2005 Assessment Report

Takla - Redton Property

Claims CS001 - 128, HS001 - 135, EXT001-003,

King, Twin05, Twin 0502, HAL 1.

Geological Data Compilation, Geophysical Surveys, Prospecting,

Interpretation and Probabilistic Targeting for Porphyry Copper Deposits

Omineca Mining Division

NTS 93N/3,6,7,10,11

Claim Owners: Redton Resources Inc.

Claim Operators: Geoinformatics Exploration Inc.

GEOLOGICAL SURVEY BRANCH

Report By

Tony Worth

Gerry Bidwell

March 2006

Geoinformatics Exploration Inc

Suite 304, 700 West Pender Street Vancouver, British Columbia, Canada V6C 1G8

Executive Summary

The Redton Property is an alkali porphyry copper-gold project located in the Quesnellia region of northern British Columbia, Canada. The property is located within close proximity to known alkali porphyry copper-gold deposits at Mt Milligan (445Mt @ 0.215% Cu, 0.415g/t Au), Chuchi Lake (50Mt @ 0.21% Cu, 0.21g/t Au) and Lorraine (31.9Mt @ 0.66% Cu, 0.17g/t Au, 4.7g/t Ag).

The property is owned by Redton Resources Inc. with Geoinformatics Exploration Inc. currently earning an 85% interest by spending \$4.75M on exploration over 5 years. Included in the option agreement is the Takla-Rainbow property, currently under option to Redton Resources Inc. from prospector Mr Lorne Warren.

Work on the property in 2005 comprised a thorough process of: digital data capture and integration, interpretation of geoscience data, and application of a rigorous process of generating targets for alkalic porphyry copper-gold deposits. Data was compiled from various open file sources for the project and included:

- 123 drill holes, including lithology logs and assays
- 26 geological outcrop and interpretation maps
- 15 geophysical datasets including magnetics, gravity, radiometrics and induced polarisation surveys
- 22,982 located geochemistry samples
- Mineral occurrence data from the BCGS Minfile database.

In addition to compiling historical data the entire project area was flown with detailed magnetics and radiometrics in two separate surveys in 2005.

The historical data compilation and detailed magnetics and radiometrics formed the basis of detailed lithological, geochemical and structural interpretations. These were subsequently used to generate targets using a Geoinformatics-refined targeting process known as MOCA. The MOCA targeting process is a model-driven method of targeting for mineral deposits using Monte Carlo probabilistic algorithms in order to incorporate uncertainty and risk into the targeting procedure.

A total of 32 areas were defined as targets and subsequently ranked according to MOCA probabilities and degree of previous exploration. Several of the high ranked targets also have complementary empirical anomalism, such as zoned multi-element geochemical anomalies, IP chargeability and magnetic anomalies. The highest ranked targets will form the basis for exploration in the 2006 field season, with an extensive field program planned including drilling of four to six targets.

TABLE OF CONTENTS

.

1

-

-

P----

-

-

. .

.

Executive Summary ii
List of Figures v
List of Tables vii
1.0 Introduction1
1.1 Preamble1
1.2 Project History
1.3 Location and Access2
1.4 Tenure
2.0 Geological Setting
2.1 Regional Overview4
2.2 Stratigraphy
2.3 Intrusions
2.4 Structural Setting
2.5 Metamorphism
2.6 Mineral Deposit Styles
2.7 2005 Prospecting
3.0 Data Compilation
3.1 Data Audit9
3.2 Data Capture
3.2.1 Geology
3.2.2 Geophysics
3.2.3 Geochemistry
3.2.4 Drining
3.2.6 Mineral Occurrence Data
4.0 Data Processing
4.1 Geology
4.2 Geophysics
4.3 Geochemistry
4.4 Drilling Data
4.5 Topographic Data
4.6 Remote Sensing

5.0	0 Interpretation					
6.0	Targeting	31				
7.0	Conclusions And Recommendations	36				
8.0	References	37				
9.0	Statement of Qualifications	38				

Appendix 1 Redton Project Library Index

Appendix 2 Redton Project Lithology Coding System

A	opendix (3 Red ton	Project	Lithology	Colour	Legend
---	-----------	-----------	---------	-----------	--------	--------

- Appendix 4 Fugro Airborne Magnetics / Radiometrics Survey Specifications
- Appendix 5 Aeroquest Report on Helicopter-Borne Gamma Ray Spectrometer and Magnetic Gradiometer Survey, Takla Redton Property
- Appendix 6 Redton Project Geochemistry Database Extract
- Appendix 7 IO Geochemistry, Redton Geochemical Summary
- Appendix 8 Redton Project Drill Hole Database -Collar File Extract
- Appendix 9 Redton Project Remote Sensing Report By AGARSS: ASTER Alteration Mineral Mapping
- Appendix 10 Probabilistic Targeting Using MOCA

Appendix 11 Redton Project Target List

Appendix 12 Claim Listing

Appendix 13 Statement of Costs (Expenditures & Assessment Data)

List of Figures

A CONTRACTOR OF A CONTRACTOR OF

A Second Second Second

Figure 1.1	Redton Project Location Plan (Claim Area Shown in Orange)
Figure 1.2	Redton Property Claim Map
Figure 3.1	Redton Project Outcrop Geology Compilation Map
Figure 3.2	Geophysical Survey Coverage for the Redton Project
Figure 3.3	Redton Project 2005 Detailed Magnetics Survey – Reduced to Pole Magnetic image
Figure 3.4	Redton Project 2005 Detailed Radiometrics Survey – Potassium Image
Figure 3.5	Redton Project 2005 Detailed Radiometrics Survey – Uranium Image
Figure 3.6	Redton Project 2005 Detailed Radiometrics Survey – Thorium Image
Figure 3.7	Redton Project Compiled Geochemistry Sample Locations
Figure 3.8	Redton Project Compiled Drill Hole Location Plan
Figure 4.1	Redton Project 2005 Detailed Magnetics Survey – Various Filtered Magnetic images
Figure 4.2	Redton Project 2005 Detailed Magnetics Survey - Magnetic Worms
Figure 4.3	Redton Project 2005 Detailed Magnetics Survey – Polygons Derived from the Geoinformatics "Auto Intrusion" Filter
Figure 4.4	Redton Project 2005 Detailed Magnetics Survey – Inversion Model
Figure 4.5	Redton Project Regional Gravity Data – Various Filtered images
Figure 4.6	Redton Project 2005 Detailed Radiometrics Survey – Processed Products, K/Th and K ² /Th Images, K ² /Th polygonised highs
Figure 4.7	Compilation of IP Surveys for the Redton Project.
Figure 4.8	Redton Project Compiled Geochemistry – Au ppb
Figure 4.9	Redton Project Compiled Geochemistry – As ppm
Figure 4.10	Redton Project Compiled Geochemistry – Cu ppm

- Figure 4.11 Redton Project Compiled Geochemistry Mo ppm
- Figure 4.12 Redton Project Compiled Geochemistry Ag ppm
- Figure 4.13 Redton Project Compiled Geochemistry Pb ppm
- Figure 4.14 Redton Project Compiled Geochemistry Zn ppm
- Figure 4.15 Redton Project ASTER Data Coverage (RGB Image of 231 Bands)
- Figure 4.16 Redton Project ASTER Data Processed Polygons for Advanced Argillic (Orange), Fe Oxides (Red), Kaolinite (Yellow) and Sericite (Blue)
- Figure 5.1a Geoinformatics Geological Interpretation Map for the Redton Project Draped onto Topography (Oblique View Looking North)
- Figure 5.1b Geoinformatics Geological Interpretation Map for the Redton Project
- Figure 5.2 Geoinformatics Alteration Interpretation Map for the Redton Project
- Figure 6.1 Redton Project MOCA Results (Hot colours indicate higher probability scores)
- Figure 6.2 Redton Project Target areas (Brown Polygons) defined by the MOCA Process
- Figure 6.3 Redton Project Highest Priority Targets (Dark Shaded Polygons)

List of Tables

-

.

....

Table 1.1	Redton Project – Claim Status	3
Table 3.1	Sources of Compiled Geology Maps	9
Table 3.2	Sources of Compiled Geophysical Datasets	11
Table 3.3	Geochemistry Data Capture Summary	3
Table 3.4	Drilling Data Capture Summary	14
Table 3.5	Sources of Geographical data	5
Table 6.1	Layers used in MOCA Targeting	28

1.0 Introduction

1.1 Preamble

This report describes a major project of digital data capture, integration and interpretation of geoscience data in the Quesnellia region of northern British Columbia, Canada. The prime function of the project was to focus targeting for alkalic porphyry copper-gold deposits. The project commenced in June 2005, and is ongoing.

The Redton project is a joint venture between Geoinformatics Exploration Inc (Geoinformatics) and Redton Resources Inc (Redton).

1.2 Project History

Redton staked the claims comprising the Redton project on the 12th January 2005, at the initiation of online staking in British Columbia. In June 2005 Geoinformatics entered into a joint venture with Redton and commenced work on the project.

Prior to that numerous explorers have prospected various smaller parts of this large claim group. These include Teck Explorations Ltd., Placer Dome Inc., Imperial Metals Corp. and Eastfield Resources Ltd. Detailed descriptions of the area's exploration history are available in a number of reports including MacIntyre (2004), Buskas and Bailey (1992), and Morton (2001) (Lorraine area).

Mineral exploration in the Omenica district commenced with placer gold prospecting in 1869, with copper exploration commencing 100 years later in 1969 (Buskas, A and Bailey, D, 1992). Since that time at least 139 assessment reports have been submitted for work completed within and around the claim group. Some 123 drill holes, 24000 geochemistry sample points, numerous outcrop geology maps, ground geophysical surveys and other data were compiled by Geoinformatics. Despite this large volume of data, other than regional government surveys, large parts of the project area remain virtually unexplored.

The most significant work completed within the project area is at the Takla-Rainbow property. Much of this was completed by Imperial Metals Corporation between 1985 and 1988, and by Eastfield Resources Ltd. in 1990 and 1991 (MacIntyre, D.G, 2004). Work completed included extensive soil and rock sampling programs and diamond drilling (87 diamond drill holes totalling 16,813m). This work resulted in the discovery of a number of structurally controlled zones of gold-quartz veining that collectively have been estimated by Imperial Metals Corporation in 1988 to contain 321,101 tons grading 0.25 ounces per ton Au (MacIntyre, D.G, 2004).

1.3 Location and Access

The Redton project is located in northern British Columbia, approximately 36km east of Germansen Landing and 140km north-north-west of Fort St James (Figure 1.1).

Access to the Project is via sealed public roads from Fort St James, then via the Manson Creek-Takla Landing all weather gravel road. Numerous forestry roads and tracks provide limited access to some parts of the property but most areas require helicopter transport for access.

A field camp near the Takla-Rainbow gold resource in the north of the project area has provided a base for local exploration. The camp is accessible by a 4wd road from the Manson Creek-Takla Landing road.

Figure 1.1 Redton Project Location Plan (Claim Area Shown in Orange)

1.4 Tenure

The Redton claim block consists of 272 contiguous claims covering an area of 121,846 hectares (Figure 1.2). The claims are currently listed under Redton Resources Inc. Geoinformatics has an option agreement to earn an 85%

interest in the project by spending \$4.75M on exploration over 5 years. Included in this agreement are a small group of claims owned by prospector Lorne Warren which are subject to a separate option agreement between Redton Resources and Mr Warren. Table 1.1 contains a summary of the project claim status. For an individual listing of the tenure see Appendix 12.

Claim Name	Owner	Recording Date	Area (Hectare s)	Earliest Expiry	
CS001 – 128	Redton Resources	January 12/13 2005	57751.13	Jan. 12, 2007	
EXT001 003	Redton Resources	January 12/13 2005	974.86	Jan. 20, 2007	
HS001 – 135	Recton Resources	January 12/13 2005	60744.54	Jan. 12, 2007	
King	Redton Resources	February 1, 2005	18.34	Feb. 1, 2012	
Twin 05	Lome Warren	January 19 2005	456.317	Jan. 19, 2008	
Twin 0502	Lorne Warren	January 19 2005	346.815	Jan. 19, 2008	
	Lorne Warren	February 10 2005	802.893	May 1, 2008	
	Lorne Warren	February 10 2005	766.411	May 1, 2008	
HAL 1	Geoinformatics Exploration Inc.	January 13,2006	440.421	Jan. 1, 2007	
Total	272 claims for 121,846 Hectares				

Table 1.1. Redton Project - Claim Status

2.0 Geological Setting

2.1 Regional Overview

Detailed descriptions of the regional geology are contained in various reports, with most of the section below derived from the British Columbian Geological Survey publication by Nelson and Bellefontaine (1996) (*The Geology and Mineral Deposits of North-Central Quesnellia; Tezzeron Lake to Discovery Creek, Central British Columbia*).

The Redton project is located within the Quesnel Trough or Quesnellia, a Mesozoic island arc terrane juxtaposed against the ancestral North American continental margin (Nelson and Bellefontaine, 1996). The Quesnel Trough largely comprises Upper Triassic and Lower Jurassic island arc volcanic and sedimentary units of the Takla Group (Triassic) and the Chuchi Lake and Twin Creek successions (Jurassic). The Hogem intrusive suite also features prominently, comprising Late Triassic and Early Jurassic composite plutons that are presumably the intrusive equivalents of the island arc volcanic units (Nelson and Bellefontaine, 1996).

The Quesnel Trough hosts several significant porphyry copper-gold deposits, with the Redton property located NE of Mt Milligan (445Mt @ 0.215% Cu; 0.415g/t Au) and south of the Kemess South (109Mt @ 0.234%Cu; 0.712g/t Au) and Kemess North (400Mt @ 0.224% Cu; 0.409g/t Au) (MINFILE database, 2005).

2.2 Stratigraphy

Descriptions for rock units pertaining to the project area are listed as follows and are based largely on the terminology of Nelson and Bellefontaine (1996).

Takia Group

The Takla Group is late Triassic in age and consists of a number of distinct (informal) units including the Slate Creek succession, the Plughat Mountain succession, the Witch Lake succession and the Willy George succession. Although there are variations to the sequence, broadly the Takla Group represents an upward transition from basinal sediments through epiclastic to pyroclastic components, and finally to thick volcanic piles (Nelson and Bellefontaine, 1996). Nelson and Bellefontaine (1996) imply the Takla Arc comprised a series of discrete basaltic centres.

Within the Redton project area, the Takla Group is predominantly represented by the Plughat Mountain succession, comprising augite-plagioclase porphyritic basalt flows and fragmentals, pillow basalt, amygdaloidal olivine basalt, heterolithic tuff, volcanic sandstone and limestone. There are also lesser amounts of porphyritic volcaniclastics and flows of the Witch Lake succession, and tuffaceous and sedimentary units of the Willy George succession on the property. The south-eastern portion of the property also contains significant areas of Inzana Lake succession, comprising tuffaceous and sedimentary rocks including lapilli tuffs, sandstone, argillite and sedimentary breccia.

Twin Creek Succession

Nelson and Bellefontaine (1996) describe the area in the northwest portion of the project area as the type locality for a sequence informally termed the Twin Creek succession. The succession is Early Jurassic in age and unconformably overlies the Plughat Mountain succession of the Takla Group (Nelson and Bellefontaine, 1996). The succession consists of heterolithic lapilli tuff, agglomerate, crystal tuff and heterolithic volcanic conglomerate, all with dominant plagioclase phenocrysts. Various porphyritic flows also occur, including augite-hornblende, plagioclase-augite and plagioclase-quartz porphyries. The succession is described as representing a progressive felsic differentiation of volcanic magmas through time (Nelson and Bellefontaine, 1996).

Slate Creek Succession

The Slate Creek succession is a middle – late Triassic sequence of grey slate and siltstone with lesser tuffaceous rocks and minor andesite and basalt. The succession occurs in the central eastern portion of the project area.

2.3 Intrusions

At least half of the project area is composed of intrusive rocks, with the Hogem intrusive suite predominating.

Hogem Intrusive Suite

The Hogem intrusive suite comprises several different plutons of varying age and composition. Within the project area, Jurassic monzonites predominate and form an elongate north-northwest trending batholith, with a number of early Cretaceous granites intruding into the older monzonite. Late Triassic to early Jurassic diorites also occur within the project area, generally on the margins of the monzonite batholith.

The alkalic porphyry copper gold deposits in the Quesnel Trough are hosted by early Jurassic components of the Hogem intrusive suite. Monzonitic "crowded porphyries" (Nelson and Bellefontaine, 1996) are commonly associated with porphyry copper deposits, including Mt Milligan and Chuchi Lake.

Valleau Creek Intrusive suite

The Valleau Creek intrusive suite comprises late Triassic to early Jurassic diorite, gabbro, pyroxenite and hornblendite. Within the project area, gabbros of this suite have been mapped along the south-eastern margin of the Hogem Suite Batholith. They have a prominent signature in the aeromagnetics.

Germansen Batholith

The Germansen Batholith is a large granite body situated along the eastern margin of the property. The batholith is early Cretaceous in age and is compositionally a coarse grained, generally equigranular or orthoclase megacrystic hornblende – biotite granite. The Germansen Batholith is not prospective for alkalic porphyry copper-gold mineralisation, however a number of molybdenite showings along its margins indicate it may be prospective for that mineral.

2.4 Structural Setting

The Quesnellia terrane is a structurally-emplaced island arc terrane which was later accreted on to the western margin of ancestral North America in the later part of the early Jurassic age (Nelson and Bellefontaine, 1996). Regional-scale dextral transcurrent faults bound and disrupt the Quesnellia, with the Pinchi fault forming the western boundary to the project area, with the Discovery Creek and Manson fault systems to the east.

Nelson and Bellefontaine (1996) suggest the tabular form of several intrusions indicate arc-parallel structures that were active during emplacement. Geoinformatics also interpreted deep-level, belt-parallel structures from the geophysics. Also recognised were relatively evenly spaced (20-30km spaced) deep-level north-east trending cross-arc structures. These appear to post-date the belt-parallel structures but may have also been active during the island arc formation of the Quesnel terrane. Within this regional framework, numerous smaller faults of north-west, north-east and west-north-west orientation occur within the project area. Less frequent north-trending faults also occur. Most prospect-scale faults appear to postdate intrusive emplacement, though some such as the Twin Creek fault clearly exhibit control on mineralisation emplacement.

Any folding present within the project area is thought to be gentle, with dips on bedding measurements generally less than 30 degrees except when close to intrusive margins or faults. Buskas and Bailey (1992) describe an open, southwesterly plunging syncline in the northern part of the Redton project. They suggest the syncline has regional extent and plunges at 25 - 30 degrees.

2.5 Metamorphism

Rocks within the project area have generally undergone metamorphism to prehnite-pumpellyite grade and locally, adjacent to the Germansen batholith, greenschist facies (Nelson and Bellefontaine, 1996).

2.6 Mineral Deposit Styles

The Redton project area is prospective for a number of deposit styles including alkalic porphyry copper-gold, gold and base metal skarn mineralisation, and structurally hosted epithermal gold mineralisation.

The principle style being targeted by Geoinformatics is alkalic porphyry copper-gold mineralisation. This style of mineralisation represents a very attractive target with potentially large tonnages and moderate gold and copper grades, such as occurs at Galore Creek (517.7Mt @ 0.59% Cu, 0.36g/t Au, 4.54g/t Ag). Other deposits of this type occur within 70km of the project such as Mt Milligan (445Mt @ 0.215% Cu, 0.415g/t Au), Chuchi Lake (50Mt @ 0.21% Cu, 0.21g/t Au) and Lorraine (31.9Mt @ 0.66% Cu, 0.17g/t Au, 4.7g/t Ag) (MINFILE database, 2005).

Skarn mineralisation is often associated with porphyry deposits where limestones exist adjacent to the intrusions. As limestones do exist in the Plughat Mountain succession on the property, it is possible that this style of mineralisation exists and will therefore be considered as part of Geoinformatics strategy of exploring for porphyry copper-gold deposits.

There is one known significant, structurally-controlled gold deposit occurring within the project area, the Takla-Rainbow deposit. It currently has a non 43-101 compliant resource of 321,101 tonnes grading 0.25 ounces per ton Au (MacIntyre, D.G, 2004). This style of mineralization is likely to occur elsewhere within the project however Geoinformatics has not targeted it due to the perceived small size potential and relatively high cost of drilling out a potential resource when compared to porphyry or skarn mineralization.

2.7 2005 Prospecting

From June 15 to June 19, 2005 a six man crew carried out a small prospecting and field data review program on the property. The three days of fieldwork was undertaken by Gerry Bidwell of Geoinformatics Explor. Inc., Clinton Smyth of Redton Resources Inc., Steve Cook (geochemist) of Victoria, B.C., Lorne Warren, prospector of Smithers, B.C. and two field assistants (Bill Garner & Cory Degrassi) of Smithers, BC. The crew prospected and reviewed the old Placer Dome's Tak property at 359700mE/6175070mN. The copper/gold soil anomaly on the east ridge was prospected. Minor disseminated chalcopyrite and malachite talus was located on the east facing slope off the main ridge. A moss mat sample was collected on the main northward flowing drainage immediately west of the above ridge. This sample at 359165mE/6176790mN assayed 84 ppb Au and 508 ppm copper. Minor prospecting was also undertaken on the ridge immediately to the west of this drainage (359010mE/6174840mN) near where anomalous copper/moly soils were located in earlier geochemical surveys.

Mt. Nation peak at 366475mE/6127895mN in the southern portion of the property was also prospected. The peak is underlain by large talus blocks of Hogem Batholith granite/granodiorite.

Two showings along a logging road just north of Tchentlo Lake were also prospected. At the Mike Showing (368928mE/6122050mN), on the north side of the logging road, large mafic boulders with up to 2% disseminated chalcopyrite and bornite and magnetite/hematite filled fractures, presumably of local origin, are located within the Hogem Batholith. Six hundred metres to the west a large pit (used for road fill) contains chalcopyrite/pyrite infilling a the This granitic breccia with volcanics to west. location (368290mE/6122035mN) is 40 metres west of a fork in the logging road.

Multiple stream sediment and moss mat samples were collected by Steve Cook at two locations in the southern portion of the property. These samples, at ~361400mE/6134020mN and ~370550mE/6130450mN both assayed at background levels.

Copper and gold soil anomalies from old assessment data in the east central part of property (~378000mE/614700mN, headwaters of Valleau Creek) were also investigated. The anomalies were found to be dominantly underlain by well sorted washed sandy material which would be unlikely to be have elevated gold and/or base metals values.

Some time was also spent reviewing mineralized intersections in the core stored at the old Takla Rainbow campsite. This drill core is from the Takla Rainbow Zone just to the east. The core is in reasonable shape. The observed mineralization was mainly brecciated quartz veins with variable sulphides. Some of the better intersections had been removed.

3.0 Data Compilation

. .

3.1 Data Audit

Data for the project was available from a number of sources, including the following:

- British Columbia Ministry of Energy, Mines and Petroleum Resources assessment reports (ARIS reports).
- British Columbia Geological Survey (BCGS).
- Geological Survey of Canada (GSC).
- Landdata BC (British Columbia).

ARIS Reports: The ARIS metadata collection was audited, downloaded and spatial references established in a GIS for the purposes of identifying data pertinent to the project. The ARIS metadata was also loaded into an Access database to facilitate query-based review of the data. Key themes were established and included geology, geochemistry, geophysics, drilling and general prospecting.

ARIS reports with data falling within the Redton project area were subsequently identified for acquisition and copied by the BCGS in Victoria, BC. This entailed some 139 ARIS reports which were cut to CD and sent to Perth for more detailed review and data capture.

Online data: Internet searches of the BCGS and GSC websites as well as various links to other online data sources were undertaken and relevant data was either downloaded or purchased where necessary.

Library: All data obtained was catalogued and stored in the Geoinformatics library. Appendix 1 contains a list of all records in the library pertaining to the Redton project.

3.2 Data Capture

Data collected for the project included drill hole locations, lithology logs and assays, various surface geochemistry data, factual and interpretive geology maps, geophysical data, mineral occurrence locations, ASTER remote sensing data, topographic and cadastral data.

A geological coding system was designed to record geological map and drill hole information in digital form (Appendix 2). The principles on which this coding system is based are:

- A design based on a relational database format with data and reference tables for lithology, structure, veining and alteration.

- A coding system designed along a hierarchical, binary tree format amenable to standard query language in GIS and 3D-database systems.
- A clear separation of fact, from interpretation, and from speculation, with known rock types clearly separated from undifferentiated groupings.

A corresponding colour scheme was designed to best represent the lithology codes in map format. (Appendix 3).

3.2.1 Geology

A total of 26 geological outcrop and interpretation maps covering the project were digitally captured, 22 from ARIS reports, three from the BCGS and one from the GSC. A complete list of the maps captured is presented in Table 3.1.

Map Source	Library	Scale	Area Covered	Data Description
-	Number			
GSC Open	L3915	1:250,000	93N	Regional interpretive geology
File 3273				
BCGS Digital	L3862	1:250,000	British Columbia	BC digital geology, version 1.0 2005
Geology				
BCGS Bulletin	L3959	1:100,000	Germansen Landing-	Northeast corner of project area -
91			Manson Creek	solid geology and fact mapping
BCGS Bulletin	L4169	1:100,000	North-central	Solid geology and fact mapping –
99			Quesnellia	entire project area.
BCGS Open	L3960	1:50,000	Chuchi Lake-Klawli	Cross sections only - east of project
File 1992-4			Lake	area
ARIS Report	L4041	1:5000	Valleau Creek	Prospect scale outcrop mapping
12149				
ARIS Report	L4041	1:5000	Valleau Creek	Prospect scale outcrop mapping
13342				and interpretation
ARIS Report	L4041	1:5000	Swan-Kwah	Prospect scale outcrop mapping
19131				
ARIS Report	L4041	1:10,000	Heath Claims	Prospect scale outcrop mapping
20552				and interpretation
ARIS Report	L4041	1:10,000	Phil Claims	Prospect scale outcrop mapping
20943				
ARIS Report	L3916	1:10,000	Lys Claims	Prospect scale outcrop mapping
21866			·	
ARIS Report	L3916	1:10,000	Wudleau Claims	Prospect scale outcrop mapping
22757				
ARIS Report	L3916	1:5000	Tchentlo Lake	Prospect scale outcrop mapping
24953				
ARIS Report	L3916	1:1000	Silver Creek	Prospect scale outcrop mapping
25116				and interpretation
ARIS Report	L3916	1:10,000	Kwanika-Valleau	Prospect scale outcrop mapping
22752	1			and interpretation

Table 3.1 Sources of Compiled Geology Maps

ARIS Report 19859	L4041	1:10,000	Valleau Creek	Prospect scale outcrop mapping and interpretation
ARIS Report 20838	L3916	1:10,000	Takla-Rainbow	Prospect scale outcrop mapping and interpretation
ARIS Report 14103	L3916	1:2,500	Takla-Rainbow	Float, trench and outcrop mapping
ARIS Report 15319	L3916	1:2,500	Takla-Rainbow	Float and outcrop mapping and interpretation
ARIS Report 16759	L3916	1:5,000 / 1:1000	Takla-Rainbow	2 maps - Prospect scale outcrop mapping and interpretation
ARIS Report 22079	L3971	1:20,000	Takla-Rainbow	Prospect scale outcrop mapping and interpretation
ARIS Report 22145	L3916	1:5,000 / 1:10,000	Takla-Rainbow	2 maps - Prospect scale outcrop mapping and interpretation
ARIS Report 22192	L3916	1:5,000 / 1:10,000	Takla-Rainbow	2 maps - Prospect scale outcrop mapping and interpretation

The maps were digitised by Magnasoft Consulting India Pvt. Ltd (Magnasoft) of Bangalore, India in MapInfo format and were fully attributed according to the information available.

Once digitized, the maps were recoded to the Geoinformatics Redton geological legend to allow for seamless integration of all geological mapping and also other data, particularly drill hole lithology data. The maps were subsequently registered to the best possible accuracy into map projection UTM NAD83, zone 10. Several of the maps from ARIS reports were in local grid projections and were difficult to register due to poor local grid controls. Field checking of local grids with a differential GPS in 2006 is planned and will probably improve the accuracy of the original GIS map registrations.

Once all factual maps were recoded and transformed to UTM NAD83 projection, they were compiled into one comprehensive fact map, comprising four separate layers; lithology, structure, alteration and structural point measurements. The final compilation geology fact map is presented in Figure 3.1.

3.2.2 Geophysics

A total of 15 geophysical datasets were captured from ARIS reports and BCGS publicly available surveys. In addition to these surveys the entire project area was flown with detailed magnetics and radiometrics in two separate surveys in 2005. A breakdown of the data captured is summarized in Table 3.2, while Figure 3.2 illustrates the coverage of the various surveys.

In 2005 Geoinformatics participated in the completion of two detailed heliborne magnetics and radiometrics surveys to cover the entire project area. Both surveys were flown on 250m east-west line spacing and 30 - 50m instrument height. The first survey completed was flown by Fugro and covered 1945 line kilometres over the central portion of the project area. The survey was initially commissioned by the British Columbia & Yukon Chamber of Mines "Rocks to Riches" program, with Geoinformatics and Serengeti Resources Inc (Serengeti) contributing to have the survey extended to cover part of the Redton project and several of Serengeti's claims. The second survey was commissioned solely by Geoinformatics for its own exclusive use. It was completed by Aeroquest Ltd and covered 4380 line kilometres in two blocks north and south of the first survey. Data from the two surveys was then stitched together to give seamless magnetic and radiometric coverage over the Redton project area. Appendices 4 and 5 are survey specification reports from Fugro and Aeroquest respectively on the work completed. Figure 3.3 presents an image of the reduced to pole magnetics, while Figure 3.4 to 3.6 present images of potassium, uranium and thorium intensity.

Data Source	Library	Data Type	Area Covered	Data Description
	Number			
GSC	L3874	Magnetics	British Columbia	200m residual TMI aeromagnetic grid
downloadable				of Canada – 93N mapsheet extracted
data				
GSC	L3913	Gravity	British Columbia	~10km spaced gravity data for
downloadable				Canada – 93N mapsheet extracted
data				
GSC – Open	L3915	Magnetics /	Quesnel Trough	Images from open file report
File 3273		Radiometrics		
BCGS Open	L3963	Magnetics /	Mt Milligan &	Geosoft grids from open file report
File 2005-9		Radiometrics	Quesnel Trough	
ARIS Report	L3916	Magnetics	Takla Rainbow	1990 survey TMI contours digitized
20511				
ARIS Report	L3914/16	Magnetics	TAK claim	1990 survey TMI contours digitized -
20838				location suspect
ARIS Reports	L3916,	IP	Takla-Rainbow,	IP grid lines digitized from reports.
16759, 17013,	L4041		Tak and Nell	Digital data for 7 of these surveys
19131, 20876,			areas	were sourced from Scott Geophysics
22145, 22192,				
22372				
BCGS/	L4118	Magnetics /	Project Area	Joint funded detailed heli-mag and
Geoinformatics		Radiometrics		radiometrics survey flown in 2005
				over central portion of project
Geoinformatics	L4335	Magnetics /	Project Area	Detailed heli-mag and radiometrics
		radiometrics		survey flown in 2005 over project area
				not covered by previous survey

Table 3.2 Sources of Compiled Geophysical Datasets

3.2.3 Geochemistry

An extensive surface geochemistry database was accumulated from open file ARIS reports and BCGS open file data. The final database contains approximately 24,000 samples of which 22,982 contain assays and locations. Table 3.3 shows a breakdown of sample types within the database. An extract of the complete geochemistry database is attached as Appendix 6. Figure 3.7 shows the distribution of sample points covering the project area.

SAMPLE TYPE	No of	No of	Comments
	Samples	Sources	
Şoil	17779	26	All from ARIS reports
Rock Chip	1361	22	Includes whole rock samples
Stream	1983	14	
Moss	165	1	
Till	1275	1	2 samples per site: -63um and 2mm size fractions
Float/Grab	375	13	
channel	2	1	
Trench	13	1	Some trenches captured as rock samples
Unknown	29	3	
Total	22977	38	Note this represents all samples with locations and containing assay values. An additional 1380 samples either have unknown locations or no captured assays
ARIS samples	20067	32	
BCGS/NGR samples	2890	5	Regional stream data plus till and whole rock samples
Other	20	1	Whole rock from journal article
Whole Rock samples	333	4	

Table 3.3 Geochemistry Data Capture Summary

For the ARIS reports and other hardcopy data the geochemistry capture process involved the following:

- Data entry of sample data from hardcopy reports.
- Digitizing sample data from plans.
- Loading to an Oracle database.
- Spatial and statistical validation.

The data entry function was performed by Magnasoft and checked by Geoinformatics personnel in Perth.

A critical aspect of the capture process was locating the samples accurately. Generally the samples were collected in the field using a local grid system and often displayed in this local grid in subsequent reports on the data. The local grids from these reports or hardcopy plans were then transformed by Geoinformatics personnel into UTM NAD83 zone 10 for compilation into the final geochemistry database. The remainder were captured directly in UTM from maps with UTM co-ordinates. Where possible registered maps where checked using the locations of streams, topography and in some cases claim boundaries to ensure their accuracy. It should be noted however that field validation of sample locations is required prior to conducting any follow-up work based on the geochemistry, such as drilling of geochemical anomalies.

Data was loaded to the Geoinformatics standard Oracle geochemistry database structure. Extracts from this were then checked for spatial accuracy. Additional statistical validation of sample values were performed by geochemical consultants IO Geochemistry. Appendix 7 is their summary presentation submitted to Geoinformatics on work undertaken by them.

3.2.4 Drilling

A comprehensive drilling database was compiled from ARIS reports and company data. The database contains 123 drill holes and includes all drilling available in ARIS assessment reports within the project. A number of holes are mentioned in reports but location and assay details were not found, such as 10 holes drilled by Falconbridge in 1971, containing intersections of up to 50 feet at 0.35% Cu (Buskas and Bailey, 1992). A summary of the data captured is presented in Table 3.4. Appendix 8 is a list of all holes captured, together with all collar information recorded in the drilling database. Figure 3.8 is a drill hole location plan for the project area.

Prospect	No of Holes	Total Metres	Owner/Operator	Date drilled	Comments
Takla- Rainbow	77	14939	Cathedral Gold / Imperial Metals	1985 – 1988	"Resource" of 321,101t @ 0.25oz/t Au
Eagle	6	1821	Birch Mountain Resources	1996	Southeast of project area
Phil Claims	6	1069	BP Resources	1990	Southeast of project area
Lorraine- JaJay Creek	5	352	Eastfield Resources	2000	North of project area
TRS Grid	4	635	Imperial Metals	1987	South of Takla Rainbow
Burn Claims	22	??	Placer Development	1979	Hole depths unknown – locations only
Tak	3	453	Placer Dome	1990	
Red Zone?	10	141	Falconbridge	1971	Not in database – Locations unknown
Total	123	~20300m			

Table 3.4 Drilling Data Capture Summary

Key steps in the capture process included the following:

- Locating available hard copy drill logs and related information (ARIS reports).
- Locating and validating collar location information for individual drill holes.
- Reviewing related hardcopy information (reports and plans) for holes that may not have been reported entirely in ARIS reports or company datasets (eg. Collars on plans but not referred to in a report).
- Recoding of original logs using the Geoinformatics coding system and database format.
- Loading of drill collars and recoded logs into the Geoinformatics drilling database.
- Validating the data in 3D and against hardcopy data such as drill logs and plans.

The recoded drilling database allows for full integration of the lithology logs with the geological maps.

3.2.5 Geographic Data

Geographical data captured for the project included the following:

- Topography contours and digital elevation grids (DEMs).
- Drainage streams, lakes.
- Transport roads, tracks, rail etc.
- Cultural towns, localities, government boundaries, mapsheets etc.
- Claims data

Table 3.5 outlines the various datasets captured for the project.

Data Type	Source	Description
Localities	BCGS	Towns and localities within 93N map sheet
Drainage	BCGS	Streams and lakes within 93N map Sheet
Drainage	TRIM	Detailed streams and lakes over project area
Mapsheets	BCGS	1:50,000 map sheet index and 93N 1:250,000 map sheet
Parks/Reserves	BCGS	National parks and reserves within 93N map sheet
Claims	BCGS	Redton project claims and 93N map sheet claims
DEM	BCGS	Digital elevation model of topography of 93N – 3D grid and images
Topography Contours	TRIM	Detailed contours (20m) over project area.
Roads	BCGS	Roads and logging tracks within the project area
Forestry		Forestry blocks within the project area

Table 3.5 Sources of Geographical data sets

3.2.6 Mineral Occurrence Data

The BCGS MINFILE database was downloaded and utilised for geospatial querying and as a regional indicator of prospective areas. It was also used in

conjunction with the geochemistry database to help rank targets generated from the MOCA process.

•

•

.

÷

ţ

4.0 Data Processing

4.1 Geology

Once the various maps were digitized, recoded and compiled, they were exported to geological software packages (MapInfo and FracSIS) where they could be easily integrated with other data for interpretations, modelling and targeting.

MapInfo GIS software was used for generating scaled hardcopy maps and plans of various datasets. MapInfo was also used to fully attribute the captured geology maps according to the information available. It was then used for querying, integrating (overlaying), and interpreting 2D data.

The Geoinformatics geological interpretation map was draped onto the DEM to create 3D tri-surfaces for 3D visualisation in FracSIS.

4.2 Geophysics

The captured digital geophysical datasets were processed depending on the survey type, to produce images, 2D and 3D grids.

Magnetics

Geoinformatics applies various generic and proprietary filters and processing functions to magnetics data for it projects. The Redton magnetics data was processed to produce a number of products including the following:

- A suite of filtered magnetics images, including reduced to pole, 1st and 2nd vertical derivatives, horizontal gradient, directional derivative and ternary residual filters. Each filter provides advantages for interpreting different components of the magnetic data. For example the ternary residual and directional derivative filters are used for structural interpretations, while the 1st vertical derivative and horizontal gradient are better for mapping stratigraphic units. Figure 4.1 illustrates a number of filtered images of the detailed magnetics completed over the Redton project in 2005.
- Worms" a Geoinformatics in-house multi-scale wavelet based edge detection tool for analysis of potential field data. The magnetic worms are excellent for interpretation of 3D structure (dips), differentiating deep magnetic responses from shallow responses (eg. deep structures) and for highlighting subtle changes in magnetic intensity caused by alteration. A selection of worm layers are shown in Figure 4.2.
- "Auto-intrusion detector" filter a Geoinformatics in-house filter designed to highlight circular features in potential field data. The filter has been successfully applied to other projects to detect concealed or previously unmapped intrusions and was used with

that purpose for the Redton project. Figure 4.3 illustrates the resulting circular features detected by this filter at Redton.

- Inversion modelling – Magnetic inversion models are three dimensional representations of magnetic bodies. They are useful in defining the orientation and shape of magnetic (lithological) contacts and depth extents of magnetic units. An example of a magnetic inversion model at Redton is shown in Figure 4.4.

ß

L

[

0

E

Γ

Γ

-

Figure 4.3 Redton Project 2005 Detailed Magnetics Survey - Polygons Derived from the Geoinformatics "Auto Intrusion" Filter.

Gravity

E

[

[

[

C

Γ

[

All of the processing applied to magnetic data can also be applied to gravity data. In the case of the Redton project various filtered images, worms and other specific edge detection filters were applied to the data. Figure 4.5 illustrates some of the filtered images produced for the gravity data.

Figure 4.5 Redton Project Regional Gravity Data - Various Filtered images.

Radiometrics

Detailed radiometrics data was acquired in conjunction with the recent airborne magnetics surveys. The data was processed to produce a number of images including separate images for potassium, thorium and uranium, as well as potassium/thorium and potassium squared/thorium. The later two were used to highlight areas of potassic alteration. Polygons of the anomalous peaks were also produced from the potassium squared/thorium image. Figure 4.6 shows each of the radiometrics processed images.

Induced Polarisation (IP)

The data for a number of IP surveys were obtained and processed to produce sectional chargeability inversions. Figure 4.7 presents a 3D view of a number of IP surveys at Redton.

and the same

[

Γ

[

26

4.3 Geochemistry

Once all geochemistry data was compiled, the database was submitted to geochemical consultants IO geochemistry for detailed statistical analysis and processing to produce a series of levelled images and thematic products. These were then used to interpret anomalous geochemical trends and/or zoning. A summary presentation of the work completed by IO Geochemistry is attached as Appendix 7.

Sample points were assigned elevation (Z) values by draping the 2D point locations onto DEMs using FracSIS software. This enabled the 3D visualisation of the geochemistry data to assist in the interpretation process. Geochemistry images could also be "draped" onto DEMs in FracSIS for the same purpose.

A series of geochemistry maps for elements, gold, arsenic, copper, molybdenum, silver, lead and zinc are attached as Figures 4.8 to 4.14

4.4 Drilling Data

The drill hole data were imported to FracSIS for three dimensional visualisation of hole traces. Drill collars were assigned elevation (Z) values by draping the 2D collar locations onto a detailed DEM in FracSIS. The resulting 3D co-ordinates were then re-imported to the Oracle database for permanent storage. Hole traces in FracSIS can be attributed and colour coded by any of the recorded down-hole characteristics, such as lithology or assay values.

Isosurfaces were also produced for the gold assay data. Isosurfaces are created in FracSIS and represent directionally-unbiased 3D contours of raw grade information. The advantage of viewing assay data as isosurfaces is that it often more clearly highlights mineralisation trends and is therefore extremely useful for interpreting numeric data.

The drilling database was also imported to MapInfo for plotting hole locations on scaled maps (Figure 3.8).

4.5 Topographic Data

The topographic datasets were processed by Geoinformatics to produce digital elevation models (DEM) for 3D representation. Subsequent surficial data sets such as geochemistry and mapping could then be draped onto the DEMs for true 3D representation.

Detailed drainage patterns were also extracted from the DEMs, including calculated catchment areas for processing and interpreting stream geochemistry. This work was completed by IO Geochemistry.

4.6 Remote Sensing

At the request of Geoinformatics, ASTER remote sensing data was provided and processed by remote sensing consultant Dr Bob Agar of Australian Geological and Remote Sensing Services of Perth, Western Australia. His report is attached as Appendix 9. The processing of this data produced MapInfo polygons for the various mineral indices, as well as registered images. Figures 4.15 and 4.16 show examples of both the polygons and images produced.

The processed ASTER data was used to map alteration within the project area.
5.0 Interpretation

The culmination of the historical data compilation and processing phase of the project was the creation of a new geological interpretation map for the Redton Project. The interpretation utilised all available factual data, including the outcrop map compilation, drill data, geophysics and geochemistry, as well as drawing on previous map interpretations and published literature. The interpretation was completed at 1:50,000 scale and was designed to be used as a tool for porphyry copper exploration only. As such greater detail is paid to intrusive rocks within the project, while areas of younger cover rocks for example were not mapped in detail. The map also utilised the magnetics to a great extent in an effort to highlight potential intrusive bodies relevant to porphyry exploration. The interpretation map is attached to this report as Figures 5.1a (3D images) and 5.1b (conventional 2D, scaled map).

In conjunction with the geological interpretation, an alteration (fluid pathway) map was also produced using the ASTER remote sensing data and the radiometrics data, as well as previous mapping of alteration. This map also utilised the DEM and vegetation layer from the ASTER data to extrapolate alteration zones through areas of thick vegetation, as well as to eliminate false anomalies. The alteration interpretation map is attached to this report as Figure 5.2.

Geophysics, in particular magnetics, was used extensively to interpret the geology and structure of the project area. An interpretation of regional scale, deeply-penetrating structures was made using the worms interpreted to represent deep magnetic sources (Figure 5.1). The regional gravity data was also used in this interpretation. The interpretation was later used in the MOCA targeting to represent potential major pathways for mineralising fluids.

30

6.0 Targeting

The geological, geophysical, geochemical and alteration interpretation layers were combined to generate targets using a targeting process refined by Geoinformatics known as MOCA, that uses Monte Carlo probabilistic algorithms (refer to Appendix 10 for more detail).

The MOCA targeting software incorporates uncertainty and risk into the targeting procedure. It is directed by the geological soft model being applied and uses multiplicative probabilistic scoring, generating an estimate of the probability of success everywhere in the project area.

The MOCA targeting requires a geological soft model with defined stages of deposit formation. For the Redton project, a porphyry copper deposit model was used with the following stages of formation:

- Source: large, deep level intrusions of suitable age and litho-chemistry.
- Pathway: large deep seated structures capable of transporting mineralised fluids from deeper crustal levels to the appropriate level for porphyry intrusion development.
- Focus: structures and geological settings likely to focus mineralised fluids.
- Trap: evidence of mineral deposition such as anomalous geochemistry.

