ASSESSMENT REPORT

2005 EXPLORATION DRILL PROGRAM

ELIZABETH PROPERTY

Lillooet Mining Division, British Columbia

FOR

J-PACIFIC GOLD INC.

Suite 1440 – 1166 Alberni Street Vancouver, B.C. V6E 3Z3

PREPARED BY:

GREG Z. MOSHER, P.Geo. WARDROP ENGINEERING INC. 905 – 1130 WEST PENDER STREET VANCOUVER B.C. V6E 4A4

JANUARY 20, 2006

TABLE OF CONTENTS

1.0	SUMN	//ARY	1
2.0	INTRO	DDUCTION AND TERMS OF REFERENCE	3
	2.1	INTRODUCTION	
	2.2	TERMS OF REFERENCE	3
	2.3	DISCLAIMER	3
3.0	DATA	PROVIDED TO WARDROP	4
4.0	PROF	PERTY DESCRIPTION	5
5.0	PHYS	OGRAPHY, CLIMATE, ACCESSABILITY, LOCAL RESOURCES	7
6.0	HISTO	DRY	8
	6.1	REGIONAL	8
	6.2	Elizabeth Property	8
7.0	GEOL	OGICAL SETTING	10
	7.1	REGIONAL GEOLOGY	10
	7.2	Property Geology	
		7.2.1 ROCK TYPES	
		7.2.2 METAMORPHISM	
8.0	DEPC	OSIT TYPES	17
9.0	MINE	RALIZATION	18
10.0	EXPL	ORATION	19
	10.1	DRILL PROGRAM	19
	10.2	Drilling Results	20
11.0	SAMF	PLING METHOD AND APPROACH	23
12.0	SAMF	PLE PREPARATION, ANALYSIS AND SECURITY	24
13.0	DATA	VERIFICATION	25
14.0	ADJA	CENT PROPERTIES	26
CONC	LUSIO	NS & RECOMMENDATIONS	27
	14.1	CONCLUSIONS	27
	14 2	RECOMMENDATIONS	29

15.0 REFERENCES		30
16.0 CERTIFICATE OF A	AUTHOR	32
17.0 FIGURES		34
ALL FIGURES AT END OF	REPORT	
FIGURE 7: ELIZABETH PROF FIGURE 8: ELIZABETH PROF FIGURE 9: ELIZABETH PROF FIGURE 10: ELIZABETH PRO	PERTY CLAIM MAP LOGY MAP PERTY GEOLOGY MAP PLAN 2005 DRILL HOLES PERTY VERTICAL SECTION 5 PERTY VERTICAL SECTION 6 PERTY VERTICAL SECTION 8 PERTY VERTICAL SECTION 9 PERTY VERTICAL SECTION 15 PERTY VERTICAL SECTION 17	
Table 10-1: ELIZABETH P Table 10-2: SOUTHWES	,	19 22
APPENDIX I: STATEMENT O	F EXPENDITURES 2005	

APPENDIX 2: DRILL LOGS

1.0 SUMMARY

The Elizabeth Property (Property) is made up of 14 contiguous claims that cover an area of 9,547.813 hectares (23,953.07 acres).

The Property is located in the Lillooet Mining Division about 35 kilometers northeast of the town of Bralorne, on NTS Map Sheet 92O/2E. The center of the Property is located at approximately 51° 02' North Latitude, 122° 32' West Longitude (UTM NAD 83 coordinates 10U 531788 E / 5653732 N).

J-Pacific Gold Inc. (J-Pacific) has the right to acquire a 100% working interest in the Property subject to cash and stock payments as well as net smelter royalties. J-Pacific has carried out four drill programs on the Property. This report describes the latest, conducted during the period July to September, 2005.

The Property area is underlain by ultramafic rocks of the Shulaps Ultramafic Complex, of probable late Paleozoic age, that is a dismembered ophiolite comprised of two major structural divisions: an upper harzburgite unit with a mantle tectonic fabric, and a structurally underlying serpentinite mélange. These rocks were thrust-emplaced above the Cadwallader Terrane during the Cretaceous and were intruded by dioritic stocks during the Late Cretaceous.

The most appropriate geological model for the gold mineralization present at the Elizabeth Property is that of mesothemal gold-quartz veins. The veins cut both porphyry and serpentinite, but significant vein development and gold mineralization occur only in the porphyry.

Four principal veins have been investigated, the Main, West, No.9 and Southwest. The first three have been explored both underground and by drilling from surface; the Southwest Vein has been investigated by surface drilling only. There are a number of minor, or at least less-studied, veins as well; David, Allison, Tommy, Ella, No.4 and 9A.

J-Pacific Gold has held the property since 2002 and has carried out surface geological mapping, geochemical sampling, geophysical surveying and four campaigns of drilling that have tested most of the known veins.

The 2005 drill program tested only the Southwest Vein. This vein strikes about 030°, has a demonstrated length of about 700 meters and a vertical extent of at least 200 meters.

Drilling in 2004 established the southwestern limit of the vein at the contact of the diorite with the adjacent serpentinite. The 2005 drill program established the probable northeastern limit of the vein where the main body of diorite is in probable thrust contact with the adjacent serpentinite.

The Southwest Vein is characteristically not a single coherent vein, but a series of centimeter to decimeter-scale veins that occur within a relatively discrete interval. Thickness of the interval varies in true width from less than one, to several meters.

Gold content is highly variable: the 2005 drill program generated 380 samples in which the gold content ranged from less than detection (5 parts per billion (ppb)) to 87.3 grams / tonne (87,300 ppb). About 14% of the samples (52) had a gold content at or below the detection limit. Seven percent of the samples (27) contained more than one gram/tonne (g/t) gold.

Distribution of gold within the Southwest Vein is also variable, although the majority of holes drilled through the Southwest Vein have encountered gold values in excess of 1 g/t: 28 holes have been drilled to date; 3 were abandoned in overburden; 2 failed to reach target depth; 23 intersected the vein; 8 vein intercepts contained less than 1 g/t gold; 15 (65%) contained more than 1 g/t gold.

The weighted average thickness and grade of those intercepts that contained more than 1 g/t gold is 1.21m @ 10.54 g/t. This average is heavily influenced by two values in excess of 80 g/t gold. If those are removed, the average is 1.27m @ 4.05 g/t gold.

Most of these intercepts are in the southern half of the vein; the northern half has been tested by only three holes.

Drilling from surface has been complicated by steep terrain and locally by thick overburden, and it has been difficult to establish drill stations that provide well-distributed information. It might therefore be more effective to conduct future exploration by using existing underground workings, in particular the lower portal and associated drifts.

It is recommended that the northeastern portion of the Southwest Vein be explored to the same level of detail as the southwestern portion in order that its economic potential can be fully assessed.

The cost of the preparations necessary to conduct underground drilling, such as installation of ventilation and the slashing out of drill stations, is not known. For the purpose of this recommendation, it is assumed to equal the cost of the drill program.

The cost of the drilling is assumed to approximate the costs for 2005 surface drilling, of about CAD\$100/meter, or CAD\$300,000 for a 3,000 meter program. The total recommended program therefore has a suggested cost of CAD\$600,000.

2.0 INTRODUCTION AND TERMS OF REFERENCE

2.1 INTRODUCTION

The Elizabeth Property (Property) is located in the Lillooet Mining District of south-central British Columbia and contains at least nine vein-type gold occurrences within a dioritic porphyry that has intruded ultramafic rocks of the Shulaps Ultramafic Complex. J-Pacific Gold Inc. (J-Pacific) has the right to acquire a 100% working interest in the Property subject to cash and stock payments as well as net smelter royalties. J-Pacific has carried out four drill programs on the Property. This report describes the latest, conducted during the period July to September, 2005.

2.2 TERMS OF REFERENCE

Wardrop Engineering Inc. (Wardrop) has been retained by J-Pacific Gold Inc. (J-Pacific) to prepare a technical report on the 2005 drill program on the Elizabeth Property, in the Lillooet Mining District, British Columbia, Canada. As background to the preparation of this report, the author spent the period June 29 – July 3, at the beginning of the drill program, and August 18 – August 26, at the end of the drill program, at the Elizabeth Property. In addition, the author participated in a significant portion of the Phase II, 2004 drill program.

2.3 DISCLAIMER

Wardrop has not relied upon any non-qualified persons for information contained in this report.

3.0 DATA PROVIDED TO WARDROP

Data provided to Wardrop is documented in Section 15 References. Portions of this report are excerpted from the Technical Report of May 30, 2005⁽⁸⁾.

4.0 PROPERTY DESCRIPTION

The Elizabeth Property is comprised of 14 contiguous claims that cover an area of 9,547.813 hectares (23,953.07 acres). Details of the claims are given in Table 4-1, and their locations are shown in Figure 2. The Elizabeth 1 – 4 Crown Grants have been surveyed, the other claims have not.

The Property is located in the Lillooet Mining Division about 35 kilometers northeast of the town of Bralorne, on NTS Map Sheet 92O/2E. The center of the Property is located at approximately 51° 02' North Latitude, 122° 32' West Longitude (UTM NAD 83 coordinates 10U 531788 E / 5653732 N). (Figure 1)

The Crown Grant Elizabeth 1 to 4 Claims are owned by David White and Thomas Illidge; Claim 511626 (Former Blue 1 to 4 Claims) is owned by Thomas Illidge. The other claims are held in the name of J-Pacific Gold Inc.

In May 2002, J-Pacific Gold Inc. entered into an option agreement with Messrs. White and Illidge to earn a 100% working interest in the Elizabeth No.1 - 4 Claims subject to aggregate cash payments of \$15,000, the issuance of 200,000 shares of J-Pacific to White and Illidge, advance royalty payments of \$10,000 per year starting on the second anniversary of the agreement, a work commitment of \$500,000, and a four percent (4%) net smelter royalty (NSR).

J-Pacific Gold Inc. has a separate option agreement with Mr. Illidge to acquire a 100% working interest in Claim #511626 (former Blue 1-4 Claims), subject to a cash payment of \$2,000, advance royalty payments of \$5,000 commencing on the first anniversary of the agreement, issuance of 100,000 shares of J-Pacific to Mr. Illidge, a work commitment of \$500,000, and a three percent (3%) NSR.

Mineralization of potential economic significance at the Elizabeth Property is comprised of gold in quartz veins. Four principal veins have been investigated, the Main, West, No.9 and Southwest. The first three have been explored both underground and by drilling from surface; the Southwest Vein has been investigated by surface drilling only. There are a number of minor, or at least less-studied, veins as well; David, Allison, Tommy, Ella, No.4 and 9A.

Other than the White and Illidge agreements relating to the Elizabeth and Blue Claims, the Property is subject to no royalties or other financial encumbrances.

There are no known environmental liabilities. The historical workings are of modest dimensions and the resultant waste piles are not of significant size and do not contain significant quantities of sulphides.

The permits necessary to carry out the program of work recommended in this report are in place.

Table 4-1: ELIZABETH PROPERTY CLAIM LIST

TENURE	OWNER	MAP	RENEWAL	MINING	AREA
NUMBER		NUMBER	DATE	DIVISION	(Ha)
501765	104975	0920	2006/JAN/12	LILLOOET	487.940
509354	104975	0920	2015/JUL/16	LILLOOET	223.666
509356	104975	0920	2010/JUL/16	LILLOOET	609.626
509357	104975	0920	2015/JUL/27	LILLOOET	894.715
509358	104975	0920	2015/OCT/10	LILLOOET	609.348
509359	104975	0920	2010/JUL/16	LILLOOET	487.505
509360	104975	0920	2010/JUL/16	LILLOOET	1,319.791
509405	104975	0920	2015/JUL/27	LILLOOET	508.128
509409	104975	0920	2010/JUL/17	LILLOOET	974.226
509411	104975	0920	2010/JUL/17	LILLOOET	263.880
509412	104975	0920	2010/JUL/17	LILLOOET	669.563
509415	104975	0920	2015/JUL21	LILLOOET	406.337
509417	104975	0920	2015/JUL26	LILLOOET	243.726
Elizabeth 1-4	White-Illidge	0920	2006/JAN/14	LILLOOET	20.232
511626	112696	0920	2015/MAY/08	LILLOOET	1819.039
			-		
			TOTAL AREA	(Ha)	9,547.813
			-	ACRES	25,953.070

5.0 PHYSIOGRAPHY, CLIMATE, ACCESSABILITY, LOCAL RESOURCES

The Elizabeth Property is situated in the Shulaps Range between the Fraser Plateau to the east and the Chilcotin Ranges to the west, and occupies several broad glacial valleys. Streams in these valleys, the most prominent of which is Blue Creek, are tributaries of the Yalakom River and drain to the east.

Topographic relief is about 1,000 meters, rising from about 1,800 meters above sea level (m asl) along Blue Creek, to about 2,800 m asl on Big Dog Mountain. Elevations in the southern portion of the property range up to about 2,400 m asl.

Much of the property is covered by glacial debris which, on the lower slopes and valleys is tens of meters thick, and which, on the prominent ridge within the Elizabeth Claims, is both thick and notably stratified.

The climate is alpine. The snow-free period extends from late May until October or November. Temperatures range from slightly below freezing in winter to about 25°C in summer.

Lower elevations are forested by pine and balsam. The tree line is about 2,200 m asl above which there is almost no vegetation of any type, a circumstance due less to the elevation than to the lack of nutrients and poor soil development.

The nearest population center is the town of Lillooet. Access from there to the Property is 32 kilometers via paved Highway 40 that connects Lillooet and Goldbridge, then 67 kilometers via an unpaved logging road that follows the Yalakom River to the northwest, and then nine kilometers westerly on a private road along Blue Creek.

A network of bulldozer roads provides good access to the southern portion of the Property in which all exploration has been conducted to date. (Figure 4)

Surface rights and necessary working areas are considered adequate for any mining operation that might reasonably be anticipated on the Property. Sources of water are present on the Property. It will be necessary to generate electrical on site. It is reasonable to expect that skilled workers will be available within the general area.

6.0 HISTORY

6.1 REGIONAL

Mining activity within the district dates from the mid 19th century when prospectors entered the Bridge River area from the Fraser River Canyon. Placer gold was found in the area in 1863 and the first hardrock claims were staked in 1896. The Pioneer Mine went into production in 1914 and the Bralorne Mine in 1932. By the time production ceased at Bralorne in 1971, the Bralorne and Pioneer Mines had together produced 4.1 million ounces of gold at an average grade of 0.53 ounces per ton. The Bralorne Mine was put back into production in 2004.

In 1956 copper mineralization was discovered at Poison Mountain, on the northern border of the Elizabeth Property, and during the 1960s to 1980s, about 37,000 meters of drilling defined a resource of 280 million tonnes at a grade of 0.26% copper and 0.14 grams per tonne gold.

6.2 FLIZABETH PROPERTY

Gold-bearing quartz veins were discovered near Blue Creek in 1934, and in 1940 - 1941 the Elizabeth No. 1-4 claims were staked. Bralorne Mines Ltd. optioned the property in 1941 and during the period 1948 - 1949, explored the presently-named Main and West Veins by about 700 meters of cross-cutting and drifting, as well as about 110 meters of raises (Lower Workings, elevation 2,024 meters asl).

During the period 1950 – 1952, Bralorne explored the No. 9 Vein by surface trenching and about 250 meters of drifting.

During the period 1956 – 1958, Bethlehem Copper explored the Main and West Veins by about 250 meters of cross-cutting and drifting (Upper Workings, elevation 2,204 meters asl).

In 1983 Cal-Denver Resources re-sampled the No.9 Adit.

Historical resource estimates were generated for two of the veins on the Property. In 1958 Bethlehem Copper reported a "reserve" of 1,430 tonnes with an average grade of 95.3 grams per tonne gold for the West Vein above the Upper Adit.

Cal-Denver Resources Ltd. estimated an "indicated reserve" of 3,850 tonnes with an average grade of 41.1 grams per tonne gold for that portion of the No.9 vein that was explored by drifting.

Neither estimate is compliant with National Instrument 43-101 standards, neither is considered relevant, both are included solely for purposes of historical documentation.

In 1987 Carson Gold Corp. also re-sampled the No.9 Adit and drilled four holes (600 meters) to test the No.9 Vein.

In 1990 Blackdome Mining Corp. rehabilitated the Upper and Lower Workings, sampled the West Vein in the Upper Workings, and conducted surface trenching, sampling and geological mapping.

J-Pacific Gold Inc. commenced exploring the property in 2002 and carried out geochemical rock and soil sampling as well as 1,642 meters of drilling in 16 holes on the Main and West Veins. In 2003 J-Pacific conducted surface exploration in the area of the No.9 and Ella Veins, and discovered the Southwest Vein.

In May and June, 2004, J-Pacific drilled 11 holes (Phase I; 1,439 meters) to test the Southwest Vein, and carried out systematic sampling of the Main and West Veins where exposed in the drifts of the Lower Portal workings. During August and September, 2004, J-Pacific drilled an additional seven (7) holes (Phase II; 1,269 meters). Four of these holes tested the Southwest Vein; three other targets were tested with one hole each.

In 2005 the located claims that comprised the Elizabeth Property, with the exception of the Elizabeth 1-4 Crown Grants, were converted to MTO (Mineral Titles Online) claims. The new, electronic-format claims are essentially coincident with the previous claims with the exception of the former Blue 1-4 claims that have been amalgamated into MTO Claim # 511626. The Elizabeth 1-4 Crown Grants remain in effect.

This report describes the 2005 drill program of 19 holes (2,908 meters) that was carried out on the Southwest Vein between July and September, 2005.

7.0 GEOLOGICAL SETTING

7.1 REGIONAL GEOLOGY

The area in which the Property is situated is underlain by several Late Paleozoic to Mesozoic tectono-stratigraphic assemblages that are juxtaposed across a complex system of faults of mainly Cretaceous and Tertiary age. These Paleozoic to Mesozoic-age rocks are intruded by Cretaceous and Tertiary-age stocks and dikes of mainly felsic to intermediate composition, and are locally overlain by Paleogene volcanic and sedimentary rocks. (Figure 3)

The Property area is underlain by ultramafic rocks of the Shulaps Ultramafic Complex, of probable late Paleozoic age, a dismembered ophiolite comprised of two major structural divisions; an upper unit of harzburgite with a mantle tectonic fabric, and a structurally underlying serpentinite mélange. These rocks were thrust-emplaced above the Cadwallader Terrane during the Cretaceous.

The Methow Terrane is located to the north of the Shulaps Ultramafic Complex, across the Yalakom Fault, and is comprised of Lower Jurassic-age sedimentary and volcanic rocks, and overlying mid-Cretaceous-age sedimentary rocks.

The Upper Tyaughton Basin, a belt of Jurassic-Cretaceous clastic sedimentary rocks lies principally to the northwest, and as several slices to the west of the Shulaps Ultramafic Complex.

The Cadwallader Terrane is located further to the west and is made up of Triassic and Jurassic-age turbiditic sediments, mafic volcanics, and shallow-water conglomerate and carbonate rocks.

The Bridge River Terrane is situated to the south of the Shulaps Ultramafic Complex and is represented mainly by the Bridge River Complex, an assemblage of chert, argillite, greenstone, gabbro, serpentinite, limestone and clastic sedimentary rocks with no coherent stratigraphy. Ages range from Mississippian to late Middle Jurassic. The Bridge River Complex is overlain by a thick, coherent succession of clastic metasedimentary rocks referred to as the Cayoosh Assemblage.

Igneous intrusion occurred during much of the interval from mid-Cretaceous through to the Neogene and coincided with major deformational events that evolved from mainly contractional during the middle to late Cretaceous, to dextral strike-slip and normal faulting during late Cretaceous and Tertiary.

The largest intrusive bodies are medium-grained equigranular granitic batholiths of Late Cretaceous age (80 to 90 Ma). Hornblende-feldspar porphyry intrusives form stocks, plugs and dikes, and range in age from mid-Cretaceous to Paleocene. The porphyry consists of variable proportions of plagioclase and hornblende phenocrysts within a grey to green aphanitic to very fine-grained groundmass, and locally grades into equigranular, medium-grained diorite. The Blue Creek Porphyry that hosts the Elizabeth veins is mapped as a member of this group with age dates of 58 or 70 Ma.

All these intrusives are inferred to belong to the Coast Plutonic Complex, the main portion of which was emplaced between 110 and 95 Ma, during the convergence of the North American and Pacific Plates. Diminished plutonism continued along the east flank of the complex until about 60 Ma.

Aplite dikes are a common component of the Coast Plutonic Complex and are commonly observed cutting the Blue Creek Porphyry on the Elizabeth Property.

Metamorphism is generally of low, predominantly greenschist, grade. Local amphibolitegrade metamorphism is recorded and the Bridge River Complex contains blueschist metamorphic rocks.

The dominant structural fabric of the region is related to a complex series of anastamosing, predominantly northwest-trending faults. The most prominent of these are the Yalakom Fault to the north, and the Fortress-Castle-Marshall Creek system to the south of the Elizabeth Property. These are linked by a series of sygmoidal faults among which the Red Mountain and Quartz Mountain fault systems are major structures.

Relevant to the Elizabeth Property area, the earliest significant movement was southwestward-directed thrusting that, among other developments, emplaced the Shulaps Ultramafic Complex. On the southwest margin of the Complex thrusts are northeast-dipping; on the northeastern margin, thrusts are southwest-dipping. Imbricate structures have been mapped in the lower, serpentinite mélange unit and it is probable that similar structures exist in the overlying harzburgite member. Although this thrusting took place prior to the emplacement of the dioritic intrusives, it is evident that post-intrusive movement has also occurred as most serpentinite-intrusive contacts have been sheared and most intrusive bodies have been separated from their metamorphic aureoles, a phenomenon that is observable on the Elizabeth Property.

7.2 PROPERTY GEOLOGY

The geology of the Elizabeth Property is simple on a large scale and complex in detail. (Figure 4)

7.2.1 ROCK TYPES

There are essentially only two rock-types present: harzburgite and porphyritic diorite.

Harzburgite is comprised of orthopyroxene and olivine, and where undeformed, weathers rusty-brown with a warty texture that results from the resistant orthopyroxene weathering in relief against more-abundant but less-resistant olivine. On fresh surface, orthopyroxene is medium to dark-grey in a dark-grey to black groundmass. Harzburgite is not commonly observed in drill core, presumably because most holes have been drilled in areas of strong deformation in which the harzburgite has been sheared and serpentinized.

Serpentinization is common and of variable degree. In the least-deformed harzburgite, shearing has formed a network of hairline fractures that disrupt the porphyritic texture and deform the orthopyroxenes. With more-advanced deformation, both orthopyroxene and olivine are serpentinized and the rock varies from nebulous dark-grey and black, to black. Texture varies from amorphous to highly sheared with slickensided shear surfaces. Rare asbestos-like fibres were noted on shear planes in drill core, as well as minor blue-green to bluish coloured fracture-coatings, suggestive of various asbestos minerals. Buff to whitish talc was also observed on fracture surfaces.

Listwanite, a talc-carbonate \pm silica alteration of serpentinite, is present on the property in areas of intense deformation, prominently along the western margin of the main diorite porphyry intrusive where it defines a shear or thrust contact between ultramafic and diorite. Listwanite also occurs in minor zones within the margins of the diorite itself where slices of serpentinite have been caught up in the intrusion, probably as thrust slices.

Diorite porphyry is used here as a field term for the intrusive rocks that cut the ultramafic complex and form the principal host for gold-bearing quartz veins on the property. This intrusive is termed the Blue Creek Porphyry. The rock is comprised of plagioclase, hornblende and quartz ± rare biotite. Plagioclase is the dominant mineral and forms phenocrysts up to one centimeter in maximum dimension, that in extreme cases constitute about 80 percent of the rock by volume. Typically, plagioclase phenocrysts constitute about 40 to 60 percent of the rock by volume and where observed in drill core, form a phenocryst-supported meshwork the interstices of which are filled by groundmass. Groundmass-supported phenocrysts are less common. Hornblende also occurs as phenocrysts but is less abundant, about 10 percent or less of the rock by volume, and the crystals are millimeter-scale.

Groundmass within the porphyry is generally cream-coloured, but where altered is commonly very pale-green in colour. Where alteration is more advanced, the plagioclase phenocrysts are translucent green, and the groundmass is light-brown and sericitized. Alteration, as noted in drill core, is almost invariably associated with zones of shearing and the degree and extent of alteration into the wallrock are reliable indicators of the intensity of deformation.

Although there are minor variations in abundance and size of phenocrysts, the main mass of diorite is essentially uniform throughout the area of surface exposures and in drill core. As mentioned above, this diorite has been mapped⁽¹⁰⁾ as hornblende-feldspar porphyry with an assumed correct age of about 70 Ma. However, the distinctive, crowded nature of the plagioclase phenocrysts is consistent with the description of a younger (57 Ma) porphyry that occurs east of Poison Mountain, about 15 kilometers to the north of the Elizabeth Property. A similar age has also been reported for the Blue Creek Porphyry on the Elizabeth Property, but the 70 Ma date is apparently considered more reliable.

The Blue Creek Porphyry is cut by aplite dikes that seem to be most common near the margins of the intrusive, but this may be a function of exploration bias. Above the Upper Portal, an aplite dike strikes 080° and dips 40°. In the northern drifts of the Lower Portal workings, aplite dikes are common near the diorite-serpentinite contact and appear to be approximately parallel to the contact, i.e. about 310°/ 70°. The aplite dikes were probably emplaced along fractures in the diorite.

A second diorite body occurs on the Elizabeth Property immediately to the west of the prominent listwanitic fault zone on the western boundary of the Blue Creek Diorite. This porphyry is equigranular, coarse-grained and contains biotite in addition to hornblende. Analyses⁽⁴⁾ have shown that this rock contains essentially no gold, but is anomalous with respect to copper and molybdenum, and is distinctive by virtue of a pyrite content sufficiently high to permit consistent rusty weathering of the hostrock. These characteristics match closely those of the intrusions that contain the Poison Mountain copper-molybdenum porphyry deposit, and have been dated at 57 to 61 Ma⁽⁸⁾. A dike or extension of this intrusion has been traced for several kilometers north from the No.9 Zone area toward Poison Mountain and may continue beyond the limits investigated. It is therefore possible that both the Blue Creek Porphyry and the biotite-bearing porphyry are related to the Poison Mountain area intrusives.

7.2.2 METAMORPHISM

No obvious metamorphism of either the ultramafic or dioritic rocks was observed on surface or in drill core. Neither thermal metamorphism of the enclosing ultramafic rocks, nor chill margins within the diorite porphyry were noted in numerous examples of such contacts observed in drill core. It was noted, however, that most, if not all, such contacts are sheared and therefore post-intrusion deformation may have destroyed or dislocated any evidence of contact metamorphism.

7.2.3 STRUCTURE

The lithological simplicity of the Elizabeth Property is offset by structural complexity: the ultramafic rocks are commonly sheared and the ultramafic-diorite contacts are marked by wide zones, measuring in the 10s of meters, of interleaving of slices of ultramafic and dikes or tectonic slices of diorite.

Although only two relatively minor faults are shown in the area of the Elizabeth Property on the published British Columbia Geological Survey map of the Taseko-Bridge River area ⁽¹⁰⁾, structures that are significant on a property scale are common.

The most obvious structure on the Elizabeth Property is the listwanitic shear zone that marks the western edge of the Blue Creek Porphyry. The northerly portion of this fault trends about 015° azimuth and has been traced for about 1000 meters between the No.9 Zone area and the height of land between the No.9 area and the cirque to the south, at which point it curves to the southeast on a trend of about 135° azimuth. This trend can be followed for about 700 meters to the access road leading to the Southwest Vein area, where a shear zone in serpentinite is exposed in a road cut. Beyond that point the course of the fault is not known.

The western margin of the Blue Creek Porphyry is poorly exposed but has been investigated by trenching and drilling because of the discovery of the Southwest Vein in 2002. Within the area investigated by drilling, the diorite-serpentinite contact zone appears to be vertical to steeply east-dipping, and coincides with the projection of the listwanitic fault zone exposed to the northwest. The contact zone is comprised of tectonic slices of porphyry interlayered with slices of serpentinite. Aplite dikes occur within the diorite, notably in the area of drillhole E04-17. Shearing of both the serpentinite and porphyry is common and minor listwanitic alteration of the serpentinite was observed locally.

The southern margin of the Blue Creek Porphyry is exposed in only one roadcut on the Southwest Vein access road. Two other isolated exposures of diorite further to the east on this road, at the Ella Vein, and at the Lower Portal appear to be fault slices. Both are bounded by serpentinite to the south, and both are overlain by serpentinite with contacts that dip to the north. At the lower portal this contact is clearly exposed and has a strike of 220° and a dip of 70°. These exposures are inferred to be thrust slices.

A portion of the eastern margin of the Blue Creek Porphyry is exposed above the Upper Portal, and has been penetrated by both the Upper and Lower underground workings, and as well by drilling carried out in 2002 and 2005. All this information indicates that this margin of the porphyry is structurally complex.

The exposed margin of the porphyry above the Upper Portal strikes about 135° and dips about 50° to the northeast and is structurally overlain to the northeast by a slice of serpentinite that has a surface exposure of about 100 meters width. Several rafts of diorite are entrained within the serpentinite.

The 2002 drilling in this area indicated that the serpentinite slice exposed at surface is tabular and dips to the southeast at about 45°, together with several tectonic slices of diorite. Exposures of serpentinite in the two northerly drifts of the Lower Portal workings indicate that here the serpentinite-diorite contact also has a strike of about 135°, and that the contact dips at about 45°, and probably represents the same contact.

A slab of diorite porphyry, about 100 meters in thickness, structurally overlies the serpentinite to the northeast. On surface, this block contains the David Vein, and was intersected in drillholes E02-08, 09, and 16. This slab is projected to host the Allison Vein, and to be exposed in the Lower Portal crosscut where it lies in the immediate footwall of the thick serpentinite unit that is encountered immediately inside the portal and is exposed for about 200 meters along the crosscut. The serpentinite-diorite contact is steep, about 70°, and strikes about 220°, and is assumed to be a northeastward continuation of the southern thrust margin of the Blue Creek Porphyry. Both the strike and dip of this contact are similar to that of the serpentinite-diorite contact exposed at the Lower Portal, a contact also inferred to be a thrust.

Three holes drilled during 2005, E05-34, 35 and 36, indicate that the structural relationships described above persist to the northwest. (Figure 4) The northeast portion of the main diorite body is separated from the porphyry slab described above, by the northwest extension of the serpentinite also described above. The near-surface extent of the main diorite body is therefore fully constrained by surface exposures and drill intercepts, and all contacts with the enclosing serpentinite appear to be tectonic in nature. The northwesterly extent of the smaller diorite slab that lies to the northeast of the main diorite body has not been established.

An isolated outcrop of diorite is exposed in a roadcut at the junction of the spur road to the Upper Portal, and the main road. It is not known how this diorite body relates to the others on the Property, but may be another tectonic sliver.

8.0 DEPOSIT TYPES

The most appropriate geological model for the gold mineralization present at the Elizabeth Property is that of mesothemal gold-quartz veins, of which the nearby Bralorne-Pioneer deposits are considered type examples.⁽¹⁾

Gold-bearing quartz veins and veinlets contain minor sulphides in addition to gold, crosscut hostrocks and are localized along major faults and related splays. Wallrocks are typically altered to silica, pyrite, and muscovite within a broader carbonate alteration halo.

Mesothermal gold-quartz veins occur in a wide variety of tectonic settings and rock types and are of a wide range of geological ages, although they are notably abundant in the Late Archean and Mesozoic.

Deposits typically take the form of tabular concentrations of veins, veinlets, stringers and stockworks. Lower-grade bulk-tonnage styles of mineralization may develop in areas marginal to the veins, with gold associated with disseminated sulphides. This type of mineralization may also be associated with broad areas of fracturing in which gold is associated with sulphides in quartz veinlet stockworks.

Veins commonly have sharp contacts with wallrocks and exhibit a variety of textures, including massive, ribboned, banded, and stockworks with anastamosing gashes and dilations.

Native gold, pyrite, arsenopyrite, galena, sphalerite, chalcopyrite, pyrrhotite, tellurides, scheelite, stibnite, molybdenite and bismuth minerals are common in these types of veins. Gangue minerals most commonly include quartz, carbonates, albite, micas, tourmaline and graphite.

Silicification, pyritization, and potassium metasomatism commonly occur adjacent to veins, within a broader zone of carbonate alteration. Type of carbonate alteration is a reflection of the ferromagnesian content of the primary host lithology: ultramafic rocks give rise to talc and iron-magnesite as well as ankerite and chlorite.

9.0 MINERALIZATION

Mineralization of potential economic significance at the Elizabeth Property is comprised of gold in quartz veins. The veins cut both porphyry and serpentinite but significant vein development occurs only in the porphyry.

Four principal veins have been investigated, the Main, West, No.9 and Southwest. The first three have been explored both underground and by drilling from surface; the Southwest Vein has been investigated by surface drilling only. There are a number of minor, or at least less-studied, veins as well; David, Allison, Tommy, Ella, No.4 and 9A. (Figure 4)

The 2005 drill program tested the Southwest Vein. The vein strikes about 030° and has a demonstrated length of about 700 meters and a vertical range of at least 200 meters. The 2004 Phase II established the southwestern limit of the vein at the southwest contact of the diorite with the adjacent serpentinite. The 2005 drill program established the probable northeastern limit of the vein where the main diorite is in probable thrust contact with the adjacent serpentinite.

The Southwest Vein is commonly not a single coherent vein, but a series of centimeter to decimeter-scale veins that occur within a relatively discrete interval. Thickness of the interval varies in true width from less than one, to about several meters.

Gold content is highly variable: the 2005 drill program generated 380 samples in which the gold content ranged from less than detection (5 parts per billion (ppb)) to 87.3 grams / tonne (87,300 ppb). About 14% of the samples (52) had a gold content at or below the detection limit. Seven percent (7%) of the samples (27) contained more than one gram/tonne gold.

Distribution of gold within the Southwest Vein is also variable although the majority of holes drilled through the Southwest Vein encountered gold values in excess of 1 g/t: 28 holes have been drilled to date of which 23 intersected the vein; 8 vein intercepts contained less than 1 g/t gold; 15 (65%) contained more than 1 g/t gold.

Although molybdenum is commonly observed to be present in the Southwest Vein, it appears to have no quantifiable relationship with gold: the correlation coefficient for 380 samples is -0.01. The highest correlation is with silver (coefficient of 0.50) and secondly arsenic (coefficient 0.38).

10.0 EXPLORATION

10.1 DRILL PROGRAM

Nineteen holes, E05-18 to E05-36, with an aggregate length of 2908 meters were drilled on the Southwest Vein during the period July to September, 2005:

Table 10-1: ELIZABETH PROPERTY 2005 DRILL STATISTICS

HOLE-ID	NORTHING	EASTING	ELEV	AZIMUTH	DIP	LENGTH (m)
E05-18	5653689	531070	2358	125.00	-60.00	205.40
E05-19	5653746	531135	2396	125.00	-70.00	276.40
E05-20	5653228	531278	2420	125.00	-65.00	27.60
E05-21	5653228	531278	2420	125.00	-65.00	27.60
E05-22	5653777	531224	2403	102.00	-65.00	122.30
E05-23	5653772	531228	2396	77.00	-65.00	138.99
E05-24	5653692	531127	2361	125.00	-74.00	141.12
E05-25	5653692	531127	2361	125.00	-74.00	256.31
E05-26	5653692	531127	2361	98.00	-65.00	145.30
E05-27	5653692	531127	2361	110.00	-74.00	322.48
E05-28	5653228	531278	2420	125.00	-65.00	65.73
E05-29	5653839	531233	2431	125.00	-65.00	163.68
E05-30	5653777	531214	2418	120.00	-76.00	131.67
E05-31	5653777	531214	2418	120.00	-55.00	90.22
E05-32	5653777	531214	2418	88.00	-55.00	111.86
E05-33	5653777	531214	2418	88.00	-74.00	150.27
E05-34	5654168	531501	2272	130.00	-60.00	153.01
E05-35	5654168	531501	2272	130.00	-75.00	196.13
E05-36	5654067	10531452	2314	130.00	-55.00	181.97
					TOTAL	2908.04

Drillhole locations and a simplified interpretation of the geology of the area in which drilling has taken place are shown in Figure 4. Figure 5 is a plan of vertical drill sections; sections comprise Figures 6 through 11. Figure 12 is a perspective view of the Southwest Vein.

Hole E05-18 was drilled at the location of E04-10 and 12 to provide additional information regarding the disposition of the vein and contained mineralization. Hole E05-19 was drilled at the site of E04-09 to provide similar information at this location.

Holes E05-20 and 21 were abandoned in overburden.

Holes E05-22, 23, 30, 31, 32 and 33 were drilled from the site of holes E04-07 and 08 to further assess the vein in the plane of those holes as well as laterally. Holes E05-24, 25, 26 and 27 were drilled between holes E05-18 and 19 to provide in-fill data.

Hole E05-28 was drilled in the same area as E05-20 and 21, at the topographically highest point of the vein. Overburden in this area exceeds 20 meters in thickness and this hole was also abandoned.

Hole E05-29 was located to test the northeastern extension of the vein in the vicinity of holes E05-28 et al, and successfully reached the target depth. Holes E05-34 and 35 were drilled at the northerly limit of road access to test for the existence of the Southwest Vein in this area. Hole E05-36, the last of the campaign, was drilled between the sites of E05-29 and 34-35 after it was determined that holes E05-34 and 35 had probably established the significant limits of the Southwest Vein to the northeast.

10.2 Drilling Results

Hole E05-18 intersected the Southwest Vein in the interval 174.88 – 176.15m, true width about 0.6m, with a gold content of 3.23 grams/tonne gold (g/t). In the same plane, hole E04-10 intersected 88 g/t gold over a true width of about one meter. Hole E04-12, on the same section, did not reach target depth. (Figure 6)

In hole E05-19 the intercept between 17.65 and 17.95 meters contained 68 g/t gold. This is not the Southwest Vein unless it is a structurally dislocated slice, and does not appear to correlate with vein intercepts in other holes. The Southwest Vein was intersected between 188.76 and 197.75m depth. A 1.7m portion, with a true thickness of about 0.44m, contained 2.34 g/t gold. (Figure 7)

Holes E04-07, 08, E05-22, 23, 30, 31, 32, and 33 were drilled in a conical fan with near-coincident collars. The vertical and horizontal range of vein intercepts is about 80 to 90 meters. (Figure 8)

Hole E04-07 intersected 2.76 g/t gold over a true width of about 1.2m; E04-08 intersected 5.33 g/t gold over a true width of about 3.9m.

In hole E05-22 the Southwest Vein occurred as a zone of relatively closely-spaced veins over the interval 82.1 - 87.0m, with a true thickness of about 2.5m, and an average gold content of 2.59 g/t.

All gold assays from hole E05-23 were less than 0.2 g/t.

Hole E05-30 intersected the Southwest Vein between 120.7 and 121.59m, a true width of about 0.5m, with a gold content of 1.16 g/t.

In hole E05-31, the Southwest Vein occurs as a zone of closely-spaced veins over the interval 63.0 – 76.8m. Two veins within this interval contained more than 1 g/t gold: 67.36-68.88m, with a true width of about 1.3m contained 5.44 g/t gold; the interval 72.0-73.0m, with a true width of about 0.7m contained 6.35 g/t gold.

The Southwest Vein in hole E05-32 occurs as a series of centimeter to decimeter-scale veins over the interval 71.5 – 81.7m. Within this zone, the interval 71.5-73.5m, with a true width of about one meter, contained 6.85 g/t gold. The marginal interval 70.5-71.5 assayed 1.07 g/t gold.

Hole E05-33 did not produce any assay values in excess of 1 g/t gold.

Holes E05-24, 25, 26, and 27 were drilled in a conical fan and cover a vertical range of about 200 meters. Hole E05-24 intersected the Southwest Vein zone in the interval 116.6-125.6m. All assay values were below 1 g/t gold. (Figures 6,7)

Hole E05-25 intersected a 13 centimeter quartz vein, not the Southwest Vein, between 22.8 and 23.3 meters that contained 1.34 g/t gold. The Southwest Vein zone was intersected between 147.23 and 154.26m, but contained no gold values in excess of 1 g/t.

Hole E05-26 intersected the Southwest Vein zone between 129.42 and 133.37m. The interval 130.62-132.4m, with a true thickness of about 0.8m, contained 1.67 g/t gold.

Hole E05-27 intersected the Southwest Vein zone between 167.6 and 169.05m; the interval 168.55-169.05m, with a true thickness of about 0.25m, contained 3.12 g/t gold.

Hole E05-29 intersected the Southwest Vein zone between 126.4 and 130.0m. Two intervals contained more than 1 g/t gold: 126.4-127.13m, with a true thickness of about 0.5m contained 1.16 g/t, and 136.92-137.8m, with a true thickness of about 0.6m, contained 87.3 g/t gold, the highest assay of the 2005 drill program. (Figure 9)

Hole E05-34 intersected a quartz vein between 133.5 and 138.39m that may represent the northeasterly extension of the Southwest Vein, but because of the strong deformation in this area and the probability that this vein is not contained within the main diorite body, it is considered unlikely. The vein contained no values in excess of 1 g/t gold. (Figure 11)

Hole E05-35 did not intersect the Southwest Vein, and did not contain any gold values in excess of 1 g/t. Figure 11)

Hole E05-36 intersected the Southwest Vein in the interval 167.0-176.42m. One portion between 171.88 and 172.02m, with a true width of about 0.1m, contained 1.05 g/t gold. (Figure 10)

The weighted average grade and thickness of all Southwest Vein intercepts from both the 2004 and 2005 drill programs are tabulated below for all intercepts that exceeded 1 g/t in value.

Table 10-2: SOUTHWEST VEIN GRADE-THICKNESS AVERAGE

HOLE-ID	TRUE TK*	GRADE	
	(m)	(g/t)	
E04-07	1.20	2.76	
E04-08	3.90	5.33	
E04-09	4.53	2.25	
E04-10	1.00	88.00	
E04-11A	0.70	16.50	
E05-18	0.60	3.23	
E05-19	0.44	2.34	
E05-22	2.50	2.59	
E05-26	0.80	1.67	
E05-27	0.25	3.12	
E05-29	0.50	1.16	
E05-29	0.60	87.30	
E05-30	0.50	1.16	
E05-31	1.30	5.44	
E05-31	0.70	6.35	
E05-32	1.00	6.85	
E05-36	0.10	1.05	
AVERAGE	1.21	10.54	

^{*}Values of true thickness are estimates.

Holes E05-23,24,25,33,34,35 intersected the Southwest Vein but did not contain gold values of 1 g/t or greater.

The average grade tabulated above is obviously heavily influenced by the two values in hole E04-10 and E05-29, of 88.0, and 87.3 g/t respectively. It is not possible to judge how meaningful these high values are, i.e. whether, on average, such "bonanza" values can be expected in about 10% of the samples. However, they are of significantly higher value than the remainder of the sample population: If those samples are factored out, the average grade is 4.05 g/t, and the average vein thickness 1.27 meters.

11.0 SAMPLING METHOD AND APPROACH

Drill holes were located using GPS and the orientation of the hole was marked using a flagged picket as a foresight. Drilling was conducted during one twelve-hour shift per day. Markers were placed in the core box at the end of each drill run and were marked in both imperial and metric units. Core was delivered to the core logging building by the drill crew at the end of each shift.

Before lithological logging, core was measured for percent recovery and RQD. Recovery is expressed as a percentage of core present within a given drill run relative to the indicated length of that run. RQD measurements are expressed as the aggregate length of pieces of core within an individual drill run that measure at least 10 centimeters in length. Both measurements were recorded in a computer-based spreadsheet.

Lithological logging comprised the documentation of identification, extent or spatial location, and description of primary rock-types, alteration, structures and mineralization.

Intervals to be sampled were then identified and assigned a sample number corresponding to the number on the sample tag that was subsequently placed in the sample bag with the core. This information was recorded in a computer-based spreadsheet format.

The core was photographed prior to being sampled.

Samples were obtained by sawing the core into halves; half was placed in a plastic sample bag together with an identifying sample tag. The sample number was also written on the outside of the bag in indelible ink. The remaining half of the core was placed back into the core box.

Following processing, core boxes were labelled with aluminums tags and were placed on covered racks adjacent to the core logging building in the Elizabeth base camp.

As each drill hole was completed, the collar location was re-checked by GPS and a wooden post with an aluminum tag bearing the hole number, dip, bearing and length, was inserted into the collar of the hole. Casing was removed.

12.0 SAMPLE PREPARATION, ANALYSIS AND SECURITY

After the sawn core was placed in the sample bag, the bag was closed with a wire tie and placed in a shipping bag that, when full, contained from 20 to 30 samples. Bagged samples were kept in the core logging building and periodically during the drill program were delivered by the site geologist directly to the Eco Tech Laboratory in Kamloops.

In total, 380 core samples were collected; lengths varied from eight centimeters to a maximum of 3.72 meters; most were 1.5 meters or less in length. Emphasis was placed on the sampling of individual quartz veins, but where broad zones of narrow quartz veins or other possible sites of mineralization were encountered, consecutive samples, normally one meter in length, were collected.

Eco Tech Laboratory in Kamloops analyzed all core for gold by fire assay, and a 26-element suite using ICP.

All of the 8xxx series of samples, about 86% of the sample population, were analyzed for metallic gold and the resultant gold content was reported in grams / tonne. The 4xxx series samples, of which there were 53, were not analyzed for metallics. The gold content of these samples was reported in ppb. Assay data for both the coarse and fine fraction of about 50 of the metallic assays indicates that, in those samples with a gold content greater than 1 g/t, it is probable that at least a portion of the gold exists in an elemental state.

No extraordinary security measures were followed during the sampling program. Access to the project site was restricted to project personnel. Access to the core logging area was restricted to the geological and core sampling personnel. Samples were stored at the logging / sampling building but were not subjected to additional security measures.

13.0 DATA VERIFICATION

Quality assurance during the drill core sampling program was comprised of duplicates, blanks and standards inserted into the sample stream during sampling, as well as similar checks by the analytical laboratory.

Prepared blanks, with a nominal gold content at or below detection, and two gold standards were purchased from Eco Tech Laboratory as prepared pulps in sealed kraft envelopes. These were included with the core samples on a routine basis. The standards have expected gold values of 0.651 g/t and 18.13 g/t.

Analyses for 20 blanks and 12 standards are presented in Table 13.1 below. It should be noted that although the detection limit for the majority of samples was 5 ppb, a portion were reported with a lower limit of 30 ppb. Both are evident in the analyses of blanks.

Ten duplicate sample pairs were submitted for analysis as well. Duplicates were generated by sawing the half-core, that was normally submitted for analysis, into quarters. Analytical results for these sample pairs are also given in Table 13-1

Table 13-1: ELIZABETH PROPERTY 2005 QUALITY CONTROL SAMPLES

HOLE-ID	SAMPLE	Au ppb
E05-18	7961	9
E05-19	7995	23
E05-19	8013	40
E05-27	8075	30
E05-27	8082	30
E05-27	8095	30
E05-27	8201	30
E05-29	8208	30
E05-30	8223	<5
E05-30	8238	<5
E05-35	8174	15
E05-35	8188	<5
E05-35	4072	5
E05-35	4086	5
E05-36	4093	5 5
E05-36	4100	5
E05-36	4113	5
E05-36	4120	10
E05-25	8146	30

ANALYTICAL STANDARDS

HOLE-ID	SAMPLE	Standard	Nominal (g/t)	Analytical (ppb)
E05-24	8114	OXE21	0.651	184
E05-35	4080	OXE21	0.651	580
E05-34	4068	OXE21	0.651	605
E05-27	8067	OXE21	0.651	620
E05-30	8230	OXE21	0.651	635
E05-33	4056	OXE21	0.651	655
E05-35	8196	OXE21	0.651	655
E05-31	4014	OXE21	0.651	660
E05-27	8089	OXE21	0.651	680
E05-29	8215	OXE21	0.651	680
E05-26	8058	SP17	18.130	18900
E05-26	8148	SP17	18.130	19100

DUPLICATE SAMPLE PAIRS

HOLE-ID	SAMPLE	FROM	TO	LENGTH	Au (g/t)
E05-31	4012	75.00	76.00	1.00	0.58
E05-31	4015	75.00	76.00	1.00	0.61
E05-32	4029	79.50	80.50	1.00	1.00
E05-32	4037	79.50	80.50	1.00	0.94
E05-33	4045	121.80	122.80	1.00	1.16
E05-33	4057	121.80	122.80	1.00	1.12
E05-34	4063	135.35	136.35	1.00	0.08
E05-34	4069	135.35	136.35	1.00	0.08
E05-36	04117	166.00	167.00	1.00	<0.2
E05-36	04121	166.00	167.00	1.00	<0.2

No graphs have been constructed because of the small size of the data sets. Analytical results for blanks, standards and duplicates are considered acceptable.

14.0 ADJACENT PROPERTIES

The largest concentration of gold deposits within the region occurs in the Goldbridge area, about 30 kilometers southwest of the Elizabeth Property, of which the Bralorne Mine was the most prolific. Other significant deposits and mines include the Pioneer, Wayside and Congress Properties. These deposits are largely similar, the Bralorne is described below as the representative example⁽²⁾, although it is acknowledged that the perceived geological similarity is not necessarily indicative of the presence of comparable mineralization on the Elizabeth Property.

Mineralization in the Bralorne deposit is contained within fissure veins that occur within a fault-bounded lens comprised of metasedimentary, ultramafic and intrusive rocks. The veins occur within an area 4600 meters long by 550 meters wide that at a deflection in the regionally-extensive Cadwallader fault zone (Figure 6)

The age of the veins is late Cretaceous (85-86 Ma) and their development is attributed to deformation and hydrothermal activity that accompanied the emplacement of the Coast Plutonic Complex. The veins were emplaced as an array of tension fractures resulting from a shear couple that developed between the Cadwallder and Fergusson faults. The veins developed in a variety of rock types, although the principal host is diorite. Veins end abruptly against serpentinite. Abnormally high concentrations of gold occur in veins near serpentinite which has been interpreted to reflect the impermeability of the serpentinite to mineralizing fluids.

About half of the 30 veins present produced significant ore. Veins range up to six meters in width and are typically from 0.9 to 1.5 meters wide. Veins are composed of quartz with minor carbonate, talc, mica, sulphides, scheelite and native gold. The quartz is milky-white and commonly banded with numerous partings of wallrock as a result of repetitive hydrothermal events. Calcite and ankerite occur as alteration envelopes on vein walls, particularly in areas of good ore development.

Sulphides average one to three percent of vein material and are mostly pyrite, arsenopyrite, chalcopyrite, sphalerite and pyrrhotite, galena and tetrahedrite. Pyrite is disseminated throughout veins and wallrocks. Native gold is commonly associated with arsenopyrite as discreet grains, and in association with fine-grained pyrite in vein partings. Small inclusions of native gold also occur in sphalerite.

CONCLUSIONS & RECOMMENDATIONS

14.1 CONCLUSIONS

The Elizabeth Property is located northeast of Bralorne, British Columbia, and contains about ten auriferous quartz veins.

The veins are hosted by the Blue Creek Porphyry that has intruded the Shulaps Ultramafic Complex.

These veins have been explored intermittently since the early 1940s, and this work has included surface sampling and drilling as well as underground workings on three of the veins.

J-Pacific Gold has held the property since 2002 and has carried out surface geological mapping, geochemical sampling, geophysical surveying and four campaigns of drilling.

The first drill program, in 2002, tested the Main and West Veins in the vicinity of the upper underground workings. Two drill programs in 2004 (Phase I and II) tested a portion of the Southwest Vein that was discovered in 2002 as well as the Ella, Tommy and No.9 Veins.

The 2005 drill program was comprised of 19 holes with an aggregate length of 2,908 meters and tested the Southwest Vein.

The vein strikes about 030° and has a demonstrated length of about 700 meters and a vertical range of at least 200 meters. The 2004 Phase II established the southwestern limit of the vein at the southwest contact of the diorite with the adjacent serpentinite. The 2005 drill program established the probable northeastern limit of the vein where the main diorite is in probable thrust contact with the adjacent serpentinite.

The Southwest Vein is characteristically not a single coherent vein, but a series of centimeter to decimeter-scale veins that occur within a relatively discrete interval. Thickness of the interval varies in true width from less than one, to about several meters.

Gold content is highly variable: the 2005 drill program generated 380 samples in which the gold content ranged from less than detection (5 parts per billion (ppb)) to 87.3 grams / tonne (87,300 ppb). About 14% of the samples (52) had a gold content at or below the detection limit. Seven percent (7%) of the samples (27) contained at more than one gram/tonne gold.

Distribution of gold within the Southwest Vein is also variable although the majority of holes drilled through the Southwest Vein encountered gold values in excess of 1 g/t: 28 holes were drilled in 2005 and 2005; 3 were abandoned in overburden; 2 failed to reach target depth; 23 intersected the vein; 8 vein intercepts contained less than 1 g/t gold; 15 (65%) contained more than 1 g/t gold.

The weighted average thickness and grade of those intercepts that contained more than 1 g/t gold is 1.21m @ 10.54 g/t. This average is heavily influenced by two values in excess of 80 g/t gold. If those are removed, the average is 1.27m @ 4.05 g/t gold.

Most of these intercepts are in the southern half of the vein; the northern half has been tested by only three holes.

A full assessment of the Southwest Vein should include an evaluation of its northeastern portion.

Drilling from surface has been complicated by steep terrain and locally by thickness of overburden, and it is difficult to establish drill stations that provide well-distributed information. It might therefore be more effective to conduct future exploration by using existing underground workings, in particular the lower portal.

With relatively minor modifications, drill stations could be established in the lower portal drifts which would provide relatively efficient drill access to the northern portion of the Southwest Vein.

A program of 10 holes, with an aggregate length of 3,000 meters drilled in five pairs at 50-meter intervals, would adequately assess the northeastern portion of the Southwest Vein.

14.2 RECOMMENDATIONS

It is recommended that the northeastern portion of the Southwest Vein be explored to the same level of detail as the southwestern portion in order that its economic potential can be fully assessed.

It is further recommended that this drilling be conducted from the lower portal underground workings.

The program should consist of 10 holes in five pairs spaced at 50-meter intervals along the strike of the vein, with an aggregate length of 3,000 meters..

The cost of the preparations necessary to conduct underground drilling, such as installation of ventilation and the slashing out of drill stations, is not known. For the purpose of this recommendation, it is assumed to equal the cost of the drill program.

The cost of the drilling is assumed to approximate the costs for 2005 surface drilling, of about CAD\$100/meter, or CAD\$300,000 for a 3,000 meter program.

The total recommended program therefore has a suggested cost of CAD\$600,000.

15.0 REFERENCES

1. Ash, Chris, and Alldrick, Dani, 1996

Au-Quartz Veins

In: Selected British Columbia Mineral Deposit Profiles, Volume 2

Lefebure, D.V., and Holt, T., editors.

British Columbia Ministry of Employment and Investment, Open File 1996-13, pp 53-56

Church, B,N., and Jones, L.D., January, 1999
 Metallogeny of the Bridge River Mining Camp (092/J10, 15 & 092/O2)
 British Columbia Ministry of Energy and Mines

3. Gruenwald, W., December 30, 2002

Assessment Report on the Geochemical and Diamond Drilling Programs Elizabeth Property, Lillooet Mining Division, British Columbia J-Pacific Gold Inc.

4. Gruenwald, W., December 30, 2003

Assessment Report on the Geochemical and Geological Programs Elizabeth Property, Lillooet Mining Division, British Columbia J-Pacific Gold Inc.

5. Gruenwald, W., August 15, 2004

Assessment Report on the Diamond Drilling, Geochemical and Geophysical Programs Elizabeth Property, Lillooet Mining Division, British Columbia J-Pacific Gold Inc.

6. Leighton, Douglas G., September, 1990

Drilling Report on the Yalakom Property, Lillooet Mining Division Balsam Resources Inc. (BCDM Assessment Report 20, 404)

7. Mosher, Greg, November 30, 2004

Assessment Report on the Phase II Diamond Drilling and Geological Mapping Programs Elizabeth Property, Lillooet Mining Division, British Columbia For J-Pacific Gold Inc.

8. Mosher, Greg, May 30, 2005

Technical Report on the Elizabeth Property, Lillooet Mining Division, British Columbia For J-Pacific Gold Inc.

- Schiarizza, P. and Gaba, R.G., 1993
 Geoscience Map 1993-8: Geology of the Bridge River Map Area NTS 92J/16
 British Columbia Ministry of Energy and Mines
- Schiarizza, P, Gaba, R.G., Glover, J.K., Gaver, J.I., and Umhoefer, P.J., 1997
 Geology and Mineral Occurrences of the Taseko-Bridge River Area
 British Columbia Ministry of Employment and Investment, Bulletin 100

16.0 CERTIFICATE OF AUTHOR

I Gregory Zale Mosher of North Vancouver, British Columbia, do hereby certify that as author of this **TECHNICAL REPORT ON THE ELIZABETH PROPERTY**, dated January 20, 2006, I hereby make the following statements:

- I am a Senior Geologist with Wardrop Engineering Inc. with a business address at 905 1130 West Pender Street, Vancouver, British Columbia.
- I am a graduate of Dalhousie University (B.Sc. Hons., 1970) and McGill University (M.Sc. Applied, 1973).
- I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia (License #19267).
- I have practiced my profession in mineral exploration continuously since graduation.
- I have read the definition of "qualified person" set out in National Instrument 43 -101 (NI 43 -101) and certify that, by reason of my education, affiliation with a professional association (as defined in NI 43 -101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purpose of NI 43-101.
- I am responsible for the preparation of all portions of this technical report titled "Technical Report on the 2005 Drill Program, Elizabeth Property", dated January 20, 2006, and in addition spent the periods June 29 – July 03 and August 18 – 26 at the Elizabeth Property.
- I was site geologist for a substantial portion of the 2004 Phase II drill program, and am author of assessment⁽⁷⁾ and technical ⁽⁸⁾ reports that describe that work.
- As of the date of this Certificate, to my knowledge, information and belief, this
 Technical Report contains all scientific and technical information that is required to
 be disclosed to make the technical report not misleading.
- I am independent of the Issuer applying the tests set out in Section 1.5 of National Instrument 43 -101.

- I have read National Instrument 43-101 and this Technical Report has been prepared in compliance with National Instrument 43-101 and Form 43-101F1.
- I consent to the filing of this Technical Report with any stock exchange or other regulatory authority and any publication by them, including electronic publication in the public company files on their websites accessible by the public, of this Technical Report.

Signed and dated this 20th day of January, 2006 at Vancouver, British Columbia

"Greg Z. Mosher"

Greg Z. Mosher, P.Geo. Senior Geologist Wardrop Engineering Inc.

33

17.0 FIGURES

DUCUMENT #UDD I YOU I UU-KEP-LUUUZ-UU

JΫ

DOCUMENT #000 TOUR TELEGOOZ-TOU

DUCUMENT TOSS TOUR TOUTET FEDURZ-OU

DOCUMENT #UJJ 1000 100-NET -LU002-00

DOCUMENT #00010001001NET-E0002-00

DUCUMENT 7033 1000 100 NET -E0002-00

DOCUMENT #0001000100-NET-E0002-00

DOCONILINI #000100010001NE1 -E0002-00

APPENDICES:

APPENDIX 1: STATEMENT OF EXPENDITURES

APPENDIX 2: DRILL LOGS: E05-18 TO E05-36 INCLUSIVE

STATEMENT OF EXPENDITURE

Elizabeth Exploration Program, 2005 Prepared by J-Pacific Gold Inc. Management

	\$	\$
Consulting Fees / Labour	·	·
Wardrop Engineering Inc. Greg Mosher, P. Geo. (\$120 per hour) 2005 - 17.5 days June 29 - July 3, Aug 18 - Aug 26 Dec 19, 20, 21 (½ day), 22 (½ day) Dec 23 (½ day)		
2006 - 8 days Jan 3 - 6, 9 - 12	19,625.00	
SRK Consulting Jean-Phillippe (\$135 per hour) Aug - 2 hrs		
Chris Lee (\$120 / \$130 per hour) Feb - 6 hrs, Mar - 1hr, Apr - 21 hrs May - 16 hrs, Jul 15 hrs, Aug - 3 hrs James Sifforn (\$100 / \$110 per hour) Feb - 13.5 hrs, Mar - 4 hrs, Apr - 18 hrs May - 44 hrs, Jul - 5 hrs		
Ryan Campbell (\$85 per hour) Mar - 6.75 hrs		
Technical Support (\$75 per hour) Aug - 82 hrs		
Administrative Support (\$55 per hour) Apr - 13 hrs, Jul - 2 hrs		
Miscellaneous charges	18,045.24	
Mining Insights Jim Steele (\$500 per day) 2005 - 37 days July 1 - 31, Aug 14 - 19	18,500.00	
Ed Frey (\$350 per day)	. 0,000.00	
2005 - 40 days July 27 - 31, Aug 1 - 31, Sep 1 - 4	14,000.00	
Cyberquest Geoscience John Harrop (\$55 / \$85 / \$95 per hour) Jan - 13.2 hrs, Apr - 79.8, Jul - 2.2 hrs		
Aug - 19.25 hrs, Oct - 9.5 hrs	7,499.25	
Christine Hogue (\$200 per day) 2005 - 3 days Sep 11 - 13	600.00	78,269.49
Drilling		
Lone Ranger Drilling (2,788 meters) Analytical Costs		209,810.50
EcoTech		
380 36 element ICP 380 fire assays for gold of which 327 were run for metallics		13,709.79
Roads		2 222 61
Access roads - GNS Contracting Camp (room and board, fuel)		3,332.61
Illidge Contracting		145,092.77
Other Travel expenses (Wardrop Engineering) Travel expenses (Mining Insights) Travel expenses (Ed Frey) Travel expenses (Christine Hogue) Travel expenses (management & investors) 4 wheel all terrain vehicles Pajari Instrument Storage container Equipment repair Field geer and related field supplies	84.46 2,750.61 157.77 22.50 8,348.01 19,158.50 2,396.75 3,794.50 2,536.60 2,149.68	
Miscellaneous supplies and communications	928.69	42,328.07

492,543.23

DDH E05-18

J-PACIFIC GOLD INC. DDH E05-18

PROPERTY	Elizabeth	BEARING	125	START DATE	JULY 02, 2005
NORTHING	5653689	DIP	-60	END DATE	
EASTING	531070	LENGTH	205.4	LOGGED BY	JIM STEEL
FI EVATION	2358			•	

NOTE: UNITS IN METERS, BEARING AND DIP IN DEGREES

OBJECTIVE Drill under E0410 to hit vein with additional 40m vertical continuity

SUMMARY	LOG	DDH	E05-18
1101 = "	55.014		D-000010T1011
HOLE#	FROM	ТО	DESCRIPTION
E05-18	0.00	6.10	Overburden
			Hornblende Diorite
E05-18	6.10	13.10	Porphyry
			Altered Hornblende
E05-18	13.10	23.51	Diorite Porphyry
			Hornblende Diorite
E05-18	23.51		Porphyry
E05-18	53.79	55.94	Serpentinite
			Hornblende Diorite
E05-18	55.94	61.00	Porphyry
			Harzburgite/Dunite
E05-18	61.00	61.30	stringer
			Hornblende Diorite
E05-18	61.30	68.40	Porphyry
E05-18	68.40	74.60	Serpentinite
			Hornblende Diorite
E05-18	74.60	85.78	Porphyry
E05-18	85.78	86.21	Serpentinite
			Hornblende Diorite
E05-18	86.21	99.92	Porphyry
E05-18	99.92	110.99	Harzburgite/Dunite
			Hornblende Diorite
E05-18	110.99	119.78	Porphyry
E05-18	119.78		Serpentinite
E05-18	121.62		Harzburgite/Dunite
			Hornblende Diorite
E05-18	124.36	172.10	Porphyry
E05-18	172.10		Quartz Vein Zone
			Hornblende Diorite
E05-18	176.15	181.35	Porphyry
E05-18	181.35		Quartz Vein Zone
		2	Hornblende Diorite
E05-18	194.19	200.52	Porphyry
			Biotite Feldspar
E05-18	200.52	205.40	Porphyry
E05-18	205.40	205.40	

HOLE #	FROM (m)	TO (m)	ROCK TYPE	DESCRIPTION
E0518	0.00	6.10	Overburden	·
				Clast supported hornblende rich. Variable oxidaion in matrix. Quartz str at 45-60 tca. Broken at ovb
E0518	6.10	13.10	Hornblende Diorite Porphyry	contact.
				Porphyry seriticized light green and brown in matrix from oxidation of magnetite? Cut by quartz str at 20
E0518	13.10	23.51	Hornblende Diorite Porphyry	tca.
E0518				At 14.67-14.97 qtz str at 90 tca with silver rmineral oxidizing to black and red masses (aspy) <1%. G07951
				At 20.10-20.70 Qtz str and veinlets as part of overprinting sericite and silica fabric. Locally 1-2% cse
E0518				euhedral py. G07952
E0518	23.51	53.79	Hornblende Diorite Porphyry	As 6.1-13.1
E0518				At 31.7-32.77, fault. Clay gouge, crumbly
				At 36.86-37.82 Phase change very fine grained feldspar phenocrysts in intense clast supported fabric with
E0518				silica overprint. Barren. FW contact at 45 tca.
E0518				At 38.3-38.5 intense faulting with clay gouge, grinding and recementation in fault zone 38.0-41.7.
E0540				At 41.76-45.64 phase change to megacrystic hb-di porphyry; intense alteration with aplitic character HW
E0518				contact at 35 tca; subparallel Si bands at 50 tca.
E0540				At 41.76-45.64 phase change to megacrystic hb-di porphyry; int alteration with aplitic character HW
E0518				contact at 35 tca; subparallel Si bands at 50 tca.
E0518				At 45.64-53.79; fine grained matrix supported hb di porphyry with tr py. Variable oxidation; qtz str to 11cm
E0518	53.79	EE 0.4	Sarmantinita	in FW of fault with intense clay alt 48.77-48.86 in flt zone 46.80-49.50. HW contact cb alt intense to 54.89, thereafter alteration diminishes to FW contact. Flt 54.95-55.03.
E0316	55.79	55.94	Serpentinite	Matrix supported, aplitic overprint of silica and sericite. May be correlative to unit 'heavily altered porphyry'
E0518	55.94	61.00	Hornblende Diorite Porphyry	in other logs. Dominant trend of introduced alteration 65 tca; variable oxn; tr py.
E0518	61.00		Dunite/Harzburgite	very fine grained sericitized groundmass; intense alteration in fault zone of this interval.
E0518	61.30		Hornblende Diorite Porphyry	As 6.1-13.1
20010	01.00	00.10	Tiernbiende Bierne i erpilyty	64.4-68.4 Alternating sequence of matrix and clast supported porphyry. No alteration but for fractures. HW
E0518				transition zone is fault, int clay alt with rounded fragments of serpentinite.
E0518	68.40	74.60	Serpentinite	grey green carbonate alt in stringers at 50 tca.
E0518				At 72.0-74.6 Intense sericite alt black serp S1 foliation at 50 tca
				At 74.1-74.6 foliated serpentinite with scattered low angle veinlets with py at contact of underlying highly
E0518				mineralized unit.
				Clast supported hb diorite porphyry with secondary overprint of silica with py>aspy; also intense sericite
E0518	74.60	85.78	Hornblende Diorite Porphyry	alt.
E0518				
E0518				At 75.93-77.0 Ser alt diminishes; py in matrix of porphyry and in silica veinlets at 60 tca.
E0518				At 78.5-80.0 Flt at FW of interval tr-2% py in matrix silica
E0518				At 81.5-82.34 low angle silica veinlets with p>aspy>mo
				At 85.78-86.21 fine grained porphyry intense ser alt low angle qtz veinlets with euhedral py in matrix and
E0518				selvage. At FW contact with serpentinite qtz str 8cm 90 tca; barren.
E0518	85.78		Serpentinite	Green, intense cb alt; FW contact on fault with clay gouge
E0518	86.21	99.92	Hornblende Diorite Porphyry	As 74.6-85.78
E0540				At 86.86 intense ser alt with silica flooding 2-4% py in matrix, overprinting fsps as part of secondary sil
E0518				phase, decreasing in intensity to FW; background tr-1% py through interval.
E0549				At 90.12-90.65 porphyry flooded by silica with pyrite in matrix and crosscutting veinlets at 45 tca with coarse euhedral py and tr cp (which the drillers thought was gold)
E0518 E0518				At 95.85-96.20 fracture zone in porphyry
E0316				nt 30.00-30.20 fracture zone in porpriyry
E0518	99.21	110 00	Harzburgite/Dunite	HW contact at 35 tca, clay gouge on fault. Black, scatt zones of serpentinite/carbonate foliation at 45 tca
E0518	33.21	110.33	i iai zbui gite/builite	At 102.57 fault
L0310				At 110.20-110.99 fault zone with minor grinding, angular frags, minor alteration except for intense clay on
E0518				plane at FW ct with porphyry.
E0518	110.99	119 78	Hornblende Diorite Porphyry	As 74.6-85.78
	110.00	110.70	The state of the s	At 110.99-113.52 biotite rich between harz/dun and serpentinite str at 113.52-113.86. FW ct with porphyry
E0518				contains qtz mass with serp frags no mineralization.
E0518				At 115.4-116.4 2-3% py, tr. Po in silica flooded porphyry with gtz str at 45 tca. Barren.
				Green, intense cb alt; FW ct zone contains this atz str; barren. FW itself is qtz str with cse py 3% and
E0518	119.78	121.62	Serpentinite	intercalated frags of porphyry; silica rich with 1-3% py in matrix
				Deep green, chl alt. Flt at FW and HW contacts; FW with altered porphyry and qtz str 11 cm wide at 60 tca
E0518	121.62	124.36	Harzburgite/Dunite	with tr-1% py.
•	. !			

