

Ministry of Energy & Mines

Energy & Minerals Division Geological Survey Branch

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TYPE OF REPORT (type	e of survey(s))				TOTAL COST	
Surface Diamond Drilling					\$190,000	
AUTHOR(S)	R. Tim Henneberry,	P.Geo.	SIGN	ATURE(S)	"signed and sealed	"
NOTICE OF WORK NUM	1BER(S) / DATE(S)	<u>MX-4-3</u>	99		_YEAR OF WORK	2005
STATEMENT OF WORK	- CASH PAYMENT E	VENT NUI	MBERS	/ DATE(S)	4073923	
PROPERTY NAME	Whipsaw					
CLAIM NAME(S) (on whi	ch work was done)	<u>508920</u>				
COMMODITIES SOUGH MINERAL INVENTORY N MINING DIVISION			I <u>092H</u> NTS	SE102	TRIM	092H027, 092H037
LATITUDE		LONGIT	UDE		_	(at centre of work)
NORTHING 5462000	EASTING 663000	UTM ZC	DNE	10	MAP DATUM	WGS 84
OWNER 1 Canfleur Mining Inc.			OWNE	ER 2		
MAILING ADDRESS						
102 – 1441 Ellis Street						
Kelowna, B.C. V1Y 2A3						
OPERATORS (who paid Canfleur Mining Inc.	for work)					
MAILING ADDRESS						
102 – 1441 Ellis Street						
Kelowna, B.C. V1Y 2A3						

PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size, attitude) The Whipsaw property has been explored since its discovery in 1959. The Whipsaw porphyry intrudes volcanics and volcaniclastics of the Triassic Nicola Group near the contact with the Jurassic Eagle granodiorite. Veinlet and stockwork porphyry style copper and molybdenum mineralization is associated with the north and south contacts of the Whipsaw Porphyry. Seven NQ and/or BQ surface diamond drill holes were completed in the North Zone.

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS 20165, 24322, 25547, 25836, 27780

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (In Metric Units)	On Which Claims	Project Costs Apportioned
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo Interpretation			
GEOPHYSICAL (line kilometres)			
Ground			
Magnetic Electromagnetic			
Induced Polarization			
Radiometric			
Siesmic			
Other			
Airborne			
GEOCHEMICAL			
(number of samples analyzed for)			
Soil			
Silt			
Rock			
Other			
DRILLING			
(total metres, number of holes, size)			
Core	1453 m, 7 NQ&BQ	509820	190,000
Non-core			
RELATED TECHNICAL			
Sampling / assaying			
Petrographic			
Mineralogical			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATION / PHYSICAL			
Line/grid (kilometres)			
Topographic / Photogrammatic (scale, area)			
Legal Surveys (scale, area)			
Road, local access (kilometres)			
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COS	Г 190,000

MAMMOTH GEOLOGICAL LTD.

612 Noowick Road Mill Bay, B.C. Canada VOR 2P4

Phone : (250) 743-8228 Fax : (250) 743-8228 email : mammothgeo@shaw.ca

GEOLOGICAL REPORT

WHIPSAW PROJECT

Similkameen Mining Division TRIM Sheet 092H027, 092H037 UTM (WGS 84) ZONE 10 663000E 5462000N

FOR

Canfleur Mining Inc. 102 – 1441 Ellis Street Kelowna, B.C. V1Y 2A3

By: R.Tim Henneberry, P.Geo. January 31, 2006

-2-SUMMARY

The Whipsaw property is being explored for its porphyry copper <u>+</u> molybdenum mineralization. The property lies in the Similkameen Mining Division, 26 kilometres to the southwest of Princeton. All wheel drive gravel roads provide access to the property.

The Whipsaw property is underlain by Nicola volcanics in fault contact with the Eagle granodiorite. The Nicola rocks have been intruded by the Whipsaw stock, a small crescent shaped 500 metre by 1500 metre feldspar porphyry intrusion. Porphyry style mineralization has been developed at the northwest and south contacts of the stock.

Sporadic exploration programs since the early 1960's have been successful in locating two zones, the North Zone and the South Zone, of copper <u>+</u> molybdenum mineralization in both the Nicola Group volcanics and the Whipsaw feldspar porphyry intruding them. Several intersections in excess of 0.2% copper and 0.01% molybdenum with + 2 grams of silver have been recorded in both of the zones. Further drilling is required to confirm the early results, define the limits of the mineralization, and move toward the calculation of a preliminary resource estimate for the North Zone and the South Zone. A total of 8,650 feet is required for the North Zone and a further 11,000 feet is required for the South Zone.

A review of the voluminous exploration data available on the property has identified additional exploration targets that need to be evaluated by surface prospecting, trenching and / or diamond drilling. The western contact requires 5,000 feet of diamond drilling, while the remaining property requires prospecting and follow-up excavator trenching.

The budget to undertake and complete the recommended exploration is as follows:

Personnel	\$138,000
Anomaly Follow-up	\$17,000
Trenching	\$35,500
Diamond Drilling	\$766,700
Documentation	\$22,500
Contingency	\$120,300
Total	\$1,100,000

The cost of the seven hole 2005 exploration program was \$196,208.87. Only \$190,000 of this work was filed.

-3-TABLE OF CONTENTS

INTRODUCTION	
RELIANCE ON OTHER EXPERTS	
PROPERTY DESCRIPTION AND LOCATION	6
ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND	
PHYSIOGGRAPHY	
HISTORY	9
GEOLOGICAL SETTING	
Whipsaw Property Geology	
DEPOSIT TYPES	14
MINERALIZATION	
North Zone	
South Zone	
West Contact	
EXPLORATION	
DRILLING	
SAMPLING METHOD AND APPROACH	
SAMPLE PREPARATION, ANALYSES AND SECURITY	
DATA VERIFICATION	
ADJACENT PROPERTIES	
MINERAL PROCESSING AND METALLURGICAL TESTING	
MINERAL RESOURCES AND MINERAL RESERVE ESTIMATES	
OTHER RELEVANT DATA AND INFORMATION	
INTERPRETATION AND CONCLUSIONS	
RECOMMENDATIONS	
REFERENCES	
CERTIFICATES OF QUALIFIED PERSON	
STATEMENT OF COST	
COST ESTIMATES	

LIST OF FIGURES

Figure 1. Project Location	5
Figure 2. Claim Location	
Figure 3. Regional Geology	11
Figure 4. Property Geology	13
Figure 5. North Zone / South Zone Location	
Figure 6. South Zone Surface Drilling Plan	20
Figure 7. North Zone Surface Drilling Plan	

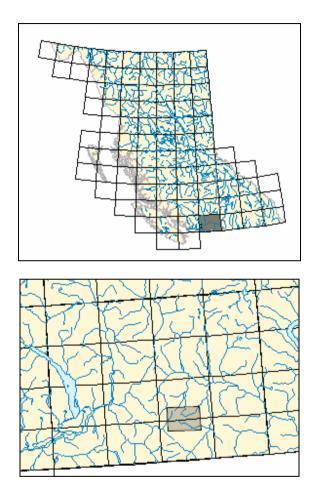
APPENDICES

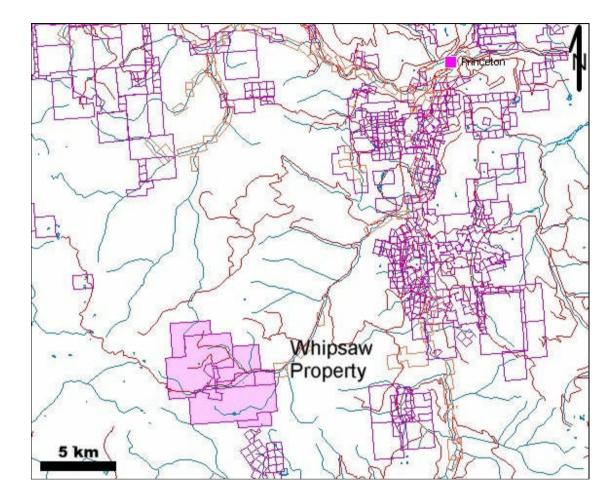
Drill Logs
Assav Certificates
Sections

-4-INTRODUCTION

The purpose of this report is to compile the results of the 2005 exploration program on the Whipsaw property for assessment credits. The exploration program consisted of 7 NQ and/or BQ surface drill holes totaling 1,453 metres (4766 feet), and ran from July 26 to December 1. The author supervised and conducted the drilling program.

This report was commissioned by Mr. Doug Olson, the Chairman of the Board of Canfleur Mining Inc.

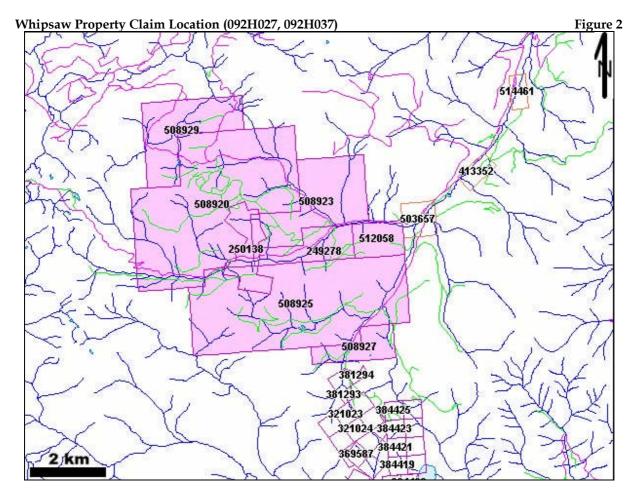

The Whipsaw property hosts two distinct, but related styles of mineralization. The property is best explored and discussed as two separate sections, coinciding with the two styles of mineralization. The initial discovery and earlier history was concentrated on base – precious metal veins and zones first located in the early 1900's. These veins have been held by Mr. Charles Martin since the 1960's. These veins were not the target of the 2005 Canfleur Mining Inc. program and will be discussed no further.


The focus of the 2005 Canfleur Mining Inc. exploration was the porphyry copper \pm molybdenum mineralization, first discovered in 1959. The porphyry mineralization was held by Texas Gulf Sulphur until 1987 when it was acquired by staking by the property vendor, Mr. Charles Martin.

The 30 kilometre area around the Whipsaw property is noted for its long history of porphyry copper exploration and mining. Three important porphyry deposits occur near the Whipsaw property. These include the formerly producing Copper Mountain deposit (Similco), 14 kilometres south of Princeton, the Ingerbelle deposit, 13 kilometres south of Princeton and the Virginia deposit, 13 kilometres south of Princeton. The copper grades of these deposits ranges from 0.33% to 0.49% with small amounts of gold and silver. The combined tonnage from the three deposits was reported in 1996 at 129 million tonnes grading 0.393 % Cu, 0.155 g/t Au and 1.576 g/t Ag. (MINFILE 092HSE001).

RELIANCE ON OTHER EXPERTS

Aside from the 2005 exploration results, the author is relying largely on information from geological reports written by various company and consulting geologists between the period 1959 and 2004. All reports are listed in the reference section of this report. All of these reports were written prior to the implementation of N I 43-101. While there is no way to verify that the data on which these reports were based was collected to NI 43-101 standards, the author feels there is a certain level of comfort utilizing the data as it was collected by known reputable geologists, working for large and major mining companies. Further, analyses on which these reports are based were completed by reputable Canadian assay labs, utilizing industry standard techniques.



WHIPSAW PROJECT LOCATION Figure 1

-6-PROPERTY DESCRIPTION AND LOCATION

The Whipsaw Project lies on TRIM claim sheets 092H027 and 092H037 in the Similkameen Mining Division. The property consists of one mineral lease and seven map claims totaling over 4,150 hectares. The geographic center of the property is approximately 663000E 5462000N ZONE 10 (UTM WGS 84).

The claims are registered in the name of Canfleur Mining Inc. of Kelowna, B.C.

Name	Number	Expiry	Hectares
Mineral Lease	250138	13-Jan-2007	171.75
	508920	16-Aug-2010	1,390.707
	508923	16-Aug-2010	463.581
	508924	16-Aug-2010	189.688
	508925	16-Aug-2010	1,286.018
Whipsaw SE	508927	16-Aug-2010	147.608
Whipsaw NW	508929	16-Aug-2010	379.142
MET 4	512058	16-Aug-2010	126.458
Total area			4,154.952
Droin t		Lauran 2000	Manana ath Oa alaa

Whipsaw Project

January 2006

Canfleur Mining Inc. has optioned the claims and mineral lease from Charles Martin of Vancouver, B.C. under the following terms:

- 1. \$60,000 on signing. This was paid in full on July 21, 2005. This entitles Canfleur to an exclusive one year option on the property from June 1, 2005 to May 31, 2006.
- 2. Canfleur Mining Inc. may exercise its option during the initial option period by delivering payment to Martin equivalent to \$2,000,000 Cdn. on or before May 31, 2006. The payment may be cash, Class A common shares at \$1.00 per share or any combination of cash or shares equaling the payment amount, at Martin's discretion.
- 3. Canfleur Mining Inc. can elect to extend the option from May 31, 2006 to May 31, 2007 by delivering to Martin a sum of \$250,000. However, if the option is extended, the cost to exercise the option increases to \$2,500,000 from \$2,000,000.
- 4. Upon exercising the option and making the option payment, Canfleur Mining Inc. will hold 100% ownership of the claims and mining lease, subject to the following royalties:
 - a. \$1,000,000 from production to Roy Huff, as per his agreement with Martin
 - b. \$500,000 from production to World Wide Minerals Ltd.
- 5. Under the terms of the agreement:
 - a. Martin will be retained to work as consultant to Canfleur, as available, and will be reasonably compensated.
 - b. Canfleur will complete \$500,000 in exploration on the property.
 - c. Canfleur will maintain the claims and mineral lease in good standing by completing and filing and necessary assessment work.

There is a permit in place to drill a further 3,050 metres (10,000 feet) with provincial Ministry of Energy and Mines. A reclamation bond has been posted.

-8-ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Whipsaw property lies 26 kilometres southwest of Princeton. Road access is via Whipsaw Forest Road, which cuts through the heart of the property. Princeton lies on Highway 3 within 2 hours driving time from the major supply centres of Chilliwack to the southwest or Kamloops to the northeast.

The claims lie on TRIM sheets 092H027 and 092H037 in the Similkameen Mining Division. The topography is generally moderate, with elevations on the property ranging from 1385 to 1660 metres. The claims are generally covered with stands of pine, spruce and fir with parts recently logged. A network of logging roads provides access to the most of the property.

The climate of this part of the province is typical of the southern interior of British Columbia. The summer field season is generally warm and dry and runs from mid- to late- May through to mid- to late- October. Winters are cold with significant snow accumulations. Temperatures can dip to minus 20 Celsius for extended periods.

The logistics of working in this part of the province are excellent. Gravel road access will allow the movement of supplies and equipment by road. Heavy equipment should be available locally in Princeton or in Kamloops. Supplies, fuel and lodging are available locally in Princeton. Depending on the type of exploration program to be conducted, the field season generally runs from late-April to early-November.

-9-HISTORY

The Whipsaw porphyry property has a long exploration history. It has been explored since 1959 for porphyry copper <u>+</u> molybdenum mineralization associated with the emplacement of the Whipsaw porphyry. Following is a summary of previous exploration completed on the porphyry property.

	Summary of Exploration Programs on the north half of the Whipsaw Property						
Year	Company	Program	Drill Summary	Reference			
1960	Texas Gulf Sulphur	Geological Mapping Geochemistry IP - Resistivity		Bacon, 1960			
1960	Ecstall Mining	IP - Resistivity		Bell and Hallof, 1961			
1961	Texas Gulf Sulphur	EM and Mag		Bacon, 1961			
1961	Texas Gulf Sulphur	Geological Mapping Geochemistry		Holyk, 1961			
		Diamond Drilling	3 holes - 683.5 feet				
1963	Dome Exploration	IP - Resistivity		Hallof, 1963			
1963	Moneta Porcupine	Geochemistry IP - Resistivity		Seraphim, 1963			
1968	Amax Explorations	Diamond Drilling Geological Mapping Geochemistry	2 holes - 1,259 feet	Mustard, 1968			
1970	Texas Gulf Sulphur	Trenching Diamond Drilling	4 holes - 1,500 feet	Forsythe, 1970			
1971	Newmont Mining	IP - Resistivity	4 110103 - 1,000 1001	Ballantyne, 1971			
1972	Newmont Mining	Trenching Diamond Drilling	6 holes - 3,085 feet	Paulus, 1972			
1980	Cominco	Geochemistry	0 110103 - 5,000 1001	Caelles, 1980			
1981	Cominco	Percussion Drilling	7 holes - 582.2 metres	Wilton, 1981			
1990	World Wide Minerals	Diamond Drilling	3 holes - 467.5 metres	Richardson, 1990			
1991	Phelps Dodge	Percussion Drilling	11 holes - 693.4 m	Fox and Goodall,			
1,7,1	Theips Douge	Diamond Drilling	14 holes - 1782 m	1992			
1996	Martech Industries	Diamond Drilling	7 holes - 833.7 metres	Richardson, 1996			
1997	Martech Industries	Diamond Drilling	1 hole - 60.96 metres	Richardson, 1998			
1998	Martech Industries	Diamond Drilling	2 holes- 139 metres	Richardson, 1998b			
2004	Martech Industries	Diamond Drilling	2 holes - 245 metres	Richardson, 2005			

The porphyry was originally staked by Texas Gulf Sulphur Company in 1959 as a result of following up silt geochemistry anomalies. Texas Gulf retained the property until 1987, when it lapsed and was quickly acquired by the present vendor.

Texas Gulf Sulphur Company discovered major stream sediment Cu-Zn anomalies in 45 and 47 Mile creeks, tributaries entering Whipsaw Creek from the north in 1959. They followed up with geological mapping, soil geochemistry and induced polarization surveys (Bacon, 1960; 1961) that led to the first diamond drilling of three holes (Holyk, 1961). Texas Gulf then optioned the property to a number of companies, who completed geological, geochemical and geophysical surveys and some diamond drilling, essentially duplicating and occasionally expanding the anomalous areas. (Hallof, 1963; Seraphim, 1963; Mustard, 1969; Ballantyne, 1971 and Paulus, 1972). Texas Gulf completed a four hole diamond drilling program in 1969 (Forsythe, 1970). Comino Ltd. completed a soil geochemistry program (Caelles, 1980) and follow up seven hole percussion drilling program (Wilton, 1981).

World Wide Minerals Ltd. consolidated the property in 1987 and began to focus on the porphyry in 1990, completing a three hole diamond drilling program that year (Richardson, 1990). Phelps Dodge Corporation of Canada, Limited optioned the north half of the property in 1991, and completed widely spaced diamond drilling (14 holes) and percussion drilling (11 holes) programs (Fox and Goodall, 1992).

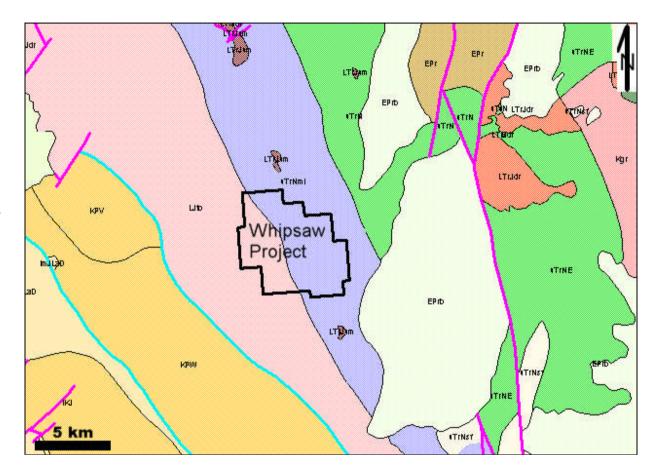
Since 1992, Martech Industries Inc. has concentrated on the Whipsaw porphyry completing small diamond drilling programs, primarily to meet annual assessment requirements. These included 7 holes in 1995 (Richardson, 1996), 1 hole in 1987 (Richardson, 1998a), 2 holes in 1998 (Richardson, 1998b) and 2 holes in 2004 (Richardson, 2005).

LEGEND

Late OLIGOCENE to early MIOCENE OlMiCo Coquihall Formation – calc-alkaline volcanics

EOCENE

Princeton Group - andesitic volcanics EPrb Princeton Group - undivided sediments EPr **CRETACEOUS** granite, alkali feldspar granite Kgr KPV Pasayten Group - Virginia Ridge Formation coarse clastic sediments 1KJ Jackass Mountain Group - undivided sediments Late JURASSIC LJto tonalite Ladner Group - Dewdney Creek Formation lmJlaD


coarse clastic sediments

Late TRIASSIC to early JURASSIC LTrJgd granodiorite LTrJdr diorite LTrJm ultramafic rocks

upper TRIASSIC

uTrNsfNicola Group - fine clastic sedimentsuTrNENicola Group - Eastern volcanic facies - basaltuTrNNicola Group - undivided volcanicsuTrNmlNicola Group - lower amphibolite/kyanite
grade metamorphics

Geology from MapPlace

WHIPSAW PROJECT REGIONAL GEOLOGY Figure 3

-12-GEOLOGICAL SETTING (Summarized from MINFILE 092HSW)

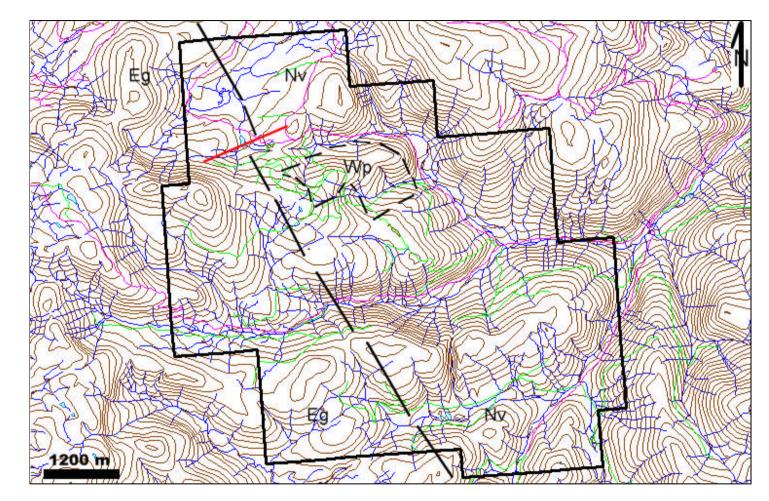
The Princeton map area covers the south end of the Intermontane Belt and the adjoining eastern margin of the Coast Belt. The geological setting is taken from MapPlace and is shown in Figure 3. The southern Intermontane Belt is dominated by volcanic rocks and sediments of the Upper Triassic Nicola Group, comprising the Quesnel Terrane. These rocks are intruded by comagmatic plutons of the Late Triassic and Early Jurassic Copper Mountain and Hedley intrusions, and comprise a west-facing magmatic arc. The island arc assemblage is cut by postaccretionary intrusions of the Late Jurassic and Cretaceous Eagle Plutonic Complex and Osprey Lake batholith, and is unconformably overlain by volcanic rocks and clastic sediments of the Cretaceous and Tertiary Spences Bridge and Princeton groups. This post-accretionary volcanism and sedimentation is in part controlled by a system of northerly-striking strike-slip faults.

The Methow Terrane lies across the Pasayten fault to the west, and occupies the eastern margin of the Coast Belt in the Princeton map area. This terrane comprises a wedge of clastic sediments derived in part from Quesnellia rocks to the east. The sequence consists of fine-grained sediments and mafic volcanics of the Lower to Middle Jurassic Ladner Group, overlain by a thin section of sandstone and conglomerate of the Upper Jurassic "Thunder Lake sequence", which is in turn followed by a thick section of coarse clastics of the partly coeval Cretaceous Jackass Mountain and Pasayten groups.

Whipsaw Property Geology

The Whipsaw property covers 10 km of the regionally mineralized contact zone between the Upper Triassic Nicola Group and the Mesozoic Eagle Granodiorite. In the north-central part of the property, the west-dipping contact zone is intruded by the Whipsaw Porphyry. Dykes of feldspar porphyry extend north and south of the stock near and parallel to the Nicola-Eagle Granodiorite contact. The northwest portion of the Whipsaw Porphyry outcrops and has been mapped, while the southeast lobe of the porphyry stock occurs in an area of sparse outcrop, and the outline of this part of the stock is based mainly on magnetic and geochemical data. (Richardson, 2005)

The Nicola rocks comprise a sequence of western-dipping foliated tuffs and metasediments. The adjoining Eagle pluton consists largely of granodiorite, intensely sheared and foliated along its east margin. (Fox and Goodall,1992).


The Whipsaw porphyry is a small stock of quartz porphyry some 500 metres by 1500 metres. Mustard (1968) broke the intrusion into four distinct phases: feldspar biotite porphyry, feldspar porphyry, quartz feldspar biotite porphyry and quartz feldspar porphyry.

The Whipsaw Porphyry is the apparent source of a large hydrothermal system with which at least two types of mineral deposits are related. Porphyry copper-molybdenum-gold mineralization occurs disseminated and in veinlets within the perimeter of the Whipsaw Porphyry but mostly in Nicola rocks bordering the porphyry. To the south, the porphyry Cu-Mo-Au mineralization decreases and Au-Ag-Cu-Zn mineralization occurs in pyrite-bearing quartz veins and associated disseminated deposits. (Richardson, 2005)

Whipsaw Project

LEGEND

- WpWhipsaw porphyryEgEagle GranodioriteNvNicola volcanics
- --- Contact
- --- Fault
- Geology from Richardson, 1990

WHIPSAW PROJECT PRELIMINARY PROPERTY GEOLOGY Figure 4

The Whipsaw property is being explored for porphyry copper <u>+</u> molybdenum <u>+</u> silver <u>+</u> gold deposits. The following summary is condensed from British Columbia Ore Deposit Models (Panteleyev, 1995).

Calcalkalic porphyry copper deposits are found in orogenic belts at convergent plate boundaries. High level (epizonal) stocks are emplaced at various levels in volcano-plutonic arcs, commonly oceanic volcanic island and continent-margin arcs. Porphyry copper deposits can also be found associated with emplacement of high-level stocks during extensional tectonism related to strike-slip faulting and back-arc spreading following continent margin accretion. Virtually any type of country rock can be mineralized, but commonly the high-level stocks and related dikes intrude their coeval and cogenetic volcanic piles. There are two main periods of porphyry mineralization in the Canadian Cordillera: the Triassic/Jurassic (210-180 Ma) and Cretaceous/Tertiary (85-45 Ma).

Ore deposits occur as stockworks of quartz veinlets, quartz veins, closely spaced fractures and breccias containing pyrite and chalcopyrite with lesser molybdenite, bornite and magnetite in large zones of economically bulk-mineable mineralization in or adjoining porphyritic intrusions and related breccia bodies. Disseminated sulphide minerals are present, generally in subordinate amounts. The mineralization is spatially, temporally and genetically associated with hydrothermal alteration of the host rock intrusions and wallrocks.

Mineralization occurs as quartz, quartz-sulphide and sulphide veinlets and stockworks; sulphide grains in fractures and fracture selvages. Minor disseminated sulphides may replace primary mafic minerals. Quartz phenocrysts can be partially resorbed and overgrown by silica. Pyrite is the predominant sulphide mineral. In some deposits the Fe oxide minerals magnetite, and rarely hematite, are abundant. Ore minerals are chalcopyrite; molybdenite, lesser bornite and rare (primary) chalcocite. Subordinate minerals are tetrahedrite/tennantite, enargite and minor gold , electrum and arsenopyrite. In many deposits late veins commonly contain galena and sphalerite in a gangue of quartz, calcite and barite.

Alteration is important in porphyry copper deposits and includes quartz, sericite, biotite, K-feldspar, albite, anhydrite/gypsum, magnetite, actinolite, chlorite, epidote, calcite, clay minerals, tourmaline. Early formed alteration can be overprinted by younger assemblages. Central and early formed potassic zones (K-feldspar and biotite) commonly coincide with ore. This alteration can be flanked in volcanic host rocks by biotite-rich rocks that grade outward into propylitic rocks. The biotite is a fine-grained, 'shreddy' looking secondary mineral that is commonly referred to as an early developed biotite (EDB) or a 'biotite hornfels'. These older alteration assemblages in cupriferous zones can be partially to completely overprinted by later biotite and K-feldspar and then phyllic (quartz-sericite-pyrite) alteration, and less commonly argillic, and rarely, in the uppermost parts of some ore deposits, advanced argillic alteration (kaolinite-pyrophyllite) . Gangue minerals in mineralized veins are mainly quartz with lesser biotite, sericite, K-feldspar, magnetite, chlorite, calcite, epidote, anhydrite and tourmaline.

Porphyry deposits are marked by large-scale, zoned metal and alteration assemblages. Ore zones can form within certain intrusive phases and breccias or are present as vertical 'shells' or mineralized cupolas around particular intrusive bodies. Weathering can produce a pronounced vertical zonation with an oxidized, limonitic leached zone at surface (leached capping), an underlying zone with copper enrichment (supergene zone with secondary copper minerals) and at depth a zone of primary mineralization (the hypogene zone).

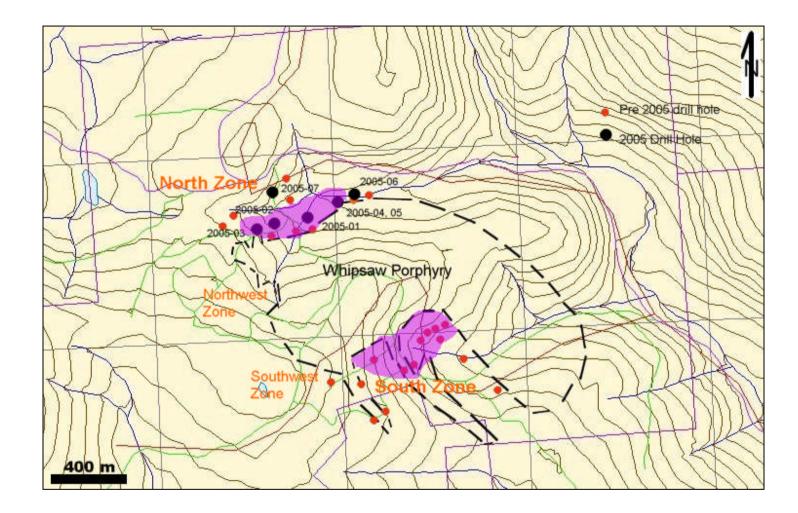
Calcalkalic systems can be zoned with a cupriferous (* Mo) ore zone having a 'barren', lowgrade pyritic core and surrounded by a pyritic halo with peripheral base and precious metalbearing veins. Central zones with Cu commonly have coincident Mo, Au and Ag with possibly Bi, W, B and Sr. Peripheral enrichment in Pb, Zn, Mn, V, Sb, As, Se, Te, Co, Ba, Rb and possibly Hg is documented. Overall the deposits are large-scale repositories of sulphur, mainly in the form of metal sulphides, chiefly pyrite.

Ore zones, particularly those with higher Au content, can be associated with magnetite-rich rocks and are indicated by magnetic surveys. Alternatively the more intensely hydrothermally altered rocks, particularly those with quartz-pyrite-sericite (phyllic) alteration produce magnetic and resistivity lows. Pyritic haloes surrounding cupriferous rocks respond well to induced polarization (I.P.) surveys but in sulphide-poor systems the ore itself provides the only significant IP response.

British Columbia porphyry Cu * Mo \pm Au deposits range from <50 to >900 Mt with commonly 0.2 to 0.5 % Cu, <0.1 to 0.6 g/t Au, and 1 to 3 g/t Ag. Mo contents are variable from negligible to 0.04 % Mo. Median values for 40 B.C. deposits with reported reserves are: 115 Mt with 0.37 % Cu, *0.01 % Mo, 0.3g /t Au and 1.3 g/t Ag.