Table 6.1 outlines the layers used in the MOCA targeting for each stage, while Figure 6.1 shows the geographical representation of probability scores for each MOCA stage as well as the combined MOCA results for the project.

MOCA	Data Layer
Stages	
Source	 Geoinformatics Geology map – rock units scored on probability of providing mineralising fluids
	2) Magnetic interpretation of deep intrusive plutons
	1) Batholith margin – buffered 1.5km
Path	2) Deep worm structures
	3) Gravity high-low margins – buffered 1km
	4) Geoinformatics interpreted structures from mapping / mag interpretation
	1) Geoinformatics interpreted alteration map – ASTER & radiometrics
Focus	2) Magnetics interpretation of near surface intrusive cupolas
	3) Outcrop map of porphyritic rocks
Trap	Geochemistry – various layers / processed products.
	Note: not used in MOCA but used to rank MOCA results

Table 6.1 Layers used in MOCA Targeting

Figure 6.1 Redton MOCA Results Hot colours indicate higher probability scores.

[

[

[

[

Γ

[

F

[

Γ

F

A total of 32 areas were defined as targets and subsequently ranked according to their MOCA probability scores, geochemical signatures, degree of previous exploration, accessibility, degree of overburden / cover rocks etc. Appendix 11 contains a table of all targets with MOCA scores and descriptions for each layer that was used in the targeting process. Figure 6.2 shows the areas defined as targets.

ľ

1

F

In addition to the MOCA targets, a few areas were also selected as requiring field evaluation despite scoring poorly in the MOCA process. These areas contain significant empirical anomalism in one or more dataset, such as the following:

- Strong geochemical anomaly, such as at the Red Zone prospect

- Magnetic signature indicative of a possible intrusive, usually untested by geochemistry.
- ASTER or Radiometric anomalies in poorly tested areas of the project and surrounds.

These targets will be prioritised and assessed in the 2006 field season along with the MOCA targets.

The top six targets were all in the north of the project area, broadly in the Takla-Rainbow – Tak area (Figure 6.3). At least two to three of these targets are considered ready to drill, subject to preliminary field evaluation to confirm the locations of existing data and to satisfy Geoinformatics personnel that the litho-structural setting supports the current interpretations. A pre-drill phase of target evaluation will aim to map the density and orientation of the dominant fracture systems in order to locate the optimal drill sites and drill orientations. This work is scheduled to commence at the beginning of the 2006 field season.

[

0

Figure 6.3. Redton Project Highest Priority Targets (Dark shaded Polygons)

7.0 Conclusions and Recommendations

The Geoinformatics Process has been implemented successfully to capture, validate and integrate large amounts of disparate data. The processing of this data has resulted in the development of rigorous geological interpretations and targeting criteria for porphyry copper-gold mineralisation. The MOCA targeting process has utilised the processed and interpreted data to generate a series of robust targets for exploration.

The highest ranked targets from the MOCA and empirical targeting will form the basis for exploration in the 2006 field season. An extensive field program is planned and includes:

- Validation of location data for the compiled geochemistry, drill collars and ground geophysics surveys.
- Mapping and prospecting utilising expert porphyry copper consultants and in-house personnel.
- Geochemical sampling of defined targets where necessary.
- Ground geophysics (IP) over defined targets where necessary.
- Approximately 6000m of diamond drilling at 4 6 targets.

8.0 References

Buskas, A.J. and Bailey, D.G., 1992. Geological, Geochemical and Geophysical Report on the Takla-Rainbow Property. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 22,372.

Morton, J.W., 2001. Report for the Year 2000 Diamond Drilling and Geochemical Reconnaissance Completed on a portion of the Lorraine-Jajay Creek Property. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 26508.

- MacIntyre, D.G., 2004. Geological Report on the Takla Rainbow Property, Twin Creek Area, Omenica Mining Division, North Central British Columbia. Unpublished report prepared for Rainbow Gold Resources Ltd.
- Nelson, J.L. and Bellefontaine, K.A., 1996. The Geology and Mineral Deposits of North-Central Quesnellia; Tezzeron Lake to Discovery Creek, Central British Columbia. B.C. Ministry of Employment and Investment, Energy and Minerals Division, Geological Survey Branch. Bulletin 99, 112 pages.
- MINFILE Database, 2005. Ministry of Energy, Mines and Petroleum Resources:

http://www.em.gov.bc.ca/Mining/Geolsurv/Minfile/search/default.htm

9.0 Statement of Qualifications

Antony W. Worth, Bsc

I, Tony Worth, Bsc., of 39 Godwin Avenue, Manning (Perth), Western Australia, do hereby certify the following:

- I am a geologist employed by Geoinformatics Exploration Australia Ltd.
- I have been practicing my profession continuously since graduation in 1992, as a geologist in Australia, Africa and Canada.
- I am a graduate of the University of Western Australia, with a Bachelor of Science degree (geology), 1992.
- I am a member of the Australasian Institute of Mining and Metallurgy (AusIMM).

I, Gerald E. Bidwell, P.Geo., of 5186-44th Avenue, Delta, BC V4K 1C3, do hereby certify the following:

I am a consulting geologist with G. Bidwell & Associates Ltd. of Delta, BC.

I have been practicing my profession continuously since graduation in 1967, as a geologist in Canada and the United States of America. I worked continuously from graduation to 1996 as a geoscientist for Hudson Bay Exploration and Development Company Limited (1967-87), Mingold Resources Inc. (1987-1990) and Noranda Exploration/Hemlo Gold Mines (1990-96). Since 1997 I have been a principal of G. Bidwell & Associates Ltd.

I am a graduate of the University of Saskatchewan, with a Bachelor of Arts and Science degree in Geology in 1967.

I am a Professional Geoscientist in good standing with the Association of Professional Engineers and Geoscientists of British Columbia and a fellow of the Geological Association of Canada.

I have been the Exploration Manager – North America for Geoinformatics Exploration Inc. since May, 2004.

I spent five days on the Takla Redton property in June 2005.

Respectfully submitted, Gerald E. Bidwell, P. Geo.

Dated

, 2006 in Vancouver, B.C.

TAKLA - REDTON PROJECT

1

Biology and

(Internal

and a second

STAG

2005 ASSESSMENT REPORT

Appendix I

Redton Project Library Index

	Title	Item Type	Date
1	The Geology and mineral deposits of north central Quesnellia: Tezzeron Lake to Discovery Creek, central British Columbia, Bulletin 99	Book Map published	November 1996
2	Porphyry deposits of the Canadian Cordillera: A volume dedicated to Charles S. Ney, CIM Special Volume No. 15	Book Map published Other data	1976
3	Fort St. James map - area, Cassiar and Coast Districts, British Columbia, GSC Memoir 252	Book Map published	1949
4	British Columbia Geological Survey Minfile database	Database	2004
5	Geology of the eastern Bella Coola map area (93 D), west - central British Columbia	Journal article	January 2003
6	Alkalic Cu-Au-Ag porphyry deposits in the Canadian Cordillera: Tectonic setting, magmatic affiliations and hydrothermal characteristics	Journal article	November 1998
7	Inversion of geophysical data over a copper gold porphyry deposit: a case history for Mount Milligan	Journal article	October 1997
8	Mineral resource estimation: an evaluation of responses from Notheast British Columbia	Journal article	January 1996
9	Grade and tonnage data for British Columbia mineral deposit models	Journal article	January 1995
10	Mineral Potential project - overview	Journal article	January 1995
11	Porphyry Cu - Au: Alkalic , L03	Journal article	1995
12	Comparative geology and mineralogy of mineralized and barren plutons of the Babine Lake igneous suite, west central British Columbia	Journal article	1995
13	Petrochemistry of shoshonitic rocks associated with porphyry copper - gold deposits of central Quesnellia, British Columbia, Canada	Journal article	July 1993
14	Mineral potential investigations in the Babine Mountains Recreation Area (Parts of 93L/14E, 15W and 93M/2W	Journal article	January 1992
15	Regional geological mapping near the Mount Milligan copper - gold deposit (93K/16, 93N/1)	Journal article	January 1991
16	Geology and alteration at the Mount Milligan gold - copper porphyry deposit, central British Columbia (93N/1E)	Journal article	January 1991
17	Trace element geochemistry of the Highland Valley and Guichon Creek Batholith in relation to porphyry copper mineralization	Journal article	July 1976
18	Fort St. James, British Columbia, GSC Memoir 252 - Map 907A	Map published	
19	British Columbia digital geology maps (version 1.0 2005)	Map published Other data	2005
20	Central Britsh Columbia topographic maps. Version 5.1.2: Etopo digital maps including Queen Charlotte Islands, Prince George, Prince Rupert and Bowron Lake Provincial Park (3 CDROMs), Product No: E70004	Map published	2005

. .

-

~··

....

. .

~

•••

<u>,</u>

21	IMW Canada topographic maps (International Maps of the World). Version 5.1.1 : Etopo digital overview maps of Canada (1 CDROM), Product No: E5001	Map published	2004
22	Bedrock geology Old Hogem (Western part) NTS 93N/11, 12, 13, British Columbia, BCGS OF 2000-33	Map published	2000
23	Geology, Mineral Occurrences and Geochemistry of the Kenny Creek - Mount Olsen Area, BCGS OF 1997-2	Map published	1997
24	Geology of the Manson Creek Map Area NTS (93N/9/6), Geoscience Map 1994-1	Map published	1994
25	Geology of the Germansen Landing Area NTS (93N/10, 15), Geoscience Map 1994-2	Map published	1994
26	Geology of the Nina Lake and Oslinka River, B.C. NTS (93N/15; 94C/2), Geoscience Map 1994-3	Map published	1994
27	Geology and geochemistry of the Klawli Lake map area (NTS 93N/7W), Open File 1993-3	Map published	1993
28	Geology and geochemistry of the Kwaniki Creek map area (NTS 93N/11E), Open File 1993-4	Map published	1993
29	Geology and geochemistry of the Discovery Creek map area (NTS 93N/14E), Open File 1993-5	Map published	1993
30	Redton property spring 2005 field trip video - Clinton Smyth, Gerry Bidwell, Steve Cook (2 CDs)	Movie	2005
31	ARIS reports covering the Redton tenements	Other data	
32	Canadian Digital Elevation Data, Level 1 (CDED1) covering Redton project area	Other data	
33	Data captured from ARIS reports covering the Redton tenements	Other data	
34	Spatial Index to Assessment Report Indexing System (ARIS) reports covering British Columbia	Other data	
35	Open file magnetic and radiometric data for the 093N Redton area - Mount Milligan, Inzana-Salmon Lake, Mount Sylvester, Mount Fran, Mount Polloy, Horsefly, and Tisdall Lake.	Other data	
36	ARIS report 22079 covering the Redton tenements - Geochemical and geological assessment report of the Kwanika Creek Property, Takla project.	Other data	
37	ARIS reports covering the Redton tenements, scanned by BCGS on request	Other data	
38	Redton district ASTER mineral mapping (3 DVDs)	Other data Report	December 2005
39	Forestry blocks and roads in the Redton area	Other data	October 2005
40	Airborne magnetic and radiometric survey for Redton	Other data	August 2005
41	British Columbia mineral tenure	Other data	August 2005
42	200m residual TMI aeromagnetic grid of Canada - extract for Yukon and British Columbia	Other data	June 2005
43	Gravity data extract for Yukon and British Columbia	Other data	June 2005
44	Yukon and British Columbia Regional Stream Sediment	Other data	May 2005

. . .

and a set

, . . .

.....

•···

•

	Geochemical Reconnaissance Data from NGR - National Geochemical Reconnaissance Program of Canada	Database	
45	Yukon and British Columbia Regional Lake Sediment Geochemical Reconnaissance Data from NGR - National Geochemical Reconnaissance Program of Canada	Other data Database	May 2005
46	Yukon and British Columbia regional lake water geochemical reconnaissance data from NGR - National Geochemical Reconnaissance Program of Canada	Other data Database	May 2005
47	Yukon and British Columbia regional stream water geochemical reconnaissance data from NGR - National Geochemical Reconnaissance Program of Canada	Other data Database	May 2005
48	Canadian Geochronology Knowledgebase - Yukon and British Columbia extracts	Other data	2005
49	National road network - British Columbia and Yukon	Other data	2005
50	GeoFile 2005-14: BC Rock Geochemical Database , BCGS GF 2005-14	Other data	2005
51	Positional TRIM data covering 16 20K sheets within NTS block 093N - for Redton property	Other data	2003
52	Protected areas of British Columbia	Other data	December 2001
53	British Columbia regional geochemical survey (RGS) digital data	Other data	January 2001
54	Quesnel Trough: a digital suite of geoscience information, GSC Open File: 3273 BCGSB Open File: 1996-19	Other data	July 1996
55	Geology and mineral potential of the Chuchi Lake (east half) and Klawli Lake (east half) map areas, NTS 93N/2E and 93N/7E, BCGS OF 1992-4	Other data Map published	1992
56	Air photos of the Takla Redton area British Columbia	Photographs	September 1996
57	Mineral deposits of the northern Canadian Cordillera - Yukon - Northeastern British Columbia [Field Trip 14], GSC Open File 2169	Report	
58	British Columbia, regional geochemistry surveys (RGS), regional till surveys and till geochemistry	Report Other data	
59	Report on a helicopter - borne gamma ray spectrometer and magnetic - gradiometer survey, Takla Redton Property, Mackenzie area, British Columbia	Report Map unpublished Other data	January 2006
60	The alkali gold project - a world class gold exploration opportunity in British Columbia - the Takla - Rainbow property and other surrounding properties	Report	April 2005
61	Alkali gold project, British Columbia - Preliminary note for the record on Placer Dome's 1991 gold, copper and potassium results [Redton]	Report	April 2005
62	Takla - Rainbow gold, copper and alteration maps	Report	[April 2005]
63	The alkali gold project - a world class gold exploration opportunity in British Columbia - summary report [Redton]	Report	February 2005
64	Redton documents - including geophysics, geochemistry and	Report Other	2005

.

.

[

ſ

1.4.4

.....

1

	related reports	document	
65	Geological report on the Takla Rainbow property, Twin Creek Area, Omenica Mining Division, North Central British Columbia	Report	December 2004
66	Regional lake water geochemistry of parts of the Nechako Plateau, Central British Columbia, Open File 1999-5	Report Other data	January 1999
67	Phanerozoic tectonic evolution of the circum-North Pacific, USGS professional paper; 1626	Report	1999
68	Bedrock geology of the Germansen Landing - Manson Creek area, British Columbia (94N/9,10,15; 94C/2), BCGS Bulletin 91	Report Other data Map published	April 1994
69	Summary report of 1990 and 1991 exploration programs on the Takla Rainbow property	Report	February 1992
70	Ore deposits, tectonics and metallogeny in the Canadian Cordillera, Paper 1991-4	Report	1991
71	Geological, geochemical and diamond drilling report, Takla Rainbow property	Report	February 1989

.

5

ſ

TAKLA - REDTON PROJECT2005 ASSESSMENT REPORT

and and

Merces

Exercise 1

MANUAL

Appendix 2

Redton Project Lithology coding System

GEOINFORMATICS REDTON STRUCTURE CODES

	Drilling / hand specimen Data				Mapping Data
CODE	STRUCTURE_1	INTENSITY		CODE	DESCRIPTION
	PRIMARY STRUCTURES			FAA	Fold axis - anticline
MAS	massive undeformed	tr	trace	FAAF	Fold axis - antiform
SBO	bedding / bedded	wk	weak	FAAO	Fold axis - overturned anticline
SBOO	bedding overturned	mod	moderate/medium	FAO	Fold axis - undivided
SFB	Primary surface - flow banding or cumulate banding	stg	strong	FAP	Fold - axial plane
ҮСН	Younging - scour marks	int	intense	FAS	Fold axis - syncline
YDEN	Younging - density structures	unk	unknown intensity	FASF	Fold axis - synform
YGB	Younging - graded bedding			FASO	Fold axis - overturned syncline
YNG	Younging - undivided	When Reco	ling legacy data	FFA	Fold axis - undivided
YPIL	Younging - pillows	wk	weak	FTAC	Fold - trace of anticline axial plane
ҮХВ	Younging - cross bedding	wk	poorly	FTAF	Fold - trace of antiform axial plane
		wk	(+/-)	FTAO	Fold - trace of overturned anticline axial plane
	DUCTILE STRUCTURES	wk	some	FTAS	Fold – trace of synformal anticline axial plane
SFO	undivided foliation -cleavage	wk	partly	FTO	Fold - trace of undivided axial plane
		mod	medium	FTSA	Fold – trace of antiformal syncline axial plane
SFS	schistosity	mod	moderate	FTSC	Fold - trace of syncline axial plane
SFL	laminations	mod	well developed	FTSF	Fold - trace of synform axial plane
SFC	crenulation cleavage	mod	throughout	FTSO	Fold - trace of overturned syncline axial plane
SSC	S-C fabric	sta	strong	FV	Fold - vergence towards antiform
SMY	mylonite/mylonite zone	int	intense	FVM	Fold - m vergence
SH7	shear/ shear zone			FVS	Fold - s vergence
	linear fabric (constrictional or stretched features)	unk	finely	FV7	Fold - z vergence
	lineation intersection(hed/clv_clv/clv)	mod	numerous	lifΔ	Dyke - aplite
	lineation mineral		unknown	IFGP	Dyke - pegmatite
				IFO	Dyke - felsic
	lineation of fold avis	<u>+</u>	1	IFP	Dyke - porphyry
	Inteation of Musersent fold suit	<u> </u>	l	IMD	Dyke - dolerite/dichaso
	Interation of ivi vergent fold axis	4			Dyka - ignaous
	lineation of Z vergent fold axis	-			laint undivided
LFS	lineation of S vergent fold axis	4		100	
· · · · · · · · · · · · · · · · · · ·		4		LGO	Lineament - gravity
FOL	folded lithologies	4		LGW	Lineament - gravity worms
FAA	anticline	4			Lineation - mineral
FAS	syncline	_		LIO	Lineation - undivided
FAP	fold axial plane	4		LIR	Lineation - rodding
		-		LIS	Lineation - slickengrooves on fault surface
	BRITTLE STRUCTURES	4		LIX	Lineation - intersection
ZFO	fault			LMO	Lineament - magnetic
		_		LMW	Lineament - magnetic worms
ZFZ	fault zone	_		LTO	Lineament – topographic
ZFR	reverse fault	_		SBO	Primary surface - bedding
ZFN	normal fault			SBOO	Primary surface - bedding overturned
ZFT	thrust fault			SCC	Contact - interpretive caldera boundary
ZFS	strike-slip fault			SCD	Contact - interpretive domain boundary
ZFG	fault gouge/ clay/pug			SCG	Contact - interpretive gravity boundary
ZFL	fault lineations (e.g:slickensides/slickenlines/slickenfibres/slips)			SCI	Contact - intrusive
ZFX	fault breccia			SCM	Contact - interpretive magnetic boundary
ZFC	cataclastic	1		sco	Contact - undivided
		1		SCS	Contact - stratigraphic
ZRO	fracture	1		SCT	Contact - interpretive terrane boundary
ZBZ	fracture zone	1		SCX	Contact - outcrop boundary
100	ioints/ iointing	1		SFB	Primary surface - flow banding or cumulate banding
		1		SFC	Secondary surface - cleavage
 		1		SFCC	Secondary surface - cleavage - crenulation
I		-		SFG	Secondary surface - gneissosity
				SFI	Primary surface - laminations
				SFO	Secondary surface - foliation
				SFC	Secondary surface - schistosity
				SESC	Secondary surface - schistosity - crenulation
	· · · · · · · · · · · · · · · · · · ·			01 30 QK D	Secondary surface - kink hand
	1999年1月1日,1997年1月1日,1997年1月1日,1997年1日(1997年1月) 1997年——第二月1日(1997年1月) 1997年———————————————————————————————————				Secondary surface - stylolite
					Unconformity angular
				OUD	Inconformity disconformity
	4				
a Chan an				SUN	Unconformity undivided
					Trand line geochemistry
17					Trend line - geochemistry
					I rend line - magnetics
i ing ang ang ang ang ang ang ang ang ang a					
s i y is vy itt brig					I rend line - airphotos
				YCH	Younging - scour marks
				YDEN	Younging - density structures
				YGB	Younging - graded bedding
				YNG	Younging - undivided
				YPIL	Younging - pillows
				YXB	Younging - cross bedding

Alt_minerals (AGSO codes)	Alt minerals Description	Alt_minerals (AGSO codes)	Alt minerals Description	Alt_minerals (AGSO codes)	Alt minerals Description	Alt_minerals (AGSO codes)	Alt minerals Description	Alt_minerals (AGSO codes)	Alt minerals Description	Alt_minerals (AGSO codes)	Alt minerals Description	Alt_minerals (AGSO codes)	Alt minerals Description	Alt_minerals (AGSO codes)	Alt minerals Description
AB	albite	CFS	clinoferrosilite	FKT	ferrikataphorite	KDC	kiddcreekite	MSB	moschellandsbergite	PSC	parascholzite	SPL	spinel	VVT	vivianite
ACN ACT	acanthite	CHC	chenevixite	FLB	freieslebenite	KES KFS	kesterite k-feldspar	MSC	massicot magnesiosadanagite	PSG PSI	pnosgenite psilomelane	SPN SPR	saponite sapphirine	WDG WDH	wodginite woodhouseite
ADR	andradite	CHM	chamosite	FLL	fluellite	KLD	kullerudite	MSL	mesolite	PSM PT	pseudomalachite	SPS Sdt	spessartine	WFM	wolframite
ADS ADU	adularia	CHN	chapmanite	FMB	ferrimolybdite	KLN	kaolinite	MTB	metatorbernite	PTL	petalite	SPY	sperrylite	WKM	wilkmanite
AEG AEN	aegirine aeniamatite	CHQ CHB	clinoholmquistite	FMT FO	famatinite forsterite	KLP	kaliophilite kalsilite	MTC MTD	monticellite	PTN PTR	plattnerite	SRD SRI	serandite	WLF WLK	wulfenite wilkinsonite
AG	silver	CHS	chalcostibite	FPG	ferropargasite	KLY	kellyite	MTM	muthmannite	PTY	platynite	SRM	schorlomite	WLM	willemite
AGL	augelite accirine-augite	CHT	churchite	FRB FRC	ferberite ferrorichterite	KMB KMC	kambaldaite kamacite	MTR MTT	magnesiotaramite	PTZ PVN	petzite pavonite	SRT SRZ	sartorite	WLS WLY	willemseite willvamite
AIK	aikinite	CIN	cinnabar	FRG	fergusonite	KNR	knorringite	MTY	montroydite	PWL	powellite	SSV	stishovite	WNC	winchite
ΑΚ Ακτ	akermanite aluminokataphorite	CKT CL	cookite Ichlorite	FRH FBK	frohbergite Ifranklinite	KPK KR	krupkaite krennerite	MUL MWS	mullite mawsonite	PXM PY	pyroxmangite pyrite	ST STA	staurolite stibarsen	WNS WO	wonesite wollastinite
ALB	alabandite	CLA	clausthalite	FS	ferrosilite	KRH	kroehnkite	MZC	monazite-(ce)	PYC	pyrochroite	STB	stibnite	WRD	wardite
ALG ALM	allargentum almandine	CLAY CLB	clay mineral columbite	FSPD	feldspathold ferrotschermakite	KRK KRM	kirkiite	MZL MZN	monazite-(la) monazite-(nd)	PYD PYG	polydymite pyragyrite	STC	stannoidite	WRK WRT	wairakite wurtzite
ALN	allanite	CLC	chalcedony	FTT	ferrotantalite	KRN	kornerupine		natrite	PYL	pyrolusite	STE	stephanite	WRU	wairauite
ALP ALSI	allopnane aluminosilicate (unspecified)	CLD CLM	calomel	FUC	ferrowinchite	KRT	krutaite	NGL	nepheline	PYOX	oxidised pyrite	STI	stilleite	WSH	weishanite
ALT	altaite	CLN	celsian chloanthite	FY	fayalite	KST	kostovite koutokite	NGL	niggliite	PYRX	pyroxene	STK	stokesite	WSS	weissite
ALU AMB	amblygonite	CLP	chalcophanite	GBM	galenobismutite	KTN	kutnohorite	NKD	nukundamite	QND	qandilite	STM	sulphotsumoite	WTC	wittichenite
AMPH	amphibole amesite	CLR	coloradoite	GBS	gibbsite gorceixite	KTP KY	katophorite kvanite	NLG NMN	nullaginite	QZ BAB	quartz	STN STP	stannite stilpnomelane	WTH	witherite
AN	anorthite	<u>CNA</u>	chalconatronite	GDL	gadolinite	KZL	kozulite	NRB	norbergite	RBK	riebeckite	STR	strontianite	wus	wustite
	andalusite		conichalcite carnallite	GED	gedrite geversite	LAB LBB	labradorite	NRN NSB	natron nisbite	RBN BCK	robinsonite rucklidaeite	STS STT	stistaite	WVL XEN	wavellite xenotime
ANH	anhydrite	CNT	carnotite	GH	gehlenite	LCT	leucite	NSN	nosean	RCT	richterite	STU	stutzite	XNT	xonotlite
ANK ANI	ankerite		coal	GHN GKL	lgahnite lgeikielite	LFT LGB	laffittite lengenbachite	NST	norsethite Insutite	RDH RDL	ramdohrite rhodolite	STV STW	stevensite stillwaterite	YGW	vugawaralite
ANN	annite	COE	coesite	GL	glass	LLG	loellingite	NTA	natroalunite	RDN	rhodonite	STY	stromeyerite	YRW	yarrowite
ANR ANT	anorthoclase	COL	cottinite colemanite	GLB GLC	glauperite glaucodot	LMN LM T	limonite laumontite	NTK NTN	nantokite nontronite	RUS RE	rnoaochrosite rhenium	STZ SUL	stoizite sulphur	ZEUL	zeonte zinkenite
AP	apatite	COR	corundum	GLN	glaucophane	LNG	langisite	NTR	natrolite	RH	rhodium	SULP	sulphide		zincite
APU APY	apopnyllite	СРК СРТ	clinoptilolite	GLI	glauconite galaxite		Iorandite	OAMP	orthoamphibole	RIC	rickardite	SVD	sulvanite	ZNW	zinnwaldite
AR	Argillic	CPX	clinopyroxene	GML	gmelinite		lepidocrocite	OCL	orcelite	RIO BLG	rutheniridosmine	SWL	stillwellite	ZO ZRK	zoisite zirkelite
ARF	aunonaioite	CRC	crocoite	GND	gonnardite	LPL	lithiophilite	OGC	oligoclase	RMB	rammelsbergite	SYL	sylvite	ZRN	zircon
ARG	aragonite	CRD	cordierite	GNL	greenalite oarnet	LRN	larnite	OGN Ol	oregonite	RMD RMN	ramsdellite	SYN TAF	synchysite taenite	ZRT ZUN	zaratite
ART	artinite	CRK	corkite	GOS	goslarite	LRT	laurite	OLT	olivenite	RSP	raspite	TAN	tellurantimony		
AS	arsenic	CRL	carrollite	GP	gypsum		lorenzenite	OME	omeilte	RSS	rosasite	ТВМ	tellurobismuthite		
ASUX AST	aurostibite	CRM	carnegieite	GRK	greenockite	LTP	lithiophorite	OPL	opal	RT	rutile	TCK	tucekite		
ATC	atacamite	CRO	crossite	GRS	grossular groutite		lautite	OPQ OPX	opaque mineral	RTA	ruthenarsenite		todorokite tellurium		
ATG	antigorite	CRS	cristobalite	GRU	grunerite	LVZ	lovozerite	OR	orthoclase	RU	ruthenium	TELL	tellurides		
ATH	anthophyllite	CRT	cerite	GSD	gersdorffite	LWS 17	lawsonite	ORP	orpiment	RZN	rozenite sodium atum	TGR TGS	tugarinovite tungstite		
ATN	autunite	CRY	cryolite	GSP	gaspeite	LZL	lazulite	OSA	osarsite	SANI	sanidine	TGT	tungstenite		
AU	gold	CSB	costibite	GT	goethite oatumbaite	LZN LZB	luzonite	OSI OSM	osmiridium osumilite	SAP	strontium-apatite	THN	thenardite thorianite		
AUS	austinite	CST	cassiterite	GUD	gudmundite	MAF	magnesio-arfvedsonite	OSZ	osarizawite	SAU	sodium autunite	ТНТ	thorite		
AWR	awaruite	CTE	cerianite	GYZ Hap	goyazite bydroxylapatite	MAK MAI	magnesio-aluminokataphorite	OTM OTV	ottemannite	SB SBG	antimony sternbergite	TIR TLC	tirodite talc		
AZ	azurite	CTL	chrysotile	HBL	hornblende	MAT	magnesio-anthophyllite	OTW	otwayite	SBP	stibiopalladinite	TLM	tulameenite		
BBT	babingtonite boracite	CTP	catapleiite	HBN HBS	hubnerite hibschite	MAU MAX	meta-autunite magnesio-axinite	PAR PAX	parisite paxite	SBV ISBY	sobelevskite sudburvite	TLT	tellurite teallite		
BDL	baddeleyite	CUM	cummingtonite	HC	hercynite	MBD	molybdite	PB	lead	SCB	sphaerocobaltite	TLV	tolovkite		
BDT BHM	beudantite boehmite		oxidised copper minerals	HD HDA	hedenbergite hydroxyapophyllite	MBY	mirabilite	PBA PBG	palladobismutharsenide	SCH	scolecite	TNK	talnakhite		
BI	bismuth	CV	covellite	HDC	hydrocerussite	MC	microcline	PBJ	plumbojarosite	SCP	scapolite	TNL	taeniolite		
BKB BLN	brackebuschite berlinite	CVK CVT	chevkinite	HDL	Inidalgoite Ihydromagnesite	MCH	magnesiochiontolo	PBOX	oxidised lead minerals	SCH	scawtite	TNR	tennantite		
BLT	boulangerite	CZO	clinozoisite	HDT	hydrotungstite	MCK	mackinawite	PBP	plumbopalladinite	SCZ	scorzalite	TOUR	tourmaline topaz		
BMT	bismutninite	DCZ	descloizite	HDZ	hydrozincite	MCN	metacinnabar	PCL	pyrochlore	SDB	serendibite	TPH	tephroite		
BN	bornite	DFT	duftite	HED	hedleyite	MCS	marcasite	PCR	pecoraite	SDL	sodalite	TPL	tapiolite triphylite		
BNN BNS	birnessite	DG	diopside	HES	hessite	MDC	madocite	PD	palladium	SDO	sudoite	TR	tremolite		
BRA	brannerite		diamond	HL	halite bollandite	MDN MDB	mordenite	PDA PEN	palladoarsenide	SDP SDT	siderophyllite studtite	TRD TRL	tridymite trolleite		
BRG	barringtonite	DOL	dolomite	HLR	hellyerite	MEI	meionite	PER	periclase	SE	selenium	TRM	taramite		
BRH	brochantite brockite	DPT DBV	dioptase dravite	HLY HMM	halloysite hemimorphite	MEL MED	melilite mansfieldite	PFE PFR	pumpellyite-fe2+ playfairite	SEP SERI	sepiolite sericite	TRO	trona troilite	1	
BRL	beryl	DSC	dyscrasite	HMQ	holmquistite	MFK	magnesioferrikataphorite	PG	paragonite	SERP	serpentine	TRP	triplite		
BRN BBS	braunite barroisite	DSP DTL	diaspore datolite	HNG HNT	Iningganite huntite	MGC MGD	magnesiochromite magnesiogedrite	PGT PHK	pigeonite phenakite	SFL SGD	samonte sodium gedrite	TRV	turquoise trevorite	1	
BRT	barite	DVD	daviditə	HOP	hopeite	MGF	magnesioferrite	PHL	phlogopite	SGL	senegalite	TS	tschermakite		
BRX	bravoite borax	ECK	aawsonite eckermannite	HS	harmotome	MGN	magnemite	PIL	picro-ilmenite	SHC	shcherbakovite	TSM	tsumoite	1	
BRY	bromargyrite	ED	edenite	HSD	hinsdalite	MGR	mgriite	PKN	paakkonenite	SHN	shandite	TTD TTU	tetradymite tetrahedrite	1	
BRA BSM	perzellanite bismite	ELB	elbaite	HTN	huttonite	MGT	magnetite	PL	plagioclase	SHZ	scholzite	TTL	tantalite		
BSN	bastnaesite	ELE	electrum	HTR	halotrichite	MGY MHB	miargyrite	PLB	polybasite	SI	silica	TTN TWN	titanite twinnite		
BT	biotite	EN	emprecitte	HUL	heulandite	MHQ	magnesioholmquistite	PLG	palygorskite	SKD	sklodowskite	TYL	tyrrellite		
BTF	betafite	ENG	enargite	HYL	hyalophane	MHS	magnesiohastingsite	PLI	platiniridium Ipolylithionite	SKN	skinnerite skutterudite	U UBG	luranium uvtenbogaardtite		
BTR	breitnauptite	EPS	epsomite	HZL	heazlewoodite	MKT	magnesiokataphorite	PLN	planerite	SLA	sellaite	UMG	umangite		
BTW	bytownite	ERT	erythrite	IDA IDC	idaite	MLD ML1	maldonite		phillipsite	SLE	saleeite	UMN LINK	ulimannite		
BZ	Biotization	FAN	ferri-annite	IGD	ingodite	MLN	melonite	PLV	paolovite	SLN	selenite	URC	uranocircite	1	
CA	calcium	FAP	fluorapatite	ILL II M	illite ilmenite	MLR MLT	milarite melanterite	PMG PMN	pumpellyite-mg pumpellvite-mn	SLR SLV	stellerite svlvanite	URE URN	lurea luraninite		
	clino-amphibole	FAY	fluorapophyllite	ILS	ilsemannite	MLY	malayaite	PMP	pumpellyite	SLW	slawsonite	UROX	uranium oxide mineral		
CAP	chlorapatite	FBG	freibergite ferrobarroisite	ILV INE	lilvaite inesite	MMT MNC	mimetite manganochromite	PMT PN	piemontite pentlandite	SMEC SMH	smectite smithite	URP USP	uranopnane ulvospinel	1	
CBE	chrysoberyl	FCH	ferroclinoholmquistite	IR	iridium	MNG	meneghinite	PO	pyrrhotite	SMK	samarskite	UV	uvite	1	
CBN CBZ	cubanite chabazite	FCL	iferrocolumbite ferridravite	IRA IBO	liridarsenite Iridosmine	MNOX MNS	Imanganese oxides minnesotaite	PPH PPS	pyrophanite phosphosiderite	SMN SMP	smithsonite stumpflite	UVH VAE	uvarovite vaesite		
cc	chalcocite	FE	iron	IRS	irarsite	MNT	montmorillonite	PPU	phosphuranylite	SMR	sanmartinite	VEN	veenite		
CCH	clinochlore	FECB FED	liron carbonate	IXL JAR	lixiolite larosite	MNZ MOH	monazite mohite	PPY PQT	plumbopyrochlore pirquitasite	SMS SMT	samsonite smaltite	VES VIO	vesuvianite violarite		
CCN	cancrinite	FEK	ferro-eckermannite	JCB	jacobsite	MOL	molybdenite	PRC	pearceite	SMY	semseyite	VKG	vikingite		
CCP	chalcopyrite chalcosiderite	FELD FEMG	feldspar ferromagnesian mineral	JD JEP	jadeite jeppeite	MOT MRB	mottramite magnesioriebeckite	PHG PRH	pargasite prehnite	SND	rin sanderite	VLU VLK	vuicanite velikite		
CD	Chalcedonic	FEOX	iron oxide	JGF	jugoldite-fe2+	MRC	minrecordite	PRL	pyrophyllite	SNG	sanadagite	VLM	villamaninite		
	crandallite	FFT FGD	terroterritschermakite ferrogedrite	JH JLP	jonannsenite jalpaite	MRG MRK	margarite merenskvite	PRP	pararammelsbergite pyrope	SNJ SNM	semajokite senarmontite	VLR VLT	valentinite		
CDR	calderite	FGL	ferroglaucophane	JMS	jamesonite	MRL	marialite	PRR	pararealgar	SP	sphalerite		vanadinite		
CEL CEN	Iceladonite Iclinoenstatite	FHB FHQ	terrohornblende ferroholmauistite	JOS JRD	joseite jordanite	MRW	mersite	PRV	proustite perovskite	SPD	spodumene	VRN	vernadite		
CER	cerussite	FKR	ferrokaersutite	JUN	junoite	MS	muscovite	PSB	pseudobrookite	SPH	sodium phlogopite	VRS	variscite]	

					style, distribution,	Alt_minerals	
Alt type	Alt type Description	Alt intensity		Alt style	geometry	(AGSO codes)	Alt_minerals Description
	Albitic			ana	anastomosing	AB	albite
	Araillia undivided	()	*absolute %	bd	banded	ACN	acanthite
	Argillic, advanced	tr	trace $(<2\%)$	hlb	blebs	ACT	actinolite
	Argillic, intermediate	wk	weak (2-10%)	box	boxwork	ADR	andradite
	Mineral Assemblage (name not	WK	moderate/medium	J.			
222	mentioned but minerals given)	mod	(10-25%)	ckd	cockade	ADS	andesine
ASU	acid sulphate	sta	strong (25-50%)	cla	clasts	ADU	adularia
RΔ	Barite	int	intense (>50%)	diss	disseminated	AEG	aegirine
BLE	Bleached			fil	fill	AEN	aenigmatite
BZ	Biotization	When Recodin	a legacy data	ff	fracture filling	AG	silver
BZMT	biotite-magnetite	wk	(+/-)	fld	flooded	AGL	augelite
CD	Chalcedonic	wk	minor	frag	fragments	AGT	aegirine-augite
СН	Chloritization	wk	partly	fram	framboidal	AIK	alkinite
CN	Carbonatization	wk	patchy	fsel	fracture selvage	AK	akermanite
CLAY	clay alteration	wk	rare	gran	granular	АКТ	aluminokataphorite
EZ	Epidotization	wk	scattered	hal	halo/envelopes	ALB	alabandite
EZCH	Epidote-chlorite	wk	some	hybx	hydrothermal breccia	ALG	allargentum
FD	Felspathization 🔥 🥸 🌅	🔬 unk	unknown	lam	laminae	ALM	almandine
FN	Fenitization			len	lenticular	ALN	allanite
FU	Fuchsitic	**************************************		mass	massive	ALP	allophane
GRA	Graphitics 🔪 👘	and the second		mat	matrix	ALSI	aluminositicate (unspecified)
GS	Greisen	4		mot	mottled	AL1	altaite
НМ	Hematization	S		nod	nodular		aiunite
ILL	lillitic	<u>.</u>	l	rep	replacement/overprint	AMB	amplygonite
ILSM C	interlayered illite-smectite	all and the		pat	patches		amphibole
JS S	Jasperoidal			poa	ipou noniosivo		anesite
	Kaolinitic			pv rom	rocrustallised		andalusite
	R-felospamization			rib	ribbon	ANG	andesite
IKU Iku	Micococus			eno	spotted	ANH	anhvdrite
	IMICACEOUS			etain	Istaining	ANK	ankerite
NUNUX	Maanatitio			vsel	vein selvage	ANL	analcime
	Not altered freeb rock			wrk	wall-rock	ANN	annite
	Ovidieod					ANR	anorthoclase
	Phyllic					ANT	anatase
	Pyrrhotite			unk	no style mentioned	AP	apatite
PP	Propylitic					APO	apophyllite
PR	Pyritic					APY	arsenopyrite
DAD	quartz-adularia						
QIL	quartz-illite						etc etc
QSK	guartz-smectite-kaolinite						
sĸ	Skarn					ZUN	zunyite
SL	Silicic/Silicification						
SMEC	smectite zone	1					
ISN	Sinter						
so	Sodic						
SP	Spilitisation						
SR	Sericitiziation	1					
SRP	Sericte-paragonite						
SS	Sausseritised						
SU	Sulphidic						
SUB	Sulphidic, Base Metals						
SY	Syenitized	1					
SZ	Serpentinization						
TC							
TOUR	I ourmalinisation				•		
	Altered (undifferentiated)						
ZE		1					

GEOINFORMATICS REDTON ALTERATION ASSEMBLAGE CODES

GEOINFORMATICS REDTON VEINING CODES

Vein_style		Vein_intensit	У	Vein_mineral				
Code	includes: style-geometry- structure-size	code		code	use same code abbreviation as for AGSO minerals			
BND	Boudinaged Vein	()	*absolute %	UNK	unknown			
BRX	Vein Breccia	tr	trace (<2%)					
CKD	Cockade Vein	wk	weak (2-10%)	ACN	acanthite			
COL	Colloform Vein	mod	moderate/medium (10-25%)	ACT	actinolite			
CON	Conjugate Veins	stg	strong (25-50%)	ADU	adularia			
CRC	Crackle Vein	int	intense (>50%)	AEG	aegirine			
DRU	Drusy	unk	unknown intensity	AGT	aegirine-augite			
EEN	En Echelon Veins			AEN	aenigmatite			
EXT	Extensional Vein	When Recodi	ng legacy data	AIK	aikinite			
FELD	Narrow felsic dyke/vein	wk	few	AK	akermanite			
FMV	Fine/micro-veins	wk	minor	ALB	alabandite			
FOL	Folded vein	wk	(+/-)	AB	albite			
FRV	Fracture Veins	wk	some	ALN	allanite			
FTV	Fault-related veins	wk	partly	ALG	allargentum			
HLN	Hairline Veins	wk	rare	ALP	allophane			
INTD	Narow intermediate dyke/vein	wk	scattered	ALM	almandine			
IRR	Irregular / undeformed / segmented	wk	patchy	ALT	altaite			
LAC	Laced veinlets	🚯 wk	irregular	AKT	aluminokataphorite			
LAM	Laminated Veins	27		ALSI	aluminosilicate (unspecified)			
LAMD	Narrow lamprophyre dyke/vein	mod	common	ALU	alunite			
LIND	Late intrusive dyke/stringer vein	mod	numerous	AMB	amblygonite			
MAS	Massive Veins	mod	many	AMS	amesite			
NET	Net-like veining	möd 📐	regular	AMPH	amphibole			
PEG	Pegmatite Veins			etc	etc etc etc			
PLN	Planar Veins							
PTY	Ptygmatic folded veins	e et a contrato						
RIB	Ribbon Veins	A State						
SHR 👾	Sheared Veins							
SHT 🖓	Sheeted Veins							
SIG	Sigmoidal Veins	1						
SMS	Seams 🖓 🖓							
STK	Stockwork Veins							
STR	Stringer Veins							
STY	Stylolitic							
SYND	Narrow syenitic dyke/vein							
TEN	Tension Gashes	1						
UND	Undifferentiated Veins / veinlets	1						
WSP	Wispy							
•]						

