Mike Swenson, box 128, Dease lake, B.C., VOC-1LO, April 5, 2006.

Three men spent 10 days on the Snow Mac and Ten Ft. claims doing sampling and geological work. Two ATV's were used for access. A tent accommodations, set up on the claims. One man spent an additional six days in Nov? Dec.sampling and examining rock exposures using a snowmobile for access. The samples were sent to ACME Lab in Vancouver and ECO Teck Lab in Kamloops for ICP and fire assay. Several 20 to 50 lb. samples were collected from the Mac Discovery quartz vein, the Mac West quartz vein and the Ten Ft. quartz vein for concentration on a gravity table to determine the free gold, size ect. Samples from the concentrate were in for ICP assay. Assay results are at the end of this report.

Geology: The Snow Mac and Ten Ft. claims are located to the west of Snow Peak. The Snow Peak Pluton is mapped on the east side of Snow Peak as a late Cretaceous event. A wide band (1 to 2 km.) of granodiorite and related granitoids is exposed west from the Snow Peak Pluton aprox. 3 km and hosts the Snow Mac quartz vein mineralization as sheeted veins and stockwork veins. Several quartz feldspar porphyry dykes are exposed on the north side of the granodiorite extension. The dykes strike roughly east - west and dip to the south 20 degrees and greater. The sheeted quartz veins strike and dip aprokate The same as the dykes. The general trend of the whole is parallel with the King Salmon thrust fault. The quartz veining and mineralization are related to the igneous intrution that extends to the west from Snow Peak several km and are fault controlled as fracture l fillings, shear zone fillings and stockwork veins parallel to the King Salmon fault. The mineralizing event was likely late Cretaceous early Tertiary. Rocks in the area of the Snow Mac claims are mapped as lower Jurassic. The Ten Ft. claims are to the north o west of Snow Peak. Are quartz veins hosted in phyllitic slate north of the King Sakmon fault and strike parallel with the fault and dip 90 degrees to the south. The ten Ft. vein is aprox. 5 km north of the King Salmon fault. Mineralization is likely related to the same igneous intrution as the Snow Mac claims.

Mineralization: For reference the mineralized areas are divided into three zones, #1 Mac Discovery, # 2 Mac West and # 3 Ten Ft. vein.

1 Mac Discovery zone has sheeted quartz veins and stockwork veins hosted in granodiorite and related rocks. Mineralization occurs as complex sulfides disseminations mostly in the quartz veins. Some sulfides are in the wall rock next to the veins. Pyrite, galena, chalcopyrite in that order of abundance, are the most common. Arsenopyrite, sphalerite, stibnite and bismuthinite in lesser amounts. Gold occurs as - 100 mesh specks of free gold with the sulfides and can be seen in the concentrates with a hand lens. The best gold samples are from this zone. Up to 26.8 grams to the ton gold and 4 oz. silver to the ton in grab samples.

#2 Mac West zone is hosted in granodiorite and related rocks north west from the Mac Discovery zone next to the quartz feldspar dykes. Sheeted quarts veins up to 30 centimeters wide are disseminated with galena, chalcopyrite, sphalerite, bornite in that order of abundance. Stibnite, pyrite, bismuthinite, also occur in lesser amounts. Grab samples to two grams to the ton in gold, silver over 100 grams to the ton. Copper to 3612 ppm. Free gold can be seen with a hand lens in concentrates AL SURVEY BRANCH #3 Ten Ft. zone is a quartz vein ten ft wide hosted in phillitic slate 6 km north north west of the Mac Discovery zone. Mineralization in the quartz vein is blotches and