	FROM (m)		ROCK TYPE	DESCRIPTION
E0518	124.36	172.10	Hornblende Diorite Porphyry	Clast supported hornblende biotite porphyry; chl alt; py>>aspy. Looks fresh but for silica overprint.
				At 124.40-124.86 aplite dike. "Aplite" actually looks to be white secondary silica that obliterates primary
E0518				fabric most of the time.
E0518				At 130.3-131.18 coarse porphyry with py/aspy tr-1%.
E0518				At 144.28-144.53 serpentinite dike at 70 tca; aspy 1-2%
				At 148.30 phase contact between this unit and intensely silicified clast supported (almost no matrix) biotite
E0518				hornblende porphyry with tr-1% py.
				At 156.36, coarse hornblende-biotite porphyry. Tr-1% py, aspy, po as function of secondary clear and
E0518				white silica. Very little sx in matrix unlike previous intervals.
				At 162.12-165.60 vein zone; qtz vns, str, plus stringer of 'mystery phase' as at 156.36 above. Vns brecciate
E0518				porphyry host, vns include biotite masses with po in clear matrix.
E0518				At 164.66-166.69 str of mystery phase
E0518				At 167.70-168.55 blocky, minor veining
				At 172.10-176.15, sampled vein zone. Two serpentinite str with bi-rich porphyry and mystery phase dike;
				background 1-2% py in porphyry; at 176.15 the fault conduit shows clayey qtz in broken hydrothermally
				altered zone with 2 x 8cm qtz str. Each contain subparallel lamellae of py, po, partially oxidized. Foliation
E0518	172.10	176.15	QUARTZ VEIN ZONE	in veins at 65tca
E0518	176.15		Hornblende Diorite Porphyry	At 176.15-181.35, unaltered porphyry.
				At 181.35-194.19 target zone from cross section, assumed vertical structural dip from hole 10. Starts with
				secondary silica overprint containing tr-2% py but less than interstitial porphyry units with 1-3% py + aspy
				+ po. A quartz eye feldspar porphyry appears at 185.88-186.05. At 191.7 a low angle clear gtz vein 2 cm
				wide on HW of white gtz vein 40 cm wide, but nearly parallel to core axis. This vein was the hydrothermal
				pathway seemingly related to alteration in this interval. Mineralization disappointing for what we had
E0518	181.35	194 19	QUARTZ VEIN ZONE	expected based on structural continuity.
E0518	194.19		Hornblende Diorite Porphyry	At 194.19 -200.52, unaltered porphyry
L0310	134.13	200.32	Tiornbiende Diorne Forphlyry	74. 10-1.10 200.02, unantored porpriyry
				Phase change? Densely packed dominantly euhedral orthoclase; very little matrix with biotite >>
				hornblende. Some py seen in low angle quartz veinlets; if related to above interval, much dirminished in
E0518	200.52	205.40	Biotite Feldspar Porphyry	intensity. No mineralization in groundmass. One representative sample taken for research purposes.
E0518	200.52	203.40	Blottle i eluspai i orpriyry	interiority. No mineralization in groundinass. One representative sample taken for research purposes.
E0518	205.40	205.40	END OF HOLE	
L0310	203.40	203.40	END OF HOLE	
	1 1			

E05-18 79652 20.10 20.70 0.02 c.02 0.54 195 30 c.5 1.83 c.1 3 310 18 1.02 c.10 0.24 120 2 0.17 13 240 2 c.5 c.20 69 c.001 c.10 13 c.10 1 E05-18 79653 77.00 75.93 0.01 c.02 1.36 175 55 c.5 2.66 c.1 14 57 185 3.40 c.10 1.19 438 15 0.11 37 1090 4 c.5 c.20 78 0.02 c.10 c.1 E05-18 79657 78.50 0.01 c.02 1.20 80 40 c.5 1.64 c.1 16 69 2.55 3.50 c.10 1.13 2.52 17 0.07 28 870 6 5 c.20 15 c.0 c.1 E05-18 79658 78.50 80.00 0.05 0.3 1.10 445 35 c.5 2.26 c.1 13 79 79 38 3.24 c.1 1.20 2.5 c.1 c.1 E05-18 79658 80.00 81.50 0.01 0.4 1.49 130 45 c.5 2.26 c.1 13 60 179 3.40 c.10 1.14 5 3.22 115 0.6 18 c.5 c.20 152 c.0 c.1 E05-18 79698 81.50 82.34 83.67 0.05 0.2 0.82 95 45 c.5 2.21 c.1 12 35 156 2.76 c.10 0.81 176 15 0.04 11 11 120 4 5 c.20 127 c.0.01 c.10 c.1 E05-18 7960 82.34 83.67 0.05 0.2 0.12 40 c.5 c.5 1.63 c.1 12 35 156 2.76 c.10 0.87 115 115 0.04 11 11 120 4 5 c.20 127 c.0.01 c.10 c.1 E05-18 7968 130.30 131.80 0.01 c.2 1.12 400 c.5 2.14 c.1 12 35 2.52 c.1 c.1 0.07 2.8 8.70 0.6 2.5 c.2 1.50 6.2 0.05 0.05 0.0 1.14 0.05 0	HOLE #	SAMPLE F	ROM (m) T	O (m)	Au Met g/t	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Υ	Zn
E05-18 795-3 74-10 74-60 0.01 -0.2 0.40 295 25 -ds 1.83 -d 68 60.3 14 3.56 -d0 9.37 689 7 0.01 1023 -d0 -d 2 20 -20 253 -d0.01 -d0 25 -d0 -d1 1 E05-18 795-4 74-60 75-93 0.01 -d.2 1.36 175 55 -d.5 2.66 -d.1 14 57 185 3.40 -d.0 1.19 4.38 1.5 0.11 37 100 4 -d. 2 0.00 1.00 -d. 2 0.00 1.0	E05-18	7951	14.67	14.97	0.03	< 0.2	1.00	95	90	<5	1.46	<1	6	165	54	2.31	<10	0.33	266	6	0.21	9	500	10	<5	<20	64	< 0.01	<10	34	<10	3	43
E05-18 7954 74.80 75.93 77.00 0.02 0.2 12.2 45 40 45 2.68 41 14 57 185 3.40 40 1.19 438 15 0.11 37 1090 4 4 5 2.0 178 0.02 40 95 40 1 1 E05-18 7955 75.93 77.00 78.50 0.01 0.2 1.20 80 40 45 1.64 41 16 69 255 3.50 40 1.13 252 17 0.07 28 870 6 5 2.20 74 0.08 40 3 20 10 18 45 1.64 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E05-18	7952	20.10	20.70	0.02	< 0.2	0.54	195	30	<5	1.83	<1	3	310	18	1.02	<10	0.24	120	2	0.17	13	240	2	<5	<20	69	< 0.01	<10	13	<10	1	8
E05-18 7955 75.93 77.00 78.50 0.01 0.2 1.22 45 40 40 45 2.00 41 15 61 2.45 3.56 40 0.89 305 107 0.09 11 11100 8 45 2.00 78 0.03 40 18 40 45 2.00 41 13 66 69 2.55 3.50 40 113 252 17 0.07 2.8 870 11 11100 8 5 45 2.00 152 4.010 410 12 12 418 18 0.05 32 880 12 5 4.00 152 4.010 410 1 12 12 10 1 13 10 1 14 14 14 14 14 14 14 14 14 14 14 14 1	E05-18	7953	74.10	74.60	0.01	< 0.2	0.40	295	25	<5	1.83	<1	68	603	14	3.56	<10	9.37	689	7	0.01	1023	<10	<2	20	<20	253	< 0.01	<10	25	<10	<1	27
E05-18 7956 77.00 78.50 0.01 0.2 12.0 80 40 <-5 16.4 <-1 16 69 255 3.50 <-10 1.13 252 17 0.07 28 870 6 5 <-20 74 0.08 <-10 93 <-10 1 1	E05-18	7954	74.60	75.93	0.01	< 0.2	1.36	175	55	<5	2.66	<1	14	57	185	3.40	<10	1.19	438	15	0.11	37	1090	4	<5	<20	178	0.02	<10	95	<10	1	48
E05-18 795-7 78.50 80.00 0.05 0.01 0.4 14.9 130 45 45 2.08 41 13 79 138 3.24 40 10 122 418 18 0.05 32 880 12 5 40 152 40.01 40 54 40 1 E05-18 795-8 80.00 81.50 0.01 0.4 14.9 130 45 45 2.08 41 13 60 179 3.40 40 10 1.45 302 41 0.10 26 105-0 18 45 40 45 40.01 40 45 45 40 45 40.01 41.5 10 4 45 45 40 41.5 10 4 45 45 40 41.5 10 4 45 45 45 40 41.5 10 4 45 45 45 40 41.5 10 4 45 45 45 40 41.5 10 4 45 45 45 40 41.5 10 4 45 45 45 40 41.5 10 4 45 45 45 40 41.5 10 4 45 45 45 40 41.5 10 4 45 45 45 40 41.5 10 4 45 45 45 45 45 45 45 45 45 45 45 45 4	E05-18	7955	75.93	77.00	0.02	0.2	1.22	45	40	<5	2.00	<1	15	61	245	3.56	<10	0.89	305	107	0.09	11	1100	8	<5	<20	78	0.03	<10	108	<10	<1	78
E05-18 7989 80.00 81.50 0.01 0.4 1.49 130 45 <5 2.08 <1.83 60 179 3.40 <10 14.5 302 41 0.10 28 1050 18 <5 <20 85 0.02 <10 97 <10 <1 E05-18 17980 82.34 83.67 0.05 0.2 0.2 131 135 55 <5 1.88 <1 12 35 156 2.78 <10 0.81 176 15 0.04 11 1120 4 5 <20 85 0.02 <10 97 <10 <1 E05-18 17980 82.34 83.67 0.05 0.2 0.82 95 45 <5 1.88 <1 12 35 156 2.78 <10 0.81 176 15 0.04 11 1120 4 5 <5 <20 85 0.02 <10 97 <10 <1 E05-18 17980 82.34 83.67 0.05 0.2 0.82 95 45 <5 1.48 <1 20 62 301 3.23 <10 0.87 178 178 178 178 178 178 178 178 178 1	E05-18	7956	77.00	78.50	0.01	0.2	1.20	80	40	<5	1.64	<1	16	69	255	3.50	<10	1.13	252	17	0.07	28	870	6	5	<20	74	0.08	<10	93	<10	3	48
E05-18 7960 81.50 82.34 83.67 0.05 0.2 0.82 95 45 45 45 2.21 41 16 58 2.33 3.40 <10 0.81 176 15 0.04 11 1120 4 5 <20 98 <0.01 <10 66 <10 <1 1	E05-18	7957	78.50	80.00	0.05	0.3	1.10	445	35	<5	2.93	<1	13	79	138	3.24	<10	1.22	418	18	0.05	32	880	12	5	<20	152	< 0.01	<10	54	<10	1	60
E05-18 7962 82.44 83.67 0.05 0.2 0.82 95 45 45 45 2.21 <1 12 35 156 2.76 <10 0.81 176 15 0.04 11 1120 4 5 <20 127 <0.01 <10 28 <10 11	E05-18	7958	80.00	81.50	0.01	0.4	1.49	130	45	<5	2.06	<1	13	60	179	3.40	<10	1.45	302	41	0.10	26	1050	18	<5	<20	85	0.02	<10	97	<10	<1	47
E05-18 7862 115.40 116.40 0.01 -0.2 1.47 340 25 -5 1.43 <1 20 62 301 3.23 <10 0.97 126 13 0.07 20 780 2 <5 <20 23 0.12 <10 85 <10 3 E05-18 7863 120.40 121.62 0.05 6.9 1.12 440 <5 210 7.96 <1 18 390 49 2.50 <10 6.62 1155 1173 <0.01 389 50 438 45 <20 1166 <0.01 <10 109 <10 <1 5 E05-18 7864 130.30 131.80 0.01 <0.2 1.12 10 70 <5 1.67 <1 11 79 53 2.52 <10 0.64 23 22 0.07 10 690 2 <5 <20 71 0.13 <10 75 <10 15 E05-18 7865 142.8 145.01 0.01 <0.2 0.92 35 35 35 <5 0.79 <1 14 225 89 2.03 <10 0.87 122 533 0.05 119 510 <2 <5 <20 73 0.08 <10 50 <1 12 E05-18 7866 152.38 133.23 0.02 0.2 0.1 1.12 160 55 <5 2.08 <1 13 109 224 3.01 <10 0.93 245 54 0.06 17 680 10 <5 <20 132 0.01 <10 67 <10 4 E05-18 7869 162.35 184.66 0.02 <0.2 0.1 3 170 35 <5 2.13 <1 13 66 138 2.66 <10 0.95 262 13 0.04 15 610 4 5 <20 92 0.03 <10 64 10 4 E05-18 7970 164.66 165.60 0.01 <0.2 0.1 30 175 32 32 <1 14 9 11 23 2.67 <10 0.95 264 31 0.05 20 670 6 <5 <20 93 0.07 <10 82 <10 4 E05-18 7971 167.07 188.55 0.04 <0.2 0.1 30 155 40 <5 3.23 <1 14 9 11 23 2.67 <10 0.95 264 31 0.05 20 670 6 <5 <20 93 0.07 <10 82 <10 4 E05-18 7971 167.07 188.55 0.04 <0.2 0.2 0.3 230 25 <5 1.85 <1 14 9 11 23 2.67 <10 0.95 264 31 0.05 20 670 6 <5 <20 93 0.07 <10 82 <10 4 E05-18 7971 167.07 188.55 0.04 <0.2 0.2 0.3 230 25 <5 1.85 <1 14 9 11 23 2.67 <10 0.95 264 31 0.05 20 670 6 <5 <20 93 0.07 <10 82 <10 4 E05-18 7971 167.07 188.55 0.04 <0.2 0.2 0.3 320 25 <5 1.85 1.85 <1 14 9 11 23 2.67 <10 0.95 264 31 0.05 20 670 6 <5 <20 93 0.07 <10 82 <10 4 E05-18 7971 167.07 188.55 0.04 <0.2 0.2 0.3 320 25 <5 1.85 1.85 <1 14 7 154 2.27 <10 0.82 189 9 0.05 12 570 4 <5 <20 93 0.07 <10 82 <10 3 E05-18 7972 188.55 184.65 0.01 <0.2 0.5 5 50.08 <10 40 0.0 11 12 73 142 2.53 <10 0.06 14 600 4 5 <20 56 0.08 <10 63 <10 4 01 1 12 12 12 12 12 12 12 12 12 12 12 12	E05-18	7959	81.50	82.34	0.02	< 0.2	1.31	135	55	<5	1.98	<1	16	58	233	3.40	<10	0.96	183	28	0.06	22	1150	6	10	<20	98	< 0.01	<10	66	<10	<1	48
E05-18 7964 1303 121.62 0.05 6.9 1.12 440 <5 210 7.96 <1 18 390 49 2.50 <10 6.62 1155 1173 <0.01 369 50 438 45 <20 1166 <0.01 <10 109 <10 <10 <10 5 E05-18 7964 1303 0 131.80 0.01 <0.2 1.12 10 70 <5 1.67 <1 11 7 9 53 2.52 <10 0.64 233 22 0.07 10 600 2 <5 <20 71 0 600 12 <5 <20 71 0 13 <10 75 <10 5 E05-18 7966 152.38 153.23 0.02 0.2 1.12 160 55 <5 0.08 <1 14 225 89 2.03 <10 0.97 122 533 0.05 119 510 <2 <5 <20 23 0.08 <10 50 <10 1 0 E05-18 7966 152.38 153.23 0.02 0.2 1.12 160 55 <5 0.08 <1 13 109 224 3.01 <10 0.93 245 54 0.06 17 680 10 <2 <5 <20 75 0.06 <10 59 <10 4 E05-18 7969 163.55 164.66 0.02 <0.2 1.03 170 35 <5 1.58 <1 13 66 138 2.66 <10 0.95 262 13 0.04 15 610 4 5 <20 92 0.03 <10 66 <10 4 E05-18 7970 164.66 165.60 0.01 <0.2 0.13 170 35 <5 1.33 <1 14 9 10 123 2.67 <10 0.95 262 13 0.04 15 610 4 5 <20 93 0.07 <10 82 <10 4 E05-18 7971 167.07 185.55 0.04 <0.2 0.2 0.33 230 25 <5 1.65 1.16 <1 14 7 154 2.77 <10 0.62 169 9 0.05 12 500 4 4 E05-18 7972 186.55 169.12 0.02 <0.2 0.85 25 35 <5 1.81 <1 12 73 142 2.53 <10 0.66 196 3 0.03 0.04 14 600 4 5 <20 95 0.08 <10 63 <10 40 0 1 1 E05-18 7973 186.55 169.12 0.02 <0.2 0.85 25 35 5 1.81 <1 12 73 142 2.53 <10 0.66 196 3 0.03 0.03 0.03 0.03 0.04 15 50 0.04 <0.2 0.55 0.08 <10 63 <10 4 0 0 1 1 E05-18 7973 186.55 169.12 0.02 <0.2 0.85 25 35 5 5 1.81 <1 12 73 142 2.53 <10 0.66 196 3 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0	E05-18	7960	82.34	83.67	0.05	0.2	0.82	95	45	<5	2.21	<1	12	35	156	2.76	<10	0.81	176	15	0.04	11	1120	4	5	<20	127	<0.01	<10	28	<10	1	40
E05-18 7966 1428 145.01 0.01 -0.2 0.12 1.12 10 70 -5 1.67 <1 11 79 53 2.52 <10 0.64 233 22 0.07 10 680 2 <5 <20 71 0.13 <10 75 <10 5 E05-18 7965 142.8 145.01 0.01 -0.2 0.92 35 35 <5 0.09 <1 14 225 89 2.03 <10 0.67 1.2 153.00 119 510 <2 <5 <20 71 0.13 <10 75 <10 5 E05-18 7966 152.38 153.23 0.02 0.2 1.12 160 55 <5 2.08 <1 13 109 224 3.01 <10 0.93 245 54 0.06 17 680 10 <5 <20 132 0.01 <10 67 <10 3 1 E05-18 7968 162.12 163.55 0.04 <0.2 0.95 20 25 <5 1.68 <1 9 69 61 2.27 <10 0.75 244 13 0.05 12 580 2 5 <20 75 0.06 <10 59 <10 4 E05-18 7969 163.55 164.66 0.02 0.2 1.33 170 35 <5 2.13 <1 13 66 138 2.66 <10 0.95 262 13 0.04 15 610 4 5 <20 95 20 0.3 <10 64 0.4 4 E05-18 7970 164.66 165.60 0.01 <0.2 1.30 155 40 <5 3.23 <1 14 9 112 2.67 <10 0.95 262 13 0.04 15 610 4 5 <20 95 20 0.3 <10 64 0.4 4 E05-18 7970 164.66 165.60 0.01 <0.2 0.2 1.33 230 25 <5 1.88 <1 14 9 12 2.67 <10 0.95 262 13 0.04 15 610 4 5 <20 95 0.03 <10 64 0.4 4 E05-18 7970 164.66 165.60 0.01 <0.2 0.2 1.33 230 25 <5 1.88 <1 14 9 12 2.67 <10 0.95 264 31 0.05 20 670 6 <5 <20 93 0.07 <10 82 <10 4 E05-18 7971 167.0 185.55 0.04 <0.2 0.2 0.33 230 25 <5 1.88 <1 12 73 142 2.53 <10 0.66 196 3 0.06 14 600 4 5 <20 95 0.08 <10 63 <10 4 0.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E05-18	7962	115.40	116.40	0.01	<0.2	1.47	340	25	<5	1.43	<1	20	62	301	3.23	<10	0.97	126	13	0.07	20	780	2	<5	<20	23	0.12	<10	85	<10	3	37
E05-18 7966 142.8 145.01 0.01 -0.2 0.92 35 35 -45 0.79 <1 14 225 89 2.03 <10 0.87 122 533 0.05 119 510 <2 <5 <20 23 0.08 <10 50 <10 50 <10 1	E05-18	7963	120.40	121.62	0.05	6.9	1.12	440	<5	210	7.96	<1	18	390	49	2.50	<10	6.62	1155	1173	< 0.01	369	50	438	45	<20	1166	< 0.01	<10	109	<10	<1	58
E05-18 7966 152.38 153.23 0.02 0.2 1.12 160 55 <5 0.08 <1 13 109 224 3.01 <10 0.93 245 54 0.06 17 680 10 <5 <20 132 0.01 <10 67 <10 3 E05-18 7968 162.12 163.55 164.66 0.02 0.95 2.0 25 <5 1.58 <1 9 69 61 2.27 <10 0.75 244 13 0.05 12 580 2 5 <20 75 0.06 <10 59 <10 4 E05-18 7969 163.55 164.66 0.02 0.2 1.03 170 35 <5 2.13 <1 13 66 138 2.66 <10 0.95 262 13 0.04 15 610 4 5 <20 92 0.03 <10 66 <10 4 E05-18 7970 164.66 165.60 0.01 <0.2 1.30 155 40 <5 3.23 <1 14 91 123 2.67 <10 0.95 264 31 0.04 15 610 6 <5 <20 93 0.07 <10 82 <10 4 E05-18 7971 167.70 183.55 0.04 <0.2 0.33 230 25 <5 1.86 <1 11 74 154 2.27 <10 0.62 169 9 0.05 12 570 6 <5 <20 93 0.07 <10 82 <10 3 E05-18 7972 168.55 199.12 0.02 <0.2 0.85 25 35 <5 1.81 <1 12 73 142 2.53 <10 0.66 196 3 0.06 14 600 4 5 <20 56 0.08 <10 63 <10 4 E05-18 7973 168.55 199.12 0.02 <0.2 0.85 25 35 <5 1.81 <1 12 73 142 2.53 <10 0.66 196 3 0.08 14 600 4 5 <20 56 0.08 <10 63 <10 4 E05-18 7973 169.12 172.84 0.01 0.02 0.5 355 45 54 1.67 <1 17 390 12 2.38 <10 1.66 196 3 0.03 0.03 241 200 6 10 <20 56 0.08 <10 63 <10 14	E05-18	7964	130.30	131.80	0.01	< 0.2	1.12	10	70	<5	1.67	<1	11	79	53	2.52	<10	0.64	233	22	0.07	10	690	2	<5	<20	71	0.13	<10	75	<10	5	55
E05-18 7968 162.12 183.55 0.01 <0.2 0.95 20 25 <5 1.58 <1 9 69 61 2.27 <10 0.75 244 13 0.05 12 580 2 5 <20 75 0.06 <10 59 <10 4 E05-18 7969 163.55 164.66 0.02 <0.2 1.03 170 35 <5 2.13 <1 13 66 138 2.66 <10 0.95 262 13 0.04 15 610 4 5 <20 92 0.03 <10 66 <10 4 E05-18 7970 164.66 165.00 0.01 <0.10 <0.10 <0.13 155 40 <5 3.23 <1 14 91 123 2.67 <10 0.95 264 31 0.05 20 670 6 <5 <20 92 0.03 <10 66 <10 4 E05-18 7971 1770 188.55 0.04 <0.2 0.85 25 5 5 0.04 <0.2 0.85 25 5 1.65 <1 11 74 154 2.77 <10 0.62 169 9 0.05 12 570 4 <5 <20 44 0.08 <10 63 <10 3 E05-18 7972 188.55 189.12 0.02 <0.2 0.85 25 35 <5 1.81 <1 12 73 142 2.53 <10 0.66 196 3 0.06 14 600 4 5 <20 56 0.08 <10 63 <10 4 15 178 189 189 189 189 189 189 189 189 189 18	E05-18	7965	144.28	145.01	0.01	< 0.2	0.92	35	35	<5	0.79	<1	14	225	89	2.03	<10	0.87	122	533	0.05	119	510	<2	<5	<20	23	0.08	<10	50	<10	1	32
E05-18 7969 163.55 164.66 0.02 < 0.2 1.03 170 35 <5 2.13 <1 13 66 138 2.66 <10 0.95 262 13 0.04 15 610 4 5 <20 92 0.03 <10 66 <10 4 E05-18 7970 164.66 165.60 0.01 <0.2 1.30 155 40 <5 3.23 <1 14 91 123 2.67 <10 0.95 284 31 0.05 20 670 6 <5 <20 93 0.07 <10 82 <10 4 E05-18 7971 167.70 168.55 0.04 <0.2 0.83 230 25 <5 1.65 <1 11 74 154 2.27 <10 0.62 169 9 0.65 12 570 4 <5 <20 44 0.08 <10 0.60 160 4 5 <20 93 0.07 <10 82 <10 3 E05-18 7972 168.55 169.12 0.02 <0.2 0.85 225 35 <5 1.81 <1 12 73 142 2.53 <10 0.66 196 3 0.06 14 600 4 5 <20 56 0.08 <10 63 <10 4 11 17 4 154 164 165 165 165 165 165 165 165 165 165 165	E05-18	7966	152.38	153.23	0.02	0.2	1.12	160	55	<5	2.08	<1	13	109	224	3.01	<10	0.93	245	54	0.06	17	680	10	<5	<20	132	0.01	<10	67	<10	3	35
E05-18 7969 163.55 164.66 0.02 < 0.2 1.03 170 35 <5 2.13 <1 13 66 138 2.66 <10 0.95 262 13 0.04 15 610 4 5 <20 92 0.03 <10 66 <10 4 E05-18 7970 164.66 165.60 0.01 <0.2 1.30 155 40 <5 3.23 <1 14 91 123 2.67 <10 0.95 284 31 0.05 20 670 6 <5 <20 93 0.07 <10 82 <10 4 E05-18 7971 167.70 168.55 0.04 <0.2 0.83 230 25 <5 1.65 <1 11 74 154 2.27 <10 0.62 169 9 0.05 12 570 4 <5 <20 44 0.08 <10 0.05 <10 0.08 <10 60 <10 3 E05-18 7972 168.55 169.12 0.02 <0.2 0.85 225 35 <5 1.81 <1 12 73 142 2.53 <10 0.06 196 3 0.06 14 600 4 5 <20 56 0.08 <10 63 <10 4 11 17 4 154 154 154 154 154 154 154 154 154 1	E05-18	7069	162 12	163 55	0.01	-0.2	0.95	20	25	-5	1.59	-1	0	69	61	2 27	-10	0.75	244	12	0.05	12	580	2	5	-20	75	0.06	-10	50	-10	4	29
E05-18 7970 164.66 165.60 0.01 <0.2 1.30 155 40 <5 3.23 <1 14 91 123 2.67 <10 0.95 264 31 0.05 20 670 6 <5 <20 93 0.07 <10 82 <10 4 E05-18 7971 167.70 188.55 0.04 <0.2 0.83 230 25 <5 1.86 <1 11 74 154 2.27 <10 0.62 169 9 0.05 12 570 4 <5 <20 44 0.08 <10 60 <10 3 E05-18 7972 168.55 169.12 0.02 <0.2 0.85 225 35 <5 1.81 <1 12 73 142 2.53 <10 0.66 196 3 0.06 14 600 4 5 <20 56 0.08 <10 63 <10 4 E05-18 7973 169.12 172.84 0.01 <0.2 0.95 355 45 <5 1.87 <1.77 <1 17 390 12 2.38 <10 1.46 306 3 0.03 241 200 6 10 <20 56 0.08 <10 63 <10 14 E05-18 7973 169.12 172.84 0.01 <0.2 0.95 355 45 <5 1.67 <1 17 390 12 2.38 <10 1.46 306 3 0.03 241 200 6 10 <20 58 0.02 <10 40 <10 1								170	25				13	66										1	5					66		4	33
E05-18 7971 167.70 188.55 0.04 <0.2 0.83 230 25 <5 1.65 <1 11 74 154 2.27 <10 0.82 189 9 0.05 12 570 4 <5 <20 44 0.08 <10 60 <10 3 E05-18 7972 188.55 199.12 0.02 <0.2 0.85 225 35 <5 1.81 <1 12 73 142 2.53 <10 0.66 196 3 0.06 14 600 4 5 <20 56 0.08 <10 63 <10 4 E05-18 7973 169.12 172.84 0.01 <0.02 <0.95 355 45 <5 1.57 <1 17 390 12 2.38 <10 1.46 306 3 0.03 241 200 6 10 <20 58 0.02 <10 40 <10 1								155	40					91										6	-5					82		4	37
E05-18 7972 168.55 169.12 0.02 <0.2 0.85 225 35 <5 1.81 <1 12 73 142 2.53 <10 0.66 196 3 0.06 14 600 4 5 <20 56 0.08 <10 63 <10 4 605 18 7973 169.12 172.84 0.01 <0.2 0.95 355 45 <5 1.57 <1 17 390 12 2.38 <10 1.46 306 3 0.03 241 200 6 10 <20 58 0.02 <10 40 <10 1																								4								3	29
E05-18 7973 169.12 172.84 0.01 <0.2 0.95 355 45 <5 1.57 <1 17 390 12 2.38 <10 1.46 306 3 0.03 241 200 6 10 <20 58 0.02 <10 40 <10 1																				-				4	5							4	32
													17											6	10							1	41
F05-18 7974 172.84 173.74 0.02 <0.2 0.94 710 35 <5 2.34 <1 1.3 69 142 2.64 <10 0.80 215 12 0.05 18 710 4 5 <20 110 <0.01 <10 61 <10 5	E05-18	7974	172.84	173.74		<0.2	0.94	710	35	<5	2.34	ج1	13	69	142	2.64	<10	0.80	215	12	0.05	18	710	4	5	<20	110	< 0.01	<10	61	<10	5	35
												<1	9	42										8	5					20		5	32
E05-18 7976 174.88 176.15 3.23 2.7 0.55 2145 10 <5 1.52 <1 6 104 128 1.69 <10 0.60 243 29 0.01 12 500 260 10 <20 163 <0.01 <10 14 <10 4	E05-18	7976	174.88	176.15	3.23	2.7	0.55	2145	10	<5	1.52	<1	6	104	128	1.69	<10	0.60	243	29	0.01	12	500	260	10	<20	163	< 0.01	<10	14	<10	4	43
E05-18 7977 203.00 204.50 0.03 <0.2 0.20 10 25 <5 0.32 <1 1 96 9 0.58 10 0.08 84 12 0.05 3 30 10 <5 <20 17 <0.01 <10 6 <10 2	E05-18	7977	203.00	204.50	0.03	< 0.2	0.20	10	25	<5	0.32	<1	1	96	9	0.58	10	0.08	84	12	0.05	3	30	10	<5	<20	17	< 0.01	<10	6	<10	2	7
E05-18 7978 181.30 182.60 0.02 <0.2 0.30 15 20 <5 1.30 <1 2 86 49 0.76 <10 0.18 147 262 0.05 4 160 8 <5 <20 91 <0.01 <10 11 <10 3	E05-18	7978	181.30	182.60	0.02	< 0.2	0.30	15	20	<5	1.30	<1	2	86	49	0.76	<10	0.18	147	262	0.05	4	160	8	<5	<20	91	< 0.01	<10	11	<10	3	15
E05-18 7979 182-60 183-60 0.01 <0.2 0.30 15 15 <5 2.64 <1 2 63 25 0.94 <10 0.20 213 11 0.04 4 150 6 <5 <20 146 <0.01 <10 12 <10 4	E05-18	7979	182.60	183.60	0.01	< 0.2	0.30	15	15	<5	2.64	<1	2	63	25	0.94	<10	0.20	213	11	0.04	4	150	6	<5	<20	146	< 0.01	<10	12	<10	4	12
E05-18 7980 183.60 184.50 0.01 <0.2 0.56 10 25 <5 1.04 <1 4 69 24 1.18 <10 0.31 153 12 0.04 6 380 6 <5 <20 60 0.04 <10 29 <10 5	E05-18	7980	183.60	184.50	0.01	< 0.2	0.56	10	25	<5	1.04	<1	4	69	24	1.18	<10	0.31	153	12	0.04	6	380	6	<5	<20	60	0.04	<10	29	<10	5	17
E05-18 7981 184.50 185.58 0.01 <0.2 0.88 45 65 <5 1.41 <1 12 81 111 2.33 <10 0.66 172 <1 0.05 20 700 6 10 <20 82 0.09 <10 67 <10 4	E05-18	7981	184.50	185.58	0.01	< 0.2	0.88	45	65	<5	1.41	<1	12	81	111	2.33	<10	0.66	172	<1	0.05	20	700	6	10	<20	82	0.09	<10	67	<10	4	32
E05·18 7982 185.58 187.37 0.01 <0.2 0.33 40 15 <5 0.89 <1 2 89 44 0.58 <10 0.10 62 34 0.05 3 80 10 <5 <20 31 <0.01 <10 9 <10 2	E05-18	7982	185.58	187.37	0.01	< 0.2	0.33	40	15	<5	0.89	<1	2	89	44	0.58	<10	0.10	62	34	0.05	3	80	10	<5	<20	31	< 0.01	<10	9	<10	2	8
E05-18 7983 187-37 188.77 0.04 <0.2 0.24 10 20 <5 0.66 <1 3 65 35 0.77 <10 0.13 100 22 0.04 5 120 6 <5 <20 29 0.01 <10 12 <10 2	E05-18	7983	187.37	188.77	0.04	< 0.2	0.24	10	20	<5	0.66	<1	3	65	35	0.77	<10	0.13	100	22	0.04	5	120	6	<5	<20	29	0.01	<10	12	<10	2	11
E05-18 7984 188.77 190.20 0.04 <0.2 0.19 10 20 <5 0.58 <1 1 99 12 0.60 <10 0.09 94 2 0.05 3 40 6 <5 <20 27 <0.01 <10 5 <10 2	E05-18	7984	188.77	190.20	0.04	< 0.2	0.19	10	20	<5	0.58	<1	1	99	12	0.60	<10	0.09	94	2	0.05	3	40	6	<5	<20	27	< 0.01	<10	5	<10	2	8
E05-18 7985 190.20 191.70 0.06 <0.2 0.15 20 15 <5 0.62 <1 1 61 39 0.58 <10 0.11 84 7 0.03 2 50 8 <5 <20 20 <0.01 <10 4 <10 4	E05-18	7985	190.20	191.70	0.06	< 0.2	0.15	20	15	<5	0.62	<1	1	61	39	0.58	<10	0.11	84	7	0.03	2	50	8	<5	<20	20	< 0.01	<10	4	<10	4	8
E05-18 7986 191.70 192.87 0.17 0.3 0.29 95 10 <5 0.73 <1 2 76 30 0.69 <10 0.19 102 8 0.02 7 120 8 <5 <20 39 <0.01 <10 4 <10 2	E05-18	7986	191.70	192.87	0.17	0.3	0.29	95	10	<5	0.73	<1	2	76	30	0.69	<10	0.19	102	8	0.02	7	120	8	<5	<20	39	< 0.01	<10	4	<10	2	9
E05-18 7987 192.87 194.19 0.03 <0.2 0.53 30 15 <5 1.61 <1 4 71 19 1.21 <10 0.49 220 9 0.03 8 360 4 <5 <20 68 <0.01 <10 14 <10 2	E05-18	7987	192.87	194.19	0.03	< 0.2	0.53	30	15	<5	1.61	<1	4	71	19	1.21	<10	0.49	220	9	0.03	8	360	4	<5	<20	68	< 0.01	<10	14	<10	2	18

Au Met = Metallic Gold Assay

7961 BLANK ? 7967 BLANK ?

E05 19 0 125 60	HOLE #	DEPTH	BEARING	DIP
E03-16 0 123 -00	E05-18	0	125	-60

F	RECOVERY From To Run Recove				CODE	RQD	DOD	CORE BOX INTERVALS			
(m)	(m)	(m)	Meas	Rec (%)	CORE (cm)	RUN (cm)	RQD (%)	Box	From	То	
0.00	6.10	6.10	0.80	13.1%	0.00	6.10	0%	1 2	6.1 13.15	13.15 19.8	
6.10 7.92	7.92 10.36	1.82 2.44	0.88	48.4% 21.7%	0.10 0.22	1.82 2.44	5% 9%	3 4	19.8 25.64	25.6 30.9	
10.36	11.89	1.53	1.26	82.4%	0.47	1.53	31%	5	30.87	37.3	
11.89 13.11	13.11 16.00	1.22 2.89	0.35 2.18	28.7% 75.4%	0.00	1.22 2.89	0% 18%	<u>6</u>	37.25 44.5	44.5 49.8	
16.00	17.07	1.07	0.70	65.4%	0.41	1.07	38%	8	49.8	54.7	
17.07 19.05	19.05 19.66	1.98 0.61	1.07 0.26	54.0% 42.6%	0.46 0.13	1.98 0.61	23% 21%	9 10	54.7 60.1	60.1 65.5	
19.66 21.34	21.34 22.56	1.68 1.22	1.20 1.13	71.4% 92.6%	0.38 0.23	1.68 1.22	23% 19%	11 12	65.5 71.9	71.9 77.9	
22.56	23.17	0.61	0.39	63.9%	0.00	0.61	0%	13	77.9	82.6	
23.17 25.00	25.00 26.26	1.83 1.26	1.55 1.03	84.7% 81.7%	0.71 0.25	1.83 1.26	39% 20%	14 15	82.6 88.24	88.2 93.1	
26.26	26.72	0.46	0.22	47.8%	0.18	0.46	39%	16	93.12	99.2	
26.72 27.48	27.48 28.70	0.76 1.22	0.68 1.07	89.5% 87.7%	0.56 0.15	0.76 1.22	74% 12%	17 18	99.2 104.65	104.7 109.9	
28.70 29.72	29.72 31.59	1.02 1.87	0.80 1.41	78.4% 75.4%	0.17 0.12	1.02 1.87	17% 6%	19 20	109.9 115.39	115.4 121.0	
31.59	32.36	0.77	0.60	77.9%	0.00	0.77	0%	21	120.98	126.9	
32.36 33.58	33.58 34.49	1.22 0.91	1.20 0.68	98.4% 74.7%	0.51 0.14	1.22 0.91	42% 15%	22 23	126.85 132.1	132.1 137.5	
34.49	35.40	0.91	0.90	98.9%	0.31	0.91	34%	24	137.5	143.3	
35.40 37.23	37.23 37.80	1.83 0.57	1.13 0.20	61.7% 35.1%	0.16 0.00	1.83 0.57	9% 0%	25 26	143.3 148.9	148.9 154.9	
37.80 38.10	38.10 39.40	0.30 1.30	0.20 0.58	66.7% 44.6%	0.00	0.30 1.30	0% 0%	27	154.86 160.4	160.4	
39.40	40.10	0.70	0.58	28.6%	0.00	0.70	0%	28 29	166	166.0 171.5	
40.10 40.40	40.40 40.80	0.30	0.10	33.3% 0.0%	0.00	0.30	0% 0%	30 31	171.5 176.8	176.8 182.6	
40.80	41.80	1.00	0.42	42.0%	0.00	1.00	0%	32	182.6	188.4	
41.80 43.10	43.10 44.50	1.30 1.40	1.08 0.45	83.1% 32.1%	0.00 0.44	1.30 1.40	0% 31%	33 34	188.4 194.1	194.1 199.8	
44.50	45.30 46.80	0.80	0.60	75.0%	0.58	0.80	73% 0%	35	199.8	205.4 EOH	
45.30 46.80	48.30	1.50 1.50	1.50 1.07	100.0% 71.3%	0.00	1.50 1.50	33%	36 37	205.4	EOH	
48.30 48.70	48.70 50.60	0.40 1.90	0.37 0.80	92.5% 42.1%	0.00	0.40 1.90	0% 0%	38 39	0		
50.60	53.50	2.90	2.90	100.0%	0.28	2.90	10%	40	0		
53.50 55.90	55.90 56.70	2.40 0.80	1.73 0.74	72.1% 92.5%	0.60	2.40 0.80	25% 37%	41 42	0		
56.70	57.90	1.20	0.99	82.5%	0.25	1.20	21%	43	0		
57.90 59.10	59.10 61.40	1.20 2.30	1.20 2.30	100.0%	0.46 0.32	1.20 2.30	38% 14%	44 45	0		
61.40 64.40	64.40 66.60	3.00 2.20	2.10 1.70	70.0% 77.3%	1.46 1.85	3.00 2.20	49% 84%	46 47	0		
66.60	68.50	1.90	0.30	15.8%	1.36	1.90	72%	48	0		
68.50 69.80	69.80 75.00	1.30 5.20	1.30 3.00	100.0% 57.7%	1.10 0.00	1.30 5.20	85% 0%	49 50	0		
75.00	77.10	2.10	1.80	85.7%	1.26	2.10	60%	51	0		
77.10 79.60	79.60 80.10	2.50 0.50	2.30 0.35	92.0% 70.0%	2.02 0.26	2.50 0.50	81% 52%	52 53	0		
80.10 82.40	82.40 83.67	2.30 1.27	2.05 1.19	89.1% 93.7%	0.32 0.24	2.30 1.27	14% 19%	54 55	0		
83.67	84.73	1.06	1.03	97.2%	0.67	1.06	63%	56	0		
84.73 86.56	86.56 93.12	1.83 6.56	1.83	100.0%	0.72 0.50	1.83 6.56	39% 8%	57 58	0		
93.12	96.16	3.04	3.01	99.0%	2.32	3.04	76%	59	0		
96.16 97.69	97.69 100.21	1.53 2.52	1.33 2.08	86.9% 82.5%	1.28 0.00	1.53 2.52	84% 0%	60 61	0		
100.21	102.57 104.85	2.36 2.28	1.50 2.25	63.6% 98.7%	2.35	2.36 2.28	100% 26%	62 63	0		
102.57 104.85	104.83	1.45	1.25	86.2%	0.60 1.15	1.45	79%	64	0		
106.30 108.51	108.51 110.19	2.21 1.68	2.19 1.60	99.1% 95.2%	0.60 1.68	2.21 1.68	27% 100%	65 66	0		
110.19	112.17	1.98	1.40	70.7%	0.12	1.98	6%	67	0		
112.17 113.39	113.39 116.43	1.22 3.04	1.05 2.79	86.1% 91.8%	0.65 0.12	1.22 3.04	53% 4%	68 69	0		
116.43	119.48 121.62	3.05 2.14	3.05	100.0%	1.92	3.05	63%	70	0		
119.48 121.62	124.36	2.74	2.00 2.15	93.5% 78.5%	0.57 1.49	2.14 2.74	27% 54%	71 72	0		
124.36 127.25	127.25 130.32	2.89 3.07	2.65 3.03	91.7% 98.7%	1.00 1.64	2.89 3.07	35% 53%	73 74	0		
130.32	132.89	2.57	0.45	17.5%	0.68	2.57	26%	75	0		
132.89 135.20	135.20 138.68	2.31 3.48	2.31 3.48	100.0%	1.19 2.00	2.31 3.48	52% 57%	76 77	0		
138.68 141.73	141.73 144.78	3.05 3.05	3.05 1.50	100.0% 49.2%	1.20 0.94	3.05 3.05	39% 31%	78 79	0		
144.78	147.98	3.20	3.05	95.3%	0.68	3.20	21%	80	0		
147.98 150.88	150.88 153.16	2.90 2.28	1.96 2.82	67.6% 123.7%	1.82 1.37	2.90 2.28	63% 60%	81 82	0		
153.16	156.36	3.20	3.05	95.3%	1.95	3.20	61%	83	0		
156.36 159.41	159.41 162.46	3.05 3.05	3.00	98.4% 98.4%	1.30 1.66	3.05 3.05	43% 54%	84 85	0		
162.46 165.50	165.50 168.55	3.04	3.00	98.7% 98.4%	2.03	3.04 3.05	67% 37%	86 87	0		
165.50	170.69	2.14	3.00	98.4% 140.2%	1.70	2.14	79%	87 88	0		
170.69 173.74	173.74 175.87	3.05 2.13	3.05 2.00	100.0% 93.9%	0.51 1.55	3.05 2.13	17% 73%	89 90	0		
175.87	178.61	2.74	2.75	100.4%	0.22	2.74	8%	30	U		
178.61 181.66	181.66 184.71	3.05 3.05	3.01 2.97	98.7% 97.4%	0.68 1.20	3.05 3.05	22% 39%				
184.71	187.76	3.05	2.89	94.8%	1.31	3.05	43%				
187.76 190.80	190.80 193.85	3.04 3.05	3.04 3.02	100.0% 99.0%	2.38 1.43	3.04 3.05	78% 47%				
193.85 196.90	196.90 199.95	3.05 3.05	2.92 2.85	95.7% 93.4%	1.20 1.25	3.05 3.05	39% 41%				
199.95	203.00	3.05	3.05	100.0%	2.36	3.05	77%				
203.00	206.04	3.04	2.85	93.8%	1.15	3.04	38%				

DDH E05-19

J-PACIFIC GOLD

PROPERTY Elizab NORTHING 56537 EASTING 53113 ELEVATION 2396

Elizabeth	BEARING
5653746	DIP
531135	LENGTH

125	START DATE	JULY 08, 2005
-70	END DATE	JULY 10, 2005
276.4	LOGGED BY	JIM STEEL

NOTE: UNITS IN METERS, BEARING AND DIP IN DEGREES

OBJECTIVE To drill underneath 04-09

SUMMAR	RY LOG		E05-19
HOLE#	FROM	ТО	DESCRIPTION
E 05-19	0.00	6.71	Overburden
E 05-19	6.71	17.65	Hornblende Feldspar Porphyry (Diorite)
E 05-19	17.65	17.95	Quartz Vein
E 05-19	17.95	36.36	Hornblende Feldspar Porphyry (Diorite)
E 05-19	36.36	38.82	Quartz Vein
E 05-19	38.82	49.53	Hornblende Feldspar Porphyry (Diorite)
E 05-19	49.53	51.00	Quartz Vein Zone
E 05-19	51.00	60.30	Hornblende Feldspar Porphyry (Diorite)
E 05-19	60.30	61.30	Quartz Vein Zone
E 05-19	61.30	95.20	Hornblende Feldspar Porphyry (Diorite)
E 05-19	95.20	95.80	Quartz Veinlet Zone
E 05-19	95.80	132.70	Hornblende Feldspar Porphyry (Diorite)
E 05-19	132.70	133.70	Quartz Vein Zone
E 05-19	133.70	159.70	Hornblende Feldspar Porphyry (Diorite)
E 05-19	159.70	160.64	Quartz Vein Zone
E 05-19	160.64	188.76	Hornblende Feldspar Porphyry (Diorite)
E 05-19	188.76	197.75	Quartz Vein Zone
E 05-19	197.75	204.72	Hornblende Feldspar Porphyry (Diorite)
E 05-19	204.72	204.72	End of Hole

HOLE #	FROM	TO	ROCK TYPE	DESCRIPTION	SAMPLE
E05-19	0.00		OVERBURDEN		
E05-19 E05-19	6.10	17.65	HORNBLENDE FELDSPAR PORPHYRY	Unaltered homblende porphry. Euhedral minerals; clast supported. No sulphides. At 7.51, Qtz str. Barren. 50 tca	
E05-19				At 17.07-17.45, broken angular fragments of porphyry in HW of hydrothermal alteration trace ("ht." henceforth). At 17.45-17.65 ht alteration based on fsp alteration and proximity to ascending heat source and transition out	
E05-19 E05-19	17.65	17.95	QUARTZ VEIN	of alteration into fresh(er) porphyry on HW and FW At 17.65-17.95, qtz str; open space filling slow recrystallization. After receipt of 68 g/t, 17.35-17.65 was backsplit with sample 8120B and sample 8121B was 17.95-18.85.	7988
				At 18.85-22.8, zone of ascending intensity of ht alteration; silica floods underlying porphyry but allows texture to show through. This is called Phase I ht alteration, if the fsps can be seen under the silica flood and if fsp alteration is present. A second phase of white quartz is seen at low angle tca, and a third phase of clear silica crosscuts all other units. Phase 3 in this interval occurs on the same pathway as Phase 2; with boxwork of	
E05-19	17.95	36.36	HORNBLENDE FELDSPAR PORPHYRY	euhedral py and tr aspy in the Ph 3 veinlets. At 30.07-30.12, ht pathway noted by open space filled P2 silica with vugs, at high angle tca. P2 vein brecciated	
E05-19 E05-19				underlying porphyry; altered fsps seen in selvages. At 34.17-34.45, minor ht pathway. At 36.36-38.82, qtz vein zone. 36.53 marks limit of ht in HW; at 36.87, qtz vn brecciates porphyry; P2 and P3	
E05-19 E05-19	36.36 38.82		QUARTZ VEIN HORNBLENDE FELDSPAR PORPHYRY	noted on FW contact; P3 with relict aspy and py boxwork. at 38.71, source fault for rising ht fluids. Int alt on FW in porphyry.	
E05-19				At 41.4-45.56, coarse porphyry with bi (is a serpentinite near?) med overall alt of fsps; int oxidation on matrix veinlets. Ht pathway at 44.35 with P2 and P3 in blebs and str at low angles tca. Later flt at 45.47 but no alteration of fsps	
E05-19	49.53		QUARTZ VEIN ZONE	At 49.53-51.0 qtz vn zone. No obvious contact angles (broken). Flt ground fragments on HW of interval; P2 and P3; tr-1% py and aspy. Dominant foliation 50 tca.	
E05-19 E05-19	51.00	60.30	HORNBLENDE FELDSPAR PORPHYRY	49.21-50.9 44.55.50-55.73, minor ht alteration centered around thin qtz veinlet (P2) at 65 tca At 55.50-55.74, qtz vn zone. Int fsp alt after P1 silica with 2-3% asp, 75% oxidized. High volatile component	7991
E05-19 E05-19				expressed in abundant vugs. P2 veinlet barren; dominant foliation at 50 tca. At 57.4-62.29 med alt of porphyry. Oh wonderful, more rain! Around flt at 59.6	7992
E05-19 E05-19	60.30 61.30		QUARTZ VEIN ZONE HORNBLENDE FELDSPAR PORPHYRY	At 60.3-61.3 qtz zone; int alt fsp. P2 with oxidized asp in P3 vnlts at a high angle tca. P3 vnlts cut matrix independent of P2 (not heretofore seen) at low angle tca. P1 seen introducing minor asp and py to matrix. At 66.28-66.44, ht vnlt, low alteration	7993-4
E05-19 E05-19	01.30	95.20	HORNBEENDE FELDSFAR FORFITIKT	At 69.86-70.07, low angle P2 vnlts with minor clay alt. At 73.43, P2 on fractures.	
E05-19				At 75.23, lightly altered porph. P1 vnlts truncated by unmineralized micro fractures at low angle tca. P2 str at 75 tca with int alt on FW of vnlt; alteration transition out to FW over 5cm. At 79.68, sulphides appear in matrix without usual P1 accompaniment. There is more chl in the matrix now	
E05-19 E05-19				than before but why would this be related to an incr in background mineralization? At 79.80 there is a P3 vnlt parallel tca with py, asp, and cp in and selvage to vnlt. At 81.0-81.5 P3 vnlt in broken ground. Subparallel lamellae are noted within then vein.	7996
E05-19				At 81.5, 81.98, 82.43, 85.93, 8723, small ht pathways with P3 as the dominant phase. Consistently 45 tca.	7330
E05-19 E05-19 E05-19				At 87.07-88.07, Phase 1 and 2 silicification with py, asp At 88.07-89.07, Phase 1 with py in coarse clumps At 89.07-90.07, Phase 1 with py; Phase 3 in parallel veinlets with py at low angle tca	7997 7998 7999
E05-19				At 90.07-91.07, control sample of unalt porph no minlin At 95.2-95.8, highly mineralized zone bounded by 2 hydrothermal pathways. All phases present but P1	8000
E05-19 E05-19	95.20 95.80		QUARTZ VEINLET ZONE HORNBLENDE FELDSPAR PORPHYRY	introduced most sulphide py. There is a minor amt of py in P3 veinlets that used the same pathway at unmineralized P2 veinlets. Very light fsp alt in this interval, none seen in HW or FW rock. At 95.8-96.6, intermed sample between hydrothermal pathway and QV	8001 8002
E05-19 E05-19				At 96.6-97.3 qtz str P2 silica with 1-2% py; in groundmass on FW, buggy P3 with po and py; some P1 in matrix of slightly alt porph matrix with scattered py. At 99.4-99.95, 10 cm qtz vein at low angle with P1 (1% py); P2 (tr py); P3 (no py).	8003 8004
E05-19 E05-19				At 99.95-100.95, mod fsp alt with white P2 qtz veinlet with py, asp at HW contact. Contacts at 50 tca. At 100.95-102.43, intermediate sample between veinlets	8005 8006
E05-19				At 102.43-103.43, 8cm qtz str at 40 tca with blebby py, tr granular asp in fractures with P3 silica.	8007
E05-19				At 103.43-116.02, unaltered, unmineralized fsp porph. At 108.2, clast of vrg fsp porph (another phase?) and again at 109.2 with low angle structure with slightly alt fsps. At 112.8, classic P1 in struc with py, mo at 40 tca.	
E05-19				At 116.02-117.33, P1 with int py in defined section of core. HW ct appears to be light green band of additional chlorite. FW ct lost in bkn core; py is so coarse in this interval you don't need a handlens to pick it out.	8008
E05-19 E05-19				At 116.02-124.05 unalt porph with tr py in P3 and vuggy P3 veinlets. Pervasive P1 in hydrothermal pathway At 124.05-124.70 cont above sample and pervasive P1 altering fsps and 2-3% py.	8009
E05-19 E05-19				At 124.70-125.50, pervasive P1 py with dark green alteration coloration of porph. 60 tca. At 125.50-131.70, as 103.43-116.02	8010 8011
E05-19				At 131.70-132.70, P3 with coarse blebby py at low angles tca. Includes a qtz str at 65 tca with dark green foliated band. Is there a serpentinite in the vicinity? at 132.70-133.70, VISIBLE GOLD - in two grains (scorecard Jim - 1 & Tom -1) in a 3 cmqtz str that intruded	
E05-19	132.70	133.70	QUARTZ VEIN ZONE	this pathway and grew accretively from the edges. The centre of the str is a P3 veinlet with much py, asp, and mo. 35 tca. 133.70-134.79, FW to the str the groundmass is loaded with py in the interstitial spaces with hb and scarce bi.	8012
E05-19	133.70	159.70	HORNBLENDE FELDSPAR PORPHYRY	A light green colour with sericite alteration suggests a low-temp regime while this hydrothermal pathway was active.	8014
E05-19				At 135.2, this interval characterized by unalt hb porph with py>asp in P3 veinlets at all angles tca. Noted 1 x 1cm P3 veinlet; not enough to completely destroy the fsps or assimilate the hb; just hot enough to move the hb masses around.	
E05-19				At 137.05, Hb porph phase change at 35 tca. This phase matrix-supported black with highly altered fsp but chl with strong P1 with py later cut by P2 which brecciated py masses. A remnant foliatio is noted at 35-50 tca.	
E05-19				At 138.44-138.70, late stage qtz str at 45-60 tca no sulphides by internal foliation at same angle as previous. 139.55-140.65, HW ct marks start of P1 flooding with py on FW only, some bleaching, leading to a flt with fit	
E05-19 E05-19				breccia and clay at 140.50. At 149.94, phase change back to previous clast-supported porphyry.	8017

HOLE #	FROM	TO	ROCK TYPE	DESCRIPTION	SAMPLE
E05-19				At 152.10, phase change to black porphy unit at 50 tca. 50% mod fsp alt. Gradational into hi ser alt, hi sil porphy at 152.64 with HW ct 50 tca.	
				At 153.05-154.05, HAP (hydrothermal access pathway) at 70 tca. Green silica & ser overprint of porphy and int	
E05-19				chl alt 2-3% py dissem in groundmass; FW ct 80 tca.	8018
E05-19				At 156.03, 20 tca P3 str x 2cm with coarse py. Py in porph groundmass ONLY in FW of veinlet. 159.7-160.64, 5cm qtz str and silicified zone. Str has cse blebs py. On HW, chilled margin of porph with P3	
E05-19	159.70	160.64	QUARTZ VEIN ZONE	then int sil porph with 5% groundmass py to ct with str. Neat!	8019
E05-19	160.64	188.76	HORNBLENDE FELDSPAR PORPHYRY		
				At 162.78, P3 veinlet parallel tca with scattered py. No py in groundmass either side, unlike above. And just if things aren't confusing enough, at 169.19, there are clear, solid P3 vnlts with py being crosscut by vuggy P3	
E05-19				vnlts with no sulphides.	
				At 170.35-171.45, low angle tca P3 vnlts with 1-2% py in groundmass and qtz str with bladed fibrous fabric on	
E05-19				HW (serpentinite nearby?). No visible gold seen, unfortunately.	8020
E05-19 E05-19				At 173.12, aplite dike 40 cm HW bkn FW 30 tca At 177.44, mod chl porph mod fsp alt. Contains vnlts of py with serpentinitic affinity.	
E03-19				At 178.0-179.0, porph with 3 zones at 30 tca of P1 flooding and P3 vnlts with 1-2% py following a dominant	
E05-19				foliation.	8021
E05-19				At 188.06, low angle P3 vnlts.	
E05-19	188.76	197.75	QUARTZ VEIN ZONE	At 188.76-189.76, silica + qtz str with1-2% blebby py	8022
E05-19				At 189.76-190.86, amorphous sil zones in intensely silicified, intensely sericitized altered porphy with 1-2% py	8023
E05-19				At 190.86-192.06, low angle P2 veins with P3 carrying tr-1% py	8024
E05-19				At 192.06-193.06, Qtz vein 20 cm perpendicular tca, in int ser fsp porph with chl vnlts.	8025
E05-19 E05-19				At 193.06-194.00, HAP at FW ct flt with clay 0.7m QV with fine filigree black lines.	8026
E05-19				At 194.00-194.80, 0.8m QV continued. VISIBLE GOLD At 194.80-195.84, QV 0.8m continued with interstitial ser, chl, obliterated fsp and 2-3% py disseminated in	8027
E05-19				groundmass.	8028
E05-19				At 195.84-197.0 QV 1.0m continued.	8029
E05-19				At 197.0-197.75 QV 0.3m with low angle P3 veinlets with py.	8030
				To 204.72, hb bi fsp porph. Barren. The rock switches between matrix-supported black hb porph with bi and	
E05-19	197.75	276.45	HORNBLENDE FELDSPAR PORPHYRY	clast supported hb porph with chl alt in places. Key to the road to the underlying copper porphyry is that all these low angle veins suggest we're drilling straight down the HAP.	
E05-19	197.73	270.43	HORNBLENDE FELDSFAR FORFITTRT	lat 199.2 for 19 cm. 1 cm P1 at 10 tca	
E05-19				At 199.6, same	
E05-19				At 200.80 for 42cm, 2cm P1 at 20 tca	
E05-19				At 201.28, 1 cm P1 at 10 tca	
E05-19 E05-19				At 201.9-202.14, crosscutting P3 over P1 at 20 tca At 204.72-208.4, aplite dike 45/35 HW/FW	8031
E05-19				At 209.4, later P1 at 90 tca with 1-2% py	
E05-19				At 212.40 for 10 cm, 2cm P1 at 20 tca	
E05-19				At 213.34 for 26 cm, idem	
E05-19				At 214.50, secondary HAP (we're on the primary HAP) with foliation at 60 tca.	
E05-19 E05-19				At 215.04-216.10, P1 2 cm 20 tca At 217.7 for 20 cm, idem	
E05-19				At 218.30-229.29, unmineralized pervasive P1 zone at 0 tca	
E05-19				218.5-220.0. Background values, interesting geochem	8032
E05-19				At 229.29-230.03, no P1 silicification	
E05-19				To 231.82, continuation, where it stops.	0000
E05-19				228.07-228.95	8033
E05-19				At 236.83, P3 crosscutting P1 with oxidation and tr py on HW and FW cts. Both P3c (clear) and P3v (vuggy)	
E05-19				At 239.456-239.63, aplite dike at 50 tca	
				At 239.92-240.33, vein structure with intense serpentinite character. HW brown foliated ct at 45 tca; P1 silica	
E05-19 E05-19				II.I green with int ser alt in matrix with coarse blebby py. Also cpy and vfg bornite. At 245.37 for 32 cm, P1 2cm at 0 tca with trace py.	8034
E03-19				At 248.00-249.02, P1 silicification with trace py in veinlets and selvage. Crosscutting P3 at 20 tca has 1% py,	
E05-19				2% cpy in veinlets and proximal to them in the groundmass porph.	8035
E05-19				At 250.5, serpentinitic char of str at FW ct of previous interval.	
E05-19				At 251.90-252.58, idem 250.5; 3-5% py, 1-2% cpy, suggestion of covellite.	8036
E05-19				At 262.13-264.06, idem 2% py, tr-1% cpy. HAP is at 263.56, green altered clay fault gouge recemented matrix.	8037
E05-19				At 268.68 for 10 cm, 45 tca venlt P2 cut by P3 on same axis 2% py in P3 and groundmass, nothing in P2	
E05-19				At 271.36, low angle and crosscutting 35 tca P3 with 2% py.	
				At 276.3-276.4, 10cm qtz vein at 35 tca with 3% py and thin lamellae of a dark mineral, perhaps oxidized py, as	
E05-19	270 45	270 45	FOU	sometimes seen in P3v.	
E05-19	2/6.45	276.45	EUN	END OF HOLE	ı !

