

NTS: 82M/15W
B.C. Geographic System Map Sheet: 082M.076

Latitude: $51^{\circ} \mathbf{4 6 . 8} \mathbf{8}^{\prime} \mathbf{N}$; Longitude $118{ }^{\circ} 54.5^{\prime} \mathbf{W}$
UTM (NAD 83): $\mathbf{5 7 3 8} \mathbf{2 0 0} \mathbf{N}$; $\mathbf{3 6 8} \mathbf{3 0 0} \mathbf{~ E ; ~ Z o n e ~} 11$

Vendor: Doublestar Resources Ltd.

Optionee and Operator: Selkirk Metals Holdings Corp.

Author: Jim Miller-Tait, P.Geo.

May 12, 2006

TABLE OF CONTENTS

Section		Title	Page
A	Report	Introduction	3
		Property	3
		Location and Access	3
		Climate, Topography and Vegetation	4
		History	4
		Regional Geology	7
		Property Geology	7
		2005 Program: Camp and Drill Site Preparation	13
		2005 Program: Diamond Drilling	13
		Conclusions	15
		Recommendations	16
		References	17
		Statement of Qualifications	19
	Tables	1. Summary of Activities	6
		2. Metavolcanic / Metasedimentary Units	9
		3. Intrusive Units	13
		4. 2005 Drill Hole Summary	14
		5. Significant Intersections from 2005 Program	15
B	Property	Schedule of Mineral Claims	20
C	Expenditures	Statement of Expenditures	24
D	Analytical Reports	Acme Analytical Laboratories Ltd.: - Certificates of Analysis (2 reports) - Statement of Analytical Procedures (1 data sheets)	27
		Vancouver Petrographics Ltd.	
		- Report 051010 dated January 2006	
E	Drill Hole Logs	Drill Hole Record Drill Hole Number RD-05-112 Drill Hole Number RD-05-113 Drill Hole Number RD-05-114 Drill Hole Number RD-05-115	
F	Illustrations		
	Plan Number	Title	Scale
	RC-06-1 (after p. 4)	General Location Plan	1:250 000
	RC-06-2 (after p. 4)	Location Plan	1:50000
	RC-06-3 (after p. 4)	Mineral Claims	1:50 000
	RC-06-4 (in pocket)	Mineral Claims / 2005 Drilling	1:20000
	RC-06-5 (in pocket)	Drill Hole Plan: E Zone and E Zone Extension	1:1000
	RC-06-6 (in pocket)	Drill Hole Section: Hole RD-05-112	1:1000
	RC-06-7 (in pocket)	Drill Hole Section: Hole RD-05-113	1:1000
	RC-06-8 (in pocket)	Drill Hole Section: Holes RD-05-114 and RD-05-115	1:1000

SECTION A: REPORT

INTRODUCTION:

The Ruddock Creek Property (the "Property") is a "Sedex-Type" stratabound lead-zinc deposit owned by Doublestar Resources Ltd. ("Doublestar"). Selkirk Metals Holdings Corp. ("Selkirk Holdings" or "the Company") holds an option to acquire up to a 70% interest in the Property from the owner under the terms of an Option and Joint Venture Agreement dated June 10, 2004. The option was originally acquired by Cross Lake Minerals Ltd. but was assigned to Selkirk in June 2005 as a result of a Plan of Arrangement. This report documents a program of NQ-2 diamond drilling carried out by the Company on the E Zone Extension of the Property during July, August and September 2005. All fieldwork was helicopter supported and consisted of the establishment of an eight person camp, the construction of two drill platforms and the actual drilling program. F. Boisvenu Drilling Ltd was contracted to carry out the diamond drilling. The work was carried out on Tenure No. 516624. Four NQ-2 holes totalling 3245.4 m were completed.

PROPERTY:

The Ruddock Creek Property is comprised of seven cell claims containing an aggregate of 187 cells and covering a gross area of 3739.059 hectares. These claims represent the conversion in July 2005 of two 4 post mineral claims (15 units) and 59 two post claims into one cell claim of 79 cells and the acquisition in July and August 2005 of two cell claims containing 26 cells and the further acquisition in April 2006 of four claims containing 82 cells. The claims are located primarily in the Kamloops Mining Division but a small portion of the Property extends eastward into the Revelstoke Mining Division. The original 2 post claims were staked from October 1960 to September 1962 and the two 4 post claims in June 1977. The claims are registered in the name of Selkirk Metals Holdings Corp. during the currency of the Option Agreement. The claims are shown on Plan Nos. RC-06-1 to RC-06-4 contained herein. The details of the mineral claims that comprise the Property are set out in Section B of this report. The expiry dates shown are based on the Statement of Work filed on February 24, 2006 as Event \#4071828 and assume that the work contained in this report will be accepted for assessment purposes.

LOCATION AND ACCESS:

The Ruddock Creek Property extends from the headwaters of Ruddock Creek westerly across the Oliver Creek Valley to the Mammoth Creek drainage in the Scrip and Seymour Ranges of the Monashee Mountains in southeast British Columbia. The main area of the Property is located approximately 100 km north-northwest of Revelstoke, 28 km east of Avola and 6.5 km west of Gordon Horne Peak. The claims
are situated on NTS map sheets $82 \mathrm{M} / 14 \mathrm{E}$ and 15 W and BCGS map sheets $082 \mathrm{M} 075,076$ and 085. Geographic coordinates at the centre of the 2005 drill program are $51^{\circ} 46.8^{\prime}$ north latitude, $118^{\circ} 54.5^{\prime}$ west longitude and the UTM coordinates (NAD 83) are 5738200 N and 368300 E in Zone 11.

There is no direct road access to the eastern portion of the Property although a logging road has now advanced from the Adams River up the Oliver Creek Valley to the central portion of the claim holdings. Access for the 2005 program was provided by helicopter either directly from Revelstoke ($100 \mathrm{~km} / 0.6$ hours flying time) or from a staging area on Highway 23 ($18 \mathrm{~km} / 0.2$ hours flying time) between Revelstoke and Mica Dam across from the mouth of Ruddock Creek where it flows into Lake Revelstoke.

CLIMATE, TOPOGRAPHY AND VEGETATION:

The climate in the area is temperate with generally warm summers and cool, wet winters. Substantial snow accumulations are the norm, thus limiting the fieldwork season to mainly August and September. Permanent snow cover exists on some of the higher areas of the Property.

The claims are situated in extremely mountainous terrain at the height of land between the drainages of the Columbia River and Fraser River systems. The terrain is characterized by heavily timbered lower slopes and steeper alpine-glaciated upper slopes. Elevations range from 880 m above sea level at the northwestern edge of the claims in the Oliver Creek drainage to 2854 m on an unnamed peak at the northern edge of the holdings. The terrain is extremely steep in some areas making access very difficult. A number of small alpine lakes or tarns dot the area. Water supply from streams fed by glacial and snow melt varies according to elevation and time of year. A small lake exists at the E Zone and forms an adequate reservoir for drilling purposes.

The vegetation is mainly in the western one third of the claims below the 1900 m level and consists primarily of subalpine Balsam Fir, Spruce, Hemlock and Western Red Cedar. Vegetation is limited to heather and stunted shrubs in the lower alpine regions above tree-line and in the upper areas the ground is either barren rock or is covered by permanent neve snow, small glaciers or glacial moraine and rock talus.

HISTORY:

Exploration on the Ruddock Creek Property dates from the discovery of massive sulphide mineralization and the subsequent staking of the ground in 1960 by Falconbridge. The most extensive exploration was conducted by Falconbridge over the period 1961-1963. During this phase of exploration, most of the property was mapped at scales ranging from $1: 240\left(1^{\prime \prime}=20^{\prime}\right)$ to $1: 4800\left(1^{\prime \prime}=400^{\prime}\right)$. Core drilling was

completed at the E Zone, and the F, G, M, T, Q, U, and V showings (see summary in Table 1). Falconbridge completed detailed $1: 480\left(1^{\prime \prime}=40^{\prime}\right)$ geological cross sections through the E Zone area during its exploration program, as well as several property-scale sections showing stratigraphic and structural correlations of the massive sulphide interval between the different showings. They also constructed structure contour maps of the subsurface projection of the E Zone, in order to better target portions of the mineralization offset by faulting.

Cominco Ltd. optioned the property from Falconbridge in 1975 and completed two additional drill holes plus a wedged hole in 1975 and 1976 exploring for deep extensions to the E Zone. Cominco also conducted additional detailed mapping at the F and G showings and calculated an "indicated potential" for the E Zone of 1.5 MT grading $10 \% \mathrm{~Pb}+\mathrm{Zn}$, increasing to 3.0 MT if the E Zone is projected westward to the E Zone Fault (Mawer, 1976). In 1977 Cominco carried out further drilling on the Upper and Lower G Zones as well as the F and T Zones. Cominco contracted a structural evaluation of the property in 1978 (Marshall, 1978). This study corroborated many of the general interpretations made by Falconbridge and also provided additional detail to the interpretation of lithologic sequence, structural fabrics and folding history. Cominco also conducted a small program of surface and bore hole geophysics in 1982. Cominco's interest at this time was 40% and subsequently increased to 41.1%.

Doublestar Resources Ltd. acquired Falconbridge's 58.9% interest in January 2000 and in August and September 2000 carried out a detailed structural mapping program on the Property. In February 2001, Doublestar purchased the 41.1% interest of Cominco to hold a 100% interest in the Property, subject only to a 1% Net Smelter Royalty in favour of Cominco.

In March 2004, Cross Lake acquired an option on the Property from Doublestar and in August and September 2004 completed an 11 hole NQ drill program on the E Zone totalling 1838.7 m .

Selkirk Holdings continued work on the Property in 2005. An helicopter-borne AeroTEM II Electromagnetic and Magnetic survey was flown by Aeroquest Limited in May, four deep drill holes (3245.4 m) were completed on the E Zone Extension during July, August and September and a geological mapping, geochemical sampling and UTEM-3 geophysical survey program was conducted in the Oliver Creek Valley in September and October.

Table 1 summarizes work and drilling completed to date on the Ruddock Creek Property. An aggregate of 138 holes totalling $14,626 \mathrm{~m}$ have now been drilled, with the E Zone and $\mathrm{G}, \mathrm{M}, \mathrm{T}, \mathrm{U}, \mathrm{R}, \mathrm{V}$, and Q zones
represented. Drill core was stored on site but, other than the most recent drilling, is generally in poor condition.

Table 1
Ruddock Creek Property: Summary of Activities

Year	Company	Area or Zone	Type of Work	Drilling		
				Holes	Hole Numbers	Metres
1960	Falconbridge		Prospecting, staking			
1961	Falconbridge	E, M, T	Prospecting, geological mapping, drilling	37	E-1 to 19 M-1 to 15 T-1 to 3	$\begin{array}{r} \hline 813 \\ 104 \\ \underline{23} \\ 940 \\ \hline \end{array}$
1962	Falconbridge	E, Q, T	Drilling, hand stripping and trenching	27	$\begin{aligned} & \text { E20-33, 33A-37 } \\ & \text { Q-1 to } 3 \\ & \text { T-4 to } 8 \end{aligned}$	$\begin{array}{r} 1130 \\ 84 \\ \underline{80} \\ 1294 \\ \hline \end{array}$
1963	Falconbridge	$\begin{aligned} & \text { E ext., R, } \\ & \text { Q, U, V } \end{aligned}$	Drilling, hand stripping and trenching	25	$\begin{aligned} & \text { ED-1 to } 8 \\ & \text { Q-4 to } 13 \\ & \text { R-1 to } 3 \\ & \mathrm{U}-1 \text { to } 3 \\ & \mathrm{~V}-1 \end{aligned}$	$\begin{array}{r} 3229 \\ 347 \\ 67 \\ 37 \\ \underline{8} \\ 3688 \\ \hline \end{array}$
1973	Cominco		Aeromagnetic survey of western portion	-		
1975	Cominco	E ext.	Drilling	1	C-1-75	694
1976	Cominco	E ext.	Drilling	2	C76-1, 76-1A	1372
1977	Cominco	Upper G, Lower G, F, T	Drilling, geological mapping, prospecting	31	UG77-1 to 12 LG77-1 to 8 F77-1 to 5 T77-1 to 6	$\begin{array}{r} 832 \\ 377 \\ 156 \\ \underline{189} \\ \hline 1554 \end{array}$
1978	Cominco		Structural study	-	-	-
1982	Cominco		Limited surface and bore hole geophysics	-	-	
2000	Doublestar		Geological mapping and structural analysis	-	-	
2004	Cross Lake	E	Drilling	11	$\begin{aligned} & \hline \text { RD-04-101 to } \\ & \text { RD-04-111 } \\ & \hline \end{aligned}$	1839
2005	Selkirk	Complete property	Airborne geophysical survey: AeroTEM II EM and Mag (232.2 line km)			
2005	Selkirk	E ext.	Drilling	4	$\begin{array}{\|l} \hline \text { RD-05-112 to } \\ \text { RD-05-115 } \\ \hline \end{array}$	3245
2005	Selkirk	Oliver Cr.	Geological mapping and sampling ($500 \times 1800 \mathrm{~m}$)			
2005	Selkirk	Oliver Cr.	Geochemical sampling			
2005	Selkirk	Oliver Cr.	Geophysical survey: UTEM-3 (18.575 line km)			
Total				138		14626

REGIONAL GEOLOGY:

The geologic and structural description outlined below is summarized from the BCDM Bulletin \#57 by J.T. Fyles (1970).