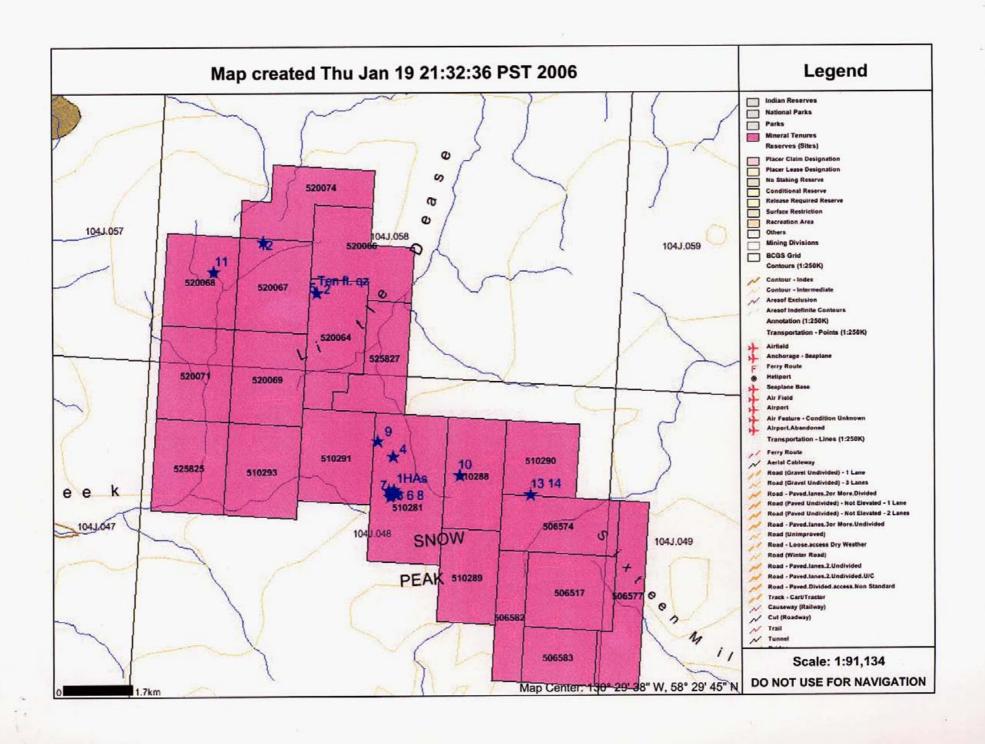
disseminations of mostly galena. Some chalcopyrite, sphalerite, stibnite, can be seen. Several 20 to 50 lb. samples were milled to -50 mesh and concentrated on a gravity table to determine free gold. Free gold could be seen with a hand lens after the concentrates were roasted. Grab samples ran to two grams to the ton gold. Silver over 100 grams to the ton

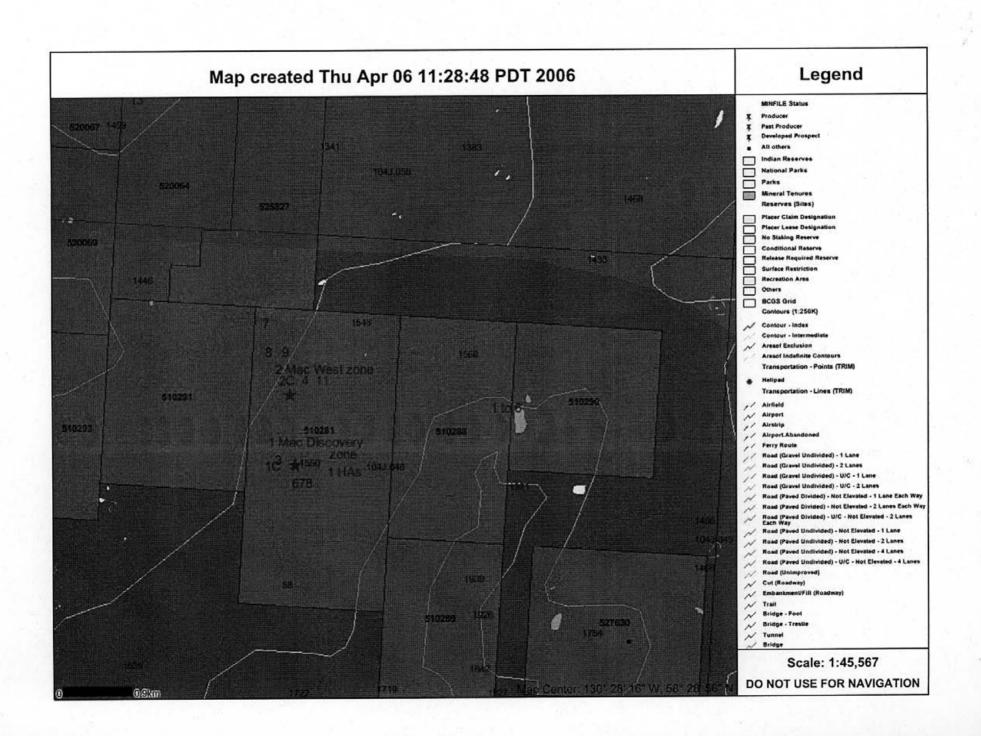
Sample description: the map sheets show the location of the samples. The sample numbers correlate with assay results # at the end of this report. Description of samples is from the top of the assay page down.

