Rec	ц.			
	APR	1	3	2006
1 Jł	the second second			والمحمد والمحمد والمحمد والمحمد والمحمد

GEOLOGICAL & GEOCHEMICAL FIELDWORK ASSESSMENT REPORT

on:

by: Andris Kikauka, P.Geo. 406-4901 E Sooke Rd, Sooke BC V0S 1N0

> submitted: April 4, 2006

TITLES DIVISION, MINERAL TITLES VICTORIA, BC
APR 1 0 2006
FILE NO
LOG IN NO.

TABLE OF CONTENTS

page no.

1.0 SUMMARY

1

2.0 INTRODUCTION

- 3.0 SAMPLING METHOD, PROCEDURES, APPROACH AND DATA RESULTS
- 4.0 GEOLOGY, MINERALIZATION & DIAMOND DRILL CORE SAMPLING
- 5.0 CONCLUSIONS AND RECOMMENDATIONS
- 6.0 REFERENCES
- 7.0 ITEMIZED COST STATEMENT

LIST OF APPENDICIES

Appendix A - 'Preliminary Resource Estimation on the Red Bird Porphyry Mo/Cu Deposit', by G.Giroux and A.Kikauka, 2006.

Appendix B- Geochemical analysis certificates from Pioneer Labs (2005).

Appendix C- Table of drill hole data from the 1979-80 diamond drilling by Craigmont Mines Ltd.

Appendix D- MoS₂ (and infrequent Cu) assays from Craigmont Mines Ltd diamond drilling performed in 1979-80.

Appendix E- Craigmont Mines Ltd 1979-80 drill hole locations.

1.0 SUMMARY

The Red Bird mineral tenure ID numbers 501914, 510491 and 513929 are within the Skeena Mining Division, located north of Haven (Bone) Lake and southwest of Red Bird Mountain, and about 12 km west of Pondosy Bay on Eutsuk Lake at the northwest edge of Tweedsmuir Provincial Park, West-Central British Columbia.

A technical report entitled 'Preliminary Resource Estimation on the Red Bird Porphyry Mo/Cu Deposit', by G.Giroux and A.Kikauka, 2006, is attached as Appendix A. This technical report was prepared to evaluate the results of 1,569 ICP 30 element geochemical analysis, 23 Mo assays and 202 Au geochemical analysis performed by Pioneer Labs for Torch River Resources Ltd, in 2005. The Giroux, 2006 report also uses 1979-80 drill hole data from Craigmont Mines Ltd, and compares the 2005 data generated by Torch River Resources Ltd, in order to calculate an inferred resource estimate. The following highlights are taken from Table 15, Appendix A):

Mo Cutoff %	Tonnes	Mo %	Cu %	Pounds Mo			
0.03	75,290,000*	0.065	0.070	75,300,000			
0.06	37,600,000*	0.085	0.069	37,600,000			
0.09	12,480,000*	0.109	0.064	12,500,000			

RED BIRD INFERRED RESOURCE

*Total tonnes are calculated from three zones, i.e. Main, Southwest and Southeast Zones (Appendix A, Fig. 12-14, & Appendix E, Craigmont 1980 plan map).

Recommendations from this technical report include infill drilling, required to bring this inferred resource to a measured and indicated status.

2.0 INTRODUCTION

Assessment work carried out in 2005 is summarized in this report. The methods, procedures and data results obtained from 1,569 ICP 30 element geochemical analysis, 23 Mo assays and 202 Au geochemical analysis are outlined in 'Preliminary Resource Estimation on the Red Bird Porphyry Mo/Cu Deposit', by G.Giroux and A.Kikauka, 2006, see Appendix A. The geochemical analysis certificates from Pioneer Labs (2005) are submitted in Appendix B. A table of drill hole data from the 1979-80 diamond drilling by Craigmont Mines Ltd is summarized in Appendix C. MoS₂ and Cu assays from Craigmont's diamond drilling performed in 1979-80 are listed in Appendix D. A plan map of Craigmont's 1979-80 drill hole locations is given in Appendix E.

The technical report 'Preliminary Resource Estimation on the Red Bird Porphyry Mo/Cu Deposit', by G.Giroux and A.Kikauka, 2006 (Appendix A) contains the following data regarding assessment work carried out in 2005:

Section	Contents	Page(s)
4.0	Property Description and Location	3, 4
5.0	Accessibility, Local Resources, Infrastructure, Climate and Physiography	5, 6
6.0	History	7-10
7.0	Geological Setting	11, 12
8.0	Deposit Types	13
9.0	Mineralization	14
10.0	Exploration	15
11.0	Drilling	16, 17
15.0	Adjacent Properties	22
16.0	Mineral Processing and Testing	23
17.0	Mineral Resource Estimation	23-29
18.0	Other Relevant Data and Information	28, 29
19.0	Interpretation and Conclusions	30-33
20.0	Recommendations	34
21.0	Bibliography	35
22.0	Date and Signature Page	36, 37
5.0	Claim Map	6
22.0	Authors Date + Signature Page	(37

RELEVANT ASSESSMENT WORK PROPERTY DATA (SEE APPENDIX A)

3.0 SAMPLING METHOD, PROCEDURES, APPROACH & DATA RESULTS

Details of the sampling methods and approach for 1,569 split diamond drill core intervals are discussed in Giroux & Kikauka, 2006 technical report (see section 12.0 & 13.0, p. 18-20, Appendix A). The split core was previously assayed for MoS₂ in 1979-80 by Craigmont Mines Ltd. The core boxes were recovered from core storage racks and laid out in sequence for visual inspection and photographic record. Geological and mineralogical data from drill logs written by J.Murphy and N.Vollo in 1979-80, were cross referenced with visual observations (see section 12.0, p. 19, Appendix A). A total of 50 out of 58 diamond drill holes by Craigmont in 1979-80 were re-sampled by Torch River Resources in 2005, resulting in a total of 1,569 samples being shipped to Pioneer Labs, Richmond, BC. The split core samples averaged just under 5 m in length and just over 5 kilograms in weight (see Appendix A, section 13.0, p. 19 and Appendix B, geochemical analysis certificates). Geochemical analysis performed by Pioneer Labs were compared to data obtained by Craigmont's 1979-80 MoS₂ assay data, and the 2005 results compared well with the original data. The two data sets have a correlation coefficient of 0.7485 with no indication of sampling bias (Appendix A, section 14.0, Table 7, Fig. 9, p. 20,21).

Geological and geochemical data compilation has identified areas of interest, whereby potential exists for discovering additional economic concentrations of molybdenite close to the marginal phase of the Nanika quartz monzonite along its contact with the Telkwa Formation intermediate-felsic volcanic rocks. This is where the main zone of known molybdenite mineralization occurs. Other potential areas of porphyry style molybdenum mineralization occur in the upper sections of Nanika quartz monzonite located in the north edge of claim 510491.

4.0 GEOLOGY, MINERALIZATION & DIAMOND DRILL CORE SAMPLING

ene

The following lithologies are present on the Red Bird mineral property:

	EOCENE
2	Nanika Plutonic Suite, quartz monzonite (lies in the quartz + plagioclase rich portion of the quartz monzonite ternary chart) accessory minerals include apatite (coarse grain), rutile, & sph
2a	Aplite
2Ъ	Diorite
2c	Quartz-Feldspar Porphyry

LOWER JURASSIC

- 1 Hazelton Group, Telkwa Formation, intermediate-felsic tuffs/flows, characterized by induration, hornfels with abundant secondary biotite
- la Chert
- 1b Rhyolite (usually occur as tabular, sub-vertical dyke)s
- 1c Agglomerate
- 1d Breccia
- le Hornfels
- 1f Argillite

The Red Bird claim features quartz monzonite porphyry forming the shape of an irregular elliptical cylinder with a semi-circle concentric ring-dyke around the northern circumference (Sutherland-Brown, 1966). Zones of molybdenite-bearing mineralization are also concentric and are contained within a peripheral ring of the main mass of the pluton, but extending a variable amount into the walls. Beyond the ore zones most veins are barren quartz with some scattered pyrite and a few quartz veins contain minor molybdenite, as well as galena, sphalerite, pyrite, fluorite and calcite. In the ore zone, barren quartz veins predate mineralized veins and 3 stages of barren quartz veins are recognizable. At least three stages of quartz-molybdenite-pyrite are present also, with banded and drusy being the most likely to occur. In general drusy may be younger and both drusy and banded quartz veins may be cut by late barren quartz with minor pyrite. The values of Mo increase in the Eocene quartz monzonite intrusive rock whereas Cu values increase in the Lower Jurassic Hazelton Group hornfels volcanic country rock. The well defined zonation of elevated Mo values within the quartz monzonite and elevated Cu values in the hornfels Hazelton Group (with hydrothermal biotite) suggests that there is well defined concentric zonation of the 900 X 1,300 meter area Red Bird (Nanika) Stock.

The Red Bird (Nanika) Plutonic Complex exhibits early veins of quartz (with lesser calcite and kaolinite), with later molybdenite bearing quartz-potassium feldspar, and even later phase of quartz-pyrite-calcite. The mineralization is characterized by multi-phase overprinting and repeated pulses of hydrothermal activity. The Hazelton Group volcanic rocks are andesitic with lesser quartz-molybdenite, and the older volcanic country rock

contains abundant chalcopyrite-pyrite (with minor bornite). The country rock hosts significant values in copper. It is likely that further exploration along the margins of the Red Bird Plutonic Complex will yield zones of concentrically zoned Mo-Cu bearing mineralization.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The Red Bird quartz monzonite plutonic complex (which hosts a well defined molybdenite resource) has been thoroughly examined along it northeast contact. Even though drilling is relatively "pin cushioned" in this area, there has not been a series of fence pattern drill holes perpendicular to the tabular west-northwest trend of the main molybdenite zone (which is roughly 50-100 m wide and 725 m long and occurs along the Red Bird Pluton's northeast contact). A certain amount of fence pattern infill drilling would elevate the status of the known molybdenite resource and additional drilling along the northwest edge of the pluton (along Big Creek) would test for the extensions of contact related porphyry mineralization.

Based on the targets outlined in this sampling program and previous work, a 2 phase program consisting of preliminary geological mapping, trenching and lithogeochemical sampling followed by a series of diamond drill holes and further detailed geological mapping are proposed to test the depth extension of surface mineralization. Concurrent with diamond drilling, a program of hand trenching, geological mapping and rock chip sampling is required to outline further extensions of known mineral trends adjacent

The Red Bird porphyry molybdenite is hosted by Eocene Nanika Plutonic Suite lies in the quartz-rich and plagioclase-rich field of quartz monzonite suggesting the magma has calc-alkaline affinities. Typically the calc-alkaline porphyry molybdenum intrusions are characterized by multi-stage quartz-sulphide and sulphide fracturing, veining, and alteration envelopes that contain variable quartz-sericite (kaolinite)-pyrite-chlorite.

It is envisioned that molybdenum-bearing magmas of the Naninka Plutonic Suite formed deep in the crust or upper mantle and rose to high levels in the crust where volatile elements, including molybdenum, were concentrated in late-stage felsic differentiates, leading to hydrothermal activity and the formation of porphyry molybdenum deposits.

Based on the tonnage and grade estimates for Mo outlined by previous core drilling, there is potential to outline further economic concentrations of molybdenite (and chalcopyrite) mineralization present on the subject property. A two phase program consisting of preliminary geological mapping, trenching, IP and magnetometer geophysics, and lithogeochemical sampling followed by another series of diamond drill holes and further detailed geological mapping are proposed to test the depth extension of surface mineralization trends (Fig. 11). These proposed drill holes are targeting the intrusivevolcanic contact near the northeast and northwest edge of the Red Bird Pluton. The objective of these drill holes is to confirm the known grade and tonnage and attempt to define additional molybdenite and/or chalcopyrite-bornite bearing mineralization. Concurrent with drilling, a program of hand trenching, geological mapping and rock chip sampling is required to outline further extensions of known mineral trends.

A detailed budget of this 2 phase exploration program is described as follows:

PHASE 1: PRO	OPOSED BUDGET FOR EXPLORATION ON	I RED	BIRD Mo-(Cu):
FIELD CREW-	Geologist, 1 geotechnician, 21 days	\$	12,500.00
FIELD COSTS	-Assays 250		5,400.00
	Rock chip geological/geochemical survey		15,000.00
	Geophysics (IP and magnetometer)		23,000.00
	Soil Grid		2,500.00
	Equipment and Supplies		2,000.00
	Communication		900.00
	Food		2,400.00
	Transportation		17,100.00
	Road Improvement, trenching		7,350.00
REPORT			1,850.00
	Contingency		10,000.00

Total =\$ 100,000.00

PHASE 2: PROPOSED BUDGET FOR RED BIRD Mo-(Cu) TARGETS:

FIELD CREW	- Geologist, 1 geotechnician, 1 cook 120 days	\$ 46,000.00
FIELD COSTS	- Core drilling 13,600 feet (4,145.3 m).	355,000.00
	Assays 1,400	28,000.00
	Equipment and Supplies	4,000.00
	Communication	3,000.00
	Food	6,500.00
	Transportation	38,000.00
REPORT	-	1,200.00
	Contingency	18,300.00

Total =\$ 500,000.00

TOTAL PHASE 1 + 2 =\$ 600,000.00

The main portion of the exploration budget should be spent on fill in drilling on the main molybdenite resource located along the north and northeast contact of the main Nanika quartz monzonite pluton. Work should be directed to confirm and expand the status of the grade and tonnage figures (outlined in 1980 by Craigmont Mines Ltd). The total recommended core drilling for phase 2 is 13,600 feet (4,145.3 m).

A smaller portion of the exploration should be directed at the Big Creek intrusivevolcanic contact (West Zone), and the southeast fault-bound intrusive-volcanic contact (Southeast Zone) located between 1,150-1,325 meters elevation, adjacent to a 060 trending fault gulley. Limited exploration should also be focused on the proximal tabular boss/stock of the main Red Bird Pluton located at 1,600-1,800 m elevation (the main molybdenum resource is roughly exposed at 1,500-1,700 m elevation). This proximal boss/stock to the main pluton lies mostly within Tweedsmuir Provincial Park, but the portion of it located on the Red Bird claim has not been explored in any detail and warrants detailed geological mapping and extensive sampling. The east end of the main resource (along the northeast contact) widens to a width of over 100 meters and contains the best known concentration of molybdenite. This high grade easterly zone would be an ideal starter pit and initial production.

Contingent on confirmation and identification of additional Mo-Cu resources on the Red Bird claim, the property could be considered for a feasibility study. As it currently stands the deposit is of reasonably grade for open pit methods of extraction. Considering the properties location, the total tonnage figures for ore (molybdenite >0.1% MoS₂ cutoff) are relatively low. If this resource could be boosted 25-50% it would make the high capitalization cost of establishing mining and milling facilities in this remote location more attractive, however the close proximity to tidewater and the current elevated demand and price of molybdenum make the Red Bird a candidate for a feasibility study involving the technical aspects of preliminary geological, geotechnical and environmental studies to evaluate mine opening, mining, mine life, economics and closure.

6.0 REFERENCES

Clark, K.J., 1972, Stockwork Molybdenum Deposits in the Western Cordillera of North America, Econ. Geol. Volume 67, pp. 731-758

Craigmont Mines Ltd., 1980, Annual Report, Grade and Tonnage Estimates for Red Bird Porphyry Molybdenum Deposit.

EMPR FIELDWORK 1987, pp 155-168

EMPR Bulletin 64, pp 132-133

Kirkham, R.V., 1972, Intermineral Intrusions and their Bearing on Porphyry Copper and Molybdenum Deposits, Econ Geol., Volume 66, 1244-1249

Soregaroli, A.E., 1976, Characteristics of Canadian Cordillera Molybdenum Deposits, CIM Special Volume 15

Sutherland-Brown, A., 1972, Red Bird Prospect, 24th Intl. Geol. Congress Guidebook, Field excursions, pp. 24-26

7.0 ITEMIZED COST STATEMENT

Geological and geochemical costs from fieldwork carried out on mineral tenure ID # 510491 (Skeena Mining Division) between August 1-31, 2005:

FIELD CREW:	
Andris Kikauka 21 days	\$ 6,300.00
Brendan O'Leary 21 days	3,675.00
FIELD COSTS:	
Mob/demob	750.00
Float plane charters (Lakes District Air)	8,145.00
Meals and Accommodation (42 man-days X \$40)	1,680.00
Freight costs (samples trucked to Richmond BC)	1,450.00
Geochemical analysis 1,569 ICP 30 element	
geochemical analysis, 23 Mo assays,	
and 202 Au geochemical analysis	27,300.00
Report	400.00

Total costs= \$ 49,700.00

APPENDIX A

PRELIMINARY RESOURCE ESTIMATION ON THE RED BIRD PORPHYRY Mo/Cu DEPOSIT

Haven Lake Area Skeena Mining Division West Central British Columbia Latitude: 53°16'39" to 53°18'16" North Longitude: 126°59'10" to 127°3'39" West NTS Map-Area 93E/6

For

TORCH RIVER RESOURCES 900 – 201 21th ST E. SUITE 22 SASKATOON, SK. S7K 0B8

By

G.H. Giroux, P.Eng., MASc. Giroux Consultants Ltd. 1215 – 675 W. Hastings St. Vancouver, B.C. V6B 1N2

and

A. Kikauka, P.Geo. 4901 E. Sooke Rd. Sooke B.C. V0S 1N0

January 12, 2006

TABLE OF CONTENTS

1.0	SUMMARY	1
2.0	INTRODUCTION AND TERMS OF REFFERRENCE	2
3.0	RELIANCE ON OTHER EXPERTS	3
4.0	PROPERTY DESCRIPTION AND LOCATION	3
5.0	ACCESSIBILITY, LOCAL RESOURCES, INFRASTRUCTURE, CLIMATE AND	
	PHYSIOGRAPHY	5
6.0	HISTORY	-7
7.0	GEOLOGICAL SETTING	11
8.0	DEPOSIT TYPE	13
9.0	MINERALIZATION	14
10.0	EXPLORATION	15
11.0	DRILLING	16
12.0	SAMPLING METHOD AND APPROACH	18
13.0	SAMPLE PREPARATION, ANALYSIS AND SECURITY	19
14.0	DATA VERIFICATION	14
15.0	ADJACENT PROPERTIES	22
16.0	MINERAL PROCESSING AND PROCESS TESTING	23
17.0	MINERAL RESOURCE ESTIMATION	23
	17.1 Data Evaluation	23
	17.2 Geologic Model	25
	17.3 Composites	26
	17.4 Variography	27
	17.5 Block Model	27
	17.6 Interpolation	27
	17.7 Bulk Density	28
	17.8 Classification	28
18.0	OTHER RELEVANT DATA AND INFORMATION	30
19.0	INTERPRETATIONS AND CONCLUSIONS	30
20.0	RECOMMENDATIONS	34
21.0	BIBLIOGRAPHY	35
22.0	DATE AND SIGNITURE PAGES	-36

TABLES

TABLE 1:	List of Mineral Tenures and expiry dates Red Bird Property	- 5
TABLE 2:	Craigmont Mines Ltd. Red Bird Property, Historical Resource Estimates	8
TABLE 3:	Parameters used in a preliminary economic appraisal of the Red Bird Deposit	9
TABLE 4:	Table of Formations	11
TABLE 5:	Some examples of Porphyry Mo (Low F Type) deposits	13
TABLE 6:	Summary of 2004 results for drill core samples	20
TABLE 7:	Comparison of Craigmont Original Mo Assays with 2005 Check Samples	21
TABLE 8:	Key metallurgical parameter for the Red Bird property	22
TABLE 9:	Summary of Drilling	23

TABLES (cont.)

TABLE 10:	Summary statistics for Mo, Cu and Ag assays used for estimate	24
TABLE 11:	Summary statistics for Mo Populations	. 24
TABLE 12:	Summary statistics for Mo and Cu in 5 m composites	. 26
TABLE 13:	Summary of Semivariogram parameters for Mo and Cu	27
TABLE 14:	Search Parameters for Ordinary Kriging	. 28
TABLE 15:	Red Bird Inferred Resource	. 30

FIGURES

1	Location of Red Bird Property	4
2	Claim Map	6
3	Drill hole plan and proposed open pits, Red Bird property	10
4	Regional geologic setting of the Red Bird property	12
5	Craigmont drill hole plan showing significant MoS ₂ intersections	15
6	Drill hole section 10200 E, Main zone	16
7	Drill hole section 9800 N, SW zone	17
8	Drill hole section 9700 N, SE zone	18
9	Scatter Plot for original Craigmont Mo% assays and 2005 check assays	21
10	Lognormal cumulative frequency plot for Mo Assays	25
11	Isometric plot showing geologic mineralized solid and drill holes	26
12	Red Bird 1155 Level	31
13	Red Bird 1175 Level	32
14	Red Bird 1195 Level	33

APPENDICIES

1	Samples assayed for Rhenium and Gold	37
2	Semivariogram models for Mo and Cu	41

1.0 SUMMARY

- This report on a resource estimation for the Red Bird Property was requested by Daniel
 R. Davis of Red Bird Resources on behalf of Torch River Resources Ltd. It represents an
 update of a previous NI 43-101 report submitted to SEDAR in December 2004 and
 written by D. MacIntyre. Based on recommendation made in this report Torch River has
 completed a re-sampling of Craigmont drill core and this resource is based on these new
 assays.
- The Red Bird molybdenum property consisting of 3 mineral claims totalling 1,256 ha is located 133 km southwest of Burns Lake and 105 km north of Bella Coola in west central British Columbia. The property boarders on Tweedsmuir Park, but the resource is located south of the Park Boundary and as a result can be exploited.
- The deposit was first staked in 1937 with several claims located near Red Bird Mountain. Phelps Dodge prospected the area in 1958 and staked the property in 1959. Geologic mapping, trenching and geophysical surveys were completed from 1960 to 1962 with the first drilling stated in 1963. By 1966 Phelps Dodge had completed 58 diamond drill holes totalling 13,807 m. Phelps Dodge also constructed an 17.7 km road east of the property to connect with the mouth of Bone Creek at Eutsuk Lake. In 1967 Ashfork Mines Ltd., a subsidiary of Phelps Dodge, completed 3,544 m of diamond drilling in 15 holes. During 1968 Ashfork drilled an additional 2 holes totalling 286 m and completed 1,005 m of trenching. In 1979 Craigmont Mines Ltd. optioned the property from Phelps Dodge and complete 9,090 m of diamond drilling in 36 holes. The aim of this program was to better define the main zone located along the northern contact of the quartz monzonite stock. In 1980 Craigmont tested the southeast and southwest zones with an additional 4,881 m in 22 diamond drill holes. A resource estimate was completed in 1980 by N. Vollo for Craigmont and a preliminary economic appraisal was completed in 1981 by N. Farnsworth.
- The Red Bird deposit is associated with an Eocene quartz monzonite porphyry stock that intrudes predominantly pyroclastic volcanic rocks of the Upper Cretaceous Kasalka Group. The quartz monzonite porphyry that hosts the Red Bird deposit is an elliptical body roughly 1300 m long and up to 900 m wide.
- The Red Bird deposit consists of three zones of molybdenum mineralization labelled Main, Southwest and Southeast which are located around the outer margin of the quartz monzonite stock and in adjacent wall rocks. Mineralization occurs as molybdenum within quartz veinlets with the best grades located in banded veins where molybdenite is concentrated along the vein walls. Quartz veinlets and fracture coatings within Biotite Hornfels near the stock contact also contain significant amounts of molybdenum, chalcopyrite and pyrite.
- A re-sampling program of Craigmont drill core was completed by Torch River during August 2005. This program was supervised by A. Kikauka, P.Geo. A total of 1,569

sections of ¹/₂ drill core were re-sampled for molybdenum and copper and a multi element ICP package.

- A comparison of assay results obtained in 2005 with the original Craigmont assays was excellent with no bias indicated and a correlation coefficient of 0.749. The mean of 1554 Craigmont assays for Mo was 0.060 % compared to 0.053% in 2005.
- Statistical analysis of the molybdenum assays resulted in capping a total of 13 samples at 0.25 % Mo. Semivariograms produced on 5 m composites from only Craigmont drill holes showed a geometric anisotropy for both Mo and Cu elongated in the E-W direction.
- A block model of blocks 20 x 20 x 10 m was superimposed on the mineralized zones and Mo and Cu was interpolated into the blocks using ordinary kriging.
- The results were classed as an inferred resource at this time due to lack of original Phelps Dodge assays, insufficient specific gravity determinations and no conformation drill holes. No economic evaluation has been done on this resource and as a result no comment can be made regarding an economic cutoff grade. Using a cutoff established in the 1981 study of 0.03% Mo a total of 75 million tonnes are inferred at an average grade of 0.065 % Mo.
- A program of infill drilling is recommended using a proper QA/QC program. Regular specific gravity measurements should also be made during this program.

2.0 INTRODUCTION AND TERMS OF REFERENCE

Red Bird Resources Ltd., a private Alberta company (President, Daniel R Davis) and Fundamental Resources Corporation, a private BC company (President William E Pfaffenberger) have entered into a joint venture agreement to develop the Red Bird property. This property, situated at Haven Lake in west central British Columbia, was extensively explored by Phelps Dodge Corp. and a subsidiary company in the 1960's and by Craigmont Mines Ltd. in 1979 and 1980. A total of 133 diamond drill holes have defined a significant and potentially economic molybdenum resource associated with an Eocene age quartz monzonite porphyry intrusion.

This report presents a resource estimation for the Red Bird Porphyry Mo/Cu Deposit and is meant to supplement a previously filed 43-101 report written by D. MacIntyre. Sections not changed from MacIntyre's report have been included in this report.

This technical report has been prepared in compliance with the requirements of National Instrument 43-101 and Form 43-101F1 and is intended to be used as supporting documentation to be filed with the British Columbia Securities Commission and the TSX Venture Exchange. Information used in the preparation of this report includes a number of internal company reports prepared by Craigmont Mines Limited detailing diamond drilling results and a preliminary economic analysis of the subject property completed in 1979 and 1980. These reports, which were not filed in support of assessment work requirements in the province of British Columbia, are not readily available to the public. These unpublished reports and maps provide detailed

geologic information on Craigmont's 1979 and 1980 diamond drilling program which was subsequently used to do an internal resource calculation and preliminary economic potential assessment for the Red Bird deposit. Citations for these and other internal company reports are contained in the Reference section of this report.

From August 1 to 25, 2005 a detailed re-sampling of Craigmont drill core was completed under the supervision of Andris Kikauka, P.Geo. Mr. Kikauka is responsible for sample collection and the appropriate sections of this report dealing with this re-sample program. The resource estimation was completed by G.H. Giroux, P.Eng. Giroux has not visited the property.

Units of measure in this report are metric; monetary amounts referred to are in Canadian dollars.

3.0 RELIANCE ON OTHER EXPERTS

This report is based on a review and digital compilation of available historical data, including detailed diamond drill hole logs for 57 holes completed by Craigmont Mines Ltd. in 1979 and 1980. Drill hole logs for the 76 drill holes done prior to 1979 by Phelps Dodge Corporation and Ashfork Mines Limited (a subsidiary of Phelps Dodge) were not available at the time this report was written. Phelps Dodge assays were shown on cross sections as long composites through the mineralized zone. The results of this drilling were incorporated into the resource calculations and economic potential assessments done by Craigmont in 1980 and 1981. For this study the Phelps Dodge composited assays were used for the resource estimate but not for the semivariogram interpretation. The authors also had access to detailed drill hole sections which showed both Craigmont and earlier drill hole results. Although the authors are confident that this data was collected and processed in a professional manner following industry best practices applicable at the time, without access to the complete set of drill hole logs and assay results from the earlier drilling program it is not possible to classify this resource as anything but inferred at this time.

4.0 PROPERTY DESCRIPTION AND LOCATION

The Red Bird molybdenum property consists of three mineral claims situated in the Skeena Mining Division of west central British Columbia 133 kilometres southwest of Burns Lake and 105 kilometres north of Bella Coola (Figure 1). The property covers an area of 1,256.3 hectares between latitudes 53°16'39" to 53°18'16" North and longitudes 126°59'10" to 127°3'39" West (Universal Transverse Mercator NAD83 coordinates 5905047 to 5908034 North and 629255 to 634234 East) in NTS map-area 93E/6 (see Figure 2).

As shown on Figure 2, parts of the Red Bird mineral claim are truncated by the boundary of Tweedsmuir Park. This park is a designated protected area that excludes all industrial activities including mineral exploration and development. The remaining claim area is open to mineral exploration and development. In the Haven Lake area, the park boundary corresponds to the drainage divide between the coast and interior watersheds. This drainage divide is also the boundary between the Omenica and Skeena Mining Divisions. All previous resource estimates of molybdenum bearing mineral zones made by Craigmont Mines Limited in 1980 and 1981 are

Figure 1. Location of the Red Bird property.

4

Claim Name Record No.	Hectares*	Mining Division	Record Date	Expiry Date
501914	405.968	Skeena	Jan. 12, 2005	July 7, 2006
510491	811.716	Skeena	April 9, 2005	July 7, 2006
513929	38.65	Skeena	June 4, 2005	May 31, 2006

Table 1 List of mineral tenures and expiry dates, Red Bird property.

The Red Bird claims are registered to W.E. Pfaffenberger, director of Fundamental Resources Corp.(Free Miners Certificate No. 143363). At the time of writing the claims had not been legally surveyed. Red Bird Resources Ltd., a private Alberta company (President, Daniel R Davis) and Fundamental Resources Corporation, a private BC company (President William E Pfaffenberger) have entered into a joint venture agreement to develop the property.

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY (from McIntyre, 2004)

The Red Bird claim is located north of Haven (Bone) Lake and southwest of Red Bird Mountain (Figure 2). Haven Lake is 5 kilometres southeast of Eutsuk Lake. Access to the property is via float plane in June-October and by helicopter in winter. Float plane access is available from Nimpo Lake and Bella Coola located south of the property and from Burns Lake or Houston northeast and north of the property. In 1966, Phelps Dodge built a 17.7 kilometre access road which connects to Eutsuk Lake via the Bone Creek valley. This road is badly overgrown and is within Tweedsmuir Provincial Park, as is most of Eutsuk Lake. At the same time, an airstrip was built near Eutsuk Lake and a barge was used to haul equipment and supplies from a logging road that connects to Vanderhoof on Highway 16 or Quesnel on Highway 97. Both of these communities are on major rail lines. If the Red Bird property should advance to the mining stage, this access route would probably be the most economic. This assumes that the provincial government would allow road construction through Tweedsmuir Park. An alternative access route would be to build a new road from the property westward down Salahagen Creek to connect to a network of logging roads in the Kimsquit River valley, a distance of less than 20 kilometres. These logging roads connect to tidewater at the head of the Dean Channel where a shipping facility could be built. This alternate access route does not involve crossing parks or designated environment conservancy areas but would involve road construction and maintenance through a narrow, steep-sided mountain pass with a high avalanche risk.

If the Red Bird property should ever advance to the mine development and production stage, the nearest source of hydroelectric power generation would be at Alcan's Kemano power station which is located 68 kilometres northwest of the property (Figure 1).

The Red Bird property has cool to cold, moderately wet winters and warm relatively dry summers. Total yearly precipitation on the property is estimated at between 89-114 centimetres

(35-45 inches). At higher elevations of 1,300 to 1,700 meters above sea level, work could be carried out between June and October, whereas heavy snowfall and cold weather would hamper activity in the winter months.

The Red Bird property is located near the eastern edge of the Coast Mountains where the topography is characterized by steep mountain peaks bounding narrow, glacier carved valleys. Radial drainage patterns are common and the primary vegetation is a mixture of fir, hemlock, cedar and spruce. Further eastward the physiography changes to the rolling hills and broad valleys typical of the Interior Plateau. The climate here is more arid and the vegetation is predominantly pine, much of which has been killed by an uncontrolled infestation of the mountain pine beetle.

6.0 HISTORY (from McIntyre, 2004)

The first indication of mineral exploration on the Red Bird property was in 1937 when several claims were located near Red Bird Mountain. Phelps Dodge prospected the area in 1958, and located the CAFB claims in 1959. From 1960 to 1962 work consisted of geological mapping, trenching and geophysical surveys. Drilling started in 1963 and by 1966 a total of 13,807 metres (45,286 feet) of diamond drilling in 58 holes had been completed. In 1966, an access road was constructed from Haven Lake (1,041 metres elevation) to the main mineral zone at 1,460 metres elevation and a 17.7 kilometre (11 mile) road was constructed east of the property to connect to the mouth of Bone Creek at Eutsuk Lake. A ferry service across Eutsuk Lake gave access to the existing forestry road network. A 762 metre (2,500 feet) airstrip was also constructed near the eastern terminus of the Bone Creek access road. In 1967, Ashfork Mines Limited (a subsidiary of Phelps Dodge) did 3,544 metres (11,624 feet) of diamond drilling in 15 holes and this was followed in 1968 by an additional 286.5 metres (940 feet) of diamond drilling in 2 holes plus 1,005 metres (3,300 feet) of crawler dozer trenching and blasting. The property remained dormant until 1979 when Craigmont Mines Limited optioned the property from Phelps Dodge. In 1979, Craigmont did 9,060 metres of diamond drilling in 36 holes. The purpose of this drilling was to improve the definition of the main zone located along the northern contact of the quartz monzonite stock. In 1980, Craigmont did an additional 4,881.40 metres of diamond drilling in 22 holes. The purpose of this drilling was to better define the extents of the southeast and southwest zones intersected in the earlier work by Phelps Dodge. Drill hole locations, surface projections of zones of high (>.10%) and low (0.05-1.0%) grade MoS₂ mineralization and Craigmont's proposed pit outlines are shown on Figure 3. Drill hole intersections for the 1979-1980 Craigmont drilling (Holes 73 to 131) were converted to digital format by the writer. In 1979 and 1980, Craigmont did preliminary resource estimates using the 1979-1980 drill information and previous drill results from Phelps Dodge. Detailed cross sections were plotted manually and mineable blocks were defined on the basis of the drill hole information. An initial resource estimate was done by N.B. Vollo, P.Eng. in 1980. This estimate was based on 3 separate zones amenable to open pit mining - the main, southeast and southwest zones (Figure 3) plus a part of the main zone that could be mined from underground. Vollo's resource estimate distinguished between relatively high grade blocks with grades greater that 0.10% MoS₂ and a lower grade resource with grades between 0.05%-0.10% MoS2. These estimates were recalculated in 1981 by computer and the results were incorporated into a preliminary economic appraisal of the property

(Farnsworth, 1981). Both Vollo's and the computer generated resource estimates are shown in the following table taken from Farnsworth's preliminary economic appraisal (Farnsworth, 1981).

							Computer Es	timate
		Farnsworth, 1981						
Zone							Above 0.05%	
	>0.10% MoS ₂		0.05-0.10% MoS ₂		Total		MoS ₂ cut-off	
	tonnes	grade	tonnes	grade	tonnes	grade	tonnes	grade
Main Pit	12,650,000	0.20	3,800,000	0.08	16,450,000	0.17	39,981,000	0.121
SW Pit	14,400,000	0.18	7,700,000	0.09	22,100,000	0.15	21,586,000	0.13
SE Pit	6,700,000	0.14	4,800,000	0.08	11,500,000	0.11	19,910,000	0.097
Sub total	33,750,000	0.18	16,300,000	0.08	50,050,000	0.15	81,477,000	0.118
Main UG	30,350,000	0.16	21,200,000	0.08	51,550,000	0.13	-	-
Total	64,100,000	0.17	37,500,000	0.08	10,1600,000	0.14	81,477,000	0.118

Table 2.	
Craigmont Mines Ltd. Red Bird Property, Historica	I Resource Estimates
(Farnsworth, 1981)	

UG=underground; all grades are given as weight percent MoS2

Grade and tonnage figures quoted for the Red Bird are referenced from previous work (Craigmont Mines Ltd Annual Report, 1980). These dated grade and tonnage estimates may not be in accordance with current National Instrument 43-101 regulations. However, the Red Bird grade and tonnage figures released by Craigmont Mines in 1980 were in accordance with relevant CIM definitions for their date.

According to Farnsworth (1981) "the computer estimate resulted in considerably higher open pit tonnages at lower grades than did N.B. Vollo's estimate. Vollo's estimate was manually derived from two-dimensional sections. The computer estimated reserves to a 0.05% MoS₂ cut-off on a three-dimensional basis. The influence of each block on another block within a zone of influence was weighted by the inverse of the distance squared – kriging was not used." (Farnsworth, 1981, page 9). As shown in Table 2, no computer estimates were done for parts of the main zone that could be mined by underground methods.

The preliminary economic appraisal done by Farnsworth in 1981 calculated a project rate of return of 8.0% based on a 10,000 tonne per day, 23 year mine life. Some of the key parameters used in this appraisal are listed below. All of the resource calculations and economic appraisals available for the Red Bird property were done internally by Craigmont Mines Limited staff. To the writers knowledge no other resource calculations exist for the Red Bird property.

The Red Bird property was apparently the subject of a compensation package offered to Phelps Dodge Corporation by the Province of British Columbia. The writer has no information regarding the details or reasons for this compensation.

The Red Bird property was restaked by Andris Kikauka as agent for W.E. Pfaffenberger, director of Fundamental Resources Corporation, a private company, on May 7, 2003.

Table 3. Parameters used in a preliminary economic appraisal of the Red Bird deposit (Farnsworth, 1981).

Resource size and grade	81.5 million tonnes, average grade 0.118% MoS ₂ , 0.05%
	MoS ₂ cutoff grade
Mining method	3 open pits
Overall stripping ratio	1.90:1
Overall Head Grades	0.118% MoS ₂ and 0.078% Cu
Recoveries	80% for Mo, 65% for Cu
Metal Prices (1981 U.S.\$)	Mo \$8.50 (1981-89) \$12.25/lb (1990 on); Cu \$1.25/lb (1981
	on)
Exchange rate (\$CDN per \$1.00 U.S.)	\$1.11 (1981-89); \$1.05 (1990 on)
Mining cost per tonne mined	\$0.96
Capital cost	\$221 million

In July 2003, Andris Kikauka, P.Geo. on behalf of Fundamental Resources Limited visited the Red Bird property and quarter split and sampled 101 metres of drill core from holes 79-95 and 79-96 (Kikauka, 2004). These holes were drilled to the north and cut through the steep dipping Main zone that occurs along the northern contact of the quartz monzonite porphyry stock. A total of 21 samples (all 5 metre lengths except one 1 metre length) were submitted for 47 element ICP analysis. This work was done by ALS Chemex laboratories in Vancouver, B.C., a reputable and well established analytical laboratory. This resampling of core confirmed the MoS₂ grades reported by Craigmont Mines Limited in their drilling logs for these holes. It also confirmed the concentric zonation of higher Mo values within the contact zone of the stock and increasing Cu values in the biotite hornfels surrounding the stock. The ICP analyses also showed elevated strontium-rubidium-cerium values possibly associated with the occurrence of apatite and to a lesser extent, rutile and sphene. In addition to resampling core, Kikauka submitted two samples from drill hole 79-95 to Vancouver Petrographics for analysis.

One of these samples (79-95 @ 58.7 m.) was reported to contain 0.2% apatite. Several bedrock exposures near the intrusive contacts were also mapped at a scale of 1:5,000. Results of this work are summarized in an unpublished report (Kikauka, 2004) that was made available to D. MacIntyrc.

Figure 3. Drill hole plan and proposed open pits, Red Bird property.

7.0 GEOLOGICAL SETTING (from McIntyre, 2004)

The regional geologic setting of the Red Bird property, taken from the most recent British Columbia Geological Survey compilation (Massey et. al., 2003), is shown on Figure 4. The principal geologic units shown on this map are summarized in Table 4. As discussed previously, the Red Bird deposit is associated with an Eocene quartz monzonite porphyry stock that intrudes predominantly pyroclastic volcanic rocks. These rocks have been mapped as part of the Upper Cretaceous Kasalka Group. A major east to southeast trending fault along Bone and Salahagen creeks juxtaposes Kasalka Group rocks against older Lower Jurassic volcanic rocks of the Telkwa Formation. Uplifted fault blocks north of the property apparently contain Middle Jurassic Smithers Formation and Lower Cretaccous Skeena Group volcanic rocks. These fault blocks are in contact with an east trending guartz monzonite stock that is correlated with the Late Cretaceous Bulkley Plutonic Suite. Although the writer did not do any mapping in the vicinity of the deposit, examination of drill core suggests that the quartz monzonite porphyry is intruding Telkwa Formation tuffs and not the younger Kasalka Group. The latter is characterized by hornblende-feldspar phyric andesite flows and lahars and these lithologies were not observed in the drill core examined by the writer. On the other hand, lapilli and lithic tuffs in the drill core are typical of lithologies that characterize the Telkwa Formation.

Unit ID	Age	Unit Name	Description
ENqm	EOCENE	NANIKA PLUTONIC SUITE	quartz monzonite porphyry
LKB	LATE CRETACEOUS	BULKLEY PLUTONIC SUITE	quartz equigranular hornblende quartz diorite monzonite, biotite-
КК	UPPER CRETACEOUS	KASALKA GROUP	hornblende-feldspar porphyritic andesite flows and related pyroclastics, lahars, debris flows, breccias and epiclastic beds
IKSN	LOWER CRETACEOUS	SKEENA GROUP - MT. NEY VOLCANICS	basalt to andesite flows; lesser dacite flows, bladed-feldspar porphyry, tuff, breccia and conglomerate
mJHSvc	MIDDLE JURASSIC	IIAZELTON GROUP - SMITHERS FORMATION	lapilli tuff, accretionary tuff
DIIT	LOWER JURASSIC	HAZELTON GROUP - TELKWA FORMATION	maroon, green and purple subaerial andesitic to dacitic feldspar phyric flows, pyroclastic and epiclastic rocks, augite phyric to aphyric basalt, breecia, welded tuff

Table 4 Table of Formations

The quartz monzonite porphyry that hosts the Red Bird Deposit is an elliptical intrusion roughly 1300 metres long and up to 900 metres wide (Figure 4). Drill intersections indicate that the northern contact of the stock dips steeply inward at an angle between 60 and 70 degrees. The

Figure 4. Regional geologic setting of the Red Bird property.

contact with the surrounding volcanic rocks is generally sharp but alternating intervals of tuff and porphyry in the drill core suggest numerous offshoots of the main body extend into the surrounding rocks. Volcanic rocks in contact with the stock have been metamorphosed to biotite hornfels.

Biotite from the main quartz monzonite porphyry stock has given K-Ar isotopic ages of 49.0+/-4.0 Ma and 50.0+/-4.0 Ma (Carter, 1981). These ages have been revised to 49.7+/- 4.0 Ma and 50.7+/-4.0 Ma using the current IUGS decay constants for K-Ar isotopic dating (Breitsprecher and Mortensen, 2004). Based on age and lithology this stock is correlated with the Eocene Nanika Plutonic Suite. The semi-circular intrusion just north of the property is also mapped as part of the Nanika Plutonic Suite. Several younger dykes cut the main quartz monzonite porphyry stock. These were recorded as felsite, rhyolite, feldspar porphyry, and andesite in the Craigmont drill logs. Only the andesite is clearly post-mineral.

8.0 DEPOSIT TYPE (from McIntyre, 2004)

The Red Bird deposit is classified as a low F type porphyry molybdenum deposit (L05) by the British Columbia Geological Survey Branch (Sinclair, 1995). The definitive geological characteristic of this deposit type is the occurrence of molybdenite bearing quartz veinlet stockworks and fractures in high level, K-feldspar-biotite or quartz-sericite-+/-kaolinite altered, intermediate to felsic intrusive rocks and associated country rocks. Intrusions are often multiphase calcalkaline bodies that range from quartz monzonite to granite in composition. The Eocene Nanika Plutonic Suite is predominantly quartz monzonite in composition and the source magmas are interpreted to be calc-alkaline in composition. The generally accepted genetic model for this deposit type is one in which large volumes of high pressure, highly saline magmatic fluids transport Mo and other metals from a crystallizing and differentiating magma into zones of intense fracturing and brecciation in the outer carapace of the source intrusion and, to a lesser extent, into surrounding country rock. Some examples of this deposit model and their grades and tonnages are listed in Table 5.

Deposit	Location	Size	Grade
		(million tonnes)	%Mo
Adanac	B.C.	94	0.094
Kitsault	B.C.	108	0.115
Glacier Gulch	B.C.	125	0.151
Endako	B.C.	336	0.087
Red Mountain	Yukon	187	0.100
Thompson Creek	Idaho	181	0.110
Quartz Hill	Alaska	793	0.091
Compaccha	Peru	100	0.072

Table 5. Some examples of Porphyry Mo (Low F Type) deposits

Source: Sinclair, 1995.

9.0 MINERALIZATION (from McIntyre, 2004)

Exploratory work to date has shown that the Red Bird deposit is comprised of three zones of molybdenum concentration referred to as the Main, Southeast and Southwest zones (Figure 3). These zones occur in the outer margin of an elliptical quartz monzonite stock and adjacent wall rocks and are characterized by the occurrence of molybdenite in quartz veinlets with the best grade found in banded veins where molybdenite is concentrated along the vein walls. According to Sutherland Brown (1966) several generations of veins are present suggesting repeated episodes of fracturing and escape of magmatic fluids during crystallization and differentiation of the quartz monzonite stock. Beyond the main zones of molybdenite concentration there is an increase in the number of barren quartz veinlets interspersed with veinlets that contain pyrite and molybdenite. Craigmont did not sample core from the central part of the stock even though molybdenite bearing quartz veinlets are clearly visible in the core. It appears that their focus was the zone of molybdenite concentration found in the contact zone of the stock.

Quartz veinlets and fracture coatings within biotite hornfels near the stock contact also contain significant amounts of molybdenite, chalcopyrite and pyrite. Within the Biotite hornfels that surrounds the stock, quartz veinlets and pyritic fracture coatings have sericitic alteration envelopes, generally on the order of 1 to 2 centimetres in width. Minor galena, sphalerite, fluorite and calcite has also been reported but was not observed in the drill core examined by the writer.

In the main zones of molybdenite concentration at least three generations of barren quartz veins are recognized, all of which predate mineralized veins. At least three stages of quartz-molybdenite-pyrite mineralization are also recognized with the most prominent and economically important being banded quartz veinlets that locally have a drusy texture. A final stage of quartz veinlets with minor pyrite may also be present (Sutherland Brown, 1966).

The Red Bird deposit is also reported to contain coarse grain apatite, minor rutile and sphene. Calcite is present in the quartz veins (natural acid buffer) and the Red Bird porphyry molybdenite deposit contains low total sulphide (approximately 0.5-1.5%). Lower total sulphides result in less acid rock drainage from mine waste compared to high sulphide tailings. In addition to naturally buffered mine waste, the Red Bird molybdenite deposit contains relatively low As, Bi, Cd, Pb, and/or Sb values, which if present in appreciable quantity, could devalue the concentrate.

10.0 EXPLORATION (from McIntyre, 2004)

As discussed in a previous section, the Red Bird property was extensively explored by diamond drilling between 1963 and 1968 and again between 1979 and 1980. No significant exploration has occurred on the property since 1980. This report does not present any new exploration data.

11.0 DRILLING (from McIntyre, 2004)

As described in a previous section, Phelps Dodge Corporation and Ashfork Mines Limited, a subsidiary of Phelps Dodge completed 75 drill holes on the Red Bird property totaling 17,637 metres between 1963 and 1968. These core boxes are currently stacked at the eastern edge of an overgrown clearing approximately 150 metres northeast of the old camp site. Core boxes have lids and are bound with wire. Each box has an embossed aluminum tag identifying the hole and core interval contained in the box. The writer did not examine the Phelps Dodge/Ashfork core and there are no drill logs or analytical reports available for this drilling.

Figure 6. Drill hole section 10200 E, Main Zone. See Figure 5 for section location.

Craigmont Mines Limited drilled an additional 13,941.40 metres in 58 holes between 1979 and 1980. This core is currently stored in a core rack next to the Phelps Dodge/Ashfork core described above. Although the core rack is tilted and many of the core boxes are wedged in and cannot be extracted without repairing the core rack, most boxes have metal tags that identify the

drill hole and sample interval. Hand written drill hole logs describing the rock type, mineralization, sample numbers, sample interval and percent MoS₂ and Cu are available for all of the drill holes completed by Craigmont. Figure 5 shows the location of drill holes and results of the Craigmont drilling. Figures 6, 7 and 8 are drill sections through the Main, Southwest and Southeast zones respectively. The location of these sections is shown on Figure 5. The writer generated Figures 5-8 by converting handwritten drill hole logs to digital format, plotting the drill holes as 3D lines in AutoCad using a plotting script program and importing the line and attribute data for each drill hole into Manifold GIS 6.0 for presentation. Significant drill hole intersections are summarized in Appendix A.

There has been no additional exploration drilling on the Red Bird property since 1980.

Figure 7. Drill hole section 9800N, SW zone. See Figure 5 for section location.

Figure 8. Drill hole section 9700N, SE zone. See Figure 5 for section location.

12.0 SAMPLING METHOD AND APPROACH

There is little information available concerning the sampling method and approach employed by Phelps Dodge and Ashfork Mines Limited during the first phase of drilling on the Red Bird property. Drill hole logs for the Craigmont drilling indicate that the core was sampled at 5 metre intervals although not all core was split and sampled. The 1979 drill holes were drilled at an angle to the north to intersect the Main zone at various depths. The 1980 drill holes were drilled at an angle to the west to intersect the Southwest and Southeast zones.

As an independent check on the grades reported in the Craigmont drill logs, D. MacIntyre collected several core samples during a visit to the property on July 7 and 8, 2004. A total of 11 samples were submitted to Eco-Tech Laboratory Limited, Kamloops, B.C., a certified analytical facility, for 28 element ICP analysis. Five grab samples of core from drill holes 79-84, 79-89 and 79-90 plus random chip samples from six 5 metre intervals in drill hole 79-93 were analyzed.

In the summer of 2005 a rc-sampling program was undertaken by A. Kikauka on behalf of Torch River Resources. The quality of data is excellent for DDH 73-131 (BQ core drilled for Craigmont-Placer Dome, 197-80). The drill logs written by J.Murphy and N. Vollo for Craigmont in 1979-80 are of good quality (lithology, alteration, structure and mineralization correlate well with assay results). The core was well stored and relatively undisturbed and Torch River Resources Ltd carried out a resample of 1,569 previously assayed for MoS₂, split core samples. The core was laid out and checked with old drill logs and photographed with a high resolution digital camera. Phelps Dodge (1964-660 and Craigmont (1979-80) did not analyze for copper or silver and it appears there is a very large copper zone adjacent to the molybdenum zone. The molybdenum zone appears to be best developed in the white-grey coloured Eocene porphyritic quartz monzonite near the outer edges of the stock. The copper is best developed in the dark green-black Lower Jurassic intermediate-felsic tuff/hornfels which hosts the 1.0 to 1.3 km (elongated, circular) quartz monzonite stock.

13.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

No original analytical certificates are currently available for either the Phelps Dodge/Ashfork or Craigmont Mines Limited drilling and the identity of the analytical laboratories that did the analyses is unknown. Presumably the analytical work was done by a reputable laboratory following best practices applicable at the time. Resampling of the Craigmont drill core by Kikauka (2004) and check samples collected by D. MacIntyre were analyzed by reputable analytical laboratories and confirm the values recorded in the Craigmont drill hole logs. Check samples collected by the MacIntyre were placed in labeled plastic bags and shipped to the Eco-Tech Laboratory via Greyhound Courier Express. No duplicate check samples were submitted due to the small size of the sample shipment.

Analytical techniques and quality control procedures used by Eco-Tech are summarized in Appendix C. D. MacIntyre was the only person who handled the samples that were collected and shipped to the Eco-Tech Laboratory.

A 2005 program of geological and geochemical data was supervised by Mr. Andris Kikauka, P. Geo. on behalf of Torch River Resources Limited. A total 50 out of 58 diamond drill holes were re-logged and re-sampled. The diamond drilling was carried out during 1979 & 1980 by Craigmont Mines Ltd. (DDH 79-73 to DDH 80-131 for a total of 58 drill holes). All of the drill holes were re-sampled with the exception of the following holes which were not present in the core racks: DDH 79-84 to 86, 102, & 104 and DDH 80-126, 127. Samples were taken from 50 drill holes ranging in length from 1-10 meters and ranging from 7 to 66 samples per drill hole (mean value of 29.58 samples per drill hole). The drill core boxes were specifically designed to contain exactly 5 meters of core per box, thus most of the sampling was done in 5 meter intervals. Using a Nikon high resolution digital camera, hole ID and intervals (15 meter lengths) were re-sampled to replicate Craigmont Mines diamond drill records (by J.D. Murphy and N.B. Vollo, 1979-80). Labelled (including from-to length in meters) plastic 12 X 20 inch bags and zap straps were used to ship each individual split core sample. All samples were shipped to Pioncer Labs

for multi-element geochemical analysis. Rejects are stored and available for future geochemical and/or metallurgical work.

14.0 DATA VERIFICATION

As previously mentioned, the original analytical certificates for the drilling done by Phelps Dodge/Ashfork and Craigmont Mines Limited were not available to the writer. In order to verify the grades recorded in the Craigmont drill logs, MacIntyre collected 11 samples of core during a visit to the property July 7 and 8, 2004. Table 6 summarizes the results for Ag, As, Cu, Mo, Pb and Zn plus the corresponding Craigmont MoS₂ values for the interval sampled. The analytical results confirm the presence of moderate to high grade Mo in the drill core. Samples of hornfelsed tuff also contained significant Cu (5057 ppm) and elevated Zn (190 ppm) and Ag (10.9 ppm) values.

								Craigmont
Sample	Unit	Ag	As	Cu	Mo	Pb	Zn	Results
								not sampled by
79-90 52.2 m	QMP	<0.2	<5	55	17	6	20	Craigmont
								not sampled by
79-89 58.0 m	QMP	2.7	35	264	2498	<2	54	Craigmont
79-84 122.2 m	QMP	0.4	<5	239	3402	2	9	0.33 MoS2
79-84 131.5 m	QMP	<0.2	<5	60	3292	4	20	0.23 MoS2
79-84 174.0 m	TUFF	5.1	<5	5057	67	<2	133	0.04 MoS2
79-93 290-295	QMP	0.7	<5	484	474	4	43	0.08 MoS2
79-93 295-300	QMP	0.2	<5	330	868	2	10	0.08 MoS2
79-93 300-305	QMP	0.4	5	333	833	6	15	0.14 MoS2
79-93 305-310	QMP	0.4	<5	432	932	2	10	0.08 MoS2
79-93 310-315	QMP/TUFF	5.5	20	937	519	8	61	0.11 MoS2
79-93 315-320	TUFF	10.9	40	2920	186	88	190	0.03 MoS2

Table 6Summary of 2004 results for drill core samples collected from the RedBird property

All values in parts per million; QMP=quartz monzonite porphyry; TUFF=Biotite hornfelsed tuff

In 2005 a total of 1,569 samples were re-assayed by Pioneer Labs. A comparison of 1,554 original Craigmont Mo assays with the 2005 check samples is shown below in Table 7.

 Table 7

 Comparison of Craigmont Original Mo Assays with 2005 Check samples

	Craigmont Mo (%)	2005 Check Mo (%)
Number of Assays	1,554	1,554
Mean	0.060	0.053
Standard Deviation	0.047	0.043
Minimum	0.004	0.001
Maximum	0.390	0.489
Coefficient of Variation	0.77	0.81

The 2005 results compare well with the original Craigmont assays (see Figure 9). The two data sets have a correlation coefficient of 0.7485 with no indication of sampling bias.

Figure 9: Scatter Plot for Original Craigmont Mo% Assays and 2005 Check samples

15.0 ADJACENT PROPERTIES

There are no significant mineral properties in the vicinity of the Red Bird deposit. Most of the area around the Red Bird property is within Tweedsmuir Park and is not open to mineral exploration or development.

16.0 MINERAL PROCESSING AND METALLURGICAL TESTING (from McIntyre, 2004)

The preliminary economic appraisal of the Red Bird property prepared by Farnsworth (1981) references preliminary flotation testwork done by Placer Developments Metallurgical Research Centre in March 1980 (King, 1980). The writer is not aware of any additional historical mineral processing or metallurgical testing done on the Red Bird property since this 1980 test. Key metallurgical parameters as reported by Farnsworth are given in Table 8.

Grinding index	12
Molybdenum recovery estimate	78-80%
Copper recovery estimate	65%
%Cu in Cu concentrate	25%

	Table 8		
Key metallurgical	parameters for the	Red Bi	rd property

The test work done by Placer involved seven composite test samples totaling 700 kilograms in weight (King, 1980).

17.0 RESOURCE ESTIMATION

17.1 DATA ANALYSIS

Cu

Ag

The data base for this preliminary resource estimate was composed of Phelps Dodge drill hole data from 1963 to 1966, Craigmont drill hole data from 1979 to 1980 and Red Bird Resources reassay of Craigmont diamond drill core completed in 2005. A list of the drill holes used for this study is presented below in Table 9.

Tab	le	9
Summary	of	Drilling

YEAR	COMPANY	DRILL HOLE NUMBERS	NUMBER OF HOLES
1963	Phelps Dodge	63-1 to 63-12	12
1964	Phelps Dodge	64-13 to 64-27	15
1965	Phelps Dodge	65-28 to 65-51	24
1966	Phelps Dodge	66-52 to 66-70	19
1979	Craigmont	79-73 to 79-107	35
1980	Craigmont	80-108 to 80-125, 80-128 to 80- 131	22
	TOTAL		127

The assays used for the estimate were ranked as follows. If the Craigmont hole was re-assayed in 2005 this assay was used. For Craigmont holes samples not re-assayed the Craigmont MoS_2 value was converted to Mo (Mo = $MoS_2 * 0.5994$), and used. For Phelps Dodge holes the MoS_2 assay was converted to Mo and used. Where drill holes penetrated the 3D mineralized solids and were not assayed a value of 0.001 % Mo was inserted. Mo

2005 Mo assays were used for all Craigmont re-sampled holes -	1569 assays
1979-80 Craigmont MoS ₂ assays were used in -	97 assays
1963-66 Phelps Dodge MoS ₂ assays were used in -	79 assays
Where drill holes penetrated 3D mineralized solids but were not ass	ayed
a value of 0.001 was inserted for Mo -	656 assays
Total	2401 assays
2005 Cu assays were used for all Craigmont re-sampled holes -	1569 assays
1963-66 Phelps Dodge Cu assays were used in -	7 assays
Where drill holes penetrated 3D mineralized solids but were not ass	ayed
a value of 0.001 was inserted for Cu -	437 assays
Total	2013 assays
2005 Ag assays only available from re-sampled Craigmont holes	1569 assays

A subset of data was also assayed for gold and rhenium with the results shown in Appendix 1.

The statistics for the assays used in the resource estimate are shown below in Table 10.

	Mo (%)	Cu (%)	Ag (g/t)
Number of Assays	2,401	2,013	1,569
Mean	0.041	0.072	2.42
Standard Deviation	0.053	0.095	6.27
Minimum	0.001	0.001	0.30
Maximum	1.441	0.914	100.0
Coefficient of Variation	1.32	1.32	2.58

 Table 10

 Summary statistics for Mo, Cu and Ag assays used for estimate

The distribution of Mo grades was evaluated using a lognormal cumulative distribution plot and 5 overlapping lognormal populations were identified (see Figure 10). The statistics for each is presented below in Table 11.

 Table 11

 Summary statistics for Mo Populations

Population	Mean Mo (%)	Proportion of Total	Number of Samples
1	0.345	0.46 %	9
2	0.124	11.14 %	219
3	0.052	45.00 %	887
4	0.025	20.66 %	407
5	0.005	22.75 %	448

Population 1 represented by 0.46 % of the total data and extending to a high of 1.44 % Mo, can be considered erratic high grade. A threshold of 2 standard deviations above the mean of population 2 can be used to cap these erratic grades. A total of 13 samples were capped at 0.25 % Mo.

Figure 10: Lognormal cumulative frequency plot for Mo Assays

17.2 GEOLOGIC MODEL

Cross sections from both Craigmont and Phelps Dodge exploration were consulted to determine a mineralized shell that would constrain the interpolation procedure. The mineralized zone was identified on N-S cross Sections across the Main Zone and E-W cross sections across the SW and SE zones (see Figure 5).

A three dimensional solid was built around the mineralized zone honouring the drill hole intervals (see Figure 11).

17.3 COMPOSITES

The drill holes were "passed through" the geologic solid with the points at which the drill holes entered and exited the solid marked. Uniform down hole 5 m composites were formed that honoured these boundaries. Composites that were less than 2.5 m in length were combined with adjoining samples to produce a uniform support of 5 ± 2.5 m. A summary of statistics for the 5 m composites is presented below.

	Mo (%)	Cu (%)
Number of Samples	2,303	1,733
Mean	0.054	0.069
Standard Deviation	0.044	0.088
Minimum	0.001	0.001
Maximum	0.250	0.865
Coefficient of Variation	0.82	1.28

Table 12 Summary statistics for Mo and Cu in 5 m Composites

17.4 VARIOGRAPHY

Pairwise relative semivariograms were produced for the Craigmont drill holes numbered 79-73 to 80-131. The Phelps Dodge holes were left out of this analysis due to their procedure of only assaying large composited intervals across the mineralized zones. While this data can be used for estimation it is of no value in determining grade continuity.

Semivariograms were produced in both the horizontal and vertical planes to determine the directions of maximum continuity for both Mo and Cu. In all cases nested spherical models were fit to the data. The results are summarized below in Table 13 with semivariograms shown in Appendix 2.

Variable	Direction	Co	C ₁	C ₂	Short Range (m)	Long Range (m)
Мо	Az. 90 Dip 0	0.05	0.15	0.15	80	100
	Az. 0 Dip 0	0.05	0.15	0.15	20	50
	Az. 0 Dip -90	0.05	0.15	0.15	12	180
Cu	Az. 90 Dip 0	0.15	0.26	0.19	40	100
	Az. 0 Dip 0	0.15	0.26	0.19	15	30
	Az. 0 Dip -90	0.15	0.26	0.19	32	100

Table 13 Summary of Semivariogram Parameters for Mo and Cu

Where Co - Nugget Effect, C1 - Short Range Structure and C2 - Long Range Structure

The nugget to sill ratios of 14 % for Mo and 25% are reasonable and indicate low levels of sampling variability.

17.5 BLOCK MODEL

A block model consisting of blocks $20 \times 20 \times 10$ m in dimension was superimposed on the geologic 3 D mineralized solid. The origin of the model is as follows:

Lower Left Corner	9500 E	20 m wide	65 columns
	9300 N	20 m long	70 rows
Top of Model	1750 Elev	10 m high	86 levels
No Rotation			

The proportion of each block contained within the mineralized solid was recorded and only blocks with some proportion within the solid were estimated. Of the total of 236,896 blocks within the model 17,690 have some percentage within the mineralized solid.

17.6 INTERPOLATION

Block grades for molybdenum and copper were estimated by ordinary kriging using a minimum of 4 composites and maximum of 16. The estimation process was completed in a series of passes with an expanding search ellipse for each successive pass. The first pass used a search ellipse

oriented in the directions of anisotropy with dimensions equal to ¼ of the semivariogram ranges. The vertical direction during the first pass was restricted to 15 m or 3 composites to force the use of at least two drill holes. If the minimum of 4 composites was found the block was estimated. For blocks not estimated during pass 1 the ellipse was expanded to ½ the semivariograms range and the exercise was repeated. A final pass was made using the full semivariogram range. The search directions, distances and numbers of blocks estimated are summarized below in Table 14.

Variable	Pass	Number Estimated	Direction	Dist. (m)	Direction	Dist. (m)	Direction	Dist. (m)
	1	1,600	Az 90 Dip 0	25	Az 0 Dip 0	12.5	Az 0 Dip -90	15
Мо	2	10,254	Az 90 Dip 0	50	Az 0 Dip 0	25	Az 0 Dip -90	90
	3	4,954	Az 90 Dip 0	100	Az 0 Dip 0	50	Az 0 Dip -90	180
	1	629	Az 90 Dip 0	25	Az 0 Dip 0	7.5	Az 0 Dip -90	15
Cu	2	4,852	Az 90 Dip 0	50	Az 0 Dip 0	15	Az 0 Dip -90	50
	3	5,301	Az 90 Dip 0	100	Az 0 Dip 0	30	Az 0 Dip -90	100

 Table 14

 Search Parameters for Ordinary Kriging

Due to fewer copper assays than molybdenum, copper was estimated in fewer blocks. Only blocks with both molybdenum and copper estimated are reported, a total of 10,782.

17.7 BULK DENSITY

There are no reported specific gravity measurements for this deposit. Previous Craigmont workers have used 2.70 (Vollo, 1980). For the purpose of comparison the same value has been used in this study. It is strongly recommended that subsequent drill programs collect a representative number of specific gravities from different rock, alteration and mineralization types to adequately determine bulk density values.

