GEOLOGICAL SURVEY BRANCH

PEROVIC ENTERPRISES INC.

The Tay-Christina Gold Property Report on 2006 Exploration Drilling Program

> Alberni Mining Division NTS 92F/6W BCGS 92F. 034

> > Lat 49 20' North Long 125 15' West

UTM Zone 10 U Easting 0334600 Northing 5463100

Owner: Franjo Perovic Operator: Perovic Enterprises Inc.

Author: Franjo Perovic Consultant: Alf Randall, P.Eng

April 10, 2006

TABLE OF CONTENTS

Introduction	pg. 6
Objective and Scope of Present Work	pg. 6
Property Definition	pg. 7
Discussion/interpretation of results relative to geology and conclusion Alf Randall's Report (consultant)	pg. 8-12
Statement of Costs	pg. 19-20
Statement of Qualifications	pg. 21
List of references cited in this report	pg. 22
Software Programs	pg. 22
Drill Core Logs	pg. 23-26
Assays	Appendix A
Illustrations	
Figure 1 Location Map	pa. 3

rigure 1	Location Map	pg, 5
Figure 2	Property Outline Map	pg. 4
Figure 3	Mineral Tenure Map	pg. 5
Figure 4	Drill Locations related to claim boundary	pg. 13
Figure 5	Drill data and location	pg. 14
Figure 6	Section DDH Christina 1	pg. 15-16
Figure 7	Section DDH Karlo 1	pg. 17-18

Figure 3 Mineral Tenure Map

INTRODUCTION

The Tay-Christina Gold Property, formerly known as the Tay Property, is currently owned by Franjo Perovic and operated by Perovic Enterprises Inc. The location is at the Taylor River, 40 kilometers west of Port Alberni along highway #4, in the Alberni Mining Division of Vancouver Island.

The property history and economic assessment is included in the consultants report. (See "Interpretation of results relative to geology and conclusion" pages 8-12).

OBJECTIVE AND SCOPE OF PRESENT WORK

Using a manportable prospector diamond drill with the potential to retrieve 36.4 mm diameter core samples, we endeavored to explore for a vein system which was associated with a batholith intrusion, a fault and a gold in soil anomaly. Two holes were drilled totaling 370.64 meters in length within the boundaries of the Mineral Tenure #506020. The core samples are located at Junction Self Storage Ltd., 2530 Timberlane Rd., Port Alberni, BC.

The work commenced on April 17, 2005 and carried out mostly through to May 22, 2005. In order to complete site reclamation, geological consulting, core examination, comparisons to previous sampling, prospecting and core logging, the work continued up to and including December 27, 2005. The program was carried out under our Notice of Work, Mine No.: 1610155.

Due to limited time and budget, the zone which was intended to be covered by exploration drilling was only partially completed. The source for the gold in soil anomaly was not identified.

It is recommended that the exploration continues and that the remaining portion of the target area be tested based on evidence of hydrothermal activity in the core samples retrieved, minor sulphides and various reports which elaborate on the above mentioned geological data. (See "References cited in this report")

The Property is comprised of the following claims:

(See following page)

Tenure Number	Tenure Type	Claim Name	Owner	Map Number	Good To Date	Status	Mining Division	Area	Tag Number
501744	Mineral	BFTGOG 1	143173 (100%)	092F	2011/JAN/12	GOOD		526.647	,
501878	Mineral	BFTGOG 2	143173 (100%)	092F	2011/JAN/12	GOOD		526.51	3
501 95 4	Mineral	BFTGOG 3	143173 (100%)	092F	2010/JAN/12	GOOD		294.901	ł
502005	Mineral	BFTGOG 4	143173 (100%)	092F	2010/JAN/12	GOOD		42.118	
502500	Mineral	BFTGOG 5	143173 (100%)	092F	2010/JAN/12	GOOD		42.14	
506020	Mineral		143173 (100%)	092F	2013/DEC/16	GOOD		674.03	
513665	Mineral	BFTGOGTGI	143173 (100%)	092F	2006/MAY/31	GOOD		189.539	3
520567	Mineral	BFTGOGBILQ	1 43 173 (100%)	092F	2006/SEP/28	GOOD		357.917	,
520569	Mineral	BFTGOGSKN	143173 (100%)	092F	2006/SEP/28	GOOD		126.343	9

DISCUSSION/INTERPRETATION OF RESULTS RELATIVE TO GEOLGOGY AND CONCLUSION A.W. Randall P. Eng

Note:

With respect to the following 4 page report, all references made to Dalmation Resources Ltd. are to be replaced with Perovic Enterprises Inc.