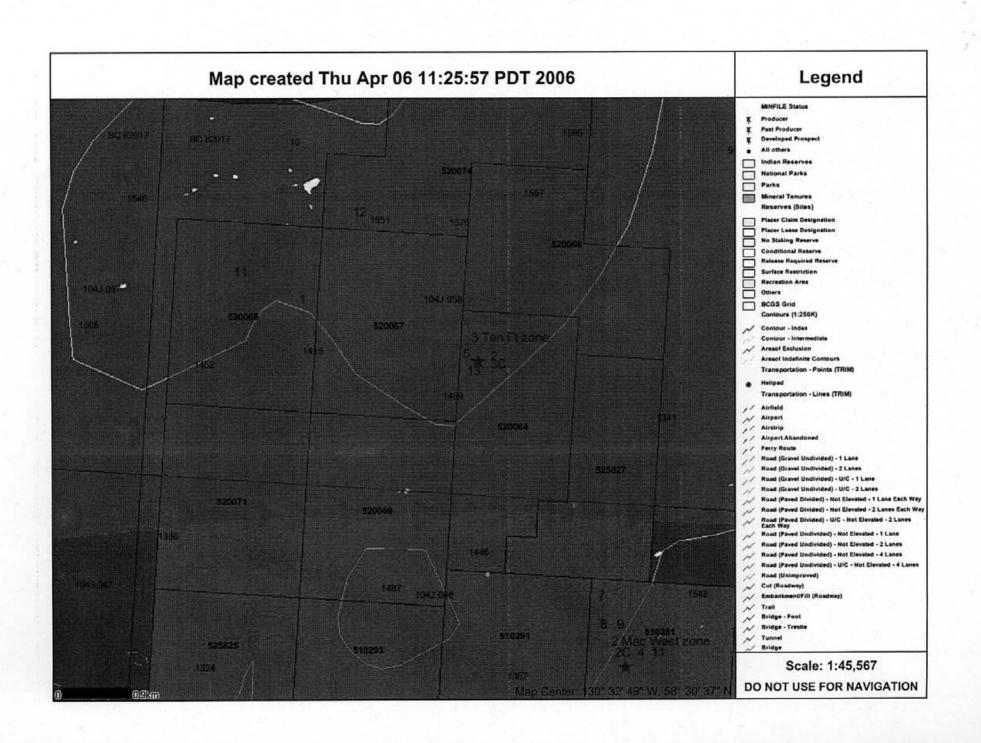
- # 1 is concentrates from panning the headwoters of Ross creek below a massive quarts vein. Note most panning tests in Ross creek headwoters had some small free gold in each panning test. This test did not have visible free gold, but did have more sulfides.
- # 2 a grab sample from the ten ft. quarts vain. The sample had a better mix of sulfide. Most samples from this vein show only galena. Note the Hg 3.12 ppm and the Ni at 220 ppm.
- # 3 is a cross section of three ft. of 1" core drill using a small hand core drill. Sample from the Mac discovery zone A small 6" wide quartz vein plus wall rock. Random pick of location in stockework vein area.
- # 4 a grab sample from the Mac west zone 30 centimeters wide quartz vain. Note Hg 3.66 ppm and Bi 169.2 ppm. High Cu, Pb, Zn, Ag,
- # 5 is from the Ten ft. vein a random grab sample of leaner vein mineralization.
- #6 is from the Mac discovery zone one of the sheeted quartz veins.
- #7 is from the Mac discovery zone stockwork vein with malachite staining.
- #8 is from the Mac discovery zone, granodiorite next to quartz vein.
- # 9 and 10 are quartz feldspar porphyry dyke rock.
- # 11 and 12 are from large bull quartz veins on the Ten ft. claims west of the Ten ft. zone headwaters of Ross creek. No visible sulfides in these veins.
- # 13 and 14 are molly showings from the snow peak pluton. Grab samples of best molly.
- # 1c is concentrates from the Mac discovery zone a sheeted quartz vein 20 Lbs sample from # 6 sample area.
- # 2c is concentrated from the Mac west zone 30 centimeters quartz vein. # 4 sample area, a 20 Lb sample.
- #3c is concentrated from a 20 Lb. Sample of the Ten ft. quartz vein.
- # 1H, As. Is from the Mac discovery stockwork vein 2" wide quartz vein high in As and Au.
- Sample 1-13 from Eco Teck lab in Kamloops are samples taken November / December.