Fig. Company 17.65 Fig.	HOLE #	SAMPLE	FROM (m)T	O (m)	Au Met g/t	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	w	Υ	Zn
Echi- GOT- Page 170 17																																4	
E6-19 GOPP98 49 59 59 59 59 59 59 59							0.40	210		<5	0.57	<1	4			1.43	<10	0.21		1	0.02		360		<5				<10	16	<10	3	
Els-11 Corpus Set												<1										10										9	
	E05-19		49.2		3.70			425	20			<1	3	113			<10	0.16	178	90	0.02	4	200	84	<5		161	< 0.01	<10	13	<10	2	
	E05-19		56.4	57.4		0.5		85	40			<1	7	81		2.53	<10	0.61		33	0.04	8		28	<5		40	< 0.01	<10		<10	4	
Fig. 19 General Section 1				60.6								<1										8										6	
E6-19 GOYPSS B1 B1 B1 CORP COR	E05-19	GO7994	60.6	61.4	0.03	< 0.2	0.79	115	50	<5	2.27	<1	9	57	28	2.80	<10	0.45	390	6	0.04	7	810	2	<5	<20	63	< 0.01	<10	32	<10	7	31
Eb-19 GOYPIGN SP1		7995	BLANK																														
E60-19 GOTP988 8.1												<1										5										2	
EBS-19 GOYGON SOL 1.0 Col Col 2.2 1.2 10 SOL Col 1.0 Col Col 1.0 Col	E05-19		87.1	88.1			1.22	310		15		<1	10	62		3.31	<10	1.00			0.05	9		18	5		142	< 0.01	<10		<10	7	
EBS-19 GOBROU 95.1 91.1 0.01 40.2 1.39 15 55 45 1.81 41 11 65 21 3.00 410 0.92 377 4 0.07 9 920 4 5 5 4.00 41 410 75 410 88 38 EBS-19 GOBROU 95.2 95.8 96.5 0.01 40.2 1.37 15 50 45 1.51 41 12 70 31 3.03 410 0.05 371 41 0.07 7 960 6 45 4.00	E05-19	GO7998	88.1	89.1	0.02	0.3	1.06	20	125	5	2.80	<1	9	50	65	3.11	<10	0.92	432	45	0.04	9	830	14	5	<20	128	0.03	<10	63	<10	6	36
EBS-19 GOBBOT 95.2 95.8 0.01 -0.2 1.24 15 35 -5 1.59 -1 1.2 100 66 3.17 -10 0.76 3.14 13 0.10 9 98.0 10 -5 -50 61 0.14 -10 75 -10 8 3.8 -10	E05-19	GO7999	89.1	90.1	0.01	< 0.2	1.23	10	80	<5	1.90	<1	12	52	88	3.33	<10	1.04	443	141	0.05	10	900	6	10	<20	78	0.09	<10	80	<10	8	53
E69-19 GOBOQU 98.8 96.6 0.01	E05-19	GO8000	90.1	91.1	0.01	< 0.2	1.39	15	55	<5	1.81	<1	11	65	21	3.00	<10	0.92	377	4	0.07	9	920	4	5	<20	84	0.12	<10	81	<10	9	47
E05-19 GOR003 98.6 97.3 0.01 0.02 1.08 15 95 0.5 15 95 0.5 15 10 75 73 2.60 0.10 0.75 2.22 13 0.05 9 810 6 10 0.20 59 0.10 0.10 70 70 0.10 70 70 70 70 70 70 70	E05-19	GO8001	95.2	95.8	0.01	< 0.2	1.24	15	35	<5	1.59	<1	12	100	66	3.17	<10	0.76	314	13	0.10	9	880	10	<5	<20	61	0.14	<10	75	<10	8	36
EDS-19 GORDON 99.4 100.0 0.03	E05-19	GO8002	95.8	96.6	0.01	< 0.2	1.37	15	60	<5	1.51	<1	12	60	31	3.03	<10	0.85	371	<1	0.07	7	960	6	<5	<20	73	0.14	<10	80	<10	7	40
E05-19 GORDON 99-4 100.0 0.03	E05-19	GO8003	96.6	97.3	0.01	< 0.2	1.08	15	95	<5	1.50	<1	10	75	73	2.60	<10	0.73	292	13	0.05	9	810	6	10	<20	59	0.10	<10	70	<10	7	36
E05-19 GO8006 100.0 101.0 01.5 0.2 0.91 480 50 c.5 1.58 c.1 9 82 49 2.88 c.1 0.070 333 16 0.03 10 7.70 6 10 c.2 130 0.01 c.1 c.1 5 5 5 5 5 5 5 5 5	E05-19	GO8004		100.0			0.96	35		5		<1									0.04	10	890	6	5		248	< 0.01		43	<10	8	48
E05-19 G080007 1024 1034 0.01 0.2	F05-19							480		<5		<1	9	82		2.86						10		6	10		130			51	<10	5	35
E05+9 GO8009 102.4 103.4 0.01 0.2 0.97 15 60 <5 1.22 <1 9 64 74 2.46 <10 0.58 291 16 6 0.04 8 760 10 <5 <20 101 0.05 <10 70 <10 4 2.46 <10 0.65 <10 0.05 <10 70 <10 6 4 E05+9 GO8009 123.9 124.7 0.02 <2.2 1.04 100 80 <5 2.32 <1 9 67 43 2.63 <10 0.81 381 30 0.04 9 800 6 10 <20 366 0.03 <10 67 <10 6 32 <10 6 32 <10 6 32 <10 30 30 30 30 30 30 30												<1	10							<1		7		8						72		4	
E05-19 GORON9 1239 1247 002 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.03 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.00 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.05 <0.09 <0.09 <0.05 <0.09 <0.09 <0.05 <0.09 <0.09 <0.05 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0														64								8										4	
E05-19 G08009 123-9 124.7 0.02 0.02 0.02 1.04 100 80 0.5 4.98 0.1 9 67 43 2.63 0.10 0.88 381 30 0.04 9 800 6 10 0.20 306 0.03 0.06 0.1 0.5												-1	8	36						q		8										6	
E05-19 G08010 1247 125.5 0.09 0.2 1.02 2130 90 e5 2.92 c1 10 63 142 2.90 c1 0.68 322 52 0.04 9 900 8 e5 e20 82 0.06 e10 65 e10 63 e10 e1												-1										q										6	
E69-19 GO8011 131.7 132.0 0.02 0.3 1.03 165 50 45 1.57 41 9 76 93 2.37 410 0.52 216 77 0.07 8 900 12 45 420 48 0.08 410 67 410 4 27 E69-19 GO8012 132.7 133.7 134.7 0.03 0.3 0.76 10 30 45 1.27 41 8 36 214 2.23 40 0.38 142 63 0.05 8 980 8 4 5 40 120 40 40 45 2.29 41 14 107 34 3.82 410 0.09 474 17 0.05 11 890 8 5 40 20 20 40 40 45 2.29 41 14 173 27 8 3.50 410 0.09 474 17 0.05 40 11 14 140 10 5 40 10 10 10 10 10 10 10 10 10 10 10 10 10																						9		-								6	
E05-19 G08012 132.7 133.7 0.0 0.4 1.17 170 135 c5 1.39 c1 10 75 61 2.50 c10 0.54 171 24 0.08 7 870 14 c5 c20 73 0.13 c10 79 c10 2 26 26 26 26 26 26 26																						8										4	
B05-19 G08014 133.7 134.7 0.03 0.3 0.76 10 30 0.5 1.27 0.1 8 36 214 2.23 0.0 0.38 142 63 0.05 8 980 8 0.5 0.20 0.44 0.07 0.0 0.5 0.0 0																						7											
EBS-19 GORD16 1337 1347 0.03 0.3 0.76 10 30 c.5 1.27 c.1 8 36 214 2.23 c.1 0.38 142 63 0.05 8 980 8 c.5 c.20 140 0.07 c.1 0.45 c.1 0 3 31 EBS-19 GORD15 1379 139.0 0.04 c.0 2 132 d.0 40 c.5 2.29 c.1 11 173 78 3.50 c.1 0.99 d.74 17 0.05 11 890 8 5 c.20 120 0.00 c.1 0.0 0.0 c.1 0.	E03-19			133.7	0.01	0.4	1.17	170	133	<0	1.38	<1	10	75	01	2.30	<10	0.54	171	24	0.08	,	670	144	<0	<20	13	0.13	<10	19	<10	-	20
EB5-19 GORD15 1379 1390 0.04 -0.2 1.32 40 40 -45 2.29 -41 14 107 34 3.82 -40 1.05 423 12 0.04 13 1230 12 -55 -20 120 0.09 -41 0.95 -40 -40 -55 -329 -41 -40 -55 -40 -40 -55 -40 -40 -55 -40 -40 -45 -45	E05-10			1347	0.03	0.3	0.76	10	30	-5	1 27	-1	Ω	36	21/	2 23	-10	0.38	1/12	63	0.05	8	080	8	-5	-20	44	0.07	-10	45	-10	3	31
E69-19 GORD17 139-6 140.7 0.05 0.2 0.73 45 45 0.5 4.20 20 40 0.5 5 4.20 2.7 4.0 11 73 78 3.50 4.0 0.99 474 17 0.05 11 890 8 5 <20 2.54 4.0.01 <10 65 4.0 7 40 E05-19 GORD17 139-6 140.7 0.05 0.2 0.73 45 45 0.5 4.57 <1 11 89 81 3.70 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50 9 3.73 <10 1.01 50																						12										5	
EB5-19 GORD17 1396 140.7 0.05 0.2 0.73 45 45 45 45 45 45 73 41 11 85 81 3.70 41 0.11 645 76 0.04 11 1410 10 5 20 247 40.01 40 40 40 40 83 5 ED5-19 GORD17 1714 6 40 85 81 457 4 11 1 100 323 3.11 4 100 0.05 4 10 10 10 40 40 40 40 40 40 40 40 40 40 40 40 40																																7	
EBS-19 GORD19 159.7 160.6 0.04 0.3 1.14 45 85 45 2.22 41 11 100 323 3.11 410 0.92 377 10 0.06 12 850 16 5 2.0 110 0.04 40 40 40 80 8 35 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8																																10	
EB5-19 GORBO19 1597 1506 0.04 0.3 11.4 45 85 45 2.32 41 11 100 323 3.11 41 0.092 377 10 0.06 12 850 16 5 <20 110 0.04 <10 73 <10 6 49 EB5-19 GORBO20 1704 171.45 0.03 <-0.2 1.00 10 100 45 1.33 <1 9 102 71 2.08 <10 0.92 377 10 0.06 12 850 16 5 <20 110 0.04 <10 73 <10 6 49 EB5-19 GORBO20 1704 171.45 0.03 <-0.2 1.00 10 100 45 1.33 <1 9 102 71 2.08 <10 0.92 377 10 0.06 12 850 16 5 <-0.2 10 10 0.04 <10 73 <10 6 49 EB5-19 GORBO20 1704 171.45 0.03 <0.04 10 10 100 45 1.35 <1 0.09 102 71 2.08 <10 0.04 11 800 6 1 10 <0.07 11 0.08 <10 6 4 10 4 30 EB5-19 GORBO20 1704 1704 1704 170 170 170 170 170 170 170 170 170 170																																10	
E65-19 GOR021 178.4 171.45																																0	
E05-19 GOR022 1884 1894 0.21 0.3 0.84 70 80 45 2.69 41 8 99 81 368 2.40 40 0.74 0.74 271 7 0.08 10 800 6 10 4.20 271 0.08 41 0.80 45 1.0 4 33 35 1.0 4 10 8 1.0 4 10 8 1.0 4 10 8 1.0 4 10 8 1.0 4 10 8 1.0 4 10 8 1.0 4 10 8 1.0 4 10 8 1.0 4 1.0 8 1.0 4 1.0 8 1.0 4 1.0 8 1.0 4 1.0 8 1.0 4 1.0 8 1.0 4 1.0 8 1.0 4 1.0 8 1.0 4 1.0 8 1.0 4 1.0 8 1.0 4 1.0 8 1.0 4 1.0 8 1.0 4 1.0 8 1.0 8 1.0 4 1.0 4 1.0 8 1.0 4 1.0 4 1.0 8 1.0 4 1.0 4 1.0 8 1.0 4 1																																	
EG5-19 GOR022 1888 1894 0.21 0.3 0.84 70 80 <5 2.69 <1 8 96 53 2.87 <10 0.93 454 29 0.04 11 800 6 10 <20 221 <0.01 <10 34 <10 8 33 <10 -84 10 8 32 <10 -84 10 8 34 10 8 10 8 10 8 10 8 10 8 10 8 10 8 10													-																			-	
E65-19 GOR024 199.4 190.9 192.1 0.09 <1.02 0.07 40 30 <1.5 2.58 <1 7 71 48 2.26 <10 0.77 390 7 0.04 8 650 2 10 <20 173 <0.01 <10 16 <10 6 29 185																																5	
E05-19 GOR026 190.1 193.1 0.09 E05-19 GOR026 190.1 193.1 0.21 E05-19 GOR026 190.1 190.1 0.21 E05-19 GOR026 190.1 190.1 0.21 E05-19 GOR027 190.1 0.21 E05-19 GOR027 190.1 190.1 0.25 0.26 0.20 0.20 0.20 0.20 0.20 0.20 0.20																																	
E05-19 GOR026 192.1 193.1 0.21 0.0 2 0.76 150 35 0.5 2.27 0.1 9 115 30 2.61 0.70 0.71 353 15 0.02 12 760 2 5 0.00 2 0.00 0.00 0.00 0.00 0.00 0.																								2								0	
E05+19 GORGOZ 193.1 194.0 31.5 1.0 0.25 3780 40 45 0.68 <1 4 225 28 12.1 <10 0.10 100 15 <0.01 11 200 4 <5 <20 49 <0.01 <10 4 <10 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1 82 <1																								2									
E05-19 GOR027 194.0 194.8 1.43 1.7 0.26 3795 10 4.5 0.86 4.1 5 215 70 1.34 4.0 0.11 121 15 4.01 9 250 6 10 4.20 59 4.01 4.0 4.0 1 1 13 2 15 4.0 1 9 250 6 1.0 4.20 59 4.01 4.0 4.0 1 1 13 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													-												-							4	32
E05-19 GORGUZ 1948 195.8 0.77 0.3 0.18 2415 10 <5 0.05 <1 3 181 34 0.90 <10 0.09 120 25 <0.011 8 150 4 <5 <20 59 <0.01 <10 2 <10 1 8 150 6 <5 <20 13 <0.01 <10 2 <10 1 8 150 6 <5 <20 13 <0.01 <10 3 <10 <1 5 <10 <1 5 <10 <1 5 <10 <1 5 <10 <1 5 <10 <1 5 <1 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1																						11								4		<1	8
E05-19 GOR029 195.8 197.0 0.10 <0.2 0.12 1080 5 <5 0.26 <1 2 198 15 0.61 <10 0.06 56 6 0.01 7 80 <2 <5 <20 13 <0.01 <10 3 <10 <1 5 <10 <1 5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10																						9								4		1	13
E05-19 GOB030 197.0 198.0 0.07 0.2 1.22 445 35 4.5 1.98 <1 10 104 102 2.84 4.10 0.93 365 3 0.06 13 810 6 5 <20 112 0.04 <10 65 <10 5 33 0.06 13 810 6 5 <20 112 0.04 <10 65 <10 5 33 0.06 13 810 6 5 <20 59 0.07 <10 53 <10 5 22 0.09 10 5 0.07 <10 53 <10 5 22 0.09 10 5 0.07 <10 53 <10 5 22 0.09 10 5																						8								2		1	8
E05-19 GO8031 201.9 202.1 <0.03 <0.2 0.89 15 50 <5 1.27 <1 8 102 16 1.95 <10 0.54 212 <1 0.07 9 670 4 <5 <20 59 0.07 <10 53 <10 5 22 E05-19 GO8032 218.5 220.0 <0.03 <0.2 0.25 15 10 <5 0.36 <1 1 152 63 0.55 <10 0.06 134 2 0.09 5 40 8 <5 <20 13 <0.01 <10 5 <10 7 10 E05-19 GO8033 228.09 229.0 0.09 <0.2 0.40 5 25 <5 0.09 <1 3 107 37 1.11 <10 0.25 205 5 0.06 6 230 6 <5 <20 29 <0.01 <10 20 <10 7 16																						.7								3		<1	5
E05-19 G08032 218.5 220.0 <0.03 <0.2 0.25 15 10 <5 0.36 <1 1 152 63 0.55 <10 0.06 134 2 0.09 5 40 8 <5 <20 13 <0.01 <10 5 <10 7 10 E05-19 G08033 228.09 229.0 0.09 <0.2 0.40 5 25 <5 0.69 <1 3 107 37 1.11 <10 0.25 205 5 0.06 6 230 6 <5 <20 29 <0.01 <10 20 <10 7 16																								-								5	
E05-19 G08033 228.09 229.0 0.09 <0.2 0.40 5 25 <5 0.69 <1 3 107 37 1.11 <10 0.25 205 5 0.06 6 230 6 <5 <20 29 <0.01 <10 20 <10 7 16													8									9										5	
													1									5		-								7	
																				-		6										7	
	E05-19	GO8034	239.9	240.3	0.69	0.5	0.36	230	20	<5	1.11	<1	3	139	38	1.23	<10	0.23	132	6	0.03	7	190	10	<5	<20	64	< 0.01	<10	10	<10	3	12
E05-19 G08035 248.02 249.0 30 0.5 0.28 <5 10 <5 0.97 <1 9 61 417 2.08 <10 0.82 365 5 <0.01 58 610 10 <5 <20 55 0.11 <10 50 <10 8 44																						58										8	
E05-19 G08036 251.9 252.6 0.83 1.6 0.31 1160 10 <5 1.62 <1 3 143 90 1.27 <10 0.19 205 26 0.02 8 250 36 <5 <20 102 <0.01 <10 9 <10 3 45	E05-19	GO8036	251.9	252.6	0.83	1.6	0.31	1160	10	<5	1.62	<1	3	143	90	1.27	<10	0.19	205	26	0.02	8	250	36	<5	<20	102	< 0.01	<10	9	<10	3	
E05-19 G08037 262.13 264.06 0.20 0.2 0.41 60 15 <5 1.70 <1 3 178 20 1.20 <10 0.26 243 8 0.05 8 270 12 <5 <20 136 <0.01 <10 13 <10 5 13	E05-19	GO8037	262.13	264.06	0.20	0.2	0.41	60	15	<5	1.70	<1	3	178	20	1.20	<10	0.26	243	8	0.05	8	270	12	<5	<20	136	< 0.01	<10	13	<10	5	13

E05-19 0 125 -70 F05-19 148.4 125 -71	HOLE #	DEPTH	BEARING	DIP
F05-19 148.4 125 -71	E05-19	0	125	-70
200 10 140.4 120 71	E05-19	148.4	125	-71

From To Run Recover CORE RUN ROD		F	RECOVERY	,			RQD		CORE	BOX INTER	VALS
0.00	From	To	Run			CORE	RUN				
6.01 9.00 2.88 1.50 51.9% 0.00 2.88 0.00% 2 11.28 16.01 9.00 11.28 16.81 16.81 10.00% 0.14 16.8 33% 31.001 12.18 25.37 14.33 17.00 2.77 2.78 2.55 86.9% 0.14 3.05 4.59% 4 21.8 25.37 14.33 17.00 2.77 2.78 2.55 86.9% 0.10 3.05 24.59% 4 21.8 25.37 14.33 17.00 2.77 2.78 2.57 10.04% 0.30 2.77 22.85% 7 34.20 40.39 15.80 20.42 1.52 2.00 13.6% 0.48 1.52 31.59% 7 34.20 40.39 20.42 23.47 3.05 2.05 67.2% 0.68 3.05 27.6% 9 46.49 52.58 20.42 23.47 3.05 2.77 86.2% 0.68 3.05 27.6% 9 46.49 52.58 20.57 32.51 3.05 2.78 86.9% 1.50 3.04 45.72% 11.6 56.57 20.57 3.36 3.77 86.9% 1.50 3.04 45.72% 11.6 56.57 20.57 3.37 3.05 2.36 86.3% 1.30 3.04 45.72% 11.6 56.57 30.57 3.78 3.											
19.80 11.28 1.488 1.08 10.00% 0.14 1.68 8.33% 3 16.01 21.80 11.28 11											
11 12											
14.33											
1707											
19.00											
20.42 23.47 3.05 2.05 67.2% 0.81 3.05 25.69% 8 40.39 46.49 26.28 26.52 29.57 3.05 2.78 89.5% 1.46 3.05 27.87% 9 46.49 52.58 26.52 29.57 3.05 2.78 89.5% 1.46 3.05 47.54% 10 52.58 68.67 3.07 32.61 33.64 29.9 54.4% 1.39 3.01 45.72% 11 56.67 64.77 32.61 33.66 33.05 23.83 34.8 1.46 3.05 37.39% 12 24.77 70.37 32.61 33.65 33.67 32.63 32.88 33.4% 1.46 33.05 27.87% 12 24.77 70.37 70.37 32.61											
23.47 26.52 3.06 2.77 89.2% 0.88 3.05 27.87% 9 46.49 52.58 52.67 23.61 3.04 2.99 59.4% 1.45 3.05 47.54% 10 52.58 58.67 52.67 32.61 3.04 2.99 59.4% 1.39 3.04 48.72% 11 58.67 64.77 70.37 33.66 38.71 3.05 2.89 39.4% 1.39 3.04 48.72% 11 58.67 64.77 70.37 35.66 38.71 3.05 2.89 39.4% 1.04 30.63 37.38% 1.37 70.87 70.37 38.66 38.71 3.05 2.28 99.4% 1.04 30.63 37.38% 1.37 70.87 70.37 38.64 37.47 30.55 2.28 59.4% 1.04 30.63 39.84% 1.37 70.87 70.37 38.64 37.47 39.55 2.28 59.4% 1.04 30.63 39.84% 1.37 70.87 70.37 39.47 3											
285 (2 29 57 3.06 273 89.5% 1.46 3.05 47.54% 10 52.58 88.67 64.77 30.67 13.06 43.75% 11 58.67 84.77 30.67 13.06 13											
32 61 33.66 33.05 2.84 93.1% 0.85 3.05 27.87% 12 64.77 70.87 38.71 41.76 3.05 2.85 93.4% 1.14 3.05 37.38% 13 70.87 76.51 38.71 41.76 3.05 2.93 96.1% 0.30 3.05 37.38% 13 70.87 76.51 38.71 41.76 3.05 2.93 96.1% 0.30 3.05 30.58 98.4% 14 76.51 82.15 41.76 43.5 2.59 2.10 81.1% 0.92 2.59 35.52% 15 82.15 87.03 44.35 47.40 3.05 2.20 72.1% 0.98 3.05 29.19% 16 87.03 90.53 44.35 47.40 3.05 2.20 72.1% 0.98 3.05 29.19% 16 87.03 90.53 45.40 50.50 50 50 50 50 50 50 50 50 50 50 50 50 5											
38.66 38.71 3.06 2.89 83.4% 1.14 3.05 37.39% 13 70.87 76.51 82.15 41.76 34.476 3.05 2.99 86.1% 0.30 3.05 9.84% 14 76.51 82.15 87.03 44.76 44.76 3.05 2.29 21.19 81.1% 0.92 2.59 35.52% 15 82.15 87.03 44.436 47.40 3.05 2.20 72.1% 0.89 3.05 29.18% 16 87.03 93.34 47.40 49.23 1.83 1.63 89.1% 0.39 1.33 21.31% 17 90.53 95.25 47.40 49.23 5.90 0.167 0.90 53.9% 0.17 1.67 0.18% 18 95.25 101.35 50.50 53.95 0.30 3.05 90.0% 1.44 3.05 47.21% 2.00 106.99 112.75 0.50 0.50 53.95 0.00 0.00 53.9% 0.17 1.67 0.18% 18 95.25 101.35 0.50 0.50 0.50 0.00 0	29.57	32.61	3.04	2.90	95.4%	1.39	3.04	45.72%	11	58.67	64.77
38.71	32.61	35.66	3.05	2.84	93.1%	0.85	3.05	27.87%	12	64.77	70.87
41.76	35.66	38.71	3.05	2.85	93.4%	1.14	3.05	37.38%	13	70.87	76.51
44.36 47.40 3.05 2.07 72.1% 0.89 3.05 29.18% 16 87.03 90.55 44.23 15.09.00 16.77 0.90 53.9% 0.71 1.67 10.18% 17 90.55 96.25 49.22 59.30 1.67 0.90 53.9% 0.17 1.67 10.18% 18 95.25 101.35 69.09 15.395 30.50 53.50 30.00 88.4% 1.27 3.05 11.64% 19 101.35 106.89 112.78 69.30 15.395 30.00 88.4% 1.27 3.05 11.64% 19 101.35 106.89 112.78 69.50 15.50 59.9 2.59 12.70 81.1% 0.90 2.59 34.795 21 112.78 119.03 55.55 62.79 3.20 2.10 81.1% 0.90 2.59 34.795 21 112.78 119.03 55.55 62.79 3.20 2.51 78.4% 0.63 3.20 19.66% 22 119.03 125.12 65.29 66.84 3.05 3.00 88.4% 1.47 3.05 48.20% 22 119.03 125.12 65.29 66.84 3.05 3.00 88.4% 1.47 3.05 48.20% 22 119.03 125.12 65.29 66.84 3.05 3.00 88.4% 1.47 3.05 48.20% 22 119.03 125.12 131.27 119.12 11											
47.40 49.23 1.83 1.83 89.1% 0.39 1.83 1.21.31% 17 90.53 95.25 10.32											
49.22 50.90 1.67 0.90 53.9% 0.17 1.67 10.18% 18 95.25 101.35 50.90 53.95 57.00 3.05 3.00 80.4% 1.27 3.05 41.64% 19 101.35 106.99 53.95 57.00 3.05 3.05 100.0% 1.44 3.05 47.21% 20 106.99 112.78 57.00 59.99 2.59 2.59 3.75% 21 111.78 119.03 59.59 62.79 3.20 2.51 78.4% 0.63 3.20 19.69% 22 119.03 125.12 65.24 66.54 3.05 3.00 84.4% 1.47 3.05 48.20% 22 119.03 125.12 65.24 66.88 3.04 3.04 100.0% 1.29 3.04 42.43% 24 131.21 137.46 68.88 71.93 3.05 3.05 100.0% 1.07 3.05 3.069% 22 137.46 143.71 137.46 143.77 133 75.13 3.20 3.20 100.0% 0.34 3.20 29.38% 26 143.71 419.96 165.21 78.18 3.05 3.05 3.05 100.0% 0.34 3.20 29.38% 26 143.71 419.96 165.21 43.74											
50.90 53.95 30.05 30.05 30.09 84.4% 1.27 30.05 41.64% 19 101.35 106.99 112.76 57.00 595.98 2.59 2.10 81.1% 0.90 2.59 34.75% 221 112.78 119.03 125.15 62.79 62.07 32.00 2.51 78.4% 0.63 3.20 19.69% 221 112.78 119.03 125.15 62.79 66.62 66.84 30.05 30.00 88.4% 1.47 30.05 48.20% 223 125.12 131.21 66.84 30.68 30.03 30.04 100.0% 1.29 30.04 24.3% 24.13 131.21 137.46 68.88 71.83 30.05 30.05 100.0% 0.94 32.00 29.38% 226 133.12 137.46 137.71 137.17 137.17 137.17 137.17 137.17 137.17 137.17 137.17 137.17 137.17 137.17 137.17 137.17 137.18 30.05 30.05 100.0% 0.94 32.00 29.38% 226 133.71 149.96 156.21 157.36 32.00 30.00 3											
53.98 57.00 3.05 3.05 100.0% 1.44 3.05 47.21% 20 106.99 112.78											
57.00 59.59 2.59 2.10 81.1% 0.90 2.59 34.75% 21 112.78 119.03 125.12 62.79 66.84 3.05 3.05 98.4% 1.47 3.05 48.20% 23 125.12 131.21 66.88 88 3.04 3.04 3.04 10.00% 1.29 3.04 42.43% 24.1 131.21 131.21 68.88 71.93 3.05 3.05 100.0% 1.07 3.05 35.08% 25 137.46 143.71 143.77 171.93 75.13 3.20 3.05 100.0% 1.07 3.05 35.08% 25 137.46 143.71 143.77 171.93 75.13 3.05 3.05 3.05 100.0% 0.31 3.05 10.16% 27 149.96 156.21 178.18 183.83 2.0 3.05 100.0% 0.31 3.05 10.16% 27 149.96 156.21 178.18 183.83 3.05 3.05 30.44% 0.90 3.20 28.13% 28 156.21 163.81 183.83 3.05 3.05 30.39 3.0% 2.02 3.05 66.23% 29 165.36 174.50 183.81 3.05 3.05 30.35											
69.99 62.79 3.20 2.51 78.4% 0.63 3.20 19.69% 22 119.03 125.12											
62.79											
65.84 68.88 3.04 3.04 10.0% 1.29 3.04 42.43% 24 131.21 137.46 68.88 71.93 3.05 3.05 3.05 10.0% 0.94 3.20 29.38% 26 143.71 149.96 75.13 75.13 3.20 3.30 10.0% 0.94 3.20 29.38% 26 143.71 149.96 75.13 78.18 3.05 3.05 3.05 3.00 94.4% 0.90 3.20 28.13% 28 156.21 165.36 31.38 84.43 3.05 3.05 3.03 94.4% 0.90 3.00 28.13% 28 156.21 165.36 34.44 3.05 3.05 3.05 3.00 93.3% 2.02 3.05 66.23% 29 165.36 174.5 180.59 34.44 3.05 3.05 3.05 3.05 3.00 93.37 3.04 3.04 10.0% 1.88 6.10 30.82% 30 174.5 180.59 39.53 39.57 3.04 3.04 10.00% 1.88 6.10 30.82% 30 174.5 180.59 36.27 39.57 3.05 3.05 3.05 10.00% 1.80 6.10 30.57 3.05 3.05 3.05 30.00% 174.5 180.59 36.62 99.67 3.05 3.05 3.05 10.00% 1.80 6.10 29.51% 34 201.14 207.23 196.01 192.00 38.57 36.50 3.05											
68.88 71.93 3.05 3.05 100.0% 1.07 3.05 35.08% 25 137.46 143.71 71.93 77.513 3.20 3.05 100.0% 0.31 3.05 10.16% 27 149.96 156.21 78.18 81.38 3.20 3.05 3.04 3.4% 0.90 3.20 28.13% 28 156.21 168.21 78.18 81.38 3.20 3.05 3.04 3.4% 0.90 3.20 28.13% 28 156.21 168.21 81.38 84.43 3.05 3.03 99.3% 2.02 3.05 66.23% 29 165.36 174.50 84.43 90.55 6.10 6.10 100.0% 1.95 3.04 64.14% 31 190.59 186.01 90.53 90.53 6.10 6.10 100.0% 1.95 3.04 64.14% 31 190.59 186.01 93.57 96.62 3.05 3.05 3.05 100.0% 1.95 3.04 64.14% 31 190.59 186.01 93.57 96.62 3.05 3.05 3.05 100.0% 1.71 3.05 56.07% 33 192 201.14 99.67 105.77 6.10 6.10 100.0% 1.71 3.05 56.07% 33 192 201.14 99.67 105.77 6.10 6.10 100.0% 2.55 3.04 83.88% 35 207.23 209.00 108.81 111.86 3.04 3.04 3.04 100.0% 2.55 3.04 83.88% 35 207.23 209.00 114.91 117.91 3.00 3.00 100.0% 2.09 3.10 67.42% 39 220.2 220.0 117.91 121.01 3.10 3.10 3.00 100.0% 2.09 3.10 67.42% 39 220.2 232.0 127.10 130.15 3.05 3.05 100.0% 2.09 3.10 67.42% 39 220.2 232.0 127.10 130.15 3.05 3.05 100.0% 2.49 3.05 67.57% 43 249.9 249.9 130.15 133.20 3.05 3.05 3.05 100.0% 2.49 3.05 67.78% 43 249.9 259.9 130.15 133.20 3.05 3.05 3.05 100.0% 2.20 3.05 67.78% 43 249.9 259.9 130.15 133.20 3.05 3.05 3.05 100.0% 2.20 3.05 67.78% 43 249.9 259.9 130.15 133.20 3.05 3.05 3.05 100.0% 2.20 3.05 67.78% 43 249.9 259.9 130.15 133.20 3.05 3.05 3.05 100.0% 2.20 3.05 67.78% 43 249.9 259.9 130.15 133.20 3.05 3.05 3.05 100.0% 2.20 3.05 67.2% 47 273.33 276.0 144.44 154.49 3.05 3.05 3.05 100.0% 2.20											
77.193											
T5 T5 T5 T5 T5 T5 T5 T5											
Tel: B 1.38 3.20 3.02 94.4% 0.90 3.20 28.13% 28 156.21 165.28 183.88 81.38 84.43 30.5 30.5 30.39 39.3% 2.02 3.05 66.23% 29 165.36 174.50 84.43 90.53 6.10 6.10 100.0% 1.89 6.10 30.82% 30 174.5 180.59 90.53 30.57 30.6 30.5 30.05 100.0% 2.86 30.5 93.77% 32 186.01 192.00 96.62 30.5 30.5 100.0% 2.86 30.5 93.77% 32 186.01 192.00 96.62 30.5 30.5 100.0% 1.71 3.05 56.07% 33 192.20 104.99 67 105.77 6.10 6.10 100.0% 1.80 6.10 29.51% 34 201.14 207.23 105.77 108.81 30.4 30.4 100.0% 2.55 30.4 83.88% 35 207.23 209.00 108.81 111.86 3.05 30.5 100.0% 2.30 30.5 75.41% 36 20.9 214.45 114.91 114.91 30.0 30.0 100.0% 2.30 30.0 76.67% 38 220.7 222.1 114.91 117.91 3.00 3.00 100.0% 2.30 3.00 76.67% 38 220.7 222.1 114.91 117.91 3.00 3.01 100.0% 2.00 3.10 66.12% 40 232.02 233.0 124.05 127.10 3.05 3.05 30.0 30.0% 2.00 3.10 66.12% 40 232.02 233.0 124.05 127.10 30.5 30.5 30.0 30.0 2.4 30.5 30.6 63.28% 41 237.95 243.9 127.10 130.15 30.6 30.5 100.0% 2.43 30.6 63.28% 41 237.95 243.9 127.10 130.15 30.6 30.5 100.0% 2.44 30.5 86.56% 42 243.93 245.9 133.20 138.25 30.6 30.5 100.0% 2.04 30.6 65.57% 44 225.89 245.9 133.20 138.25 30.6 30.5 100.0% 2.04 30.6 65.78% 44 227.6 243.9 136.25 133.20 30.5 30.5 30.0 30.0 30.6 65.78% 44 227.6 243.9 30.5 30.5 30.0 30.6 65.78% 44 227.8 243.9 30.5 30.5 30.0 30.6 65.78% 44 227.8 243.9 30.5 30.5 30.0 30.6 65.78% 44 227.8 243.9 30.5 30.5 30.0 30.6 65.78% 44 227.8 243.9 30.5 30.5 30.0 30.6 65.78% 44 226.8 226.7 30.5 30.5 30.0 30.6 65.78% 44 226.8 226.7 30.5 30.5 30.0 30.6 65.78% 44 226.8 22											
81.38 84.43 3.06 3.03 99.3% 2.02 3.05 66.23% 29 165.36 174.50 90.53 61.05 61.0 6.10 10.0% 1.88 6.10 30.82% 30 174.5 180.59 90.53 61.0 6.10 10.0% 1.89 61.00 30.82% 30 174.5 180.59 90.53 61.0 6.2 99.67 3.04 3.04 100.0% 1.99 3.04 64.4% 31 180.59 186.01 99.67 30.5 30.5 100.0% 1.95 3.04 64.4% 31 180.59 186.01 99.67 10.57 61.0 5.70 61.0 61.0 10.00% 1.80 61.0 99.57% 32 186.0 11.92.00 19.6 62 99.67 3.05 3.05 100.0% 1.71 3.05 56.07% 33 1.92 2011.4 207.23 105.77 108.81 3.04 3.04 100.0% 2.55 3.04 83.88% 35 207.23 209.00 108.81 111.86 3.05 3.05 100.0% 2.55 3.04 83.88% 35 207.23 209.00 108.81 111.86 114.91 3.05 3.05 100.0% 2.30 3.05 75.41% 36 20.214.45 111.86 114.91 3.05 3.05 100.0% 2.30 3.05 75.41% 36 20.214.45 111.86 114.91 3.05 3.05 100.0% 2.30 3.05 75.41% 36 20.214.45 111.86 114.91 3.05 3.05 100.0% 2.30 3.05 76.67% 38 220.7 226.2 117.91 124.05 3.04 3.04 100.0% 2.09 3.10 67.42% 39 226.2 232.0 117.91 124.05 3.04 3.04 100.0% 2.09 3.10 67.42% 39 226.2 232.0 124.05 127.10 3.05 3.05 100.0% 2.01 3.04 66.12% 40 232.02 233.0 124.05 127.10 3.05 3.05 100.0% 2.04 3.05 86.66% 42 243.38 248.9 127.10 130.15 3.05 3.05 100.0% 2.04 3.05 86.66% 42 243.38 244.9 130.15 133.20 3.05 3.05 100.0% 2.04 3.05 86.66% 42 243.38 244.9 135.15 133.20 3.05 3.05 100.0% 2.04 3.05 86.66% 42 243.38 244.9 135.25 133.20 136.25 3.06 3.05 100.0% 2.04 3.05 86.65% 42 243.38 244.9 135.25 133.20 136.25 3.06 3.05 100.0% 2.04 3.05 86.57% 44 225.89 261.9 139.29 142.34 3.05 3.05 100.0% 2.00 3.05 65.57% 44 225.89 261.9 139.29 142.34 3.05 3.05 100.0% 2.00 3.05 65.77% 44 225.89 261.9 139.29 142.34 3.05 3.05 100.0% 2.00 3.05 65.77% 44 225.89 261.9 139.29 142.34 3.05 3.05 100.0% 2.00 3.05 65.77% 44 225.89 261.9 139.29 142.34 3.05 3.05 100.0% 2.00 3.05 65.77% 44 225.89 261.9 139.29 142.34 3.05 3.05 100.0% 2.00 3.05 65.77% 44 225.89 261.9 139.29 142.34 3.05 3.05 100.0% 2.00 3.05 65.77% 44 225.89 261.9 139.29 142.34 3.05 3.05 100.0% 2.00 3.05 65.77% 44 225.89 261.9 139.29 142.34 3.05 3.05 100.0% 2.00 3.05 65.77% 44 225.89 261.0 139.20 3.05 3.05 100.0% 2.00 3.05 65.77% 47 225.8											
99.53 93.57 3.04 3.04 100.0% 1.96 3.04 64.14% 31 180.59 186.01 93.75 96.62 30.5 30.5 30.5 30.5 30.5 30.5 30.5 93.77% 32 186.01 192.00 98.62 99.67 3.05 30.5 100.0% 1.71 3.05 56.07% 33 192 201.4 99.67 105.77 6.10 6.10 10.00% 1.80 6.10 29.51% 34 201.4 207.23 105.77 108.81 3.04 3.04 100.0% 2.55 3.04 83.88% 35 207.23 20.00 108.81 111.86 30.5 30.5 100.0% 2.55 3.04 83.88% 35 207.23 20.00 108.81 111.86 114.91 3.05 2.30 76.4% 2.30 3.05 75.41% 36 20.214.45 111.86 114.91 3.05 2.30 76.4% 2.30 3.05 75.41% 37 214.45 20.22 117.91 121.01 3.10 3.10 100.0% 2.09 3.00 76.67% 38 220.2 20.00 114.91 11.91 3.00 3.00 100.0% 2.09 3.00 76.67% 38 220.2 20.00 11.21.01 124.05 3.04 30.4 30.4 100.0% 2.09 3.10 67.42% 39 2.26.2 232.0 117.91 121.01 3.10 3.05 100.0% 2.09 3.10 67.42% 39 2.26.2 232.0 124.05 127.10 130.15 3.05 3.05 100.0% 2.01 3.04 66.12% 40 232.02 238.0 124.05 127.10 130.15 3.05 3.05 100.0% 2.44 3.05 66.56% 42 243.33 249.9 130.15 133.20 3.05 3.05 30.05 100.0% 2.44 3.05 65.56% 42 243.33 249.9 130.15 133.20 3.05 3.05 30.05 100.0% 2.44 3.05 79.67% 44 245.93 249.9 130.15 133.20 3.05 3.05 30.05 100.0% 2.44 3.05 65.57% 44 255.89 261.3 133.20 136.25 3.05 3.05 100.0% 2.00 3.05 65.57% 44 255.89 261.3 133.20 136.25 3.05 3.05 100.0% 2.00 3.05 65.57% 44 255.89 261.3 133.20 136.25 3.05 3.05 100.0% 2.00 3.05 65.57% 44 255.89 261.3 133.20 136.25 3.05 3.05 100.0% 2.00 3.05 65.57% 44 255.89 261.3 132.24 143.34 3.05 3.05 100.0% 2.00 3.05 65.57% 44 255.89 261.3 133.20 136.25 3.05 3.05 100.0% 2.00 3.05 65.57% 44 255.89 261.3 132.24 143.34 3.05 3.05 100.0% 2.00 3.05 65.57% 44 255.89 261.3 132.24 143.34 3.05 3.05 100.0% 2.00 3.05 65.57% 44 255.89 261.3 133.20 136.25 3.05 3.05 100.0% 2.00 3.05 65.57% 44 255.89 261.3 132.24 143.34 3.05 3.05 100.0% 2.00 3.05 65.57% 44 255.89 261.3 132.24 143.34 3.05 3.05 100.0% 2.00 3.05 65.57% 44 255.89 261.3 132.24 143.34 3.05 3.05 100.0% 2.00 3.05 65.57% 44 255.89 261.3 132.24 143.34 3.05 3.05 100.0% 2.00 3.05 65.57% 44 255.89 261.3 132.24 143.34 3.05 3.05 100.0% 2.00 3.05 65.57% 44 255.89 261.3 142.34 41.34 3.05 3.05 1											
98.67 96.62 3.05 3.05 100.0% 2.86 3.05 93.77% 32 186.01 192.00 98.62 96.7 105.77 6.10 6.10 100.0% 1.80 6.10 29.51% 33 120.114 20.91 14 20.		90.53	6.10	6.10	100.0%	1.88	6.10		30	174.5	180.59
98.62 99.67 3.05 3.05 100.0% 1.71 3.05 56.07% 33 192 201.14 99.67 105.77 108.81 3.04 3.04 100.0% 2.55 3.04 83.88% 35 207.23 209.00 108.81 111.86 3.05 3.05 100.0% 2.30 3.05 73.11% 37 214.45 220.7 111.86 111.91 3.05 2.30 75.4% 2.23 3.05 73.11% 37 214.45 220.7 114.91 117.91 3.05 3.06 100.0% 2.30 3.00 76.67% 38 220.7 226.2 117.91 12.01 3.10 3.10 100.0% 2.30 3.00 76.67% 38 220.7 226.2 121.01 124.05 3.04 3.04 100.0% 2.09 3.10 67.42% 39 226.2 232.0 121.01 124.05 3.04 3.04 100.0% 2.01 3.04 66.12% 40 232.02 238.0 127.10 130.15 3.05 3.05 100.0% 2.64 3.05 63.28% 41 237.95 243.9 127.10 130.15 3.05 3.05 100.0% 2.04 3.05 68.66% 42 243.93 249.9 133.20 136.25 3.05 3.05 100.0% 2.00 3.05 65.57% 44 255.9 133.20 136.25 3.05 3.05 100.0% 2.00 3.05 65.77% 44 255.9 139.29 142.34 3.05 3.05 100.0% 2.05 3.05 66.77% 44 255.9 139.29 142.34 3.05 3.05 100.0% 2.05 3.05 66.77% 44 255.9 145.39 148.44 3.05 3.05 100.0% 2.05 3.05 67.27% 48 EOH 145.39 148.44 3.05 3.05 100.0% 2.05 3.05 67.27% 49 EOH 151.49 154.53 3.05 3.05 100.0% 2.05 3.05 67.27% 49 EOH 157.50 100.63 3.05 100.0% 2.07 3.05 67.27% 49 EOH 157.50 100.63 3.05 3.05 100.0% 2.07 3.05 67.27% 49 EOH 157.50 100.63 3.05 3.05 100.0% 2.07 3.05 67.27% 49 EOH 157.50 100.63 3.05 3.05 100.0% 2.07 3.05 67.27% 49 EOH 157.50 100.63 3.05	90.53		3.04	3.04	100.0%	1.95	3.04		31	180.59	186.01
99.67 105.77 6.10 6.10 100.0% 1.80 6.10 29.51% 34 201.14 207.23 205.77 108.81 3.04 3.04 3.04 100.0% 2.55 3.04 83.88% 35 207.3 209.00 108.81 111.86 3.05 3.05 3.05 100.0% 2.30 3.05 75.41% 36 209 214.45 210.14 207.23 207.23 207.30 207.30 207.30 207.30 207.30 207.30 207.30 207.30 207.30 207.44 207.23 207.30 207.30 207.45 207.30 207.45 207.30 207.45 207.30 207.45 207.30 207.45 207.30 207.45 207.30 207.45 207.30 207.45 207.30 207.45 207.30 207.45 207.30 207.45 207.30 207.45 207.30 207.45 207.30 207.45 207.30 207.45 207.30 207.30 207.45 207.30 2											
105.77 108.81 3.04 3.04 100.0% 2.55 3.04 83.88% 35 207.23 209.00 208.81 111.86 3.05 3.05 100.0% 2.30 3.05 75.41% 36 220.7 226.5 114.91 117.91 3.05 2.30 75.4% 2.23 3.05 73.11% 37 214.45 220.7 114.91 117.91 3.00 3.00 100.0% 2.30 3.00 76.7% 38 220.7 226.2 117.91 121.01 3.10 3.10 100.0% 2.30 3.00 67.42% 39 226.2 232.0 121.01 124.05 3.04 3.04 100.0% 2.08 3.10 67.42% 39 226.2 232.0 223.0 226.2 232.0 223.0 226.2 232.0 223.0 226.2 232.0 223.0											
108.81 111.86 3.05 3.05 100.0% 2.30 3.05 75.41% 36 209 214.45 111.86 114.91 3.06 2.30 75.4% 3.05 73.1% 37 214.46 220.7 114.91 117.91 3.00 3.00 100.0% 2.30 3.00 76.67% 38 220.7 228.2 117.91 121.01 3.10 3.10 100.0% 2.09 3.10 67.42% 39 226.2 232.0 124.05 127.10 3.05 3.04 100.0% 2.09 3.10 66.12% 40 232.02 238.0 124.05 127.10 3.05 3.05 100.0% 1.93 3.05 63.28% 41 237.95 243.9 127.10 130.15 3.05 3.05 100.0% 2.44 3.05 86.56% 42 224.39 244.9 130.15 133.20 3.05 3.05 100.0% 2.43 3.05 79.67% 43 249.91 255.9 133.20 136.25 3.05 3.05 3.05 100.0% 1.22 3.04 40.13% 45 261.87 267.9 136.25 139.29 3.04 3.04 100.0% 1.22 3.04 40.13% 45 261.87 267.9 132.24 145.39 3.05 3.05 100.0% 2.05 3.05 67.2% 47 273.83 276.0 145.44 151.49 3.05 3.05 100.0% 2.07 3.05 67.27% 47 273.83 276.0 145.44 151.49 3.05 3.05 100.0% 2.07 3.05 67.27% 49 0 154.45 157.58 3.04 3.04 100.0% 2.07 3.05 67.27% 49 0 154.54 157.58 3.05 3.05 100.0% 2.07 3.05 67.27% 49 0 0 154.54 157.58 160.63 3.05 3.05 100.0% 2.07 3.05 67.27% 49 0 0 154.54 157.58 160.63 3.05 3.05 100.0% 2.07 3.05 67.27% 49 0 0 154.54 157.58 160.63 3.05 3.05 100.0% 2.07 3.05 67.27% 49 0 0 154.54 157.58 160.63 3.05 3.05 100.0% 2.07 3.05 67.27% 49 0 0 154.54 157.58 160.63 3.05 3.05 100.0% 2.07 3.05 67.87% 49 0 0 154.54 157.58 160.63 3.05 3.05 100.0% 2.07 3.05 67.27% 49 0 0 154.54 157.58 160.63 3.05 3.05 100.0% 2.07 3.05 67.27% 49 0 0 154.54 157.58 160.63 3.05 3.05 100.0% 2.07 3.05 67.27% 49 0 0 154.54 157.58 160.63 3.05 3.05 100.0% 2.07 3.05 67.27% 49 0 0 0 0 0 0 0 0											
111.86											
114.91 117.91 3.00 3.00 100.0% 2.30 3.00 76.67% 38 220.7 226.2 117.91 121.01 3.10 3.10 100.0% 2.09 3.10 67.42% 39 226.2 232.0 124.05 127.10 3.05 3.05 100.0% 2.01 3.04 66.12% 40 232.02 238.0 124.05 127.10 3.05 3.05 100.0% 2.01 3.04 66.12% 40 232.02 238.0 124.05 127.10 3.05 3.05 100.0% 2.64 3.05 86.56% 42 243.93 249.9 130.15 133.20 3.05 3.05 100.0% 2.43 3.05 78.67% 43 249.91 235.9 133.20 136.25 3.05 3.05 100.0% 2.24 3.05 78.67% 43 249.91 255.9 136.25 139.29 3.04 3.04 100.0% 1.22 3.04 40.13% 45 261.87 267.9 138.22 142.34 3.05 3.05 100.0% 1.23 3.05 46.18% 46 267.85 273.8 142.34 145.39 3.05 3.05 100.0% 1.73 3.05 56.72% 47 273.83 276.0 145.39 148.44 3.05 3.05 100.0% 1.73 3.05 56.72% 47 273.83 276.0 145.39 146.34 3.05 3.05 100.0% 2.37 3.05 67.21% 48 EOH 154.53 148.44 3.05 3.05 100.0% 2.37 3.05 67.27% 48 EOH 154.53 157.58 3.04 3.04 100.0% 1.33 3.05 63.28% 52 0 157.58 160.63 3.05 100.0% 1.93 3.05 67.49% 50 0 157.58 160.63 3.05 3.05 100.0% 1.93 3.05 63.28% 52 0 160.63 163.68 169.77 6.09 5.96 97.9% 4.11 6.09 67.49% 54 0 169.77 172.82 3.05 3.05 100.0% 1.89 3.05 67.49% 54 0 172.82 175.67 3.05 3.05 100.0% 2.44 3.44 3.55 60.00 1.89 3.05 67.49% 54 0 172.82 175.67 3.05 3.05 100.0% 2.27 3.05 67.49% 54 0 0 172.82 175.67 3.05 3.05 100.0% 1.32 3.05 67.49% 54 0 0 172.82 175.67 3.05 3.05 100.0% 1.89 3.05 67.49% 54 0 0 172.82 175.67 3.05 3.05 100.0% 1.89 3.05 67.49% 54 0 0 172.82 175.67 3.05 3.05 100.0% 2.23 3.05 100.9% 2.26 3.05 67.49% 54 0 0 172.82 175.67 3.05 3.05 100.0% 2.26 3.05 67.49% 54 0 0											
117.91 121.01 3.10 3.01 00.0% 2.09 3.10 67.42% 39 226.2 232.0 121.01 124.05 3.04 3.04 3.04 3.04 3.05 3.05 3.05 100.0% 1.93 3.05 63.28% 41 237.95 243.9 127.10 130.15 3.05 3.05 100.0% 2.64 3.05 86.56% 42 243.93 249.9 245.9 133.20 133.20 3.05 3.05 100.0% 2.00 3.05 65.57% 43 249.9 255.9 133.20 136.25 3.05 3.05 100.0% 2.00 3.05 65.57% 44 245.98 261.9 139.29 142.34 3.05 3.05 100.0% 2.00 3.05 65.57% 44 255.89 261.9 139.29 3.04 3.04 3.05 3.05 100.0% 1.22 3.04 40.13% 45 261.87 267.9 139.29 142.34 3.05 3.05 100.0% 1.33 3.05 343.61% 46 267.85 273.8 142.34 145.39 3.05 3.05 100.0% 2.05 3.05 67.24% 47 273.83 276.0 145.39 148.44 3.05 3.05 100.0% 2.05 3.05 67.24% 47 273.83 276.0 145.39 148.44 3.05 3.05 100.0% 2.07 3.05 67.27% 48 EOH 151.49 154.53 3.04 3.04 100.0% 2.37 3.04 77.96% 50 0 154.53 157.58 3.05 3.05 100.0% 2.37 3.04 77.96% 50 0 155.58 3.05 3.05 100.0% 1.90 3.05 62.30% 51 0 157.58 160.63 3.05 3.05 100.0% 1.33 3.05											
121.01 124.06 3.04 3.04 100.0% 2.01 3.04 66.12% 40 232.02 238.0 124.05 127.10 3.05 3.05 100.0% 1.93 3.05 63.28% 41 237.95 243.9 127.10 130.15 3.05 3.05 100.0% 2.64 3.05 86.56% 42 243.93 249.9 130.15 133.20 3.05 3.05 100.0% 2.43 3.05 79.67% 43 249.91 255.9 213.20 136.25 3.05 3.05 100.0% 2.20 3.05 3.05 79.67% 43 249.91 255.9 213.20 136.25 3.05 3.05 100.0% 2.20 3.04 40.13% 45 261.87 267.9 132.29 142.34 3.05 3.05 100.0% 1.33 3.05 43.61% 46 267.85 273.8 142.34 3.05 3.05 100.0% 1.73 3.05 56.72% 47 273.83 276.0 145.39 148.44 3.05 3.05 100.0% 1.73 3.05 56.72% 47 273.83 276.0 145.39 148.44 3.05 3.05 100.0% 2.07 3.05 67.27% 48 EOH 154.53 3.04 3.04 100.0% 2.37 3.05 57.87% 49 0 154.53 157.58 3.05 3.05 100.0% 2.37 3.04 77.96% 50 0 157.58 160.63 3.05 3.05 100.0% 1.90 3.05 62.30% 51 0 160.63 163.68 3.05 3.05 100.0% 1.93 3.05 63.28% 52 0 160.63 163.68 163.77 6.09 5.96 97.9% 4.11 6.09 67.49% 54 0 172.82 3.05 3.05 100.0% 1.89 3.05 50.2% 57 0 172.82 3.05 3.05 100.0% 1.89 3.05 50.2% 57 0 178.87 178.92 3.05 3.05 100.0% 1.80 3.05 50.2% 57 0 178.87 178.92 3.05 3.05 100.0% 1.80 3.05 50.2% 57 0 178.87 178.92 3.05 3.05 100.0% 1.80 3.05 50.2% 57 0 178.82 3.05 3.05 100.0% 1.80 3.05 50.2% 57 0 178.82 3.05 3.05 3.05 100.0% 1.80 3.05 50.2% 57 0 178.82 3.05											
127.10											
127.10											
138.26 138.25 3.05 3.06 100.0% 2.20 3.05 65.57% 44 255.88 261.9 138.29 142.34 3.05 3.04 100.0% 1.22 3.04 40.13% 45 261.87 267.9 139.29 142.34 3.05 3.05 100.0% 1.33 3.05 43.61% 46 267.85 273.8 142.34 145.39 3.05 3.05 100.0% 2.05 3.05 67.27% 47 273.83 276.0 145.39 148.44 3.05 3.05 100.0% 2.05 3.05 67.27% 48 EOH 148.44 151.49 3.05 3.05 100.0% 2.07 3.05 67.87% 49 0 151.49 3.05 3.05 100.0% 2.07 3.05 67.87% 49 0 151.49 154.53 3.04 3.04 100.0% 2.37 3.04 77.96% 50 0 157.58 160.63 3.05 3.05 100.0% 1.90 3.05 62.30% 51 0 160.63 163.68 3.05 3.05 100.0% 1.93 3.05 63.26% 53 0 160.63 163.68 163.68 3.05 3.05 100.0% 1.93 3.05 63.26% 53 0 163.68 169.77 6.09 5.96 97.9% 4.11 6.09 67.49% 54 0 178.22 175.87 3.05 3.05 100.0% 2.07 3.05 67.87% 56 0 175.67 178.92 178.92 3.05 3.05 100.0% 2.07 3.05 67.87% 56 0 175.67 178.92 181.18 2.26 2.26 100.0% 2.44 3.84 63.54% 59 0 185.02 181.18 2.26 2.26 100.0% 2.44 3.84 63.54% 59 0 185.02 181.18 2.26 2.26 100.0% 2.44 3.84 63.54% 59 0 185.02 189.95 2.63 2.63 2.60 85.2% 0.62 3.05 2.03% 61 0 191.11 194.16 3.05 2.60 85.2% 0.62 3.05 2.03% 61 0 0 191.11 194.16 3.05 2.60 85.2% 0.62 3.05 3.05 100.0% 2.27 3.05 3.05 100.0% 2.27 3.05 3.05 100.0% 2.27 3.05 3.05 100.0% 2.27 3.05 3.05 100.0% 2.27 3.05 3.05 100.0% 2.24 3.84 3.									42		
138.29 139.29 3.04 3.04 100.0% 1.22 3.04 40.13% 45 261.87 267.85 273.8 142.34 145.39 3.05 3.05 100.0% 1.73 3.05 65.72% 47 273.83 276.0 145.39 148.44 3.05 3.05 100.0% 2.05 3.05 67.21% 48 EOH 184.44 151.49 3.05 3.05 100.0% 2.07 3.05 67.21% 48 EOH 184.44 151.49 3.05 3.05 100.0% 2.07 3.05 67.87% 49 EOH 151.49 154.53 3.04 3.04 100.0% 2.37 3.04 77.96% 50 0 155.49 155.58 3.05 3.05 100.0% 2.37 3.04 77.96% 50 0 154.53 157.58 3.05 3.05 100.0% 1.90 3.05 62.30% 51 0 0 160.63 163.68 3.05 3.05 100.0% 1.93 3.05 63.26% 52 0 160.63 163.68 3.05 3.05 100.0% 1.32 3.05 43.28% 53 0 160.67 172.82 3.05 3.05 100.0% 1.89 3.05 61.97% 55 0 175.87 172.82 3.05 3.05 100.0% 1.89 3.05 61.97% 55 0 175.87 178.92 3.05 3.05 100.0% 1.89 3.05 67.87% 56 0 178.82 181.18 2.26 2.26 100.0% 2.40 2.26 106.19% 59 0 188.06 191.11 3.05 2.60 85.2% 0.62 3.05 3.04 3.04 46.05% 60 0 188.06 191.11 3.05 2.60 85.2% 0.62 3.05 3.05 3.05 3.00 0.00% 2.44 3.84 63.54% 59 0 188.06 191.11 3.05 2.60 85.2% 0.62 3.05 3.05 3.00 0.00% 2.40 2.26 106.19% 59 0 188.06 191.11 3.05 2.60 85.2% 0.62 3.05 3.05 2.03% 61 0 0 191.11 194.16 3.05 2.63 77.4% 0.52 3.05 3.05 2.03% 61 0 0 194.16 197.32 3.16 2.44 77.2% 0.24 3.16 7.59% 63 0 0 199.95 2.63 2.63 2.63 100.0% 2.23 3.05 3.05 3.05 3.00 3.0	130.15	133.20	3.05	3.05	100.0%	2.43	3.05	79.67%	43	249.91	255.9
139.29	133.20	136.25	3.05	3.05	100.0%	2.00	3.05	65.57%	44	255.89	261.9
142.34	136.25	139.29	3.04	3.04	100.0%	1.22	3.04	40.13%	45	261.87	267.9
148.44 151.49 3.05 3.05 100.0% 2.05 3.05 67.21% 48 EOH 148.44 151.49 3.05 3.05 100.0% 2.37 3.04 77.96% 50 0 151.49 154.53 3.04 3.04 100.0% 2.37 3.04 77.96% 50 0 154.53 157.58 3.05 3.05 100.0% 1.90 3.05 62.30% 51 0 157.58 160.63 3.05 3.05 100.0% 1.93 3.05 63.28% 52 0 160.63 163.68 3.05 3.05 100.0% 1.93 3.05 63.28% 52 0 160.63 163.68 3.05 3.05 100.0% 1.93 3.05 64.28% 53 0 163.68 169.77 6.09 5.96 97.9% 4.11 6.09 67.49% 54 0 169.77 172.82 3.05 3.05 100.0% 1.89 3.05 61.97% 55 0 172.82 175.87 3.05 3.05 100.0% 2.07 3.05 67.87% 56 0 175.67 178.92 3.05 3.05 100.0% 2.40 2.26 100.19% 58 0 181.18 185.02 3.84 3.84 100.0% 2.44 3.84 63.54% 59 0 185.02 188.06 3.04 2.92 96.1% 1.40 3.04 46.05% 60 0 191.11 194.16 3.05 2.60 85.2% 0.62 3.05 20.33% 61 0 191.11 194.16 3.05 2.63 2.63 100.0% 1.27 2.63 48.29% 64 0 199.95 201.32 1.37 1.37 100.0% 1.27 2.63 48.29% 64 0 201.32 206.35 5.03 5.03 500.0% 2.21 3.05 3.05 17.59% 62 0 201.32 206.35 5.03 5.03 5.00 50.0% 2.23 5.03 48.29% 64 0 201.32 206.35 5.03 5.03 5.00 5.00 2.23 5.03 48.29% 64 0 201.32 206.35 5.03 5.03 5.00 5.00 2.23 5.03 48.29% 64 0 201.32 206.35 5.03 5.03 5.00 5.00 2.23 5.03 48.29% 64 0 201.32 206.35 2.63 2.63 100.0% 2.23 5.03 48.29% 64 0 201.32 206.35 5.03 5.03 5.00 50.0% 2.23 5.03 48.39% 69 0 201.32 206.35 5.03 5.03 50.00 50.0% 2.20 3.05 66.23% 69 0 221.59 224.69 3.05 3.05 100.0% 2.21 3.05 60.0% 70 0 224.69 230.73 3.04 3.04 100.0% 2.23 5.03 50.06 60.0 0 226.37 225.12 3.05 3.05 3.05 100.0%											
148.44											276.0
151.49											
154.52											
157.58 160.63 3.05 3.05 100.0% 1.93 3.05 63.28% 52 0 160.63 163.68 3.05 3.05 100.0% 1.32 3.05 43.28% 53 0 163.68 169.77 6.09 5.96 97.9% 4.11 6.09 67.49% 54 0 169.77 172.82 3.05 3.05 100.0% 1.89 3.05 61.97% 55 0 172.82 175.87 3.05 3.05 100.0% 1.80 3.05 59.02% 57 0 175.87 176.92 3.05 3.05 100.0% 1.80 3.05 59.02% 57 0 178.92 181.18 2.26 2.26 100.0% 2.40 2.26 106.19% 58 0 181.18 185.02 3.84 3.84 100.0% 2.44 3.84 63.54% 59 0 188.06 191.11 3.05 2.60 85.2% 0.62 3.05 20.33% 61 0 191.11 194.16 3.05 2.36 77.4% 0.52 3.05 17.05% 62 0 197.32 199.95 2.63 2.63 100.0% 1.27 2.63 48.29% 64 0 199.95 201.32 1.37 1.37 100.0% 1.14 1.37 83.21% 65 0 201.32 206.35 5.03 5.03 100.0% 2.10 6.08 34.54% 67 0 212.43 215.49 3.06 3.06 6.08 100.0% 2.21 3.05 2.68% 68 0 221.54 221.59 3.05 3.05 3.05 100.0% 2.21 3.05 2.68% 68 0 221.54 221.59 3.05 3.05 3.05 100.0% 2.21 3.05 2.68% 68 0 221.54 221.59 3.05 3.05 3.05 100.0% 2.21 3.05 2.68% 68 0 221.54 221.59 3.05 3.05 3.05 100.0% 2.21 3.05											
160.63											
163.68 169.77 6.09 5.96 97.9% 4.11 6.09 67.49% 54 0 169.77 172.82 3.05 3.05 100.0% 1.89 3.05 61.97% 55 0 172.82 175.87 3.05 3.05 100.0% 1.80 3.05 59.02% 57 0 175.87 178.92 3.05 3.05 100.0% 1.80 3.05 59.02% 57 0 178.92 181.18 2.26 2.26 100.0% 2.40 2.26 106.19% 58 0 181.18 185.02 3.84 3.84 100.0% 2.44 3.84 63.54% 59 0 185.02 188.06 3.04 2.92 96.1% 1.40 3.04 46.05% 60 0 188.06 191.11 3.05 2.60 85.2% 0.62 3.05 20.33% 61 0 191.11 194.16 3.05 2.36 77.4% 0.52 3.05 17.05% 62 0 194.16 197.32 3.16 2.44 77.2% 0.24 3.16 7.59% 63 0 197.32 199.95 2.63 2.63 100.0% 1.27 2.63 48.29% 64 0 199.95 201.32 1.37 1.37 100.0% 1.14 1.37 33.21% 65 0 201.32 206.35 5.03 5.03 100.0% 2.23 5.03 44.33% 66 0 206.35 212.43 6.08 6.08 100.0% 2.10 6.08 34.54% 67 0 215.49 218.54 3.05 3.05 3.05 100.0% 2.23 3.10 71.94% 67 0 221.59 224.69 3.10 3.10 100.0% 2.23 3.10 71.94% 71 0 224.69 227.69 3.00 3.00 100.0% 2.23 3.10 71.94% 71 0 224.69 227.69 3.00 3.00 100.0% 2.23 3.10 71.94% 71 0 224.69 227.69 3.00 3.05 100.0% 2.23 3.05 70.16% 70 0 221.59 224.69 3.10 3.10 100.0% 2.21 3.05 60.90% 72 0 224.69 230.73 3.04 3.04 100.0% 2.06 3.05 50.0% 77.90 0 221.59 224.69 3.10 3.10 100.0% 2.21 3.05 60.90% 72 0 222.69 230.73 3.04 3.04 100.0% 2.15 3.05 50.16% 70 0 223.88 242.93 3.05 3.05 100.0% 2.16 3.05 50.16% 70 0 224.69 230.73 3.04 3.04 100.0% 1.53 3.05 50.16% 70 0 224.69 230.73 3.04 3.04 100.0% 1.53 3.05 50.16% 70 0 224.69 227.09 3.05 3.05 100.0% 2.26 3.05 53.11% 81 0 239.88 242.93											
169.77											
172.82 175.87 3.05 3.05 100.0% 2.07 3.05 67.87% 56 0 175.87 178.92 3.05 3.05 100.0% 1.80 3.05 59.02% 57 0 178.92 181.18 2.26 12.26 100.0% 2.44 3.84 63.54% 59 0 181.18 185.02 3.84 3.84 100.0% 2.44 3.84 63.54% 59 0 185.02 188.06 3.04 2.92 96.1% 1.40 3.04 46.05% 60 0 188.06 191.11 3.05 2.60 85.2% 0.62 3.05 20.33% 61 0 191.11 194.16 3.05 2.60 85.2% 0.62 3.05 2.06 82 3.05 2.06 82 3.05 40.0 191.11 194.16 197.32 3.16 2.44 77.2% 0.24 3.16 7.59% 63 0 197.32											
178.92 181.18 2.26 2.26 100.0% 2.40 2.26 106.19% 58 0 181.18 185.02 3.84 3.84 100.0% 2.44 3.84 63.54% 59 0 185.02 188.06 3.04 2.92 96.1% 1.40 3.04 46.05% 60 0 188.06 191.11 3.05 2.60 85.2% 0.62 3.05 20.3% 61 0 191.11 194.16 3.05 2.36 77.4% 0.52 3.05 17.05% 62 0 191.32 199.95 2.63 2.63 100.0% 1.27 2.63 48.29% 64 0 199.95 201.32 1.37 1.37 100.0% 1.14 1.37 83.21% 65 0 201.32 206.35 5.03 5.03 100.0% 2.23 5.03 44.33% 66 0 201.32 216.34 3.06 3.06 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
178.92 181.18 2.26 2.26 100.0% 2.40 2.26 106.19% 58 0 181.18 185.02 3.84 3.84 100.0% 2.44 3.84 63.54% 59 0 185.02 188.06 3.04 2.92 96.1% 1.40 3.04 46.05% 60 0 188.06 191.11 3.05 2.60 85.2% 0.62 3.05 20.3% 61 0 191.11 194.16 3.05 2.36 77.4% 0.52 3.05 17.05% 62 0 191.32 199.95 2.63 2.63 100.0% 1.27 2.63 48.29% 64 0 199.95 201.32 1.37 1.37 100.0% 1.14 1.37 83.21% 65 0 201.32 206.35 5.03 5.03 100.0% 2.23 5.03 44.33% 66 0 201.32 216.34 3.06 3.06 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
185.02 188.06 3.04 2.92 96.1% 1.40 3.04 46.05% 60 0 188.06 191.11 3.05 2.60 85.2% 0.62 3.05 20.33% 61 0 191.11 194.16 3.05 2.36 17.05% 62 0 194.16 197.32 3.16 2.44 77.2% 0.24 3.16 7.59% 63 0 197.32 199.95 2.63 2.63 100.0% 1.27 2.63 48.29% 64 0 290.32 2.137 137 100.0% 1.14 1.37 83.21% 65 0 201.32 206.35 5.03 5.03 100.0% 2.23 5.03 48.29% 66 0 206.35 212.43 6.08 6.08 100.0% 2.10 6.08 34.54% 67 0 212.43 21.54 6.08 3.06 100.0% 2.21 6.08 34.54%		181.18	2.26	2.26	100.0%		2.26	106.19%	58	0	
188.06 191.11 3.05 2.60 85.2% 0.62 3.05 20.33% 61 0 191.11 194.16 3.05 2.36 77.4% 0.52 3.05 17.05% 62 0 194.16 197.32 3.16 2.44 77.2% 0.24 3.16 7.59% 63 0 197.32 199.95 2.63 2.63 100.0% 1.27 2.63 48.29% 64 0 199.95 201.32 1.37 1.37 100.0% 1.14 1.37 83.21% 65 0 201.32 206.35 5.03 5.03 100.0% 2.10 6.08 34.54% 66 0 206.35 212.43 6.08 6.08 100.0% 2.10 6.08 34.54% 67 0 212.43 215.49 3.06 3.06 100.0% 2.53 3.06 82.68% 68 0 215.49 218.54 3.05 3.05 <td< td=""><td>181.18</td><td>185.02</td><td>3.84</td><td>3.84</td><td>100.0%</td><td>2.44</td><td>3.84</td><td>63.54%</td><td>59</td><td>0</td><td></td></td<>	181.18	185.02	3.84	3.84	100.0%	2.44	3.84	63.54%	59	0	
191.11										0	
194.16											
197.32											
199.95											
201.32 206.35 5.03 5.03 100.0% 2.23 5.03 44.33% 66 0 206.35 212.43 6.08 6.08 100.0% 2.10 6.08 34.54% 67 0 212.43 215.49 3.06 3.06 100.0% 2.53 3.06 82.68% 68 0 215.49 218.54 3.05 3.05 100.0% 2.02 3.05 68.23% 69 0 218.54 221.59 3.05 3.05 100.0% 2.14 3.05 70.16% 70 0 221.59 224.69 3.10 3.10 100.0% 2.23 3.10 71.94% 71 0 224.69 23.73 3.04 3.04 100.0% 2.23 3.10 71.94% 71 0 227.69 230.73 3.04 3.04 100.0% 2.06 3.05 69.00% 72 0 233.78 236.3 3.05 3.05 <											
206.35 212.43 6.08 6.08 100.0% 2.10 6.08 34.54% 67 0 212.43 215.49 3.06 3.06 100.0% 2.53 3.06 82.68% 68 0 215.49 218.54 3.05 3.05 100.0% 2.02 3.05 66.23% 69 0 218.54 221.59 3.05 3.05 100.0% 2.14 3.05 70.16% 70 0 221.59 224.69 3.10 3.10 100.0% 2.23 3.10 71.94% 71 0 224.69 227.69 3.00 3.00 100.0% 2.23 3.10 71.94% 71 0 227.69 230.73 3.04 3.04 100.0% 1.80 3.04 59.21% 73 0 230.73 233.78 3.05 3.05 100.0% 2.06 3.05 67.54% 74 0 233.78 236.83 3.93 3.05											
212.43 215.49 3.06 3.06 100.0% 2.53 3.06 82.68% 68 0 215.49 218.54 3.05 3.05 100.0% 2.02 3.05 66.23% 69 0 218.54 221.59 3.05 3.05 100.0% 2.14 3.05 70.16% 70 0 221.59 224.69 3.10 3.10 100.0% 2.23 3.10 71.94% 71 0 224.69 227.69 3.00 3.00 100.0% 2.07 3.00 69.00% 72 0 227.69 230.73 3.04 3.04 100.0% 1.80 3.04 59.21% 73 0 230.73 3.04 3.05 3.05 100.0% 2.06 3.05 59.21% 74 0 233.78 236.83 3.05 3.05 100.0% 2.75 3.05 90.16% 75 0 239.88 242.93 3.05 3.05 <											
215.49 218.54 3.05 3.05 100.0% 2.02 3.05 66.23% 69 0 218.54 221.59 3.05 3.05 100.0% 2.14 3.05 70.16% 70 0 221.59 224.69 3.10 3.01 100.0% 2.23 3.10 71.94% 71 0 224.69 227.69 3.00 3.00 100.0% 2.07 3.00 69.00% 72 0 227.69 230.73 3.04 3.04 100.0% 1.80 3.04 59.21% 73 0 230.73 233.78 3.05 3.05 100.0% 2.06 3.05 67.54% 74 0 233.78 236.83 3.05 3.05 100.0% 2.75 3.05 90.16% 75 0 236.83 239.88 3.05 3.05 100.0% 2.12 3.05 69.51% 76 0 239.88 242.93 3.05 3.05											
218.54 221.59 3.05 3.05 100.0% 2.14 3.05 70.16% 70 0 221.59 224.69 3.10 3.10 100.0% 2.23 3.10 71.94% 71 0 224.69 227.69 3.00 3.00 100.0% 2.07 3.00 69.00% 72 0 227.69 230.73 3.04 3.04 100.0% 1.80 3.04 59.21% 73 0 230.73 233.78 3.05 3.05 100.0% 2.06 3.05 67.54% 74 0 233.78 236.83 3.05 3.05 100.0% 2.75 3.05 90.16% 75 0 236.83 239.88 3.05 3.05 100.0% 2.12 3.05 90.16% 76 0 239.88 242.93 3.05 3.05 100.0% 1.13 3.05 3.05 77 0 242.93 245.97 3.04 3.04 <											
221.59 224.69 3.10 3.10 100.0% 2.23 3.10 71.94% 71 0 224.69 227.69 3.00 3.00 100.0% 2.07 3.00 69.00% 72 0 227.69 230.73 3.04 3.04 100.0% 1.80 3.04 59.21% 73 0 230.73 233.78 3.05 3.05 100.0% 2.06 3.05 67.54% 74 0 233.78 236.83 3.05 3.05 100.0% 2.75 3.05 90.16% 75 0 236.83 239.88 3.05 3.05 100.0% 2.12 3.05 90.16% 76 0 239.88 242.93 3.05 3.05 100.0% 1.13 3.05 3.05 77 0 242.93 245.97 3.04 3.04 100.0% 1.53 3.04 50.38% 77 0 244.902 252.07 3.05 3.05											
224.69 227.69 3.00 3.00 100.0% 2.07 3.00 69.00% 72 0 227.69 230.73 3.04 3.04 100.0% 1.80 3.04 59.21% 73 0 230.73 233.78 3.05 3.05 100.0% 2.06 3.06 67.54% 74 0 233.78 236.83 3.05 3.05 100.0% 2.75 3.05 90.16% 75 0 236.83 239.88 3.05 3.05 100.0% 2.12 3.05 69.51% 76 0 239.88 242.93 3.05 3.05 100.0% 1.13 3.05 37.05% 77 0 242.93 245.97 3.04 3.04 100.0% 1.53 3.04 50.33% 78 0 245.97 249.02 3.05 3.05 100.0% 2.33 3.05 76.39% 79 0 249.02 252.07 3.05 3.05											
230.73 233.78 3.05 100.0% 2.06 3.05 67.54% 74 0 233.78 236.83 3.05 3.05 100.0% 2.75 3.05 90.16% 75 0 236.83 239.88 3.05 3.05 100.0% 2.12 3.05 69.51% 76 0 239.88 242.93 3.05 3.05 100.0% 1.13 3.05 37.05% 77 0 242.93 245.97 3.04 3.04 100.0% 1.53 3.05 50.38% 78 0 245.97 249.02 3.05 3.05 100.0% 1.53 3.05 76.39% 79 0 249.02 252.07 3.05 3.05 100.0% 1.53 3.05 50.16% 80 0 252.07 255.12 3.05 3.05 100.0% 1.62 3.05 53.11% 81 0 255.12 258.17 3.05 3.05 100.0%	224.69										
233.78 236.83 3.05 3.05 100.0% 2.75 3.05 90.16% 75 0 236.83 239.88 3.05 3.05 100.0% 2.12 3.05 69.51% 76 0 239.88 242.93 3.05 3.05 100.0% 1.13 3.05 37.05% 77 0 242.93 245.97 3.04 3.04 100.0% 1.53 3.04 50.33% 78 0 245.97 249.02 3.05 3.05 100.0% 2.33 3.05 76.39% 79 0 249.02 252.07 3.05 3.05 100.0% 1.53 3.05 50.16% 80 0 252.07 255.12 3.05 3.05 100.0% 1.62 3.05 51.16% 81 0 255.12 258.17 3.05 3.05 100.0% 2.01 3.05 65.90% 82 0 258.17 261.21 3.04 3.04											
236.83 239.88 3.05 3.05 100.0% 2.12 3.05 69.51% 76 0 239.88 242.93 3.05 3.05 100.0% 1.13 3.05 37.05% 77 0 242.93 245.97 3.04 3.04 100.33% 78 0 245.97 249.02 3.05 3.05 100.0% 2.33 3.05 76.39% 79 0 249.02 252.07 3.05 3.05 100.0% 1.53 3.05 50.16% 80 0 252.07 255.12 3.05 3.05 100.0% 1.62 3.05 53.11% 81 0 255.12 258.17 3.05 3.05 100.0% 2.01 3.05 53.11% 81 0 258.17 261.21 3.04 3.04 100.0% 1.98 3.04 65.13% 83 0 261.21 264.26 3.05 3.05 100.0% 2.36 3.05											
239.88 242.93 3.05 100.0% 1.13 3.05 37.05% 77 0 242.93 245.97 3.04 3.04 100.0% 1.53 3.04 50.33% 78 0 245.97 249.02 3.05 3.05 100.0% 2.33 3.05 76.39% 79 0 249.02 252.07 3.05 3.05 100.0% 1.53 3.05 50.16% 80 0 252.07 255.12 3.05 3.05 100.0% 1.62 3.05 53.11% 81 0 255.12 258.17 3.05 3.05 100.0% 2.01 3.05 53.11% 81 0 255.12 258.17 3.04 3.04 100.0% 2.01 3.05 53.11% 81 0 258.17 261.21 3.04 3.04 100.0% 1.98 3.04 65.13% 83 0 261.21 264.26 3.05 3.05 100.0%											
242.93 245.97 3.04 3.04 100.0% 1.53 3.04 50.33% 78 0 245.97 249.02 3.05 3.05 100.0% 2.33 3.05 76.39% 79 0 249.02 252.07 3.05 3.05 100.0% 1.53 3.05 50.16% 80 0 252.07 255.12 3.05 3.05 100.0% 1.62 3.05 53.11% 81 0 255.12 258.17 3.05 3.05 100.0% 2.01 3.05 65.90% 82 0 258.17 261.21 3.04 3.04 100.0% 1.98 3.04 65.13% 83 0 261.21 264.26 3.05 3.05 100.0% 2.36 3.05 77.38% 84 0 264.26 270.26 6.00 6.00 100.0% 2.36 6.00 39.33% 85 0 270.26 273.41 3.15 3.15 100.0% 2.28 3.15 72.38% 86 0											
245.97 249.02 3.05 3.05 100.0% 2.33 3.05 76.39% 79 0 249.02 252.07 3.05 3.05 100.0% 1.53 3.05 50.16% 80 0 252.07 255.12 3.05 3.05 100.0% 1.62 3.05 53.11% 81 0 255.12 258.17 3.05 3.05 100.0% 2.01 3.05 65.90% 82 0 258.17 261.21 3.04 3.04 100.0% 1.98 3.04 65.13% 83 0 261.21 264.26 3.05 3.05 30.0 2.36 3.05 77.38% 84 0 264.26 270.26 6.00 6.00 100.0% 2.36 6.00 39.33% 85 0 270.26 273.41 3.15 3.15 100.0% 2.28 3.15 72.38% 86 0											
249.02 252.07 3.05 3.05 100.0% 1.53 3.05 50.16% 80 0 252.07 255.12 3.05 3.05 100.0% 1.62 3.05 53.11% 81 0 255.12 258.17 3.05 3.05 100.0% 2.01 3.05 65.90% 82 0 258.17 261.21 3.04 3.04 100.0% 1.98 3.04 65.13% 83 0 261.21 264.26 3.05 3.05 100.0% 2.36 3.05 77.38% 84 0 264.26 270.26 6.00 6.00 100.0% 2.36 6.00 39.33% 85 0 270.26 273.41 3.15 3.15 100.0% 2.28 3.15 72.38% 86 0											
252.07 255.12 3.05 3.05 100.0% 1.62 3.05 53.11% 81 0 255.12 258.17 3.05 3.05 100.0% 2.01 3.05 65.90% 82 0 258.17 261.21 3.04 3.04 100.0% 1.98 3.04 65.13% 83 0 261.21 264.26 3.05 3.05 100.0% 2.36 3.05 77.38% 84 0 264.26 270.26 6.00 6.00 100.0% 2.36 6.00 39.33% 85 0 270.26 273.41 3.15 3.15 100.0% 2.28 3.15 72.38% 86 0											
255.12 258.17 3.05 3.05 100.0% 2.01 3.05 65.90% 82 0 258.17 261.21 3.04 3.04 100.0% 1.98 3.04 65.13% 83 0 261.21 264.26 3.05 3.05 100.0% 2.36 3.05 77.38% 84 0 264.26 270.26 6.00 6.00 100.0% 2.36 6.00 39.33% 85 0 270.26 273.41 3.15 3.15 100.0% 2.28 3.15 72.38% 86 0											
258.17 261.21 3.04 3.04 100.0% 1.98 3.04 65.13% 83 0 261.21 264.26 3.05 3.05 100.0% 2.36 3.05 77.38% 84 0 264.26 270.26 6.00 6.00 100.0% 2.36 6.00 39.3% 85 0 270.26 273.41 3.15 3.15 100.0% 2.28 3.15 72.38% 86 0											
261.21 264.26 3.05 3.05 100.0% 2.36 3.05 77.38% 84 0 264.26 270.26 6.00 6.00 100.0% 2.36 6.00 39.33% 85 0 270.26 273.41 3.15 3.15 100.0% 2.28 3.15 72.38% 86 0											
264.26 270.26 6.00 6.00 100.0% 2.36 6.00 39.33% 85 0 270.26 273.41 3.15 3.15 100.0% 2.28 3.15 72.38% 86 0											
270.26 273.41 3.15 3.15 100.0% 2.28 3.15 72.38% 86 0											
	273.41	276.45	3.04	3.04	100.0%	2.32	3.04	76.32%	87	0	