17.8 CLASSIFICATION

Based on the study herein reported, delineated mineralization of the Red Bird Project is classified as a resource according to the following definition from National Instrument 43-101:

"In this Instrument, the terms "mineral resource", "inferred mineral resource", "indicated mineral resource" and "measured mineral resource" have the meanings ascribed to those terms by the Canadian Institute of Mining, Metallurgy and Petroleum, as the CIM Standards on Mineral Resources and Reserves Definitions and Guidelines adopted by CIM Council on August 20, 2000, as those definitions may be amended from time to time by the Canadian Institute of Mining, Metallurgy, and Petroleum." "A Mineral Resource is a concentration or occurrence of natural, solid, inorganic or fossilized organic material in or on the Earth's crust in such form and quantity and of such a grade or quality that it has reasonable prospects for economic extraction. The location, quantity, grade, geological characteristics and continuity of a Mineral Resource are known, estimated or interpreted from specific geological evidence and knowledge."

The terms Measured, Indicated and Inferred are defined in NI 43-101 as follows:

"A 'Measured Mineral Resource' is that part of a Mineral Resource for which quantity, grade or quality, densities, shape, physical characteristics are so well established that they can be estimated with confidence sufficient to allow the appropriate application of technical and economic parameters, to support production planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that are spaced closely enough to confirm both geological and grade continuity."

"An 'Indicated Mineral Resource' is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics, can be estimated with a level of confidence sufficient to allow the appropriate application of technical and economic parameters, to support mine planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that are spaced closely enough for geological and grade continuity to be reasonably assumed."

"An 'Inferred Mineral Resource' is that part of a Mineral Resource for which quantity and grade or quality can be estimated on the basis of geological evidence and limited sampling and reasonably assumed, but not verified, geological and grade continuity. The estimate is based on limited information and sampling gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes."

Due to the historic nature of this property, lack of detailed assay information on the Phelps Dodge holes and the lack of specific gravity information this entire resource is presently classed as inferred. Future drilling, using proper quality control and assurance and an adequate specific gravity data base will be required to bring this property into a measured plus indicated status.

The results are presented below in Table 15 at a variety of Mo % cutoff values to show the effects on tonnes and grade. At this time no economic evaluation has been completed so no economic cutoff can be presented. The 1981 Craigmont study (Farnsworth, 1981), however, used an economic cutoff of 0.05 MoS_2 which would equate to a 0.03 % Mo cutoff.

Mo Cutoff	Tonnes> Cutoff		Grade	>Cutoff
(%)	(tonnes)	Mo %	Cu %	Pounds Mo
0.01	83,650,000	0.060	0.067	110,700,000
0.02	80,510,000	0.062	0.069	80,500,000
0.03	75,290,000	0.065	0.070	75,300,000
0.04	64,260,000	0.070	0.069	64,300,000
0.05	49,520,000	0.077	0.070	49,500,000
0.06	37,600,000	0.085	0.069	37,600,000
0.07	26,930,000	0.093	0.068	26,900,000
0.08	18,590,000	0.101	0.065	18,600,000
0.09	12,480,000	0.109	0.064	12,500,000
0.10	7,630,000	0.119	0.067	7,600,000
0.11	4,500,000	0.129	0.072	4,500,000
0.12	2,750,000	0.139	0.080	2,800,000
0.13	1,800,000	0.147	0.087	1,800,000
0.14	880,000	0.161	0.092	900,000
0.15	640,000	0.167	0.092	600,000
0.16	290,000	0.183	0.097	300,000
0.17	180,000	0.197	0.088	200,000
0.18	150,000	0.201	0.091	200,000
0.19	140,000	0.202	0.094	100,000
0.20	130,000	0.202	0.097	100,000

Table 15 RED BIRD INFERRED RESOURCE

The grade distribution for molybdenum in estimated blocks is presented in a series of level plans in Figures 12, 13 and 14. Kriged blocks are shown colour coded by molybdenum grade. The drill hole composites, also colour coded, are shown projected 20 m above and below the bench presented.

18.0 OTHER RELEVANT DATA AND INFORMATION

The writers are not aware of any additional sources of information that might significantly change the conclusions presented in this technical report.

19.0 INTERPRETATIONS AND CONCLUSIONS

The Red Bird property represents an excellent molybdenum and copper porphyry target. Historic work completed by Phelps Dodge and Craigmont Mines Ltd. have outlined three deposits that could be developed by open pit mining methods. The data base for Phelps Dodge holes consisted of just cross sections with assay composites shown. The assays and drill hole coordinate information was all available for the Craigmont drill holes.

During August 2005, under the direction of A. Kikauka, Craigmont drill core was re-sampled and assayed for molybdenum and copper. Sub-sets of data were also assayed for gold and rhenium. For this resource estimation the 2005 assays were used where available. Craigmont and Phelps Dodge assays were used where no new data was taken.

)

Semivariograms were produced using only Craigmont data as the long composites from Phelps Dodge hole would bias the grade continuity. Results for molybdenum and copper showed long ranges in the east-west and vertical directions all exceeding 100 m.

Ordinary kriging was used to interpolate molybdenum and copper grades into blocks $20 \times 20 \times 10$ m in dimension. The results show three mineralized zones with a combined inferred tonnage of 75.3 million tonnes averaging 0.065 % Mo at a 0.03% Mo Cutoff.

20.0 RECOMMENDATIONS

To bring this inferred resource to a measured and indicated status infill drilling is required. Holes should be located between existing Craigmont and Phelps Dodge holes within the three deposits to confirm both geologic and grade continuity.

A proper QA/QC program should be implemented using standards, blanks and duplicates. Industry standards for Mo should be obtained preferably in several grade ranges and should be randomly submitted in the assay stream at about a 1 in 20 frequency to monitor laboratory accuracy.. Blank samples should be submitted at the same frequency to guard against sampling and laboratory contamination. Routine duplicates should be taken from rejects and pulps with a sub set of these sent to a second laboratory to identify any laboratory bias.

Specific gravity determinations should be made from drill core at regular intervals in both fresh and altered rock and within mineralized sections and waste to provide a density data base for future resource estimations.

The geologic information gained from drill hole logging should be added to the Craigmont data base to improve the geologic three dimensional model used to constrain future estimates.

21.9 **BIBLIOGRAPHY**

- Carter, N.C., 1981, Porphyry Copper and Molybdenum Deposits, West Central B.C., B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 64, pp 132-133
- Clark, K.J., 1972, Stockwork Molybdenum Deposits in the Western Cordillera of North America, Econ. Geol. Volume 67, pp. 731-758
- Farnsworth, D.J.M. 1981, Preliminary Economic Appraisal 93E/6 Redbird Molybdenum Deposit, Haven Lake, B.C., for Craigmont Mines Limited, Craigmont Mines Limited unpublished report.
- Kikauka, A. A., 2004, Geological, Geochemical and Petrographic Report on the Red Bird Claim, Red Bird Porphyry Molybdenum Deposit formerly known as CAFB, Old Glory, Haven Lake, B.C., Fundamental Resource Corporation, unpublished company report.
- King, J.A., 1980. Redbird Property, Report No. 1, Preliminary Flotation Testwork, Placer Development Limited, Metallurgical Research Centre.
- MacIntyre, D. 2004. Geological Report on the Red Bird Porphyry Molybdenum Property, for Red Bird Resources Ltd. and Fundamental Resource Corporation, Dec. 10, 2004 (posted on SEDAR)
- Massey, N.W.D., MacIntyre, D.G. and Desjardins, P.J., 2003: Digital Geology Map of British Columbia: Tile NN9 North Coast, B.C. Ministry of Energy and Mines, Geofile 2003-13, scale 1:250,000.
- Murphy, J.D. and Vollo, N.B. 1979, Craigmont Mines Limited 93E/6 Redbird Molybdenum Diamond Drill Logs 79-73 to 79-107.
- Murphy, J.D. and Vollo, N.B. 1980, Craigmont Mines Limited 93E/6 Redbird Molybdenum Diamond Drill Logs 80-108 to 80-131.
- Sinclair, W.D., 1995, Porphyry Mo (Low-F-Type) in Selected British Columbia Mineral Deposit Profiles, Volume 1 – Metallics and Coal, Lefebure, D.V. and Ray, G.E., Editors, British Columbia Ministry of Employment and Investment, Open File 1995-20, pp. 93-96.
- Sutherland-Brown, A., 1972, Red Bird Prospect, 24th Intl. Geol. Congress Guidebook, Field excursions, pp. 24-26
- Vollo N.B. 1980, Craigmont Mines Limited 93E/6 Redbird Molybdenum Ore Reserve Estimate, private report Sept. 23, 1980

22.0 DATE AND SIGNITURE PAGE

CERTIFICATE G.H. Giroux

I, G.H. Giroux, of 982 Broadview Drive, North Vancouver, British Columbia, do hereby certify that:

- 1) I am a consulting geological engineer with an office at #1215 675 West Hastings Street, Vancouver, British Columbia.
- 2) I am a graduate of the University of British Columbia in 1970 with a B.A. Sc. and in 1984 with a M.A. Sc., both in Geological Engineering.
- 3) I am a member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 4) I have practiced my profession continuously since 1970.
- 5) I have read the definition of "qualified person" set out in National Instrument 43-101 and certify that by reason of education, experience, independence and affiliation with a professional association, I meet the requirements of an Independent Qualified Person as defined in National Policy 43-101.
- 6) This report is based on a study of the data and literature available on the Red Bird Project. I am responsible for the resource estimations completed in Vancouver during 2005. I have not visited the property.
- 7) I have not previously worked on this property.
- 8) I am not aware of any material fact or material change with respect to the subject matter of the technical report that is not reflected in the Technical Report.
- 9) I am independent of the issuer applying all of the tests in section 1.5 of National Instrument 43-101.
- 10) I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.
- 11) I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them, including electronic publication in the public files on their websites accessible by the public.

Dated this 12th day of January, 2006

"G.H. Giroux"

G. H. Giroux, P.Eng., MASc.

CERTIFICATE A. Kikauka

I, Andris Kikauka, of 4901 East Sooke Rd., Sooke B.C. V0S 1NO am a self employed professional geoscientist. I hereby certify that;

- 1. I am a graduate of Brock University, St. Catharines, Ont., with an Honours Bachelor of Science Degree in Geological Sciences, 1980.
- 2. I am a Fellow in good standing with the Geological Association of Canada.
- 3. I am registered in the Province of British Columbia as a Professional Geoscientist.
- 4. I have practiced my profession for twenty years in precious and base metal exploration in the Cordillera of Western Canada, U.S.A., Mexico, Central America, and South America, as well as for three years in uranium exploration in the Canadian Shield.
- 5. The information, opinions, and recommendations in this report are based on fieldwork carried out in my presence on the subject properties from August 1-25, 2005
- 6. I am employed as an independent consultant for Torch River Resources Ltd. I directly own 66,000 shares of Torch River Resources Ltd, and 328,000 shares of Fundamental Resources Corp which were purchased or issued as a debt settlement from 2002 to 2005. I do not expect to receive any shares of Torch River Resources Ltd and Fundamental Resources Corp as compensation or reward for any work undertaken for the Red Bird project or any other of their projects
- 7. I consent to the use of this report by Torch River Resources or any of its subsidiaries, to fulfill the requirements of regulatory agencies in a Prospectus or Statement of Material Facts for the purpose of public or private financing.
- 8. The contents of this report are the result of my own work and research and the conclusions and recommendations therein are my own.

Andris Kikauka, P. Geo.,

A. Kitracher

January , 2006

APPENDIX 1 – SAMPLES ASSAYED FOR RHENIUM AND GOLD

PIONEER LABORATORIES INC #103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5 TEL.(604)231-8165

GEOCHEMICAL ANALYSIS CERTIFICATE

TORCH RIVER RESOURCES LTD. Project: Red Bird Report No. 2058232 Sample Type: Cores Date: December 23, 2005

	Re
SAMPLE	ppb
79-75 125-130	338
79-79 290-295	424
79-80 25-30	425
79-82 55-60	319
79-86 270-275	421
79-90 205-210	848
79-97 40-45	360
80-124 210-215	417
80-124 220-225	304
80-124 277.8-278.8	>2500

PIONEER LABORATORIES INC #103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5 TEL.(604)231-8165

GEOCHEMICAL ANALYSIS CERTIFICATE

TORCH RIVER RESOURCES LTD. Project: Red Bird Report No. 2058053 Sample Type: Cores Date: November 23, 2005

	Au	
SAMPLE	ppb	
79-73 365-370	3	
79-74 2-5	2	
79-74 35-40	1	
79-74 90-95	15	
79-74 95-100	3	
79-74 105-110	5	

79-75 120-125	3
79-75 190-196	2
79-76 120-125	1
79-76 145-150	2
79-76 180-185	1
79-76 215-220	1
79-77 20-25	1
79-78 200-205	9
79-78 280-285	4
79-78 335-340	3
79-78 340-345	6
79-78 345-350	7
79-78 360-365	1
79-78 365-370	6
79-78 370-375	18
79-78 375-380	1
70-70 200-205	2
79-80 15-20	6
79-00 13-20	11
70 81 55-60	5
79-01 33-00	<u> </u>
79-01 100-110	9 1
79-01 110-113	י ב
79-01 110-110	1
79-02 20-20	4
79-62 20-30	
79-82 70-75	3 -
79-82 85-90	5
79-82 110-115	0
79-82 115-120	9
79-83 308.4-310.4	8
79-83 410-415	4
79-83 425-430	2
79-83 440-445	3
79-83 445-450	19
79-84 5-10	6
79-84 20-25	10
79-84 140-145	11
79-84 145-150	6
79-84 150-155	18
79-84 155-160	10
79-84 160-165	6
79-84 165-170	9
79-84 175-180	8
79-84 180-185	60
79-84 185-190	9
79-84 200-205	11
79-84 205-210	7
79-84 210-215	3
79-84 215-220	2
79-85 75-80	1

79-85 115-120	8
79-85 120-125	2
79-85 125-130	1
79-85 130-135	7
79-85 135-140	14
79-86 245-250	3
79-86 255-260	1
79-86 260-265	2
79-86 265-270	1
79-86 270-275	1
79-86 275-280	6
79-86 280-286	16
79-87 110-115	1
79-87 115-120	1
79-87 215-220	12
79-87 220-225	8
79-87 225-230	12
79-87 230-235	11
79-87 240-245	7
79-87 245-250	9
79-88 165-170	15
79-89 65-70	5
79-89 80-85	2
79-89 175-180	3
79-89 180-185	12
79-89 185-190	5
79-89 190-195	7
79-89 195-200	16

APPENDIX 2 SEMIVARIOGRAM MODELS FOR MO AND CU

PIONEER LABORATORIES INC.

#103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5 TELEPHONE (604)231-8165

TORCH RIVER RESOURCES LTD. Project: Red Bird Sample Type: Cores

GEOCHEMICAL ANALYSIS CERTIFICATE Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Wt - Samples weighed in kilogram.

APPENDIX B

am Analyst

Report No. 2057634 Date: August 15, 2005

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	Р	La	Cr	Mg	8a	Ti	В	AL	Na	K	W	₩t*
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppn	ppm	ррт	%	%	ppm	ppm	%	ppm	%	ppm	%	%	*	ppm	kg						
10501 30-35M	344	347	7	26	.6	2	8	85	1.26	8	8	ND	2	29	.5	3	3	11	1.46	.068	13	45	.28	66	.01	3	.44	. 01	.14	2	11.9
10502 35-40M	106	103	4	17	.3	3	6	66	1.13	3	8	ND	3	21	.5	3	3	16	.78	.054	12	68	.30	101	.05	3	.40	.03	.31	2	11.7
10503 40-45M	43	123	11	33	.3	3	4	92	.84	5	8	ND	2	22	.5	3	3	13	.69	.050	13	70	.28	140	.04	3	.43	.03	.30	2	10.7
10504 45-50M	45	94	4	31	.3	3	5	75	.87	6	8	ND	3	19	.5	3	3	18	.64	.055	12	56	.33	137	.05	3	.47	.02	.33	2	11.2
10505 50-55M	8	403	4	20	.6	4	5	107	1.95	11	8	ND	2	58	.5	3	3	12	1.73	.081	18	65	.42	36	.01	3	.33	.03	.16	2	11.2
10506 55-60M	44	236	52	996	.5	3	3	149	.91	5	8	ND	2	30	9.3	7	3	18	.94	.065	12	70	.36	149	.04	3	.44	.03	.32	2	12.0
10507 160-165M	216	641	3	16	1.1	2	4	91	.79	4	8	ND	3	67	.5	3	3	16	1.17	.052	15	49	.29	183	.04	3	.45	.03	.27	2	6.0
10508 165-170M	310	288	3	11	.3	3	3	69	.78	5	8	ND	2	138	.5	3	3	13	1.66	.050	12	69	.29	156	.04	3	.41	.02	.24	2	5.9
10509 170-175M	277	242	3	11	.3	2	3	71	.71	2	8	ND	2	248	.5	3	3	15	.96	.050	13	53	.29	186	.04	3	.41	.02	.27	2	5.7
10510 175-180M	632	551	3	13	.4	2	5	88	-85	9	8	ND	2	273	.5	3	4	18	1,22	.054	14	55	.33	190	.04	3	.51	.02	.29	2	5.8
10511 180-185M	637	303	4	14	.4	2	3	70	.63	8	8	ND	3	341	.5	3	3	17	1.30	.053	16	62	.30	180	.04	3	.53	.02	.26	2	5.3
10512 185-190M	365	305	5	13	.3	2	3	74	.69	11	8	ND	3	37	.5	5	3	12	2.33	.057	13	41	.33	189	.01	3	.42	.01	.08	2	5.8
10513 190-195M	1060	421	3	14	.5	3	3	69	.80	3	8	ND	2	134	.5	3	3	18	1.36	.055	16	70	.35	198	.04	3	.57	.03	.26	2	5.7
10514 195-200M	1199	276	5	13	.3	2	4	78	.66	21	8	ND	3	105	.5	- 4	3	13	1.98	.054	14	48	.31	248	.02	3	.50	.01	.17	2	5.6
10515 200-205M	1151	758	4	14	.6	2	5	77	1.11	10	8	ND	2	310	.5	3	3	15	1.79	.048	13	74	.33	86	.04	3	.53	.02	.24	2	5.7
10516 205-210M	980	407	3	12	.5	3	4	70	.83	2	8	ND	3	267	.5	3	3	19	1.08	.049	14	71	.32	142	.06	3	.45	.03	.31	3	5.7
10517 210-215M	791	4580	3	88	4.7	10	28	496	6.51	14	8	ND	2	189	.5	3	9	196	1.31	.094	7	48	1.76	27	.30	3	1.46	.04	1.55	2	6.6
10518 215-220M	867	2935	3	25	2.4	7	28	224	6.71	21	8	ND	2	50	.5	3	5	131	1.15	- 125	5	55	1.52	21	.23	3	1.23	.04	1.24	2	6.6
10519 220-225M	85	1482	3	34	.7	7	54	241	17.00	23	8	ND	2	22	1.1	3	13	126	.99	.103	2	60	1.58	12	.23	3	1.25	.03	1 .29	4	6.4
10520 225-230M	494	5000	6	55	5.9	8	36	289	6.17	9	8	ND	2	63	.5	3	8	189	.87	.147	5	56	1.12	47	- 19	3	1.20	.04	1.10	5	6.6
10521 230-235M	509	4334	3	63	5.6	6	28	364	5.58	10	8	ND	2	238	.7	3	6	123	2.59	.137	7	41	.93	40	.11	3	1.09	.03	.72	3	6.5
10522 235-240M	340	3088	3	44	4.1	4	26	247	4.44	17	8	ND	2	85	.6	3	6	73	1.47	.108	7	57	.62	39	.06	3	.79	,03	.41	3	5.9
10523 240-245M	787	1013	5	59	1.1	3	9	196	2.99	14	8	ND	2	17	.7	3	3	62	.85	.082	6	51	.63	30	.06	3	.64	.02	.52	2	6.2
10524 245-250M	161	3078	3	130	2.3	17	37	738	8.79	2	8	ND	2	24	1.1	3	6	444	1.06	.095	1	51	3.01	23	.49	3	2.47	.05	2.76	2	6.6
10525 250-255M	226	3102	3	151	3.0	17	41	751	9.30	4	8	ND	2	23	1.1	3	6	452	.79	.081	1	48	3.67	23	.54	3	2 .73	.05	3.14	14	6.7
10527 260-265M	291	3004	3	135	2.9	8	31	509	6.42	5	8	ND	2	52	.8	3	7	222	.64	.060	3	44	1.90	23	.32	3	1.58	.05	1.56	9	5.9

PIONEER LABORATORIES INC.

#103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5

TELEPHONE (604)231-8165

TORCH RIVER RESOURCES LTD. Project: Red Bird Sample Type: Cores GEOCHEMICAL ANALYSIS CERTIFICATE Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Wt - Samples weighed in kilogram.

Analyst 236111 Report No. 2057684 (227) Date: September 06, 2005

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ba	τi	8	AL	Na	ĸ	W	Wt*
SAMPLE	ррп	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ррт	ppm	%	ppm	%	ppm	%	%	%	ppn	kg
08329 430-435M	165	665	125	29	1.9	3	5	, 119	4.56	26	8	ND	2	319	.5	7	3	19	1.48	.060	12	62	.36	40	.03	5	.43	.03	.27	2	5.7
08330 435-440M	365	496	4	22	.9	3	4	112	1.60	7	8	ND	2	295	.5	3	3	23	1.28	.060	15	72	.34	182	.04	3	.42	.04	.28	2	5.2
08331 440-445 M	58	3080	3	185	3.7	13	45	1078	11.06	9	9	ND	4	43	.6	6	3	323	1.52	.071	6	57	1.97	51	.29	14	1.73	.05	1.51	13	5.7
08332 445-450M	206	2047	3	84	2.7	9	40	574	7.93	2	8	ND	2	190	.5	3	3	218	1.31	.065	8	43	1.44	53	.22	7	1.31	.04	1.13	13	6.2
09006 145-150M	344	95	8	17	.3	3	3	95	.77	2	8	ND	2	19	.5	3	3	23	.40	.055	10	58	.36	159	.05	3	.41	.04	.37	2	5.7
09008 155-160M	505	218	3	19	_4	2	3	65	.76	2	8	ND	2	20	.5	3	3	26	.37	.059	11	70	.38	152	.06	3	.43	.04	.37	2	5.7
09009 160-165M	342	128	3	13	.3	3	2	51	.58	2	8	ND	3	40	.5	3	3	15	.90	.046	12	71	.27	154	.03	3	.35	.03	.26	2	5.7
09101 130-135M	204	278	85	76	6.0	2	5	171	2.19	28	8	ND	2	52	.8	57	3	9	2.04	.055	10	49	.34	70	.01	3	.34	.01	.16	2	5.7
09102 135-140M	233	183	3	14	.6	3	3	60	.92	2	8	ND	2	48	.5	3	3	20	.71	.056	14	55	.36	210	.06	3	.44	.04	.34	2	7.1
09103 140-145M	377	215	3	16	.4	2	3	62	1.01	3	8	ND	3	41	.5	3	3	19	1.02	.054	12	43	.33	188	.05	3	.38	.02	.26	2	6.2
09104 145-150M	528	244	5	25	2.1	3	3	62	1.00	7	8	ND	2	41	.5	18	3	20	.82	.053	12	101	.33	213	.05	3	.49	.04	.32	2	6.7
09105 150-155M	768	2794	137	508	68.6	3	24	71	6.38	416	8	ND	2	31	6.2	1117	13	18	.80	.045	9	108	.25	25	.04	15	.41	.03	.26	3	6.2
09106 155-160M	528	114	3	16	.3	3	3	53	.91	2	8	ND	2	49	.5	3	3	21	1.00	.058	12	71	.34	206	.05	3	.45	.03	.34	2	6.2
09107 160-165M	741	255	9	26	.9	3	4	78	1.38	9	8	ND	2	207	.5	9	3	15	1.16	.051	9	78	.28	181	.03	3	.44	.02	.23	2	5.7
09108 165-170M	861	305	6	29	1.0	2	3	128	1.08	13	8	ND	2	244	.5	14	3	11	1.50	.059	12	62	.28	219	.02	3	.38	.03	.21	2	6.7
09109 170-175M	562	293	3	16	.7	3	4	75	.98	6	8	ND	2	98	.5	5	3	12	1.73	.053	10	50	.29	200	.02	3	.33	.02	.20	2	6.2
09110 175-180M	651	751	1041	1514	17.1	2	4	81	2.34	61	8	ND	2	310	12.5	191	3	15	1.75	.053	8	49	.28	75	.03	3	.35	.02	.24	3	6.2
09111 180-185M	369	181	11	17	.8	2	3	62	1.10	7	8	ND	2	346	.5	13	3	15	1.15	.054	9	62	.27	177	.03	3	.36	.03	.26	2	6.2
09112 185-190M	661	406	6	26	.6	2	4	86	1.35	3	8	ND	2	377	.5	11	3	18	1.17	.058	12	71	.33	210	.04	3	.42	.04	.30	2	6.2
09113 190-195M	548	463	3	22	1.0	2	4	87	1.12	5	8	ND	2	130	.5	8	3	18	1.97	.060	11	101	.30	220	.04	3	.44	.03	.27	2	6.2
09114 195-200M	651	377	7	26	.7	2	3	103	.91	6	8	ND	2	273	.5	23	3	16	1.37	.054	9	88	.29	250	.03	3	.44	.04	.28	2	5.7
09115 200-205M	1083	550	21	30	1.0	4	4	90	1.28	4	8	ND	2	310	.5	13	3	19	1.23	.055	7	70	.31	173	.04	3	.38	.03	.29	3	6.7
09116 205-210M	580	531	358	154	7,7	3	4	175	1.40	43	8	ND	2	158	1.6	149	3	9	1.51	.052	6	36	.30	136	.01	3	.23	.01	.14	2	6.2
09117 210-215M	1323	401	9	36	1.2	2	3	65	.85	11	8	ND	2	346	.5	17	3	16	1.58	.052	8	81	.27	232	.03	3	.42	.03	.26	2	5.7
09118 215-220M	943	750	3	25	1.0	2	5	68	1.40	6	8	ND	2	335	.5	8	4	29	1.09	.076	8	99	.46	186	.06	3	.53	.03	.41	2	6.2
09119 220-225M	243	2463	3	76	2.8	7	25	465	5.80	3	8	ND	2	91	.5	5	3	188	.57	.137	6	76	1.82	139	.30	6	1.75	.05	1.61	2	6.2
09120 225-230M	920	2693	17	82	4.1	6	22	353	5.32	58	8	ND	2	30	.5	28	3	111	1.34	.116	6	51	.98	75	.14	7	1.03	.02	.69	3	5.7
09121 230-235M	324	1806	5	31	2.0	3	13	156	2.66	3	8	ND	2	58	.5	3	3	50	1.25	.069	7	55	.42	105	.07	3	.60	.04	.35	2	5.7
09122 235-240M	746	1052	9	47	1.8	2	10	227	2.85	19	8	ND	2	60	.5	33	3	45	1.22	.069	5	58	.44	75	.05	3	.53	.03	.36	2	5.2
09123 240-245M	747	1244	9	77	2,3	6	18	415	4.83	19	8	ND	2	49	.5	18	3	183	.89	-059	3	59	1.99	135	.26	6	1.76	.04	1.67	3	6.2

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Са	Р	La	Cr	Mg	Ba	Tî	B	AL	Na	κ	W	Wt
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ррт	ppm	bbu	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	*	ppm	kg
09124 245-250M	253	1628	49	134	4.1	11	22	545	6.34	29	8	ND	2	360	.9	60	3	260	.88	.077	5	58	2.01	102	.31	6	1.89	.04	1.81	2	6.2
09125 250-255M	104	4253	3	133	5.1	16	47	726	9.90	2	8	ND	2	21	.5	3	3	464	.78	.078	4	58	3.14	89	.46	12	2.56	.05	2.84	4	6.7
09126 255-260M	478	3094	3	39	2.6	4	15	206	3.68	10	8	ND	2	20	.5	3	3	59	.52	.059	5	68	.64	83	.09	4	.70	.04	.53	2	7.1
09127 260-265M	571	3382	4	81	3.5	10	33	392	7.21	8	8	ND	2	130	.5	3	3	206	.80	.061	3	69	1.60	41	.25	4	1.59	.04	1.34	6	6.2
09128 265-270M	76	19 27	9	126	3.1	12	36	812	8.70	13	9	ND	2	26	.5	3	3	293	1.03	.088	2	45	1.99	45	.31	10	1.86	.05	1.57	6	5.7
09129 270-275M	134	2327	4	152	3.2	13	36	620	8.83	4	8	ND	3	19	.5	3	3	268	1.12	.072	2	45	1.58	45	.26	13	1.38	.04	1.25	7	6.7
09201 185-190M	265	252	4	28	.4	2	3	102	1.04	7	8	ND	2	163	.5	5	3	18	1.42	.054	13	87	.35	220	.04	3	.42	.03	.22	2	6.2
09202 190-195M	114	297	21	56	3.5	2	3	102	1.28	20	8	ND	2	330	.5	38	4	21	1.48	.061	15	66	.35	203	.05	3	.42	.03	.28	3	6.7
09203 195-200M	140	307	104	56	5.2	2	3	81	1.85	24	8	ND	2	73	.6	37	4	13	1.82	.090	12	41	.29	104	.01	3	.32	.01	.14	2	6.2
09204 200-205M	212	248	33	101	3.8	3	3	77	1.21	20	8	ND	2	58	.9	30	3	9	2.13	.053	11	51	.31	148	.01	3	.28	.01	.14	5	5.7
09205 205-210M	136	172	9	33	.3	2	3	63	.99	4	8	ND	2	65	.5	3	3	12	1.68	.057	12	59	.29	209	.02	3	.39	.01	.15	2	5.7
09206 210-220M	120	162	8	98	1.7	2	3	76	1.31	11	8	ND	2	529	.9	20	3	16	1.39	.059	12	96	.33	185	.04	3	.43	.03	.26	2	12.4
09207 220-230M	102	296	9	14	.6	2	4	58	1.26	7	8	ND	2	244	.5	5	3	19	1.29	.062	10	79	.30	148	.04	3	.40	.03	.27	2	12.4
09208 230-235M	170	230	29	39	.7	2	2	65	.89	2	8	ND	2	234	.5	5	3	17	1.24	.056	11	64	.29	175	.04	3	.39	.03	.27	2	5.7
09209 235-244M	192	285	25	30	.7	2	3	106	1.09	2	8	ND	2	172	.5	6	3	22	1.12	.062	13	73	.36	163	.06	3	.39	.03	.32	2	12.4
09210 244-250M	907	884	364	515	15.8	2	5	208	1.19	63	8	ND	2	144	5.1	323	3	7	2.17	.057	11	55	.23	145	.01	5	.22	.01	.13	2	6.6
09211 250-255M	402	339	4	20	.4	2	3	89	.98	2	8	ND	2	340	.5	3	3	14	1.31	.059	10	80	.30	250	.03	3	.32	.03	.24	2	6.7
09212 255-260M	387	537	4	27	.4	5	4	111	1.08	2	8	ND	2	343	.5	3	4	19	1.26	.062	14	75	.39	242	.04	3	.39	.04	.30	13	5.7
09213 260-265M	299	368	40	52	2.8	4	17	54	5.25	9	8	ND	2	322	.5	26	5	12	1.59	.050	8	65	. 22	45	.02	5	.25	.02	.20	2	6.7
09214 265-270M	312	482	3	20	.4	3	4	61	1.16	2	8	ND	2	287	.5	3	3	16	1.19	.059	11	88	.33	196	.04	3	.37	.04	.27	2	5.7
09215 270-275M	458	405	3	24	.5	2	4	100	1.13	2	8	ND	2	320	.5	3	3	13	1.38	.054	11	79	.27	163	.03	3	.31	.03	.23	2	6.7
09216 275-280M	354	291	9	27	.3	3	5	93	1.44	2	8	ND	2	305	.5	3	3	13	1.26	.056	11	105	.27	138	.03	5	.33	.04	.24	2	6.7
09217 280-285M	150	506	60	100	5.9	3	5	122	2.50	15	8	ND	2	233	1.2	72	6	12	1.08	.059	9	81	.23	74	.02	6	.29	.03	.23	5	6.7
09218 285-290M	340	352	7	32	.3	3	6	63	1.79	4	8	ND	2	275	.5	3	3	16	1.18	.058	8	63	.26	136	.03	3	.32	.03	-25	2	6.2
09219 290-295M	533	522	62	161	8.6	2	13	67	9.21	38	8	ND	2	204	1.0	86	9	12	1.49	.043	6	59	.20	35	.02	13	.20	.02	.18	6	6.2
09220 295-300M	712	912	35	58	3.5	3	6	76	1.95	29	8	ND	2	411	.6	74	3	13	1.09	.051	8	71	.23	118	.02	3	.31	.02	.22	2	6.2
09221 300-305M	842	690	18	50	2.8	2	6	67	1.35	12	8	ND	2	238	.5	27	3	26	1.70	.079	9	71	.43	185	.05	3	.53	.03	.33	2	6.7
09222 305-310M	473	546	3	29	1.2	3	7	106	1.36	8	8	ND	2	59	.5	8	3	26	1.60	.073	10	66	.44	186	.04	5	.50	.02	.30	2	6.2
09223 310-315M	1226	627	56	128	1.3	2	5	56	1.57	13	8	ND	2	43	.7	8	3	18	1.63	.064	11	51	.31	112	.02	7	.42	.02	.20	2	5.7
09224 315-320M	284	578	3	18	.9	2	6	59	1.16	6	8	ND	2	583	.5	6	3	21	.92	.049	9	37	.30	161	.04	4	.30	.02	.25	2	6.3
09225 320- 325 M	584	479	16	72	7.3	3	3	79	1.18	73	8	ND	2	64	.7	106	3	8	3.26	.027	6	61	.51	141	.01	3	.19	.01	.10	2	5.2
09226 325-330M	1755	1017	35	127	6.9	3	7	219	2.00	53	8	ND	2	35	1.1	75	3	16	1.79	.043	5	54	.41	72	.01	4	.27	.02	.16	2	6.2
09227 330-335M	678	268	28	57	3.0	3	2	60	.69	27	8	ND	2	29	.5	55	3	3	1.11	.024	6	74	.16	169	.01	3	.16	.01	.11	2	6.2
09228 335-340M	380	541	17	63	2.6	2	3	63	.65	21	8	ND	2	38	1.0	66	3	4	1.05	.023	7	86	.12	169	.01	3	.17	.02	.11	2	5.7
09229 340-345M	861	292	11	58	1.8	2	4	70	1.14	28	8	ND	2	35	.5	28	4	4	1.41	.033	8	113	.19	134	.01	3	.18	.01	.11	2	5.7

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	Р	La	Cr	Mg	Ba	Ti	В	AL	Na	К	¥	₩t
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	kg								
09230 345-350M	130	439	14	32	1.8	3	4	64	1.84	14	8	ND	2	145	.5	33	7	6	.77	.023	8	9 2	.12	85	.01	3	.19	.03	.15	2	6.1
09231 350-355M	348	609	4	24	.8	2	5	115	1.54	3	8	ND	2	330	.5	9	3	10	.93	.040	11	73	.19	130	.02	3	.23	.03	.18	2	6.2
09232 355-360M	1431	253	7	42	.7	5	17	80	2.57	4	8	ND	2	189	.5	16	3	11	.91	.040	10	130	. 19	62	.02	4	.29	.04	.21	4	5.7
09233 360-365M	610	1261	14	67	3.2	5	16	299	5.02	8	8	ND	2	231	.5	45	3	68	.95	.044	7	98	.72	56	.09	14	.61	,03	.55	3	5.7
09234 365-370M	224	2450	46	140	10.0	15	30	503	9.01	25	8	ND	2	76	.7	105	3	155	1.29	.061	4	60	1.44	31	.18	25	1.11	.03	1.06	8	6.7
09235 370-375M	226	3765	11	133	4.9	16	37	774	8.72	10	8	ND	2	74	.5	15	3	243	1.41	.079	5	84	2.01	38	.27	3	1.68	.06	1.53	54	6.2
09236 375-380M	141	3221	5	91	4.1	13	35	627	7.39	7	8	ND	2	102	.5	5	3	217	1.27	.083	7	74	1.47	50	.21	3	1.24	.06	1.14	7	6.2
09237 380-385M	129	548	5	26	1.0	3	6	154	1.84	6	8	ND	4	261	.5	9	3	25	,96	.055	17	105	.35	126	.04	4	.46	.05	.28	3	6.2
09301 165-170M	284	117	8	18	.3	3	3	103	1.22	2	8	ND	2	160	.5	3	3	18	.75	.053	13	81	.28	202	.05	3	.38	.03	.28	2	5.2
09302 170-175M	501	136	3	29	.3	3	4	84	1.01	2	8	ND	2	276	.5	3	3	19	.72	.059	15	95	.33	255	.05	3	.43	.05	.31	2	6.2
09303 175-180M	527	162	3	23	.3	3	3	73	.93	2	8	ND	2	280	.5	3	3	20	.93	.056	12	116	.33	198	.05	3	.44	.04	.33	2	7.1
09304 180-185M	576	2545	49	146	19.7	3	4	102	3.60	242	10	ND	2	116	1.1	314	3	11	1.10	.062	10	87	.23	40	.02	3	.36	.02	.22	3	6.2
09305 185-190M	454	326	74	114	6.2	2	3	110	2.36	23	8	ND	2	397	.9	45	3	16	1.11	.061	10	72	.28	80	.03	3	.34	.02	,24	2	5.7
09306 190-195M	144	466	115	133	8.3	2	3	178	1.54	28	8	ND	3	114	1.3	52	5	11	2.43	.064	15	92	.38	121	.01	3	.37	.02	.18	2	5.7
09307 195-200M	610	252	30	50	2.2	3	5	118	1.27	14	8	ND	2	271	.5	27	3	12	1.58	.057	12	95	.27	160	.02	3	.38	.03	.22	2	6.2
09308 200-205M	194	435	77	33	2.7	4	6	103	3.48	29	8	ND	2	75	.5	40	7	12	1.25	.061	9	103	.24	50	.02	3	.40	.03	.25	2	5.2
09309 205-210M	545	434	9	34	.9	3	4	128	1.10	18	8	ND	2	56	.5	19	3	14	1.73	.061	13	77	.29	226	.03	3	.46	.03	.25	2	5.7
09310 210-215M	625	388	7	28	.6	2	5	86	.86	5	8	ND	2	222	.5	17	3	14	.97	.052	9	107	.24	169	.03	3	.32	.03	.27	13	5.7
09311 215-220M	563	1065	14	222	5.4	4	7	114	1.58	133	8	ND	2	903	1.7	163	3	15	1.28	.056	10	101	.28	150	.03	3	.45	.03	.26	2	5.7
09312 220-225M	663	364	19	54	2.1	3	4	186	.98	18	8	ND	2	230	.5	45	6	9	1.54	.058	9	94	.23	167	.01	3	.34	.03	.21	2	6.2
09313 225-230M	655	407	16	40	1.0	2	4	201	.98	22	8	ND	2	55	.5	28	5	8	2.30	.061	13	76	.30	178	.01	3	.27	.01	.12	2	6.2
09314 230-235M	929	269	3	37	.3	3	4	117	1.15	12	8	ND	2	463	.5	9	3	14	1.45	.064	12	71	.32	162	.03	3	.42	.02	.23	2	6.7
09315 235-240M	552	293	42	55	.7	3	4	255	1.50	13	8	ND	2	79	.5	18	3	8	3.01	.056	8	80	.36	117	.01	3	.29	.01	.13	2	5.2
09316 240-245M	483	447	27	45	1.7	2	4	145	1.16	9	8	ND	2	231	.5	26	3	12	1.72	.057	10	93	.28	164	.02	3	.34	.02	.21	2	6.2
09317 245-250M	509	260	3	22	.4	4	5	88	1.54	3	8	ND	2	937	.5	3	3	17	1.11	.057	9	63	.29	157	.04	3	.37	.03	.27	2	6.7
09318 250-255M	463	363	5	30	.3	3	7	108	1.62	2	8	ND	2	317	.5	7	3	14	1.61	.059	11	75	.26	129	.03	3	.34	.03	.25	2	6.2
09319 255-260M	379	539	11	41	.3	4	12	102	1.82	3	8	ND	2	532	.5	3	3	13	1.31	.060	11	80	.28	154	.03	3	.35	.03	.26	2	6.2
09320 260-265M	373	404	5	19	.4	3	15	69	3.06	2	8	ND	2	319	.5	5	3	10	.98	.052	10	95	.20	65	.02	3	.31	.03	.22	11	6.2
09321 265-270M	645	333	6	34	1.6	3	6	95	1.30	5	8	ND	2	335	.5	18	3	15	1.24	.059	11	80	.29	160	.03	3	.35	.03	.26	2	6.2
09322 270-275M	236	416	23	31	1.6	3	18	107	3.36	11	8	ND	2	171	.5	19	4	10	2.43	.050	9	88	.31	62	.02	7	.31	.02	.21	2	5.7
09323 275-280M	447	340	4	25	.3	2	11	95	1.64	2	8	ND	2	550	.5	3	4	16	1.25	.061	14	83	.28	115	.04	3	.39	.04	.27	2	6.7
09324 280-285M	483	351	3	32	.7	3	5	105	1.28	2	8	ND	3	297	.5	6	3	22	1.10	.063	14	110	.34	186	.05	3	.46	.05	.32	2	6.7
09325 285-290M	575	413	29	44	1.2	3	6	82	1.22	4	8	ND	2	324	.5	23	3	16	1.34	.061	12	79	.29	167	_04	3	.37	.04	.27	2	5.7
09326 290-295M	713	523	9	50	.8	4	4	106	1.21	2	8	ND	2	247	.5	4	3	19	2.01	.059	13	102	.32	196	.04	3	.43	.04	.29	2	5.7
09327 295-300M	626	401	5	32	.6	2	4	94	1.09	4	8	ND	2	258	.5	4	3	16	2.47	.053	13	92	.29	200	.03	3	.35	.03	.24	2	5.7

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cď	Sb	Bi	v	Ca	Ρ	La	Cr	Mg	Ba	Tī	B	AL	Na	к	W	Wt
SAMPLE	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppn	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	*	ppm	%	ppm	%	%	*	ppm	kg
09328 300-305M	745	691	277	805	11.3	3	8	108	5.91	55	8	ND	2	166	6.8	166	3	11	1.83	.043	10	74	.27	32	.02	3	.28	.02	.16	2	4.8
09329 305-310M	1093	528	4	41	.7	4	4	106	1.16	2	8	ND	2	441	.5	5	3	18	1.17	.055	14	88	.31	230	.04	3	.41	.04	.28	2	4.8
09330 310-315M	1008	1817	31	129	7.3	10	22	418	5.60	30	8	ND	2	130	.5	94	5	144	1.02	.080	6	67	1.52	56	.25	3	1.38	.03	1.33	4	6.2
09331 315-320M	339	5001	99	258	21.7	15	43	932	8.16	82	8	ND	2	528	1.3	246	11	291	1.46	.061	5	83	2.36	50	.34	3	1.95	.04	1.91	3	5.7
09332 320-325M	311	2340	48	114	3.5	7	17	381	4.04	3	8	ND	2	532	.5	1 1	3	122	1.38	.059	9	63	1.13	103	.16	3	.99	.03	.85	2	5.7
00777 725-770M	633	273	17	255	1 በ	2	5	151	1.49	2	8	ND	3	57	2.1	10	3	14	2.44	-048	12	68	.54	109	.01	3	.30	.02	.14	2	5.7
09333 323 3304	267	350	3/	82	1 2	- र	5	141	1 53	- र	8	ND	- र	197	.7	11	- 3	22	1.24	.057	15	63	.37	209	.05	3	.47	.04	.30	2	6.2
09334 330-333M	241	337	70	74	1.2	5	2/.	17/	2 67	10	8	ND	4	61	5	0	3	13	1 37	039	10	106	-32	75	.02	10	.37	.03	.20	2	6.2
0077/ 7/0 7/EM	400	241 740	39 2		1.3	7	24 E	105	1 7/	17	8	ND	-	357	.,	,	7	10	1 20	050	16	07	.35	252	.04	5	.47	.04	.29	2	6.2
U9336 340-345M	4/9	360	0 (F	20	 	د ر		205	1.04	0 00	0	ND	9 5	200	ر. وع	104	7	47	1 70	050	17	01	72	8/	10	20	78	201	58	2	5 7
09337 345-350M	272	1/69	40	791	12.7	0	12	290	4.24	00	0	NU	5	200	5.0	100	1	00	1.37	.0.39		,,	., 2	U 4	• 10	20		.04		-	2.,
09338 350-355M	511	4562	5	149	4.1	13	42	733	9.67	5	12	ND	2	53	.5	3	5	348	1.24	.069	4	61	2.14	58	.34	3	1.96	.05	1.92	9	6.7
09339 355-360M	276	3127	6	116	3.6	10	25	633	7.28	2	8	ND	3	91	.5	4	3	356	1.05	.064	5	67	1.92	84	.32	10	1.82	.05	1.76	15	5.7
09340 360-365M	234	2866	4	91	2.7	9	21	546	5.54	2	8	ND	2	118	.5	3	3	225	1.21	.070	6	87	1.44	145	.20	3	1.71	.08	1.06	4	6.2
09341 365-369M	314	3922	403	359	24.0	7	18	669	5.15	154	8	ND	2	96	4.0	233	3	100	2.10	.069	6	83	.93	64	.06	7	.98	.04	.54	2	5.2
09401 150-155M	324	269	130	116	7.0	3	5	139	1.95	16	8	ND	3	33	1.0	46	3	16	1.02	.055	14	85	.27	97	.03	3	.38	.03	.26	2	6.2
09402 155-160M	385	903	259	323	71.2	3	14	73	13.75	117	8	ND	3	35	3.7	457	5	10	.69	.040	10	110	.18	12	.02	3	.31	.02	.21	2	6.2
09403 160-165M	247	169	13	52	1.7	3	4	109	1.76	6	9	ND	2	175	.5	14	3	15	1.19	.056	13	85	.27	147	.03	4	.41	.03	.26	2	6.2
09404 165-170M	201	158	4	20	.3	4	3	73	.90	2	8	ND	2	51	.5	3	3	18	.88	.049	13	85	.30	189	.04	3	.42	.03	.27	2	6.2
09405 170-175M	394	283	4	166	.5	4	3	88	1.14	36	8	ND	2	72	1.3	13	3	17	1.29	.056	14	75	.28	190	.04	3	.45	.03	.24	2	6.2
09406 175-180M	339	223	6	42	1.1	3	4	102	1.27	20	8	ND	3	108	.5	9	3	18	2.01	.066	17	54	.36	229	.04	3	.63	.02	.25	2	5.7
00/07 180-1854	208	281	18	31	29	4	3	71	1.15	16	8	ND	2	153	.5	26	3	15	1.54	.061	14	88	.29	213	.03	4	.49	.03	.25	2	6.2
07407 180 18541	106	2/0	12	26	2.0	2	ב ד	 83	1 30	20	16	ND	2	219	.5	27	3	15	1.64	. 080	11	89	.29	158	.02	3	.42	.03	.26	2	5.7
00400 100-105	1.67	266	5	15	۲.0	۲ ۲	5	73	1 .01	17	8	ND	2	116	5		3	12	1.55	.054	15	52	.29	229	.02	3	.39	.02	.18	2	5.2
00409 190-190M	2/1	200	ر ہ	17	د. ء	2	7	123	1.04	21	о 8	มก	2	46	.,	18	ב ג	11	2 08	065	11	47	.40	208	_01	4	.42	.02	.16	2	4.8
00410 193-2004	241	370	7	17	2.2	2	7	170	1.62	27	10	ND	2	40		50	ت ح	8	1.80	057		89	.25	105	.01	3	.35	.02	.17	2	5.7
09411 200-203M	510	217		70	3.2	2	,	100	1.02	21	10	10	•				_									-				_	- -
09412 205-210M	565	412	6	16	.6	3	4	68	1.13	9	8	ND	2	366	.5	5	3	18	2.40	.057	13	115	.33	200	.03	3	.47	.03	.24	2	5.7
09413 210-215M	494	350	39	49	5.4	3	4	83	1.69	37	8	ND	2	42	.6	53	3	12	1.41	.062	10	76	.41	104	.01	5	.38	.02	.13	2	6.7
09414 215-220M	474	329	4	21	.3	2	5	88	1.30	6	10	ND	2	427	.5	3	3	18	1.30	.062	15	93	.33	195	.04	4	.51	.03	.28	2	6.2
09415 220-225M	905	625	32	44	2.7	2	3	96	4.97	55	10	ND	2	32	.5	33	10	10	1.49	.050	6	96	.43	28	.01	3	.32	.01	.14	2	5.7
09416 225-230M	511	531	91	142	1.3	4	10	73	1.62	16	8	ND	2	296	1.2	18	3	14	1.24	.051	8	68	.30	102	.02	3	.34	.03	.19	2	6.2
09417 230-235M	817	581	6	35	1.6	2	6	74	1.56	23	12	ND	2	357	.5	21	3	14	1.18	.051	7	75	.31	123	.02	3	.35	.03	.22	2	6.7
09418 235-240M	386	2266	8	51	1.9	9	19	307	4.44	11	8	ND	2	137	.5	4	3	177	1.12	.071	5	81	1.55	123	.28	9	1.53	.04	1.43	2	6.2
09419 240-245M	670	4112	3	86	3.9	9	31	540	7.83	21	10	ND	3	146	.5	8	3	225	1.19	.162	6	68	1.88	83	.30	15	1.78	.05	1.63	3	6.7
09420 245-251M	671	2534	9	58	3.8	7	22	395	5.92	40	10	ND	2	41	.5	29	3	197	2.14	.188	5	57	.85	60	.12	3	.78	.03	.62	3	6.7
09604 205-210M	323	248	68	45	3.2	3	4	150	.98	12	8	ND	3	219	.5	37	3	18	.97	.069	15	88	.35	215	.03	7	.43	.03	.30	2	6.2

ELEMENT	Мо	Cu	Pb	Zn	Ag	Nī	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ba	Ŧi	В	Al	Na	κ	W	Wt
SAMPLE	ppm	bbu	ppm	ppm	ppm	bbw	ppm	ppm	%	ррп	ppm	ppm	ppm	ppm	ppn	ppm	ррп	bbu	%	%	ppm	ppm	%	ppm	%	ppm	%	x	%	ppm	kg
09606 215-220M	407	186	20	27	.5	4	4	159	1.09	4	8	ND	2	309	.5	11	3	10	1.22	.060	12	88	.30	234	.02	3	.36	.04	.25	2	6.7
09612 245-250M	647	365	3	17	.3	2	4	41	.84	4	8	ND	2	159	.5	3	3	16	.93	.035	7	63	.23	123	.03	4	.36	.03	.23	2	6.2
09613 250-255M	1103	227	5	26	.3	3	3	56	.70	3	8	ND	4	70	.5	3	3	13	.84	.012	11	88	.21	76	.02	5	.30	.03	.19	2	6.7
09701 6-10M	1592	848	3	84	.9	19	14	158	3.68	46	9	ND	2	10	.8	3	6	48	.17	.023	5	46	.37	63	.05	7	.86	.02	.50	2	4.8
09702 10-15M	1951	626	6	82	.5	21	25	86	4.49	49	8	ND	2	11	.5	4	4	39	.26	.087	6	60	.36	49	.04	8	.69	.02	.42	2	5.7
09703 15-20M	627	691	8	36	.3	5	9	50	1.56	12	8	ND	2	20	.5	5	3	22	.48	.055	11	75	.30	134	.03	3	.56	.03	.29	2	5.8
09704 20-25M	1096	3853	19	69	7.6	6	12	52	4.53	51	8	ND	2	15	.5	8	54	16	.43	.050	17	84	.17	37	_01	3	.42	.02	.18	7	5.2
09705 25-30M	906	1288	5	53	.6	11	14	70	2.29	17	8	ND	2	23	.6	3	3	42	.50	.060	12	68	.39	107	.05	3	.98	.06	.41	5	6.2
09706 30-35M	1212	1587	8	68	1.0	18	16	99	2.85	28	8	ND	2	19	1.9	5	3	67	.72	.073	11	73	.59	101	.07	4	1.06	.03	.56	2	6.2
09707 35-40M	1353	1269	3	58	.6	29	23	201	3.24	18	8	ND	2	39	.5	5	3	97	.32	.073	9	82	.80	110	.11	3	1.39	.05	.89	3	6.2
09708 40-45M-284	2000	1473	6	47	.7	14	17	76	2.97	30	8	ND	2	7	.5	4	3	42	.07	.019	7	57	.24	71	.03	3	.64	.02	.36	2	6.3
09716 80-85M	933	543	13	30	1.1	4	7	93	1.66	39	8	ND	2	26	.5	20	3	9	1.33	.050	8	69	.29	115	.01	3	.33	.01	.12	2	5.8
09717 85-90M	602	313	9	24	.3	5	9	88	1.53	26	8	ND	2	20	.5	5	3	8	.98	.046	8	80	.28	118	.01	3	.28	.01	.09	8	5.2
09718 90-95M	588	250	9	28	.3	2	7	120	1.49	17	8	ND	2	22	.5	3	3	6	1.21	.049	5	33	.34	107	.01	3	.16	.01	.07	2	5.6
09719 95-100M	700	404	7	44	.7	3	4	93	1.01	13	8	ND	2	21	.5	4	3	6	1.10	.045	9	52	.23	174	.01	3	.19	.01	.07	2	5.2
09721 105-110M	348	816	19	41	1.4	5	7	86	2.91	19	8	ND	2	21	.5	8	3	7	1.03	.046	8	106	.28	60	.01	3	.33	.01	.14	3	5.9
09722 110-115M	856	1328	17	243	4.2	4	7	73	5.58	44	8	ND	2	15	1.3	7	3	7	.68	.035	6	88	.20	31	-01	3	.23	.01	.15	2	6.3
09727 135-140M	545	854	7	79	.6	4	8	52	2.34	29	8	ND	2	16	.6	5	3	13	.59	.040	6	91	.22	78	.01	3	.43	.02	.22	2	6.2
09731 155-160M	99	3167	6	89	3.6	17	49	503	10.96	22	8	ND	2	18	.5	3	3	400	.94	.064	4	69	3.39	57	.40	9	2.52	.04	2.66	13	6.1
09732 160-165M	150	5890	3	129	7.6	20	67	764	12.10	18	8	ND	2	20	.6	3	3	351	1.24	.078	4	53	2.86	60	.32	3	2.13	.04	2.13	3	5.9
09733 165-170M	63	2182	3	92	2.8	15	54	537	11.51	21	8	ND	2	9	.5	3	3	388	.61	.071	2	64	2.61	38	.35	3	2.12	.07	2.13	5	5.2
09901 5-10M	787	738	3	62	.9	21	15	163	2.77	19	8	ND	2	11	.6	4	3	50	.47	.177	6	32	-38	69	.06	3	.86	.02	.45	2	6.2
09902 10-15M	270	638	3	63	.4	12	9	132	1,98	9	8	ND	2	15	.5	5	3	39	.32	.090	7	84	.40	133	.06	3	.81	.04	.49	2	6.2
09903 15-20M	328	616	4	30	.3	6	6	70	1.25	3	8	ND	2	15	.5	3	3	21	.36	.055	11	78	.27	166	.04	3	.45	.03	.29	2	5.7
09904 20-25M	237	41 1	4	28	.3	5	8	214	.82	5	8	ND	2	13	.5	3	3	17	.23	.042	12	95	.21	135	.03	3	.42	.03	.25	2	6.1
09905 25-30M	195	506	11	66	.3	8	8	105	1.28	5	8	ND	2	14	.5	4	3	48	.27	.054	10	115	.45	176	.05	3	.86	.04	.43	2	2.0
09906 55-60M	460	1293	14	747	1.0	271	11	276	2.98	17	8	ND	2	31	.7	10	3	68	1.58	.038	5	89	.77	281	.11	10	1.20	.03	.82	>100	6.6
09907 60-65M	498	683	5	53	.6	17	12	208	2.63	44	8	ND	2	38	.5	5	3	46	2.15	.036	4	59	.75	98	.03	3	.80	.02	.40	4	6.0
09908 65-70M	614	385	4	48	.6	12	11	180	2.18	29	8	ND	3	37	.8	7	3	56	1.65	.051	6	67	.62	131	.07	5	.92	.02	.52	2	6.2
09909 70-75M	1116	192	3	18	.3	5	3	55	.65	7	8	ND	2	41	.5	3	3	12	1.62	.041	7	101	.21	154	.01	3	.36	.02	.15	15	5.7
09910 75-80M	1028	230	3	30	.4	2	3	61	.72	14	8	ND	2	101	.5	9	3	12	2.31	.037	6	35	.23	112	.02	3	.22	.02	.13	2	6.2
09911 80-85M	1001	3473	35	46	3.8	4	5	92	2.15	44	8	ND	2	51	.5	16	4	13	1.66	.046	7	96	.27	77	.02	3	.38	.03	.20	2	5.9
09912 85-90M	572	626	243	1742	9.0	2	3	205	2.48	51	8	ND	2	106	16.5	162	7	6	6.55	.034	5	64	.29	77	.01	3	.20	.01	.10	48	6.2
09913 90-95M	1942	508	20	37	1.2	2	2	75	1.55	25	8	ND	2	28	.5	30	3	7	1.30	.040	6	45	.17	85	.01	3	.16	.01	.09	2	5.7
09914 95-100M	618	371	7	24	.7	3	3	109	.92	42	8	ND	2	51	.5	21	3	11	3.22	.046	7	78	.30	173	.01	3	.28	.01	.09	2	5.9

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	В	Al	Na	ĸ	¥	₩t
SAMPLE	ppm	ppa	ppm	ppm	ppm	ppm	ppm	ppm	26	ppm	bbu	ppm	ppn	ppm	bbw	ppm	opm	ppm	76	76	ppm	ppm	76	ppm	ኤ	ppm	76	ኤ	76	ppm	Kġ
09915 100-105M	423	347	4	19	.3	2	3	149	1.06	18	8	ND	2	68	.5	5	3	15	4.43	.046	7	81	.45	198	.01	3	.36	.01	.12	2	5.7
09916 105-110M	440	518	34	143	1.5	3	6	267	4.32	27	8	ND	2	60	1.5	25	3	14	5.27	.039	5	79	.56	50	.01	3	.23	.01	.10	2	5.7
09917 110-115M	499	454	17	140	2.8	3	3	157	1.45	56	8	ND	2	35	1.6	80	3	10	2.08	.054	8	96	.40	161	.01	3	.37	.01	.10	2	4.8
09918 115-120M	673	359	9	22	.3	3	4	116	1.02	23	8	ND	2	94	.5	9	3	14	1.43	.046	8	40	.23	188	.02	3	.28	.02	.16	4	6.2
09919 120-125M	715	357	11	18	.7	3	3	111	1.07	44	8	ND	3	145	.5	11	3	11	1.91	.046	8	66	.39	208	.01	3	.33	.02	.15	2	6.2
09920 125-130M	336	781	16	36	1.1	5	10	220	2.62	93	8	ND	2	89	.5	20	5	26	5.61	.033	4	37	.87	72	.01	3	.20	.01	.10	4	6.2
09921 130-135M	403	812	6	25	1.0	6	10	268	2.47	53	8	ND	2	41	.5	4	3	50	2.26	.030	6	69	.65	113	.03	3	.41	.01	.24	3	6.6
09922 135-140M	264	2475	6	29	2.6	14	29	378	5.98	151	8	ND	2	61	.5	4	3	95	3.78	.028	3	46	1.07	39	.01	3	.27	.01	.10	4	5.7
09923 140-145M	627	2340	3	71	2.1	18	38	742	7.24	137	8	ND	2	64	.5	3	3	175	3.73	.051	2	58	1.29	51	.08	3	.71	.01	.39	4	6.1
09924 145-150M	261	2181	9	56	2.2	14	30	455	6.25	112	8	ND	2	52	.5	4	3	150	2.83	.075	5	61	.98	55	.01	3	.38	.01	.09	3	6.7
09925 150-155M	516	1939	3	17	2.0	4	6	161	2.09	63	8	ND	2	49	.5	6	3	19	2.74	.046	11	91	.79	93	.01	3	.26	.01	.10	2	6.6
09926 155-160M	456	2238	45	41	3.0	6	24	276	5.17	71	8	ND	2	45	.5	7	7	68	2.49	.048	3	76	.97	34	.04	3	.49	.02	.32	3	5.9
09927 160-165M	327	2398	3	37	2.6	11	26	331	4.74	123	8	ND	2	78	.5	4	3	9 9	4.41	.060	1	55	1.26	48	.01	3	.29	.01	.07	3	6.2
09928 165-170M	905	1489	17	36	1.8	9	22	263	3.94	82	8	ND	2	69	.5	8	3	55	4.85	.071	3	61	1.14	44	.01	3	.24	.01	.11	5	5.9
09929 170-175M	208	1749	3	109	1.7	10	30	583	6.41	104	10	ND	2	80	.5	4	3	121	4.22	.097	3	45	1.32	75	-01	3	.40	.01	.07	2	6.7
09930 175-180M	261	2263	6	75	2.9	7	25	397	5.41	116	8	ND	2	53	.5	3	3	85	2.79	.116	4	43	.96	62	.04	3	.58	.01	.25	4	6.5
09931 180-185M	388	2583	6	72	2.9	5	17	348	3.83	148	8	ND	2	67	.5	6	3	51	4.03	.105	5	44	1.04	78	.01	3	.30	.01	.08	3	5.7
09932 185-190M	144	1315	4	38	2.0	4	10	222	2.61	117	8	ND	2	52	.6	12	3	34	3.10	.068	9	53	.89	93	.01	5	.37	.01	.11	2	5.3
09933 190-195M	180	928	21	35	1.9	9	53	410	7.46	95	8	ND	2	101	.5	11	3	45	5.88	.059	4	50	1.66	29	.01	3	.23	.01	.07	4	6.2
09934 195-200M	370	2711	9	42	3.0	9	21	288	3.68	136	8	ND	2	51	.5	10	3	52	3.10	.088	7	40	1.00	71	.03	6	.44	.01	.20	3	5.7
09935 200-205M	456	1760	6	58	1.9	5	17	363	3.70	119	8	ND	2	52	.5	7	3	48	3.07	.084	4	42	1.04	70	.03	5	.43	.01	.20	3	5.3
09936 205-210M	155	1078	8	15	1.5	3	9	228	2.82	40	8	ND	3	55	.5	7	3	29	3.45	.069	10	17	.92	64	-01	6	.13	.01	.06	3	4.8
09937 210-215M	88	1898	4	68	2.3	12	42	628	8.12	94	8	ND	3	99	.5	10	3	148	4.48	.069	5	37	1.56	31	.01	10	.34	.01	.06	3	5.6
09938 215-220M	137	1682	37	110	4.5	8	24	638	5.92	179	8	ND	2	62	1.0	29	7	105	2.%	.064	6	39	1.20	36	.03	3	.50	.01	.25	2	5.2
09939 220-225M	120	1716	10	81	2.8	17	30	780	6.56	61	8	ND	2	74	.5	8	3	151	3.30	.084	11	48	1.84	71	.19	3	1.53	.02	1.22	3	6.7
09940 225-230M	186	3124	15	61	12.5	5	31	412	5.89	88	8	ND	2	71	.5	3	8	60	3.62	- 124	12	19	.85	28	.01	3	.27	.01	.12	3	6.2
09941 230-235M	66	1755	35	87	4.7	5	20	462	4.92	156	8	ND	2	66	.6	11	6	44	3.31	.115	10	27	.58	29	.01	3	.30	-01	.10	2	5.7
09942 235-240M	114	3077	3	60	5.1	6	23	562	5.31	48	8	ND	2	744	.5	4	3	80	2.97	.114	7	59	.74	69	.05	4	.92	.08	.34	5	6.2
09943 240-245M	70	2031	3	54	3.7	6	38	520	6.37	4	8	ND	2	154	.5	3	6	94	1.99	.123	7	62	.68	56	.07	3	.95	.07	.37	8	6.6
10101 125-130M	278	242	3	9	.3	3	3	75	.74	18	8	ND	2	42	.5	3	3	13	2.54	.042	8	45	.32	166	-01	3	.21	.01	.05	2	5.7
10107 155-160M	471	276	5	10	.6	2	2	110	1.01	46	8	ND	2	64	.5	9	3	7	5.30	.039	5	48	.32	140	.01	3	.20	.01	.07	2	5.7
10108 160-165M	501	184	62	132	1.3	2	3	105	1.43	23	8	ND	2	37	1.5	5	3	5	2.87	.039	7	59	.27	90	.01	3	.20	.01	.10	2	5.2
10109 165-170M	662	236	13	100	.8	2	4	127	1.48	22	8	ND	2	53	1.2	5	3	6	3.46	.037	5	66	.29	83	.01	3	.21	.01	.08	2	5.7
10111 175-180M	219	694	3	8	.6	2	6	86	1.59	32	8	ND	2	54	.5	3	3	14	2.74	.073	10	44	.42	103	.01	3	.40	.02	-19	2	5.7
10116 200-205M	417	688	5	14	.6	3	5	80	1.76	52	8	ND	2	33	.5	11	3	7	1.69	.054	8	62	.36	80	.01	3	.27	.01	.13	2	5.7

•

ELEMENT SAMPLE	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	B	Al %	Na %	К %	₩ pom	Wt kg
40447 205 2404	770						,		4 44	70				7/		~ ~	 F		2 12	055			77	457	01	7	74	04	- 00		5 3
10117 205-210M	17/5	415	4	У Э1	.3 7	12	4	150	2 20	74	0	ND	2	110	د. ∡	(5	7	70	1 07	.055	0 4	50	.33	09	.01	7	.20	.01	.07	2	J.2
10125 255-240M	1305	7/50	7	109	.1	17	14	522	2.27	117	0	ND	2	77	0. 2	ר ד	7	177	1.00	071	7	37	1 55	70	-02	2		.02	-21	2	4.0
10120 200-2004	207	2420 200	ر د	100	4.5	14	44	722	00,00	110	0 0	ND	2	11	ر. ع	J	י ז	111	1.57	0/1	7	45	17	121	.02	7	.05	.01	.20	2	5.0
10505 115-120M	1/0	177	0 7	13 14	.4 7	2	י ר	40	.50	20	0	ND	۲ ۲	40	ر. ء	כ ד	7	11	2 14	070	، ۲	75	•17 20	157	.02	7		.01	. 10	2	J.1 6 7
MCC1-0C1 00C01	147	157	2	10		2	2	00		20	0	NU	2	55	ر.	5	J	12	2.10	.000	,		• 20	1.74	.01	,		.01	.04	4	0.2
10310 140-145M	103	724	4	19	.8	4	11	141	2.61	14	8	ND	2	680	.5	3	3	23	1.32	.070	9	48	.40	116	.03	3	.45	-03	.27	2	5.7
10311 145-150M	223	366	42	33	1.4	4	10	68	2.63	47	8	ND	2	220	.5	9	3	15	1.33	.050	8	95	.24	74	.02	18	.43	.02	.21	2	5.7
10315 165-170M	321	218	19	38	.6	3	4	62	1.05	20	8	ND	2	216	.5	10	4	17	1.13	.047	7	61	.26	157	.03	4	.38	.03	.23	2	6.2
10316 170-175M	286	238	5	11	.5	3	3	58	.75	21	8	ND	2	218	.5	5	3	19	1.71	.054	7	34	.33	133	.03	5	.30	.01	.18	2	6.6
10317 175-180M	209	302	1545	951	2.7	3	4	119	1.05	34	8	ND	2	78	9.4	14	3	13	3.88	.055	7	53	.35	169	.01	5	.40	.02	.16	2	5.7
10318 180-1858	320	1647	2542	2583	26 N	5	6	610	2 63	100	8	ND	2	63	26.8	676	20	13	4 54	035	7	52	49	67	01	10	25	01	11	2	52
10310 185-100M	173	202	25	44	15	र	उ	252	70	32	8	ND	3	82	<u></u> ς	20	4	10	1 02	052	י א	28	30	134	.01	4	19	.01	.09	2	5.9
10325 215-220M	761	263	7	17	0	3	र	05	88	<u>л</u>	8	מא	2	358	5	<u>२</u>	6	13	06	045	õ	64	24	151	03	7	34	.03	24	2	57
10327 225-230M	475	235	, 6	6	7	2	3	117	78	13	8	ND	4	271	5	3	3	12	1 42	.041	8	67	.21	102	.02	, 3	.29	.02	.17	2	6.2
10328 230-235M	347	276	3	6	.4	3	3	71	.77	5	8	ND	2	282	.5	3	4	13	1.12	_039	9	103	.21	117	.03	4	-32	.03	.21	2	6.3
	341	210	-	Ŭ	• •	2	2	•••		-		ne	-	LOL		•				•••			•=•		100					-	
10331 245-250M	539	568	7	14	1.2	4	5	140	1.25	35	8	ND	2	280	.5	4	4	20	2.26	.054	13	54	.41	192	.02	3	.33	.02	.16	2	5.9
10332 250-255M	689	568	3	17	1.4	5	6	1 99	1.68	9	8	ND	2	215	.5	3	4	60	1.47	.054	10	65	.43	159	.05	7	.45	.03	.32	2	6.2
10334 260-265M	403	1119	10	25	2.1	5	9	200	2.31	32	8	ND	2	127	.5	3	3	67	1.91	.113	10	36	.74	147	.06	3	.62	.02	.37	2	6.2
10339 285-290M	174	4875	5	54	7.2	14	28	297	5.67	134	8	ND	2	24	.5	5	9	191	.95	.097	4	58	.59	51	.05	14	.59	.03	.41	2	5.7
10341 295-300M	203	1155	7	25	1.8	4	8	158	1.57	123	8	ND	4	169	.5	3	3	45	1.40	.051	8	60	.48	200	.03	9	.47	.02	.29	2	6.2
10350 340-345M	166	423	4	13	.7	3	4	97	1.26	49	8	ND	2	178	.5	3	28	10	1.90	.046	11	62	.30	136	.01	3	.26	.01	.12	2	6.2
10353 355-360M	239	283	3	8	_4	2	7	82	1.25	13	8	ND	2	380	.5	3	3	11	1.31	.045	9	44	.25	160	.02	3	.30	.03	.18	2	6.7

For Mo 2000 ppm and greater, assay digestion is required for correct data.