RM Resource Management Ltd

Mining Resource Consultants

325 Dorset Road Qualicum Beach BC V9K 1H5 (250) 752-0149 or 752-3538

May 25, 2005

Frank Perovic Dalmation Resources Ltd 5245 Fairmont Street Vancouver BC V5R 3V4

Re: Christina (Tay) Gold Property, Taylor River Area, Vancouver Island Project Appraisal

Terms of Reference

Frank Perovic of Dalmation Resources has asked the writer to provide some guidance as to the potential feasibility of locating a successful, economically viable gold mine on the Tay Property. Mr. Perovic has asked for an uncensored appraisal based on the writers own personal observations and conclusions. In Mr. Perovic's words, "....what would you do with this property if you were the owner..." The writer was provided with two summary documents to review as part of this appraisal. The writer visited the property and examined new drill core from a drill program that was underway at the time, in company with Mr. David McLelland (prospector) and the owner representative Mr. Perovic on May 12, 2005

Many of the comments in this document are forward looking statements based on limited evidence from previous field work. The writer agrees to make this appraisal on condition that Dalmation Resources and its officers and representatives accept the suggestions exclusively and entirely at their own risk and indemnify the writer of any and all liability what so ever. A W Randall and RM Resource Management Ltd accepts no responsibility for damages, if any, suffered by any parties as a result of decisions made or actions taken based on this review. The owners, and/or their representatives, in taking receipt of this report, agree to these terms.

The Property

The Dalmation Project area consists of 6 Tenures (claims blocks) including 100 cells and totalling approximately 2106 hectares staked under the new Mineral Titles Online system. All pre-existing claims have been converted to the new system. The property hosts numerous gold and locally a few gold +/- copper-lead-zinc showings. Ten of these showing have been highlighted for additional exploration activity. Only one area, the Tay Vein, has had sufficient exploration drilling on which a modest ore reserve has been developed. This reserve is indicated to be 145,000 tonnes grading 0.063 ounces/tonne (2.16 grams/tonne).

Page 2 - Letter Report to F. Perovic, Dalmation Resources, May 25, 2005

Past Exploration Activity

The Tay mineralization was discovered in 1899 and has had been subject to a number of exploration programs in the intervening years including underground drifting on the Morning Vein, prospecting, geological mapping, a variety of soil and stream sediment geochemical surveys, geophysical surveys including ground surveys IP, Mag and EM as well as a helicopter borne aerial surveys. All this exploration has been thoroughly synthesized and analyzed by Leo Lindinger P.Geo in 1994 and again by A.A. Burgoyne P.Eng in 1996 from which numerous anomalous areas have been identified. Several diamond drilling programs have tested a number of targets over the years with limited success. The most extensive diamond drilling has outlined the Tay Vein with reserves as noted above. All these activities have been well documented in the reports supplied and do not require further discussion here.

Property Assets

- 1. Wide spread occurrence of gold mineralization which appears to be primarily associated with the Tay-Morning Fissure system
- 2. Evidence of local concentrations of gold mineralization in shear vein systems, the most well defined (explored) being the Tay Vein.
- 3. Evidence that the Tay Vein section, which has been the most extensively drilled, is not fully closed off or defined by drilling to date. There is some indication that the deposit may extend particularly to depth but also to the west.
- 4. Evidence of the potential for locally higher gold grades ranging up to 1 ounce per tonne (30+ grams per tonne).
- 5. Considerable previous exploration with which to focus any future exploration program.
- 6. A considerable length of the 6 to 7 kms of favourable shear zone structure has been only minimally explored.
- 7. Location is close to a very good and easily accessible transportation corridor.
- 8. Proximity to nearby service centre, bedroom community and workforce.
- 9. Hydro power right on the doorstep of the property.