The deposit lies in metasedimentary rocks of the Shuswap metamorphic complex on the northwest flank of the Frenchman Cap Gneiss Dome. The Dome is elongate with the long axis trending north-northwest, parallel to the Columbia River. In the northern area of the "Dome" the core gneisses fie beneath gently northerly dipping metasedimentary rocks which grade upward into metasedimentary rocks containing abundant pegmatite. This pegmatite rich zone covers wide areas between the Columbia River and Oliver Creek.

Pegmatite and medium-grained granitic rocks make up more than 50% of the outcrops. These rocks represent mainly if not entirely partial melting of the metasediments. Rock units and structures can be projected and traced among the pegmatite sheets without significant displacement. The abundance of pegmatite and very few distinctive marker beds, except for the sulphide layers in the sedimentary rocks, translates into correlations that are largely interpretive.

The structure of the area is dominated by repetitive folding, which took place during metamorphism, and was followed by faulting. The earliest folds called Phase I are isoclinal and obscure and tend to thicken the sequences in the hinge Zone as one does in the E Zone. The later folds, called Phase II, more open and abundant on all scales. Faults in the area are of two types, thrusts and normal. The E Zone Fault is an example of a late normal block fault, which strikes northerly and dips $58-60$ degrees west. Phase I isoclinal folds, with thickened hinge Zones and sheared out limbs have large indicated strike lengths usually measured in kilometres. These structures were refolded and tightened by Phase II folding. The formation of granite probably began late in the Phase II deformation, or after it, along with the development of pegmatites. It is likely that the development of the penetrative gneiss dome to the south contributed directly to the high degree of metamorphism and structural complexity of the area.

PROPERTY GEOLOGY:

During a three week period, August 18 to September 4, 2000, Peter Lewis, P.Geo. was contracted by Doublestar to complete property scale mapping on the Ruddock Creek Property. His study focused on evaluating the structural history of the property with the objective of defining controls on the distribution of massive sulphide bodies. Lewis was also able to define and group rock units from previous geologists on the Property into mapable units that he used in creating property scale maps. Mapping was completed
for the eastern portion of the property, including the E Zone and F, G, and M showings, at 1:5,000. The area surrounding the E Zone was also mapped at $1: 2,500$ to provide more detailed control on the lithologic successions and structural features present in the area of greatest economic interest. The T showing area was mapped at $1: 5,000$ and a reconnaissance visit to the U showing was completed. A description of the stratigraphy and intrusive units as defined by Lewis follows:

Stratigraphy and Intrusive Rock Units:

The Ruddock Creek Property contains a variety of amphibolite-grade metasedimentary and metavolcanic rocks, cut by granitic intrusions that range texturally from fine-grained to pegmatitic. Contacts between lithologic units of the metamorphic succession are difficult to follow in many areas due to the high proportion of granitic intrusive rocks.

Intense deformation and metamorphism have obliterated any primary facing direction indicators in the metasedimentary and metavolcanic rocks. Structural repetition, due to both folding and thrust faulting, is documented in several locations on the property and could easily occur elsewhere where it is not yet recognized. Therefore, the metamorphic rock sequence portrayed on the property map and described below is best considered a structural sequence, composed of units with uncertain stratigraphic relationships.

The metasedimentary and metavolcanic rocks on the property comprise schists, gneisses, and quartzites, which can be divided into seven compositionally distinct lithotypes (Table 2). Individual lithotypes can form layers as thin as a few centimetres, to as thick as several tens of metres. Most lithotypes occur at multiple levels within the section, and thus the individual lithotypes do not comprise map units in a formational sense; however, they do form the basic map units shown on map sheets 1 and 2. Because of constraints imposed by the scale of mapping, only lithotypes greater than 2-3 m thick are shown on map sheet 1. Lithologic intervals composed of lithotypes that alternate in thinner layers are identified according to the dominant rock type within the interval. Table 3 summarizes the lithologic characteristics of the lithologic divisions, and compares them to map units employed in previous reports.

Although the individual metamorphic lithotypes do not form unique map units, the thickness and distribution of each shows systematic variation across the map area. This variation defines three lithologic domains: the E Zone structural hanging wall domain, the E Zone structural footwall domain, and the T showing domain.

E Zone structural footwall lithologic domain:

Massive sulphides at the E Zone occur within the hinge area of a property-scale, recumbent, tight to isoclinal synform. $1^{\prime \prime}=40^{\prime}$ scale mapping by Falconbridge (Morris, 1965) documents inverted lithologic successions on the two opposing limbs in the immediate hinge area. However, property-scale mapping in this study shows significantly different lithologic successions on the two limbs beginning $30-50 \mathrm{~m}$ from the fold axial surface. Based on these lithologic differences and structural evidence (section 3 below), a fault sub-parallel to layering is interpreted on the lower fold limb, referred to in this report as the Camp Fault, because it crosses the area near the location of the main camp used in previous exploration. Rocks structurally below the Camp Fault are assigned to the E Zone structural footwall domain, and above, the E Zone structural hanging wall domain. The relative stratigraphic position of the lithologic sequences in the two domains is uncertain.

Table 2: Metavolcanic / metasedimentary units present at the Ruddock Creek property and correlation with previous lithologic designations

Primary Rock Type	$\begin{aligned} & \text { Map } \\ & \text { Code } \end{aligned}$	Description	Assignment by Morris, 1965	Distribution
mafic gneiss	mg	Thinly-banded to massive, dark green, fine-grained pyroxene $+/$ - amphibole gneiss; subordinate plagioclase; garnet common	Not differentiated; included in units QA and HGM amphibolitic quartzite, hornblende-biotitegarnet schist)	Occurs structurally 100-200 m above F and G showings; $30-50 \mathrm{~m}$ above T showings
calc-silicate gneiss, marble	cs	Thinly- to thickly-banded, compositionally varied unit containing alternating bands of fine- to coarsegrained quartzite, marble, diopside-rich and amphibolitic marble and quartzite	LQ (quartzitic marble)	Widely distributed through project area, occurs both structurally above and below massive sulphides
marble	ma	Tan to light gray, medium to very coarse-grained, massive marble, with subordinate micaceous or diopside partings	Not differentiated; included in LQ (quartzitic marble)	Forms mapable unit between F and G showings, thick units on slope structurally below E Zone
amphibole gneiss	ag	Thinly- to medium- banded, amphibole + plagioclase gneiss; contains garnetiferous layers; distinguished from calc-silicate gneiss by lack of calcite and by abundance of amphibole; may represent metamorphosed chloritic alteration	QA, HGM, ALQ (amphibolitic quartzite and others)	Occurs as thin (not mapable) layers within calc-silicate gneiss; occurs as thick mapable unit only in hanging wall to E Zone, and pinches out abruptly along strike.
biotite schist	bs	Highly-schistose, coarse-grained biotite containing up to 40% by volume foliation-parallel to moderately discordant leucocratic segregations (probably both transposed veins and metamorphic segregations) consisting of fine- to medium-grained quartz and feldspar; abundant garnet in some intervals	MQ (biotite quartzite schist)	Occurs structurally above massive sulphides at E Zone and F and G showings, forms thick unit structurally overlying T showings, and in several layers (with possible structural repetition) below E Zone.

quartzo- feldspathic biotite schist	qb	Finely-banded to massive, schist to semi-schist, consisting of quartz, feldspar, and biotite in varying proportions; distinguished from biotite schist by finer grain size, less schistose texture, and lack of leucocratic segregations.	Not differentiated; included in either QM (quartzite, slightly micaceous) or MQ (biotite quartzite schist)	Abundant immediately above massive sulphide interval at E Zone and T showings.
quartzite, quartzose schist	qz	Thinly- to thickly-bedded, fine- to medium-grained recrystallized quartz grains with variable percentage of fine biotite or amphibole grains; commonly includes decimetre to metre thick schistose, marble, and calc-silicate layers not mapable at property scale; gradational into quartzo-feldspathic biotite schist	QZ (thin, mineralized quartzite) or QM (quartzite, slightly micaceous)	Usually spatially associated with massive or disseminated sulphide mineralization; thickest at E Zone

The E Zone structural footwall lithologic domain is well exposed on the steep, southeast-facing slopes below the E Zone. It consists primarily of biotite schist, marble, and calc-silicate interlayered on the scale of several metres to several tens of metres. Minor structures, such as asymmetric secondary folds, suggest that this interlayering may be in part structural, and map sheets 1 and 2 illustrate the synformal axial trace inferred from this evidence. Both the lower and upper limbs of this fold consist of a carbonate package sandwiched within biotite schists. On the lower limb, this carbonate package is a pure light gray marble in the east, which grades westerly along strike into a two-part succession with a lower, calcsilicate gneiss division and an upper marble division. On the upper limb, the carbonate package is dominated by calc-silicate gneiss, with subordinate lenses of gray to tan marble. The biotite schist that overlies the calc-silicate gneiss on the upper limb is in turn overlain by quartzo-feldspathic mica schist containing lenses of quartzite and minor calc-silicate.

E Zone structural hanging wall lithologic domain:

The E Zone structural hanging wall lithologic domain is well exposed on the slopes above the E Zone and to the west of the E Zone Fault. Quartzites, micaceous quartzites, and subordinate limestone, calcsilicate, and biotite schist containing two main massive sulphide layers form the lowest rocks within the succession. Falconbidge's mapping of the E Zone (Morris, 1965) shows this lower sequence in detail. Biotite schists with minor calc-silicate and quartzo-feldspathic schist structurally overlie the quartzite + massive sulphide interval. These are in turn overlain by amphibolitic gneiss at the E Zone, which grades eastward into a sequence dominated by interlayered calc-silicate gneiss and quartzo-feldspathic schist. Highest exposed rocks in the E Zone area are calc-silicate gneisses with subordinate interlayered quartzofeldspathic schist and marble.

West of the E Zone Fault, a similar lithologic sequence is exposed in the structural hanging wall to the F showing, although the large volume of pegmatite here precludes defining the sequence to the same level of detail. Displacement along the E Zone Fault has exposed higher levels here: mafic pyroxene gneisses overlie calc-silicate rocks correlated with those forming highest exposed levels to the east of the fault.

T showing lithologic domain:

Three main lithologic units are exposed at the T showing area. Structurally lowest rocks, which contain the massive sulphide lenses, consist of quartzo-feldspathic schists with lesser quartzite, biotite schist, and calc-silicate gneiss. This package is overlain by mafic gneisses that are lithologically similar to those in the uppermost part of the E Zone structural hanging wall domain. Highest rocks in the T showing lithologic domain are biotite schists, which are exposed over large areas and form a monotonous unit a least several hundred metres thick north of the T showings.

Correlation between lithologic domains:

The Camp Fault, which separates the E Zone structural footwall domain and the other two lithologic domains, has an uncertain offset history. The inferred fault trace is sub-parallel to lithologic contacts, consistent with formation as a thrust fault, possibly during regional folding. If so, the footwall domain may represent a higher stratigraphic level than the hanging wall domain (because it lies in the lower plate of the thrust fault), and the thick biotite schist sequences may be roughly equivalent to those in the upper part of the T showing lithologic domain. This correlation implies that the massive sulphide interval may be present at depth in the footwall domain. Because fault geometry is poorly constrained and is certainly modified by subsequent deformation, it is not possible to estimate displacement direction or magnitude.

The massive sulphide interval provides a stratigraphic tie between the E Zone hanging wall lithologic domain and the T showing lithologic domain. In both domains, massive sulphides occur within a lithologically varied interval containing quartzite, calc silicate, quartzo-feldspathic schist, and biotite schist. If the mafic gneiss interval present in both is laterally equivalent, this lithologically varied interval is significantly thicker at the E Zone than at the T showing. This might indicate that the E Zone area occupied a subbasin during massive sulphide deposition.

Amphibolite gneiss, though present as thin layers within the calc-silicate gneiss, only forms a mapable lithologic unit in the E Zone hanging wall domain. The localization of this rock type adjacent to the thickest known massive sulphide layers suggests that it may be a metamorphosed alteration zone, possibly originally chloritic in composition. This has two important implications: first, the occurrence of similar
rocks elsewhere on the property may be a useful exploration guide; second, the E Zone hanging wall lithologic domain, and by inference, the T showing lithologic domain, represent the original stratigraphic footwall to the massive sulphide interval.

