ASSESSMENT REPORT

on the

Taseko Lakes Project

Clinton Mining Division, B.C. N.T.S. 92O/4 Latitude: 51⁰ 12 ' N, Longitude: 123⁰ 43 ' W

Galore Resources Inc. Vancouver, B.C.

Canada

by E. Trent Pezzot, B. Sc., P. Geo. S.J.V. Consultants Ltd.

Date of Work: July - August, 2005 Date of Report: January 15, 2006

이 좋다. 이 이 이 이 이 이 가 좋다.

Table of Contents

		1	page
1	INTR	DDUCTION	1
2	LOCA	TION AND ACCESS	2
3	PROP	ERTY	3
	31 H	UB CI AM GROUP	
	32 N	ORTHWEST COPPER CLAIM GROUP	6
	3.3 M	IAGIC TWIN CLAIM GROUP	7
4	GEOL	.OGY	9
	4.1 R	EGIONAL GEOLOGY	9
	4.2 L	OCAL GEOLOGY AND MINERALIZATION	9
	4.2.1	Hub	9
	4.2.2	Charlie Prospect	10
	4.2.3	Northwest Copper	10
	4.2.4	Twin Creeks	10
5	HISTO	ORY AND PREVIOUS WORK	10
	5.1 H	UB PROSPECT	10
	5.2 C	HARLIE PROSPECT	11
	5.3 N	ORTHWEST COPPER	11
	5.4 T	WIN CREEKS	11
6	FIELI	D WORK AND GEOPHYSICAL INSTRUMENTATION	11
7	EXPL	ORATION TECHNIQUES	12
	7.1 N	AGNETIC SURVEY METHOD	12
	7.2 V	LE-EM METHOD	13
	7.3 S	OIL GEOCHEMISTRY METHOD	14
8	DATA	PRESENTATION	14
	8.1 S	TACKED PROFILES	14
	8.2 S	TACKED PROFILE PLAN MAPS	15
	8.3 C	ONTOUR PLAN MAPS	15
	8.4 C	OMPILATION AND INTERPRETATION MAP	15
	8.5 T	HEMATIC MAPS	15
9	DISC	USSION OF RESULTS	15
	9.1 H	[UB	15
	9.2 C	HARLIE PROSPECT	1 8
	9.3 N	ORTHWEST COPPER	20
	9.4 T	WIN CREEKS	22
	9.4.1	Ridge Peak.	23
	9.4.2	Ridge Slide (Line 45N)	23
	9.4.3	Ridge River	24 חו
	9.5 P	ROPERTY VISITS	24 25
	9.3,1 0.5.2	Ballement Emprass	2J 25
	y.J.Z	Empress	ل کے
	052	Twin Crooks	25

Page i

SJ Geophysics Ltd/S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel (604) 582-1100 fax (604) 589-7466 E-mail: sydv@sjgeophysics.com

Assessment Report – Taseko Lakes Project

9.	5.4 Charlie Vein	26
9.	5.5 Fisham Lake	
9.	5.6 Red Hill	
9	5.7 Taseko Mountain	27
10	SUMMARY & CONCLUSIONS	27
11	RECOMMENDATIONS	28
12	APPENDIX 1	29
12.1	STATEMENT OF QUALIFICATIONS	29
13	APPENDIX 2	
13.1	REFERENCES	
14	APPENDIX 3 - COST BREAKDOWN	
15	APPENDIX 4: INSTRUMENT SPECIFICATIONS	
15.1	GSM-19 MAGNETOMETER / GRADIOMETER	33
15.2	2 GSM-19 VLF	33
16	APPENDIX 5 – DATA PROFILES	
16.1	HUB PROSPECT	
16.2	2 CHARLIE PROSPECT	79
16.3	3 NORTHWEST COPPER PROSPECT	
16.4	A RIDGE PROSPECT	98
17	APPENDIX 6 – GEOCHEMICAL ASSAYS	104

Dista	Description	Location
Plate	Description	
Figure 1	Location Map	Page 2
Figure 2	Field Surveys and Property Visit Location Map	Page 3
Figure 3	Claim Groups Map	Page 4
Figure 4	Regional Geology & Mineralization	Page 8
Figure 5	Hub Grid – Total Magnetic Field Intensity Colour Map – Shadow Enhanced by sun angle from northeast.	Page 3
Figure 6	N-S Profile across Charlie Grid – magnetic, vlf-em (inphase, quadrature, field strength)	Page 20
Figure 7	Northwest Copper Area - 1999 Dighem airborne magnetic survey (background) with detailed ground survey	Page 21
Figure 8	Photograph of outcrop along north facing cirque at Twin Creeks prospect	Page 26
Plate: G1a	Hub Grid Geophysical Survey Grid Geochemical Sampling Location Map	Pocket
Plate G1b	Hub Grid Total Magnetic Field Intensity False Colour Contour Map Stacked Profile Map	Pocket
Plate G1c	Hub Grid Stacked Profile Map VI E-EM Inphase Quadrature (Seattle)	Pocket
Plate G1d	Hub Grid Geophysical Interpretation Map	Pocket
Plate G1e	Hub Grid Soil Geochemical Survey Thematic Map (Copper)	Pocket
Plate G1f	Hub Grid Soil Geochemical Survey Thematic Map (Molybdenum)	Pocket
Plate G1g	Hub Grid Soil Geochemical Survey Thematic Map (Cobalt)	Pocket
Plate G2a	Charlie Project Survey Grid Map	Pocket
Plate G2b	Charlie Project Total Magnetic Field Intensity (nTs) False Colour Contour Map Stacked Profile Map	Pocket
Plate G2c	Charlie Project Seattle VLF-EM (24.8 kHz) Inphase and Quadrature Components Stacked Profile Map	Pocket

List of Plates and Figures

Page iii

Plate	Description	Location
Plate G2d	Charlie Project Geophysical Interpretation	Pocket
Plate G3a	Northwest Copper Project Survey Grid Map Geochemical Sample Location Map	Pocket
Plate G3b	Northwest Copper Project Total Magnetic Field Intensity False Colour Contour Map Stacked Profile Map	Pocket
Plate G3c	Northwest Copper Project Seattle VLF-EM (24.8 kHz) Inphase and Quadrature Components Stacked Profile Map	Pocket
Plate G3d	Northwest Copper Project False Colour Contour Magnetic Map Stacked Profile Map (Seattle inphase) Geophysical Interpretation	Pocket
Plate G3e	Northwest Copper Project Soil Geochemistry Copper (ppm) Thematic Map	Pocket
Plate G3f	Northwest Copper Project Soil Geochemistry Gold (ppb) Thematic Map	Pocket
Plate G3g	Northwest Copper Project Soil Geochemistry Arsenic (ppm) Thematic Map	Pocket
Plate G4a	Twin Creeks Area Ridge-Peak, Ridge-Slide, Ridge-River Survey Grid Map Geochemical Sampling Location Map	Pocket
Plate G4b	Twin Creeks Area Ridge-Peak, Ridge-Slide, Ridge-River Total Magnetic Field Intensity Stacked Profile Map	Pocket
Plate G4c	Twin Creeks Area Ridge-Peak, Ridge-Slide, Ridge-River VLF-EM Inphase, Quadrature Stacked Profile Map	Pocket
Plate G4d	Twin Creeks Area Ridge River Grid Stacked Profiles (mag, vlf-em) Interpretation	Pocket
Plate G4e	Twin Creeks Area Ridge River Grid Soil Geochemistry Gold (ppb) Thematic Map	Pocket

1 Introduction

S.J.V. Consultants Ltd. was commissioned by Galore Resources Inc. to act as an exploration consultant for their Taseko Lakes Project located in south central British Columbia. Galore Resources currently owns and/or options most of the mineral claims on map sheets 92 O/4E and 92 O/3W (Figure 1) and is in the process of optioning additional properties. Their holdings include several documented mineral occurrences, including the Pellaire, Charlie, Hub, Northwest Copper, Magic, Tax, Bat, Moly, Twin Creek, Battlement and Spokane showings. These showings are in various stages of exploration, from grass roots to past production.

After a review and compilation of previous exploration documents a program of reconnaissance airborne and ground geophysical surveys was recommended. The airborne surveys are intended to serve as general mapping tools to evaluate the large ground holdings. Ground survey recommendations varied for individual project areas, depending on the current stage of the exploration program.

From July 26 to August 16, 2005, ground magnetometer and vlfelectromagnetometer surveys and soil geochemical sampling were completed on 4 project areas: Hub, Charlie, Northwest Copper and Twin Creeks (also referred to as the Ridge). The majority of the work was focused on the Hub property and was designed to confirm and extend similar data recorded in the 1980's. Reconnaissance test surveys were run across the other areas to determine whether a geophysical and/or geochemical signature could be associated with known geological features.

During the same general time period, the project supervisor, John Hajek, and myself conducted two helicopter supported visits to the property. During the first visit, on July 11, 2005 efforts were focused on investigating several sites in the Northwest Copper area. Details concerning this visit are documented in a separate assessment report. The second visit, on July 28, 2005 was timed to coincide with the early stages of the geophysical survey. Efforts were focused on reviewing the first couple of days of survey data and organizing the geophysical program. Helicopter support was used to visit several other project areas including the Empress mine site, Battlement Ridge, Charlie vein, Fisham Lake, Red Hill and Taseko Mountain.

.

Page 2

2 Location and Access

The Taseko Lakes project covers a large area (approximately 30 km x 20 km) that generally follows the Taseko River in the Cariboo Mining District and NTS 92O/4 and 92O/3. The approximate geographic coordinates near the center of the project area is latitude 51^{0} 08'N and longitude 123^{0} 25'W. (Figure 1)

SJ Geophysics Ltd/S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel (604) 582-1100 fax (604) 589-7466 E-mail: sydv@sjgeophysics.com

Access to the property is either by road or air. One day property visits were facilitated through Pemberton Helicopters and involved a 45 minute helicopter trip between the airport in Pemberton B.C. and Galore's permanent camp located on Falls River, approximately 6.5 km southwest of the southern end of Upper Taseko Lake.

Road access is from Williams Lake over the Bella Coola road to Hanceville and then southerly for about 82 km along the Nemiah-Taseko road to the junction with the Lord River Mine road. From this junction a 60 km section of road runs southerly to the Falls River camp which is situated at the base of the Pellaire ridge. The road distance from Williams Lake to the Falls River camp is approximately 260 km. A network of old forestry and mining roads provides access from the base camp to various portions of the property.

The locations of the areas discussed in this report are illustrated below as figure 2.

Figure 2: Field Survey (Red) and Property Visit (Purple) Location Map

3 Property

The Taseko Lakes Project includes several groups of claims. This work was completed on 3 of these claim groups, as discussed below and illustrated on Figure 3.

36.45 acres 51.65

3.1 Hub Claim Group

The Hub property claims are owned by Zelon Enterprises Ltd. Titles have been transferred to TRW Resources Inc. which subsequently changed its name to Galore Resources Inc. Both the Hub and Charlie prospects are included within this claim group.

CLAIM	RECORD	ownership	AREA IN
		%	HECTARES
COUGAR	354051	90	500
COUGAR #7	354057	90	450
ZC #1	415583	9 0	400
ZC #2	415584	90	400
MICE #2	514685	90	547
MICE #5	416352	90	450
No name	514685	90	547
RIVER	511775	100	304
NO name update	511777	100	121
(COUGAR #9)	511778	90	567
RAT	511780	90	<u>365</u>
			4,104ha

6 CROWN GRAN	TED CLAIMS:	
WASH	7831	
CLEAN UP	7832	

BEAR	7833	51.65	
GRIN	7834	51.65	
STAKES FRACTION	7835	17.59	
HAM	7836	<u>51.53</u>	
Sub total:		260.52 a.	105 ha

TOTAL: 16 claims covering:

APPROX. 10,911 acres or 4,364 ha.

3.2 Northwest Copper Claim Group

The Northwest Copper property claims are owned by Valor Mines Inc. Titles have been transferred to TRW Resources Inc. which subsequently changed its name to Galore Resources Inc. While this property includes a large number of claims, the ground work completed during this exercise was limited to the Cougar 3 claim.

CLAIM	RECORD #	% OWNER	AREA
			IN HECTARES
COUGAR #2	354052	90	500
COUGAR #3	354053	90	500
COUGAR #4	354054	90	500
COUGAR #5	354055	90	450
COUGAR #6	354056	90	500
HW #2-8		90	870
replace	ed by 514541		
SUN A	358626	90	567
replace	ed by 514547		
SUN 1-2	358624-358625	90	60 hect.
replace	ed by 514621		
GUNS 1-5	371528-371532	90	283 hect.
replace	ed by 514544		
GUNS 6-10	371533-371537	90	
replace	ed by 514544		
(NO NAME)	512785	100	404
MAG	513765	100	101
LINK	513932	100	101
PAT	517935	100	20
PAT2	517936	100	81
ROAD	514565	100	20
RIM	514629	100	80
LOW	514630	100	20
RCAF	514677	100	<u>364</u>
TOTAL:			5,441 Ha

TOTAL: 19 Claims covering 13,552 acres or 5,441 Ha.

3.3 Magic Twin Claim Group

The Twin Creeks property claims are included in the Magic Twin option group and are owned by Valor Resources Ltd. Titles have been transferred to TRW Resources Inc. which subsequently changed its name to Galore Resources Inc. The survey work was completed on a portion of the Twin Claim Group.

TWIN CLAIM GROUP:

CLAIM	RECORD #	% OWNER	AREA IN
			HECTARE
ZC #4	415586	90	365
ZC #3, replaced by	514691	9 0	400
P#1, P#2, replaced	358613	90	25
P#2, replaced	358614	90	25
CAT, 397748 replaced by	514569	90	405
MICE #3 replaced	514689	90	385
No name (MICE #4)	511779	90	588
	510770	9 0	405
	514566	90	426
	514699	90	121

Sub total: 10 claims covering 3,245 Ha.

MAGIC CLAIM GROUP:

CLAIM	RECORD #	% OWNER	AREA IN
			HECTARE
DIS #4, 375862 replaced	514571	90	709
SCREE, 375963 replaced	514572	90	486
DIS #7, 376122 replaced	514744	90	629
DIS #8	376123		500
DIS #10, 376204 replaced	514557	90	609
LORD	511319		487

Sub total: 6 claims covering 3,420 Ha.

TOTAL: 16 CLAIMS COVERING: APROX.16,662 acres or 6,665 hectares

Galore Resources Inc. Taseko Lakes Projects

Claim Groups Map

October, 2005

Figure 3

Legend Geology Tertiary Tfp Felsic intrusive, feldspar porphy Tfp Felsic intrusive, granodioritic. Cretaceous Cgd Granitic; lesser gneiss. Powell Creek Group Intermediate volcanic, volcanic breccia, tuff, flows, sediments. Taylor Creek Group Fvs Felsic to mafic volcanics, tuff, flows; argillite, siltstone, sandstone. Relay Mountain Group Argillite, greywacke, sandstone, conglomerate. Note Data after Israel 2000, McLaren 1990, BC Min Energy & Mines, Minfile. Symbols Mineral occurrence; Minfile name; Fe, limonite occurrence. Geological contact Ym Road Caseko property boundary. Mineral claim. Note UTM Coordinates NAD83 Galore Resources Inc. Clinton Mining Division NTS: 92 0/4E, 92 0/3W Taseko Lakes Projects Regional Geology & Mineralization 0 2.5 5 kilometres			-
Geology Tertiary Tfp Felsic intrusive, feldspar porphy Tfp Felsic intrusive, granodioritic. Cretaceous Cgd Granitic; lesser gneiss. Powell Creek Group Intermediate volcanic, volcanic breccia, tuff, flows, sediments. Taylor Creek Group Felsic to mafic volcanics, tuff, flows; argillite, siltstone, sandstone. Relay Mountain Group Argillite, greywacke, sandstone, conglomerate. Note Mineral occurrence; Minfile name; Fe, limonite occurrence. Geological contact Symbols Mineral occurrence; Minfile name; Fe, limonite occurrence. Geological contact Sample; number, ppm Road Taseko property boundary. Mineral claim. Note UTM Coordinates NAD83 Galore Resources Inc. Clinton Mining Division Clinton Mining Division 0 2.5 5 kilometres		Legend	٦
Tfp Felsic intrusive, feldspar porphy Tfp Felsic intrusive, granodioritic. Cretaceous Cgd Granitic; lesser gneiss. Powell Creek Group Typ Felsic to mafic volcanic, volcanic breccia, tuff, flows, sediments. Taylor Creek Group Fyp Felsic to mafic volcanics, tuff, flows; argillite, siltstone, sandstone. Relay Mountain Group Argillite, greywacke, sandstone, conglomerate. Na Argillite, greywacke, sandstone, conglomerate. Nata after Israel 2000, McLaren 1990, BC Min Energy & Mines, Minfile. Symbols Mineral occurrence; Minfile name; Fe, limonite occurrence. Geological contact Mineral occurrence; sample; number, ppm Road Taseko property boundary. Mineral claim. Note UTM Coordinates NAD83 Galore Resources Inc. Clinton Mining Division Mineral Geology & Mineralization 0 2.5 5 kilometres		Geology	
Tfp Felsic intrusive, granodioritic. Cretaceous Cgd Granitic; lesser gneiss. Powell Creek Group Fvs Intermediate volcanic, volcanic breccia, tuff, flows, sediments. Taylor Creek Group Fvs Felsic to mafic volcanics, tuff, flows; argillite, siltstone, sandstone. Relay Mountain Group Argillite, siltstone, sandstone, Argillite, greywacke, sandstone, conglomerate. Mineral occurrence; Minfile name; Fe, limonite occurrence. Geological contact Mineral occurrence; Minfile name; Fe, limonite occurrence. Geological contact Mineral olaim. Note UTM Coordinates NAD83 Galore Resources Inc. Clinton Mining Division Mineral Geology & Mineralization 0 2.5 5 kilometres 5	Tfp	Felsic intrusive, feldspar porp	hy
Cretaceous Ggd Granitic; lesser gneiss. Powell Creek Group Intermediate volcanic, volcanic breccia, tuff, flows, sediments. Taylor Creek Group Felsic to mafic volcanics, tuff, flows; argillite, siltstone, sandstone. Relay Mountain Group Argillite, siltstone, sandstone, Conglomerate. Margillite, greywacke, sandstone, argillite, greywacke, sandstone, geological contact Margillite, geological contact Margillite, greywacke, sandstone, geological contact	Tfp	Felsic intrusive, granodioritic.	
Cod Granitic; lesser gneiss. Powell Creek Group Intermediate volcanic, volcanic breccia, tuff, flows, sediments. Taylor Creek Group Felsic to mafic volcanics, tuff, flows; argillite, siltstone, sandstone. Relay Mountain Group Argillite, siltstone, sandstone, Argillite, greywacke, sandstone, conglomerate. Note Note Mineral occurrence; Minfile name; Fe, limonite occurrence. Geological contact Symbols Mineral occurrence; Minfile name; Fe, limonite occurrence. Geochemical stream sediment Szymbols Mineral claim. Note UTM Coordinates NAD83 Galore Resources Inc. Clinton Mining Division NTS: 92 0/4E, 92 0/3W		Cretaceous	
Powell Creek Group Intermediate volcanic, volcanic breccia, tuff, flows, sediments. Taylor Creek Group Felsic to mafic volcanics, tuff, flows; argillite, siltstone, sandstone. Relay Mountain Group Argillite, siltstone, sandstone, argillite, greywacke, sandstone, conglomerate. Note Symbols Mineral occurrence; Minfile name; Fe, limonite occurrence. Geological contact Fault Geochemical stream sediment san, sample; number, ppm Road Taseko property boundary. Mineral claim. Note UTM Coordinates NAD83 Galore Resources Inc. Clinton Mining Division NTS: 92 0/4E, 92 0/3W Taseko Lakes Projects Regional Geology & Mineralization 0 2.5 5 kilometres	Cgd	Granitic; lesser gneiss.	
Taylor Creek Group Felsic to mafic volcanics, tuff, flows; argillite, siltstone, sandstone, Relay Mountain Group Argillite, siltstone, sandstone, Argillite, greywacke, sandstone, Argillite, greywacke, sandstone, Argillite, greywacke, sandstone, Argillite, greywacke, sandstone, Conglomerate. Argillite, greywacke, sandstone, Conglomerate. Argillite, greywacke, sandstone, Conglomerate. Argillite, greywacke, sandstone, Conglomerate. Mine Symbols Mineral occurrence; Minfile name; Fe, limonite occurrence. Geological contact Sample; number, ppm Road Taseko property boundary. Mineral claim. Note UTM Coordinates NAD83 Galore Resources Inc. Clinton Mining Division NTS: 92 0/4E, 92 0/3W Taseko Lakes Projects Regional Geology & Mineralization 0 2.5 kilometres	Pvs	Powell Creek Group Intermediate volcanic, volcanic breccia, tuff, flows, sediments	c s.
Argillite, siltstone, sandstone, Argillite, greywacke, sandstone, conglomerate. Argillite, greywacke, sandstone, conglomerate. Argillite, greywacke, sandstone, conglomerate. Mineral 2000, McLaren 1990, BC Min Energy & Mines, Minfile. Symbols Mineral occurrence; Minfile name; Fe, limonite occurrence. Geological contact Fault Geochemical stream sediment S287,31000 sample; number, ppm Road Taseko property boundary. Mineral claim. Note UTM Coordinates NAD83 Galore Resources Inc. Clinton Mining Division NTS: 92 0/4E, 92 0/3W Taseko Lakes Projects Regional Geology & Mineralization 0 2.5 5 kilometres	etvs2	Taylor Creek Group Felsic to mafic volcanics, tuf flows; argillite, siltstone, sandstone.	f,
Argillite, greywacke, sandstone, conglomerate. Note Data after Israel 2000, McLaren 1990, BC Min Energy & Mines, Minfile. Symbols Mineral occurrence; Minfile name; Fe, limonite occurrence. Geological contact Fault Geochemical stream sediment Road Taseko property boundary. Mineral claim. Note UTM Coordinates NAD83 Galore Resources Inc. Clinton Mining Division NTS: 92 0/4E, 92 0/3W Taseko Lakes Projects Regional Geology & Mineralization 0 2.5 5 kilometres	Rel	Argillite, siltstone, sandstone,	
Adda after Israel 2000, McLaren 1990, BC Min Energy & Mines, Minfile. Symbols Hub Geological contact Fault Geochemical stream sediment S287,31004 sample; number, ppm Road Taseko property boundary. Mineral claim. Note UTM Coordinates NAD83 Galore Resources Inc. Clinton Mining Division NTS: 92 0/4E, 92 0/3W Taseko Lakes Projects Regional Geology & Mineralization 05_5 kilometres	[[\$]]	Argillite, greywacke, sandstone	2
Mineral claim. Note UTM Coordinates NAD83 Galore Resources Inc. Clinton Mining Division NTS: 92 0/4E, 92 0/3W Taseko Lakes Projects Regional Geology & Mineralization 0 2.5 5 kilometres	Hub	BC Min Energy & Mines, Minfile. Symbols Mineral occurrence; Minfile name; Fe, limonite occurrenc Geological contact	e.
) Geochemical stream sediment sample; number, ppm Road Taseko property boundary. Mineral claim. Note UTM Coordinates NAD83 Galore Resources Inc. Clinton Mining Division NTS: 92 0/4E, 92 0/3W Taseko Lakes Projects Regional Geology & Mineralization 0 2.5 5 kilometres	nnn	Fault	
Road Taseko property boundary. Mineral claim. Note UTM Coordinates NAD83 Galore Resources Inc. Clinton Mining Division NTS: 92 O/4E, 92 O/3W Taseko Lakes Projects Regional Geology & Mineralization 0 2.5 5 kilometres) 15287,310Cu	Geochemical stream sediment sample; number, ppm	t
Taseko property boundary. Mineral claim. Note UTM Coordinates NAD83 Galore Resources Inc. Clinton Mining Division NTS: 92 0/4E, 92 0/3W Taseko Lakes Projects Regional Geology & Mineralization 0 2.5 5 kilometres	-1	Road	
Mineral claim. Note UTM Coordinates NAD83 Galore Resources Inc. Clinton Mining Division NTS: 92 O/4E, 92 O/3W Taseko Lakes Projects Regional Geology & Mineralization 0 2.5 5 kilometres		Taseko property boundary.	
Galore Resources Inc. Clinton Mining Division NTS: 92 O/4E, 92 O/3W Taseko Lakes Projects Regional Geology & Mineralization 0 2.5 5 kilometres		Note UTM Coordinates NAD83	
Clinton Mining Division NTS: 92 O/4E, 92 O/3W Taseko Lakes Projects Regional Geology & Mineralization 0 2.5 5 kilometres		Galore Resources Inc	;.
Taseko Lakes Projects Regional Geology & Mineralization 0 2.5 5 kilometres	_	Clinton Mining Division NTS: 92 O/4E, 92 O/3	w
Regional Geology & Mineralization 0 2.5 5 kilometres		Taseko Lakes Projects	
0 2.5 5 kilometres	1	Regional Geology & Mineralization	
AT THE ADDRESS OF THE		0 2.5 5 kilometres	
Date: October, 2005 Figu	Date: Octob	er, 2005	Figu

4 Geology

4.1 Regional Geology

The properties straddle the eastern margin of the Intermontane Super-Terrane and the Coast Range pluton and older gneissic rocks to the west, (Umhoefer et al 2002). The property and adjacent area is underlain by granitic intrusives of the Coast Range Intrusive of Cretaceous to possibly Tertiary age and by volcanics and metasediments of Jurassic to Cretaceous age within the Tyaughton trough to the east, (McLaren, 1990).

West north-westerly striking faults extend through the area; displacement on these faults is estimated to be from thirty to more than one hundred kilometers, (McLaren, 1985); north side of the faults are displaced easterly. Faults of this type include: Yalakom Fault, Tchaikazan Fault and possibly Twin Creek Fault.

Granitic stocks of Jurassic to Tertiary age intrude rocks of the Tyaughton Trough and sediment and volcanics to the east. Copper mineralized deposits exist within and adjacent to granitic stocks at the Poison Mountain deposit, sixty kilometers easterly from the property and at the Prosperity deposit, thirty-five kilometers northerly from the property.

4.2 Local Geology and Mineralization

The local geology is described separately for the four areas tested during this exploration program

4.2.1 <u>Hub</u>

At the Hub prospect, on the north bank of the Tchaikazan River, a series of porphyritic granodiorite outcrop and cut altered volcanics of unit LKtc (Lower Cretaceous Taylor Group). Both rock types are mineralized with copper and molybdenum sulphides. Potassic, phyllic and propylitic alteration assemblages, believed to be associated with an underlying copper-molybdenum porphyry system, were identified in the surrounding rocks and in drill core at depth.

4.2.2 Charlie Prospect

At the Charlie prospect gold mineralized quartz veins and sulphidic zones exist within an area of 300 m by 350 m. Mineralization comprises hessite and tetrahedrite and chip samples contain up to 22.18 g/t gold over 0.12 metres. This vein occurrence is considered to be a mesothermal or transitional mesothermal to epithermal type and peripheral to the porphyry system at the Hub prospect.

4.2.3 Northwest Copper

There is no detailed geological information available in the small area within the larger project block that was tested during this exploration program. The regional mapping suggests the area is underlain by intermediate volcanics of the Powell Creek Group.

4.2.4 <u>Twin Creeks</u>

At Twin Creeks silicification and quartz carbonate fractures exist within volcanic tuffs and sediments close to a contact with granitic rocks of Coast Range intrusive. Realgar and orpiment exist within a silicified north-northwesterly striking zone. The northwesterly striking Twin Creek Fault extends through the area.

5 History and Previous Work

5.1 Hub Prospect

The Hub copper-molybdenum mineralized area, on the floor of the Tchaikazan River valley, was discovered as a consequence of exploration carried out peripheral to the Charlie gold-silver veins which are located high up on Charlie ridge, 600 metres above the valley bottom.

Successive explorations programs were undertaken by Falconbridge (1967), Rio Tinto (1973) and Suncor and Zelon Chemicals (1981, 1983). They utilized geochemical soil and rock sampling, geophysical surveys consisting of induced polarization, vlf-em and magnetics and diamond drilling.

5.2 Charlie Prospect

This property was originally explored for gold-silver vein mineralization in 1946 by H.V. Warren. It has subsequently been included within an expanded claims area in several exploration programs during the 1960's, 1970's and 1980's which were focused on porphyry copper-molybdenum mineralization at the Hub Prospect adjacent to and downslope to the south.

5.3 Northwest Copper

There is no record of any ground investigations over the area tested during this program. The area was selected as being a priority target based on a re-interpretation of an airborne magnetic and EM survey conducted in 1999.

5.4 Twin Creeks

There is no record of any ground investigations over the area tested during this program. The area was selected by Galore Resources Inc. based on geological prospecting and the proximity to the Twin Creeks prospect.

6 Field Work and Geophysical Instrumentation

The geophysical surveys were conducted from July 26 to August 16, 2005, which included 2 mob-demob days, 1 stand-by day and 17 production days (excluding 2 days working on separate project). The geophysical crew consisted of technicians Alex Visser and Greg Amos and was supervised by geophysicist E. Trent Pezzot. The client supplied 2 helpers, Daniel Hajek and George Byrd, to assist with the survey. A discussion of the geophysical methods used on this survey is included in Section 7."Geophysical Techniques."

Survey lines were established by Galore Resources personnel using compass and chain working directly in advance of the geophysical operators. The location and orientation of the survey lines and station increments were determined by Galore Resources depending on the local targets.

Line and station labels were written on flagging, nominally at 20 metre increments along the lines. The numerical line and station labels do not necessarily conform to any local grid coordinate system. Station labels were typically organized as "0" at the start of the survey line and incremented by the distance and direction moved along the line. UTM coordinates were recorded at the ends of lines and at various points

along lines using hand held GPS units. Slope measurements were taken along the survey lines.

Two GEM Systems GSM-19 instruments were used to record magnetic and vlfem measurements at 5, 10 or 20 metre increments along the survey lines. Technical specifications for these instruments are included in Appendix 4. As a general rule, one (sometimes two) offset line(s) were also recorded. Station locations for these offsets were determined by pacing 10 metres to the side(s) of the flagged survey line. Total magnetic field intensity measurements were recorded and corrected for diurnal variations by time synchronization to a magnetic base station. Vlf-em measurements for the inphase, quadrature, field strength (x-direction), field strength (y-direction) and total field strength were recorded at each station occupied. These measurements were usually gathered for 2 vlf-em frequencies; typically Seattle and one of Cutler, Hawaii or France, depending on the available signals and line orientations.

The GEM system digitally records the geophysical data, along with line and station label information. The data is downloaded to field computers at the end of each day for subsequent processing and plotting. While the data processing was completed in various proprietary and technique specific software packages, the final results have all been transcribed into MapInfo formatted files for final plotting. This geophysical data can be overlain or directly compared with the other topographic, geological or geochemical data available in the same format.

7 Exploration Techniques

7.1 Magnetic Survey Method

Magnetic intensity measurements are taken along survey traverses (normally on a regular grid) and are used to identify metallic mineralization that is related to magnetic materials (normally magnetite and/or pyrrhotite). Magnetic data are also used as a mapping tool to distinguish rock types, identify faults, bedding, structure and alteration zones. Line and station intervals are usually determined by the size and depth of the exploration targets.

The magnetic field has both an amplitude and a direction and instrumentation is available to measure both components. The most common technique used in mineral exploration (which was used on this project) is to measure just the amplitude component using a proton precession magnetometer. The instrument digitally records the survey line,

station, total magnetic field and time of day at each station. This information is typically downloaded to a computer at the end of each day for archiving and further processing.

The earth's magnetic field is continually changing (diurnal variations) and field measurements must be adjusted for these variations. The most accurate technique is to establish a stationary base station magnetometer that continually monitors and records the magnetic field for the duration of the survey. The base station and field magnetometers are synchronized on the basis of time and computer software is used to correct the field data for the diurnal variations.

7.2 Vlf-em Method

The VLF method uses powerful radio transmitters set up in different parts of the world for military communications. In radio communications terminology, VLF stands for very low frequency, about 15 to 25 kHz. This is actually very high relative to frequencies generally used in geophysical exploration.

The signals from these powerful radio transmitters induce electric currents in conductive bodies thousands of miles away. Induced currents produce secondary magnetic fields which can be detected at surface through deviations of the normal VLF field.

Successful use of VLF requires that the strike of the conductor be in the direction of the VLF station so that the lines of magnetic field from the VLF signal cut the conductor at close to right angles. The secondary field (from the conductor) is added to the primary field (from the transmitter) so that the resultant field is tilted up on one side of the conductor and down on the other. A VLF receiver measures the tilt of the resultant field. Some receivers measure other parameters such as the relative amplitude of the total field (or any component) and the phase between any two components. The tilt angle is sometimes referred to as the in phase component. The phase difference is sometimes referred to as the out of phase or quadrature component.

Interpretation is quite simple and usually conducted on profile plots that compare the component data to the horizontal locations along the survey line. A conductor will be located at the inflection point marking the crossover from positive tilt to negative tilt and the maximum in field strength. One cannot make reliable estimates of conductor quality. A rule of thumb depth estimate can be made from the distance between the positive and negative peaks in the tilt angle profile. The major disadvantage of the VLF method is that the high frequencies result in a multitude of anomalies from unwanted sources such as swamp edges, creeks and topographic highs. It is sometimes impossible to get a powerful enough VLF station to be near the strike of the expected conductor. One way to compensate for this later problem is with the use of portable VLF transmitters. These units have limited power and therefore limited range, but can be positioned to provide optimum geometry for localized surveys.

The major advantages of the VLF method are that it is relatively inexpensive, fast and can be a useful prospecting tool. The tendency for VLF to respond to poor conductors aids in the mapping of faults and rock contacts.

7.3 Soil Geochemistry Method

Soil samples were gathered at selected stations that were occupied by the geophysical surveys. Wherever possible, samples were taken from the "B" soil horizon. In some areas this required using hand augers or digging pits to depths of up to 5 feet. Samples were saved in paper bags and labelled with sample numbers as well as line and station coordinates from the geophysical survey grid.

The samples were then dried and shipped to Acme Analytical Laboratories Ltd. in Vancouver, B.C. where 15 gram samples were leached with 90 mL of 2-2-2-HCL-HNO3-H20 at 95° C for 1 hour, diluted to 300 mL and analysed by ICP-MS. Concentrations for 36 elements were calculated and reported in a digital ascii file format.

A more complete description of the techniques used is included along with the results of the geochemical analysis in Appendix 6 at the back of this report.

8 Data Presentation

The geophysical and geochemical data from this survey are displayed in five different formats, as indicated below.

8.1 Stacked Profiles

Stacked profiles comparing the total field magnetic and 3 components of the vlfem signal (inphase, quadrature, total field amplitude) are presented for each line in a page-sized format in appendices attached to this report. These plots are all oriented with the western or southernmost stations on the left side of the plot. The station labels along the horizontal axis represent the station label as written on the flagging in the field.

8.2 Stacked Profile Plan Maps

Stacked profiles comparing the total field magnetic and one or more selected vlfem components are presented on a plan topographic base map. This display shows the location of the responses relative to the NAD 83, Zone 10N UTM coordinate system.

8.3 Contour Plan Maps

Where applicable the geophysical data is presented as false colour contour or line contour maps displayed over a topographic base.

8.4 Compilation and Interpretation Map

Interpreted trends are highlighted over a topographic base. In some cases, this display is merged with one of the other plan maps.