Property Liabilities

- 1. Proximity to the Salmon bearing Taylor River-Sproat Lake fishery system. Any mine development in this area will have to undergo an intensive and extensive environmental assessment before being allowed to proceed. It will have to include extensive measures to capture and clarify sediment laden waters from mining activates and neutralize any acidity in any and all runoff waters emanating from the site as a result of exploration and mining. In addition protective barriers to capture potential fuel, oil and toxic chemical spills would have to be designed and built as part of any mine development.
- 2. In addition to the above it appears likely that mining will probably have to extend below the Taylor River valley floor. Consequently water is likely to be encountered in underground workings which will have to be pumped out and treated if it is not clean enough to release to the environment as is.

Page 3 - Letter Report to F. Perovic, Dalmation Resources, May 25, 2005

- 3. The small narrow lensy and discontinuous veins will likely require expensive underground shrinkage stopeing methods to mine these deposits, requiring extensive development and which may result in ore losses and/or excessive dilution during mining.
- 4. The presence of a penstock and turbine system situated very close to the Tay Vein mineralized zone may make it difficult to mine without disturbing this system.

Observations and Recommendations

There is no doubt that this property has potential for discovery of additional gold mineralization. Only a small portion of the total 6 to 7 km strike length of the system has been thoroughly explored. In order to do this properly and in a timely fashion will require a fairly extensive exploration program. The owner's small drilling program, while providing a small amount of valuable information, at the rate it is able to progress would take many years to explore the system.

Geologically the area is situated in rocks which contain alteration and mineralization indicitative of the presence of gold +/- base metal ore deposits and with significant structure suitable for channelling of mineralizing fluids and development of locations for ore deposition. In addition the proximity to the Bedwell Batholith is also a possible heat engine and/or structural driver for development and localization of mineralization. The apparent lack of Sicker Formation rocks in the immediate vicinity suggests that a Myra Falls style of massive sulphide deposit is unlikely.

Exploration of this mineral prospect will take considerable exploration talent and substantial funding to make the necessary strides to determine if a viable deposit is present. The owners have made progress along this way with the work they have had done to date, in having all available data analyzed and targets developed.

It is the writer's suggestion that first of all an appraisal of the mineability of the existing deposit be made to develop an idea of the feasibility of mining. For example an estimate of mining method, mining costs and ore recovery potential should be made to ultimately develop a good idea of the required target size for a viable deposit at this location. An examination of the host structures and the expected geometry of ore zones would be helpful in this regard. An appraisal such as this can be made by an ore reserve specialist teamed with a mine development consultant and might be done for under \$30,000 depending on availability of consultants.

Then with an indication of the target size and viability a concerted exploration effort could be undertaken either by optioning the property to a suitable company or the company could raise the money itself on the market and hire a consulting team to manage the work as has already been done. It is estimated that a staged project of \$500,000 to \$1,000,000 should be done to adequately explore this property. A suitable exploration program should include the following elements in the order listed: Page 4 - Letter Report to F. Perovic, Dalmation Resources, May 25, 2005

- 1. Review and re-evaluate the targets previously identified focusing primarily on the evidence of gold mineralization and geochemical anomalies. Although there is some indication of correlation to structure and mineralized showings, geophysical surveys in this rugged terrain may be suspect.
- 2. Do a structural analysis to try to define/confirm the trend of the mineralized zones and to see if the shear zone is bending or is being offset by faulting.
- 3. Review the work done on the Tay Vein reserve and look to expand the existing resource with additional drilling where the zone appears to be open.
- 4. Re-examine the underground workings to see if access is safely possible. If accessible sample these underground workings. In addition see if these workings would be a suitable platform for diamond drilling to test other parts of the shear zone system, including possible short extensions of the workings to accommodate this.
- 5. Reopen existing or develop new roads to access and easily travel to some of the more remote, higher altitude locations on the property. In addition to providing access, these road cuts will provide more exposure for mapping and sampling and the possibility to do some excavator trenching.
- 6. Do focused mapping, sampling and prospecting along the favourable trend.
- 7. Begin drilling some of the best targets identified along the mineralized trend.

It would be prudent however before undertaking further work to explore with the Environmental Assessment Office what if any roadblocks (potential "show stoppers") they might see in developing a mine at this location. In addition any concerns with respect to mine development around the small hydro power system should also be explored.

Yours truly.

A. W. Randall P.Eng RM Resource Management Ltd

Hole Collar Northing 5463160 Easting 0333800 Elevation 107 m Length 160 m Strike 180° Dip 69°

CONTINUED

Looking @ 90 deg.