DDH E05-22

J-PACIFIC GOLD INC.

NORTHING	5653777	BEARING	102	START DATE	JULY 14, 2005
EASTING	531224	DIP	-65	END DATE	JULY 16, 2005
ELEVATION	2403	LENGTH	122.3	LOGGED BY	JIM STEEL

NOTE: UNITS IN METERS, BEARING & DIP IN DEGREES

OBJECTIVE To test structural continuity between E04-08 intersection and D vein projection to surface.

SUMMARY	LOG		E05-22
HOLE#	FROM	TO	DESCRIPTION
E 05-22	0.00	28.62	Overburden
E 05-22	28.62	80.26	Hornblende Porphyry
E 05-22	80.26	87.94	Quartz Vein Zone
E 05-22	87.94	122.53	Hornblende Porphyry
E 05-22	122.53	122.53	END OF HOLE

HOLE #	FROM	TO			ROCK TYPE	
05-22	0.00	28.62			OVERBURDEN	
05-22	28.62	80.26			HORNBLENDE PORPHYRY	clast supported, black hb in matrix, varying oxidation state with altered fsp's, and no sulphides.
05-22 05-22			38.07 39.45	38.27 39.48		P2 qtz str with open space filling, not mineralized; 50 tca. qtz vnlt at 50 tca. Barren.
05-22			39.88	42.02		qtz str at 30 tca both HW and FW; 20% recovery; barren
05-22 05-22			47.50 51.50	47.55 52.40		qtz str at 10 tca; sample 8038 explores which elements ar mobile in this vein system. qtz str at 20 tca. Fingers of oxidation. Barren.
05-22			01.00	58.06		first indication of serious fsp alteration - from white to soft scratchable green.
05-22			59.74	60.01		qtz str at 20 tca. Barren.
05-22			64.29	64.59		P2 qtz strat 10 tca. Barren.
05-22			65.20	67.24		qtz str lost in broken core, but not obviously a fault. qtz str low angle, barren. Later stage qtz str crosscuts primary; photo. Sample 8039 74.41-75.23 in this interval.
05-22			73.90	75.02		Highly altered matrixl; HW 45 tca; highly oxidized wallrock breccia.
05-22			73.90	77.16		qtz str as last sample. 45 tca; barren.
						HW VEIN ZONE: 15% recovery; highly altered porphyry; intense fsp alt, some chlorite; 10 cm stringer brecciating
05-22	80.26	87.94			QUARTZ VEIN ZONE	wallrock; with 1-3% py; no py in matrix. VEIN ZONE: altered porphyry with low angle qtz str intensely oxidized; visible foliation 45 tca. HAP at 82.76 w
05-22			82.10	83.36		brecciated and recemented core at 45-50 tca. Later fault contact at 82.95 with ground up, clayey core fragments. Sample 8040.
05-22			83.36	84.12		VEIN ZONE: 50% qv 50% porphyry. No sulphides (I hope this isn't a common theme). Sample 8041.
05-22			84.12	85.43		VEIN ZONE: Massive vein oxidized veinlets throughout, vuggy in places; 45 tca HW and FW contacts. Sample 8042.
03-22			04.12	00.40		VEIN Zone: 25% rec; FW to massive vein highly altered porphyry; veinlets show 1-3% py, a nice change from
05-22			85.43	86.95		everything so far. Sample 8043 FW VEIN ZONE: highly altered porphyry with one qtz str
05-22			86.95	87.94		4cm at 50 tca. No sulphides. gradual transition out of intensely altered porphyry; frequibarren low angle qtz str and veinlets; also HAPs galore w
05.00	07.04	100 50			HODNEL ENDE BORRIVEY	brecciated (I can't read my own handwriting) something a
05-22 05-22	87.94	122.53		96.51	HORNBLENDE PORPHYRY	45 tca. No sulphides. Unaltered porphyry highly altered fsp in alt porphyry. Two areas of qtz
05-22			96.51	99.26		enrichment at 45 tca and some matrix brecciation, but no sulphides. Sample 8045 of 2 qtz str in alt porphyry.
05-22			100.67	101.33		Silicified zone, appears P1. Also highly altered fsps now restricted to fx's.
05-22				109.10		Clast of vfg porphyry, as seen in hole 19. Can this be use to define a phase of the porphyry?
05-22			110.10	110.68		moderate fsp alteration. One speck of py in porphyry groundmass. Are we getting
05-22				114.20		closer to the py zone?
05-22			115.20	115.80		Qtz str HW 90 tca. Hooray! One bleb of py. Sample 8046 Silicified rock with one qtz str of 3 cm. Contains py. Samp
05-22			115.80			8047. 50 cm qtz vn with active flt rubble in 50% recovery. Tr py.
05-22			116.70			Sample 8048 qtz vn 8 cm and silicified altered porphyry. Tr py, tr asp.
05-22			121.30	122.30		Sample 8049. END OF HOLE

HOLE #	SAMPLE F	ROM TO	-	Au Met g/t	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Υ	Zn
E05-22	8038	47.5	47.9	0.01	0.3	0.59	25	35	<5	0.18	<1	6	209	53	1.73	<10	0.50	222	4	0.04	9	380	14	5	<20	15	0.05	<10	42	<10	5	29
E05-22	8039	74.4	75.2	0.11	1.0	1.11	155	70	20	0.99	<1	12	121	74	2.94	<10	0.80	322	20	0.03	10	810	56	<5	<20	24	0.07	<10	86	<10	7	40
E05-22	8040	82.1	83.4	2.88	3.8	0.31	5615	45	<5	0.25	<1	5	145	112	2.28	<10	0.08	58	4	< 0.01	6	530	16	30	<20	27	< 0.01	<10	7	<10	<1	29
E05-22	8041	83.4	84.1	5.51	2.2	0.22	2930	35	<5	2.22	<1	3	184	48	1.16	<10	0.05	167	9	< 0.01	5	240	32	15	<20	111	< 0.01	<10	5	<10	<1	50
E05-22	8042	84.1	85.4	1.46	0.8	0.03	395	10	<5	0.32	<1	<1	162	7	0.29	<10	< 0.01	45	<1	< 0.01	3	<10	10	<5	<20	11	< 0.01	<10	<1	<10	<1	10
E05-22	8043	85.4	87.0	2.00	0.8	0.63	4295	25	<5	1.46	<1	8	247	45	2.19	<10	0.37	232	6	< 0.01	9	530	12	5	<20	68	< 0.01	<10	11	<10	3	33
E05-22	8044	87.0	87.9	0.11	0.3	1.05	1525	45	<5	3.40	<1	10	124	64	3.07	<10	0.68	428	7	0.02	10	840	10	5	<20	210	< 0.01	<10	44	<10	5	41
E05-22	8045	97.9	99.1	0.89	0.3	0.62	2760	45	<5	2.37	<1	11	113	70	2.99	<10	0.56	364	8	0.01	12	790	8	15	<20	119	< 0.01	<10	33	<10	4	45
E05-22	8046	115.2	115.8	0.01	< 0.2	0.31	55	25	<5	1.29	<1	4	216	25	1.26	<10	0.22	180	14	0.02	7	310	2	<5	<20	69	< 0.01	<10	16	<10	3	14
E05-22	8047	115.8	116.7	0.01	< 0.2	0.74	105	55	<5	4.50	<1	10	96	55	3.07	<10	0.71	577	9	0.02	12	920	8	5	<20	343	< 0.01	<10	30	<10	8	42
E05-22	8048	116.7	118.0	0.08	0.7	0.37	180	20	<5	2.27	<1	4	225	53	1.33	<10	0.22	231	16	0.02	8	300	46	<5	<20	145	< 0.01	<10	18	10	3	34
E05-22	8049	121.3	122.3	0.11	0.2	1.23	290	65	<5	2.28	<1	10	124	65	3.27	<10	1.02	427	16	0.04	15	770	10	5	<20	88	< 0.01	<10	78	<10	5	47

NOTE: Au Met g/t = Metallurgical Gold Assay grams / tonne

E05-22 0 102 -65 E05-22 -66 102 66	HOLE #	DEPTH	BEARING	DIP
E05-22 -66 102 66	E05-22	0	102	-65
102 102	E05-22	-66	102	66

	F	RECOVERY	,			RQD		CORE	BOX INTER	RVALS
From	To	Run	Recover	у	CORE	RUN	RQD			
(m)	(m)	(m)	Meas	Rec (%)	(cm)	(cm)	(%)	Box	From	То
0.00	28.62	28.62	0.00	0.0%	0.00	28.62	0.00%	1	28.62	32.47
28.62	29.26	0.64	0.56	87.5%	0.00	0.64	0.00%	2	32.47	37.52
29.26	30.84	1.58	1.16	73.4%	0.00	1.58	0.00%	3	37.52	41.82
30.84	33.07	2.23	0.97	43.5%	0.00	2.23	0.00%	4	41.82	54.04
33.07	35.36	2.29	1.00	43.7%	0.00	2.29	0.00%	5	54.04	59.56
35.36	37.49	2.13	1.70	79.8%	0.00	2.13	0.00%	6	59.56	65.64
37.49	40.69	3.20	1.60	50.0%	0.43	3.20	13.44%	7	65.64	76.30
40.69	43.59	2.90	1.99	68.6%	0.14	2.90	4.83%	8	76.30	82.09
43.59	44.50	0.91	0.89	97.8%	0.00	0.91	0.00%	9	82.09	88.63
44.50	47.55	3.05	2.60	85.2%	0.73	3.05	23.93%	10	88.63	93.36
47.55	50.60	3.05	2.32	76.1%	0.56	3.05	18.36%	11	93.36	99.10
50.60	53.64	3.04	2.26	74.3%	0.73	3.04	24.01%	12	99.10	104.70
53.64	56.89	3.25	1.07	32.9%	0.00	3.25	0.00%	13	104.70	110.50
56.89	58.06	1.17	0.94	80.3%	0.00	1.17	0.00%	14	110.50	115.95
58.06	59.74	1.68	1.21	72.0%	0.00	1.68	0.00%	15	115.95	121.80
59.74	62.79	3.05	1.60	52.5%	0.14	3.05	4.59%	16	121.80	122.53
62.79	65.84	3.05	2.00	65.6%	0.70	3.05	22.95%	17	122.53	
65.84	67.67	1.83	1.10	60.1%	0.00	1.83	0.00%	18	0.00	
67.67	68.88	1.21	1.19	98.3%	0.34	1.21	28.10%	19	0.00	
68.88	71.93	3.05	2.64	86.6%	1.16	3.05	38.03%	20	0.00	
71.93	74.48	2.55	1.82	71.4%	0.85	2.55	33.33%	21	0.00	
74.48	81.08	6.60	5.30	80.3%	0.41	6.60	6.21%	22	0.00	
81.08	83.36	2.28	1.80	78.9%	0.17	2.28	7.46%	23	0.00	
83.36	84.12	0.76	0.50	65.8%	0.00	0.76	0.00%	24	0.00	
84.12	90.22	6.10	5.90	96.7%	1.17	6.10	19.18%	25	0.00	
90.22	92.96	2.74	2.40	87.6%	0.85	2.74	31.02%	26	0.00	
92.96	96.01	3.05	3.23	105.9%	1.17	3.05	38.36%	27	0.00	
96.01	99.06	3.05	3.05	100.0%	2.04	3.05	66.89%	28	0.00	
99.06	102.11	3.05	5.85	191.8%	1.08	3.05	35.41%	29	0.00	
102.11	105.16	3.05	1.08	35.4%	0.76	3.05	24.92%	30	0.00	
105.16	108.20	3.04	2.96	97.4%	1.20	3.04	39.47%	31	0.00	
108.20	111.40	3.20	3.05	95.3%	0.60	3.20	18.75%	32	0.00	
111.40	114.45	3.05	3.05	100.0%	0.30	3.05	9.84%	33	0.00	
114.45	117.65	3.20	3.02	94.4%	0.20	3.20	6.25%	34	0.00	
117.65	120.70	3.05	3.05	100.0%	2.23	3.05	73.11%	35	0.00	
120.70	122.53	1.83	1.83	100.0%	0.60	1.83	32.79%	36	0.00	

DDH

E05-23

J-PACIFIC GOLD INC

NORTHING EASTING ELEVATION

BEARING	5653772
DIP	531228
LENGTH	2409

START DATE	77
END DATE	-65
LOGGED BY	138.99

JU	LY ′	16,	2005
JU	LY ′	17,	2005
	JIN	1 S	ΓEEL

NOTE: UNITS IN METERS, BEARING & DIP IN DEGREES

OBJECTIVE

SUMMARY	LOG		DDH E05-23
HOLE#	FROM	TO	DESCRIPTION
		. •	
DDH E05-23	0.00	25.30	Overburden
DDH E05-23	25.30	87.20	Hornblende Porphyry
DDH E05-23	87.20	94.23	Quartz Vein Zone
DDH E05-23	94.23	120.60	Hornblende Prophyry
DDH E05-23	120.60	121.20	Quartz Vein
DDH E05-23	121.20	138.99	Hornblende Prophyry
DDH E05-23	138.99	138.99	End of Hole

HOLE #	FROM (m)	TO (m)	FROM (m)	TO (m)	ROCK TYPE	
	Major Unit		Minor Unit			
E05-23	0.00	25.30			OVERBURDEN	
E05-23	25.30	87.20			HORNBLENDE PORPHYRY	Hornblende porphyry does not contain biotite.
E05-23			25.30	29.65		Rubble. Probably a harzburgite/dunite boulder.
E05-23			32.60	32.65		low angle qtz str in broken core. No sulphides.
E05-23			39.00	40.02		Sample 8050 - qtz str at fault.
E05-23			40.02	41.90		Sample 8151 - msv grey qtz str. 50% recovery.
E05-23			41.90	43.28		Sample 8152 - 50% grey siliceous zone intercalated with 40% med grained hornblende porphyry.
E05-23			43.28	44.54		Sample 8153 - msv grey qtz str in slightly chl alt porphyry.
E05-23			46.94	47.23		fault, oxides on fragments
E05-23				48.77		idem
E05-23				48.23		idem. There is a defined HAP in this interval at 50 tca.
						low angle vuggy qtz str. Looks like it has cadged hornblendes from the matrix. Cleanest, purest, unaltered
E05-23			55.20	55.26		porphyry yet seen.
E05-23				59.55		clast of vfg porphyry
E05-23				60.02		emplacement banding? Check photo.
E05-23				62.30		2 cm qtz str in HAP at 50 tca
						phase change to very coarse grained porphyry to 64.9 whereupon a gradual change back to unaltered
E05-23				63.90		med gr porphyry is seen
						Sample 8154 qtz str 2 cm at 45 tca. Couple of other high angle veinlets with oxidation bands at same
						orientation. FW contains 3 cm qtz str with serp affinity as seen in other holes. Also, transition to vcq
E05-23			65.69	66.44		phase.
E05-23				69.29		And transition out to mg porphyry
						Sample 8155 - qtz str parallel tca; vuggy with huge megacrystic asp (I think, very little original texture or
E05-23			71.51	71.71		colour left). Slow growth, accreted cubes. Is this a source vein for the gold?
E05-23			75.42	75.92		Sample 8156 idem, vuqqy
E05-23				82.20		Fault
E05-23			86.20	87.20		Sample 8157 - gtz str 20 tca; oxidised asp on fx surfaces.
						Sample 8159 - (8158 is a blank); 60 cm qtz vn in bkn core. Multiphase quartz with black subparallel lines,
E05-23	87.20	94.23			QUARTZ VEIN ZONE	again oxidized, similar to that seen in hole 19.
E05-23			88.40	88.90		Sample 8160 - highly altered porphyry between veins.
E05-23			88.90	89.65		Sample 8161- 50 cm broken qtz vn. Idem to previous.
E05-23			89.65	91.03		Sample 8163- highly altered porphyry with 1-2% py and asp in groundmass.
E05-23			91.03	92.11		Sample 8164- 30 cm qtz vn with porphyry intercalation.
E05-23			92.11	93.33		Sample 8165 - 2 x 20 cm gtz vn as previous
E05-23			93.33			Sample 8166 - 1 x 10 cm qtz vn with with bkn and recemented siliceous porphyry in HAP
E05-23	94.23	120.60			HORNBLENDE PORPHYRY	And that's it for the vein system. Even the matrix py and asp disappear from now on.
E05-23				100.99		low angle qtz str brecciating porphyry. No sulphides
E05-23				102.50		low angle qtz str 1 cm
E05-23			102.81	104.12		intensely oxidized porphyry with added P1 silica. No sulphides
E05-23			107.62	108.20		low angle qtz str 2 cm
E05-23				111.94		silicified band with 2 x 2 cm stringers at 50 tca. Barren, as usual.
E05-23			116.10	116.80		HAP with fault; clayey gouge amid broken interval.
						Strange Vein: looks like a foliated serpentinitic str perpendicular tca. Multiphase qtz suggests part of same
E05-23	120.60	121.20			QUARTZ VEIN	emplacement episode as previous.
E05-23	121.20	-			HORNBLENDE PORPHYRY	highly altered porphyry, likely related to previous interval
E05-23			130.46	130.65		low angle gtz str 1 cm
E05-23		1	131.34			same here.
E05-23		l	131.86			unaltered porphyry.
E05-23		l	138.99			End of Hole
		1	. 30.00			
ľ		l				
		l				
	1				ı	I .

HOLE #	SAMPLE F	ROM T	0	Au Met g/t	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Υ	Zn
E05-23	8050	39.00	40.02	0.01	<0.2	1.12	10	55	<5	0.60	<1	10	134	80	2.51	<10	0.79	259	<1	0.05	11	630	8	<5	<20	42	0.11	<10	66	<10	10	37
E05-23	8151	40.02	41.90	0.01	< 0.2	0.09	5	<5	<5	0.03	<1	1	258	15	0.52	<10	0.07	56	<1	< 0.01	7	40	<2	<5	<20	1	< 0.01	<10	8	<10	<1	3
E05-23	8152	41.90	43.28	0.01	< 0.2	0.95	10	40	<5	0.63	<1	9	110	19	2.13	<10	0.57	172	<1	0.05	6	600	8	5	<20	51	0.12	<10	63	<10	8	25
E05-23	8153	43.28	44.54	0.01	< 0.2	0.21	10	10	<5	0.10	<1	3	228	16	0.77	<10	0.16	87	<1	0.02	7	100	<2	<5	<20	7	0.02	<10	18	<10	1	8
E05-23	8154	65.69	66.44	0.01	< 0.2	1.41	60	90	<5	3.08	<1	14	86	44	4.05	<10	1.28	463	4	0.05	13	1130	10	<5	<20	212	0.01	<10	90	<10	6	52
E05-23	8155	71.51	71.71	0.01	5.6	1.73	45	85	<5	1.22	<1	16	115	109	4.18	<10	1.11	347	1	0.06	16	1430	20	<5	<20	53	0.09	<10	111	<10	8	51
E05-23	8156	75.42	75.92	0.01	< 0.2	1.69	45	105	<5	3.24	<1	16	88	84	4.54	<10	1.63	608	9	0.05	15	1240	10	<5	<20	124	0.04	<10	127	<10	10	62
E05-23	8157	86.20	87.20	0.01	< 0.2	1.91	70	185	5	2.58	<1	17	95	38	5.15	<10	1.69	648	13	0.05	19	1340	14	<5	<20	121	0.01	<10	131	<10	9	64
	8158 E	LANK?																														
E05-23	8159	87.20	88.40	0.08	0.5	1.02	175	90	<5	1.75	<1	8	177	69	3.14	<10	0.83	346	13	0.03	11	600	16	<5	<20	68	< 0.01	<10	55	<10	5	40
E05-23	8160	88.40	88.90	0.01	0.6	1.51	170	115	<5	2.08	<1	13	105	166	4.34	<10	1.34	663	11	0.04	14	1160	24	10	<20	79	< 0.01	<10	92	<10	11	65
E05-23	8161	88.90	89.65	0.10	13.2	0.67	200	70	200	0.90	<1	7	233	45	2.37	<10	0.56	304	31	0.02	10	470	222	5	<20	33	< 0.01	<10	46	<10	3	26
	В	LANK?																														
E05-25	8163	89.65	91.03	0.01	0.2	1.46	95	385	<5	1.79	<1	14	87	67	4.10	<10	1.30	514	2	0.05	20	1180	12	<5	<20	89	0.07	<10	119	<10	10	58
E05-26	8164	91.03	92.11	0.01	< 0.2	0.83	95	85	<5	1.20	<1	7	202	76	2.35	<10	0.67	311	5	0.03	12	600	8	<5	<20	32	< 0.01	<10	55	<10	3	33
E05-27	8165	92.11	93.33	0.08	0.2	1.24	280	105	<5	1.12	<1	12	122	62	3.45	<10	0.96	372	6	0.03	12	900	14	<5	<20	35	0.03	<10	72	<10	6	48
E05-28	8166	93.33	94.23	0.20	0.6	0.91	1920	105	<5	1.95	<1	9	163	99	3.02	<10	0.73	291	5	0.03	11	700	24	5	<20	58	0.04	<10	63	<10	4	37

NOTE: Au Met g/t = Metallurgical Gold Assay grams / tonne

E05-23 0 77 -65
E05-23 138.99 77 -67

RECOVERY					RQD		
From	To	Run	Recover	у	CORE	RUN	RQD
(m)	(m)	(m)	Meas	Rec (%)	(cm)	(cm)	(%)
0.00	25.30	25.30	0.00	0.0%	0.00	25.30	0.00%
25.30	28.35	3.05	1.20	39.3%	0.00	3.05	0.00%
28.35	29.60	1.25	1.06	84.8%	0.00	1.25	0.00%
29.60	32.31	2.71	2.02	74.5%	0.00	2.71	0.00%
32.31	35.36	3.05	2.28	74.8%	0.00	3.05	0.00%
35.36	38.40	3.04	2.19	72.0%	0.16	3.04	5.26%
38.40	41.15	2.75	2.00	72.7%	0.20	2.75	7.27%
41.15	43.28	2.13	0.50	23.5%	0.11	2.13	5.16%
43.28	43.89	0.61	0.52	85.2%	0.00	0.61	0.00%
43.89	46.94	3.05	1.36	44.6%	0.34	3.05	11.15%
46.94	48.79	1.85	1.42	76.8%	0.26	1.85	14.05%
48.79	50.60	1.81	1.80	99.4%	0.00	1.81	0.00%
50.60	53.34	2.74	1.20	43.8%	1.01	2.74	36.86%
53.34	54.71	1.37	1.35	98.5%	0.00	1.37	0.00%
54.71	56.69	1.98	1.50	75.8%	0.97	1.98	48.99%
56.69	59.13	2.44	2.32	95.1%	0.00	2.44	0.00%
59.13	62.33	3.20	3.02	94.4%	1.80	3.20	56.25%
62.33	65.38	3.05	3.02	99.0%	1.26	3.05	41.31%
65.38	68.58	3.20	2.90	90.6%	1.94	3.20	60.62%
68.58	71.63	3.05	3.03	99.3%	1.54	3.05	50.49%
71.63	74.68	3.05	2.80	91.8%	1.63	3.05	53.44%
74.68	77.72	3.04	3.01	99.0%	1.16	3.04	38.16%
77.72	80.92	3.20	2.50	78.1%	2.08	3.20	65.00%
80.92	83.97	3.05	1.75	57.4%	0.82	3.05	26.89%
83.97	85.95	1.98	1.22	61.6%	1.05	1.98	53.03%
85.95	87.17	1.22	1.21	99.2%	0.26	1.22	21.31%
87.17	88.70	1.53	1.50	98.0%	0.12	1.53	7.84%
88.70	90.22	1.52	1.51	99.3%	0.00	1.52	0.00%
90.22	93.27	3.05	1.14	37.4%	0.25	3.05	8.20%
93.27	96.32	3.05	3.00	98.4%	1.95	3.05	63.93%
96.32	99.36	3.04	3.06	100.7%	1.12	3.04	36.84%
99.36	102.41	3.05	2.98	97.7%	2.12	3.05	69.51%
102.41	105.46	3.05	1.00	32.8%	1.88	3.05	61.64%
105.46	106.83	1.37	0.65	47.4%	0.20	1.37	14.60%
106.83	107.59	0.76	0.56	73.7%	0.33	0.76	43.42%
107.59	110.64	3.05	0.85	27.9%	1.55	3.05	50.82%
110.64	111.71	1.07	1.00	93.5%	0.78	1.07	72.90%
111.71	114.60	2.89	2.89	100.0%	1.64	2.89	56.75%
114.60	117.65	3.05	2.65	86.9%	1.93	3.05	63.28%
117.65	120.40	2.75	1.65	60.0%	2.51	2.75	91.27%
120.40	122.22	1.82	1.75	96.2%	1.80	1.82	98.90%
122.22	124.21	1.99	1.90	95.5%	1.10	1.99	55.28%
124.21	126.80	2.59	2.45	94.6%	2.20	2.59	84.94%
126.80	129.84	3.04	3.02	99.3%	3.03	3.04	99.67%
129.84	132.89	3.05	3.03	99.3%	3.03	3.05	99.34%
132.89	135.94	3.05	2.98	97.7%	2.98	3.05	97.70%
135.94	138.99	3.05	2.95	96.7%	2.75	3.05	90.16%

CORE BOX INTERVALS

From

25.3

34.90

41.00

47.23

51.60

57.19

63.83

69.54

75.37

81.00

86.82

91.80

97.55

103.23

108.73

113.33

117.00

122.30

127.80

133.32

To 34.90

41.00

47.23

51.60

57.19

63.83

69.54

75.37

81.00

86.82

91.80

97.55

103.23

108.73

113.33

117.00

122.30

127.80

133.32

138.99

Box

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

ELIZABETH PROPERTY DDH

E05-24

J-Pacific Gold Inc.

HOLE #
PROPERTY
NORTHING
EASTING
ELEVATION

ING	BEARIN	E05-24	
	DIP	Elizabeth	
ГН 🗌	LENGT	5,653,692	
		531,127	
		2361	

125	HOLE #
-74	START DATE
141.12	END DATE
	LOGGED BY

	E05-24
Ε	21-Jul-05
	25-Jul-05
1	JIM STEEL

OBJECTIVE Two holes (24 and 25) to fill holes in longitudinal between 10,12,18 to the south and 9,19 to the north

SUMMAR	RY LOG			E05-24	
HOLE#	FROM		TO	DESCRIPTION	
E05-24		0.00	7.92	Casing	
E05-24		7.92	18.00	Feldspar Porphyry	
E05-24		18.00	27.65	Harzburgite / Dunite	
E05-24		27.65	116.60	Hornblende Feldspar Po	rphyry
E05-24		116.60	125.62	QUARTZ VEIN ZONE	
E05-24		125.62	141.20	Hornblende Feldspar Po	rphyry
E05-24		141.20	141.20	End of Hole	

	Major Un	it	Minor Un	nit		
HOLE #	FROM	TO				Sample
						No.
E05-24	0.00				casing with no recovery	
E05-24	7.92				rubble of following unit	
E05-24	13.41	18.00			highly altered fsp porphyry	
					Harzburgite-Dunite - black, massive, indurated,	
					broken, rubbly from surface effects.Gradational	
E05-24	18.00	27.65			contact out of unit.	
					Hornblende Feldspar Porphyry - variable alteration,	
					orange/brown iron carbonate in veinlets and in	
					matrix; late stage P3 veinlets crosscut core at all	
E05-24	27.65	141.20			angles	
					P1 silica flooding with tr py at 50 tca amid orange	
E05-24				31.20	altered porphyry.	
					Accountant stone that would look nice on Ralph's	
					desk, given that the coarse gold bearing core goes	
					on Nick's desk. An amazing altered transition	
F05 04			20.40	20.20	between harzburgite stringers and porphyry. No	
E05-24			28.10	28.30	sulphides.	
E05-24			22.00	24.50	P2 qtz str, barren, leading into int sil aplitic section	
E05-24			32.90	34.50	with P1 qtz overprint. No sulphides Int iron cb in str and fx's at low angle tca in P1 silica	
					porphyry with P2 and P3 veinlets at steeper angles.	
					Nice rock, second only to accountant stone. Sandy	
					has a section to decorate the cook shack and Dave	
					the Butterfly Guy (Lepidopterid Leader??) has an	
E05-24			34.50	42.60	unmineralized chunk as well.	
100 24			34.50	42.00	diffillioralized offdrik do well.	
					what passes for unaltered porphyry in these boxes.	
					Coarse phenos, matrix supported. Int hm ox and Fe-	
					cb with 1-3 cm qtz str on fx's and at 45-60 tca. Tr py	
E05-24			42.60	44.90	and asp in veinlets; nothing in groundmass	
					alternating sequence of highly altered porphyry and	
					unaltered porphyry P1 throughout, scatt veinlets of	
					P2; tr py.Fe-cb alteration overprint but no altered	
					fsp's. aplitic bands on int P1 alteration with ct at 60	
E05-24			44.90	62.06	tca. Tr-1% py in groundmass	
					8 cm qtz str with fe-cb staining. Then highly altered	
E05-24			62.06	62.85	highly P1'd footwall. Py selv in str.	8101
					highly altered porphyry with 1-2% py in matrix and	
E05-24			62.85	64.00	xcutting qtz vnlts.	8102
					major hydrothermal access pathway (HAP) with flt.	
E05-24			64.00	65.20	17 cm QV at 45 tca, barren.	8103
					Hot stuff. A 22 cm QV and 8 cm QV at 60 tca in zone	
					where HAP's are defined by fxs with lim staining and	
					slightly altered fsp phenos. Py in blebs and	
E05-24			66.60	67.80	disseminated in matrix.	8104
					dominantly unaltered porphyry tr py in P3 veinlets;	
E05-24]	67.80	75.80	nothing in matrix	

HOLE #	FROM	ТО				Sample
					25 cm QV at 60 tca extensive lim stains especially at	
					contacts. Tr-1% py throughout. Sample ends with 12	
E05-24			75.80	78.12	cm QV as described	8105
					highly silicified, cb altered zone with intermittent qtz	
					str with py in P3 veinlets. Finally, a genetic	
E05-24			81.12	82.58	relationship is observed - P3 cuts P1.	8106
					int P1 silica with 2-3% py in unalt porphyry with	
					scattered silicified zones showing some degree of	
					brecciative (like that word?) rearrangement of fsp	
E05-24			85.57	86.63	phenos.	8107
					14 cm QV at 20 tca. No sulphides. Highly altered	
					brown, orange matrix (like 9 vein) plus 20 cm section	
E05-24			90.78	91.42	of int P1 flooding with tr py.	8108
					varying clast sizes of fsp in porphyry from medium	
					grained (as previous) to a very dense black 90%	
					matrix version. Scattered barren P2 veinlets at high	
E05-24			94.82	116.60	angles tca	
E05-24	116.60	125.62			TARGET QUARTZ VEIN ZONE	
					60% QV in porphyry matrix. Py, cp, asp and slight	
E05-24			116.60	117.60		8109
					sil flooded and alt porphyry. P2 vnlts at all angles tca;	
E05-24			117.60	118.60	1% matrix py.	8110
E05-24			118.60		as previous	8111
200 2 1			110.00	120.10	as providus	0111
E05-24			120.40	121 50	QV multiple phases, brown alt on fx's; no sulphides	8,112
E05-24			121.50		FW sample, similar to 8109	8113
E05-24			121.00	122.50	Standard supplied by lab.	8115
L03-24					slighlty altered porphyry in FW. 1% py diss in matrix.	0113
E05-24			122.90	123 00	Should be good as a blank.	8116
E05-24			123.90		unalt porphry, but 1-2% py in P1 silica flood	8117
L03-24			123.90	123.03	12 cm QV and 8 cm QV with subparallel bands of	0117
					black (carbon? Not molybdenite as seen in	
					· · · · · · · · · · · · · · · · · · ·	
					subsequent holes) and serpentized walls - grey,	
					green soft foliated. No vg, but py, cp, asp, mo, so	
E05.04			405.00	405.00	this str probably came up the vein pathway from the	0440
E05-24			125.03	125.62	copper porphyry at depth.	8118
					another one at 50 tca with py, asp, mo, followed by a	
					low angle P2 loaded with cp and mo. No py, probably	
E05-24			131.34	132.53	no gold, but more promise of a buried porphyry.	
					Back to med grained porphyry with scattered P3	
					veinlets with cp, py, and mo. Another target for	
E05-24			132.53	141.20	another day!	
1						

HOLE #	SAMPLE	FROM	TO
E05-24	8101	62.06	62.85
E05-24	8102	62.85	64.00
E05-24	8103	64.00	65.20
E05-24	8104	66.60	67.80
E05-24	8105	75.80	78.12
E05-24	8106	81.12	82.58
E05-24	8107	85.57	86.63
E05-24	8108	90.78	91.42
E05-24	8109	116.60	117.60
E05-24	8110	117.60	118.60
E05-24	8111	118.60	120.40
E05-24	8112	120.40	121.50
E05-24	8113	121.50	122.90
E05-24	8114	STANDAR	D?
E05-24	8115	STANDAR	D
E05-24	8116	122.90	123.90
E05-24	8117	123.90	125.03
E05-24	8118	125.03	125.62
E05-24	8115	STANDAR	D

E05-24 0 125 -74	HOLE #	DEPTH	BEARING	DIP
• • • • • • • • • • • • • • • • • • • •	E05-24	0	125	-74

	F	RECOVERY	,			RQD	
	To	Run	Recover	Ŋ	CORE	RUN	RQD
	(m)	(m)	Meas	Rec (%)	(cm)	(cm)	(%)
0.00	7.92	7.92	0.00	0.0%	0.00	7.92	0.00%
7.92	8.06	0.14	0.14	100.0%	0.00	0.14	0.00%
8.06	10.36	2.30	0.65	28.3%	0.00	2.30	0.00%
10.36	13.41	3.05	0.35	11.5%	0.00	3.05	0.00%
13.41	14.63	1.22	0.92	75.4%	0.00	1.22	0.00%
14.63	15.54	0.91	0.47	51.6%	0.00	0.91	0.00%
15.54	17.07	1.53	1.22	79.7%	0.12	1.53	7.84%
17.07	18.59	1.52	0.98	64.5%	0.00	1.52	0.00%
18.59	20.52	1.93	0.46	23.8%	0.10	1.93	5.18%
20.52	21.95	1.43	1.20	83.9%	0.10	1.43	6.99%
21.95	23.16	1.21	0.80	66.1%	0.20	1.21	16.53%
23.16	25.06	1.90	2.10	110.5%	0.37	1.90	19.47%
25.06	28.65	3.59	2.85	79.4%	0.22	3.59	6.13%
28.65	31.09	2.44	1.90	77.9%	0.00	2.44	0.00%
31.09	32.31	1.22	1.10	90.2%	0.00	1.22	0.00%
32.31	34.75	2.44	1.78	73.0%	1.15	2.44	47.13%
34.75	37.95	3.20	2.90	90.6%	1.10	3.20	34.38%
37.95	41.06	3.11	2.90	93.2%	0.58	3.11	18.65%
41.06	43.43	2.37	1.98	83.5%	0.60	2.37	25.32%
43.43	44.50	1.07	0.67	62.6%	0.26	1.07	24.30%
44.50	47.55	3.05	3.05	100.0%	1.91	3.05	62.62%
47.55	50.60	3.05	3.00	98.4%	1.44	3.05	47.21%
50.60	53.64	3.04	2.96	97.4%	2.36	3.04	77.63%
53.64	56.69	3.05	3.00	98.4%	2.75	3.05	90.16%
56.69	59.71	3.02	2.92	96.7%	0.70	3.02	23.18%
59.71	62.79	3.08	2.62	85.1%	2.00	3.08	64.94%
62.79	65.84	3.05	2.59	85.0%	1.96	3.05	64.26%
65.84	68.88	3.04	2.86	94.1%	1.54	3.04	50.66%
68.88	71.93	3.05	2.60	85.2%	0.81	3.05	26.56%
71.93	74.98	3.05	3.05	100.0%	1.81	3.05	59.34%
74.98	78.03	3.05	3.03	99.3%	2.39	3.05	78.36%
78.03	81.08	3.05	3.02	99.0%	2.37	3.05	77.70%
81.08	84.12	3.04	1.60	52.6%	2.12	3.04	69.74%
84.12	87.17	3.05	3.05	100.0%	1.60	3.05	52.46%
87.17	90.22	3.05	2.98	97.7%	1.45	3.05	47.54%
90.22	93.27	3.05	2.92	95.7%	1.97	3.05	64.59%
93.27 96.32	96.32	3.05	2.86	93.8%	2.60	3.05	85.25%
	99.36	3.04	3.05	100.3%	0.70	3.04	23.03%
99.36	102.41	3.05	3.05	100.0%	1.04	3.05	34.10%
102.41	105.43	3.02	3.05	101.0%	2.82	3.02	93.38%
105.43	108.51	3.08	3.05	99.0%	2.35	3.08	76.30%
108.51	111.56	3.05	2.96	97.0%	1.48	3.05	48.52%
111.56	117.65	6.09	2.36	38.8%	0.69	6.09	11.33%
117.65	120.70	3.05	1.47	48.2%	0.10	3.05	3.28%
120.70	122.53	1.83	2.40	131.1%	1.20	1.83	65.57%
122.53	125.58	3.05	2.40	78.7%	3.00	3.05	98.36%
125.58	128.63	3.05	3.05	100.0%	2.00	3.05	65.57%
128.63	131.68	3.05	3.05	100.0%	2.75	3.05	90.16%
131.68	134.73	3.05	3.05	100.0%	2.75	3.05	90.16%
134.73	137.78	3.05	3.05	100.0%	2.75	3.05	90.16%
137.78	140.83	3.05	3.05	100.0%	2.75	3.05	90.16%
140.83	141.12	0.29	0.30	103.4%	0.20	0.29	68.97%
141.12							

CORE BOX INTERVALS

From 7.92

15.50

21.10

26.20

31.80

37.02

42.60

53.64

29.69

64.72

72.68

78.61

84.12

96.23

99.40

105.46

111.10

117.90

123.20

128.60

134.74

101.86

31.80

37.02

42.60

53.64

29.69

64.72

71.19

77.14

82.58

88.60 93.86

99.40

111.10

117.90

123.20

128.60

134.74

141.12

Box

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

ELIZABETH PROPERTY DDH

E05-25

HOLE # PROPERTY NORTHING EASTING ELEVATION

E05-25		E
Elizabeth		[
	5,653,692	L
	531,127	
	2361	

BEARING	125	HOLE #
OIP	-74	START DATE
ENGTH	256.31	END DATE
'•		LOGGED BY

	E05-25
DATE	21-Jul-05
TE	25-Jul-05
D BY	JIM STEEL

OBJECTIVE

SUMMAF	RY LOG			E05-25
HOLE#	FROM		ТО	DESCRIPTION
E05-25		0.00	15.51	Casing
E05-25		15.51	21.64	Serpentinite
E05-25		21.64	22.80	Fault
E05-25		22.80	147.23	Porphyry
E05-25		147.23	154.26	Quartz Vein Zone
				Intercalated Porphyry
E05-25		154.26	192.70	and Serpentinite
E05-25		192.70	215.30	Serpentinite
E05-25		215.30	256.31	Porphyry
E05-25		256.31	256.31	End of Hole

1	Major Un	it	Minor Ur	nit		
HOLE #	FROM	TO				Sample
						No.
E05-25	0.00	15.51			casing	
					serpentinite; silicified intercalations of porphyry. Listen	
E05-25	15.51	21.64			to the drillers whine!	
E05-25	21.64				fault	
E05-25	22.80				13 cm QV in intensely altered porphyry.	8122
200 20		20.00			and the second second perpendicular	0.22
E05-25			23.30	29.26	highly alt porphyry cut by P1 silica and QV at 60 tca	
					30 cm QV and 12 cm QV at 60 tca with 1-2% py and tr-	
E05-25			30.86	31 06	1% asp in veinlets and in P1 silicified groundmass	8123
L03-23			30.00	31.30	1770 dap in veimeta and in 1777 amenica groundinasa	0123
					Diss py throughout in interval of highly altered porphyry	
					with lots of P1 and P2. If sample hits, scratch head,	
E05.05			05.00	00.00	• • • • • • • • • • • • • • • • • • • •	0404
E05-25			35.36	36.26	wonder out loud why, and backsplit HW and FW	8124
					QV 15 cm with fine filigree black bands, a key indicator	
E05-25			41.03	41.80	of gold in the upper section of hole 19.	8125
					QV at 60 tca with low angle mo veinlet in altered	
E05-25			43.40	44.00	porphyry	8126
					big clast of vfg porphyry in interval. Cse py blebs in low	
E05-25				52.20	angle P3 veinlets throughout	
					matrix supported porphyry; black with py-rich P3 in HW	
					and QV with serpentinitic selvedges in centre of	
E05-25			62.39	63.56	interval.	8127
					back to clast supported porphyry; sl chl alt of fsp's; P1	
E05-25				65.85	overprint with tr py.	
E05-25					10 cm QV tr py	
				0.100	Fe-cb in lamellar structures in altered porphyry at 75	
E05-25				68.95		
E05-25			71.80		QV with P1 flooding. No sulphides	
L03 23			7 1.00	71.50	With Thooding. No scipmace	
E05-25				74.10	low angle P3 veinlet with py and po on veinlet margin.	
E05-25					py on fx	
E05-25				70.03		
E05.05				04.00	intense chl alt groundmass in foliatee rock with fabric	
E05-25			-0-50		oriented at 75 tca	0.4.0.0
E05-25			79.58		internal sample of this interesting rock	8128
E05-25			80.90	82.58	low angle fe-cb veinlets with po in str in FW	8129
E05-25			82.58	84.26	fault with QV in fragments; silicified porphyry is host.	8130
					40 cm QV with QV rich porphyry with vuggy remnant	
					sulphides is fx's and some mo bearing lamellae. Hard	
					to be coherent when serving as mosquito food to the	
E05-25			85.07	86.57	hungry hordes.	8131
E05-25					GEOLOGICAL ODDITY	
E05-25			91.72	92.50	5% mo in QV and diss mo in P1 silicifed rock in sample	8132
					med grained porphyry with low angle P3 veinlets	
E05-25			98.60	99.40	loaded with cp, mo, and py.	8133
E05-25						`
•	•	•			•	

HOLE #	FROM	TO				Sample
					LONG BORING SECTION - medium grained porphyry;	
					scattered P3 veinlets with blebby py; but not nearly	
TOF 25			00.40	140 10	dense enough to serve as a decent source of smelter	
E05-25			99.40	142.10	P3 vuggy veinlets with lots of mo adding cp and py on	
E05-25			132.48	133.32		8134
E05-25			144.53		P1 with py	0104
200 20			111.00	1 10.12		
					High concentration of P3 veinlets with py, mo and first	
E05-25			146.12	147.23	appearance of P2 veinlets, barren. All strucs 60 tca	8135
					SHORT EXCITING SECTION - Target Quartz Vein	
E05-25	147.23	154.26			Zone	
E05-25			147.23	148.63	coarse py in P1 silicified porphyry	8136
E05-25			148.63	140.00	P1 silica brecciating underlying porphyry with 1-2% py throughout	8137
E05-25			149.08		continued	8138
L03-23			143.00	130.13	Continued	0130
					continued. FW of sample is brecciated and recemented	
E05-25			150.13	151.07	with intense P1 flooding and strong 2% py.	8139
E05-25			151.07	152.40	QV with high content of black filigree lines	8140
					QV identical to that of E05-19, but no visible gold	
E05-25			152.40		detected in a contest between driller Ken and geo Jim.	8141
E05-25			152.88	159.78	FW to true vein zone, the party continues mo in fine black lamellae with mo and py in P1 silica	
E05-25			152.88	154 26	flood away from more solid, perhaps P2 QV.	8142
L03 23			102.00	104.20	end of QV and silicified zone. Some lost core in this	0142
E05-25			154.26	156.30	interval or the last one.	8143
					P1 with py>mo>cp in veinlets at 60 tca in FW of sample	
E05-25			163.35	164.60	serp-like character to QV contacts with py, mo, cp.	8144
E05-25	169.10	169.47			Aplite dike	
E05-25			179.59	170.00	P1 flood with sericite underlying. Sharp ct at 60 tca. No sulphides	
E05-25	182.14	184.14	179.59	179.09	Aplite dike	1
E05-25	102.14	104.14		187 17	5 cm QV with py, cp. Mo. Clean ctws at 30 tca.	
E05-25	187.70	192.70			Intercalated serpentine and porphyry	1
E05-25	192.70				Serpentinite; as described	
E05-25	202.38	205.13			Aplite dike	
					Massive serpentinite and intercalated serpentinite/	
E05-25	205.13	215.30			porphyry.	
E05-25			213.79	215.20	15 cm QV.	8145
E05-25					Assay Blank Polyphase porphyry. Alt chl in HW of very coarse	8146
					grained porphyry; large angular phenos; extensive P1	
E05-25	215.30	221.80			with tr py	
					transition out of anything interesting (in the discovery	
E05-25	221.80	256.31			perspective) into unaltered porphyry.	
E05-25						
E05-25		256.31			END OF HOLE	

SAMPLE	FROM	TO
8122	22.80	23.30
8123	30.86	31.96
8124	35.36	36.26
8125	41.03	41.80
8126	43.40	44.00
8127	62.39	63.56
8128	79.58	80.90
8129	80.90	82.58
8130	82.58	84.26
8131	85.07	86.57
8132	91.72	92.50
8133	98.60	99.40
8134	132.48	133.32
8135	146.12	147.23
8136	147.23	154.18
8137	148.63	149.08
8138	149.08	150.13
8139	150.13	151.07
8140	151.07	152.40
8141	152.40	152.88
8142	152.88	154.26
8143	154.26	156.30
8144	163.35	164.60
8145	213.79	215.20
8146	BLANK	
	8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144	8122 22.80 8123 30.86 8124 35.36 8125 41.03 8126 43.40 8127 62.39 8128 79.58 8129 80.90 8130 82.58 8131 85.07 8132 91.72 8133 98.60 8134 132.48 8135 146.12 8136 147.23 8137 148.63 8138 149.08 8139 150.13 8140 151.07 8141 152.40 8142 152.88 8143 154.26 8144 163.35

F05-25 0 125 -74
E05-25 0 125 -74

From	To	RECOVERY Run	Recover	V	CORE	RQD RUN	RQD	CORE	BOX INTER'	VALS
(m)	(m)	(m)	Meas	Rec (%)	(cm)	(cm)	(%)	Box	From	То
15.51	16.61	1.10	0.25	22.7%	0.00	1.10	0.00%	1	15.51	21.24
16.61	19.57	2.96	1.85	62.6%	0.17	2.96	5.75%	2	21.24	26.64
19.57	21.64	2.07	1.00	48.2%	0.00	2.07	0.00%	3	26.64	32.22 38.20
21.64 23.16	23.16 26.21	1.52 3.05	0.85 2.10	55.9% 68.9%	0.00 0.69	1.52 3.05	0.00% 22.62%	4 5	32.22 38.20	43.80
26.21	29.26	3.05	1.90	62.3%	0.57	3.05	18.69%	6	43.80	49.55
29.26	32.31	3.05	2.20	72.1%	1.04	3.05	34.10%	7	49.55	55.19
32.31	35.36	3.05	3.05	100.0%	2.52	3.05	82.62%	8	55.19	61.04
35.36	38.40	3.04	3.05	100.3%	2.20	3.04	72.37%	9	61.04	65.85
38.40 41.45	41.45 44.50	3.05 3.05	2.95 2.75	96.7% 90.2%	1.15 1.56	3.05 3.05	37.70% 51.15%	10 11	65.85 72.68	72.68 78.61
44.50	47.55	3.05	3.05	100.0%	2.09	3.05	68.52%	12	78.61	84.12
47.55	50.60	3.05	2.23	73.1%	2.04	3.05	66.89%	13	84.12	96.23
50.60	53.64	3.04	3.00	98.7%	0.30	3.04	9.87%	14	96.23	101.86
53.64	56.69	3.05	2.52	82.6%	1.57	3.05	51.48%	15	101.86	107.35
56.69	59.74	3.05	3.02	99.0%	1.59	3.05	52.13%	16	107.35	113.30
59.74 62.79	62.79 65.84	3.05 3.05	3.01 2.95	98.7% 96.7%	2.03 1.77	3.05 3.05	66.56% 58.03%	17 18	113.30 119.15	119.15 124.75
65.84	68.88	3.04	3.00	98.7%	1.42	3.04	46.71%	19	124.75	130.65
68.88	71.93	3.05	2.98	97.7%	1.65	3.05	54.10%	20	130.65	136.43
71.93	74.98	3.05	2.95	96.7%	2.43	3.05	79.67%	21	136.43	142.10
74.98	78.03	3.05	2.92	95.7%	2.34	3.05	76.72%	22	142.10	148.05
78.03 81.08	81.08	3.05	3.02	99.0%	2.04	3.05	66.89%	23	148.05	154.18 159.78
81.08	84.12 87.17	3.04 3.05	2.65 2.87	87.2% 94.1%	0.90 1.95	3.04	29.61% 63.93%	24 25	154.18 159.78	165.42
87.17	90.22	3.05	3.03	99.3%	1.46	3.05	47.87%	26	165.42	170.50
90.22	93.27	3.05	3.00	98.4%	1.21	3.05	39.67%	27	170.50	176.56
93.27	96.32	3.05	3.01	98.7%	1.56	3.05	51.15%	28	176.56	182.66
96.32	99.36	3.04	2.93	96.4%	2.23	3.04	73.36%	29	182.66	187.70
99.36 102.41	102.41 105.46	3.05 3.05	2.92	95.7% 98.4%	2.20	3.05 3.05	72.13% 70.20%	30 31	187.70 193.20	193.20 199.94
102.41	103.46	3.05	3.00 2.85	93.4%	2.14 1.89	3.05	61.97%	32	199.94	204.10
108.51	111.56	3.05	3.02	99.0%	0.56	3.05	18.36%	33	204.10	210.09
111.56	114.60	3.04	2.89	95.1%	1.55	3.04	50.99%	34	210.09	205.67
114.60	116.82	2.22	1.82	82.0%	0.71	2.22	31.98%	35	205.67	221.80
116.82	120.70	3.88	2.98	76.8%	2.34	3.88	60.31%	36	221.80	227.38
120.70 123.75	123.75 126.80	3.05	3.05 3.05	100.0%	2.30 1.28	3.05	75.41% 41.97%	37	227.38 233.40	233.40
126.80	129.84	3.05 3.04	3.03	100.0% 99.0%	2.31	3.05 3.04	75.99%	38 39	239.40	244.67
129.84	132.89	3.05	3.02	99.0%	2.00	3.05	65.57%	40	244.67	250.30
132.89	135.95	3.06	2.98	97.4%	2.10	3.06	68.63%	41	250.30	256.31
135.95	139.02	3.07	3.03	98.7%	2.24	3.07	72.96%	42	256.31	254.81
139.02	142.04	3.02	3.05	101.0%	2.35	3.02	77.81%		254.81	EOH
142.04 145.08	145.08 148.13	3.04 3.05	3.04 3.05	100.0% 100.0%	2.14 1.74	3.04	70.39% 57.05%			
148.13	151.18	3.05	3.05	100.0%	0.28	3.05	9.18%			
151.18	154.23	3.05	3.05	100.0%	1.31	3.05	42.95%			
154.23	156.36	2.13	1.78	83.6%	1.04	2.13	48.83%			
156.36	157.28	0.92	0.75	81.5%	1.51	0.92	164.13%			
157.28 160.32	160.32 163.37	3.04	3.02 2.89	99.3% 94.8%	2.07 1.86	3.04 3.05	68.09% 60.98%			
163.37	166.42	3.05	3.05	100.0%	2.01	3.05	65.90%			
166.42	169.47	3.05	3.05	99.8%	2.15	3.05	70.49%			
169.47	172.55	3.08	3.05	99.0%	1.56	3.08	50.65%			
172.55	175.56	3.01	3.05	101.3%	2.17	3.01	72.09%			
175.56	178.61	3.05	3.05	100.0%	1.63	3.05	53.44%			
178.61 181.66	181.66 184.70	3.05 3.04	3.00 3.05	98.4% 100.3%	2.60 0.37	3.05 3.04	85.25% 12.17%			
184.70	187.76	3.04	3.05	99.7%	1.85	3.04	60.46%			
187.76	189.59	1.83	1.89	103.3%	0.96	1.83	52.46%			
189.59	192.63	3.04	3.05	100.3%	1.14	3.04	37.50%			
192.63	195.83	3.20	3.05	95.3%	0.40	3.20	12.50%			
195.83	202.08 205.13	6.25	6.42	102.7% 98.4%	1.72	6.25	27.52%			
202.08 205.13	209.09	3.05 3.96	3.00 3.75	98.4%	0.41 1.32	3.05 3.96	13.44% 33.33%			
209.09	211.07	1.98	1.50	75.8%	0.65	1.98	32.83%			
211.07	212.14	1.07	0.72	67.3%	0.17	1.07	15.89%			
212.14	215.19	3.05	3.05	100.0%	1.43	3.05	46.89%			
215.19	221.28	6.09	6.00	98.5%	5.08	6.09	83.42%			
221.28	224.33	3.05								
224.33 227.38	227.38 230.43	3.05 3.05								
230.43	233.48	3.05								
233.48	236.52	3.04								
236.52	239.53	3.01								
239.53	242.62	3.09								
242.62 245.67	245.67	3.05								
248.72	248.72 251.75	3.05								
251.75	254.81									

ELIZABETH PROPERTY DDH E05-26

J-PACIFIC GLD INC.

