

Prospectors Report

on the

Kringle-Consolidated (southern portion) claims

south-south-west of Keta Lake

Adam River Area

in the

Nanaimo Mining Division

in

092L/08 (or 092L040)

at

50 18 N and 126 10 W

for

Mikkel Schau, owner

January 15, 2006

Mikkel Schau, P.Geo.

0.0 SUMMARY

Kringle-consolidated Claims are located along the Island Highway south south west of Keta Lake rest stop, centered some 30 km past Sayward, along and east of the Adam River. The group is staked on a hydrothermal system associated with a contact between the Triassic Vancouver Group and the Jurassic Adam River Batholith. The main copper mineral occurrences are in veins and dispersed disseminations found along logging road cuts.

Previous work in this area has located manto like bodies and cross veins filled with copper mineralization. This campaign added some locations with elevated gold and some more vein localities.

This is a grass roots project and the extent of the postulated hydrothermal system is still being explored. Hence estimates of volumes and concentrations require defining by geophysical and other methods. There is a possibility that adjacent showings in the country rock to the north are also part of the same mineralizing system, in which case, this discovery may become a significant prospect.

Obtaining funding for a next phase of exploration or the optioning of the property to someone with the means to carry out a program, would appear to be the next phase in this project. A possible exploration scenario, combining adjacent properties, costing about \$150,000 would provide enough new information to make an informed decision as to where to drill.

0.1 TABLE OF CONTENT

0.0 SUMMARY	
0.1 TABLE OF CONTENT.	
0.2 FIGURES	
1.0 INTRODUCTION	
2.0 PROPERTY LOCATION, ACCESS, AND TITLE	
3.0 PREVIOUS WORK	9
4.0 SUMMARY OF WORK DONE	
5.0 DETAILED DATA AND INTERPRETATION	
5.1/ Purpose	12
5.2/ General surficial geology	12
5.3/ Regional Geology	12
5.3.1Units	14
5.3.2 Regional Structures	17
5.3.3 Regional Geophysics	
5.4/ Geology of the Kringle-Consolidated (southern part) Claims	s18
5.4.1 Introduction	
5.4.2 Karmutsen Formation	
5.4.3 Quatsino Formation	
5.4.4 Parson Bay Formation	18
5.4.5 Jurassic Intrusives	18
5.4.6 Faults	
5.4.7 Mineralization	19
5.5/ Detailed sampling results	19
5.5.1 Specific Results	
5.5.2 Alteration of the granodiorite	
5.5.3 Alteration of the greenstone	24.
5.6/ Petrophysical results	
5.7/ Interpretation and conclusion	
6.0 FUTURE WORK	26
7.0 REFERENCES	
8.0 AUTHOUR'S QUALIFICATIONS	
9.0 ITEMIZED COST STATEMENT	
10.0 APPENDICES	
10.1 Appendix A Rock descriptions of analyzed rocks	
10.2 Appendix B Petrophysics	42
10.2.1 Magnetic Susceptibility of selected rocks and outcrop	os42
10.3 Appendix C Certificate of Analyses	
10.4 Appendix D Petrochemical reports	

Kringle Assessment, Schau, 2006

Page 3 of 47

FIGURES

Fig.	1.	Location Map of KRINGLE-Consolidated (south part) claims in BC	7
Fig.	2.	Location of Kringle Consolidated (sourthern part) Group on a portion	
•		of a 1:250000 map with local geographic features named	8
Fig.	3.	Detail location map of KRINGLE claims	15
Fig.	4.	Assay and geologic and petrophysical location map	16
Fig.	5.	Detail map showing Cu in ppm	20
-		Detail map showing Ag in ppm	
-		Detail map showing Au in ppb	
-		Detail map showing Pd in ppb	

Kringle Assessment, Schau, 2006

Page 4 of 47

1.0 INTRODUCTION

Northern Vancouver Island has been prospected actively since the first world war. The general Adam's River region has been prospected in particular, since logging opened up the area in the 1960's. Previous operators have staked the area of the new Kringle Group Claims, but only peripherally to their showings, which were found west of the Adam River.

The highway showings, east of the Adam River, were first noted and sampled in September 2000, by the authour, as part of a regional prospecting effort. Samples were found to be anomalous, and on a return visit more sampling took place. The anomalous metal values were judged to have a more than local significance, and the area was staked in summer and fall 2001. The area under claim has been enlarged each consecutive trip north. This report refers to work performed south of the highway on some of the newer claims.

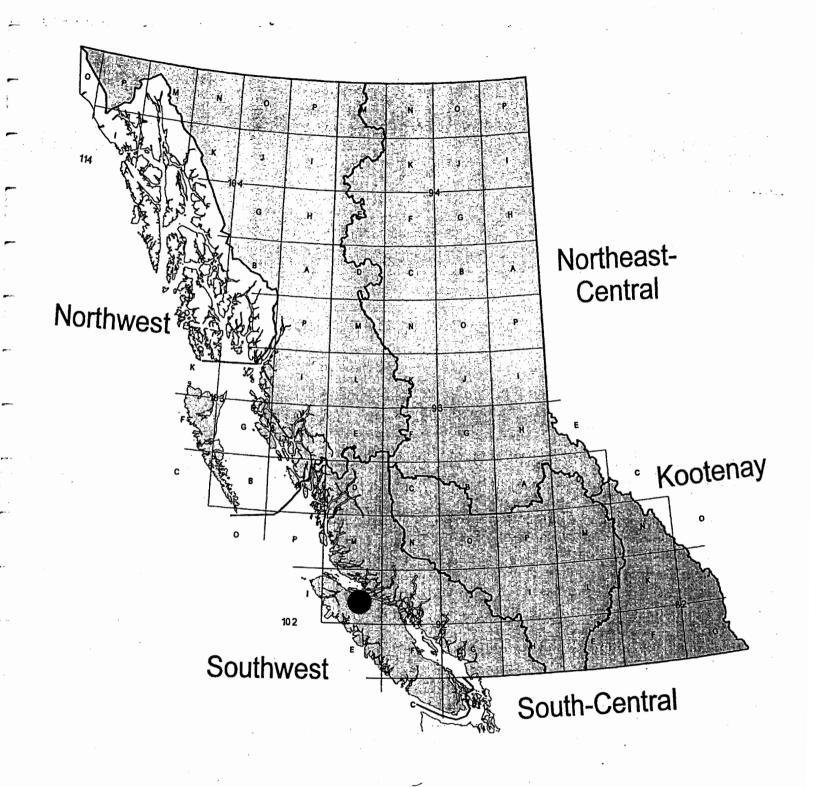
Prospecting and sampling has proceeded, paying special attention to the intrusive contact complex and associated mineralized skarns and shear zones.

Efforts are ongoing to vector towards the most economically mineralized area. This report is a step of this process.

The locating, staking, and ongoing geological work has been performed by the owner and authour of this report.

2.0 PROPERTY LOCATION, ACCESS, AND TITLE

The property is located south south west of Keta Lake rest stop on the Island Highway (Figures 1,2) within 092L040 sheet, Figure 3..


The KRINGLE-consolidated Claims, comprise 5 claims totaling the 2229.169 ha. shown below:

Name	Record	Ha.	Anniversary	Date ye	ar recorded
KRANSE	504026	516.067	January 17	2007	2005
LOAF	505622	515.917	February 02	2007	2005
BUN	506339	515.905	February 08	2007	2005
*converted					
Klejne*	509556	165.139	February 19	2008	2004
KLEJNE-WRAP	513280	516.139	May 25	2007	2005

The anniversary dates are adjusted to take into account the work listed herein. Although Klejne was visited, it is not part of the parcel to which assessment work is being applied.

All claims, which are focused principally on precious metals, but include an ancillary interest in base and industrial metals, are wholly owned by Mikkel Schau.

The land situation is typical; I believe I have claimed the mineral rights in a lawful manner; the region, including the claimed area, is in a Timber License previously logged and reforested; and to the best of my knowledge the land claim treaty process has not directly discussed these lands. It is, however, listed on MapPlace as part of the Kwakiuti_Laich_Kuul_Tach SOL. There has been no impediment to my claiming or working the land to time of writing. And I have no expectation of any. In fact, people of nearby communities would like there to be more exploration, and possibly mining, to shore up the local economy.

Fig. 2. Location of Kringle Consolidated (sourthern part) Group on a portion of a 1:250000 map with local geographic features named

Page 8 of 47

3.0 PREVIOUS WORK

The locations have not been shown in previous work, although prospecting work has been carried out in the general Adam River region for about a century.

The ground was prospected for silver and gold in the first quarter of the century and showings of copper and gold veins were reported. Some distance south of the claims, but in the same geological context, a showing (Lucky Jim) of a contact deposit with copper (5.92%), silver (1.8 opt) and gold (.9 opt) has been described as early as 1918 (page K270, 1918 BC Minister of Mines Report).

Logging opened up the area in the 60's and regional prospecting campaigns located scattered copper rich showings. A large block was staked in 1965 by W.R. Boyes, and was taken over shortly thereafter by Western Standard Silver Mines.

AR 1993, commissioned by Bethlehem Copper Corporation, and carried out by W.M. Sharp, P.Eng., in 1969 sketched in the regional geology of a large area, some of which includes the area currently claimed. He noted the presence of a large NW trending granodiorite batholith emplaced in a sequence of Karmutsen "basalt-andesites" and the Quatsino Limestone. He notes that much mineralisation of the area is mainly in veins. The first mention of the Billy Claims occurs in this report as a parcel covering widely dispersed copper mineralization. The geological framework presented by Mr. Sharp has not changed substantially, although he mentioned the occurrence of Bonanza volcanics in the general region; this latter conclusion has not been confirmed by later workers.

AR 03235, prepared for Conoco Silver Mines Ltd by B. Mottershead in 1971, summarized results of a survey of copper in soils.

AR 03403, prepared for Conoco Silver Mines Ltd by B. Mottershead in 1971, summarized results of an induced potential survey over a property, which includes the Boyes Creek showing and indicated a multiparameter anomalous zone some 20-100 ft below the surface near the showing.

AR 3795, commissioned by Sayward Explorations Ltd, and carried out by Sheppard and Associates in 1972, reported on the geology of the Billy Claims Group and documents showings now known as Minfile 092L163 (in Billy 19) and 092L249 in (Billy 11). These showings are west of the Adam River. In this report the mineralized nature of amygdaloidal portions of basalts and the adjacent faults is stressed.

In 1974 the GSC published a map of the area (Mueller et al, 1974) that generally follows the geology determined by previous consultants. Thin beds of limestone in the upper most

Page 9 of 47

Karmutsen were noted in the geological notes. The showings are generally categorized as "Volcanic Redbed Copper" in government data banks:

AR 22409 commissioned by West Pride Industries and carried out by Leriche in 1991 provides the currently most complete compilation of the geology, including the review of previous drilling results, and concludes that the area has potential that the tested zones (north of Klejne) have "significant" tonnage potential and that three other target areas, one of which is in the Klejne claims which have not been adequately tested.

AR 23906 commissioned by Lucky Break Gold and carried out by Leriche in 1995 provides additional geophysical information that focuses on a blind anomaly near the intrusive contact in the vicinity of the Klejne Claims.

A geological compilation of area in digital form (Massey, 1994, 2005) contains contacts assembled in part from previous assessment reports. The granodiorite contact is incorrect in detail, but not at the level of accuracy claimed by Massey.

The following minfiles are found within this property: 092L165, 166, 167, 168, 169, 222.

Thus sporadic and widespread mineralization of copper and silver with occasional gold values occurs in country rock adjacent to a large granodiorite batholith. The country rock is mainly feldspar-phyric basalt, as amygdaloidal or massive flows, or as thin sills with intercalated, but minor, beds of limestone and associated clastics, Earlier workers focused on mineralized veins, lithologically controlled replacements (mantos) and mineralized shears.

Page 10 of 47

4.0 SUMMARY OF WORK DONE

The area has been prospected by walking logging roads and trails, and by excursions into the dense second growth timber and steep river valley (200 ha.).

Preliminary geological traverses have been conducted along available roads, as well as in selected locations along the Adam River, and other significant off road sites (200 ha.). Analyses:

56 Samples of the mineralized contact area, where well exposed, have been collected and analysed for 30 or 32 aqua regia soluble elements by ACME laboratories.

56 samples as above have been analyzed for precious elements (Pt, Pd, and Au) by fire assay and ICP-ES- Finish (also ACME Labs)

1 sample was tested for gold using a method which extracts coarse gold as well as fine gold (metallicS METHOD).

7 samples from representative units have been analysed for total whole rock composition (major oxides+C, S, LOI and 5 traces by LiBO2 fusion and ICP-ES analysis, by ACME)

7 samples from samples noted above have also been analysed for total trace element composition (30 trace elements by LiBO2 fusion, ICP-MS finish, 10 trace elements usually in sulphides by dissolution with acid and ICP-ES finish, by ACME)

40 sample stations have had the Magnetic Susceptibility determined and reported herein.

The raw data is located in appendices A to C inclusive.

5.0 DETAILED DATA AND INTERPRETATION

5.1/ Purpose

This work is aimed at understanding the nature of the mineralizing events along and in the vicinity of a contact between basalt, limestone and granodiorite batholith. Previous experience with this highly prospective combination of lithologies makes it likely that metal concentrations of some value may have accumulated in the shears, skarns and other associated contact phenomenae.

5.2/General surficial geology

The Kringle-consolidated (southern part) Claim group straddles the north-north west flowing Adam River south of its confluence with Eve River. The river runs in a typical U shaped valley, between tall hills trending roughly the same direction. Local areas of till have been noted in lower areas where road construction has laid it bare. At least three different terraces indicate that the river has had a complex geomorphic history. The river is currently incising its course through thick, earlier river and till deposits.

The course of the river is along the outcrop trend of the Quatsino Limestone and it and adjacent creeks seem to occupy high strain/fault zones. The hills are variably covered with colluvium and thin till deposits; only where logging roads expose subcrops, or in outcrops on cliff faces or steep sided valleys are bedrock visible.

NS glacial striae, parallel to the nearby valley, have been observed in a few places, confirming that the flow was along the valleys

5.3/ Regional Geology

Contacts between country rock batholith are possible regions of metal concentrations. Basalts of the Karmutsen Formation, limestones of the Quatsino Formation are metamorphosed and metasomatised in the locally sulphidized contact of the Adam River Batholith.

5.3.1Units

Vancouver Group

The units are generally as described by Massey (1994) but many lithological details are taken from Carlisle(1972).

The Vancouver Group (Karmutsen, Quatsino, and Parson Bay Formations) underlies much of the region to the south-west of the claims.

The <u>Karmutsen Formation</u> (or "subgroup" of Carlisle, 1972) is a low potash tholeiite basalt mass of remarkably consistent structure and thickness that constitutes the lower third of the Vancouver Group in this area. The lower 2500 to 3000 m. invariably consists of classical closely packed pillow lava. the next 600 to 1000m consist of pillow breccia and aquagene tuff, typically with unsorted beds ½ to 2 m thick in the lower half. The upper 3000m is composed of amygdaloidal and non-amygdaloidal basalt flows intercalated with, particularly in the upper third of the unit, are sporadic and commonly incomplete sequences of 3 to 20 m thick consisting of thin discontinuous bioclastic, micritic, cherty or tuffaceous limestone. Overlain by closely packed pillows, which are overlain in turn by pillow breccia.

The structure of the unit is marked by gently folded and locally severely faulted areas. The folding is part of a regional shallowly north plunging antiform, and many showings are located near the regional axis. The faults and well developed linears trend north and north westerly directions as well as easterly directions and separate large panels of gently dipping lavas.

The volcanic rocks have been metamorphosed to lower greenschist grades. Albitized feldspars, amygdules and veins of pumpellyite, prehnite, epidote, calcite, and chlorite are widely noted. Near contacts with later intrusives, amphibolite bearing assemblages are more common.

Considerable regional variation is shown on aeromagnetic map, including local positive anomalies, within the area underlain by the Karmutsen, indicating that magnetite concentrations of the volcanic rocks are not uniform and/or area is underlain by highly magnetic bodies.

The <u>Quatzino Formation</u> is a thin ribbon traversing the country in a north-northwest direction, to the northeast of the Karmutsen Formation. It is seen to stratigraphically overlie the Karmutsen, and is known to vary in thickness from as much as 500 m to the west near Alice Lake to a thinner 150 m or so further east. In the Adams river area it is a distinct, easily recognizable unit, but the thickness is in doubt, because where best exposed it is deformed contact with the granodiorite. The Adam River follows part of its outcrop pattern.

The formation consists of grey limestone beds. Where undeformed it is a coarsely bioclastic, light grey, indistinctly bedded and non fissile (Carlisle, 1972). Where deformed near plutons it becomes a light grey, finely recrystallized limestone. Fossils indicate that the Quatsino Formation is upper Triassic in age (mainly Karnian, perhaps partly lower Norian (Muller et al, 1974).)

The expected negative aeromagnetic signature over the limestone are noticeable on later geomagnetic map. More detailed aeromagnetic surveys are necessary to delineate the outcrop pattern. Perhaps underlying magnetic units mask the effect of a thin layer of non magnetic Quatsino Formation?

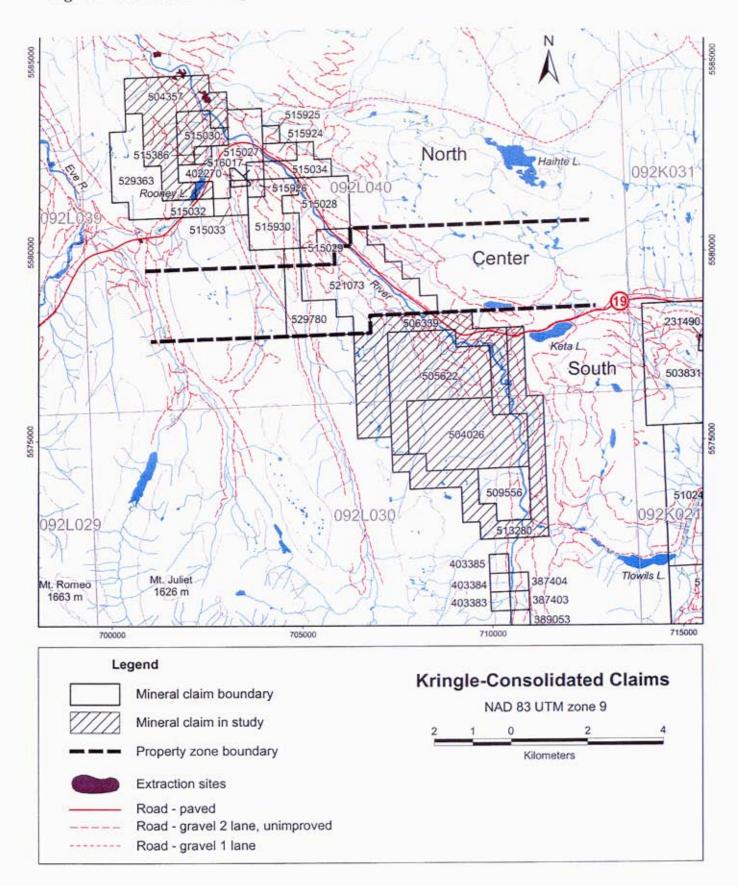
The <u>Parson Bay Formation</u> is considered to overlie the Quatsino Limestone. According to Carlisle, 1972, it is characterized by thinly laminated alternating fissile and non fissile black

carbonaceous limestone with extremely fine grained siliceous matrix. A small part of the section was recognized near Tlowils Lake, and locally along the highway west of Keta Lake, where it is at the contact with the granodiorite. Near the contact barren pyrite is common in the unit.