8.5 Thematic Maps

The geochemical analysis is presented in spreadsheet form in Appendix 6 at the back of this report. Selected elements (Copper, Molybdenum, Cobalt, Arsenic and Gold) are also plotted as thematic maps over the topographic base maps and geophysical survey grids where appropriate.

9 Discussion of Results

The results of the geophysical surveys are discussed below. The geochemical analysis is being studied by John Hajek. While selected elements are plotted as thematic symbols with the geophysics, a discussion of their significance will be treated in a separate report.

9.1 Hub

The Hub prospect is located along the northern bank of the Tchaikazan River centred near UTM coordinates 453550E and 5668950N (latitude 51.17^{0} N, longitude 123.66⁰W). It exhibits the attributes of a copper-molybdenum porphyry system. Although previous exploration has included geological mapping, trenching, geochemical soil sampling, geophysical surveying (including magnetometer, vlf-em and induced polarization) and drilling, the stratigraphy and structure of the volcanics and interbedded sediments is poorly understood.

Survey lines were established approximately east-west, paralleling previous work completed by Suncor in the 1980's. The survey extended up a talus covered slope from the northern bank of the Tchaikazan River. A couple of well cut lines (250N, 500N) from the Suncor survey were found. This latest survey attempted to use the same grid labelling scheme and based the line number (85S to 600N) on the distance from Suncors' line 250N. For the purposes of this survey, the grid was divided into east and west halves, separated by baseline 0E. Field notes refer to grid A to the west of the baseline and grid B to the east. Line and station numbers were established separately for these two "subgrids".

The west grid ("A") is comprised of 40 east-west lines (85S to 500N) averaging about 500m in length for a total of ~19 km. The east grid ("B") is comprised of 42 eastwest lines (25N to 600N) ranging in length between 80m and 700m for a total of ~18 km. Survey lines were nominally spaced at 25 metre intervals and in most cases, paralleled by an offset line, established by pacing 10 metres from the cut line. The geophysical data, as described above, were gathered at 10m station intervals on most of these lines.

As illustrated on the coloured magnetic contour map below, the bulk survey area is underlain by relatively quiet magnetic responses (green), that fall within a 500 nT range between 55,000 and 55,500 nTs. There is a significant increase in magnetic amplitude (>56,000) to the south of line 200N (red). A second major magnetic high appears as a northwesterly striking band, approximately 75m wide and 400m long, near the centre of the grid. There are two areas that exhibit significantly lower magnetic amplitudes (blue). One is a roughly elliptical shaped feature, approximately 200m E-W by 150m N-S located along the western edge of the grid (centred on line 201N, station 120E of the west grid). The other is located on the eastern ends of lines 425N to 600N (east grid) and is considered open to the north and east. These relatively large magnetic features are likely reflecting discrete lithological units. The westernmost magnetic low is enclosed within a larger feature characterized by high spatial frequency magnetic variations. This character is often indicative of volcanic rocks. One possible interpretation is that the magnetic low reflects the centre core of a buried porphyry system while the larger halo represents an overlying cover of volcanic rocks.

There are a number of smaller fluctuations superimposed over these larger magnetic responses. While some of these smaller responses are single line features, most are observed across several lines tend to align to form northwesterly to northeasterly trending lineations. Some are defined by breaks or disruptions in the regional trends while others appear to be discrete magnetic bodies. These localized responses are most likely reflections of faults, veins or other types of narrow, linear bodies. A detailed examination of the magnetic profiles, correlated with geochemical and geological data will be required to determine whether any of these "localized" features have any specific exploration interest. The colour enhanced shadow image below illustrates many of these trends.

Figure 5: Hub Grid –Total Magnetic Field Intensity Colour Map – Shadow Enhanced by sun angle from northeast.

There is a distinct change in the character of the vlf-em signal across the survey area. At the higher altitudes the vlf-em signal is significantly noisier than at the lower elevations. This is likely related to thicker overburden (talus) at the higher elevations. Vlf-em responses at the lower elevations are more likely related to the underlying geology.

There are two primary orientations of vlf-em defined conductors evident. One set typically parallels the regional topography, striking close to N45⁰E. The second set strikes from north to NNW. The former group could easily be related to the topography. The later group is less easily dismissed. While the NNW striking drainages could be the source of some of these responses, most are likely related to the underlying geology.

Page 17

SJ Geophysics Ltd/S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel (604) 582-1100 fax (604) 589-7466 E-mail: sydv@sjgeophysics.com The strongest indications of conductivity on the property occur at the northeast end of the grid on the east ends of lines 425N to 600N, coincident with the large magnetic low described above. These sometimes appear as the response to one large, deep conductor and sometimes as a series of closely spaced, near surface conductors. These various representations are likely due to interference patterns. These conductivity indications are likely associated with the Tchaikazan River, or possibly a fault zone that influences the location of the river. The survey lines would need to be extended to the east, across the Tchaikazan River to fully delineate the vlf-em responses.

The bulk of the NNW trending vlf-em conductors coincide with the large magnetic high covering the southern portion of the grid. More specifically, many of these conductors coincide with breaks in this magnetic unit. As with the magnetic data, these small conductors will need to be correlated with the geological and geochemical data to determine their exploration significance.

9.2 Charlie Prospect

The Charlie prospect is a gold-silver quartz vein occurrence, situated close to the Hub prospect and is considered a mesothermal precious metal vein prospect peripheral to the porphyry prospect. It is located ~ 1 km north of the Hub prospect, centred near UTM coordinates 453700E, 5670300N (latitude 51.18° N, longitude 123.66° W).

The mineralogy of the gold - telluride (hessite) - silver mineralization at Charlie is similar to that observed at the Pellaire prospect and it is surmised that the Charlie veins also persist to depth, along with their relatively high precious metal grades. It is also assumed that the Charlie showing lies within a shallower part of the hydrothermal mineralising system that introduced the copper-molybdenum sulphides at a deeper level at the Hub showing. The Charlie prospect lies near a major transcurrent fault zone.

Eight survey lines (1200N to 1550N) were established across the Charlie prospect, heading uphill and west from an access road near UTM coordinate 454,250E. Four of these lines were also surveyed with 10m offsets to both sides and the other four with a single 10m offset, bringing the total to 20 lines, varying between 700m and 1000m in length. In addition, 8 closely spaced lines were set up at the northwest corner of the grid to provide detail cover over a 130m x 100m block. In total, some 18.1 line kilometers of magnetic and vlf-em surveying was completed, with data gathered at 20m and 10m station intervals.

The magnetic data is relatively quiet, with the bulk of the readings falling within a 250 nT range between 55,000 and 55,250 nTs. The general fabric of the magnetic data suggests that the underlying geology trends WNW, nearly parallel to the survey lines. The data is punctuated with 3 localized magnetic highs (> 55,400 nTs) and 4 localized magnetic lows (< 54,900 nTs) which are likely mapping small, near surface lithology changes.

Two of the magnetic highs, at 1540N/105W and 1540N/745W are flanked by sharp magnetic lows. This dipolar character is indicative of a source with a limited depth extent, possibly a localized pod of high susceptibility material or the edge of shallowly dipping layer. The third magnetic high anomaly is a bit larger and observed on lines 1540N and 1550N between stations 840W and 880W. All three of these anomalies are considered open to the north and further surveying in that direction will be required to interpret the structural characteristics of the sources.

The east-west orientation of the survey lines coupled best with the Seattle vlf-em transmitter to detect northerly trending conductors. Vlf-em data were gathered at the Seattle frequency across the entire grid and for either Cutler or Hawaii as a secondary frequency. There are numerous conductivity type responses observed in the data however they are all very weak and close to the noise levels of the survey. Several of the responses coincide with surface drainages which are the likely source. Some of the responses coincide with weak magnetic trends and these are more likely associated with geological features.

One of the most interesting responses in the data is the change observed in the inphase component between survey lines. On the southern lines (1190N to 1410N) the background inphase component is around +10%. To the north, this value progressively decreases, becoming close to -50% on the northernmost line (1550N). This dramatic change could be caused by an easterly trending conductor crossing the northern portion of the grid. North-south survey lines, measuring the Cutler frequency, will be required map that type of unit. An attempt to show this response is shown on the profile below (Figure 6). This profile was constructed from the Cutler frequency data taken from adjacent survey lines along the 454000E utm coordinate (close to 1700m elevation). The profile shows an inflection in the inphase component that could be indicative of a conductor. The profile does not extend far enough to the north to fully define the response but the impression is that the conductor would be located in the vicinity of 5,670,400N. This location coincides with a major easterly trending drainage which also

appears to follow a magnetic low lineation. It is very likely that these easterly striking geophysical trends are mapping the transcurrent fault mentioned in the previous geological reports.

Figure 6: N-S Profile across Charlie Grid – magnetic, vlf-em (inphase, quadrature, field strength)

There are no magnetic or vlf-em responses that suggest the presence of any narrow veins in the detail survey grid at the NW corner of the study area.

9.3 Northwest Copper

Four NE-SW trending survey lines, nominally spaced 25 metres apart and centred near 452200E, 5673150N, were established to cross a WNW striking magnetic feature delineated in the 1999 airborne magnetic and EM survey covering the large NW copper prospect area. This regional lineation is thought to be associated with the Tchaikazan fault.

Figure 7: Northwest Copper Area - 1999 Dighem airborne magnetic survey (background) with detailed ground survey

A total of approximately 3.7 line kilometers of data, gathered at 20 metre station intervals was recorded on the 4 survey lines.

The detailed ground survey exhibits good correlation with the regional airborne data. Both the high and low NW oriented magnetic trends evident in the airborne data are reflected in the ground data. The ground data suggests that these magnetic sources are relatively narrow (25m to 100m wide) zones and have well-defined edges, suggesting the sources are at or very near ground surface. This suggests that there is only a relatively thin layer of overburden in the area. Due to the limited surveying it is difficult to determine the precise strike and extent of these features. It is also apparent that there are

more magnetic features present in the ground data than were resolved by the airborne survey.

Based on the orientation of the survey lines and the strikes evident from the airborne survey, it is suspected that the Cutler vlf-em transmitter would have provided the best coupling to any narrow conductive zones. Unfortunately, that data was not recorded and the Seattle frequency served as the primary vlf-em signal. Regardless, there are several conductive zones evident in the Seattle data that likely originate from near surface, geological units. The precise line to line correlation of these responses is unclear, primarily due to the poor coupling angle to the transmitter signal. Conductivity responses are observed on all 4 lines in the vicinity of station 500W, coincident with a 100 metre wide magnetic low and also near station 600W, coincident with a narrower (25m) magnetic high that flanks the low. There are vlf-em conductors mapped near the southern end of lines 75S and 50S but these are likely caused by surface drainages.

It is apparent from this limited amount of surveying that these techniques would likely provide very useful information that would help the geological mapping of this area.

9.4 Twin Creeks

The Ridge grids were located near the Twin Creek showing. This area contains a mercury-arsenic showing which is thought to represent a high level mineral indication of a mineralized fracture system which may contain precious metal bearing veins at depth. A second copper showing with anomalous gold and silver values occurs to the west. The intervening area, between the two showings, is therefore highly prospective for precious and base metal occurrences.

The Ridge area is a block of ground ~ 1800m east-west by 700m north-south, covering a portion of the steep, southeasterly facing ridge along the northern flank of Falls River. This block is centred about UTM coordinates 455650E and 5661650N. Magnetometer and vlf-em test surveys were run across 3 areas within this block, identified as the Ridge Peak, Ridge Slide and Ridge River. The Ridge peak study area is near the top of the ridge and included two parallel lines, each about 250m in length running along a southeasterly trending splay off the main ridge and a shorter (125m) tie line. The ridge slide area was surveyed by a single line that followed a steep southeasterly trending drainage. It extended for ~ 1.2 km, starting to the north of the Ridge Peak lines and ending near the base of the steepest portion of the ridge, approximately 500m from

and 100m above Falls River. The Ridge river area was covered by 4 easterly trending survey lines. They started \sim 250m north of the SE end of the Ridge slide line and extended between 550m and 700m in length terminating at Falls River. These lines crossed the more gentle slope between Falls River and the base of the steep cliffs.

The study area, particularly along the ridge slide line, is very steep and consequently the data (especially the vlf-em data) has limited use. Under these conditions it is very difficult to determine the attributes of the source of any anomalous readings. The primary vlf-em signal normally aligns itself parallel to the ground surface, but in areas of steep terrain it is typically at irregular orientations. Because the interpretation is based on the angles and phase of this signal, it is often impossible to distinguish between changes due to underlying geology from those due to topography. Under normal circumstances, the local magnetic variations are due to inhomogeneities in the underlying rocks. In these circumstances, anomalies could be generated from rocks to the side or above the magnetic sensor and the polarity of the anomaly could be reversed from the norm. While the magnetic and vlf-em data may include some anomalous responses that are due to nearby variations in the rocks, it may not be possible to precisely locate the sources.

9.4.1 Ridge Peak

The ridge peak was covered with two SE trending lines (40N and 50N) that follow a narrow ridge and short tie line between them (49N).

The magnetic data show a gentle inflection in the vicinity of station 110E (line 50N) that could be a buried geological contact.

The vlf-em data is extremely noisy and there are no clear indications of any conductive zones in the area.

9.4.2 Ridge Slide (Line 45N)

The ridge slide area was surveyed with a single profile, heading southeasterly along a steep drainage. There is an abrupt change in the line direction near station 1000E (from 115 to 150 degrees).

There are several shifts in the magnetic amplitude that could be indicative of a local lithology change. Specifically, the inflections at stations 240E, 330E, 500E, 760E and 940E could be reflecting geological contacts.

While the vlf-em data is generally quite noisy, there are a few interesting responses. Strong positive inphase and negative quadrature values are located from stations 240E to 330E and from 770E to 810E. These anomalies are both coincident with areas where two drainages converge and could be reflecting a relatively thin layer of conductive overburden. It is also noted that these responses coincide with magnetic inflections so an interpretation of a geological contact is also possible.

9.4.3 Ridge River

The ridge river lines (9800N, 9820N, 9880N and 9900N) cross a more gentle slope than the ridge peak and ridge slide lines and consequently both the magnetic and vlf-em data is less noisy. There are several magnetic inflections indicative of geological contacts and three discrete zones (40-60m wide) of anomalously higher magnetic intensities. These geological features are likely within 10-20 metres of the ground surface.

There are 5 vlf-em responses indicative of narrow, higher conductivity lenses. Four of these coincide with the edges of the anomalous magnetic responses.

Based on these results, it is likely that the magnetic and vlf-em techniques would provide useful exploration information along more gentle slopes near the Falls River valley bottom (Ridge River area). These techniques will have very limited use and are not recommended for the steeper slopes in this area.

9.5 Property Visits

John Hajek, the chief project geologist guided me on two visits to the property, on July 11 and July 28, 2005. The primary intention of these visits was to provide me with a first hand examination of the area to assist in the geophysical interpretation of the existing data and to formulate recommendations for future work. Both property visits were completed with helicopter support.

The visit on July 11th included flying over the entire Northwest Copper property as well as landing at 5 sites recommended as "areas of interest" from my interpretation of the 1999 airborne survey. Details concerning these visits are described in a separate assessment report.

The visit on July 28th accomplished two tasks. First, it occurred 2 days after the geophysical crew arrived and provided me with an opportunity to review the initial data for quality control and to establish a procedure for data archiving and field processing.

Second, it allowed time for myself and John Hajek to examine the ground conditions and/or mineralogy on 7 sites being considered for further exploration.

9.5.1 Battlement

We flew around the Battlement creek / Taseko River confluence looking for evidence of the old minesite. There are unconfirmed reports of an old cabin still standing but we could not spot any cultural evidence from the air.

9.5.2 Empress

We flew around the Empress mine area and landed near the core storage area where we found core boxes stacked and in good shape. Most are labelled with metal tags and those that are not still seem to be shelved in proper sequence. There are a total of 11 racks, 9 columns/18 rows per rack (162 boxes per rack), 4 rows @ 6' per box (24'core). The mine site appears to have been taken over by outfitters and there are new sheet metal roofs on some buildings.

9.5.3 <u>Twin Creeks</u>

After using the helicopter to ferry the geophysical crew to the top of the Ridge grid we landed at the Twin Creeks site, to the west of the geophysical grid and on the opposite side of the ridge. We landed in an area with gossan staining recently exposed at the foot of a glacier.

In situ rocks are mostly black, fine grained sediments that have been metamorphosed to gneiss. They are cut by quartz veins and contain fine grained pyrite and copper mineralization.

Talus rocks are mostly coarse-grained volcanics, diorites grading to granodiorites to granites with hornblende throughout and some pink material (possibly K-spar).

In looking at the surrounding cirque faces we see clear evidence of structures. (see photograph) A gentle basin is evident on the SE face. Antiformal folding is evident on south face. The SW face shows NW dipping beds and some thrust type faulting. The general impression is that the whole area appears to have been pushed up from below, possibly from an intrusion.

Figure 8: Stitched photograph of outcrop along north facing cirque at Twin Creeks prospect-structures highlighted in red.

9.5.4 Charlie Vein

We landed on a road cut above the Charlie vein and I hiked down the road and around first switchback (several hundred metres). There was limited outcrop but I was able to find several samples showing the fine grained mineralized (tetrahedrite ?) quartz veins described in the literature. At the eastern end of the traverse I found in situ quartz veining with much coarser and well developed crystals, likely marking the edge of the system.

The terrain is relatively steep (60% slope) with minor vegetation and scrub brush. We should be able to run a magnetic survey but production will likely be slow. The vlfem will likely be of limited use in the steep terrain.

9.5.5 Fisham Lake

We flew around the hills immediately west of Fisham Lake. Most of the area is covered with trees but there are some grassy and/or bare hilltops showing light brown soils but no outcrop. There is an easterly trending, steeply sided gorge cutting the area that apparently ties to geological fault. There was significant gossan / red weathering seen along this gorge but no convenient landing sites in the vicinity.

9.5.6 Red Hill

This mountaintop to the east of Lower Taseko Lake is covered by extensive red gossans. We were searching for trenching in the area that reportedly returned very high copper values but could not find it. We landed near the top of the mountain. The rocks were highly friable and weathered. They contained significant amounts of pyrite and

some indications of copper. Several samples were taken for chemical analysis. Those results are pending.

9.5.7 <u>Taseko Mountain</u>

There is a copper showing reported on the eastern flank of this mountain. We flew around the mountain and spotted several red gossan zones but none were convenient to suitable landing sites.

10 Summary & Conclusions

In July and August, 2005, SJ Geophysics Ltd. conducted a program of magnetic and vlf-em surveying over 4 targets on Galore Resources Inc.'s Taseko Lake Project. The bulk of the work was completed on the Hub Project and included ~ 37 line km of detailed surveying on lines spaced 10 - 25 metres apart with stations occupied at 5 to 10 metre intervals. This survey confirmed the results from earlier (1981) surveys and extended coverage to the north and west. The magnetic data clearly reflects the dominant northeasterly trending geological strike and outlines several lithological or facies changes in the area. One of the most interesting responses is a circular magnetic fluctuations. This response could be reflecting a volcanic layer overlying an intrusive body and therefore represents a high priority exploration target. Several smaller northwesterly trending magnetic and vlf-em lineations cut the dominant geological trends and could be representing veins or faulting. Soil geochemical samples were gathered and are currently being analysed.

On the Charlie prospect, 1 km north of and uphill from the Hub, \sim 18 line kilometres of surveying was completed. East-west lines were established to accommodate the steep southeasterly facing slopes. The dominant magnetic and vlf-em trends appear to strike easterly and are likely related to a major transcurrent fault. There are no obvious geophysical responses from the east-northeasterly striking mineralized veining however this might be due to the survey line orientations.

A small area in the northeastern portion of the Northwest Copper prospect was tested with 4 lines of magnetic and vlf-em surveying and limited geochemical sampling. The survey lines were set up to test a NNW trending magnetic lineation, identified in the 1999 airborne survey, that parallels the Tchaikazan Fault. Several strong magnetic gradients were detected in the ground survey suggesting a more complex geological

pattern than is evident from the airborne data. The vlf-em data indicate that several of these contact type anomalies are associated with significant increases in conductivity.

The southeasterly facing slope to the east of the Twin Creeks prospect was tested in 3 areas. Lines along the top of the ridge and following a very steep drainage gully produced some magnetic gradients that are likely related to geological contacts, however the terrain is too severe to establish a regular survey grid. Surveying along a series of 4 closely spaced lines extending from the base of the cliffs to Falls River provided more interpretable results. Both the magnetic and vlf-em data mapped several contact type responses that are likely related to the underlying geology.

11 Recommendations

These magnetic and vlf-em results should be correlated with geological mapping to determine whether any of the subtle geophysical anomalies can be directly associated with known mineralization or mineralized events. A similar correlation will be required once the geochemical analysis has been completed.

These geophysical tests have confirmed that these techniques are likely to be effective mapping tools and support the earlier recommendation to use an airborne magnetic and electromagnetic survey as a reconnaissance mapping tool.

The survey across the Hub prospect has detected a circular magnetic anomaly to the northwest of the mineralized outcrop that fits the exploration target and could be mapping a buried porphyry system. Once the geological and geochemical results are correlated, it is likely that this anomaly will be upgraded to a high priority target. Induced polarization techniques might be an effective technique for delineating zonations within the porphyry system.

Respectfully submitted

per S.J.V. Consultants Ltd.

E. Trent Pez Geo.

Geophysics, Geology

12 APPENDIX 1

12.1 Statement of Qualifications

I, E. Trent Pezzot, of the city of Surrey, Province of British Columbia, hereby certify:

- I graduated from the University of British Columbia in 1974 with a B.Sc. degree in the combined Honours Geology and Geophysics program.

- I have practised my profession continuously from that date.

- I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia.

- I hold no direct or indirect interest in Galore Resources Inc., nor expect to receive any benefits from the mineral property or properties described in this report.

January 15, 2006

E. Trent I .Geo.

13 Appendix 2

13.1 References

Beckett, Robert J., TRW Resources Inc. Taseko Project, Summary Report, January, 2005

McConnell, Doug, Dighem Survey for International Jaguar Equities Inc., Northwest Copper Project, British Columbia; June 11, 1999.

Meixner, Henry M., Report on the Geology and Exploration Potential of the Mineral Prospects on the Lord River Project Claims for International Jaguar Equities Inc., April 1998.

Pezzot, E, Trent, Progress Report on the Geophysical Exploration program on the Taseko Lakes Projects for Galore Resources Inc., May 30, 2005

14 Appendix 3 - Cost Breakdown

The costs are divided into three categories. The first group includes costs incurred by SJ Geophysics Ltd. to complete the field surveys. The second includes costs by S.J.V. Consultants Ltd. for data processing, interpretation and report compilation. The third group includes costs incurred directly by Galore Resources Inc. The items and descriptions listed in this last category were provided to the author for inclusion in this report.

SJ Geophysics Ltd. CostsSurvey (personnel and equipm	ent)	2
Mobilization/demob (2 days @ \$812.50/day)	\$	1,725.00

	÷	1,
Production (13 days @ 1150/day)	\$	14,950.00
Production (4 days @ 650/day)	\$	2,600.00
Standby (1 day @ \$812.50/day)	\$	862.50
Liability Insurance (20 days @ 25/day)	\$	500.00
Spare magnetometer (2 days @ 50/day)	\$	100.00
4 x 4 vehicle (20 days @ 150/day)	\$	3,000.00
Spare 2 nd magnetometer (20 days @ 50/day)	\$	1,000.00
Field Expenses	<u>\$</u>	
SubTotal	\$	28,098.89

S.J.V. Consultants Ltd.

Trim Maps (8 sheets)	\$	2,265.17
Data Processing, Interpretation (165 hrs @ \$95/hr)	\$	1,995.00
Field Property visit (July 27-28, 2005)		
Senior geophysicist (2 days @ \$850/day)	\$	1,700.00
Expenses (auto, gas, meals)	\$	183.09
Assessment Report Compilation	\$	3,500.00
plotting, reproduction, binding	<u>\$</u>	600.00
SubTotal	\$	10,243.26
Galore Resources Inc. Costs Helicopter (July 28) \$ 4,366.57 1,200.00 4 drums fuel and transportation \$ \$ 4,716.65 Mobilization (vehicles, personnel, hotels) Field Personnel (line cutting, soil sampling) 5 men @ \$1150/day x 5 days \$ 5,750.00 \$ 24,000.00 5 men @ \$1000/day x 24 days 7,000.00 1 man @ \$350/day x 20 days \$ Meals and accommodation (includes above personnel + geophysics crew) 231 man days x \$120/day \$ 27,720.00 First aid (5 days x \$100/day) \$ 500.00 Vehicle $(4 \times 4 \text{ trucks} + \text{gas})$ 2 trucks x \$125/day/truck x 34 days \$ 8,500.00 Chain Saws 2 saws x \$35/day/saw x 25 days..... 1,750.00 \$ Phone, GPS rental 3,040.00 \$ Supplies \$ 4,768.00 **Geochemical Sampling** A503634, A503635 \$ 636.54 A505136 \$ 4,186.80 A505234 \$ 736.05 A507234..... \$ 5,546.24 A507340..... <u>\$ 1,718.31</u> SubTotal \$106,135.20

Total Assessment Cost .. \$147,477.30

15 Appendix 4: Instrument Specifications

15.1 GSM-19 MAGNETOMETER / GRADIOMETER

Resolution: Accuracy:		0.01 nT, magnetic field and gradient. 0.2 nT over operating range.
Gradient Tolerance:		up to 5000 nT/metre.
Operating Interval:		4 seconds minimum, faster optional.
Reading:		Initiated by keyboard depression, external trigger or carriage return via RS-232C.
Input/Output:		6 Pin weatherproof connector, RS-232C, and optional analog output
Power Requirements:		12v 300 mA peak(during polarization), 35 mA standby,
		600 mA peak in gradiometer
Power Source:		Internal 12v, 1.9ah sealed lead-acid battery standard, other optional
		External 12v power source can be used.
Battery Charger:		Input: 110/220 VAC, 50/60 Hz and/or 12VDC.
		Output: 12v dual level charging.
Operating Ranges		-400 C to +600 C
Temperature:		
Battery Voltage:		10v min. to 15v max.
Dimensions:	Console:	223 x 69 x 240 mm.
	Sensor staff:	4 x 450 mm sections.
	Sensor:	170 x 71 mm diameter.
Weights:	Console:	2.1 kg
	Staff:	0.9 kg.
	Sensor:	1.1 kg each.
15.2 GSM-19	VLF	
Frequency Range:		15 - 30 kHz in 0.1 kHz steps.
Parameters measured:		Vertical In-Phase and Out-of-Phase components as percentage of total field.

Resolution: Number of Stations: Storage:

Terrain Slope Range: Sensor Dimensions: Sensor Weight: Vertical In-Phase and Out-of-Phase components as percentage of total field.
2 components of horizontal field.
0.5%.
Up to 3 at a time.
Automatic with time, coordinates, magnetic field/gradient, slope, frequency, in- and out-of-phase vertical and both horizontal components for each selected station.
0 - 90 (entered manually).
14 x 15 x 9 cm(5.5 x 6 x 3").
1.0 kg (2.2 lb).

Page 33

16 Appendix 5 – Data Profiles

16.1 Hub Prospect

Page 34

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 78

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 35

Page 36

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 37

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 38

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 39

Page 40

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 41

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 42

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 43

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 44

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 45

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

.

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 46

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 47

Page 48

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 49

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 50

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 51

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 53

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

Page 54

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 55

Page 56

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

Page 57

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 56

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 58

Page 59

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 60

Page 61

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 62

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 63

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

di -i C

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

day day day day

Page 64

1 1

dia dia

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 65

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada /

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

Page 66

Conser Conse

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 67

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

Station

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

Page 69

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 70

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Thing

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 71

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

1.

Page 72

1-1 6-1

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

Page 74

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

1

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 75

CON

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 77

Assessment Report - Taseko Lakes Project

16.2 Charlie Prospect

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 80

Page 81

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 82

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

Page 85

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 86

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 88

Page 89

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 90

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 91

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 92

16.3 Northwest Copper Prospect

Magnetic - VLF-EM Profiles - NW Copper Test

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 94

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 96

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 97

Assessment Report - Taseko Lakes Project

16.4 Ridge Prospect

Magnetic - VLF-EM Profiles- Ridge Peak Lines

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 99

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

Magnetic - VLF-EM Profiles- Ridge Slide Line

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

Magnetic - VLF-EM Profiles- Ridge River Lines

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com
Galore Resources Inc. Taseko Lakes Project Ridge Grids

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada

Page 103

tel: (604) 582-1100 fax: (604) 589-7466 e-mail: sydv@sjgeophysics.com

17 Appendix 6 – Geochemical Assays SAMPLING METHOD & APPROCH

1. Description of Hub-Charlie sampling:

The 2005 geochemical soil sampling along the Tchaikazan River has used the 1980-83 Suncor cut lines and grid system in order to duplicate the molybdenum-copper soil anomalies.

Galore Resources Inc. hired SJ Geophysics ltd & S.J.V. Consultants Ltd. of Delta B.C. to conduct a magnetic & VLF-EM survey within the old Suncor grid system coincidental with Galore Resources soil sampling, having common stations and same 10 meters spacing interval.

The Hub west covers an area $700m \ge 500m$ and $750m \ge 250m$ for the Hub east.

Soil sampling was carried out by a 2-3 men team at 10 meters intervals using a pick and trowel for the A2-B2 (below roots level) and a 5 feet long auger for peat-swamp covered area.

For a 500 meters line we would collect 50 samples, with lines 25 meters apart.

After 5 lines we would collect 250 samples over an area 100 meters wide x 500 meters long, thus giving a density of 1 sample per 200 meter square.

Each location is flagged and marked with a station number, sample number and each sample hole has a coloured tape with the sample number.

2. <u>Sample quality</u>

Comparing molybdenum values in soils obtained by Suncor in 1980-83 on the same grid: Galore Resources Inc. soil results are comparable or better.

The difference is due to 10m spacing instead of 25meters station. The increase density reflects better the geological changes.

3. <u>Sampling intervals</u>

The sampling intervals were tightened to 10 meters to reflect better the geological host rock and its metal content. Grid line spacing was also tightened to 25 meters intervals.

4. <u>Sample values</u>

The sample value for copper & molybdenum are excellent correlating with the magnetic values obtained on the same locations. A resampling of the very high anomalous values has been done and duplicate well past results, see attachment for copper-moly-cobalt values.

SAMPLE PREPARATION, ANALYSIS & SECURITY

1. Sample drying & shipping

J.HAJEK, Geochemist, project manager and director of Galore supervised the drying and shipping of all geochemical soils samples.

2. ACME Analytical laboratories

This Vancouver laboratory is well established certified and is known to the author for its high standards and quality control.

3. Quality control

For every batch of 40 samples or less 2 standards are analyzed along with a repeat sample. Each batch of 20 samples contains one or more internal duplicate sample known only to GALORE staff.

4. Statement on sampling & analytical control

The author view is that a geochemical sampling program must reflect the ground condition thus depending on the quality of the fieldwork and on the reliability of the analysis used. We have used the 36 elements ICP-MS as the best tool for the expenditure. The multi-element correlation is also a reliable mean to provide an inside on the quality of the results.

JOHN. H HAJEK, GEOCHEMIST

GEOCHEMICAL SAMPLING

I. Sample Geochemical Analysis

1. Hub Rock Analysis

Acme labs #A505235, Hub property 22 samples analyzed on 1g as 7AX, August 31, 2005 We have one repeat sample, 1 standard and 4 sample locations having more than one assay within the same location. R9H & R9 HUB, R10 & R10B, R11 & R11H, R25H, R25H1 & R25BH. 21 samples from the Hub Tchaikazan river outcrops and one background soil sample from the NWC.

2. Geochemical Soils Results

- Acme labs #A503634, Hub property 32 samples analyzed on 15 g as 1DX, July 20, 2005 We have one repeat, one control & one standard sample. This is a soil orientation survey to enhance the detection of copper-molybdenum in bedrock.
- Acme labs #A503635, Hub & NWC projects
 6 samples analyzed on 15 g as 1DX, July 20, 2005
 We have one standard sample. Hub-3= molybdenite vein,
 2 NWC samples with massive sulphides: Cu, Ag, As, Cd, Sb,
 Hg, Se with high silver.
 Acme labs #A503634, \$636.54 for 30 + 6= 36 samples
- Acme labs #A505136,\$4,186.80, mixed properties 255 samples analyzed on 15g as 1DX, August 25, 2005 One standard & one repeat sample for every 35 analysis. One control sample: G-1 for every batch analysis. Twin creek: L98N & L99N = 41 samples or 820 meters. Hub = 211 samples or 2,110 meters coverage.
- Acme labs #A505234, \$736.05, NWC property 14 samples analyzed on 15 g as 1DX, August 31, 2005 We have one repeat, one control & one standard sample.

Those samples represent a 280 meters E-W section across the Tchaikazan fault located within the geophysical VLF-Magnetic survey section.

Acme labs #A507234,\$5,546.24, Hub & Michel road
346 samples analyzed on 15g as 1DX, November 2, 2005
One standard, one repeat sample for every 35 analysis including one control sample: G-1.

L200N starts as sample #1200 on 00 base line, sample #1230 is 230m W, L200N & sample # 1600 is 400m W, L200N.

L200N has 40 samples of which 22 are part of this lab report. L250N starts as sample #2001 on 00 base line, sample #2010 is 90W on the same 250N line.

Sample #2051 is located 500m west on line 250N.

L250N has 50 samples to the west covering 500 meters.

Samples #1391-1631 are 12 control repeat samples.

L275N starts with sample # 2060 on 00 base line going west, sample #2072 is located 120W on L275N & sample #2090 is located 300W on line 275N.

L275N has 31 samples to the west covering 300 meters.

L100N going west stats at sample #4203 duplicate of sample #355, finishes at sample location #4264 duplicate within 5meters of sample #370SE.

Line 100N has 49 control-repeat samples.

L175N going west starts at sample #4300 which is a repeat of sample #355 and finishes with sample #4321 which is a control of sample #310N sample.

Line 175N has 22 repeat and control samples.

R3004W to R3086W = 45 samples west of 250N on 00 baseline and going west on the road or 450 meters west.

R 30087E to R3115E = 30 samples going east from 250N 00 base line. Sample # R3017 to sample #R3058 = 20 samples covering 200 meters of road to the west of 00 L250N.

Total 95 road soil and swamp interface samples.

Sample #T509 to sample #T1370 represent 29 road cut samples from Fortune property: claims # 358595 & 510763.

 Acme labs #A507340,\$1,718.31, Hub & Fortune properties 109 samples analyzed on 15 g as 1DX, November 08, 2005 One standard, one repeat sample for every 35 analysis including

one control sample: G-1 for every batch analysis.

L200N is represented by 20 samples going west starting at location 210W sample #1210 to sample #1570,station 570W. 42 control and repeat samples from sample #310B to sample #4349.

Hub road cut testing is represented by samples R3000 to R3029W or 13 samples.

Fortune road cut testing is represented by samples T501 to T547 or 28 samples.

II. Geochemical Interpretations

1. Acme labs #A505235, Hub property

22 rock samples analyzed on 1g as 7AX, August 31, 2005 R-3, R-4, R-5 rock samples have 0.2% Cu with moly enrichment and represent a zone of mineralization found and assayed by several past exploration teams.

R-10B is part of R-10 with lower copper content but contains silverlead associated to Bi & Se and sulfur.

Manganese & iron rock content in this suite of analysis should be use as a guide to soils taken in the vicinity.

2. Acme labs #A503634, Hub property

32 samples analyzed on 15g as 1DX, July 20, 2005 A25H located 100west on 00N line, is indicate of Mo=267ppm & Cu =0.3% enrichment in bedrock.