Intrusive Rock Units:

Intrusive rocks on the property include small, tabular, massive tremolite + actinolite bodies, and voluminous dykes, sills, stocks, and plutons of granitic composition (Table 3). The latter comprise roughly 50% of the rock present on the property (Mawer, 1976; Fyles, 1970), and are highly variable texturally and structurally. They range from planar dykes that cut shallowly or sharply across compositional layering, to large, irregular bodies containing abundant zenoliths of country rock. Grain size ranges from fine to pegmatitic, although previous workers refer to all as "pegmatites". Some of the granitic rocks possess a grain orientation fabric parallel to foliation in the adjacent country rock, and intrusive contacts are often deformed. In some areas, pegmatite occurs in lenticular boudins around which foliation wraps. Elsewhere, granitic rocks of similar composition and grain size lack any visible grain fabric, and contacts cut across folds and structural fabrics in the adjacent country rock. Together, these relationships suggest that formation of the granitic rocks was in part synchronous with, and in part outlasted deformation.

The origin of these granitic rocks has been the subject of debate among previous workers: some suggest magma emplacement within dilational fractures (Marshall, 1978), while others favour in-situ replacement of the metamorphic package (Fyles, 1970). Contact relations of the granitic rocks support both processes. Dykes can have sharp, planar contacts that cut across lithologic contacts in the metamorphic rock sequence, implying infilling of dilational fractures. However, several features indicate in-situ melting and/or replacement of the country rock:

1. Many of the zenoliths have diffuse, irregular contacts with the enclosing pegmatite.
2. Layering within adjacent zenoliths is consistently oriented.
3. Distinctive compositional layers or lithologic contacts within zenoliths can be traced through adjacent zenoliths with no apparent offset.

Massive tremolite/actinolite bodies occur on the property near the T showing and E Zone. They have tabular forms with contacts concordant to or cutting shallowly across foliation, and occur at several structural levels. Although they are very coarse-grained and lack grain orientation fabrics, they are boudinaged and their contacts are deformed. They most likely originated as ultramafic dykes, which have been transposed into their present semi-concordant geometry during subsequent deformation.

Table 3: Intrusive units present at the Ruddock Creek property and correlation with previous lithologic designations				
Primary Rock Type	Map Code	Description	Assignment by Morris, 1965	Distribution
pegmatite/granite	pg	Highly varied: large, irregular intrusions to planar dykes; fine-grained equigranular to pegmatitic; contacts can be either tightly folded, or can cut across folds in country rock; some outcrops contain grain-orientation fabric parallel to S_{0} / S_{1} in adjacent metarmorphic rocks	Occurs throughout area; volumetrically most significant in area between G showings and T showings, where country rock occurs only in isolated zenoliths.	
massive tremolite/actinolite	tr	Tabular layers up to 15 m thick slightly discordant to layering in enclosing rocks; coarse-grained and massive internally, but contacts strongly boudinaged. Contains contact zones up to 30 cm thick consisting of very coarse-- grained biotite	Not differentiated	Spatially associated with massive sulphides at E Zone and T showing; occurs at several structural levels

2005 PROGRAM - CAMP AND DRILL SITE PREPARATION

Due to the remoteness and steep terrain in the drilling area, helicopter transport was the sole means of access to the Property. A staging area along Highway 23 was used to offload all the camp and drilling equipment and the materials were then flown westerly some 18 km up the Ruddock Creek Valley and over the watershed boundary to the worksite. Selkirk Mountain Helicopters Ltd. based in Revelstoke primarily utilized a Bell 206 L4 to ferry all the materials in and out of the Property. Kruger's Expediting of Revelstoke was used to provide expediting services and provisions for the camp for the duration of the work program.

The camp to house the drilling contractor's crew and Selkirk Holdings' technical personnel was situated at the 2175 m elevation ($5737600 \mathrm{~N} / 368670 \mathrm{E}$) at one of the areas previously used by Cominco and Falconbridge. The eight person camp consisted of three Weatherhaven shelters installed on wooden decks; two four person sleeping units and one kitchen/dry/wash unit.

Drilling platforms were required due to the extremely steep terrain. The decision was made to drill more than one hole from a site and therefore two platforms were constructed, the first for holes RD-05-112 and 113 and the second for holes RD-05-114 and 115.

2005 DIAMOND DRILLING:

F. Boisvenu Drilling Ltd., of Delta B.C. was contracted to carry out the 2005 diamond drilling program.

The contractor used a modular Hydrocore 3000 drill unit suitable for helicopter transport to complete four
holes. A total of 3245.4 m of NQ-2 sized core was drilled. Drill mobilization occurred from July 16-23, drilling commenced on July 23 and was completed on September 18. Due to the steep terrain, drill core was transported from the drill platforms to the core logging tent using a high line. The core was logged, photographed and split using a diamond rock saw or a manual splitter and the samples designated for assay were flown out by helicopter to the staging area on Highway 23, transported to Revelstoke and then shipped by a commercial freight line to an assay laboratory in Vancouver, B.C. for analysis. The drill core remains stored in core boxes on site and was secured and covered with plywood prior to the program demobilization. Descriptive logs for each of the four holes are appended in Section E.

The location of the four drill holes completed during the 2005 program is shown on Plan No. RC-06-5 appended in Section F. The drill hole statistics are set out in Table 4.

Table 4: 2005 Drill Hole Summary						
Hole Number	UTM: NAD 83, Zone 11		Elevation (m ASL)	Azimuth	Dip	Length (metres)
RD-05-112	5738202	368292	2420.0	106°	-84.5°	777.8
RD-05-113	5738202	368292	2420.0	000°	-90°	772.2
RD-05-114	5738264	368312	2444.8	196°	-87°	871.0
RD-05-115	5738264	368312	2444.8	196°	-83°	824.4
Total						$\mathbf{3 2 4 5 . 4}$

Acme Analytical Laboratories Ltd. of Vancouver was engaged to carry out the analytical work on the drill core samples. The analytical procedure utilized was the Group 7AR 23 multi-element assay by ICP-ES methods. The assay certificates and analytical procedures are appended in Section D.

The 2005 program was designed to test for the offset extension of E Zone mineralization on the west side of the E Zone Fault as was indicated previously by Cominco drilling in 1975. The program was successful as 3 of the 4 holes intersected significant massive sulphide zinc-lead mineralization including one intersection of over 15 m . Table 5 illustrates the significant $\mathrm{Zn}-\mathrm{Pb}$ intervals from the 2005 program. Intersections in drill holes RD-05-112 and 115 are true widths while hole RD-05-113 is approximately 94% of true width.

Drill Hole	From (metres)	$\begin{gathered} \text { To } \\ \text { (metres) } \end{gathered}$	Interval (metres)	Zinc (\%)	Lead (\%)
$\begin{aligned} & \text { RD-05-112 } \\ & \text { and } \\ & \hline \end{aligned}$	653.40	654.45	1.05	8.35	1.48
	680.80	684.30	3.50	7.87	1.47
RD-05-113 including	708.50	723.55	15.05	14.74	3.11
	708.50	722.55	14.05	15.79	3.33
	712.50	722.55	10.05	16.17	3.30
RD-05-115					
	724.20	728.20	4.00	12.98	2.70

Results of the 2005 drill program indicate that the E Zone mineralization continues to the west of the E Zone Fault and remains open to the west. The intersection of 15.05 m (14.15 m true thickness) of massive sulphides in drill hole RD-05-113 grading 14.74% zinc and 3.11% lead, may represent the hinge Zone and provides a useful target for future drilling. Additional but smaller intersections in holes RD-05112 and RD-05-113 may represent the upper and lower limbs of the folded sulphide horizon. Vertical drill sections showing holes RD-05-112, RD-05-113 and RD-05-114 and 115 are appended in Section F and referenced as Figure Nos. RC-06-06, RC-06-07 and RC-06-08.

CONCLUSIONS:

Drilling in 2005 confirmed the presence of a thickened mineralized zone to the west of the E Zone Fault that remains open to the west. Previous drilling has outlined the E Zone mineralization extending from surface to depths of 200 m , and it has been traced from outcrop at the eastern end over an approximate length of 300 m and a width of 200 m in plan view. The 2005 drill program intersected significant sulphides at drill depths of $650-730 \mathrm{~m}, 500 \mathrm{~m}$ west of the fault, which appears to be the continuation of the E Zone mineralization.

A soil sampling survey in Upper Oliver Creek in 2005 delineated a 1000 m long by $200-400 \mathrm{~m}$ wide zinc-lead-silver anomaly coincident with sporadic outcrops of massive sulphides. Mapping indicates that this may represent the western extension of the massive sulphide horizon exposed 5000 metres to the east at the E Zone. Structural analyses suggest that this soil anomaly may reflect the hinge zone coming to surface.

RECOMMENDATIONS:

Additional exploration work is recommended as previous work has outlined a significant high grade massive sulphide body at the E Zone, and similar thicknesses and grades of mineralization in hole RD-05113. The massive sulphide horizon which contains the E Zone and the deep extension has been mapped at surface at a number of locations to the west of the current drilling which probably represent the upper and lower limbs of the horizon. Further work is required on these showings to determine their stratigraphic position with respect to the hinge zone as exposed in the E Zone.

The 2006 drill program should include additional drilling in the E Zone to bring the resource up to an indicated or measured category. Drilling to the west of the E Zone Fault is required to establish the size and attitude of the mineralization encountered in hole 113. This interval is believed to be an extension of the hinge zone of the F-1 fold which outcrops at surface in the E Zone. This series of holes will vary from 650 m to 800 m in depth, depending upon collar locations. If the mineralized hinge is not intersected in the first few holes, a borehole electromagnetic survey would be required to assist in targeting the best conductors.

A trenching program is recommended for the soil anomaly in Oliver Creek to determine the thickness and attitude of the mineralization prior to a drilling program. Logging roads extend up the Oliver Creek valley past this area allowing easy access to the site.

A better understanding of the structural geometry will assist in targeting and tracing the hinge zone of the fold, where the mineralization is the thickest. This may partially be accomplished through a review of previous data such as maps and drilling reports, but would be further supported through detailed mapping of structural features in the field. All of the known zones should be evaluated in more detail as exploration continues.

REFERENCES:

Brown, D.H., Fraser, D. (1973): Report on Airborne Geophysical Survey - Top, In and Light Groups; by authors for Wesfrob Mines Ltd., B.C. Assessment Report \#04567.

Fyles, J.T., (1970): The Jordan River Area near Revelstoke British Columbia; A preliminary study of lead zinc deposits in the Shuswap Metamorphic Complex; B.C. Department of Mines and Petroleum Resources, Bulletin 57.

Gray, P.D., Lewis, P.D. (2001): Geological Assessment Report on the Ruddock Creek; by authors for Doublestar Resources Ltd., B.C. Assessment Report \#26487.

Hodgson, G.D. (1976): Diamond Drilling Report on the IT 27 Claim (Ruddock Creek Area); by author for Cominco Ltd., B.C. Assessment Report \#05990.

Lajoie, J.J. (1982): Geophysical Report on the Borehole Pulse EM, UTEM and VLF Electromagnetic Surveys and Magnetometer Survey on the Ruddock Creek Property; by author for Cominco Ltd., B.C. Assessment Report \#10710.

Lewis, P.D. (2000): Structural Analysis of the Ruddock Creek $\mathrm{Zn}+\mathrm{Pb}$ Property; consulting report prepared for Doublestar Resources Ltd., December 6, 2000.

Marshall, B., (1978): Structural Investigations of the Ruddock Creek Property. Internal consulting report prepared for Cominco Ltd., September, 1978.

Mawer, A.B., (1976): Ruddock Creek Termination Report 1976; Internal document prepared by Cominco Exploration Ltd., November 30, 1976.

Miller-Tait, J., 2005): Diamond Drilling Report on the Ruddock Creek Property, IT 2 Mineral Claim, for Cross Lake Minerals Ltd., February 24, 2005; B.C. Assessment Report \#27654

Morris, H.R., (1965): Report on Ruddock Creek Lead-Zinc Property, 1961 to 1963; Internal report prepared for Falconbridge Nickel Mines Ltd., March 12, 1965.

Nichols, R. (1977): Diamond Drilling Report on the IT Group, by author for Cominco Ltd., B.C. Assessment Report \#06625.

Paterson, D.M. (1975): Diamond Drilling Report on the IT 4 (Ruddock Creek Group); by author for Cominco Ltd., B.C. Assessment Report \#05625.