Jurassic Intrusives

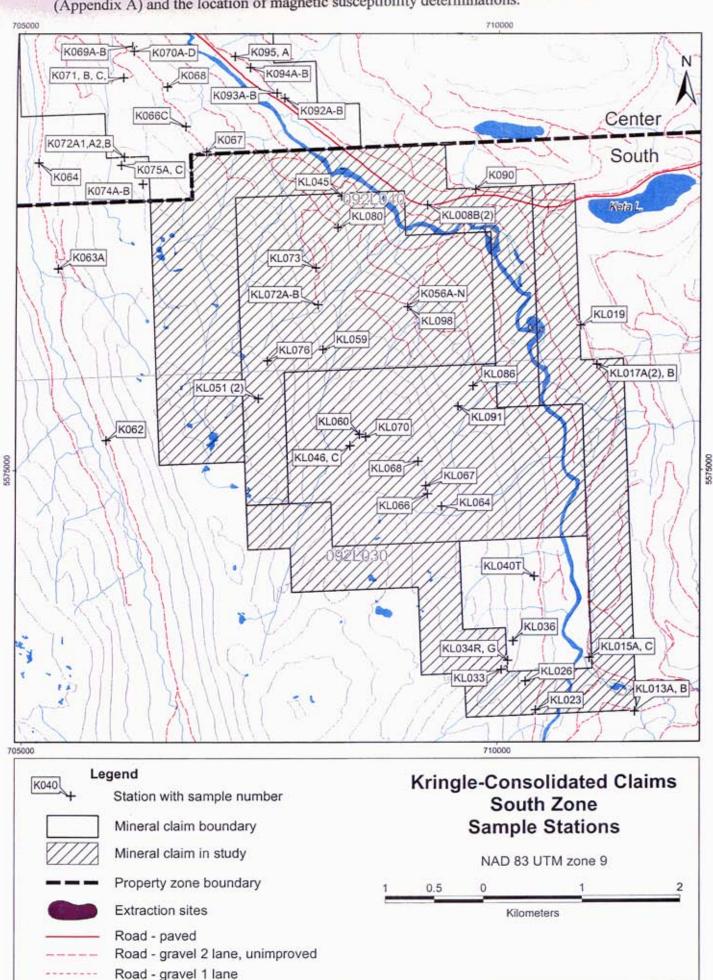
Jurassic granodiorite to diorite underlies the area to the east-northeast of the Adam River. It has been called the Adam River Batholith (Carson, 1973, Muller, et al, 1974). It is about 4 km wide and trends northwesterly in excess of 10km.

It consists mainly of mesozonal granodiorite. Rocks studied are mainly medium to fine grained biotite hornblende granodiorite and quartz diorite with a locally elevated content of mafic minerals. In thin section, pyroxene cores to amphibole grains are noted. Local veining of darker phases by lighter more feldspathic phases are common. At contacts the volcanic rock inclusions are transformed into dioritic inclusions and limestones become skarn and marble rafts.


Carson (1973), suggested that the Adam River was emplaced as a sill, along the Quatsino Formation horizon. He suggested that the sill was shaped as a gentle syncline and figured the geology in the general area on his Fig. 15 (Carson, op cit). An anticline has been postulated to the west currently expressed at surface by the Karmutsen Formation. The sense of movement of a synkinematic sill would be upper units to move away from the synclinal core. That would predict an east over west component in folds and faults. The authour is tending towards a steep fault separating the bulk of the intrusion from the bulk of the Karmutsen. The idea of a sill needs to be tested.

K-Ar dates of 160 on Hornblende and 155 on biotite from a quartz diorite of this batholith confirm the synkinematic nature of pluton emplacement.

Contacts are known to be hornfelsed for short distances, with local skarnification near and in limestone beds.


The high concentrations of magnetite in these I-type intrusions are well reflected in the regional anomalies over these plutons.

(Appendix A) and the location of magnetic susceptibility determinations.

Kringle Assessment, Schau, 2006

Page 16 of 47

Felsic dykes

Based on very preliminary evidence, supported in part by observations made by Carlisle (1972), there appears to be at least three sets of dykes in area.

From oldest to youngest they are: Fp Porphyry "folded into tight folds" and which may predate Ji, argillically altered and mineralized porphyries and later fresh feldspar and hornblende porphyries with planar or irregular contacts.

5.3.2 Regional structures

The area of interest lies within the shallow east north east dipping homocline of Triassic rocks and the Adam River Batholith, called by Muller et al (1974), the White River Block; it is bounded to the west by a major fault, the north northwest trending Eve River Fault. To the north the Johnson Strait Fault terminates the block, the eastern and southern borders are faults on adjacent map sheets. The faults in the vicinity of claimed area of interest are subparallel to the border faults, or are second or third order subsidiaries of it. It is thought that these faults contain a large normal component but dextral component is often also mentioned in reports. On a regional scale a northerly directed shallowly plunging anticline is suggested by scarce bedding determinations. The claims are the east side of this structure.

The region is noted for copper bearing veins and have been described as the type: copper veins in basalts. Muller et al.(1974) repeat this categorization and assigns the showings in the vicinity of the claims to his category C; veins in basalts. Minfile 092L 165, 166, 167, 168, 169 and 222 are located within the property.

5.3.3 Regional Geophysics

The magnetic character of the Adam River Batholith is well expressed on regional aeromagnetic maps. Of some interest is a magnetic domain of similar magnitude seemingly located over Karmutsen Basalts as shown on Map Place and in previous assessment reports. The contact, between the magnetic batholithic rocks and the non magnetic limestone is not seen on the low resolution aeromagnetic map. A newer compilation, the UTM zone 9 aeromagnetic map on MapPlace show it. Of interest is the halo of magnetic basalts at the edge of the pluton several km to the west.

Whether a large batholith underlies a thin cover of basalt and limestone, whether the metasomatism underneath an overlying sill/batholith, or whether the basalts are intrinsically more magnetic than usual, and if so, why? seems an obvious question to seek to answer. An aerial survey with closer flight line spacing may show internal variations and help explain the anomaly. The Cu-Ag vein showings located previously, are located in this anomalously magnetic region.

5.4/ Geology of Kringle Consolidated (southern portion) Claim group

5.4.1 Introduction

Vancouver Group (Karmutsen, Quatsino, Parson Bay) is found in the southwest parts of the claim group, Jurassic intrusives are found in the north east.

The intrusive contact, which approximates the course of the Adam River, is here developed in the upper part of the Vancouver Group. Mineralization is associated with the emplacement of the Adam River Batholith especially into the upper Vancouver Group.

5.4.2 Karmutsen Formation

The area to the southwest of the Adam River is mainly underlain by Karmutsen basalts, as a mix of autoclastic breccias, pillowed and massive flows with thin intercalations of volcaniclastic and limey sandstones cut by thin dolerite/gabbro sills.

The lithologies noted on the claims; i.e. massive and amygdaloidal basalts, intercalated calcareous sediments, and volcanic breccias and the nearness to a pure grey limestone would suggest that the rocks are from the upper part of the Karmutsen Formation. Flows are mainly massive, local flow tops haver been noted and local patches of pillow basalt are found.

5.4.3 Quatsino Formation

The Adam river is underlain by grey limestone. Outcrops are found by the rivers edge and on the northeast side of the river in roadcuts and outcrops, especially along the terrace edges. Beontacts are hard to come by and orientation is not well known. It is true that bedding of the Karmutsen is to the northeast and therefore structurally disjunct to the Quatsino and Parsons Bay Formations.

5.4.4 Parson Bay Formation

The siliceous cherty and pyritic rocks near Tlowils Lake are part of the Parsons Bay formatiuon. Elsewhere, black carbonaceous calcareous siltstones are founs ads representatives of the unit. These two rock types are characteristic lithologies of the lower part of the Parson Bay Formation. They are probably conformable upon the Quatsino Formation, even thogh their only found in highly strained and metamorphosed edge of the Adam River Batholith.

Should they be present, they would, by virtue of their reducing nature (carbonaceous matter) be especially reactive with the oxidizing magnetite bearing granodiorite.

5.4.5 Jurassic Intrusives

The hilly area to the northeast is mainly underlain by quartz diorite of the the Adam River

Page 18 of 47

Batholith. Local composition varies from diorite to leuco-diorite and transitions are quite abrupt. One common lithology is a seriate feldspathic-phyric hornblende granodiorite. There are several localities where leucocratic granodiorite veins cut melanocratic diorite hosts. Alteration and recrystallization as well as local development of high strain zones occur sub-parallel to the contacts. Endoskarns, or extremely altered zones are found along the contact zone.

5.4.6 Faults

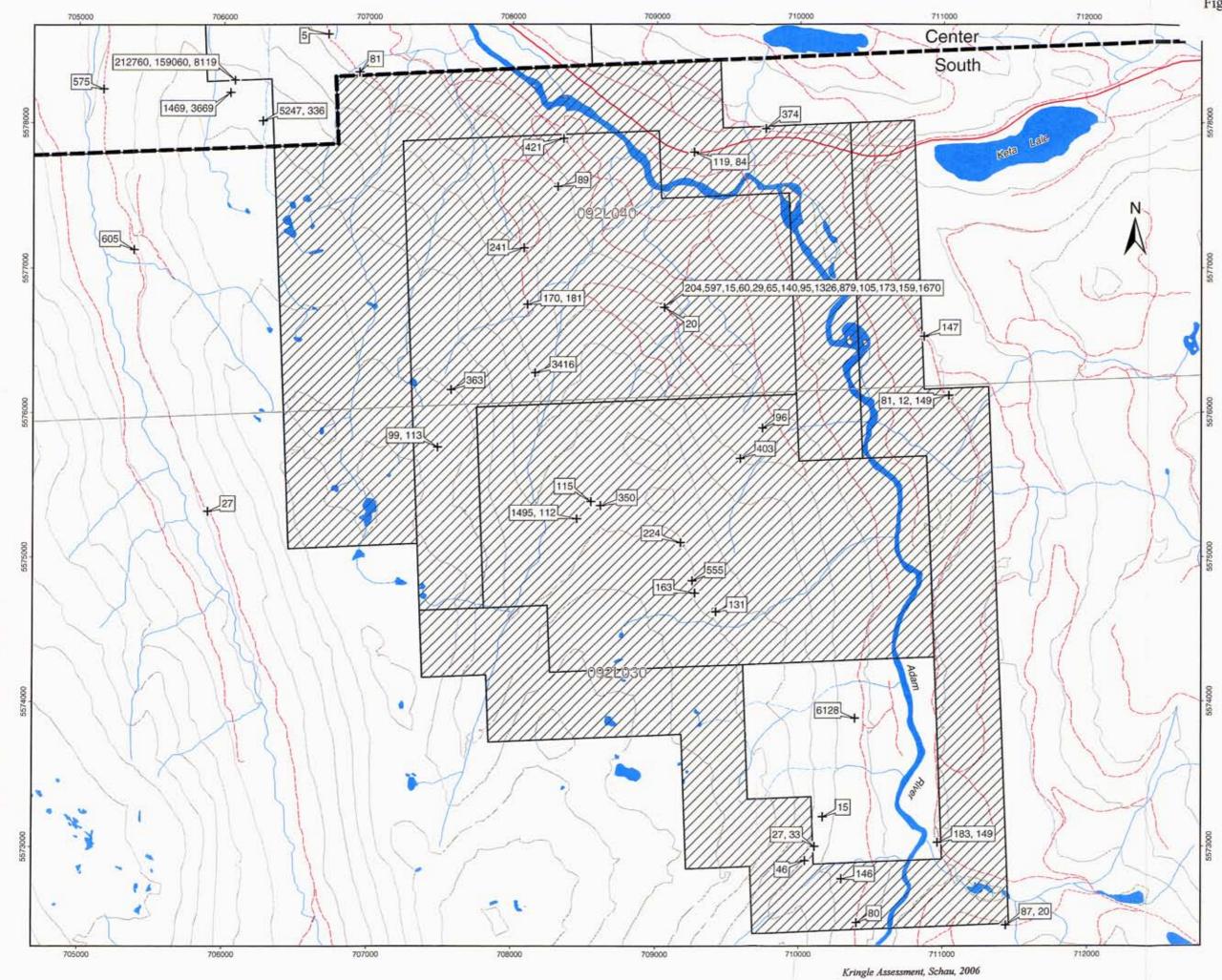
There are many small faults in the area, and many deep valleys that suggest presence of larger faults. The main fault direction is northerly and steep with subhorizontal slickenlines. Small, later cross faults, are neasterly also with shallow slicken lines. Only rarely can one deduce a vertical component. A few flat faults/veins have been located, but they are not well exposed.

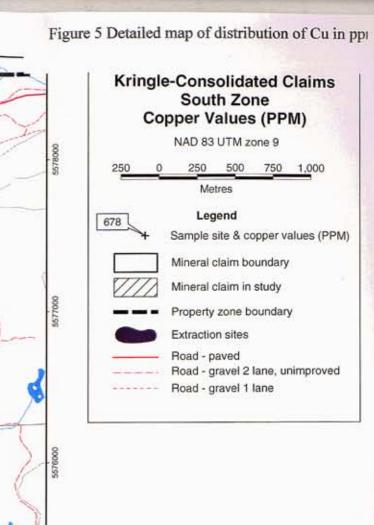
5.4.7 Mineralization

Mineralization in the area has been summarized in minfiles 092L165, 166, 167, 168, 169 and 222.

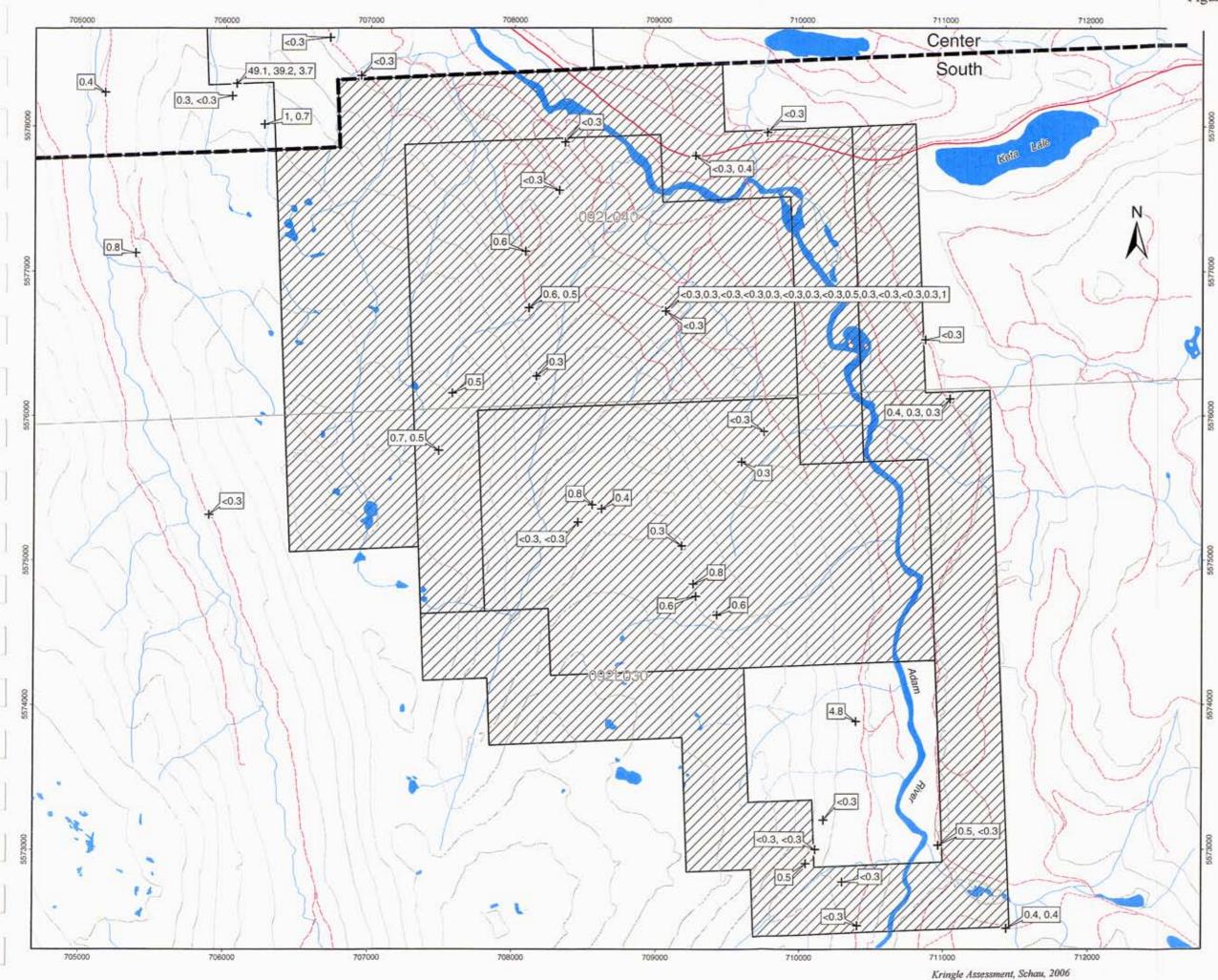
5.5/ Detailed sampling results

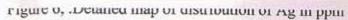
Sampling of likely candidates of mineralized materials have yielded some minor interesting results. The samples will be used for an alteration study later, and perhaps some pattern of mineralization will appear

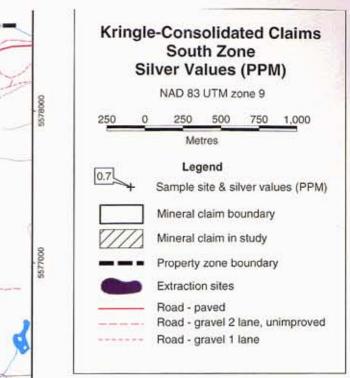

5.5.1Specific Results


Assay locations are shown on figure 4, the distribution of Cu, Ag, Au and Pd are shown on figures 5, 6, 7, and 8.

Appendix A shows the rock types and geology associated with the assay specimens.


The best sample was a bornite vein (KL040T) with 6128 ppm Cu, 4.8 ppm Ag, 216 ppb Au, 7 ppb Pt and 19 ppb Pd in veins with bornite, pyrite and quartz, epidote and calcite cutting aphanitic Karmutsen basalt with only few amygdales. It would appear that the massive beds dip 220/25. The veins are not systematically oriented.


Another interesting sample was one with elevated gold (KL098) with 20 ppm Cu, <.3 Ag ppm, 490 ppb Au, 4 ppb Pt and 9 ppb Pd in steep north trending chlorite veins and smaller more complex pink veins with varying amounts of pink feldspar, quartz, and epidote in gabbro.