HOLE #
PROPERTY
NORTHING
EASTING
ELEVATION

=	
BEARING	
	Elizabeth
LENGTH	5,653,692
	531,127
	2361

	_
98	HOLE #
-65	START DATE
146.3	END DATE
_	LOGGED BY

	E05-26
Ξ	26-Jul-05
	28-Jul-05
	JIM STEEL

SUMMARY	LOG DDH			E05-26
HOLE#	FROM		TO	DESCRIPTION
E05-26		0.00	6.10	Casing
				Hornblende Feldspar
E05-26		6.10	69.70	Porphyry
E05-26		69.70	71.46	Quartz Vein Zone
				Hornblende Feldspar
E05-26		71.46	129.42	Porphyry
E05-26		129.42	133.37	Quartz Vein Zone
				Hornblende Feldspar
E05-26		133.37	146.30	Porphyry
E05-26		146.30	146.30	End of Hole

Page 1 of 2

	Major Un	it	Minor Ur	it	
HOLE #	FROM	TO			Sample
E05-26	0	6.1		Overburden, and for once the drillers don't explode drilling it	No.
E05-26	6.1	69.7		Hornblende Feldspar Porphyry; 'pry' in the following elucidat	ion.
E05-26				17.35 barren 5 cm QV at 60 tca	
E05-26				26.1 med grained pry, unalt, flt with QV rubble	
E05-26			36.4	37 QV zone in broken, siliceous alt pry	8147
E05-26				assay supplied standard of 18.16 g/t	8148
				No, I didn't need a break from logging after 3 boxes, but	
E05-26				don't want to forget resplitting 8026 from E05-19 Box 33	8149
E05-26				Nor 8027 from E05-19 Box 33	8150
E05-26				50.2 cont. med gra pry; flt P2 vns, P1 flooding	
				med gr pry intercalated with vfg pry. HAP with altered fsps	
E05-26				54.72 at 45 tca	
E05-26			55.1	55.73 P1 flood at 45 tca as proceeding HAP, and	
E05-26				58.09 here as well.	
E05-26			59.6	61.05 P1 flood, aplitic slight chl alt in med grained pry	
				P3 str with py at 50 tca in HW of zone of intense ox'n of	
E05-26			65.8	66.87 core. Major HAP.	8051
E05-26			69.25	69.7 more ox'n of pry at same tca	
E05-26	69.7	71.46		UPPER VEIN ZONE (SORT OF)	
				orange ox'n a la 9 vein (hopefully) with 2 x 10 cm P1 flood	
E05-26	71.46	129.42	71.46	72.25 with tr py. Consistent fabric at 45 tca	8052
				QV with flt at 75.4 QV is white with brown, black filigree	
E05-26			74.4	76.3 veinlets plus Qtz rich highly alt pry and flt at 76	8053
E05-26				LONG DULL SECTION	
				Zone of altered pry and HAP continues to 78. Thereafter	
				unaltered pry with scatt P2 and low angle P3 vnlts with tr	
E05-26				81.08 py, cut by micro fx's.	
				THE major highlight of boxes 13, 14, 15, and 16 is a 5 cm	
E05-26				100 QV with tr py here.	
				unaltered pry with low angle P3 vnlts with a trace of pyrite	
				characterizes boxes 17, 18, and 19, until box 20 suggests	
				scatt slight chl alt on fx's; scall low angle P1 silica flooding	
E05-26				124.9 and veinlets	
E05-26				THINGS START TO GET EXCITING	
				active flt with slight clay alteration; then HAP with rotated	
E05-26				125.2 fabric in P1 silicified pry from 126.35 to 126,55, so	

Page 2 of 2

HOLE #	FROM	TO				Sample
E05-26			125.87	127.37	QV with rusty network of ox'n fx's with tr py	8054
E05-26				128.3	P3 vnlts in HW of QV	
E05-26	129.42	133.37			VEIN ZONE	
E05-26			129.42	130.62	QV, orange, black filigree textures	8055
					Brecciated QV, recemented with silica with orange hem/lim	
E05-26			130.62	131.72	at tr moly in breccia frags	8056
					QV not as brecciated as prev; relict pry fabric visible. Flt at	
E05-26			131.72	132.4	132.4	8057
					Another high-grade 18.16 g/t blank, in a test of assay lab	
					independence that outdoes anything Macchiavelli could	
E05-26					have thought of (in the context of 43-101)	8058
					QV with flt on HW, FW. Broken core. Brecciated as 8057	
E05-26			132.4	132.95	with serpenitic character of HW contact.	8059
					barren QV on FW of vein system with high alteration ;	
E05-26			132.95	133.95	oxidised med graind pry, sil flooded on FW.	8060
					Footwall to the vein zone, glorious nothing; taxonomic	
					degrees of freedom if rock classification were Linnaean in	
E05-26	133.7	146.3		140.5	origin.	
					To EOH, scatt QV with mo; road to copper porphyry at	
E05-26					depth; some vfg porphyry. Another target for another day.	
		146.3			end of hole	

HOLE #	SAMPLE	FROM	TO
E05-26	8147	36.40	37.00
E05-26	8148	STANDARD)
E05-26	8051	65.80	66.87
E05-26	8052	71.46	72.25
E05-26	8053	74.40	76.30
E05-26	8054	125.87	127.37
E05-26	8055	129.42	133.37
E05-26	8056	130.62	131.72
E05-26	8057	131.72	132.40
E05-26	8058	STANDARD)
E05-26	8059	132.40	132.95
E05-26	8060	132.95	133.95

E05-26	8148 Standard 18.16 g/t Au
E05-26	8058 Standard 18.16 g/t Au

HOLE # DEPTH BEARING DIP
E05-26 0 98 -65

	F	RECOVERY	,			RQD	
From	To	Run	Recover	ry .	CORE	RUN	RQD
(m)	(m)	(m)	Meas	Rec (%)	(cm)	(cm)	(%)
0.00	6.10	6.10	0.70	11.5%	0.00	6.10	0.00%
6.10	7.32	1.22	0.95	77.9%	0.00	1.22	0.00%
7.32	10.36	3.04	0.65	21.4%	0.00	3.04	0.00%
10.36	12.80	2.44	0.30	12.3%	0.00	2.44	0.00%
12.80	14.17	1.37	0.92	67.2%	0.26	1.37	18.98%
14.17	17.07	2.90	1.54	53.1%	0.12	2.90	4.14%
17.07	19.66	2.59	1.20	46.3%	0.15	2.59	5.79%
19.66	21.03	1.37	1.38	100.6%	0.47	1.37	34.31%
21.03	23.60	2.57	2.04	79.4%	0.10	2.57	3.89%
23.60	26.21	2.61	2.06	78.9%	0.36	2.61	13.79%
26.21	28.65	2.44	2.44	100.0%	1.14	2.44	46.72%
28.65	31.70	3.05	3.05	100.0%	1.87	3.05	61.31%
31.70	34.75	3.05	2.95	96.7%	0.64	3.05	20.98%
34.75	37.80	3.05	3.00	98.4%	1.73	3.05	56.72%
37.80	40.84	3.04	2.00	65.8%	0.25	3.04	8.22%
40.84	42.98	2.14	1.17	54.7%	0.81	2.14	37.85%
42.98	44.50	1.52	1.52	100.0%	1.46	1.52	96.05%
44.50	47.55	3.05	3.00	98.4%	0.98	3.05	32.13%
47.55	50.60	3.05	2.92	95.7%	1.14	3.05	37.38%
50.60	53.40	2.80	2.80	100.0%	1.80	2.80	64.29%
53.40	56.54	3.14	3.03	96.5%	1.41	3.14	44.90%
56.54	59.39	2.85	2.85	100.0%	1.20	2.85	42.11%
59.39	62.76	3.37	3.05	90.5%	1.20	3.37	35.61%
62.76	65.84	3.08	3.00	97.4%	2.10	3.08	68.18%
65.84	68.88	3.04	3.03	99.7%	2.02	3.04	66.45%
68.88	71.93	3.05	2.91	95.4%	2.12	3.05	69.51%
71.93	74.98	3.05	3.05	100.0%	1.90	3.05	62.30%
74.98	81.08	6.10	6.10	100.0%	3.04	6.10	49.84%
81.08	87.17	6.09	6.09	100.0%	1.65	6.09	27.09%
87.17	89.78	2.61	2.61	100.0%	2.88	2.61	110.34%
89.78	92.81	3.03	2.99	98.7%	2.98	3.03	98.35%
92.81	95.86	3.05	2.80	91.8%	1.73	3.05	56.72%
95.86	98.91	3.05	3.05	100.0%	1.06	3.05	34.75%
98.91	101.96	3.05	3.05	100.0%	2.12	3.05	69.51%
101.96	105.00	3.04	3.01	99.0%	1.86	3.04	61.18%
105.00	108.05	3.05	3.04	99.7%	1.93	3.05	63.28%
108.05	111.25	3.20	3.00	93.7%	1.54	3.20	48.13%
111.25	114.25	3.00	3.00	100.0%	1.27	3.00	42.33%
114.25	117.50	3.25	1.04	32.0%	1.71	3.25	52.62%
117.50	118.70	1.20	1.20	100.0%	0.88	1.20	73.33%
118.70	120.70	2.00	2.00	100.0%	1.05	2.00	52.50%
120.70	123.75	3.05	2.04	66.9%	1.85	3.05	60.66%
123.75	125.88	2.13	2.13	100.0%	2.04	2.13	95.77%
125.88	128.93	3.05	1.14	37.4%	1.61	3.05	52.79%
128.93	131.98	3.05	2.51	82.3%	2.36	3.05	77.38%
131.98	133.35	1.37	1.37	100.0%	0.10	1.37	7.30%
133.35	135.94	2.59	2.59	100.0%	1.57	2.59	60.62%
135.94	138.99	3.05	3.05	100.0%	2.39	3.05	78.36%
138.99	142.04	3.05	1.23	40.3%	1.98	3.05	64.92%
142.04	145.08	3.04	3.02	99.3%	2.03	3.04	66.78%
145.08	146.30	1.22	1.22	100.0%	0.87	0.01	33.7370
1-10.00	. 10.00	1.22	1.22	. 55.576	5.07		

CORE BOX INTERVALS

From

20.23

25.63

30.75

36.30

42.24

48.10

53.86

59.39

72.68

78.61

84.12

96.23

101.86

107.35

113.30

119.15

124.75

130.65

136.43

142.10

148.05

154.18

То

12.60

20.23

25.63

30.75

36.30

42.24

48.10

53.86

59.39

65.70

71.60

77.34

83.13

88.70

94.51

99.10

106.00

111.95

117.60

123.40

129.10

134.90

140.50

146.30

Box

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

ELIZABETH PROPERTY

J-PACIFIC GOLD INC.

 NORTHING
 5,653,692
 BEARING
 110
 START DATE
 27-Jul-05

 EASTING
 531,127
 DIP
 -74
 END DATE
 6-Aug-05

 ELEVATION
 2,361
 LENGTH
 322.48
 LOGGED BY
 E.D. Frey

NOTE: UNITS IN METERS, BEARING & DIP IN DEGREES

OBJECTIVE TO TEST SOUTHWEST VEIN IN AREA OF DDH E05-24, 25 and 26

SUMMARY	LOG		DDH E05-27
HOLE#	FROM	ТО	DESCRIPTION
E05-27	0.00	15.24	Casing
E05-27	15.24	29.29	Feldspar Porphyry Diorite
E05-27	29.29	30.73	Quartz Veins
E05-27	30.73	36.96	Quartz Vein Zone
E05-27	36.96		Feldspar Porphyry Diorite
E05-27	99.64	100.34	Quartz Vein
E05-27	100.34	167.60	Feldspar Porphyry Diorite
E05-27	167.60	169.05	Quartz Vein Zone
E05-27	169.05	191.87	Feldspar Porphyry Diorite
E05-27	191.87	196.85	Quartz Vein Zone
E05-27	196.85	298.93	Feldspar Porphyry Diorite
E05-27	298.93	300.68	Quartz Veins
E05-27	300.68		Feldspar Porphyry Diorite
E05-27	322.48	322.48	End of Hole

DDH

E05-27

HOLE #	FROM (m)	TO (m) R UNITS	FROM (m) Minor U		ROCK TYPE	DESCRIPTION	SAMPLE
	WIASO	COMITS	IVIIIIOI C	I			
E05-27	0.00	15.24			OVERBURDEN / CASING		
E05-27	15.24	29.29			FELDSPAR PORPHYRY DIORITE	white plagioclase phenocrysts 2 mm to 1 cm, supported by fg-mg hornblende groundmass, >50% rock volume	
E05-27			15.24	15.72			G08061
E05-27 E05-27			15.72 16.36	17.37 17.00		rare white euhedral phenocryst to 1 cm, among subhedral majority; TR PY few QVs and seams; 1 cm TW, 40 TCA; minor HEM-LIM-PY contacts and seams	G08062
E05-27			17.37	19.70		1-2% fg PY disseminated with in porphyry	000002
E05-27			17.37	18.37		50% strongly broken; few QZ veinlets and vuggy seams with fg PY; minor LIM-HEM fractures	G08063
E05-27			19.70	20.12		QV; white, TR to 1% PY, TR MO specks	G08074
E05-27			20.41	21.45		90% strongly broken, crumbly, LIM-HEM fractures and grain coatings; QV, 10 cm TW, 60 TCA, TR PY specks	G08064
E05-27			21.90	22.20		as previous	
E05-27			23.75	24.75		as previous; 1% PY specks	G08065
E05-27 E05-27			24.75 25.62	27.29		few QVs; 1-5 cm TW, 80 TCA, cut by QZ stockworks seams, <5 TCA QV; 4 cm TW, 60 TCA	
E05-27			26.05			DIORITE xenolith; 6x5 cm; vfg-fg, TR PY	
E05-27	27.29	30.73			QUARTZ VEINS		
E05-27			27.29	28.19		moderately broken, 30% QVs; to 3 cm TW, 45 TCA; also few QVs cut by LIM seam stockworks, TR PY-SERI	G08066
E05-27			27.29	27.51		QV; strongly fractured, LIM-HEM altered, 75 TCA	
F05.07			00.40	00.57		QV; weakly broken (20%), few uneven fractures <10% TCA; mineral lineations (CHL) parallel to core axis; LIM-	
E05-27 E05-27			28.19 29.57	29.57 30.73		HEM fractures; 10% wispy to planar seams, flakes, specks MO-PY-CPY few QZ veinlets in patchy dull grey-green CHL altered porphyry	G08068
L00 21			20.01	50.75		Total de Vollindo in patery de groot of le altored perpris,	
E05-27	30.73	36.96			QUARTZ VEIN ZONE		
						QV; fg, clear, white; sharp U/C 50 TCA; central area coarsely pseudo-brecciated (to 8 cm) by dull orange LIM	
						seamed stockworks; U/C and L/C 5-10 mm TW, spaced LIM seams, 30-45 TCA; few patches, seams pale-	
E05-27			30.73	31.25		medium green CHL altered porphyry, TR PY disseminated throughout; central area ~10 cm strongly broken	G08069
						few QVs; 10-15 cm TW, 40 TCA; few LIM seams, 30-70 TCA, TR PY; smaller phenocrysts (to 2 mm) in	
E05-27			31.25	33.42		porphyry within 20 cm of L/C APLITE vein; fg-mg QZ-FELD, massive; sharp U/C, 45 TCA and L/C 35 TCA; patchy, re-crystallized clear-	
E05-27			33.42	34.09		grey QZ; fracture-sealed LIM seams; disseminated LIM-PY specks, TR fg-mg fluorite?	G08070
						several QVs; ~70% of interval, >20 cm total TW (from 1 cm each), 45 TCA slips; TR to 1% PY, bornite	
E05-27			34.35	36.00		(BORN) specks, 2-3% disseminated and wispy PY in patchy host porphyry	G08071
E05-27			36.28	36.96		APLITE; SIL, cut by few white QZ strings, U/C 45 TCA, L/C broken; red HEM-specularite (after PY?) specks, seams; 1-2% fresh PY disseminated specks, seams, clots; rare blue speck (BORN?)	G08072
200 2.			00.20	00.00			
E05-27	36.96	99.64			FELDSPAR PORPHYRY DIORITE		
E05-27			36.96	38.37		strong SIL-LIM 90% altered porphyry; cut by LIM-PY seams, fg PY specks, seams; rare BORN; LIM-PY seams dominate lower half interval	G08073
L03-21			30.30	30.37		30% SIL; few QVs; TR PY; veins cut, and are cut by, LIM seams and white QZ lenses, <3 TCA; few QZ	000070
E05-27			38.37	39.90		veinlets, TR PY;	
E05-27			40.30	42.06		FAULT; strongly fractured, broken and slickensided "unaltered" porphyry; 5-10 TCA; LIM specks pervasive, PY rare	
E05-27			42.06	45.02		few QZ veinlets; to 1 cm TW, 45 TCA; few CA seams to 5 mm, ~5 TCA	
E05-27			45.02	46.10		weakly broken and low angle (<5) TCA fractures, rare PY specks	
F05.07			40.40	40.00		continued even textured porphyry, crowded phenocrysts to 5 mm; weak CHL groundmass alteration; few QZ	
E05-27 E05-27			46.10 49.30	49.30 49.35		and CA veinlets to 1 cm TW, 45 TCA QV; 3.5 cm TW,35 TCA, TR PY specks	
200 2.			10.00	10.00		QVs; 5 & 8 cm TW; TR to 1% PY specks, wisps, seams; weak LIM U/C & L/C, CA seam 5 TCA; weak CHL	
E05-27			49.44	49.85		porphyry alteration in centre of interval	G08076
E05-27			51.18	51.30		QV; 2.5 cm TW, <5 TCA; weak LIM contacts and adjacent grain boundaries within porphyry; CA seams, 35-40 TCA adjacent to L/C	
E05-27			51.10	53.25		numerous lenses and veinlets QZ-CA, 2-5 mm TW, 40-60 TCA	
E05-27			54.10	54.65		weakly SIL phenocrysts and CHL froundmass; weakly fractured, all angles TCA, LIM-PY (TR) seams	
E05-27			54.65	57.35		few fractures TR PY-CHL, 30 TCA; CA-QZ seams, wisps <5 TCA	
						moderate SIL alteration; QV, ~45 cm TW, 30 TCA U/C, 40 TCA L/C; QV contains few clear-white QZ veinlets	
E05-27			57.35	58.03		within it, 2.5 cm TW, 30 TCA; nil-TR PY; fg-mg CHL porphyry groundmass; porpyhry coarsely phenocrystic	
	1					QV; 2-3 cm TW, 20 TCA; sharp LIM-PY contacts, TR PY clots; paralle LIM fractures below L/C, 25 TCA;	
E05-27	1		58.15	58.36		strong lineation on fractures, 15 TCA QV; 2-3 cm TW, 30-40 TCA, in centre of grey, strongly SIL-CHL; prophyry phenocrysts obscured; few	
E05-27			59.00	59.28		euhedral clots vfg PY; LIM altered fractures L/C, 40 TCA	
E05-27			60.18	60.37		LIM fractures 20 TCA, bounding 1 cm TW APLITE veinlet; several fractures with lineations 40 TCA	
E05-27	1		62.77	62.87		vfg QZ veinlet, clear to light grey, 1 cm TW, 30 TCA; weak LIM altered porphyry QV at 63.1: 3 cm TW, 40 TCA; few QVs. <1 cm, nil sulphides	
E05-27	1		63.10	65.28		QV at 63.1; 3 cm TW, 40 TCA; few QVs, <1 cm, nil sulphides QV; 6.5 cm TW, 40 TCA; dark grey L/C, CA seams light grey-white, to 1 cm TW, bordered by CA-CHL seams,	
E05-27			66.62	66.75		TR PY	
						fg CA-QZ filled fractures, wavy to bifurcating, to 12 mm TW, zero to <5 TCA, irregular lensing; QVs displaced	
E05-27	1		67.07 68.10	68.70		3 cm right-laterally downhole, along core axis;	
E05-27			68.10	71.04		rare cg euhedral homblende, to 3x10 mm, in groundmass QZ veinlet; 1 cm TW, 5 TCA; several 1 cm displacements by QZ-CA seams at L/C, 2cm TW, 90 TCA; QZ	
E05-27			71.04	71.36		veinlet cut by QV, 10 cm TW, 45 TCA; <1% clots PY 10 cm below L/C	
	1						
E05-27			71.01	72.11		QV; 2.5 cm TW, 45 TCA, rare PY; few LIM seams, fractures in cg porphyry below L/C, 1 cm phenocrysts QZ veinlet; 1 cm TW, 15 TCA; CA seams parallel to contacts; trace disseminated PY; lineations on LIM	
E05-27			73.10	73.25		fractures	
E05-27			75.75	76.39		weakly SIL porphyry, dark grey; few QZ-Ca seams, low to high angle TCA	
E05-27	1		76.39	83.28		mg-cg phenocrystic porphyry, 10% phenocrysts > 1 cm; trace to <1% PY disseminated	
E05-27 E05-27			76.97 77.20	77.03 83.28		CA vein; 1.5-3 cm TW, 30 TCA >20% groundmass green-pale green hornblende. CHL alteration	
E05-27			79.95	80.14		QV; 4 cm TW, 20 TCA, CHL seam contacts, trace PY specks	
E05-27	1		83.28	84.02		few QZ veinlets; <5 mm TW, 45 TCA;	G08077
E05-27	1		83.57	83.65		sheared, strongly broken porphyry; low angle TCA with brecciated QV (see next) three QVs; to 2 cm TW, <5 TCA; trace to 1% PY along contacts; QV at lower end of interval cut by CA veinlet,	
E05-27			83.65	83.73		three QVs; to 2 cm TW, <5 TCA; trace to 1% PY along contacts; QV at lower end of interval cut by CA veinlet, 5 mm TW, 80-90 TCA	
E05-27	1		83.73	83.95		QZ veinlet, few specks PY	
E05-27			83.95	84.02		clear-grey QZ veinlet; 5 mm TW, 20 TCA; 1-2% PY, trace CPY; CHL altered porphyry	
E05-27	1		84.02	93.45		weak to moderate CHL altered porphyry	
E05-27 E05-27			84.02 86.12	84.30 86.24		DIORITE XENOLITH, 4x2 cm, fg, grey; few QZ veinlets, 1 cm, 25 TCA wavy dark grey seams, 2-3 mm TW, 10-20 TCA, wispy to 1% dissseminated MO	
E05-27 E05-27			86.12 86.96			QV; 5 cm TW, 25 TCA, rare PY specks	
	•				•		

HOLF #	FROM (m)	TO (m)	FROM (m)	TO (m)	ROCK TYPE	DESCRIPTION	SAMPLE
	PROW (III)	10 (111)		, ,	ROCKTIFE	QV; white, 1-2 cm TW, <5 TCA; vfg to 2 mm clots PY,CPY, specks MO, trace malachite (MAL) on low core	
E05-27 E05-27			88.33 89.61	89.61 93.45		angle broken surfaces feldspar phenocrysts to 1 cm; patchy, weak CHL alteration	G08078
E05-27			93.45	93.81		porphyry weakly SIL, patchy CHL; phenocrysts <5 mm; QV, 15 mm, L/C 30 TCA, nil sulphides	
E05-27			95.30	96.25		LIM-CHL alteration and FAULT(?); strong LIM altered porphyry 20-25 TCA distinct U/C, LIM-SIL alteration intensity increases downhole	G08079
E05-27			95.30	95.47		orange LIM bleaching increases, few fractures 35 TCA	000013
E05-27 E05-27			95.47 95.65	95.65 95.85		FAULT; 35 TCA loose, sheared slices fg dull orange-brown CA-ANK QZ-CA vein, LIM fractures within, 45 TCA	
E05-27			95.85	96.00		LIM grain surfaces, 1% PY disseminated in porphyry	
E05-27			96.00	96.13		QV; 7 cm TW, 45 TCA; fg, white, trace fg PY seams	
E05-27			96.13	96.25		strong SIL-CHL alteration; 2 cm TW, low TCA; dark grey-black; 1-2% vvfg-vfg disseminated PY; cut by few CA seams	
E05-27			96.25	99.64		few QZ-CA and CA vein/lets, 1-2 cm TW, 25-80 TCA, nil sulphides	
E05-27	99.64	100.34			QUARTZ VEIN	white, fg, few CA seams; numerous LIM fractures mid-interval, trace PY	G08080
E05-27 E05-27	100.34	167.60	100.95	103.27	FELDSPAR PORPHYRY DIORITE	eight CA-EPID seams, 2-5 mm TW each, 60-80 TCA; some with lineations or slickensides 90 TCA	
E05-27			104.48	104.60		two QVs; 2.5 and 3 cm TW, trace PY	
E05-27			107.37	107.47		DIORITE dike; 10 cm TW, 60 TCA; dark grey-green, fg diorite, weakly magnetic, weakly SIL few QZ veinlets; few strong CHL alteration zones to 5 cm TW; e.g. 108.7: QZ veinlet 10-12 mm, 20 TCA, 3 cm	
E05-27			107.47	110.95		vfg clot PY adjacent; feldspar phenocrysts variable sizes, 2 mm to 1 cm	
E05-27 E05-27			111.00 113.30	111.10		LIM-SIL zone; 10 cm TW, 60 TCA; nil sulphides; few smaller zones <5 cm TW seams, clots green fluorite(?) 60 TCA, trace PY; cut QZ veinlet, 1 cm TW, <5 TCA, trace PY	
E05-27			114.50			groundmass euhedral hornblende laths to 1 cm	
E05-27			116.90	117.40		QZ veinlet; wavy, low angle TCA, trace PY sixteen zones weak CHL prophyry alteration; 2 to 48 cm TW, 70-90 TW	
E05-27 E05-27			116.90 122.95	124.73		DIORITE XENOLITH, to 6 cm	
E05-27			124.73	400.00		DIORITE XENOLITH, to 6 cm	000001
E05-27 E05-27			126.02 126.33	126.33 128.10		FAULT; SIL, strongly fractured to crumbly QV, ~6-8 cm TW, ~25 TCA; trace-1% disseminated PY few LIM seams; vfg QZ veinlet (127.59), 1 cm TW, 45 TCA, LIM seamed	G08081
E05-27			128.28	128.66		QZ veinlet; 1 cm TW, 10 TCA; clear-light grey	
E05-27			131.55	131.70		FAULT; crumbly fg QV, shear fractures and CHL seams; lineations of indeterminate orientation; trace-1% PY, trace CPY	G08083
E05-27			131.70	131.85		SIL porphyry; CHL slips at L/C	
E05-27			131.85	132.13		QV; zero to 5 TCA; 1-2% disseminated to massive vfg PY, trace CPY QZ veinlet; 2-5 mm, wavy 5 TCA; trace fg PY & LIM after PY; porphyry weak CHL alteration, pake green; L/C	
E05-27			134.77	136.95		cut by LIM-QZ seams , 50 TCA, trace PY	
E05-27			136.95	137.40		patchy pale green-dull green CHL altered groundmass; few QZ-CA seams, 20-30 TCA; weak LIM altered feldspar phenocrysts at L/C, trace PY, rare CPY	
EU5-27			136.95	137.40		as previous; and QZ veinlet 1 cm TW, low angle TCA; offset <1 cm by few QZ-CA veinlets, trace-1% PY-CPY	
F0F 07			407.05	400.00		within and adjacent to veinlets, trace MO, MAL; LIM slips(?) in lower 20 cm of interval, high and low angles	
E05-27			137.95	139.22		TCA, to 1% MAL moderately broken core; weak LIM fractures, low and high angles TCA; 1-2% disseminated PY and MAL, to 2	
E05-27			139.22	140.30		mm on shear slips and fractures	G08084
E05-27			140.30	140.90		weak SIL-LIM altered porphyry; grey-white QZ veinlet (140.64), seamed, trace PY specks; QV-CHL, 1 cm TW, 75 TCA; 1% PY, trace CPY-BORN within 1 cm adjacent to previous veinlet	
E05-27			140.90	141.43		weakly broken core; patch LIM fractures/slips	
E05-27 E05-27			142.35 142.40	142.70		SIL; pink-red seam (rhodonite?), 5 mm TW, 50 TCA, in 5 mm TW parallel CA-QZ seams QZ veinlet; zero to 5 TCA; trace PY-MAL-HEM (specularite)	
E05-27			143.55	144.15		uneven, low angle TCA fractures; LIM-PY to 1%, trace MAL	
E05-27			144.15	144.50		strong CHL alteration; black-green black, fg-mg CHL after hornblende groundmass; groundmass supported phenocrysts, few lineations on fractures	
E05-27			144.75	144.93		APLITE DIKE; fg, QZ-FELD, 12 cm TW, 40 TCA; trace PY-MAL-MOL specks	
E05-27 E05-27			144.93 149.50	149.50 150.00		weakly SIL porphyry, grey, cg weak CHL altered porphyry, trace clots PY; pale green phenocrysts	G08085
E03-21			149.50	130.00		three QZ-CA seams, 1 cm TW each, 40 TCA; pale gree, CHL atered phenocrysts and groundmass; trace vfg	000000
E05-27			150.57	150.68		PY clots within porphyry and adjacent to QVs	
E05-27 E05-27			151.55 152.16	152.16 155.35		APLITE DIKE; 3.5 cm TW, low angle TCA; trace PY-CPY DIORITE XENOLITH, dark grey, mg diorite	
				457.00		DIORITE-GABBRO DIKE; ~20 cm TW, 60-70 TCA; fg-mg, mg hornblende-pyroxene, magnetic; weak CHL-	
E05-27 E05-27			155.58 156.46	157.00 156.66		EPID alteration; >50% CHL-serpentine (SERP) slips parallel TCA at U/C and L/C QV; 15-20 cm TW, 20 TCA; trace PY clots; cuts magnetic dike	
E05-27			157.00			mg-cg porphyry; few seams and QZ veinlets, 2-15 mm TW; weak LIM contacts	
E05-27 E05-27			165.04 165.22	165.30		1 cm TW bleached, SIL porphyry; LIM fractures strong SIL-CHL porphyry alteration, dark grey;15 cm TW, 40 TCA; lineations on U/C	
E05-27			166.85	. 55.50		SIL porphyry; LIM fractures	
E05-27			166.96	167.05		QV; white, 6.5 TW, 70 TCA; LIM seam stockworks; trace disseminated and clots PY, few CPY specks; 2 cm displacements along core axis, on LIM fractures	G08086
			. 55.55	. 31 .00		QZ veinlet; white, 1 cm TW, wavy, low angle TCA; 1% PY, trace CPY specks to small clots; cut by LIM	
E05-27			167.38	167.43		fracture stockworks, more fractures low angles TCA than high angles TCA; within zone of strong SIL and weak CHL-LIM alteration	G08087
E05-27			167.43	167.43		lineations 45 TCA on open fractures	200001
E05 27	167.00	460.05			OLIARTZ VEIN ZONE		CUBUSS
E05-27	167.60	169.05			QUARTZ VEIN ZONE		G08088
F05.6=			107.00	100 ==		QZ flood; 30-60 TCA, bleached to dark CHL-LIM alteration; dull white QZ and weak LIM fracture stockworks;	
E05-27			167.60	168.55		trace to vvfg PY, rare CPY, possible VG within CHL-LIM fractures; broken core, trace LIM-HEM-PY -50% as previous; strong LIM broken surfaces; lower part SIL and weak CHL, grey-dull pale green; trace PY,	
E05-27			168.55	169.05		MO? Specks	G08090
E05-27	169.05	191.87			FELDSPAR PORPHYRY DIORITE	mq-cq porphyry; few phenocrysts 1 cm; few LIM fractures 80-90 TCA	
E05-27			170.40	170.78		QZ veinlet; 5-10 mm TW, <5 TCA; pale grey-clear, rare PY speck	
E05-27 E05-27			170.62 171.20	170.78 171.75		patch (XENOLITH?); GREY PORPHYRY, fg-mg groundmass; pale green CHL feldspar phenocrysts weak-moderate CHL altered phenocrysts	
E05-27			171.75	171.75		healed FAULT? fg, white-grey QZ-LIM seams, rare PY; 70 TCA	
E05.27			170 05	17/1 22		QZ flood; 1-15 mm TW, zero to <5 TCA; patchy, white-light grey-clear, trace PY; several offsets to 2 cm on CHL seams, 70 TCA	
E05-27			172.85	174.33		as previous; patchy light grey-white, in SIL-CHL zone; dark green-black CHL seams 50 TCA, at 175.23; nil-	
			175.00	175.33		trace PY specks	
E05-27	i l		175.63 175.85	175.85		porphyry phenocrysts cut by grey-green CHL seams 35 TCA weakly pervasive to patchy CHL altered porphyry, pale green	
E05-27 E05-27 E05-27							
E05-27			177.70	177.85		SIL altered groundmass; grey, 15 mm TW, 15 TCA	
E05-27 E05-27 E05-27						SIL altered groundmass; grey, 15 mm W, 15 TCA FAULT; gouge seams, 6 mm TW; dark green, grey-black CHL; within strong CHL-SIL alteration zone; trace PY specks	G08091
E05-27 E05-27			177.70 179.86 180.70	179.92		FAULT; gouge seams, 6 mm TW; dark green, grey-black CHL; within strong CHL-SIL alteration zone; trace PY	

HOLF #	FROM (m)	TO (m)	FROM (m)	TO (m)	ROCK TYPE	DESCRIPTION	SAMPLE
	T ICOM (III)	10 (111)			ROOKTITE	CHL alteration; dark green phenocrysts, grey-green matrix, diffuse contacts, 45 TCA; central rhodonite?	O/ IIVII EE
E05-27			180.76	180.83		seam, 2-3 mm TW, dark red wisov to 2.5 cm TW veinlet QZ; seocnd veinlet 1 cm TW, zero to < 5 TCA and patchy, light grey-clear, rare PY	
E05-27			180.83	182.72		specks; cut at L/C by CHL fracture; few LIM fractures	
E05-27			185.20	185.30		QV; 2 cm TW, 50 TCA; trace-1% PY specks, clots; trace MAL on LIM cross fractures; CHL halo adjacent to contacts	
E05-27			186.82	186.90		bleached alteration; sharp contacts: 35 TCA U/C, 40 TCA L/C; 2 cm TW, 40 TCA CHL-QZ seams L/C	
E05-27			190.95	191.05		APLITE DIKE; 9 cm TW, 65 TCA; fg QZ-FELD, rare hornblende; SIL	
E05-27	191.87	196.85			QUARTZ VEINS		
E05-27			191.87	192.24		QV; 1 cm TW, 15 TCA; grey-clear, 1-2% PY clots to 1 cm, trace CPY-MAL	G08092
E05-27 E05-27			192.39 192.97	192.45 193.98		DIORITE DIKE; 3-4 cm TW, 50 TCA, wavy contacts; biotite-hornblende diorite, magnetic QV; 1.5 cm TW, 15 TCA; as 191.87 (G08092), without MAL	G08093
E05-27 E05-27			194.54 196.70	195.04 196.85		many QVs, as previous (G08093), within magnetic porphyry; central CA seam 5-10 mm TW; rare PY specks QV; 2 cm TW, 35 TCA; trace PY specks, clots; MO seam L/C	G08094
			100.70	100.00		at, 2 am m, ac ron, according to scan 2 a	000001
E05-27	196.85	298.93			FELDSPAR PORPHYRY DIORITE	patchy areas bleached (SIL) feldspars, green CHL altered groundmass; few low angle TCA QVs without	
E05-27			196.85	200.93		sulphides	
E05-27			200.93	201.20		patchy magnetic areas throughout; strong CHL zones, dark green, to 5 cm TW, 50 TCA, diffuse contacts; e.g. 201.01-201.09; minor areas of bleaching (SIL) and weak CHL alteration	
E05-27			201.20	201.46		QV; clear-grey, low angle TCA; cut by APLITE DIKE, 4 cm TW, 30 TCA;	
E05-27			204.56	205.21		two intersecting QVs; 3-4 cm TW, 25 TCA; vvfg LIM-PY on CHL contacts and wavy internal seams, rare 1 cm CPY clot	G08096
E05-27			205.46	205.74		APLITE DIKE; 30 TCA, fg QZ-FELD, minor homblende	000030
E05-27			208.71	208.75		QV; 2 cm TW, 60 TCA; white, trace clots PY, CPY; CA-CHL seams in central 5 cm	
E05-27 E05-27			208.85 209.67	211.14 209.98		CA-CHL seams; 2-3 mm TW, <3 TCA; some are stacked thrust slices; QV; 11 cm TW, U/C 25 TCA, L/C 30 TCA	
						two QZ veinlets; parallel, 3 and 20 mm TW, mg grey-white, trace PY; APLITE DIKE; grey, fg QZ-FELD, U/C	
E05-27 E05-27			212.32 213.12			70 TCA, L/C 45 TCA; rare PY groundmass weak CHL alteration, magnetic	
E05-27 E05-27			216.00 218.24	216.70 219.80		many rough LIM fractures along core axis and few QZ veinlets low angle TCA; grey SIL porphyry, trace PY patchy moderate SIL flooding; weak zones CHL alteration 20 TCA	
E05-27			218.28	218.41		QZ veinlet; 1 cm TW, 15 TCA; grey QZ, LIM fracture contacts	
E05-27			218.51	218.71 221.20		APLITE DIKE; 8 cm TW, 40-60 TCA, fg QZ-FELD	
E05-27 E05-27			219.80 220.00	220.08		porphyry magnetic, weak CHL zone 20 TCA; few LIM fractures 40-60 TCA QV; 2 cm TW, 20 TCA; clear grey, outer 5 mm bleached	
E05-27			220.45	221.03		SIL porphyry, weak bleaching 5 TCA	
E05-27			221.20	221.54		weak SIL porphyry; few anastomosing seams PY, surrounding QZ and FELD grains; slice magnetic fg DIORITE 221.21-221.25	
						weak CHL alteration, sharp U/C and L/C, 50 TCA; mg-cg subhedral groundmass hornblende very pale yellow	
E05-27			221.54	221.58		green, supports phenocrysts QV; 50 TCA, sharp U/C, wavy L/C; trace PY, MO; 5% wisps, seams, lenses CHL, PY, 60-70 TCA; few LIM	G08097
E05-27			221.58	222.08		fractures in lower 20 CM	
E05-27 E05-27			222.08 222.22	222.22 223.04		strong, dark CHL alteration; CA-QZ veinlets to 1 cm TW, trace PY weak CHL alteration	
E05-27			223.04	223.18		strong CHL alteration; dark green hornblende groundmass, light grey FELD phenocrysts < 1 cm	
E05-27 E05-27			223.40 223.72	223.72 223.77		magnetic porphyry; grey QZ veinlet, 45 TCA QV and CHL seams; 1.5 cm TW, 60 TCA; CA seams 45 TCA	
200 27			220.12	220.11		crowded phenocrysts, mainly groundmass supported; patchy, weak CHL altered phenocrysts, pale green;	
E05-27 E05-27			223.90 225.33	231.54 226.06		weakly magnetic porphyry dark green CHL halo adjacent to Qz veinlets and vfg contact seams	
L03-27			225.55	220.00		QV; white-clear, mottled; 15 cm TW, 45 TCA; 10% pseudo-breccia of fg CHL altered DIORITE XENOLITHS; 1-	
E05-27			225.72	225.89		3% PY, lesser ASP, CHL seams, QZ seams cut vein contacts; pale green hornblende groundmass adjacent to L/C of QV	G08098
E03-21			223.12	223.69		10 D 0 0 QV	000030
E05-27			226.77	227.20		EPID and CA seams; <5 mm TW, <5 TCA; wavy; cut at upper end by Qz veinlet, 1 cm TW, 50 TCA, trace PY strong CHL-CA seams-stockworks, minor SERI, EPID, rare PY speck; CHL fractures 45 TCA	
E05-27			227.48	227.62		strong CHL alteration; minor fg biotite, dark green hornblende (to 1 cm) groundmass; four QVs, 2.5, 4-5, 9 and	
E05-27			229.26	230.73		10 cm TWs, 60-75 TCA; CHL contacts, trace PY	
E05-27			230.73	231.54		APLITE; strong SIL-LIM; weakly CHL QV; 12 cm TW, U/C 55 TCA, L/C 50 TCA; sharp CHL contacts, vfg-fg PY-LIM to 1%, trace MO; rare specks	
E05-27			231.12	231.26		fresh PY	G08099
E05-27			231.26	231.45		QZ veinlets; to 1 cm TW; white, 1% PY; specks, wisps ASP QV; 3 cm TW, 30 TCA; L/C 40 TCA, a CHL slip, lineated 85 TCA; U/C sharp planar to swirled CHL seams,	
E05-27			231.45			vvfg-vfg PY, ASP, MO; all <10%, trace disseminated	
E05-27 E05-27			231.54 231.65	231.73 231.68		weak SIL-CHL; groundmass hornblende, minor biotite QV; 1-2 cm TW, 55 TCA	
E05-27			231.73	234.74		few pale CHL patches	
E05-27			233.23	235 00		DIORITE XENOLITH; fg-mg, 3x1.5 cm	
E05-27 E05-27			234.74 236.19	235.80 236.31		patchy QZ flooding, clear-grey; weak CHL-EPID few QZ-CHL seams; U/C and L/C are FAULT GOUGE; in weak CHL-SIL altered porphyry	
E05-27			236.48	237.25		APLITE; SIL, orange-grey; 1% fg hornblende; U/C 30 TCA, L/C 25 TCA	
E05-27 E05-27			238.08 238.82	238.23 239.10		QV; 3 cm TW, 25 TCA; 1% coarse (to 1cm) clots CPY>PY; <1% CHL-EPID specks, wisps APLITE; SIL, orange-grey; strong CHL to 239.23; sharp U?C 65 TCA, diffuse L/C	
E05-27			239.50	239.64		QZ flooding; diffuse, white-bleached porphyry	
E05-27 E05-27			239.64 239.96	240.44 240.04		crowded feldspar phenocrysts>>groundmass; phenocrysts small, to 5 mm strong EPID alteration zone adjacent to EPID-QZ-CA seams, 1 cm TW, 55 TCA	
E05-27			240.16			APLITE; SIL, patchy to vein form; 3 cm TW QV at U/C; trace CPY clot and MO specks	
E05-27 E05-27			240.44 241.00	241.00 241.06		porphyry coarsely phenocrystic; >70% phenocrysts, groundmass hornblende <3 mm APLITE DIKE; 3 cm TW, 40-50 TCA	
E05-27			241.00	241.06		APLITE DIKE; 3 cm TW, 40-50 TCA APLITE DIKE; 5.5 cm TW, 40-50 TCA	
E05-27			241.58	241.63		weak bleaching, 3.5 cm TW, 60 TCA	
E05-27 E05-27			243.15 244.24	243.40 244.34		four QZ veinlets; grey-white, 2 mm to 1 cm TW, 60 TCA; trace MO, PY specks weak CHL-SIL alteration; 8 cm TW; CHL seam 5 mm, 50 TCA at L/C	
E05-27			245.60			QZ veinlet; <5 TCA; 5-15% CPY-PY clots to 10x15 mm; trace fg MO specks	G08100
E0E 07			240 44	252.70		fg-cg porphyry, even textured, groundmass supported phenocrysts; few magnetic areas; rare patches weak	
E05-27 E05-27			246.11 250.63	252.73 250.89		CHL, pale green prophyry; few QZ veinlets to 1 cm TW, nil-trace sulphides QV; 1.5 cm TW, 15 TCA; 1-2% fg, small (<5 mm) clots PY, CPY, rare specks MO	
E05-27			252.78	253.14		QZ veinlet and fg CHL, patchy SIL, 45-80 TCA	
E05-27 E05-27			252.97 253.14	253.32 258.48		wavy QZ veinlet 2-5 mm TW, <3 TCA; cuts previous few weak CHL zones, pale green porphyry	
E05-27			256.02	256.76		QZ veinlet, 3-10 mm TW, 5 TCA;	
	1	l	258.00	258.25		weakly bleached-SIL porphyry	
E05-27 E05-27			258.17	258.86		QZ veinlet; as 256.02; trace small clots PY, CPY	

	FROM (m)	TO (m)	FROM (m)	TO (m)	ROCK TYPE	DESCRIPTION	SAMPLE
05-27			259.07	262.12		several QZ veinlets, as 258.17	
05-27			262.17	262.31		several QZ-CA-CHL seams, 55 TCA, trace PY	
05-27			263.88	264.00		APLITE DIKE; 55-60 TCA, with porphyry inclusions	
05-27			264.12	265.68		continuous to en echelon QZ veinlets, low angle TCA; patchy white-clear-grey; as as 258.17, rare PY	
05-27			265.26	269.95		CHL altered FELD, phenocrysts pale light green; few QZ veinlets	
05-27			268.80	268.84		QV; 55 TCA; weak CHL, trace PY, CPY on contacts; CHL gouge seam U/C	
05-27			269.00	270.36		QZ veinlet, as 258.17, trace PY	
05-27			270.78	271.00		QZ veinlet, as 258.17, trace PY	
05-27			271.12	271.22		bleach patches and weak CHL	
05-27			271.38	271.42		QZ veinlet; 1 cm TW, 60 TCA; nil sulphides	
05-27			271.56	271.90		strong CHL alteration, 3 cm TW; CHL-LIM seam 60 TCA	
05-27			271.90	272.50		patchy QZ flooding-weak CHL alteration, trace PY	
05-27			273.75			EPID-QZ seam, 1 cm TW, 70 TCA	
						strong CHL zone; QZ-CHL-CA seams 3 cm TW, 50 TCA; 1% PY grains, clots, trace MO, CPY at 275.14-	
05-27			275.00	275.23		275.18	G08202
05-27			275.56	277.00		patchy light green CHL altered porphyry	000202
105-27			2/5.56	211.00			
						QV; 2 cm TW, <5 TCA wavy; <1% large clots to 5x1 cm vfg PY, rare CPY; trace-1% specks, wisps PY, CPY in	
05-27			277.61	279.38		adjacent porphyry	
05-27			279.38	279.48		QV; white, 7 cm TW, 70 TCA; trace PY along contacts, few CHL clots	
E05-27			279.48	283.00		weak CHL porphyry, minor biotite (<3%) in homblende groundmass; few QZ veinlets, 5-10 mm TW, 5-45 TCA	
05-27				286.00			
			283.00			as previous; and en echelon QZ veinlets, zero to <5 TCA	
05-27			286.15	286.70		anastomosing CA seams, most <5 TCA, few with LIM	
						moderate CHL alteration, phenocrysts deeper dull green; few QZ and CA veinlets, 5 mm to 3 cm TW, 60-70	
05-27			286.94	288.82		TCA; 3 cm veinlet within strong CHL porphyry at 288.24-288.32; bleached 288.55-288.65	
05-27			289.10	291.00		few LIM fractures < 5 TCA wavy and >50 TCA	
05-27			289.93	290.16		weakly vuggy, LIM grain boundaries, rare PY specks; QV, 2.5 cm TW, 60 TCA	
200 21							
			290.62	290.65		weakly vuggy, as previous	
			290.82	291.00		weakly vuggy, as previous; moderately crumbly	
			290.21	290.43		QZ veinlet; <1 cm TW, 20 TCA; trace PY, rare MO specks	
			291.23	291.75		moderate to strong CHL alteration; QZ-CHL seams, 1-2 cm TW, 55 TCA	
			291.92	292.14		CHL-weak EPID alteration; three QZ-CA seams, <5 mm within CHL seams	
			292.34	297.92		moderate CHL cg (to 1 cm) groundmass alteration	
			202.01	201.02		mg-cg porphyry; trace weak CHL altered phenocrysts; weakly magnetic in part, few QZ veinlets to 1 cm TW,	
			297.92	303.66		55-60 TCA	
						en echelon QVs; to 2 cm TW, <5 to 20 TCA; white QZ with pale pink patches; >20% massive PY as euhedral	
	298.93	300.68	1		QUARTZ-MASSIVE PY VEINS	clots, trace CPY within PY clots, minor ASP(?)	G08203
	296.93	300.00			QUARTZ-WASSIVE PT VEINS	ciois, trace CP1 within P1 ciois, minor ASP(?)	G06203
						few QZ veinlets, low angle TCA, white-dark grey, nil-trace PY, rare CPY; weak CHL porphyry alteration; cq	
						phenocrysts, most ~1 cm, few megacrysts to 1.5 cm; few LIM seams and cross-cutting QZ veinlets (within	
	200.00	322.48			FELDSPAR PORPHYRY DIORITE	veinlets)	
	300.68	322.40			PELDSPAR PORPHIRI DIORITE		
			307.80	307.95		moderate to strong CHL alteration	
]]			lineations parallel to core axis, on CHL seam at U/C QV; QV, white-grey, 11 cm TW,80 TCA; coarse PY clots	
	1		307.84	307.95		at L/C; central interval of pale green CA-EPID seams, wisps	
	1	322.48]			· · · · · · · · · · · · · · · · · · ·	
		E.O.H.					
]				
	1		1				
	1]				
	1]				
	1]				

		SAMPLE F	FROM (m)	TO (m) LI	ENGTH	Au ppb	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
E05-		G08061	15.24	15.72	0.48	30	< 0.2	0.69	35	35	<5	0.57	<1	6	72	39	1.38	<10	0.48	130	1	0.04	10	440	8	<5	<20	25	0.10	<10	42	<10	4	16
E05-		G08062	16.36	17.00	0.64	30	< 0.2	0.99	65	50	<5	1.15	<1	9	57	40	2.10	<10	0.80	190	1	0.04	12	800	8	<5	<20	29	0.12	<10	68	<10	4	36
E05-		G08063	17.37	18.37	1.00	30	0.2	0.78	1220	35	<5	0.53	3	11	70	130	2.33	<10	0.77	154	25	0.04	23	880	10	10	<20	21	0.12	<10	69	<10	4	27
E05-	27 (G08064	20.41	21.45	1.04	30	< 0.2	0.68	410	25	<5	1.31	<1	7	49	82	1.99	<10	0.66	175	2	0.04	16	740	6	<5	<20	42	0.04	<10	55	<10	6	22
E05-	27 (G08065	23.75	24.75	1.00	300	0.5	1.03	2510	50	<5	5.72	<1	8	64	196	2.79	<10	0.92	410	5	0.04	7	690	8	30	<20	123	0.05	<10	71	<10	6	29
E05-		G08066	27.29	28.19	0.90	30	0.7	0.79	285	75	10	2.33	<1	8	74	43	2.22	<10	0.64	369	50	0.02	11	790	32	<5	<20	111	< 0.01	<10	39	<10	7	26
			STANDARD	=0.651 g/t		620	< 0.2	0.21	<5	5	<5	0.19	<1	<1	2	2	0.26	<10	0.05	20	<1	0.13	1	740	4	<5	<20	3	< 0.01	<10	<1	<10	3	2
E05-		G08068	28.19	29.57	1.38	570	5.4	< 0.01	2710	10	15	0.84	9	<1	124	137	0.58	<10	0.02	104	13	< 0.01	19	30	260	10	<20	43	< 0.01	<10	1	<10	<1	214
E05-		G08069	30.73	31.25	0.52	30	0.2	0.59	100	20	<5	2.59	<1	4	67	37	1.54	<10	0.48	286	18	0.03	9	460	12	<5	<20	117	< 0.01	<10	26	<10	7	37
E05-		G08070	33.42	34.09	0.67	30	< 0.2	0.39	55	15	<5	1.37	<1	4	72	36	1.47	<10	0.40	271	5	0.03	7	410	10	<5	<20	48	< 0.01	<10	21	<10	7	19
E05-		G08071	34.35	36.00	1.65	30	1.1	0.84	25	15	35	2.10	<1	9	76	86	3.16	<10	1.07	501	20	0.03	16	950	48	<5	<20	98	< 0.01	<10	56	<10	10	38
E05-		G08072	36.28	36.96	0.68	30	0.2	0.12	15	20	<5	1.48	<1	2	41	56	0.58	10	0.08	80	11	0.05	9	200	12	<5	<20	85	< 0.01	<10	5	<10	3	7
E05-		G08073	36.96	38.37	1.41	30	0.5	0.27	45	20	10	1.20	<1	3	77	36	1.01	10	0.22	140	12	0.04	6	210	16	<5	<20	57	< 0.01	<10	9	<10	4	13
E05-		G08074	19.10	20.12	1.02	30	< 0.2	0.24	355	15	<5	0.71	<1	3	63	33	0.73	<10	0.17	74	1	0.05	8	110	8	<5	<20	31	0.02	<10	15	<10	4	8
E05-			ASSAY BLAI			30	< 0.2	0.94	<5	90	<5	0.83	<1	6	37	<1	1.89	<10	0.62	518	<1	0.03	2	890	10	<5	<20	49	0.12	<10	34	<10	5	40
E05-		G08076	49.44	49.85	0.41	30	< 0.2	0.40	10	130	<5	1.67	<1	4	59	77	1.16	<10	0.32	146	1	0.05	12	340	10	<5	<20	41	0.06	<10	31	<10	3	13
E05-		G08077	83.28	84.02	0.74	560	0.6	1.00	1215	65	5	3.03	3	9	81	83	2.69	<10	0.84	380	43	0.02	16	860	26	5	<20	110	0.04	<10	43	<10	6	43
E05-		G08078	88.33	89.61	1.28	30	0.6	0.38	5	105	<5	2.30	<1	12	78	618	3.14	<10	1.14	403	43	< 0.01	83	1150	12	<5	<20	97	0.14	<10	80	<10	8	55
E05-		G08079	95.26	96.25	0.99	80	0.7	0.82	335	40	10	3.83	<1	8	72	81	2.51	<10	0.73	437	61	< 0.01	15	790	20	<5	<20	246	0.03	<10	32	<10	7	31
E05-		G08080	99.64	100.34	0.70	30	0.2	0.06	10	<5	<5	1.05	<1	<1	144	4	0.36	<10	0.02	107	16	< 0.01	2	50	4	<5	<20	70	<0.01	<10	<1	<10	<1	<1
E05-		G08081	126.02	126.33	0.31	80	0.6	0.73	130	20	<5	3.90	<1	6	55	85	2.10	<10	0.64	424	27	< 0.01	14	810	10	<5	<20	208	<0.01	<10	18	<10	8	22
E05-			ASSAY BLAI			30	< 0.2	0.93	<5	90	<5	0.84	<1	6	36	<1	1.88	<10	0.61	513	<1	0.03	2	910	10	<5	<20	48	0.11	<10	34	<10	5	40
E05-		G08083	131.55	132.13	0.58	30	0.2	1.23	10	20	<5	3.16	<1	9	52	80	2.72	<10	1.29	525	26	0.02	14	1070	18	<5	<20	154	0.10	<10	64	<10	10	40
E05-		G08084	139.29	140.30	1.01	30	2.1	< 0.01	20	140	<5	3.40	<1	10	76	2307	2.91	<10	1.14	544	17	< 0.01	296	790	12	<5	<20	98	<0.01	<10	52	<10	9	62
E05-		G08085	150.42	150.68	0.26	30	<0.2	1.45	<5	80	<5	2.77	<1	12	75	47	3.34	<10	1.39	463	1	0.03	12	1000	10	<5	<20	167	0.09	<10	75	<10	9	33
E05-		G08086	166.85	167.28	0.43	130	0.7	0.07	70	15	<5	3.10	<1	15	62	473	3.85	<10	1.43	687	7	< 0.01	71	1360	10	<5	<20	294	<0.01	<10	42	<10	11	55 47
E05-		G08087	167.28	167.60	0.32	140	0.8	< 0.01	70	20	<5	2.74	<1	11	81	608	3.19	<10	1.19	550	21	< 0.01	86	1080	8	<5	<20	249	<0.01	<10	25 7	<10	10	18
E05-		G08088	167.60	168.55	0.95	580	1.3	0.04	1735	20	<5	1.69	4	5	102	136	1.43	<10	0.36	268	21	< 0.01	21	420	10	10	<20	128	<0.01	<10		<10	5	18
E05-		G08089 3	STANDARD 168.55	=0.651 g/ 169.05	0.50	680 3120	< 0.2	0.21	<5 1445	15	<5 <5	0.19 2.92	<1	<1 10	47	71	0.26 2.56	<10 <10	0.05	22 495	<1 14	0.12 <0.01	1 15	750 840	10	<5 10	<20	4 159	<0.01	<10	10	<10	4	34
E05-		G08090 G08091	179.76	180.00	0.50	130	0.5	1.11	1445	20	<5 <5	2.92	4	10	74	109	2.56	<10	0.71 1.15	495 428	2	0.02	21	900	14	<5	<20 <20	106	<0.01 0.03	<10 <10	61	<10 <10	7	43
E05-		G08091	191.87	192.24	0.24	30	1.2	<0.01	<5	20	<5	1.29	<1	15	76	1927	2.77	<10	0.85	247	6	< 0.02	253	1290	10	<5	<20	75	0.03	<10	70	<10	,	43 57
E05-		G08092 G08093	192.97	193.98	1.01	40	2.5	<0.01	5	55	<5	2.04	<1	15	78	2854	3.23	<10	1.14	363	2	<0.01	368	1150	12	<5	<20	117	0.15	<10	85	<10	5	73
E05-		G08093	196.60	197.00	0.40	30	0.6	1.31	<5	55	15	3.49	<1	12	60	66	3.57	<10	1.61	508	2262	0.03	17	1510	64	<5	<20	135	0.13	<10	123	<10	a	7.5 5.5
E05-			ASSAY BLAI		0.40	30	<0.2	0.94	<5	80	<5	0.85	<1	6	37	<1	1.86	<10	0.60	499	5	0.03	''	830	10	<5	<20	50	0.11	<10	34	<10	5	39
E05-		G08096		205.21	0.65	30	1.6	<0.01	<5	20	<5	1.04	<1	12	90	1090	1.96	<10	0.58	194	77	< 0.03	143	620	8	<5	<20	73	0.13	<10	53	<10	4	57
E05-		G08097	221.54	222.22	0.68	590	1.6	0.33	2630	10	<5	1.88	6	5	90	56	1.53	<10	0.37	231	10	<0.01	10	430	10	<5	<20	85	<0.01	<10	13	<10	4	15
E05-		G08098	225.55	226.06	0.51	1270	0.8	1.08	1020	10	<5	2.65	2	11	82	57	2.72	<10	0.98	443	25	<0.01	14	870	16	<5	<20	123	<0.01	<10	50	<10	8	31
E05-		G08099	231.05	231.54	0.49	1140	1.4	0.35	2810	15	5	2.12	6	8	85	68	2.46	<10	0.66	330	3	<0.01	15	730	12	10	<20	188	<0.01	<10	16	<10	7	36
		G08100		246.11	0.51	30	9.2	< 0.01	<5	40	<5	1.10	2	15	84	6448	2.80	<10	0.72	215	8	<0.01	820	620	14	<5	<20	112	0.14	<10	54	<10	4	131
200-	21	000100	243.00	240.11	0.51	30	3.2	Q0.01	43	40		1.10	-	15	04	0440	2.00	<10	0.72	213	0	CO.01	020	020	14	ζ3	120	112	0.14	<10	34	<10	4	131
			ASSAY BLAI			30	<0.2	1.02	<5	95	<5	0.85	<1	6	40	2	2.03	<10	0.64	542	<1	0.03	3	910	10	<5	<20	54	0.12	<10	36	<10	5	42
E05-		G08202	275.00	275.30	0.30	490	0.5	1.02	330	25	5	3.58	<1	11	61	68	2.88	<10	0.87	421	209	0.01	18	850	20	<5	<20	118	0.01	<10	38	<10	7	33
E05-	27 (G08203	298.93	300.68	1.75	30	<0.2	0.88	<5	25	5	2.01	<1	17	65	49	4.37	<10	0.77	313	2	0.03	16	880	16	<5	<20	77	0.09	<10	49	10	4	25