GEOINFORMATICS REDTON LITHOLOGY CODES

IUZ

Harzburgite Undifferentlated lamprophyre

						lith		lith		lith	ALTERED BOCKS	llith		Tlith
	INTRUGIVE	lith code		lith code	SEDIMENTS	code	METAMORPHIC	code	VOLCANICI ASTIC	codo	(original rock type unidentifiable)	landa	OTHER	
	INTRUSIVE		VOLCANIC			T			VOLCANICLASTIC	COUB	(original rock type drider (mable)		UINEN	code
				-	Chalifferentiated Cadimenta	000		W00-						
	Undifferentiated intrusives	000	Undifferentiated volcanic Rocks	1400	Undifferentiated Sediments	1900	Undifferentiated metamorphic rock	1X00	Undifferentiated volcaniclastic Hocks	<u>YOO</u>	Altered Rock, Undivided	A00	Unknown rock type	000
	porphyry, undiff.	IOP	Undifferentiated Volcanic Rocks - porphyritic	VOP	Conglomerate	SCO	Amphibolite, undivided	XAO	tuff - unknown composition	YOT	Altered intrusive rock	AIO	Unknown, missing interval, lost sample	OMI
	Undifferentiated Felsic Intrusives	IFO	Undifferentiated Felsic Volcanic Rocks	VFO	Conglomerate - boulder	SCB	Gneiss, undivided	XGO	agglomerate - unknown composition	YOA	Altered volcanic rock	AVO	Unknown, not logged	ONL
	Porphyritic felsic intrusive	IFP	Undifferentiated Felsic Volcanic Rocks - porphyritic	VFP	Conglomerate - pebble/cobble	SCC	granuiite	XGG	ignImbrite - unknown composition	YOI	Altered sedimentary rock	ASS	Drill Casing	CASE
	Pegmatite undivided	IFPG	Rhyolite	VFR	Conglomerate - granule	SCG	Ortho-aneiss	XGI	Undiff Felsic Volcaniclastics	YFO	Albite altered rock	AAO		
	Granite	IFG	Bhyolite - quartz +/- feldspar phyric	VERP	Conglomerate - polymictic	SCP	Migmatite	XGM	agglomerate felsic	YFA	Biotite alteration		SUBEICIA	
	Porphyritic granite	IFGP	Dacite	VFD	Condomerate - monomictic	SCM	quartzofeldspathic gnelss	XGO	ianimbrite - felsic	YFI	Carbopate-chlorite	ACH	Overburden	TOVED
	r olphynic granico		Daolto guertz : (foldenor phurie	VEND	Sodimentary Brassia (abarnatona Canalam)	ICCY	Dava angian	VOO	tuff falaia		Corbonate eltered reals	10011		
	adamenne	IFGA	Dacite - quartz +/- reidspar phyric	VEDE		1000		NGO			Carbonate altered rock	ACO	unaiviaea regolith	HOO
	albite granite	IFGB		VFRD		1350		XGSP	Rhyolite tull	YFR	Fuchsite alteration	AFO	sol	ROS
	aplite	IFA	Unditterentiated Intermediate Volcanic Hocks	VIO	Sandstone/Arenite	SSA	psammitic gneiss	XGSS	Dacite tuit	YFD	Chloritic alteration		undivided residual regolith	IRRO
1.5 · · ·	charnockite		Intermediate Volcanics - quartz +/- feldspar phyric	VIOP	Calcareous arenite/sandstone	SSB	eclogite	XEO	Undiff Intermediate Volcaniclastics	YIO	K-spar alteration	AKO	Transported colluvium	RTC
88-8 N.	Granodiorite	IFD	Intermediate Volcanics - vesicular/amygdaloidal	VIOV	Carbonaceous arenite/sandstone	SSC	Hornfels, undivided	ХНО	agglomerate - intermediate	YIA	Silica-carbonate	AQC	undivided transported regolith	RTO
	Porphyritic granodiorite	IFDP	Andesite	VIA	Sulphidic arenite/sandstone	SSZ	dolomitic marble	XLD	ignimbrite - intermediate	YII	Silica-sericite	AQE	Unconsolidated alluvium	RTA
	Trondihemite	(IFJ	Andesite - quartz +/- feldspar phyric	VIAP	Arkose	SSK	marble	XLO	tuff - intermediate	YIT	Silica-fuchsite	AQF	gravel	RTG
	Tonalite	IFT	Andesite - amygdaloldal/vesicular	VIAV	Volcanic arenite/sandstone	SSV	Schist, undivided	XSO	andesite tuff	YIAT	Silica-chlorite	AQH	till	RTT
	Alkalic Intrusion, undivided	ІКО	basaltic andesite	VIB	Quartzite	SSQ	Phyllite/slate, undivided	XPO	Undiff Mafic Volcaniclastics	YMO	Silica alteration	AQO	Gossan	IRCO
	Svenite	IKS	trachvandesite	VIT	Wacke	SWO	Biotite schist	XSB	anglomerate - mafic	YMA	Sericite-Carbonate	ASC	FALLET ZONES	
	Dornhyritia evonita	IKSD		VKO	Calcareous Grownacke	SW/B	carbonate schist and calc-schiet	VSC	lignimbrite _ mafic	VMI	Sericitle alteration	100	Cault/Epult zono	250
	Polphyllic Syerite		Alkalia volcania, duartz // foldenar physia	VKOP	Carbanacoous/dranbitic Growiacke	ISWC	foldenathic schiat	Vec	tuff matio	VMT	Coricito allorito	ACU		
and the second	mehtente sterre		Aikaile voicailise - quartz +/- teidspar privite		Carbonaceous/graphic Greywacke	0117	achiat graphitia	NOF VCO		TIVII			rauit gouge	
	quartz syenite	IKSQ		VKL		SVV2	schist - graphilic	100			Sericite-clay	ASL	rauit preccia	ZEX
	Albitité	IKA	alkali feldspar rhyolite	VKR	Siltstone	ISIO	Chlorite schist	XSH	4		Clay alteration	ALO	Mylonite/tectonite	ZMO
199	Carbonatite	IKC	Trachyte	VKI	Calcareous siltstone	518	sericite schist	XSK	_		Clay-chlorite	ALH		
	alkali feldspar granite / syenogranite	IKGF	Undifferentiated Mafic Volcanic Rocks	VMO	Carbonaceous/graphitic siltstone	SIC	muscovite schist	XSM			Dominantly sulphide rock	AZO	VEINS	
	Shoshqnite	IKH	Mafic lava; amygdaloldal/vesicular	VMOV	Quartzose/siliceous siltstone	SIQ	pelitic schist	XSP					vein, undifferentiated	ZVO
	Undifferentiated Intermediate Intrusives	110	Basalt	VMB	Sulphidic siltstone	ISIZ	psammitic schist	XSS	1				carbonate-dominant vein	ZVC
A REAL STREET	Pôrphyritic Intermediate Intrusive	IIP	Basalt - amygdaloldal/vesicular	VMBV	Argillite	SAO	Psammite, undivided	XMO					quartz-dominant vein	ZVQ
	Diorite	liD	Pillow basalt	VM8P	Calcareous argillite/shale/mudstone	SAB	meta-quartzite	XQO					quartz-carbonate dominant vein	ZVQC
	Porphyritic diorite intrusive	IIOP	olivine basalt	VMBO	Carbonaceous/graphitic argillite/shale/mudstone	SAC	Talc - Chlorite schist	XST	1				guartz-feldspar dominant vein	ZVQF
•	Monzonite	IIM	Tholeitic basalt	VMBT	Quartzose/siliceous argillite	SAQ	meta-ultramafic undivided	XUO	1				sulphidic vein	ZVS
A.45	Porphyritic monzonite intrusive	IIMP	komatiitic basalt	VMK	Sulphidic argillite/shale/mudstone	SAZ	serpentinite	XUS	1					F
	Quartz diorite	lio	Undifferentiated Illtramatic Volcanic Bocks	VUO	shale	ISIH .			4					h
No.	Bornhuritia quartz diarita Intrusiva		Komatilia	VIIK	mudetone	SIM		-l	1					
12		117	Devidatita	VID	Chart	ETO	4							
	Quartz monzonite intrusive	1112	Direvenite		Dandad Iron Formation	10 TE	4							
	Porphyntic quartz monzonite intrusive		Pyroxeriite	1402		011	4							
	Monzodiorite	111				SIZ								
	Porphyritic monzodiorite intrusive	IIIP			Carbonate sediments, undivided	SLO	4							
	Undifferentiated Mafic Intrusives	IMO			Limestone	ISLL								
	Porphyritic mafic intrusive	IMP			Dolomite/Dolostone	ISLD								
	Gabbro	IMG			Biogenic rock, undifferentiated	BOO								
	hornblende gabbro	IMGH			Biogenic carbonaceous deposit, undiff	BCO								
	gabbronorite	IMGN		·			-							
	olivine gabbro	IMGO												
	Norite	IMN												
	Troctolite	IMT												
	Dolarita / Diabasa	IMD												
	Undifferentiated Ultrametic Intrusion													
	Davidatita													
	ciinopyroxenite													
	orthopyroxenite	IUXO												
	Dunite	IUD												
	Hornblendite	IUH												

MONTRA ALALIS perd S ÷., ć

.

TAKLA - REDTON PROJECT

D

D

D

0

0

0

2005 ASSESSMENT REPORT

Appendix 3

Redton Project Lithology Colour Legend

G	EOLOGICAL SURVE ASSESSMENT REPORT		
	28.264	Redton Lithology	Legend
	IFA aplite	IMP - Porphyritic mafic intrusive	SOO - Undifferentiated Sediments
	IFD - Granodiorite	IOO - Undifferentiated Intrusives	SSA - Sandstone/Arenite
	IFDP - Porphyritic granodiorite	IOP - porphyry, undiff.	SSK - Arkose
	IFG - Granite	IUO - Undifferentiated Ultramafic Intrusion	SSO - clastic sediments (coarser than siltsiz
	IFGP - Porphyritic granite	IUP - Peridotite	SSQ - Quartzite
	IFO - Undifferentiated Felsic Intrusives	IUX - Pyroxenite	SSV - Volcanic arenite/sandstone
	IFP - Porphyritic felsic intrusive	OOO - Unknown rock type	STO - Chert
	IID - Diorite	OVER - Overburden	SWO - Wacke
	IIDP - Porphyritic diorite intrusive	RGO - Gossan	VFD - Dacite
	III - Monzodiorite	SAC - Carbonaceous/graphitic argillite/shale/mudstone	VFO - Undifferentiated Felsic Volcanic Rock
	IIM - Monzonite	SAO - Argillite	VFR - Rhyolite
	IIMP - Porphyritic monzonite intrusive	SAQ - Quartzose/siliceous argillite	VFRP - Rhyolite - quartz +/- feldspar phyric
	IIO - Undifferentiated Intermediate Intrusives	SCO - Conglomerate	VIA - Andesite
	IIP - Porphyritic intermediate intrusive	SCP - Conglomerate - polymictic	VIAP - Andesite - quartz +/- feldspar phyric
	IIQ - Quartz diorite	SCX - Sedimentary Breccia (sharpstone Conglom.)	VIO - Undifferentiated Intermediate Volcanic
	IIZ - Quartz monzonite	SIB - Calcareous siltstone	VIOP - Intermediate Volcanics - quartz +/- fe
	IKGF - alkali feldspar granite / syenogranite	SIH - shale	VKL - Latite (porphyritic)
	IKS - Syenite	SIM - mudstone	VKT - Trachyte
	IKSQ - quartz syenite	SIO - Siltstone	VMB - Basalt
	IMD - Dolerite / Diabase	SIQ - Quartzose/siliceous siltstone	VMBP - Pillow basalt
	IMG - Gabbro	SLD - Dolomite/Dolostone	VMBV - Basalt - amygdaloidal/vesicular
	IMO - Undifferentiated Mafic Intrusives	SLL - Limestone	VMO - Undifferentiated Mafic Volcanic Rock

	VOO - Undifferentiated Volcanic Rocks
	VOP - Undifferentiated Volcanic Rocks - porphyritic
	XAO - Amphibolite, undivided
ize)	XGQ - quartzofeldspathic gneiss
2	XGS - Para-gneiss
	XHO - Hornfels, undivided
	XPO - Phyllite/slate, undivided
	XUS - serpentinite
	YFD - Dacite tuff
ks	YFR - Rhyolite tuff
	YFT - tuff - felsic
;	YIA - agglomerate - intermediate
	YIO - Undiff Intermediate Volcaniclastics
C	YIT - tuff - intermediate
c Rocks	YMA - agglomerate - mafic
feldspar phyric	YOA - agglomerate - unknown composition
	YOO - Undifferentiated Volcaniclastic Rocks
	YOT - tuff - unknown composition
	ZFO - Fault/Fault zone
	ZFX - fault breccia
	ZVQ - quartz-dominant vein
	ZVOC - quartz-carbonate dominant vein

TAKLA - REDTON PROJECT 2005 ASSESSMENT REPORT

0

Appendix 4

Fugro Airborne Magnetics / Radiometrics

Survey Specifications

Fugro Airborne Magnetic/radiometric Survey - Redton Property, 2005

Flight lines: 250m spacing, E-W (UTM) Control lines: 4000m spacing, N-S (UTM), with max of 10m diff. in altitude between flight and control lines Terrain Clearance: 135m Speed: 120 kph (65 knots) (33m/s)

Fugro Airborne Surveys equipment will by flown in a rented Eurocopter Astar AS350B2 from Questral Helicopters. A Scintrex cesium split-beam total magnetic field sensor is carried in a **skid-mounted stinger** (**NOT towed bird**): Sample frequency = 0.1 seconds Sensitivity = 0.01 nT Absolute accuracy = +/-10 nT Noise = 0.10 nT Range = 20,000-100,000 nT Heading Effect <2.0 nT Mag Diurnal: max. of 3.0 nT (peak-peak) deviation from a long chord equivalant to a period of one minute for each base station

An Exploranium GR820 256-channel spectrometer with 33.6 litres downward and 4.2 litres upward NaI detectors will be used. Calibrations are done daily using Cs, U and Th samples. Sample rate is 1/second.

A test line is established and flown daily to monitor variations related to moisture and radon. Aircraft background and cosmic stripping coefficients are determined from multi-altitude test flights. Stripping ratios are determined on calibration pads, and sensitivities are measured using a test strip/hover site.

No flying until 3 hours after measurable rain; no flying until 12 hours after heavy rain.

Windows:

Κ	1370-1570				
U	1660-1860				
Th	2410-2810				
ТС	400-2800				
Cosmic	3000->6000				
Un U	1660-1860				

Ancillary gear include: RMS DGR-33 data acquisition system radar altimtimeter (0-800m range, 2% accuracy) baro altimeter (accuracy 2%) laser altimeter (accuracy 30cm, 0.1Hz sampling) GPS (realtime dual frequency Ashtech differential) flight path video camera

Ground Base Station measures mag, baro, temperature, GPS

All data processing and generation of publication-ready products (maps) is done by Fugro using GeoSoft and some in-house proprietary software, to GSC specs.

TAKLA - REDTON PROJECT 2005 ASSESSMENT REPORT

[

C

0

Appendix 5

Aeroquest Report on Helicopter-Borne Gamma Ray Spectrometer And Magnetic Gradiometer Survey, Takla Redton Property

Fugro Airborne Magnetic/radiometric Survey - Redton Property, 2005

Flight lines: 250m spacing, E-W (UTM) Control lines: 4000m spacing, N-S (UTM), with max of 10m diff. in altitude between flight and control lines Terrain Clearance: 135m Speed: 120 kph (65 knots) (33m/s)

Fugro Airborne Surveys equipment will by flown in a rented Eurocopter Astar AS350B2 from Questral Helicopters. A Scintrex cesium split-beam total magnetic field sensor is carried in a **skid-mounted stinger** (**NOT towed bird**): Sample frequency = 0.1 seconds Sensitivity = 0.01 nT Absolute accuracy = +/-10 nT Noise = 0.10 nT Range = 20,000-100,000 nT Heading Effect <2.0 nT Mag Diurnal: max. of 3.0 nT (peak-peak) deviation from a long chord equivalant to a period of one minute for each base station

An Exploranium GR820 256-channel spectrometer with 33.6 litres downward and 4.2 litres upward NaI detectors will be used. Calibrations are done daily using Cs, U and Th samples. Sample rate is 1/second.

A test line is established and flown daily to monitor variations related to moisture and radon. Aircraft background and cosmic stripping coefficients are determined from multi-altitude test flights. Stripping ratios are determined on calibration pads, and sensitivities are measured using a test strip/hover site.

No flying until 3 hours after measurable rain; no flying until 12 hours after heavy rain.

Windows:

Κ	1370-1570				
U	1660-1860				
Th	2410-2810				
ТС	400-2800				
Cosmic	3000->6000				
Up U	1660-1860				

Ancillary gear include: RMS DGR-33 data acquisition system radar altimtimeter (0-800m range, 2% accuracy) baro altimeter (accuracy 2%) laser altimeter (accuracy 30cm, 0.1Hz sampling) GPS (realtime dual frequency Ashtech differential) flight path video camera

Ground Base Station measures mag, baro, temperature, GPS

All data processing and generation of publication-ready products (maps) is done by Fugro using GeoSoft and some in-house proprietary software, to GSC specs.

TAKLA - REDTON PROJECT 2005 ASSESSMENT REPORT

0

[

[

Appendix 5

Aeroquest Report on Helicopter-Borne Gamma Ray Spectrometer And Magnetic Gradiometer Survey, Takla Redton Property

Gamma Ray Spectrometer and Magnetic Gradiometer Survey

EAEROQUEST LIMITED

4-845 Main Street East Milton, Ontario, L9T 3Z3 Tel: (905) 693-9129 Fax: (905) 693-9128 www.aeroquestsurveys.com Report Date: January, 2006

Report on a Helicopter-Borne Gamma Ray Spectrometer and Magnetic-Gradiometer Survey

Aeroquest Job # 05037 Takla Redton Property Mackenzie Area, British Columbia

for

Geoinformatics Exploration Australia 57 Havelock St. West Perth, WA 6005 PO Box 1675 West Perth 6872

by

EAEROQUEST LIMITED

4-845 Main Street East Milton, Ontario, L9T 3Z3 Tel: (905) 693-9129 Fax: (905) 693-9128 www.aeroquestsurveys.com Report Date: January, 2006

= AEROQUEST LIMITED

845 Main St. East, Unit #4 Milton, Ontario, Canada L9T 323

ж. .

1. TABLE OF CONTENTS

1. TAE	BLE OF CONTENTS	1			
1.1.	List of Figures	2			
1.2.	Appendices	2			
1.3.	List of Maps (1:20,000)	2			
2. INT	RODUCTION	3			
3. SUR	3. SURVEY AREA				
4. GEO	4. GEOLOGICAL SETTING (From Geoinformatics Exploration Inc Press release, June 9, 2005)				
5. SUF	VEY SPECIFICATIONS AND PROCEDURES	. 6			
5.1.	Flight Path and Survey Coverage Specifications	. 6			
5.2.	Navigation	. 7			
6. AIR	CRAFT AND EQUIPMENT	. 7			
6.1.	Aircraft	. 7			
6.2.	Magnetic Gradiometer System	. 7			
6.3.	Airborne Gamma Ray Spectrometer (AGRS) System	. 9			
6.4.	Magnetometer Base Station	10			
6.5,	Radar Altimeter	10			
6.6.	Video Tracking and Recording System	10			
6.7.	GPS Navigation System	11			
7. PER	SONNEL	11			
8. DEI	LIVERABLES	11			
9. DA'	TA PROCESSING AND PRESENTATION	12			
9.1.	Base Map	13			
9.2.	Flight Path & Terrain Clearance	13			
9.3.	Magnetic Gradient Data	13			
9.4.	Radiometric Data	13			
Εαυ	ipment and General Adherence to IAEA Standards	13			
Spe	ctral Calibration	13			
-r- Dat	a Quality Assurance and Control	14			
Dea	id-time Correction	14			
Filt	ering to Prepare for Background Corrections	14			
Cos	mic and Aircraft Background	14			
Rad	lon Background	14			
Cor	nputation of Effective Height Above Ground Level	15			
Cor	npton Stripping Correction	15			
Alti	itude Attenuation Correction	15			
Ant	parent Radioelement Concentrations	15			
Computation of Radioelement Ratios					
10 RESULTS AND INTERPRETATION					
10, N 101	Magnetic Response	16			
10.1.	Radiometric response	18			
1V.4.	Radiometry response				

= AEROQUEST LIMITED

845 Main St. East, Unit #4 Million, Omtario. Canada L9T 323

1.1. List of Figures

Figure 1. Regional location map of the project areas (North and South Blocks).	4
Figure 2. Takla Redton Project Area survey blocks showing planned flight path and claim boundaries	es.
	5
Figure 3. Survey helicopter C-FPTG (Hi-Wood).	7
Figure 4. Magnetic Gradiometer Bird near Germansen Landing.	8
Figure 5. The gradiometer bird (A), and GPS antenna (B)	9
Figure 6. Aeroquest AGRS system. A. AGRS Sensor (Crystal Pack), B. Data acquisition computer.	10
Figure 7. Map Plate locations in relation to the survey flight path.	12
Figure 8 A. Total magnetic intensity map (North Block). B. Vertical Gradient map (North Block))
showing enhancement of magnetic lineaments. Same products for the South Block are presented in (С
and D. A few interpreted faults are sketched on D.	17
Figure 9. North Block - Potassium ground concentration grid overlain on vertical magnetic gradient	
grid (shading)	18
Figure 10. South Block - Potassium ground concentration grid overlain on vertical magnetic gradien	t
grīd (shading).	19

1.2. Appendices

Appendix 1: Survey Block Co-ordinates Appendix 2: Description of Database Fields Appendix 3: Mining Tenure Information

1.3. List of Maps (1:20,000)

The report includes a set of twenty-four (24) 1:20,000 maps. The two survey areas are covered by six (6) map plates. Each map plate has four (4) geophysical data products. The data geophysical products are listed below.

- Coloured Total Magnetic Intensity (TMI) with line contours.
- Coloured Vertical Gradient (VG) with line contours.
- Coloured Potassium ground concentration (%K) with line contours.
- Coloured equivaleent Thorium to Potassium ratio with line contours (eTh/K).

2. INTRODUCTION

This report describes a helicopter-borne geophysical survey carried out on behalf of Geoinformatics Exploration Australia (hereafter Geoinformatics) on the Takla Redton Property, located in the Mackenzie area, British Columbia. The first principal geophysical sensor is Aeroquest's new TRI-DIRECTIONAL magnetic gradiometer system which employs four (4) optically pumped Potassium sensors. The second principal sensor was the Aeroquest's Airborne Gamma Ray Spectrometer (AGRS) system, which utilizes as 4 downward looking NaI crystals used as the main gamma-ray sensors and 1 upward looking crystal for monitoring nongeologic sources. Ancillary equipment includes a real-time differential GPS navigation system, radar altimeter, digital video acquisition system, and a base station magnetometer.

The airborne survey was flown at 250 m line spacing with a total survey coverage of 4380 line-km. The survey flying described in this report took place between November 12th and November 21st, 2005.

This report describes the survey logistics, the data processing, presentation, and provides a brief interpretation of the results.

3. SURVEY AREA

The Takla-Redton Property is situated in mountainous terrain of the Quesnel Trough, approximately 150 km east of the town of Mackenzie, British Columbia (Figure 1). The survey consisted of two blocks covering an area of 97,200 ha (972 km²), and which covered a series of contiguous claims owned 100% by Redton Resources Inc. The claim boundaries and numbers are overlain on the included 1:20,000 maps. The area is highly prospective for alkalic-related deposits of copper-gold porphyry and epithermal gold affinity. The survey block boundary coordinates are tabulated in Appendix 1. The property ownership and claim information is outlined in Appendix 3.

The survey helicopter was based at the Germanson Landing approximately 15 km northeast of the northern survey block. The survey crew was accommodated at Webb's Lodge. Primary installation of the geophysical equipment was carried out at the in Prince George, B.C at the Vancouver Island Helicopters hanger. After installation, the complete system was ferried to the Germanson Landing base. Fuel was cached for surveying at the Germanson Narrows (55 41 01N / 124 57 22W).

Figure 1. Regional location map of the project areas (North and South Blocks).

E

Ľ

Ľ

L

C

2

U

Figure 2. Takla Redton Project Area survey blocks showing planned flight path and claim boundaries.

= AEROQUEST LIMITED

845 Main St. East, Unit #4 Milton, Ontario, Canada LST 323

4. GEOLOGICAL SETTING (From Geoinformatics Exploration Inc Press release, June 9, 2005)

"Approximately half of the project area is underlain by Jurassic to Triassic shallow-water island-arc volcanics, volcaniclastics and sediments intruded by plutonic rocks of the same age and tectonic setting.

The other half of the project area has a slightly deeper erosional level and is underlain by late Triassic to Cretaceous island arc intrusives of highly variable composition.

Redton initially focused on the area because it displayed a concentration of high gold values that corresponded with alkali intrusive and extrusive rocks. The last major phase of exploration in the area was undertaken in the period 1988 to 1992 when over \$2.6 million was expended on and immediately adjacent to the property by a number of companies including Teck Resources, Golden Rule Resources, Cathedral Gold and Placer Dome. However the area has not been covered by modern-day geochemical and geophysical techniques which have proven effective at locating alkali porphyry copper and gold deposits elsewhere in the world.

Redton has put together a comprehensive GIS database of information on previous exploration programs in the project area. This compilation and interpretation of results has pointed to two immediately identifiable multielement geochemical anomalies that are characteristic of porphyry copper-gold mineralisation. This is in addition to significant gold mineralization on the Takla Rainbow claims.

The immediate focus of exploration will be confirmation and follow-up of identified geochemical anomalies and scoping of an aeromagnetic and radiometric survey to cover the project area."

5. SURVEY SPECIFICATIONS AND PROCEDURES

5.1. Flight Path and Survey Coverage Specifications

The general survey flying specifications are summarised in the following table:

Survey / Map Area Name	Survey Block Name	Line Spacing (m)	Line/Tie Direction (azimuth)	Survey Coverage (line-km)	Date(s) Flown (2005)
Takla-Redton Property	North	250	090/000	2803	November 12-21
Takla-Redton Property	South	250	090/000	1577	November 12-21

The total survey coverage (4380 km) was calculated by adding up the survey and control (tie) line lengths as presented in the final Geosoft databases, after windowing the datasets to the survey block outlines.

The nominal gradiomter bird terrain clearance was 30 m but was periodically higher or lower over due to mountainous terrain and the capability of the aircraft. Nominal survey speed over relatively flat terrain is 75 km/hr and is generally lower in rougher terrain. Scan rates for ancillary data acquisition is 0.05 second for the gradiometer. The 20 samples per second translates to a gradiomter reading about every 75 centimters to 1.5 metres along the flight path. The gamma-ray spectrometer, radar altimeter, and GPS determined position were recorded at a 1 second sampling interval.
AEROQUEST L

5.2. Navigation

Navigation is carried out using a GPS receiver, an AGNAV2 system for navigation control. The Pico Envirotec acquisition system is used for GPS data recording. The x-y-z position of the aircraft, as reported by the GPS, is recorded at 0.2 second intervals. The system has a published accuracy of under 3 metres. A recent static ground test of the Mid-Tech WAAS GPS yielded a standard deviation in x and y of under 0.6 metres and for z under 1.5 metres over a two-hour period.

6. AIRCRAFT AND EQUIPMENT

6.1. Aircraft

A Eurocopter (Aerospatiale) AS350B2 "A-Star" helicopter - registration C-FPTG was used as survey platform. The helicopter was owned and operated by Hi-Wood Helicopters, BC. Installation of the gamma ray spectrometer, gradiometer bird and ancillary equipment was carried out by AeroQuest Limited at the Vancouver Island Helicopters hanger in Prince George, B.C. After installation the complete system was ferried to the Germanson Landing base. The survey aircraft was flown at a nominal terrain clearance of 55 m.

Figure 3. Survey helicopter C-FPTG (Hi-Wood).

6.2. Magnetic Gradiometer System

The Aeroquest TRI-DIRECTIONAL magnetic gradiometer system employs four (4) GSMP-30ª (optically pumped Potassium) sensors in a 3D sensor geometry (Figure 4). This allows for measurements of the total field, vertical gradient and horizontal gradients both along and cross lines. The magnetic data is collected at a rate of 20Hz, and recorded by a dedicated Windows-based computer. The specifications of this system are as follows:

- 0.001 nT/VHz sensitivity
- +/- 0.1 nT absolute accuracy
- 5,000 nT/m gradient tolerance
- 10,000 125,000 nT dynamic range

Geoinformatics Exploration Inc

- 10° to 80° and 100° to 170° orientation range
- Heading error less than 0.1 nT combined for sensor spins on all
- All orientations from 10° to 80° and 360° full rotation about axis
- 2 metre standoffs between axis and sensors

Figure 4. Magnetic Gradiometer Bird near Germansen Landing.

B45 Main St. East, Unit #4 Milton, Ontario, Canada L9T 323

Figure 5. The gradiometer bird (A), and GPS antenna (B)

6.3. Airborne Gamma Ray Spectrometer (AGRS) System

The Aeroquest AGRS system consists of a GRS410 sensor pack (Figure 6), which is installed on the floor of the helicopter cabin and a acquisition system designed and manufactured by Pico Envirotec.

The system has 4 downward looking NaI crystals used as the main sensors and 1 upward looking crystal for monitoring non-geologic sources. The system features automatic peak detection and real-time calibration to ensure spectrum stability and a high quality final product. The full spectrum is recorded (256 or 512 channels) to allow for subsequent noise reduction processing such as NASVD. The data are processed to produce the standard IAGA ROI channels – Total Count, Potassium, Uranium and Thorium. The potassium, and equivalent uranium and thorium concentrations are also derived and ratios of these concentrations are computed to enhance the interpretation of the survey results.

Figure 6. Aeroquest AGRS system. A. AGRS Sensor (Crystal Pack), B. Data acquisition computer.

6.4. Magnetometer Base Station

An integrated GPS and magnetometer base station is set up to monitor and record the diurnal variations of the Earth's magnetic field. The sensor, GPS and magnetic, receiver/signal processor is a dedicated unit for purposes of instrument control and/or data display and recording. The unit uses a common recording reference using the GPS clock.

The base station was a Geometrics G858 optically pumped Caesium gas magnetometer coupled with a Garmin GPS18 GPS sensor. Data logging and magnetometer control was provided by the unit's internal software. The logging was configured to measure at 1.0 second intervals. Digital recording resolution was 0.01 nT. The sensor was placed on a tripod away from potential noise sources near the camp. A continuously updated profile plot of the magnetometer value is available for viewing on the unit's display.

6.5. Radar Altimeter

A Terra TRA 3500/TRI-30 radar altimeter is used to record terrain clearance. The antenna was mounted on the outside of the helicopter beneath the cockpit. Therefore, the recorded data reflect the height of the helicopter above the ground. The Terra altimeter has an altitude accuracy of +/- 1.5 metres.

6.6. Video Tracking and Recording System

A high resolution digital colour video camera is used to record the helicopter ground flight path along the survey lines. The video is recorded digitally and annotated with GPS position and time and can be used to verify ground positioning information and cultural causes of anomalous geophysical responses.

= AEROQUEST LIMITED

845 Main St. East. Unit #4 Milton, Ontario, Canada 1.97 32:

6.7. GPS Navigation System

The navigation system consists of an Ag-Nav Incorporated AG-NAV2 GPS navigation system comprising a PC-based acquisition system, navigation software, a deviation indicator in front of the aircraft pilot to direct the flight, a full screen display with controls in front of the operator, a Mid-Tech RX400p WAAS-enabled GPS receiver mounted on the instrument rack and an antenna mounted on the magnetometer bird. WAAS (Wide Area Augmentation System) consists of approximately 25 ground reference stations positioned across the United States that monitor GPS satellite data. Two master stations, located on the east and west coasts, collect data from the reference stations and create a GPS correction message. This correction accounts for GPS satellite orbit and clock drift plus signal delays caused by the atmosphere and ionosphere. The corrected differential message is then broadcast through one of two geostationary satellites, or satellites with a fixed position over the equator. The corrected position has a published accuracy of under 3 metres. A recent static ground test of the Mid-Tech WAAS GPS yielded a standard deviation in x and y of under 0.6 metres and for z under 1.5 metres over a two-hour period.

Survey co-ordinates are set up prior to the survey and the information is fed into the airborne navigation system. The co-ordinate system employed in the survey design was WGS84 [World] using the UTM zone 10N projection. The real-time differentially corrected GPS positional data was recorded by the RMS DGR-33 in geodetic coordinates (latitude and longitude using WGS84) at 0.2 s intervals.

7. PERSONNEL

The following AeroQuest personnel were involved in the project:

- Manager of Operations: Bert Simon
- Field Data Processor: Emilio Schein, Johnathan Rudd
- Field Operator: Viktor Shevchenko
- Data Interpretation and Reporting: Matthew Pozza, Gord Smith, Marion Bishop

The survey pilot, Paul Kendall and AME, Brad Wagner were employed directly by the helicopter operator – Hi-Wood Helicopters Ltd.

8. DELIVERABLES

The report includes a set of twenty-four (24) 1:20,000 maps. The two survey areas are covered by six (6) map plates (Figure 7). Each map plate has four (4) geophysical data products. The data geophysical products are listed below:

- Coloured Total Magnetic Intensity (TMI) with line contours.
- Coloured Vertical Gradient with line contours.
- Coloured Potassium ground concentration (%K) with line contours.
- Coloured equivanlent Thorium to Potassium ratio with line contours (eTh/K).

All the maps show flight path trace and survey line and flight numbers. Topographic line contours, lake/ river outlines and Claim boundaries/ numbers are overlain for reference on all maps.

EAEROQUEST LIMITED

45 Main St. East, Unit #4 Milton, Ontario, Canada L9T 323

The geophysical profile data is archived digitally in Geosoft GDB binary format databases. A description of the contents of the individual channels in the database can be found in Appendix 3. A copy of this digital data is archived at the Aeroquest head office in Milton.

9. DATA PROCESSING AND PRESENTATION

All in-field and post-field data processing was carried out using Aeroquest proprietary data processing software, and Geosoft Oasis montaj software. Maps were generated using a 48-inch wide Hewlett Packard 4000ps plotter.

Aeroquest Limited - Report on Helicopter-borne Gamma Ray Spectrometer and Magnetic-Gradiometer Survey 12

1 8

FAEROQUEST LIMIT

9.1. Base Map

The geophysical maps accompanying this report are based on positioning in the NAD83 datum. The survey geodetic GPS positions have been projected using the Universal Transverse Mercator projection in Zone 10 north. A summary of the map datum and projection specifications is as follows:

- Datum: NAD83
- Ellipse major axis: 6378137m eccentricity: 0.08181919084
- Datum Shifts (x,y,z): 0, 0, 0 metres
- Man Projection: Universal Transverse Mercator Zone 10 N
- Central Scale Factor: 0.9996
- False Easting, Northing: 500,000m, 0m

The base map contains topographic and land feature data derived from 1:20,000 For reference, the latitude and longitude in NAD83 are also noted on the maps. The skeletal topography that is overlain was supplied by the client. The shaded topographic background was produced from NASA SRTM data.

9.2. Flight Path & Terrain Clearance

The position of the survey helicopter was directed by use of the Global Positioning System (GPS). Positions were updated five times per second (5Hz) and expressed as WGS84 latitude and longitude calculated from the raw pseudo range derived from the C/A code signal. The instantaneous GPS flight path, after conversion to UTM co-ordinates, is drawn using linear interpolation between the x/y positions. The terrain clearance was maintained with reference to the radar altimeter.

Magnetic Gradient Data 9.3.

Merging of the recorded magnetic data with the various recorded ancillary data was done post flight using the GPS time stamp as a reference. Prior to any leveling the magnetic data was subjected to a lag correction of -0.05 seconds and a spike removal filter. Then the magnetic gradients profile channels were produced (Vertical and Horizontal gradients) from the total-field sensor readings. The corrected profile data were interpolated on to a grid using a random grid technique (Minimum Curvature Gridding with tension) with a grid cell size of ¼ of the line spacing. The production of the total-field grid was carried out by first applying a correction for diurnal variations using the magnetic base station, and the intersections of the tie lines. No corrections for the regional reference field (IGRF) were applied.

9.4. Radiometric Data

Equipment and General Adherence to IAEA Standards

Aeroquest Limited generally adopts the standards for airborne gamma-ray spectrometry (the radiometric method) as laid out in the IAEA Technical Report 323 - Airborne Gamma-Ray Spectrometry Surveying.

Spectral Calibration

When calibrated (with thorium source about once a year) linearity of the each detector is measured and linearity correction coefficients are calculated. When operating in real time (collecting data), the linearity of each detector is mathematically corrected for each measurement. Individual detector tracking (tuning) and linearity correction provide better fit of the individual spectra that are being summed and therefore a sharper (better resolution) spectrum is obtained.

Calibration of the 5 detectors was carried out on April 27, 2005 as follows:

FAEROQUEST LIMITED

845 Main Si Fast Unit #4 Milton, Ontario, Canada UPT 323

Crystal	S/N	Cs resolution (%)
1	SAM359	7.9
2	SAM358	8.4
3	SAM355	8.4
4	SAM357	8.4
5	SAM356	9.1

Data Quality Assurance and Control

The spectrometer data are referenced to the other ancillary data sets using the Pico Envirotec data acquisition system (Figure 6). After each flight, preliminary ROI channels are generated and profiles are then plotted from the digital data to check for any missing data, spikes or data corrupted by other noise sources. Where necessary, the data are corrected or flagged for re-flight depending on the severity or duration of the noise.

Dead-time Correction

Generally, the first data reduction step for radiometric data is dead-time correction. Because the GRS-10 dead time is virtually nil, this correction is only applied where the total count rates are extremely high. Dead-time correction is made to each window using the expression N=n/(1-T) where N is the corrected count; n is the raw recorded count; and T is the dead-time.

Filtering to Prepare for Background Corrections

The radar altimeter data are filtered in order to ensure that no noise sources from the altimeter data are introduced to the radiometric data processing. The upward looking data are also filtered to improve the count statistics. A typical filter width ranges from 10 to 20s. In order to establish radon background levels from the upward-looking detector data, temporary heavily filtered upward and downward looking uranium and downward looking thorium data are utilized. The original unfiltered data are, of course, retained. All filtering will be carried out in consultation with the Client Representative if requested by the Client.

Cosmic and Aircraft Background

Cosmic and aircraft background expressions are determined for each spectral window as described in chapter 4 of the IAEA Technical Report 323. The general form of these expressions is N = a + bC, where N is the combined cosmic and aircraft background for each window, a is the aircraft background in the window; C is the cosmic channel count; and b is the cosmic stripping factor for the window.

The expressions are evaluated for each ROI window for each sample and used as a subtractive correction for the data.

Radon Background

Correction of the data for variations in background due to radon is a multi-step process. First, test flights at various elevations over water are carried out in the field to establish the contribution of atmospheric radon to the ROI windows. A least squares analysis of the data from these test flights yields the constants for equations 4.9 to 4.12 (IAEA Report 323). Second, the response of the upward looking detector to radiation from the ground is established. Here a departure from the IAEA Report has been recommended by Grasty and Hovgaard (1996). The expression for the radon component in the downward looking uranium window is given by Ur = (u - a)U - aa2T + a2bT - bu)/(au - a1 - a2aT) (see Eq. 4.3 - IAEA 323) where, Ur is the radon background detected in the downward U window; u is the measured count in the upward uranium window; U is the measured count in the downward uranium window; T is the measured count in the downward thorium window; a1, a2, au and aT are proportionality factors; and bu and bT are constants determined experimentally. Using al or a2 (see above) in this equation will result in a good estimate of Ur permitting correction of the other ROI windows.

EAEROQUEST LIMITED

845 Main St. East, Unit #4 Milton, Onbario, Canada LPT 323

Survey altitude test data will be collected and used to establish atmospheric background and calibrate the upward and downward looking detector systems. Variations in count rates due to soil moisture content and altimeter variations can largely be overcome by a normalization procedure using the thorium count. The procedure correlates the thorium count to the uranium count assuming the contribution to each ROI from the ground is proportional.

Computation of Effective Height Above Ground Level

Radar altimeter data are used in adjusting the stripping ratios for altitude and to carry out the height attenuation corrections. They are then converted to effective height (he) at STP by the expression he = (h * 273.15)/(T + 273.15)*(P/1013), where h is the observed radar altitude; T is the temperature in degrees C; and P is the barometric pressure in mbars

Compton Stripping Correction

The stripping ratios α , β , γ , a, b and g are determined during tests over calibration pads. The principal ratios a, β and g should be adjusted for temperature, pressure and altitude (above ground) before stripping is carried out. These stripping ratios are used to remove the contribution in each of the three ROI windows from higher energy sources, leaving only the contribution from potassium, uranium and thorium.

Altitude Attenuation Correction

The altitude attenuation correction corrects the data in each of the ROI windows for the effects of altitude. The count rates decrease exponentially with altitude and therefore the counts are corrected to a constant altimeter datum at the nominal survey height of 30m.

Apparent Radioelement Concentrations

The corrected count rate data can be converted to estimate the ground concentrations of each of the three radioelements, potassium, uranium and thorium. The procedure assumes an infinite horizontal slab source geometry with a uniform radioelement concentration. The calculation assumes radioactive equilibrium in the U and Th decay series. Therefore the U and Th concentrations are assigned as equivalent concentrations using the nomenclature eU and eTh.

An estimate of the air absorbed dose rate can be made from the apparent concentrations, K%, eU ppm and eTh ppm.

Computation of Radioelement Ratios

Standard ratioing of the three radioelements (eU/eTh, eU/K and eTh/K) can be carried out and presented in profile or plan map form. In order to ensure statistical confidence in generating these ratios, we generally take the following precautions:

- Reject all data point where the apparent potassium concentration is less than 0.25% as these
 measurements are likely taken over water.
- Carry out cumulative summing along the survey line of each radioelement, rejecting areas where the summation does not exceed a certain threshold value (usually 100 counts for both numerator and denominator).
- Compute the ratios using the cumulative sums.

= AEROQUEST LIMITED

845 Main St. East, Unit #4 Million, Ontario, Canada L9T 323

10. RESULTS AND INTERPRETATION

The survey was successful in mapping the magnetic and radioelement response of the geology throughout the survey area. The potassium, thorium/potassium, magnetic total field and magnetic vertical gradient maps can be used to help identify potassic alteration and magnetite enrichment/depletion zones associated with copper-gold mineralization, and also help in mapping lithologies and structures. The following is a brief summary and interpretation of the results. For a detailed interpretation of the survey data please contact Aeroquest Limited.

10.1. Magnetic Response

The magnetic data provide a high resolution map of the distribution of the magnetic mineral content of the survey area. The sources for anomalous magnetic responses are thought to be predominantly magnetite because of the relative abundance and strength of response (high magnetic susceptibility) of magnetite over other magnetic minerals such as pyrrhotite. The presented data can be used to interpret the location of geological contacts and other structural features such as faults and zones of magnetic alteration.

The total magnetic intensity data in the North Block (Figure 8A) shows that the magnetic response ranges from lows of approximately 56192 nT to highs of over 65427 nT, with an average background of 57050 nT. The magnetic pattern of the survey block is generally very active and complex, with the western half being more active than the east. The dominate magnetic trends are north-northwest which are likely related to the 'Quesnel Trough' trend in the area. The relatively quiescent nature of the magnetic response in the eastern portion of the survey block suggests that the area is overlain by a thicker sequence of nonmagnetic sedimentary units. The highest amplitude response is observed along the south-western boundary of the survey block and trends north northwest. The anomaly is a continuous linear feature but narrows as it hooks to the north and nearly pinches out (near the northwest boundary) before widening again. The high amplitude and heterogeneity of the response suggests the underlying source rocks have high magnetic mineral concentrations due to alteration or intrusion.

The most interesting magnetic feature is a crescent shaped magnetic response (5 km diameter), situated in the north-central portion of the survey block (Figure 8A,B). The crescent opens to the northwest where a strong magnetic low trends northeast, crosscutting the magnetic fabric direction. The negative magnetic response suggests that the rocks here may be remanently magnetized, which is more common in areas where there has been rapid quenching of magma. This feature is of particular interest due to the associated potassium radioelement response discussed below.

Faulting can also be identified by patterns in the magnetic data and often appear as linear magnetic lows with short spatial-wavelengths in the vertical gradient maps (i.e. Figure 8B). Offsets in narrow, magnetic stratigraphic trends can also delineate structure and sharp contrasts in magnetic lithologies may indicate large displacements along strike-slip or thrust faults. The dominant faulting trends are north northwest however subtle faults can be interpreted trending: north, north-northeast and northeast.

The magnetic data in the south block shows a considerably smaller magnetic range than the north block (lows from 56024 nT to highs of 61458 nT), however the general magnetic trends are similar to that described above with the exception that there are east-west magnetic trends in the area. The most prominent feature in the south block is a discrete magnetic package (approximately 5 km wide) which strikes northwest-southeast across the survey block (Figure 8C). The vertical gradient data (Figure 8D) shows several actuate linear magnetic lows which likely identify a series of thrust faults. A few interpreted faults have been sketched on Figure 8D as an example. Several oblate magnetic highs occurs in the Southern block as well. The arrow on Figure 8D indicates an anomalous area with fairly discrete and non-linear anomalies which could possibly represent a zone of magnetic alteration.

Figure 8. - A. Total magnetic intensity map (North Block). B. Vertical Gradient map (North Block) showing enhancement of magnetic lineaments. Same products for the South Block are presented in C and D. A few interpreted faults are sketched on D.