G10H & G12H are also indicative of similar copper-moly enrichment and represent a zone of interest 40 meters wide.

3. Acme labs #A503635, Hub & NWC Projects

6 samples analyzed on 15g as 1DX, July 20, 2005 Rock sample HUB-3DH5 with Cu=0.3% and Mo=0.2% represent the high grade alteration found on the Tchaikazan river outcrops. NWC-1DH5 &NWC-5D5 are high grade floats taken during a helicopter investigation of the NWC property. They are similar to sulphosalts enrichment in sediments for copper, silver, antimony and other elements of lesser importance.

4. Acme labs #A505136, mixed properties

255 samples analyzed on 15g as 1DX, August 25, 2005

- Acme Labs #A505234, NWC Property

 samples analyzed on 15g as 1DX, August 31, 2005
 Background values, with small copper enrichment and to a lesser
 extend arsenic-gold.
- 6. Acme l Labs #A507234, Hub & Michel Claim Road 346 samples analyzed on 15g as 1DX, November 2, 2005
- 7. Acme labs #A507340, Hub & Fortune properties 109 samples analyzed on 15g as 1DX, November 08, 2005

III. Conclusions

A total of 784 samples have been taken and analyzed by Galore Resources Inc. on the Taseko project.

Copper and molybdenum have been found in extremely high quantity in soils. It may be representative of commercial grade in the underlain bedrock or moved by ground water and concentrated in specific locations.

Numerous repeat samples, duplicates taken within 5 meters radius and the lack of any abnormal concentration of manganese or iron seem to favor the proximity of mineralized bedrock.

Trenching the anomalous locations is recommended before finishing a larger sampling program.

Geological mapping and sampling will also determine if the enhanced cobalt values are indicative of copper rich volcanic or other rock units.

Acme File # A505634 Acme File # A505635

المربق والمربق المربقة والمربقة من من من <mark>الايم من المنظ</mark>وم المُعالية (مراجع المراجع المراجع المراجع المراجع الم

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT To Galore Resources Inc. PROJECT A Series Acme file # A503634 Received: JUL 20 2005 * 32 samples in this disk file.

í

Analysis: GROUP 1DX - 15.0	IO GM SAMI	PLE LEACHE	ED WITH 90	ML 2-2-21	ICL-HNO3	H20 AT 9	5 DEG. Ç FO	OR ONE H	IOUR, DILU	TED TO 300	ML, ANAL	YSED BY I	CP-MS.																								
ELEMENT	Mo	Cu	Pb	Zn	Aq	Ni	Co	Mn	Fe	As	ับ่	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ba	П	в	AI	Na	к	W	Hg	Sc	TI	s	Ga	Se Sa	ample
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ррт	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	gm
G-1	0.6	2.1	3.5	52	<.1	6.7	4.4	591	1.79	<.5	2.2	<.5		<u>5</u> 1	<.1	<,1	0.1	39	0.44	0.079	8	80.3	0.61	232	0.116	1	1	0.056	0.52	0.1	0.01	1.9	D.4	<.05	5	<.5	15
A21H 20E	1.6	58.2	13.7	104	0.2	28.3	24.1	1407	4.94	59.4	0.2	10.1	0.8	38	0.3	2	0.1	87	0.73	0.077	9	46.5	1.51	95	0.028	4	2.95	0.019	0.14	0.2	0.05	8.8	<.1	<.05	8	<.5	15
A22H 40E	1.7	71.4	13.6	95	0.3	28.4	24.3	1311	5.09	59.5	0.2	13,4	0.9	39	0.3	1.8	0.1	92	0.65	0.074	9	47	1.47	82	0.035	3	3	0.024	0.09	0.3	0.06	9.2	<.1	<.05	9	<.5	15
A25H 100E	267.9	3024.4	4.3	47	0.4	15	22,1	466	5.39	6.7	0.7	7.4	1.1	51	0.2	1.8	1.1	109	0.7	0.085	8	24.1	1.13	204	0.103	1	2.5	0.076	0.15	1.3	0.12	9.3	0.1	<.05	7	2	15
A27H 140E	22.1	741,7	4.1	77	0.2	18.7	22.9	457	4.45	11.7	0.4	2.9	0.8	72	0.1	0.4	0.4	143	1.05	0.039	5	32.1	1.25	81	0.139	3	3.81	0.169	0.12	0.7	0.04	10.4	0.1	<.05	10	1.3	15
A26H 160E	5	226.9	3.2	49	0.1	17.6	13.3	373	3.03	9.1	0.2	2.5	0.6	36	< 1	0.3	0.1	97	0.58	0.033	4	29	0.85	57	0.137	3	2.6	0.065	0:11	0.4	0.03	5.9	0.1	<.05	7	<.5	15
A29H 180E	19,3	753,4	4.1	65	0.1	27.7	21.2	465	4,19	12.3	0.4	3.1	1	50	0.1	0.4	0.2	122	0.7	0.056	7	42.8	1.23	68	0.148	3	3.26	0.064	0.16	1	0.04	9.7	0.1	<.05	9	0.8	15
A128H 160E	5	231.2	3.1	52	0.1	16.9	13.7	368	3.15	9.7	0.2	1.4	0.7	34	0.1	0.3	0.1	97	0.55	0.033	4	28.9	0.86	54	0.134	1	2.5B	0.054	0.1	0.4	0.01	5.8	0.1	<.05	7	<.5	15
B0.0 20N	42.4	97.5	5.1	74	0.1	22.3	16.7	433	4.31	64.7	0.7	7.9	1.4	27	0.1	0.6	0.2	103	0.39	0.058	7	34	0.82	70	0.103	3	2.52	0.025	0.06	8.7	0.06	5.9	0.1	<.05	7	0.7	15
B0.0 2E	96.8	193.7	6.1	62	0.1	22.7	22.8	453	5.72	136.3	0.B	5.1	1.6	51	0.1	0.7	0.2	147	0.69	0.05	13	36.7	0.99	112	0.116	3	3.08	0.064	0.09	18.2	0.12	10	0.1	<.05	8	1	15
D100 2N 20E	2,1	47,5	13.4	84	0.2	27.3	22.7	1123	4.67	58.9	0.2	12.6	0.9	35	0.3	1.7	0.1	82	0.67	0.066	9	45.6	1.53	81	0.021	4	2.91	0.016	0.13	0.3	0.18	8.9	<.1	<.05	8	<.5	15
D101 2N 40E	4.1	102,1	11. 1	111	0.1	26.9	20.8	587	4.86	36	0.2	2.1	0.7	32	0.1	0.B	0.2	105	0.4	0.052	4	48.9	1.51	79	0.046	2	3.56	0.021	0.08	0.4	0.03	6.9	0.1	<.05	g	<.5	15
0102 2N 60E	14.8	147.8	13.5	86	0.3	28.8	23	995	4.85	44.2	0.3	9.9	0.8	53	0.3	1.3	0.2	108	0.82	0.047	9	53.1	1.44	73	0.061	4	3.28	0.046	0.08	0.5	0.05	9.5	0.1	<.05	9	0.6	15
D103 2N 80E	1,4	65.9	15.5	96	0.4	30.3	25.3	1385	5.31	62.1	0.2	17	0.9	41	0.4	1.8	0.1	93	0.7	0.072	11	51.8	1.62	91	0.031	4	3.13	0.022	0.09	0.2	0.07	9.8	<.1	<.05	9	<.5	15
D104 2N 100E	6.8	100.9	16.7	86	0.2	28.1	22.5	979	4.73	37.8	0.2	4.6	0.7	49	0.2	1	0.2	110	D.74	0.058	6	49.3	1.46	79	0.068	5	3.54	0.043	0.1	0.4	0.03	8.2	0.1	<.05	9	<.5	15
D105 2N 120E	19,9	116.3	12,9	102	0.5	28.1	19.4	1085	4.37	32.2	0.3	25.2	D.4	67	1	1.2	0.2	91	1.46	0.078	8	44.8	1.25	74	0.026	4	3.02	0.036	0.06	0.5	0.03	6.6	<.1	<.05	8	2.2	15
D106 2N 140E	10.2	77.4	11.2	77	0.4	25.4	16.8	556	4.46	34	0.2	7.8	0.5	59	0.4	1.1	0.2	98	1.17	0.048	6	45.7	1.32	66	0.055	3	3.1	0.041	0.07	0.4	0.03	7.4	< 1	0.06	8	1.7	15
D107 2N 160E	32.9	102.6	12.6	93	0.2	26.1	16.2	519	3.6	13.8	0.2	8	0.7	59	0.3	0.6	0.2	93	1.13	0.059	6	49.5	1.52	73	0.077	6	3.07	0.045	0.09	0.8	0.05	8.8	0.1	0.36	8	7	15
D108 2N 180E	61.6	922.9	3.8	83	0.3	23	25.8	567	5.36	в	0.2	8.4	0.9	62	0.1	0.2	0.3	149	0.73	0.052	5	43.2	1,79	77	0.155	4	4.22	0.117	0.11	0.3	0.03	14	0.1	<.05	11	0.5	15
D110 2N 200E	4.9	205.1	3.8	47	0.1	23.7	15.7	327	3.51	11.4	0.3	1.7	0.9	38	0.1	0.4	0.1	102	0.46	0.018	5	37.8	0.96	76	0.131	3	3.06	0.037	0.08	0.2	0.03	6	0.1	<.05	8	<.5	15
D111 2N 220E	18.8	652.5	4.1	59	0.1	23.4	21.6	467	4.67	12.5	0.4	5.4	1.2	57	0.1	0.3	0.3	135	0.79	0.063	6	36.3	1.21	70	0.142	3	3.73	0.10B	0.1	0.5	0.04	9.2	0.1	<.05	9	0.7	15
D112 2N 240E	1	30.7	2.4	32	<.1	8.6	7.3	282	2.06	5.9	0.6	1.4	1.3	34	<.1	0.3	0.1	58	0.58	0.066	5	16.6	0.56	37	0.097	2	1.22	0.039	0.06	0.3	0.03	2.9	<.1	<.05	4	<.5	15
D113 2N 260E	0.9	48.3	4.7	40	0.1	11.7	10	315	2.76	11.6	0.6	4	1.6	37	0.1	0.5	0.1	82	0.62	0.05	6	24.3	0.64	35	0.086	2	1.41	0.04B	0.05	0.4	0.24	3.4	<.1	<.05	4	<.5	15
G3H 15W	12.2	49.3	5	77	0.1	13.1	10.2	334	2.47	11.7	0.2	5.9	0.5	28	0.1	0.3	0.2	69	0.51	0.028	5	22.1	0.47	84	0.073	4	1.92	0.018	0.07	0.9	0.01	3.1	0.1	<.05	6	<.5	15
G5H 30W	12.3	71.5	5.4	87	0.1	18	12.8	596	2.95	13.1	0.3	1.4	1	36	0.2	0.4	0.1	83	0.75	0.023	7	28	0.65	118	0.11	4	2.29	0.025	0.09	0.6	0.04	4.7	0.1	<.05	7	0.5	15
GBH 45W	30.7	153	2.3	78	0.1	7.3	9.1	1207	1.38	7.3	0.2	<.5	0.1	57	0.4	0.2	0.1	25	2.57	0.05	2	11	0.21	68	0.025	10	0.67	0.015	0.04	1.9	0.09	1.3	<.1	0.53	2	2.3	1
G10H 85W	280	1968.4	4.7	86	0.2	15.6	5.6	36	0.23	<.5	1	0.8	0.1	69	2.6	1.1	<.1	38	3.91	0.035	2	6	0.1	36	0.009	20	0.26	0.011	0.02	19,8	0.11	0.5	0.1	1.29	1	44.8	1
G12H 125W	173.9	3042.4	2.2	55	0.5	13.6	251.7	4785	3.12	18.7	1.5	0.9	0.1	82	0.8	0.4	0.1	99	3.08	0.095	12	13.9	0.49	170	0.031	в	1.42	0.062	0.05	7.3	0.34	2.6	0.2	0.21	4	5.1	1
G13H 140W	30.6	747.3	3.5	59	Ũ.7	6.4	14.8	220	1.21	5.7	0.9	2.3	0.1	54	0.2	0.3	0.2	28	2.87	0.11	9	15.2	0.14	39	0.013	7	1.06	0.015	0.03	0,9	0.19	1.1	<.1	0.22	2	1.7	7.5
RE D112 2N 240E	1.1	30,5	2.5	34	<.1	8.4	7.5	292	2.16	6.1	0.5	1	1	35	0,1	0.3	0.1	63	0.57	0.068	5	16.8	0.65	38	0.091	1	1.1	0.037	0.06	0.3	0.05	2.6	<.1	<.05	4	<.5	15
JH-2 30W	17	62	5.1	100	0.1	19.1	14.2	484	2.99	12	0.3	5.5	1	33	0.1	0.4	0.1	87	0.71	0.02	6	27.2	0.52	114	0.104	4	2.14	0.022	0.08	0.5	0.03	4.3	0.1	<.05	7	<.5	15
51 00 BASELINE 250 1E	16.9	958.6	6.2	60	0.1	15.1	19.6	410	4.44	10.1	0.3	3	0.8	57	0.1	0.4	0.8	149	0.63	0.026	4	26	1.42	B4	0.158	3	3.88	0.062	0.19	3.3	0.02	10.7	0.1	<.05	9	0.5	15
STANDARU DS6	11.3	126.2	29.6	146	0.3	26	11	729	2.87	21.8	6.7	50.2	3.2	42	6.1	3.5	5	60	0.88	0.082	15	200.4	0.6	163	0.081	17	1.99	0.075	0.16	3.9	0.23	3.4	1.7	<.05	0	4,4	10
From ACME ANALYTICAL L To Galore Resources Inc, PR Acme file # A503635 Receit Analysis: GROUP 1DX - 15.0	ABORATOF OJECT A S Wed: JUL 20 O GM SAMP	RIES LTD. 85 Series) 2005 * 7 : PLE LEACHE	i2 E. HASTIN samples in th 50 WITH 90 I	IGS ST. V Nis disk file ML 2-2-2 F	ANCOUVE	R BC V6A -H2O AT 95	1R6 PHON	ie(604)253 Or one h	3-3158 FAX(604)253-171 FED TO 300	16 @ CSV 1	TEXT FOR	MAT CP-MS.			_	_	.,		_		•	•	-	-	_			v			0.			0-	0-	
ELEMENT	Mo	Cu	Pip	Zn	Ag	Ni	Co	Mn	Fe	As	บ	Au	Th	Sr	Cd	Şb	Bi	v	Ça	P	La	Çr	Mg	ва	TI	в	A1	Na	ĸ	W	нg	SC	п	S	Ga	SB	
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	% 0.000	ppm	%	%	%	opm	ppm 0.04	ppm	ppm	%	ppm	ρpm	
GH-99	4.2	158,2	1.8	13	0.2	8.6	113.6	137	13.47	<.5	<.1	5	0.1	58	<,1	0.1	0.7	46	1.56	0.024	1	9.6	0.33	30	0.039	1	2.29	0.194	U.74	5	0.04	3.7	<.1	>10	5	6.7	
HUB-20H5	1.5	80.2	7,4	59	D.2	16.2	22.1	677	4.17	1.2	0.1	1	0.3	51	0.1	0.2	0.2	118	2.42	0.049	2	36.8	1.27	52	0.117	2	3.9	0.351	0.15	1,1	0.01	1.9	< 1	1.15	10	<.5	
HUB-JDH5	>2000	3468.4	0.8	30	1.2	6.3	15.2	319	2.66	<.5	0.1	7.3	0.1	6	2.5	1.8	0.5	26	0.21	0.005	1	4.8	0.66	17	0.002	1	1.08	0.077	0.07	0.4	0.05	2	<.1	1.29	ž	3.2	
HUB-4DH5	78.1	861.2	57.6	110	1.5	15.1	17.5	779	4.32	<.5	0.2	15.2	0.3	76	1	0.2	5.4	128	1.34	0.048	3	18.4	1.37	49	0.085	2	2.38	0.168	0.51	25,2	<.01	8.6	0.1	2.28	6	1.4	
NWU-1DH5	8.7	>10000	17.8	2726	>100	5.2	43.2	596	2.86	1774.4	0.2	29	<.1	11	318.8	>2000	6.2	201	0.3	<.001	<1	27.4	0.12	32	0.002	<1	0.6	0.021	<.01	10.6	>100	6,7	< 1	<.05	3	13.5	
NWC-5D5	5.8	>10000	3.5	1339	39.4	6.2	47.7	1150	4.89	1070.7	<.1	18.5	<.1	29	125	>2000	0.7	51	6.89	0.003	<1	4.4	0.46	14	<.001	19	0.21	0.006	0.04	0.2	>100	5.5	< 1	<.05	<1	3.2	
STANDARD DS6	11.3	120.7	28.1	146	0.3	23.9	10	73û	2.88	20.7	6.4	48.2	3.1	40	-6	3.5	4.8	55	0.88	0.085	13	195.2	0.58	160	D.075	16	1.93	0.071	0.16	3.5	0.23	3,4	1.6	0.05	6	4.4	

Analysis: GROUP 1DX -	15.00 GM SAM	IPLE LEACH	IED WITH 9	70 ML 2-2-2	HCL-HNO3	3-H2O AT 9	5 DEG. C F	OR ONE H	IOUR, DILI	UTED TO 30	0 ML, ANAI	YSED BY	ICP-MS.															
ELEMENT	Mo	Cu	Pho	Zn	Ag	Ni	Co	Mn	Fe	As	ับ	Au	ፐኩ	Sr	Cd	Şb	Bi	V	Ça	Р	La	Cr	Mg	Ba	Tİ	в	Al	
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	
GH-99	4.2	158.2	1.8	13	0.2	8.6	113.6	137	13.47	<.5	<.1	5	0.1	58	<.1	0.1	0.7	46	1.56	0.024	1	9.8	0.33	30	0.039	1	2.29	0.
HUB-2DH5	1.5	80.2	7,4	59	0.2	16.2	22.1	677	4.17	1.2	0.1	1	0.3	51	0.1	0.2	0.2	118	2.42	0.049	2	36.8	1.27	52	0.117	2	3.9	٥.
HUB-3DH5	>2000	3468.4	0.8	30	1.2	6.3	15.2	319	2.66	<.5	0.1	7.3	0.1	6	2.5	1.8	0.5	28	0.21	0.005	1	4.8	0.66	11	0.002	1	1.08	Ð.
HUB-4DH5	78.1	861.2	57.6	110	1.5	15.1	17.5	779	4.32	<.5	0.2	15.2	0.3	76	1	0.2	5.4	128	1.34	0.048	3	18.4	1.37	49	0.085	2	2.38	0.
NWC-1DH5	8.7	>10000	17.8	2726	>100	5.2	43.2	596	2.86	1774.4	0.2	29	<.1	11	318.8	>2000	6.2	201	0.3	<.001	<1	27.4	0.12	32	0.002	<1	0.6	0.
NWC-5D5	5.8	>10000	3.5	1339	39.4	6.2	47.7	1150	4.89	1070.7	<.1	1B.5	<.1	29	125	>2000	0.7	51	6.89	0.003	<1	4.4	0.46	14	<.001	19	0.21	0.
STANDARD DS6	11.3	120.7	28.1	146	0.3	23.9	10	730	2.88	20.7	6.4	48.2	3.1	40	6	3.5	4.9	55	0.88	0.085	13	195.2	0.58	160	D.075	16	1,93	D.

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT To Galore Resources Inc. PROJECT N.W Copper Acme file # A505235 Received: AUG 31 2005 23 samples in this disk file. Analysis: GROUP 7AX - 1.000 GM SAMPLE LEACHED WITH 30 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 100 ML, ANALYSED BY ICP-ES AND ICP-MS.

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	A	Na	к	W	Hg	Sc	ΤI	S	Ga	Se
SAMPLES	ppm	ppm	ppm	ppm	ppm	p pm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm
R-1H	32.3	1357.6	0.8	27	0.5	10.2	11.3	164	2.96	<5	<.5	1	35	<.5	<.5	<.5	84	0.61	0.044	6	13.4	0.91	69	0.144	1.56	0.095	0.29	1,3	<.05	5.9	<.5	<.5	6	<2
R-3 HUB	182.7	2130.8	1	44	0.6	16.5	24.2	301	5.72	<5	<.5	<.5	131	<.5	<.5	<.5	238	2.2	0.051	<5	32	2.05	95	0.301	4.88	0.476	0.95	4.1	<.05	18.2	<.5	<.5	12	2
R-4 HUB	101.2	2076	3.7	65	0.7	16.3	20.2	522	5.24	<5	<.5	<.5	74	<.5	<.5	<.5	209	1.54	0.049	<5	19.7	2.09	27	0.312	3.8	0.233	0.38	7.3	<.05	18.1	<.5	<.5	10	2
R-5 HUB	275.8	2840.9	2	68	1.6	22	23.3	783	5.93	<5	<.5	<.5	114	<,5	<.5	<.5	241	2.24	0.057	<5	27.3	2.25	31	0.325	4.61	0.332	0.38	7	<.05	20.8	<.5	0.5	12	2
R-6 HUB	116.3	1278.4	2.2	46	<.5	15.4	21.3	502	5.71	<5	<.5	0.5	122	<.5	<.5	<.5	230	2.28	0.05	<5	21.5	1.92	49	0.272	4.46	0.393	0.47	13.2	<.05	17.4	<.5	<.5	11	<2
R-7 HUB	72.3	1287	1.8	33	<.5	18.3	22,9	220	5.63	<5	<.5	0.5	164	<.5	<.5	<.5	251	2.56	0.055	<5	24.3	1.84	110	0.299	5.36	0.61	1.03	9.2	<.05	15.6	<.5	<.5	13	<2
R-8 HUB	67.3	641.8	0.9	32	<.5	13.5	20.2	243	5.54	<5	<.5	<.5	166	<.5	<.5	<.5	248	2.55	0.057	<5	22.6	1.7 9	104	0.305	5.23	0.574	0.98	0.7	<.05	16.6	<.5	<.5	12	<2
R-9H	66.5	1142	0.8	27	<.5	13.8	22	285	5.66	<5	<.5	<.5	176	<.5	<.5	<.5	248	2.63	0.058	<5	17.8	1.94	127	0.294	5.64	0.667	1.14	2	<.05	18.9	<.5	<.5	12	<2
R-9 HUB	50.3	721.7	1.2	25	<.5	13.3	19,3	232	5.54	<5	<.5	<.5	186	<.5	<.5	<.5	245	2.65	0.055	<5	18.9	1.72	83	0.294	5.04	0.515	0.77	0.8	<.05	14.3	<.5	<.5	11	<2
R-10 HUB	75.8	1453.4	12.9	98	1.2	12	15.7	496	4.86	<5	<.5	<.5	54	<.5	<.5	2.8	163	1.42	0.042	<5	14.5	2.11	33	0.255	3.39	0.153	0.41	7	<.05	13.6	<.5	2.1	10	3
R-10B HUB	153.8	579.3	233	112	4.9	8.3	6.9	403	4.97	<5	<.5	<.5	26	0.7	<.5	22.5	129	0.63	0.057	<5	13.9	1.42	33	0.167	1.92	0.051	0.35	47.2	0.31	5.1	<.5	1.1	7	25
R-11H	7.1	540.6	3.9	35	<.5	5.9	13.5	225	4.48	<5	<.5	<.5	101	<.5	<.5	<.5	222	1.94	0.045	<5	9.3	1.13	68	0.215	3.69	0.408	0.48	0.7	<.05	15.6	<.5	<.5	9	<2
R-11 HUB	59.5	1070.1	1.2	27	<.5	11.2	21.3	220	5.42	<5	<.5	<.5	182	<.5	<.5	<.5	247	2.61	0.054	<5	20.2	1.74	179	0.292	5.3	0.608	1.01	0.5	<.05	14.4	<.5	<.5	13	<2
R-13H	27.5	520.5	1.8	19	<.5	5	6	141	1.85	<5	<.5	1.2	26	<.5	<.5	<.5	48	0.33	0.037	5	5.6	0.64	45	0.087	3.11	0.074	0.18	<.5	<.05	3	<.5	<.5	<o< td=""><td><2 - 2</td></o<>	<2 - 2
R-14H	6/	589	0.9	16	<.5	4.4	4.9	113	1.36	<5	<.5	1.2	23	<.5	<.5	<.5	50	0.3	0.023	<0	7.6	0.55	3/	0.063	0.95	0.064	0.14	<,0	<,05	3.5	¢.5	<.5	<5 <5	~~
R-21H	27.3	1341.3	0.8	20	<.5	3.1	5	112	1.67	<5	<.5	7.3	47	<.5	<.5	<.5	3/	0.25	0.032	<5		0.36	30	0.002	1.02	0.002	0.12	5.J	<.05	2.4	<.5 < 5	<.5	~0	~2
	40.7	254 4	2	15	<.5	3.8	0.1	128	1.30	<5 (5	5.3	1.1	33	5.5	<.0	<.3	23	0.02	0.033	~3	-0.0	0.43	D4	0.014	1 60	0.040	0.17	~.0	< 05	1.0	<.5	<.J	-5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
R-2000	30.2	701.4	0.8	21	<.3	1.2	10,5	107	2.90	<0 <5	<.5 < 5	1.1	36	<.p	<.5 < 5	c.>	43	0.02	0.044	e5	7.4	0.52	54 44	0.147	0.05	0.057	0.35	0.0	< 05	0.0	<.5	< 5	c5	<2 <2
P-26H-4	293	1067	0.8	10	<.o	2.0	0.0	122	1.44	~5	×.0 	1.1		<.5	~.0	<.s < 5	42	0.57	0.022	~5	59	0.00	84	0.024	1.05	0.057	0.15	< 5	< 05	2.7	< 5	< 5	-2	~
R-26H	32.8	1017 7	3.0	17	~	3.5	6.0	130	1.70	<5	~.5	1.0	22	<.5	<.5	~.5	40	0.07	0.041		5.9	0.59	37	0.096	1.00	0.065	0.10	0.8	< 05	35	< 5	< 5	5	<2
NWC Tan	19	36.0	24	17	~.0	2.0	0.0	124	1.07	23	<.5	C 5	25	<.5	0.5	~.5	18	0.00	0.012	<5	11 4	0.05	81	0.025	0.23	0.000	0.04	< 5	0.12	28	< 5	< 5	<5	3
RE NWC-T30	1.6	37	19	6	< 5	4.5	56	120	173	23	< 5	< 5	<5	< 5	0.5	< 5	19	01	0.013	<5	12.4	0.06	79	0.025	0.24	0.004	0.04	<.5	0.14	2.6	<.5	<.5	<5	ž
STANDARD SF-2a	296.9	6929.8	8575.8	12188	66.7	3360.3	108.9	4120	7.45	21	1.6	2.4	44	51.1	49	4,9	39	1.72	0.044	9	248.8	4.05	123	0.111	1	0.438	0.82	0.8	0.71	4.4	1	3.7	<5	6
				.2.00				~~~		2.		2								-														

.

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R5 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT To Galore Resources Inc. PROJECT TASEKO Acme file # A505136 Received: AUG 25 2005 * 255 samples in this disk file. Analysis: GROUP 10X - 15.00 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS.

