 1 2.69 .013 .07 .7 .11 2.0 .1<0.5 12 .5
L L3600N 700E	19.3 40.9 19.5 84 .3 44.3 14.0 273 3.90 12.0 2.3 2.2 7.7 15 .1 .2 .8 41 .05 .100 14 36.9 .48 90 .086 1 3.77 .007 .07 1.8 .04 2.8 .1<0.5 12 .6
L L3600N 800E	3.4 11.3 26.4 39 < 1 7.3 3.1 100 2.36 5.7 1.1 6.4 3.7 6 < 1 .3 .6 53 .02 .034 10 12.1 23 12.3 11.44 .010 .05 .5 .06 1.9 .1<05 13 < 5
2 200001 2002	
L 13600N 900E	16.5 28.8 40.9 69 .3 27.3 11.5 378 3.80 6.7 1.9 2.9 7.1 9 .1 .4 .6 48 .04 .056 18 35.1 .40 49 .061 1 1.72 .005 .10 2.1 .04 2.7 .2< .05 8 .5
L L3600N 1000E	25.4 33.0 84.3 127 .9 35.7 27.1 1713 4.07 23.0 3.1 6.0 6.8 11 1 62.5 37 07 093 14 18.2 26 177 069 2 2 69 007 09 1.2 06 2.6 2<05 8 .8
L L3600N 1100E	17.4 19.6 18.0 62 .3 14.5 6.9 588 3.47 8.6 .7 <.5 3.4 10 .2 .4 .4 42 .06 .066 5 15.7 .15 84 .170 1 2.92 .016 .04 .5 .06 1.7 .1<05 15 <.5
L L3600N 1200E	45.5 39.3 26.6 99 .2 37.6 12.1 588 6.11 22.5 2.8 3.2 2.9 11 <.1 .6 1.1 37 .07 .111 12 33.0 .45 74 .062 1 3.08 .008 .11 6.9 .10 2.6 .2 .06 12 .9
L L3600N 1300E	65.4 34.7 24.3 45 .4 17.5 45.9 1015 2.37 8.1 4.5 1.5 1.2 10 .2 .3 .8 23 .06 .115 37 12.8 .20 27 .066 2 3.17 .010 .07 2.5 .09 1.9 .1 .09 7 1.8
L 13600N 1400E	39.4 32.8 11.9 43 .5 23.8 8.0 221 5.98 25.6 1.1 2.0 7.0 8 < 1 .4 2.7 45 .04 .057 12 28.6 .35 46 .062 <1 3.15 .007 .06 3.7 .08 2.5 .2< .05 12 .5
L 13600N 1500E	14.5 31.2 14.1 39 .2 15.9 6.1 124 4.44 12.0 .9 1.3 3.6 7 .2 .5 3.0 47 .04 .075 11 17.0 .23 38 .145 1 2.59 .011 .05 .9 .13 2.1 .1<0.5 16 .6
RE	86~~2:3~33~5~34+2+150~+1~88+9-18+2~339-8+88~6+2+7~~~5~8+8~+14~~2~~12~~12~~37~31~06~126~53~28:9~34~2+7~200~7+9-120~200~7+9-120~200~7+0~12~~000~7+0~12~~000~7+0~12~~000~7+0~12~~000~7+0~12~~000~7+0~12~~000~7+0~12~~000~7+0~12~~000~7+0~12~~000~7+0~12~~000~7+0~12~~000~7+0~12~~000~7+0~12~~000~7+0~12~~000~7+0~12~~000~7+0~0~00~7+0~0~00~7+0~0~0~0~
L L3600N 1600E	6.8 22.9 28.6 38 1.4 16.4 5.5 120 4.41 6.8 1.0 1.0 4.5 10 .2 .5 1.0 36 .05 .064 5 23.2 .22 34 .121 1 4.60 .012 .04 3.6 .12 2.4 .1<0.5 13 .8
L 13600N 1700E	31.1 127.5 16.0 33 .1 23.0 9.0 219 8.05 13.8 2.1 5.8 11 .1 .3 1.6 35 .08 .159 18 32.4 .43 23 .062 1 3.96 .006 .09 7.1 .12 4.1 .1 .13 10 1.4
L L3600N 1800E	1.9 46.7 21.1 93 .1 38.1 38.7 2069 4.36 4.3 1.4 📷 🗱 3.0 26 .2 .3 3.5 32 .12 .134 14 39.2 .64 88 .048 1 3.31 .013 .13 6.0 .09 2.8 .4<.05 10 .6
L L3600N 1900E	3.2 89.9 28.0 135 <.1 132.4 48.6 906 4.82 4.7 2.5 5 1.4 24 .2 .3 7.4 29 .06 .150 147 42.1 .70 55 .032 1 3.23 .010 .05 9.8 .05 3.7 .1<.05 9 .8
L L3600N 2000E	2.3 20.7 12.3 50 <.1 36.6 8.5 251 4.14 3.8 .6 5.8 4.9 8 .1 .3 2.3 51 .02 .040 14 32.1 .38 25 .067 <1 1.89 .006 .03 2.5 .03 2.6 .1<05 13 <.5
L L3600N 2100E	3.1 40.1 25.7 111 <.1 42.3 28.1 1492 4.35 3.3 1.6 .8 9.1 14 .1 .2 1.0 37 .05 .087 89 36.3 .55 62 .063 1 2.90 .008 .06 1.7 .06 3.1 .1<0.5 10 .7
L L3600N 2200E	2.5 34.4 20.7 112 < 1 56.9 16.0 751 4.82 4.5 1.2 < 5 11.1 9 1 .1 8 24 .05 .090 40 41.2 .71 62 .015 <1 2.59 .007 .06 1.4 .04 2.4 .1<0.5 8 < 5
L L3600N 2300E	2.8 22.6 19.9 102 .1 38.9 14.0 571 4.82 3.8 .8 2.4 8.5 9 .1 .1 .8 24 .06 .068 25 39.6 .70 43 .013 1 2.49 .007 .05 1.2 .03 2.3 .1<.05 8 <.5
L L3600N 2400E	<u>3.5 19.3 21.1 82 < 1 36.0 13.3 362.6.20 4.8 9 8 9.6 10 1 2 8 29 09 053 14 40.2 55 43 032 1 2.44 009 05 1.1 05 2.0 1< 05 11 < 5</u>
L L3350N 0E	5.7 21.7 23.4 69 .2 19.6 5.5 378 4.12 9.0 1.4 3.0 4.2 13 .1 .3 .6 41 .05 .039 12 22.2 .31 27 .130 1 1.63 .012 .09 .7 .05 2.0 .1<05 12 .6
L L3350N 100E	9.3 25.3 14.5 52 .1 15.2 5.6 291 4.11 9.7 1.3 2.1 6.6 9 .2 .3 .4 34 .03 .066 7 22.3 19 36 106 1 4.40 .011 .05 .9 .08 2.8 .1<05 11 .5
L 13350N 200E	14.6 29.2 16.0 57 < 1 20.2 6.6 587 4.30 8.1 1.3 1.8 6.1 19 1 .4 .5 37 .04 .083 9 23.0 28 46 .099 1 3.64 .010 .08 1.9 .08 2.7 .2<.05 10 .8
STANDARD DS6	11.5 123.9 29.8 143 .3 25.4 10.6 707 2.84 21.7 6.6 46.0 3.1 41 6.1 3.6 5.1 55 .86 .078 15 183.6 .58 168 .080 17 1.89 .074 .16 3.5 .23 3.3 1.7<.05 7 4.5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

.11 0000

ACHE ANALYTICAL								R	lub	Y	Req	i :	Res	300	Irc	es	Ιn	lC.		F	ΙLΈ	5 #	: A	600)279	5							Ρā	age	26	•		ACME	ANALYTIC
SAMPLE#		Cu ppn											As pm p		Au ppb				J Sb	-					Cr ppm					A]				Hg ppr	Sc pom	T1 pom	S X	Ga	Se
																												422	×z.	- (1)	1.076	49		6.01	2.2	× ,	e (15)		 8795
L L3350N 300E L L3350N 400E L L3350N 500E L L3350N 600E	3.4 3.3	19.1 15.6 13.9 14.5	5 10 9 15	.0 .0	19 35	.2 .1	4.; 9.	21 93	6 1.9	83 102	2.3 2.9	04 53	1.5 1 1.2 1	.2 .1	1.8 2.0	3.9 3.9) 5) 9	.2	2.3	.2 .4	26 41	.03 .04	.073 .055	4 5	11.3 15.9	.07 .13	24 34	.108 .133	1	4.12 3.17	.010 .010	.02 .04	.5 .5	.10 .09	2.4 2.3	.1 .1 .1 .1	.06 <.05	10 13	.7 <.5
L L3350N 700E RE -L-1-3356N-709E -	12.6	32.4	12	.2	73	.3	19.! 20	55	.6	281 380-	3.3	1 4	.31	.2	1.4	4.3	20	.2	. 2	.4	38	.07	.096	7	27.9	. 35	53	. 119	2	4.89	.011	.07	1.6	. 09	3.6	.1<	<.05	12	.9
L L3350N 800E L L3350N 900E L L3350N 1000E	33.1 7.2	53.7 29.1 15.2	18 10	.5 .9	95 50	.2 .1	51. 14.:	616 26	.2	944 260	6.5 2.6	09 56	0.4-1 5.3-1	.9 .4	2.4 1.0	5.4 4.0	27	.2	4	.6 .3	48 32	.06 .05	.145 .115	10 7	37.8 15.9	.43 .26	52 33	.079 .096	2 1	3.42 4.09	.007	.11 .07	3.3 .4	.08 .10	3.0 2.5	.2< .1< .1	<.05 <.05	11 8	1.0 1.2
L L3350N 1100E L L3350N 1200E L L3350N 1300E L L3350N 1400E L L3350N 1500E	10.1	69.9 64.5 48.2 45.3 62.1	5 12 24 19	.8 .1 .0	49 40 51	.5 .5 .1	22.1 10.4 28.0	08 44 611	.1 .3 .6	363 248 431	14.4 10.4 6.3	530 917 78).7 1 7.8 1 3.3 1	.4 .7 .3	2.7 2.7 1.2	13.9 16.1 9.6	9 7 14	<.1 .2	.7 .5 .4	1.2 1.0 .8	55 46 39	.02 .03 .06	.158 .208 .109	8 11 13	26.0 30.8 32.6	. 16 . 22 . 39	20 38 61	.113 .076 .073	1 1 2	2.02 2.08 2.17 3.81 3.33	.005 .005 .008	.06 .04 .09	2.4 .8 1.5	.08 .11 .09	2.2 2.0 3.4	.1< .1≤ .1	<.05 <.05 .06	14 12 12	.7 .9 .8
L L3350N 1600E L L3350N 1700E L L3350N 1800E L L3350N 1900E L L3350N 2000E	12.4 10.0 3.2	64.6 58.5 53.0 52.4 28.8	95 17 19	.01 .73 .21	144 114 119 -	1.9 .1 <.1	44.1 67.1 59.1	B 21 9 36 7 25	.91 .11 .5	182 841 564	5.0 5.1 4.1	968 67 95	3.01 7.41 5.01	.1 .2 .5	974 1979 5.3	7.2 ¹ 7.5 8.0	15 13 9	.3 .1 .1	2.9	2.1 3.0 1.5	40 40 28	.07 .05 .06	.090 .088 .136	11 27 33	37.5 39.5 41.3	.54 .61 .74	80 77 63	.054 .058 .035	1 2 1	4.54 3.39 3.05 3.94 3.37	.005	.07 .09 .07	16.5 5.1 2.5	.09 .03 .10	2.7 3.1 3.2	.2< .2< .1<	<.05 <.05 <.05	11 10 8	.5 .5 .6
L L3350N 2100E L L3350N 2200E L L3350N 2300E L L3350N 2300E L L3350N 2400E L L3100N 0E	2.7 2.9 2.5	29.3 14.9 29.2 29.3 25.1	16 30 30	.8 .4 .8	94 · 69 86	<.1 .3 .2	25.4 35.1 35.1	4 10 0 18 1 19	.4 1 .6 .6	.039 351 244	3.7 4.1 3.4	3 4 7 2 6 5	1.0 1.6 3 1.3 2	.6 .4 .0	1.4 .9 3.1	4.6 2.8 11.4	11 28 13	.2 .2 .2	.2 .1 .2	.6 .7 .7	28 27 33	.14 .41 .08	.095 .060 .148	13 68 15	28.7 28.0 24.9	.50 .43 .41	83 55 96	.033 .034 .122	1 <1 2	2.16 2.92 5.57	.005 .010 .011	.06 .06 .07	1.1 1.0 1.0	.06 .06 .04	1.7 2.3 3.9	.1< .1 .1<	.05 .07 .05	9 · 11 12 ·	<.5 ,7 <.5 ₹
L L3100N 100E L L3100N 200E L L3100N 300E L L3100N 400E L L3100N 500E	13.1 7.1 25.9	15.1 31.2 23.0 69.5 62.3	18 17 37	.3 .4 .6 1	70 51 132	.2 .1 .1	26.8 13.8 63.8	87 84 827	.8 .8 .1 1	211 136 292	6.3 4.1 6.9	5 10 4 6 2 19	0.8 1 5.3 1 9.5 1	.1 .0 .9	5.7 2.6 3.1	7.5 6.0 9.3	16 10 34	.2 .1 .3	.4 .3 .5	.6 .7 .9	54 52 46	.03 .03 .14	.060 .053 .158	12 12 13	39.8 22.7 40.0	.44 .23 .53	52 33 85	.091 .126 .097	1 2 2	3.70 3.64 2.87 4.07 3.06	005 008 008	.09 .09 .15	1.0 .3 7.4	.10 .10 .03	3.6 2.6 4.0	.2< .2< .3<	. 05 . 05 . 05	15 15 - 11	-6 <.5 .6
L L3100N 600E L L3100N 700E L L3100N 80DE L L3100N 900E L L3100N 1090E	10.9 19.0 18.3	64.7 31.4 37.0 57.9 97.8	14 14 21	.61 .8 .41	138 · 92 121	<.1 .1 .1	33.8 46.9 57.3	8 15 9 13 1 14	.91 .8 .6	345 414 303	4.5 5.8 6.9	7 4 4 8 5 23	1.6 1.3 1 1.7 1	.8 .2 .8	1.4 1.4 2.7	5.3 7.8 11.4	32 29 70	.2	.2 .2 .3	.8 2.3 1.0	46 39 56	.20 .05 .07	.064 .108 .113	10 11 20	30.3 29.4 57.7	.44 .42 .59	162 75 110	.144 .082 .108	2 1 2	3.84 2.73 4.27 4.70 4.86	.014 .010 .014	.14 .12 .10	3.1 3.0 1.3	.05 .07 .06	3.2 2.9 4.7	.3< .3< .2<	:.05 :.05 :.05	13 · 11 · 11	<.5 <.5 .8
STANDARD DS6	11.3	119.0	29	.6 1	39	.3	24.5	5 10	.5	682	2.7	3 21	.4 6	.6	45.2	2.9	40	6.0	3.8	5.1	56	. 84	. 079	13	172.1	.57	164	. 079	16	1.88	.073	.16	3.6	.23	3.2	1.8<	. 05	64	.7

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 1 FA

AA

162.042

SAMPLE#	M	<u> </u>		7			<u> </u>							<u> </u>	<u></u>								<u></u>										ME ANALY
SAMPLE#	Мо ррт	си ррл		Zn ppm	-			Mn ppm								Sb Bri pm ppm					Cr ppm							К 26 р			T1 ppm		
G-1		10-11-						(. .	SARG		n ä						236		076	1	8 .6	6		3		70×1	75	49	- 1< 1	1 2 4	32	15	اللة الم
L L3100N 1100E	111.6	79.8																															7.2
L L3100N 1200E	79.5																																
L L3100N 1300E	111.4	62.4	21.9	77	.3 4	46.9	21.3	827	9.55	27.2	2.1	2.9	12.2	16	.2	.7 .9	53	.04	.143	18	36.5	,40	49 .(047	12.	84.0	07 .	07 28	.5.0	6 3.0	.1.	07 11	1.5
L L3100N 1400E	62.9	37.1	10.9	53	.2 :	24.0	9.2	375	6.91	11.5	1.1	4.5	8.3	9 <	.1	.4.7	53	.04	. 090	11	29.3	. 34	48 .(075	12.	90.0	07.1	07 1	.7.0	62.4	.2<.	05 13	8. 8
L L3100N 1500E	19.1																								2 5.3	25.0	09	06 1	.4 .0	9 2.8	. 2<	05 11	1.0
L L3100N 1600E	16.0																														. 2<.		
L L3100N 1700E																					41.1												
L L3100N 1800E	24.7	34.3	15.1	67	.2 4	41.1	14.3	318	5.74	18.2	1.0	4.3	9.0	12	.1	.4 1.1	48	. 05	. 090	15	45.2	. 62 (64.0]45	14.	06.0	07 .:	10 4	.2.0	83.2	.2<.	DS 11	. 8
L L3100N 1900E	9.9	21.1	16.8	72	.2.1	27.3	10.0	275	5.42	14.6	.8	4.6	7.1	8 <	.1	.5 1.0	52	.04	. 075	11	43.5	.43	49.(072	14.	49.0	06.1	08 2	.1.0	83.3	.2<.	05 13	5.7
L L3100N 2000E																					31.8									· •	.1<.		
L L3100N 2100E	2.8	16.5	12.1	85	<.1 2	28.2	9.6	323	4,75	4.3	.7	.6	7.9	6 <	.1	.3.7	- 38	.03	. 064	16	38.1	.60	47.(046							.l<.		
L L3100N 2200E	2.4	12.0	16.5	74	.1	18.8	8.6	397	3.12	3.3	.5	.8	3.6	7	.1	.2.6	37	.06	.044	10	20.6	.34 8	B1 .(080	11.						.1<.		
L L3100N 2300E																					33.0												
L L3100N 2400E	4.3	20.3	19.4	12		34.0	14.2	286	4.13	3.3	1.3	1.3	2.5	20	<u>.2</u>	.2 ./	21	.20	.050	31	31.7	. 51 (<u>. 69</u>	133	1 2.4	8 <u>4</u> ,U	10 .(<u> // 1</u>	.1.0	5 1.9	.1<.	<u>JS 10</u>	<.5
L L2850N 0E	17.2																																
L L2850N 100E	22.7																																
L L2850N 200E	11.4																																
L L2850N 300E	/19.4																																
RE-1-13100N-2300E	4.1	10.1	20.0		anti-Trad			a Sida a	2.522.2		ale cales		an hadin	es ny san	SCESS-1	ومراهدي		and the	к овн а:	a Tribuel	e de la compañía de La compañía de la comp	i de ci	Alimini	NS.	-TreNia	698. AU	09××*(10 trin F	400049	H CAR	97 - St. 9.34	95 - EL	≪95.
L L2850N 400E	24.6																																
L L2850N 500E	12.8																																
L L2850N 600E	19.6																														.1<		
L L2850N 700E																					16.0										.1 .1		
Ł L2850N 800E	147.8	91.8	16.7	50	.1 2	23.8	12.6	703	13.83	24.7	2.4	4.8	25.7	6 <	.1	.7 3.7	59	.02	. 316	17	43.5	.28 、	33 .0)23	1 2.0	01 .0	06.8)7 4	.8.0	2 3.4	.1 .1	10 9	2.3
	2 90.3																																
L L2850N 1100E	18.9																														.19		
L L2850N 1200E	83.6																														.1 .		
L L2850N 1300E	117.9																														.2 .		
L L2850N 1400E	38.3	35.4	15.1	45	.2 2	22.5	7.8	754	5.54	10.3	1.3	2.8	5.7	10	.2	5 1.2	50	.08	.242	13	39.5	.54 (51.0	183	2 3.1	15.0	11 .1	1/3	.0.0	9 3.5	.4	4 12	1.5
L L2850N 1500E	65.4																														.2 .0		
L L2850N 1600E	78.5																																
L L2850N 1700E	80.8																																
L L2850N 1800E	17.0																																
L L2850N 1900E	5.5	21.1	11.6	45	.21	16./	6.8	183	3.05	4.9	1.3	3.1	6.8	4	.1	2 4	28	.03	. 085	12	23.3	.28 3	33.0	192 <	4.5	52 .0.	11.0	14	.91I	U 2.5	.1.1	70 IQ	.9
STANDARD DS6	11.5 1	122.7	29.6	142	.3 2	24.8	10.7	711	2.86	21.3	6.6	46.9	3.0	40 6	.2 4	0 5 1	55	. 86	080	13 1	182.2	. 59-16	55.0	078 1	l6 1.9	92 .0	75 . 1	6 3	.6.2	4 3.3	1.8<.0)5 6	46

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

Page 8

ACHE ANALYTICAL				ACHE ANALY	TICAL
SAMPLE#	Mo Cu Pb Zn Ag	Ni Co Mn Fe As U Au	J Th Sr Cd Sb Bi V Ca P La	Cr Mg Ba Ti B Al Na K W Hg Sc Ti S Ga Se	
	המפ הפס הפס הסס			אסמ המסג האסמ העמ העמ העמי ג'ג'ג האסמ ג'יי העמי ג'יי העמי ג'יי אסמ איז איז אסמ ג'יי ג'יי איז געמי ג'יי ג'יי ג'י	
, / ²					
			2 99 61 84 54 54 99 93 MR	28.2-56-211-130 -1-1-12 1092-54	
L L2850N 2000E	11.4 20.9 13.4 75 1	39 2 13 7 461 4 64 5 7 8 2 3	3 5 8 9 1 2 8 31 06 044 18	37.3.71 67.025 2.2.96.009.07 1.4.06.2.3 .1.06 9 < 5	
L L2850N 2100E				25.6 .46 39 .052 1 2.43 .011 .06 1.1 .05 2.0 .1 .06 11 .6	
L L2850N 2200E	5.9 25 6 16.1 66 3	38,2,16,6, 305, 3,93, 3,6,1,7,3,2	26 12 2 1 7 27 10 061 41	31.1 .57 56 .029 1 3.36 .013 .07 1.3 .08 2.1 .1 .07 9 .7	
L L2850N 2300E	7.2 19 1 14 0 91 1 5	55 9 17 1 437 5 26 5 9 9 2 0) 55 17 $) 2 8 31 12 057 19$	41.5 .94 79 .019 <1 3.47 .008 .08 1.5 .03 2.4 .1<.05 9 <.5	
		00.5 IV.1 (0) 0.20 0.5 .9 E.0	. 5.5 th .1 .E .6 61 .12 .65, 17	41.3 (94 79 (019 1 0(4) (000 (00 11.5 (00 1)4 (14.55 9 (.5	
L L2850N 2400E	54 23 8 30 2 96 2 4	48 4 49 3 2137 4 34 3 5 1 5 1 0	1 1 0 4 0 4 2 1 1 31 43 115 40	31.4.59 98.025 1.3.39.014.08 1.0.07.1.5.2.10 9 < 5	
L L2600N DE		23.1 8.6 628 3.22 7.7 .9 4.4		17.5 .22 113 .137 2 3.42 .012 .06 1.2 .08 2.5 .1<.05 12 .5	
L L2600N 50E				15.6 .13 32 .131 2 6.51 .013 .03 1.3 .15 4.7 .1<.05 11 .9	
L L2600N 150E			8 .1 22 .3 1.3 1.1 43 .04 .150 15		
L L2600N 200E			8.2 16 < 1 1.8 1.2 52 .02 .065 9		
C C2000H 200E	13.4 30.0 22.0 33 .2 2	21.0 0.3 224 0.57 10.1 1.1 17.0	0.2 10 ~.1 1.0 1.2 02 .02 .000 9	30.1.30 44.053 1.3.01.007.07 .7.03.3.2 .25.03 12 .3	
L L2600N 300E	18 3 21 6 22 5 51 1 1	13 3 5 1 358 7 03 22 1 1 0 6 4	7.6 8 .1 .5 2.0 47 .02 .071 13	22.6 .31 67 .028 1 2.11 .005 .05 1.3 .05 2.0 .1<.05 11 .5	
L L2600N 400E				29.6 .22 28 .083 1 1.65 .005 .05 1.3 .07 1.8 .1<.05 13 .8	
L L2600N 500E			5 6.5 11 .1 .3 .5 35 .04 .115 9		
L L2600N 600E	22.5 25.4 15.0 50 .1 1	11.7 3.7 2.30 3.24 3.3 1.3 1.0 30 0 4 304 0 4 56 0 3 7 1 4		29.0 .30 30 .075 2 2.33 .006 .06 1.8 .09 2.0 .1 .09 12 1.3	
L L2600N 700E					
	.0 10.7 7.8 0 .1	3.8 1.8 54 1.75 2.9 .9 .0	5 2.0 3 .1 .1 .2 27 .02 .064 5		
L 12600N 800F	1 5 12 0 0 2 12 2	201016620020011	2.1 4 .1 .2 .5 33 .02 .059 5	8.6 .06 33 .097 1 2.06 .014 .02 .2 .07 1.5 .1<.05 10 .6	
RE L LZOUN BUGE		3.9 1.9 100 2.06 2.6 .6 1.1		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	
L L2600N 850E			6 8.2 16 .1 .4 1.4 66 .03 .096 14		
L 12600N 900E			3 6.7 12 .1 .6 1.1 81 .03 .096 13		
L L2600N 1000E				36.0 .17 22 .080 <1 2.25 .006 .03 3.3 .11 2.3 .1 .07 10 1.2	
L 620000 1000E	22.3 03.3 12.9 20 .2 1	12.2 4.4 100 12.99 12.0 2.7 2.9	2220 14 .1 .4 3.2 44 .03 .123 23	30.0 .17 22 .000 1 2.23 .000 .03 3.3 .11 2.3 .1 .07 10 1.2	
L L2600N 1100E	43.0 73.7 15.6 23 .2 1	12 4 3 6 127 11 59 5 7 2 6 3 4	₩₩₩₩ 9 <.1 .3 1.8 42 .03 .120 32	27.9.27 15.051 1.3.10.006.05 2.8.11.2.9 .1.19.10.1.7	
				32.3 .33 23 .039 2 3.40 .009 .06 1.5 .08 3.7 .1 .26 9 2.2	
L L2600N 1300E				18.8 .18 25 .123 1 2.92 .009 .04 1.4 .07 2.8 .1<05 15 .9	
L L2600N 1400E				38.5 .41 33 .098 1 3.03 .006 .09 3.7 .07 3.5 .2<.05 17 1.3	
L L2600N 1500E				37.2 .50 39 .081 1 3.95 .011 .10 4.4 .07 4.2 .2 .11 13 1.4	
C C2000# 1300E	50.0 45.3 10.5 42 .1 0	37.3 13.3 300 8.08 24.3 1.3 1.0	<i>3.7 23 .2 .4</i> 1.4 OU .20 .113 14	57.2.50 55.001 1.5.55.011.10 4.4.074.2 .4.11 151.4	
L L2600N 1600E	51 2 1 22 7 35 2 56 3 /	A4 6 27 3 670 12 05 69 5 3 2 4 5	1.1	40.3 .59 44 .061 <1 4.21 .010 .11 >100 .08 5.3 .2 .27 11 2.7	
L L2600N 1800E				38.8 .74 45 .072 1 2.69 .008 .07 2.9 .03 3.0 .1<.05 10 .9	
L L2600N 1900E				33.8 .52 41 .044 1 2.44 .006 .04 1.8 .07 2.2 .1<.05 11 .5	
L L2600N 2000E				34.8 .45 38 .066 <1 2.52 .007 .06 1.3 .06 2.1 .1<.05 13 .6	
L L2600N 2100E				36,4 .52 48 .048 <1 3.45 .009 .06 1.2 .09 2.4 .1<05 10 .5	
	5.6 19.2 11.9 54 .1 3	33.9 10.1 2/0 4.30 5.2 1.0 .9	9.7 0 .1 .2 .0 27 .04 .040 12	30.4 .52 40 .040 1 3.45 .003 .00 1.2 .03 2.4 .14.03 10 .5	
L L2600N 2200E	85 14 1 14 0 49 2 3	20 0 0 5 214 4 15 4 9 0 - 6	57 9 1 1 6 33 A7 A41 12	31.8 .47 54 .043 1 3.28 .008 .06 1.2 .09 2.2 .1 .06 10 .6	
L L2600N 2200E				31.8 .47 54 .043 1 3.28 .008 .08 1.2 .09 2.2 .1 .06 10 .6 34.9 .66 68 .028 1 2.94 .008 .09 1.2 .05 2.0 .1<.05 9 .9	
L L2600N 2400E	0.0 0.1 17.0 104 .1 5	26.2 04.0 1000 0.97 0.0 2.0 5.0 E1 E 07 E 1007 0 00 0 0 1 E 0	עניים 1,2 ע עניים 1,2 עניים 1,2 ע	26.9 .52 68 .049 <1 2.81 .009 .07 2.2 .07 2.2 .1 .06 8 .6	Į
L L2600N 2400E	<u>0.6 27.3 64.7 91 .3 5</u>		4.8 26 .2 .2 1.5 27 .28 .060 51 5 8.1 7 .1 .2 1.1 42 .04 .096 14	<u>26.9 52 68 049 <1 2.81 009 07 2.2 07 2.2 1 06 8 9</u> 17.3 28 134 120 1 3.62 011 06 6 07 3.1 .2<05 10 .8	
L L2300N DE				24.3 .32 64 .098 1 4.17 .011 .06 1.7 .07 3.2 .1 .07 10 1.1	4
L LZ300W IVUE	14.0 40.7 19.9 74 .1 4	40.0 15.1 505 5.99 8.4 2.0 1.1	. 11.1 1/ .1 .3 ./ 30 .04 .180 13	24.3 .32 04 .090 I 4.17 .0II .00 I.7 .07 3.2 .I .07 IU I.I	
STANDARD DS6	11 2 102 7 20 4 141 9 2	24 1 10 7 602 2 00 21 2 6 6 2	1 3 0 40 6 3 3 6 E 1 E7 OF 000 13 1	179.2 .58 166 .077 17 1.86 .074 .15 3.6 .24 3.2 1.8<.05 6 4.6	
STHINDARD 050	11.3 123.1 29.0 141 .3 2	24.1 10.7 093 2.00 21.2 0.0 48.3	3.0 40 6.2 3.6 5.1 57 .65 .080 13 1	1/3.2 .00 100 .0// 1/ 1.00 .0/4 .10 .0.24 0.2 1.05.05 0 4.0	
					1

Sample type: SOIL \$580 60C. Samples beginning 'RE' are Renuns and 'RRE' are Reject Renuns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

Sample#	Mo	Cu	, P	h 7	n L		1 i	Co	Min	Fe			1	۸	ጥሔ	C	0.4												.1					<u> </u>			
				~ ~		ig i		00	(11)		. ,	12 1	,	AU	⊥n.	21	Сa	Sb	Bi	V	Ca	Р	La	Cr	• Mg	Ba	11	R	AI	Na.	ĸ	W	i Hg_	SC	τι -	SGa	a '
	ррт	ррл	n pp	m pp	m pt	ym pl	om j	opm	ppm	8	(pp	n ppr	v t	фb	ppm	ppm	ppm p	opm p	pm p	ppm	z	z	ppm	ppa	1 %	ppm	z	ррт	X	2	2	ррл	ррл	ppm g	opm	t ppr	πp
				5.000						-	1		10 43	5 4 10		665	知 译词			- 10		076	-	- 1 0-7	(S. 19)	- 第二	6-15A	\$ * }*	1 M	- Core		284A	- AT	51 - V	ere b	2457	Seise
L L2300N 200E	17.7	43 7	74.	611	1989 7	1 35	7 2	9	371	7.70) (j	619	7	301×27 5	86	15	2	5.2	- 1 - 1	46	05 05	123	13	29 3	43	109	076		2 92	009	~~~~~~ 09	3.9	05	27	2 0	6 11	98294
L L2300N 300E																																			.1 .0		
L L2300N 400E																																			.2<.0		
L L2300N 500E	15.9																																				
L L2000 000L	13.9	70.5	, 1J.	5 0		1 51	0 10		552	11.00	11.	5 2.1	<i>42</i> 9	342 G	20.1	20	. 1	.4 4		57	. 04	105	2.1	39.0		40	. 027	1	0.21	.000	.00	24.0	.00	5.7	.1~.0.	J (
L 1.2300N 600E	18.0	112.0	3 19.	68	9 <.	1 56	5 19	3.3	618	13.07	14	6 3.9	5 742	st :	27.3	30	.1	.4 6	5.2	36	.04	195	24	43.7	.49	54	.032	<1	3.21	.009	.06	26.9	.06	4.6	.1 .1	5 9	9 I
L L2300N 700E	7.4	40.9	21.	27	0.	1 25	0 10).6	979	7.87	8.	5 1.9	5 22	7	11.1	19	.1	.5 3	1.5	47	.05	128	18	34.5	.40	57	.066	1	2.54	.009	.06	9.8	1.05	3.2	.1<.0	5 12	2
L L2300N 800E																																			.1 .0		
L L2300N 900E																																			.1 .19		
L L2300N 1000E																																			.1 .0		
E L20000 1000E	10.0	<i>,,</i> ,,		0 0	ч.	2 01		7.4	440	10,75	10	3 3.1	, (. 4 4	24.0	52	.5	. 5 6		42	.00.	010	20	-1.1		,0	. 004	т	0.1/	.014	.07	0.0	.04	4.0	.1.0	<i></i>	· •
L L2300N 1100E	45.5	97.4	36.	64	9.	2 21	2 (5.7	294	20.23	10	1 4.3	2 29	2	18.9	28	<.1	.6.5	.9	41	.03 .	503	33	67.0	. 34	24	.035	<1	2.61	.012	.04	35.5	.02	5.6	.1.4	J 13	32
L L2300N 1200E	120.1																																				
L L2300N 1300E																																			.1 .12		
RE L CZOON PHONE																																					
L L2300N 1400E		100.7	16.	59	8.	2 85.	8 73	3.8 3	311	9.58	3 22	8 2.7	50	96 P	11.8	40	.2	.5 4	.5	35	. 19	200	28	38.2	.53	40	.039	2	3.86	.008	.08	41.4	. 04	4.2	.1 .1:	3 9	€ 1
L L2300N 1500E	88.3	74.0		c	0	A 4E	2 10		214	7.00	21				10 2	20	1	6.0		A.C.	00	101	11	22.0	6.0	61	076	2	1 01	006	06	25.0	00	, ,	2~ 01	; 11	4 1
L L2300N 1600E	20.4																																				
L L2300N 1700E	59.7												5 1	.0	5.3	17	.2	.4 2	.5	48	.00.	134	12	3/./	.51	44	.064	1	3.23	.007	.00	20.0	.05	3.0	.1.0	- 10	. 1
L L2300N 1800E						1 27																													.1<.0		
L L2300N 1900E	16.2	18.1	10.	1 /	4 <.	1 42.	2 13	3.9	445	5.10	4.	1 1.1	1	.1	3.3	10 -	<.1	. 1	.6	25	.06 .	046	22	44.Z	. 87	62	.016	<1	2.92	.006	.09	1.6	.02	2.1	.1<.0	5 6	3
L L2300N 2000E	17.7	20.8	15	16	4	1 39	1.11	5	303	4 74	6	0 4	3 2	4	72	10	2	4 1	.3	31	09	043	17	38.6	.63	90	.027	1	2.77	.007	.11	4.8	.04	2.6	.1<.0	5 9	J
L L2300N 2050E +																																			.1<.0		
L L2300N 2100E																																			.1<.0		
L L2300N 2200E																																			.2<.0		
L L2300N 2300E	87	30.7	15	a a	ດ . ເ	2 30	6 16	5 Q	273	3 00	5	81		. د ح	1 Q	13	.1	21	7	30	. 0-7. กя	050	32	27 7	55	72	064	î	3.07	012		2.5	07	24	.2<.0	5 10	í
2 22000 2000	0.7		13,	<i>,</i> 0	υ.	2 03	0 10		275	0.50		0 1.1			4.5	10	. 2			50		0.00	04	<i>L1.1</i>		, 2	. 004	-	0.07		. 0 /	2.0				. 10	
L L2300N 2400E	6.0	17.7	19.	3 10	9	1 39.	9 26	5.0.3	468	4.11	8	4.8	3 <	.5	4.3	10	.1	.2 2	.0	31	05.	072	18	27.6	. 55	92	.056	1	2.12	.006	. 09	1.7	.03	1.8	.2<.05	5 10	<
L L2050N 0E																																			.1<.05		
L L2050N 100E	27.7	32.0	19.4	47	з.	1 29.	8 26	5.5 2	2622	4.28	3 12	4 2.2	2 通		.8	31	.2	.41	6	32	.47	142	29	27.5	. 41	52	.035	2	2.49	.010	. 08	12.3	. 07	1.5	.2.10) 10	1
L L2050N 200E	34.3																																				
L L2050N 300E	42.Z																																				
L 12060N 400F	26 0	40.7			c ,	1 20	E 27		000	6 75	1.10	· · ·		e	ΕŌ	16	1	с 0		47	67	110	25	.	47	٨F	002	1	2 69	010	00	15 4	D.4	77	7 M	. 17	
L L2050N 400E	26.8	40.3	22.	/ 8	o,≺.	1 39.	5 31	'.J	903	0.72	1U.	23.2	4	.5	5.9	10	.1	.5 2		42	. V/ . . 05	113	20	33.3	.4/	45	.092	1	3.00	.010	.09	10.4	.04	ა.I ე ი	.2.00	10	1 I }
L L2050N 500E	23.8	24.8	5 17.	/ 9	1.	1 24.	0 12	ć.5	8/3	4.94	11.	12.2	2	./	3.2	1.5	.2	.5 2		40	.05.	080	10	20.4	. 36	39	.088	1	2.00	.009	. 10	12.5	.05	4.6	.15.05	10	
L L2050N 600E	16.5																																				
L L2050N 700E	12.8	58.8	16.4	47	θ.	2 39.	213	3.7	519	1.75	16.	9 2.3	12	- 1	10.2	19	.2	.54	.9	43	.04 .	109	18	40.1	.40	38	.046	1	3.1/	.008	.05	21.0	.09	3.2	.1<.05	> 12	. 1
L L2050N 800E	5.5	29.4	12.0	04	6.	2 16.	6 5	5.5	357	4.28	7.	5 1.5	, 4	.4	5.4	11	.1	.4 2	.0	35	.04 .	123	12	23.5	.28	39	.083	2	3.23	.009	.05	7.0	.06	2.5	. 1<.05	5 Il	
standard DS6	11.3	120.0	29.3	3 14	ο.	3 24.	6 10).6	687	2.78	21	4 6.6	5 45	.4	3.0	41	6.1 4	1.1 5	5.1	55	. 85 .	079	13	176.9	. 57	166	.079	16	1.87	.074	.15	3.9	. 24	3.2 1	7<.05	5 6	;4