For Ag greater than 35 ppm, assay digestion is required for correct data.

PIONEER LABORATORIES INC.

#103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5

TELEPHONE (604)231-8165

TORCH RIVER RESOURCES LTD. Project: Red Bird Sample Type: Cores GEOCHEMICAL ANALYSIS CERTIFICATE

Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Wt- Samples weighed in kilogram.

Analyst PSAM Report No. 2057659 (224) Date: August 29, 2005 22

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cď	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	Ti	В	AL	Na	к	¥	 ₩t*
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	kg
11601 245-250M	105	694	3	24	.5	21	17	166	3.05	13	8	ND	2	42	.5	3	3	76	1.14	.060	5	64	.91	96	.09	5	1.16	.04	.77	2	6.2
11602 250-255M	157	219	6	18	.3	6	7	90	1.61	5	8	ND	2	76	.5	3	3	31	1.07	.061	7	67	.39	117	.03	3	.49	.04	.33	2	5.7
11603 255-260M	208	613	5	30	.5	30	17	224	4.20	45	8	ND	2	18	.6	4	3	82	.60	.045	2	41	.96	92	.16	5	1.43	.04	1.09	2	5.2
11604 260-265M	1333	932	3	33	1.0	34	27	159	4.24	242	8	ND	2	14	.5	7	3	82	.49	.005	2	66	.81	52	.11	6	1.06	.02	.85	2	6.7
11605 265-270M	473	1116	3	11	1.2	14	16	38	1.78	36	8	ND	4	17	.5	3	3	9	.45	.013	5	90	.11	47	_01	3	.24	.03	.15	2	5.7
11606 270-275M	1907	2756	3	25	3.1	5	10	53	1.46	20	8	ND	3	20	.5	4	6	7	.59	.008	4	88	.11	55	.01	3	.18	.02	.13	2	6.2
11607 275-280M	784	853	31	13	3.0	3	9	62	1.56	84	8	ND	2	295	.5	3	3	12	.87	.035	6	111	.21	94	.01	3	.30	.03	.20	2	6.7
11608 280-285M	514	707	16	38	1.6	4	10	89	1.89	929	12	ND	2	76	.5	7	3	14	1.36	.047	6	69	.25	83	.01	6	.30	.01	.17	2	5.7
11609 285-290M	337	436	52	119	2.4	10	12	146	2.16	52	8	ND	3	47	1.4	4	3	26	1.37	.053	5	95	.46	81	_01	5	.44	.02	.25	2	5.7
11610 290-295M	389	902	727	823	19.3	5	10	173	3.46	116	8	ND	3	34	8.8	5	48	9	.98	.044	6	75	.28	38	.01	7	.23	.01	.13	2	6.2
11611 295-300M	474	805	36	39	2.1	9	9	59	1.64	50	8	ND	2	55	.5	3	3	13	.68	.044	6	61	.17	100	.01	3	.34	.02	.23	2	6.2
11612 300-305M	487	1007	10	27	1.2	15	16	154	3.10	87	8	ND	2	180	.5	5	3	76	.72	.052	4	62	.84	112	.12	5	1.10	.04	.85	2	6.2
11613 305-310M	335	1215	5	15	1.4	3	9	61	1.63	17	8	ND	2	363	.5	3	3	22	.89	.062	9	81	.36	146	.03	3	.44	.03	.32	2	5.7
11614 310-315M	262	1052	451	3707	8.3	2	9	236	3.79	78	8	ND	2	539	39.4	6	13	16	1.58	.070	9	72	.33	59	.01	6	.35	.02	.21	2	5.7
11615 315-320M	128	2147	3	34	2.2	3	16	75	2.59	16	8	ND	2	514	.8	3	3	45	1.31	.119	14	71	.65	129	.06	3	.67	.04	.49	2	5.7
11616 320-325M	533	4192	4	39	4.1	6	28	77	3.36	4	8	ND	2	107	.9	3	3	63	1.24	.076	11	67	.64	71	.06	3	.66	.04	.50	2	4.8
11617 325-330M	651	2938	3	31	2.8	6	13	75	2.90	7	8	ND	2	97	.5	3	3	30	.79	.061	9	78	.35	81	.04	4	.44	.03	.34	2	5.7
11701 50-55M	651	680	57	34	2.4	12	14	222	2.82	16	8	ND	2	58	.5	3	3	49	.95	.039	5	64	.41	66	.05	3	.73	.05	.42	2	6.0
11702 55-60M	404	1314	353	88	12.1	19	88	979	16.24	58	8	ND	3	37	2.0	6	24	32	1.71	.039	8	56	.48	15	.03	11	.34	.02	.28	2	6.7
11703 60-65M	334	1304	15	66	2.4	23	20	972	3.52	116	8	ND	2	89	.5	3	3	67	3.06	.052	6	39	.75	75	.04	3	.61	.01	.40	2	5.9
11704 65-70M	826	1173	17	91	2.9	15	13	1074	2.64	49	8	ND	2	78	1.0	3	3	39	2.71	.047	7	46	.59	84	.03	3	.47	.02	.34	2	5.7
11705 70-75M	301	630	19	51	1.4	2	4	324	1.00	52	8	ND	2	99	.5	3	3	6	1.48	.053	13	66	.24	193	.01	3	.21	.02	.14	2	6.2
11706 75-80M	248	360	35	702	2.4	1	5	221	1.03	37	8	ND	3	66	6.9	4	3	10	1.23	.052	11	75	.24	168	.02	3	.28	.02	.17	2	6.0
11707 80-85M	518	1009	1389	3093	32.0	3	12	831	3.26	197	8	ND	2	48	36.4	41	58	6	2.02	.046	12	77	.42	39	.01	3	.18	.02	.09	2	6.2
11708 85-90M	49 1	499	43	100	1.4	3	7	733	1.45	59	8	ND	2	67	1.0	6	3	6	2.65	.055	10	69	.24	107	.01	3	.18	.02	.11	2	6.2
11709 90-95M	483	451	205	52	5.3	1	5	781	1.47	34	10	ND	2	58	.5	9	13	9	2.89	.050	10	70	.37	104	.01	3	.20	.01	.12	2	5.7
11710 95-100M	578	408	11	96	.8	2	4	146	.88	16	8	ND	2	49	.9	3	3	20	1.04	.053	10	70	.28	178	.04	3	.34	.03	.27	2	5.7
11711 100-105M	331	522	10	23	.9	1	3	91	.79	12	8	ND	2	51	.5	3	3	18	.83	.054	9	46	.27	139	.03	3	.26	.02	.22	2	6.2
11712 105-110M	248	544	8	17	1.0	2	3	118	.88	15	8	ND	2	222	.5	3	3	17	.96	.053	9	68	.27	168	.03	3	.33	.02	.23	2	6.2
11713 110-115M	588	677	152	636	4.4	1	2	305	.64	29	9	ND	2	57	5.8	3	4	6	1.60	.040	8	87	.18	1 9 4	.01	3	.17	.01	.10	2	5.7

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	ប	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Ρ	La	Cr	Mg	8a	Ti	8	Al	Na	κ	¥	Wt
SAMPLE	ppm	ppm	ppm	ppm	ppn	ppm	ppm	ppm	%	ppm	ppπ	ppm	ppm	ppm	ppn	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	kg
11714 115-120M	283	420	21	43	1.1	1	4	177	.91	16	8	ND	2	281	.5	3	4	15	.93	.057	9	73	.25	170	.03	3	.29	.02	.21	2	6.2
11715 120-125M	160	450	10	70	1.1	2	3	368	.72	14	9	ND	2	241	.6	3	3	17	1.37	.056	9	71	.30	181	.03	3	.32	.02	.22	2	6.7
11716 125-130M	625	459	3	15	.6	3	5	63	1.00	4	8	ND	2	317	.5	3	3	20	2.55	.052	8	71	.27	131	.03	3	.30	.02	.25	2	5.9
11717 130-135M	284	635	177	299	7.0	2	6	1541	1.56	50	10	ND	3	222	3.3	28	21	10	4.59	.059	12	39	.32	92	.01	3	.37	.01	.13	2	6.0
11718 135-140M	159	3 21	10	53	.7	2	3	106	.80	15	8	ND	2	294	.5	3	3	19	1.32	.053	9	71	.29	196	.02	3	.32	.02	.20	2	6.5
11719 140-145M	331	620	27	964	2.7	2	4	18 2	.80	40	8	ND	2	69	10.4	6	3	9	2.03	.056	9	74	.34	206	.01	3	.21	.01	.12	2	6.7
11720 145-150M	232	320	37	1075	2.4	2	2	159	.63	7	8	ND	2	182	11.1	10	3	9	.99	-042	10	136	.20	244	.01	3	.26	.02	.18	2	5.7
11721 150-155M	298	569	28	671	2.6	2	3	203	.72	38	8	ND	2	155	6.8	5	5	9	1.59	.044	9	76	.24	240	.01	3	.21	.02	.13	2	5.7
11722 155-160M	407	610	9	33	1.6	3	3	127	.72	13	8	ND	2	306	.5	3	3	23	.80	.048	10	72	.27	155	.03	5	.36	.03	.28	2	6.7
11723 160-165M	405	3659	754	1026	42.0	2	3	753	1.53	25	9	ND	2	113	13.6	3	90	22	1.38	.048	7	80	.33	108	.02	5	.32	.02	.20	2	5.9
11724 165-170M	401	517	27	148	2.3	2	3	145	.68	60	8	ND	3	154	1.3	13	3	23	.98	.051	10	74	.32	173	.03	6	.35	.02	.25	2	4.8
11725 170-175M	210	547	8	26	1.1	2	3	111	.65	8	8	ND	2	135	.5	3	3	25	.69	.049	10	81	.30	138	.04	3	.39	.03	.30	2	5.4
11801 150-155M	249	374	3	12	.6	21	13	95	1.81	8	8	ND	2	39	.5	3	3	65	.68	.020	3	50	.66	78	.08	3	1.02	.04	.71	2	6.6
11802 155-160M	454	320	4	16	.3	21	10	123	2.26	19	8	ND	2	40	.5	3	3	76	.98	.021	3	42	.74	115	.09	3	1.13	.04	.76	2	6.7
11803 160-165M	338	1917	6	44	1.6	23	22	203	3.51	2	8	ND	2	36	.9	3	3	150	.65	.058	3	68	1.50	217	.25	3	2.05	.16	1.38	2	6.5
11804 165-170M	221	1229	3	39	1.2	24	17	223	3.42	6	8	ND	2	33	.6	4	3	146	.70	.070	3	84	1.61	235	.26	5	2.00	.14	1.37	2	6.2
11805 170-175M	345	1239	11	29	1.3	22	17	191	2.68	16	8	ND	2	188	.5	3	3	104	1.16	.031	4	75	1.00	166	.15	3	1.55	.11	1.01	2	5.7
11806 175-180M	1057	535	10	162	.3	26	20	169	3.30	38	8	ND	2	22	2.0	3	3	93	.38	.026	2	51	.71	104	.15	3	1.41	.05	.94	2	6.2
11807 180-185M	89 0	342	5	20	.6	22	16	171	3.06	36	8	ND	2	21	.5	4	3	81	.51	.019	4	54	.72	111	.14	8	1.40	.04	.96	2	6.1
11808 185-190M	306	517	15	52	.8	24	16	277	3,55	4	8	ND	2	87	.6	3	3	150	1.11	.052	3	72	1.18	207	.21	3	1.90	.08	1.20	2	3.8
11809 190-195M	149	1578	17	80	1.6	41	29	390	4.96	11	8	ND	2	132	.7	6	3	172	3.15	.056	4	113	1.43	179	.23	9	2.97	.18	1.26	2	6.0
11810 195-200M	428	1499	44	94	2.0	13	15	176	2.61	7	8	ND	2	182	1.5	4	3	87	2.70	.056	9	73	1.31	174	.11	6	2.22	.14	.99	2	5.7
11811 200-205M	513	1223	6	32	1.6	14	14	128	2,35	6	8	ND	2	91	.5	3	3	87	1.26	.054	7	61	.99	139	.11	4	1.16	.07	.75	2	6.4
11812 205-210M	457	852	5	15	1.6	3	7	202	1.22	11	8	ND	4	279	.5	3	3	20	1.58	.058	11	76	.32	175	.03	7	.39	.03	.27	2	6.5
11813 210-215M	457	566	7	16	.9	2	6	94	1.15	6	8	ND	3	228	.5	3	3	23	1.10	.056	11	73	.33	181	.04	3	-44	.04	.30	5	6.7
11814 215-220M	205	592	9	15	1.4	2	3	100	.82	6	8	ND	2	139	.5	3	3	24	.72	.061	11	81	.31	164	.05	3	.45	.04	.33	2	6.2
11815 220-225M	385	383	4	11	.3	3	4	79	.91	4	8	ND	2	262	.5	3	3	22	1.23	.049	9	93	.31	179	.04	3	.41	.03	.27	2	6.7
11816 225-230M	281	443	3	12	.8	3	5	83	1.08	3	8	ND	3	189	.5	3	3	24	1.24	.059	12	73	.32	141	.05	3	.41	.03	.31	2	6.3
11817 230-235M	522	559	3	12	1.0	3	5	79	.94	4	8	ND	3	202	.5	3	3	23	.97	.050	11	108	.31	156	.05	3	.42	.04	.32	14	6.2
11818 235-240M	282	482	4	10	.6	2	5	74	1.01	5	8	ND	2	295	.5	3	3	17	1.29	.048	9	75	.26	166	.02	3	.33	.02	.21	12	6.1
11819 240-245M	400	503	176	196	5.4	3	5	233	.81	14	8	ND	2	219	1.8	3	8	10	1.63	.055	9	75	.25	224	.01	3	.23	.02	.15	3	5.7
11820 245-250M	283	440	13	19	.7	1	4	94	.69	6	8	ND	2	402	.5	3	3	15	1.28	.040	8	82	.22	195	.01	3	.28	.02	.20	2	5.2
11821 250-255M	550	335	3	10	.6	2	4	53	.76	2	8	ND	2	137	.5	3	3	25	1.00	.046	9	78	.28	118	.05	4	.34	.03	.31	7	6.2
11822 255-260M	207	536	3	14	.8	3	4	93	1.03	5	8	ND	2	264	.5	3	3	26	1.35	.057	10	56	.33	166	.05	3	.40	.03	.32	2	6.2
11901 5-10M	532	714	87	184	2.9	3	8	145	1.11	50	8	ND	4	39	1.9	5	3	7	1.18	.052	10	49	.15	171	.01	8	.34	.01	.16	2	4.8

ELEMENT	Мо	Cu	Pb	Zn	Ag	Nī	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	В	Al	Na	ĸ	¥	Wt
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	*	ppm	kg
11902 10-15M	745	604	1072	1283	6.4	4	8	149	.98	52	8	ND	2	45	15.9	5	6	2	1.28	.031	5	99	.14	100	.01	3	.24	.01	.16	2	5.6
11903 15-20M	403	540	118	285	1.9	4	5	91	. 89	21	8	ND	3	56	2.8	4	3	13	1.44	.052	7	79	. 19	192	.01	10	.35	.02	.18	2	5.7
11904 20-25M	188	1147	20	46	1.9	3	6	75	1.20	18	8	ND	3	36	.5	3	3	27	.71	.056	12	64	.31	194	.04	5	.45	.03	.33	2	6.2
11905 25-30M	139	859	6	41	1.3	3	6	75	1.25	16	8	ND	2	32	.5	3	3	25	.79	.058	12	65	.30	196	.04	3	.42	.03	.31	2	6.8
11906 30-35M	608	1040	9	45	1.8	1	5	79	.77	14	8	ND	2	68	.5	3	3	17	.89	.046	8	38	.24	165	.02	6	.25	.02	.19	2	6.1
11907 35-40M	369	887	10	29	1.4	2	4	112	.81	8	8	ND	2	196	.5	3	3	18	1.06	.046	8	65	.23	172	.02	6	.32	.02	.23	2	6.3
11908 40-45M	141	905	10	36	1.9	2	5	76	.90	11	8	ND	3	42	.5	4	3	25	1.02	.059	11	79	.29	175	.04	7	.42	.03	.30	13	5.7
11909 45-50M	325	865	8	45	1.8	3	4	64	.90	8	8	ND	3	52	.5	4	3	26	1.18	.058	14	77	.30	184	.03	9	.43	.03	.31	2	6.5
11910 70-75M	1388	809	9	15	1.3	2	4	69	.78	3	8	ND	2	2035	.5	5	3	22	.76	.056	9	49	.27	218	.03	7	.39	.03	.30	2	5.5
11911 75-80M	527	398	4	15	.5	2	2	63	.66	2	8	ND	2	94	.5	3	3	15	1.36	.043	9	74	.22	187	.01	4	.29	.02	.20	2	6.0
11912 80-85M	230	1028	10	18	1.5	3	6	71	1.25	14	8	ND	2	442	.5	3	3	19	1.58	.057	11	84	.31	249	.02	6	.36	.02	.22	2	6.1
11913 85-90M	295	2670	8	23	4.1	3	4	60	1.03	3	8	ND	2	42	.5	3	6	19	.95	.040	8	91	.23	162	.02	5	.31	.02	.23	2	5.0
11914 90-95M	434	1268	8	19	2.0	4	6	54	1.33	3	8	ND	2	29	.5	3	3	27	.54	.049	8	81	.28	111	.04	12	-40	.03	.33	2	5.3
11915 95-97.8M	340	630	4	15	1.0	3	3	71	.84	4	8	ND	2	330	.5	3	6	22	1.28	.041	8	83	.26	129	.04	4	.35	.03	.27	2	3.3
12001 70-75M	107	624	249	57	9.5	9	15	1280	3.72	2	8	ND	2	85	1.0	3	16	134	2.98	.061	6	50	1.52	132	.18	8	1.63	.08	1.15	2	6.7
12002 75-80M	179	769	120	1064	4.8	11	25	1279	4.33	25	8	ND	2	79	10.8	3	6	109	3.07	.068	11	31	1.16	89	.11	15	1.13	.04	.84	2	6.2
12003 80-85M	329	1167	25	46	3.5	6	23	367	4.45	32	8	ND	2	53	.9	5	3	75	1.27	.061	7	64	.97	62	.10	17	.96	.05	.78	2	6.7
12004 85-90M	630	1550	11	32	2.4	8	24	205	4.29	19	8	ND	2	197	.6	4	5	81	1.00	.053	5	55	1.16	83	.11	13	1.05	.04	.85	2	5.7
12005 90-95M	332	1704	3	51	2.0	38	27	212	4.47	9	8	ND	2	50	.8	3	3	128	.71	.108	4	124	1.82	141	.23	20	1.91	.14	1.37	2	5.7
12006 95-100M	553	2313	9	38	2.5	16	30	178	4.47	3884	8	ND	2	157	.6	3	3	117	1.79	- 059	6	58	1.23	78	.09	12	1.13	.03	.76	2	5.7
12007 100-105M	212	898	5	35	1.5	14	20	216	3.46	23	8	ND	2	43	.7	4	3	100	1.08	-065	6	50	1.13	116	.14	13	1.12	-04	.89	2	6.2
12008 105-110M	161	1531	11	43	2.1	17	32	212	4.29	6	8	ND	2	27	.6	4	3	153	.61	.064	3	61	1,58	117	.19	16	1.77	.11	1.29	2	6.5
12009 110-115M	350	1683	53	41	3.0	25	35	264	4.07	22	8	ND	2	48	.5	3	3	111	1.27	.048	2	66	.91	79	.12	10	1.32	.08	.83	2	6.7
12010 115-120M	138	906	19	43	2.1	22	17	417	3.32	48	8	ND	2	90	1.0	4	3	92	2.45	.046	2	40	1.12	129	.10	16	.94	.03	.72	2	5.0
12011 120-125M	131	1413	7	36	2.1	17	22	250	3.78	17	8	ND	2	200	.8	6	3	125	1.13	.057	6	75	1.18	131	.16	16	1.41	.10	1.03	2	5.7
12012 125-130M	192	142 <u>2</u>	11	79	2.8	15	28	314	4.47	33	8	ND	2	185	1.0	6	3	95	.99	.059	6	47	1.28	117	.16	20	1.20	.03	1.05	2	5.7
12013 130-135M	354	3247	10	49	5.4	17	31	232	4.28	17	8	ND	2	168	.9	3	3	103	1.10	.064	7	65	1.22	106	.15	13	1.19	.05	1.01	2	5.7
12014 135-140M	328	2095	11	45	2.8	15	19	289	3.40	43	9	ND	2	108	.7	3	8	95	2.43	.066	8	60	1.31	137	.12	14	1.19	.03	.80	2	5.7
12015 140-145M	261	1687	17	35	3.5	15	22	1429	4.18	28	8	ND	2	826	1.1	4	9	75	3.78	.058	7	69	1.27	129	.12	11	.97	.04	.79	2	5.7
12016 145-150M	246	1689	47	349	2.7	14	16	282	3.51	5	8	ND	2	70	4.5	4	3	116	1.12	.058	5	69	1.51	152	.19	14	1.52	.08	1.26	2	6.2
12017 150-155M	450	2327	156	80	6.4	15	24	577	4.15	10	8	ND	2	126	1.2	4	13	65	1.27	.055	6	71	.95	57	.10	16	.86	.04	.72	2	6.7
12018 155-160M	210	2344	57	57	5.2	12	21	290	3.82	12	8	ND	2	136	1.0	3	3	122	1.32	.068	7	71	1.58	115	.18	14	1.58	.08	1.31	2	6.7
12019 160-165M	381	2998	362	324	10.8	11	19	458	4.01	20	8	ND	2	647	4.0	5	15	115	1.71	.069	8	60	1.64	101	.16	15	1.35	.05	1.22	2	3.8
12020 165-170M	570	539	49	70	1.7	2	9	180	1.58	11	8	ND	2	263	.6	3	4	11	1.51	.055	9	90	.23	116	.01	5	.32	.03	.22	2	5.7
12021 170-175M	211	1239	9	15	2.0	3	11	65	2.09	12	8	ND	2	194	.5	3	4	17	1.15	.056	9	67	.27	98	.02	10	.38	.03	.26	2	6.0

ELEMENT	Mo	Cu	Рb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	ದ	Sb	Bi	v	Ca	Ρ	La	Cr	Mg	Ba	Ti	В	Al	Na	κ	W	Wt
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppn	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	x	ppm	kg
12022 175-180M	1178	947	206	648	3.9	3	9	212	1.41	14	8	ND	2	317	6.2	3	6	9	1.33	.046	7	53	.20	125	.01	10	.20	.02	.16	2	6.2
12023 180-185M	573	718	21	41	1.6	2	11	181	1.48	18	8	ND	3	429	.5	3	3	8	1.17	.047	9	82	.18	143	.01	9	.25	.02	.17	2	5.7
12024 185-190M	850	673	80	78	2.3	2	7	298	1.42	14	8	ND	2	210	.9	3	6	5	1.69	.046	9	71	.21	123	.01	6	.15	.02	.11	2	6.2
12025 190-195M	951	1164	349	431	7.0	2	10	615	2.08	43	8	ND	3	80	4.4	3	14	4	2.64	.039	8	72	.16	60	.01	12	.17	.02	.12	2	5.7
12026 195-200M	984	913	522	381	8.1	3	11	227	1.91	74	8	ND	3	63	3.8	3	15	3	1.35	.036	7	81	.10	63	.01	11	-20	.01	.14	2	5.7
12027 200-205M	1608	540	359	667	6.0	3	4	268	1.01	55	8	ND	3	51	6.6	3	19	3	1.54	.029	8	88	.10	145	.01	3	.17	.01	.12	2	4.8
12028 205-210M	555	536	104	121	2.7	3	5	109	.85	38	8	ND	3	45	1.6	3	5	4	.93	.014	7	95	.07	98	.01	3	.16	.02	.12	2	5.7
12029 210-215M	721	1787	438	735	11.3	2	9	203	3,45	77	8	ND	3	142	7.7	3	33	5	1.10	.018	5	93	.08	42	.01	4	.16	.01	.13	2	5.7
12030 215-220M	470	1637	15	24	3.0	3	8	132	1.25	22	8	ND	2	140	.6	3	3	9	1.39	.041	7	92	.18	136	.01	3	.24	.02	.19	2	5.7
12031 220-225M	577	652	24	45	2.0	3	5	135	.86	29	8	ND	2	255	.6	3	4	9	1.79	.059	8	67	.20	169	.01	3	.22	.02	.15	2	6.2
12032 225-230M	255	595	10	10	1.1	3	5	126	.88	55	8	ND	2	369	.5	3	4	8	1.86	.050	9	92	.23	251	.01	3	.30	.02	.15	2	5.5
12033 230-235M	514	1896	7	15	2.9	3	6	123	1.08	45	8	ND	Z	505	.7	3	3	10	1.57	.045	8	74	.19	152	.01	3	.21	.02	.14	2	5.7
12034 235-240M	213	755	17	10	1.5	3	5	129	1.00	13	8	ND	2	455	.5	3	3	10	1.32	.049	8	87	.20	206	.01	3	.26	.02	.17	2	5.9
12035 240-245M	452	615	15	23	1.4	3	3	156	.83	14	8	ND	2	365	.6	3	3	10	1.55	.049	8	77	.20	211	.01	3	.22	.02	.14	2	6.7
12036 245-250M	1138	369	43	42	1.5	2	3	153	.57	16	8	ND	2	451	.6	3	3	9	1.24	.043	8	58	.17	253	.01	3	.21	.02	.16	2	5.7
12037 250-255M	383	467	54	156	1.7	2	3	231	.64	16	8	ND	2	343	1.4	3	4	7	2.02	.048	8	84	.18	376	.01	3	.20	.02	.15	2	5.7
12038 255-260M	370	597	9	9	-8	2	7	60	1.05	5	8	ND	2	222	.5	3	3	19	1.27	.052	7	79	.25	131	.02	3	.32	.02	.26	2	6.2
12039 260-265M	296	582	11	10	.8	2	5	81	1.18	7	8	ND	2	193	.5	3	3	22	1.14	.058	9	42	.32	138	.03	3	.37	.03	.30	2	6.7
12040 265-270M	197	917	12	9	1.5	2	5	88	1.09	3	8	ND	2	229	.5	3	3	21	1.37	.054	8	91	.29	149	.02	3	.36	.03	.28	2	6.7
12041 270-275M	265	796	9	12	1.5	1	3	64	.81	2	8	ND	2	168	.5	3	3	25	1.12	.058	9	86	.34	150	.04	4	,37	.03	.33	2	6.2
12042 275-280M	172	692	7	25	1.5	3	4	99	.93	2	8	ND	2	243	.5	3	3	25	1.33	.058	7	70	.33	164	.03	5	.36	.03	.31	2	6.2
12043 280-285M	264	545	104	555	1.6	3	5	181	.97	8	8	ND	2	239	5.5	3	3	13	1.58	.054	8	64	.23	203	.01	6	.34	.02	.25	2	4.8
12044 285-290M	159	697	10	31	1.6	3	5	119	.89	5	8	ND	3	423	.6	3	4	15	1.57	.056	10	84	.21	256	.01	8	,33	.02	.20	2	5.2
12045 290-295M	147	847	65	608	3.1	2	6	200	.96	34	8	ND	2	90	6.1	3	6	10	2.87	.050	8	48	.16	177	.01	3	.29	.01	. 15	2	5.0
12046 295-300M	100	1130	679	1838	11.6	3	8	160	1.55	60	8	ND	3	77	18.1	3	22	11	1.24	.047	8	53	.15	94	.01	8	.26	.02	.16	2	6.2
12101 6-10M	42	331	23	30	2.0	2	2	101	.55	5	8	ND	3	11	.5	3	3	11	.14	.053	9	61	.10	226	.01	3	.31	.02	.20	2	2.5
12102 10-15M	39	484	6	20	2.1	2	2	71	.50	2	8	ND	3	11	.5	3	3	14	.18	.043	10	61	.15	137	.02	5	.32	.02	.20	2	4.5
12103 15-20M	178	548	13	30	.9	2	2	47	_51	2	8	ND	2	11	.5	3	5	11	.22	.051	9	71	.12	127	_01	3	.30	.02	.22	2	4.1
12104 20-25M	729	604	3	42	.9	2	3	64	.68	2	8	ND	3	21	.8	3	3	16	.72	.043	8	103	.17	101	.02	4	.36	.03	.22	2	4.8
12105 25-30M	546	431	8	24	.7	2	3	58	.59	2	8	ND	3	29	.5	3	3	17	.67	.047	8	70	.20	154	.02	5	.35	.03	.24	2	3.7
12106 30-35M	559	488	6	29	.6	3	2	73	.56	10	8	ND	2	35	.5	3	3	11	.95	.037	9	70	.16	127	.01	3	.29	.02	.19	2	3.8
12107 35-40M	378	763	39	37	1.1	2	2	69	.58	2	8	ND	3	105	.5	3	4	18	.79	.049	9	76	.24	135	.02	4	.37	.03	.26	2	5.4
12108 40-45M	1634	399	11	16	.9	2	2	78	.42	2	8	ND	2	145	.5	3	4	14	.76	.039	7	108	.18	109	.02	4	.28	.02	.21	2	5.4
12109 45-50M	1212	465	3	13	1.2	2	2	87	.46	2	8	ND	3	315	.5	3	3	15	1.30	.047	9	65	.22	152	.01	5	.32	.02	.20	2	5.7
12110 50-55M	1219	615	3	9	.7	1	2	46	.52	2	8	ND	2	626	.5	3	3	16	1.64	.044	8	48	.22	178	.01	3	.43	.02	.19	2	5.2

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Ço	Mn	Fe	As	U	Au	Th	Sr	Cđ	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	8	Al	Na	к	W	Wt
SAMPLE	ppm	ppm	ppm	ppm	ppm	bbw	ppm	ppm	%	ppm	ppm	bbu	ppm	ppm	ppm	ppn	ppm	ppm	%	%	ppm	ppm	*	ppm	*	ppn	*	x	%	ppm	kg
12111 55-60M	695	604	5	12	1.5	3	2	47	.56	2	8	ND	3	350	.5	3	3	25	.54	.047	8	71	.29	131	.04	6	.35	.03	.28	2	4.8
12112 60-65M	557	563	3	15	.8	2	3	84	.64	2	8	ND	2	572	.5	3	3	18	1.25	.049	10	81	.23	176	-02	5	.38	.03	.23	2	5.7
12113 65-70M	974	594	7	8	1.1	3	3	66	.63	2	8	ND	3	373	.5	3	3	14	1.32	.047	9	77	.19	163	.02	6	.32	.03	.21	2	5.7
12114 70-75M	433	679	3	10	1.0	2	3	68	.71	2	8	ND	3	825	.5	3	5	19	1.10	.045	9	65	.27	162	.03	5	.39	.03	.25	2	5.7
12115 75-80M	628	736	5	20	.9	2	3	69	.63	2	8	ND	3	373	.5	3	3	16	1.23	.045	9	77	.22	160	.02	5	.39	.02	_ 21	2	6.2
12116 80-85M	763	710	3	37	.9	2	3	47	.60	2	8	ND	2	386	.5	3	7	16	1.25	.046	9	74	.24	173	.02	3	.39	.03	.23	2	6.0
12117 85-90M	889	1061	4	27	2.0	2	3	69	.67	2	9	ND	3	184	.5	4	3	17	1.77	.042	8	86	.24	138	.01	8	.38	.02	.18	2	5.7
12118 90-95M	829	812	96	359	3.1	1	3	74	.79	2	8	ND	2	155	3.7	4	6	14	1.24	.051	10	74	.20	149	.01	3	.39	.02	.22	2	5.7
12119 95-100M	548	1197	78	276	15.9	2	3	74	1.74	3	8	ND	2	60	3.6	8	15	9	1.54	.051	10	83	.15	122	.01	3	.33	.02	.19	2	5.2
12120 100-105M	742	543	3	25	.8	2	2	54	.68	2	10	ND	2	205	.5	3	7	22	1.02	.048	11	99	.25	125	.03	3	.43	.03	.29	2	6.7
12121 105-110M	726	889	12	45	2.7	4	3	68	1.30	3	8	ND	3	171	.5	3	12	22	1.26	.053	11	87	.24	119	.03	5	.47	.03	.27	5	5.9
12122 110-115M	682	553	92	78	1.2	2	3	71	.88	2	10	ND	3	329	.8	3	5	18	1.08	.049	11	88	.25	147	.03	4	.46	.03	.26	2	5.7
12123 115-120M	827	510	7	48	1.0	2	3	58	.99	2	8	ND	2	68	.5	3	6	13	1.40	.046	10	69	. 19	136	.01	4	.36	.02	. 19	2	5.7
12124 120-125M	498	644	9	21	1.0	2	3	63	.76	2	9	ND	2	221	.5	3	5	22	1.43	.047	9	72	.30	127	.03	3	.44	.03	.26	2	5.9
12125 125-130M	527	841	3	25	1.4	2	4	60	.91	2	8	ND	2	352	.5	3	6	27	1.26	-052	9	92	.34	147	.04	4	.44	.03	.32	Z	6.4
12126 130-135M	672	790	9	152	1.6	2	5	58	1.82	5	8	ND	2	692	1.6	3	10	16	1.04	.052	10	5 9	.18	153	.01	7	.44	.02	.28	3	6.0
12127 135-140M	529	2167	39	185	6.1	3	5	71	1.77	6	8	ND	3	525	2.0	8	15	22	1.23	- 050	10	70	.25	143	.02	13	.57	.03	.32	2	5.0
12128 140-145M	760	500	12	79	.7	2	3	61	.66	2	8	ND	2	99	.9	3	5	15	1.54	.046	11	65	.20	203	.01	3	.50	.02	.21	2	5.5
12129 145-150M	224	1328	7	13	1.8	2	5	45	1.15	2	9	ND	2	181	.5	3	7	20	1.32	.051	11	80	.24	150	.02	3	.55	.03	.25	2	6.7
12130 150-155M	376	830	4	14	1.2	3	5	64	.94	2	18	ND	2	400	.5	3	4	21	1.57	.064	9	39	.28	165	.02	5	.54	.03	.28	2	6.1
12131 155-160M	185	904	5	13	1.0	3	6	85	1.28	2	10	ND	2	463	.5	3	3	30	1.04	.062	10	74	.44	233	.06	4	.59	.05	.32	2	6.2
12132 160-165M	249	1156	3	15	1.1	2	6	54	1.16	2	8	ND	2	205	.5	3	3	22	.90	.051	9	90	.33	147	.03	3	.53	.04	.30	2	7.1
12133 165-170.6M	162	1380	6	17	1.8	2	6	73	1.09	3	10	ND	3	231	.6	3	4	22	1.27	.058	9	50	.31	185	.03	10	.56	.03	.27	2	6.7
12201 95-100M	500	686	12	53	1.5	7	5	293	1.35	2	8	ND	2	125	.7	3	16	22	1.40	.063	12	94	.34	256	.03	9	.57	.02	.36	2	1.0
12202 100-105M	1346	591	14	269	1.8	10	7	384	1.83	6	8	ND	2	98	3.1	3	12	27	1.66	.021	12	114	.31	174	.01	13	.48	.01	.32	2	4.8
12203 105-110M	478	790	4	83	1.6	8	6	296	2.57	4	10	ND	2	145	.8	3	11	48	2.27	.283	15	91	.57	143	.04	6	.71	.02	.43	2	5.2
12204 110-115M	299	1211	9	68	2.6	8	8	495	3.55	37	8	ND	2	126	.5	3	5	36	3.18	.081	23	68	.90	153	.02	4	.70	.02	.43	2	5.2
12205 115-120M	413	1278	3	62	1.9	12	13	444	3.80	9	10	ND	3	69	.5	6	3	142	1.38	.073	7	72	1.70	267	.26	13	2.76	.28	1.45	2	4.3
12206 120-125M	669	1002	5	308	1.7	10	7	304	2.72	2	8	ND	2	341	3.0	3	3	77	1.21	.029	16	77	.85	148	.12	5	.89	.03	.73	3	6.2
12207 125-130M	335	1210	11	109	2.6	10	9	419	2.92	14	8	ND	3	356	.9	6	14	74	1.71	.037	14	85	.63	178	.06	17	.70	.03	.53	2	5.2
12208 130-135M	408	1163	32	295	7.2	10	8	122	6.55	34	8	ND	2	27	3.1	3	90	30	1.11	.051	5	104	.15	33	-01	12	.63	.01	.39	2	4.8
12209 135-140M	511	1360	7	441	2.8	10	7	188	2.54	19	8	ND	2	279	4.1	3	9	47	1.17	-045	9	95	.31	112	.05	7	.69	.02	.47	2	5.7
12210 140-145M	462	1109	8	405	1.9	10	7	244	1.74	20	8	ND	2	162	3.9	3	7	65	1.36	.032	10	83	.46	154	.09	5	.85	.03	.61	3	5.7
12211 145-150M	442	753	28	276	1.4	8	5	189	1.65	5	8	ND	2	114	2.5	3	3	54	.76	.013	11	91	.39	99	.07	3	.73	.03	.49	4	5.7
12212 150-155 M	520	552	7	54	.3	6	4	248	1.47	10	8	ND	2	286	.5	3	3	30	1.81	.027	15	103	.42	187	.05	3	.68	.01	.46	2	5.7

-
ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Са	Ρ	La	Cr	Mg	Ba	Ti	В	Al	Na	κ	W	₩t
SAMPLE	ppm	bbu	ppm	ppm	ppm	ppm	ppm	ppnt	%	ppm	%	%	ppm	ppn	*	ppm	%	ppm	%	%	%	ppm	kg								
12213 155-160M	296	386	9	105	1.1	3	2	186	.58	10	8	ND	2	53	.9	3	3	13	1.53	.061	10	90	.13	251	.01	8	.35	.01	.23	2	5.7
12214 160-165M	308	834	10	73	1.1	3	4	130	.%	2	8	ND	2	674	.5	3	3	15	1.13	.057	11	77	,22	196	.02	3	.46	.04	.26	2	6.2
12215 165-170M	716	539	8	41	.3	5	4	247	2.09	2	8	ND	2	356	.5	3	3	44	.73	.033	15	70	.72	117	.12	3	.79	.04	.67	2	5.2
12216 170-175M	425	243	22	36	1.1	2	1	98	.45	3	8	ND	2	192	.5	9	3	18	1.10	.046	8	95	.23	144	.03	3	.35	.03	.28	2	6.2
12217 175-180M	522	165	4	24	.3	2	1	78	.41	2	8	ND	2	237	.5	3	4	13	1.30	.030	9	89	.16	119	.02	3	.31	.02	.21	2	6.2
12218 180-185M	737	128	3	9	.3	1	1	67	.35	4	8	ND	2	377	.5	3	4	6	1.00	.022	8	91	.08	85	.01	6	.19	.02	.13	2	6.7
12219 185-190M	477	544	4	21	.8	6	4	137	.99	7	8	ND	2	329	.5	3	3	43	1.24	.056	8	97	.45	208	.06	4	.57	.02	.47	2	6.2
12220 190-195M	633	273	3	4	.3	3	2	70	.50	2	8	ND	2	192	.5	3	3	22	1.18	.046	6	82	.27	97	.04	3	.30	.02	.28	2	6.2
12221 195-200M	328	1147	3	26	1.8	9	9	321	2.09	2	8	ND	2	341	.5	3	3	116	1.59	.050	9	87	.52	147	.08	3	.62	.02	.49	2	6.2
12222 200-205M	273	710	3	23	.9	11	7	242	1.94	2	8	ND	2	143	.5	3	3	106	.97	.051	7	91	.62	100	.11	5	.64	.02	.58	2	8.1
12223 205-210M	597	269	3	18	.5	4	2	94	.58	10	8	ND	2	337	.5	3	3	22	.98	.013	5	129	.13	149	.02	3	.23	.01	.19	2	5.5
12224 210-215M	517	497	81	33	2.3	7	4	117	.81	20	8	ND	2	138	.7	3	3	17	.78	.027	5	84	.09	90	.01	3	.28	.01	.19	2	5.2
12225 215-220M	683	294	3	4	.7	2	1	61	.43	4	8	ND	2	326	.5	3	3	11	1.23	.039	9	89	.15	136	.01	5	.23	.01	.15	2	5.7
12226 220-225M	533	210	3	4	.3	3	1	71	-48	2	8	ND	2	288	.5	3	3	14	1.52	.039	9	114	. 19	105	.02	4	.23	.01	.18	2	5.7
12227 225-230M	540	353	3	3	.7	3	1	42	.37	2	8	ND	2	178	.5	3	3	15	.95	.035	6	105	.18	75	.02	4	.21	.02	.20	2	6.2
12228 230-235M	427	325	3	8	.7	3	3	121	.64	3	8	ND	2	297	.6	3	3	14	1.06	.032	7	78	.14	126	.01	4	.25	.01	.19	2	6.2
12229 235-240M	431	204	4	8	.4	3	2	265	.50	3	8	ND	2	91	.6	3	3	9	1.41	.042	6	76	.11	172	.01	3	.26	.01	.16	2	5.7
12230 240-245M	803	744	6	26	1.0	10	8	161	2.06	21	8	ND	2	68	.6	3	3	31	.68	.024	5	58	.15	122	.02	8	.45	.02	.24	2	5.7
12231 245-250M	698	613	4	31	.7	8	6	154	1.83	3	8	ND	2	139	.5	3	3	47	1.16	.036	6	62	.27	136	.03	3	.51	.02	.27	2	6.7
12232 250-255M	566	769	3	27	.6	11	7	162	2.02	2	8	ND	2	101	.5	3	3	76	1.18	.041	6	65	.53	119	.08	4	.80	.04	.46	2	6.2
12233 255-260M	524	719	6	20	1.1	7	5	231	1.24	3	8	ND	2	173	.5	3	3	48	1.48	.048	8	92	.34	159	.05	10	.46	.02	.34	3	5.2
12234 260-265M	451	1324	3	38	1.0	10	8	203	2.00	2	8	ND	2	101	.5	3	3	90	1.54	.057	6	71	.95	173	.13	3	.97	.05	.71	3	5.7
12235 265-270M	352	1628	3	34	1.7	7	8	221	1.90	2	8	ND	2	314	.5	3	3	79	1.74	.064	8	68	.84	280	.12	3	.87	.03	.61	2	5.2
12301 6.3-10M	77	236	39	99	1.1	3	2	71	1.18	17	8	ND	2	9	1.3	9	3	2	.16	.019	7	72	.02	111	.01	3	.21	.02	.12	2	3.3
12302 10-15M	1019	226	4	12	.3	2	1	60	.32	2	8	ND	2	11	.5	3	3	1	.43	.017	6	71	.02	43	.01	3	.15	.02	.11	2	5.7
12303 15-20M	528	227	3	11	.5	2	1	52	.29	2	8	ND	4	11	.5	3	3	3	.45	.020	8	55	.03	30	.01	3	.16	.02	.11	2	5.7
12304 20-25M	277	193	7	23	.3	2	1	66	.30	2	8	ND	2	21	.6	3	3	2	.80	.021	9	68	.03	77	.01	3	.19	.02	.12	2	5.7
12305 25-30M	405	345	12	32	1.0	1	2	88	. 38	2	8	ND	3	20	.7	3	3	1	.94	.020	8	43	.05	37	.01	3	.08	.01	.06	2	5.7
12306 30-35M	640	154	7	33	.4	2	2	131	.42	2	8	ND	3	29	.5	3	3	3	1.06	.020	8	70	.06	67	.01	3	.17	.02	.13	2	5.7
12307 35-40M	329	259	6	103	.4	3	3	107	.85	2	8	ND	2	105	1.1	3	3	9	1.55	.040	10	59	.26	125	.01	3	.19	.02	.11	2	5.7
12308 40-45M	496	88	6	5	.4	2	1	60	.34	2	9	ND	3	109	.5	3	3	4	.77	.021	7	74	.08	45	.01	3	.20	.02	.13	2	5.7
12309 45-50M	456	90	11	9	.3	2	3	92	.56	2	8	ND	2	25	.5	3	3	2	1.08	.019	6	80	.05	34	.01	3	.20	.03	.13	2	5.7
12310 50-55M	632	111	4	31	-4	3	1	106	.43	2	8	ND	3	26	.5	3	3	2	1.13	.020	6	78	.05	61	.01	5	.21	.01	.12	2	5.7
12311 55-60M	365	120	5	15	.3	1	2	85	.64	2	8	ND	2	134	.5	3	3	8	1.06	.038	7	34	.21	42	.01	3	.23	.02	.10	2	5.7
12312 60-65M	509	97	5	9	.3	2	1	74	.42	2	8	ND	3	295	.5	3	3	4	.79	.019	8	79	.12	66	.01	3	.23	.03	. 15	2	5.7

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	ය	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	8	Al	Na	κ	¥	Wt
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppn	ppm	%	ppm	ppm	ppm	ppm	ppm	ppn	ppm	ppm	bbu	%	%	ppm	bbw	%	ppm	%	ppm	*	%	%	ppm	kg
12313 65-70M	248	146	8	22	.3	2	3	92	.50	2	8	ND	2	21	.5	3	3	2	1.18	.025	8	78	.10	39	.01	3	. 19	.03	.13	2	5.3
12314 70-75M	668	235	5	14	.6	2	3	76	.49	3	8	ND	3	549	.5	3	3	4	.86	-022	7	74	.11	63	.01	7	.24	.03	.15	2	3.8
12315 75-80M	280	235	6	26	.6	2	2	85	-42	2	8	ND	3	143	.5	3	3	5	1.07	.026	8	78	.10	59	.01	3	.21	.02	.14	2	6.7
12316 80-85M	426	126	8	7	.4	1	2	79	.39	2	8	ND	2	35	.5	3	3	2	.92	.020	7	67	.07	42	.01	5	.23	.03	.12	2	4.8
12317 85-90M	394	226	6	16	.5	4	2	138	.61	2	9	ND	3	73	.5	3	3	11	1.25	.038	8	64	.24	80	.02	6	.40	.03	.20	2	6.7
12318 90-95M	335	233	5	27	.3	2	2	97	.50	2	8	ND	2	42	.5	3	3	3	.88	.020	9	80	.09	46	.01	3	.26	.03	.14	2	6.2
12319 95-100M	511	206	8	53	.3	1	2	136	.44	2	8	ND	2	149	.6	3	3	2	1.21	.021	8	68	.06	70	.01	3	.20	.03	.12	2	5.9
12320 100-105M	454	210	6	123	.3	2	2	139	.40	2	8	ND	2	111	1.2	3	3	2	1.06	.020	7	56	.07	82	.01	3	.20	.03	.11	2	4.8
12321 105-110M	396	200	3	36	.3	1	1	198	.46	2	8	ND	3	189	.6	3	.3	4	1.02	.026	8	79	.11	107	.01	4	.24	.04	.14	2	5.7
12322 110-115M	348	127	4	20	.3	1	1	198	.43	2	8	ND	3	270	.5	3	3	3	.86	.020	8	66	.09	57	.01	4	.22	.03	.12	2	6.7
12323 115-120M	303	1 99	12	45	.9	1	1	204	.44	3	8	ND	2	30	.6	4	3	3	1.22	.025	8	85	.06	61	.01	6	.26	.03	.15	2	5.7
12324 120-125M	813	106	3	19	.3	2	1	114	.40	2	9	ND	2	38	.5	3	3	5	1.17	.025	7	62	.13	48	-01	3	.25	-02	.13	2	6.2
12325 125-130M	366	581	11	27	.9	3	3	135	.69	2	8	ND	2	749	.5	3	3	15	1.36	.051	10	63	.27	173	.02	3	.36	.02	.22	2	6.2
12326 130-135M	693	1108	8	110	1.4	13	11	437	2.64	14	10	ND	2	89	1.1	3	3	137	1.33	.045	7	85	.73	123	.12	4	.94	.01	.71	2	6.2
12327 135-140M	408	649	6	20	.7	2	4	127	.90	2	8	ND	2	216	.5	3	3	18	1.11	.053	10	78	.24	165	.03	3	.38	.03	.24	2	5.7
12328 140-145M	348	708	3	8	.6	2	3	65	.79	2	8	ND	2	126	.5	3	3	22	.85	.049	8	78	.29	139	.03	3	.41	.03	.27	2	7.1
12329 145-150M	447	651	3	14	.6	3	3	99	.76	2	8	ND	2	361	.5	3	3	34	.92	.081	9	97	-40	127	.04	3	-48	.03	.38	2	5.9
12330 150-155M	653	683	3	11	.9	3	3	87	.71	2	8	ND	2	199	.5	3	3	18	1.45	.052	9	67	.23	151	.02	3	.42	.03	.24	2	6.2
12331 155-160M	359	638	6	28	.8	4	3	88	-86	3	10	ND	2	285	.5	3	3	21	1.52	.054	8	76	.28	171	.03	3	.43	.03	.27	2	8.6

#103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5

TELEPHONE (604)231-8165

TORCH RIVER RESOURCES LTD. Project: Red Bird Sample Type: Cores GEOCHEMICAL ANALYSIS CERTIFICATE

Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Wt - Samples weighed in kilogram.

Analyst <u>2-74144</u> Report No. 2057658 (275) Date: August 29, 2005

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	St	> Bi	١	/ Ca	P	La	Cr	Mg	Ba	Ti	B	Al	Na	ĸ	¥	Wt*
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppn	n ppm	ppr	n %	*	ppm	ppm	%	ppm	%	ppm	%	*	%	ppm	kg
10601 95-100M	272	90	3	13	.3	1	3	92	.70	5	8	ND	2	30	.5	3	53	13	3 2.08	.049	10	68	.22	137	.03	3	.35	.02	.22	2	5.9
10602 105-110M	121	428	383	226	4.3	2	4	76	.84	113	8	ND	2	21	2.5	46	5 3	13	5.90	.045	10	76	.25	168	.03	4	.32	.02	.24	2	6.2
10603 170-175M	244	116	3	14	.6	2	3	71	.91	3	10	ND	3	19	.5	3	53	20	.66	.047	13	68	.30	127	.05	4	.39	.03	.33	2	5.7
10604 175-180M	349	104	3	12	.3	ʻ 2	3	56	.69	2	8	ND	2	19	.5	3	3	18	3.36	.044	13	80	.28	107	.05	3	.36	.04	.33	2	6.7
10605 180-185M	382	143	8	14	.3	2	3	69	.86	2	8	ND	3	19	.5	3	53	19	.34	.047	13	67	.28	108	.05	3	.33	.03	.31	2	5.7
10606 185-190M	381	155	3	9	.3	3	3	74	.77	2	8	ND	2	22	.5	3	3	22	2.33	.053	15	86	.33	137	.06	3	.39	.05	.37	2	5.7
10607 190-195M	558	310	4	14	.3	3	5	74	1.35	2	8	ND	2	20	.5	3	53	24	.44	.063	11	46	.36	163	.05	3	.43	.03	.39	6	5.0
10608 195-200M	598	181	3	12	.6	2	3	95	.94	3	8	ND	3	20	.5	4	3	18	3.46	.047	13	59	.27	167	.04	3	.35	.03	.31	2	5.3
10609 200-205M	700	338	21	44	3.9	2	7	234	1.31	28	8	ND	2	23	.5	59	, 4	14	.71	.051	12	76	.24	146	.03	3	.33	.03	.28	2	6.7
10610 240-245M	250	2773	3	72	3.2	14	35	621	9.03	35	8	ND	2	28	.5	3	6	266	5.90	. 151	3	59	1.33	43	.21	3	1.15	.04	1.07	5	6.2
10611 245-255M	20 8	3780	3	103	3.8	13	44	833	9.87	12	8	ND	2	42	.6	4	5	355	5.98	.074	4	32	2.07	51	.26	6	1.53	.04	1.64	36	11.4
10612 255-265M	125	2187	6	120	2.1	14	47	919	9.65	16	8	ND	2	53	.5	3	5 3	411	.87	.068	4	35	2.94	- 77	.34	4	2.09	.03	2.44	2	12.2
10613 265-274M	224	2137	10	112	2.4	13	34	758	9.36	2	8	ND	2	64	.5	3	3	396	5.59	.068	3	33	2.94	67	.38	3	2.20	.04	2.66	18	10.5
10701 315-320M	90	193	6	9	.4	1	4	89	1.11	2	9	ND	2	182	.5	3	3	23	.87	.058	14	75	.35	223	.06	3	.44	.04	.35	2	5.9
10702 320-325M	132	402	78	103	3.1	1	3	103	2.92	24	8	ND	2	164	1.4	30	3	11	1.34	.046	9	96	.22	58	.02	3	.32	.02	.22	2	6.7
10703 325-330 M	329	1022	1933	1638	30.6	2	5	171	8.69	77	10	ND	2	160	16.7	206	33	ŧ	5 1.73	.040	6	91	.16	22	.01	3	.21	.01	.14	3	6.5
10704 330-335M	459	691	14	15	2.0	2	3	69	.87	13	8	ND	3	232	.5	10	3	16	5 1.15	_049	11	75	.27	206	.03	6	.31	.03	.24	2	5.7
10705 335-340M	416	509	13	17	1.1	1	2	65	2.19	9	8	ND	2	274	.5	3	3	16	5 1.78	.052	8	94	.28	81	.02	3	.31	.02	.21	2	6.5
10706 340-345M	151	449	3	6	.6	3	3	64	.87	2	8	ND	2	218	.5	3	3	28	3 1.07	.060	12	78	.37	219	.06	3	.44	.04	.39	2	6.5
10707 345-350M	414	290	3	5	.8	2	2	65	.70	3	10	ND	3	192	.5	3	3	24	1.06	.048	10	79	.30	178	.05	7	.36	.03	.32	2	6.5
10708 350-355M	613	1418	6	48	1.2	2	2	68	1.40	9	8	ND	2	290	.8	3	3	15	1.39	.054	9	75	.27	131	.04	3	.37	.02	.28	2	6.4
10709 355-360M	1198	428	3	13	.4	1	4	47	1.65	10	8	ND	2	105	.5	3	3	11	1.26	.052	9	53	.21	103	.01	4	.22	.01	.14	2	6.1
10710 360-365M	1654	295	5	9	.4	3	3	54	1.12	10	9	ND	3	62	.5	3	4	16	5 1.36	.051	11	87	.28	167	.03	6	.41	.03	.24	2	6.7
10711 365-370M	1002	620	17	32	2.0	2	9	81	2.70	33	8	ND	2	138	.5	33	3	12	1.60	.043	6	75	.24	61	.01	7	.31	.01	.17	2	6.3
10712 370-375M 2110	2000	257	5	11	.3	2	2	63	.78	4	8	ND	2	293	.5	3	3	16	1.05	.042	10	99	.25	143	.04	4	.33	.03	.24	2	6.4
10713 375-380M7190	2000	232	51	75	1.5	2	2	60	1.00	7	8	ND	3	115	.6	5	4	9	1.60	.034	7	110	.18	141	.01	7	.23	.02	.14	2	5.5
10714 380-385M	1099	1923	566	672	10.4	4	13	287	3.%	41	8	ND	2	113	6.8	61	4	90	1.25	.095	18	71	1.17	89	.15	6	.91	.04	.83	2	6.7
10715 385-390M	300	1204	13	83	1.3	3	10	188	2.65	17	8	ND	2	345	.5	3	3	61	.91	.075	10	52	.80	118	.12	3	.75	.04	.65	2	6.3
10716 390-395M	1112	3290	4	188	2.5	10	28	596	7.23	2	8	ND	2	98	.7	3	6	297	.79	.066	4	50	2.11	75	.35	3	1.82	.04	1.81	4	6.5
10717 395-400M	99	4224	3	118	4.5	13	48	863	9.92	2	8	ND	2	136	.5	3	5	369	1.27	.069	4	46	2,20	37	.30	3	1.77	.03	1.72	2	6.7