ELEMENT	Mo Mo	Cu	Pb	ri∋⊍ ∾⊫ 2∹. Zn	Aa	NO3-F120 P Ni	Co	Mn	Fe Fe	As	신	ALISEUDIIU Au 1	г•мэ. Ъ .⁰	r Co	d Sh	Bi	v	Ca P	La	Cr	Mg Ba	n	в	Al Na	к	w	Hg	Sc	Π	S G	a Se	s Sample
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb pp	m ppr	n ppn	n ppm	ppm	ppm	% %	ppm	ppm	% ppm	%	ppm	% %	%	ppm	ppm	ppm	ppm	% ppi	n ppm	i gm
G-1	0.7	2	2.5	41	<1	6.5	3.8	475	1.69	<.5	2.1	0.6 3	8 5	E <1	1 <.1	Q.1	35	0.44 0.082	8	84.5 0).59 174	0.107	1	0.93 0.057	0.42	0.1	<.01	2	0.3 <	05	4 <.5	15
162 20W L25N	10	73.7	4	41	0.1	17.2	11.7	347	3.15	16.9	0.3	1 0	.9 2	3 0.1	1 0.4	0.2	87	0.41 0.026	4	29 0	0.76 60	D.125	3	2.46 0.026	0.06	0.3	0.03	4.4	<1 <	<.05	6 <.5	15
200 0E E / SN 202 20E L 75N	45 43 0	295.6	10.5	84 85	0.2	27.6	25.6	465	4.11	27.6	0.3	28.6 0	.8 5 7 F	o 0.4	a 1.3 a 1.2	0.3	105	1.1 0.057	8	46.9 1	1.40 106 1.38 102	0.087	4 A	3.28 U.U/1 3.08 0.059	0.08	1.1	0.05	10	0.1 0	1.71 1.72	ຽ 4.4 ຊີ <u>ວ</u> ດ	15
210 100E L75N		939.1	6.2	71	0.2	26.2	22.6	540	3.86	17.5	0.2	4g 1	, 5 2 5	, U. 2 D1	J 1.3	0.3	101	0.8 0.004	10	41.3 1	1.21 75	0.15	3	2.49 0.064	0.09	1.4	0.0B	8.2	0.1 <	5.05	7 23	i0 i 15
211 110E L75N	421.4	693	4.5	50	0.7	18	24.6	459	6.2	8.9	0.3	23.6 0	9 6	2 <1	0.4	1.6	116	0.78 0.063	5	25.5 1	1.19 53	0.072	Å.	2.71 0.082	0.12	2.2	0.05	B.3	0.1 0	0.37	7 4.7	/ 15
212 120E L75N	1.4	32.9	2.6	29	0.1	7.7	10.4	233	5.28	6.9	1.1	24.4 2	8 2	5 0.1	1 0.3	0.2	186	0.56 0.068	6	41.2 0	0.41 27	0.077	2	0.89 0.04	0.05	2.3	0.04	2	<.1 0	1.12	4 <.5	<i>i</i> 15
213 140E L100N	39	139	5	52	0.1	20,4	12,2	397	3.69	18.6	0.3	4.3 0	.8 5	3 0. 1	1 0.9	0.4	116	1.03 0.069	5	42.5	1.32 64	0.153	1	2.85 0.097	0.08	1.7	0.05	9.2	<1 <	.05	7 0.8	i 15
216 100E L100N	49.2	102.2	5	52	0.1	18	19.4	1607	3.35	12.1	0.4	4.7 0	96	3 0.2	2 0.6	0.2	84	1.54 0.057	6	33.9 0).92 106 \49 90	0.117	6	2.38 0.046	0.08	1.1	0.04	5.9	<1 <	4.05 4.06	6 2.5	15
219 70 EL 100 N	33.1 46.5	10.0	5.2	50 67	0.1	10,5	8.1 14 R	1869	1.83	5.8	0.1	0.5 U	2472	1 U.T	i 0,5 I 0,4	0.1	47	1.03 0.032 0.46 0.018	3	19.2 L	2.46 09 3.66 83	0.071	3	3.05 0.024	0.05	1.5	0.01	4.3	01 <	05	6 1.5 8 0.6	15
220 60E L100N	4.1	166.5	5.5	74	0.1	20.8	15.5	355	3.54	12.4	0.3	16.9 0	9 3	5 0.2	2 0.4	0.4	112	0.49 0.024	5	33.7 0	0.88 93	0.147	3	3.02 0.052	0.08	0.5	0.03	6.2	0.1 <	<.05	8 <.5	ن ز
221 50E L100N	1.5	43.4	3.7	43	<.1	18.7	11.3	307	2.77	10.1	0.3	1.5	1 2	9 0.1	1 0.4	0.1	82	0.46 0.015	6	34.2 0).74 50	0.17	2	2.2 0.024	0.13	0.1	0.03	5.6	<.1 <	4.05	6 <.5	15
226 01E L100N	65.8	116.8	3	62	0.1	7.8	5.4	112	1.3	2.2	0.1	1.4 0	1 10	3 0.2	2 0.5	0,1	23	3.85 0.083	2	11.7 0	0.28 41	0.023	12	0.92 0.016	0.05	1.4	0.09	1.4	<.1 0	1.85	2 19	/ 7.5
227 OE L125N 239 50W/1 135N	101.9 2	2294.6	6.5	73	0.3	22.7	36	410	3.83	28.8	0.4	7.5 0	5 5	9 0.2	2 1	0.2	95	1.46 0.057	11	38.6 1	0.0 122	0.097	4	2.67 0.059	0.08	1.8	0.06	B.3 6.4	0.1 1	0.9	/ 11.7 5 20.0	15
229 140W L125N	150.9	110.3	1.3	11	0.2	7.6	23	855	0.62	14.3 <.5	0.2	12.7 <	. So 1 94	s 1.5 R 1.5	0.0 5 1.3	<.1	23	4.06 0.068	1	6.1 0	0.18 37	0.003	13	0.32 0.018	0.03	3.3	0.09	0.6	0.1 0	0.0).91	1 35.2	2 7.5
229SC 40W L175	32.8	302.4	6.2	102	0.3	22.1	23	1126	3.76	18.6	0.2	1.8 0	4 7	3 0.1	5 0.6	0.3	92	1.52 0.06	5	34.3 1	1.07 92	0.099	6	3.12 0.074	0.08	3.1	0.03	7.3	0.1 <	.05	7 2.4	, 15
230 130W L125N	622.9	130.2	1.5	36	0.1	8.1	6.3	453	1.41	3	0.2	2.4 0	.1 9	5 1.1	1 3.3	≺.1	33	4.15 0.051	1	5.7 0	0.15 44	0.009	18	0.33 0.014	0.02	18.5	0.09	0.8	0.2 2	2.15	1 57.8	i 7.5
231 120W L125N	29.5	145.2	3.6	49	0.1	19.7	14.8	859	2.98	9.7	0.7	1.6 0	6 6	3 0.1	1 0.6	0.1	86	1.2 0.041	6	31.7 0	0.85 107	0.125	3	2.5 0.078	0.09	0.4	0.07	7.2	0.1 <	4.05	7 2.1	15
232 110/¥ 1120N 233 100/¥ 125N	96.7	109.7	10	59	0.1	12.7	17.7	433	3.91	6.2	0.2	9.2 0	2 11 1 0	5 Q.1	1 0.4 1 1 2	0.1	138	2.29 0.00	2	17.6	0.4 65	0.13	12	3.63 0.321	0.09	0.2	0.02	9.9	0.1 0	1.00 I	U 1.4 3 26.7	10 75
234 90W L125N	49	134.5	9.2	79	0.2	24.8	12.9	427	3.24	11.5	0.2	6.4 0	7 5	5 03	2 0.7	0.1	97	1.12 0.051	6	53.2 1	1.38 87	0.109	5	2.82 0.048	0.07	1.4	0.05	9	<.1 0	0.17	8 5.7	/ 15
235 80W L125N	49	88.2	7.9	70	0.1	20.5	11.3	350	2.59	3.7	0.3	5.9 0	5 7	0.0	2 0.5	0.2	73	1.55 0.062	5	40.4 1	1.16 81	0.09	5	2.56 0.053	0.08	3.7	0.05	7.6	<.1 0	0.15	7 11.6	i 7.5
RE 235 80W L125N	46.1	82.3	7.7	67	0.1	20.6	11	339	2.48	3.4	0.3	4.4 0	4 6	6 0.2	2 0.4	0.2	68	1.47 0.061	5	39,3 1	1.09 80	0.087	5	2.44 0.051	0.07	3.8	0.04	7.2	<.1 0	0.13	6 10.8	7.5
236 70W L125N	46.3	184.8	5.9	60	0.1	17.6	12	929	2.99	9.2	0.2	3.7 0	57	5 0.1	1 0.3	0.2	72	1,55 0.056	5	34.3 1	1.06 97	0.096	5	2.41 0.066	0.07	5	0.05	7.1	<.1 0).24 r 05	б <u>5.8</u> 7 р.7	15
237 50W L125N	20.8	22.2 22 R	4.6	81 65	<.1 < 1	15.2	10.4	428	2.12	1,2 4 5	0.4	<.5 0 0.6 ^	.ə 4 1 º	o 0.1	i U.5 2 1	0.2	65 Q	1,15 U.U24 3,94 0.056	4	48 (u.uva 51 0.11 ?∩	0.076	4	0.26 0.026	0.05	0.7	0.02	3.9 0.5	<1 1	1.81	1 261	15
240 40W L125W	175.1	36.5	3.8	66	0.1	5.6	4.8	208	0.74	<.5	0.1	2 0	.1 8	7 0.3	3 0.6	0.1	26	3.42 0.054	2	9.8 (0.27 32	0.014	22	0.58 0.02	0.04	0.5	0.06	1.5	<1 1	1.38	2 21.8	J 7.5
241 30W L125N	119.8	71.1	8.9	69	0.2	15.2	8.2	266	2.35	11.3	0.2	5.3 0	3 7	4 0.4	4 1	0.1	49	2.34 0.045	3	23.7 0	0.65 71	0.041	7	1.45 0.024	0.05	0.4	0.06	4.4	<1 1	1.43	4 15	i 15
242 20W L125N	8.7	200.3	4.3	58	0.1	18.7	12.3	316	3.43	15	0.4	4.1 1	.1 7.	2 0.1	1 0.5	0.4	69	1.22 0.029	5	28.8 0	0.83 112	0.104	4	2.68 0.098	0.08	0.5	0.04	7.3	0.1 <	<.05	7 1.3	15
243 10W L125N	5.9	185.9	3.6	49	0.2	14.4	8.6	263	2.48	12.9	0.8	2.4 0	5 4	B 0.1	1 0.4	0.1	85	1.07 0.024	5	22.1 0	1.08 54 0.04 60	0.087	3	1.68 0.042 2.13 D.105	0.05	0.6	0.05	4.5	<.1 <	<.05	D 1.5 7 1.4	15
245 200W L150N	15.7	20.2	3.5	27	<.1	22.9 6	4.9	204	4.94	28	0.8	1.1	.0 (5 U. 9 <1	1 0.5	0.5	40	0.51 0.059	4	12.8 (0.45 23	0.085	1	D.96 D.042	0.04	0.4	0.04	2.4	<1 <	<.05	3 <5	5 15
246 190E L150N	1.5	36.4	3.7	39	0.1	16.4	9.9	333	2.53	7.8	0.3	1.3 1	1 3	3 0.1	2 0.4	0.1	71	0.72 0.047	7	27.4 (0.71 45	0.119	3	1.6 0.047	0.07	0.2	0.05	4.4	<.1 <	<.05	5 <.5	i 15
STANDARD DS6	11.8	123	30.7	143	0.3	24.9	10.8	700	2.85	21	7	48.3	3 4	6.1	1 3.5	5.1	56	0.83 0.075	15	188.2 0	0.59 168	0.083	18	1.95 0.069	0.15	3.5	0.23	3.4	1.8 <	<.05	6 4.2	. 15
247 180E L150N	31.9	148.9	5.1	74	0.1	24.5	15.8	2332	3.28	15.9	0.5	3.4 1	3 4	0.4	4 0.5	0.1	87	0.64 0.039	8	31.5 (0.81 147	0.138	3	2.29 0.039	0.11	1.4	0.08	7	0.1 <	<.05	7 <.5	15
246 170E L150N 249 460E L150N	20.8	/4.3 66.3	4	53	0.1	21	13.8	1782	3.36	15.5	0.3	3.9 1	2 4	7 0.4	4 0.6 3 16	0.1	85	0.81 0.066	1	30.8 C	0./15 B/ 1.17 1.60	0.114	2	1.74 U.041 0.35 D.026	0.05	1.3	0.12	6.2 0.7	0.1 <	5.05 1.69	5 0.9	15 A 76
250 150E L150N	604.6	17.1	0.7	57	<1	4.1	5.6	31965	5.41	32.5	0.1	1.6 0	1 10	1 0.4	4 2	<1	14	3.25 0.069	i	3.6 0	0.08 80	0.004	25	0.16 0.019	0.06	2.8	0.06	1.1	<1 0	0.52	1 21.1	7.5
251 140E L150N	20.7	93.2	3.1	59	0.1	20.4	13.1	781	2.75	9.6	0.5	2.2 0	7 6	t 0.1	0.5	0.1	73	1.07 0.027	4	30.7 0	0.74 106	0.112	4	2.22 0.039	0.07	0.2	0.2	5.1	<.1 <	<.05	6 2.9	J 15
252 130E L150N	10.5	113	3.5	57	0.1	18.4	11.3	343	2.82	9.3	0.3	12 0	9 5	5 <	1 0.4	0.1	78	0.98 0.031	5	29.3 (0.78 76	0.129	3	2.1 D.059	0.05	0.4	0.03	5.7	<1 <	<.05	6 1.1	. 15
254 120E L150N	54	163.2	10.2	76	0.2	24.7	19.7	1045	3.72	14.6	0.5	6.4 1	6 6	3 0.2	2 0.8	0.3	100	1.16 0.057	7	43.8 1	1.14 112	0.116	5	2.71 0.059	0.DB	0.6	0.04	8.3	<.1 0	J.15 0.6	8 3.6	/ 15
257 90W 1 150N	133.4	130.4	11.5	59	0.2	16.1	12.2	417	2.40	85	0.2	55 U	∠ 0 3 8		1 09	0.2	68	2.3 0.071	4	30.1 0	1.74 77	0.04	7	1.99 0.031	0.06	0.6	0.08	4.9	0.1 0	0.85	5 14.7	/ 15
257-80 80W L150N	19.2	645.4	2.6	66	0.3	20.7	18.9	355	4.7	5	0.5	2.6 0	6 11	7 0.1	0.2	0.7	158	2.19 0.067	4	30.8 1	1.43 100	0.156	4	4.18 0.27	0.2	1.1	0.04	14.3	0.1 <	<.05 1	0 1.5	i 15
258 70E L150N	8.4	155.7	3.3	55	0.1	19.4	11.1	331	2.91	8.4	1.1	5.8	1 6	5 0.2	2 0.5	0.1	79	1.35 0.029	9	34.5 (0.74 75	0.128	4	2.38 0.068	0.1	0.8	0.06	7.1	0.1 <	<.05	7 1.3	15 د
259 60W L150N	36.5	176	6.8	BO	0.2	26	18	729	3.87	19.1	0.3	26 0	.5 6	3 0.4	4 0.8	0.2	98	1.3 0.053	6	44.1	1.2 61	0.097	3	2.83 0.047	0.09	0.9	0.04	7.8	0.1 <	<.05	8 1.6) 15) 15
260 50W L150N	90.Z	144.0 216.0	9.8	92	0.2	27,6	21.3	10/2	5.44	44.5	0.3	7 0	8 8 7 6	/ U.S		0.2	108	1.2 0.061	5	43.0	13 99	0.092	4	2.00 0.048	0.08	0.7	0.00	0.0 9.6	<1 <	<.05	9 1.9 A 59	/ IJ
264 20W L150N	87.9	302.8	10.1	76	0.3	32.1	21	2188	4.6	32.9	0.3	6.8 0	6 6	5 1.8	5 1.4	0.2	102	1.29 0.065	8	44.7 1	1.17 150	0.078	5	2.79 0.039	0.08	0.8	0.1	8.5	0.2	<.05	8 2.5	i 15
267 00 L175N	6.8	75.8	10.9	111	0.2	21.4	17.1	664	3.9	22.3	0.2	2.1 0	7 5	6 O. S	5 0.8	0.2	87	1.09 0.07	4	38.4 1	1.06 89	0.06	5	2.65 0.034	0.06	0.3	0.06	6.6	<.1 <	<.05	8 0.8	J 15
269 220W L175N	42	459.2	11.9	84	0.2	29	14.9	493	5.05	41	0.5	10.8 0	8 5	5 0.2	2 1.2	0.2	111	0.87 0.059	9	50.8 1	1.43 97	0.083	4	3.17 0.039	0.09	0.9	0.07	10	0.1 <	<.05	9 1	15
273 180W L175 276 140W 175	10.4	400.0 61.6	3.3 12.8	45	<.1 03	23.6	17.9 15.4	307	3.65	8.9 376	0.2	3,3 U	./ 4 5 6	S 0.1	2 0.3	0.3	718	105 0.023	7	33.7 45.1 1	1.02 55 1.34 68	0.136	5	2.81 0.025	0.09	0.5	0.03	7.9	<1 <	<.05	9 N.0 8 1.5	i 15
278 120W L175N	95.5	138	14.3	82	0.3	25.5	18.6	3946	6.78	54.6	0.2	11.2 0	66	0.7	7 2.2	0.2	97	1.06 0.072	7	44.8 1	1.31 120	0.067	5	2.78 0.037	0.07	0.5	0.06	8.2	0.1 <	<.05	8 1.5	i 15
279 110W L175	33.9	110.5	13.5	94	0.2	24.8	17.3	516	3.76	13	0.2	13.1 0	8 5	5 0.4	4 1	0.2	96	0.93 0.057	6	49.8 1	1.52 78	0.095	5	3.11 0.044	0.08	0.4	0.05	9.4	0.1 C	0.17	9 5	i 15
285 50W L175	2	60	4.7	72	0.1	20.3	12.7	313	3.21	15.8	0.4	1.4 0	9 2	3 0.1	0.4	0.1	85	0.33 0.045	4	29.1 (0.71 63	0.105	2	2.5 0.014	0.08	0.2	0.04	4.5	0.1	<.05	8 <.5	i 15
285 40W L175	5.8	1/5.Z 67.A	42	55 45	0.1	23.1	15.3	5/5 438	3.37	11.4	0.4	4,4 1	4 5 3 A	5 0.1 K 0.1	1 0.5	0.1	91 87	0.89 0.051	8	34.9 L 32 (789 78 183 64	0.135	4	2.46 0.066	0.12	0.3	0.09	7,4 6.1	V.1 <	<.U5 < 05	8 5.0 6 5	5 15
288 20W L175N	5.7	67.2	3.8	47	<.1	19.5	12.6	409	3.21	9.9	0.3	3.1 1	3 5	B 0.1	0.4	0.1	91	0.94 0.066	6	33.7 0	0.89 54	0.134	4	2.31 0.083	0.11	0.3	0.03	6.6	0.1 <	<.05	7 0.5	i 15
289 10W L175	1.6	37.7	3.1	41	0.1	11	9.3	344	2.68	9.7	0.8	2.2 2	1 3	7 0.1	0.5	0.1	79	0.66 0.059	6	22.3	0.6 38	0.092	3	1.28 0.048	0.05	0.6	0.02	3.6	<.1 <	<.05	4 <.5	i 15
290 DOW L175	1.4	36.1	3.3	35	<1	9.6	8.4	271	2.75	8.9	0.8	2.5 2	4 4	0.1	0.5	0.1	86	0.82 0.056	6	22.7 (9.57 39	0.096	3	1.25 0.05	0.05	0.7	0.03	3.3	<1 (8U.U	4 <.5) 15
RE 290 00W L175	1.3	33.6	3.2	35	<1	9.6	8.3	260	2.66	8.3	0.8	2.3 2	4 4 6 7) 0.7 D 0.7	? U.4 D 06	0.1	90	0.76 0.039	5	22.2 1	0.00 -00 168 - 44	0.093	2	2.3 0.049	0.05	0.9	0.02	3.1 47	<1 (0.00 C 05	4 5.0 7 1	1 15
293 20W L175	28.4 1	1139.3	9.2	78	1.1	24.7	33.5	1008	4.64	17.1	0.6	2,0 U 7,9 ∩	6 A	, 0.3 [01	1 1	0.3	122	1.12 0.065	10	47.2 1	1.26 B2	0.112	5	3.02 0.052	0.08	2.4	0.11	8.6	0.2	<.05	9 1.5	j 15
294 30W L175	22.1	582.4	7.7	82	0.1	22.1	25.6	357	4.67	15.1	0.5	3.4 0	8 4	5 0.2	z 0.4	0.5	144	0.71 0.018	4	33.5	1.28 B1	0.131	3	3.81 0.072	0.13	1.1	0.04	10	0.1 <	<.05 1	1 0.5	i 15
296 60W L175	21.3	197.5	5.6	86	0.3	21.9	22.1	764	3.83	15.7	0.2	3.7 0	8 7	0.3	3 0.5	0.3	98	1.16 0.05	7	35.5	1 107	0.111	6	3.2 0.072	0.12	1.1	0.02	7.9	0.1 <	<.05	8 1.1	15
296 50W L175	20.7	222.6	5.5	70	0.1	20.4	25.2	749	4.02	18.1	0.2	12.5 0	6 6	5 0.2	2 0.6	0.2	99	1.21 0.038	4	36.1 1	1.09 64	0.117	6	2.88 0.081	0.07	2.3	0.03	7.6	0.1 <	<.05	8 1.2	: 15 a ∢e
STANDARD DS6	30.3	121.5	306	00 142	0.3	13.7	25.5	304 700	4.27 2 R1	4.4	0.3 6 9	3.3 D. 45 B	ວ 7 ຊີ ລ	5 U.A 1	נ 0.2 סב	r 1 A	137	0.81 0.005	5 14	186.7 0	1.2 4/ 0.59 165	0.129	15	1.9 0.069	0.09	3.4	0.23	3.3	1.7	<.05	6 44	4 15
298 80W L175	36.9	798.8	10.2	78	0.3	13	23.5	353	4.57	9.1	0.2	3	1 4	· 0.1	2 0.2	1.6	131	0.57 0.04	4	19.7 1	1.23 77	0.149	3	3.8 0.072	0.1	2.1	0.03	10.6	0.1	<.05 1	1 <.5	j 15
299 90W L175	74.1	917	4.5	62	0.3	8.7	20	395	4.66	7.4	0.2	7.8 0	8 6	5 0.1	I 0.2	0.9	140	0.67 0.043	5	14.2 1	1.41 103	0.166	2	3.45 0.055	0.18	1.2	0.05	11.9	0.1 <	<.05 1	1 0.7	/ 15
300A 100W L175	15.1	405.7	4.6	63	0.1	19	39.2	311	3.75	10.2	0.2	1.7 0	7 3	0.2	2 0.3	0.4	110	0.56 0.017	3	25.1	1.02 71	0.154	5	3.07 0.05	0.26	0.6	0.02	8.1	0.1 <	<.05	9 <.5	i 15
301 110W L175N	12.1	879.7	2.9	58	0.2	15.9	53.6	397	3.91	6.7	0.3	1.7 0	67	0.3	3 0.2	0.4	124	1.46 0.043	5	21.4 1	1.19 73	0.144	5	3.4/ 0.169	0.11	0.6	0.03	10.2	0.1 4	5.05 C 05	ອ 1.2	. 15
302 130VIL175N	≠0.5 1 15.7	512.9	31	38	0.1	14.3	26.6	244	4.4	8.2 4 9	0.3	/.Z D	o 4 7 7	• U.2	2 0.2	0.6 11 2	105	1.32 0.034	4	17 (0.138	5	3.53 0.184	0.1	0.3	0.02	8	0.1	<.05	- U.D 9 06	3 15
304 150W L175N	13.3	564.8	3.5	55	0.1	15.9	21.4	338	4.14	8	0.2	3,3 0	7 4	2 0.2	2 0.2	0.5	141	0.65 0.034	3	25.3 (0.91 61	0.129	2	3.49 0.112	0.09	0.6	0.02	B.3	0.1 <	<.05	9 <.5	i 15
305 160W L175N	24.3	1383.7	5.1	102	0.1	29.9	65.9	362	4.27	9.1	0.3	5.3 f	1 4	5 0.2	2 0.2	0.3	135	0.68 0.025	4	26 (0.96 88	0.138	5	4.34 0.098	0.11	0.3	0.01	8.2	0.1 <	<.05	0 <.5	i 15
306 170W L175N	17.5 5	5001.8	4.5	110	0.2	24.5	71.5	603	3.3	7	0.7	2.5 1	3 4	0.2	2 0.3	0.2	89	1.17 0.059	12	22.9	0.7 39	0.102	6	3.25 0.09	0.09	1.1	0.03	6.2	0.1 <	<.05	7 0.8	15
307 160W L175N RE 307 180W L176M	35.7 6	6341.9 6347 3	2.2	91 87	0.2	21.7	65.2 64 P	435 439	4.1 4.16	4.8	0.4	4.3 0	7 9	2 0.4	¥ 0.2	0.5	133	2.02 0.067	5	15 1	1.45 66 1.41 F2	0.157	5	3.4 U.1/9 3.25 0.165	0.19	0.6	0.04	13.0	0.1 <	<.05	9 1A	3 15
306 190W L175N	23.2 #	5659.4	1.6	65	0.2	20.8	92.5	371	4,46	4.3 3.9	0.4	3 0	. 9 5 9	, U.4 3 01	- U.Z 2 0.1	0.5	155	1.81 0.05	4	16.2 1	1.27 54	0.136	6	3.67 0.239	0.14	0.7	0.03	11.9	0.1	<.05	9 1.5	j 15
309 200W L175N	42 3	3331.9	2	68	0.1	15.8	42.4	319	4.93	5.5	0.3	4 0	5 9	5 0.1	0.1	0.6	168	1.65 0.06	4	20.4	1.17 54	0.13	5	3.51 0.209	0.17	1.7	0.02	11.5	0.1 <	<.05	9 1.2	∠ 15
310 210W L175N	12.1 1	1544.9	2.5	69	0.2	19.7	70.2	207	3.93	4.9	0.3	1.7 0	5 8	0.2	2 0.2	0.2	114	1.44 0.023	4	15.2	0.9 43	0.104	5	3.65 0.195	0.06	1.6	0.02	10.2	0.1 <	<.05	9 1.1	15
311 220W L175N	23.3 >	10000	3.4	89	0.4	20.9	122.7	508	3.61	7.9	0.5	2.7 0	4 6) 0.3	3 0.3	0.4	101	1.64 0.054	7	16.4 (1.63 31	0.087	6	3.4 0.157	0.06	3.6	0.04	8.4	0.1 <	5.05	8 Z.6	15 ز

SJ Geophysics Ltd/S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel (604) 582-1100 fax (604) 589-7466 E-mail: sydv@sjgeophysics.com

ELEMENT SAMPLES	Mo Cu ppm ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe A % ppr	s U n ppm	Ац ррб	Th PPm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V Cat opm %	P %	La C ppm ppn	Mg %	Ba Ti ppm %	B	Al Na %%	к %	W Hg ppm ppm	Sc ppm	TT ppm	S %	Ga ppm	Se Sample ppm gm
312 230W L175N 314 250W L170N	80.3 >10000 38.6 >10000	2.4 2.2	44 84	0.2 0.2	14.7 18.5	60.9 55.4	457 352	4.52 5. 4.02 6.	9 0.3 9 0.4	3.9 4.8	0,4 0,3	94 77	0.1 0.2	0.2 0.2	0. 6 0.3	134 1.63 130 1.59	0.047 0.048	7 19.0	0.96	47 0.114 45 0.119	3 5	3.57 0.212 3.19 0.153	0.16 0.13	2.4 0.02 4.7 0.02	9.2 10.1	0.1 0.1	<.05 <.05	8 B	1.5 15 3.2 15
318 290W L175N 319 300W L175N	41.3 583.4 34.7 5102.6	3.3 1.8	44 76	0.1	13.7 15.8	19.8 42.4	262 325	3.63 4.24 2	7 0.2 5 0.2	3.2 3.9	0.6 0.4	66 106	0.2	0.Z 0.1	0.3 0.3	110 1.61 148 1.83	0.026	3 22 4 23.	0.84	56 0.106 48 0.106	5 4	3.05 0.112 4.1 0.247	0.1 0.09	0.7 0.07	7.4 11.3	0.1 0.1	0.36 <.05	9 10	0.8 15 2.3 15
320 310W L175N	6D.7 9607.5	2.6	49	0.2	17.9	40.1	366	5.27 5.	6 0.5	4.9	0.4	115	0.1	0.2	0.3	172 1.66	0.058	11 28.	1.09	48 0.122	3	4.45 0.277	0.11	0.4 0.02	12	0.1	<.05	10	1.5 15
322 330W L175N	23.1 372.5 34.3 1109.7	5.4 4.1	52 60	0.2	21.5 18.5	24.9	462	4.52 1 5.36 9.	B 0.3	3.3 11	0.8	52 57	0.1	0.4 0.3	0.4 0.5	127 0.83	0.026	4 30.4	1.06	67 0.138	3	3.99 0.072	0.14	1 0.02	10.7	0.1	<.05	11	<.5 15 <.5 15
323 340W L175N 324 350W L175N	49.4 1320.7 29.5 899.9	3.4	61 74	0.4	18.5 22.6	22.6 27 1	427 481	5.77 7. 5.54 10	5 0.3 1 0.3	11.5	0.7	7 9 47	0.1	0.3 11.4	0.5 0.5	175 0.71 157 0.53	0.064	4 33.7 4 39.5	1.28 1.11	60 0.145 67 0.14	1 2	4.64 0.097 4.24 0.068	0.09	1.1 0.04 1 0.03	13.5 10.7	0.1 0.1	<.05 <.05	13 12	0.5 15 5.5 15
325 430W L175N	13.4 369.3	4.8	77	0.2	20.4	20.8	612	4.39 13.	4 0.3	1.9	0.7	33	0.2	0.3	0.4	112 0.42	0.062	3 30.0	0.91	73 0.13	2	3.46 0.034	0.11	0.9 0.02	7.5	0.1	<.05	10	<.5 15
326 370W L175N	8.5 182.1	4.9	63 55	0.2	20.4	20.7	520 414	4.76 7. 3.92 10.	5 0.2 7 0.2	2.6	0.6	31	0.1	0.2	0.5	135 0.57	0.021	3 35.9	0.99	85 0.162	2	3.85 0.02	0.13	0.6 0.02	6.6	<.1	<.05	10	 5 15 5 5
327 380W 1,175N 328 390W 1,175N	24.4 670.8 39.7 1036.5	4.3 3.1	72 55	0.2 0.4	22.9 18.9	22.6 20.9	433 377	5.5 8. [°] 5.78 7.1	7 0.2 5 0.2	5 6.9	0.7 0.6	46 67	0.2 0.1	0.3 0.2	0.5 0.5	144 0.54 156 0.55	0.044 0.037	4 44.8 3 40.8	0.98	78 0.118 50 0.128	1	3.86 0.069 3.97 0.081	0.09	0.8 0.02 1.2 0.03	9.6 10.5	0.1 0.1	<.05 <.05	11 12	<.5 15 0.5 15
329 400W L175N	48.5 1468.7	4.4	109	0.4	28.4	50.8	612	5.8 10.	9 0.2	4.9	0.8	67	0.2	0.2	0.5	151 0.55	0.067	3 36.3	1.19	72 0.123	4	4.36 0.059	0.12	0.6 0.03	10.1	0.1	<.05	13	<.5 15
331 420W L175N	6.4 67.B	5.B	98 105	0.1	20.9	21.6	131B	4.07 11. 3.81 11.	3 0.2 7 0.2	1.Z 4.5	0.7	28 34	0.2	0.4	0.2	103 0.63	0.039	4 3. 4 3 [.]	0.84	101 0.13	4	3 0.024	0.16	0.4 0.03	6.6	0.1	<.05	9	<.5 15
333 440W L175N 334 450W L175N	8 211.4 5.7 137	7.5 6.9	120 91	0.1 0.1	23.7 19.9	26.4 20.8	1546 884	4.53 16. 4.07 13.	1 0.4 2 0.3	2.8 1.9	0.9 0.9	27 31	0.4 0.4	0.5 0.4	0.3 0.2	108 0.43 104 0.52	0.125 0.069	5 34.0 5 31.1	0.81 0.75	90 0.103 86 0.127	23	3.61 0.026 3.16 0.031	0.1 0.11	0.4 0.03	7.4	0.1 0.1	<.05 <.05	10 10	<.5 15 <.5 15
STANDARD DS6	11.5 120.4	29.7	139	0.3	24.4	10.7	687	2.8 20.	7 6.7	49.8	3.1	39	6	3.5	5	55 0.82	0.076	14 186.	0.59	166 0.079	17	1.91 0.07	0.14	3.4 0.23	3.2	1.7	<.05	6	4,1 15
335 130E LTOON 335G 460W L175N	23.9 883.3 9 169.4	3.7 5.4	66 82	0.1	25.4 19.1	24.9 19.9	523 576	4.54 8. 3.81 1	2 U.2 4 O.2	3.4 6	0,7	64 26	0.2	0.2	0.4	142 0.64 97 0.44	0.047	3 55.	0.85	68 0.112	4	3.02 0.079 3.02 0.026	0.12	0.7 0.03	8.6 5.8	0.1	<.05 <.05	11 9	<.5 15 <.5 15
336 470W 1,175N 337 480W 1,175N	5.1 130 3.1 60.5	5.4 5.8	85 83	0.1 0.1	18.4 16.4	18.2 17.6	508 882	3.47 1 3.42 15	4 0.2 B 0.3	1.7 1.4	0.7	35 45	0.3	0.4 0.5	0.2 0.2	92 0.53 87 0.71	0.03	3 29.4 5 27.3	L 0.9 3 0.89	84 0.123 118 0.103	4	2.8 0.03 2.77 0.023	0.14	0.6 0.04	5.9 6.4	<1 0.1	<.05 <.05	9 8	<.5 15 <.5 15
338 490W L175N	2.2 45.8	4.8	63	0.1	10.1	20	1377	2.47 11.	6 0.2	4.6	0.1	78	0.5	0.5	0.2	52 1.78	0.138	4 18.	0.65	135 0.035	5	1.76 0.017	0.11	0.9 0.09	3.1	< 1	0.06	5	<.5 15
RE 339 500W L175N	1.1 56.9	4.9	80	0.1	11.3	17.8	1236	2.64 12.	5 0,2 3 0,2	2.6	0.1	92 91	0.6	0.6	0.2	57 2.05	0.171	4 15.	0.76	147 0.027	5	1.81 0.015	0.14	0.6 0.08	3.4	<1	0.06	5	<.5 7.5
340 500W L150N 341 480W L150N	9.6 241.9 6.4 195.5	5.4 5.8	81 76	0.1 0.1	16.9 19.3	19.7 20.8	708 588	4.14 16. 3.91 14.	4 0.4 7 0.2	4.1 3.3	0.8 0.8	48 37	0.2 0.4	0.5 0.4	0.3 0.3	101 0.63 98 0.62	0.049 0.04	4 29. 4 29.	5 0.99 7 0.87	91 0.108 82 0.125	3	3.14 0.03 2.95 0.024	0.11 0.11	0.7 0.03	7.4 6.5	0.1 0.1	<.05 <.05	9 9	<.5 15 0.5 15
342 OE L100N	8.9 196.7	4.4	82	0.2	18	27.3	961	4.12 12.	5 0.2	1.5	0.5	68	0.3	0.4	0.3	104 1.18	0.068	4 35.	1.04	132 0.105	7	3.23 0.049	0.22	0.6 0.04	7.8	0.1	<.05	8	<.5 15
344 20E L100N	15.3 210.6	4.7 5.9	91 91	0.2	19.7	25.9 26.7	932 1141	4.65 14.	1 0.3 5 0.3	3.4 2.9	0.6	59	0.3 0.3	0.4	0.5	102 0.84	0.059	4 34. 5 30.1	0.99	114 0.093	3	3.25 0.021	0.12	0.6 0.05	6.3 7.3	<.1	<.05	9	<.5 15
344 340W LON 345 30E L100N	4.7 80.2 9.8 126.9	5.4 6.3	83 68	0.1	22.7 16.8	25.4 22.5	885 1624	5.38 24. 3.74 15.	4 0.2 7 0.3	5.2 2.5	0.7 0.5	51 93	0.1 0.4	1 0.6	0.2	117 0.74 88 1.76	0.056 0.068	5 39. 5 27.1	1.55 0.9	75 0.078 133 0.08	3 4	3.6 0.03 2.72 0.024	0.1 0.12	0.6 0.04	10.2	<1 <1	<.05 <.05	9 7	<.5 15 0.8 15
346 40E L100N	7.5 125.9	5.2	76	0.1	19.1	21.3	1075	4.15 14.	8 0.2	3.5	0.6	48	0.2	0.5	0.2	107 0.76	0.05	4 3	1.01	94 0.123	4	3.11 0.024	0.13	0.6 0.04	7.4	<.1	<.05	9	<.5 15
348 60E L100N	3.4 60	6	94 87	0.1	21	20.5	1095	4.19 15.4	4 0.2 4 0.2	4.5	0.8	40	0.2	0.4	0.2	110 0.57 114 0.62	0.031	4 32. 5 36.4	1.03	133 0.146	4	3.37 0.021	0.18	0.6 0.03	8.1	<1	<.05	8	<.5 15
349 70E L100N 350 80E L100N	1.8 43 4.8 50	6.4 6	76 105	<.1 0.1	20 23.8	19.7 22.2	833 833	4.3 14. 4.44 12.	9 0.2 5 0.2	1.7 4.4	0.8 0.8	44 31	0.1 0.2	0.6 0.4	0.2 0.2	119 0.64 122 0.57	0.029 0.036	5 36.4 4 36.3	1.11 1.09	102 0.162 86 0.169	2 3	3.24 0.021 3.78 0.021	0.13 0.14	0.6 0.03	8.3 8.1	<.1 0.1	<.05 <.05	8 9	<.5 15 <.5 15
351 90E L100N	7.7 62.4	5.9	92	<.1	22.5	21.2	631	4.46 12.	3 0.2	26.1	0.7	32	0.1	0.5	0.2	122 0.44	0.026	3 35.	1.12	96 0.166 88 0.159	3	3.98 0.018	0.09	0.5 0.02	7.3	<1	<.05	10 10	<.5 15
353 110E L100N	56.2 701.3	4.1	53	0.1	20.4	19.1	467	4.02 10.1	D 0.3	4.3	0.9	51	0.1	0.3	0.2	129 0.65	0.023	3 32.	0.98	57 0.127	4	3.62 0.061	0.09	0.7 0.04	8.4	0.1	<.05	9	0.9 15
354 120E L100N 356 140E L100N	30.9 673.8 22.7 596.7	5.2 4.6	100 55	0.1 0.1	27.1 21.6	29.6 20.7	654 358	4.4 10.7 4.21 9.5	7 0.2 2 0.2	2.3 4.7	0.8 0.8	39 52	0.2 0.1	0.4 0.3	0.3 0.3	124 0.5 130 0.65	0.051 0.038	4 36. 3 31.	0.97	104 0.126 74 0.137	2 5	3.76 0.043 3.55 0.058	0.1 0.11	0.5 0.02	7.5 8.3	0.1 D.1	<.05 <.05	11 11	<.5 15 <.5 15
357 150E L 100N	18.4 456.2	4. 6	72	0.1	32.4	30.9	437	4.13 9.	7 0.2	2.7	0.7	52	0.1	0.2	0.3	131 0.72	0.032	3 64.9	1.07	113 0.14	4	3.97 0.088 3.83 0.047	0.1	0.4 0.02	7.9	0.1	<.05	11	<.5 15
359 170E L100N	26.4 1040.2	4	65	0.1	21.3	26	428	4.32 8.	5 0.2	4.2	0.9	52	0.1	0.3	0.5	132 0.7	0.054	4 3	1.06	66 0.132	3	4.31 0.071	0.08	0.7 0.03	9.6	0.1	<.05	12	<.5 15
360 180E L 100N 361 190E L 100N	19.9 599.4 20.3 1104.9	4.8 3.9	55 55	0.2	18.6 15.8	26.9 20.1	388 416	3.9 8. ⁻ 4.21 7.0	7 0.2 5 0.2	2.9 4.4	0.9 0.9	51 44	0.1 0.1	0.3 0.3	0.3 0.7	115 0.74 116 0.53	0.041 0.072	4 21.9 4 19.4	0.95	77 0.124 54 0.091	5 4	3.74 0.075 3.98 0.046	0.12 0.09	0.3 0.02	8.4 8.9	0.1 0.1	<.05 <.05	10 10	<.5 15 <.5 15
362 200E L100N 363 210E L100N	29.8 2058.9 32 3 1534 4	2.4	48	0.2	12.5	24.6	436 395	5.02	9 0.2 7 0.2	4.4 6.6	0.6	85 78	0.1	0.1	0.7	170 0.83 152 0.94	0.043	3 16.	1.45	60 0.148 68 0.142	3	4.22 0.114 4.23 0.106	0.24	0.8 0.01	13.5 12 1	D.1	<.05 < 05	11 11	<.5 15
364 220E L100N	14.4 722.7	4.4	56	0.4	15.7	20.9	436	4.01 9.0	5 0.3	6.B	1.1	55	0.2	0.3	0.7	124 0.78	0.053	4 2	0.9	83 0.118	5	3.83 0.076	0.12	0.4 0.02	8.5	0.1	<.05	10	<.5 15
365 230E L100N 366 240E L100N	13.7 1170.2 16 876.9	3.6 3.4	124	0.2	25.4 19.7	137.1 82.7	347 296	4 12.3 3.85 7.0	3 0.2 6 0.2	2.2	0.9	66 66	0.4 0.4	0.2	0.3 0.4	177 1.11 111 1.17	0.019	4 15. 3 15.	0.98	54 0.119	6	4.27 0.15	0.1	1 0.01	9.2	0.1	<.05	10	0.6 15
STANDARD DS6 368 250E L100N	11.5 121.4 14.4 3820.4	29.9 1.7	140 82	0.3	24 19.6	10.7 54.9	689 325	2.82 20.0	3 6.8 0.2	46.6 2.7	3 0.4	39 97	6 0.3	3.5 0.1	5.1 0.5	55 0.82 140 2.15	0.076 0.055	14 180 3 16.2	0.58	164 0.079 40 0.125	16 6	1.91 0.069 3.79 0.236	0.14 0.13	3.4 0.23 1.9 0.02	3.2 12.1	1.7 0.1	<.05 <.05	6 10	4.3 15 1.9 15
369 260E L100N	16.4 2995.6	1.6	70	0.1	16.3	40.1	325	4.53	0.2	3.8	0.5	81	0.1	0.1	0.6	164 1.4	0.042	3 17.	1.42	52 0.144	3	3.65 0.198	0.16	1.1 0.01	13	0.1	<.05	10	0.7 15
371 280E L100N	5.8 2700.3	2.6	BO	0.1	15.9	67.3	325	4.26 3.	5 0.1	2.7	0.4	69	0.1	0.1	0.4	155 1.06	0.014	3 14.	1.29	50 0.146	4	4.64 0.202	0.16	0.2 0.01	12.8	0,1	<.05	11	<.5 15
372 290E L100N 373 300E L100N	8.1 7899.3 10.8 >10000	2.5 2.7	117 113	0.2 0.3	23.8 25	125 179	322 787	4.07 3.0 3.72 4.9	3 0.2 9 0.5	2.3 1.3	0.6 0.7	74 69	0.2 0.4	0.1 0.2	0.3 0.3	158 1.46 115 1.33	0.037 0.1	3 14.4 13 18.9	1.24	29 0.146 49 0.122	5 6	4.03 0.226 3.65 0.188	0.1 0.1	0.5 0.02	. 11 9.4	0.1 0.1	<.05 <.05	1D 8	0.7 15 1.2 15
375 310E L100N 376 320E L100N	12.2 1320.4 15.5 1037.4	1.9 3 3	75 67	0.1	18.5 14.1	59.4 46 1	287	4.39 2.5	0.1 5 0.2	2.2	0.5	98 60	0.1	0.1	0.3	160 1.69 92 1.34	0.017	2 15.	1.39	55 0.165 67 0.094	3	4.34 0.274 2.81 0.138	0.08	0.5 0.01	12.7	0.1 0.1	<.05 < 05	11	<.5 15 0.7 15
377 330E L100N	17.6 369.1	5	48	0.1	15.6	13.7	275	3.1 11.	5 0.2	3	0.9	20	0.1	0.3	0.7	84 0.3	0.043	3 22.2	0.68	116 0.101	3	2.18 0.015	0.04	0.4 0.02	3.8	0.1	<.05	B	<.5 15
379 350E L100N	21.2 726.2 10.9 240.1	7.4 4.4	100	0.1	14.8 18.1	39.8 14.5	335 265	2.39 7.4 3.38 11.1	3 0.4 2 0.2	1.1 2.5	1.4 0.7	24 19	0.3	0.3	0.3	75 0.68 99 0.28	0.028	3 25.	0.35	83 0.111	2	2.64 0.023	0.06	0.6 0.04	4.9	0.2 0.1	<.05	8	<.5 15 <.5 15
380 360E L100N 381 370E L100N	7.3 405.3 23.7 899	4.4 4	75 44	0.2	21.3 13.1	17.3 11.1	339 207	3.79 13.0 3.17 10	5 0.2 1 0.5	3.4 1.5	0.9	27 36	0.1 0.2	0.3 04	0.3	118 0.39 92 1.09	0.044	4 30 6 23.3) 1.05 0.67	92 0.133 52 0.08	3	3.47 0.043 2.64 0.053	0.06 0.05	0.4 0.03	5.9 5.4	0.1	<.05 <.05	1D 8	<.5 15 1.5 15
386 430E L100N	27 292.2	7.8	53	0.3	20.1	19.5	860	3.88 24.	0.3	8.5	0.3	68	0.2	0.8	0.3	93 1.41	0.063	8 38.	1.06	74 0.082	5	2.67 0.056	0.07	0.9 0.06	6.8	0.1	<.05	B	1.7 15
396 10E L25N	5.2 158.9 4.1 135.6	5.1 4.7	49 47	0.1	19.5	13	505 489	3.32 10 3.28 14.3	0.5 2 0.5	3.1 6.1	1.2	41 40	0.2	0.6	0.3	94 0.55 90 0.53	0.058	9 32. 8 34.0	0.86	80 0.125	2	2.17 0.031	0.09	0.7 0.05	6.8	0.1	<.05	7	0.5 15
397 20E L25N 398 30E L25N	12.5 88.9 43.1 366.8	3.5 7.8	43 68	<.1 0.1	17.5 24.5	13.3 34.5	299 395	2.29 6.4 3.41 18.7	4 0.3 7 0.8	4.3 2.9	0.7	35 52	0.2 0.3	0.3 0.5	0.1 0.2	56 0.69 95 1.18	0.053 0.05	6 26. 13 43.1	0.77	55 0.122 88 0.098	2	1.69 0.031 2.43 0.032	0.05 0.09	1 0.04 3.7 0.13	4.4	<.1 0.1	<.05 <.05	6 8	0.6 15 1.9 15
399 40E L25N	53 200.6	6.2	137	0.1	19.4	46.4	2567	4.03 20.8	0.3	2.1	0.8	46	1.4	0.4	0.2	91 0.82	0.032	5 29.	0.74	135 0.086	4	2.23 0.027	0.07	6.5 0.05 7 1 0.00	5.9	0.1	<.05	7	1.2 15
401 60E L25N	24.2 B3.2 26.5 237.2	ວ.ອ 5.8	46 53	0.1	20.8	19.2	2232	3.42 18.8	3 0.6	4.2 222.5	∠.9 1.4	48	0.2	0.6	0.2	85 0.64	0.055	9 3	0.82	129 0.114	2	1.94 0.041	0.09	2.3 0.07	6.4	0.1	<.05	6	0.6 15
402 70E L25N 403 80E L25N	107.9 1228 69.9 762.1	9.5 7.6	53 45	0.5 0.4	20 17.1	24.2 18.9	98û 888	4.24 18.4 3.48 19.5	4 0.8 2 0.9	10.9 5.8	1.4 1.5	40 56	0.2 0.2	0.7 0.6	0.9 1.2	84 0.68 80 0.82	0.063 0.066	13 32.2 10 27.5	0.84	108 0.092 119 0.102	2 4	2.08 0.029 1.96 0.043	0.11 0.1	1.9 0.05 2.3 0.09	6.9 6.3	0.1 0.1	<.05 <.05	6 5	1.5 15 1 15
404 10E LON	67.7 1441 68 1440 6	14.4	46	0.7	16.6	23.9	359	5.97	0.4	42.4	0.8	80	0.1	0.2	4	190 0.99	0.062	5 23.	1.52	135 0.211	3	3.07 0.105	0.38	13.2 0.05	14.6 15 1	0.1	0.12	10 10	2 15 21 15
405 20W LON	32.1 298.5	6.6	74	0.1	16.7	15	1526	3.23 23.3	, u.s 3 1.7	1.2	1.3	41	0.3	0.4	0.3	77 0.84	0.047	7 27.	0.6	143 0.086	5	2.13 0.029	0.1	5 0.07	5.5	0.1	<.05	6	0.8 15
406 30W LON 407 40W LON	20.7 133.8 11.2 53.6	3.5 3.2	48 32	<1 <1	19.4 10.3	9.9 6.2	343 249	2.72 17.1 1.87 5.4	0.3 0.2	2.6 <.5	0.7 0.6	27 26	0.1 <.1	0,4 0.2	0.1 0.1	70 0.45 42 0.53	0.02 0.013	4 25.1 3 18.6	0.67	88 0.113 44 0.11	2 3	2.08 0.026 1.35 0.022	0.06 0.05	1.8 0.03 0.6 0.02	3.8 3.3	<.1 <.1	<.05 <.05	6 5	<.5 15 0.6 15
408 50W LON	46.7 171.5	4.9	84	<1	20.7	26.7	1117	3.63 26.4	1 0.3	1.9	0.9	29 30	0.4	0.3	0.2	96 0.53	0.034	4 29.4	0.72	118 0.112	2 4	2.14 0.022	0.09	4.5 0.03	4.3	0.1	<.05 < 05	7	1 15
417 140W LON	14.1 316	4.7	93 53	0.1	18.8	14.5	328	3.25 10.1	0.3	5	0.8	32	0.3	0.3	0.3	103 0.58	0.024	4 26.4	0.87	82 0.153	5	2.52 0.032	0.08	1.2 0.02	6.3	0.1	<.05	B	<.6 15
418 150W LON 419 160W LON	7 527 4.1 407.3	5.2 4.6	67 59	0.1 0.1	20.1 19.5	15.5 13.6	548 476	3.41 1 ⁴ 3.24 12.6	0.3 0.3	5.3 3.4	0.9 1	39 30	0.1 0.1	0.3 0.3	0.3 0.2	104 0.57 95 0.43	0.044 0.04	4 27.2 5 29.3	0.94	150 0.151 116 0.14	3 2	2.51 0.025 2.57 0.016	0.09 0.08	1.1 0.03 0.3 0.02	6.3 5.4	0.1 0.1	<.05 <.05	В 8	<.5 15 <.5 15
420 170W LON	3.1 288.2	4.9	56	<.1	20.8	14.3	532 689	3.29 12.1	0.3	4.7	1	33	0.1	0.3	0.2	99 0.44	0.032	5 30.	0.9	117 0.139	3	2.55 D.026	0.1	0.4 0.02	6.3	0.1	<.05	7	<.5 15 4.4 15
STANDAND DOB	11.0 121.0	40.1	194	v .5	24.0	10.7	000	2.00 KU.	0,7	21.0	3	33	U	0.4	3	->> U.0∠	0.010	17 10	, 0.00	100 0.010		0.07	Q. 14	0.0 0.20	0.0	1.1			1.4 10