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data<u>/L</u>FA

CONTRACTOR AND AND AND AND AND AND

Page 10

ANALYTICAL											·																ACHE AN
SAMPLE#	Mo	Cu	Pb	Zn	Ag Ni	Со	Mn						d Sb Bi														
	ppm	ppm	ppm	ppm p	pon pon	1 ppm	ppm	2	ppm pp	m ppl	nqq c	ppm ppr	n ppm ppm	n bbw	2 2	ppm	ppm	% ppr	1 2	ора	* *	X	ppm	ppm p	opm pr	pm 🏌	ppm p
							566	1193	552	1990 F.T	147 4 -11		l s le ci		5 2 - MAG	Town Quer	88	6E20	1995-	21-0	3 082	56		្រាក	2-1-1-1		
L L2050N 900E		51.2	12.9	58	.1 27.2	2 10.5	412	7.28	7.8 2.	3 395	6 13.5	21	1.32.5	37	05 228	19	32.6	40 6	. 088	3 3 7	B 014	.07	7.8	.05 (3.6	1.10	111
L L2050N 1000E	14.6	33.6	12.7	52	.1 29.7	7.0	305	5.70	941	2 2	8.8	20 <	1 .2 1.8	44	05 078	14	34 4	45 42	081	329	0 007	05	5.8	05 2	29	1 06	13
L L2050N 1100E													1.31.5														
L L2050N 1200E													1.3.9														
L L20308 1200L	10.0	42.4	11.0	-4-4	-2 17.0	0.2	150	4.99	10.0 1.	3 3.6	5 0.0	10	1.3.5	40.	10 .051	10	22.0	.51 40	. 121	5 5.1	5 .010	.00	4.1	.15 3	3.0 .	.1 .07	14 1
L L2050N 1300E													1.42.9														
L L2050N 1400E											L 6.1	20 .4	4 .6 3.5	46.	08 .153	14	36.4	48 72	.071	2 2.7	8.007	.09	12.1	.03 2	2.8 .	.2 .09	12 1
L L2050N 1500E	47.0	62.9	13.7	63	.2 38.7	15.9	379	6.46	14.5.2.	0 32	78	20 < 1	1.32.3	38	08 136	14	28.8	44 49	6 092	239	4 007	08	21.3	.08.3	3.2	1 .12	11 1
L L2050N 1600E	318.9	131 2	15.4	47	.4 22.6	13 1	488	11 01	751	7 26			2 .6 2.8														
L L2050N 1700E													2.62.5														
- KO (\$00 -		00.4	20.0	10			000	0.07	20.7 1.	U 1.,	4.0	20 .4		07.	57 .100	10	00.4	-1 02	072	2 7.2	0.000	.00	16.1	.00 2			16 1
L L2050N 1900E		18 9	10 B	55	1 27 5	11 4	422	4 31	531	4 14	5 1 7	10 < 10	1.2.9	30	10 150	10	35.7	59 52	036	231	7 008	06	28	04 7	1 8	1 08	11.1
L L2050N 2000E	0.2	26.2	13 4	60 /	1 26 7	15 2	360	1 24	621	- <u>-</u>	7 10 0	10	1.11.0	20	15 .000 NE .000	22	AA 1	70 E4	0.000	222	C 000	00	2.0	03 1		20 05	- 11 - 1 - 0
L L2050N 2100E	11 0	10.2	11 1	- CC	1 26 6	10.2	220	9.24	4 1 1	7 2.1	2 20.3		2.1.9	20.	JJ .UJZ	22	99.1. 22.1	-70 -20 -EA -21	000	2 3.2	7 000	.03	2.1	.03 3).4 . 10	2 06	2
L L2050N 2200E																											
	9.0	31.2	17.2	03	.3 27.5	12.5	982	4.60	1.21.	5 1.	4.9	8	3.52.1	38.	04 .162	14	22.0.	29 50	. 102	22.3	4.009	.05	1.0		1.0.	.14,05	14
RE L 12050N 22006			are says	58 3 3 6899	*0~20* 0	8428 7	MOK	x4:00)	ANSO 383	Des C	1999 - 19 99	inin a nta di	#* U _2	1999 - 199 9 - 1990	4 311	- - ED	22.0	29.00	-80 1 08	· . Z · C . 4	a de la case	-100	~2:20	-1 -1-1 -1	is Freeze	1.00	94 0 407
L L2050N 2300E	12.5	43.3	19.4	68	.1 30.5	17.9	1191	5 31	561	8 18	3 5 7	15	1.34.4	26	04 184	21	32.0	49 61	028	2 2 2	0 009	06	3.3	.07 1	1.6	1 06	8
L L2050N 2400E													1 2 5														
L L1800N 0E	3.8	56.0	19.7	125	2 25 3	6.6	286	6 22	611		7 3	23	4 .3 3.6	35	13 111	7	26.5	33 43	109	233	3 010	05	34 7	08 2	26	1 09	10 1
L L1800N 100E													2.38.5														
L L1800N 200E	1.8	17 7	10 0	18	2 0 1	25	80	3 57	361	6 A 6	5 1 2	12 .1	1.21.4	36	16 197	5	18 2	18 20	130	2 / 10	011	.00 ЛЛ	6	10 2	28	1 .00	131
C C10000 200C	1.0	17.7	10.0	10	.0 9.1	2.5	00	5.57	3.0 1.	u 4	, 4.2	10	1. 4	. 00	35 .003	5	10.2	10 32	130	2 4.1.	.011	.04	.0	. 10 2		.1.02	10 1
L L1800N 300E	7.5	24.7	11.5	30	.2 14.1	5.1	161	3 78	481	2 12	1 35	37	1.21.4	33	16 154	8	23 5	32 86	068	3 3 3	2 010	09	.9	.11.3	3.0	2.10	10-1
L L1800N 400E													22.4														
L L1800N 500E													2.32.0														
					.2 32.0								2.32.0														
					.2 32.0	1.3. 3	430	4.01		4 3.1	1.3	14			JO .1U4	10	32.0.						10 0			.2.00	10 1
								7 40		0 0 0						11	00.0									1 11	10 0
								7.40		3 3.9	9 6.9		1 .7 5.0			11	29.8									1.11	10 2
L L1800N 750E	37.3	95.1	31.2	73	.3 25.4	11.2	337		46.5 2.			18 <	1.75.0	42 .	11 .140			43 46	. 089	2 3.2	9.011	.09	48.2	.07 3	3.8.		
L L1800N 700E L L1800N 750E L L1800N 800E L L1800N 900F	37.3 23.3	95.1 36.2	31.2 14.4	73 65	.3 25.4 .2 25.2	11.2	337 393	4.94	46.5 2. 25.9 1.	2 2.6	5 6.1	18 < 17	1.75.0 i.42.3	42 . 46 .	11 .140 06 .086	10	26.6.	43 46 41 56	.089	2 3.2	9 .011 2 .010	.09 .06	48.2 15.5	.07 3 .08 2	3.8 . 2.7 .	.2 .07	12 1
L L1800N 750E L L1800N 800E L L1800N 900E	37.3 23.3 28.4	95.1 36.2 28.8	31.2 14.4 15.1	73 65 52	.3 25.4 .2 25.2 .2 20.8	11.2 11.4 7.0	337 393 257	4.94 4.95	46.5 2. 25.9 1. 15.2 1.	22.6 11323	5 6.1 E 6.2	18 <.1 17 .1 19 .1	1 .7 5.0 1 .4 2.3 1 .3 2.5	42 . 46 . 37 .	11 .140 06 .086 05 .077	10 9	26.6 . 24.5 .	43 46 41 56 40 44	.089	2 3.29 2 3.33 1 3.39	9 .011 2 .010 5 .007	.09 .06 .05	48.2 15.5 13.7	.07 3 .08 2 .09 2	3.8 . 2.7 . 2.4 .	.2 .07 .2 .07	12 1 10 1
L L1800N 750E L L1800N 800E L L1800N 900E L L1800N 1000F	37.3 23.3 28.4 59.7	95.1 36.2 28.8 79.5	31.2 14.4 15.1 19.7	73 65 52 70	.3 25.4 .2 25.2 .2 20.8 .2 46.0	11.2 11.4 7.0 19.5	337 393 257 491	4.94 4.95 6.44	46.5 2. 25.9 1. 15.2 1. 31.3 2.	2 2.6 1 197 2 1.9	5 6.1 5 6.2 5 6.8	18 <.1 17 .1 19 .1 20 <.1	1 .7 5.0 1 .4 2.3 1 .3 2.5 1 .4 3.9	42 . 46 . 37 . 47 .	11 .140 06 .086 05 .077 06 .125	10 9 12	26.6 . 24.5 . 33.9 .	43 46 41 56 40 44 52 46	.089 .096 .074 .079	2 3.2 2 3.3 1 3.3 1 4.2	9.011 2.010 5.007 8.007	.09 .06 .05 .09	48.2 15.5 13.7 16.8	.07 3 .08 2 .09 2 .06 3	3.8 . 2.7 . 2.4 . 3.6 .	.2 .07 .2 .07 .2 .10	12 1 10 1 10 3
L L1800N 750E L L1800N 800E L L1800N 900E L L1800N 100DE L L1800N 120DE	37.3 23.3 28.4 59.7 38.3	95.1 36.2 28.8 79.5 19.5	31.2 14.4 15.1 19.7 23.8	73 65 52 70 95	.3 25.4 .2 25.2 .2 20.8 .2 46.0 .2 17.0	11.2 11.4 7.0 19.5 5.9	337 393 257 491 290	4.94 4.95 6.44 4.64	46.5 2. 25.9 1. 15.2 1. 31.3 2. 6.1 2.	2 2.6 1 132 2 1.9 6 6.4	5 6.1 E 6.2 5 6.8 1 5.5	18 < 17 19 20 < 10	1 .7 5.0 1 .4 2.3 1 .3 2.5 1 .4 3.9 1 .5 2.1	42 . 46 . 37 . 47 . 54 .	11 .140 06 .086 05 .077 06 .125 06 .054	10 9 12 17	26.6 . 24.5 . 33.9 . 23.2 .	 43 46 41 56 40 44 52 46 36 71 	. 089 . 096 . 074 . 079 . 114	2 3.29 2 3.33 1 3.39 1 4.20 1 2.33	9.011 2.010 5.007 8.007 7.010	.09 .06 .05 .09 .06	48.2 15.5 13.7 16.8 8.6	.07 3 .08 2 .09 2 .06 3 .07 2	3.8 . 2.7 . 2.4 . 3.6 . 2.3 .	.2 .07 .2 .07 .2 .10 .1 .06	12 1 10 1 10 3 15
L L1800N 750E L L1800N 800E L L1800N 900E L L1800N 100DE L L1800N 120DE	37.3 23.3 28.4 59.7 38.3	95.1 36.2 28.8 79.5 19.5	31.2 14.4 15.1 19.7 23.8	73 65 52 70 95	.3 25.4 .2 25.2 .2 20.8 .2 46.0 .2 17.0	11.2 11.4 7.0 19.5 5.9	337 393 257 491 290	4.94 4.95 6.44 4.64	46.5 2. 25.9 1. 15.2 1. 31.3 2. 6.1 2.	2 2.6 1 132 2 1.9 6 6.4	5 6.1 E 6.2 5 6.8 1 5.5	18 < 17 19 20 < 10	1 .7 5.0 1 .4 2.3 1 .3 2.5 1 .4 3.9	42 . 46 . 37 . 47 . 54 .	11 .140 06 .086 05 .077 06 .125 06 .054	10 9 12 17	26.6 . 24.5 . 33.9 . 23.2 .	 43 46 41 56 40 44 52 46 36 71 	. 089 . 096 . 074 . 079 . 114	2 3.29 2 3.33 1 3.39 1 4.20 1 2.33	9.011 2.010 5.007 8.007 7.010	.09 .06 .05 .09 .06	48.2 15.5 13.7 16.8 8.6	.07 3 .08 2 .09 2 .06 3 .07 2	3.8 . 2.7 . 2.4 . 3.6 . 2.3 .	.2 .07 .2 .07 .2 .10 .1 .06	12 1 10 1 10 3 15
L L1800N 750E L L1800N 800E L L1800N 900E L L1800N 1000F	37.3 23.3 28.4 59.7 38.3 16.4	95.1 36.2 28.8 79.5 19.5 32.5	31.2 14.4 15.1 19.7 23.8 36.9	73 65 52 70 95 107	.3 25.4 .2 25.2 .2 20.8 .2 46.0 .2 17.0 .9 21.1	11.2 11.4 7.0 19.5 5.9 12.0	337 393 257 491 290 944	4.94 4.95 6.44 4.64 4.61	46.5 2. 25.9 1. 15.2 1. 31.3 2. 6.1 2. 12.6 2.	2 2.6 1 19 2 1.9 6 6.4 5 1.9	5 6.1 5 6.2 5 6.8 1 5.5 7 2.6	18 < 17 19 20 < 10 7 2	1 .7 5.0 1 .4 2.3 1 .3 2.5 1 .4 3.9 1 .5 2.1 2 .7 2.9	42 . 37 . 47 . 54 .	11 .140 06 .086 05 .077 06 .125 06 .054 04 .075	10 9 12 17 14	26.6 24.5 33.9 23.2 25.7	43 46 41 56 40 44 52 46 36 71 38 56	.089 .096 .074 .079 .114 .067	2 3.2 2 3.3 1 3.3 1 4.2 1 2.3 1 2.4	9.011 2.010 5.007 8.007 7.010 9.007	.09 .06 .05 .09 .06 .06	48.2 15.5 13.7 16.8 8.6 7.5	.07 3 .08 2 .09 2 .06 3 .07 2 .08 1	3.8 . 2.7 . 2.4 . 3.6 . 2.3 . 1.8 .	2 .07 2 .07 2 .10 1 .06 1 .08	12 1 10 1 10 3 15 13 1
L L1800N 750E L L1800N 800E L L1800N 900E L L1800N 100DE L L1800N 120DE L L1800N 1300E L L1800N 1400E -	37.3 23.3 28.4 59.7 38.3 16.4 58.4	95.1 36.2 28.8 79.5 19.5 32.5 50.9	31.2 14.4 15.1 19.7 23.8 36.9 36.6	73 65 52 70 95 107 170	.3 25.4 .2 25.2 .2 20.8 .2 46.0 .2 17.0 .9 21.1 .4 34.1	11.2 11.4 7.0 19.5 5.9 12.0 24.6	337 393 257 491 290 944 741	4.94 4.95 6.44 4.64 4.61 5.17	46.5 2. 25.9 1. 15.2 1. 31.3 2. 6.1 2. 12.6 2. 6.8 6.	2 2.6 1 19 2 1.9 6 6.4 5 1.9 8 .9	5 6.1 5 6.2 5 6.8 1 5.5 7 .6	18 <	1 .7 5.0 1 .4 2.3 1 .3 2.5 1 .4 3.9 1 .5 2.1 2 .7 2.9 5 .7 2.5	42 - 46 - 37 - 47 - 54 - 41 - 43 -	11 .140 06 .086 05 .077 06 .125 06 .054 04 .075 23 .047	10 9 12 17 14 51	26.6 . 24.5 . 33.9 . 23.2 . 25.7 . 32.9 .	43 46 41 56 40 44 52 46 36 71 38 56 55 183	089 096 074 079 079 114 067	2 3.2 2 3.3 1 3.3 1 4.2 1 2.3 1 2.4 1 2.9	9.011 2.010 5.007 8.007 7.010 9.007 1.011	.09 .06 .05 .09 .06 .06	48.2 15.5 13.7 16.8 8.6 7.5 7.4	.07 3 .08 2 .09 2 .06 3 .07 2 .08 1	3.8 . 2.7 . 2.4 . 3.6 . 2.3 . 1.8 .	2 .07 2 .07 2 .10 1 .06 1 .08 2<.05	12 1 10 1 10 3 15 13 1 14 1
L L1800N 750E L L1800N 800E L L1800N 900E L L1800N 100DE L L1800N 120DE L L1800N 1300E L L1800N 1400E - L L1800N 1500E	37.3 23.3 28.4 59.7 38.3 16.4 58.4 21.1	95.1 36.2 28.8 79.5 19.5 32.5 50.9 26.9	31.2 14.4 15.1 19.7 23.8 36.9 36.6 17.6	73 65 52 70 95 107 170 40	.3 25.4 .2 25.2 .2 20.8 .2 46.0 .2 17.0 .9 21.1 .4 34.1 .4 19.4	11.2 11.4 7.0 19.5 5.9 12.0 24.6 20.8	337 393 257 491 290 944 741 486	4.94 4.95 6.44 4.64 4.61 5.17 2.97	46.5 2. 25.9 1. 15.2 1. 31.3 2. 6.1 2. 12.6 2. 6.8 6. 6.0 1.	2 2.6 1 19 2 1.9 6 6.4 5 1.9 8 .9 5 .6	5 6.1 5 6.2 5 6.8 1 5.5 9 2.6 5 7.6 5 4.7	18 <	1 .7 5.0 1 .4 2.3 1 .3 2.5 1 .4 3.9 1 .5 2.1 2 .7 2.9 5 .7 2.5 1 .2 .7	42 46 37 47 54 41 43 29	11 .140 06 .086 05 .077 06 .125 06 .054 04 .075 23 .047 04 .057	10 9 12 17 14 51 20	26.6 24.5 33.9 23.2 25.7 32.9 20.1	 43 46 41 56 40 44 52 46 36 71 38 56 55 183 35 43 	. 089 . 096 . 074 . 079 . 114 . 067 . 082 . 090	2 3.29 2 3.33 1 3.39 1 4.20 1 2.31 1 2.49 1 2.99 1 3.00	9.011 2.010 5.007 8.007 7.010 9.007 1.011 3.012	.09 .06 .05 .09 .06 .06 .10	48.2 15.5 13.7 16.8 8.6 7.5 7.4 1.8	.07 3 .08 2 .09 2 .06 3 .07 2 .08 1 .05 2 .08 2	3.8 . 2.7 . 2.4 . 3.6 . 2.3 . 1.8 . 2.9 . 2.4 .	.2 .07 .2 .07 .2 .10 .1 .06 .1 .08 .2<.05 .1<.05	12 1 10 1 10 3 15 13 1 14 1 10
L L1800N 750E L L1800N 800E L L1800N 900E L L1800N 100DE L L1800N 120DE L L1800N 1300E L L1800N 1400E - L L1800N 1500E L L1800N 1600E	37.3 23.3 28.4 59.7 38.3 16.4 58.4 21.1 7.5	95.1 36.2 28.8 79.5 19.5 32.5 50.9 26.9 20.2	31.2 14.4 15.1 19.7 23.8 36.9 36.6 17.6 13.2	73 65 52 70 95 107 170 40 38	.3 25.4 .2 25.2 .2 20.8 .2 46.0 .2 17.0 .9 21.1 .4 34.1 .4 19.4 .1 17.1	11.2 11.4 7.0 19.5 5.9 12.0 24.6 20.8 6.1	337 393 257 491 290 944 741 486 231	4.94 4.95 6.44 4.64 4.61 5.17 2.97 5.18	46.5 2. 25.9 1. 15.2 1. 31.3 2. 6.1 2. 12.6 2. 6.8 6. 6.0 1. 6.5 1.	2 2.6 1 13 2 1.9 6 6.4 5 1.9 8 .9 5 .6 3 3.7	5 6.1 5 6.2 5 6.8 5 5.5 7 6 5 7.6 5 4.7 7 9.2	18 <	1 .7 5.0 1 .4 2.3 1 .3 2.5 1 .4 3.9 1 .5 2.1 2 .7 2.9 5 .7 2.5 1 .2 .7 2 .7 2.9 5 .7 2.5 1 .2 .7 2 .2 .8	42 46 37 47 54 41 43 29 35	11 .140 06 .086 05 .077 06 .125 06 .054 04 .075 23 .047 04 .057 04 .066	10 9 12 17 14 51 20 13	26.6 24.5 33.9 23.2 25.7 32.9 20.1 33.5	 43 46 41 56 40 44 52 46 36 71 38 56 55 183 35 43 32 36 	089 096 074 079 114 067 082 090 072	2 3.29 2 3.33 1 3.39 1 4.20 1 2.33 1 2.49 1 2.99 1 3.03 1 3.59	 9.011 2.010 5.007 8.007 7.010 9.007 1.011 3.012 9.008 	.09 .06 .09 .06 .06 .06 .10 .06 .04	48.2 15.5 13.7 16.8 8.6 7.5 7.4 1.8 3.0	.07 3 .08 2 .09 2 .06 3 .07 2 .08 1 .05 2 .08 2 .11 2	3.8 . 2.7 . 2.4 . 3.6 . 2.3 . 1.8 . 2.9 . 2.4 . 2.7 . 2.7 .	2 .07 2 .07 2 .10 1 .06 1 .08 2<.05 1<.05 1<.05	12 1 10 1 10 3 15 13 1 14 1 10 11
L L1800N 750E L L1800N 800E L L1800N 900E L L1800N 100DE L L1800N 120DE L L1800N 130DE L L1800N 1400E - L L1800N 1500E L L1800N 1600E L L1800N 1700E	37.3 23.3 28.4 59.7 38.3 16.4 58.4 21.1 7.5 6.9	95.1 36.2 28.8 79.5 19.5 32.5 50.9 26.9 20.2 25.0	31.2 14.4 15.1 19.7 23.8 36.9 36.6 17.6 13.2 11.6	73 65 52 70 95 107 170 40 38 57	.3 25.4 .2 25.2 .2 20.8 .2 46.0 .2 17.0 .9 21.1 .4 34.1 .4 19.4 .1 17.1 .2 29.4	11.2 11.4 7.0 19.5 5.9 12.0 24.6 20.8 6.1 10.2	337 393 257 491 290 944 741 486 231 291	4.94 4.95 6.44 4.61 5.17 2.97 5.18 3.56	46.5 2. 25.9 1. 15.2 1. 31.3 2. 6.1 2. 12.6 2. 6.8 6. 6.0 1. 6.5 1. 8.2	2 2.6 1 187 2 1.9 6 6.4 5 1.9 8 .9 5 .6 3 3.7 8 8.1	5 6.1 5 6.2 5 6.8 5 5.5 7 .6 5 7.6 5 4.7 9.2 5 .6	18 <	1 .7 5.0 1 .4 2.3 1 .4 3.2 1 .4 3.9 1 .5 2.1 2 .7 2.9 5 .7 2.5 1 .2 .7 2 .7 2.9 5 .7 2.5 1 .2 .7 2 .2 .8 1 .2 .9	42 . 46 . 37 . 47 . 54 . 41 . 43 . 29 . 35 . 29 .	11 .140 06 .086 05 .077 06 .125 06 .054 04 .075 23 .047 04 .057 04 .056 04 .056	10 9 12 17 14 51 20 13 14	26.6 24.5 33.9 23.2 25.7 32.9 20.1 33.5 27.3	 43 46 41 56 40 44 52 46 36 71 38 56 55 183 35 43 32 36 44 43 	 .089 .096 .074 .079 .114 .067 .082 .090 .072 .029 	2 3.25 2 3.33 1 3.35 1 4.20 1 2.33 1 2.49 1 2.99 1 3.00 1 3.55 1 2.65	 9.011 2.010 5.007 3.007 7.010 9.007 4.011 3.012 9.008 5.006 	.09 .05 .09 .06 .06 .06 .10 .06 .04 .05	48.2 15.5 13.7 16.8 8.6 7.5 7.4 1.8 3.0 2.8	.07 3 .08 2 .09 2 .06 3 .07 2 .08 1 .05 2 .08 2 .11 2 .07 1	3.8 . 2.7 . 2.4 . 3.6 . 2.3 . 1.8 . 2.9 . 2.9 . 2.9 . 2.7 . 1.9 .	2 .07 2 .07 2 .10 1 .06 1 .08 2<.05 1<.05 1<.05 1<.05	12 1 10 1 10 3 15 13 1 14 1 10 11 8
L L1800N 750E L L1800N 800E L L1800N 900E L L1800N 100DE L L1800N 120DE L L1800N 130DE L L1800N 1400E - L L1800N 1500E L L1800N 1600E L L1800N 1700E	37.3 23.3 28.4 59.7 38.3 16.4 58.4 21.1 7.5 6.9	95.1 36.2 28.8 79.5 19.5 32.5 50.9 26.9 20.2 25.0	31.2 14.4 15.1 19.7 23.8 36.9 36.6 17.6 13.2 11.6	73 65 52 70 95 107 170 40 38 57	.3 25.4 .2 25.2 .2 20.8 .2 46.0 .2 17.0 .9 21.1 .4 34.1 .4 19.4 .1 17.1	11.2 11.4 7.0 19.5 5.9 12.0 24.6 20.8 6.1 10.2	337 393 257 491 290 944 741 486 231 291	4.94 4.95 6.44 4.61 5.17 2.97 5.18 3.56	46.5 2. 25.9 1. 15.2 1. 31.3 2. 6.1 2. 12.6 2. 6.8 6. 6.0 1. 6.5 1. 8.2	2 2.6 1 187 2 1.9 6 6.4 5 1.9 8 .9 5 .6 3 3.7 8 8.1	5 6.1 5 6.2 5 6.8 5 5.5 7 .6 5 7.6 5 4.7 9.2 5 .6	18 <	1 .7 5.0 1 .4 2.3 1 .3 2.5 1 .4 3.9 1 .5 2.1 2 .7 2.9 5 .7 2.5 1 .2 .7 2 .7 2.9 5 .7 2.5 1 .2 .7 2 .2 .8	42 . 46 . 37 . 47 . 54 . 41 . 43 . 29 . 35 . 29 .	11 .140 06 .086 05 .077 06 .125 06 .054 04 .075 23 .047 04 .057 04 .056 04 .056	10 9 12 17 14 51 20 13 14	26.6 24.5 33.9 23.2 25.7 32.9 20.1 33.5 27.3	 43 46 41 56 40 44 52 46 36 71 38 56 55 183 35 43 32 36 44 43 	 .089 .096 .074 .079 .114 .067 .082 .090 .072 .029 	2 3.25 2 3.33 1 3.35 1 4.20 1 2.33 1 2.49 1 2.99 1 3.00 1 3.55 1 2.65	 9.011 2.010 5.007 3.007 7.010 9.007 4.011 3.012 9.008 5.006 	.09 .05 .09 .06 .06 .06 .10 .06 .04 .05	48.2 15.5 13.7 16.8 8.6 7.5 7.4 1.8 3.0 2.8	.07 3 .08 2 .09 2 .06 3 .07 2 .08 1 .05 2 .08 2 .11 2 .07 1	3.8 . 2.7 . 2.4 . 3.6 . 2.3 . 1.8 . 2.9 . 2.9 . 2.9 . 2.7 . 1.9 .	2 .07 2 .07 2 .10 1 .06 1 .08 2<.05 1<.05 1<.05 1<.05	12 1 10 1 10 3 15 13 1 14 1 10 11 8
L L1800N 750E L L1800N 800E L L1800N 900E L L1800N 100DE L L1800N 120DE L L1800N 1300E L L1800N 1400E - L L1800N 1500E L L1800N 1600E	37.3 23.3 28.4 59.7 38.3 16.4 58.4 21.1 7.5 6.9 6.8	95.1 36.2 28.8 79.5 19.5 32.5 50.9 26.9 20.2 25.0 22.8	31.2 14.4 15.1 19.7 23.8 36.9 36.6 17.6 13.2 11.6 11.1	73 52 70 95 107 170 40 38 57 56	.3 25.4 .2 25.2 .2 20.8 .2 46.0 .2 17.0 .9 21.1 .4 34.1 .4 19.4 1 17.1 .2 29.4 .3 26.9	11.2 11.4 7.0 19.5 5.9 12.0 24.6 20.8 6.1 10.2 10.0	337 393 257 491 290 944 741 486 231 291 404	4.94 4.95 6.44 4.61 5.17 2.97 5.18 3.56 3.93	46.5 2. 25.9 1. 15.2 1. 31.3 2. 6.1 2. 12.6 2. 6.8 6. 6.0 1. 6.5 1. 8.2 . 7.3	2 2.6 1 1932 2 1.5 6 6.4 5 1.5 8 .5 5 .6 3 3.7 8 8.1 9 .9	5 6.1 5 6.2 5 6.8 5 5.5 7 .6 5 7.6 5 7.6 5 4.7 9.2 5 .6 7 .1	18 <	1 .7 5.0 1 .4 2.3 1 .4 3.2 1 .4 3.9 1 .5 2.1 2 .7 2.9 5 .7 2.5 1 .2 .7 2 .7 2.9 5 .7 2.5 1 .2 .7 2 .2 .8 1 .2 .9	42 . 46 .4 37 .4 54 .4 41 .1 43 .1 29 .1 35 .1 29 .1	11 .140 06 .086 05 .077 06 .125 06 .054 04 .075 04 .075 04 .057 04 .057 04 .056 04 .056 04 .056	10 9 12 17 14 51 20 13 14 16	26.6 24.5 33.9 23.2 25.7 32.9 20.1 33.5 27.3 29.6	43 46 41 56 40 44 52 46 36 71 38 56 55 183 35 43 32 36 44 43 54 57	 .089 .096 .074 .079 .114 .067 .082 .090 .072 .029 .036 	2 3.25 2 3.33 1 3.35 1 4.20 1 2.35 1 2.45 1 3.05 1 2.65 1 2.55	9 .011 2 .010 5 .007 3 .007 7 .010 9 .007 1 .011 3 .012 9 .008 5 .006 7 .008	.09 .05 .09 .06 .06 .06 .06 .04 .05 .07	48.2 15.5 13.7 16.8 8.6 7.5 7.4 1.8 3.0 2.8 2.9	.07 3 .08 2 .09 2 .06 3 .07 2 .08 1 .05 2 .08 2 .11 2 .07 1 .06 2	3.8 . 2.7 . 2.4 . 3.6 . 2.3 . 1.8 . 2.9 . 2.9 . 2.4 . 2.7 . 2.9 . 2.1 .	2 .07 2 .07 2 .10 1 .06 1 .08 2<.05 1<.05 1<.05 1<.05 1<.05	12 1 10 1 10 3 15 13 1 14 1 10 11 8 9

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

ţ

Ruby Red Resources Inc. FILE # A600275

Page 11

ACHE ANALYTICAL																																ACHE ANAL	(TICAL
SAMPLE#	Mo	C	u P	o Zr	Aq	Ni	Co	Mri	Fe	As	U	Au	Th	Sr	Cd	Sb Bi	٧	Ca	Р	La	Cr	Ma	Ba	Ti I	3 A1	Na	ĸ	W	Ha S	c TI	SG	a Se	
					•		ррл																							m ppm			
			<u>-</u> -					·····		<u>,</u>	·····	<u> </u>	<u> </u>	<u></u>	<u> </u>		<u> </u>						· · · · ·					<u> </u>					
L L1800N 1900E	24.1	30.	4 14.4	8 55	.1	27.3	8.8	298	4.34	6.61	.3 3	3.4 1	0.3	8	.1	.31.6	31	. 06	. 053	18	34.5	. 59	56 .	055	13.45	.011	. 07	3.5	.10 2.	6 .1<	.05 1	8.0	
L L1800N 2000E	5.4	19.	4 12.0	5 39	.2	15.3	5.4	217	5.10	5.4	.8 1	8	8.5	10	.1	.2 1.7	42	.05	. 057	12	26.9	. 45	36 .	107 :	1 2.36	.010	.06	5.7	.06 1.	8 .1<.	.05 1	4 < 5	
L L1800N 2100E																														6.1.			
L L1800N 2200E	21.6	60.	2 14.9	9 53	.2	25.3	10.8	315	6.14	7.4 2	.0 E	5.91	6.2	16	.2	.57.4	34	.04	. 129	22	33.3	. 47	46.0	057 :	l 2.64	.009	. 07	5.7	.11 2.	6.1.	. 07	91.8	
L L1800N 2300E	2.2	12.	7 23.3	3 45	. 6	7.9	3.9	163	3.18	4.5	.7 2	2.7	3.8	7	.2	.38.1	42	. 04	. 094	6	13.6	. 16	53.	152 🔅	l 2.59	.014	. 05	Z.1	. 11 1.	5 , 2<.	05 1	6.5	
L L1800N 2400E	4.0	12.	5 17.1	B 70	.2	16.6	6.2	228	4.13	8.3	.9 2	2.5	7.4	8	.1	.4 3.2	31	.04	. 130	12	27.4	.45	56 .0	061 <	L 3.57	.008	. 07	3.8	.10 1.	9 .1<	05 1	0 <.5	
L L1800N 2500E	3.4	11.	5 13.9	9 72	.3	15.0	6.1	863	3.48	6.5	.6 1	2	4.7	11	.2	.2 1.6	36	.07	. 084	13	21.1	. 37	94 .(081 :	L 2.09	.009	.07	2,0	.05 1.	5 .2<.	05 1	1 <.5	i
L L1800N 2600E																														9 . 2<.			I
L L1800N 2700E	4.4	18.	9 13.6	5 58	.1	22.7	13.9	542	3.14	4.81	.2 5	5.1	3.0	13	.1	.21.3	22	.06	. 052	25	25.3	. 65	59 .(034 🔅	l 2.51	.006	. 08	2.4	.07 1.	6 .2<	.05	7.6	I

L L1500N 0E	1.2	17.	2 15.3	3 88	< 1	21.8	9.7	381	3.36	3.5	.8 2	2.2	5.4	12	.1	.3.9	38	.08	. 162	7	28.5	.40	43 .:	119 🔅	L 4.09	.011	.09	.8	.07 2.	4 .2<	05 1	2.6	
L L1500N 100E	1.2	22.	6 17.3	l 100	<.1	31.1	13.0	444	3.69	4.31	.0 7	.9	7.6	16	.1	.2 1.3	44	.11	.073	10	39.2	.63	55 .1	132 1				.6	.05 3.	3 .2<.	05 1	3.6	I
L L1500N 200E	2.1	33.	2 18.4	108	.1	40.3	15.7	472	4.34	4.51	.0 24	20 1	7.6	32	.2	.2 4.5	34	.15	. 068	13	39.8	. 67	B1 .I	0 9 2 I	4.31	.007	. 09		.05 2.	9.2<.	05 1	1.7	,
L 11500N 300E	1.5	28.	0 14.2	2 74	.2	43.9	22.1	520	3.74	2.91	.5 4	3	7.3	15	.1	.1 3.4	36	.07	.076	17	37.0	.62	59.,1	087 1	4.35	.009	. 08	. 2	.04 3.	73<.	05 1	3.7	l
L L1500N 400E	1.4	22.	6 17.9	9 58	.2	31.0	11.9	647	3.04	3.11	.5 9	4	3.6	30	.1	.31.8	39	.06	. 113	22	37.2	. 45	67.0	091 2	2.79	.012	. 07	.3	.07 2.	5 .1<.	05 1	2.8	1
												•																					ł
L L1500N 500E	1.6	29.	5 15.3	L 68	.1	19.8	14.0	634	3.05	3.51	.7 16	55	4.9	10	.1	.31.4	35	.04	.108	17	22.3	. 38	50 .1	109 2	2 4.37	.011	. 06	.5	.06 3.	8 .1<.	05 1	3 1.1	
L L1500N 600E	4,9	27.	6 13.0) 68	.2	18.7	10.9	339	3.78	10.6 1	.8 2	2.7	5.7	12	. 1	.3 1.0	36	.03	. 152	15	18.3	. 33	52.1	116 2	2 4.53	.011	. 06	1.4	.05 3.	7.1<.	05 1	2.9	
L £1500N 700E																														1.1<.			
L L1500N 800E	3.3	27.	7 14.1	l 61	.1	18.0	6.3	522	4.50	11.2 1	.7 5	5.7	3.7	12	. 1	.6 1.0	41	.05	. 158	14	24.4	. 31	62.0	089 2						5.1.			-
L L1500N 900E	4.3	31.	4 15.7	7 55	. 1	22.9	12.2	861	3.32	6.91	.6 2	2.1	2.6	12	. 1	.3.8	37	.05	.134	15	20.1	. 37	53.0	088 2	2 4.49	.011	. 08	1.0	.06 2.	8.2.	06 1	1 1.0	
L L1500N 1000E	14.3	40.	5 17.7	7 88	.1	53.8	32.4	2414	5.12	7.81	.5 1	. 5	6.9	23	.2	.5 1.4	42	.08	,103	19	35.3	. 53	91.0	059 1	2.90	.011	.07	4.5	.05 3.	5.2<.	05 1	1.6	
L L1500N 1100E																														1.2<.			
L L1500N 1200E	56.4	58.	0 17.8	3 85	.2	37.5	18.5	684	5.06	12.3 1	.8 6	6.6	9.3	32	.1	.5 3.3	38	.12	. 144	16	31.4	. 58	B3 .(076 2	2 3.62	. 014	.10	49.4	.03 3.	8 .2<.	05 1	0 1.1	I
L L1500N 1330E	16.5	33.	8 33.3	3 72	. 3	28.1	12.4	405	4.42	10.7 2	.6 2	2.31	4.6	132	.1	.5 3.3	-38	.09	.072	20	31.4	.53 1	49.0	051 1	. 3.10	.010	. 10	9.1	.05 3.	0,2<,	05 1	0 1.1	
RE-E-11500H#13386	ይም ነው ም	-34	5**94~{	3~~70	5	28 3	12 6	*389*	4.37	FF-0 2	∵6 <u>~</u> 2	: 8 -1	4.5	128 <	1	4 3.6	- 36	:08	0/1	19	29.9	:51-1	48 ^:()45 2	2.97	.009	.09	8.9-	.05 3.	0 .2<.	05 1	6 59	222
1 1 1 5 0 0 1 4 0 0 5	10.0		· · ·		_	0c -	~~~~		, ,,,	aa				100					101	1.4		E 4	~ ·			000	14	• •	07 5	c	лг ·		
L L1500N 1400E										82.7 1																				6.3<.			
L L1500N 1500E	27.8	30.	3 21.	/0	. 1	31.4	10.4	2/3	3.93	7.31	.2 1	1	6.3	18	.3	.6 1.0	41	.08	.056	12	25.2	. 34	18 .	101 3	5 3.35	.015	- 12	2.0	.08 2.	4.2.	05 1	3.8	
L L1500N 1600E																														0.1.			
L L1500N 1700E																														2.1<.			
L L1500N 1800E	1.0	27.	1 15.3	5 80	.2	23.9	12.8	1041	3.17	4.91	.2 3	5.3	2.3	11	.2	.31.3	40	.06	. 100	12	22.9	. 3/	30 .C	190 2	3.74	.009	.09	1.6	.Ub Z.	5.2.	07 I.	23.1	
1 12000 10005	<i>с</i> 0	20			-		0 7		3 1-	<i>.</i>		. c	<i>с</i> ,	10	,		<u> </u>	00	675	11	25 2	10		116 -	1 1 00	^ 11	00	A 1	04.2	n n-	05 1	7 0	
L L1500N 1900E	0.0	30.	3 13.3 1 10 4) 55 1 40	.1	24.0	9.8	201	3.15	0.11	. <u> </u>	1.0	0.L	19 <	.1	.2 1.9	40	.09	.0/5	11	23.2	.43 (30.0 41.1	LTO 3	14.U0 2 70	.011	.00	4.1	.04 3.	3.2<.	00 L	2,0	
L L1500N 2000E	3.0	25.	L 10.9	48	. b	15.0	5.5	240	2.12	4.51	.U 2	.9	4.1	13	. 4	.3.8	30	.00	. 102	10	13.2	. 27 - 40	+1 .1 -∧ ∧-	14 J	3.72	.013	.00	<u>د</u> . ۵	.07 2.4	4.1<.	עם בע מב שי	ζ.υ π.ο	
L L1500N 2100E_2																																	
L L1500N 2300E	£1.Z	92.) 22.(ביים ב	48	.2	3/.0	12.0	220	10.74	48.81	.5 1188 1 0	r≈9`1 ∖4	5.L 0.0	11 <	.1	.0 0.2	31	.04	1.139	20	29.0	.37 3	20 .l	י חבר	2.85	.005	.00 /	40.4 17 A	.04 Z. NG 1	1.1.	10 ' 10 '	ש. ד ה ד	1
L L1500N 2400E	11.1	50.1	54.7	70	1.1	34.3	21.9	A A3	7.38	12.1 2	.1 9	.4	d.V	17	. 1	.3 9.2	24	.06	. 141	30	31.4	.47	+∠ .l	130 1	2.17	. 000	.09	17.4	.00 1.	9.1.	U7 .	.9	
STANDARD DS6	11 3	122	7 29 '	3 141	3	24 Q	10.8	706	2 86	21 2 6	5 47	4	зn	41 6	22	451	55	87	080	14 1	78 5	58 1	55 (182 16	1 90	073	16	35	23.3	4 1.7<.	05	744	
	11.5	122.	27.5	, 141	. 3	24.7	10.0	700	2.00	41.6 0	.5 47	. 4	0.0	41 0		.4 0.1	33	.0/		14 1	.70.3	. 50 1			1.0	.010	. 10	0.5	.20 0.		55	, न ,न	
																																	ĺ