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	S٢	Cd	Sb	8i	v	Ca	P	La	Cr	Mg	Ba	Ti	8	Al	Na	κ	W	₩t
SAMPLE	ppm	bbu	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	%	ppm	ppm	%	ppm	%	ppm	%	%	x	ppm	kg
11714 115-120M	283	420	21	43	1.1	1	4	177	.91	16	8	ND	2	281	.5	3	4	15	.93	.057	9	73	.25	170	.03	3	.29	.02	.21	2	6.2
11715 120-125M	160	450	10	70	1.1	2	3	368	.72	14	9	ND	2	241	.6	3	3	17	1.37	.056	9	71	.30	181	.03	3	.32	.02	.22	2	6.7
11716 125-130M	625	459	3	15	.6	3	5	63	1.00	4	8	ND	2	317	.5	3	- 3	20	2.55	.052	8	71	.27	131	.03	3	.30	.02	.25	2	5.9
11717 130-135M	284	635	177	299	7.0	2	6	1541	1.56	50	10	ND	3	222	3.3	28	21	10	4.59	.059	12	39	.32	92	.01	3	.37	.01	.13	2	6.0
11718 135-140M	159	321	10	53	.7	2	3	106	.80	15	8	ND	2	294	.5	3	3	19	1.32	.053	9	71	.29	196	.02	3	.32	.02	.20	2	6.5
11719 140-145M	331	620	27	964	2.7	2	4	182	.80	40	8	ND	2	69	10.4	6	3	9	2.03	.056	9	74	.34	206	.01	3	.21	.01	.12	2	6.7
11720 145-150M	232	320	37	1075	2.4	2	2	159	.63	7	8	ND	2	182	11.1	10	3	9	.99	.042	10	136	.20	244	.01	3	.26	.02	.18	2	5.7
11721 150-155M	298	569	28	671	2.6	2	3	203	.72	38	8	ND	2	155	6.8	5	5	9	1.59	.044	9	76	.24	240	.01	3	.21	.02	.13	2	5.7
11722 155-160M	407	610	9	33	1.6	3	3	127	.72	13	8	ND	2	306	.5	3	3	23	.80	.048	10	72	.27	155	.03	5	.36	.03	.28	2	6.7
11723 160-165M	405	3659	754	1026	42.0	2	3	753	1.53	25	9	ND	2	113	13.6	3	9 0	22	1.38	.048	7	80	.33	108	.02	5	.32	.02	.20	2	5.9
11724 165-170M	401	517	27	148	2.3	2	3	145	.68	60	8	ND	3	154	1.3	13	3	23	.98	.051	10	74	.32	173	.03	6	.35	.02	.25	2	4.8
11725 170-175M	210	547	8	26	1.1	2	3	111	.65	8	8	ND	2	135	.5	3	3	25	.69	.049	10	81	.30	138	.04	3	.39	.03	.30	2	5.4
11801 150-155M	249	374	3	12	.6	21	13	95	1.81	8	8	ND	2	39	.5	3.	3	65	.68	.020	3	50	.66	78	.08	3	1.02	.04	.71	2	6.6
11802 155-160M	454	320	4	16	.3	21	10	123	2.26	19	8	ND	2	40	.5	3	3	76	.98	.021	3	42	.74	115	.09	3	1.13	.04	.76	2	6.7
11803 160-165M	338	1917	6	44	1.6	23	22	203	3.51	2	8	ND	2	36	.9	3	3	150	.65	.058	3	68	1.50	217	.25	3	2.05	.16	1.38	2	6.5
11804 165-170M	221	1229	3	39	1.2	24	17	223	3.42	6	8	ND	2	33	.6	4	3	146	.70	.070	3	84	1.61	235	.26	5	2.00	.14	1.37	2	6.2
11805 170-175M	345	1239	11	29	1.3	22	17	191	2.68	16	8	ND	2	188	.5	3	3	104	1.16	.031	4	75	1.00	166	.15	3	1.55	.11	1.01	2	5.7
11806 175-180M	1057	535	10	162	.3	26	20	169	3.30	38	8	ND	2	22	2.0	3	3	93	.38	.026	2	51	.71	104	.15	3	1.41	.05	.94	2	6.2
11807 180-185M	890	342	5	20	.6	22	16	171	3.06	36	8	ND	2	21	.5	4	3	81	.51	.019	4	54	.72	111	.14	8	1.40	.04	.96	2	6.1
11808 185-190M	306	517	15	52	.8	24	16	277	3.55	4	8	ND	2	87	.6	3	3	150	1.11	.052	3	72	1.18	207	.21	3	1.90	.08	1.20	2	3.8
11809 190-195M	149	1578	17	80	1.6	41	29	390	4.96	11	8	ND	2	132	.7	6	3	172	3.15	.056	4	113	1.43	179	.23	9	2.97	.18	1.26	2	6.0
11810 195-200M	428	1499	44	94	2.0	13	15	176	2.61	7	8	ND	2	182	1.5	4	3	87	2.70	.056	9	73	1.31	174	.11	6	2.22	.14	.99	2	5.7
11811 200-205M	513	1223	6	32	1.6	14	14	128	2.35	6	8	ND	2	91	.5	3	3	87	1.26	.054	7	61	.99	139	.11	4	1.16	.07	.75	2	6.4
11812 205-210M	457	852	5	15	1.6	3	7	202	1.22	11	8	ND	4	279	.5	3	3	20	1.58	.058	11	76	.32	175	.03	7	.39	.03	.27	2	6.5
11813 210-215M	457	566	7	16	.9	2	6	94	1.15	6	8	ND	3	228	.5	3	3	23	1.10	.056	11	73	.33	181	.04	3	.44	.04	.30	5	6.7
11814 215-220M	205	592	9	15	1.4	2	3	100	.82	6	8	ND	2	139	.5	3	3	24	.72	.061	11	81	.31	164	.05	3	.45	.04	.33	2	6.2
11815 220-225M	385	383	4	11	.3	3	4	79	.91	4	8	ND	2	262	.5	3	3	22	1.23	.049	9	93	.31	179	.04	3	.41	.03	.27	2	6.7
11816 225-230M	281	443	3	12	.8	3	5	83	1.08	3	8	ND	3	189	.5	3	3	24	1.24	.059	12	73	.32	141	.05	3	.41	.03	.31	2	6.3
11817 230-235M	522	559	3	12	1.0	3	5	79	.94	4	8	ND	3	202	.5	3	3	23	.97	.050	11	108	.31	156	.05	3	.42	.04	.32	14	6.2
11818 235-240M	282	482	4	10	.6	2	5	74	1.01	5	8	ND	2	295	.5	3	3	17	1.29	.048	9	75	.26	166	.02	3	.33	.02	.21	12	6.1
11819 240-245M	400	503	176	196	5.4	3	5	233	.81	14	8	ND	2	219	1.8	3	8	10	1.63	.055	9	75	.25	224	.01	3	.23	.02	.15	3	5.7
11820 245-250M	283	440	13	19	.7	1	4	94	.69	6	8	ND	2	402	.5	3	3	15	1.28	.040	8	82	.22	195	.01	3	.28	.02	.20	2	5.2
11821 250-255M	550	335	3	10	.6	2	4	53	.76	2	8	ND	2	137	.5	3	3	25	1.00	.046	9	78	.28	118	.05	4	.34	.03	.31	7	6.2
11822 255-260M	207	536	3	14	.8	3	4	93	1.03	5	8	ND	2	264	.5	3	3	26	1.35	.057	10	56	.33	166	.05	3	.40	.03	.32	2	6.2
11901 5-10M	532	714	87	184	2.9	3	8	145	1.11	50	8	ND	4	39	1.9	5	3	7	1.18	.052	10	49	.15	171	.01	8	.34	.01	.16	2	4.8

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bí	v	Ca	P	Ĺa	Cr	Mg	Ba	Ti	В	Al	Na	κ	W	Wt
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppn	%	ppm	ppm	ppn	ppm	ppn	ppm	ppm	ррт	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	kg
11902 10-15M	745	604	1072	1283	6.4	4	8	149	. 98	52	8	ND	2	45	15.9	5	6	2	1.28	.031	5	99	. 14	100	.01	3	.24	.01	.16	2	5.6
11903 15-20M	403	540	118	285	1.9	4	5	91	.89	21	8	ND	3	56	2.8	4	3	13	1.44	.052	7	79	.19	192	.01	10	.35	.02	.18	2	5.7
11904 20-25M	188	1147	20	46	1.9	3	6	75	1.20	18	8	ND	3	36	.5	3	3	27	.71	.056	12	64	.31	194	.04	5	.45	.03	.33	2	6.2
11905 25-30M	139	85 9	6	41	1.3	3	6	75	1.25	16	8	ND	2	32	.5	3	3	25	.79	.058	12	65	.30	196	.04	3	.42	.03	.31	2	6.8
11906 30-35M	608	1040	9	45	1.8	1	5	79	.77	14	8	ND	2	68	.5	3	3	17	.89	.046	8	38	.24	165	.02	6	.25	.02	.19	2	6.1
11907 35-40M	369	887	10	29	1.4	2	4	112	.81	8	8	ND	2	196	.5	3	3	18	1.06	.046	8	65	.23	172	.02	6	.32	.02	.23	2	6.3
11908 40-45M	141	905	10	36	1.9	2	5	76	.90	11	8	ND	3	42	.5	4	3	25	1.02	.059	11	79	.29	175	.04	7	.42	.03	.30	13	5.7
11909 45-50M	325	865	8	45	1.8	3	4	64	.90	8	8	ND	3	52	.5	4	3	26	1.18	.058	14	77	.30	184	.03	9	.43	.03	.31	2	6.5
11910 70-75M	1388	809	9	15	1.3	2	4	69	.78	3	8	ND	2	2035	.5	5	3	22	.76	.056	9	49	.27	218	.03	7	.39	.03	.30	2	5.5
11911 75-80M	527	398	4	15	.5	2	2	63	.66	2	8	ND	2	94	.5	3	3	15	1.36	.043	9	74	.22	187	.01	4	.29	.02	.20	2	6.0
11912 80-85M	230	1028	10	18	1.5	3	6	71	1.25	14	8	ND	2	442	.5	3	3	19	1.58	.057	11	84	.31	249	.02	6	.36	.02	.22	2	6.1
11913 85-90M	295	2670	8	23	4.1	3	4	60	1.03	3	8	ND	2	42	.5	3	6	19	.95	.040	8	91	.23	162	.02	5	.31	.02	.23	2	5.0
11914 90-95M	434	1268	8	19	2.0	4	6	54	1.33	3	8	ND	2	29	.5	3	3	27	- 54	.049	8	81	.28	111	.04	12	.40	.03	.33	2	5.3
11915 95-97.8M	340	630	4	15	1.0	3	3	71	.84	4	8	ND	2	330	.5	3	6	22	1.28	.041	8	83	.26	129	.04	4	.35	.03	.27	2	3.3
12001 70-75M	107	624	249	57	9.5	9	15	1280	3.72	2	8	ND	2	85	1.0	3	16	134	2.98	.061	6	50	1.52	132	.18	8	1.63	.08	1.15	2	6.7
12002 75-80M	179	769	120	1064	4.8	11	25	1279	4.33	25	8	ND	2	79	10.8	3	6	109	3.07	.068	11	31	1.16	89	.11	15	1.13	.04	.84	2	6.2
12003 80-85M	329	1167	25	46	3.5	6	23	367	4.45	32	8	ND	2	53	.9	5	3	75	1.27	.061	7	64	.97	62	.10	17	.96	.05	.78	2	6.7
12004 85-90M	630	1550	11	32	2.4	8	24	205	4.29	19	8	ND	2	197	.6	4	5	81	1.00	.053	5	55	1.16	83	. 11	13	1.05	.04	.85	2	5.7
12005 90-95M	332	1704	3	51	2.0	38	27	212	4.47	9	8	ND	2	50	.8	3	3	128	.71	.108	4	124	1.82	141	.23	20	1.91	.14	1.37	2	5.7
12006 95-100M	553	2313	9	38	2.5	16	30	178	4.47	3884	8	ND	2	157	.6	3	3	117	1.79	.059	6	58	1.23	78	.09	12	1.13	.03	.76	2	5.7
12007 100-105M	212	898	5	35	1.5	14	20	216	3.46	23	8	ND	2	43	.7	4	3	100	1.08	.065	6	50	1.13	116	.14	13	1.12	.04	.89	2	6.2
12008 105-110M	161	1531	11	43	2.1	17	32	212	4.29	6	8	ND	2	27	.6	4	3	153	.61	.064	3	61	1.58	117	. 19	16	1.77	.11	1.29	2	6.5
12009 110-115M	350	1683	53	41	3.0	25	35	264	4.07	22	8	ND	2	48	.5	3	3	111	1.27	.048	2	66	.91	79	.12	10	1.32	.08	.83	2	6.7
12010 115-120M	138	906	19	43	2.1	22	17	417	3.32	48	8	ND	2	90	1.0	4	3	92	2.45	.046	2	40	1.12	129	.10	16	.94	.03	.72	2	5.0
12011 120-125M	131	1413	7	36	2.1	17	22	250	3.78	17	8	ND	2	200	.8	6	3	125	1.13	.057	6	75	1.18	131	.16	16	1.41	.10	1.03	2	5.7
12012 125-130M	192	1422	11	79	2.8	15	28	314	4.47	33	8	ND	2	185	1.0	6	3	95	.99	.059	6	47	1.28	117	.16	20	1.20	.03	1.05	2	5.7
12013 130-135M	354	3247	10	49	5.4	17	31	232	4.28	17	8	ND	2	168	.9	3	3	103	1.10	.064	7	65	1.22	106	.15	13	1.19	.05	1.01	2	5.7
12014 135-140M	328	2095	11	45	2.8	15	19	289	3.40	43	9	ND	2	108	.7	3	8	95	2.43	.066	8	60	1.31	137	.12	14	1.19	.03	.80	2	5.7
12015 140-145M	261	1687	17	35	3.5	15	22	1429	4.18	28	8	ND	2	826	1.1	4	9	75	3.78	.058	7	69	1.27	129	.12	11	.97	.04	.79	2	5.7
12016 145-150M	246	1689	47	349	2.7	14	16	282	3.51	5	8	ND	2	70	4.5	4	3	116	1.12	.058	5	69	1.51	152	.19	14	1.52	.08	1.26	2	6.2
12017 150-155M	450	2327	156	80	6.4	15	24	577	4.15	10	8	ND	2	126	1.2	4	13	65	1.27	.055	6	71	.95	57	.10	16	.86	.04	.72	2	6.7
12018 155-160M	210	2344	57	57	5.2	12	21	290	3.82	12	8	ND	2	136	1.0	3	3	122	1.32	.068	7	71	1.58	115	.18	14	1.58	.08	1.31	2	6.7
12019 160-165M	381	2998	362	324	10.8	11	19	458	4.01	20	8	ND	2	647	4.0	5	15	115	1.71	.069	8	60	1.64	101	.16	15	1.35	.05	1.22	2	3.8
12020 165-170M	570	539	49	70	1.7	2	9	180	1.58	11	8	ND	2	263	.6	3	4	11	1.51	.055	9	90	,23	116	.01	5	.32	.03	.22	2	5.7
12021 170-175M	211	1239	9	15	2.0	3	11	65	2.09	12	8	ND	2	194	.5	3	4	17	1.15	.056	9	67	.27	98	.02	10	.38	.03	.26	2	6.0

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	8	Al	Na	κ	W	Wt
SAMPLE	ppm	ррп	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	*	ppn	ppm	%	ppm	%	ppm	%	*	x	ppm	kg
12022 175-180M	1178	947	206	648	3.9	3	9	212	1.41	14	8	ND	2	317	6.2	3	6	9	1.33	.046	7	53	.20	125	.01	10	.20	.02	.16	2	6.2
12023 180-185M	573	718	21	41	1.6	2	11	181	1,48	18	8	ND	3	429	.5	3	3	8	1.17	.047	9	82	.18	143	.01	9	.25	.02	.17	2	5.7
12024 185-190M	850	673	80	78	2.3	2	7	298	1.42	14	8	ND	2	210	.9	3	6	5	1.69	.046	9	71	.21	123	.01	6	.15	.02	.11	2	6.2
12025 190-195M	951	1164	349	431	7.0	2	10	615	2.08	43	8	ND	3	80	4.4	3	14	4	2.64	.039	8	72	.16	60	.01	12	.17	.02	.12	2	5.7
12026 195-200M	984	913	522	381	8,1	3	11	227	1.91	74	8	ND	3	63	3.8	3	15	3	1.35	.036	7	81	.10	63	.01	11	.20	.01	.14	2	5.7
12027 200-205M	1608	540	359	667	6.0	3	4	268	1.01	55	8	ND	3	51	6.6	3	19	3	1.54	.029	8	88	.10	145	.01	3	.17	.01	.12	2	4.8
12028 205-210M	555	536	104	121	2.7	3	5	109	.85	38	8	ND	3	45	1.6	3	5	4	.93	.014	7	95	.07	98	.01	3	.16	.02	.12	2	5.7
12029 210-215M	721	1787	438	735	11.3	2	9	203	3.45	77	8	ND	3	142	7.7	3	33	5	1.10	.018	5	93	.08	42	.01	4	.16	.01	.13	2	5.7
12030 215-220M	470	1637	15	24	3.0	3	8	132	1.25	22	8	ND	2	140	.6	3	3	9	1.39	.041	7	92	.18	136	.01	3	.24	.02	.19	2	5.7
12031 220-225M	577	652	24	45	2.0	3	5	135	.86	29	8	ND	2	255	.6	3	4	9	1.79	.059	8	67	.20	169	.01	3	.22	.02	.15	2	6.2
12032 225-230M	255	595	10	10	1.1	3	5	126	.88	55	8	ND	2	369	.5	3	4	8	1.86	.050	9	92	.23	251	.01	3	.30	.02	.15	2	5.5
12033 230-235M	514	1896	7	15	2.9	3	6	123	1.08	45	8	ND	2	505	.7	3	3	10	1.57	.045	8	74	.19	152	.01	3	.21	.02	.14	2	5.7
12034 235-240M	213	755	17	10	1.5	3	5	129	1.00	13	8	ND	2	455	.5	3	3	10	1.32	.049	8	87	.20	206	.01	3	.26	.02	.17	2	5.9
12035 240-245M	452	615	15	23	1.4	3	3	156	.83	14	8	ND	2	365	.6	3	3	10	1.55	.049	8	77	.20	211	.01	3	.22	.02	.14	2	6.7
12036 245-250M	1138	369	43	42	1.5	2	3	153	.57	16	8	ND	2	451	.6	3	3	9	1.24	.043	8	58	.17	253	.01	3	.21	.02	.16	2	5.7
12037 250-255M	383	467	54	156	1.7	2	3	231	.64	16	8	ND	2	343	1.4	3	4	7	2.02	-048	8	84	.18	376	.01	3	.20	.02	.15	2	5.7
12038 255-260M	370	597	9	9	.8	2	7	60	1.05	5	8	ND	2	222	.5	3	3	19	1.27	.052	7	79	.25	131	.02	3	.32	.02	.26	2	6.2
12039 260-265M	296	582	11	10	.8	2	5	81	1.18	7	8	ND	2	193	.5	3	3	22	1.14	.058	9	42	.32	138	.03	3	.37	.03	.30	2	6.7
12040 265-270M	197	917	12	9	1.5	2	5	88	1.09	3	8	ND	2	229	.5	3	3	21	1.37	.054	8	91	.29	149	.02	3	.36	.03	.28	2	6.7
12041 270-2 75M	265	796	9	12	1,5	1	3	64	.81	2	8	ND	2	168	.5	3	3	25	1.12	.058	9	86	.34	150	.04	4	.37	.03	.33	2	6.2
12042 275-280M	172	692	7	25	1.5	3	4	99	. 93	2	8	ND	2	243	.5	3	3	25	1.33	.058	7	70	.33	164	.03	5	.36	.03	.31	2	6.2
12043 280-285M	264	545	104	555	1.6	3	5	181	.97	8	8	ND	2	239	5.5	3	3	13	1.58	.054	8	64	.23	203	.01	6	.34	.02	.25	2	4.8
12044 285-290M	159	697	10	31	1.6	3	5	119	.89	5	8	ND	3	423	.6	3	4	15	1.57	.056	10	84	.21	256	.01	8	.33	.02	.20	2	5.2
12045 290-295M	147	847	65	608	3.1	2	6	200	.96	34	8	ND	2	90	6.1	3	6	10	2.87	.050	8	48	.16	177	.01	3	.29	.01	.15	2	5.0
12046 295-300M	100	1130	679	1838	11.6	3	8	160	1.55	60	8	ND	3	77	18.1	3	22	11	1.24	.047	8	53	.15	94	.01	8	.26	.02	.16	2	6.2
12101 6-10M	42	331	23	30	2.0	2	2	101	.55	5	8	ND	3	11	.5	3	3	11	. 14	.053	9	61	.10	226	.01	3	.31	.02	.20	2	2.5
12102 10-15M	39	484	6	20	2.1	2	2	71	.50	2	8	ND	3	11	.5	3	3	14	.18	.043	10	61	.15	137	.02	5	.32	.02	.20	2	4.5
12103 15-20M	178	548	13	30	.9	2	2	47	.51	2	8	ND	2	11	.5	3	5	11	.22	.051	9	71	.12	127	.01	3	.30	.02	.22	2	4.1
12104 20-25M	729	604	3	42	.9	2	3	64	-68	2	8	ND	3	21	.8	3	3	16	.72	.043	8	103	.17	101	.02	4	.36	.03	.22	2	4.8
12105 25-30M	546	431	8	24	.7	2	3	58	.59	2	8	ND	3	29	.5	3	3	17	.67	.047	8	70	.20	154	.02	5	.35	.03	.24	2	3.7
12106 30-35M	559	488	6	29	.6	3	2	73	.56	10	8	ND	2	35	.5	3	3	11	.95	.037	9	70	.16	127	.01	3	.29	.02	.19	2	3.8
12107 35-40M	378	763	39	37	1.1	2	2	69	.58	2	8	ND	3	105	.5	3	4	18	.79	.049	9	76	.24	135	.02	4	.37	.03	.26	2	5.4
12108 40-45M	1634	399	11	16	.9	2	2	78	.42	2	8	ND	2	145	.5	3	4	14	.76	.039	7	108	-18	109	.02	4	.28	-02	.21	2	5.4
12109 45-50M	1212	465	3	13	1.2	2	2	87	.46	2	8	ND	3	315	.5	3	3	15	1.30	.047	9	65	.22	152	.01	5	.32	.02	.20	2	5.7
12110 50-55M	1219	615	3	9	.7	1	2	46	.52	2	8	ND	2	626	.5	3	3	16	1.64	.044	8	48	.22	178	.01	3	.43	.02	.19	2	5.2

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cď	Sb	Bi	۷	Ca	Р	La	Cr	Mg	Ba	Ti	B	Al	Na	κ	¥	Wt
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm j	ppm	ppm	*	ppm	%	*	ppm	ppm	%	ppm	% [ppm	x	%	×	ppm	kg								
12111 55-60M	695	604	5	12	1.5	3	2	47	.56	2	8	ND	3	350	.5	3	3	25	.54	.047	8	71	.29	131	.04	6	.35	.03	.28	2	4.8
12112 60-65M	557	563	3	15	.8	2	3	84	.64	2	8	ND	2	572	.5	3	3	18	1.25	.049	10	81	.23	176	.02	5	.38	.03	.23	2	5.7
12113 65-70M	974	594	7	8	1.1	3	3	66	.63	2	8	ND	3	373	.5	3	3	14	1.32	.047	9	77	. 19	163	.02	6	.32	.03	.21	2	5.7
12114 70-75M	433	679	3	10	1.0	2	3	68	.71	2	8	ND	3	825	.5	3	5	19	1.10	.045	9	65	.27	162	.03	5	.39	.03	.25	2	5.7
12115 75-80M	628	736	5	20	.9	2	3	69	.63	2	8	ND	3	373	.5	3	3	16	1.23	.045	9	77	.22	160	.02	5	.39	.02	.21	2	6.2
12116 80-85M	763	710	3	37	.9	2	3	47	.60	2	8	ND	2	386	.5	3	7	16	1.25	.046	9	74	.24	173	.02	3	.39	.03	.23	2	6.0
12117 85-90M	889	1061	4	27	2.0	2	3	69	.67	2	9	ND	3	184	.5	4	3	17	1.77	.042	8	86	.24	138	.01	8	.38	.02	.18	2	5.7
12118 90-95M	829	812	96	359	3.1	1	3	74	.79	2	8	ND	2	155	3.7	4	6	- 14	1.24	.051	10	74	.20	149	.01	3	.39	.02	.22	2	5.7
12119 95-100M	548	1197	78	276	15.9	2	3	74	1.74	3	8	ND	2	60	3.6	8	15	9	1.54	.051	10	83	.15	122	.01	3	.33	.02	.19	2	5.2
12120 100-105M	742	543	3	25	.8	2	2	54	.68	2	10	ND	2	205	.5	3	7	22	1.02	.048	11	99	.25	125	.03	3	.43	.03	.29	2	6.7
12121 105-110M	726	889	12	45	2.7	4	3	68	1.30	3	8	ND	3	171	.5	3	12	22	1.26	.053	11	87	.24	119	.03	5	.47	.03	.27	5	5.9
12122 110-115M	682	55 3	92	78	1.2	2	3	71	.88	2	10	ND	3	329	.8	3	5	18	1.08	.049	11	88	.25	147	.03	4	.46	.03	.26	2	5.7
12123 115-120M	827	510	7	48	1.0	2	3	58	.99	2	8	ND	2	68	.5	3	6	13	1.40	.046	10	69	.19	136	.01	4	.36	.02	.19	2	5.7
12124 120-125M	498	644	9	21	1.0	2	3	63	.76	2	9	ND	2	221	.5	3	5	22	1.43	.047	9	72	.30	127	.03	3	.44	.03	.26	2	5.9
12125 125-130M	527	841	3	25	1.4	2	4	60	.91	2	8	ND	2	352	.5	3	6	27	1.26	.052	9	92	.34	147	.04	4	.44	.03	.32	2	6.4
12126 130-135M	672	790	9	152	1.6	2	5	58	1.82	5	8	ND	2	692	1.6	3	10	16	1.04	.052	10	59	.18	153	.01	7	.44	.02	.28	3	6.0
12127 135-140M	529	2167	39	185	6.1	3	5	71	1.77	6	8	ND	3	525	2.0	8	15	22	1.23	.050	10	70	.25	143	.02	13	.57	.03	.32	2	5.0
12128 140-145M	760	500	12	79	.7	2	3	61	.66	2	8	NÐ	2	99	.9	3	5	15	1.54	.046	11	65	.20	203	.01	3	.50	.02	.21	2	5.5
12129 145-150M	224	1328	7	13	1.8	2	5	45	1.15	2	9	ND	2	181	.5	3	7	20	1.32	.051	11	80	.24	150	.02	3	.55	.03	.25	2	6.7
12130 150-155M	376	830	4	14	1.2	3	5	64	.94	2	18	ND	2	400	.5	3	4	21	1.57	.064	9	39	.28	165	.02	5	.54	.03	.28	2	6.1
12131 155-160M	185	904	5	13	1.0	3	6	85	1.28	2	10	ND	2	463	.5	3	3	30	1.04	.062	10	74	.44	233	.06	4	.59	.05	.32	2	6.2
12132 160-165M	249	1156	3	15	1.1	2	6	54	1.16	2	8	ND	2	205	.5	3	3	22	.90	.051	9	90	.33	147	.03	3	.53	.04	.30	2	7.1
12133 165-170.6M	162	1380	6	17	1.8	2	6	73	1.09	3	10	ND	3	231	.6	3	4	22	1.27	.058	9	50	.31	185	.03	10	.56	.03	.27	2	6.7
12201 95-100M	500	686	12	53	1.5	7	5	293	1.35	2	8	ND	2	125	.7	3	16	22	1.40	.063	12	94	.34	256	.03	9	.57	.02	.36	2	1.0
12202 100-105M	1346	591	14	269	1.8	10	7	384	1.83	6	8	ND	2	98	3.1	3	12	27	1.66	.021	12	114	.31	174	.01	13	.48	-01	.32	2	4.8
1220 3 105-110M	478	790	4	83	1.6	8	6	296	2.57	4	10	ND	2	145	.8	3	11	48	2.27	.283	15	91	.57	143	.04	6	.71	.02	.43	2	5.2
12204 110-115M	299	1211	9	68	2.6	8	8	495	3.55	37	8	ND	2	126	.5	3	5	36	3.18	.081	23	68	.90	153	.02	4	.70	.02	.43	2	5.2
12205 115-120M	413	1278	3	62	1.9	12	13	444	3.80	9	10	ND	3	69	.5	6	- 3	142	1.38	.073	7	72	1.70	267	.26	13	2.76	.28	1.45	2	4.3
12206 120-125M	669	1002	5	308	1.7	10	7	304	2.72	2	8	ND	2	341	3.0	3	3	77	1.21	.029	16	77	.85	148	.12	5	.89	.03	.73	3	6.2
12207 125-130M	335	1210	11	109	2.6	10	9	419	2.92	14	8	ND	3	356	.9	6	14	74	1.71	.037	14	85	.63	178	.06	17	.70	.03	.53	2	5.2
12208 130-135M	408	1163	32	295	7.2	10	8	122	6.55	34	8	ND	2	27	3.1	3	90	30	1.11	.051	5	104	.15	33	.01	12	.63	.01	.39	2	4.8
12209 135-140M	511	1360	7	441	2.8	10	7	188	2.54	19	8	ND	2	279	4.1	3	9	47	1.17	.045	9	95	.31	112	.05	7	.69	.02	.47	2	5.7
12210 140-145M	462	1109	8	405	1.9	10	7	244	1.74	20	8	ND	2	162	3.9	3	7	65	1.36	.032	10	83	.46	154	.09	5	.85	.03	.61	3	5.7
12211 145-150M	442	753	28	276	1.4	8	5	189	1.65	5	8	ND	2	114	2,5	3	3	54	.76	.013	11	91	.39	99	.07	3	.73	.03	.49	4	5.7
12212 150-155M	520	552	7	54	.3	6	4	248	1.47	10	8	ND	2	286	.5	3	3	30	1.81	.027	15	103	.42	187	.05	3	.68	-01	.46	2	5.7

ELEMENT	Мо	Cu	Рb	Zn	Ag	Ni	Со	Mn	Fe	As	ປ	Au	Th	Sr	Cd	Sb) Bi	v	Ca	Р	La	Cr	Mg	Ba	Ti	В	Al	Na	κ	W	₩t
SAMPLE	ppm	ppm	ppm	ppm	ppm	bbu l	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppn	ppn	ppm	ppm	%	%	bbu	ppm	%	ppm	%	ppm	%	%	*	ppm	kg
12213 155-160M	296	386	9	105	1.1	3	2	186	.58	10	8	ND	2	53	.9	3	3	13	1.53	.061	10	90	.13	251	.01	8	.35	.01	.23	2	5.7
12214 160-165M	308	834	10	73	1.1	3	4	130	.96	2	8	ND	2	674	.5	3	3	15	1.13	.057	11	77	.22	196	.02	3	.46	.04	.26	2	6.2
12215 165-170M	716	539	8	41	.3	5	4	247	2.09	2	8	ND	2	356	.5	3	3	44	.73	.033	15	70	.72	117	.12	3	.79	.04	.67	2	5.2
12216 170-175M	425	243	22	36	1.1	2	1	98	.45	3	8	ND	2	192	.5	9	3	18	1.10	.046	8	95	.23	144	.03	3	.35	.03	.28	2	6.2
12217 175-180M	522	165	4	24	.3	2	1	78	.41	2	8	ND	2	237	.5	3	4	13	1.30	.030	9	89	.16	119	.02	3	.31	.02	.21	2	6.2
12218 180-185M	737	128	3	9	.3	1	1	67	.35	4	8	ND	2	377	.5	3	4	6	1.00	.022	8	91	.08	85	.01	6	. 19	.02	.13	2	6.7
12219 185-190M	477	544	4	21	.8	6	4	137	.99	7	8	ND	2	329	.5	3	3	43	1.24	.056	8	97	.45	208	.06	4	.57	.02	.47	2	6.2
12220 190-195M	633	273	3	4	.3	3	2	70	.50	2	8	ND	2	192	.5	3	3	22	1.18	.046	6	82	.27	97	.04	3	.30	.02	.28	2	6.2
12221 195-200M	328	1147	3	26	1.8	9	9	321	2.09	2	8	ND	2	341	.5	3	3	116	1.59	.050	9	87	.52	147	.08	3	.62	.02	.49	2	6.2
12222 200-205M	273	710	3	23	.9	11	7	242	1.94	2	8	ND	2	143	.5	3	3	106	.97	.051	7	9 1	.62	100	.11	5	.64	.02	.58	2	8.1
12223 205-210M	597	269	3	18	.5	4	2	94	.58	10	8	ND	2	337	.5	3	3	22	.98	.013	5	129	.13	149	.02	3	.23	.01	.19	2	5.5
12224 210-215M	517	497	81	33	2.3	7	4	117	.81	20	8	ND	2	138	.7	3	3	17	.78	.027	5	84	.09	90	.01	3	.28	.01	.19	2	5.2
12225 215-220M	683	294	3	4	.7	2	1	61	.43	4	8	ND	2	326	.5	3	3	11	1.23	.039	9	89	. 15	136	.01	5	.23	.01	.15	2	5.7
12226 220-225M	533	210	3	4	.3	3	1	71	.48	2	8	ND	2	288	.5	3	3	14	1.52	.039	9	114	.19	105	.02	4	.23	.01	.18	2	5.7
12227 225-230M	540	353	3	3	.7	3	1	42	.37	2	8	ND	2	178	.5	3	3	15	.95	.035	6	105	.18	75	.02	4	.21	.02	.20	2	6.2
12228 230-235M	427	325	3	8	.7	3	3	121	.64	3	8	ND	2	297	.6	3	3	14	1.06	.032	7	78	.14	126	.01	4	.25	.01	.19	2	6.2
12229 235-240M	431	204	4	8	.4	3	2	265	.50	3	8	ND	2	91	.6	3	3	9	1.41	.042	6	76	-11	172	.01	3	.26	.01	.16	2	5.7
12230 240-245M	803	744	6	26	1.0	10	8	161	2.06	21	8	ND	2	68	.6	3	3	31	.68	.024	5	58	.15	122	.02	8	.45	.02	.24	2	5.7
12231 245-250M	698	613	4	31	.7	8	6	154	1.83	3	8	ND	2	139	.5	3	3	47	1.16	.036	6	62	.27	136	.03	3	.51	.02	.27	2	6.7
12232 250-255M	566	769	3	27	.6	11	7	162	2.02	2	8	ND	2	101	.5	3	3	76	1.18	.041	6	65	.53	119	.08	4	.80	.04	.46	2	6.2
12233 255-260M	524	719	6	20	1.1	7	5	231	1.24	3	8	ND	2	173	.5	3	3	48	1.48	.048	8	92	.34	159	.05	10	.46	.02	.34	3	5.2
12234 260-265M	451	1324	3	38	1.0	10	8	203	2.00	2	8	ND	2	101	.5	3	3	90	1.54	.057	6	71	.95	173	.13	3	.97	.05	.71	3	5.7
12235 265-270M	352	1628	3	34	1.7	7	8	221	1,90	2	8	ND	2	314	.5	3	3	79	1.74	.064	8	68	.84	280	.12	3	.87	.03	.61	2	5.2
12301 6.3-10M	77	236	39	99	1.1	3	2	71	1.18	17	8	ND	2	9	1.3	9	3	2	.16	.019	7	72	.02	111	.01	3	.21	.02	.12	2	3.3
12302 10-15M	1019	226	4	12	.3	2	1	60	.32	2	8	ND	2	11	.5	3	3	1	.43	.017	6	71	.02	43	.01	3	.15	.02	.11	2	5.7
12303 15-20M	528	227	3	11	.5	2	1	52	.29	2	8	ND	4	11	.5	3	3	3	.45	.020	8	55	.03	30	.01	3	.16	.02	.11	2	5.7
12304 20-25M	277	193	7	23	.3	2	1	66	.30	2	8	ND	2	21	.6	3	3	2	.80	.021	9	68	.03	77	.01	3	.19	.02	.12	2	5.7
12305 25-30M	405	345	12	32	1.0	1	2	88	.38	2	8	ND	3	20	.7	3	3	1	.94	.020	8	43	.05	37	.01	3	.08	.01	.06	2	5.7
12306 30-35M	640	154	7	33	.4	2	2	131	.42	2	8	ND	3	29	.5	3	3	3	1.06	.020	8	70	.06	67	.01	3	.17	.02	.13	2	5.7
12307 35-40M	329	259	6	103	.4	3	3	107	.85	2	8	ND	2	105	1.1	3	3	9	1.55	.040	10	59	.26	125	.01	3	.19	.02	.11	2	5.7
12308 40-45M	496	88	6	5	.4	2	1	60	.34	2	9	ND	3	109	.5	3	3	4	.77	.021	7	74	.08	45	.01	3	.20	.02	.13	2	5.7
12309 45-50M	456	90	11	9	.3	2	3	92	.56	2	8	ND	2	25	.5	3	3	2	1.08	.019	6	80	.05	34	.01	3	.20	.03	.13	2	5.7
12310 50-55M	632	111	4	31	.4	3	1	106	.43	2	8	ND	3	26	.5	3	3	2	1.13	.020	6	78	.05	61	.01	5	.21	.01	.12	2	5.7
12311 55-60M	365	120	5	15	.3	1	2	85	.64	2	8	ND	2	134	.5	3	3	8	1.06	.038	7	34	.21	42	.01	3	.23	.02	.10	2	5.7
12312 60-65M	509	97	5	9	.3	2	1	74	.42	2	8	ND	3	295	.5	3	3	4	.79	.019	8	79	.12	66	.01	3	.23	.03	.15	2	5.7

ELEMENT	Mo	Cu	РЬ	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	В	Al	Na	ĸ	¥	Wt
SAMPLE	ppm	ppm	ppm	ppm	ppm	þþm	ppm	ppm	%	ppm	ppm	ppm	ppm	bbu	ppm	ppn	i ppm	ppm	%	%	ppm	ppm	*	ppm	%	ppm	%	%	%	ppm	kg
12313 65-70M	248	146	8	22	.3	2	3	92	.50	2	8	ND	2	21	.5	3	3	2	1.18	.025	8	78	.10	39	.01	3	.19	.03	.13	2	5.3
12314 70-75M	668	235	5	14	.6	2	3	76	.49	3	8	ND	3	549	.5	3	3	4	.86	.022	7	74	.11	63	.01	7	.24	.03	.15	2	3.8
12315 75-80M	280	235	6	26	.6	2	2	85	.42	2	8	ND	3	143	.5	3	3	5	1.07	.026	8	78	.10	59	.01	3	.21	.02	.14	2	6.7
12316 80-85M	426	126	8	7	.4	1	2	79	.39	2	8	ND	2	35	.5	3	3	2	.92	.020	7	67	.07	42	.01	5	.23	.03	.12	2	4.8
12317 85-90M	394	226	6	16	.5	4	2	138	.61	2	9	ND	3	73	.5	3	3	11	1.25	.038	8	64	.24	80	.02	6	.40	.03	.20	2	6.7
12318 90-95M	335	233	5	27	.3	2	2	97	.50	2	8	ND	2	42	.5	3	3	3	.88	.020	9	80	.09	46	.01	3	.26	.03	.14	2	6.2
12319 95-100M	511	206	8	53	.3	1	2	136	_44	2	8	ND	2	149	.6	3	3	2	1.21	.021	8	68	.06	70	.01	3	.20	.03	.12	2	5.9
12320 100-105M	454	210	6	123	.3	2	2	139	.40	2	8	ND	2	111	1.2	3	3	2	1.06	.020	7	56	.07	82	.01	3	.20	.03	.11	2	4.8
12321 105-110M	396	200	3	36	.3	1	1	198	.46	2	8	ND	3	189	.6	3	.3	4	1.02	.026	8	79	.11	107	.01	4	.24	.04	.14	2	5.7
12322 110-115M	348	12 7	4	20	.3	1	1	198	.43	2	8	ND	3	270	.5	3	3	3	.86	.020	8	66	.09	57	.01	4	.22	.03	.12	2	6.7
12323 115-120M	303	199	12	45	.9	1	1	204	.44	3	8	ND	2	30	.6	4	3	3	1.22	.025	8	85	.06	61	.01	6	.26	.03	.15	2	5.7
12324 120-125M	813	106	3	19	.3	2	1	114	.40	2	9	ND	2	38	.5	3	3	5	1.17	.025	7	62	.13	48	.01	3	.25	.02	.13	2	6.2
12325 125-130M	366	581	11	27	.9	3	3	135	.69	2	8	ND	2	749	.5	3	3	15	1.36	.051	10	63	.27	173	.02	3	.36	.02	.22	2	6.2
12326 130-135M	693	1108	8	110	1.4	13	11	437	2.64	14	10	ND	2	89	1.1	3	3	137	1.33	.045	7	85	.73	123	.12	4	.94	.01	.71	2	6.2
12327 135-140M	408	649	6	20	.7	2	4	127	.90	2	8	ND	2	216	.5	3	3	18	1.11	.053	10	78	.24	165	.03	3	.38	.03	.24	2	5.7
12328 140-145M	348	708	3	8	.6	2	3	65	.79	2	8	ND	2	126	.5	3	3	22	.85	.049	8	78	.29	139	.03	3	.41	.03	.27	2	7.1
12329 145-150M	447	651	3	14	.6	3	3	99	.76	2	8	ND	2	361	.5	3	3	34	.92	.081	9	97	.40	127	.04	3	-48	.03	.38	2	5.9
12330 150-155M	653	683	3	11	.9	3	3	87	.71	2	8	ND	2	199	.5	3	3	18	1.45	.052	9	67	.23	151	.02	3	.42	.03	.24	2	6.2
12331 155-160M	359	638	6	28	.8	4	3	88	.86	3	10	ND	2	285	.5	3	3	21	1.52	.054	8	76	.28	171	.03	3	.43	.03	.27	2	8.6

TELEPHONE (604)231-8165

TORCH RIVER RESOURCES LTD. Project: Red Bird Sample Type: Cores GEOCHEMICAL ANALYSIS CERTIFICATE

Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Wt - Samples weighed in kilogram.

Analyst RStub 362 Report No. 2057678 Date: August 29, 2005

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Tî	в	AL	Na	ĸ	¥	¥t*
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ррп	ppm	ppm	ppm	%	x	ppm	ppm	%	ppm	%	ppm	*	7	*	ppm	kg
07301 350-355M	202	959	3	11	.5	3	3	99	1.07	4	8	ND	2	384	.5	3	3	19	1.29	.061	15	73	.34	293	.04	3	.36	.03	.28	2	6.2
07302 355-360M	543	211	7	13	.3	3	4	125	1.17	2	8	ND	2	342	.5	3	3	19	1.44	.055	14	52	.33	217	.04	3	.33	.03	.25	2	6.7
07303 360-365M	370	556	4	17	.3	4	4	93	1.11	2	8	ND	3	315	.5	3	3	21	1.15	.061	14	97	,34	247	.05	3	.39	.04	.31	2	6.2
07304 365-370M	267	2013	1106	757	>100	2	4	149	1.92	120	8	ND	3	405	10.1	720	6	13	1.48	.064	13	37	.33	116	.02	3	.26	.02	.20	2	5.7
07305 370-375M	595	427	4	19	1.8	3	4	132	1.25	2	8	ND	3	3 2 3	.5	3	3	22	1.14	.071	16	86	.38	300	.05	3	.44	.04	.29	2	6.2
07306 375-380M	433	743	7	15	.4	2	7	108	1.56	3	8	ND	2	258	.5	3	3	14	1.34	.057	13	25	.32	156	.03	3	.23	.02	.18	2	6.7
07307 380-385M	664	390	6	12	.3	2	5	80	1.55	9	8	ND	3	337	.5	3	3	14	1.35	.056	12	67	.30	138	.02	3	.32	.03	.20	2	6.7
07308 385-390M	663	376	4	9	.3	3	4	72	1.18	3	8	ND	2	318	.5	3	3	17	1.18	.054	13	108	.31	221	.03	3	.40	.04	.27	2	6.2
07309 390-395M	893	246	6	5	.3	2	3	81	1.57	2	8	ND	2	325	.5	3	3	16	1.22	.053	12	68	.30	128	.03	3	.32	.03	.24	2	5.7
07310 395-400M	154	262	67	31	3.2	5	14	77	7.95	11	8	ND	4	42	.5	19	3	15	.98	.075	8	85	.21	21	.02	4	.37	.02	.25	3	6.7
07311 400-405M	403	384	3	6	.3	3	3	76	. 98	7	8	ND	2	63	.5	3	3	21	1.49	.064	11	74	.40	289	.02	3	.41	.02	.18	2	6.2
07312 405-410M	209	357	7	6	.3	3	3	62	.76	10	8	ND	2	3 53	.5	3	3	19	1.22	.045	11	83	.30	199	.04	3	.43	.04	.29	2	5.7
07313 410-415M	282	637	5	5	.4	3	4	68	.91	10	8	ND	2	161	.5	3	3	22	1.32	.057	12	74	.37	209	.05	3	.45	.03	.32	2	6.2
07314 415-420M	1373	221	4	3	.3	2	3	56	.71	4	8	ND	2	226	.5	3	3	15	1.38	.041	10	99	.27	177	.03	3	.33	.03	.23	2	6.7
07315 420-425M	827	505	4	5	.6	3	4	80	1.02	4	8	ND	3	251	.5	3	3	19	1.07	.047	10	110	.31	162	.04	3	.40	.04	.30	2	6.2
07316 425-430M	830	311	3	3	.3	2	3	60	.86	2	8	ND	2	197	.5	3	3	13	.78	.029	8	105	.22	127	.03	3	.30	.04	.24	6	6.7
07317 430-434M	162	1147	52	69	1.4	4	9	260	2.42	4	8	ND	4	179	.8	15	3	75	.96	.045	8	84	.63	160	.09	5	.68	.03	.55	2	4.8
07401 2-5M	543	2069	6	85	6.4	3	3	234	1.37	265	8	ND	3	14	.8	61	3	19	.34	.045	8	83	.30	127	.03	3	.40	.04	.27	2	3.8
07402 5-10M	763	486	15	45	.3	3	5	55	.94	14	8	ND	2	21	.5	3	3	13	.56	.041	11	100	.20	173	.02	3	.32	.04	.22	2	6.2
07403 10-15M	541	895	4	50	.3	3	6	48	1.14	11	8	ND	2	22	.8	3	3	12	.90	.043	14	89	.18	144	.01	3	.41	.02	.18	2	6.2
07404 15-20M	1044	979	17	70	.3	4	4	50	.90	14	8	ND	3	18	1.2	4	3	9	.56	.044	15	101	.15	203	.01	3	.41	.02	.16	2	6.2
07405 20-25M	1866	261	72	147	.3	3	5	99	.87	26	9	ND	2	19	1.9	15	3	7	.95	.055	8	83	.27	207	.01	3	.23	.01	.11	2	5.2
07406 25-30M	768	267	22	93	.3	6	9	108	1.40	14	8	ND	2	18	1.2	7	3	12	.87	.053	8	33	.29	122	.01	3	.16	.01	.08	2	3.3
07407 30-35M	460	1249	14	42	.3	15	17	167	2.86	7	8	ND	2	29	.5	3	3	97	1.49	.068	8	82	1.16	144	.16	3	1.48	.05	1.09	2	5.7
07408 35-40M	436	2232	62	128	2.5	31	26	372	4.37	12	10	ND	3	32	1.2	4	3	121	1.89	.098	12	66	1.09	105	.16	7	1.78	.08	1.07	3	4.8
07409 40-45M	1266	977	6	54	.6	15	13	108	2.72	25	8	ND	2	14	.8	3	3	21	.46	.022	4	62	.30	57	.02	3	.44	.02	.27	2	5.2
07410 45-50M	645	1514	3	51	1.2	29	22	314	4.76	46	8	ND	2	56	.5	3	3	155	2.61	.122	10	71	1.45	154	. 19	3	1.96	.07	1.27	2	4.8
07412 55-60M	458	228	5	19	.3	14	13	142	1.48	71	8	ND	2	33	.5	4	3	11	1.66	.022	3	61	.58	52	.01	3	.35	.01	.20	2	6.7
07414 65-70M	559	227	6	28	.3	4	6	131	1.29	19	8	ND	3	41	.5	4	3	16	1.97	.035	6	71	.48	171	.01	3	.27	.02	.12	38	6.7
07415 70-75M	369	515	5	12	.3	11	11	90	1.76	39	8	ND	2	47	.5	3	3	40	1.50	.045	7	53	.57	129	.05	3	.74	.02	.43	2	6.2

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	ប	Au	Th	Sr	Cđ	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	B	AL	Na	K	W	Wt
SAMPLE	ppn	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	%	*	ppm	ppm	×	ppm	*	ppm	%	%	*	ppm	kg								
07416 75-80M	631	1691	3	36	1.6	12	17	138	3.65	156	8	ND	2	19	.5	5	3	48	.47	_010	1	50	.45	59	.03	3	.57	.02	.39	2	6.2
07417 80-85M	499	924	8	43	1.0	14	13	206	4.37	147	8	ND	2	35	.5	7	3	57	.52	.026	3	43	.34	78	.03	3	.58	.02	.35	2	7.1
07418 85-90M	593	1588	11	22	1.8	17	17	208	4.64	104	8	ND	2	28	.5	6	3	65	.46	.042	3	34	.33	61	.03	3	.59	.02	.37	2	7.1
07419 90-95M	729	3968	20	274	7.3	30	39	162	6.81	113	8	ND	2	23	2.3	7	3	53	.33	.056	2	48	.28	27	.03	7	.58	.03	.36	2	7.1
07420 95-100M	646	2767	10	47	3.1	25	38	153	6.35	59	8	ND	2	19	.5	3	3	80	.40	.020	2	33	.17	25	.01	3	.26	.02	.17	2	6.2
07421 100-105M	200	1911	7	69	1.9	14	31	528	8.02	40	8	ND	2	27	.5	4	3	208	.81	.020	1	56	1.15	83	.16	3	1.37	.03	1.09	2	6.7
07422 105-110M	107	2276	3	89	2.7	19	52	674	8.82	14	8	ND	2	134	.5	3	3	378	.64	.066	4	55	2.28	132	.40	3	2.33	.04	2.23	5	7.1
07424 155-120M	374	1438	3	48	2.3	9	27	446	6.03	35	8	ND	2	22	.5	4	3	142	.87	.170	4	75	.99	59	. 14	11	1.00	.05	.85	2	7.6
07501 3-10M	169	196	4	35	.3	3	5	89	1.08	5	8	ND	2	18	.5	3	3	9	.59	.039	11	43	.15	141	.02	3	.23	.02	.14	4	4.8
07502 10-20M	201	288	19	64	.3	3	3	81	.84	10	8	ND	2	15	.5	4	3	12	.37	.043	12	75	.21	159	.03	3	.34	.03	.23	2	9.5
07503 20-30M	158	195	3	32	.3	4	4	94	1.08	4	8	ND	2	16	.5	3	3	12	.53	.042	11	76	.21	155	.02	3	.28	.03	.22	5	10.5
07504 30-40M	148	236	4	30	.3	2	4	85	1.19	4	8	ND	2	22	.5	3	3	12	1.10	.045	10	74	.21	136	.02	3	.26	.03	.21	2	12.4
07505 40-50M	166	243	4	27	.4	3	2	68	.68	2	8	ND	2	14	.5	3	3	17	.25	.043	10	77	.25	130	.04	3	.32	.04	.28	2	9.5
07506 50-60M	220	193	5	28	.3	2	4	80	.82	6	8	ND	2	13	.5	4	3	12	.38	.041	9	31	.21	140	.02	3	.21	.02	.18	3	10.5
07507 60-70M	377	173	6	41	.6	3	5	75	1.34	8	8	ND	3	16	.5	6	3	11	.61	.041	9	37	.22	115	.02	3	.18	.02	.17	2	10.5
07509 75-80M	1024	149	3	12	.3	3	3	45	.60	2	8	ND	2	19	.5	3	6	15	.42	.044	9	94	.24	134	.03	3	.32	.03	.28	2	5.2
07510 80-85M	554	145	3	16	.3	3	2	45	.53	3	8	ND	2	25	.5	3	3	14	.52	.042	10	99	.23	151	.03	3	.35	.04	.28	2	5.7
07511 85-90M	728	145	3	20	.3	2	3	56	.62	4	8	ND	2	36	.5	3	3	14	1.34	.047	10	74	.23	152	.02	3	.31	.03	.20	2	5.7
07512 90-95M	1021	496	15	42	1.1	4	8	83	2.03	27	8	ND	2	42	.5	3	7	12	1.11	.044	8	80	.23	107	.02	8	.33	.03	.21	2	6.7
07513 95-100M	743	77	3	11	.3	3	2	95	.58	5	8	ND	2	64	.5	3	3	13	2.48	.044	8	80	.21	154	.02	4	.33	.02	.19	2	5.7
07514 100-105M	1383	97	3	12	.4	2	2	58	.57	5	8	ND	2	68	.5	3	5	5	2.12	.037	8	86	. 15	193	.01	5	.23	.01	.11	2	5.7
07515 105-110M	1335	173	3	15	.7	3	2	66	.67	11	10	ND	4	53	.5	6	3	6	1.75	.040	9	81	.15	190	.01	4	.28	.01	.11	5	5.7
07516 110-115M	1148	197	6	10	.5	2	5	62	1.45	35	8	ND	2	41	.5	12	5	4	1.95	.039	5	66	.21	134	.01	3	.22	.01	.08	2	4.8
07521 135-140M	761	428	3	32	.3	3	4	78	.93	7	8	ND	2	24	.5	3	3	7	.95	.048	9	80	.18	197	.01	3	.30	.01	.08	2	6.2
07522 140-145M	458	866	7	21	.5	2	4	69	1.28	14	8	ND	2	29	.5	3	4	6	.96	.053	9	96	.17	133	.01	3	.32	.01	.10	2	6.7
07524 150-155M	484	449	4	23	.7	2	5	106	1.27	15	8	ND	3	32	.5	4	3	9	1.64	.047	9	72	.29	174	.01	3	.25	.01	.07	2	6.2
07527 165-170M	620	405	3	12	.8	3	4	71	1.04	14	8	ND	2	29	.5	4	3	13	.90	.057	9	94	.24	234	.01	3	.48	.02	.15	2	3.8
07528 170-175M	667	859	4	31	1.6	11	12	174	2.85	52	10	ND	3	31	.5	13	3	98	1.28	.078	10	65	1.18	159	.14	8	1.39	.02	.94	3	4.3
07529 175-180M	550	306	9	18	.6	3	4	78	1.08	6	8	ND	2	28	.5	3	3	12	1.49	.057	9	74	.23	186	.01	3	.45	-01	.14	2	5.7
07530 180-185M	385	610	6	18	1.1	4	6	79	1.32	10	8	ND	2	34	.5	3	3	14	1.23	.058	9	89	.27	179	.01	3	.47	_02	.16	3	5.7
07601 15-20 M	381	342	6	61	.7	5	6	163	1.46	44	8	ND	2	30	.6	33	4	10	1.45	.044	8	117	.19	156	.01	3	.34	.02	.18	2	6.2
07603 25-30M	147	180	4	33	.6	3	5	102	.93	7	8	ND	2	22	.5	5	5	21	1.16	.062	8	27	.35	151	.04	3	.35	.02	.24	2	6.7
07604 30-35M	105	145	18	29	.5	2	4	114	.81	12	8	ND	2	32	.5	12	3	7	1.84	.059	7	28	.25	124	.01	3	.16	.01	.08	2	6.2
07605 35-40M	85	103	10	15	.3	2	3	112	.64	14	8	ND	2	35	.5	8	3	6	1.58	.043	7	69	.24	228	.01	3	.21	.02	.11	2	5.7
07606 40-45M	119	81	3	8	.3	2	2	93	.55	8	8	ND	2	41	.5	3	3	7	1.56	.065	9	106	.25	195	.01	3	.25	.02	.15	2	0.5

ELEMENT	Мо	Cu	РЬ	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	в	AL	Na	κ	W	Wt
SAMPLE	ppm	ppm	ppm	ppn	ppm	ppm	ppm	ppm	X	ppm	*	x	ppm	ppn	x	ppm	x	ppm	*	*	*	ppm	kg								
07607 45-50M	126	164	5	26	.5	4	4	125	.93	12	8	ND	3	55	.5	11	3	18	1.81	.051	8	85	.40	214	.02	4	.46	.02	.26	2	6.7
07608 50-55M	370	123	9	54	.3	3	4	131	.92	4	8	ND	2	68	.5	6	3	18	2.05	.061	6	32	.41	136	.02	3	.31	.02	.20	2	6.7
07610 60-65M	303	143	4	19	.3	2	5	86	1.16	13	8	ND	2	45	.5	4	3	7	1.57	.049	7	28	.22	156	.01	3	.18	.01	.10	2	6.7
07611 65-70M	286	116	5	23	.6	3	3	86	.70	12	10	ND	3	34	.5	3	5	6	1.55	.045	9	77	.22	238	.01	3	.27	.02	.13	2	5.7
07612 70-75M	102	96	5	12	.3	2	4	158	1.00	12	8	ND	2	73	.5	5	3	4	4.90	.047	6	27	.24	153	.01	3	.1 1	.01	.07	2	6.7
07613 75-80M	106	389	99	129	1.3	2	5	89	.84	14	10	ND	3	37	1.1	17	3	7	2.16	.050	6	22	.23	179	.01	3	.13	.01	.06	2	4.8
07614 80-85M	70	142	5	12	.3	1	2	77	.62	5	8	ND	2	31	.5	3	3	11	1.47	.045	8	58	.22	216	.01	3	.28	.02	.12	2	5.7
07615 85-90M	68	1001	35	38	1.2	4	4	65	1.15	13	8	ND	2	30	.5	6	3	13	.98	.049	8	95	.25	163	.02	3	.34	.03	.23	2	5.7
07617 95-100M	300	86	3	9	.3	4	2	47	.47	2	8	ND	2	27	.5	3	3	12	1.17	.036	9	115	.17	140	.02	3	.31	.02	.23	2	5.7
07618 100-105M	74	203	343	276	2.2	4	4	95	2.31	18	8	ND	3	30	2.7	9	3	12	1.40	.044	8	103	.21	67	.02	3	.31	.03	.21	2	5.7
07619 105-110M	210	402	8	12	.6	3	3	50	2.07	8	8	ND	2	28	.5	3	3	14	.94	.048	6	82	.17	76	.02	3	.37	.02	.22	2	6.2
07620 110-115M	184	184	24	22	1.1	2	5	58	6.22	28	8	ND	2	84	.6	11	3	9	1.32	.038	6	68	.17	31	.01	3	.23	.02	.13	2	6.7
07621 115-120M	357	3 57	140	241	3.0	3	3	91	2.97	47	8	ND	2	153	2.5	51	3	8	1.29	.038	7	80	.17	62	-01	3	.32	.02	.15	2	6.7
07622 120-125M	339	698	507	550	8.0	5	9	84	12.40	101	8	ND	3	143	5.6	94	17	10	.83	.032	8	128	.15	18	.01	3	.34	.02	.19	12	7.1
07623 125-130M	956	356	25	35	1.7	2	3	104	2.13	73	8	ND	3	116	.7	12	4	8	2.10	.040	6	59	.22	82	.01	3	.18	.02	.11	2	6.7
07625 135-140M	618	546	30	24	2.7	2	2	149	1.28	45	10	ND	2	165	.5	6	7	12	2.44	.043	7	82	.28	126	.02	3	.27	.03	.18	2	6.7
07627 145-150M	474	444	386	238	6.8	4	10	132	7.11	82	9	ND	2	167	2.3	18	31	9	1.56	.049	19	69	.23	33	.01	3	.25	.02	.12	5	5.7
07628 150-155M	970	216	4	5	.7	2	2	44	.57	3	8	ND	2	123	.5	3	3	15	.76	.041	8	85	.25	147	.03	3	.30	.03	.22	2	5.7
07629 155-160M	364	147	6	7	.4	2	3	57	.72	6	8	ND	2	63	.5	3	3	9	1.70	.040	7	68	.21	156	.01	3	.24	.02	.13	2	7.1
07630 160-165M	758	275	13	9	.7	3	3	82	.71	9	8	ND	3	98	.5	3	3	8	2.82	.046	9	77	.23	191	.01	3	.23	.01	.09	2	6.2
07631 165-170M	326	247	26	35	1.2	3	4	72	.81	13	8	ND	5	88	.5	3	3	12	1.70	.045	11	70	.24	178	.02	3	.35	.02	.17	2	6.7
07632 170-175M	306	1488	3	11	1.8	3	2	69	1.21	20	8	ND	2	186	.5	3	3	12	3.36	.041	9	70	.20	130	.01	3	.26	.02	.15	2	6.2
07633 175-180M	661	448	5	10	1.0	2	3	88	.77	12	8	ND	3	43	.5	8	3	7	1.95	.040	8	86	.26	176	.01	3	.25	.02	.11	2	5.2
07635 185-190M	997	1351	4	8	1.2	3	3	63	.96	18	8	ND	2	37	.5	3	3	7	1.49	.040	10	90	.23	194	.01	3	.28	.01	.12	2	6.2
07636 190-195M	777	487	5	6	.8	3	3	59	.73	13	8	ND	4	107	.5	3	3	10	1.52	.041	10	84	.22	166	.01	3	.31	.02	.12	2	5.7
07638 200-205M	1261	229	4	2	.3	2	3	53	1.02	10	8	ND	3	77	.5	3	3	8	1.81	.040	8	96	.20	122	.01	3	.25	.02	.12	2	6.2
07639 205-210M	304	206	3	1	.6	3	2	59	.73	12	8	ND	3	298	.5	3	3	10	1.69	.042	8	83	.23	170	.01	3	.32	.02	.15	2	6.2
07640 210-215M	410	618	7	1	.8	2	3	38	.81	10	8	ND	2	316	.5	3	3	11	1.30	.044	7	78	.21	147	.01	3	.26	.02	.16	2	5.7
07643 225-230M	244	327	4	14	.7	3	3	76	.96	19	10	ND	4	123	.5	5	3	10	1.76	.048	12	74	.27	210	.02	3	.33	.03	.17	2	5.2
07644 230-235M	429	192	8	12	.5	2	3	59	.95	26	8	ND	2	29	.5	3	3	8	1.29	.043	8	70	.23	193	.01	3	.25	.01	.10	2	5.7
07645 235-240M	801	350	6	8	.3	2	3	72	1.01	32	8	ND	2	41	.5	5	3	6	2.43	.039	8	72	.29	193	.01	3	.25	.01	.10	2	5.7
07646 240-245M	286	739	5	11	.7	2	3	80	1.11	53	8	ND	2	31	.5	5	3	4	1.69	.043	7	25	.35	162	.01	3	.14	.01	.07	2	6.7
07647 245-250M	503	1031	25	33	2.5	3	7	129	2.49	53	8	ND	3	30	.5	9	5	6	1.98	.039	8	64	.29	66	.01	3	.21	.01	.10	2	6.2
07648 250-255M	474	426	8	12	.9	2	4	86	.96	21	8	ND	4	108	.5	6	3	7	1.87	.047	10	86	.29	205	.01	3	.31	.02	-14	2	6.2
07653 275-280M	685	294	5	8	.4	3	3	90	1.04	75	8	ND	3	43	.5	12	3	9	2.24	.044	8	61	.50	294	.01	3	.26	.01	.08	2	5.2

ELEMENT	Mo	Cu	Pb	Zn	Ag	Nī	Со	Mn	Fe	As	ប	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ţi	В	Al	Na	K	W	٧t
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	bbu	*	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	x	*	ppm	ppm	*	ppm	۴ (ppm	*	x	x	ppm	kg
07707 200-205M	182	273	3	8	.8	3	4	100	1.12	10	8	ND	5	239	.5	3	3	16	1.16	.052	13	76	.30	176	.04	3	.36	.03	.26	2	6.2
07709 210-215M	269	238	3	13	.5	4	4	108	1.08	2	8	ND	3	245	.5	3	3	17	1.09	.052	14	102	.31	191	.04	3	.39	.05	.30	2	6.7
07712 225-230M	791	301	6	18	.4	3	4	102	1.04	29	8	ND	3	176	.5	3	6	13	2.12	.051	13	68	.33	230	.02	3	.37	.02	.20	2	5.7
07713 230-235M	446	312	4	12	.3	3	4	106	1.24	20	8	ND	2	181	.5	3	3	15	1.62	.058	14	98	.35	199	.02	3	-48	.02	.18	2	5.7
07715 240-245M	469	306	5	11	.5	2	4	76	1.01	21	8	ND	3	100	.5	3	3	14	1.41	.052	13	81	.32	205	.04	3	.43	.03	.26	2	6.2
07716 245-250M	324	268	5	12	.4	2	4	83	.98	24	8	ND	3	45	.5	3	3	14	1.93	.058	13	84	.31	212	.02	3	.41	.02	.17	2	6.2
07718 255-260M	1060	1809	6	36	1.4	10	13	240	3.09	25	8	ND	2	53	.5	3	3	101	1.59	.063	10	88	.73	186	.10	3	-81	.03	.54	2	5.7
07801 170-175M	94	230	6	4	.3	3	6	73	.94	7	8	ND	2	1 97	.5	3	3	10	2.33	.045	10	56	.25	161	.02	3	.33	.02	.17	2	6.2
07803 180-185M	657	79	7	14	.3	2	4	80	.71	5	8	ND	5	30	.5	3	3	7	1.00	.043	11	74	.24	247	_01	3	.25	.01	.09	2	5.7
07804 185-190M	30	676	7	10	.7	1	6	85	1.74	24	8	ND	2	48	.5	3	3	4	1.67	.068	13	50	.34	83	.01	3	.26	.03	.12	2	6.7
07805 190-195M	13	481	4	9	.3	2	9	102	1.94	29	8	ND	2	46	.5	3	3	4	1.62	.073	18	60	.44	106	.01	3	.26	.04	.15	2	6.7
07806 195-200M	10	537	7	10	.5	2	8	143	2.04	57	8	ND	2	54	.5	7	3	5	2.32	.071	18	51	.50	120	.01	3	.25	.03	.13	2	6.2
07807 200-205M	175	2422	10	130	3.7	16	34	994	10.37	25	8	ND	2	21	.5	23	3	369	1.14	.080	4	59	2.04	55	.29	3	1.75	.05	1.51	7	6.7
07808 205-210M	117	314	7	9	.3	2	3	67	1.24	5	8	ND	2	182	.5	3	3	13	1.50	.050	11	51	.27	173	.03	3	.41	.02	.24	2	6.2
07809 210-215M	142	288	6	12	.3	2	3	72	1.10	7	8	ND	2	178	.5	3	3	12	1.49	.052	12	98	.27	211	.02	3	.43	.03	.20	2	5.7
07810 215-225M	117	235	73	156	1.0	2	3	107	1.44	8	8	ND	2	1 81	1.3	3	3	13	1.09	.051	14	71	.28	155	.03	3	.40	.03	.26	2	11.4
07811 225-235M	157	315	15	54	.6	2	4	78	1.05	27	8	ND	3	88	.5	4	3	11	1.66	.054	11	62	.27	163	.01	3	.33	.01	.12	2	11.4
07812 235-245M	158	414	8	20	.4	2	9	79	1.15	37	8	ND	3	49	.5	3	3	13	1.52	.061	11	72	.33	177	.02	3	.39	.02	.19	2	13.3
07813 245-255M	208	280	13	14	.4	2	4	81	1.07	14	8	ND	2	111	.5	3	3	12	1.40	.053	10	70	.28	190	.02	3	.33	.02	.17	2	15.2
07814 255-260M	380	305	5	1	.8	2	4	64	1.05	11	8	ND	4	67	.5	3	3	11	1.67	.044	10	84	.28	158	.02	3	.31	.02	.17	2	6.7
07816 265-270M	389	369	4	2	.7	3	4	85	1.13	2	8	ND	3	161	.5	3	3	20	.87	.057	13	61	.34	150	.06	3	.41	.04	.34	2	6.2
07817 270-275M	686	328	257	184	.6	2	3	76	.86	2	8	ND	3	200	2.0	5	3	16	1.00	.051	11	76	.30	153	.04	3	.35	.03	.30	2	6.2
07818 275-280M	543	466	1439	1435	2.8	2	3	86	.90	13	8	ND	2	269	13.9	36	3	11	1.38	.046	8	65	.24	154	.02	3	.32	.02	.17	2	6.2
07819 280-285M	918	1762>1	10000>	10000	34.9	2	4	222	3.81	107	8	ND	2	219	141.9	770	9	9	2.10	.037	5	79	.15	47	.01	3	.25	.01	.18	9	6.7
07820 285-290M	560	330	630	1070	2.4	3	4	168	3.38	8	8	ND	2	156	10.0	40	3	12	1.33	.041	12	91	.26	61	.02	3	.34	.02	.23	2	6.7
07821 290-295M	431	313	50	20	.9	3	5	100	2.20	14	8	ND	2	258	.5	6	3	10	1.24	.047	9	109	.25	89	.01	3	.35	.03	.21	2	6.2
07822 295-300M	528	305	86	13	1.5	3	5	118	2.46	31	8	ND	4	177	.5	16	6	10	1.52	.051	11	75	.28	73	.01	3	.30	.02	.20	2	6.7
07823 300-305M	214	424	3	6	.3	2	4	77	1.14	6	8	ND	2	263	.5	3	3	18	.88	.059	11	65	.38	202	.05	3	.42	.03	.35	2	5.7
07824 305-310M	764	500	6	1	.6	3	5	76	1.24	7	8	ND	3	198	.5	3	3	21	1.07	.060	11	91	.39	162	.06	3	.46	.04	.38	2	5.7
07825 310-315M	706	401	41	24	.3	3	4	82	1.10	17	8	ND	2	257	.5	3	3	31	1.48	.078	11	61	,52	204	.08	3	.65	.03	.47	2	6.2
07826 315-320M	128	628	6	7	.7	2	5	81	1.59	27	8	ND	2	51	.5	4	3	17	1.87	.063	11	57	.37	144	.02	3	.48	.02	.21	2	5.7
07827 320-325M	41	1181	57	25	1.7	3	9	107	2.65	79	8	ND	2	46	.5	3	3	19	1.84	.083	12	46	.54	76	.01	4	.51	.03	.21	2	5.2
07828 325-330M	514	382	8	10	.7	2	6	82	1.55	59	8	ND	3	52	.5	13	3	13	2.13	.062	10	73	.55	191	.01	3	.41	.01	.12	2	5.7
07829 330-335M	1353	517	26	46	1.0	2	6	81	2.69	24	8	ND	2	50	.7	4	3	14	2.42	.078	8	76	.45	65	.01	3	.31	.01	.10	2	6.7
07830 335-340M	405	2730	34	79	2.4	10	16	351	4.70	44	8	ND	2	83	.6	3	3	111	4.35	.092	7	33	1.35	127	.02	3	.71	.01	.22	2	6.2