-16-MINERALIZATION

The exploration target for the Whipsaw Project is calcalkalic porphyry copper \pm molybdenum \pm silver \pm gold. The Whipsaw property has a long exploration history, including several periods of diamond drilling and percussion drilling. The drilling has shown there are two primary zones of mineralization associated with the Whipsaw porphyry, the north zone and the south zone.


A summary table of the drill results for the north zone and the south zone is included below in the description of each of the zones.

North Zone

Number	Zone	Туре	Host	From m	To m	Length	%Cu	% Mo
1969 W1	North	Core AQ	Nicola Nicola/	Incomplet	e sampling	9.1-45.7 m	etrest + 0	2% Cu
1972 W1	North	Core BQ	Porphyry	No drill lo	gs	79.6 metre	es at 0.23%	6 Cu
1972 W2	North	Core BQ		No drill lo	gs	125.3 met	res at 0.11	% Cu
1972 W3	North	Core BQ	Nicola	No drill lo	gs	109.7 met	res at 0.14	% Cu
1972 W3	North	Core BQ	Nicola	No drill lo	gs	41.1 metre	es at 0.21%	6Cu
1972 W3	North	Core BQ	Nicola	No drill lo	gs	24.4 metre	es at 0.30%	6 Cu
1972 W4	North	Core BQ	Nicola	No drill lo	gs	108.8 met	res at 0.13	% Cu
1972 W4	North	Core BQ	Nicola	No drill lo	ogs	24.4 metre	es at 0.21%	6 Cu
1972 W5	North	Core BQ		No drill lo	gs	73.1 metre	es at 0.17%	5 Cu
1972 W5	North	Core BQ		No drill lo	gs	27.4 metre	es at 0.24%	6 Cu
1972 W6	North	Core BQ		No drill lo	gs	112.8 met	res at 0.06	4% Cu
W90-7	North	Core BQ	Nicola	10.20	69.75	59.45	0.231	0.013
W90-7	North	Core BQ	including	10.20	37.00	26.70	0.300	0.015
W90-7	North	Core BQ	including	46.00	69.75	23.75	0.214	0.014
W90-8	North	Core BQ	Nicola	31.70	137.46	105.66	0.244	0.012
W90-8	North	Core BQ	including	31.70	93.00	61.30	0.203	0.006
W90-8	North	Core BQ	including	97.00	120.30	23.30	0.348	0.024
W90-8	North	Core BQ	including	120.30	137.46	17.06	0.280	0.015
W90-9	North	Core BQ		10.50	183.33	172.83	0.157	0.009
W90-9	North	Core BQ	including	10.50	27.55	17.05	0.187	0.005
W90-9	North	Core BQ	including	41.10	59.80	18.70	0.178	0.004
W90-9	North	Core BQ	including	92.60	156.77	64.22	0.170	0.010
95-1	North	Core NQ	Nicola				< 0.200	< 0.010
95-2	North	Core NQ	Nicola	8.84	150.26	141.42	0.164	0.008
95-3	North	Core NQ	Nicola	82.40	130.40	48.00	0.130	0.007
04-11	North	Core BQ	Nicola	6.10	117.03	110.93	0.230	0.012
04-11	North	Core BQ	including	33.00	70.86	37.86	0.277	0.013
04-11	North	Core BQ	including	85.00	117.03	32.03	0.278	0.016
04-12	North	Core BQ		6.10	128.01	121.91	0.200	0.010
04-12	North	Core BQ	including	75.75	98.43	22.68	0.246	0.013
04-12	North	Core BQ	porphyry	98.43	128.01	29.58	0.183	0.008

Whipsaw Project

January 2006

WHIPSAW PROJECT NORTH ZONE / SOUTH ZONE LOCATION Figure 5

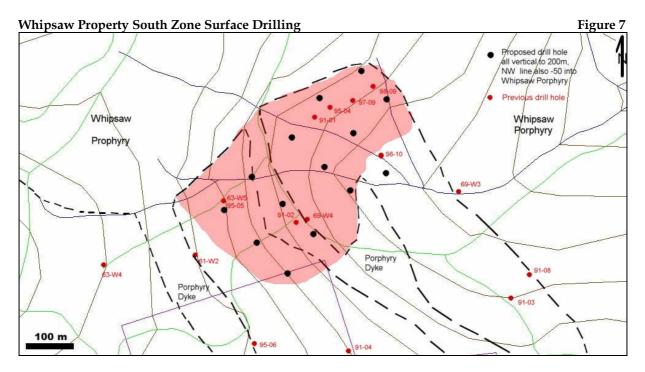
The North Zone lies on the north and northwest contact of the Whipsaw porphyry. Previous drilling has identified an area approximately 600 metres (E-W) by 200 metres (N-S) that appears to be open to the east and west. The zone is associated with the north and northwest contact of the steeply north dipping (~70°) contact of the Whipsaw porphyry. Drilling has shown the zone forms a halo, typical of porphyry deposits, in the host Nicola volcanics proximal to the contact. The drilling has shown mineralization is found primarily within the volcanics, but some of the holes show mineralization is also found in the porphyry itself.

The drilling in the zone has shown the copper \pm molybdenum grade increases as the porphyry contact is approached. There appears to be a section 100-150 metres in the hanging wall of the intrusive that grades in excess of 0.20% Cu and 0.01% Mo. There are also areas closer to the contact where grade is in excess of 0.30% Cu, but it is too early to ascertain whether these areas can be traced from section to section. Some of the drill holes continued into the porphyry and recorded grades to 0.23% Cu.

Mineralization in the zone (both the volcanics and the intrusive) is predominantly pyrite, as fracture coatings and fillings in the host rocks, as disseminations in the host rock and within the quartz veinlets, stringers and stockworks cutting the host rock. Pyrite concentrations range from 1% up to 5%. Chalcopyrite appears for the most part to be confined to the fractures and the quartz and is in concentrations less than 1%.

Alteration appears to be silicification (especially in the intrusive) and sericite with pyrite, the typical phyllic assemblage. Biotite has been noted in some of the cores, as has local epidote and argillization of feldspar (confined to the porphyry).

South Zone


The South Zone lies on the south and southwest contact of the Whipsaw porphyry. The geology of the South Zone appears to be more complex than the North Zone. The zone of mineralization lies with the Nicola volcanics on the hanging wall contact of the Whipsaw Intrusion. Because of its location within the inner bend of the crescent-shaped intrusion, the zone is confined to both the north and the east by the porphyry. It appears to be confined to the west by a large porphyry dyke. The south contact appears to be defined strictly by grade (increasing distance from the north contact).

Limited drilling to date in the cupola area itself has shown the Nicola rocks are well mineralized and altered. The few holes that intersected the porphyry itself have also shown mineralization and alteration. There appears to be a section 100-300 metres wide that grades in excess of 0.20% Cu and 0.01% Mo. There are also areas closer to the intrusive contact where grade is in excess of 0.30% Cu, but it is too early to ascertain whether these areas can be traced from section to section. Some of the drill hoes continued into the porphyry and recorded grades to 0.23% Cu.

Whipsaw Project

Number	Zone	Туре	Host	From m	To m	Length	%Cu	% Mo
1961 W1	South	Core AX	Nicola	No assays	reported			
1961 W2	South	Core AX	Nicola	No assays	-			
1961 W3	South	Core AX	Nicola	No assays	-			
1963 W4	South	Core AX	Nicola	2	e sampling	0.1-0.3%	Cu, 0.05-0.1	1% MoS2
1963 W5	South	Core AX	Nicola	-	e sampling		6 Cu, < 0.05	
1969 W2	South	Core AQ	Nicola	-	e sampling		metres + 0	
1969 W2	South	Core AQ	Nicola	-	e sampling		3 metres +	
1969 W3	South	Core AQ	Porphyry	-	e sampling	less than	0.01 % Cu	
1969 W4	South	Core AQ	Nicola		e sampling	12.2-33.5	metres + 0	.2% Cu
1969 W4	South	Core AQ	Nicola	-	e sampling		netres + 0.2	
WH81-1	South	Percussion	Unknown	1	1 0		< 0.03	< 0.003
WH81-2	South	Percussion	Unknown				< 0.05	< 0.008
WH81-3	South	Percussion	Unknown	45.7	51.8	6.1	0.056	0.047
WH81-4	South	Percussion	Unknown	27.4	39.6	12.2	0.11	0.007
WH81-5	South	Percussion	Unknown	9.1	15.2	6.1	0.11	0.015
WH81-5	South	Percussion	Unknown	45.7	51.8	6.1	0.116	0.007
WH81-6	South	Percussion	Unknown				< 0.07	< 0.04
			No					
WH81-7	South	Percussion	descriptions	57.9	64	6.1	0.31	0.057
91-1	South	Core NQ	Nicola	23.4	78.6	55.2	0.242	0.008
91-2	South	Core NQ	Porphyry	39.6	53	13.4	0.19	0.013
91-2	South	Core NQ	Nicola	53	138.7	85.7	0.2	0.007
91-3	South	Core NQ	Nicola				< 0.10	< 0.001
91-4	South	Core NQ	Nicola	36.6	109	72.4	0.145	0.005
91-5	South	Core NQ	Nicola	113.5	151.8	38.3	0.16	< 0.001
91-6	South	Core NQ	Nicola	24	39	15	0.141	0.005
91-6	South	Core NQ	Nicola	60	140.2	80.2	0.127	0.006
91-10	South	Core NQ	Nicola	87	135	48	0.162	<0001
95-4	South	Core NQ	Nicola	26.21	82.7	56.49	0.197	0.011
95-4	South	Core NQ	including	26.21	37.7	11.49	0.289	0.018
95-5	South	Core NQ	Nicola	9.14	141.72	132.58	0.189	0.009
95-5	South	Core NQ	including	9.14	38.1	28.9	0.207	0.01
95-6	South	Core NQ	Nicola	19	41	22	0.128	< 0.001
95-7	South	Core NQ	Nicola	9.7	21.7	14	0.156	0.003
97-8	South	Core BQ	Porphyry	4.88	60.96	56.08	0.173	0.007
97-8	South	Core BQ	including	29	60.96	31.96	0.217	0.01
98-9	South	Core BQ		6	70.4	64.4	0.188	0.009
98-9	South	Core BQ	Porphyry	6	27.2	24.2	0.218	0.005
98-9	South	Core BQ	Nicola	27.2	46	18.8	0.207	0.009
98-9	South	Core BQ	Porphyry	46	70.4	24.2	0.143	0.012
98-10	South	Core BQ		11	68.58	57.58	0.122	0.008

Mineralization in the zone (both the volcanics and the intrusive) is predominantly pyrite, as fracture coatings and fillings in the host rocks, as disseminations in the host rock and within the quartz veinlets, stringers and stockworks cutting the host rock. Pyrite concentrations range from 1% up to 5%. Chalcopyrite appears for the most part to be confined to the fractures and the quartz and is in concentrations less than 1%.

Alteration appears to be silicification (especially in the intrusive) and sericite with pyrite, the typical phyllic assemblage. Biotite has been noted in some of the cores, as has local epidote and argillization of feldspar (confined to the porphyry).

Both the north zone and the south zone were originally discovered by soil geochemical and induced polarization surveys. There are several additional anomalous IP zones that have yet to be followed up, suggesting the possibility of additional zones of mineralization.

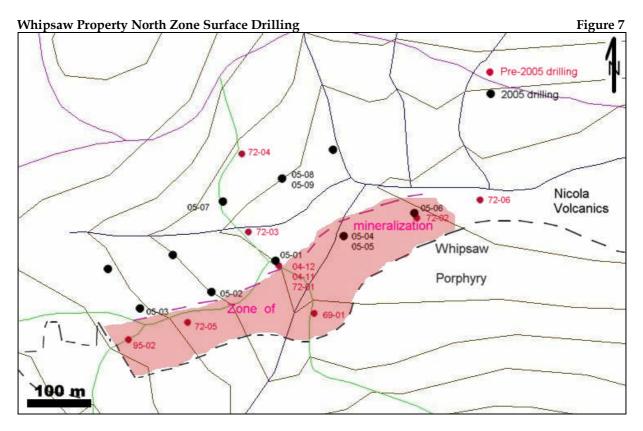
The drilling to date in these two zones has consisted of generally widely spaced holes attempting to delineate the Whipsaw porphyry contact zone. While these holes have been somewhat successful in identifying copper <u>+</u> molybdenum mineralization, they have not concentrated on locating and following the contact zone along strike and down dip. A systematic drilling program is required to both locate the contact zone and begin to define a potential mineral resource in each of the two zones.

Under the new provisions of NI43-101 drilling results prior to implementation of the instrument itself, cannot be used in the calculation of reserves and resources. Therefore some of the drilling will concentrate on duplicating or at least verifying the results from the early program. This is especially important with respect to the pre-1970 drilling, where only interesting sections of the core were sampled for copper and seldom molybdenum. The 1972 drilling logs are no longer available so some holes will be required to duplicate these holes in order to explore the geology.

West Contact

The west side of the Whipsaw Intrusion also offers two preliminary target areas. Soil and silt geochemical sampling has shown the area on the northwest contact of the zone to be moderately to strongly anomalous in copper.

The northwest porphyry contact zone is an area of high silt geochemistry draining the contact area. A series of samples in excess of 1000 ppm Cu were obtained. An access road paralleling the contact through this area will allow the drilling of 3-5 short holes to test the anomaly area.


The southwest porphyry contact zone was one of the first areas tested by Texas Gulf in the early 1960's. They put in a 300 metre trench and then drilled a hole from each end toward the middle, testing an IP / geochemistry anomaly. Texas Gulf sampled only intermittently relying on visual sightings of chalcopyrite and recorded values ranging from 0.045% to 025% copper and 0.02% to 0.106% MoS_2 . The drill core from the period 1961 to 1972 was not sampled end to end. The sampling was confined to zone of visible copper mineralization. Exploration completed since the 1990's, including the present Canfleur program has repeatedly shown that the drill core has to be assayed to accurately determine grade.

EXPLORATION

The only exploration completed on the property by Canfleur Mining Inc. was a 7 hole surface diamond drilling program. This program is described in detail in the following section on drilling.

-22-DRILLING

Canfleur Mining Inc. completed seven holes in the North Zone during the latter half of 2005. The objective of the program was to test the North Zone at 100 metre spacings along strike to define the limits of the mineralization on a northeast – southwest direction and to confirm the continuity of mineralization to a depth of 300 metres. At the property vendor's insistence, one hole was drilled well into the Whipsaw Porphyry itself.

The North Zone drilling has shown the porphyry copper-molybdenum mineralization is for the most part confined to the Nicola volcanics in the hanging wall of the Whipsaw porphyry intrusion. The Nicola rocks are altered with biotite, chlorite, epidote and local silicification. Small sections of breccia (to 10 metres down hole length) have been noted in the holes. There has been strong faulting and fracturing as down hole lengths of 20 metres have been logged where no piece of core is longer than 15 centimetres. Fault gouges in excess of 1 metre have also been logged in holes 2005-02, 2005-03 and 2005-05, 2005-06 and 2005-07.

The Nicola rocks are cut by a criss-crossing network of quartz veinlets, stringers and blebs that range from 2% to 10% of the rock by volume. These veinlets and stringers range from 1 mm through to 2 cm in thickness. The quartz is often vuggy and commonly shows epidote and chlorite, as well as occasional K-feldspar.

2005 Surface Diamond Drilling Summary- North Zone

			metres	5		metres
Hole	NW	NE	Elevation	Azimuth	Dip	Length
2005-01	9655	9405	1592		-90	304.80
2005-02	9692	9300	1620	135	-70	207.00
2005-03	9752	9200	1640	135	-70	189.60
2005-04	9575	9500	1596	135	-85	131.70
2005-05	9575	9500	1596	135	-50	79.90
2005-06	9544	9650	1596		-90	180.75
2005-07	9800	9425	1600		-90	359.06

TOTAL

1452.81

Mineralization in the Nicola rocks consists of \pm 5% pyrite. The copper mineralization is chalcopyrite and is confined for the most part to the quartz stringers, veinlets and blebs, though it is occasionally noted in the groundmass. Molybdenite also shows the same affinity for the quartz, though it too can be occasionally found in the Nicola volcanics themselves.

Based on the 7 holes completed to date the North Zone appears to have a true thickness in the order of 120-150 metres, though the only deep hole completed (2005-07) suggests the North Zone is closer to 170 metres in thickness at 250-300 metres of depth.

The Whipsaw porphyry itself has been shown to be sparsely mineralized in the 7 holes. Finely disseminated pyrite in a concentration of 1%-2% is noted throughout the intrusive. Local zones carrying ¼% chalcopyrite have been logged, but the chalcopyrite has been confined to short down hole sections.

The Whipsaw porphyry shows variation in color and hardness, likely attributed to bleaching and silicification. There does not appear to be any increase in pyrite or chalcopyrite in the bleached or stronger silicified zones. Additional alteration minerals are fracture chlorite and local epidote.

Several small dykes and sills occur throughout the Nicola volcanics in all seven holes. These dykes and sills range in width from centimetres to in excess of 5 metres, with the exception of 2005-02 where a large dyke was intersected between 83.5 and 139.9 metres. Except for this large dyke, the logging and sampling has shown these dykes are also sparsely mineralized, as sample intervals with a large percentage of dyke material consistently show lower copper values than the sample intervals on either side of the dyke that are wholly Nicola rock.

2005-01

2005-01 was a vertical hole drilled to a depth of 304.8 metres. This hole was laid out by the property vendor and his consultant. The drilling intersected altered Nicola volcanics cut by several small feldspar porphyry dykes related to the Whipsaw porphyry. The main porphyry body was intersected at a depth of 186.3 metres. Copper / molybdenum mineralization is confined for the most part to the volcanics. Copper mineralization consists primarily of chalcopyrite, associated with late quartz veinlets and stockworks, though it is occasionally seen on fractures and disseminated within the volcanics. Molybdenite is confined to fractures. The highly fractured nature of the core may have caused some of the fracture mineralization to be washed away during the drilling process.

Interval	Length	% Cu	% Mo	g Ag
12.2 to 185.9	173.7 metres	0.196	0.0115	2.0
57.9 to 164.6	106.7 metres	0.212	0.013	2.2

The Whipsaw Intrusion itself was sampled over an interval of just under 119 metres. The copper averaged 230 ppm and the molybdenum averaged 35 ppm. Based on these porphyry assay results, the remaining six drill holes were stopped shortly after entering the main Whipsaw Porphyry Intrusion (5–15 metres within the intrusive).

Alteration consists primarily of biotite, chlorite, silicification and local epidote, K-feldspar, and carbonate.

2005-02

2005-02 was drilled at -70 degrees to a depth of 207. This hole is a step out 100 metres to the southwest of hole 2005-01. The drilling intersected altered Nicola volcanics cut by several small feldspar porphyry dykes and one large dyke related to the Whipsaw porphyry. The main porphyry body was intersected at a depth of 191.5 metres.

Copper / molybdenum mineralization is confined for the most part to the volcanics, though it has been noted within the large dyke intersected in the hole. Copper mineralization consists primarily of chalcopyrite, associated with late quartz veinlets and stockworks, though it is occasionally seen on fractures and disseminated within the volcanics and large dyke. Molybdenite also shows a similar relationship to the quartz and fractures.

Interval	Length	% Cu	% Mo	g Ag
39.62 to 182.88	143.26 metres	0.231	0.009	2.3
39.62 to 85.35	45.72 metres	0.269	0.005	2.4
85.35 to 131.07	45.72 metres	0.153	0.010	2.0
131.07 to 182.88	51.82 metres	0.268	0.011	2.6

The interval from 85.35 to 131.07 represents the large feldspar porphyry dyke intersected in the hole.

Whipsaw P	roiect
-----------	--------

January 2006

Alteration consists primarily of biotite, chlorite, silicification and local epidote, K-feldspar, and carbonate.

Assay results from 2005 North Zone drilling											
		Feet	2		Metres		ppm	ppm	ppb	oz/t	ppm
DESCRIPTION	From	То	Length	From	То	Length	Cu	Мо	Au	Au	Ag
2005-01			0			0					C
Volcanics	40	610	570	12.19	185.93	173.74	1961	115	17		2.0
Volcanics	190	540	350	57.91	164.59	106.68	2116	130	15		2.2
Porphyry	610	1000	390	185.93	304.80	118.87	230	35	6		0.8
2005-02											
Combined	130	600	470	39.62	182.88	143.26	2314	90	16		2.3
Volcanics	130	280	150	39.62	85.35	45.72	2685	52	18		2.4
Porphyry	280	430	150	85.35	131.07	45.72	1531	104	11		2.0
Volcanics	430	600	170	131.07	182.88	51.82	2679	112	19		2.6
Porphyry	600	679	79	182.88	206.96	24.08	736	75	8		1.0
2005-03											
Combined	210	590	380	64.01	179.83	115.83	1842	50	14		1.7
Combined	210	330	120	64.01	100.59	36.58	1422	46	10		1.3
Volcanics	330	590	260	100.59	179.83	79.25	2036	52	16		1.9
Porphyry	590	622	32	179.83	189.59	9.75	83	3	3		<.3
2005-04											
Combined	13	370	357	3.96	112.78	108.81	1804	92	16		1.5
Porphyry	370	432	62	112.78	131.68	18.90	360	17	8		0.4
2005-05											
Combined	22	240	218	6.71	73.15	66.45	2408	176	19		2.0
Molybdenum zone	22	180	158	6.71	54.86	48.16	2508	216	17		1.8
Porphyry	240	262	22	73.15	79.86	6.71	1344	22	10		3.2
2005-06											
Combined top	12	220	208	3.66	67.06	63.40	1604	59	11		1.8
Combined bottom	220	593	373	67.06	180.75	113.69	983	31	10		1.8
2005-07											
Hanging Wall	12	400	388	3.66	121.92	118.26	1014	40	6		0.5
North Zone- combined	400	1160	760	121.92	353.57	231.65	2093	130		< 0.001	1.1
Porphyry	1160	1178	18	353.57	359.06	5.49	475	38		< 0.001	0.3

Whipsaw Project

January 2006

2005-03

2005-03 was drilled at -70 degrees to a depth of 189.6. This hole is a step out 100 metres to the southwest of hole 2005-02. The drilling intersected altered Nicola volcanics cut by several small feldspar porphyry dykes. The main porphyry body was intersected at a depth of 179.8 metres. A major fault gouge was intersected at 153.7-155.1. There is a marked increase in the degree of silicification and hardness of the core below the fault, along with a slight increase in the percentage of chalcopyrite and molybdenite.

Copper / molybdenum mineralization appears to be confined for the most part to the volcanics. Copper mineralization consists primarily of chalcopyrite, associated with late quartz veinlets and stockworks, though it is occasionally seen on fractures and disseminated within the volcanics. Molybdenite also shows a similar relationship to the quartz and fractures.

Interval	Length	% Cu	% Mo	g Ag
64.01 to 179.83	115.82 metres	0.184	0.005	1.7
64.01 to 100.59	36.58 metres	0.142	0.005	1.3
100.59 to 179.83	79.24 metres	0.204	0.005	1.9

The interval from 64.01 to 100.59 represents a zone of volcanics cut by a number of feldspar porphyry and aplite dykes, totaling just under 13% of the interval.

Alteration consists primarily of biotite, chlorite, silicification and local epidote, K-feldspar, and carbonate. The volcanics are brecciated and rehealed in several sections throughout this hole.

2005-04

2005-04 was drilled at -85 degrees to a depth of 131.7 metres. This hole is a step out 100 metres to the northeast of 2005-01. The drilling intersected Nicola volcanics and volcaniclastics cut by several small feldspar porphyry dykes. The main porphyry body was intersected at 112.1 metres. A major fault gouge was cut at 73.73-74.37. Unlike 2005-03, there is no marked change in alteration or mineralization below this fault. The top 23 metres of the hole was extremely broken with no piece larger than 15cm.

Copper mineralization consists primarily of chalcopyrite, associated with late quartz veinlets and stockworks, though it is occasionally seen on fractures and disseminated within the volcanics and large dyke. Molybdenite also shows a similar relationship to the quartz and fractures.

Interval	Length	% Cu	% Mo	g Ag
3.96 to 112.78	108.81 metres	0.180	0.009	1.5

Alteration consists primarily of chlorite, silicification and local epidote, K-feldspar, and carbonate. The volcanics are brecciated and rehealed in several sections throughout this hole.

2005-05

2005-05 was drilled at -50 degrees to a depth of 79.9 metres. This hole is from the same set up as 2005-04. The drilling intersected Nicola volcanics and volcaniclastics cut by several small feldspar porphyry dykes. The main porphyry body was intersected at 72.5 metres. The fault gouge was not cut in this hole. The top 25 metres of the hole was extremely broken with no piece larger than 15cm.

Whipsaw Project

Copper mineralization consists primarily of chalcopyrite, associated with late quartz veinlets and stockworks, though it is occasionally seen on fractures and disseminated within the volcanics and large dyke. Molybdenite also shows a similar relationship to the quartz and fractures. This hole has displayed the most visible molybdenite in the core of all holes drilled to date.

Interval	Length	% Cu	% Mo	g Ag
6.71 to 73.15	66.45 metres	0.241	0.0176	2.0
6.71 to 54.86	48.16 metres	0.251	0.0216	1.8

The interval 6.71 to 54.86 represents the molybdenum rich zone within the volcanics. Molybdenite was regularly seen through this section.

Alteration consists primarily of biotite, chlorite, silicification and local epidote, K-feldspar, and carbonate. The volcanics are brecciated and rehealed in several sections throughout this hole.

2005-06

2005-06 was drilled at -90 to depth of 180.75 metres. This hole is a step out a further 100 metres to the northeast of 2005-04. This hole was abandoned short of the intrusive contact as a major fault / gouge zone was intersected at 169.5 metres and drilling could progress only 11 metres further. The contact was expected at 185-190 metres.

The Nicola in this hole consisted more of fine to coarse volcaniclastics, a marked change from first 5 holes. The core was much more competent, thought the last 30 metres looked similar to the broken nature of the first 5 holes.

Mineralization was also significantly different in this hole. The pyrite content of the volcaniclastics increased to 5%-7%. Epidote was common throughout the core, becoming pervasive in some sections. The stockwork content was down to 2%-3%; correspondingly chalcopyrite and molybdenite were noted in small quantities than in the previous 5 holes.

Interval	Length	% Cu	% Mo	g Ag
3.66 to 180.75	177.09 metres	0.121	0.0041	1.8
3.66 to 67.06	63.40 metres	0.160	0.0059	2.0

The core and assay results suggest this hole has defined the northeast limit of the North Zone.

Alteration consists primarily of biotite, chlorite, epidote, and local silicification, K-feldspar, and carbonate. There is also a marked decrease in the amount of brecciation in this hole.

2005-07

2005-07 was drilled at -90 to a depth of 359.06 metres. 2005-07 was the first hole in the step back line approximately 100 metres to the northwest of the line of holes 2005-01 to 2005-06. This vertical hole is 100 metres behind 2005-01. The upper contact of the North Zone mineralization was anticipated at approximately 550 feet (167 metres) but core logging and assays show the contact actually lies at 400 feet (122 metres). This drill hole showed the thickness of the North Zone increasing to 175 metres true width at 250 metres of depth. The intrusive was anticipated at 1000 feet (305 metres) but was not intersected until 1155 feet (352 metres).

Copper mineralization consisting of chalcopyrite, appeared to be disseminated throughout the Nicola volcanics, as well as within quartz stockworks. Molybdenum is found both in quartz stockworks and as fracture coatings. Molybdenum has not been found disseminated throughout the volcanics. There was a considerable increase in the volume of quartz stockwork in this hole, when compared to the first six holes of the program.

The complete assay results for the entire hole are tabulated below. The interval 3.66 to 121.92 metres is the hanging wall of the North Zone. The assay results for the North Zone are given as the entire zone (121.92 to 353.57 metres) and also as the top half and bottom half of the zone. The interval 35.57 to 359.06 represents the Whipsaw Porphyry and again confirms the mineralization does not continue into the intrusive.

Interval	Length	% Cu	% Mo	g Ag
3.66 to 121.92	118.26 metres	0.101	0.0040	0.5
121.92 to 353.57	231.65 metres	0.209	0.0130	1.1
121.92 to 246.89	124.97 metres	0.185	0.0095	1.4
246.89 to 353.57	106.68 metres	0.237	0.0166	1.1
353.57 to 359.06	5.49 metres	0.046	0.0038	0.3

Alteration consists primarily of biotite, chlorite, silicification and local epidote, K-feldspar, and carbonate. The volcanics are brecciated and rehealed in several sections throughout this hole.

The program started with BQ core in 2005-01. The broken nature of the core in this hole necessitated the change to NQ in an effort to increase recovery. The remaining 6 holes were NQ, except for the last 279 feet of 2005-02 and the last 658 feet of 2005-07. In both instances bad ground forced the reduction to BQ in order to complete the holes.

The drilling was completed by George Adam of Adam Drilling Ltd. of Princeton, B.C. on a one shift per day basis.

-29-SAMPLING METHOD AND APPROACH

All core was logged by the author and entered into drill log forms in excel format. A detailed drill log for each of the seven holes is appended. The entire core was sampled in 10 foot intervals.

The author marked off the 10 foot sample intervals by lumber crayon directly onto the core. The hole number and sample interval were recorded on three part assay ticket forms and the corresponding number was entered into the drill log. The second and third part of the assay ticket were place in the core box within the interval to be sampled.

SAMPLE PREPARATION, ANALYSES AND SECURITY

The entire core was sawn with one half going into a sample bag for each ten foot interval and the remaining half returned to the core box. The sawing was contracted to Les Adams of Keremeos at a rate of \$2 per foot. Mr. Adams worked under the direct supervision of the author. A sample log for each hole was designed and was given to Mr. Adams to follow and keep track of each interval as it was completed. The work was periodically checked by the author and no errors were found.

The core from each ten foot interval was placed in one sample bag. The second and third part of the assay ticket was also placed in the bag and it was then zip tied. The zip tied bags were then boxed and delivered first to Acme Analytical in Vancouver and later to Eco-Tech Labs in Kamloops, by the author or other Canfleur personnel. The analyses was switched from Acme to Eco-Tech approximately ¹/₂ way through the program, due solely to extremely long turn around times at Acme.

Acme and Eco-Tech use the same sample procedures; only Eco-Tech procedures are described below for brevity. Samples are first catalogued and dried. They are then prepared as follows:

Soils	Soils are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Samples unable to produce adequate minus 80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh.
Silts	Stream silts are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Samples unable to produce adequate minus 80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. The entire sample of the stream heavies is used for analysis.
Rocks	Rock samples are two stage crushed to minus 10 mesh and a 250 gram sub-sample is pulverized on a ring mill pulverizer to -140 mesh. The sub-sample is rolled, homogenized and bagged in a pre-numbered bag.

Samples for gold geochemical analysis are weighed to 30 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Over-range values for rocks are re-analyzed using gold assay methods.

Whipsaw Project

January 2006

Appropriate reference materials accompany the samples through the process allowing for quality control assessment. Results are entered and printed along with quality control data (repeats and standards). The data is faxed and/or mailed to the client.

For multi element ICP analysis, a 0.5 gram sample is digested with 3 ml of a 3:1:2 (HCI:HN03:H20) which contains beryllium which acts as an internal standard for 90 minutes in a water bath at 95°C. The sample is then diluted to 10 ml with water. The sample is analyzed on a Jarrell Ash ICP unit.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client.

DATA VERIFICATION

The quality control measures at this stage of the exploration of the Whipsaw property consist of resplits, rechecks and standards. Both Acme and Eco Tech run three quality control measures. First, they insert standards in to the sample stream. Secondly, they complete a repeat analysis on every tenth sample. Thirdly, they complete a resplit and analysis on every 25th sample. The author instructed each lab to retain all pulps for further verification if required.

ADJACENT PROPERTIES

The author is not relying on information from adjacent properties.

MINERAL PROCESSING AND METALLURGICAL TESTING

There has been no mineral processing or metallurgical testing undertaken on the Whipsaw property of which the author is aware.

MINERAL RESOURCES AND MINERAL RESERVE ESTIMATES

There are presently no mineral reserves or mineral resources on the Whipsaw property.