Figure 7 Section DDH Karlo 1

.

Figure 7 Section DDH Karlo 1

Looking @ 90 deg.

CONTINUED

COST STATEMENT April 17 - May 30, 2005

Room and Board - 50 man days >	< \$100.00	\$5,000.00
Chainsaw operating: \$30 x 3		\$90.00
Chainsaw standby: \$10 x 32		\$320.00
Trail work: 1 week - 40 hrs @ \$2	0/hr	\$800.00
Drilling 1216 feet of BQ (1 7/16)	@ \$40 per foot	\$48,640.00
Core rack, storage, material, plus	labour @ \$20/hr x 15 hrs	\$600.00
Lab Costs		\$575.39
Project Supervision/management	@ \$30/hr x 300	\$9,000.00
Logistical support @ \$20/hr x 100) hrs	\$2,000.00
	Subtotal	\$67,025.39
Pick-up Truck 4x4 - \$940/month	+ \$230/wk	\$1,170.00
Gas/ferry trips		\$3,244.97
	Subtotal	\$4,414.97

Total Expenditures \$71,440.36

COST STATEMENT May 31, 2005 - September 27, 2005

Room and Board		\$234.55
Reclamation & clean up work	(\$20/hr + \$30/hr) x 20 hrs	\$1,000.00
Core Storage		470.80
Management \$30/hr x 8hrs (Consultation visit/analysis with	
Regional Geologist)		\$240.00
Geological Consultant	<u>\$1,019.18</u>	
	Subtotal	\$2,964.53
Pick-up Truck 4x4 - \$50/day	x 6 days	\$300.00
Gas/Ferry Trips		\$ <u>441.71</u>
	Subtotal	\$741.71
	Total Expenditures	\$3.706.24

COST STATEMENT September 28, 2005 - April 10, 2006

Room and Board		\$170.89
Supplies		45.57
Core Logging		\$900.00
Core Storage		706.20
Geological Consultant		\$505.55
Report Preparation		\$1,200.00
	Subtotal	\$3,528.21
Pick-up Truck 4x4 - \$50/day X 2 days		\$100.00
Gas/Ferry Trips		<u>\$495.33</u>
	Subtotal	\$595.33
	Total Expenditures	<u>\$4,123,54</u>

GRAND TOTAL \$79,270.14

Persons whom worked on Tay-Christina Project

Claude Lessard		Diamond driller
Shane Hess		General labourer
Gord Corcoran	-	General labourer
Frank Perovic		Project Manager
Christina Perovic		Logistical Support/labourer
Alf Randall, P. Eng		Consultant

STATEMENT OF QUALIFICATIONS

I, Franjo Perovic, of 8456 Karr Place, Delta, BC do hereby certify that:

- 1) I hold a valid free miners certificate since 2000.
- 2) I completed the Prospecting/Exploration Method program hosted by BCIT and BC/Yukon Chamber of Mines in 2002.
- 3) I have completed the Prospecting Field School hosted by BCIT and BC/Yukon Chamber of Mines in 2003.
- 4) I have prospected independently since 2000.
- 5) I currently own 100% interest in the subject property.

Dated at Delta, BC, on April 10, 2006.

jo provie

Franjo Perovic

LIST OF REFERENCES CITED IN THIS REPORT:

Dalmation Resources Ltd. Report on Tay Gold Property Dec. 1983 • V. Cukor, P. Eng. • NVC Engineering Ltd. Figure 4 (OUTCROP GEOLOGY PLAN)

Dalmation Resources Ltd. Report on 1994 phase 1 diamond drill program on the Tay Main (East) zone and Slide zone with a summary of economic potential on the Tay Property Leo J. Lindinger, P. Geo. - July 20, 1994 Figure 4 (TAY AREA COMPILATION MAP)

LIST OF SOFTWARE PROGRAMS used in support of the exploration / development and preparation of this report:

- Microsoft Windows XP, MS Word, MS Excel
- GPS Trackmaker

Drilling Project April - May 2005, Vancouver Island by Frank Perovic

Hole: Christina NAD 83 UTM co Zone 10U 5463	1, April 2005 99% Recovery o-ordinate 99% Recovery 9160 0333800		
Azimuth bearing Angle of Penetra	180° No dip tests were performed tion 69°		
0.00			
0 - 20'	casing		
17' – 49'	Basalt (fine grained, dark green, magnetite present in rock). Quartz carbonate		
401 501	stringer venifets and minor sulphides with blebs as big as 3mm diameter occurring		
49'-50'	Sample 1: Calcite with green, pink epidote and minor sulphides (mostly pyrite)		
50' - 74'	Basaltic to andesitic with stringer veins up to 1cm wide, minor pyrite, chalcopyrite		
$74^{\circ} - 75^{\circ}$	Part of Sample 2: Light greenish gray		
75' - 105'	Part of Sample 2: Crackle brecciated, partially healed basaluc to andesitic. Quartz		
1057 100 57	carbonate veiniets with minor supplies.		
105' 129.5'	Dark green basait. Mylonitized (chert like) Banded section-purple with 6 bands		
	across a 2cm fracture. Also present are pieces of mica like while line grained scales		
100 57 1217	and flakes (sericite) found in fractures.		
$129.5^{\circ} - 151^{\circ}$	Sample 5: Minor disseminated sulphides (mostly pyrite).		
$131^{\circ} - 145.9^{\circ}$	Greenish gray basait with hairline fractures to dark green.		
$145.9^{\circ} - 147^{\circ}$	Sample 4: Dark green basalt with 1/3 bleb of quartz carbonate		
147' - 170'	Dark green basalt 163' – 176' heavily fractured/brecciated quartz calcite		
1/6' - 1/8'	Sample 5: Partially healed fracturing and brecciatian with minimal sulphide content		
178' - 180.4'	Dark green to light green basalt.		
180.4' - 181.2'	Sample 6: Veinlets of quartz-calcite within basalt.		
181.2' - 267.2'	Dark green to light green basalt. Fractures from hairline to 2cm thick stringer veinlets of quartz carbonate, minor pyrited areas.		
267.2' - 268.5'	Sample 7: Fine grained, dark gravish green explosive type volcanic (tuffaceous)		
268.5' - 328.2'	Fine grained tuffaceous To large pyraclasts with quartz-carbonate veinlets up to 1 cm wide.		
328.2' - 330'	Sample 8: Fine grained, greenish gray tuffaceous (volcanic – basalt) with 4 mm		
	diameter pyroclasts, minor sulphides		
330' - 341'	Tuffaceous with pyroclasts as large as 6mm diameter.		
341.2' - 342'	Sample 9: Tuffaceaus with stringer veinlets 1 cm wide.		
342' - 389.4'	Tuffaceous to 357' and becoming fine grained basalt again. Small veinlets, 1-5"		
0.2 0071.	wide vein 380 – 383' tuffaceous		
389 4' - 390 5'	Sample 10: 2' wide intersection of quartz-calcite with green and pink epidote.		
390.5' - 398'	Basalt with intersections of stringer veinlets up to 2cm wide.		
398' - 400.2'	Sample 11: Fine-grained basalt with minor pyrite and hairline stringer stockwork		
100 21 127 21	Possit with handed intersecting vainlets 5' intersection of quartz-calcite vain and		
700.2 - 421.2	numerous stringers as throughout entirety of hole		
1777 1 17821	numerous sumgers as unoughout chartery of nois. Sample 12: Overtz carbonate intersection with green and nink enidete		
761.6 - 460.3	Basalt with hairling stringers with a 2" wide veinlet		
420.3 - 403.3 162 51 165	Data with hamme sumptis with a 5 with vende internation of quarter with order		
403,3 - 403	and nink anidate. Remainder is baselt		
	and pink epidote. Kemainder is basait.		

465' – 470.5' Fine grained dark gray-greenish basalt.

470.5' - 471.7'	Sample 14: 11" intersection of quartz with pyrite associated with dark green and pink epidote.
471.7' – 480'	Basalt
480' - 481'	Sample 15: Basalt (lighter gray with light green blebby composition). Some fizzle – carbonization
481' - 503'	Basalt with 1 intersection of 14" quartz with minor green epidate and minor visible sulphides.
503' - 505'	Sample 16: Basalt with stockwork veinlets and blebbing of chalcopyrite found.
505' - 515'	Basalt with a couple of 2" wide blotches of quartz.

End of hole.