ELEMENT	Мо	Cu	Pb	Zn	Ag	Nî	Co	Mn	Fe	As	U	Au	Th	۶r	Cd	Sb	Bi	v	Ca	Ρ	La	Cr	Mg	Ba	Ti	В	Al	Na	κ	¥	¥t
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppn	ppm	x	%	ppm	ppm	x	ppm	*	ppm	*	x	*	ppm	kg
07831 340-345M	286	2612	6	92	2.5	16	28	739	8.16	26	8	ND	2	70	.5	3	3	268	2.86	.068	6	63	2.48	132	.30	5	1.82	.03	1.56	2	6.7
07832 345-350M	219	3293	12	77	4.4	16	27	496	7.48	62	8	ND	4	166	.5	24	3	259	1.38	.068	6	73	2.27	65	.36	14	1.91	.03	1.81	8	6.7
07833 350-355M	327	557	9	22	2.3	3	4	101	.99	20	8	ND	2	65	.5	49	3	22	1.73	.059	8	75	_44	165	.02	3	.36	.02	.22	2	5.7
07834 355-360M	406	416	3	3	.3	2	4	99	1.24	46	8	ND	2	69	.5	3	3	25	2.36	.079	10	51	.59	245	.02	3	.44	.01	.20	2	6.Z
07835 360-365M	386	694	23	65	13.8	4	4	157	1.16	110	8	ND	2	95	1.7	70	3	13	3.67	.046	8	70	.53	181	.01	3	.29	.01	.12	2	5.7
07836 365-370M	349	2537	17	71	2.9	17	30	641	8.04	13	8	ND	2	293	.5	3	3	281	1.45	.081	5	97	1.75	73	.27	13	1.62	.06	1.41	2	6.7
07837 370-375M	986	3888	9	56	3.6	18	29	532	8,02	2	9	ND	2	59	.5	4	3	308	1.00	.067	5	86	2.06	90	.35	6	1.95	.05	1.84	3	6.7
07838 375-380M	577	2150	14	93	1.5	20	28	787	9.13	3	8	ND	2	85	.5	3	3	354	1.14	.065	6	55	2,95	182	.48	3	2.53	.04	2.54	3	6.7
07902 220-225M	1019	209	33	137	.8	2	3	121	1.02	10	8	ND	3	152	1.1	14	3	11	1.73	.052	13	75	.26	172	.01	3	.35	.01	.17	2	6.7
07903 225-230M	132	699	8	84	1.3	2	5	160	1.29	83	8	ND	2	221	.7	24	3	13	1.55	.057	11	82	.32	141	.02	3	.36	.02	.20	2	6.2
07904 230-235M	114	284	9	69	1.3	3	3	93	1.05	15	8	ND	3	192	.5	15	3	17	1.04	.055	14	83	.32	152	.04	3	.43	.04	.31	2	6.7
07906 240-245M	309	229	40	50	1.0	3	3	104	1.13	14	8	ND	2	270	.5	16	3	14	1.48	.052	10	72	.32	152	.02	3	.31	.02	.19	2	607
07907 245-250M	150	654	14	44	2.0	3	4	153	1.51	52	10	ND	2	48	.6	65	5	10	2,13	.048	10	68	.32	100	.01	3	.24	.02	.12	2	5.7
07912 270-275M	927	681	127	181	4.9	2	6	170	1.37	40	8	ND	2	142	2.0	56	3	17	3.83	.055	11	74	.48	110	.03	3	.33	.02	.25	2	6.2
07914 280-285M 3210	583	307	8	15	.5	3	4	86	1.13	2	8	ND	2	258	.5	3	3	24	1.08	.062	13	65	.41	196	.07	3	.44	.03	.36	2	5.7
07916 290-295M 3450	2000	821	79	88	6.3	3	7	205	3.36	51	8	ND	2	180	1.2	100	19	10	1.18	.034	9	69	.24	39	.02	3	.38	.01	.18	2	5.7
07918 300-305M	529	382	3	16	.3	2	4	67	.98	3	8	ND	2	139	.5	3	3	21	.87	.050	12	103	.32	149	.05	3	.40	.04	.32	5	6.0
08001 3.9-10M	901	138	9	75	1.0	3	3	66	1.60	9	8	ND	3	12	.5	9	3	12	.17	.046	6	69	.18	101	.02	3	.33	.02	.21	2	6.7
08002 10-15M	854	239	7	124	.8	5	4	193	1.74	12	8	ND	2	16	.6	10	3	34	.43	.055	7	67	.45	126	.07	3	.57	.03	.41	2	4.8
08003 15-20M	1039	1452	37	4590	5.0	12	11	2006	2.83	149	8	ND	3	55	37.2	137	3	52	3.00	.058	11	77	.92	76	.06	3	.82	.04	.46	2	4.8
08004 20-25M	1412	407	39	2720	3.3	8	7	1075	3.41	39	8	ND	2	15	19.7	57	3	23	.96	.050	5	55	.41	34	.02	3	.37	.01	.25	7	4.8
08005 25-30M 3450	2000	677	9	339	1.4	13	13	1025	2.88	35	8	ND	2	23	2.1	53	4	66	1.28	.060	6	67	.87	81	.11	3	1.06	.04	.81	2	5.7
08006 30-35M	1981	630	9	69	1.2	17	13	440	3.41	13	8	ND	2	21	.5	21	3	137	1.03	.094	8	84	1.52	166	.23	3	1.65	.05	1.38	2	5.2
08007 35-40M	872	3433	4	122	3.6	98	48	273	6.34	6	8	ND	2	101	.5	6	8	113	2.27	.069	3	188	1.86	100	.18	3	3.91	.31	1.27	21	4.8
08101 2.7-5M	1013	142	22	690	1.9	4	2	149	1.17	16	8	ND	2	14	3.9	19	3	7	.35	.036	6	102	.14	117	.01	3	.29	.03	.19	2	2.0
08102 5-10M	723	147	11	176	2.8	- 4	2	187	1.33	17	8	ND	2	16	.7	34	3	7	.49	.038	6	82	.14	128	.01	3	.21	.01	.15	2	4.8
08103 10-15M	1296	173	6	826	2.6	3	2	140	1.95	18	8	ND	2	28	4.7	35	3	8	1.01	.047	6	76	.18	82	.01	3	.27	.02	.19	2	5.7
08104 15-20M	549	50	6	129	.5	3	4	124	1.43	4	8	ND	3	18	.9	4	3	18	.67	.052	8	77	.33	103	.04	3	.41	.03	.31	3	5.7
08105 20-25M	483	60	7	167	.3	4	3	110	.92	2	8	ND	3	18	.9	3	4	20	.49	.054	9	76	.36	148	.04	3	.38	.03	.32	2	4.8
08106 25-30M	369	421	5	115	1.0	8	7	225	1.50	4	10	ND	2	15	.6	6	3	44	.37	.038	9	90	.48	124	.07	3	.63	.03	.46	2	5.2
08107 30-35M	573	442	3	63	.3	17	13	487	4.62	2	10	ND	2	13	.5	3	3	85	.48	.017	3	57	.97	68	.13	3	1.38	.04	1.00	2	5.7
08108 35-40M	341	1369	5	99	1.0	26	18	337	4.09	2	8	ND	2	29	.5	3	3	169	.68	.070	3	71	1.72	154	.26	3	2.30	.13	1.53	2	6.2
08109 40-45M	485	1902	4	120	1.2	87	29	479	5.16	2	10	ND	2	97	.7	3	3	182	1.74	.104	3	238	2.12	150	.31	3	4.04	.42	1.88	5	4.8
08110 45-50M	479	1567	3	59	2.2	33	20	226	3.82	5	8	ND	4	27	.5	5	4	127	.71	.111	7	108	1.66	132	.21	7	1.92	. 13	1.30	4	5.2
08111 50-55M	663	702	6	82	.6	14	13	253	4.94	12	8	ND	2	16	.5	8	3	112	.77	.066	6	53	1.58	55	.19	3	1.62	.03	1.35	9	5.7

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	St	o Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	В	Ał	Na	K	W	₩t
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	x	ppm	ppm	ppm	ppm	ppm	ppn	pp	a ppa	ppm	*	*	ppm	ppm	*	ppm	*	ppm	x	X	×	ppm	kg
08112 55-60M	595	1213	35	618	9.8	14	16	360	9.11	162	8	ND	2	18	4.2	172	2 4	66	.78	.043	5	61	.80	33	.09	3	.90	.02	.68	2	5.7
08113 60-65M	686	1348	5	62	1.0	19	16	259	5.45	7	10	ND	2	14	.5	4	43	137	.57	.065	5	52	1.61	76	.22	3	1.77	.04	1.48	4	5.2
08114 65-70M	225	1456	5	34	1.2	24	20	207	4.37	8	8	ND	2	16	.5	4	43	128	.81	.068	6	64	1.64	90	.20	3	1.74	.04	1.37	8	5.7
08115 70-75M	1756	572	4	31	.4	19	13	277	3.37	4	8	ND	2	12	.5	3	33	96	.48	.041	4	72	.94	103	.14	3	1.35	.04	1.00	2	6.7
08116 75-80M	544	388	6	218	.5	15	12	243	2.93	4	8	ND	2	16	1.5	ł	53	82	.55	.057	7	58	.80	110	.12	3	1.16	.04	.83	2	6.2
08117 80-85M	698	380	5	30	.7	12	10	197	2.59	11	8	ND	2	8	.5	4	4 3	75	.24	.018	3	64	.74	53	.11	3	1.16	.03	.80	2	5.7
08118 85-90M 2210	2000	648	3	37	.3	15	12	320	3.44	3	8	ND	2	16	.5	3	55	114	.66	.048	6	71	1.45	163	.20	3	1.64	.05	1.38	2	6.7
08119 90-95M	1474	1173	8	52	1.5	20	17	1148	4.30	19	8	ND	2	35	.6	19	7 3	105	2.16	.082	7	74	1.62	84	.17	3	1.54	.02	1.20	2	6.7
08120 95-100M	1191	1096	3	42	1.1	19	21	278	5.75	14	8	ND	2	19	.5	S	3	110	.87	.051	4	46	1.49	68	.19	3	1.68	.03	1.38	2	5.7
08121 100-105M	833	670	3	63	1.0	16	15	274	3.84	9	9	ND	2	19	.5	ŧ	53	114	.83	.039	6	53	1.45	116	. 19	3	1.58	.04	1.30	2	6.2
08122 105-110M	432	2181	3	51	3.4	23	24	514	4.27	18	8	ND	2	34	.5	15	5 3	109	1.36	.059	6	54	1.33	78	.13	3	1.28	.04	.88	4	4.8
08123 110-115M	178	2306	14	127	10.1	22	25	618	7.31	67	8	ND	2	25	.9	165	21	164	1.17	.073	4	70	1.21	43	.15	3	1.03	.03	.95	6	5.7
08124 115-118M	172	3335	4	66	2.8	14	30	594	9.09	28	8	ND	3	16	.5	19	8	287	.71	.080	5	76	1.78	45	.29	4	1.60	.04	1.57	24	3.8
08201 1.7-5M	742	87	21	20	.9	4	2	112	1.59	167	8	ND	2	32	.6	26	53	12	.04	.039	11	86	. 15	251	.04	3	.31	.04	.37	2	3.3
08202 5-10M	936	144	50	71	4.3	3	2	43	1.60	137	8	ND	2	17	.5	83	53	9	.06	.043	11	103	.14	218	.02	3	.33	.03	.33	2	5.2
08203 10-15M	947	98	10	72	.5	4	2	38	.91	16	8	ND	3	13	.5	5	> 3	17	.09	.054	10	80	.31	150	.05	3	.52	.03	.32	2	5.2
08204 15-20M	684	166	10	47	.3	2	2	36	.89	11	8	ND	3	12	.5	12	2 3	10	.08	.044	12	93	.18	156	.02	4	.41	.03	.23	2	5.7
08205 20-25M	363	1030	132	405	15.5	4	21	92	6.37	108	8	ND	2	11	3.5	289	> 5	5	.32	.037	8	109	.11	18	.01	3	.31	.02	.19	2	5.7
08206 25-30M	317	741	49	131	5.2	3	14	48	5.56	83	8	ND	2	10	1.1	153	54	7	.22	.031	8	123	. 14	24	.02	3	.41	.02	.21	2	5.2
08207 30-35M	650	863	21	126	.4	4	4	92	.94	9	8	ND	2	17	1.7	12	2 3	11	.45	.051	17	87	.20	176	.02	3	.46	.02	.21	2	5.2
08208 35-40M	738	656	8	84	1.3	4	5	71	1.56	28	8	ND	2	14	1.3	43	53	9	.39	.052	11	80	.15	116	.01	3	.39	.02	.18	2	6.2
08209 40-45M	809	1209	8	187	.8	5	6	269	1.32	21	8	ND	2	17	1.9	28	3 3	10	.50	.052	14	106	.18	167	.01	3	.55	.02	,20	2	6.2
08210 45-50M	913	118	3	79	.3	4	4	118	.94	6	8	ND	3	22	.8	6	5 3	14	.77	.049	13	83	.27	152	.03	3	.40	.03	.27	2	5.7
08211 50-55M	1064	45	4	56	.4	3	3	58	1.11	2	8	ND	4	22	.6	5	53	8	.94	.035	10	94	.15	134	.01	3	.31	,03	.19	2	5.7
08212 55-60M Z620	2000	456	5	120	.3	14	12	287	2.68	6	8	ND	2	17	1.0	3	3	90	.62	.056	8	100	.97	170	.14	3	1.30	.06	.93	4	5.7
08213 60-65M	426	1880	3	95	1.6	77	24	435	4.69	3	8	ND	4	92	.8	7	73	172	1.78	.142	6	217	2.25	297	.31	9	4.09	.42	1.96	2	5.2
08214 65-70M	194	1853	6	109	.5	116	36	553	6.13	2	8	ND	2	101	.5	3	53	187	1.66	.145	4	261	3.36	255	.38	3	4.51	.41	2.87	2	5.7
08215 70-75M	489	2293	3	763	2.2	72	34	587	5.68	30	8	ND	2	22	4.8	44	3	168	1.13	.128	7	183	2.75	176	.34	3	2.72	.08	2,38	2	5.7
08216 75-80M	487	1539	3	72	.7	31	20	283	3.87	2	8	ND	2	28	.7	3	3	136	.75	.091	7	83	1.94	192	.24	3	2.19	.11	1.71	4	5.2
08217 80-85M	809	709	5	248	1.0	13	8	179	2.78	8	8	ND	4	10	2.0	5	3	68	.36	.040	6	94	1.35	95	.15	6	1.28	.05	1.15	2	5.7
08218 85-90M	430	2409	34	92	4.5	34	24	373	5.43	38	10	ND	2	34	.6	52	2 6	128	1.57	.096	7	104	2.21	79	.24	3	2.24	.06	1.85	11	5.7
08219 90-95M	656	519	6	36	.3	36	22	419	4.82	14	8	ND	2	27	.5	6	5 3	141	1.25	.052	3	72	2.16	176	.26	3	2.58	.04	2.00	2	5.7
08220 95-100M	578	838	6	50	1.2	47	26	446	5.33	13	8	ND	3	21	.5	10	6 (161	.64	.053	5	111	2.46	202	.33	8	3.11	.09	2.42	4	5.7
08221 100-105M	553	1459	3	55	1.8	48	27	506	6.32	24	8	ND	4	53	.5	17	3	130	2.17	.068	7	129	2.21	78	.29	11	2.21	.07	1.78	4	5.2
08222 105-110M	387	1332	6	53	.9	44	30	306	6.36	9	8	ND	2	50	.5	10	3	122	1.86	.047	4	120	1.80	63	.24	3	2.26	.14	1.50	2	5.2

ELEMENT	Мо	Cu	Pb	Zn	Ag	Nī	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	B	AL	Na	κ	W	Wt
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppn	ppm	ppm	ppm	ppm	ppm	*	%	ppm	ppm	*	ppm	X	ppm	x	*	x	ppm	kg
08223 110-115M	891	3480	3	47	3.6	69	43	335	8.07	13	8	ND	4	47	.5	20	4	187	1.42	.082	5	131	2.27	48	.31	4	2.94	.21	1.91	10	4.8
08224 115-120M	99	4590	5	61	5.0	59	62	285	8.64	5	8	ND	2	55	.5	4	3	185	1.45	.079	5	130	1.66	48	.25	3	2.46	.29	1.16	14	5.2
08301 210-215M	78	197	8	25	.6	4	3	139	.99	28	8	ND	5	144	.5	15	3	16	2.12	.058	14	92	.43	429	.02	3	.48	.02	.21	2	5.7
08302 215-220M	163	204	59	71	1.5	3	4	136	2.70	52	8	ND	2	49	.7	27	3	7	2.54	.052	9	58	.39	55	.01	3	.24	.01	.10	2	6.2
08303 220-225M	76	240	6	11	_4	3	4	76	.81	16	8	ND	2	42	.5	7	3	11	1.52	.061	9	74	.32	236	.01	3	.29	.02	.14	2	6.2
08304 225-230M	466	259	5	9	.5	2	3	62	.61	7	8	ND	3	45	.5	7	3	10	1.85	.048	10	51	.28	153	.01	3	.15	.02	.08	2	6.2
08306 308.4-310.4M	565	3342	6495>1	0000	>100	3	2	262	.91	378	8	ND	2	80	150.8	1592	42	4	2.94	.032	5	111	.23	89	.01	3	.18	.01	.09	7	2.4
08307 320-325M	348	393	4	12	.5	3	3	68	.97	2	8	ND	2	208	.5	3	3	25	1.24	.059	13	70	.39	136	.06	3	.44	.03	.37	2	6.2
08312 345-350M	1527	311	3	16	.3	3	3	68	.98	2	8	ND	2	226	.5	3	3	16	1.05	.048	10	71	.29	160	.04	3	.39	.04	.29	2	5.7
08316 365-370M2250	2000	344	12	11	1.2	6	9	93	2.42	35	8	ND	3	69	.5	16	3	10	1.27	.046	12	92	.25	59	.01	3	.32	.02	.18	2	6.7
08325 410-415M	1 9 0	2635	9	98	2.9	7	26	702	6.51	9	8	ND	5	540	.5	13	5	171	2.97	.079	9	46	1.74	92	.20	19	1.59	.05	1.17	7	6.2
08327 420-425M	150	591	3	18	.9	3	5	147	1.84	12	8	ND	2	320	.5	3	4	22	1.54	.065	16	83	.46	199	.03	3	.41	.04	.27	3	6.2
08328 425-430M	205	4240	355	324	8.7	22	40	297	5.95	85	8	ND	2	676	2.9	81	3	162	1.20	.064	10	97	1.33	53	.19	6	1.35	.06	1.13	11	5.2
08336 465-468.5M	126	1294	3	154	1.0	10	24	1420	9.27	22	8	ND	2	461	.5	4	8	315	1.61	.068	4	45	2.15	115	.26	6	1.50	.05	1.41	2	5.7
08401 0.9-5M	361	69	5	30	.4	2	2	39	.82	19	8	ND	2	17	.5	6	3	23	.09	.049	14	89	.38	216	.06	3	.48	.04	.40	2	5.2
08402 5-10M	807	79	15	34	8.1	3	2	32	1.11	65	8	ND	4	13	.5	117	4	15	.05	.040	11	94	.24	164	.04	5	.40	.03	.32	2	6.2
08403 10-15M	523	67	15	80	.5	4	1	28	.77	28	8	ND	3	11	.6	17	3	11	.04	.032	9	110	. 18	154	.03	3	.37	.03	.25	2	5.7
08404 15-20M	1927	241	16	263	1.5	4	2	56	.87	25	8	ND	2	11	1.8	26	4	10	.14	.037	8	112	.15	143	.02	3	.36	.03	.22	2	5.7
08405 20-25M	1039	837	524	149	17.5	3	4	22	6.48	286	8	ND	3	6	1.4	374	11	7	.03	.048	6	86	.04	33	.01	5	.27	.01	.17	2	5.2
08406 25-30M	1073	375	1580	70	1.3	5	2	73	4.16	142	8	ND	4	18	.5	117	5	12	.63	.096	10	118	.11	167	.01	4	.38	.01	.19	2	5.7
08407 30-35M	773	290	12	49	.3	3	3	61	.89	6	8	ND	4	12	.5	5	3	19	. 15	.057	13	59	.34	146	.05	3	.56	.04	.34	2	6.2
08408 35-40M	702	303	9	63	.3	3	4	79	.85	8	8	NÐ	3	17	.7	3	5	12	.50	.045	13	89	.23	152	.03	3	.41	.03	.24	2	5.2
08410 45-50M	488	735	14	112	.3	4	5	121	1.00	12	8	ND	3	14	1.1	10	3	11	.30	.043	14	87	.21	170	.03	3	.49	.03	.25	2	6.7
08412 55-60M	898	260	8	31	.9	3	9	65	3.92	47	8	ND	2	20	.5	39	3	5	.79	.042	7	94	.12	40	_01	3	.29	.01	.20	2	5.7
08413 60-65M	1195	144	4	74	.4	3	3	135	.87	6	8	ND	4	22	.5	10	3	14	.78	.051	15	72	.27	274	.03	3	.39	.03	.28	2	6.2
08415 70-75 M	724	150	7	158	.3	3	6	320	1.32	10	8	ND	3	39	.9	5	3	11	2.64	.050	10	90	.36	159	.02	3	.40	.02	.19	2	6.2
08416 75-80M	417	149	3	112	.3	2	4	121	1.01	4	8	ND	3	23	.7	3	3	15	.88	.064	15	78	.31	170	.03	3	.51	.03	.27	2	6.7
08417 80-85M	787	62	3	46	.3	2	3	70	1.05	11	8	ND	2	25	.5	4	3	10	.95	.047	8	86	.25	186	.02	3	.36	.03	.23	2	6.7
08418 85-90MKG20	2000	592	3	108	.3	3	4	- 77	.88	11	8	ND	4	24	1.3	5	4	12	.82	.047	17	89	.22	199	.02	3	.44	.03	.22	2	5.7
08419 90-95M	862	324	6	133	.4	4	10	88	1.69	13	8	ND	4	26	1.5	6	7	7	1.10	.050	13	91	.24	114	.01	4	.32	.03	.17	2	5.2
08420 95-100M	1044	502	3	70	.3	3	5	82	.88	6	8	ND	4	35	.8	4	7	8	1.86	.043	14	84	.20	281	.01	3	.30	.01	.11	2	6.2
08421 100-105M	17	785	3	108	1.0	3	7	91	2.16	67	8	ND	2	35	1.2	23	3	8	1.39	.089	18	28	.55	75	.01	3	.31	.03	.14	2	5.7
08422 105-110M	178	378	3	27	.6	3	5	108	2.09	30	8	ND	3	47	.5	15	3	8	2.43	.076	16	56	.59	101	.01	3	.32	.03	.14	2	6.2
08423 110-115M	825	267	4	85	.4	5	12	108	2.30	24	8	ND	2	28	.7	26	3	22	1.74	.046	6	79	.48	93	.02	3	.49	.01	.24	2	4.8
08424 115-120M	437	1233	4	65	1.2	22	18	189	3.98	108	8	ND	2	53	.5	30	6	97	2.76	.072	6	48	1.57	103	.12	3	1.31	.02	.77	2	5.7

....

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	IJ	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	B	Al	Na	κ	W	₩t
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppm	ppn	ppm	ppm	x	x	ppm	ppm	*	ppm	*	ppm	x	x	2	ppm	kg
08425 120-125M	1124	349	12	90	1.4	3	2	196	3.85	134	8	ND	2	25	.5	61	3	7	1.21	.037	7	100	.22	42	.01	3	.29	.01	.16	2	6.2
08426 125-130M	1194	576	3	24	.4	3	3	47	.90	9	8	ND	3	34	.5	3	3	16	1.11	.045	11	94	.27	185	.03	3	.45	.03	.29	3	6.7
08427 130-135M	1386	134	10	34	.3	3	3	42	.69	2	8	ND	3	30	.5	3	3	15	1.07	.042	12	109	.26	139	.04	3	.44	.04	.28	2	6.7
08428 135-140M	1790	467	3	25	.3	8	5	106	1.53	7	8	ND	2	38	.5	3	3	45	1.25	.056	12	67	.46	162	.07	3	.62	.03	_44	2	5.7
08429 140-145M	320	4685	3	67	4.5	31	38	400	6.52	31	8	ND	2	50	.5	25	3	177	2.72	.101	9	76	2.12	107	.27	4	2.05	.03	1.64	2	5.7
08430 145-150M	1974	1031	50	229	6.4	18	17	236	4.54	30	8	ND	3	28	2.1	82	3	120	1.33	.068	9	84	1.06	67	.15	7	1.22	.04	.97	18	5.2
08431 150-155M	333	3966	8	112	13.1	16	25	469	5.65	50	8	ND	2	29	.9	50	3	164	1.50	.051	5	82	.64	72	.05	3	.58	.04	-40	2	6.7
08432 155-160M	321	4970	9	74	4.9	15	33	558	8.17	14	8	ND	2	41	.5	19	3	260	1.87	.084	5	61	1.39	79	.18	8	1.26	.04	1.02	2	6.2
08433 160-165M	418	2833	3	52	2.3	11	21	375	5.28	11	8	ND	2	56	.5	3	3	153	2.15	.104	8	72	.97	97	.12	3	1.00	.04	.70	2	5.7
08434 165-170M	350	2734	4	65	2.5	11	24	420	8.04	15	8	ND	2	29	.5	3	3	253	1.33	.072	5	67	1.34	60	.19	3	1.33	.05	1.09	5	5.7
08435 170-175M	147	232	4	10	.3	3	5	61	.98	18	8	ND	3	46	.5	5	3	8	2.19	.052	11	63	.22	198	.01	3	.28	.01	.10	2	5.7
08436 175-180M	90	3514	3	132	5.0	14	33	821	10.04	10	8	ND	4	11	.5	8	3	407	.60	.075	4	51	2.91	75	.41	19	2.36	.05	2.35	6	5.7
08437 180-185M	89	3319	3	105	3.1	14	39	676	11.00	4	8	ND	2	9	.5	6	3	415	.50	.070	2	45	2.76	80	.40	13	2.21	.05	2.22	7	5.7
08438 185-190M	225	2805	5	69	3.0	16	40	698	11.43	6	8	ND	2	17	.5	3	3	412	.96	.074	5	69	2.31	67	.31	3	1.90	.07	1.78	3	5.7
08439 190-195M	192	1230	3	49	1.4	9	18	365	5.61	3	8	ND	3	40	.5	7	4	244	.65	.048	6	67	1.64	97	.27	3	1.61	.05	1.52	3	5.7
08440 195-200M	371	1664	11	75	2.4	11	26	637	8.03	5	8	ND	5	130	.5	20	6	350	1.35	.060	6	69	2.43	54	.30	5	1.97	.05	1.90	12	5.7
08441 200-205M	211	5327	5	107	9.2	18	49	898	10.78	2	10	ND	4	139	.5	6	3	407	1.76	.075	5	42	1.57	55	.18	6	1.35	.05	.76	31	5.7
08442 205-210M	109	3448	6	127	4.8	16	41	721	11.36	2	10	ND	2	30	.5	6	5	449	.81	. 125	3	47	2.04	60	.33	3	1.87	.05	1.69	2	6.2
08443 210-215M	308	2244	5	109	3.1	15	39	928	11.30	5	9	ND	6	149	.5	7	3	425	1.27	. 129	6	53	2.48	56	.37	9	2.07	.04	1.96	2	6.2
08444 215-220M	260	3501	3	181	5.0	19	43	934	11.03	5	8	ND	4	278	.5	8	4	465	.89	.091	4	46	2.90	79	.46	3	2.53	.04	2.58	2	6.7
08501 20-25M	389	410	3	158	.3	5	4	193	.95	41	8	ND	2	16	.9	5	7	6	.39	.037	10	105	.09	213	.01	3	.31	.01	.14	2	6.2
08502 25-30M	172	266	9	92	.3	3	9	93	5.61	37	8	ND	3	11	.5	13	9	7	.45	.036	8	85	.09	22	.01	6	.28	.01	.15	2	5.2
08503 30-35M	182	110	4	44	.3	3	3	66	1.84	22	8	ND	2	22	.5	7	5	11	.85	.049	8	76	.23	76	.02	3	.34	.02	.25	2	5.7
08504 35-40M	762	74	7	132	.3	3	4	155	1.06	2	8	ND	2	31	.5	4	7	8	1.74	.048	10	73	.19	160	.01	3	.35	.01	.15	2	5.2
08505 40-45M	480	102	3	72	.3	3	3	80	1.18	4	8	ND	4	16	.5	4	6	16	.45	.048	11	66	.29	139	.04	3	.41	.03	.30	2	5.7
08506 45-50M	208	172	5	103	.3	2	3	111	1.04	3	8	ND	3	17	.5	4	5	12	.51	.050	11	84	.26	153	.03	3	.34	.03	.28	2	5.7
08507 50-55M	1404	1105	177	297	1.9	5	5	101	1.98	10	8	ND	4	11	1.8	21	5	10	.35	.034	11	103	.11	68	.01	6	.40	.01	.17	2	6.2
08508 55-60M	860	282	182	295	3.1	4	5	218	1.09	17	8	ND	4	21	1.8	44	5	6	1.04	.037	10	66	.18	131	.01	6	.22	.02	.15	2	5.7
08509 60-65M	966	991	499	338	1.4	4	4	147	1.16	23	8	ND	2	15	2.5	16	7	9	.39	.048	14	79	.17	160	.02	3	.57	.02	.20	2	6.2
08510 65-70M	884	511	74	80	.6	3	4	55	1.24	12	8	ND	4	12	.5	12	10	14	.23	.043	12	103	.24	121	.03	3	.40	.04	.28	2	5.7
08511 70-75M	887	544	3	67	.5	4	3	57	.86	7	8	ND	5	12	.5	8	6	13	.26	.048	13	77	.22	143	.03	3	.38	.03	.24	2	6.2
08512 75-80M	540	1966	6	60	.6	3	6	43	1.89	17	8	ND	3	12	1.3	11	3	13	.26	.067	13	59	.16	76	.02	3	.46	.03	.21	2	5.7
08513 80-85M	566	1317	5	95	.3	4	6	100	1.41	6	8	ND	2	20	1.4	4	4	17	.61	.063	15	73	.23	138	.01	3	.47	.03	.22	2	5.7
08514 85-90M	934	556	5	91	.9	13	17	212	3.87	31	8	ND	3	17	.5	9	5	61	.78	.048	5	59	.71	71	.09	5	.97	.03	.68	5	6.2
08516 95-100M	873	796	3	123	1.4	16	15	354	3.66	6	8	ND	4	11	.5	5	3	134	.28	.053	7	56	1.61	200	.23	11	1.80	.06	1.49	3	5.7

ELEMENT	Mo	Cu	Рb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ba	Ti	В	Al	Na	κ	W	¥t
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	×	X	ppm	ppm	*	ppm	x	ppm	x	*	*	ppm	kg
08517 100-105M	302	1117	3	81	1.0	20	19	303	4.60	5	8	ND	2	9	.5	3	3	177	.26	.062	5	56	2.25	208	.31	4	2.24	.06	1.99	7	6.2
08518 105-110M	1834	419	30	171	1.2	15	13	342	5.25	28	8	ND	2	25	.8	19	9	64	1.52	.043	3	55	.98	54	.08	5	.88	.03	.64	2	5.7
08519 110-115M	507	1120	5	96	1.2	16	13	373	3.54	18	8	ND	2	29	.5	4	7	91	1.12	.040	4	39	.83	127	.09	3	1.04	.03	.70	2	6.2
08520 115-120M	294	2266	11	160	2.9	15	25	926	7.15	62	8	ND	2	483	.7	79	3	258	1.17	.070	5	46	2.03	92	.28	3	1.85	.04	1.64	5	6.2
08521 120-125M	336	2249	3	129	2.2	14	31	662	8.61	10	8	ND	2	18	.6	7	3	181	.79	.070	2	39	1.82	43	.30	3	1.83	.07	1.60	7	6.2
08522 125-130M	49	2485	3	174	2.1	17	34	1180	9.03	2	8	ND	2	14	.5	4	3	505	.73	.075	2	56	2.70	63	.40	3	2.35	.05	2.32	4	6.2
08523 130-135M	66	2507	3	111	2.7	9	27	683	8.00	2	8	ND	2	7	.5	5	3	248	.50	.084	3	47	2.07	60	.34	3	1.81	.04	1.76	4	5.7
08524 135-140M	191	2714	1433	2068	72.6	4	20	1118	7.19	192	8	ND	2	13	14.6	704	3	216	.86	.085	3	24	1.91	118	.29	3	1.64	.02	1.57	2	6.2
08602 25-30 M	535	423	4	127	1.8	3	8	48	2.85	100	8	ND	3	12	.9	91	4	7	.32	.056	8	104	.10	81	.01	3	.29	.01	.15	2	4.8
08603 30-35M	953	71	7	34	.3	2	2	36	.52	5	8	ND	2	16	.5	3	7	10	.56	.035	8	72	.18	115	.02	3	.28	.02	.21	2	5.2
08604 35-40M	349	57	3	40	.3	3	2	64	1.14	4	8	ND	2	21	.5	3	5	9	.92	.039	9	83	.20	127	.02	3	.29	.02	.20	2	5.7
08607 50-55M	141	65	3	107	.3	4	3	92	2.88	5	8	ND	2	10	.9	3	3	16	.26	.048	9	73	.24	60	.03	3	.37	.02	,28	3	5.7
08611 70-75M	132	223	4	9	.3	3	3	60	1.16	27	8	ND	3	20	.5	3	3	9	.66	.040	9	88	.20	119	.02	3	.31	.02	.23	2	6.7
08613 80-85M	178	308	5	32	.3	3	3	73	.93	25	8	ND	2	20	.5	21	3	13	.68	.052	13	76	.29	163	.04	3	.35	.03	.28	2	6.7
08614 85-90M	189	153	3	25	.3	4	6	85	1.73	2	8	ND	2	23	.5	3	3	15	.57	.053	12	83	.31	99	.04	3	.35	.03	.30	2	5.7
08615 90-95M	204	122	3	22	.3	2	3	69	1.07	4	8	ND	2	18	.5	3	3	15	.49	.044	11	87	.27	156	.03	3	.32	.03	.27	2	5.7
08617 100-105M	353	112	4	24	.3	3	4	119	1.32	7	8	ND	2	20	.5	10	3	15	.52	.051	11	84	.28	147	.04	3	.36	.04	.30	2	5.7
08619 110-115M	354	266	6	23	.3	3	4	83	.99	2	8	ND	2	22	.5	3	3	18	.49	.056	15	97	.32	161	.05	3	.42	.04	.32	2	5.2
08623 130-135M	1371	264	16	64	4.8	3	4	74	1.66	44	8	ND	2	40	.6	70	3	10	1.07	.056	11	106	.19	106	.02	3	.31	.02	.24	2	5.7
08624 135-140M	665	324	30	43	3.8	2	4	82	1.05	20	8	ND	2	29	.5	37	3	12	.95	.050	12	96	.28	180	.03	3	.39	.03	.27	2	6.2
08629 160-165M	1130	137	3	16	.5	3	4	62	2.11	7	8	ND	2	38	.5	13	3	9	1.09	.043	10	85	.20	84	.02	3	.33	.03	.23	2	5.7
08632 175-180M	1033	171	5	70	.5	4	3	65	.85	19	8	ND	2	53	.5	17	3	10	1.15	.045	13	115	.26	191	.01	3	.44	.02	.19	2	5.2
08635 190-195M	954	223	3	11	.3	4	5	69	1.27	5	8	ND	2	62	.5	6	3	13	1.15	.052	11	89	.28	167	.02	3	.51	.03	.21	2	5.7
08637 200-205M	852	196	6	11	.7	4	4	74	1.07	7	8	ND	3	241	.5	3	3	12	.93	.046	10	102	.24	185	.02	5	.34	.03	.25	3	5.7
08646 245-250M	153	4880	3	118	5.6	18	42	480	10.17	7	10	ND	2	20	.5	3	3	352	.90	.093	2	68	1.19	41	.24	11	1.12	.06	.77	2	6.7
08648 255-260M	299	4238	4	107	4.7	11	34	614	9.55	4	10	ND	2	54	.5	3	5	259	1.88	.130	2	63	1.61	52	.27	6	1.67	.06	1.14	8	6.7
08649 260-265M	243	2593	3	103	3.1	9	33	570	8.71	3	10	ND	2	24	.5	3	3	239	1.20	.162	2	57	1.71	51	.31	10	1.68	.06	1.37	16	5.7
08650 265-270M	1323	3486	3	108	3.2	7	29	599	7.85	2	8	ND	2	21	.5	3	3	157	.82	.130	2	67	2.11	67	.37	13	2.07	.05	1.97	12	5.7
08652 275-280M	587	3114	3	46	3.8	5	24	371	7.24	5	8	ND	2	117	.5	4	7	87	1.74	.119	7	95	.58	66	.08	9	.82	.04	.22	13	6.2
08701 50-55M	197	110	9	49	.3	2	2	71	1.08	3	8	ND	2	17	.5	4	3	15	.53	.061	10	29	.35	175	.04	8	.31	.02	.26	2	6.2
08702 55-60M	139	95	6	43	,3	2	3	73	.%	2	8	ND	2	18	.5	3	3	15	.47	.054	14	82	.34	269	.05	3	.39	.03	.32	3	6.2
08703 90-95M	194	57	3	13	.3	4	2	48	.73	2	8	ND	2	32	.5	3	3	16	1.30	.051	12	127	.31	167	.03	3	.43	.03	.29	2	6.2
08704 95-100M	147	105	6	13	.3	2	3	82	.84	3	8	ND	2	26	.5	3	3	17	1.21	.053	14	41	.32	164	.04	3	.34	.01	.23	2	5.2
08705 100-105M	143	68	3	13	.4	4	3	82	1.02	6	8	ND	2	36	.5	5	3	12	1.56	.055	13	77	.28	179	.02	3	.36	.02	.19	2	6.7
08706 105-110M	878	447	3	16	.3	2	3	119	.88	2	8	ND	2	369	.5	3	3	22	1.53	.056	12	87	.35	212	.06	3	.45	.03	.33	10	6.7

.

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cď	Sł	o Bi	v	Ca	Р	La	Cr	Mg	Ba	Τi	В	Al	Na	κ	W	Wt
SAMPLE	ppm	ppm	ppm	ppm	ppn	ppm	ppm	ppm	%	ppm	ppm	ppm	bbu	ppm	ppm	ppr	n ppm	ppm	x	*	ppm	ppm	*	ppm	% I	p	*	%	x	ppm	kg
08707 110-115M	122	113	135	46	5.6	4	3	87	.92	19	8	ND	2	29	.5	31	13	14	1.21	.055	11	64	.32	153	.02	3	.39	.02	.23	2	6.7
08708 115-120M	334	250	22	47	8.9	4	4	107	2.76	22	8	ND	2	29	.5	59	3	18	1.17	.068	9	36	.32	83	.03	7	.39	.01	.28	2	6.7
08709 120-125M	582	102	3	9	.3	3	2	58	.70	2	8	ND	2	19	.5		33	15	.58	.048	12	84	.27	97	.04	3	.39	.03	.27	3	5.7
08710 125-130M	253	142	3	11	.3	2	2	60	.63	6	8	ND	2	20	.5	-	33	20	.79	.065	10	47	.38	123	.05	3	.40	-02	.31	2	5.7
08711 130-135M	150	154	7	22	.6	4	17	166	2.49	6	8	ND	2	34	.5	ł	83	11	1.55	.063	12	63	.31	81	.01	3	.34	.02	.18	2	6.7
08713 140-145M	376	547	3	26	1.2	3	3	65	2.08	35	8	ND	3	40	.5	34	4 11	12	1.30	.064	11	84	.25	93	.02	8	.43	.02	.26	2	5.7
08714 145-150M	421	176	3	9	.3	2	3	67	1.02	5	8	ND	2	52	.5	(53	12	1.62	.049	12	39	.26	134	.02	3	.27	.01	-18	2	7.1
08715 150-155M	870	322	5	11	.9	5	3	82	.76	19	8	ND	4	47	.5	2	34	14	1.45	.055	15	112	.31	261	.03	7	.44	.03	.27	2	6.7
08716 155-160M	562	171	12	17	1.0	z	3	94	.73	7	8	ND	3	50	.5	2	33	11	1.14	.043	13	39	.24	176	.03	3	.27	.02	.20	2	6.7
08717 160-165M	460	212	4	13	.8	3	3	60	.73	4	8	ND	4	117	.5		43	17	1.24	.053	15	87	.31	187	.04	7	.47	.03	.29	2	5.7
08719 170-175M	1220	156	19	27	3.1	4	5	74	1.20	14	8	ND	2	89	.5	4	93	12	1.32	.045	9	106	.23	181	.02	3	.34	.03	.24	2	6.7
08720 175-180M	514	267	3	22	1.0	4	21	133	2.08	16	8	ND	3	152	.5	3	33	12	4.26	.045	12	88	.28	111	.02	3	.36	.02	.18	3	6.7
08721 180-185M	1415	212	3	11	.5	3	7	82	1.31	2	8	ND	4	97	.5	:	33	12	1.77	.045	12	99	.25	163	.02	3	.36	.02	.20	2	6.7
08723 190-195M 20ZO	2000	373	3	17	.6	3	5	86	1.67	2	8	ND	2	216	.5		43	19	.99	.059	11	28	.33	124	.05	6	.32	.02	.28	3	6.2
08724 195-200M	1404	450	3	19	.3	4	5	88	1.39	2	8	ND	2	258	.5		33	31	1.17	.080	13	95	.50	211	.08	3	.60	.05	.47	2	5.7
08725 200-205M	1267	748	3	21	.9	7	8	117	1.86	4	8	ND	2	203	.5		33	56	1.36	.062	8	98	.62	173	.10	3	.97	.08	.61	2	6.7
08726 205-210M	1737	457	5	23	.5	7	8	159	1.84	2	8	ND	2	285	.5	1	5 12	55	1.31	.039	8	31	.66	165	.09	5	.70	.02	.57	2	6.7
08727 210-215M	313	372	5	17	.6	4	5	114	1.43	2	8	ND	2	294	.5		33	24	1.24	.054	10	75	.36	185	.05	3	.41	.02	.32	2	6.7
08728 215-220M	234	3152	9	50	4.0	6	14	324	3.58	4	8	ND	2	1486	.5		33	81	1.60	.098	11	44	.54	203	.07	3	.56	.02	.42	2	7.1
08730 225-230M	672	4240	9	85	5.0	8	32	466	7.11	2	8	ND	2	531	.5	4	65	134	2.10	. 162	7	62	.86	95	.10	3	.97	.03	.58	8	6.2
08732 235-240M	247	1169	10	37	1.8	4	21	318	4.58	11	8	ND	2	288	.5	!	5 13	53	1.44	.100	7	85	.51	72	.04	3	.54	.03	.31	3	6.7
08733 240-245M	436	2494	7	81	3.1	14	32	939	8.97	26	8	ND	2	161	.5		35	238	2.30	.073	4	54	2.18	50	.24	3	1.64	.02	1.41	13	6.7
08734 245-250M	154	2522	3	140	3.6	18	40	1043	10.97	2	10	ND	3	85	.5		63	416	1.52	.079	4	37	2.99	75	.41	11	2.43	.04	2.29	6	6.7
08801 55-60M	515	335	3	37	.3	4	4	92	1.43	3	8	ND	2	17	.5	:	33	18	.19	.060	13	77	.33	176	.05	3	.50	.04	.28	2	5.7
08803 90-95M	605	555	5	20	.6	5	5	115	1.72	6	8	ND	4	20	.5		33	47	.26	.109	14	91	.67	179	.09	3	.86	.05	.49	2	4.8
08805 100-105M	470	Z26	5	56	.4	4	6	99	1.61	11	8	ND	2	20	.5	1	83	13	.66	.046	9	111	.24	118	.03	3	.42	.02	.25	2	6.7
08806 105-110M	455	221	11	38	.8	3	3	70	1.31	12	8	ND	2	14	.5	1	45	13	.40	.048	9	27	.24	113	.03	3	.29	.01	.20	4	6.2
08807 110-115M	184	261	10	46	.4	3	5	60	1.58	16	8	ND	2	19	.5	1	03	11	.48	.044	8	25	,20	112	.02	3	.29	.01	.18	2	6.7
08808 115-120M	388	196	3	22	.3	3	3	50	.90	8	8	ND	2	102	.5	ł	83	15	.75	.046	8	76	.26	195	.03	3	.40	.02	.24	2	5.7
08810 125-130M	371	194	26	32	1.2	3	4	106	1.12	12	8	ND	5	60	.5	2	03	17	1.09	.060	11	93	.33	193	.03	3	.45	.02	.30	2	5.2
08811 130-135M	1498	98	3	14	.3	4	3	57	1.06	7	8	ND	3	34	.5		34	17	.45	.044	11	90	-28	168	.03	3	.34	.03	.29	5	5.2
08812 135-140M	1018	63	3	14	.3	2	2	44	.76	2	8	ND	2	39	.5		33	14	.64	.042	9	126	.24	160	.03	3	.37	.03	.29	2	5.2
08813 140-145M	1222	63	10	16	.3	3	9	46	2.40	6	8	ND	2	104	.5		34	12	.67	.041	6	115	.21	79	.02	3	.32	.03	.25	3	5.7
08814 145-150M	1019	228	33	27	1.1	3	5	123	2.75	22	8	ND	2	50	.5	1	74	12	1.25	.047	7	81	.27	59	.01	3	.37	.01	.20	2	6.7
08815 150-155M	760	362	10	17	.8	3	4	2 99	2.64	72	8	ND	2	59	.5	2	15	8	4.59	.046	5	66	.50	61	.01	3	.20	.01	.10	2	6.7

ELEMENT	Mo	Cu	Рb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	8a	Ti	В	Al	Na	κ	W	₩t
SAMPLE	ppm	ppm	ppn	ppm	ppm	ppm	ppm	ppm	*	ppm	x	*	ppm	ppm	*	ppm	*	ppm	*	x	*	ppm	kg								
08816 155-160M	688	491	71	74	7.8	3	4	155	2.16	66	8	ND	2	35	.8	124	6	15	1.41	.048	6	64	.52	74	.01	3	.23	.01	.13	2	6.7
08817 160-165M	445	1684	277	224	31.1	3	7	259	7.18	252	8	ND	2	42	2.4	424	23	15	2.11	.056	5	27	.69	26	.01	3	.15	.01	.10	2	5.7
08818 165-170M	103	9027	66	420	44.8	14	50	1050	12.08	565	8	ND	2	47	3.6	776	24	232	2.51	.066	1	54	1.65	10	.18	3	1.04	.02	.86	3	5.7
08901 60-65M	184	386	43	113	3.5	4	5	166	1.38	30	8	ND	2	27	1.0	48	5	12	1.28	.064	12	40	.31	154	.03	3	.39	.02	.19	2	6.7
08902 65-70M	164	1381	17	263	20.7	6	5	148	1.73	173	8	ND	2	18	2.5	394	3	12	.50	.062	12	75	.25	110	.03	3	.46	-02	.25	2	5.7
08904 75-80M	264	189	20	61	2.3	3	15	121	2.26	12	8	ND	2	19	.6	32	11	13	.67	.061	10	44	.30	92	.04	3	.30	.02	.23	2	5.7
08905 80-85M	293	1117	541	821	39.9	3	5	171	1.92	123	8	ND	2	21	6.4	459	7	12	.73	.057	7	79	.25	97	.03	3	.34	.03	.25	2	6.7
08907 90-95M	447	282	14	42	1.2	4	4	159	1.21	6	8	ND	2	18	.5	16	4	16	.48	.061	13	65	.29	176	.04	3	.40	.03	.28	2	5.7
08908 140-145M	810	431	31	39	3.5	3	5	122	2.16	48	8	ND	2	105	.7	69	4	7	1.48	.056	6	31	.22	67	.01	3	.21	.01	.11	2	5.7
08909 145-150M	548	474	8	21	1.1	3	3	72	1.52	37	8	ND	2	51	.5	29	9	12	1.10	.055	6	91	.28	100	.01	3	.39	.02	.17	2	6.2
08911 155-160M	1367	651	9	25	.6	5	7	145	1.80	22	8	ND	2	343	.5	9	13	46	1.32	.066	8	34	.75	194	.08	3	.70	.02	.51	2	5.7
08913 165-170M	388	1569	9	52	1.6	14	17	352	4.13	4	8	ND	2	57	.5	4	5	143	1.18	.055	8	83	1.27	177	.18	4	1.86	.11	1.09	4	6.2
08914 170-175M	338	1694	5	99	1.0	18	33	892	9.10	2	8	ND	2	78	.5	4	7	386	1.35	.094	3	56	1.77	103	.29	3	1.69	.07	1.39	2	6.7
08916 180-185M	158	2515	9	122	2.1	17	40	991	10.50	2	8	ND	2	63	.5	3	13	413	.91	.073	3	52	3.12	96	.41	3	2.58	.04	2.39	12	5.7
08917 185-190M	196	2248	4	94	2.1	14	38	628	9.11	2	8	ND	2	35	.5	3	9	420	1.14	.067	4	31	2.49	156	.34	3	1.95	.03	1.92	5	5.7
08918 190-195M	307	2456	6	74	1.8	14	26	565	6.39	8	8	ND	2	148	.5	9	9	271	.78	.054	6	84	2.10	128	.31	5	1.85	.05	1.72	6	6.2
08919 195-200M	396	8671	14	123	7.8	12	30	676	7.84	8	8	ND	2	410	.5	3	9	283	1.56	.056	6	29	1.98	96	.27	3	1.57	.03	1.48	5	5.2

-

For Pb, Zn greater than 10,000 ppm, assay digestion is required for correct data.

For Ag greater than 35 ppm, assay digestion is required for correct data.

TELEPHONE (604)231-8165

TORCH RIVER RESOURCES LTD. Project: Red Bird Sample Type: Cores

GEOCHEMICAL ANALYSIS CERTIFICATE

Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Wt - Samples weighed in kilogram.

Analyst RSAM Report No. 2057674 Date: August 29, 2005

ELÉMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Сd	Sł	b Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	В	AL	Na	К	W	Wt*
SAMPLE	ppm	ppm	ppn	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppm	ppr	n ppm	ppm	*	X	ppm	ppm	%	ppm	*	ppm	%	x	*	ppm	kg
12401 120-125M	298	440	3	15	.6	1	3	79	.47	4	8	ND	4	173	.5	3	33	18	1.74	.050	9	35	.21	151	.02	4	.22	.01	.10	2	6.7
12402 125-130M	328	344	3	27	.3	3	2	74	.51	5	8	ND	3	45	.5	3	33	8	1.63	.041	8	66	.09	224	.01	4	.20	_01	.07	2	6.7
12403 130-135M	522	431	3	16	.6	1	2	59	.50	2	8	ND	3	544	.5	3	33	17	1.59	.039	7	48	_ 21	139	.03	4	.21	.01	.13	3	6.7
12404 135-140M	34 0	390	3	14	.8	3	2	81	.60	7	10	ND	3	535	.5	3	33	21	1.35	.055	8	29	.24	131	.04	4	.27	.01	.17	3	6.7
12405 140-145M	313	250	3	16	.3	2	2	63	.45	2	8	ND	2	251	.5	3	33	16	1.19	.040	7	104	.21	137	.02	4	.32	.02	.16	2	5.7
12406 145-150M	534	397	3	14	.8	3	2	64	.53	2	8	ND	2	284	.5	3	33	22	.94	.046	8	89	.28	111	.03	3	.34	.03	.27	2	6.7
12407 150-155M	499	346	5	22	.6	2	2	71	.58	2	8	ND	2	304	.5	3	38	21	1.19	.046	6	31	.27	100	.04	3	.26	.01	.22	2	6.7
12408 155-160M	425	348	3	15	.4	3	3	70	.64	3	8	ND	2	276	.5	3	33	17	1.88	.048	8	65	.24	132	.01	4	.30	.02	.12	2	6.7
12409 160-165M	629	464	9	38	1.3	3	3	121	.80	4	8	ND	3	432	.5	3	33	17	2.15	.047	8	70	.21	174	.02	3	.30	.02	.13	2	6.2
12410 165-170M	26 0	235	55	130	1.2	2	2	140	.57	7	8	ND	2	361	1.1	3	33	9	1.38	.044	7	28	.16	154	.01	3	. 15	.01	.11	2	5.7
12411 170-175M	471	244	17	206	.7	2	2	204	.56	3	8	ND	2	811	1.8	3	34	10	1.93	.052	9	35	.18	212	.01	3	.16	.01	.09	2	6.2
12412 175-180M	779	177	7	63	.3	2	2	114	.73	2	8	ND	2	146	.5	3	33	28	.63	.052	8	108	.38	106	.05	3	.42	.03	.37	2	6.2
12413 180-185M	1139	587	51	139	2.3	4	2	157	.65	2	8	ND	2	299	1 .1	3	33	16	1.30	.042	8	80	.21	117	.03	3	.27	.02	.18	2	6.2
12414 185-190M	1014	342	85	195	1.4	3	2	205	.60	8	9	ND	3	140	1.7	3	33	11	1.98	.054	9	70	.16	148	.01	3	.22	.01	.14	2	5.7
12415 190-195M	1275	299	32	85	1.3	2	2	185	.47	5	8	ND	2	1146	.7	3	33	11	1.26	.045	7	64	.15	231	.02	3	.23	.01	.13	2	5.7
12416 195-200M	1532	347	68	106	1.5	1	2	140	.45	10	8	ND	3	440	1.0	3	33	8	1.23	.047	8	42	.14	129	.01	3	.19	.01	.10	2	6.2
12417 200-205M	1174	905	50	174	1.9	3	3	146	.80	3	10	ND	2	487	1.6	2	33	15	1.41	.047	8	45	.23	146	.02	3	.24	.01	.14	2	6.2
12418 205-210M	1221	731	196	422	2.3	3	5	365	1.01	13	8	ND	2	323	3.8	3	33	13	2.40	.049	10	65	.20	160	.02	3	.27	.01	.15	2	5.7
12419 210-215H287	D 2000	1411	325	403	12.1	5	6	330	2.59	21	8	ND	2	356	3.8	3	3 21	12	2.25	.067	12	57	.19	73	.01	3	.31	.01	.16	18	6.2
12420 215-220M	99 2	323	5	20	.6	3	2	111	.63	3	8	ND	2	429	.5	3	33	16	1.11	.045	8	102	.22	138	.03	3	.31	.02	.22	2	6.7
12421 220-225M 24	(1) 2000	440	441	970	3.3	3	2	379	.72	12	9	ND	4	229	9.0	-	53	4	1.34	.041	8	45	.09	152	.01	3	.13	.01	.08	2	6.7
12422 240-245M	846	775	225	695	3.3	2	3	129	.74	4	8	ND	2	393	6.3		33	14	1.42	.044	7	36	.18	102	.01	3	.21	.01	.12	10	6.2
12423 245-250M	808	163	8	53	.6	3	2	102	.58	3	8	ND	3	106	.5	4	43	8	.92	.030	6	42	.15	49	.01	3	.18	.01	.08	2	6.7
12424 250-255M	1510	380	3	46	.3	2	2	90	.62	2	8	ND	2	124	.5	3	33	12	.85	.031	6	34	.19	52	.02	3	.16	.01	.08	2	7.1
12425 255-260M	1579	425	3	39	1.0	5	2	103	.72	2	8	ND	4	321	.6	3	33	20	1.76	.041	8	119	.29	110	.03	3	.37	.02	.19	2	6.7
12426 260-265M	941	421	50	87	.9	3	3	110	.64	2	8	ND	2	125	.8		33	17	.86	.040	8	90	.24	79	.02	3	.31	_02	.21	2	6.7
12427 265-270H	1505	557	3	17	1.2	3	2	70	.58	2	8	ND	2	391	.5	2	33	18	.82	.043	8	95	.23	88	.02	3	.29	.02	.22	2	6.2
12428 270-277.8M	1431	1285	3	67	1.2	9	7	201	1.84	2	8	ND	2	433	.6	1	33	61	1.30	.055	8	48	.57	121	.07	3	.53	.02	.37	2	9.5
12429 277.8-278.84	4102000	114	3	16	.3	4	1	83	.51	2	8	ND	2	47	.5	3	34	8	.82	.009	4	195	.08	23	.01	3	.13	.01	.07	2	0.5
12430 278.8-285M	⁶ 914	1863	170	108	2.6	13	11	263	2.57	2	8	ND	2	171	1.2	3	33	88	1.19	.075	8	36	.85	96	. 13	3	.76	.01	.59	2	5.7

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Ρ	La	Cr	Mg	Ba	Ti	8	AL	Na	κ	W	Wt
SAMPLE	ppn	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	*	ppm	ppm	*	ppm	*	ppm	*	%	*	ppm	kg
12431 285-290M	665	1585	3	109	2.2	12	10	276	2.42	2	8	ND	3	77	1.0	3	3	84	1.27	.059	8	68	.74	69	.11	3	.72	.03	.56	2	6.7
12432 290-295M	1178	956	3	35	.7	5	4	135	1.24	2	8	ND	2	241	.5	3	3	50	1.46	.056	8	45	.56	103	.09	3	.52	.02	.43	2	6.7
12433 295-300M	733	328	3	15	.3	3	2	90	.60	2	8	ND	2	245	.5	3	3	27	1.24	.039	7	30	.33	92	.04	3	.37	.01	.21	2	6.7
12434 300-305M	379	251	9	41	1.0	2	2	107	.55	4	10	ND	3	255	.5	3	3	10	1.60	.032	9	72	.16	82	.01	3	.27	.01	.12	2	6.2
12435 305-310M	513	193	3	16	.3	2	1	107	.46	4	8	ND	2	228	.5	3	3	6	1.06	.025	8	34	. 14	47	.01	3	. 16	.01	.07	2	5.2
12436 310-315M	712	77	4	20	.3	2	1	116	.43	4	8	ND	2	116	.5	3	3	1	1.14	.020	6	65	.06	42	.01	3	.20	.02	.08	2	6.7
12437 315-320M	864	75	4	19	.3	1	2	90	.50	5	8	ND	2	114	.5	3	3	14	1.03	.034	8	55	.19	56	.02	3	.32	.01	.13	2	6.2
12438 320-325M	504	253	3	19	.3	3	3	105	.70	2	8	ND	2	105	.5	3	3	24	.86	.036	8	37	.30	61	.04	3	.29	.01	.21	2	6.2
12439 325-330M	339	2018	69	249	4.7	11	11	320	2.95	5	8	ND	2	1 98	2.6	5	4	73	2.57	.062	10	45	.69	116	.09	3	1.18	.08	.66	>100	5.7
12440 330-335M	405	2014	229	48	11.7	4	5	165	2.30	2	8	ND	3	192	.5	3	45	10	1.92	.032	14	20	.18	74	.01	3	.22	.01	.10	>100	6.2
12441 335-340M	508	2135	10	107	2.9	22	16	368	3.19	2	8	ND	2	178	.8	3	3	108	2.23	.055	7	53	1.42	147	.17	3	1.35	.04	.88	>100	6.2
12442 340-345M	459	1641	35	126	3.4	13	10	284	2.66	2	8	ND	2	181	1.1	3	6	66	1.79	.048	8	42	.92	130	.10	3	.86	.01	.64	31	6.2
12443 345-349.7M	766	1961	3	74	1.9	23	15	232	3.10	2	8	ND	2	203	.6	3	3	128	1.78	.080	6	77	1.62	154	.20	3	1.36	.04	.97	2	6.2
12501 25-30M	392	111	6	30	.3	3	2	96	.55	2	8	ND	2	41	.5	3	3	2	.85	.024	6	49	.08	34	.01	3	.16	.01	.07	2	5.7
12502 30-35M	491	67	4	35	.3	1	1	83	.45	2	8	ND	2	47	.5	3	3	3	.70	.022	6	79	.10	45	.01	3	.23	.02	.11	2	6.2
12503 35-40M	594	229	12	64	.7	2	1	106	.44	2	8	ND	2	29	.7	7	3	1	1,20	.019	5	56	.04	75	.01	3	.16	.01	.07	2	5.7
12505 45-50M	610	15	12	56	.3	3	1	142	.41	2	8	ND	2	277	.6	3	3	1	.93	.020	6	51	.06	103	.01	3	.19	.02	.08	2	6.7
12506 50-55M	419	135	5	18	.5	1	1	80	.26	2	8	ND	2	31	.5	3	3	1	1.29	.021	7	39	.05	78	.01	3	.18	.01	-09	2	5.2
12508 60-65M	375	1050	6	201	1.6	81	2	115	.48	2	8	ND	3	257	.5	6	3	1	1.04	.022	7	51	.07	59	.01	3	.11	.01	.06	>100	5.2
12509 65-70M	530	102	20	93	2.6	2	1	78	.38	2	8	ND	2	105	.9	20	3	2	.91	.021	6	64	.05	131	.01	3	.20	.02	.09	2	6.7
12510 70-75M	389	214	11	29	1.8	1	1	78	.34	2	8	ND	4	33	.5	13	3	2	1.06	.021	7	67	.07	43	.01	3	.17	.02	.09	2	5.7
12511 75-80M	512	119	3	90	.3	3	1	113	.47	2	8	ND	2	28	.9	3	3	5	1.01	.018	6	80	.10	59	.01	3	.19	.02	.09	2	4.8
12512 80-85M	304	152	4	24	.4	3	2	81	.46	2	8	ND	2	53	.5	3	3	4	1.05	.023	7	63	.11	40	.01	3	.20	.03	.09	2	6.2
12513 85-90M	400	962	276	380	19.8	12	13	650	2.49	9	8	ND	2	252	4.2	145	3	136	1.52	.080	8	48	.71	194	.10	3	.75	.02	.58	2	6.7
12514 90-95M	394	770	114	149	10.7	4	6	120	.88	6	10	ND	2	236	1.6	65	3	12	.83	.036	8	128	.17	128	.02	3	.21	.02	.14	2	5.7
12515 95-100M	602	408	12	67	.9	4	3	151	.68	2	8	ND	2	221	.7	3	3	13	1.11	.049	9	106	.21	132	.02	3	.27	.02	.16	2	6.2
12517 105-110M	436	318	3	30	1.3	3	3	118	.85	2	10	ND	3	377	.5	3	3	27	1.46	.058	9	38	.35	164	.04	3	.36	.01	.25	2	5.7
12518 110-115M	270	335	3	16	.5	4	2	67	.58	2	8	ND	2	615	.5	3	3	19	1.09	.049	8	75	.25	123	.03	3	.34	.02	.24	2	6.2
12519 115-120M	413	271	6	25	.9	4	3	131	.71	2	10	ND	3	66	.6	7	3	22	2.52	.040	7	70	.26	159	.02	3	.36	.01	.15	2	6.2
12520 120-125M	227	507	14	54	.9	4	3	188	.78	2	8	ND	3	75	.6	4	3	25	1.24	.043	7	86	.27	140	.03	3	.44	.01	.33	2	5.7
12521 125-130M	444	594	19	35	1.6	8	6	275	1.15	2	10	ND	2	52	.6	3	3	21	1.97	.051	8	93	.23	178	.02	3	.33	.01	.22	2	6.2
12801 210-215M	260	316	9	57	.9	5	4	277	1.22	2	8	ND	3	457	.7	3	3	25	1.59	.069	10	71	.45	260	.04	3	.40	.03	.20	2	6.7
12802 215-220M	428	344	3	24	.8	3	3	235	.%	2	10	ND	2	460	.5	3	3	19	1.74	.059	13	57	.36	266	.04	3	.36	.02	.22	2	6.2
12803 220-225M	220	304	3	26	.3	2	3	124	. 98	2	8	ND	2	308	.5	3	3	22	1.09	.059	12	45	.37	185	.05	3	.36	.02	.31	2	7.1
12804 225-230M	298	334	3	26	.6	4	3	101	.99	2	8	ND	3	464	.5	3	3	23	1.29	.052	12	133	.36	225	.06	3	.44	.04	.36	2	7.1