OTHER RELEVANT DATA AND INFORMATION

There is no additional relevant data or information known that is not disclosed on the Whipsaw property.

Whipsaw Project

January 2006

-31-INTERPRETATION AND CONCLUSIONS

The Whipsaw property lies in an area of high geologic potential. The nearby Similco, Ingerbelle and Virginia deposits show the area hosting the Whipsaw property is capable of hosting additional deposits to the three already known. Through the last 45 years the Whipsaw property has seen only sporadic short exploration programs consisting primarily of duplication of early results. The history suggests short periods of exploration to meet assessment requirements, followed by long periods of inactivity until assessment requirements need to be met again. The low copper and molybdenum prices and the non-favorable regulatory regime through the 1990's also contributed to the lack of a concentrated focused exploration program aimed at the north and south zone of the Whipsaw porphyry.

The recently completed drill program, combined with the compilation and reinterpretation of existing exploration data suggest there are at least four primary target areas on the Whipsaw property: North Zone, South Zone, northwest contact and southwest contact. There are several additional geochemical and/or geophysical anomalies that have yet to be examined in any detail. A tri-focused exploration program is required to assess the known zones of mineralization, as well as the numerous lesser explored targets making the Whipsaw project a **property of merit** worthy of further exploration.

The first focus will be toward the North Zone and the South Zone. A further 2635 metres (8645 feet) of NQ wire line remains to be drilled in the North Zone. These holes are a series of - 55 to -90 holes testing the down dip projection of the North Zone to a depth of 300 metres, between sections 9100NE and 9600NE. A 3,390 metres (11,100 foot) NQ wire line drilling program has been designed to test the South Zone to a depth of 200 metres on 100 metre centres in an effort to establish a preliminary mineral resource for this zone. This program will commence and run concurrently with the North Zone program. The objective of this focus of the drilling program will be to:

- Define the eastern and western limits of the north zone.
- Define the limits of the south zone.
- Test the tenor of the copper and molybdenum mineralization at 100 metre centres in both the north zone and the south zone.
- Obtain a preliminary resource estimate for the north zone and south zone.

The second focus will be the northwest and southwest contact zones. Again, NQ wire line will be the primary exploration tool. Seven hundred and fifty metres will be directed at each of the two areas, in a series of 100 to 150 metre holes.

The third focus will be the remaining geophysical and geochemical anomalous areas. This focus will consist of a two-four person field crew to ground truth the anomalies. This focus will also include 150 hours of excavator or backhoe trenching for anomaly testing.

-32-RECOMMENDATIONS

The Whipsaw property is definitely a property of merit worthy of further exploration to assess its porphyry copper \pm molybdenum mineralization.

The Whipsaw property is underlain by Nicola volcanics in fault contact with the Eagle granodiorite. The Nicola rocks have been intruded by the Whipsaw stock, a small crescent shaped 500 metre by 1500 metre feldspar porphyry intrusion. Porphyry style mineralization has been developed at the northwest and south contacts of the stock.

Sporadic exploration programs since the early 1960's have been successful in locating two zones, the North Zone and the South Zone, of copper <u>+</u> molybdenum mineralization in both the Nicola Group volcanics and the Whipsaw feldspar porphyry intruding them. Several intersections in excess of 0.2% copper and 0.01% molybdenum with + 2 grams of silver have been recorded in both of the zones. Further drilling is required to confirm the early results, define the limits of the mineralization, and move toward the calculation of a preliminary resource estimate for the North Zone and the South Zone. A total of 8,650 feet is required for the North Zone and a further 11,000 feet is required for the South Zone.

A review of the voluminous exploration data available on the property has identified additional exploration targets that need to be evaluated by surface prospecting, trenching and / or diamond drilling. The western contact requires 5,000 feet of diamond drilling, while the remaining property requires prospecting and follow-up excavator trenching.

The budget to undertake and complete the recommended exploration is as follows:

Personnel	\$138,000
Anomaly Follow-up	\$17,000
Trenching	\$35,500
Diamond Drilling	\$766,700
Documentation	\$22,500
Contingency	\$120,300
Total	\$1,100,000

The cost of the seven hole 2005 exploration program was \$196,208.87. Only \$190,000 of this work was filed.

-33-REFERENCES

<u>www.em.gov.bc.ca/Mining/Geolsurv/Minfile/default.htm</u>. The British Columbia Ministry of Energy and Mines Minfile website provided a geological summary on the 092ISW map sheet, and also detailed geological descriptions of individual properties.

<u>www.em.gov.bc.ca/Mining/Geolsurv/MapPlace/default.htm</u>. The British Columbia Ministry of Energy and Mines MapPlace website provided the regional geological map and legend.

Bacon, W.R. (1960) Geological, Geophysical and Geochemical Report on the Whip and Saw Groups, British Columbia Ministry of Energy and Mines Assessment Report 00314.

Bacon, W.R. (1961) Geophysical Report on the Whip and Saw Groups, British Columbia Ministry of Energy and Mines Assessment Report 00362.

Ballantyne, E.J. (1971). Geophysical Report, Whipsaw Creek Property, British Columbia Ministry of Energy and Mines Assessment Report 03707

Bell, R.A. and Hallof, P.G. (1960). Report on the Geophysical Investigations of the Whipsaw Property, B.C. Private report for Ecstall Mining Company Limited.

Caelles, J.C. (1980) Geochemical Survey on the Whip Property. British Columbia Ministry of Energy and Mines Assessment Report 08244.

Forsythe, J.R. (1970) Diamond Drilling on the Whipsaw Property Texas Gulf Sulphur Inc. Private Report.

Fox, P.E. and Goodall, G.N. (1992) 1991 Whipsaw Project Report Phelps Dodge Corporation of Canada, Limited. Private Report

Hallof, P.G. (1963). Induced Polarization and Resistivity Survey on the Whipsaw Claim Group Dome Exploration (Canada) Ltd. Private Report.

Holyk, W. (1962). Geological and Geochemical Report on the Whip and Saw Groups, Whipsaw Creek British Columbia Ministry of Energy and Mines Assessment Report 00409.

Mustard, D.K. (1969). 1968 Property Examination, Whipsaw Creek Property Amax Exploration Inc. Private Report

Panteleyev, A. (1995). Porphyry Cu+/-Mo+/-Au, in Selected British Columbia Mineral Deposit Profiles, Volume 1 - Metallics and Coal, Lefebure, D.V. and Ray, G.E., Editors, British Columbia Ministry of Energy of Employment and Investment, Open File 1995-20, pages 87-92.

Paulus, G.E. (1972) Trenching and Diamond Drilling Report, Whipsaw Creek Project Newmont Mining Corporation of Canada Limited. Private Report Richardson, P.W. (1990). Diamond Drilling Report on the Whipsaw Property British Columbia Ministry of Energy and Mines Assessment Report 20165.

Richardson, P.W. (1996). The 1995 Diamond Drilling Programme on the Whipsaw Property Martech Industries Inc. British Columbia Ministry of Energy and Mines Assessment Report 24322.

Richardson, P.W. (1998). The 1997 Diamond Drilling Program on the Whipsaw Property Martech Industries Inc. British Columbia Ministry of Energy and Mines Assessment Report 25547.

Richardson, P.W. (1998b). The 1998 Diamond Drilling Program on the Whipsaw Property Martech Industries Inc. British Columbia Ministry of Energy and Mines Assessment Report 25836.

Richardson, P.W. (2005). The 2004 Diamond Drilling Program on the Whipsaw Property Martech Industries Inc. British Columbia Ministry of Energy and Mines Assessment Report 27780.

Seraphim, R.H. (1963). Geophysics, Geochemistry and Diamond Drilling on Whipsaw Creek Group Moneta Porcupine Mines Limited Private Report

Wilton, H.P. (1981) Percussion Drilling Report on the Whip Mineral Claims. British Columbia Ministry of Energy and Mines Assessment Report 09456.

-35-CERTIFICATE OF QUALIFIED PERSON

I, R.Tim Henneberry, P.Geo. do hereby certify that:

I am the Qualified Person of:

Canfleur Mining Inc.

102 – 1441 Ellis Street Kelowna, B.C. V1Y 2A3

I earned a Bachelor of Science Degree majoring in geology from Dalhousie University, graduating in May 1980.

I am registered with the Association of Professional Engineers and Geoscientists in the Province of British Columbia as a Professional Geoscientist.

I have practiced my profession continuously for 25 years since graduation.

I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.

I am responsible for the preparation of the technical report titled "Geological Report Whipsaw Project" and dated April 30, 2006, relating to the Whipsaw property. I supervised and conducted the exploration program that is the basis of this report from July 26 to December 1, 2005.

I have not had prior involvement with the property that is the subject of the Technical Report.

I am not aware of any material fact or material change with respect to the subject matter of the Technical report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

I was formerly the Chief Executive Officer and a Director of Canfleur Mining Inc. I ended my association with the corporation on January 31, 2006. I presently hold less than 100,000 shares of stock, with a total float in excess of 11,000,000 shares. Therefore, I cannot be considered independent of the issuer after applying all of the tests in section 1.5 of NI 43-101.

I have read NI 43-101 and Form 43-101F, and the Technical Report has been prepared in compliance with that instrument and form.

I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible to the public, of the Technical report.

Dated this 31st day of January, 2006.

"signed and sealed"

R.Tim Henneberry, P.Geo

Whipsaw Project

-36-STATEMENT OF COSTS

WHIPSAW STATEMENT OF COSTS FOR 2005

Project Ran from July 26 to December 1

Tim Henneberry	133 days
Lionel Munson	21 days
Charlie Martin	18 days
Mike Martin	15 days
Kerry Martin	4 days

Personnel				
Tim Henneberry	133 days	@	\$300/day	\$ 39,900.00
Lionel Munson	21 days	@	\$200/day	\$ 4,200.00
Charlie Martin	18 days	@	\$200/day	\$ 3,600.00
Mike Martin	15 days	@	\$200/day	\$ 3,000.00
Kerry Martin	4 days	@	\$200 / day	\$ 800.00
Drilling				
Adam Diamond Drilling				\$ 105,209.50
Support				
Room and board	133 mandays	@	\$75 / manday	\$ 9,975.00
Supplies				\$ 273.68
Analysis				
Core sawing				\$ 9,966.69
Acme / Eco-tech				\$ 16,884.00
Report	40 hours	@	\$60/hour	\$ 2,400.00

Assessment Credit Subtotal

\$ 196,208.87

-37-COST ESTIMATES

Whipsaw Project 2006 Budget

Total					\$1,100,000
Contingency					\$120,300
Reproduction					\$2,500
Report					\$20,000
Documentation					***
Travel					\$5,000
Shipping					\$2,000
Tags, bags, etc					\$2,000
Core sawing		24600 feet	@	\$2.50/foot	\$61,500
5	core	2460 samples	@	\$30/sample	\$73,800
Analysis					
Footage (all in)		5000 feet	@	\$24 / hour	\$120,000
Cat Dozer Hours		40 hours	@	\$200 / hour	\$8,000
Western Contact					
Footage (all in)		11000 feet	@	\$24 / hour	\$264,000
Cat Dozer Hours		100 hours	@	\$200/hour	\$20,000
South Zone					
Footage (all in)		8600 feet	@	\$24 / hour	\$206,400
Cat Dozer Hours		40 hours	@	\$200/hour	\$8,000
North Zone					
Equipment Mob					\$1,000
Diamond drilling					
	Rocks	150 samples	@	\$30/sample	\$4,500
Excavator Hours		150 hours	@	\$200 / hour	\$30,000
Equipment Mob			_		\$1,000
Trenching					*
5	Rocks	200 samples	@	\$30/sample	\$6,000
5	Soils	500 samples	@	\$22/sample	\$11,000
Anomaly Follow-u	-				
Room and Board		330 days	@	\$75 / day	\$24,750
Vehicle		150 days	@	\$75 / day	\$11,250
Sundries					\$2,000
Assistant		50 days	@	\$200 / day	\$10,000
Assistant		50 days	@	\$200 / day	\$10,000
Prospector		50 days	@	\$300 / day	\$15,000
Prospector		50 days	@	\$300 / day	\$15,000
Geologist		100 days	@	\$300 / day	\$30,000
Project Manager		30 days	@	\$500/day	\$15,000

Whipsaw Project

Mammoth Geological Ltd.

2005 DRILLING SUMMARY

	UT	Μ	Grie	d	Gric	1	metres			metres	feet		
Number	Northing	Easting	Ν	Ε	NW	NE	Elevation Azir	nuth I	Dip	Length	Length	Started	Completed
2005-01	5462621	662794	12397	8174	9655	9405	1592		-9	0 304.8	60 10	000 25-Jul-2005	11-Aug-2005
2005-02	5462594	662715	12435	8075	9692	9300	1620	135	-7	0 206.9	6 (679 15-Aug-2005	01-Sep-2005
2005-03	5462564	662571	12325	7962	9752	9200	1640	135	-7	0 189.5	i9 (522 03-Sep-2005	19-Sep-2005
2005-04	5462661	662912	12410	8307	9575	9500	1596	135	-8	5 131.6	8 4	432 21-Sep-2005	30-Sep-2005
2005-05	5462661	662912	12410	8307	9575	9500	1596	135	-5	0 79.8	6 2	262 30-Sep-2005	08-Oct-2005
2005-06	5462723	663032	12475	8430	9548	9684	1586		-9	0 180.2	'5 S	593 09-Oct-2005	19-Oct-2005
2005-07			12500	8115	9800	9425	1600		-9	0 359.0	5 13	178 21-Oct-2005	21-Nov-2005

Totals

1452.69 4766

Company C	Canfleur	Mining	Inc.	Depth	Bearing	Dip Angle							Hole N	umber 2	005-01		
Property V	Whineau			0 680		-90 -87							c	ection 9	400 NE		
inopenty v	vinpsaw			1000		-89									700 NW		
Latitude		12397 I	N 9655 NW	1000		-07							Co	re size E			
Departure		8174 I													vQ uly 25, 2(005	
Elevation		1592 r		ļ											August 1		
	1000 £		304.80 metres											-	August 1. AT Henne		
Length Feet	1000 1	Meti					Sample		Feet		,	Metres	LUg				
From	То	From		IPTION			Number	From		ength	From		ength	ppm Cu	ppm Mo	ppb Au	ppm
FIOM	10	Hom	10 DESCR				Number	FIOII	IU Le	ingui	riom	10 1	Length	Cu	WIO	Au	Ag
0.0	20.0	0.00	6.10 CASING														
20.0	58.1	6.10	17.71 VOLCANICS														
			Dark grey to grey black, fine grain	ned. Distinc	t banding a	t 40 ca.											
			Bands are alternating lighter quar														
			Pyrite is abundant throughout un														
			and as disseminations and clots the	hroughout l	ooth the ligh	nter and											
			darker material.	d Innonsista	1. :	£ 11 0 mm 0											
			The top 100 feet is very broken ar the core recovery is less than 20%		a; in some o	or the runs											
			- 20-30 - 30% recovery	•			59451	20	30	10	6.10	9.14	3.05	984	42	8	1.3
			- 28.0-28.2 - quartz vein zone 10 d	ca. 5-10% p	vrite		0,101	20	00	10	0.10	2.11	0.00	201	12	0	1.0
			- 30-40 - 30% recovery	r.			59452	30	40	10	9.14	12.19	3.05	984	42	8	1.3
			- 40-50 - 75% recovery				59453	40	50	10	12.19	15.24	3.05	1752	41	12	1.5
			- 50-60 - 100% recovery				59454	50	60	10	15.24	18.29	3.05	1801	89	10	1.3
58.1	60.6	17.71	18.47 FELDSPAR PORPHYRY														
			White grey in color. 10-15% white	e feldspar pl	nenocrysts t	o 5mm.											
			Chilled lower margin 60 ca. 1-2%	finely disse	minated py	rite.											
60.6	98.0	18.47	29.87 VOLCANICS				59455	60	70	10	18.29	21.34	3.05	1973	36	11	2.2
			As 20-58.1. Quartz veinlets to 1cm	n form 5% o	f rock. Vug	gv	59456	70	80	10	21.34	24.38	3.05	1546	51	8	<.3
			veinlets almost like a healed brece	cia.			59457	80	90	10	24.38	27.43	3.05	1604	54	12	2.1
98.0	169.1	29.87	51.54 VOLCANICS														
			As 60.6-98, but with more quartz	veinlets at 4	10 ca.												
			- 90-100 - 75% recovery				59458	90	100	10	27.43	30.48	3.05	1619	67	13	1
			- 100-110 - 65% recovery				59459	100	110	10	30.48	33.53	3.05	1528	38	13	1.3
			- 110-120 - 90% recovery				59460	110	120	10	33.53	36.58	3.05	2309	58	13	1.5
			-120-130 - 80% recovery				59461	120	130	10	36.58	39.62	3.05	1633	50	136	2.3
			-130-140 - 75% recovery				59462	130	140	10	39.62	42.67	3.05	1900	47	15	0.7
			-140-150 - 75% recovery	1	- 20 20/		59463	140	150	10	42.67	45.72	3.05	1811	58	11	1.3
			- 147.4-148 - Quartz vein - broker	n, grey whil	e 30 ca 3% j	py, 1r Mo	59464 59465	150 160	160 170	10	45.72 48.77	48.77 51.82	3.05 3.05	2326 1578	34 37	13 13	1.9 <.3
							39403	100	170	10	±0.//	31.62	5.05	13/8	37	13	`. 3

		1101e IN			п						Sheet	2	01 0	
			DIAMOND DR		D									
Feet		Metr		Sample		Feet		1	Metres		ppm	ppm	ppb	ppm
From	То	From	To DESCRIPTION	Number	From	To Le	ngth	From	To I	Length	Cu	Мо	Au	Ag
169.1	176.3	51.54	 53.74 FELDSPAR PORPHYRY As 58.1-60.6 - but broken and showing argillization of feldspar phenocrysts. 2-3% disseminated py. 170.3 - 1 cm seam of sphalerite? 	59466	170	180	10	51.82	54.86	3.05	1498	83	11	0.4
176.3	182.3	53.74	55.57 VOLCANICS As 98-169.1, but heavily brecciated. Chalcopyrite in one fractured veinlet with adularia.											
82.3	188.5	25.09	57.46 FELDSPAR PORPHYRY As 58.1-60.6, with no argillic alteration. 5% pyrite as veinlets and disseminations	59467	180	190	10	54.86	57.91	3.05	1258	196	10	0.8
188.5	255.0	57.46	77.72 VOLCANICS As 98-169.1. Core is strongly brecciated throughout this section. Somewhat healed by fine (<1mm) pyrite or quartz or carbonate veinlets to 2cm. 1-5mm seams and veinlets of epidote throughout. Close to 5% pyrite as fracture fillings, veinlets, clots and disseminations. More mineralization than above, local chalcopyrite, but not abundant.	59468 59469 59470 59471 59472 59473	190 200 210 220 230 240	200 210 220 230 240 250	10 10 10 10 10 10	57.91 50.96 54.01 57.06 70.10 73.15	60.96 64.01 67.06 70.10 73.15 76.20	3.05 3.05 3.05 3.05 3.05 3.05	1944 2205 2516 2228 2381 2161	188 300 145 152 195 108	9 17 13 14 20 18	2 1.5 1.4 2.1 2.1 2.6
255.0	260.0	77.72	79.25 FELDSPAR PORPHYRY As 58.1-60.6. Feldspar phenocrysts make up 40% of rock. 1% scattered biotite. 1-2% disseminated pyrite	59474	250	260	10	76.20	79.25	3.05	1317	51	11	1.7
260.0	276.7	79.25	84.34 VOLCANICS as 188.5-255.	59475 59201	260 270	270 280	10 10	79.25 32.30	82.30 85.35	3.05 3.05	2392 1913	176 95	14 14	1.6 1.8
276.7	277.2	84.34	84.49 FELDSPAR PORPHYRY as 260-276.7											
277.2	278.4	84.49	84.86 VOLCANICS as 188.5-255.											
278.4	280.0	84.86	85.35 FELDSPAR PORPHYRY as 260-276.7											
280.0	283.0	85.35	86.26 VOLCANICS as 188.5-255.	59202	280	290	10	85.35	88.39	3.05	2251	110	13	2.6
283.0	284.7	86.26	86.78 FELDSPAR PORPHYRY as 260-276.7											

			DIAMO	ND DRILL RECOR	D									
Feet		Met	res	Sample		Feet			Metres		ppm	ppm	ppb	1
From	То	From	To DESCRIPTION	Number	From	To L	ength	From	To	Length	Cu	Мо	Au	
284.7	305.9	86.78	93.24 VOLCANICS	59203	290	300	10	38.39	91.44	3.05	2364	109	26	
			as 188.5-255.	59204	300	310	10	91.44	94.49	3.05	1550	28	11	
304.9	306.0	92.93	93.27 QUARTZ VEIN 45 ca, 1-2% disseminated pyrite											
306.0	307.3	93.27	93.67 VOLCANICS as 188.5-255.											
307.3	311.1	93.67	94.82 FELDSPAR PORPHYRY as 260-276.7. 1-2% disseminated pyrite											
311.1	379.0	94.82	115.52 VOLCANICS											
			as 188.5-255.	59205	310	320	10	94.49	97.54	3.05	1893	88	13	
			Local seams of epidote. 3-5% pyrite as seams, clots and	59206	320	330	10	97.54	100.59	3.05	1921	120	14	
			disseminations	59207	330	340	10	100.59	103.63	3.05	3225	84	23	
			- 365.6-365.8 - Quartz Vein 45 ca. Epidote, 3% pyrite.	59208	340	350	10	103.63	106.68	3.05	3505	137	22	
			~ 1 / 15	59209	350	360	10	106.68	109.73	3.05	3458	99	25	
				59210	360	370	10	109.73	112.78	3.05	3141	62	23	
				59211	370	380	10	112.78	115.83	3.05	2138	109	28	
379.0	388.0	115.52	118.26 FELDSPAR PORPHYRY											
			as 307.3-311.1, 3-5% disseminated pyrite - 0.3 foot clay gouge on bottom contact	59212	380	390	10	115.83	118.87	3.05	1064	124	7	
388.0	420.8	118.26	128.26 VOLCANICS											
			as 311.1-379	59213	390	400	10	118.87	121.92	3.05	2889	113	16	
			Bedding or foliation at 45 ca. Still well mineralized with p	yrite as 59214	400	410	10	121.92	124.97	3.05	2555	97	21	
			1mm seams and as disseminations and clots up to 3-4%. T	races 59215	410	420	10	124.97	128.02	3.05	1846	138	11	
			of chalcopyrite.											
			- 390.0-390.2 - quartz vein 80 ca. 2% pyrite, trace chalcopy	/rite										
			- 398.5-399.0 - quartz vein 45 ca. 2% pyrite, 1/4% chalcop 413-419 - broken core	yrite										
420.8	432.0	128.26	131.68 FELDSPAR PORPHYRY											
			as 379-388. 30-40% 1-5 mm anhedral white feldspar pheno 1-2% pyrite as disseminations and 1 mm seams.	ocrysts 59216	420	430	10	128.02	131.07	3.05	575	75	8	
432.0	544.0	121 68	165.81 VOLCANICS											

432.0 544.0 131.68 165.81 VOLCANICS as 388-420.8 59217 430 440 10 131.07 134.11 3.05 1470 136 10 1.4450 3.05 94 13 1.5 Marked increase in quartz veinlets and stringers to 1-2% of unit. 59218 440 10 134.11 137.16 1531 (almost like a stockwork). Veinlets show 2-5% pyrite, traces of 59219 450 460 10 137.16 140.21 3.05 2534 276 19 2.6 epidote and fracture coatings of pink-orange material? Core is showing more brecciation.

Sheet 3 of 6

ppm Ag

4.2

1.1

1.6

1.3

2.3

2.9

3.7

2.3

0.8

2.2 2.5

1.8

0.6

1

DIAMOND DRILL RECORD Feet Metres Sample Feet Metres ppm ppm ppb ppm То From То DESCRIPTION Number To Length From To Length Cu Mo From From Au Ag 432.0 544.0 131.68 165.81 VOLCANICS 59220 470 1938 as 388-420.8 (continued) 460 10 140.21 143.26 3.05 290 12 2 59221 470 480 3.05 1290 173 8 1.6 - 439.7-440.3 - quartz vein 80 ca, 2-3% pyrite 10 143.26 146.31 - 464-475 - breccia zone, healed with quartz. 5% pyrite, traces 59222 480 490 10 146.31 149.35 3.05 1477 147 9 1.7 chalcopyrite 59223 490 500 10 149.35 152.40 3.05 1701 190 9 1.8 - 490-503 - breccia as 464-475, 5% pyrite, 1/4% chalcopyrite 59224 500 510 10 152.40 155.45 3.05 2418 17 2.5 286 - 509.9-510.1 - quartz vein 70 ca, 3% pyrite 59225 510 520 10 155.45 158.50 3.05 1435 102 11 1.3 - 525-544 - marked decrease in quartz veinlets to less than 1% 59352 520 530 10 158.50 161.55 3.05 2382 84 22 2.4 59353 530 540 3.05 129 18 2.1 pyrite mineralization is still 5% 10 161.55 164.59 2466 544.0 563.0 165.81 171.60 FELDSPAR PORPHYRY 59354 540 550 10 164.59 167.64 1377 179 10 as 420.8-432, but almost granodioritic in composition. More 3.05 1.4 550 560 3.05 867 85 5 0.8 equigranular. Up to 5% 1-2mm biotite. 1-3% finely disseminated 59355 10 167.64 170.69 pyrite, and 1mm pyrite seams. 564.5 171.60 172.06 VOLCANICS 563.0 as 432-544. 5% quartz veinlets 60 ca. Again almost a quartz 59356 570 10 170.69 173.74 3.05 560 1266 121 14 1.1 stockwork. 1-2% disseminated pyrite both in veinlets and in volcanics. 564.5 565.5 172.06 172.37 FELDSPAR PORPHYRY Feldspars are altered to green clays. 3% biotite. 1% disseminated pyrite. 1/2% disseminated chalcopyrite. 565.5 571.0 172.37 174.04 VOLCANICS as 563-564.5. Again quartz stockwork zone, 1-2% disseminated pyrite. 566.2 - 1 inch breccia vein 50 ca. gouge on upper contact. 571.0 575.0 174.04 175.26 FELDSPAR PORPHYRY as 564.5-565.5. 3-5% biotite, feldspars are altered to green clay 59357 570 580 10 173.74 176.79 3.05 1279 129 14 1.3 1/2% finely disseminated pyrite. 575.0 577.9 175.26 176.15 VOLCANICS as 565.5-571. Feldspars green clay altered. 3-5% biotite. 1% finely disseminated pyrite, 1/4% finely disseminated chalcopyrite 596.8 176.15 181.91 FELDSPAR PORPHYRY 577.9 as 571-575. 3-5% biotite, feldspars are altered to green clay. 1% 59358 580 590 10 176.79 179.83 3.05 1429 210 15 1.2 590 600 3.05 1950 171 18 finely disseminated pyrite, 1/4% finely disseminated chalcopyrite 59359 10 179.83 182.88 2 596.8 611.3 181.91 186.33 VOLCANICS as 575-577.9. Again 1-3% quartz stockwork. 1-2% disseminated 59360 600 610 10 182.88 185.93 3.05 3395 225 27 2.9 pyrite. Up to 1% chalcopyrite, confined to the quartz. - 607-611.3 - broken core

Sheet

4

of 6

		Hole N	umber	2005-01								Sneet	5	ore)
				DIAMOND DRII	LL RECOR	D									
Feet		Met	res		Sample		Feet			Metres		ppm	ppm	ppb	ppm
From	То	From	То	DESCRIPTION	Number	From	To L	ength	From	То	Length	Cu	Mo	Au	Ag
								8			8				8
611.3	1000.0	186.33	304.80	FELDSPAR PORPHYRY											
01110	100010	100.00		Main feldspar porphyry body.											
				- 611.3-644.8 - contact zone. Aphanitic, grey-green in color.	59361	610	620	10	185.93	188.98	3.05	715	109	11	0.9
				strongly silicified, clay, clay healed fractures. Up to	59362	620	630	10		192.03	3.05	326	45	6	<.3
				1% disseminated pyrite, trace chalcopyrite.	59363	630	640		192.03		3.05	494	35	5	0.4
				core is badly broken through this section.							0.000			-	
				- 644.8-650.8 - silicified green porphyritic. 5-10% feldspars,	59364	640	650	10	195.07	198.12	3.05	300	104	5	0.5
				partially altered to clays. 1% disseminated pyrite											
				traces of chalcopyrite											
				- 650.8 - 666 - fine grained grey green color with 1-2% feldspar	59365	650	660	10	198.12	201.17	3.05	355	135	5	1
				phenocrysts. Weak quartz stockwork.	59366	660	670	10		204.22	3.05	367	87	6	0.4
				- 652-653 - 1 cm vertical breccia vein 1/2% chalcopyrite							0.000			, in the second s	
				- 657-658 - quartz adularia breccia zone. 5-10% feldspar											
				porphyry clasts											
				- 666-707 - fine grained, weakly porphyritic. Local zones up to	59367	670	680	10	204.22	207.27	3.05	495	33	5	0.4
				1-2% feldspar. Silicified, grey green in color. Weak	59368	680	690	10	207.27	210.31	3.05	246	30	3	0.6
				quartz stockwork through large sections. Up to 1%	59369	690	700	10	210.31	213.36	3.05	236	49	<2	<.3
				finely disseminated pyrite, trace to 1/4% chalcopyrite	59370	700	710	10	213.36	216.41	3.05	335	63	2	<.3
				-667.8-668.3 - broken core											
				-671-672 - broken core											
				-676-692 - broken core											
				-707-744.7 - lighter grey green brown color. Porphyritic, feldspar	59371	710	720	10	216.41	219.46	3.05	405	106	4	0.4
				phenocrysts altered to clays, silicified. Stockwork	59372	720	730	10	219.46	222.51	3.05	303	55	4	0.6
				veinlets of quartz, carbonate, and molybdenite (?).	59373	730	740	10	222.51	225.55	3.05	331	54	3	0.6
				1% finely disseminated pyrite, 1/2% chalcopyrite in											
				both veinlets and the porphyry.											
				-726.5-728 - brecciated vein / shear zone 30 ca. 1/2% pyrite											
				-744.7-762.8 - Strongly silicified, dark green color. Porphyritic	59374	740	750	10	225.55	228.60	3.05	355	22	3	0.3
				1-2% biotite. Quartz stockwork of veinlets and	59375	750	760	10	228.60	231.65	3.05	162	31	3	<.3
				healed fractures. 1-2% finely disseminated pyrite											
				1/4-1/2% finely disseminated chalcopyrite											
				-762-8-870.6 - lighter grey green brown color. Porphyritic. Core	59376	760	770	10		234.70	3.05	81	8	14	<.3
				is generally broken and there is much less stock-	59377	770	780	10		237.75	3.05	796	34	9	0.7
				working. Local fracture epidote, with more epidote	59378	780	790	10			3.05	134	8	7	<.3
				in occasional quartz veinlet. 1-3% pyrite both on	59379	790	800	10		243.84	3.05	150	6	5	0.5
				fractures and disseminated throughout. 1/4-1/2%	59380	800	810	10			3.05	92	5	2	0.4
				chalcopyrite, confined primarily to fractures	59381	810	820	10			3.05	150	20	2	<.3
				-777.2-773.6 - 1 cm quartz veinlet 5 ca. abundant epidote. 5%	59382	820	830	10			3.05	105	8	<2	0.3
				pyrite. 1% chalcopyrite 820 870 6 marked docrosse in guartz voiplets and stockworks	59383 59384	830 840	840 850	10 10	252.99 256.04		3.05 3.05	88 91	20 9	5 7	0.5 0.5
				- 820-870.6 - marked decrease in quartz veinlets and stockworks	59384 59385	840 850	850 860	10 10		259.08 262.13	3.05 3.05	123	9 29	5	0.5 0.3
				local epidote on fractures and in groundmass. 1-2% biotite. 1-2% pyrite, traces of chalcopyrite	09000	650	000	10	209.00	202.13	3.05	123	29	5	0.5
				- 860-870.6 - thin grey metallic seams <1mm through zone	59386	860	870	10	262.13	265 18	3.05	247	41	5	<.3
				- 000-070.0 - that grey metallic seams strikit through zone	57580	000	070	10	202.13	205.10	5.05	271	1	5	~.0