Samples 1-6 are from a quartz carbonate vein on the north side of snow peak, rock exposure on the wall of a cirque.

- #7 is a contact between Diorite and Hornfelsed slate with a thin seem of sulfides.
- #8 is a quartz feldspar vein from Mac west zone.
- #9 is a quartz feldspar vein from Mac west zone with higher sulfides.
- # 10 quartz vein from Mac discovery zone. Gold silver fire assay.
- # 11 quartz vein from Mac west zone. Gold silver fire assay.
- # 12 quartz vein from Mac discovery. Gold silver fire assay.
- # 13 ten ft. zone quartz vein. Gold silver fire assay.


Details of work and cost:


Two labourers one foreman spent one day panning tests on upper Ross creek on the Ten ft. claims. Two days were spent collecting samples on the Ten ft. quartz vein and geological work. Two days sampling on the Mac discovery zone and geological work. One day drilling with one inch hand core drill. Two holes, five ft. of drill hole. One day to set up camp on claims. Three days sampling Mac west zone and geological work. All above ten hour days. One foreman spent six eight hour days in November, December examining rock exposures on claims and collecting samples. One foreman spent three ten hour days preparing large samples for tabling (concentrating)


Costs:

Two labourers at 200 man hours at 20 \$ hour = 4,000.00 One foreman at 178 man hours at 30 \$ hour = 5,340.00 Cost of ATV's for ten days fifty \$ a day for two ATV's 500.00 Cost of snowmobile for six days at 25 \$ a day = 150.00 Rent on core drill for a week = 100.00 Field accommodations for ten days at 100.00 a day = 1,000.00 Two days to prepare geological report = 600.00 Total cost of work = 11,690.00

Report prepared by Mike Swenson. 25 years mining and exploration experience.

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

1C 2C 3C STANDARD DS6

SAMPLE#

SI 1H,AS <.02 .03 <.02 .07

Fe

3 .09 2 9 3.78>10000

Ag Ni Co

ppm ppm ppm

.07 .01 .02 5.65

Cu Pb Zn

<1 1 <3 2 <.3 <1 <1
5 412 204 208 >100 14 22

pom pom pom

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Swenson, Mike File # A506798