	Mo	Cu	Pb	Žn	Ag	Ni	Co	Mn	Fe Y	As	U	Au	Th	Sr	bJ	Sb	Bi	V	Ca ¥	P Y	La	Cr	Mg	Ba	Ti *	B	AL V	Na *	ĸ	W	Wt
SAMPLE	ppn	ppin	ppn	ppn	ppm	ppn	PPm	ppa	*	ppa	pps	ppu	ppu	ppu	ppu	- Li lai	i bha	hhu	~	~	him	PP40	~	PP#	~	երո	~	*	4	bbm	ĸg
12805 230-235M	263	497	3	21	.7	2	3	113	.92	2	8	ND	3	270	.5	3	5 3	24	1.08	.063	11	38	.39	184	.06	3	.39	.02	.34	2	5.7
12806 235-240M	380	697	6	28	1.0	2	3	120	1.05	2	8	ND	3	435	.5	3	i 3	19	1.47	.056	11	29	.32	172	.05	3	.29	.02	.18	2	6.7
12807 240-245M	133	360	3	22	1.0	3	4	124	1.20	4	10	ND	4	158	.5	4	3	29	1.01	.069	11	79	.42	163	.08	3	.41	.04	.33	2	7.6
12808 245-250M	310	387	3	26	.9	3	3	118	1.07	2	8	ND	2	99	.5	3	i 3	26	-82	.062	9	55	.40	157	.08	3	.37	.04	.36	2	6.7
12809 250-255M	264	3 60	3	23	.3	3	3	120	1.16	2	8	ND	2	73	.5	3	4	29	.65	.061	9	95	.41	165	.10	3	.43	.05	.39	2	7.6
12810 255-260M	542	637	3	24	.3	2	3	151	1.11	z	8	ND	2	267	.5	3	3	20	1.63	.062	12	35	.33	172	.05	3	.32	.02	.24	2	6.2
12811 260-265M	496	149	3	18	.3	3	2	106	.93	2	8	ND	2	297	.5	3	5 3	21	1.29	.056	13	98	.31	195	.05	3	.43	.03	.28	2	5.7
12812 265-270M	439	327	3	17	.3	3	3	102	.95	2	8	ND	2	254	.5	3	3	22	1.25	.055	12	74	.34	172	.07	3	.40	.04	.36	2	7.1
12814 275-280M	195	298	3	22	.3	3	3	146	.88	8	8	ND	4	333	.5	3	5 3	18	1.89	.055	11	28	.37	229	.03	3	.29	.01	.16	2	7.1
12815 280-285M	336	304	3	20	.3	2	2	110	.85	4	8	ND	2	294	.5	3	3	18	1.87	.058	13	53	.38	275	.04	3	.38	.01	.23	2	5.7
12816 285-290M	524	620	3	21	.6	2	3	110	.83	2	8	ND	2	279	.5	3	3	21	1.37	.059	10	43	.36	146	.06	3	.30	.02	.32	2	6.7
12817 290-295M	405	563	4	27	.9	2	3	106	.87	2	8	ND	2	308	.5	3	3	17	1.53	.059	11	29	.29	192	.03	4	.28	.01	.16	2	6.7
12818 295-300M	602	356	3	21	.3	3	3	158	.94	2	8	ND	2	300	.5	3	3	21	1.35	.055	11	88	.38	193	.05	3	.39	.03	.35	2	5.7
12820 305-310M	795	338	3	13	.3	2	2	89	.85	2	8	ND	2	287	.5	3	5	18	1.42	.051	9	76	.30	137	.05	3	.32	.02	.32	6	6.7
12822 315-320M	248	410	5	18	.5	1	3	145	.86	2	8	ND	2	408	.5	3	3	13	1.74	.062	12	28	.28	194	.02	4	.28	.01	.16	2	6.2
12824 325-330M	460	912	3	17	.8	4	3	113	.%	2	8	ND	2	297	.5	3	4	21	1.26	.051	11	102	.34	185	.05	3	.40	.04	.35	2	6.7
12825 330-335M	105 3	539	3	20	1.2	3	3	118	.89	4	8	ND	3	314	.5	3	3	20	2.32	.059	11	74	.40	316	-04	3	.43	.02	.25	2	6.2
12826 335-340M	165	34	14	25	1.3	3	4	101	1.10	10	8	ND	2	33	.5	12	3	11	1.31	.050	10	25	.29	140	.02	3	.25	.02	. 14	2	6.2
12827 340-345M	656	413	3	23	.7	3	3	130	1.04	2	8	ND	3	Z22	.5	3	3	24	1.24	.059	12	68	.39	209	.07	3	.43	.03	.36	2	6.2
12828 345-350M	415	443	3	22	.7	3	3	149	1.03	2	8	ND	2	145	.5	3	3	25	1.03	.063	9	57	.40	152	-08	3	.39	.03	.38	2	6.7
12829 350-355M	409	421	3	26	.6	3	3	158	1.08	2	8	ND	3	142	.5	3	3	27	.90	.062	9	28	.43	135	.08	3	.39	.02	.36	2	6.7
12830 355-360M	498	265	3	16	.4	3	3	115	.98	10	8	ND	2	243	.5	3	3	17	1.47	.053	14	74	.24	157	. 02	3	.38	.01	.17	2	6.2
12831 360-365M	346	340	3	30	.6	5	3	142	1.21	4	8	ND	2	427	.5	3	3	25	2.28	.059	13	56	.38	161	.05	3	.41	.03	.29	2	6.2
12832 365-370M	264	279	3	21	.3	3	3	126	1.03	2	8	ND	2	191	.5	3	3	25	1.18	.053	11	41	.37	108	.06	3	.32	.02	.27	2	5.7
12833 370-375M	196	216	3	21	.6	4	3	142	1.04	9	8	ND	2	339	.5	3	3	19	1.86	.057	15	62	.19	265	.02	3	.42	.01	-14	2	6.7
12834 375-380M	275	189	3	20	.5	3	3	137	.97	3	8	ND	2	371	.5	3	3	21	1.58	.059	13	40	.31	177	.05	3	.38	.02	.20	2	6.2
12835 380-385M	442	260	3	18	1.0	2	2	115	.85	6	8	ND	2	3 99	.5	3	3	18	1.41	.053	12	83	.29	173	.05	3	.41	.03	.24	2	6.2
12836 385-390M	579	208	3	28	1.0	5	3	150	1.00	7	8	ND	2	1260	.5	3	3	18	.88	.054	11	69	.27	414	.05	3	.40	.02	.20	2	5.7
12837 390-392.9M	432	1169	3	35	1.5	5	5	110	1.38	2	8	ND	2	84	.5	3	3	44	.45	.057	9	84	.39	102	.07	3	.40	.04	.37	2	3.3
12901 15-20M	111	374	4	21	.3	3	10	187	.26	2	8	ND	2	22	.5	3	3	1	.70	.023	9	77	.02	60	.01	3	.31	.02	.10	2	5.2
12902 20-25M	376	292	3	26	.3	4	9	176	.31	2	8	ND	z	27	.5	3	3	1	.85	.020	9	68	.04	70	.01	12	.24	.02	.08	2	5.7
12903 25-30M	242	365	19	214	1.4	3	10	161	.58	4	8	ND	2	42	2.2	3	8	2	1.14	.022	7	34	.05	54	.01	3	.14	.01	.07	2	6.2
12904 30-35M	285	141	7	42	.4	2	5	143	.38	3	8	ND	2	30	.5	3	3	5	.74	.018	8	60	.09	36	.01	3	.20	.02	.10	2	5.7
12905 35-40M	571	1	5	40	.7	2	1	129	.38	3	8	ND	2	241	.5	3	3	6	.89	.019	6	29	.14	41	.01	3	.16	.01	.09	2	6.7
12906 40-45M	451	141	68	146	1.3	4	3	211	.74	3	8	ND	3	134	1.3	3	3	11	1.81	.029	8	62	.12	118	.01	3	.25	.02	.12	2	5.7

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	Ρ	Ła	Cr	Mg	Ba	Ti	в	Al	Na	κ	¥	Wt
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	×	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	x	x	ppm	bbu	×	ppm	X p	opm	×	*	x	ppm	kg
12907 45-50M	588	726	3	36	1.0	12	9	232	2.21	2	8	ND	2	229	.5	3	4	68	1.39	.065	9	59	.39	137	.06	3	.57	.02	.34	2	6.7
12908 50-55M	412	706	3	32	.5	10	8	204	1.83	2	8	ND	2	124	.5	3	3	78	.72	.050	8	61	.55	69	.09	3	.68	.03	.54	2	6.7
12909 55-60M	275	780	3	38	1.1	11	9	233	2.08	2	8	ND	4	119	.5	3	3	76	1.68	.068	10	51	.56	123	.09	3	.76	.01	.56	2	5.2
12910 60-65M	237	901	3	38	1.1	11	8	272	2.05	2	8	ND	2	201	.5	3	3	73	2.00	.060	8	30	.55	82	.08	3	.58	.01	.48	2	6.7
12911 65-70M	539	1144	3	60	.9	13	10	214	2.54	2	8	ND	2	92	.5	3	3	104	1.23	.066	8	78	-84	82	.15	3	.89	.03	.70	2	6.7
12912 70-75M	344	392	3	51	.3	8	5	119	1.58	16	8	ND	2	136	.5	3	3	34	.90	.021	7	77	.25	97	.04	3	.58	.03	.22	2	6.7
12913 75-80M	507	111	14	152	.6	4	1	109	.53	2	8	ND	3	244	1.3	3	3	3	1.27	-022	8	56	.09	67	.01	3	.20	.02	.10	2	5.7
12914 80-85M	468	450	3	25	.4	4	2	99	.64	2	8	ND	2	225	.5	3	3	6	.96	.022	8	73	-11	51	.01	3	.25	.02	.10	2	6.7
12915 85-90M	544	1	4	28	.4	3	1	87	.49	2	9	ND	3	190	.5	3	3	4	1.79	.021	7	106	.07	63	.01	3	.26	.03	.11	2	6.7
12916 90-95M	309	65	3	19	.3	3	1	80	.47	2	8	ND	2	115	.5	3	3	5	1.02	.022	10	69	.13	51	_01	3	.26	.02	.10	2	6.2
12917 95-100M	385	110	6	34	.7	6	3	148	1.04	2	10	ND	4	218	.5	3	3	25	1.43	.036	10	61	.35	90	.04	3	.60	.02	.35	2	6.7
12918 100-105M	393	1019	3	67	.9	13	10	248	2.54	4	8	ND	2	116	.5	3	3	107	.63	.068	8	63	.97	132	.17	3	.95	.04	.78	2	5.7
12919 105-110M	378	1325	5	86	1.5	14	13	354	3.05	4	8	ND	2	385	.5	3	3	108	2.10	.070	9	48	1.05	136	.16	3	1.14	.03	.85	2	6.7
12920 110-115M	9	715	4	30	.3	1	1	133	.35	2	10	ND	2	16 9	.5	3	3	7	1.93	.092	10	30	.10	21	.01	3	.16	.02	.12	2	5.7
12921 115-120M	429	906	3	71	.9	12	13	285	2.%	2	8	ND	3	123	.5	3	3	128	1.84	.068	9	66	1.39	171	.23	3	1.35	.06	1.05	2	6.7
12922 120-125M	1069	842	3	62	.3	13	11	257	2.80	2	8	ND	2	102	.5	3	3	123	1.43	.062	8	72	1.44	149	.24	3	1.40	.05	1.12	2	6.7
12923 125-130M	1157	816	3	78	.6	14	12	339	3.36	2	8	ND	2	197	.5	3	3	139	2.55	.069	9	38	1.86	176	.23	3	1.63	.03	1.09	2	6.2
12924 130-134M	654	614	3	83	.7	14	12	326	3.23	3	8	ND	2	194	.5	3	3	100	2.97	.066	12	60	2.06	93	.06	3	1.78	.02	.41	2	4.8
13001 50-55M	371	329	4	37	.9	3	3	116	.91	2	10	ND	2	345	.5	3	3	18	1.71	.058	13	79	.30	203	.03	3	.47	.02	.25	2	6.7
13002 55-60M	613	236	3	23	.3	3	3	95	.76	2	8	ND	2	304	.5	3	3	18	1.97	.052	12	86	.26	196	.02	3	.44	.02	.19	2	6.7
13003 60-65M	822	606	3	28	.9	2	3	93	.76	2	8	ND	2	218	.5	3	3	15	1.60	.054	11	70	.20	213	.01	3	.37	.02	.15	2	5.7
13004 65-70M	515	392	3	29	.9	3	2	96	.81	3	8	ND	2	383	.5	8	3	19	1.31	.064	14	78	.31	198	.03	3	.46	.03	.28	2	5.7
13005 70-75M	283	395	3	47	.5	2	3	121	.81	2	8	ND	2	193	.5	5	3	14	1.56	.055	13	91	.25	217	.03	3	.41	.02	.18	2	4.8
13006 75-80M	523	380	3	27	.5	3	3	138	.94	2	8	ND	2	304	.5	3	3	20	1.37	.057	14	79	.33	175	.03	3	.44	.02	.26	2	6.7
13007 80-85M	797	26	3	16	.3	2	3	79	.79	2	8	ND	2	208	.5	3	3	17	1.39	.055	14	100	.31	151	.02	3	.37	.03	.16	2	6.2
13008 85-90M	546	56	3	17	.6	2	3	98	.76	2	10	ND	4	483	.5	3	3	20	1.34	.056	14	73	.33	157	.02	3	.39	.03	.18	2	5.7
13009 90-95M	601	216	3	19	.3	1	3	107	.75	2	8	ND	2	502	.5	3	3	16	1.45	.054	12	82	.32	182	.02	3	.41	.03	,24	2	6.2
13010 95-100M	219	431	3	18	.8	2	3	94	.77	2	8	ND	4	278	.5	3	3	18	1.61	.057	12	61	.36	176	.03	3	.39	.02	.17	2	6.2
13011 100-105M	504	116	3	15	.3	3	2	90	.60	2	8	ND	3	191	.5	3	3	14	1.62	.052	11	71	.27	159	.01	3	.28	.02	.12	2	6.2
13012 105-110M	220	196	3	15	.3	1	3	89	.81	2	8	ND	2	237	.5	3	3	18	1.27	.057	14	83	.30	138	.01	3	.32	.02	.16	2	5.2
13013 160-165M	447	101	3	22	.3	2	2	156	.98	2	8	ND	2	253	.5	3	3	19	1.66	.053	13	65	.36	220	.03	3	.44	.02	.22	2	5.7
13014 165-170M	700	1	3	27	.3	3	3	139	1.03	2	8	ND	3	235	.5	3	3	24	1.02	.056	13	86	.38	168	.05	3	.47	.04	.35	2	5.7
13015 170-175M	508	94	3	26	.3	2	2	135	.95	2	8	ND	2	274	.5	3	3	21	.86	.056	13	67	.35	161	.05	3	.44	.04	.33	2	6.7
13016 175-180M	343	154	22	58	.8	2	3	170	.95	2	10	ND	3	295	.5	3	3	14	1.91	.058	14	74	.35	290	.02	3	.35	.03	.16	2	6.2
13017 180-185M	399	262	291	155	1.5	1	3	193	.97	4	9	ND	3	307	1.5	21	3	18	1.75	.057	14	84	.36	171	.02	3	.40	.03	.19	2	5.7

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	۶r	Cd	Sb	Bi	V	Са	P	La	Cr	Mg	Ba	Ti	B	AL	Na	κ	W	¥t
SAMPLE	pm	ppm	x	ppm	i ppm	ppm	x	x	ppa	ppm	X	ppm	X F	ppn	*	*	x	ppm	kg												
13018 185-190M	583	110	22	45	1.0	2	2	169	1.07	2	8	ND	2	315	.5	3	4	18	1.44	.058	13	66	.30	153	.03	3	.38	.02	.30	2	5.7
13019 190-195M	465	108	3	20	.5	2	3	199	.92	2	8	ND	3	389	.5	3	3	19	1.52	.055	13	80	.34	238	.04	3	.43	.03	.31	2	8.0
13020 195-200M	424	41	3	19	.3	2	3	130	.83	2	8	ND	4	237	.5	3	3	19	1.64	.053	11	78	.37	183	.03	3	.37	.03	.24	2	6.2
13021 200-205M	411	106	3	17	.3	3	3	105	.95	2	8	ND	3	138	.5	3	3	23	-85	.055	12	99	.36	158	.05	3	.45	.03	.34	2	5.7
13022 205-210M	276	98	3	15	.3	2	2	82	.77	2	8	ND	3	188	.5	3	3	20	1.02	.052	11	78	.33	162	.05	3	.37	.04	.27	2	5.7
13023 210-215M	397	31	3	17	.3	2	2	10 3	-81	2	8	ND	2	318	.5	3	3	17	1.14	.049	13	101	.30	164	.04	3	.39	.03	.25	2	6.2
13024 215-220M	239	57	3	16	.3	1	2	102	.84	2	8	ND	2	426	.5	3	3	18	1.07	.053	13	81	.30	178	.04	3	.41	.03	.26	2	6.2
13025 220-225M	142	69	3	19	.3	2	3	103	1.05	3	8	ND	2	440	.5	3	3	25	.92	.059	15	81	.38	172	.05	3	.44	.04	.34	2	6.2
13026 225-230M	1792	1	5	15	.3	2	2	99	.88	2	8	ND	2	397	.5	3	3	21	1.45	.059	14	83	.36	208	.04	3	.44	.03	.20	2	6.7
13027 230-235M	605	37	3	17	.3	1	2	99	.86	2	8	ND	2	335	.5	3	3	21	.99	.053	11	90	.35	158	.04	3	.40	.04	.28	2	6.7
13028 235-240M	247	100	3	19	.3	2	3	107	1.07	2	8	ND	3	146	.5	3	3	25	.88	.058	13	81	.39	152	.06	3	.42	.05	.37	2	5.2
13029 240-245M	187	229	3	16	.3	3	3	90	.95	2	8	ND	2	247	.5	3	3	24	.90	.058	12	81	.35	173	.06	3	.44	.04	.34	2	5.2
13030 245-250M	319	129	3	18	.3	2	3	111	1.07	2	8	ND	2	299	.5	3	3	19	2.14	.061	14	86	.44	331	_01	3	.47	.01	.14	2	6.2
13031 250-255M	596	67	24	69	.3	2	3	158	.95	16	8	ND	2	244	.7	3	3	16	2.36	.061	13	65	.41	287	.02	3	.37	.01	.12	2	6.7
13032 255-260M	206	144	8	23	.3	2	3	168	1.19	9	8	NÐ	2	295	.5	3	3	14	1.56	.053	11	91	.31	201	.03	3	.36	.03	.16	2	6.7
13033 260-265M	591	58	3	30	.3	3	2	134	.89	3	8	ND	3	320	.5	3	3	20	.94	.056	12	80	.34	178	.06	3	.43	.04	.34	2	6.7
13034 265-270M	477	148	5	24	.3	1	3	155	.99	6	8	ND	2	304	.5	3	3	19	1.67	.059	12	79	.39	206	.03	3	.46	.03	.25	2	5.7
13035 270-275M	303	165	3	14	.3	2	2	78	.66	6	8	ND	3	309	.5	3	3	21	.88	.053	9	94	.31	153	.03	3	.40	.03	.27	2	5.2
13036 275-280M	238	185	3	19	.3	1	2	122	.90	4	8	ND	2	279	.5	3	3	20	1.78	.061	13	63	.35	251	.03	3	.45	.01	.17	2	7.1
13037 280-285M	660	108	5	23	.7	1	4	116	-9 1	29	8	ND	3	188	.5	3	3	17	1.93	.059	13	32	.33	252	.02	3	.34	.01	.16	2	6.7
13038 285-290M	412	206	5	23	.3	1	3	129	.%	8	8	ND	4	257	.5	3	3	19	2.45	.059	12	66	.43	324	.02	3	.40	.02	.14	2	5.7
13039 290-295M	998	292	3	20	.7	1	2	135	.76	5	8	ND	5	812	.5	3	3	16	1.38	.048	12	66	.30	235	.03	3	.33	.02	.22	2	5.7
13040 295-300M	538	192	3	17	.3	2	3	156	.94	2	8	ND	2	370	.5	3	3	23	1.23	.062	11	65	.37	219	.05	3	.41	.03	.24	2	6.2
13041 300-305M	1014	1	3	14	.3	3	2	94	.86	2	8	ND	2	291	.5	3	3	26	.94	.055	10	80	.39	176	.06	3	.40	.04	.38	2	6.2
13042 305-310M	487	149	3	21	.3	1	3	107	.99	2	8	ND	2	433	.5	3	3	22	1.67	.058	12	65	.39	247	-05	3	.49	.03	.28	2	6.2
13043 310-315M	705	135	3	20	.3	1	3	119	.94	2	8	ND	2	435	.5	3	3	22	1.47	.060	13	68	.38	234	.05	3	.45	.02	.24	2	6.2
13044 315-320M	258	269	3	22	.3	1	3	128	1.06	2	8	ND	4	173	.5	3	3	27	.93	.062	14	73	.39	179	.07	3	.43	-04	.36	2	6.2
13045 320-325M	371	220	5	24	.3	2	3	136	1.10	2	8	ND	2	249	.5	3	3	26	1.11	.061	13	71	.39	186	.07	3	.45	.04	.35	2	6.7
13046 325-330M	307	259	3	20	.3	2	3	128	.99	4	8	ND	4	393	.5	3	3	25	1.31	.059	14	87	.38	224	.06	3	.51	.03	.28	2	6.2
13047 330-335M	699	145	3	19	.7	2	2	110	.93	2	8	ND	4	259	.5	5	3	24	1.21	.059	12	85	.38	193	.06	3	.45	.03	.34	2	6.7
13048 335-340M	452	88	3	16	.3	2	2	91	.75	2	8	ND	3	256	.5	3	3	18	1.19	.046	11	91	.28	136	.04	3	.33	.02	.19	2	5.2
13049 340-345M	321	204	3	16	.3	2	3	109	.82	4	8	ND	2	124	.5	3	3	18	1.87	.052	12	81	.34	233	.02	3	.38	.01	.15	2	6.2
13050 345-350M	400	573	4	18	.5	2	2	93	.82	2	9	ND	3	418	.5	3	3	26	1.14	.057	12	7 1	.37	141	.06	3	.39	.03	.34	2	6.7
13051 350-355 M	708	608	3	17	.3	2	3	86	.94	2	8	ND	3	329	.5	3	3	29	.96	.059	13	96	.40	147	.07	3	.45	.04	.36	2	6.7
13052 355-360M	449	356	36	49	.8	3	3	170	.99	17	8	ND	3	290	.5	3	4	18	1.38	.053	13	1 01	.33	239	.04	3	.41	.03	.33	2	6.2

SAMPLE ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppm	x x x	ppm kg
13053 360-365M 371 310 3 32 .5 3 3 127 1.04 2 8 ND 4 208 .5 3 3 26 .95 .060 13 93 .38 189 .06 3 .	45 .04 .37	2 6.2
13054 365-370M 502 263 3 22 .5 3 3 149 1.02 2 8 ND 3 257 .5 3 3 27 .91 .060 11 85 .40 207 .08 3 .	42 .04 .39	3 6.2
13055 370-375M 184 436 3 24 .8 3 3 121 1.01 2 8 ND 3 252 .5 3 3 26 .85 .061 12 81 .40 199 .07 3 .	43 .04 .37	4 6.2
13056 375-378.5M 119 612 3 19 .7 3 3 108 .89 2 8 ND 2 287 .5 3 3 25 1.04 .064 11 78 .38 200 .06 3 .	42 .03 .35	2 4.8
13101 22.5-30M 184 160 7 14 .3 4 1 82 .35 2 8 ND 3 17 .5 3 6 2 .63 .020 9 109 .03 83 .01 3 .	18 .05 .12	2 0.2
13102 30-35M 411 86 20 131 .4 2 1 141 .40 2 8 ND 2 61 1.1 3 3 2 .81 .021 7 80 .02 90 .01 3 .	.16 .03 .10	2 4.8
13103 35-40M 389 44 4 24 .3 3 1 114 .34 2 8 ND 2 89 .5 3 3 2 1.04 .022 8 95 .03 74 .01 3 .	.21 .04 .13	2 4.3
13104 40-45M 409 113 18 88 .5 7 1 140 .37 2 8 ND 2 47 .7 7 3 1 .92 .022 7 53 .03 95 .01 3 .	.13 .01 .08	15 3.0
13105 45-50M 380 136 7 13 .3 3 1 97 .47 2 10 ND 2 34 .5 3 3 2 .91 .023 7 66 .06 69 .01 3 .	.19 .03 .12	2 4.8
13106 50-55M 1187 1 6 17 .3 2 2 90 .47 2 8 ND 2 84 .5 3 3 2 1.21 .026 6 69 .08 91 .01 3 .	.22 .02 .10	2 4.8
13107 55-60M 570 489 6 29 .6 2 4 65 .70 2 8 ND 2 288 .5 3 3 9 1.25 .045 7 53 .19 161 .01 3 .	.22 .02 .12	2 6.2
13108 60-65M 1307 187 30 217 1.0 3 2 77 .90 13 8 ND 2 323 2.1 10 3 7 1.42 .041 7 80 .15 154 .01 3 .	.22 .02 .13	2 5.7
13109 65-70M 1421 193 9 18 .6 3 2 79 .55 2 8 ND 2 308 .5 3 3 5 1.15 .046 9 92 .13 192 .01 3 .	.23 .02 .12	2 5.2
13110 70-75M 463 473 4 14 .3 2 3 110 .62 3 8 ND 2 265 .5 3 3 8 1.13 .049 8 88 .17 177 .01 3 .	.27 .03 .14	2 6.2
13111 75-80M 431 902 6 17 2.2 3 4 138 .84 2 10 ND 2 257 .5 4 3 12 1.15 .050 8 68 .18 143 .01 3 .	.24 ,02 .15	2 5.5
13112 80-85M 511 572 21 124 1.6 5 5 136 .86 2 10 ND 2 263 1.1 3 6 11 1.17 .056 9 100 .18 173 .01 3 .	.31 .03 .20	2 6.2
13113 85-90M 566 740 12 121 1.8 3 5 101 1.07 3 8 ND 3 231 1.3 4 3 10 1.26 .044 8 78 .18 178 .01 3 ,	.32 .02 .16	2 5.7
13114 90-95M 559 768 4 12 .7 2 3 53 .82 2 8 ND 2 218 .5 3 3 13 .94 .039 7 101 .21 113 .02 3 .	.32 .02 .14	2 5.7
13115 95-100M 480 503 32 164 1.2 3 5 85 .76 2 8 ND 3 367 1.6 4 3 10 1.24 .047 9 65 .17 201 .01 3 .	.28 .02 .14	2 6.2
13116 100-105M 588 1607 9 21 1.4 18 11 90 1.90 2 9 ND 3 284 .5 3 3 49 1.37 .048 8 66 .21 136 .01 3 .	.29 .02 .14	2 5.2
13117 105-110M 252 477 6 19 .7 3 6 57 .91 2 10 ND 3 156 .5 3 3 16 1.01 .051 7 74 .28 125 .02 3 .	.33 .03 .20	2 6.7
13118 110-115M 370 649 10 20 1.1 4 6 82 1.01 3 8 ND 3 547 .5 3 3 18 1.80 .051 8 66 .29 179 .02 3 .	.37 .02 .22	2 6.2
13119 115-120M 241 856 378 313 2.5 4 6 103 1.13 2 10 ND 4 210 3.1 14 4 18 1.18 .056 8 86 .29 152 .03 3	.40 .03 .27	4 5.7
13120 120-125M 403 490 39 85 6.1 3 4 63 .84 11 8 ND 2 152 1.1 28 7 13 1.08 .048 7 77 .20 121 .01 3 .	.30 .02 .14	2 6.2
13121 125-130M 284 752 6 22 1.1 4 6 56 .94 2 10 ND 3 167 .5 3 3 18 1.19 .052 7 73 .31 134 .03 3	.40 .02 .21	4 5.7
13122 130-135M 171 553 7 24 .3 3 5 50 .88 2 8 ND 2 142 .5 3 3 19 1.04 .058 7 77 .35 143 .03 3	.41 .03 .27	2 6.7
13123 135-140M 268 726 3 22 .6 4 6 62 .97 2 8 ND 3 204 .5 3 3 16 1.12 .055 7 82 .36 167 .03 3	.40 .02 .25	2 5.7
13124 140-143.8M 317 819 4 19 9 4 7 57 1.16 2 8 ND 3 150 .5 3 3 24 .65 .053 5 77 .36 113 .05 3	.40 .04 .27	2 6.2

PAGE 6

#103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5

TELEPHONE (604)231-8165

TORCH RIVER RESOURCES LTD. Project: Red Bird Sample Type: Cores GEOCHEMICAL ANALYSIS CERTIFICATE Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Wt - Samples weighed in kilogram.

Analyst R Report No. 2057723 65 Date: September 09, 2005

		No		Ph	70	٨a	Ni	Ć0	Min	Fe	۵c	11	Å 11	Th	Sr.		Sb	Bi	v	Са	p	ta	Cr	Ma	Ba	Ti	B	Al	Na	ĸ	W	¥t*
SAMPLE	PIT -		DDm	maa	ppm	ppm		ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	- ppm	%	%	%	ppn	kg
	240		777	7.0				,		0(•••			140	 E	7	 z	1/	07	0/1	12	80	25	151	03	τ	74	۵4	24	2	57
08317 37	J-575M	665	344	5 -		د. 7	2	4	60 50	.90 70		٥ •	NU	2	100	.) E	כ ד	2 7	19	• 77 1 19	037	12	95	.25 26	158	-0- 70	ר ד	.50	.04 07	-24	2	5.7
08318 37	5-38UM	1102	364	د ح	0	د. ⁄	2	4	20	.72	17	10	ND	2	170	ر. ء	ג ד	כ ד	12	1 17	037	10	135	•24 21	160	.03	ך ג		.05	19	2	5.2
08319 38	22	36000	1005	7	117	-0	د 14	4	050	.90	12	0	ND	2	150		נ ז	7	255	7/	043	יט ד	22	2 57	67	34	3	2 11	.05	2 15	4	5 7
08522 392	5-400M -72M	530 530	1025	د 17	117 88	।.० उ	וס ג	20 6	909 75	0.02 1.01	כ קיד	0 8	ND ND	2	47 16	1.1	20	3	4	.14	.026	9	94	.08	104	.01	3	.30	.02	.14	2	6.2
00407 40	4,214	550	404				5	Ũ	12		37	Ū		-	.0			-											~ ~		-	
08411 50	-55M	1558	872	7	10	1.0	2	38	53	2.98	5	8	ND	2	208	.5	3	3	26	1.27	.063	14	86	.38	69	.05	4	.48	.04	.32	3	5.7
08414 65	-70M	883	211	3	78	.3	2	4	138	.85	2	8	ND	2	16	.5	3	3	19	.37	.054	18	70	.33	150	.05	3	.44	.04	.32	2	5.2
08515 90	-95M	1210	375	3	107	.4	14	11	247	2.68	9	8	ND	2	18	.6	3	3	86	.82	.029	6	70	1.01	115	.12	7	1.24	.04	.94	9	6.2
09001 11	D-115M	227	192	39	79	3.5	2	3	105	1.13	9	8	ND	2	24	.7	27	3	16	.84	.057	14	75	.32	226	.04	3	.43	.03	.32	2	5.7
09002 11	5-120M	416	101	3	14	.7	2	2	91	.81	2	8	ND	2	22	.5	8	3	14	.74	-048	14	86	.26	214	.03	3	.37	.03	.28	2	5.7
09003 12	0-125M	342	111	4	20	1.9	3	3	85	1.14	11	8	ND	2	28	.5	23	3	14	1.20	.057	15	44	.30	200	.03	6	.35	.02	.24	2	5.7
09004 12	5-135M	313	227	4	11	.3	3	4	102	1.01	5	8	NÐ	2	50	.5	3	3	16	2.33	.063	16	70	.35	359	.03	3	.51	.03	.22	2	11.4
09005 13	5-145M	249	76	3	13	.3	3	3	67	1.01	3	8	ND	2	21	.5	3	3	20	.50	.063	14	78	.40	241	.05	6	.46	.04	.37	2	11.4
09007 15	D-155M	464	83	3	8	.3	1	2	41	.85	4	8	ND	2	17	.5	3	3	22	.38	.046	10	82	.34	117	.04	3	.37	.04	.34	2	5.2
09010 16	5-170M	501	150	12	18	1.7	2	3	72	.92	11	8	ND	2	107	.5	19	7	13	1.83	.044	12	87	.27	150	.03	3	.42	.03	.24	2	6.2
09011 17	D-175M	975	130	6	13	.6	2	7	61	1.08	5	8	ND	3	252	.5	4	3	11	1.42	.038	11	94	.23	161	.02	3	.34	.04	.25	2	6.7
09012 17	5-180M	752	96	6	12	.3	3	3	94	.82	3	8	ND	2	206	.5	6	3	11	1.27	.045	11	83	.25	232	.02	3	.36	.03	.24	2	6.7
09013 18	0-185M	409	131	17	35	1.6	2	4	190	1.12	27	10	ND	2	72	.5	34	3	3	1.34	.046	10	115	.14	206	.01	3	.30	.01	.18	2	5.7
09014 18	5-190M	690	100	4	6	.3	1	4	79	.97	8	8	ND	4	47	.5	7	3	7	1.86	.044	11	110	.25	201	.01	3	.35	.01	.11	2	6.2
09016 19	5-200M	1056	260	3	34	2.6	3	2	75	1.48	19	8	ND	3	137	.5	74	3	11	1.99	.044	10	92	.20	121	_01	3	.37	.02	.20	2	6.7
09017 20	0-205M	1588	264	3	12	.3	2	8	60	1.27	5	8	ND	2	299	.5	6	3	18	1.15	.051	10	46	.32	171	.04	3	.33	.02	.24	2	6.2
09020 21	5-220M	1760	356	3	29	.3	3	4	78	.87	9	10	ND	2	209	.5	8	3	15	1.35	.051	14	108	.36	206	.02	3	.47	.04	.25	2	4.8
09021 22	0-225M	912	59	- 3	4	.3	2	2	34	.42	2	8	ND	2	27	.5	3	3	3	.83	.004	7	102	.04	30	.01	3	.15	.03	.13	2	5.7
09023 23	0-235M	430	194	3	24	.3	2	3	54	.90	2	8	ND	2	135	.5	3	3	12	.94	.033	12	75	.21	145	.02	3	.34	.04	.22	4	6.2
09024 23	5-240M	870	323	3	23	.9	2	3	75	.99	13	8	ND	3	378	.5	25	3	15	1.15	.040	14	63	.25	211	.02	3	.34	.03	.24	4	5.2
00025 26	∩-24 5 M	114	1602	٦	68	17	6	25	398	7.78	2	8	ND	2	23	.5	5	3	179	1.27	. 168	3	64	.83	79	.22	3	.92	.08	.53	22	5.2
00027 25	0-255M	109	1032	- 3	91	.5	6	21	634	7.74	2	8	ND	2	13	.5	3	3	264	.85	.157	3	38	3.01	201	.43	3	2.59	.04	2.62	4	6.2
09028 25	5-260M	443	2785	7	47	2.9	5	25	271	8.13	- 6	8	ND	2	40	.5	6	5	114	1.98	138	5	83	.84	77	.17	3	1.13	.07	.40	48	5.7
09601 18	5-195M	72	219	30	25	4.1	- 3	4	101	1.10	10	8	ND	2	60	.8	18	4	15	1.08	,055	13	86	.29	221	.03	3	.38	.04	.27	2	11.4
09602 19	5-200M	70	460	3	15	.6	2	4	94	1.47	3	8	ND	2	193	.5	3	3	29	1.20	.073	16	70	.51	259	.03	3	.55	.04	.26	5	6.2
				-			-	•			-	-		-			-			-												

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	Р	Ĺa	Cr	Mg	Ba	Ti	В	AL	Na	к	W	Wt
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppn	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	opm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	kg
09603 200-205M	315	236	3	10	.3	3	3	79	.99	2	10	ND	2	109	.5	3	3	24	.60	.062	16	89	.39	213	.06	3	.50	.05	.36	3	5.7
09605 210-215M	1629	179	4	7	.4	2	2	72	.85	2	8	ND	2	268	.5	6	3	15	.95	.055	9	54	.29	200	.03	3	.26	.02	.20	2	5.7
09607 220-225M	837	295	9	19	1.6	2	4	235	1.01	51	8	ND	2	131	.5	22	3	5	2.58	.058	12	71	.45	346	.01	3	.25	.02	.14	2	5.2
09608 225-230M	451	393	20	19	.8	3	3	179	.91	50	8	ND	2	67	.5	17	3	6	1.95	.059	13	64	.36	230	.01	3	.25	.02	.16	2	6.2
09609 230-235M	388	419	6	13	1.1	2	6	123	1.16	11	8	ND	2	150	.5	11	3	13	1.65	.056	12	57	.29	207	.02	3	.33	.03	.20	2	5.7
09610 235-240M	911	526	8	12	.4	2	4	65	1.03	12	8	ND	2	149	.5	8	3	16	1.94	.053	12	66	.29	221	-02	14	.40	.02	.18	2	6.2
09611 240-245M	375	128	3	47	.3	3	3	88	.93	20	8	ND	2	27	.7	9	3	10	1.08	.045	12	68	.23	181	.02	3	.33	.02	.20	2	5.7
09614 255-260M	908	415	11	12 3	.3	4	5	114	1.52	6	8	ND	3	99	1.2	5	3	36	1.10	.028	10	92	.34	148	.04	3	.55	.02	.33	2	6.2
09615 260-265M	441	364	3	11	.3	3	3	75	.72	2	8	ND	3	250	.5	3	3	19	.95	.029	10	92	.23	109	.03	3	.40	.04	.26	2	6.7
09616 265-270M	2 ²⁰⁰⁰	1135	8	72	.8	11	13	262	2.52	2	8	ND	3	104	.8	4	3	78	.68	.032	9	77	.45	87	-07	3	.78	.03	-49	2	6.2
09617 270-275M	1610	1334	3	36	.9	11	13	465	4.27	4	8	ND	2	103	.5	3	4	106	.47	.015	5	58	.38	76	.04	3	.63	.03	.39	2	5.7
09618 275-280M	1357	1636	5	57	2.8	11	21	507	5.34	13	8	ND	2	20	.5	3	3	141	.32	.013	1	46	.99	67	.14	3	1.27	.03	.98	2	6.2
09619 280-285M	1347	1752	5	91	1.3	15	30	885	8.07	2	8	ND	2	220	.5	4	3	29 3	.78	.075	2	62	1.72	158	.30	3	1.68	.04	1.61	3	5.7
09620 285-290M	162	2350	3	64	1.7	8	21	435	6.97	2	8	ND	2	61	.5	3	3	155	.58	.062	4	69	.77	156	.13	3	.84	.05	.70	2	5.7
09622 290-300M	167	3366	5	133	3.1	12	32	851	10.04	4	8	ND	2	422	.7	8	3	455	1.65	.089	4	59	2.27	73	.33	3	1.96	.05	1.84	3	6.7
09710 50-55м	616	417	7	27	.5	7	11	94	2.06	21	8	ND	2	28	.6	3	3	29	1.08	.051	7	74	.37	115	.02	3	.53	.02	.27	2	6.7
09715 75-80M	2000	299	8	30	.5	2	5	67	1.01	15	9	ND	2	27	.5	4	3	8	.94	.041	10	93	.20	185	-01	3	.30	.02	.16	2	6.2
09801 55-60M	756	799	5	33	2.7	21	15	190	2.62	25	8	ND	2	27	.5	3	3	47	.70	.039	5	38	.41	78	.04	3	.81	.05	.46	2	5.2
09803 65-70M	671	1014	4	27	1.2	22	17	221	4.28	115	9	ND	2	31	.5	14	3	44	1.24	.028	5	38	.31	25	.01	3	.45	.02	.25	3	4.3
09804 70-75M	1520	970	15	25	1.5	17	23	187	4.97	124	8	ND	2	19	.5	7	3	74	.46	.021	3	58	.20	28	.01	3	.42	.02	.22	2	6.2
09807 85-90M	292	4313	3	76	4.2	15	57	498	8.64	32	8	ND	2	22	.5	6	7	225	.61	.028	1	62	1.29	69	.20	3	1.26	.04	1.16	4	5.7
09809 95-100M	225	3241	3	124	3.3	21	38	1094	8.80	65	18	ND	2	37	.5	5	4	279	1.26	.071	2	51	1.70	90	.20	6	1.27	.04	1.05	2	5.7
09811 105-110M	218	1272	3	135	2.5	12	23	800	6.04	26	8	ND	2	27	.6	8	3	190	.70	.057	2	64	1.96	156	.27	3	1.78	.04	1.69	3	6.2
09813 115-120M	887	4198	64	120	8.6	15	33	1341	8.71	43	8	ND	2	73	.6	18	11	244	2.76	.067	2	48	2.42	60	.24	3	1.64	.02	1.41	2	6.2
09815 125-130M	342	3062	92	158	5.5	5	22	463	4.05	174	8	ND	2	140	1.2	24	3	68	2.41	.086	6	69	.74	80	.05	3	.63	.03	.34	2	6.2
09816 130-135M	401	1967	14	75	2.6	9	28	489	5.74	14	15	ND	2	195	.5	11	3	150	1.60	.068	7	71	1.41	134	.23	12	1.53	.05	1.36	12	5.7
09819 170-175M	915	1496	41	48	1.3	5	11	248	3.50	7	8	ND	2	255	.5	3	3	99	1.61	.062	10	66	.88	118	.11	3	.83	.04	.64	3	6.7
09820 260-265M	44	1893	3	112	1.3	13	30	696	9.05	2	8	ND	2	12	.5	7	3	303	.81	.063	1	57	1.69	88	.31	3	1.55	.07	1.26	2	6.7
09821 265-270M	120	999	3	143	1.1	13	26	1020	8.83	6	8	ND	2	28	.6	6	3	348	.%	.061	1	48	2.05	116	.30	3	1.86	.05	1.80	2	6.2
09823 275-280M	130	2590	8	136	11.3	11	17	936	9.30	8	8	ND	2	165	1.0	8	25	194	1.95	.057	7	70	1.35	60	.17	11	.91	.06	.77	2	5.7
09825 285-290M	238	1473	31	50	3.0	5	14	225	2.76	5	12	ND	2	33	.6	10	3	36	1.04	.048	13	88	-46	74	.04	4	.46	.05	.35	2	6.2
09827 295-300M	241	2247	3	86	3.6	8	25	572	7.67	7	8	ND	2	155	.6	13	7	227	.99	.060	7	48	1.67	63	.21	6	1.36	.05	1.38	5	5.7
10001 3.9-10M_	2000	475	8	22	.3	18	14	62	2.85	28	8	ND	2	8	.5	3	3	36	.17	.017	4	37	.40	48	.05	3	.76	.02	.52	2	7.1
10003 15-20M	823	770	5	39	.4	8	7	69	1.40	21	8	ND	2	19	.5	3	3	29	.70	.050	9	70	.35	163	.03	3	.63	.03	.33	2	6.2
10366 430-433M	106	522	16	17	1.1	3	5	82	2.09	24	8	ND	2	150	.5	3	3	4	1.11	.060	15	63	.28	90	.01	3	.26	.04	.18	4	3.3

··----

#103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5

TELEPHONE (604)231-8165

TORCH RIVER RESOURCES LTD. Project: Red Bird Sample Type: Cores GEOCHEMICAL ANALYSIS CERTIFICATE Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Wt - Samples weighed in kilogram.

Analyst ESAM

Report No. 2057986 Date: November 7, 2005

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ba	Ti	В	AL	Na	κ	W	Wt*
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppn	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	kg
07411 50-55M	418	634	8	27	.7	19	15	183	2.74	26	8	ND	2	47	.5	3	3	65	1.87	.059	6	45	.78	141	.07	3	1.01	.03	.63	2	6.2
07413 60-65M	532	1171	47	80	4.7	14	19	975	5.40	131	8	ND	2	84	1.4	12	7	39	4.38	.006	3	42	1.38	50	.01	5	.36	,02	.26	2	6.7
07423 110-115M	91	1646	19	68	3.3	12	31	721	6.89	29	8	ND	2	76	.5	3	3	209	1.11	.175	3	52	.97	65	.13	3	1.06	.04	.86	2	6.8
07508 70-75M	911	123	3	13	.3	3	2	42	.49	2	8	ND	3	20	.5	3	3	15	.40	.033	11	119	.21	138	.03	3	.33	.04	.28	2	5.8
07517 115-120M	2000	284	3	8	.4	2	4	53	.92	9	8	ND	2	42	.5	4	3	9	1.81	.041	8	86	.17	200	.01	3	.38	.01	.13	2	6.2
07518 120-125M	873	1047	274	265	14.7	3	3	122	12.28	232	8	ND	2	40	2.0	46	30	6	1.72	.013	4	76	.17	16	.01	3	.19	.01	.12	2	6.7
07519 125-130M	2000	579	15	58	1.6	3	3	171	1.37	25	8	ND	2	36	.6	7	3	11	1.99	.034	8	96	.44	187	.01	3	.24	.01	.09	2	6.1
07520 130-135M	1218	305	3	17	1.0	3	4	124	.74	3	8	ND	2	26	.5	4	3	11	1.59	.046	9	63	.28	235	.01	3	.34	.01	.09	2	5.9
07523 145-150M	538	429	4	16	1.0	2	5	60	1.09	15	8	ND	4	29	.5	3	3	8	.95	.045	8	98	.18	170	.01	5	.32	.01	. 11	2	5.7
07525 155-160M	509	576	5	38	.8	3	3	94	1.01	10	8	ND	5	273	.5	3	3	12	1.19	.045	13	68	.28	219	.01	3	.41	.01	.17	2	6.7
07526 160-165M	637	404	5	13	.3	4	4	69	1.04	17	8	ND	2	118	.5	3	3	19	1.03	.058	13	78	.31	232	.03	3	.52	.02	,25	3	6.5
07531 185-190M	549	731	21	40	1.5	5	5	98	1.07	19	8	ND	4	32	.5	4	3	9	1.58	.042	10	90	.28	183	.01	3	.36	.01	.12	2	4.8
07532 190-196M	167	1 999	11	157	2.7	12	25	163	3.84	101	8	ND	2	46	1.2	6	3	58	1.48	.056	9	77	.60	54	.04	4	1.03	.04	.39	2	7.1
07602 20-25M	152	331	6	55	.3	3	11	103	1.05	21	8	ND	2	30	.5	13	3	16	1.25	.055	10	101	.30	214	.03	3	.44	.03	.26	2	5.7
07609 55-60M	282	62	7	21	.6	3	3	168	.62	6	8	ND	2	83	.5	5	3	5	3.99	.040	7	72	.27	150	.01	3	.22	.01	.13	2	6.7
07616 90-95M	115	325	4	17	.8	4	4	68	.79	7	8	ND	2	32	.5	3	3	21	1.18	.055	11	85	.33	187	.04	3	.50	.03	.34	2	5.7
07624 130-135M	310	119	9	16	.7	2	3	56	.67	4	8	ND	2	46	.5	3	3	10	1.32	.040	10	99	.20	164	.01	3	.32	.02	.16	2	6.2
07626 140-145M	966	259	14	35	.6	3	2	209	.68	15	8	ND	2	82	.5	4	3	7	4.22	.040	8	78	.21	146	.01	3	.24	.01	.11	2	6.2
07634 180-185M	860	3594	3	22	2.0	4	4	156	1.21	37	8	ND	2	50	.5	8	3	6	2.29	.032	11	87	.28	182	.01	3	.30	.01	.14	2	4.8
07637 195-200M	247	445	8	11	1.2	2	3	59	.77	20	8	ND	4	146	.5	3	4	10	1.80	.041	10	95	.24	127	.01	3	.35	.01	.15	2	6.2
07641 215-220M	1940	492	5	8	.3	4	18	49	2.87	20	8	ND	2	81	.5	3	3	9	1.46	.037	8	87	.22	56	.01	3	.27	.02	.17	2	5.7
07642 220-225M	1295	350	4	13	.4	3	4	63	.81	6	8	ND	3	288	.5	3	3	14	1.04	.046	12	71	.26	187	.03	3	.40	.03	.26	2	6.2
07649 255-260M	849	438	3	9	.8	3	4	85	1.01	47	8	ND	3	50	.5	10	3	5	2.54	.045	10	73	.34	276	.01	3	.35	.01	.14	2	5.7
07650 260-265M	444	371	6	8	.9	2	4	58	.73	22	8	ND	4	43	.5	5	3	7	1.74	.047	12	88	.24	230	.01	3	.32	.02	.13	2	6.5
07651 265-270M	967	394	7	9	.5	3	4	72	.77	46	8	ND	3	46	.5	11	4	6	2.32	.053	11	76	.34	340	.01	3	.41	.01	.12	2	5.7
07652 270-275M	488	402	8	14	.7	2	4	94	1.04	114	8	ND	2	89	.5	14	3	8	4.54	.049	9	79	.60	360	.01	3	.36	.01	.09	2	4.8
07701 20-25M	318	641	12	77	7.6	4	5	111	2.71	136	8	ND	2	18	.8	51	4	7	.93	.031	8	80	.14	50	.01	3	.27	.01	.15	2	5.7
07702 119-121M	639	124	3	12	.3	4	3	70	.76	5	8	ND	2	35	.5	3	3	15	1.36	.051	11	107	.27	148	.03	3	.45	.03	.28	2	3.1
07703 170-175M	93	233	3	15	.3	3	2	82	.80	10	8	ND	2	107	.5	3	3	14	1.67	.048	14	87	.33	185	.03	3	.43	.02	.22	2	6.2
07704 175-180M	180	210	4	14	.3	2	3	108	.85	8	8	ND	2	297	.5	3	3	16	1.82	.052	15	83	.31	192	.04	3	.47	.02	.24	2	5.7

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	u	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ba	Ti	В	AL	Na	κ	¥	Wt
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	opm	bbu	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	kg						
07705 180-190M	172	394	3	17	.7	3	5	84	.96	4	8	ND	4	204	.5	3	3	28	.76	.055	13	63	.40	193	.06	3	.51	.03	.36	2	10.5
07706 190-200M	245	339	3	14	.3	3	4	86	-84	12	8	ND	2	190	.5	3	3	15	1.63	.053	13	68	.33	193	.03	3	.45	.02	.22	2	13.3
07708 205-210M	231	265	7	17	.3	4	4	119	.99	2	8	ND	3	263	.5	3	3	18	1.11	.056	15	72	.34	187	.05	3	.44	.03	.31	2	6.7
07710 215-220M	395	274	12	30	1.2	4	4	92	1.52	15	8	ND	2	490	.5	3	5	16	1.26	.047	12	89	.29	141	.04	3	.43	.03	.29	2	6.4
07711 215-225M	984	357	7	12	.3	4	3	66	.76	18	8	ND	2	55	.5	3	3	9	1.87	.052	11	82	.28	225	.01	3	.35	.02	.19	2	6.2
07714 235-240M	882	371	13	18	.3	3	3	95	.91	18	8	ND	2	87	.5	3	3	15	1.47	.046	15	96	.32	211	.03	3	.47	.02	.22	2	6.0
07717 250-255M	1585	274	9	24	.3	2	4	83	.93	6	8	ND	2	57	.5	3	3	15	1.55	.047	11	71	.33	212	.04	3	.43	.02	.25	2	6.2
07719 260-265M	568	2856	3	93	.6	14	26	556	7,26	42	8	ND	2	373	.5	3	3	322	.84	.078	5	57	2.33	115	.37	3	2.02	.04	2.08	2	6.7
07802 175-180M	403	289	5	17	.3	3	8	73	1.16	12	8	ND	2	105	.5	3	3	11	1.49	.048	13	97	.26	159	.02	3	.43	.02	.18	2	6.7
07815 260-265M	160	443	888	406	3.1	2	5	86	1.06	18	8	ND	2	272	3.7	64	3	16	1.43	.055	13	67	.35	222	.04	3	.48	.02	.25	2	5.7
07901 215-220M	45	260	9	27	.7	4	3	239	1.14	10	8	ND	3	34	.5	10	3	19	.76	.062	14	90	.37	153	.04	3	.44	.03	.32	2	5.2
07905 235-240M	158	246	8	36	1.2	4	2	76	.77	11	8	ND	4	243	.5	11	3	17	1.09	.054	12	77	.33	153	.04	4	.40	.03	.30	2	6.2
07908 250-255M	596	268	43	40	1.0	2	3	127	.84	36	8	ND	3	64	.5	13	3	6	3.73	.051	11	65	.35	183	.01	3	.25	.01	.08	2	6.2
07909 255-260M	1011	346	16	15	.5	3	4	58	.95	13	8	ND	2	186	.5	3	3	13	1.60	.044	11	92	.26	136	.03	3	.37	.02	.22	2	5.7
07910 260-265M	649	307	3	10	.9	3	3	51	.81	2	8	ND	5	157	.5	3	3	15	.86	.037	11	73	.26	105	.04	4	.35	.02	_27	2	6.2
07911 265-270M	918	1012	408	433	21.6	3	4	132	1.08	187	8	ND	3	66	5.1	276	3	8	1.98	.041	11	96	.34	133	.01	3	.36	.02	.18	2	6.2
07913 275-280M	1354	218	39	59	.9	2	5	119	.99	10	8	ND	2	266	.5	7	3	23	1.90	.072	14	80	.51	445	.05	3	.55	.03	.31	2	6.1
07915 285-290M	853	569	14	68	3.7	4	6	134	1.41	22	8	ND	3	362	.7	17	3	14	1.28	.046	11	91	.31	159	.03	3	.41	.03	.26	2	5.8
07917 295-300M	677	239	5	25	1.1	4	3	66	.98	6	8	ND	4	244	.5	3	3	13	.73	.033	10	101	.22	131	.03	3	.37	.03	.23	2	5.7
07919 305-310M	305	2169	3	87	-8	14	22	532	6.21	2	8	ND	2	70	.5	3	3	310	1.41	.048	5	74	2.11	153	.34	3	1.83	.04	1.91	2	6.7
07920 310-315M	422	745	3	27	1.5	4	7	137	1.58	3	8	ND	3	116	.5	3	3	39	.55	.035	11	92	.45	149	.08	5	.55	.05	.45	2	6.2
07921 315-320M	303	1381	8	83	1.7	10	16	476	4.24	29	8	ND	4	146	.5	5	3	159	1.33	.053	10	69	1.64	205	.21	3	1.57	.03	1.28	2	6.4
07922 320-325M	204	3344	3	112	3.2	13	34	679	7.56	3	8	ND	2	311	.5	3	6	273	.67	.049	5	51	2.39	74	.34	3	1.93	.05	2.10	4	6.7
07923 325-331M	164	2014	3	125	1.2	9	26	783	6.98	3	8	ND	2	151	.5	3	4	228	1.07	.069	4	49	1.75	76	.27	3	1.39	.04	1.42	2	8.1
08305 230-235M	90	237	50	82	1.5	4	3	93	.94	6	8	ND	4	262	.8	16	3	19	1.32	.057	15	79	.37	225	.06	3	.48	.03	.32	2	6.2
08308 325-330M	568	331	3	11	.6	3	4	68	1.05	2	8	ND	2	248	.5	3	3	18	1.12	.047	11	101	.31	156	.04	3	.39	.03	.32	2	6.4
08309 330-335M	1192	504	114	90	3.7	3	5	105	3.78	21	8	ND	2	215	.9	57	4	10	1.00	.043	11	77	.24	36	.02	3	.33	.02	.23	2	6.7
08310 335-340M	1649	289	9	12	.3	3	4	63	.91	2	8	ND	2	216	.5	3	3	18	1.13	.050	11	87	.31	136	.05	3	.40	.03	.32	2	6.2
08311 340-345M	663	292	60	28	.7	2	4	89	1.12	2	8	ND	2	172	.5	3	3	16	.87	.049	13	59	.32	154	.04	3	.42	.03	.29	2	5.7
08313 350-355M	630	274	75	106	1.0	4	4	99	.93	2	8	ND	4	293	.8	3	3	15	1.23	.046	11	107	.28	165	.04	3	.37	.03	.28	2	6.2
08314 355-360M	661	363	7	16	1.1	2	4	87	1.12	4	8	ND	4	189	.5	3	3	17	.91	.055	14	70	.34	167	.05	5	.40	.04	.32	2	6.2
08315 360-365M	304	368	3	14	1.0	3	4	91	1.00	3	8	ND	2	280	.5	3	3	19	1.03	.054	14	70	.34	185	.05	3	.44	.03	.31	2	6.5
08320 385-390M	1630	414	33	18	.3	4	5	60	.93	15	8	ND	2	115	.5	3	3	10	1.25	.032	9	106	.21	113	.02	3	.28	.02	.16	2	6.0
08321 390-395M	501	530	3	9	1.2	3	4	64	1.01	4	8	ND	4	196	.5	3	3	22	1.16	.043	12	88	.33	155	.05	3	.45	.04	.32	2	5.8
08323 400-405M	1149	1491	19	66	3.3	5	13	297	3.07	42	8	ND	3	62	.5	3	3	44	2.15	.087	12	69	.87	81	.05	3	.67	.02	.42	2	5.5

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	ប	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	Ρ	La	Cr	Mg	Ba	Ti	B	AL	Na	К	¥	Wt
SAMPLE	ppm	ppm	ppm	ppm	bbu	bbu i	ppm	ppn	%	ppm	bbu	ppii	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	bw	%	ppn	% r	pm	%	%	×	ppm	kg
08324 405-410M	588	2956	282	1225	14.0	7	13	318	3.20	56	8	ND	2	631	13.2	248	5	61	7.47	.031	8	70	1.07	98	.06	3	.58	.02	.39	2	6.2
08326 415-420M	464	3407	3	70	3.1	11	20	378	4.38	9	8	ND	2	382	.5	3	5	110	1.80	.036	9	72	1.31	91	.15	3	1.22	.04	1.00	3	6.2
08333 450-455M	74	1263	62	146	4.9	8	20	442	5.65	24	8	ND	2	152	1.7	102	3	158	1.06	.069	8	80	1.07	64	.16	3	1.03	.06	.83	9	6.7
08334 455-460M	109	875	7	55	.7	6	13	443	4.84	8	8	ND	2	374	.5	3	3	124	1.14	.059	7	54	1.06	90	.13	3	.97	.04	.83	5	6.5
08335 460-465M	79	2347	44	131	2.1	7	23	956	7.43	35	8	ND	2	463	.5	3	5	223	1.28	.052	5	43	1.64	70	.20	3	1.20	.05	1.15	2	6.5
08601 20-25M	466	144	6	91	.3	3	4	68	1.80	25	8	ND	2	14	.5	14	4	9	.24	.048	7	82	.12	147	.01	3	.34	.01	.17	2	4.8
08605 40-45M	238	57	4	27	.3	3	2	46	.94	7	8	ND	2	20	.5	3	3	10	.69	.037	6	77	-19	128	.02	3	.34	.02	.22	2	5.7
08606 45-50M	204	68	3	55	.6	2	2	56	1.02	5	8	ND	4	17	.5	3	3	15	.44	.044	11	90	.26	116	.04	5	.39	.03	.30	2	6.7
08608 55-60M	227	80	11	48	.9	2	4	61	3.60	11	8	ND	4	13	.5	7	3	9	.48	.036	8	84	. 13	36	.01	4	.31	.02	.21	2	6.7
08609 60-65M	211	184	3	19	.9	3	2	55	1.75	44	8	ND	3	23	.5	17	5	11	.87	.042	9	77	.20	108	.02	4	.38	.02	.26	2	6.5
08610 65-70M	197	80	4	19	.3	2	2	54	1.46	7	8	ND	4	19	.5	3	3	9	.81	.033	8	69	.17	121	.02	3	.32	.02	.21	2	6.6
08612 75-80M	289	474	5	16	1.0	4	4	78	1.59	93	8	ND	3	28	.5	23	4	11	1.08	.043	12	118	.23	138	.02	4	.41	.03	.28	2	6.5
08616 95-100M	223	98	3	19	.6	3	3	73	-80	4	8	ND	4	20	.5	3	3	16	.61	.051	13	78	.29	153	.04	7	.38	.04	.31	2	5.2
08618 105-110M	332	59	6	15	.6	2	3	62	1.10	7	8	ND	4	21	.5	3	3	14	.62	.049	9	90	.29	154	.03	6	.35	.03	.29	2	5.7
08620 115-120M	409	175	3	22	1.3	4	3	62	.96	12	8	ND	4	22	.5	14	3	15	.58	.049	12	78	.29	155	.04	3	.40	.04	.31	2	5.2
08621 120-125M	279	195	15	17	.8	4	3	69	1.09	10	8	ND	5	2 3	.5	9	3	16	.61	.049	13	110	.30	157	.04	3	.42	.05	.33	2	5.2
08622 125-130M	207	153	5	19	.8	3	3	63	.85	11	8	ND	4	19	.5	15	3	13	.58	.044	12	64	.25	151	.03	3	.33	.03	.25	2	5.6
08625 140-145M	626	156	14	68	2.1	3	3	86	1.59	23	8	ND	3	28	.5	27	3	10	.79	.046	9	77	.22	121	.02	6	.33	.02	.25	2	6.2
08626 145-150M	229	197	8	15	.6	2	3	68	.89	5	8	ND	2	40	.5	10	3	12	.76	.048	14	83	.27	185	.03	3	.43	-04	.31	2	6.1
08627 150-155M	549	241	13	25	1.7	3	3	72	1.42	9	8	ND	3	34	.5	21	3	14	.72	.050	13	79	.28	163	.03	3	.41	.03	.31	2	5.7
08628 155-160M	836	173	298	629	3.4	4	2	108	.70	16	8	ND	4	57	4.1	55	3	6	1.50	.039	11	9 1	.16	121	.01	3	.28	.01	.15	2	5.7
08630 165-170M	719	226	4	12	.7	3	3	57	.90	2	8	ND	4	34	.5	3	3	16	.75	.046	13	80	.30	181	.04	5	.41	.04	.30	2	6.4
08631 170-175M	876	174	3	65	1.0	4	3	53	1.29	16	8	ND	4	36	.5	21	3	10	1.05	.043	10	110	.23	129	.01	4	.39	.02	.21	2	6.2
08633 180-185M	1710	88	8	10	.3	3	3	56	.80	10	8	ND	2	46	.5	10	3	11	1.26	.043	11	99	.27	150	.01	3	.38	.02	.17	7	5.8
08634 185-190 M	1023	114	3	10	.3	2	2	55	.92	8	8	ND	2	45	.5	4	3	10	1.21	.044	11	92	.26	179	.01	3	.38	,01	.15	2	6.2
08636 195-200M	1261	184	3	8	.3	3	2	43	.75	4	8	ND	3	210	.5	3	3	14	.87	.046	10	99	.23	163	.03	3	.37	.03	.27	2	6.7
08638 205-210M	1657	374	3	18	.3	3	5	90	1.39	9	8	ND	2	59	.5	7	3	21	1.67	.078	16	88	.48	223	.03	3	.53	.02	.28	2	6.5
08639 210-215M	1274	416	3	16	.3	2	5	78	1.27	9	8	ND	2	112	.5	3	3	28	1.29	.073	14	72	.46	258	.06	4	.61	.04	.40	2	6.7
08640 215-220M	2000	231	11	54	1.1	3	10	62	1.87	23	8	ND	2	138	.5	19	3	14	1.13	.046	9	91	.25	108	.02	3	.36	.02	.23	2	6.7
08641 220-225M	1003	267	6	17	.5	3	3	50	.84	4	8	ND	4	338	.5	3	3	13	1.10	.038	11	105	.24	158	.03	3	.45	.04	.26	2	6.7
08642 225-230M	831	310	3	17	.9	3	5	71	.98	4	8	ND	5	59	.5	3	3	19	1.34	.049	15	118	.35	166	.03	7	.54	.03	.26	2	6.2
08643 230-235M	723	545	3	50	.7	2	7	122	1.87	28	8	ND	3	263	.5	3	3	38	1.49	.095	17	68	.62	200	.08	4	.73	.04	.51	2	5.7
08644 235-240M	728	49 1	6	72	.3	3	5	114	1.35	13	8	ND	2	145	.5	4	3	33	1.28	.065	14	75	.48	237	.06	3	.60	.03	.40	3	6.7
08645 240-245M	121	1419	3	116	.6	14	28	790	8.41	2	8	ND	2	31	.5	3	3	373	.97	.061	4	48	2.57	180	.35	3	1.94	.04	2.00	2	6.7
08647 250-255M	279	1734	3	116	1.7	14	27	872	7.65	2	8	ND	2	36	.5	3	7	311	.95	.060	3	48	3.01	71	.40	3	2.52	.04	2.52	2	6.7

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Са	Р	La	Cr	Mg	Ba	Ti	В	Al	Na	к	W	¥t
SAMPLE	ppm	bbu	ppm	bbu	bbu	bbu	ppm	ppm	%	bbw	ppm	%	%	ppm	ppm	%	ppm	%ι	ppm	%	%	%	bbu	kg							
08651 270-275M	2000	2871	3	35	1.5	4	17	259	6.24	2	8	ND	2	51	.5	3	15	81	1.54	.094	4	89	.45	37	.09	3	.60	.03	.24	12	6.7
08653 280-286M	619	2886	92	616	67.3	1	10	330	6.95	303	8	ND	2	214	6.5	884	12	37	1.54	.054	5	50	.61	37	.02	3	.55	.01	.29	9	8.1
08712 135-140M	188	197	3	15	.3	3	3	91	1.35	3	8	ND	2	54	.5	3	3	26	1.16	.105	15	69	.49	172	.05	3	.56	.03	.42	5	6.2
08718 165-170M	893	105	5	10	.3	3	3	138	.89	9	8	ND	2	153	.5	6	3	12	1.58	.055	12	109	.32	163	.02	3	.41	.02	.27	2	5.7
08722 185-190M	1160	179	3	9	.3	3	3	67	1.39	5	8	ND	2	189	.5	3	3	18	1.14	.053	12	83	.29	173	.04	3	.48	.03	.29	2	6.7
08729 220-225M	583	2526	4	83	3.0	7	21	523	6.04	5	8	ND	3	119	.5	3	3	167	1.61	.151	11	70	1.19	126	.18	6	1.22	.04	1.02	2	6.2
08731 230-235M	434	3593	3	45	3.7	7	21	394	5.45	21	11	ND	2	134	.5	4	3	79	1.49	. 139	8	61	.61	78	.06	3	.65	.04	.41	2	6.8
08802 85-90M	160	277	15	35	.3	3	4	74	1.63	7	8	ND	2	19	.6	6	3	32	.28	.094	10	81	.48	148	.06	3	.60	.03	.39	2	5.3
08804 95-100M	183	271	3	21	.3	4	2	35	.70	2	8	ND	2	13	.5	3	3	19	.13	.050	9	67	.31	136	.05	3	.41	.03	.32	2	5.1
08809 120-125M	632	202	3	11	.5	3	2	79	.89	15	8	ND	2	100	.5	22	3	9	1.54	.046	8	91	.23	202	.01	3	.34	.02	.21	2	6.4
08903 70-75M	92	1034	55	165	6.2	6	8	123	2.51	131	8	ND	2	20	1.5	184	3	11	.67	.047	9	88	.23	65	.02	3	.49	.02	.24	2	6.7
08906 85-90M	439	242	27	57	4.4	3	4	127	1.36	13	8	ND	2	24	.7	48	3	16	.73	.059	13	76	.29	194	.04	3	.42	.03	.28	2	6.0
08910 150-155M	730	532	37	43	4.4	3	3	102	1.37	57	8	ND	2	38	.5	66	3	10	.99	.047	6	95	.37	146	.01	3	.37	.01	.14	2	6.7
08912 160-165M	1289	850	3	31	.4	13	13	244	3.06	5	8	ND	2	121	.5	3	3	114	.71	.035	8	84	1.00	182	.16	3	1.32	.05	1.05	2	6.7
08915 175-180M	197	2336	3	127	1.3	16	34	954	8.92	11	8	ND	2	56	.5	3	3	517	1.38	.061	4	45	2.68	122	.33	3	2.11	.04	2.08	2	6.8
09015 190-195M	630	223	4	9	.3	2	33	75	2.15	25	8	ND	2	45	.5	8	3	7	1.99	.040	8	73	.29	67	.01	3	.29	.01	.10	2	5.7
09018 205-210M	2000	1747	3	52	1.1	7	12	327	3.07	14	8	ND	2	975	.5	3	3	125	1.27	.053	7	91	1.16	215	.18	3	1.14	.03	1.01	2	5.7
09019 210-215M	1317	1528	3	51	.8	7	16	408	3.52	6	8	ND	2	170	.5	3	3	124	1.32	.053	6	75	1.20	154	.19	3	1.14	.02	1.03	2	6.2
09022 225-230M	1336	173	3	37	.5	2	3	42	.88	4	8	ND	3	77	.5	3	3	9	.82	.026	10	84	.15	114	.02	4	.29	.03	.20	2	6.0
09029 260-265M	295	2139	3	29	2.4	3	17	179	4.94	6	8	ND	2	47	.5	3	3	58	1.34	.095	5	53	.54	63	.11	3	.65	.03	.22	17	6.7
09621 290-295M	103	2025	3	110	.7	13	31	645	9.14	2	8	ND	2	20	.5	3	3	348	.80	.078	2	42	2.14	67	.40	3	2.23	.07	2.16	6	6.7
09709 45-50M	716	2293	3	24	1.3	12	18	113	3.03	20	8	ND	2	16	.5	3	3	78	.58	.043	8	64	.59	86	.07	3	.75	.04	.58	2	6.7
09711 55-60M	874	937	9	42	.8	16	30	151	3.86	26	8	ND	2	12	.5	3	3	76	.49	.022	4	56	.74	56	.08	3	1.01	.02	.67	2	6.7
09712 60-65M	534	3065	9	33	2.6	20	35	190	7.07	108	8	ND	2	11	.5	3	3	122	.53	.018	3	77	1.06	36	.16	3	1.09	.03	.97	2	6.2
09713 65-70M	492	532	4	17	.3	4	8	64	3.06	10	8	ND	2	16	.5	3	3	17	.58	.036	6	92	.20	45	.01	3	.36	.01	.20	2	6.2
09714 70-75M	817	290	3	15	.3	2	4	60	1.29	9	8	ND	2	49	.5	3	3	11	1.46	.042	7	46	.20	146	.01	5	.32	.02	.19	2	6.6
09720 100-105M	945	521	98	71	3.1	3	5	183	4.99	77	8	ND	2	29	.7	11	3	6	1.78	.029	5	72	.38	24	.01	3	.20	.01	.10	2	6.4
09723 115-120M	1376	1476	5	38	2.5	3	5	42	2.56	25	8	ND	3	14	.5	3	3	7	.46	.032	7	90	.14	59	.01	3	.32	.01	.18	2	6.2
09724 120-125M	363	2554	3	60	2.0	9	37	163	5.36	25	8	ND	2	16	.5	3	3	126	.68	.036	5	92	1.27	43	.17	3	1.26	.03	1.13	5	6.2
09725 125-130M	313	3060	7	47	2.8	10	48	345	9.65	8	8	ND	2	12	.5	3	3	297	.66	.049	3	29	2.62	60	.34	3	2.10	.03	2.27	6	6.2
09726 130-135M	228	793	12	37	.6	3	11	51	2.89	23	8	ND	2	166	.5	3	3	19	.75	.040	6	81	.27	58	.02	3	.45	.03	.30	6	5.7
09728 140-145m	432	1616	4	32	1.0	7	13	48	2.20	18	8	ND	3	21	.6	3	3	18	.69	.029	8	103	.27	78	.02	3	.44	.02	.28	3	6.7
09729 145-150M	304	3799	4	449	3.4	11	29	196	5.70	75	8	ND	2	54	2.6	3	3	166	2.41	.014	2	87	1.36	37	.08	3	.95	.01	.54	2	6.7
09730 150-155M	101	2783	3	76	2.5	15	46	519	9.29	65	8	ND	2	61	.5	3	3	348	2.63	.041	4	43	3.35	76	.35	3	2.23	.03	2.31	2	6.7
09802 60-65M	1693	230	117	127	2.3	8	12	145	1.32	21	8	ND	2	23	1.2	17	3	10	1.08	.015	5	74	.20	38	.01	3	.28	.01	.18	2	5.2

.....