		Hole N	umber									Sneet	0	or c)
				DIAMOND DRI	LL RECOR	D									
Feet		Met	res		Sample		Feet			Metres		ppm	ppm	ppb	ppm
From	То	From	То	DESCRIPTION	Number	From	То	Length	From	То	Length	Cu	Mo	Au	Ag
611.3	1000.0	186.33	304.80	FELDSPAR PORPHYRY											
				Main feldspar porphyry body.	59387	870	880	10	265.18	268.22	3.05	283	34	5	0.8
				- 870.6-908.8 - silicified grey green color. Weakly porphyritic									54 7		
				though silicification is masking phenocrysts. 1% biotite. Core is brecciated and broken and healed	59388 59389	880 890	890 900		268.23 271.28		3.05 3.05	106 112	24	6 17	<.3 0.8
				with carbonate. 1-2% pyrite on fractures and in	59389 59390	890 900	900 910		271.28		3.05 3.05	83	24 13	17	0.8 0.4
				groundmass	39390	900	910	10	274.32	211.51	5.05	85	15	/	0.4
				-894-901 - core is lighter brown in color and broken. Appears to be a major fault or shear.											
				- 908.8-953 - grey white in color. More equigranual but local	59391	910	920	10	277.37	280.42	3.05	112	21	14	<.3
				porphyritic zones. Occasional xenoliths to 2cm.	59392	920	930	10			3.05	151	26	6	<.3
				1-2% biotite. Local epidote primarily on fractures.	59393	930	940	10	283.47		3.05	111	15	3	<.3
				widely spaced thin grey metallic seams <1mm. Also	59394	940	950	10	286.52		3.05	148	13	6	0.3
				1/4-1/2% grey black metallic mineral on fractures											
				1-2% pyrite, traces of chalcopyrite											
				- 953-1000 - silicified grey green color as 870.6-908.8. porphyritic	59395	950	960	10	289.56	292.61	3.05	115	31	3	<.3
				broken and fractured and healed with carbonate.	59396	960	970	10	292.61	295.66	3.05	81	16	2	<.3
				Epidote is common on fractures. 1-2% pyrite on	59397	970	980	10	295.66	298.71	3.05	52	6	6	<.3
				fractures, much less in groundmass. Occasional	59398	980	990	10		301.76	3.05	40	1	3	<.3
				chalcopyrite on fractures overall <1/4%	59399	990	1000	7	301.76	304.80	2.13	77	24	4	<.3
				- 953.8-995 - rubble, broken core - fault?											
				- 956.5-957.2 - broken core											
				END OF HOLE 1000 FEET OR 304.8 METRES											
				Weighted averages - volcanics		40	610	570	12.19	185.93	173.7	1961	115	17	2.0
				Weighted averages - volcanics		190	540	350	57.91	164.59	106.7	2116	130	15	2.2
				Weighted averages - porphyry		610	1000	390		304.80	118.87	230	35	6	0.8
					Box 1	20.0	56.6		Box 15	356.7	380.2	F	30x 29	673.5	695.0
					Box 1 Box 2	56.6	81.5		Box 16	380.2	402.0		Box 30	595.0	719.2
					Box 3	81.5	111.0		Box 17	402.0	424.1		Box 31	719.2	742.8
					Box 4	111.0	136.3		Box 18	424.1	444.9	F	30x 32	742.8	765.7
					Box 5	136.3	161.9		Box 19	444.9	466.7	E	30x 33	765.7	788.5
					Box 6	161.9	183.2		Box 20	466.7	488.3	F	34 Box	788.5	812.0
					Box 7	183.2	205.0		Box 21	488.3	510.2	P	30x 35	312.0	833.5
					Box 8	205.0	225.5		Box 22	510.2	531.5		36 Sox	833.5	857.0
					Box 9	225.5	246.0		Box 23	531.5	554.8		30x 37	857.0	880.3
					Box 10	246.0	267.0		Box 24	554.8	578.9		30x 38	380.3	904.1
					Box 11	267.0	289.0		Box 25	578.9	602.0		30x 39	904.1	927.0
					Box 12	289.0	312.5		Box 26	602.0	626.7		Box 40	927.0	951.9
					Box 13 Box 14	312.5	335.0		Box 27	626.7	650.1 672 5		Box 41	951.9 975.6	975.6 1000.0
					Box 14	335.0	356.7		Box 28	650.1	673.5	В	30x 42	9/3.6	1000.0

Company (Canfleur	Mining	Inc.	Depth	Bearing	Dip Angle]						Hole N	umber 2	.005-02		
				0	135	-70											
Property V	Whipsaw	v		400	135	-76							5	Section 9	300 NE		
				679	135	-81								9	700 NW		
Latitude		12345	N 9692 NW										Со	re size N	JQ / BQ		
Departure		8075	E 9300 NE										9	Started A	August 1	5, 2005	
Elevation		1620	n		•	•	4							pleted S	0		5
Length	679 1	feet or	206.96 metres											ged by R	•		
Feet		Met					Sample		Feet			Metres	0.	ppm	ppm	ppb	ppm
From	То	From	To DESC	RIPTION			Number	From	To I	ength	From	To	Length	Cu	Мо	Au	Ag
0.0	14.5	0.00	4.42 CASING														
14.5	257.0	4.42	78.33 VOLCANICS														
11.0	207.0	1.12	Green black to grey black, fine	rrained. Disti	nct banding	at 50 ca.											
			Alteration consists of chlorite a	,	0	,											
			The core is cut by quartz veinle		1	es to ca.	59400	14.5	20	5.5	4.42	6.10	1.68	887	34	8	0.9
			Could almost be described as a	weak stockw	ork. Minera	lization	59401	20	30	10	6.10	9.14	3.05	1367	97	9	1.2
			consists of pyrite along fracture	s, in seams ar	nd dissemin	ated	59402	30	40	10	9.14	12.19	3.05	967	25	6	0.9
			throughout the units. Content is	s approximat	ely 5%. Min	or	59403	40	50	10	12.19	15.24	3.05	1098	58	8	1.4
			chalcopyrite associated with the	*			59404	50	60	10	15.24	18.29	3.05	1216	21	7	1.4
			The rock is extremely well br		0												
			continual 5-10 foot sections of b														
			larger than 2 inches. Core recov	2												_	
			- 60.7-66.0 - chloritic green clay	0 0			59405	60	70	10	18.29	21.34	3.05	1230	63	7	1.3
			hydrothermal alte	-	0												
			through the zone. - 67-69 - broken core	Gouge contai	ns 5%-6% p	yrite.											
			After 70 feet noticeable increase	in chalconvr	$\frac{1}{4}$ to $\frac{1}{4}$ to	1/2%	59406	70	80	10	21.34	24.38	3.05	1058	16	7	0.9
			- 78-82 broken core (fault?)	incharcopyi	110 1/ 4 10	1/2/0	59407	80	90	10	24.38	24.30	3.05	1032	23	8	1
			- 110-111 - strong chlorite to 5%	6 of core			59408	90	100	10	27.43	30.48	3.05	1328	23	7	1.2
			- 130-143 - broken core	o of core			59409	100	110	10	30.48	33.53	3.05	1597	77	10	1.4
			- 136.3 - small patch of 5% chal	copyrite			59410	110	120	10	33.53	36.58	3.05	1716	48	13	1.3
			- 144.8-149.6 - quartz vein 30 ca		1/2% chalco	pyrite	59411	120	130	10	36.58	39.62	3.05	1614	25	11	1.5
			- 150-153 - broken core	1,5 ,	,	1 5	59412	130	140	10	39.62	42.67	3.05	2360	60	14	2.1
			- 157-159.5 - broken core, 3 in	ch gouge on l	ower contac	ct	59413	140	150	10	42.67	45.72	3.05	2129	23	10	1.5
			- 161-166 - broken core, thin g	ouge on upp	er contact		59414	150	160	10	45.72	48.77	3.05	2316	65	19	2
			- 170-171 - broken core				59415	160	170	10	48.77	51.82	3.05	2451	19	21	2.3
			- 172-174 - broken core				59416	170	180	10	51.82	54.86	3.05	2668	16	20	2.2
			- 181.5-181.7 - gouge zone				59417	180	190	10	54.86	57.91	3.05	3227	52	21	2.5
			- 183-184 - broken core, gouge				59418	190	200	10	57.91	60.96	3.05	2104	93	13	1.4
			- 187.1-187.5 - broken core an	d gouge			59419	200	210	10	50.96	64.01	3.05	2048	88	18	2
			- 191-192 - broken core														
			- 197-198 - broken core														
			-208-212 - 2 feet of core lost.	~~ ~ 010													
			- 211-213.5 - broken core, gou	ge a 213.													

		Hole N	umber 2005-0	02								Sheet	2	of 4	Ł
				DIAMOND DRI	LL RECOR	D									
Feet		Met	res		Sample		Feet			Metres		ppm	ppm	ppb	ppm
From	То	From	То	DESCRIPTION	Number	From	To	Length	From	To	Length	Cu	Мо	Au	Ag
14.5	257.0	4.42	78.33 VOLC	CANICS											
			(Cont	inued)											
			- 21	5.2-215.8 - broken core, gouge	59420	210	220	10	54.01	67.06	3.05	2508	59	12	2
			After	220 feet chalcopyrite increases to 1/2% in veinlets, seams	59421	220	230	10	57.06	70.10	3.05	2539	49	17	1.9
			and as	s partial constituent of pyrite.	59422	230	240	10	70.10	73.15	3.05	4097	52	32	3.5
			- 218	-257 - coarse (to 1cm) pyrite through this section	59423	240	250	10	73.15	76.20	3.05	4622	39	35	4
				8-229 - broken core	59424	250	260	10	76.20	79.25	3.05	2970	44	18	2.4
				1-242 - broken core											
				4-246 - broken core											
				8.9-249.1 - broken core, gouge											
				1.3-251.6 - broken core											
			- 25	6.5-257 - broken core											
257.0	267.0	78.33		SPAR PORPHYRY											
				um grey in color. Zones of up to 10% feldspar phenocrysts to	59425	260	270	10	79.25	82.30	3.05	1961	57	11	1.8
				2-5% biotite (1-5mm). Weakly silicified. Carbonate on some											
				res. 1-2% finely disseminated pyrite. Traces of chalcopyrite.											
				cally broken through entire zone.											
			- 200	.2-266.7 - quartz vein 75ca. Broken and rehealed. 3% pyrite											
				1/2% chalcopyrite											
267.0	274.0	81.38	83.52 VOLC	CANICS											
			As 14.	.5-257	59438	270	280	10	32.30	85.35	3.05	2272	114	10	2.2
				e section is broken. 5% pyrite, coarse in sections. 1/4% to											
			1/2%	chalcopyrite.											
274.0	459.0	83.52	139.90 FELD	SPAR PORPHYRY											
				um grey in color. Zones of up to 10% feldspar phenocrysts to	59426	280	290	10	35.35	88.39	3.05	1083	127	5	1.3
				2-5% biotite (1-5mm). Weakly silicified. Carbonate on some	59427	290	300	10	38.39	91.44	3.05	1224	648	9	1.2
				res. Local epidote on fractures and in groundmass. Local	59428	300	310	10	91.44	94.49	3.05	2179	55	11	2.9
				tite on fractures. 1/2% quartz veinlets throughout porphyry.	59429	310	320	10	94.49 97.54	97.54 100.59	3.05	1891	125	9 9	2.2
				finely disseminated pyrite, though locally quite coarse.	59430 59431	320 330	330 340	10 10		100.59	3.05 3.05	1260 1317	62 107	9 5	1.1 1.6
				to 1/4% chalcopyrite. 4-292 - broken through this entire section	59431 59432	340	340 350	10		105.65	3.05	1317	35	12	1.0
				3-279 - 1 foot core lost	59433	350	360	10	105.65		3.05	1580	76	10	1.2
				.5-281 - fracture molybdenite to 2%.	59434	360	370	10	100.00		3.05	1966	49	10	2.1
				-319 - silicified zone	59435	370	380	10	112.78		3.05	1522	79	11	2.1
				2-328 - broken core	59436	380	390	10	115.83		3.05	2514	53	26	3.6
				0-368 - broken core through this entire zone with no piece	59437	390	400	10	118.87		3.05	1814	63	16	2.4
				larger than 6 inches.											
				1-347 - broken core, rubbly											
				-391 - silicified, 3-5% epidote											
				7.2-397.4 - gouge											
			400 fe	et change from NO to BO											

400 feet change from NQ to BQ

		Hole N	lumber	2005-02								Sheet	3	of 4	
				DIAMOND DR	ILL RECOR	D									
Feet		Met	res		Sample		Feet			Metres		ppm	ppm	ppb	ppm
				DECOURTION	-	F					Tanath				
From	То	From	То	DESCRIPTION	Number	From	10 L	ength	From	10	Length	Cu	Мо	Au	Ag
274.0	459.0	83.52	139.90	FELDSPAR PORPHYRY											
				(Continued)											
				- 401-409 - silicified	59439	400	410	10	121.92	124.97	3.05	828	27	9	1.3
				- 406.1-406.3 - gouge	59440	410	420	10	124.97	128.02	3.05	1086	78	10	1.3
				- 416-435 - broken core	59441	420	430	10	128.02	131.07	3.05	1305	74	9	1.9
				- 420-430 - 5.7 feet lost	59442	430	440	10	131.07	134.11	3.05	1896	133	15	2.8
				- 441-442 - broken core	59443	440	450	10		137.16	3.05	2314	104	14	2.3
				- 449-450 - broken core	59444	450	460	10	137.16	140.21	3.05	2947	188	21	2.7
				- 449-459 - 4.6 feet lost											
459.0	484.5	139.90	147.68	NICOLA VOLCANICS	50445	160	470	10	1 40 01	140.04	0.05	2220	105	17	2 (
				Black green in color. Well brecciated. Somewhat healed with	59445	460	470	10		143.26	3.05	2220	125	16	2.6
				quartz. Zone is 2%-4% quartz as veinlets, stringers and blebs.	59446	470	480	10	143.26	146.31	3.05	1630	65	14	1.7
				Local fracture epidote and carbonate. Well mineralized, up to 5%											
				pyrite as disseminations, seams and blebs. Up to 1/2% dissemin-											
				ated chalcopyrite. Local fracture molybdenite.											
				- 469-476 - 1 foot lost.											
484.5	486.8	147.68	148.38	FELDSPAR PORPHYRY											
				(as 274-459)											
				Broken and brecciated. Porphyry breccia on upper contact.	59447	480	490	10	146.31	149.35	3.05	2636	118	15	2.8
				1-2% pyrite, trace chalcopyrite.											
486.8	517.5	148.38	157.74	NICOLA VOLCANICS											
				(as 459-484.5)											
				Broken and brecciated. Several short 2-6 inch zones of coarse-	59448	490	500	10	149.35	152.40	3.05	2952	110	21	3.1
				grained intrusive throughout section. Appears as if we drilling	59449	500	510	10	152.40	155.45	3.05	2805	121	19	2.7
				down the contact. Several short sections are well mineralized, up	59450	510	520	10	155.45	158.50	3.05	2166	96	15	2.5
				to 5% pyrite, up to 2% chalcopyrite, as disseminations both in											
				quartz and in groundmass. Local fracture molybdenite.											
517.5	527.9	157.74	1 (0 01	FELDSPAR PORPHYRY											
517.5	527.9	137.74	100.91	(as 484.5-486.8)											
				Coarse grained grey white with sections of Nicola xenoliths. Rock	4251	E20	E20	10	150 50	1/1 EE	2.05	2624	133	15	2.2
				is badly broken and fractured, almost brecciated and rehealed	4351	520	530	10	158.50	161.55	3.05	2624	155	15	2.2
				with porphyry. Epidote on fractures and in seams. Chlorite on											
				fractures. Up to 3%-4% pyrite, up to 1% chalcopyrite. Traces of											
				fracture molybdenite.											
527.9	600.0	160.91	182.88	NICOLA VOLCANICS											
				(as 486.8-517.5)	4352	530	540	10	161.55	164.59	3.05	4548	167	22	3.7
				Broken and brecciated. Several short 2-6 inch zones of coarse-	4353	540	550	10		167.64	3.05	3643	158	23	3
				grained intrusive throughout section. Up to 2% quartz veinlets,	4354	550	560	10	167.64		3.05	3196	156	22	2.6
				stringers and blebs. Local fracture epidote. 3%-5% pyrite, up to	4355	560	570	10	170.69		3.05	2887	107	24	2.0
				1/2% chalcopyrite, locally to $1%$ in coarse blebs.	4356	570	580		170.09		3.05	2534	76	24 24	2.1
				1/2/0 charcopyrite, locally to 1/0 lit coalse blebs.	4550	570	560	10	175.74	170.79	5.05	2004	70	2 ' ±	4.4

Sheet 4 of 4

		Hole N	umber	2005-02		-						Sneet	4	or 4	
				DIAMOND DRI	LL RECOR	D									
Feet		Met	res		Sample		Feet			Metres		ppm	ppm	ppb	ppm
From	То	From	То	DESCRIPTION	Number	From	То	Length	From	То	Length	Cu	Мо	Au	Ag
527.9	600.0	160.91	182.88	NICOLA VOLCANICS											
				(continued)	4357	580	590		176.79		3.05	2214	73	17	1.9
				- 574-600 - core is much more solid. Quartz content to 5%	4358	590	600	10	179.83	182.88	3.05	2336	78	22	2.2
600.0	614.5	182.88		FELDSPAR PORPHYRY Fine grained with up to 5%, 5-10 m feldspar phenocrysts. Grey-											
				green to brown green in color. Locally strongly silicified. Local 1-2mm seams of blue grey metallic mineral (magnetite or moly?)	4359	600	610	10	182.88	185.93	3.05	1556	48	15	1.9
				1%-2% pyrite, $1/4%$ to $1/2%$ chalcopyrite, both minerals as											
				as disseminations in groundmass and in quartz.											
614.5	628.2	187.30		NICOLA VOLCANICS (as 527.9-600)											
				Strongly banded with alternating 5-20mm bands. 2%-3% quartz	4360	610	620	10	185.93	188.98	3.05	974	91	9	1.6
				veinlets and stringers. Abundant chlorite. 3% pyrite, up to 1/2%	4361	620	630	10	188.98	192.03	3.05	1604	276	11	1.7
				chalcopyrite, again primarily in quartz. -621-629 - 1.8 feet lost											
628.2	679.0	191.48	206.96	FELDSPAR PORPHYRY											
				(as 600-614.5)											
				Core through this section is more broken and brecciated.											
				Abundant carbonate on fractures and in thin seams. Local 1-2mm	4362	630	640		192.03		3.05	666	52	9	0.9
				seams of grey-black metallic mineral (moly?). 1%-2% pyrite, up to	4363	640	650		195.07		3.05	441	95	7	0.7
				1% chalcopyrite as coarse blebs and disseminations on fractures	4364	650	660 670	10	198.12		3.05 3.05	209 269	20	7 5	0.5 0.7
				and in the quartz. - 673-679 - 3 feet lost	4365 4366	660 670	670	10 9		204.22 206.96	3.05 2.74	269 168	14 3	3	0.7
				The crown separated from the bit at 657 feet. Tried to drill further	4000	0/0	0/)	,	204.22	200.90	2.74	100	0	5	0.5
				but had to abandon hole at 679 feet.		120	(00	470	20 (2	100.00	142.00	0014	00	10	
				END OF HOLE 679 FEET OR 207 METRES		130	600	470	39.62	182.88		2314	90 52	16	2.3
				Weighted averages - volcanics		130 280	280 420	150 150	39.62	85.35 131.07	45.72 45.72	2685 1531	52 104	18	2.4
				Weighted averages - porphyry Weighted averages - volcanics		280 430	430 600	150 170	65.55 131.07	182.88	45.72 51.82	2679	104 112	11 19	2.0 2.6
				Weighted averages - vorcanics		430 600	679	79	182.88	206.96	24.08	736	75	8	2.0 1.0
				weighted averages - porphyry	Box 1	14.5	31.7		Box 13	200.90	232.5		Box 1	400.0	429.4
					Box 2	31.7	48.6		Box 19 Box 14	232.5	252.5		Box 2	429.4	452.0
					Box 3	48.6	65.5		Box 15	252.5	268.5		Box 3	452.0	482.8
					Box 4	65.5	83.0		Box 16	268.5	289.2	F	Box 4	482.8	506.0
					Box 5	83.0	99.3		Box 17	289.2	316.0	I	Box 5	506.0	528.0
					Box 6	99.3	115.0		Box 18	316.0	322.7	F	Box 6	528.0	551.6
					Box 7	115.0	131.5		Box 19	322.7	339.0		Box 7	551.6	575.5
					Box 8	131.5	147.0		Box 20	339.0	357.7		Box 8	575.5	599.7
					Box 9	147.0	163.4		Box 21	357.7	373.8		Box 9	599.7	624.1
					Box 10 Box 11	163.4 179.4	179.4 196.0		Box 22 Box 23	373.8 390.3	390.3 400.0		Box 10 Box 11	524.1 548.6	648.6 672.3
					Box 11 Box 12	179.4 196.0	196.0 214.5		DOX 23	390.3 Now			30x 11 30x 12	548.6 572.3	672.3 679.0
					DUX 12	170.0	214.0			INOW	2	1	JUA 14	512.5	07 2.0

Company C	anfleur	Mining	Inc.	Depth 0	Bearing	Dip Angle]						Hole N	umber 2	005-03		
Property W	Vhipsaw	7		400 622	135 135 135	-70 -75 -71	-						e	Section 9 9	200 NE 800 NW		
Latitude		12325	N 9752 NW	-									Co	re size N			
Departure		7962												Started S		er 3, 2005	5
Elevation		1640		L	4	4	4							pleted S	•		
Length	622 f		189.59 metres											ged by R	-		
Feet		Met					Sample		Feet			Metres	208	ppm	ppm	ppb	ppm
From	То	From		RIPTION			Number	From		ength			Length	Cu	Мо	Au	Ag
	10		10 22001					11011	10 20			10 1		e.	1120		8
0.0	26.0	0.00	7.92 CASING														
26.0	42.8	7.92	13.05 VOLCANICS / VOLCANICLAS	TICS													
			Grey black to black, fine grained.	Distinct ba	nding of lig	hter											
			quartz rich or quartzite? And dar														
			are 5-20 mm. Up to 5% quartz ve		-		4367	26	30	4	7.92	9.14	1.22	765	10	6	1.2
			angles to ca. Local fracture chlori		*		4368	30	40	10	9.14	12.19	3.05	1084	8	5	1.3
			Epidote is also sparsely dissemin	-													
			primarily to the quartz veinlets a	0	0	5											
			broken, ranging in size from 2 to mm seams, clots and disseminati		p to 5 % pyri	te as 1-2											
			- 35-38 broken core.	0115.													
			ob ob bioken core.														
42.8	48.3	13.05	14.72 FELDSPAR PORPHYRY														
			Medium grey in color. Zones of u	up to 20% fe	ldspar pher	ocrysts to	4369	40	50	10	12.19	15.24	3.05	830	12	4	1.2
			1 cm. Reminder is grey quartz wh	hich gives u	nit its color.	Fracture											
			biotite and epidote. 5% dissemina	ated pyrite t	hroughout	unit.											
			Local traces of molybdenum?														
48.3	255.8	14.72	77.97 VOLCANICS / VOLCANICLAS	TICS													
			as 26-42.8. Decrease in quartz vei	inlets to 2%.	Still 5% py	rite as	4370	50	60	10	15.24	18.29	3.05	1008	4	5	1.1
			seams, clots and disseminations.	10			4371	60	70	10	18.29	21.34	3.05	736	<1	4	0.6
			- 60.3-60.9 - shattered quartz vei		a. Local epic	lote,	4372	70	80	10	21.34	24.38	3.05	1404	20	7	1
			hematite. 3% pyrit - 68-72 - broken core	te			4373 4374	80 90	90 100	10	24.38 27.43	27.43 30.48	3.05	802 731	23 5	6 5	0.6 0.8
			- 73-75 - broken core				4374 4375	90 100	100	10 10	27.43 30.48	30.48 33.53	3.05 3.05	1273	5 13	9 9	0.8 1.4
			- 78-80 - broken core				4373	100	110	10	50.40	55.55	5.05	1275	15	9	1.4
			- 88.2-88.8 - shattered quartz vei	n 30 ca. Loc	al epidote. 5	5% pyrite											
			- 89.3-89.6 - shattered quartz vei		-												
			- 96-98 - broken core		1	r J											
			- 97-98 - 3 cm shattered quartz v	ein 5 ca. Lo	cal epidote,	5% pyrite											
			- 108.8-109.9 - broken core														
			- 110-113 - alternating quartzite			s criss-											
			crossed with pyrite r	nicro seam	network												

Sheet 2 of 6

		Hole N	umber 2005-03									Sheet	2	of t	1
				DIAMOND DRI	LL RECOR	D									
Feet		Met	res		Sample		Feet			Metres		ppm	ppm	ppb	ppm
From	То	From	То	DESCRIPTION	Number	From	To L	ength	From	То	Length	Cu	Мо	Au	Ag
48.3	255.8	14.72	77 97 VOI CANIC	5 / VOLCANICLASTICS											
10.0	200.0	11.72	Continued	, volentiele bries	4376	110	120	10	33.53	36.58	3.05	1241	40	6	1.2
			- 130.4-133.2	- quartzite	4377	120	130	10	36.58	39.62	3.05	1197	39	5	0.9
			- 133.9-134.9	-	4378	130	140	10	39.62	42.67	3.05	1347	8	8	0.9
			- 136.5-138.1	•	4379	140	140	10	42.67	45.72	3.05	556	28	7	0.5
			- 140.1-141.1	•	4379	140	150 160	10	45.72	48.77	3.05	644	39	4	0.5
			- 140.1-141.1	•	4380	150	100	10	±3.72	40.77	5.05	044	39	4	0.5
				*											
) - quartz vein 50 ca vuggy, adularia, 3% pyrite) - quartz vein 50 ca , 5% pyrite											
				5 - quartz vein 30 ca , 5% pyrite											
				broken core											
				0% quartzite through this section											
				- broken core											
				.5 - broken core											
				broken core											
				te after 175 feet.	4381	160	170	10	48.77	51.82	3.05	1184	32	7	0.7
			1	.5 - broken core	4382	170	180	10	51.82	54.86	3.05	760	14	4	0.7
				- quartz vein 40 ca, 5% pyrite	4383	180	190	10	54.86	57.91	3.05	932	54	5	0.7
				7 - almost mylonitic texture to core	4384	190	200	10	57.91	60.96	3.05	1270	13	7	1.1
				broken core	4385	200	210	10	50.96	64.01	3.05	1093	18	7	0.7
				broken core	1000	200	-10	10	50.50	01.01	0.00	1070	10		017
				d start to see specks of chalcopyrite, commonly											
				ated with epidote in quartz veinlets and stringers											
				- almost stockwork, criss cross of microveinlets of	4386	210	220	10	54.01	67.06	3.05	2108	18	12	1.5
			200 20010	quartz and pyrite. Slight changes in color from grey		220	230	10	57.06	70.10	3.05	1835	60	8	1.1
				green (chlorite) to grey black. 5% as microveinlets,	4388	230	240	10	70.10	73.15	3.05	1694	56	9	1.4
				blebs and clots. Up to 1/4% chalcopyrite associated		240	250	10	73.15	76.20	3.05	1737	39	10	1.4
				with the quartz veinlets.											
			- 220.5 - 2cm	n quartz vein 30ca, epidote, 4% pyrite											
				broken core											
				n quartz vein 30 ca, epidote, 4% pyrite, trace											
				alcopyrite											
				- quartz vein 60 ca, epidote, 4% pyrite, trace											
				chalcopyrite											
			- 233-235 -	broken core											
			- 235.8-236.4	- quartz vein 30 ca, epidote, vuggy, 4% pyrite, trace											
				chalcopyrite											
			- 253.8-254.5	5 - cherty layer											
			- 254.5-255	.5 - broken core											
255.8	257.0	77.97	78.33 APLITE DYK		1000	250	2(0	10	76.00	70.25	2.05	754	1.77		0.2
			Aphanitic, bi	oken, 3% pyrite.	4390	250	260	10	76.20	79.25	3.05	756	17	4	0.3
257.0	259.0	78 33	78 94 VOLCANICS	S / VOI CANICI ASTICS											

257.0 259.0 78.33 78.94 VOLCANICS / VOLCANICLASTICS

as 48.3-255.8. Broken. 5% pyrite, trace chalcopyrite.