SJ Geophysics Ltd/S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel (604) 592-1100 fax (604) 589-7466 E-mail: sydv@sjgeophysics.com

Acme File # A505136

್ರತೆಯ ವಿಶೇಷಣೆಗಳು ಎಲ್ಲಿ ಮಾಡಿದ್ದ ಮಾಡಿದೆ. ಮತ್ತು
ELEMENT Cr AI % 2.35 Mo Co Cd SЬ v Cu РЬ Zn Ag ppm 0.2 0.3 Mn Fe U Sr Ca %a La Mg % Ba Ті Ni As Au Th Bi 6 SAMPLES 421 180W DLN 94 90 ppm 4.8 6.2 ррт 2 2 ppm 701.1 794 ppm 16.9 18 ppm 601 586 451 ppm 0.4 0.3 ррb 12.1 10.3 ррт 14.6 ppm 96 ppm 16 % 3.28 3.37 ppm 8.2 8.6 ppm ppm 23 ppm 0.3 0.3 ppm 0.5 1.2 ppm 21.1 ррт 0.3 0.1 ppm ppm 121 0.123 0.065 0.79 0.37 - 3 16.1 38 34 422 190W DLN 16.8 1.3 0.093 21.1 0.78 169 0.099 2.5 26 0.35 0.3 0.3 0.3 0.2 0.4 0.9 0.8 0.8 0.8 0.8 0.8 81 134 184 76 173 0.077 0.069 0.064 0.02 0.044 423 200W DLN 424 210W LON 1286.4 14.2 14.7 12.7 15.7 3.37 4.14 7.7 14.2 21.9 86.9 28 44 0.2 0.3 0.8 1.3 1.2 0.32 18.6 20.1 0.81 121 116 0.079 0.167 2.32 5 4.3 0.3 0.4 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 3.01 2385.7 78 22.1 618 360 372 419 392 375 795 350 431 824 819 886 813 1186 0.2 0.3 0.2 0.51 1,21 425 220W LON 28.8 1979.8 2.8 22.8 5.04 43 0.1 0.86 16.8 0.239 2.61 87 72 106 64 70 52 61 58 84 0.3 0.2 0.2 0.4 1.1 21.1 110.1 26.7 36.5 39.1 41.7 426 230W LON 67.4 74 16.6 117 2.72 4.25 3.75 4.21 5.02 4.57 5.14 8.5 1.3 7.3 30 56 0.4 0.1 0.66 0.61 0.109 2.08 3.9 2.8 2.9 3.6 5.6 2.3 1.5 626.6 375.7 387.9 428 240W OLN 23.8 23.7 28.3 14.3 0.26 3.49 1.2 1.84 29.4 91 59.6 107.3 5.7 12.2 8.9 38.3 0.3 0.4 0.2 0.8 0.6 0.038 0.238 430 250W 0LN 129 28.5 2.9 0.1 1.32 1.64 4.07 2.92 159 149 109 162 206 123 117 117 432 260W LON 20.1 7.9 4.7 3.1 1.5 0.7 62 44 0.2 0.1 1.22 0.59 1.45 22.2 25.9 17.5 38.4 22.3 22.9 436 320W OLN 102.7 73 23.9 22.4 0.039 0.042 0.054 0.03 0.046 0.095 0.05 0.068 0.05 0.05 0.08 1.45 0.064 3.22 437 290W 0LN 4381.7 92 33.6 41.3 7.8 4.8 2,8 3,2 7,4 70 69 54 44 0.3 0.2 0.1 0.9 1.2 1.25 1.38 1.51 3.83 4399.2 0.239 3.87 439 300W OLN 0.1 11 1.96 359 81.8 76.7 5.2 5.6 5.4 5.14 5.39 5.25 0.98 0.67 0.8 0.082 0.069 0.07 3.56 3.54 3.5 441 310W LON 24.5 31.7 20.1 24.4 0.1 37.3 40.3 1.51 443 330W LON 23.8 23.4 24.8 25 5 3.8 4.8 0.1 1.56 22.2 24.4 22.5 21.6 38.6 42.7 40.2 445 350W OLN 0.1 0.1 1.48 87 4.1 4.2 3.4 3.3 2.7 2.5 2.3 2.8 3.3 3.7 2.9 2.6 3.5 1.3 3.7 3.8 44.3 0.4 11.4 17.2 50 49 58 53 61 3.8 4.2 2.1 446 360W I DN 75 73.2 5.8 5.7 82 <.1 0.1 25.7 24 25.1 26.2 0.1 1.1 0.74 0.9 1.6 80 95 0.066 3.69 3.75 5.46 5.41 5.26 5.46 5.51 5.59 5.6 4.88 5.34 5.51 5.31 5.61 447 370W LON 0.1 1.59 90 1.1 0.8 0.8 0.9 0.7 39.3 36.6 34.7 36.6 33.7 448 380W LON 69.5 5.8 0.1 22.6 24.4 0.2 0.2 0.88 1.47 92 87 0.07 3.4 449 390W LON 70.9 100 88 0.1 0.1 22.9 21.6 27.9 19.7 5.9 5.7 0.92 1.67 3.8 66 65 82 73 0.93 0.94 0.97 0.089 0.089 0.065 0.105 0.112 0.106 3.93 3.96 3.96 450 400W LON 20.7 0.1 69.8 69.6 66.3 77.9 85.5 75.4 59.9 72.8 67.1 66 77 4.9 27.6 1.74 85 87 76 94 21.6 23.1 20.3 RE 450 400W LON 4.9 4.8 90 81 0.1 0.1 22.3 20.8 27 2**7**2 4.3 0.1 0.1 1.74 451 410W LON 11.8 3.7 1.83 452 420W 0LN 453 430W 0LN 5.4 5.3 5.8 102 102 91 26.2 26.6 27.2 0.096 0.074 0.086 0.052 0.073 32,2 36,9 41,6 0.091 0.096 0.077 0.1 19.1 0.2 0.8 0.7 1.08 1.48 3.51 3.75 0.1 0.1 22.8 22.9 5.7 4.2 6.8 60 61 70 20.8 25.2 21.8 25.1 18.3 16.2 21.8 24.6 19 0.1 0.2 0.8 0.88 1.48 81 95 78 74 77 454 440W OLN 3.77 1.6 20.1 20.6 19.7 17.3 21.7 0.9 0.8 0.8 0.7 26.5 28.1 26.4 1.02 1.**1**9 34.6 33.1 33.3 1.66 1.81 455 450W LON 4.6 4.8 75 63 0.1 0.1 0.1 0.107 0.097 3.61 3.64 456 460W LON 86 63 69 72 0.1 0.096 0.064 0.091 0.095 5.45 4.38 5.87 0.088 0.103 0.126 3.59 2.96 3.9 457 470W LON 78 123 100 0.1 0.1 0.92 1.65 28.7 38.6 41.9 4.7 5.1 5.4 5.1 0.1 0.1 21.8 0.4 0.2 1.3 1.06 0.96 0.53 112 81 458 480W LON 4.2 6.2 1.35 459 490W LON 29.2 1.77 24 15.7 7.2 71 97 3.59 1.99 460 500W LOW 87 88 58 0.1 0.1 25.2 15.9 5.41 3.71 5.1 0.2 0.074 0.044 1.67 65 31 28 16 39 35 110 99 64 69 1.1 0.5 0.1 3.5 0.4 0.5 0.5 0.5 0.5 0.3 0.2 0.2 0.2 0.3 0.2 26.5 31.4 34.8 461 10W L25N 0.05 91.1 0.1 0.67 38.2 25.6 119.8 3.9 2.1 20.9 22.6 21.3 22.9 5 5,1 6,7 0.2 0.5 0.53 0.37 0.82 462 3000 98N 463 3980 98N <.1 <,1 0.3 0.062 0.054 0.076 0.067 31 7.7 3.97 4.2 2.8 3.46 4.8 4.57 3.6 3.97 3.38 2.28 3.07 2.61 3.09 2.5 0.1 0.36 36 16 2 <1 0.85 0.4B 1.3 5.2 24.1 5.1 10.7 15.9 0.19 16 1.1 <.1 140 40 47.5 1.8 162 146 95 STANDARD DS6 29.8 6.1 185.3 0.58 0.078 1.89 16 3 0.9 1.8 2.4 1.9 2.5 3.3 2.5 1.9 2.8 2.1 2.4 3.5 3.8 2.7 2.3 1.6 1.7 1.4 2.1 20 34.3 37.7 17.3 27.8 0.65 0.77 0.81 464 40W L25N 138 63.9 4.1 11.5 <,1 <,1 18.8 25.8 0.1 0.024 0.067 29.8 51.9 0.79 1.57 0.115 465 3920 L98N 0.09 3.58 0.2 0.2 0.2 0.3 85 91 67 0.091 0.087 0.088 0.09 0.043 466 3900 L98N 1.1 0.9 11.5 0.1 29.7 0.7 0.7 0.6 0.6 2.8 2.6 1.1 53.8 1.5 0.071 3.51 2.54 66 49.6 85 90 84 97 56 64 467 3880 L98N 468 3860 L98N 469 3840 L98N 12.5 10.7 0.1 <.1 18.9 17.6 14.6 14.7 13.3 0.56 0.55 0.62 0.42 0.085 25.3 45.2 1.1 2.59 2.36 1.35 43.2 22.1 1.19 0.07 68 1 0.8 1.7 1.1 1.5 0.7 0.9 1.1 1.6 1.5 0.9 1.6 1.7 56 30 34 26 18 11.6 6.2 8.3 7.4 0.1 0.101 46.4 19.8 75 77 16.7 9.7 16.9 9.3 2.6 3.8 1.5 1.3 0.8 1.5 1.4 0.4 0.2 25.9 14.7 1.06 0.103 470 3820 L98N 0.1 0.1 <.1 0.1 0.7 0.8 0.7 0.8 0.4 0.7 0.7 0.7 0.48 471 3800 L98N 472 3780 L98N 0.32 0.32 0.21 17.2 118 10.6 11.5 12.2 9.3 0.2 0.073 0.035 14.9 0.69 0.54 0.108 2.1 18.5 14.8 62 60 94 57 15.6 1.66 1.91 10.7 8.2 15.3 8.9 0.1 0.1 55 46 59 38 54 73 44 55 40 6.1 7.9 5.2 473 3760 L98N 0.092 19.4 0.5 0.096 2.44 1.65 2.82 3.34 2.47 0.2 0.2 0.3 0.6 0.2 13.9 5.9 14 29 20 24 64 32 474 3740 L99N 23.2 7.5 0.1 <.1 10.2 5.6 11.5 11.9 4.7 0.2 0.48 0.24 0.24 0.087 15 0.41 0.27 0.08 0.101 1.5 10.9 475 3720 L98N 0.2 0.9 0.043 0.051 0.045 0.042 0.033 20.4 37.6 24.3 15.6 19.5 9.7 0.1 0.1 <.1 11.3 2.7 1.1 <.5 476 3700 L98N 76 10.8 0.1 17.3 19.3 0.49 0.141 1.87 79 54 19.7 8.5 19.2 9.9 33.7 9.1 12.6 2.36 477 3680 L98N 10.4 0.3 0.2 0.73 0.5 0.76 0.12 478 3660 L98N 15.4 0.5 0.124 1.57 6.1 116 72 43 6.4 6.8 4.7 2.78 2.61 1.79 0.146 0.143 1.78 1.78 479 3640 L98N 10.5 10.5 0.7 0.7 0.36 15.6 15.5 0.58 0.1 0.1 <.1 0.3 <.1 <.1 0.1 <.1 0.1 28 31 30 63 24 35 62 54 63 89 0.1 0.1 0.1 0.1 0.1 0.1 0.1 480 3620 L98N 11.1 6.9 17.4 9.3 11.4 12.8 4.7 0.2 0.43 0.47 0.56 0.5 1.4 4.9 3.6 1.7 2.2 1.3 0.8 1.1 0.8 <.5 0.6 1.4 5 481 3600 L98N 6.4 1.2 0.1 0.017 12.4 24.6 0.32 0.74 0.133 0.98 2.35 1.7 482 3580 L98N 81 7.5 6.6 8.9 17 3.04 2.53 48.8 11 0.5 0.2 1.6 0.122 0.04 19 56 116 80 89 69 70 64 18.1 0.6 0.7 0.6 0.5 0.7 0.8 66 40 74 88 61 83 96 97 99 68 16.1 19.6 22.7 16.3 483 3560 L98N 0.135 1.54 13.5 31 48.5 0.45 10.8 0.35 1 1.9 1.3 0.9 484 3520 L98N 485 3500 L98N 3.08 3.42 2.36 40 36.8 17.4 0.026 0.127 18.3 16.6 0.2 0.32 0.68 0.83 2.26 2.6 15.2 26.1 12.8 27.6 0.4 0.75 1.17 0.089 0.094 0.08 0.08 0.089 0.085 0.036 0.071 0.102 486 180E 99N 28.9 8.8 18.5 0.2 0,1 0.5 1.48 2.49 487 200E L99N 37.8 13.5 0.1 0.1 18.8 63.5 41.9 20.9 17.5 30.7 22.6 3.11 2.4 0.9 0.7 0.87 0.69 16.9 19.9 1.86 2.26 2.19 488 220E L99N 14.6 0.56 2.1 1.7 1.7 489 240E L99N 13.1 13.2 80 79 66 0.1 0.1 0.1 21,1 19,5 22.8 22.8 3.03 3.11 69 68 58 0.3 0.3 0.78 0.8 0.054 0.71 2.3 2.2 1.3 0.8 1.9 1.9 1.1 1.6 1.1 11.5 1.6 34.8 34.6 35.8 21.1 12.4 26.8 30.1 20.9 19.6 1532 1599 1133 529 288 830 797 1040 592 698 452 564 762 617 1120 22.4 21.6 15.6 15.7 13.3 16.8 11.4 11.7 9.6 20.9 18.4 26.8 5.5 18.4 64 0.6 0.7 0.6 0.5 0.8 0.7 RE 489 240E L998 20.2 16.7 19.6 0.7 2.46 2.8 2.63 0.101 490 260E L99N 10.9 14.7 18.2 0.3 0.83 0.048 0.039 0.54 1.75 2.4 2.2 2.2 2.8 3.1 2 6.5 5.5 7.5 7.1 70 92 71 0.1 <.1 48 38 69 62 491 280E L99N 13.1 10.9 12.1 10.5 0.2 0.2 0.33 0.29 0.59 0.49 26 24 38 33 29 28 39 25 31 29 51 27 0.022 17.4 0.158 1.64 492 300E L99N 493 320E L99N 494 340E L99N 11.3 10.4 10.8 8.5 2.57 2.56 2.48 2.27 0.56 0.5 0.31 0.041 0.065 0.123 0.132 0.1 <.1 12.5 0.4 16.9 16.4 0.53 0.56 1.98 1.83 67 88 92 0.3 0.3 0.2 10.6 6.4 0.6 0.054 0.106 0.077 61 64 164 495 360E L99N 7.6 6.3 0.1 0.1 0.3 0.1 <.1 <.1 12.1 8.7 0.9 0.7 6.7 0.6 0.9 0.9 0.9 15.2 0.51 0.128 1.78 496 380E L99N 59.6 46.8 1.8 <.5 1.6 0.5 4.8 0.42 0.81 0.61 14.2 0.39 0.102 1.56 1.89 2.83 2.93 2.9 2.52 2.68 2.53 186.4 17.2 18.5 121.6 27.2 30.9 15.9 30.3 7.6 8.1 0.58 0.58 0.52 STANDARD DS 141 24.9 14.1 12.6 3.1 13 0.076 14 10.8 6.1 2,3 3,1 3,1 3,4 2 51 47 94 2.21 1.84 497 400E L99N 80 78 13.7 0.3 0.058 0.098 0.095 0.06 0.052 0.055 0.069 0.062 0.062 0.124 498 420E L99N 12.7 0.3 0.37 0.43 5 1.3 1.2 1.9 2.3 0.56 0.53 0.52 0.092 499 440E L99N 8.1 85 9.9 9.9 0.2 19 16.5 1.72 500 460E L99N 22.7 74.9 88 96 128 84 0.1 0.2 <.1 <.1 0.3 1.2 0.43 1.13 5 1.56 1.85 1.72 1.73 8.1 6.5 10.3 10.8 58 57 59 45 92 106 80 17.8 18.2 17.5 501 480E L99N 14.7 12.9 16.1 0.8 0.6 0.092 16 502 500E L99N 503 520E L99N 23.6 16.2 18.6 0.38 0.32 0.59 0.57 0.52 18.7 13.2 11.2 9.9 536 527 857 891 309 829 453 736 911 887 1573 687 2.96 2.67 2.6 2.2 2.5 2.1 0.8 1.8 1.1 1.1 0.3 0.3 0.3 0.1 0.1 0.111 0.117 <1 19.5 53 31 7.1 24 64 52 25 1 11 1.6 0.2 2.2 1.3 504 540E L99N 505 560E L99N 70 94 58 0.1 <.1 0.1 0.3 0.3 0.3 27.8 39.7 25.5 0.9 18.4 18.1 3.59 0.7 0.3 0.1 0.1 1.16 0.121 2.67 12.2 17.4 13.9 10.5 0.4 0.2 0.42 0.41 2.44 7.9 24.7 17.2 3.68 0.1 1.13 0.11 663 30W L25N 20.5 51.6 4.6 2.81 0.1 0.011 0.12 2.22 3.55 3.58 11.6 0.1 0.64 73.7 544.6 0.1 0.2 0.3 0.3 0.3 2.2 7.4 3.7 101 64 65 0.063 0.05 87 92 74 0.093 0.143 664 3940 L98N 1.1 24.6 11.6 86 80 37.8 30.7 24.5 4.68 19.9 0.5 0.3 0.6 0.1 0.3 0.82 0.97 55.1 56.2 1.53 1.35 88 121 102 112 112 94 54 A31 220E L2.5E 11.2 14,4 3.96 16.1 0.6 0.1 9.9 18.2 18.2 0.6 1.2 1.1 0.2 0.2 0.2 0.074 40.5 53.2 51.7 0.12 A35 300E L2.5E 583 7.4 27.5 49.3 3.89 4.91 18.5 0.8 0.4 1.06 10 1.13 2.84 3.39 27.6 26.4 26.5 24.2 0.3 0.3 0.2 6.6 155.5 39.3 38 40.9 20.6 9.7 54 54 0.79 0.76 79 79 84 163 D102 60E L2N 13.5 89 23.4 8.0 8.0 0.3 в 1.33 150.7 13.1 87 22.6 4.82 0.2 0.036 1.33 0.056 3.42 RE D102 60E L2N 7.6 63 12998 100E | 150 51.8 15.8 91 0.3 22.6 4.53 13.4 0.5 0.3 5.9 1.2 3.5 0.2 1.16 0.064 6 14 47.5 1.38 0.043 2 16 2,92

48.5

39

- 3

11.3

119.5

STANDARD DSE

139

29.5

0.3

10.4

2.81

5

0.B1

0.075

183.3

0.58

0.076

1.87

Acme File # A505136

Na	ĸ	w	Hg	Sc	п	S	Ga	Se	Sample
% 0.019	% 0.07	ppm 0.4	ppm 0.03	ppm	ppm 01	% ∠05	ppm	ppm	gm 1
0.019	0.07	2.2	0.03	5.9	0.1	<.05	8	<.5	15
0.011	0.07	1.2	0.02	5.2	0.1	<.05	7	<.5	15
0.036	0.13	1.8	0.03	11.1	0.1	<.05	9	0.8	15
0.075	0.34	5.9	0.02	16.8	0.1	<.05	9	0.9	15
0,144	0.29	0.8	0.04	18.7	0.1	0.06	10	4.8	15
0.21	0.19	0.4	0.02	15.1	0.1	<.05	11	2.5	15
0.138	0.15	0.6	0.04	13.2	0.1	0.63	9	5.7	15
0.024	0.09	0.5	0.05	8.5 14.6	< <u>1</u> 01	<.05	10	<.5 07	15
0.167	0.28	0.3	0.03	20.3	0.1	<.05	11	0.9	15
0.037	0.06	0.6	0.05	10.4	<.1	<.05	9	1.1	15
0.026	0.11	0.4	0.04	9.1	<.1	<.05	10	<.5	15
0.029	0.08	0.4	0.04 D.05	9.9	<.1	<.05	10	<.5	15
0.034	0.18	0.5	0.09	11,1	< 1	<.05	10	<.5	15
0.029	0.09	0.5	0.04	9.5	<.1	<.05	9	<.5	15
0.033	0.09	0.5	0.04	10.9	<.1	<.05	10	<.5	15
0.036	0.17	0.5	0.07	11.8	<.1	<.05	11	<.5	15
0.038	0.08	0.5	0.05	12	< 1	<.05	10	<.5	15
0.035	0.12	0.6	0.06	9.9	<1	<.05	9	<.5	15
0.027	0.08	1	0.04	9.7	<1	<.05 <.05	10	<.5	15
0.036	0.1	0.6	0.06	10.6	<,1	<.05	10	<.5	15
0.04	0.1	0.5	0.07	12.9	<.1	<.05	10	<.5	15
0.038	0.08	0.7	0.06	9.6	<.1	<.05	10	<.5	15
0.027	0.09	0.4	0.13	8.4	<,1 < 1	< 05	Б 11	<.5	15
0.041	0.1	0.8	0.06	10.4	< 1	< 05	10	<.5	15
0.022	0.07	3.5	0.04	4.6	0.1	<.05	7	0.5	15
0.037	0.08	1.2	0.01	2	< 1	<.05	4	<.5	15
0.024	0.04	34	0.23	32	17	< 05	6	4.3	15
0.033	0.07	5.4	0.03	4.7	0.1	<.05	6	0.8	15
0.018	0.1	0.1	0.03	6.4	<.1	<.05	9	0.6	15
0.018	0.1	0.1	0.03	6.2 5.4	0.1	<.05	9	0.5	15
0.014	0.08	0.1	0.03	5.3	< 1	<.05	8	<.5	15
0.021	0.18	0.1	0.03	5.2	0.1	<.05	7	<.5	15
0.011	0.05	0.3	0.04	2.4	<.1	<.05	6	<.5	15
0.008	0.06	0.3	0.02	2.8	0.1	< 05	в 7	<.5 < 5	15
0.01	0.05	0.3	0.02	2.6	0.1	<.05	7	<.5	15
0.013	0.07	0.3	0.02	2.3	0.1	<.05	6	<.5	16
0.01	0.06	0.2	0.01	1.8	<.1	<.05	6	<.5	15
0.018	0.08	0.3	0.02	4	0.1	<.05	8	<.5	15
0.014	0.06	0.3	0.02	2.7	<.1	<.05	6	<.5	15
0.011	0.07	0.2	0.02	3	0.1	<.05	9	<.5	15
0.013	0.08	0.3	0.02	2.8	0.1	<.05 <.05	8 6	<.5 < 5	15
0.03	0.09	0.3	0.12	4,4	0.2	0.07	8	3.3	15
0.012	0.08	0.2	0.01	2.6	0.1	<.05	7	<.5	15
0.014	0.07	0.5	0.02	3.6	0.1	<.05	8	<.5	15
0.017	0.08	0.3	0.04 D.04	4.6	0.1	<.05	6	<.5	15
0.021	0.05	0.2	0.07	4.4	0.1	<.05	6	0.7	15
0.018	0.11	0.2	0.12	3.6	0.1	<.05	5	0.6	15
0.016	0.08	0.3	0.06	3.8	0.1	< 05	2	0.5 < 5	15
0.014	0.09	0.3	0.07	3	0.1	<.05	6	<.5	15
0.014	0.08	0.3	0.01	3.3	0.1	<.05	7	<.5	15
0.012	0.07	0.4	0.02	2.8	0.1	<.05	9	<.5 - 5	15
0.015	0.09	0.3	0.03	3.2	0.1	<.05	7	<.5	15
0.013	0.08	0.3	0.03	2.8	0.1	<.05	7	<.5	15
0.013	0.05	0.2	0.02	2.4	0.1	<.05	6	<.5	15
0.069	0.14	3.5	0.23	3.3	1.8	<.05	6 9	4.4	15
0.015	0.06	0.4	0.03	2.9	<.1	<.05	7	<.5	15
0.01	0.06	0.3	0.02	2.8	<.1	<.05	7	<.5	15
0.012	0.07	0.3	0.02	2.7	0.1	<.05	7	<.5	15
0.021	0.05	0.3	0.06	2.7	v.1 <.1	≺.uo <,05	8	0.9 <.5	15
0.015	0.05	0.3	0.02	2.8	0.1	<.05	7	<.5	15
0.025	0.1	0.2	0.04	5.8	0.1	<.05	8	<.5	15
0.016	0.06	0.2	0.03	4.7	0.1	<.05 <.05	8	<.5 < 5	15
0.023	0.07	0.1	0.04	6.6	<.1	<.05	9	<.5	15
0.04	0.08	0.4	0.11	10.8	0.1	<.05	10	1	15
0.076	0.08	1.3	0.11	9.1	0.1	<.05 < 05	8	1.2 n e	15
0.042	0.07	0.4	0.04	9.6	0.1	<.05	10	0.7	15
0.026	0.06	0.4	0.06	8	<.1	0.19	8	2.2	15
0.069	0.13	3.4	0.22	3.3	1.7	<.05	6	4.3	15