ELEMENT	Мо	Cu	Pb	Zn	Ag	Nī	Co	Mn	Fe	As	Ų	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	τi	B	AL	Na	κ	W	Wt
SAMPLE	ppm	ppm	ppm	ppm	ppm	bbul	ppiit	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppni	bbu	*	%	ppm	ppm	*	ppn	%	ppm	%	%	%	ppn	kg
09805 75-80M	450	2932	56	110	6.1	13	23	806	5.22	115	8	ND	2	33	.8	6	3	82	1.38	.020	3	32	.55	83	.01	3	.46	.02	.25	2	6.1
09806 80-85M	257	4103	9	146	5.3	17	56	996	7.87	140	8	ND	2	36	.8	3	3	240	1.11	.001	3	51	1.38	63	.17	3	1.28	.02	1.02	2	6.2
09808 90-95M	260	2960	9	121	3.8	15	47	919	8.26	71	8	ND	2	36	.5	3	3	246	1.34	.080	4	43	1.66	84	.23	3	1.37	.03	1,24	2	6,7
09810 100-105M	511	1788	3	125	2.3	19	39	1079	7.98	88	8	ND	2	43	.5	3	3	298	1.35	.077	3	47	1.78	105	.24	3	1.43	.03	1.28	2	6.7
09812 110-115M	329	1148	10	134	1.9	13	28	995	7.72	34	8	ND	2	50	.5	3	3	285	2.54	.072	2	34	2.79	153	.36	3	2.21	.02	2.16	2	6.2
09814 120-125M	413	2347	178	269	12.9	5	14	496	3.93	96	8	ND	2	51	2.9	74	3	47	2.65	.066	5	68	.80	55	.02	3	.51	-01	.23	2	6.7
09817 160-165M	67	1136	3	101	.3	6	31	776	8.15	5	8	ND	2	13	.5	3	3	237	.52	.072	2	46	2.19	37	.33	3	1.91	•06	2.02	3	6.2
09818 165-170M	157	1496	109	247	2.1	6	29	1084	7.66	20	8	ND	2	40	1.9	3	3	221	1.19	.076	4	28	2.24	50	.31	3	1.87	.04	1.96	2	6.2
09822 270-275M	237	1557	3	142	1.4	13	28	948	8.89	8	10	ND	4	316	.5	3	3	300	1.20	.062	4	54	1.66	55	.26	3	1.32	.06	1.21	2	5.7
09824 280-285M	268	1066	3	49	2,4	5	13	450	3.90	20	8	ND	3	47	.5	4	3	66	2.81	.053	11	65	1.11	81	.03	12	.49	.02	.33	2	6.2
09826 290-295M	216	1473	3	83	3.1	10	23	484	5.43	12	8	ND	5	129	.5	5	3	193	1.01	.052	10	67	1.57	65	.22	12	1.46	.05	1.42	2	6.7
10002 10-15M	1167	830	3	34	.9	23	18	165	3.12	14	8	ND	2	18	.5	3	3	83	.48	.049	6	48	.60	88	.08	3	1.12	.04	.76	2	6.7
10004 20-25M	566	960	32	94	2.1	14	15	81	4.19	33	8	ND	6	16	.6	8	5	52	.31	.038	10	69	.50	53	.07	12	.95	.02	.56	2	5.2
10005 25-30M	1712	2318	806	1153	9.6	9	11	106	3.34	562	8	ND	5	13	10.2	82	11	19	.32	.007	7	87	.25	52	.03	4	54	.02	.30	2	5.7
10006 30-35M	1025	1816	6	65	3.7	21	21	245	4.19	52	8	ND	2	22	.5	4	5	63	.56	.017	5	31	.43	42	.04	6	.80	.01	-46	2	6.2
10007 35-40M	1597	1508	5	37	1.8	20	55	204	6.68	66	8	ND	3	14	.5	3	9	90	.20	.001	4	48	.25	32	.03	4	.62	-02	.37	9	7.1
10102 130-135M	614	242	16	210	1.2	2	3	109	.72	31	8	ND	3	62	1.9	10	3	10	2.71	.047	9	78	.26	191	.01	6	.33	.01	.11	2	5.8
10103 135-140M	625	284	6	7	.5	3	6	55	1.23	16	8	ND	2	42	.5	4	3	8	2.34	.043	7	82	.17	161	.01	4	.29	.01	.08	2	6.2
10104 140-145M	48 9	169	7	10	.3	2	2	86	.66	33	8	ND	2	67	.5	5	3	7	3.78	.042	7	66	.30	236	.01	3	.25	.01	.06	2	5.7
10105 145-150M	549	238	3	10	.3	2	3	71	.89	35	8	ND	2	46	.5	6	3	7	2.11	.047	8	65	.28	212	.01	6	.29	.01	.08	2	5.5
10106 150-155M	1037	449	7	27	1.4	5	4	86	2.01	26	8	ND	3	43	.5	10	3	8	1.65	.045	7	112	.23	98	.01	3	.35	.01	.14	2	5.7
10110 170-175M	675	400	5	8	.5	2	4	75	1.09	27	8	ND	2	47	.5	5	3	9	2.34	.046	8	81	.30	147	.01	3	.32	.01	.13	2	6.5
10112 180-185M	917	332	3	5	.5	2	4	62	.78	13	8	ND	2	43	.5	3	3	8	2.41	.041	8	90	.33	256	.01	5	.27	.01	.10	2	5.7
10113 185-190M	751	309	5	8	.5	2	3	51	.70	15	8	ND	2	142	.5	3	3	12	1.83	.048	9	60	.29	247	.01	4	.36	.01	.16	2	5.7
10114 190-195M	504	452	3	14	.5	1	3	87	.94	27	8	ND	2	39	.5	3	3	11	2.08	.047	7	40	.32	183	.01	3	.33	_01	-11	2	5.7
10115 195-200M	513	738	9	13	.3	2	5	77	1.17	56	8	ND	2	33	.5	6	3	6	1.63	.045	7	62	.33	196	.01	3	.35	.01	.12	2	5.7
10118 210-215M	457	1647	4	21	1.6	8	14	154	2.61	47	8	ND	2	54	.5	3	3	68	2.55	.070	10	50	.99	155	.08	8	.86	.01	.55	2	6.4
10119 215-220M	439	1178	3	23	1.1	9	11	154	2.35	46	8	ND	2	50	.5	3	3	47	2.44	.053	7	52	.86	162	.03	10	.64	.01	.26	2	6.5
10120 220-225M	418	287	5	12	.7	2	5	86	1.15	33	8	ND	2	212	.5	6	3	13	1.65	.068	6	67	.40	220	.01	5	.39	.01	.13	2	7.1
10121 225-2 30 M	495	633	5	11	.4	2	11	91	2.09	2 6	8	ND	2	43	.5	4	3	15	1.91	.058	6	52	.48	76	.01	7	.33	.01	.12	2	6.6
10122 230-235M	177	3190	4	48	3.5	13	41	271	5,56	62	8	ND	2	39	.5	3	3	56	1.28	.065	7	57	.45	21	.02	7	.56	.02	.22	2	6.7
10124 240-245M	365	1135	15	68	2.1	9	14	242	3.13	32	8	ND	2	62	.7	4	3	36	3.33	.058	9	52	.92	89	.01	4	.42	.01	-08	2	5.2
10125 245-250M	284	2212	3	55	3.1	10	24	423	5.67	78	8	ND	2	66	.5	6	3	125	3.00	.059	5	44	1.38	65	.07	10	.83	.01	.41	2	5.7
10127 255-260M	267	3795	3	114	4.4	14	44	645	8.50	15	10	ND	4	174	.5	3	3	314	.78	.042	4	27	2.15	52	.35	9	1.90	.03	1.98	2	6.7
10301 95-100M	130	271	9	31	.7	3	3	149	.67	27	8	ND	2	60	.5	6	3	5	1.78	.045	8	89	.23	388	.01	3	.28	.01	.13	2	6.4

ELEMENT SAMPLE	Mo ppm	Cu ppm	Pb ppn	Zn ppm	Ag pom	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U maga	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Tī %	B ppm	AL %	Na %	К %	W PPM	Wt kg
10702 100-10EM	141	/50	7	15					07	10		ND		71			 7		1 /7	0/.9			17	122	01	 z	34	01	15	·	47
10302 100-100M	2/9	430 750	2	10	د. ح	د ،	6	4/	.7(17	6 0	ND	2	28		4	י ד	11	1.41	.040	7	83	- 17	150	-01	2	- 24	.01	.1.7	2	6.2
10305 100-110M	240	2/4	6	20	.,	**	4	59	- 14	22	2 2		2	70 70		5	7	15	1.44	.047	6	81	25	160	.01	5		.01	20	2	6.2
10304 110-115M	223	240	4	10	• • •	7	4 7	50	.15	47	0 0	ND	2	47	.,	7	נ ד	15	1 57	079	7 9	79	20	109	-02	5	, JO 7/.	.02	.20	2	6.2
10300 120-1204	241	203	2 7	12	.0	נ ר	2	20	.54	13	0 0	ND	2	50	ر. -	د ر	2	12	1.00	.036	0 7	10	-20 20	114	.02	5	.J4 74	.01	• 1 f	2	0.2
10507 125-150M	217	105	3	12	.0	2	2	40	.02	1	0	NU	2	52	.>	4	2	13	1.04	.043	(04	.20	127	•01	2	.20	.01	. 12	2	5.1
10309 135-140M	337	288	3	6	.3	2	3	42	.61	9	8	ND	2	108	.5	3	3	17	1.34	.042	8	82	.21	129	.02	3	.39	.01	.18	2	6.7
10312 150-155M	182	194	25	48	.3	3	3	57	.93	6	8	ND	2	184	.5	3	3	20	1.05	-045	8	83	.29	145	-03	3	.39	.02	.27	2	5.9
10313 155-160M	270	147	19	28	.3	2	2	68	.91	10	8	ND	2	170	.5	3	3	16	1.38	.053	7	60	.27	140	.02	3	.32	_01	.20	2	6.7
10314 160-165M	414	164	11	19	.3	2	7	52	1.12	6	8	ND	2	48	.5	3	3	16	1.19	.044	6	79	.22	85	.02	5	.36	.02	.21	2	6.7
10320 190-195M	294	529	141	178	1.0	5	4	563	1.17	56	8	ND	2	203	2.0	21	6	12	1.37	.035	9	78	.28	145	.01	7	.24	.02	.15	2	6.7
10321 195-200M	370	614	82	88	1.0	5	5	263	1.51	35	8	ND	2	36	1.0	3	3	22	1.49	.024	9	52	.34	157	.01	5	.28	.01	. 15	2	6.7
10322 200-205M	270	544	185	203	3.2	2	3	283	.90	68	8	ND	2	102	2.1	67	8	10	1.47	-035	12	88	.27	149	.01	3	.25	.02	.13	2	6.6
10323 205-210M	469	253	914	99 1	4.4	4	6	144	1.54	20	8	ND	2	77	9.5	29	5	13	1.08	.046	9	76	.23	115	.01	8	.26	.02	.18	2	6.4
10324 210-215M	324	212	11	19	.3	3	4	79	.77	13	8	ND	2	300	.5	3	3	14	1.04	.045	10	84	.22	120	.02	6	.33	.03	.23	2	6.2
10326 220-225M	207	203	9	15	.4	6	5	120	1.43	11	8	ND	2	226	.5	3	3	26	.91	-038	8	74	.22	120	.03	6	.39	.03	.28	2	6.2
10329 235-240M	422	213	3	9	.3	3	4	136	.98	8	8	ND	2	242	.5	3	3	22	1.24	.040	10	73	.24	111	.03	4	.32	.03	.22	2	6.0
10330 240-245M	342	584	5	25	.3	11	8	145	1.71	6	8	ND	2	255	.5	3	3	78	1.35	.061	10	88	.81	137	.13	3	.94	.03	.79	2	6.7
10333 255-260M	477	1117	7	46	.9	7	12	352	3.20	6	8	ND	2	192	.5	3	3	116	1.15	.053	8	68	.65	128	.09	4	.67	.03	.53	2	6.5
10335 265-270M	267	1447	16	524	4.0	4	6	303	1.76	31	8	ND	2	464	5.2	8	3	33	1.62	.060	13	74	.56	155	.05	4	.47	.03	.33	2	7.1
10336 270-275M	464	2156	251	433	57.0	5	5	468	2.18	230	8	ND	3	81	8.0	686	6	33	4.83	.025	10	94	.77	153	.01	11	.24	.02	.15	2	6.4
10337 275-280M	459	978	9	21	1.5	4	6	196	1.38	84	9	ND	3	41	.5	8	3	25	1.77	.045	11	55	.35	146	.01	8	.32	.02	.14	2	6.5
10338 280-285M	200	279	4	15	1.0	3	4	124	.98	25	8	ND	2	513	.5	3	3	17	1.15	.047	13	73	.28	157	.03	7	.35	.03	.24	2	6,4
10340 290-295M	308	3486	6	93	4.3	12	28	508	6.21	247	10	ND	2	25	.5	6	3	243	.97	.131	5	57	.92	61	.13	12	.90	.03	.69	2	6.7
10342 300-305M	748	313	3	10	.3	2	3	77	.76	11	8	ND	2	225	.5	3	3	15	.86	.041	10	81	.22	117	.03	3	.31	.03	.23	2	6.3
10343 305-310M	723	1242	14	33	2.5	2	8	191	2.29	36	8	ND	2	117	.5	5	3	58	1.31	.117	7	45	.78	97	.09	4	.62	.03	.57	2	6.7
10344 310-315M	654	1333	6	38	1.4	5	11	273	3.06	7	8	ND	2	55	.5	3	3	106	.58	.112	5	52	.99	59	.17	3	.95	.04	.98	9	6.7
10345 315-320M	893	1972	3	32	2.0	6	13	246	3.09	49	8	ND	2	78	.5	3	3	88	1.00	.197	5	67	.71	73	.09	6	.69	.03	.62	2	7.0
10346 320-325M	250	2112	5	27	2.9	6	10	290	2.86	84	8	ND	2	30	.5	3	3	48	1.22	.218	6	69	.46	60	.04	7	.43	.03	.31	2	7.1
10347 325-330M	592	975	10	22	.9	6	8	202	1.90	62	8	ND	2	60	.5	3	3	29	1.58	.106	8	96	.52	157	.03	6	.43	.02	.31	2	5.8
10348 330-335M	273	2505	74	104	4.1	5	14	447	3.49	20	8	ND	2	461	1.0	3	3	118	2.14	.068	8	70	1.11	149	.12	6	1,00	.03	.85	2	7.1
10349 335-340M	208	1154	3	21	1.1	4	8	114	1.68	2	8	ND	3	227	.5	3	3	68	1.23	.046	11	79	.49	131	.08	6	.53	.04	.46	3	6.7
10351 345-350M	601	453	4	15	.3	5	4	106	1.17	20	8	ND	2	286	.5	3	3	24	1.33	.045	12	85	.35	206	.03	6	.41	.02	.23	2	6.0
10352 350-355M	305	493	3	12	.3	3	3	80	.91	12	8	ND	2	268	.5	3	3	13	1.37	.044	12	78	.26	201	.02	3	.31	.02	.19	2	6.7
10354 360-365M	163	347	3	11	.3	4	4	65	.91	5	8	ND	2	362	.5	3	3	12	1.20	.048	12	85	.23	198	.02	3	.28	.03	.22	2	6.8
10355 365-370M	362	925	6	26	.9	6	11	210	2.43	17	8	ND	2	214	.5	4	3	76	1.68	.082	9	62	.91	168	.09	9	.92	.03	.70	2	5.5

ELEMENT	Мо	£u	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sг	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	в	AL	Na	κ	¥	Wt
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppnt	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	ኤ	*	ppm	kg
10356 370-375M	558	3463	4	34	3.2	7	31	208	4.63	22	8	ND	2	226	.5	3	3	69	1.43	.122	6	64	.54	57	.06	7	.63	.02	.43	2	6.7
10357 375-380M	696	1279	5	21	.6	5	13	140	2.20	9	8	ND	2	275	.5	3	3	44	.95	.066	8	64	.43	116	.06	5	.46	.03	.39	2	5.7
10358 380-385M	478	1112	9	23	.7	2	6	124	1.34	35	8	ND	2	197	.5	3	3	14	1.54	.047	12	61	.33	243	.02	6	.35	.03	.21	2	5.7
10359 385-390M	176	713	2539	3035	25.8	3	5	555	2.03	153	8	ND	2	63	30.8	3	39	5	1.77	.067	14	63	.37	69	.01	4	.25	-02	.14	2	5.7
10360 390-395M	68	573	48	42	1.3	2	4	788	2.00	103	8	ND	2	82	.5	3	3	4	2.03	.067	10	57	.40	67	.01	3	.25	.03	.14	2	6.3
10361 395-400M	369	345	28	24	1.3	3	5	161	1.93	26	8	ND	2	81	.5	3	15	6	1.13	.047	10	89	.22	81	.01	3	.24	.03	.16	2	6.2
10362 400-405M	274	593	79	137	2,3	3	5	147	1.50	50	8	ND	2	65	1.3	3	3	5	1.50	.050	11	89	.24	159	.01	4	.21	.03	.16	2	5.7
10363 405-410M	487	322	218	388	2.5	2	4	172	.97	45	8	ND	4	72	3.9	5	3	5	1.35	.049	13	85	.20	241	.01	8	.24	.02	.18	2	5.8
10364 410-415M	12	605	143	117	7.8	3	7	136	3.24	146	8	ND	2	37	1.3	17	57	8	1.06	.060	9	42	.30	33	.01	5	.32	.01	.22	2	6.2
10365 415-420M	6	220	81	268	4.1	2	8	86	3.16	60	8	ND	2	32	2.5	3	18	13	.60	.073	8	55	.29	35	-01	3	.32	.02	. 24	2	6.1
12504 4C-45M	464	175	12	169	.4	3	1	88	.39	2	8	ND	3	444	1.8	3	3	2	.88	.020	8	74	.06	56	.01	3	-18	.03	.14	2	6.7
12507 55-60M	265	433	5	51	.5	1	2	80	.35	2	8	ND	2	88	.5	3	3	2	.90	.020	6	41	.05	38	.01	3	.09	.01	.07	2	6.5
12516 100-105M	223	610	22	264	3.2	5	3	223	1.00	2	8	ND	2	297	2 .3	3	3	14	1.25	.056	9	83	.25	175	.02	5	.32	.02	.25	2	6.6
12813 270-275M	771	419	4	16	.4	1	3	102	.78	4	8	ND	2	839	.5	3	3	16	1.63	.048	12	43	.30	250	.04	3	.37	.02	.25	2	6.7
12819 300-305M	605	494	3	17	.8	2	2	91	.67	2	8	ND	2	320	.5	3	3	16	1.11	.040	10	79	.24	160	.04	3	.31	.02	.23	2	6.7
12821 310-315M	739	1072	44	32	2.2	3	3	122	1.65	2	8	ND	2	314	.5	3	50	15	1.22	.051	12	80	.21	124	.03	3	.37	.02	.28	32	7.1
12823 320-325M	322	401	3	19	.8	2	3	141	1.01	3	8	ND	2	452	.5	3	3	19	1.52	.060	13	70	.35	239	.05	3	.46	-02	.29	2	6.8

For Ag greater than 35 ppm, assay digestion is required for correct data.

PIONEER LABORATORIES INC #103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5 TEL.(604)231-8165

ASSAY CERTIFICATE

Mo Analysis - 1.000 gm sample is digested with 50 ml of aqua regia, diluted to 100 ml with water and is finished by ICP/ES.

TORCH RIVER RESOURCES LTD.

Project: Red Bird Sample Type: Cores

Analyst <u>RSMM</u>

Report No. 2057999 Date: November 14, 2005

	Мо
SAMPLE	8
79-75 115-120	0.174
79-75 125-130	0.218
79-79 290-295	0.321
79-80 25-30	0.345
79-81 85-90	0.220
79-82 55-60	0.262
79-83 365-370	0.205
79-83 380-385	0.223
79-84 85-90	0.192
79-86 215-220	0.205
79-86 270-275	0.401
79-87 190-195	0.202
79-90 205-210	0.489
79-96 265-270	0.218
79-97 40-45	0.282
79-97 75-80	0.164
79-100 3.9-10	0.211
79-107 370-375	0.210
79-107 375-380	0.218
80-109 165-170	0.194
80-124 210-215	0.287
80-124 220-225	0.241
80-124 277.8-278.8	1.440
PIONEER LABORATORIES INC #103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5 TEL.(604)231-8165

GEOCHEMICAL ANALYSIS CERTIFICATE

*Au Analysis - 10 gram sample is digested with aqua regia, MIBK extracted, and is finished by AA or graphite furnace AA.

TORCH RIVER RESOURCES LTD.

Project:

Sample Type: Cores

Analyst <u>FGd.M</u> Report No. 2058054 Date: November 28, 2005

CANDI	2	Au
onn m	2	PPD
79-90	205-210	7
79-90	210-215	6
79-90	225-230	1
79-90	255-260	6
79-90	260-265	4
79-91	130-135	
79-91	150-155	12
79-91	175-180	4
79-91	205-210	5
79-91	220-225	2
79-91	225-230	6
79-91	250-255	6
79-91	255-260	1
79-91	260-265	2
79-91	270-275	1
79-92	195-200	1
79-92	244-250	5
79-92	280-285	1
79-92	290-295	9
79-92	320-325	1
79-92	365-370	28
79-92	370-375	7
79-92	375-380	8
79-93	180-185	5
79-93	185-190	1
79-93	190-195	3
79-93	215-220	1
79-93	300-305	2
79-93	310-315	8
79-93	315-320	17
79-93	320-325	4
79-93	345-350	8
79-93	350-355	13
79-93	355-360	2
79-93	360-365	13

	Au
SAMPLE	ppb
79-93 365-369	24
79-94 150-155	3
79-94 155-160	7
79-94 210-215	1
79-94 235-240	2
79-94 240-245	12
79-94 245-251	6
79-96 265-270	4
79-96 285-290	11
79-96 290-295	15
79-96 295-300	6
79-97 20-25	1
79-97 40-45	5
79-97 45-50	4
79-97 60-65	11
79-97 75-80	3
79-97 115-120	6
79-97 120-125	25
79-97 125-130	17
79-97 130-135	11
79-97 145-150	8
79-97 150-155	5
79-97 155-160	3
79-97 160-165	4
79-97 165-170	5
79-98 60-65	1
79-98 75-80	1
79-98 80-85	1
79-98 85-90	3
79-98 90-95	2.
79-98 95-100	ક
79-98 115-120	2
79-98 120-125	5
79-98 125-130	1
79-98 275-280	1

-

	Au
SAMPLE	ppb
79-98 295-300	1
79-99 80-85	1
79-99 85-90	3
79-99 135-140	7
79-99 140-145	1
79-99 145-150	1
79-99 155-160	1
79-99 160-165	3
79-99 175-180	4
79-99 180-185	3
79-99 195-200	2
79-99 225-230	4
79-99 235-240	6
79-99 240-245	1
79-100 3.9-10	1
79-100 25-30	1
79-101 230-235	5
79-101 245-250	6
79-101 250-255	4
79-101 255-260	11
79-103 180-185	7
79-103 270-275	47
79-103 285-290	6
79-103 290-295	6
79-103 320-325	2
79-103 330-335	1
79-103 370-375	13
79-103 385-390	25
79-103 410-415	3
79-105 210-215	6
79-105 215-220	4
79-105 225-230	15
79-105 230-235	18
79-105 235-240	17
79-105 245-250	6

۲ --- Page 3

	Au
SAMPLE	ppb
79-105 250-255	4
79-105 260-265	7
79-106 240-245	5
79-106 245-255	4
79-106 255-265	5
79-106 265-274	6
79-107 325-330	22
79-107 380-385	12
79-107 390-395	29
79-107 400-407	21
80-108 10-15	3
80-108 20-25	1
80-108 25-30	6
80-108 30-35	2
80-108 40-45	1
80-108 45-50	1
80-108 50-55	1
80-108 55-60	3
80-108 70-75	2
80-108 115-120	5
80-108 120-125	14
80-108 130-135	5
80-109 20-25	1
80-109 75-80	6
80-109 85-90	2
80-109 90-95	1
80-109 110-115	1
80-109 115-120	1
80-109 140-145	1
80-109 155-160	2
80-109 165-170	1
80-109 170-175	1
80-110 15-20	11
80-110 25-30	19
80-110 30-35	10

2

	Au
SAMPLE	ppb
80-110 35-40	5
80-110 45-50	30
80-110 50-55	19
80-110 85-90	7
80-110 90-95	19
80-110 95-100	24
80-110 130-135	11
80-110 135-140	8
80-110 150-155	2
80-110 155-160	4
80-110 160-165	13
80-110 170-175	5
80-110 200-205	3
80-111 200-205	9
80-111 205-210	3
80-111 210-215	1
80-111 215-220	1
80-112 50-55	1
80-112 65-70	2
80-113 50-55	8
80-113 60-65	5
80-113 70-75	37
80-115 50-55	13
80-115 145-150	1
80-116 270-275	2
80-116 290-295	6
80-116 310-315	27
80-116 315-320	13
80-116 320-325	9
80-116 325-330	3
80-117 55-60	19
80-117 80-85	12
80-117 90-95	5
80-117 130-135	2
80-117 160-165	1

******-

Report No. 2058054

TORCH RIVER RESOURCES LTD. Project: Sample Type: Cores

		Au
SAMPLE		ppb
80-118	240-245	1
80-119	10-15	2
80-119	85-90	2
80-120	70-75	4
80-120	95-100	1
80-120	130-135	1
80-120	135-140	1
80-120	150-155	1
80-120	155-160	3
80-120	160-165	5
80-120	190-195	1
80-120	195-200	18
80-120	200-205	2
80-120	210-215	13
80-120	295-300	5
80-121	95-100	8
80-121	135-140	1
80-122	130-135	1
80-124	210-215	9
80-124	220-225	11
80-124	277.8-278.8	1
80-124	325-330	4
80-124	330-335	3
80-124	335-340	2
80-125	85-90	15
80-125	90-95	7
80-131	120-125	2

APPENDIX C- Core drilling by Craigmont Mines (1979-80)

	MINE GRID	= MG									
hole	MG EAST	MG NORT e	elev	Easting	Northing	Elevation	Length	Azumuth	Dip	Az EOH	Dip EOH
79-73	10107	10155	1477	632555	5907318	1478	434	2.25	-45.5	2.25	-43.67
79-74	10608.7	10193.8	1526.6	633047	5907366	1522	120	0	-90	0	-90
79-75	10502.5	10197.6	1515.5	632944	5907362	1516	196	2.25	-50	2 25	-52.5
79-76	10502.5	10195.5	1516.1	632944	5907362	1516	280	0	-90	0	-90
79-77	10399.9	10200.7	1507.8	632839	5907364	1508	298	360	-52	360	-48 75
79-78	10399.9	10199.8	1507.9	632839	5907364	1508	380	360	-75	360	-88 75
79-79	10301 4	10196.4	1501	632742	5907358	1500	331	360	12 67	360	-00.75
79-80	10408 3	10500.5	1713 3	632830	5007650	1713	40	360	-42.07	360	-41
79-81	10408.2	10400.3	1713.0	632830	5007650	1713	119	360	-45	300	-40
70.82	10312 4	10495.5	1702 7	632745	5007655	1713	110	300	-00.5	260	-70
79-02	10312.4	10495.7	1500.2	622743	5907055	1702	120	300	-40.17	300	-45
79-03	10301.7	10190.5	1702.5	622742	5907556	1500	400.5	360	-09.0	300	-03
79-04	10312.4	10494.0	1/02.5	032740	5907655	1702	220	360	-/9.6/	360	-11.5
79-00	10209.6	10489.3	1003.9	032045	5907649	1684	140	360	-45	360	-45
79-86	10209.5	10490.5	1684	632645	5907649	1684	286	360	-75	360	-84
79-87	10292.2	10383.7	1626.2	632721	5907548	1626	250	360	-60	360	-60
79-88	10097.1	10446	1631.6	632533	5907607	1632	188	360	-44.5	360	-42
79-89	10096.6	10445.3	1631.3	632533	5907607	1632	200	360	-60	360	-58
79-90	10199.5	10387.5	1624.5	632630	5907552	1624	265	360	-50	360	-47
79-91	10026.1	10375	1581.5	632465	5907535	1582	275	360	-53.5	360	-51.25
79-92	10098.6	10341	1577.9	632465	5907535	1579	385.6	360	-65.5	360	-63.5
79-93	10026.2	10374.2	1581.6	632465	5907535	1582	369	360	-71	360	-73
79-94	10098.6	10342	1578	632531	5907506	1579	251	360	-45	360	-41
79-95	10601.1	10192	1526.3	633042	5907359	1522	197.5	360	-44.33	360	-42
79-96	10199.67	10288.1	1558.9	632638	5907452	1559	324	360	-49.5	360	-42.5
79-97	10647.1	10191.5	1531	633089	5907360	1533	185	360	-84.5	360	-86
79-98	10601.4	10062.4	1444.2	633042	5907237	1444	300	360	-45.33	360	-43
79-99	10550.1	10062.7	1439.6	632993	5907234	1440	276	360	-47	360	-46.5
79-100	10647	10189.7	1529.8	633089	5907360	1530	150	360	-44.67	360	-43.5
79-101	10500.5	10063.4	1435.6	632944	5907229	1436	283	360	-49.3	360	-47.5
79-102	10700.2	10187.6	1531.2	633143	5907359	1530	200	360	-5.17	360	-1.25
79-103	10500.6	10062.7	1435.4	632944	5907229	1436	433	360	-71.33	360	-73.75
79-104	10700.3	10186.5	1530	633143	5907359	1530	150	360	-41.17	360	-41.25
79-105	10400.1	10201.6	1508.1	632839	5907364	1508	265	360	-30.17	360	-23.5
79-106	10198.2	10202.8	1509.4	632839	5907364	1508	274	25	-84 67	25	-87.5
79-107	10201.5	10168 9	1489	632647	5907331	1488	407	360	-46 17	360	-41
80-108	10552.2	9695.8	1316.2	632997	5906867	1316	200 7	270	-50.33	270	-50 33
80-109	10598	9698	1308.4	633051	5906868	1308	265.7	270	-50.5	270	-50.5
80-110	10516 4	9596 3	1203 1	630074	5006761	1202	200.7	270	40.83	270	40.83
80-111	10645 4	9600.1	1280.1	633111	5006770	1232	240.9	270	-49.03	270	-49.05
80-112	10527.7	0705.0	M335 1	632064	5006067	1275	240.0	270	49.00	270	-49.00
80-113	10501 3	07035	1211 2	633044	5006068	1242	140.2	270	-45.10	270	-45.10
80-114	10513 4	1995 6	1365 7	622055	500303	1342	100.2	270	-50.5	270	-50.5
80 115	10563	00006.0	1260 4	632955	5907071	1300	09.2	270	-50.55	270	-50.55
90 116	10754 2	9090.0	1309.4	633006	5907074	1370	160.3	270	-50.67	270	-50.67
80 117	10/54.3	9090.0	1200.3	003205	5906868	1280	334	270	-49.83	270	-49.83
80-117	10601.4	9848	1302,5	633053	5907023	1347	200.6	270	-50	270	-50
00-118	10699.1	9850.8	1355.7	633153	5907022	1360	260	270	-50	270	-50
80-119	10479.8	9695.1	1308.3	632921	5906866	1309	97.8	270	-50	270	-50
80-120	10578.5	9603.1	1291.8	633040	5906770	1292	300	270	-52	270	-48.67
80-121	9695	9690	1251.3	632134	5906846	1250	170.6	270	-42.67	270	-51
80-122	9865.5	9791	1318.2	632305	5906957	1318	296.8	270	-50.5	270	-48
80-123	9704.9	9790.9	1273.6	632157	5906955	1275	196.6	270	-50	270	-50
80-124	9831.3	9702.3	1286.9	632274	5906857	1285	349.7	270	-54.83	270	-53
80-125	9703.3	9790.8	1273.5	632157	5906955	1275	140	0	-90	0	-90
80-128	9945.1	9689.8	1274.4	632399	5906860	1265	392.9	270	-55.67	270	-40
80-129	9764 5	9591.9	1217	632217	5906760	1216	134	270	-52	270	-52
80-130	9971.9	9796 7	1312	632420	5906967	1313	378 5	270	-57	270	-55
80-131	9656.6	9692.3	1272.7	632104	5906855	1265	143.8	270	-50	270	-50

APPENDIX D- MoS₂ (& Cu) assays Craigmont Mines (1979-80)

drill hole	from (m)	to (m)	% MoS2	% Cu
79-73	112.5	114	0.06	
79-73	116	118	0.01	
79-73	183.5	189	0.01	
79-73	350	355	0.06	
79-73	355	360	0.06	
79-73	360	365	0.07	
79-73	365	370	0.03	
79-73	370	375	0.15	
79-73	375	380	0.013	
79-73	380	385	0.149	
79-73	385	390	0.091	
79-73	390	395	0.173	
79-73	395	400	0.034	
79-73	400	405	0.133	
79-73	405	410	0.07	
79-73	410	415	0.061	
79-73	415	420	0.38	
79-73	420	425	0.417	
79-73	425	430	0.244	
79-73	430	434		
79-74	2	5	0.05	
79-74	5	10	0.16	
79-74	10	15	0.1	
79-7 4	15	20	0.24	
79-7 4	20	25	0.19	
79-74	25	30	0.29	
79-74	30	35	0.09	0.18
79-74	35	40	0.11	0.16
79-74	40	45	0.33	0.07
79-74	45	50	0.14	0.12
79-7 4	50	55	0.1	
79-7 4	55	60	0.13	
79-74	60	65	0.11	
79-74	65	70	0.11	
79-74	70	75	0.07	
79-74	75	80	0.2	
79-74	80	85	0.07	
79-74	85	90	0.1	
79-74	90	95	0.06	
79-74	95	100	0.22	
79-74	100	105	0.06	
79-74	105	110	0.04	
79-7 4	110	115	0.02	
79-74	115	120	0.09	
79-75	3	10	0.1	
79-75	10	20	0.03	
79-75	20	30	0.03	
79-75	30	40	0.03	
79-75	40	50	0.02	
79-75	50	60	0.04	

			Craismont	1979
drill hole	from (m)	to (m)	2. Mas-	* * • • •
70-75	60	70	0.06	
79-75	70	75	0.12	
79-75	75	80	0.12	
79-75	80	85	0.16	
79-75	85	90	0.16	
79-75	90	95	0.15	
79-75	95	100	0.15	
79-75	100	105	0.23	
79-75	105	110	0.29	
79-75	110	115	0.23	
79-75	115	120	0.24	
79-75	120	125	0.2	
79-75	125	130	0.49	
79-75	130	135	0.35	
79-75	135	140	0.14	
79-75	140	145	0.18	
79-75	145	150	0.1	
79-75	150	155	0.19	
79-75	155	160	0.09	
79-75	160	165	0.18	
79-75	165	170	0.12	
79-75	170	175	0.06	
79-75	175	180	0.18	
79-75	180	185	0.11	
79-75	185	190	0.09	
79-75	190	196	0.03	
79-76	15	20	0.041	
79-76	20	25	0.021	
79-76	25	30	0.021	
79-76	30	35	0.135	
79-76	35	40	0.021	
79-76	40	45	0.028	
79-76	45	50	0.041	
79-76	50	55	0.083	
79-76	55	60	0.062	
79-76	60	65	0.069	
79-76	65	70	0.062	
7 9 -76	70	75	0.021	
7 9 -76	75	80	0.028	
79-76	80	85	0.021	
79-76	85	90	0.021	
79-76	90	95	0.028	
79-76	95	100	0.055	
79-76	100	105	0.021	
79-76	105	110	0.028	
7 9 -76	110	115	0.035	
7 9 -76	115	120	0.041	
79-76	120	125	0.041	
79-76	125	130	0.232	
79-76	130	135	0.091	
7 9-76	135	340	0.083	

drill hole	from (m)	to(m)	Craigmont	1979
70 70	140		70 MOSZ	
/9-/6	140	145	0.139	
/9-/6	145	150	0.076	
79-76	150	155	0.128	
79-76	155	160	0.055	
79-76	160	165	0.098	
79-76	165	170	0.055	
/9-/6 70-70	170	1/5	0.069	
/9-/6	1/5	180	0.083	
/9-/6	180	185	0.091	
/9-/6 70-70	185	190	0.11	
/9-/6	190	195	0.11	
79-76	195	200	0.04	
/9-/6	200	205	0.305	
/9-/6	205	210	0.077	
/9-/6	210	215	0.095	
79-76	215	220	0.23	
/9-/6	220	225	0.097	
/9-/6	225	230	0.086	
/9-/6	230	235	0.105	
/9-/6	235	340	0.24	
/9-/6	240	245	0.078	
/9-/6	245	250	0.093	
79-76	250	255	0.071	
/9-76	255	260	0.121	
/9-/6	260	265	0.13	
79-76	265	270	0.172	
79-76	270	275	0.097	
79-76	275	280	0.095	
79-77	20	25	0.029	
79-77	119	121	0.224	
79-77	170	175	0.026	
79-77	175	180	0.031	
79-77	180	190	0.01	
79-77	190	200	0.04	
79-77	200	205	0.032	
79-77	205	210	0.036	
79-77	210	215	0.041	
79-77	215	220	0.061	
79-77	220	225	0.108	
79-77	225	230	0.157	
79-77	230	235	0.129	
79-77	235	340	0.23	
79-77	240	245	0.091	
79-77	245	250	0.107	
79-77	250	255	0.294	
79-77	255	260	0.29	
7 9 -77	260	265	0.033	
79-78	170	175	0.017	
7 9-7 8	175	180	0.058	
7 9 -78	180	185	0.112	
79-78	185	190	0.012	

.....

drill hole	from(m)	to(m)	Craigmont 70 Mosz	1979
79-78	190	195	0.007	
7 9-7 8	195	200	0.007	
79-78	200	205	0.04	
79-78	205	210	0.032	
79-78	210	215	0.028	
7 9 -78	215	225	0.04	
79-78	225	235	0.03	
79-78	235	245	0.04	
79-78	245	255	0.07	
79-78	255	260	0.05	
7 9-78	260	265	0.053	
79-78	265	270	0.075	
79-78	270	275	0.16	
79-78	275	280	0.063	
79-78	280	285	0.14	
79-78	285	290	0.092	
79-78	290	295	0.08	
79-78	295	300	0.08	
7 9-7 8	300	305	0.055	
79-78	305	310	0.338	
79-78	310	315	0.294	
79-78	315	320	0.046	
79-78	320	325	0.01	
79-78	325	330	0.142	
79-78	330	335	0.264	
79-78	335	340	0.099	
79-78	340	345	0.053	
79-78	345	350	0.072	
79-78	350	355	0.097	
79-78	355	360	0.118	
79-78	360	365	0.07	
79-78	365	370	0.036	
79-78	370	375	0.137	
79-78	375	380	0.095	
79-79	215	220	0.01	
79-79	220	225	0.16	
79-79	225	230	0.03	
79-79	230	235	0.04	
79-79	235	340	0.04	
79-79	240	245	0.05	
79-79	245	250	0.09	
79-79	250	255	0.11	
79-79	255	260	0 14	
79-79	260	265	0.24	
79-79	265	270	0.21	
79-79	270	275	0.18	
79-79	275	280	0.25	
79-79	280	285	0.2	
79-79	285	290	0.17	
79-79	290	295	0.31	
79-79	295	300	0.13	

drillhole	from (m)	to(m)	Craigmont 2 Mas	1979
79-79	300	305	0.02	
79-79	305	310	0.06	
79-79	310	315	0.1	
79-79	315	320	0.03	
79-79	320	325	0.03	
79-79	325	331	0.02	
79-79	30	10	0.02 0.11	
79-00	10	15	0.12	
70 90	15	20	0.18	
79-00	20	20	0.18	
79-00	20	20	0.10	
79-00	20	25	0.03	
79-00	30	30	0.40	
79-00	33 17	40 E	0.15	
79-81	2.1		0.14	
79-81	5	10	0.07	
79-81	10	10	0.15	
79-81	15	20	0.15	
79-81	20	25	0.12	
79-81	25	30	0.08	
79-81	30	35	0.08	
79-81	35	40	0.06	
79-81	40	45	0.07	
79-81	45	50	0.05	
79-81	50	55	0.1	
79-81	55	60	0.1	
79-81	60	65	0.14	
79-81	65	70	0.06	
79-81	70	75	0.27	
79-81	75	80	0.08	
7 9 -81	80	85	0.18	
79-81	85	90	0.23	
79-81	90	95	0.18	
79-81	95	100	0.18	
79-81	100	105	0.11	
79-81	105	110	0.08	
79-81	110	115	0.05	
79-81	115	118	0.05	
79-82	1.7	5	0.11	
79-82	5	10	0.09	
79 -8 2	10	15	0.06	
79-82	15	20	0.06	
7 9-8 2	20	25	0.04	
79-82	25	30	0.04	
79-82	30	35	0.12	
79-82	35	40	0.09	
79-82	40	45	0.11	
79-82	45	50	0.18	
7 9-82	50	55	0.19	
79-82	55	60	0.22	
79-82	60	65	0.02	
79-82	65	70	0.01	

drill hole	From (m)	+0(m)	Craigmont 1979 2 Mos
79-82	70	75	0.06
79-02	75	80	0.12
79-82	80	85	0.22
79-82	85	90	0.04
79-82	90	95	0.11
79-82	95	100	0.08
79-82	100	105	0.05
79-82	105	110	0.04
79-82	110	115	0.1
79-82	115	120	0.01
79-83	210	215	0.03
79-83	215	220	0.04
79-83	220	225	0.02
79-83	225	230	0.05
79-83	230	235	0.03
79.83	308 4	310.4	0.08
79-83	320	325	0.07
79-83	325	330	0.05
79-83	330	335	0.16
79-83	335	340	0.31
79-83	340	345	0.13
79-83	345	350	0.2
79-83	350	355	0.08
79-83	355	360	0.04
79-83	360	365	0.04
79-83	365	370	0.24
79-83	370	375	0.08
79-83	375	380	0.00
79-83	380	385	0.19
79-83	385	390	0.32
79-83	390	395	0.21
79-83	395	400	0.12
79-83	400	405	0.16
79-83	405	410	0.04
79-83	410	415	0.02
79-83	415	420	0.08
79-83	420	425	0.02
79-83	425	430	0.02
79-83	430	435	0.02
79-83	435	440	0.04
79-83	440	445	0.01
79-83	445	450	0.01
79-83	450	455	0.01
79-83	455	460	0.02
79-83	460	465	0.01
79-83	465	468.5	0.01
79-84	0.9	5	0.03
79-84	5	10	0.01
79-84	10	15	0.01
79-84	15	20	0.15
79-84	20	25	0.08
1007			~· · · ·

drill hole	From(m)	to (m)	Craigmont 1979 % Mass
79-84	25	30	0.05
79-84	30	35	0.08
79-84	35	40	0.15
70-84	40	45	0.08
70.84	45	50	0.1
70-04		55	0.17
79-04	55	60	0.17
79-04	50 60	65	0.13
79-04	00	70	0.15
79-04	00 70	70	0.14
79-04	70	70	0.10
79-84	75	00	0.11
79-84	80	80	0.06
/9-84	85	90	0.19
/9-84	90	95	0.25
/9-84	95	100	0.12
79-84	100	105	0.01
79-84	105	110	0.02
79-84	110	115	0.11
79-84	115	120	0.11
79-84	120	125	0.33
7 9-84	125	130	0.11
79-84	130	135	0.23
79-84	135	140	0.27
79-84	140	145	0.05
79-84	145	150	0.22
7 9-84	150	155	0.08
79-84	155	160	0.06
79-84	160	165	0.12
79-84	165	170	0.07
79-84	170	175	0.04
79-84	175	180	0.03
79-84	180	185	0.03
79-84	185	190	0.01
79-84	190	195	0.02
79-84	195	200	0.03
79-84	200	205	0.05
7 9 -84	205	210	0.02
79-84	210	215	0.03
79-84	215	220	0.07
79-85	20	25	0.08
79-85	25	30	0.07
79-85	30	35	0.04
79-85	35	40	0.07
70-85	40	45	0.07
70_85		 50	0.07
70.95	40 EA	50	0.03
75-05	50	50	0.07
19-00 70 95	00	0U 65	0.00
/ 9 -85 70.05	60	00	U. I
/9-85	65	70	0.07
79-85	/0	/5	0.09 .
79-85	75	80	0.06

				10-14
drill hole	from (m)	tolin	Craigmont	1979
70.05		05	7051052	
79-85	80 05	00	0,1	
79-60	65	90	0.19	
79-85	90	400	0.10	
79-80	95	100	0.09	
79-85	100	105	0.03	
79-85	105	110	0.21	
79-85	110	110	0.00	
79-85	115	120	0.03	
79-80	120	120	0.02	
79-00	120	100	0.01	
79-00 70.85	130	140	0.01	
79-00	130	140	0.03	
79-80	20	20	0.04	
79-80	20	30 25	0.04	
79-80	30	35	0.11	
79-60	30	40	0.04	
79-80	40	40	0.04	
79-00	40	00	0.03	
79-80	50	5 5	0.02	
79-80	55	00	0.03	
79-80	6U	00 70	0.03	
79-80	00	70 76	0.03	
79-80	70	/5	0.03	
79-80	/0	00	0.03	
79-80	80 85	00	0.02	
79-00	60	90	0.02	
79-00	90	100	0.02	
70.96	90	100	0.04	
79-00	100	110	0.04	
79-00	100	110	0.03	
79-00	115	120	0.02	
79-86	120	120	0.00	
70-86	125	120	0.00	
79-00	120	135	0.00	
79-86	135	140	0.07	
79-86	140	145	0.08	
79-86	145	150	0.08	
79-86	150	155	n ng	
79-86	155	160	0.09	
79-86	160	165	0.09	
79-86	165	170	0.07	
79-86	170	175	0.11	
79-86	175	180	0.16	
79-86	180	185	0.21	
79-86	185	190	0.11	
79-86	190	195	0.15	
79-86	195	200	0.22	
79-86	200	205	0.09	
79-86	205	210	0.19	
79-86	210	215	0.26	
	2.10		V.2.V	

drill hole	from (m)	to (m)	Craigmont 1979
70.00	045	000	0.24
79-86	215	220	0.34
79-86	220	225	0.14
79-86	225	230	0.17
79-86	230	235	0.09
79-86	235	340	0.1
7 9 -86	240	245	0.01
79-86	245	250	0.01
79-86	250	255	0.02
79-86	255	260	0.02
7 9-8 6	260	265	0.01
7 9 -86	265	270	0.4
79-86	270	275	0.46
79-86	275	280	0.05
79-86	280	286	0.05
7 9 -87	50	55	0.02
79-87	55	60	0.01
7 9 -87	90	95	0.03
79-87	95	100	0.02
79-87	100	105	0.02
79- 87	105	110	0.03
79-87	110	115	0.01
79-87	115	120	0.06
79-87	120	125	0.09
79-87	125	130	0.03
79-87	130	135	0.03
79-87	135	140	0.02
79-87	140	145	0.08
79-87	145	150	0.09
79_87	150	155	0.1
79-87	155	160	0.06
79.87	160	165	0.00
79.87	165	170	0.00
79-97	170	175	0.23
79-07	175	190	0.23
70.97	170	190	0.00
19-01	100	100	0.23
70 97	100	100	0.13
79-07	190	190	0.17
79-87	195	200	0.32
79-87	200	200	0.12
79-87	205	210	U.14
/9-8/	210	215	0.07
/9-8/	215	220	0.03
/9-8/	220	225	0.04
79-87	225	230	0.1
79-87	230	235	0.04
79-87	235	240	0.04
79-87	240	245	0.03
79-87	245	250	0.02
79-88	55	60	0.06
7 9 -88	85	90	0.03
79-88	90	95	0.11

drill hole	from(m)	to(m)	Craigmont 1979
79-88	95	100	0.01
79-88	100	105	0.08
79-88	105	110	0.06
79-88	110	115	0.03
79-88	115	120	0.06
79-88	120	125	0.04
7 9 -88	125	130	0.06
79-88	130	135	0.19
79-88	135	140	0.21
79-88	140	145	0.18
79-88	145	150	0.2
79-88	150	155	0.16
79-88	155	160	0.1
79-88	160	165	0.06
79-88	165	170	0.03
79-89	60	65	0.03
7 9-8 9	65	70	0.03
79-89	70	75	0.02
79-89	75	80	0.05
79-89	80	85	0.07
79-89	85	90	0.06
79-89	90	95	0.05
79-89	140	145	0.06
79-89	145	150	0.07
79-89	150	155	0.07
79-89	155	160	0.2
79-89	160	165	0.16
79-89	165	170	0.03
79-89	170	175	0.04
79-89	175	180	0.02
79-89	180	185	0.06
79-89	185	190	0.03
79-89	190	195	0.05
79-89	195	200	0.05
79-90	110	115	0.04
79-90	115	120	0.06
79-90	120	125	0.07
79-90	125	130	0.05
7 9 -90	135	145	0.05
79-90	145	150	0.04
79-90	150	155	0.05
79-90	155	160	0.08
79-90	160	165	0.04
79-90	165	170	0.07
79-90	170	175	0.15
79-90	175	180	0.22
79-90	180	185	0.1
79-90	185	190	0.2
79-90	190	195	0.06
79-90	195	200	0.1
79-90	200	205	0.19

			a · 1 1070
drill hole	From (m)	to(m)	Craigmont 19/9
70.00	005	040	/ 10 JZ
79-90	205	210	0.00
79-90	210	210	0.17
79-90	215	220	0.27
79-90	220	220	0.12
79-90	225	230	0.21
79-90	230	230	0.05
79-90	230	240	0.17
79-90	240	250	0.12
70 00	240	255	0.02
79-90	255	260	0.02
79-90	260	265	0.00
79-90	130	135	0.03
79-91	135	140	0.04
79-91	140	145	0.06
79-91	145	150	0.06
79-91	150	155	0.05
79-91	155	160	0.06
79-91	160	165	0.1
79-91	165	170	0.13
79-91	170	175	0.1
79-91	175	180	0.12
79-91	180	185	0.11
79-9 1	185	190	0.11
79-91	190	195	0.07
79-91	195	200	0.13
79-91	200	205	0.14
79-91	205	210	0.11
79-91	210	215	0.18
79-91	215	220	0.16
79-91	220	225	0.06
7 9 -91	225	230	0.03
7 9-91	230	235	0.04
79-91	235	240	0.08
79-91	240	245	0.09
79-91	245	250	0.04
79-91	250	255	0.02
7 9-91	255	260	0.06
79-91	260	265	0.07
79-91	265	270	0.02
79-91	270	275	0.03
79-92	185	190	0.03
79-92	190	195	0.02
79-92	195	200	0.03
79-92	200	205	0.02
79-92	205	210	0.03
/9-92	210	220	0.02
79-92	220	230	U.UZ
/9-92 70.00	230	230	0.03
79-92	230	244	0.04
19-92	Z 44	200	0.10

1. Il hale	ϵ α		Creation	1979
arinnoie	trom(m)	to(m)	2 Mosa	1177
79-92	250	255	0.04	
79-92	255	260	0.06	
79-92	260	265	0.04	
79-92	265	270	0.07	
79-92	270	275	0.08	
79-92	275	280	0.06	
79-92	280	285	0.03	
79-92	285	290	0.06	
79-92	290	295	0.1	
79.92	295	300	0.08	
79-92	300	305	0.07	
79-92	305	310	0.06	
79-92	310	315	0.00	
70-02	315	320	0.24	
70-02	320	325	0.00	
79-92	325	320	0.25	
79-92	330	335	0.17	
70-02	335	340	0.12	
70-02	340	345	0.12	
70.02	345	350	0.12	
79-92	350	355	0.00	
79-92	355	360	0.04	
70-02	360	365	0.09	
70.02	365	370	0.5	
79-92	370	375	0.00	
70.02	375	380	0.02	
79-92	380	385	0.05	
70-02	165	170	0.04	
70-03	170	175	0.04	
79-93	175	180	0.07	
70-03	180	185	0.00	
79-90	185	100	0.07	
79-90	100	105	0.04	
79-93	105	200	0.07	
79-93	200	200	0.03	
70-03	200	210	0.04	
79-93	200	210	0.04	
70.03	210	210	0.00	
79-93	210	220	0.07	
79-93	220	220	0.00	
70-02	220	235	0.07	
70-03	235	230	0.07	
70.03	233	240	0.08	
70-02	240	250	0.00	
70-03	240	250	0.00	
10-00 70.02	200	200	0.05	
10-00 70 02	200	200	0.03	
70 03	200	200	0.03	
10-00 70-02	200	270	0.07	
10-00	210	210	0.03	
13-30	210	200 205	0.09	
13-30	200	200	0.04	

drill hole	from(m)	to (m)	Craigmont	1979
70.02	205	200	/0 ¹⁷ 0 22	
79-93	200	280	0.07	
79-93	290	290	0.00	
79-93	295	300	0.00	
79-93	300	305	0.14	
79-93	305	310	0.08	
79-93	310	315	0.11	
79-93	315	320	0.03	
79-93	320	325	0.04	
79-93	325	330	0.04	
79-93	330	335	0.04	
79-93	335	340	0.05	
79-93	340	345	0.06	
79-93	345	350	0.05	
79-93	350	355	0.05	
79-93	355	360	0.03	
79-93	360	365	0.02	
79-93	365	369	0.08	
79-94	150	155	0.07	
79-94	155	160	0.05	
79-94	160	165	0.06	
79-94	165	170	0.03	
79-94	170	175	0.05	
79-94	175	180	0.05	
79-94	180	185	0.04	
79-94	185	190	0.04	
/9-94	190	195	0.04	
79-94	195	200	0.05	
79-94	200	205	0.05	
79-94	205	210	0.07	
79-94	210	215	0.08	
79-94	215	220	0.07	
79-94	220	225	0.21	
79-94	225	230	0.1	
79-94	200	230	V. 14	
79-94	200	240	0.00	
79-94	240	240	0.11	
79-94 70-05	240	201	0.12	
79-95	Z.1 5	10	0.13	
79-90	10	10	0.10	
79-95	10	20	0.11	
79-95	20	20	0.2	
79-95	25	20	0.34	
79-95	30	35	0.47	
79-95	35	40	0.10	
79-95	40	45	0.13	
79-95	45	50	0.21	
79-95	50	55	0.18	
79-95	55	60	0.19	
79-95	60	65	0.14	
79-95	65	70	0.2	

drill hole	from(m)	+0(m)	Craigmont 1979
79-95	70	75	0.21
79-95	75	80	0.27
79-95	80	85	0.2
79-95	85	90	0.13
79-95	90	95	0.1
70 00	95	100	0.04
70-05	135	140	0.01
70-05	140	145	0.05
70.05	145	150	0.01
70-05	150	155	0.05
79-95	155	160	0.03
79-95	160	165	0.00
79-90	165	170	0.03
79-90	100	175	0.00
79-90	170	190	0.07
79-90	173	100	0.07
79-90	100	100	0.1
79-95	185	190	0.05
79-95	190	195	0.01
79-95	195	197.5	0.03
79-96	185	195	0.01
79-96	195	200	0.02
79-96	200	205	0.1
79-96	205	210	0.09
79-96	210	215	0.27
79-96	215	220	0.1
79-96	220	225	0.19
79-96	225	230	0.1
79-96	230	235	0.1
79-96	235	240	0.17
79-96	240	245	0.13
79-96	245	250	0.19
79-96	250	255	0.25
79- 96	255	260	0.07
79-96	260	265	0.29
79-96	265	270	0.12
79-96	270	275	0.24
7 9-9 6	275	280	0.12
79-96	280	285	0.14
79-96	285	290	0.05
79-96	290	295	0.01
79-96	295	300	0.01
79-97	6	10	0.29
7 9- 97	10	15	0.22
79-97	15	20	0.1
79-97	20	25	0.15
79-97	25	30	0.1
79-9 7	30	35	0.14
79-97	35	40	0.23
79-9 7	40	45	0.38
79-97	45	50	0.1
7 9-97	50	55	0.09

drill hole	From (m)	$t_0(m)$	Craigmont
			% M052
79-97	55	60	0.15
7 9 -97	60	65	0.09
79-97	65	70	0.07
79-97	70	75	0.14
7 9- 97	75	80	0.21
79-97	80	85	0.18
79-97	85	90	0.13
79-97	90	95	0.12
79-97	95	100	0.14
79 -97	100	105	0.21
79-97	105	110	0.19
79-97	110	115	0.16
7 9 -97	115	120	0.1
79-97	120	125	0.09
7 9 -97	125	130	0.03
79 -97	130	135	0.05
79-97	135	140	0.15
79-97	140	145	0.08
79- 9 7	145	150	0.07
7 9 -97	150	155	0.02
79-97	155	160	0.01
79-97	160	165	0.02
79-97	165	170	0.01
79-98	55	60	0.08
7 9-98	60	65	0.22
79-98	65	70	0.1
79-98	70	75	0.1
79-98	75	80	0.07
79- 9 8	80	85	0.03
79-98	85	90	0.04
79-98	90	95	0.06
79-98	95	100	0.04
79-98	100	105	0.08
79-98	105	110	0.05
79-98	110	115	0.07
79-90	110	120	0.05
79-90	120	120	0.06
79-90	120	125	0.00
79-90	100	165	0.00
79-90	100	170	0.04
79-90	170	175	0.00
70_08	260	265	0.02
79-99	265	270	0.01
79-98	270	275	0.04
79-98	275	280	0.01
79-98	280	285	0.08
79-98	285	290	0.04
79-98	290	295	0.02
79-98	295	300	0.02
79-99	5	10	0.14

drill hole	From(m)	to(m)	Craigmont 1979
79-99	10	15	0.03
79-99	15	20	0.03
79.99	20	25	0.03
70.00	25	30	0.01
70-00	55	60	0.06
79-99	60	65	0.00
70.00	65	70	0.00
70.00	70	75	0.00
79-99	70	80	0.23
79-99	20	85	0.13
79-99	95	00	0.13
79-99	00	90	0.12
79-99	30 05	100	0.13
79-99	90	100	0.92
79-99	100	100	0.07
79-99	105	110	0.15
79-99	110	115	0.15
79-99	115	120	0.07
79-99	120	125	0.12
79-99	125	130	0.09
79-99	130	135	0.11
79-99	135	140	0.09
79-99	140	145	0.09
79-99	145	150	0.05
79-99	150	155	0.07
79-99	155	160	0.06
79-99	160	165	0.09
79-99	165	170	0.25
79-99	170	175	0.05
79-99	175	180	0.08
79-99	180	185	0.09
79-99	185	190	0.03
79-99	190	195	0.05
79-99	195	200	0.1
79-99	200	205	0.1
79-99	205	210	0.04
79-99	210	215	0.02
79-99	215	220	0.04
79-99	220	225	0.04
79-99	225	230	0.05
7 9- 99	230	235	0.03
79-99	235	240	0.04
79-99	240	245	0.03
79-100	3.9	10	0.37
79-100	10	15	0.26
7 9 -100	15	20	0.17
7 9- 100	20	25	0.1
79-100	25	30	0.27
79-100	30	35	0.14
7 9 -100	35	40	0.15
79-101	125	130	0.1
79-101	130	135	0.16

drill hole	From(m)	to(m)	Craigmont	1979
7 9 -101	135	140	0.13	
79-101	140	145	0.1	
79-101	145	150	0.11	
79-101	150	155	0.21	
79-101	155	160	0.15	
79-101	160	165	0.16	
79-101	165	170	0.22	
79-101	170	175	0.13	
7 9 -101	175	180	0.06	
79-101	180	185	0.13	
79-101	185	190	0.17	
79-101	190	195	0.16	
79-101	195	200	0.11	
79-101	200	205	0.11	
79-101	205	210	0.14	
79-101	210	215	0.14	
79-101	215	220	0.09	
79-101	220	225	0.1	
79-101	225	230	0.11	
79-101	230	235	0.08	
79-101	235	240	0.13	
79-101	240	245	0.09	
79-101	245	250	0.09	
79-101	250	255	0.05	
79-101	255	260	0.07	
79-103	95	100	0.02	
79-103	100	105	0.03	
79-103	105	110	0.03	
79-103	110	115	0.04	
79-103	115	120	0.01	
79-103	120	125	0.03	
79-103	125	130	0.06	
79-103	130	135	0.05	
79-103	135	140	0.06	
79-103	140	145	0.03	
79-103	145	150	0.05	
79-103	150	155	0.04	
79-103	100	160	0.05	
79-103	100	100	0.07	
79-103	100	170	0.05	
79-103	170	1/0	0.04	
79-103	170	100	0.04	
79-103	160	100	0.07	
79-103	100	190	0.05	
70 100	190	200	0.00	
70.103	200	200	0.00	
79-100	200	200 210	0.03	
70-103	200	210	0.00	
79-103	215	220	0.04	
79-103	220	225	0.04	
	220		w.w.	