Aeroquest Limited - Report on Helicopter-borne Gamma Ray Spectrometer and Magnetic-Gradiometer Survey 17

AEROQUEST LIMITED

845 Main St. East, Unit #4 Millon, Ontario, Canada L97 323

10.2. Radiometric response

The radiometric data indicate the apparent concentrations of potassium, uranium, and thorium in the rocks and soils at the surface. Because these elements are concentrated in the Earth's silicate crust, their concentrations tend to vary for different lithologic materials. The radiometric data therefore provide information on the lithologic characteristics and distribution of the overlying geologic materials. The depth of measurement is on the order of 30 cm and the circular area measured by the spectrometer has a diameter equal to approximately four times the altitude of the helicopter above the ground.

The potassium and thorium/potassium ratio maps were selected for presentation on the attached 1:20,000 maps in order to identify areas with possible potassic alteration associated with copper-gold mineralization. A Potassium ground concentration map of the North Block is presented below in Figure 9. Note that in Figure 9 the radiometric data is overlain on a shaded magnetic vertical gradient map in order to show association between magnetic and radiometric lineaments.

The most interesting radiometric response is observed in the north-northwest portion of the North survey block, where there is an elevated potassium response that appears to be bounded to the east and west by north northwest trending faults (See lineaments sketched on Figure 9). It is also of note that subtle

Figure 9. North Block - Potassium ground concentration grid overlain on vertical magnetic gradient grid (shading).

AEROQUEST LIMITED

Figure 10. South Block - Potassium ground concentration grid overlain on vertical magnetic gradient grid (shading).

Geoinformatics Exploration Inc

curvilinear potassium response (that correlate spatial with the magnetic response discussed above) are interpretable (Figure 9). The strongly magnetic geology of the western edge of the survey block (discussed above) is sharply defined by a lack of potassium radioelement response (Figure 9).

The most notable feature in the south survey block is an anomalous potassium radioelement response in the northwest portion of the survey block at 362550E/6139360N. Figure 10 show the potassium ground concentration (%) map with a linear stretched colour scale in order to highlight the amplitude of the response. Note that this anomalous response occurs on the edge of magnetic lineament interpreted as a fault, and could possibly represent a zone of potassic alteration along the contact. A similar but weaker potassium radioelement response is present to the north of this anomaly and is also situated on the edge of a magnetic lineament.

All of the magnetic and radioelement responses should be reviewed in conjuction with any available geological and geochemical information. Prioritization should be based on all available information.

Respectfully submitted,

Matt Pozza, M.Sc. Geophysicist Aeroquest Limited January, 2006

AEROQUEST LIMITED

n St Fast Unit #4 Million, Ontario, Canada, L9T 3

APPENDIX 1 – SURVEY BLOCK CORNER COORDINATES

The approximate outline of the data collected for this project is defined in the following table. Positions are in WGS84 / UTM zone 10N.

NORTH BLOCK

EX.

> Easting (m) Northing (m) 346471.1 6176276.9 351805.1 6178766.1 356516.8 6178855.0 356339.0 6180188.6 362473.2 6181788.8 366384.8 6181788.8 369585.2 6179210.6 369674.1 6177432.6 370296.4 6177432.6 371286.8 6178913.6 371324.8 6180641.3 374324.8 6180641.3 373674.7 6155652.0 353049.7 6155474.2 352783.0 6158585.7 350827.2 6158674.6 350649.4 6162052.8 350027.1 6162497.3 349791.6 6164545.4 348604.7 6164630.9 346648.9 6169076.0 SOUTH BLOCK Easting (m) Northing (m)

356805.2	6145693.2
357093.6	6145765.3
378285.7	6145621.2
378285.7	6140791.7
373384.1	6140791.7
372807.5	6119022.8
361130.2	6118950.8
360841.8	6125798.6
364015.4	6125799.1
364084.5	6128825.0
360769.7	6128826.0
360986.0	6139277.9

WAEROQUEST LIMITED

845 Main St. East, Unit #4 Milton, Ontario, Canada L9T 3Z3

APPENDIX 2 - DESCRIPTION OF DATABASE FIELDS

Due to the greatly different sample rates of the magnetic and radiometric data in the survey (20Hz vs. 1Hz) they are presented as separate databases for efficiency. In the database, the Survey lines and Tie Lines are prefixed with an "L" for "Line" and "T" for "Tie".

Database (05037_Mag_final.gdb):

Column	Units	Description
Fid		Geosoft fiducial
Line		Survey Line #
Flight		Helicopter Flight #
utctime	hh:mm:ss.s	UTC time
Distance	m	Distance from start of survey line
Х	m	UTM Easting (NAD83)
Y	m	UTM Northing (NAD83)
rait	m	radar altitude of aircraft
MagTf	nT	Top sensor magnetic field reading
MagLf	nT	Left sensor, magnetic field reading
MagRf	nT	Right sensor, magnetic field reading
Mag_HG	nT/m	Horizontal magnetic gradient
Mag_VG	nT/m	Vertical magnetic gradient

Database (05037 Spec final.gdb):

Column	Units	Description
Fid		Geosoft fiducial
Line		Survey Line #
Flight		Helicopter Flight #
utctime	hh:mm:ss.s	UTC time
Distance	m	Distance from start of survey line
Х	m	UTM Easting (NAD83)
Y	m	UTM Northing (NAD83)
ralt	m	radar altitude of aircraft
Balt	m	Barometric altitude of the aircraft
Galt_m	m	GPS altitude of the aircraft
dtm	m	digital terrain model
BaroT_deg	°C	Barometric air temperature
TC	µR/hr	AGRS Total Count
eTh	ppm	equivalent Thorium
eU	ppm	equivalent Uranium
κ	%	Potassium ground concentration
eTh_K_ratio		Ratio of eTh to K
eU_K_ratio		Ratio of eU to K
eU_eTh_ratio		Ratio of eU to eTh

EAEROQUEST LIMITED

845 Main St. East, Unit #4 Milton, Ontario, Canada L9T 3Z3

a....

APPENDIX 3 – MINING TENURE INFORMATION

Tenure_Number	Claim_Name	Owner	Area (Ha)
5011 12	HS001	Redton Resources Inc.	456.824
501115	cs001	Redton Resources Inc.	456.826
501139	HS002	Redton Resources Inc.	456.82
501164	HS003	Redton Resources Inc.	456.816
501177	cs001	Redton Resources Inc.	456.826
501178	HS004	Redton Resources Inc.	456.813
501206	HS005	Redton Resources Inc.	456.806
501211	cs003	Redton Resources Inc.	456.823
501230	HS006	Redton Resources Inc.	456.803
501239	cs004	Redton Resources Inc.	456.821
501270	cs005	Redton Resources Inc.	456.821
501320	HS007	Redton Resources Inc.	456.585
501324	cs006	Redton Resources Inc.	456.587
501353	HS008	Redton Resources Inc.	456.579
501354	cs007	Redton Resources Inc.	456.586
501374	cs008	Redton Resources Inc.	456.582
501378	HS009	Redton Resources Inc.	456.576
501406	cs009	Redton Resources Inc.	456.58
501409	HS010	Redton Resources Inc.	456.572
501421	cs010	Redton Resources Inc.	456.577
501439	HS011	Redton Resources Inc.	456.564
501447	cs011	Redton Resources Inc.	456.573
501470	HS012	Redton Resources Inc.	456.561
501491	cs012	Redton Resources Inc.	420.038
501498	HS013	Redton Resources Inc.	456.346
501512	cs013	Redton Resources Inc.	456.348
501529	HS014	Redton Resources Inc.	456.339
501547	cs014	Redton Resources Inc.	419.887
501571	HS015	Redton Resources Inc.	456.336
501582	cs015	Redton Resources Inc.	456.314
501606	cs016	Redton Resources Inc.	438.052
501609	HS016	Redton Resources Inc.	456.331
501638	HS017	Redton Resources Inc.	456.323
501641	cs017	Redton Resources Inc.	438.048
501672	HS018	Redton Resources Inc.	456.32
501675	cs018	Redton Resources Inc.	437.824
501690	HS019	Redton Resources Inc.	456.101
501691	cs019	Redton Resources Inc.	437.818
501705	HS020	Redton Resources Inc.	456.092
501715	cs020	Redton Resources Inc.	456.105
501/1/	HS021	Redton Resources Inc.	456.09
501735	cs021	Redton Resources Inc.	455.861
501736	HS022	Redton Resources Inc.	456.085
501747	HS023	Redton Resources Inc.	456.075
501748	cs022	Redton Resources Inc.	455.962
501759	csu23	Region Resources Inc.	455.86
501760	HS024	Region Resources Inc.	456.07
501777	cs024	Redton Resources Inc.	455.859
501788	HS025	Redton Resources Inc.	455.857

Aeroquest Limited - Report on Helicopter-borne Gamma Ray Spectrometer and Magnetic-Gradiometer Survey

22

<u>= AEROQUEST LIMITED</u>

- -----

845 Main St. East, Unit #4 Milton, Ontario, Canada L9T 3Z3

-

- -

501790	cs025	Redton Resources Inc.	455.857
501804	cs026	Redton Resources Inc.	455.852
501808	HS026	Redton Resources Inc.	455.851
501814	cs027	Redton Resources Inc.	455.846
501825	HS027	Redton Resources Inc.	455.848
501833	28	Redton Resources Inc.	455.619
501838	HS028	Redton Resources Inc.	455.843
501851	cs029	Redton Resources Inc.	455.62
501859	HS029	Redton Resources Inc.	455.83
501867	cs030	Redton Resources Inc.	455,618
501869	HS030	Redton Resources Inc.	455.826
501883	cs031	Redton Resources Inc.	455.617
501890	HS031	Redton Resources Inc.	455.614
501896	cs032	Redton Resources Inc.	455.616
501902	HS032	Redton Resources Inc.	455.61
501912	HS033	Redton Resources Inc.	455.608
501919	CS033	Redton Resources Inc.	455.375
501933	HS034	Redton Resources Inc.	455.603
501935	CS034	Redton Resources Inc.	455.378
501946	HS035	Redton Resources Inc.	455.587
501957		Redton Resources Inc.	455.377
501960	HS036	Redton Resources Inc.	455.582
501982	HS037	Redton Resources Inc.	455.371
501991	HS038	Redton Resources Inc.	455.369
502001	HS039	Redton Resources Inc.	455.368
502011	CS036	Redton Resources Inc.	455.483
502040	CS037	Redton Resources Inc.	455.196
502041	HS040	Redton Resources Inc.	437.151
502055	HS041	Redton Resources Inc.	455.389
502057	CS038	Redton Resources Inc.	455.601
502064	HS042	Redton Resources Inc.	455.241
502078	HS043	Redton Resources Inc.	436.953
502080	CS039	Redton Resources Inc.	455.639
502093	HS044	Redton Resources Inc.	455.17
502094	CS040	Redton Resources Inc.	437.589
502107	CS041	Redton Resources Inc.	456.056
502109	HS045	Redton Resources Inc.	455.762
502121	HS046	Redton Resources Inc.	456.376
502124	CS042	Redton Resources Inc.	456.317
502140	HS047	Redton Resources Inc.	456.982
502142	CS043	Redton Resources Inc.	456.763
502151	HS048	Regton Resources Inc.	457.585
502158	H5049	Regton Resources Inc.	457.069
502159	CS044	Redton Resources Inc.	456.972
502172	HSU50	Region Resources Inc.	457.066
502179	65045	Region Resources Inc.	457.474
502184	H5051	Region Resources Inc.	457.062
502202	H5032	Region Resources Inc.	457.057
002200		Region Resources Inc.	439.299
002210 602222	110000 LIQAEA	Region Resources Inc.	437.05
	110004	Region Resources Inc.	457.045
502230	HEASE	Region Resources Inc.	401.334
502240	10000 10057	Redton Resources Inc.	407.001
JUKKUK	H000/		407.020

= AEROQUEST LIMITED

845 Main St. East, Unit #4 Milton, Ontario, Canada L9T 323

5

i

i

502260	CS047	Redton Resources	Inc. 457.865
502265	HS058	Redton Resources	Inc. 457.314
502271	HS059	Redton Resources	Inc. 457.302
502277	HS060	Redton Resources	Inc. 457.291
502281	cs048	Redton Resources	Inc. 457.07
502284	HS061	Redton Resources	Inc. 457.573
502300	cs049	Redton Resources	Inc. 457.07
502303	HS068	Redton Resources	Inc. 457.8
502308	cs050	Redton Resources	Inc. 457.572
502309	HS066	Redton Resources	Inc. 457.533
502315	cs051	Redton Resources	Inc. 457.589
502316	HS065	Redton Resources	Inc. 457.544
502329	HS064	Redton Resources	Inc. 439.231
502331	cs053	Redton Resources	Inc. 457.813
502342	HS063	Redton Resources	Inc. 219.711
502346	HS069	Redton Resources	Inc. 366.209
502354	HS070	Redton Resources	Inc. 366.2
502379	cs060	Redton Resources	Inc. 457.069
502384	cs061	Redton Resources	inc. 457.066
502389	cs062	Redton Resources	Inc. 457.068
502390	cs063	Redton Resources	Inc. 457.331
502393	cs064	Redton Resources	Inc. 457.329
502397	cs06 5	Redton Resources	Inc. 457.327
502402	cs066	Redton Resources	Inc. 457.323
502404	cs067	Redton Resources	Inc. 457.325
502412	cs068	Redton Resources	Inc. 457.571
502416	cs069	Redton Resources	Inc. 457.569
502419	cs070	Redton Resources	Inc. 457.567
502423	cs071	Redton Resources	Inc. 457.811
502426	cs072	Redton Resources	Inc. 457.809
502431	cs073	Redton Resources	Inc. 457.807
502463	cs082	Redton Resources	Inc. 458.69
502469	cs083	Redton Resources	Inc. 458.928
502480	HS085	Redton Resources	Inc. 440.391
502497	CS086	Redton Resources	Inc. 458.885
502523	HS094	Redton Resources	Inc. 440.537
502524	CS091	Redton Resources	Inc. 458.762
502528	HS095	Redton Resources	Inc. 440.576
502532	CS092	Redton Resources	Inc. 348.631
502536	HS097	Redton Resources	Inc. 459.112
502538	CS093	Redton Resources	Inc. 458.983
502539	HS098	Redton Resources	Inc. 459.136
502544	CS094	Redton Resources	Inc. 458.989
502549	CS095	Redton Resources	Inc. 459.119
502558	CS096	Redton Resources	Inc. 459.218
502562	CS097	Redton Resources	Inc. 459.222
502569	HS104	Redton Resources	Inc. 440.488
502574	HS105	Redton Resources	Inc. 458.884
502578	HS106	Redton Resources	Inc. 440.709
502581	HS107	Redton Resources	Inc. 459.072
502582	CS100	Redton Resources	Inc. 458.725
502585	HS108	Redton Resources	Inc. 459.104
502593	HS109	Redton Resources	Inc. 440.658
502605	CS101	Redton Resources	Inc. 459.194

EAEROQUEST LIMITED

....

- -

.....

845 Main St. East, Unit #4 Milton, Ontario, Canada LBT 323

(_

ı

~

502607	HS110	Redton Resources Inc.	459.649
502610	CS102	Redton Resources Inc.	459.43
502612	HS111	Redton Resources Inc.	459.652
502613	CS103	Redton Resources Inc.	441.06
502614	HS112	Redton Resources Inc.	459.656
502615	HS113	Redton Resources Inc.	459.664
502617	CS104	Redton Resources Inc.	441.066
502618	HS114	Redton Resources Inc.	459.672
502619	HS115	Redton Resources Inc.	459.68
502620	CS105	Redton Resources Inc.	441.076
502622	HS116	Redton Resources Inc.	459.895
502625	HS117	Redton Resources Inc.	459.897
502626	CS106	Redton Resources Inc.	293.921
502628	HS118	Redton Resources Inc.	459.901
502629	HS119	Redton Resources Inc.	459.908
502630	CS107	Redton Resources Inc.	441.084
502633	HS120	Redton Resources Inc.	459.915
502634	HS121	Redton Resources Inc.	459.921
502636	CS108	Redton Resources Inc.	440.914
502637	HS122	Redton Resources Inc.	460.158
502639	HS123	Redton Resources Inc.	460.157
502640	CS109	Redton Resources Inc.	275.577
502641	HS124	Redton Resources Inc.	460.157
502644	HS125	Redton Resources Inc.	460.161
502652	CS110	Redton Resources Inc.	460.644
502653	CS111	Redton Resources Inc.	460.642
502654	HS126	Redton Resources Inc.	460.164
502655	CS112	Redton Resources Inc.	460.639
502656	HS127	Redton Resources Inc.	460.166
502657	CS113	Redton Resources Inc.	460.637
502658	HS128	Redton Resources Inc.	405.139
502659	CS114	Redton Resources Inc.	460.883
502661	HS129	Redton Resources Inc.	460.396
502662	CS115	Redton Resources Inc.	460.881
502663	HS130	Regton Resources Inc.	460.397
502665	CS116	Regton Resources Inc.	460.879
502666	HS131	Regton Resources Inc.	460.4
502668	110400	Region Resources Inc.	460.876
502669	HS132	Region Resources Inc.	460.403
502670	US118	Region Resources Inc.	461.121
502071	00133	Redion Resources Inc.	400.400
502073	CS119 CS120	Region Resources Inc.	401.100
502017	CS120	Redion Resources Inc.	442.000
502079	LG121	Redion Resources Inc.	401.30
502000	CS104	Redton Resources Inc.	442.040
502002	HS125	Redton Resources Inc.	401.309
502004	CS123	Redton Resources Inc.	461 370
502688	CS123	Redton Resources Inc.	401.378
502690	CS125	Redton Resources Inc.	461 121
502691	CS126	Redton Resources Inc.	461 279
502695	CS127	Redton Resources Inc.	474 435
502696	CS128	Redton Resources Inc.	461 449
504417	Ext01	Redton Resources Inc.	459.534

EAEROQUEST LIMITED

845 Main St. East, Unit #4 Milton, Ontario, Canada L9T 323

<u>___</u>

.

504420	Ext02	Redton Resources Inc.	459.95
504423	Ext03	Redton Resources Inc.	55.38

TAKLA - REDTON PROJECT 2005 ASSESSMENT REPORT

D

0

1

0

0

0

0

Appendix 6

Redton Project Geochemistry Database Extract

TAKLA - REDTON PROJECT

0

0

.[

0

[

0

0

2005 ASSESSMENT REPORT

Appendix 7

IO Geochemistry

Redton Geochemical Summary

Redton Geochemical Summary

Mike Whitbread

Data Quality/Cleanup/QC

- Utilising Redton compilation sent by GEX on the 15th December 2005
- Dataset consists of a variety of sample types and sample sources
- New categorising variables created that allow separation of Rock/Gridded Soils/'Regional' samples
- Regional samples can be further subdivided into Moss, SSED, Contour-Source, Miscellaneous Soils (spots or limited lines)

DL replacement/ Data issues

e e v s s s s

- Au for till samples in report GSC_3273 (63micron) updated as it was found to be a duplicate of the As column (later found till data to need re-generating)
- Some negatives present, will be replaced my positive half of the absolute value e.g. '-2' replaced by 1
- Exceptions to this are large negatives e.g., Ta -15 for 0.5, Hg -1 to 0.05, Pb -20000 to 1, Ag -5 to 0.25, Au -5000 to 2.5
- Au has some special issues, some obvious unit problems e.g. values of 145000 ppb ARIS 20338 is the report with all these unusual values. I suspect 1000 times out due to ppb being converted as though it was ppm. A check of mineral occurrences shows no mine or major Au showing at the location of these samples, so the values have been divided by 1000
- Au in report ARIS 26451 for the contour samples was 1000 times too high. This has been corrected
- Sample K_01 AI ppm value changed from 100 to 10000
- Update, 12th Jan: A few 'lines' Pb values in ARIS 21866 look to have a 10000 conversion error. These have been corrected
- Ag data for Lorne contour samples Sample IDs 77359 to 77376, ppb/ppm mixup corrected.
- Update 17th Jan: All till data replaced due to numerous column swaps (DL replacements normal, barring Ta -3 for 0.5)
- Update 18th Mn data in Till data multiplied by 10000 to fix percent ppm error

'Zero' Problems

- Data has a large number of zeros, most of which are likely nulls, but at least some appear to be detection limit values which have been represented by zeros – these can be identified as zeros present in an otherwise continuous column of data for spatially coherent samples (ie obviously part of same survey)
- ROCK samples have very variable element suites, so impossible to pick out whether nulls or not in a reasonable timeframe.. Therefore all zeros assumed to be nulls
- GRID samples Report ARIS_20897 zeros look to be blanks for Pb, Zn (contiguous lack of data) Cu zeros are likely nulls too as they are in samples with only Au; ARIS_12149 is similar (a few Ag only samples in it).. Some sporadic zeros but not enough for cause concern for image/theme generation given time constraints
 - Au missing in report 22192 in regular 14-16 sample blocks replaced with 0.5 (1 smallest in that report for Au), 7432 (replaced with 10),
 - Report ARIS_20338 has units problems in Au as well as gaps which look to be DLs for Au. ARIS_24871 also has DL gold judging by spotty gaps for 1 report value (replaced with 0.5).
 - As and Mo zeros for GRID samples look to be on report/grid scale and not DLs.

'Zero' Problems cont.

- No gold for 2 micron Till, some Cu etc zeros, but could be nulls as seem to have suites of elements absent when Cu absent, also negatives are present when there are zeros in the more relevant elements e.g. Pb, Zn, Cu, Au, As. Could be previous DLs replaced just for these elements, but not worth the effort of trying to work it out... BUT till has two samples on each point (2 and 63 micron) too which makes missing elements less of a problem, although still not ideal..
- Regional SSED have large numbers of Cu-Au only samples with the rest of the elements having zeros. While a few sets of samples are probably DLs, most are plausible nulls (esp in terms of spatial cluster)
- Regional data (NGR_GE04) has only a few zero values in key elements e.g. Au and these look like they are nulls
- SSED moss zeros are plausible nulls
- SOILS misc zeros are plausible nulls
- Contour data zeros are plausible nulls
- Only zeros that are readily identified and replaced as DL values are in the GRID samples, and that is only in Au.
- The remainder of the zeros in the data have been made nulls!

Categorised Variables cont.

 For example, in the plots below, rock samples dominate the extreme values (note the data displayed here is not the final cleaned data) and that the regional datasets have a slightly higher 3rd quartile than the grid values

Grid Samples

Summarles No Selector

Variable	Count	Mean	Median	StdDev	Min	Max	IntQRange							
AG_PPM	13743	0.349178	8.25	8.425895	0.01	13.1	Ø.3							
AL_PPM	8944	20090.8	19208	7858.57	888	100000	9099							
AS_PPM	1 1005	11.4909	5	38.2589	8.2	1445	7							
AU_PPB	14285	27.7159	5	193.712	8.5	15000	16,5							
B_PPM	8421	3.4085	3	2.32483	1	29	2							
BA_PPM	8944	127.335	78	162.615	8.58	2216	59							
BI_PPM	9480	2.25955	2	1.27479	0.2	23	8							
CA_PPM	9131	4389.58	3298	4389.49	200	123480	3700							
CO_PPM	12400	13.725	12	8.55791	0.5	399	9.5							
CR_PPM	8944	43, 175	36	32.5577	t	336	25							
CU_PPM	14282	79.3342	45	215.215	0.5	19998	53							
F_PPM	302	272.732	255	105.66	70	748	128							
FE_PPM	11588	42505.6	4 1988	14281.5	1300	199108	17000							
HG_PPM	536	8.8415978	9.63	0.0265818	8,83	8.22	8.0 t							
K_PPN	8421	898.733	500	1192.94	180	58888	500							
LA_PPM	8944	7.48195	6	59.4921	2	5610	4							
MG_PPM	8944	8950.47	7888	5728.81	366	71500	7688							
MN_PPM	11687	739.499	484	1183.82	25	79981	527							
MO_PPM	12569	2.40196	1	8.18485	0.2	659	1							
NA_PPM	8944	159.319	100	112.825	50	2999	100							
NI_PPM	12587	18.6572	16	14.2282	1	556	11							
P_PPN	8944	1171.84	1878	670.027	70	6658	886							
PB_PPM	12756	858.463	8	7398.14	0.5	148888	7							
SB_PPM	9460	2.18541	2	1.26798	8.2	57	8							
SE_PPM	536	8.418657	8.2	8.678296	0.2	6.9	0							
SN_PPM	523	18.0191	10	0.437269	10	28	8							
SR_PPM	8944	44.8192	32	43.9585	3	629	33							
TE_PPM	536	8.35597	6.2	0.252171	0.2	2.6	0.3							
TH_PPM	8421	1.4 1355	1	0.885624	1	28	t							
TI_PPM	8944	912.852	888	2669.36	59	198888	1999							
U_PPM	9388	5.22372	5	3.57988	8.25	139	8							
V_PPM	8944	95.7754	94	39.9296	5	1221	59							
W_PPM	9833	1.38911	1	1.29359	Ø.2	43	9							
Y_PPM	523	2.11377	0.5	8.82411	8.5	179	9							
ZN_PPM	13926	85.8639	73	76.1789	1	2644	45							

File trimmed to non-null variables

Variable	Count	Mean	Median	StdDev	Min	Max	IntQR
AG_PPM	13743	0.349179	ð.25	8.425895	0.81	13. 1	£
AL_PPH	8944	20060.8	19209	7058.57	998	199999	9996
AS_PPH	11965	11.4989		38.2589	9.2	1445	
RU_PF8	14280	27.7109	3	193.712	1	30001	11
8 <u>4</u> PPM	8044	3.44000	79	162 515		23	
BE_PPH	2				00	-00	
BI_PPH	9488	2.25955	2	1.27479	8.2	23	;
BR_PPM	0	•	•	•	00	-00	i
CA_PPM	9131	4389.58	3209	4309.49	298	123499	379(
CE_PPM	8	•	•	•	**	-00	•
CO_PPM	12408	13.725	12	8.55791	8.5	399	ŧ
CR_PPM	8944	43.175	35	32.5577	1	336	21
CS_PPM	9	-		• • • • • • • •	00	-00	-
CU_FFH	14262	(9.3342	43	215.215	18.J 100	-00	э.
E PPM	392	277 732	255	185 55	78	748	12:
FE_PPM	11588	42505.5	4 1988	14281.5	1368	199108	1708
GA_PPM	0	•	•		00	-00	1
HF_PPM	8	•		•	00	-00	t
HG_PPH	536	0.8416978	8.63	0.0255018	8.83	8.22	£
IR_PPB	8	•	•	•	00	-00	"
K_PPM	8421	898.733	628	1192.94	199	50000	50
LA_PPM	8944	7.40195	5	59.4921	2	56 18	'
LI_PPM	8	•	•	•	00	-00	t
LU_PPM	8	0050 43			340	-00	
MN DDM	11507	220.409	494	1122.02	25	70001	50
MO_PPM	2550	2 49 195	101	8.18485	0.2	559	~4
N8_PPM	8944	159.319	103	112.825	50	2008	19(
NB_PPM	8	•		•	60	-00	1
ND_PPM	8	٠	•	•	60	-00	1
NI_PPH	12567	18.6572	16	14.2282	1	556	1
P_PPM	8944	1171.04	1970	678.827	79	6650	88
PB_PPM	12756	858.463	8	7390.14	0.5	140000	•
PD_PPB	8	•			89	-00	4
PI_PPB	8	•		•	00	-00	
S PC	А				00	-00	· ·
SB PPM	GARA	2, 1854 1	2	1.26798	8.2	57	4
SC_PPM	8	•	-	•	00	-00	, i
SE_PPH	536	8.419657	0.2	8.679296	8.2	8.9	1
SM_PPN	8	•	•	•	~	-00	
SN_PPN	523	18.8191	10	8.437269	18	29	ŧ
SR_PPH	8944	44.8192	32	43.9585	3	529	3:
TA_PPM	8	•	•	•	00	-00	1
TE_PPM	8	* • • • • • • • • •	•		00	-00	;
TH DOM	0.00	8.00097	1.Z	0.432123	1	2.0	1
	8944	912 852	889	2650.36	58	196966	1896
U_PPM	9386	5.22372	5	3.57988	9.25	139	1
V_PPM	8944	95.7754	94	39.9296	5	1221	51
W_PPH	9633	1.38911	1	1.29359	8.2	43	4
Y_PPH	523	2.11377	8.5	8.82411	8.5	178	ł
YB_PPM	0	•	•	•	00	-00	ŧ
ZN_PPM	13926	\$5.8839	73	76.1799	1	2644	4!
ZR_PPM	8	•			co	-00	۱
SIOZ_PC			•		~	-00	
61202 PC	2		-			-00	:
CR203.PC	â				00	-00	, t
FE203_PC	e	٠	•	•	00	-00	t
FEO_PC	8			•	00	-00	•
HNO_PC	8	•	٠	•	\$ \$	-00	1
M60_PC	8	•	٠	*	00	-00	4
CAO_PC	8	•	٠	•	\$0	-00	1
NAZO_PC	8	٠	•	•	00	-00	•
KZQ_PC	8	•	•		00 ~~	-00	1
P205_PC	8		•	-	00 ~~	-90	1 -
COT PC	¥ م		-		00 02	-00	
803_PC	2		-	•	~~ 00	-20	
LOLPC	8	•			00	-00	
TOTAL_PC	14394	8		8	8	8	ŧ

· · · ·

Summaries No Selector ų

Spatial Coverage of 'Pathfinder' Elements for Grid Samples

Hg, Se, Sn, Te have limited coverage, while Bi, Sb, W have DL issues

Distribution of pathfinder elements commonly better described by log-normal

Shown below are the normal probability plots

Log-normal probability plots, better describe many of the elements, although Detection Limit issues plague a few (W, Bi, Ag, As, Au, Se) The upper Pb population looks suspect....

Pb data problem

 These Pb values have been corrected assuming a 10000 conversion error, and the various subsets and data sets corrected, and the Pb image and levelling re-run

Grid Images

8-1-35 for images (search, smooth, cell size)
Rock Samples

- Some extraordinary values in pathfinders for some of the rocks (see next slide), will need to be checked against known occurrences – no easy to way to validate them at this time
- Using a 'If, then, else' approach to colouring the upper abundance rock samples, a thematic has been created

Log normal probability plots for various pathfinder elements, The thematic is applied as Au anomalous samples coloured first, Then any anomalous Cu not Au anomalous colour, then U, then Pb etc

As>0.2pct

Mo>200pr

Hg>1ppm

Default Size
 Anomalous

Sizes

It's not an RGB type combined colour scheme.

Spatial Distribution of Anomalous Rock Samples (If/then/else colour scheme)

Shapes

Default Shape
Colours
 Default Colour
Au >1ppm
 Ou>0.2pct
 Pb>0.5pct
 2n>0.5pct

As>0.2pct Ag>10ppm Mo>200ppm Hg>1ppm U>10ppm W>15ppm

Not a huge amount of correlation for the anomalous samples

Rock Samples

- Also calculated and themed (using percentiles) Ag/Au
- Requested by GEX because, ideally, if the ratio is ~1 or ~2, then the rock is more likely to come from the centre of a porphyry system, whereas greater ratios indicate more distal positions
- Remember DL samples will still have ratios like 60, (150/2.5 = 60) or 40 (1/2.5)
- Ratio only calculated for existing pairs. Nulls are ignored
- Needs to be used in context!

Rock K/Al Ratio

- High K/AI can reflect potassic alteration (commonly associated with the core of Cu-Au porphyry systems)
- · No ratios higher than 1, which is that contained within K-feldspar and some biotites
- Ratio of 0.33 is muscovite (if the only K and Al bearing mineral present)
- Many null samples

Rock Samples – Percentile Thematics and RGBs

- Simple percentile thematics have been produced in ioGAS and imported into Mapinfo
- These are not modelled on any population analysis
- Default colour indicates a null sample
- RGBs for CuMoAs, CuMoAu and AsMoAu have been created, at the 95th Percentile
- Legends accompany each table (useful for interpreting RGB symbols)

Regional Samples

Coverage and quality varies across the element suite of interest

£ 8,125,000

4 100 000

250,000 300,000

350.000 400.0 SVS_EAST

400.000 470.000 500.000

Some interesting trends e..g in the Hg, U, and Sb.. Look a little suspicous (redone later with new till data)

No 'crazy' individual highs in the regional data... except perhaps for the Ag values, which all belong to one source (see next slide) Some upper populations are quite distinct e.g. Sb

Streamsed Till Sizes •Default Size

I suggest a ppb in ppm column mixup

Some upper populations are quite distinct e.g. Sb

Ag in LORNE Contour Samples

and has been edited to correct the problem (ppb in ppm)

Sb highs do not belong to any particular group or spatial cluster. Probably real!

Regional Data - Updated Till Data Included..

•Some of the AI data appears to be former DL replacements e.g. 100 ppm values in amongst data with a minimum of 9900

•So high K/AI values should be checked before followup, particularly anything above a value of 1

•Mn values for Till seem implausible ie all <1, probably percent ppm mixup, all till Mn multiplied by 10000.

• Examples on the previous page of some problems

Default Shape Regional Data – Updated Till Contour Soils

Streamsed Till Sizes **Default Size**

NGR_GEC04 SOIL MISC SSED MOSS

Shapes

Colours

Till definitely looking different to other data in some elements (flick between this and the next slide to get a feel of the control) - levelling required if the data is to be looked at in one group

5,100,000 250,000 300,000 350,000 400,000 450,000 500,000 SYS_EAST

253,000 300,000 350,000 400,000 453,000 500,000

SYS_EAST

U PPM

×, 6, 150,000

₹ 6,125,000

6,100.000

\$,200,000

E 8,175.000

2, 6, 150,000

£ 0.125.000

250.000 300.000 350.000 400.000 450.000 500.000 SYS EAST

250.000 300.000 350.000 400.000 450.000 500.000

SYS_EAST

W PPM

2 6.125,000

6.100.000

200,000

E 6. 175,000

£, 6, 150,000

\$ 6,125,000

6 100 000

6,200,000 E 0. 175,000

Z.6.150.000

E 0.125.000

6.100.000

2 6,125,000

6,100.000

250,000 300,000 350,000 400,000 450,000 500,000 SYS_EAST ZN_PPM

\$ 8,125,000 6,100,000 250,000 300,000 350,000 400,000 450,000 504 SYS_EAST

250.000 300.000 350.000 400.000 450.000 500.000

SYS EAST

Regional Data

 In fact, some of the subgroups are very different anyway..

10

So unless we want to ... split every data type in the 'regional' data and look at it separately...

Perhaps it is better to do a Log Z-score level of each source (including the various Contour sources) and then plot the levelled data

Regional Samples

- The distributions below show why the contour sample sources, need to be considered when levelling, as they have different data distributions... however these variations could be due to spatial differences and therefore may contain the information we are looking for!
- Possible problems with Z-Score levelling using the contour subgroups are downplay of large anomalies and enhancements of variation in some data sets which probably don't contain 'true' anomalism
- If nervous, use hard cutoffs for each sample type and look at those samples (might do that for Au, As, Cu, Mo, Zn)

Regional Samples - Levelling

- BUT, the sample type column can be used to level the data too, with less chance of local effects being exacerbated e.g. contour soils belonging to different areas will all be in the one code
- So it is similar to the regional subset codes e.g. splitting regional BC data from stream sediment collected by a different source
- Therefore, will level to sample type using Log Z-score, and Percentile
- 'Hard' cut-offs are still recommended to compare to the levelled data, to ensure no real anomalies have been removed.. However time constraints make this impossible. Thus percentile levels are available, for each group to ensure that top ranked samples from each group show up.
- 20 LZS (Log Z-score) levelled variables have had percentile thematics produced
- Only a small selection of the PL (percentile levelled) variables have been themed into Mapinfo from gas
- Be wary of the Sb data for Tills!! Looks a bit high...

Regional Sample RGBs – Carried out on Log Z-score Levelled (to Sample Type: LZSL-ST) Variables

- RGBs created for CuMoAs, CuMoAu, AsMoAu at the 95th Percentile
- Mo is the limiting element in most cases
- Legends accompany each table (useful for interpreting RGB symbols)

Interpretation Suggestions

- Use individual elements first, and highlight local 'coherent' anomalies. I use 'local' because the strength of the anomalism within the bulk data may not be in the highest percentiles
- The regional subset seems quite effective at showing consistent coherent anomalies, probably because much of it is stream sediments giving nice dispersion trains down drainage (no attempt has been made here to indicate follow-up directions etc etc).
- With any luck, grid-soil, regional and rock samples will consistently indicate spatially coherent univariate anomalies
- Create polygons for these coherent univariate anomalies e.g. Cu, Mo, As in the example (this takes forever! But you must be rigorous). Record notes on element anomaly strength, size, rank etc.
- It helps to look at non-nugget elements for this, and overlay nuggety elements later
- The grid images are useful for delineating polygons where coverage exists, otherwise use the combination of data sources e.g. have 3 percentile layer thematics open
- Superimpose 'core' indicators such as percentiles of K/AI, Ag/Au, Au on top of these and look for central areas of porphyry systems
- Also use RGB coverage (where it is available) to confirm coincident anomalism.. Unfortunately, it's coverage is quite restrictive in most of the subsets
- NOTE: the example interpretative layers supplied for Cu, Mo, As were produced in a couple of hours... not very rigorous, more to give an indication of how anomalies can be generated and the various layers of information incorporated

Green = Cu, Blue = Mo, Teal = As, theme is K/Al for rock, grid and regional subsets

Green = Cu, Blue = Mo, Teal = As, theme is Ag/Au (inverted colours) for rocks

Green = Cu, Blue = Mo, Teal = As, theme is Au for rocks, grid-soils and regional subsets

Green = Cu, Blue = Mo, Teal = As, theme GRID CuMoAs RGB

Catchment Generation/Analysis

 Drainage Lines generated using topo grid supplied by GEX

- SSEDs separated from the regional subset
- Of these, many are detailed SSED sampled at close spacing in distinct areas of the area – looking at follow up or definitely chasing a local source
- So the 'detailed' SSED samples have been split from the regional SSEDs, only the regional SSEDs are considered in this part of the project (this could be done using a code in one of the metadata columns, so regional samples in areas with detailed coverage can still be extracted)
- Moss samples have been excluded

Catchment Generation/Analysis

- The regional stream sediment (SSED) subset has been removed from the rest of the regional dataset and used to generate catchments for each sample
- Note, that samples which did not lie on a recognisable drainage line were ignored (there were about 30 or so of these, out of ~1000 samples)
- Due to time constraints, a full catchment analysis, including calculation of abundances taking into account catchment size and anomaly strength, was not carried out
- Instead, only samples with catchment areas of 20 square km have been selected and then a thematic applied (815 samples out of 993)
- Note that anomalies in catchments which are much larger are probably sourcing something local, and should definitely be followed up...
- The 20sqkm thematic subset is meant to provide a rapid assessment of element abundances in those samples which should source similar area sizes
- It can also demonstrate whether any areas have not been sampled with a low enough order sample
- Some samples that were excluded sample half of the map area!

ʻ.