HOLE #	LENGTH	BEARING	DIP
E05-27	0	110	-74
E05-27	322	110	-71

(m) (m) (m) (m) Meas Rec(%) (m) (m) (%) Box From To 0.00 15.24 15.24 20.06 15.24 17.37 2.13 2.13 100.0 1.05 2.13 49.3 2 20.06 25.62 17.37 20.12 2.75 16.55 60.0 0.12 2.75 4.4 3 2.20.06 25.62 30.73 20.12 21.49 1.37 1.37 100.0 0.15 1.37 10.9 4 30.73 36.88 21.49 23.47 1.98 1.78 89.9 0.23 1.98 11.6 5 36.88 42.34 23.47 26.52 30.5 30.4 99.7 0.56 3.05 31.5 6 42.34 48.0 26.52 28.19 1.67 1.57 94.0 0.30 1.67 18.0 7 48.0 26.52 28.19 1.67 1.57 94.0 0.30 1.67 18.0 7 48.0 25.52 28.19 1.67 1.57 94.0 0.30 1.67 18.0 7 48.0 25.55 28.19 1.67 1.38 1.18 85.5 0.54 1.38 39.1 8 53.75 59.55 29.57 32.61 30.6 30.5 30.5 30.5 30.5 30.5 30.5 30.5 30.5	From	To	RECOVERY Run	Y Recove	rv.	CORE	RQD RUN	RQD	CORE	BOX INTE	RVALS
15.24 17.37 2.15 2.15 10.00 1.65 2.15 49.3 2 20.00 20.05	(m)	(m)	(m)	Meas	Rec (%)	(m)	(m)	(%)			
2012 21.49 1.37 1.37 10.00 0.15 1.37 10.9 4 30.77 30.88 20.71 10.91 11.8 5.5 10.80 22.3 10.91 11.8 5.5 10.80 22.3 10.91 11.8 5.5 10.80 22.3 10.91 11.8 5.5 10.80 22.3 10.91 11.8 5.5 10.80 22.3 10.91 11.8 5.5 10.80 22.3 10.91 11.8 5.5 10.80 22.3 10.91 11.8 5.5 10.80 22.3 10.91	15.24	17.37	2.13	2.13			2.13				25.62
22.40											
26.52 22.19	21.49	23.47	1.98	1.78	89.9	0.23	1.98	11.6	5	36.88	42.34
28.19 29.67 1.38 1.18 85.5 0.54 1.38 39.1 8 53.77 59.65											
28.61 36.66 30.66 30.61 30.27 30.05 30.07 30.0	28.19	29.57	1.38	1.18	85.5	0.54	1.38	39.1			59.65
38.77 41.15 2.44 2.30 94.3 1.52 2.44 62.3 12 76.39 82.36 41.15 2.46 2.30 0.91 0.01 0.02 2.77 0.91 2.27 1.35 1.25 2.29 8.15 2.30 8.15 2.30 8.15 4.45 4.76 5.30 3.06 3.											70.95
41:15											
44.88	41.15	42.06	0.91	0.91	100.0	0.27	0.91	29.7	13	82.36	88.16
### 1985 90 90 3.05 3.05 3.05 9.00 2.00 3.05 9.01 10 90 90 10 10 10 10 10											93.93
Section Color Co							3.05			99.67	105.24
60.00 6 63.00 3.04 3.04 9.07 20 122.55 128.10 63.00 60.14 3.05 3.01 98.7 2.84 3.04 9.7 20 122.55 128.10 63.00 66.14 3.05 3.01 98.7 2.84 3.05 9.81 221 128.10 128.10 133.06 66.14 6.05 73 2.50 2.50 10.00 2.21 2.00 8.83 22 138.10 133.06 133.20 77.7 78 78 78 78 78 78 78 78 78 78 78 78 78	53.95	57.00	3.05	3.05	100.0	2.93	3.05	96.1	18	110.95	116.76
66.14 63.73 2.59 2.59 100.0 2.21 2.20 83.3 22 133.66 136.20 66.17 77.4 68 3.20 3.00 99.5 2.21 2.30 83.5 22 133.66 136.20 66.17 77.4 68 3.20 3.00 99.5 2.20 3.00 99.5 2.20 130.56 136.20 66.17 77.4 68 3.20 3.00 99.5 2.20 3.00 99.5 2.20 130.56 144.4 67.4 67.5 67.					100.0 100.0					116.76 122.55	
Ref 73		66.14	3.05	3.01	98.7	2.84	3.05	93.1	21	128.10	133.66
Tell	68.73	71.78	3.05	3.04	99.7	2.95	3.05	96.7	23	139.29	144.48
Tell											
84.38 84.49 3.05 3.05 100.0 2.88 3.05 94.4 28 167.28 172.49 84.49 84.49 87.48 3.05 3.05 100.0 2.88 3.05 92.8 29 172.48 178.20 87.48 3.05 92.8 178.20 183.25 95.50 3.05 3.05 3.05 2.96 97.0 2.25 3.05 73.8 3.0 178.20 183.25 95.50 3.05 3.05 3.05 3.05 100.0 2.16 3.05 70.3 31 163.35 183.55 95.50 3.05 3.05 3.05 100.0 2.16 3.05 70.3 31 163.35 183.55 95.50 95.6 12 99.67 3.05 2.90 190.0 17.2 3.05 5.6 4.3 31 163.35 183.55 95.6 10.0 17.2 10.0 183.2 10.0 190.0	76.81	78.33	1.52	1.22	80.3	0.90	1.52	59.2	26	155.69	161.36
87.48 90.53 3.05 2.96 97.0 2.26 3.05 73.8 30 173.20 183.25 280.55 90.55 90.62 3.05 3.06 100.0 2.14 3.05 70.2 11 183.20 183.55 90.53 93.57 98.62 3.05 3.05 3.06 100.0 2.22 3.05 72.8 32 189.55 195.35 96.62 93.07 3.05 5.05 4.0 3.05 5.0 10.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0											
90.53 93.57 3.05 3.06 100.00 2.14 3.06 77.02 31 183.32 189.55 195.35 96.62 30.6 62.62 30.65 70.23 30.65 70.24 30.65 195.35 96.62 99.67 3.05 2.90 95.11 77.2 3.06 56.44 33 195.35 200.39 96.67 107.77											
96.62 99.67 3.06 2.90 95.1 1.72 3.06 56.4 33 195.35 206.63 102.72 3.05 3.05 86.2 34 209.53 209.	90.53	93.57	3.05	3.05	100.0	2.14	3.05	70.2	31	183.92	189.55
99 67 102.72 306 303 99.3 2.63 3.05 86.2 34 209.39 206.83 102.72 105.77 108.81 3.04 229 29.0 95.4 2.12 3.04 69.7 36 21.33 21.82 108.81 11.10 2.19 229 2.29 100.0 1.87 2.29 8.77 37 21.52 22.32 10.0 1.87 37 2.29 8.77 37 21.52 22.32 10.0 1.11 11.10 21.11 11.0 21.20 21.0 21.				3.05 2.90							
108.81 3.04 2.00 95.4 2.12 3.04 69.7 36 21.23 218.24 223.00 111.10 111.10 21.10 22.29 10.00 1.87 2.29 81.7 37 21.64 223.00 111.10 111.86 3.06 3.05 3.05 3.05 2.05 3.06 2.65 3.99 223.69 225.61 111.86 111.86 3.05 3.05 3.05 3.05 3.05 2.60 3.05 2.60 3.95 22.29 89.255.45 111.86 111.86 3.05 3.05 3.05 3.05 3.05 2.40 3.05 3.05 2.60 3.95 22.29 89.255.45 111.86 111.86 3.05	99.67	102.72	3.05	3.03	99.3	2.63	3.05	86.2	34	200.93	206.63
111.10	105.77	108.81	3.04	2.90	95.4		3.04				218.24
111.86 114.97 3.05 3.05 100.0 2.52 3.06 82.6 39 22.869 225.45 111.796 121.01 3.05 3.03 3.09 3.2 240 3.05 77.7 40 223.54 241.06 111.796 121.01 3.05 3.00 3.04 2.61 3.05 85.6 41 241.06 246.87 121.01 124.05 3.04 3.00 3.05 100.0 1.76 3.05 57.7 43 225.73 226.84 127.10 130.15 3.05 2.05 2.05 2.05 2.05 2.05 2.05 130.15 133.20 3.05 3.05 2.02 3.05 2.05 3.05 2.05 3.05 2.05 130.25 3.05 3.05 2.02 3.07 2.25 3.05 2.66 40 2.05 40 2.05 130.25 130.25 3.05 2.05 2.05 3.05 2.05 3.05 2.05 40 2.05 40 2.05 130.25 130.25 3.05 3.04 100.0 1.74 3.04 57.2 47 275.56 281.20 130.25 130.25 3.05 3.04 100.0 1.74 3.04 57.2 47 275.56 281.20 130.14 131.44 3.05 3											
117.06 121.01 3.06 3.00 98.4 2.61 3.05 85.6 41 241.06 246.87 212.01 124.05 124.05 3.04 3.02 99.3 2.68 3.04 3.05 57.7 43 225.73 228.48 212.01 3.05 57.7 43 252.73 228.48 212.01 3.015 3.05 3.05 2.92 95.7 2.06 3.05 67.5 44 226.87 225.84 226.87 225.84 212.01 3.015 3.05 3.05 2.92 95.7 2.06 3.05 67.5 44 226.27 228.48 226.27 228.48 226.27 228.48 226.27 228.48 226.27 22	111.86	114.91	3.05	3.05	100.0	2.52	3.05	82.6	39	229.69	235.45
121.01 124.05 3.04 3.02 99.3 2.68 3.04 88.2 42 246.87 252.73 124.05 127.10 130.15 3.05 3.05 100.0 1.76 3.05 57.7 43 252.73 127.10 130.15 3.05 2.92 95.7 2.06 3.05 67.5 44 258.48 264.26 130.15 133.20 136.25 3.05 3.02 99.0 2.36 3.05 77.4 45 254.26 269.35 133.20 136.25 3.05 2.96 97.0 2.52 3.05 82.6 46 269.95 275.56 136.25 136.25 3.05 2.96 97.0 2.52 3.05 82.6 46 269.95 275.56 136.25 136.25 3.05 2.96 97.0 2.52 3.05 82.6 46 269.95 275.56 136.25 136.27 3.04 3.04 3.00 0.00 2.14 3.04 57.2 47 275.50 286.94 144.48 2.14 2.14 2.14 2.15 98.1 0.60 2.14 280.4 48 281.20 286.94 144.79 149.77 2.2 3.04 3.00 100.00 2.9 3.00 66.9 57 297.92 3.05 149.75 150.67 3.05 3.05 100.00 2.04 3.05 66.9 51 297.92 3.05 150.67 153.62 3.05 3.05 3.05 100.00 2.04 3.05 66.9 51 297.92 303.66 150.67 153.62 3.05 3.05 3.05 100.00 2.04 3.05 66.9 51 297.92 303.66 156.82 159.97 3.05 3.05 3.05 100.00 2.04 3.05 68.5 54 3.00 159.97 162.92 3.05 3.03 9.3 2.56 3.05 83.9 55 320.89 322.49 160.12 169.16 3.04 3.01 99.0 1.93 3.04 63.5 162.92 166.12 3.03 3.03 99.3 2.56 3.05 83.9 55 320.89 322.49 169.12 175.26 3.05 3.05 3.05 100.00 2.9 3.05 68.9 177.22 178.31 3.05 3.05 3.05 100.00 2.9 3.05 68.5 54 3.05 3.05 169.16 178.31 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 169.16 178.31 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 187.36 18		117.96				2.40					
127.10 130.15 3.05 2.92 95.7 2.06 3.05 67.5 44 258.48 264.28 130.15 130.15 133.20 130.25 3.05 3.05 3.05 97.0 2.52 3.06 82.6 46 269.96 275.56 138.25 139.29 3.04 3.04 100.0 1.74 3.04 57.2 47 275.56 281.20 139.29 3.05 3.05 3.05 0.00 1.00 1.74 3.04 57.2 47 275.56 281.20 286.94 141.43 2.14 2.10 98.1 0.60 2.14 28.0 48 281.20 286.94 141.43 141.48 2.05 3.05 3.05 100.0 1.69 3.05 55.4 49 226.94 226.94 247.34 144.48 147.52 3.04 3.04 100.0 2.19 3.04 72.0 50 222.34 227.52 147.52 150.57 3.05 3.05 100.0 2.04 3.05 66.9 51 279.23 327.52 147.52 150.57 3.05 3.05 100.0 2.04 3.05 66.9 51 279.23 327.52 150.57 3.05 3.05 3.05 100.0 2.04 3.05 66.9 51 279.23 320.9 16 53 30.9 40 153.62 150.63 3.05 3.05 100.0 2.06 3.05 66.9 51 279.23 3.05	121.01	124.05	3.04	3.02	99.3	2.68	3.04	88.2		246.87	252.73
133.20 136.25 3.05 2.96 97.0 2.52 3.05 82.6 46 269.95 275.56 138.25 139.29 3.04 3.04 3.04 100.0 1.74 3.04 57.2 47 275.56 288.94 141.43 2.14 2.10 98.1 0.60 2.14 28.0 48 281.20 286.94 141.43 144.48 3.05 3.05 3.05 100.0 1.69 3.05 55.4 49 286.94 228.34 144.48 147.52 3.04 3.04 100.0 2.19 3.04 72.0 50 292.34 297.92 147.52 150.57 3.05 3.05 3.05 100.0 2.04 3.05 66.9 51 297.92 30.6 150.67 153.62 3.05 3.05 100.0 2.04 3.05 66.9 51 297.92 30.6 153.62 159.87 3.05 3.05 3.05 100.0 2.04 3.05 66.9 51 297.92 30.6 153.62 159.87 3.05 3.05 3.05 100.0 2.09 3.05 68.5 54 315.07 320.88 159.87 166.12 159.87 3.05	127.10	130.15	3.05	2.92	95.7	2.06	3.05	67.5	44	258.48	264.26
138.25 139.29 3.04 3.04 100.0 1.74 3.04 57.2 47 275.56 281.20 139.29 141.43 2.14 2.10 98.1 0.00 2.14 28.0 48 281.20 288.94 141.44 144.48 3.05 3.05 3.05 100.0 1.99 3.05 55.4 49 286.94 282.34 141.44 147.52 3.05 3.05 3.05 100.0 2.04 3.05 56.9 59 229.34 297.92 147.52 150.57 3.05 3.05 3.05 100.0 2.04 3.05 56.9 51 297.92 303.66 150.57 153.62 3.05 3.05 3.05 100.0 2.04 3.05 56.9 51 297.92 303.66 155.67 153.62 3.05 3.05 3.05 100.0 2.04 3.05 56.9 51 297.92 303.66 155.62 156.82 3.20 3.06 96.3 2.93 3.20 91.6 53 309.46 315.07 316.93 316.93 309.46 315.07 316.93 316.93 316.93 316.93 320.93 32.248 320.93											
141.43	136.25	139.29	3.04	3.04	100.0	1.74	3.04	57.2	47		281.20
147.52 150.57 3.05 3.05 100.0 2.47 3.05 86.9 51 297.92 303.66 150.67 153.62 303.63 305 305 100.0 2.47 3.05 81.0 52 303.63 309.46 315.62 156.82 320 3.05 30.9 96.3 2.93 3.20 91.6 53 309.46 315.07 315.82 159.87 30.5 30.5 30.5 30.5 30.5 30.5 30.5 30.9 159.87 162.92 3.05 3.02 30.2 99.4 2.55 3.20 79.7 166.12 169.16 3.04 3.01 99.0 1.93 3.04 53.5 160.12 169.16 3.04 3.01 99.0 1.93 3.04 53.5 171.8 172.21 3.05 3.05 3.05 30.9 96.7 2.10 3.05 68.9 177.21 175.26 3.05 2.95 96.7 2.10 3.05 68.9 171.83 181.35 3.05 3.04 99.7 2.27 3.05 2.66 178.31 30.3 3.04 30.3 30.4 30.5 30.4 30.5 30.4 30.5 30.5 30.4 30.5 3	141.43	144.48	3.05	3.05	100.0	1.69	3.05	55.4	49	286.94	292.34
159.67 153.62 3.05 3.0											
156.82 159.87 3.05 3.05 100.0 2.09 3.05 68.5 54 315.07 320.89 159.87 162.92 166.12 3.20 3.05 3.09 93.1 2.56 3.20 79.7	150.57	153.62	3.05	3.05	100.0	2.47	3.05	81.0	52	303.66	309.46
166.12 169.16 3.04 3.01 99.0 1.93 3.04 63.5 169.16 172.21 3.05 3.05 100.0 2.19 3.05 71.8 172.21 175.26 3.05 2.95 96.7 2.10 3.05 68.9 175.21 175.26 178.31 3.05 3.04 99.7 2.37 3.05 77.7 178.31 181.36 3.05 3.04 99.7 2.37 3.05 77.7 178.31 181.36 3.05 3.04 99.7 2.27 3.05 77.7 178.31 181.36 3.05 3.04 99.7 2.52 3.05 82.6 181.36 184.40 3.04 3.04 100.0 2.42 3.04 79.6 181.36 184.40 3.05 3.05 50.5 165.6 2.20 3.05 91.8 181.36 3.20 3.05											
166.12 169.16 3.04 3.01 99.0 1.93 3.04 63.5 169.16 172.21 3.05 3.05 100.0 2.19 3.05 103.0 175.26 178.31 3.05 3.04 99.7 2.37 3.05 88.9 175.26 178.31 3.05 3.04 99.7 2.37 3.05 82.6 181.36 184.40 3.04 3.04 3.04 100.0 2.42 3.04 77.6 181.36 184.40 3.04 3.04 3.04 100.0 2.42 3.04 77.6 181.36 181.40 3.05 3.05 100.0 2.42 3.04 77.6 181.36 199.65 3.20 3.20 100.0 2.34 3.20 73.1 190.65 193.70 3.05 3.05 100.0 2.37 3.05 3.05 100.0 193.70 196.75 3.05 3.05 100.0 2.57 3.05 84.3 199.64 202.69 3.05 3.05 100.0 2.81 3.05 92.1 206.74 208.79 3.05 3.05 100.0 2.42 3.05 85.2 206.74 208.79 3.05 3.05 100.0 2.42 3.05 85.2 208.79 211.84 3.05 3.05 100.0 2.42 3.05 95.0 211.84 215.04 3.20 3.20 100.0 2.51 3.05 82.3 221.32 223.72 225.77 3.05 3.05 3.05 100.0 2.61 3.05 3.05 222.72 226.77 3.05 3.05 3.05 100.0 2.61 3.05 82.3 221.32 223.72 225.9 25.9 100.0 2.63 3.05 82.3 221.33 3.05 3.05 100.0 2.61 3.05 82.3 221.34 223.72 2.59 2.59 100.0 2.61 3.05 82.3 221.37 227.84 10.7 0.99 92.5 0.98 10.7 11.6 227.84 230.73 2.89 2.86 9.90 2.72 2.89 94.1 223.73 226.87 3.05 3.05 100.0 2.88 3.05 94.4 233.78 236.83 3.05 3.05 100.0 2.88 3.05 94.4 233.78 236.83 3.05 3.05 100.0 2.85 3.05 94.1 237.79 227.84 10.7 0.99 92.5 0.98 10.7 11.6 237.79 238.88 242.93 3.05 3.05 100.0 2.88 3.05 94.4 239.79 249.02 3.05 3.05 100.0 2.88 3.05 94.4 239.79 249.02 3.05 3.05 100.0 2.88 3.05 94.1 241.39 245.97 3.04 3.04 3.04 100.0 2.95 3.05 94.1 242.93 245.97 3.04 3.04 3.04 100.0 2.95 3.05 94.1 242.93 245.97 3.06 3.05 3.									55	320.89	
172.21 175.26 3.05 2.95 96.7 2.10 3.05 68.9 175.26 178.31 3.05 3.04 99.7 2.37 3.05 77.7 178.31 181.36 3.05 3.04 99.7 2.52 3.05 82.6	166.12	169.16	3.04	3.01	99.0	1.93	3.04	63.5			L.O.II.
176.26 178.31 3.05 3.04 99.7 2.37 3.05 77.7								71.8 68.9			
181.36 184.40 3.04 3.04 100.0 2.42 3.04 79.6 181.40 187.45 190.65 3.20 3.20 100.0 2.34 3.20 73.1 190.65 193.70 3.05 3.05 100.0 2.34 3.20 73.1 190.65 193.70 3.05 3.05 100.0 2.57 3.05 3.05 3.05 190.0 3.05 3.06 100.0 3.05 3.06 100.0 3.05 3.06 100.0 3.05 3.06 100.0 3.05 3.06 100.0 3.05 3.05 100.0 2.57 3.05 84.3 3.05 199.64 2.89 2.89 100.0 2.53 2.89 87.5 3.05 199.64 2.89 2.89 100.0 2.51 3.05 32.1 3.05 92.1 3.05 202.69 205.74 3.05 3.05 100.0 2.91 3.05 95.4 3.05 202.69 205.74 3.05 3.05 100.0 2.91 3.05 95.4 3.05 202.69 205.74 3.05 3.05 100.0 2.60 3.05 85.2 3.05 208.79 211.84 3.05 3.05 100.0 2.42 3.05 79.3 3.05 211.84 215.04 3.20 3.20 100.0 3.04 3.20 3.05 3.05 211.84 215.04 3.20 3.20 100.0 3.04 3.20 3.05 221.13 223.72 2.59 2.59 100.0 2.51 3.05 3.05 221.13 223.72 2.59 2.59 100.0 1.67 2.59 64.5 222.13 223.72 2.59 2.59 100.0 1.67 2.59 64.5 222.37 222.677 3.05 3.05 100.0 2.63 3.05 3.05 3.05 222.77 227.84 1.07 0.99 92.5 0.98 1.07 91.6 227.84 230.73 2.89 2.69 90.0 2.72 2.89 94.1 2.30.73 233.78 3.05 2.94 96.4 2.89 3.05 94.8 2.33 2.35	175.26	178.31	3.05	3.04	99.7	2.37	3.05	77.7			
187.45 190.65 3.20 3.20 100.0 2.34 3.20 73.1 190.65 193.70 3.05 3.05 100.0 3.05 3.05 100.0 193.70 196.75 3.05 3.05 100.0 2.57 3.06 84.3 196.75 199.64 2.89 2.89 100.0 2.57 3.06 84.3 196.75 199.64 2.89 2.89 100.0 2.53 2.89 87.5 199.64 2.289 3.05 3.05 100.0 2.51 3.05 92.1 100.0 2.52 3.05 3.05 3.05 100.0 2.51 3.05 92.1 100.0 2.52 3.05 3.	181.36	184.40	3.04	3.04	100.0	2.42	3.04	79.6			
190.65 193.70 3.05 3.05 100.0 3.05 3.05 100.0 196.75 199.64 2.89 2.89 100.0 2.57 3.05 3.05 3.05 100.0 2.57 3.05 3.05 100.0 2.57 3.05 3.05 199.64 202.69 3.05 3.05 100.0 2.51 3.05 3.05 3.05 100.0 2.51 3.05 3.05 3.05 202.69 205.74 3.05 3.05 100.0 2.61 3.05 3.05 3.05 202.69 205.74 3.05 3.05 100.0 2.60 3.05 85.2 208.79 211.84 3.05 3.05 100.0 2.60 3.05 85.2 208.79 211.84 3.05 3.05 100.0 2.42 3.05 7.93 211.84 215.04 3.20 3.20 100.0 3.04 3.20 95.0 211.84 215.04 3.20 3.05 3.05 100.0 2.51 3.05 82.3 221.13 3.05 3.05 3.05 100.0 2.51 3.05 82.3 221.13 223.72 2.59 2.59 100.0 1.67 2.59 64.5 223.72 226.77 3.05 3.05 3.05 100.0 2.63 3.06 86.2 223.72 226.77 3.05 3.05 3.05 000.0 2.63 3.06 86.2 226.77 227.84 1.07 0.99 92.5 0.98 1.07 91.6 227.84 230.73 233.78 3.05 3.05 100.0 2.88 3.05 94.8 233.73 233.78 3.05 3.05 100.0 2.88 3.05 94.8 3.05 3											
196.75 199.64 2.89 2.89 100.0 2.53 2.89 87.5 199.64 202.69 3.05 3.05 100.0 2.81 3.05 95.1 202.69 205.74 3.05 3.05 100.0 2.91 3.06 95.4 205.74 208.79 3.05 3.05 100.0 2.60 3.05 85.2 208.79 211.84 3.05 3.05 100.0 2.42 3.05 79.3 211.84 215.04 3.20 3.20 100.0 3.04 3.20 95.0 215.04 218.08 3.04 3.04 100.0 2.61 3.04 71.1 218.08 221.13 3.05 3.05 100.0 2.51 3.05 82.3 221.13 223.72 2.59 2.59 100.0 1.67 2.59 64.5 223.72 226.77 3.05 3.05 100.0 2.63 3.05 86.2 225.72 226.77 3.05 3.05 100.0 2.63 3.05 86.2 227.84 230.73 2.89 2.86 99.0 2.72 2.89 94.1 230.73 233.78 3.05 3.05 100.0 2.88 3.05 94.8 233.78 236.83 3.05 3.05 100.0 2.88 3.05 94.8 233.78 236.83 3.05 3.05 100.0 2.88 3.05 94.4 236.83 239.88 3.05 3.05 100.0 2.88 3.05 94.4 249.92 245.97 3.04 3.04 100.0 2.88 3.05 94.4 249.02 252.07 3.05 3.05 100.0 2.85 3.05 94.4 249.02 252.07 3.05 3.05 100.0 2.28 3.05 94.4 249.02 252.07 3.05 3.05 100.0 2.88 3.05 94.4 249.02 252.07 3.05 3.05 100.0 2.88 3.05 94.1 250.72 255.12 3.05 3.05 100.0 2.88 3.05 94.1 250.72 255.12 3.05 3.05 100.0 2.88 3.05 94.1 250.73 249.02 3.05 3.05 100.0 2.28 3.05 94.1 249.02 252.07 3.05 3.05 100.0 2.87 3.05 95.7 250.07 255.12 3.05 3.05 100.0 2.28 3.05 94.1 250.73 249.02 3.05 3.05 100.0 2.88 3.05 94.4 249.02 252.07 3.05 3.05 100.0 2.28 3.05 94.1 250.73 255.12 258.17 3.05 3.05 100.0 2.28 3.05 94.1 256.73 264.26 3.05 3.05 3.05 100.0 2.28 3.05 94.1 267.31 270.36 3.05 3.05 100.0 2.28 3.05 94.1 267.31 270.36 3.05 3.05 3.05 100.0 2.28 3.05 94.1 267.	190.65	193.70	3.05	3.05	100.0	3.05	3.05	100.0			
202.69 205.74 3.05 3.05 100.0 2.91 3.05 95.4											
208.74 208.79 3.05 3.05 100.0 2.60 3.06 85.2											
211.84	205.74	208.79	3.05	3.05	100.0	2.60	3.05	85.2			
218.08 221.13 3.05 3.05 100.0 2.51 3.05 82.3											
221.13 223.72 2.59 2.59 10.00 1.67 2.59 64.5						2.16					
226.77 227.84 1.07 0.99 92.5 0.98 1.07 91.6	221.13	223.72	2.59	2.59	100.0	1.67	2.59	64.5			
227.84 230.73 2.89 2.86 99.0 2.72 2.89 94.1											
233.78 236.83 3.05 3.05 100.0 2.88 3.05 94.4 236.83 239.88 3.05 3.05 100.0 2.98 3.05 97.7 239.88 242.93 3.05 3.05 100.0 2.93 3.05 96.1 242.93 245.97 3.04 3.04 100.0 2.85 3.04 93.8 245.97 249.02 3.05 3.05 100.0 2.88 3.05 94.4 249.02 252.07 3.05 3.05 100.0 2.92 3.05 95.7 252.07 255.12 3.05 3.05 100.0 2.93 3.05 95.7 252.07 258.17 3.05 3.05 100.0 2.93 3.05 96.7 255.12 258.17 3.05 3.05 100.0 2.95 3.05 96.7 255.12 258.17 3.05 3.05 100.0 2.78 3.05 91.1 261.21 <td< td=""><td>227.84</td><td>230.73</td><td>2.89</td><td></td><td>99.0</td><td></td><td>2.89</td><td>94.1</td><td></td><td></td><td></td></td<>	227.84	230.73	2.89		99.0		2.89	94.1			
239.88 242.93 3.05 100.0 2.93 3.05 96.1 242.93 245.97 3.04 3.04 100.0 2.85 3.04 93.8 245.97 249.02 3.05 3.05 100.0 2.88 3.05 94.4 249.02 252.07 3.05 3.05 100.0 2.92 3.05 95.7 252.07 255.12 3.05 3.05 100.0 2.93 3.05 95.7 255.17 265.17 3.05 3.05 100.0 2.93 3.05 96.7 256.17 261.21 3.04 3.04 100.0 3.04 3.00 3.05 100.0 2.93 3.05 96.7 261.21 264.26 3.05 3.05 100.0 2.78 3.05 91.1 267.31 270.36 3.05 3.05 100.0 2.88 3.05 91.1 267.31 270.36 3.05 3.05 100.0 2.88 3.05 <	233.78	236.83	3.05	3.05	100.0	2.88	3.05	94.4			
242.93 245.97 3.04 3.04 100.0 2.85 3.04 93.8 245.97 249.02 3.05 3.05 100.0 2.82 3.05 94.4 249.02 252.07 3.05 3.05 100.0 2.92 3.06 95.7 252.07 255.12 3.05 3.05 100.0 2.63 3.05 86.2 255.12 258.17 3.05 3.05 100.0 2.63 3.05 86.7 258.17 261.21 3.04 3.04 100.0 3.04 100.0 261.21 264.26 3.05 3.05 100.0 2.78 3.05 94.1 266.26 267.31 3.05 3.05 100.0 2.87 3.05 94.1 267.31 270.36 3.05 2.88 94.4 2.07 3.05 2.81 273.42 3.05 3.04 3.04 100.0 2.96 3.05 9.81 276.45 279.50 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
249.02 252.07 3.05 3.05 100.0 2.22 3.05 95.7	242.93	245.97	3.04	3.04	100.0	2.85	3.04	93.8			
255.12 258.17 3.05 3.05 100.0 2.95 3.05 96.7 258.17 261.21 3.04 3.04 100.0 3.04 3.04 100.0 261.21 264.26 3.05 3.05 100.0 2.78 3.05 91.1 264.26 267.31 3.05 3.05 100.0 2.67 3.05 94.1 267.31 270.36 3.05 2.88 94.4 2.07 3.05 97.0 270.36 273.42 3.05 3.05 100.0 2.96 3.05 97.0 273.42 276.45 3.04 3.04 100.0 2.96 3.05 97.0 279.40 279.50 3.05 3.05 100.0 2.96 3.05 91.1 279.50 282.55 3.05 3.05 100.0 2.45 3.05 91.1 279.50 282.55 3.05 3.05 3.00 2.45 3.05 80.3 282.55											
286.17 261.21 3.04 3.04 100.0 3.04 3.04 100.0 261.21 261.21 264.26 3.05 3.05 100.0 2.78 3.05 91.1 264.26 267.31 3.05 3.05 100.0 2.78 3.05 94.1 267.31 270.36 3.05 28.8 94.4 2.07 3.05 67.9 270.36 273.42 3.05 3.05 100.0 2.96 3.06 97.0 270.34 2.76 3.05 2.86 3.05 100.0 2.96 3.06 97.0 273.42 276.45 3.04 3.04 100.0 2.96 3.06 97.0 273.42 276.45 3.04 3.04 100.0 2.92 3.04 96.1 276.45 279.50 3.05 2.93 96.1 2.78 3.05 91.1 279.50 282.55 3.05 3.05 100.0 2.45 3.05 80.3 282.55 285.60 3.05 3.00 98.4 2.35 3.05 77.0 285.60 286.65 3.05 3.00 98.4 2.67 3.05 87.5 286.60 286.65 3.05 3.00 98.4 2.67 3.05 87.5 286.60 286.65 3.05 3.00 98.4 2.67 3.05 87.5 282.55 291.69 3.04 3.04 100.0 2.51 3.04 82.6 291.69 294.74 3.05 2.94 96.4 2.67 3.05 87.5 294.79 3.05 3.05 3.05 100.0 2.45 3.05 97.5 3.04 82.6 291.79 3.05 3.05 100.0 2.24 3.05 73.4 297.79 3.05 3.05 3.05 100.0 2.24 3.05 73.4 297.79 3.05 3.05 3.05 100.0 2.24 3.05 87.5 3.04 82.6 30.8 30.8 30.8 30.8 30.8 3.05 3.05 100.0 2.51 3.05 3.05 90.5 30.8 30.8 30.8 30.8 30.5 3.05 100.0 2.28 3.05 87.5 30.4 83.9 30.8 30.8 30.8 3.05 3.05 100.0 2.58 3.05 84.6 30.8 30.8 30.9 80 3.05 3.05 100.0 2.58 3.05 3.05 90.5 30.8 30.8 30.9 30.8 3.05 3.05 100.0 2.58 3.05 3.05 90.5 30.8 30.8 30.9 30.9 3.05 3.05 100.0 2.58 3.05 3.05 90.5 30.8 30.8 30.9 30.9 3.05 3.05 100.0 2.58 3.05 3.05 92.5 30.4 30.9 30.9 30.9 3.05 3.05 100.0 2.68 3.05 87.2 30.9 30.9 30.9 30.9 30.9 30.9 30.9 30.9											
264.26 267.31 3.05 100.00 2.87 3.05 94.1 267.31 270.36 3.05 2.88 94.4 2.07 3.05 67.9 270.36 273.42 3.05 3.05 100.0 2.96 3.05 97.0 273.42 276.45 3.04 3.04 100.0 2.92 3.04 96.1 276.45 279.50 3.05 3.04 100.0 2.245 3.05 91.1 279.50 282.55 3.05 3.05 100.0 2.45 3.05 80.3 282.55 285.60 3.05 3.00 98.4 2.57 3.05 87.5 285.60 288.65 3.05 3.04 3.04 2.00 2.51 3.04 82.6 291.69 294.74 3.05 3.05 100.0 2.24 3.05 87.5 297.79 300.84 3.05 3.05 100.0 2.24 3.05 9.05 303.89	258.17	261.21	3.04	3.04	100.0	3.04	3.04	100.0			
267.31 270.36 3.05 2.88 9.44 2.07 3.05 67.9 270.36 273.42 3.05 3.05 100.0 2.96 3.05 97.0 273.42 276.45 3.04 3.04 100.0 2.92 3.04 96.1 276.45 279.50 3.05 2.93 96.1 2.78 3.05 91.1 279.50 282.55 3.05 3.05 100.0 2.45 3.05 80.3 282.55 285.60 3.05 3.00 98.4 2.35 3.05 77.0 288.65 291.69 3.04 3.04 100.0 2.51 3.04 82.6 291.69 294.74 3.05 2.94 96.4 2.67 3.05 87.5 294.74 297.79 3.05 3.05 100.0 2.24 3.05 73.4 297.79 3.06 3.05 100.0 2.24 3.05 73.4 297.79 3.06 3.05<											
273.42 276.45 3.04 3.04 100.0 2.92 3.04 96.1 276.45 279.50 3.05 2.93 96.1 2.78 3.05 91.1 279.50 282.55 285.60 3.05 3.00 98.4 2.35 3.05 77.0 285.60 286.65 3.05 3.00 98.4 2.35 3.05 77.0 286.65 291.69 3.04 3.04 100.0 2.51 3.04 82.6 291.69 294.74 3.05 294 96.4 2.67 3.05 87.5 294.74 297.79 3.05 3.05 100.0 2.24 3.06 73.4 297.79 3.05 3.05 100.0 2.24 3.05 73.4 297.79 3.06 3.05 100.0 2.24 3.05 90.5 300.84 303.89 306.93 3.04 2.97 97.7 2.55 3.04 84.6 303.89 306.9	267.31	270.36	3.05	2.88	94.4	2.07	3.05	67.9			
279.50 282.55 3.05 3.05 100.0 2.45 3.05 80.3 282.55 285.60 3.05 3.00 98.4 2.35 3.05 77.0 285.60 288.65 3.05 3.00 98.4 2.67 3.05 87.5 286.65 291.69 3.04 3.04 100.0 2.51 3.04 82.6 291.69 294.74 3.05 294 96.4 2.67 3.05 87.5 294.74 297.79 3.05 3.05 100.0 2.24 3.05 73.4 297.79 30.94 3.05 3.04 99.7 2.76 3.05 90.5 300.84 303.89 3.05 3.04 99.7 2.76 3.05 84.6 303.89 306.93 3.04 2.97 97.7 2.55 3.04 83.9 306.99 313.03 3.05 3.02 99.0 2.20 3.05 72.1 309.98 313.03 </td <td>273.42</td> <td>276.45</td> <td>3.04</td> <td>3.04</td> <td>100.0</td> <td>2.92</td> <td>3.04</td> <td>96.1</td> <td></td> <td></td> <td></td>	273.42	276.45	3.04	3.04	100.0	2.92	3.04	96.1			
282.55 285.60 3.05 3.00 98.4 2.35 3.05 77.0 285.60 288.65 3.05 3.00 98.4 2.67 3.05 87.5 288.65 291.69 3.04 3.04 100.0 2.51 3.04 82.6 291.69 294.74 3.05 2.94 96.4 2.67 3.05 87.5 294.74 297.79 3.05 3.05 100.0 2.24 3.05 73.4 297.79 300.84 3.05 3.05 100.0 2.58 3.05 84.6 303.89 306.93 3.04 2.97 97.7 2.55 3.04 83.9 306.93 3.05 3.05 30.2 99.0 2.20 3.05 92.5 309.98 313.03 3.05 3.05 100.0 2.22 3.05 92.5 313.03 316.08 3.05 3.05 100.0 2.26 3.05 92.5 313.03 316.08					96.1 100.0						
288.65 291.69 3.04 100.0 2.51 3.04 82.6 291.69 294.74 3.05 2.94 96.4 2.67 3.05 87.5 294.74 297.79 3.05 3.05 100.0 2.24 3.05 73.4 297.79 30.084 3.05 3.05 100.0 2.58 3.05 90.5 300.84 303.89 3.05 3.05 100.0 2.58 3.05 84.6 303.89 306.93 3.05 3.02 99.0 2.20 3.05 72.1 309.98 313.03 3.05 3.05 100.0 2.82 3.05 92.5 315.03 316.08 3.05 3.05 100.0 2.82 3.05 92.5 316.08 319.13 3.05 3.05 100.0 2.82 3.05 92.5 316.08 319.13 3.05 3.00 98.4 2.54 3.05 83.3 319.13 322.17	282.55	285.60	3.05	3.00	98.4	2.35	3.05	77.0			
291.69	288.65	291.69	3.04	3.04	100.0	2.51	3.04	82.6			
297.79 300.84 3.05 3.04 99.7 2.76 3.05 90.5 303.89 30.89 3.05 3.05 10.00 2.58 3.05 84.6 303.89 306.93 3.04 2.97 9.77 2.55 3.04 83.9 306.93 309.98 3.05 3.02 99.0 2.20 3.05 72.1 309.98 313.03 3.05 3.05 100.0 2.66 3.05 92.5 313.03 316.08 3.05 3.00 98.4 2.54 3.05 87.2 316.08 319.13 3.05 3.00 98.4 2.54 3.05 83.3 319.13 322.17 3.04 3.01 99.0 2.62 3.04 86.2 322.17 3.24 3.01 30.0 0.15 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31					96.4 100 0	2.67					
303.89 306.93 3.04 2.97 977 2.55 3.04 83.9 306.93 309.98 3.05 30.2 99.0 2.20 3.06 72.1 309.98 313.03 3.05 3.05 100.0 2.62 3.05 92.5 313.03 316.08 3.05 3.05 100.0 2.66 3.05 67.2 316.08 319.13 3.05 3.05 98.4 2.54 3.05 83.3 319.13 322.17 3.04 3.01 99.0 2.62 3.04 86.2 322.17 322.48 0.31 0.31 100.0 0.15 0.31 48.4	297.79	300.84	3.05	3.04	99.7	2.76	3.05	90.5			
306.93 309.98 3.05 3.02 99.0 2.20 3.05 72.1 309.98 313.03 3.05 3.05 100.0 2.82 3.05 92.5 313.03 316.08 3.05 3.05 100.0 2.66 3.05 87.2 316.08 319.13 3.05 3.00 98.4 2.54 3.05 83.3 319.13 322.17 3.04 3.01 99.0 2.262 3.04 86.2 322.17 3.22.48 0.31 100.0 0.15 0.31 48.4											
313.03 316.08 3.05 3.05 100.0 2.66 3.05 87.2 316.08 319.13 3.05 3.00 98.4 2.54 3.05 83.3 319.13 322.17 3.04 3.01 99.0 2.62 3.04 86.2 322.17 322.48 0.31 0.31 100.0 0.15 0.31 48.4	306.93	309.98	3.05	3.02	99.0	2.20	3.05	72.1			
319.13 322.17 3.04 3.01 99.0 2.62 3.04 86.2 322.17 322.48 0.31 0.31 100.0 0.15 0.31 48.4	313.03	316.08	3.05	3.05	100.0	2.66	3.05	87.2			
322.17 322.48 0.31 0.31 100.0 0.15 0.31 48.4						2.54					
E.U.fl.		322.48									
		E.U.H.									

ELIZABETH PROPERTY

DDH

E05-29

11-Aug-05

13-Aug-05

E.D. Frey

J-PACIFIC GOLD INC.

NORTHING	5,653,839	BEARING	125	START DATE	
EASTING	531,233	DIP	-65	END DATE	
ELEVATION	2431	LENGTH	163.68	LOGGED BY	

NOTE: UNITS IN METERS, BEARING & DIP IN DEGREES

OBJECTIVE TO TEST SOUTHWEST VEIN CONTINUITY FROM RIDGE TOP ABOVE AND NNE OF DDH E0-

SUMMARY LOG		DDH			EO5-29
HOLE#	FROM	TO	DESCRIPTION	SAMPLE	GOLD (g/t)
HOLLII	TROM	- 10	DECORNI TION	O/ WIT LL	OOLD (g/t)
E05-29	0.00	82.30	CASING		
			FELDSPAR		
E05-29	82.30	105.77	PORPHYRY DIORITE		
E05-29	105.77	117.10	QUARTZ VEIN ZONE		
			FELDSPAR		
E05-29	117.10	126.40	PORPHYRY DIORITE		
E05-29	126.40	130.00	QUARTZ VEIN ZONE		
			FELDSPAR		
E05-29	130.00	136.92	PORPHYRY DIORITE		
E05-29	136.92	137.80	QUARTZ VEIN ZONE		
			FELDSPAR		
E05-29	137.80	163.68	PORPHYRY DIORITE		
E05-29		163.68	END OF HOLE		

HOLE #	FROM (m)		FROM (m)		ROCK TYPE	DESCRIPTION	SAMPLE
	MAJOR	UNITS	Minor U	Inits			l
E05-29	0.00	80.16			OVERBURDEN		
E05-29	0.00	82.30			CASING		
						white plagioclase phenocrysts 2 mm to 1 cm, crowded; phenocryst supported, ~70% rock volume; patchy	
E05-29	82.30	105.77			FELDSPAR PORPHYRY DIORITE	variability of phenocryst size; coarsely phenocrystic to 1 cm; moderately broken, strongly oxidized, LIM fractures high and low angles TCA;	
E05-29			84.10	84.46		TR dull red HEM-LIM after PY; fg to dendritic manganese oxide (MAN) on fractures QV; 3 cm TW, 30-40 TCA; white, fg, vuggy, dendritic MAN; TR HEM after euhedral PY; 5 cm zones adjacent	
						to U/C and L/C; fg-mg prophyry, phenocrysts groundmass supported; G08204 tests oxidized fractures and	
E05-29 E05-29			85.46 85.98	85.55 86.32		QV at L/C (see next) QV; 1 cm TW, 10 TCA; few LIM fractures; strong LIM on contact fractures	G08204 G08205
E05-29			89.18	89.46		QV; white, broken; 25 cm TW, 45-50 TCA; LIM fractures all angles TCA; black oxidized fg PY, rare fresh PY; weak CHL-SERI alteration and strong LIM along contacts	G08206
E05-29			89.50	90.35		strongly broken porphyry; LIM fractures spaced 3-4 cm, zero and 45 TCA QV; white, 3.5 to 4 cm TW, 45 TCA; vuggy, minor CA; strong LIM-HEM contact seams; 1% fg-cg HEM-PY	G08207
E05-29 E05-29			93.26 95.72	93.35		along U/C FAULT? QZ-CA-LIM finely crumbly seam, 2 cm TW, 50 TCA	G08209
E05-29			96.04	96.09		strong CHL alteration seam, dark green, 80 TCA	
E05-29 E05-29			98.25	102.72 98.28		few LIM fractures LIM alteration zone	
E05-29 E05-29			98.30 99.45	98.50		QV; 1 cm, <5 TCA; wavy seams HEM after PY DIORITE xenolith; 2x4 cm, fg	
E05-29			102.72	103.10		porphyry moderately broken; LIM-HEM fracture surfaces strongly broken and fractured porphyry, as 89.5; all angles TCA and along QZ veinlet <5 TCA; strong LIM-	
E05-29			104.89	105.39		HEM (PY) alteration	G08210
E05-29	105.77	117.10			QUARTZ VEIN ZONE		
E05-29 E05-29				106.50 106.85		QV; 1 cm TW; wavy, low angle TCA; strongly oxidized fractures, low angle TCA QV; 3 cm TW; fewer LIM-HEM fractures	G08211
E05-29 E05-29				107.30 112.60		QV; as 105.77 few QVs, to 1 cm TW, low and high angles TCA; TR LIM after PY along contacts	
E05-29 E05-29			108.72 109.00			QV; 1cm TW, 50 TCA; nil sulphides DIORITE xenolith; 4X5 cm, fq;	
200 20			103.00			four QVs; three 2 and 5 cm TW, 45 TCA, one 1.5 cm TW, 15 TCA; slightly vuggy; brown SERI-CHL	
E05-29			112.60	113.84		alteration moderate-strong; TR-1% HEM-LIM after PY, rare fresh PY; microstockworks of CHL and weak SERI alteration seams; LIM-HEM grains, clots, wisps	G08212
E05-29			113.84	114.61		QVs strongly fractured in CHL-SERI altered porphyry; strongly broken core; few LIM-HEM fractures low angleTCA	G08213
E05-29			114.61	114.76		QV; intact, 5 cm TW, 30 TCA; contains stockwork of healed fractures; cuts strong CHL-SERI brown altered porphyry	
E05-29 E05-29			114.91	115.70 115.57		QV; 1-2 cm TW, 20 TCA; TR HEM-LIM-PY in light brown CHL-SERI porphyry QV; broken by HEM-LIM seams, to 5 mm TW, 15 TCA	G08214
E05-29				117.10		QV; 1 cm TW, 5 TCA; TR-1% HEM-LIM after PY	G08216
E05-29	117.10	126.40			FELDSPAR PORPHYRY DIORITE	weakly LIM phenocrysts, patchy CHL, orange-yellow SERI; few LIM fractures; rare HEM-PY	
E05-29 E05-29				118.14 119.40		QV; 2 cm TW, 40 TCA; rare HEM-PY on contacts QV; 15 cm ~TW, 45 TCA; broken, strongly seamed; LIM, HEM-PY specks, rare MO	
E05-29			120.10	120.20		QV; massive, white, 6 cm TW, 45 TCA; LIM contacts; few LIM wisps, fractures; TR LIM-HEM specks along contacts	
E05-29 E05-29			~123.42 124.50			QV, as 119.25; ~3 cm TW, ~45 TCA QV; as 119.25; ~2 cm TW, 45 TCA; strongly broken-crumbly; LIM coated grains and fractures	
E05-29 E05-29			124.63	124.70 125.35		three white QVs; 12 mm total TW, 30 TCA porphyry groundmass brown-grey to grey; LIM seams and patches	
E05-29				125.42		QV as 120.1; 6 cm TW, 50 TCA	
E05-29	126.40	130.00			QUARTZ VEIN ZONE		
						QV; broken by CHL-vvf PY-LIM specks and seams, low angle TCA; U/C 10 TCA; QV cuts or is cut by a second QV ~ 126.8-127.13 within DEFORMATION ZONE of prophyry; rootless, wavy QV segments to 5 mm	
E05-29 E05-29				127.13 128.20		TW; swirled fabric; brown-orange brown LIM-ANK seams, zero to <5 TCA porphyry groundmass brown-grey to grey; LIM seams and patches	G08217
E05-29 E05-29			128.20	128.42 128.85		QV; 4 cm TW, 40 TCA; strong stockworks of LIM-CHL seams QV: ~25 cm TW, sheared? zero TCA; wavy L/C 60 TCA	G08218
						DEFORMATION ZONE, as 126.8; porphyry moderately to strongly broken and oxidized, QZ-CA-SERI-LIM-	
E05-29			128.85	130.00		ANK-CHL, TR vfg PY	
E05-29	130.00	136.92			FELDSPAR PORPHYRY DIORITE		
E05-29 E05-29				133.00 ~133.45		APLITE; ~3 cm TW, 20 TCA LIM fracture zone adjacent to QV; QV 2cm TW, 35 TCA; TR HEM_LIM_PY grains, clots	
E05-29 E05-29			134.20	134.42 134.57		grey SIL-LIM alteration; wavy CA seams, 2-3 mm TW, high angle TCA LIM-QZ shear zone?; strong LIM seam, 1 cm TW, 20 TCA	
E05-29 E05-29			134.85	135.18 135.95		strongly broken porphyry; LIM fractures, few QZ veinlets; nil sulphides QV: <pre>QV: </pre> 1 cm TW. low angle TCA	
E05-29				136.92		strong SIL-orange LIM alteration, phenocrysts LIM altered	
FOF **	400.00	407.55			OUARTZ VEW ZONE	broken QV; strong LIM-CHL stockworks; vvfg PY within CHL seams; MAN specks, clots; TR HEM_LIM after	0000:-
EO5-29	136.92	137.80			QUARTZ VEIN ZONE	PY; contacts 2-5 mm TW, 30 TCA; MO(?) fault gouge seam	G08219
E05-29 E05-29	137.80	163.68		138.00	FELDSPAR PORPHYRY DIORITE	FAULT? strongly broken porphyry; LIM seams and QV, to 1 cm TW, 45 TCA; strongly oxidized, TR PY	
E05-29 E05-29				138.76 140.02		weak LIM altered porphyry black-dark green CHL altered groundmass; few LIM seams with alteration halos to 1 cm from seams	I
E05-29			140.02			DIORITE xenolith; ~5x8 cm, vfg-fg hornblende diorite; contains few subhedral feldspar phenocrysts to 5 mm	•
E05-29				140.22		grey SIL-CHL porphyry; LIM seams 70 TCA moderately broken core; rough fractures along core axis; few QVs , 1.5-3 cm TW, 15 TCA; TR fresh PY and	
E05-29				146.08		HEM-PY	
E05-29 E05-29				150.20 150.50		QZ veinlet; low angle TCA; TR PY to 5 mm as previous; TR-1% HEM-PY	
			152.85	154.75		few QZ veinlets, as previous; TR to <1% PY; TR fresh PY, mostly not replaced by HEM or on HEM grains and clots	
E05-29							
E05-29 E05-29			154.53	156.96		altered porphyry; grey CHL groundmass > LIM; 20 cm SIL-grey CHL altered porphyry and QZ-HEM seams, 4 cm TW, 50 TCA at end of interval;	

HOLE #	SAMPLE F	ROM (m)	TO (m)	LENGTH	Au ppb	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
E05-29	G08204	85.20	85.98	0.78	30	< 0.2	1.49	25	55	<5	0.74	<1	12	70	48	3.02	<10	1.28	306	<1	0.04	16	1310	10	<5	<20	68	0.14	<10	85	<10	6	35
E05-29	G08205	121.59	122.72	1.13	30	0.2	1.31	45	50	<5	0.49	<1	11	57	69	2.76	<10	1.40	261	1	0.03	17	1080	10	<5	<20	39	0.13	<10	81	<10	6	32
E05-29	G08206	89.09	89.50	0.41	470	0.4	0.69	285	35	<5	0.25	<1	5	97	33	1.82	<10	0.63	148	2	0.02	9	560	12	<5	<20	19	0.04	<10	40	<10	3	18
E05-29	G08207	89.50	90.35	0.85	30	0.4	1.09	50	50	<5	0.75	<1	11	57	143	2.52	<10	1.02	265	1	0.04	25	1090	18	<5	<20	70	0.11	<10	70	<10	5	33
E05-29	G08208 A	ASSAY BLA	ANK		30	< 0.2	0.93	<5	85	<5	0.85	<1	6	37	<1	1.83	<10	0.60	509	<1	0.03	2	880	8	<5	<20	51	0.11	<10	33	<10	5	39
E05-29	G08209	93.03	93.57	0.54	30	0.4	1.35	110	55	10	0.83	<1	11	65	84	2.95	<10	1.19	309	5	0.04	17	1070	20	<5	<20	46	0.11	<10	83	<10	5	32
E05-29	G08210	104.89	105.39	0.50	30	0.3	0.89	210	60	5	0.38	<1	15	85	236	3.82	<10	1.25	344	5	0.03	36	1100	14	<5	<20	29	0.08	<10	95	<10	9	44
E05-29	G08211	105.77	106.85	1.08	30	< 0.2	1.03	90	40	<5	0.36	<1	10	80	75	2.72	<10	1.08	299	6	0.04	16	780	12	<5	<20	31	0.09	<10	69	<10	6	33
E05-29	G08212	112.60	113.84	1.24	30	0.4	0.91	100	90	<5	1.14	<1	12	78	359	3.31	<10	1.39	476	3	< 0.01	53	1010	14	<5	<20	40	0.03	<10	88	<10	9	46
E05-29	G08213	113.84	114.91	1.07	30	0.3	1.04	90	60	<5	1.45	<1	8	96	68	2.29	<10	0.89	362	6	0.01	14	720	12	<5	<20	47	< 0.01	<10	36	<10	7	28
E05-29	G08214	114.91	115.70	0.79	30	1.0	1.16	150	70	20	1.98	<1	9	87	104	3.05	<10	1.16	433	4	0.03	19	870	28	<5	<20	68	0.03	<10	71	<10	8	34
E05-29	G08215 S	STANDARD	OXE21	= 0.651 g/t	680	< 0.2	0.21	<5	5	<5	0.19	<1	<1	2	2	0.26	<10	0.05	21	<1	0.13	1	700	4	<5	<20	3	< 0.01	<10	1	<10	3	2
E05-29	G08216	115.70	117.10	1.40	30	< 0.2	0.93	110	40	<5	0.82	<1	11	73	89	2.28	<10	0.85	288	3	0.03	17	870	8	<5	<20	37	0.11	<10	72	<10	5	28
E05-29	G08217	126.40	127.13	0.73	1160	1.1	0.53	1235	40	<5	2.22	2	5	86	48	1.85	<10	0.42	309	22	< 0.01	10	570	58	10	<20	135	< 0.01	<10	19	<10	5	36
E05-29	G08218	128.20	130.00	1.80	380	0.5	0.58	535	40	<5	2.93	1	10	60	104	2.64	<10	0.66	522	41	< 0.01	20	940	14	5	<20	156	< 0.01	<10	24	<10	8	36
E05-29	G08219	136.92	137.80	0.88	87300	21.6	0.21	8545	25	<5	0.52	21	3	137	27	1.45	<10	0.09	88	16	< 0.01	7	170	34	20	<20	49	< 0.01	<10	3	<10	2	25

HOLE #	LENGTH	BEARING	DIP
E05-29	0	125	-65
E05-29	163.68	125	-70

	F	RECOVERY	,			RQD		CORE	BOX INTER	RVALS
From	To	Run	Recover	ry	CORE	RUN	RQD			
(m)	(m)	(m)	Meas	Rec (%)	(m)	(m)	(%)	Box	From	То
0.00	82.30	82.30	0.00	0.0	0.00	82.30	0.00	1	82.30	86.85
82.30	84.43	2.13	2.13	100.0	0.97	2.13	45.54	2	86.85	92.25
84.43	87.48	3.05	3.05	100.0	1.07	3.05	35.08	3	92.25	97.90
87.48	90.53	3.05	2.88	94.4	1.20	3.05	39.34	4	97.90	103.46
90.53	93.57	3.04	2.99	98.4	2.00	3.04	65.79	5	103.46	109.00
93.57	96.62	3.05	2.97	97.4	1.98	3.05	64.92	6	109.00	114.61
96.62	99.67	3.05	3.05	100.0	1.80	3.05	59.02	7	114.61	119.80
99.67	102.72	3.05	2.98	97.7	2.52	3.05	82.62	8	119.80	125.00
102.72	105.77	3.05	3.03	99.3	1.70	3.05	55.74	9	125.00	130.00
105.77	108.81	3.04	3.02	99.3	1.80	3.04	59.21	10	130.00	135.25
108.81	111.86	3.05	2.99	98.0	2.19	3.05	71.80	11	135.25	140.42
111.86	114.91	3.05	3.05	100.0	1.62	3.05	53.11	12	140.42	146.55
114.91	117.96	3.05	3.05	100.0	1.47	3.05	48.20	13	146.55	150.91
117.96	121.01	3.05	2.82	92.5	1.28	3.05	41.97	14	150.91	156.50
121.01	124.05	3.04	3.04	100.0	1.94	3.04	63.82	15	156.50	162.02
124.05	126.80	2.75	2.45	89.1	1.49	2.75	54.18	16	162.02	163.68
126.80	130.00	3.20	3.18	99.4	1.29	3.20	40.31			E.O.H.
130.00	133.05	3.05	3.05	100.0	2.19	3.05	71.80			
133.05	135.18	2.13	2.13	100.0	1.05	2.13	49.30			
135.18	137.16	1.98	1.89	95.5	1.11	1.98	56.06			
137.16	138.68	1.52	1.44	94.7	0.00	1.52	0.00			
138.68	141.12	2.44	2.27	93.0	1.01	2.44	41.39			
141.12	144.32	3.20	3.16	98.8	1.26	3.20	39.38			
144.32	147.22	2.90	2.90	100.0	0.83	2.90	28.62			
147.22	148.44	1.22	1.12	91.8	1.09	1.22	89.34			
148.44	151.49	3.05	3.05	100.0	2.44	3.05	80.00			
151.49	154.53	3.04	2.96	97.4	2.47	3.04	81.25			
154.53	157.58	3.05	3.05	100.0	1.90	3.05	62.30			
157.58	160.63	3.05	3.05	100.0	2.99	3.05	98.03			
160.63	163.68	3.05	3.05	100.0	2.87	3.05	94.10			
	E.O.H.						<u>'</u>			

ELIZABETH PROPERTY

J-PACIFIC GOLD INC.

NORTHING	5,653,806	BEARING	120	START DATE	14-Aug-05
EASTING	531,194	DIP	-76	END DATE	15-Aug-05
ELEVATION	2381	LENGTH	131.67	LOGGED BY	E.D. Frey

NOTE: UNITS IN METERS, BEARING & DIP IN DEGREES

OBJECTIVE TO TEST SOUTHWEST VEIN IN AREA OF DDH E04-7 & 8

SUMMARY L	_OG	DDH	
HOLE#	FROM	ТО	DESCRIPTION
			OVERBURDEN /
E05-30	0.00	24.38	CASING
E05-30	24.38	24.83	HARZBURGITE
			FELDSPAR
E05-30	24.83	86.00	PORPHYRY DIORITE
E05-30	82.53	82.95	
E05-30	86.00	86.72	QUARTZ VEIN
			FELDSPAR
E05-30	86.72	89.27	PORPHYRY DIORITE
E05-30	89.27	89.50	QUARTZ VEIN
			FELDSPAR
E05-30	89.50	104.54	PORPHYRY DIORITE
E05-30	104.54	104.95	QUARTZ VEIN
			FELDSPAR
E05-30	104.95	112.45	PORPHYRY DIORITE
E05-30	112.45	112.73	QUARTZ VEINS
			FELDSPAR
E05-30	112.73	117.30	PORPHYRY DIORITE
E05-30	117.30	118.13	QUARTZ VEINS
E05-30			
			FELDSPAR
E05-30	118.13	120.70	PORPHYRY DIORITE
E05-30	120.70	122.72	QUARTZ VEIN ZONE
E05-30			
			FELDSPAR
E05-30	122.72	131.67	PORPHYRY DIORITE
E05-30		131.67	END OF HOLE

DDH

E05-30

HOLE #	FROM (m) MAJOR U		FROM (m) Minor U		ROCK TYPE	DESCRIPTION	SAMPLE
E05 20	0.00		WIITIOI		OVERBURDEN / CASING		
E05-30 E05-30	24.38	24.38			HARZBURGITE	black-dark grey-black; fg-mg pyroxene; cg olivine; minor feldspar alteration; weakly magnetic; 3 cm core fragments to coarsely broken;	
E05-30	24.83	86.00			FELDSPAR PORPHYRY DIORITE		
E05-30	24.63	86.00	24.83	24.93	FELDSPAR FORFHIRT DIORITE	weakly chloritic feldspar alteration to pale green; lower contact (L/C) quartz (QZ) veinlet, fg, 1 cm true width (TW), 80 degrees to core axis (80 TCA)	
E05-30			24.93	24.93		brown-grey groundmass chloritic hornblende alteration; fg hornblende strongly broken, limonite fractures; rare quartz vein (QV) 1 cm TW, <5 TCA, trace (TR) dark brown	
E05-30			24.93	26.40		hematite(HEM)-limonite(LIM) after pyrite (PY) along QV contacts	
E05-30 E05-30			27.10 29.57	28.12 32.50		as previous; L/C 75 TCA, quartz (QZ)-chlorite (CHL) seam, 2 cm TW, finely vuggy 90% coarsely broken core; LIM and few manganese (MN) fractures	
E05-30			32.50	40.74		50% as previous; LIM-MN and few epidote fractures strong LIM alteration zone surrounding central calcite (CA) veinlet @ 41.58 m) , 5 mm TW, 80 TCA; CA-LIM	
E05-30			41.40	41.72		seams 45 TCA at upper contact (U/C) QV, white, fg; cuts pale grey-green chloritic feldspar prophyry; QV to 1 cm TW, 20 TCA; TR HEM-PY ovein	
E05-30 E05-30			44.58 46.15	45.03 46.30		contacts LIM seams 80 TCA in dark grey-green chlorite altered porphyry	
E05-30 E05-30			46.20 47.60	46.29 47.65		grey CA vein, 1.5 cm TW, 30 TCA; cut by CA veinlets, 2 mm TW, 80-90 TCA; strong LIM contacts diorite xenolith, fg, minor biotite; 6x4 cm, rounded edges	
E05-30 E05-30			48.80 50.90	50.40 51.50		three QZ-HEM-PY seams to 5 mm TW, 20-25 TCA; TR to 1% fg hematitic PY en echelon(?) QVs, grey-clear, fg re-crystalized granular QZ, rare HEM-PY specks	
E05-30 E05-30			51.60 52.45	51.88 53.10		white QV, coarsely re-crystalized, 4 cm TW, 20 TCA, in silicified porphyry; nil sulphides two QVs, as previous; 1 cm TW, 20 TCA, cuts 5-8 mm TW, 30 TCA	
E05-30			53.50			CA veinlet, 5 mm TW, 70 TCA @ upper contact (U/C) of green chloritic alteration zone,2-3 cm TW; nil S	
E05-30			56.00	63.03		weak chloritic alteration; dull grey-very pale green plagioclase phenocrysts; dark grey hornblende groundmass	
E05-30			57.58 60.25	59.15 60.50		several QVs, clear to light grey, <5 to 20 TCA, 5 mm to 1 cm TW; coarsely seamed by white QZ QV, 3.5 cm TW, 20 TCA, parallel QZ-CA seams	
			63.03	63.14		QV as previous, cuts fg diorite xenolith few QZ-CA seams, 90 TCA; plagioclase phenocrysts more crowded but remain groundmass supported;	
			63.14 68.06	67.92 68.46		variable and weak pale green chlorite alteration fg diorite xenolith, 5% subhedral bleached feldspars to 5 mm	
E05-30 E05-30			70.52 73.38	70.72 84.65		QV, 1-3 cm TW, 40 TCA; few mg HEM-PY specks few LIM grains and seams within the porphyry; >50% phenocrysts, groundmass supported	
E05-30 E05-30			74.80 74.95	74.95 75.29		strong CHL and LIM alteration; dark brown hornblende; central 3 cm TW TR Py several CA veinlets to 1 cm TW, all angles TCA	
E05-30			76.10	76.31		strong LIM alteration cuts QV (fg, re-crystalized, <1 cm TW, 20 TCA) and fractures parallel to QV; few fg HEM-PY specks	
E05-30			76.31	82.45		weak LIM alteration; few pale orange feldspar phenocrysts and seams to 5% partly LIM altered feldspars; few QZ-CA seams, 80-90 TCA	
E05-30			82.45	82.60		white-dull grey QV, 3-3.5 cm TW, 30 TCA L/C, 70 TCA U/C; contacts and internal seams LIM, TR HEM-PY	
E05-30			82.60	82.63		L/C (porphyry/QV) cut by QZ-CHL-HEM-PY seam, 3 cm TW, 70 TCA; 1-2% HEM-PY sheared QV seams and fragments in silicified (SIL) and weak CHL alteration zone; strong HEM-LIM seams	
E05-30			82.63	82.87		to 5 mm TW, 30 TCA; TR-1% HEM-PY	G08222
E05-30	86.00	86.72			QUARTZ VEIN	massive, white-pale grey, fg-mg, re-crystalized; U/C 35 TCA, L/C 40 TCA; strong fg HEM-PY seams along L/C; several white CA stockwork seams within QV;	G08224
E05-30			86.30	86.36		central zone; strong CHL alteration, dull green-grey; HEM-PY(?) seams 55 TCA, LIM fractures, one cg HEM PY clot on L/C	
E05-30			86.72	86.76		QV L/C zone; CHL-sericite (SERI) seams, brown-dull yellow porphyry alteration	
E05-30 E05-30	86.72	89.27	86.76	90.30	FELDSPAR PORPHYRY DIORITE	90% coarsely broken, fractures 70-80 TCA	
E05-30			87.48	87.96		chloritic alteration; moderate to strong, dull green to brown; groundmass variably overprinted multiple seams, strong HEM (after vfg PY?) and CA seams (healed fault slips?); to 5 mm TW each, 40 TCA;	G08225
E05-30			87.74	87.96		strong mineral lineations parallel TCA on zone L/C	
E05-30	89.27	89.50			QUARTZ VEIN	white; wavy seams CHL-HEM, rare fresh PY specks, some within (on?) HEM-PY clots, 1% along L/C; strong resemblance to mineralized QV but lacks vvfg PY or other sulphides	G08226
E05-30	89.50	104.54			FELDSPAR PORPHYRY DIORITE		
E05-30			90.76	91.14		few pale green CHL-EPIDOTE seams and alteration zones @ 90.76, 91.04, 91.14; to 3 cm TW, 70 TCA	
E05-30 E05-30			94.18 94.65	94.36 94.74		two fg QVs, dull grey; 5 mm to 15 mm TW, low TCA; LIM seams normal to vein diorite xenolith(?); ~5x7 cm, rounded; grey, fg diorite, few mg-cg white subhedral feldspar phenocrysts	
E05-30			95.45	95.60		two cross-cutting QZ veinlets, 5 mm and 25 mm TW, 20 and 40 TCA patchy to >80% strong CHL alteration; dark grey groundmass and plagioclase phenocrysts; variable with	
E05-30			95.70	96.90		smaller zones of LIM alteration; LIM fractures; minor pale orange LIM alteration of phenocrysts; central QV and QZ seams in LIM fractured and broken core, 2 cm TW, 20 TCA	
E05-30			96.90	98.60		weak CHL alteration; dull green-grey feldspars; 10-15 cm TW, 70-80 TCA; 2-5 mm CA and QZ veinlets crowded plagioclase phenocrysts and groundmass feldspars, few in contact; black hornblende groundmass;	
E05-30			98.50	104.54		few CA seams, to 3 cm TW, within grey CHL alteration zone	
						white; patchy, wavy to diffuse contacts; 3.5 cm TW, 20-35 TCA; 1% acicular appearing fractures to 1 cm long x 1 mm wide, some bent or are micro-boudinaged, therefore vfg HEM after PY? As individual seams or	1
E05-30	104.54				QUARTZ VEIN	small clusters, random TCA; L/C cut by 1 cm TW QZ veinlet, 80 TCA, in Grey CHL alteration	
E05-30	104.95	112.45			FELDSPAR PORPHYRY DIORITE	SIL-CHL alteration zone; 50 TCA; HEM-LIM seams and seam-stockworks, few small QZ fragments within	
E05-30			105.42			seams CA seams, minor CHL zones as previous; few QZ veinlets, 1-1.5 cm TW @ 106.53-106.63; 107.07-107.5;	
E05-30			106.53	112.45		111.38-111.48; 111.6-111.7	
E05-30	112.45	112.73			QUARTZ VEINS	two vfg-fg QVs; 3.5 TW and 10 TCA each; strong LIM-HEM contacts; weakly seamed parallel to vein axes; to 1% fg fresh PY and HEM-PY along contacts; few clots to 5x15 mm	G08227
E05-30	112.73	117.30			FELDSPAR PORPHYRY DIORITE		
						few QZ veinlets; 1.5-2 cm TW, 10-20 TCA, LIM seams within (and transverse to) veinlet axes; to 1% small clots, grains fresh PY along contacts, rimmed with HEM-LIM; veinlets displaced 1-2 cm right-laterally by 5-10	
E05-30	117.30	118.13			QUARTZ VEINS	mm TW QZ veinlets, 80-90 TCA; strong LIM_HEM along contacts, POSSIBLE 1 mm VG	G08228

HOLE #	FROM (m)	TO (m)	FROM (m)	TO (m)	ROCK TYPE	DESCRIPTION	SAMPLE
							G08229
E05-30	118.13	120.70			FELDSPAR PORPHYRY DIORITE		
E05-30			118.13	120.23		weak CHL alteration, patchy zones of grey feldspars	
E05-30			119.10	120.70		increasingly stronger LIM-HEM seams and alteration zones	G08231
						two intersecting QZ veinlets, 5-10 mm variable TW each, 20 and 30 TCA; displaced 1 cm by 5 mm TW QZ	
E05-30			120.00	120.23		veinlet, 80 TCA	
200 00			120.00	.20.20		low TCA shear? coarsely fractured and broken HEM PY seams, to 1 cm TW; 25 TCA U/C, L/C finely broken	
E05-30			120.23	120.70		at QV (see following)	
200 00			120.20	120.70		at at (see tenering)	
						vfg QV; specks, wisps, numerous wavy, grey seams CHL-HEM-rare molybdenite (MO), TR vvfg PY;	
E05-30	120 70	122.72					G08220
L03-30	120.70	122.72				possible continuation of the same QV as previous; 5% low TCA stockworks vvfq-fg CHL-MO?-PY, rare	000220
E05-30			121.00	121.59		chalcopyrite (CPY) seams and blebs; POSSIBLE VG	
L03-30			121.00	121.00		second QV? wavy U/C 30 TCA; numerous wavy, grey seams as in G08220; also 1-2% orange-brown	
E05-30			121.59	122.72			G08221
E03-30			121.59	122.72		garosite) Siz alteration, rare arsenopyrite (ASF), patchy derise, vig Criz-iniO-F1, POSSIBLE VG	G00221
E05-30	122 72	131.67			FELDSPAR PORPHYRY DIORITE		
L03-30	122.72	131.07				SIL alteration and pale green CHL alteration of phenocrysts; few HEM-LIM seams @ all angles TCA;	
E05-30			122.96	123.96		Ifg QV, 3cm TW, 25 TCA; patchy CHL alteration, TR fresh PY, MO(?) grains, wisps, small clots	
E05-30			123.51				G08232
E03-30			123.51	123.00		to 12 min Tw, 20 ToA, ig, eunedial FT, MO? Specks along contacts	G00232
						light grey SIL alteration; CHL feldspar alteration; numerous LIM-PY, vfg-mg PY fractures and seams, all	
E05-30			123.68	124.75			G08233
E05-30			125.70			LIM fractures along core axis and low angle TCA; QZ veinlets, 5 mm TW; EPID-CHL on slip fractures	000233
L03-30			125.70	123.00		as previous; fewer LIM seams; PY, MO?; QV, 15 mm TW, 45 TCA (124.82-124.88); CHL-PY seams within	
E05-30			124.75	125.88			G08234
E03-30			124.75	123.00		and along contacts	G00234
						DEFORMATION ZONE; 25-30 TCA; soft, light brown, abundant slip fractures along LIM-ankerite (ANK)-CA	
E05-30			125.88	126.82			G08235
E05-30			126.82				G08236
L03-30			120.02	127.02		groundinass brown-dark grey, chlorite altered nomblende, to 127.50	000230
E05-30			127.40	128.06		LIM-brown HEM-CHL-vfg PY seams to 1 cm TW, anastamosing to stockworks; patchy HEM and minor ANK	G08237
200 00			121110	120.00		grey CHL altered hornblende groundmass; LIM-SERI seams; large patch (xenolith?) dark grey-black, vfg-fg	000207
E05-30			128.06	131.67		SIL-CHL altered porphyry with few mottled phenocrysts	
E05-30		l	130.58				G08239
E05-30	131 67	E.O.H.	130.36	131.20		DEI ORMATION 2012, 43 120.00	000200
L03-30	131.07	L.O.H.					
	ı	ı				I .	

