DIAMOND DRILLING REPORT

ł

e ne er sen en er ger ger

.

on the

WASI CREEK PROPERTY

Tenure Nos. 512685 and 512686

Omineca Mining Division

NTS: 94C/03E

BCGS Map Sheet: 094C.005, 094C.015

Latitude: 56° 6.5' N; Longitude 125° 1.5' W

UTM: NAD 83, Zone 10; 6 220 000N; 374 000 E

Owner: Selkirk Metals Holdings Corp.

Author: Calvin Church, P.Geo.

October 31, 2005

TABLE OF CONTENTS

	Section	Title	Page
A	Depart	Introduction	2
		Property	3
•• · <u> </u>		Location and Access	
		Climate Tonography and Vegetation	4
		History	4
		Regional Geology	8
	· · · · · · · · · · · · · · · · · · ·	Property Geology	8
		2005 Diamond Drilling	9
		Conclusions	12
		Recommendations	14
		List of References	15
·	· · · · · · · · · · · · · · · · · · ·	Statement of Qualifications	17
	Tables: 1	2005 Drill Hole Summary	10
	2	Significant Drill Hole Intersections – 2005 Program	12
·			
B	Property	Schedule of Mineral Claims	18
C	Expenditures	Statement of Expenditures	20
D	Analytical Reports	Acme Analytical Laboratories Ltd.:	22
		- Certificates of Analysis (5 reports)	
		- Statement of Analytical Procedures (2 data sheets)	
E	Drill Hole Logs	Drill Hole Record	
		Drill Hole Number WZ-05-01	
		Drill Hole Number WZ-05-02	
		Drill Hole Number WZ-05-03	
		Drill Hole Number WZ-05-04	
		Drill Hole Number WZ-05-05	
		Drill Hole Number WZ-05-06	
		Drill Hole Number WZ-05-07	
F	Illustrations		
	Plan Number	Title	Scale
	WA-05-1 (after p.4)	General Location Plan	1:250 000
ļ	WA-05-2 (after p.4)	Mineral Claims	1:50 000
<u> </u>	WA-05-3 (in pocket)	Mineral Claims / Drill Hole Locations	1:20 000
L	WA-05-4 (in pocket)	Geology and Drilling Compilation	1:5 000
L	WA-05-5 (in pocket)	Drill Section – WZ-05-01	1:500
[WA-05-6 (in pocket)	Drill Section – WZ-05-02	1:500
L	WA-05-7 (in pocket)	Drill Section – WZ-05-03	1:500
	WA-05-8 (in pocket)	Drill Section – WZ-05-04	1:500
	WA-05-9 (in pocket)	Drill Section – WZ-05-05	1:500
	WA-05-10 (in pocket)	Drill Section – WZ-05-06	1:500
	WA-05-11 (in pocket)	Drill Section – WZ-05-07	1:500

!

• • • •

SECTION A: REPORT

INTRODUCTION:

Selkirk Metals Holdings Corp. ("Selkirk" or "the Company") owns a 100% interest in the Wasi Creek Property. The property was initially acquired by Cross Lake Minerals Ltd. ("Cross Lake") in July 2000 following a review of prospective areas in British Columbia for carbonate-hosted zinc-lead-silver deposits. It was assigned to Selkirk in June 2005 as a result of a Plan of Arrangement. It was originally staked to cover the area previously known as the Par Property which Cominco Ltd. extensively explored from 1990 to 1995. The Wasi Creek Property is located 150 km northwest of Mackenzie on the south side of the Osilinka River adjacent to Wasi Lake in the Omineca Mining Division. This report summarizes the program of NQ diamond drilling that was carried out by the Company in late June 2005 on the Carrie South, Par North and Par Camp Zones. The work was conducted on Tenure Nos. 512685 and 512686. Seven drill holes totaling 1053.64 m were completed.

PROPERTY:

The Wasi Creek Property is comprised of seven cell claims containing an aggregate of 134 cells and covering 2417.457 hectares. These claims represent the conversion in January, April and May 2005 of 11 contiguous legacy mineral claims, three 4 post and eight 2 post, totaling 66 claim units and covering an area of 1650 hectares. The claims are all situated in the Omineca Mining Division. The Property is registered in the name of Selkirk Metals Holdings Corp. It was originally acquired by Cross Lake by staking on four occasions between July 2000 and October 2001 (see Plan Numbers WA-05-2 and WA-05-3). A Schedule of Mineral Claims is appended in Section B and lists the original legacy claims and the converted cell claims as well as the UTM coordinates of the exterior claim boundary. The expiry dates therein are based on the Statement of Work filed on July 26, 2005 (Event #4043345) and assume that the two work reports in that filing will be accepted for assessment purposes. None of the cell claims have been surveyed.

By agreement dated September 1, 2004 as amended, Cross Lake granted Bard Ventures Ltd. an option to earn a 50% interest in the Property by incurring aggregate exploration expenditures of \$800,000 on or before December 31, 2006. This agreement was assigned to Selkirk by Cross Lake in accordance with the aforementioned Plan of Arrangement.

LOCATION AND ACCESS:

The Property is located on the south side of the Osilinka River some 150 km northwest of Mackenzie and 43 km north-northwest of Germansen Landing. The claims are on BCGS map sheets 94C005 and 94C015 and NTS map sheet 94C/3E. Geographic co-ordinates at the centre of the property are 56° 6.5' North latitude; 125° 1.5' West longitude and UTM coordinates are 6220000N and 374000E in Zone 10, NAD 83.

Access to the property is excellent due to extensive logging operations that have been carried out around and on the claims. The easiest access is by using Highway #97 north of Prince George to a small community named Windy Point, 12 km north of McLeod Lake. From Windy Point one drives on the main haulage logging road located on the west side of Williston Lake, north for 170 km and then west for 22 km to the junction of the Osilinka and Wasi Lake Forest Access roads. The Wasi Creek Property is reached by traveling another 18 km along the south side of the Osilinka River on the Wasi Lake Forest access road. There are several secondary forest access roads crossing the claims all of which are navigable with a four wheel drive vehicle.

CLIMATE, TOPOGRAPHY AND VEGETATION:

The Wasi Lake area has cold, high snowfall winters and warm, damp summers. The topography of the property is moderately steep. The lowest elevation is 830 metres on the northern boundary of the property along Wasi Creek near its confluence with the Osilinka River while the high point is 1460 m on the ridge located along the eastern boundary of the claims. The slopes are heavily timbered by pine and spruce. In the clear cuts deciduous willows and poplars predominate.

HISTORY:

The earliest recorded work located in the area was in the Annual Report of the Minister of Mines in 1930 documenting the Weber Prospect, located near the northern edge of the present Wasi Creek Property. The report describes the Weber mineralization as disseminated galena, zinc and pyrite in siliceous dolomite of which a 5.18 m channel sample assayed 3.6% Zn, 1.6% Pb, loz/ton Ag and 0.020z/ton Au.

The Weber Prospect was restaked and worked at intermittent intervals with the next documented description occurring in the 1954 Geological Survey of Canada Memoir 274, by E.F. Roots entitled "Geology and Mineral Deposits of Aiken Lake Map-Area, British Columbia". He describes the showing as pyrite-galena-sphalerite-barite replacement body in limestone that strikes north 30 degrees west and dips 80 degrees northeast. A grab sample assayed trace Au; 2.0oz/ton Ag; 10.24% Pb and 4.06% barite.

4

An inventory of the numerous carbonate-hosted stratabound zinc, lead, silver and barite showings in the Wasi Creek area is well described in British Columbia Department of Mines Open File Paper 1992-1. The paper is named "Geology of the Usilika Lake Area, Northern Quesnel Trough, B.C.", (94C/3, 4, 6) by F.Ferri, S. Dudka and C. Rees.

In 1990 Cominco Ltd. completed a reconnaissance silt and soil geochemical survey on the stratigraphic extensions of the Lower Cambrian to Middle Devonian carbonates that host the known mineral occurrences. The area around the Weber Prospect was highly anomalous so Cominco staked their first two claims covering this prospect and the anomalous areas. Cominco then completed contour and grid soil sampling and outlined a large, highly anomalous area 1.0 by 4.5 km in size in lead, zinc, iron and silver and staked five additional claims.

Cominco Ltd. completed an intense exploration program during 1991. The exploration program consisted of geological mapping, soil sampling, airborne electromagnetic and magnetometer surveys, ground geophysical surveys including HLEM, magnetometer, Induced Polarization and VLF surveys. A trenching program was completed on the target area of the large soil geochemical anomaly and the coincident conductors. There were seven trenches excavated with the best mineralization discovered in trench #3 that assayed 8.4% Zn, 3.5% Pb and 14.2g/t Ag over a width of 17.2 m.

In 1992 Cominco Ltd. completed 16 diamond drill holes totalling 1,346 m in the area of the trenching. The strike length explored is approximately 2.0 km along a fault controlled base metal mineralized structure, on the east side of Wasi Creek. The work was not filed for assessment credit so there are no records of the results in the provincial data base.

In 1993 Cominco drilled four holes on the north side of the Osilinka River on a separate area and one hole in the Wasi Creek area in the vicinity of the 1992 drilling. The drill hole was collared near the Duncan Showing and was successful in intersecting two mineralized horizons that assayed 6.9% Zn, 1.6% Pb and 18.4g/t Ag over a width of 4.5 m and 3.1% Zn, 3.2% Pb and 32.0g/t Ag over a width of 3.1 m.

In 1994 Cominco constructed more drill access roads and sites and completed four holes totalling 1,164 m, including two vertical holes drilled possibly to complete stratigraphic sections on either side of the fault controlled mineralization.

5

Cross Lake Minerals Ltd. acquired a 20 unit mineral claim over the property when the ground came open in 2000 and in 2001 added an additional 46 units. The Company carried out a program of geological mapping, stream sediment sampling and trenching in 2001 and in 2002 completed a soil geochemical survey.

One of the main reasons that Cross Lake Minerals Ltd. staked the Wasi Creek Property was to explore for the source of high grade massive sulphide boulders which were discovered during Cominco's trenching program in 1991. The sulphide boulders, 70 cm in size and angular, consist of layered massive sulphides contain galena, sphalerite and pyrite. Cross Lake assayed two of these angular boulders with the following results:

Sample Number	Zn (%)	Pb (%)	Ag (g/t)
W-1	26.30	25.98	96.3
W-2	8.46	42.43	384.8

None of the drilling or trenching to date has intersected mineralization similar to the high grade boulders.

Stream sediments in the Wasi Creek area were sampled by the British Columbia Geological Survey in 1991 and the results are detailed in Open File 1992-11. Four samples were collected in the Wasi Creek Property area (SS-018, SS-130, SS-203, and SS-304) and had the highest in indicator and base metal elements minerals for the entire survey area. The base metal source for the three anomalous samples, SS-018, 130 and 203, are most likely the Duncan and Par mineralized horizons on the east side of Wasi Creek. Stream sediment sample SS-018, the highest in base metal elements of all of the stream sediment samples, was collected from a stream on the west side of Wasi Creek and south of any known mineralization. In July 2002, Cross Lake Minerals Ltd. sampled the same drainage in order to verify the earlier result. The new sample (WS-1) was taken approximately 750 m upstream, and to the west, of the B.C. government sample site location SS-018 on the OSI 2 mineral claim at approximate NAD 27 UTM coordinates 6 219 053 N, 371 988 E at an elevation of 967 m. The sample was lower in base metal values than the B.C. government sample.

The 2002 soil sampling program was designed to test both sides of an unnamed stream that was highly anomalous in base metal elements when sampled previously by the B.C. Geological Survey. Two sample lines were run parallel and approximately 100 m on either side of the stream until its junction with Wasi Creek then in opposite directions along the west bank. A total of 55 soil samples were collected and the

total length of lines surveyed was 1350 m. The sampling program was successful in delineating two areas of anomalous base metal elements. Soils anomalous in lead and zinc occur to the north of the unnamed creek and west of Wasi Creek. The details of this 2002 program were set out in the "Soil Geochemical Report on the Wasi Creek Property, OSI 2 and 3 Mineral Claims" by Jim Miller-Tait, P.Geo. dated January 10, 2003, B.C Assessment Report #27,032.

Additional soil sampling programs were carried out on the property in two phases during the summer of 2004. Details of the 2004 Phase 1 program completed in June was titled "Geochemical Sampling Report on the Wasi Creek Property" by Calvin Church, P.Geo. dated October 28, 2004, B.C. Assessment Report #27532. The program was regional in scope and consisted mainly of a series of road traverses transecting the boundaries of the property. A total of 137 soil samples were collected from road cuts at 100 m intervals along roughly 13 km of logging road. Anomalous results from the Phase 1 program were located approximately one km east of the main Par showings on the east half of the OSI claim.

The 2004 Phase 2 geochemical soil sampling program was carried out in September 2004 which reported results of 212 soil samples collected at 25 m intervals along contour traverses above Wasi Creek. Consistently anomalous soil geochemical anomalies for lead and zinc were returned from traverses below Carrie Mountain where 48% of sample had values exceeding 1000ppm Zn and 28% had values between 400 – 1000ppm Zn. Results from the 2004 Phase 2 geochemical sampling program are summarized in the report titled "Geochemical Sampling Report (2004 Phase 2) on the Wasi Creek Property" by Calvin Church. This report has been submitted for assessment purposes.

In May 2005 Aeroquest Limited. completed a helicopter-borne AeroTEM II electromagnetic and magnetometer survey over the Wasi Creek Property for Cross Lake Minerals Ltd. The survey covered an area of 4000 m by 4000 m with 41 east-west lines on 100m spacing and 5 north-south tie lines on 1000 m spacing. A total of 186.8 line km was flown. Details of the survey are set out in an assessment report written for Selkirk titled "Airborne Geophysical Report on the Wasi Creek Property" by Calvin Church.

An interpretation of the airborne data was conducted by Syd Visser of S.J.V. Consultants Ltd. and, in conjunction with property scale mapping, several conductors were identified from the airborne EM survey. Some EM targets located over favourable geologic units in areas of anomalous soil geochemistry represented good drill targets. In June and July 2005 a diamond drill program was completed on the Wasi Creek Property targeting these prospective EM conductors, the results of which are summarized in this report.

REGIONAL GEOLOGY:

The following regional geological description has been compiled from papers in the British Columbia Geological Survey Branch Reports of Geological Fieldwork in 1989 and 1991. The Wasi Creek Property is located in an area that straddles the boundary between the Intermontane and Omineca tectostratigraphic belts of the Canadian Cordillera. The Western Intermontane Superterrane is represented by the Slide Mountain and Quesnel terranes. Together with the eastern autochthonous North American stratigraphy, these rocks form part of a southwest-dipping homoclinal sequence. This sequence has been cut by a series of normal faults, which trend northeasterly. With the exception of the eastern pericratonic strata all of the rocks have been weakly metamorphosed.

The Wasi Creek Property is underlain by the pericratonic North American rocks of primarily carbonates and siliciclastics of miogeoclinal origin. These rocks include the Upper Proterozoic Ingenika Group consisting of impure quartzite, schist, phyllite, limestone, feldspathic wacke and arkosic sandstone. Overlying this Group is the Lower Cambrian to Middle Devonian Atan, Razorback, Echo Lake and Otter Lake Groups. These Groups consist of limestone, dolomite, shale, quartzite, and argillaceous limestone. The Lower Cambrian to Middle Devonian limestone and dolomite host the zinc, lead and silver mineralization on the Wasi Creek Property.

PROPERTY GEOLOGY:

The Wasi Creek Property geology is a compilation from Cross Lake's 2001 exploration work, Cominco's 1990-1995 exploration programs and mapping completed by the British Columbia Geological Survey as described in File Paper 1992-1. The paper is named "Geology of the Usilika Lake Area, Northern Quesnel Trough, B.C.", (94C/3, 4, 6) by F.Ferri, S. Dudka and C. Rees. The geological stratigraphy underlying the property are all Paleozoic in age ranging from Lower Cambrian to Mississippian.

The oldest rock units exposed in the claim area are the Lower Cambrian to Middle Devonian carbonates. The oldest is the Lower Cambrian Mount Kison Formation of the Atan Group. Overlying this unit are the Cambrian and Ordovician Razorback, Middle Ordovician to Lower Devonian Echo Lake Group and Middle Devonian Otter Lakes Group. This entire carbonate package consists of limestone, dolomite, lesser shale, quartzite and argillaceous limestone. The Atan, Razorback, and Echo Lake Groups are host to the mineralization on the Wasi Creek Property. Overlying the carbonates is the Upper Devonian to Lower Mississippian aged Big Creek Group. This Group consists of dark grey to blue grey shales, argillites and minor siltstones and siltite. The next oldest unit, the only major volcanic rock unit observed on the claims, is the Lower Mississippian-aged Dacitic Tuff Unit of the Lay Range Assemblage. This thick unit is only exposed on the northwest side of a major geological structure which is postulated to occur in the valley bottom of Wasi Lake and Wasi Creek. The rest of the Lay Range Assemblage is absent in the Wasi Creek Area.

Across Wasi Creek Valley, on the southeast side of the northeast trending Wasi structure, is the youngest, Pennsylvanian-aged, Mount Howell Formation. This Formation consists of argillite, chert, gabbro and minor basalt, wacke and felsic tuff.

There are numerous carbonate-hosted zinc-lead-silver showings on the Wasi Creek Property but only the main showings, with the largest amount of exploration work will be discussed in this report. Three of the showings, the Duncan, Par and the Weber, that comprise the Par mineralization which was the main focus of Cominco Ltd. are located from south to north over a two kilometre strike length. These showings are located along a fault structure, which may be the conduit of the mineralizing solutions and which strikes at approximately 330 degrees and dips east at 70 degrees. The fault and the three showings are all located on the east side of a major northeast trending structural lineament located along the valley bottom of Wasi Creek and Lake. Cominco Ltd. completed the bulk of their exploration work in this area by completing the airborne and ground surveys, seven excavator trenches and 21 diamond drill holes exploring these mineralized structures. The mineralization is stratabound with most primary features obliterated by deformation. The sulphides consist of sphalerite, galena, pyrite and traces of tetrahedrite and grain size varies from fine grained at the Duncan showing to coarse-grained.

The Carrie 2 showing is located on the west side of the Wasi Valley structure near the northwest edge of the property. The showing was hand trenched, mapped and sampled by Cross Lake Minerals Ltd. during 2001. The mineralization consists of hydrozincite stained, oxidized, disseminated, fine-grained sphalerite, galena and pyrite hosted in brecciated dolomite and limestone with carbonate in-filling of fractures and open space. The trench rock chip channel samples assayed 5.01% Zn, 0.89% Pb and 18 g/t Ag.

2005 DIAMOND DRILLING PROGRAM:

The 2005 exploration program included road reclamation (3.7 km), drill pad construction and seven diamond drill holes totaling 1053.64 m. The objective of the drill program was to test targets indicated by a recent aeromagnetic survey flown one month earlier by Aeroquest Limited. Targets were chosen based on favourable underlying geology, anomalous soil geochemistry and consultations with geophysicists at S.J.V. Consultants Ltd. (Syd Visser). Drill hole locations are shown on Plan Numbers WA-05-03 and WA-05-04. A drill hole record and descriptive drill logs are appended in Section E and individual drill

9

hole cross sections are in Section F of the report. Summaries of the drill hole locations and significant intercepts are set out below in Tables 1 and 2 respectively.

F. Boisvenu Drilling Ltd. of Delta B.C. was contracted to complete the field program which ran between June 18 and July 2, 2005. The drill contractor provided a bulldozer to reclaim access roads and make drill pads. Drill crews and geological personnel were accommodated at the nearby Abitibi Consolidated's Omineca logging camp located 40 km east where the main haul logging road crosses the Osilinka River on the west shore of Williston Lake.

The NQ drill core was logged and split on the Property and the core is covered and stored on pallets along the road on the west side of Wasi Creek at UTM coordinates 6221971N, 373546E. One-half of the core was shipped to Acme Analytical Laboratories Ltd. in Vancouver, B.C. for primary analysis for 36 elements by the ICP-MS procedure. Overlimit results were assayed for Pb and Zn utilizing the ICP-ES procedure. The analytical certificates are appended in Section D.

Table 1: 2005 Drill Hole Summary													
Hole Number	UTM: NAD	83, Zone 10	Elevation	Azimuth	Dip	Length							
ſ	North	East	(m ASL)			(metres)							
WZ-05-01	6 220 392	372 980	1087	-	-90°	102.71							
WZ-05-02	6 220 309	373 339	1066	015°	-60°	201.46							
WZ-05-03	6 221 490	374 595	957	068°	-52°	196.89							
WZ-05-04	6 221 565	374 673	963	075°	-50°	212.13							
WZ-05-05	6 220541	374 527	859	068°	-50°	114.60							
WZ-05-06	6 220 604	374 518	856	070°	-50°	99.06							
WZ-05-07	6 220 701	374 468	838	070°	-51°	126.79							
Total						1053.64							

The diamond drilling program began in late June with the reopening of the Carrie Mountain road that climbs the southeast slopes of the mountain to access drill targets in that area. This area has been the focus of recent soil geochemical surveys by Cross Lake Minerals Ltd. but has received limited subsurface exploration in the form of hand trenching in the past. Drill hole WZ-05-01 targeted an EM conductor near the contact of Road River shales and Sandpile Gp carbonates. The hole did not intersect any significant mineralization nor did it intersect the prospective contact with underlying Rosella Fm carbonates although the pyrite content increased toward the bottom of the hole. Drill hole WZ-05-02

targeted an EM conductor located in Sandpile lithologies and described as high priority by the geophysical consultant. Unfortunately steep terrain prevented constructing a road to drill this target from the preferred location uphill from the target. Clean heterolithic limestone and dolomite breccias with a minor clastic component predominate from the collar to the bottom of the hole. No significant results were returned from core samples which were sparsely mineralized with minor pyrite infilling breccia interstices.

Drill holes WZ-05-03 and WZ-05-04 were designed to test broad shallow airborne EM conductors 200 to 300 m east of the "Main Fault" at the north limit of drill defined Par Horizon mineralization. Coincident ground EM conductors (HLEM) and two nearby showings were discovered in this area by Cominco during exploration programs dating from 1992. Both of these holes intersected thick intervals (60 - 80 m) of variably calcareous black shales and minor argillite probably of lower McDame Gp at the top of the hole. The conductivity of carbonaceous units on this property has been well documented in the past and is clearly the source of the targeted conductors. The holes bottomed in poorly mineralized Sandpile Fm carbonates at depths of about 200 m.

A fence of three holes was drilled approximately 300 m west of the Main Fault and 200 - 400 m south of discovery trench T3. Drill hole WZ-05-05 targeted a weak northwest trending conductor that drill hole 92-14 appears to have intersected 50 m south. Low grade pyrite mineralization is ubiquitous in the upper section of WZ-05-05 where it is hosted by a carbonate breccia consisting of angular fragments of Rosella Fm supported in a variably dolomitized matrix. Minor sphalerite and lesser galena occur as selvages along thin calcite veins except over the short interval of higher grade where sphalerite is seen partially replacing breccia fragments. Two short step-out holes were then completed 50 and 150 m north along this weak conductor and encountered similar grades and styles of mineralization (see Table 2). Drill hole WZ-05-06 encountered the widest zone of mineralization where replacements textures are common from 46 to 60 m depth. The chaotic mineralized breccias are thought to represent debris flow/slump features adjacent to a fault scarp and are typically underlain by a 3 - 7 m thick shale/argillite unit which marks the base of the Rosella. All three holes bottom in pale greenish phyllite/siltstone and limy mudstone beds know as the Transitional Phyllite Unit of Lower Cambrian age.

Table 2: Sig	nificant Inter	sections Fr	om 2005 Program	n		
DRILL HOLE	FROM (m)	TO (m)	INTERVAL (m)	ZINC (%)	LEAD (%)	SILVER (g/t)
WZ-05-5	55.10	56.50	1.40	3.54	0.41	12.1
WZ-05-6	46.10	60.25	14.15	2.10	0.14	9.21
including	53.00	57.50	4.50	3.39	0.14	11.46
WZ-05-7	50.00	51.60	1.60	6.43	0.81	14.3
and	86.00	87.00	1.00	2.55	0.12	7.8

Mineralization intersected in drill holes and trenches takes the form of two basic styles. The first is stratiform high grade lead-zinc-silver-barite such as was discovered in early trenching (Trench 3) in 1991. The second style, and by far the most common, is lower grade lead-zinc-silver disseminated sulphides associated with carbonate breccias. Zinc mineralization consists of fine grained pale sphalerite replacing breccia fragments or disseminated in the limy matrix of the breccia. Galena is usually present in trace amounts. Drill holes in the 2005 program intersected only mineralization of the second type. In a few instances (Trench 7, DDH 92-16) stratiform mineralization is seen in close proximity to breccia mineralization leading to the hypothesis that some or all breccia mineralization originates from stratiform sources through diagenitic processes. This theory would seem to be supported by the high Zn/Pb ratios in breccia style mineralization given that zinc has a higher mobility under low temperature, low energy conditions.

Exploration on the Wasi Property has focused on a possible stratiform lead-zinc deposit with only limited success. Extensive drilling by Cominco on the main Par Horizon has determined that banded high grade sulphide mineralization does occur in a restricted discontinuous zone (200 – 300m) along the "Main Fault" and that lower grade mineralized breccias may be associated with the stratiform mineralization. This does not preclude the discovery of additional high grade stratiform mineralization elsewhere on the property however as mineralized carbonate breccia occurrences are numerous indicating the possibility of multiple bedded sulphide horizons within the stratigraphic section. Mineralized breccias described in drill holes WZ-05-05, WZ-05-06 and WZ-05-07 are an example of such an occurrence and will require further exploration to determine if an economic deposit can be found.

CONCLUSIONS:

 The Wasi Creek Property covers an extensive belt of Lower Cambrian to Middle Devonian limestone and dolomite which is the host to several base metal showings.

- Access to the property is excellent due to the extensive logging that has occurred on and around the claims.
- There are three mineralized showings on the east side of Wasi Creek. The valley bottom of the creek hosts a major geological structure.
- The three showings from south to north, named Duncan, Par and Weber, are all on the same mineralized fault controlled structure which strikes at approximately 330 degrees and dips east at 70 degrees.
- This area was the focus of Cominco Ltd.'s extensive exploration programs from 1990 to 1995. The trenching and drilling intersected the favorable base metal horizon with promising results.
- The Cominco trenching discovered angular float boulders of exceptional grade in zinc, lead and silver of which the source has not been found.
- The British Columbia Geological Survey completed a stream sediment sampling program in the area and the four highest sediment values in base metal elements were collected from drainages in the Wasi Creek Property area.
- The source of three of the stream sediment samples is concluded to have been the known mineralized horizon on the east side of the Wasi Creek structure.
- One of the highest stream sediment samples was collected from a tributary on the west side of Wasi Creek, the opposite side of the Wasi Creek structure near a volcanic tuff unit contact, a favorable geological environment for base metal deposition.
- The source of the stream sediment anomaly has not been discovered and it is upstream and up-ice of the extremely high grade angular massive sulphide boulders discovered in Cominco's trenching program.
- The soil sampling completed in 2004 Phase 2 program confirmed anomalous areas west of Wasi Creek below Carrie Mountain. Geochemical soil anomalies indicate the mineralization could be stratabound mineralized horizon or brecciated unit within Rosella Fm carbonates. The source of the anomaly is from nearby mineralized bedrock or from transported talus directly upslope.
- Several weak EM conductors occur in areas underlain by carbonate breccias far from known contacts and may represent better targets than stronger conductors. One such conductor is located on the south face of Carrie Mountain and another occurs 300m west of the Par Horizon between DDH 92-3 and 92-14.
- Mineralization in DDH WZ-05-05, WZ-05-06 and WZ-05-07 may be indicating nearby high grade stratiform lead-zinc-silver mineralization similar to other mineralized zones on the property.

RECOMMENDATIONS:

The Wasi Creek Property covers a favorable geological environment for the possibility of a discovery of a significant carbonate-hosted zinc-lead-silver deposit. The property covers a large area with targets at different stages of exploration.

An access road should be built to the Carrie 2 showing followed by extensive trenching up and down the slope. Upon verification of the geometry of the mineralization the base metal target should be diamond drilled.

The main two kilometre long Duncan, Par and Weber horizon should be explored on its west side, closer to the structure along the bottom of Wasi Creek valley. A grid should be constructed across the valley and a geophysical survey completed to determine hidden mineralization that may occur beneath the valley fill. There should be drilling completed in a westerly direction under Wasi Creek to test if this Wasi Creek structure is mineralized.

Low grade carbonate breccia mineralization discovered in the 2005 drilling program should be followed up with additional drilling to explore for a stratabound high grade lead-zinc-silver deposit in this area.

Soil geochemical sampling in the 2004 exploration program was successful in lead-zinc mineralization on the southeast slopes of Carrie Mountain. A program of additional soil sampling, prospecting and geological mapping is recommended up-slope from the contour soil lines at the base of the slope (Line W1 and Line W2). This would help delineate the size of the anomalies which should then be trenched.

Additional detailed soil sampling, prospecting is recommended for the area south of the Duncan showing considering the success soil geochemical surveys have had on this property in the past. High Zn/Pb ratios in soil geochemical results could be used to identify possible subsurface carbonate breccia mineralization.