	1											
1	1-01		(11)		-	13		No. of		(and	1000	 0

Catchments generated for regional SSED samples

20sqkm subset of regional SSED data (shown as polygon catchments – with initial data overlain)

Catchment Analysis

- Remember that the catchments can overlap
- It is possible to select those polygons with percentiles above a certain level if you wish to focus on paticular values
- Some published equations exist that allow modified abundances to be calculated based on catchment area and anticipated anomaly source size and values
- Delivered as a workspace with thematics, and as individual layers hard coloured
TAKLA - REDTON PROJECT

Π

2005 ASSESSMENT REPORT

Appendix 8

Redton Project Drill Hole Database

Collar File Extract

PROJ_CODE DATASET HOLE_ID HOLE_TYPE H GEC010 BIRCH MOUNTAIN 1996 EA 96 01 DD N	OLE_SIZELIBRARY_NO SOURCE_DOC_NO ORIG_GRID_ID ORIG_EAST ORIG_NORTH ORIG_GRID_UN	IITORIG_RL ORIG_GRID_ID2 ORIG_EAST2 ORIG_NORTH2 ORIG_GRID_UNIT2 CAP	PTURE_METHOD CAPTURED_BY CAPTUR	E_ACC [SYS_GRID_ID SYS_EAST SYS_NORTH SYS_RL ORIG_DEP NAD83_UTM_10 379773.64 6118858.61 970.43 294	THORIG_DEPTH_UNIT ORIG_DEPTH_M MAX_DEPTH_M DATE	E_COMMENCED DATE_COMPLETED PROPER	TY_NAME PROF	PERTY_OWNER PROPERTY_OPERATOR GEOLOGIST COLLAR_AZIMUTH	COLLAR_DIP NOTES
GEC010 BIRCH_MOUNTAIN_1996 EA_96_02 DD N GEC010 BIRCH_MOUNTAIN_1996 EA_96_03 DD N	Q-2 L3916 ARIS_24871 NAD83_UTM_10 379773.64 6118858.61 m Q-2 L3916 ARIS_24871 NAD83_UTM_10 381211.2 6116892.17 m	970.43 DIG 1362.85 DIG	AITISED NEVILLE_PANIZZA 3 AITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 379773.64 6118858.61 970.43 398. NAD83_UTM_10 381211.2 6116892.17 1362.85 300.	37 m 398.37 398.37 34 m 300.84 300.84	23/09/1996 27/09/1996 Eagle 23/09/1996 27/09/1996 Eagle	Birch	Mountain Resources Birch Mountain Resources Simon X. Fan 42 Mountain Resources Birch Mountain Resources Simon X. Fan 42	-63 -45
GEC010 BIRCH_MOUNTAIN_1996 EA_96_04 DD No GEC010 BIRCH_MOUNTAIN_1996 EA_96_05 DD No	Q-2 L3916 ARIS_24871 NAD83_UTM_10 381211.2 6116892.17 m Q-2 L3916 ARIS_24871 NAD83_UTM_10 381297.82 6116833.45 m	1362.85 DIG 1385.05 DIG	AITISED NEVILLE_PANIZZA 3 AITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 381211.2 6116892.17 1362.85 349. NAD83_UTM_10 381297.82 6116833.45 1385.05 197.	61 m 349.61 349.61 21 m 197.21 197.21	1/10/1996 3/10/1996 Eagle 3/10/1996 6/10/1996 Eagle	Birch Birch	Mountain ResourcesBirch Mountain ResourcesDaniel A. Beauchamp42Mountain ResourcesBirch Mountain ResourcesDaniel A. Beauchamp42	-65 -45
GEC010 BIRCH_MOUNTAIN_1996 EA_96_06 DD NO GEC010 IMPERIAL_METALS_1987 TRS87_1 DD BO	Q-2 L3916 ARIS_24871 NAD83_UTM_10 381297.82 6116833.45 m Q L3916 ARIS_16759 NAD27_UTM_10 356066.91 6168118.43 m	1385.05 DIG 1788.98 DIG	AITISED NEVILLE_PANIZZA 3 AITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 381297.82 6116833.45 1385.05 279. NAD83_UTM_10 355962.6473 6168316.807 1788.98 144.	79 m 279.79 279.79 78 m 144.78 144.78	8/10/1996 Eagle 13/07/1987 17/07/1987 Takla-Ra	Birch nbow Cathe	Mountain ResourcesBirch Mountain ResourcesDaniel A. Beauchamp42edral GoldImperial MetalsR. Pesalj55	-65 -55
GEC010 IMPERIAL_METALS_1987 TRS87_2 DD BC GEC010 IMPERIAL_METALS_1987 TRS87_3 DD BC GEC010 IMPERIAL METALS_1987 TRS87_4 DD BC	Q L3916 ARIS_16759 NAD27_UTM_10 356196.44 6166193.41 III Q L3916 ARIS_16759 NAD27_UTM_10 356192.67 6168191.15 m Q L3916 ARIS_16759 NAD27_UTM_10 356348.01 6168220.56 m	1714.55 DIG 1719.09 DIG 1662.64 DIG	ITISED INEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 356099.1573 6168395.201 1714.55 174. NAD83_UTM_10 356088.4129 6168389.532 1719.09 192. NAD83_UTM_10 356252 3486 6168424 225 1662 64 122	35 m 1/4.65 1/4.65 33 m 192.63 192.63 53 m 122.53 122.53	18/07/1987 21/07/1987 Takia-Ra 21/07/1987 26/07/1987 Takia-Ra 27/07/1987 2/08/1987 Takia-Ra	nbow Cathe	edral Gold Imperial Metals R. Pesalj 55 edral Gold Imperial Metals R. Pesalj 235 edral Gold Imperial Metals R. Pesali 55	-45 -45 -45
GEC010 CATHEDRAL_GOLD_85 DDH001 DD BC GEC010 CATHEDRAL_GOLD_85 DDH002 DD BC	Q L3916 ARIS_14103 TRW 300 1250 m Q L3916 ARIS_14103 TRW 300 1200 m	1606.98 NAD27_UTM_10 354987.84 6170780.53 m DIG 1617.21 NAD27 UTM 10 354986.91 6170730.91 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 354894.5796 6171001.421 1606.98 76. NAD83_UTM_10 354894.7527 6170946.612 1617.21 78.	31 m 76.81 76.81 33 m 78.33 78.33	16/09/1985 17/09/1985 Takla-Ra 18/09/1985 19/09/1985 Takla-Ra	nbow Cathe nbow Cathe	edral Gold Imperial Metals R. Pesalj 360 edral Gold Imperial Metals R. Pesalj 360	-45 -45
GEC010 CATHEDRAL_GOLD_85 DDH003 DD B0 GEC010 CATHEDRAL_GOLD_85 DDH004 DD B0	Q L3916 ARIS_14103 TRW 500 1000 m Q L3916 ARIS_14103 TRW 700 850 m	1596.29 NAD27_UTM_10 355382.88 6170387.4 m DIG 1651.05 NAD27_UTM_10 355184.44 6170535 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355289.6627 6170590.284 1596.29 79. NAD83_UTM_10 355091.2182 6170737.894 1651.05 76.	36 m 79.86 79.86 31 m 76.81 76.81	19/09/1985 20/09/1985 Takla-Ra 20/09/1985 21/09/1985 Takla-Ra	nbow Cathe	edral GoldImperial MetalsR. Pesalj360edral GoldImperial MetalsR. Pesalj360	-45 -45
GEC010 CATHEDRAL_GOLD_86 DDH005 DD B0 GEC010 CATHEDRAL_GOLD_86 DDH006 DD B0	Q L3916 ARIS_15487 TRW 291 923 m Q L3916 ARIS_15487 TRW 387 912 m	1620.91 NAD27_UTM_10 355018.71 6170701.18 m DIG 1639.9 NAD27_UTM_10 355076 6170622.59 m DIG	NEVILLE_PANIZZA 3 NEVILLE_PANIZZA 3 NEVILLE_PANIZZA 3	NAD83_UTM_10 354925.4933 6170904.06 1620.91 118. NAD83_UTM_10 354982.7689 6170825.466 1639.9 96.	26 m 118.26 118.26 93 m 96.93 96.93	30/07/1986 2/08/1986 Takla-Ra 2/08/1986 4/08/1986 Takla-Ra	nbow Imper nbow Imper	rial Metals Imperial Metals R. Pesalj 45 rial Metals Imperial Metals R. Pesalj 45	-55 -55
GEC010 CATHEDRAL_GOLD_86 DDH007 DD B0 GEC010 CATHEDRAL_GOLD_86 DDH008 DD B0	Q L3916 ARIS_15487 TRW 576 924 m Q L3916 ARIS_15487 TRW 669 938 m	1648.75 NAD27_UTM_10 355221.48 6170494.29 m DIG 1628.85 NAD27_UTM_10 355296.3 6170437.74 m DIG	AITISED NEVILLE_PANIZZA 3 AITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355128.2586 6170697.182 1648.75 81. NAD83_UTM_10 355203.0814 6170640.634 1628.85 117.	39 m 81.69 81.69 35 m 117.35 117.35	5/08/1986 7/08/1986 Takla-Ra 8/08/1986 10/08/1986 Takla-Ra	nbow Imper	erial Metals Imperial Metals R. Pesalj 45 erial Metals R. Pesalj 45	-55 -55
GEC010 CATHEDRAL_GOLD_86 DDH009 DD BC GEC010 CATHEDRAL_GOLD_86 DDH010 DD BC GEC010 CATHEDRAL_GOLD_86 DDH011 DD BC	Q L3916 ARIS_15487 TRW 737 941 m Q L3916 ARIS_15487 TRW 816 955 m Q L3916 ARIS_15487 TRW 816 955 m	1608.85 NAD27_UTM_10 355345.21 6170393 DIG 1575.51 NAD27_UTM_10 355411.59 6170346.22 DIG 1617_43 NAD27_UTM_10 354919.81 6170802.36 DIG	ITISED INEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355251.9792 6170595.893 1608.85 115. NAD83_UTM_10 355318.3748 6170549.113 1575.51 99. NAD83_UTM_10 354826 5926 6171005 24 1617 43 117	21 m 115.21 115.21 91 m 99.91 99.91 35 m 117.65 117.65	10/08/1986 13/08/1986 1akia-Ra 10/08/1986 17/08/1986 Takia-Ra 17/08/1986 20/08/1986 Takia-Ra	nbow Imper nbow Imper	rial Metals Imperial Metals R. Pesalj 45 rial Metals Imperial Metals D. Gorc 45	-55 -55
GEC010 CATHEDRAL_GOLD_86 DDH012 DD B0 GEC010 CATHEDRAL_GOLD_86 DDH012 DD B0 GEC010 CATHEDRAL_GOLD_86 DDH013 DD B0	Q L3916 ARIS_15487 TRW 196 902 m Q L3916 ARIS_15487 TRW 292 973 m	1618.68 NAD27_UTM_10 354936.45 6170753.61 m DIG 1608.74 NAD27_UTM_10 355056.36 6170734.95 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 354843.2327 6170956.49 1618.68 191. NAD83_UTM_10 354963.1438 6170937.833 1608.74 121.	41 m 191.41 191.41 31 m 121.31 121.31	21/08/1986 25/08/1986 Takla-Ra 26/08/1986 29/08/1986 Takla-Ra 26/08/1986 29/08/1986 Takla-Ra	nbow Imper nbow Imper	rial Metals Imperial Metals D. Gorc 45 Internal Metals D. Gorc 45 Imperial Metals R. Pesali 45	-55 -55
GEC010 CATHEDRAL_GOLD_86 DDH014 DD B0 GEC010 CATHEDRAL_GOLD_86 DDH015 DD B0	Q L3916 ARIS_15487 TRW 725 15 m Q L3916 ARIS_15487 TRW 386 -38 m	1603.69 NAD27_UTM_10 355393.2 6170451.97 m DIG 1619.33 NAD27_UTM_10 355113.75 6170659.27 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355299.9783 6170654.861 1603.69 167. NAD83_UTM_10 355020.5184 6170862.149 1619.33 124.	03 m 167.03 167.03 97 m 124.97 124.97	29/08/1986 3/09/1986 Takla-Ra 19/09/1986 20/09/1986 Takla-Ra	nbow Imper nbow Imper	rial Metals Imperial Metals D. Gorc 225 rial Metals Imperial Metals R. Pesalj 45	-55 -55
GEC010 CATHEDRAL_GOLD_86 DDH016 DD B0 GEC010 CATHEDRAL_GOLD_86 DDH017 DD B0	Q L3916 ARIS_15487 TRW 484 40 m Q L3916 ARIS_15487 TRW 574 51 m	1608.83 NAD27_UTM_10 355242.5 6170643.23 DIG 1606.35 NAD27_UTM_10 355312.85 6170583.92 m DIG	ITISED NEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355149.2772 6170846.112 1608.83 154. NAD83_UTM_10 355219.6308 6170786.794 1606.35 133.	B4 m 154.84 154.84 B1 m 133.81 133.81	20/09/1986 23/09/1986 Takla-Ra 25/09/1986 27/09/1986 Takla-Ra	nbow Imper nbow Imper	rial Metals Imperial Metals R. Pesalj 225 rial Metals Imperial Metals R. Pesalj 225	-48 -55
GEC010 CATHEDRAL_GOLD_86 DDH018 DD BC GEC010 CATHEDRAL_GOLD_87 DDH019 DD BC GEC010 CATHEDRAL_GOLD_87 DDH020 DD BC	Q L3916 ARIS_15487 I RW 675 79 m Q L3916 ARIS_16759 TRW 920 910 m Q L3916 ARIS_16759 TRW 920 910 m	1593.88 NAD27_UTM_10 355403.92 6170532.65 DIG 1536.08 NAD27_UTM_10 355455.59 6170239.18 DIG 1612.08 NAD27_UTM_10 355455.59 6170239.18 DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355310.69/9 6170/35.535 1593.88 107. NAD83_UTM_10 355362.3746 6170442.064 1536.08 262. NAD83_UTM_10 254898.2727 6170045.122 1612.08 181.	39 m 107.89 107.89 13 m 262.13 262.13 07 m 181.07 181.07	27/09/1986 29/09/1986 Takla-Ra 17/08/1987 20/08/1987 Takla-Ra 20/08/1987 22/09/1987 Takla-Ra	nbow Imper nbow Imper	rial Metals Imperial Metals R. Pesalj 225 rial Metals Imperial Metals R. Pesalj 45	-50 -55
GEC010 CATHEDRAL_GOLD_87 DDH020 DD BC GEC010 CATHEDRAL_GOLD_87 DDH021 DD BC GEC010 CATHEDRAL GOLD 87 DDH022 DD BC	Q L3916 ARIS_16759 TRW 246 942 m Q L3916 ARIS_16759 TRW 246 892 m Q L3916 ARIS_16759 TRW 291 873 m	1613.98 NAD27_UTM_10 354991.59 6170742.25 Dig 1621.78 NAD27_UTM_10 354965.18 6170716.87 m DIG 1635.53 NAD27_UTM_10 354986.9 6170667.22 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 354898.3727 6170945.132 1613.98 181. NAD83_UTM_10 354871.9612 6170919.747 1621.78 224. NAD83_UTM_10 354893.6808 6170870.097 1635.53 252	64 m 224.64 224.64 07 m 252.07 252.07	22/08/1987 22/08/1987 Takla-Ra 22/08/1987 24/08/1987 Takla-Ra 22/08/1987 26/08/1987 Takla-Ba	nbow Imper nbow Imper	rial Metals Imperial Metals R. Pesalj 45 rial Metals Imperial Metals R. Pesalj 45	-55 -55 -55
GEC010 CATHEDRAL_GOLD_87 DDH023 DD B0 GEC010 CATHEDRAL_GOLD_87 DDH024 DD B0	Q L3916 ARIS_16759 TRW 920 909 m Q L3916 ARIS_16759 TRW 340 932 m	1536.08 NAD27_UTM_10 355455.59 6170239.18 m DIG 1624.76 NAD27_UTM_10 355054.9 6170669.3 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355362.3746 6170442.064 1536.08 242. NAD83_UTM_10 354961.6843 6170872.177 1624.76 181.	201.07 202.07 32 m 242.62 242.62 97 m 181.97 181.97	29/08/1987 31/08/1987 Takla-Ra 31/08/1987 2/09/1987 Takla-Ra	nbow Imper nbow Imper	rial Metals Imperial Metals R. Pesalj 225 rial Metals Imperial Metals R. Pesalj 45	-50 -55
GEC010 CATHEDRAL_GOLD_87 DDH025 DD BC GEC010 CATHEDRAL_GOLD_87 DDH026 DD BC	Q L3916 ARIS_16759 TRW 340 882 m Q L3916 ARIS_16759 TRW 387 865 m	1636.1 NAD27_UTM_10 355022.44 6170637.54 m DIG 1658.91 NAD27_UTM_10 355041.26 6170588.72 m DIG	ITISED NEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 354929.2204 6170840.423 1636.1 254. NAD83_UTM_10 354948.0374 6170791.603 1658.91 50	B1 m 254.81 254.81 .9 m 50.9 50.9	2/09/1987 5/09/1987 Takla-Ra 5/09/1987 7/09/1987 Takla-Ra	nbow Imper nbow Imper	rial Metals Imperial Metals R. Pesalj 45 rial Metals Imperial Metals R. Pesalj 45	-55 -55
GEC010 CATHEDRAL_GOLD_87 DDH026A DD B0 GEC010 CATHEDRAL_GOLD_87 DDH027 DD B0 GEC010 CATHEDRAL_GOLD_87 DDH027 DD B0	Q L3916 ARIS_16759 TRW 387 865 m Q L3916 ARIS_16759 TRW 440 895 m Q L3916 ARIS_16759 TRW 440 895 m	1658.91 NAD27_UTM_10 355041.26 6170588.72 m DIG 1656.06 NAD27_UTM_10 355105.06 6170574.16 m DIG 1656.72 NAD27_UTM_10 355105.06 6170574.16 m DIG	ITISED NEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 354948.0374 6170791.603 1658.91 331. NAD83_UTM_10 355011.8355 6170777.046 1656.06 258. NAD83_UTM_10 355011.8355 6170777.046 1656.06 258.	01 m 331.01 331.01 17 m 258.17 258.17 201 50 201.50 201.50	14/09/1987 18/09/1987 Takla-Ra 7/09/1987 10/09/1987 Takla-Ra	nbow Imper nbow Imper	rial Metals Imperial Metals R. Pesalj 45 rial Metals Imperial Metals R. Pesalj 45	-55 -55
GEC010 CATHEDRAL_GOLD_87 DDH028 DD BC GEC010 CATHEDRAL_GOLD_87 DDH029 DD BC GEC010 CATHEDRAL GOLD 87 DDH030 DD BC	Q L3916 ARIS_16759 TRW 737 880 m Q L3916 ARIS_16759 TRW 440 945 m Q L3916 ARIS_16759 TRW 535 900 m	IO05.75[NAD27_UTM_10] 355302.97[6170352.17[m] DIG 1639.58 NAD27_UTM_10 355141.25 6170607.97 m DIG 1660.75[NAD27_UTM_10] 355161.37 6170510.19 m DIG	ITISED INEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3 ITISED INEVILLE DANIZZA 3	INAD63_UTM_10 355209.7522 6170555.061 1605.73 221. NAD83_UTM_10 355048.0347 6170810.849 1639.58 154. NAD83_UTM_10 355068.1546 6170713.079 1660.75 260	221.59 221.59 53 m 154.53 14 m 260.14	12/09/1987 12/09/1987 Takla-Ra 12/09/1987 14/09/1987 Takla-Ra 18/09/1987 21/00/1987 Takla-Ra	nbow Imper	rial Metals Imperial Metals R. Pesalj 225 Imperial Metals R. Pesalj 45	-ວບ -55 -55
GEC010 CATHEDRAL_GOLD_87 DDH031 DD BC GEC010 CATHEDRAL_GOLD 87 DDH032 DD BC	Q L3916 ARIS_16759 TRW 816 855 m Q L3916 ARIS_16759 TRW 816 854 m	1572.73 NAD27_UTM_10 355339.16 6170277.14 DIG 1569.74 NAD27_UTM_10 355334.55 6170269.6 DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355245.935 6170470.480.027 1572.73 268. NAD83_UTM_10 355241.3256 6170472.488 1569.74 226	203.14 209.14 33 m 268.83 268.83 268.83 28.6 228.6	21/09/1987 24/09/1987 Takla-Ra 26/09/1987 28/09/1987 Takla-Ra 26/09/1987 28/09/1987 Takla-Ra	nbow Imper nbow Imper	erial Metals Imperial Metals D. Gorc 45 Prial Metals Imperial Metals D. Gorc 225	-55 -50
GEC010 CATHEDRAL_GOLD_87 DDH033 DD B0 GEC010 CATHEDRAL_GOLD_87 DDH034 DD B0	Q L3916 ARIS_16759 TRW 920 1000 m Q L3916 ARIS_16759 TRW 340 882 m	1544.84 NAD27_UTM_10 355519 6170303.17 m DIG 1636.1 NAD27_UTM_10 355022.44 6170637.54 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355425.7769 6170506.061 1544.84 462. NAD83_UTM_10 354929.2204 6170840.423 1636.1 456.	99 m 462.99 462.99 29 m 456.29 456.29	29/09/1987 3/10/1987 Takla-Ra 4/10/1987 11/10/1987 Takla-Ra	nbow Imper nbow Imper	erial Metals Imperial Metals D. Gorc 45 erial Metals Imperial Metals D. Gorc/R. Pesalj 45	-55 -70
GEC010 CATHEDRAL_GOLD_87 DDH035 DD BC GEC010 CATHEDRAL_GOLD_87 DDH036 DD BC	Q L3916 ARIS_16759 TRW 1120 1005 m Q L3916 ARIS_16759 TRW 1120 1005 m	1476.4 NAD27_UTM_10 355661.02 6170160.81 m DIG 1475.41 NAD27_UTM_10 355656.34 6170157.88 m DIG	ITISED NEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355567.8033 6170363.7 1476.4 455. NAD83_UTM_10 355563.1197 6170360.771 1475.41 480.	98 m 455.98 455.98 37 m 480.67 480.67	13/10/1987 19/10/1987 Takla-Ra 19/10/1987 25/10/1987 Takla-Ra	nbow Imper nbow Imper	erial Metals Imperial Metals R. Pesalj 45 erial Metals R. Pesalj 225	-55 -50
GEC010 CATHEDRAL_GOLD_87 DDH037 DD B0 GEC010 CATHEDRAL_GOLD_88 DDH038 DD	Q L3916 ARIS_16759 TRW 342 941 m L4101 TRW 292 898 m	1624.07 NAD27_UTM_10 355059.53 6170676.44 m DIG 1631.85 NAD27_UTM_10 355001 6170677 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 354966.3019 6170879.315 1624.07 168. NAD83_UTM_10 354907.7812 6170879.875 1631.85 227.	25 m 168.25 168.25 08 m 227.08 227.08	26/10/1987 28/10/1987 Takla-Ra Takla-Ra	nbow Imper nbow Cathe	edral Gold Cathedral Gold 45	-45 -55
GEC010 CATHEDRAL_GOLD_88 DDH039 DD GEC010 CATHEDRAL_GOLD_88 DDH040 DD GEC010 CATHEDRAL_GOLD_88 DDH041 DD	L4101 TRW 291 948 m L4101 TRW 316 927 m L4101 TRW 315 966 m	IO14.4[NAD27_UTM_10] 355040[6170/14[m] DIG 1626.64 NAD27_UTM_10 355040[6170681[m] DIG 1615.45 NAD27_UTM_10 355071[6170710[m] DIG	ITISED INEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3 ITISED INEVILLE PANIZZA 3	NAD83_UTM_10 354946.784 6170916.878 1614.4 135. NAD83_UTM_10 354946.784 6170883.874 1626.64 205. NAD83_UTM_10 354977.7719 6170912.879 1615.45 991	135.64 135.64 74 m 205.74 20 m 20 0.02	Takla-Ra Takla-Ra Takla-Ra	nbow Cathe	edital Gold Cathedral Gold 45 edral Gold Cathedral Gold 45 edral Gold Cathedral Gold 45	-ວວ -55 -55
GEC010 CATHEDRAL_GOLD_88 DDH042 DD GEC010 CATHEDRAL_GOLD_88 DDH042 DD	L4101 TRW 267 926 m L4101 TRW 265 970 m	1610.49 NAD27_UTM_10 055005 6170716 DIG 1620.06 NAD27_UTM_10 355005 6170715 DIG 1607.49 NAD27_UTM_10 355039 6170748 DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 354911.7804 6170917.878 1620.06 153. NAD83_UTM_10 354945.778 6170950.881 1607.49 92.	32 m 33.92 33.92 92 m 153.92 153.92 96 m 92.96 92.96	Takla-Ra Takla-Ra Takla-Ra	nbow Cathe nbow Cathe	edral Gold Cathedral Gold 45 edral Gold Cathedral Gold 45	-55 -55
GEC010 CATHEDRAL_GOLD_88 DDH044 DD GEC010 CATHEDRAL_GOLD_88 DDH045 DD	L4101 TRW 344 903 m L4101 TRW 367 924 m	1632.49 NAD27_UTM_10 355041 6170644 m DIG 1630.48 NAD27_UTM_10 355073 6170642 m DIG	ITISED NEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 354947.7818 6170846.882 1632.49 39. NAD83_UTM_10 354979.7756 6170844.882 1630.48 190	32 m 39.62 39.62 .5 m 190.5 190.5	Takla-Ra Takla-Ra	nbow Cathe nbow Cathe	edral Gold Cathedral Gold 45 edral Gold Cathedral Gold 45	-55 -55
GEC010 CATHEDRAL_GOLD_88 DDH046 DD GEC010 CATHEDRAL_GOLD_88 DDH047 DD	L4101 TRW 365 962 m L4101 TRW 388 935 m	1616.63 NAD27_UTM_10 355102 6170671 m DIG 1631.8 NAD27_UTM_10 355097 6170635 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355008.7763 6170873.876 1616.63 141. NAD83_UTM_10 355003.7711 6170837.884 1631.8 140.	73 m 141.73 141.73 21 m 140.21 140.21	Takla-Ra Takla-Ra	nbow Cathe nbow Cathe	edral Gold 45 edral Gold 45 edral Gold 45	-55 -55
GEC010 CATHEDRAL_GOLD_88 DDH048 DD GEC010 CATHEDRAL_GOLD_88 DDH049 DD GEC010 CATHEDRAL_GOLD_88 DDH050 DD	L4101 IRW 342 934 m L4101 TRW 388 889 m L4101 TRW 388 889 m	1623.59 NAD27_UTM_10 355064 6170667 DIG 1651 NAD27_UTM_10 355060 6170602 DIG 1637 1 NAD27_UTM_10 355118 6170622 DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 354970.7712 6170869.877 1623.59 140. NAD83_UTM_10 354966.772 6170804.881 1651 170. NAD83_UTM_10 355024.7815 6170824.876 1627.1 148	21 m 140.21 140.21 59 m 170.69 170.69 12 m 148.12 148.12	Takla-Ra Takla-Ra Takla-Ra	nbow Cathe	edral Gold Cathedral Gold 45 edral Gold Cathedral Gold 45 edral Gold Cathedral Gold 45	-71 -55 55
GEC010 CATHEDRAL_GOLD_88 DDH051 DD GEC010 CATHEDRAL_GOLD_88 DDH051 DD	L4101 TRW 466 944 m L4101 TRW 438 925 m	1645.62 NAD27_UTM_10 355158 6170586 DIG 1646.66 NAD27_UTM_10 355121 6170595 DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355064.7821 6170788.884 1645.62 168. NAD83_UTM_10 355027.783 6170797.882 1646.66 198.	148.13 148.13 55 m 168.55 12 m 198.12	Takla-Ra Takla-Ra Takla-Ra	nbow Cathe nbow Cathe	edral Gold Cathedral Gold 45 edral Gold Cathedral Gold 45 edral Gold Cathedral Gold 45	-55 -55
GEC010 CATHEDRAL_GOLD_88 DDH053 DD GEC010 CATHEDRAL_GOLD_88 DDH054 DD	L4101 TRW 515 949 m L4101 TRW 538 941 m	1644.8 NAD27_UTM_10 355196 6170554 m DIG 1643.8 NAD27_UTM_10 355206 6170532 m DIG	ITISED NEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355102.7789 6170756.89 1644.8 182. NAD83_UTM_10 355112.7811 6170734.885 1643.8 182.	38 m 182.88 182.88 38 m 182.88 182.88	Takla-Ra Takla-Ra	nbow Cathe nbow Cathe	edral GoldCathedral Gold45edral GoldCathedral Gold45	-55 -55
GEC010 CATHEDRAL_GOLD_88 DDH055 DD GEC010 CATHEDRAL_GOLD_88 DDH056 DD	L4101 TRW 918 853 m L4101 TRW 960 865 m	1527.6 NAD27_UTM_10 355400 6170196 m DIG 1515.24 NAD27_UTM_10 355439 6170175 m DIG	ITISED NEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355306.7811 6170398.893 1527.6 213. NAD83_UTM_10 355345.7839 6170377.887 1515.24 213.	36 m 213.36 213.36 35 m 213.35 213.35	Takla-Ra Takla-Ra	nbow Cathe nbow Cathe	edral Gold Cathedral Gold 225 edral Gold Cathedral Gold 225	-55 -55
GEC010 CATHEDRAL_GOLD_88 DDH057 DD GEC010 CATHEDRAL_GOLD_88 DDH058 DD GEC010 CATHEDRAL_GOLD_88 DDH059 DD	L4101 IRW 876 865 m L4101 TRW 876 868 m L4101 TRW 917 943 m	1547 NAD27_UTM_10 355380 6170235 m DIG 1547.07 NAD27_UTM_10 355383 6170237 m DIG 1542.64 NAD27_UTM_10 355471 6170261 m DIG	ITISED NEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355286.7767 6170437.885 1547 213. NAD83_UTM_10 355289.7782 6170439.885 1547.07 198. NAD83_UTM_10 355377.7778 6170463.89 1542.64 182.	36 m 213.36 213.36 12 m 198.12 198.12 38 m 182.88 182.88	Takia-Ra Takia-Ra Takia-Ra	nbow Cathe	edral Gold Cathedral Gold 225 edral Gold Cathedral Gold 45 edral Gold Cathedral Gold 45	-55 -55 -55
GEC010 CATHEDRAL_GOLD_88 DDH060 DD GEC010 CATHEDRAL_GOLD_88 DDH061 DD	L4101 TRW 866 955 m L4101 TRW 918 977 m	1558.77 NAD27_UTM_10 355445 6170306 m DIG 1544.39 NAD27_UTM_10 355499 6170285 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355351.7787 6170508.891 1558.77 182.7 NAD83_UTM_10 355405.7807 6170487.885 1544.39 137.	38 m 182.88 182.88 16 m 137.16 137.16	Takla-Ra Takla-Ra Takla-Ra	nbow Cathe nbow Cathe	edral Gold Cathedral Gold 45 edral Gold Cathedral Gold 45	-55 -55
GEC010 CATHEDRAL_GOLD_88 DDH062 DD GEC010 CATHEDRAL_GOLD_88 DDH063 DD	L4101 TRW 824 883 m L4101 TRW 965 918 m	1569.5 NAD27_UTM_10 355358 6170285 DIG 1515.23 NAD27_UTM_10 355484 6170209 m DIG	ITISED NEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355264.7685 6170487.885 1569.5 198. NAD83_UTM_10 355390.7815 6170411.891 1515.23 274.	11 m 198.11 198.11 32 m 274.32 274.32	Takla-Ra Takla-Ra	nbow Cathe	edral GoldCathedral Gold45edral GoldCathedral Gold225	-55 -55
GEC010 CATHEDRAL_GOLD_88 DDH064 DD GEC010 CATHEDRAL_GOLD_88 DDH065 DD	L4101 TRW 1006 871 m L4101 TRW 873 912 m L4101 TRW 873 912 m	1499.32 NAD27_UTM_10 355475 6170146 m DIG 1554.8 NAD27_UTM_10 355416 6170271 m DIG 1509.50 NAD27_UTM_10 355416 6170271 m DIG	ITISED NEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355381.777 6170348.893 1499.32 213. NAD83_UTM_10 355322.778 6170473.888 1554.8 304 NAD83_UTM_10 355322.778 6170473.888 1554.8 304	36 m 213.36 213.36 .8 m 304.8 304.8	Takla-Ra Takla-Ra Takla-Ra	nbow Cathe nbow Cathe	edral Gold Cathedral Gold 225 edral Gold Cathedral Gold 225	-55 -55
GEC010 CATHEDRAL_GOLD_88 DDH066 DD GEC010 CATHEDRAL_GOLD_88 DDH067 DD GEC010 CATHEDRAL_GOLD_88 DDH068 DD	L4101 TRW 776 961 m L4101 TRW 701 941 m L4101 TRW 534 891 m	1592.56 NAD27_0TM_10 355387 6170375 Dig 1621.74 NAD27_UTM_10 355319 6170415 Dig 1662.75 NAD27_UTM_10 355163 6170499 Dig	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 355293.7774 6170377.887 1592.36 121. NAD83_UTM_10 355225.7739 6170617.889 1621.74 121. NAD83_UTM_10 355069.779 6170701.891 1662.75 228.	32 m 121.92 121.92 33 m 121.93 121.93 59 m 228.59 228.59	Takia-Ra Takia-Ra Takia-Ra	nbow Cathe nbow Cathe	edral Gold Cathedral Gold 45 edral Gold Cathedral Gold 45 edral Gold Cathedral Gold 225	-55 -55 -55
GEC010 CATHEDRAL_GOLD_88 DDH069 DD GEC010 CATHEDRAL_GOLD_88 DDH069A DD	L4101 TRW 370 875 m L4101 TRW 368 894 m	1651.7 NAD27_UTM_10 355036 6170605 m DIG 1643 NAD27_UTM_10 355050 6170620 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 354942.7848 6170807.88 1651.7 139 NAD83_UTM_10 354956.778 6170822.877 1643 231.0	.3 m 139.3 139.3 04 m 231.04 231.04	Takla-Ra Takla-Ra	nbow Cathe	edral Gold Cathedral Gold 45 edral Gold Cathedral Gold 45	-65 -69
GEC010 CATHEDRAL_GOLD_88 DDH070 DD GEC010 CATHEDRAL_GOLD_88 DDH071 DD	L4101 TRW 318 879 m L4101 TRW 248 953 m	1636.68 NAD27_UTM_10 355003 6170645 m DIG 1610.23 NAD27_UTM_10 355014 6170748 m DIG	ITISED NEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 354909.7767 6170847.882 1636.68 363. NAD83_UTM_10 354920.7766 6170950.881 1610.23 98.	B1 m 363.61 363.61 75 m 98.75 98.75	Takla-Ra Takla-Ra	nbow Cathe	edral GoldCathedral Gold45edral GoldCathedral Gold45	-65 -55
GEC010 CATHEDRAL_GOLD_88 DDH072 DD GEC010 CATHEDRAL_GOLD_88 DDH073 DD	L4101 TRW 197 1000 m L4101 TRW 366 1089 m L4101 TRW 018 977 m	1601.4 NAD27_UTM_10 355016 6170819 m DIG 1588.95 NAD27_UTM_10 355204 6170761 m DIG 1544.20 NAD27_UTM_10 355204 6170285 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 354922.7804 6171021.876 1601.4 138. NAD83_UTM_10 355110.7774 6170963.878 1588.95 325. NAD83_UTM_10 255405.7807 6170487.885 1544.20 206.	69 m 138.69 138.69 22 m 325.22 325.22 32 m 206.22 326.22	Takla-Ra Takla-Ra Takla-Ra	nbow Cathe nbow Cathe	edral Gold Cathedral Gold 45 edral Gold Cathedral Gold 225 edral Gold Cathedral Gold 225	-55 -67
GEC010 CATHEDRAL_GOLD_88 DDH074 DD GEC010 CATHEDRAL_GOLD_88 DDH075 DD GEC010 EASTEIELD BESQUECES MAC2000 1 DD	L4101 TRW 918 977 m L4101 TRW 965 970 m Q TW L3916 ABIS 26508 Image: Comparison of the second sec	1544.39 NAD27_01M_10 355499 6170285 DIG 1525.98 NAD27_UTM_10 355526 6170246 DIG 1054.17 NAD27_UTM_10 354056.4 6189262.2 DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 353403.7807 6170487.883 1544.39 396. NAD83_UTM_10 355432.7776 6170448.893 1525.98 365. NAD83_UTM_10 353961.77 6189465.17 1054.17 90.	22 m 396.22 396.22 76 m 365.76 365.76 22 m 90.22 90.22	30/10/2000 31/10/2000 orraine-	inbow Cathe JaJay Creek Lysan	edral Gold Cathedral Gold 225 edral Gold Cathedral Gold 225 nder Minerals Eastfield Besources Jay Page 168	-55 -55 -45
GEC010 EASTFIELD_RESOURCES MAC2000_2 DD BC GEC010 EASTFIELD_RESOURCES MAC2000_3 DD BC	Q TW L3916 ARIS_26508 Q TW L3916 ARIS_26508	1054.17 NAD27_UTM_10 354056.4 6189262.2 m DIG 1032.33 NAD27_UTM_10 354024.3 6189518.61 m DIG	ITISED NEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 353961.77 6189465.17 1054.17 91. NAD83_UTM_10 353929.68 6189721.58 1032.33 42.	44 m 91.44 91.44 06 m 42.06 42.06	31/10/2000 1/11/2000 Lorraine 1/11/2000 1/11/2000 Lorraine	JaJay Creek Lysan JaJay Creek Lysan	nder Minerals Eastfield Resources Jay Page 193 nder Minerals Eastfield Resources Jay Page 231	-60 -45
GEC010 EASTFIELD_RESOURCES MAC2000_4 DD BC GEC010 EASTFIELD_RESOURCES MAC2000_5 DD BC	Q TW L3916 ARIS_26508	1021.18 NAD27_UTM_10 353951.83 6189817.66 DIG 1054.17 NAD27_UTM_10 354056.4 6189262.2 DIG	ITISED NEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 353857.2 6190020.64 1021.18 60. NAD83_UTM_10 353961.77 6189465.17 1054.17 67.	96 m 60.96 60.96 06 m 67.06 67.06	1/11/2000 2/11/2000 Lorraine 2/11/2000 2/11/2000 Lorraine	JaJay Creek Lysan JaJay Creek Lysan	nder MineralsEastfield ResourcesJay Page30nder MineralsEastfield ResourcesJay Page64	-45 -44
GEC010 BP_CANADA_DRILL_1990 AH90_1 DD B0 GEC010 BP_CANADA_DRILL_1990 AH90_2 DD B0 GEC010 BP_CANADA_DRILL_1990 AH90_2 DD B0	Q L4041 ARIS_20943 NAD83_UTM_10 381170.61 6132216.15 m Q L4041 ARIS_20943 NAD83_UTM_10 381172.91 6132213.88 m Q L4041 ARIS_20943 NAD83_UTM_10 381172.91 6132213.88 m	1164.81 DIG 1165.49 DIG	ITISED NEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 381170.61 6132216.15 1164.81 198 NAD83_UTM_10 381172.91 6132213.88 1165.49 1 NAD83_UTM_10 381172.91 6132213.88 1165.49 1	.1 m 198.1 198.1 64 m 164 164 .7 m 202.7 202.7	15/09/1990 19/09/1990 Lorraine 13/09/1990 19/09/1990 Lorraine	JaJay Creek Lysan JaJay Creek Lysan	nder Minerals Eastfield Resources WP 269 nder Minerals Eastfield Resources WP 150 nder Minerals Eastfield Resources WP 256	-45 -46
GEC010 BP_CANADA_DHILL_1990 AH90_3 DD BC GEC010 BP_CANADA_DRILL_1990 AH90_4 DD BC GEC010 BP_CANADA_DRILL_1990 AH90_5 DD BC	Q L4041 ARIS_20943 INAD65_UTM_10 381000.53 6132546.06 m Q L4041 ARIS_20943 NAD83_UTM_10 381004.58 6132546.06 m Q L4041 ARIS_20943 NAD83_UTM_10 381584.88 6132545.24 m	1217.15 DIG 1150.84 DIG	ITISED NEVILLE_PANIZZA 3 ITISED NEVILLE_PANIZZA 3 ITISED NEVILLE PANIZZA 3	NAD83_UTM_10 381004.58 6132546.06 1217.82 202 NAD83_UTM_10 381584.88 6132546.06 1217.15 168 NAD83_UTM_10 381584.88 6132545.24 1150.84 1	202.7 202.7 .9 m 168.9 168.9 70 m 170 170	21/09/1990 21/09/1990 Lorraine 23/09/1990 24/09/1990 Lorraine	JaJay Creek Lysan JaJay Creek Lysan JaJay Creek II vean	Inder Minerals Lastifield Resources VVP 256 nder Minerals Eastfield Resources CTB 91 nder Minerals Eastfield Resources ICTB 150	-40 -59 -45
GEC010 BP_CANADA_DRILL_1990 AH90_6 DD BC	Q L4041 ARIS_20943 NAD83_UTM_10 381395.88 6132376.06 m	1162.04 DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 381395.88 6132376.06 1162.04 164	.1 m 164.1 164.1	24/09/1990 25/09/1990 Lorraine	JaJay Creek Lysan	nder Minerals Eastfield Resources 160	-45 Max Depth unknown - used an assumed
GEC010 PLACER_DEVELOP_79 DDH_72_8 DD	L4041 ARIS_7432	1487.24 NAD27_UTM_10 359179.28 6153020.8 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 359084.45 6153223.99 1487.24	10 10	Burn Cla	ms LUC s	syndicate Placer Development 0	-90 minimum, dip assumed to be vertical Max Depth unknown - used an assumed
GECUIU PLACER_DEVELOP_79 DDH_72_1 DD	L4U41 AKIS_/432	DIG		<u>אאון אין אין אין אין אין אין אין אין אין אי</u>		Burn Cla		synuicate Placer Development 0	-yujininimum, dip assumed to be vertical Max Depth unknown - used an assumed
GEC010 PLACER_DEVELOP_79 DDH_72_10 DD	L4041 ARIS_7432	1460.75 NAD27_UTM_10 359425.19 6153019.17 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 359330.36 6153222.36 1460.75	10 10	Burn Cla	ms LUC s	syndicate Placer Development 180	-45 minimum, azimuth taken from map, dip guessed Max Depth unknown - used an assumed
GEC010 PLACER_DEVELOP_79 DDH_72_11 DD	L4041 ARIS_7432	1492.7 NAD27_UTM_10 359317.74 6152900.16 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 359222.9 6153103.35 1492.7	10 10	Burn Cla	ms LUC s	syndicate Placer Development 0	-90 minimum, dip assumed to be vertical
GEC010 PLACER_DEVELOP_79 DDH_72_12 DD	L4041 ARIS_7432	1408 NAD27_UTM_10 359546 6153326.21 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 359451.16 6153529.41 1408	10 10	Burn Cla	ms LUC s	syndicate Placer Development 180	Max Depth unknown - used an assumed -45 minimum, azimuth taken from map, dip guessed
GEC010 PLACER_DEVELOP_79 DDH_72_2 DD	L4041 ARIS_7432	1411.39 NAD27_UTM_10 359180.17 6153562.1 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 359085.33 6153765.3 1411.39	10 10	Burn Cla	ms LUC s	syndicate Placer Development 0	-90 minimum, dip assumed to be vertical Max Depth unknown - used an assumed
GEC010 PLACER_DEVELOP_79 DDH_72_3 DD	L4041 ARIS_7432	1390.06 NAD27_UTM_10 359422.11 6153560.62 m DIG	NEVILLE_PANIZZA 3	NAD83_UTM_10 359327.27 6153763.82 1390.06	10 10	Burn Cla	ms LUC s	syndicate Placer Development 0	-90 minimum, dip assumed to be vertical Max Depth unknown - used an assumed
GEC010 PLACER_DEVELOP_79 DDH_72_4 DD	L4041 ARIS_7432	1390.06 NAD27_UTM_10 359422.11 6153560.62 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 359327.27 6153763.82 1390.06	10 10	Burn Cla	ms LUC s	syndicate Placer Development 0	-90 minimum, dip assumed to be vertical
GEC010 PLACER_DEVELOP_79 DDH_72_5 DD	L4041 ARIS_7432	1342.03 NAD27_UTM_10 359419.7 6153918.54 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 359324.87 6154121.73 1342.03	10 10	Burn Cla	msLUC s	syndicate Placer Development 180	Max Depth unknown - used an assumed -45 minimum, azimuth taken from map, dip guessed
GEC010 PLACER_DEVELOP_79 DDH_72_6 DD	L4041 ARIS_7432	1461.46 NAD27_UTM_10 359176.95 6153200.87 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 359082.12 6153404.06 1461.46	10 10	Burn Cla	ms LUC s	syndicate Placer Development 0	-90 minimum, dip assumed to be vertical Max Depth unknown - used an assumed
GEC010 PLACER_DEVELOP_79 DDH_72_7 DD	L4041 ARIS_7432	1470.38 NAD27_UTM_10 359301.91 6153081.37 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 359207.07 6153284.56 1470.38	10 10	Burn Cla	ms LUC s	syndicate Placer Development 0	-90 minimum, dip assumed to be vertical Max Depth unknown - used an assumed
GEC010 PLACER_DEVELOP_79 DDH_72_9 DD GEC010 PLACER_DEVELOP_79 PDH_79 1 PERC	L4041 ARIS_7432 L4041 ARIS_7898	1529.24 NAD27_UTM_10 359591.73 6152379.38 m DIG 1389.96 NAD27_UTM_10 360420.58 6151931.76 m DIG	AITISED NEVILLE_PANIZZA 3 AITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 359496.89 6152582.57 1529.24 NAD83_UTM_10 360325.75 6152134.95 1389.96 3	10 10 00 ft 91.44 91.44	Burn Cla Burn Cla	ms LUC s ms LUC s	syndicatePlacer Development215syndicatePlacer Development0	-45 minimum, azimuth taken from map, dip guessed -90 Hole assumed to be vertical
GEC010PLACER_DEVELOP_79PDH_79_10PERCGEC010PLACER_DEVELOP_79PDH_79_2PERC	L4041 ARIS_7926	1285.02 NAD83_UTM_10 357896.64 6155938.75 DIG 1383.4 NAD27_UTM_10 360419.72 6152184.83 m DIG	AITISED NEVILLE_PANIZZA 3 AITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 357896.64 6155938.75 1285.02 3 NAD83_UTM_10 360324.89 6152388.02 1383.4 3	00 ft 91.44 91.44 00 ft 91.44 91.44	Burn Cla Burn Cla	ms LUC s ms LUC s	syndicate Placer Development 0 syndicate Placer Development 0	-90 Hole assumed to be vertical -90 Hole assumed to be vertical
GEC010 PLACER_DEVELOP_79 PDH_79_3 PERC GEC010 PLACER_DEVELOP_79 PDH_79_4 PERC GEC010 PLACER_DEVELOP_79 PDH_79_4 PERC	L4041 AHIS_/898 Z L4041 ARIS_7898 Q L4041 ARIS_7898 Q	1365.18[NAD27_UTM_10] 360389.72 6152438.3 m DIG 1353.68[NAD27_UTM_10] 360323.64 6152684.75 m DIG 1355.4[NAD27_UTM_10] 360100.16 6152050.50 m DIG	ALTISED INEVILLE_PANIZZA 3 ATTISED NEVILLE_PANIZZA 3 ATTISED NEVILLE_PANIZZA 2	INAD83_UTM_10 360294.88 6152641.49 1365.18 3 NAD83_UTM_10 360228.8 6152887.94 1353.68 3 NAD83_UTM_10 360005.32 6152155.71 1355.68 3	SUBIL 91.44 91.44 00 ft 91.44 91.44 00 ft 91.44 91.44	Burn Cla Burn Cla	ms LUC s	syndicate Placer Development 0 syndicate Placer Development 0 syndicate Placer Development 0	-yuj Hole assumed to be vertical -90 Hole assumed to be vertical
GEC010 PLACER_DEVELOP_79 PDH_79_6 PERC GEC010 PLACER DEVELOP_79 PDH_79_6 PERC	L4041 ARIS_7898 Aris_7898 L4041 ARIS_7898 Image: Construction of the second se	1364.29 NAD27_UTM_10 359962.04 6153204.29 DIG 1368.72 NAD27_UTM_10 359759.6 6153455.75 DIG	AITISED NEVILLE_PANIZZA 3 AITISED NEVILLE PANIZZA 3	NAD83_UTM_10 359867.2 6153407.48 1364.29 3 NAD83_UTM_10 359664.77 6153658.94 1368.72 3	31.44 31.44 00 ft 91.44 00 ft 91.44 00 ft 91.44	Burn Cla Burn Cla	ms LUC s	syndicate Placer Development 0 syndicate Placer Development 0	-90 Hole assumed to be vertical -90 Hole assumed to be vertical
GEC010PLACER_DEVELOP_79PDH_79_8PERCGEC010PLACER_DEVELOP_79PDH_79_9PERC	L4041 ARIS_7898 L4041 ARIS_7926	1380.02 NAD27_UTM_10 358270.74 6154581.15 m DIG 1341.18 NAD83_UTM_10 357988.82 6155328.57 m DIG	AITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 358175.9 6154784.34 1380.02 3 NAD83_UTM_10 357988.82 6155328.57 1341.18 3	OD ft 91.44 91.44 D0 ft 91.44 91.44	Burn Cla Burn Cla	ms LUC s	syndicate Placer Development 0 syndicate Placer Development 0	-90 Hole assumed to be vertical -90 Hole assumed to be vertical
GEC010 PLACER_DOME_91 DH91_1 DD GEC010 PLACER_DOME_91 DH91_2 DD	L3916 ARIS_22145 L3916 ARIS_22145	1545.2 NAD27_UTM_10 360180.95 6175973.99 m DIG 1535.33 NAD27_UTM_10 360120.71 6176081.86 m DIG	AITISED NEVILLE_PANIZZA 3 AITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 360086.34 6176176.94 1545.2 149. NAD83_UTM_10 360026.09 6176284.81 1535.33 152	35 m 149.35 149.35 2.1 m 152.1 152.1	Tak Clai Tak Clai	ns Rio A ns Rio A	Algom Placer Dome 0 Algom Placer Dome 0	-90 Dip and azimuth from log header -90 Dip and azimuth from log header
GEC010 PLACER_DOME_91 DH91_3 DD	L3916 ARIS_22145	1520.75 NAD27_UTM_10 360501.75 6176076.38 m DIG	ITISED NEVILLE_PANIZZA 3	NAD83_UTM_10 360407.13 6176279.33 1520.75 151.	18 m 151.18 151.18	Tak Clai	ns Rio A	Algom Placer Dome 90	-45 at 73m (-42) and 151m (-35)

TAKLA - REDTON PROJECT

۵

٥

٥

٥

٥

0

0

[

0

Ο

0

Γ

2005 ASSESSMENT REPORT

Appendix 9

Redton Project Remote Sensing Report

By AGARSS

ASTER Alteration Mineral Mapping

32 Wheelwright Road Lesmurdie, WA 6076 AUSTRALIA

Ph:- +618 9291 7929 Fax:- +618 9291 8566 Email:- bob@agarss.com.au

ASTER Alteration Mineral Mapping; Redton District, British Colombia, Canada.