HOLE #	SAMPLE	FROM (m)	TO (m)	LENGTH	Au ppb	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
E05-30	G08220	120.70	121.59	0.89	1160	1.3	0.12	5655	10	<5	1.33	14	2	115	23	0.88	<10	0.05	123	3	< 0.01	6	100	26	10	<20	107	< 0.01	<10	2	<10	1	139
E05-30	G08221	121.59	122.72	1.13	360	0.4	0.28	4280	15	<5	2.11	10	5	97	47	1.46	<10	0.35	256	1	< 0.01	11	480	4	5	<20	157	< 0.01	<10	6	10	4	19
E05-30	G08222	82.53	82.95	0.42	20	< 0.2	1.17	135	100	5	2.62	<1	11	82	44	2.80	<10	0.93	353	10	0.04	17	720	38	5	<20	113	0.09	<10	67	<10	5	34
E05-30	G08223	ASSAY BLA	NK		<5	0.3	0.78	<5	110	<5	0.69	<1	6	39	2	2.09	<10	0.50	476	<1	0.03	5	810	24	<5	<20	42	0.09	<10	37	<10	3	52
E05-30	G08224	86.00	86.76	0.76	20	< 0.2	0.87	60	50	10	1.52	<1	5	156	13	1.17	<10	0.34	137	4	0.02	12	260	44	<5	<20	35	0.05	<10	30	<10	<1	11
E05-30	G08225	87.48	87.96	0.48	25	< 0.2	1.89	95	50	<5	1.84	<1	17	63	36	3.89	<10	1.21	424	18	0.05	17	1050	46	<5	<20	111	0.17	<10	101	<10	7	48
E05-30	G08226	89.20	89.60	0.40	60	0.8	1.03	2140	65	5	2.67	<1	10	114	44	2.82	<10	0.73	359	10	0.04	13	750	36	10	<20	94	0.08	<10	68	<10	3	29
E05-30	G08227	112.45	112.73	0.28	10	< 0.2	1.04	250	35	<5	1.69	<1	11	105	191	3.12	<10	0.68	245	8	0.07	11	650	22	<5	<20	71	0.08	<10	80	<10	<1	30
E05-30	G08228	117.30	118.13	0.83	5	< 0.2	0.83	35	35	<5	1.79	<1	8	154	116	2.10	<10	0.58	260	9	0.07	9	620	20	<5	<20	78	0.07	<10	73	<10	3	26
E05-30	G08229	117.30	118.13	0.83	5	< 0.2	1.09	45	35	<5	2.21	<1	10	104	153	2.76	<10	0.78	323	10	0.08	11	780	26	<5	<20	99	0.08	<10	94	<10	3	34
E05-30	G08230	STANDARD	OXE21	= 0.651 g/l	635	< 0.2	0.20	<5	15	<5	0.16	<1	<1	2	2	0.28	<10	0.04	19	<1	0.15	2	630	10	<5	<20	3	< 0.01	<10	1	<10	4	4
E05-30	G08231	119.70	120.70	1.00	15	< 0.2	1.42	185	65	<5	2.67	<1	12	84	32	3.60	<10	1.11	445	13	0.05	16	960	28	<5	<20	211	0.01	<10	91	<10	5	41
E05-30	G08232	122.72	123.75	1.03	120	0.4	0.90	3105	30	<5	3.30	<1	12	68	125	3.15	<10	0.92	491	8	0.02	15	900	18	10	<20	262	< 0.01	<10	46	<10	5	48
E05-30	G08233	123.75	124.75	1.00	35	0.2	1.48	135	75	<5	2.78	<1	14	81	132	3.95	<10	1.23	509	3	0.05	17	960	30	<5	<20	178	0.03	<10	123	<10	5	53
E05-30	G08234	124.75	125.88	1.13	85	< 0.2	1.28	1215	50	<5	2.92	<1	13	72	61	3.47	<10	1.06	449	4	0.03	15	930	30	<5	<20	192	< 0.01	<10	88	<10	5	46
E05-30	G08235	125.88	126.82	0.94	115	0.2	1.07	3005	40	<5	3.28	<1	11	60	89	3.05	<10	0.76	432	8	0.02	14	960	24	5	<20	281	< 0.01	<10	35	<10	6	46
E05-30	G08236	126.82	127.82	1.00	10	< 0.2	1.41	360	55	<5	2.47	<1	12	61	76	3.64	<10	1.22	567	18	0.05	14	1000	32	<5	<20	210	< 0.01	<10	82	<10	5	54
E05-30	G08237	127.82	129.30	1.48	10	< 0.2	1.13	195	45	<5	3.11	<1	11	62	78	3.26	<10	1.11	579	68	0.05	12	900	30	10	<20	248	< 0.01	<10	70	<10	6	46
E05-30	G08238	ASSAY BLA	NK		<5	< 0.2	0.85	<5	125	<5	0.72	<1	6	43	2	2.28	<10	0.54	506	<1	0.03	4	840	22	<5	<20	48	0.10	<10	42	<10	3	52
E05-30	G08239	130.58	131.12	0.54	50	0.2	1.45	210	345	<5	5.16	<1	10	66	44	3.07	<10	0.85	627	21	0.03	14	850	28	<5	<20	266	<0.01	<10	43	<10	7	40

E05-30 G08228 EQUALS 08229, QUARTER SPLIT

HOLE #	LENGTH	BEARING	DIP
E05-30	0	120	-76
E05-30	131.6	120	-76

	F	RECOVERY	,			RQD		CORE BOX INTERVALS			
From	To	Run	Recover	ry	CORE	RUN	RQD				
(m)	(m)	(m)	Meas	Rec (%)	(m)	(m)	(%)	Box	From	To	
0.00	24.38	24.38	0.00	0.0	0.00	24.38	0.0	1	24.38	30.19	
24.38	26.21	1.83	0.97	53.0	0.97	1.83	53.0	2	30.19	35.46	
26.21	28.80	2.59	2.07	79.9	0.46	2.59	17.8	3	35.46	40.74	
28.80	29.57	0.77	0.68	88.3	0.40	0.77	51.9	4	40.74	45.84	
29.57	32.31	2.74	2.36	86.1	0.46	2.74	16.8	5	45.84	51.13	
32.31	34.14	1.83	1.83	100.0	0.76	1.83	41.5	6	51.13	56.65	
34.14	35.66	1.52	1.30	85.5	0.39	1.52	25.7	7	56.65	62.21	
35.66	38.71	3.05	2.86	93.8	0.80	3.05	26.2	8	62.21	67.92	
38.71	41.76	3.05	2.63	86.2	0.72	3.05	23.6	9	67.92	73.38	
41.76	44.81	3.05	2.78	91.1	0.16	3.05	5.2	10	73.38	79.20	
44.81	47.85	3.04	2.95	97.0	0.64	3.04	21.1	11	79.20	84.65	
47.85	50.90	3.05	2.87	94.1	1.01	3.05	33.1	12	84.65	90.00	
50.90	53.95	3.05	3.05	100.0	1.34	3.05	43.9	13	90.00	95.45	
53.95	57.00	3.05	2.82	92.5	1.23	3.05	40.3	14	95.45	100.90	
57.00	60.05	3.05	3.05	100.0	1.38	3.05	45.2	15	100.90	106.53	
60.05	63.09	3.04	2.95	97.0	2.25	3.04	74.0	16	106.53	112.21	
63.09	66.14	3.05	3.05	100.0	2.27	3.05	74.4	17	112.21	117.96	
66.14	69.19	3.05	2.99	98.0	2.55	3.05	83.6	18	117.96	123.68	
69.19	72.24	3.05	2.97	97.4	1.33	3.05	43.6	19	123.68	128.66	
72.24	75.29	3.05	2.87	94.1	2.55	3.05	83.6	20	128.66	131.67	
75.29	78.33	3.04	3.04	100.0	2.46	3.04	80.9			E.O.H.	
78.33	81.38	3.05	3.05	100.0	2.08	3.05	68.2				
81.38	84.43	3.05	3.05	100.0	1.57	3.05	51.5				
84.43	87.48	3.05	3.05	100.0	1.77	3.05	58.0				
87.48	90.53	3.05	3.05	100.0	0.62	3.05	20.3				
90.53	93.57	3.04	3.04	100.0	2.59	3.04	85.2				
93.57	96.62	3.05	2.95	96.7	1.73	3.05	56.7				
96.62	99.67	3.05	3.05	100.0	1.09	3.05	35.7				
99.67	102.72	3.05	3.05	100.0	2.84	3.05	93.1				
102.72	105.77	3.05	3.05	100.0	1.88	3.05	61.6				
105.77	108.81	3.04	3.04	100.0	2.56	3.04	84.2				
108.81	111.86	3.05	3.05	100.0	2.50	3.05	82.0				
111.86	114.91	3.05	3.05	100.0	2.61	3.05	85.6				
114.91	117.96	3.05	3.05	100.0	2.86	3.05	93.8				
117.96	120.70	2.74	2.11	77.0	1.62	2.74	59.1				
120.70	123.75	3.05	3.05	100.0	2.01	3.05	65.9				
123.75	125.88	2.13	2.13	100.0	1.40	2.13	65.7				
125.88	126.95	1.07	0.77	72.0	0.13	1.07	12.1				
126.95	129.24	2.29	2.21	96.5	1.56	2.29	68.1				
129.24	130.91	1.67	1.67	100.0	0.89	1.67	53.3				
130.91	131.67	0.76	0.76	100.0	0.28	0.76	36.8				

131.67 **E.O.H.**

DDH

E05-31

J-PACIFIC GOLD INC.

NORTHING	5653777	BEARING	120	START DATE	AUGUST 16, 2005
EASTING	531214	DIP	-55	END DATE	AUGUST 17, 2005
ELEVATION	2418	LENGTH	90.22	LOGGED BY	G.Z. MOSHER

NOTE: UNITS IN METERS, BEARING & DIP IN DEGREES

OBJECTIVE TO TEST SOUTHWEST VEIN IN AREA OF DDH E04-7 & 8

SUMMAR	RY LOG		DDH			EO5-31
	55014		 0	DECODIDETION	0.1151.5	0015 (()
HOLE#	FROM		ТО	DESCRIPTION	SAMPLE	GOLD (g/t)
				OVERBURDEN /		
E05-31		0.00	30.48	CASING		
				FELDSPAR		
E05-31		30.48	43.69	PORPHYRY DIORITE		
E05-31		43.69	44.20	QUARTZ VEIN		
				FELDSPAR		
E05-31		44.20	63.00	PORPHYRY DIORITE		
E05-31		63.00	76.80	QUARTZ VEIN ZONE		
				FELDSPAR		
E05-31		76.80	90.22	PORPHYRY DIORITE		
E05-31		90.22	90.22	END OF HOLE		

HOLE #	FROM (m)	TO (m)	FROM (m)	TO (m)	ROCK TYPE	DESCRIPTION	SAMPLE
	MAJOR		Minor U				
E05-31							
E05-31	0.00	30.48			OVERBURDEN / CASING		
						Plagioclase phenocrysts white to pale green, euhedral, up to 0.5 centimeters (cm) in size, 60 - 70% of rock	
E05-31	30.48	43.69			FELDSPAR PORPHYRY DIORITE	by volume, groundmass supported, in dark-green groundmass.	
						Fractured @ 5 - 10 cm intervals. Fractures generally 70 degrees TCA, (also 10 deg TCA above 37m depth),	
E05-31						both rustv.	
						Quartz veinlets 1 - 2 cm, @ about one-meter intervals, 70 & 20 deg TCA. Veins cut both phases of diorite.	
						Two phases of veining - earlier milky-white, open space filling with crystal faces, later phase amorphous light-	
E05-31						grey.	
E05-31			36.35	36.85		Leucocratic phase of diorite or dike, contacts @ 60 deg TCA, medium-crystalline	
E05-31			42.00	43.69		Core broken, chloritized groundmass and chlorite on fracture faces.	
E05-31			12.00	10.00		of british, who have grown and only he or mada to labor.	
200 01						Top 10 cm sheared feldspar porphyry diorite, rusty, chloritized, with foliation @ 60 deg TCA, with sub-cm	
						quartz stringers parallel to foliation. Balance of interval milky-white quartz, coarse crystalline, with chlorite on	
						fractures. Broken, rusty, fractures generally @ 70 deg TCA. Upper contact @ 60 deg TCA. Lower contact	
E05-31	43.69	44.20			QUARTZ VEIN	broken @ 70 deg TCA.	4001
E05-31	43.09	44.20			QUARTZ VEIN	blokell & 70 deg TCA.	4001
E05-31						Course as stalling will sushife to pole group placed on phononysts in day, group group decor	
E05.04	44.00				FEL DODA'D BODDIIVDY DIODITE	Coarse crystalline, milky-white to pale-green plagioclase phenocrysts in dark-green groundmass.	
E05-31	44.20	63.00			FELDSPAR PORPHYRY DIORITE	Phenocrysts euhedral to sub-rounded, 60-70% of rock by volume.	
E05-31						Rare cm-scale quartz veinlets (1/5 meters), one with two phases of quartz, others all milky-white.	
						Rock generally boken at 5 - 10 cm intervals, generally @ 70 deg TCA. Fracture surfaces chloritized and	
E05-31						slightly rusty. Iron oxide increases with depth.	
						Rock tectonized, euhedral texture overprinted with foliation @ 60 deg TCA. Groundmass sericitized to	
E05-31			49.00	51.00		medium-green, plagioclase phenocrysts creamy-buff.	
E05-31			51.00	63.00		Euhedral plagioclase, phenocrysts and groundmass slightly altered, alteration increases down-interval	
E05-31			62.18	63.00		Aplite dike(s).	
E05-31							
						Interval of feldspar porphyry diorite with one prominent quartz vein, several medium veins, and common	
						minor (cm-scale) veins. Quartz vein material = 30% of interval. Veins all milky-white with nebulous texture,	
E05-31	63.00	76.80			QUARTZ VEIN ZONE	generally with minor inclusions of mafics and with rust on fractures after pyrite and chlorite.	4002
E05-31			63.00	63.15		Quartz vein, milky-white, contacts broken.	
E05-31			63.25	64.10		Quartz vein, milky-white, contacts broken, lower contact probably @ 60 deg TCA.	TO
E05-31			67.36	68.88	1	Quartz vein, milky-white, contacts broken, upper contact probably @ 60 deg Tca	
E05-31			72.30	72.70		Quartz vein, milky-white, contacts broken.	4013
E05-31			74.37	74.52		Quartz vein, milky-white, contacts broken, lower contact @ 45 deg TCA.	
						Shear zone @ 45 - 60 deg TCA, with cm-scale quartz veinlets @ 10 cm intervals. Strong FeOx alteration,	
E05-31			74.52	75.10		possibly carbonate alteration (orange).	
E05-31			75.10	75.50		Quartz vein, milky-white, upper contact broken @ 70 deg TCA, lower contact @ 45 deg TCA	
						Feldspar porphyry diorite, altered, with milky quartz veinlets @ 70 & 20 deg TCA. Lower contact of entire	
E05-31			75.50	76.80		interval placed at last significant quartz vein, @ 70 deg TCA.	
E05-31							
						Plagioclase phenocrysts up to 0.5 cm, euhedral, 60% of rock by volume, creamy to predominantly pale-	
						green in dark-green groundmass. Cm-scale milky quartz veinlets @ 50cm - 1m intervals, @ 20, 45, 70 deg	
E05-31	76.80	90.22			FELDSPAR PORPHYRY DIORITE	TCA. Veinlets @ 70 deg TCA have been sheared.	
E05-31						Rock fractured @ 20 - 50 cm intervals @ 20, 45, 80 deg TCA. Very minor FeOx on fracture surfaces	
E05-31							
E05-31	90.22	90.22			ЕОН	END OF HOLE	
	00.22	00.22			[==··		
ı		l	ı		1	!	

HOLE #	SAMPLE F	ROM T	0	Au ppb	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
E05-31	4001	43.69	44.20	205	1.1	0.35	255	55	<5	0.07	<1	5	102	65	1.42	<10	0.24	114	19	< 0.01	6	300	44	<5	<20	5	< 0.01	<10	8	<10	2	21
E05-31	4002	63.00	64.10	275	0.5	0.33	795	55	<5	0.66	<1	3	107	41	1.12	<10	0.19	137	1	0.01	9	230	14	<5	<20	19	< 0.01	<10	8	<10	2	18
E05-31	4003	64.10	66.00	190	0.9	0.81	515	75	<5	0.18	<1	7	96	405	2.44	<10	0.58	271	3	0.01	9	600	22	<5	<20	6	< 0.01	<10	32	<10	2	63
E05-31	4004	66.00	67.36	240	0.5	0.98	745	100	<5	1.14	<1	10	59	119	3.08	<10	0.71	453	6	0.02	10	890	32	10	<20	40	<0.01	<10	45	<10	4	77
E05-31	4005	67.36	68.88	5440	1.4	0.05	220	10	<5	0.02	<1	1	150	14	0.34	<10	0.02	54	<1	< 0.01	4	30	10	<5	<20	<1	< 0.01	<10	<1	<10	<1	10
E05-31	4006	68.88	70.00	40	0.2	1.12	475	65	<5	1.39	<1	9	70	107	2.97	<10	0.84	408	3	0.03	8	750	26	<5	<20	45	< 0.01	<10	65	<10	4	48
E05-31	4007	70.00	71.00	60	0.2	0.97	495	55	<5	1.36	<1	8	86	202	2.59	<10	0.68	332	3	0.02	9	670	20	<5	<20	35	< 0.01	<10	46	<10	3	46
E05-31	4008	71.00	72.00	175	0.4	1.09	910	60	<5	1.23	<1	9	59	173	2.90	<10	0.79	330	5	0.02	9	740	26	10	<20	44	< 0.01	<10	51	<10	4	53
E05-31	4009	72.00	73.00	6350	2.7	0.42	790	50	<5	1.94	<1	5	127	89	1.58	<10	0.24	249	2	< 0.01	7	390	24	<5	<20	76	< 0.01	<10	11	<10	3	40
E05-31	4010	73.00	74.00	25	<0.2	0.72	60	45	<5	2.46	<1	9	44	48	3.10	<10	0.77	485	3	0.04	8	820	20	<5	<20	134	< 0.01	<10	36	<10	5	54
E05-31	4011	74.00	75.00	250	0.6	0.42	1505	55	<5	1.78	<1	6	119	71	2.04	<10	0.17	217	5	< 0.01	6	570	56	<5	<20	55	< 0.01	<10	10	<10	3	93
E05-31	4012	75.00	76.00	135	1.0	0.58	1420	80	<5	0.48	<1	5	108	69	1.87	<10	0.37	200	2	0.03	7	430	68	<5	<20	32	0.03	<10	36	60	3	35
E05-31	4013	76.00	76.80	55	0.3	1.01	200	75	<5	1.51	<1	10	93	235	2.85	<10	0.75	373	3	0.03	9	640	24	<5	<20	47	0.02	<10	60	<10	3	43
E05-31	4014 S	TANDARD	OXE21	660	<0.2	0.15	<5	<5	<5	0.20	<1	<1	2	6	0.25	<10	0.04	18	<1	0.11	2	610	10	<5	<20	2	< 0.01	<10	1	<10	3	4

04015 = DUPLICATE OF 04012

HOLE # DEPTH BEARING DIP
E05-31 0 120 -55

	F	RECOVERY	<i>'</i>			RQD		CORE BOX INTERVALS			
From	To	Run	Recover	ry	CORE	RUN	RQD				
(m)	(m)	(m)	Meas	Rec (%)	(cm)	(cm)	(%)	Box	From	То	
0.00	30.48	30.48	0.00	0.00	0.00	30.48	0.00	1.00	30.48	35.66	
30.48	32.31	1.83	1.83	100.00	1.10	1.83	60.11	2.00	35.66	40.99	
32.31	35.36	3.05	3.00	98.36	0.52	3.05	17.05	3.00	40.99	45.95	
35.36	37.49	2.13	2.05	96.24	0.87	2.13	40.85	4.00	45.95	51.15	
37.49	38.71	1.22	1.25	102.46	0.22	1.22	18.03	5.00	51.15	56.75	
38.71	40.39	1.68	1.70	101.19	0.39	1.68	23.21	6.00	56.75	62.20	
40.39	42.37	1.98	1.90	95.96	0.17	1.98	8.59	7.00	62.20	68.80	
42.37	43.59	1.22	1.20	98.36	0.00	1.22	0.00	8.00	68.80	74.00	
43.59	45.87	2.28	2.20	96.49	0.16	2.28	7.02	9.00	74.00	79.41	
45.87	47.55	1.68	1.60	95.24	0.00	1.68	0.00	10.00	79.41	83.80	
47.55	50.60	3.05	3.05	100.00	0.85	3.05	27.87	11.00	83.80	90.22	
50.60	53.34	2.74	2.40	87.59	0.35	2.74	12.77		90.22	EOH	
53.34	54.71	1.37	0.75	54.74	0.00	1.37	0.00				
54.71	56.69	1.98	1.98	100.00	0.13	1.98	6.57				
56.69	59.28	2.59	2.60	100.39	0.54	2.59	20.85				
59.28	62.18	2.90	2.85	98.28	0.57	2.90	19.66				
62.18	63.25	1.07	0.60	56.07	0.00	1.07	0.00				
63.25	65.53	2.28	1.50	65.79	0.00	2.28	0.00				
65.53	67.36	1.83	1.00	54.64	0.00	1.83	0.00				
67.36	68.88	1.52	1.25	82.24	0.22	1.52	14.47				
68.88	70.41	1.53	1.20	78.43	0.20	1.53	13.07				
70.41	71.78	1.37	1.00	72.99	0.33	1.37	24.09				
71.78	72.85	1.07	1.00	93.46	0.00	1.07	0.00				
72.85	74.37	1.52	1.20	78.95	0.80	1.52	52.63				
74.37	76.20	1.83	1.80	98.36	0.70	1.83	38.25				
76.20	78.03	1.83	1.83	100.00	1.55	1.83	84.70				
78.03	79.71	1.68	1.68	100.00	1.17	1.68	69.64				
79.71	81.08	1.37	1.37	100.00	0.68	1.37	49.64				
81.08	84.12	3.04	3.04	100.00	1.90	3.04	62.50				
84.12	87.17	3.05	3.05	100.00	2.30	3.05	75.41				
87.17	90.22	3.05	3.05	100.00	2.65	3.05	86.89				
90.22	90.22	0.00	EOH								

DDH

E05-032

J-PACIFIC GOLD INC.

NORTHING	5653777 BEARI	NG 88	START DATE	AUGUST 17, 2005
EASTING	531214 DIP	-55	END DATE	AUGUST 19, 2005
ELEVATION	2418 LENG	Γ H 111.86	LOGGED BY	G.Z. MOSHER

NOTE: UNITS IN METERS, BEARING & DIP IN DEGREES

OBJECTIVE

	SUMMARY LOG	DDH	EO5-032
--	-------------	-----	---------

HOLE#	FROM	TO	DESCRIPTION	SAMPLE	GOLD (g/t)
			OVERBURDEN /		
E05-32	0.00	32.00	CASING		
			FELDSPAR		
E05-32	32.00	32.55	PORPHYRY DIORITE		
			FELDSPAR		
E05-32	32.55	71.50	PORPHYRY DIORITE		
E05-32	71.50	81.70	QUARTZ VEIN ZONE	4020 - 4022	1070, 9350, 4350 ppb
			FELDSPAR		
E05-32	81.70	99.80	PORPHYRY DIORITE		
E05-32	99.80	100.65	QUARTZ VEIN		
			FELDSPAR		
E05-32	100.65	111.86	PORPHYRY DIORITE		
E05-32	111.86	111.86	EOH		

HOLE #	FROM (m)	TO (m)	FROM (m)	TO (m)	ROCK TYPE	DESCRIPTION	SAMPLE
	MAJO	R UNITS	Minor U	Inits			
E05-32	0.00	32.00			OVERBURDEN / CASING		
E05-32 E05-32	32.00	32.55			FELDSPAR PORPHYRY DIORITE	Dark-green to black, plagioclase phenocrysts grey-green, foliated @ 60 degrees (deg) to core axis (TCA), wit millimeter (mm)-scale chlorite slips. Lower contact broken at abrupt transition to relatively unaltered feldspar porphyry diorite, so this interval may be a boulder.	
E05-32	32.55	71.50			FELDSPAR PORPHYRY DIORITE	Cream to light-green plagioclase phenocrysts in dark to light-grey groundmass. Alteration increases & color lightens with depth. Plagioclase phenocrysts = 60 - 70% of rock by volume, groundmass-supported.	4016
E05-32						Minor quartz veining throughout, centimeter (cm)-scale, with common coarse (3 - 5mm) euhedral pyrite. Vein exhibit two phases, earlier milky white emplaced into open space with formation of quartz crystals, followed by grey, translucent quartz. Sulphides probably associated with later phase. Some thin (c1cm) translucent veinlets. Minor inclusions of diorite in some veins. Veins commonly parallel TCA and cut for 1 - 2 meters by core, but only cm thickness. Veins also @ 30 & 60 deg TCA. Pyrite associated with veins of all orientations. Rock broken at 5 cm intervals to 37 meters, then generally at 5 - 10 cm intervals throughout. Fractures @ 8 deg TCA & less commonly @ 45, 20 & parallel TCA. Fractures commonly chloritic, minor FeOx except basal - 2m.	4017
E05-32 E05-32			53.00 69.00	60.00 71.50		Rock fractured @ 5cm intervals Rock broken @ cm intervals, shear fabric @ 45 deg TCA	4018 4019
E05-32 E05-32 E05-32 E05-32	71.50	81.70	69.50 75.00	75.00 81.70	QUARTZ VEIN ZONE	Milky-white quartz veins, cm to decimeter scale. Most abundant (30% of interval) in interval 71.5 - 74, meters. Interval 74.0 - 81.7, veins irregular, few of decimeter scale. Contacts commonly broken, probably @ 60 - 70 deg TCA. Most veins coarse crystalline with nebulous texture and rare internal open spaces. Rare pyrite, most oxidized to FeOx. Minor manganese stain & dendrites on fractures. Core badly broken, cm to 5 cm scale. Fractures @ 45 - 60 deg TCA Fractured @ 5 - 10 cm intervals @ 30, 60, 70 deg TCA. Fractures FeOx & Mn stained	4021 TO 4031
E05-32 E05-32 E05-32			75.00	81.70		Lower contact of interval at base of last significant quartz vein. Lower contact @ 70 deg TC/	
E05-32 E05-32 E05-32 E05-32 E05-32 E05-32	81.70	99.80	89.50 94.00		FELDSPAR PORPHYRY DIORITE	Coarse-crystalline, milky-white plagioclase phenocrysts up to 0.5cm, in dark-grey groundmass. Phenocrysts of 70% of rock by volume, groundmass supported. Diroite cut by criscate milky-white quartz veins, generally @ 30 deg TCA, frequency of 1 - 2 / meter. Veins of by calcite-lined fractures. Rock fractured at 10 - 30 cm intervals @ 45, 60 (30) deg TCA. Minor sericite and FeOx on fracture: In basal 20 cm of interval, plagioclase carbonate altered and/or stained by FeO Trace malachite on fracture.	4030 TO 4032
E05-32 E05-32	99.80	100.65			QUARTZ VEIN	Milky-white, nebulous texture, with irregular hairline fractures. Trace mm-scale pyrite crystals on fractu surfaces. Upper contact broken, lower contact broken probably @ 30 deg TCA. Common FeOx on fracture surfaces.	4033 TO 4035
E05-32	100.65	111.86			FELDSPAR PORPHYRY DIORITE	Cream-white plagioclase phenocrysts in dark-grey groundmass	
E05-32 E05-32			102.50 107.00	105.00		Finer-crystalline interval, phenocrysts 0.2 - 0.5cm, may represent separate pulse of intrusiv Rock sheared and altered orange-buff = carbonate and FeOx. Shear fabric @ 45 deg TCA, most intense § 108.0 - 108.1m. Common FeOx and mm-scale quartz veinlets.	
E05-32						In general interval cut by rare (one / meter) mm to cm-scale quartz veinlets, milky white, @ 30 & 0 deg TCA No accompanying sulphides.	
E05-32						Inteval fractured @ 10 - 50 cm intervals, predominantly @ 45 & 60 deg TCA. Fractures generally fres	
E05-32	111.86	111.86			ЕОН	END OF HOLE	
						STANDARD SP17 DUPLICATE OF 4029 (79.50 - 80.50m)	4036 4037

HOLE #	SAMPLE F	FROM T	0	Au ppb	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	РЬ	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
E05-32	4016	47.50	48.50	5	<0.2	1.07	15	40	<5	0.78	<1	8	93	43	2.04	<10	0.63	197	<1	0.05	8	630	26	<5	<20	38	0.10	<10	57	<10	5	33
E05-32	4017	48.50	49.50	5	< 0.2	0.67	20	30	<5	0.54	<1	6	87	56	1.43	<10	0.36	130	<1	0.05	7	490	22	<5	<20	29	0.07	<10	36	<10	3	19
E05-32	4018	61.40	62.40	70	< 0.2	0.99	215	55	<5	0.27	<1	9	108	76	2.50	<10	0.82	263	<1	0.03	9	660	22	<5	<20	9	0.06	<10	51	<10	6	31
E05-32	4019	69.50	70.50	225	< 0.2	1.02	180	105	<5	2.27	<1	9	55	110	3.20	<10	0.67	464	6	0.02	8	810	20	<5	<20	78	< 0.01	<10	42	<10	4	57
E05-32	4020	70.50	71.50	1070	0.3	0.30	725	80	<5	0.18	<1	9	127	22	1.40	<10	0.08	194	6	<0.01	9	570	18	<5	<20	4	<0.01	<10	6	<10	2	66
E05-32	4021	71.50	72.50	9350	1.9	0.13	1095	75	<5	0.07	<1	3	124	29	1.00	<10	0.02	80	2	< 0.01	5	210	32	<6	<20	3	< 0.01	<10	3	<10	<1	63
E05-32	4022	72.50	73.50	4350	1.3	0.41	1875	115	<5	0.61	<1	7	129	79	2.17	<10	0.25	289	7	0.01	8	510	32	<5	<20	40	<0.01	<10	18	<10	2	64
E05-32	4023	73.50	74.50	150	< 0.2	0.54	1130	90	<5	1.23	<1	7	76	58	2.06	<10	0.39	273	3	0.02	9	550	12	<5	<20	104	<0.01	<10	27	<10	4	38
E05-32	4024	74.50	75.50	175	< 0.2	0.69	1015	155	<5	2.41	<1	7	107	77	2.18	<10	0.48	411	5	< 0.01	8	550	12	5	<20	221	< 0.01	<10	20	<10	4	34
E05-32	4025	75.50	76.50	50	<0.2	1.26	270	105	<5	2.18	<1	10	50	41	3.41	<10	0.96	464	5	0.04	10	870	28	<5	<20	155	<0.01	<10	75	<10	4	64
E05-32	4026	76.50	77.50	180	< 0.2	1.25	860	70	<5	1.92	<1	9	53	36	3.40	<10	0.97	433	10	0.03	10	850	28	5	<20	114	< 0.01	<10	77	<10	4	57
E05-32	4027	77.50	78.50	590	9.6	0.99	440	75	<5	2.02	<1	7	62	39	2.65	<10	0.69	388	3	0.03	9	680	22	<5	<20	130	<0.01	<10	54	<10	3	48
E05-32	4028	78.50	79.50	90	< 0.2	1.28	465	80	<5	1.86	<1	10	54	84	3.44	<10	0.96	457	4	0.03	11	870	28	5	<20	99	< 0.01	<10	78	<10	4	68
E05-32	4029	79.50	80.50	100	0.2	1.00	425	90	<5	2.06	<1	9	51	110	2.97	<10	0.69	427	4	0.01	10	820	26	<5	<20	87	<0.01	<10	41	<10	3	55
E05-32	4030	80.50	81.50	85	< 0.2	1.23	470	80	<5	2.07	<1	8	60	105	3.18	<10	0.92	442	10	0.03	9	840	26	5	<20	91	<0.01	<10	71	<10	4	56
E05-32	4031	81.50	82.50	130	0.4	1.01	1160	165	<5	2.07	<1	7	67	194	2.85	<10	0.74	373	8	0.02	10	680	24	<5	<20	74	< 0.01	<10	57	<10	4	52
E05-32	4032	82.50	83.50	20	<0.2	1.13	70	135	<5	1.15	<1	10	59	127	2.61	<10	0.70	295	<1	0.06	8	760	28	<5	<20	49	0.10	<10	66	<10	5	48
E05-32	4033	98.80	99.80	35	< 0.2	1.10	90	100	<5	1.40	<1	9	51	21	3.00	<10	0.82	351	3	0.03	8	780	24	<5	<20	53	< 0.01	<10	62	<10	4	38
E05-32	4034	99.80	100.65	65	0.5	0.06	125	10	<5	1.86	<1	<1	153	17	0.37	<10	0.03	128	<1	<0.01	3	20	40	<5	<20	95	<0.01	<10	3	<10	<1	8
E05-32	4035	100.65	101.65	100	1.0	1.48	220	60	<5	1.01	<1	13	69	737	3.93	<10	1.29	475	3	0.03	14	900	30	<5	<20	34	<0.01	<10	94	<10	2	74
E05-32	4036 \$	STANDARD	SP17 = 1	>1000	>30	0.12	<5	45	<5	0.07	<1	2	<1	7	3.60	<10	< 0.01	84	3	0.04	5	190	146	<5	<20	7	< 0.01	<10	1	<10	<1	28
E05-32	4037	79.50	80.50	100	< 0.2	0.94	375	80	<5	2.05	<1	7	85	114	2.51	<10	0.66	387	3	0.02	7	680	14	<5	<20	101	<0.01	<10	37	<10	4	43

4037 DUPLICATE SAMPLE 0F 04029

E05 22 0 00 55
E05-32 0 88 -55

	F	RECOVERY	,			RQD		CORE	BOX INTER	VALS
From	То	Run	Recover	У	CORE	RUN	RQD			
(m)	(m)	(m)	Meas	Rec (%)	(cm)	(cm)	(%)	Box	From	То
0.00	32.00	32.00	0.00	0.00	0.00	32.00	0.00	1	32.00	37.16
32.00	32.61	0.61	0.60	98.36	0.26	0.61	42.62	2	37.16	42.40
32.61	35.66	3.05	1.60	52.46	0.00	3.05	0.00	3	42.40	47.80
35.66	38.71	3.05	2.30	75.41	0.32	3.05	10.49	4	47.80	53.00
38.71	41.76	3.05	3.05	100.00	0.90	3.05	29.51	5	53.00	57.74
41.76	44.81	3.05	3.05	100.00	1.96	3.05	64.26	6	57.74	63.42
44.81	47.85	3.04	3.04	100.00	0.35	3.04	11.51	7	63.42	68.81
47.85	50.29	2.44	2.44	100.00	1.15	2.44	47.13	8	68.81	74.33
50.29	53.34	3.05	3.05	100.00	0.41	3.05	13.44	9	74.33	79.50
53.34	55.02	1.68	1.68	100.00	0.00	1.68	0.00	10	79.50	82.90
55.02	56.54	1.52	1.52	100.00	0.10	1.52	6.58	11	82.90	90.28
56.54	58.98	2.44	2.44	100.00	0.00	2.44	0.00	12	90.28	95.90
58.98	60.05	1.07	1.07	100.00	0.00	1.07	0.00	13	95.90	101.00
60.05	63.09	3.04	3.04	100.00	1.50	3.04	49.34	14	101.00	106.20
63.09	66.14	3.05	3.05	100.00	1.05	3.05	34.43	15	106.20	111.86
66.14	68.43	2.29	2.25	98.25	1.07	2.29	46.72		111.86	EOH
68.43	69.80	1.37	1.30	94.89	0.70	1.37	51.09			
69.80	71.78	1.98	1.78	89.90	0.00	1.98	0.00			
71.78	74.83	3.05	3.05	100.00	0.25	3.05	8.20			
74.83	76.96	2.13	2.13	100.00	0.40	2.13	18.78			
76.96	78.33	1.37	1.37	100.00	0.18	1.37	13.14			
78.33	80.16	1.83	1.73	94.54	0.26	1.83	14.21			
80.16	81.53	1.37	1.37	100.00	0.34	1.37	24.82			
81.53	83.82	2.29	2.29	100.00	1.20	2.29	52.40			
83.82	86.87	3.05	3.05	100.00	2.30	3.05	75.41			
86.87	89.92	3.05	3.05	100.00	2.05	3.05	67.21			
89.92	92.05	2.13	2.13	100.00	0.88	2.13	41.31			
92.05	93.57	1.52	1.52	100.00	1.24	1.52	81.58			
93.57	96.32	2.75	2.75	100.00	1.12	2.75	40.73			
96.32	98.15	1.83	1.83	100.00	0.25	1.83	13.66			
98.15	100.58	2.43	2.43	100.00	0.58	2.43	23.87			
100.58	102.11	1.53	1.53	100.00	0.43	1.53	28.10			
102.11	105.31	3.20	3.20	100.00	2.17	3.20	67.81			
105.31	107.75	2.44	2.44	100.00	1.05	2.44	43.03			
107.75	108.81	1.06	1.06	100.00	1.06	1.06	100.00			
108.81	111.86	3.05	3.05	100.00	3.05	3.05	100.00			
111.86	EOH	EOH				EOH				

DDH

E05-33

J-PACIFIC GOLD INC.

NORTHING	5653777	BEARING	88	START DATE	AUGUST 19, 2005
EASTING	531214	DIP	-74	END DATE	AUGUST 21, 2005
ELEVATION	2418	LENGTH	150.27	LOGGED BY	G.Z. MOSHER

NOTE: UNITS IN METERS, BEARING & DIP IN DEGREES

OBJECTIVE

SUMMARY	/ LOG	DDH			EO5-33
HOLE#	FROM	ТО	DESCRIPTION	SAMPLE	GOLD (g/t)
			CACINIC /		
			CASING /		
E05-33	0.	00 30.48	OVERBURDEN		
			FELDSPAR		
E05-33	30.	117.75	PORPHYRY DIORITE		
E05-33	117.	75 120.80	QUARTZ VEIN ZONE	4041	455 ppb
			FELDSPAR		
E05-33	120.	30 141.20	PORPHYRY DIORITE		
E05-33	141.	20 142.75	QUARTZ VEIN / APLITE		
			FELDSPAR		
E05-33	142.	75 150.27	PORPHYRY DIORITE		
E05-33	150.	27 150.27	' END OF HOLE		

HOLE #	FROM (m)		FROM (m)		ROCK TYPE	DESCRIPTION	SAMPLE
E05-33	MAJOR 0.00	30.48	Minor U		CASING / OVERBURDEN		
E05-33	30.48	117.75			FELDSPAR PORPHYRY DIORITE	Plagioclase phenocrysts cream to light-green, euhedral to sub-rounded, up to 0.5 cm, 60 - 70% of rock by volume, groundmass-supported. Groundmass dark green-grey. Rock relatively unaltered.	
E05-33			69.50	74.00		Slightly darker and finer-crystalline phase, interval broken and rusty, chloritic and carbonate-altered, may be tectonic overprint. Cut by centimeter (cm) scale quartz veinlets @ 30 & 45 degrees (deg) to core axis (TCA).	
E05-33			81.00	87.00		Rock slightly deformed, chlorite-altered, dark green-grey, phenocrysts light-green and less-obvious than in unaltered portions. Cut by hairline to cm scale quartz veinlets generally @ 30,90 & 45 deg TCA.	
						For entire interval: quartz veinlets cm-scale, generally fewer than 1 / meter, some veins vuggy with coarse euhedral pyrite on margins, other veins aphanitic with no sulphides. Veins generally milky-white, less-commonly translucent grey, generally @ 30 deg TCA. Veins increase in abundance and thickness down-	
E05-33						interval.	
E05-33			85.00	87.00		Quartz veins represent 5% of interval, cm-scale, @ 30 & 90 deg TCA.	
E05-33			91.40	91.60		Quartz vein, milky-white, no sulphides, contacts broken.	
E05-33			92.20	92.30		Aplite dike	
E05-33			94.75	94.95		Quartz vein, milky-white, rare pyrite specks & manganese, @ 30 deg TCA.	
E05-33			96.50	97.50		Shear zone, minor shear fabric, 3 quartz veins mm - cm scale, carbonate alteration, core broken, rusty.	
F0F 00						Core generally competent throughout interval. Fractures @ 5 - 20 cm intervals @ 45 & 70 deg TCA. Broken	
E05-33						(1 - 5cm) core @ 41 - 45m, 72.5 - 73.0m, 81.7 - 82.0m, 86.4 - 86.9m, 96.5 - 97.5m.	
E05-33							0.4020
E05-33						Basal 0.5m of interval sheared @ 30 deg TCA, carbonate-altered. Lower contact broken against quartz vein	04038, 04039
E05-33	117.75	120.80			QUARTZ VEIN ZONE		04040 - 04043
200 00	111.10	120.00			GOARTE VEIN ZONE	Stories of the state, receipt	0.10.10
							04044 - 04049,
							04043,
							04052,
E05-33	120.80	141.20			FELDSPAR PORPHYRY DIORITE		02057
E05-33	120.00		120.80	126.00		Quartz veins, generally 1 / 0.5m, cm-scale, milky-white, generally 30, minor 60 deg TCA	
E05-33			126.00	138.50		Quartz veins rare, < 1/m, mm-scale, 60 deg & parallel TCA.	
E05-33			138.50	141.20		Quartz veins 1/m, cm-scale, @ 60 deg TCA.	
						Translucent & milky-white quartz veinlets cutting aplite as mm - cm-scale stringers & less-common irregular	
						masses. Upper contact irregular @ 45 deg TCA, lower contact broken @ 30 deg TCA. Fractured @ 45 & 70	02053 -
E05-33	141.20	142.75			QUARTZ VEIN / APLITE		02054
E05-33	142.75	150.27			FELDSPAR PORPHYRY DIORITE	As for 120.8 - 141.20 meters.	2055
E05-33			148.44	148.46		Quartz vein 20 deg TCA.	
E05-33						Hole ended at shear, lowermost 80 cm of interval has cloudy texture, groundmass medium to light-grey (lighter than adjacent diorite), <1% 1mm scale disseminated pyrite.	
	150.27	150.27			EOH	END OF HOLE	

HOLE #	SAMPLE	FROM 1	0	Au ppb	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	w	Y	Zn
E05-33	4038	114.75	115.75	15	<0.2	0.85	220	75	<5	0.97	<1	8	58	157	2.05	<10	0.53	180	6	0.05	10	790	16	<5	<20	38	0.07	<10	65	<10	3	28
E05-33	4039	115.75	116.75	10	<0.2	1.18	230	60	<5	2.99	<1	11	65	115	2.99	<10	1.08	481	4	0.04	13	840	18	<5	<20	225	0.02	<10	95	<10	5	37
E05-33	4040	116.75	117.75	20	<0.2	1.23	180	45	<5	2.62	<1	11	63	113	3.00	<10	1.00	445	15	0.02	12	890	16	<5	<20	194	<0.01	<10	63	<10	7	40
E05-33	4041	117.75	118.75	455	<0.2	0.41	2440	25	<5	3.09	<1	4	90	47	1.26	<10	0.24	302	5	< 0.01	7	380	6	<5	<20	282	< 0.01	<10	7	<10	2	19
E05-33	4042	118.75	119.75	220	<0.2	0.39	955	25	<5	1.72	<1	4	115	74	1.30	<10	0.20	218	12	< 0.01	6	380	8	<5	<20	122	< 0.01	<10	9	<10	2	22
E05-33	4043	119.75	120.80	65	<0.2	0.22	220	15	<5	1.72	<1	2	114	25	0.65	<10	0.12	190	6	< 0.01	4	140	2	<5	<20	117	< 0.01	<10	6	30	1	10
E05-33	4044	120.80	121.80	10	<0.2	1.37	160	60	<5	2.25	<1	12	71	66	3.38	<10	1.20	467	11	0.03	13	850	20	<5	<20	106	0.03	<10	110	<10	4	42
E05-33	4045	121.80	122.80	15	<0.2	1.16	460	40	<5	2.40	<1	11	67	64	2.88	<10	0.97	404	10	0.03	13	920	18	<5	<20	101	0.05	<10	97	<10	5	36
E05-33	4046	122.80	123.80	15	<0.2	1.10	290	115	<5	1.74	<1	9	54	100	2.26	<10	0.78	289	15	0.04	10	980	18	<5	<20	67	0.05	<10	78	<10	4	29
E05-33	4047	123.80	124.80	10	<0.2	0.86	245	35	<5	1.08	<1	8	68	94	1.92	<10	0.53	197	7	0.04	9	830	14	<5	<20	46	0.06	<10	65	<10	3	26
E05-33	4048	124.80	125.80	10	<0.2	1.03	600	50	<5	2.85	<1	11	71	247	3.07	<10	0.91	408	54	0.04	13	790	16	<5	<20	180	0.02	<10	82	<10	4	41
E05-33	4049	125.80	126.80	5	<0.2	1.25	20	85	<5	1.52	<1	11	58	65	2.75	<10	0.84	286	<1	0.04	12	930	20	<5	<20	79	0.08	<10	79	<10	4	34
E05-33	4050	138.20	139.20	5	<0.2	1.26	50	160	<5	2.46	<1	10	62	86	2.93	<10	0.95	391	9	0.04	12	910	16	<5	<20	140	0.05	<10	80	<10	5	35
E05-33	4051	139.20	140.20	10	<0.2	1.30	50	95	<5	2.41	<1	11	60	70	3.15	<10	1.10	424	10	0.03	12	860	16	<5	<20	141	0.02	<10	81	<10	5	35
E05-33	4052	140.20	141.20	<5	<0.2	1.26	30	160	<5	1.48	<1	10	57	28	2.60	<10	0.84	279	<1	0.05	10	880	18	<5	<20	73	0.10	<10	83	<10	6	29
E05-33	4053	141.20	142.20	<5	<0.2	0.14	30	335	<5	0.40	<1	<1	104	14	0.36	<10	0.04	45	2	0.05	2	30	6	<5	<20	19	< 0.01	<10	6	<10	1	2
E05-33	4054	142.20	142.75	20	<0.2	0.77	415	885	<5	1.78	<1	3	83	56	2.17	<10	0.59	243	4037	0.03	7	540	20	<5	<20	116	0.03	<10	36	<10	<1	22
E05-33	4055	142.75	143.75	5	<0.2	1.20	20	145	<5	1.55	<1	9	61	25	2.43	<10	0.74	245	8	0.04	10	890	18	5	<20	65	0.09	<10	74	<10	5	26
E05-33	4056	STANDARD		655	<0.2	0.16	<5	10	<5	0.14	<1	<1	2	2	0.25	<10	0.04	17	2	0.12	2	580	6	<5	<20	4	< 0.01	<10	1	<10	3	3
E05-33	4057	121.80	122.80	15	<0.2	1.12	570	45	<5	2.24	<1	10	64	88	2.65	<10	0.91	384	19	0.04	10	860	16	<5	<20	101	0.05	<10	89	<10	4	35

04056 STANDARD OXE21 = 0.651 g/t Au 04057 = DUPLICATE OF 04045

HOLE #	DEPTH	BEARING	DIP
E05-33	0	88	-74

E05-33										
		RECOVERY	7			RQD		CORE	BOX INTER	RVALS
From	To	Run	Recover		CORE	RUN	RQD			
(m)	(m)	(m)	Meas	Rec (%)	(cm)	(cm)	(%)	Box	From	То
30.48	31.09	0.61	0.61	100.00	0.31	0.61	50.82	1	30.48	35.00
31.09	32.16	1.07	1.05	98.13	0.10	1.07	9.35	2	35.00	40.00
32.16	34.90	2.74	2.74	100.00	1.20	2.74	43.80	3	40.00	46.00
34.90	35.66	0.76	0.76	100.00	0.13	0.76	17.11	4	46.00	51.40
35.66	37.80	2.14	2.14	100.00	0.51	2.14	23.83	5	51.40	56.40
37.80	38.71	0.91	0.91	100.00	0.23	0.91	25.27	6	56.40	62.34
38.71	41.76	3.05	3.05	100.00	0.21	3.05	6.89	7	62.34	67.80
41.76	44.50	2.74	2.70	98.54	0.20	2.74	7.30	8	67.80	73.00
44.50	45.87	1.37	1.37	100.00	0.13	1.37	9.49	9	73.00	78.90
45.87	47.85	1.98	1.98	100.00	0.15	1.98	7.58	10	78.90	84.55
47.85	50.91	3.06	3.06	100.00	1.40	3.06	45.75	11	84.55	89.80
50.91	53.95	3.04	3.04	100.00	1.11	3.04	36.51	12	89.80	95.00
53.95	57.00	3.05	3.05	100.00	1.27	3.05	41.64	13	95.00	100.40
57.00	60.05	3.05	3.05	100.00	0.98	3.05	32.13	14	100.40	105.95
60.05	62.94	2.89	2.89	100.00	1.47	2.89	50.87	15	105.95	111.24
62.94	65.99	3.05	3.05	100.00	1.62	3.05	53.11	16	111.24	116.73
65.99	69.19	3.20	3.20	100.00	2.22	3.20	69.37	17	116.73	121.70
69.19	72.24	3.05	3.05	100.00	1.84	3.05	60.33	18	121.70	127.50
72.24	75.29	3.05	3.05	100.00	1.55	3.05	50.82	19	127.50	133.25
75.29	78.33	3.04	3.04	100.00	2.29	3.04	75.33	20	133.25	138.90
78.33	81.38	3.05	3.05	100.00	1.75	3.05	57.38	21	138.90	144.49
81.38	84.43	3.05	3.05	100.00	1.35	3.05	44.26	22	144.49	150.27
84.43	86.87	2.44	2.40	98.36	0.75	2.44	30.74		150.27	EOH
86.87	89.92	3.05	3.05	100.00	1.65	3.05	54.10			
89.92	92.81	2.89	2.89	100.00	1.18	2.89	40.83			
92.81	95.86	3.05	3.05	100.00	2.28	3.05	74.75			
95.86	97.69	1.83	1.83	100.00	0.30	1.83	16.39			
97.69	99.67	1.98	1.98	100.00	1.65	1.98	83.33			
99.67	102.72	3.05	3.05	100.00	2.45	3.05	80.33			
102.72	105.00	2.28	2.28	100.00	1.31	2.28	57.46			
105.00	108.05	3.05	3.05	100.00	1.70	3.05	55.74			
108.05	111.10	3.05 3.20	3.05	100.00	1.70 2.30	3.05 3.20	55.74			
111.10	114.30	2.13	3.20	100.00	1.22		71.87 57.28			
114.30 116.43	116.43 117.50	1.07	2.13 0.70	100.00 65.42	0.38	2.13 1.07	35.51			
117.50	117.50	0.91	0.70	87.91	0.38	0.91	12.09			
117.50	120.85	2.44	1.85		0.11	2.44	38.11			
120.85	124.05	3.20	3.20	75.82 100.00	2.16	3.20	67.50			
124.05	127.10	3.20	3.05	100.00	2.10	3.20	91.80			
127.10	130.15	3.05	3.05	100.00	3.00	3.05	98.36			
130.15	133.20	3.05	3.05	100.00	2.80	3.05	91.80			
133.20	136.25	3.05	3.05	100.00	2.05	3.05	67.21			
136.25	130.23	3.04	3.04	100.00	2.05	3.04	74.01			
139.29	142.34	3.05	3.05	100.00	1.83	3.05	60.00			
142.34	145.39	3.05	3.05	100.00	2.45	3.05	80.33			
145.39	148.44	3.05	3.05	100.00	2.45	3.05	90.16			
148.44	150.27	1.83	1.83	100.00	1.10	1.83	60.11			
150.27		1.03	1.03	100.00	1.10	1.03	50.11			
130.27	LOIT									

DDH E05-34

J-PACIFIC GOLD INC.

NORTHING	5654168	BEARING	130	START DATE	AUGUST 22, 2005
EASTING	531501	DIP	-60	END DATE	AUGUST 24, 2005
ELEVATION	2272	LENGTH	153.01	LOGGED BY	G.Z. MOSHER

NOTE: UNITS IN METERS, BEARING & DIP IN DEGREES

OBJECTIVE TO TEST POSSIBLE NE EXTENSION OF SW VEIN

SUMMAF	RY LOG	DDH			EO5-34
	EDOM	T0	DECODIDION	0.4451.5	0015 (()
HOLE#	FROM	ТО	DESCRIPTION	SAMPLE	GOLD (g/t)
E05-34	0.0	00 36.58	CASING		
E05-34	36.5	50.85	SERPENTINITE		
E05-34	50.8	56.19	FELDSPAR PORPHYR	′	
E05-34	56.	9 76.89	SERPENTINITE		
E05-34	76.8	83.00	FELDSPAR-HORNBLEN	NDE	
E05-34	83.0	00 103.40	SERPENTINITE		
E05-34	103.4	0 108.80	FELDSPAR-HORNBLEN	NDE	
E05-34	108.8	130.65	SERPENTINITE		
E05-34	130.0	55 133.35	FELDSPAR PORPHYR	DIORITE	
E05-34	133.3	138.39	QUARTZ VEIN ZONE		
E05-34	138.3	153.01	FELDSPAR-HORNBLEN	NDE	
E05-34	153.0	153.01	EOH		

HOLE #	FROM (m)	TO (m)	FROM (m)	TO (m)	ROCK TYPE	DESCRIPTION	SAMPLE
	MAJOR	UNITS	Minor L				
05-34	0.00 36.58	36.58 50.85			CASING / OVERBURDEN SERPENTINITE	Black to dark-brown with medium to light-grey orthopyroxene phenocrysts. Generally foliated @ 60 degree (deg) to core axis (TCA), but phenocrysts still recognizable.	
05-34 05-34 05-34 05-34 05-34 05-34			39.50 39.50 43.00 44.80 47.45 50.00	41.00 44.00 50.85 47.55 50.85		Asbestos-like fibers Core broken Core broken Core broken Shearing, light-green with limonite, fabric @ 45 deg TCA FeOx staining	
05-34 05-34 05-34	50.85	56.19			FELDSPAR PORPHYRY DIORITE	Lower contact of interval broken @ 45 deg TC# Cream-white plagioclase phenocrysts in light-grey, siliceous groundmass. Plagioclase phenocrysts 40 - 50% rock by volume, sub-rounded. Groundmass variably alterred to pale green. Disseminated pyrite 1 - 2% + on fractures	
05-34 05-34 05-34 05-34						Rock fractured & oxidized @ 45, 70, 30 deg TCA. Intensity of fracturing and degree of oxidation increas toward base of interval. Rare < 1cm-scale quartz veins @ 45, 70, 30 deg TCA Lower contact broken @ 70 deg TCA.	
05-34 05-34 05-34 05-34 05-34 05-34 05-34 05-34 05-34	56.19	76.89	57.00 61.80 66.25 67.80 71.60 73.30 76.60	57.90 61.85 66.30 68.25 71.70 73.40 76.89		Black, foliated, with medium-grey pyroxene phenocrysts. Foliation @ 45 deg TCA. In some intervals fracturi of pyroxene forms network texture. Phenocrysts generally preserved within foliated groundmass. Shearing Shearing Shearing @ 45 deg TCA with bleaching and alteration to light grey and pale gree Fault gouge, pale-green Core broken, rusty. Shear @ 35 deg TCA light green-grey, gouge Lower contact of interval broken @ 30 deg TCA	19
05-34 05-34 05-34 05-34 05-34	76.89	83.00			FELDSPAR-HORNBLENDE PORPHYRY DIORITE	Cream-white plagioclase and black, euhedral homblende phenocrysts in light-grey, siliceous groundmas: Plagioclase phenocrysts up 10 0.5 cm, 30 - 40% of rock by volume. Homblende content variable, about 5%, most abundant in basal 30 cm. Pyrite, 1 - 2%, mm-scale. Rare cm-scale quartz veins, milky-white, @ 20 & 70 deg TCA Core broken @ 45 & 70 deg TCA, FeOx halos developed up to 1 cm adjacent to fractures Lower contact broken.	
05-34	83.00	103.40			SERPENTINITE	Black, mottled to foliated with dark-grey pyroxens phenocrysts. Foliation less-intense than up-hole intervals serpentinite, @ 45 deg TCA. Core commonly fractured @ 60, 70 & 45 deg TCA. Some fracture surfaces with white & pale-green asbestos	
05-34 05-34			83.00	83.50		like fibers. Fault gouge, pale-green. Fabric 30 - 40 deg Tca	
05-34			100.00	100.15		Shear zone, upper contact 45 deg TCA = calcite veinlet. Mottled green-cream & black. Lower contact gradational.	
05-34			103.65	103.40		Shear zone. Upper contact broken @ 45 deg TCA. Fabric wavy but generally @ 45 deg TCA. Whispy gregeren & black texture. Calcite veinlets, mm-scale. Lower contact 5 cm fault gouge.	
05-34 05-34 05-34	103.40	108.80			FELDSPAR-HORNBLENDE PORPHYRY DIORITE	White, euhedral plagioclase, most 3-4mm, rare 5mm, 30% of rock by volume. Hornblende black, euhedral ar platy, generally 1-2mm. Groundmass light grey, siliceous. Pyrite, disseminated, 1% Core fractured @ 60 & 10 deg TCA @ 10 - 20 cm intervals. Minor chlorite on fracture surface:	1
E05-34 E05-34						Rare cm-scale quartz veinlets @ 45 deg TCA, probably "sweats" rather than true veins - margins are indistin and irregular. Lower contact broken, 20 cm of cm-scale fragments and gouge	
E05-34 E05-34 E05-34 E05-34 E05-34	108.80	130.65	123.25 126.80 127.10	124.00 127.10 130.65		Black groundmass with dark-grey orthopyroxene phenocrysts. Texture generally foliated @ about 70 deg TC Pale-green cm-scale calcitic shears @ 30 & 45 deg TCA, @ 50cm intervals Core sheared & broken, shear fabric 10 - 20 deg TCA, wavy Rock broken, altered medium-grey Shear zone, shears healed @127.1 - 127.95, broken @ 127.95 - 128. Feldspar porphyry, upper contact @ 45, lower contact @ 30 deg TCA. Highly fractured but competent, 1 - 29	
05-34			128.40	128.70		disseminated pyrite.	
05-34 05-34			128.70	130.65		Sheared, pale-green cutting dark-grey @ 20 - 30 deg TCA, irregular-wavy. Cut by calcite veinlets, mm-scale generally @ 80 deg TCA, less commonly @ 30 - 45 deg TCA. Veinlets increase in abundance down-interval Lower contact broken @ 45 deg TCA.	
05-34 05-34 05-34 05-34 05-34	130.65	133.35	130.75	131.00	FELDSPAR PORPHYRY DIORITE	Plagioclase phenocrysts white, zoned, 2-4mm, 20% of rock by volume. Minor phyric hornblende 2-3% Groundmass light brown-grey, possibly silicified, light-brown alteration (sericite?) patches. Pyrite, disseminated 1-2% 4-1% disseminated molybdenum (?) and as fracture coating: Aplitic phase cut by pyrite-lined fracture @ 20 deg TCA In general rock is cut by sub-cm scale quartz veinlets @ 60-70 deg Tca @ 10 - 30 cm interval Lower contact irregular @ 30 deg TCA	04058 - 04060
E05-34	133.35	138.39			QUARTZ VEIN ZONE	Milky-white quartz, massive in part, with inclusions of feldspar porphyry diorite 5 - 10 cm thick with contacts (10 deg TCA. Quartz contains minor pyrite and probable molybdenum on fractures. Fractures generally @ 20 30 deg TCA. Pyrite 2% max, concentrated in several intervals as coarse (cm-scale) clots and networks, in general <<1%	04065
05-34						Molybdenum as mm-scale specks associated with pyrite.	4069
05-34	138.39	153.01	400.0-	400 ==	FELDSPAR-HORNBLENDE PORPHYRY DIORITE	Disseminated pyrite 1-2% + <1% mm-scale specks possible molybdenum and trace light-brown possibl sphalerite.	04065 - 04067
E05-34 E05-34			139.29	139.59		Quartz vein, contacts @ 30 deg TCA Interval generally cut by mm-scale quartz-calcite veinlets @ 45 & 60 deg TCA, 2 - 3/mete	
05-34 05-34			141.00	143.00		Fractures @ 20 - 30 cm intervals, 45 & 70 deg TCA Fractures parallel TCA	
05-34	153.01	153.01			END OF HOLE		1

HOLE #	SAMPLE F	ROM 1	0	Au ppb	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	РЬ	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
E05-34	4058	130.65	131.65	50	0.2	0.77	550	40	<5	1.54	<1	12	46	239	2.95	<10	1.06	190	189	0.05	21	880	32	<5	<20	120	0.01	<10	55	<10	<1	29
E05-34	4059	131.65	132.65	10	<0.2	0.66	25	40	<5	1.34	<1	12	40	323	2.98	<10	0.69	92	11	0.05	12	790	10	<5	<20	86	0.03	<10	60	<10	1	25
E05-34	4060	132.65	133.35	25	<0.2	0.62	145	35	<5	1.83	<1	12	59	142	2.28	<10	0.87	200	72	0.04	29	630	12	<5	<20	155	0.01	<10	58	<10	<1	34
E05-34	4061	133.35	134.35	50	<0.2	0.22	315	20	<5	1.14	<1	11	94	94	1.87	<10	0.49	133	77	0.03	23	240	8	<5	<20	79	<0.01	<10	14	<10	<1	18
E05-34	4062	134.35	135.35	75	0.3	0.23	835	25	<5	1.06	<1	14	105	214	2.24	<10	0.36	112	17	0.03	13	240	10	<5	<20	57	<0.01	<10	13	<10	<1	18
E05-34	4063	135.35	136.35	20	<0.2	0.08	430	10	<5	0.38	<1	5	125	72	0.87	<10	0.14	51	18	0.01	8	90	4	<5	<20	19	<0.01	<10	2	<10	<1	4
E05-34	4064	136.35	137.35	10	<0.2	<0.01	15	<5	<5	0.11	<1	2	177	16	0.50	<10	0.01	32	4	<0.01	6	<10	<2	<5	<20	4	<0.01	<10	<1	<10	<1	<1
E05-34	4065	137.35	138.35	20	<0.2	0.28	285	25	<5	1.75	<1	5	101	82	1.27	<10	0.27	121	17	0.02	6	300	10	<5	<20	87	<0.01	<10	13	<10	<1	14
E05-34	4066	138.35	139.39	15	<0.2	0.54	180	30	<5	1.07	<1	9	77	136	2.10	<10	0.58	180	46	0.05	12	710	14	<5	<20	49	0.03	<10	44	<10	1	38
E05-34	4067	139.39	140.39	65	<0.2	0.41	380	20	<5	1.32	<1	9	74	110	1.76	<10	0.72	152	34	0.04	10	540	8	<5	<20	100	<0.01	<10	25	<10	<1	21
E05-34	4068	5	TANDARI	605	<0.2	0.15	<5	5	<5	0.14	<1	<1	1	2	0.26	<10	0.04	18	<1	0.12	1	570	6	<5	<20	2	<0.01	<10	1	<10	3	3
E05-34	4069	135.35	136.35	35	<0.2	0.08	535	10	<5	0.57	<1	6	168	143	1.30	<10	0.17	67	8	0.02	16	50	6	<5	<20	23	<0.01	<10	2	<10	<1	4
	RD = OXE21 = REPEAT OF 04		u																													

E05-34 0 130 -60	HOLE-ID	DEPTH	BEARING	DIP
E0E 24 152 120 60	E05-34	0	130	-60
203-34 133 130 -60	E05-34	153	130	-60

HOLE-ID:												
		ECOVERY				RQD		CORE	BOX INTER	RVALS		
From	To	Run	Recover		CORE	RUN	RQD					
(m)	(m)	(m)	Meas	Rec (%)	(cm)	(cm)	(%)	Box	From	To		
36.58	38.71	2.13	1.80	84.51	0.27	2.13	12.68	1	36.58	42.00		
38.71	41.76	3.05	2.10	68.85	1.30	3.05	42.62	2	42.00	50.90		
41.76	43.89	2.13	1.50	70.42	1.10	2.13	51.64	3	50.90	56.39		
43.89	44.81	0.92	0.75	81.52	0.30	0.92	32.61	4	56.39	62.00		
44.81	47.55	2.74	0.90	32.85	0.00	2.74	0.00	5	62.00	67.50		
47.55	49.99	2.44	0.70	28.69	0.38	2.44	15.57	6	67.50	72.95		
49.99	50.90	0.91	0.25	27.47	0.10	0.91	10.99	7	72.95	78.40		
50.90	53.95	3.05	3.05	100.00	1.65	3.05	54.10	8	78.40	83.77		
53.95	56.39	2.44	2.40	98.36	0.75	2.44	30.74	9	83.77	89.41		
56.39 58.22	58.22	1.83	1.50	81.97	0.65 1.68	1.83	35.52	10 11	89.41 95.00	95.00		
	60.05 62.94	1.83 2.89	1.83	100.00	2.30	1.83	91.80	12		100.65		
60.05			2.89	100.00		2.89	79.58	13	100.65 106.17	106.17		
62.94 65.99	65.99 69.04	3.05 3.05	3.05 3.05	100.00	2.00 2.10	3.05 3.05	65.57 68.85	14	111.86	111.86 117.50		
69.04	72.24	3.20	3.00	93.75	1.32	3.20	41.25	15	117.50	122.90		
72.24	73.30	1.06	1.06	100.00	0.70	1.06	66.04	16	122.90	128.40		
73.30	75.29	1.99	1.00	100.00	1.37	1.99	68.84	17	128.40	134.00		
75.29	78.33	3.04	3.04	100.00	1.85	3.04	60.86	18	134.00	139.49		
78.33	81.38	3.05	3.05	100.00	2.05	3.05	67.21	19	139.49	145.24		
81.38	83.52	2.14	2.05	95.79	0.91	2.14	42.52	20	145.24	150.50		
83.52	86.56	3.04	3.04	100.00	1.95	3.04	64.14	21	150.50	153.01		
86.56	89.61	3.05	3.05	100.00	1.83	3.05	60.00	21	EOH	153.01		
89.61	92.51	2.90	2.90	100.00	2.04	2.90	70.34		LOIT	100.01		
92.51	95.55	3.04	3.04	100.00	1.98	3.04	65.13					
95.55	98.15	2.60	2.50	96.15	1.72	2.60	66.15					
98.15	99.67	1.52	1.52	100.00	0.94	1.52	61.84					
99.67	102.72	3.05	3.05	100.00	2.13	3.05	69.84					
102.72	105.77	3.05	3.05	100.00	1.30	3.05	42.62					
105.77	108.81	3.04	3.00	98.68	1.46	3.04	48.03					
108.81	111.86	3.05	3.05	100.00	0.94	3.05	30.82					
111.86	114.91	3.05	3.05	100.00	2.87	3.05	94.10					
114.91	117.96	3.05	3.05	100.00	2.25	3.05	73.77					
117.96	121.01	3.05	3.05	100.00	1.46	3.05	47.87					
121.01	124.05	3.04	3.00	98.68	0.92	3.04	30.26					
124.05	127.10	3.05	3.05	100.00	2.30	3.05	75.41					
127.10	130.15	3.05	3.05	100.00	1.70	3.05	55.74					
130.15	132.89	2.74	2.74	100.00	1.22	2.74	44.53					
132.89	135.94	3.05	3.05		1.27	3.05	41.64					
135.94	137.31	1.37	1.37	100.00	0.60	1.37	43.80					
137.31	139.29	1.98	2.98	150.51	1.84	1.98	92.93					
139.29	142.34	3.05	3.05	100.00	1.30	3.05	42.62					
142.34	145.39	3.05	3.05	100.00	1.40	3.05	45.90					
145.39	148.44	3.05	3.05	100.00	2.90	3.05	95.08					
148.44	149.96	1.52	1.52	100.00	0.87	1.52	57.24					
149.96	153.01	3.05	3.05	100.00	2.95	3.05	96.72					
EOH	153.01											

DDH

E05-35

J-PACIFIC GOLD INC.