		Hole N	Number 2005-03								Sheet	3	of 6	
			DIAMOND I	ORILL RECOF	RD									
Feet		Met	res	Sample		Feet			Metres		ppm	ppm	ppb	ppm
From	То	From	To DESCRIPTION	Number	From	To Le	ngth	From	To l	Length	Cu	Мо	Au	Ag
259.0	266.3	78.94	81.17 FELDSPAR PORPHYRY Grey green to green in color. Broken and fractured with several fractures healed with quartz. Core is strongly silicified as the feldspar phenocrysts are masked by the alteration. Feldspar phenocrysts in zones (<u>+</u> 1cm, 10%-25%). Sections of the dyke ar so silicified they almost look aphanitic. 5% pyrite, trace chalcopyrite.	e 4391	260	270	10	79.25	82.30	3.05	567	18	6	0.6
266.3	267.0	81.17	81.38 VOLCANICS / VOLCANICLASTICS as 257-259 Broken. 5% pyrite, trace chalcopyrite.											
267.0	269.9	81.38	82.27 FELDSPAR PORPHYRY Coarse grained porphyritic (25% feldspar phenocrysts to 1cm) Grey in color, broken. Epidote on fractures. 2-3% pyrite.											
269.9	302.2	82.27	 92.11 VOLCANICS / VOLCANICLASTICS as 266.3-267. Continues to be micro fractured with pyrite filling the micro fractures. 1-2% quartz veinlets. Also pyrite in veinlets clots, blebs and disseminations to 8%. Trace chalcopyrite confir to the quartz veinlets. 273-285 - 1-2 foot zones of broken core through this section. 	s, 4393		280 290 300	10 10 10	82.30 85.35 88.39	85.35 88.39 91.44	3.05 3.05 3.05	1144 2164 1116	38 159 65	8 20 18	0.5 0.7 0.9
302.2	303.0	92.11	92.36 FELDSPAR PORPHYRY as 267-269.9											
303.0	304.0	92.36	92.66 VOLCANICS / VOLCANICLASTICS as 269.9-302.2											
304.0	305.3	92.66	93.06 APLITE DYKE Aphanitic, broken, local fracture hematite, 2% pyrite.	4395	300	310	10	91.44	94.49	3.05	1322	55	8	0.9
305.3	311.8	93.06	95.04 VOLCANICS / VOLCANICLASTICS as 269.9-302.2. 5% pyrite											
311.8	313.3	95.04	95.50 APLITE DYKE Aphanitic, broken, 2% pyrite.											
313.3	375.5	95.50	 114.45 VOLCANICS / VOLCANICLASTICS as 305.3-311.8. Broken and rehealed with fine pyrite. Abundant epidote through section. 5-10% pyrite in zones. Trace to 1/4% chalcopyrite in quartz. - 327.1-327.3 - quartz vein 60ca chlorite clots.2-3% pyrite - 332-333 - broken ground core - 338-339 - broken ground core - 343-344 - broken core 	4396 4397 4398 4399 4400 251	320	320 330 340 350 360 370	10 10 10 10 10 10	106.68		3.05 3.05 3.05 3.05 3.05 3.05	1449 1170 2017 2800 3362 2123	50 17 24 58 60 42	10 12 9 18 25 17	1.1 0.6 1.3 2.1 2.6 1.4

		Hole N	Number 2005-03										Sheet	4	0f 6	
				DIAMON	ND DRILI	L RECORI	D									
Feet		Met	tres		9	Sample		Feet			Metres		ppm	ppm	ppb	ppm
From	То	From	То	DESCRIPTION	1	Number	From	To Le	ngth	From	То	Length	Cu	Мо	Au	Ag
313.3	375.5	95.50	continued - 356-35 - 360-36 - 365.3-36	IICS / VOLCANICLASTICS I i8 - broken core i3 - broken core 65.4 - quartz vein 40ca 1-2% pyrite i3 - broken core												
375.5	375.8	114.45	114.55 FELDSPA as 302.3-3			252	370	380	10	112.78	115.83	3.05	1993	51	22	1.7
375.8	378.8	114.55		IICS / VOLCANICLASTICS 75.5 - strong epidote, 4% pyrite												
378.8	383.9	115.46	short dist	R PORPHYRY 'hanges in texture from porphyritic to aphanitic o ances. Fractured and rehealed with quartz. Local % pyrite. Trace to 1/4% disseminated chalcopyri	strong											
383.9	385.7	117.01		IICS / VOLCANICLASTICS 78.8. 5% pyrite		253	380	390	10	115.83	118.87	3.05	1616	87	14	1.3
385.7	386.3	117.56	117.75 FELDSPA Aphanitic	R PORPHYRY grey color. Epidote. 2% pyrite. 1/4% chalcopyrit	te											
386.3	388.5	117.75	118.42 VOLCAN as 383.9-3	IICS / VOLCANICLASTICS 85.7												
388.5	389.2	118.42	118.63 FELDSPA Aphanitic	R PORPHYRY grey color. Epidote. 2% pyrite. 1/4% chalcopyrit	te											
389.2	392.1	118.63	119.51 VOLCAN as 386.3-3	IICS / VOLCANICLASTICS 88.5												
392.1	392.6	119.51		R PORPHYRY grey color. Epidote. Minor K-feldspar alteration. . trace chalcopyrite												
392.6	435.3	119.67	as 386/3-3 chalcopyr - 409-418	IICS / VOLCANICLASTICS 388.5. Increase in quartz veinlets to 4%. 5% pyrite ite. - intense epidote alteration 16.9 - brecciated quartz vein with fault gouge 40ca 1-2% pyrite, trace chalcopyrite		254 255 256 257 258	390 400 410 420 430	400 410 420 430 440	10 10 10	118.87 121.92 124.97 128.02 131.07	124.97 128.02 131.07	3.05 3.05 3.05 3.05 3.05 3.05	2220 2176 1622 2490 1296	26 53 35 32 36	16 18 13 15 10	1.5 2 1.9 1.8 1.1

		Hole N	lumber	2005-03								Sheet	5	of 6	1
				DIAMOND DR	ILL RECOR	D									
Feet		Met	res		Sample		Feet			Metres		ppm	ppm	ppb	ppm
From	То	From	То	DESCRIPTION	Number	From	To I	Length	From	То	Length	Cu	Мо	Au	Ag
435.3	459.7	132.68	140.12	FELDSPAR PORPHYRY											
				Dark grey color. Porphyritic (<u>+</u> 25%). Entire section is extremely											
				broken. Local epidote, local K-feldspar on fractures. Rock has dull	259	440	450	10	134.11	137.16	3.05	767	16	11	0.9
				look (due to chlorite?). 1-3% pyrite, trace to 1/4% chalcopyrite.	260	450	460	10	137.16	140.21	3.05	1000	12	10	1.2
				- 440-443 - 1.5 feet lost											
				- 444.1-444.7 - quartz vein 30ca. Chlorite, epidote. 2% pyrite.											
459.7	590.0	140.12	179.83	VOLCANICS / VOLCANICLASTICS											
				as 392.6-435.3. Broken and brecciated. 4-5% quartz veinlets.	261	460	470	10		143.26	3.05	3381	27	22	2.8
				Epidote common on fractures and on quartz veinlet contacts.	262	470	480	10	143.26	146.31	3.05	2738	122	20	2.3
				Local K-feldspar on fractures. 5% pyrite, trace to 1/4%											
				chalcopyrite. - 465.6-467.8 - broken gougy soft core											
				-479-504 - brecciated and healed with quartz microveinlets.											
				chalcopyrite is concentrated in the quartz											
				-489-489.2 - quartz vein 40ca, fracture chlorite, vuggy 2% pyrite	263	480	490	10	146.31	149.35	3.05	1538	30	11	1.3
				-493-496 - broken core 6 inches lost	264	490	500	10	149.35	152.40	3.05	2187	39	13	2.1
				- 496-496.2 - quartz vein 30ca, epidote, vuggy, 2% pyrite											
				trace chalcopyrite											
				- 497.5-497.9 - quartz vein 70ca vuggy, shattered, 2% pyrite											
504.4	500.0	150 54	455.45	- 503.7-504.4 - quartz vein 40ca, broken 2% pyrite	2/5	500	510	10	150.40	155.45	2.05	1070	16	44	1.4
504.4	509.0	153.74	155.15	- 504.4-509 - MAJOR FAULT GOUGE ZONE	265 266	500 510	510 520	10		155.45	3.05 3.05	1972 1772	$\frac{46}{48}$	11 17	1.4 1.3
				crushed soft rock with shattered quartz. Remnant breccia texture. Finely crushed pyrite throughout.	200	510	520	10	155.45	136.50	3.05	1772	40	17	1.5
				trace chalcopyrite											
				- 508-509 - 6 inches lost											
				- 509-528 - core is now much harder, probably silicified. Quartz											
				content increased to 4% as stringers, veinlets and veins.											
				3% pyrite. 1/4% to 1/2% chalcopyrite primarily in quart	Z										
				- 511.4-512.4 - 2 cm quartz vein 5ca. Epidote, chlorite, vuggy.											
				5% pyrite, 1/4% chalcopyrite.											
				- 521-521.5 - broken quartz vein no ca measurement. Epidote and											
				chlorite on selvages. 5% pyrite, 1/4% chalcopyrite.				10							
				- 523.8 - rubbly quartz vein 5% pyrite	267	520	530		158.50		3.05	1444	87	13	1.2
				-528-590 - volcanics are massive to thinly bedded, 10-30ca. Still	268	530 540	540	10		164.59	3.05	1989	86	16	1
				silicified, but not as strong as 509-528. Entire section shows some brecciation with quartz micro fracture	269 270	540 550	550 560		164.59	167.64	3.05 3.05	1961 2358	33 53	16 19	1.6 1.7
				rehealing. 3% quartz stringers. Epidote is common	270	560	570		170.69		3.05	1722	92	20	0.8
				throughout zone, both in groundmass and on fracture		570	580	10		176.79	3.05	2557	136	23	2
				and quartz. 3-5% pyrite, 1/4-1/2% chalcopyrite both	273	580	590		176.79		3.05	1838	120	20	1.8
				in quartz and to lesser extent in groundmass											
				- 544.8 - 2 cm quartz vein 20ca, 3% pyrite, 1/2% chalcopyrite											
				- 558.9 - 2 cm quartz vein 20ca. Local epidote, 2% pyrite											
				- 570.6 - 2 cm quartz vein 20ca, in 6 inch breccia zone, 3% pyrite.											

- 570.6 - 2 cm quartz vein 20ca, in 6 inch breccia zone. 3% pyrite, 2% molybdenite(?), trace chalcopyrite

DIAMOND	DDIII	DECODD	
	IJKIL	KEUUKI)	

				DIAMOND DRI		D	-							-	
Feet	-	Met			Sample	-	Feet			Metres		ppm	ppm	ppb	ppm
From	То	From	То	DESCRIPTION	Number	From	To Le	ength	From	То	Length	Cu	Мо	Au	Ag
459.7	590.0	140.12		 VOLCANICS / VOLCANICLASTICS (Continued) - 575.5-576.0 - quartz vein zone 20ca. Vuggy, k-feldspar, epidote. 1% pyrite, trace chalcopyrite. - 579.7-579.9 - quartz breccia zone 40ca. K-feldspar. 2% pyrite, 2% chalcopyrite - 584-587 - broken core 											
590.0	622.0	179.83	189.59	FELDSPAR PORPHYRY											
	022.0			 - 590-596 - Contact - aphanitic grey green color. Local 1-5% (5-10 mm) feldspar phenocrysts. Strongly silicified with local volcanic xenoliths to 5 cm. Minor fracture K-feldspar and carbonate. 2-3% fracture pyrite. Trace chalcopyrite. - 596-622 - Typical porphyritic texture. 25% (1cm) feldspar phenocrysts. Grey green in color. Zone is fractured. Fracture K-feldspar, carbonate, epidote. 1-2% pyrite confined to fractures. - 599-600 - fractured rubbly core - 610-613 - broken core. 	274 275 2651	590 600 610	600 610 622	10	179.83 182.88 185.93	185.93	3.05 3.05 3.66	145 31 74	6 1 2	6 2 2	<3 <3 <3
				Weighted average		210	590	380		179.83		1842	50	14	1.7
				Weighted average - mixed porphyry and volcanics		210	330	120		100.59	36.58	1422	46	10	1.3
				Weighted average - volcanics		330	590	260	100.59		79.25	2036	52 3	16	1.9
				Weighted average - Whipsaw Porphyry		590	622	32	179.83	189.59	9.75	83	3	3	<.3
					Box 1	0.0	38.7	H	30x 15	266.7	285.0		Box 29	522.5	540.5
					Box 2	38.7	55.0		Box 16	285.0	303.3		80x 30	540.5	559.0
					Box 3	55.0	71.8		Box 17	303.3	321.4		Box 31	559.0	577.4
					Box 4 Box 5	71.8 88.8	88.8 107.8		30x 18 30x 19	321.4 341.5	341.5 358.0		lox 32 lox 33	577.4 595.0	595.0 613.0
					Box 6	107.8	125.0		Box 20	358.0	375.8		Box 34	513.0	622.0
					Box 7	125.0	143.0		Box 21	375.8	393.6				
					Box 8	143.0	160.7	I	Box 22	393.6	410.5				
					Box 9	160.7	179.1		30x 23	410.5	429.1				
					Box 10	179.1	196.9		Box 24	429.1	448.3				
					Box 11 Box 12	196.9 214.2	214.2 231.6		30x 25 30x 26	448.3 466.8	466.8 485.1				
					Box 12 Box 13	231.6	231.6 248.5		Box 20	400.0 485.1	485.1 504.5				
					Box 14	248.5	266.7		Box 28	504.5	522.5				

Company Ca	anfleur	Mining	Inc.	Depth	Bearing	Dip Angle							Hole N	umber 2	.005-04		
Property W	hipsaw	7		0 432	135 135	-85 -88							5	Section 9	500 NE		
Latitude Departure Elevation Length	432 f	12410 8307 1596	E 9500 NE										e Com	pleted S	JQ eptembe eptembe RT Henne	er 30, 200	
Feet		Met	res				Sample		Feet			Metres	0.	ppm	ppm	ppb	ppm
From	То	From	To DESCR	IPTION			Number	From	To Le	ength	From	To l	Length	Cu	Мо	Au	Ag
0.0	19.0	0.00	5.79 CASING														
19.0	47.0	5.79	14.33 VOLCANICS / VOLCANICLAST Grey black to grey in color. Rangi in texture. Zone is extremely brok Regular ding at 60ca. Banding cor dark layers, with lighter layers co epidote on fractures and in quartz in excess of 5% of rock. 3-5% pyri chalcopyrite is confined to quartz	ng from vol sen with no nsists of alte nsisting of c z stringers. (te, up to 1/4	piece over 1 ernating ligh quartz mate Quartz strin	15 cm. nt and rrial. Local ngers are	2652 2653 2654	13 20 30	20 30 40	7 10 10	3.96 6.10 9.14	6.10 9.14 12.19	2.13 3.05 3.05	2401 1632 1497	76 211 164	20 9 11	1.7 0.5 0.9
47.0	51.3	14.33	15.64 FELDSPAR PORPHYRY White grey in color, due to 40% w Extremely broken. 2% quartz strin chalcopyrite.				2655	40	50	10	12.19	15.24	3.05	1297	129	13	0.5
51.3	82.9	15.64	25.27 VOLCANICS / VOLCANICLAST as 19-47. Still 5% quartz veinlets a to 76 feet. 3-5% pyrite, trace to 1/ - 62.9-63.0 - quartz vein 90ca. 3% - 69-70 - broken quartz vein 20ca. pyrite, trace of chalcopy - 70.7-71.4 - quartz vein 70ca, 3% - 80.5-81.2 - chert horizon.	and stringer 4% chalcop pyrite e no ca. Vug yrite.	yrite.		2656 2657 2658	50 60 70	60 70 80	10 10 10	15.24 18.29 21.34	18.29 21.34 24.38	3.05 3.05 3.05	2434 1751 1340	149 103 138	15 11 10	1.1 0.7 0.6
82.9	85.7	25.27	26.12 FELDSPAR PORPHYRY as 47-51.3. 3% pyrite.				2659	80	90	10	24.38	27.43	3.05	1553	105	11	0.5
85.7	94.5	26.12	28.80 VOLCANICS / VOLCANICLAST as 51.3-82.9. 3-5% pyrite, 1/2% fra		opyrite.												
94.5	96.3	28.80	29.35 FELDSPAR PORPHYRY as 82.9-85.7. 3% pyrite				2660	90	100	10	27.43	30.48	3.05	1564	79	14	1

				DIAMOND DRI	LL RECOR	D									
Feet		Metr	es		Sample		Feet			Metres		ppm	ppm	ppb	ppm
From	То	From	То	DESCRIPTION	Number	From	To L	ength	From	To	Length	Cu	Мо	Au	Ag
96.3	141.5	29.35	Dark gr stringer but not chalcop - 96.3-5 - 117- - 118.7 - 118.7 - 120.2 - 124-	ANICS / VOLCANICLASTICS ey to black in color. Harder (silicified). Still 5% quartz s and veinlets, now at all angles to ca. Core is still broken to the same degree as above. 4-5% pyrite, up to 1/4% yrite on fractures and in quartz. 77.6 - quartz rich zone on dyke contact. 50ca. 119 - broken core -119.4 - broken quartz vein no ca. 5% pyrite, 1/4% chalcopyrite. -121.2 - broken quartz vein 40ca 2% pyrite, trace chalcopyrite. 128 - broken core 140 - broken core	2661 2662 2663 2664	100 110 120 130	110 120 130 140	10 10 10 10	30.48 33.53 36.58 39.62	33.53 36.58 39.62 42.67	3.05 3.05 3.05 3.05	2293 1776 2192 2559	133 78 68 119	19 11 15 14	0.4 <.3 1.3 1.4
141.5	142.5	43.13		PAR PORPHYRY 96.3. 4% pyrite.											
142.5	240.9	43.43	as 96.3- Up to 5 to ca. 5% -145-1 -151-1 -155.6- - 158- - 163-1 -173-1 - 177.9 - 181.9 - 181.9 - 184- - 190- - 195.2	 NICS / VOLCANICLASTICS 141.5. Darker grey black. Hard and silicified. Well broken. % quartz as stringers, veinlets and blebs at various angles % pyrite, trace to 1/4% chalcopyrite. 147 - broken core 152 - broken core 155.9 - quartz vein 70ca. 3% pyrite, trace chalcopyrite 163 - broken core, 1 foot missing. Probable Fault. 73 - silicified zone on fault contact. Light grey brown in color. 5% pyrite, 1/4% chalcopyrite. 182 - broken core -178.5 - rubbly quartz vein no ca. 3% pyrite -182.5 - quartz vein 60ca. 3% pyrite. 188 - broken core 195 - broken rubbly core -195.6 - banded quartz vein 60ca. Epidote, 3% pyrite 	2665 2666 2667 2668 2669 2670	140 150 160 170 180 190	150 160 170 180 190 200	10 10 10 10 10	42.67 45.72 48.77 51.82 54.86 57.91	45.72 48.77 51.82 54.86 57.91 60.96	3.05 3.05 3.05 3.05 3.05 3.05	1624 1676 1386 1298 1337 2752	89 125 124 81 64 52	9 14 9 11 11 18	0.7 1.2 1.1 0.8 0.4 1.6
			- 200.8 - 204-2 - 210-2 - 224- - 234- - 237.5	 201 - banded quartz vein 50ca epidote, 3% pyrite 24 - silicified zone, light grey color. Quartz content 6-7% zone almost looks brecciated and rehealed. 5% pyrite, traces of chalcopyrite. 11 - quartz vein 40ca. Brecciated, healed quartz with some adularia. 5% pyrite 232 - broken rubbly core 236 - broken rubbly core -237.8 - banded quartz vein 60ca, epidote, 5% pyrite -239 - bleached or lighter colored zone. Strong silicification 	2671 2672 2673 2674	200 210 220 230	210 220 230 240	10 10 10 10	50.96 54.01 57.06 70.10	64.01 67.06 70.10 73.15	3.05 3.05 3.05 3.05	2284 1502 1707 2093	35 63 78 79	21 11 11 16	2.3 1.7 1.9 1.9

5% pyrite

		Hole N	umber 2005-04								Sneet	3	of 4	
			DIAMOND	DRILL RECOR	D									
Feet		Met	res	Sample		Feet			Metres		ppm	ppm	ppb	ppm
From	То	From	To DESCRIPTION	Number	From	To L	ength	From	То	Length	Cu	Мо	Au	Ag
240.9	241.9	73.43	73.73 FELDSPAR PORPHYRY											
			as 141.5-142.5, 3% pyrite											
241.9	244.0	73.73	74.37 MAJOR FAULT GOUGE											
			Original texture and composition obliterated											
244.0	296.0	74.37	90.22 VOLCANICS	1			10		-					
			as 142.5-240.9. Epidote in 5-25 mm discontinuous seams throu	0	240	250	10	73.15	76.20	3.05	1604	88	12	1.2
			the section. 3-5% pyrite, trace chalcopyrite.	2676	250	260	10	76.20	79.25	3.05	1813	81	17	1.6
			- 247-249 - broken core	2677	260	270	10	79.25	82.30	3.05	2018	112	18	1.6
			- 251-254 - broken core	2678	270	280	10	32.30	85.35	3.05	1706	148	10	0.9
			- 265-266 - broken core, sheared with gouge	2679	280	290	10	85.35	88.39	3.05	1552	64	14	1.4
			-267-268 - rehealed gouge breccia - 267-270 - broken core, sheared with gouge	2680	290	300	10	38.39	91.44	3.05	1094	44	10	1.1
296.0	309.9	90.22	94.46 FELDSPAR PORPHYRY											
			as 240.9-241.9. broken throughout entire length. 3-5% pyrite or fractures. Up to 1/4% chalcopyrite in quartz and on fractures	n 2681	300	310	10	91.44	94.49	3.05	1176	41	9	1.7
309.9	315.0	94.46	96.01 VOLCANICS											
			as 244-296. Broken and sheared. 3-5% pyrite, trace chalcopyrit	e. 2682	310	320	10	94.49	97.54	3.05	1890	85	23	2.6
315.0	316.0	96.01	96.32 FELDSPAR PORPHYRY											
			as 296-309.9. Almost grey brown in color. Broken. 2% pyrite.											
316.0	367.8	96.32	112.11 VOLCANICS	gers 2683	320	330	10	27 54	100.59	3.05	2083	100	24	1.0
			as 309.9-315. 5% quartz stringers at various angles to ca. String	<i>,</i>	330	330 340	10	100.59		3.05	2083	100	24 34	1.8 3.2
			are 1mm to 2 cm. Local 5-15mm discontinuous epidote seams.		340	340 350	10		105.63	3.05	2031	64	43	5.2 1.5
			Zone appears to be brecciated and rehealed. 3-5% pyrite, trace	2685	350	360		105.65		3.05	1967		43 23	
			chalcopyrite.	2686 2687	360	370	10 10		109.73	3.05	1538	144 81	23 17	1.4 4.2
			- 336-337.5 - broken core with thin gouge seams - 354.3-354.6 - gouge - 363.8-364.0 - sheared with gouge.	2007	300	370	10	109.73	112.70	5.05	1556	61	17	4.2
367.8	432.0	112 11	131.68 FELDSPAR PORPHYRY											
507.0	402.0	112,11	as 315-316. Porphyry varies in color between dark grey, grey a	and 2688	370	380	10	112.78	115.83	3.05	202	21	14	0.3
			brown grey. Core s broken to massive. 1-2% quartz stringers.		380	390		115.83		3.05	472	25	8	0.3
			pyrite. Trace to 1/4% chalcopyrite, primarily within quartz.	1-270 2009	300	570	10	110.00	110.07	5.00	172	20	0	0.5
			- 367.8-374.5 - dark grey, broken through zone - 374.5-378 - bleached grey brown, silicified											
			- 378-383 - dark grev											

- 378-383 - dark grey - 383-387 - bleached grey brown, silicified

- 387-393 - dark grey

Sheet 4 of 4

DIAMOND DRILL RECORD															
Feet		Met	res		Sample		Feet			Metres		ppm	ppm	ppb	ppm
From	То	From	То	DESCRIPTION	Number	From	To Le	ength	From	То	Length	Cu	Мо	Au	Ag
367.8	432.0	112.11	131.68 I	FELDSPAR PORPHYRY											
			((Continued)											
				- 393-397 - bleached light grey, silicified	2690	390	400	10	118.87	121.92	3.05	365	8	5	0.3
				- 395.2-395.3 - banded quartz vein 70ca. Vuggy. Thin seams of	2691	400	410	10	121.92	124.97	3.05	702	20	11	0.8
				medium brown hard material (K-feldspar?). 5%	2692	410	420	10	124.97	128.02	3.05	293	8	5	0.3
				pyrite.	2693	420	432	12	128.02	131.68	3.66	167	18	3	0.4
				397-432 - medium to dark grey											
			4	432 Feet, 131.68 metres END OF HOLE											
			1	Weighted average		13	370	357	3.96	112.78	108.81	1804	92	16	1.5
			I	Weighted average - Whipsaw Porphyry		370	432	62	112.78	131.68	18.90	360	17	8	0.4

Box 1	19.0	34.0	Box 9	149.3	167.1	Box 17	297.1	314.0
Box 2	34.0	50.2	Box 10	167.1	184.3	Box 18	314.0	332.8
Box 3	50.2	67.0	Box 11	184.3	201.6	Box 19	332.8	350.8
Box 4	67.0	82.0	Box 12	201.6	221.0	Box 20	350.8	369.0
Box 5	82.0	99.4	Box 13	221.0	240.9	Box 21	369.0	387.0
Box 6	99.4	115.7	Box 14	240.9	259.9	Box 22	387.0	404.0
Box 7	115.7	132.2	Box 15	259.9	278.2	Box 23	404.0	421.9
Box 8	132.2	149.3	Box 16	278.2	297.1	Box 24	421.9	432.0

Inc.	-	0	Dip Angle							Hole N	umber 2	2005-05		
	262	135	-50 -57							e	Section 9	9500 NE		
e 9500 NE n										Com	Started S pleted (Septembe October 8	3, 2005)5
				C		T			Matura	Log	0 1		5	
	DIDTION			-	Erom		nath			Longth				ppm
10 DESCR	AFTION			Number	From	TO Le	ngtn	From	10	Length	Cu	NIO	Au	Ag
7.32 CASING														
Grey black to grey in color. Fine g quartz at 50ca (bedding conforma stringers and veinlets at various a first 10-15 feet. Local epidote conf pyrite as disseminations, blebs, so to 1/2% chalcopyrite, mostly con - entire zone is extremely broke 15.39 FELDSPAR PORPHYRY medium to dark grey in color. Up plagioclase phenocrysts. 2-3% grev veinlets at various angles to ca. Fi	grained. 3-49 able?). 3-4% angles to ca. fined to grey eams and fra fined to grey en, no piece l o to 30% anh ey-white qua racture chlor	grey white of Limonite co white quan acture coatin white quan bigger than edral 5-15m artz as string rite. 5% diss	quartz bating on tz. 5% ngs. Up tz 7cm 7cm white gers and eminated	2694 2695 2696	22 30 40	30 40 50	8 10 10	6.71 9.14 12.19	9.14 12.19 15.24	2.44 3.05 3.05	3510 3126 1871	176 228 263	20 25 12	1.7 1.5
 quartz, 1/4% molybdenite confin - entire zone is extremely broke 29.02 VOLCANICS / VOLCANICLAST as 24-45.8.5% pyrite, 1/4 to 1/2% - 50.5-77 - extremely broken. Co volume wise 75%. - 62.1-62.2 - quartz vein no ca. 25 molybdenite. - 70.3-70.4 - quartz vein 50 ca. 59 molybdenite. - 77-82 - broken , but less than a quartz, 5% pyrite, 1/4 molybdenite. Chala to quartz - 82- 95 - again extremely broket 	eed to grey w en, no piece l TICS 6 chalcopyrii ore recovery 8 pyrite, 1/4 8 pyrite, 1/4 above. Almo 4 to 1/2 % cl copyrite and en. 3-5% qua	vhite quartz bigger than te, 1/4% mo lengthwise 4% chalcopy % chalcopy st breccia. 7 halcopyrite, molybdeni	7cm 95%, rite, 1% rite, 2% -8% 1/2% te confined	2697 2698 2699 2700	50 60 70 80	60 70 80 90	10 10 10 10	15.24 18.29 21.34 24.38	18.29 21.34 24.38 27.43	3.05 3.05 3.05 3.05	1790 2566 1858 1341	94 216 274 110	13 16 12 9	0.6 0.7 0.5 1
	 9500 NE 79.86 metres 70 DESCI 7.32 CASING 13.96 VOLCANICS / VOLCANICLAS Grey black to grey in color. Fine q quartz at 50ca (bedding conform stringers and veinlets at various a first 10-15 feet. Local epidote con pyrite as disseminations, blebs, s to 1/2% chalcopyrite, mostly con - entire zone is extremely broked 15.39 FELDSPAR PORPHYRY medium to dark grey in color. Up plagioclase phenocrysts. 2-3% greveinlets at various angles to ca. F and fracture pyrite. 1/4% chalcop quartz, 1/4% molybdenite confir - entire zone is extremely broked 29.02 VOLCANICS / VOLCANICLASS as 24-45.8. 5% pyrite, 1/4 to 1/29 - 50.5-77 - extremely broken. Co- volume wise 75%. 62.1-62.2 - quartz vein no ca. 27 molybdenite. 77-82 - broken , but less than a quartz, 5% pyrite, 1// molybdenite. Chal to quartz 82-95 - again extremely broked 	0 262 N 9575 NW 9500 NE 79.86 metres To DESCRIPTION 7.32 CASING 13.96 VOLCANICS / VOLCANICLASTICS Grey black to grey in color. Fine grained. 3-49' quartz at 50ca (bedding conformable?). 3-4% stringers and veinlets at various angles to ca. first 10-15 feet. Local epidote confined to grey pyrite as disseminations, blebs, seams and fra to 1/2% chalcopyrite, mostly confined to grey - entire zone is extremely broken, no piece I 15.39 FELDSPAR PORPHYRY medium to dark grey in color. Up to 30% anh plagioclase phenocrysts. 2-3% grey-white quaveinlets at various angles to ca. Fracture chlor and fracture pyrite. 1/4% chalcopyrite, both of quartz, 1/4% molybdenite confined to grey w - entire zone is extremely broken, no piece I 29.02 VOLCANICS / VOLCANICLASTICS as 24-45.8. 5% pyrite, 1/4 to 1/2% chalcopyrite - 50.5-77 - extremely broken. Core recovery wolume wise 75%. - 62.1-62.2 - quartz vein no ca. 2% pyrite, 1/4 molybdenite. - 70.3-70.4 - quartz vein 50 ca. 5% pyrite, 1/4 molybdenite. - 77-82 - broken , but less than above. Almon quartz, 5% pyrite, 1/4 to 1/2% cd molybdenite. - 77-82 - broken , but less than above. Almon quartz, 5% pyrite. Chalcopyrite and to quartz	0 135 262 135 262 135 262 135 262 135 262 135 262 135 262 135 262 135 262 135 262 135 262 135 262 135 262 135 262 135 262 135 262 135 262 135 262 135 262 135 262 135 262 135 262 135 262 135 272 28 28 262 2950 NE 202 201 203 202 204 204 205 204 205 204 205 204 205 <	0 135 -50 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 263 64 -50 27 136 -50 28 64 -50 29.02 OLCANICS / VOLCANICLASTICS Grey black to grey in color. Up to 30% anhedral 5-15mm white plagioclase phenocrysts. 2-3% grey-white quartz. 5% disseminated and in quartz. 1/4% molybdenite confined to grey white quartz. - enti	0 135 -50 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 2695 by ite item -10 2786 metres Sample 7.32 CASING Number 7.32 13.96 VOLCANICS / VOLCANICLASTICS Grey black to grey in color. Fine grained. 3-4% thinly banded grey quartz at 50ca (bedding conformable?). 3-4% grey white quartz. 2694 first 10-15 feet. Local epidote confined to grey white quartz. 2695 pyrite as disseminations, blebs, seams and fracture coatings. Up 2695 pizot clase phenocrysts. 2-3% grey-white quartz. 2696 plagioclase phenocrysts. 2-3% grey-white quartz. 2696 plagioclase phenocrysts. 2-3% grey-white quartz. 2696 plagioclase phenocrysts. 2-3% grey-white quartz. 2696 rentire zone is extremely broken, no piece b	0 135 -50 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 262 135 -57 263 135 -57 264 135 -57 70 DESCRIPTION Number From 7.32 CASING 13.96 VOLCANICS / VOLCANICLASTICS Grey black to grey in color. Fine grained. 3-4% thinly banded grey quarts at 50ca (bedding conformable?). 3-4% grey white quartz. 2694 22 first 10-15 feet. Local epidote confined to grey white quartz. 2695 30 pyrite as disseminations, blebs, seams and fracture coatings. Up to 1/2% chalcopyrite, mostly confined to grey white quartz. - entire zone is extremely broken, no piece bigger than 7cm 15.39 FELDSPAR PORPHYRY medium to dark grey in color. Up to 30% anhedral 5-15mm white 2696 40 plagioclase phenocrysts. 2-3% grey-white quartz. - entire zone is extremely broken, op piece bigger than 7cm 2020 2021CANICS / VOLCANICLASTICS as 2445.8.5% pyrit	0 135 -50 262 135 -57 262 135 -57 79.86 metres 9500 NE 1 79.86 metres 5 Sample Feet To DESCRIPTION Number From To Le 7.32 CASING 13.96 VOLCANICS / VOLCANICLASTICS Grey black to grey in color. Fine grained. 3-4% thinly banded grey quartz at 50ca (bedding conformable?). 3-4% grey white quartz. 5% 2695 30 40 pyrite as disseminations, blebs, seams and fracture coatings. Up to 1/2% chalcopyrite, mostly confined to grey white quartz. 5% 2695 30 40 pyrite as disseminations, blebs, seams and fracture coatings. Up to 1/2% chalcopyrite, mostly confined to grey white quartz. - entire zone is extremely broken, no piece bigger than 7cm 2696 40 50 plagicolase phenocrysts. 2-3% grey-white quartz. - entire zone is extremely broken, no piece bigger than 7cm 2696 40 50 29.02 VOLCANICS / VOLCANICLASTICS as 24+45.8.5% pyrite, 1/4 to 1/2% chalcopyrite, 1/4% molybdenite 2697 50 60 -50.5-77 - extremely broken. Core recovery lengthwise 95%, 2698 60 70 2090 20 200 200 200 20 2	0 135 -50 262 135 -57 135 -57 10 135 -57 10 135 -57 10 135 -57 11 11 11 11 11 11 11 11 11 12 12 11 11 13.96 VOLCANICS / VOLCANICLASTICS Grey black to grey in color. Fine grained. 3-4% thinly banded grey quartz at 50ka (bedding conformable?). 3-4% grey white quartz 500 40 10 9716 Ka (bedding conformable?). 3-4% grey white quartz 500 40 10 9717 Ka (bedding conformable?). 3-4% grey white quartz 500 40 10 9716 to tark grey in color. Up to 30% anhedral 5-15mm white 2696 40 50 10 15.39 FELDSPAR PORPHYRY 2696 40 50 10 10 quartz, 14% molybdenite confined to grey white quartz. - entire zone is extremely broken, no piece bigger than 7cm 2697 50 60 10 15.39 FELDSPAR PORPHYRY 2698 60	0 135 -50 262 135 -57 0 135 -57 0 135 -57 0 135 -57 0 135 -57 0 136 -57 0 DS06 metres	Image: constraint of the second se	0 135 -50 262 135 -57 262 135 -57 3 9500 NE	Image: height of the second	$ \frac{1}{262} \frac{135}{133} \frac{50}{67} \\ \frac{1}{262} \frac{1}{133} \frac{57}{67} \\ \frac{1}{950} \text{ NE} \\ \frac{1}{9500 \text{ NE}} \\ \frac{1}{9500 \text{ NE}} \\ \frac{1}{7360 \text{ metres}} \\ \frac{1}{7320 \text{ CASING}} \\ \frac{1}{7360 \text{ metres}} \\ \frac{1}{7320 \text{ CASING}} \\ \frac{1}{7360 \text{ metres}} \\ \frac{1}{7360 m$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Sheet 2 of 3

		Hole N	umber 2005-05		D						Sheet	2	of 3	
				MOND DRILL RECOR	D	-							-	
Feet		Met		Sample		Feet		1	Metres		ppm	ppm	ppb	ppm
From	То	From	To DESCRIPTION	Number	From	To Le	ength	From	To I	Length	Cu	Mo	Au	Ag
95.2	96.4	29.02	29.38 FELDSPAR PORPHYRY as 45.8-50.5. Extremely broken. 5% pyrite, 1/4% chal	copyrite 290501	90	100	10	27.43	30.48	3.05	1928	159	12	2
96.4	96.9	29.38	29.54 VOLCANICS / VOLCANICLASTICS as 50.2-95.2. 5% pyrite, 1/4% chalcopyrite, trace moly	ybdenite										
96.9	99.5	29.54	30.33 FELDSPAR PORPHYRY as 95.2-96.4. Broken at bottom contact. 5% pyrite, 1/4 chalcopyrite.	1%										
99.5	131.5	30.33	40.08 VOLCANICS / VOLCANICLASTICS as 50.5-95.2. Grey black, extremely broken. Up to 5% stringers, veinlets and blebs. 5% pyrite 1/4%-1/2% c and trace to 1/4% molybdenite confined to quartz. - 100-102.3 - 70% broken quartz veins no ca. 5% pyric chalcopyrite, trace molybdenite.	halcopyrite 290503 290504	100 110 120	110 120 130	10 10 10	30.48 33.53 36.58	33.53 36.58 39.62	3.05 3.05 3.05	2244 2089 2363	103 97 144	16 14 14	1.5 2.1 1.9
131.5	157.9	40.08	 48.13 VOLCANICS / VOLCANICLASTICS Grey in color. Core is much more solid. 5% quartz as veinlets and blebs. Core looks micro fractured and re 5% pyrite, 1/4% chalcopyrite in quartz, trace to 1/4% in quartz. -134.1-134.7 - quartz vein 10 ca. 4% pyrite, 1/2% cha - 138-139 - broken core -144-146 - broken core -146.7-147.4 - quartz vein 5ca. 3% pyrite, 1/4% chal- - 148-150 - broken core - 156-156.5 - broken core 	healed. 290506 6 molybdenite 290507 alcopyrite	130 140 150	140 150 160	10 10 10	39.62 42.67 45.72	42.67 45.72 48.77	3.05 3.05 3.05	3481 3773 3144	398 432 174	26 25 19	3.2 2 2.6
157.9	159.2	48.13	48.52 FELDSPAR PORPHYRY as 96.9-99.5. Broken core. 1% pyrite.											
159.2	176.0	48.52	 53.65 VOLCANICS / VOLCANICLASTICS as 131.5-157.9. 5% quartz. 4-5% pyrite, trace to 1/4% trace to 1/4% molybdenite. 164.6-165 - quartz vein rubble no ca. 1% pyrite, trac chalcopyrite, 1/2% molybdenite. 173.1-175.1 - broken core, 1 foot lost 175.5 - 5mm molybdenite stringer 5ca. 	290509	160 170	170 180	10 10	48.77 51.82	51.82 54.86	3.05 3.05	3053 2992	114 655	20 27	2.9 2.9
176.0	176.4	53.65	53.77 FELDSPAR PORPHYRY as 157.9-159.2. 3% pyrite.											