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

Page 12

Data K FA

CL 1500N 2500E L L1500N 2500E L L1500N 2500E L L1500N 2700E L L1250N 0E L L1250N 100E L L1250N 100E L L1250N 200E L L1250N 300E RE C L1250N 300E	8.8 26. 10.1 19.1 6.8 31.9 1.0 17.3 1.2 16.9 .6 23.9	n ppm (160.3 1 5 34.6 9 95.0 1 2 11.0 15.1	ppm-ppm 128 1.2 91 .2 185 .4	ppm 30.6 2 20.7 35.4 3	ppm 1 4-3 25.9 1 9.1	553 1.99. 786 4.71	ppm p 5.51 6.01	om ppb 9:::6	ppn 3.7	ppm p	рт ррт	n ppm	ppm												ррт	\$ ppm pp	m
CL 1500N 2500E L L1500N 2500E L L1500N 2500E L L1500N 2700E L L1250N 0E L L1250N 100E L L1250N 100E L L1250N 200E L L1250N 300E RE C L1250N 300E	8.8 26.1 10.1 19.1 6.8 31.1 1.0 17.1 1.2 16.1 .6 23.1	9 160.3 1 5 34.6 9 95.0 1 2 11.0 15.1	46 91 128 1.2 91 .2 185 .4	30.6 2 20.7 35.4 3	4-3 25.9 1 9.1	553 1.99. 786 4.71	6.0 1	9 6		··· ·		- <u>' -</u>		*	% ppm	ррл	ž pj	DM	ະppm	2	2	2	ppm pp	m ppm		· · · · · · ·	
L L1500N 2500E L L1500N 2600E 1 L L1500N 2700E L L1250N 0E L L1250N 100E L L1250N 200E L L1250N 200E L L1250N 300E RL C L1250N 300E	8.8 26. 10.1 19.1 6.8 31.9 1.0 17.3 1.2 16.9 .6 23.9	9 160.3 1 5 34.6 9 95.0 1 2 11.0 15.1	128 1 2 91 2 185 4	30.6 2 20.7 35.4 3	25.9 17 9.1 - 3	786 4.71	6.01			65 <	4.251	and to the a															
L L1500N 2500E L L1500N 2600E 1 L L1500N 2700E L L1250N 0E L L1250N 100E L L1250N 200E L L1250N 200E L L1250N 300E RL C L1250N 300E	8.8 26. 10.1 19.1 6.8 31.9 1.0 17.3 1.2 16.9 .6 23.9	9 160.3 1 5 34.6 9 95.0 1 2 11.0 15.1	128 1 2 91 2 185 4	30.6 2 20.7 35.4 3	25.9 17 9.1 - 3	786 4.71	6.01			·			S 96 %	* ** ***	9 - -		ିନ୍ଦ୍ର ୨୦	n#: 122	8 ~ 1	1.78%	.177.1	51	<u>Tien</u>	1.21	12 n	Б	e - R
L L1500N 2600E 1 L L1500N 2700È L L1250N 0E L L1250N 100E L L1250N 200E L L1250N 200E L L1250N 300E RE C L1250N 300E	10.1 19.1 6.8 31.1 1.0 17.1 1.2 16.1 .6 23.3	5 34.6 9 95.0 1 2 11.0) 15.1	91 .2 185 .4	20.7	9.1 3				6.1	13																	
L L1500N 2700È L L1250N 0E L L1250N 100E L L1250N 200E L L1250N 200E RL E L1250N 300E	6.8 31.1 1.0 17.1 1.2 16.1 .6 23.4	9 <u>95.01</u> 211.0 15.1	185 .4	35.4 3		004 3.79	9.8																				
L L1250N 100E L L1250N 200E L L1250N 300E RE E L1250N 300E	1.2 16. .6 23.4) 15.1	33 .2	7 /	38.5 38																						
L L1250N 200E L L1250N 300E RE C C1230N 300E	.6 23.8			7.4	3.7	108 2.56	3.3 1	2 3.5	5.9	5	.1 .1	3	29	.04 .10	6 6	22.4	. 14 - 2	26 .12	2 2	6.21	.016	.04	.4.0	93.8	.1<.0	59.	7
L L1250N 200E L L1250N 300E RE C C1230N 300E	.6 23.8									-																	_
L L1250N 300E RE C C1230N 300E	.6 23.6																									513.	
RE C CIZOON SUOL		5 23.4	92 .1	45.5 1	18.9 (0/9 4.70 460 4 71	3.Z I	2 646,0	15.2	134	1. 1.	8	38	.08 .04	13 IU	15.2	.96 2	28.09	13 <1	5.09	.004	.07				5 12 <. 5 12 <.	
	1.4 30.4 1.5 29.																										
L L1250N 400E	1.1 34.																										
C EIEDON 400C .	1.1 04.0	, 10.0 1	160 .1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- -	557 4.54	J.I I	0 3010	ν.ε	21	.0 .2	. J.1	55	.03.00	JO 15	43.0		<i>)</i> / .10	1 2	5.04	. 000	. 07		J 4.J	.20	J 16 .	0
L L1250N 500E	1.2 40.8	3 17.6 1	110 .2	56.9 2	29.8 (668 5.84	2.5 1	6 10-3	10.5	22	.1 .1	2.2	31	.06 .00	8 17	49.5	.90 2	76 .04	4 1	4.81	. 008	.05	.8.0	3 3.9	. 1<. 0	512.	5
	2.4 41.3																										
	3.1 53.4																										
L L1250N 800E	4.5 30.0	5 17.9 3	108 .2	53.0 2	29.3 12	254 4.89	6.01	3 2.6	5.9	19	.1 .3	8 1.8	38	.07 .10	3 15	38.6	.68 (54.05	5 2	3.38	. 008	. 06	2.1 .0	5 3.3	.1<.0	511.	5
L L1250N 900E	5.9 40.3	3 18.5 1	105 .2	53.8 2	22.9 8	887 4.64	4.21	4 2.1	9.4	29	.1.2	2.0	36	.13 .02	5 16	45.3	.78 8	33 .08	11 1	4.39	. 007	. 08	2.2.0	3 3.6	.1<.0	511.	7
																											•
L L1250N 1000E - L L1250N 1100E	6.2 38.0	5 13.2	11 .3	36.71	15.4 8	670 3.79	3.71	2 1.1	3.6	37	.2.2	2 1.0	36	.12 .10	13 12	35.2	.63 8	BI .09	0 2	4.12	.011	.08	.9.0	43.1	.1<.0	5 11 . c 1)	8
L LIZSON TIQUE	<u>4.1</u> <u>22</u> 1.4 18.9	11.9	48 <u>Z</u>	17 6	0.0 4	422 2.83	4.7 1	2 1.0	2.3	12	· 1 · 2		3/	.05 .03	7 10	10.9	.20 0	03 .10 17 10	К Z	3.75	.010	.05	2.0.0	92.0	.15.0	<u>, 11 c</u>	9 7
L L1000N 0E	1.4 10.	12.0	70 1	30.6.1	0.4 1	396 3 67	4.01	U 1.4 9.69∰.39	5.4	11	.1.2	4 	32	07 03	3 10	22.0 35.4	.29 4 61 6	+/ .10 51 AB	14 I 16 7	4.00	009	.05				59. 510.	
L L1000N 200E	1.1 21.8	197	92 < 1	35 7 1		158 4 19	39	9 7 2	6.6	14	2 3	15	37	10 00	1 13	41 1	64 4	56 07	1 2	3.03	007	06				5 10 5 10 <.	
2 22000	1.7 21.0	1211		501			0.9	· · · · · · · · · · · · · · · · · · ·	0.0	- 1		. 1.0	0,							0.00				•			5
L L1000N 300E-	1.0 18.0	5 15.2 1	108 1	28.9 1	1.2 4	400 4.06	3.2	9 13 2	6.2	13	.1 .2	2.2	40	.08 .08	1 11	36.0	.53 5	51.09	62	3.61	. 800	. 07	.6.0	6 2.8	. 2< . 0	512.	6
L L1000N 400E	4.2 20.3																										
	2.1 25.1																										
	1.9 49.0																										
L L1000N 800E	1.5 25.9	5 13.5	55 .2	20.6	7.6 2	294 3.29	4.31	2 3.8	4.5	17	.1.2	1.2	33	.06 .0/	1 1	26.9	.36 3	37 . 10	/ 2	4.02	. 010	.06	./ .1	0 2.9	.1<.0	5 12 .	9
L L1000N 900E	3.3 28.4	1 13 0	07 1	22 6 1	45 9	27/217	601	1 20	55	14	1 2	1 1 0	36	07 10	in o	75 P	12 4	13 11	1 7	1 22	008	05	77 N	5 7 2	3 < 01	5 9	9
	6.3 49.8																										
	4.1 31.1																										
	3.7 26																										
	4.5 22.4																										
	1.8 23.3																										
L L1000N 1500E	2.6 31.8	12.1	63.6	18.5	8.4	179 2 96	7.61	4 3.9	8.2	8	.1.3	1.1	34	.05 .12	79	18.8	.28 5	51 . 15	41	5.17	014	.06	2.1 .0	7 3.1	.1<.0	512.	7
L L1000N 1600E	5.4 37	13.3	73.1	31.3 1	10.7 3	353 4.55	11.8 1	3 2.7	9.0	10	.1 .3	2.3	31	.04 .12	2 16	28.3	.56 6	50 06	0 1	2.89	006	.06	5.2.0	6 2.6	.1<.0	58.	9
L L1000N 1700E	2.5 27.1	3 12.0	47 < 1	14.8	5.4 2	2/9 3.00	9.2 1	5 2.3	6.7	7	.1 .3	.6	35	.06 .17	/ 11	15.5	.22 4	16 .13	1 2	4.20	010 .	. 05	2.2.1	3 2.6	.1<.0		1
L L1000N 1800E	3.1 30.0) 17.I	// 2	24.2	1.8 4	43.64	6.21	3 I.l	5.0	9	.3.5	1.4	42	.06 .12	1 13	28.7	. 33 - 5	94 .Ił	/ 2	2.40	ULL .	. U7	3.3.1	02.3	.1<.0	5 11 .	(
STANDARD DS6 1	11.3 119.3	1 20 7 3	140 2	24 6 1	וח ג ג	509 2 79	21 3 4	5 4 7 N	20	<u>40 </u>	በገፍ	51	54	8 6 01	0 12	172 8	57 16	57 07	a 18	1.88	073	16	37 2	4 3 3	1 7< 04	5 64	5
	11.3 119.4	27.31	140.3	24.01	10.0 0	J90 2.70	21.3 0	J 47.0	3.0	40 0	.0 3.0	5.1	94	.00 .07	5 10	112.0	. 57 10		9 10	1.00		. 10	J.1 .2	4 3.0	1.7 0.	. 04.	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

1

Ruby Red Resources Inc. FILE # A600275

44.3

Page 13

		ACHE ANALYTICAL
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Ał Na K W Hg Sc Tl S	Ga Se
	pom pom pam pam pam pam and made made water w	pm ppm
A		
	11/22 11/24/15333 11/30 121/2643 2222 13/21 13/21 4/21 41 45 52: 090-9 10/4 11 244 153 2 1.14 088: 62 14.01 2.3 44 05	
L L1000N 1900E	1.5 21.9 14.3 60 .2 15.1 6.8 612 3.08 7.0 1.1 2.8 3.8 8 .2 .5 .6 38 .05 .153 16 19.3 .27 57 .112 2 2.86 .012 .07 2.0 .10 2.3 .1 .07	11 .7
L L1000N 2000E	15.7 24.2 18.9 48 .5 11.1 4.6 386 3.79 10.2 1.3 .6 5.5 5 .3 .7 .9 44 .03 .122 10 19.4 .22 46 .111 1 2.97 .009 .06 1.0 .09 2.0 .1<05	11 1.0
L L1000N 2100E	8.7 33.4 9.5 51 .2 15.5 6.9 335 4.23 6.9 1.6 8.2 5.3 8 .1 .4 .8 41 .05 .173 17 20.7 .25 54 .097 1 3.39 .012 .06 1.2 .09 2.4 .1<05	
L L1000N 2200E	2.2 26.5 10.7 55 .2 17.7 5.9 256 2.99 6.2 1.8 6.3 7.0 6 .1 .3 .5 37 .03 .163 11 17.5 .20 57 .156 2 5.39 .012 .05 1.6 .13 3.0 .1<.05	12 1 1
		14 A.I
L L1000N 2300E	2.2 32.0 19.5 86 .3 21.0 11.0 996 4.07 5.4 1.2 <.5 5.0 13 .2 .6 .9 46 .05 .097 13 25.4 .34 96 .127 2 2.81 .011 .08 4.1 .06 2.6 .1<.05	17 5
L L1000N 240DE	2.2 30.2 16.1 99 .7 18.7 8.7 396 3.46 8.1 1.2 2.9 5.6 14 .4 .3 2.7 38 .09 .169 8 21.0 .27 57 .126 3 4.22 .012 .08 7.8 .15 2.5 .2<.05	
L L1000N 2500E		
	2.3 20.7 21.5 111 .4 21.8 13.4 347 3.64 7.1 1.1 1.0 7.7 10 .2 .3 2.3 37 .04 .121 10 23.0 .33 59 .091 2 3.44 .010 .08 3.7 .07 2.1 .2<.05	
L L100DN 2600E	3.1 28.3 26.5 101 .4 25.2 12.9 788 4.50 11.9 1.2 1.9 8.0 12 .2 .4 2.8 43 .04 .096 11 24.2 .36 73 .100 2 2.74 .010 .09 13.7 .07 2.4 .2 .06	10 ,7
L L1000N 2700E	1.5 18.9 28.6 116 .2 27.3 12.4 789 3.30 7.6 .9 3.4 6.1 10 .1 .2 2.6 37 .04 .126 10 24.6 .43 65 .096 1 2.79 .010 .09 4.9 .06 2.3 .2<.05	9 < .5
L 1750N OE	1.1 21.5 14.0 103 < 1 24.6 12.3 669 3.04 2.9 .9 3.3 6.5 9 .2 .2 .8 29 .07 .121 10 32.3 .43 54 .093 1 4.03 .012 .07 .4 .06 2.5 .1<05	
L L750N 100E	2.6 30.7 15.0 86 .1 44.1 18.0 477 4.52 3.2 1.1 8.9 8.8 20 .1 .1 1.6 33 .12 .052 20 52.2 .74 49 .060 2 3.30 .008 .06 .8 .04 3.3 .1<0.5	
L L750N 200E	2.7 16.6 14.5 71 .1 20.3 6.4 218 3.74 3.2 .7 4.0 5.2 8 .1 .2 1.1 45 .05 .088 12 32.5 .37 39 .084 1 2.42 .009 .06 .9 .05 2.0 .1<0.5	12 <.5
L L750N 300E	3.7 20.0 15.3 83 .2 18.7 7.9 248 4.78 5.1 1.1 3.1 8.6 8 .1 .2 1.3 47 .05 .103 10 39.6 .35 41 .114 2 4.33 .011 .06 1.6 .08 3.2 .1<05	13 .5
L 1750N 400E	3.9 16.1 12.9 74 .4 18.0 9.7 401 2.96 3.3 1.0 1.3 5.6 9 .1 .2 .8 32 .06 .077 8 29.0 .38 48 .097 1 4.09 .011 .05 1.4 .07 2.7 .1< 05	
1 L750N 500E	4.6 21.9 13.7 97 .2 23.6 11.6 501 3.24 4.1 1.0 1.5 4.8 14 .2 .2 1.0 37 .10 .129 9 30.1 .44 53 .099 2 3.50 .012 .07 3.7 .07 2.4 .1<.05	10 < 5
L L750N 600E	5.8 32.6 13.7 93 .1 34.3 13.9 969 3.78 5.0 1.1 .8 6.2 17 .1 .2 1.1 40 .08 .086 13 36.5 .56 69 .087 1 3.34 .010 .07 1.8 .07 2.9 .1<05	
L L750N 700E	4.4 39.9 17.4 92 .1 38.5 24.8 409 4.43 5.2 1.5 ***** 10.0 23 .2 .1 2.9 38 .09 .081 14 41.7 .65 65 .103 1 4.16 .009 .07 2.6 .04 3.7 .1<.05	
L L750N 800E		
	6.8 27.3 13.3 100 .2 31.4 16.5 716 3.71 6.1 1.0 2.3 6.3 10 .2 .3 1.0 42 .06 .108 10 30.2 .46 74 .094 1 3.79 .009 .08 4.9 .06 2.5 .1<05	
L L750N 900E	4.1 20.2 14.1 95 .2 26.7 12.8 698 3.77 5.6 .8 3.7 5.1 11 .2 .2 1.1 40 .07 .154 11 29.4 .45 54 .096 1 2.64 .009 .07 1.5 .05 2.2 .1<.05	11 <.5
1 17540 10005		10
L L750N 1000E	6.1 28.7 11.9 77 <.1 40.2 17.9 387 3.87 5.3 1.0 4.2 7.0 19 .1 .1 1.5 39 .10 .078 13 41.4 .60 103 .095 1 3.43 .008 .08 2.8 .04 2.7 .1<.05	
L L750N 1100E	2.3 21.6 11.7 57 .2 16.5 8.3 188 2.60 4.0 1.2 2.9 5.3 9 .1 .2 .8 35 .07 .079 7 21.6 .26 40 .137 1 4.29 .014 .05 1.0 .05 3.4 .1<05	
L L750N 1200E	2.2 20.7 13.6 59 .2 13.7 6.7 293 2.76 4.5 1.1 3.5 4.3 7 .1 .3 .7 37 .05 .082 9 20.9 .24 42 .124 1 4.01 .012 .07 .6 .08 2.9 .1<.05	
L 1750N 1300E	4.5 29.0 11.0 50 .2 27.7 10.5 252 3.17 6.1 1.2 1.1 7.8 11 .1 .2 1.2 33 .07 .062 13 27.7 .40 55 .097 1 3.48 .011 .05 2.1 .06 3.3 .1<.05	
RE CTEVEN LOOVE	!	9 < 5
		_
L L750N 1400E	6.0 32.9 10.4 71 .3 25.6 13.2 338 4.01 14.0 1.2 2.5 7.2 8 .1 .3 1.5 34 .05 .082 12 25.3 .34 54 .084 1 3.19 .011 .06 3.6 .05 2.5 .1<0.5	
L 1750N 1500É	6.9 42.5 11.3 65 .2 32.9 11.9 409 6.24 21.5 i.3 1 4 8 4 8 4 8 4 .1 .3 3.5 35 .03 .094 26 38.1 .50 43 .034 1 2.08 .007 .05 8.4 .05 3.0 .1<05	8.5
L £750N 1600E	3.2 56.3 15.8 84 < 1 41 1 21 2 1101 5.21 16.6 1.7 1.4 10.3 9 .1 .3 2.2 36 .04 .144 29 37.8 .53 61 .040 1 2.24 .007 .07 5.1 .03 3.2 .1<05	8.6
L L750N 1700E	4.1 130.0 11.4 87 .4 65.1 41.8 429 4.23 16.9 4.7 5.2 10.7 7 .1 .4 1.8 31 .04 .158 32 30.6 .41 40 .087 2 3.78 .009 .07 3.2 .20 6.2 .1 .06	8 1.5
1 L750N 1800E	6.9 51.5 14.3 66 .3 38.0 13.7 344 5.91 20.1 1.3 1.5 10.1 11 .1 .3 1.6 30 .03 .090 30 40.3 .52 48 .033 1 2.24 .007 .04 10.8 .06 2.4 .1<05	7.6
		ł
L L750N 1900E	6.4 36.1 18.4 80 .3 26.5 11.5 390 5.13 17.1 1.2 93 9.8 11 <.1 .4 1.3 36 .05 .087 19 30.4 .44 70 .071 1 2.55 .007 .07 4.2 .04 2.4 .1<.05	9.6
L L750N 2000E	3.2 31.7 12.8 86 .1 27.1 13.6 395 4.25 8.1 1.3 5.1 8.7 11 <.1 .2 1.2 33 .04 .109 17 25.7 .43 65 .097 2 3.47 .011 .06 2.7 .05 2.7 .1<.05	10 6
L L750N 2100E	3.9 38.0 14.0 85 3 29.4 14.2 418 4.17 9.2 1.3 1.1 9.4 15 .1 .2 2.2 29 .05 .087 15 27.1 .40 53 .081 1 2.95 .007 .06 9.6 .07 2.2 .1<05	7 7
L L750N 2200E	2.6 29.8 20.3 122 .7 20.6 15.0 674 3.13 8.2 1.6 <.5 7.9 9 .3 .2 2.3 30 .04 .128 11 16.8 .25 65 .119 2 4.07 .011 .06 7.3 .09 3.4 .1<05	10 6
L 1750N 2300E	2.4 20.8 23.8 154 .2 27.3 21.9 601 3.39 8.6 1.0 230.0 7.0 14 .6 .2 2.8 29 .09 .144 12 19.6 .29 51 .084 2 2.52 .010 .08 6.9 .05 1.8 .2<.05	
L LYDUN ZOUVE	5/4 2/2 1/2 2/2 2/2 1/2 2/2 2/2 2/2 2/2 2/2	(5.0
STANDARD DS6		612
STANUARD USG	11.4 120.8 29.2 141 .3 24.5 10.6 681 2.75 21.2 6.7 46.8 3.1 41 6.2 3.7 5.0 55 .84 .078 13 181.1 .57 165 .071 16 1.88 .075 .15 3.4 .23 3.2 1.7<.05	04.3

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data \underline{k} FA

E ANALYTICAL							Rub	y I	Red	Re	ອວາ	irce	98	Inc		F	'IL	E #	A6	002	275			X † 9	0 5 4 1 5 4	45		Pag	e 14	} 1	ACHE AN	
SAMPLE#	Mo ppm	Сu ppm	-	Zn ppm	-	Ni ppm		Mn ppm				Au ppb																		T1 1 ppm 5		
G-1 L L750N 2400E L L750N 2500E L L750N 2600E L L750N 2700E	2.7 3	24.2 38.3 27.6	29.9 59.0 79.4	94 138 209	.3 .6 1.1	30.2 49.5 40.5	16.4 31.1 23.7	671 826 586	4.32 4.13 3.70	15.7 17.0 12.5	1.0 1.5 1 1.2	1 6-0 37.5 4.0	7.9 10.1 8.4	15 15 26	.2 . .3 . .4 .	4 7 4 12 3 7	.2 3 .2 2 .5 3	5.07 8.07 5.15	. 060 . 086 . 079	22 23 17	24.8 25.7 28.4	.32 .49 .51	55 .0 87 .0 80 .1	78 80 23	2 1.99 2 2.92 2 3.09	.007 .009 .011	.09 .10 .13	8.4 14.5 9.7	.04 1.9 .05 2.8 .06 2.8	. 2<. 09 . 2<. 09 . 2<. 09 . 2<. 09 . 4<. 09	5 8 5 8 5 9	.5 .7 .6
L L500N OE L L500N 100E L L500N 200E L L500N 300E L L500N 400E		9.5 23.6 22.7	13.6 12.7 9.3	35 87 66	.1 .1 .3	5.2 20.3 16.2	2.5 8.6 7.2	125 234 205	2.54 3.59 3.15	3.4 4.6 4.0	.5 1.1 1.2	1.8 1.6 .9	3.0 8.5 6.5	6 7 7	.2 . .1 . .1 .	4 3 2	.7 4 .6 3 .5 3	4 .05 5 .05 1 .05	. 094 . 084 . 092	9 9 12	13.9 29.8 25.3	. 10 . 23 . 24	25 .1 46 .1 39 .1	41 1 11 2 08 1	1 1.60 2 5.75 1 5.04	.015 .012 .013	.05 .05 .04	.2 .7 .6	.07 1.4 .07 2.9 . 40 3. 0	.1<.09 .1 .09 .1<.09 .1<.09 .1<.09	5 14 < 5 10 5 10	.5 .7 .8
L L500N 500E L L500N 600E	5.5 3	34.4	15.8	96	.1	40.4	20.3	453	4.53	5.4	1.2	2.5	8.0	20	.1.	21	6 3	9.13	.065	15	40.4	. 67	68 .0	85 3	1 3.89	.008	.07	2.1 .	04 2.9	.2<.05 .1<.05	12	.7
RE E ESBON BODE L L500N 700E L L500N 800E	2.1 (55.4 1	86.1	244	.3 :	101.4	111.4	1354	7.26	5.7	1.4	(2 -1)	7.4	40	.4 .	3 18	1 3	9.24	.128	14	32.6	. 50	82.1	05 🗧	3 4.18	.013	.09	13.4 .	06 3.0	0;≫]≪∍0; 1<.0; 1<.0;	12	.7
L L500N 900E L L500N 1000E L L500N 1100E L L500N 1200E L L500N 1200E L L500N 1300E	2.3 2 3.7 2 3.4 2	21.6 23.0 23.2	14.9 12.6 12.2	106 65 59 -	.1 .2 <.1	30.3 32.2 22.8	17.2 12.7 8.4	243 372 296	3.21 3.69 4.22	6.0 4.9 10.0	1.0 .8 .8	1.0 1.8 17-4	5.7 6.1 6.8	11 15 10	.2 . .1 . .1 .	4 1. 2 1 3 1	0 3 5 4 3 3	2 .09 1 .13 5 .05	.243 .056 .062	12 16 29	23.1 32.4 27.4	. 34 . 47 . 38	56 .1 47 .0 50 .0	03 2 85 3 53 1	2 3.84 3 2.99 L 1.68	.013 .009 .008	.07 .08 .05	2.3 . 1.1 . 3.2 .	10 2.2 05 2.5 03 2.1	.2<.05 .1<.05 .2<.05 .1<.05 .2<.05	11 11 < 10 <	.5 .5 .5
L L500N 1400E L L500N 1500E L L500N 1600E L L500N 1600E L L500N 1700E L L500N 1800E		76.7 50.9 55.3	13.6 16.2 14.4	75 97 84	.1 .1 .1	48.0 46.3 36.2	16.9 18.9 16.1	361 356 518	6.59 5.18 6.23	17.2 19.8 13.3	2.2 1.7 1.6	4.8 3.4 6.5	12.4 13.2 12.1	13 < 12 < 11 <	.1 . .1 . .1 .	5 1. 5 1. 3 5.	.5 3 .8 30 .9 34	5.07 0.04 4.05	.134 .110 .154	32 34 31	32.0 33.8 38.0	. 47 . 53 . 54	49 .0 59 .0 49 .0	56 2 50 1 52 1	2 2.63 L 2.86 L 2.40	.007 .007 .007	.07 .06 .07	6.7 . 6.4 . 12.2 .	06 2.8 07 2.7 05 2.7	.1<.09 .1<.09 .1<.09 .1<.09 .1<.09	91 8 9	.0 .8 .6
L L500N 1900E L L500N 2000E L L500N 2100E L L500N 2200E L L500N 2300E	3.9 2	28.2 27.6 28.5	26.5 29.8 31.1	134 110 158	.2 .3 .4	38.1 32.1 34.1	22.1 23.6 17.2	489 820 684	4.45 3.52 3.59	14.5 15.1 15.2	1.1 1.2 1.2 ·	1.8 1.1	9.8 9.6 9.2	17 15 15	.2 .2 .3	3 4. 3 4. 3 6.	.1 3: .2 20 .0 29	3.06 3.07 9.08	.104 .065 .106	22 23 20	24.3 21.5 22.8	. 38 . 33 . 35	73 .0 78 .0 71 .0	84 2 72 2 83 2	2 2.35 2 2.32 2 3.01	.009 .007 .009	.10 .10 .13	9.9. 12.9. 13.3.	04 1.9 04 1.9 05 2.1	.2<.05 .2<.05 .2<.05 .2<.05 .2<.05	10 7 < 8	.5 .5 .6
L L500N 2400E L L500N 2500E L L500N 2600E L L500N 2700E L L250N 0E	1.2 2	21.3 20.3 16.7	58.9 35.8 22.8	155 121 100	.6 .3 .4	33.5 28.9 28.9	18.6 16.9 20.0	1360 1356 518	3.45 4.13 3.59	6.9 4.8 3.5	1.0 .9 1.1	1.8 .6 2.2	6.3 8.4 6.8	32 30 24	.5. .2. .1.	25. 22. 21.	1 3. 4 30 6 3.	1 .21) .26 1 .20	.137 .228 .169	16 18 16	35.2 30.6 26.1	.67 .82 1 .53 1	99 .1 08 .1 08 .0	01 2 02 2 80 2	2 3.09 2 3.08 2 3.18	.010 .010 .014	.17 .22 .16	6.7 . 4.9 . 2.3 .	05 2.8 04 2.6 08 2.2	.2<.05 .3<.05 .4<.05 .2<.05	10 10 < 10 <	.6 .5 .5
STANDARD DS6	11.6 12	23.6	29.9	141	. 3	24.9	10.8	695	2.83	21.5	5.7	46.6	3.3	42 6	.2 3.	55.	1 56	5.86	. 081	14 1	71.8	58-10	66 .0	80 16	5 1.94	.076	.16	3.3.	23 3.4	1.7<.05	64	.2
<u>Sample type: SOI</u>	<u>L SS80 6</u>	50C.	Sampl	ies be	eginn	<u>iing i</u> l	RE'ar	<u>e Rer</u>	<u>unsa</u>	nd R	RE' a	ire Re	ject		s. V		20							* ** 、								

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

÷

Data<u>/</u>FA

ALA ACHE ANALYTICAL		Ruby Red Resources	Inc. FILE # A600275	Page 15
SAMPLE#			Sr Cd Sb Bi V Ca P La Cr Mg Ba ррлпррлпррлпрлп ≵ ≵ррлп ≱ррлп ≵ррлп	Ti B Al Na K W Hg Sc Tl S Ga Se \$ ppm \$ \$ \$ ppm ppm ppm ppm \$ ppm ppm
G-1				130 - 1-1-13 - 108 - 59 1< 01-4.1 4< 05 5 < 5
L L250N 100E			9 .1 .2 1.0 33 .05 .089 11 31.4 .42 61 .0	
L L250N 200E		27.2 573 4.40 3.7 1.4 4.5 10.5		
L L250N 300E			13 .1 .3 2.2 34 .07 .094 32 40.2 .57 74 .0	
L L250N 400E	3.5 46.1 20.1 141 .1 55.0	32.3 802 4.47 8.0 1.5 1.4 11.0	19 .2 .4 3.4 32 .12 .210 44 37.6 .56 100 .0	053 1 2.71 .008 .06 3.3 .04 2.8 .1 <.05 8 .6
L L250N 500E	3 6 36 2 13 7 84 1 32 9	11 5 526 4 60 4 3 1 1 3 5 8 5	18 .1 .3 1.5 38 .09 .076 22 40.7 .63 61 .0	059 1 2.55 .005 .06 1.6 .04 2.8 .1 <.05 9 .5
L L250N 600E		34.2 696 4.91 3.9 1.6 22.7 5.6		025 1 2.09 .006 .06 7.8 .02 2.0 .1 < .05 7 .5
L L250N 700E			11 < .1 .4 1.7 27 .06 .062 30 33.2 .52 36 .0	
L L250N B00E	5.0 33.1 11.8 67 <.1 37.4	19.2 436 4.32 8.4 1.2 2.6 10.6	15 .1 .3 1.8 31 .06 .088 23 34.1 .54 59 .0	057 2 2.64 .006 .06 3.3 .04 3.2 .1 <.05 8 .8 🚙 👘
RE-L-FEGGMEOGOE	&&&&	+9-9-436-4-85-8-2-1-2-3-4-1 0-3	#14~~~1~~~3~P+9~~31~~306~~24~~30~50~50	Service Frank Control of the Frank State of the Frank State of the Sta
L L250N 900E			17 .1 .2 1.6 34 .08 .170 62 46.1 .69 54 .0	
L L250N 1000E		18.2 418 4.63 12.3 1.0 1.1 7.4		
L L250N 1100E L L250N 1200E			10 < 1 .3 1.3 28 .04 .064 21 31.2 .46 58 .0 17 < 1 .4 1.7 43 .04 .185 30 36.9 .55 54 .0	036 1 2.59 .006 .07 4.3 .05 3.5 .1 <.05 9 1.2
L L250N 1200E	24.9 51.9 21.3 90 .1 00.0	26 2 720 A Q6 Q A 1 7 1 1 12 2	17 .2 .5 1.8 34 .10 .152 28 29.4 .46 104 .0	079 1 2.87 .006 .07 6.1 .05 3.0 .1 <.05 8 .8
E E2000 1000E	14.4 30.1 14.2 02 .1 00.1	20,3 720 4.00 3.4 1.7 1.1 10.3	17 .2 .3 1.6 04 .10 .162 26 25.4 .40 104 .0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
L L250N 1400E	16.5 37.0 14.2 79 .2 35.8	16.9 574 4.92 8.1 1.1 2.1 9.4	16 .2 .4 3.5 36 .07 .096 20 30.6 .37 96 .0	077 1 2.47 .005 .07 8.5 .07 2.4 .1 <.05 8 .8
L L250N 1500E		22.7 307 4.29 14.5 1.3 3.7 13.6		045 1 2.39 .004 .06 10.9 .03 2.2 .1 <.05 6 .8
L L250N 1600E	4.0 47.8 18.0 144 .2 106.5	76.3 926 5.01 6.6 1.4 4.9 11.8	18 .1 .3 3.1 29 .04 .085 28 41.0 .58 52 .0	062 1 2.72 .006 .07 7.2 .04 3.2 .1 <.05 8 .6
L L250N 1700E	5.2 42.8 25.5 82 .2 69.3	27.3 419 4.08 13.7 1.4 1.4 12.5	13 .1 .4 4.0 19 .04 .061 21 27.0 .47 74 .0	042 1 2.37 .003 .07 8.9 .04 2.0 .1 < .05 5 .5
L L250N 1800E	3.7 42.1 26.8 118 .3 83.0	51.3 545 4.10 11.9 1.3 7.7 10.8	12 .1 .4 4.2 27 .05 .070 20 28.2 .43 87 .0	067 1 2.92 .005 .07 6.8 .05 2.6 .1 <.05 7 <.5
			10 0 4 4 7 00 05 116 00 07 0 41 100 5	063 1 2 77 005 08 11 4 06 2 5 .1 < 05 7 7
L L250N 1900E		41.6 552 4.23 12.6 1.3 1.8 10.5 22.5 1441 3.44 11.6 1.1 2.1 7.1	13 .2 .4 4.7 30 .05 .116 20 27.3 .41 102 .0 18 .5 .2 5.0 23 .15 .218 14 22.5 .36 115 .0	
L L250N 2000E L L250N 2100E		17.7 694 4.07 9.0 .8 1.2 6.9		
L L250N 2200E		18.8 1288 3.75 10.2 .9 1.9 5.2		
L L250N 2300E	27 21 8 51 2 131 6 26 1	13.1 646 4.35 10 4 9 2 9 5 4	19 .4 .2 6.1 30 .09 .237 15 27.3 .45 64 .0	
L 1250N 2400E	1.7 22.0 44.9 421 .6 36.0	17.9 892 3.99 4.9 1.4 4.1 4.9	55 .8 .2 4.5 22 .52 .107 13 42.7 .86 82 .0	
L L250N 2500E		19.0 687 3.77 4.4 1.7 2.3 7.9	35 .4 .2 3.8 29 .34 .151 15 29.1 .85 77 .0	077 1 3.00 .010 .10 6.7 .05 2.6 .2 <.05 7 <.5
L L250N 2600E		13.1 345 2.78 3.1 .8 2.5 6.5	8 .2 .2 1.2 26 .06 .114 12 21.4 .86 59 .0	074 1 2.93 .005 .07 2.0 .05 1.8 .1 <.05 8 <.5
L L250N 2700E	1.2 9.8 21.2 53 .2 13.7	8.6 177 3.38 4.2 .6 1.6 5.7	9 .1 .2 1.4 36 .06 .115 9 20.4 .52 63 .1	114 2 1.96 .009 .07 1.7 .04 1.9 .1 <.05 11 <.5
STANDARD DS6	11.5 123.8 29.7 142 .3 24.9	10.8 715 2.83 21.3 6.6 45.8 3.1	40 6.1 3.6 5.1 56 .85 .078 13 184.1 .57 163 .0	079 16 1.90 .073 .16 3.7 .23 3.2 1.7 <.05 6 4.6