Respectfully submitted,

Calvin Church, P.Geo. OCT 3 1 2005

LIST OF REFERENCES:

Church, C., (2004): Geochemical Sampling Report on the Wasi Creek Property, OSI, OSI 2, OSI 3, TM 2 and TM 3 Mineral Claims, for Cross Lake Minerals Ltd.; NTS 94C/03E; B.C. Assessment Report #27532

Church, C., (2005): Geochemical Sampling Report (2004 Phase 2) on the Wasi Creek Property, Tenure Nos. 511313, 512685 and 512686, for Selkirk Metals Holdings Corp.; NTS 94C/03E; B.C. Assessment Report #_____

Church, C., (2005): Airborne Geophysical Survey Report on the Wasi Creek Property, Tenure Nos. 503533, 511312, 511313, 511316, 512684, 512685 and 512686, for Selkirk Metals Holdings Corp.; NTS 94C/03E; B.C. Assessment Report #_____

Ferri F., Dudka S., Rees C., (1992): Geology of the Usilika Lake Area, Northern Quesnel Trough, B.C. (94C/3, 4, 6). British Columbia Geological Survey Geological Fieldwork 1991, Paper 1992-1.

Ferri F., Dudka S., Rees C., Meldrum D., Willson M., (1992): Geology, Geochemistry and Mineral Occurrences of the Usilika Lake Area, B.C. (94C/3, 4 and 6). British Columbia Geological Survey Open File 1992-11.

Gabrielse, H.: Unpublished GSC Map of the Mesilinka Map Area, 94C.

Mansy, J.L. and Gabrielse, H., (1978): Stratigraphic Terminology and Correlation of Upper Proterozoic Rocks in Omineca and Cassiar Mountains, North-Central B.C., GSC Paper 77-19.

Melville D.M. (1990): Carbonate-Hosted Lead-Zinc Occurrences in the Germansen Landing and End Lake Areas (94C/2, 93N/15). British Columbia Geological Fieldwork Exploration in British Columbia 1989, Pages 193 to 196.

Miller-Tait, J. (January 2002): Geological Report on the Wasi Creek Property, OSI Mineral Claim, for Cross Lake Minerals Ltd.; NTS 94C/3E; B.C. Assessment Report #26,827

Miller-Tait, J. (January 2003): Soil Geochemical Report on the Wasi Creek Property, OSI 2 and 3 Mineral Claims, for Cross Lake Minerals Ltd.; NTS 94C/3E; B.C. Assessment Report #27,032

Roots, E.F., (1954): Geology and Mineral Deposits of the Aiken Lake Map Area, B.C., GSC Memoir 274.

......

STATEMENT OF QUALIFICATIONS:

For: Calvin Church, 1733 Napier Street, Vancouver, B.C. V5L 2N1.

I graduated from the University of British Columbia with a Bachelor of Sciences Degree in Geology (1987);

I have been practicing my profession as a geologist in mineral exploration and mining intermittently since 1987;

I am a registered member in good standing as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia;

The observations, conclusions and recommendations contained in the report are based on field examinations, personal sampling, and the evaluation of results of the exploration programs completed by

Calvin Church, P.Geo.

SECTION B: PROPERTY

WAS	I CREEK		SCHEDULE OF MINERAL CLAIMS										
PROVI	NCE: British	Columbia	CLAIMS: 7	CELLS: 1	34 AREA: 24	417.457 ha							
MININ	G DIVISION	: Omineca	NTS: 94C/03E		BCGS: 094C.00	05,015							
LOCA	TION: on the	south side of the Osilinka	LATITUDE: 56°	7.5'	LONGITUDE:	125° 01'							
River n	ear Wasi Lak	e some 150 km northwest of	UTM NAD 83	ZONE 10	6 221 500N	374 500E							
Macker 43 km	nzie, 200 km n north-northwe	ortheast of Smithers and est of Germansen Landing	PROPERTY INTEREST: Selkirk Metals Holdings Corp. – 100%										
MAP	1:250 000 1:50 000	94C Mesilinka River 94C/03 Uslika Lake	Bard Ventures L	td. – 0%									
	1:20 000 1;20 000	94C005 Conglomerate Mtn. 94C006 Mount Howell											
	1:20 000 1:20 000	94C015 Tenakihi Range 94C016 End Lake											
AGRE	EMENT SUM	MARY:											
Septem may ear	ber 1, 2004: I m a 50% intere	etter Option Agreement between C est in the Property by incurring aggr	cross Lake Minerals	Ltd. and Bard enditures of \$80	Ventures Ltd. wh 00,000 by Decemb	ereby Bard er 31, 2006.							

November 19, 2004: Letter amendment whereby first and second work periods combined.

June 16, 2005: Assignment Agreement between Cross Lake Minerals Ltd. and Selkirk Metals Holdings Corp. whereby Cross Lake assigned a 100% interest in the Wasi Creek Property to Selkirk.

CLAIM S	CLAIM SUMMARY:														
CLAIM NAME	TENURE NUMBER	CELLS/ UNITS	GROSS AREA (hectares)	RECORD DATE (yyyy-mm-dd)	GOOD TO DATE (yyyy-mm-dd)	ANNUAL WORK \$	RECORDED OWNER / REMARKS								
Legacy Claims:		Units		2			-								
OSI	379604	20	500.000	2000-07-25	2005-08-01	4000.00	Converted to 512686								
TM I	386919	1	25.000	2001-05-28	2006-08-01	200.00	Converted to 503533								
TM 2	386920	1	25.000	2001-05-28	2006-08-01	200.00	Converted to 503533								
TM 3	386921	1	25.000	2001-05-28	2006-08-01	200.00	Converted to 503533								
TM 4	386922	1	25.000	2001-05-28	2006-08-01	200.00	Converted to 503533								
TM 5	386923	1	25.000	2001-05-28	2006-08-01	200.00	Converted to 503533								
TM 6	386924	1	25.000	2001-05-28	2006-08-01	200.00	Converted to 503533								
C1	387799	1	25.000	2001-07-01	2006-08-01	200.00	Converted to 512684								
C2	387800	1	25.000	2001-07-01	2006-08-01	200.00	Converted to 511316								
OSI 2	390515	18	450.000	2001-10-19	2005-08-01	3600.00	Converted to 516685								
OSI 3	390516	20	500.000	2001-10-19	2005-08-01	4000.00	Converted to 511313								
MT Onlin	ie:	Cells													
•	503533	17	306.732	2005-01-14	2007-11-01	1226.93	Selkirk Metals Holdings Corp.								
W 1A	511312	14	252.471	2005-04-21	2007-11-01	1009.88									
-	511313	42	758.063	2005-04-21	2007-11-01	3032.25									
-	511316	4	72.151	2005-04-21	2007-11-01	288.60									
	512684	2	36.070	2005-05-16	2007-11-01	144.28									
	512685	17	306.698	2005-05-16	2007-11-01	1226.79									
	512686	38	685.272	2005-05-16	2007-11-01	2741.09	•								
7		134	2417.457			9669.83									

CLAIM BOUNDAR	Y COORDINATES	UTM: NAD 83, ZON	E 10	
Corner No.	Cell ID	Cell Corner	Easting	Northing
1	094C02E070B	NE	376 003.631	6 223 164.687
2	094C02E020C	SE	375 869.890	6 218 528.222
3	094C03H012D	SW	374 314.861	6 218 573.307
4	094C03A092C	SE	374 260.697	6 216 718.756
5	094C03A095C	SW	371 538.227	6 216 799.039
6	094C03H055C	NW	371 718.036	6 222 826.295
7	094C03H054D	NE	373 271.567	6 222 780.246
8	094C03H063B	NW	373 285.236	6 223 243.888
Droparty compare are	numbered in a convence	storting at the NE corner	of the property and pro	conding in a classwice

Property corners are numbered in a sequence starting at the NE corner of the property and proceeding in a clockwise direction.

ASSESSMENT	WORK SUN	MARY:					
Date of Filing (yyyy-mm-dd)	Work Filed S	New Work Applied \$	PAC Credits Applied	PAC Credits Saved	Total PAC Credits	Date of Approval (yyyy-mm-dd)	Event Number
2001-01-24	2000.00	2000.00	0	0	-	2001-01-24	3159811
2002-03-26	Notice to Gi	roup: 11 claims		•		2002-03-26	3177258
2002-03-26	9539.53	9500.00	0	39.53	-	2002-07-31	3177259
2002-09-23	6500.00	5086.76	1413.24	-	-	2003-08-12	3184393
2003-09-09	Notice to G	roup: 11 claims	for Common A	nniversary Date	e	2003-09-09	3199038
2003-09-09	0	0	1506.41	0	-	2003-09-09	3199038
2004-07-29	6402.09	5400.00	-	1002.09	-	2005-04-15	3214539
2005-07-26	55318.20	14073.79	-	41244.41	-		4043345

ŧ

and the second secon

1990 - Colore L. 200

. . . .

 $\gamma \sim 1$

Item	Work Performed	Quantities / Rates	Amount
Diamond Drilling: F. Boisvenu Drilling Ltd.	Mobilization / demobilization NQ2 drilling: Moving, acid tests and extra labour costs Drilling materials, core boxes	1053.64 metres @ \$85.80	\$90,400.20
Project Geologist: Calvin Church, P.Geo. Caledonia Geological Inc.	Drill program supervision, core logging. Period: June 8 – July 2, 2005	20 days @ \$400.00	8,000.00
Field Assistant: Henry Guglielmin	Core handling and splitting: Period: Jun 16-30, 2005	15 days @\$225.00 Misc. expenses	3,375.00 <u>40.00</u> 3,415.00
Transportation: Vancouver to property; onsite transport. Caledonia Geological Inc.	4x4 pickup truck: Period: June 15 to July 3, 2005	3246 km @ \$0.40 Fuel	1,298.40 <u>264.90</u> 1,563.30
Transportation: Abitibi Consolidated	Fuel charges at Omineca Camp	668.4 litres @ \$1.00	668.40
Accommodation and Meals: Abitibi Consolidated	Omineca Camp: Room and board from June 17 – July 3, 2005 for geological and drilling personnel	97 mandays @ \$110 7 meals @ \$20.00	10,670.00 <u>140.00</u> 10,810.00
Accommodation and Meals: Caledonia Geological Inc.	Period: June 16 – July 3, 2005 Meals and hotel accommodation		678.52
Field Supplies: Caledonia Geological Inc.	Building materials for core handling facility, sampling supplies:		1,517.23
Freight: Greyhound Courier Express	Shipments of supplies and drill core		456.19
Analytical Services: Acme Analytical Laboratories Ltd.	ICP-MS 36 element analyses Pb-Zn overlimits	273 samples 24 samples	5,144.12 <u>198.96</u> 5,343.08
Geophysical Consultant: Syd Visser S.J.V. Consultants Ltd.	Review of 2005 airborne EM and Mag survey; recommendation of drill targets	25 hours @ \$95.00	2,375.00
Map Preparation: Mike J. Davies	Base map preparation, data plotting, geological map and drill sections	23 hours @ \$60.00	1,380.00
Project Geologist: Calvin Church, P.Geo. Caledonia Geological Inc.	Data Analysis and Report Preparation:	4 days @ 400.00	1,600.00

SECTION C: EXPENDITURES - Wasi Creek Property-2005 Diamond Drilling Program

20

Printing:	Map reproduction	\$50.00
Total		\$128,256.72
Total Drillng		1,053.64 m
Cost per Metre		\$121.727

Expenditure Apportionment:

1

Claim Tenure No.	Drilling (metres)	% of Total	Expenditure
512685	304.17	28.87	\$37,027.71
512686	749.47	71.13	\$91,229.01
Total	1053.64	100.00	\$128,256.72

411

٠.

Carrier and the second s

SECTION D: ANALYTICAL RESULTS

- 1. Analyses carried out by Acme Analytical Laboratories Ltd. of Vancouver, B.C.
 - Certificate of Analysis #A502943 dated July 15, 2005
 - Certificate of Analysis #A503161 dated July 30, 2005
 - Certificate of Analysis #A503188 dated July 30, 2005
 - Certificate of Analysis #A503161R dated July 30, 2005
 - Certificate of Analysis #A503188 dated July 30, 2005
 - Statement of Analytical Procedures: 2 data sheets

ACME	ANA		AL I	ABO	RAT	ORII	S L	TD.		8	52	C .	HAS	FIN	IGS	ST.	1	Z	וייטכ	SR B	C	V6A	1R6		P	HONI	E (6 (04)2	253-	31	58 1	TAX (50·	53-1	16
A A							., 2 - 1	lei	+ 1-	Mai	GI Hal	IOC	HEN Hol	41C	AL		VAL	YS:	LS দান	CER	TI #	FIC	ATE	1000 - 100 1000 - 100 1000 - 100	D	ane	1							Ą	A
	I						001		1255	W. P	ende	r St	., v	anco	ouve	r BC	V6E	211	Su	Le bmitt	ed b	y: J	im Mi	S ller-	Tait	19e								L	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm p	Mn opm	Fe ¥	As ppm	U ppm	Au ppb	Th ppn p	Sr opm	Cd ppm	Sb ppm	Bi ppm j	V ppm	Ca %	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	Al X	Na Z	к х р	W pm	Hg ppm p	Sc Tl pm ppm	្រះ	Ga Se ppm ppm	Sample kg
278701 278702 278703 278704 278704 278705	37.2 38.7 19.5 31.3 20.8	16.2 20.7 24.8 19.6 47.6	12.8 11.8 18.1 10.4 22.3	110 100 87 164 130	.4 .5 .9 .7 1 <i>.</i> 5	80.9 106.0 53.3 86.5 58.4	8.1 1 9.3 4.7 1 6.4 1 4.4 1	180 86 174 116 107 1	2.55 2.71 4.66 3.80 0.21	24.2 28.6 23.8 30.9 29.4	7.8 7.8 5.1 8.1 5.7	<.5 .5 <.5 .7 <.5	2.01 1.8 1.31 1.11 .91	08 93 74 52 33	13 11 8 14 10	10.0 10.9 12.4 10.1 15.0	.1 <.1 <.1 <.1 <.1	79 1 71 1 56 1 57 1 52 1	2.33 0.91 9.47 6.21 3.42	.113 .098 .052 .075 .058	4 5 4 3	18.4 11.5 12.4 9.1 10.9	1.91 .22 1.66 .18 .18	69 20 49 60 27	.006 .003 .004 .003 .003	3 3 3 2 1	.46 .28 .22 .16 .14	.004 .002 .002 .001 .001	.30 1 .19 .15 1 .13 .12 1	.7 .6 .0 .4	.16 2 .18 1 .18 1 .19 1 .25 1	.6 .6 .9 .4 .9 .4 .6 .5 .3 .4	2.92 3.16 5.55 4.74 >10	2 2.4 1 2.8 1 2.2 1 2.7 1 3.7	3.75 3.50 4.67 3.28 3.90
278706 278707 278708 278709 278710	26.3 24.5 21.3 22.1 22.4	11.3 11.4 18.4 17.3 17.2	3.1 4.2 11.9 11.2 12.8	149 53 18 76 82	.3 .3 .6 .7 .7	65.3 71.3 58.7 55.5 54.9	4.8 1 4.7 2 4.3 1 4.1 1 4.0 1	119 230 195 123 141	1.21 1.01 2.47 2.58 2.59	20.4 18.1 22.6 20.0 18.6	7.0 6.1 6.5 7.3 8.0	<.5 <.5 <.5 <.5 <.5	.9 2 .8 1 1.2 1 1.4 1 1.5 2	12 55 50 95	1.1 .5 .2 1.1 1.1	4.5 4.3 8.3 7.8 6.2	< 1 < 1 < 1 < 1 < 1 < 1	50 2 102 1 41 1 36 1 29 2	1.30 7.55 5.54 8.73 0.31	.056 .053 .122 .142 .098	5 4 5 5	7.0 13.9 12.3 12.4 8.2	.23 1.82 1.37 .31 .73	85 97 71 76 64	.002 .004 .004 .004 .003	1 2 2 1 3	. 15 . 23 . 27 . 24 . 22	.001 .002 .003 .002 .001	.12 .19 1 .20 .18 1 .16	.3 .5 .3 .2 .2	.14 1 .10 1 .10 1 .14 1 .17 1	.5 .3 .8 .4 .4 .5 .6 .4 .7 .4	1.43 1.10 2.93 3.15 2.96	<1 1.9 1 2.0 1 2.1 1 2.3 1 2.0	4.15 3.68 3.87 3.15 4.41
278711 278712 278713 278714 278715	29.4 1.2 2.9 .6 .4	24.1 13.0 16.0 4.7 1.6	8.1 3.2 4.5 1.8 4.5	1259 27 32 12 357	.6 .1 .1 <.1 <.1	76.0 7.6 14.1 2.9 3.9	5.4 2 1.0 2 1.4 2 .3 2 .3 2	227 253 260 244 289	1.40 .34 .49 .20 .21	29.8 3.1 6.3 2.3 1.2	9.0 .8 1.3 .8 .9	<.5 <.5 <.5 <.5	1.4 .8 1.3 .3 .1	97 3 46 52 48 59	30.9 .2 .1 <.1 2.7	8.3 .4 1.5 1.3 1.7	<.1 <.1 <.1 <.1 <.1	63 15 2 17 2 7 2 5 2	9.92 3.06 3.14 4.25 5.18	.113 .032 .043 .019 .008	4 4 1 1	15.1 6.4 7.1 3.0 <1	1.94 10.13 10.16 10.73 11.07	69 37< 138 24< 32<	.003 <.001 .001 <.001 <.001	4 <1 <1 <1 <1	.28 .08 .13 .05 .03	.003 .007 .008 .011 .010<	.19 1 .04 .08 .01 <	.8 1 .1 .1 .1 .1	.06 2 .04 .05 .02 .82	.0 4 .7 .1 .9 .5 .3 .1 .2 < .1	1 45 < 05 < 05 < 05 < 05	1 3.0 <1 2.4 <1 .9 <1 .5 <1 <.5	3.71 2.25 2.89 2.63 .96
278716 278717 278718 278719 278729	4.4 .6 .6 25.8 19.6	9.8 2.3 .6 47.8 28.1	238.5 94.3 7.6 20.2 61.8	1872 75 25 287 364	.3 .1 <.1 .6 .4	6.5 3.2 2.0 55.9 27.2	.5 2 .2 2 .1 2 4.2 1 2.2 2	245 226 262 138 233	.50 .14 .13 1.04 .68	4.1 1.2 .9 18.9 11.7	1.0 .5 .5 7.0 4.7	1.1 <.5 <.5 <.5 <.5	.3 .1 <.1 2.9 1.6	55 1 36 34 83 61	4.8 5 2 1.4 1.7	2.7 .9 .6 6.4 3.1	<.1 <.1 <.1 .1 <.1	92 32 32 951 572	4.75 5.80 5.51 7.25 2.40	.011 .004 .007 .238 .097	1 1 6 3	1.8 <1 <1 10.1 5.5	10.64 11.17 11.32 7.18 9.40	283< 25< 90< 176 121	<.001 <.001 <.001 .003 .001	1 1 1 2 2	.05 .03 .02 .29 .11	.009 .015 .020< .007 .015	.01 < .01 < .01 < .16 .08	.1 1 .1 .1 .4 .2	.85 .07 .06 .27 1 .43	.5 .1 .2 <.1 .1 <.1 .4 .5 .8 .6	13 < 05 06 1.05 61	<1 1.8 <1 .7 <1 .5 1 4.7 <1 2.8	1.56 2.26 1.44 3.81 4.55
278721 V 278722 I 278723 O 278724 N RE 278724	17.9 1.6 15.1 .4 .4	24.5 .9 3.8 .6 1.0	101.0 19.2 13.9 2.0 2.0	258 146 67 24 25	.4 <.1 <.1 <.1 <.1	26.2 3.4 4.3 1.8 1.9	1.6 2 .1 3 .3 3 .1 4 .2 4	208 330 313 448 456	.56 .22 .19 .31 .31	15.8 1.1 3.2 2.0 1.5	7.6 1.0. 1.0 .8 .9	1.2 <.5 1.1 <.5 <.5	1.5 <.1 <.1 <.1	63 44 50 37 37	1.1 .8 .5 .1 .1	3.0 .3 1.4 .3 .2	<.1 <.1 <.1 <.1	74 2 12 2 14 2 3 2 2 2	1.91 5.45 5.05 4.05 4.52	.156 .005 .012 .010 .011	4 1 1 1	8.1 <1 <1 <1 <1	9.46 11.27 11.07 10.64 10.82	101 115< 67< 14< 15<	.002 .001 .001 .001 .001	2 1 1 1 1	.13 .02 .03 .01 .01	.007 .011< .019 .017< .018<	.09 .01 < .01 .01 < .01 <	.3 .1 .3 .1 .1	.31 .17 .11 .03 .03	.8 .8 .1 <.1 .1 .1 .1 <.1 .1 <.1	45 < .05 < .05 .07 .07	<1 3.0 <1 <.5 <1 .7 <1 <.5 <1 <.5	3.60 4.08 3.52 3.80
RRE 278724 278725 278726 278727 278727 278728	.4 .9 .6 1.2 3.3	.6 .9 .7 .8 3.7	1.9 3.8 7.6 13.6 38.5	24 15 22 31 26	<.1 <.1 <.1 <.1 .1	3.0 2.8 3.4 4.6 11.6	.2 4 .1 5 .1 4 .3 2 1.1 2	442 333 426 275 220	.30 .17 .24 .16 .33	1.5 1.4 1.8 .9 3.9	.8 1.2 1.0 4.0 2.9	1.4 <.5 <.5 <.5 <.5	<.1 .1 .1 .7	36 42 37 63 66	.1 <.1 .1 .2	2 6 4 8	<.1 <.1 <.1 <.1	22 132 82 162 342	3.71 3.94 5.09 5.23 2.34	.010 .011 .010 .034 .037	1 1 1 3	<1 1.6 1.1 1.8 5.4	10.38 10.39 11.00 10.94 8.97	13< 178< 63< 231< 307	:.001 :.001 :.001 :.001 :.001	<1 1 <1 1 2	.01 .02 .02 .03 .09	.017< .016 .016 .015 .011	.01 < .01 .01 .01 .01 .04	.1 .1 .1 .1 .3	.04 .02 .02 .08 .09	.1 <.1 .2 <.1 .1 .1 .1 .1 .7 .4	.08 <.05 .07 <.05 .21	<1 <.5 <1 <.5 <1 <.5 <1 <.5 <1 <.5 <1 <.9	3.11 4.15 2.69 3.52
278729 278730 278731 278732 STANDARD DS(2.3 1.8 1.4 1.9 6 11.6	1.3 1.0 1.5 1.0 121.9	7.2 3.7 6.5 3.4 29.7	106 97 37 15 147	.1 <.1 <.1 <.1 .3	6.1 3.8 6.0 4.1 24.6	.5 2 .3 1 .5 2 .5 1 10.4 7	261 176 201 199 718	.17 .14 .24 .15 2.90	2.4 1.8 3.0 1.9 21.6	4.4 3.7 1.5 3.3 6.3	<.5 <.5 <.5 <.5	.4 1 .2 1 .4 .3 1 3.0	.12 .07 .97 .48 .37	9 .6 .3 .1 6.1	6 3 3 4 3 6	<.1 <.1 <.1 <.1 5.0	10 2 7 2 7 1 10 2 57	5.56 1.96 8.37 2.91 .88	.062 .048 .019 .041 .079	3 2 2 2 13	2.7 3.6 4.0 4.8 186.3	10.60 6.91 8.02 9.61 .58	220 150 643 1079< 167	.001 .001 .001 .001 .001 .079	2 2 1 2 17 1	.05 .04 .05 .05 .05	.017 .009 .008 .015 .071	.02 .02 .02 .02 .02 .16 3	.1 .3 .1 .2 .5	.21 .16 .09 .05 .24 3	.3 .2 .3 .1 .4 .2 .4 .1 .5 1.8	< 05 < 05 15 < 05 < 05	<1 .6 <1 <.5 <1 .5 <1 .5 <1 <.5 6 4.6	4.82 4.13 3.93 4.09
GROUP (>) C - SAM Data_	DIX -	15.00 RATION PE: Co) GM S I EXCE bre R1	AMPLI EDS U 50 60	E LEA UPPEI OC	ACHED R LIMI <u>San</u> REC	WITH TS. mples CEIV	90 M SOME begi	IL 2-) E MIN Innin JU	2-2 ERALS 9 'RE N 27	ICL-I S MAY E' ai 2001	1NO3 / BE <u>re Ra</u> 5 1	H2O PART PART	AT (IAL) and E R	95 D LY A d 'R EPC	EG. (TTAC) RE' a	C FOI (ED. are f	R ONE REI Rejec	HOU RACT	ir, Di ory J cuns		ED TO GRAPH		ML, A SAMPL	INALY: Es Ci	SED E AN LI	BY IC	CP-MS AU S	olub)	LIT	i ter	UIBLA (CI			
All re	sults	are co	onside	red	the	confic	lentia	at pr	oper	ty of	the	e cli	ent.	Acr	ne a:	ssume	es th	ne li	abil	ities	for	act	ual co	ost o	f the	ana	lysi	s on	ly					55	