STATEMENT OF OUALIFICATIONS:

For: Jim Miller-Tait of 828 Whitchurch Street, North Vancouver, B.C. V7L 2A4

I graduated from the University of British Columbia with a Bachelor of Sciences Degree in Geology (1987);

I have been practicing my profession as a geologist in mineral exploration and mining continuously since 1987;

I am a fellow in good standing with the Geological Association of Canada;

I am a registered member in good standing as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia;

The observations, conclusions and recommendations contained in the report are based on field examinations, personal surveying and the evaluation of results of the exploration program completed by the operator of the property.

SECTION B: PROPERTY

RUDDOCK CREEK			SCHEDULE OF MINERAL CLAIM				
PROVINCE: British Columbia			CLAIMS: 7 C\|l			AREA: 3739.059 ha	
MINING DIVISION: Kamloops, Revelstoke			NTS: 82M/14E, 15W		BCGS: 082M.075,076		
LOCATION: 100 km NNW of Revelstoke, 28 km east of Avola and 6.5 km west of Gordon Horne Peak.			LATITUDE: $51^{\circ} 46.5^{\prime}$		LONGITUDE: $118^{\circ} 55^{\prime}$		
			UTM: NAD 83	Zone 11		38000 N	368000 E
			PROPERTY INTEREST: Doublestar Resources Ltd. - 100\% Selkirk Metals Holdings Corp. - 0\% Teck Cominco Limited - 1\% Net Smelter Return				
MAP	$\begin{array}{\|l\|} \hline 1: 250000 \\ 1: 50000 \\ 1: 50000 \\ 1: 20000 \\ 1: 20000 \\ \hline \end{array}$	82M Seymour Arm 82M/14 Messiter 82M/15 Scrip Creek 82M. 075 Camp Six Creek 82M. 076 Gordon Horne Peak					
AGREEMENT SUMMARY:							
March 23, 2004: Letter Option Agreement between Doublestar Resources Ltd. and Cross Lake Minerals Ltd.							
June 10, 2004: Formal Option and Joint Venture Agreement between Doublestar Resources Ltd. and Cross Lake Minerals Ltd. whereby Cross Lake may earn a 60% interest by cash payments of $\$ 10,000$, by issuing 900,000 shares and by incurring aggregate exploration expenditures of $\$ 3,000,000$ by Dec 2007 ; an additional 10% interest may be earned by incurring additional exploration expenditures of $\$ 1,750,000$.							
May 16, 2005: Notice from Cross Lake to Doublestar of intention to assign interest to Selkirk Metals Holdings Corp. Amendment to paragraph 2.02 (c) adjusting the outstanding number of shares remaining to be issued, 200,000 shares of Selkirk Metals Corp. instead of 500,000 shares of Cross Lake.							
June 16, 2005: Assignment Agreement between Cross Lake Minerals Ltd. and Selkirk Metals Holdings Corp. whereby Cross Lake assigned all its rights, interests and obligations in the Ruddock Creek Agreement to Selkirk Holdings.							

CLAIM SUMMARY:							
$\begin{aligned} & \hline \text { CLAIM } \\ & \text { NAME } \end{aligned}$	TENURE NUMBER	$\begin{aligned} & \hline \text { CELLS/ } \\ & \text { UNITS } \end{aligned}$	$\begin{aligned} & \hline \text { GROSS } \\ & \text { AREA } \\ & \text { (hectares) } \end{aligned}$	$\begin{gathered} \text { RECORD } \\ \text { DATE } \\ \text { (yyyy-mm-dd) } \end{gathered}$	$\begin{gathered} \text { GOOD TO } \\ \text { DATE } \\ \text { (yyy-mm-dd) } \end{gathered}$	ANNUAL WORK \$	RECORDED OWNER /REMARKS
Kamloops Mining Division:							
Cell Claims:		Cells					
OLIVER	516176	25	499.901	2005-07-06	2012-12-01	1999.60	Selkirk Metals Holdings Corp.
-	516624	79	1579.800	2005-07-10	2012-12-01	6319.20	Selkirk Metals Holdings Corp.
RC 2	518989	1	20.001	2005-08-12	2012-12-01	80.00	Selkirk Metals Holdings Corp.
RC 3	531888	20	399.925	2006-04-12	2007-04-12	1599.70	Selkirk Metals Holdings Corp.
RC 4	531890	22	439.759	2006-04-12	2007-04-12	1759.04	Selkirk Metals Holdings Corp.
RC 5	531893	16	319.940	2006-04-12	2007-04-12	1279.76	Selkirk Metals Holdings Corp.
RC 6	531894	24	479.733	2006-04-12	2007-04-12	1918.93	Selkirk Metals Holdings Corp.
7		187	3739.059			\$14956.23	

CLAIM BOUNDARY COORDINATES		UTM: NAD 83, ZONE 11		
MAIN BLOCK				
Corner No.	Cell ID	Cell Corner	Easting	Northing
1	082 M 15 D 042 C	NE	369315.428	5739561.703
2	082 M 15 D 032 A	NW	369279.331	5738171.620
3	082 M 15 D 032 A	NE	369710.459	5738160.421

Corner No.	Cell ID	Cell Corner	Easting	Northing
4	082M15D022D	SE	369686.477	5737233.699
5	082M15D022D	Not a corner*	369 455*	5737 225*
6	082M15D022D	Not a corner*	369 495*	5737 570*
7	082M15D023D	Not a corner*	368 380*	5737 295*
8	082M15D023D	Not a corner*	368 420*	5737045^{*}
9	082M15D014D	Not a corner*	367 720*	5736720^{*}
10	082M15D014C	Not a corner*	367 220*	5736610^{*}
11	082M15D024B	Not a corner*	367 115*	$5736990^{\text {* }}$
12	082M15D025A	Not a corner*	366 655*	5736875^{*}
13	082M15D025A	NW	366668.019	5737312.766
14	082M15D028D	SW	364080.768	5737381.962
15	082M15D028D	NW	364093.278	5737845.315
16	082M14A036A	SW	357194.618	5738036.323
17	082M14A066D	NW	357299.838	5741743.104
18	082M14A061D	NE	362039.152	5741610.790
19	082M15D060C	NW	362013.721	5740684.084
20	082M15D060C	NE	362444.647	5740672.297
21	082M15D060B	SE	362419.299	5739745.591
22	082M15D056A	SW	365867.359	5739652.463
23	082M15D056A	NW	365879.713	5740115.821
24	082M15D055B	NE	366744.652	5740092.910
25	082M15D055B	SE	366729.378	5739629.551
26	082M15D054B	SW	367160.387	5739618.132
27	082M15D054B	NW	367172.622	5740081.491
28	082M15D053B	NE	368465.527	5740047.532
29	082M15D053B	SE	368453.413	5739584.171
SE PARCEL				
A	082M15D022C	Not a comer*	369 250*	5737385^{*}
B	082M15D022A	Not a corner*	369 420*	5736970^{*}
C	082M15D013A	Not a corner*	368 630*	5736640^{*}
D	082M15D023D	Not a comer*	368 460*	5737070^{*}

Note: Property corners are numbered in a sequence starting at the NE comer of the property and proceeding in a clockwise direction.

* These points are not computed MTO cell corners and the coordinate values have been scaled from 1:20 000 claim and topographic maps.

ASSESSMENT WORK SUMMARY:							
Date of Filing (yyyy-mm-dd)	Work Filed S	$\begin{aligned} & \text { New Work } \\ & \text { Applied } \\ & \text { S } \\ & \hline \end{aligned}$	PAC Credits Applied	PAC Credits Saved	Total PAC Credits	Date of Approval (yyyy-mm-dd)	Event Number
$\begin{aligned} & 2004-10-20 \\ & 2004-10-20 \\ & 2006-02-24 \end{aligned}$	Notice to G 375412.22 600000.00	oup: 62 claims 77000 58371.18		$\begin{aligned} & 298412.22 \\ & 541628.82 \end{aligned}$		$\begin{aligned} & 2004-10-20 \\ & 2005-07-18 \end{aligned}$	$\begin{aligned} & 3218721 \\ & 3218722 \\ & 4071828 \\ & \hline \end{aligned}$

CLAIM CONVERSION SUMMARY:

CLAIM CONVERSION SUMMARY:							
CLAIM	TENURE	CELLS/					
NAME	NUMBER	UNITS	GROSS AREA (hectares)	RECORD DATE (yyyy-mm-dd)	GOOD TO DATE $(y y y y-m m-d d) ~$	ANNUAL WORK $\$$	RECORDED OWNER /REMARKS

Kamloops Mining Division:

Legacy Claims:		Units					
IF 4	216759	10	250.000	$1977-06-30$	$2009-11-29$	2000.00	Converted to Tenure No. 516624 on 2005-07-10 IF 5
216760	5	125.000	$1977-06-30$	$2009-11-29$	1000.00	Converted to 516624	

$\begin{aligned} & \text { CLAIM } \\ & \text { NAME } \end{aligned}$	TENURE NUMBER	CELLS or UNITS	GROSS AREA (hectares)	$\begin{gathered} \text { RECORD } \\ \text { DATE } \\ \text { (yyyy-mm-dd) } \end{gathered}$	GOOD TO DATE (yyy-mm-dd)	ANNUAL WORK	$\begin{aligned} & \text { RECORDED } \\ & \text { HOLDER } \end{aligned}$
IT 15	220076	1	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 16	220077	1	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 59	220078	1	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT I	220344	I	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 2	220345	I	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 3	220346	1	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 4	220347	I	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 5	220348	I	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 6	220349	I	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 7	220350	1	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 8	220351	I	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 9	220352	I	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 10	220353	1	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT II	220354	I	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 12	220355	1	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 13	220356	1	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 14	220357	I	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 33	220358	I	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 34	220359	1	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 35	220360	I	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 36	220361	I	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 37	220362	1	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 38	220363	I	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 39	220364	I	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 40	220365	1	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 41	220366	1	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 42	220367	I	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 43	220368	1	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 44	220369	1	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 61	220370	1	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IN 2	220410	I	20.903	1961-07-19	2009-11-29	200.00	Converted to 516624
IN 4	220411	1	20.903	1961-07-19	2009-11-29	200.00	Converted to 516624
IN 6	220412	l	20.903	1961-07-19	2009-11-29	200.00	Converted to 516624
IN 7	220413	1	20.903	1961-07-19	2009-11-29	200.00	Converted to 516624
IN8	220414	1	20.903	1961-07-19	2009-11-29	200.00	Converted to 516624
IN 9	220415	1	20.903	1961-07-19	2009-11-29	200.00	Converted to 516624
IN 10	220416	1	20.903	1961-07-19	2009-11-29	200.00	Converted to 516624
IN 11	220417	I	20.903	1961-07-19	2009-11-29	200.00	Converted to 516624
IN 12	220418	1	20.903	1961-07-19	2009-11-29	200.00	Converted to 516624
IN 13	220419	1	20.903	1961-07-19	2009-11-29	200.00	Converted to 516624
IN 14	220420	1	20.903	1961-07-19	2009-11-29	200.00	Converted to 516624
IN 15	220421	1	20.903	1961-07-19	2009-11-29	200.00	Converted to 516624
IN 16	220422	1	20.903	1961-07-19	2009-11-29	200.00	Converted to 516624
IN 17	220423	1	20.903	1961-07-19	2009-11-29	200.00	Converted to 516624
IN 18	220424	1	20.903	1961-07-19	2009-11-29	200.00	Converted to 516624
IN 19	220425	1	20.903	1961-07-19	2009-11-29	200.00	Converted to 516624
IT 83	220432	1	20.903	1961-08-29	2009-11-29	200.00	Converted to 516624
IT 84	220433	1	20.903	1961-08-29	2009-11-29	200.00	Converted to 516624
IT 85	220434	1	20.903	1961-08-29	2009-11-29	200.00	Converted to 516624
TO 9	220539	1	20.903	1962-09-10	2009-11-29	200.00	Converted to 516624
TO 10	220540	1	20.903	1962-09-10	2009-11-29	200.00	Converted to 516624
TO11	220541	1	20.903	1962-09-10	2009-11-29	200.00	Comverted to 516624
TO 12	220542	1	20.903	1962-09-10	2009-11-29	200.00	Converted to 516624

$\begin{aligned} & \text { CLAIM } \\ & \text { NAME } \end{aligned}$	$\begin{aligned} & \text { TENURE } \\ & \text { NUMBER } \end{aligned}$		GROSS AREA (hectares)	$\begin{aligned} & \text { RECORD } \\ & \text { DATE } \\ & \text { (yyyy-mm-dd) } \end{aligned}$	$\begin{aligned} & \text { GOOD TO } \\ & \text { DATE } \\ & \text { (yyyy-mm-dd) } \end{aligned}$	ANNUAL WORK	$\begin{aligned} & \text { RECORDED } \\ & \text { HOLDER } \end{aligned}$
TO 13	220543	I	20.903	1962-09-10	2009-11-29	200.00	Converted to 516624
TO 14	220544	1	20.903	1962-09-10	2009-11-29	200.00	Converted to 516624
RCI	414133	6	150.000	2004-09-05	2009-09-05	1200.00	Abandoned: 2005-08-15
Revelstoke Mining Division:							
IT 27	248475	1	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 28	248476	I	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 29	248477	I	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
IT 30	248478	1	20.903	1960-10-07	2009-11-29	200.00	Converted to 516624
Cell Claims:		Cells					
SMT 1	502851	4	79.982	2005-01-13	2006-01-13	319.93	Cancelled: 2005-04-19