Drilling Project April - May 2005, Vancouver Island by Frank Perovic

Hole: Karlo 1, M	lay 2005 99% Recovery			
NAD 83 UTM co-ordinate				
Zone 10U 5463	160 0333800			
Azimuth bearing	180°			
Angle of Penetrat	ion 89° No dip tests were performed			
0 - 20'	casing			
10' - 28'	Basalt- fine grained			
28' - 28.7'	Green and pink epidote with minor sulphides (pyrite).			
28.7' – 78'	Basalt with stringers as large as 15 mm.			
78' – 90'	Stringer calcite-quartz filled fractures (hairline to 15mm and blotches)			
90' - 91'	Sample 17: 7.5" of quartz-calcite green epidote, some pink epidote with minor			
	sulphides.			
91' – 102'	Several stringers and blotches of quartz-calcite			
102' 104'	Sample 18: Stockwork veinlets and blotchy intersections of quartz calcite. Epidote			
	(green and some pink) with minor sulphides.			
104' 126'	Fine grained grayish green basalt with stringers throughout (quartz-calcite). Green			
	epidote throughout			
126' – 158'	Most areas covered by stockwork stringers and blotches of quartz calcite. Presence			
	of green epidote with minor sulphides.			
158' – 171'	Fine grained basalt with web like stringers.			
174' – 265'	Basalt mostly intense to mild fractures filled with quartz carbonate turning to a light			
	greenish gray. Some small pyritized blebs 1 mm diameter.			
265' – 345'	Tuffaceous basalt with presence of pyrite blebs of up to 3mm in diameter, fractures			
	are filled with stringers of quartz-calcite with minor green and pink epidote.			
344.5' – 345'	Sample 19: Tuffaceous basalt with a greater presence of sulphide blebs.			
345' 394'	Tuffaceous basalt fractured, silicified and carbonatized stringers with minor			
sulphides.				
394' – 448'	Heavy fracturing – Silicification, carbonatization (shear zone unhealed) with minor			
	sulphides containing 7.5 mm blebs occurring in basalt			
448' - 502'	6 blotches of quartz-calcite with epidote (green and pink) all are approximately 3 –			
	5"wide in basalt.			
502' - 528'	Basalt becomes lighter gray tuffaceous with greater sulphide content.			
528' - 563'	Basalt, fine grained, minor sulphides often associated with blebs of green epidote.			
563' - 568'	Intense fracturing filled with a quartz carbonate along with minor sulphide content			
	(blebs of sulphide as large as 8 mm diameter)			
568' - 611'	579' - 580 3' heavily fractured, silicified/carbonatized 581' - 583' also quartz			
000 011	carbonate with minor sulphide content in fine grained basalt (dark greenish grav to			
	lighter greenish gray) Stringer veinlets throughout up to 1 cm thick			
611' - 638'	Heavily fractured zone filled with quartz carbonate and minor sulphides (mainly			
011 000	nvrite has been seen throughout but chalconvrite and arsenonvrite have been			
	pyrice has been seen anoughout out chaloopyrice and arsonopyrice have been			
638' 654'	Fine grained baselt with mainly minor purite blacks. Stringers of quartz-calcite up to			
	7 mm wide			
654' – 655' Ouartz-calcite area (nink hamatite staining and green enidote)				
655' - 650'	Fine grained baselt dark greenish gray with stringers of quarty-calcite			
035 - 037	i ne granieu oasan uark greenish gray will sungels of quartz-calene.			

659' – 664'	blotches and	veinlets of c	uartz-calcite.
-------------	--------------	---------------	----------------

664' - 701' (a) 685', 693', 694', 695', 697" - 2", 7", 2", 2", 3" respectively. Blotches of quartzcalcite with minimal sulphide content in basalt (fine grained dark greenish to gray).

End of hole.

APPENDIX A

Cross Reference of Sample Numbers

Drill Core Log Sample #	Assay Tag/Sample #
1	B085253
2	B085254
3	B085255
4	B085256
5	B085257
6	B085258
7	B085259
8	B085260
9	B085261
10	B085262
11	B085263
12	B085264
13	B085265
14	B085266
15	B085267
16	B085268
17	B085251
18	B085252
19	B085270

Note: other assays shown are not related.