Selkirk Metals Holdings Ltd. FILE # A502943

Page 2

1220

Data

FA

ACRE ARALITICAL																										ACHE ARACTISCA
SAMPLE# N	Mo pom p	Cu pm p	Pb pm p	Zn Ag pm ppm	Ni ppm	Co Mn ppm ppm	Fe %	As U ppm ppm	Au Th ppb ppm	sr Sr	Cd ppm	Sb Bi ppntppnt	V C	a P t t	La ppm	Cr ppm	Mg X	Ba Ti ppm %	B ppm	A1 X	Na i	K W Hi Sppm ppr	g Sc nppmp	TI S opan X	Ga Se ppm ppm	Sample kg
278733 2. 278734 2. 278735 3. 278735 2. 278736 2. 278737 5.	2.8 4 2.5 3 3.8 2 2.4 3 5.0 2	1.2 5 3.5 6 1.7 7 3.8 6 1.3 5	5.2 5.5 7.1 1 5.5 5.5	36 .1 9 .1 77 <.1 60 .1 8 <.1	6.5 9.3 7.2 9.9 7.6	.9 199 1.1 221 .5 267 1.0 222 .7 243	.24 .38 .25 .40 .26	2.2 3.0 3.6 2.6 1.3 3.5 2.8 2.7 1.0 2.6	.5 .6 .7 .8 <.5 .4 .5 .9 .5 .4	5 125 8 89 148 169 417	.2 <.1 .9 .3 <.1	.5 <.1 .7 <.1 1.0 <.1 .8 <.1 .8 <.1	9 21.4 12 23.3 7 22.0 14 21.1 11 25.6	5 .038 2 .032 7 .085 1 .043 5 .035	3 4 2 4 2	6.4 5.7 3.3 5.5 5.0	9.38 10.15 9.47 8.42 11.23	1421 .001 506 .001 364 .001 200 .001 729<.001	1 1 2 2 3	. 13 . 06 . 06 . 07 . 05	.013 .0; .008 .0; .012 .0; .006 .04 .012 .0;	2 .6 .00 3 .2 .04 2 .3 .25 4 .2 .10 2 .5 .00	3 .4 4 .6 5 .4 3 .6 3 .4	.2<.05 .4 .31 .2 .15 .3 .33 .3 .18	<1 < 5 <1 .6 <1 .5 <1 .5 <1 .5	4.95 4.81 4.13 4.97 2.60
278738 2. 278739 5. 278740 5. 278741 7. 278742 1.	1.1 1 5.8 2 0 2 1.1 1 9	5 2 2.6 51 2.3 19 4 2 9 1	4 4 6 5	3 <.1 89 .2 64 .1 6 <.1 5 <.1	5.1 55.2 33.2 3.1 1.9	.4 96 1.1 158 .7 163 .2 167 .2 148	.13 .22 .09 .08 .03	1.3 1.3 49.7 2.8 25.8 3.6 <.5 .5 <.5 .3	<.5 .2 1.8 .1 .5 .1 <.5 .1 <.5 <.1	2116 342 251 111 98	<.1 .4 .3 <,1 <.1	.6 <.1 5.7 <.1 2.8 <.1 .5 <.1 .8 <.1	3 35.1 18 24.8 10 26.3 9 26.3 4 26.5	7 .010 5 .040 5 .103 2 .009 9 .006	3 1 1 1	2.6 2.0 1.3 1.8 <1	3.76 9.76 11.00 11.19 11.67	1712<.001 358<.001 175 .001 81<.001 59<.001	3 1 2 1 2	.03 .02 .02 .01 .01	.009 .07 .013<.01 .018 .01 .012<.01 .013<.01	2 .1 .0 1.5 .3 .6 .1 .3 .0 1<.0	3 .3 5 .1 1 7 .1 1 .1 1 .1 <	.4 .06 3 .25 .4 .06 .1<.05 .1<.05	<1 <.5 <1 1.4 <1 7 <1 .5 <1 <.5	2.83 4.50 4.11 3.65 2.71
278743 S 278744 I 278745 O 278746 N 278746 N 278747 N 1	.8 .3 .2 .5 .3	.7 2 .6 .6 .8 .6 2	2.1 .7 .7 .7 2.0	4 <.1 4 <.1 4 <.1 4 <.1 5 <.1	1.5 1.6 1.7 3.1 4.8	.1 162 .1 143 .1 148 .2 150 .3 156	.04 .03 .03 .06 .10	<.5 .5 <.5 .5 <.5 .4 <.5 .5 .6 1.1	<.5 <.1 <.5 <.1 <.5 <.1 <.5 .1 <.5 .2	100 80 90 82 93	<.1 <.1 <.1 <.1 <.1	.8 <.1 .5 <.1 .7 <.1 .4 <.1 .5 <.1	5 25.4 4 25.6 5 25.2 8 24.9 15 25.5	0 .025 8 .024 8 .024 8 .024 8 .022 5 .046	1 1 2 2 2	<1 1.0 1.2 2.0 3.8	11.26 11.20 10.93 10.78 10.84	82<.001 146<.001 236<.001 55<.001 80<.001	1 1 1 1	.01 .01 .02 .01 .03	.012<.0 .014<.0 .012 .0 .012 .0 .012 .0	1<.0 1<.0 1<.0 1<.0 1 .0 2 .0	L <.1 < L <.1 < L .1 < L .2 < L .3	1<.05 1<.05 1<.05 1<.05 1<.05 .1<.08	<1 <.5 <1 <.5 <1 <.5 <1 <.5 <1 <.5 <1 <.5	3.76 3.37 3.65 3.66 2.64
278748 2. 278749 RE 278749 RRE 278749 278750	2.0 2 .9 .8 .9 1 .3 1	2.0 3 .9 1 .8 1 .8 1	3,4 .1 .0 .2 .9	28 .1 2 <.1 3 <.1 4 <.1 5 <.1	8.0 1.9 2.1 2.4 2.2	.9 214 .2 145 .1 149 .2 142 .2 136	.31 .04 .05 .05 .07	2.7 1.6 <.5 1.0 <.5 1.1 <.5 1.1 <.5 .7	<.5 .5 <.5 .1 <.5 .1 <.5 .1 <.5 .1	5 90 82 82 82 88 76	.2 <.1 <.1 <.1 <.1	1.1 <.1 .2 <.1 .2 <.1 .2 <.1 .2 <.1 .9 <.1	11 24.4 8 26.0 8 27.0 9 25.8 8 24.2	5 .025 0 .021 0 .022 1 .023 9 .040	2 1 1 1 2	5.2 <1 1.4 1.4 3.3	10.32 11.20 11.70 11.09 10.44	53<.001 49<.001 50<.001 45<.001 19<.001	2 2 1 2	.06 .01 .01 .01 .02	.010 .00 .014 .01 .014 .01 .015 .01 .012 .01	3 .3 .0 .1<.0 .1<.0 .1<.0 .1<.0	5 .6 1 .1 < 1 .1 < 1 .1 <	.3 .28 .1<.05 .1 .06 .1 .06 .1<.05	<1 8 <1 5 <1 5 <1 < 5 <1 < 5	4.33 3.15 - 3.60
278751 278752 278753 278754 278755 3	.6 1 .7 .6 1 2.5	8 1 9 5 2 8 11 3 12	6 8 2.3 9 2.8	6 <.1 11 <.1 15 <.1 40 <.1 94 <.1	2.6 4.2 3.3 2.8 5.6	.2 143 .2 201 .2 185 .2 155 .2 145	.07 .12 .11 .06 .08	<.5 1.2 <.5 2.5 <.5 1.0 <.5 1.4 <.5 2.0	<.5 .1 <.5 <.1 <.5 <.1 <.5 <.1 <.5 <.1	60 57 54 79 94	<.1 <.1 <.1 .3 .5	.6 <.1 .3 <.1 .4 <.1 .3 <.1 .4 <.1	8 24.74 10 25.54 7 25.14 15 24.49 13 24.99	4 .067 4 .003 4 .003 9 .010 5 .015	2 <1 <1 1 1	2.2 1.4 1.0 2.0 1.8	10.69 11.09 10.87 10.41 10.17	18<.001 13<.001 12<.001 22<.001 30<.001	1 <1 <1 1 <1	.02 .01 .01 .01 .01	.013 .01 .011<.01 .011<.01 .013<.01 .011<.01	.1<.0 .1<.0 <.1<.0 .1<.0	.1 < <.1 < <.1 < <.1 < <.1 <	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	<1 <.5 <1 <.5 <1 <.5 <1 .7 <1 .9	3.85 3.50 3.82 3.49 2.98
278756 1. STANDARD DS6 11	6 1 5 119	.1 11	.2).0 1	50 <.1 45 .3	2.9 24.6	.2 117 10.6 732	.08 2.87	<.5 1.3 21.8 6.4	<.5 <.1 47.5 3.0	114 42	.2 6.0	.3 <.1 3.5 4.8	9 28,8 57 .8	3 .012 7 .081	<1 14 J	1.4 .85.6	9.39 .58	498<.001 160 .082	1 18	.01 1.93	.008<.01	<.1 .11 3.5 .21	1 < 3.5 1	1.08 .6<.05	<1.8 64.2	3.56

Sample type: Core R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANA	- 	ICAL	LAB	ORA	TOR	IES	LTI).		85	2 E	. HP	STIN	GS S	ST.	Ī	30	UVE	R BC	V	76A	1R6		PHO	ONE	(604	4)25	3-31	58 F	AX (6	04	53-17	16
	90	UT P	CCLE	arc	ea	co.					GE	OCH.	EMIC	AL.	AN	ALY	rsi	S (ERI	'IF	'ICA	TE										Δ	
ĨĽĽ						<u>Crc</u>	88	<u>La</u> 1	<u>.ke</u> 255 v	<u>Mi</u> . Pe	nei nder	<u>al</u> st.,	<u>B PR</u> Vanco	<u>OJE</u> uver	CT BC \	W7 /6E 2	<u>ASI</u> 2V1	l Sub	7il∈ mitte	≥ # d by	A5 :Jin	031 1 Mill	61 er-Ta	it]	Pag	e.	1					ŰĽ	ĨĽ
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppnt	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppb	Th Sm ppm ppm	Cd ppm	Sb ppm	Bi ppm p	V ppm	Ca X	P % J	La opm	Cr ppm	Mg t	Ba ppm	Ti گړ	B	A] X	Na X	K W Xippmi	Hg ppm p	Sc Tl D03 ppm	S X	Ga Se ppm ppm	Sample kg
278757 278758 278759 278760 278761	8.6 9.4 8.6 5.8 4.8	82.8 87.5 47.7 48.7 55.8	10.3 15.7 12.0 16.3 11.5	158 104 82 84 109	.4 .5 .3 .3	43.5 40.4 31.7 30.2 38.7	11.1 11.4 8.3 9.1 11.3	121 2 229 2 343 2 255 2 257 2	2.33 1 2.73 2.01 2.34 2.32	4.1 7.0 6.1 2.5 2.4	3.5 4.7 5.0 3.9 2.9	<.5 <.5 <.5 <.5	4.2 119 3.9 161 3.3 290 3.9 141 3.6 118	1.1 .6 .6 .8	1.2 1.3 1.0 .6 .8	.2 .2 .2 .2 .1	40 42 48 48 60	7.06 8.58 15.22 8.04 6.76	.092 .083 .058 .053 .053	5 5 5 5 5	20.4 20.5 14.5 18.5 17.3	.67 1.25 1.57 1.72 1.34	64 68 190 245 151	.017 .021 .018 .022 .022	8 1 6 1 4 6 1 4	.03 . .08 . .83 . .21 . .90 .	004 005 006 003 002	55 .9 59 .1 46 .5 52 .1 37 <.1	.06 2 .04 2 .04 2 .02 2 .02 2	.3 .2 .2 .2 .0 .1 .2 .2 .0 .1	1.61 1.51 .85 .84 .94	3 2.0 3 2.5 3 1.6 3 1.5 3 1.6	3.65 3.85 4.10 3.92 4.22
278762 278763 278764 278765 278766 278766	5.6 4.6 4.0 9.3 7.4	53.5 71.1 41.9 3.6 3.4	11.2 8.3 7.8 2.9 14.5	86 119 65 10 154	.3 .3 .1 .1	27.9 30.9 20.6 <.1 1.5	8.1 8.6 5.9 .2 .3	201 1 136 2 164 1 288 247	L.89 2.00 L.53 1 .25 .15	8.3 9.9 0.7 9.6 7.5	4.1 4.7 4.7 4.9 18.2	<.5 <.5 <.5 <.5 <.5	3.0 209 4.0 106 2.8 238 .1 296 .2 401	.6 .8 .4 .1 .4	.8 1.0 .8 .7 .6	.1 .1 <.1 <.1	48 41 40 7 26	15.92 9.09 20.48 37.97 39.27	.073 .142 .137 .232 .507	5 5 1 2	10.8 17.1 10.2 1.3 4.3	.87 .71 .57 .39 1.37	144 74 73 653 531	.006 .011 .005 .002 .003	3 8 4 4 <1	.59 . .87 . .47 . .05 . .08 .	002 003 002 001 002	32 1.0 43 .1 28 .9 02 .1 02 .3	.02 1 .04 1 .03 1 .23 .42	.7 .1 .6 .1 .3 .1 .3 .7 .4 1.1	1.09 1.39 1.22 .37 .20	1 1.4 2 2.4 1 1.8 <1 <.5 <1 .8	4.39 4.03 3.84 4.42 3.57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																																	
$ \begin{array}{c} 278767 \\ RE \ 278768 \\ RE \ 27876 \\ RE$																																	
278775 278776 278777 278778 278778 278779	6.2 2.3 2.6 .8 2.1	.5 1.7 1.1 .8 1.2	2.5 17.6 1.7 1.4 11.5	8 7 15 13 8	<.1 <.1 <.1 <.1 <.1	.6 .7 2.3 .8 1.4	.2 <.1 .1 .1 .2	93 184 220 325 213	.03 .15 .12 .14 .12	<.5 <.5 <.5 .5 .6	7.6 1.6 1.6 2.6 2.8	<.5 <.5 <.5 <.5 <.5	<.1 285 <.1 110 <.1 193 <.1 160 .1 184	.2 <.1 .1 <.1 .1	.4 1.0 .7 .2 .6	< 1 < 1 < 1 < 1 < 1	11 3 18 1 35 2 30 2 14 2	38.26 17.74 22.44 24.81 28.61	.346 .068 .030 .055 .071	1 1 2 2 2	2.1 4.1 2.8 1.7 1.7	1.23 5.22 9.15 10.44 8.22	2630 1207< 2879< 662< 968<	002 001 001 001 001 001	2 <1 < 1 1 <1	.02 . .01 . .01 . .02 . .03 .	002 003<. 004<. 006<. 005.	01 .1 01 .2 01 .9 01 .2 01 .2 01 .4	.03 < .02 < .02 .01 < .01 <	.1 .1 .1 <.1 .1 <.1 .1 <.1 .1 <.1	.18 .19 .28 .22 .28	<1 <.5 <1 <.5 <1 <.5 <1 <.5 <1 <.5 <1 <.5	2.05 2.57 2.89 4.03 4.39
278780 278781 1 278782 278783 1 278783 1 278783	.9 2.5 5.7 2.2 3.4	1.0 .7 1.4 1.1 1.1	1.4 6.1 9.3 34.3 7.4	4 13 34 13 107	<.1 <.1 <.1 .1 <.1	1.9 6.1 1.9 2.0 1.7	.2 .2 .2 .1 .3	144 152 202 302 504	.05 .04 .11 .18 .34	<.5 2.0 .7 .7 1.5	2.8 4.2 5.4 5.3 4.0	<.5 <.5 <.5 <.5 <.5	<.1 189 <.1 218 .1 176 <.1 100 .1 153	<.1 .1 .2 .1	.2 .8 .9 .5	<.1 <.1 <.1 <.1	9 2 13 2 16 2 12 1 11 2	25.48 25.18 21.65 17.73 22.53	.070 .093 .140 .123 .097	1 1 2 1 2	2.4 2.8 5.8 2.8 <1	7.41 8.77 8.54 6.39 8.91	670<. 548 3063 2242 680	001 001 001 001 001 001	1 2 <1 1	.02 . .02 . .03 . .02 . .03 .	005 . 007 . 006 . 004<. 006 .	01 .1 01 .5 01 .3 01 .7 01 .6	.01 < .02 < .03 < .02 < .07 <	1 < .1 .1 .1 .1 < .1 .1 < .1 .1 < .1	. 20 . 26 . 28 . 28 . 34	<1 <.5 <1 <.5 <1 <.5 <1 <.5 <1 <.5 <1 <.5	4.38 4.31 4.03 4.11 3.99
278785 1 278786 278787 278787 278788 STANDARD DS6 1	.3.1 .7 .8 1.0 .1.4	.6 .5 .7 1.4 122.4	11.1 1.0 1.0 20.8 29.5	5 10 9 11 151	<.1 <.1 <.1 <.1 .3	2.3 .5 1.3 1.2 25.6	.2 .2 .2 .1 10.9	343 244 338 131 730 2	.19 .18 .32 .05 2.89 2	1.5 <.5 .8 <.5 20.7	4.8 1.1 2.2 1.4 6.7	< 5 < 5 < 5 < 5 47 6	<.1 134 <.1 58 <.1 109 <.1 362 3.1 39	<.1 .1 .1 .1 5.7	.8 .1 .2 .5 3.3	< 1 < 1 < 1 < 1 4 9	9 2 2 1 6 2 5 2 59	23.45 19.01 23.35 27.82 .90	.085 .017 .030 .053 .074	1 <1 1 1 14 1	1.5 4.2 1.2 2.1 84.8	9.75 8.30 9.93 3.48 .59	362<. 201<. 289<. 59<. 163	001 001 001 001 101	<1 <1 < <1 <1 18 1	.01 . .01 . .01 . .07 . .96 .	008<. 007<. 009<. 003<. 074 .	01 .6 01 1.0 01 .4 01 .4 16 3.2	.03 < .03 < .02 < .02 < .24 3	1 <.1 1 <.1 1 <.1 1 <.1 4 1.7	.26 .25 .29 .23 <.05	<1 <.5 <1 <.5 <1 <.5 <1 <.5 <1 <.5 6 4.5	3.76 3.56 3.52 4.23
GROUP 1DX (>) CONCEN - SAMPLE 1 Data	- 15 ITRAT YPE: FA	GM S ION E Core	AMPLE XCEEDS R150	LEAC UPP 60C D	HED ER L	WITH IMIT Samp	90 M S. S Les b	L 2- OME egin VED	2-2 H MINEF ning	ICL-H ALS <u>'RE'</u> JUL 5	MAY are	H2O / BE P/ <u>Reru</u> 5 I	AT 95 D ARTIALL Ins and DATE	EG. (Y ATI L'RRE REP(C FOI FACKI E' aj	R ONI ED. <u>re R</u> e MA	E HO REF ejec ILF	UR, D RACTO t Rer	ILUTE RY AN Uns.	D TO D GF	300 AAPHII 30	ML, / ric s/	ANALYS AMPLES	SED B S CAN	Y IC	P-MS IT A	u sol	UB COL	Clair	STI - L rence	Leon		
All result	s are	e cons	iderec	the the	con	fide	ntial	pro	perty	/ of	the	clier	nt. Acm	ie ass	sume:	s the	e li	abili	ties	for	actua	l cos	t of	the	analy	ysis	only	•					

- -

÷

Cross Lake Minerals PROJECT WASI FILE # A503161

SAMPLE# 5	Mo Cu pora pora	Pb Zn moormoorm	Ag N	li Co Mn more more	Fe As	U DDM	Au Th Sr ppb ppm ppm p	Cd Sb Bi pm ppm ppm	V Ca	P La Xippm	Cr DOM	Mg Ba X ppr	Ti B	A] X	Na K W 13 13 ppm	Hg Sc Tl ppm ppm ppm	S Ga Se S % ppm ppm	Sample kq
278789 278790 278790 278791 278792 278792 278793 6	.7 2.2 9.0 1.5 7.2 .7 5.5 62.9 5.2 38.1	6.4 18 103.2 18 5.9 91 18.7 422 12.6 234	<.1 1. .1 4. <.1 1. 1.5 49. 1.0 35.	3 <.1 253 1 .2 344 9 .1 262 6 11.5 210 4 11.0 293	.11 .8 .16 1.1 .03 .8 2.71 14.9 2.37 5.6	3.3 5.1 6.0 7.7 3.6	2.0 .1 515 .6 .1 283 <.5 <.1 372 <.5 6.6 132 7 <.5 6.7 174 4	.2 .3 <.1 .1 1.0 <.1 .5 .9 <.1 .5 7.9 .2 .2 3.1 .2	11 25.80 13 27.37 11 26.59 155 6.84 87 6.94	.104 1 .101 1 .153 1 .346 7 .171 7	1.9 1.5 1.2 17.0 10.5	8.10 170 10.58 84 10.63 90 1.16 60 2.06 188	.001 4 .001 1 .001 1 .018 10 .009 5	.01 .0 .02 .0 .01 .0 .77 .0 .64 .0	008<.01	.03 <.1 <.1 .03 <.1 .1 .12 <.1 <.1 .16 2.1 .5 .09 2.3 .2	<.05 <1 <.5 <.05 <1 <.5 <.05 <1 <.5 2.66 2 8.4 1.17 2 4.8	4.46 4.25 3.90 4.05 3.03
278794 3 278795 10 278796 21 278797 21 278797 21 278798 2 3	3.5 50.3 0.4 61.9 0 105.2 2 204.7 3.4 71.5	11.0 199 14.2 235 17.4 244 17.0 358 11.9 119	.7 34. .8 49. 1.0 52. 1.4 73. .3 34.	9 10.1 286 7 11.9 271 6 11.0 334 2 10.0 176 5 11.0 229	2.45 4.1 2.48 7.5 2.67 12.2 1.96 16.3 2.52 7.8	2.1 4.2 10.9 15.3 3.1	<.5 6.5 139 2 .7 6.4 143 2 .7 4.7 274 3 <.5 4.4 243 3 .9 4.4 121	.7 2.2 .1 .9 3.1 .2 .0 5.0 .2 .5 5.7 .2 .7 .8 .2	53 5.94 58 6.41 105 12.83 162 12.59 31 8.71	.151 7 .243 7 .380 9 .816 13 .099 6	10.4 12.7 20.9 36.7 16.7	2.01 144 1.71 131 2.29 150 .69 116 1.26 97	.010 4 .013 4 .023 5 .026 6 .004 5	.64 .0 .69 .0 .74 .0 .91 .0 .76 .0	002 .45 <.1	.062.0.2.112.0.2.162.6.3.222.6.3.052.5.1	1.24 2 3.7 1.48 2 3.9 1.43 2 5.7 1.44 3 8.1 1.21 2 2.2	3.29 4.22 3.38 3.49 3.48
RE 278798 0 3 RRE 278798 4 278799 3 278800 4 278801 0 4	3.0 71.5 4.3 66.6 3.1 69.5 4.7 58.2 4.6 57.8	11.6 119 11.6 111 10.0 107 10.0 105 12.1 103	.3 33. .3 31. .3 31. .2 30. .3 25.	6 10.8 224 8 10.5 227 3 10.6 202 5 10.8 160 7 10.4 217	2.45 7.0 2.51 7.2 2.05 5.6 1.90 3.9 1.98 6.9	2.9 3.0 2.4 2.4 2.9	1.1 4.1 114 .6 4.2 115 1.1 4.3 109 1.1 4.5 95 1.1 3.7 234	.6 .7 .2 .6 .7 .2 .5 .6 .1 .5 .7 .2 .7 .8 .1	28 8.46 29 8.69 21 6.89 29 6.11 18 12.57	.095 6 .093 6 .071 6 .076 7 .068 5	15.6 16.0 12.5 12.2 7.6	1.22 85 1.23 98 1.07 145 .75 192 .89 164	.003 2 .004 3 .006 4 .007 4 .006 3	.72 .0 .74 .0 .70 .0 .75 .0 .44 .0	002 .35 1.6 002 .36 .1 002 .46 1.1 002 .46 <.1	.04 2.2 .1 .04 2.4 .1 .03 1.8 .1 .03 1.8 .1 .04 1.6 .1	1.10 2 2.1 1.08 2 1.9 1.09 2 1.8 .91 2 1.9 1.19 1 1.7	- 4.32 2.92 4.61
278802 + 4 278803 5 278804 4 278805 5 278806 54	1.7 38.7 5.0 64.8 1.9 64.2 5.4 7.0 1.2 5.4	8.3 77 8.8 79 9.8 71 2.3 8 4.5 38	.3 18. .7 25. .6 27. .1 1. .1 8.	3 7.5 111 6 8.8 122 7 9.1 95 2 .6 170 4 .6 153	1.38 8.7 1.68 11.2 1.65 17.1 .28 5.0 .34 23.4	3.6 3.4 3.7 14.3 12.5	.8 2.9 140 .9 3.5 113 .6 4.2 115 .8 .5 378 .8 .4 286	.7 8.9 .1 .7 19.2 .1 .5 19.3 .1 .1 2.9 <.1 .3 3.0 <.1	20 16.00 21 13.52 18 13.35 22 36.76 20 38.24	.073 6 .074 6 .089 8 .431 4 .242 3	7.2 8.1 8.6 3.6 3.0	.32 61 .68 77 .23 59 .22 379 .98 424	.002 4 .002 4 .003 4 .003 1 .001 <1	.28 .0 .33 .0 .43 .0 .08 .0 .06 .0	001 .24 .9 001 .26 .1 002 .35 .6 001 .05 .1 001 .03 .2	.11 1.7 .1 .15 1.9 .1 .15 2.0 .2 .07 .8 .1 .29 .7 1.3	1.39 1 1.6 1.56 1 2.1 1.73 1 2.1 .29 <1 .7 .32 <1 .7	3.80 3.33 3.19 4.42 4.70
278807 2 278808 3 278809 1 278810 9 278811 21	2.7 2.4 3.5 2.9 1.1 2.7 9.3 2.3 1.9 2.3	1.4 7 1.6 5 1.5 14 27.9 38 17.4 87	<.1 <. <.1 . <.1 1. .1 2. .1 6.	1 <.1 167 8 .1 163 0 .1 172 8 .1 193 3 .2 172	.11 1.3 .11 3.6 .11 .8 .14 1.9 .17 3.8	11.9 12.2 8.5 14.5 12.3	.6 .2 227 .5 .2 220 .5 .2 145 .5 .4 129 .8 .2 116	.1 .9 <.1 .1 1.0 <.1 .1 1.4 <.1 .3 1.5 <.1 .6 3.2 <.1	13 >40 19 >40 23 36.50 25 29.87 24 23.53	.345 2 .311 2 .363 2 .473 2 .454 2	2.3 2.9 3.2 5.6 5.7	.68 552 .94 640 3.66 657 3.70 2279 4.65 1370	.002 1 .001 <1 .002 <1 .002 1 .002 3	.03 .0 .04 .0 .04 .0 .04 .0 .04 .0	002 .01 <.1 001 .02 .2 003 .01 .1 004 .02 .9 004 .02 .2	.02 .3 .1 .02 .4 .1 .03 .4 <.1 .10 .4 .2 .31 .3 1.0	.08 <1 <.5 .12 <1 <.5 .12 <1 <.5 .22 <1 <.5 .22 <1 <.5 .22 <1 <.5	3.96 4.73 3.55 3.29 3.85
278812 1 278813 19 278814 24 278815 2 278816 15	98 9.8 1.0 4.7 1.0 2.69 5.3 1.1	3.0 24 8.2 16 15.1 15 4.9 28 13.4 64	<.1 . <.1 . <.1 1. <.1 1. <.1 4.	2 .1 172 2 <.1 130 6 <.1 127 3 .2 525 7 .2 470	.03 .5 .03 1.7 .06 7.0 .25 1.4 .28 4.4	5.9 5.4 3.4 2.2 4.2	1.2 <.1 203 <.5 <.1 207 <.5 <.1 210 <.5 <.1 174 .8 .1 119	.3 .5 <.1 .2 1.0 <.1 .2 1.2 <.1 .2 .5 <.1 .4 1.8 <.1	12 38.09 12 39.96 11 37.57 12 26.89 17 26.19	.184 1 .127 1 .084 1 .101 1 .105 2	2.1 1.7 1.3 1.6 1.5	.72 2721 .90 1627 2.45 2285 11.38 424 11.43 602	.001 <1 .001 3 .001 1 .001 4 .001 <1	.01 .0 .01 .0 .01 .0 .02 .0 .02 .0	01<.01 .2 001 .01 .1 003<.01 .2 115 .01 .1 012 .01 .4	.03 .1 <.1 .03 .2 .1 .04 .1 .5 .03 <.1 <.1 .11 <.1 .3	.14 <1 <.5 .23 <1 <.5 .22 <1 <.5 .19 <1 <.5 .31 <1 <.5	3.67 3.64 4.28 3.58 4.02
278817 4 278818 6 278819 278820 STANDARD DS6 12	1.3 3.3 5.0 1.0 .5 1.1 .6 1.7 2.0 126.2	8.2 71 7.3 12 9.6 58 1.6 334 29.0 144	<.1 2. <.1 1. <.1 . <.1 1. .3 24.	4 .2 663 6 .2 414 5 .1 321 5 .1 702 9 10.5 715	.41 .8 .19 .7 .11 <.5 .38 .9 2.88 21.0	5.0 4.8 4.3 2.8 6.6	<pre><.5 <.1 99 <.5 .1 94 < <.5 <.1 135 <.5 <.1 132 2 45.6 3.2 38 5</pre>	.5 .8 <.1 .1 .6 <.1 .4 .3 <.1 .1 .8 <.1 .9 3.5 4.8	13 26.41 11 25.59 13 25.74 11 25.76 57 .87	.156 1 .200 1 .139 1 .164 1 .074 15	2.4 1.9 2.6 1.9 183.9	11.65 780 11.27 844 11.38 224 11.18 617 .59 171	.001 1 .001 1 .001 <1 .001 2 .076 17	.02 .0 .03 .0 .02 .0 .02 .0 1.93 .0	15 .01 .2 14 .01 .2 14<.01 <.1 14<.01 .1 14<.01 .1 173 .18 3.3	.06 .2 .1 .15 .2 .4 .05 .1 <.1 .23 .1 <.1 .22 3.4 1.6	.26 <1 <.5 .24 <1 <.5 .22 <1 <.5 .31 <1 <.5 .06 6 4.1	4.10 3.50 3.56 3.83