the state of the state of the state of the

ELEMENT SAMPLES G-1 4266 4267 4268 RE 4268	Mo Cu ppm ppm 1.9 2.4 15.5 5231.3 33.1 1407.1 5.3 2340.1 5.3 2215.1	Pb ppm 3 2.5 2.6 1.9 1.8	Zn ppm 42 85 51 64 66	Ag ppm <.1 0.1 <.1 <.1 <.1	Ni ppm 18.8 15.8 18 16.6	Co ppm p 4 4 83.1 3 29 3 45.4 3 43 3	Mn Fe pm % 198 1.83 113 4.04 154 4.46 138 4.92 139 4.81	As ppm <.5 4.3 6.9 3.8 3.8	U ppm 1.8 0.3 0.2 0.2 0.2	Au ppb <.5 2.1 1.2 1.3 1.8	Th ppm 3.8 0.6 0.6 0.6 0.6	Sr ppm 66 97 61 101 97	Cd ppm <.1 <.1 0.1 0.1 0.1	Sb ppm <.1 0.1 0.2 0.1 0.1	Bi ppm 0.1 0.4 0.9 0.2 0.2	V ppm 37 144 153 183 183	Ca % 0.61 1.78 0.77 1.57 1.47	P % 0.087 0.033 0.017 0.019 0.017	La ppm 9 4 3 4 4	Cr ppm 79.7 14.9 21.8 20.1 19.3	Mg % 0.52 1.3 1.43 1.64 1.64	Ba ppm 170 47 78 55 54	Ti % 0.113 0.127 0.15 0.165 0.166	B ppm 2 6 6 4 5	Al Na % % 0.91 0.047 4.6 0.325 3.95 0.128 4.66 0.302 4.71 0.327	K 0.37 0.08 0.26 0.2 0.19	W ppm 0.1 0.4 0.2 0.2	Hg <.01 <.01 <.01 <.01 <.01	Sc ppm 1.9 10.7 9.7 14 14.2	Ti ppm 0.3 0.1 0.1 0.1 0.1	\$ 0.07 <.05 <.05 <.05 <.05	Ga ppm 5 11 11 11 11	\$(ppm <; 0, < <
4273 4278 4279 4280 4281 4282	11.3 3023.6 14.7 958.3 14.1 1122.6 29.1 971.8 14.4 1776.9 12.9 1181.8	5 4.3 3.6 3.3 3.7 4	163 88 93 79 87 72	<.1 0.1 0.1 0.1 0.1	21.8 15.3 18.2 20.3 17.2 18.4	134.6 47.3 64.8 50.1 50.6 62.4	50 3.36 55 3.41 04 3.45 74 3.97 91 4.28 02 2.97	5.6 4.7 3.9 7.7 6.4 5.8	0.4 0.2 0.2 0.3 0.2	1.2 1.2 0.5 6.6 1.2 0.8	1.4 0.6 0.6 0.9 0.8	63 68 75 49 75 34	0.1 0.2 0.2 0.1 0.1 0.1	0.2 0.2 0.1 0.2 0.2 0.2	0.3 0.4 0.4 0.4 0.4 0.6	94 117 115 132 140 95	1.34 1.51 1.46 0.83 1.35 0.67	0.037 0.03 0.026 0.022 0.024 0.012	6 4 3 4 4	21 16.3 15.1 17.6 17.8 18.5	0.86 1.09 1.13 1.22 1.22 0.75	55 82 70 114 78 56	0.126 0.124 0.131 0.137 0.145 0.12	9 8 7 7 7 7	3.6 0.177 3.93 0.2 3.83 0.23 4.11 0.122 4.39 0.248 2.81 0.061	0.11 0.11 0.09 0.11 0.12 0.09	0.3 0.4 0.4 0.2 0.3	0.02 0.02 0.02 0.01 0.01 0.02	6.6 7.6 7.8 9.6 4.9	0.1 0.1 0.1 0.1 0.1 0.1	<.05 <.05 <.05 <.05 <.05 <.05	9 9 10 11 11 10	0,6 0.5 <.5 <.5 0.6 <.5
4285 4286 4288 4289 4290 4290 4291	17.2 192.5 9 >10000 17.2 1028.4 12.8 666.6 5.6 4487.1 52.1 1293	5.2 2.7 3.9 5.1 2.9 3	59 105 55 125 104 49	0.1 0.2 0.2 0.2 0.2 0.2 0.1	11.5 21.8 15.7 23.2 22.8 15.3	16.9 2 106.1 4 21.2 5 139 4 101.9 4 19.8 3	29 2.5 94 4.11 49 4.34 18 3.38 107 3.73 172 4.49	8.6 4.2 7.4 6.9 3.2 5.1	0.2 0.4 0.3 0.2 0.1 0.2	2.1 1.1 3.7 2.5 1 3.7	0.7 0.7 1 0.6 0.7	25 103 52 62 86 73	0.1 0.4 0.5 0.2 0.1	0.3 0.2 0.3 0.2 0.2 0.2	0.3 0.5 0.2 0.3 0.3	79 142 126 92 139 146	0.41 1.82 0.73 1.16 1.8 0.96	0.03 0.092 0.086 0.022 0.045 0.037	5 6 5 3 4	16.4 15.6 21.6 17.1 14.3 19.8	0.43 1.45 1.03 0.8 1.14 1.36	71 36 67 73 50 64	0.093 0.141 0.102 0.119 0.123 0.139	5 7 6 10 5 5	1.92 0.024 4,4 0.328 4,1 0.077 3.88 0.152 4,11 0.292 4,11 0.119	0.09 0.12 0.13 0.13 0.14 0.12	0.2 0.6 0.5 0.5 0.3 0.6	0.03 0.01 0.01 0.01 0.01 0.01	3.3 11.8 7.5 7.3 9.6 11	0.1 0.1 0.1 0.1 0.1 0.1	<.05 <.05 <.05 <.05 <.05 <.05	8 11 10 10 10 12	<.5 1.1 <.5 <.5 0.6 <.5
4252 4300 4301 4302 4303 4304 4305	29.2 903,4 32.1 6036,7 15.8 2986,1 29.3 1610.5 12.1 1524,1 10.8 5731,8 43.6 738,0	4.7 3.9 3.9 5.7 3.1	64 72 85 96 149 147	0.2 <.1 0.1 0.2 <.1	25.6 19.8 20.3 32.9 38.6	28.0 0 91.2 6 55 3 70.1 18 86.2 3 130.7 4	4.6 4.46 118 4.03 123 3.57 23 4.63 39 3.65 74 4.14 46 4.87	7.9 7.8 3.7 9.1 7	0.4 0.7 0.3 0.6 0.3 0.3 0.3	1.2 1.6 <.5 1.9 2.1	0.8 0.8 2.4 0.8 0.8	46 98 58 35 47 81	0.1 0.1 0.3 0.2 0.1	0.4 0.2 0.2 0.3 0.2	0.4 0.2 0.3 0.2 0.4 0.3	133 129 107 110 108 141	0.58 1.79 1.08 1.03 0.92 1.53	0.059 0.066 0.03 0.048 0.038 0.038	4 9 5 9 4 6	37.3 24.7 18.5 20.6 23.8 22.3	1.2 1.03 0.79 0.91 0.82 1.24	64 52 62 40 74 46	0.141 0.114 0.216 0.116 0.134	5 7 6 8 6 6	4.19 0.056 4.51 0.257 3.9 0.146 3.16 0.066 4.22 0.109 4.88 0.259 3.99 0.231	0.11 0.08 0.09 0.13 0.13 0.09	0.4 0.4 0.5 0.3 0.3	0.02 0.02 0.02 0.02 0.02 0.01	6.5 7.7 6 5.4 9.2	0.1 0.1 0.2 0.1 0.1	<.05 <.05 <.05 <.05 <.05 <.05	9 9 10 10 10	1.3 0.7 0.7 <.5 <.5
4306 4307 4308 4309 4310 4311	39 3504.3 19.7 3700.4 24.5 7082.3 11.8 4264.4 13.3 3988.6 11.5 3885.1	2.4 2.5 1.7 2.2 2.5 1.7	62 56 74 54 85 63	0.1 0.1 <.1 <.1 <.1	17.1 18.7 20.8 15.2 22.2	43.1 3 79.1 3 61.4 4 70.9 3 134.8 3	24 4.53 88 3.86 04 4.75 57 4.45 25 3.98 24 4.44	4.8 4.8 4.4 3.9 4.7 4.6	0.4 0.3 0.3 0.2 0.2 0.2	2.6 2.1 3.6 3.8 1.5 2.7	0.5 0.5 0.5 0.7 0.6	99 102 108 98 92 111	0.1 0.1 0.2 0.1 0.1	0.2 0.2 0.1 0.1 0.1 0.1	0.4 0.3 0.8 0.6 0.4 0.3	149 128 157 156 125	2.06 2.33 2.09 1.84 1.89	0.055 0.06 0.072 0.033 0.037 0.025	5 5 5 5 5 5 4	21.7 19.6 15.9 15 16.4 15 8	1.05 1.12 1.75 1.36 1.15 1.26	58 60 65 43 56	0.107 0.108 0.163 0.145 0.123 0.139	5 10 5 5 7 4	3.41 0.234 3.74 0.24 4.19 0.34 4.23 0.334 4.11 0.278 4.16 0.354	0.15 0.11 0.2 0.07 0.09 0.09	0.8 0.6 0.5 0.3 0.6 0.7	0.02 0.02 0.03 0.02 0.02 0.02	8.9 9.7 14 12.5 10.1 11.3	0.1 0.1 0.1 0.1 0.1 0.1	<.05 <.05 <.05 <.05 <.05 <.05 <.05	9 9 11 12 10 12	1.7 1.8 1.1 0.9 1.2 0.8
4312 4313 4314 4315 4316 STANDARD DS6	17.4 2226.2 19.4 5993.6 34.9 5433.7 36.7 2529.7 26.6 3154.2 11.7 123.8	2.7 1.6 1.7 2.2 1.9 29.7	66 67 81 54 66 143	<.1 <.1 0.1 <.1 0.3	20 19.5 21 15.6 16.5 25.4	99.7 3 59 3 55.8 4 36.7 3 48 3 11.2 7	12 4.15 79 4.8 19 5.4 84 5.26 32 4.48 13 2.86	4.4 3.7 4.4 6 4.2 20.9	0.2 0.3 0.4 0.3 0.3 6.7	1 2.4 3.6 7.6 7.1 47.3	0.9 0.6 0.6 0.7 0.5 3.2	98 114 109 105 111 42	0.1 0.1 0.1 0.1 0.1 6	0.1 0.1 0.1 0.1 0.1 3.6	0.2 0.5 0.5 0.7 0.5 5	141 180 207 182 154 59	1.62 1.9 1.88 1.87 1.89 0.87	0.019 0.061 0.064 0.066 0.059 0.078	4 5 5 4 15	18.1 20 21.5 22.3 14.8 192	1.25 1.5 1.82 1.59 1.34 0.59	59 61 60 69 59 165	0.135 0.145 0.173 0.155 0.123 0.092	5 4 2 4 4 17	4.35 0.275 4.19 0.314 4.11 0.315 4.04 0.282 3.91 0.261 2 0.073	0.1 0.18 0.23 0.22 0.17 0.16	0.4 0.6 0.7 1.4 1.2 3.4	0.02 0.01 0.02 0.02 0.01 0.22	10.6 12.3 14.3 13.4 11.2 3.5	0.1 0.1 0.1 0.1 0.1 1.7	<.05 <.05 <.05 <.05 <.05 <.05 <.05	11 11 12 12 11 7	0.7 0.9 0.7 0.9 0.9 4.4
G-1 4317 4318 4319 4320 4321	1.5 3.9 48.2 3461.7 13.5 1849 37.4 2500.9 14.8 1573.4 105.7 2129.6	2.7 2.1 1.6 1.5 2.4 2.3	48 51 53 51 72 48	<.1 0.1 <.1 0.2 0.1	4.6 16.1 16.1 14.6 21.8 18.4	4.3 8 32.5 3 41.4 3 34.1 3 81 2 31.9 3	02 2.05 32 4.65 24 4.64 41 5.12 46 3.99 16 5.1	<.5 5.9 4.4 5.6 6.2	3.1 0.4 0.3 0.2 0.3 0.3	1.7 10.4 3.3 6.3 1.6 5.9	4.3 0.6 0.5 0.5 0.7 0.6	66 87 98 99 93 1D1	<.1 <.1 0.1 0.1 <.1	<.1 0.2 0.1 0.1 0.2 0.2	0.1 0.9 0.5 0.7 0.3 0.5	38 156 158 191 128 166	0.55 1.44 1.68 1.67 1.7 1.57	0.081 0.057 0.045 0.055 0.025 0.025	7 4 3 3 4 3	12.2 21.6 19.6 19.3 17 23.4	0.6 1.25 1.33 1.63 1.06 1.36	216 59 65 66 53 65	0.129 0.122 0.134 0.156 0.119 0.136	<1 3 4 3 8 3	1.03 0.055 3.37 0.189 3.96 0.231 4.1 0.266 4.22 0.255 3.74 0.248	0.51 0.17 0.16 0.2 0.07 0.19	1.3 1.5 1.6 1.2 1.9 1.7	0.01 0.02 0.02 0.01 0.02 0.02	2.3 10.5 12.6 14.1 11.8 12.1	0.3 0.1 0.1 0.1 0.1 0.1	<.05 0.06 <.05 <.05 <.05 <.05	5 9 10 11 10 10	<.5 0.9 0.6 0.7 1 1.2
RE 4321 R3004W R3021W R3023W R3023W R3026W R3030W	106.5 2174 15.6 325.4 23.7 605.5 7.6 >10000 21.2 2173.4 26.9 401.2 20.9 273.5	2.1 7.1 4.1 2.2 2.2 3.9	48 105 71 118 62 52	0.1 0.1 <.1 <.1 <.1	17.6 19.8 15.1 32.1 17.3 21.3	30.9 3 19 5 35.2 2 119.1 4 42.3 3 22.3 3	14 5.15 39 4.01 35 3.38 16 4.57 73 4.57 17 3.18	6.2 23.2 6.6 4.2 4.9 12.6	0.2 0.2 0.5 0.2 0.5	7.5 4.6 11 1.3 2.7 3	0.5 0.6 0.7 0.6 0.9	103 52 50 98 64 41	<.1 0.4 0.1 0.1 0.1 0.1	0.2 0.9 0.2 0.1 0.1 0.4	0.6 0.4 0.3 0.4 0.5 0.2	168 107 128 164 183 107	1.58 0.91 1.66 1.08 0.77	0.051 0.027 0.019 0.052 0.032 0.027	3 5 3 6 4 5	23.2 35.8 16.1 20.1 21.3 30.5	1.4 1.23 0.97 1.68 1.78 0.95	63 72 86 58 96 74	0.141 0.087 0.127 0.171 0.191 0.14	3 5 5 3 4 5	3.83 0.237 2.75 0.041 3.37 0.117 4.6 0.316 3.89 0.181 2.58 0.062 2.68 0.062	0.2 0.1 0.09 0.26 0.08 0.42	1.7 0.7 0.3 0.6 0.5 0.5	0.02 0.03 0.02 0.02 0.02 0.02 0.06	12.5 7.8 7.6 12.5 13.9 6.5	0.1 0.1 0.1 0.1 0.1 0.1	<.05 <.05 <.05 <.05 <.05 <.05	10 8 10 12 11 8	1.2 0.9 0.6 0.5 <.5 0.6
R3032W R3036W R3037W R3040W R3040W R3047W R3051W	7.3 135.7 19.6 1227.6 14.8 424 28 701.9 4.5 86.2 3.2 108	6 6.6 3.7 2.9 3 5.3 5.5	81 67 36 55 93 89	<.1 0.3 <.1 <.1 <.1 0.2	23.9 17.8 15.7 19.1 22.7 23.5	16.8 4 23.8 3 13.1 3 22.8 3 25.6 10 27.4 11	05 3.75 86 4.43 56 3.55 74 4.41 17 5.18 43 5.3	13.4 9.1 10.1 9.9 23.1 21.2	0.3 0.3 0.3 0.3 0.2 0.3	2.5 0.9 6 2.6 4 5 7.3	1.1 0.7 0.9 0.9 0.5 0.7	28 38 73 83 53 72	0.2 0.1 <.1 0.1 0.2 0.2 0.1	0.4 0.3 0.3 0.2 0.9 0.8	0.2 0.3 0.7 0.2 0.8 0.2 0.2	108 150 111 158 128 128	0.44 0.55 0.69 0.95 0.92 1.01	0.044 0.062 0.051 0.035 0.129 0.086	5 4 5 5 5 5 5 5	31.5 22.2 29 28.4 38.7 37.3	0.59 1.14 0.76 1.61 1.76 1.89	106 56 59 81 80 90	0.137 0.121 0.117 0.159 0.097 0.108	4 4 2 2 4 4	3.09 0.029 3.93 0.06 2.04 0.054 3.93 0.13 3.74 0.032 3.97 0.036	0.12 0.11 0.09 0.06 0.18 0.12 0.11	0.2 0.6 0.4 0.7 0.5 0.8	0.02 0.03 0.03 0.03 0.03 0.08 0.08	5.7 9.5 6.2 12.1 10.1 11.4	0.1 0.1 <.1 0.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05 <.05	10 11 6 11 11 11	<.5 <.5 <.5 <.5 <.5 <.5 <.5
R3052W R3053W R3054W R3055W R3055W R3056W R3057W	3.9 92.6 3.2 88.5 2.5 55.1 5.6 86.6 4 82.9 2.9 70.2	5.3 5 5.3 4.6 4.8 5.2	77 86 92 72 82 76	0.1 <.1 <.1 <.1 <.1 0.1 <.1	22.7 23.9 20.4 22.7 23.2 22.7	27.1 10 28.3 11 25.3 12 27.3 9 27.5 9 24.5 9	71 5.52 66 6.21 01 5.18 74 5.61 76 5.62 03 5.34	25.5 29.5 18.9 21.6 24.1 23.5	0.3 0.3 0.2 0.2 0.2 0.2 0.3	8 10.9 5.6 6.8 87.9 6.3	0.6 0.6 0.6 0.6 0.6 0.6 0.7	78 98 61 80 66 61	0.1 0.1 0.1 0.1 0.1 0.1	1 1.1 0.7 0.9 1 1.1	0.2 0.2 0.2 0.2 0.2 0.2 0.2	141 156 130 145 130 128	1.19 1.22 1.04 1.11 1.02 0.95	0.075 0.058 0.095 0.048 0.084 0.084	6 5 4 5 5	37.6 37.1 34.7 38.1 37.1 41.7	2 2.16 1.8 1.86 1.94 1.96	76 80 109 75 76 68	0.111 0.118 0.1 0.126 0.096 0.094	3 5 3 4 3 4	4.07 0.046 5.05 0.046 3.66 0.036 3.99 0.05 4.09 0.04 3.84 0.039	0.14 0.15 0.15 0.08 0.09 0.17	0.8 0.6 0.5 0.9 0.7 0.5	0.09 0.06 0.05 0.13 0.06 0.07	13.8 14.8 10.6 11.8 10.9 10.6	<.1 0.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	11 10 10 10 11 10	<.5 <.5 <.5 <.5 <.5 <.5
R3059W R3060W R3061W R3062W R3062W R3063W R3064W	1.8 72.3 2.3 91.7 1.8 57.7 1.7 73.8 1.4 67.8 1.8 95.2	6 5.7 5.5 5.4 5.9	97 114 76 105 86 107	<1 0.1 <1 <1 <1 <1	24.6 23.1 23.1 20.9 24.6 22.2	26.4 12 27.2 14 25 10 24.8 13 26.4 12 28.7 14	61 5.19 62 5.12 58 5.25 71 5.13 07 5.72 47 5.46	22.6 22.7 22.4 25.5 19.3	0.2 0.3 0.2 0.3 0.3 0.3	6.7 7.4 65.1 4.8 9.9 18.6	0.7 0.7 0.6 0.7 0.8	82 78 72 74 77 85	0.2 0.2 0.2 0.2 0.2	0.9 0.9 1.1 0.9 0.9 0.7	0.2 0.2 0.1 0.2 0.1 0.3	131 124 132 123 144 140	1.37 1.34 1.19 1.41 1.14 1.34	0.075 0.098 0.099 0.104 0.082 0.086	6 7 5 6 6	39.6 38.2 39.6 37.2 40.4 36.7	1.88 1.77 1.82 1.84 2.02 1.83	91 96 90 90 74 95	0.124 0.097 0.114 0.11 0.118 0.138	5 3 4 6 3 4	3.77 0.052 3.81 0.044 3.68 0.051 3.67 0.048 4.13 0.048 4.13 0.05	0.12 0.12 0.09 0.19 0.09 0.12	0.5 0.6 0.5 0.4 0.6	0.07 0.05 0.05 0.05 0.06 0.05	11.6 11.3 11.4 11 12.3 12.3	<1 <1 <1 <1 <1 <1	<.05 <.05 <.05 <.05 <.05 <.05	10 9 9 11 10	0.5 <.5 <.5 <.5 <.5 <.5
R3065W R3066W R3067W R3068W STANDARD DS6 G-1 R3069W	1.5 66.5 1.8 57.1 0.7 51.9 0.7 66.1 11.6 122.8 2.2 4.2 0.8 62.7	5.7 5.8 6.2 6 29.5 3 6.3	90 98 119 95 143 44 82	<.1 <.1 <.1 0.1 0.3 <.1 0.1	24.2 19.5 20.8 21.9 24.9 8.7 24.3	24.9 17 22.1 14 20.4 13 22 15 11 7 4.5 5 24.8 12	87 5.39 27 4.63 56 4.62 15 4.79 11 2.83 59 2.02 46 5.37	23.8 17.8 20.7 21.7 20.9 <.5 31.2	0.2 0.2 0.3 6.7 1.8 0.2	7.3 2.8 9.3 12.4 47.1 0.9 17.6	0.7 0.6 0.7 3.2 3.9 0.8	81 70 66 73 40 67 84	0.2 0.2 0.3 0.2 5.9 <.1	0.7 1.1 0.9 3.5 <.1 1.1	0.1 0.1 0.1 5 0.1	135 121 105 121 57 42 134	1.37 1.22 1.17 1.27 0.86 0.61 1.05	0.063 0.115 0.116 0.103 0.079 0.082 0.066	6 5 7 14 8 7	40.2 34.7 38.6 38.7 188.5 98.5 43.4	1.92 1.78 1.58 1.8 0.58 0.56 1.92	95 114 118 91 163 187 84	0.124 0.106 0.072 0.1 0.081 0.129 0.098	5 6 4 17 1 5	3.85 0.051 3.82 0.042 3.27 0.032 3.74 0.043 1.92 0.074 0.98 0.056 3.74 0.042	0.14 0.19 0.13 0.15 0.38 0.1	0.4 0.3 0.2 0.3 3.4 0.1 0.1	0.05 0.07 0.06 0.23 <.01 0.07	12.6 10.3 9.8 10.5 3.3 2.2 11.9	<.1 <.1 <.1 1.7 0.3 <.1	<.05 <.05 <.05 <.05 <.05 <.05 <.05	10 9 7 5	<.5 <.5 <.5 4.2 <.5 <.5
R3070W R3071W R3072W R3072W R3073W R3074W R3075W	2 76.3 0.8 56.3 4.2 80.5 0.8 55.1 2.8 57 6 70	5.5 5.6 5.7 5.7 3.9 5.3	75 85 72 77 57 54	0.1 <.1 0.2 0.1 <.1 0.1	20.3 23.1 24.6 23.5 18.9 23.7	22.7 11 23.4 11 20.2 6 24.2 10 16.7 6 20.5 10	91 4.62 30 5.01 41 4.2 34 5.24 89 4.11 32 4.71	21.1 26 13.9 30.7 19.3 24.1	0.2 0.2 0.5 0.2 0.3 0.6	10.9 11.8 8 16.2 7.7 3.7	0.6 0.6 0.8 0.7 0.7 1.1	81 81 78 89 68 58	0.1 0.3 0.1 0.1 0.2 0.3	0.8 1.1 0.5 1.2 0.7 0.6	0.1 0.1 0.2 0.1 0.2 0.2 0.2	122 125 144 135 117 144	1.32 1.25 1.2 1.07 1.31 0.95	0.101 0.075 0.062 0.048 0.055 0.052	6 7 6 7	36.1 42.4 51.5 44.6 36.8 48	1.75 1.89 1.57 2 1.36 1.02	82 79 101 80 62 107	0.097 0.097 0.184 0.106 0.123 0.125	4 4 3 6 5 4	3.48 0.048 3.34 0.046 3.4 0.045 3.67 0.05 2.92 0.062 2.81 0.055	0,13 0.1 0.05 0.11 0.05 0.06	0.4 0.2 0.4 0.1 0.4 1.3	0.07 0.07 0.04 0.07 0.08 0.08	10.7 10.8 12.3 12.2 9.5 8.8	<.1 <.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05 <.05	9 9 9 9 7 8	<.5 <.5 1.6 <.5 0.9 1.4
R3076W R3077W R3078W R3079W R3080W R3080W R3082W	2.3 103.3 1.3 76.4 2.4 43.6 3 65 1.6 61.7 2.2 82.5	4.8 4.5 4.6 4.1 4 3.7	51 79 66 48 52 51	0.2 <.1 <.1 <.1 <.1 <.1	24.6 18.3 20.9 24.5 22.4 22	18.5 7 28.7 10 14.6 7 14.1 5 15.1 6 14.8 5	10 4.2 50 5.63 23 3.3 15 3.52 85 3.5 65 3.55	22 20.8 13.9 15.4 13.9 14.6	0.5 0.2 0.3 0.5 0.3 0.4	6.8 7.8 1.9 3.3 3.3 2.4	1.1 0.5 1 1.4 1.1 1.2	56 99 38 47 52 51	0.4 0.3 0.1 0.1 0.1 <.1	0.6 0.7 0.4 0.5 0.5 0.5	0.2 0.3 0.2 0.1 0.1 0.1	129 169 90 98 94 98	1.04 1.56 0.71 0.81 1 0.91	0.057 0.066 0.076 0.04 0.079 0.079	7 4 5 8 7 7	42.5 35.7 33.1 44.1 38.7 35.4	1.08 2.13 0.82 0.94 1.07 1.08	64 74 87 91 71 81	0.129 0.15 0.125 0.161 0.144 0.161	4 6 4 3	2.86 0.057 4.43 0.056 2.52 0.042 2.68 0.05 2.31 0.071 2.39 0.063	0.05 0.07 0.16 0.08 0.08 0.08	0.6 0.7 0.3 0.2 0.2 0.3	0.09 0.05 0.02 0.05 0.05 0.05	9.5 14.8 6.3 8.2 7.2 7.8	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	8 11 7 7 7 7	0.7 0.5 <.5 <.5 0.5 <.5
R3083W R3084W R3085W R3086W R3087E R3088E	1.8 121.3 2.7 68.1 3.5 114.8 2 45 2 62.4 1.8 65.3	3.9 4.7 8.3 6.3 12.8 13.7	45 53 81 60 80 96	<.1 <.1 0.4 <.1 0.3 0.2	20.3 22.1 31.1 17.8 26.8 25.8	14.2 5 15.5 6 19.3 11 17.3 7 20.6 9 22.8 12	71 3.64 75 3.55 35 4.94 65 3.8 84 4.79 79 4.8	12.7 18.6 15.6 10.3 59.6 56.2	0.3 0.5 0.6 0.3 0.2 0.2	5.6 5 2.5 2.9 21.1 14.3	1.2 1.3 1.8 0.8 0.9 0.8	56 52 43 44 34 37	0.1 0.1 0.2 0.2 0.3	0.4 0.7 0.6 0.5 1.8 1.7	0.1 0.1 0.2 0.1 0.1	112 92 106 105 81 88	1 0.98 1.03 0.93 0.7 0.81	0.06 0.07 0.054 0.033 0.061 0.098	7 8 13 5 11 9	35.5 38.1 49.8 35.1 43.2 45.2	1.04 0.99 0.97 1.04 1.56 1.54	68 93 111 73 86 86	0.175 0.156 0.081 0.138 0.023 0.023	3 7 4 4 5	2.29 0.093 2.51 0.053 4.84 0.03 2.89 0.039 2.75 0.018 2.85 0.02	0.09 0.09 0.1 0.06 0.15 0.14	0.2 0.2 0.3 0.4 0.2 0.2	0.03 0.08 0.04 0.04 0.07 0.07	8.9 8.8 11 8 9.4 9.3	<.1 0.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	7 7 11 7 8 8	<.5 <.5 0.8 <.5 <.5 <.5

SJ Geophysics Ltd/S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel (604) 582-1100 fax (604) 589-7486 E-mail: sydv@sjgeophysics.com

Acme File # A507234

1.1

-

.

ار این از این میشوندی مین از میراند. این از ای

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT To Galore Resources Inc. PROJECT N.W Copper Acme file # A505234 Received: AUG 31 2005 • 16 samples in this disk file. Analysis: GROUP 1DX - 15.00 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS.

`

i

ſ

ELEMENT Mo SAMPLES ppm G-1 0.7 NW-1 LOW 0.7 NW-2 LON 40W 1 NW-3 LON 80W 1.3 NW-4 LON 120W 1.4 NW-5 LON 160W 0.9 NW-6 LON 200W 0.5 RE NW-7 LON 240W 0.4 NW-8 LON 280W 0.7 NW-9 LON 320W 0.7 NW-9 LON 380W 0.8 NW-11 LON 400W 0.7 NW-12 LON 440W 0.8 NW-11 LON 400W 0.7 NW-12 LON 440W 0.9	o n 7 7 1	Cu ppm 2	Pb ppm 2.6	Zn ppm	Ag ppm	Ni Dom	Co	Ma	Fe	As	U	Au	Th	Sr	Cd	Sh	R)	~ ~	<u></u>		10	Cr	Mo	Ba	Ti	в	A1	Na	ĸ	w	Ha	Sc	п	S	Ga	Se
SAMPLES ppm G-1 0.7 NW-1 LOW 0.7 NW-2 LON 40W 1 NW-3 LON 60W 1.3 NW-4 LON 120W 1.4 NW-5 LON 160W 0.9 NW-6 LON 200W 0.5 REF NW-7 LON 240W 0.5 REF NW-7 LON 240W 0.7 NW-9 LON 320W 0.7 NW-9 LON 320W 0.7 NW-9 LON 380W 0.7 NW-11 LON 460W 0.7 NW-12 LON 36W 0.8 NW-11 LON 400W 0.7	n 7 7 1	ppm 2	ppm 2.6	ppm	ppm	Dpm	5000								QQ	30		v		F		-	p		• /	-								•	-	
G-1 0.7 NW-1 LOW 0.7 NW-2 LON 40W 1 NW-3 LON 80W 1.3 NW-4 LON 120W 1.4 NW-5 LON 80W 0.9 NW-6 LON 160W 0.9 NW-7 LON 240W 0.5 NW-7 LON 240W 0.5 RE NW-7 LON 240W 0.4 NW-8 LON 280W 0.7 NW-9 LON 320W 0.7 NW-9 LON 360W 0.8 NW-11 LON 400W 0.7 NW-12 LON 440W 0.8 NW-13 LON 400W 0.7	7 7 1	2	2.6	47			PPIII	ppm	%	ppm	Ppm	ppb	ppm	ppm	ppm	Ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm
NW-1 LOW 0.7 NW-2 LON 40W 1 NW-3 LON 80W 1.3 NW-4 LON 120W 1.4 NW-5 LON 160W 0.9 NW-6 LON 200W 0.5 RE NW-7 LON 240W 0.5 RE NW-7 LON 240W 0.4 NW-9 LON 320W 0.7 NW-9 LON 380W 0.8 NW-11 LON 400W 0.7 NW-12 LON 360W 0.8 NW-11 LON 400W 0.7 NW-12 LON 440W 0.9	7 1	66.2		47	<.1	6.3	4.3	575	1.82	<.5	2	1.1	3.6	48	<.1	<.1	<.1	33	0.38	0.076	6	71.2	0.62	236	0.117	<1	0.99	0.081	0.5	0.1	<.01	3.7	0.4	<.05	4	<.5
NW-2 LON 40W 1 NW-3 LON 60W 1.3 NW-4 LON 120W 1.4 NW-5 LON 16DW 0.9 NW-6 LON 200W 0.5 RE-NW-7 LON 240W 0.5 RE-NW-7 LON 240W 0.7 NW-9 LON 320W 0.7 NW-9 LON 356W 0.8 NW-11 LON 400W 0.7 NW-12 LON 360W 0.8 NW-11 LON 400W 0.7 NW-12 LON 450W 0.8	1	30.3	3.6	44	0.1	18,7	10.7	462	3.32	10.5	1.1	2.7	0.9	46	0.1	0.5	0.1	82	0.73	0.034	9	31.6	0.85	85	0.101	3	2.59	0.033	D.04	0.1	0.09	9.5	<.1	<.05	6	<.5
NW-3 LON 80W 1.3 NW-4 LON 120W 1.4 NW-5 LON 160W 0.9 NW-6 LON 200W 0.5 NW-7 LON 240W 0.5 RE NW-7 LON 240W 0.4 NW-8 LON 280W 0.7 NW-9 LON 320W 0.7 NW-9 LON 320W 0.7 NW-10 LON 460W 0.7 NW-11 LON 460W 0.7 NW-12 LON 440W 0.8 NW-13 LON 450W 0.9		46.3	4.7	53	0.1	16.9	12.4	499	3.61	10.9	0.7	3.2	1	41	0.1	0.5	0.1	100	0.57	0.021	5	29	0.87	75	0.071	1	2.9	0.023	0.02	0.1	0.04	7.9	<1	<.05	7	<.5
NW-4 LON 120W 1.4 NW-5 LON 160W 0.9 NW-6 LON 200W 0.5 RE NW-7 LON 240W 0.4 NW-8 LON 280W 0.7 NW-9 LON 350W 0.8 NW-11 LON 460W 0.7 NW-12 LON 360W 0.8 NW-11 LON 400W 0.7 NW-12 LON 360W 0.8	3	46.6	4.2	55	0.1	19.8	13.5	394	4,33	16	0.4	1.5	0.7	30	0.1	0.7	0.1	118	0.46	0.026	3	29.8	0.89	78	0.095	3	3.47	0.018	0.03	0.2	D.14	6.6	<.1	<.05	9	<.5
NW-5 L0N 16DW 0.9 NW-6 L0N 200W 0.5 RE NW-7 L0N 240W 0.5 RE NW-7 L0N 240W 0.4 NW-8 L0N 280W 0.7 NW-9 L0N 320W 0.7 NW-10 L0N 360W 0.8 NW-11 L0N 400W 0.7 NW-12 L0N 360W 0.8 NW-13 L0N 400W 0.7 NW-14 L0N 400W 0.7	4	67.7	5.7	54	0.2	22	15.1	594	4.08	18.2	1	6.7	1.1	69	0.1	0.7	0.1	105	0.72	0.057	10	30.5	0.74	198	0.061	3	4.77	0.021	0.04	0.2	0.07	9.5	0.1	<.05	10	<.5
NW-6 LØN 200W 0.5 NW-7 LØN 240W 0.5 RE NW-7 LØN 240W 0.4 NW-8 LØN 280W 0.7 NW-9 LØN 320W 0.7 NW-10 LØN 360W 0.8 NW-11 LØN 460W 0.7 NW-12 LØN 440W 0.8 NW-13 LØN 460W 0.7	9	41.7	4.7	66	0.1	17.3	12.5	393	3.71	9.7	0.4	2	0.8	38	0.1	0.6	0.1	106	0.55	0.031	5	27.4	0.79	83	0.078	2	3.11	0.017	0.03	0.2	0.04	6.2	<1	<.05	8	<.5
NW-7 LON 240W 0.5 RE NW-7 LON 240W 0.4 NW-8 LON 280W 0.7 NW-9 LON 320W 0.7 NW-10 LON 360W 0.8 NW-11 LON 400W 0.7 NW-12 LON 440W 0.8 NW-13 LON 440W 0.9	5	40	5.2	61	0.1	19.5	12.6	397	3.75	10.3	0.4	12.8	0.8	38	0.1	0.5	0.1	102	0.59	0.036	6	31.3	0.81	68	0.069	2	3.36	0.017	0.04	0.2	0.02	6.6	<1	<.05	9	<.5
RE NW-7 LON 240W 0.4 NW-8 LON 280W 0.7 NW-9 LON 320W 0.7 NW-10 LON 360W 0.8 NW-11 LON 400W 0.7 NW-12 LON 440W 0.9	5	40.4	4.1	51	0.1	19.7	12.4	493	3.65	9.8	0.4	1,6	0.6	42	0.1	0.5	0.1	99	0.69	0.031	6	32.3	0.98	83	0.101	2	2.95	0.026	0.03	0.1	0.06	8	<.1	<.05	8	<.5
NW-8 L0N 280W 0.7 NW-9 L0N 320W 0.7 NW-10 L0N 350W 0.8 NW-11 L0N 400W 0.7 NW-12 L0N 440W 0.8 NW-13 L0N 450W 0.9	4	40.3	3.8	49	0.1	18.6	12.1	476	3.53	8.7	0.3	2.8	0.6	39	0.1	0.5	D.1	99	0.69	0.03	6	30	0.95	75	0.097	2	2.8	0.022	0.03	D.1	0.07	7.9	<.1	<.05	7	<.5
NW-9 LON S20W 0.7 NW-10 LON 360W 0.8 NW-11 LON 400W 0.7 NW-12 LON 440W 0.8 NW-13 LON 460W 0.9	7	57.2	5.3	64	0.1	21.1	13.4	584	4	12.8	0.6	1	0.8	40	0.1	0.6	0.1	100	0.83	0.035	9	36	0.98	91	0.056	2	3.34	0.017	0.04	0.2	0.05	11.2	0.1	<.05	g	<.5
NW-10 LDN 360W 0.8 NW-11 LDN 400W 0.7 NW-12 LON 440W 0.8 NW-13 LON 480W 0.9	7	44.8	4.5	60	0.1	18.9	14.5	753	3.8	9.5	0.6	1.9	0.6	39	0.1	0.5	0.1	105	0.87	0.031	8	34.5	1.05	73	0.093	3	3.01	0.021	0.03	0.2	0.05	9.7	<.1	<.05	8	<.5
NW-11 LON 400W 0.7 NW-12 LON 440W 0.8 NW-13 LON 480W 0.9	8	27.9	3.9	53	0.1	15.2	12.7	542	3.42	7.9	0.4	1.9	0.6	36	0.1	0.5	0.1	98	0.62	0.021	6	28.1	0.97	56	0.107	3	2.45	0.019	0.02	D.1	0.05	8.4	<.1	<.05	7	<.5
NW-12 LON 440W 0.8 NW-13 LON 480W 0.9	7	42.3	5	52	0.1	18.3	14.4	441	3.85	14	0.3	2.6	0.6	27	0.1	0.6	0.1	108	0.49	0.036	4	29.3	0.96	75	0.102	2	3.39	Q.D16	0.03	0.2	0.06	7.4	<.1	<.05	8	<.5
NW-1310N 480W 0.9	9	29.8	5.5	56	0.1	17.6	14.6	575	3.85	10.1	0.2	1.2	0.6	26	0.1	0.5	0.1	109	0.49	0.035	4	28.7	0.9	75	0.099	3	3.13	0.015	0.03	0.1	0.03	6.8	<.1	<.05	9	<.5
	9	33.6	5.2	64	0.1	12.5	15.9	511	4.08	12	0.2	1.1	0.6	23	0.1	0.5	0.1	111	0.39	0.035	5	20.5	0.73	60	0.049	3	2.92	0.012	0.03	0.1	0.03	7.7	<1	<.05	9	<.5
NW-14 LON 520W 1.2		31.7	6.2	66	0.1	13	14.6	388	4.56	12.8	0.2	1.9	0.6	17	0.1	0.6	0.1	115	0.27	0.045	3	21.4	0.71	62	0.051	2	2.96	0.01	0.04	0.1	0.03	6.8	<.1	<.05	10	<.5
STANDARD DS6 11.4	-	121.2	29.5	137	0.3	24.3	10.7	682	2.77	20.3	6.5	46.8	3	39	5.8	3.4	4.9	55	0.81	0.076	13	183.4	0.57	159	0.078	17	1.86	0.07	D.13	3.5	0.22	3.2	1.7	<.05	6	4.2
	4 1												•																							

.