Geoinformatics Exploration Australia P/L

Bob Agar

1. Introduction

Five ASTER image granules were acquired from 3 separate data capture dates to cover the area defined by Geoinformatics Exploration Australia P/L as their Redton project.

Figure 1; ASTER coverage acquired over the Redton Project Area (blue) and Regional Area of Interest (Red).

The ASTER granules acquired where as follows:-Path 50, rows 63 and 64, view 3; captured 28th July 2003 comprising granules:-AST_L1A_00307282003193433_08132003151935 AST_L1A_00307282003193442_08132003151954 Path 50, row 64, view 5; captured 21st September 2000 comprising granule:-AST_L1B_003_09212000195016_09232003085855

ASTER Alteration Mineral Mapping; Scene Path 003, Row 200, View 3, S. Peru

Path 52, rows 62 and 63, view 7; captured 28th May 2005 comprising granules:-AST_L1B_00305282005194702_06012005131718 AST_L1B_00305282005194710_06012005131440

Although data captured in late summer was considered optimum from the point of view of snow and ice cover and the wetness of the ground, it was not possible to obtain data with less than 20% cloud over the entire area and one of the image strips was from early in the summer and hence not ideal. Although Level 1B (radiance at sensor) data are preferred, Level 1A scenes were acquired here where no Level 1B coverage existed.

2. Processing and Interpreting ASTER data.

2.1 Introduction to ASTER Data

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) acquires multi-spectral image data for 15 channels across the visible, near, short wave and thermal infrared wavelengths (table 1).

Subsystem	Band No.	Spectral Range	Spatial Resolution
	1	0.52-0.60	
	2	0.63-0.69	15m
VINIK	3N	0.78-0.86	
ſ	38	0.78-0.86	1
	4	1.600-1.700	
	5	2.145-2.185	
014/10	6	2.185-2.225	20m
SWIR	7	2.235-2.285	3011
	8	2.295-2.365	
	9	2.360-2.430	
	10	8.125-8.475	
ľ	11	8.475-8.825	1
TIR İ	12	8.925-9.275	90m
	13	10.25-10.95	1
	14	10.95-11.65	

Compared to Landsat Thematic Mapper (TM), the ASTER visible and near infrared (VNIR) data have a finer resolution (15 metres), the short wave infrared (SWIR) data have are the same 30m resolution as Landsat TM bands 5 and 7 but with 6 contiguous channels over the same wavelength range offer far greater spectral resolution, and the thermal infrared (TIR) data with 5 channels and a 90m spatial resolution offer greater spectral and spatial resolution than the single Landsat TM TIR band 6 (120m) (Table 1).

Although a considerable improvement on Landsat TM data, ASTER remains a relatively coarse resolution sensor. It must be remembered that pixels of ASTER dimensions will almost invariably be mixed in terms of their mineralogy and so pure mineral spectra are unlikely. Nevertheless, the spectra for some pixels will be dominated by a single mineral and should show some close resemblance to the spectrum for that particular mineral. However, minerals that occur together produce mixed spectra that can appear very

much like another mineral. For example, alunite and kaolinite commonly occur together and their mixed spectra as convolved to ASTER band positions may look like dickite (figure 3). Thus like Landsat TM, ASTER also has the capacity to create significant false mineral zones and care is still required in interpretation of the minerals mapped.

ASTER Alteration Mineral Mapping; Scene Path 003, Row 200, View 3, S. Peru

Fourteen of ASTER's fifteen bands are collected with the sensor looking vertically downward (nadir) but the data also contain an additional VNIR band that is acquired from a rear-looking telescope (Band 3B is Backward-looking, Band 3N is Nadir-looking, table 1). The two band 3s are useful in providing a perspective view that enables the data to be viewed as a stereo pair. The data also contain internal ground control points calculated from the satellite ephemeris that are used to georeference the data and which, in conjunction with the stereo visualisation and parallax effect, enable the creation of digital terrain models (DTMs) and ortho-rectification of the spectral image bands which can be of critical importance in rugged terrain.

Figure 3; Comparison of dickite spectrum convolved to ASTER band specifications (left) with modelled spectra for various mixtures of kaolinite and alunite. Note the similarity between the dickite and the 50% kaolinite/alunite mixture (green on right).

ASTER data are provided as either Level 1A (raw) or Level 1B (radiance at the sensor) data. The former need to be first converted to radiance at the sensor before any standard processing of the data can commence and this conversion involves the adjustment of the raw digital values recorded for each band according to variable instrumental parameters written into the data package.

Radiance at the sensor data comprises the reflectance from the ground plus artefacts such as energy that is backscattered by particles such as dust or water vapour in the atmosphere and electronic noise. Thus, in order to convert the data to reflectance so that they can be compared and used to map materials based upon the similarity of their reflectance spectra, these artefacts need to be removed.

In ASTER data, the digital number recorded at the sensor is also affected by an energy "overspill" or "crosstalk" problem between detectors. Energy from ASTER band 4 "leaks" and affects the digital number being recorded in other bands, most notably bands 5 and

ASTER Alteration Mineral Mapping; Scene Path 003, Row 200, View 3, S. Peru

9 (figure 4). Both the "crosstalk" and atmospheric effects need to be corrected for before converting the data to reflectance.

A further problem has been identified within many ASTER scenes that is manifested by a band of intermittent bright pixels in processed data such as band ratios and mineral indices but which is not visible in the raw bands (figure 5; Coulter, 2002).

ASTER Crosstalk

Internal reflections exist between all ASTER SWIR bands but especially from band 4 into bands 5 and 9; manifested most obviously across albedo contrasting

Figure 4; Schematic representation of the "crosstalk" problem in the ASTER SWIR module

The problem has been ascribed to a permanent scratch in the instrument's diffraction grating for the SWIR module causing a distinct change in the signal:noise characteristics across a certain band of pixels (Watanabe, 2002). There is no correction for this problem. Furthermore, when mosaicking scenes, spurious pixel values can be generated along scene boundaries and produce false anomalies or mineral zones. Thus care should be taken when interpreting alteration that maps in any orbit-parallel array whether within or marginal to an image strip.

As with all remote sensing work, the efficacy of any data depends to a large extent on the nature of the terrain being imaged and the signal:noise characteristics of the data. As a general rule, hyper-arid terrains such as the Atacama Desert of Northern Chile afford the best climate and geologic exposure for mineral exploration applications. These data have very high signal:noise characteristics due to the clean dry atmospheric conditions combined with high soil and rock exposure. Elsewhere, other desert terrains are also ideal for remote sensing purposes but as one moves into semi-arid and progressively more humid climes, the amount of vegetation in the region and the atmospheric humidity both increase.

Furthermore, away from the tropics towards higher latitudes, the sun elevation at the time of acquisition is lower and hence signal strength also falls. The sun elevation and

atmospheric humidity issues combine to reduce the data quality and the presence of vegetation, including lichen and mosses, acts to modify mineral spectra to the extent that the spectra of normally distinct minerals are sufficiently obscured or modified as to be lost within the general noise and vegetation spectra.

Another factor affecting all spectral data is the presence of water which absorbs so much of the incoming infrared radiation as to significantly suppress the amount of reflected energy available to the detector, reducing the amplitude of spectral features and rendering many normally distinct minerals indistinguishable.

Figure 5; Processed band ratio image of an ASTER scene (top left) showing a linear array of bright pixels not evident in the raw band data (top right) and a resultant linear array of largely spurious mineral zones mapped from the data (bottom left).

Although data may be correctly processed and converted to reflectance, the above factors and seasonal changes to vegetation conditions can combine to affect the extent to which minerals can be mapped in different but overlapping images and it is not always possible to level the mapping of minerals across scene boundaries. Where one scene has a lower signal, it may bring the threshold values for certain mineral indices into the levels of noise or, where a mineral spectrum has strong similarities to vegetation, such

ASTER Alteration Mineral Mapping; Scene Path 003, Row 200, View 3, S. Peru

as goethite which looks very similar to dry vegetation, there can be quite strong contrasts to mapped mineral distributions across scene boundaries.

2.2 Processing ASTER Data

The Level 1A scenes were converted to Level 1B before all were used to create a Digital Elevation Model (DEM) using the AsterDTM ENVI add on software of <u>Sulsoft</u> (Brazil) and this same DEM was in turn used to ortho-correct each of the image bands. Scenes that were acquired on the same day as part of a single data capture were then mosaicked together and treated as a single image strip for subsequent processing.

The atmospheric backscatter component is greatest at shorter wavelengths and most pronounced for ASTER data in band 1, diminishing exponentially to be insignificant in the SWIR bands. The effect is very significant however in the VNIR bands where the spectra for the iron oxide minerals are separated from vegetation and each other by the relationship between bands 1, 2 and 3 where, for the iron minerals, band 1 is consistently low relative to bands 2 and 3 and a critical slope change occurs at band 2 which signifies vegetation. If the backscatter is not corrected, band 1 will be artificially high and result in fewer iron minerals being mapped.

Bodies of water typically have a very flat spectrum in the VNIR and the response over known water bodies was used here to generate a spectrum representing the atmospheric backscatter that was subsequently removed from every pixel. As a check, pixels over obvious vegetation were checked in the corrected data to confirm that their spectra were showing band 1 (natural green) higher than band 2 (natural red).

Similarly, the "cross-talk" problem in the SWIR bands was removed using a spectral unmixing technique in <u>RASTUS</u> software to identify the "cross-talk" spectrum and remove it from each pixel in turn. Unless removed, "cross-talk" will record artificially high values in bands 5 and 9, diminishing apparent absorption in band 5 thereby reducing the potential for mapping alunite and pyrophyllite; increase the apparent absorption in band 6 thereby increasing the amount of kaolinite, and white micas (e.g. sericite, illite, phengite) mapped and increase the apparent absorption in band 8 thereby mapping chlorite, epidote and calcite more widely than it should (figure 2).

Once these corrections to the radiance data had been carried out, the data were then converted to reflectance using the "log residual" normalisation technique (Green & Craig, 1985) in <u>RASTUS</u> software. From these reflectance data, mineral indices were prepared and analysed separately for each constituent scene or data capture series. Indices were prepared for the suite of minerals using the methodology as listed in table 2.

The minerals selected are typical of those found in a variety of mineralised hydrothermal and metasomatic (skarn-type) systems and the reference spectra are taken from the USGS spectral library available in <u>ENVI</u> software and convolved to the ASTER band positions. The suffix number of each reference spectrum is that from the USGS reference library.

r

Australian Geological & Remote Sensing Services

Mineral or Style	Index processing routine
FeOx	Mask of ratios 2/1, 3/2, and 3/1 within known ranges for goethite, hematite
ļ	and jarosite applied to PC3 of PC123
Goethite	Mask of ratios 2/1, 3/2, within known ranges for goethite; applied to VNIR
	MF result for goethite 1.
Jarosite vnir	Mask of ratios 2/1, 3/2, within known ranges for jarosite; applied to VNIR
	MF result for jarosite 6.
Haematite	Mask of the FeOx index with jarosite and goethite pixels removed.
Advanced Argillic	Mask of ratios 4/5>1; 5/6<1; 7/6>1; 7/5>1; 7/8>1; 9/8<1, 5/8<1, 5/9<1
	applied to ratio 7/5.
Argillic	Mask of ratios 4/5>1; 5/6>1; 7/6>1; 7/5>1; 7/8>1; 9/8<1, applied to ratio 7/6
Phyllic	Mask of ratios 4/5>1; 5/6>1; 7/6>1; 7/8>1; 9/8<1, 6/8<1, 6/9<1 applied to
	ratio 7/6 for intensity and ratio 7/5 for AIOH composition
AIOH	Mask of ratios 4/5>1; 7/6>1, 7/8>1; applied to ratio 7/6
Propylitic	Mask of ratios 4/5<1, 5/6>1, 7/6<1, 7/5<1,7/8>1,9/8>1, 5/8>1, 6/9<1
	applied to ratio 5/8.
Carbonate	Mask of ratios 4/5>1, 5/6>1, 7/6<1, 7/5<1, 9/8>1, 6/9<1 applied to ratio 5/8.
SiO2	Mask of band ratios 12/13<1; 12/11<1; 13/11>1; 11/10>1 applied to TIR
	MF result for silica
Alunite	Mask of ratios 4/5>1; 5/6<1; 7/6>1; 7/5>1; 7/8>1; 9/8<1, 5/8<1, 5/9<1
	applied to SFF result for Alunite 1
Pyrophyllite	Mask of ratios 4/5>1; 5/6<1; 7/6>1; 7/5>1; 7/8>1; 9/8<1, 5/8<1, 5/9<1
	applied to SFF result for Pyrophyllite 3
Dickite	Mask of ratios 4/5>1; 5/6>0.99<1.01; 7/6>1; 7/5>1; 7/8>1; 9/8<1, 5/8<1,
	5/9<1 applied to SFF result for Dickite 1
Kaolinite	Mask of ratios 4/5>1; 5/6>1; 7/6>1; 7/5>1; 7/8>1; 9/8<1, 6/8<1, 6/9<1
	applied to SFF result for Kaolinite 7
Sericite	Mask of ratios 4/5>1; 5/6>1; 7/6>1; 7/5>1; 7/8>1; 9/8>1, 6/8<1, 6/9<1
(High-AlOH phyllic)	applied to SFF result for Muscovite 4
Phengite	Mask of ratios 4/5>1; 5/6>1; 7/6>1; 7/5<1; 7/8>1; 9/8>1, 6/8<1, 6/9<1
(Low-AlOH phyllic)	applied to SFF result for Muscovite 3
Jarosite swir	Mask of ratios 4/5>1; 5/6>1; 7/6<1; 7/5<1; 7/8<1; 9/8<1, 6/9>1 applied to
	SFF result for Jarosite 2
Opal	Mask of ratios 4/5>1; 5/6>1; 7/6<1; 7/5<1; 7/8<1; 9/8<1, 6/9<1 applied to
	SFF result for Opal 2
Dolomite	Mask of ratios 4/5>1; 5/6>1; 7/6<1; 7/5<1; 7/8<1; 9/8>1, 6/9>1 applied to
	SFF result for Dolomite 1
Calcite	Mask of ratios 4/5>1, 5/6>1, 7/6<1, 7/5<1,7/8>1,9/8>1, 5/8>1, 6/9<1
	applied to SFF result for SFF result for Calcite 3
Chlorite	Mask of ratios 4/5<1, 5/6>1, 7/6<1, 7/5<1,7/8>1,9/8>1, 5/8>1, 6/9<1
	applied to SFF result for SFF result for Chlorite 3
Epidote	Mask of ratios 4/5<1, 5/6>1, 7/6<1, 7/5<1,7/8>1,9/8>1, 5/8>1, 6/9<1
	applied to SFF result for SFF result for Epidote 3
Garnet	Mask of ratios 12/13>1; 14/13>1; 12/14>1; 12/11>1; 13/11<1, 14/11<1;
	14/10<1 applied to TIR MF result for garnet
CO3	Mask of ratios 14/13<1; 12/13<1, 12/11>1, 13/11>1, 11/10>1, 12/14>1,
	14/11<1, 14/10<1 applied to MF result for TIR CO3.

Table 2; Alteration minerals mapped and their respective processing routines and algorithms.

Two muscovite or phyllic alteration mineral indices were created in an attempt to map any variability in muscovite mineralogy from high AIOH variants (referred hereinafter as sericite) to low-AIOH (more MgOH, FeOH bearing and referred to hereinafter as phengite). The wavelength position of the maximum absorption in muscovite minerals is known to be controlled by the mineral chemistry and to range from 2194nm for high AIOH up to 2219nm for the low AIOH (figure 7a). Although the ASTER data cannot map such a wavelength shift in the absorption band, the ASTER spectra do show a variation in the shape of the absorption band at 2209nm (Figure 7b) proportional to the value of the band ratio 7/5 which can therefore be used to map this sericite – phengite continuum.

A phyllic index was created using simple band ratios to select only pixels that had a phyllic absorption feature at band 6 and the ratio 7/5 was used to provide a proxy numerical index of the wavelength position, higher values to the high-AIOH/low wavelength end of the continuum such that high-AIOH minerals would have values >1 and low AIOH <1 in this index (figure 7 and table 2).

The spectral feature fit (SFF) routine in <u>ENVI</u> software uses a least-squares fit approach to measure the closeness of fit between an image or pixel spectrum with a reference spectrum (Clark et al., 1990) and is directly proportional to the depth of the spectral feature and mineral abundance. This method was used to create indices for alteration minerals with spectral features in the SWIR because the method is direct although it is reputedly more sensitive to illumination, albedo and aspect effects than other methods.

Figure 7; a) Standard USGS reference spectra for high AIOH (muscovi4), moderately high AIOH (muscovi1), relatively low AIOH (muscovi8) and low AIOH (moscovi3) showing the progressive shift of the absorption band position to longer wavelengths and b) the same spectra convolved to the ASTER band configuration showing the variation in the shape of the 2209nm absorption band for the same minerals.

The SFF routine is used in conjunction with masks generated using arguments based upon band ratio properties to define only those pixels with spectra approximating the reference to reduce noise and false positives (table 2).

A matched filter (MF) routine also in <u>ENVI</u> is a rapid partial unmixing process that focuses on and maximises values where there is a match and suppresses the response

ASTER Alteration Mineral Mapping; Scene Path 003, Row 200, View 3, S. Peru

for the composite unknown background. It works well and is used for the VNIR, where the spectra are simple (3 bands), and in the TIR but gives inconsistent results and is thus not used for the SWIR minerals. However, in both the VNIR and the TIR, the MF routine is again used in close conjunction with band ratios to eliminate possible false positives. The band ratio masking algorithms for the VNIR and SWIR are derived from USGS reference mineral spectra and those in the TIR derived from mineral emission spectra taken from the John Hopkins Spectral Library in <u>ENVI</u>.

An alternative approach, the Spectral Angle Mapper (SAM) method developed in <u>ENVI</u> software from the work of Kruse and others (1993), measures the angular difference between the image spectrum and the reference spectrum but produces an inverted image in which the lowest values represent the closest match. In this author's experience, the method has given inconsistent results for many minerals and is used only in instances where the albedo and aspect effects preclude use of SFF.

With the exception of the FeOx, goethite, jarosite-vnir, haematite, AlOH, advanced argillic, argillic, phyllic, propylitic, carbonate, SiO2, garnet and CO3 indices, which were generated using band ratio values as constraints (table 2), thresholds were determined for each mineral index by first filtering pixels according to the band ratio constraints listed in table 2 before visually comparing the remaining pixel spectra against a reference spectrum using a simple density slice routine to highlight the different index levels. Where the top pixel values for the index of any mineral did not exhibit characteristic or diagnostic spectral features of that mineral, the mineral was omitted from the final output.

Where a threshold could be determined, only those pixels with index values greater than the threshold were preserved and ultimately used to create the full regional mosaic index. This image was saved as the final index for that mineral and a region of interest created from the index marking those pixels assigned to that mineral in a specific colour. The index was then filtered using a combination of closing and median filters to consolidate clustered pixels into zones and eliminate outliers or noise. These pixels were also defined as a colour coded smoothed region of interest and saved together for final output visualisation. The filtered index image was finally exported as both a vector file delineating the smoothed occurrence boundaries for each mineral and as a pseudocolour raster image draped over albedo to show variation in intensity for each mineral.

The regions of interest, both individual pixel and filtered, were individually displayed on a greyscale albedo background so as to provide an overview of the distribution of the various alteration minerals. Unfortunately, in <u>ENVI</u> software, later created regions of interest overprint the earlier ones where they overlap. This is not an issue for the alteration minerals in the SWIR because the way in which the regions are generated means they would not overlap or only minimally overlap. However, the iron oxide and silica regions, being created in the VNIR and TIR data respectively can and do overlap the other minerals. Thus care should be taken in interpreting the region of interest output image.

Alteration style indices produced for FeOx (ferruginisation) SiO2 (silicification), advanced argillic, argillic, phyllic, propylitic and carbonate were also saved as both pixel regions of interest mapping all possible pixels with appropriate characteristics and as filtered regions of interest. The output for all alteration style indices were smoothed and filtered

as for the individual mineral indices and both region of interest images, intensity images and vector outputs prepared.

Some indices map very extensively. Garnet for example maps more widely than would be anticipated due to its spectral similarity to mafic rocks. For this reason, the garnet index is further thresholded at the 97% probability level so as to map only the top 3% of the possible pixels. Haematite also maps very widely because it lies spectrally between goethite and jarosite end members. For this reason, the Matched Filter index for haematite is unreliable and the FeOx index is used instead. Haematite is therefore more of an indication of iron enrichment that cannot be attributed to either goethite or jarosite. Because it also maps extensively, it is also thresholded at the 97% probability level.

The outline boundary vectors for each mineral and alteration style were imported into MapInfo and can be visualised either individually or collectively. The advantage here is that where overlaps occur, the ornament allows that overlap to be noted and some idea of the total mineral assemblage can be generated. These vector files can be attributed in such a way as to permit interactive interrogation of the ASTER output data with other data sets in a GIS.

Other output includes standard ER Mapper files for 2-3-1 (rgb); 6-3-1 (rgb); 5-6-8 (rgb), albedo, a RGB combination of FeOx, AIOH, and SiO2 indices (FAS), as well as pseudocolour images showing the variation in intensity for each mineral identified. The 2-3-1 (rgb) image is a simulated true colour image whereas the 6-3-1 RGB image is an ASTER equivalent of the standard Landsat 7-4-1 (rgb) image product and can be The 5-6-8 (rgb) image however shows alteration styles of interpreted similarly. advanced argillic in blue tones, argillic and phyllic in pink-red tones and propylitic in vellow-green tones. The FAS (FeOxAIOH-SiO2) (rgb) image shows iron rich areas in red, hydrothermally altered areas in green and silicified zones in blue. Combined ironclay anomalism is vellow in colour, iron-silica magenta, clay-silica cyan, and all three combined is white. Furthermore, a Digital Elevation Model (DEM) was produced for the granule and from this both greyscale and pseudocolour shaded relief images created and exported into MapInfo. All output images have been compressed using the ER Mapper ECW compression and subsequently imported into MapInfo for display with the vector files as a single MapInfo workspace.

In addition to a regional mosaic compiled from the results for all image strips, workspaces and output for each if the individual strips were also compiled.

2.3 Interpreting ASTER Data

The quality and reliability of the resultant mineral distribution maps can only be judged against accurate field observations and mapping. However, some observations with regard to the output products are relevant.

As noted above, pixels of these dimensions will almost invariably be mixed in terms of their contents and so pure mineral spectra are unlikely. Where a mineral has been mapped, the mineral mapping in this study assumes that the pixel spectrum represents a single mineral. However, minerals occurring together produce mixed spectra that can

appear very much like another mineral. For example, an equal mix of kaolinite and alunite appears spectrally like dickite in the ASTER band configuration (figure 3).

The nature in which certain alteration minerals occur should always be taken into consideration. For example, in hydrothermal settings, pyrophyllite and dickite typically occur in narrow veins and are unlikely to spectrally dominate a wide zone of 30m ASTER pixels. Thus, indications of their presence might represent a mixture of other more common minerals.

Additionally, although the reference spectra used for the mineral mapping are those of hydrothermal alteration minerals, some are very similar to a host of other minerals that may also be present. For example, the phyllic minerals mapped as sericite or high-AlOH phyllic and those mapped as phengite or low-AlOH phyllic are in a spectral continuum that includes muscovites, illites, and montmorillonites, all of which are practically indistinguishable at this spectral resolution (figure 5).

Similarly, although chlorite and epidote are used for the propylitic minerals, it is important to remember that the propylitic mineral spectra will also likely capture occurrences of high-MgOH clays derived from mafic rocks. Thus, the minerals mapped should be viewed in their broadest context and not as absolute or perfect examples of those minerals.

Thus, care must always be taken when interpreting the mineral map and the indicated presence of a particular mineral should be viewed in the context of its spatial coherence, the minerals mapped in close association with it as well as its 3-dimensional distribution. When identifying and characterising alteration zones and systems, associations of the more common alteration minerals are more likely to be indicative of the alteration facies and zones of the rarer minerals viewed more positively if they are indeed narrow and in keeping with their known mode of occurrence. Alteration minerals that map in coherent zones that are 3-dimensionally consistent with known or conceptual alteration systems will usually be more significant than those which occur either in isolation or in rare or obscure associations.

Figure 5; Comparitive plots of ASTER spectra for a range of phyllic minerals showing their overall similarity and hence likelihood for being mapped together

The iron oxide minerals mapped specifically are goethite, haematite and jarosite. The spectral variability of hematite falls within the range of both goethite and jarosite and as such is difficult to map as a specific index. By creating a total FeOx index as applied here, haematite falls within the area not covered by either goethite or jarosite. However, it must be noted also that mixtures of both goethite and jarosite can produce the same spectral shape as haematite and so the mapped distribution of haematite outside the goethite and jarosite end-members should be treated as mixed iron oxides and/or haematite. Goethite and jarosite usually map more discretely and are more likely to be representative of ferruginisation associated with mineralisation. However, the more intense zones of the haematite_97 index might also represent ferruginisation.

The jarosite index generated using the SWIR does not always match that of jarosite using the VNIR bands. This is not unusual in so much as the spectral absorption feature for jarosite in the SWIR is often subdued in the presence of other alteration minerals such as alunite and sericite that have much stronger absorption features and a higher overall brightness. Furthermore, the jarosite typically occurs on fracture surfaces and is not exposed to the sensor across the full area of the pixel.

A combination of opaline silica and jarosite is quite common in reality and also frequently indicated within ASTER imagery. This may be a real association but care must be exercised in interpreting such associations because the spectral absorption features for both minerals are at the same wavelength and each mineral would score highly in the index for the other, thus, the association may be artificial. Furthermore, where jarosite and/or opaline silica are present with other minerals such as alunite or any of the phyllic minerals, their reflectance and overall strength of spectral features are such that the diagnostic jarosite and opal features are likely to be lost or at best subdued.

Problems with the ASTER data themselves can impact on the way minerals map. The advanced argillic minerals such as alunite and pyrophyllite can be lost due to the energy over-spill or "crosstalk" problem within ASTER band 4 while chlorite, epidote and calcite can map more widely (see above).

Another problem identified in ASTER data concerns instability in the detector for band 4 which can give wide fluctuations in the values for that wavelength, impacting upon the slope between bands 4 and 5 in the spectrum so that absorption is consistently mapped at band 5. Thus, where both pyrophyllite and alunite map more widely than might normally be expected it could be due to this instability problem. Bands 8 and 9 also frequently appear to have anomalously high values and may need to be adjusted by applying a gain factor. When left unadjusted, the abnormally high values in either of these bands can impact greatly on how all minerals map.

Additionally, many minerals share an absorption band with certain vegetation species and care should be taken when interpreting mapped mineral zones that have a greenish colour in the 6-3-1 (rgb) and 2-3-1 (rgb) reference images. Where this problem is widespread, it may be necessary to remove the vegetation by masking or attempting to unmix the vegetation and mineral spectra using any of a number of unmixing algorithms. However, the successful unmixing of vegetation spectra depends upon accurate and usually multiple vegetation species and spectra being identified within the data and,

although this routine may work with hyperspectral data is less likely to work with data of ASTER's spectral resolution.

All mineral indices, but especially those of the phyllic minerals, can have conflicts with areas of water, cloud, snow and ice but these can easily be recognised when interpreting the data by checking the output against the 63-1 (rgb) and 2-3-1 (rgb) reference images. Both very commonly map to areas of deep shadow in scenes with high albedo contrast due to the "crosstalk" effect and care should be exercised in interpreting such zones.

The advanced argillic, argillic and phyllic minerals commonly map extensively along the northern shores of water bodies. The cause of this phenomenon is not clear but may be a similar effect to the harmonic "crosstalk" effects noted above or may be due to other factors such as an increase in humidity local to large water bodies. In any event, the phenomenon should be noted and caution taken in drawing any significance from such mapped mineral zones.

The propylitic and calc-silicate minerals are typically dark and relatively low in overall reflectance by comparison with other minerals being mapped. Frequently they map to areas of shadow and caution should be exercised in interpreting any areas identified as being of these minerals that are in significant shadow. They are also often in conflict with vegetation and once again care should be exercised in interpreting areas indicated as being propylitic or calc-silicate minerals that are also green in the 6-3-1 (rgb) or 2-3-1 (rgb) reference images.

Garnet is mapped using the TIR bands and usually maps much more widely than would be expected, probably due to the presence of mafic within the area covered by the scene. Mafic and carbonate rocks have a similar thermal emission spectrum and hence skarn alteration should be interpreted only where garnet is indicated in conjunction with carbonate and calc-silicate minerals.

3. Alteration in the Redton District.

The alteration zones as mapped by the ASTER image data are heavily influenced by vegetation. Frequently, alteration mapped appears coherent and to have some geologic or structural control but is nevertheless coincident with lush vegetation and absent from areas of outcrop within the same area. Caution is therefore urged in the interpretation of these alteration zones and if used in exploration targeting they should be viewed together with geological and structural parameters very much in mind.

The contrast in the amounts of alteration being mapped across scene boundaries testifies to the seasonal impact of vegetation. Lichen and mosses, that cover outcrop and, having absorption features at similar wavelengths to advanced argillic, propylitic and carbonate minerals, give conflicting signals leading to the generation of false mineral zones which are discontinuous across scene boundaries.

Addressing the vegetation problem by elimination of those pixels identified in the VNIR as being dominated by vegetation would clear away many of the false mineral zones. Thus, a second suite of mineral zones were created from the original indices after

applying a mask created from the "Normalised Difference Vegetation Index (NDVI) in which any pixel with a positive sign (i.e. containing significant vegetation) was masked. The residual mineral alteration zones were then imported into MapInfo and analysed and those indications of alteration with a coherent geologic shape and association with other alteration minerals and styles were mapped as targets and ranked according to their association of alteration minerals, styles and structural features.

Targets were ranked according to their indicated alteration mineralogy with a score of 0.5 allocated for the presence of an alteration style such as argillic plus 0.5 for the indication of a specific mineral of that style such as kaolinite up to a maximum of 6. Carbonate and propylitic styles are often seen peripheral to other zones and can represent either an alteration halo or the background lithology. Also, they are spectrally very similar and so are treated as one unless the alteration style indicated suggests it may be calc-silicate/skarn type mineralisation when they would be considered and scored separately. Added to the basic score assigned for the alteration styles and minerals indicated would be a value of 1 for a clear zonation from high-temperature to low temperature alteration facies or a spatial relationship with an intrusive. The presence of clear, strong, linear structural elements in association with the alteration are scored at 0.5 for each but with a bonus 0.5 where three occur and intersect, making a maximum ranking value of 10.

It should be noted that the review of the data found that many of the potential targets so identified were still seen to be associated with vegetated areas or fringing ice, both of which are known to often give rise to spurious anomalies. Furthermore, with no knowledge of the style and scale of alteration associated with known mineralisation in the district, the exercise in defining targets can only be considered as rudimentarily indicative and all targets and other mapped associations that were not targeted should be reconsidered and re-evaluated in the light of such knowledge.

The indications of alteration selected and ranked are listed in table 3.

ID	Easting	Northing	Area	Description	Rank
1	349853	6231812	158.48	Large area fringing ice; SiO2; phyllic (sericite); with argillic (kaolinite); adv. argillic (alunite) centres; FeOx; propylitic (chlorite)/carbonate halo; some suggestions of NE & ENE structural trends in SiO2 & FAS images	6.5
2	385887	6213914	33.83	SiO2 with phyllic (sericite); argillic (kaolinite); adv. argillic; FeOx (hematite, jarosite); propylitic (chlorite); carbonate (dolomite); N & SE linears	6.5
3	372659	6218147	52.04	SiO2; Phyllic (sericite, phengite); argillic (kaolinite); adv. argillic (pyrophyllite); FeOx (hematite); propylitic (chlorite)/carbonate (calcite); strong NE orientations in FeOx, SiO2, phyllic; Lush vegetation	6.5

Table 3; Indications of hydrothermal alteration and exploration targets.

ID	Easting	Northing	Area	Description	Rank
				Linked fault zone; N & SE linears plus several NE	
		1		fractures; SiO2; Phyllic (sericite, phengite) in	
1				linkage zone, centres of argillic (kaolinite, dickite);	
				adv. argillic (alunite, pyrophyllite); FeOx (hematite);	
4	372752	6202829	224.59	propylitic (chlorite)/carbonate (calcite)	8
		1		Scattered zones of SiO2, phyllic (sericite); argillic	
				(kaolinite): adv. argillic (alunite, pyrophyllite) within	
				ice; semplance of antitude zonation, adv. arginic	
	251404	6202205	07.26	nign, phylic low - telescoped system? Some SE	45
<u> </u>	301494	0203305	92.30	Rical control?	4.0
				sioz, privinc (sencite, priengite), arginic, propulitio(corbonate (coloite); aligned along SE	
6	318872	6208530	8.54	linear	
Ŭ	010072	0200000	0.04	SiO2: shullic (cericite): amillic (kaolinite): adv	
}				arcillic (alunite); FeOy (hematite_jarosite); pronvlitic	
7	313502	6188503	66 18	(chlorite): SF and NF linears: edge of ice	7
i	0.0001		00,10	SiO2 adv argillic (alunite): argillic (kaolinite): phyllic	
				(sericite); FeOx (iarosite); propylitic	
8	322206	6196916	38.39	(chlorite)/carbonate (calcite); NE linear	6.5
				Zones of SiO2; Adv. argillic (alunite, pyrophyllite);	
				argillic (kaolinite); phyllic (sericite, phengite);	
		· ·		propylitic (chlorite); carbonate (calcite); FeOx	
9	359437	6187012	105.15	(hematite, jarosite); in valley with lush vegetation	6
				SiO2; Adv. argillic (alunite, pyrophyllite); argillic	
				(kaolinite); phyllic (sericite); FeOx (hematite);	
				propylitic (chlorite); fringing ice; N, NE and SE	_
10	327803	6174243	137.41	linears.	8
				SiO2; Adv. argillioc (alunite); argillic (kaolinite);	
	255040	6000040	00.04	pnyllic (sericite); FeOX; propylitic (chionte);	EE
11	300010	6223213	88.01	carbonate; mnging ice;	5.5
			-	SiOZ, adv. arginic (alunne), arginic (kaolinne), phyllic	
12	337760	6104288	6.02	(sencile), propylic (chrome)/carbonate (calcile),	6
<u> </u>	337703	0134200	0.02	SiO2: adv. argillic (alunite): argillic (kaolinite): nbyllic	
13	346553	6197489	19.54	(sericite): propylitic (chlorite): N linear	5.5
				Zones of SiO2: Adv. argillic (alupite ovrophyllite)	
		ł		argillic (kaolinite, dickite); phyllic (sericite, phenoite);	
				propylitic (chlorite); carbonate (calcite); FeOx	
14	384094	6188282	77.94	(hematite); SE linear; in valley with lush vegetation	6.5
				SiO2; Adv. argillic (alunite, pyrophyllite); argillic	
				(kaolinite, dickite); phyllic (sericite, phengite); FeOx	
				(haematite); propylitic (chlorite); carbonate	
15	393897	6200081	90.88	(dolomite); SE linear	6.5
				SiO2; Adv. argillic (alunite, pyrophyllite); argillic	
			.	(kaolinite); phyllic (sericite, phengite); carbonate	
16	404335	6196893	71.54	(dolomite); N, NE, SE linears;	6.5
		1		SiO2; adv. argillic (atunite, pyrophyllite); argillic	
-	405700	0400400	64.44	(kaolinite); phyllic (sericite); carbonate (dolomite);	
17	405/36	6786483	51.41	N, NE linears	j 5.5 j

Table 3 Continued: Indications of hy	vorothermal alteration and exploration targets.
--------------------------------------	---

ID	Easting	Northing	Area	Description	Rank
				SiO2; adv. argillic (alunite); argillic (kaolinite,	
	i			dickite); phyllic (sericite, phengite); FeOx	
1				(haematite); carbonate (dolomite); propylitic; NE,	
18	414549	6173788	99.12	SE linears.	7
[SiO2; adv. argillic (alunite); argillic (kaolinite); phyllic	
	1			(sericite, phengite); FeOx (haematite, jarosite);	
				carbonate (dolomite, calcite); propylitic (chlorite,	
19	359913	6168863	180.6 9	epidote); N, NE, SE linears	8
				Adv. argillic (alunite); argillic (kaolinite); phyllic	
j			ļ	(sericite); propylitic (chlorite)/carbonate; NE linear -	
20	318191	6152804	64.44	haze effect	4.5
				SiO2; adv. argillic; argillic (kaolinite); phyllic	
1]		1	(sericite); FeOx (haematite, jarosite); propylitic	
21	332292	6150105	57.84	(chlorite)/carbonate (calcite); NE linears	6
				SiO2, phyllic (sericite); argillic (kaolinite); adv.	
22	379279	6154497	42.65	argillic (alunite); propylitic (chlorite)/carbonate	5
				SiO2; adv. argillic (pyrophyllite, alunite); argillic	
				(kaolinite); phyllic (sericite, phengite); FeOx	
		1		(haematite); carbonate (dolomite)/propylitic; N, SE	
23	362745	6156375	63.19	linears	7
				Adv. argillic (alunite, pyrophyllite); SiO2; argillic	
[ĺ	[{	(kaolinite, dickite); phyllic (sericite); FeOx	1
				(haematite); carbonate (dolomite)/propylitic	
24	407191	6162354	36.13	(chlorite); N, NE, SE linears.	8
				Phyllic (sericite); SiO2; FeOx (haematite); argillic	
				(kaolinite); adv. argillic (alunite, pyrophyllite);	
25	399254	6118436	65.21	propyliyic (chlorite)/carbonate (dolomite): NE linear.	6.5
				Adv. argillic (alunite, pyrophyllite); argillic (kaolinite);	1
				phyllic (sericite); SiO2; carbonate	
26	405154	6128728	38.61	(dolomite)/propylitic; NE, SE linears.	6

Table	3 Continued	Indications of	^r hydrothermai	alteration ar	nd exploration targets.
-------	-------------	----------------	---------------------------	---------------	-------------------------

4. References

Agar, R.A., & Coughlin, T.C. 2001; "Gold and Base Metal Exploration Project Generation Using Landsat TM Data and Spectral Angle Mapping for Specific Alteration Styles in the Peruvian Andes." Proc. International Geoscience & Remote Sensing Symposium, Sydney, July 2001, vol. VI, pp 2501-2503.

Clark, R.N.; Gailagher, A.J. and Swayze, G.A., 1990; *"Material Absorption Band Depth Mapping of Imaging Spectrometer Data Using a Complete Band Shape Least-Squares Fit with Library Reference Spectra."* Proceedings of 3rd Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publication, 90(54): p. 176 – 186

Coulter, D., 2002; "ASTER Problems and Resolutions; A Data User's Perspective". Presented to "ASTER Unveiled," Annual General Meeting of the Geological Remote Sensing Group, Geological Society of London, December 2002.

Green, A.A. and Craig, M.D., 1985; "Analysis of aircraft spectrometer data with *logarithmic residuals.*" Proceedings of AIS Workshop, 8-10 April; JPL Publication, 85(41); p. 111 – 119.

Kruse, F.A., Lefkoff, A.B., Boardman, J.B., Heidebrecht, K.B., Shapiro, A.T., Barloon, P.J., and Goertz, A.F.H., 1993; "The Spectral Image Processing System (SIPS) – Interactive Visualization and Analysis of Imaging Spectrometer Data." Remote Sensing of Environment, v.44 p.145 –163.

Watanabe, H., 2002; "Current Status of ASTER, ASTER Ground Data System and its Application." Presented to "ASTER Unveiled," Annual General Meeting of the Geological Remote Sensing Group, Geological Society of London, December 2002.

Bob Agar, Australian Geological & Remote Sensing Services

_....

TAKLA - REDTON PROJECT

0

0

1

1

0

0

Γ

2005 ASSESSMENT REPORT

Appendix 10

Probabilistic Targeting Using MOCA

Probabilistic Targeting Using MOCA (Monte Carlo) Targeting Software

By: Dan Core Geoinformatics Exploration Inc October 2005

Introduction

GXL proprietary MOCA Targeting Software is a model-driven method of targeting for mineral deposits using Monte Carlo probabilistic algorithms. Model-driven methods are in contrast to trained methods (e.g. Weights of Evidence) where deposits are compared to many datasets to determine which areas look statistically the most like areas with deposits. In addition to being model-driven, MOCA also employs a multiplicative probabilistic scoring method in contrast to additive methods used by most other targeting methods. The major advantages of probabilistic scoring are that a wide range of scores are generated for a small number of input layers making only a few key layers necessary and it decreases the number of false positives by eliminating areas that lack any of the key features.

MOCA uses Monte Carlo algorithms in order to incorporate uncertainty and risk into the targeting procedure. Monte Carlo algorithms are iterative methods of estimating calculations that are difficult to make directly. The final output of the MOCA program is an estimate of the probability of success everywhere in the project area. This provides an effective means of ranking targets against each other and, if employed consistently, should allow for comparison of targets across projects. Oil companies have employed this strategy for over twenty years and have experienced increased success as a result.

Defining Variables and Creating Layers

In order to use MOCA it is necessary to generate a soft model for the deposit type of interest and then determine the key input layers necessary for targeting the model. Development of models for MOCA is based largely on the petroleum systems model which uses source, maturation, pathway, trap and reservoir as the major input variables. This exact system could work for some basinal ore deposits such as Mississippi Valley type deposits but will likely require modification for all other deposit types.

Once the key features for a deposit type are decided it is necessary to make layers that are representative of those features. For example, the set of key features for porphyry copper gold environments could be a fertile source region, melting of the source region to generate hydrous magmas, migration pathways for the magma, and a trap to stop the magma's ascent at the appropriate depth. The layer used as input to MOCA for the migration pathways would most likely be a major structure interpretation with deep structures defined by datasets such as gravity worms and seismic data. The input layer for the trap could be an intrusion interpretation since the intrusions represent magma getting trapped in the crust.

Assigning Probabilities and Uncertainties

Every feature that is input into the MOCA program must be assigned a set of attributes that describe that likelihood that a feature has been identified properly, and if that feature acts as one of the components of the model. The probability that a feature has been identified properly is known as the probability of existence (P_{ex}) and the uncertainty of this value is the uncertainty of existence (U_{ex}). If developing an intrusive layer, the P_{ex} and U_{ex} could be assigned in the following manner:

Feature	Source	Pex	Uex
Intrusion 1	High quality mapping; characteristic magnetic signature	1	0
Intrusion 2	Poor quality mapping; characteristic magnetic signature	0.85	0.15
Intrusion 3	High quality mapping	0.95	0.05
Intrusion 4	Characteristic magnetic signature	0.7	0.2
Intrusion 5	Poor quality mapping	0.5	0.3
Intrusion 6	Ambiguous magnetic signature	0.3	0.2

The P_{ex} is based on how confident the identification of an intrusion is. Intrusion 1 is present in two high quality data sets so it is almost certainly there while intrusion 5 occurs in one poor quality dataset so it is impossible to be certain of it existence. It is also possible for an intrusion interpreted using high quality data to get a low score if the data are ambiguous as is the case for intrusion 6. The uncertainty is an estimate of the error on the estimate of P_{ex} . This error is based almost entirely on the quality of the data. In this case intrusions from poor quality mapping have U_{ex} of 0.3, those from the magnetic survey have U_{ex} of 0.2 and those from high quality mapping have U_{ex} of 0.1.