Sample type: Core R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🚺 FA

AA

5

÷

÷ UT

Cross Lake Minerals PROJECT WASI FILE # A503161

ACINE ARALYTICAL SAMPLE# Cu Рb Zn Ag Co Mn Fe As U Au Th Sr Cd Sb 8i ۷ Ca Р La Cr Mg Вa Τi 8 AT W Ha Sc T] Мо Ni Na ĸ S Ga Se Sample ĩ 2 2 % DDM z ppm ppm ppm ppm ppm opin opin DOM DDM pob opm ppm ppm ppm ppm ppm % ppm ppm ppm z nga mag mag X ppm DDU ະ ກວດ ກວດ kg. 278821 163.8 7.7 19.5 320 .4 45.9 1.1 224 .73 135.7 36.6 2.1 .3 99 1.8 5.6 <.1 53 26.09 .552 3 5.8 13.24 75 .004 5 .10 .012 .04 .9 .73 .4 7.5 .82 <1 3.934.3 278822 .5 <.1 237 <.5 2.2 <.5 <.1 84 <.1 .1 <.1 9 23.88 .150 1 1.5 12.50 736 .001 .9 1.0 6 <.1 .1 .10 1 .02 .014 .01 .1 .01 .1 <.1 <.05 <1 <.5 3.86 278823 .7 43.2 12 <.1 .1 226 .07 1.7 3.1 <.5 <.1 220 .1 1.4 <.1 8 24.22 .055 1 2.2 8.91 233<.001 1 .01 .008<.01 .5 .02 3.07 12.7 3.3 .1 .1 <.05 <1 <.5 278824 2.1 <.1 246 . 15 1.2 2.3 <.5 <.1 75 .1 .2 <.1 8 22.11 .025 <1 <1 11.80 221<.001 2 .01 .012<.01 .1 .02 <.1 2.53 1.9 .9 1.6 7 < 1 .1 <.05 <1 <.5 278825 .1 232 .10 1.4 1.8 <.5 <.1 81 .1 .3 <.1 4 20.35 .029 1 2.4 10.80 163<.001 1 .01 .013<.01 .6 .03 <.1 3.1.8 2.0 17 <.1 2.4 .1 <.05 <1 <.5 3.84 278826 155.9 3.9 135.6 38 .2 .8 369 .40 19.1 3.6 1.0 <.1 111 .3 9.3 <.1 11 23.21 .027 1.3 12.27 198<.001 .01 .011<.01 .4 .09 <.1 1.0 .31 <1 1.4 2.19 64.0 1 1 1 2.0 12.02 205<.001 RE 278826 161.6 4.0 133.1 38 .2 68.0 .9 359 . 39 20.4 3.7 .9 <.1 114 .2 9.7 <.1 13 22.76 .027 1 .01 .011<.01 .4 .08 <.1 1.0 .31 <1 1.2 1 RRE 278826 164.0 2.8 126.9 41 .2 70.5 1.0 365 .38 21.0 3.5 .9 <.1 117 .3 9.2 < 1 13 22.91 .028 2.0 12.07 213<.001 1 .01 .011<.01 .8 .09 <.1 1.0 . 34 <1 1.4 278827 .21 10.3 2.4 .8 <.1 114 .1 4.1 <.1 10 22.77 .021 1 1.6 12.04 272<.001 2 .01 .011<.01 .2 55.4 2.7 46.6 18 .1 24.8 .3 278 .05 .1 .4 .09 <1 .6 1.81 278828 .3 207.7 2.4 247 .52 69.7 3.9 1.8 <.1 173 1.9 12.2 <.1 20 23.85 .070 1 1.7 11.98 322<.001 223.4 4.8 113.7 285 1 .01 .011<.01 .7 .37 <.1 2.2 .72 <1 1.6 2.89 278829 .6 344 .34 11.3 22.6 <.5 .1 116 .2 7.5 <.1 25 23.78 .328 2 3.8 12.24 213 .002 1.94 46.7 2.9 43.5 28 .1 26.7 1 .04 .014 .01 .3 .12 .1 .6 .17 <1 .9 278830 .6 .1 114 4.4 8.7 <.1 25 24.37 .327 2 2.3 12.39 127.6 6.3 59.3 702 .2 246.3 2.6 399 .87 36.5 17.6 78.002 1 .03 .011 .01 .4 .87 .2 3.6 .94 1 2.1 2.58278831 1296.0 32.9 332.3 4094 1.8 1165.7 17.8 447 1.48 129.8 14.0 1.4 <.1 124 22.1 37.0 <.1 41 23.44 .127 1 1.6 12.08 36 .001 1 .01 .010<.01 1.5 4.45 <.1 12.2 2.14 4 12.7 2.47 278832 1121.4 10.6 205.8 465 1.1 240.6 2.7 226 1.20 92.9 37.7 2.8 .2 173 4.2 30.0 <.1 71 21.78 .451 3 3.5 10.29 38 .003 1 .04 .008 .01 1.0 .97 .2 7.0 1.53 1 7.4 2.61 278833 164.5 26.2 85.4 3282 .8 662.5 13.1 419 .82 59.7 1.9 .8 < 1 89 23.4 13.6 < 1 9 23.00 .017 <1 12.06 1 70<.001 1 .01 .011<.01 .6 3.09 <.1 4.3 1.04 4 7.2 2.81 278834 324.2 3.3 185.4 267 37.2 .4 339 .25 17.1 7.5 <.5 <.1 228 2.2 10.2 <.1 24 21.80 .113 1 1.6 11.43 575 .001 .02 .012<.01 .3 .35 <.1 .8 .19 <1 3.0 2.66 .4 1 278835 2 .7 52.6 18.5 2.9 .1 159 3.7 18.7 <.1 48 22.12 .199 2.8 11.20 451.8 6.5 187.1 447 91.5 2.2 293 .46 168 .002 1 .02 .012 .01 1.2 .65 .1 3.1 .53 <1 3.7 2.06 Ξ 2 278836 1.2 10.2 65 < .13.0 .1 423 .35 2.8 2.7 .5 <.1 116 .4 .6 <.1 10 23.92 .043 1.6 8.20 600<.001 2 .01 .009<.01 <.1 .07 <.1 8.6 .1 .18 <1 .5 3.51 278837 <.5 1.1 <.5 .1 151 .1 .2 <.1 6 26.52 .028 2 <1 56<.001 <1 .01 .003<.01 <.1 .01 <.1 <.1 <.05 <1 <.5 .1 215 .09 3.03 4.15 N .9 .4 2.4 14 <.1 1.19 30.32 .104 2 .2 144 .07 2.3 6.9 <.5 .1 176 .5 1.5 <.1 1.0 4.04 109 .001 278838 19.8 1.6 12.4 53 .1 7.3 1 .02 .003 .01 .3 .09 <.1 .1 <.05 <1 .5 3.98 278839 S .7 <.1 64 68.7 2.1 54.9 14.0 .4 382 .22 4.8 12.5 .3 3.7 <.1 14 23.74 .291 1 1.5 10.10 93.001 4 .02 .010<.01 .5 3.66 46 .1 .08 <.1 .1 <.05 <1 .7 278840 .1 264 1.0 3.3 .5 <.1 97 .5 .8 <.1 8 25.82 .044 1 1.1 9.06 619<.001 <1 .02 .007<.01 .4 .11 <.1 <.05 3.7 1.1 7.8 91 .1 2.4 . 14 <1 <.5 3.39 O 278841 4.7 .9 17.3 36 .1 5.2 .2 323 . 26 2.5 2.8 <.5 .1 140 .1 .7 <.1 7 22.71 .050 1 <1 12.02 657<.001 1 .03 .009<.01 .3 .05 <.1 .1 .17 <1 .5 2.70 Æ 278842 1.5 2.8 .8 <.1 82 .6 .6 <.1 6 19.82 .017 1.9 10.01 2101<.001 1 .01 .006<.01 .9 .14 <.1 5.2 2.8 .2 161 .11 1 .1 .11 <1 <.5 3.46 1.1 3.2 108 < .1.1 90 278843 .7 218 .22 5.8 5.5 < 5 .7 2.3 <.1 20 21.70 .030 1 <1 10,83 861<.001 1 .02 .007<.01 .2 .22 <.1 <1 .6 3.83 34.8 1.9 12.9 160 .1 11.3 .3 .15 278844 .4 <.1 9 27.84 .051 1 1.1 8,63 834<.001 3.82 3.11.0 16.7 32 <.1 3.6 .1 271 .13 .8 4.2 <.5 <.1 122 .2 1 .02 .006<.01 .4 .04 <.1 .1 <.05 <1 <.5 .8 2.3 <.5 <.1 192 .2 1 1 .01 .006<.01 .1 .04 <.1 <.1 .06 278845 33 .1 2.3 .1 219 .11 .4 <.1 7 21.25 .038 <1 7.62 654<.001 <1 <.5 3.73 4.9 .6 6.6 278846 9.2 5 18.6 82 < .1 3.1 .1 313 . 14 .9 3.6 <.5 <.1 173 .7 .8 <.1 5 21.30 .057 1 <1 10.58 306<.001 1 .01 .011<.01 .1 .13 <.1 <.05 <1 <.5 3.61278847 .01 <.5 2.4 <.5 <.1 193 .1 .7 <.1 3 30.70 .034 1 <1 2.39 90<.001 1 <.01 .003<.01 .I .01 <.I <.1 <.05 <I <.5 2.72 6.8 .2 14.2 10 < .1.4 <.1 94 .6 <.5 .1 82 2.6 1.4 <.1 2 277 .1 .7 308 . 36 2.1 4 26.18 .023 1.4 9.61 48 .004 1 .10 .012 .01 .2 .52 .1 <.1 .08 3.62 278848 1.6 3.0 15.7 1.5 <1 <.5 278849 ε <1 10.92 395<.001 2 .03 .013<.01 .2 .05 <.1 <.1 .07 <1 <.5 2.56 .2 268 . 19 1.8 .7 <.5 .1 70 .4 .6 <.1 2 24.02 .007 1 .8 .3 5.6 94 .1 1.1 2 .8 2 24.07 .004 <1 <.5 278850 N .9 1.7 23.1 122 .3 .8 .3 342 . 66 5.8 .8 .1 58 .9 1.7 <.1 1.2 11.78 38 .001 1 .04 .013<.01 .2 .33 .1 .1 .71 4.18 278851 187 .1 285 .23 .7 <.5 <.1 58 1.2 1.3 <.1 1 24.48 .003 2 1.8 12.08 121<.001 1 .02 .010<.01 .4 .22 <.1 <.1 <.05 <1 <.5 3.57 8.0 2.4 .4 .1 .9 .5 .7 1.7 <.1 2 23.12 .003 2 1.8 12.10 120<.001 <1 .01 .009<.01 .2 .27 .1 <.1 .13 <1 .5 2.99 278852 .2 336 . 34 .5 <.5 .1 40 .3 .4 9.3 153 . 1 .5 2.6 STANDARD 11.6 128.8 29.0 145 .3 24.0 10.3 729 2.89 20.7 6.4 45.4 3.0 37 5.7 3.6 4.9 54 .85 .073 14 182.4 .57 161 .075 18 1.85 .074 .16 3.4 .23 3.4 1.8 <.05 6 4.4

Sample type: Core R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA

. 1

¥

Cross Lake Minerals PROJECT WASI FILE # A503161

AUNE AMALTINCA	£.																															
SAMPLE#	Мо ррл	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co Mr ppmippi	າ Fe ຄ %ເ	As ppm	U ppm	Au ppb	Th Sr ppm ppm	Сd ppm	Sb ppm	Bi ppm p	V Ca pm %	P X	La ppm	Cr ppm	Mg X	Ва ррп	Ti %tpp	BA M	1 N %	a X	K ₩ Kippm	Hg ppin	Sc ppm p	71 S 1970 S	i Ga Ippm	Se Sa ppm	umple kg
278853 278854 278855 278856 278856 278857	1.4 .4 1.1 1.0 .9	.8 .9 8.8 2.7 3.8	13.1 14.0 1135.4 206.1 259.2	276 59 2152 550 2011	.2 .2 4.1 .8 1.4	.2 .4 3.7 4.5 6.9	.2 395 .2 465 1.2 450 .5 510 1.2 470	5 .47 5 .58 0 2.73 0 .51 0 1.07	2.2 2.6 23.9 9.6 20.6	.6 1.1 1.1 1.2 1.2	<.5 <.5 .9 <.5 2.3	.1 54 <.1 57 .1 86 .2 83 .3 106	.9 .1 14.4 4.1 12.6	.7 .9 7.4 2.1 4.4	<.1 <.1 <.1 <.1 <.1	1 27.48 3 26.83 5 24.03 5 24.73 3 25.02	.004 .010 .004 .005 .005	2 1 2 2 3	1.7 1 2.0 1 2.0 1 2.8 1 2.9 1	3.92 3.63 2.60 2.84 3.01	76 . 39<. 50<. 25<. 23<.	001 001 001 < 001 < 001 <	1 .0 1 .0 1 .0 1 .0	2 .00 1 .00 3 .01 5 .01 6 .01	7<.0 9<.0 1<.0 6 .0 3 .0	1 .4 1 .3 1 .4 1 .1 1 1.0	.24 .11 4.52 .91 4.36	.1 < <.1 .2 1 .2 .5	.1 .09 .1 .44 .4 3.51 .1 .61 .2 1.64) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	.5 .5 .7 .6	3.73 3.83 2.62 2.52 3.18
278858 278859 278860 278861 278862	.5 2.9 1.0 .6 .3	4.0 13.0 6.0 2.0 4.6	126.1 4198.8 1064.9 118.6 646.3	472 5161 729 303 7859	1.4 11.8 3.5 .7 2.7	3.3 3.5 3.9 1.4 4.3	.6 624 1.4 397 1.1 549 .4 413 .9 339	4 1.34 7 3.88 5 1.96 3 .75 5 1.03	23.0 58.6 34.2 18.2 15.7	1.0 .8 1.0 1.0 .9	.7 2.0 <.5 <.5 <.5	.1 76 .1 94 .1 71 .1 70 .1 60	3.0 30.5 4.6 1.5 51.5	4.4 16.3 6.7 2.1 4.4	<.1 <.1 <.1 <.1 <.1	3 24.67 4 22.49 5 23.63 1 24.29 3 22.63	.004 .003 .003 .003 .002 .002 .004	2 2 2 2 2	1.5 1 1.3 1 1.4 1 1.5 1 1.1 1	2.51 1.50 1.85 1.20 1.59	181<. 30<. 72<. 281<. 91<.	001 < 001 < 001 < 001 < 001 <	1 .0 1 .0 1 .0 1 .0	4 .01 2 .01 2 .01 4 .01 3 .01	2<.0 0<.0 0<.0 2<.0 0<.0	1 .1 1 .5 1 .2 1 .3 1 .1	1.26 11.74 1.87 .50 13.79	.1 <.1 1 .2 .1 .1	.2 1.37 .2 5.67 .4 2.37 .1 .76 .1 1.96	/ <1 / <1 / <1 5 <1 5 <1	.5 .8 .8 .5 .7	4.08 3.71 3.02 3.72 3.82
278863 278864 278865 278865 278866 278867	1.0 3 < 1 .2 2	6.5 1.3 14.5 22.6 3.2	951.1 32.5 479.7> 8288.6> 733.7	5071 207 10000 10000 4043	4.0 .4 7.0 16.6 1.5	9.1 3.7 .8 1.9 .6	1.4 314 .4 40 .1 43 .6 24 .2 19	B 2.12 4 .49 0 .56 9 .98 3 .17	33.9 7.7 4.1 8.1 1.9	1.1 .9 1.2 1 2.1 1 1.8	.9 .6 .3.4 .6.9 .7	.2 86 .1 132 <.1 187 <.1 187 <.1 128 <.1 83	27.9 1.3 287.4 303.1 32.9	7.5 1.3 8.5 17.1 2.1	<.1 <.1 .1 .1 <.1	4 22.40 1 24.64 7 20.70 7 19.89 1 21.90	5 .005 4 .003 3 .002 5 .011 5 .015	2 3 3 3 3	2.1 1 <1 1 1.2 1 <1 1 <1 1	0.62 2.04 2.40 2.19 1.14	20<. 227<, 85<, 57<, 171<,	001 < 001 < 001 < 001 < 001 <	1 .0 1 .0 1 .0 1 .0 1 .0	6 .00 3 .00 2 .00 2 .00 1 .00	9.0 8<.0 7.0 9<.0 7<.0	1 .3 1 .1 1 .1 1 .2 1 .1	9.51 .34 51.07 61.99 7.44	.3 <.1 <.1 <.1 <.1	.4 3.20 .1 .49 .1 3.20 .1 3.20	i <1 <1 3 3 4 <1 <1	.8 <.5 2.1 6.8 .6	3.99 4.45 2.17 1.89 3.14
278868 278869 278870 RE 278870 RRE 278870	.1 2 .2 .2 3	.6 .3 .5 .5 .4	69.5 13.3 6.0 6.1 5.7	892 144 59 56 56	.3 .1 .1 .1	.6 .4 1.1 .3 .6	.1 19 .1 13 .1 8 .1 8 .1 7 .1 8	3 .08 7 .05 0 .04 8 .04 6 .04	<.5 <.5 <.5 .5 <.5	.7 1.4 1.5 1.5 1.5	<.5 <.5 <.5 <.5	<.1 93 <.1 474 .1 837 .1 842 .1 828	6.6 1.1 3 3	.4 .2 .3 .3	<.1 <.1 <.1 <.1 <.1	1 22.20 <1 29.89 <1 34.60 <1 34.70 <1 34.70	3 .004 9 .007 2 .012 5 .012 4 .012	2 2 3 3 3	<1 1 <1 <1 <1 <1 <1	.1.36 5.75 .89 .89 .94	151<. 502<. 302<. 306<. 306<.	001 < 001 < 001 < 001 < 001 <	1 .0 1 .0 1 .0 1 .0	1 .00 1 .00 1 .00 1 .00 1 .00	6<.0 3<.0 1<.0 1<.0 1<.0	1 .1 1 .1 1 .1 1 .1 1.<.1	1.74 .30 .10 .07 .09	<.1 < <.1 < <.1 < <.1 < <.1 <	(.1 .1) (.1 < .0) (.1 .0) (.1 .0) (.1 .1) (.1 .0)) <1 5 <1 7 <1 1 <1 8 <1	<.5 <.5 <.5 <.5	3.50 3.88 4.17 -
278871 278872 278873 278874 278875	.1 .5 .2 .4 .3	.3 .4 .3 .6 1.1	6.9 5.6 5.6 6.7 88.8	63 136 52 26 1528	.1 .1 <.1 .1 .6	.4 .7 .9 3.9 1.3	.1 8 .2 16 .1 21 1.0 19 .2 18	6 .04 1 .12 1 .15 1 .28 5 .11	<.5 .7 .8 1.2 .8	1.5 1.3 1.2 1.6 1.7	<.5 <.5 <.5 .7 1.4	<.1 634 .1 338 .1 256 .2 175 .1 325	.5 1.0 .4 .1 10.4	.2 .2 .1 .4	<.1 <.1 <.1 <.1 <.1	1 34.8 <1 28.2 3 23.8 2 22.3 1 27.9	3 .009 7 .033 0 .015 3 .012 7 .014	1 3 3 3 4	<1 1.1 1.1 1 2.2 1 <1	1.38 7.14 0.60 0.84 7.56	265<. 150<. 100<. 132<. 162<.	001 < 001 < 001 < 001 < 001	1 .0 1 .0 1 .0 2 .1 1 .0	1 .00 3 .00 2 .00 0 .00 5 .00	1<.0 7 .0 8<.0 6 .0 5 .0	1 .1 1 .1 1 .1 2 .1 1 .1	.13 .26 .09 .04 2.46	<.1 < .1 < .1 < .4 <	.1 .0 .1 .1 .1 .1 .1 .3 .1 .2	<pre> <1 </pre>	<.5 <.5 <.5 <.5	3.63 4.27 3.63 4.00 3.89
278876 278877 278878 278879 278880	.4 .3 .1 2.9 1.4	.4 .3 .5 8.4 2.4	12.7 7.1 121.8 993.5 57.0	395 25 772 3295 272	.1 <.1 .3 3.4 1.0	1.8 1.4 1.0 7.8 3.8	.5 20 .2 20 .3 22 2.1 24 1.2 42	6 .22 4 .12 0 .15 1 .82 0 .81	1.5 .6 .8 13.1 9.6	1.1 1.2 .9 2.8 2.3	<.5 <.5 <.5 <.5 <.5	.2 245 .1 190 <.1 177 .7 164 .5 124	2.7 .2 5.0 18.1 1.7	.3 .2 .5 5.8 2.2	<.1 <.1 <.1 .1 <.1	4 23.2 1 22.1 1 23.0 6 23.5 6 23.4	2 .011 3 .013 5 .004 3 .018 5 .015	4 3 2 6 5	1.8 1 <1 <1 1 3.5 1 2.6 1	0.27 9.91 1.17 0.51 0.96	324<. 1327<. 423<. 116<. 171<.	001 001 001 001 001	1 .0 1 .0 1 .0 2 .1 1 .1	7 .00 6 .00 4 .00 1 .00 0 .00	5.0 6.0 5<.0 6.0 7.0	1 .1 1 <.1 1 .1 3 .2 2 .1	.65 .06 1.04 3.58 .38	.4 < <.1 < <.1 < 1.0 .8	1 .20 1 .10 1 .20 .3 1.20 .2 .70	5 <1 5 <1 9 <1 4 <1 0 <1	<.5 <.5 <.5 1.0 _6	3.58 4.41 4.72 4.08 2.74
278881 278882 278883 278884 STANDARD DS6	2.4 .7 .3 .4 11.3	9.4 9.3 14.3 11.1 126.9	141.1 9.2 8.2 15.1 29.2	1073 12 18 12 12 147	1.3 .1 <.1 <.1 .3	8.4 14.4 21.9 15.3 25.4	3.4 32 8.6 65 12.1 51 9.3 67 10.6 72	6 1.48 3 1.87 9 1.91 9 1.86 0 2.82	26.5 30.0 6.6 13.8 20.9	5.2 3.2 1.4 .9 6.3 5	<.5 4.3 3.7 1.8 52.2	1.6 161 7.9 151 10.6 128 8.4 133 2.9 37	5.6 .1 <.1 <.1 5.9	2.5 .6 .5 3.5	.1 .1 .2 .1 4.9	8 22.3 1 15.7 1 9.9 1 10.1 58 .8	9 .076 3 .182 3 .103 5 .085 7 .077	6 8 18 10 15	3.6 3.1 3.2 3.6 188.1	8.01 .55 .47 .85 .58	81 . 73 . 72 . 177 . 167 .	001 002 002 002 002 080 1	1 .1 3 .4 3 .4 2 .9 7 1.8	9.00 0.00 2.00 7.00 5.07	5.0 3.2 3.2 3.2 2.1	6 .1 0 .4 8 <.1 7 .5 6 3.6	1.08 .02 .01 <.01 .23	1.3 1.8 1.5 1.6 3.3 1	.2 1.8 .1 1.49 .1 1.4 .1 .70	1 1 7 1 7 1 5 6	.8 <.5 <.5 <.5 4.4	2.83 2.60 4.78 4.28 -

Sample type: Core R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖡 FA

Cross Lake Minerals PROJECT WASI FILE # A503161

P																																			
Sample#	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	Ti	В	Al	Na	κ ι	N Ho	J Sc	τı	S	Ga Se	Sample
8	ppm	ppm	ppm	ppm	ррт	ррт	ppm	ppm	ĩ	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ррт	*	2	ppm	ppm	ž	ppm	≵ pr	хл: 	2	2	2 ppr	n ppn	i ppm	ppm	<u> </u>	por add	kg
278885 278886 278887 278888 278888 278889	6 4 3 6 7	5.0 1.5 1.1 2.1 11.7	11.8 27.3 28.5 66.6 670.1	16 280 85 677 260	.2 .4 .5 1.3 6.3	9.5 1.9 2.8 4.3 12.2	6.4 .5 .4 1.1 2.4	1417 393 406 391 399	1.98 .46 .48 .84 6.73	113.3 9.2 8.5 20.0 92.1	.7 8 1 0 8 1 1	30.2 1.0 <.5 <.5 2.8	6.2 .4 .2 .3	282 70 69 68 62	<.1 1.6 .5 4.4 1.8	.7 1.0 1.2 3.0 16.0	.1 <.1 <.1 <.1 .1	2 1 5 2 4 2 3 2 4 2	4.54 4.65 5.44 4.15 1.09	.094 .005 .003 .006 .006	9 2 3 2	4.7 1.6 2.0 1.8 2.6	.58 12.14 12.69 12.46 11.20	150 212 65<. 95<. 10<.	001 001 001 < 001 001	3. 2. 1. 2. 1.	25 .0 07 .0 06 .0 10 .0 11 .0)02 .)15 .)15 .)17 .)12 .	27 1.4 03 .2 01 .3 01 .2 01 .4	4 <.01 2 .75 3 .28 2 1.76 5 4.30	1.9 , .4 , .4 , .3 , .5	.1 .1 .2 1.2	.52 .45 .56 1.11 7.86	1 <.5 <1 <.5 <1 <.5 <1 <.5 <1 <.5 <1 .7	4.37 2.86 3.85 1.26 1.44
278890 278891 278892 278893 278893 278894 0	.3 .6 .3 .3 .2	1.4 2.1 1.1 13.2 2.8	40.9 60.0 26.1 1878.3 277.9	297 230 127 >10000 4098	.6 1.0 .5 7.5 1.7	2.7 4.1 3.1 10.5 3.2	.6 1.0 .5 1.5 .5	387 363 316 344 326	56 74 47 2.96 .68	11.7 15.9 7.4 45.5 12.5	.7 1.1 2.4 1.0 1.0	<.5 <.5 <.5 8.9 1.1	.2 .2 .2 .2 .1	87 94 81 67 59	2.0 1.4 .7 106.6 22.8	1.5 2.5 1.0 9.9 2.2	<.1 <.1 <.1 <.1 <.1	4 2 4 2 3 2 2 2 2 2	7.01 4.27 3.75 1.79 4.37	.005 .008 .005 .003 .007	3 2 2 3 3	1.8 2.0 1.2 <1 <1	12.96 11.53 12.05 11.59 12.89	540<. 113<. 294<. 23<. 244<.	001 001 001 001 001 <	1 . 1 . 1 . 1 . 1 . 1 . 1 .	08 .0 09 .0 06 .0 03 .0 03 .0)18 .)14 .)13 .)10 .)14 .	01 .2 01 .3 01 .3 01 .4 01 .3	2 .78 3 .70 3 .46 4 42.22 1 7.66	.2 .4 .3 .4 .4	.1 .2 .4 .2 .2	.56 .90 .65 5.59 1.27	<1 <.5 <1 <.5 <1 <.5 1 1.2 <1 .5	4.04 4.15 2.77 3.85 3.24
278895 278896 278897 278897 278898 RE 278898 RE 278898	.4 .6 .9 .6	12.4 7.8 6.9 7.5 7.8	2608.7 598.4 674.7 431.8 434.1	>10000 >10000 >10000 >10000 >10000	8.2 4.8 4.6 4.0 4.0	4.8 4.7 6.9 5.2 4.8	1.2 1.2 1.8 1.2 1.2	338 343 329 369 378	2.23 1.70 2.35 1.54 1.56	25.8 19.6 25.8 25.7 26.9	1.5 1.6 1.9 1.5 1.5	3.4 2.2 3.2 3.0 2.5	.3 .4 .2 .2	102 94 100 76 75	145.4 87.9 95.3 61.1 61.6	11.7 6.4 5.7 7.0 6.9	<.1 <.1 <.1 <.1 <.1	5 2 4 2 4 2 3 2 2 2	2.48 3.79 2.00 3.02 3.27	.028 .032 .031 .018 .018	7 7 6 5 5	1.4 1.6 1.4 1.1 1.4	11.73 12.36 11.48 12.11 12.25	40<. 66<. 47<. 52<. 51<.	001 001 < 001 001 < 001	2 . 1 . 1 . 1 . 1 .	04 0 05 0 06 0 05 0 05 0)09 .)11 .)09 .)10 .)10 .	02 .2 02 .1 03 .1 02 .2 02 .2	2 47.07 1 26.10 1 33.05 2 18.56 2 18.44	.7 .9 .6 .3 .3	.6 .5 .6 .6 .6 .6	4.91 3.24 3.92 2.73 2.76	1 1.0 1 .8 1 .8 <1 .5 <1 .9	1.00 2.32 2.71 2.73
RRE 278898 278899 278900 278901 278902	.5 .4 .3 .5 .7	8.8 6.0 23.7 17.1 19.9	437.3 517.8 3118.2 1400.4 1439.6	>10000 8778 >10000 >10000 >10000	4.3 3.7 16.5 11.6 13.3	5.4 8.2 10.9 7.2 9.1	1.3 1.3 2.0 1.7 2.4	361 346 290 327 305	1.59 1.53 5.62 4.37 4.17	26.5 29.5 75.7 50.3 50.3	1.5 1.4 1.2 1.7 2.0	2.8 2.8 10.0 5.7 3.6	.2 .2 .3 .5	78 74 70 90 99	66.0 41.9 203.1 198.9 206.2	7.3 6.3 24.3 16.7 17.0	<.1 <.1 <.1 <.1 <.1	3 2 2 2 2 1 3 2 4 2	3.39 4.43 9.24 1.74 0.67	.021 .012 .011 .023 .031	5 6 5 6	1.2 <1 <1 1.5 2.5	12.37 13.06 10.41 11.29 10.51	51<. 29<. 18<. 27<. 19 .	001 001 001 < 001 < 001	1 . 1 . 1 . 1 . 1 .	04 .0 04 .0 02 .0 05 .0 08 .0)10 .)11 .)08 .)09 .	02 .1 02 .2 01 .2 02 .4 03 .1	19.86 213.78 272.98 463.58 68.89	.3 .3 .3 .6 .7	.6 3 .5 2 1.0 9 1.2 7 1.4 8	3.01 2.76 9.05 7.47 5.89	<1 .6 <1 <.5 2 <.5 2 <.5 2 .7	2.50 3.05 3.09 1.51
278903 278904 278905 278906 278907	.5 .5 .7 .6 1.2	12.5 18.7 19.9 16.2 17.8	558.9 1124.8 5465.1 1191.7 1190.6	>10000 >10000 >10000 >10000 >10000	5.7 11.1 29.8 7.8 10.3	5.0 6.8 9.1 6.2 10.3	1.2 1.7 2.0 1.6 2.0	318 300 322 323 289	1.68 3.39 3.82 2.95 3.80	25.9 53.2 66.0 39.6 67.9	1.4 1.6 1.9 1.7 1.9	1.8 2.8 2.4 2.8 2.7	.4 .5 .5	78 94 97 98 97	157.3 198.0 105.7 97.1 90.5	8.3 14.9 37.7 13.8 15.0	<.1 <.1 <.1 <.1 .1	4 2 5 2 5 2 3 2 6 2	2.86 0.66 2.45 1.86 0.51	.015 .026 .023 .023 .023 .026	4 6 5 6	1.7 2.0 2.7 1.8 3.1	12.06 10.67 11.70 11.19 10.39	22<. 27<. 30<. 33<. 36<.	001 001 001 001 001 001	1 . 1 . 1 . 1 . 1 .	05 .0 05 .0 05 .0 05 .0 06 .0 07 .0	111 . 109 . 110 . 110 .	02 .2 02 .1 03 .3 03 .1 04 .9	2 43.92 61.42 3 35.15 32.28 5 28.41	.5 .8 1.1 .9	.7 3 1.2 6 1.8 6 .9 4 2.4 6	3.46 5.09 5.12 4.92 5.04	1 .7 1 .9 1 1.3 <1 1.0 <1 .8	2.23 2.84 2.68 2.50 1.70
278908 278909 278910 278911 278912	1.5 2.4 3.9 8.6 7.9	6.9 12.9 10.8 18.1 20.6	423.4 509.3 243.8 302.6 129.5	7400 9637 3199 7161 914	4.0 4.5 3.2 4.1 2.7	8.0 9.9 11.0 19.1 28.7	1.8 2.5 3.2 4.8 6.4	468 331 368 267 146	1.93 2.02 1.75 2.28 1.86	32.1 40.7 40.2 55.0 50.3	2.0 2.9 4.3 6.5 13.8	1.3 < 5 < 5 < 5 < 5	.5 1.0 1.2 2.3 5.3	92 118 166 223 309	45.8 61.3 19.6 43.8 5.7	6.8 9.6 7.9 9.9 9.4	<.1 <.1 .1 .2	5 2 8 2 7 2 8 2 23 2	2.43 1.69 3.61 2.92 1.18	.023 .038 .052 .115 .315	5 6 7 8 14	3.4 4.4 4.9 7.0 8.7	11.40 10.66 9.80 6.51 2.98	22<. 53 . 84 . 61 . 45 .	001 < 001 < 001 001 003	1 . 1 . 1 . 1 . 3 .	07 .0 09 .0 12 .0 18 .0 30 .0	10 . 08 . 06 . 06 .	03 .1 04 .2 07 .1 12 .4 18 .1	12.81 17.98 4.76 11.10	1.0 1.6 1.4 1.4 1.3	.8 2 1.1 3 1.1 2 2.1 3 1.1 2	2.53 3.04 2.25 3.24 2.22	<1 .5 <1 1.1 <1 1.2 1 1.7 1 2.9	2.81 3.40 4.20 2.48 2.60
278913 278914 278915 278916 STANDARD DS6	7.1 12.3 2.2 2.4 11.5	17.5 30.6 23.8 38.6 126.5	105.3 19.8 16.2 22.1 29.3	456 64 66 104 144	2.7 .3 .1 .2 .3	26.1 29.5 22.9 33.0 23.9	5.7 9.9 8.3 14.3 10.6	130 192 435 226 726	1.62 2.42 1.98 3.00 2.86	49.7 36.4 9.6 9.0 21.7	13.2 8.8 12.0 4.1 6.2	<.5 <.5 <.5 .8 46.6	6.1 7.1 8.1 12.3 3.0	355 212 231 52 38	2.6 .3 .2 .2 6.0	9.0 2.4 1.6 1.5 3.6	.1 .2 .2 .2 4.8	22 2 12 1 8 1 7 57	5.75 9.26 9.55 4.84 .88	.357 .348 .518 .115 .077	17 13 21 31 15 1	9.5 6.9 6.0 5.2 186.3	1.30 .53 .54 .47 .58	38 . 33 . 37 . 28 . 169 .	003 002 004 001 076 1	3 2 3 2 6 1.	33 .0 46 .0 48 .0 53 .0 88 .0	04 . 04 . 05 . 03 . 77 .	23 .5 21 .1 34 .2 24 <.1 16 <u>3.6</u>	49 25 15 13 21	1.4 2.0 1.9 1.6 3.4	1.2 1 .4 2 .2 1 .2 2 1.6 <	1.96 2.70 1.48 2.14 4.05	1 2.6 1 1.0 1 .5 1 <.5 6 4.6	2.69 3.31 2.61 2.74

Sample type: Core R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data 💾 FA

4.