SECTION C: EXPENDITURES (Ruddock Creek 2005 Drill Program)

Item	Work Performed	Quantities / Rates	Amount
Diamond Drilling: F. Boisvenu Drilling Ltd.	Mobilization / demobilization NQ2 drilling: Moving, acid tests and extra labour costs (incl. camp setup) Drilling materials including core boxes	3245.5 m @ \$112.811	366,128.33
Drill Survey: Reflex Instrument Canada	Rental of Reflex EZ Shot drill hole survey instrument	$\begin{aligned} & 3.07 \text { months @ } \\ & \$ 1750.00 \end{aligned}$	5,371.77
Borehole Geophysics: SJ Geophysics Ltd.	Borehole EM survey to assist in determination of additional drill targets		19,318.47
Air Transportation: Selkirk Mountain Helicopters Ltd. Revelstoke	Transport of crew, camp and drill equipment utilizing a Bell 206 L4 and Bell $206 \mathrm{~L} / \mathrm{R}$ Period: Jun 23 to Sep 28	111.3 hrs @ \$1373.73	152,896.31
Air Transportation: Advantage Helicopters Salmon Arm	Transport of drill equipment utilizing a Bell 204 Period: Sep 10, 21	5.7 hours @ \$2482.70	14,151.38
Project Geologists:	Program planning and monitoring, on site drill supervision, core logging, data compilation, report preparation		
J. Miller-Tait, P.Geo. Sikanni Mine Development Ltd.	Period: May 1-Dec 15	$25 \text { days @ \$450.00 }$	11,250.00
Geoff Goodall, P.Geo. Global Geological	Period: Jun 1-Sep 13	74 days @ \$450.00	33,300.00
Jim Chapman, P.Geo Tamri Geological Ltd.	Period: May 3-Dec 15	27.25 days @ \$600.00	16,350.00
Bruce Mawer	Period: Jul $28-\mathrm{Aug} 9$	13 days @ \$400.00	$\begin{array}{r} \underline{5,200.00} \\ 66,100.00 \\ \hline \end{array}$
Geological Computer Consultant: Ron Simpson, P.Geo. GeoSim Services Inc.	Cross section generation, project support - monitoring of drill hole progress	57 hours @ \$65.00	3,705.00
Expediter: Kruger's Expediting	Camp supplies, expediting services, equipment storage Period: Jun 4-Oct 5		21,512.18
Field Supervisor: Craig Ellis Mountain Guiding	Camp construction, drill platform construction, equipment move in and move out, drill moves, gear storage Period: Jun 27-Sep 26	20.0 days @ \$375.00	7,500.00
Field Assistants: Lloyd Penner	Camp setup, core splitter, drill platform construction, camp decommissioning Period: Sep 18-24	7 days @ \$350.00	2,450.00

Item	Work Performed	Quantities / Rates	Amount
Henry Guglielmin	Period: Aug 22-Sep 12	22 days @ \$225.00	4,950.00
Brendan McBain	Period: Jun 20-Aug 24	55 days @ 175.00	9,625.00
Taylor Carlile-Grubb	Period: Aug 22-Sep 15	24 days @ \$175.00	4,200.00
Thane Isert	Period: Jul 18-22	5 days @ \$225.00	1,125.00
Trevor Dick	Period: Jul 18-22	5 days @ \$200.00	1,000.00
			23,350.00
Camp Cook / First Aid:	Contract cooking services and first aid attendant		
Kathy Stonehouse	Period: Jul 13-31	19 days @ \$275.00	5,225.00
Sara Lee Reidl	Period: Jul 29-Sep 15	46 days @ \$275.00	12,650.00
Kim Kirwan	Period: Sep 14-20	7 days @ \$275.00	1,925.00
			19,800.00
Camp Supplies:	Food provisions and camp supplies		
Cooper's Foods,	Period: Jun 27-Sep 19		10,922.95
Revelstoke			
Sara Lee Reidl	Food expenses		$\frac{271.10}{194.05}$
			11,194.05
Accommodation, Meals and Travel:	Expenditures for camp, lodging and meals:		
Jim Miller-Tait,	Period: May 1-Dec 15		3,831.12
Sikanna Mine Dev.			
Geoff Goodall,	Period: Jun 1-Sep 13		16,538.39
Global Geological			
Jim Chapman,	Period: May 3-Dec 15		787.12
Tamri Geological Ltd.			
Bruce Mawer	Period: Jui 28-Aug 9		158.08
Henry Guglielmin	Period: Aug 22-Sep 12		390.59
Taylor Carlile-Grubb	Period: Aug 22-Sep 15		104.71
Sara Lee Reidl	Period: Jul $29-\mathrm{Sep} 15$		180.00
Jami Kruger Expediting	Period: Jun 4-Oct 5		323.35
Revelstoke Lodge	Accommodation	25 nights @ \$61.32	1,532.89
			23,846.25
Transport:	Vehicle and fuel expenses		
Jim Miller-Tait	Truck rental	9 days @ \$75.00	675.00
Global Geological	Truck, fuel for camp \& drilling		7,997.35
Bruce Mawer	Truck rental plus fuel	3 days	397.00
Tamri Geological	Truck rental	4 days @ \$75.00	300.00
			9,369.35
Communications:	Equipment purchases and rentals of communications services		
Global Geological	Communications services		3,533.42
Apex Communications	Communications services		1,122.43
Canada Wide Commun.	Communications services		898.80
Glacier Communications	Communications services		966.21
Network Innovations	Communications services		4,016.83
Sikanni Mine Dev.	Communications services		149.29
			10,686.98

Item	Work Performed	Quantities / Rates	Amount
Field Equipment and Supplies:	Equipment purchases and rentals, tools, construction material and hardware, fuel and propane, sample bags, shipping sacks		
Global Geological			42,020.21
Acklands Grainger	Hardware supplies		1,064.18
The Frontier	Fuel and propane		4,316.14
Deakin Equipment	Field equipment		660.53
Commercial Solutions	Field equipment		585.71
Finning International	Bulk fue!		1344.54
Revelstoke Mini Storage	Equipment storage		1,107.26
Lo-Cost Gas	Oxygen for first aid		144.71
Traumatech	First aid supplies		$\begin{array}{r} 244.53 \\ 51,487.81 \end{array}$
Freight:	Transport of drill core samples from Revelstoke to Vancouver		
Van Kam Freightways	Sep 2006		107.08
Greyhound Courier	Aug-Sep 2006		$\frac{780.37}{887.45}$
Analytical Services: Acme Analytical Laboratories Ltd.	Assaying of drill core: Group 7AR: 23 element (ICP-ES)	124 samples @ \$14.05	1,742.17
Vancouver Petrographics	Petrographic work		165.00
WCM Sales Ltd.	Pulps for assay standards		$\begin{array}{r} 577.80 \\ 2,484.97 \end{array}$
Data Compilation: Erik Andersen, Land Administrator	Data compilation and report editing	10 hours @ \$40.00	400.00
Drill Log Entry: Brynna Phipps	Data entry for descriptive drill logs	22.0 hours @ \$12.00	264.00
Drafting, Maps and Printing:			
Global Geological	Topographic maps		143.70
Mike Davies	Base map preparation, drill hole plans and sections	15 hours @ \$60.00	900.00
CADD Solutions	Printing supplies		423.21
Dominion Blueprint	Map reproduction		1,088.42
Aero Geometrics	Aerial photographs		194.61
Erik Andersen	Topographic maps		$\begin{array}{r} 228.28 \\ 2,978.22 \end{array}$
Total			\$813,432.52

Expenditure Apportionment:

Mineral Tenure	Work	Work Quantities	Expenditure
516624	NQ diamond drilling	4 holes $/ 3245.4 \mathrm{~m}$	$\$ 813,432.52$
Total		Unit Cost	$\$ 250.64 / \mathrm{m}$

SECTION D: ANALYTICAL REPORTS

1. Analyses carried out by Acme Analytical Laboratories Ltd. of Vancouver, B.C.

- Certificate of Analysis \#A504807 dated August 31, 2005
- Certificate of Analysis \#A506414 dated November 7, 2005
- Statement of Analytical Procedures: 1 data sheets
- Group 7AR; Multi-Element Assay by ICP-ES; Aqua Regia Digestion

2. Petrographic Report from Vancouver Petrographics Ltd.

- Report 051010 dated January 2006

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION 10100 ML , ANALYSED BY ICP-ES.

Data $\perp \mathrm{PA}$ \qquad Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. SAMPLE TYPE: DRILL CORE R150

[^0]

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: ORILL CORE R150.

Methods and Specifications for Analytical Package Group 7AR - Multi-Element Assay by ICP-ES • Aqua Regia Digestion

Comments

Sample Preparation

All samples are dried at $60^{\circ} \mathrm{C}$. Soil and sediment are sieved to -80 mesh $(-177 \mu \mathrm{~m})$. Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed $\left(475^{\circ} \mathrm{C}\right)$. Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffie split is then pulverized to 95% passing 150 mesh $(100 \mu \mathrm{~m})$ in a mild-steel ring-and-puck mill. Puip spilits of 1 g are weighed into 100 mL volumetric flasks.

Sample Digestion

A 30 mL aliquot of modified aqua regia solution (equal parts ACSgrade HCl and HNO_{3} acids and de-mineralized $\mathrm{H}_{2} \mathrm{O}$) is added and heated in a hot water bath $\left(-95^{\circ} \mathrm{C}\right)$ for 1 hour. After cooling for 3 hours the solutions are transferred to 100 mL volumetric flasks and made to volume with $5 \% \mathrm{HCl}$. Very high grade samples may require a 1 g per 250 mL or 0.25 g per 250 mL sample to solution ratio for through digestion and accurate determination.

Sample Analysis

Solutions aspirated into a Jarrel Ash Atomcomp model 800 or 975 ICP atomic-emission spectrometer are analysed for a 23 element package comprising: $\mathrm{Ag}, \mathrm{Al}, \mathrm{As}, \mathrm{Bi}, \mathrm{Ca}, \mathrm{Cd}, \mathrm{Co}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Hg}$, $\mathrm{K}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Mo}, \mathrm{Na}, \mathrm{Ni}, \mathrm{P}, \mathrm{Pb}, \mathrm{Sb}, \mathrm{Sr}, \mathrm{W}$ and Zn .

Quality Control and Data Verification

An Analytical Batch (1 page) comprises 33 samples. QAQQC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a prep duplicate from the -10 mesh rejects to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like STD R-2 to monitor accuracy.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Leo Arciaga, Ken Kwok, Marcus Lau, Dean Toye and Jacky Wang.

[^1]Jim Miller-Tait,
Selkirk Metals Holding Corp., 1255 West Pender Street, Vancouver, B.C. V6E 2V1

January 2006

Project: LJ Property, Ruddock Creek Property, Oliver

Samples:	LJ-05-2:	$134.4 \mathrm{~m}, 134.7 \mathrm{~m}$
	RD-05-109:	$\mathbf{1 8 5 . 5} \mathrm{m}$
	RD-05-112:	$\mathbf{6 8 3 . 8} \mathrm{m}$
	RD-05-113:	$709.7 \mathrm{~m}, \mathbf{7 1 7 . 0} \mathrm{~m}$
	RD-05-115:	$\mathbf{7 2 5 . 4} \mathrm{m}$
	Oliver	

Summary:

Sample LJ-05-2 134.4 m is a massive sulphide dominated by pyrite and sphalerite with minor galena. A few primary concentric growth structures are preserved. Interstitial gangue minerals are dominated by muscovite/sericite, quartz, ankerite and carbonaceous opaque. Several patches up to a few mm across are of coarser grained quartz and lesser ankerite; these contain patches of remobilized galena.

Sample LJ-05-2 $134.7 \mathbf{m}$ is a massive sulphide dominated by pyrite with lesser sphalerite and much less abundant quartz and galena. A few seams are dominated by muscovite/sericite and carbonaceous opaque. Coarser grained patches are dominated by quartz with locally abundant ankerite and/or galena. A few veinlets are of quartz with minor ankerite.