The probability that the feature has the desired effect and acts as one of the features of the model is called the probability of effect (P_{eff}) and the uncertainty on this value is the uncertainty of effect (U_{eff}). These values may be assigned for the intrusion described above as follows:

Feature	Peff	Ueff	Pchem	Uchem	Mchem
Intrusion 1	0.2	0.1	1	0	2
Intrusion 2	0.2	0.1	0.7	0.12	2
Intrusion 3	0.2	0.1	0.8	0.06	0.33
Intrusion 4	0.2	0.1	1	0	1
Intrusion 5	0.2	0.1	1	0	1
Intrusion 6	0.2	0.1	1	0	1

The P_{eff} is initially the same for all intrusions because the quality of the datasets used to map an intrusion has no bearing on the likelihood that it has an effect. However, MOCA has the flexibility to allow modifiers for probability to make use of datasets that provide more information about the feature. In the example above, the chemistry of the intrusions is being used to raise or lower the P_{eff} . The P_{chem} is the likelihood that we know the chemistry, U_{chem} is the uncertainty on P_{chem} and M_{chem} is a factor that is applied to P_{eff} if we know the chemistry. Intrusion 1 is known to have favorable chemistry since the P_{chem} is 1 and the U_{chem} is 0 so its P_{eff} will be doubled on each iteration. Intrusion 2 will be treated as favorable in approximately 70% of the iterations. Intrusion 3 has chemistry that is not favorable and will therefore have its P_{eff} multiplied by 0.33 on 80% of the iterations. Nothing is known about the chemistry of intrusions 4, 5 and 6 so the P_{eff} is left unchanged.

MOCA Algorithm

After assigning probability and uncertainty values, the variables are input into the MOCA program. MOCA then runs a certain number of iterations (in most cases 1000) using the probability distributions for Pex, Pett and any modifiers to assign values for each iteration. Features

are first checked to see if they exist. This is done by comparing the value for P_{ex} generated for each iteration against a random number between 0 and 1. If the feature exists a similar check is made to determine if it has the desired effect incorporating any modifiers. Examples of this are shown for intrusions 1 and 2 in Tables 1 and 2 at the end of this report.

On each iteration all the features that exist and have the desired effect are placed on a grid and those grids are stored to disk. After all the iterations have been completed MOCA reads through all the stored grids and determines the average probability of success for each of the input layers and then calculates the overall probability of success.

Probability of Success

The calculations described above generate a series of ones and zeros where ones represent a success on a given iteration and zeros represent a failure. A series of ones and zeros generates a binomial statistical distribution which has a mean number of successes (μ) and a variance on the number of successes (σ^2) for N iterations defined by:

$$\mu = Np \tag{1}$$

$$\sigma^2 = Np(p-1) \tag{2}$$

where *p* is the overall probability of success on any given iteration. The variable *p* is the value we are interested in so we count the number of successes (μ) and divide by the number of iterations (*N*) giving an overall probability of success. This is done for all layers to generate a probability layer for each input variable. The overall probability of success is determined in two ways. The decision tree probability is calculated by counting the number of iterations where all variables overlapped and then dividing by the number of iterations. This is another binomial distribution as described above. The multiplied probability is determined by multiplying the probability of success (*p*) for each of the input layers.

Uncertainty

Because the Monte Carlo algorithm used here generates a binomial distribution, the variance is directly related to the probability calculated as described above. For *p* values of 0 and 1, $\sigma^2 = 0$ and σ^2 has a maximum value where p = 0.5. Therefore, reporting a standard deviation for the final probabilities is meaningless because it is related to the probability by a simple equation. The uncertainty can be used to determine if enough iterations were used to obtain a statistically significant result. This is done using the standard error which is an estimate of how well you can estimate the p value for a given number of iterations and is defined by:

$$s.e. = \frac{p(p-1)}{\sqrt{N}} \tag{3}$$

The worst estimate of *s.e.* is where p = 0.5. The table below shows how the *s.e.* changes at p = 0.5 with different numbers of iterations.

Iterations	s.e.
1	0.25000
2	0.17678
5	0.11180
10	0.07906
100	0.02500
1000	0.00791
10000	0.00250
100000	0.00079

Note that use of equation 3 above requires *p* is not equal to 0 or 1.

	1		Peff	0.2		Pchem		1		
Uex	0		Ueff	0.1		Uchem		0		
Dex	Normal		Deff	Normal		Dchem		Normal		
						Mchem		2		
Iterations	1	2	3	4	5	6	7	8	9	10
Does the intrusion exi	ist?									
Pex(i)	1	1	1	1	1	1	1	1	1	1
Comparison data	0.09	0.60	0.04	0.84	0.08	0.71	0.05	0,44	0.04	0.33
Exists	1	1	1	1	1	1	1	1	1	1
Does it have the desir	ed effect? This	s is the sa	me for al	l intrusions	but can	be modifie	d for age	or chemis	stry.	
				0.01	0.07	0.20	0.00	0.00	0.20	0.15
Peff(i)	0.20	0.27	0.08	0.21	0.27	0.30	0.20	0.22	0.00	0.10
Peff(i) Does the intrusion ha don't change the prot	0.20 we the right ch pability.	0.27 emsitry?	0.08 If yes, do	uble the pro	obability	of the intru	0.20 Ision hav	0.22 e the desi	red effect.	If not,
Peff(i) Does the intrusion ha don't change the prot Pchem(i)	0.20 we the right ch pability. 1	0.27 emsitry? 1	0.08 If yes, doi 1	uble the pro	0.27 obability 1	of the intru	usion hav	0.22 The desirent of the desirent of the desirent of the desirent of the desirence of the d	red effect.	If not,
Peff(i) Does the intrusion ha don't change the prot Pchem(i) Comparison data	0.20 we the right ch pability. 1 0.33	0.27 Iemsitry? 1 0.48	0.08 If yes, do 1 0.95	0.21 uble the pro 1 0.27	0.27 obability 1 0.24	of the intru 1 0.28	0.20 Ision hav 1 0.63	0.22 e the desir 1 0.56	red effect. 1 0.37	1 0.10
Peff(i) Does the intrusion ha don't change the prot Pchem(i) Comparison data Right chem	0.20 we the right ch pability. 1 0.33 1	0.27 nemsitry? 1 0.48 1	0.08 If yes, doi 1 0.95 1	0.21 uble the pro 1 0.27 1	0.27 obability 1 0.24 1	0.30 of the intru 1 0.28 1	0.20 Ision hav 1 0.63 1	0.22 re the desin 1 0.56 1	0.38 red effect. 1 0.37 1	1 If not, 0.05
Peff(i) Does the intrusion ha don't change the prot Pchem(i) Comparison data Right chem Multiplier	0.20 we the right ch pability. 1 0.33 1 2	0.27 emsitry? 1 0.48 1 2	0.08 If yes, doi 1 0.95 1 2	0.21 uble the pro 1 0.27 1 2	0.27 5 5555 1 0.24 1 2	0.30 of the intru 1 0.28 1 2	0.20 Ision hav 1 0.63 1 2	0.22 e the desin 1 0.56 1 2	0.38 red effect. 1 0.37 1 2	0.10 1 0.05 1 2
Peff(i) Does the intrusion ha don't change the prot Pchem(i) Comparison data Right chem Multiplier Multiply Peff(i) by Mul	0.20 we the right ch pability. 1 0.33 1 2 ttiplier to gene	0.27 nemsitry? 1 0.48 1 2 rate Peff_	0.08 If yes, do 1 0.95 1 2 mod(i) an	0.21 uble the pro 1 0.27 1 2 d determin	0.27 obability 1 0.24 1 2 e if the ir	0.30 of the intru 1 0.28 1 2 strusion ha	0.20 Ision hav 1 0.63 1 2 d the des	0.22 e the desin 1 0.56 1 2 sired effect	0.38 red effect. 1 0.37 1 2 2	0.10 1 0.05 1 2
Peff(i) Does the intrusion ha don't change the prot Pchem(i) Comparison data Right chem Multiplier Multiply Peff(i) by Mul Peff_mod(i)	0.20 ve the right ch bability. 1 0.33 1 2 Itiplier to gene 0.41	0.27 temsitry? 0.48 1 2 rate Peff_ 0.55	0.08 If yes, do 1 0.95 1 2 mod(i) an 0.15	0.21 uble the pro 1 0.27 1 2 d determin 0.41	0.27 55555 0.24 1 2 2 6 if the ir 0.53	0.30 of the intru 1 0.28 1 2 strusion ha 0.61	0.20 Ision hav 1 0.63 1 2 d the des 0.40	0.22 e the desin 1 0.56 1 2 sired effect 0.44	0.38 red effect. 1 0.37 1 2 t. 0.77	0.10 1 0.05 1 2 0.30
Peff(i) Does the intrusion ha don't change the prot Pchem(i) Comparison data Right chem Multiplier Multiply Peff(i) by Mul Peff_mod(i) Comparison data	0.20 ve the right ch pability. 1 0.33 1 2 Itiplier to gene 0.41 0.33	0.27 nemsitry? 1 0.48 1 2 rate Peff_ 0.55 0.12	0.08 If yes, doi 0.95 1 2 mod(i) an 0.15 0.80	0.21 uble the pro 0.27 1 2 d determin 0.41 0.75	0.27 bbability 1 0.24 1 2 e if the ir 0.53 0.42	0.30 of the intru 0.28 1 2 strusion ha 0.61 0.90	0.20 Ision hav 1 0.63 1 2 d the des 0.40 0.17	0.22 e the desi 1 0.56 1 2 sired effect 0.44 0.06	0.38 red effect. 1 0.37 1 2 t. 0.77 0.93	0.10 1 0.05 1 2 0.30 0.52
Peff(i) Does the intrusion ha don't change the prot Pchem(i) Comparison data Right chem Multiplier Multiply Peff(i) by Mul Peff_mod(i) Comparison data Effect	0.20 ve the right ch pability. 1 0.33 1 2 Itipiler to gene 0.41 0.33 1	0.27 nemsitry? 1 0.48 1 2 rate Peff_ 0.55 0.12 1	0.08 If yes, do 1 0.95 1 2 mod(i) an 0.15 0.80 0	0.21 uble the pro 1 0.27 1 2 d determin 0.41 0.75 0	0.27 bbability 1 0.24 1 2 e if the ir 0.53 0.42 1	0.30 of the intru 1 0.28 1 2 ntrusion ha 0.61 0.90 0	0.20 Ision hav 1 0.63 1 2 d the des 0.40 0.17 1	0.22 e the desin 1 0.56 1 2 sired effect 0.44 0.06 1	0.38 red effect. 1 0.37 1 2 t. 0.77 0.93 0	0.10 1 0.05 1 2 0.30 0.52 0
Peff(i) Does the intrusion ha don't change the prot Pchem(i) Comparison data Right chem Multiplier Multiply Peff(i) by Mul Peff_mod(i) Comparison data Effect Does the intrusion ge otherwise.	0.20 we the right ch pability. 1 0.33 1 2 Itiplier to gene 0.41 0.33 1 et included in t	0.27 emsitry? 1 0.48 1 2 rate Peff_ 0.55 0.12 1 he final gr	0.08 If yes, do 1 0.95 1 2 mod(i) an 0.15 0.80 0 id? This i	0.21 uble the pro 1 0.27 1 2 d determin 0.41 0.75 0 is a 1 if the	0.27 bbability 1 0.24 1 2 e if the ir 0.53 0.42 1 intrusior	0.30 of the intru 1 0.28 1 2 strusion ha 0.61 0.90 0 0	0.20 Ision hav 1 0.63 1 2 d the des 0.40 0.17 1 1 s and ha	0.22 e the desin 1 0.56 1 2 sired effect 0.44 0.06 1 s the desin	1 0.37 1 2 t. 0.77 0.93 0 red effect.	0.10 1 0.05 1 2 0.30 0.52 0 .1t is 0

Note that probabilities > 1 and < 0 can be generated for the Pex, Peff and Pchem depending on the distribution. All probabilities > 1 are treated as 1 and all probabilities < 0 are treated as 0.

Table 1. MOCA demonstration for intrusion 1

A STATE A

Į 🛎

Table 2. MOCA demonst	ration for	intrusion .	2							
Pex	0.85		Peff	0.2		Pchem		0.7		
Uex	0.15		Ueff	0.1		Uchem		0.12		
Dex	Normal		Deff	Normal		Dchem		Normal		
						Mchem		2		
Iterations	1	2	3	4	5	6	7	8	9	10
Does the intrusion exist	?									
Pex(i)	0.82743	1.04054	0.88027	0.75072	0.87205	0.76179	0.98313	0.64635	0.94257	0.83247
Comparison data	0.57	0.50	0.98	0.63	0.88	0.34	0.33	0.48	0.52	0.46
Exists	1	1	0	1	0	1	1	1	1	1
Does it have the desired	effect? T	his is the :	same for a	all intrusio	ns but ca	n be modi	fied for ag	e or chen	nistry.	
Peff(i)	0.29	0.30		0.31		-0.01	0.21	0.12	0.26	0.08
Does the intrusion have	the right of	chemsltry	? If yes, de	ouble the	probability	y of the in	trusion ha	ve the de	sired effec	st. If not,
do not change the proba	ability.									
Pchem(i)	0.7183	0.77802		0.60226		0.60561	0.86797	0.9413	0.76799	0.84114
Comparison data	0.11	0.58		0.57		0.19	0.79	0.36	0.74	0.19
Right chem	1	1		1		1	1	1	1	1
Multiplier	2	2		2		2	2	2	2	2
Multiply Peff(i) by Multip	lier to ger	nerate Pef	f_mod(i) a	nd determ	ine if the	intrusion	had the de	esired effe	ect.	
Peff_mod(i)	0.58	0.60		0.63		-0.02	0.41	0.24	0.52	0.16
Comparison data	0.12	0.20		0.64		0.57	0.89	0.29	0.27	0.83
Effect	1	1		0		0	0	0	1	0
Does the intrusion get in otherwise	ncluded in	the final	grid? This	is a 1 lf tl	he Intrusic	on both ex	ists and h	as the de	sired effec	xt. It is O
Final grid	1	1	0	0	0	0	0	0	1	0
-										

.

~

Note that probabilities > 1 and < 0 can be generated for the Pex, Peff and Pchem depending on the distribution. All probabilities > 1 are treated as 1 and all probabilities < 0 are treated as 0.

TAKLA - REDTON PROJECT

۵

۵

0

[

0

Ο

0

0

2005 ASSESSMENT REPORT

Appendix 11

Redton Project Target List

					ITU	SO	DURCE			PATHWAY					FOCUS			MOCA SCO	RE	TRAP (Not scored us	ing MOCA)								
TARGET NAME	NAD83 NA	083 OWI	NERSHIP DI	IMENSIONS C	CODE HO	OST LITHOLOGY	INTRUSIVE CENTRES	SCORE N	BATHOLITH IDEEP MAG MARGIN ISTRUCTURE	GRAVITY	SURFACE	MOCA_P	MOCA_SP MOC	XA_SP					CA_SPF RELATION TO KNOW	N REGIONAL STREAM	DBOODECT CEOCHEMISTRY				CURRENT PROSP	ECTIVITY PROSPLOTIVITY FIELD	WORK		
															ALI_AVILII	ALTHADIONETHICS	SUCHE 5							TARGET_CLASS	EXPL. STATUS CLASS		ACCESS_TESTABILITY	FUTURE_WORK	COMMENTS
Tak / Crescent					Ed	dae of Monzonite batholith	completely within GXL interp							covers GXL interp intrusive and auto	D						well covered by soils/rocks. very								
Ridge	359347.75 61	75431.08 Redi	ton JV 16	600x1100m JI	JI_IIM wit	ith half target undiff volcanics	intrusive	0.854564 in	inside buffer NNW deep structure	no. outside buffer	intersected by N-S fault	0.853787	1.000000	1 volcanic outcrop	none	moderately anomalous	IS 0.449219	0.184763	7 Tak prospect	high Cu-Au-Mo-Pb-Zn anomalism	strong Au-Cu-Mo zone with	mostly felsic-int volcanics with	Pornhyry Cu-Au	Intrusion outeropping	near drill ready	A1	1 good bigh ridgo	field evaluate to determine	
							completely within GXL interp							covers GXL interp intrusive and auto	0						N half covered by soil grid. Strong	extensive outcrop - felsic	r orpriyry ou riu					orientation of drining - drin test	main geochem anomaly.
Tak south	357865.54 61	73827.90 Redi	ton JV 12	200x900m JI	JI_IIM Ed	dge of Monzonite batholith	intrusive	0.946207 in	inside buffer deep structure	no. outside buffer	between 2 N-S faults	0.669022	1.000000	detection intrusive. intrusive and	Advanced Argillic	minor weak	0 422218	0 184965	6 none	moderate Cu-Au	Cu-Au anomaly. Strong As-Ag, mod	d volcanics, undiff intrusives,	Pornhyny Cu, Au	Intrusion outerenning	noor drill roody		good - high ridge with	extend soil grid south? drill	
						<u> </u>	between 2 GXL interp deep					0.000022	1.000000	encloses a GXL interp intrusive. no	Advanced Arginic	anomansm	0.422210	0.104900		anomaism	southern part covered by soil grid	Granodiorite mapped along	Porpriyry Cu-Au	Intrusion_outcropping	near drill ready A	A2	2 extensive outcrop	test?	
Nell (North Skarn)	357865 75 61	77070 13 Bodi	ton IV 18	800v900m II		dae of Monzonito hotholith	plutons. not near auto detection	0.062622	within 1km of N-S to	within 1km of gravity		0.004074	(auto detection intrusive. granodiorite	e	transected by linear K					(mostly in valley) - high Mo, some	ridge top. Should be signif					good access. probably	extend geochem coverage	
GRanny	337303.73 01	//0/0.15/1100		500,30011 51				0.9030320	outside outler INNVV deep structures	s Inign margin	trends along NNE fault	0.891971	1.000000		none	anomaly	0.478934	0.276541	3 none	high Cu-Au anomalism	high Cu, Iow Au, As	outcrop	Porphyry Cu-Au	Intrusion_outcropping	near drill ready A	A3	3 extensive outcrop	north - drill test?	
							outside edge of GXL interp deep							outside edge of GXL interp intrusive		minor weak					anomalous Cu-Mo on ends of soil	mostly ridge with some diorite							
Rainbow (Takla	355136 10 61	71411 57 Rodt	ton IV 10	000x600m	Ed Ed	dge of Monzonite batholith.	pluton and auto detection	0.010050	distal - 2km from NNV	W Inc. outside buffer	intersection of Takla faul	It a 77001	0.070000	and auto detection intrusive. diorite	edge of Advanced	anomalism /			immediately north of		lines. Weak-mod Cu-Au anomalism	mapped. Probably extensive					good - high ridge with	review IP, extend geochem	
	000100.10 01	1411.0711001				30 010116		0.0190001				0.776813	0.970000	/ and granite porphyry outcrop	Argillic	background levels	0.337631	0.195069	5 Takla-Rainbow prospec	t mod-strong Cu-Au-Mo	in rock chips	outcrop	Porphyry Cu-Au	Intrusion_outcropping	near drill ready A	A4	4 probably extensive outcro	coverage, drill test?	
							between 2 GXL interp deep													sample in valley to east	moderate Cu-Au anomalism in a fe	w 1 narrow ridge - Monzonite							
Tak North	359681 99 61	78235 46 Bedi	ton IV 16	600x1300m .II		dae of Monzonite betholith	plutons. outside edge of auto	0.8545941in	N trending deep mag	no, outoido buffor	close to intersection of	0 70900	0.080004	encloses a GXL interp intrusive. no		distinct K peak in	0.400070	0.057047		but could be from ridge	stream samples. Not well tested.	outcrop mapped. significant						increase geochem coverage,	
		0200.1011000					outside edge of GXL interp	0.004004			INVY AND INE TAULIS	0.790004	0.983004	edge of 2 GXL interp intrusives and	none	centre of target	0.422678	0.257817	4 none	to east	Signif Cu in rockchip to SE	cover in valley	Porphyry Cu-Au	Intrusion_outcropping	Prospect A	A5	5 Good on ridge. Poor in Va	ley drill test?	
	057400.00				Ed	dge of Monzonite batholith	deep pluton. no auto detection	m	mostly outside within 1km of NNW de	eep within 1.5km of gravi	ty			1 auto detection intrusive.	:					moderate Cu-Au	poorly tested. Au-Cu anomalism in						good - high ridge with		
Nell South	357120.39 61	74592.49 Redi	Ion JV 18	800X900m JI	u_uM wit	ith some granodiorite	Intrusive	0.960784 bi	buffer structure	high margin	intersected by NNE fault	0.882654	1.000000	1 granodiorite dyke outcrop	Advanced Argillic	moderately anomalous	IS 0.444312	0.312211	1 none	anomalism	soils	significant granodiorite outcrop	p Porphyry Cu-Au	Intrusion_outcropping	Prospect A	A6	6 extensive outcrop	extend geochem coverage	
		west	half Redton				inside edge of GXL interp deep		within 1km of NE deep	p																			
Der	007000 40 04	JV, e	east half			10 I II III	pluton. outside edge of auto	m	mostly outside structure. 1.5km of NV	W within 1km of gravity				edge of 2 GXL interpreted / auto		background levels - no	0			moderate Cu-Mo-Au-As	partly tested by soil sampling - weel	k not mapped - extensive cover					moderate. lower slope/val	ev	
Bor	367996.18 61	22160.33 excit	Jaed 15	500mx1500m [JI		onzonite batholith	detection intrusive	0.625368 bi	buffer deep structure	high margin	none mapped	0.849747	0.738752	15 detection intrusives	Kaolinitic	anomalism	0.392729	0.170752	10 none	anomaly	Cu, no Au	likely	Porphyry Cu-Au	Intrusion_poor_outcrop?	Prospect B	B01	7 bottom - below tree line		
			Í				pluton. outside edge of auto		within 1km of NE deep	p straddles gravity high				edge of GXL interpreted / auto		some minor K				moderate Cu-Mo-Au-As							moderate lower clone		
Bor North	369305.22 61	23929.40 Redt	ton JV 10	000x2000m JI	II_IIM Mo	onzonite batholith	detection intrusive	0.625345 0	outside buffer structure	margin	intersected by NW fault	0.807060	0.738747	16 detection intrusive	Sericitisation	anomalism	0.299377	0.124114	18 none	anomaly	untested	not mapped. some outcrop lik	ely Porphyry Cu-Au	Intrusion_poor_outcrop?	grass roots B	B02	8 possibly below tree line		
					vol	ndifferentiated voicanic-	outside edge of GXL interp deep							outside edge of GXL intern intrusive															
					roc	cks. Some rhyolite porphyry	pluton. no auto detection		within 1km of NW dee	ep	intersection of Takla faul	lt		and auto detection intrusive. Rhyolite	eledge of Advanced	weak-moderate			immediately south of	Strona Au-Pb-Zn-Aa.		ridge top, possible cover on					South facing slope. Likely	field evaluate target and area	Geochom indicatos contro to
Rainbow East	357624.32 61	70193.69 Redt	ton JV 13	300x700m Ri	Ru_VOO roo	cks	intrusive	0.938942 in	inside buffer structure	no. outside buffer	and NNE fault	0.820731	1.000000	1 porphyry outcrop	Argillic	anomalism	0.545724	0.288290	2 Loop Cu showing	mod Cu	untested	slopes	Porphyry Cu-Au	Intrusion_outcropping	Prospect B	B03	9 slopes. Ridge top good	to north	north
							outside edge of GXL interp deep		N trending deep mag		close to intersection of			outside edge of GXL intern intrusive		anomalous - edge of K						odgo of low hill probably nos							
Duckling	359062.58 61	30240.68 Redt	ton JV 10	000x600m JI	II_IIM edg	dge of monzonite batholith	intrusive	0.686013 in	inside buffer worm structure	no. outside buffer	NW and NE faults	0.998681	0.802012	14 and auto detection intrusive	none	high	0.275160	0.183057	9 none	untested	untested	outcrop / signif cover	Porphyry Cu-Au	Intrusion poor outeron?	grass roots R	B04	possibly difficult - below tro 22lline?	e	
							completely within GXL interp															lower slopes with incised valle	ys						· · · · · · · · · · · · · · · · · · ·
Duckling West	357865.75 61	79558.34 Redt	ton JV 80	00x600m JI	II_IIM Ma	onzonite batholith	detection intrusive	0.685260 0	outside buffer Istructures	high margin	close to NE fault	0.796475	0.803093	Detween 2 GXL interp intrusives and 13 auto detection intrusives	none	janomalous - edge of K high	0.349935	0.183233	8 none	untested	untested	probably poor outcrop / signif	Pornhury Cu. A.	Intrucion noor outerand		DOF	possibly difficult - below tr	e	
							inside edge of GXL interp deep		within 1.5km of					covers small GXL / auto detection			0.010000	0.100200				00401		pricusion_poor_oulcrop?	191222 10015 B	CUD	∠3µme?		
кw	361220 06 61	17120 75 8004	ton .IV	400x1600m		onzonite batholith - edge of etaceous grapite	pluton and auto detection	0.520000	intersection of NW and	d within 1km of gravity	interested by E Mitsuit	1.00000	0 504004	intrusive and edge of GXL / auto	Sericitisation. Iron	moderate-strong K		0.1.1.0.10	immediately east of KW	partly tested. Anomalous	s	not mapped. high round hill -							
	001220.00 01	1120.1011001				elaceous granite	outside edge of GXL interp deep	0.55900011				1.000000	0.564261		Sericitisation. Iron	anomaly peak	0.330103	0.141642	13 Gu-Mo showing	Gu-Mo	untested	likely extensive outcrop	Porphyry Cu-Au	Intrusion_outcropping	grass roots B	B06	10 Good - mostly high hills		
							pluton and auto detection		within 1.5km of NW de	leep				edge of GXL / auto detection	oxides immediately				~1.5 km West of KW Cu	J-		not mapped. upper slope of							
KW West	358532.09 61	16607.81 Redt	ion JV 16	<u>300x1000m JI</u>	I_IM Mo	onzonite batholith	intrusive	0.544463 in	nside buffer structure	no. outside buffer	intersected by E-W fault	0.767166	0.607091	21 intrusive	west	relative low	0.352265	0.145089	11 Mo showing	untested	untested	ridge - likely extensive outcrop	Porphyry Cu-Au	Intrusion_outcropping	grass roots B	B07	11 OK		
							pluton and auto detection		within 1km of NW dee	ep within 1km of gravity				edge of 2 small GXL interpreted /						partly tested - mod Pb-A	s 2 local streams draining target	monzonite manned to West of	f .				nroh difficult - kowar alana		
East Swan	354304.22 61	54568.25 Redt	ton JV 27	700x1200m JI	I_IIM Mo	onzonite batholith	intrusive	0.694449 ot	outside buffer structure	high margin	none mapped	0.542178	0.883902	8 auto detection intrusives.	Iron oxides	no anomalism	0.332821	0.124242	17 none	Hg anomalism	sampled. Minor Au anomalism in 1	target	Porphyry Cu-Au	Intrusion_poor_outcrop?	grass roots B	B08	24 below tree line		
							inside edge of GXL interp deep		no 25km from onv	within them of anythe	interpreted by NINE			outside adres of CVI intern intrusive	Loomo Advanced														· · · · · · · · · · · · · · · · · · ·
CS25	353869.74 61	73697.07 Redt	ton JV 90	00x500m Jl	I_IIM Mo	onzonite batholith	intrusive	0.739111 0	outside buffer deep structures	high margin	fault	0.446967	0.838036	11 and small auto detection intrusive.	Argillic	edge of distinct k high	0.442945	0.139435	14 none	moderate Gu-Mo-Au-Ag	untested	granodiorite mapped along rid	lge Porphyry Cu-Au	Intrusion outeropping	Prospect IB	BOO	good. moderately high ride	e	
							inside edge of GXL interp deep							edge of GXL interp intrusive. No				0.100.000		anomanan						809	12 presumably with outcrop		
0524	35/080 23 61	7/687 07 Rodt			I IIM I gra	onzonite batholith. also some	pluton and auto detection	0.740007.0	within 1.5km of NNW	within 500m of gravit	y none monerad	0 550001	0.050000	auto detection intrusive. granodiorite		weak anomalism plus	0.001010	0.4.4.04.0		moderate Cu-Mo-Au-Ag							good. moderately high ride	e	
0024	334909.23 01	4007.07 1000		<u>JOXOUUII JI</u>				0.740237101		nign margin	none mappeo	0.550831	0.850000		none	K low	0.381318	0.144213	12 none	anomalism	untested	some granodiorite mapped	Porphyry Cu-Au	Intrusion_outcropping	Prospect B	B10	13 with mapped outcrop		······································
							inside edge of GXL interp deep									no anomalism -				20% tested - no									
Nation	269456 11 61	22162 42 Podt		200v1200m		onzonito batbolith	pluton and auto detection	0.5051920	within 1.5km of NW de	eep straddles gravity high	aligned with NW fault	0 744400	0 705500	includes 2 GXL / auto detection	some Advanced	relative low no	0.000440	0.40.4000		anomalism. high Au, mo	bd						difficult. mid slope - steep,		
Nation	303430.11 01	55105.42 Neut	23				inside edge of GXL interp deep	0.595162100		margin	immediately to the north	0.744430	0.725560		Argillic	slightly lower area	0.328446	0.134288		Cu drainages to east	untested	not mapped, some outcrop like	ely Porphyry Cu-Au	Intrusion_outcropping	grass roots B	B11	25 partly below tree line?		
							pluton and auto detection		within 1.5km of NW de	еер						within moderate-strong	g		~1km west of North	large catchment - strong		not mapped. High ridge, likely					OK - high ridge, possibly		
Burn	357506.07 61	19526.62 Redt	ion JV 17	700x1200m JI_	I_IIM Mo	onzonite batholith	intrusive	0.606783 ot	outside buffer structure	no. outside buffer	none mapped	0.392799	0.566825	25 covers GXL / auto detection intrusive	e none	K anomaly	0.290024	0.066152	27 Kwanika Cu showing	Au anomaly	untested	extensive outcrop	Porphyry Cu-Au	Intrusion_outcropping	grass roots B	B12	14 steep terrain		
							outside edge of GXL interp deep				none mapped, possible			includes 1 small GXL interpreted							NE tip powered by soil grid - strong								
					Cre	retaceous Age - alkali	pluton and auto detection		no. ~2km from NNW	straddles gravity high	NNW-NW mag			intrusives. Granite and porphyritic	some Advanced				~1 km north of Hooey Cu	u	Au, mod Cu-Pb-Ag NE of target.	minor andesite and granite					poroad, fairly high valley -	TBS grid to north, extend soil	Cu-Au anomaly to north (TRS
Cirque	355586.89 61	67380.14 Redt	ton JV 18	300x1600m K_	(_IKGF feld	ldspar granite / syenogranite	intrusive	0.714926 in	nside buffer deep structure	margin	lineaments	0.725724	0.880000	9 andesite outcrop	Argillic	no anomalism	0.312214	0.109992	20 showing	Mod-strong Au-Mo-Ag	most of target area untested	outcrop in NE corner	Porphyry Cu-Au	Intrusion_outcropping	Prospect B	B13	15 also likely significant cover	grid?	Grid) - drilled
							pluton and auto detection		no. ~4km from neares	st				intrusives and auto detection	edge of Advanced	anomalous - edge of K						no outoron mannad lower							
CS32	351752.06 61	77748.54 Redt	on JV 21	100x1700m Jl	I_IIM Mo	onzonite batholith	intrusive	0.631929 01	outside buffer deep structure	no. outside buffer	intersected by NE fault	0.195881	0.313248	29 intrusives.	Argillic	high	0.451179	0.049749	30 none	untested	untested	slopes	Porphyry Cu-Au	Intrusion poor outcrop?	grass roots B	B14	16 line	86	
							completely within GVL intern							edge of GXL interp intrusive and															······································
					und	differentiated volcanics-	deep pluton and partly within		intersection of N-S and	d				intrusive. 1 outcrop point - porphyritic	c	verv weak - possible					2 stream samples high on 1 of 2	mostly high ridges - no outcrop		concepted intrusion?			good coocce but valconia	fracture man simple of buried	If field review is positive other
Eagle Nest Roof	362778.30 61	30046.23 Redt	on JV 20	000x1300m Ri	lu_VOO vol	Icaniclastics-sediments	auto detection intrusive	0.295217 ol	outside buffer NW deep structures	no. outside buffer	none mapped	0.711314	0.307204	30 mafic intrusive	Advanced Argillic	background noise	0.319357	0.056422	29 none	untested	ridges. no significant anomalism	of young volcanic cover	Porphyry Cu-Au	Volcanics_outcropping	grass roots C	C01	17 cover	intrusive	targets may exist to the south
				2			no GXL interp deep pluton.		interposting NIM and E		intercented by NINBAL found				edge of Advanced														
Kwanika Creek	359563.34 61	31686.21 Redt	on JV 14	400x1000m Jl_	I_IIM Edg	ge of Monzonite batholith	intrusive	0.515052 in	nside buffer deep structures	no. outside buffer	and possible NE fault	0.806539	0.619767	20 no interpreted intrusives	Sericitisation/Fe-Ox	no anomalism	0.309724	0.125663	16 none	untested	Soll grid ~1km N - anomalous Au-	valley floor - probably mostly	Enithermal Au	Intrusion poor outeroo?	grass roots	C02	difficult -valley floor / below	extend and infill soil grid to	
																					give a second spectrum give								
					UD	differentiated volcanics-	jourside edge of GXL interp deep		within 1km of NIM door	06	N-S fault immediately			Includes small GXL interpreted and						northy tootool in-		not mapped. mostly lower							
Dog	372917.05 61	39312.85 Redt	on JV 33	300x1900 Ru		caniclastics-sediments	intrusive	0.259421 01	putside buffer structure	no. outside buffer	East	0.535779	0.219942	32 GXL / auto detection intrusives	none	distinct anomaly	0.332905	0.035082	32 none	anomalism	untested	slopes - possible cover. Outcre on ridges to west likely	Porphyry Gu-Au	Voclanics poor outeron	grass roots	C03	Iridges ok to west, most of 18 target below tree line	evaluate nearest outcrop to	
					Un	ndifferentiated Volcanic-	inside edge of GXL interp deep							includes 3 small GXL interpreted							mostly covered by soil grid, stream	minor fault breccia, basalt	- opinyry ou-ru				upper half good access.		
Twin Creek	361336.29 61	9015.44 Redt	on JV	500x1100m R	lu VOO Iroo	caniciastic-sedimentary	pluton and auto detection	0.278403 0	Within 1km of NNW de	eep Istraddles gravity high	Intersection of Takla fault	0 888444	0.315476	Intrusives, no auto detection	Advanced Arcillia	no anomalism	0.472614	0 110305	191000	untested (large	seds, ridge samples. Only scattered	l outcrop. mid-lower slopes -	Dornhum Or Av	concealed intrusion?	Process		lower half probably below	1	
								<u> </u>				0.000444	0.010470				0.7/0014	0.110000		Gatorinionty	wear nu-ou anomansm	TINETY SUTTHE COVER	Porpriyry Cu-Au	voicanics_outcropping	C C	004		assess effectiveness of soils	
							completely within GXL interp				none mapped. possible			1							untested. detailed soil grid West of								
KC Fast	366782 55 61	4718 22 Pode	on IV	700x1200m		onzonite	acep pluton and auto detection	0.634740	nside buffer letructure	ep no outsido huffor	NW mag linear	0.010000	0 242055	Sticovers GYL / suite detection intraction	Advanced Araillie	north end of moderate	0.096105	0.007500	2km east of Kwanika Cu	anomalous Cu-Au	target (other side of valley) has	not mapped. probably some	Dember 0	later			OK - low-mod hills. prob		
	000702.00 01	747 10.20 11000			alk	kali feldspar granite /	inside edge of GXL interp deep	0.00474011			(wrapping around largel)	0.213300	0.242000	covers GXL / auto detection initiality	Auvanced Arginic	ninear K anoniaiy	0.200133	0.037526		,moderate Wo-Ag	covered by soil grid and local stream	n outcrop on nills	Porphyry Cu-Au	Intrusion_poor_outcrop?	grass roots C	C05	20 partly below tree line		
6					sye	enogranite surrounded by	pluton and auto detection	0.500500	within 1.5km of NE dee	eep within 1.5km of gravit	y .			intrusive. outcropping cretaceous							seds - Au anomaly in streams but	1 small granite outcrop. valley					difficult - valley bottom bel	w	
L <u>ys</u>	3/1/25.62 61	+3529.77 Hedt	<u>on jv [13</u>		<u>ingr</u> igat			U.522568 In:		liow margin	Inone mapped	0./11323	0.598640		Kaolinitic / Sericitic	no anomalism	0.223942	0.078305	26 none	untested	soils not anomalous	bottom - extensive cover likely	Porphyry Cu-Au	Intrusion_poor_outcrop?	Prospect C	C06	28 tree line		
							inside edge of GXL interp deep														stream seds. No significant								
Coronanti	260060.04	0514 00 0	nacti	100,000	Mo	onzonite surrounded by	pluton and auto detection	0 66070 4	within 1.5km of NW de	eep	none mapped. possible	0.47700-	0.070047	edge of GXL / auto detection	edge of Sericitisation			0.00505		and the	anomalism in soils. patchy Cu-Au in	edge of low valley - extensive					edge of low valley - probab	ly no work - outside GXL	
Serengeti	309368.64 61	00014.09 Sere	ngeti [100	JUUX8UUM JI	i_iiivi [gat		inside edge of GXL interpideen	0.060704 in		no. outside buffer	INVV mag linear	0.4/7933	0.678917		zone	no anomalism	0.283922	0.065054	28 none	untested	streams	cover likely	Porphyry Cu-Au	Intrusion_poor_outcrop?	Prospect C	C07	32 below tree line	claims	·····
ŀ							pluton and auto detection		within 1.5km of NW de	eep straddles gravity high		1		edge of small GXL / auto detection	edge of Advanced	moderate K -			~3km east on same ridg	je		not mapped. likely extensive					good, slightly down slope		
Hal East	364847.40 61	10947.03 Redt	on JV 13	300x900m JI_	I_IIM Mo	onzonite batholith	intrusive	0.519859 in	nside buffer structure	margin	none mapped	0.721687	0.568415	24 intrusive	Argillic	background for area	0.260034	0.095007	23 as Hal4 Cu-Ag showing	untested	untested	outcrop	Porphyry Cu-Au	Intrusion_outcropping	grass roots C	C08	21 from high ridge		
									within 1.5km of NW de	qee				edge of GXL interpreted intrusive pro	5	edge of moderate k			~1.5km SE of Heaths C	untested. high Cu, mod		grapodiorite mapped up along					moderate terrer-l		
Heath South	364352.07 612	25061.45 Redt	on JV 70	0x1800m JI	L_IIM Mo	onzonite batholith	none identified	0.554598 in	nside buffer structure	no. outside buffer	intersected by NNE fault	0.690569	0.724853	18 auto detection intrusive	edge of Sericitisation	anomaly	0.362270	0.105964	21 Ag-Au showing	immediately east	untested	extensive cover likely	Porphyry Cu-Au	Intrusion_poor_outcrop?	grass roots C	C09	30 probably below tree line		
					N.4	onzonite betbolith odec of	outside edge of GXL interp deep		within 1 Elim of AllAL - H-	oon within the of months	none mapped. possible			odro of CVL / outp data-them		wook moder-to t			. O El XN42 / 7										
Heath	362382.27 61	31835.00 Redt	on JV 20	000x1700m JI	1_IIM Tria	iassic diorite	intrusive	0.673964 in	nside buffer structure	high margin	fault to the south	0.746022	0.837972	12 intrusive	Iron Oxide	anomalv	0.231425	0.096608	22.5km NW of Tyger CL 22Ishowing	untested	untested	not mapped - some outcrop	Porphyry Cu-Au	Intrusion noor outeron?	grass roots	C10	moderate. lower slopes,		
	2		¥ A ¥ ~~~			······	outside edge of GXL interp deep			¥											1 line of local stream seds - no								L
Valleau	373503 88 61	1081-13 Redt	on JV	SOOXTOOM RAD	NAME IC:	iassic - Jurassic Age -	pluton and auto detection	0.357494	within 1km of NW deep	ep [within 1km of gravity]	NW tault immediately	0 705720	0.390000	outside edge of GXL / auto detection	Sericitisation /	no anomalism -	0.359470	0 082807	24 none	high Au, mod Cu	anomalism. strong Mo-Zn soil	not mannad come outcome 19:	aly Pornhum On A	concealed intrusion?	Brospect		Good. mid slope of high		
	2.000000						outside edge of GXL interp deep	2.207 104 00				3.7 00723	5100000	includes small GXL interpreted			0.000410	0.002001		anomaly		normapped, some outcrop like		voluarilus_outeropping			∠oriage		
Teov	201171 51 01	ISSED FOR DE				differentiated volcanics-	pluton and auto detection	0.070050	within 1km of NE deep	p within 1km of gravity		0.745500	0.007000	intrusive. No auto detection intrusive	Advanced Ave 10	no one	0.404055	0.070540	~2km SE of Tsay Cu	High Au, mod Cu-As	lumberte d			concealed intrusion?					
1 Sdy	004471.01 01	-JoarsolHegi	<u>, 140</u>	+υυλούυ <u> </u> Ηι		icaniciasucs-seaiments		0.27005900	ouraine nutier Tatincinte	Low margin	ININAA ISON	0.745599	0.327008	2700000 sandstone outcrop	LAuvanced Argillic	Ino anomalism	0.401655	0.078510	zəjsnowing	lanomaly	luntested	Inot mapped, some outcrop like	eiy[Porphyry Cu-Au	Volcanics_poor_outcrop	Igrass roots C	IC12	27OK. low hills / high valley		

A services of the opposite of

A = prospective intrusive rocks mapped/interpreted, high MOCA score, supporting geochemistry
B = within interpreted intrusive batholith, moderate
MOCA score, +/- limited geochem coverage
C = generally outside interpreted intrusive batholith, low-moderate MOCA score, generally poor geochem coverage - regional streams only