į.

-1

ACHE ANALYTICAL						c	'ro	ទទ	La	ke	Mi:	ner	als	P	ROJ	JEC	CT	WI	ASI	F	TLE	C #	A5	503	161	L					P	age	е 6	5		ACHE ANU	
SAMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppr	o Mr n ppa	n Fe n Xa	As ppr	U ppm	Au ppb	Th ppm g	Sr ppm j	Cd ppm p	Sb opm p	Bi ppn p	۷ mq	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	8 ppm	41 لا	Na X	K X j	₩ ppnn p	Hg >pm p	Sc pm p	T1 pm	S % p	Ga Se pm ppm	Samp1	e g
278917 278918 STANDARD \$56	2.5 .5 11.4	16.2 10.4 128.0	11.5 12.6 28.3	37 27 146	.1 <.1 .3	19.4 20.6 24.9	14.0 9.7 10.0) 858 7 860 5 720	3 2.32) 1.78) 2.86	16.0 2.0 20.9	9.7 1.9 6.4	.8 1.6 44.4	6.8 2 10.8 2 3.2	256 200 42	.1 2 <.1 5.8 3	2.9 .6 3.5 4	.2 .2 4.8	6 5 58	23.17 15.94 .88	.266 .140 .075	20 25 16 1	3.9 5.2 185.4	.46 .42 .58	32 48 168	.003 .002 .091	2 2 17 1	. 35 . 51 . 93	.004 .004 .075	. 22 . 31 . 16 . 3	.1 . .3 . 3.4 .	08 2 04 1 23 3	2.3 8 3.5 1	.4 1 .1 .6 <	.40 .67 .05	1 <.5 1 <.5 6 4.4	2.7 3.8	76 13 -
00-50				Sam	ole_t	ype:	Core	<u>e R1</u>	50 <u>60C</u>	. <u></u>			••••						-																		
						•																															

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

and the state of the state of the second second

ł

1

٦Ì

A	CME	AN (TS		TCAL	LABO	RAT	ORI	ES LTI).	8!	52 1	в. н	AST.	ING	s s	T.	ī	20	UVE	R BC	۷	'6A	LR6		PHOI	IE (6	04)2	253-	315	58 F2	XX (6	0 .	53	-17	16	
											GE	IOCI	IEM	I CA	L.	AN	ALY	SI	SC	ERI	TF	ICA	TE											A	A	
									<u>Cro</u> 1255	8 <u>8</u> V. F	Lak ^{Pende}	r St.	<u>line</u> , Var	era ncou	uls ver I] BC V	Fil 6E 2	е v1	# 7 Sub	1502 mitte	318 d by	8 : Jin	Pa Mili	ge er-Tai	t t	rfal Alfred Alfred Alfred								T	T	
SAMPLE#		Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co Mr ppnippn	n Fe	As ppr	s U appra	Au ppb	Th S ppn p	Sr pm	Cđ ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X pp	3 A1 n %	Na X	K X	W ppm	Hg ppm	Sc ppm p	דז התא	S X	Ga ppm p	Se Sa pm	mple kg
278919 278920 278921 278922 278922 278923		.5 .8 .7 .5 .8	3.8 2.1 8.4 3.6 2.6	46.6 11.9 2146.5 52.2 22.8	234 11 970 39 23	6 .3 6.1 4 .3	3.1 2.8 3.6 1.7 2.7	.7 355 .6 414 1.7 534 .5 600 .8 358	5 .64 58 3.00 1.26 3 .61	7.7 4.6 45.4 17.5 8.6	/ .8 5 1.2 4 1.4 5 1.0 5 .9	1.1 .8 1.7 .7 .7	.3 8 .4 9 .4 6 .3 6 .4 8	83 59 63 63 82	1.6 .1 8.5 .4 .1	1.3 .9 9.2 2.2 1.4	.1 <.1 <.1 <.1 <.1	3 3 3 3 3 3 3	24.40 23.16 24.53 22.42 23.57	.006 .006 .007 .008 .008	2 2 4 3 3	2.8 2.9 2.7 2.0 2.6	11.77 12.06 12.89 11.55 12.20	404<.(40<.(19<.(20<.(18<.(01 01 < 01 < 01 < 01 <	1 .09 1 .08 1 .06 1 .05 1 .08	0.017 .019 .018 .018 .016 .017	.02 .02 .02 .02 .02	.1 .2 .3 .2 .2	.68 .06 4.14 .16 .04	.5 .5 .6 .4 .6	.2 .1 .5 .3 .2	.74 .42 4.85 1.34 .70	<1 < <1 < <1 < <1 < <1 < <1 < <1 <	5 5 5 5 5 5	4.19 2.32 1.87 4.01 4.17
278924 278925 278926 278927 278928	ε	2 7 9 1.2 9	1.6 1.6 2.6 3.4 3.7	6.4 9.4 14.8 28.8 345.4	9 8 5 7 448	.2 .1 .3 .4 1.6	.9 2.8 2.3 4.6 6.8	.2 347 .6 362 .6 452 1.2 339 1.4 924	2 .39 2 .46 2 .76 9 .75 4 1.56	3.3 4.5 7.0 14.5 21.9	3 .5 5 .9 1.0 5 .9 1.1	<.5 <.5 <.5 <.8	.1 .3 .7 .9 .4	54 59 59 72 86	.1 .1 .1 2.9	.7 .7 1.4 2.2 3.0	<.1 <.1 <.1 <.1 <.1	2 5 4 5	23.52 24.02 24.38 24.04 24.30	.003 .006 .010 .013 .009	1 2 3 5 4	1.5 2.3 3.1 4.9 2.7	12.35 12.62 12.59 12.46 12.50	7<.(8<.(11<.(24<.(23<.(01 < 01 < 01 < 01 < 01 <	L .05 L .07 L .09 L .11 L .10	.017 .020 .024 .023 .016	.01 .02 .02 .04 .03	.1 .6 .2 .3 7.0	.02 .03 .01 .07 1.15	.2 .4 .7 1.0 .6	.1 .1 .4 .3	.36 .41 .71 1.07 1.81	<1 < <1 < <1 < <1 < <1 <	.5 .5 .5 .5	3.18 2.85 2.52 2.17 3.96
278929 278930 278931 278932 278932 278933	2-05-0	.5 .6 1.3 2.3	6.5 4.3 10.9 14.9 16.8	267.0 31.9 1203.1 2848.6 1910.2	5700 247 6548 >10000 >10000	1.8 .3 6.3 11.8 6.2	12.9 8.7 11.8 14.2 12.7	2.0 631 2.1 406 5.0 467 4.4 532 3.8 824	1.75 .91 4.00 6.58 6.28	32.3 17.8 55.9 91.1 90.8	3 1.0 3 1.0 3 3.0 1 2.3 3 2.4	1.3 1.2 1.3 4.6 .9	.8 9 1.4 12 .6 10 .5 9 .7 10	97 3 25 02 4 99 9 04 6	30.4 2.0 17.2 98.8 53.3	4.6 2.7 10.2 17.5 16.3	.1 .1 <.1 .1 <.1	4 5 5 5	23.53 24.13 22.18 23.95 22.39	.024 .045 .029 .020 .014	5 5 4 4	3.5 6.4 3.2 3.3 2.9	12.12 12.39 11.29 12.68 11.07	24<.(85<.(21<.(26<.(27<.(01 < 01 < 01 01 01 01	L .10 L .13 L .09 L .08 L .06	.020 .028 .019 .016 .011	.04 .07 .03 .03 .03	2.9 .3 .3 .6 .2	15.53 .60 18.09 40.17 26.00	1.2 1.4 .9 1 .8 2 .8 2	.5 .6 .3 2.2 2.1	3.33 1.18 7.53 9.68 9.41	<1 < <1 < <1 < 1 < 1 <	.5 .5 .5 .5	3.02 2.61 2.91 3.38 3.03
278934 278935 278936 278937 278938	Ц Ц	.5 .7 .3 .4	83.0 2.9 4.1 4.5 6.9	>10000 100.5 444.9 101.4 127.6	>10000 2518 5550 6027 >10000	46.4 1.1 1.9 2.0 1.5	27.2 2.1 2.1 3.3 3.3	6.1 208 .5 695 .4 457 .4 488 .4 356	3 16.51 5 1.06 7 .52 8 .68 5 .98	190.5 13.4 10.5 10.8 13.2	5 1.4 1.7 5 1.1 3 1.7 2 1.0	5.1 <.5 <.5 4.4 2.7	<.1 (.2.9 .1.6 .1 11 <.1 (54 57 54 1 52 4 17 3 51 8	75.9 18.9 11.1 39.7 32.7	72.2 2.1 2.6 2.9 2.1	.2 <.1 <.1 <.1 <.1	10 2 1 3 2	9.45 24.19 24.55 23.99 23.17	.012 .007 .005 .007 .005	1 2 2 2 2	1.3 1.1 <1 1.0 <1	5.41 12.52 12.92 12.49 12.00	8<.(14<.(17<.(50<.(11<.(01 < 01 < 01 < 01 < 01 <	L .03 L .03 L .03 L .04 L .02	.006 .016 .014 .013 .014	.01 .01 .01 .01 .01	.7 .2 .2 .3	>100 7.62 11.42 11.50 21.56	<.17 .4 .2 .4 .3	.7 .3 .1 .1 .2	>10 1.04 1.09 1.42 2.60	6 < <1 < <1 < 1 < 1 <	.5 .5 .5 .5	1.71 1.74 3.28 2.47 3.10
278939 278940 278941 278942 278943		.3 1.0 .7 .6 .1	8.5 6.8 12.3 4.5 2.9	153.6 342.1 3094.6 195.2 61.6	4538 >10000 >10000 4961 1904	1.5 1.7 9.2 1.5 1.3	3.2 1.6 9.3 2.3 6.7	.5 268 .4 298 1.1 354 .3 340 .8 414	3 1.04 3 .62 4 1.37 0 .51 4 1.28	12 3 7 7 23 0 8 3 27 9	3 1.0 7 1.1 9 1.9 8 1.6 9 1.7	<.5 1.4 11.9 2.4 2.0	<.1 (<.1 7 <.1 7 <.1 7 <.1 7	58 2 76 9 75 10 57 3 49 1	29.6 91.9 97.7 15.4 1.5	4.4 2.0 12.0 2.1 1.9	<.1 <.1 <.1 <.1 <.1	3 2 3 3 2	23.58 25.77 24.34 24.37 24.21	.004 .002 .002 .001 .001	2 2 1 2 1	1.0 <1 <1 <1 <1	12.39 13.79 12.20 12.63 12.73	9<.0 10<.0 21<.0 14<.0 9<.0	01 1 01 1 01 4 01 < 01 <	.02 .02 .03 .03 .02	.017 .017 .013 .012 .012	.01 .01 <.01 <.01 <.01	.2 .2 .3 .3	8.45 21.32 23.54 8.68 3.21	.2 .2 .2 .2 .2	2 1 3 1 2	2.39 2.03 3.55 1.32 2.56	<1 < <1 < 2 1 < <1 <	.5 .5 .5 .5	3.22 3.67 3.01 3.26 3.38
278944 RE 27894 RRE 2789 278945 278945 278946	4 44	.2 .2 .1 .2	3.2 3.4 3.9 4.3 5.1	63.0 67.1 56.1 34.0 42.1	4715 5086 5290 7199 7028	.9 9 1.1 .8 .7	1.1 2.0 1.2 1.5 1.2	.2 409 .2 434 .2 413 .2 386 .2 465	36 4 .39 3 .37 5 .40 5 .53	6.4 6.5 6.8 5.4 7.0	1.2 5 1.2 3 1.2 1.3 1.3 1.0	1.0 1.4 1.8 .9 1.1	<.1 8 <.1 8 <.1 8 <.1 8 <.1 8	53 2 55 2 53 3 58 3 74 3	28.0 26.8 30.3 38.7 30.1	1.1 1.1 1.7 1.0 .9	<.1 <.1 <.1 <.1 <.1	3 3 3 3 3	24.22 25.74 24.52 24.04 23.78	.001 .001 .001 .001 .001	2 2 2 2 1	<1 <1 1.1 1.0 1.2	12.73 13.66 12.90 12.59 12.41	11<.0 11<.0 11<.0 12<.0 8<.0	01 01 01 01 < 01 <	.01 .01 .01 .01 .01	.014 .014 .014 .014 .014	<.01 <.01 <.01 <.01 .01	.4 .4 .5 .4 .2	6.89 7.70 7.76 11.42 11.60	.2 < .3 < .2 < .2 < .3 <	<1 <.1 <.1 <.1	.99 1.04 1.15 1.27 1.46	<1 < <1 < <1 < <1 < <1 < <1 <	.5 .5 .5 .5 .5	3.41 - 3.31 3.07
278947 278948 278949 278950 STANDARD	D	.1 .2 .1 .1 11.6	8.5 6.3 2.8 1.3 131.6	338.3 160.3 88.1 34.3 31.0	>10000 >10000 6626 1542 142	1 4 1.4 6 3	2.4 1.3 1.4 2.3 24.2	.3 397 .3 482 .3 438 .3 530 10.5 721	2 .52 2 .71 3 .70 0 .56 2.86	8.9 8.3 7.1 5.3 21.1) 1.0 3 1.0 1.0 3 1.2 1.2	1.3 1.4 <.5 <.5 51.7	<.1 5 <.1 5 <.1 7 <.1 6 3.2 4	56 4 55 5 75 3 58 43	15.6 6.0 32.3 7.6 6.3	1.7 1.6 .9 .5 3.7	<.1 <.1 <.1 <.1 5.0	3 1 1 58	23.91 24.97 24.15 25.78 .88	.001 <.001 .001 .001 .079	2 1 1 1 15	1.0 <1 <1 <1 188.0	12.28 13.05 12.70 13.73 .58	15<.0 8<.0 8<.0 10<.0 173.0	01 01 01 01 86 10	.01 .01 .01 .01 .01 .01 .01	.013 .014 .016 .017 .017	<.01 <.01 <.01 <.01 <.01 .18 3	.4 .7 .5 .6 3.3	15.11 21.49 13.52 3.49 .25	.2 < .1 .1 < .1 < 3.6 1	.1 .1 .1 .1	1.81 1.66 1.43 .62 <.05	<1 <1 < <1 < <1 < <1 < 6 4	.6 .5 .5 .5 .6	3.03 1.52 3.74 3.58
Standar	d is GROU (>) - SA	STA P 1D CONC MPLE	NDARD X - 1 ENTRA TYPE	DS6. 5.00 GM TION EX : DRILL	SAMPLI CEEDS U CORE 1	E LE/ UPPEF R150	ACHED R LIM	WITH 90 ITS. SC Samples	D ML 2- DME MIN beginr	2-2 IERALS	HCL-F S MAY <u>'RE'</u>	INO3-1 'BE I are I	120 A PARTI Rerun:	T95 ALLY san	DEG ATT d 'R	. C ACKE RE (FOR D. are	ONE REFF Reje	HOUR RACTO ect R	, DIL RY AN <u>eruns</u>		TO 3 APHIT	IC SA	., ANAI MPLES	YSED CAN 1	BY IC .IMIT	CP-MS AU SI	DLUBT		MA	2.1	Tò (79	RIE	A GE	
	Dat	a	F	A	-	DA	TE 1	RECEIV	/ED:	JUL	6 20 f +h-	05	DAT	E R	EPO	RT	MAI			Ţ.ſ.		. X		ي. • مد •	, ho na	alvei	e oni	v		CI	arend	ie l	eong	SEL	ý	

.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Cross Lake Minerals FILE # A503188

	<u> </u>														··																				NOL OWN	
SAMPLE#	Mo mog	Cu DDM	Pb ppm	Zn ppm (Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe گ	As	U pom	Au ppb	Th ppm (Sr	Cd ppm	Sb 8 ppm pr	Bi pm p	V	Ca X	P 1 X DI	_a om	Cr ppm	Mg X	Ba pom	 ۲i گ	B	A] %	Na X	K X	W DOM	Hg ppm	Sc ppm p	TI	S C X DI	Ja Se om pom	Sample kc
			F F F F	1.1		1.E		·	~						<u> </u>			····-						5.6						r 1 ··	11	- F - F				
278951 278952	.1	2.1	90.9 214-2	2242 8190	.4 1 0	1.2	.2	680 511	.73	4.6 7 1	1.0	.9 9	<.1 < 1	53 54	10.1 34.6	.8<.	.1	<1 25. 1 24	42.0 96.0	01 103	2	<1 3 <1 1	11.59 11.50	8 10<	.001	1	.02 02	.017<	.01 01	.8 8	4.90	.1 <	1. 11	44 < 08 •	<1 <.5 <1 < 5	4.12
270052	1	2 6	117 2	E020	1 1	5.0	.0	021 1	20	16.0	1 4	ő	1	66	20.5	10-	1	~1 25	60 N	102	2	~1 1	11 /0	0.	001	1	02	014-	01	1	7 24	5	1 1	50 J	-1 E	2 10
270054	.1	3.0	107 5	3030 . 4140	·	ບ.ອ 1 D		440	. 55	10.0	1.4	.0	.1	E 4	10 0	1.3 ~	1	~1 ZO.	14 0	02	1	~1 1	11.49	- 0 - C	.001	_1 _1	.03	0124	.01	. 1	0.54	. 2	.11.	55 -	·1 .5	0.43
278954	1.	1.4	107.5	4145	./	1.0		449	. 55	0.7	1.0	5.5	<.1 1	54	10.0	1.3 <	.1	2 25.	14.0	101	1	- 11	11.59	5	.001	~i	.02	.013<	.01	.1	0.59	. 2 <	· · · ·	> 00	-1 ~.5	3.19
278955	.1	.6	17.3	429	.2	1.1	.2	434	. 32	2.9	1.0	1.0	.1	48	2.3	.4 <	.1	2 25.	22 .0	02	1	<1	11.53	6<	.001	Ţ	.02	.013<	.01	.4	1.10	.2 <	.i .	1/ <	-1 <.5	3.29
278956	.1	.6	13.2	79	.1	2.0	.2	556	. 40	2.9	1.1	<.5	.1	55	.5	.5 <	.1	1 26.	0. 80	02	2	<1 1	1.76	5<	.001	1	.02	.013<	.01	.3	.10	.3 <	.1 .	13 <	<1 <.5	3.42
278957	.1	.4	11.6	49	.1	1.3	.2	463	. 27	2.0	1.0	<.5	.1	56	.3	.3 <	.1	1 26.	37.0	102	2	<1 1	12.29	-55	.001	1	.01	.015<	.01	.2	.07	.2 <	.1 .	13 <	<1 <.5	2.60
278958	2	15.9	1380 0>	10000	7.8	23.3	4.1	381 6	.05	104.6	1.3	6.4	<.1	99 1	134.0	11.0	.2	15 14.	51 .0	07	1	<1 1	11.55	4<	001	3	.01	.013	01	< 1	49.63	< 1	37.	20 <	<120	2.25
278959	4	1 5	53.8	373	7	4 1	6	553	58	8.9	1 9	< 5	5	109	17	15<	1	5 26	22 0	05	3	131	11 92	31<	001	ĩ	04	014	01	2	73	9	2	54 <	<1 5	3 13
279060		3.6	10.0	2164	., د	3 2	. 4	122	10	8.6	1 0	- 5		70	11 /	1 2 2	1	3 25	20 0	102	2	1 1		10-	001	~1	02	015~	01	1	A A7	6	1	60 /	-1 - 5	1 16
278900 N	. 2	3.0	40.0	2104	. ၁	3.2	.4	400	.43	0.0	1.0	~.5	. 6	70	11.4	1.2 ~.	.1	3 23.	29.0	102	3	~1 1	11.41	10~	.001	-1	. 02	.015	.01	. 1	4.4/	.0	.1 .	00 -	-1 ~.5	4.10
278961	.8	5.3	179.7	2120	1.6	5.6	1.0	507	.93	19.0	1.9	.7	.51	109	16.1	3.9 <	.1	6 26.	12.0	06	4	1.91	11.78	12<	.001	1	.06	.014	.02	.1	3.36	1.0	.51.	27 <	1 1.0	3.44
278962	2.2	76	111.0	1347	1.5	5.6	1.5	447 1	.02	23.0	2.7	.7	.8	121	11.0	4.4 <	.1	7 26.	33 .0	12	5	3.7 1	11.62	26<	001	1	.12	.015	03	1	1.83	1.0	51	33 <	<1 .9	3 82
278963 10	37	85	100.7	872	13	84	22	456 1	15	26.1	29	< 5	10	92	64	4 2	1	7 25	76 0	14	5	4 1 1	11 41	31	001	1	11	015	06	1	1 10	1 0	4 1	43 <	<1 7	1 91
27806/	10.2	27 0	162 /	672	2 / 1	22.7	8.4	306 2	00	72 0	12 2	5	13	90	5.2	10.7	2	21 17	77 1	97	6 1	10 7	6 92	22	002	1	20	011	24	2	86	1 1 1	53	50	1 2 2	3.07
270904	11.0	27.3	102.4	215	0.4 i	DE 2	0.7	176 2	20	50 0	12.0	- E	5.5	107	21	0.7	2	21 17.	-/ . <u>.</u> 70 0	AE 1	1 1	12 6	2 50	20	002	2	.05	007	20	. 2	.00	1 6 1		00	12.0	1 00
2/0905 0	11.0	22.3	100.9	315 4	2.9	0.00	0.2	1/0 2	. 52	50.9	13.0	~. 5	0.5	107	6.4	0.7	. 2	34 10.	13.0	140	11 1	12.0	2.39	30	.003	3	. 32	.007	. 00	. 1	. 55	1.5 1	./ 2.	55	1 2.0	4.00
278966	18.3	24 6	28.7	15	4 :	25.6	8.8	209 1	55	25 A	4 8	R	693	208	1	3.0	2	8 22	3 3 0	79	19	4 6	38	26	001	2	30	004	20	1	08	17	21	63	1 7	4 25
278067	2.6	27 5	13 0	14	2	21 0	11 3	206 1	83	17 4	8.8	< 5	12 2 1	64	1	2.0	2	16 11	30.4	31 /	17 1	1 3	80	46	005	วิ	74	008	46	1	04	2.2	21	28	2 8	3 81
270307	1 2.0	7 1	14.2	14	1 1	15 0	6.0	200 1	12	15.6	12 1		6 1 1	207	1	1 3	1	11 26	ד. טכ ר כד	01 -	70 1	5.6	.00	37	000	2	20	2000	25	1	.07	17	1	00	1 0	3 42
270900	1.2	/.1	14.2	7	.1	13.3	10.0	200 1	.13	10.0	6 1	1.0	10.1 2	102	.1	1.0 .	· 1 2	0 11	14.0	0.04 2	-0	5.0	. 2/	42	.000	5	. 37	.005	20	1	.02	1.7	.1 .1	50 E 0	1.0	3.46
2/8909	1./	28.1	10.9	8		32.4	15.0	313 2	.09	8.2	0.1	1.0	13.7 1	120	.1	1.5	.3	0 11.	14.0	92 3	90	0.9	.20	43	.002	2	. 50	.000	. 39	.1	.03	1./	.2 1.3	59	2 .D	2.40
RE 278969	1.7	26.9	10.4	8	.1 :	31.3	14./	316-2	.11	1.4	5.6	<.5	13.1	116	<.1	1.2	.3	6 II.	34 .U	88 4	18	6.1	.20	38	.002	2	.54	.006	.35	1.	04	1.6	.2 1.9	5 4	1.7	-
RRE 278969	2.3	28.7	11.5	9	.2 3	32.4	16.8	307 2	.15	9.9	6.5	.5	14.5	123	<.1	1.7	.3	8 11.	16.0	88 4	18	6.3	. 19	39	.002	3	.54	.006	. 36 ·	<.1	.03	1.5	.21.	70	1.6	-
278970	.9	12.0	10.2	7.	<.1	16.6	10.7	753 1	. 64	7.4	5.1	.9	7.0 2	213	<.1	.4	.1	5 18.4	44 .1	79 1	4	5.2	. 31	43	.003	2	.47	.007	. 31	.2	.02	2.1	.1 .7	71	1 <.5	4.72
278971	12	15.8	9.9	11	1 2	23.7	14.2	467 1	67	6.3	10	1 1	6.5	27	< 1	8	2	6 7	20 0	82	7	92	24	70	002	3	61	007	36	< 1	01	21	2	97	1 < 5	4 37
278072	2.2	22 5	77	64	< 1	20.2	18 1	230 3	26	8.8		1 1	71	33	< 1	4	3	7	18 0	42 3	3 1	0.8	63	66	003	21	16	nno	43	2	01	17		43	2 < 5	3 81
270372	. 2	22.3	11 4	67	~ 1 .	00.0	16.1	2000	. 20	6.0	· '	- E	ć .	21	~ 1		. U	ć .	70.0 20.0	A1 1	10 1	1 7	.00 61	50	000	21		000	. 70	- 1	01	1 6	1	20	2 - 5	A 00
2/09/3	.0	21.1	11.4	5/ •	<.1 \	31.4	10.9	2003	.09	0.0	.0	~. 5	0.4	ST	\.1		. ა	ο	JJ .U	41]	19 1	/	.01	00	.003	31		.000	. 37 '	`. 1	.01 .	1.0		22	2 7.5	4.08
STANDARD DS6	11.4	128.0	28.3	146	.3	24.9	10.6	720 2	. 86	20.9	6.4	44.4	3.2	42	5.8	3.5 4.	.8	58 .	38.0	75 1	16 18	35.4	.58	168	. 091	17 1	. 93	.075	.16 3	3.4	.23	3.5 1	.6 <.0	05	64.4	-

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

ACME ANY TICAL LABORATORIES LTD. 852 B (ISO _001 Accredited Co.) AA Cross Lake M 1255 W. Pender	ASSAY CER <u>inerals</u> PROJEC St., Vancouver BC V6E	COUVER BC V6A 1R6 P FIFICATE <u>F WASI</u> File # A50316 2V1 Submitted by: Jim Miller-Tail	PHONE (604) 253-3158 FAX (60 (53-1716) 1R
	SAMPLE#	Pb Zn	
wz-05-05	278865 278866	.04 3.31 .73 3.74	
	278893 278895 278896	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
WZ-05-06	278897 278898 278900 278901 RE 278901	.06 1.65 .04 1.06 .30 4.71 .12 3.59 .12 3.68	
	278902 278903 278904 278905 278905 278906	.13 3.75 .05 2.14 .11 2.94 .50 1.61 .11 1.60	
	278907 STANDARD R-2	a 11 1.47 1.54 4.25	
GROUP 7AR - 1.000 GM SAMPLE, AQUA - - SAMPLE TYPE: CORE PULP <u>Samples</u> Data // FA DATE RECEIVED: JUL 23 2005	REGIA (HCL-HNO3-H2O) DIG beginning 'RE' are Reru DATE REPORT MAI	LED:	ES.

.