Sample RD-05-09 185.5 m is a semi-massive sulphide that contains subrounded grains of quartz and plagioclase (in part altered to Mineral X), and patches of quartz and minor grains of epidote in a massive sulphide groundmass containing zones of sphalerite with much less interstitial quartz, galena and minor pyrrhotite and ankerite. Pyrite is concentrated strongly as disseminated grains in a diffuse band several mm wide. One large replacement or interstitial patch is of coarse grained quartz and minor ankerite

Sample RD-05-112 683.8 m is a semi-massive sulphide that consists of an intergrowth of patches dominated by quartz-fluorite-(tremolite) and others dominated by sphalerite-pyrrhotite-(galena) Sulphides commonly are coarser grained adjacent to patches of quartz-fluorite. A few patches are of calcite

Sample RD-05-113 709.7 m is a semi-massive sulphide that consists of patches dominated by sulphides (sphalerite with lesser pyrrhotite, and minor galena) and patches dominated by quartz and/or fluorite, with locally abundant calcite or scapolite, and minor epidote.

Sample RD-05-113 717.0 m is a semi-massive sulphide that is dominated by equant, anhedral grains of quartz, patches of fluorite, and patches of very fine intergrowths of sphalerite and pyrrhotite with lesser galena and interstitial fluorite. Minor minerals include scapolite, epidote, phlogopite, and plagioclase.

Sample RD-05-115 $725.4 \mathbf{m}$ is a semi-massive sulphide that consists of intergrowths of sphalerite-pyrrhotite-(galena) with coarser grains and patches of quartz and fluorite, much less abundant plagioclase, and minor phlogopite/biotite, K-feldspar, apatite, epidote, and scapolite.

Sample Oliver is mainly a massive sulphide dominated by sphalerite with lesser pyrrhotite (altered partly to secondary pyrite) and disseminated, subhedral to euhedral grains of quartz. It contains a calcsilicate band several mm wide that is dominated by tremolite/actinolite with lesser porphyroblastic scapolite, clusters of plagioclase, interstitial patches of sulphides, and disseminated grains of epidote and minor phlogopite and apatite.

Photographic Notes:

The scanned sections show the gross textural features of the sections; these features are seen much better on the digital image than on the printed image. Sample numbers are shown in or near the top left of the photos and photo numbers at or near the lower left. The letter in the lower right-hand comer indicates the lighting conditions: $\mathbf{P}=$ plane light, $X=$ plane light in crossed nicols, $\mathrm{R}=$ reflected light, $R P=$ reflected light and plane light, $R X=$ reflected light (uncrossed nicols) and transmitted light in crossed nicols. Locations of digital photographs (by photo number) are shown on the scanned sections. Descriptions of individual photographs are given at the end of the report.

John G. Payne, Ph.D., P.Geol.
Tel: (604)-597-1080
Fax: (604)-597-1080 (call first)
email: jgpayne@telus.net

051010 Selkirk Metals (samples)

Sample LJ-05-2 134.4 m Massive Sulphide: Pyrite-Sphalerite-Muscovite/Sericite-Quartz(Galena)

The sample is a massive sulphide dominated by pyrite and sphalerite with minor galena. A few primary concentric growth structures are preserved. Interstitial gangue minerals are dominated by muscovite/sericite, quartz, ankerite and carbonaceous opaque. Several patches up to a few mm across are of coarser grained quartz and lesser ankerite; these contain patches of remobilized galena.

mineral	percentage	main grain size range (mm)	
pyrite	65-70\%	0.03-0.1	
sphalerite	17-20	0.05-0.1	
quartz	5-7	0.03-0.2	(a few up to 1 mm)
muscovite/sericite	3-4	0.05-0.15	
ankerite	0.7	0.1-0.3	(a few up to 0.5 mm)
non-reflective opa	que 1-2	amorphous	
galena	0.3	0.05-0.1	(several patches up to 0.5 mm)
chalcopyrite	trace	0.001-0.005	

Pyrite forms aggregates of anhedral grains with subhedral to euhedral terminations against sphalerite and quartz. These textures probably were formed during metamorphic recrystallization. Several aggregates up to 2 mm across, especially near one end of the section, have a concentric growth texture, in which pyrite is intergrown with wispy concentric shells of one or more of galena, sphalerite, and non-reflective opaque. These are primary growth structures formed during deposition of the sulphides.

Sphalerite forms interstitial patches up to 0.5 mm in size among pyrite grains and clusters. Some grains contain up to 1% inclusions of exsolution chalcopyrite, mainly less than 3 microns in size.

Muscovite/sericite forms disseminated flakes and clusters of oriented flakes that produce a weak to moderate foliation.

Quartz forms interstitial patches, mainly less than 0.5 mm in size, and a few, generally coarser grained patches up to a few mm across. Some of these also contain minor to locally moderately abundant grains of ankerite.

Carbonaceous opaque is concentrated strongly in seams up to 0.5 mm wide; it is soft and nonreflective.

Galena also forms anhedral patches from 0.2-0.5 mm in size, mainly included in coarser grained patches of quartz and a few in patches of sphalerite. It also forms scattered patches up to 0.1 mm in size intergrown with sphalerite in interstitial patches between pyrite grains.

Chalcopyrite forms equant, exsolution inclusions in sphalerite.

The sample is a massive sulphide dominated by pyrrhotite and sphalerite with minor galena. A few primary concentric growth structures are preserved. Interstitial gangue minerals are dominated by muscovite/sericite, quartz, ankerite and carbonaceous opaque. Several patches up to a few mm across are of coarser grained quartz and lesser ankerite; these contain patches of remobilized galena.

mineral	percentage	main grain size range (mm)	
pyrite	$65-70 \%$	$0.03-0.1$	
sphalerite	$17-20$	$0.05-0.1$	
quartz	$5-7$	$0.03-0.2$	(a few up to 1 mm)
muscovite/sericite	$3-4$	$0.05-0.15$	
ankerite	0.7	$0.1-0.3$	(a few up to 0.5 mm)
non-reflective opaque $1-2$	amorphous		
galena	0.3	$0.05-0.1$	(several patches up to 0.5 mm)
chalcopyrite	trace	$0.001-0.005$	

Pyrite forms aggregates of anhedral grains with subhedral to euhedral terminations against sphalerite and quartz. These textures probably were formed during metamorphic recrystallization. Several aggregates up to 2 mm across, especially near one end of the section, have a concentric growth texture, in which pyrite is intergrown with wispy concentric shells of one or more of galena, sphalerite, and non-reflective opaque. These are primary growth structures formed during deposition of the sulphides.

Sphalerite forms interstitial patches up to 0.5 mm in size among pyrite grains and clusters. Some grains contain up to 1% inclusions of exsolution chalcopyrite, mainly less than 3 microns in size.

Muscovite/sericite forms disseminated flakes and clusters of oriented flakes that produce a weak to moderate foliation.

Quartz forms interstitial patches, mainly less than 0.5 mm in size, and a few, generally coarser grained patches up to a few mm across. Some of these also contain minor to locally moderately abundant grains of ankerite.

Carbonaceous opaque is concentrated strongly in seams up to 0.5 mm wide; it is soft and nonreflective.

Galena also forms anhedral patches from $0.2-0.5 \mathrm{~mm}$ in size, mainly included in coarser grained patches of quartz and a few in patches of sphalerite. It also forms scattered patches up to 0.1 mm in size intergrown with sphalerite in interstitial patches between pyrite grains.

Chalcopyrite forms equant, exsolution inclusions in sphalerite.

Sample LJ-05-2 134.7 m Massive Sulphide: Pyrite-Sphalerite-Quartz-Galena-Muscovite/Sericite-Ankerite-Carbonaceous Opaque Veinlets: Quartz-(Ankerite)

The sample is a massive sulphide dominated by pyrite with lesser sphalerite and much less abundant quartz and galena. A few seams are dominated by muscovite/sericite and carbonaceous opaque. Coarser grained patches are dominated by quartz with locally abundant ankerite and/or galena. A few veinlets are of quartz with minor ankerite.

mineral	percentage	main grain size range (mm)
pyrite	$60-65 \%$	$0.03-0.1$
sphalerite	$17-20$	$0.05-0.2$
quartz	$7-8$	$0.05-0.5$
galena	$3-4$	$0.05-0.5$
muscovite	$2-3$	$0.03-0.1 \quad$ (a few up to 0.2 mm long)
ankerite	$1-2$	$0.1-0.2$
carbonaceous opaque 0.3 amorphous veinlets quartz-(ankerite) $1-2$ $0.05-0.3$		

Pyrite forms anhedral to subhedral, equant grains and clusters up to 1 mm across of anhedral grains. These are intergrown with interstitial sphalerite and much less abundant quartz and muscovite/sericite. A few pyrite patches contain moderately abundant interstitial patches of galena; a few of these contain weakly developed concentric growth structures. A few patches up to 2 mm across consist of strongly granulated pyrite with abundant interstitial galena and minor sphalerite.

Sphalerite forms anhedral grains and patches interstitial to pyrite. A few coarser grained patches of sphalerite occur bordering quartz patches; some of these zones also contain coarse patches of galena.

Quartz forms interstitial patches intergrown finely with pyrite and sphalerite. It also occurs in several coarser grained patches up to a few mm across, which also contain grains of ankerite and irregular patches of galena.

Galena occurs mainly with quartz and sphalerite as anhedral patches up to 0.5 mm in size.
Muscovite/sericite is concentrated in seams up to 0.3 mm thick parallel to a weak foliation. Commonly associated with muscovite is carbonaceous opaque.

Ankerite forms anhedral grains intergrown coarsely with quartz in large gangue patches.
A few veinlets up to 0.5 mm wide are of quartz; these join with some of the patches of coarser grained quartz-(ankerite-galena).

Sample RD-05-09 185.5 m Massive Sulphide: Sphalerite-Quartz-(Galena-Pyrrhotite-Sericite) Replacement: Quartz-(Ankerite)

Subrounded grains of quartz and plagioclase (in part altered to Mineral X), and patches of quartz and minor grains of epidote are set in a massive sulphide groundmass containing zones of sphalerite with much less interstitial quartz, galena and minor pyrrhotite and ankerite. Pyrite is concentrated strongly as disseminated grains in a diffuse band several mm wide. One large replacement or interstitial patch is of coarse grained quartz and minor ankerite.

mineral	percentage	main grain size range (mm)
sphalerite	45-50\%	0.05-0.15
quartz	35-40	0.05-0.2; 0.5-1.7
plagioclase	3-4	0.3-0.7
galena	2-3	0.02-0.03
pyrite	2-3	0.2-0.5 (one grain 1 mm long)
pyrrhotite	0.3	0.02-0.05
ankerite	0.3	0.05-0.15
apatite	0.3	0.1-0.15
epidote	0.2	0.2-0.5
fluorite	minor	0.05-0.15
tremolite/actinolit	e minor	0.2-0.4
diopside	minor	0.3-0.6
replacement quartz-ankerite	4-5	1-3 (qz); 0.2-0.4 (ak)

Quartz forms equant, subrounded to rounded, single grains ($0.5-1.7 \mathrm{~mm}$) that may be fragments or detrital grains. Some of these were recrystallized slightly to finer, subgrain aggregates, especially along margins of the patches. Quartz also forms patches of similar size of aggregates of slightly to moderately interlocking grains ($0.05-0.1 \mathrm{~mm}$), in part containing extremely fine grained intergrowths of ankerite. A patch up to a few mm across is of coarser grained quartz with minor ankerite

Plagioclase forms scattered, equant, anhedral grains, some of which contain two broad zone with different extinction positions that reflect different anorthite contents). Some unzoned grains of plagioclase or quartz were replaced moderately to completely by cryptocrystalline aggregates of Mineral X. This mineral is hard, with high relief, is semi-opaque, and has a low apparent birefringence (<0.005).

Sphalerite forms aggregates of deep red, equant grains that are intergrown with much less abundant interstitial quartz and scattered grains of galena and patches of ankerite.

Galena forms anhedral, equant grains and clusters of a few grains intergrown with sphalerite, in part as cuspate selvages between sphalerite grains.

Pyrite forms anhedral to subhedral, equant grains and clusters of a few grains, some of which have interlocking borders with sphalerite.

Pyrrhotite forms scattered, interstitial grains intergrown with sphalerite and quartz.
Apatite forms disseminated, subrounded grains.
Epidote forms scattered, subrounded to subangular grains.
Fluorite forms disseminated grains intergrown with quartz.
Tremolite/actinolite forms a few pale green, anhedral, prismatic grains intergrown with quartz and minor sphalerite.

Diopside forms a few anhedral, slightly prismatic grains.