NORTHING	5654168	BEARING	130	START DATE	26-Aug-05
EASTING	10531501	DIP	-60	END DATE	28-Aug-05
ELEVATION	2272	LENGTH	196.13	LOGGED BY	E.D. Frey

NOTE: UNITS IN METERS, BEARING & DIP IN DEGREES

OBJECTIVE TO TEST NORTHEAST CONTINUITY OF SOUTHWEST (D) VEIN

SUMMARY I	LOG	DDH			EO5-35
HOLE#	FROM	TO	DESCRIPTION	SAMPLE	GOLD (g/t)
		22.52	0./5001100511/04011		
E05-35	0.00		OVERBURDEN / CASIN		
E05-35	24.38		SERPENTINIZED HARZ		
E05-35	43.12		FELDSPAR PORPHYRY		
E05-35	47.83	56.20	SERPENTINIZED HARZ	BURGITE	
E05-35	56.20	68.37	FELDSPAR PORPHYRY	DIORITE	
E05-35	68.37	104.88	SERPENTINIZED HARZ	BURGITE	
E05-35	104.88		FELDSPAR PORPHYRY		
E05-35	120.00	127.62	SERPENTINIZED HARZ	BURGITE	
E05-35	127.62	131.72	FELDSPAR PORPHYRY	DIORITE	
E05-35	131.72	146.37	SERPENTINIZED HARZ	BURGITE	
E05-35	146.37		FELDSPAR PORPHYRY		
E05-35	150.05		SERPENTINIZED HARZ	BURGITE	
E05-35		196.14	END OF HOLE		

HOLE #	FROM (m)	TO (m) R UNITS	FROM (m) Minor U		ROCK TYPE	DESCRIPTION	SAMPLE
E05-35	0.00	36.58		iiilo	OVERBURDEN / CASING		
E05-35	36.58	43.12			SERPENTINIZED HARZBURGITE		
E05-35 E05-35 E05-35 E05-35	30.36	43.12	36.58 37.25 38.40 38.72	38.40 38.72 42.84		vfg-fg black to brown, magnetic; few mortled, pale grey altered cg olivine (OL) and pyroxene (PYX) FAULT GOUGE, 2 cm TW, 70 TCA strongly broken core; few orange-brown LIM (after antigorite?) fractures and wispy, black seams strongly oxidized harzburgitie (HARZI: 98% crumbly, sheared, LIM fractures, LIM after cg OL (to 1 cm)	
E05-35	43.12	47.83			FELDSPAR PORPHYRY DIORITE	embayed (1-2 cm) intrusive contact, -45 to 60 TCA; adjacent serpentinite dark brown, 2 cm TW; porphyry SIL, grey-dark grey groundmass, vfg-1g mafics, rare euhedral hornblende (HBL) laths 1 mm x 0.1 mm, dull white subhedral feldspar; zoned with thin white rims; phenocryst feldspars white, cloudy, groundmass supported, 1-5 mm, subhedral-euhedral, rimmed white; 1-5-20% cg (to 1.5 cm); to 5% disserminated fg clots of vvf PY; LIM fractures, moderately seamed/fractured all angles TCA, many with 5 mm to 2 cm wide LIM alteration zones	G08240
E05-35 E05-35			43.12 44.30	43.33 44.37		soft to broken porphyry, feldspar phenocrysts bleached to clay; LIM seams; 1% dull red HEM after PY CLH-serpentine (SERP) slip, in centre of strongly bleached-SIL porphyry zone, 4 cm TW, 50 TCA; 2-3% fg HEM after PY disseminated within the zone, fresh PY outside of it	
E05-35 E05-35 E05-35 E05-35 E05-35 E05-35 E05-35			44.71 44.81 45.35 45.64 46.00 47.40 47.60	44.77 45.10 45.42 45.67 46.10 47.60 47.85		LIM alteration zone, bleached centre 2-3 cm wide; groundmass vfg brown, crowded phenocrysts 2-5 mm groundmass brown to bleached; CHL-MAN fractures 50 TCA, 1-3 % fg HEM-PY as previous as previous numerous CHL-QZ seams in bleached-SIL, 50 TCA; trace fg LIM-PY 50% bleached porphyry, LIM seam contacts 30-40 TCA; 2-3% fg HEM-PY porphyry-serpentinized harzbragite contact zone; soft, oxidized, crumbly	G08241
E05-35 E05-35 E05-35 E05-35	47.83	56.20		48.15	SERPENTINIZED HARZBURGITE	10-15% cg HARZ, to 1.5 cm subhedral altered OL and plagiocise; vfg-fg groundmass, magnetic SERP slips, 50 TCA soft, broken core; SERP-TALC fractures SERP seam, white TALC-SERP	
E05-35 E05-35 E05-35 E05-35			51.23 52.63 54.20 54.70	54.30 52.68 54.30 60.05		SERP-TALC slips 60 TCA; to strongly broken, angular core, numerous chrysotile asbestos veinlets (1-2 mm TW) cross-cutting FAULT; bright green, vfg granular gouge, 2-3 cm TW, 55 TCA; hartzburgite soft, blue-black, pitted in core 30 cm before and after gouge zone bleached SERP-CA veinlet, 5-10 mm, 10 TCA random angle TCA fabric of 1-2 mm, black seams continues	G08242
E05-35 E05-35 E05-35 E05-35			54.81 55.12 55.35 56.00	55.00 55.35 55.50 56.20		strongly SERP-CA seamed: pitted, serpentinized HARZ, fg-cg OL, vfg-mg PYX SERP seams, 20 TcA and branching; <1% disseminated vfg PY strongly broken core; numerous SERP-TALC, minor LIM seams, Yf OL strongly oxidized, seamed and broken core, LIM_HEM feldspars; CA seams, weak fabric 60 TCA	G08243
E05-35 E05-35	56.20	68.37	56.35	56.41	FELDSPAR PORPHYRY DIORITE	U/C FAULT, LIM-CHL gouge, 4 cm TW, ~40-45 TCA; porphyry vfg brown-grey groundmass; crowded, dull white, subhedral feldspar phenocrysts to 5 mm; 1% disseminated fg HEM after Py wavy CA (>CHL) seams, veinlets, total TW 3.5 cm, 30 TCA porphyry SIL, 15-20 % cg subhedral phenocrysts; patchy grey-dark grey groundmass; few LIM and CA	G08244
E05-35 E05-35 E05-35			57.20 60.47 60.78	60.47 60.82 60.82		seams to 5 mm TW, all angles TCA, with alteration halos 1-4 cm TW strong LIM-SIL bleaching; light grey-light brown groundmass CA-LIM seams, 5 cm TW, 50 TCA, few LIM fractures	
E05-35	68.37	104.88	60.82	68.37	SERPENTINIZED HARZBURGITE	euhedral HBL laths 2-4 mm x 0.5 mm, increasingly abundant (to 10-15%), as a second phenocryst; brown- light brown groundmass; patchy darker brown in part, with feldspar phenocrysts rimmed with LIM	G08246
E05-35 E05-35	06.37	104.00	68.37 69.04	69.13 69.13	SERFENTINIZED HARZBORGHE	U/C FAULT, bleached porphyry-TALC gouge, LIM diffused U/C strong LIM, weal SERP fabric, 10-15 TCA	G08247
E05-35 E05-35 E05-35 E05-35			69.13 69.43 70.43 71.91	69.43 71.91 71.91 72.21		wavy-slightly embayed fabric, 10 TCA; vfg grey felted (HARZ homfels?), weakly magnetic, SERP seams HARZ; pale grey altered OL to 1 cm, wispy, scalloped black seams throughout, all angles TCA black seams mainly 80-90 TCA stongly seamed-broken core;	G08248 G08249, G0
E05-35 E05-35			72.21 73.78	72.36 74.04		SERP-TALC-brucite gouge, yellow-pale green, sharp L/C 45 TCA; 1 cm TW LIM oxidation adjacent, below contact FELDSPAR PORPHYRY (fault block?); weak SIL-SERP alteration, diffused U/C 55 TCA; feldspars pale green-light grey, few mg-cg HBL laths	G08173
E05-35 E05-35			74.04 74.52	74.27 74.56		FAULT ZONE: SERP gouge LVC, 4 cm TW, 65 TCA; QV 7 cm TW, 40 TCA, contacts embayed slightly; L/C 1 cm TW SERP gouge, and pale pink SERI(?) FAULT; SERP gouge, U/C 45 TCA, L/C 70 TCA competent core; rare pale green SERP slips/seams, 2-15 mm TW, 15 TCA and (fault?) filling (@ 75.66);	
E05-35 E05-35 E05-35			74.77 78.16 80.32 80.72	79.09 80.46 80.82		typical wispy, scalloped fabric, all angles TCA; light, pale grey altered OL, most <1 cm wavy SERP seams, slips parallel TCA; white-pale green-green 1 mm to 1 cm TW, minor chrysotile and (pale blue) crocifolite asbestos as previous, with minor TALC, 1 cm TW, 20 TCA SERP slips, crumbly, broken core	
E05-35 E05-35 E05-35 E05-35			82.92 82.94 84.26 84.89	85.00 83.06		coarsely broken core; rough LlM fractures, numerous LlM seams and lineated slips bleached HARZ; LlM-weak CHL seams, trace PY, U/C 50 TCA, L/C 70 TCA FAULT; crumbly TALC-SERP gouge, ~6 cm TW, ~20 TCA as previous, with wavy TALC-SERP-CHL seams, 5 cm TW, 20 TCA	
E05-35			85.00	102.62		generally massive, fg serpentinized HARZ; pale blue-grey-black; weak fabric 40-60 TCA, few SERP slips cutting 2-3 cm net fabric; trace-1% disseminated Ig PY; rare blue crocidolite asbeting. FAULT; strong SERP alteration, soft core; light green-white, 8 cm TW, 40 TCA; lower 2-3 cm TW gouge,	
E05-35 E05-35 E05-35 E05-35 E05-35			92.84 94.34 96.42 99.60 100.24	92.95 94.37 96.50 99.67 100.40		sharp contacts: U/C 30 TCA, L/C 55 C/A strong SERP alteration with central slip fractures, 3 cm TW, 40 TCA similar as previous, without slips; SERP seams 3.5-6 cm TW, 50 TCA, diffuse contacts FAULT; SERP-TALC slips, gouge; 2 cm TW, 50 TCA SERP-brucite-TALC seam; 2 cm TW, 20 TCA	
E05-35 E05-35			102.19 102.62	102.62 104.88		SERP seam at upper end, 2-3 mm, 65 TCA; wavy SERP bounded QZ seam, 3 cm TW, 30 TCA U/C 20 TCA; increasingly strong, pale green SERP and minor TALC alteration, numerous seams, most 35 TCA; net-seamed fabric cut by few QZ seams at high angles TCA, some with trace clots of vfg PY	G08175
E05-35 E05-35 E05-35			102.92 104.16 104.48	104.48		coarsely vuggy SERP-TALC seam along core axis, to 1.5 cm TW, contains pale green, reiform prehenite FAULT; SERP-TALC seams, gouge, 20 cm TW, 60 TCA; few platy CHL seams grey FELDSPAR PORPHYRY (fault block?), sharp L/C SERP-TALC slip, 2 cm TW, 70 TCA intrusive contact zone: QZ flooding and numerous seams, 25 TCA, CHL-SERP-TALC, minor light brown	G08176 G08177
E05-35			104.57	104.88		SERI; fg MO seams and wisps	

HOLE #	FROM (m)	TO (m)	FROM (m)	TO (m)	ROCK TYPE	DESCRIPTION	SAMPLE
HOLL #	FROM (III)	10 (111)	r KOW (III)	10 (111)	ROCKTIFE	grey porphyry, strong SIL alteration; vfg HBL-CHL groundmass; 50% vfg-fg feldspar phenocrysts, subhedral	SAWIFEE
505.05						to equant, most 3 mm, few to 7 mm, groundmass supported; 1-2% fg PY disseminated throughout; few QZ seams to veinlets, to 2 cm TW, 45-80 TCA; rare trace to 2% clots vfg PY within and along veinlet contacts,	
E05-35	104.88	120.00			FELDSPAR PORPHYRY DIORITE	e.g. 105.44-105.67; rare aplite seams, vfg QZ-FELD, to 1 cm TW, 80 TCA QZ flooding and weak CHL seams, broken core;CHL seam 50 TCA U/C and L/C contacts; trace fg PY within	G08178
E05-35 E05-35				114.64 114.64		and contact fractures, rare MO specks bleached-SIL porphyry, 1-2% fg disseminated PY, trace-1% MO specks	G08179
E05-35			114.90	115.00		QV; 2-2.5 cm TW, 40-45 TCA; 20% PY clots and seams within QV and contacts wavy EPID-QZ-CHL seams, wavy CHL-QZ seam 1-2 mm, pale green alteration halo adjacent, 12 mm TW,	G08180
E05-35 E05-35			115.25 118.57	115.29 119.55		40 TCA; 1-5% disseminated PY to 5% disseminated for PY	G08182
						FAULT zone; SERP-TALC gouge seam, 35 TCA U/C; serpentinized porphyry, soft, pale green CHL-SERP	
E05-35 E05-35			119.55 119.65	120.00		groundmass; 20% phenocrysts visible blue-green CHL-riebeckite seam with 2 mm wide halo, 50 TCA	G08183
E05-35	120.00	127.62			SERPENTINIZED HARZBURGITE		
E05-35 E05-35			120.00 120.06			strongly serpentinized HARZ; wavy seams, zero to 30 TCA, SERP-TALC-brown SERI-CHL FAULT; gouge 2 cm TW, U/c 30 TCA, L/C 25 TCA	
E05-35 E05-35			121.10 121.16	122.03 121.19		weakly SERP (magnetic) seams 50-80 TCA; 2-3% fg disseminated PY FAULT; TALC-SERP slips, minor gouge, 2 cm TW, 55 TCA	G08184
E05-35			122.03	127.62		typical scalloped seams, cut by seams (to 5 mm TW), spaced ~15-25 cm; few SERP and TALC-SERP seams; to 5% disseminated PY throughout	G08185
						dark grey-pale brown groundmass; vfq-fq FELD-HBL, minor biotite; phyric euhedral HBL phenocrysts to 10%,	
E05-35	127.62	131.72			FELDSPAR PORPHYRY DIORITE	1-2 x 5 mm, rarely 2 x 8 mm; feldspar phenocrysts mottled-clear-white, anhedral, groundmass supported to crowded (70%) with partial mutual contact	
E05-35			127.62	127.96		intrusive contact zone; bleached-pale green; increasing serpentinization (decreasing magnetite); TALC-SERP-CA seams	G08186
E05-35			127.86 130.84	127.96 130.97		TAULT; pale green SERP-brucite, 5-6 cm TW, 55-60 TCA gouge at L/C; two fg DIORITE xenoliths, 3 x 5 cm each	G08187
E05-35	404 70	440.07	130.64	130.97	CERRENTINITED HARTDURGITE	two ig bloki i e zenolitis, 3 x 5 cm each	
E05-35 E05-35	131.72	146.37	131.72		SERPENTINIZED HARZBURGITE	FAULT CONTACT; TALC-SERP, white, very pale green gouge, 11 cm TW, U/C 85 TCA, L/C 60 TCA	G08189
E05-35 E05-35			132.32 134.25	134.53		few seams pale blue crocidolite asbestos, zero-25 TCA SERP-brucite veinlets, 1.5 cm TW, <5 TCA	
E05-35 E05-35			137.44 138.19			FAULT; strong SERP-TALC alteration, L/C gouge, 5mm TW, 60 TCA coarsely broken core	
E05-35			139.18			FAULT, SERP-TALC gouge, 4 cm TW, 70 TCA; SERP-CHL slips and seams, 5 cm TW, 65 TCA, sharp contacts bounding competent core	
E05-35 E05-35			139.23 142.83	142.83		black-seamed fabric mainly 70 TCA, few TALC-CHL-SERP slips and seams 40 TCA strong SERP alteration 80%; sharp zone (seam) contacts and central slips, 5 cm TW, 60 TCA	
E05-35 E05-35			143.70 144.25			FAULT; within HARZ fabric, wavy, zero to 15 TCA; CA seams parallel to cutting at a higher angle TCA	
E05-35 E05-35			145.97	146.37		FAULT ZONE	G08190, G08197 G08191
E05-35			146.06	146.08		TALC-SERP gouge, 1 cm TW, 40 TCA; trace vfg PY, MO?	G08191
E05-35 E05-35			146.08 146.16	146.32		strong SERP slips and gouge SERP-CHL-TALC gouge, –8 cm TW, 35 TCA	
E05-35			146.32	146.37		strong CHL-SERP alteration and gouge, L/C ~30-40 TCA	
E05-35 E05-35	146.37	150.05	146.37	146.65	FELDSPAR PORPHYRY DIORITE	as previous; variably hornblende phyric weak SERP-CHL, few pale green feldspar phenocrysts, SERP groundmass alteration	
E05-35 E05-35			146.65 146.97	146.97 147.25		few SERP seams subparallel and 30 TCA SIL porphyry, FELD phenocrysts >50%, fg grey-brown groundmass, trace VFG PY	G08192
E05-35			147.25			PY 1-5% disseminated, trace CHL-EPID in groundmass, few SERP seams moderately bleached porphyry, 6-11 cm TW, U/C 80 TCA, 30% wispy PY in QZ-CHL-EPID seams; L/C	G08193, G08194
E05-35			149.51	149.61		diffuse FAULT; SERP-TALC gouge seams, 5 mm TW,40 and 80 TCA bound porphyry slice (wedge) and cut TALC-	
E05-35			149.86 149.92	149.92 150.36		SERP veinlets 2 cm total TW, 20 TCA FAULT ZONE, see details below	G08195
E05-35			149.92			SERP-brucite altered porphyry; SERP feldspar phenocrysts, patchy brown fg SERI groundmass	
E05-35	150.05	196.14			SERPENTINIZED HARZBURGITE		
E05-35 E05-35			150.05 150.18	150.36		TALC-SERP-brucite-CHL gouge, very pale green to green-white, ~12 cm TW, 60 TCA strong SERP alteration, SERP-TALC-CHL slips, strongly broken core, sharp L/C 35 TCA	
E05-35			150.36	150.46		weak SERP alteration FAULT; SERP-TALC gouge, as 150.05, 3.5-4 cm TW (at uphole end of segment), U/C 70 TCA, L/C 40 TCA;	
E05-35			150.46	150.64		40% SERP seams, 25-30 TCA, cut at lower end of segment by SERP-brucite consolidated gouge, 2 cm TW, 60 TCA	
E05-35			150.64	151.39		weak-moderate SERP alteration; few SERP seams 5 mm TW, 70 TCA, some fractured; 15% PY, fg disseminated and on fractures	G08198
E05-35			150.86			SERP-TALC-brucite-minor CHL seams, 5-8 mm TW, zero to 15 TCA	G08199 G08200
						strong SERP alteration; pale grey SERP-TALC-CHL seams parallel TCA, lineations 40 TCA, PY smears on	04070
E05-35 E05-35			154.32 155.45			Fractures; strongly broken core, lower 12 cm 2% PY foliaseminated, some PY after magnetite	04071, 04073 04074
E05-35						FAULT; U/C rough fracture, 65 TCA, L/C wavy, 30-40 TCA; strongly broken core; SERP-TALC-CHL slips and	04074
			156.36			seams 80 TCA, few CA seams; fg PY fractures and smears on lineated slips	04073
E05-35			156.65			moderate-strong SERP alteration; minor SERP seams, patches; SERP seam at L/C, 8-10 mm TW, 40 TCA fg black HARZ, SERP seams 1.5 mm TW; weakly broken core on SERP-chrysotile-CHL-TALC seams, most	0.40=0
E05-35			156.82			60-80 TCA; SERP veinlet, 3 mm TW, 65 TCA, at L/C cuts second, 3 mm TW, 80 TCA cg OL, few OL megacrysts to 2 cm; open net fabric, few lineations <20 TCA, most 60-80 TCA; rare SERP-	04076
E05-35 E05-35			159.18 163.02			TALC-minor crocidolite asbestos seams >5 mm TW, 45-70 TCA minor seams SERP and fg PY, 15 TCA	
E05-35			163.25	164.29		FAULT ZONE; crumbly core, granular gouge at 163.57-164.29; numerous SERP-CHL-TALC-minor riebeckite slips and fractures; L/C 10-15 mm TW, 70-80 TCA	04077
E05-35			164.29			typical fg HARTZ, weak SERP alteration; black seam fabric 70-85 TCA; vfg CHL-PYX groundmass; vfg PY 1% disseminated	
E05-35			167.40			TALC-SERP seam, white-pale grey, 2.5 cm, 80 TCA	
E05-35			168.15	170.32		moderately broken core, TALC-SERP fractures; crocidolite asbestos and mg PY smears on few fractures FAULT? Sharp U/C 70 TCA, L/C 80 TCA; broken crumbly core, SERP-TALC-chrysotile & crocidolite asbestos	
E05-35			170.32			fractures	
E05-35 E05-35			170.85	170.85 171.26		SERP alteration increasing; HARTZ OL to 5-8 mm net-seamed, scalloped fabric	
E05-35 E05-35			171.50	171.50 171.90		fabric 70 TCA, vfg HARZ TALC-SERP-chrysotile asbestos seam, 10 TCA	
E05-35 E05-35			173.00	173.00 175.22		numerous SERP-TALC-CHL seams, planar to open net fabric few as previous	04078
E05-35 E05-35				175.90 175.58		FAULT ZONE and central QV U/C 50 TCA, strong SERP alteration fabric sweeps to pale blue-green SERP-TALC gouge, 5 to 90 TCA	04079
E05-35			175.58			QV; white, 30% wispy seams CHL, PY-CHL 2-3 mm TW, 1 mm MO? seams and clots vfg PY to 5 mm, rare CPY; 90 TCA, U/C & L/C 90 TCA	04081
E05-35			175.67			strong SERP alteration and 50% SERP-TALC gouge strong SERP alteration, fg HARZ; 60-70% mottled pale grey-blue grey, magnetic; few SERP-TALC seams,	04082
E05-35			175.90	176.90		veinlets, slips	04083

HOLE #	FROM (m)	TO (m)	FROM (m)	TO (m)	ROCK TYPE	DESCRIPTION	SAMPLE	
						patchy mottled alteration as previous; 25% coarsely broken core, SERP-TALC-chrysotile seams, slips, minor		
E05-35			176.90	189.00		crocidolite		
E05-35			185.58	185.74		few black CHL-SERP fractures		
E05-35			189.00	191.20		70-80% pale grey mottled Alteration as 175.9		
E05-35			191.20	192.78		few CHL-SERP-TALC fractures, seams	04084	
E05-35			192.28	192.42		FAULT; SERP-CHL-TALC slips and gouge		
						finely broken to crushed (by multiple drilling?); typical SERP-CHL-TALC-minor brucite seams, fractures; few		
E05-35			192.78	196.14		CHL slips with PY smears	04085, 0408	7, 04088, 040
E05-35			193.56	193.85		FAULT zone;60% gouge, remainder as previous		
E05-35				196.14				
				E.O.H.				

EC EC EC EC EC EC	50 30 30 30 30 30 30 30 30 30 30 30 30 30	EC E
05-35 G 05-35 G 05-35 G 05-35 G 05-35 G 05-35 G 05-35 G 05-35 G	05-35 G 05-35 G	05-35 (05-35)
608243 608244 608245 608246 608247 608248 608249	G08173 G08174 / G08175 G08177 G08177 G08177 G08178 G08178 G08182 G08182 G08182 G08183 G08184 G08185 G08186 G08186 G08187 G08189 G08189 G08199 G08199 G08199 G08199 G08199 G08199 G08199 G08198 G08198	04070 04071 04071 04073 04073 04074 04075 04076 04077 04078 04079 04080 04081 04082 04083 04084 04085 04086 04086
55.12 56.20	73.71 ASSAY BL 103.16 104.16 104.48 105.00 113.98 114.64 114.64 STANDAR 118.57 121.01 122.03 127.62 127.96 122.03 124.97 146.65 149.86 51ANDAR 144.97 150.64 151.29	153.29 154.14 ASSAY BL 154.64 155.45 156.36 156.82 174.22 174.22 175.22 STANDAR 175.58 175.58 175.69 193.85 193.85
43.62 48.33 53.15 56.20 57.20 ED SP 17 68.37 69.13 69.63 71.91 71.91	74.77 ANK 104.16 104.48 105.00 114.64 115.65 ED SP 17 119.55 121.01 122.03 123.03 127.96 128.96 ANK 132.33 145.97 146.65 148.36 149.86	155.45 156.36 156.82 157.82 164.29 175.22 175.58 ID OXE21 175.67 175.90 193.56 193.85 ANK
1.00 1.00 1.05 1.08 1.00 =18.13 gh A 0.50 0.76 0.50 0.82 0.82	0.53 1.06 1.00 0.32 0.52 1.00 0.65 1.01 =18.13 gt A 0.98 1.46 1.00 0.34 1.00 0.68 1.00 0.71 1.00 0.71 1.00 0.71 1.00 0.71 1.00 0.78 1.00 0.71 1.00 0.78 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	LENGTH 0.85 0.50 0.81 0.91 0.46 1.00 0.36 = 0.651 gh 0.23 1.00 1.76 0.29 1.00 1.00 1.00
<5 5 5 45 15 >1000 5 5 5 <5 <5	\$ 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6	Au ppb 5 5 5 5 10 0 <5 5 5 10 0 5 5 5 10 10 10 15 15 10 10 15 5 5 10 10 15 15 10 10 15 15 10 10 15 15 10 10 15 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10
<0.2 <0.2 <0.2 <0.2 0.3 >30 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Ag 40.2 40
0.88 0.95 0.15 0.29 2.03 0.16 1.28 1.67 0.22 0.18 0.19	0.43 1.54 0.81 1.99 0.66 0.31 0.58 0.20 0.77 1.68 0.26 0.80 1.03 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08	AI % 0.18 0.19 0.78 0.40 0.11 0.27 0.16 0.18 0.19 0.73 0.15 0.04 0.33 0.52 0.79 0.38 0.38
70 55 85 65 405 <5 60 155 25 30 20	35 25 35 10 35 690 1260 620 45 1000 95 10 280 10 0 5 5 40 40 <5 5 10 280 5 5 5 5	As 45 45 45 45 45 45 45 45 45 80
55 25 15 20 30 35 35 35 15 20 25	10 5 100 200 355 356 326 326 326 326 326 320 110 335 100 300 200 40 55 85 75 15 10 20 20 20 20 20 20 20 20 20 20 20 20 20	Ba 30 25 105 25 15 25 25 25 30 15 10 25 35 40 40 100 20 25
ଶ ଶ ଶ ଶ ଶ ଶ ଶ ଶ ଶ ଶ ଶ	ବର ଜଣ	ଅଟେ ପଟ୍ଟ ପଟ୍ଟ ପଟ୍ଟ ପଟ୍ଟ ପଟ୍ଟ ପଟ୍ଟ ପଟ୍ଟ
0.64 0.95 0.26 0.68 1.17 0.10 0.97 0.71 0.58 0.86 1.10	2.01 1.10 0.66 0.68 1.44 2.36 4.23 2.03 2.03 2.03 0.99 0.17 0.13 2.03 1.17 0.13 1.02 1.10 0.82 0.15 0.87 0.14	Ca % 0.19 0.04 0.61 0.40 0.26 1.19 0.08 0.23 0.04 0.48 0.14 0.15 0.27 0.15 0.67 0.02 0.02 0.20
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
48 54 96 82 20 3 13 67 87 91	37 46 55 13 25 13 9 16 3 13 3 78 85 29 10 6 49 82 42 11 15 47 <1 9 18 89 94	Co 87 73 62 62 86 80 92 32 <1 184 40 72 65 66 69 75
259 325 409 562 128 2 62 401 591 491 540	377 398 41 399 175 223 46 85 59 1 397 703 6002 154 60 35 311 395 34 454 52 314 452 5664 601 539	Cr 309 352 37 512 207 431 265 339 312 233 2 157 398 460 593 770 39 770 39 772 722 616
94 122 23 44 301 6 53 229 61 73 63	57 100 2 85 17 164 189 113 205 6 212 137 73 43 33 26 2 2 3 3 3 143 194 85 2 48 82 2 48 82 96	Cu 132 286 4 600 224 182 59 74 36 83 2 768 61 41 48 275 2 25 41 35
3.78 3.79 4.26 4.37 4.85 3.96 2.71 4.07 4.23 4.83 4.98	1.69 2.13 1.93 2.36 2.33 3.31 2.03 3.31 3.84 3.10 2.40 4.29 4.27 2.33 1.90 3.27 4.14 2.53 2.44 3.10 2.40 4.14 4.14 2.53 4.14 2.54 4.14 4.15 4.16 4.16 4.16 4.16 4.16 4.16 4.16 4.16	Fe % 4.37 4.11 1.97 2.78 3.72 4.34 4.52 2.76 1.14 3.57 4.34 4.52 2.76 1.14 3.57 4.346 1.87 1.49 2.86 3.60
<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	La <10 <10 <10 <10 <10 <10 <10 <10 <10 <10
5.77 6.21 >10 >10 3.08 <0.01 0.92 3.33 8.50 >10 >10	4.67 5.97 0.50 4.18 6.00 2.54 1.07 0.57 <0.01 3.21 0.76 4.23 3.21 0.74 7.99 >10 4.11 0.68 0.76 0.83 5.45 0.045 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10	Mg % >10 9.51 0.52 2.63 5.81 >10 >10 >10 >10 >10 >10 >10 >10 >10 >1
344 367 578 537 417 98 223 322 338 569 626	336 414 442 413 561 196 218 199 181 92 166 331 1556 552 393 164 437 229 111 118 147 278 147 278 147 278 153 333	Mn 532 483 480 233 302 656 532 417 497 130 17 53 104 405 240 432 1287 426
<1 14 6 13 195 4 <1 1988 47 10 5	159 4 <1 29 35 285 285 17 20 16 3 8 76 44 <1 1 1 1 2 14 34 <1 <1 126 <1 2 6	Mo 18 19 <11 5984 12 8 8 11 3 1662 1 878 712 23 25 256 <1 1 2
0.04 0.02 <0.01 <0.01 0.05 0.07 0.12 0.02 <0.01 <0.01	0.01 -0.01 -0.01 -0.01 -0.02 -0.09 -0.06 -0.08 -0.09 -0.13 -0.01 -0.01 -0.01 -0.01 -0.01 -0.05 -0.01 -0.05 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01	Na % <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <
906 1032 2077 1736 175 7 52 1022 1908 2043 2034	836 959 5 1261 161 415 8 15 13 6 7 7 739 1709 1839 470 195 8 9 9 1760 854 9 9 9 177 1955 1789 1947 2035	Ni 1823 1642 5 1251 1292 1372 1933 1609 1883 740 602 1525 1478 928 5 850 1421
490 360 <10 <10 860 240 890 300 <10 <10	<10 80 720 <10 380 230 530 740 220 <10 <10 <10 270 740 430 270 740 430 790 770 250 600 <10 <10 <10 <10 <10 <10 <10 <10 <10 <	P <10 <10 <10 <10 <10 <10 <10 <10 <10 <10
16 18 <2 2 44 188 32 42 <2 <2 <2	4 20 18 <2 266 16 16 8 18 28 4 <2 10 24 12 20 18 22 28 32 12 4 4 4 2 2	Pb <2 <2 18 6 <2 12 <2 <2 4 8 <2 4 <2 6 8 18 2 6 4
5 <5 10 10 <5 <5 <5 35 10 <5 <5	15 10 5 10 5 5 5 10 5 5 5 5 10 5 5 5 5 10 5 5 5 5	Sb 10 10 5 5 10 10 10 15 15 5 5 5 5 5 5 5
<20 <20 <20 <20 <20 <20 <20 <20 <20 <20	ବର ବର୍ଷ କ୍ରିକ୍ କ୍ରେକ୍ରକ୍ରକ୍ରକ୍ରକ୍ରକ୍ରକ୍ରକ୍ରକ୍ରକ୍ରକ୍ରକ୍ରକ୍ରକ	\$6 \{\partial} \{\partial} \{\
43 27 9 21 47 5 32 33 14 29 48	69 23 48 141 334 191 185 251 124 4 127 50 11 4 142 66 44 30 41 63 55 58 82 83 36 14 3 5	Sr 18 6 40 185 1158 75 19 21 21 21 22 23 9 16 13 45 12 23 9 16 13 45 12 23 9 16 13 45 16 16 16 16 16 16 16 16 16 16 16 16 16
0.04 0.03 <0.01 <0.01 0.07 <0.01 0.12 0.06 <0.01 <0.01	<0.01 <0.01 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.03 <0.01 <0.03 <0.01 <0.04 <0.01 <0.04 <0.01 <0.04 <0.01 <0.04 <0.01 <0.04 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	Ti % <0.01 <0.01 0.09 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0
<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	10 10 10 10 10 10 10 10 10 10 10 10 10 1	U 40 40 40 40 40 40 40 40 40 40 40 40 40
43 34 17 21 119 2 73 72 23 19 21	15 10 37 14 26 47 44 13 33 1 57 39 27 20 42 62 35 39 16 45 63 72 1 1 19 20	V 12 18 36 24 10 20 10 12 10 6 1 2 12 19 31 34 35 24 24 19
<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	40 40<	W <10 <10 <10 <10 <10 <10 <10 <10 <10 <10
<1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2<		Y
69 74 49 42 60 27 57 76 42 46 49	18 38 42 39 28 34 34 23 21 33 24 24 24 37 50 45 51 60 61 70 70 53 4 58 60 71 70	Zn 555 37 44 68 28 52 62 55 75 10 3 4 23 51 87 72 41 33 42 57

HOLE #	LENGTH	BEARING	DIP
E05-35	0	130	-75
E05-35	175	not tested	-73
E05-35	196.13		
	E.O.H.		

	F	RECOVERY	,			RQD		CORE	BOX INTER	RVALS
From	To	Run	Recove		CORE	RUN	RQD			
(m)	(m)	(m)	Meas	Rec (%)	(m)	(m)	(%)	Box	From	То
0.00	36.58	36.58	0.00	0.0	0.00	36.58	0.0	1	36.58	43.90
36.58	38.71	2.13	2.07	97.2	0.69	2.13	32.4	2	43.90	49.31
38.71	41.76	3.05	0.59	19.3	0.00	3.05	0.0	3	49.31	54.70
41.76	44.81	3.05	2.58	84.6	1.18	3.05	38.7	4	54.70	60.05
44.81 47.85	47.85	3.04	2.84 2.42	93.4	1.02	3.04	33.6 52.5	5	60.05 65.49	65.49 71.09
50.90	50.90 53.95	3.05 3.05	3.00	79.3 98.4	1.60 0.80	3.05 3.05	26.2	6 7	71.09	76.74
53.95	57.00	3.05	3.05	100.0	0.80	3.05	31.8	8	76.74	82.31
57.00	60.05	3.05	2.83	92.8	1.95	3.05	63.9	9	82.31	87.80
60.05	62.48	2.43	2.43	100.0	1.32	2.43	54.3	10	87.80	93.38
62.48	63.70	1.22	1.09	89.3	0.12	1.22	9.8	11	93.38	99.02
63.70	65.68	1.98	1.73	87.4	0.54	1.98	27.3	12	99.02	104.57
65.68	66.60	0.92	0.83	90.2	0.00	0.92	0.0	13	104.57	110.10
66.60	68.12	1.52	1.31	86.2	0.34	1.52	22.4	14	110.10	115.65
68.12	69.04	0.92	0.50	54.3	0.00	0.92	0.0	15	115.65	121.50
69.04	72.09	3.05	2.97	97.4	2.31	3.05	75.7	16	121.50	127.29
72.09	75.29	3.20	2.88	90.0	1.32	3.20	41.3	17	127.29	132.67
75.29	78.33	3.04	3.04	100.0	2.47	3.04	81.3	18	132.67	138.19
78.33	81.38	3.05	2.85	93.4	0.91	3.05	29.8	19	138.19	143.31
81.38	83.67	2.29	2.29	100.0	0.87	2.29	38.0	20	143.31	149.12
83.67	84.89	1.22	1.07	87.7	0.00	1.22	0.0	21	149.12	154.52
84.89	87.48	2.59	2.33	90.0	1.98 2.22	2.59	76.4	22	154.52	159.56
87.48 90.53	90.53 93.57	3.05 3.04	3.05 2.91	100.0 95.7	1.61	3.05 3.04	72.8 53.0	23 24	159.56 165.26	165.26 170.85
93.57	96.62	3.04	2.91	95.7	2.38	3.04	78.0	25	170.85	176.14
96.62	99.67	3.05	3.00	98.4	2.26	3.05	74.1	26	176.03	181.62
99.67	102.72	3.05	3.02	99.0	2.62	3.05	85.9	27	181.62	187.14
102.72	105.77	3.05	2.95	96.7	2.22	3.05	72.8	28	187.14	192.78
105.77	108.20	2.43	2.36	97.1	1.30	2.43	53.5	29	192.78	196.14
108.20	111.25	3.05	3.05	100.0	1.88	3.05	61.6			E.O.H.
111.25	114.00	2.75	2.59	94.2	1.87	2.75	68.0			
114.00	116.74	2.74	2.74	100.0	1.54	2.74	56.2			
116.74	118.57	1.83	1.56	85.2	0.91	1.83	49.7			
118.57	121.01	2.44	2.05	84.0	0.63	2.44	25.8			
121.01	123.75	2.74	2.59	94.5	1.87	2.74	68.2			
123.75	125.88	2.13	2.13	100.0	1.89	2.13	88.7			
125.88	128.47	2.59	2.59	100.0	2.07	2.59	79.9			
128.47	129.54	1.07	1.07	100.0	0.41	1.07	38.3			
129.54	132.74	3.20	2.98	93.1	1.92	3.20	60.0			
132.74	134.42	1.68	1.68	100.0	0.75	1.68	44.6			
134.42 137.46	137.46 139.75	3.04 2.29	2.78 2.18	91.4 95.2	2.26 0.86	3.04 2.29	74.3 37.6			
137.46	142.34	2.29	2.18	100.0	1.62	2.59	62.5			
142.34	145.39	3.05	2.86	93.8	2.46	3.05	80.7			
145.39	145.59	2.13	2.13		0.92	2.13	43.2			
147.52	148.44	0.92	0.92	100.0	0.32	0.92	17.4			
148.44	150.27	1.83	1.83	100.0	1.10	1.83	60.1			
150.27	153.31	3.04	2.77	91.1	1.14	3.04	37.5			
153.31	155.45	2.14	2.14	100.0	1.02	2.14	47.7			
155.45	157.58	2.13	2.13	100.0	0.26	2.13	12.2			
157.58	158.50	0.92	0.87	94.6	0.11	0.92	12.0			
158.50	161.54	3.04	2.51	82.6	1.61	3.04	53.0			
161.54	164.29	2.75	2.44	88.7	1.35	2.75	49.1			
164.29	167.34	3.05	2.98	97.7	2.20	3.05	72.1			
167.34	170.38	3.04	2.90	95.4	1.15	3.04	37.8			
170.38	173.43	3.05	3.05	100.0	1.64	3.05	53.8			
173.43	175.87	2.44	2.32	95.1	0.79	2.44	32.4			
175.87	178.92	3.05	2.84	93.1	0.90	3.05	29.5			
178.92	181.66	2.74	2.53	92.3	0.61	2.74	22.3			
181.66 182.88	182.88 185.32	1.22 2.44	1.22	100.0	0.68 0.32	1.22 2.44	55.7			
185.32	185.32	1.52	1.80 1.43	73.8 94.1	0.32	1.52	13.1 8.6			
186.84	189.89	3.05	2.70	88.5	1.80	3.05	59.0			
189.89	191.72	1.83	1.72	94.0	0.86	1.83	47.0		 	
191.72	193.85	2.13	1.72	66.7	0.43	2.13	20.2		 	
193.85	196.14	2.29	2.16	94.3	0.00	2.29	0.0			
. 55.55	E.O.H.	0	0		5.00	0	0.0			
ı I					<u> </u>					

DDH E05-36

J-PACIFIC GOLD INC.

NORTHING	5654067	BEARING	130	START DATE	29-Aug-05
EASTING	10531452	DIP	-55	END DATE	1-Sep-05
ELEVATION	2314	LENGTH	181.97	LOGGED BY	E.D. Frey

NOTE: UNITS IN METERS, BEARING & DIP IN DEGREES

OBJECTIVE TO TEST NORTHEAST CONTINUITY OF SOUTHWEST (D) VEIN

SUMMARY	LOG	DDH			EO5-36				
HOLE#	FROM	TO	DESCRIPTION	DESCRIPTION SAMPLE					
E05-36	0.00 45.72 OVERBURDEN / CASING								
E05-36	45.72	140.44	FELDSPAR PORPHYRY						
E05-36	140.44	142.13	SERPENTINIZED HARZ						
E05-36	142.13	167.00	FELDSPAR PORPHYRY						
E05-36	167.00	176.42	QUARTZ VEIN ZONE						
E05-36	176.42	181.97	FELDSPAR PORPHYRY	DIORITE					
E05-36		181.97	END OF HOLE						

HOLE #	FROM (m)	TO (m)	FROM (m)	TO (m)	ROCK TYPE	DESCRIPTION	SAMPLE
		UNITS	Minor U	Inits			
E05-36	0.00	45.72			OVERBURDEN / CASING		
						feldspar porphyry hornblende diorite; SIL; 30-40% feldspar phenocrysts, anhedral -subhedral, rare euhedral	
E05-36	45.72	140.44			FELDSPAR PORPHYRY DIORITE	to 1 cm, white, some with LIM rims, 2-5 mm, most 5 mm, groundmass supported; groundmass fg, pale brown-grey weak SERI, trace HEM after PY	
	45.72	140.44			FELDSPAR FORFHIRI DIORITE	90% coarsely broken core, rough fractures, few planar, all strongly LIM;few QZ veinlets, 5-10 mm TW, <5	
E05-36			45.72	51.52		TCA; trace fg PY and HEM-PY on contacts strong to moderate LIM altered porphyry; sharp U/C, 35 TCA, diffuse L/C; groundmass and most phenocrysts	
E05-36			51.52	51.75		dull orange brown; trace fg HEM-PY	
E05-36 E05-36			53.00 57.41	56.18 57.49		as previous, cut by patchy dull white QZ flooding, LIM seams FAULT; kaolin-alunite?-sericite gouge, 4 cm TW, 20 TCA	04090
E05-36			57.49	57.74		bleached porphyry, strong FELD alteration with internal "foliation" 15 TCA, trace HEM-PY to 3 mm grains; L/C 45 TCA	
E05-36			57.74	58.20		strong LIM alteration, as 51.52	
E05-36			59.72	60.00		APLITE dike, 20 TCA; fg, diffuse contacts, 20% patchy and seams to 2 cm TW; vfg HBL and minor brown biotite and acicular HBL	
E05-36			60.12	60.26		grey porphyry, SIL alteration; patchy strong LIM alteration	
E05-36 E05-36			60.26 62.21	61.46 62.30		amphibolite veinlet-patchy net seams, few areas bleached porphyry adjacent QV; 5 cm TW, 60 TCA; massive, vfg-fg, grey-white, trace PY seams, sharp contacts	
E05-36			62.30	67.02		~50% coarsely broken core; rough LIM fractures, few with PY or HEM-PY broken to crumbly, soft core, strongly oxidized, LIM alteration; porphyry texture destroyed, replaced	
E05-36			67.02	70.05		completely by LIM-HEM, dull grey to dull pale orange; earthy	04091
E05-36			70.05	70.13		100% LIM, wavy fabric, 3-4 cm TW, 20 TCA; CA-SERI within FAULT? LIM mud, weakly consolidated, oxidized gouge? sand in fault filling? much lost core, actual	
E05-36 E05-36			70.18 71.02	71.02 72.00		recovery 34 cm patchy QZ flooding to 20%; SIL porphyry, crowded, bleached phenocrysts	04092 04094
E05-36			74.14	74.76		QV; massive, white; 20 TCA; few LIM-CHL seams and LIM fractures, rare fg PY	04094
E05-36			76.25	111.40		weakly broken core; mainly planar LIM fractures and seams, most 70 TCA crowded feldspar phenocrysts but groundmass supported, more 1-1.5 cm; rare patchy bleached porphyry;	
E05-36			78.93	82.25		few QZ veinlets, to 1 cm TW, low angles TCA	
E05-36 E05-36			82.25 82.29	82.37 82.36		LIM and bleached porphyry QZ veinlets, 3-10 mm TW, 3% clots fg PY	04095
E05-36			94.20	94.30		FAULT; crumbly LIM gouge, LIM altered porphyry; diffuse L/C 55 TCA 30% QZ flooded as very low angle TCA patches and veinlets, 2-3 cm TW; LIM fractures along core axis; few	04096
E05-36			98.37	101.28		LIM-CHL seams in QZ, trace PY	04097
E05-36			99.36	99.40		QV; 3.5 cm TW, 60 TCA; sharp LIM contacts, vfg-mg grey-white QZ, few LIM seams parallel to vein, trace fg PY	
E05-36						atoma I IM alternal analysis and assessing and assessing I IM analysis	04098
E05-36 E05-36			101.28 110.60			strong LIM altered porphyry, patchy alteration and numerous LIM seams FAULT; crumbly gouge; U/C ~50 TCA	04099
E05-36 E05-36			111.40 112.13			LIM altered porphyry, pale to deep brown feldspar phenocrystsreduced from 5-8 mm to <3 mm	
L03-30			112.13	112.02		SIL altered porphyry, grey groundmass, wide-net LIM fractures ans seams with 5mm wide alteration halos;	
E05-36			113.31	118.00		most phenocrysts 2-3 mm, anhedral; >60% phenocryst volume, groundmass supported; trace fg PY disseminated	
E05-36 E05-36			114.54 118.00	114.70 118.57		SIL-CHL?-LIM altered porphyry; vfg, dark grey-brown; CA seams to 3 mm TW, 30 and 55 TCA similar to previous, increasing LIM-SIL alteration downhole	04101
E05-36			118.52	118.57		FAULT? (cemented gouge?) strong LIM-SIL zone, 2 cm TW, 60 TCA, few wavy CA-QZ seams within	04101
E05-36			118.57	120.25		return to fg-mg, grey porphyry; minor SIL flooding, few QZ veinlets, low angle TCA; rare LIM seams U/C 70 TCA, sharp transition to light grey groundmass porphyry, groundmass HBL and minor fg biotite,	
						phyric HBL to 1%, 0.1 x 1-2 mm; phenocrysts cg, most >5 mm to 1 cm; SIL, patch weak LIM alteration	
E05-36 E05-36			120.25 120.34	135.20 120.43		(phenocrysts) and few LIM seams SIL-CHL alteration, dark grey; LIM seams 2-5 mm, trace vfg PY, MO?	
E05-36			122.00	123.85		to 10% strong LIM alteration patches within porphyry, to diffuse seams, fractures 50% diffuse QZ flooding, weak fabric 80 TCA; few distinct QZ veinlets, low and high angles TCA; strong SIL	
						and moderate LIM alteration, from pale orange phenocrysts to total LIM altered groundmass; to 2-3% fg PY,	
E05-36 E05-36			123.85	134.25		trace MO in porphyry; vfg PY-HEM-CHL Qz-porphyry contacts	04102 04103
E05-36 E05-36							04104 04105
E05-36			134.70			QV; 5-7 cm TW, 30 TCA; and patchy QZ within vfg grey CHL altered porphyry, trace PY	04103
E05-36			135.20	136.70		grey porphyry, crowded phenocrysts and few CHL altered phyric HBL laths to 1x3 mm strong LIM on fractures (also seams and patches uphole); rough LIM fractures 25 TCA; transition to less	
E05-36			136.70	139.98		crowded (~50%) and smaller (2-3 mm) phenocrysts in grey porphyry groundmass	
E05-36			137.91	138.50		strong LIM-ANK alteration zone; strong fabric 20-25 TCA of CHL-QZ-CA seams; trace HEM-PY wisps and vfg PY; contacts diffuse	04106
						95% QZ flooded subparallel to core axis; wavy seams 2-5 mm and >1 cm; vfg black CHL seams, spaced 15-	
						20 cm along core axis; brown SERI, PY-HEM-LIM; trace vvfg-fg PY, MO? also vg SERP-CHL-minor TALC	
E05-36 E05-36			138.70	139.98		seams and clots in a downhole-widening mass along the core axis; rare LIM seams 70-80 TCA	04108 04109
E05-36			139.98	140.44		strong CHL-SERP altered porphyry, <5% porphyry preserved; strong, finely wavy foliation 30 TCA	04110
						moderate to strong SERP alteration; deformed HARZ, magnetic in areas of weaker serpentinization, few	
E05-36	140.44	142.13			SERPENTINIZED HARZBURGITE	remnant cg pyroxenes and rare clots vfg PY; sharp L/C 30 TCA	04111
						SIL, cloudy and fresh appearing subhedral feldspar phenocrysts; grey, vfg groundmass, minor brown SERI,	
E05-36	142.13	167.00			FELDSPAR PORPHYRY DIORITE	phyric HBL 1-5%, to 2x5 mm; cg grey QZ and white feldspar phenocrysts to 8 mm, rare subhedral FELD 7x10 mm	
E05-36 E05-36			142.95 143.66	143.66 143.71		QV; 6 cm TW, 70 TCA; mottled grey-white, fg-mg as previous; and strongly CHL altered porphyry	04112
E03-36			143.00	143.71		as previous; and white QZ floodied LIM altered porphyry, LIM fractures; all cut by few CA seams, all angles	
E05-36 E05-36			143.71 145.76	144.06 146.08		TCA; trace PY strong LIM alteration and fractures	
E05-36			145.92	145.99		CHL-CA-LIM seams 4 cm TW, 40 TCA	
E05-36			146.08	146.46		weakly CHL altered porphyry groundmass and some phenocrysts; vfg black CHL, patchy and seams low angles TCA	
E05-36 E05-36			146.76 148.70	147.22 149.21		CHL altered porphyry, black feldspars and vfg groundmass; sharp L/C seams LIM-Qz, 90 TCA patch QZ flooded, QZ veinlet to 3.5 cm TW, low angle TCA; nil to trace fg PY disseminated	
E05-36			149.90	150.30		QZ flooded and QZ veinlet, as previous; trace fg PY and HEM-PY on contacts	
E05-36			153.30	153.50		strong CHL altered porphyry; central QZ-Ca seam 90 TCA, dark dull grey-green groundmass, phenocrysts dull grey green; diffuse contacts: U/C 45 and L/c 60 TCA	
E05-36			153.88			five to six QZ veinlets, 10-15 mm TW each, 30-40 TCA; trace fg PY on contacts	
E05-36			154.23	154.72		wavy QZ flooding and CA seams subparallel to core axis; U/C 90 TCA, QZ-CHL-CA seams, 1 cm TW; 1% vfg PY; L/C LIM fracture 80 TCA	04114
E05-36			154.72	154.97		moderately bleached porphyry QZ flooding (vein?) 5 mm-3 cm TW, 50 TCA; cut by LIM seam with grey QZ and vfg PY, MO to 5% adjacent	04115
E05-36			154.97	155.04		to L/C, feathered contact, 2-5% sulphides	
E05-36 E05-36			155.04 156.78	161.23		few LIM seams, fractures; patchy grey SIL-CHL alteration DIORITE XENOLITH; vfg, grey, 3.5x4.5 cm	
		· ·	1		-		•

HOLE #	FROM (m)	TO (m)	FROM (m)	TO (m)	ROCK TYPE	DESCRIPTION	SAMPLE
E05-36			158.92	159.30		weakly bleached, LIM altered porphyry; 1-2% fg PY disseminated in CHL-LIM seams, diffuse U/C 85 TCA, L/C 50 TCA	04116
E05-36			161.23	162.40		10-15% QZ flooded and QZ veinlet; LIM seams spaced -5 cm, 35 TCA; QZ veinlet 4 cm TW, 80 TCA, LIM U/C, rare fg PY on contact; L/C LIM-CA-QZ seam, 1 cm TW, 60 TCA; one fg DIORITE xenolith -12x14 cm	
E05-36							04117
E05-36							04121
200 00							0.1.2.
						U/C QZ veinlet, 5-10 mm TW, 75 TCA, LIM contact; cuts main QZ vein zone 30 TCA; LIM-CA seams form	
E05-36 E05-36	167.00	176.42	167.00		QUARTZ VEIN ZONE	weak fabric, 30 TCA; vfg CHL-HBL specks and small wispy clots, trace fg PY in small clots and wisps massive QZ flooding and QV	
E05-36			167.00	167.43		20 QZ flooding of grey, CHL altered porphyry	04118
						massive QV; white, U/C 60 TCA; internal fabric of pale greywisps, (sealed?) seams, vfg-fg clots PY; L/C 50 TCA, seams fg PY-CHL-LIM, trace fg PY, MO? On LIM seams; trace vfg PY, MO specks within QV; seams	
E05-36			167.43	168.50		and disseminated sulphide specks <<1% of QV	04119
E05.00			400.50	400.50		80% QZ flooded; patchy fg DIORITE (xenolith?) within CHL altered porphyry; fg PY, MO along QZ-DIORITE	0.4400
E05-36			168.50	169.56		contact	04122
E05-36			169.56	170.56		10% patchy Qz flooding in LIM-weakly CHL porphyry; pale green FELD, red-brown HEM-LIM rimmed second massive QV, similar to 167.43; weak fabric 30 TCA: wispy to wavy, branching LIM seams; most	04123
						seams corroded (micro-vuggy), <1% PY, MO specks, strings, clots throughout; CHL-PY-MO coarsely net	
E05-36			170.56	171.88		fabric in lower quarter of segment; broken L/C area, L/C 50 TCA	04124
						segment cuts QV; U/C 50 TCA, L/C 65 TCA; strong LIM seams in contact zones, 6 cm TW adjacent to L/C;	
E05-36			171.88			grey QZ-CHL, rare fg PY	04125
E05-36			172.07	173.58		QV; as previous but broken into distinct segments by:	04126
E05-36			172.33	172.50		1% fg CHL-PY-ASP seamed zone, 60-90 TCA, black, planar to wavy; LIM slips, seams 90 TCA	
E05-36			172.82	173.15		patchy CHL altered porphyry; numerous LIM seams, fractures, 15 TCA; trace fg PY, MO on LIM fractures	
E05-36			173.58			20-30% QZ flooded and Qz veinlet 2 cm TW, low angle TCA; minor patchy dark grey CHL altered porphyry	04128
E05-36			174.58	176.42		weak CHL-SIL altered porphyry, grey; obscures most phenocrysts	
F0F 00			475.44	475.05		QV; U/C 70 TCA, trace MO; upper half contains eight or more seams vfg MO as strings of specks, 6 cm total	0.4400
E05-36				175.35		TW; L/C 50 TCA	04129
E05-36	176.42	181.97			FELDSPAR PORPHYRY DIORITE	grey porphyry; 50% phenocrysts 2-3 mm, groundmass supported; trace to <1% Py disseminated; few QZ	
E05-36			176.42	178.00		yeinlets	
E05-36			178.00			CHL altered porphyry; CHL seams 20 to zero TCA and broken core	J
E05-36			178.68	178.76		QV; as 175.14; 8 cm TW, 85-90 TCA; few wavy MO seams parallel to contact fabric; <1% MO, PY	04130
E05-36			178.76	180.37		CHL-SIL alteration, porphyry 90% obscured; few QZ veinlets, most 70-80 TCA	34130
E05-36			180.37	180.55		QV; contacts 60 TCA; weak fabric of Mo specks in strings parallel to vein axis; trace fg PY, MO	04131
E05-36			180.57			weak CHL alteration; grey-pale grey-green FELD phenocrysts, LIM rimmimed	04131
E00-36			180.55	100.00		fresh porphyry; crowded phenocrysts, some in contact, grey cg QZ, white FELD phenocrysts (rarely to 1.5	
E05-36			180.60			cm, 2% HBL; few LIM-grey CHL seams	
				E.O.H.			
	[

E05-36 E0	04090 04091 04092 04093 04094 04095 04096 04097 04101 04102 04103 04104 04105 04106 04107 04108 04109 04110 04111 04111 04112 04113 04104 04105 04107 04108	ASSAY BI 71.02 82.08 94.00 98.37 99.67 109.97 ASSAY BI 118.00 123.85 124.99 131.85 132.88 137.91 STANDAS 138.66 139.41 139.98 141.36 142.95 ASSAY BI 154.16 155.15 154.60 167.03 167.43 ASSAY BI	58.20 70.13 71.02 ANK 72.35 82.48 94.50 99.67 101.28 110.95 ANK 118.63 124.90 125.90 132.88 134.09 138.66 10 SP 17 139.98 141.36 142.34 144.06 ANK 154.60 155.10 159.50 167.00 167.03 ANK	LENGTH 0.79 0.57 0.89 1.33 0.40 0.50 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.3	Au ppb 15 15 15 15 15 15 5 20 5 205 25 15 120 5 10 100 >1000 5 10 100 5 5 65 5 65 65 135 20 40 160 105 105 105 105 105 106 106 107 107 108 108 108 108 108 108 108 108 108 108	Ag	Al % 0.63 2.23 1.37 0.72 0.94 0.96 0.76 0.95 0.76 0.95 0.65 1.03 0.65 1.03 0.65 1.03 0.75 0.75 0.75 0.76 0.77 0.76 0.77 0.76 0.77 0.76 0.77 0.77	As 440 360 555 455 110 60 1085 205 1590 220 315 200 220 110 45 200 25 445 740 1515 5 535 60 60 60 60 60 60 60 60 60 60 60 60 60	Ba 35 45 50 110 40 80 100 45 30 35 35 35 45 30 115 100 25 15 100 105 35 35 45 30 15 15 100 125 115 115 110 115 115 115 115 115 115 11	ଅଟେ ପ୍ରତ୍ର୍କ୍ର ବ୍ରତ୍ର୍ବ୍ର ବ୍ରତ୍ର୍କ୍ର ବ୍ରତ୍ର୍କ୍ର ବ୍ରତ୍ର୍କ୍ର ବ୍ରତ୍ର୍କ୍ର ବ୍ରତ୍ର୍କ୍ର ବ୍ରତ୍ର୍କ୍ର ବ୍ରତ୍ର୍କ୍ର ବ୍ରତ୍ର	Ca % 0.077 3.20 0.81 0.61 0.61 1.22 0.50 1.53 0.63 1.81 1.26 1.58 1.43 2.18 3.02 0.075 0.32 0.35 2.10 1.53 0.65 1.53 0.65 1.53 0.65 1.55 0.55 0	Θυνουν συν συν συν συν συν συν συν συν συν σ	Co 31 42 5 8 11 0 9 6 14 6 12 6 8 7 7 7 2 3 15 8 8 13 1 9 5 7 7 7 8 8 5 2 5 7 7	Cr 515 441 607 35 84 44 86 85 81 107 66 85 41 198 190 436 85 87 54 48 73 54 86 81 121 133 34 102	Cu 43 91 60 2 41 67 53 109 60 1001 47 6 18 11 8 119 9 2 74 59 60 53 8 23 2 46 60 60 60 60 60 60 60 60 60 60 60 60 60	Fe % 2.13 4.07 3.96 1.79 2.19 2.23 2.74 2.23 2.54 1.67 2.05 1.95 2.24 1.66 2.09 1.76 3.68 2.60 1.74 1.86 2.09 1.92 2.17 2.32 2.54 1.47 2.32 2.50 1.46 2.09 1.92 1.91 2.17 2.32 2.60 1.45 0.49 1.78 2.45	La < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mg % 1.97 1.97 1.97 1.97 1.92 4.04 0.44 0.55 0.26 0.78 0.45 0.47 0.99 4.01 1.62 0.75 1.81 0.47 0.99 4.01 0.75 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6	Mn 134 679 656 415 215 144 191 164 1111 264 429 206 145 175 176 177 176 177 177 183 350 174 163 192 417 441 293 126 277 409 447 409 447 449 449 449 449 449 449 449 449 44	Mo 2 6 41 4 33 6 2 3 5 5 41 9 40 4 4 94 4 4 772 22 11 8 8 6 9 9 40 6 7 5 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Na % <0.01 <0.01 <0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.07 0.07 0.08 0.09 0.00	Nii 531 7289 531 1269 5 30 12 8 12 7 7 26 3 13 10 9 15 9 40 5 593 18 4 9 9 9 10 9 8 8 4 4 4 4 9 9	P 20 31 31 40 73 30 39 69 30 53 0 77 0 21 0 21 0 27 0 21 0 75 0 75 0 75 0 75 0 75 0 75 0 75 0 7	Pb 10 36 224 14 18 18 12 8 18 18 20 14 10 10 10 10 10 10 18 18 18 18 18 18 14 16 16 14 18 18 14 16 11 14 18 18 11 16 11 16 11 16 11 17 18 10 10 10 10 10 10 10 10 10 10 10 10 10	\$15 33 35 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	୫ ବର୍ଷ୍ଟ୍ର ବର୍ଷ୍ଟର ବର୍ଷ୍ଟ୍ର ବର୍ଷ୍ଟର ବର୍ଷ୍ଟ୍ର ବର୍ଷ୍ଟ୍ର ବର୍ଷ୍ଟର ବର୍ଷ	\$\text{Sr}\$ <1 1 161 163 399 344 285 265 79 300 80 46 469 85 79 61 100 278 15 115 124 279 86 49 49 49 49 121 18 33 121 121 18 18 31 121 18 18 18 18 18 18 18 18 18 18 18 18 18	71 % <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	U 410 410 410 410 410 410 410 410 410 410	V 22 63 55 53 361 55 55 344 65 68 37 342 58 1 89 321 31 60 35 28 24 47 50 9 9 2 2 345 58	W < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	Y <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	71 559 885 411 39 885 34 451 42 45 885 34 451 42 45 885 34 45 14 42 35 35 34 45 50 22 51 88 46 46 46 48 46 46 46 46 46 46 46 46 46 46 46 46 46
E05-36	04117	166.00	167.00	1.00	40	<0.2	0.75	575	30	<5	1.98	<1	8	68	53	2.60	<10	0.69	285	13	0.04	10 9	770		5	<20	108	< 0.01	<10	50	<10		46
													2							3		8		8						2		<1	19
				1.01									5		2					<1		4		18						32		4	42
										<5		<1	7				<10	0.68		5		9		10		<20		< 0.01	<10	45		<1	
E05-36	04122		169.56	1.06	975	0.4	0.26	3365	25	<5	0.98	<1	5	91	62	1.34	<10	0.18	126	14	<0.01	11	470	8	10	<20	61	<0.01	<10	6	<10	<1	23
E05-36 E05-36	04123		170.56 171.88	1.00	190 40	<0.2 <0.2	0.32	300 125	40 15	<5 <5	1.94 0.76	<1	8	68 121	90 46	2.22 0.54	<10 <10	0.55	263 64	11	0.03	6	630 380	10	<5 <5	<20 <20	153 38	<0.01 <0.01	<10 <10	10	<10 <10	2	42
E05-36	04125		172.07	0.19	1050	0.3	0.38	630	30	<5	1.88	-1	7	88	50	1.95	<10	0.68	262	12	0.01	30	550	12	*D	<20	178	<0.01	<10	- 11	<10	-4	36
E05-36	04126		173.58	1.51	340	0.2	0.27	1865	20	<5	0.41	<1	3	116	29	0.93	<10	0.31	92	5	0.01	7	220	12	<5	<20	35	<0.01	<10	5	<10	<1	18
E05-36	04127	STANDAR	D SP 17	=18.13 glt A	>1000	>30	0.12	<5	35	<5	0.08	<1	2	<1	6	3.51	<10	< 0.01	84	3	0.05	4	200	152	<5	<20	4	< 0.01	10	1	<10	<1	23
E05-36	04128		174.58	1.00	115	<0.2	0.50	735	25	<5	1.53	<1	6	89	108	1.47	<10	0.34	167	48	0.03	8	500	10	5	<20	105	< 0.01	<10	15	<10	2	32
E05-36	04129	175.00	175.50	0.50	35	<0.2	0.29	310	15	<5	1.24	<1	3	65	76	0.97	<10	0.23	127	118	0.04	5	200	8	<5	<20	92	<0.01	<10	9	<10	2	17
E05-36	04130		178.76	0.08	695	<0.2	0.11	3885	10	<5	0.66	<1	3	209	20	0.94	<10	0.05	85	5	<0.01	8	60	4	<5	<20	38	<0.01	<10	2	<10	<1	11
E05-36	04131	180.06	180.60	0.54	1250	0.3	0.37	6010	20	<5	0.83	<1	7	83	64	1.69	<10	0.21	111	5	0.01	9	400	8	15	<20	41	<0.01	<10	17	<10	<1	32
E05-36	04117	EQUALS	04121, QUA	ARTER SPLIT																													

HOLE #	LENGTH	BEARING	DIP
E05-36	0	130	-55
E05-36	145	not tested	-56.5
E05-36	181.97		
	E.O.H.		

	F	RECOVERY	1			RQD		CORE BOX INTERVALS				
From	To	Run	Recove	ry	CORE	RUN	RQD					
(m)	(m)	(m)	Meas	Rec (%)	(m)	(m)	(%)	Box	From	To		
0.00	45.72	45.72	0.00	0.0	0.00	45.72	0.0	1	45.72	50.80		
45.72	47.24	1.52	1.52	100.0	0.24	1.52	15.8	2	50.80	55.68		
47.24	48.46	1.22	0.88	72.1	0.00	1.22	0.0	3	55.68	61.12		
48.46	50.90	2.44	1.80	0.7	0.40	2.44	16.4	4	61.12	66.36		
50.90	53.95	3.05	2.65	86.9	0.25	3.05	8.2	5	66.36	73.05		
53.95	57.00	3.05	1.70	55.7	0.27	3.05	8.9	6	73.05	78.71		
57.00	59.13	2.13	1.74	81.7	0.00	2.13	0.0	7	78.71	84.60		
59.13	61.57	2.44	2.24	91.8	0.68	2.44	27.9	8	84.60	90.15		
61.57	63.40	1.83	1.37	74.9	0.31	1.83	16.9	9	90.15	95.61		
63.40	65.38	1.98	1.37	69.2	0.10	1.98	5.1	10	95.61	100.78		
65.38	66.45	1.07	0.94	87.9	0.00	1.07	0.0	11	100.78	106.01		
66.45	68.43	1.98	0.93	47.0	0.00	1.98	0.0	12	106.01	111.32		
68.43	69.49	1.06	0.50	47.2	0.00	1.06	0.0	13	111.32	116.60		
69.49	71.02	1.53	1.02	66.7	0.10	1.53	6.5	14	116.60	121.93		
71.02	72.69	1.67	1.40	83.8	0.00	1.67	0.0	15	121.93	127.48		
72.69	74.68	1.99	1.53	76.9	0.11	1.99	5.5	16	127.48	135.90		
74.68	76.96	2.28	1.66	72.8	0.00	2.28	0.0	17	135.90	141.51		
76.96	78.33	1.37	1.29	94.2	0.10	1.37	7.3	18	141.51	145.39		
78.33	79.86	1.53	1.15	75.2	0.00	1.53	0.0	19	145.39	150.86		
79.86	81.38	1.52	1.28	84.2	0.27	1.52	17.8	20	150.86	156.34		
81.38	82.91	1.53	1.09	71.2	0.29	1.53	19.0	21	156.34	161.93		
82.91	84.73	1.82	1.51	83.0	0.56	1.82	30.8	22	161.93	167.29		
84.73	87.48	2.75	2.49	90.5	1.27	2.75	46.2	23	167.29	172.70		
87.48	90.53	3.05	2.67	87.5	1.21	3.05	39.7	24	172.70	178.21		
90.53	93.57	3.04	2.95	97.0	0.90	3.04	29.6	25	178.21	181.97		
93.57	96.62	3.05	2.52	82.6	1.34	3.05	43.9			E.O.H.		
96.62	99.67	3.05	2.68	87.9	1.03	3.05	33.8					
99.67	102.72	3.05	2.83	92.8	1.11	3.05	36.4					
102.72 105.77	105.77 108.36	3.05 2.59	2.85 2.49	93.4 96.1	0.68 1.29	3.05 2.59	22.3 49.8					
	111.40	3.04	2.49	90.1	1.29		49.6					
108.36 111.40	113.08	1.68	1.47	92.1 87.5	0.22	3.04 1.68	13.1					
	114.91		1.47	96.7			45.9					
113.08 114.91	117.96	1.83 3.05	2.98	96.7	0.84 1.50	1.83 3.05	45.9 49.2					
117.96	121.01	3.05	3.00	98.4	1.84	3.05	60.3					
121.01	124.05	3.04	3.04	100.0	2.16	3.04	71.1					
	127.10	3.05	2.94	96.4	1.45	3.04	47.5					
124.05 127.10	131.98	4.88	1.75	35.9	0.36	4.88	7.4					
131.98	133.96	1.98	1.75	93.9	0.36	1.98	38.4					
133.96	136.25	2.29	2.25	98.3	1.84	2.29	80.3					
136.25	139.29	3.04	2.23	96.4	2.02	3.04	66.4					
139.29	142.34	3.05	2.97	97.4	2.45	3.05	80.3					
142.34	145.39	3.05	3.05	100.0	2.43	3.05	79.7					
145.39	148.13	2.74	2.62	95.6	1.20	2.74	43.8					
148.13	151.18	3.05	3.05	100.0	1.44	3.05	47.2					
151.18	154.23	3.05	3.05	100.0	1.77	3.05	58.0					
154.23	157.28	3.05	3.05	100.0	2.23	3.05	73.1					
157.28	160.32	3.04	3.04	100.0	1.77	3.04	58.2					
160.32	163.37	3.05	3.05	100.0	2.16	3.05	70.8					
163.37	166.42	3.05	3.05	100.0	2.02	3.05	66.2					
166.42	169.47	3.05	3.05	100.0	1.77	3.05	58.0					
169.47	171.91	2.44	2.14	87.7	0.90	2.44	36.9					
171.91	173.58	1.67	1.53	91.6	0.53	1.67	31.7					
173.58	175.87	2.29	2.20	96.1	1.01	2.29	44.1					
175.87	178.92	3.05	3.05	100.0	1.99	3.05	65.2					
178.92	181.97	3.05	3.05	100.0	1.82	3.05	59.7					
11 3.02	E.O.H.	3.00	3.00			3.00	50.7					