) | | |

į.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

	SAMPLE#	E ZV1 Submitted by: Jim Mille	er÷Tait	
W7-05-67	278932 278933 278934 278938 278938 278940	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
	278941 278947 278948 278958 STANDARD R-2	.30 1.59 .03 1.06 .02 1.34 .12 2.55 a 1.54 4.25		
GROUP 7AR - 1.000 GM SAMPLE, AQU	A - REGIA (HCL-HNO3-H2O) I	DIGESTION TO 100 ML, ANALYSED B	Y ICP-ES.	
- SAMPLE TYPE: CORE PULP		Chille 20/05	AL ATA DA	
ata / FA DATE RECEIVED: JUL 23	2005 DATE REPORT M	AILED:		
		V	<u>of C.1</u>	Ă.
			Clarence Leong	ELSE?

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACMT analytical laboratories ltd.

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 1D & 1DX – ICP & ICP-MS ANALYSIS – AQUA REGIA

Comments

Sample Preparation

All samples are dried at 60°C. Soil and sediment are sieved to -80 mesh (-177 μ m). Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed (475°C). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh (100 μ m) in a mild-steel ring-and-puck mill. Pulp splits of 0.5 g are weighed into test tubes, 15 and 30 g splits are weighed into beakers.

Sample Digestion

A modified Aqua Regia solution of equal parts concentrated ACS grade HCl and HNO₃ and de-mineralised H₂O is added to each sample to leach for one hour in a hot water bath (>95°C). After cooling the solution is made up to final volume with 5% HCl. Sample weight to solution volume is 1 g per 20 mL.

Sample Analysis

Group 1D: solutions aspirated into a Jarrel Ash AtomComp 800 or 975 ICP emission spectrometer are analysed for 30 elements: Ag, AJ, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, U, V, W, Zn.

Group 1DX: solutions aspirated into a Perkin Elmer Elan6000 ICP mass spectrometer are analysed for 36 elements: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, *Ga*, *Hg*, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, *Sc*, *Se*, *Tl*, Sr, Th, Ti, U, V, W, Zn.

Quality Control and Data Verification

An Analytical Batch (1 page) comprises 34 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a -10 mesh rejects duplicate to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like STD DS5 to monitor accuracy.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Leo Arciaga, Marcus Lau, Ken Kwok, Dean Toye and Jacky Wang.

Prepared By: J. Gravel

852 East Hastings Street • Vancouver • British Columbia • CANADA • V6A 1R6 Telephone; (604) 253-3158 • Facsimile; (604) 253-1716 • Toll Free: 1-800-990-ACME (2263) • e-mail: info@acmelab.com

Date: Jan 15, 2004

150 9/161-2000 FM 62007

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 7AR – MULTI-ELEMENT ASSAY BY ICP-ES • AQUA REGIA DIGESTION

Comments

Sample Preparation

All samples are dried at 60°C. Soil and sediment are sieved to -80 mesh (-177 μ m). Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed (475°C). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh (100 μ m) in a mild-steel ring-and-puck mill. Pulp splits of 1 g are weighed into 100 mL volumetric flasks.

Sample Digestion

A 30 mL aliquot of modified aqua regia solution (equal parts ACSgrade HCl and HNO₃ acids and de-mineralized H₂O) is added and heated in a hot water bath (~95°C) for 1 hour. After cooling for 3 hours the solutions are transferred to 100 mL volumetric flasks and made to volume with 5% HCl. Very high grade samples may require a 1 g per 250 mL or 0.25 g per 250 mL sample to solution ratio for through digestion and accurate determination.

Sample Analysis

Solutions aspirated into a Jarrel Ash Atomcomp model 800 or 975 ICP atomic-emission spectrometer are analysed for a 23 element package comprising: Ag, Al, As, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, W and Zn.

Quality Control and Data Verification

An Analytical Batch (1 page) comprises 33 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a prep duplicate from the -10 mesh rejects to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like STD R-2 to monitor accuracy.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Leo Arciaga, Ken Kwok, Marcus Lau, Dean Toye and Jacky Wang.

Prepared By: J. Gravel

852 East Hastings Street • Vancouver • British Columbia • CANADA • V6A 1R6 Telephone: (604) 253-3158 • Facsimile: (604) 253-1716 • Toll Free: 1-800-990-ACME (2263) • e-mail: info@acmelab.com

Date: Mar 22, 2004

SECTION E: DRILL HOLE LOGS

ł

Drill Hole Record Drill Hole Number WZ-05-01 Drill Hole Number WZ-05-02 Drill Hole Number WZ-05-03 Drill Hole Number WZ-05-04 Drill Hole Number WZ-05-06 Drill Hole Number WZ-05-06 Drill Hole Number WZ-05-07

-	
- 8	
-	
_	

SELKIRK M	ETALS HOLD	INGS CORP.			······					
WASI	CREEK PROP	ERTY	DRI	LL HO	LE RECO	ORD				Oct 20 2005
Hole	Date	Zone	Length	OB	Dip	Bearing	Co-ordinate	s: UTM NAD	83, Zone 10	Remarks
Number	Completed		(metres)	(m)		(azimuth)	North	East	Elevation	
	<u> </u>			l l	···· — ····	ł	<u> </u>		(<u>mASL</u>)	
2005 NQ Dia	mond Drilling H	rogram (NQ)	IK Core)			·····		Contractor:	F. Boisvenu I	Jrilling Ltd.
<u>WZ-05-01</u>	Jun 20 2005	Carrie S.	102.71	21.33	-90°	-	6 220 392	372 980	1087	Claim 512685
WZ-05-02	Jun 22 2005	Carrie S.	201.46	3.05	<u>-60°</u>	015°	6 220 309	373 339	1066	Claim 512685
WZ-05-03	Jun 26 2005	Par North	196.89	24.38	-52°	<u>068°</u>	6 221 490	374 595	957	Claim 512686
WZ-05-04	Jun 28 2005	Par North	212.13	15.24	-50°	075°	6 221 565	374 673	963	Claim 512686
WZ-05-05	Jun 29 2005	Par Camp	114.60	30.78	-50°	068°	6 220 541	374 527	859	Claim 512686
WZ-05-06	Jun 30 2005	Par Camp	99.06	27.43	-50°	070°	6 220 604	374 518	856	Claim 512686
WZ-05-07	Jul 01 2005	Par Camp	126.79	21.33	-51°	070°	6 220 701	374 468	838	Claim 512686
Total 2005	Holes: 7		1053.64							
]									
	j]								
· · · · · · · · · · · · · · · · · · ·]]		f						- · - · · · · · · · · · ·
						1				
·										
		· · · · · · · · · · · · · · · · · · ·				<u> </u>				
		· · · · ·								
		· · · · · · · · · · · ·			<u>.</u>	[<u> </u>		· · · · · · · · · · · · · · · · · · ·	·
<u> </u>		<u> </u>	<u> </u>			<u> </u>		<u> </u>		
···			i			{·				
	<u>}</u>				·····		1			
						<u></u>				· · · · · · · · · · · · · · · · · · ·
TOTAL	HOLES 7		1053.64				<u> </u>	h		

ł

-4

c:\wasi creek\drill hole record

	SELKIR	METAL	HOLDINGS CO	RP. DRI	LL HOLE I	LOG						HOLE:	WZ-05-01	l .	
												Page#	1		
F	Tests:	Depth	Azimuth Dip	Depth	Azimuth	Dip	Comments	PROPERTY:	Wasi Creek			-			
						•		ZONE:	Carrie Sout	h					
l l	No Tests							UTM: NAD 83	Zone 10		Date Be	gun:	June 19, 20	105	
								EASTING:	372 980		Date Fin	ilshed:	June 20, 20	05	
								NORTHING:	6220 392		Logged	by:	CC		
								ELEVATION:	1,087m		Depth:		102.71m		
									na		Core siz	:e:	NG2		
									-90						
Ł							l	1					ICD	мазануз	100
						000000			Becoulons	Erom	T To	Longth		Dh (nom)	
From	TO	Unit				DESCRIP		JAMIFLEA	Recovery			Lenger.		го (ррш)	Zu (ppm)
0.0	21.33		Crawto Blook Voriol	hh Colooro	Shala/Ar	-					<u> </u>		00L0- A	·	· · · · · · · · · · · · · · · · · · ·
	102,71		Very finely laminate	d light (cal		i derit lamit	as + cerboneceous intervals. Cross cutting	<u> </u>	 						· · · ·
			icelcite veinlets (1.5	mm) in rand	iom orienteti	on and late	stage calcite box vains containing angular				<u> </u>	†			
			fragments of shale/s	argillite com	mon. Occas	sional inte	beds of fine grained aralilite (5-50 cm).	1		ť	1	1			
			roughly bedding par	allel, light g	rey and slich	tily more c	acareous than the shales. Wispy calcite							-	
{			stringers parallel to	foliation ub	iquitous.						{				
			F/ 33.55 to 36.35 - v	ery carbona	aceous subir	nterval; hig	ity polished graphitic partings (slickensides).			l		L			
			Laminations are not	eably conto	rted.				ļ	ļ		L		<u> </u>	
											 			<u> </u>	
			F/ 37.25 to 49.40 - v	vispy irregu	lar cacite str	ingers incr	ease in abundance. White calcareous spheres			<u> </u>	 				
			(1-2mm) colites? O	ccur in pato	hes. Core a	ds / foliatio	n is quite variable in this section (20 - 45*) and	+	ļ	ļ	 	<u> </u>			
			may indicate isoclin	al toiding.						ļ	<u> </u>				
			0 50 10 and 52 55	Milettoh 4	2mm eaide	recemble	nonidad trast action	<u>+</u>	<u>+</u>	<u> </u>	<u> </u>				
			22 52.10 and 55.55	- wannsn T	-2mm 00ius	105011DIO	specked from panerit		[f	<u> </u>				
			Core avis / Foliation	angles.			<u> </u>		1	 	<u>}</u>			·	
			@ 25m : 20 dea	. angloar						í	t	[
			@ 32.7m; 18 deg		•			278701		81.5	83.0	1.5	0.4	12.8	110
			@55m; 35 deg					278702		83.0	84.5	1.5	0.5	11.8	100
			@ 58.2m; 20 deg					278703		84.5	86.0	1.5	0.9	18.1	87
			@63.6m; 15 deg					278704		86.0	87.5	1.5	0.7	10.4	164
			@ 69.0m; 5-10 deg				······································	278705		87.5	89.0	1.5	1.5	22.3	130
								2/8706	}	1 89.0	90.5	1.5	0.3	3.1	149
			F/ 74.10 - 81.40 - ve	Hy carbonad	ceous subint	erval; irreg	ular brx calcite stringers (1-3mm)	2/8/0/	···	<u> </u>	92.0	C, I 3 F	0.3	4.2	
		<u> </u>	E/ 04 40 4 00 74-	mettio	abilia antilia	o Inorula	r coloite stringers (0.5 - 1.0 om) prodominate	278700	<u> </u>	92.0	055	20	0.0	11.2	76
			01,40 - 1 02./ 1m	- pyrite Vei-	wance arguin	elly slope f	biotion which is intensely deformed and	278710		95.0	97.0	2.0	0.7	12.8	82
			braccisted Bry from	ments and	ular (0.5 - 2 () cm)	And a stand to substant detormore and	278711	1	96.5	98.0	1.5	0.6	8.1	1259
<u> </u>			10.000 and the line				<u> </u>								
	102.71		102.71m - EOH												
								.	[· - ·	Į		·····		
						_			ļ	ļ	ļ	 			
							· ····								
			<u> </u>					<u> </u>	<u> </u>						
			<u> </u>					<u> · · · · · · · · · · · · · · · · · · ·</u>			<u> </u>				
			<u> </u>	·					 			<u>├</u>		·· ·	
			<u> </u>				<u>,</u>	1						· · · ·	
			<u> </u>				······································	T							
			<u> </u>		· · · · ·										
											1				

ŧ.

à

SELKIRK MET	ALS HOLDING	gs corp Wasi c Dn log	REEK PRO	PERTY			ł	IOLE: Page#	WZ-05-01 1			
Date:	'n						[Parameter		·	
							2.0	1.0	3.0	4.0	5.0	T
	T	<u> </u>	Recovered	Recognies	ROD	ROD	800	Strength	فعقمل		Water	
From	То	Length	Longth	%	Length	%	Rating	Rating	Space	Condition	Rating	Rating
	l.				>100mm	1	(0-20)	(0-15)	Rating (0-30)	Rating (0-25)	(0-10)	
0.0	21.33	21,33			CASING	N/A	N/A	N/A	N/A	N/A	N/A	N/A
21.33	27.65	6.32		87%	0				1	1		
27.65	32.05	4.40		98%	0						1	
32.05	36.84	4.79	<u> </u>	98%	0			1	1	1	1	<u>†</u>
36.84	41.60	4.76	···· <u> </u>	100%	140		· · · ·	+			<u>†</u>	<u>+</u>
41 60	46.30	4 70		100%	47				1	1	1	t
46.30	50.90	4.60		100%	77			1	1	 	t	<u> </u>
50.90	55.92	5.02		9996	140	-	<u> </u>	+				
55.02	60.43	4 51		100%	195		<u> </u>	+	 	·	+	
60.43	65 15	4.72		100%	240				<u> </u>		<u> </u>	
00.45	60.70	4.57		100%	145		·	<u> </u>	†	<u> </u>	<u> </u>	f
60.13	74.50	4.57		00%	140			+	┨━────		┼-──	ł
74.50	74,30	4.04		3070	420		<u> </u>	<u> </u>	<u>}</u>		<u> </u>	
74.00	/8.22	4.00		90%	139					·	{ .	<u> </u>
/9.22	84.53	5.31		100%	102		<u> </u>				<u> </u>	┟────
84,53	90.10	5.57		100%	285				<u> </u>		+	<u> </u>
90.10	95.57	5.47		100%	292				<u> </u>		{	f
95,57	100.73	5.16		100%	246			·	 _	····	╂────	<u> </u>
100.73	102.71	1.98		100%	110			<u> </u>	<u> </u>		ļ	
		ļ					L		[ļ	ļ	<u> </u>
									ļ			ļ
							L	L			· · · · ·	L
								İ			<u> </u>	
								<u> </u>	<u> </u>			
										l	1	I
									1		L	L
											1	
								T				
1												i
			_						1			ſ
								1				·
		· · · · · · · · · · · · · · ·					<u></u>					í
		· ··· ··· ··· ···	·									[
											<u>├</u>	
- 							- <u></u> .	┟╾┈╌╾╸╼┥		· · · · ·	<u>├─</u> ─┤	/
							┝ <u>──</u> ───				<u>├</u>	
								<u> </u>				
								<u> i</u>	<u> </u>		┞∲	<u> </u>

.

		METALS	HOLDINGS CORP - DRILL HOLE LOG					HOLE:	WZ-05-02	2	
,	OLLWIN							Pane#	1		
	Tests: No tests	Depth	Azimuth Dip Depth Azimuth Dip Comments	PROPERTY: ZONE: UTM: NAD 83	Wasi Creek Carrie South Zone 10	1	Date Be	gun:	June 20, 20	05	
I				EASTING:	373 339		Date Fin	lisned:	June 22, 20	CC)	
				INUR I FING:	1066m		Loggeo Denth	by:	201.46		
				AZIMUTH:	15		Core siz	e:	NQ2		
j				DIP:	-60						
1					-					Assays	
L									ICP	ICP	ICP
From	To	Unit	DESCRIPTION	SAMPLE#	Recovery	From	To	Length	Pb (ppm)	Zn (ppm)	Ag (ppm)
0.0	3.05	U III	Casing						BOLD=%		
3.05	19.60		Heterolithic Lst Brx - light to medium grey, argillaceous banding locally, brx fragments common								
			throughout most of the interval and up to several cms. Fragment type include mudstone clasts,								
			fossillerous lst containing crinolds and rare bivatve fragments, occassional (2-5 cm) algal			47.07	40.00				
			laminations crosscutting the core at high angles. Pyrite blebs conatined in limey fragments.	278712		17.80	18.50	0.70	3.2	27	0.1
				2/8/13		10.00	20.60	1.10	4.5	32	< 1
19.60	27.54		Medium - coarsely crystalline while to light grey Doothile, ± Direstore	2/0/14		13.00	20.00		1.0		
			annearance, natchy silicification, rare bivelve fragment, minor sx (ov) in fracture @ 27.20m	278715		26.50	27.00	0.50	4.5	357	<.1
				278716		27.00	27.50	0.50	238.5	1872	0.3
27.54	34.62		Heterolithic Lst Brx - light to med grey, argillaceous banding locally, brx fragments common,								
			occassional undulatory algal laminations, (10 cm), trace vfg pyrite locally, rare fg grey sx.	278717		31.50	32.50	1.00	94.3	75	0.1
				278718		32.50	33.50	1.00	7.6	25	<.1
34.64	49.14		Heterolithic st Brx -Light to med grey. Argillaceous, very carbonaceous, well graded bedding over			44.50	- 40.00	1.50			•
			limited intervals (Bouma Cycle) up to 1.0m, fining upward. Algal laminations at high angles to CA	2/8/19		44.50	40.00	1.50	20.2	287	0.6
			(70°). Streaked out ig pyrite pods(< 1.0 cm).	278721		40.00	47.50	1.50	101	258	0.4
10.44			Hotorolithin Let Bry + Devente - light to med grey: cracle bry texture through most of the interval	278722		49.14	50.50	1.36	19.2	146	<.1
49.14	01.10		minor solution collapse textures (stylolites) in localized areas. Dolomitization through 70% of	278723		50.50	52.00	1.50	13,9	67	0.1
	-		Interval	278724		52.00	53.50	1.50	2	24	<.1
				278725		53.50	55.00	1.50	3.8	15	<.1
			51.45m - calcite recrystallized in vugs								
			60.10m - stylolite textures								
					· · · · · · · · · · · · · · · · · · ·			· · ·			
			[F/ 60.42 - 63.5m - shaley interbed, med to dark grey, slightly ilmey mud, slightly carbonaceous and		┝━━──────┤					··	· · · ·
			Firery bedded (45)(0 CA, Fyrite in micromaciones and occassional closs								
			calcite stats formed in yuggy porosity, siderite in yugs and along fractures.	}····							
		·									
67.15	67.55	_	Fault - rubble brx, ground up frags of dark grey ist, some fault gouge	278726		78.00	79.50	1.50	7.6	22	<.1
				278727		79.50	81.00	1.50	13.6	31	<.1
67.55	74.32		Heterolithic Lst Brx - med to dark grey to black; irregular bedded, slightly calcareous shale,	278/28		81.00	82.50	1.50	38.5	20	0.1
			interbedded with medium grained, lighter colored, calcareous muds. Bix trags < 1cm, rare algai	278730		84.00	85.50	1.50	37	97	< 1 V. I
				278731		85.50	87.00	1.50	6.5	37	0.1
74 97	92.06		Heterolithic Let Box - light to medium grey, characterized by med to dark grey fossiliferous box frags	278732		87.00	88.50	1.50	3.4	15	<.1
14.92	92.00	·	(2.0 cm to 2.0 m). Fossils include pelecepods, bryozoans, stroms and abundant crinoids (two hole	278733		88.50	90.25	1.75	5.2	36	0,1
			crinoid, sp?) Fragments are rounded to subangular. Late stage calcite stringers cut the interval. Rare	278734		90.25	92.06	1.81	6.5	9	0.1
			sphalerite bleb noted, reddish brown in color esp. @ 82.20m.								

•

	SELKIRK	METAL	HOLDING	S COR	P DRI	L L HOLE L	.OG						HOLE:	WZ-05-0	2	
							-						Page#	2		
	Tests: No tests	Depth	Azimuth	Dip	Depth	Azimuth	Dip	Comments	PROPERTY: ZONE: UTM: NAD 83 EASTING: NORTHING: ELEVATION: AZIMUTH: DIP:	Wasi Creek Zone		Date Bey Date Fin Logged Depth: Core siz	gun: ished: by: e:	-		
l						<u> </u>			l					ICP		ICP
From I	÷	11,010	1			DE	COIDTIC		SAMPI F#	Recovery	From	To	Length	Ph (nnm)	Zn (nnm)	
riom	10 10	Unit	Hetrolithic D	olostone	Bry , whit	sh linht grev	to med an	w mottled texture, rare zehra textures and		Incourcity	110111	<u> </u>	in crigation	BOLD=%	- (ppm)	No (Ppm)
32.00	100.22		stylolitic text	ures. Loc	ally fractu	red	to mod gr									
			1			<u> </u>										
			F/ 98.10 - 9	9.50 - dar	k grey fost	siliferous ist b	rx frag (1.	4m) containing crinoid stems (<2mm), vfg	278735		96.50	98.10	1.60	7.1	177	<.1
			pyrite in stri	ngers 1-2	៣៣.				278736	1	98.10	99.94	1.84	6,5	60	0.1
			F/ 100.90 -	<u>104.07m</u>	- zebra tex	tured dolomi	e, varies i	rom white patches in grey matrix to grey	278737	<u> </u>	99.94	100.90	0.96	5.5	8	< 1
			(zebra) stree	aks in whi	te matrix.				216130	·	100.90	102.00	1.10	<u></u>		<u></u>
			108 60m - 1	0 cm nuti	te clote fill	ing intersticie	e of bry		278739	 	108.00	109.50	1.50	51.4	89	0.2
			100.0011-1	o ciu prii		and anotone			278740		109.50	111.00	1.50	19.4	64	0.1
			F/ 112.0 - 13	32.0; style	vite textur	es common										
			F/ 140, 05 -	150.10; a	ngular dai	rk grey brx fra	gs, up to	1.0 cm partially replaced with sphalerite/	278741		140.00	141.50	1.50	2.6	6	<.1
			siderite? mi	neral is o	range - br	own in color,	no rx to H		278742		141.50	143.00	1.50	1.5	5	<.1
		<u> </u>	F/ 150.11 - 1	151.85m ·	- dix grey c	rinoidal <u>I</u> st fra	agment (1	64m) vfg pyrite masses (0.5cm) occur	278743	├ 	143.00	144.50	1.50	2.1	4	<.1
			sporadically	00 5 In		1 121 41 4	-111-14741	- in this internal. Constate how to develop	2/8/44	<u>+</u>	144.50	147.50	1.50	0.7	4	<.1 < 1
			F/ 152.0 - 10	Dote large	reased Do		toin emol	er by frage(<1 cm) which may indicate	278746		147.50	149.00	1.50	0.7	4	<.1
			a reworked	hn or nos	sibie mia	ating fault so	aro / reef	slope. No visible fossils, rare stylolite.	278747		149.00	151.85	2.85	2	5	<.1
			locally vuga	y as 60 16	6.25m (1	5cm) and 180	.20m (20d	m).	278748		150.11	151.85	1.74	3.4	28	0.1
									278749		151.85	157.00	5.15	1.1	2	<.1
										<u>ا ، ا</u>	470.00	100.00				
188.2	196.71		Dark grey -	black argi	llaceous I	Dolomite; rem	inant calc	te tests altered by dolomitization. Upper	2/8/50		1/9.00	192.00	1.50	16	C C	<.1
			Icontact of h	ign angle	10 CA (80	 Lower con ¹0- 		estinct. Graphic locally esp. along nacture	218/51	╞╴╌╼╾┥	100.00	102.00	1.50			~
			Sunaces. II	ace grey	ax 14 132.			······································	278752	1	188.22	189.50	1.28	0.8	11	<.1
196.71	201.46		Siliceous lig	ht arev D	olomite - f	ine grained. I	ocally sille	eous, massive	278753		189.50	191.00	1.50	2.3	15	<.1
									278754		191.00	192.50	1.50	11.9	40	<.1
									278755		192.50	194.00	1.50	12.8	94	<.1
					<u> </u>				278756		194.00	195.50	1.50	11.2	50	<.1
			FOU						· · · ·	<u> </u>		<u> </u>				
	201.46	· · · -=							· -	{{					· · · · ·	
			+	-			· ·			1			-			
			1				• •									
										Į						
			<u> </u>				<u>.</u>			┟┫						⊢
		<u></u> .	+							┟╴╶╼╸┙┥		<u> i</u>				
			+			· · · · ·				<u>├ </u>	-					
			+					······································								
										╄						
	L							·····	<u> </u>	<u> </u>						
	I J		4						I			I				

÷

SELKIRK ME	TALS HOLDING	GS CORP WASI C	REEK PRO	OPERTY			ł	IOLE: Page#	WZ-05-02 1			
Date:						i			Deremeter			
Lugged by:							2.0	1.0	3.0	4.0	5.0	
	T		Recovered	Recoveries	ROD	ROD	ROD	Strength	Joint	Joint	Water	TOTAL
From	То	Length	Langth	*	Length >100mm	%	Rating (020)	Rating	Space Rating (0_30)	Condition Rating	Rating	Rating
0.0	3.05	3.05			CASING	N/A	N/A	N/A	N/A	N/A	N/A	NIA
3.05	7 92	4 87		98%	81	190						
7.92	12.75	4.83	• •	98%	152		<u> </u>		· · · · · ·	 	+	
12 75	18.02	5.27		100%	302			+	·····		1	
18.02	22.97	4.95	-	100%	240			<u> </u>				
22.97	27.27	4.30	· · ·	98%	95			1			1	
27.27	32.11	4.84		100%	147			<u> </u>	<u> </u>	 -		
32.11	35.87	3.76		100%	86					· · · ·	<u>+</u>	
35.87	40.92	5.05		100%	177			1		[<u> </u>	
40.92	46.00	5.08		100%	268					†	1	
46.00	51.00	5.00		100%	219			· · · · · ·		<u> </u>		
51.00	55.68	4.68		100%	140						1	
55.68	60.56	4.88		100%	188			<u> · · · · ·</u>	1			
60.56	65.66	5.10		100%	213					<u> </u>	<u> </u>	
65.66	70.37	4.71		95%	104						1	
70.37	75.32	4.95		100%	216			<u> </u>			<u> </u>	
75.32	80.69	537		100%	194		·····					· <u> </u>
80.69	86.04	5.35		100%	388		····	1			1	
86.04	91.60	5.56		100%	454			1				
91.60	97.03	5.43		100%	295			1		1		
97.03	102.30	5.27		100%	323				1			
102.30	106.82	4.52		100%	108		· ·	1				
106.82	112.08	5.26		100%	303			1			<u> </u>	· · ·
112.08	117.45	5.37	· · ··	100%	221			1		f	<u> </u>	
117.45	122.68	5.23		100%	275							
122.68	128.16	5.48		100%	339							
128.16	133.50	5.34		100%	322			1			1	
133 50	137.44	3.94		100%	43			· · · ·				
137 44	142 18	4.74		100%	198		· · · · · · · · · · · · · · · · · · ·					
142 18	146 84	4.66		100%	107						<u> </u>	
146 84	151.92	5.08		100%	234			<u> </u>		· · · · ·	<u> </u>	
151 92	156.87	4.95		100%	188			<u>†</u>			···· ·	
156.87	161.68	4.81		100%	236						1	
161.69	166.41	4 73		100%	218					· · · · · · · · · · · · · · · · · · ·		
166 41	171 58	5 17	· · · · · ·	100%	342			1				
171 58	176 28	4 70		100%	204			<u> </u>				
176.28	181 07	4.70		100%	135		<u> </u>	<u>├</u>				-
181 07	185.92	4.70		100%	210	†					<u>∤</u> ∤	
185.92	189.95	4.03		100%	122		<u> </u>				tt	