- -----

drill hole	From (m)	to(m)	Craigmont	1979
70 102	225	220	0.06	
79-103	220	230	0.00	
79-103	235	230	0.00	
79-103	200	240	0.07	
79-103	240	240	0.04	
79-103	240	255	0.00	
79-103	250	260	0.1	
79-103	260	265	0.00	
79-103	285	200	0.06	
79-103	270	275	0.05	
79-103	275	280	0.05	
79-103	280	285	0.05	
79-103	285	290	0.03	
79-103	200	200	0.06	
79-103	290	300	0.04	
79-103	300	305	0.07	
79-103	305	310	0.07	
79-103	310	315	0.08	
79-103	315	320	0.1	
79-103	320	325	0.19	
79-103	325	330	0.10	
79-103	330	335	0.05	
79-103	335	340	0.05	
79-103	340	345	0.00	
79-103	345	350	0.04	
79-103	350	355	0.07	
70-103	355	360	0.00	
79-103	360	365	0.04	
79-103	365	370	0.07	
79-103	370	375	0.07	
79-103	375	380	0.09	
79-103	380	385	0.00	
79-103	385	300	0.07	
79-103	390	305	0.00	
79-103	395	400	0.05	
79-103	400	405	0.08	
79-103	405	410	0.08	
79-103	400 410	415	0.00	
79-103	415	420	0.02	
79-103	430	433	0.02	
79-105	160	165	0.04	
79-105	165	170	0.05	
79-105	170	175	0.00	
70-105	175	180	0.07	
79-105	180	185	0.07	
79-105	185	190	0.08	
79-105	190	195	0.00	
79-105	195	200	0.11	
79-105	200	205	0.19	
79-105	200	200	0.13	
79-100	200	210	0.17	
10-100	Z 10	- IV	V. ()	

drill hole	from(m)	to(m)	Craigmont % Mo Sz	1979-80
79-105	215	220	0.1	
79-105	220	225	0.05	
79-105	225	230	0.07	
79-105	230	235	0.07	
79-105	235	240	0.06	
79-105	240	245	0.08	
79-105	245	250	0.03	
79-105	250	255	0.06	
79-105	255	260	0.06	
79-105	260	265	0.05	
79-106	95	100	0.01	
79-106	100	105	0.05	
79-106	170	175	0.03	
79-106	175	180	0.04	
79-106	180	185	0.05	
79-106	185	190	0.04	
79-106	190	195	0.09	
79-106	195	200	0.06	
79-106	200	205	0.11	
79-106	205	210	0.09	
79-106	210	215	0.12	
79-106	215	220	0.16	
79-106	220	225	0.19	
79-106	225	230	0.2	
79-106	230	235	0.51	
79-106	235	240	0.06	
79-106	240	245	0.06	
79-106	245	255	0.03	
79-106	255	265	0.03	
79-100	205	274	0.04	
79-107	310	320	0.03	
79-107	320	320	0.04	
79-107	320	330	0.00	
79-107	330	240	0.07	
79-107	330	340	0.00	
79-107	340	340	0.03	
79-107	350	355	0.04	
79-107	355	360	0.03	
79-107	360	365	0.20	
79-107	365	370	0.0	
79-107	370	375	0.24	
79-107	375	380	0.29	
79-107	380	385	0.16	
79-107	385	390	0.06	
79-107	390	395	0.00	
79-107	395	400	0.03	
79-107	400	407	0.05	
80-108	2.8	10	0.08	
80-108	10	15	0.08	
80-108	15	20	0.09	

drill hole	from (m)	to(m)	Craigmont 9 Moss	1980
80-108	20	25	0.06	
80-108	25	30	0.09	
80-108	30	35	0.04	
80-108	35	40	0.12	
80-108	40	45	0.38	
80-108	45	50	0.09	
80-108	50	55	0.07	
00-100 90 100	55	60	0.07	
00-100	55 60	65	0.07	
00-100	00	70	0.07	
00-100	70	70	0.13	
00-100	70	10	0.12	
00-100	70	00	0.12	
80-108	8U 95	00	0.12	
80-108	60	90	0.27	
80-108	90	95	0.12	
80-108	95	100	0.09	
80-108	100	105	0.15	
80-108	105	110	0.14	
80-108	110	115	0.09	
80-108	115	120	0.11	
80-108	120	125	0.17	
80-108	125	130	0.09	
80-108	130	135	0.1	
80-108	135	140	0.18	
80-108	140	145	0.14	
80-108	145	150	0.12	
80-108	150	155	0.09	
80-108	155	160	0.03	
80-108	160	165	0.04	
80-108	165	170	0.1	
80-108	170	175	0.08	
80-108	175	180	0.06	
80-108	180	185	0.04	
80-108	185	190	0.04	
80-108	190	195	0.04	
80-108	195	200.7	0.03	
80-109	10	15	0.04	
80-109	15	20	0.04	
80-109	20	25	0.03	
80-109	25	30	0.06	
80-109	30	35	0.08	
80-109	35	40	0.06	
80-109	40	45	0.01	
80-109	45	50	0.03	
80-109	50	55	0.04	
80-109	55	60	0.07	
80-109	60	65	0.04	
80-100	65	70	0.06	
80-100	70	75	0.00	
80-100	75	80	0.06	
80-100	80	85	0.00 £ 12	
00-103	00	00	0.12	

drill hole	From (m) to(m)	Craigmont	1980
80-100	85	۵A	0.01	
80-109	90	90	0.04	
80-100	95	100	0.04 0.28	
80-109	100	105	0.13	
80-109	105	110	0.13	
80-109	110	115	04	
80-109	115	120	0.15	
80-109	120	125	0.15	
80-109	125	130	0.08	
80-109	130	135	0.07	
80-109	135	140	0.03	
80-109	140	145	0.38	
80-109	145	150	0.08	
80-109	150	155	0.15	
80-109	155	160	0.07	
80-109	160	165	0.08	
80-109	165	170	0.17	
80-109	170	175	0.22	
80-109	175	180	0.03	
80-109	180	185	0.12	
80-109	185	190	0.15	
80-109	190	195	0.05	
80-109	195	200	0.05	
80-109	200	205	0.09	
80-109	205	210	0.06	
80-109	210	215	0.06	
80-109	215	220	0.04	
80-109	220	225	0.06	
80-109	225	230	0.06	
80-109	230	235	0.08	
80-109	235	240	0.05	
80-109	240	245	0.04	
80-109	245	250	0.05	
80-109	250	255	0.06	
80-109	255	200	0.04	
00-109 90-110	200	200.7	0.03	
80-110	D.7	10	0.11	
90 110	10	10	0.11	
80 110	20	20	0.07	
80-110	20	30	0.00	
80-110	30	35	0.18	
80-110	35	20 ∡∩	0.24	
80-110	40	45	0.27	
80-110	45	50	0.15	
80-110	50	55	0.06	
80-110	55	60	0.06	
80-110	60	65	0.05	
80-110	65	70	0.13	
80-110	70	75	0.06	
80-110	75	80	0.06	

80-110 80 85 0.12 $80-110$ 90 95 0.07 $80-110$ 90 95 0.07 $80-110$ 100 105 0.05 $80-110$ 100 105 0.05 $80-110$ 110 115 0.12 $80-110$ 110 115 0.09 $80-110$ 125 0.04 $80-110$ 125 100 0.13 $80-110$ 125 100 0.13 $80-110$ 145 150 0.5 $80-110$ 145 150 0.5 $80-110$ 145 150 0.05 $80-110$ 165 170 0.7 $80-110$ 165 100 0.1 $80-110$ 185 90 0.02 $80-110$ 190 95 0.03 $80-110$ 210 215 0.07	drill hole	From(m)	+.(m)	Craigmont 2 Most	1980
80.110 86 90 0.05 80.110 95 100 0.15 80.110 100 105 0.05 80.110 150 110 0.1 80.110 115 120 0.09 80.110 115 120 0.09 80.110 115 120 0.09 80.110 125 130 0.13 80.110 125 130 0.13 80.110 125 130 0.13 80.110 135 140 0.2 80.110 145 150 0.05 80.110 145 150 0.05 80.110 145 150 0.05 80.110 155 160 0.07 80.110 165 170 0.07 80.110 165 170 0.07 80.110 185 190 0.2 80.110 185 190 0.2 80.110 195 200 0.05 80.110 205 210 0.1 80.110 220 225 0.05 80.111 120 125 0.04 80.111 125 140 0.1 80.111 125 0.04 80.111 125 0.05 80.111 125 0.04 80.111 125 0.05 80.111 125 0.04 80.111 155 0.04 80.111 165 100 <t< td=""><td>80-110</td><td>80</td><td>85</td><td>0.12</td><td></td></t<>	80-110	80	85	0.12	
B0.110 90 95 0.07 80.110 96 100 0.15 80.110 100 105 0.05 80.110 150 110 0.1 80.110 110 115 0.12 80.110 112 0.09 80.110 120 125 0.04 80.110 125 130 0.13 80.110 125 130 0.13 80.110 135 140 0.2 80.110 135 140 0.2 80.110 145 150 0.05 80.110 145 150 0.05 80.110 160 165 0.01 80.110 160 165 0.07 80.110 175 180 0.1 80.110 175 180 0.1 80.110 195 200 0.05 80.110 205 210 0.1	80-110	85	90	0.05	
80-110 95 100 0.15 $80-110$ 100 105 0.05 $80-110$ 150 110 0.1 $80-110$ 110 115 0.12 $80-110$ 110 125 0.09 $80-110$ 120 125 0.04 $80-110$ 120 125 0.04 $80-110$ 125 130 0.13 $80-110$ 125 130 0.12 $80-110$ 140 145 0.05 $80-110$ 140 145 0.05 $80-110$ 140 145 0.05 $80-110$ 155 160 0.07 $80-110$ 155 160 0.07 $80-110$ 165 170 0.7 $80-110$ 175 180 0.1 $80-110$ 175 180 0.1 $80-110$ 175 180 0.1 $80-110$ 195 200 0.05 $80-110$ 195 200 0.05 $80-110$ 205 210 0.1 $80-110$ 215 207 $80-110$ 215 0.07 $80-111$ 125 130 0.33 $80-111$ 125 100 $80-111$ 125 0.04 $80-111$ 125 0.04 $80-111$ 145 150 $80-111$ 155 0.04 $80-111$ 155 10.4 $80-111$ 155 10.4 $80-111$ 185 <td>80-110</td> <td>90</td> <td>95</td> <td>0.07</td> <td></td>	80-110	90	95	0.07	
Bo.110 100 105 0.05 80.110 150 110 0.1 80.110 110 115 0.09 80.110 115 120 0.09 80.110 125 130 0.13 80.110 125 130 0.13 80.110 135 140 0.2 80.110 145 150 0.05 80.110 145 150 0.05 80.110 145 150 0.07 80.110 165 170 0.07 80.110 165 170 0.07 80.110 165 170 0.07 80.110 180 185 0.1 80.110 180 185 0.1 80.110 190 195 0.03 80.110 200 205 0.1 80.110 210 215 0.07 80.110 210 215 <td< td=""><td>80-110</td><td>95</td><td>100</td><td>0.15</td><td></td></td<>	80-110	95	100	0.15	
80-110 150 110 0.1 $80-110$ 110 115 0.12 $80-110$ 120 125 0.04 $80-110$ 120 125 0.04 $80-110$ 120 125 0.04 $80-110$ 130 135 0.12 $80-110$ 135 140 0.2 $80-110$ 145 150 0.05 $80-110$ 145 150 0.05 $80-110$ 145 150 0.05 $80-110$ 165 160 0.07 $80-110$ 165 170 0.07 $80-110$ 175 180 0.1 $80-110$ 175 180 0.1 $80-110$ 190 95 0.03 $80-110$ 190 95 0.03 $80-110$ 200 205 0.1 $80-110$ 210 215 0.07 $80-111$ 125 0.07 0.1 <tr< td=""><td>80-110</td><td>100</td><td>105</td><td>0.05</td><td></td></tr<>	80-110	100	105	0.05	
80.110 110 115 0.12 80.110 120 125 0.04 80.110 125 130 0.13 80.110 125 130 0.13 80.110 135 140 0.2 80.110 135 140 0.2 80.110 145 150 0.05 80.110 145 150 0.05 80.110 145 150 0.05 80.110 145 150 0.07 80.110 155 160 0.07 80.110 160 165 0.01 80.110 175 810 0.1 80.110 180 185 0.1 80.110 190 195 0.03 80.110 205 210 0.1 80.110 215 220 0.05 80.111 125 130 0.3 80.111 125 0.04 80.111	80-110	150	110	0.1	
30 - 110 115 120 0.09 $80 - 110$ 120 125 0.04 $80 - 110$ 120 125 0.04 $80 - 110$ 130 135 0.12 $80 - 110$ 135 140 0.2 $80 - 110$ 140 145 0.05 $80 - 110$ 140 145 0.05 $80 - 110$ 140 145 0.05 $80 - 110$ 150 155 0.03 $80 - 110$ 150 155 0.03 $80 - 110$ 150 170 0.07 $80 - 110$ 165 170 0.07 $80 - 110$ 165 110 0.02 $80 - 110$ 175 180 0.1 $80 - 110$ 175 180 0.1 $80 - 110$ 190 195 0.03 $80 - 110$ 190 195 0.03 $80 - 110$ 190 195 0.03 $80 - 110$ 205 210 0.1 $80 - 110$ 205 210 0.1 $80 - 110$ 215 220 0.05 $80 - 110$ 215 200 0.05 $80 - 110$ 220 225 0.05 $80 - 111$ 125 130 0.03 $80 - 111$ 125 130 0.03 $80 - 111$ 145 170 0.07 $80 - 111$ 155 0.04 $80 - 111$ 165 104 $80 - 111$ 165 170 $80 - 111$	80-110	110	115	0.12	
80-110 120 125 0.04 $80-110$ 125 130 0.13 $80-110$ 130 135 0.12 $80-110$ 140 145 0.05 $80-110$ 140 145 0.05 $80-110$ 140 145 0.05 $80-110$ 150 155 0.03 $80-110$ 155 160 0.07 $80-110$ 155 160 0.07 $80-110$ 155 160 0.07 $80-110$ 155 170 0.07 $80-110$ 175 80 0.1 $80-110$ 175 80 0.1 $80-110$ 175 80 0.1 $80-110$ 195 200 0.05 $80-110$ 195 200 0.05 $80-110$ 205 210 0.1 $80-110$ 205 210 0.1 $80-110$ 215 200 0.05 $80-110$ 215 200 0.05 $80-110$ 220 225 0.05 $80-111$ 120 125 0.04 $80-111$ 125 130 0.03 $80-111$ 145 150 0.04 $80-111$ 155 160 0.04 $80-111$ 175 180 0.04 $80-111$ 180 185 0.1 $80-111$ 180 185 0.1 $80-111$ 195 200 0.06 $80-111$ 195 200 </td <td>80-110</td> <td>115</td> <td>120</td> <td>0.09</td> <td></td>	80-110	115	120	0.09	
30 - 110 125 130 0.13 $80 - 110$ 130 135 0.12 $80 - 110$ 140 145 0.05 $80 - 110$ 140 145 0.05 $80 - 110$ 145 150 0.05 $80 - 110$ 145 150 0.05 $80 - 110$ 155 160 0.07 $80 - 110$ 155 160 0.07 $80 - 110$ 165 170 0.07 $80 - 110$ 165 170 0.07 $80 - 110$ 175 80 0.1 $80 - 110$ 175 80 0.1 $80 - 110$ 175 180 0.1 $80 - 110$ 185 90 0.02 $80 - 110$ 185 190 0.02 $80 - 110$ 195 200 0.05 $80 - 110$ 200 205 0.1 $80 - 110$ 200 205 0.1 $80 - 110$ 210 215 0.07 $80 - 110$ 210 215 0.07 $80 - 110$ 220 225 0.05 $80 - 111$ 120 125 0.04 $80 - 111$ 135 140 0.1 $80 - 111$ 155 160 0.04 $80 - 111$ 155 160 0.04 $80 - 111$ 165 170 0.07 $80 - 111$ 165 170 0.07 $80 - 111$ 165 170 0.07 $80 - 111$ 165 10.04	80-110	120	125	0.04	
30 - 110 120 135 0.12 $30 - 110$ 135 140 0.2 $30 - 110$ 140 145 0.05 $30 - 110$ 140 145 0.05 $30 - 110$ 150 155 0.03 $30 - 110$ 155 160 0.07 $30 - 110$ 165 170 0.07 $30 - 110$ 165 170 0.07 $30 - 110$ 175 180 0.1 $30 - 110$ 175 180 0.1 $30 - 110$ 175 180 0.1 $30 - 110$ 175 180 0.1 $30 - 110$ 175 180 0.1 $30 - 110$ 190 195 0.03 $30 - 110$ 190 195 0.03 $30 - 110$ 190 195 0.03 $30 - 110$ 200 205 0.1 $30 - 110$ 200 205 0.1 $30 - 110$ 210 215 0.07 $30 - 110$ 210 215 0.07 $30 - 110$ 210 225 0.05 $30 - 110$ 220 225 0.05 $30 - 111$ 120 125 0.04 $30 - 111$ 135 140 0.1 $30 - 111$ 155 160 0.04 $30 - 111$ 155 10.02 $30 - 111$ 155 0.04 $30 - 111$ 155 0.04 $30 - 111$ 155 0.04 $30 - 111$ 190	80-110	125	130	0.13	
30 - 110 135 140 0.2 $80 - 110$ 140 145 0.05 $80 - 110$ 145 150 0.05 $80 - 110$ 155 160 0.07 $80 - 110$ 155 160 0.07 $80 - 110$ 165 170 0.07 $80 - 110$ 165 170 0.07 $80 - 110$ 165 170 0.07 $80 - 110$ 175 180 0.1 $80 - 110$ 175 180 0.1 $80 - 110$ 175 180 0.1 $80 - 110$ 195 200 0.02 $80 - 110$ 195 200 0.05 $80 - 110$ 195 200 0.05 $80 - 110$ 205 210 0.1 $80 - 110$ 205 210 0.1 $80 - 110$ 215 220 0.05 $80 - 110$ 215 220 0.05 $80 - 111$ 125 130 0.03 $80 - 111$ 125 130 0.03 $80 - 111$ 125 130 0.03 $80 - 111$ 155 160 0.04 $80 - 111$ 155 100 111 180 185 0.1 $80 - 111$ 195 200 0.06 $80 - 111$ 195 200 0.06 $80 - 111$ 195 210 0.05 $80 - 111$ 195 200 0.06 $80 - 111$ 195 200 0.06 <	80-110	130	135	0.12	
30 - 110 140 145 0.05 $80 - 110$ 145 150 0.05 $80 - 110$ 155 160 0.07 $80 - 110$ 155 160 0.07 $80 - 110$ 165 170 0.07 $80 - 110$ 165 170 0.07 $80 - 110$ 165 170 0.07 $80 - 110$ 175 180 0.1 $80 - 110$ 175 180 0.1 $80 - 110$ 175 180 0.1 $80 - 110$ 195 0.03 $80 - 110$ 195 200 0.05 $80 - 110$ 195 200 0.05 $80 - 110$ 205 210 0.1 $80 - 110$ 215 220 0.05 $80 - 110$ 215 220 0.05 $80 - 110$ 215 220 0.05 $80 - 110$ 215 220 0.05 $80 - 111$ 125 130 0.03 $80 - 111$ 125 140 0.1 $80 - 111$ 125 140 0.1 $80 - 111$ 155 0.04 $80 - 111$ 155 0.04 $80 - 111$ 165 170 0.07 $80 - 111$ 175 180 0.04 $80 - 111$ 190 195 0.11 $80 - 111$ 155 0.04 $80 - 111$ 190 195 0.11 $80 - 111$ 175 80 0.04 $80 - 111$ 195	80-110	135	140	0.2	
30-110 145 150 0.05 $80-110$ 155 150 0.05 $80-110$ 155 160 0.07 $80-110$ 165 170 0.07 $80-110$ 165 170 0.07 $80-110$ 175 180 0.1 $80-110$ 175 180 0.1 $80-110$ 175 180 0.1 $80-110$ 185 190 0.02 $80-110$ 195 0.03 $80-110$ 195 200 0.05 $80-110$ 195 210 0.1 $80-110$ 205 210 0.1 $80-110$ 205 210 0.1 $80-110$ 215 220 0.05 $80-110$ 215 220 0.05 $80-110$ 215 220 0.05 $80-111$ 125 140 0.1 $80-111$ 125 140 0.1 $80-111$ 125 140 0.1 $80-111$ 155 0.04 $80-111$ 155 0.04 $80-111$ 155 100 $80-111$ 155 0.04 $80-111$ 185 90 0.04 $80-111$ 195 $80-111$ 195 200 $80-111$ 195 200 $80-111$ 195 200 $80-111$ 120 215 $80-111$ 205 210 $80-111$ 205 210 $80-111$ 205	80-110	140	145	0.05	
30-110 150 155 0.03 $30-110$ 155 160 0.07 $30-110$ 165 170 0.07 $30-110$ 165 170 0.07 $30-110$ 175 180 0.1 $30-110$ 175 180 0.1 $30-110$ 175 180 0.1 $30-110$ 185 190 0.02 $30-110$ 185 190 0.02 $30-110$ 195 200 0.05 $30-110$ 195 200 0.05 $30-110$ 205 210 0.1 $30-110$ 215 220 0.05 $30-110$ 215 220 0.05 $30-110$ 215 220 0.05 $30-110$ 215 200 0.05 $30-110$ 215 200 0.05 $30-110$ 215 200 0.05 $30-111$ 125 130 0.03 $30-111$ 125 140 0.1 $30-111$ 125 140 0.1 $30-111$ 155 160 0.04 $30-111$ 155 160 0.04 $30-111$ 165 170 0.07 $30-111$ 180 185 0.1 $30-111$ 195 200 0.06 $30-111$ 195 210 0.05 $30-111$ 195 210 0.05 $30-111$ 195 210 0.05 $30-111$ 195 0.0	80-110	145	150	0.00	
30-110 155 160 0.07 $80-110$ 165 160 0.07 $80-110$ 165 170 0.07 $80-110$ 175 180 0.1 $80-110$ 175 180 0.1 $80-110$ 185 190 0.02 $80-110$ 185 190 0.02 $80-110$ 195 200 0.05 $80-110$ 195 200 0.05 $80-110$ 205 210 0.1 $80-110$ 205 210 0.1 $80-110$ 205 210 0.1 $80-110$ 215 220 0.05 $80-110$ 215 220 0.05 $80-110$ 215 220 0.05 $80-110$ 215 200 0.05 $80-110$ 215 200 0.05 $80-111$ 125 0.04 $80-111$ 135 140 0.1 $80-111$ 135 140 0.1 $80-111$ 155 0.04 $80-111$ 155 0.04 $80-111$ 155 0.04 $80-111$ 175 180 $80-111$ 195 0.11 $80-111$ 195 0.11 $80-111$ 195 0.03 $80-111$ 195 0.03 $80-111$ 205 210 0.05 $80-111$ 195 0.03 $80-111$ 205 210 0.05 $80-111$ 195 0.03 <	80 110	150	155	0.00	
30-110 160 165 0.01 $80-110$ 165 170 0.07 $80-110$ 175 180 0.1 $80-110$ 175 180 0.1 $80-110$ 185 190 0.02 $80-110$ 185 190 0.02 $80-110$ 190 195 0.03 $80-110$ 190 195 0.03 $80-110$ 200 205 0.1 $80-110$ 200 205 0.1 $80-110$ 210 215 0.07 $80-110$ 210 215 0.07 $80-110$ 210 215 0.07 $80-110$ 210 215 0.04 $80-110$ 210 225 0.05 $80-110$ 210 225 0.05 $80-110$ 210 215 0.04 $80-111$ 130 135 0.05 $80-111$ 125 130 0.3 $80-111$ 155 0.04 $80-111$ 155 1004 $80-111$ 155 0.04 $80-111$ 175 180 $80-111$ 190 195 $80-111$ 190 195 $80-111$ 190 0.04 $80-111$ 190 195 $80-111$ 190 195 $80-111$ 200 205 $80-111$ 205 210 $80-111$ 205 210 $80-111$ 205 210 $80-111$	80-110	155	160	0.00	
30-110 100 100 100 0.01 $80-110$ 170 175 0.13 $80-110$ 175 180 0.1 $80-110$ 185 190 0.02 $80-110$ 185 190 0.02 $80-110$ 190 195 0.03 $80-110$ 195 200 0.05 $80-110$ 200 205 0.1 $80-110$ 200 205 0.1 $80-110$ 205 210 0.1 $80-110$ 215 220 0.05 $80-110$ 215 220 0.05 $80-110$ 220 225 0.06 $80-111$ 120 125 0.04 $80-111$ 120 125 0.04 $80-111$ 135 140 0.1 $80-111$ 135 140 0.1 $80-111$ 155 1004 $80-111$ 155 0.04 $80-111$ 165 0.04 $80-111$ 170 175 $80-111$ 180 185 $80-111$ 190 95 $80-111$ 190 0.04 $80-111$ 190 95 $80-111$ 195 200 $80-111$ 195 200 $80-111$ 205 210 $80-111$ 205 210 $80-111$ 215 200 $80-111$ 215 200 $80-111$ 215 0.03 $80-111$ 205 210	80-110	160	165	0.01	
30-110 170 175 0.13 $80-110$ 175 180 0.1 $80-110$ 185 190 0.02 $80-110$ 185 190 0.02 $80-110$ 190 195 0.03 $80-110$ 190 195 0.03 $80-110$ 190 195 0.03 $80-110$ 200 205 0.1 $80-110$ 200 205 0.1 $80-110$ 210 215 0.07 $80-110$ 210 215 0.07 $80-110$ 220 225 0.05 $80-110$ 220 225 0.05 $80-111$ 120 125 0.04 $80-111$ 120 125 0.04 $80-111$ 130 135 0.05 $80-111$ 140 145 0.03 $80-111$ 155 0.04 $80-111$ 165 1004 $80-111$ 165 1004 $80-111$ 175 180 $80-111$ 190 195 $80-111$ 190 95 $80-111$ 190 195 $80-111$ 190 0.04 $80-111$ 190 195 $80-111$ 190 195 $80-111$ 190 195 $80-111$ 200 205 $80-111$ 215 220 $80-111$ 215 220 $80-111$ 215 200 $80-111$ 225 230	80-110	165	170	0.01	
30-110 175 180 0.13 $80-110$ 180 185 0.1 $80-110$ 180 185 0.02 $80-110$ 195 0.03 $80-110$ 195 200 0.05 $80-110$ 200 205 0.1 $80-110$ 200 205 0.1 $80-110$ 205 210 0.1 $80-110$ 215 220 0.05 $80-110$ 215 220 0.05 $80-110$ 215 220 0.05 $80-110$ 220 225 0.05 $80-110$ 220 225 0.04 $80-111$ 125 130 0.03 $80-111$ 125 130 0.03 $80-111$ 145 1003 $80-111$ 145 1003 $80-111$ 145 1004 $80-111$ 165 170 $80-111$ 165 170 $80-111$ 165 1004 $80-111$ 185 100 $80-111$ 185 100 $80-111$ 195 0.11 $80-111$ 195 0.11 $80-111$ 195 200 $80-111$ 1205 210 $80-111$ 205 210 $80-111$ 215 200 $80-111$ 215 200 $80-111$ 215 200 $80-111$ 215 200 $80-111$ 215 225 $80-111$ 225 2	90 110	170	175	0.07	
30-110 175 160 0.1 $80-110$ 180 185 0.1 $80-110$ 190 195 0.03 $80-110$ 195 200 0.05 $80-110$ 200 205 0.1 $80-110$ 200 205 0.1 $80-110$ 205 210 0.1 $80-110$ 215 220 0.05 $80-110$ 215 220 0.05 $80-110$ 215 220 0.05 $80-110$ 220 225 0.05 $80-111$ 120 125 0.04 $80-111$ 125 130 0.03 $80-111$ 125 130 0.03 $80-111$ 155 140 0.1 $80-111$ 155 160 0.04 $80-111$ 155 160 0.04 $80-111$ 165 170 0.07 $80-111$ 165 170 0.07 $80-111$ 185 190 0.04 $80-111$ 185 190 0.04 $80-111$ 195 200 0.06 $80-111$ 195 210 0.05 $80-111$ 1205 210 0.05 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 225 230 0.08	90 110	170	190	0.13 A 1	
30-110 185 190 0.02 $80-110$ 190 195 0.03 $80-110$ 195 200 0.05 $80-110$ 200 205 0.1 $80-110$ 205 210 0.1 $80-110$ 215 220 0.05 $80-110$ 215 220 0.05 $80-110$ 215 220 0.05 $80-110$ 215 220 0.05 $80-110$ 215 220 0.05 $80-111$ 125 130 0.03 $80-111$ 125 130 0.03 $80-111$ 125 130 0.03 $80-111$ 135 140 0.1 $80-111$ 135 140 0.1 $80-111$ 155 160 0.04 $80-111$ 155 160 0.04 $80-111$ 165 170 0.07 $80-111$ 165 170 0.07 $80-111$ 165 170 0.07 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 120 205 0.03 $80-111$ 205 210 0.05 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 225 230 0.08	90 110	190	195	0.1	
30-110 100 105 0.02 $80-110$ 195 200 0.05 $80-110$ 200 205 0.1 $80-110$ 205 210 0.1 $80-110$ 210 215 0.07 $80-110$ 215 220 0.05 $80-110$ 215 220 0.05 $80-110$ 215 220 0.05 $80-110$ 215 220 0.05 $80-111$ 125 0.04 $80-111$ 125 130 0.03 $80-111$ 125 130 0.03 $80-111$ 135 140 0.1 $80-111$ 135 140 0.1 $80-111$ 155 160 0.04 $80-111$ 155 160 0.04 $80-111$ 165 170 0.07 $80-111$ 165 170 0.07 $80-111$ 165 170 0.07 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 200 205 0.03 $80-111$ 205 210 0.05 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 225 230 0.08	80-110	185	100	0.02	
80-110 195 200 0.05 $80-110$ 200 205 0.1 $80-110$ 205 210 0.1 $80-110$ 210 215 0.07 $80-110$ 215 220 0.05 $80-110$ 220 225 0.05 $80-110$ 220 225 0.05 $80-111$ 120 125 0.04 $80-111$ 125 130 0.03 $80-111$ 135 140 0.1 $80-111$ 135 140 0.1 $80-111$ 145 150 0.05 $80-111$ 155 160 0.04 $80-111$ 155 160 0.04 $80-111$ 155 160 0.04 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 120 205 0.03 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 225 230 0.08	80-110	100	105	0.02	
80-110 155 205 0.03 $80-110$ 200 205 0.1 $80-110$ 210 215 0.07 $80-110$ 215 220 0.05 $80-110$ 220 225 0.05 $80-110$ 220 225 0.05 $80-111$ 120 125 0.04 $80-111$ 120 125 0.04 $80-111$ 125 130 0.03 $80-111$ 135 140 0.1 $80-111$ 145 150 0.05 $80-111$ 145 150 0.05 $80-111$ 145 150 0.04 $80-111$ 155 160 0.04 $80-111$ 155 160 0.04 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 205 210 0.06 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 225 230 0.08	80 110	195	200	0.05	
30-110 200 200 200 0.1 $80-110$ 210 215 0.07 $80-110$ 215 220 0.05 $80-110$ 220 225 0.05 $80-110$ 220 225 0.04 $80-111$ 120 125 0.04 $80-111$ 125 130 0.03 $80-111$ 125 130 0.03 $80-111$ 135 140 0.1 $80-111$ 135 140 0.1 $80-111$ 145 150 0.05 $80-111$ 145 150 0.05 $80-111$ 145 150 0.04 $80-111$ 155 160 0.04 $80-111$ 155 160 0.04 $80-111$ 165 170 0.07 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 200 205 0.03 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 225 230 0.08	80-110	200	200	0.00	
80-110 210 215 0.07 $80-110$ 215 220 0.05 $80-110$ 220 225 0.05 $80-110$ 220 225 0.04 $80-111$ 120 125 0.04 $80-111$ 125 130 0.03 $80-111$ 125 130 0.03 $80-111$ 135 140 0.1 $80-111$ 135 140 0.1 $80-111$ 145 150 0.05 $80-111$ 145 150 0.05 $80-111$ 155 160 0.04 $80-111$ 155 160 0.04 $80-111$ 165 170 0.07 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 120 205 0.03 $80-111$ 205 210 0.05 $80-111$ 210 215 0.02 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 225 230 0.08	80-110	200	200	0.1 0.1	
80-110 216 216 216 0.01 $80-110$ 215 220 0.05 $80-110$ 220 225 0.05 $80-111$ 120 125 0.04 $80-111$ 125 130 0.03 $80-111$ 125 130 0.03 $80-111$ 135 140 0.1 $80-111$ 135 140 0.1 $80-111$ 145 0.03 $80-111$ 145 0.05 $80-111$ 145 150 $80-111$ 155 0.04 $80-111$ 165 170 $80-111$ 165 170 $80-111$ 175 180 $80-111$ 175 180 $80-111$ 190 195 $80-111$ 190 195 $80-111$ 190 195 $80-111$ 190 195 $80-111$ 190 195 $80-111$ 195 200 $80-111$ 205 210 $80-111$ 215 200 $80-111$ 215 0.02 $80-111$ 215 200 $80-111$ 215 200 $80-111$ 215 200 $80-111$ 225 230 $80-111$ 225 230 $80-111$ 225 230	80-110	200	210	0.1	
80-110 210 220 225 0.03 $80-111$ 120 125 0.04 $80-111$ 125 130 0.03 $80-111$ 125 130 0.03 $80-111$ 135 140 0.1 $80-111$ 135 140 0.1 $80-111$ 145 0.03 $80-111$ 145 0.03 $80-111$ 145 0.05 $80-111$ 145 0.04 $80-111$ 155 160 0.04 $80-111$ 165 170 0.07 $80-111$ 165 170 0.07 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 120 205 0.03 $80-111$ 210 215 0.02 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 225 230 0.08	80-110	210	220	0.05	
30-110 220 220 0.03 $80-111$ 125 130 0.03 $80-111$ 125 130 0.03 $80-111$ 135 140 0.1 $80-111$ 135 140 0.1 $80-111$ 145 0.03 $80-111$ 145 0.05 $80-111$ 145 150 $80-111$ 155 160 $80-111$ 155 160 $80-111$ 155 160 $80-111$ 165 0.04 $80-111$ 165 170 $80-111$ 175 80 $80-111$ 175 180 $80-111$ 175 0.04 $80-111$ 190 195 $80-111$ 190 0.04 $80-111$ 190 195 $80-111$ 190 195 $80-111$ 195 200 $80-111$ 205 210 $80-111$ 215 200 $80-111$ 215 200 $80-111$ 215 200 $80-111$ 215 200 $80-111$ 215 200 $80-111$ 215 225 $80-111$ 225 230 $80-111$ 225 230 $80-111$ $80-111$	80-110	220	220	0.05	
30-111 125 120 0.04 $80-111$ 125 130 0.03 $80-111$ 135 0.05 $80-111$ 135 140 0.1 $80-111$ 145 0.03 $80-111$ 145 150 0.05 $80-111$ 145 150 0.04 $80-111$ 155 160 0.04 $80-111$ 155 160 0.04 $80-111$ 165 170 0.07 $80-111$ 165 170 0.07 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 195 0.11 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 190 195 0.02 $80-111$ 205 210 0.05 $80-111$ 210 215 0.02 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 225 230 0.08	80-110	120	125	0.04	
300-111 120 130 0.00 $80-111$ 130 135 0.05 $80-111$ 135 140 0.1 $80-111$ 140 145 0.03 $80-111$ 145 150 0.05 $80-111$ 145 150 0.04 $80-111$ 155 160 0.04 $80-111$ 155 160 0.04 $80-111$ 165 170 0.07 $80-111$ 165 170 0.07 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 195 0.11 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 195 200 0.06 $80-111$ 205 210 0.05 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 225 230 0.08	80-111	125	130	0.04	
300-111 135 140 0.1 $80-111$ 140 145 0.03 $80-111$ 140 145 0.03 $80-111$ 145 150 0.05 $80-111$ 155 160 0.04 $80-111$ 155 160 0.04 $80-111$ 165 170 0.07 $80-111$ 165 170 0.07 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 190 195 0.11 $80-111$ 205 210 0.06 $80-111$ 205 210 0.05 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 225 230 0.08	80-111	130	135	0.00	
30-111 140 145 0.11 $80-111$ 140 145 0.03 $80-111$ 145 150 0.05 $80-111$ 150 155 0.04 $80-111$ 155 160 0.04 $80-111$ 165 170 0.07 $80-111$ 165 170 0.07 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 185 190 0.04 $80-111$ 190 195 0.11 $80-111$ 195 200 0.06 $80-111$ 195 200 0.06 $80-111$ 205 210 0.05 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 225 230 0.08	80-111	135	140	0.00	
30-111 145 145 0.05 $80-111$ 145 150 0.05 $80-111$ 150 155 0.04 $80-111$ 155 160 0.04 $80-111$ 165 170 0.07 $80-111$ 165 170 0.07 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 185 0.1 $80-111$ 185 0.1 $80-111$ 190 195 0.11 $80-111$ 195 200 0.06 $80-111$ 205 210 0.05 $80-111$ 205 210 0.05 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 225 230 0.08	80-111	140	145	0.1	
30-111 145 156 0.05 $80-111$ 150 155 0.04 $80-111$ 155 160 0.04 $80-111$ 165 170 0.07 $80-111$ 165 170 0.07 $80-111$ 170 175 0.04 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 185 190 0.04 $80-111$ 190 195 0.11 $80-111$ 195 200 0.06 $80-111$ 195 210 0.05 $80-111$ 205 210 0.05 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 225 230 0.08	90 111	145	150	0.05	
30-111 150 100 100 0.04 $80-111$ 155 160 0.04 $80-111$ 165 0.04 $80-111$ 165 170 0.07 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 185 0.1 $80-111$ 185 190 0.04 $80-111$ 195 0.11 $80-111$ 195 200 0.06 $80-111$ 200 205 0.03 $80-111$ 205 210 0.05 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 220 225 0.03 $80-111$ 220 225 0.03 $80-111$ 225 230 0.08	80 111	140	150	0.03	
30-111 100 100 0.04 $80-111$ 165 0.04 $80-111$ 165 170 0.07 $80-111$ 170 175 0.04 $80-111$ 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 185 0.1 $80-111$ 185 190 0.04 $80-111$ 190 195 0.11 $80-111$ 195 200 0.06 $80-111$ 205 210 0.05 $80-111$ 205 210 0.05 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 225 230 0.08	80-111	155	160	0.04	
80-111 165 170 0.07 $80-111$ 170 175 0.04 $80-111$ 170 175 0.04 $80-111$ 175 180 0.04 $80-111$ 185 0.1 $80-111$ 185 190 0.04 $80-111$ 185 190 0.04 $80-111$ 195 0.11 $80-111$ 195 200 0.06 $80-111$ 200 205 0.03 $80-111$ 205 210 0.05 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 225 230 0.08	80 111	160	165	0.04	
30-111 100 170 0.07 $80-111$ 170 175 0.04 $80-111$ 175 180 0.04 $80-111$ 185 0.1 $80-111$ 185 190 0.04 $80-111$ 190 195 0.11 $80-111$ 195 200 0.06 $80-111$ 195 210 0.06 $80-111$ 205 210 0.05 $80-111$ 210 215 0.02 $80-111$ 215 220 0.03 $80-111$ 220 225 0.03 $80-111$ 220 225 0.03 $80-111$ 225 230 0.08	80.111	165	100	0.07	
80-111 175 180 0.04 $80-111$ 175 180 0.04 $80-111$ 180 185 0.1 $80-111$ 185 190 0.04 $80-111$ 190 195 0.11 $80-111$ 195 200 0.06 $80-111$ 195 200 0.06 $80-111$ 205 210 0.05 $80-111$ 215 220 0.03 $80-111$ 215 220 0.03 $80-111$ 220 225 0.03 $80-111$ 220 225 0.03 $80-111$ 225 230 0.08	80-111	170	175	0.07	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80-111	175	180	0.04	
80-111 185 190 0.04 80-111 190 195 0.11 80-111 190 195 0.11 80-111 195 200 0.06 80-111 200 205 0.03 80-111 205 210 0.05 80-111 215 200 0.03 80-111 215 220 0.03 80-111 225 225 0.03 80-111 220 225 0.03 80-111 220 225 0.03	80-111	180	185	0.04	
80-111 190 195 0.11 80-111 195 200 0.06 80-111 200 205 0.03 80-111 205 210 0.05 80-111 210 215 0.02 80-111 215 220 0.03 80-111 215 220 0.03 80-111 225 225 0.03 80-111 220 225 0.03 80-111 220 225 0.03	80.111	185	100	0.04	
80-111 195 200 0.06 80-111 200 205 0.03 80-111 205 210 0.05 80-111 210 215 0.02 80-111 215 220 0.03 80-111 215 220 0.03 80-111 225 230 0.08	80-111	190	195	0.04	
80-111 200 205 0.03 80-111 205 210 0.05 80-111 210 215 0.02 80-111 215 220 0.03 80-111 215 220 0.03 80-111 220 225 0.03 80-111 220 225 0.03 80-111 220 225 0.03	80-111	195	200	0.06	
80-111 205 210 0.05 80-111 210 215 0.02 80-111 215 220 0.03 80-111 220 225 0.03 80-111 225 230 0.08	80-111	200	205	0.03	
80-111 210 215 0.02 80-111 215 220 0.03 80-111 220 225 0.03 80-111 225 230 0.08	80-111	205	210	0.05	
80-111 215 220 0.02 80-111 215 220 0.03 80-111 220 225 0.03 80-111 225 230 0.08	80-111	210	215	0.02	
80-111 220 225 0.03 80-111 225 230 0.08	80-111	215	220	0.03	
80-111 225 230 0.08	80-111	220	225	0.03	
	80-111	225	230	0.08	

drill hole	From (m)	to(m)	Craigmont	1980
80-111	230	235	0.05	
80-111	235	240.8	0.05	
80-112	3.3	5	0.15	
80-112	5	10	0.07	
80-112	10	15	0.14	
80-112	15	20	0.14	
80-112	20	25	0.12	
80-112	25	30	0.07	
80-112	30	35	0.18	
80-112	35	40	0.11	
80-112	40	45	0.1	
80-112	45	50	0.11	
80-112	50	55	0.1	
80-112	55	60	0.2	
80-112	60	65	0.09	
80-112	65	70	0.1	
80-112	70	/5	0.07	
80-112	75	80	0.25	
80-112	80	00	0.11	
00-112 90-112	00	90	0.00	
00-112 80 112	90	100	0.05	
80 112	90 100	100	0.00	
80-112	100	110	0.07	
80-112	100	115	0.02	
80-112	115	120	0.08	
80-112	120	125	0.00	
80-112	125	130	0.12	
80-112	130	135	0.04	
80-112	135	140	0.12	
80-112	140	146.2	0.07	
80-113	3.6	10	0.08	
80-113	10	15	0.08	
80-113	15	20	0.07	
80-113	20	25	0.13	
80-113	25	30	0.17	
80-113	30	35	0.25	
80-113	35	40	0.37	
80-113	40	45	0.07	
80-113	45	50	0.13	
80-113	50	55	0.12	
80-113	55	60	0.12	
80-113	60	65	0.12	
80-113	65	70	0.15	
80-113	70	75	0.18	
80-113	/5	80	0.22	
80-113	80	85	0.15	
80-173	85	90	0.15	
00-113	90	95	U.23 0.19	
00-113	400	100	0.10	
00-113	100	105	0.05	

.....

drill hole	From	tσ	Craigmont 2 Mos-	1980
80-113	105	110	0.08	
80-113	110	115	0.1	
80-113	115	120	0.1	
80-113	120	125	0.32	
80-113	125	130	0.1	
80-113	130	135	0.08	
80-113	135	140	0.08	
80-113	140	145	0.1	
80-113	145	150	0.7	
80-113	140	155	0.05	
80-113	155	158.2	0.00	
80 114	155	100.2	0.13	
00-114 00-114	10	15	0.02	
00-114	10	20	0.03	
00-114	10	20	0.02	
00-114	20	20	0.02	
00-114	20	30	0.02	
80-114	30	30	0.04	
80-114	35	40	0.03	
80-114	40	40	0.02	
80-114	45	50	0.02	
80-114	50	55	0.03	
80-114	55	60	0.02	
80-114	60	65	0.02	
80-114	65	70	0.03	
80-114	70	75	0.02	
80-115	13	20	0.06	
80-115	20	25	0.05	
80-115	25	30	0.14	
80-115	30	35	0.06	
80-115	35	40	0.07	
80-115	40	45	0.08	
80-115	45	50	0.18	
80-115	50	55	0.05	
80-115	55	60	0.11	
80-115	60	65	0.17	
80-115	65	70	0.13	
80-115	70	75	0.05	
80-115	75	80	0.07	
80-115	80	85	0.07	
80-115	85	90	0.06	
80-115	90	95	0.06	
80-115	95	100	0.07	
80-115	100	105	0.06	
80-115	105	110	0.05	
80-115	110	115	0.05	
80-115	115	120	0.04	
80-115	120	125	0.04	
80-115	125	130	0.04	
80-115	130	135	0.05	
80-115	135	140	0.04	
80-115	140	145	0.03	

			Crainw	mt 1980
drill hole	from(m)	to(m)	2. M.S.	20.
80-115	145	150	0.03	10 00
80-115	150	155	0.03	
80-115	155	160.3	0.04	
80-116	245	250	0.03	
80-116	250	255	0.04	
80-116	255	260	0.04	
80-116	260	265	0.38	
80-116	265	270	0.26	
80-116	270	275	0.26	
80-116	275	280	0.14	
80-116	280	285	0.22	
80-116	285	290	0.07	
80-116	290	295	0.08	
80-116	295	300	0.1	
80-116	300	305	0.06	
80-116	305	310	0.07	
80-116	310	315	0.1	
80-116	315	320	0.05	
80-116	320	320	0.04	
80-110	320	330	0.05	
80-117 80-117	50	- 55 60	0.07	
90-117 90-117	- 55 60	65	0.1	
80-117 80-117	65	70	0.1	
80-117	70	75	0.07	
80-117	75	80	0.06	
80-117	80	85	0.14	
80-117	85	90	0.08	
80-117	90	95	0.08	
80-117	95	100	0.13	
80-117	100	105	0.08	
80-117	105	110	0.04	
80-117	110	115	0.1	
80-117	115	120	0.02	
80-117	120	125	0.05	
80-117	125	130	0.03	
80-117	130	135	0.04	
80-117	135	140	0.03	
80-117	140	145	0.05	
80-117	145	150	0.03	
80-117	150	155	0.03	
80-117	155	160	0.05	
80-117	160	165	0.09	
80-117	165	170	0.04	
80-117	170	175	0.04	0.42
00-110	170	100	0.20	0.12
00-110 80-119	120	100	0.2	0.00
80-118	195	100	0.17	0.04
80-118	190	190	0.00	0.15
80-118	195	200	0.13	0.09
00-110		~~v	0.10	0.00

			Cicaianat	1400
drill hole	from(m)	to(m)	To Mos,	[150
80-118	200	205	0.13	
80-118	205	210	0.11	
80-118	210	215	0.13	
80-118	215	220	0.11	
80-118	220	225	0.16	
80-118	225	230	0.03	
80-118	230	235	0.00	
80-118	235	240	0.08	
80-118	240	245	0.09	
90 119	240	250	0.00	
90 119	250	255	0.04	
90 119	255	260	0.04	
00-110 90-110	200	10	0.04	
00-119		10	0.13	
00-119	10	20	0.29	
00-119	15	20	0.00	
00-119	20	20	0.04	
80-119	20	3U 2E	0.05	
80-119	30	30	0.1	
80-119	35	40	Q.1	
80-119	40	45	0.04	
80-119	45	50	0.09	
80-119	70	/5	0.13	
80-119	/5	80	0.09	
80-119	80	85	0.06	
80-119	85	90	0.05	
80-119	90	95	0.06	
80-119	95	97.8	0.09	
80-120	70	/5	0.05	
80-120	75	80	0.07	
80-120	80	85	0.06	
80-120	85	90	0.13	
80-120	90	95	0.06	
80-120	95	100	0.13	
80-120	100	105	0.06	
80-120	105	110	0.04	
80-120	110	115	0.09	
80-120	115	120	0.05	
80-120	120	125	0.04	
80-120	125	130	0.06	
80-120	130	135	0.17	
80-120	135	140	0.07	
80-120	140	145	0.06	
80-120	145	150	0.08	
80-120	150	155	0.15	
80-120	155	160	0.13	
80-120	160	165	0.09	
80-120	165	170	0.21	
80-120	170	175	0.15	
80-120	175	180	0.23	
80-120	180	185	0.12	
80-120	185	190	0.21	

1.11.6.1.	form	$t_{o}()$	Craigmon
arili noje	From C/	10(m)	% M.S2
80-120	190	195	0.27
80-120	195	200	0.26
80-120	200	205	0.48
80-120	205	210	0.13
80-120	210	215	0.11
80-120	215	220	0.12
80-120	220	225	0.13
80-120	225	230	0.07
80-120	230	235	0.26
80-120	235	240	0.09
80-120	240	245	0.16
80-120	245	250	0.25
80-120	250	255	0.17
80-120	255	260	0.16
80-120	260	265	0.24
80-120	265	270	0.06
80-120	270	275	0.07
80-120	275	280	0.06
80 120	285	200	0.15
80-120	200	290	0.05
80-120	290	290	0.00
80-120	230	10	0.03
80-121	10	15	0.07
80-121	15	20	0.04
80-121	20	25	0.3
80-121	25	30	0.24
80-121	30	35	0.31
80-121	35	40	0.2
80-121	40	45	0.34
80-121	45	50	0.24
80-121	50	55	0.43
80-121	55	60	0.19
80-121	60	65	0.19
80-121	65	70	0.25
80-121	70	75	0.13
80-121	75	80	0.24
80-121	80	85	0.21
80-121	85	90	0.19
80-121	90	95	0.3
80-121	95	100	0.17
80-121	100	105	0.21
80-121	105	110	0.12
80-121	110	115	0.22
80-121	115	120	0.21
80-121	120	125	0.12
80-121	125	130	0.12
80-121	130	135	0.47
80-121	135	140	0.18
80-121	140	145	0.19
80-121	145	150	0.04

•

1980

•

drill	hole	from(m)	to(m)	Craigmont	1980
80-	121	150	155	0.07	
80-	121	155	160	0.03	
80-	121	160	165	0.07	
80-	121	165 1	70.6	0.05	
80-	122	95	100	0.07	
80-	122	100	105	0.27	
80-	122	105	110	0.11	
80-	122	110	115	0.11	
80-	122	115	120	0.17	
80-	122	120	125	0.18	
80-	122	125	130	0.11	
80-	122	130	135	0.14	
80-	122	135	140	0.12	
80.	122	140	145	0.12	
80-	122	145	150	0.08	
80-	122	150	155	0.14	
80-	122	155	160	0.1	
80-	122	160	165	0.18	
80-	122	165	170	0.10	
80-	122	170	175	0.10	
-00- 80-	100	175	180	0.18	
80-	122	180	185	0.00	
80-	122	185	190	0.18	
80-	122	190	195	0.16	
80-	122	195	200	0.08	
80-	122	200	205	0.18	
80-	122	205	210	0.18	
80-	122	210	215	0.19	
80-	122	215	220	0.16	
80-	122	220	225	0.12	
80-	122	225	230	0.11	
80-	122	230	235	0.13	
80-	122	235	240	0.14	
80-	122	240	245	0.19	
80-	122	245	250	0.3	
80-	122	250	255	0.16	
80-	122	255	260	0.11	
80-	122	260	265	0.1	
80-	122	265	270	0.07	
80-	123	6.3	10	0.03	
80-	123	10	15	0.55	
80-	123	15	20	0.21	
80-	123	20	25	0.08	
80-	123	25	30	0.13	
80-	123	30	35	0.07	
80-	123	35	40	0.08	
80-	-123	40	45	0.18	
80-	123	45	50	0.23	
80-	123	50	55	0.15	
80-	123	55	60	0.08	
80-	-123	60	65	0.24	

drill hole	from (m)	to(m)	Craigmont 70 Mos	1980
80-123	65	70	0.09	
80-123	70	75	0.17	
80-123	75	80	0.07	
80-123	80	85	0.08	
80-123	85	90	0.06	
80-123	90	95	0.09	
80-123	95	100	0.05	
80-123	100	105	0.12	
80-123	105	110	0.06	
80-123	110	115	0.06	
80-123	115	120	0.06	
80-123	120	125	0.14	
80-123	125	130	0.07	
80-123	130	135	0.03	
80-123	135	140	0.08	
80-123	140	145	0.07	
80-123	145	150	0.07	
80-123	150	155	0.06	
90 123	150	160	0.04	
90 123	120	125	0.04	
90-124 90-124	120	120	0.05	
90-124 90-124	120	130	0.09	
90-124 90-124	135	140	0.13	
00-124 00-124	135	140	0.07	
00-124 90.124	140	140	0.00	
00-124 90 104	140	150	0.1	
00-124	150	100	0.12	
00-124	100	100	0.12	
00-124	100	100	0.19	
00-124	100	170	0.14	
00~124	170	170	0.14	
00-124	170	100	0.19	
80-124	180	100	0.19	
80-124	185	190	0.21	
80-124	190	190	0.25	
80-124	195	200	0.31	
80-124	200	205	0.22	
80-124	205	210	0.21	
80-124	210	215	0.43	
80-124	215	220	0.15	
80-124	220	225	0.31	
80-124	225	230	0.45	
80-124	230	235	0.2	
80-124	235	240	0.56	
80-124	240	245	0.22	
80-124	245	250	0.17	
80-124	250	255	0.31	
80-124	255	260	0.36	
80-124	260	265	0.3	
80-124	265	270	0.27	
80-124	270	275	0.27	
80-124	275	280	1.2	
drill hole	from (m)	to(m)	Craigmont 7. Mos	1980
------------	----------	-------	---------------------	------
80-124	280	285	0.25	
80-124	285	290	0.13	
80-124	290	295	0.29	
80-124	295	300	0.19	
80-124	300	305	0.11	
80-124	305	310	0.14	
80-124	310	315	0.15	
80-124	315	320	0.17	
80-124	320	325	0.11	
80-124	325	330	0.1	
80-124	330	335	0.06	
80-124	335	340	0.1	
80-124	340	345	0.09	
80-124	345	349.7	0.14	
80-125	25	30	0.08	
80-125	30	35	0.09	
80-125	35	40	0.12	
80-125	40	45	0.09	
80-125	45	50	0.07	
80-125	50	55	0.06	
80-125	55	60	0.08	
80-125	60	65	0.07	
80-125	65	70	0.09	
80-125	70	75	0.06	
80-125	75	80	0.07	
80-125	80	85	0.05	
80-125	85	90	0.05	
80-125	90	95	0.13	
80-125	95	100	0.1	
80-125	100	105	0.06	
80-125	105	110	0.1	
80-125	110	115	0.07	
80-125	115	120	0.08	
80-125	120	125	0.12	
80-125	125	130	0.09	
80-125	130	135	0.09	
80-125	135	140	0.11	
80-128	210	215	0.04	
80-128	215	220	0.07	
80-128	220	225	0.03	
80-128	225	230	0.08	
80-128	230	235	0.05	
80-128	235	240	0.09	
80-128	240	245	0.04	
80-128	245	250	0.05	
80-128	250	255	0.04	
80-128	255	260	0.13	
80-128	260	265	0.18	
80-128	265	270	0.11	
80-128	270	275	0.15	
80-128	275	280	0.05	

drill hole	from(m)	to(m)	Craigmont	1980
80-128	280	285	0.05	
80-128	285	290	0.1	
80-128	290	295	0.15	
80-128	295	300	0.12	
80-128	300	305	0.06	
80-128	305	310	0.25	
80-128	310	315	01	
80-128	315	320	0.08	
80-128	320	325	0.09	
80-128	325	330	0.00	
80-128	330	335	0.19	
80-128	335	340	0.12	
80-128	340	345	0.06	
80-128	345	350	0.08	
80-128	350	355	0.06	
80-128	355	360	0.00	
80-128	360	365	0.05	
80-128	365	370	0.05	
80-128	370	375	0.00	
80-128	375	380	0.07	
80-128	380	385	0.12	
80-128	385	390	0.13	
80-128	390	392.9	0.09	
80-129	15	20	0.03	
80-129	20	25	0.07	
80-129	25	30	0.07	
80-129	30	35	0.06	
80-129	35	40	0.07	
80-12 9	40	45	0.07	
80-129	45	50	0.12	
80-129	50	55	0.07	
80-129	55	60	0.06	
80-129	60	65	0.06	
80-129	65	70	0.1	
80-129	70	75	0.07	
80-129	75	80	0.08	
80-129	80	85	0.12	
80-129	85	90	0.08	
80-129	90	95	0.05	
80-12 9	95	100	0.07	
80-129	100	105	0.07	
80-129	105	110	0.08	
80-129	110	115	0.1	
80-129	115	120	0.13	
80-129	120	125	0.22	
80-129	125	130	0.18	
80-129	130	134	0.1	
80-130	50	55	0.07	
80-130	55	60	0.14	
80-130	60	65	0.14	
80-130	65	70	0.17	

.....

drill hole	From (m)	to(m)	Craigmont 1980
80-130	70	75	0.08
80-130	75	80	0.1
80-130	80	85	0.09
80-130	85	90	0.06
80-130	90	95	0.08
80-130	95	100	0.01
80-130	100	105	0.08
80-130	105	110	0.03
80-130	160	165	0.08
80-130	165	170	0.1
80-130	170	175	0.06
80-130	175	180	0.06
80-130	180	185	0.05
80-130	185	190	0.15
80-130	190	195	0.05
80-130	195	200	0.04
80-130	200	205	0.15
80-130	205	210	0.06
80-130	210	215	0.11
80-130	215	220	0.04
80-130	220	225	0.04
80-130	225	230	0.33
80-130	230	235	0.22
80-130	235	240	0.06
80-130	240	245	0.06
80-130	245	250	0.06
80-130	250	255	0.09
80-130	255	260	0.08
80-130	260	265	0.13
80-130	265	270	0.07
80-130	270	275	0.06
80-130	275	280	0.04
80-130	280	285	0.14
80-130	285	290	0.09
80-130	290	295	0.26
80-130	295	300	0.09
80-130	300	305	0.12
80-130	305	310	0.06
80-130	310	315	0.16
80-130	315	320	0.07
80-130	320	325	0.1
80-130	325	330	0.08
80-130	330	335	0.13
80-130	335	340	0.12
80-130	340	345	0.04
80-130	345	350	0.06
80-130	350	355	0.21
80-130	355	360	0.15
80-130	360	365	0.08
80-130	365	370	0.07
80-130	370	375	0.01

drill hole	from (m)	+o(m)	Craigmont 20 Mass	1980
80-130	375	378.5	0.06	
80-131	22.5	30	0.07	
80-131	30	35	0.09	
80-131	35	40	0.1	
80-131	40	45	0.07	
80-131	45	50	0.07	
80-131	50	55	0.25	
80-131	55	60	0.08	
80-131	60	65	0.22	
80-131	65	70	0.21	
80-131	70	75	0.09	
80-131	75	80	0.09	
80-131	80	85	0.14	
80-131	85	90	0.12	
80-131	90	95	0.16	
80-131	95	100	0.11	
80-131	100	105	0.12	
80-131	105	110	0.06	
80-131	110	115	0.13	
80-131	115	120	0.05	
80-131	120	125	0.04	
80-131	125	130	0.11	
80-131	130	135	0.03	
80-131	135	140	0.05	
80-131	140	143.8	0.05	