Box 128, Desse Lake BC VDC 1LO Submitted by: Mike Swenson

11

18 5 37

<2 .01

128 26.82

K W Ag** Au**

% ppm gm/mt gm/mt

- 1 No. 1 No	<u> </u>	·							•				<u> </u>			<u> </u>		******				<u></u>									·	····		<u> </u>								:
	SAMPL	.8#	Ho	Cu	PI) Ze	Ag	Mi	Ĉо	m	Fe	Aş	IJ	Au .	in s	ir C	d S	ib B	1 4	Ca	P	La	Cr	Mg	₽a	Ŧi	8 4	เกล	a e	.	H	g Sc	71	S	Ga	Se	e Sano) [e				
			ppm	p-pm	por	n ppm	ppm	ppm	роп	ppm	1 ;	opm p	pan p	oob ox	on po	m pp	m pç	en por	n pom		ŧ	DOM	pora	*	ppm	t p	ρπ	ı.	1 :	ppm	pga	т рос	ррп	*	pon	ppr	T _r	ĝe:				
					•																																					•
	#1			41.4																																						
	#2		.4	404.0	>10000	31	>100	220 2 4	0.5	35 5	.40 <	<.5 <	.1 178	8.5 <	.1	2 130 .	6 249.	6 89.	6 <l< td=""><td>.02</td><td><.001</td><td><1</td><td>15.2</td><td>. 23</td><td>1<.</td><td>001</td><td><1 .0</td><td>01 .03</td><td>7 < .03</td><td><.1</td><td>3.12</td><td>2 .1</td><td>4.1</td><td>6.64</td><td>< ?</td><td>>:00</td><td>C .</td><td>30</td><td></td><td></td><td></td><td></td></l<>	.02	<.001	<1	15.2	. 23	1<.	001	<1 .0	01 .03	7 < .03	<.1	3.12	2 .1	4.1	6.64	< ?	>:00	C .	30				
	#3		8.6	112.4	652.5	229	6.5	16.4	3.6	130 1	69 1	13	.3 6	5.1 1	. 2	7 8.	63.	4 8.	8 13	. 13	.011	3	10.9	. 49	27 .	D14	<1 .5	5 .02	8 .13	: :	.05	5 1.2	,1	, 26	2	1.6	á	33				
	84		4.1.3	3612.6	8672.	3549	>100	6.9	. 9	23 1	.43 3	3.8 <	.1 188	05 <	.1	3 136.	0 99.	1 169.	2 1	.02	.001	<1	10.6	.06	53 .	003	1 .0	04 .00	6 .01	L <.1	3.66	6 .1	<.1	1.59	<1	12.8	8	30				
	#5		. 4	51. <i>2</i>	>10000	78	86.4	5.2	9	35 1	.84 -4	c.5 <	.1 5	4.9 <	.1	5 11.	2 54.	7 40.	1 <1	.01	003	<1	9.1	. 02	3<.	001	<1 .0	01 .05	2 < .01	(. >	. 56	6 <.1	۲.۱	. 34	<1	>100	0	30				
	#5		23.0	17.7	1208.1	L 39	36.6	8.8	2.2	63 2	.32 1	1.7 <	.1 114	3.7 <	.1	5 2.	5 2.	6 25.	1 2	.02	002	<1	14.8	.07	6 .	001	<1 .0	14 .01	1 .01	11	.4)	1 .1	. < 1	1.72	۲)	4.8	В	30				
	27			7831.9																																						
	#8			307.9																																						
	#9			31.2																																						
	#10		-	73.6																																						
	#1 1		.5	6.9	31.	1 2	.1	1.9	.3	395 1	.22	.9 <	.1 !	5.2 <	1 59	19 <.	1 2	6.	l 1	6.60	.001	1	6.0	.02	7 .0	001	<1 .0	00. 10	4 .01	l <.1	06	5 .2	<.1	.72	<1	2.6	5	30				
	#12		.6	7.9	10.	1 8	<.1	2.6	.6	60	.86	.6 <	.1 2	2.6 <	.1	5 ¢.	1 1.	2 .	1 7	.02	.013	<1	6 5	92	203 .	002	<1 .0	7 .00	3 .0	<.1	. 03	3 .7	<.1	<.05	<}	<.5	5	30				
	#13		259.8	113.7	41 9	9 115	.6	2.2	5.1	140 1	.13 25	5.1 14	.6	3.4 33	9	5.	4 .	5 .	5 1	.05	.003	18	5 7	.04	20 .	002	3 .3	3 04	1 .15	.2	.13	1 .3		. 33	1	1.3	3	30				
	#14		226.5	194.9	16.	7	3	1 4	7.7	32 1	.45 2	2.3 9	.0 :	3.3 17	2 1	1 4.	1	.1 .4	8 <1	.12	.001	7	4 9	. 91	94.	001	1 .1	17 .02	8 .11	l . 5	.¢!	1 .2	<.1	. 65	વ	1.5	5	3G				
SAHP	 _Ed	Mo	Cu		25	Za	Aq	M1	Co	Hn	Fe	As	Ð	Aù	Th	Sr	Cd	SP	81	. ¥	Ca		i.	Çr	Hg I	ta t	\$ B	Al	Ma	ĸ	¥	Sc	71	2	н	1g	Se	Te	Ga	·		•
		pps	pon	• 1	ipa	ppm	ppb	рря	ppm i	ром	1 :	ppm s	ж	ppb .	pp#)pm	ppn	ppm	ppe	1 pp#	*	t p	yon (ap ar	\$ p	26 1	s ppr	1	*	1	ppr	bów	ppn	1	99	xb	(Open	pom p	opes .			
1C		24 03	1301 96	5000	97 16	34 D>3	00000	66.13	9 9	38.5 11	L AD A	9.6	1 242	24.6	,	6 2 8	66.0	62 90	166 77		07	nńs.	5 50		04 13	.2 00	5 </td <td>67</td> <td>624</td> <td>83</td> <td>2 4</td> <td>2</td> <td>11</td> <td>7 77</td> <td>1378</td> <td>14 2</td> <td>11</td> <td>44.65</td> <td>.9</td> <td></td> <td></td> <td></td>	67	624	83	2 4	2	11	7 77	1378	14 2	11	44.65	.9			
20		116.94																																								
30																																						30.07				
	DARO 056																																									
SAMPLE#			1	Cs		Ge		Hf		N	b		Rb		Si	3	Т	`a	5	Zr			Y		Ce	•		Ir	<u></u>	F	è		В	<u> </u>		L	i	P	'nď	F	ţ	٠
HAND WITH			1			ρm	Y	mqc		pp			ρm		īgo		рp		_	om		pp	_	1	ppr	_	τ	ngc		pr	_		gç	_	1	рp	m	pp		pp	d	
			[P	ρm	<u> </u>	F		-F-:::	•	<u> </u>	***		L	<u></u>	- <u> </u>	••	22	-41				22			EE.		<u> </u>	-		FF						- F						