Sample type: SOIL SSB0 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Į

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖊 FA

	01 7	lecr	ed1															***	- (k) (k) - (k) (k)			FIC														
ET				R	uby	r R	ed	Re 207	90 U • 23	20) 9	98 12th	In Ave	<u>c.</u> s.w	<u>PR</u> ., C	OJ algi	<u>EC</u> ary	'T AB 1	GA I2R	R The	Fi Su	le bmit	# 7 ted b	450 y: D	48. . An	36 dersc	n E	'ag	e	1							Ľ.
SAMPLE#	Mo ppm	Ci ppr	u Pt n ppn	2 1 pp	n Ag nippm	N1 ppr	i C I pp	o Min n ppm	Fe X	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm) V V	Ca %	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	A1 %	Na X	K X	W W	Hg opm p	Sc prnp	71 : 2711 :	5 Ga 13 ppm	Se ppm	Sample gm
G-1 A1 L3200N 0E A1 L3200N 100E A1 L3200N 200E A1 L3200N 300E	.9 1.5 1.1	8.9 14.1 7.8) 7.7 10.2 313.9	1 2 2 3 2	9.1 1.1 3.1	3.9 3.8 5.0	5 1. 3 2. 9 2.:	7 95 3 257 3 136	2.47 2.45 2.36	4.7 7.3 5.0	.8 1.0 .5	2.3 3.9 3.0	3.5 4.1 2.7	3 3 3	.1 .2 .1	.3 .4 .4	.2 .2 .5	37 31 45	.03 .03 .02	.081 .134 .058	3 7 6	84.0 10.0 11.9 9.6 6.6	.05 ,06 .13	18 19 25	.131 .114 .172	14 15 11	.61 .72 .75	.014 .012 .017	.02 .02 .03	.2 .2 .1	.05 2 .12 2 .04 1	.4 < .9 < .6	.1<.0 .1<.0 .1<.0	5 11 5 9 5 15	<.5 .7 <.5	15 15 15 15 15
A1 L3200N 40DE A1 L3200N 50DE A1 L3200N 600E A1 L3200N 600E A1 L3200N 700E A1 L3200N 800E	.7 _7 _9	6.4 5.4 12.0	10.3 12.9 13.4	3 21 7 34 1 31	5 .1 4 .1 5 .1	5.9 5.6 7.3	4.(2.(3.(251 63 132	1.61 1.86 2.06	3.5 3.2 4.5	.9 1.1 1.2	.8 1.3 1.7	6.9 9.7 7.2	4 3 6	.1 .1 .1	.2 .2 .2	.4 .4 .7	22 25 35	.03 .02 .06	.036 .058 .133	17 18 11	8.7 8.6 9.8 11.4 14.7	.17 .16 .17	85 52 82	.060 .066 .090	11 12 12	.50 .29 .18	.007 .008 .008	.06 .06 .07	.2 .1 .3	.05 1 .04 1 .06 1	.1 .8 .9	.1<.09 .1<.09 .1<.09	56 57 59	<.5 <.5 <.5	15 15 15 15 15
A1 L3200N 900E RE A1 L3200N 900E A1 L3200N 1000E A1 L3200N 1100E A1 L3200N 1200E A1 L3200N 1200E	.7 1.0 .8	11.9 6.5 2.9) 12.7 5 26.0 9 15.5	40	$\begin{array}{c} .1 \\ 5 .1 \\ 2 .1 \end{array}$	5.5 5.1 3.0	2.9 15.9	5 70 992 48	1.94 1.94 .89	3.2 3.2 2.0	3.6 2.7 3.8	2.2 1.2 1.1	6.3 1.8 2.7	5 7 6	.1 .3 .1	.2 .2 .1	.3 .6 .4	28 27 16	.06 .09 .10	.091 .035 .024	7 11 20	9.6 10.5 9.2 5.7 6.9	.12 .16 .09	80 107 63	.158 .079 .054	14 11 <1	. 36 . 31 . 96	.022 .011 .010	.04 .07 .03	.2 . .1 . .1 .	072 041 04	.9. .3. .9.	1<.05 1<.05 1<.05	12 10 7	<.5 <.5 <.5	15 15 15 15 15
A1 L3200N 1300E A1 L3200N 1400E A1 L3200N 1500E A1 L3200N 1600E A1 L3200N 1700E	.6 .2 .3	125.3 2.7 3.3	6.7 5.4 8.4	23 30 50	3 .2 <.1 <.1	5.4 4.5 7.8	2.0 2.0 4.1	68 84 127	1.64 1.24 1.44	2.3 1.2 1.1	1.2 .6 .7	2.3 1.1 .7	6.4 4.9 6.4	3 3 4	.1 <.1 <.1	.1 .1 .1	.7 .2 .3	20 14 18	.03 .03 .04	.057 .058 .027	11 12 13	8.7 9.3 7.5 9.7 9.5	. 18 . 21 . 24	30 38 45	.089 .065 .074	12 <11 11	.74 .20 .14	.010 .004 .004	.03 .03 .07	.1 . .1 . .1 .	06 1 04 1 02 1	.4 .2 .2	1<.05 1<.05 1<.05	6 5 5	<.5 <.5 <.5	15 15 15 15 15
A1 L3200N 1800E A1 L3200N 1900E A1 L3200N 2000E A1 L3200N 2100E A1 L3200N 2100E A1 L3200N 2200E	.3 .3 .3	3.2 4.5 5.4	6.6 5.6 7.4	27 22 22	<.1 <.1 <.1	5.9 5.9 5.7	2.9 2.8 2.6	77 80 88	1.70 1.56 1,88	1.6 2.0 1.6	.6 .8 .6	1.0 .7 <.5	5.2 4.4 5.7	3 4 3	<.1 .1 <,1	.1 .1 .1	.2 .2 .3	15 17 18	.02 .04 .03	.031 .057 .050	15 16 17	8.8 8.7 9.1 9.8 5.4	.20 .21 .22	35 43 34	.047 .054 .051	11 <11 <11	.23 .39 .34	.003 .006 .006	.04 .07 .06	.1 . .1 . .1 .	04 1 04 1 02 1	.0 . .3 . .1 .	1<.05 1<.05 1<.05	3 4 4	<.5 <.5 <.5	15 15 15 15 15
A1 L3200N 2300E A1 L3200N 2400E A1 L3200N 2500E A1 L3200N 2600E A1 L3200N 2600E A1 L3200N 2700E	.2 .3 .6	6.7 4.0 5.0	10.1 6.2 7.7	38 49 16	<.1 <.1	6.8 7.8 2.4	5.0 4.3 1.7	323 155 58	1.91 1.60 1.22	1.9 1.9 1.6	1.1 .7 .6	1.0 .9 1.2	7.9 6.4 2.4	23 15 7	.1 <.1 .1	.1 <.1 <.1	.1 .2 .2	40 24 21	.11 .10 .09	.076 .045 .040	14 15 6	10.7 8,2 8.6 7.5 7.8	.26 .26 .09	161 83 36	.107 .063 .084	<13 11 12	.09 . .67 . .94 .	.009 .004 .015	.24 .12 .02	.1 . .1 . .1 .	01 3. 02 1. 03 1.	3 7 6 <.	3<.05 1<.05 1<.05	8 5 7	<.5 <.5 <.5	15 15 15 15 15
A1 L3200N 2800E A1 L3200N 2900E A1 L3200N 3100E A1 L3200N 3200E A1 L3200N 3200E A1 L3200N 3300E	.4 .8 .5	10.3 11.4 16.1	27.9 13.5 23.9	49 44 131	.1 .2 .2	8.5 9.5 14.0	4.6 5.7 8.0	151 107 346	1.35 1.86 1.79	1.5 2.8 2.7	.9 .8 .5	.9 1.0 1.0	3.7 3.8 4.0	12 · 9 11	<.1 .1 .3	.1 .1 .1	.3 .2 .2	20 27 23	.24 .16 .25	. 023 . 103 . 095	21 8 10	17.5 16.3 13.9 17.8 16.9	. 99 . 58 . 84	63 83 96	. 091 . 108 . 097	12. 22. 32.	17 94 40	014 016 019	.08 .06 .10	.3. .3. .2.	02 2. 03 2. 02 2.	5.2.	1<.05 1<.05 1<.05	8 8 8	<.5 <.5 <.5	15 15 15 15 15
STANDARD DS6 GROUP 10X - 15. (>) CONCENTRATI - SAMPLE TYPE:	.00 GN	SAMI	PLE L S UPP	EAC	HED I	JITH	90 I SOMI	L 2-	2-2 1 ERAL	HCL-I	INO3-	H2O PART	AT S	95 DI	EG.	C FC	DR C	NE 1	HOUR	, DII	LUTE		500 M	4L, #	NALY	SED E		CP-M	s.			<u>61.</u>	7<_05	6 \	4.5 To	15
Data / FA			DAI	E	-			-		-									~	an <u>s.</u> Al	F !	<u>, 2 </u> 0	<u>)</u>									N IN		aren	ce L	eonig

į

Second control of the second co

1877 Barrie 1878 -

ACHE ANALYTICAL									·																								ACHE	ANALYTICAL
SAMPLE#	Mo ppm		i Pb i ppri									Au T ppb pp								La ppm	Cr ppm	Mg X			B A ppm				Hg ppm p			S Ga ≭pprn		Sample gm
A1 L3200N 3400E A1 L3200N 3500E A1 L3000N 0E A1 L3000N 100E A1 L3000N 200E	2.0 .9 .6	23.9	55.7 14.8 7.1	122 42 34	.1 .1 <.1	17.2 7.1 9.0	8.5 3.6 3.7	148 126 109	1.93 2.16 1.95	1.8 3.5 3.0	.5 .8 .6	74.63. 2.84.	511 16 04	.3	.1 .2 .2	.2 .4 .3	29 32 29	.30 .05 .02	.014 .040 .023	10 13 18	23.3 11.2	1.14 .24 .34	70 74 63	.119 .107 .041	11.8 11.2	0 .01 4 .01 8 .00	.08 .06 .05	.4 .3 .2	.02 2 .05 1 .02 1	2.6 5 3	.2 <.0 .1 <.0 .1 <.0	58 510 57	.5	15 15 15 15 15
A1 L3000N 300E A1 L3000N 400E A1 L3000N 500E A1 L3000N 600E A1 L3000N 700E	1.0	3.6 8.9	8.1 7.8	53 23 27	.1 <.1 .1	7.2 3.5 6.9	4.3 1.8 3.4	351 2 117 2 202 2	2.02 1.32 2.59	4.1 1.4 6.0	.9 .4 1.7	2.1 2. 1.4 3. <.5 7. .6 9. 1.0 5.	95 12 75	.1 <.1 .3	.2 .1 .3	.3 .3 .5	30 21 35	.03 .01 .06	.015 .110	13 26 9	7.8 12.5 6.9 10.6 8.5	.25 .16 .13	60 49 68	.080 .047 .122	$ \begin{array}{c} 1 & 3.0 \\ 1 & 3.2 \\ 1 & 1.1 \\ 1 & 2.3 \\ 2 & 1.5 \\ \end{array} $	9 .008 8 .009 5 .013	.05 .04 .07	.3 .1 .3	.03	2.0 .9 6	.1 <.0 .1 <.0 .1 <.0 .1 <.0 .1 <.0	5 B 5 7 5 12	.5	15 15 15 15 15
A1 L3000N 800E A1 L3000N 900E A1 L3000N 1000E A1 L3000N 1100E A1 L3000N 1200E	.5 .6 .5	2.7 6.3 14.6	18.7 11.1 16.7	12 · 15 28	<.1 .1 .2	2.4 3.5 5.6	.8 1.5 4.8	28 45 589 2	.26 1.29 2.34	.6 .1.6 10.6	3.0 1.1 2.8) 7 8 4 1 11	.1 .1 .3	.1 .1 .3	.9 .3 .7	10 20 22	.05 .03 .09	.022 .050 .107	15 10 12	6.9 10.1	.07 .07 .18	102 38 75	.027 .099 .134	2 1.4 <1 .7 1 2.0 1 1.3 <1 1.5	5 .009 0 .013 6 .019	.06 .04 .05	<,1 .2 .1	.03 .05 1 .10 1	.8 .7 .2	.2 <.0 .1 <.0 .1 <.0	56 59 512	<.5 .6 .5	15 15 15 15 15
A1 L3000N 1300E A1 L3000N 1400E A1 L3000N 1500E A1 L3000N 1600E A1 L3000N 1700E	.4 .3 .3	5.1 7.7 2.8	6.9 8.8 10.9	43 59 - 21 -	.1 <.1 : <.1	7.3 10.4 4.6	4.7 6.9 2.5	112 1 288 1 77	1.33 1.57 .99	1.9 1.3 .8	1.1 .7 1.0	1.5 6. 1.1 7. <.5 6. <.5 4. 2.3 4.	1 4 7 6 0 5	.1 <.1 .1	.1 .2 .1	.2 .4 .3	17 19 17	.04 .06 .03	.046 .032 .012	15 16 16	11.1 7.5	.30 .33 .15	53 87 53	091 085 071	2 3.0 1 2.2 <1 1.5 1 .7 <1 3.4	6 .009 1 .006 1 .005	.05 .12 .06	.1 .1 .1	.04 1 .02 1 .02	6 2 .9	.1 <.0 .1 <.0	5 5 5 5 5 5	<.5 <.5 <.5	15 15 15 15 15
A1 L3000N 1800E A1 L3000N 1900E A1 L3000N 2000E A1 L3000N 2100E RE A1 L3000N 2100E	.5 .3 .3	4.8	8.7 8.6 5.5	40 16 36	<.1 .1 <.1	6.8 3.4 8.2	3.2 1.4 4.7	97 1 45 1 116 1	L.58 L.37 L.33	1.5 1.9 1.0	.6 .6 .7	2.4 5.0 1.4 4.0 1.2 3.0 1.7 4.0 1.4 4.9	3 4 2 4 5 3	.1 .1 .1	.1 .1 .1	.3 .2 .2	21 18 13	.03 .03 .03	. 066 . 060 . 046	11 12 16	6.6 9.2	.18 .11 .30	51 . 36 . 59 .	076 078 047	3 4.5 1 1.9 1 1.5 <1 1.5 1 1.5	1 .008 4 .008 3 .005	.06 .04 .07	.1 .1 <.1	.05 1 .03 1 .02 1	.4 .2 .6	.1 <.0 .1 <.0	56 58 54	.7 <.5 <.5 <.5 <.5	15 15 15 15 15
A1 L3000N 2200E A1 L3000N 2400E A1 L3000N 2500E A1 L3000N 2600E A1 L3000N 2700E	.7 .6 .6	5.7 7.1 9.3	5.3 15.3 12.4	25 · 61 39	<.1 .1 .1	7.1 6.7 7.5	3.3 3.6 4.1	110] 119] 97]	. 33 . 30 . 47	1.3 1.5 2.5	.7 .5 .7	1.1 4.3 1.3 3.1 6.9 4.1	3 12 L 9 L 8	<.1 .1 .1	.1 .1 .1	.3 .3 .3	19 22 23	.13 .16 .08	.033 .038 .106	16 10 10	12.1 13.8 9.5	.52 .57 .33	80 . 82 76	073 114 086	1 1.3 1 .8 1 1.7 <1 2.9 <1 1.8	7 .007 B .018 9 .013	.12 .07 .05	.2 .2 .3	.02 1 .02 1 .01 1	.1 .6 .8	.1 <.0 .1 <.0	55 510 56		15 15 15 15 15
A1 L3000N 2800E A1 L3000N 290 <u>0E</u> A1 L3000N 3100E A1 L3000N 3200E STANDARD DS6	.6 4.8 1.3	27.9 8.9 7.9	30.2 14.6 13.6	53 59 51	.2 1 .2 .1	l6.7 6.9 7.1	66 46 40	352 2 68 1 66 1	2.36 .46 .38	5.3 1 3.8 1 3.7	3 1 5	. <u>9</u> 5.7 1.2 2.7 1.2 3.9	31 11 10	.2 .5 .2	.1 .1 .1	.5 .3 .2	37 29 23	.46 .24 .14	. 031 . 044 . 220	11 4 4	20.1 12.9 10.5	.88 / .24 .19	252 . 58 . 58 .	144 128 118	<1 2.2 1 4.2 1 3.2 <1 2.8 17 1.9	L .031) .022) .025	.18 .04 .04	4 .5 .3	.04 2 .02 1 .03 2	.8 .9 .1	.1 <.0	5 11 5 10 5 7	<.5 <.5 <.5	15 15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

ACHE ANALYTICAL SAMPLE# Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca PLa Cr Mo, Ba Ti 8 A} S Ga Se Sample Ma Na K W Ho Sc TI ודמם המסב 🛣 🛣 אדמים א X ppm X X X ppm ppm ppm ppm ODM X ppm 3 DOM DDM **OR** A1 L3000N 3300E 1.5 50.2 20.7 63 .1 17.2 9.5 134 1.96 3.5 .5 1.5 4.4 17 .1 .1 .2 28 .22 .080 7 14.9 .69 205 .154 1 3.02 .026 .10 .3 .02 2.2 .1 <.05 10 <.5 15 A1 L3000N 3400E .4 15.9 21.0 128 .2 11.6 5.7 410 1.27 1.5 .4 <.5 3.0 16 .2 .1 .2 18 .17 .179 5 11.4 .42 208 .103 3 2.15 .029 .12 .2 .03 2.1 .1 <.05 7 <.5 15 A1 L3000N 3500E .6 29.2 35.9 61 .2 11.2 5.7 347 1.69 2.2 .4 <.5 2.5 14 .1 .1 .2 22 .35 .019 6 19.5 .76 154 .094 1 2.65 .030 .10 .3 .01 2.7 .1 <.05 7 <.5 15 A1 L2800N 0E .8 7.0 7.9 18 .1 3.6 1.8 42 1.88 2.2 .6 1.4 3.8 3 .1 .2 .3 34 .01 .032 13 8.7 .09 34 .073 1 1.78 .009 .03 .1 .05 1.8 .1 < .05 9 < .5 15 A1 L2800N 100E 1.5 13.0 12.9 20 .1 4.8 2.4 122 2.55 4.6 .9 1.3 3.8 5 .2 .3 .3 43 .03 .074 7 10.3 .08 41 .158 1 3.08 .015 .05 .2 .07 2.3 1 < 05 15 < 5 15 A1 L2800N 200E 1.1 9.4 12.4 29 .1 4.4 2.2 121 2.78 4.5 .8 1.5 4.9 5 .1 .2 .3 39 .03 .129 4 14.3 .08 45 .127 1 4.91 .010 .03 .2 .12 2.1 .1 < .05 13 .6 15 A1 L2800N 300E .9 15.5 10.2 47 .2 8.0 5.4 950 2.04 3.3 1.1 <.5 3.8 4 .1 .2 .3 33 .03 .095 11 10.1 .18 61 .130 1 4.38 .012 .05 3.0 .1 <.05 10 .6 15 AI L2800N 400E .7 7.4 11.5 51 .1 10.9 5.9 669 1.86 2.7 1.5 <.5 5.5 4 .1 .2 .4 19 .02 .104 21 11.2 .38 57 .040 1 1.63 .004 .08 .2 .04 1.1 .1 <.05 5 <.5 15 A1 L2800N 500E .6 12.1 16.2 32 .1 6.5 3.5 202 2.34 3.7 2.8 <.5 2.1 12 .1 .2 .5 30 .12 .058 13 14.0 .20 109 .103 2 2.23 .013 .07 .1 .07 1.8 .1 <.05 11 .5 15 AI L2800N 600E .7 9.9 23.1 33 .1 7.1 3.0 84 1.29 2.2 .9 <.5 1.9 8 .1 .2 .7 33 .05 .028 13 12.4 .24 78 .105 2 1.46 .010 .1 .0 .1 .03 1.8 .1 <.05 10 <.5 15 .3 4.0 11.2 19 <.1 5.1 2.2 56 .77 1.2 1.1 <.5 3.3 5 <.1 .1 .5 14 .02 .020 23 8.6 .20 26 .048 1 .84 .004 .06 .1 .02 1.1 .1 <.05 6 <.5 A1 L2800N 700E 15 A1 L2800N 800E .8 9.6 17.8 25 .1 4.9 2.3 85 2.43 4.9 .6 1.3 3.7 4 .1 .2 .5 45 .02 .193 4 9.7 .18 32 .195 1 1.42 .014 .04 .3 .06 1.3 <.1 <.05 14 <.5 15 A1 L2800N 900E .3 9.1 6.5 38 .1 9.2 4.7 218 3.05 2.3 .8 < 5 4.3 3 < 1 .2 .3 33 .02 .020 17 13.0 .55 21 .093 1 1.31 .002 .04 .1 .01 1.0 .1 < 05 6 < 5 15 RE AI L2800N 900E - .4 9.4 6.3 37 .1 8.9 4.5 216 2.89 2.4 .8 🕵 5 4.3 3 <.1 .2 .3 32 .02 .018 17 13.4 .55 21 .090 <1 1.32 .002 .05 .1 .01 1.0 .1 <.05 6 <.5 15 AI L2800N 1000E .4 8.4 7.0 26 .1 5.2 2.7 118 1.25 1.5 .6 1.1 3.5 3 <.1 .1 .3 19 .02 .045 10 7.9 .22 30 .064 1 1.29 .009 .04 .1 .03 1.2 .1 <.05 15 6 < 5 A1 L2800N 1100E .7 12.0 8.7 22 .1 4.2 2.6 84 1.60 3.5 1.1 2.1 3.0 5 .2 .2 .2 24 .04 .081 3 7.1 .06 21 .143 1 4.75 .019 .02 .2 .13 2.8 < 1 < .05 10 .7 15 A1 L2800N 1200E .4 3.2 8.0 21 < 1 6.0 3.1 60 1.36 1.4 .7 < 5 4.6 5 .1 .1 .4 19 .05 .053 15 7.9 .16 66 .065 < 1 1.24 .005 .07 .1 .01 1.1 .1 < .05 6 < .5 15 A1 L2800N 1300E .3 10.5 14.0 53 .1 10.8 6.6 629 1.85 2.3 1.2 <.5 6.9 8 .1 .2 .4 22 .09 .073 16 11.4 .40 104 .094 <1 1.71 .007 .10 .2 .02 1.4 .1 <.05 6 <.5 15 A1 L2800N 1400E .8 7.1 9.5 52 .1 9.8 12.3 1225 2.05 1.9 4.1 <.5 4.7 19 .1 .3 .3 25 .17 .046 18 11.0 .48 104 .087 1 1.58 .005 .10 .2 .03 1.3 .2 <.05 7 <.5 15 A1 L2800N 1500E .2 3.5 5.4 10 .1 2.8 1.5 71 1.06 .7 .4 <.5 2.3 4 <.1 .1 .3 19 .02 .011 14 6.6 .14 28 .065 1 .64 .006 .05 .1 .01 .8 .1 <.05 4 <.5 15 A1 L2800N 1600E 1.1 12.5 12.4 14 .1 4.0 1.7 63 2.97 4.5 1.1 2.3 4.7 4 .2 .3 .3 47 .03 .118 4 12.5 .06 26 .156 1 5.98 .012 .02 .1 .14 3.2 < 1 < 05 14 .6 15 A1 L2800N 1700E .7 9.1 21.6 29 <.1 7.1 3.2 85 2.77 4.4 .5 .6 2.5 8 .1 .3 .5 45 .08 .065 6 10.1 .14 58 .243 1 1.08 .016 .06 .1 .03 .9 .1 <.05 16 <.5 15 A1 L2800N 1800E .2 7.4 9.0 42 .1 8.7 5.0 146 1.31 1.1 .8 <.5 2.5 5 .1 .1 .4 16 .05 .027 15 9.9 .35 83 .070 1 1.32 .007 .08 .1 .02 1.2 .1 <.05 5 <.5 15 AI L2800N 1900E .3 6.2 6.7 45 <.1 7.1 4.3 132 1.65 1.5 .7 2.0 5.2 4 .1 .1 .2 19 .03 .090 16 10.8 .24 60 .062 1 2.36 .005 .06 .1 .05 1.9 .1 <.05 4 <.5 15 A1 L2800N 2000E .5 6.7 8.0 37 <.1 6.9 3.7 99 1.71 1.7 .6 <.5 4.3 4 .1 .1 .3 25 .03 .064 12 10.4 .21 61 .074 1 2.23 .006 .05 .1 .04 1.9 .1 <.05 6 <.5 15 A1 L2800N 2100E .3 8.5 7.2 34 <.1 7.6 4.8 133 1.63 1.4 .7 .7 7.1 5 <.1 .1 .3 20 .04 .067 14 11.3 .28 62 .063 1 1.80 .006 .06 .1 .04 1.7 .1 <.05 4 <.5 15 A1 L2800N 2200E .3 7.4 6.7 48 < 1 6.6 4.4 116 1.24 1.1 .5 6.0 3.2 8 < 1 .1 .2 17 .11 .071 12 10.5 .31 40 .067 1 1.42 .009 .06 .2 .01 1.3 .1 < .05 6 < .5 15 A1 L2800N 2300E .5 15.3 9.1 53 .1 13.1 7.3 464 1.69 1.3 2.2 <.5 4.7 17 <.1 .1 .4 25 .37 .019 21 24.7 1.15 94 .100 2 2.12 .019 .18 .3 .01 2.9 .2 <.05 6 <.5 15 .7 13.8 20.4 86 .2 10.2 4.4 131 1.45 1.4 .6 .6 3.3 12 .2 .1 .5 27 .19 .022 13 15.6 .67 125 .130 1 2.22 .013 .10 .1 .01 2.0 .1 <.05 11 <.5 A1 L2800N 2400E 15 A1 L2800N 2500E .4 12.9 13.0 71 .1 10.6 6.8 173 1.78 2.4 .6 <.5 5.0 8 .1 .1 .3 26 .18 .046 12 19.9 1.10 119 .121 2 2.94 .013 .10 .2 .02 2.7 .1 <.05 8 < 5 15 A1 L2800N 2600E 1.3 13.3 51.9 66 .3 10.9 7.5 576 1.76 2.0 .8 <.5 4.1 14 .1 .1 .6 30 .18 .033 12 15.6 .71 133 .114 2 3.05 .021 .13 .3 .02 2.5 .2 <.05 15 9 <.5 A1 L2800N 2700E 15 ,6 11.4 13.5 28 .2 6.4 3.8 77 1.68 2.6 .8 1.5 4.4 11 .1 .1 .3 29 .09 .098 8 11.9 .36 50 .113 2 3.98 .022 .06 .3 .05 2.5 .1 <.05 7 < 5 A1 L2800N 2800E 4 24.2 19.1 40 .1 12.3 6.0 151 2.02 2.4 .9 2.4 5.3 12 .1 .1 .3 34 .18 .020 14 23.8 1.16 80 .132 1 3.03 .018 .12 .4 .01 3.4 .2 < .05 9 < .5 15 A1 L2800N 2900E .5 20.8 16.4 61 .1 12.7 6.8 298 2.04 2.6 1.1 <.5 5.9 15 .1 .1 .3 32 .41 .028 14 24.3 1.65 89 .141 1 3.01 .034 .21 .4 .02 4.0 .2 <.05 8 <.5 15 STANDARD DS6 11.4 126.4 29.8 141 .3 24.0 10.3 715 2.89 20.7 6.6 49.8 3.1 40 6.1 3.5 4.9 58 .83 .083 14 186.6 .58 163 .074 18 1.87 .073 .16 3.6 .22 3.5 1.7 < .05 15 6 4.1

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

- A /	A
	Ļ.
	L
ACHE ANAL	YTICAL

ACHE ANNI YTTCAR SAMPLE# Cu PİD Zn Ag Ni P La Cr Mg Ba Ti B Al Na K W Hg Sc Ti S Ga Se Sample Mo Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca DDM המכן המכן המכן המכן המכן המכן 🗱 maq maq maq maq maq dag maq maq 🕱 🕺 \$ ppm ppm ¥ ppm X ppm 2 2 2 2 ppm ppm ppm ppm 2 ppm ppm Qm A1 L2800N 3000E .9 7.9 9.2 39 .1 4.9 2.4 82 1.44 2.2 .4 .8 2.6 5 .1 .1 .2 25 .09 .036 7 12.7 .43 70 .074 1 2.42 .013 .04 .3 .06 2.2 .1<.05 8 <.5 15 A1 L2800N 3100E 1.5 27.4 17.5 61 .2 11.0 6.4 452 1.8I 3.1 1.2 <.5 4.3 14 .1 .1 .3 27 .37 .029 9 16.7 .85 106 .112 1 2.72 .032 .07 .3 .02 2.5 .2<.05 8 <.5 15 A1 L2800N 3200E .3 22.8 13.6 45 .1 10.6 6.2 388 1.78 9.4 3.6 11.8 5.0 16 .1 .1 .3 24 .66 .027 12 16.3 .90 120 .098 1 2.36 .035 .12 .3 .03 3.1 .2<.05 7 <.5 15 A1 L2800N 3300E .4 12.3 12.5 54 <.1 12.1 5.4 131 1.82 3.6 .4 <.5 4.3 4 .1 .1 .2 25 .1 .048 13 20.0 1.47 58 .087 <1 2.03 .009 .09 .2 .02 2.9 .1<05 7 <.5 15 A1 L2800N 3400E .4 15.5 16.2 32 .1 13.9 8.0 119 1.98 4.4 .4 .7 5.0 11 .1 .1 .3 26 .18 .044 6 14.6 .68 161 .101 1 3.73 .021 .05 .2 .03 2.5 .1<0.5 8 <.5 15 AL L2800N 3500E .3 16.5 16.7 61 .1 12.9 7.3 526 1.81 5.3 .4 <u>5.9 3.6</u> 6 .1 .1 .2 25 .22 .043 11 19.7 1.33 87 .087 1 2.45 .013 .09 .2 .01 2.9 .1<.05 7 <.5 15 A1 L2700N 3000E .6 12.9 12.2 83 .2 12.7 7.3 189 2.10 3.7 .5 .6 4.0 11 .2 .1 .2 34 .19 .076 7 22.3 1.14 95 .124 1 3.25 .020 .08 .3 .03 3.7 .1<.05 9 <.5 15 A1 L2700N 3100E .9 35.5 16.4 44 .1 9.8 5.7 122 1.63 4.2 .9 <.5 2.9 6 .2 .1 .4 30 .15 .030 10 17.8 .85 89 .104 <1 2.21 .014 .08 .4 .02 2.6 .1<0.5 10 <.5 15 A1 L2700N 3200E .3 11.5 10.4 56 .1 11.1 7.0 156 1.78 3.4 .5 99.8 3.1 7 .1 <.1 .3 25 .16 .020 10 18.3 1.25 88 .094 <1 2.32 .015 .07 .3 .01 2.4 .1<.05 7 <.5 15 A1 L2700N 3300E .5 15.9 24.3 47 .1 10.4 6.1 161 1.59 3.1 .8 .5 3.4 12 .1 .1 .4 22 .29 .036 14 13.9 .84 165 .082 1 2.19 .017 .09 .3 .02 2.1 .1 < .05 15 9 < 5 A1 L2700N 3400E .5 19.4 18.1 47 .1 15.3 9.4 138 2.28 6.0 .5 .8 5.6 6 .1 .2 .3 28 .14 .065 9 18.7 1.02 99 .103 1 4.06 .016 .06 .2 .03 2.9 .1<.05 8 <.5 15 A1 L2700N 3500E .4 11.0 14.1 67 .1 13.8 9.6 242 2.05 3.9 .4 1.1 4.0 6 .1 .1 .2 27 .10 .065 8 18.4 1.06 82 .090 <1 2.82 .013 .06 .2 .03 2.6 .1<.05 9 <.5 15 A1 L2600N 0E 1.0 11.6 8.0 40 .2 4.3 1.8 70 2.10 3.8 1.1 1.8 5.2 2 .2 .1 .2 27 .02 .109 8 11.5 .14 21 .089 <1 4.48 .011 .02 .2 .14 3.0 <.1<.05 8 .7 15 RE A1 12600N 0E- 1.1 12.1 8.0 44 .2 4.5 2.0 70 2.25 3.9 1.1 2.9 5.3 2 .2 .1 .2 28 .02 .114 8 11.9 .15 20 .092 <1 4.71 .012 .02 .2 .16 2.7 <.1<.05 8 .6 15 A1 L2600N 100E .3 3.7 6.6 11 .1 1.9 .7 25 .67 1.1 .3 1.0 1.6 2 .1 .1 .3 13 .01 .020 13 5.7 .11 36 .025 <1 .92 .008 .03 .1 .03 .9 .1<05 7 <.5 15 A1 L2600N 200E .3 3.8 7.6 12 <.1 2.2 .8 24 .78 1.0 .4 1.0 2.3 3 <.1 .1 .3 15 .01 .029 15 6.3 .19 31 .030 <1 1.13 .008 .02 .1 .02 .9 .1<05 6 <.5 15 A1 L2600N 300E 1.0 12.2 18.1 33 .1 7.2 3.4 215 3.13 4.8 .7 1.5 4.1 4 .1 .2 .6 39 .03 .187 8 17.4 .25 36 .083 1 2.60 .010 .04 .2 .08 1.9 .1<.05 10 .5 15 A1 L2600N 400E 1.0 10.1 10.4 14 .1 3.7 1.4 50 2.73 4.1 .9 1.8 3.3 3 .1 .2 .3 48 .02 .071 5 10.3 .07 22 .122 1 3.91 .013 .02 .2 .08 2.1 < .1<0.5 13 .5 15 A1 L2600N 500E .4 3.6 3.2 36 < 1 8.0 4.1 133 1.99 2.8 .5 < 5.6.1 2 .1 .2 .3 14 .01 .056 25 9.5 .31 20 .032 <1 .75 .002 .04 .1 .01 .7 < .1 < .05 4 < .5 15 A1 L2600N 600E 1.0 13.5 11.9 26 .1 5.2 2.1 90 2.39 3.9 .6 1.2 3.6 4 .1 .2 .4 45 .03 .071 6 11.0 .19 33 .116 1 2.36 .012 .03 .2 .06 1.9 .1<.05 11 .5 15 A1 L2600N 700E 1.1 7.5 11.2 13 .1 3.2 1.6 40 2.03 3.7 2.1 .7 3.2 4 .3 .2 .3 29 .03 .044 7 7.4 .06 27 .117 <1 2.50 .013 .03 .1 .08 1.8 <.1 < .05 12 .5 15 A1 L2600N 800E 1.0 11.0 8.9 10 .2 2.9 1.2 44 2.45 4.8 .9 1.8 3.5 3 .2 .2 .2 38 .02 .112 3 8.9 .05 13 .123 <1 3.98 .015 .02 .2 .12 1.9 < .1< .05 12 .6 15 A1 L2600N 900E .8 10.8 11.2 11 .1 4.6 1.9 40 2.66 4.2 1.0 2.1 6.6 3 .1 .2 .3 48 .02 .043 6 10.9 .09 18 .164 <1 3.38 .012 .02 .2 .08 2.0 < .1<.05 12 < 5 15 A1 L2600N 1000E .4 9.2 5.8 17 .2 2.7 1.3 75 1.09 1.0 .6 1.2 2.9 3 .1 .1 .2 17 .02 .033 7 6.8 .18 37 .034 <1 2.20 .007 .02 .1 .06 2.0 .1<.05 6 <.5 15 A1 L2600N 1100E .3 6.4 5.6 12 .1 1.4 .5 18 .93 1.6 .5 1.3 2.3 2 .1 .1 .2 17 .01 .035 5 5.3 .02 29 .038 <1 2.21 .009 .02 <.1 .05 1.6 .1<.05 15 5 < 5 A1 L2600N 1200E .6 7.5 9.2 65 .1 13.2 6.9 246 1.67 2.1 .9 4.3 7.3 4 .1 .2 .5 24 .03 .028 18 12.1 .31 65 .049 1 1.79 .004 .08 .1 .04 1.5 .1<.05 6 <.5 15 A1 L2600N 1300E .7 12.5 16.3 90 .2 10.7 5.0 239 2.12 4.8 3.2 < 5.5.3 7 .2 .3 .6 35 .09 .075 15 13.0 .25 130 .122 1 2.08 .008 .08 .2 .08 2.0 .2<.05 12 .6 15 A1 L2600N 1400E .9 27.7 10.7 62 .1 15.1 7.7 215 2.36 4.2 1.2 2.3 8.8 5 .1 .2 .4 31 .03 .086 11 15.2 .57 42 .103 1 2.58 .005 .07 .2 .06 1.9 .1<.05 8 .5 15 A1 L2600N 1500E .4 32.0 10.6 72 .1 11.5 5.9 161 2.20 1.7 .9 <.5 5.4 10 .1 .1 .6 39 .06 .059 14 17.4 .50 157 .078 <1 1.60 .006 .07 .2 .02 2.1 .1<0.5 8<5 15 A1 L2600N 1600E .6 132,1 10.9 63 .1 18.8 12.6 253 3.89 1.7 .8 3.4 4.0 31 .1 .1 1.5 120 .07 .054 9 41.0 1.25 54 .171 1 3.16 .015 .20 .3 .05 6.2 .2<.05 11 <.5 15 A1 L2600N 1700E .4 5.0 9.2 10 .1 1.7 .9 21 1.28 1.7 .8 1.3 4.8 2 <.1 .1 .3 18 .01 .031 11 6.5 .05 40 .042 <1 2.23 .007 .03 .1 .08 1.6 .1<.05 7 <.5 15 A1 L2600N 1800E .4 4.7 8.1 19 <.1 5.3 2.7 88 1.06 .9 .8 <.5 2.9 3 .1 .1 .3 12 .02 .017 11 5.6 .22 32 .077 <1 .97 .007 .04 .1 .02 .8 .1 .07 5 <.5 15 A1 L2600N 1900E .1 5.9 4.4 26 <.1 7.1 3.9 129 1.27 .8 .8 <.5 6.5 2 <.1 .1 .3 10 .02 .031 19 7.9 .32 38 .039 <1 1.08 .003 .07 <.1 .02 .8 .1<05 2 <.5 15 A1 L2600N 2000E .4 3,9 9.1 33 < 1 4.7 2.8 82 1.84 2.3 .5 1.0 4.9 3 .1 .1 .3 25 .02 .122 9 10.7 .16 44 .066 < 1 1.85 .005 .04 .1 .02 1.5 .1<0.05 7 < 5 15 STANDARD DS6 11.6 124.8 30.2 146 .3 25.0 10.8 719 2.86 21.4 6.7 47.7 3.1 37 6.2 3.4 5.0 58 .83 .081 14 184.7 .59 164 .074 18 1.94 .074 .15 3.6 .23 3.6 1.7<.05 6 4.5 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_A_FA

A
T

Page 5

Service and the service of the

ACHE ANALYTICAL							······································		ACHE ANALYTICAL
SAMPLE# MC					Th Sr Cd Sb Bi		Cr Mg Ba Ti		Se Sample
ppr	n ppm pp	n ppn ppn ppn	ppm ppm X	ppm ppm ppb	pbut bbut bbut bbut	ppm % % ppm	ppm \$ ppm \$ pp	pm 1 1 1 ppm ppm ppm ppm 1 ppm pp	pmi gmi
A1 L2600N 2200E .6 A1 L2600N 2300E .6 A1 L2600N 2400E .6	5 7.0 7. 5 7.4 8. 5 14.9 9.1	1 68 .1 7.3 2 34 .1 8.5	4.9 99 1.31 4.6 190 1.45 5.4 352 1.23	1.5 .6 .9 2.2 .6 2.5 .9 2.6 .9	4.1 5 .1 .1 .2 3.4 7 .1 .1 .4 2.3 14 .1 <.1	18 .06 .081 13 24 .10 .162 7 18 .19 .042 25	10.0 .25 60 .066 10.6 .22 52 .106 11.8 .41 89 .057	<pre><1 2.49 .011 .05 .2 .05 1.6 .1 <.05 6 <. 1 1.91 .007 .07 .1 .03 1.5 .1 <.05 6 <. 1 2.82 .013 .05 .3 .05 1.8 .1 <.05 8 <. 1 1.86 .012 .11 .3 .03 1.7 .1 <.05 5 <. 1 2.26 .011 .10 .3 .01 2.4 .1 <.05 6 <.</pre>	.5 15 .5 15 .5 15
A1 L2600N 2700E 1.1 A1 L2600N 2800E .6 A1 L2600N 2900E .6	l 12.2 20.5 5 11.9 34.3 5 10.4 11.3	5 56 .1 10.6 2 66 .1 11.1 3 47 .1 9.2	5.9 241 1.99 5.8 204 1.72 4.9 95 1.94	3.0 .6 .7 1.6 .5 .6 3.2 .5 5.7	4.87.1.1.53.013.1.1.63.911.1.1.3	29 .10 .057 10 31 .15 .026 11 36 .14 .080 9	17.0 .71 87 .104 16.1 .76 125 .130 17.0 .61 84 .129	1 3.08 .015 .10 .2 .02 2.8 .1 <.05	.5 15 .5 15 .5 15
A1 L2400N 100E .5 A1 L2400N 200E 1.0 A1 L2400N 300E 1.1	5 5.4 4.9 9.9 12.2	9 29 <.1 9.4 2 31 .1 6.0 3 23 .2 5.0	2.4 83 2.71 2.3 101 2.22		5.8 2 <.1 .2 .4 5.0 4 .1 .2 .4 5.5 4 .1 .2 .3	18 .02 .031 40 36 .03 .076 8 28 .03 .149 6	13.4 .19 37 .108	<pre><1 1.04 .002 .03 .1 .01 .9 .1 <.05 6 <. 2 3.33 .010 .04 .2 .07 1.7 .1 <.05 10 <. 1 4.01 .014 .03 .2 .11 1.9 .1 <.05 11 .</pre>	.5 15 .5 15 .7 15
RE A1 L2400N 500E - 1.0 A1 L2400N 600E .8 A1 L2400N 700E .6) 15.4 9.0 3 17.9 10.1 5 14.0 10.5	0 39 .2 7.9 1 56 .1 11.4 5 59 .1 9.7	6.9 1318 1.89 5.5 241 2.31 4.8 473 1.64	2.4 .8 <.5	3.15.1.3.25.63.1.2.53.54 < .1	30 .03 .115 11 25 .02 .029 25 21 .02 .040 24	9.7 .15 52 .114 13.9 .60 54 .048 11.6 .48 90 .054	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.8 15 5 15 5 15
A1 L2400N 1000E .8 A1 L2400N 1100E .8 A1 L2400N 1200E .5	9.2 13.0 12.6 12.3 10.2 9.4	47 .2 9.5 3 44 .1 13.3 4 73 .1 14.1	5.0 347 2.02 7.1 263 2.95 13.8 274 2.04	3.31.0.8 6.95.8.8	5.3 9 .1 .5 1.0 9.0 6 .1 .2 .6	27 .07 .036 13 38 .09 .042 19 22 .08 .099 16	11.8 .24 72 .120 16.9 .42 187 .076 12.0 .76 83 .111	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 15 5 15 5 15
A1 L2400N 1500E .4 A1 L2400N 1600E .9 A1 L2400N 1700E .1	7.7 22.7 10.2 13.9 3.1 5.1	7 38 .1 7.7 7 23 .1 5.2	3.51252.242.3532.633.01111.08	<.5.7.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35 .08 .044 11 40 .03 .102 6 10 .03 .012 21	12.0 .08 39 .143 < 8.9 .27 40 .056	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 15 5 15 5 15
A1 L2400N 2000E .3 A1 L2400N 2100E .3 A1 L2400N 2200E .6	5.6 6.6 4.7 7.1 32.9 16.9	5 25 <.1 8.4 33 <.1 5.1 59 .1 17.2	5.7 92 1.66 2.6 82 1.07 9.9 614 2.36	2.3 1.9 .7 .9 .5 .9 2.6 3.7 .5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 .06 .022 23 17 .09 .044 14 33 .24 .039 25	10.8 .28 110 .060 10.3 .30 44 .060 < 20.5 .64 258 .109	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 15 5 15 6 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data L FA