Page 20 of 47

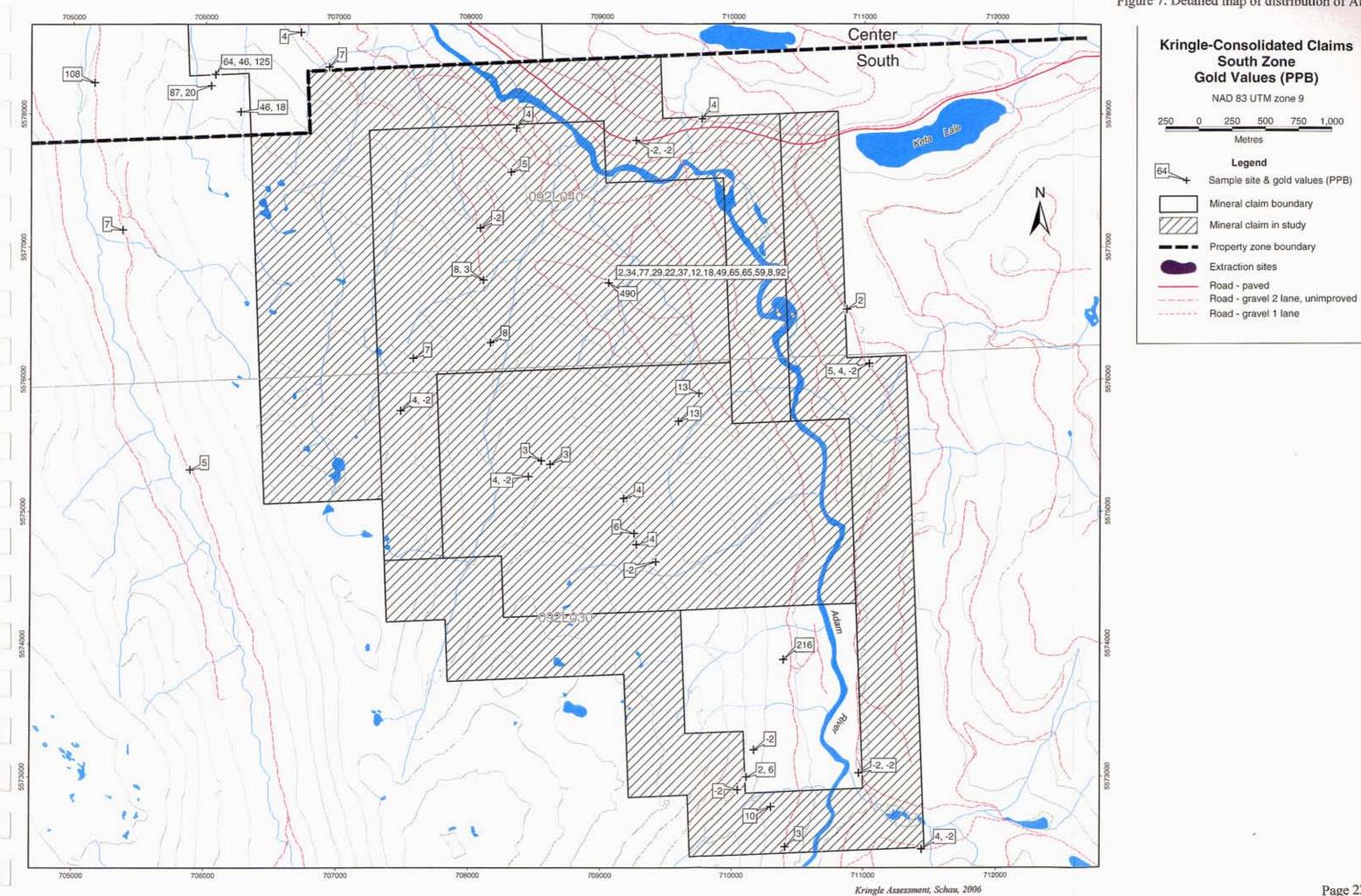
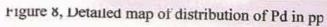



Figure 7. Detailed map of distribution of Au in pp

5.5.2 Alteration of granodiorite

Fresh "granodiorite" is thought to consist of biotite bearing hornblende rich quartz plagioclase rocks with accessory magnetite and less pyrite. The presence of potash feldspar is only locally noted in the most leucocratic portions. The rock types near the contact are more properly quartz diorites and diorites.

Altered granodiorite may be structurally altered as are the more mafic units and veined by magnetite-pyrite-biotite veins, or may contain large concentrations of pyrite disseminated throughout the rock, replacing previous iron silicates. There is some evidence that the intrusive has been subjected to a second hydrothermal event, during which time pyrite was added. New amphibole and biotite crystallized across the old igneous fabric. Locally feldspar alteration cuts across the earlier igneous fabric.

Veining also alters bounding feldspars to argillic materials or epidote and/or quartz.

5.5.3 Alteration of greenstone

Vesicles in basalts are now amygdales of pink feldspar, epidote, quartz and locally, set with small specks of chalcopyrite or bornite. Feldspar phenocrysts are locally altered to epidote and quartz, and the matrix is of greenstone composition. Veins contain the same alteration minerals as the host. These are somewhat higher grade than the usual prehnite-pumpellyite grade the Karmutsen usually displays (Surdam, 1968).

An alteration study is being planned and thin sections are being accumulated for a regional study.

5.6/ Petrophysical results

Magnetic susceptibility measures the response to a magnetic field and is thus a useful tool to help interpret aeromagnetic tools. Raw data is listed in Appendix B. The magnetic susceptibility of many basalt samples is about ten times those usually encountered for basalt. The elevated magnetite content may in part explain the regional aeromagnetic anomaly over the Karmutsen basalts in question.

The Karmutsen has been known to contain elevated iron for a long time (Sangster, 1969 and references therein). The question as to whether the magnetite is a magmatic or post-depositional one requires much further work. Either hypothesis has interesting consequences.

5.7 / Interpretation and conclusion

The magnetic basalts are apparently more iron rich than normal tholeiite basalts (based mainly on their high magnetic susceptibility, and on a single analysis of a gabbro). No magnetite is noted in amygdales.

Whether the basalts are intrinsically iron rich in this part of the section, or the magnetite is part of a regional metasomatic event, the enhanced iron content has exploration consequences.

The upper Karmutsen may be exceedingly well differentiated along a tholeiitic trend. Hence this iron (and associated Ti, V and Mn) enrichment should have regional and stratigraphic expression. Currently, very few systematic lithochemical studies have been conducted on the stratigraphy of the Karmutsen Formation. It is not known whether the Karmutsen Formation is chemically zoned, through time and space. In this study, the MgO is shown to vary from about 5 to 11%.

Alternately, if the magnetite is metasomatic, then the possibility of iron oxide-copper deposits should be considered (such as IOCG types see Sillitoe, 2002). Since a large area is underlain by rocks with silicate and sulphide filled amygdales and veins, as well as containing enhanced magnetite in the groundmass the conclusion that large scale metasomatism of some type is known to have occurred.

Currently, both models are being investigated. The hypothetical Adam River Batholith granodiorite "sill" which may possibly have overlain the area west of the river, may have been an important factor in the localization of the fluids. Alternately the contacts may be accentuated by faults which acted as fluid conduits. Many new observations before these speculations can be put on a factual basis.

The Kringle-Consolidated Claims are located over the contact between the Adam River Batholith and the upper Karmutsen, Quatsino, and Parson Bay Formations. Complex mineralized areas have previously been found in claim area, including replacement deposits of copper sulphides in and below limestone lenses in the upper Karmutsen, as well as in shear zones affecting the basaltic pile. Although iron sulphides are widely dispersed in the few outcrops of Parsons Bay visited, no significant mineralization was encountered in these apparently sulphidized rocks. Alteration in the adjacent pluton seems to be of both propylitic and potassic types but have not returned interesting minerals. The best value this campaign was from a bornite pyrite quartz epidote calcite vein. Locally gold values are elevated, although not in an areally significant manner.

This is a grass roots project and the extent of the postulated hydrothermal system is still being explored. Hence estimates of volumes and concentrations require defining by geophysical

and other methods. There is a possibility that adjacent new showings and already located Minfile locations in the country rock are also part of a single large mineralizing system, in which case, this region may become a significant prospect.

Speculation about structural position of the claim group will have to be more clearly stated and predictions tested with more work.

6.0 FUTURE WORK

Future work should focus on establishing the areal extent of the various types of shear zones and skarn bodies and their enclosed mineralization. Not only should metals be considered as a principal asset, but it may also be that industrial minerals are present in sufficient amounts to be exploited.

To find the extent the magnetic phases (magnetite, pyrrhotite) of the ore skarn a magnetic survey is clearly indicated. To find the extent of conductive portions (sulphide concentrations) of the ore skarn one of several types of survey can be contemplated; the size of the exploration commitment would seem to dictate the method. Both these surveys can be done off the same grid, which should include at least 250 m. on either side of the contact as currently located.

Interpretations of the surveys will be fraught with errors. The presence of the many roads with their infill of materials trucked in from unknown sources will pose a problem. The Adam River valley with the deep (glacio)- fluvial fill will shield anomalies located along the fault traces in the valley bottom. Nevertheless if enough surface anomalies along the valley sides are successfully tested, then deeper exploration will be easier to justify.

A possible exploration scenario is given on the following page. Many others can be proposed, the main determinant is the amount of money available for further work. What is certain is that this program will need funding from a partner, or someone taking an option on the property.

A POSSIBLE EXPLORATION SCENARIO

1/ A program which could rapidly fulfill the needs outlined above, is to run a small helicopter survey (about 15 km by 6 km) measuring the magnetic and electromagnetic parameters simultaneously. This would focus the search.

ESTIMATED COST ; \$100,000 (recent, but unofficial quote, subject to usual limitations)

2/ After the airborne survey, a more accurate GPS survey of the newly located (see above) near- surface geophysical targets would be appropriate. (Using a BeepMat to help locate thinly covered magnetic and/or sulphide mineralization could also be useful).

ESTIMATED COST: \$25,000

3/ Petrographic analysis and detailed mapping of rock types near the contact area can establish the locations of hydrothermal ore bearing channels and the nature of the mineralizing fluids, and, possibly, estimate their extent.

More litho-geochemistry and systematic assaying of new and old showings on the property will help decide as to which type of mineralizing fluid the pluton might have generated.

Both methods will result in finding vectors towards ore targets. And the results will also help in establishing the extent of industrial minerals such as wollastonite, magnetite, or garnet.

ESTIMATED COST: \$25,000

At the end of this phase of the scenario, several target regions, of coincident geological and geophysical anomalies, will probably have been established. At this point there should be enough information to decide on the feasibility and design of a drill campaign

Page 27 of 47

7.0 REFERENCES 7.0

Anon, 1918

Lucky Jim; BC Minister of Mines Report, p.K270.

Carlisle, D., 1972

Late Paleozoic to mid Triassic sedimentary-volcanic sequence of northeastern Vancouver Island; in Report of Activities, Nov-March 1972, GSC Paper 72-1B, pg 22-29.

Carson, D.J.T., 1973

Petrography, chemistry, age and emplacement of plutonic rocks of Vancouver Island GSC paper 72-44.

Carson, D.J.T., Muller, J.E., Wanless, R.H. and Stevens, R.D. 1972

Age of contact metasomatic copper and iron deposits, Vancouver and Texada Islands, BC; Geological Survey of Canada, Paper 71-36.

Cho, Moonsup, Liou, J.G., and Maruyama, 1986

Transition from the zeolite to Prehnite Pumpellyite Facies in the Karmutsen Metabasites, Vancouver Island, BC; Journal of Petrology, vol 27, pp. 467-494.

Cochrane, D.R., 1971

AR 3403. Geophysical Report on an Induced Polarization Survey of Portions o the Boyes Creek-Adams River Copper Project. for Conoco Sil;ver Mines Ltd.

Eastwood, G.E.P., 1965

Replacement magnetite on Vancouver Island, BC; Economic Geology, vol 60, p. 124-148.

Ikona, C.K., 1985

AR 14284, Assessment Report on the Adam Claim

Kuniyoshi, S. and Liou, J.G., 1976a

Contact metamorphism of the Karmutsen volcanics, Vancouver Island, BC; J. Petrology, vol 17, pp. 73-99.

Kuniyoshi, S. and Liou, J.G., 1976b

Burial metamorphism of the Karmutsen volcanics, northeastern Vancouver Island, BC; Am J. Sci. vol 276, pp. 1096-1119.

Kwak, T.A.P., 1994,

Hydrothermal Alteration in Carbonate- Replacement Deposits: Ore Skarns and Distal

Equivalents *in* Lentz, D.R., ed, Alteration and Alteration Processes associated with Oreforming systems: Geological Association of Canada, Short Course Notes, V11, p. 381-402.

Leriche, P.D., 1991

AR 22409; Geological, Geochemical and Compilation Report on the Adam Property, for West Pride Industries Corp.

Leriche, P.D., 1995

AR 23906; Geophysical Report on the Adam Property, for Lucky Break Gold.

Massey, N.W.D., 1994

Geological compilation, Vancouver Island, British Columbia (NTS 92B, C, E, F, G, K, L, 102I); BC Ministry of Energy, Mines and Petroleum Resources, Open File 1994-6, 5 digital files, 1:250 000 scale.

Mottershead, B., 1971

AR 3235 Geochemical report on the Sayward Property (Bruce Dennis Kevin Groups Adam River in Nanaimo Mining Division, BC for CONOCO Silver Mines Ltd.

Muller, J.E., Northcote, K.E., and Carlisle, D., 1974

Geology and Mineral Deposits of Alert-Cape Scott Map Area, Vancouver Island, British Columbia; Geological Survey of Canada, Paper 74-8, 77pg and map 4-1974.

Northcote K.E., and Muller J.E. 1972

Volcanism, Plutonism, and mineralization on Vancouver Island: Bull Can Inst Mining and Metallurgy, Oct 1972, p. 49-57.

Peters, LJ, 1988

Report on Geological, Geochemical, and Geophysical Survey on Adam Claims Property; BC Dept. Mines; AR18255.

Ray, G.E., Webster, I.C.L., and Etlinger, A.D., 1995 The distribution of skarns in British Columbia and the chemistry and ages of their related plutonic rocks; Economic Geology, vol. 90, p 920-937.

Richardson, R.W., 1969

Report on Newconex Exploration in Sayward area. AR 1859.

Sangster, D.F., 1969

The contact metasomatic magnetite deposits of southwestern British Columbia; GSC

Kringle Assessment, Schau, 2006

Page 29 of 47

Bulletin 172, 85pg.

Schau, Mikkel, (unpublished)

-do- Report on PAP grant 95-2000, submitted to BC dept of Energy and Mines

-do- Report on PAP grant 91-2001, submitted to BC dept of Energy and Mines

-do- Report on KRINGLE, assessment report AR -new-, BC Dept of Energy and Mines.

-do- Report on PUFF, assessment report AR -new-, BC Dept of Energy and Mines..

-do- Report on PMO, assessment report AR -new-, BC Dept of Energy and Mines

-do- Report on KRISP, assessment report AR -new-, BC Dept of Energy and Mines

-do- Report on KLEJNE, assessment report AR -new-, BC Dept of Energy and Mines

Sharp, W.M., 1969

Geological Report on the Boyes Copper Prospect located near the Adam River, Sayward Area, BC, in Nanaimo M.D.; BC Dept of Mines, AR1993.

Sheppard and Associates, 1972

Geological Report on the Billy Claims Group, Sayward Area, Nanaimo MD, Vancouver Island BC; BC Dept of Mines, AR3795.

Sillitoe, RH, 2003

Iron Oxide-copper-gold deposits: an Andean view; Mineralium Deposita, vol 38, p 787-812.

Surdam, RC, 1973

Low grade metamorphism of tuffaceous rocks of the Karmutsen Group, Vancouver Island, BC; Bull. Geol. Soc. Am. Vol 84, 1911-1922.

8.0 AUTHOUR'S QUALIFICATIONS

I have been a rock hound, prospector and geologist for over 40 years. My mineral exploration experience has been with Shell, Texas Gulf Sulfur, Kennco, Geophoto, Cogema and, several mining juniors. I have worked 10 years in southern BC and spent 23 years with the GSC as a field officer focused on mapping in northeastern Arctic Canada. For the last 11 years I have prospected and explored for Cu, Ni, Au and PGEs in Nunavut, Nunavik and BC.

I reside at 1007 Barkway Terrace, Brentwood Bay, BC, V8M 1A4

I am currently a BC Free Miner, # 142134, paid up until September 9, 2006.

During 2000 and 2001, I received Prospector's Assistance Program (PAP) grants to prospect on Vancouver Island. In 2002 I received YMIP grant to prospect in the Yukon.

My formal education is that of a geologist, I graduated with an honours BSc in 1964 and PhD in Geology in 1969, both, from UBC.

I am a P.Geol. licensed (L895) in Nunavut and NT, and a P.Geo. (25977) in BC and Ontario (1047).

I am sole owner of the claims in question.

9.0 ITEMIZED COST STATEMENT

Wages:			
Mikkel Schau,			
June 12, 17, 2005, checking, and samp	pling, MS, 1/2 day each (1)		
mapping and prospecting July 14 to 22	2, inclusive, MS and AT (9)	
sampling and propsecting July 22, 25,	2005, MS ½ day each (1)		
sampling and prospecting, October, 2'			
Mikkel Schau, geologist			
mapping 14 day x 450	6300)	
Alec Tebbutt, contract helper(AT)			
9 days at 150	1350)	
3 days at 250	750)	
TOTAL Wages			\$8400
Food and Accommodation:			
26 persondays, @\$75. Total Food an	nd accommodation		\$ 1950
Transportation:			
From Brentwood Bay to claim	is, and local transportation		
4 return trips, (+ 4 trips	s not charged for)		
5100@.38/km+8 Mill	Bay ferry trip		
Shared costs w	/ other project, \$2058,		
Less than 20%	of total	809.81	
Analyses:			
56 prepare rocks	@4.50	228.00	
56 Geo4 (ICP-ES of AR disso			
PGE (Pt, Pd, Au) FA v			
	@ 17.0	952.00	
7 -4Aand B (whole rock majo			
	@ 35.00	245.00	
1 metallics Au	@ 10.50	10.50	
Freight		60,00	
GST		104.69	
TOTAL:			\$1600.19
Petrophysics:			
40 Magnetic susceptibility me	asurements@\$6/station /in	c GST	\$ 240.00
Report preparation			\$500
Total project cost			\$13,500.00
Kringle Assessment, Schau, 2006			
-			Dogs 27 of 47

10.0 APPENDICES

10.1 Appendix A Rock Descriptions of analysed samples, with Cu, Ag, Au, Pt, and Pd tabulated

STATION all in zone 9, NAD 83 UTME UTMN kind, type, Cu Au Pt Pd Ag ppb ppb ppb ppm ppm KL008B1,262, 9U,709260,5577796, 119 <.3 < 2 < 2 4small patch of quartz sulphide (py) in altered GRND k-sol = .09KL008B2,262, 9U,709260,5577796, 84 .4 222 as above, near fault 240/steep, slicken lines to east 10 deg k-sol = .12KL013A, 347, 9U, 711438, 5572460, 87 .4 4 <2 <2 siliceous skarn, darker variety with sulphides k-sol = .06KL013B,347,9U,711438,5572460,, 20 .4 2 2 2 as above, but a more leucocratic version (both Parson Bay?) k-sol = .02KL015A ,307 ,9U,710965,5573031, 183 .5 < 2 < 7siliceous (cherty) skarn (Parson bay) w/ local sulphide (py, minor cpy) k-sol = .44KL015C,307,9U,710965,5573031,, 149 <.3 < 2 < 2 8as above, more layered with alternating dark (more biotite rich) and light (sericite/illite??) k-sol = .06KL017A1,330, 9U,711037,5576117, 81 .4 5 3 < 2quarry, Potassic alteration (Kspar) Kringle Assessment, Schau, 2006

Page 33 of 47

superposed on GRND, later chlorite veins, main fault, 140/steep, slickenlines 05 to south, minor faults, 115/75. sl subhorizontal, epidote/qz veins at 000/steep to k-sol = .44

KL017A2,330, 9U,711037,5576117,, 12 .3 4 <2 6
as above, both samples are
pink fp altered, epidote rich,
with brown spots, sulphides
(py, minor cpy?)
k-sol = .01 (compare with above!)</pre>

KL017B ,330, 9U,711037,5576117,, 149 .3 <2 <2 4 same station, local Az and Mal wash on chloritic epidotic and hematitic alteration. The pinker rocks carry magnetite instaed of hematite. k-sol = .03

KL019 ,303, 9U,710866,5576526, 147 <.3 2 2 3 chloritic alteration cuts pink feldspar altered GRND. Cut by 140/steep fault zones, sample of chlorite vein, k-sol = .03

KL023 ,344 ,9U,710404,5572477,, 80 <.3 3 <2 9 Karmutsen Basalt, microphenocrysts of feldspar, in v. fine grained, magnetic matrix, w/ amygdales of qz, epid, chl, small specks of sulphides (py), faulted/fracture cleaved 010/80, 1 mm thick cross veins at 265/vertical k-sol = .01