As U Au Th Sr Cd Sb Bi

bbu bbu bbu bbu bbu bbu bbu bbu bbu

<8 <2 <2 2 <.5 <3 <3 <1
<8 21 <2 5 3.3 917 45 1</pre>

P La Cr

% ррт ррт

.10 <.001 <1

Mg Ba

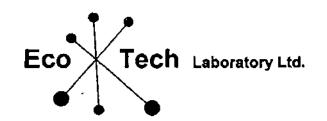
% ppm

.01 4 <.01 <3 .01 28 <.01 <3

Ti B

ΑL

%


.01 .43

Na

X

.05 .01 .05 <2

.01 <2

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 673-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

4-Apr-06

CERTIFICATE OF ASSAY AK 2006-183

Swenson Mining Expl. Box 128

Dease Lake, BC

V0C 1L0

Attention: Mike Swenson

No. of samples received: 13

Sample type: Rock

ET#.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	Cu (%)	Pb (%)	
C (#.	Tag#					1707	\/\/\/	
1	#SQ1	1.39	0.041	34.2	1.00			
9	#QFV9	3.22	0.094	61.3	1.79			
10	#QP\$10	1.82	0.053	47.9	1.40			
11	#QVCU11	1.00	0.029	116.0	3.38	1.18	1,13	
12	#QVMD12	0.46	0.013	87.6	2.56			
13	#QTF13	0.16	0.005	,60.7	1.77		1,75	

QC DATA:

Repeat:

1 #SQ1 1.39 0.041 10 #QPS10 1.83 0.053

Standard:

OX140 1.35 0.039

Pb106

58.1 1.69 0.62

ECO FECH DABORATORY LTD.

JJ/ga XLS/06 Jutta Jealouse B.C. Certified Assaye CO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2006-183

SWENSON MINING EXPL.

Box 128

Dease Lake, BC

V0C 1L0

Attention: Mike Swenson

No. of samples received: 13 Sample Type: Rock

Submitted by: Mike Swenson

ig ex : 250-573-4557

0041 Dallas Drive

MANLOOPS, B.C.