Tests: Depth Azimuth Dip Depth Azimuth Dip Comments PROPERTY: Wasi Creek ZONE: Par NE	Pag	je# 1	
Tests: Depth Azimuth Dip Depth Azimuth Dip Comments PROPERTY: Wasi Creek ZONE: Par NE	Date Begun:		
Iests: Depth Azimuth Dip Depth Azimuth Sip Comments ZONE: Par NE	Date Begun		
	Date Beguns		
UTM: NAD 83 Zone 10	Date Deguin.	June 22, 24)05
EASTING: 374 595	Date Finishe	d: June 26, 20	05
NORTHING: 6221 490	Logged by:	CC	
ELEVATION: 957m	Depth:	196.89m	
AZIMUTH: 068"	Core size:	NQ2	
DIP: -52			
			Assays
		ЮР	
Erom To Unit DESCRIPTION SAMPLE# Recovery From	To Ler	ngth Pb (ppm)	Zn (ppm) Ag (ppm)
	1	BOLD=%	
0.0 24.30 Visang			
24 39 107 93 Dark green to black variably calacareous shale -		- I .	
24.56 Tor.65 Thin white calcite stringers (1-5mm) ubiguitous throughout the unit, Locally carbonaceous, graphic			
intervals tend to be more fissile and sheared while argillaceous shale has a blocky fracture. Thin			
wispy calcite stringers frequently disrupt foliation developing swirling patterns in highly foliated/			
fractured rock. Pyrite (v/g) is found in most of the calcite veinlets but also as small blebs (1-2mm)	I		L
streaked out // to foliation (py << 1%) No graptolites noted.	↓		└─── ── │ ────
	<u> </u>		┟╍┉────┙
Foliation to Core axis angles			
32.20m ≈ 52° 278757 52.00	63.50	1.50 10.3	158 0.4
39.50m= 45° 278758 53.50	65.00	1.50 15.7	104 0.5
63.75m= 52* 278/39 66.00	00.00	1.50 12	<u> </u>
75.15m= 50° 75.00 75.	68.00	1.50 10.3	100 0.3
97.05m= 49° 2/6/61 66.00	1 09.30	1.50 11.5	103 0.2
	<u>+</u>		
Fault gouge intervate noted below:	+		
F/29/29 - 30/80 - Graphinic shale with gouge patches (10-20 cm). Top contact is bix di2-calcite veins			·
contact of 88 to CA	1		
[7/43.00 * 60.30 * exitence y graphics, and by cathonate stringers; intential contacts @ 60 - 70 deg	1 1		
E7 104 0 = 107 83 - Brz contect with underbying unit. Lst (grev) subangular clasts and irregular sx (pv)			
bands (0.5 - 2.0 cm) in carbonate versing. Wispy calcite stringers also contain vfg pyrite. 278762 103.15	105.00	1.85 11.2	86 0.3
278763 105.00	106.50	1.50 8.3	119 0.3
107.83 143.17 Light grey to white, fine to medium grained Limestone - 278764 106.50	108.00	1.50 7.8	65 0.3
Grades to dolomite over local intervals. Wispy indestinct laminations/bedding as noted. Upper 278765 108.00	109.50	1.50 2.9	10 0.1
contact is faulted and pyritic F/ 112.70 - 114.50m. Laminations appear to be subjected to soft 278766 109.50	111.00	1.50 14.5	154 0.1
sediment / plastic deformation. Calcite nodules have lenticular shape & probably subjected to minor 278767 111.00	112.50	1.50 17.7	50 0.1
post depositional shear. Pressure solution textures (stylolites) noted in dolomitized / silicified 278768 112.50	114.001	1.50 1444.3	5393 2
sections. 278769 114.00	115.50	1.50 158.1	57 0.1
		1.00 92.0	20 0.1
F/ 140.22 - 143.17m - Darker, slightly argilaceous interval; foliation @ 40 - 50° to CA.	120.00	1.50 10.0 1.50 4.5	
Lamination / foliation to Core Ads angles:	1.120.00		·····
109.0m = 70° to CA	┼━╍╌╴╏╍╌	<u> </u>	
172.50m = 50°	┼──┼──	-	<u> </u>
123.50m = 25 278773 160.50	162.00	1.50 12	12 0.1
140.5m = 45 278774 162.00	163.50	1.50 4.5	11 <.1
278775 163.50	164.50	1.00 2.5	8 <.1
A 2 4 2 4 5 2 Ribboned light to medium bluish grey Limestone - think laminated regularity foliated. 278776 164.50	165.50	1.00 17.6	7 <.1
143.1/ 104.00 [Mandal limestone intervals alternation with intervals of pervasive calcite healed fractures. This 278777] 165.50	166.50	1.00 1.7	15 <.1
lances as crackle breccia texture. Rotated calcite podules distorted // to tarnination. 278778 166.50	168.00	1.50 1.4	13 <.1

[SELKIR	K METAL	S HOLDING	S COR	P DRII	L HOLE L	.0G						HOLE:	WZ-05-3		
1									_				Page#	2		
	Tests:	Depth	Azimuth	Dip	Depth	Azimuth	Dłp	Comments	PROPERTY: ZONE: UTM: NAD 83 EASTING: NORTHING: ELEVATION: AZIMUTH: DIP:	Wasi Creek Zone		Date Be Date Fir Logged Depth: Core siz	gun: ilshed: by: :e:			
								· · · · · · · · · · · · · · · · · · ·]					ICP	ICP	
From	То	Unit					DESCRI	TION	SAMPLE#	Recovery	From	To	Length	Pb (ppm)	Zn (ppm)	Ag (ppm)
464 50	400 90		Grow to light		mite - loc	olly bracciate	2d		278779	<u> </u>	168.00	169.50	1.50	11.5	8	
104,90	130.03		Giey to tight	grey Don	June - 100	any brochan	<u>u</u>		278780		169.50	171.00	1.50	1.4		
┣───			F/ 164 58 - 1	165.10 - s	llicified co	ntact zone: s	imilar to	ribboned Lst in previous unit but veriably	278781	1	171.00	172.50	1.50	6.1	13	<
			dolomitized.	not regul	arily foliate	ed / laminate	d. freque	ntly fragmental. Rare isolated grains of galena.	278782		172.50	174.00	1,50	9.3	34	
<u> </u>			1						278783		174.00	175.50	1.50	34.3	13	0.1
	<u> </u>		F/ 175.28 - 1	177.68m -	Fault bree	ccia zone; cli	ay gouge	minerals on the HW contact extend 0.5m into	278784		175.50	177.00	1.50	7.4	107	·
			wallrock, vfg	pyrite de	posited in	the central p	ortion of	the zone and angular brx fragments at the FW	278785	i	177.00	178.50	1.50	11.1	5	i <.1
			contact.						278786		178.50	180.00	1.50	1	10	<.1
									278787	'	180.00	181.50	1.50	1	9	< <u>.</u>
			F/ 180.5 - 18	88.0m and	i F/ 191.20	0 - 196.89m;	Limestor	e brx zones - angular to subangular argillic 1st brx			_					
			clasts. Gene	erally chao	stic arrang	ement of frag	<u>gments i</u>	a size range 0.5 - 3.0 cm, light to medium grey	278788		191.00	192.50	1.50	20.8	11	<.1
			matrix. Late	stage cal	cite infillin	g brx void sp	ace and i	ractures. Trace vig disseminated pyrite locally,	278789		192.50	194.00	1.50	6.4	18	<.1
			Trace sphak	erite as di	isseminati	ons and on g	raphitic f	oliations surfaces. Rare patch of fluorite,	278790		_194.00	195,50	1.50	103.2	18	0.1
	_		1-2 cm					<u> </u>	278791	1	195.50	196.89	1.39	5.9		<.1
<u> </u>									ļ ·	<u> </u>						<u> </u>
	196.89		EOH				<u> </u>	<u></u>	ļ	<u></u>						
								······	<u>}</u>	}		<u> </u>	<u> </u>			Į
		·····				- 					-	<u>├</u>	ļ			{
		·	<u> </u>		·								<u> </u>	· · · · ·	<u> </u>	<u> </u>
			- <u> </u>							<u></u> +			 		····	┫
						·				<u> </u>						<u>∤</u>
			- <u> </u>	· · · · · · ·	··	_ <u></u>			Į	∮		<u> </u>	 	<u> </u>	•	<u> </u>
				· <u>···</u> ··			<u> </u>		<u> </u>	<u>॑</u>						
	··								<u>+</u>	<u>{· · · ·</u> }						<u> </u>
				····						f f			f	· /		<u> </u>
	<u> </u>		+					<u> </u>	<u> </u>	<u>†</u> ────		t	t			<u> </u>
	╞───┤	<u>-</u>		<u>.</u>				<u> </u>		††		t	t			†
			1			·			<u> </u>	t t						
	<u>├</u> -		+							tt						1
· · · ·	<u> </u>		1								· · ·					
			1													
	<u> </u>	· · · · ·														
			1													
			{													
																I
									l	ļ						
								<u></u>		ļ						
									<u> </u>							
										 		<u> </u>				
	1		1						I	Ł. I						

.

- - -

,

SELKIRK MET		IGS CORP WASI (REEK PRO	OPERTY	[_]		}	HOLE: Page#	WZ-05-03 1			
CUUR MASS (Date:	JLASSIFICA	IUN LUG					·		Determeter			
Logged by: C							20	10	30	4.0	50	
From	То	Length	Recovered Length	Recoveries %	RQD Length	RQD %	RQD Rating	Strength Rating	Joint Space	Joint Condition	Water Rating	TOTAL Rating
					>100mm		(0-20)	(0-15)	Rating (0-30)	Rating (0-25)	(0-10)	
0.00	24.38	24.38			CASING	N/A	N/A	N/A	N/A	N/A	N/A	N/A
24.38	29.53	5.15	·	97%	91				L	<u> </u>		
29.53	34.50	4.97		98%	178			·		L	<u> </u>	
34.50	39.81	5.31		98%							ļ	L
39.81	44.50	4.69		100%	28					ļ		
44.50	49.67	5.17		100%	205		1		ļ	ļ	<u> </u>	
49.67	55.01	5.34		100%	246		<u> </u>		ļ	<u> </u>		
55.01	60.27	5.26	· · · · ·	100%	261			+	_	<u> </u>	·	
60.27	65.75	5.48		100%	328		<u> </u>		ļ	ļ	ļ	
65.75	71.19	5.44		100%	297			ļ		ļ		
71.19	76.29	5.10		100%	266		 		<u> </u>	↓	<u> </u>	
76.29	81.64	5.35		100%	296		[<u> </u>	<u> </u>		
81.64	87.10	5.46		100%	316		l			<u> </u>	· · ·	
87.10	92.37	5.27	<u> </u>	100%	332				ļ	ļ	<u> </u>	
92.37	97.61	5.24		100%	288				<u> </u>		<u> </u>	_
97.61	103.18	5.57		100%	343				 		<u> </u>	
103.18	108.23	5.05		100%	194			· / ·		ļ		
108.23	113.65	5.42		100%	480					ļ	ļ	
113.65	119.03	5.38		100%	435					 	<u> </u>	
119.03	124.41	5.38		100%	432			·				
124.41	129.84	5.43	<u>. </u>	100%	440			<u> </u>	·	<u> </u>	<u> </u>	
129.84	135.44	5.60	· · · · · · · · · · · · · · · · · · ·	100%	497				· · · ·	ļ		
135.44	140.92	5.48		100%	417					ļ	. <u> </u>	
140.92	146.46	5.54		100%	375			ļ		.		
146.46	151.88	5.42		100%	470			ļ			ļ	
151.88	157.27	5.39		100%	414			<u>+</u>		 _		
157.27	162.76	5.49		100%	392			<u> </u>	ļ		1	
162.76	167.77	5.01		100%	193			<u> </u>			<u> </u>	
167.77	172.98	5.21		100%	293							
172.98	178.11	5.13		100%	172		<u> </u>	· · · · · ·	[ļ	.	. <u> </u>
178.11	183.06	4.95		100%	131				<u> </u>		<u> </u>	
183.06	188.27	5.21		100%	205			<u> </u>			ļ	
188.27	193.84	5.57		100%	431					<u> </u>		
193.84	196.89	3.05		100%	236					ļ		
			<u> </u>				·				{	
							ļ	<u> </u>			<u> </u>	
								 ,	<u> </u>	<u> </u>	ļ	
											 	
1				1 1	· 1			1	i I	í	1	

_ _ _

.

.

			HOLDINGS COPP. DPILL HOLE LOG					HOLE	WZ-05-04	1	
	OELVIK	MEIAL	holdings corp Drill Hole Log					Bono#	4		
					Mari Creak			гауен	1		
	Tests:	Depth	Azimuth Dip Depth Azimuth Dip Comments	PROPERTY:	Wasi Greek						
	NO TESTS			LITH NAD 93	Zone 10		Data Bor		June 26, 20	05	
- 1				EASTING:	2010 10		Date Dej	Jun. Jehod	June 28, 20	05	
I				LASTING.	6221 665		Looged	hur	JUIIO 20, 20		
				NURTHING:	0221 000		Loggeu Dooth:	uy.	212.13		
I				AZINALITU:	903		Core elz	• '	A (2.10		
1					-50		COLE 212	с.	19042		
					-50				_	Anonio	······
L										Assays	
							-		ICP		ICP
From	To	Unit	DESCRIPTION	SAMPLE#	Recovery	From	То	Length	Pb (ppm)	Zn (ppm)	Ag (ppm)
0.0	15.24		Casing						BOLD=%		
15.24	78.40		Shale / Argillite; grey to black, 90 - 95% of interval is black shale, variably calcareous, finely		l						
			laminated (mm scale) and defined by thin concordant calcite stringers. Calcite stringers also hel	2							
			to define soft sediment deformation features (buckling, accumulation and minor shear) and tight	278792		23.00	24.50	1.50	18.7	422	1.5
			isoclinal microfolds of cm scale. Late stage calcite stringers also cut the sequence at oblique	278793	L	24.50	26.00	1.50	12.6	234	1
			angles to foliation. Lighter colored, silty to fg sand sized, argillic interbeds (2 - 25cm) represent	278794	· · · · ·	26.00	27.50	1.50	11	199	0.7
			minor depositional rate changes and/or facies changes. Euhedral pyrite crystals (1 - 5mm) of	278795	· · · · · · · · · · · · · · · · · · ·	27 <u>.50</u>	29.00	1.50	14.2	235	0.8
			diagenitic origin seen relacing calcite pods esp. F 23.20 - 23.80m.	278796		29.00	30.50	1.50	17.4	244	1
				278797		30.50	32.00	1.50	17	358	1.4
			Foliation / Core Axis angles:								<u> </u>
			18.15m = 47°	278798		<u>56.28</u>	57.80	1.52	11.9	119	0.3
			29.50m = 45°	278799		57.80	59.50	1.70	10	107	0.3
			34.75m = 71°	278800		59,50	61.00	1.50	10	105	0.2
			37.50m # 65°	278801	L	61.00	62.50	1.50	12.1	103	0.3
			43.10m = 45°								
			54.60m = 58°	278802		74.00	75.50	1.50	8.3	77	0.3
				278803			77.00	1.50	8.8	79	0.7
			F/ 56.28 - 57.80m - fault gouge and brx pebbles of qtz-carbonate; upper contact @ 70* to CA	278804		77.00	78.40	1.40	9.8	71	0.6
				278805		78.40	80.00	1.60	2.3	8	0,1
			61.11m - a thin gtz-carbonate vein (1 cm) containing 5% py @ 62* to CA	278806		80.00	81.50	1.50	4.5	38	0.1
				278807	I	81.50	83.00	1.50	1.4	7	<.1
			F/ 71.53 - 78.40m - Interval of increasing carbonate brx veining (1 - 10mm). Shale bedding is	278808	I	83.00	84.75	1.75	1.6	5	<.1
			distorted; rip up clasts of fg light grey argillite, subangular to subrounded, appear to be floating in	278809		84.75	86.25	1.50	1.5	14	<.1
			the shale. Man of the argillite fragments contain blebs /clots of pyrite. Py avg 1 - 2% over interval	278810	<u> </u>	86.25	87.50	1.25	27.9	38	0.1
				278811	<u> </u>	87.50	89.00	1.50	17.4	8/	0.1
78.40	93.31		Light grey to med grey Limestone Brx -	278812		89.00	90.50	1.50	3		<.1
			Crackle brx texture through entire interval. Pale bluish - white sections are very calcareous and	278813		90.50	92.00	1.50	8.2	16	<.1
			may contain hydrozincite. Dark grey subintervals contain < 1% py + trace vfg grey sx (aspy?).	278814		92.00	93.50	1.50	15.1	15	<.1
			Pressure solution textures (stylolites) lined with carbonaceous material produce a network of	278815		93.50	85.00	1.50	4.9	28	<u> </u>
			lagged lines that give a marbelized appearance to the core. No bedding or laminations noted.	2/8816	┟╍───┥	90,00	80.50	1.50	13.4	04	5,1
				27881/		96.50	98.00	1.50	8.2	11	<.1
			F/ 84.77 - 89.0m - grey sulphidic, fetid interval.	278818	 	98.00	99.50	1.50	7.3		<.1
				2/0019	<u> </u>	494.00	101.00	1.50	9.0		×.1
93.31	106.28		Medium grey Dolomite Brx -	278820		101.00	102.50	1.50	1.0		
			Variably dolomitized unt, similar to the unit above; more coarsely grained and highly fractured in	278821		102.50	104.00	1.50	19,5	320	0.4
			general. Brx tragments are resorbed, silicitied and have vague indestinct shapes (subangular?).	2/8622	<u> </u>	104.00	105.50	1.50	0.0	0	·····
			Dolomite intervals are highly fractured and less competent than the Lst intervals, are darker in		<u> </u>					~ ~_	
			color and are less calcareous.						·		
				l							
106.28	118.94		Light to medium grey Limestone Brx - subrounded to subangular med grey Lst fragments seen					-			
		· · · · ·	floating in lighter grey matrix. Some fragments (1 - 5cm) are partially dolomitized and have fogg)		<u> </u>						
			outlines. Possible debris flow. Note qtz flooding 🔮 113.05m.								
				·	├						
			F / 114.35 - 115.90m crude bedding @ 48* to CA.								

	SELKIR	METAL	S HOLDING	S COR	P DRI	LL HOLE L	OG					-	HOLE:	WZ-05-04		
	••••												Page#	2	•	
	Tests:	Depth	Azimuth	Dip	Depth	Azimuth	Dip	Comments	PROPERTY: ZONE: UTM: NAD 83 EASTING: NORTHING: ELEVATION: AZIMUTH: DIP:	Wasi Creek Zone		Date Beg Date Fin Logged Depth: Core siz	gun: ished: by: e:			
1									1					ICP	ICP	ICP
From	Tol	Unit				D	ESCRIPT	ION	SAMPLE#	Recovery	From	To	Length	Pb (ppm)	Zn (ppm)	Ag (ppm)
110411			+			<u></u>								BOLD=%		
118.94	158.32		Medium to l	ight grey	, fine - mec	lium grained	Doioston	a Brx -	27884	0	163.52	166.41	2.89	7.8	91	0.1
			Dark rimme	d, round	ed to subro	unded brx fra	gments o	ccur sporadically throughout the interval.	27884	1	166.41	167.93	1.52	17.3	35	0.1
┝╍╍╍┥			Matrix is var	iably dol	omitized.			<u> </u>	27884	2	160.50	109.50	1.5/	129	160	01
┠┉╍╴╺┥			F/ 135 06 -	141 07 -	regularity h	edded nert o	the unit	62 52" to CA. The box shove and below this	27884	ā — — — — — — — — — — — — — — — — — — —	171.00	172.50	1.50	16.7	32	<.1
┝──┤			interval ann	ear chao	tic in com	varison.	and ante	S OF TO ONLY THE MIX UNDER GUILT DOION AND	27884	5	172.50	174.00	1.50	6.6	33	0.1
									27884	6	174.00	175.50	1.50	18.6	82	<.1
158.32	172.00		Fault Zone	-					27884	7	175.50	176.50	1.00	14.2	10	<.1
			F / 158.32 -	167.93n	<u>1 - about 5r</u>	n of core was	not reco	vered from this area of the upper fault contact	27882	3	176.50	178.00	1.50	43.2	12	<.1
			The contact	t is mode	rately clay	altered and v	eil fractu	red. Orientation of HVV is not clear. FVV	27882	<u> </u>	179.50	181.00	1.50		17	<1
╞───┥			Contect 22 2		<u>.</u>				27882	6	181.00	182.00	1.00	135.6	38	0.2
			F/163.57 -	167.93m	- fault cou	ce and rubble	brx fragr	nents predominate. The core is easily	27882	7	182.00	183.00	1.00	46.6	18	0.1
			penetrated v	with finge	ar pressure	. White bull c	uartz in s	ections indicating hydrothermal activity. FW	27882	8	183.00	184.00	1.00	113.7	285	0.3
			also signific	antly cla	y altered; F	/ 187.93 to 7	12.0m mi	nor gouge (5 - 10cm) noted at the FW. Note	27882	9	184.00	185.00	1.00	43.5	28	0.1
			that the HW	and FW	contacts (contain signif	cant calc	ite and quartz.	27883	·	185.00	186.00	1.00	332.3	4094	1.2
170.00		<u> </u>	t inhi in mai	diam area	Limenton	o Boy			27883	2	187.00	188.00	1.00	205.8	465	1.1
172.00	212.13		Poorty dolor	mitized I	y Limesion	e prz - ured / broken	core Pre	ssure soln (stylolites) textures rare but	27883	3	188.00	189.00	1.00	85.4	3282	0.8
 			often contai	n thin wi	sov pyrite s	tringers. Pyri	e also se	en as reaction rims of some brx fragments.	27883	4	189.00	190.00	1.00	185.4	267	0.4
			Graphitic sl	icks see	n on foliatio	n pertings.			27883	5	190.00	190.75	0.75	187.1	447	0.7
									27883	5	190.75	192.50	1.75	10.2	65	<.1
			F / 183.10	<u> 190.75 -</u>	Slightly mit	neralized inte	rval - styk	olites contain minor fg pyrite. Graphitic	27883		192.50	194.00	1.50	2.4	14	
ļ			increases s	lightly, hi	gher numb	er of pyritized		and rare vig sphaleme. Esimate sx contem	27003	9 	195.50	197.00	1.50	54.9	46	0.1
		<u>. </u>	10 09 1 - 27	combin	ec and mo	suy pyrne. P/	00.10 - 1	88.90 up to 276 sx.	2,000	(100.00	107.00				
┢────┤	212.13		EO.H.													
									·	ļ		<u> </u>	ļ	<u> </u>		
			ļ						<u> </u>	<u>+</u>		<u> </u> -	<u> </u>			
			+							+			<u>├</u> ──	<u> </u>		
╞╴╸┦								· · · · · · · · · · · · · · · · · · ·	<u> · · · - · - · - · - · - · - · - · - · </u>	+			Ì			
			1									ļ	ļ			ļ
										4		ļ		ļ		ļ
[+		├	<u> </u>			
[<u> </u>	·····					+	+		<u> </u>	<u> </u>			
			+				·····		1				İ			
├ ──┤														[
												[[
										- 		 				
1			1							1		L	I	<u> </u>		لــــــ

...

SELKIRK ME	TALS HOLDIN CLASSIFICAT	igs corp Wasi (Ion log	REEK PRO	PERTY			F	IOLE: Page#	WZ-05-04 1			
Date:	~~					:			Parameter	<u></u>		· · · ·
Coggen by. V							2.0	1.0	3.0	4.0	5.0	
]		Recovered	Recoveries	RQD	RQD	ROD	Strength	Joint	Joint	Water	TOTAL
From	То	Length	Longth	%	Length	%	Rating	Rating	Space	Condition	Rating	Rating
		-	•		>100mm				Rating	Rating		_
							(0-20)	(0-15)	(0-30)	(0-25)	(0-10)	
0.0	15.24	15.24			CASING	N/A	N/A	N/A	N/A	N/A	N/A	N/A
15.24	20.46	5.22		99%	178			ļ .			<u> </u>	
20.46	26.03	5.57		100%	92			<u> </u>	<u> </u>		<u> </u>	
26.03	31.23	5.20	<u> </u>	100%	112			<u> </u>	ļ	[
31.23	36.47	5.24		100%	127			ļ		ļ		
	41.80	5.33		100%	200			<u> </u>		 	<u> </u>	
41.80	47.05	5.25		100%	108				<u> </u>		<u> </u>	
47.05	54.44	7.39		100%	247					ļ		
54.44	57.60	3.16		100%	162			<u> </u>	[<u> </u>		
57.60	62.78	5.18		100%	151						<u> </u>	ļ
62.78	67.84	5.06		100%	135				<u> </u>			
67.84	72.84	5.00		100%	192			1			ļ	
72.84	78.02	5.18		100%	164							
78.02	83.44	5.42		100%	369							
83.44	88.66	5.22		100%	291							
88.66	93.33	4.67		100%	217							
93.33	98.79	5.46		100%	76							
98.79	103,33	4.54		100%	55							
103.33	108.23	4.90	-	100%	64							
108.23	113.74	5.51	_	100%	319			-				
113.74	118.81	5.07		100%	278							
118.81	124,05	5.24		100%	303							
124.05	129.78	5.73		100%	132			1		-		
129.78	134,74	4.96		100%	123							
134.74	139.69	4.95		100%	105				1			
139.69	144.36	4.67		100%	52			1	1			
144.36	149.51	5.15		100%	316							
149 51	154.22	4.71		98%	153			1				
154.22	163 76	9.54		50%	96			1		-	1	
163.76	169.76	6.00		93%	68							
169.76	174 77	5.01		98%	240		· · · · ·	+				
174 77	179.52	4 75		97%	156		<u> </u>	1	 _		<u> </u>	
170.52	184.02	4.50	·	99%	72			<u>†</u>	†	1		
184.02	180.02	5 00		100%	210			<u>+</u>		· · · · · · · · · · · · · · · · · · ·	1	
180.09	100.00	5.00		100%	306			1			1	
104.40	100.07			100%	238			1				
100.07	202.50	00 A E 2		00.00	170			+	<u> </u>	· · · ·		
202 50	200.05	4.32		984	160		 .	+		<u> </u>	<u>├</u>	
203.09	212 13	3 18		96%	30		· · · ·	1			<u> </u>	

		NETAL						HOLE:	WZ-05-04		
	JELNIN		HOLDINGS CORF DRILL HOLE LOG					Brac#	4		
					Weel Creek			rage#	•		
	Tests:	Depth	Azimuth Dip Depth Azimuth Dip Comments	PROPERTT:	Wasi Creek						
	No tests			LITH NAD 9	Zana 10		Dote Ro	a un ²	June 28, 20	05	
				EASTING	374 527		Date De	yun. Jehod	June 20, 20	05	
				NORTHING	6220 541		Logged	hv:	CC		
				ELEVATION	859		Denth'	шу.	114 60		
1					68		Core siz	•••	NQ2		
				DIP	-50						
				~ ".	-00					Accave	· - ·
i L				1					100	Assays ICD	
								1			
From	To	Unit	DESCRIPTION	SAMPLE#	Recovery	From		(Length	Pb (ppm)	Zn (ppm)	Ag (ppm)
0.0	30.78		Casing					1	BOLO=%		
								_			
30.78	41.05		White to pale grey Limestone/ dolomite brx	070040				4 60	45.7	077	
			Much of unit appears slica flooded or dolomitized. Quartz veins (eg. 31.60 - 32.0m) and silica healed	2/8848	} I	30.78	32.61	1.83	13./	211	0.1
			Inactures common. Motiled appearance and fuzzy outlines of brx fragments likely due to	2/8849		32.01	33.50	0.89	5.6	400	0.1
			succincation / dotomitization. Styloutes outlined by inteducible black carbonaceous material. Wispy	278650		33,50	30.00	1.00	23.1	122	0.3
			Istringers can contain pyrite (up to 3%) over short intervals (< 1m).	2/0601		36.00	38.00	1.50	0	107	<u>0.1</u>
			From 04 - 00 Cd	270002		38.00	30.00	1.50	13.1	276	0.1
			[r/ 32.01 - 32.01m - rault gouge and bix rubble. Rubble tragments consists of quartz and grey ist. HVV	278854		30.00	41 00	1.50	14	50	0.2
			at 20° IO CA, FVY Contact not distinct.	278855		41.00	42 00	1.00	1135 4	2152	4.1
				278856		42.00	43.00	1.00	206.1	550	0.8
41.00	54.90		Lark grey arginaceous ocionne bix	278857		43.00	44.50	1.50	259.2	2011	1.4
			prientations Lioner contact marked by ntz vein (20 cm) containing purite (5%) and trace to 1% sobtra	278858		44.50	46.00	1.50	126.1	472	1.4
			combined. Durite is variable through the interval ranging 1-5% usually concentrated in quartz filled	278859		46.00	47.50	1.50	4198.8	5161	11.8
- 1			fractures accessionally with enhalerits on selvanes. Solution collarise textures seen in local areas.	278860		47.50	49.00	1.50	1064.9	729	3.5
			Way fine aminet area so is common : a? - only the assayer can tell	278861		49.00	50.50	1.50	118.6	303	0.7
			very mie graniou gray ax is common , gar - only the addition our test.	278862		50.50	52.00	1.50	646.3	7859	2.7
54.58	74.36		White to pale gray Lat brx	278863		52.00	53.50	1.50	951.1	5071	4
			similar to unit described above (30.78 - 41.05m) except less silicified. Random swinling calcite	278864		53.50	55,10	1.60	32.5	207	0.4
			veinlets and graphitic stylolite textures are characteristic of the unit. Many of the fractures contain	278865		55.10	55.75	0.65	0.04	3.31	7
			pyrite in variable amounts up to 2%. High grade intervals noted below:	278866		55,75	56.50	0.75	0.73	_3.74	16.6
				278867		56.50	57.75	1.25	733.7	4043	1.5
			F/ 51.58 - 56.80m MINERALIZED ZONE	278868		57.75	59.00	1.25	69.5	892	0.3
			pyrite up to 8% with noteable sphalerite 2-3% and lesser galena <2%	278869		59.00	60.50	1.50	13.3	144	0.1
				278870		60.50	62.00	1.50	6	59	0.1
			F/ 65.50 - 72.05 - rock is more porous due to vuggy texture and clay altn of fracture surfaces	278871		62.00	63.50	1.50	6.9	63	0.1
				278872		63.50	65.00	1.50	5.6	136	0.1
74.36	78.05		Dark grey to black argillaceous dolomite brx	278873		65.00	65.50	1.50	5.6	52	<u>.</u>
			graphitic content variable, color varies related to amount of graphite in the interval. Upper contact	2/88/4		66.50	00.00	1.50	0./	25	0.1
			at 22" to CA, lower contact (2 75"; both distinct and marked bt 5-10 cm graphilic bands. Similar to	2/68/5	}	60.00	71.00	1.50	10.0	1020	0.0
			previous unit of 2e (41.05 - 54.58m) atthough sx content is much lower (py < 2%) mostly vig pyrite	2/00/0		71.00	71.00	1,50	74	390	0.1
			concentrated in graphitic bands	210011		71.00	74 36	1.10	421 0	20	0.5
	-		Dela sua de acessida acessidad de la Climbra	278879		74 36	76.00	1.64	993.5	3295	34
78.05	114.50		Pale green to greenish grey Phylice / Sitistone	270079		76.00	77.00	1.00	57	272	
			Upper section is crudery longred with calcule nodules (1-2 cm) enhanced in longrid and elongraded	278881		77.00	78.05	1.05	141 1	1073	1.3
			pino remounar shape. This perioriti may also be a result of son securitient determation. Serielle	278882		78.05	79.00	0.95	9.2	12	0.1
			Enlighting to Core Avis andes:	278883		79.00	80.50	1.50	8.2	18	<.1
			79 5m # 80* 83 01m # 77* 85 83m # 50* 91 44m = 55* 93 62m = 78* 100 15m = 73*	278884		80.50	82.00	1.50	15.1	12	<.1
			Liaven - ex. Para m - u Teavadii - di Lavadii - di Tavanu - u Lavanu - u								
				278885		87.0	88.5	1.50	11.8	16	0.2
	114.60		EOH								