KL026 ,380, 9U,710297,5572780,, 146 <.3 10 5 24 Karmutsen, w/ amygdular zones dipping into hill in a westerly direction!, could be near a top of a flow. Sample from thin lenses of pyrite in flow. k-sol = .01

KL033,483,9U,710043,5572906,, 46 .5 <2 <2 3
Karmutsen breccia (dallasite) pink amygdales in epidote rich altered zones. Py in epidote rich sections k-sol = .01
KL034RE,476, 9U,710110,5573003,, 27 <.3 2 3 11
Karmutsen Basalt, microphenocrysts of plag, in greyish vfg greyish matrix, w/ amygdales of hematite?, epid, qz, rock has a reddish cast; dip to north, 260/17

k-sol = .02

KL034gr,476, 9U,710110,5573003, 33 <.3 6 2 17 as above, rock has more epidote veins, rock has a green cast k-sol = .01

KL036,455,9U,710166,5573207 15 <.3 <2 5 20 Karmutsen Basalt, microphenocrysts of plag in a bluish matrix, lots of thin veinlets/wallpaper with pyrite, contact/bedding 250/30 k-sol = .01

KL040T, 341, 9U,710389,5573885, 6128 4.8 216 7 19
Karmutsen basalt, aphanite
with few amygdales,
cut by vein w/ bornite, py and qz,
epidote and calcite.
Best vein samples in talus (sampled here)
but rock wall also showed same vein system.
Dip here is 220/25 of possible bedding/layering
k-sol = .01

KL045 ,248, 9U,708355,5577888, 421 <.3 4 9 35 Medium grained gabbro with Hb and chl alt, Mt, Py and minor cpy k-sol = <.01

KL046 ,656, 9U,708453,5575263,, 1495 <.3 4 2 14 Karmutsen basalt, massive flows, some 15 to 20 m thick, fg matrix, microphenocrysts of plag, in center of flow, top 3 m with amygdales w/ chlorite and

local areas/amygdales altered to (pink fp, epid, blue qz, calcite, cpy), bottom with vesicles showing up is up. local bedding, 315/30, unusual direction, sample from altered portions k-sol = <.01

KL046CR,656, 9U,708453,5575263,, 112 <.3 <2 3 19 As above, sample from "fresher looking" part of flow k-sol = <.01

KL051 ,869, 9U,707480,5575759,, 99 .7 4 7 21 Top of ridge, massive Karmutsen Basalt, reddish cast, scarce microphenocrysts k-sol = .04

KL051-5,869 ,9U,707479,5575764,, 113 .5 <2 2 24 as above, essentially same rock k-sol = .03

KL059 ,501, 9U,708161,5576274,, 3416 .3 8 10 28 massive Karmutsen, with veins on joints stained w/ malachite, amygdalles w/ epid, hlorite, calcite, and minor malachite k-sol = <.01

KL060 ,672 ,9U,708550,5575382,, 115 .8 3 3 4 mafic dyke, 2 m wide, cuts across shallow dipping vesicle layers.
Veins along edge of dyke, (025/80), sample from dyke center k-sol = .05
KL064 ,708, 9U,709416,5574619,, 131 .6 <2 4 18
Karmutsen basalt, chloritized aphanite, locally rusty

k-sol = .03

KL066,703,9U,709270,5574749,, 163 .6 4 3 13 vein of qz, calcite, py, 2 cm wide, 355/steep, Kringle Assessment, Schau, 2006

Page 36 of 47

slicken lines 10 to south k-sol = .08

KL067 ,696, 9U,709252,5574834,, 555 .8 6 3 24 Karmutsen basalt, reddish matrix, qz-epid amygdales w/ specks of Py, cpy, bo?, nearby breccia (dallasite) k-sol = .01

KL068 ,699, 9U,709171,5575098, 224 .3 4 5 23 Karmutsen Basalt, reddish matrix, hematite? stain, qtz epid amygdales, local sulphides k-sol = .04

KL070 ,670, 9U,708616,5575355, 350 .4 3 4 15 Karmutsen Basalt, 190/steep veins, cross faulted by 300/80, with sl 45 to east k-sol = .01

KL072A,458,9U,708106,5576747,, 170 .6 8 8 13 Karmutsen Basalts, pillowed!, and massive w/ micrphenocrysts of plag in vfg matrix, pillows 10 cm to 2 m, up is up, sample is from pillow k-sol = .01

KL072B,458, 9U,708106,5576747,, 181 .5 3 23 28 as above, these are from massive portion k-sol = .02

KL073 ,421 ,9U,708082,5577139,, 241 .6 <2 3 13 sample of limey siltstone, (probably one of the limestone beds in upper Karmutsen)in small block bounded by a 025/vert fault with sub horizontal slicken lines, Karmutsen basalt

Kringle Assessment, Schau, 2006

Page 37 of 47

k-sol = .04

KL076 ,807, 9U,707572,5576157, 363 7 2 23 .5 small outcrop, sampled to replicate a previous anomaly from this vicinity, aphanitic Karmutsen, w./ minor epidote amygdales, can see magnetite grains in matrix, scarce py k-sol = .02 KL080 ,339, 9U,708316,5577558, 89 <.3 5 6 17 Gabbro with glomeroporphyritic feldspars (snow flake phenocrysts) k-sol = .03KL086 ,354 ,9U,709741,5575891, 96 <.3 13 2 21 Karmutsen basalt, aphanitic, rare amygdales, chlorite, and scattered mm veins w/ pyrite and chlorite, reddish cast k-sol = .08KL091,407,9U,709584,5575678,,403 .3 13 7 23 Karmutsen basalt, pillowed, 20 cm to 1 m, up is up,rusty interpillow material, locally amygdular with chlorite, not magnetic, overlies massive, primary layering is 290/30 degs k-sol = .02KL098 ,340, 9U,709054,5576725,, 20 <.3 490 9 4 big quarry, gabbro w/ steep North trending chlorite veins and smaller more complex pink veins with varying amounts of pink fp, qz, epidote k-sol = <.01K056A 339 709053 5576731 204 <.3 2 5 14 revisit KL098, quarry, qz vein at 010/vert, near dyke Kringle Assessment, Schau, 2006

Page 38 of 47

k-sol = .01

K056B 339 709053 5576731 597 .3 34 3 9 revisit KL098, quarry, dyke near vein k-sol = <.01K056C 339 709053 5576731 15 <.3 77 <2 10 revisit KL098, quarry, 350/vert, clacite and qz vein k-sol = <.01K056D 339 709053 5576731 60 <.3 29 7 19 revisit KL098, quarry, epidote and quartz vein. 20 cm chip sample across veins k-sol = .0.1K056E 339 709053 5576731 29 .3 22 6 17 revisit KL098, quarry, 2 cm vein epidote, 10 cm epidote selvage to vein k-sol = .01K056F 339 709053 5576731 65 <.3 37 7 12 revisit KL098, quarry, small cross cut vein at 325/vert k-sol = <.01K056G 339 709053 5576731 140 .3 12 7 18 revisit KL098, quarry, epidosite blotches .3 by .2 by ? m k-sol = <.01K056H 339 709053 5576731 95 <.3 18 8 24 revisit KL098, quarry, very rusty vein at 190/60 k-sol = .02K056I1 339 709053 5576731 1326 .5 49 5 22 revisit KL098, quarry, flat epidosite vein cuts H k-sol = <.01

Kringle Assessment, Schau, 2006

K056I2 339 709053 5576731 879 .3 65 3 19 revisit KL098, quarry, another sample from flat vein k-sol = <.01K056J 339 709053 5576731 105 <.3 65 6 21 revisit KL098, quarry, rusty zone, 30 cm across, 240/80 k-sol = .01K056K 339 709053 5576731 173 <.3 59 10 30 revisit KL098, quarry, structure sub parallel to J, 40/vert, 5 cm across rusty zone k-sol = .02 K056L 339 709053 5576731 159 .3 8 3 16 revisit KL098, quarry, feldspar porphyry k-sol = <.01K056N 339 709053 5576731 1670 1.0 92 4 15 revisit KL098, quarry, vein of epidote in feldspar porphyry k-sol = .01K057 573 707267 5568438 200 .9 75 4 22 Karmutsen basalt, black aphanite, is this a dyke?? k-sol = .02 K058 591 707147 5568485 91 .4 74 <2 <2 Karmutsen basalt, black aphanite, with qz, epid, chl, py as fill in breccia k-sol = <.01K059 609 707160 5568510 92 <.3 44 NS vein in breccia of Karmutsen Basalt, about 10 m long, 5 cm wide, calcite and cataclastic fragments k-sol = .09K060 623 706665 5569904# 32 .3 52 5 11

Kringle Assessment, Schau, 2006

Page 40 of 47

1 m wide 090/85 vein with much adjacent alteration, with chlorite, epidote, pink fp, black spots in Karmutsen breccia k-sol = <.01

K062 516 705895 5575317 27 <.3 5 2 15 amygdular basalt, 10% amygdales, qz, calcite, red hematite k-sol = .04

K063A 476 705381 5577128 605 .8 7 9 19 quarry, vein in amygdular and massive Karmutsen basalt, local reddish alteration hematite? k-sol = <.01

K090 279 709761 5577956# 374 <.3 4 3 2 dark med gr gbbr, magnetic k-sol = .22

Kringle Assessment, Schau, 2006

Page 41 of 47

10.2 Appendix B, Petrophysics

10.2.1 Magnetic Susceptibilities of selected rocks and outcrops

Introduction

The magnetic susceptibility of a rock is a volume percent average of the magnetic susceptibility of its constituent minerals. The magnetic susceptibility of a mineral is a measure of how it responds to a magnetic field. The common rock-forming minerals are generally not particularly responsive. Minerals such as quartz and feldspar show dia-magnetic magnetism with negligible, negative, magnetic susceptibilities that do not contribute appreciably to the rock magnetism. Para-magnetic minerals such as olivine, pyroxene, amphibole, biotite and garnet, with weak, positive magnetic susceptibilities contribute a minor amount to rock magnetism. Finally, ferri-magnetic minerals such as magnetite and pyrrhotite show moderate to high complex magnetic susceptibilities and contribute largely to the overall rock magnetism.

Consequently, magnetic susceptibility can be regarded as a crude measure of the volume of magnetite, and in special, usually self-evident, cases, pyrrhotite, in the rock.

Instrumentation:

All measurements were performed using a KT-9 magnetic susceptibility meter (manufactured by Exploranium Radiation Detection Systems). This instrument is capable of measuring magnetic susceptibilities in the range 0.01×10^3 to 999 x 10³ (dimensionless SI units), which is adequate for all situations except those involving massive magnetite layers or masses. The unit was operated in "pin" mode to minimize errors introduced due to surface irregularities (Exploranium Radiation Detection Systems, KT-9 User's Guide).

Magnetic Susceptibility of sampled locations

A selection of fourty sites are presen ted below showing the variations in magnetic suceptibility. There can be little doubt that most of the basalt is magnetic. The sample stations are labelled as in Appendix A. The locations are given there.

Leucogranite is not magnetic 01 KL08,light coloured granite, -0.15,-0.10,-0.09 Parsons Bay 02 KL015,sample A, 0.89,1.37,0.64 03 KL015,sample B, white rock ,0.72,1.08,0.18,0.53,1.04

Kringle Assessment, Schau, 2006

Karmutsen basalt is locally magnetic 04 KL023,karmutsen basalt 41.70,30.30,36.20

05 KL026,karmutsen basalt 82.80,52.40,70.00,72.90,59.90

Karmutsen basalt with veining shows great contrast 06 KL033,massive fine grained, no amygdules 27.00,33.40,28.20

07 KL033,on vein, epidote & cream qz/cc 2.54,2.40,2.38

08 KL033, below vein, scattered amygdules, pink 14.40, 17.80, 21.30

09 KL033, above vein, reddish, 16.50,5.17,15.70,5.94,16.30

10 KL034, basalt w/ white vesicules (few, scattered), 15.10, 8.29, 15.60, 11.10, 8.67

11 KL036,""brown, weathered, mineralized on left"", 42.70,50.70,34.50

12 KL036, light unaltered blocks on right, 62.00, 58.20, 53.80

13 KL036, on reddish area in brown weathered area, 13.00, 52.90, 38.70, 25.10, 25.30

14 KL040, medium fine-grained, creamy & epidote veining, 34.80, 45.50, 48.80

15 KL040, surface with bornite veins 4.78, 4.07, 3.90

16 KL045,gabbro/Karmutsen?: on big joint face, 6.35,6.27,5.12

17 KL045,gabbro/Karmutsen?: sample site, 19.80,16.40,20.30

18 KL045,gabbro/Karmutsen?: lighter gray, nearer road, 10.30,8.50,9.33

19 KL045,10m further along, Karmutsen sill?, 18.30,19.90,12.40

20 KL046,""black with many med-sized white porphyry, also has smaller epidote blebs,

Kringle Assessment, Schau, 2006

45.00,46.80,47.80

22 KL046,many small black (chlorite amyg) blebs, 15.80,14.10,14.20

23 KL046, few med-sized cream-pink blebs (cc amygd), 19.00, 17.50, 17.90

24 KL051, black med-grained slight brown tinge; weathered to rust,

36.60,47.20,44.20

25 KL0051-2,Cu green wash to surface, 40.60,50.70,48.60

Not all veins are diminished in magnetism 26 KL059, below vein; rock light gray; many small black vesicules, malachite veining; very occasional pinkish vesicules,

9.68,16.20,9.00

27 KL059, on vein, 11.20,10.00,12.60
28 KL059, surface at 90 to vein surface, 15.60,15.50,18.60

Contrast these pillows with KL091 29 KL072,on pillow, 46.20,48.20,58.80

Values on limestone are very low 30 KL073,limestone, 0.13,0.04,0.23

31 KL073, fine-grained black carbonaceous limestone. 0.57, 0.87, 0.64, 1.10, 0.65

Values on gabbro high

32 KL080,med-grain; gabbro??, a few small white amyg. Some star porphyry, 45.90,47.60,53.40

to show pillows are not very magnetic, while brecciated part is. 33 KL091, on pillows, 0.86,1.00,0.76,1.03,1.19,0.82,0.79,0.98,0.87,0.85,0.91 34 KL091, near sample site on pillow, Kringle Assessment, Schau, 2006

Page 44 of 47

1.19,1.69,0.85

35 KL091,near brecciation, 13.00,30.00,30.40,14.90,15.70

To show how very magnetic units are altered to nonmagnetic units near veins 36 KL098,on dyke (a) 32.00,25.40,13.50,29.50,32.60

- 37 KL098, R of vein on R side of dyke (b)
 - 40.50,23.90,41.30
- 38 KL098,L of vein on L side of dyke (c) 1.41,1.37,1.62
- 39 KL098,massive (sample taken) (e), 101.00,90.60,87.80
- 40 KL098, altered with flat vein with pink & epidote (f) 3.11,0.79,0.47

10.3 Appendix C Certificates of Analysis

~

Kringle Assessment, Schau, 2006

Page 46 of 47

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

FAX (604) 25. PHONE (604) 253-3158

and the second constant of the second s

GEOCHEMICAL ANALYSIS CERTIFICATE

Schau, Mikkel File # A503991 Page 1 1007 Barkway Terrace, Brentwood Bay BC V8M 1A4 Submitted by: Mikkel Sch

AMPLE#		Cu ppm			-			Mn ppm		As ppm									Ca %		La ppm			Ba ppm		B ppm	Al %	Na %			Au** ppb	Pt** ppb	
08B-1	-	119	-	21		6			2.38							<3				.079		<1		32	.10		.74	.07	.09	<2	<2	<2	4
08B-2	7	84	3	24	.4	5			2.86		17								.68	-081	8	4	.60	45	.14	5	1.14	.08	.12	<2	<2	<2	
13A	2	87	-	12	.4	4			4.00	5	<8				<.5		<3		1.47	.101	5	2	.17		.11	4	1.84	.26	.06		4	<2	-
13B 15A	12 1	20 183	<3 4	14 20	.4 .5				.94 3.28	5 7	<8 <8			945 413	<.5 <.5		<3 <3	28 57	14.42 2.08	.563 .057	25 2		.03 1.73	29 218	.06 .17	11 6	4.59 3.25	.21 .35	.02 .44	2 <2	<2 <2	<2 <2	<2 7
15C	2	148	4	17	<.3	132	19	136	2.41	55	<8	<2	<2	78	<.5	<3	<3	59	5.15	.117	3	149	.63	20	.10	4	3.51	.02	.06	<2	<2	<2	8
7A-1	2	81	<3	33	.4	7	16	149	3.80	4	<8	<2	<2	292	<.5	<3	<3	91	1.14	.106	6	2	1.58	124	.24	7	2.04	.24	.44	<2	5	3	
7A-2	<1	12	3	13	.3	8	8	203	1.51	2	8	<2			<.5		<3		2.70	.226	21	9	.29	3	.14	<3	1.39	.06	.01	<2	4	<2	6
7в	2	149	3	46	.3	6			3.09	4	<8	<2			<.5		<3		3.71	.171	18	8	.78	13	.16	<3	2.75	.02	.03	<2	<2	<2	4
9	1	147	7	25	.5	5	7	323	2.23	4	<8	<2	2	32	<.5	<3	<3	70	4.97	.150	18	7	.43	12	.20	<3	3.32	.01	.03	<2	<2	3	2
019 3	1	154	6		<.3	4	7		2.30		<8	<2		33		<3			5.07	.153	19	7	.44	12	.20	<3	3.39	.01	.03	<2	2	3	3
5	ז <1	80 46	5 <3		<.3 .5	44 22	28 5		4.44	<2 <2	<8 <8	<2 <2		62	<.5	<3 <3	<3		1.32 2.04	.047			1.68	3 2	.39	8 3	1.80	.06	.01 .01	<2 <2	3 <2	<2 <2	9 3
5	1	146	3	_	<.3		-		7.85	11		<2			<.5		<3		.90	.071			1.97	6	.65	13	2.16	.03	.01	2	10	5	24
4 RED	1	33	-	57					4.76	3	<8	<2		18			<3		1.23	.048			1.65	2	.51	<3	1.94	.05	.02	<2	6	ź	17
GREEN	1	27	<3	80	<.3	53	28	747	5.12	<2	<8	<2	<2	17	<.5	<3	<3	174	1.89	.050	4	13	1.60	3	.49	8	2.42	.05	.01	Z	3	11	15
i l	2	15	ব্য	46	<.3	91	35	477	6.04	<2	9	<2	<2	5	<.5	<3	<3	183	.85	.052	3	142	2,29	1	.49	8	1.93	.05	.01	<2	<2	5	20
Т		6128		482					7.80	13	<8			49			3 3		6.42	.041			2.94	2	.21	4	3.33		<.01	<2	216	7	15
	1	421	্র		<.3				2.52		<8			171			<3		3.50	.051			• .68	14	.24	<3	4.51		.02	2	4	2	35
	<1	1495	<5	34	<.5	28	16	289	3.98	<2	<8	<2	<2	23	<.5	<3	<3	98	.98	-049	2	33	.82	1	.40	<3	1.00	.04	<.01	<2	4	2	14
CR	<1	112	<3	67	<.3	39	27	600	4.31	3	<8	<2	<2	46	<.5	<3	<3 1	123	1.51	.062	4		1.63	1	.47	8	1.95	.01	<.01	2	<2	3	15
	<1	99	4	60	.7				6.34		14					<3			1.85	.071			1.12	5	.24	19	2.19	- 05	.04	<2	4	7	S .
2		113				30			5.96		<8			29		<3			1.44	.072			1.11	6	.21	10	2.00	.07	.03	<2	<2	2	2
	-	3416	-	47					3.84	<2				24		<3			.97	.056			1.38	3	.44	4	1.57		<.01	<2	8	10	2
	1	115	<3	43	.8	193	57	751	4.70	3	<8	<2	<2	335	<.>	<3	5 '	112	2.04	.089	8	146	3.19	60	.21	7	4.10	.23	.05	<2	3	3	1
	<1	131	<3	76	-	43			6.17					56		<3			2.89	.064			1.80	9	.32	7	2.14	.06	.03	<2	<2	4	18
	1	163 551	<3 <3	45 66		50 40			4.40	5 2	<8 12	<2 <2		71 17		≺3 ≺3	4		9.64 1.91	.034			1.23	5 2	.38 .46	3 18	6.02 1.75	.03	.08 .01	2 <2	4	3 3	13 24
	<1 <1	214	-	72	-				5.96	~2	<8			16			-3 ·		1.90	.060			1.96	2	.40	5	1.90			<2	4	5	2
	1	350	3	19	4	15			2.31	<2	<8	<2		69			<3		12.44	.023	-		.56	15	.03	< 3	.78	.01	.08	<2	3	á	15
	.1	170	<3	43	.6	49	19	1.74	3.94	7	<8	<2	-2	76	1 1	4	<3	07	2.33	.048	4	42	1.03	7	.33	5	3.60	.38	.01	<2	p	8	13
A B	<1 1	181	-	33	-	37		_	3.26	_					.5		3		2.41	.045		33	.83	8	.28	<3	3.60	.40	.02	<2	3	23	28
8	<1	241	-			315			6.66							<3			7.66			83	.04	6	.02	8	>10	.37	.04	<2	3	13	12
5	<1	363		60		36			5.76							<3			1.22	.076			1.19		.52		2.18	10	02	<2	7	2	2
NDARD DS6/FA-10R		121		144					2.86					37 (<3		.85	.074			.59	150	.07	18	1.86	.07	. 16	2	484	475	48