(

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

To: PEROVIC, FRANK 8456 KARR PLACE DELTA BC V4C 3X7

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 23-MAY-2005 Account: PERFRA

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

									C	ERTIFI	CATE C	F ANA	LYSIS	VA050	38524	
Sample Description	Mathod Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-1CP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ρpm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
B085251 B085252 B085253 B085254 B085255		0.38 0.56 0.56 0.48 0.48	0.009 0.011 0.009 0.011 0.007	<0.2 <0.2 0.2 0.2 <0.2	1.72 3.35 2.57 4.74 5.21	31 12 2 6 7	<10 <10 10 10 <10	10 10 <10 20 <10	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2 <2	6.06 14.5 4.39 5.94 10.05	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	13 25 13 26 31	45 63 37 66 96	119 112 204 112 78	2.87 5.07 2.48 5.62 7.61
B085256 B085257 B085258 B085259 B085260		0.50 0.74 0.22 0.82 0.80	0.006 0.011 <0.005 0.009 0.017	0.2 <0.2 <0.2 <0.2 <0.2 <0.2	2.83 4.40 3.49 3.32 3.12		<10 10 <10 <10 <10 <10	10 10 <10 20 50	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2 <2	2.32 8.43 9.78 2.63 3.04	<0.5 <0.5 <0.5 0.6 <0.5	21 33 28 10 14	57 85 76 26 24	160 253 173 196 83	4.64 6.43 6.50 2.72 3.84

ACM	E ANA (ISO	LYT1 900	CAL 2 A	LAI Icre	ORA dit	TOF	IES Co.))	Þ.		852	B.	HAS	TIN	GS	ST.	VA	NCOI	IVBR	BC	76	A 1	R6		PHOI	NE (6	04):	253	-31	58 1	PAX (604)25	3-1	716	
A											(_ <u>P</u> e	ero Bro	CHE Vic	МІС , Е	IAL Tal	AN <u>ak</u>	ALY Fi	SI le	9 C1 # 2	ERT: A502	IFI 225	CAI 9	E													
SAMPLE#	Mc ppr	Ci DDf	i Pb i ppm	Zn pom	Ag Doni	Ni	Co DOM	Mn	Fe	As	8456 U	Karr Au	Th	Sr Del	Cd	Sb	: 3)(7 Bi	St V	Jomitt Ca	red by P	La	ank f	Mg	Ba	Ti	B	Al	Na	ĸ	W	Hg	Sc	T1	S	Ga	Se
085261 085262 085263 085264 085265	1.8 .4 .9 .6 .4	114.4 122.5 174.8 64.9 163.9	.6 .4 .5 .5	65 15 45 23 34	.1 .1 .1 <.1 .1	47.8 19.4 41.3 23.3 32.4	25.9 9.1 18.1 10.5 13.8	1025 269 479 290 295	5.43 1.60 3.36 2.00 2.43	1.2 4.0 1.5 2.1 1.7	.1 .1 .1 <.1 <.1	13.1 9.3 7.4 18.9 5.7	.4 .1 .3 .1 .2	29 34 36 25 38	<.1 .2 .1 .1 .1	.1 .3 .1 .1 .1	<.1 <.1 <.1 <.1 <.1	168 52 103 64 73	4.07 10.24 2.06 6.74 2.38	.068 .015 .044 .024 .030	3 <1 2 1 1	61.8 18.5 53.5 32.1 40.3	2.43 .28 1.23 .58 .95	20 2 11 2 7	.202 .106 .335 .215 .252	5 4 42 1 5 2 4 2 76 2	28 . .24 . .19 . .15 .	.046 .020 < .182 .042 .168	.03 .01 .04 .01 .03	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	.01 .01 <.01 <.01 .01 .01	16 0 2.4 7.2 3.6 5.3	<pre>> ppm < 1 < 1</pre>	.06 .10 <.05 <.05 <.05	ppm 11 6 9 6	ppm <.5 <.5 <.5 <.5 <.5 <.5
085266 085267 085268 085270 085271	2.3 .5 .9 .7 .8	237.4 129.0 183.0 100.8 191.9	.4 .8 .6 1.8	24 51 61 39 59	.1 .1 .1 .2	24.5 35.7 46.8 13.4 55.2	10.0 18.9 23.0 19.8 28.7	281 720 617 417 601	1.97 4.03 4.48 3.75 5.58	6.9 2.7 4.2 3.5 6.0	<.1 .1 .1 <.1	10.7 3.3 5.2 4.7 21.7	.1 .3 .2 .4 .3	21 54 23 119 22	.3 .1 .2 <.1 .1	.1 .2 .1 .2	<.1 <.1 <.1 <.1	58 143 123 115 198	1.45 5.78 2.72 3.08 3.61	.027 .054 .041 .082 .065	1 3 2 2 3	40.3 56.6 75.3 20.2 106.7	.68 1.39 2.04 1.09 1.54	7 14 5 72 4	.252 .411 .414 .139 .464	19 1 5 2 9 3 2 3 9 3	.25 . .40 . .08 . .89 . .33 .	104 121 104 398 055	.03 .05 .02 .06 .01	<.1 .1 .1 <.1 .2	<.01 <.01 .01 <.01 .08	4.6 13.3 8.9 3.4 10.1	< 1 < 1 < 1 < 1 < 1 < 1	<.05 .11 .06 .75 1.58	4 9 11 8 10	<.5 <.5 <.5 .7 .6
GRO (>) - S/ Data	UP 1DX CONCEN AMPLE T a	- 15. TRATII YPE: FA	DO GM ON EX Core	SAMP CEEDS R150	DAT	EACH	ED WI IMITS	ITH 96 3. SC IVEI	DML DMEM	2-2-2 IINERA MAY 3	2 HCL ALS M 30 20	- HNO. AY 81	3-H2O E PAR DAT	AT S TIALI	95 DE LY AT	G. C Tack	FOR ED.	ONE REFR.	HOUR, ACTOR	DILU Y AND			O ML, C SAM	ANAL PLES	YSED CAN I	BY IC	AU S			r. Zeong		ALL ALL				