Sample RD-05-112 683.8 m Semi-Massive Sulphide: Quartz-Sphalerite-Fluorite-Tremolite

The sample is an intergrowth of patches dominated by quartz-fluorite-(tremolite) and others dominated by sphalerite-pyrrhotite-(galena). Sulphides commonly are coarser grained adjacent to patches of quartz-fluorite. A few patches are of calcite.

mineral	percentage	main grain size range (mm)	
quartz	$35-40 \%$	$0.1-0.5$	(a few up to 2 mm)
sphalerite	$25-30$	$0.1-0.5$	
fluorite	$12-15$	$0.2-0.5$	
pyrrhotite	$10-12$	$0.07-0.5$	
tremolite	$2-3$	$0.2-0.5$	(a few up to 1.5 mm)
galena	$2-3$	$0.07-0.3$	(a few up to 0.7 mm)
calcite	0.5	$0.05-1$	
plagioclase	minor	$0.2-0.5$	
apatite	minor	$0.1-0.15$	
epidote	minor	$0.2-0.3$	

Quartz is concentrated in patches up to a few mm across and commonly is intergrown coarsely with fluorite. A few patches up to 1.5 mm in size are of calcite.

Fluorite forms anhedral, colourless grains intergrown coarsely with quartz.
Sphalerite forms a dense aggregate of equant grains with a deep red colour.
Pyrrhotite forms anhedral grains intergrown moderately to coarsely with sphalerite.
Galena forms anhedral patches intergrown with sphalerite and pyrrhotite; it forms patches up to 0.7 mm in size adjacent to some quartz and calcite patches.

Colourless tremolite and minor pale green tremolite/actinolite form anhedral grains and clusters of a few grains, in part intergrown coarsely with quartz. Some grains of tremolite/actinolite were altered strongly to completely to chlorite ($0.02-0.05 \mathrm{~mm}$).

Plagioclase forms a few grains intergrown coarsely with tremolite.
Apatite forms a few, subrounded grains associated with quartz.
Epidote forms anhedral grains with subrounded to rounded outlines.

Sample RD-05-113 709.7 m Semi-Massive Sulphide: Sphalerite-Quartz-Pyrrhotite-Fluorite-Calcite-Scapolite-Galena

The sample consists of patches dominated by sulphides (sphalerite with lesser pyrrhotite, and minor galena) and patches dominated by quartz and/or fluorite, with locally abundant calcite or scapolite, and minor epidote.

mineral	percentage	main grain size range (mm)
sphalerite	$35-40 \%$	$0.05-0.3$
quartz	$30-35$	$0.1-0.5$
fluorite	$10-12$	$0.1-0.5$
(a few up to 2 mm across)		
pyrrhotite	$7-8$	$0.1-0.3$
scapolite	$3-4$	$0.3-1.2$
calcite	$2-3$	$0.5-1.7$
galena	$2-3$	$0.05-0.2$
biotite	0.3	$0.2-0.5$
epidote	0.2	$0.1-0.3$
chalcopyrite	trace	$0.005-0.015$

Sphalerite and pyrrhotite with lesser galena form aggregates of anhedral grains that commonly contain interstitial patches of fluorite.

Quartz forms subrounded patches up to a few mm across. Many consist of a single grain or aggregates of a few grains. A few are of very fine grained aggregates, some of which are intergrown with fluorite.

Fluorite forms anhedral grains intergrown coarsely to moderately and locally finely with quartz and very fine grains interstitial to sulphides.

Scapolite forms anhedral, equant to prismatic grains with the following properties: hard, moderate relief, birefringence ~ 0.025, one good cleavage, parallel extinction, length-fast, uniaxial negative optic sign.

Calcite forms a few equant patches up to 1.8 mm in size, mainly of single grains or aggregates of a few grains.

Biotite forms a few patches up to 0.6 mm in size; it has pleochroism from pale to light brown. Grains were altered moderately to completely to pseudomorphic, pale green chlorite.

Epidote forms elongate to equant, anhedral grains, most of which are associated with scapolite.
Chalcopyrite forms scattered grains included in sphalerite and probably formed by exsolution.

Sample RD-05-113 717.0 m Semi-Massive Sulphide: Quartz-Sphalerite-Pyrrhotite-Fluorite-(Galena-Calcite)

The sample is dominated by equant, anhedral grains of quartz, patches of fluorite, and patches of very fine intergrowths of sphalerite and pyrrhotite with lesser galena and interstitial fluorite. Minor minerals include scapolite, epidote, phlogopite, and plagioclase.

mineral	percentage	main grain size range (mm)	
quartz	$35-40 \%$	$0.3-2$	(a few up to 3 mm across)
sphalerite	$20-25$	$0.05-0.3$	
pyrrhotite	$15-17$	$0.05-0.5$	(a few up to 0.8 mm)
fluorite	$15-17$	$0.2-0.7$	(a few up to 2 mm across)
calcite	$2-3$	$0.7-1.5$	
galena	$2-3$	$0.05-0.5$	
scapolite	0.7	$0.3-0.7$	
epidote	0.2	$0.1-0.5$	
phlogopite	0.2	$0.2-0.3$	
plagioclase	0.1	$0.1-0.15$	
chalcopyrite	trace	$0.005-0.015$	
zircon	trace	$0.05-0.1$	

Quartz forms anhedral grains from 1-3 mm in size.
Fluorite forms anhedral patches up to a few mm across in part intergrown coarsely with quartz.
Massive sulphide forms irregular patches between quartz grains; it consists of a very fine to locally fine grained intergrowth of sphalerite with slightly less abundant pyrrhotite and much less abundant galena with minor chalcopyrite and moderately abundant, interstitial patches of fluorite. Some sphalerite grains contain exsolution blebs and lenses of chalcopyrite. A few coarser patches of galena up to 0.7 mm in size occur along borders of gangue minerals and sulphide patches.

Calcite forms anhedral, interstitial grains between massive sulphide patches.
Scapolite forms equant to slightly prismatic grains surrounded by sulphides.
Epidote forms anhedral to subhedral grains included in quartz and intergrown with sulphides.
Plagioclase forms an aggregate of anhedral prismatic grains in one irregular patch 1 mm across that is interstitial to sulphides.

Phlogopite forms disseminated flakes in sulphide patches, with pleochroism from pale to light brown. Some patches were altered moderately to strongly to chlorite.

Zircon forms subhedral to euhedral prismatic grains, mainly included in fluorite.

The sample consists of intergrowths of sphalerite-pyrrhotite-(galena) with coarser grains and patches of quartz and fluorite, much less abundant plagioclase, and minor phlogopite/biotite, K-feldspar, apatite, epidote, and scapolite

mineral	percentage	main grain size range (mm)	
quartz	$30-35 \%$	$0.3-1.5$	
sphalerite	$25-30$	$0.1-0.5$	
fluorite	$17-20$	$0.3-1$	(a few up to 2 mm)
galena	$5-7$	$0.05-0.5$	(a few patches from 1-2 mm)
pyrrhotite	$3-4$	$0.05-0.3$	(a few up to 1 mm)
plagioclase	$2-3$	$0.2-0.7$	(a few up to 1.8 mm)
phlogopite/biotite	0.5	$0.2-0.7$	
K-feldspar	0.3	$0.3-0.7$	
scapolite	0.2	$0.3-0.5$	
apatite	0.2	$0.1-0.3$	
epidote	0.2	$0.1-0.3$	
rutile	trace	$0.1-0.2$	

Quartz forms equant, subrounded grains and aggregates of grains in patches up to a few mm across that are surrounded by massive sulphide.

Fluorite forms interstitial patches to sulphides and is intergrown with some patches of quartz, especially along margins of the patches.

Massive sulphide consists of an intergrowth of sphalerite and much less abundant galena and pyrrhotite. Galena is concentrated moderately to strongly in anhedral patches from $1-2 \mathrm{~mm}$ in size that are intergrown coarsely with sphalerite, fluorite, and quartz.

Plagioclase forms anhedral grains, some of which show albite twins. A few large grains show two, broad growth zones. Some smaller grains were altered slightly to moderately to scapolite. One large grain was cut by a veinlet 0.02 mm wide of fluorite and galena.

Phlogopite/biotite forms disseminated flakes included in massive sulphide patches. It is concentrated in a patch a few mm across as flakes ($0.5-1 \mathrm{~mm}$) intergrown coarsely with quartz, fluorite, and K-feldspar. Pleochroism is from pale to light brown. One phlogopite flake contains abundant acicular grains of rutile parallel to cleavage.

K-feldspar forms anhedral, equant grains that contain patches with up to 5% extremely fine grained perthitic lenses of sodic plagioclase.

Scapolite forms anhedral, equant to prismatic grains associated with plagioclase.
Apatite forms disseminated, commonly rounded grains, mainly intergrown with quartz and fluorite.

Epidote forms anhedral, disseminated grains with rounded margins intergrown with quartz and feldspars.

Sample Oliver Massive Sulphide: Sphalerite-Pyrrhotite-Quartz; Calcsilicate Band: Tremolite/Actinolite-Scapolite-Epidote-Plagioclase

The sample is a massive sulphide dominated by sphalerite with lesser pyrrhotite (altered partly to secondary pyrite) and disseminated, subhedral to euhedral grains of quartz. It contains a calcsilicate band several mm wide that is dominated by tremolite/actinolite with lesser porphyroblastic scapolite, clusters of plagioclase, interstitial patches of sulphides, and disseminated grains of epidote and minor phlogopite and apatite.

mineral	percentage	main grain size range (mm)
sphalerite	$60-65 \%$	$0.5-1$
pyrrhotite	$15-17$	$0.2-0.7$
tremolite/actinolite	$12-15$	$0.5-1.5$
quartz	$3-4$	$1-2$
scapolite	$2-3$	$1-3$
epidote	1	$0.2-0.5$
plagioclase	1	$0.3-0.5$
apatite	0.3	$0.1-0.5$
chalcopyrite	0.3	$0.01-0.05$
phlogopite	0.1	1

In the massive sulphide, sphalerite forms anhedral grains, most of which contain $0.5-1 \%$, disseminated, exsolution blebs and lenses of chalcopyrite and locally up to 0.3% disseminated blebs of pyrrhotite.

Pyrrhotite forms irregular patches intergrown coarsely with sphalerite; alteration is moderate to locally strong to intergrowths of cryptocrystalline pyrite/marcasite and iron oxy-hydroxide. Alteration proceeded inwards from grain borders and outwards from coarse fractures.

Quartz forms subhedral to euhedral, single grains disseminated in bands of massive sulphide, generally bounded by sphalerite rather than pyrrhotite.

In the calc-silicate band, tremolite/actinolite forms anhedral to subhedral, equant to prismatic grains with pleochroism from pale to light green. Some grains are intergrown moderately with patches of sulphides.

Scapolite forms porphyroblastic grains that contain abundant inclusions of tremolite/actinolite and lesser ones of epidote. Some scapolite grains were altered moderately to locally strongly along cleavage planes to a greenish brown material, probably cryptocrystalline limonite plus another mineral, possibly chlorite.

Epidote is concentrated with tremolite/actinolite as anhedral to subhedral grains.
Plagioclase forms anhedral, equant grains.
Apatite forms equant, anhedral to subhedral grains intergrown with tremolite/actinolite.
Phlogopite forms one equant flake included in sulphides; pleochroism is from colourless to pale brown.

List of Photographs

(page 1 of 2)

Photo Sample Description

01 LJ-05-2 134.4 concentric growth structures dominated by pyrite with concentric bands of galena and much less sphalerite, with interstitial patches of sphalerite and minor flakes of muscovite/sericite.

02 LJ-05-2 134.4 bands of carbonaceous opaque (cbo) intergrown with patchy zone of sphalerite and pyrite; zone of coarser grained quartz with a small inclusion of galena.

03 LJ-05-2 134.4 intergrowth of anhedral to subhedral pyrite with interstitial sphalerite and minor quartz, galena, and muscovite.

04 LJ-05-2 134.7 to left and top: intergrowth of pyrite with lesser interstitial sphalerite; to right: patch of pyrite-galena showing a concentric growth texture; in centre: coarser grained patch of galena-sphalerite with disseminated pyrite and patches of ankerite and one of muscovite.

05 LJ-05-2 134.7 granulated pyrite enclosed in groundmass dominated by galena with lesser sphalerite and minor quartz; veinlet of quartz.

06 LJ-05-2 134.7 very fine intergrowth of pyrite-sphalerite with coarser grained patches of quartz and galena with lesser sphalerite and pyrite.

07 RD-05-109 185.5 intergrown of sphalerite with less abundant quartz and galena and minor pyrrhotite; coarser silicate patches are mainly of quartz with one grain of plagioclase(?) and one of epidote.

08 RD-05-109 185.5 sphalerite intergrown with quartz and minor galena; two anhedral grains of pyrite; three rounded grains of apatite, a large grain of Mineral X (after plagioclase?), patches of very fine grained quartz and ankerite.