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 AU** PT** PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ICP-ES. (30 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data P

FA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

DATE RECEIVED: AUG 2 2005 DATE REPORT MAILED:

ACHE ANALYTICAL		:= 				<u>.</u>	<u> </u>	= Sch	au,	. M	⊱ [ik]	kel	Ľ	F	= ILE	≓ # 3	=== E A 5	50399	= 91.	—	1	F		F	<u></u>	T I	age	2		1		AMEYTICAL
SAMPLE#	Mo Cu ppm ppm	Pb ppm		Ag ppm					As ppm	U ppm			Sr ppm				V tppm	Ca %		La ppn p		Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W ppm		Pt** ppb	Pd** ppb
080 091 098A 086 STANDARD DS6/FA-10R	<1 89 <1 403 <1 20 <1 96 11 125	उ उ उ	52 15 57	<.3 <.3	40 67 20 73 24	27 8 23	272 4 356 3 189 2 212 4 720 2	.80 .01 .37	<2 <2 <2 <2 <2 <2 <2 <2 <2	<8 <8 <8 <8 <8 <8	<2 <2 <2	<2 <2 <2	109 159 80 29 38	<.5 <.5 <.5	4 <3 <3	<3 <3 <3	190 130 174 181 59	1.52 1.33 6.32 .83 .87	.068 .053 .022 .113 .081	3 1 1 5	63 2 36 82 2	.06 .94 .46 .43 .59	12 28 1 20 167	.19 .26 .27 .29 .09	२ ४ ४ ४	3.45 3.91 1.98	.08	.03 .02 <.01 .08 .16	<2 <2 <2 <2	13	6 7 4 2 491	17 23 9 21 488

-

A state of the sta

:

Sample type: ROCK R150.

852 E HASTINGS ST. VANCOUVER BC VOA 1R6 PHUNE (60+1 23-3100 FAX 100 1) 252-1716

WHOLE ROCK ICP ANALYSIS

<u>Schau, Mikkel</u> File # A503992 1007 Barkway Terrace, Brentwood Bay BC V&M 1A4 Submitted by: Mikkel Schau

SAMPLE#	sio2 %	Al203 %	Fe203 %	MgO %			K20 TiO2 % %				Ni ppm			TOT/C %	TOT/S %	SUM %	
034 GREEN 060	48.34 44.24	14.22 14.06	11.98 11.25	7.46 11.76	10.08 10.21 11.74	3.60 3.56 1.14	.23 1.47 .16 1.49 .35 1.01 .06 1.70	. 13 . 13 . 25	. 14 . 19 . 19	.031 .030 .091	121 113 275	40 39 38	2.3 2.2 3.8	.03	.01	99.98 99.99 99.92 99.96	
076	47.31	13.91	14.60	6.38	9.77	3.08	.27 2.25	.20	.25	.016	81	42	1.7	.06	.02	99.75	
STANDARD SO-18/CSB																	

GROUP 4A - 0.200 GM SAMPLE BY LIBOZ FUSION, ANALYSIS BY ICP-ES. (LIBOZ FUSION MAY NOT BE SUITABLE FOR MASSIVE SULFIDE SAMPLES.) LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

- SAMPLE TYPE: ROCK PULP

Data FA ____ DATE RECEIVED: AUG 2 2005 DATE REPORT MAILED: Hy 18/05

	.34 .21 .34			
	2.23 1.34 2.25			
	. 34 . 22 . 38			
	2.45 1.70 2.64			
ррт	.88 .66 .95		STR.	
ppm	4.16 3.34 4.67	4.53 3.16		
	.76 .57 .78	.77 .54	nce	
	4.26 3.86 4.72	4.55 3.02		
ppm	1.26 1.36 1.54	1.40 .92		
	3.5 3.9 3.8	3.5 3.1	1.	
	12.5 16.6 14.0	12.1 14.2		
	2.45 3.63 2.98	2.68 3.53		
ррт	17.0 28.1 21.3	19.1 28.0		
ppm	7.1 13.2 8.7	7.8 13.0		
ppm	24.1 17.5 26.1	25.3 34.1		
	80.2 50.2 92.8	86.5 274.9		
ppm	.2 .6 .2	.9 15.8		
	324 285 316	359 201	:	
	.2 .6 .3	.2 16.3		
	.4 .6 1.2 .6 1.1	.5 10.2		
	.5 .4 .5	.5 6.9		
	305.6 607.9 259.0	394.6 413.3		
	<1 <1 1	<1 14		
	2.8 4.2 .6	2.9 30.8		
	8.5 8.1 9.6	8.5 21.6		
	2.4 1.4 2.9	2.6 9.6		
	17.9 16.1 20.8	20.0 18.4		
	<.1 .4 <.1	.4 7.5		
	46.7 56.0 43.0	48.4 26.9		
	1 1 <1	1	-	
	25.8 245.0 31.9	78.3 495.6		
LL# 	GREEN	DARD SO-18		
	LE# Ba Be Co Cs Ga Hf Nb Rb Sn Sr Ta Th U V W Zr Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	ppm ppm <th>ppn ppn ppn<td>ppm ppm ppm</td></th>	ppn ppn <td>ppm ppm ppm</td>	ppm ppm

(ISO 9001 Accredited			Schau	ı, Mik	ICAL A <u> tkel</u> antwood Ba	File #	A503	992	(b)						A
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	Hg ppm	T1 ppm	Se ppm	
034 RED 034 GREEN 060 072B 076	.6 .4 .3 1.4 .5	31.3 26.1 103.6 164.1 354.2		70 869 39 66	51.5 48.9 184.6 35.6 34.7		.1 <.1 .4 .1	<.1 <.1 <.1 <.1 <.1	.2 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1	5.8 .9 2.7 3.4 5.3	<.01 <.01	<.1 <.1 <.1 <.1	5500000 5000000 5000000	
091 STANDARD DS6	.4	418.8 118.8	.2 29.0	58 144		<.5 20.6	<.1 5.8	<.1 3.0	<.1 4.9	.1	7.9 44.2	<.01 .22	<.1 1.7	$1.3 \\ 4.4$	

معا مردر الماليين وراف المين

852 B. HASTINGS ST. VANCOUVER BC V6A 1R6

Schau, Mikkel File # A508229

PHONE (604) 253-3158 FAX (604) 253-1716

ASSAY CERTIFICATE

1007 Barkway Terrace, Brentwood H	Bay BC Vâ	M 1A4	Submitted	by: Mikkel	Schau 🖌 🛃
SAMPLE#	S.Wt gm	NAu mg	-Au gm/mt	TotAu gm/mt	
018A 019B2 019D 020 022	75 222 416	<.01 <.01 <.01 <.01 <.01 <.01	.05 <.01 <.01 <.01 <.01	.05 <.01 <.01 <.01 <.01	
023 0561-1 083B 084-1 STANDARD OxL34	166 455 108	<.01 <.01 <.01 <.01 <.01	<.01 .01 <.01 <.01 5.87	<.01 .01 <.01 <.01 5.87	

-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: ROCK REJECT M15

Data

FA

DATE RECEIVED: DEC 21 2005 DATE REPORT MAILED: AM. 9.106 ...

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX (604)253-1716 (ISO 9001 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE

Schau, Mikkel File # A508228 Page 1 1007 Barkway Terrace, Brentwood Bay 8C V8M 1A4 Submitted by: Mikkei Schau