Page 6

ACHE ANALYTICAL					ACHE AMALYTICAL
SAMPLE# Mo	Cu Pb Zn Ag		U Au Th Sr Cd Sb Bi V Ca		T1 B A1 Na K W Hg Sc T1 S Ga Se Sample
ppm	ppm ppm ppm ppm	ppm ppm ppm \$ ppm ppm	m ppd ppm ppm ppm ppm ppm X	Xippm ppm Xippm	Xippm X Xippm ppm ppm ppm Xippm ppm gm
AI L2400N 2400E .5 AI L2400N 2500E .6 AI L2400N 2600E .6	9.8 13.7 76 .1 10.6 14.4 55 .2 7.3 12.5 33 .2	9.7 5.9 164 1.61 2.0 .5 8.0 5.4 238 1.24 1.1 .7 7.0 3.8 89 1.40 1.5 .6	5 .5 4.3 11 .1 .1 .2 25 .24 . 7 <.5 3.7 9 .1 .1 .5 18 .12 . 6 .5 4.1 7 .1 .1 .4 20 .09 .	.062 8 20.1 .95 80 . .066 12 13.0 .63 114 . .034 9 14.8 .71 63 .	074 1 1.86 .009 .08 .2 .01 1.7 .1 <.05
A1 L2400N 2900E 4 A1 L2400N 3000E 4 A1 L2200N 0E 5	10.3 12.2 44 .1 1 10.6 12.0 40 .1 5.0 5.6 30 < 1	10.1 6.4 100 1.97 2.7 .4 8.4 5.3 109 1.67 2.8 1.1 9.1 3.9 76 1.92 2.9 .4	4 .93.9 7 .1 .1 .4 31 .10 . 1 .64.5 8 < 1 .1 .2 25 .09 . 4 <.54.1 3 < 1 .2 .3 23 .02 .	.091 6 15.3 .50 80 . .074 8 14.1 .69 90 . .036 15 12.9 .65 24 .	134<1
A1 L2200N 200E .8 A1 L2200N 300E .9 A1 L2200N 400E .7	8.8 17.2 28 .2 8.4 8.3 25 .2 37.7 8.7 51 .1	4.6 2.4 434 1.13 2.0 .5 5.5 2.2 83 1.90 3.1 .8 9.6 5.0 665 1.66 1.7 1.3	5 <.5 1.8 4 .1 .2 .7 25 .02 . 8 1.7 1.8 5 .1 .1 .2 26 .04 . 3 1.9 1.0 3 <.1 .2 .7 17 .02 .	.041 7 8.8 16 52 (.108 6 9.0 .13 58 (.066 14 13.1 .68 35 (132 <1
A1 L2200N 800E .8 A1 L2200N 900E .8 A1 L2200N 1000E .7	16.9 15.8 48 .1 1 10.4 9.5 25 <.1 11.2 9.6 66 .1	3.1 7.8 1950 1.64 5.2 2.2 5.1 2.4 242 1.69 3.4 1.0 7.6 3.7 360 1.57 3.7 .9	2 .5 .8 7 .1 .3 .4 23 .06 . 0 1.4 3.0 4 .1 .3 .2 27 .03 . 9 1.6 3.1 7 .2 .3 .3 26 .09 .	.164 11 12.4 .34 64 .0 .108 4 7.4 .07 44 .1 .085 5 8.0 .13 84 .1	049 1 1.13 .004 .06 .1 .02 1.1 .1 <.05
A1 L2200N 1300E .7 A1 L2200N 1400E .8 A1 L2200N 1500E .2	11.8 8.9 39 .1 1 9.6 7.0 13 <.1 3.3 2.9 18 <.1	0.9 4.7 98 2.12 4.2 1.0 4.5 1.7 29 2.09 4.1 1.1 3.4 2.1 46 1.01 .5 .6	0 2.1 6.4 3 .1 .2 .3 28 .02 . 1 3.1 4.0 4 .2 .1 .2 26 .03 . 5 <.5	.082 10 14.5 .31 51 .0 .100 3 9.4 .06 19 . .011 23 7.0 .17 34 .0	163 1 4.96 $.011$ $.03$ $.2$ $.13$ 1.6 $<.15$ $.15$ $.15$ 171 1 3.29 $.006$ $.04$ $.2$ $.05$ 2.2 $.1$ $.05$ 7 $.5$ 15 150 1 6.92 $.013$ $.01$ $.2$ $.06$ 2.7 $<.1$ $<.05$ 10 $<.5$ 15 164 1 $.62$ $.002$ $.04$ $<.1$ $.01$ $.5$ $.1$ $<.05$ 3 $<.5$ 15 161 1 $.14$ $.005$ $.04$ $.1$ $.04$ 1.0 $.1$ $<.05$ 6 $<.5$ 15
AI L2200N 1800E .4 AI L2200N 1900E .4 AI L2200N 2000E .3	3.7 10.5 25 <.1 10.2 10.0 31 <.1 5.3 8.8 28 <.1	4.7 2.6 94 1.61 1.6 .5 9.5 5.2 117 1.98 3.5 1.9 5.2 3.2 87 1.12 .9 .5	5 1.6 4.3 3 <.1 .1 .4 24 .03 .	.048 9 9.3 .15 45 .0 .103 17 10.8 .35 118 .1 .027 12 9.1 .28 68 .0	
A1 L2200N 2300E .6 A1 L2200N 2400E .5 A1 L2200N 2500E .9	14.0 21.9 85 .2 12.1 14.1 90 .1 1 8.3 14.9 48 .1	8.8 3.9 105 1.25 1.2 .6 2.0 8.0 150 1.64 2.0 .5 8.9 5.2 101 1.67 1.9 .7	5 1.8 3.3 10 .1 .3 .6 23 .24 . 5 .5 4.8 8 .1 .1 .2 24 .16 . 7 .8 4.8 7 .1 .1 .5 25 .10 .	.017 10 16.6 .75 84 .1 .037 10 20.9 1.21 91 .1 .060 9 15.6 .63 72 .1	18 1 2.48 .009 .07 .3 .05 1.7 .1 <.05

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA

Page 7

es e una

್ರಾ ಭಾಗ ಗಾವನ್ ಹಾತ್ರಾಸ್

ACHE ANALYTICAL																						<u> </u>															AC	HE ANAL	ITICAL
SAMPLE#	Mc ppn						N1 ppr					As ppm												Cr ppm		Ba ppm	T1 X										Ga Se Spm ppm		ole gmi
A1 L220DN 2600E A1 L2200N 2700E A1 L2200N 2800E A1 L2200N 2800E A1 L2200N 2900E A1 L2200N 3000E	.7 .6 .4	71 52 11	1.5 5.6 3.1	10.8 8.9 24.3	35 31 89	.1 .1 .3	7.0 7.0 10.1).3.)3. 6.	5 9 1 (2 7(90 1 64 1 00 1	.95 .38 .86	2.9 1.4 2.9	.9 4. 1.2	1.5 3:2 1.5	4.3 .3.3 3.8	6 5 15	.1 <.1 .4	.2 .1 .1	.2 .3 .4	34 27 30	.06 .09 .60	.113 .015 .049	4 10 10	15.9 16.9 19.2	. 31 . 79 . 97	42 43 126	.153 .134 .146	1 <1 1	4.78 1.70 3.01	.018 .011 .030	.03 .11 .15	.3 .1 .2	.07 .02 .02	3.1 1.9 2.9	.1 .1< .1<	.07 .05 .05	10 <.5 10 <.5 12 <.5 10 <.5 11 <.5	 	15 15 15 15 15 15
A1 L2000N 0E A1 L2000N 100E A1 L2000N 200E A1 L2000N 300E A1 L2000N 400E	.4 .3 .9		4.6 3.4 5.7	9,2 4.0 10,9	24 22 18	<.1 <.1	6,6 5,9 4,0	2. 2.	87 66 76	771 561 591	.54 .56 .83	1.5 2.0	.4 .4 .7	1.1 ,5 2.1	4.8 4.2 .9	2 2 3	<.1 <.1 .1	.2 .1 .3	.4 .3 .3	22 18 29	.02 .02 .02	.024 .035 .062	15 20 9	11.3 10.6 9.4 8.9 12.5	.52 .53 .18	21 21 27	.060 .036 .075	1 <1 1	1.10 1.06 1.76	.003 .003 .006	.03 .02 .03	.1 .1 .2	.03 .03 .05	.9 .7 1.3	.l<. .l<. .1	05 05 07	10 <.5 7 <.5 5 <.5 13 .5 8 .7	I	15 15 15 15 15
A1 L2000N 500E A1 L2000N 600E A1 L2000N 700E A1 L2000N 800E A1 L2000N 900E	1.2 1.4 1.2		5.1 5.6 3.1	10.4 12.2 14.3	43 23 31	.1 .1 .1	7.1 7.3 6.5	3. 3. 2.	0 9 3 12 9 21	972. 203 102.	.83 .12 .56	5.3 3.6 4.0	.8 1.0 1.1	1.8 2.0 1.2	5.2 4.8 3.1	4 4 5	.1 .1 .1	4 2 3	.6 .3 .4	43 43 41	.03 .05 .05	.067 .093 .077	12 6 8	7.9 14.3 13.8 11.0 15.1	.25 .12 .11	46 79 73	.149 .192 .189	1 1 2	2.69 5.33	.007 .012 .012	.04 .04 .05	.2 .3 .3	.07 .10 .08	1.6 2.4 1.9	.1<. .1<. .1<.	05 05 05	9.6 13 <.5 15.8 16.7 8.5		15 15 15 15 15
A1 L2000N 1000E A1 L2000N 1200E A1 L2000N 1300E A1 L2000N 1400E A1 L2000N 1500E	.9 ,8 ,6		7.0 1.0 5.9	11.4 19.1 17.4	71 46 30	< 1 < 1 < 1	12.0 8.9 7.4	5. 4. 3.	3 17 1 15 7 10	793. 543. 012.	.59 .27 .42	6.3 3.8 5.0 3.0 .7	.9 1.3 .7	1.2 1.4 1.0	4.8 6.2 4.3	5 6 5	.1 .1 .1	.2 .3 .2	.5 .8 .5	45 43 41	.04 .05 .03	.072 .044 .040	9 18 10	16.2 19.7 13.7 10.7 6.4	.33 .16 .21	77 86 65	.097 .179 .190	1 1 1	3.28 1.75 1.65	.006 .010 .011	.05 .06 .04	.2 .3 .1	.05 .05 .03	2.2 1.2 1.1	.]<. .]<. .]<.	05 05 05	13 .8 9 <.5 16 <.5 14 <.5 3 <.5		15 15 15 15 15
A1 L2000N 1600E A1 L200DN 1700E A1 L2000N 1800E A1 L2000N 190DE A1 L200DN 200DE	.7 .4 .3).2 5.2 5.9	9.5 8.3 6.2	34 37 57	1 < 1 < 1	6.7 5.2 6.7	2. 2. 4.	9 6 4 14 7 34	512. 131. 111.	.01 .57 .33	.8 3.6 1.5 1.5 2.7	.9 .4 .6	1.1 .5 1.2	5.5 4.2 4.5	5 3 3	.1 .1 .1	.2 .1 .1	.3 .3 .3	29 25 18	.04 .02 .04	.185 .048 .117	6 11 12	6.4 11.9 10.3 11.0 10.0	.10 .20 .25	50 35 59	.112 .080 .064	1 1 1		.012 .006 .008	.04 .04 .07	.2 .1 .1	.09 1 .03 1 .03 1	1.9 1.0 1.7	.1<.(.1<.(05 05 05	5 <.5 9 <.5 7 <.5 6 <.5 10 <.5		15 15 15 15 15
A1 L2000N 2100E A1 L2000N 2200E A1 L2000N 2300E A1 L2000N 2400E A1 L2000N 2500E	.8 1.6 .4	12 72 6	2.1 2.7 5.1	19.8 49.1	61 144 54	.1 .3 .1	9.8 20.5 7.7	4. 7. 3.	5 17 7 191 2 8	701. 102. 361.	.36 .15 .13	1.9 1.2	.8 4.1 .4	.6 <.5 <.5	2.9 4.8 3,3	15 26 9	.1 .4 .1	.1 .3 .1	.8 1.2 .2	21 38 23	.34 .95 .22	.029 .035 .015	12 35 10	7.2 14.9 26.7 18.0 17.0	.68 .97 .79	124 186 36	.093 .109 .133	1 2 1	3,73 1.51	.016 .019 .012	.11 .17 .05	.2 .3 .2	.02 1 .05 3 .01 2	1.8 3.8 2.2	.1<.(.3 .(.1<.(05 06 1 05 1	6 <.5 7 <.5 10 <.5 10 <.5 9 <.5		15 15 15 15 15
A1 L2000N 2600E RE A1 L2000N 2600E A1 L2000N 2700E A1 L2000N 2800E STANDARD DS6	.9 .8 .7	11 11 15	3 1 3 1 0 3	LO.O LS.4 33.9	38 60 51	.1 <.1 .2	8.7 9.8 13.1	5.6 4.1 6.6	5 10 1 16 5 38	151. 202. 142.	42 06 66	2.1 3.1 5.0 :	.9 .5 2.3	1.4 9.9 1.6	4.8 4.5 6.0	7 6 20	.1 .1 .3	.1 .2 .2	.9 .4 .6	22 36 38	.08 .10 .73	.040 .033 .055	11 11 11	21.8 18.4	.52 1.03 .61	65 46 264	.105 .120 .167	1 1 2	2.64 1.96 4.60	.013 .012 .023	.05 .06 .19	.2 .3 .3	.06 3 .03 2 .03 3	3.0 2.3 3.3	.1<.(.1<.(.2<.(05 05 1 05 1	7 <.5 6 <.5 10 <.5 12 <.5 6 4.6		15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

Page 8

ACHE ANALYTICAL		·																_																	ACHE	AWALYTICAL
SAMPLE#	Mo ppm		u Pt n ppn									Au ppb										Cr ppm			Ti X		Al X						T] S pm 3			Sample com
A1 L2000N 2900E A1 L2000N 3000E A1 L1800N 0E A1 L1800N 100E A1 L1800N 200E	.5 .5 .4	19.0 91.9 7.4	5 19.7 5 9.2 4 7.5	7 69 2 58 5 51	.1 1. { . <.1	14.8 12.1 10.2	7.6 6.6 6.9	151 354 2364	1.89 2.31 1.91 1.56	3.4 5.6 2.5 1.5	.9 1.4 1.5 .8	1.7 1.6 24.0 .7	5.4 5.2 8.9 3.8	12 10 8 4	.2 .2 .1 .1	.1 .2 .3 2 .2	.5 .3 .7 .5	31 . 34 . 20 . 14 .	25 . 27 . 08 . 06 .	025 036 022 043	14 8 13 13	17.7 27.1 14.9 12.3	.94 1.35 1.26 .75	127 93 50 116	.096 .161 .079 .057	<1 2 <1 3 1 2 1 1	3.40 2.05 .13	.056 .004 .003	.07 .08 .09	.2 .3 .2	.03 4 .04 1 .02	.6 .6 .8	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	10 7 4	<.5 <.5 <.5	15.0 15.0 15.0 15.0 15.0 15.0
A1 L1800N 300E A1 L1800N 400E A1 L1800N 500E A1 L1800N 600E A1 L1800N 700E	.3 .7 .6	14.3 6.4 20.5	3 4.8 1 7.8 5 12.8	8 41 8 41 8 51	<.1 <.1	11.5 10.6 10.8	4.6 4.3 4.6	162 151 167	1.70 2.84 1.93	1.6 3.8 1.6	.5 .6 .6	<.5 <.5 <.5	4.5 4.4 2.8	3 < 4 3 <	.1 .1 .1	.1 .2 .1	.3 .4 .3	17 .0 41 .0 24 .0	03 . 03 . 02 .0	016 031 025	13 9 8	14.7 14.7 15.5	1,09 .62 1.07	35 31 27	.050 .150 .070	<11 <11 <11	37 36 65	. 003 . 005 . 003	.06 .06 .03	.1 . .2 . .1 .	.01 1 .04 1 .03 1	2 2 5	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	5 11 8	<.5 <.5 <.5	15.0 15.0 15.0 15.0 15.0
A1 L1800N 800E A1 L1800N 900E A1 L1800N 1000E A1 L1800N 1100E A1 L1800N 1200E	1.1 .6 .5	22.9 21.0 13.9	5 11.6 7.8 7.8	66 37 39	.1. .1 .1>	10.3 10.6 8.5	5.4 4.7 3.9	340 185 146	2.11 1.84 1.74	3.5 2.9 3.0	.9 1.0 .7	<.5 2.1 <.5	3.7 6.4 5.1	7 4 4	.1 .1 .1	.2 .2 .2	.5 .3 .4	31 .(21 .(25 .(07 .: 03 .: 02 .:	227 034 048	6 12 15	11.2 13.4 12.8 12.3 11.4	. 34 . 45 . 34	72 36 57	127 069 050	2 2 2 1 1 1		. 010 . 005 . 004	.07 .05 .04	.3. .2. .1.	.07 1 .04 1 .02 1	.8 .5 .3	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	10 5 6	<.5 <.5 <.5	15.0 15.0 15.0 15.0 15.0
A1 L1800N 1300E A1 L1800N 1400E A1 L1800N 1500E RE A1 L1800N 1500E A1 L1800N 1600E	2.4 .3 .3	11.9 6.7 6.7	17.6 9.2 9.5	35 31 33	.1 <.1 <.1	5.6 6.9 7.0	2.9 3.2 3.3	65 112 115	1.46 1.34	3.7 .8 .9	4.7 .4 .4	2.2 1.5 1.7	2.9 3.2 3.3	16 6 < 6 <	.3 .1 .1	.1 .1 .1	.5 .4 .4	20 .4 22 .0 21 .0	41 .(06 .(06 .(039 017 017	17 13 12	10.6 11.6 10.5	.26 .34 .34	85 70 71	.094 .064 .056	12 <11 <11	.11 .00 .03	.013 .004 .004	.05 .06 .06 <	.2. .1. :1.	07 1 01 1 01 1	.6 .1 .1	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	7 7 - 6 -	.7 <.5 <.5	15.0 7.5 7.5 7.5 15.0
A1 L1800N 1700E A1 L1800N 1800E A1 L1800N 1900E A1 L1800N 2000E A1 L1800N 2100E	.2 .4 .4	4.3 4.8 9.3	3.9 6.5 6.0	30 44 51	<.1 <.1 <.1	7.6 8.0 11.5	3.6 4.5 5.8	161 121 244	1.14 1.58 1.53	.5 1.6 1.2	.5 .5 .9	.5 .8 <.5	3.9 4.1 4.0	4 < 7 < 9	.1 .1 .1	.1 .1 .1	.2 .3 .3	11 .(22 .1 18 .1)5 .(10 .(12 .(013 077- 035	18 11 18	13.9	.48 .31 .76	58 . 62 . 88 .	056 073 068	1 1 1 1 1	.90 .73 .78	.003 .007 .007	.06 .06 .09	.1<. .2 . .1 .	01 03 1 01 1	.9 .5 .4	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	4 6 6	<.5 <.5 <.5	15.0 15.0 15.0 15.0 15.0
A1 L1800N 2200E A1 L1800N 2300E A1 L1800N 2400E A1 L1800N 2500E A1 L1800N 2500E	.9 .9 .7	10.7 22.7 12.0	15.4 12.7 13.2	77 171 99	.2 .1 .1	6.6 9.4 9.4	3.3 4.3 4,8	127 307 503	1.36 1.80 2.12	1.3 1.7 3.1	.6 .7 .6	<.5 <.5 1.2	2.0 2.8 3.8	8 26 11	.1 .1 .2	.1 .1 .2	.5 .4 .3	24 .1 29 .2 36 .1	LO .(24 .(17 .(059 089 093	10 8 6	13.1 15.3 16.5	.46 .65 .50	36 . 59 . 89 .	083 101 151	11 12 13	.78 .10 .25	012 013 023	.05 .10 .07	.2 . .3 . .3 .	04 1 03 1 04 2	.5 .9 .1	.1 .07 .1<.05 .1<.05 .1<.05 .2<.05	8 10 11	<.5 <.5 <.5	15.0 15.0 15.0 15.0 15.0
A1 L1800N 2700E A1 L1800N 2800E A1 L1800N 2900E A1 L1800N 3000E STANDARD DS6	.6 .9	32.1 20.2 13.3	26.0 48.3 22.1	82 110 46	.1 .2 .3	20.2 14.5 9.8	9.6 8.0 5,4	208 2802 177	2.52 2.35 2.28	6.4 3.5 5.0	.9 3.4 4.4	1.1 .6 2.1	6.6 6.4 4,7	12 20 18	.2 .9 .3	.3 .2 .2	.4 : .5 : .4 :3	37 .2 34 .9 32 .4	26.0 79.0	036 027 069	8 16 10	27.6 1 23.3 1 12.2	L.42 L.19 1 .36 1	77. 194.	166 143 178	24 33 24	.13 . .50 . .76 .	032 039 033	. 09 . 14 . 10	.2. .4. .3.	03 4 03 4 04 2	.1 .2 .9	.1<.05 .1<.05 .3<.05 .1<.05 .7<.05	11 11 11	<.5 <.5 <.5	15.0 15.0 15.0 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

ACHE ANALYTICAL																														ACHE	ANALYTECAL
SAMPLE#	Mo	Cu	Pb	Zn	Aq	NI	Co	Min	Fe	As U	Au Th	Sr	Cd	Sb	Bí	V	Ca	P	La	Cr	Mo	Ba	Ti	B A1	Na	ĸ	vi Haj S	Sc T	S	Ga Se S	ample
	ppm	ppm	ppm	ppn p	ppm	ppm				ppm ppm									ppm		- X		- * 1				πppmp;			ppm ppm	gm.
A1 L1600N 0E A1 L1600N 100E A1 L1600N 200E A1 L1600N 300E A1 L1600N 400E	.5 .7 .9	60.6 19.3 7.3	13.3 8.4 8.0	64 41 38	.1 .1 .1	14.6 11.1 11.8	32.2 5.5 5.4	775 183 162	2.50 2.25 1.84 2.71	.9 1.7 5.1 2.3 2.3 .7 4.8 .7 4.8 1.5	.5 2.8 .7 9.8 1.0 6.5 1.6 5.1	9 10 6 5	.1 .1 .1 .2	.1 .3 .1 .2	.1 .7 .4 .2	42 25 25 35	.20 .26 .08 .06	. 048 . 025 . 042	17 11 6	18.3 16.5	1.69 .88 .68	176 . 77 . 49 .	129 108 147	<1 3.89 2 3.23	.039 .014 .014 .014	.08 .13 .07 .06	3<.01 5. 2 .03 2. 2 .03 2. 2 .03 2. 2 .07 2.	1 .1 .8 .2 .3 .1 .1 .1	<.05 <.05 <.05 <.05 <.05	13 <.5 10 .6 7 <.5 10 .5	15 15 15 15 15 15
A1 L1600N 500E A1 L1600N 600E A1 L1600N 700E A1 L1600N 800E A1 L1600N 900E	.8 .6 .7	16.2 15.9 8.8	7.9 8.1 7.5	51 43 < 56 <	.1 : <.1 : <.1	10.9 11.2 9.4	5.2 5.2 4.3	258 190 222	2.16 2.06 1.84	1.4 .6 1.9 .6 2.3 .7 1.8 .5 4.5 .8	<.5 5.0 1.0 5.4 5 4.2	5 6 4	.1 .1 <_1	.2 .1 .3	.4 .4 .5	28 . 24 . 28 .	.04 .07 .03	.021 .026 .019	12 15 16	17.2 16.2	.69 77 47	55 . 44 . 68 .	106 097 101	1 1.55 1 1.42	.004 .005 .005	.08 . .08 . .08 .	2 .01 1 2<.01 1 1 .01 1	.7 .1 5 .1 .3 .1	< 05 < 05 < 05		15 15 15 15 15
A1 L1600N 1000E A1 L1600N 1100E A1 L1600N 1200E A1 L1600N 1300E A1 L1600N 1400E	.4 .9 .8	2.2 6.1 26.0	4.7 11.5 7.8	11 < 33 65	<.1 .1 .1	3.0 6.7 10.8	1.3 2.8 5.5	38 94 268	1.14 2.00 2.00	2.0 .6 1.3 .4 3.2 .6 1.8 .6 1.9 .6	.83.8 1.84.6 .66.2	2 4 5	<.1 .1 .1	_1 _3 _2	.4 .4 .6	20 . 32 . 29 .	.01 .03 .05	.011 .056 .026	22 8 19	7.8 11.3 15.9	.09 .14 .55	21 .1 52 .1 62 .1	052 120 103	1 1.52 <1 .77 <1 3.04 1 1.84 <1 2.31	.004 .011 .006	.03 . .05 . .09 .	<.01 2.031. .011.	9.1 5.1 6.1	<.05 <.05 <.05	7 <.5 5 <.5 10 <.5 8 <.5 6 <.5	15 15 15 15 15
A1 L1600N 1500E A1 L1600N 1600E A1 L1600N 1700E A1 L1600N 1800E RE A1 L1600N 1800E	.2 .7 4.6	11.4	8.8 6.5 9.7	18 < 33 < 36	<.1 <.1 : .1	6.0 10.7 9.1	3.3 9.3 6.4	90 323 384	.88 1.74 1.43		1.1 3.6	8 7 11	<.1 .1 .1	.1 .1 .1	.3 .3 .3	12 . 15 . 20 .	07 09 19	.009 .032 .019	15 18 15	8.2 13.1 12.9	.30 .64 .63	63 .0 67 .0 68	084 068 113	<1 1.83	.012 .006 .015	.06 .1 .11 .2 .08 .2	<.01 1. 2 .02 1. <.01 1.	0.1 3.1 5.1	<.05 <.05 <.05	6 <.5 6 <.5 5 <.5 8 <.5 8 <.5	15 15 15 15 15
A1 L1600N 1900E A1 L1600N 2000E A1 L1600N 2100E A1 L1600N 2200E A1 L1600N 2300E	2.8 3.5 2.2	47.1 21.8	27.0 25.9 27.8	57 83 81 <	.1 .11 <.11	5.9 13.6 16.2	4.2 8.5 8.6	228 391 176	1.44 2.24 2.38	.7 .5 1.3 1.2 3.9 5.2 1.9 .8 2.2 .4	1.3 3.2 1.2 4.1 1.1 5.1	13 13 13	.1 .3 .1	.1 .1 .1	.9 .6 .8	24 . 31 . 35 .	25 34 32	.022 .062 .018	13 9 13	13.0 20.2 25.5 1	.38 .90 .41	65 .1 80 .3 66 .3	104 140 193	1 .69 1 1.69 1 2.96 1 2.98 <1 1.58	.017 .028 .017	.05 .2 .07 .4 .10 .3	.02 1. .02 2. .01 3.	7.1 8.1 1.2	<.05 <.05 <.05	11 <.5	15 15 15 15 15
A1 L1600N 2400E A1 L1600N 2500E A1 L1600N 2600E A1 L1600N 2700E A1 L1600N 2800E	1.0 1.0 .5	9.4 10.3	39.1 10.4 25.2	75 49 108	.1 .2 .1 1	8.4 6.5	4.3 3.4 5.4	110 66 202	2.44 1.69 1.84	1.5 .5	.5 3.3 .8 3.8	9 7 8	.1 .2 .2	.2 .1 .1	.4 .3 .3	47 . 29 . 30 .	23 08 12	025 069 025	11 6 12	26.5 1 19.5 12.1 23.3 1 20.6	.73 .32 .20	66 .1 54 .1 53 .1	187 136 130	1 2.68 1 2.21 1 4.09 1 2.49 1 2.86	.013 .020 .011	.06 .2 .04 .2 .11 .2	.01 2. .02 1. .01 3.	2 .1 9 .1 0 .1	<.05 <.05 <.05	9 <.5 9 <.5	15 15 15 15 15
A1 L1600N 2900E A1 L1600N 3000E A1 L1400N 0E A1 L1400N 100E STANDARD DS6	.7 _3 _4	6.4 10.1 11.3	24.5 4.9 5.3	48 50 43	.1 ,1 1 .1	9.0 11,4 9.7	5.0 5.6 5.1	177 292 243	2.04 1.83 1.85	2.9 .5	.6 5.2 3.8 5.1	9 6 6	.1 .1 .1	.2 .1 .1	.4 .2 .3	34 . 22 . 23 .	17 . 07 . 08 .	. 028 . 025 . 035	13 11 12	18.0 1 18.5 1 16.5 1	04 25 10	66 .1 46 .1 49 .1	145 122 118		.010 .008 .008	.10 .2 .09 .1 .08 .1	.01 2. .03 1. .03 2.	5 .1 8 .1 2 .1	<.05 <.05 <.05	11 <.5 8 <.5 7 <.5	15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

ACHE ANALYTICAL		ACHE ANALYTICAL
SAMPLE		S Ga Se Sample %Ippm ppm cmm
A1 L1400N 200E A1 L1400N 300E RE A1 L1400N 300E A1 L1400N 400E A1 L1400N 500E	4 11.0 6.2 31 1 7.9 3.7 171 1.50 1.9 8 1.2 4.1 5 1.2 2.2 2.2 0.6 0.43 9 13.3 7.5 44 0.86 1 2.52 0.09 0.6 1 0.6 1.6 1.4 0.5 7 13.3 6.4 24 <.1	5 6 <.5 15.0 5 7 <.5 7.5 5 7 .5 7.5 5 7 .5 7.5 5 7 <.5 15.0
A1 L1400N 600E A1 L1400N 700E A1 L1400N 800E A1 L1400N 900E A1 L1400N 1100E	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 6 <.5 15.0 5 8 <.5 15.0 5 9 .5 15.0
A1 L1400N 1200E A1 L1400N 1300E A1 L1400N 1400E A1 L1400N 1500E A1 L1400N 1700E	5 6.4 6.0 30 <.1 6.6 3.1 130 1.92 1.7 .4 <.5 4.0 4 .1 .2 .4 28 .03 .038 17 13.2 .38 48 .076 1 1.11 .004 .06 .1 .02 1.2 .2 <.05 1 8.4 10.4 19 <.1 3.6 1.7 61 2.00 4.1 .6 .5 2.4 3 .1 .2 .4 33 .03 .091 4 8.5 .08 28 .135 1 2.83 .012 .03 .2 .08 1.4 .1 <.05 .0 .04 .05 .0 .05 .0 .05 .0 .05 .0 .08 .08 .08 .08 .08 .01 .03 .02 .08 .1 .04 .05 .0 .06 .0 .08 .08 .08 .08 .08 .08 .08 .03 .008 .08 .08 .08 .08 .06 .0 .0<	5 13 <.5 15.0 5 10 <.5 15.0 5 8 <.5 15.0
A1 L1400N 1800E A1 L1400N 1900E A1 L1400N 20D0E A1 L1400N 2100E A1 L1400N 2200E	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 12 <.5 15.0 5 4 <.5 15.0 5 4 <.5 15.0
A1 L1400N 2300E A1 L1400N 2400E A1 L1400N 2500E A1 L1400N 2600E A1 L1400N 2700E	9 35.7 46.2 188 .1 17.0 11.7 200 2.21 5.2 .6 4.5 4.1 15 .6 .1 .9 38 .43 .014 8 31.0 1.70 56 .159 2 3.05 .041 .08 .4 .02 3.1 .2 <.05 5 15.0 29.7 143 .1 15.3 6.7 191 2.30 2.6 .5 4.4 7 .1 .1 .3 40 .15 .026 9 30.0 1.54 64 .156 1 3.31 .016 .08 .5 .05 .1 1 .5 .2 .05 .05 .1 .1 .3 40 .15 .026 9 30.0 1.54 64 .156 1 3.31 .016 .08 .5 .05 .1 .1 .026 .9 30.0 1.54 64 .156 1 .3.1 .1 .1 .03 .016 .08 .02 .07 .2 .04 .2 </th <th>5 11 <.5 15.0 5 13 <.5 15.0 5 13 <.5 15.0 5 13 <.5 15.0</th>	5 11 <.5 15.0 5 13 <.5 15.0 5 13 <.5 15.0 5 13 <.5 15.0
A1 L1400N 2800E A1 L1400N 2900E A1 L1400N 3000E A1 L1200N 0E A1 L1200N 50E	4 24.0 9.8 34 .1 9.6 5.3 94 2.12 2.5 .5 .6 3.7 8 .1 .2 .3 32 .16 .031 6 16.3 .67 49 .153 1 3.29 .015 .10 .2 .04 1.7 .1 <.05 3 7.4 11.2 106 .1 1.4 5.3 .4 <.5 3.4 .6 .1 .1 .2 31 .10 .032 10 25.6 1.63 60 .136 1 2.58 .012 .08 .1 .1 <.05 6 14.5 16.8 48 .1 3.6 .4 .7 4.2 8 .1 .1 .4 .44 .19 .025 9 24.7 1.88 .2 .101 .03 .1 .1 .03 .016 .24 9.3 .61 .24 .03 .1 .1 .05 .1 .05 .03 .05 .27 .12 .18 .1 .1	5 12 <.5 15.0 5 10 <.5 15.0 5 3 <.5 15.0
A1 L1200N 200E A1 L1200N 300E A1 L1200N 400E A1 L1200N 500E STANDARD DS6	4 28.1 9.7 75 .1 13.5 8.4 1017 1.80 2.1 1.0 <.5 6.3 8 .1 .3 .7 20 .10 .032 16 15.2 1.08 79 .094 3 1.72 .007 .12 .2 .03 1.2 .2 <.05 4 4.4 6.4 55 <1 12.9 6.6 282 1.88 2.0 .6 .5 4.8 7 .1 .2 .4 25 .08 .016 6 15.9 .96 72 .117 2 2.14 .013 .08 .2 .04 1.3 .2<<<.05 5 10.8 7.7 60 <1 9.5 4.7 281 2.25 2.1 .6 <.5 4.4 7 .1 2 .4 34 .06 .043 7 18.1 .66 85 .138 1 1.00 .010 .06 .1 .04 .1.3 .1 <.05 .2 .2 .5 26 .04 <th>8 <.5 15.0 11 <.5 15.0 11 <.5 15.0 11 <.5 15.0</th>	8 <.5 15.0 11 <.5 15.0 11 <.5 15.0 11 <.5 15.0

Sample type: SOIL SSB0 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

Page 11

220

A1 L1200N 600E .3 9.5 5.1 46 <.1	le
A1 L1200N 600E .3 9.5 5.1 46 <.1 11.0 5.0 191 1.71 1.6 .7 <.5 6.4 5 <.1 .1 .4 21 .05 .042 14 15.2 .85 49 .099 1 1.56 .005 .07 .1 .02 1.2 .1 <.05 6 .5 15. A1 L1200N 700E .9 9.0 12.9 20 .1 4.8 1.8 78 1.71 3.7 .6 1.2 2.2 4 .1 2 .5 34 .03 .082 5 8.6 .10 40 .133 1 1.33 .009 .07 .2 .06 1.1 .4 .05 10 .5 15 A1 L1200N 800E .3 15.4 5.9 50 .1 10.0 4.8 558 1.34 1.0 .7 <.5 1.8 7 .1 .4 18 .07 .036 13 14.4 .71 .71 .074 2 1.56 .005 <	
A1 L1200N 700E .9 9.0 12.9 20 .1 4.8 1.8 78 1.71 3.7 .6 1.2 2.2 4 .1 .2 .5 34 .03 .082 5 8.6 .10 40 .133 1 1.33 .009 .07 .2 .06 1.1 .1 <.05 10 <.5 15 A1 L1200N 800E .3 15.4 5.9 50 .1 10.0 4.8 558 1.34 1.0 .7 <.5 1.8 7 .1 .1 .4 18 .07 .036 13 14.4 .71 71 .074 2 1.56 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .1 .02 1.0 .1 <.05 6 <.5 15 .005 .06 .005 .06 .1 .02 1.0 .01 <.05 6 <.5 15 .005 .005 .06 .1 .02 1.0 .01 <.05 6 <.5 15 .005 .005 .06 .1 .02 1.0 .01 <.05 6 <.5 15 .005 .005 .06 .1 .02 1.0 .01 <.05 6 <.5 15 .005 .005 .005 .005 .005 .005 .005	gm .
Al L1200N 900E 1.2 6.9 7.8 11 1 3.2 1.5 61 1.77 2.7 6 2.1 2.0 3 1 1 3 24 .02 .040 5 6.4 .07 28 .102 1 1.09 1.2 .1 09 1.2 .1 09 1.2 .1 05 9 .5 15 Al L1200N 1000E .8 6.1 11.8 30 .1 5.4 2.2 2.8 4 .1 .3 .4 .05 9.0 .11 38 .131 2 2.03 .010 .04 .1 .08 1.4 .4 .5 15 .15	.0 .0 .0
A1 L1200N 1100E .8 11.2 16.1 36 .2 5.9 2.9 127 3.39 5.0 .9 2.1 4.7 4 .1 .2 .5 52 .04 .212 5 16.6 .10 49 .143 1 4.40 .008 .03 .2 .11 2.1 .1 <.05	.0 .0 .0
A1 L1200N 1600E 4.2 18.2 10.0 48 .2 13.0 6.8 192 1.96 1.8 4.3 16 .1 .1 .9 26 .34 .028 16 21.9 .86 91 .081 1 2.77 .010 .10 .8 .05 2.0 .2 .2 .05 8 .2 .05 10 .5 15. A1 L1200N 1700E 2.2 14.7 15.2 57 .1 10.6 5.0 153 1.66 1.1 2.2 .6 4.1 17 .1 .1 .7 27 .29 .029 12 17.4 .58 92 .107 .4 .05 .0 .2 .05 .0 .5 <	.0 .0 .0
A1 L1200N 2100E .8 29.6 17.6 117 .1 18.1 9.0 211 2.10 1.1 .6 2.7 4.3 22 .1 .1 .6 30 .28 .012 11 24.5 1.48 90 .153 2 2.87 .011 .10 .3 .01 2.6 .2 .05 9 .5 15. A1 L1200N 2200E .6 11.7 8.4 53 .1 8.9 3.9 107 1.94 3.8 .6 2.9 4.5 8 .2 .2 .2 .2 .08 .089 3 15.8 .41 31 .148 1 5.33 .017 .05 .2 .05 10 .5 15. A1 L1200N 2300E .7 13.9 12.1 66 .1 8.9 4.4 160 2.01 3.2 .6 1.6 4.3 11 .2 .2 .3 32 .10 .075 4 16.7 .56 45 .140 1 4.57 .014 .09 .1 .04 .	.0 .0 .0
A1 L1200N 2600E .5 10.9 17.0 68 .1 11.8 5.5 255 2.03 3.5 .5 1.0 4.2 8 .1 .1 .3 33 .24 .034 8 21.6 1.52 87 .144 1 3.12 .019 .08 .2 .03 3.0 .1 <.05	0 0 0
A1 L1000N 0E .1 10.5 3.8 33 <.1 9.6 4.9 336 1.33 .9 .9 <.5 5.8 4 .1 .1 .6 18 .08 .042 16 16.6 1.02 137 .077 <1 1.94 .005 .44 <.1 .02 1.8 .2 <.05 5 <.5 15.	0 0
A1 L1000N 500E .7 22.2 9.0 34 .1 7.0 4.0 1.4 1.3 2.2 4.7 11 .1 .5 25 .07 .107 6 9.4 .20 71 .128 1 4.22 .015 .05 .2 .08 2.1 .1 <0.5	0 0 0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