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)									85	852 B. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE													IONE	NE (604) 253-3158 FAX (604) 253-1716									
										т	GE(DCHI	EMIC	CAI Ette		VAL)	(SI	S (C)	BRTI	FI	CATE												
	•									84	ió Kar	ST Pl	, De	l ta	BC V4	ic 3X7	' \$, ++ Labomitt L	ed by	;20 : Fra	o ank Pe	ovic											
SAMPLE#	Mo ppm	Cu ppm	Pb ppr	D Zn ppm	Ag) Ni n ppm	C PP	n bb bu	fin Fe om 2	As ppn	i ppm	Au ppt	1 Th ppm	Sr ppm	Cd ppm	Sb (ppm p	Bi prnpp	V Ca xm %	P X	La ppm	Cr ppm	Mg Ba X ppr	a m	Ti %ipp;	BA M	l Na K X	n ! 6 !	K W %ippmip	Kg Spm	Sc T pprnpp	15 m2	Ga Se ppm ppm	
085269 STANDARD	5.0 11.7	14.0 124.7	8.2 29.7	15 145	.3	5.2 24.4	9. 10.	0 9 4 71	0 2.89	2476.4 21.8	<.1 6.4	528.8 50.8	3.3 3.1	8 40	.2 6.2	2.1 <	.1 2	26.09	.050 .080	2 14	10.4 190.5	.32 2 .59 16	5.0 3.0	02 177 1	2.8 71.9	005	. 2 . 1	7 <.1<. 6 3.7 .	.01 .23	2.2 <. 3.2 1.	1 1.83 7 <.05	2 1.5 6 4.6	
Standard	is STA	NDARD	DS6.																							_							
GROU (>) - SAI	P 1DX Concen Mple t	- 15.0 TRATIO YPE: R	IUGM INEX Jock	CEED	PLE S UP	LEACHI PER L	ED W IMIT	IITK S.	90 ML Some M	2-2-2 H INERALS	CL-HN May	O3-H2 Be pa	C AT	95 D .LY A	DEG. I	C FOR KED.	ONE REFR	HOUR,	DILUT YAND	GRAP	O 300 HITIC	ML, AN/ Sample:	ALYS S ca	ED BY	ICP-I	is. Solub	ILI.	ΓΥ.					
Data	ł	Fa			DA	TE R	ECE	SIVI	ED:	MAY 30	2005	DA	א איז		ספיד	MATI	. 27.	Ω	un	-7	105	-											
	<u> </u>	·									2003	211						0				• •		ß	ABLA	<u>م</u>	ļŌ	-SE					
																								(V F		<u>?.L</u>	<u> </u>						
																								S		arenc	e Li	eong		7			
•																											<u> </u>						

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.