20 GT4

'alues in ppnt unless otherwise reported

Et #.	Tag #_	Au(ppb)	Ag	AI %	As_	8a	Bi	Ca %	Cd	Co	Сг	Cu	Fe %	_La	Mg %	Mn	Мо	Na %	Nŧ	Р	₽b	Sb	Sn	Sr	Ti %	U	٧	w	Υ	Zn	
1	#8Q1	>1000	>30	0.04	>10000	40	45	0.02	12	38	206	84	6.82	<10	<0.01	52	11	<0.01	10	<10	262	5	<20	3	<0.01	<10	3	<10	<1	578	
2	#QCL2	40	0.4	0.02	660	115	<5	1.11	9	3	288	9	3.39	<10	0.02	7347	2	<0.D1	15	<10	6	<5	<20	23	<0.01	<10	5	<10	3	1797	
3	#QCGBr3	280	26	0.14	2665	115	10	>10	9	6	104	14	5.01	<10	2.68	8014	4	<0.01	6	20	1892	10	<20	201	0.01	<10	6	<10	8	259	
4	#HQV4	10	0.9	0.48	50	90	<5	1.81	11	9	76	87	2.52	<10	0.11	2275	4	0.03	17	470	20	<5	<20	29	<0.01	<10	11	<10	5	473	-
5	#QCBr5	45	0.2	0.22	580	65	<5	>10	2	5	26	7	3.71	<10	4.95	1390	3	<0.01	9	90	8	15	<20	290	<0.01	<10	9	<10	6	158	
6	#QCS6	15	0.3	0.34	250	40	<5	4.37	<1	7	52	87	2,57	<10	1.20	629	2	<0.01	14	410	10	<5	<20	158	<0.01	<10	8	<10	2	48	
7	#MWH7	5	0.2	2.12	10	170	<5	0.55	<1	14	81	75	4.62	<10	1.26	473	<1	80.0	17	940	22	<5	<20	23	0,14	<10	114	<10	23	70	
8	#QFV8	50	1.8	0.60	<5	25	<5	0.16	<1	5	08	109	1.59	<10	0.42	142	<1	0.06	6	340	10	<5	<20	6	0.04	<10	34	<10	4	40	
9	#QFV9	>1000	>30	0.14	<5	20	15	2.15	1	8	136	37	3.30	<10	0.49	424	3	0.05	11	300	348	<5	<20	182	<0.01	<10	7	<10	<1	21	

^	DATA:	
•	UKIK.	

rebest.														
1	#SQ1	>1000 >30 0.04 >10000	35	50 0.02 1	8 38 201	83 6.80 <10 <0.01	52	5 < 0.01	10 <10 262	<5 <20	<1 <0.01 <10	3 <10	<1	581
3	#QCGBr3	270												

Sitandard: SiE0'06																										
SIEO.0e	1.5 1.66	60	150	<5	1.67	<1	18	59	85	4.04	<10	0.90	654	<1	0.03	29 690	24	<5	<20	55	0.11	<10	72	<10	11	76
[A]																										

33)XF41 810

J/ga **Ø189** T2/06 ECO TECH LABORATORY LTD.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dalias Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

CERTIFICATE OF ANALYSIS AK 2006 - 183

Hg

Swenson Mining Expl. Box 128 Dease Lake, BC V0C 1L0 6-Apr-06

Attention: Mike Swenson

No. of samples received: 13

Sample type: Rock

ET#.	Tag #	(ppb)	
1	#SQ1	28	
2	#QCL2	43	
3	#QCGBr3	39	
4	#HQV4	22	
5	#QCBr5	93	
6	#QCS6	28	
7	#MWH7	33	
8	#QFV8	9	
9	#QFV9	<5	
QÇ DA]	IA:		
Resplit	•		
9	#QFV9	<5	
Repeat:	•		
9	#QFV9	<5	
Ştandaı	rd:		
GEO'06		54	

JJ/ga XLS/06 ECO FECH LABORATORY LTD Jutta Jealouse B.C. Certified Assayer