1	o Zn Ag Ni Ippnippnippni					Sb Bî V pprnpprnpprn	Ca %	P La Cr % ppm ppm	Mg Ba Ti B % ppm % ppm			** Pt** Pd** pb ppb ppb
<1 113 <3 4 19 11 <1 26 6	16 <.3 1 56 <.3 <1 35 <.3 1	1 632 2 544 1 264	.72 <2 .68 20 .75 2	<8 <2 <8 <2	5 4 <.5 4 32 4.4 6 5 <.5	- ব্য ব্য ব্য - ব্য ব্য ব্য - ব্য ব্য ব্য	_15 2_34	.006 6 2	.10 39 .03 <3 .04 759 <.01 <3 .08 43 .01 <3	.42 .04 1.07 .01 .39 .03	.09 <2 .19 <2 ⊘	
1 5 <3 <1 3 16 <1 <1 41	28 <.3 1 46 .3 1 51 <.3 1	2 959 2 3501 2 3778	1.02 5 1.60 6 .96 4		5 26 .8 2 106 1.9 <2 229 2.5	3 <3 3 5 <3 2 3 <3 2	24.78 33.22	.006 11 1 .004 9 3 .002 6 1 <.001 7 <1 .023 36 54	.02 30 <.01 <3 .35 8 <.01 <3 .24 7 <.01 <3	.41 <.01 .17 <.01 .07 <.01	.05 <2	<pre><2 2 <2 2 <2 <2 <2 <2 <2 2 <2 <2 2 2 <2 2 2 <2 2 4 10</pre>
<1 5 <3 <1 3 <3 <1 4 <3	14 <.3 1 16 <.3 1 45 <.3 <1	1 1023 1 632 2 914	.70 <2 .64 <2 1.18 <2		5 9 <.5 5 11 .5 6 29 <.5	<3<37 <3<33	.44	.012 18 <1 .012 19 2 .011 12 2 .026 9 3 .005 7 4	.04 33 <.01 <3 .04 31 <.01 <3 .22 41 .08 <3	.61 .01 .42 .02 .99 .03	.12 <2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 19) 2 2
<1 2 <3 <1 3 5	19 <.3 <1 12 <.3 1	3 1231 2 1554 2 1894 2 619 1 618		<8 <2 <8 <2	<pre><2 34 <.5 <2 43 <.5 4 12 <.5</pre>	- ব্য ব্য ব - ব্য ব্য ব - ব্য ব্য ব্য	8.10 15.53	.019152.00843.00853.025104.00553	.07 41 <.01 <3 .08 50 <.01 <3 .05 24 <.01 <3	.88 <.01 1.02 <.01 _39 _01	.03 <2 .04 <2	~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2
<1 67 3 2 398 3	48 .3 49 31 <.3 38 50 .5 11	23 347 19 587 16 385	4.69 4 3.28 5 4.11 4	<8 <2 <8 <2 <8 <2	<2 87 <.5 <2 94 .6 <2 12 <.5	 <3 <3 192 <3 <3 166 <3 <3 231 		.046 4 84 .054 4 74 .048 4 73 .125 6 <1 .124 7 1	1.15 11 .35 6 .79 13 .21 4 .64 20 .23 10	3.17 .39 3.30 .39 1.45 .11	.03 <2 .03 <2 .07 <2 .07 2 .09 3	3 8 13 4 8 23 5 6 16 8 5 32 7 3 27
<1 173 <3 1 255 <3 1 21 <3	84 .4 70 32 <.3 7 40 <.3 3	29 471 27 328 12 483	5.62 7 3.70 4 3.16 2	<8 <2 <8 <2 <8 <2	<2 9 <.5 <2 7 <.5 2 31 <.5	 <3 <3 244 <3 <3 95 <3 <3 103 	1.19 <i>.66</i> 1.13 1.03 1.23	.128 7 <1 .081 2 110 .176 7 2 .064 7 3 .072 2 27	2.15 94 .24 9 .44 17 .14 <3 .83 63 .20 7	2.76 .09 .95 .10 1.75 .09	.09 3 .04 <2 .05 <2 .12 <2 .08 <2	5 5 34 3 3 25 4 9 27 2 <2 <2 4 2 19
1 5 4 1 204 <3 <1 597 5	41 <.3 226 40 <.3 43 15 .3 14	29 1639 22 310 6 202	3.95 60 3.41 6 1.70 4	 <8 <2 <8 <2 <8 <2 <8 <2	<pre><2 132 .6 <2 299 < 5 <2 72 < 5</pre>	6 <3 71 <3 <3 138 <3 <3 105	13.73 2.96	.009 <1 372 .064 2 51	3.90 14 <.01 <3 1.08 2 .45 6 .31 1 .23 <3	.74 .01 2.64 .03 3.55 .01	.01 2 <.01 2	2 8 8 <2 4 10 * 2 5 14 34 3 9 77 <2 10
GM SAMPLE LEA N Exceeds UP Group 3B - 3 D For Rock Al DCK R150	ACHED WITH 3 PER LIMITS. 30.00 GM SAMP ND CORE SAMPL Samples begi	ML 2-2-2 SOME MINE PLE ANALYS ES IF CU nning 'RE	HCL-HNO3- RALS MAY SIS BY FA/ PB ZN AS C are Rer	H20 AT 9 BE PARTI ICP. > 1%, AG uns and DATE	25 DEG. C FOR ALLY ATTACKE 3 > 30 PPM & 'RRE' are Re REPORT M	A ONE HOUR, D D. REFRACTO AU > 1000 PP Fject Reruns.	RY AND C	TO 10 ML, ANAL GRAPHITIC SAMPI	YSED BY ICP-ES. .ES CAN LIMIT AU S		C.L	B2 497 479
	<pre><1 1 <3 <1 113 <3 <1 113 <3 4 19 11 <1 26 6 <1 6 <3 1 10 <3 1 5 <3 <1 3 16 <1 <1 41 3 184 20 1 7 9 <1 5 <3 <1 3 184 20 1 7 9 <1 5 <3 <1 3 184 20 1 7 9 <1 5 <3 <1 2 3 <1 2 5 3 <1 2 5 3 <1 325 <3 2 337 <3 <1 273 <3 <1 273 <3 1 255 <3 1 21 3 <1 273 <3 1 255 <3 1 21 3 <1 273 <3 <1 5 4 1 204 <3 <1 597 5 <1 15 3 11 120 30 M SAMPLE LE EXCEEDS UP GROUP 3B FOR ROCK A CK R150</pre>	<1	<pre><1 1 <3 44 <.3 3 5 511 <1 113 <3 16 <.3 1 1 632 4 19 11 56 <.3 <1 2 544 <1 26 6 35 <.3 1 1 264 <1 6 <3 40 <.3 2 1 1095 1 10 <3 42 <.3 2 1 1195 1 5 <3 28 <.3 1 2 959 <1 3 16 46 .3 1 2 3501 <1 <1 41 51 <.3 1 2 3778 3 184 20 167 <.3 45 18 5472 1 7 9 18 <.3 <1 4 1575 <1 5 <3 14 <.3 1 1 1023 <1 3 <3 16 <.3 1 1 632 <1 3 <3 16 <.3 1 1 632 <1 4 <3 45 <.3 <1 2 914 <1 2 <3 19 <.3 <1 1 647 <1 2 8 18 <.3 <1 2 914 <1 2 <3 19 <.3 <1 1 467 <1 2 8 18 <.3 <1 2 1554 <1 2 <3 19 <.3 <1 1 467 <1 2 8 18 <.3 <1 2 1554 <1 2 <3 19 <.3 <1 2 1894 <1 3 5 12 <.3 1 2 619 1 5 7 14 <.3 1 1 618 2 27 <3 48 .3 52 25 339 1 26 <3 48 .3 49 23 347 <1 67 3 31 <.3 38 19 587 2 398 3 50 .5 11 16 385 <1 325 <3 49 .3 10 16 341 2 337 <3 51 .3 11 16 354 <1 173 <3 84 .4 70 29 471 1 255 <3 32 <.3 7 27 328 1 21 <3 40 <.3 3 12 483 <1 273 <3 35 <.3 17 13 278 <1 73 <3 24 <.3 104 25 414 1 5 4 41 <.3 226 29 1639 1 204 <3 40 <.3 43 22 310 <1 597 5 15 .3 14 6 202 <1 15 3 16 <.3 22 9 205 11 120 30 139 .3 23 12 657 M SAMPLE LEACHED WITH 3 ML 2-2-2 EXCEEDS UPPER LIMITS. SOME MINE GROUP 3B - 30.00 GM SAMPLES IF CU CK R150 Samples beginning 'RE </pre>	<pre><1 1 <3 44 <.3 3 5 511 1.93 3 <1 113 <3 16 <.3 1 1 632 .72 <2 4 19 11 56 <.3 <1 2 544 .68 20 <1 26 6 35 <.3 1 1 264 .75 2 <1 6 <3 40 <.3 2 1 1095 1.39 44 1 10 <3 42 <.3 2 1 1095 1.39 44 1 10 <3 42 <.3 2 1 1095 1.41 49 1 5 <3 28 <.3 1 2 959 1.02 5 <1 3 16 46 .3 1 2 3501 1.60 6 <1 <1 41 51 <.3 1 2 3778 .96 4 3 184 20 167 <.3 45 18 5472 5.02 265 1 7 9 18 <.3 <1 4 1575 1.28 9 <1 5 <3 14 <.3 1 1 1023 .70 <2 <1 3 <3 16 <.3 1 1 632 .64 <2 <1 4 <3 45 <.3 <1 4 1575 1.28 9 <1 5 <3 14 <.3 1 1 1023 .70 <2 <1 3 <3 16 <.3 1 1 632 .64 <2 <1 4 <3 45 <.3 <1 2 914 1.18 <2 <1 2 <3 19 <.3 <1 2 914 1.18 <2 <1 2 <3 19 <.3 <1 2 1554 .56 <2 <1 2 <3 19 <.3 <1 2 1554 .56 <2 <1 2 <3 19 <.3 <1 2 1894 .93 <2 <1 3 5 12 <.3 1 2 1894 .93 <2 <1 3 5 12 <.3 1 2 619 .63 <2 <1 5 7 14 <.3 1 1 618 .86 <2 2 27 <3 48 .3 52 25 339 4.59 5 1 26 <3 48 .3 49 23 347 4.69 4 <1 67 3 31 <.3 38 19 587 3.28 5 2 398 3 50 .5 11 16 385 4.11 4 <1 325 <3 49 .3 10 16 341 4.00 3 2 337 <3 51 .3 11 16 354 4.16 4 <1 173 <3 84 .4 70 29 471 5.62 7 1 255 <3 32 <.3 7 27 328 3.70 4 1 21 <3 40 <.3 3 12 483 3.16 2 <1 273 <3 35 <.3 17 13 278 2.37 3 <1 73 <3 24 <.3 104 25 414 3.03 <2 <1 21 <3 40 <.3 3 12 483 3.16 2 <1 273 <3 35 <.3 17 13 278 2.37 3 <1 73 <3 24 <.3 104 25 414 3.03 <2 <1 21 <3 40 <.3 43 22 310 3.41 6 <1 597 5 15 .3 14 6 202 1.70 4 <1 15 3 16 <.3 22 9 205 2.37 <2 <11 120 30 139 .3 23 12 657 2.88 23 </pre>	<pre><1 1 <3 44 <.3 3 5 511 1.93 3 <8 <2 <1 113 <3 16 <.3 1 6 3.3 1 632.72 <2 88 <2 <1 113 <15 <3 $<1 2544 .68 20 <8 <2 <1 26 6 35 <.3 1 2544 .68 20 <8 <2 <1 26 6 35 <.3 1 2544 .68 20 <8 <2 <1 26 6 35 <.3 1 2544 .68 20 <8 <2 <1 6 <3 40 <.3 2 1 1095 1.39 44 <8 <2 1 10 <3 42 <.3 2 1 1095 1.39 44 <8 <2 1 10 <3 42 <.3 2 1 1095 1.41 49 8 <2 1 5 <3 28 <.3 1 2 959 1.02 5 <8 <2 <1 3 16 46 .3 1 2 3501 1.60 6 9 <2 <1 3 16 46 .3 1 2 3501 1.60 6 9 <2 <1 3 16 46 .3 1 2 3778 .96 4 8 <2 1 7 9 18 <.3 <1 4 1575 1.28 9 <8 <2 <1 5 <3 14 <.3 1 1 1023 .70 <2 68 <2 <1 5 <3 14 <.3 1 1 1023 .70 <2 68 <2 <1 3 <16 <.3 1 1 632 .64 <2 88 <2 <1 4 <3 45 <.3 <1 2 914 1.18 <2 88 <2 <1 2 <3 19 <.3 <1 1 467 .75 <2 <8 <2 <1 2 <3 19 <.3 <1 1 467 .75 <2 8 <2 <1 2 <3 19 <.3 <1 1 467 .75 <2 8 <2 <1 2 <3 19 <.3 <1 2 914 1.18 <2 88 <2 <1 2 <3 19 <.3 <1 2 1554 .56 <2 88 <2 <1 2 <3 19 <.3 <1 2 1554 .56 <2 88 <2 <1 3 5 12 <.3 1 2 619 .63 <2 8 <2 <1 3 5 12 <.3 1 2 619 .63 <2 8 <2 <1 3 5 12 <.3 1 2 619 .63 <2 8 <2 <1 5 <3 11 <.3 1 1 6385 4.11 4 <8 <2 <2 27 <3 48 .3 52 25 339 4.59 5 <8 <2 <2 27 <3 48 .3 52 25 339 4.59 5 <8 <2 <2 398 3 50 .5 11 16 385 4.11 4 <8 <2 <1 325 <3 49 .3 10 16 341 4.00 3 <8 <2 <2 337 <3 51 .3 11 16 354 4.16 4 <8 <2 <1 325 <3 49 .3 10 16 341 4.00 3 <8 <2 <2 337 <3 51 .3 11 3 12 82.37 3 <8 <2 <1 237 <3 35 <.3 17 13 278 2.37 3 <8 <2 <1 237 <3 35 <.3 17 13 278 2.37 3 <8 <2 <1 273 <3 35 <.3 17 13 278 2.37 3 <8 <2 <1 273 <3 35 <.3 17 13 278 2.37 3 <8 <2 <1 273 <3 35 <.3 17 13 278 2.37 3 <8 <2 <1 273 <3 35 <.3 17 13 278 2.37 3 <8 <2 <1 273 <3 35 <.3 17 13 278 2.37 3 <8 <2 <1 204 <3 40 <.3 41 22 91639 3.95 60 <8 <2 <1 273 <3 24 <.3 104 25 414 3.03 <2 <8 <2 <1 273 <3 24 <.3 104 25 414 3.03 <2 <8 <2 <1 273 <3 24 <.3 104 25 414 3.03 <2 <8 <2 <1 273 <3 24 <.3 104 25 414 3.03 <2 <8 <2 <1 273 <3 35 <.3 17 13 278 2.37 3 <8 <2 <1 204 <3 40 <.3 3 12 657 2.88 23 <8 <2 <1 204 <3 40 <.3 41 22 410 3.03 <2 8 <2 <1 273 <3 35 <.3 17 13 278 2.37 3 <8 <2 <1 3 16 <.3 22 9 205 2.37 <2 <8 <2 <1 3 16 <.3 22 9 205 2.37 <2 <8 <2 <1 3 16 <.3 22 9 205 2.37 <2 <8 <2$</pre>	<pre><1 1 <3 44 <.3 3 5 511 1.93 3 <8 <2 6 47 <.5 <1 113 <3 16 <.3 1 1 652 .72 <2 <8 <2 5 4 <.5 4 19 11 56 <.3 <1 2 544 .68 20 <8 <2 4 32 44 <1 26 6 35 <.3 1 1 264 .75 2 <8 <2 6 5 <.5 <1 6 <3 40 <.3 2 1 1095 1.39 44 <8 <2 6 5 .6 1 10 <3 42 <.3 2 1 1095 1.39 44 <8 <2 6 5 .6 1 10 <3 42 <.3 2 1 1095 1.41 49 8 <2 7 5 <.5 1 5 <3 28 <.3 1 2 2959 1.02 5 <8 <2 5 26 .8 <1 3 16 46 .3 1 2 3501 1.60 6 9 <2 2 106 1.9 <1 3 16 46 .3 1 2 3778 .96 4 8 <2 4 32 .4 <1 7 9 18 <.3 <1 4 1575 1.28 9 <8 <2 4 32 .4 <1 7 9 18 <.3 <1 4 1575 1.28 9 <8 <2 4 32 .6 <1 5 <3 16 <.3 <1 1 1023 .70 <2 <8 <2 5 9 <.5 <1 3 316 <.3 1 1 632 .64 <2 <8 <2 5 9 <.5 <1 3 316 <.3 1 1 632 .64 <2 <8 <2 5 11 .5 <1 3 3 16 <.3 1 1 632 .64 <2 <8 <2 5 11 .5 <1 3 3 16 <.3 1 1 632 .64 <2 <8 <2 5 11 .5 <1 3 3 16 <.3 1 1 652 .64 <2 <8 <2 5 8 .5 <1 3 3 16 <.3 1 1 652 .64 <2 <8 <2 5 8 .5 <1 3 3 16 <.3 1 1 652 .64 <2 <8 <2 5 8 .5 <1 2 3 19 <.3 <1 1 467 .75 <2 <8 <2 6 29 <.5 <1 3 3 16 <.3 1 1 652 .64 <2 <8 <2 5 8 .5 <1 2 3 19 <.3 <1 2 1994 .93 <2 8 <2 4 32 .6 <1 5 <3 11 <.3 1 2 1554 .56 <2 <8 <2 6 29 <.5 <1 5 <3 11 <.3 1 2 1894 .93 <2 <8 <2 4 32 .4 <5 <.5 <1 2 3 19 <.3 <1 2 1894 .93 <2 <8 <2 4 12 <.5 <1 3 5 12 <.3 1 2 619 .63 2<8 <2 4 12 <.5 <1 5 3 11 <.3 1 1 6 18 .86 <2 <8 <2 6 5 .5 <2 27 <3 48 .3 52 25 339 4.59 5 <8 <2 26 7 <.5 <1 3 5 12 <.3 1 2 619 .63 2<8 <2 4 12 <.5 <1 5 3 11 <.3 3 11 6 354 4.16 4 <8 <2 <2 87 <.5 <1 3 5 12 <.3 1 2 619 .63 2.8 <2 2 31 <.5 <1 3 5 12 <.3 1 2 619 .63 2.8 <2 2 31 <.5 <1 3 5 3 2 <.3 7 27 328 3.70 4 <8 <2 2 2 31 <.5 <1 325 <3 49 .3 10 16 341 4.00 3 <8 <2 <2 14 <.5 <1 325 <3 2 <.3 7 27 328 3.70 4 <8 <2 <2 14 <.5 <1 3 3 5 <.3 17 13 278 2.37 3 <8 <2 2 14 <.5 <1 273 <3 35 <.3 17 13 278 2.37 3 <8 <2 2 24 8.5 <1 5 3 16 <.3 22 9 205 2.37 <2 8 <2 2 48 <5 <1 5 3 16 <.3 22 9 205 2.37 <2 8 <2 2 48 <5 <1 5 3 16 <.3 22 9 205 2.37 <2 8 <2 2 48 <5 <1 5 3 16 <.3 22 9 205 2.37 <2 8 <2 2 14 <.5 <1 15 3 16 <.3 22 9 205 2.37 <2 8 <2 2 34 <.5 <1 15 3 16 <.3 22 9 205 2.37 <2 8 <2 2 34 <.5 <1 120 30 139 .3 23 12 657 2.88 23 <8 <2 3 416.1 </pre>	c1 1 c3 44 c3 3 5 511 1.93 3 c8 c2 6 47 c5 c3 c3 39 c1 113 c3 16 c3 1 1 632 .72 c2 c8 c2 5 4 c5 c5 c3 c3 c4 c1 26 63 c3 1 2 264 .65 c5 c3 c3 c4 c1 0 c3 42 c3 2 1 1095 1.41 49 8 c2 6 5 c5 c3 c3 c4 1 0 c3 42 c3 1 2 305 c4 8 c2 c2 c2 c4 32 c6 c3 c3<	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} c1 & 1 & c3 & 44 < c & 3 & 3 & 5 & 511 & 1.93 & 3 & c8 & c2 & 6 & 47 < c \\ c5 & c3 & c3 & 39 & .51 & .075 & 5 & 5 \\ c1 & 113 & c3 & 16 < c3 & 1 & 1 & 652 & .72 & c8 & c2 & 68 & c2 & 4 & 32 & 4 & c3 & 3 & 4 & .214 & .012 & 152 \\ c1 & 26 & c35 & c3 & 1 & 1 & 264 & .68 & 20 & 88 & c2 & 4 & 324 & 44 & c3 & 4 & .05 & .0066 & 9 & c1 \\ 1 & 10 & c3 & 42 & c3 & 2 & 1 & 1095 & 1.39 & 44 & 68 & c2 & 6 & 5 & 5 & 3 & 33 & 4 & .05 & .0066 & 9 & c1 \\ 1 & 10 & c3 & 42 & c3 & 2 & 1 & 1095 & 1.41 & 49 & 8 & c2 & 7 & 5 & 5 & 3 & 33 & 4 & .05 & .0066 & 9 & c1 \\ 1 & 15 & c3 & 28 & c3 & 1 & 2 & 2570 & 10.2 & 5 & 68 & c2 & 2 & 206 & 1.8 & 33 & 3 & 2.75 & .0026 & 6 & 1 \\ 1 & 15 & c3 & 16 & 46 & .3 & 1 & 2 & 2570 & 16 & 68 & c2 & 2 & 2265 & 3 & 3 & 3 & 2 & 275 & 0026 & 6 & 1 \\ 1 & 15 & c3 & 11 & 107 & 1.3 & 96 & 48 & c2 & 22 & 25 & 3 & 3 & 3 & 70 & 1.71 & .023 & 36 & 54 \\ \\ 1 & 1 & 7 & 9 & 18 & c3 & 1 & 1 & 1575 & 1.28 & 9 & 8 & c2 & 2 & 5 & 3 & 3 & 3 & 1 & 1.71 & .023 & 36 & 54 \\ \\ 1 & 1 & 5 & 3 & 1 \\ \\ 1 & 1 & 3 & 1 & 1 & 3 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \\ \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	$\begin{array}{c} < 1 & 1 & 3 & 44 < .3 & 3 & 5 & 511 & 1.03 & 3 & 8 & 42 & 6 & 47 < .5 & 3 & 39 & .51 & .075 & 5 & .57 & 208 & .13 & 6 & .3 & 1 & 632 & .72 & 42 & 48 & 42 & 5 & 4 < .5 & 3 & 35 & .15 & .006 & 6 & 2 & .10 & 39 & .03 & 37 & .15 & .15 & .15 & .106 & 6 & 2 & .10 & 39 & .03 & .37 & .15 & .16 & .101 & 15 & 2 & .06 & .45 & .06 & .101 & 15 & 2 & .06 & .45 & .010 & .15 & 2 & .06 & .45 & .010 & .15 & 2 & .06 & .45 & .010 & .15 & 2 & .06 & .45 & .010 & .15 & 2 & .06 & .45 & .010 & .15 & 2 & .06 & .45 & .010 & .15 & 2 & .06 & .45 & .010 & .15 & .006 & .06 & .1 & .01 & .46 & .01 & .35 & .15 & .006 & .006 & 9 & .1 & .01 & .46 & .01 & .35 & .15 & .006 & .006 & .01 & .01 & .01 & .46 & .01 & .35 & .15 & .006 & .01 & .01 & .01 & .47 & .01 & .5 & .15 & .006 & .01 & .01 & .01 & .47 & .01 & .5 & .15 & .010 & .01 &$	<pre> t 1</pre>	$ \begin{array}{c} 1 & 1 & 3 & 44 < .3 & 3 & 5 & 511 1.93 & 3 & 64 < 2 & 6 & 47 < .5 & 3 & 3 & 9 & 51 & 0.07 & 5 & 5 & 5.72 & 08 & 13 & 6 & .94 & .94 & .43 & <2 \\ 1 & 13 & 3 & 16 < .3 & 1 & 632 & .72 & .2 & 68 < 2 & 5 & 44 < .5 & .3 & .2 & .15 & .066 & 6 & 2 & .16 & .06 & .03 & .3 & .42 & .04 & .09 & .24 \\ 1 & 19 & 15 & 63 & .3 & 1 & .254 & .68 & 20 & .2 & .4 & .2 & .5 & .3 & .4 & .25 & .066 & .010 & 10 & 2 & .08 & .43 & .01 & .5 & .27 & .01 & .06 & .2 \\ 1 & 6 & 13 & 0 < .3 & 2 & .1195 & 1.5 & .44 & .68 & .2 & 6 & 5 & .5 & .5 & .3 & .4 & .05 & .066 & 9 & .1 & .01 & .46 < .01 & .5 & .27 & .01 & .06 & .2 \\ 1 & 0 & .3 & .42 & .3 & 1 & .264 & .73 & .2 & .68 & .20 & .6 & .3 & .2 & .5 & .006 & .010 & 10 & .2 & .08 & .43 & .01 & .5 & .57 & .01 & .06 & .2 \\ 1 & 0 & .3 & .42 & .3 & 1 & .264 & .73 & .2 & .68 & .20 & .3 & .3 & .4 & .05 & .006 & .01 & .10 & .46 < .01 & .5 & .57 & .01 & .06 & .2 \\ 1 & 0 & .3 & .42 & .3 & 1 & .256 & .100 & .0 & .28 & .43 & .01 & .01 & .47 & .01 & .05 & .24 \\ 1 & 1 & 15 & .13 & .13 & .257 & .06 & .48 & .22 & .22 & .25 & .3 & .3 & .4 & .05 & .006 & .1 & .35 & 8 & .01 & .3 & .17 & .01 & .06 & .2 \\ 1 & 1 & 15 & .13 & .13 & .257 & .06 & .48 & .22 & .22 & .25 & .3 & .3 & .23 & .22 & .2001 & .7 & .1 & .24 & .7 & .01 & .01 & .24 \\ 1 & 14 & .01 & .13 & .3 & .11 & .264 & .24 & .22 & .25 & .3 & .3 & .23 & .22 & .001 & .7 & .1 & .24 & .7 & .01 & .01 & .24 \\ 1 & 16 & .3 & .11 & .1023 & .70 & .24 & .24 & .29 & .53 & .3 & .7 & .3 & .21 & .19 & .2 & .04 & .10 & .01 & .24 \\ 1 & 3 & .16 & .3 & .1 & .1523 & .07 & .24 & .24 & .25 & .5 & .3 & .3 & .5 & .71 & .012 & .10 & .11 & .21 & .24 & .01 & .10 & .24 & .25 & .21 & .26 & .21 & .26 & .21 & .26 & .21 & .26 & .21 & .26 & .21 & .26 & .21 & .26 & .21 & .26 & .21 & .26 & .21 & .26 & .21 & .26 & .21 & .26 & .21 & .26 & .21 & .26 & .21 & .26 & .21 & .26 $