.

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT

Acme file # A507234 Page 1 Received: NOV 2 2005 * 346 samples In this disk file.
Analysis: GROUP 1DX - 15.0 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS.

.---

ELEMENT SAMPLES G-1 1230 1240 1270 1280 1290 1360 1380 1400 1420 RE 1420 1430 1440 1450 1460 1470 1450 150 1540 1550 1550 1560 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 STANDARD DS6 G-1 2014 2015 2016 2017 2018 2019 2021 2022 2023 2024 2025 2026 2027 2028 2029 2010 2011 2012 2013 STANDARD DS6 G-1 2014 2015 2016 2017 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2031 2032 2034 2035 2036 2039 2036 2039 2036 2039 2036 2039 2036 2037 2038 2039 2040 2031 2032 2033 2034 2035 2036 2037 2036 2037 2038 2039 2040 2041 2041 2042 2043 2039 2040 2041 2044 2045 2044 2045 2044 2045 2046 2047 2051 2051 2051 2051 2051 2051 2051 2051
Mo Cu ppm ppm 2 3.5 10 74.9 3.5 10 74.9 3.5 10 74.9 3.5 10 74.9 3.5 10 74.9 3.5 10 74.9 1946.8 40.6 1379.5 24.4 1084.6 14.3 207.3 15.9 213.7 14.9 570.6 9.4 184.9 21.8 747.6 5.9 610.7 350.6 >10000 29.9 760.9 24.4 1694 15.9 546.6 10.2 1735.9 75.1 72.6 24.4 895.3 14.4 974.1 9.2 123.9 13.1 24.8 14.4 974.1 9.2 123.9 13.1 29.6 732.1 26.6 11.7 124 89.6 135.5 13.8 111.1 9
Pb ppm c 2.9 7.1 5.4 12.3 3 3 2.6 2.5 3.5 6.3 4.8 5.2 3.5 6.3 4.8 5.2 5.3 4.8 4.5 3.6 3.2 6.3 4.8 4.5 5.2 5.3 8.8 4.5 3.6 3.2 5.3 4.8 4.5 6.2 5.4 9.3 8.6 4.8 5.6 2.9.4 2.6 5.7 2.9 2.7 3.8 3.5 3.4 4.1 3.2 5.3 5.4 9.3 3.6 4.8 4.1 3.2 5 5.4 9 5 5.4 9 4.8 4.7 4.8 4.7 4.8 4.7 4.8 5.5 5.4 9 4.6 2.9 3.4 3.7 4.5 3.6 </td
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Ni Ni n ppm n ppm 1 8.6 1 20 2 13 3 12.2 2 13.3 2 11.5 1 13.2 2 21.5 2 22.6 1 22.2 2 22.6 1 22.2 2 20.3 1 22.2 7 17.7 2 20.7 3 24.1 1 15.8 2 20.7 3 24.1 1 15.4 2 20.3 1 22.4 2 20.3 1 22.4 2 20.3 1 22.3 2 20.3 1 22.3 2 20.3 1 22.3
Co ppm 4,4 24.9 19.6 23.8 22.7 18.4 70.7 41.2 25.4 26.5 24.9 20.7 27.1 29.8 956.6 28.2 40.7 30.4 122.5 17.9 21. 22.4 16.7 24.4 956.6 28.2 40.7 30.4 122.5 24.9 21.7 22.4 16.7 24.4 91.1 22.4 16.7 24.4 91.1 22.5 31.8 17.1 20.3 18.3 25.4 22.2 11 4.1 127.2 59 31.8 17.1 20.3 18.3 25.4 22.2 11 4.1 18.7 53.5 92.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 134.4 19.7 53.5 20.7 21.3 20.5 21.3 21.3 22.8 20.7 21.3 20.5 20.5 21.3 20.5 21.3 20.5 21.3 22.8 20.7 21.3 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5
Mn ppm 559 418 508 525 496 430 326 350 404 764 796 437 383 314 6113 495 502 322 993 601 557 518 412 301 289 605 2167 435 2167 435 2167 435 2167 435 2167 435 2167 435 2167 435 2167 435 2167 557 518 412 301 289 605 2167 435 2167 557 518 412 301 289 605 2167 557 518 444 459 702 544 459 502 321 557 518 412 301 289 605 2167 557 518 444 459 704 557 518 444 459 704 557 518 445 502 2167 557 518 4427 435 692 427 435 502 354 355 504 459 507 518 444 459 705 557 518 484 488 503 557 559 601 557 518 484 486 503 557 559 601 557 518 484 459 705 559 601 557 518 484 459 705 559 601 557 518 484 486 503 407 7559 601 559 601 557 518 484 486 503 407 559 601 559 601 557 518 484 486 503 407 559 601 557 559 601 557 559 601 557 559 601 557 559 601 557 559 601 557 559 601 559 601 559 601 559 602 455 559 601 559 601 559 601 559 601 559 601 559 601 559 601 559 601 559 601 559 601 559 601 559 601 559 601 559 601 559 601 559 601 559 601 559 601 559 601 559 602 808 559 704 335 5320 361 365 593 842 433 593 842 445 593 844 459 593 844 459 507 501 507 501 507 501 507 501 507 501 507 507 501 507 501 507 507 501 507 507 501 507 507 507 501 507 507 507 507 507 507 507 507
Fe % 2.01 3.62 4.34 5.55 5.01 4.53 4.45 3.99 4.47 3.17 5.25 4.28 4.47 3.17 5.25 4.27 4.47 3.17 5.26 4.52 4.28 3.87 4.07 4.27 2.85 3.87 4.07 4.22 3.69 4.31 3.92 3.51 4.05 4.18 3.92 3.51 4.05 4.18 3.92 3.52 4.05 4.18 3.85 3.85 3.85 3.85 3.85 3.85 3.86 4.23 3.76 3.86 3.76 3.76 3.87 4.27 2.85 3.85 3.86 4.23 3.77 4.27 2.85 3.85 3.86 4.23 3.76 3.86 3.76 3.86 3.76 3.86 3.77 4.27 2.85 3.87 4.27 2.85 3.85 3.86 4.23 3.77 4.27 2.85 3.85 3.86 4.23 3.76 3.86 3.76 3.86 3.76 3.86 3.77 4.23 4.11 4.27 2.85 3.85 3.86 4.23 3.77 4.27 2.85 3.85 3.86 4.23 3.77 4.27 2.85 3.85 3.86 4.23 3.77 4.23 4.18 3.56 3.76 3.86 3.76 3.87 4.23 4.17 3.52 4.28 4.18 3.77 4.23 4.18 3.56 3.76 3.85 3.86 4.23 3.77 4.23 4.18 3.56 3.77 4.23 4.18 3.56 3.76 3.85 3.85 3.85 3.85 3.86 4.23 3.77 4.23 4.18 3.56 3.77 4.23 4.18 3.56 3.77 4.23 4.18 3.56 3.77 4.23 4.18 3.56 3.77 4.23 4.18 3.56 3.76 3.86 5.17 4.29 4.22 5.17 4.25 5.17 4.25 5.17 4.25 5.17 4.25 5.17 4.25 5.17 4.23 4.11 4.25 5.26 4.22 3.87 4.23 4.18 3.56 3.76 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23
As ppm pf <5
U Au ppb 5.4 4.2 2.2 2.2 2.2 1.4 1.5 6.2 2.7 2.2 2.2 1.4 2.4 2.2 3.2 3.2 2.2 2.2 2.2 2.2 3.2 3.3 3.3
Th ppm 4 0.4 0.9 0.9 0.9 0.5 0.6 0.7 0.9 0.8 0.7 0.8 0.6 0.7 0.5 0.6 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.8 0.8 0.6 0.7 0.5 0.5 0.7 0.5 0.7 0.5 0.5 0.7 0.6 0.5 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.7 0.7 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.5 0.7 0.8 0.8 0.8 0.5 0.5 0.5 0.5 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.5 0.7 0.7 0.8 0.8 0.8 0.5 0.5 0.7 0.8 0.8 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
sr pp668 672 81 99 58 81 30 32 27 5 9 4 8 9 5 5 6 67 4 37 55 7 63 2 1 9 5 5 6 7 7 10 5 6 6 5 5 9 5 2 7 7 30 7 5 9 2 5 5 66 7 10 5 8 2 5 8 9 8 1 30 3 2 27 5 9 4 4 4 5 5 5 6 7 7 10 5 6 6 5 5 9 5 2 7 7 30 7 5 9 3 2 3 5 5 6 7 3 4 4 4 6 0 5 4 4 6 0 5 4 4 6 0 5 9 10 6 10 5 9 3 2 8 1 5 10 6 10 5 9 3 2 8 1 5 10 6 10 5 9 3 2 8 1 5 10 6 10 5 9 3 2 8 1 5 10 6 10 5 9 3 2 8 1 5 10 6 10 5 9 3 2 8 1 5 10 6 10 5 9 3 2 8 1 5 10 6 10 5 9 5 10 6 10 5 10 6 10 5 10 6 10 5 10 6 10 5 10 6 10 5 10 6 10 5 10 6 10 5 10 6 10 5 10 6 10 5 10 6 10 5 10 6 10 5 10 6 10 5 10 6 10 5 10 6 10 6
Cd ppm1 0.6 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.1 0.1 0.2 0.2 0.2 0.3 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.1 0.1 0.2 0.2 0.2 0.3 0.1 0.1 0.2 0.2 0.2 0.3 0.1 0.1 0.2 0.2 0.2 0.3 0.1 0.2 0.2 0.2 0.3 0.1 0.2 0.2 0.2 0.2 0.3 0.1 0.2 0.2 0.2 0.3 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Sb ppn 1 0.9 0.4 1.3 0.2 0.2 0.4 0.3 0.3 0.4 0.4 0.4 0.2 0.2 0.4 0.4 0.3 0.3 0.4 0.4 0.4 0.3 0.3 0.4 0.4 0.4 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Bi ppm 0.1 0.2 1.1 3.1 0.7 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.2 0.7 0.5 0.4 0.3 0.3 0.2 0.7 0.5 0.4 0.3 0.2 0.7 0.5 0.4 0.3 0.2 0.7 0.5 0.4 0.3 0.2 0.7 0.5 0.4 0.3 0.2 0.7 0.5 0.4 0.3 0.2 0.7 0.4 0.3 0.2 0.7 0.4 0.3 0.3 0.2 0.7 0.4 0.3 0.3 0.2 0.7 0.4 0.3 0.2 0.7 0.4 0.3 0.2 0.7 0.4 0.3 0.2 0.7 0.4 0.3 0.2 0.7 0.4 0.3 0.2 0.7 0.4 0.3 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.3 0.3 0.3 0.3 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.3 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.3 0.2 0.2 0.1 0.1 0.2 0.3 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
V ppm 40 71 123 146 115 151 161 161 161 161 161 161 161 16
Ca P % % 0.62 0.094 1.43 0.039 0.79 0.055 1.11 0.054 1.13 0.054 1.51 0.024 0.48 0.066 1.51 0.024 0.48 0.044 0.52 0.059 0.43 0.056 1.51 0.024 0.48 0.044 0.52 0.059 0.43 0.056 0.51 0.056 0.52 0.123 0.51 0.053 0.52 0.123 0.54 0.033 0.55 0.52 1.32 0.017 0.54 0.033 0.55 0.52 1.32 0.017 0.44 0.035 0.56 0.022 1.1 0.0135 0.56 0.022 1.1 0.0135
La m845655554544444454545454444223665675455515763305984543344444444444444444444444444444444
Cr ppm2 33.6 4.9 16.6 33.3 32.3 5.3 5.3 1.2 7.5 1.4 8.3 6.6 2.9 9.4 1.6 1.1 7.4 33.6 1.1 1.4 3.5 2.5 3.1 1.2 1.2 1.2 1.2 1.3 1.4 3.3 3.2 2.2 2.2 2.4 8.4 3.2 2.2 2.4 4.8 3.2 2.2 2.4 4.8 3.2 2.4 3.4 3.2 2.2 2.2 2.4 8.4 3.3 3.2 2.2 2.2 2.4 8.4 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3
M9 % 0.59 1.24 1.72 1.56 1.72 1.56 1.77 1.56 1.37 1.03 0.81 0.95 0.98 0.77 0.94 1.02 1.07 0.94 1.02 1.07 0.94 1.02 1.07 0.94 1.02 1.07 0.94 1.02 1.07 0.94 1.02 1.07 0.94 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03
Ba Ti ppm % 172 0.119 61 0.034 89 0.141 98 0.179 138 0.205 114 0.176 53 0.144 166 0.151 64 0.124 106 0.152 102 0.141 67 0.147 63 0.154 64 0.122 75 0.106 73 0.121 75 0.106 79 0.121 105 0.133 76 0.106 79 0.121 105 0.133 73 0.152 74 0.148 81 0.056 92 0.131 85 0.161 105 0.131 85 0.161 73 0.112 74 0.118 <
B m 1 9 4 4 2 5 4 5 9 5 5 5 4 4 7 10 4 4 3 3 4 3 4 5 5 7 4 5 6 5 4 5 9 5 4 8 1 8 4 3 6 3 3 7 4 5 9 4 2 4 3 4 3 4 3 3 2 3 3 4 3 3 4 3 4 5 4 3 7 1 2 3 3 2 5 4 3 3 3 5 5 6 2 4 4 pp
Al Na % % 0.96 0.057 2.57 0.02 3.38 0.11 3.45 0.063 3.65 0.159 3.71 0.125 3.92 0.21 4.75 0.248 5.01 0.205 3.77 0.033 3.63 0.03 4.27 0.053 3.78 0.028 4.31 0.085 4.26 0.075 5.3 0.072 3.69 0.055 3.68 0.021 3.59 0.073 3.72 0.09 3.43 0.12 3.99 0.166 3.07 0.033 3.62 0.025 3.68 0.021 3.59 0.073 3.72 0.09 3.43 0.12 3.07 0.033 3.67 0.036
K % 0.45 0.08 0.19 0.25 0.38 0.16 0.08 0.17 0.13 0.17 0.13 0.13 0.13 0.13 0.14 0.19 0.13 0.13 0.14 0.17 0.19 0.14 0.12 0.14 0.11 0.13 0.14 0.15 0.13 0.14 0.15 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.10 0.16 0.09 0.16 0.09 0.16 0.09 0.16 0.09 0.16 0.09 0.16 0.09 0.11 0.12 0.09 0.14 0.12 0.09 0.14 0.15 0.13 0.09 0.16 0.09 0.14 0.15 0.13 0.09 0.16 0.09 0.16 0.09 0.11 0.12 0.11 0.12 0.11 0.12 0.12 0.12
W H ppm pp 0.1 <.0.
9 m 1 3 4 5 2 3 3 3 2 2 2 2 1 2 2 7 2 2 3 2 2 2 1 6 3 5 4 5 3 2 4 3 3 3 2 1 3 2 2 3 3 5 5 2 2 3 1 2 1 2 2 2 2 2 2 2 1 2 2 7 7 2 2 2 3 2 2 2 1 6 3 5 4 5 3 2 4 3 3 3 2 7 7 8 9 2 3 3 3 2 2 2 2 2 1 2 2 7 7 2 2 2 3 2 2 2 1 6 3 5 4 5 3 2 4 3 3 3 2 7 7 8 9 8 7 3 2 1 3 2 2 3 3 5 5 2 2 3 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Ti ppm 0.3 0.7 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Ga ppm 5 7 9 1 10 10 9 12 11 1 11 11 10 10 10 10 10 10 10 10 10 1
em5.684.7.61185.555.555.956.655.557.9723.614.5154.5612.51.63882555.655.555.555.555.555.555.55.655.555.1368.575.568.845.755.68.2555.555.555.555.555.555.555.555.555.5

SJ Geophysics Ltd/S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel (604) 582-1100 fax (604) 589-7466 E-mail: sydv@sjgeophysics.com

i

ELEMENT SAMPLES R3089E R3090E R3091E R3092E R3092E R3093E R3094E R30955 R3096E R30955 R3096E R3097E R30995 R3098E R30995 R3098E R3097E R3098E R3098E R3102E STANDARD DS6 G-1 R3101E R3102E R3102E R3104E R3103E R3104E R3103E R3104E R3105E R3108E R3108E R3108E R3109E R3108E R3109E R3108E R3109E R3108E R310
Mo pom 1.5 3 20.3 19.1 19.5 29.9 10.6 4 5.9 10.6 4 5.9 10.6 4 5.9 10.6 4 5.9 10.6 4 5.9 10.6 4 5.9 10.6 4 5.9 10.6 4 5.9 10.6 4 5.9 10.6 4 5.9 10.6 4 5.9 10.6 4 5.2 5.6 4 5.1 12.7 8 8 11.2 7 12.5 12.7 12.7 8 8 11.6 12.7 12.7 12.8 3 12.5 12.5 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7
Cu ppm 61.7 72.9 1049.2 594.8 594.8 1164.5 594.8 1164.5 594.8 1122.6 32.7 42.9 121.7 44.9 121.7 44.9 121.7 44.9 121.7 44.9 121.7 44.9 121.7 44.9 121.7 44.9 121.7 44.9 121.7 44.9 121.7 44.9 121.7 44.9 124.4 429.9 124.4 429.9 124.7 42.9 125.5 82.8 84.1 122.2 34.5 226.5 12.3 20.3 20.5 12.3 20.5 13.7 20.5 14.5 20.5 14.5 20.5 14.5 20.5 14.5 20.5 14.5 20.5 14.5 20.5 14.5 20.5
Pb ppm 14.8 10.7 11.5 4.3 4.6 2.7 3.1 10.7 6 4.4 4.2 3.1 2.5 5.7 4.3 5.5 4.4 5.7 4.3 5.5 5.7 4.3 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.7 5.5 4.4 5.7 7.3 5.5 7.4 5.5 7.4 5.5 7.7 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.7 5.5 7.4 5.5 7.4 5.5 7.7 5.5 7.4 5.5 7.7 5.5 7.4 5.5 7.7 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.7 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.7 7.5 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.5 7.5 5.5 7.4 5.5 7.7 5.5 7.5 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.7 5.5 7.4 5.5 7.7 5.5 7.5 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.7 5.5 7.5 5.7 7.4 5.5 7.7 5.5 7.5 5.7 7.5 5.7 7.5 5.7 7.5 5.5 7.4 5.5 7.7 5.5 7.7 5.5 7.5 7.5 5.7 7.5 5.5 7.4 5.5 7.7 5.5 7.7 5.5 7.7 5.5 7.5 7.5 7.5
Zn m8224 195 6 59 9 4 9 7 10 9 2 3 3 6 0 6 9 5 8 1 2 8 5 4 4 5 4 6 5 4 7 2 9 3 5 5 5 0 3 4 5 6 8 16 4 0 7 4 1 5 0 0 2 3 5 5 5 0 9 4 9 7 6 0 9 2 3 3 4 6 8 1 2 8 5 4 4 5 4 4 6 5 4 7 2 9 3 5 5 5 0 3 4 5 6 8 16 4 0 7 4 1 5 0 0 2 3 5 5 7 3 6 3 4 6 8 7 4 3 7 0 5 4 6 7 1 9 9 0 7 8 6 1 4 5 6 8 8 6 1 6 9 7 4 1 5 7 7 3 6 3 4 6 8 7 4 3 7 0 5 4 6 7 1 9 9 0 7 8 6 1 6 9 7 4 1 5 0 0 2 3 5 5 7 3 6 3 4 6 8 7 4 3 7 0 5 4 6 7 1 9 9 0 7 8 6 1 6 9 7 4 1 5 0 0 2 3 5 5 7 3 6 3 4 6 8 7 4 3 7 0 5 4 6 7 1 9 9 0 7 8 6 1 6 9 7 4 1 5 0 0 2 3 5 5 7 3 6 3 4 6 8 7 4 3 7 0 5 4 6 7 1 9 9 0 7 8 6 1 6 9 7 4 1 5 0 0 2 3 5 5 7 3 6 3 4 6 8 7 4 3 7 0 5 4 6 7 1 9 9 0 7 8 6 1 6 9 7 4 1 5 0 0 2 3 5 5 7 3 6 3 4 6 8 7 4 3 7 0 5 4 6 7 1 9 9 0 7 8 6 1 6 9 7 4 1 5 0 0 2 3 5 5 7 3 6 3 4 6 8 7 4 3 7 0 5 4 6 7 1 9 9 0 7 8 6 1 6 9 7 4 1 5 0 0 2 3 5 5 7 3 6 3 4 6 8 7 4 3 7 0 5 4 6 7 1 9 9 0 7 8 6 1 6 9 7 4 1 5 0 0 2 3 5 5 7 3 6 3 4 6 8 7 4 3 7 0 5 4 6 7 1 9 9 0 7 8 6 1 6 9 7 4 1 5 0 0 2 3 5 5 7 3 6 3 4 6 8 7 4 3 7 0 5 4 6 7 1 9 9 0 7 8 6 1 6 9 7 4 1 5 0 0 2 3 5 5 7 3 6 3 4 6 8 7 4 3 7 0 5 4 6 7 1 9 9 0 7 8 6 1 6 9 7 4 1 5 0 0 2 7 7 1 8 5 0 0 2 3 5 5 7 3 6 3 4 6 8 7 4 3 7 0 5 4 6 7 1 9 9 0 7 8 6 1 6 9 7 8 1 6 9 7 4 1 5 0 0 2 7 7 1 8 5 0 0 2 3 5 7 7 3 6 3 4 6 8 7 4 3 7 0 5 4 6 7 1 9 9 0 7 8 6 1 6 9 7 1 9 9 0 7 8 6 1 6 9 7 1 9 9 0 7 8 6 1 6 9 7 1 9 9 0 7 8 6 1 6 9 7 1 9 0 7 8 6 1 6 9 7 1 9 0 7 8 6 1 6 9 7 1 9 0 7 8 6 1 6 9 7 1 9 0 7 8 6 1 6 9 7 1 9 0 7 8 1 6 1 6 9 7 1 9 0 7 8 1 6 1 6 9 7 1 9 1 6 1 6 9 7 1 9 1 6 7 1 9 1 6 1 6 9 7 1 9 1 6 1 6 9 7 1 9 1 6 1 6 9 7 1 9 1 6 1 6 9 7 1 1 9 1 6 1 6 9 7 1 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Agm 3.3.2.2.2.1.3.3.2.2.2.1.1.2.3.1.2.2.1.3.1.2.1.1.1.1
Ni ppm 328.4 (1997) 114.2 (1997
Co ppm 124.7 19.8 21.4 20.5 19.9 20.5 19.9 20.5 20.5 20.5 21.3 21.3 22.6 20.5 21.3 21.3 22.6 20.5 21.3 21.3 21.3 21.3 21.3 21.3 21.3 21.3
Mn ppm 1373 1597 1044 5976 1044 5975 528 1495 529 1495 529 1495 528 1495 528 1330 1050 852 704 1365 580 682 573 1485 509 405 508 459 508 409 507 404 507 508 507 204 507 507 204 507 507 204 507 507 207 207 207 207 207 207 207 2
Fe % 4.64 4.618 4.42 4.18 4.55 4.393 4.53 4.22 4.28 4.29 4.28 4.29 4.28 4.29 4.28 4.29 4.28 4.29 4.28 4.29 4.28 4.29 4.28 4.29 4.28 4.29 4.28 4.29 4.28 4.29 4.28 4.29 4.28 4.29 4.28 4.29 4.28 4.29 4.28 4.29 4.28 4.29 4.29 4.28 4.29 4.29 4.29 4.29 4.29 4.29 4.29 4.29
As ppm 57.5.8 44.1 24.2 10.9 10.7 10.5 8.5 23.5 120.5 23.5 23.5 20.5 23.7 36.8 39.8 22.5 10.5 23.5 20.5 23.7 36.8 32.4 4.0 39.8 22.5 10.7 36.8 32.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 2
U ppm 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Auph555682365811981724611659544.7435174161415931469366246781735685319526823433110951214755164230781735682365811912281551913745516641513
Th ppm 0.8 0.8 0.8 0.0 0.7 0.9 0.9 0.1 0.6 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sr m 511 40 30 4 52 52 437 57 4 32 8 3 42 40 46 3 34 37 6 9 41 45 52 41 9 40 33 1 377 1777 187 44 0 66 13 29 36 25 0 39 62 67 81 66 81 62 51 51 81 31 41 41 81 81 1 20 16 12 51 81 51 1 25 44 9 23 34 7 23 72 85 41 40 10 10 10 10 10 10 10 10 10 10 10 10 10
Cd ppm 0.5 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.3 0.4 0.4 0.5 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Sb ppm 1.86 1.5 0.5 1.8 1.1 1.4 2.3 0.6 0.5 0.8 1.1 1.4 2.3 0.6 0.5 0.8 1.1 1.4 2.3 0.6 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Bi ppm 0.1 0.1 0.2 0.4 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.1 0.1 0.1 0.1 0.2 0.4 0.1 0.1 0.1 0.2 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
V pm 867 92031933938025169901515740734897001316131015141110112349999923771107422213201517403474383396267675989103367917109527739178551177926244670078691542223
Ca % 0.674 0.66 0.77 0.86 0.71 0.66 0.57 0.86 0.57 0.63 0.57 0.63 0.57 0.63 0.57 0.63 0.57 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
P % 0.086 0.069 0.043 0.061 0.031 0.017 0.031 0.027 0.037 0.041 0.028 0.066 0.047 0.032 0.077 0.088 0.047 0.033 0.068 0.047 0.033 0.068 0.047 0.033 0.068 0.049 0.033 0.068 0.049 0.033 0.068 0.049 0.033 0.068 0.049 0.033 0.068 0.049 0.033 0.058 0.029 0.077 0.033 0.068 0.058 0.029 0.077 0.033 0.068 0.058 0.033 0.033 0.035 0.029 0.075 0.025 0.055 0.025 0.056 0.057 0.058 0.057 0.058 0.057 0.058 0.057 0.058 0.057 0.058 0.057 0.058 0.057 0.056 0.057 0.058 0.057 0.058 0.057 0.056 0.057 0.058 0.057 0.058 0.057 0.056 0.057 0.058 0.057 0.058 0.056 0.057 0.058 0.056 0.057 0.058 0.056 0.057 0.056 0.057 0.056 0.057 0.058 0.056 0.057 0.058 0.056 0.057 0.056 0.057 0.056 0.056 0.057 0.056 0.056 0.056 0.057 0.056 0.056 0.056 0.056 0.056 0.057 0.056 0.056 0.057 0.056 0.057 0.050 0.056 0.056 0.056 0.056 0.
La m 9 9 7 5 6 3 4 4 4 5 3 7 4 8 5 14 8 5 6 7 5 4 5 5 4 5 4 4 4 4 3 5 2 4 4 4 4 5 5 5 4 4 4 5 3 6 5 5 4 5 14 7 4 4 5 5 5 5 5 7 6 5 4 5 4 4 4 4 3 6 6 10 6 8 2 10 6 12 14 5 1
$ \begin{array}{c} \text{Cr} & \text{ppm} 43.5 \\ 53.5 542.9 \\ 328.7 42.9 \\ 23.9 \ 17.6 \\ 60.8 \\ 34.9 \\ 54.9 \\ 32.6 \\ 84.3 \\ 72 \\ 61.8 \\ 27.2 \\ 23.2 \\ 26.1 \\ 27.2 \\ 23.2 \\ 27.2 \\ 23.2 \\ 21.1 \\ 17.2 \\ 23.9 \\ 36.5 \\ 36.5 \\ 36.7 \\ 27.7 \\ 21.1 \\ 18.2 \\ 36.5 \\ 36.5 \\ 36.7 \\ 27.7 \\ 21.1 \\ 21.7 \\ 21.3 \\ 21.2 \\ 23.1 \\ 21.2 $
Mg % 1.48 1.7 1.39 1.13 1.22 1.35 1.34 1.61 1.22 1.35 1.34 1.65 1.32 1.56 1.05 1.32 1.56 1.05 1.32 1.56 1.05 1.32 1.56 1.05 1.32 1.56 1.05 1.32 1.56 1.05 1.32 1.56 1.05 1.32 1.56 1.05 1.32 1.56 1.05 1.32 1.56 1.05 1.32 1.56 1.05 1.32 1.56 1.02 1.16 1.05 1.32 1.56 1.02 1.16 1.05 1.32 1.56 1.02 1.16 1.05 1.32 1.16 1.05 1.32 1.16 1.05 1.32 1.16 1.05 1.32 1.16 1.05 1.32 1.16 1.05 1.32 1.16 1.05 1.32 1.16 1.05 1.32 1.16 1.05 1.02 1.16 1.02 1.16 1.03 1.03 1.03 1.03 1.03 1.04 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03
Ba ppm 853 7 97 44 7 18 7 97 84 7 18 7 97 84 7 18 7 97 98 65 2 88 10 79 98 2 65 2 89 7 2 0 63 3 7 10 66 2 67 7 80 3 7 4 4 9 5 9 66 2 88 10 79 98 2 65 2 89 7 2 0 63 3 7 10 66 2 67 7 80 3 7 4 4 5 18 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Ti % 0.033 0.048 0.069 0.105 0.139 0.14 0.134 0.134 0.134 0.134 0.133 0.122 0.082 0.122 0.089 0.123 0.122 0.089 0.123 0.131 0.173 0.141 0.173 0.122 0.089 0.123 0.131 0.132 0.131 0.132 0.132 0.131 0.132 0.132 0.132 0.131 0.132 0.134 0.132 0.
B m 5 4 3 3 2 5 3 2 2 1 3 1 2 2 2 7 7 5 2 4 2 3 3 4 3 3 3 3 3 2 2 2 4 2 3 2 3 3 2 2 1 1 3 4 1 3 2 3 2 3 4 8 1 3 1 2 1 1 2 1 2 1 2 1 2 1 1 1 1 1 2 2 1 2 1 2 1 5 5 3 4 3 2 2 3 4 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1
Al % 2.75 2.85 3.16 3.26 3.29 2.96 3.02 2.96 3.02 2.96 3.22 3.26 3.22 3.26 3.22 3.26 3.22 3.26 3.22 3.26 3.22 3.26 3.22 3.26 3.22 3.26 3.22 3.26 3.22 3.26 3.22 3.26 3.22 3.26 3.22 3.26 3.22 3.26 3.22 3.26 3.26
Na % 0.022 0.018 0.022 0.018 0.022 0.018 0.025 0.043 0.055 0.043 0.037 0.014 0.012 0.02 0.069 0.037 0.014 0.012 0.02 0.069 0.051 0.013 0.013 0.013 0.026 0.013 0.013 0.026 0.026 0.043 0.013 0.026 0.027 0.043 0.043 0.026 0.043 0.043 0.041 0.026 0.051 0.026 0.051 0.051 0.051 0.052 0.051 0.051 0.051 0.051 0.051 0.055 0.049 0.051 0.051 0.051 0.055 0.049 0.051 0.051 0.055 0.049 0.051 0.055 0.049 0.051 0.051 0.055 0.049 0.051 0.051 0.055 0.049 0.051 0.055 0.049 0.055 0.049 0.055 0.077 0.255 0.17 0.055 0.017 0.052 0.075 0.17 0.052 0.019 0.029 0.029 0.029 0.051 0.019 0.029 0.029 0.051 0.019 0.029 0.029 0.029 0.029 0.051 0.019 0.021 0.020 0.021 0.029 0.029 0.021 0.011 0.012 0.011 0.012 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.022 0.021 0.022 0.022 0.021 0.022 0.022 0.021 0.022 0.023 0.021 0.023 0.021 0.023
K % 0.14 0.1 0.08 0.15 0.15 0.15 0.15 0.15 0.16 0.17 0.13 0.16 0.11 0.16 0.11 0.15 0.12 0.18 0.10 0.12 0.08 0.09 0.08 0.09 0.04 0.09 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03
W ppm 0.3 0.5 0.1 1.2 0.2 0.3 1.1 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.5 0.5 0.5 0.5 0.5 0.4 0.3 0.4 0.3 0.3 0.4 0.3 0.5 0.5 0.5 0.5 0.5 0.4 0.3 0.4 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Hg ppm 0.06 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.05 0.03 0.01 0.03 0.05 0.03 0.01 0.03 0.04 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.02 0.02 0.03 0.03 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.0
Sc ppm 9.9 82 7.5 9 9.7 4 1 82 7.5 9 9.7 4 1 82 7.5 9 9.7 4 1 82 7.5 9 9.7 4 1 82 7.5 9 9.7 4 1 82 7.5 9 9.7 4 1 82 7.5 9 9.7 4 1 8.2 7.5 4 8.7 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7
Ti ppm 1 <11 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Ga ppm 8 9 9 9 9 9 10 10 9 8 9 9 9 9 6 5 8 9 8 8 9 8 10 9 9 9 10 12 10 8 10 9 9 11 10 0 9 9 6 5 7 5 6 5 6 8 7 7 6 8 6 9 5 7 7 8 7 9 5 8 6 8 7 7 9 11 9 8 5 11 7 1 9 8 5 11 7
8 m 5 5 5 5 5 5 5 5 5 7 5 5 5 5 5 2 5 5 5 5

ſ

1

L

t

the second s

1 I

.