09 RD-05-108 185.5

10 RD-05-112 683.8

11 RD-05-112-683.8

12 RD-05-112 683.8
13 RD-05-113 709.7
patches of Mineral X (with relic patches of quartz and/or plagioclase), rimmed by quartz aggregates; intergrown with sphalerite with minor galena and pyrite and interstitial patches of quartz and ankerite.
intergrowth of sphalerite-pyrrhotite-(galena) with patches of quartzfluorite and one grain of epidote.
intergrowth of sphalerite, pyrrhotite and lesser galena with patch of quartz, tremolite/actinolite, and fluorite.
intergrowth of sphalerite, pyrrhotite, and galena with minor fluorite.
patches of sphalerite-pyrrhotite-fluorite-(galena) intergrown with coarser grains of scapolite with patches of fluorite and one grain of epidote.

List of Photographs

(page 2 of 2)

Photo Sample Description

14 RD-05-113 709.7

15 RD-05-113 717.0

16 RD-05-113 717.0

17 RD-05-113 717.0

18 RD-05-115 725.4

19 RD-05-115 724.5

20 RD-05-115 724.5
patches of sphalerite-pyrrhotite-fluorite-(galena) intergrown with patch containing coarse grains of quartz, calcite, and fluorite and an elongate grain of epidote.
intergrowth of pyrrhotite and sphalerite with lesser galena, with minor cavities.
coarse intergrowth of pyrrhotite and sphalerite with much less abundant galena and minor chalcopyrite; inclusions of plagioclase aggregate, phlogopite flake, scapolite grain, and calcite grain.
intergrowth of sphalerite (with exsolution blebs and lenses of chalcopyrite) with pyrrhotite and lesser galena; coarsely intergrown with fluorite and minor calcite.
cluster of phlogopite/biotite associated with large patch of galena with much less abundant sphalerite; intergrown coarsely with patches of fluorite and quartz; minor epidote.
intergrowth of sphalerite with plagioclase (altered slightly to scapolite), scapolite, apatite and minor epidote; coarser grained patches of K- feldspar and of quartz.
large, zoned plagioclase grain, smaller plagioclase grains altered moderately to strongly to scapolite, patches of sphalerite with minor pyrrhotite, two grains of K-feldspar, one each of apatite and epidote, and a small one of phlogopite.

21 Oliver massive sulphide: sphalerite with patches of pyrrhotite (altered moderately to pyrite/marcasite and iron oxy-hydroxide; subhedral to euhedral grains of quartz.
sphalerite with large lenses of chalcopyrite along one crystallographic orientation intergrown coarsely with pyrrhotite (altered moderately to secondary pyrite and iron oxy-hydroxide); bordering intergrowth of sphalerite and tremolite/actinolite with much less abundant epidote.

23 Oliver porphyroblastic scapolite grain with inclusions of tremolite/actinolite, epidote, and sphalerite (with minor pyrrhotite and chalcopyrite).

SECTION E: DRILL HOLE LOGS

1. Drill Hole Record
2. Drill Hole Number RD-05-112
3. Drill Hole Number RD-05-113
4. Drill Hole Number RD-05-114
5. Drill Hole Number RD-05-115

SELKIRK METALS HOLDINGSCORP.			RUDDOCK CREEK PROPERTY				DRILL HOLE RECORD			$\begin{gathered} \hline \text { Apr } 242006 \\ \hline \text { Remarks } \end{gathered}$							
Hole	Date Completed	Zone	Length (metres)	$\begin{aligned} & \text { OB } \\ & (\mathrm{m}) \end{aligned}$	$\underset{\text { Dip }}{\text { Collar }}$	Bearing (azimuth)	Co-ordinates: UTM NAD 83, Zone 11										
Number							North	East	Elevation (m ASL)								
2004 Diamond Drilling Program (NQ2 Core)								Contractor: F. Boisvenu Drilling Ltd.									
RD-04 101	Aug 142004	"E" Zone	120.70	-	-85°	338°	5737951	368841	2324	see note 1							
RD-04 102	Aug 162004	"E" Zone	132.89	-	-70 ${ }^{\circ}$	260°	5737951	368841	2324	see note 1							
RD-04 103	Aug 182004	"E" Zone	135.93	-	-73°	$002{ }^{\circ}$	5737935	368790	2304	see note 1							
RD-04 104	Aug 192004	"E" Zone	114.90	-	-80°	$274{ }^{\circ}$	5737935	368790	2304	see note 1							
RD-04 105	Aug 232004	"E" Zone	163.32	-	-90 ${ }^{\circ}$	-	5737952	368730	2323	see note 1							
RD-04 106	Aug 242004	"E"Zone	160.32	-	-80 ${ }^{\circ}$	170°	5737952	368730	2323	see note 1							
RD-04 107	Aug 272004	"E" Zone	178.60	-	-80 ${ }^{\circ}$	015°	5737952	368730	2323	see note 1							
RD-04 108	Aug 292004	"E" Zone	162.15	-	-80 ${ }^{\circ}$	050°	5737952	368730	2323	see note 1							
RD-04 109	Sep 022004	"E" Zone	218.23	-	-90°	-	5737988	368720	2336	see note 1							
RD-04 110	Sep 052004	"E" Zone	218.23	-	-80 ${ }^{\circ}$	015°	5737988	368720	2336	see note 1							
RD-04 111	Sep 092004	"E" Zone	233.47	-	-83 ${ }^{\circ}$	333°	5737988	368720	2336	see note 1							
Total 2004	Holes: 11		1838.74				1. Coordinates based on GPS readings. Elevations calculated by R. Simpson (Geosim) from McElhanney topographic survey.										
2005 NQ Diamond Drilling Program								Contractor: F. Boisvenu Drilling Ltd.									
RD-05-112	Aug 012005	E Zone ext.	777.8	7.9	-84.5°	106°	5738202	368292	2420.0								
RD-05-113	Aug 092005	E Zone ext.	772.2	7.5	-90 ${ }^{\circ}$	0°	5738202	368292	2420.0								
RD-05-114	Aug 222005	E Zone ext.	871.0	3.1	-87 ${ }^{\circ}$	196°	5738264	368312	2444.8								
RD-05-115	Sep 182005	E Zone ext.	824.4	3.7	-83 ${ }^{\circ}$	196°	5738264	368312	2444.8								
Total 2005	Holes: 4		3245.4														
TOTAL	HOLES: 15		5084.14														

[^2]

SELKIRK METALS HOLDINGS CORP ROCK MASS CLASSIFICATION LOG Date: Logged by:				JDDOC	CREEK	ROPER		HOLE: Page\#	$\begin{gathered} \text { RDO5-115 } \\ 2 \end{gathered}$				
							Parameter						
							2.0		1.0	3.0	4.0	5.0	
From	To	Length	$\begin{gathered} \text { Recovered } \\ \text { Lengeth } \end{gathered}$	$\begin{array}{r} \text { Recoverisg } \\ \% \end{array}$	$\begin{aligned} & \text { RQD } \\ & \text { Length } \\ & >100 \mathrm{~mm} \end{aligned}$	$\begin{gathered} \text { RQD } \\ \% \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Rac } \\ \text { Raving } \end{array} \\ (0.20) \\ \hline \end{gathered}$	$\begin{aligned} & \begin{array}{l} \text { Strengith } \\ \text { Rathy } \end{array} \\ & (0-15) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Johtr } \\ \text { Spoce } \\ \text { Rading } \\ (0.30) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Jomit } \\ \text { Condtion } \\ \text { Reting } \\ (0-26) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Watar } \\ & \text { Resting } \\ & (0-10) \\ & \hline \end{aligned}$	total Rating	
184.2	187.3	3.1	2.9	93.5	1.8	58.1							
187.3	190.4	3.1	3.0	96.8	2.1	67.7							
190.4	193.5	3.1	3.0	96.8	2.5	80.6							
193.5	196.6	3.1	3.1	100.0	2.6	83.9							
196.6	199.6	3.0	3.0	100.0	2.5	83.3							
199.6	202.7	3.1	3.1	100.0	2.9	93.5							
202.7	205.8	3.1	3.1	100.0	2.8	90.3							
205.8	208.9	3.1	3.0	96.8	2.6	83.9							
208.9	212.0	3.1	3.1	100.0	2.7	87.1							
212.0	215.1	3.1	3.1	100.0	2.8	90.3							
215.1	218.2	3.1	3.1	100.0	2.9	93.5							
218.2	221.2	3.0	3.0	100.0	2.7	90.0							
221.2	224.3	3.1	3.0	96.8	2.6	83.9							
224.3	227.4	3.1	3.0	96.8	2.8	90.3							
227.4	230.5	3.1	3.0	96.8	2.9	93.5							
230.5	233.6	3.1	3.1	100.0	2.8	90.3							
233.6	236.7	3.1	3.0	96.8	2.4	77.4							
236.7	239.8	3.1	3.1	100.0	2.5	80.6							
239.8	242.9	3.1	3.0	96.8	2.7	87.1							
242.9	245.9	3.0	2.9	96.7	2.7	90.0							
245.9	249.0	3.1	3.0	96.8	2.8	90.3							
249.0	252.1	3.1	3.0	96.8	2.9	93.5							
252.1	255.2	3.1	3.1	100.0	3.1	100.0							
255.2	258.3	3.1	2.9	93.5	2.7	87.1							
258.3	261.4	3.1	3.1	100.0	2.8	90.3							
261.4	264.5	3.1	3.0	96.8	2.8	90.3							
264.5	267.5	3.0	3.1	103.3	2.9	96.7							
267.5	270.6	3.1	3.0	96.8	2.9	93.5							
270.6	273.7	3.1	3.1	100.0	3.1	100.0							
273.7	276.8	3.1	3.1	100.0	2.8	90.3							
276.8	279.9	3.1	3.1	100.0	2.9	93.5							
279.9	283.0	3.1	3.1	100.0	2.9	93.5							
283.0	286.1	3.1	3.1	100.0	3.0	96.8							
286.1	289.1	3.0	3.0	100.0	2.9	96.7							
289.1	292.2	3.1	3.1	100.0	2.7	87.1							
292.2	295.3	3.1	2.9	93.5	2.8								
295.3	298.4	3.1	3.1	100.0	2.8	90.3							
298.4	301.5	3.1	3.1	100.0	2.9	93.5							
301.5	304.6	3.1	3.1	100.0	2.8	90.3							
304.6	307.7	3.1	3.1	100.0	2.7	87.1							
307.7	310.8	3.1	3.0	96.8	2.3	74.2							
310.8	313.8	3.0	2.9	96.7	2.6	86.7							
313.8	316.9	3.1	3.1	100.0	2.7	87.1							
316.9	320.0	3.1	3.0	96.8	2.7	87.1							
320.0	323.1	3.1	3.1	100.0	2.9	93.5							
323.1	326.2	3.1	3.1	100.0	3.0	96.8							
326.2	329.3	3.1	3.1	100.0	2.8	90.3							
329.3	332.4	3.1	3.1	100.0	2.9	93.5							
332.4	335.4	3.0	3.0	100.0	3.0	100.0							
335.4	337.5	2.1	3.1	147.6	2.9	138.1							
337.5	340.5	3.0	3.1	103.3	3.0	100.0							
340.5	343.5	3.0	3.1	103.3	2.8	93.3							
343.5	346.6	3.1	3.1	100.0	3.0	96.8							
346.6	349.7	3.1	3.1	100.0	2.8	90.3							
349.7	352.7	3.0	3.0	100.0	3.0	100.0							
352.7	355.8	3.1	3.1	100.0	2.7	87.1							
355.8	358.4	2.6	3.1	119.2	2.9	111.5							
358.4	361.5	3.1	3.1	100.0	2.8	90.3							
361.5	364.9	3.4	3.1	91.2	3.1	91.2							
364.9	367.9	3.0	3.0	100.0	2.9	96.7							

SECTION F: ILLUSTRATIONS

Plan Number	Title	Scale
RC-06-1 (after p. 4)	General Location Plan	$1: 250000$
RC-06-2 (after p. 4)	Location Plan	$1: 50000$
RC-06-3 (after p. 4)	Mineral Claims	$1: 50000$
RC-06-4 (in pocket)	Mineral Claims / 2005 Drilling	$1: 20000$
RC-06-5 (in pocket)	Drill Hole Plan: E Zone and E Zone Extension	$1: 1000$
RC-06-6 (in pocket)	Drill Hole Section: Hole RD-05-112	$1: 1000$
RC-06-7 (in pocket)	Drill Hole Section: Hole RD-05-113	$1: 1000$
RC-06-8 (in pocket)	Drill Hole Section: Holes RD-05-114 and RD-05-115	$1: 1000$

[^0]: Samole type: DRILL CORE R150. Samples beginning 'RE' are. Reruns and 'RRE' are Reject Reruns.

[^1]: Document: Method and Specifications for Group 7AR. doc

[^2]: $c: \ S L K \backslash r u d d o c k$ creek $\backslash d$ rill hole record