ACHE ANALYTICA

Schau, Mikkel FILE # A508228

ACHE ANALYTICAL			.																			<u> </u>									N	HE ANALY	TICAL
SAMPLE#	Mo ppm		Pb 19901				Co ppm	Mn ppm		As ppm		Au ppm					Bi ppm		Ca %		La ppm ;			Ba ppm		B ppm	Al %		K %			Pt** ppb	
0560	<1	60	12	55	<.3	60	28	519	5.50	3	<8	<2	<2	137	.8	<3	<3	174	3.67	.059	2	103	2.12	11	.53	4	3.96	.02	.01	<2	29	7	19
056E	1	29	3	35	.3	39	20	329	3.83	10	<8	<2	<2	131	.6	3	<3 '	166	5.52	.050	1	67	1.11	17	.41	6	4.19	.01	.01	<2	22	6	17
056F	<1	65	7	23	<.3	33	16	287	3.13	7	<8	<2	<2	25	<.5	<3	<3 '	158	6.71	.033	1	53	.84	3	.37		4.55	.01	<.01	<2	37	7	12
056G	<1	140	<3	16	.3				1.73		<8	<2		193	<.5	<3			3.02	.051	1	27	.29	3	.54		1.29		<.01	<2	12	7	18
056H	1	95	7	69	<.3	56	30	482	5.89	9	<8	<2	<2	295	<.5	<3	<3 '	170	2.33	.081	3	84	1.64	4	.49	<3	3.33	.03	.02	2	18	8	24
0561-1	<1	1326	9	5	.5	10	5	151	1.56	4	<8	<2	<2	243	<.5	<3	<3 (101	5.41	.032	1	13	. 10	2	.29	9	3.15	<.01	<.01	<2	49	5	22
0561-2	<1	879	10	7	.3	9	6	127	1.68	8	<8	<2	<2	287	<.5	<3	<3	97	4.53	.021	1	14	.13	2	.23	5	2.96	<.01	< 01	<2	65	3	19
056J	<1	105	<3	61	<.3	61	31	487	5.20	6	<8	<2	<2	198	<.5	<3	<3 '	164	1.81	.068	3	90	1.82	4	.50	8	2.96	.03	.01	2	65	6	21
056K	2	173	3	59	<.3		27		5.25		<8	<2		80	<.5	<3	5 1		1.44	.067		78	1.86	4	.55	7	2.65	.05	.02	<2	59	10	30
056L	1	159	<3	10	.3	13	8	160	1.86	<2	<8	<2	<2	263	<.5	<3	<3	90	2.38	.042	1	20	.24	1	.49	5	1.60	<.01	<.01	2	8	3	16
056N	1 1	1670	<3	65	1.0	31	22	316	2.25	2	<8	<2	<2	81	.7	<3	<3	78	1.54	.028	<1	27	.36	8	.30	<3	1.01	.05	.01	<2	92	4	15
RE 056N	<1	1652	<3	64	.9	31	21	317	2.25	4	<8	<2	<2	80	.7	<3	<3	79	1.55	,027	<1	25	.36	8	.30	<3	1.01	.05	_01	<2	39	4	12
057	1	200	5	42	.3	31	19	335	4.08	6	<8	<2	<2	115	<.5	5	<3 1	164	2.31	.055	5	5	.63	12	. 39	<3	3.44	.39	.02	<2	75	4	22
058	1	91	<3	49	.4		26		4.37		<8	<2	<2	9	2.7	5			5.46	.045		42	1.25	2	.58	10	4.16	<_01		<2	74	<2	<2
059	<1	92	5	40	<.3	20	14	540	2.98	3	<8	<2	<2	74	.5	8	<3	76	6.16	.023	2	6	.70	2	. 19	<3	8.08	_04	- 09	<2	44	4	4
060	1	32	6	22	.3	20	12	266	1.78	2	<8	<2	<2	61	<.5	<3	<3	79	6.90	.029	1	16	.38	2	.36	8	2.94	<.01	<.01	<2	52	5	11
062	2	27	<3	50	<.3	31	22	471	4.84	3	<8	<2	<2	42	<.5	3	<3 1	49	2.53	.046	- 4	3	1.08	8	.29	4	4.11	.62	.04	<2	5	2	15
063A	1	605	5	12	.8	18	12	234	2.72	3	<8	<2	<2	67	<.5	4			9.39	.016	1	26	.41	2	.21	4	2.94	<.01	<.01	<2	7	9	19
064	1	575	ও	30	.4		21		3.95	7	<8	<2	<2	64	<.5		<3		3.38	.035	_	39	1.31	14	.27	4	3.26	. 17	.02	<2	108	5	24
067	<1	81	<3	25	<.3	32	17	434	2.60	3	<8	<2	<2	79	<.5	<3	<3 1	105	2,35	,066	2	61	1.05	14	.40	4	1.50	.07	.02	<2	7	5	12
070A	1:	10000	<3	10	5.0	46	21	141	2.58	5	<8	<2	<2	47	<.5	4		43	1.75	.008	<1	31	.52	2	.13	5	1.50	.05	.01	<2	98	6	15
070D	<1	517	<3	10	.4	65	110	281	3,36	8	<8	<2	<2	74	<.5	3			2.80	.021	<1	43	.82	4	.17	<3	2.06	.20	.01	<2	255	12	31
071	<1	809	6	8	.3	10	8	1263	1.07	4	<8	<2	<2	32	<.5	<3		63	.65	.027	1	27	.20	8	.17	<3	.75	.04	.01	<2	46	2	4
071B	<1	181	<3	6	<,3	13	8		1.40		<8	<2	<2	65	<.5				1.82	,002	<1	18	.57	6	.07	<3	1.23	.02	.05	<2	84	-4	3
071E	1	270	<3	50	<.3	38	14	431	2.25	<2	<8	<2	<2	69	<.5	<3	<3 1	01	1.54	.073	3 1	136	1.12	11	.45	7	2.12	. 15	.05	<2	194	12	17
072A-1	12:	×10000	37	23	49.1	18	14	361	6.20	<2	<8	<2	<2	3	37.1	<3	<3	19	.06	.146	<1	<1	1.12	65	.01	6	1.65	<.01	.17	22	64	5	5
072A-2	6	>10000	37	34	39.2	27	20	445	6.27	<2	<8	<2	<2	3	15.1	<3	<3	37	.04	.049	<1	<1	1.85	68	<.01	9	2.37	<.01	.20	11	46	4	4
072B	1	8119	4	79	3.7		40	1286	8.66		<8	<2	<2	24	1.2	8	<3 2		2.81	.061			2.54	15	.17	-	3.04		.02	<2	125	4	23
074A	<1	5247	<3	13	1.0	. 19	11	267	1.89	3	<8	<2	<2	64	.5	4			1.23	.030		31	.45	7	.48	<3		<.01	.01	<2	46	4	10
075A	1	1469	<3	50	.3	47	30	607	6.87	4	<8	<2	<2	12	<.5	<3	<3 1	81	.65	.061	3	25	2.22	12	.42	9	2.20	.02	.04	3	87	6	19
079	<1	4240	<3	16	3.0	24	15	186	2.19	<2	<8	<2	<2	28	<.5	3	<3	64	.97	.037	1	11	.59	2	.36	7	1.18	.01	.02	<2	1169		107
080	1	296		31		42	21		4.42	5	<8		<2	157	<.5	4	<3 1	79	1.48	.079	4	31	.66	7	.36	8	2.16	.27	. 06	<2		7	25
081A	2	366	<3	581	.5	104	60	234	8.05	5	<8	<2	<2	16	10.6	<3	<3.2		.68	.099	4 1		1.35	83	.37	13	1.88	.16	.03	<2	56	6	24
082	1	215	<3	42	.4		37		7.49	3	<8	<2	<2	12	<.5	- 4	<3 2		.67	.090	2		1.83	98	.48	10	2.15	.07	.06	2	4	6	20
STANDARD DS6/FA-10R	12	121	28	140	5	24	12	730	2.89	24	<8	<7	て	47	5.6	5	5	50	78	.079	12 1	170	-56	161	<u>nq</u>	18	1.99	_07	.15	- 4	485	494	179

Sample type: ROCK R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data (FA

Page 2

Schau, Mikkel FILE # A508228

AUNE ANALTITUAL					_																					<u> </u>						ADE AN	ALTITICAL
SAMPLE#	Mo	Cu	I Pb	Zn	Ag	Ni	Co	Mn	Fe	As	υ	Au	Th	Sr	Cd	SЬ	Bi	V	Са	P	La	Ċr	Mg	Ba	Τi	В	AL	Na	ĸ	W	Au**	Pt** (
	ppm	ppn	1 ppm	ppm	-	ppm		nac	%	indel	mqq	nag	mqq	ppm	mqq	ppm	maa	ppm	%	%	ppm	ppm		ppm	%	ppm		%	%			ppb	-
· · · · · · · · · · · · · · · · · · ·	+							11				1.1																		r [<u> </u>	144	
083A	3	49) <3	6	.4	4	3	89 2	.43	<2	<8	<2	<2	4	<.5	<3	<3	35	.13	.029	2	10	.23	222	. 14	<3	.41	.05	.01	<2	110	<u>2</u>	11
0838	2	65	5	28	,5	16	9	77 2	.25	- 3	<8	<2	<2	9	<.5	<3	<3	38	.37	.071	7	7	.09	52	. 13	<3	.30	.04	_01	<2	2	4	7
0830	3	58	<3	12	.3	6	4	127 2	.25	3	<8	<2	<2	3	<.5	3	<3	27	.17	.044	3	10	.31	286	. 12	<3	.44	.02	_01	<2	3	3	3
084-1	2	515	7	33	1.0	53	52	482 6	5.65	27	<8	<2	<2	7	<.5	<3	<3	166	.75	-080	4	58	1.19	22	.34	<3	1.56	.06	.03	<2	81	4	26
084-2	3	1047	6	44	2.4	52	73	339 5	.70	20	<8	<2	<2	7	<.5	3	6	138	.77	.062	3	50	1.03	11	.36	<3	1.26	.06	.04	2	104、	5	35
0848	1	87	8	48	<.3	35	21	861 4	.93	5	<8	<2	<2	16	.8	4	<3	268	4.13	.040	1	61	1,95	21	.31	<3	4.63	.01	.01	<2	2	3	15
RE 084B	1	86	9	47	.3	34	21	876 5	.01	4	<8	<2	<2	16	.6	5	<3	275	4.20	.041	2	63	1.98	21	.32	<3	4.70	.01	.01	<2	3	5	15
084C	1	55	6	62	.4	49	21	477 4	.54	24	<8	<2	<2	7	<.5	5	3	209	2.99	.073	2	77	1.64	68	.38	<3	3.43	.03	.01	<2	59	7	21
084D	2	196	<3	50	.3	47	28	462 4	.96	<2	<8	<2	<2	10	<.5	<3	<3	201	-74	.085	2	72	1.87	92	.30	<3	1.93	<i>-</i> 06	.03	<2	- 35	6	24
085A	2	237	' 10	50	<.3	51	34	547 7	.65	11	<8	<2	<2	7	<.5	<3	<3	279	.76	.093	3	83	2.12	33	.49	<3	2.13	.06	.05	<2	3	6	25
1																																	
085A-2	3	412	3	28	.7	53	45	290 4	.33	<2	<8	<2	<2	7	<.5	3	<3	159	.73	.058	4	46	1,12	18	-48	<3	1.09	.07	-06	2	89	5	26
KR-A-1	5	206	<3	82	.5	8	4	384 1	.87	19	<8	<2	<2	68	.8	3	<3	57	3.43	.052	4	4	.09	19	-10	<3	1.77	<.01	<.01	<2	2	2	6
KR-A-2	4	141	6	276	.4	9	6	640 1	.63	15	<8	<2	<2	95	2.2	5	6	49	4.47	.044	3	3	.11	12	.07	5	2.09	<_01	<_01	<2	95	2	6
KR-A-3	5	188	≺3	59	_4	12	9	682 1	.87	23	<8	<2	<2	68	.7	<3	4	69	5.78	.061	5	6	. 13	6	.07	<3	2,20		_01	<2	25	3	2
KR-B-1	<1	26	8	22	<.3	2	1	160	.51	2	<8	<2	13	36	.6	<3	<3	12	4.26	.025	14	5	.03	9	.08	<3	2.62	<.01	.02	<2	93	3	<2
1																																	
KR-B-2	<1	29		39	<.3	1		236	.62	3	<8	<2	6	35	.5	<3	5		6.26	.031	6	5	.04	3	.07	<3		<_01		<2	25	<2	6
KR-C-1	1	255		54	<.3	2	-	298 1		6	<8	<2	9	86	.6	<3	<3		7.53	.073	13	5	. 18	3	.13	<3				<2	23	<2	4
PU-1	2	5149		66	2.7	40		440 2		2	<8	<2	<2	33	.8	4	<3		1.03	.092	2	88	1.06	13	.39	<3	1.42		.05	<2	68	2	33
PU-2	5>	10000	9	108	29.7	84		356 7		19	<8	<2	<2		1.2	<3		153	1.02	.058	1	33	.62	2	.34	8	1.30		< 01	2	84	8	83
PU-4	1>	10000	∣ <3	95	12.9	78	53	301 4	. 18	5	<8	<2	<2	74	1.2	3	8	173	1.13	.075	1	42	.74	3	.33	<3	1.34	.02	.01	<2	18	7	48
											_		-			-								_		_				_		_	
PU-5	<1	426		27	<.3	10	-	274 1		<2	<8	<2	<2		<.5	<3		120	1.00	.069	1	58	.51	8	.29	<3	.98		.03	<2	148	2	30
NO NAME-1	<1>	10000		142		77		515 5		13	<8	<2	<2		1.3	6	<3		1.02	.064	1	33	.91	2	.29	6			<.01	<2	103	10	83
NO NAME-2	3	603	•	51	<.3	49	-	623 6		<2	<8	<2	<2	14		<3	<3		.86	.059	.4		2.51	12	.45	<3	2.02		.03	<2	61	8	24
STANDARD DS6/FA-10R	13	123	26	141	.4	24	12	744 2	.92	23	<8	<2	2	47	5.7		5	59	.88	.080.	12	182	.64	168	.09	16	1.91	.07	.16		491	475	478

Sample type: ROCK R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

22

Page 3

ACME ANALYTICAL LABORATORIES LTD. 852 R. HASTINGS ST. VANCOUVER BC V6A LR6 PHONE (604) 253-3158 FAX (604) 253-1716 (ISO 9001 Accredited Co.) ASSAY CERTIFICATE Schau, Mikkel File # A600076 1007 Barkway Terrace, Brentwood Bay BC V&M 1A4 Submitted by: Mikket Schau S.Wt NAu SAMPLE# -Au TotAu mg gm/mt gm/mt gm .01 5.70 .01 5.70 008 480 <.01 STANDARD OxL34 -----AU : - 150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM - 150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: ROCK REJ. M150 DATE RECEIVED: JAN 3 2006 DATE REPORT MAILED: AM. 16.06. Data FA

		1007 Barkwa	<u>Sona</u> y Terra	u, M ce, Bro	entwood B	H'1 ay BC Vi	LE # ∭ 1A4	A50823 Submitted	U by: Mi	kkel S	ichau					
	SAMPLE#		3 Fe203 % %		CaO Na20 % %	K20 T	io2 P205 % %	MnO Cr203 %)	S Ni K ppm		LOI X	TOT/C 1 %	TOT/S %	SUM %		
	015 0258 0418 048 Standard SO-18/CSB	75.54 13.5 75.31 13.7 49.11 12.0 48.17 13.6 58.08 14.0	1 1.19 9 18.15 5 14.59	.18 4.53 8 6.29 9	.92 4.16 8.26 2.60 9.59 3.58	3.57 .42 3 .34 2	.11 .04 .46 .31 .43 .22	.08 <.001 .25 <.001 .20 .017	l <5 I 39 7 78	41	.5 .6 .7	<.01 <.01 .07 .02 2.44	<.01 .02 .02	99.79 99.77 99.79 99.79 99.69		<u> </u>
GROUP 4A -	0.200 GM SAMPLE BY LIBO2	FUSION, ANA	LYSIS B	Y ICP-1	ES. (LIBO	2 FUSIO	N MAY NOT	BE SUITAE	BLE FOR	MASSI	VE SI	ULFIDE	SAMPLE	S.)		
-	S ON IGNITION. TOTAL C & S							1	,							
	DATE RECEIVED	• DEC 21	2005	рате	REPORT	MATT		an 11	6/0	6			~	ATA A	~	
Data (GFA	DATE RECEIVED	S DEC EI	2003 .	PAID	MH OKI	F. 67. 1, 11	Ũ		7	••		Í	NBIA			
												UN H	<u></u>	·h	DAS	
						. .						Ŵ	Cia	rence Leor		
							,						Z		7	

and a state of the second state of the second

		meete,	lited				Scha	IOCHE	likk	el	Fil	e #	A508	3230		(a)								Ą	
IPLE#	Ba ppm	Be Co ppm ppm		Ga Kf spm ppm	Nb	Rb	Sn		Ta 1	twoodle Th U Sm ppm	V L	¥	Zr	Y	ed by: La C xpm pp	e Pr	Nd	Sm		it bi	b Dy n ppm		Er ppm	Tm Yb	
B B NDARD SO-18	792.4 937.3 196.4 62.2	3 .9 1 .6 1 50.6 1 49.0	.5 11 .7 12 .8 25 .2 22	.4 2.1 .5 2.7 .2 5.2 .7 4.1	5.8 6.6 17.6 13.2	90.8 90.0 10.9 6.8	<1 11 <1 12 2 26 1 26	13.8 39.5 51.9 1 52.1 1	.7 7. .8 8. .2 1.	.4 3.1 .8 3.3 .8 .6 .1 .3	1 6 5 5 6 570 5 422	.5 .7 .7 .2	59.9 1 74.1 1 208.2 4 151.8 3	6.4 14 8.1 16 6.8 17 3.0 13	5.5 27. 5.7 31. 7.2 41. 5.7 32.	0 2.84 5 3.31 7 5.90 1 4.51	11.8 11.8 29.4 22.7	2.2 2.7 7.6 2 5.8 1	.35 2.0 .44 2.1 .61 8.5 .94 6.4	07 .3 6 .4 51 1.4 9 1.0	7 2,27 2 2,51 8 8,58 9 6,47	.50 1 .56 1 1.73 4 1.24 3	1.65 1.92 4.80 3.45	.24 1.86 .29 2.07 .70 4.19 .48 2.96 .30 1.84	.30 .35 .60 .44
					CANE	I E TVD).200 G			-				,										
Data	FA	I	ATE R	RECEIV	ED:	DEC 2	1 2005	5 DA:	re ri	epori	r Mai	led :	Al	m !	6./.	6			MBIA	না	5/0				
Ų												l			1			() E		-1- rence)		
																		Ý			Y	EE			
									-																

852 E. HASTINGS ST. VANCOUVER BC VOA 1R6

PHUNE (604+203-3-100 PAX 101-125-1)16

GEOCHEMICAL ANALYSIS CERTIFICATE

<u>Schau, Mikkel</u> File # A508230 (b) 007 Barkway Terrace, Brentwood Bay BC V8M 1A4 Submitted by: Mikkel Sc

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	Hg ppm	Tl ppm	Se ppm	
015 025B 041B 048 STANDARD DS6	.2 .2 .9 .6 11.2	118.6 4.8 365.6 298.3 120.1	3.4 2.3 .6 1.2 29.3	16 20 56 38 139	.9 .4 11.3 21.3 24.1	.7 <.5 .5 .7 20.9	<.1 <.1 .3 5.9	<.1 <.1 .1 3.1	<.1 <.1 <.1 5.0	<.1 <.1 .1 .3	1.3 <.5 4.6 1.4 46.0	.01 <.01 <.01 .01 .23	<.1 <.1 <.1 <.1	<.5 <.6 4.4	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-HZO AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: ROCK PULP

DATE RECEIVED: DEC 21 2005 DATE REPORT MAILED: Data J FA

ACME ANALYTT	AL LABORATORIES LTD. 852 F. HASTINGS ST. VANCOUVER BC V6A 185 PHONE (604) 253-3158 PF	
	Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE	8.8
TT	<u>Schau, Mikkel</u> File # A600074 Page 1 1097 Barkway Terrace, Brentwood Bay BC VSM 1A4 Submitted by: Mikkel Schau	TT
SAMPLE#	Mo Cu Pb Zn Ag Ni Co. Mn Fe As. U Au Th Sr Col Sb Bi V. Ca. P La Cr. Mg Ba Ti B. Al. Na om ppm ppm ppm ppm ppm ppm ppm ppm ppm p	K WAu**Pt**Pd** %ppm ppb ppb ppb
G-1 004 006A 006A2 006B	9 202 5 45 <.3 2 8 576 2.85 4 <8 <2 5 34 <.5 3 <3 67 .62 .037 10 6 .80 168 .18 <3 1.65 .17 . 2 264 10 88 <.3 79 29 256 6.47 8 8 <2 <2 143 .9 <3 <3 312 .88 .083 2 161 2.70 269 .20 <3 3.67 .13 . 5 357 3 101 <.3 85 41 509 8.93 13 <8 <2 <2 17 1.4 <3 5 322 .60 .086 3 206 3.12 55 .26 <3 3.68 .03 .	.48 2 <2 <2 3 .55 3 4 <2 3 .03 <2 4 7 22 .03 <2 4 6 22 .04 <2 7 3 16
006C 006D 007A 007B RE 007B	<1 79 5 26 <.3 43 20 183 1.96 29 <8 <2 <2 64 <.5 <3 <3 75 1.54 .077 3 41 .63 112 .20 <3 2.21 .28 . 1 471 9 45 .3 21 17 4048 3.76 11 <8 <2 <2 29 .8 4 <3 81 1.02 .030 3 16 .81 54 .10 7 1.81 .07 . 1 398 4 54 <.3 18 18 592 4.17 <2 <8 <2 <2 21 <.5 <3 <3 95 1.86 .074 4 13 .98 25 .11 <3 1.95 .21 .	.04 <2 6 6 24 .05 <2 4 4 22 .03 <2 9 4 118 .05 2 20 5 15 .05 2 19 3 16
007C 007E 007F 008 009F	<pre><1 146 <3 36 <.3 10 9 342 2.05 7 <8 <2 <2 62 <.5 <3 <3 114 5.22 .032 2 8 .35 18 .22 7 4.41 .08 .</pre> <1 318 8 36 <.3 11 11 285 2.94 2 <8 <2 <2 255 <.5 3 <3 176 2.48 .079 5 5 .50 166 .24 3 2.87 .32 .<1 589 10 38 2.2 51 36 603 4.68 100 <8 <2 <2 143 .6 4 <3 293 5.54 .077 2 64 1.51 733 .32 3 2.87 .09 .	.01 <2
010A 010B 011A 011B 012	<pre><1 16 6 23 <.3 2 2 489 .80 4 <8 <2 6 7 <.5 <3 <3 10 .22 .008 7 3 .11 52 .01 <3 .51 .04 .</pre> <pre><1 16 6 23 <.3 3 3 704 .92 6 <8 <2 6 18 <.5 <3 <3 15 1.70 .014 17 4 .17 119 .01 4 .90 .01 .</pre> <pre><1 12 14 <.3 3 3 704 .92 6 <8 <2 6 18 <.5 <3 <3 15 1.70 .014 17 4 .17 119 .01 4 .90 .01 .</pre> <pre><1 22 4 9 <.3 <1 1 329 .69 <2 <8 <2 6 6 <.5 <3 <3 4 .23 .009 10 3 .09 29 .01 <3 .39 .04 .</pre>	.09 <2
014 016 017 0188 021A	c1 <1 6 19 <.3 1 1 415 .81 12 <8 <2 6 6 <.5 <3 <3 5 .73 .013 12 4 .02 88 <.01 <3 .31 .04 . c1 <1 3 26 <.3 <1 2 594 1.38 <2 <8 <2 7 4 <.5 <3 <3 3 .07 .013 13 4 .15 38 <.01 <3 .68 .03 . c1 8 11 82 <.3 <1 1 219 .65 <2 <8 <2 6 4 .7 <3 <3 2 .07 .011 13 2 .07 45 <.01 <3 .38 .03 .	08 <2 <2 3 2 13 <2 <2 2 3 16 <2 <2 5 <2 11 <2 2 3 <2 08 <2 2 <2 <2
0218 024 035A 035C 035D	x1 7 13 44 x.3 1 1 427 .46 <2 <8 <2 4 90 .6 <3 <3 2 1.87 .008 6 1 .05 35 <.01 <3 2.71 .01 . x1 142 4 26 <.3 30 10 238 2.09 7 <8 <2 <2 29 <.5 <3 <3 89 .87 .010 1 59 .64 6 .17 <3 1.45 <.01 .1	23 <2
035E 035H 0351 035J 037		01 <2 3 5 <2 02 2 7 5 5 03 <2 6 9 11
STANDARD DS6/FA-10R	1 119 30 142 .4 24 11 686 2.76 21 <8 <2 3 39 5.8 4 5 54 .83 .076 14 163 .55 163 .08 18 1.84 .07 .	15 3 482 476 472
(>) CONCENTRATIC ASSAY RECOMMENDE - SAMPLE TYPE: R		C.
Data FA	DATE RECEIVED: JAN 3 2006 DATE REPORT MAILED: M. 17.06 sidered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.	Clarence Leong

.