Page 12

ر هریشید در در د

100 C

ACHE ANALYTICAL									<u> </u>																										ACHE	ANALYTICAL
SAMPLE#	Mo ppm			>Zn sppm			÷.				-						Bi xpm p			Р Х р		Cr ppm	Mg X	Ba ppm	Ti X	-							T? S pm \$			Sample gm
A1 11000N 800E A1 11000N 900E A1 11000N 1000E A1 11000N 1100E A1 11000N 1100E A1 11000N 1200E	5.5 11.5 .4		16.1 7.6 6.6	24 40	.1 .1 .1	6.4 8.8 1.9	3.1 5.0 .9	86 205 2 25	1.91 2.28	2.9 2.9 .7	4.0 .7 .4	2.2 .9 1,5	4.4 6.8 1.5	6 3 3	.2 .1 ,1	.1 .2 .1	.6 2 .8 3 .3 1	24 . 31 . 16 .	04 .0 02 .0 02 .0	037 027 017	12 19 5	8.7 12.4 4.5	.16 .37 .08	43 27 24	.167 .084 .061	2 1 <1 1 <1 1	L.85 L.33 L.45	.015 .004 .011	.05 .06 .02	.2 .2 <.1	.06 1 .04 1 .03 1	7 1 4	.1<.05 .1<.05 .2<.05 .1<.05 .1<.05	12 7 6	.6 <.5	15 15 15 15 15
A1 L1000N 1300E A1 L1000N 1400E A1 L1000N 1500E A1 L1000N 1500E A1 L1000N 1500E A1 L1000N 1700E	.8 .4 1.6	8.2 5.8 4.8	7.0 10.3 7.7 10.3 89.3	73 52 24	.1 : <.1 ,1	1.2 8.2 5.8	4.9 4.0 2.6	313 125 66	1.36 1.10 1.00	.7 .5 .7	.6 .5 .6	2.5 <.5 <.5	2.4 2.3 3.1	12 9 7	.1 < .1 < .1	<.1 <.1 .1	.9 2 .5 1 .5 1	24 . 17 . 19 .	21 .(24 .(13 .(015 010 010	10 12 12	16.1 13.5	.71 .80 .35	67 52 39	.082 .085 .078	<11 11 <11	L.97 L.64 L.44	.012 .007 .010	.09 .05 .05	.2 .3 .3	.01 1 .01 1 .02 1	8 5 1	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	7 6 7	<.5 <.5	15 15 15 15 15
A1 L1000N 1800E A1 L1000N 1900E A1 L1000N 2000E A1 L1000N 2100E A1 L1000N 2200E	9.8 2.1 .5	50.3 18.4 11.6	45.5 18.9 10.9	249 110 56	.1 2 .1 .1	20.1 9.6 6.7	12.2 6.7 3.1	1054 308 109	2.83 1.78 1.46	1.9 1.7 1.3	1.2 .7 .5	.6 <.5 1.4	5.1 4.2 3.B	28 19 5	.3 .1 .1	.22 .24 .1	1.0 3 1.3 3 1.5 2	38. 30. 29.	32 .(16 .(06 .()44)42)50	10 8 6	18.9 1 24.9 1 17.2 13.3 17.7	.49 .81 .57	287 56 51	. 167 . 102 . 131	1 3 2 2 1 2	3.27 2.35 2.61	.014 .013 .014	.11 .06 .04	.5 .3 .1	.03 2 .03 2 .03 1	.8 .0 .9	.2<.05 .2<.05 .1<.05 .2<.05 .1<.05	11 9 10	<.5 <.5	15 15 15 15 15
A1 L1000N 2300E A1 L1000N 2400E A1 L1000N 2500E A1 L1000N 2600E A1 L1000N 2700E	5 7 5	7.0 10.7 11.0 10.7 6.0	9.1 9.7 10.6	84 60 52	.1 .1 1 .1 1	9.8 0.7 1.2	4.1 5.9 5.8	204 165	1.83 2.42 1.74	1.5 2.4 2.0	.5 .5 .5	1.3 1.2 1.4	4.6 4.2 2.9	6 < 9 7 <	.1 .1 .1	.1	.2 3 .2 3 .2 2	34. 34. 29.	L1 .(L5 .: L8 .()68 150)18	7 6 6	21.8 1 20.0 1 22.6 2	. 12 . 19 2.55	34 55 45	.129 .135 .133	12	2.57	.007 .012 .010	.07 .06 .09	.1 . .2 . .1 .	.03 2 .03 2 .01 2	.4 .4 .7	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	12 11 10	<.5 <.5 <.5	15 15 15 15 15
A1 L1000N 2800E A1 L1000N 2900E RE A1 L1000N 2900E A1 L1000N 3000E A1 L900N 2500E	4 5 4	10.6 10.5 17.8	9.4	56 55 57	.1 1 .1 1 .1 1	2.8 2.7 1.0	6.3 6.2 6.2	177 (690 (2.02 2.05 1.77	2.0 2.0 3.4	4 4 2 5	<.5 <.5 1.0	3.5 3.3 4.2	6 6 17	.1 .1 .2	.1 .	.4 3 .3 2	37 37 27	15 .0 15 .0 96 .0)30)27)41 [7 7 10	27.9 2	. 22 . 14 . 21	154 154 221	. 154 . 154 . 108	13 13 13	8.55 8.51 8.11	.017 .020 .069	.05 .06 .33	.3 . .2 . .5 .	02 4 01 3 03 3	.1. .9.	.1<.05 .1<.05 .1<.05 .2<.05 .1<.05	14 14 8	<.5 <.5	15 15 15 15 15
A1 1900N 2600E A1 1900N 2700E A1 1900N 2800E A1 1900N 2900E A1 1900N 3000E	.5 .7 .4	22.0 9.1	9,9 9,7 13,2	52 42 64	.11 .1 .11	1.6 8.9 3.3	5.6 3.7 6.0	172 1 232 1 348 1	1,83 1,28 1,84	2.5 1.9 2.1	.4 .6 .7	.8 <.5 .5	4.5 3.2 3.9	9 < 8 10	.1 .1 .1	.1 . .1 . .1 .	.5 3 .3 2 .2 3	30 . 24 . 32 .	17 .0 14 .0 17 .0)75)21)17	8 9 9	20.9 1 19.4 1 29.1 2	. 60 . 86 . 52	41 55 93	.115 .107 .127	13 <12 <13	.19 .53 .38	.006 .009 .029	.06 .11 .12	.2 . .2 . .2 .	02 2 02 2 01 3	.3., .5 .8	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	10 9 11	<.5 <.5 <.5	15 15 15 15 15
A1 L800N 100E A1 L800N 200E A1 L800N 300E A1 L800N 400E STANDARD DS6	.5 1.1 .9	9.2	8.5 12.0 17.6	42 - 61 35	<.1 1 .1 1 .1	0.3 1.1 6.2	6.2 5.2 : 2.7	278 1 1257 1 109 1	L.71 L.93 L.94	2.9 4.8 9.3	2.6 1.2 .9	2.5 <.5 2.2	2.1 1.5 4.2	5 8 5	.2 .1 .3	.3 . .3 . .4 .	.52 .43 .43	22 .1 33 .0 33 .0)4 .()6 .1)5 .1)61 4 .44 .38	44 8 5	12.1 13.1 10.1	.51 .26 .17	29 62 42	.056 .100 .133	21 34 13	. 45 . 37 . 38	.003 .010 .010	.14 .08 .06	.2 . .2 . .2 .	03 1. 09 2. 11 1.	.1 . .0 . .7 .	.1<.05 .2<.05 .2 .09 .1<.05 .7<.05	6 9 11		15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

÷

्र विकास

ACE AWALYTICAL		Ruby Red Re	sources Inc.	. PROJECT GAR	FILE # A504836	Page 13
sample#		n Ag Ni Co Mn nippnippnippnippni		Sr Cd Sb Bit V Ca ppm ppm ppm ppm ppm *		la K W Hg Sc 7⊺ S Ga Se Sample X Xippmippmippmippmi Xippmippmi gm
A1 L800N 500E A1 L800N 600E A1 L800N 700E A1 L800N 800E A1 L800N 900E A1 L800N 900E	.7 12.5 6.6 1 .7 4.9 11.6 4	4 .1 9.3 4.8 407 1 0 .1 6.2 3.6 549 1	.65 3.2 ,9 2.6 2.7 .65 2.4 ,5 <.5 3.5	5 .2 .2 .1 26 .04 5 .1 .3 .6 27 .03 8 .1 .2 .8 20 .08	.025 13 11.7 .26 54 .080 1 1.12 .00 .022 13 9.9 .47 65 .099 1 1.04 .00	2 .02 .2 .07 2.4 <.1
A1 L800N 1000E A1 L800N 1100E A1 L800N 1200E A1 L800N 1300E A1 L800N 1300E A1 L800N 1400E	.5 5.3 5.4 3 .3 1.6 5.6 1	7 <.1 7.5 3.5 104 1 6 <.1 3.1 1.3 59 2 <.1 6.4 3.5 167 1	.68 .8 .3 .6 3.3	5 <.1 .1 .5 17 .05 3 <.1 .1 .4 13 .04 7 .1 .1 .5 16 .16	.031 12 11.3 .46 37 .058 <1 1.65 .00 .010 15 6.7 .22 14 .053 <1 .57 .00 .018 13 9.7 .47 51 .067 <1 .95 .00	4 .05 .2 .03 1.3 .1<.05 5 <.5 15.0 2 .03 .1 .01 .6 .1<.05 5 <.5 15.0 4 .09 .2 .01 .9 .1<.05 5 <.5 15.0
A1 L800N 1500E A1 L800N 1600E A1 L800N 1700E A1 L800N 1800E A1 L800N 1800E A1 L800N 1900E	1.1 10.0 9.9 3 10.9 12.1 25.8 6 9.2 10.0 66.8 4 34.3 19.7 445.4 9 15.3 3.7 45.6 3	2 .3 6.6 3.2 144 2 7 .4 6.1 6.2 2950 2	.93 .8 3.0 <.5 1.3 .11 3.1 .9 .7 4.5	17 .2 .1 .4 19 .22 9 .2 .4 ·3.2 40 .07 18 .3 1.8 16.3 25 .09		8 .06 .2 .04 1.6 .1<.05 10 <.5 15.0
A1 L800N 2000E A1 L800N 2100E A1 L800N 2200E A1 L800N 2300E A1 L800N 2300E A1 L800N 2400E	2.5 4.9 8.5 2 4.9 10.1 14.7 3 1.8 9.1 7.4 4 1.0 11.4 17.2 10 .7 7.1 13.4 5	7 .1 6.8 2.7 101 3 4 .1 11.2 6.9 110 1 7 .1 12.9 7.0 1101 1	80 4.2 .7 1.5 4.7 .82 2.5 1.2 1.4 8.4 .84 3.2 .8 1.7 5.8	6 .1 .3 .8 52 .03 5 .1 .1 .6 23 .03 11 .2 .2 .4 29 .07	.066 5 15.9 .15 52 .170 1 3.56 .00 .041 16 10.5 .38 69 .106 1 2.73 .00 .091 9 11.2 .32 364 .140 1 3.14 .00	9 .03 .2 .10 1.7 .2<.05 17 <.5 15.0 5 .05 .2 .06 1.9 .2<.05 7 <.5 15.0 9 .04 .2 .03 1.7 .2<.05 9 <.5 15.0
A1 L800N 2500E RE A1 L600N 300E A1 L600N 0E A1 L600N 100E A1 L600N 200E	.8 12.9 10.9 5 .3 4.5 3.2 2 .4 5.7 11.4 2	3 <.1 7.6 3.0 76 1 2 <.1 2.2 1.0 583	25 3.3 .8 2.5 4.5 87 2.1 1.2 2.0 1.3 06 2.0 .5 5.0 4.7 62 1.8 .4 <.5	6 .1 .2 .6 20 .03 2 .1 .1 .2 15 .01 4 .1 .2 .4 17 .01	.055 19 11.5 .32 66 .048 1 1.02 .003 .026 23 9.5 .44 18 .034 1 .95 .003 .028 9 5.2 .06 39 .066 1 .64 .004	8.04 .1.03 .6 .2<.05 7 <.5 15.0
A1 L600N 300E A1 L600N 400E A1 L600N 600E A1 L600N 700E A1 L600N 800E	.6 19.3 14.7 6 .4 12.8 10.0 5 1.2 10.4 13.1 3	7 ,1 12.2 7.9 946 1 2 <.1 13.7 7.1 260 1	94 1.9 1.3 2.4 1.4 87 5.2 1.5 1.6 2.0 74 2.9 1.0 1.2 7.2 20 3.3 1.0 2.2 3.3 80 1.5 .5 .7 2.2	5 .3 .6 .6 23 .04 4 .1 .3 .4 17 .03 6 .1 .3 .4 35 .04	.047 18 12.1 .53 37 .071 1 1.63 .003 .071 9 11.7 .15 43 .106 1 2.14 .006	7 .10 .1 .06 1.9 .2 .06 6 .8 15.0 3 .09 .2 .02 1.2 .1<.05 4 <.5 15.0
A1 L600N 900E A1 L600N 1000E A1 L600N 1100E A1 L600N 1200E STANDARD D56	.5 2.7 6.0 2 2.7 13.9 7.4 8 3.1 5.4 13.1 2	0 .1 6.6 3.6 169 1 2 .1 2.9 1.3 39 1	81 .8 .4 1.0 3.2 52 1.7 .6 1.5 2.8 03 .9 .5 .8 1.4	4 .1 .1 .3 12 .09 12 .1 .1 .3 22 .16 8 .1 .1 .5 21 .14	.063 7 10.4 .45 72 .091 1 1.97 .011	4 .04 .1 .02 .7 .1<.05 5<.5 15.0 1 .04 .3 .04 1.5 .1<.05 7<.5 15.0 0 .04 .1 .02 .7 .1 .07 7<.5 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

Page 14

ACHE ANALYTICAL																																	ACHE	AVALYTICAL
SAMPLE#	Mo	Çu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	ı Th	Sr	Cđ	Sb I	Bi	٧	Ca	P	La	Cr	Mg	Ва	Ti	B A		a K	: W	Hg	Sc	T1 S	Ga Se	Samole
- 130015?	ppm	ppm	ppm	ppm p	xpna p	pm	ppm	ppm	2	ррл	ppm	ppb	o ppm	ppm j	ppm p	ypm pj	pm p	лдк	X	* 1	ppm	ppm	ž	ppm	X	ppm							ppm ppm	
A1 L600N 1400E A1 L600N 1500E A1 L600N 1600E A1 L600N 1700E A1 L600N 1800E	4.7 13.2 2.7	28.6	8.4	68	.2 13 .2 6 .2 5	3.2 5.9 5.5	6.6 3.1 2.7	146 2 72 2 251 2	2.55 1.50 1.55	6.0 2.9 2.0	10.9 1.5 .8	.7 2.2 1.9	7 3.2 2 5.2 3 4.4	25 5 4	.3 .1 .1	.1 .2 2 .2 7	.6 .5 .9	30 21 24	.44 .03 .03	.040 .037 .079	12 9 12	22.5 7.9 7.2	.91 .30 .15	117 32 38	.117 .114 .119	1 3.6 1 2.7 1 1.6	86 .01 75 .01 50 .01	0.06 2.11 2.07	5.7 .2 7.2	.10 .07 .10	2.8 2.5 1.1	.2<.05 .1<.05 .2<.05	5 2.1 11 .8 7 .5 9 .5 5 <.5	15.0 15.0 15.0
A1 L600N 1900E A1 L600N 2000E A1 L600N 210DE A1 L600N 2200E A1 L600N 2300E	3.3 3.3 5.8	5.9 12.3 17.9	25.0 8.9 40.9 11.4 11.5	48 53 61	.1 11 .6 10 .1 10	1.1).1).8	3.7 6.0 6.9	214 2 270 1 158 2	2.00 1.87 2.35	2.0 2.4 4.3	1.0 1.9 1.6	.8 7.0 3.0	8 6.3 1 6.2	4 < 9 12	<.1 .1 .2	.1 1. .2 7.	.3 .2/ .5	23 24 35	.03 .06 .03	.048 .055 .112	17 19 10	9.5 12.2	.54 .36 .36	65 140 68	.116 .104 .133	2 2.0 1 2.2 4 3.4	6 .000 5 .000 0 .010	6.10 8.07 0.06	.2 .3 .2	.04 .06 .12	1.2 1.5 2.5	.2<.05 .2<.05	7 <.5 7 <.5 7 <.5 11 .8 9 <.5	15.0 15.0
A1 L600N 2400E A1 L600N 2500E A1 L400N 0E A1 L400N 100E A1 L400N 20DE	3.4 1.2 .8	5.6 8.8 4.9	11.0 11.1 9.4 13.2 8.6	30 < 59 16	.1 11 .1 8 .1 2	1.8 3.0 2.3	5.0 3.2 .8	174 189 2 46 1	1.40 2.34 1.13	1.1 3.7 2.0	.7 .7 .6	1.1 1.9 2.1	6.9 4.2 1.3	7 - 4 3	<.1 .1 .1	.1 . .3 . .2 .	.5 .3 .4	16 42 23	.05 . .02 . .01 .	.031 .049 .042	22 11 7	12.2 13.2 4.8	.45 .39 .06	75 91 27	.053 .111 .094	<1 .9 1 3.1 1 1.6	4 .004 6 .008 8 .011	4.10 6.05 1.03	.1 .2 .1	.01 .07 .05]	.8 2.3 1.1	.1<.05 .1<.05 .1<.05	8 <.5 4 <.5 11 .5 11 <.5 11 <.5	15.0 15.0 15.0
A1 L400N 300E RE A1 L400N 300E A1 L400N 400E A1 L400N 500E A1 L400N 600E	.7 1.9 .9	4.2 11.6 11.7	6.3 5.9 5.4 11.6 9.1	40 < 44 < 53 <	.1 10 .1 12 .1 11).8 (2.0 (1.0 (5.1 8.2 4.2	181 1 517 1 144 1	1.38 1.57 1.89	1.9 1.3 3.7	1.4 1.8 2.1	.6 5.> 2.2	5.5 2.5 8.6	3 < 3 < 8	<.1 <.1 .2	.1 . .1 . .2 .	.3 .6 .3	15 15 30	.02 . .02 . .13 .	.034 .042 .046	26 24 9	9.5 9.3 9.9 15.3 22.2	.35 .68 1.18	28 33 44	.050 .034 .127	1 1.2 1 1.4 2 3.8	5 .003 9 .003 3 .007	3 .07 3 .12 7 .05	.2 .2 .4	.03 1 .02 .06 3	1.1 .9 3.1	.1<.05 .2<.05 .1<.05	4 <.5 4 <.5 5 <.5 11 .6 12 <.5	15.0 15.0 15.0
A1 L400N 700E A1 L400N 80 <u>0</u> E A1 L400N 1000E A1 L400N 1100E A1 L400N 1200E	.8 13.0 4.4	22.1 10.7 1.2	19.8 14.8 37.1 2.6 13.4	89 45 14 <	.1 11 .1 9 .1 7	4 .3 .7	7.4 4.1 2.9	784 1 222 2 62 1	1.88 2.17 1.02	3.0 2.3 .8	1.2 1.5 1.4	1.1 5.8 .6	4.0 6.6 6.6	18 14 1 <	.2 .1 <.1	.2 . .1 . .1 .	.4 : .6 2 .3 1	30 27 13 <	.23 . .09 . .01 .	.082 .046 .011	9 18 23		1.13 .74 .34	125 66 12	.155 .106 .080	2 4.2 1 1.9 <1 .6	7 .015 1 .005 2 .002	5 .08 5 .11 2 .12	.5 .3 .1	.05 1 .06 1 .01	3.1 1.9 .6	.2<.05	11 <.5 11 .6 7 <.5 4 <.5 9 <.5	15.0 15.0 15.0
A1 L400N 1300E A1 L400N 1400E A1 L400N 1500E A1 L400N 1600E A1 L400N 1700E	17.0 5.5 3.3	4.6 2.1 7.1	438.0 14.0 19.0 12.8 12.9	18 24 < 22	.1 6 .1 8 .1 7	.3 .1 .1	2.7 5.1 2.9	61 1 309 1 71 1	1.10 1.62 1.49	2.2 1.3 1.6	1.2 1.1 1.5	.5 1.7	6.4	3 3 < 2	.1 <.1 .1	.1 1. .1 . .1 .	.4 1 .5 3 .4 1	14 31 18	.01 . .03 . .01 .	023 012 019	24 13 14	5.7 9.3 7.0	. 26 , 97 . 20	31 34 36	.063 .128 .075	2 .7 <1 1.3 1 1.5	7.005 2.003 3.005	5.09 3.43 5.05	.4 .4 .5	.04 .01 1 .05 1	.7 1.5 1.3	.2<.05 .4<.05 .1<.05	8 <.5	15.0 15.0 15.0
A1 L400N 1800E A1 L400N 1900E A1 L400N 2000E A1 L400N 2100E STANDARD DS6	2.2 .8	21.2 24.1 13.6	9.5 10.6 18.6 14.6 29.7	103 120 79	.1 17 .3 15 .1 14	.8 9 .8 10	9.2 0.0 7.9	382 2 380 2 341 2	2.09 2.24 2.13	1.4 2.8 3.6	1.2 ,8 1.2	.9 1.6 1.5	7.9 6.3 4.9	9 8 13	.1 .2 .2	.1 2. .2 3. .3	.4 2 .3 3 .4 3	26 31 32	.06 . .08 . .11 .	028 149 251	24 10 5		.57 .29 .19	200 125 199	. 125 . 165 . 207	1 2.1 2 3.4 1 4.7	6 .007 4 .013 5 .016	10 10 10 10 10	1 2 3	.02 1 .05 1 .06 2	1.6 1.8 2.3	.3<.05 .2<.05 .1<.05	9 <.5 8 <.5 11 <.5 14 <.5 6 4.5	15.0 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

23

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

ACHE ANALYTICAL																				 ,											ACHE	ANALYTICAL
SAMPLE#	Mo			Zn	Ag N1 pm ppn		ο Man προρο				Au ppb p								La ppm	Cr ppm			Ti X I					Hg Sc pm ppm		S Ga S		ample can
A1 L400N 2200E A1 L400N 2300E A1 L400N 2400E A1 L400N 2500E A1 L400N 0E	1.5 1.0 .9 3.7	7.5 7.2 9.3	8.4 11.2 43.0 12.2	68 42 26 < 56 <	· · · · ·	9 6.6 2 4.4 3 5.3 9 6.8	5 172 1 4 196 1 3 213 1 3 148 1	1.85 1.96 2.27 1.77	2.1 4.0 4.1 1.3	.9 .7 1.1 1.0	<.5 6 1.7 3 1.8 3 5.8 7	.8 .3 .6 1 .5 1	7 .1 8 .2 18 .2 11 .1	1 .1 2 .2 2 .2	1 .5 2 .3 2 .3	24 31 32 18	.05 .06 .15 .05	.070 .165 .502 .044	20 2 2 2 21	12.5 8.0 8.8 16.6	.51 .07 .06 .71	99 . 63 . 111 . 112 .	.101 .138 .144 .063	1 1.79 1 4.40 1 5.38	9 .006) .010 5 .011 L .004	.06 .02 .02 .02	.2 .0 .2 .0 .3 .0 .2 .0	03 1.2 08 1.2 07 1.2 07 1.2	.1 .0 .1<.0 .1<.0 .1<.0)6 8 <.)5 11 .)5 12 <.)5 5 <.	.5 .5 .5	98 15.0 15.0 15.0 15.0 15.0
A1 L200N 100E A1 L200N 200E A1 L200N 300E A1 L200N 400E A1 L200N 500E	.6 .4 .9	10.9 8.5 9.4 8.2 41.0	84 71 87	96 <. 86 . 62 .	.2 5.0 .1 10.9 .1 10.7 .1 7.6 .1 13.9	9 5.1 7 5.6 5 3.9	1 294 1 5 169 1 9 176 1	1.90 1.60 1.74	1.7 1.8 2.1	.7 .7 .7	1.2 2 .9 2 1.0 1	.2 1 .6 2 .6 2	15 .2 20 .1 22 .1	2.1 1.1 1.2	.3 .2 2.2	30 24 30	.26 .26 .33	.045 .041 .051	10 9 7	18.3 17.1 12.6	.65 .84 .44	69 51 49	.110 .095 .113	1 2.93	2 009 3 008 5 011	07 06 07	.7 .0 .3 .0 .4 .0	04 1.8 03 2.1 05 1.5	.1<.0 .1<.0 .1<.0	59. 511. 58<. 511. 511.	.5 .5	15.0 15.0 15.0 15.0 15.0
RE A1 L200N_500E A1 L200N 600E A1 L200N 700E A1 L200N 800E A1 L200N 900E A1 L200N 900E	2.8 5.2 47.8	18.2 65.3	42.2 20.0 433.6	85 72 63	.1 14.5 .1 14.4 .1 11.6 .2 5.5 .1 4.1	8.7 6.2 6.3.5	946 2 2 450 2 5 246 1	2.69 2.00 1.85	1.4 1.4 2.1	1.5 .9 29.9	.7 4. 7 5. 4.2 1.	.8 1 .3 1 .8 3	12 .1 12 .1 38 .3	.1 .1 .1	.4 .3 .6	44 36 24	.12 .16 .11	.059 .043 .070	14 15 12	29.6 28.8 9.1	1.65 1.34 .19	125 . 108 . 85 .	. 169 . 155 . 088	1 2.78 1 3.23 1 2.01 2 2.42 1 1.46	3 .007 1 .008 2 .016	.44 .28 .05	.2 .0 .2 .0 .3 .0	04 4.3 03 3.7 06 1.8	.3<.0 .2<.0 .1<.0		.6 5 .8	15.0 15.0 15.0 7.5 15.0
A1 L200N 1000E A1 L200N 1100E A1 L200N 1200E A1 L200N 1300E A1 L200N 1400E	1.8 5.6 7.9		5.1 8.0 12.3	27 <. 20 . 47 <.	.1 9.8 .1 6.5 .1 4.5 .1 12.1 .1 11.7	5 3.1 5 2.0 5 5.4	186 1 68 1 146 2	1.67 1.96 2.06	.7 1.9 2.5	1.1 1.0 1.1	7.1 5. 1.5 4. 3.1 8.	.9 .8 .6	2 <.1 3 <.1 5 <.1	.1 .2 .2	.8 .6 4.2	31 33 26	.01 .02 .02	.014 .030 .031	15 11 20	12.0 9.3 12.3	.51 .17 .29	26 . 25 . 63 .	.137 .103 .088	1 1.39 1 1.35 <1 1.34 1 1.88 1 2.58	5 .005 008 006	.13 .03 .09	.1 .0 .2 .0 .2 .0)2 1.3)4 1.2)2 1.5	.2<.0 .1<.0 .2<.0	58<. 56<.	5 5 5	15.0 15.0 15.0 15.0 15.0
A1 L200N 1500E A1 L200N 1600E A1 L200N 1700E A1 L200N 1800E A1 L200N 1900E	4.9 1.8 9.2	4.6 6.4 10.3	32.5 21.2 11.3	64 . 161 . 66 .	.2 12.2 .1 8.7 .2 10.0 .1 10.4 .5 9.2	5.1 7.2 8.0	272 1 796 1 572 2	1.43 1.59 2.44	1.3 1.6 2.8	.9 : .9 2.1	12.5 5. 1.3 5. 1.8 9.	.5 .8 .0 1	5 <.1 7 .1 1 .2	2 2 3	.5 .6 2,4	16 23 24	.04 .06 .04	.020 .051 .177	16 13 18	8.4 10.8 12.8	. 26 . 26 . 43	125 . 275 . 184 .	.070 .104 .105	2 3.04 1 1.12 2 1.71 2 2.39 1 3.05	2 .003 .007 .008	.08 .08 .13	.2 .0 .2 .0 .2 .0	2 1.3	.2<.0 .3<.0 .2 .0	55<. 57<.	5 5 7	15.0 15.0 15.0 15.0 15.0
A1 L200N 2000E A1 L200N 2100E A1 L200N 2200E A1 L200N 2300E A1 L200N 2400E	.7 .9 1.5	8.8 8.0 9.1	14.4 9.8 13.0	83 . 35 . 30 .	.3 7.0 .2 9.0 .1 5.7 .2 4.6 .2 10.5	6.8 3.2 3.7	179 1 66 1 109 3	1.60 1.82 3.12	1.9 2.6 4.2	.7 .6 .7	1.2 3. 1.4 3. 2.7 2. 2.8 4. <.5 3.	.1 1 .8 .9	19.3 5.1 4.3	1 2 2	.6 .2 .8	21 28 42	.16 .05 .03	. 111 . 141 . 175	7 2 3	9.2 8.4 13.3	.24 .05 .06	169 . 40 . 26 .	102 137 164	1 2.68 1 5.33 1 5.75	013 013 013	.08 .02 .03	.2 .0 .2 .0 .2 .1	6 1.4 7 1.5 0 1.7	.1<.0 .1<.0 .1<.0	5 11 <. 5 8 <. 5 10 < 5 15 1 5 11 <.2	5 5 6	15.0 15.0 15.0 15.0 15.0
A1 L200N 2500E A1 LON 0E A1 LON 100E A1 LON 200E STANDARD DS6	_4 1.1 _6	10.3 7.6 12.3	11.2 5.7	61 . 92 . 99 .	.1 13.2	6.6 5.6 7.0	173 1 128 1 152 1	L.75 L.87 L.72	2.3 1.8 2.2	1.9 .5 .7	.8 5. 1.3 2. .8 4.	.6 . 6 1 .5 1	8 <.1 0 .1 3 .1	.1	.3 .3 .2	24 33 25	.12 .16 .26	.042 034 026	14 6 11	19.4 1 12.7 19.6 1	1.20 .38 1.02	60 60 49	103 156 110	2 2.31 1 2.52	.008 .015 .010	.06 .06 .06	.4 .0 .4 .0 .4 .0	2 2.4 3 1.6 3 2.5	.1<.0 .1<.0 .1<.0	5 12 <. 5 8 <. 5 12 <. 5 8 <. 5 6 4.	5 5 5	7.5 15.0 15.0 15.0 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

AMALYTICAL

f

Ruby Red Resources Inc. PROJECT GAR FILE # A504836

ACHE ANALYTICAL																												-					-	ACHE ANA	YTICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb E	i	V C	a	P La	Cr	Mg	Ba	Ti	В	A1	Na	ĸ	W	Hig S	Sc T	1 S	Ga Se	Sampl	e
	ppm	ppm	ppm	ppm ;	nqc	ppm	ppm	ppm	X.	ppm	ppm	ppb	ppm	ppm p) Dur t	obu bt	a p	m	X	\$ ppm	ppm	*	ppm	2	ppm	2	7	21	ppm p	opin pr	pm pp	n X	ppm ppm	, g	1
A1 LON 300E A1 LON 400E A1 LON 500E RE A1 LON 500I A1 LON 500E			7.4 8.7	63 < 56 46 47 25 <	.1 .1 .1	8.0 5.1 6.0	5.1 2.5 2.6	121 1 173 1 191 1	. 38 . 30 . 39	1.8 1.6 1.4	.7 .6 .5	1.0 .8 .7	3.9 2.4 2.3	12 10 10	.1 .1 .1	.1 . .1 . .1 . .1 . .2 .	2 : 3 : 3 :	26 .1 28 .1 28 .1	8.03 1.02 0.02	378 268 268	15.0 12.0 11.1 11.3 10.8	.40 .34 .36	47 55 59	.118 .109 .107	1 2 1 1 <1 1	.60 .44 .54	.014 .011 .013	.05 .06 .06	.2 . .1 . .1 .	03 2 03 1 03 1	.2 .5 .3	1<.05 1<.05 1<.05	10 < 5 9 < 5	15. 7. 7.	5
A1 LON 700E A1 LON 800E A1 LON 900E A1 LON 1000E A1 LON 1100E	8.0 6.7 4.6	4.3 9.2 13.7	96.4 10.9 39.4 97.3 14.9	38 < 21 37	4.1 .8 .3	3.2 4.0 5.4	4.2 2.3 2.5	451 2 112 1 147 3	.74 .62 .06	1.8 2.5 3.7	5.1 1.6 1.2	1.6 3.0 2.4	6.7 3.4 4,1	60 12 5	.1 .1 .1	.1 . .1 . .4 .	7 4 7 3 5 6	46 .3 33 .0 53 .0	5.18 4.04 3.06	85 15 19 7 57 6	6.8 7.0 10.9	.44 .12 .15	182 57 52	.120 .107 .215	<1 2 1 2 1 2	.45 .55 .82	.009 .013 .010	.30 .05 .06	.2 . .3 . .2 .	04 3. 07 1. 07 2.	.2 . .9 . .1 .	2<.05 1<.05	8 .5 10 <.5 18 .5	15. 15. 15.	
A1 LON 1200E A1 LON 1300E A1 LON 1400E A1 LON 1500E A1 LON 1600E	5.3 2.2 3.7	10.3 5.8 6.2	13.5 36.0 19.6 51.6 107.1	58 63 26	.1 1 .1 .1	0.4 7.0 5.0	5.4 3.8 2.6	160 2 141 1 91 1	.02 .27 .53	2.4 1.3 1.5	1.2 1.1 .7	2.8 3.7	5.5 7.5 4.8	4 3 3	.1 .1 .1	.2 . .1 1. .2 .	8 2 5 1 8 2	29 .0 16 .0 21 .0	3 .05 2 .02 2 .02		12.1 8.3 6.6	.30 .27 .12	60 53	.119 .052 .091	23 21 <11	.19 .25 .23	.007 .003 .005	.07 .07 1 .04	.8. 1.0. .3.	03 1. 02 1. 04 .	.8 .0 .9	3<.05 1<.05 1<.05 1<.05 1<.05 1<.05	10 <.5 8 <.5 4 <.5 8 <.5 7 <.5	15.0 15.0 15.0	
A1 LON 1700E A1 LON 1800E A1 LON 1900E A1 LON 2000E A1 LON 2100E	5.1 3.7 7.9	7.0 4.8 4.3	46.2 44.5 40.2 22.0 100.6	68 26 27 <	.3 .2 .1	4.4 4.2 7.4	2.3 2.2 3.3 1	82 2 65 1 125 1	.24 .29 .10	4.5 1.4 .6	.6 1.3 .9	1.0 5.2 .7	2.7 4.0 5.7	14 13 6 <	.3 .2 .1	.2 .	4 4 7 1 7 1	14 .1 16 .0 12 .0	2 .08 7 .03 2 .01	11 5 14 15 12 25	8.7 6.3 7.9	.08 .22 .42	108 164 126	.186 .081 .055	21 <11 1	.44 .16 .87	.015 .007 .002	.05 .04 1 .10	.3 . 1.2 . .2 .	081. 03. 01.	.0 .1 .9 .1 .8 .1	l<.05 l<.05 l<.05	11 .5 16 <.5 7 <.5 3 <.5 13 <.5	15.) 15.) 15.)	
A1 LON 2200E A1 LON 2300E A1 LON 2400E A1 LON 2500E STANDARD DS6	1.1 3.2 1.6	5.4 24.2 9.7	63.6 15.8 50.8 24.4 29.9	56 35 46	.1 .4 .1	6.5 4.0 8.6	3.6 4.5 (5.3]	891. 3081. 1511.	.22 .54 .18	.9 3.1 ; .8	.7 22,7 6.2	1.3 1.7 1.3	4.3 1.0 3 3.2	7 146 54	.1 .5 .2	.1 . .2 . .1 .	4 1 4 1 4 1	.4.0 .6.2 .4.1	4 .04 4 .09 1 .02	0 19 9 17 2 19	8.9 5.5 11.4	.42 .07 .84	108 184 203	.046 .095 .060	11 22 21	.28. .06. .87.	004 015 009	.06 .03 1 .08	.1 . .1 . .5 .	02 10 1. 03 1.	9.1 4.1 4.2	l< 05 < 05 2< 05	10 <.5 6 <.5 9 .6 6 <.5 6 4.5	15.(7.5 7.5	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

ACME ANALYTICAL LABORATORIES LTD. 9001 Accredited Co.)