1

L

L.

L

and the second
From ACME ANALY To Galore Resource Acme file # A507340 Analysis: GROUP 11 ELEMENT SAMPLES G-1 1210 1220 1260 1300 1310 1320 1330 1340 1320 1340 1350 1390 1410 1440 1500 1510 1520 1550 1570 310B 3638 373B 4236 4236 4237 4238 4239 RE 4239 4240 4242 4269 4270 4271 4272 4274 STANDARD DS6 G-1 4275 4276 4276 4277 4325 4326 4331 4332 4333 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 RE 4343 RE 4343 4338 4339 4340 4341 4342 4343 RE 4343 4344 4345 4346 4347 4348 4349 R3000 R3001 R3002 R3002W R3015W R3027W R3022W R3027W R3022W R302W R302W R302W R302W R302W R302W R302W R302W R
TICAL LABORATORIE Page 1 Received: NU Page 1 Received: NU Y - 15:00 GM SAMPLE Mo Cu ppm ppm 2.3 3 36.4 709 42.2 1341.9 53.9 1369.1 25.8 887.7 18.8 1144.6 20.9 1136.7 18.8 1144.6 20.9 1136.7 18.8 1144.6 20.9 1135.7 15.2 1969.3 34.3 1468 11.7 222.4 8.4 250 30.7 847.2 29.7 707.6 21.4 555 34.4 1049.1 20 1215.6 9.8 8506.5 34.4 1049.1 20 1215.6 9.8 8506.5 10.2 124.2 1364.4 21.1 1353.8 20.1 1390.6 15.
S LTD. 652 E. H DV 8 2005 * 10 ELEACHED WIT Ppm 2.9 3.3 1.7 6 9 2.5 2.5 4 3.4 2.8 3.1 5.4 4.8 4.9 4.2 2.2 3.1 3.4 4.8 4.6 4.8 4.9 4.2 2.2 3.1 3.4 4.8 4.6 4.8 4.9 2.5 2.5 4.3 4.8 4.8 4.9 2.2 3.1 3.3 3.3 1.7 4.8 4.8 4.9 2.2 3.1 3.3 3.3 1.7 4.8 4.8 4.9 2.2 2.5 4.3 4.8 4.9 2.2 3.1 3.3 3.3 1.7 4.8 4.8 4.9 2.5 2.5 4.3 4.8 4.9 2.2 3.1 3.3 3.3 1.7 4.8 4.8 4.9 2.5 2.5 4.3 4.8 4.9 2.2 2.1 3.3 3.1 3.3 3.1 1.7 4.1 3.3 3.3 3.1 1.7 4.1 3.3 3.1 2.7 4.1 3.3 3.3 3.1 2.7 4.1 3.3 3.1 2.7 2.5 2.5 2.5 4.3 4.8 3.3 3.1 1.7 2.7 4.1 3.3 3.3 3.1 2.7 4.1 3.3 3.2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2
ASTINGS ST. V/ 9 samples in this FH 90 ML 2-2-2 H 2n Ag ppm 43 57 0.1 59 0.2 59 0.1 59 0.2 51 0.3 55 0.3 56 0.3 57 0.1 59 0.2 51 0.3 52 0.1 52 0.2 53 0.2 54 0.2 55 0.3 56 0.1 69 0.2 57 58 90 11 120 131 141 152 164 0.2 58 0.2 <t< td=""></t<>
NCOUVER BC disk file. ICL-HN03-H2C Mi Ppm 9.5 9.1 7.7 11.6 12.8 18.8 20.3 14.2 21.3 25.3 21.2 19.7 21.4 25.3 21.2 19.7 21.4 25.3 21.2 19.7 21.4 25.3 21.2 19.7 21.4 25.3 21.2 19.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12
C V6A 1R6 PHO DAT 95 DEG. C Co M ppm pp 4.2 6 18.1 33 23.8 38 20.4 4 19.5 43 17.9 40 27.5 38 20 36 20 36 28.8 48 21.4 73 20 36 28.9 22 31.8 34 21.6 48 21.4 73 40.6 89 24.7 63 26.2 22 20.6 40 67.3 36 24.4 63 24.7 63 26.4 61 27.7 74 25.2 24 20.6 40 67.3 36 24.4 63 20.5 36 21.6 45 20.7 34 20.5 36 21.6 51 20.7 34 20.1 35 21.1 42 81.3 24 10.7 68 4.2 15 36 21.1 42 81.3 24 10.7 68 3.8 32 22.1 42 81.3 24 10.7 68 3.8 32 22.1 42 81.3 24 10.7 68 3.8 32 22.1 42 81.3 24 10.7 68 3.8 32 22.1 36 22.1 42 81.3 24 10.7 68 3.2 20 3.8 33 2.2 1 42 81.3 24 10.7 68 4.2 35 2.1 42 81.3 24 10.7 68 4.2 35 3.2 65 3.3 25 3.2 6 3.3 25 3.3 6 3.3 25 3.4 57 3.3 26 3.3 26 3.3 26 3.3 27 3.4 67 3.5 42 3.5 5 3.5 42 3.5 44 3.5 42 3.5 44 3.5 42 3.5 44 3.5 42 3.5 44 3.5 42 3.5 44 3.5 44 3
$ \begin{array}{c} NE(604) 253-311\\ FOR ONE HOU\\ Inm 1.95\\ FOR ONE HOU\\ Inm 1.95\\ Inf 1.95\\ \mathsf$
58 FAX(604)253 IR, DILUTED TO As ppm 1 <.5 4.9 3.7 7.4 5.9 6.5 8.9 6.5 8.9 6.5 8.9 6.5 8.9 6.5 8.9 6.5 8.9 6.5 8.9 6.5 8.9 6.5 8.9 6.5 8.9 7.4 13.6 11.1 11.5 10.8 3.7 7.1 7.7 9 7.4 8.3 8.8 10.4 11.1 11.5 10.8 7.7 7.4 8.3 8.8 7.3 7.2 8.8 7.3 7.2 8.8 7.3 7.5 3.8 2.0 2.2 <.5 3.8 3.6 6.2 7.2 8.8 7.5 3.8 3.6 6.2 7.2 8.8 7.5 3.8 3.6 6.2 7.2 8.8 7.5 3.8 3.6 6.2 7.2 8.8 7.5 6.4 8.2 7.5 6.4 8.2 7.5 6.4 8.2 7.5 6.4 8.2 7.5 6.4 8.2 7.5 6.4 8.2 7.5 6.4 8.2 7.5 6.4 8.2 7.5 6.4 8.2 7.5 6.4 8.5 6.2 7.5 6.4 8.5 6.2 7.5 6.4 8.5 6.2 7.5 6.4 8.5 6.5 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8
-1716 @ CSVT 300 ML, ANAL' U Au ppm pbb 1.7 0.9 0.2 4.1 0.2 4.2 0.3 8.8 0.3 6.6 0.4 2.9 0.3 4.7 0.2 4.2 0.3 5.7 0.2 5.4 0.2 1.1 0.2 0.5 0.2 5.4 0.2 0.3 2.7 0.2 5.4 0.2 0.3 2.7 0.2 5.4 0.2 0.5 0.2 1.1 0.2 0.5 0.2 1.1 0.2 0.5 0.2 5.4 0.2 0.5 0.2 5.4 0.2 0.5 0.2 5.5 0.2 1.5 0.2 2.5 0.2 1.5 0.2 2.5 0.2 2.5 0.2 1.5 0.2 2.5 0.2 1.5 0.2 2.5 0.2 2.5 0.2 1.5 0.2 2.5 0.2 2.5 0.2 2.5 0.2 2.5 0.2 2.5 0.2 2.5 0.2 2.5 0.2 2.5 0.2 2.5 0.2 3.5 0.2 2.5 0.2 3.5 0.2 2.5 0.2 4.5 0.2 4.5 0.2 2.5 0.2 5.6 0.2 2.5 0.2 2.5 0.2 2.5 0.2 2.5 0.2 2.5 0.2 2.5 0.2 2.5 0.2 3.5 0.2 2.5 0.2 2.5 0.2 2.5 0.2 3.5 0.2 2.5 0.2 3.5 0.2 3.5 0.4 4.7 0.3 5.5 0.4 4.7 0.5 6.6 0.2 1.7 0.2 6.2 0.8 0.3 5.5 0.2 0.8 0.3 5.5 0.4 4.7 0.5 6.6 0.4 4.9 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.3 5.5 0.5 0.5 6.6 0.5 0.8 0.2
EXT FORMAT YSED BY ICP-M 7h ppm 3.4 0.6 0.7 0.5 0.8 0.7 0.5 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.7 0.7 0.7 0.7 0.8 0.8 0.7 0.7 0.7 0.7 0.8 0.8 0.7 0.7 0.7 0.7 0.8 0.8 0.7 0.7 0.7 0.7 0.8 0.8 0.7 0.7 0.7 0.7 0.8 0.8 0.7 0.7 0.7 0.8 0.8 0.9 0.7 0.7 0.7 0.8 0.8 0.9 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.5 0.6 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
AS. ppm 659 461 100 67 785 765 765 765 77 77 75 76 76 77 75 76 76 77 75 75 76 76 77 75 75 75 76 75 75 75 75 75 75 75 75 75 75
Cdm 1 2 2 1 2 2 1 3 2 1 1 2 2 2 3 3 1 1 1 2 2 1 1 2 2 2 1 2 2 2 1 2 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 2 2 2 3 3 1 1 1 2 2 2 1 1 2 2 2 1 2 2 2 3 3 1 1 1 2 2 2 1 1 2 2 2 1 2 2 2 3 3 1 1 2 2 2 1 2 2 2 3 3 1 1 2 2 2 1 2 2 2 1 2 2 2 2
Sb ppm < .4 0.2 1.6 0.2 0.1 0.4 0.5 0.2 0.1 0.4 0.3 0.4 0.5 0.2 0.1 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Bi P 0.6 1.4 0.6 1.4 0.6 1.4 0.6 1.4 0.6 1.4 0.7 1.4 0.8 1.4 0.3 1.4 0.3 1.4 0.3 1.4 0.3 1.4 0.3 1.4 0.3 1.4 0.3 1.4 0.3 1.4 0.3 1.4 0.3 1.4 0.3 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4<
V Ca pm % 339 0.622 11 1.133 300 1.18 150 0.711 177 1.355 181 1.62 191 1.24 1001 1.344 161 1.67 164 1.666 180 0.533 1930 0.643 217 0.633 218 0.611 130 0.464 141 0.44 1530 0.79 329 0.833 226 0.67 331 0.47 133 0.47 141 1.34 142 0.843 1.43 1.55 336 1.45 336 1.45 336 1.426 339 1.43 349 1.43 355 1.53 360 1.55
P % 0.083 0.042 0.053 0.061 0.047 0.069 0.072 0.052 0.062 0.035 0.044 0.053 0.044 0.053 0.044 0.111 0.037 0.045 0.045 0.045 0.045 0.057 0.056 0.045 0.057 0.055 0.044 0.057 0.056 0.057 0.055 0.044 0.057 0.055 0.044 0.057 0.055 0.044 0.057 0.055 0.044 0.057 0.055 0.044 0.057 0.055 0.044 0.057 0.055 0.044 0.057 0.055 0.044 0.057 0.055 0.044 0.057 0.055 0.044 0.055 0.044 0.055 0.044 0.055 0.044 0.055 0.044 0.055 0.044 0.055 0.044 0.055 0.044 0.055 0.044 0.055 0.044 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.047 0.055 0.044 0.046 0.046 0.046 0.046 0.046 0.047 0.055 0.044 0.046 0.041 0.046 0.046 0.046 0.046 0.046 0.041 0.059 0.059 0.055 0.044 0.055 0.055 0.055 0.057 0.058 0.057 0.056 0.057 0.055 0.044 0.046 0.046 0.046 0.047 0.055 0.057 0.055 0.044 0.046 0.047 0.055 0.044 0.046 0.046 0.046 0.047 0.055 0.057 0.055 0.057 0.055 0.044 0.055 0.057 0.055 0.044 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.059 0.055 0.055 0.057 0.058 0.057 0.056 0.057 0.055 0.057 0.055 0.057 0.055 0.057 0.055 0.057 0.055 0.057 0.056 0.044 0.057 0.055 0.057 0.057 0.056 0.044 0.046 0.046 0.046 0.046 0.046 0.045 0.055 0.057 0.056 0.057 0.058 0.059 0.055 0.055 0.055 0.055 0.055 0.055 0.057 0.055 0.055 0.055 0.057 0.055 0.055 0.055 0.057 0.056 0.055
La ppm 8 3 3 5 5 4 4 4 4 4 4 3 4 5 5 4 4 4 3 4 4 4 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Ba Tr ppm % 196 0.121 66 0.1 95 0.166 92 0.15 69 0.114 73 0.121 86 0.129 87 0.131 67 0.131 67 0.131 67 0.123 88 0.096 72 0.193 88 0.096 72 0.193 80 0.133 85 0.151 73 0.121 70 0.122 70 0.121 70 0.121 70 0.121 70 0.121 70 0.122 71 0.162 80 0.124 91 0.122 54 0.124 61 0.126 62 0.127 53 0.142 <t< td=""></t<>
B m 1 5 5 2 3 5 5 5 5 7 5 3 5 3 3 2 2 5 3 3 2 3 4 4 4 4 3 3 3 4 5 1 3 3 2 14 1 5 8 6 4 3 4 4 4 3 3 3 5 4 7 4 4 4 4 6 4 2 3 3 3 6 3 3 4 3 4 2 4 6 5 7 1 2 2 1 3 4 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 2 3 5 5 5 5 7 5 3 5 3 3 2 2 5 3 3 2 3 4 4 4 4 3 3 3 3 4 5 1 3 3 2 14 1 5 8 6 4 3 4 4 4 3 3 3 5 4 7 4 4 4 4 6 4 2 3 3 3 6 3 3 4 3 4 2 4 6 5 7 1 2 2 1 3 4 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ai Na % % 0.94 0.062 2.42 0.054 2.68 0.097 2.59 0.082 3.01 0.134 3.61 0.163 3.11 0.115 3.23 0.133 3.66 0.211 4.14 0.234 3.36 0.216 4.14 0.234 3.36 0.045 3.68 0.056 3.68 0.056 3.64 0.045 3.65 0.081 4.21 0.284 4.22 0.095 3.45 0.083 4.21 0.013 3.65 0.101 4.05 0.08 4.1 0.113 3.14 0.205 3.65 0.107 0.9 0.055 3.46 0.193 3.98 0.227 3.96 0.227
K % 0.4 0.23 0.22 0.24 0.13 0.22 0.24 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
W ppm < 15 0.9 3.9 1 0.6 0.4 0.5 0.5 0.4 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Hg Sc ppm ppm 0.03 9.2 0.05 11.2 0.05 11.5 0.05 11.5 0.05 11.2 0.05 11.2 0.05 11.3 0.05 11.2 0.05 11.2 0.05 11.2 0.05 10.6 0.02 13.2 0.03 9.3 0.04 9.1 0.02 7.2 0.02 7.2 0.02 7.2 0.02 7.2 0.02 9.2 0.01 9.4 0.02 9.2 0.03 8.7 0.04 9.3 0.05 9.6 0.06 11.4 0.07 19.2 0.08 11.2 0.09 8.4 0.01 13.3 0.02 10.2 0.03 11.2<
Tr pp 33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
\$%555555555555555555555555555555555555
Gpn 588898887891098910999100901100110110110810949899998989898989898010991009910
Sem 5.9.28.9.1.4.1.3.7.6.9.5.6.5.5.5.5.5.5.5.5.5.5.5.5.6.6.4.5.5.6.2.2.2.9.9.4.1.1.3.4.2.9.4.1.9.5.9.8.7.1.1.5.7.1.1.5.5.7.6.5.9.4.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5
0g1555555555555555555555555555555555555

SJ Geophysics Ltd/S.J.V. Consultants Ltd. 11762 - 94th Ave., Detta, B.C. Canada tel (604) 582-1100 fax (604) 589-7466 E-mail: sydv@sjgeophysics.com

ELEMENT	Мо	Cu	₽b	Zn	Ag	Ni	Co	Мп	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ва	Ti	в	A	Na	к	w	Hg	Sc	т	s	Ga	Se	Sample
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ррт	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	gm
T-507	1.2	26.7	5.9	54	<.1	21.4	12.6	256	2.98	8.4	0.8	3	2.3	20	0.2	0.2	0.1	80	0.3	0.069	5	24.9	0.54	50	0.102	1	2.1	0.013	0.03	0.4	0.02	2.3	<1	<.05	7	<.5	15
T-508	0.9	29.1	4,9	57	0.1	19.5	10.5	338	2.73	6	0.5	4.2	2.2	18	0.1	0.2	0.1	62	0.21	0.101	4	25	0.68	46	0.102	1	2.24	0.008	0.03	0.3	0.03	2.6	<.1	<.05	7	<.5	15
T-511	0.6	31.7	4.7	50	<.1	16.7	9,7	280	2.92	8.9	0.6	4.6	3	16	0.1	0.2	0.1	73	0.18	0.092	5	25.8	0.54	46	0.099	1	2.15	0.01	0.04	0.2	0.03	3.1	<.1	<.05	6	<.5	15
T-512	0.8	19.9	6.3	79	0.1	10.5	7.3	265	2.76	6.8	0.6	1.7	2.8	16	<.1	0.2	0.1	74	0.16	0.094	4	19.5	0.38	46	0.109	1	2.07	0.01	0.04	0.4	0.02	2.3	0.1	<.05	7	<.5	15
T-516	8.0	24	4.1	42	<.1	8.5	6.9	180	3.33	6.3	1.3	1.7	5.8	13	<.1	0.2	0.1	101	0.12	0.096	5	21.9	0.32	24	0.092	1	2.21	0.009	0.03	0.5	0.02	2.5	0.1	<.05	6	<.5	15
T-517	0.7	17.5	3.5	36	<.1	7.9	6.4	179	2.33	6.2	0,8	3.4	3.5	12	0.1	0.1	0.1	65	0.11	0.077	4	15.5	0.3	29	0.095	<1	2.29	0.009	0.03	0.4	0.02	2.4	0.1	<.05	5	<.5	15
T-519	0.5	25	5.8	62	<.1	10.1	7.8	854	2.34	5.5	0.5	0.B	2.2	22	0.2	0.1	0.1	58	0.24	0.101	3	15.8	0.36	57	0.077	<1	1.54	0.011	0.04	0.2	0.03	1.8	0.1	<.05	6	<.5	15
T-520	1.1	20.6	5.5	48	<.1	10.9	7.6	221	2.74	6.5	0.6	1.4	2.8	15	0.1	0.2	0.1	66	0.15	0.101	5	19	0.39	45	0.106	1	2.34	0.009	0.03	0.4	0.03	2.6	0.1	<.05	7	<.5	15
T-521	0.5	22.9	5.1	60	<.1	11.1	7.5	450	2.42	6.1	0,5	5.8	2.5	16	0.1	0.2	0.1	63	0.19	0.089	4	17.1	0.38	44	0.097	1	1.85	0.011	0.04	0.3	0.02	2.3	0.1	<.05	6	<.5	15
T-524	0.5	16.1	5.1	62	0.1	8.7	6.6	372	2.44	6.2	0.5	1.2	2.3	17	0.1	0.1	0.1	65	0.22	0.085	4	15.8	0.29	48	0.077	1	1.46	0.011	0.03	0.4	0.02	1.8	0.1	<.05	5	<.5	15
T-625	1.4	44.2	5.7	58	<.1	23	13.8	256	3.54	20.1	0.4	2.7	2	19	0.1	0.3	0.1	90	0.21	0.034	4	29.5	0.6	61	0.101	1	2.4	0.011	0.02	0.3	0.01	2.9	0.1	<.05	7	<.5	15
T-627	1.3	34.3	7.2	76	0.1	27.6	13.6	399	3.57	19.4	0.7	3.6	2.1	13	0.1	0.3	0.1	80	0.16	0.128	5	35.7	0.65	66	0.079	1	3.06	0.009	0.03	0.3	0.02	3.8	0.1	<.05	8	<.5	15
T-528	1.2	22.5	4.1	28	<.1	10.9	8,9	171	3.15	7.1	0.8	1.5	3.9	13	<.1	0.2	0.1	61	0.13	0.044	6	22.6	0.35	44	0.095	<1	2.57	0.013	0.02	0.3	0.04	3.7	<.1	<.05	6	<.5	15
T-530	0.8	13.9	3.4	35	<.1	7.7	5.9	143	2.47	6.4	0.6	1.2	2.7	12	<.1	0.1	0.1	62	0.12	0.116	5	18.4	0.29	26	0.071	1	2.28	0.009	0.02	0.3	0.04	2.3	<.1	<.05	5	<.5	15
T-531	1.2	25.2	5.5	71	0.2	13.1	8.5	205	2.84	6.4	0.5	5.5	2.2	15	0.1	0.2	0.1	69	0.14	0.171	4	21.4	0.47	41	0.104	1	2.77	0.011	0.03	0.4	0.04	3	<.1	<.05	8	<.5	15
RE T-531	1.2	24.2	5.3	65	0.2	11.6	8.3	202	2.71	6.5	0.4	2.1	2.1	14	<.1	0.2	0.1	64	0.13	0.165	4	19.9	0.42	41	0.099	<1	2.6	0.011	0.03	0.3	0.03	2.9	0.1	<.05	7	<.5	15
T-534	11.6	17	6.8	79	<.1	13.2	9.7	209	3.69	16.5	0.5	2.4	2.1	19	0.1	0.4	0.2	87	0.21	0.085	4	19.2	0.48	61	0.144	1	2.42	0.011	0.03	0.4	0.02	2.2	<.1	<.05	11	<.5	15
T-535	21.5	12.3	5.6	58	0.1	9.7	7.8	206	3.24	10.4	0.6	33.2	1.8	21	0.1	1.3	0.1	84	0.35	0.039	4	17	0.43	35	0.13	3	2.14	0.013	0.02	0.3	0.02	2.5	<.1	<.05	8	<.5	15
T-540	2.7	22.3	56	81	0.5	13.8	11.3	177	3.07	11.9	13	1.9	2.8	22	0.2	2	0.1	93	0.4	0.053	5	20.9	0.39	50	0,109	2	2.48	0.019	0.03	0.3	0.03	2.1	D.1	<.05	8	0.7	15
T-541	1.2	15.7	5.3	104	<1	11.5	12.8	461	2.96	6.5	0.6	<.5	2.5	20	0.2	0.5	0.1	77	0.51	0.032	6	15.1	0.B1	37	0.221	3	1.82	0.018	0.03	0.1	<.01	3.1	0.1	<.05	9	<.5	15
T-543	1.4	14.4	4.9	67	<1	11	79	227	2.42	3.2	0.3	0.6	1.3	14	0.1	0.2	0.2	58	0.14	0.081	3	14.1	0.38	40	0.095	<1	1.73	0.009	0.03	0.3	0.02	1.7	<.1	<.05	7	<.5	15
STANDARD DS6	11.2	120.7	29.4	139	0.3	24.1	10.6	685	2.73	20.7	6.5	44.3	3	40	6.1	3.5	5	54	0.83	0.077	12	157	0.57	164	0.079	17	1.85	0.071	0.14	3.4	0.18	3.2	1.7	<.05	6	4.1	15
G-1	21	31	27	43	< 1	7.8	41	532	1.87	< 5	1.8	11	3.8	67	< 1	< 1	01	39	0.64	0.091	8	73.3	0.58	191	0.122	1	0.95	0.053	0.41	D.1	<.01	2.1	0.3	<.05	5	<.5	15
T-544	<u>.</u>	5	3.8	20	< 1	31	23	89	1.04	11	0.2	12.5	0.0	14	01	0.1	0.1	36	0.17	0.011	3	78	0.14	27	0.092	1	0.56	0.01	0.02	0.1	0.01	1	< 1	< 05	4	0.5	15
T-547	24	397	5.5	113	01	14	15.2	200	3.34	79	0.7	21	19	35	0.3	0.7	0.1	80	0.78	0.036	6	18.9	0.71	33	0.173	3	1.95	0.021	0.03	0.2	0.02	3.1	0.1	< 05	B	1.1	15
STANDARD DS6	11.2	124.5	29.5	144	0.3	24.3	10.5	696	2.78	20.8	6.4	44.6	3	40	6.2	3.6	5	55	0.85	0.077	12	177.2	0.57	165	0.078	16	1.89	0.072	0.15	3,4	0.22	3.2	1.7	<.05	ě	4.5	15

SJ Geophysics Ltd/S.J.V. Consultants Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel (604) 582-1100 fax (604) 589-7466 E-mail: sydv@sjgeophysics.com

Acme file # A507340

1

ļ

r

and the second

/ 200W 190W 180V 205W 195W 185' N 210W 200W 190V _{5W} 215W 205W 195 460E 470E 465E ^{475E} OE 10E 20E 30E 40E 50E 60E 70E 80E 90E 100E 110E E 470E 480E 5E 15E 25E 35E 45E 55E 65E 75E 85E 95E 105E 115E 12 465E 475E ^{485E} OF 10E 20E 30E 40E 50E 60E 70E 80E 90E 100E 110E 120E 0E 490E 500E 51 5E 15E 25E 35E 45E 55E 65E 75E 85E 95E 105E 115E 125E . 270W 260W 250W Y 710W 700W 690W 680W 670W 660W 650W 640W 630W 620W 610W 600W 590W 580W 570W 560W 550W 540W 530W 520W 510W 500W 490W 480W 470W 460W 450W - 275E 285E 295E 305E ³¹5E 325E ³³5E 345E ^{355E 365E 375E 385E ^{395E 405E 415E 425E 435E 44.}} 310E 320E 330E 340E 350E 360E 370E 380E 390E 400E 410E 420E 430E 440E 450E 450E 450E 470E 480E 490E 500E 510E E 475E 485E 495E 505E 515E 5E 150E 160E 185E 195E 205E 215E 225E 235E 245E 255E 265E 275E 285E 295E 305E 315E 325E 335E 95E 205E 215E 225E 235E 245E 255E 265E 275E 285E 265E 275E 285E 295E 305E 315E 325E 335E 345E 355E 365E 375E 385E 395E 405E 415E 425E 435E 445E 455E 465E 475E 485E 0E 10E 20E 30E 40E 50E 60E 70E 50E 10E 120E 130E 140E 150E 160E 170E 180E 732 210E 220E 230E 240E 250E 26E 185E 195E 205E 215E 235E 245E 255E 265E 275E 285E 295E 305E 315E $\frac{100}{100} + \frac{300}{100} +$ 505W 495W 485W 475W 465W 455W 445W 435W 425W 415W 405W 395W 385W 375W 355W 345W 335W 315W 295W 275W 255W 245W 235W 215W 185W 165W 155W 145W 135W 125W 105W 95W 85W 75W 65W 55W 45W 35W 25W 15W 5W ™ 395W 295W 285W 275W 265W 245W 235W 225W 215W 205W 195W 185W 175W 165W 175W 165W 125W 115W 100W 90W 80M JE 390E 400E 410E 420E 430E 440E 450E 460E 470E 480E 490E 500E 510E 520E OE 10E 20E 30E 40E 50E 60E 70E 30E - 375E 385E 395E 405E 415E 425E 435E 445E 455E 465E 465E 475E 485E 495E 505E 515E 505W 495W 485W 455W 445W 435W 420W 41 ³/₃ 105E 115E 125E 135E 170E 10E 150E 160E 170E 180E 190E 200E 210E 220E 230E 240E 250E 260E 270E 280E 290E 300E 310E 320E 330E 340E 350E 360E 370E 380E 390E 400E 275 N 100E 110E 120E 130E 140E 150E 160E 170E 180E 190E 200E 210E 220E 230E 240E 250E 260E 270E 280E 290E 300E 310E 320E 330E 340E 350E 360E 370E 380E 390E 400E 275 N 430W 420W 410W 430W 420W 410W 0E 10E 20E 30E 40E 50E 60E 730 V 345W 335W 325W 315W 305W 295W 285W 275W 265W 255W 245W 225W 245W 205W 195W 185W 185W 165W 155W 145W 135W 115W 105W 95W 85W 75W 65W 55W 45W 35W 25W 15W 5W 100 OF 125 N المَّنْ الْحَقَّى الْ 165W 155W 145W 135W 125W 115W 105W 95W 85W 75W 65W 55W 45W 25W 15W 115 N 5E 15E 25E 35E 45E 55E 65E 75E 85E 95E 50 N 5E 125W 115W 105W 95W 85W 75W 65W 55W 45W 35W 25W 15W 5W 5W 155W 145W ¹³⁵W 10E 20E 30E 40E 50E 60E 70E 80E 50E 40 N °[™] <sup>110W 100W 90W 80W 70W 60W 50W ⁵€, ⁶€, ⁶E, /sup> 125W 115W 105W 95W 85W 75W 65W 55W 45W 35W 25W 15W 40E 450E 460E 470E 480E 5E 455E 465E 475E 485E 45W 35W 25W 7W 130W 120W 110W 100W 90W 80W 70W 60W 50W 40W 30W 20W 10W 0W 225W 215W 245W 225W 195W 165W 155W 145W 135W 125W 115W 105W 95W 85W 75W 65W 55W 45W 35W 25W 15W 55W ····

V 6 9969500°N		1660		330W 320W 310W 300W 290W	U 280W 270W 260W 250W 240W 230W 220W 210W 2 285W 275W 265W 255W 245W 235W 225W 215W
	200 E		300 E	335W 325W 315W 305VV	310W 300W 290W 280W 270W 260W 250W 240W 230W 220W 2 310W 300W 290W 280W 270W 260W 255W 245W 235W 225W 315W 305W 295W 285W 275W 265W 255W 245W 235W 225W
120E 130E 140E 150E 160 125E 135E 145E 155E 16 0E 130E 140E 150E 160E 170E 25E 135E 145E 155E 165E 175E	DE 170E 180E 190E ²⁴ SSE 175E 185E 195E 2 180E 190E 200E 210E E 185E 195E ²⁰ 5E 215E	200E 210E 220E 230E ^{240E} 250E 24 205E 215E ^{225E} 235E 245E 255E ² 220E 230E 240E 250E 260E E 225E 235E 245E ^{255E} 265E 210E 220E ^{230E} ^{240E} 250E ^{260E}	50E 270E 280E 290E 300E 310E 265E 275E 285E 295E 305E 315E 270E 280E 290E 300E 310E 275E 285E 295E 305E ^{315E} 275E 285E 295E 305E ^{315E}	320E 330E 340E 350E 360E 370E 325E 335E 345E 355E 365E 375 320E 330E 340E 350E 360E 370E 320E 330E 340E 350E 360E 370E 325E 330E 340E 350E 360E 370E 325E 335E 345E 355E 365E 375E 325E 335E 345E 355E 365E 375E 330E 340E 350E 360E 370E 380E	380E 390E 400E 410E 420E 430E 440E 450E E 385E 395E 405E 415E 425E 435E 445E 455E 380E 390E 400E 410E 420E 430E 440E 450E 460E 380E 390E 400E 410E 420E 430E 440E 450E 460E 385E 395E 405E 415E 425E 435E 445E 455E 465E 385E 395E 405E 415E 425E 435E 445E 455E 465E 390E 400E 410E 420E 430E 440E 450E 460E 470E 480E
20E 130E 140E 150E 160E	170E 180E 190E 2006		450W 450W 440V	430W 420W 410W 400W 380W	360W 340W 320W 300W 290W 280W 270V

metres

·____

Ш	600	1001	
50(•	
v 200W 190W 180W 170W 160W 150W 14 v 200W 190W 180W 170W 160W 155W 1 185W 175W 165W 155W 1	40W 130W 120W 110W 100W 90W 80W 70W 60W 50W 40W 45W ^{135W} 125W 115W 105W 95W 85W 75W 65W 55W 45V	¹ 30W 20W 10W 0W 600 N N 35W 25W 15W 5W 590 N	N A
100 210W 200W 1901AL 1801AL 1701AL 1001AL	4 150W 140W 130W 120W 110W 100W 90W	^{10W} ^{20W} ^{10W} ^{0W} 575 N ^{45W} ^{35W} ^{25W} ^{15W} 565 N	V - E
_{JW 21} 20 20 19 19 18 18 17 17 160W	155W 145W 135W 125W 115W 105W 95W 85W 75W 65W 95W 85W 75W 65W 85W 75W 65W 95W 85W 75W 65W 85W 75W 65W 610E 610E 62	NOE 640E 650E 660E 550 N	V S
± 460E 470E 480E 490E 500E 5	550E 500E 500E 595E 595E 605E 615E 6 10E 520E 530E 540E 555E 565E 575E 585E 595E 605E 615E 6		
_{IE} 465E 475E 485E 495E ^{DUDE 4}	630E 20E 530E 540E 550E 560E 570E 580E 590E 600E 610E 620E 6351	660E 670E 680E 525 N 665E 675E 685E 515 N	
465E 475E 485E 495E 505E 515E ^E 80E 490F 500F 510E 520E ⁵³ 0E 540E ⁵⁰	325E 535E 545E 555E 565E 575E 585E 595E 605E 615E 023E 50E 560E 570E ^{580E} 590E 600E 610E 620E 630E 640E 650E 660E 670E 6	380E 690E 700E 710E 720E 730E 740E 750E 500 N	
	15	Solv 80W 70W 60W 50W 40W 30W 20W 10W 0W 47E	5 N
270W 260W 250W 240W 230W 220W	210W 200W 190W 180W 170W 160W 150W 140W 130W 120W 110W 100W 9		
495E 505E 515E 525E 535E 545E 5	555E 565E 575E 585E 595E 605E 615E 625E 635E 645E 655E 665E	E 675E 685E 695E 705E 715E 725E 735E 745E 755E 765E 760E	460 N 450 N
280W 270W 260W 250W 240W 230W 220	-21000 -20000 48000 48000 47500 16500 16500 14500 13600 12500 11500 10500	90W 80W 70W 60W 50W 45W 35W 25W 19W 5W	435 N 425 N
510E 520E 530E 540E ^{550E} 560E	570E 525E 535E 545E 555E 565E 575E 585E 605E 615E 625E	385 N 400 N	
E 465E 475E 495E ^{495E 505E 515E DE 460E 470E ^{480E} 490E 500E ^{510E}}	520E 530E ⁵⁴⁰ E ^{550E} 560E ^{570E} 580E ^{590E} 600E 610E ^{620E}	375 N	
135W 125W 115W 105W 95W 85V 130W 120W 110W 90W 80W	v 75W 65W 55W 45W 35W 25W 15W 5W 360	N N	
- - •			
: 460E 470E 480E 490E 500E 510E	520E 530E 540E 550E 560E 570E 580E 325 N	Cougar (354051)	
'5W 65W 55W 45W 35W 25W 70W 60W 50W 40W 30W 20W	^{15W} 5W 310 N		
	1999 OF 300 N		·
205 N 275 N			
· · · · · · · · · · · · · · · · · · ·			
		the second s	AN STONIEV DRANCH
		Galore	Resources Inc.
	UTM Coordinate System: NAD83, Zone 10N	Taseko Clinton Mining Div	Lakes Project ision NTS: 92 O/4E, 92 O/3W
Crown Grant	Field Surveys - Magnetics, VIf-em, Soil Geochemis	try .	lub Project
Mineral Claim	Station Label Survey Line	H Geophy Geochemical	sical Survey Grid Sampling Location Map
	a second		·
	[*] United the state of the stat		

1
,