TAKLA - REDTON PROJECT

2005 ASSESSMENT REPORT

Appendix 12

Claim Listing

TAKLA REDTON Project Claim Listing

-

۲ ۱

1

Cialm	Owner	Issue	Tenure	Агеа	Work	Eeer	Evala	Vandy Arrent				
Name		Date	No	(bactoria)	Applied	Fees	Expiry		Yearly Assessm	ent Requireme	nts	
			N.	(nectares)	мррина	Paid		06	07	09	10	
HS001	Redion Resources Inc.	12-Jan-05	501112	456.824	1.827.30	182.73	January 12, 2007	Y	1 827 20			
cs001	Redion Resources Inc.	12-Jan-05	501115	456.826	1 827 30	182.73	January 12, 2007		1,027.30		h	
HS002	Redion Resources Inc.	12-Jan-05	501139	456.82	1 927 39	192.73	January 12, 2007	- 2	1,827.30			
HS003	Region Resources Inc.	12-Jan-05	501164	456 916	1 927 20	102.73	January 12, 2007	×	1,827.28			
cs001	Region Resources Inc.	12-120-05	501104	400.010	1,027.20	162.73	January 12, 2007	X	1,827.26		l	
HS004	Pedion Resources Inc.	12 100 05	501177	456.826	1,827.30	182.73	January 12, 2007	X	1,827.30			
H\$005	Redion Resources Inc.	12-Jair-00	501178	456.813	1,827.25	182.73	January 12, 2007	X	1,827.25			
	Region Resources Inc.	12-Jan-05	501206	456.806	1,827.22	182.72	January 12, 2007	х	1,827,22	-		
CSUUS	Recton Resources Inc.	12-Jan-05	501211	456.823	1,627.29	182.73	January 12, 2007	X	1,827,29			
H\$006	Redion Resources Inc.	12-Jan-05	501230	456.803	1.827.21	182,72	January 12, 2007	X	1 827 21			
cs004	Redion Resources Inc.	12-Jan-05	501239	456.821	1 827 28	182 73	January 12, 2007		1,027.21			
cs005	Redion Resources Inc.	12-Jan-05	501270	456 821	1 827 28	192.73	January 12, 2007		1,027.20			
HS007	Region Resources Inc.	12,120-05	601220	400.021	1,027.20	102.73	January 12, 2007	<u>X</u>	1,827.28			
cs006	Podton Posouroos Inc.	12-361-00	501320	456.585	1,626.34	182.63	January 12, 2007	<u> </u>	1,826.34			
	Reduit Resources inc.	12-380-00	501324	456.587	1,826.35	182.64	January 12, 2007	X	1,826.35			
13000	Region Resources Inc.	12-Jan-06	501353	456.579	1,826.32	182.63	January 12, 2007	Х	1,826.32			
CS007	Recton Resources Inc.	12-Jan-05	501354	456.586	1,826.34	182.63	January 12, 2007	x	1 826 34			
cs008	Redion Resources Inc.	12-Jan-05	501374	456,582	1,826,33	182.63	January 12, 2007	¥	1 826 33			
H\$009	Redton Resources Inc.	12-Jan-05	501378	456 576	1 826 30	182.63	January 12, 2007	- 	1,020.33			
cs009	Regton Resources Inc.	12-Jan-05	501406	456 59	1 926 22	192.00	January 12, 2007	<u></u>	1,826.30			
HS010	Region Resources Inc	12- Jan-05	501400	450.50	1,020.32	102.03	January 12, 2007	X	1,826.32			
cs010	Pedian Resources Inc.	12 500-05	501409	400.072	1,826.29	182.63	January 12, 2007	X	1,826.29			
HS014	Redion Resources Inc.	12-331-05	501421	456.577	1,826.31	182.63	January 12, 2007	X	1,826.31			
00011	Region Resources Inc.	12-Jan-05	501439	456.564	1,826,26	182.63	January 12, 2007	X	1,826.26			
CSUIT	Region Resources Inc.	12-Jan-05	501447	456.573	1,826.29	182.63	January 12, 2007	X	1.826.29			
HS012	Redton Resources Inc.	12-Jan-05	501470	456.561	1,826.24	182.62	January 12, 2007	x	1 826 24			
cs012	Redton Resources Inc.	12-Jan-05	501491	420.038	1,680,15	168.02	January 12, 2007		1 690 45			
H\$013	Redton Resources Inc.	12-Jan-05	501498	456 346	1 825 20	182 64	January 12, 2007		1,000.15			
cs013	Redton Resources Inc	12- Jan-05	501512	450.040	2,023.30	102.54	January 12, 2007		1,825.38			
HS014	Redton Resources las	12, 100,05	501012	406.348	3,650.78	365.08	January 12, 2008	X	X			
ce014	Redion Resources Inc.	12-Jair-00	501529	456.339	1,825.36	182.54	January 12, 2007	_ X	1,825.36			
10014	Redion Resources Inc.	12-Jan-05	501547	419.887	3,359.10	335.91	January 12, 2008	х	X			
H5015	Redton Resources Inc.	12-Jan-05	501571	456.336	1,825.34	182.53	January 12, 2007	X	1.825.34			
cs015	Redton Resources Inc.	12-Jan-05	501582	456.314	3.650.52	365.05	January 12, 2008	Ý	X			
cs016	Redton Resources Inc.	12-Jan-05	501606	438.052	1,752,21	175.22	Jaouary 12, 2007	Ŷ	1 752 21			
HS016	Redton Resources Inc.	12-Jan-05	501609	456 331	1 825 32	192.53	January 12, 2007	- ÷	1,702.21			
HS017	Redton Resources Inc	12-Jan-05	501638	456 202	1,020,02	102.55	January 12, 2007	<u> </u>	1,825.32			
cs017	Redion Persurges Inc.	12 Jan 05	501030	430.323	1,025.29	182.53	January 12, 2007	X	1,825.29			
HS018	Redion Resources Inc.	12-380-00	501641	438.048	1,752.19	175.22	January 12, 2007	<u> </u>	1,752.19			
	Redion Resources Inc.	12-Jan-05	501672	456.32	1,825.28	182.53	January 12, 2007	X	1,825.28			
C\$U18	Redton Resources Inc.	12-Jan-05	501675	437.824	3,502.60	350.26	January 12, 2008	X	X			
HS019	Redton Resources Inc.	12-Jan-05	501690	456.101	1,824.40	182.44	January 12, 2007	x	1.824.40		· · ·	
cs019	Redton Resources Inc.	12-Jan-05	501691	437,818	1 751 27	175 13	January 12, 2007	- <u>~</u>	1 751 07			
H\$020	Redton Resources Inc.	12-Jan-05	501705	456.092	1 924 37	182.44	Jaouany 12, 2007		1,731,27			
cs020	Redton Resources Inc.	12-Jan-05	501715	456 105	2 649 94	264.80	Jacuary 12, 2007	<u>×</u>	1,824.37			
HS021	Redton Resources Inc.	12-Jan-05	501715	406.100	3,048.84	364.88	January 12, 2008	X	<u> </u>			
ce021	Redion Resources Inc.	12-Jarros	501/1/	456.09	1,824.36	182,44	January 12, 2007	X	1,824.36			
105021	Region Resources Inc.	12-Jan-05	501735	455.861	3,646.88	364.69	January 12, 2008	х	X			
13022	Redton Resources Inc.	12-Jan-05	501736	456.085	1,824.34	182.43	January 12, 2007	x	1,824.34		<u>.</u>	
H\$023	Redton Resources Inc.	12-Jan-05	501747	456.075	1,824.30	182.43	January 12, 2007	X	1.824.30			
cs022	Redton Resources Inc.	12-Jan-05	501748	455.962	3.647.70	364.77	January 12, 2008	X	×			
cs023	Redton Resources Inc.	12-Jan-05	501759	455.86	3 646 88	364 69	January 12 2008					
HS024	Redton Resources Inc.	12-Jan-05	501760	456.07	1 824 28	182.42	January 12, 2000					
cs024	Redton Resources Inc	12-190-05	501777	450.07	1,024.20	102.43	January 12, 2007	X	1,824.28			
HS025	Pedies Resources Inc.	12-040-05	501777	455.859	3,646.88	364,69	January 12, 2008	. X	<u> </u>			
00020	Redion Resources Inc.	12-Jair-05	501788	455.857	1,823.43	182.34	January 12, 2007	X	1,823.43			
CSU25	Redton Resources Inc.	12-Jan-05	501790	455.857	3,646.86	364.69	January 12, 2008	х	Х			
15020	Regton Resources Inc.	12-Jan-05	501804	455.852	3,646.82	364.68	January 12, 2008	х	Х			
HS026	Redton Resources Inc.	12-Jan-05	501808	455.851	1,823.40	162.34	January 12, 2007	x	1,823.40			
cs027	Redton Resources Inc.	12-Jan-05	501814	455.846	1,823.38	182.34	January 12, 2007	X	1 823 38			
HS027	Redton Resources Inc.	12-Jan-05	501825	455 84A	1,823,30	182 34	January 12, 2007		1,020.00			
028	Redton Resources Inc.	12-Jan-05	501833	455 610	3 644 00	364 50	January 12, 2007	<u>~</u>	1,023.39			
H\$028	Redton Resources Inc	12-Jap-05	501938	455.013	1 803 37	304.30	January 12, 2008	<u>×</u>	X			
cs029	Redion Resources inc.	12, 100,05	501050	435.643	1,023.3/	162.34	January 12, 2007	X	1,823.37			
H\$029	Padion Deserverse Inc.	12-040-00	501851	455.62	3,644.96	364.50	January 12, 2008	<u> </u>	X			
cc030	Reduit Resources Inc.	12-Jan-05	501859	455.83	1,823.32	182.33	January 12, 2007	х	1,823.32			
10000	Region Resources Inc.	12-Jan-05	501867	455.618	3,644.94	364,49	January 12, 2008	X	X			
H5030	Redton Resources Inc.	12-Jan-05	501869	455.617	1,823.30	182.33	January 12, 2007	x	1.823.30			
cs031	Redton Resources Inc.	12-Jan-05	501883	455.617	3,644.94	364.49	January 12, 2008	X	X			
HS031	Redton Resources Inc.	12-Jan-05	501890	455.614	1,822.46	182 25	January 12, 2007	× · · · ·	1 822 46			
cs032	Redton Resources Inc.	12-Jan-05	501896	455 616	3 644 02	364.40	January 12, 2009		1,022.40			
H\$032	Redton Resources Inc	12-Jan-05	501000	455 370	1,000 41	400.01	January 12, 2000	×	× .			
HS033	Redion Resources Inc.	12.100.05	501902	400.3/8	1,022.44	182.24	January 12, 2007	X	1,822.44			
C\$013	Redion Resources Inc.	14-Jan-00	501912	455.608	1,822.43	182.24	January 12, 2007	Х	1,822.43			
00000	Region Resources Inc.	12-Jan-05	501919	455.375	3,643.00	364.30	January 12, 2008	X	x			
HS034	Redton Resources Inc.	12-Jan-05	501933	455.603	1,822.41	182.24	January 12, 2007	Χ	1.822.41			
CS034	Redton Resources Inc.	12-Jan-05	501935	455.378	3,643.02	364.30	January 12, 2008	X	Y			
HS035	Redton Resources Inc.	12-Jan-05	501946	455 587	1 822 35	182 24	January 12 2007	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 000 00			
	Redton Resources Inc	12-Jan-05	501057	A55 377	3 642 00	264.00	lanuary 12, 2007	÷	1,022.35			
H5036	Redion Resources Inc.	12-1an-05	501000	400.011	3,043.02	364.30	January 12, 2008	X	X			
HS037	Padtan Resources Inc.	12-581-05	201300	455.582	1,822.33	182.23	January 12, 2007	X	1,822.33			
10001	Region Resources Inc.	12-Jan-05	501982	455.371	1,821.48	182.15	January 12, 2007	X	1,821.48			
13036	Region Resources Inc.	12-Jan-05	501991	455.369	1,821.48	182.15	January 12, 2007	х	1,821.48			
HS039	Redion Resources Inc.	12-Jan-05	502001	455.368	1,821.47	182.15	January 12, 2007	х	1,821.47			
CS036	Redton Resources Inc.	12-Jan-05	502011	455,483	3 643 86	364 39	January 12, 2008	Y	v			

Chainn	Owner	Issue	Tenure	Area	Work	Fees	Expiry		Yearly Assessmen	t Requireme	ats	
Name		Date	No.	(hectares)	Applied	Paid		86	07	09		10
5037	Redton Resources Inc	12-Jan-05	L 602040	455 408	2 644 56	-	1	· · · ·		-	_	
15040	Redion Resources Inc.	12-384-05	502040	455.196	3,641.56	364.16	January 12, 2008	Х	X			
HSO41	Redion Resources Inc.	12-Jai F05	502041	437.151	1,748.60	174.86	January 12, 2007	X	1,748.60			
10038	Region Resources inc.	12-Jan-05	502055	455.389	1,821.56	182.16	January 12, 2007	<u> </u>	1,821.56			
00000	Region Resources Inc.	12-Jan-05	502057	455.601	1,822.40	182.24	January 12, 2007	X	1,822.40			
10042	Redion Resources Inc.	12-Jan-05	502064	455.241	1,820.96	182.10	January 12, 2007	X	1,820.96			
15043	Redton Resources Inc.	12-Jan-05	502078	436.953	1,747.81	174.78	January 12, 2007	X	1,747.81			
CS039	Redton Resources Inc.	12-Jan-05	502080	455.639	1,822.56	182.26	January 12, 2007	X	1,822,56			
15044	Redton Resources Inc.	12-Jan-05	502093	455.17	1,820.68	182.07	January 12, 2007	X	1 820 68			
C\$040	Redton Resources Inc.	12-Jan-05	502094	437.589	1,750.36	175.04	January 12, 2007	X	1 750 36			
CS041	Redton Resources Inc.	12-Jan-05	502107	456.056	1 824 22	182.42	January 12, 2007	- \$ -	1,730,301			
HS045	Redton Resources Inc.	12-Jan-05	502109	455 762	1 823 05	192.31	Jaouary 12, 2007	+ ^	1,024.22			
HS046	Redion Resources Inc.	12-Jan-05	502121	456 376	1 925 50	102.31	January 12, 2007	<u> </u>	1,823.05			
CS042	Redion Resources Inc.	12-120-05	502121	450.370	1,025.00	102.55	Jankiary 12, 2007	X	1,825.50			
HS047	Pedton Resources Inc.	12 100 05	502124	450.317	1,825.27	182.53	January 12, 2007	_ X	1,825.27			
05043	Redien Resources Inc.	12-38(+00)	502140	456.982	1,827.93	182.79	January 12, 2007	X	1,827.93			
	Redion Resources Inc.	12-J8/1+00	502142	456,763	1,827.05	182.71	January 12, 2007	X	1,827.05			
10040	Region Resources Inc.	12-Jan-05	502151	457.585	1,830.34	183.03	January 12, 2007	L X	1,830.34			
HS049	Redton Resources Inc.	12-Jan-05	502158	457.069	1,828.28	182.83	January 12, 2007	X	1,828.28			
CS044	Redton Resources Inc.	12-Jan-05	502159	456.972	1,827.89	182.79	January 12, 2007	X	1,827,89			
45050	Redton Resources Inc.	12-Jan-05	502172	457.066	1,828.26	182.83	January 12, 2007	х	1,828,26			
CS045	Redton Resources Inc.	12-Jan-05	502179	457.474	1,829,90	182.99	January 12, 2007	x	1,829.90			
HS051	Redton Resources Inc.	12-Jan-05	502184	457.062	1,828,25	182 83	January 12, 2007	Ŷ	1 829 26	-		
HS062	Redion Resources Inc.	12-Jan-05	502202	457 057	1 808 22	182.00	familary 12 2007	⊢ ≎	1,020.23			
C\$046	Redton Resources for	12-ian-05	502204	430 300	4 757 20	175 70	January 12, 2007	- 	1,028.23			
H\$053	Retton Resources Inc.	12-120.05	502240	433.233	1,707.20	1/5./2	January 12, 2007	X	1,757.20	_	_	
HS054	Redton Persurana tao	12-541700	500000	457.05	1,828.20	182,82	January 12, 2007	<u>×</u>	1,828.20			
19055	Dedice Descurces Inc.	12-Jan-05	002222	457.045	1,828.18	182.82	January 12, 2007	Х	1,828.18			
HEARE	Integion Resources Inc.	12-Jan-05	502236	457.334	1,829.34	182.93	January 12, 2007	L X	1,829.34			
15056	Redion Resources Inc.	12-Jan-05	502246	457.331	1,829.32	182.93	January 12, 2007	Х	1,829.32			
HS057	Redton Resources Inc.	12-Jan-05	502252	457.323	1,829.29	182.93	January 12, 2007	X	1,829.29			
CS047	Redton Resources Inc.	12-Jan-05	502260	457.865	1,831.46	183.15	January 12, 2007	X	1.831.46			
48058	Redion Resources Inc.	12-Jan-05	502265	457,314	1,829,26	182.93	January 12, 2007	x	1 829 26			
H\$059	Redton Resources Inc.	12-Jan-05	502271	457.302	1.829.21	182.92	January 12, 2007	x	1 829 21			
HS060	Regton Resources Inc.	12-Jan-05	502277	457,291	1 829 16	182.92	January 12, 2007	$\frac{2}{\sqrt{2}}$	1 820 16			
:s048	Redion Resources Inc.	12-Jan-05	502281	457.07	1 828 28	182.82	January 12, 2007	÷.	1,023.10			
HS061	Redion Resources Inc	12-Jan-05	502284	457 573	1 820 20	192.00	January 12, 2007	 .	1,020.20			
H\$067	Redion Resources Inc.	12-tan-05	502204	430.573	4 700 25	103.03	January 12, 2007	<u> </u>	1,830.29			
s049	Redion Resources Inc.	12-Jan-05	502200	435.367	1,750.55	1/ 5.84	January 12, 2007	X	1,758.35			
HSD68	Redien Passurees inc.	12 Jan 05	502300	457.07	1,828.28	182.83	January 12, 2007	X	1,828.28			
10000	Region Resources Inc.	12-Jan-00	502303	457.8	1,831.20	183.12	January 12, 2007	X	1,831.20			
10000	Redion Resources Inc.	12-Jan-05	502308	457.572	1,830.29	183.03	January 12, 2007	X	1,830.29			
15066	Redion Resources Inc.	12-Jan-05	502309	457.533	1,830.13	183.01	January 12, 2007	х	1,830.13			
:\$051	Redton Resources Inc.	12-Jan-05	502315	457.589	1,830.36	183.04	January 12, 2007	Х	1,830,36			
HS065	Redton Resources Inc.	12-Jan-05	502316	457.544	1,830.18	183.02	January 12, 2007	Х	1,830,18			
:\$052	Redton Resources Inc.	12-Jan-05	502322	457.925	1,831.70	183.17	January 12, 2007	X	1.831.70		_	
-IS064	Redton Resources Inc.	12-Jan-05	502329	439.231	1,756.92	175.69	January 12, 2007	x	1 756 92			
:s053	Redton Resources Inc.	12-Jan-05	502331	457.813	1.831.25	183 13	January 12, 2007	x	1 831 25			
cs054	Redton Resources Inc.	12-Jan-05	502339	403.071	1 612 28	161 23	January 12, 2007	- `	1,001,20			
HS063	Redion Resources Inc.	12-Jan-05	502342	219 711	979.94	87.99	January 12, 2007	÷	070.04			
15069	Redton Resources Inc.	12-120-05	502342	219.711	4 404 04	07.00	January 12, 2007		878.84			
:s055	Redton Resources Inc.	12-120.05	502340	300.209	1,404.04	140.48	January 12, 2007	<u>×</u>	1,464.84			
15070	Podton Resources Inc.	12 - 05	5002347	458.165	1,832.66	183.27	January 12, 2007	<u>×</u>	1,832.66			
10010	Redion Resources Inc.	12-Jan-05	502354	366.2	1,464.60	146.48	January 12, 2007	X	1,464.80			
	Incetton resources Inc.	12-Jan-05	502356	458.173	1,832.69	183.27	January 12, 2007	X	1,832.69			
307	Redton Resources Inc.	12-Jan-05	502359	458.181	1,832.72	183.27	January 12, 2007	х	1,832.72			
13062	Redton Resources Inc.	12-Jan-05	502364	457.875	1,831.50	183.15	January 12, 2007	х	1,831.50			
:\$058	Redton Resources Inc.	12-Jan-05	502368	421.409	1,685.64	168.56	January 12, 2007	X	1,685.64			
s059	Redton Resources Inc.	12-Jan-05	502373	458.287	1,833.15	183.32	January 12, 2007	X	1,833.15			
H\$071	Redton Resources Inc.	12-Jan-05	502375	439.708	1,758,83	175.88	January 12, 2007	X	1 758 83			
s060	Redton Resources Inc.	12-Jan-05	502379	457.069	1,828.28	182.83	January 12, 2007	L Ŷ	1 828 28			
:s061	Redton Resources Inc.	12-Jan-05	502384	457 066	1 828 26	182.80	January 12 2007	÷	1 929 20			
s062	Redton Resources Inc.	12-Jan-05	502389	457.069	1 828 27	182.00	January 12, 2007	⊢ ≎ -	1,020.20			
:5063	Redton Resources Inc	12-Jan-05	502300	457 224	1 820 22	192.03	lanuary 12 2007	<u>⊢-≎</u>	1,020.27			
s064	Redton Resources Inc.	12-lan-05	502300	407.001	1,029.32	102.93	January 12, 2007	×	1,829.32			
15072	Redian Resources Inc.	12 100 05	502393	437.329	1,629.32	182.93	January 12, 2007	<u>×</u>	1,829.32			
	Dedice Deseurces Inc.	12-Jan-00	002394	439.867	1,759.47	1/5.95	January 12, 2007	X	1,759.47			
1000	region resources inc.	12-Jan-05	502397	457.327	1,829.31	182.93	January 12, 2007	Х	1,829.31			
-000	Intedion Resources Inc.	12-Jan-05	502401	439.776	1,759.10	175.91	January 12, 2007	X	1,759.10			
5066	Redton Resources Inc.	12-Jan-05	502402	457.323	1,829.29	182.93	January 12, 2007	х	1,829.29			
:s067	Redton Resources Inc.	12-Jan-05	502404	457.325	1,829.30	182.93	January 12, 2007	Х	1,829.30		-	
I\$074	Redton Resources Inc.	12-Jan-05	502410	439.789	1,759.16	175.92	January 12, 2007	X	1,759 16			
s068	Redton Resources Inc.	12-Jan-05	502412	457 571	1,830,28	183.02	January 12, 2007	v -	1,820,201			
s069	Redton Resources Inc	12-Jan-05	502416	457 560	1 930 29	182.00	January 12, 2007		1,030.20			
IS075	Redton Resources loc	12-120-05	502419	420 705	1 750 44	175.03	lanuary 12, 2007		1,030.28			~ _
\$070	Berting Resources too	12 100 05	602410	439.705	1,/ 59.14	1/5,91	January 12, 200/	<u>×</u>	1,759.14			
	Dedite Dessures to	12-Jan-00	502419	457.567	1,830.27	183.03	January 12, 2007	X	1,830.27			
avi i	region Resources Inc.	12-Jan-05	502423	457.811	1,831.24	183.12	January 12, 2007	Х	1,831.24			
150/6	Redion Resources Inc.	12-Jan-05	502424	439.738	1,758.95	175.90	January 12, 2007	х	1,758,95			
:s072	Redion Resources Inc.	12-Jan-05	502426	457.809	1,831.24	183.12	January 12, 2007	Х	1,831.24			
cs073	Region Resources Inc.	12-Jan-05	502431	457.807	1,831.23	183,12	January 12, 2007	X	1,831,23			
15077	Redion Resources Inc.	12-Jan-05	502432	458.245	1,832.98	183.30	January 12, 2007	×	1 832 98		_	

TAKLA REDTON Project Claim Listing

.....

, ...

Claim	Owner	Issue	Tenure	Area	Work	Fees	Expiry	Yearly Assessm		ent Reguireme	nts
Name		Date	No.	(hectares)	Applied	Paid		06	07	09	10
cs074	Redion Resources Inc.	12-Jan-05	502434	459.034	1 832 14	102.24	January 12, 2007				
H\$078	Redion Resources Inc.	12-Jan-05	502437	400.004	1,032.14	103.21	January 12, 2007	⊢ <u>×</u>	1,832,14		
cs075	Redton Resources Inc	12-Jan-05	502439	440.130	1,700.00	170.00	January 12, 2007	<u> </u>	1,760.55		
cs076	Redton Resources Inc.	12-Jan-05	502435	458.033	1,032.13	103.21	January 12, 2007		1,832.13		
HS079	Redton Resources Inc	12-Jan-05	502443	440 247	1,032.13	176 10	January 12, 2007	- ÷	1,832.13		
cs077	Redion Resources Inc	12-Jan-05	502445	458 21	1 832 84	100.10	January 12, 2007	<u> -∻</u>	1,760.99		
HSOBO	Redton Resources Inc	12-Jan-05	502445	421 702	1 697 17	103.20	January 12, 2007	- <u>×</u>	1,832.84		
cs078	Redton Resources Inc	12-Jan-05	502448	421.793	1,007.17	100.72	January 12, 2007	<u> </u>	1,687.17		
HS081	Region Resources Inc.	12-lan-05	502440	458.209	1,032.04	183.28	January 12, 2007	X	1,832.84		
cs079	Redton Resources Inc.	12-Jan-05	502451	450.413	1,000,00	103.37	January 12, 2007	X	1,833.65		
HS082	Redion Resources Inc.	12. Jan-05	502451	400.211	1,032.04	103.20	January 12, 2007	X	1,832.84		
cs080	Redion Resources Inc.	12-120-05	502455	400.412	1,833.00	183.3/	January 12, 2007	<u> </u>	1,833.65		
HS083	Redion Resources Inc.	12-Jan-05	502450	40.40	1,000,40	175.04	January 12, 2007	<u> </u>	1,833.80		
cs081	Redion Resources Inc.	12-Jan-05	502455	440.101	1,700.40	170.04	January 12, 2007		1,760.40		
cs082	Redton Resources Inc.	12-Jan-05	502460	436.43	1,033.00	103.30	January 12, 2007	L X	1,833,80		
HS084	Redion Resources Inc.	12-Jan-05	502464	400.09	1,034.70	103,40	January 12, 2007	<u></u>	1,834.76		
cs083	Redton Resources Inc.	12-Jan-05	502469	440.242	1,700.57	1/0.10	Jacuary 12, 2007	<u> </u>	1,760.97		
15085	Redton Resources Inc.	12-Jan 05	502405	430.920	1,635.71	183.57	January 12, 2007	<u> </u>	1,835.71		
CS084	Redton Resources Inc.	12-120-05	502480	440.391	1,701.30	176.16	January 12, 2007	<u>×</u>	1,761.56		
15086	Redton Resources Inc.	12-Jan-05	502401	456.405	1,833.62	183.35	January 12, 2007	X	1,833.62		
15087	Redian Resources inc.	12-lan-05	602404	440.383	1,701.53	1/6.15	January 12, 2007		1.761.53		L
	Redion Resources inc.	12-100-05	502487	440.379	1,701.52	1/6.15	January 12, 2007		1.761.52		· · · - ·
05085	Redion Resources Inc.	12-100 05	502402	440.3/6	1,761.50	1/6.15	January 12, 2007		1,761.50		
15089	Redion Resources inc.	12-100.05	502492	458.645	1,834.58	183.46	January 12, 2007		1,834.58		L
25086	Redion Resources inc.	12-Jac 04	502496	440.376	1,761.50	176.15	January 12, 2007		1,761.50		
45090	Redion Resources inc.	12-100.05	502497	458.885	1,835.54	183.55	January 12, 2007	× ·	1,835.54		
CS087	Redion Resources Inc.	12-Jan 05	502501	458.751	1,835.00	183.50	January 12, 2007	<u> </u>	1,835.00		
HS091	Decton Resources Inc.	12-Jan-05	502504	440.143	1,760.57	176.06	January 12, 2007		1,760.57		
SOBR	Redion Resources Inc.	12-581-05	502505	458.948	1,835.79	183.58	January 12, 2007	X	1.835.79		
45000	Redion Resources Inc.	12-Jai F05	502507	440.148	1,760.59	176.06	January 12, 2007	X	1,760.59		
-5092	Reuton Resources Inc.	12-Jan-05	502508	458.947	1,835.79	183.58	January 12, 2007	X	1,835.79		
45093	Redion Resources Inc.	12-Jan 05	502510	440.107	1,760.43	176.04	January 12, 2007	X	1,760,43		
13033	Region Resources Inc.	12-Jan-05	502513	458.969	1,835.88	183.59	January 12, 2007	X	1,835.88		
15004	Region Resources Inc.	12-Jan-05	502515	458.524	1,834.10	183.41	January 12, 2007	X.	1,834.10		
13054	Reation Resources Inc.	12-Jan-05	502523	440.537	1,762.15	176.22	January 12, 2007	X	1,762.15		
1005	Redion Resources Inc.	12-Jan-05	502524	458.762	1,835.05	183.51	January 12, 2007	<u> </u>	1,835.05		
12080	Region Resources Inc.	12-Jan-05	502528	440.576	1,762.30	176.23	January 12, 2007	X	1,762.30		
20092	Region Resources Inc.	12-Jan-05	502532	348.631	1,394.52	139.45	January 12, 2007	X	1,394.52		
13030	Reation Resources Inc.	12-Jan-06	502533	440.568	1,762.27	176.23	January 12, 2007	X	1,762.27		
1209/	Region Resources Inc.	12-Jan-05	502536	459.112	1,836.45	183.65	January 12, 2007	X	1,836.45		
15009	Redion Resources Inc.	12-Jan-06	502538	458.983	1,835.93	183.59	January 12, 2007	X	1,835.93		
12096	Region Resources Inc.	12-Jan-05	502539	459.136	1,836.54	183.65	January 12, 2007	L. X	1,836.54		
2004	Region Resources Inc.	12-Jan-05	502543	459.141	1,836.56	183.66	January 12, 2007	X	1,836.56		
-5094	Redion Resources Inc.	12-Jan-05	502544	458.989	1,835.96	183.60	January 12, 2007	<u> </u>	1,835.96		
13100	Redion Resources Inc.	12-Jan-05	502546	440,8	1,763.20	176.32	January 12, 2007	X	1,763,20		
0101	Redion Resources Inc.	12-Jan-05	502549	459,119	1,836.48	183.65	January 12, 2007	X	1,836.48		
10101	Region Resources Inc.	12-Jan-05	502550	440.798	1,763.19	176.32	January 12, 2007	X	1,763.19		
10102	Region Resources Inc.	12-Jan-05	502553	440.798	1,763,19	176.32	January 12, 2007	X	1,763.19		
5090	Region Resources Inc.	12-Jan-05	502558	459.218	1,836.87	183.69	January 12, 2007	X	1,836.87		
10103	Region Resources Inc.	12-Jan-05	502559	440.298	1,761.19	176.12	January 12, 2007	X	1,761.19		
10101	Reaton Resources Inc.	12-Jan-05	502562	459.222	1,836.89	183.69	January 12, 2007	X	1,836.89		
10104	Redton Resources Inc.	12-Jan-05	502569	440.488	1,761.95	176.20	January 12, 2007	X	1,761.95		
10105	Reaton Resources Inc.	12-Jan-05	502571	274.867	1,099.47	109.95	January 12, 2007	X	1,099.47		
-5105	Region Resources Inc.	12-Jan-05	502574	458.884	1,835.54	183.55	January 12, 2007	X	1,835.54		
10108 10108	Region Resources Inc.	12-Jan-05	502576	256.718	1,026.87	102.69	January 12, 2007	<u> × </u>	1,026.87		
100	Region Resources Inc.	12-Jan-05	502578	440,709	1,762.84	176.28	January 12, 2007	<u> </u>	1,762.84		
531V/ 56400	Region Resources Inc.	12-Jan-05	502581	459.072	1,836.29	183.63	January 12, 2007	<u> </u>	1,836.29		
J\$100	Redton Resources Inc.	12-Jan-05	502582	458.725	1,834.90	183.49	January 12, 2007	X	1,834.90		l
HS108	Redion Resources Inc.	12-Jan-05	502585	459,104	1,836.42	183,64	January 12, 2007	X	1,836.42		
10109	Redion Resources Inc.	12-Jan-05	502593	440.658	1,762.63	176.26	January 12, 2007	X	1,762.63		
00101	Region Resources Inc.	12-Jan-05	502605	459.194	1,836.78	183.68	January 12, 2007	X	1,836.78		
0110	Redton Resources Inc.	12-Jan-05	502607	459.649	1,838.60	183.86	January 12, 2007	X	1,838.60		
10102	Region Resources Inc.	12-Jan-05	502610	459.43	1,837.72	183,77	January 12, 2007	X	1,837.72		
10111	Region Resources Inc.	12-Jan-05	502612	459.652	1,838.61	183.86	January 12, 2007	L X	1,838.61		
20103	Region Resources Inc.	12-Jan-05	502613	441.06	1,764.24	176.42	January 12, 2007	X	1,764.24		
10112	Regton Resources Inc.	12-Jan-05	502614	459.656	1,838.62	183.86	January 12, 2007	X	1,838.62		
13113	Region Resources Inc.	12-Jan-05	502615	459.664	1,838.66	183.87	January 12, 2007	X	1,838.66		
03104	Redton Resources Inc.	12-Jan-05	502617	441.066	1,764.26	176.43	January 12, 2007	L X	1,764.26		
15114	Redton Resources Inc.	12-Jan-05	502618	459.672	1,838,69	183.87	January 12, 2007	X	1,838.69		
15115	Redton Resources Inc.	12-Jan-05	502619	459.68	1,838.72	183.87	January 12, 2007	X	1,838.72		
US105	Redton Resources Inc.	12-Jan-05	502620	441.076	1,764.30	176.43	January 12, 2007	X	1,764.30		
15116	Redion Resources Inc.	12-Jan-05	502622	459.895	1,839.58	183.96	January 12, 2007	X	1,839.58		
H\$117	Redion Resources Inc.	12-Jan-05	502625	459.897	1,839.59	183.96	January 12, 2007	X	1,839.59		
CS106	Redion Resources Inc.	12-Jan-05	502626	293.921	1,175.68	117.57	January 12, 2007	X	1,175.68		
H\$118	Redion Resources Inc.	12-Jan-05	502628	459.901	1,839.60	183.96	January 12, 2007	X	1,839.60		<u> </u>
HS119	Redton Resources Inc.	12-Jan-05	502629	459.908	1,839.63	183.96	January 12, 2007	X	1,839,63	i –	1

TAKLA REDTON Project Claim Listing

~

-

ς.

-.

-÷

: .

.

v

~

~-

,

-

_

.---

~ . i.

Claim	Owner	lssue Tenur		Area	Work	Fees	Explry		Yearly Assessme	ent Regulremen	its
Name		Date	No.	(hectares)	Applied	Paid		06	07	09	10
CS107	Redion Resources Inc.	12-Jan-05	502630	441.084	1 764 34	176.43	Jaouary 12, 2007	Y	1 764 34		
H\$120	Redton Resources Inc.	12-Jan-05	502633	459.915	1 839 66	183.97	January 12, 2007	Ŷ	1,704.34		_
H\$121	Redton Resources Inc.	12-Jan-05	502634	459.921	1,839,68	183.97	January 12, 2007	Ŷ	1 830 69		
CS108	Redton Resources Inc.	12-Jan-05	502636	440 914	1,763,66	176.37	January 12, 2007	Ŷ	1,033.00		
HS122	Redton Resources Inc.	12-Jan-05	502637	460 158	1 840 63	184.06	January 12, 2007		1,705.00		
HS123	Redton Resources Inc.	12-Jan-05	502639	460,157	1 840 63	184.06	January 12, 2007	Ŷ	1 840 63		
CS109	Redton Resources Inc.	12-Jan-05	502640	275.577	1,102,31	110.23	January 12, 2007	×	1 102 31		
HS124	Redton Resources Inc.	12-Jan-05	502641	460 157	1 840 63	184.06	January 12, 2007	- <u>x</u>	1 840 63		·
HS125	Redion Resources Inc.	12-Jan-05	502644	460,161	1 840 64	184.06	January 12, 2007	X	1 840 64		·
CS110	Redton Resources Inc.	12-Jan-05	502652	460,644	1 842 58	184.26	January 12, 2007	X	1 842 58		
CSIII	Redton Resources Inc.	12-Jan-05	502653	460.642	1.842.57	184.26	January 12, 2007	x	1,042.50		
HS125	Redton Resources Inc.	12-Jan-05	502654	460.164	1 840 66	184.07	January 12, 2007		1,042.57		
CS112	Redton Resources Inc.	13-Jan-05	502655	460 639	1 842 56	184.26	January 13, 2007	$-\hat{\mathbf{x}}$	1 842 56		
HS127	Redton Resources Inc.	13-Jan-05	502656	450 165	1 840 66	184.07	January 13, 2007		1,042.00		
CS113	Region Resources Inc.	13-Jan-05	502657	460 637	1 842 55	184.26	January 13, 2007		1,040.00		
HS128	Redton Resources Inc.	13-Jan-05	502658	405 139	1 620 56	162.06	January 13, 2007	÷	1,042.00		
CS114	Redion Resources Inc	13-Jan-05	502659	460 883	1 843 53	184.35	January 13, 2007		1,020.00		
-IS129	Region Resources inc	13-Jan-05	502661	460.305	1 841 58	184.16	January 13, 2007		1,043.53		
CS115	Region Resources Inc.	13-Jan-05	502662	400.330	1 843 52	104.10	January 13, 2007		1,641.56		
HS130	Redion Resources Inc	13-Jan-05	502663	460.307	1 8/1 50	184.16	January 13, 2007	- ÷	1,843,92		
2S116	Region Resources inc.	13-Jan-05	502665	460,337	1 843 53	104.10	January 13, 2007		1,641.59		
IS131	Renton Resources Inc	13-Jan-05	502665	400.075	1 841 60	104.30	January 13, 2007		1,843.52		
CS117	Redton Resources Inc.	13-Jan-05	602668	400.4	1 942 50	104.10	January 13, 2007		1,841,50		<u> </u>
35132	Redion Resources Inc.	13- Jan-05	502660	400.070	1,043.30	104.35	January 13, 2007	<u> </u>	1,843.50		
S118	Redton Resources Inc.	13-Jan-05	502670	400.403	1 944 49	104.10	January 13, 2007	- .	1,841.61		<u> </u>
-IS133	Region Resources Inc	13-Jan-05	502671	401.121	1,044.40	104.40	January 13, 2007	<u> </u>	1,844.48		
CS119	Redton Resources Inc.	13-Jan-05	502675	460.403	1 944 43	194.10	January 13, 2007		1,841.52		
C\$120	Redton Resources Inc.	13- Jan-05	502073	401.108	1,044.43	104.44	January 13, 2007	<u> </u>	1,644.43		
CS121	Redion Resources Inc.	13- Jan-05	502077	442.000	1.770.07	111.01	January 13, 2007	<u>×</u>	1,770.67		
HS134	Redion Resources Inc.	13_lan_05	502690	401.30	1,040,44	104.04	January 13, 2007	<u> </u>	1,845.44		
CS122	Redton Resources Inc.	70-net-01	502000	442.343	1,709.37	1/6.94	January 13, 2007	<u>×</u>	1,769.37		
-15135	Redton Resources Inc.	13_120_05	502002	401.309	1,040,48	164,001	January 13, 2007	<u> </u>	1,845.48		
CS123	Redion Resources Inc.	13-120-05	502004	460.966	1,043.00	104.39	January 13, 2007	<u>×</u>	1,643.86		
CS124	Pedion Resources inc.	13_lon_06	502660	401.379	1,645.52	184.55	January 13, 2007	×	1,845,52		
CS125	Redton Pesources Inc.	13-Jan-05	502000	401.117	1,044.47	184,45	January 13, 2007	<u>×</u>	1,844.47		
35126	Redion Resources Inc.	13-Jan 05	502090	401.121	1,844.48	104.45	January 13, 2007	<u> </u>	1,844.48		
5127	Pedion Resources inc.	13-1an-05	502091	401.270	1,043,13	184.51	January 13, 2007	<u>.</u>	1,845.11		
35128	Region Resources Inc.	13-1an-05	502095	424.430	1,697.74	169.77	January 13, 2007	X	1,697.74		
Win 05	CONFERENTIAL MARCEN	12 inn 05	50/2090	461.449	1,845.80	184.58	January 13, 2007	X	1,845.80		
win 0502		12-Jac+00	504257	450.317	3,648.64	364.86	January 19, 2008	X	X		
Kinn	Porton Population inc	1 Eeb-05	505407	345.815	2,774.52	2//,45	January 19, 2008	X	X		
(ing	LODAIC PRIAN MARDEN	10 Ech 05	505407	18.341	660.27	44.04	February 1, 2012	X	X	<u> </u>	X
		10 Feb 05	506569	802.893	3,218,42	321.84	May 1, 2008	X	×		
vi01	Parton Passurana ina	20 [an 05	500000	/05,411	3,0/2.18	307,22	May 1, 2008		X		
	Presidin Resources Inc.	21 (20.04	50441/	459.534	1,838.14	183.81	January 20, 2007	X	1,838.14		
	Padion Resources Inc.	21 ton 05	504420	459.95	1,839,80	183.98	January 21, 2007	<u>×</u>	1,839.80		
	Gabioformation Evaluation Constant	17.100.00	505250	55.38	221.52	22.15	January 21, 2007		221.52		
1.1	Geomornaucs Exploration Canada	12-0305-00	525350	440.421			January 13, 2007	<u> </u>	1,761.68		
									<u>}</u>		
TOTAL	272	claims	-	121,846	527,500.10	52,728.02			439,754.71	0.00	0.00

2007 Assessment Regulrements

2007 Assessment Fees

(\$4.00/hectare) (\$0.40/hectare)

TAKLA - REDTON PROJECT

Π

[

1

0

٥

2005 ASSESSMENT REPORT

Appendix 13

Statement of Costs

Expenditures & Assessment Data
Takla - Redton Project 2005 Statement of Cost								
Date	Itam	Cost	Usable for					
Alborne Geophysics								
	Zang Geophysical (labour)	1.700.00	1,700.00					
	Zang Geophysical (expenses)	634.10	634.10					
	Fugro survey	89,251.27	89,251.27					
	Aeroquest survey	56,000.00	56,000.00					
	G. Bidwell (labour)	1,937.93	1,937.93					
	J. McLachlan (expenses)	892.87	892.87					
	Zang Geophysical	8,769.64	8,769.64					
	Webb's Hunting lodge(accomodation)	560.00	560.00					
	G. Bidwell (expenses)	825.78	825.78					
	Nugget Expediting (truck rental)	2,385.23	2,385.23					
	Aeroquest survey	212,356.00	212,356.00					
	Total	375,312.82	375,312.82					
Prospecting								
.hun 13-17	G Bidwell (labour)	6 270 00	6 270 00					
Jun13-17	Georeference Online (labour)	4 400 00	4 400 00					
Jun13-17	Steve Cook (geochemist) (labour)	3 250 00	3 250 00					
Jun13-17	Cook expenses	908.94	908 94					
Jun13-17	Geoference Online	623.71	623 71					
Jun13-17	equipment rental	321.00	321.00					
Jun13-17	Georeference Online (travel expenses)	1.073.51	1.073.51					
Jun13-17	CJL Enterprises	7,104.37	7,104,37					
Jun13-17	CJL Enterprises (freight)	46.69	46.69					
Jun13-17	Interior Helicopters - charter helicopter	9,014.93	9,014.93					
Jun13-17	G. Bidweil (expenses)	24.56	24.56					
Jun13-17	G. Bidwell (expenses)	136.06	136.06					
Jun13-17	Acme Labs (assays)	222.60	222.60					
	Total	33,396.37	33,396.37					
Data Cantur	e (Parth)							
Sura Captul	scanned data (ARIS reports)	1 239 86	1 239 86					
	Geoinformatics labour (Sep/05)	41 160 00	41 160 00					
	Geoinformatics labour (Oct/05)	38 301 25	38 301 25					
	Geoinformatics labour (Nov/05)	40,389.90	40,389,90					
	Scanning (Sep/05)	103.00	103.00					
	Magnasoft (digitizing)(Sep/05)	3,280,00	3,280.00					
	T. Worth (travel costs)	4,002.73	4,002.73					
	Maxwell Data	617.50	617.50					
	Magnasoft (digitizing)(Oct/05)	5,327.00	5,327.00					
	Neville Panizza (travel)	1,255.72	1,255.72					
	Neville Panizza (travel expenses)	253.00	253.00					

-

1

ŕ. : 5.20 į, 1. ł k

Magnasoft (digitizing)(Nov/05) N. Archibald travel expenses 1,166.10 162.28 Total 137,436.54 50,000.00

couriers

Assessment fees

Infrotrieve

publications

2.67

95.00

80.53

TOTAL

596,145.73 546,145.73

2.67

95.00

80.53

1,166.10 162.28

137,436.54

Person	Affiliation	Jun	Sep	Oct	Nov
Gerry Bidwell	Geoinformatics (Vancouver)	40	0	40	16
Clinton Smyth	Georeference Online (Vancouver)	40			
Steve Cook	geochemist (Victoria)	40			
Lorne Warren	property owner (Smithers)	40			
Dan Garner	assistant (Smithers)	40			
Cory Degrassi	assistant (Smithers)	40			
Amanda Buckingham	Geoinformatics (Perth)		24	0	0
David Byrne	Geoinformatics (Perth)		95.55	1	0
Helen Ly	Geoinformatics (Perth)		79.2	126.2	95.4
Jennifer McLachlan	Geoinformatics (Vancouver)	Ĩ	32.25	13.9	32
Lisa Kirby	Geoinformatics (Perth)		5	18.55	2.7
Neville Panizza	Geoinformatics (Perth)		118	78.4	120.2
Peter Wilson	Geoinformatics (Perth)		22	27	31
Rob Stuart	Geoinformatics (Perth)	· _ ["	24	16	13.4
Robin Wilson	Geoinformatics (Perth)		24.3	58.8	40.95
Steve Garwin	Geoinformatics (Perth)		0	52.85	8
Fony Worth	Geoinformatics (Perth)		0	1	109.6
	Total	240	424.3	433.7	469.25

°]

1

Takla Redton Project - 2005 Labour (hours)