i

852 E. HASTINGS ST. "NCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (6

253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

SAMPLE#		a nam.	<u>, an 19</u>		esti Sta	<u>R</u>		<u>r Re</u> 07 - 2														Ð	Pag	je	1				-				1	
	Мо ррт	Cu I ppi	Pb ppm	Zn ippm j	Ag ppm	Ni ppm	Со	Mn I	e	As	U	Au	Th Si	r Co	i Sb	<u> </u>	<u></u>	Ca	P	La	Cr	Mq	Ва	<u>.:</u>	BA1 opm X	Na X	K K	W W	Pg S Pg Tropic	ic m pl	<u>רו אין אין אין אין אין אין אין אין אין אין</u>	Ga Gpm p		ample gm
A2 L2250N 0E A2 L2250N 50E A2 L2250N 100E A2 L2250N 150E A2 L2250N 200E	16.8 6.4 2.3	58.4 18.3 19.0	394.8 127.3 161.8	84 78 35	.4 .2 .4	6.9 7.3 4.3	5.5 4.4 2.4	569 2.4 516 2.6 165 1.8	182 543 592	.9 4 .8 1 .2	1.0 4 2 3 .7 1	41.36 37.14 11.64	.2 40 .6 20 .2 14) .1 5 .1 4 <,1	L .2 L .2 L .3	.3 .3 .3	46 51 45	.22 .11 .06	. 146 . 081 . 044	11 9 11	9.9 10.7 7.8	.38 .32 .19	142 113 55	118 130 098	2 2.44 1 3.20 2 2.95 1 1.87 2 4.00	.009 .009 .008	.17 4 .15 1	4.3 1.2 .4	.06 3. .05 3. .04 1.	3 0 8	2 < 09	0 10 < 0 11 <	.5 .5 .5	7.5 7.5 7.5 15.0 15.0
A2 L2250N 250E A2 L2250N 300E A2 L2250N 350E A2 L2250N 400E A2 L2250N 450E	1.1 3.5 6.7	8.5 6.4 7.9	30.9 23.1 18.7	26 · 37 · 22	<.1 <.1 .4	3.4 4.5 4.2	2.3 3.9 3.4	125 2.1 313 2.3 213 1.9	l63 922 931	.2 .4 .8 2	.8 .7 2 .8	3.2 4 20.7 5 4.1 1	.6 8 .0 19 .3 43	8.1 5.1 3.2	1 .1 2 .1	.3 .4 .5	41 41 31	. 05 . 09 . 24	.068 .069 .063	9 14 14	7.5 8.0 6.6	.16 .27 .22	55 110 92	120 129 081	1 3.36 <1 2.44 1 1.68 1 2.61 1 1.40	.011 .010 .020	.07 .10 .06	.2. .2.	.06 1. .04 2. .06 1.	9. 0. 8.	1 < 05 1 < 05 1 < 05	11 < 12 < 9	.5 .5 7	15.0 7.5 7.5 7.5 7.5
A2 L2250N 500E RE A2 L2250N 500 A2 L2250N 550E A2 L2250N 600E A2 L2250N 650E	DE 4.0 1.0 2.0	9.8 6.6 11.1	114.5 15.5 90.7	22 30 29	.3 <.1 .3	4.7 5.9 3.8	2.1 3.3 3.6	124 .8 261 1.2 345 1.3	321 271 361	.0 1 .1 .2 2	2 .8 9	.7 1.64 6.73	.3 22 .7 29 .1 34	2.1 5.1 4.2	< 1 < 1 2 1	.б .б .б	20 26 26	.13 .17 .18	.037 .053 .047	7 17 18	6.3 10.5 6.6	.20 .51 .40	66 (99 (113 (095 097 110	1 1.04 1 1.13 1 1.40 1 1.51 <1 1.41	.016 .010 .017	.04 .13 .10	.8 .2 .7	.03 /. .03 2. .03 1.	6. 1. 8.	1 < 05 1 < 05 1 < 05	9 < 6 < 7 <	.5 .5 .5	1.0 1.0 7.5 7.5 7.5
A2 L2250N 700E A2 L2250N 750E A2 L2250N 800E A2 L2250N 850E A2 L2250N 900E	.9 1.0 .6	10.8 15.2	29.5 14.4 24.9	50 11 69	.2 .2 .1	8.2 3.6 7.5	4.2 1.7 4.1	193 3.1 64 2.0	1 2)1 4 34 2	.5 1 .5 1 .5	.1 3 .2 .8	39.45 3.73 8.45	.6 5 .4 3 .3 4	5 <.1 3 .2 4 .1	2 2 .1 2	.5 .2 .3	34 24 21	.04 .03 .04	.034 .080 .047	17 3 13	15.7 9.1 10.2	.43 .06 .29	51 (12 1 69 (079 118 059	1 2.89 <1 1.85 1 5.54 1 3.04 1 2.65	.005 .014 .008	.10 .02 .05 1	.5.	05 1. 18 2. 04 1.	5. 3<. 5.	1 < 05 1 < 05 1 < 05	10 7 <	5 7 5	7.5 7.5 7.5 7.5 7.5
A2 L2250N 950E A2 L2250N 1000E A2 L2250N 1050E A2 L2250N 1100E A2 L2250N 1150E	4.0 2.2 6.0	· 4.0 3.3 5.1	19.6 24.8 17.6	17 · 18 · 17 ·	<.1 <.1 <.1	3.2 2.6 3.6	1.3 1.7 2.1	120 1.3 26 2.4 71 1.0 68 .9 42 .6	193) 171) 16	.2 .1 .6	.7 .7 .8 1	2.65 7.95 16.26	.0 3 .2 3 .2 3	3 .1 3 <.1 3 <.1	3 1 1	.3 .2 .2	28 15 10	. 02 . 02 . 03	.029 .027 .012	8 16 25	9.7 5.3 4.6	.07 .10 .24	32 .1 37 .0 51 .0	112 063 033	1 1.17 <1 2.81 <1 1.27 <1 .54 <1 .35	.010 .007 .003	03 04 06	.2. .3. .5.	07 1. 04 . 01 .	2. 9. 5.	1 <.05 1 <.05 1 <.05	10 <. 6 <. 2 <.	5 5 5	7.5 7.5 7.5 15.0 15.0
A2 L2250N 1200E A2 L2250N 1250E A2 L2250N 1300E A2 L2250N 1350E A2 L2250N 0E	4.1 7.0 6.0	5.2 11.5 15.6	36.3 74.4 72.7	29 38 69	.1 .2 .2 1	6.2 7.9 [1.5	3.0 4.9 1 5.9 2	99 1.6 129 1.5 243 2.1	51 2 53 1 1 2	.0 .3 1 .5 2	.8 .2 .0	1.46 1.94 1.14	.0 6 .4 7 .1 8	5 .1 7 .1 8 .2	.2 .1 .1	.4 .4 .6	22 22 27	.05 .06 .06	. 044 . 034 . 048	22 20 19	8.3 10.0 14.7	.26 .39 1 .41 1	51 .1 105 .0 136 .0	104 374 - 374	<1 .74 1 1.25 <1 1.92 1 2.26 1 1.24	.008 .010 .011	.07 .09 .12	.3.	07 1 05 1. 05 1.	2. 5. 7.	1 <.05 2 <.05 2 <.05	8 <. 7 <. 8 <.	5 5 5	7.5 7.5 7.5 7.5 7.5
A2 L2000N 50E A2 L2000N 100E A2 L2000N 150E A2 L2000N 200E STANDARD DS6	.8 .8 1.0	8.3 5.6 2.6	14.1 10.1 8.2	13 ~ 37 ~ 19 ~	<.1 <.1 <.1	3.1 7.0 4.6	1.6 1 3.3 1 1.9	119 1.3 118 2.3 64 1.2	102 193 121	.5 1 .7 1 .2 2	.2 .0 .0	1.62 2.17 1.79	.0 4 .0 3 .2 16	1. 1. 5 < 1	.1 .3 .2	.2 .4 .3	19 31 20	.04 .01 .01	. 074 . 052 . 025	4 20 29	4.3 12.2 6.5	. 06 . 38 . 36	26 .1 26 .0 24 .0	107 · 174 · 181 ·	<1 1.05 <1 2.63 <1 1.18 <1 .73 17 1.91	.019 .003 .003	.02 .07 .07	.1 . .5 . .5 .	11 1.0 04 I. 02 .	0 <, 1 . 7 .	1 <.05 1 <.05 1 <.05	9 <. 9 <. 7 <,	5 5 5	15.0 7.5 7.5 15.0 15.0

GROUP 1DX - 15 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: SOIL PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data 1

Feb 10/06 FA DATE RECEIVED: JAN 19 2006 DATE REPORT MAILED:.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Page 2

SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B AI Na K M Hg Sc TI S Ga S Sa Sa Ca P La Cr Hg Ba TI B AI Na K M Hg Sc TI S Ga Se Sa
ppm ppm
A2 L200M 300E 1.6 4.7 16.1 26 < 1 5.8 3.1 9 41.5 9 1.2 9 3.3 7.4 4 1 1 3 16 02 04 1 98 033 054 1 198 003 06 6 03 6 1 1.98 0.03 06 1 1.98 0.03 06 1 1.98 0.03 06 2 02 6 1. 0.5 1.0 0.5 1.1 1.2 17 01 0.18 20 57 24 33 0.54 1 1.16 0.03 06 2 02 .6 1.6 5 5 1 1.6 0.4 27 7 9 1.2 1.4 1.2 1.3 0.02 0.2 2.02 1.8 1.4 5 5 5 7 7 2.13 0.03 0.4 2.02 1.8 1.4 2.05 3 5 7 1.4 2.05 3 5 7 1.4 2.05 3 5 1.1 1.1
A2 L2000N 500E 2.1 2.4 8.1 13 < 1
A2 L200N 750E 1.2 6.5 6.2 22 1 6.3 3.9 258 2.52 2.9 .8 1.7 4.5 13 .1 1.2 33 1.8 1.75 4 11.5 .29 51 1.36 1 2.26 .011 .06 .1 .07 1.1 .1 .1 .1 .2 33 .18 .175 4 11.5 .29 51 .136 1 2.26 .011 .06 .1 .07 1.1 .1 .1 .2 33 .18 .175 4 11.5 .29 51 .136 1 2.26 .011 .06 .1 .07 1.1 .1 .1 .5 .14 .16 .2 .2 .4 .39 .04 .023 .12 20.2 .74 49 .149 .1 .45 .04 .25 .1 .05 .1 .5 .7 .8 .1 .2 .6 .33 .09 .048 16 19.4 .48 122 .09 .2 .2<
A2 L1750N 400E .5 4.9 5.8 40 < 1 9.8 4.9 208 1.50 1.9 .8 1.3 6.8 5 < 1 .3 .6 21 .02 .018 30 9.4 .28 44 .041 1 1.07 .003 .08 .2 .04 .9 .1<0.05 6 < 5 15 A2 L1750N 500E .9 13.1 13.5 50 .1 11.3 6.5 282 2.04 4.0 2.8 2.9 10.1 7 .1 .2 .5 32 .05 .091 14 12.6 .37 95 .134 2 3.02 .013 .11 .2 .09 2.2 .2<05 9 .8 7
A2 L1750N 700E . 9 4.3 6.1 28 <.1 7.8 4.0 133 1.28 1.2 1.0 1.0 6.2 2 <.1 .1 .2 14 .02 .029 18 8.8 .46 36 .056 1 1.73 .005 .10 .2 .04 1.2 .1<05 4 <.5 7
A2 L1750N 800E .8 3.4 5.6 20 < .1
A2 L1500N 100E .5 11.5 7.4 62 < 1
A2 L1500N 350E .3 13.3 5.9 50 <.1 10.0 5.8 302 2.43 2.8 1.2 .9 9.3 34 <.1 .1 .1 39 .27 .165 16 17.5 .83 105 .144 <1 2.90 .007 .21 .2 .02 3.3 .2<.05 10 <.5 15

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

Page 3

CALING AT ALL AND ALL A

المالية والمعطومة المالية

10 ALC: 10 -

ACHE ANALYTICAL				<u> </u>																		_											ACME ANA	ALYTICAL
SAMPLE#	Mo			Zn	-				Fe		U			Sr (Ca			Cr				B				Hg					5amp1e
		ppm	ppiii	ppm p	ipkn	ppm	ppm	ррят		ppm	ppm	ppo	ppm	ppm p	yn pp	n ppn	ppm		ž	ppm	ppm	¥	ppm	- 7 F	>pm	Z	ζ	х рря	ppm	ppm p	<u></u>	\$ ppm	ppm	gm
A2 L1500N 550E	.6	19.8	20.8	50	.2	6.3	3.6	243 2	. 12	3.2	1.2	2.3	8.9	63	1	1.3	40	.17	.157	10	8.9	.36	130	128	1.3.	14 .0	4 1	5 1	05	3 1	2 <	05 11	5	7.5
A2 L1500N 600E			9.2										8.7	85	.1.	1.4	38	.27	181	9	10.4	.37	122	117		78 .0						05 10		15.0
A2 L1500N 650E	1.3	28.7	9.0	44	.2	5.5	4.8	616 2	. 36	3.3	2.9	.9	11.3	81	.1 .	2.3	48	.49	261	14	7.8	.58	246									05 10		15.0
A2 L1500N 700E	1.4	12.6	25.0	42	.1	5.2	4.1	352 2	. 22	2.1	1.8	2.7	6.5	71	.1 .	1.6	41	. 26	.088	12	7.5	. 42	125	119								05 11		7.5
A2 L1500N 750E	1.4	11.6	16.5	52 <	. 1	6.1	3.9	412 2	. 25	2.3	1.9	17.8	8.1	39	.1 .	1 1.2	46	. 20	. 123	12	8.4	39	136	141	12.	70 .01	10.1	7.2	.03	3.4	.2 <.	05 11	<.5	15.0
A2 L1500N 800E	2.0	9.1	21.9	39 <	1.1	5.5	3.3	259 2	.08	3.7	1.7	8.4	5.2	24	.1 .	2 1.8	44	. 10	.092	10	8.7	. 30	94	138	12.	45 .01	0.1	1.2	.04	2.7	.1 <.	05 11	< 5	7.5
A2 L1500N 850E	1.9	14.5	38.3	45	.3	4.3	3.6	244 1	. 92	2.5	13.6										7.9			107	13.	51 .03	15.0	4.2	.04	2.4	.1 <.	05 11	.5	7.5
A2 L1500N 900E	2.3	11.1	14.3	11	.2	2.8	1.1	37 1	. 54	2.3	2.3	2.1	2.2	5	.1 .	2.3	26	.03	.081	4	5.2	.05	24	114	<1 3.	27 .01	3.0	2.1	.09	1.7 <	< <u>1</u> <.	05 10	<.5	7.5
A2 L1500N 950E	6.2	5.9	17.7	26	.1	5.3	3.7	245 1	. 93	2.9	6.4	9.8	2.4	67 <	.1 .	23.8	32	.13	.054	16	8.4	.40	108 .									05 9		7.5
A2 L1500N 1000E	2.1	12.9	28.2	46	.3	6.5	3.1	214 2	.43	4.5	2.9	4.5	4.6	50	.1 .	22.7	37	. 13	.082	11	10.6	. 32	126	084	13.	46 .00)9.1	0.3	.07 2	2.7	.1 <.	05 10	.6	7.5
A2 L1500N 1050E	5.4	33.5	38.5	39	.3	6.3	7.6	968 2	.25	2.8	3.1	2.0	2.4	12	4 .	2.9	33	.06	.054	8	10.5	.20	91	096	22.	48 .01	12 .0	6.2	.09	1.8	.1 <.	05 11	.5	7.5
A2 £1500N 1100E	2.2	13.7	20.0	34	.2	6.5	3.6	203 2	. 19	2.8	1.0	3.4	3.9	6	.1 .:	2.5	34	. 05	.040	8	15.3	. 33	55 .	130		62 .00						05 10		15.0
A2 L1500N 1200E			10.0										6.2								12.3				11.	51 .00	0.8(9.2	.04	1.3	.2 <.	05 11	<.5	7.5
A2 L1500N 1300E			596.8																		8.7										.2 <		<.5	15.0
A2 L1500N 1400E	1.4	15.8	12.9	50 <	.11	8.6	9.4	385 2	.03	2.7	1.2	<.5	9.8	6 <	.1 .	4 1.2	20	. 04	. 028	26	12.1	. 50	80 .	032	11.	65 .00)4 .1	0.2	.03]	1.2	.2 <.	05 5	<.5	15.0
A2 L1500N 1500E	1.5	11.7	25.3	56 <	.11	2.8	13.3	744 1	. 98	2.1	1.8	1.1	5.3	6	1.	2.5	21	. 04	.043	25	12.2	.47	78	048	11.	66 .00	5.1	0.2	.04 1	1.3	.2 <.	05 5	<.5	7.5
A2 L1500N 1600E	1.7	8.2	11.0	41 <	.1	6.5	4.2	375 1	.43	1.3	.9		2.0								6.7										.1 <.		<.5	7.5
A2 L1500N 1700E		2.8		21							.5		5.2								9.1												<.5	15.0
A2 L1500N 1800E		12.3		19																	8.0										.1 <.		.6	1.0
RE A2 L1500N 1800E	3.5	11.6	9.7	18	.2	6.2	3.7	106 1	. 94	2.1	8.8	2.1	1.8	7	. 1 .:	2.3	16	. 08	. 035	14	7.5	.17	66.	061	11.	58.03	.3.0	4.2	.07]	1.0	.1 <.	05 9	.5	1.0
A2 L1500N 1900E	1.6	3.1		14 <							.8	4.6									4.4				<1 .	58 .00	3.0	6.2	. 01	.6	.1 <.0	05 6	<.5	15.0
A2 L1500N 2000E	. 5	3.0		24 <						.8		1.9		_							7.81										.1 <.1		<.5	7.5
AZ L1500N 2100E		4.7	. —	29 <	-		-					<.5									12,4 1				11.						.1 <.(15.0
A2 L1500N 2200E		5.3		35 <							.5										13.5 1										.1 <.1		<.5	7.5
A2 L1250N 0E	3.0	16.5	14.6	42 <	.1	8.8	6.0	593 1	. 91	3.6	8.7	44.5	5.9	37	.1 .	1.7	35	. 33	. 049	22	14.8	.81	112 .	079	1 2.3	27 .01	.1 .1	4.4	.02.2	2.9	.2 <.1	05 6	<.5	7.5
A2 L1250N 100E																					18.5								.02 2	2.0	.1 <.(05 7	<.5	7.5
A2 L1250N 200E																					10.0				11.							05 9		15.0
A2 L1250N 300E																					9.4													
A2 L1250N 400E			13.0																		8.8													7.5
A2 L1250N 500E	1.5	10.0	17.0	35 <	.1	5.6	2.5	130 2.	.78	5.7	2.3	5.0	4.2	13	1.	3.4	48	.07	. 108	6	10.7	. 21	69.	124	<1 3.4	40 .00	9.0	5.2	.10 2	2.1	.1 <.1	05 12	<.5	7.5
A2 L1250N 600E																					10.1													7.5
A2 L1250N 700E																					6.3													15.0
A2 L1250N 800E										1.8	1.6	3.7	8.5	65	1 .	1 2.5	29	. 23	. 095	16	6.8	. 36	156 .	095								05 8		15.0
A2 L1250N 900E			13.7																		7,3											35 9		7.5
STANDARD DS6	11.7	123.4	29.5	143	.3 2	4.6 1	10.8	693 2.	. 88_2	2.1	6.6	59.1	3.0	41 5	/ 3	9 5.2	55	. 86	.080	13]	179.8	. 57	173 _	079	16 1.8	39 .07	3.14	1 3.7	.23 3	<u>1.3 1</u>	.7 < (<u>15</u> 7	4.3	15.0

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_ FA

1

Ruby Red Resources Inc. FILE # A600276

.

Page 4

ALME ANALYI (LAL			<u></u>		·	-												-					· ···							HUMC AN	ALYTICAL
SAMPLE#	Mo	Cu	Pb	Zn Ao	q Nit	Co	Mn	Fe	As U	Au	Th	Sr Cd	Sb	Bi	۷	Ca	Ρ	La	Cr	Mg	Ba	Ti	B Al	Na	ĸ	WH	Hq Sc	1	S Ga S	Se Sa	mnle
n ,	ppm	ppm	ррт	ррт ррг	л ррг	n ppm	ppm	z	ррт ррт	ppb p	pm p	pm ppm	ppm p	pm p	opm	*	2 1	ppm	ppm	ž		¥ p							t opm pp		Qna
A2 L1250N 1000E A2 L1250N 1100E A2 L1250N 1200E A2 L1250N 1200E A2 L1250N 1300E A2 L1250N 1400E	.4 .4	9.0 67.3 48.2	20.5 13.0 8,2	40 < 53 < 77 <	1 5.6 1 13.0 1 12.9	5 3.6) 7.8 9 8.4	312 317 1184	1.66 1.94 2.07	4.6 .7 2.8 1.2 2.4 .9 2.6 1.3 3.7 .9	10.4 6 9.2 8 1.5 7	5.52 3.3 7.8	54 .1 57 .1 19 .1	.1 4 .2 .2	4. 6 .4 .5	24 28 30	. 48 . 24 . 18	.074 .043 .076	13 22 20	8.4 21.9 23.1	.56 2 1.25 1 .99 1	216 .(153 .1 176 .1)22 < 119 123	<1 3.34 1 2.64 1 2.35	.019 .010 .008	.10 .15 .28	.3.0 .3.0 .2.0	06 1.7 02 2.9 06 3.3	.1<.0 .2<.0 .3<.0	15 6 <. 15 7 <. 15 7 .	.5 .5 .6	7.5 15.0 15.0 15.0 15.0
A2 L1250N 1500E A2 L1250N 1600E A2 L1250N 1700E A2 L1250N 1800E A2 L1250N 1800E A2 L1250N 1900E	1.3 .9 .7	13.0 7.1 37.6	16.6 12.4 5.8	56 23 < 30 <	$ \begin{array}{ccc} 1 & 11.4 \\ 1 & 5.1 \\ 1 & 7.7 \end{array} $	1 5.8 L 2.7 7 4.2	335 67 146	2.56 1.92 1. 83	5.4 1.6 7.0 2.2 3.1 .9 1.4 1.1 2.5 .6	2.4 6 5.7 6 6.0 8	5.1 5.2 3.4	5.2 4.1 4.1	.3 .3 .2	.5 .5 E.4	34 37 18	.03 .02 .02	. 224 . 027 . 022	16 14 25	16.0 9.7 8.9	.51 .25 .35	43 .0 32 .1 42 .0)82 106)56	2 2.36 1 1.96 1 1.40	.005 .009 .004	.11 .05 .06	.3 .1 .2 .0 .2 .0	12 2.1 05 1.5 03 1.0	.1<.0 .2<.0	91. 512<. 56<.	0 5 5	7.5 7.5 7.5 15.0 15.0
A2 L1250N 2000E A2 L1250N 2100E A2 L1250N 2200E RE A2 L1250N 2200E A2 L1250N 2200E	.7 .4 .4	5.2 3.5 3.4	11.8 6.1 5.8	28 < 22 <	1 3.9 1 5.5 1 4.7	9 1.7 5 2.6 7 2.4	95 70 69	1.74 1.27 1.23	5.3 1.1 2.7 .5 1.0 .4 1.0 .4 .7 .5	1.2 3 4.5 4	3.6 1.8 1.7	4 .1 4 <.1 3 <.1	.2 .1 .1	.4 .4 .4	34 16 17	. 02 . 02 . 03	.056 .051 .047	10 20 19	7.6 7.1 7.3	.15 .43 .41	30 .1 33 .0 34 .0	119)44 <)47	1 1.51 <1 1.00 1 .91	.009 .003 .003	.06 .07 .07	.1 .0 .1 .0	06 1.1 02 .7 02 .8	.1<.0 .1<.0		5 5 5	7.5 7.5 7.5 7.5 7.5
A2 L1000N OE A2 L1000N 100E A2 L1000N 200E A2 L1000N 300E A2 L1000N 400E	.7 .5 .6	8.7 12.3 9.2	6.1 8.2 8.3	58 < 40 <	1 4.1 1 10.0 1 7.3	L 1.8) 4.6 3 3.7	45 197 182	2.10 2.22 2.07	2.1 .7 3.2 .9 2.1 .4 2.6 .5 2.6 .6	2.93 .74 1.34	3.4 1.7 1.1	3 .2 5 <.1 5 .1	.1 .1 .2	.2 .3 .3	26 42 32	.03 .06 .06	. 057 . 022 . 056	7 12 9	10.6 20.6 1 14.3	.20 1.01 .69	21 .1 56 .1 42 .3	13 152 144	1 2.58 1 4.61 1 2.13 2 2.23 2 2.39	.012 .006 .009	.03 .08 .06	.2 .1 .2 .0 .2 .0	13 2.5 03 2.5 05 1.8	.1<.0		7 5 5	7.5 7.5 7.5 7.5 7.5
A2 L1000N 500E A2 L1000N 600E A2 L1000N 700E A2 L1000N 800E A2 L1000N 900E	.6 .8 1.4	7.3 6.1 13.1	3.4 5.0 6.4	31 < 21 < 9 <	$ \begin{array}{ccc} 1 & 6.9 \\ 1 & 7.2 \\ 1 & 3.7 \end{array} $	9 3.7 2 3.1 7 1.4	155 118 73	1.49 1.24 2.35	2.7 5.5 .8 .9 .9 .9 3.2 1.1 4.3 2.2	.83 1.33 2.11	3.8 3.3 0	8.1 5.2	.1 .1 .1	.2 .2 .2	17 14 30	.02 .07 .03	.046 .024 .099	24 20 5	10.4 10.1 8.9	.78 .84 .07	30 .(51 .(34 .1)51 <)55 .01	3 2.63 1 1.47 1 1.30 1 4.04 1 3.09	.004 .005 .009	.08 .07 .01	1.0 1.0	03 1.1 03 1.0 14 1.5	.1<.0 .1<.0 < 1 .0	5 10 5 6 <. 5 6 <. 7 11 5 10 1.	5 5 9	1.0 15.0 7.5 1.0 7.5
A2 L1000N 1000E A2 L1000N 1100E A2 L1000N 1200E A2 L1000N 1300E A2 L1000N 1300E A2 L1000N 1400E	.7 .9 3.0	21.4 3.1 5.1	2.3 9.2 3.0	33 < 23 < 38 <	1 12.1 1 6.8 1 14.0	6.4 33.1 7.6	244 74 317	1.63 1.30 2.30	2.5 .9 1.0 1.8 2.0 .9 1.7 2.6 4.0 1.1	17.93 2.88 1.28	3.0 3.2 3.2	3 <.1 3 .1 2 <.1	.1 .2 .3	.3 .3 .4	19 19 20	.05 .01 .01	. 062 . 026 . 048	25 26 27	12.6 8.9 11.5	.89 .62 .41	38 .0 25 .0 28 .0)47)47)48	1 1.84 1 1.27 1 1.18	.004 .006 .004	.10 .06 .07	2.0 2.0	02 1.3 02 1.1 03 1.0		56<. 57<. 56<.	5 5 5	15.0 15.0 7.5 7.5 7.5
A2 L1000N 1500E A2 L1000N 1600E A2 L1000N 1700E A2 L1000N 1800E STANDARD D56	.4 .9 .6	2.6 10.6 7.4	3.0 7.9 12.1	34 < 14 < 57 <	1 9.1 1 3.6 1 10.5	4.1 5 1.5 5 10.0	118 62 1797	1.23 1.55 1.55	4.0 .7 1.4 .6 3.4 1.3 1.3 1.3 22.2 6.7	.6 € 2.5 3 .6 2	5.9 3.4 2.3	4 .1 2 <.1 4 .1 3 .1 41 6.3	.1 .2 .2	.3 .2 .6	13 24 14	.01 .03 .02	.022 .075 .104	26 6 34	10.2 6.5 7.9	. 86 . 0 9 . 50	12 .0 19 .1 39 .0	24 < 19 29	<pre>4 1.98 4 1.10 1 4.16 1 1.48 7 1.93</pre>	.002 .014 .003	.04 .02 .12	1.0 2.0	01 .7 07 2.1 02 .8	.1<.0 .1<.0 .2<.0		5 0 5	7.5 15.0 7.5 7.5 15.0

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖡 FA

÷

Ruby Red Resources Inc. FILE # A600276

44

and the second second second second second second second second second second second second second second second

......

A second state of the second stat

Page 5

ACHE ANALYTICAL								~																														ACH	E ANALYTIC	AL İ
SAMPLE#		-		Pt			ų.													Bi					Cr				8		Na	ĸ	W	Hg	Sc	11 5	S Ga	a Se S	•	
	<u>р</u>	pm	ppm	ррл	ppr	n ppr	<u>n p</u>	pm	ppm	-ppm		6 p	om pr		ppp	ppin	ppm	ppn	ppm	ppm	ppm			ppm	ppm	ž	ppm	¥	ppm	_ %		1	ppm	opm p	opm p	er max	z ppr	u bbu	gm	
A2 L1000N 1900E A2 L1000N 2000E A2 L1000N 2100E A2 L1000N 2200E A2 L1000N 2300E	1	2 4 7	18.0 11.1 9.1	5.9 12.2 9.1) 18 ? 14 . 32	8 <.: 4 <,: 2 .:	16 13 15	.2 .9 .5	2.6 1.7 3.1	1 6 4 57 448	1.12 3.5(1.6)	72 55 02	.0 .6 1 .9	.9 .1 .7	3.2 3.4 6.2	1.3 5.4 1.7	11 3 5	.1 .2 .1	.1 .3 .2	.2 .3 .4	22 46 20	.10 .02 .05	.069 .072 .098	6 6 9	5.1 9.9 7.7	. 12 . 08 . 21	47 17 39	.088 .198 .070	12 13 12	.78 .74 .11	.034 .012 .009	.03 .02 .06	.1 .3 .1	.01 2 .09 2 .07 1	2.2 2.3 1.2	.1 .10 .1<.09 .1<.09 .1<.09 .1<.09	56 518 58	6.5 8.8 8<.5	7.5 15.0 7.5 7.5 7.5	
A2 L1000N 2400E A2 L750N 0E A2 L750N 100E RE A2 L750N 100E A2 L750N 200E	E	.6 .5 .5	8.6 8.2 8.1	8.5 8.3 8,1	24 26 27	4 < . 5 < . 7 < .	14 14 14	.7 .5 .0	2.3 2.3 2.2	78 160 165	1.60 1.20 1.23) 2) 1 3 1	.3 .4 .3	.8 .7 .7	1.6 .6 .9	3.4 .6 .7	3 6 6	<.1 .2 .2	.2	.3 .3 .4	21 15 14	.02 .05 .04	.052 .087 .078	7 7 7	7.5 4.7 5.3	. 21 . 20 . 18	25 59 59	.090 .062 .057	12 11 11	.71 .21 .03	.010 .008 .007	.04 .05 .04	.1	.06 1 .03 .03	1 7 7	. 1< .05 .1< .05 .1< .05 .1< .05	58 57 57	B < .5 7 < .5 7 < .5	7.5 7.5 1.0 1.0 7.5	
A2 L750N 300E A2 L750N 400E A2 L750N 500E A2 L750N 600E A2 L750N 600E A2 L750N 700E		.6 .4 .3	4,5 2.8 5.9	11.4 6.8 5.3	27 14 14	7 < 1 < 4 <	15 13 110	.5 .0 .6	3.5 1.7 4.7	118 49 503	1.90 1.24 1.90	52 4 01	.3. .9. .7.	.6 .3 .3	.7 1.3 <.5	6.8 3.1 2.7	3 2 5	.1 <.1 .1	.2 .1 .1	.5 .4 .2	19 19 32	.02 .01 .13	.047 .013 .013	17 15 5	7.7 4.3 23.9	.35 .20 2.39	29 24 57	.067 .078 .178	11 1 13	.34 .76 .28	.005 .006 .006	.05 .03 .11	.3 .1 .5	.03 1 .02 .02 3	1.0 .7 3.6	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	57 57 511	7 < 5 7 < 5 1 < 5	1.0 7.5 7.5 15.0 7.5	
A2 L750N 800E A2 L750N 900E A2 L750N 1000E A2 L750N 1100E A2 L750N 1200E		.9 .8 .5	21.9 12.0 23.5	21.8 6.7 6.2	54 22 66	4 .2 2 .2 5 <.1	2 10 2 4 1 10	.2 .8 .7	4.8 2.1 5.5	153 72 161	2.2 2.2 2.5	3 1 2 2 2 1	.7 .9	6 9 7	1.9 2.5 1.5	3,4 5,1 5,5	5 3 3	.1 .1 .1	.1 .1 .1	.2 .3	36 25 25	.06 .03 .03	.031 .077 .033	6 4 8	17.8 10.1 17.3	.99 .25 1.02	43 21 30	.144 .110 .105	13 14 12	. 15 . 68 . 85	.010 .011 .006	.06 .04 .06	.2 . .2 . .1 .	.04 3 .08 2 .03 2	3.1 2.3 2.9	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	5 12 5 8 5 8	2 <.5 9 .6 9 <.5	7.5 7.5 7.5 7.5 7.5	
A2 L750N 1300E A2 L750N 1400E A2 L750N 1500E A2 L750N 1600E A2 L750N 1700E		.9 .9 .9	9.4 10.0 9.7	9.2 5.6 8.7	29 12 23	5 <.1 2 <.3 3 .1	13 13 14	.9 .2 .8	2.0 1.7 2.0	101 94 125	2.9 1.6 1.6	53 333	.4 .61.	9 2 9	2.2 2.3 2.0	3.9 2.4 2.0	3 4 4	.1 .1 .1	.2 .2 .1	.3 .1 .3	42 25 24	.02 .04 .03	.062 .104 .087	12 4 6	11.3 6.6 7.0	.20 .06 .15	35 18 38	.106 .119	12 15 23	.60 .15 .20	.007 .012 .013	.04 .02 .04	.2 . .2 . .2 .	06 2 11 2 07 2	2.2 2.0 2.0	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	5 11 5 9 5 9	l .5 9 .9 9 .7	7.5 7.5 7.5 7.5 7.5	
A2 L750N 1800E A2 L750N 1900E A2 L750N 2000E A2 L750N 2100E A2 L750N 2200E		.8 .3 .9	8.3 14.6 30.8	9.4	70 41 76) <.) L <.1 5 <.)	L 8 L 6 L 13	.7 .1 .9 1	3.8 5.3 5.6	134 1416 3778	1.54 1.29 2.00	4 2 5 1 0 2	.5. .22. .42.	9 8 71	.5 4.2 2.4	5.4 1.9 2.6	4 4 6	.1 .1 .2	.2 .3 .3	.5 .7 1.9	20 8 17	.02 .02 .03	.046 .071 .121	19 42 28	7.9 6.9 9.4	.24 .16 .36	49 76 136	.034 .008 .015	<1 1 1 1 1	. 40 . 88 . 30	.004 .003 .005	.06 .08 .10	.4 . .3 . .2 .	04 1 04 04	.0 .5 .7	.1<.05 .1<.05 .1<.05 .2 .08 .1<.05	5 5 5 3 8 5	5 <.5 3 <.5 5 .5	7.5 15.0 7.5 7.5 7.5	
A2 L750N 2300E A2 L750N 2400E A2 L500N 400W A2 L500N 300W STANDARD D56		.4 .9 .7	13.5 41.7 20.2	8.9 33.0 13.4	53 62 45	3 < 1 2 . 2 5 . 2	14 2 11 2 10	.3 .9 1 .8	7.5 4.5 8.8	849 1779 364	1.63 1.98 1.91	3 1 3 4 1 4	26.51	7 D 3	3.1 1.2 1.6	3.3 7.3 9.7	5 14 8	.1 .3 .1	.2 .3 .2	.7 .8 .5	14 26 26	.08 .14 .07	.050 .069 .176	20 26 16	14.6 10.9 10.7	92 34 30	130 162 65	.031 .072 .094	1 1 2 1 1 2	. 59 . 87 . 16	.005 .013 .009	.09 .10 .07	.1 . .4 . .3 .	02 1 07 1 07 1	.0 .8 .6	.1<.05 .1<.05 .2<.05 .1<.05 .8<.05	5 5 5 7).5 '.5	7.5 7.5 7.5 15.0 15.0	

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

ł

Ruby Red Resources Inc. FILE # A600276

Page 6

ACME ANALYTICAL		ACME ANALYTICAL
SAMPLE#	Mo. Cu Pb Zn Ag. Ni Co. Mn. Fe. As. U. Au. Th Sr Cd Sb Bi V Ca. P La. Cr. Mg Ba Ti B. Ali Na. K. W. opm, ppm, ppm, ppm, ppm, ppm, ppm, \$* ppm, ppm, ppm, ppm, ppm, ppm, ppm, \$* \$* ppm, ppm, \$* \$* \$* ppm, * * ** **	Hg Sc T1 S Ga Se Sample ppm ppm ppm \$ ppm ppm om
A2 L500N 200W A2 L500N 100W A2 L500N 0E A2 L500N 100E A2 L500N 100E A2 L500N 200E	.5 48.1 14.0 66 <.1 15.1 8.3 407 2.56 5.4 1.4 1.4 10.7 8 .1 .2 1.6 28 .10 .103 14 14.4 .74 66 .083 2 1.64 .005 .08 2.4 .6 6.8 12.2 99 <.1 15.7 11.9 920 2.51 3.2 1.5 1.9 10.4 9 .2 .1 .3 25 .08 .058 8 13.9 .91 103 .126 1 3.38 .010 .06 .4	.04 1.6 .1<.05 5 <.5 15.0 .08 2.7 .2<.05 9 <.5 7.5 .05 1.0 .1<.05 10 <.5 7.5 .05 2.0 .1<.05 8 < 5 7.5
A2 L500N 300E A2 L500N 400E A2 L500N 500E A2 L500N 600E A2 L500N 700E	1.6 14.2 13.5 38 < 1	.03 1.4 .1<.05 10 <.5 15.0 .02 3.0 .1<.05 11 <.5 7.5 .04 2.7 .1<.05 11 <.5 7.5
A2 L500N 800E A2 L500N 900E RE A2 L500N 900I A2 L500N 1000E A2 L500N 1100E	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.01 .9 .1<.05 5<.5 1.0 .01 .9 .1<.05 4<.5 1.0 .02 .8 .1<.05 7<.5 7.5
A2 L500N 1200E A2 L500N 1300E A2 L500N 1400E A2 L500N 1500E A2 L500N 1600E		.06 1.5 .1<.05 7<5 7.5 .11 1.6 .1<.05 10 5 7.5 .06 1.3 .1<.05 10 <5 7.5
A2 L500N 1700E A2 L500N 1800E A2 L500N 1900E A2 L500N 2000E A2 L500N 2100E	.9 14.8 8.1 13 <.1 4.1 3.2 334 1.61 2.9 1.1 1.2 2.1 4 .2 .1 .2 27 .03 .057 5 6.1 .07 31 .129 <1 3.81 .015 .02 .2 1.0 11.3 7.3 31 .1 5.6 2.7 222 2.29 3.8 .9 1.2 1.3 4 .1 .2 .3 30 .03 .109 8 9.7 .20 41 .078 1 3.64 .010 .04 .2	06 1 8 .1< .05 8 .5 7.5
A2 L500N 2200E A2 L500N 2300E A2 L500N 2400E A2 L250N 400W A2 L250N 300W	.9 16.1 9.1 23 < .1	.08 2.4 .1 .06 10 .9 7.5 .08 1.9 .1 .07 9 .8 7.5 .06 2.2 .1 .06 8 .7 7.5 .06 1.7 .1 .05 10 <.5
A2 L250N 200W A2 L250N 100W A2 L250N 0E A2 L250N 100E STANDARD DS6	.7 8.9 10.0 37 .2 4.5 3.4 310 1.68 3.7 .7 1.6 3.1 4 .1 .2 .3 29 .04 .141 3 7.2 .08 37 .129 1 4.42 .015 .03 .2 .9 9.8 10.3 32 .1 4.6 4.4 387 1.78 3.2 1.3 3.9 4.5 4 .1 .3 .3 28 .03 .089 4 9.2 .13 41 .122 2 3.86 .014 .04 .2	.04 2.9 .1<.05 9 <.5 7.5 .07 2.1 .1 .11 12 <.5 7.5