Sheet 3 of 3

		noie N	uniber 2			D						Sheet	3	01 5	
				DIAMOND DRI	LL RECOR	D									
Feet		Metr	es		Sample		Feet			Metres		ppm	ppm	ppb	ppm
From	То	From	То	DESCRIPTION	Number	From	To I	Length	From	To	Length	Cu	Mo	Au	Ag
176.4	237.9	53.77	a C	VOLCANICS / VOLCANICLASTICS as 159.2-176. Still 5% quartz. 3-5% pyrite, trace to 1/4% chalcopyrite, trace molybdenite. - 178.3-179.1 - broken rubbly core - 184.7-185.8 - quartz vein 10ca. 2% pyrite - 200.4-200.8 - cherty horizon - 201-202.5 - broken rubbly core, 6 inches lost - 203.5-207.3 - broken core	290510 290511 290512 290513 290514 290515	180 190 200 210 220 230	190 200 210 220 230 240	10 10 10 10 10 10	54.86 57.91 50.96 54.01 57.06 70.10	57.91 60.96 64.01 67.06 70.10 73.15	3.05 3.05 3.05 3.05 3.05 3.05 3.05	1990 1906 2424 1868 1931 1732	77 203 99 86 66 60	19 19 27 29 33 21	2 2.2 3.2 2.6 2.2 2.1
				 - 211.9-212.4 - broken core - 212.7-213.3 - quartz vein, 60 ca, 8% pyrite, trace chalcopyrite - 218.3-219.3 - cherty horizon - 226-227 - broken rubbly core - 234.8-236 - broken core - 237.2-237.4 - epidote patches to 20% of core 											
237.9	262.0	72.51	79.86 I	FELDSPAR PORPHYRY											
				Medium grey in color, though darker grey in the 1.4 foot chill zone	290516	240	250	10	73.15	76.20	3.05	408	7	5	0.9
				at the contact. Contact 70ca. Up to 30% anhedral 5-15mm white	290517	250	262	12	76.20	79.86	3.66	2124	37	15	5.2
				eldspar phenocrysts. Groundmass is also coarse to 5mm. Very											
				 ittle quartz. Core is broken but not rubbly. 1-2% fracture pyrite. 242 onward - disseminated, fracture and microveinlet epidote. and local fracture salmon pink K-feldspar 247.8-248.2 - broken core 											
				- 249-250 - broken core											
				- 250.6-251 - broken core											
				- 261.5-262 - broken core											
			2	262 - END OF HOLE											
			I	Weighted average		22	240	218	6.71	73.15	66.45	2408	176	19	2.0
			I	Weighted average - molybdenum zone		22	180	158	6.71	54.86	48.16	2508	216	17	1.8
			,	Weighted average - Whipsaw Porphyry		240	262	22	73.15	79.86	6.71	1344	22	10	3.2
						53.492									
					Box 1	22.0	38.3		Box 6	114.5	131.5		Box 11	209.0	227.6
					Box 2	38.3	54.5 75.2		Box 7	131.5	149.4 168.8		Box 12	227.6	246.8
					Box 3 Box 4	54.5 75.3	75.3 94.9		Box 8 Box 9	149.4 168.8	168.8 188.7	В	80x 13	246.8	262.0
					Box 4 Box 5	75.3 94.9	94.9 114.5		box 9 Box 10	168.8 188.7	188.7 209.0				

Company Canfleur Mining Inc.	Depth Bearing Dip Angle	Hole Number 2005-06
	0 -90	
Property Whipsaw	403 -89	Section 9600 NE
	588 -89	
Latitude 12475 N 9548 NW		Core size NQ
Departure 8430 E 9648 NE		Started October 9, 2005
Elevation 1586 m		Completed October 19, 2005
Length 593 feet or 180.75 metres		Logged by RT Henneberry
Feet Metres		Sample Feet Metres ppm ppm ppb ppm
From To From To	DESCRIPTION	Number From To Length From To Length Cu Mo Au Ag

0.0 12.0 0.00 3.66 CASING

12.0 219.7 3.66 66.97 VOLCANICLASTICS

Finely banded volcaniclastic sediments. Bands alternate between light grey (quartz rich) and dark grey green (mafic rich) and range in width from 2-20mm, though the dark grey green sections can be more massive. Banding is 35ca. There are three distinct lithologies: finely banded light grey unit, dark grey green finely banded to massive unit and medium grey green coarser banded quartz rich unit. Core is brecciated and cut by a criss-crossing network of thin microveinlets of quartz and carbonate. Also cut by a network of larger quartz veinlets, stringers and blebs at various angles to ca, forming 2-3% by volume. Alteration is chlorite, fracture and microveinlet epidote, local silicification and fracture K-feldspar. Mineralization is 5%-7% pyrite. Possible traces of chalcopyrite and molybdenite.

- 12-40 there is a white staining to the core
- 12-16 broken core 1 foot lost
- 16-19 broken rubbly core 1 foot lost
- 19-27.5 light grey finely banded unit
- 27.5-28.2 dark grey green unit, finely banded
- 28.2-33.3 light grey finely banded unit
- 33.3-42 dark grey green unit, finely banded
- 42-63 medium grey green unit, coarser banded, more quartz
- 60.7-60.9 quartz vein 30ca, local epidote, 5% pyrite
- 63-70 -dark grey green unit, finely banded
- 70-81 medium grey green unit, coarser banded, more quartz
- 81-116 -dark grey green unit, finely banded
- 88-133 breccia, clasts to 10cm. Epidote is now 2% of core. 5-7% pyrite, trace to 1/4% chalcopyrite, trace to 1/4% molybdenite.
- 100.5-101.5 broken core

- 116-138 - medium grey green unit, coarser banded, more quartz

590518	12	20	8	3.66	6.10	2.44	3868	14	30	5.0
590519	20	30	10	6.10	9.14	3.05	1229	30	5	1.4
590520	30	40	10	9.14	12.19	3.05	2028	13	15	2.6
590521	40	50	10	12.19	15.24	3.05	2991	29	20	4.7
590522	50	60	10	15.24	18.29	3.05	1475	30	10	1.9
590523	60	70	10	18.29	21.34	3.05	2208	43	15	2.3
590524	70	80	10	21.34	24.38	3.05	2421	122	15	2.2
590525	80	90	10	24.38	27.43	3.05	1181	75	7.5	1.3
590526	90	100	10	27.43	30.48	3.05	1171	20	10	1.2
590527	100	110	10	30.48	33.53	3.05	1106	87	5	0.9
590528	110	120	10	33.53	36.58	3.05	1509	45	10	1.3
590529	120	130	10	36.58	39.62	3.05	1545	24	10	2.0
590530	130	140	10	39.62	42.67	3.05	1253	61	10	1.6

		Hole N	umber 2005-06									Sheet	2	of 6	
				DIAMOND DRI	LL RECOR	D									
Feet		Metr	es		Sample		Feet			Metres		ppm	ppm	ppb	ppm
From	То	From	То	DESCRIPTION	Number	From	To L	ength	From	То	Length	Cu	Мо	Au	Ag
12.0	219.7	3.66	66.97 VOLCAN (continue - 133-157 - 138-144	ICLASTICS d) - core now more brecciated than broken. Quartz still 2-3%. 2% epidote throughout, local brown K-feldspar. 5-7% pyrite, trace to 1/4% chalcopyrite trace to 1.4% molybdenite. -dark grey green unit, finely banded	590531 590532 590533	140 150 160	150 160 170	10 10 10	42.67 45.72 48.77	45.72 48.77 51.82	3.05 3.05 3.05	896 1513 895	47 86 55	5 5 5	0.9 1.3 0.5
			- 144-157	- medium grey green, abundant epidote, 4% quartz	590534	170	180	10	51.82	54.86	3.05	1759	74	7.5	1.3
208.8	209.4	63.64	- 178-193 - 193-198 - 198-215 63.83 - 208.8-20	 5% pyrite, trace to 1.4% molybdenite dark grey green finely banded to massive, almost breccia in zones, 4% quartz, 5% pyrite, trace to 1/4% molybdenite medium grey green, locally brecciated. 4-5% quartz, now showing hematite on contact selvages, 5% pyrite dark grey green, finely banded medium grey green, locally brecciated. Part of the zone is bleached pale green, 2-3% quartz, 4% pyrite, trace to 1/4% chalcopyrite. 99.4 - GOUGE SHEAR ZONE .7 - dark grey green, brecciated, 2% quartz, 5% pyrite, trace to 1/4% chalcopyrite 	590535 590536 590537 590538	180 190 200 210	190 200 210 220	10 10 10 10	54.86 57.91 50.96 54.01	57.91 60.96 64.01 67.06	3.05 3.05 3.05 3.05	1170 790 1176 1505	180 39 183 33	15 5 10 15	0.9 0.6 1.4 2.0
219.7	228.8	66.97	feldspar p		590539	220	230	10	57.06	70.10	3.05	583	17	5	0.9
228.8	230.0	69.74		ICLASTICS grey green in color, banding is obscured by chlorite and on. Local epidote. 3% pyrite as seams and disseminations											
230.0	233.4	70.10	71.14 FELDSPA as 219.7-2	R PORPHYRY 28.8. 2% pyrite.											
233.4	236.5	71.14	obscured	ICLASTICS green in color. Finely banded though banding is by chlorite and silicification. Abundant epidote. precciated. 3-5% pyrite, trace to 1.4% chalcopyrite.	590540	230	240	10	70.10	73.15	3.05	1220	22	15	1.7
236.5	238.5	72.09	white feld	R PORPHYRY rained, white to light grey in color. Still 20% 5-20mm Ispar phenocrysts. Up to 5% combined biotite and le. 1-2% pyrite.											

		Hole N	umber 2005-06								Sheet	3	of 6	
			DIAMOND I	ORILL RECOR	D									
Feet		Met	res	Sample		Feet			Metres		ppm	ppm	ppb	ppm
From	То	From	To DESCRIPTION	Number	From	To L	ength	From	То	Length	Cu	Мо	Au	Ag
238.5	241.5	72.70	73.61 VOLCANICLASTICS											
			as 233.4-236.5. 3% quartz, 5% pyrite, trace chalcopyrite.											
241.5	246.9	73.61	75.26 FELDSPAR PORPHYRY	5005 41	240	250	10	70.15	76.00	2.05			_	0.0
			as 236.5-238.5. Fracture chlorite, 3% fracture pyrite.	590541	240	250	10	73.15	76.20	3.05	551	2	5	0.8
246.9	309.5	75.26	94.34 VOLCANICLASTICS											
			as 241.5-246.9. Increase in quartz to 5%. Locally brecciated. 5%	590542	250	260	10	76.20	79.25	3.05	1975	18	5	3.1
			pyrite, trace to 1/4% chalcopyrite, trace molybdenite	590543	260	270	10	79.25	82.30	3.05	814	29	10	1.4
			- 253.4-255.1 - quartz vein 60ca. Local epidote, adularia. Dirty	590544	270	280	10	32.30	85.35	3.05	1291	57	10	1.6
			appearance. 2-3% pyrite	590545	280	290	10	35.35	88.39	3.05	1010	157	15	1.2
			- 256.3-256.4 - quartz vein 15ca. Gouge on contacts, 2% pyrite.	590546	290	300	10	38.39	91.44	3.05	896	40	5	1.3
			- 258.7-259.2 - chert horizon	590547	300	310	10	91.44	94.49	3.05	990	64	100	1.4
			- 262.5-263.5 - broken core											
			- 267-268.5 - broken core											
			- 293-298 - bleached grey-white section											
			- 294.2-294.7 - broken core with gouge											
309.5	328.7	94.34	100.19 FELDSPAR PORPHYRY											
			Medium grey. 20% 5-15mm anhedral white feldspar. Fracture	590548	310	320	10	94.49	97.54	3.05	696	66	5	1.3
			chlorite. Less than 1% quartz stringers. Core is broken through	out 590549	320	330	10	97.54	100.59	3.05	1074	72	10	2.0
			length, no piece larger than 15 cm. 2-3% pyrite, trace to $1/4\%$											
			chalcopyrite, trace to 1/4% molybdenite.											
328.7	357.0	100.19	108.81 VOLCANICLASTICS											
			Dark grey green as 246.5-309.5. 3% quartz stockwork. Rock is	590550	330	340	10	100.59	103.63	3.05	1650	29	15	2.3
			generally broken. 5% pyrite, trace chalcopyrite in quartz.	590551	340	350	10	103.63	106.68	3.05	1773	30	10	2.5
			- 337.5-338.5 - broken core	590552	350	360	10	106.68	109.73	3.05	1284	27	5	1.7
			- 346-357 - medium grey green banded. Banding shows strong epidote. Quartz stockwork to 1-2%, locally strong silicified. 5% pyrite.											
357.0	357.5	108.81	108.97 APLITE DYKE											
			Green pink color. Strongly brecciated and altered to epidote.											
			Local K-feldspar seams to 2mm. 5% pyrite.											
357.5	364.2	108.97	111.01 VOLCANICLASTICS											
			as 346-357, medium grey green. 1-2% quartz stockwork. Strong epidote. 5% pyrite.	590553	360	370	10	109.73	112.78	3.05	1475	17	10	2.0
357.0	357.5	108.81	108.97 APLITE DYKE											
			Green pink color, but coarser grained than 357-357.5. K-feldspa	r										
			crystals to 1cm. Strong epidote. 5% pyrite.											

				DIAMOND DRI	LL RECOR	D									
Feet		Met	res		Sample		Feet			Metres		ppm	ppm	ppb	ppm
From	То	From	То	DESCRIPTION	Number	From	To Le	ength	From	То	Length	Cu	Мо	Au	Ag
365.1	385.5	111.28	117.50	 VOLCANICLASTICS Medium grey green banded as 357.5-364.2. 1-2% quartz stockwork Strong epidote, 5% pyrite. - 375-385.5 - dark grey green. 4-5% quartz stockwork. 5% pyrite trace to 1/4% chalcopyrite in quartz 	590554 590555	370 380	380 390		112.78 115.83		3.05 3.05	1074 1000	42 56	5 5	1.2 1.2
385.5	386.2	117.50	117.72	APLITE DYKE Green color, so strongly altered by epidote it is hard to tell for sure what the lithology is. 2-3% pyrite.											
386.2	396.7	117.72	120.92	VOLCANICLASTICS / MAJOR FAULT / GOUGE ZONE Dark grey green in color. Strong epidote. 2-3% quartz stockwork 5% pyrite, trace to 1/4% chalcopyrite in quartz. - 388.2-394 - gouge	590556	390	400	10	118.87	121.92	3.05	879	28	5	1.0
396.7	398.0	120.92	121.31	APLITE DYKE as 385.5-386.2. 2-3% pyrite.											
398.0	399.0	121.31	121.62	VOLCANICLASTICS Dark grey green as 386.2-396.7. 2-3% pyrite. - 398-398.5 - broken ground core											
399.0	400.4	121.62	122.04	FELDSPAR PORPHYRY Medium grey, coarse grained. 20% 5-15mm white feldspar phenocrysts. 2-3% pyrite. Magnetite seams to 1mm (?)											
400.4	431.1	122.04	131.40	VOLCANICLASTICS Dark grey green as 398-399. More solid core. Much less epidote. 2-3% quartz stockwork, 1% late carbonate stringers. 3-5% pyrite, trace chalcopyrite. - 410-427 - medium grey green banded - 427-431.1 - dark grey green	590557 590558 590559	400 410 420	410 420 430	10 10 10	124.97	124.97 128.02 131.07	3.05 3.05 3.05	898 1442 1299	150 18 24	5 10 5	1.1 2.0 1.9
431.1	432.0	131.40	131.68	APLITE DYKE as 396.7-398. Strong epidote, 3% k-feldspar as veinlets and clots. 2-3% pyrite											
432.0	439.0	131.68	133.81	VOLCANICLASTICS Dark grey green as 400-431.1. 2% quartz stockwork, 3% pyrite	590560	430	440	10	131.07	134.11	3.05	937	2	10	1.6
439.0	447.0	133.81	136.25	APLITE DYKE as 431.1-432. 2-5% K-feldspar as veinlets and clots. 2-3% pyrite	590561	440	450	10	134.11	137.16	3.05	1311	8	5	2.4

Sheet 5 of 6

		Hole N	umber	DIAMOND DRII		п						Sheet	3	01 0	
Fast		Mat		DIAMOND DRI		D	East			Matuaa					
Feet From	То	Met From	res To	DESCRIPTION	Sample Number	From	Feet To Lo	onoth	From	Metres To	Length	ppm Cu	ppm Mo	ppb Au	ppm Ag
riom	10	m	10		Number	TIOM	10 10		m	10	lengen	Cu	1010	nu	1.6
447.0	448.1	136.25		VOLCANICLASTICS											
				Dark grey green as 432-439. Trace quartz stockwork and carbonate Strong epidote. 3% pyrite.											
448.1	456.2	136.58	139.05	APLITE DYKE / SILICEOUS ZONE											
				Strong epidote, 3% K-feldspar as coarse clots. 1-2% pyrite - 452-455 - grades to dirty quartz vein(?). 1-2% pyrite.	590562	450	460	10	137.16	140.21	3.05	1806	5	10	3.5
456.2	462.5	139.05	140.97	VOLCANICLASTICS											
				Dark grey green as 447-448.1. 1-2% quartz stockwork, 1% carbonate. 2-3% pyrite											
462.5	464.0	140.97		APLITE DYKE as 448.1-456.2, 2% pyrite											
				us 410.1-150.2, 2% pyric											
464.0	480.7	141.43		VOLCANICLASTICS	E00E(2	460	470	10	140.01	142.00	2.05	1000	50	25	2.0
				Dark grey green, as 456.2-462.5. 5-6% quartz stockwork. 1% carbonate, 2-5% pyrite, trace chalcopyrite	590563 590564	460 470	470 480		140.21 143.26		3.05 3.05	1089 966	53 19	25 5	2.0 1.5
480.7	483.5	146.52		APLITE DYKE											
				as 462.5-464, 2% pyrite											
483.5	593.0	147.37		VOLCANICLASTICS											
				Dark grey green as 464-480.7. 2-3% pyrite	590565	480	490		146.31		3.05	790	40	5	1.4
				- 488-493 - broken core	590566	490	500		149.35		3.05	761	14	5	1.0
				- 498-540 - Noticeable decrease in epidote to less than 1-2%.	590567	500	510		152.40		3.05	586	36	<5	0.8
				Stockwork now 4-5%, 1% carbonate. 2-3% pyrite	590568	510	520		155.45		3.05	436	10	5	0.5
				Trace to 1/4% chalcopyrite, trace to 1/4% molybdenite		520	530		158.50		3.05	609	35	5	0.6
				in quartz	590570	530	540	10			3.05	428	10	5	0.4
				- 502.5-506 - broken core	590571	540	550		164.59		3.05	460	9	5	0.3
				- 514-538 - vertically fractured	590572	550	560		167.64		3.05	633	9	5	0.7
				- 540-593 - lithology through this zone grades from grey black to	590573	560	570		170.69		3.05	464	6	5	0.5
				medium grey (silica rich) over short 20-60cm sections	590574	570	580		173.74		3.05	713	5	<5	0.8
				1-3% quartz stockwork. Core through this section is	590575	580	593	13	176.79	180.75	3.96	503	9	5	0.6
				broken with no piece larger than 15cm. 3-5% pyrite											
				trace chalcopyrite, trace molybdenite											
				- 556.5-557.3 - MAJOR GOUGE											
				Construites distance in a transferred of E02 (col											

Core tube did not lock at 588 feet. Hole was abandoned at 593 feet and ended short of Whipsaw Porphyry contact.

593 - END OF HOLE

Sheet 6 of 6

				DIAMONI	D DRILL RECOR	D										
Feet		Metres			Sample		Feet			Metres		ppm	ppm	ppb	ppm	
From	То	From	То	DESCRIPTION	Number	From	To L	ength	From	То	Length	Cu	Мо	Au	Ag	
			Weight	ed average		12	593	581	3.66	180.75	177.09	1208	41	11	1.8	
			Weight	ed average - top zone		12	140	128	3.66	42.67	39.01	1845	46	13	2.2	
			Weight	ed average - top zone		12	220	208	3.66	67.06	63.40	1604	59	11	2.0	
			-	ed average -bottom zone		220	593	373	67.06	180.75	113.69	983	31	10	1.8	
					Box 1	12.0	32.4	В	Box 12	215.5	233.4	E	Box 23	412.9	431.0	
					Box 2	32.4	50.4	В	lox 13	233.4	251.2	E	30x 24	431.0	449.3	
					Box 3	50.4	68.0	В	80x 14	251.2	269.0	E	Box 25	449.3	467.2	
					Box 4	68.0	86.0	В	Box 15	269.0	286.8	E	Box 26	467.2	485.7	
					Box 5	86.0	105.2	В	80x 16	286.8	304.9	E	Box 27	485.7	504.4	
					Box 6	105.2	123.0	В	lox 17	304.9	322.7	E	Box 28	504.4	521.2	
					Box 7	123.0	141.5	В	lox 18	322.7	340.4	E	Box 29	521.2	539.0	
					Box 8	141.5	160.9	В	Box 19	340.4	357.5	E	Box 30	539.0	556.5	
					Box 9	160.9	178.6	В	80x 20	357.5	376.1	E	Box 31	556.5	573.0	
					Box 10	178.6	197.8	В	Box 21	376.1	394.9	E	30x 32	573.0	589.0	
					Box 11	197.8	215.5	В	80x 22	394.9	412.9	E	30x 33	589.0	593.0	

Company (Canfleur	Mining I	Inc.		Depth 0	Bearing	Dip Angle -90							Hole N	umber 2	005-07			
Property	Whipsaw	v			400 1175		-90 -89 -85							S	ection 9	400 NE			
Latitude Departure Elevation Length	1178 f	12500 M 8115 H 1600 r feet or	E 9425 NE				-65							S Com	pleted N	IQ / BQ October 21 Iovember T Henne	21, 2005	5	
Feet		Met	res					Sample		Feet]	Metres		ppm	ppm	ppb	oz/t	ppm
From	То	From	То	DESCI	RIPTION			Number	From	To Le	ngth	From	To I	Length	Cu	Мо	Au	Au	Ag
0.0	16.0	0.00	4.88 CASING																
16.0	64.1	4.88	microfractured or pyrite. 3-5% of epidote. Local fr Core is generall - 18.4-19.1 - qu p	grained volcanic and healed with t quartz stockwork. racture carbonate. y broken. artz vein 10ca. Fra yrite. en core, core tube en core.	hin veinlets . Local splot . Fracture ch actured. Epi	of quartz, o chy dissem llorite. 5% p dote, chlori	carbonate inated oyrite.	590576 590577 590578 590579 590580	12 20 30 40 50	20 30 40 50 60	8 10 10 10 10	3.66 6.10 9.14 12.19 15.24	6.10 9.14 12.19 15.24 18.29	2.44 3.05 3.05 3.05 3.05	936 909 775 759 923	9 5 5 21 4	10 <5 5 5 5		0.9 0.7 0.3 0.4 0.6
64.1	116.5	19.54	phenocrysts. Fra epidote. 2-3% q	n color. 20% 5-15n acture chlorite, loc uartz stockwork. I tures. 3% pyrite. ly broken. en core en core en core en core	cal fracture of	carbonate a	nd	590581 590582 590583 590584 590585 590586	60 70 80 90 100 110	70 80 90 100 110 120	10 10 10 10 10 10	18.29 21.34 24.38 27.43 30.48 33.53	21.34 24.38 27.43 30.48 33.53 36.58	3.05 3.05 3.05 3.05 3.05 3.05	1000 626 652 722 716 883	43 35 41 40 29 21	5 10 5 5 7.5		0.6 0.4 0.3 0.3 0.3 0.3 0.6
116.5	153.0	35.51	with quartz, car 5% pyrite	STICS quartz stockworl bonate, or pyrite. proken ground con	Local K-felo	dspar in qu		590587 590588 590589	120 130 140	130 140 150	10 10 10	36.58 39.62 42.67	39.62 42.67 45.72	3.05 3.05 3.05	1002 977 1038	19 13 16	5 5 5		0.4 0.4 0.4

- 116.5-118 - broken ground core on contac
 - 151-153 - broken ground core on contact

Hole Number 2005-07 2 Sheet of 10 DIAMOND DRILL RECORD Feet Metres Sample Feet Metres ppm ppb oz/t ppm ppm То То DESCRIPTION From To Length From To Length Mo From From Number Cu Au Au Ag 228.2 46.63 69.56 FELDSPAR PORPHYRY 153.0 150 1024 5 as 64.1-116.5. Decrease in epidote and argillization. 1-2% quartz 590590 160 10 45.72 48.77 3.05 59 0.4170 924 41 5 stockwork. Fracture chlorite, local fracture epidote, carbonate. 590591 160 10 48.7751.82 3 05 0.45 2-3% pyrite, trace to 1/4% chalcopyrite, trace to 1/4% molybdenite 170 180 10 51.82 54.86 3.05 694 44 0.4590592 - 168 - molybdenite is quartz stringer 590593 180 190 10 54.86 57.91 3.05 285 38 5 < 0.2 5 - 173-176 - broken core 590594 190 200 10 57.91 60.96 3.05 456 14 0.2 200 28 <5 0.2 - 181-182 - broken core 590595 210 10 60.96 64.01 3.05 539 - 198-203 - broken core 220 429 <5 0.2 590596 210 10 64.01 67.06 3.05 58 - 208-213 - broken core 590597 220 230 10 67.06 70.10 3.05 604 40 5 0.3 - 213.2 - blob of chalcopyrite on quartz sringer contact - 216-218 - broken core - 222-223 - minor argillization of feldspars on fracture contact - 227-228.2 - broken core 474.5 69.56 144.63 VOLCANICLASTICS 228.2 5 0.9 as 116.5-153. 5% quartz stockwork. Local epidote on fractures 590598 230 240 70.10 73.15 3.05 1609 46 10 250 5 0.9 and in quartz stockwork. 5% pyrite. 590599 240 10 73.15 76.20 3.05 1365 19 - 228.9-229.3 - siliceous zone, 5% pyrite 250 76.20 79.25 3.05 30 5 0.8 590600 260 10 1243 260 270 82.30 3.05 1223 59 10 0.8 - 250.4-251 - siliceous breccia zone, 5% pyrite 590601 10 79.25 - 259.8-260.1 - guartz vein 60ca epidote, 5% pyrite 270 280 82.30 85.35 1553 5 590602 10 3.05 46 1.1 - 283.7-284.1 - guartz vein 30ca, 2% pyrite 590603 280 290 10 85.35 88.39 3.05 1148 39 5 0.6 - 288.4-288.8 - quartz vein 30ca, 2% pyrite - 292.2-293.8 - rubbly quartz vein 70ca, fracture chlorite, 3% pyrite 590604 290 300 10 88.39 91.44 3.05 803 24 5 0.5 - 300-340 - microfractured and rehealed with quartz, carbonate 590605 300 310 10 91.44 94.49 3.05 1462 21 5 0.7 590606 310 320 10 94.49 97.54 3.05 1521 53 5 0.5 or pyrite. - 313-323 - broken core 590607 320 330 10 97.54 100.59 3.05 1550 34 5 1.0 - 320.8-322.5 - rubbly quartz vein no ca, 5% pyrite, trace 590608 330 340 10 100.59 103.63 3.05 1726 188 5 1.1 chalcopyrite 590609 340 350 10 103.63 106.68 3.05 1524 173 5 0.5 - 342.5-342.6 - quartz vein 80ca, 2% pyrite, 1/4% molybdenite 350 109.73 1528 5 0.6 590610 360 10 106.68 3.05 53 5 - 353.6-353.7 - quartz vein 70ca, red k-feldspar, 3% pyrite, 1/4% 590611 360 370 10 109.73 112.78 3.05 1217 57 0.3 chalcopyrite 370 380 10 112.78 115.83 3.05 1005 48 <5 0.4590612 - 356-359 - broken, ground core 590613 380 390 10 115.83 118.87 1318 5 0.3 3.05 63 0.2 - 360.7-361.7 - guartz vein 50ca, chlorite, 1% pyrite. 590614 390 400 10 118.87 121.92 3.05 891 28 <5 - 367.5-367.6 - quartz vein 60ca, epidote, red k-feldspar, 2% 400 410 1036 18 5 0.4590615 10 121.92 124.97 3.05 pyrite, 1 % chalcopyrite 590616 410 420 10 124.97 128.02 3.05 1386 51 10 0.4- 368-368.5 - broken, ground core - 370-402 - breccia zone, broken core rehealed with carbonate, quartz and pyrite, carbonate veinlets and blebs with abundant host rock fragments. 5% pyrite - 394-396 - broken, ground core - 401-403 - broken, ground core - 414.2-414.9 - cherty horizon

- 417.6-417.8 - cherty horizon

- 422.2-422.8 - quartz vein (or cherty horizon?) 40ca 2% pyrite,

trace chalcopyrite.