SELKIRK METALS HOLDINGS CORP WASI CREEK PROPERTY							HOLE: WZ-05-05 Page# 1							
ROCK MASS C Date:	LASSIFICATI	ON LOG												
Logged by: C	:C								Parameter	1 40		т		
·····	· · · · · · · · · · · · · · · · · · ·				800	BOD	2.0	1.0	3.0	4.0	0.0			
From	То	Length	Recovered Length	Kacovernes %	Length >100mm	кар %	Rabing	Rating	Space Rating	Condition Rating	water Rating	Ratin		
							(0-20)	(0-15)	(0-30)	(0-25)	(0-10)			
0.0	30.72	30.72			CASING	N/A	N/A	N/A	N/A	N/A	N/A	NVA		
30.72	36.16	5.44		95%	182		L			<u> </u>	<u> </u>			
36.13	41.12	4.99		98%	52					<u> </u>	<u> </u>	<u> </u>		
41.12	46.00	4.88		100%	74					<u> </u>	L			
46.00	50.59	4.59		100%	182									
50.59	55.70	5.11		100%	196				[
55.70	60.72	5.02		100%	107				1					
60,72	65,98	5.26		100%	311					1 -	1	ŀ		
65,98	70.93	4.95		100%	172		[· · · · · · ·			1				
70.93	75.88	4.95	· · ·	100%	128		† — — — — — — — — — — — — — — — — — — —	· · · · ·	<u> </u>	1	1	†		
75.88	81.07	5 19		100%	216						1	t		
81.07	86.42	5 35		100%	248					1	1			
90.07	01.59	5.16		100%	205		<u></u>	+	 		1			
00.42	81.30 06.97	5.10		100%	191			<u> </u>	1	f	[
91.00	90.07	5.29		100%	101	_ . · <u>-</u> .		+ · · ·	<u> </u>	<u>}</u>				
96.87	102.15	5.28	···· · · · · · · · · · · · · · · · · ·	100%	65			· · · · · · · · ·		 		<u> </u>		
102.15	107.38	5.23		100%	104									
107.38	112.58	5.20		100%	188			÷		ļ		<u> </u>		
112.58	114.60	2.02		100%	22			<u> </u>			<u> </u>	<u> </u>		
							· · · · · · · · · · · ·	ļ	[ļ	<u> </u>			
										<u> </u>		<u> </u>		
								ļ		ļ				
								<u> </u>		<u> </u>				
											L			
							ł		ł					
												·		
								Į	Į	ļ	[
				[1						
			••••							1				
							·			<u>}</u>				
							 	+		<u> </u>				
			<u> </u>	<u> </u>						<u> </u>	1			
							· · · · · · · · · · · · · · · · · · ·	 		ł				
							<u>├</u> ────	 		<u> </u>				
		····· ··· ··· ···		<u> </u>	┝╼╌╍┥		 	+		 	╂╌───┤			
	ł			<u> </u>				<u> </u>		}				
							<u> </u>		ļ	├	 			
			<u> </u>		{		<u></u>	<u> </u>	ļ	<u> </u>	[
				I	i		·	ļ			↓	<u> </u>		
		•		J	1		1	1	1	1	1 1			

	SELKIRK	METAL	S HOLDING	S COR	P DRII	L HOLE L	OG						HOLE:	WZ-05-6		
													Page#	1	•	
	Tests: No tests	Depth	Azimuth	Dlp	Depth	Azimuth	Dip	Comments	PROPERTY: ZONE: UTM: NAD 83	Wasi Creek Par Camp Zone 10		Date Be	aun:	June 29, 20	005	
									EASTING:	374 518		Date Fin	ished:	June 30, 20	005	
									ELEVATION:	856		Depth:	by.	99.06m		
									AZIMUTH:	70		Core siz	e:	NQ2		
															Assays	
										1 Becover		7.	11 an aith			
From	To	Unit	Casing			0	ESCRIPT		SAMPLER	Recovery	FIUM	10	i Lengun		zn (ppm)	Ag (ppin)
0,0	27,43		Casing					<u> </u>	<u> </u>		· _ ·	f —	 	10020-78		<u> </u>
27.43	65.03		Whitish grey	to bluish	dark grey	Lst Brx			1							
			Fragmental	brx conta	ining both	argiliteand L	st brx frag	ments, angular to subangular, 0.5 to 8.0 cm in	278886		38.00	39.50	1.50	27.3	280	0.4
			size. Where	brx fragn	nents are t	not obvious c	racide br	texture is more predominant. Calcareous	278887		39.50	1 41.00	1.50	28.5	85	0.5
			Drx veinlets	and qtz c	arbonate h	ealed fractur	es comm	on. Locally graphitic esp. F/28.65 - 29.30m.	278888		41.00	41.50	0.50	670.4	26/7	1.3
			Sx concentra	ated local	iy as noted	I DEIOW			278890		42.00	43.50	1.50	40.9	200	0.5
	┝╼──╁	<u>v</u>	F/ 41 30 - 41	.85 - nvri	tic intervel	(py 5 - 10%)	and min	or via arev sx. ~1% da? as matrix infilling.	278891		43.50	45.00	1.50	60	230	1
·			F/ 46.10 - 52	2.50 - goo	d example	is of replace	nent textu	ires. Sx replacing ist brx fragments and carried	278892		45.00	46.10	1.10	26.1	127	0.5
			in qtz-carbo	nate fract	ure filling ((see photos).	Entire inf	erval is variably silicified. Sx minerals noted	278893		46.10	47.50	1.40	0.18	2.44	7.5
			in order of a	bundance	e: py 2 - 89	6, sph 1 - 4%	, <u>ga 1 - 2</u>	% over high grade subintervals.	278894		47.50	48.50	1.00	0.03	0.41	1.7
		_							278895		48.50	49.00	0.50	0.25	2.65	8.2
	i	<u> </u>	F1 10 0F 1		4	- A AM			2/8890	<u> </u>	49.00	51.00	1.00	0.05	1.35	4.0
			F/ 48.65 - 4	1.25m; py	1 - 2%, 5	on ∠ - 3%,ga	\$170	······································	278898	{	51.00	52.00	1.00	0.04	1.06	4.0
			F/ 53 08 - 5	5 50m - N	INERALIZ	ED ZONE			278899	1	52.00	53.00	1.00	0.05	0.88	3.7
			Total sx vis	ually estin	nated at 1	0%; py 5 - 8	%, sph 1-	4%, ga 1 - 2%	278900		53.00	54.00	1.00	0.3	4.71	16.5
		~	F/ 57.20 - 60).25m - s	content r	narginally lo	wer than i	nineralized zone above; 5 - 6% combined.	278901		54.00	55.00	1.00	0.12	3.59	11.6
								<u> </u>	278902		55.00	55.50	0.50	0.13	3.75	13.3
<u>65.03</u>	70.07	_	Black Caica	reous Arg	pillite / Sha	ie White the back		in us also to (be for mosts and ally emissions	278903	· · · · · ·	<u> </u>	57.50	1.00	0.05	2.14	5.7
			Crudely tolk	ted and r	ibboned w	deformed an	nos. Note	inp up classs / bix fragments partially replaced	278905	· · -	57.50	58.50	1.00	0.5	1.61	29.8
			be selective	v replace	d. Sphale	tite is locally	abundant	esp. 69 64.70m.	278906		58.50	59.50	1.00	0.11	1.6	7.8
	· -		1						278907		59.50	60.25	0.75	0.11	1.47	10,3
			F/ 66.94 - 6	7.27m bla	ck clay go	uge and faul	brx. Upp	er contact 😥 70 - 80° to CA.	278908		60.25	61.00	0.75	423.4	7400	4
									278909	·	61.00	62.50	1.50	509.3	9637	4.5
			Foliation to	CA angle	s;				278910	+	64.00	64.00	1.50	243.8	3199	3,2
	┟╾╌╾┥		05.20m = 60	2" to CA					278911		65.00	66.00	1.00	129.5	914	27
	├		100.75in = 0L	, IOLA				<u> </u>	278913		66.00	67.00	1.00	105.3	456	2.7
70 07	99.06		Pale green t	sericitic S	iltstone / F	hylitte			278914		67.00	68.00	1.00	19.8	64	0.3
			minor silicifi	cation ne	ar the upp	er contact; F	70.07 - 7	5.10m	278915		68.00	69.00	1.00	16.2	66	0.1
			trace to 1%	pyrite cor	nmonly str	eaked out //	to foliatio	n, minor calcareous, darker bluish sections	278916		69.00	70.07	1.07	22.1	104	0.2
			are non-calc	areous.		<u></u>			278917		70.07	72 50	1 1 50	17.5	27	21
	╞╼╾╌┥		E/ 77 30 P	2.40m 1	et nodulee	coniched fo	and Il to	foliation @ 50° to CA. Nodules twically		 	1.00	12.00		<u> </u>	41	···
	┠		< 0.5 cm	L-MAIN - L		adminion 118	. anna // 40	restances the one to one isolates theorem.	t	<u>† </u>		t	<u> </u>	 		
	99,06		EOH										{			
												ļ				
										↓	-	[<u> </u>			<u>}</u>
			<u> </u>						 	<u>├</u>		├		<u> </u>		
<u> </u>	╞───┤	_ <u></u>	+						╂	<u>}</u>		<u>}</u> ———				
┣───	┠╍╍╼╺┥		+		· ·			<u> </u>	<u> </u>	┟╌───┤		<u>} </u>			-	
	أحسب والمسارية		<u> </u>						•	• • • • • • • • • •		• • • •				

•

4

Pb (ppm) x W Zn (ppm) x W Ag (ppm) x W

-

0.2	5	3.42	10.50
0.0	\$	0.41	1.70
0.1	3	1.33	4.10
0.0	6	1.35	4.80
0.0	6	1.65	4.60
0.0	4	1.06	4.00
0.0	6	0.88	3.70
0.3	0	4.71	16.60
0.1	2	3.59	11.60
0.0	7	1.88	6.65
0.0	5	2.14	5.70
0.1	1	2.94	11.10
0.5	0	1.61	29.80
0.1	1	1.60	7.80
0.0	8	1.10	7.73
0.1	4	2.10	9.21
0.14%PB, 2.10%	ZN, 9.21g/t Ag	from 46.1-60.25m .	
0.1	4	3.39	11.46

0.14%PB, 3.39%ZN, 11.46g/t Ag from 53.00-57.50m.

WASI CREE	ek proper Classificat	ty Fion log	ł	HOLE: WZ-05-06 Page# 1								
Date:	·c						[<u> </u>		
cogged by. a							2.0	1.0	3.0	4.0	6.0	1
From	То	Length	Recovered Longth	Recoveries %	RQD Length >100mm	RQD %	RQD Rating (0-20)	Strength Rating	Joint Space Rating (0.20)	Joint Condition Rating (0-25)	Water Rating	TOTAL Rating
	27.42	27.42		<u> </u>	CARINO	NVA	(0-20)	10-10	10-501	10-201	(0-10)	NUA.
27.42	27.43	27,43		0994	CASING	NUA		NVA				
27.43	32.01	5.30		3070	104		<u> </u>		-	<u> </u>	┨───	╂────
32.01	37.01	4.00		400%	200		<u> </u>	+	+	<u> </u>		<u> </u>
42.26	42.30	4.75		100%	200		<u> </u>		+	<u>{</u>		{
42.30	<u> </u>	4.81		100%	105		<u> </u>	+	+	<u> </u>	+	t
<u>41.41</u>	52.07	4.00	<u> </u>	100%	340		<u> </u>		+	<u>├──</u> ──	1	<u>∤−−−−</u>
57.07	37.33	<u>5.20</u> £ 13		10070	240	~~~	ł <u> </u>		+	<u> · · · · · · · · · · · · · · · · · · ·</u>	+	
57.33	67.50	5.13		100%	210			+	+		+	┟
67.50	70.05	5.11		100%	274			<u> </u>	+	{	+	<u> </u>
72.75	12.13	J. 10		100%	214		·		<u> </u>	<u> </u>	+	}
77.00	11.30		-	100%	460				<u> </u>	 	- {	ł
11.90	03.14	5.10		100%	103		[+		<u> </u>		<u> </u>
03.14	00.72	5.56		100%	105			· 	ŧ	 · · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>
00.72	83.31	4.59	·····-	100%	40					<u> </u>		
93.31	98.02	4./1		100%	20		<u> </u>		<u> </u>	<u>}</u>	<u> </u>	<u> </u>
98.02		1.04		100%	14					<u> </u>		┝
			<u> </u>					+	 			├ ──
				<u></u>				+	<u>{</u>	<u> </u>	+	<u> </u>
									<u> </u>		+ • •	
				{·		<u></u>		· <u> </u> - · · · ·	<u> </u>		╉╼╾╼╍╼	ļ
						···· ··	<u>.</u>	+	<u> </u>	ļ		<u> </u>
								+			<u> </u>	<u>}</u>
									<u> </u>		<u> </u>	
								+	<u> </u>	 		<u> </u>
								<u> </u>	<u> </u>	<u> </u>		
<u> </u>								+		<u> </u>		<u> </u>
								╀────-	<u> </u>			
									·	ļ		
				<u>}</u>				<u> </u>	<u> </u>	 	 	┢
		L						<u> </u>	<u> </u>	<u> </u>	<u> </u>	
_			<u></u> .	<u>}</u> ↓					┣			ļ
				ļ				<u> </u>	<u> </u>	·	 	├ ───-
				ļ					ļ	<u> </u>	ļ	
				 				ļ	 		Į	
								┦	 	ļ	ļ	
			<u>.</u>					<u> </u>	<u> </u>	L	 	
								ļ			I	
				L				Ļ	Í	,		
T				1 1			1	1	1		1 1	i

••

*

1. A. A.

		A ALEYAL	NOI DINC	CODI	וומס		00		-				HOLE	WZ - 05 -	07	
	SELNIKA	METAL	5 NULDING	S CURI	r DKa		LVG						Densil	1	• ·	j
_									-				rage#	1		
Ĩ	lests:	Depth	Azimuth	Dip	Depth	Azimuth	Dip	Comments	PROPERTY:	Wasi Creek						
þ	No tests								ZONE: Par Cam	P						
									UTM: NAD 83	Zone 10		Date Ret	gun:	June 30, 20	05	
									EASTING:	374 468		Date Fin	isned:	July 1, 200	>	1
									NORTHING:	6220 701		Logged	by:	ÇÇ		
									ELEVATION:	838m		Depth:		126.79		
									AZIMUTH:	70		Core siz	e:	NQ2		
									DIP:	-51				•		
															Assays	
L														ICP	ICP	ICP
Einm I	To	i Init	1				DESCRIPT	ION	SAMPLE#	Recovery	From	To	Length	Pb (ppm)	Zn (ppm)	Aq (ppm)
FIOM	10	Othr					DEGUNE							BOLD=%		
0.0	21.33	· · · ·	Casing							[· · ·			
	50.44		Dert new fin	o groine	d Dolomite	. Bev		·····		<u> </u>						
21.33	62.11		Dark grey, in		d Dolomin	olaite vaiale	in infilling o	moldo hay Bay frogmente have form outlines								· · · · · ·
			DIX TOXIUTO IS	Created	by white c	alche veinie	ts inniang c	na contois ongulor frogments (0.5		<u> </u>						
			possily due to		omitizatior	i process. S	OTHE DIX VE	ins comain anyular naymonts (0.0 -	278010	╂╼──╼──┤	27.00	28.25	1 25	46.6	234	0.6
┝╾╼──╄			2.0 cm) of We	anfOCK. L	осыну руп	uu aspeciali	y an maneral	NOU AUTOS INIOU DOUTY. VISUNIO DA 1185 110	278020		35 00	35.80	0.80	11 0	11	0.3
┝∔		<u></u>	Indication of	beading,	no tops u	p moleators	ALLO NO VISI		278021	<u> </u>	35.80	36.50	0.00	2146.5	970	61
			F/05 00 00		anthe mental	a up to 20		oous contant clighthy higher	278922	╋╍━━──┤	36.50	38.00	1.50	52.2	39	0.4
			F/ 33.80 - 30.	.эum - ю	cauy pyrm	c, up 10 376	DY, EIGINAC	fous coatem alignay night.	278923	<u> </u>	38.00	39.50	1.50	22.8	23	0.3
			F/ 44.0 - 44.5	oum - we	II TRACIUNE	I LOCK BOTEC	ent to FIVE C	A mineralization	278024	}	30.00	41.00	1.50	64	9	0.0
┝╼──┼				05	AT & #2	line d Ten e			278924		41.00	42.50	1 50	9.4	8	0.1
┝╼╾┥			F/ 44.50 - 48.	Uom - H	vv minera	ized zone	to EV and	-diath, distributed within the colorie boy	210323	<u>}</u>	42.50	43.50	1.00	14.8	5	0.1
<u> </u>			Sx mineralize	ttion is p	redominar	niy pyrne up	0 3% 500	adically distributed within the calcile bix	278920		43.50	44 50	1.00	28.8	7	0.0
┝────┾			veining. Spha	aleme in	IOCAI ACCU	mulations u	p to 1%.		278028	<u> </u>	44.50	46.00	1.50	345.4	448	1.6
							- · · · · · ·		278020	f	46 00	47.00	1.00	267	5700	1.0
			F/48.06 - 61.0	60 - MIN	EKALIZEI	JZONE	Duine a site a	the up to 10% in 10 to 20pm bands unually	278030		47.00	48.00	1.00	31.9	247	0.3
			Semi massiv	e sx thro	ugn most	or the zone.	Primarity p	vine up to 10% in 10 to 300m barlos usdany	278031		48.00	49.00	1.00	1203.1	6548	63
		<u> </u>	assoc. with c	aiche rep	Hacement	and muning		intents. Structural flactures fielded with	278932		49.00	50.00	1.00	0.25	1.3	11.8
			carbonate ve	ining. Sp		NOT TUNGER (continent Min		278033		50.00	51.00	1.00	0.19	1.24	62
			Py/spn ratio i	S about 2		ingri grade s ipod	BORIOUS, INC	te ge 51.30m occurs a Soom maserio av	278934		51.00	51.60	0.60	1.85	15.08	46.4
		· ·	Toena (py-spn	j about a	576 CUIID				278935		51.60	52.50	0.90	100.5	2518	1.1
	00.05		Dala arms 11	hilioh av	w Dolocto	no/i et Bry	·	· · · · · · · · · · · · · · · · · · ·	278936	<u>†</u>	52.50	53.50	1.00	444.9	5550	1.9
02.11	83.20		I lait is worked	nusi gre	y Duitsiu	Solution	collanse te	duree shiplites often partially lined with pyrite	278937		53.50	55.00	1.50	101.4	6027	2
├			Entire interne	lie vorio	bk miners	lized with re	wite usuali	filling bry intersticies and replacing clasts.	278938		55.00	56.50	1.50	0.02	1.42	1.5
┝╍────┾			Million anna		rite occur	e enholorite	is more no	ticephie Sphelerite is also seen as distinct	278939		56.50	58.00	1.50	153.6	4538	1.5
┝╍╌╼┥	<u> </u>		discomination	os within	the unt S	a apriarite co	la mothe	bades of veilow to brownsh red and easily	278940		58.00	59.50	1.50	0.03	1.01	1.7
┝╍╌╼╾┢	<u> </u>		mistaken for	Fe ovide	minarele	Sy proporti	on is about	2:1 (except) through most of this interval	278941	1	59.50	61.00	1.50	0.3	1.59	9,2
┝╾╌╼┯╄			rarely evoed	linn 1%	combined	Proportu		The surface of the second s	278942	r	61.00	62.50	1.50	195.2	4961	1.5
<u>├</u>			101019 00000			-			278943	······································	62.50	64.00	1.50	61.6	1904	1.3
			F/ 72 0 - 73 0) - sph m	ione brevel	ent than ov:	solt 1 - 2%	and appears olive green on fresh surfaces	278944		64.00	65.50	1.50	63	4715	0.9
	{		F/ 86 55 . 86	.85m - M	S band: 5	0% pv: 5 - 8	% soh		278945	1	65.50	67.00	1.50	34	7199	0.8
┝╌╍╌╌╉			1					······································	278946		67.00	68.50	1.50	42.1	7028	0.7
┝────┼	{		F/ 81.07 - 93	20m Rel	lic fossilfe	rous texture	, zebra ban	ding, pressure solution textures, fossiliferous	278947		68,50	70.25	1.75	0.03	1.06	1.4
┝╍╌┼	<u> </u>		shards? This	brx text	ine may be	indicative of	of a facies of	change or an abrupt change in the debris slop	9 278948		70.25	72.00	1.75	0.02	1.34	1.4
┝╼──┼			that contibute	ed to acc	umulation	s of reef deb	ris. Note o	artial replacement of some larger brx clasts	278949		72.00	73.50	1.50	88.1	6626	0.6
+			(up to 4cm)	with sohe	lerite esn	@ 87.50m			278950		73.50	75.00	1.50	34.3	1542	0.3
├			1						278951		75.50	77.00	1.50	90.9	2242	0.4
93.25	84.83		Gradational	contact b	etween ov	erlying and	underiyina	units - Increasingly graphitic and more	278952		77.00	78.50	1.50	214.2	8190	1
		·	regularily foli	ated with	depth. Th	is zone may	y be the are	dational change from subtidal deep water to	278953		78.50	80.00	1.50	117.3	5038	1.1
	ł		shallow wate	r suprati	dal facies.				278954		80.00	81.50	1.50	107.5	4145	0.7
								- · · · · · · · · · · · · · · · · · · ·	278955		81.50	83.00	1.50	17.3	429	0.2
		-	+						278956		83.00	84.50	1.50	13.2	79	0.1
├ ───┼			1				··· · - ···									
			·† · · · ·						1							

;

	SELKIRK METALS HOLDINGS CORP DRILL HOLE LOG HOLE: WZ - 05 - 07															
													Page#	2	•	
	Tests:	Depth	Azimuth	Dip	Depth	Azimuth	Dip	Comments	PROPERTY: ZONE:	Wasi Creek		Data Ba	-			
									EASTING:	2018 10		Date Fin	ished:			
									NORTHING:			Logged	by:			
									ELEVATION:			Depth:				
												Core siz	e:			
									L					ЮР	İCP	ICP
From	То	Unit	T			DES	CRIPTIC	DN	SAMPLE#	Recovery	From	To	Length	Pb (ppm)	Zn (ppm)	Ag (ppm)
94.8	101.83		Calcareous	Black Arg	illite / Sha	ie								BOLD=%		
			moderately	wel foliate	d and ribt	oned with ca	cite viens	both parallel and at angles to foliation.	A = 44.6			00.00	1.00	44.0		
			Minor pyrite	and trace	sphalerite	e locally. Gra	hitic esp	. F/94.83 - 95.76m.	2/895/	<u> </u>	84.50	97.00	1.50	11.0	- 49	U.1
404 99	496 70	····	Pole green t	o greenie	h white Se	vicitic Sitteto			278959	<u> </u>	87.00	88.00	1.00	53.8	373	07
101.03	120.13		ivariably calc	areous. n	ninor silici	fication. Pvriti	c near th	e upper contact	278960		88.00	89.50	1.50	40	2164	0.5
									278961		89.50	91.00	1.50	179.7	2120	1.6
			F/ 104.55 - '	104.75m -	fault gour	e and box pe	bbies. Or	ientation of the fault/fracture is about 70*	278962		91.00	92.50	1.50	111	1347	1.5
			to CA. Seri	icite on fol	liation play	tes feels soa	y and sli	ck to the touch.	278963		92.50	93.25	0.75	100.7	872	1.3
			Entintion to (Core engl	001				278965		93.25	96.00	1.50	102.4	315	2.9
			96.20m -= 4	7*	<u> </u>	·· · · · ·		<u></u>	278966		96.00	97.50	1.50	28.7	15	0.4
			100.80m = 5	53*					278967		97.50	99.00	1.50	13.9	14	0.2
			103.5m = 60)*					278968		99.00	100.50	1.50	14.2	9	0.1
			108.8 <u>m = 54</u>	<u>4*</u>		<u></u>		·····	278969		100.50	101.45	0.95	10.9	8	0.2
							<u>.</u>	· · · · · · · · · · · · · · · · · · ·	278970		101.5	103.0	1.55	99	11	01
		· · · · · · · · · · · · · · · · · · ·	<u> </u>						278972		120.0	121.5	1.50	7.7	64	<.1
			1						278973		121.5	123.0	1,50	11.4	57	<.1
								······································								
		· <u> </u>	ļ													
		<u> </u>	<u> </u>						<u> </u>	<u> </u>						
	126.79		E.O.H.				· -		<u> </u>							
															,	
									<u></u>		<u> </u>					
┝╍╾╼┥		· · · · ·	<u> </u>				<u>.</u>			<u> </u>						
						· ··· ··	······	<u>, .,</u>	<u> </u>	╞╼╌╼╴┤						
			<u> </u>						<u> </u>	┝───┤			 	<u> </u>		
			<u></u> -						<u></u>	[[<u> </u>	-			
			<u> </u>						<u> </u>							
			1													
												[
			<u> </u>	<u> </u>						<u> </u>						
		<u> </u>	+						<u> </u>	<u>├</u>						
			+					<u></u>								
			1						[
						·						ļ				
			<u> </u>							<u> </u>						
•	1	1	1						J	1			l	L		

SELKIRK MET ROCK MASS (TALS HOLDII	NGS CORP WASI (ION LOG	REEK PRO	OPERTY			ł	iOLE: Page#	WZ-05-07 1			
Logged by: C	:c						[Parameter			
Logged by.							2.0	1.0	3.0	4.0	5.0	
From	То	Length	Recovered Length	Recoveries %	RQD Length >100mm	RQD %	RaD Rating (0-20)	Strength Rating (0-15)	Joint Space Ruting (0-30)	Joint Condition Rating (0-25)	Water Rating (0-10)	Rating
0.0	21.33	21.33	والمترية فيلي المكان بالتربي المناخ		CASING	N/A	N/A	N/A	N/A	N/A	N/A	N/A
21.33	26.21	4.88		96%	76							
26.21	30.77	4.56		98%	108							
	35.88	5.11		99%	198			ļ	ļ			<u> </u>
35.88	40.50	4.62		100%	98			<u> </u>		<u> </u>	 	
40.50	44.86	4.36	·	100%	46		ļ	<u> </u>	<u> </u>	<u> </u>	+	
44.86	50.00	5.14		100%	267							
50.00		4.62		100%	117			<u> </u>	<u> </u>	<u> </u>	<u> </u>	
59.02	64.03	4.43		100%	111		· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
64.03	68.46	4.43		100%	35			<u> </u>	†		1	
68,46	72.52	4.06	_	100%	45			1	1			
72.52	77.47	4.95		100%	285			1			1	1
77.47	81.47	4.00		100%	72							
81.47	86.35	4.88		100%	62							
86.35	91.13	4.78		100%	154							I
91.13	96.16	5.03		100%	247			·		ļ	Ļ	<u></u>
96.16	101.13	4.97		100%	66			<u> </u>	 			
101.13	106.38	5.25		100%	51			ļ		<u> </u>	<u> </u>	· · ·
106.38	111.04	4.66		100%	45			<u> </u>		<u> </u>	<u> </u>	
111.04	110.40	5.42		100%	09		· · · · ·	<u> </u>				
121 63	121.00	5.17		100%	85			+		 		
	120.10	0.10						<u>+</u>		<u> </u>		
		· · · · · · · · · · · · · · · · · · ·										
								<u> </u>				
								ļ		-		
										<u>}</u>	L	
				┝────┥	 			<u> </u>		├─── ─	 	
								<u> </u>			}	
			·····				·	·			╞──┤	
							<u> </u>	<u> </u>	<u> </u>	l	<u> </u>	
	{				<u> </u>			<u> </u>			<u>}</u> ∤	
								<u>† · · · · · · · · · · · · · · · · · · ·</u>				

.

SECTION F: ILLUSTRATIONS

Plan Number	Title	Scale
WA-05-1 (after p.4)	General Location Plan	1:250 000
WA-05-2 (after p.4)	Mineral Claims	1:50 000
WA-05-3 (in pocket)	Mineral Claims / Drill Hole Locations	1:20 000
WA-05-4 (in pocket)	Geology and Drilling Compilation	1:5 000
WA-05-5 (in pocket)	Drill Section - WZ-05-01	1:500
WA-05-6 (in pocket)	Drill Section - WZ-05-02	1:500
WA-05-7 (in pocket)	Drill Section - WZ-05-03	1:500
WA-05-8 (in pocket)	Drill Section - WZ-05-04	1:500
WA-05-9 (in pocket)	Drill Section - WZ-05-05	1:500
WA-05-10 (in pocket)	Drill Section - WZ-05-06	1:500
WA-05-11 (in pocket)	Drill Section – WZ-05-07	1:500