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA

1

Ruby Red Resources Inc. FILE # A600276

Page 7

ಂತ್ ರಾಜ್ಯಕ್ಷಣೆ

ACME ANALYTICAL		"																													ACHE	ANALYTICAL
SAMPLE#	Мо ррт			Zn / ppm pp					As ppm pp				Sr Co opm ppm							Cr ppm	Mg %	Ba ppm	Ti % p								Ga Se ppm ppm	Sample gm
A2 L250N 200E A2 L250N 300E A2 L250N 400E A2 L250N 400E A2 L250N 500E A2 L250N 600E	1.0 .7 .7	8.5 5.9 8.5	13.0 11.1 15.5	69 < 44 < 51 <	1 9. 1 7. 1 10	05. 43. 85.	1 362 9 139 7 403	2.22 1.69 1.95	2.6 4.21 1.9 3.0 2.8	.01 .9 .82	.9 .6 .1	6.5 5.5 5.0	5.2 4.1 7.1	4 2 3	.3 .4 .5	35 29 34	.04 .03 .06	.058 .032 .070	6 11 7	11.1 10.3 9.7	.16 .23 .20	52. 55. 89.	144 094 154	2 3.90 1 1.89 2 3.13) .011 5 .006 2 .013	.06 .08 .07	2 1 2	.06 2. .04 1. .03 2.	0 1· 5 1· 1 1·	<.05 <.05 <.05	11 < 5 8 < 5 11 < 5	7.5 7.5 7.5 7.5 7.5 7.5
A2 L250N 700E RE A2 L250N 700E A2 L250N 800E A2 L250N 900E A2 L250N 900E A2 L250N 1000E	4 4 4	10.2 8.5 17.0	7.5 10.0 16.3	27 < 33 < 48 <	1 8. 1 9. 1 11.	03. 75. 65.	9 210 0 197 9 450	1.63 1.65 1.78	2.2 2.2 2.2 2.8 1.2	.4 1 .5 .9 2	.1 .6 .5	3.5 4.3 6.0	5 .1 4 .1 10 .1	.1 .2 .2	.3 .3 .3	26 27 30	.10 .09 .29	.025 .017 .023	6 8 13	15.6 18.0 17.3	1.38 1.29 1.08 3	45 . 54 . 242 .	146 131 154	2 2.54 1 2.49 1 3.19	4 .010 9 .007 5 .023	.10 .10 .09	.3 .3 .2	.02 2.1 .03 2.1 .03 2.1	5.1· 8.1· 9.2·	<.05 <.05 <.05	10 <.5 9 <.5 11 <.5	1.0 1.0 7.5 7.5 7.5
A2 LON 400W A2 LON 300W A2 LON 200W A2 LON 100W A2 LON 0E	.3 .6 .4	3.1 5.8 6.2	6.9 9.7 8.9	24 < 36 < 40 <	1 7. 1 10. 1 12.	74. 74. 36.	5 183 9 208 5 298	1 17 3 1 60 3 1 49	1.1 . .8 . 1.8 . 1.6 1. 1.3 .	.4 1 .9 1 .2	.7 .2 1 .5 1	8.4 0.2 1.9	3 <.1 3 .1 4 .1	.1 .2 .2	.4 .4 .3	15 18 15	.02 .03 .04	.017 .030 .032	39 27 21	6.6 9.4 8.8	. 29 . 55 . 42	60. 134. 94.	022 034 043	2 1.47 1 1.69	1 .003 7 .003 5 .004	.07 .08 .09	.1 .2 .4	.02 1.0 .04 1.0 .03 1.3	0 .1• 4 .1• 3 .1•	<.05 <.05 <.05	3 < 5 4 < 5 6 < 5 5 < 5 7 < 5	7.5 7.5 7.5 7.5 7.5
A2 LON 100E A2 LON 200E A2 LON 300E A2 LON 400E A2 LON 500E	.6 .6 .3	8.0 9.5 4.3	8.3 7.8 9.0	36 <. 36 <. 23 <.	19, 18, 16,	4 4. 1 5. 4 3.	9 339 5 102 4 100	1.99 1.67 1.33	2.0 1. 2.0 . 2.6 . 1.3 . 2.7 1.	5 9 5 20	.8 .9 .5	4.5 5.0 3.7	5 .1 6 .1 4 <.1	.1 .2 .1	.4 .3 .3	23 23 16	.06 .06 .04	.068 .094 .022	10 6 15	12,8 9,5 9,5	.53 .29 .40	72 64 53	081 130 034	3 2.44 3 3.64 1 1.25	009 014 014	.08 .05 .06	.3 .2 .1	.04 1.9 .06 2.4 .02 1.3	9 .1« 4 .1« 2 .1«	<.05 <.05 <.05	8 <.5 9 <.5 5 <.5	7.5 7.5 7.5 7.5 7.5
A2 LON 600E A2 LON 700E A2 LON 800E A2 LON 900E A2 LON 1000E	.5 .3 .7	15.3 17.7 29.8	10.9 9.2 13.8	36 <. 34 <. 37 .	1 11. 1 11. 3 12.	06. 17. 37.	1 362 0 306 5 424	1.97 1.66 2.45	1.4 . 2.5 8. 6.1 5. 2.9 8. 1.8 4.	.62 .4<	.5 .5 .5	4.8 8.8 7.9	12 .1 6 .1 13 .2	.2 .2 .2	.4 .4 .5	22 17 29	. 46 . 25 . 33	.024 .016 .033	14 19 28	16.5 15.3 19.0	.82 .94 .74	222 . 125 . 252 .	099 053 108	2 3.35	5 .016 .008 .015	.09 .09 .11	.2 .2 .2	.04 2.4 .02 2.1 .07 3.1	\$.1< L .1≺ L .2	<.05 <.05 .07	9 <.5 5 .5 10 <.5	7.5 7.5 7.5 7.5 7.5
A2 LON 1100E A2 LON 1200E A2 LON 1300E A2 LON 1400E A2 LON 1500E	.2 .6 .1	5.5 18.7 8.9	3.1 15.0 5.3	25 < 22 35 <	1 10. 1 7. 1 15.	1 4. 8 4. 8 5.	1 123 7 292 9 157	1.25 1.71 1.62	1.9 1. .6 1. 1.8 3. 1.4 1. 1.6	0 1 3 1 4 1	.2 .3 .1	1.7 1.8 2.0	4 <.1 7 .1 5 .1	. 1 . 2 . 1	.2 .3 .3	9 16 12	. 05 . 08 . 06	.015 .036 .022	22 18 26	10.5 10.0 17.3	. 53 . 36 . 68	90 . 84 . 96 .	022 060 020	1 1.18	004 013 004	.06 .06 .10	.1.	.02 .0 .06 1.4 .03 1.2	3 .1< 4 .1< ? .1<	<.05 <.05 <.05	8 <.5 4 <.5	7.5 7.5 7.5 7.5 7.5
A3 L2000N 450N A3 L2000N 350N A3 L2000N 250N A3 L2000N 150N STANDARD DS6	.5 .7 .3	9.6 4.0 175.6	29.6 19.2 29.0	71 < 13 < 64 <	1 12. 1 3. 1 11.	9 11. 1 1. 3 6.	5 807 4 36 1 322	1.62 .97 1.75	3.5 1. 3.3 2. 1.3 . 1.4 . 21.3 6.	8 109 6 10 6 <	.9 9 .3 3 .5 9	9.2 2.6 5.3	5 .2 4 .1 3 .1	.3 .2 .2	1.2 .7 2.1	9 22 18	.06 .01 .06	.074 .022 .027	34 16 12	7.3 7.3 16.4	.31 1 .13 1.77	109 . 40 . 95 .	011 063 038	1 1.13 1 1.33 <1 2.06	003 . 009 . 006 .	.08 .06 .10	.2 .1 .1	02 1 2 04 1 4 03 1 9	? 1< 1 1< 1 1	: 05 : 05 : 12	3 <.5 9 <.5	7.5 7.5 7.5 15.0 15.0

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____ FA

i

Ruby Red Resources Inc. FILE # A600276

Page 9

ACHE ANALYTICAL																			·										Асн	ANALYTICAL
SAMPLE#	Мо	Cu	r Pb	Zn A	a Nii	Co	Mn	Fe	As U	Au Th	Sr	Cd S	b Bi	i V	Ca	P	La	Cr	Mg	Ba	Ti i	IA E	Na	ĸ	W	Ha Sc	 71	S Gé	e Se S	ample
	ρрπ	рря	ррл	ppm ppi	π ppm-	ррл	ррт	X	ppm ppm	ppb ppm	ppm p	pm pp	m ppa	а ррп	1 2	z	ppm	ppm	žρ	рл	% ppr	n 2					ppm			gm
A3 L1500N 200N A3 L1500N 100N A3 L1500N 0N A3 L1500N 100S A3 L1500N 200S	1.2 .2 .3	12.7 12.1 11.7	14.2 7.9 6.2	53 < 58 < 56 <	1 8.4 1 10.5 1 9.7	5.3 5.6 4.9	364 2 259 1 144 1	2.35 62 71	4.8 2.2 .9 1.0 1.1 .6	1.2 5.2 2.6 5.8 .9 4.4 .8 4.3 1.7 3.8	5 4 < 3 <	.2 . .1 .	3 .4 1 .5 1 .4	4 30 5 20 4 16	.04 .10 .03	.116 .019 .031	12 14 11	12.7 13.8 11.8	.28 1.27 1 1.01	65 .1 151 .0 86 .0	.26 2 165 2 137 1	2 5.28 1 2.06 1 1.88	.012 .006 .004	.06 .08 .06	.7 . .1 . .1 .	11 2.6 02 1.8 03 1.3	.1<. .1<. .1<.	05 10 05 7 05 7) .8 7<.5	1.0 7.5 7.5 15.0 7.5
A3 L1500N 300S A3 L1500N 400S A3 L1500N 500S RE A3 L1500N 500S A3 L1500N 500S A3 L1500N 600S	.8 .8 .9	21.0 13.1 13.7	10.2 6.2 6.4	44 41 43	1 6.1 2 6.9 2 6.9	2.9 3.2 3.1	152 1 153 2 147 2	. 92 2.08 2.07	2.9 .7 3.8 1.3 4.9 1.2	1.47.3 1.83.8 1.65.9 1.55.9 .93.0	4 4 4	.1 . .1 . .1 .	2 .8 1 .3 1 .3	3 21 3 24 3 24	.03 .04 .04	.227 .119 .116	10 5 5		. 41 . 26 . 26	50 .0 40 .1 42 .1	144 1 106 1 13 2	1 2.99 1 2.72 1 5.23 2 5.25 1 2.09	.007 .015 .014	.04 .03 .04	.2 . .2 . .2 .	07 1.4 13 2.1 13 2.1	.1 .1<. .1<.	06 8 05 9 05 9	8 .5 3 <,5 9 .7 9 .7 1 .5	7.5 7.5 1.0 1.0 7.5
A3 L1500N 700S A3 L1500N 800S A3 L1500N 900S A3 L1500N 1000S A3 L1250N 600N	.5 .6 .6	14.3 9.6 14.2	9.2 5.4 17.1	55 45 <. 37 <.	1 10.4 1 10.0 1 9.2	7.3 4.7 6.4	529 1 164 2 225 2	91 2.02 2.20	2.2 5.6 2.1 .5 2.8 5.7	7.2 2.6 1.2 1.9 1.4 2.5 2.7 6.6 1.2 6.3	9 3 < 8	.2 . .1 . .2 .	2 .6 2 .4 2 .5	5 19 4 17 5 24	.30 .04 .15	.058 .100 .042	14 17 13	12.6 10.9 11.8	.65 3 .71 .46 2	321 .0 55 .0 39 .0	23 1 29 1 90 1	L 3.35 E 2.44 L 1.17 L 3.43 L 4.41	.007 .004 .011	. 07 . 06 . 06	.1 . .2 . .2 .	04 1.6 03 .8 07 2.7	.1<. .1<. .1<.	05 6 05 6 05 8	3 .6 5 .5 5 <.5 3 <.5 9 <.5	7.5 7.5 7.5 7.5 7.5 7.5
A3 L1250N 500N A3 L1250N 400N A3 L1250N 300N A3 L1250N 200N A3 L1250N 100N	1.2 1.0 .9	7.5 5.2 4.0	8.8 6.0 6.3	58 < 35 < 38 <	1 7.9 1 9.3 1 8.0	5.2 5.0 3.7	302 1 142 1 143 1	. 57 . 62 . 90	2.3 2.3 1.9 .8 1.7 .6	.5 9.0 1.7 4.7 3.8 6.3 .5 4.9 .6 3.7	4 4 < 3	.2 . .1 . .1 .	3 1.5 2 .3 2 .5	5 21 3 20 5 21	.03 .02 .02	.060 .024 .019	15 18 13	7.7 8.7 9.8	.37 .33 .49	70 .0 77 .0 44 .0	67 <1 51 1 69 <1	1.51	.007 .005 .003	.03 .05 .07	.3 .0 .2 .0 .3 .0	06 1.6 04 1.0 02 1.1	.]<.! .]<.! .]<.!	05 7 05 6 05 7	<.5 <.5 <.5	7.5 7.5 15.0 15.0 7.5
A3 L1250N 0N A3 L1250N 100S A3 L1250N 200S A3 L1250N 300S A3 L1250N 400S	.3 .9 .7	7.2 8.0 10.3	3.8 7.8 8.6	39 < 23 < 47	19.7 15.4 18.3	4.9 2.6 4.0	99 1 55 3 166 1	70 1.07 72	$\begin{array}{ccc} 3.1 & .9 \\ 1.5 & 1.6 \end{array}$.5 4.6 .9 4.3 4.1 4.3 1.8 3.2 1.1 3.0	2 < 2 3	.1 . .1 . .1 .	1 .3 2 .3 2 .5	3 16 3 31 5 20	.03 .02 .04	.026 .067 .031	17 10 14	10.0 10.6 11.5	.98 .40 .63 1	71 .0 39 .0 41 .0	26 1 71 <] 56 1	1.91 1.86 3.46 1.78 2.67	.004 .006 .007	.08 .04 .07	.2 .0 .2 .0 .2 .0	02 1.0 07 2.0 03 1.2	.1<.(.2<.(05 5 05 13 05 8		7.5 15.0 7.5 7.5 7.5
A3 L1250N 500S A3 L1250N 600S A3 L1250N 700S A3 L1250N 800S A3 L1250N 900S	3.1 .7 1.3	55.4 8.5 16.0	15.0 6.7 17.5	48 38 < 49 <	1 12.4 1 7.2 1 7.9	7.1 3.9 3.5	627 2 143 2 557 2	2.00 2.30 2.46	2.0 .8 3.3 .9 4.5 .8	.6 4.6 1.7 3.8 1.1 5.0 1.3 4.8 2.4 5.9	8 4 5	.1 . .1 . .1 .	2 .6 2 .3 4 1.0	5 23 3 27 3 42	.07 .03 .04	.032 .244 .080	8 7 9	10.9 13.1 10.8 13.2 13.0	.80 .29 .29	52 .1 44 .1 75 .1	03 1 22 1 18 1	1.36 1.65 4.36 2.39 3.14	.007 .011 .008	.08 .05 .07	.30 .20 .30	04 1.2 08 2.0 06 1.7	.2<.(.1<.(.1<.(05 7 05 9 05 13	.5	7.5 15.0 1.0 7.5 7.5
A3 L1250N 1000S A3 L1000N 600N A3 L1000N 500N A3 L1000N 400N STANDARD DS6	1.2 .9 .9	6.5 7.8 6.9	8.7 9.8 7.6	36 < 64 < 42 <	l 8.1 t 8.1 t 6.9	5.4 6.0 3.7	607 1 1604 1 153 1	. 37 . 88 . 79	1.7 .9 2.8 .8 1.9 .5	1.8 6.7 <.5 5.8 <.5 1.9 1.4 4.4 48.1 3.1	5 7 4	.1 .2 .1	2.4 3.5 2.4	15 5 22 1 25	.03 .05 .04	.043 .110 .059	18 16 10	9.2 9.4 9.6	.49 .30 1 .37	76 .0 84 .0 78 .0	36 <1 42 <1 67 1	1.21 1.54 2.26	.004 .005 .008	.07 .08 .06	.1 .1 .2 .1 .2 .1	02 1.1 04 1.0 03 1.4	.1<.(.1<.(.1<.()56)58)58	<.5 <.5 <.5 <.5 <.5	7.5 7.5 7.5 7.5 15.0

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA___

Page 8

A BEAUSTRY STREET

ACHE ANALYTICAL																									····				E ANALYTICAL
SAMPLE#	Мо	Cu	Pb	Zn Ag	Ni	Co	Mn Fe	As		Au 1	h Sr	Cd	Sb	Bi	V C	à	P La	Cr	Mg	Ba	Ti	B A1	Na	ĸ	W Hig	Sc	T) S	Ga Se	Sample
	ppm	ррл	ррт	ppm ppm	ррт	ppm ;	ppm X	ppm	ррт	ppb pp	m ppm	ppm	ррт р	pm p	nqa	z	ខ ុស្តា	ppm	ż	ppm	2	k mqq	Ľ	t pp	m ppm	ppm	ppm 🎖	nqq mqq	gm
A3 L2000N 50N A3 L2000N 0N	.8	14.8	6.2	54 < 1	8.8	4.1	109 2.18 165 1.77	2.3	.7	2.3 3. 1.4 4.	1 3	.1	.2	.4	16.0	2.0	55 9	9.9	.76	39	.048	2 2.43	.005	.05 .	2.07	1.3	.1<.05	12 <.5 6 <.5	7.5 7.5
A3 L2000N 100S A3 L2000N 200S A3 L2000N 300S	.4	16.5	8.2	44 < 1	9.7	4.8	137 2.13 172 1.68 396 1.61	5.0	.7	.63. 2222. .5	62	.1	.2	.4	13.0	2.0	54 14	10.1	. 87	31.	.021	<1 1.34 1 1.75 1 1.64	.003	.06	1.03	1.3	.1<.05	7 <.5 5 <.5 6 <.5	7.5 7.5 7.5
A3 L2000N 400S A3 L2000N 500S A3 L2000N 600S A3 L2000N 700S A3 L2000N 800S	.4 .7 .7	14.4 10.5 16.6	8.8 6.2 11.0	61 < .1 41 < .1 50 < .1	9.7 8.6 8.9	4,4 3.3 5.8	97 1.75 660 1.67 171 1.81 828 1.50 871 2.01	5.6 3.2 2.1	.7 1.0 .7	<.5 2.4 <.5	93 92 34	.1 .1 .2	.2 .2 .2	.3 .3 .4	16 .0 17 .0 16 .0	2.1 2.0 6.1	26 14 66 12 51 12	9.8 11.2 10.0	.84 1.15 .80	45 40 59	.028 .019 .016	1 1.59	.003 .002 .003	.07 . .05 . .07 .	1 .02 1 .03 1 .02	1.0 .9 .5	.1<.05 .1<.05 .1.10	6 <.5 5 <.5	7.5 15.0 7.5 7.5 7.5
A3 L2000N 900S A3 L2000N 1000S A3 L1750N 600N A3 L1750N 500N A3 L1750N 400N	.6 .8 .8	13.6 9.1 13.6	10.0 12.3 11.1	46 <.1 47 <.1 41 <.1	11.6 9.4 11.1	4.5 5.7 4.6	592 1.96 376 2.06	2.4 2.5 4.1	1.1 1.3 1.0	1.4 3. <.5 4. 1.4 3.	54 84 37	.1 .1 .2	.2 .3 1 .3	.5 .8 .3	16 .0 24 .0 28 .0	5.0 1.0 7.2	29 15 54 19 25 9	11.0 9.9 9.3	. 81 . 28 . 27	104 . 59 . 68 .	.022 .044 .120	1 1.59 2 3.86	.004 .005 .008	.06 .08 .05	1 .02 2 .04 2 .12	14 13 19	.1<.05 .1 .08	5 < 5	7.5 7.5 7.5 7.5 7.5 7.5
A3 L1750N 300N A3 L1750N 200N A3 L1750N 100N A3 L1750N 0N A3 L1750N 100S	1.5 .7 .4	10.0 6.2 5.5	13.1 7.2 4.9	44 < 1 68 < 1 54 < 1	9.0 9.5 9,7	4.6 5.1 4.7	973 2.08 265 2.91 276 2.42 125 2.10 84 2.61	4.9 1.6 1.7	1.4 .6 .6	11.0 5. 1.9 4. <.5 4.	35 63 93	.1 .1 .1	.4 .2 .2	.5 .4 .5	34 .0 28 .0 20 .0	4.1 3.0 2.0	06 9 38 8 25 7	15.0 12.8	.26 1.48 1.35	65 . 58 . 28 .	118 105 052	2 3.60 1 2.03 <1 2.04	.008 .004 .003	.06 . .07 .1 .05 .	3 .14 2 .05 1 .05	2.0 1.7 1.5	.1<.05 .1<.05 .1<.05	9 .6 11 .8 10 <.5 7 <.5 10 .5	7.5 7.5 15.0 7.5 7.5
A3 L1750N 2005 A3 L1750N 30DS A3 L1750N 400S A3 L1750N 50DS RE A3 L1750N 50DS	.5 .5 .5	10.4 13.4 7.2	8.2 11.6 5.8	39 <.1 53 .1 36 <.1	8.8 10.0 9.0	4.7 6.5 2.9	93 2.41 213 1.84 764 1.77 70 2.28 68 2.35	3.0 2.2 2.8	,6 1,6 ,4	<.5 3. .8 2. .7 3.	43 05 42	.1 .1 .1	.2 .2 .1	.4 .4 .4	17 .0 21 .0 27 .0	2.0 8.0 1.0	31 14 34 14 29 16	10.2 11.6 11.5	.76 .75 .60	92 . 232 . 32 .	023 029 040	<1 1.36 <1 2.00	.003 .005 .003	.06 .07 .04	1 .04 1 .03 1 .02	1.1 1.4 1.3	.1<.05 .1<.05 .1<.05	7 <.5 8 <.5	7.5 7.5 7.5 1.0 1.0
A3 L1750N 600S A3 L1750N 700S A3 L1750N 800S A3 L1750N 900S A3 L1750N 1000S	.6 .5 .4	21.1 15.1 21.7	9.1 10.1 16.2	45 < 1 35 .1 49 .2	9.8 7.2 8.3	5.7 4 4.3 4 6.3	307 2.61 495 1.77 410 1.72 785 1.92 443 1.97	2.5 2.3 3.0	.8 36.3 5.9	.8. 1.61. 1.31.	66 39 79	.1 .2 .2	.2 .2 .2	.5 .4 .5	18 .1 14 .1 20 .2	6.0 4.0 5.0	67 17 52 14	10.4 12.8 10.4	.65 .44 .54	119 . 255 . 192 .	025 045 050	1 2.13 1 1.65 1 3.03 1 3.26 1 1.90	.004 .007 .009	.05 . .04 . .04 .	L .02 L .08 L .06	.7 1.8 1.9	.1 .08 .1 .11 .1 .10	7 .9 9 <.5	7.5 15.0 7.5 7.5 7.5
A3 L1500N 600N A3 L1500N 500N A3 L1500N 400N A3 L1500N 300N STANDARD DS6	.6 .7 .8	10.9 17.2 12.8	9.3 9.3 13.2	44 <.1 29 .1 48 < 1	7.6 8.8 7.3	3.9 8.3 3.6	410 1.60 357 1.36 352 1.70 275 1.92 726 2.94	4.6 4.5 4.2	1.0 1.7 1.0	2.3 4. 2.7 5. .9 3.	84 25 211	.1 .1 .2	.3 .3 .3	.3 .2 .3	21 .0 29 .0 30 .1	3 .1 3 .1 0 .1	139 2112 355	7.3 9.0 7.5	. 23 . 25 . 14	63 . 36 . 66 .	081 132 140	1 3.66	.010 .014 .014	.04 .2 .05 .2 .04 .2	2 .05 2 .09 / 2 .08	1.6 4.0 1.8	.1 .06 .1 .06 .1<.05		7.5 7.5 7.5 7.5 15.0

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data (FA

ł

Ruby Red Resources Inc. FILE # A600276

Page 10

ACHE ANALYTICAL						-																													ANALYTI
SAMPLE#		Cu ppm										Au T ppolppo							Р % р	La pm	Cr ppm	Mg 2	Ba ppm	Ti Z	B ppm	A] ያ	Na %a	K X p	W I pm p	łg So om ppr	: Т' пррп	l S n X	Ga S ppm pp	e Samj n	ple om
A3 L1000N 300N	7	5.1	an	<u>4</u> 1	< 1	5.8	3.2	1072	1 32	1.8	0	<.5 2.	. 4	1	1	3	16	ns -	172	11	8 4	42	194	067											<u></u> 7.5
A3 L1000N 200N												1.5 3.																							7.5
A3 L1000N 100N	2.5	10.5	12.0	35	. 1	4.8	4.3	1361	2.16	2.6	.6	1.3 3.	15	. 1	.1	.4	30.	03 .:	178	10	8.5	.15	64.	109	11.	33.0)11 .	07	.2 .	05 1.0	וֹו	<.05	11 <	5	7.5
A3 L1000N ON	8.5	6.6	15.5	51	.2	7.2	3.4	157	2.50	2.6	1.1	1.1 6.	2 4	. 1	.2 2	2.2	26.	03 .1	082	14 1	1.3	47	50.	076	12.	02.0	108 .	08	.5 .1	06 1.5	5.2	2<.05	9 <.	5	7.5
A3 L1000N 100S	2.3	7.6	8.1	61	<.1	8.1	5.1	971	3.07	6.8	. 9	2.07.	4 6	.3	, 2	.3	30	. 80	312	61	3.1	.24	72.	117	24.	32.0	109.	08	.3.(9 1.5	5 .I	.<.05	10.	5	7.5
A3 L1000N 2005	27	7.9	11.8	49	<.1	5.9	4.9	1278	1.91	2.1	.6	1.3 3.	54	.1	.2	.5	31.	02.1	056	9	9.2	.18	69.	135	11.	65 (111.	08	2.1)4 1 4	4 2	< 05	12 <	5 3	7.5
A3 L1000N 300S												1.4.3.																							7.5
A3 L1000N 400S												2.2 9.																							5.0
A3 L1000N 500S	.6	16.6	15.4	85	< 1	9.6	6.7	666	1.99	3.3	.6	.75.) 6	.1	. 3	.5	25.	07.1	041 🔅	11 1	2.6 1	1.01	80.	090	21.	99.0	06.	10	.3.()4 1.f	5.2	2.05	8 <.	5 3	7.5
A3 L1000N 6005	.5	8.7	13.2	97	<.1	8.5	5.0	1437	1.56	1.9	.5	<.5 3.	4 8	.1	. 1	.4	23 .	11 .	049	81	1.4	.74	153 .	108	11.	85.0	. 90	11	.1.0	3 1.4	1.2	2<.05	10 <.	5 7	7.5
A3 11000N 700S	1.1	11.6	15.2	100	<.1	10.2	5.5	351	2.76	3.1	.7	1.9 5.	75	.2	.2	.7	36 .	05.0	077	8 1	3.7	.52	78.	147	23	14 .0	09	10	.3 (717		< .05	14 <	5 7	7.5
A3 L1000N 800S												3.0 6.																							7.5
A3 L1000N 900S	.6	13.6	44.4	62	.1	7.7	7.9	3870	1.74	2.8	3.7	<.5	2 10	.2	.3	.7	21 .	14 .0	094	14 1	0.Z	.36	261 .	020	21.	54 .0	06 .	10	.1 .6)7 .4	1	09	7.	5 7	7.5
A3 L1000N 1000S	2.8	15.9	31.8	34	<.1	10.4	7.0	507	2.82	16.1	7.2	1.1 9.	3 23	.1	.31	L.0	28	41.(043	9 1	7.1	.45 3	339.	066	33.	10 .0	08 .	08	.5.0	5 1.9	. (<.05	9.	5 7	7.5
A3 L750N 600N	1.4	6.9	7.0	52	<.1	9.4	4.7	157	1.53	1.3	.7	44.0 4.	95	. 1	.1	.4	14 .	05 .:	103 :	17 1	.0.2	. 64	93.	044	<11.	64 .0	06.	09	.3.0	14 1.1	.1	<.05	5 <.	5 7	7.5
A3 E750N 500N	27	64	83	53	< 1	7.5	4.7	156	2.11	2.6	.6	1.4 6.	1 4	.1	.2	.3	22	03	115	14 1	0.3	.22	72	075	12.	09.0	08	07	3 6	514	1 1	< 05	8 < 3	5 7	7.5
A3 L750N 400N												2.0 4.																							7.5
A3 L750N 300N	3.9	5.2	8.6	40	<.1	10.3	5.8	167	1.93	2.1	.6	5.5 5.4	17	<.1	.2	.3	21 .1	07.(071 0	10	9.3	. 26	88.	090	2 2.	48 .0	11.	09	.3.0	6 1.4	.1	<.05	8 <.!	5 7	7.5
RE A3 L750N 300N												.95.																							7.5
A3 L750N 200N	4.4	8.1	8.0	54	<.1	14.4	7.8	278	2.07	1.6	.9	.5 6.	7 4	.1	.1	.4	26 .	05.0	025	15 1	.4.7	. 58	91 .	081	12.	10.0	06.	10	.2.0	2 1.5	5.2	<-05	7 <.	5 19	5.0
A3 L750N 100N	4.4	8.8	8.7	72	<.1	14.3	9.0	766	2.31	2.2	1.1	1.1 8.	36	.1	.2	.4	24 .0) 5 .0	049 2	24 1	3.4	.47	132 .	071	11.	94 .0	06.	12	.2 .0	5 1.5	5.2	<.05	7 <.3	5 15	5.0
A3 L750N 0N												<.57.																							7.5
A3 L750N 100S												11.6 6.																							5.0
A3 L750N 200S												5.16.																							7.5
A3 L750N 300S	11.4	19.3	48.7	89	.2	17.5	12.5	540	2.60	4.5	1.5 (88.5 9.	75	.1	.9	.5	22 .1)6 .(029 1	17 1	1.1	.44	94.	059	12.)4 .0	04 .	80	.3 .{	4 1.3	.2	<.05	6 <.;	5 7	7.5
A3 L750N 400S	3.4	14.8	12.2	43	<.1	8.9	4.1	199	1.86	1.9	.6	<.5 6.8	34	.1	.2	.5	23 .0	J5 .(030 1	10 1	1.2	.74	43.	089	11.	46.0	05.	10	.3 .(2 1.2	2	<.05	8 <.3	5 7	7.5
A3 L750N 500S												8.4 8.																							7.5
A3 L750N 600S	.5	12.8	9.9	80	<.1	9.4	6.4	1007	1.51	1.7	.6	.6 5.	59	. 1	. 1	.6	17 .	12.6	068	91	1.0	. 88 1	178.	083	1 1.	58.0	. 80	10 .	2.0	1 1.1	2	<.05	6 <.	; 7	7.5
A3 L750N 700S												1.4 4.1																							7.5
A3 L750N 800S	.9	56.7	16.2	71	<.1	13.4	7.9	426	2.11	2.0	.8	39.3 5.	7	.1	.1	.5	26 .	12 .(023 1	10 1	6.2	.97]	141 .	101	1 2.3	26.0	07.	11	.1 .(2 1.5	.2	<.05	8 <.!	5 7	7.5
A3 L750N 900S	1.4	13.9	19.7	31	<.1	7.4	4.0	101	2.24	2.1	1.4	<.5 3.2	28	.1	.1	.8	26 .:	10.0)19 I	12 1	1.9	.44	192 .	062	11.	37.0	07.1	07	2.0	3 1.5	.1	<.05	10 <.!	i 7	7.5
A3 L750N 1000S												<.5.2.																							7.5
A3 L250N 600N												1.2.3.																							7.5
A3 L250N 500N												1.0 3.																							7.5
standard DS6	11.6	25.0	29.3	143	.3 :	25.0	10.9	702	2.83	21.8 (5.7	45.5 3.1) 40	6.2	3.4 5	5.1	56 .4	37.0	081 1	l4 17	5.7	.56]	169 .	081	18 1.4	36.0	73 .	16 3.	5.2	3 3.4	1.8	<.05	6 4.5	15	5.0

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🔓 FA

Page 11

a stand a stand water a stand water a stand water a stand water a stand water a stand water a stand water a st

ACHE ANALYTICAL																																		ACME A	NALYTICAL
SAMPLE#	Mo ppm	Cư ppm		Zn ppm p							U ppm	Au ppb								P La % ppm	Cr ppm				B ppm					Hg Sc pm ppm			Ga : ppm pj		ample gm
A3 L250N 400N A3 L250N 300N A3 L250N 200N A3 L250N 100N A3 L250N 0N	2.8 .6 12.0	11.6 9.5 5.4 17.5 8.9	14.5 8.6 23.6	49 < 41 < 46	< 1 < 1 1	8.7 6.1 8.5	6.4 3.9 8.7	263 1056 1992	1.77 1.23 1.79	2.0 1.8 2.7	7 . 3 8. 3	2.5 4.2 1.6	4.5 2.7 1.1	4 < 7 23	.1 .1 .3	2. 1. 2.	.4 1 .3 1 .4 1	17 .0 15 .0 19 .2	5.11 8.08 5.07	10 11 15 11 14 23	9.0 7.3 11.1	. 46 . 33 . 37	72 142 173	.064 .051 .042	<1 1. 1 1. <1 1. 1 1. <1 2.	56 .) 31 .) 87 .)	005 . 007 . 010 .	.08 .07 .08	5. 2. 3.	02 1.2 02 1.0 06 1.3	2 . 1	1 <.05 1 <.05 2 <.05	5 < 6 <	.5 .5	7.5 15.0 7.5 7.5 7.5 7.5
A3 L250N 1005 A3 L250N 2005 A3 L250N 3005 A3 L250N 4005 A3 L250N 5005	4.0 1.2 4.6	11.3 12.1	31.8 10.2 18.5	89 < 46 91	< 1 .2 .2	9.1 9.4 9.9	6.2 5.8 8.9	827 337 1253	2.03 1.55 2.18	2.4 2.9 3.1	.8 .8 1.3	4.6 2.9 1.6	5.0 2.8 4.6	7 11 12	.3 .1 .4	.2. .1. .2.	.6 2 .2 2 .4 2	24 .0 20 .1 27 .0	7.09 3.10 9.10	95 13 50 8 56 9	11.1 6.3 9.6	.47 .22 .28	132 146 179	084 109 140	1 2. <1 1. 2 3. <1 2. <1 1.	50 .1 34 .1 90 .0	005 010 011	.08 .06 .08	.5 .3 .3.	04 1.2 05 2.0 07 2.1	2	1 < .05 1 < .05 1 < .05	9 < 8 < 11	.5 .5 .5	7.5 7.5 15.0 7.5 7.5
A3 L250N 60DS A3 L250N 700S RE A3 L250N 700S A3 L250N 800S A3 L250N 900S	3.5 3.7 6.9	16.2 16.0 23.2	32.9 33.9 44.4	59 62 37	.21 .21 .2	10.1 10.5 9.1	7.4 7.6 7.8	782 793 644	1.85 1.85 2.21	2.9 2.9 3.0	6.0 6.1 10.5	.7 1.8 2.1	1.4 1.4 7.4	17 17 10	.7. .5. .2.	1.1.2.	5 1 5 1 4 2	17 .4 18 .4 24 .1	3.00 2.07 9.03	59 18 72 18 38 15	9.4 10.3 9.5	. 39 . 40 . 25	171 176 94	.079 .083 .161	<1 2.3 1 2.3 1 2.6 1 3.6 <1 1.3	39 .1 53 .1 05 .1	011 . 012 . 017 .	.09 10 .06	2.2.4	05 1.3 05 1.4 06 2.3	.1 .1	1 <.05 1 <.05 1 <.05	8 <. 10 .	.5 .5 .5	7.5 1.0 1.0 7.5 7.5
A3 L250N 1000S A3 L0N 600N A3 L0N 500N A3 L0N 400N A3 L0N 300N	2.6 .5 1.8	9.1 6.9 9.1	13.1 6.3 5.7	20 33 < 31 <	.1 <.1 1 <.1	6.1 0.1 9.3	4.5 4.6 5.4	277 129 139	1.85 1.51 1.39	2.2 2.1 2.0	1.0 .5 .7	1.1 1.7 1.6	3.1 4.7 5.5	9 3 < 3 <	.1 . .1 . .1 .	1 . 1 . 1 .	42 21 4	20.1 12.0 7.0	2 .01 3 .05 7 .01	179 3812 1814	8.6 10.9 9.0	.28 .39 .63	178 59 40	.084 .025 .028	<1 1.4 <1 1.3 <1 1.3 <1 1.6 <1 1.6	35 .0 75 .0 05 .0	008 . 004 . 003 .	05 04 07	2.2.4.	02 1.1 03 1.4 02 .8	<,] <,]	1 <.05 1 <.05 1 <.05	9 < 4 < 2 <	.5 .5 .5	7.5 7.5 15.0 7.5 7.5
A3 LON 200N A3 LON 100N A3 LON 0N A3 LON 100S A3 LON 200S	1.9 16.2 5.3	5.6 45.9	7.7 79.0 44.8	28 < 72 83	: 1 .2 1 .2 1	6.1 .9.1 .0.1	3.7 10.6 7.6	522 4513 889	1.40 2.24 2.25	2.0 2.9 2.2	.4 6.2 3.5	38.2 1.5 1.6 12.2 4.0	1.4 2.2 1.0	21 25 22	.1 . .4 .	1 . 2 . 1 .	3 1 7 2 5 2	.9 .2 23 .2 21 .1	5.06 4.07 8.08	53 8 74 27 89 12	6.6 13.5 9.7	. 24 . 54 . 38	121 426 158	.064 .043 .058	<1 1.5 1 1.5 1 2.9 1 2.0 <1 1.7	50 .0 95 .0 97 .0	. 800 .09 . .08 .	06 13 07	3 .	03 1.1 05 2.0 05 1.1	. 1 . 2 . 1	1 <.05 2 <.05 1 <.05	7 < 9 9 <	.5 .6 .5	7.5 15.0 7.5 7.5 15.0
A3 LON 300S A3 LON 400S A3 LON 500S A3 LON 600S A3 LON 700S	7.8 3.8 4.1	11.1 6.0 10.1	19.9 14.0 11.3	61 46 < 34	.1 <.1 .1 1	8.4 8.6 0.8	6.5 3.8 4.8	443 205 153	2.32 1.81 1.81	3.0 2.0 2.8	1.3 .5 2.5	6.4 1.4 9.4	2.9 2.3 2.4	15 12 14	.1 . .2 . .2 .	1 . 1 . 1 . 1 . 1 .	4 2 3 1 4 1	24 .0 .7 .0 .7 .1	9 .14 9 .03 8 .05	10 9 15 13 14 14	9.4 9.5 10.2	. 30 . 45 . 46	165 163 95	.114 .040 .065	<1 1.3 1 2.8 <1 1.0 2 1.8 3 2.9	31 .0 14 .0 31 .0)12 .)05 .)08 .	06 06 06	.3 .1 .2 .1 .4 ,1	06 1.6 01 .9 03 1.4		1 <.05 1 <.05 1 <.05	11 < 6 < 6 <	5 5 5	7.5 7.5 7.5 7.5 1.0
A3 LON 800S STANDARD DS6	1.4 11.8			31 143																					1 3.4 15 1.8										7.5 15.0

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data (FA