		Hole N	lumber	2005-07								Sheet	3	of 1	0	
				DIAMOND DR	LILL RECORD											
Feet	Me		res		Sample		Feet		Metres			ppm	ppm	ppb	oz/t	ppm
From	То	From	То	DESCRIPTION	Number	From	То	Length	From	То	Length	Cu	Мо	Au	Au	Ag
228.2	474.5	69 56	144 63	VOLCANICLASTICS												
220.2	4/4.5	09.50	144.05	(Continued)												
				- 423-474.5 - 5-6% quartz stockwork, 5% pyrite, 1/4%	590617	420	430	10	128.02	131.07	3.05	1998	104	5		0.7
				chalcopyrite, confined to quartz	590618	430	440		131.07		3.05	1191	53	<5		0.6
				- 430-430.2 - clay gouge	590619	440	450		134.11		3.05	1654	91	<5		0.6
				- 445.1-445.6 - quartz vein 40ca, epidote, pink K-feldspar, 2-3%	590620	450	460		137.16		3.05	1615	88	5		1.2
				pyrite, 1/4% chalcopyrite.	590621	460	470		140.21		3.05	1385	82	5		0.7
				- 447.8-448.5 - broken core.												
				- 463-463.2 - clay gouge												
				- 465.6-466.2 - broken rubbly core												
				- 471-473- broken rubbly core												
474.5	478.8	144 63	145 94	MAJOR FAULT GOUGE ZONE												
17 1.0	170.0	111.00	1 10.7 1	Textures are obliterated, looks to be about 5% quartz fragments.	590622	470	480	10	143.26	146.31	3.05	2079	88	5		0.6
				Unable to ascertain mineral content.												
478.8	496.6	145.94	151.37	VOLCANICLASTICS										_		
				As 228.2-474.5. Extremely brecciated and broken. 3-5% quartz	590623	480	490		146.31		3.05	3037	39	5		0.9
				stockwork. Chlorite and carbonate on fractures, carbonate, quartz	590624	490	500	10	149.35	152.40	3.05	1655	28	<5		0.6
				as breccia healing. 3-5% pyrite, 1/4% chalcopyrite in quartz.												
				- 478.8-479.7 - crushed quartz vein 10ca, 2-3% pyrite												
496.6	498.3	151.37	151.88	FELDSPAR PORPHYRY												
				Grey black, 5% 5-15mm white feldspar phenocrysts. Extremely												
				broken, no piece larger than 5cm. 3-5% pyrite.												
498.3	512.0	151.88	156.06	VOLCANICLASTICS												
				as 478.8-496.6. 5% quartz stockwork. Chlorite, local fracture red	590625	500	510	10	152.40	155.45	3.05	2184	85	13		0.7
				K-feldspar. 3-5% pyrite, 1/4% chalcopyrite in quartz.												
				- 500-500.5 - broken rubbly core with red K-feldspar												
				- 503-508 - broken, ground core, 1 foot lost -508-512 - broken core												
				-508-512 - broken core												
512.0	514.9	156.06	156.94	FELDSPAR PORPHYRY												
				Medium grey color . 10% white feldspar phenocrysts to 10mm.												
				Groundmass 1-2mm, equigranular. 1-2% quartz stockwork.												
				Entire dyke is broken. 2-3% pyrite.												
514.9	518.8	156 94	158 13	VOLCANICLASTICS												
511.7	010.0	100.71	100.10	As 498.3-512.3. 3-4% guartz stockwork. Entire zone is broken.	590626	510	520	10	155.45	158 50	3.05	2080	217	10		0.9
				3-4% pyrite, trace chalcopyrite.	550020	510	520	10	100.40	150.50	5.05	2000	217	10		0.7
				Filler and charles Filler												
518.8	521.2	158.13	158.86	FELDSPAR PORPHYRY												
				As 512-514.9. Entire dyke is broken. 1-2% pyrite.												

Hole Number 2005-07

Sheet 4 of 10

				DIAMOND DRI	LL RECORI)									
Feet		Me	tres		Sample		Feet		Metres		ppm	ppm	ppb	oz/t	ppm
From	То	From	То	DESCRIPTION	Number	From	To Leng	th From	То	Length	Cu	Мо	Au	Au	Ag
				NOTE: 520 switch to BQ as major fault as 474.5 is cutting off return water.											
521.2	529.0	158.86	161.24	VOLCANICLASTICS As 514.9-518.8. 5% quartz stockwork. 3-4% pyrite, trace chalcopyrite.	590627	520	530	10 158.50	161.55	3.05	2100	70	60		0.7
529.0	534.9	161.24	163.04	FELDSPAR PORPHYRY As 518.8-521.2. Bottom contact 5ca. Less than 1% quartz stockwork. 1-2% pyrite											
534.9	580.0	163.04	176.79	VOLCANICLASTICS											
				As 521.2-529. 5% quartz stockwork. 3% pyrite, trace to $1/4\%$	590628	530		10 161.55		3.05	1433	41	10		0.5
				chalcopyrite in quartz.	590629	540		10 164.59		3.05	2813	289	15		1.0
				- 543-555 - broken core	590630	550		10 167.64		3.05	1940	15	15		1.0
				- 558.9-559.3 - quartz vein 70ca. 3% pyrite, trace chalcopyrite.	590631 590632	560 570		10 170.69 10 173.74		3.05	2038	246	10 15		0.7 0.8
				- 568-569 - broken core - 569.3 - visible molybdenite in quartz stringer	590632	570	580	10 175.74	176.79	3.05	2360	125	15		0.8
580.0	582.1	176.79	177.43	FELDSPAR PORPHYRY As 529-534.9. No quartz stockwork. 1% pyrite											
582.1	587.6	177.43	179.10	VOLCANICLASTICS As 534.9-580. 5% quartz stockwork. 3% pyrite, trace to 1/4% chalcopyrite in quartz.	590633	580	590	10 176.79	179.83	3.05	1534	29	10		0.5
587.6	590.5	179.10	179.99	FELDSPAR PORPHYRY As 580-582.1. Extremely broken. No quartz stockwork. 1% pyrite											
590.5	681.0	179.99	207.57	VOLCANICLASTICS											
				As 582.1-587.6. 5% quartz stockwork. 3% pyrite, trace to 1/4%	590634	590	600	10 179.83	182.88	3.05	1504	65	10		0.6
				chalcopyrite in quartz.	590635	600	610	10 182.88	185.93	3.05	1513	42	10		0.5
				- 596.1-596.7 - quartz vein 10ca. 2% pyrite, trace chalcopyrite	590636	610	620	10 185.93	188.98	3.05	1590	93	15		0.8
				- 600.5-602 - broken core	590637	620		10 188.98		3.05	2106	146	15		1.5
		188.06	194.31	- 617-637.5 - MAJOR FAULT but no gouge	590638	630		10 192.03		3.05	1285	56	10		0.8
				- 617-618 - broken core	590639	640		10 195.07		3.05	1524	95	10		0.9
				- 620.2-621 - grey white silica rich zone, Chert?	590640	650			201.17	3.05	1897	56	10		0.6
				- 626.3 - 626.6 - rubbly quartz vein no ca, chlorite, 2-3% pyrite	590641	660 670		10 201.17		3.05	2250	44	15 20		1.2
				 - 637.5- 681 - core is now extremely competent. Stockwork is is still 5%. Local fracture red K-feldspar. 3-4% pyrite, trace to 1/2% chalcopyrite, both in quartz and disseminated through core, trace to 1/4% methodomita in guartz 	590642	670	680	10 204.22	207.27	3.05	2123	120	20		1.3

molybdenite in quartz

		Hole N	umber	2005-07							Sheet	5	of 1	D	
				DIAMOND DRI	LL RECORE)									
Feet		Met	res		Sample		Feet		Metres		ppm	ppm	ppb	oz/t	ppm
From	То	From	То	DESCRIPTION	Number	From	To Lengt	h From	То	Length	Cu	Мо	Au	Au	Ag
681.0	686.5	207.57	209.25	FELDSPAR PORPHYRY upper contact 10ca											
				Medium to dark grey in color. 10-15% white feldspar phenocrysts to 15mm. 3% quartz stockwork. Disseminated epidote through dyke. 2-3% pyrite, 1/4% chalcopyrite, both in quartz and in groundmass, Trace to 1/4% molybdenite in quartz.	590643	680	690 1	0 207.27	210.31	3.05	2446	114	15		1.4
686.5	690.3	209.25	210.41	VOLCANICLASTICS as 590.5-681.4% quartz stockwork. Fracture epidote. 4-5% pyrite 1/4% chalcopyrite, trace to 1/4% molybdenite											
690.3	701.5	210.41	213.82	 FELDSPAR PORPHYRY upper contact 80ca as 681-686.5. 2% quartz stockwork. Groundmass epidote. Fracture carbonate. Brecciated. 2-3% pyrite, trace to 1/4% chalcopyrite, trace to 1/2% molybdenite. 693.7-694.0 - quartz vein / bleached zone. 80ca. 2% pyrite 694.8-698 - abundant fracture molybdenite through this section up to 1/2% of core. 	590644	690	700 1	0 210.31	213.36	3.05	2055	270	10		1.1
701.5	707.3	213.82	215.59	VOLCANICLASTICS as 686.5-690.3. 5% quartz stockwork. 3% pyrite, 1/4% to 1/2% chalcopyrite both in quartz and in unit itself. Trace to 1/4% molybdenite.	590645	700	710 1	0 213.36	216.41	3.05	2388	174	15		1.2
707.3	712.4	215.59	217.14	FELDSPAR PORPHYRY upper contact 60ca, lower 50ca as 690.3-701.5. 2% quartz stockwork. Fracture and groundmass epidote. Fracture pink K-feldspar. 2-3% pyrite, 1/4% to 1/2% chalcopyrite, trace molybdenite.											
712.4	878.2	217.14	267.68	VOLCANICLASTICS											
	0.0			as 701.5-707.3. Marked increase in stockwork veining to 10%-15%	590646	710	720 1	0 216.41	219.46	3.05	2448	70	25		1.6
				Several veinlets now to 1cm. Zone is also brecciated. Epidote	590647	720	730 1	0 219.46	222.51	3.05	1905	204	15		1.0
				throughout both on fractures and in unit. Fracture pink	590648	730	740 1	0 222.51	225.55	3.05	1683	33	15		0.9
				K-feldspar, carbonate. 5% pyrite, 1/4% to 1% chalcopyrite in	590649	740	750 1	0 225.55	228.60	3.05	1429	87	10		0.7
				unit and in quartz. 1/4% molybdenite in quartz, locally to 1%	590650	750	760 1	0 228.60	231.65	3.05	1580	48	10		0.8
				on fractures.	590651	760	770 1	0 231.65	234.70	3.05	1882	215	15		1.0
				- 714.5-717.5 - zones of crumbly broken core	590652	770	780 1	0 234.70	237.75	3.05	1449	100	10		0.7
				- 727-727.2 - gouge	590653	780	790 1	0 237.75	240.79	3.05	1600	77	10		0.8
				- 768- 777 - intensely silicified and bleached. Abundant	590654	790	800 1	0 240.79	243.84	3.05	1732	127	20		1.3
				K-feldspar, 1% chalcopyrite, 1/4% molybdenite	590655	800	810 1	0 243.84	246.89	3.05	1815	157	15		1.0
				- 791.2-796.5 - quartz vein 60ca. 2% pyrite, trace chalcopyrite	590656	810	820 1	0 246.89	249.94	3.05	1756	216		< 0.001	0.8
				 - 800.1-800.6 - quartz vein 20ca. K-feldspar, epidote, 1-2% pyrite, 1/4% chalcopyrite, trace molybdenite - 823.8-824.8 - bleached zone. 2-3% pyrite, 1/2% chalcopyrite, 	590657 590658	820 830			252.99 256.04	3.05 3.05	2250 2826	209 335		<0.001 <0.001	1.1 1.3
				1/4% molybdenite - 835.1 - molybdenite coated fracture											

		Hole N	lumber	2005-07							Sheet	6	of	10	
Feet		Met	*06	DIAMOND DRI	LL RECORD Sample)	Feet		Metres				nnh	07/4	
From	То	From	То	DESCRIPTION	Number	From	To Leng	th From		Length	ppm Cu	ppm Mo	ppb Au	oz/t Au	ppm Ag
							0			0					
712.4	878.2	217.14	267.68	VOLCANICLASTICS (Continued)	590659 590660	840 850		10 256.04 10 259.08	259.08 262.13	3.05 3.05	2736 2880	286 163		<0.001 <0.001	1.3 1.4
				- 859.5-860.0 - quartz vein 30ca. 2% pyrite, 1/4% chalcopyrite,	590660 590661	860			262.13	3.05	2880 2527	199		< 0.001	1.4
				1/4% molybdenite.	590662	870		10 265.18		3.05	2412	245		< 0.001	1.3
878.2	878.9	267.68	267.89	FELDSPAR PORPHYRY upper contact 60ca, lower 60ca Light grey brown in color. 40% white feldspar phenocrysts to 15mm. 2% biotite, silicified. 1% pyrite											
878.9	894.0	267.89	272.49	VOLCANICLASTICS											
				as 712.4-878.2. 10-15% quartz stockwork and sub-parallel (to bedding or foliation) veinlets. 1-2% of veinlets are chalcedonic quartz, suggesting multiple phases of quartz. Alteration consists of epidote, fracture and quartz veinlet K-feldspar, fracture carbonate. 3-5% pyrite, trace to 1/2% chalcopyrite, trace to 1/4% molybdenite	590663	880	890	10 268.23	271.28	3.05	2151	253		<0.001	1.4
894.0	895.0	272.49	272.80	FELDSPAR PORPHYRY upper contact 60ca, lower 70ca Chilled margins. Dark grey. 10% white feldspar phenocrysts to											
				15mm. Strongly silicified, carbonate fractures. 1% pyrite.											
895.0	906.3	272.80	276.24	VOLCANICLASTICS											
				as 878.9-894.0. 10-15% quartz stockwork and sub-parallel (to bedding or foliation) veinlets. 1-2% of veinlets are chalcedonic quartz, suggesting multiple phases of quartz. Alteration consists of epidote, fracture and quartz veinlet K-feldspar, fracture carbonate. 3-5% pyrite, trace to 1/2% chalcopyrite, trace to 1/4% molybdenite	590664 590665	890 900		10 271.28 10 274.32		3.05 3.05	1900 1429	107 53		<0.001 <0.001	0.9 1.4
906.3	908.9	276.24	277.04	FELDSPAR PORPHYRY upper contact 30ca, lower 70ca Chilled margin. Fine-grained, medium grey. 5% white feldspar phenocrysts to 15mm. 2-3% biotite. Fractured and healed with carbonate and quartz. 1-2% pyrite.											
908.9	915.1	277.04	278.93	VOLCANICLASTICS as 895.0-906.3. 10-15% quartz stockwork and sub-parallel (to bedding or foliation) veinlets. 1-2% of veinlets are chalcedonic quartz, suggesting multiple phases of quartz. Alteration consists of epidote, fracture and quartz veinlet K-feldspar, fracture carbonate. 3-5% pyrite, trace to 1/2% chalcopyrite, trace to 1/4% molybdenite	590666	910	920	10 277.37	280.42	3.05	2274	114		<0.001	1.5
915.1	917.4	278.93	279.63	FELDSPAR PORPHYRY upper contact 60ca, lower 60ca As 894-895. Chilled margin. Fractured, filled with quartz and carbonate. 1-2% pyrite.											

		Hole N	Jumber	2005-07								Sheet	7	of 1	0	
				DIAMOND DR	ILL RECORE)										
Feet		Met			Sample		Feet			Metres		ppm	ppm	ppb	oz/t	ppm
From	То	From	То	DESCRIPTION	Number	From	To L	ength	From	To 1	Length	Cu	Мо	Au	Au	Ag
917.4	929.3	279.63	283.25	VOLCANICLASTICS as 908.9-915.1. 10-15% quartz stockwork and sub-parallel (to bedding or foliation) veinlets. 1-2% of veinlets are chalcedonic quartz, suggesting multiple phases of quartz. Alteration consists of epidote, fracture and quartz veinlet K-feldspar, fracture carbonate. 3-5% pyrite, trace to 1/2% chalcopyrite, trace to 1/4% molybdenite	590667	920	930	10	280.42	283.47	3.05	2240	160		<0.001	1.7
929.3	929.9	283.25	283.44	FELDSPAR PORPHYRY upper contact 60ca, lower 60ca As 915.1-917.4. Chilled margin. Fractured, filled with quartz and carbonate. 1-2% pyrite.												
929.9	1002.2	283.44	305.47	 VOLCANICLASTICS as 908.9-915.1. 10-15% quartz stockwork and sub-parallel (to bedding or foliation) veinlets. Zone now has larger quartz veins to 30cm. 1-2% of veinlets are chalcedonic quartz, suggesting multiple phases of quartz. Abundant epidote, fracture carbonate, fracture and quartz veinlet K-feldspar, 3-5% pyrite, trace to 1/2% chalcopyrite, trace to 1/4% molybdenite. 937.5-937.7 - quartz vein 20ca. 1% pyrite, 1/4% chalcopyrite, 1/4% molybdenite 954.5-955.5 - quartz vein 70ca, 4% coarse pyrite, 2% coarse chalcopyrite 958.3-958.6 - quartz vein 60ca, K-feldspar, 2% pyrite 972.1-972.4 - quartz vein 40ca. K-feldspar, 2% pyrite, trace molybdenite 984.4-984.8 - quartz vein 40ca. K-feldspar, 1% pyrite 987.3-987.7 - quartz vein 5ca. K-feldspar, pidote, 2% pyrite 	590668 590669 590670 590671 590672 590673 590674	930 940 950 960 970 980 990	940 950 960 970 980 990 1000	10 10 10 10 10 10	283.47 286.52 289.56 292.61 295.66 298.71 301.76	289.56 292.61 295.66 298.71 301.76	3.05 3.05 3.05 3.05 3.05 3.05 3.05	2213 2510 4681 3019 2876 2179 2056	159 185 217 300 263 134 173		<0.001 <0.001 <0.001 <0.001 <0.001 <0.001	1.0 1.1 2.4 1.6 2.1 1.7 2.0
1002.2	1004.3	305.47	306.11	FELDSPAR PORPHYRY upper contact 60ca, lower 60ca Medium grey. 10-15% whit feldspar phenocrysts to 15mm. 2-3% biotite. Fracture chlorite, carbonate. Local epidote. 2% pyrite.												
1004.3	1006.2	306.11	306.69	VOLCANICLASTICS as 929.9-1002.2. 3% quartz stockwork. 3-5% pyrite. Trace chalcopyrite.	590675	1000	1010	10	304.80	307.85	3.05	1475	97		<0.001	1.3
1006.2	1007.1	306.69	306.97	FELDSPAR PORPHYRY upper contact 60ca, lower 60ca As 1002.2-1004.3. 2% pyrite.												

		Hole N	lumber	2005-07								Sheet	8	of	10	
				DIAMOND DE	ILL RECORI)										
Feet		Met			Sample		Feet			Metres		ppm	ppm	ppb	oz/t	ppm
From	То	From	То	DESCRIPTION	Number	From	To l	Length	From	То	Length	Cu	Мо	Au	Au	Ag
1007.1	1055.6	306.97	321.75	VOLCANICLASTICS												
				As 929.9-1002.2. 5-7% quartz stockwork and sub-parallel quartz	590676	1010	1020	10	307.85	310.90	3.05	1876	119		< 0.001	1.3
				veinlets. Epidote is common. Local vein and fracture K-feldspar.	590677	1020	1030	10	310.90	313.95	3.05	1950	113		< 0.001	0.4
				Fracture carbonate. 4% pyrite, trace to 1/4% chalcopyrite, trace	590678	1030	1040	10	313.95	317.00	3.05	1626	76		< 0.001	0.9
				molybdenite.	590679	1040	1050	10	317.00	320.04	3.05	1411	164		< 0.001	0.9
				- 1018.9-1019.1 - quartz vein 50ca, carbonate, 1% pyrite - 1024.7-1024.9 - quartz vein 60ca, 5% clasts, 1% pyrite	590680	1050	1060	10	320.04	323.09	3.05	1312	87		<0.001	0.8
1055.6	1062.3	321.75	323.79	FELDSPAR PORPHYRY upper contact 70ca, lower 70ca Medium grey, 15% white feldspar phenocrysts to 15mm, 1-2% biotite, 2% quartz stockwork, fracture carbonate, K-feldspar, 1-2% finely disseminated pyrite.												
1062.3	1066.8	323.79	325.16	VOLCANICLASTICS												
				As 1007.1-1055.6. 5% quartz stockwork and sub-parallel quartz	590681	1060	1070	10	323.09	326.14	3.05	1921	131		< 0.001	1.4
				veinlets. Still small percentage as chalcedonic quartz. Epidote,								2157	182		< 0.001	1.2
				local carbonate, K-feldspar on fractures. 5% pyrite, trace to 1/4%								2939	214		< 0.001	2.0
				chalcopyrite, trace molybdenite.								2059	171		< 0.001	1.2
1066.8	1070.0	325.16	326.14	PEGMATITE DYKE upper contact 5ca, lower 70ca Strongly brecciated and rehealed with quartz and chlorite, "dirty" appearance. Epidote. 2-3% pyrite, 1/4-1/2% chalcopyrite, trace molybdenite.								2066	255		<0.001	1.3
1070.0	1113.8	326.14	339.49	VOLCANICLASTICS												
				As 1062.3-1066.8. 5% quartz stockwork and sub-parallel quartz	590682	1070	1080	10	326.14	329.19	3.05	2157	182		< 0.001	1.2
				veinlets. Still small percentage as chalcedonic quartz. Epidote,	590683	1080	1090	10	329.19	332.24	3.05	2939	214		< 0.001	2.0
				local carbonate, K-feldspar on fractures. 5% pyrite, trace to 1/4%	590684	1090	1100	10	332.24	335.28	3.05	2059	171		< 0.001	1.2
				 chalcopyrite, trace molybdenite. 1088.0-1088.2 - quartz vein 5ca, purple fluorite?, 1% pyrite, trace chalcopyrite, 1/2% molybdenite 1094.2-1094.4 - quartz vein 40ca, 1% pyrite 1110.9-1111.1 - quartz vein 30ca, 1% pyrite 	590685	1100	1110	10	335.28	338.33	3.05	2066	255		<0.001	1.3
1113.8	1114.6	339.49	339.73	FELDSPAR PORPHYRY upper contact 40ca, lower 60ca As 1055.6-1062.3. 1% pyrite												
1114.6	1115.7	339.73	340.07	VOLCANICLASTICS As 1070.0-1113.8. 5% quartz stockwork and sub-parallel quartz veinlets. Still small percentage as chalcedonic quartz. Epidote, local carbonate, K-feldspar on fractures. 5% pyrite, trace to 1/4% chalcopyrite, trace molybdenite.	590686	1110	1120	10	338.33	341.38	3.05	2343	116		<0.001	1.6

Hole Number 2005-07

Sheet 9 of 10

				DIAMOND DRI)								
Feet From	То	Met From	res To	DESCRIPTION	Sample Number	From	Feet To Length		Metres To I	ength	ppm Cu	ppm Mo	ppb oz/i Au Au	
1115.7	1116.1	340.07	340.19	FELDSPAR PORPHYRY upper contact 70ca, lower 60ca As 1113.8-1114.6. 1% pyrite										
1116.1	1126.4	340.19	343.33	VOLCANICLASTICS As 1114.6-1115.7. 5% quartz stockwork and sub-parallel quartz veinlets. Still small percentage as chalcedonic quartz. Epidote, local carbonate, K-feldspar on fractures. 5% pyrite, trace chalcopyrite, trace molybdenite.	590687	1120	1130 10	341.38	344.43	3.05	2587	265	<0.001	1.7
1126.4	1132.1	343.33	345.07	FELDSPAR PORPHYRY upper contact 40ca, lower 70ca As 1113.8-1114.6. 3% quartz stockwork. Local K-feldspar halos around fractures. Epidote. Fracture carbonate.1-2% pyrite.										
1132.1	1153.5	345.07	351.59	 VOLCANICLASTICS A 1116.4-1126.4. 5-7% quartz stockwork. Abundant epidote, fracture carbonate, local fracture K-feldspar. 3-5% pyrite, 1/4% chalcopyrite, trace molybdenite. - 1137-1147 - epidote green color, schistose, talcy fractures with slickensides. - 1144.1-1144.5 - carbonate / breccia vein 20ca, volcanics clasts 2% pyrite. 	590688 590689	1130 1140	1140 10 1150 10	344.43 347.48		3.05 3.05	3910 3844	195 205	<0.001 <0.001	
1153.5	1154.3	351.59	351.83	FELDSPAR PORPHYRY upper contact 60ca, lower 80ca Finer-grained, medium grey. 3% quartz stockwork. 3% pyrite, 1/4% chalcopyrite.										
1153.5	1155.0	351.59	352.05	VOLCANICLASTICS A 1132.1-1153.5. 5-7% quartz stockwork. Abundant epidote, fracture carbonate, local fracture K-feldspar. 3-5% pyrite, 1/4% chalcopyrite, trace molybdenite.	590690	1150	1160 10	350.52	353.57	3.05	4406	124	<0.001	2.7
1155.0	1178.0	352.05	359.06	FELDSPAR PORPHYRY (Whipsaw Intrusion) 60ca Fine-grained (contact phase). Varies in color from medium grey to light brown tan, due to alteration? Weakly brecciated with 1-2% quartz stockwork. Abundant epidote, local volcanic xenoliths. 3% pyrite, trace to 1/4% chalcopyrite, trace molybdenite - 1155-1157.5 - medium grey - 1157.5-1164.5 - light brown tan - 1164.5-1172.5 - light to medium grey - 1172.5-1178 - coarser grained light grey with K-feldspar	590691 590692	1160 1170	1170 10 1178 S			3.05 2.44	495 450	43 31	<0.001 <0.001	
				1178 0 ft og 250 06 m END OF HOLF										

1178.0 ft or 359.06 m. END OF HOLE

Hole Number 2005-07

Sheet 10 of 10

				DIAMOND DI	RILL RECOR	D										
Feet		Metres	5		Sample		Feet			Metres		ppm	ppm	ppb	oz/t	ppm
From	То	From	То	DESCRIPTION	Number	From	To l	Length	From	То	Length	Cu	Mo	Au	Au	Ag
			Weigh	hted average		12	1150	1138	3.66	350.52	346.87	1738	100	10		0.9
			Weigh	hted average - top zone		12	400	388	3.66	121.92	118.26	1014	40	6		0.5
			Weigh	hted average - North Zone (top half)		400	810	410	121.92	246.89	124.97	1847	95	13		0.9
			Weigh	hted average - North Zone (bottom half)		810	1160	350	246.89	353.57	106.68	2374	166	<	0.001	1.4
			Weigh	hted average - North Zone Total		400	1160	760	121.92	353.57	231.65	2093	130	<	0.001	1.1
			Weigh	hted average - Whipsaw Porphyry		1160	1178	18	353.57	359.06	5.49	475	38	<	0.001	0.3

Box 1	13.0	30.2	Box 21	368.0	386.2	Box 11	751.1	769.8	
Box 2	30.2	49.2	Box 22	386.2	404.7	Box 12	769.8	798.3	
Box 3	49.2	67.4	Box 23	404.7	423.0	Box 13	798.3	822.7	
Box 4	67.4	84.5	Box 24	423.0	440.7	Box 14	822.7	846.5	
Box 5	84.5	101.6	Box 25	440.7	458.0	Box 15	846.5	870.0	
Box 6	101.6	119.5	Box 26	458.0	477.0	Box 16	870.0	894.3	
Box 7	119.5	137.7	Box 27	477.0	493.0	Box 17	894.3	918.4	
Box 8	137.7	157.0	Box 28	493.0	503.0	Box 18	918.4	942.0	
Box 9	157.0	173.0	Box 29	503.0	520.0	Box 19	942.0	965.6	
Box 10	173.0	188.5	Now BQ			Box 20	965.6	989.1	
Box 11	188.5	205.1	Box 1	520.0	541.2	Box 21	989.1	1013.0	
Box 12	205.1	223.4	Box 2	541.2	563.5	Box 22	1013.0	1037.1	
Box 13	223.4	241.0	Box 3	563.5	585.7	Box 23	1037.1	1060.9	
Box 14	241.0	258.8	Box 4	585.7	608.8	Box 24	1060.9	1085.2	
Box 15	258.8	276.7	Box 5	608.8	631.5	Box 25	1085.2	1109.1	
Box 16	276.7	295.2	Box 6	631.5	657.0	Box 26	1109.1	1133.5	
Box 17	295.2	313.3	Box 7	657.0	681.5	Box 27	1133.5	1155.8	
Box 18	313.3	332.5	Box 8	681.5	704.5	Box 28	1155.8	1178.0	
Box 19	332.5	351.0	Box 9	704.5	728.0				
Box 20	351.0	368.0	Box 10	728.0	751.1				

(ISO 9001										et i	st i		i a c					dia	RTI													AA
							<u>_a</u> 10	1111 16-12	41 EI	lis	<u></u> St.,	Kel	 оwпа	BC	• V1Y	г ц 1 2АЗ	Subi	¦ A nitt	.506 ed by:	⊃ 94 R. T	īm H		je 1 Jerry									
AMPLE#		Cu ppm			-												Bi ppnip		Ca %		La ppm			Ba ppm	Ti %	B	AL %	Na %			Au** ppb	Sample kg
74 75 2651 2652 2653	1 2 76	145 31 74 2401 1632	<3 5 8	103 65 97	<.3 <.3 1.7	5 4 9	5 4 29	258 302 251	1.62 5.52	<2 2 5	<8 <8 <8	<2 <2 <2	<2 <2 <2	46 69 89	<.5 <.5 <.5	<3 <3 <3	<3 3	51 45 37		.091 .092 .051	6 6 1	11 10 8	.72. .57 1.59	40 18 79	.07 .10 .06 .21 .19	6 <3 9	.74 .86 3.15	.33	.09		2	5.54 5.76 7.37 1.36 4.39
2654 2655 2656 E G2656 RE G2656	164 129 148 151 147	1297 2459 2541	5 <3 <3	43 58 63	.5 1.0 .9	9 9 9	22 21 21	106 161 163	4.64 4.30 4.36 4.35 4.26	6 8 7	<8 <8 <8	<2 <2 <2	<2 <2 <2	29 31 32	.7 <.5 <.5 .5 <.5	3 उ उ	7 1 3 1 10 1 3 1 <3 1	33 67 70	.45 .54	.054 .067 .065 .065 .060	2 2 2	19 19 22	1.47 1.13 1.36 1.37 1.35	68 70 69	- 14 - 19 - 19	4 <3 3	2.13 1.45 1.72 1.76 1.72	.12 .14 .14	.75 .89	<2 <2 <2	11 13 20 16 10	6.02 5.67 5.95 -
2657 2658 2659 2660 2661	138 105	1553 1564	<3 3 <3	54 49 83	-6 -5 1.0	6 10 11	22 23 25	120 139 192		8 6 23	<8 <8 <8	<2 <2 <2	2 ≺2 √2	24 31 34	.6 <.5 .6	ব্য ব্য ব্য	6 1! 5 1! 4 14 <3 1; <3 2;	06 42 83	.53 .59 .97 1.75 .92	.045 .066 .055	2 5 6	18 22 24	1.35 1.53	67 79 47	.11 .16 .18	<3 <3 5	1.76 1.42 1.87 2.11 2.49	.11 .11 .09		<2 <2 <2	11 10 11 14 19	6.10 5.26 5.21 6.75 7.00
2662 2663 2664 2665 2666	68 119	1624	3 7 3	266 112 174		19 4 3	35 30 22	319 222 255	7.51 6.65 5.89 5.00 5.53	6 3 4	<8 <8 <8	<2 <2 <2	2 <2 <2	30 26 28	1.2 .9 .9	ও ও ও	7 15 8 10	39 54 62	-68 1.11 .57 .53 1.32	.054 .050 .062	4 2 1	50 7 10	2.76 2.09 1.31 1.39 1.46	56 42 56	.16 .22	4 4 5	2.54 1.76 1.80	. 13 . 14 . 15	2.26 1.71 .93 .98 1.11	2 <2 <2	11 15 14 9 14	6.09 5.96 5.58 6.36 5.27
2667 2668 2669 2670 2671	64 52	1386 1298 1337 2752 2284	10 3 4	97 112 197	.4 1.6	11 10 13	21 20 31	231 265 271		9 4 12	<8 <8 <8	<2 <2 <2	<2 <2 <2	51 81 83	.6 .7 .8	ব্য ব্য ব্য	9 20 5 20 <3 21	02 05 11	2.48 1.35 1.48 1.61 2.22	.065 .049 .048	3 2 2	28 24 33	1.31 1.72 1.76 1.90 1.73	70 94 68	.20 .20 .19	10 <3 3	2.88 3.25 3.43	.38 .41	1.28	<2 2	9 11 11 18 21	5.95 5.35 6.47 4.55 5.25
2672 2673 2674 2675 2675	78 79 88	1604	5 <3 14	146 111 128	1.9 1.2	10 14 63	25 35 29	316 267 349	5.37 6.19 5.07	28 34 15	<8 <8 <8	<2 <2 <2	<2 3 <2	39 61 66	.7 .8 .8	ও ও ও	3 2' 7 24 3 19	16 42 91	3.10 2.07 2.28 2.48 2.63	.042 .045 .064	4 4 6 2	27 20 222	1.04 1.64 1.73 2.60 3.20	45 47 61	.16 .16 .18	4 7 6	2.08 2.74 2.99	.19 .10	.44 1.07 1.14 1.41 1.81	<2 <2 <2	11 11 16 12 17	6.81 4.71 5.51 6.14 5.11
2677 2678 2679 2680 FANDARD DS6/0xF41	64 [·] 44 ·	1706 1552 1094	13 4 7	196 111 92	-9 1.4 1.1	97 87 67	36 35 27	516 341 288	6.07 5.07 4.13	18 13 5	<8 <8 10	<2 <2 <2	<2 3 <2	118 109 87	1.1 .7 .5	⊲ ⊲ ⊲	<3 22 5 12 <3 14	23 3 76 2 44 1	4.11 3.42 2.32 1.11 .89	.067 .076 .085	73 62 52	326 259 223	2.47 2.50	73 84 74	.17	4 6 <3	3.68	.13 .18 .15	1.31 1.94 1.31 1.09 .15	<2 <2 <2		6.93 6.92 7.12 4.93

- SAMPLE TYPE: DRILL CORE R150 AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP. Samples beginning 'RE' are Region and 'RRE' are Reject Regions.