ACHE ANNU VEICAL

Schau, Mikkel FILE # A600074

ACHE ANALYTICAL																															ACHE AN	ALYTICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co M	n Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca		La		Mg	Ba	Ti	В	AL	Na	ĸ	W .	Au**	Pt**	 Pd**
	ррп	ppn	ppm	ppm	ppm	ppm	ppm pp	n %	ppm	ppm	ppm	ppm	ppm p	abui t	pm 1	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb	ррЬ	ррb
G-1 040 066C 068 069A	<1 1 <1 1 1	2 158 5 86 38	<3 <3	108 4	<.3 <.3	4 16 4 106 3	104 52 3 63	3 3.61	230 8 <2	<8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		46 669 < 203	.7	33333 2333	0 0 0 0 0 0 0 0 0 0 0 0 0	4 82	.55 .28 32.84 2.22 1.44	.080 .060 .007 .037 .063	7 3 <1 2 5	2	.62 1.36 .14 1.91 1.27	239 13 3 27 27	.13 .15 <.01 .13 .17	3 2 2 2 2 3 3 3 3 3 3	1.04 1.76 .34 4.39 2.41	.08 .03 .01 .36 .20	.50 .02 <.01 .03 .06	3 <2 <2 4 <2	<2 73 4 3 <2	2 <2 <2 19 <2	<2 3 <2 18 <2
0698 0708 070C 071C 0748	<1	214 2096	ও ও ও	8 41	.6 <.3	23 55	23 41 5 10 14 26 13 35 4 14	2 1.80 I 1.84	<2 3 <2	<8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2		138 < 26 <	.5 .5	<3	-	81 41 49 65 54	1.14 3.35 1.83 2.86 1.00	.034 .031 .014 .047 .008	<1 1 1 2 1	138 49 70 94 15	2.78 .36 1.78 1.08 .21	35 10 2 4 33	.20 .24 .16 .18 .22	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.50 4.27 2.16 3.86 .78	.18 .72 .03 .06 .02	.02 .02 .02 .11 .05	32 2322 22	<2 53 5 3 18	14 15 6 2	16 21 13 8 4
075C 088 088B 088C 089	1 3 210 481 3	19 40	5 <3	19 10 10	<.3	49 1 <1 2 <1	27 67 1 49 1 26 5 14 2 70	1.79 1.55 5.72	<2 <2 17	<8 <8 8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 6 7 2 5	5 < 3 < 4 <	.5	3000 2000 200	33364	139 5 2 5 4	.89 .10 .05 .06 .06	.044 .006 .006 .008 .009	2 14 8 21 5	73 5 5 5 3	1.73 .08 .01 .02 .17	16	.32 .02 <.01 <.01 .01	~~~~	1.76 .34 .21 .56 .71	.03 .03 .04 <.01 .03	.01 .11 .09 .02 .13	2 2 2 2 2 2 2	20 <2 2 13 <2	2000	20 <2 3 <2 <2
090 092A 0928 093A 093B	4 6 3 3 3	151	9	23 15 27	<.3 <.3 <.3 .3 <.3	13 1 17 54 7	15 26 6 32 6 18 17 45 2 12	5 1.97 5 1.10 1 2.97	7	<8 <8	~~~~~~		113 < 234 40 <	.5 .5	<3 3 3 3 4 3	00004	268 27 22 33 21	1.49 .74 5.83 1.91 .83	.295 .121 .076 .520 .089	15 8 5 18 7	31 4 5 12 2	.95 .51 .04 .31 .15	46 84 35 14 53	.13 .11 .08 .05 .10	<3 7 <3 7 <3	1.86 1.15 6.03 .98 .73	.25 .08 .15 .05 .07	.22 .10 .02 .04 .10	3 <2 3 <2 <2 <2	4 3 2 3	3 2 2 5 2 5 2 5	2 4 3 7 <2
RE 0938 094A 094B 095 096A	3 1 1 1 1	16 25 23 1 137	-	12 11 4	<.3 <.3 <.3 <.3 <.3	8 2 2 <1 231	3 12 3 5 2 6 1 3 57 27	2 .63 5 .58 5 .04	2 3 <2	<8 <8	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		12 < 14 < 504 <	.5 .5 .5	<3 <3 <3 <3 <3 <3 <3	4 4 7 3	21 10 8 1 85	.83 .25 .26 36.68 2.94	.087 .017 .017 .021 .104	7 7 8 <1 4	4 6 1 147	.15 .09 .08 .03 1.08	52 37 36 15 107	.10 .05 .04 <.01 .07	<3 <3 <3 <3 <3 17	.73 .33 .32 .05 4.04	.07 .04 .05 <.01 .29	.10 .11 .11 .01 .13	<>>2 <> <>> <>> <>> <>>> <>>> <>>><>>><>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	₹2 ₹2 ₹2 3	2 <2 3 3 3
097A 097B 098 099A 099B	<1 65 7 2 2	62 26	7 <3 10 6 3	40 35 47	<.3 <.3 <.3 <.3 <.3	7 125 13 5 26	14 27 5 33 13 44 12 63 13 25	.77 3.21 2.72	2 5 2	<8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	_	35	.4	3 4 3 3 3 3	<3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <		1.60 25.88 1.21 .87 1.97	.101 .164 .049 .051 .101	5 3 4 3 4	4 6 32 7 107	1.99 .12 .84 1.09 .75	57 45 47 20 4 3	.28 .01 .09 .10 .08	9 3 6 9 3	2.86 .39 2.28 1.52 1.39	.37 .04 .13 .04 .26	.14 .03 .07 .05 .09	\$~~ \$ \$	3 4 3 2 3	4 3 2 2 4	<2 7 2 2 <2
NO NUMBER #1 No Number #2 Standard DS6/FA-10R	1 13 12	-	<3	10	<.3	1 <1 25	1 41; 1 36; 11 68;		<2	<8	<2 <2 <2	6 4 3			3 <3 6	3 3 5	6 3 55	.31 .07 .83	.007 .006 .076	7 7 14		.13 .03 .55		.05 <.01 .06	3 <3 17	.59 .26 1.83	.04 .04 .07	.08 .10 .15	2 <2 5	2 <2 474	3 <2 489	2 <2 482

Sample type: ROCK R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Page 2

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) FAX (604) 25

WHOLE ROCK ICP ANALYSIS

Schau, Mikkel File # A600075 1007 Barkway Terrace, Brentwood Bay BC VBM 1A4 Submitted by: Mikket Schau

SAMPLE#	SiOZ	A1203	Fe203	MgO	CaO	Na20	K20	Ti02	P205	MnO	Cr203	NÍ	Sc	LOI	TOT/C	TOT/S	SUM	
	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	%	%	%	%	
004	67.94	15.35	4.56	1.50	3.76	3.25	2.02	.36	.09	.08	.002	6	9	1.0	.02	.06	99.92	
006D	50.55	15.68	11.93	6.02	9.94	2.56	.23	2.01	.20	-17	.031	94	37	.6	.02	.07	99.93	
008	43.32	12.76	12.76	5.22	12.07	1.68	1.29	2.07	- 18	. 19	.012	70	37	8.1	1.67	.09	99.67	
021A	72.81	14.84	1.69	.37	.62	3.55	2.89	.18	.05	.11	.001	5	3	2.8	.04	<.01	99.91	
RE 021A	72.97	14.72	1.63	.36	.60	3.50	2.87	.17	.06	.11	.001	8	3	2.9	.02	<.01	99.89	
0218	73.33	14.91	1.82	.44	1.83	4.22	2.54	.21	.06	.11	.001	10	3	.4	<.01	<.01	99.87	
040	48.28	10.24	22.63	2.46	2.38	2.29	.16	.67	. 15	.08	.002	17	20	10.6	.05	12.14	99.95	
068	46.70	16.03	10.68	9.84	11.21	1.69	.18	1.13	. 10	.12	.052	206	30	2.2	-06	<.01	99.96	
0708	48.59	17.11	8.76	6.44	13.09	2.14	.42	1.22	.11	.11	.050	165	32	1.9	-08	.04	99.97	
089	74.51	14.00	2.42	.34	.66	3.57	3.60	.07	.05	.16	.002	<5	1	.6	.01	<.01	99.98	
090	50.22	13.79	14.03	5.94	9.31	2.21	1.10	1.58	.74	.22	.009	33	42	.7	.01	<.01	99.86	
093A	51.45	9.94	14.99	2.48	14.14	3.06	.30	.45	1.38	.35	.010	75	13	1.4	.04	1.06	99.96	
099A	62.52	15.99	5.59	2.17	5.32	3.39	2.07	.56	. 13	.11	.002	7	14	2.0	.08	<.01	99.85	
STANDARD SO-18/CSB	58.28	14.16	7.61	3.31	6.37	3.61	2.15	.69	.82	.37	.551	47	24	1.9	2.43	5.33	99.83	

GROUP 4A - 0.200 GM SAMPLE BY LIBO2/LI2B407 FUSION, ANALYSIS BY ICP-ES. (LIBO2/LI2B407 FUSION MAY NOT BE SUITABLE FOR MASSIVE SULFIDE SAMPLES.) LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM)

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: ROCK PULP

Data FA ____ DATE RECEIVED: JAN 3 2006 DATE REPORT MAILED: JAN 18 0 b

(ISO 9001 Accredited Co.)

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Schau, Mikkel File # A600075 (a) 1007 Barkway Terrace, Brentwood Bay BC VBM 1A4 Submitted by: Mikke

							1001	Barxwa	y lerr	ace,	БГС	ntwoo	ю ва	Y OL	VOPI I	A 4	suum) i	LLEU	by: In	ikket	ิจตาสง	10. Q	202-2		X .8932		<u></u>			i se	
SAMPLE#	Ba	Be	Co	Cs	Ga	Кf	Nb	Rb	Sn	Sr	Тa	Th	U	٧	W	Zr	Ŷ	La	Ce	Pr	Nd	Sm	Eu	Gd	тb	Dy	Ho	Er	Tm	Yb	Ļα
	ppm	nqq	pbu	ppm	ppm	ppm	ррл	ppm	nqq	ppm	ppin	Ppn	ppm	ppm	ррп	ррп		ppm	ppm	ppm	bbu	ppm	ppm	ppm	ррп	bbu	ppm	ppm	ppm	ppm	bbu
004	554.1	1	8.7	1.8	13.9	3.7	7.8	69.1	<1 26	0.2	1.0	6.4	3.6	69	.2	97.1	15.2	12.6	24.0	2.75	10.6	2.2	.65	2.03	.38	2.20	.49	1.66	.25	1.83	.29
0060	315.6	1	36.2	.4	20.4	3.7	10.3	5.2	<1 25	5.4	-8	1.2	.4	374	.2	118.9	29.5	10.2	25.3	3.72	17.4	5.0	1.63	5.68	.95	5.40	1.09	3.03	.39	2.87	.36
008	1808.4	1	44.5	1.1	19.6	3.8	9.3	25.1	1 29	6.8	.7	1.3	.4	452	.3	120.4	34.2	9.9	23.4	3.37	16.1	5.3				6.17	1.30	3.69	.51	2.93	.41
021A	957.9	2	1.5	.6	13.3	3.0	5.8	66.0	<1 9	9.9	+ +-	6.9		11		90.4								1.81		1.57		1.18			
RE 021A	923.2	1	1.4	.7	13.3	3.1	5.6	65.5	1 10	1.0	-4	6.2	8.7	11	1.8	99.2	12.3	16.9	25.7	2.76	9.2	1.8	.42	1.80	.29	1.62	.38	1.19	.16	1.55	.24
021B	920.1	1	1.2	1.2	13.3	3.2	5.7	72.6	1 24	8.0	.4	7.2	2.9	12	.5	105.5	10.6	16.8	30.8	3.17	10.7	2.0	.50	1.59	.27	1.76	.37	1.18	. 16	1.54	.22
040	92.0	1	110.7	<.1	11.3	1.8	2.9	3.1	<1 27	8.0	.2	1.6	.7	191	.3	66.0	16.6	7.2	15.4	2.22	10.3	2.4	.79	2.97	.44	2.67	.60	1.81	.21	1.89	.25
068	68.6	<	48.3	.1	16.6	1.6	4.8	2.5	<1 32	1.9	.3	.4	.1	235	<.1	59.5	17.1	4.5	11.3	1.77	8.5	2,5	1.05	3.21	.50	3.16	.67	1.87	.24	1.51	.24
0708	65.8	1	40.0	.1	17.5	1.9	5.4	8.1	<1 27	7.9	.3	.4	.1	260		64.9										3.28		1.96			
089	446.5	3	1.1	.7	14.5	1.6	5.0	101.1	<1 7	5.9	.7	4.5	4.6	5	1.8	30.0	21.7	8.9	15.9	2.17	6.4	1.9	- 19	1,98	.46	2.96	.64	2.19	.36	3.09	.42
090	490.2	1	35.3	.6	16.4	3.3	5.5	23.5	1 32	6.7	.4	2.0	1.3	369	.5	103.5	43.5	20.1	44.3	6.57	30.1	7.7	1.61	8.21	1.27	7.14	1.55	4.50	.62	4.36	.63
093A	105.2	1	25.3					6.7		8.0		1.3				61.4										4.42		2.89			
099A	785.8	Í			14.9			44.1				4.1	2.0			95.2										2.86	.61	1.86	.29	1.89	.31
STANDARD SO-18	523.8	1							12 40																	3.13	.65	1.92	.34	1.86	.28

GROUP 48 - REE - 0.200 GM BY LIBO2/LI2B407 FUSION, ICP/MS FINISHED. - SAMPLE TYPE: ROCK PULP

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data (FA

r) an 18/06 DATE RECEIVED: JAN 3 2006 DATE REPORT MAILED:

852 E. HASTINGS ST. VANCOUVER BC VOA 1R6

Phone (60+1 2 3-3 - 30 FAX (004) 25 - 116

Tl

ppm

.2 <.1 <.1 <.1

.1 <.1 <.1 <.1

.1 <.1 <.1 1.7 Se

ppm

<.54.55 <.455 <.555

<.5 8.0 <.5 4.3

GEOCHEMICAL ANALYSIS CERTIFICATE

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	p
004 006D 008 021A RE 021A	9.2 .7 .4 2.6 2.5	200.7 77.1 580.0 5.5 5.1	1.1 1.0 1.6 2.7 2.6	46 24 38 18 17	1.7 38.8 50.6 1.9 2.2	<.5 26.7 99.9 1.0 .8	<.1 <.1 .2 .1 .2	<.1 .2 <.1 <.1	.1 .1 <.1 <.1	.2 <.1 2.1 <.1 <.1	1.4 <.5 2.7 <.5 1.2	· · · ·
021B 040 068 070B 089	.6 1.2 .1 .3 2.3	3.5 163.0 76.3 215.0 1.8	.9 20.0 .2 .9 .7	28 124 36 23	$1.2 \\ 17.6 \\ 102.2 \\ 24.1 \\ .6$	<.5 256.9 <.5 <.5 <.5	<.1 .8 <.1 .1 <.1	<.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1	<.1 .3 <.1 <.1	<.5 89.9 .5 321.3 <.5	· · · · ·
090 093A 099A STANDARD DS6	2.9 3.0 2.1 11.5	367.3 149.9 28.6 123.1	2.6 1.1 1.5 29.8	44 27 56 139	$13.2 \\ 52.0 \\ 4.8 \\ 24.8$	<.5 5.0 <.5 20.7	.1 .1 <.1 6.0	.1 .1 <.1 3.3	.1 .1 <.1 5.0	.1 <.1 <.1 .3	3.2 .9 <.5 46.0	<. <.

Data (FA

DATE RECEIVED: JAN 3 2006 DATE REPORT MAILED: 1.

	Schau, Mikkel 1007 Barkway Terrace, Brentwood B	File # A508228R ay BC V8M 1A4 Submitted by: Mikkel	Schau	
	SAMPLE#	Cu %		
	G-1 070A 072A-1 072A-2 PU-2	<.001 1.387 21.276 15.906 4.654	,	
	PU-4 NO NAME- STANDARD	2.272 2.902 GC-2a .865		·
Data [4] FA DATE RECEIVE	D: JAN 18 2006 DATE REPORT	MALLED		ong (15)

and the second second

.

10.4 Appendix D Petrochemical Analytical Results

Several rocks were analysed to determine the complete chemical composition Acme methods 4A and 4B. The major oxides are shown below. The minor elements are found on the complete analysis certificates.

	KL034Red	KL034green	KL060
SiO2	48.47	48.34	44.24
TiO2	1.47	1.49	1.01
Al2O3	14.28	14.22	14.06
Fe2O3t	11.85	11.98	11.25
MnO	.14	.19	.19
MgO	7.38	7.46	11.76
CaO	10.08	10.21	11.74
Na2O	3.60	3.56	1.14
K2O	.23	0.16	.35
P2O5	.13	.13	.25
LOI	2.3	2.2	3.6
	KL072B	KL076	KL091
SiO2	47.60	47.37	45.62
TiO2	1.70	2.25	1.65
Al2O3	16.77	13.91	15.67
Fe2O3t	11.87	14.60	11.92
MnO	.17	.25	.18
MgO	5.94	6.38	10.62
CaO	12.78	9.77	8.57
Na2O	2.07	3.08	2.08
K2O	.06	0.27	.19
P2O5	.16	.20	.13
LOI	.8	1.7	3.2

Whole rock analysis provide constraints on the mineralogical composition of the rocks. SampleS KL034 of massive basalt have different colours, one red, the other green, but there is little difference in bulk composition. All the rocks are various types of Karmutsen basalts. The main variation is in the MgO content and the associated reciprocal chemical adjustments.

Although only 6 samples are shown here, the seventh sample was a standard run as a matter of course by the lab.

Kringle Assessment, Schau, 2006

Page 47 of 47