Data FA DATE RECEIVED: OCI 12 2005 DATE REPORT MAILED: NOV.3/05

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Canfleur Mining Inc. FILE # A506594

Page 2

ACHE ANALYTICAL

ACME ARAEYI ICAL				_																											A	CHE ANALYTICA	۹ ا
SAMPLE#	Mo	Ću.	Pb	7.0	Ag	Ni	£0	Mn	Fe	As	11	A 11	Th	Sr	Cd	Sb	Ri	v	Ca	P	La	Co	Ма	Ba	Τī	в	Al	Na	к	u i	∆ı,** <	Sample	
GALL CEN		ppni			ppm					ppm								-	%		ppm			ppn		ppm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	%		ppm		kg	
····	PPm	PPn	ppin	PPm	PPa	ppn	ppu	222		PPin	PP	PPitt	PP"	PPII	PP"	5 buil	PPI	Ppia			PPN	ppm	/0	PPin	<i>/</i> ° .		10	70	70	եժուլ	PPD	×à	
G2681	61	1176	6	79	1.7	17	78	200	3.14	9	<8	<2	2	48	× 5	5	<3	88	.92	.106	11	71	1.14	77	07	11	1.16	.08	.56	2	9	5,85	
G2682		1890	11		2.6	74			5.48	21	10	~2		126		4			3.19	.087			2.95			-						6.58	
																						271			.19	10	3.23	- 18	1.69	<2	23		
G2683		2083	17	155		94			6.35	.7	<8	<2		114					2.58	.064			2.73	86	.20		2.78	-22	1.40	<2	24	7.39	
G2684	- · ·	2521							6.71		10								2.95	- 059			2.99	89			3.91		1.73	<2	34	6.90	
G2685	64	2031	23	654	1.5	102	44	625	5.98	9	<8	<2	<2	185	2.7	<3	<3	181	3.41	.071	4	280	2.69	101	.15	<3	4.24	.28	1.51	<2	43	6.13	
G2686	144	1967	11	294	1.4	94	40	541	5.20	14	-8	<2		139		<3	<3	190	3.02	.050	3	310	2.75	136	-17	<3	3.29	-24	1.51	<2	23	6.92	
G2687	81	1538	37	2328	4.2	90	39	677	5.02	61	<8	<2	4	135	7.4	6	<3	171	2.35	.059	- 3	268	2.69	132	.15	11	3.07	.23	1.44	<2	17	6.59	
G2688	21	202	14	118	<.3	7	9	374	2.54	33	<8	<2	<2	72	<.5	<3	<3	45	2.26	.079	7	7	.42	32	.02	<3	.96	.05	.23	z	14	6.57	
G2689	25	472	9	117	<.3	8	9	334	2.01	16	<8	<2	<2	75	<.5	<3	<3	46	1.74	.080	10	.12	.57		.02	3	.93	.07	.25	<2	8	6.68	,
G2690	8	365	7	78	.3	7			2.01		<8			115					1.55	.083	8	14	.62		.04	<3	1.10	.13	.29	<2	5	5.69	
22070	Ŭ	505	•	10		•	•			- 1-							-				Ŭ			04		••		• • • •	•=-		-		
G2691	20	702	8	96	.8	7	6	รกร	1.97	3	<8	<2	<2	68	< 5	<3	<3	50	.85	.085	5	17	.86	26	.06	<3	1.11	.10	.25	<2	11	6.13	
62692	8		5		<.3	Ś	-		1.91	<2	-8	<2		82			<3		1.02	.086	6	9	.79		.05	-		.15	.24	<2	5	5.84	
	1 -		-	- •			_				-										-	-								-	-		
G2693	18		_3	62	.4	5			2.17	2	<8	<2		104		<3		65	-80	.086	5	13	-92		.10	-	1.27	.17	.30	-2	3	6.79	
G2694		3510	34	214		33			7.43	3	<8	<2		66	.9	-	<3		.95		<1	86	2.36		-25	-	3.34	-32	1.87	3	20	2.52	
G2695	228	3126	28	213	1.5	27	41	291	8.06	7	<8	<2	<2	65	-9	<3	<3	525	1.06	.036	1	80	2.24	44	.26	<3	3.41	.33	1.85	<2	25	5.90	
G2696	267	1854	3	- 59	×.3	13	26	140	4.23	2	<8	<2		27		<3	<3	158	.44	.062	4	11	1.21		- 15	ও	1.51	.13	.88	<2	10	5.20	
RE G2696	272	1898	6	- 58	.6	8	24	141	4.36	-2	9	<2	<2	27		<3	<3	153	.43	.061	3	22	1.22	73	.15	4	1.53	-12	-98	<2	15	-	
RRE G2696	250	1862	- 5	- 58	<.3	9	24	133	4.10	- 6	<8	<2	<2	26	1.0	<3	4	148	.41	.061	- 3	15	1.18	73	.15	<3	1.47	.12	.87	<2	12	-	
G2697	94	1790	<3	43	.6	10	25	118	4.22	6	<8	<2	<2	19	<.5	-3	<3	147	-34	-038	2	20	1.18	77	.16	<3	1.50	.11	.94	<2	13	5.23	
G2698	216	2566	10	62	.7	7	21	136	3.82	9	<8	<2	<2	24	.5	<3	<3	128	.42	.030	1	13	1.04	59	.12	<3	1.38	.13	.69	<2	16	3.23	1
G2699	274	1858	9	49	.5	8	29	144	5.00	13	<8	<2	<2	27	.5	<3	<3	132	1.19	.040	4	14	1.05	59	.12	<3	1.51	.09	.84	<2	12	5.25	
G2700		1341	8		1.0	6			3.50	6	<8	<2	<2	26		-	<3		.86	.038	4	17	1.09		.12	3	1.54	.10	.87	<2	9	4.04	
290501		1928	9		2.0				4.72	17	<8	<2		28		4	<3		-98	.071	7		1.13		.14	_	1.61	.09	.99	Ż	1Ź	4.73	
			5						4.90					24					.53		•												
290502		2244	-	114						9	<8 -0	<2					<3			.040	4		1.72		.19			-11	1.33	<2	16	3.10	
290503	96	2089	13	102	2.1	34	32	271	6.41	6	<8	<2	4	29	<.2	6	<3 :	204	.49	.042	<1	35	2.34	56	.29	8	2.66	.18	1.94	3	14	6.07	
				~~								-				-					-						~ ~~		· · -				
290504		2363	14		1.9	19			7.17	9	<8	<2	2	29	.8	5	<3 :		.53	.037	2		2.57		-29		2.85	.17	2.13	<2	14	5.10	
290505		3481	- 6		3.2				5.60	27	<8	<2	<2	44	.7	<3	<3 ;			.047			2.09		.22		2.35	-05	1.67	<2	26	5.26	
290506	432	3773	13	82	2.0	16	35 .	202	5.48	27	<8	<2	<2	30	.7	<3	<3 :	210	2.39	.026	- 4	22	1.52	66	.14	3	1.72	.04	1.18	<2	25	5.26	
290507	174	3144	<3	- 76	2.6	2	27	177	4.08	11	<8	<2	4	25	<.5	4	<3	113	1.46	.047	- 5	9	.88	56	.09	11	1.33	.05	.69	<2	19	6.14	
290508	114	3053	13	90	2.9	4	33 0	211	4.50	104	<8	<2	5	33	.6	4	<3	143	1.92	.041	6	12	1.02	54	.11	11	1.49	.05	.77	<2	20	5.50	
290509	655	2992	10	130	2.9	9	29	297	4.65	41	<8	<2	3	61	.8	5	3	191	2.32	.050	7	25	1.41	85	.15	6	2.00	.05	1.07	3	27	5.15	
290510		1990	21	143		10			4.51		<8	<2	-	64	.8				2,45	.041	4		1.62		.17		2.13		1.18	2	19	6.00	
290511		1906	-9	149		8			4.77		<8						-3		2.44	.036	4		1.39						1.03	~2	19	6.41	
290512		2424		-					6.18		<8			57			<3 :		1.74	.046			1,93		.23				1.55	2	27	4.21	
STANDARD DS6/DxF41		121							2.94					42		3		234 58	.78		15		.63					. 19	.16		805	4.61	
STANDARD US0/UXF41	12	121	27	142		24	12	130	2.74	22	<u>~0</u>	×2	2	42	2.1	3		20	.10	.0/5	15	103	.03	100	-07	10	1.90	.07	- 10	э	005	-	

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

							Ca	anf	let	ır	Miı	nin	g :	Inc	2.	1	?TL	E	₿ A5	0659	94							Pag	e 3			ACITYE AMALYTICAL
SAMPLE#	Mo Inqq	Cu ppm	Pb ppm p		-					As ppm		Au ppm				sb ppm	Bi ppm	V mqq	Ca %		La ppm		Mg %	Ba ppm	Ti %	8 Inqq	Al %	Na %	K %		Au** ppb	Sample kg
290513 290514 290515 STANDARD DS6/0xF41	66 60	1868 1931 1732 123	3	135 149	2.2	14 16	38 38	318 392	5.10 6.13 5.63 2.90	12 3	<8 <8	√2 <2	3 <2	95	<.5 <.5	-	5 <3	231	1.27 1.19 1.13 .77	.052 .054 .050 .076	2	29	1.66 2.01 2.05 .56	69 100	.19 .19	<3 <3	2.39 3.35 3.11 1.97	.28 .23	1.27	<2 3		

Sample type: DRILL CORE R150.

	ABORATORIES LTD. 852 E. HASTINGS ST. VANCOUV	UVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716
andala 🖌 💏 🖓 anda talah katara	GEOCHEMICAL ANALYSIS	S CERTIFICATE
A A	Canfleur Mining Inc. PROJECT WHI	HIPSAW File # A504781
	102-1441 Ellis St., Kelowna BC VIY ZAS Sub	
SAMPLE#	o Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi)ppm ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	
59361 59362 59363 59364 59365	326 9 79 <.3	3 47 1.23 .084 10 15 .62 84 .02 <3
59366 59367 59368 59369 59370	495 5 48 .4 5 6 168 1.99 5 <8 <2 <2 85 <.5 <3 <3 246 <3 43 .6 5 6 188 1.78 3 <8 <2 2 75 <.5 <3 3 236 4 47 <.3 5 7 179 2.02 41 10 <2 <2 122 <.5 <3 <3	3 33 1.27 .082 9 8 .61 28 .01 <3 .82 .05 .10 <2 5 4.03 3 31 1.65 .084 12 10 .48 28 .01 11 .77 .04 .11 <2 3 3.97 3 33 1.85 .082 11 7 .45 39 .01 4 .70 .06 .11 <2 <2 4.16
59371 59372 59373 59374 59375	303 5 49 .6 5 7 271 2.00 61 <8	3 25 3.14 .079 10 7 .89 136 <.01
59376 59377 59378 59379 Re 59379	796 <3 50 .7 5 7 122 2.47 5 <8 <2 <2 66 <.5 <3 <3 134 <3 40 <.3 5 5 137 1.95 4 <8 <2 <2 67 <.5 <3 4 150 3 42 .5 4 6 144 1.82 <2 <8 <2 <2 95 <.5 <3 <3 4	3 34 1.05 .073 7 5 .73 30 .03 5 .98 .09 .23 <2
RRE 59379 59380 59381 59382 59383	92 4 38 .4 4 5 134 1.69 <2 <8 <2 <2 134 <.5 <3 <3 150 <3 46 <.3 4 6 156 1.79 2 15 <2 <2 64 <.5 <3 <3 105 <3 38 .3 4 5 146 1.55 <2 <8 <2 <2 58 <.5 <3 4 105 <3 38 .3 4 5 146 1.55 <2 <8 <2 <2 58 <.5 <3 4 105 <3 38 .3 4 5 146 1.55 <2 <8 <2 <2 58 <.5 <3 4 105 <3 38 .3 4 5 146 1.55 <2 <8 <2 <2 58 <.5 <3 4 105 <3 38 .3 4 5 146 1.55 <2 <8 <2 <2 58 <.5 <3 4 105 <3 38 .3 4 5 146 1.55 <2 <8 <2 <2 58 <.5 <3 4 105 <2 58 <.5 <3 4 105 <2 58 <.5 <3 5 105 <2 58 <.5 <5 105 <5 1	3 36 .78 .082 5 9 .64 16 .07 6 1.03 .14 .09 <2
59384 59385 STANDARD DS6/OxF41	123 <3 40 .3 5 5 151 1.69 2 <8 <2 <2 161 <.5 <3 <3	

Clarence Leono

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY JCP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY.

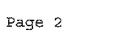
Data FA ____ DATE RECEIVED: AUG 22 2005 DATE REPORT MAILED:

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

		<u>C</u> a	<u>inf</u>	<u>le</u>	ur	Mi	.ni 1	<u>.nq</u> 06-1	En	<u>c.</u>	PR	OJI	CI	W	hi;	osa	w	Cre	ERTI <u>ek</u> ted by	Fil	e #	A	505 benry	057		Pag	je 1						
SAMPLE#	Mo ppm	DDw t	Pb pm	Zn opm	Ag ppm	iN nopon	Co ppn	Мп ррл										V Ppm	Ca %		La ppa			8a ppm	⊤i %	B ppm		Na %			Au** : ppb	Sample kg	
59201 59202 59203 59204 59205	95 1 110 2 109 2 28 1 88 1	251 364 550	<3 5 : <3	180 377 191	2.6 4.2 1.0	30 16 9	33 30 14	250 253 203	5.64 5.36 3.31	<pre><2 <<rp>< <2 </rp></pre>	<8 <8 <8	<2 <2 <2	<2 3 <2	94 125 151	<.5 <.5 1.5	6	<3 <3 3	217 202 130	1.08 1.03 1.44 1.34 1.28	.070 .045 .067	2 3 3	66 33 17	2.08 1.77 1.20	150 129 125	.23 .17	<3 9 <3	2.52 2.85 3.22 2.37 3.07	-29 -36 -29	1.55 1.35 .77	2 <2 <2	14 13 26 11 13	3.74 3.57 2.81 3.62 4.24	
59206 59207 59208 59209 59210	120 1 84 3 137 3 99 3 62 3	225 505 458	<3 5 <3 2	116 115 221	1.3 2.3 2.9	18 15 15	46 38 30	199 186 268	6.69 5.68 5.69	> <2 > <2 > 5	<8 <8 <8	<2 <2 <2	<2 3 2	154 116 77	<.5 <.5	<3 3 4	<3 <3 5	218 256 227	1.32 1.36 1.08 1.03 1.27	.037 .039 .039	<1 2 3	32 27 33	1.93 1.80 1.85	101 162 131	.19 .22 .19	4 17 17	3.33 3.19 2.92 2.74 3.57	.35 .35 .27	1.28 1.50 1.40	<2 <2 <2	14 23 22 25 23	3.77 3.71 3.33 2.63 3.72	
59211 59386 59387 59388 59389	109 2 41 34 7 24	247 283 106	ও ও ও	44 38 20	<.3 .8 <.3	3 4	5 5 5	127 144 149	5.76 1.76 1.66 1.61 1.61	<2 6 2	<8 <8 <8	<2 <2 <2 <2 <2 <2	<2 3 <2	140 159 206	<.5 <.5	3 4 3	<3 3 <3	36 37 40	1.08 1.13 1.65 1.62 1.60	-073 -078	5 10 5	63 3 12 7 9	.56 .43 .50	35 23	.07 .02 .04	<3 16 <3	2.77 .92 1.01 1.05 1.07	.16 .13 .13	. 13 . 12 . 11	8	28 5 6 17	3.53 4.32 3.98 3.90 4.36	
59390 59451/59452 59453 59454 59455	13 42 41 89 18 36	752 801	-7 <3-7 11-1	73 38 47	1.5 1.3	28 19	16 25 25	148 222 228	1.70 3.74 5.47 5.65 6.12	6 4 <2	17 <8 <8	<2 <2	6 4 2	59 41 70	<.5 <.5 <.5 <.5 <.5	8 4	5 3 9	103 173 176	.96 1.27 1.18 1.39 1.25	.047 .060	5 4 5	64	.98. 1.52 1.58	125 146	.10 .14 .14	26 17	.90 2.51 2.38 2.81 3.13	.35 .25 .32		<2 2 <2	7 8 12 10 11	3.62 1.62 2.26 3.17 3.48	
59456 59457 RE 59457 RRE 59457 59458	51 19 54 16 57 16 51 19 67 16	604 620 555	5 1 7 1 5 1	53 52 52	2.1 1.1 2.2	17 15 15	30 29 29	279 280 270	5.20 5.88 5.93 5.72 5.26	5 8 9	<8 <8 <8	<>> <> <> <> <> <> <> <> <> <> <> <> <>	6 <2 7	56 56 54	<.5 <.5 <.5	5 9 10	5 4 <3	209 211 206	1.16 1.23 1.24 1.20 1.10	.054 .053 .050	5 4 5	42 32 40	1.74 1.74 1.70	141 131 116	.18 .18 .18	30 3 33	2.71 2.88 2.89 2.83 2.83	.33 .33 .32	1.47 1.46	<2 <2 <2	8 12 12 12 13	2.81 3.67	
59459 59460 59461 59462 59463	38 15 58 23 50 16 47 19 58 18	309 533 200	41 121 <31	66 39 : 17	1.5 2.3 .7	19 18 28	30 23 28	280 300 285	4.69 6.57 6.37 5.72 5.35	2 4 2	9 <8 <8	<2	4 3 <2	104 66 52	<.5 <.5 <.5	<3 9 3	7 4 <3	232 202 211	1.20 1.64 1.31 1.09 1.12	.055 .061 .060	2 4 2	48 41 68	1.93 1.82 2.17	151 126 152	.23 .21 .24	20 18 4	2.81 3.92 3.22 2.93 3.05	.50 .48 .34	1.59	<2 <2 <2	13 13 136 15 11	1.79 2.82 2.89 2.64 2.51	
9464 9465 9466 9467 9467 YANDARD DS6/0xF41	34 23 37 15 83 14 196 12 12 1	78 98 258	4 81 6	94 · 56 84	<.3 .4 .8	25 17 7	22 22 17	177 271 152	4.43	<2 4 4	<8 <8 <8	<2 <2	3 <2 2	45 47 50	<.5 <.5 .5	<3 5 <3	5 <3 10	179	1.10 1.37 1.06	.051	3 2 6	72 37 14	1.67 1.59 .97	106 125 76	.16 .19 .09	9 3 24	2.43 2.60 2.48 1.89 1.97	.25 .26 .22	1.24 1.20 .72	.<2 <2 <2	13 11 10	3.27 2.48 4.30 3.02	
GROUP 1D - 0.50 GA (>) CONCENTRATION AU** GROUP 3B - 30 ASSAY RECOMMENDED - SAMPLE TYPE: DR Data / FA	EXCEED .00 GM FOR RC	IS UP SAMI CK AI E R1	PER PLE ND C 50	LIM ANAI ORE	ITS. LYSI SAM Samp	SO S BY PLES Les	ME N FA/ IF begi	IINER ICP. CU f	ALS BZN 19 'R	MAY E AS > E' <u>ar</u>	IE P/ · 1%, ·e Re	ARTIA AG	LLY > 30 <u>anc</u>	ATT/) PPI <u>i 'R</u> I	ACKEI 4 & <i>1</i> <u>RE 4</u>). R AU >	EFR/ 1000 <u>eje</u> d	ACTOR	LUTED Y AND	GRAPHI	ML, TIC	ANAL SAMPI	YSED LES C	BY IC AN LI	P-ES. MIT A	U SO	LUBILI	1Y.	JUNELA	7.7 ?.7	Tà,	ICER.	

1

•


[:

ÅÅ	
ACME ANALYTICAL	

ł

Т

Canfleur Mining Inc. PROJECT Whipsaw Creek FILE # A505057

Data_____

SAMPLE#	1			n Ag 11 ppm					As ppm				Sr ppn			Bi V ppnippni	Ca %	P %	La ppm	Cr ppma	Mg Ba %ippna	тi %	8 nqq	Ał %	Na %	K % {		Au** ppb	Sample kg
59469 59470 59471	188 1944 300 2205 145 2516 152 2228 195 2381	ব্য ব্য ব্য	14 32 20	4 1.5 3 1.4 3 2.1	12 11 11	38 : 40 : 36 :	271 6. 298 6. 266 6.	11 70 12	<2 <2 4	<8 <8 <8	<2 <2 <2	<2 <2 3	49 57 80	<.5 <.5 <.5	ব্য ব্য ব্য	3 235 8 266	1.58 1.45		2 1 2	26 23	2.05 118 2.39 124 2.02 111	.20	<3 <3 14	3.03 3.45 3.38	.25 .35 .38	1.41 1.54 1.64 1.46 1.28	3 3 3 3 <2	9 17 13 14 20	3.49 3.60 3.17 3.58 3.63
59474	108 2161 51 1317 176 2392 12 123	3 <3	10) 31!	7 1.7	10 20	19 37 2	237 5. 184 4. 240 6. 711 2.	03 44	8 5	<8 <8	<2 <2	2 <2	38 47 74 41	<.5 <.5	<3 <3	5 141 5 210	.77 .79 .99 .88	.050 .075 .054 .079	3 2	26 50	1.27 79	.22 .16 .22 .08	13 <3	2.73	.21 .16 .30	1.22 .71 1.29 .16	<2 2	18 11 14 495	3.63 3.80 3.90

Sample type: DRILL CORE R150.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

	AL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE Canfleur Mining Inc. File # A505568 Page 1	5 N
SAMPLE#	106-1441 Ellis St., Kelowna BC V1W 2A3 Submitted by: R. Tim Henneberry Mo Cu Pb Zn Ag Ni Co Min Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Au** Sample ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	
59212 59213 59214 59215 59216	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
59217 59218 RE 59218 RRE 59218 59219	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,
59220 59221 59222 59223 59223 59224	290 1938 6 125 2.0 8 29 210 4.38 8 <2	1
59225 59352 59353 59354 59355	102 1435 3 92 1.3 8 21 215 3.49 9 <8	
59356 59357 59358 59359 59360	121 1266 <3	
59391 59392 59393 59394 59395	21 112 <3	
59396 59397 59398 59399 STANDARD DS6/0xF41	16 81 <3	
(>) CONCENTRATION AU** GROUP 3B - 3	M SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. 0.00 GM SAMPLE ANALYSIS BY FA/ICP. FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB FILL CORE R150 Samples beginning 'RE' are Refuns and 'RRE' are Reject Refures. DATE RECEIVED: SEP 9 2005 DATE REPORT MAILED:	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

;

AA

Canfleur Mining Inc. FILE # A505568

Page 2

ACME ANALYTICAL																														A	NCME ANALYTICAL	
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	۲h	Sr	Cd	ŞЬ	Bi V	Ca	P	La	Cr	Mg	Ba	Ti		AL	Na	к	¥	Au** :	Sample	
	ippa p	pm (nqq	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт ррт	%	%	ppm	ppm	%	ррл	% į	pm	%	%	%	ppm	ppb	kg	
										-	_	-	_		-					_												
59400	34 8		-	80					3.88		<8							1.44				1.27		.14		2.47		.63		8	3.12	
59401	103 13		-			21			5.56	_		_	_			_	<3 178			-		1.71	76	.17	-		.32	.88	<2	8	4.58	
RE 59401	101 13		_						5.48		<8	<2	_			-	<3 175			3		1.67		-16	-	3.10		.86	_	9	-	
RRE 59401	87 13	546	<3	89	1.2	20	28	354	5.47								4 173					1.66			5	3.10	-32	.87	<2	11	-	
59402	25 9	67	<3	74	.9	16	21	331	4.47	2	<8	<2	<2	99	<.5	<3	<3 151	1.76	.070	4	35	1.53	97	. 15	5	2.86	.27	.81	<2	6	5.08	
59403	58 10	108	<3	08	1 4	14	23	342	5.30	6	< R	-2	-2	55	6	~3	<3 190	1 62	.056	3	30	1.62	101	.16	6	2.62	.21	1.01	<2	8	6.83	
59404	21 12		-		1.4				5.77								4 194		.058		39			.18		2.53	.21	. 95	<2	7	7.09	
59405	63 12		-		1.3				5.83	11					1.2		<3 186		-056			1.40	86	-09		2.40	.09		_	7	6.42	
59406	16 10								5.65								<3 185		.056			1.63		-14		3.32		.84		7	6.33	
59407	23 10		_						4.86		<8							1.32	.057			1.65		.18	_	2.68	.26	.90		8	4.11	
39407	23 10	22	~5	75	1.0		C 1	6.71	4.00		10	72	C.	74	-0	1	5 170	1.56	.057	4	50	(.05	104	. 10	'	2.00	.20	. 90	~2	0	4.11	
59408	22 13	528	<3	109	1.2	25	30	358	6.00	3	<8	<2	<2	50	.6	ও	<3 216	1.07	.055	3	72	2.27	103	.21	6	2.74	.24	1.35	<2	7	7.62	
59409	77 15	97	<3	116	1.4	34	31	323	6.02	- 4	<8	<2	<2	54	1.0	<3	<3 201	1.25	.046	3	88	2.12	102	.20	6	2.74	-20	1.23	<2	10	5.89	
59410	48 17	716	<3	94	1.3	22	31	330	5.96	- 4	<8	<2	2	58	1.0	<3	<3 191	1.64	.049	4	55	1.77	80	.18	6	2.75	.23	1.02	<2	13	6.47	
59411	25 16	514	3	108	1.5	19	25	322	5.16	- 4	<8	<2			.7		3 203	1.29	.056	5	57	1.65	99	.20	7	2.48	.21	.96	<2	11	5.53	
59412	60 23	60	6	121	2.1	14	27	314	5.63	5	<8	<2	2	42	.9	<3	-3 237	1.15	.057	5	29	1.63	105	.21	5	2.33	.19	1.03	<2	14	5.72	
59413	23 21	20	-7	102	15	12	27	282	5 60	6	<8	~2	2	78	0	~7	<3 265	1 15	.066	6	14	1.49	128	2/	6	2.34	20	.98	<2	10	6.93	
59414	65 23		_						6.21	4	_	<2					<3 220		.062			1.59		.23	-	2.22		.89	_	19	5.82	
59415	19 24		-						5.84	-		<2					<3 258		.054			1.49		.19		2.18		.89		21	6.83	
59416	16 26			140					5.81	3		<2					<3 235		.065	5		1.35		.21	-	2.00		.83		20	6.78	
59417	52 32					-			6.88								<3 212		.044			1.75						1.14		21	5.91	
27417	52.52	27	4	101	2.5	23	31	332	0.00	4	~0	76	~2	57	1.7	1	5 212	1.1.1	.044	4	47	1.15	01	. 10	0	2.44	. 12	1.14	12	21	5.91	
59418	93 21	04							5.74	2	<8	<2					<3 185		.047			1.72		.15		2.42		.94		13	7.22	
59419	88 20)48	4	139	2.0	26	32	380	6.55	- 4	<8	<2					<3 197		,055			1.69		- 16		2.28		-92	<2	18	5.80	
59420	59 25	808	<3	122	2.0	8	33	265	6.52	- 4	<8	<2	2	37	1.7	<3	<3 207	1.04	.061	5	7	1.28	64	.17	7	1.88	.14	.65	<2	12	4.71	
59421	49 25	539	-		1.9				6.39	2		<2					<3 246		.056			1.57		.20		2.11	.13	.95	<2	17	6.55	
59422	52 40	97	4	189	3.5	15	36	325	6.36	5	<8	<2	2	89	1.7	<3	<3 249	1.64	.058	5	13	1.44	46	.20	8	2.49	.21	.99	<2	32	6.82	
59423	39 46	22	5	203	4 N	53	43	340	6.09	4	<8	<2	2	43	17	<3	<3 254	1 25	.052	5	195	1.99	58	.19	7	2.46	. 14	1.04	~2	35	3.98	
STANDARD DS6/0xF41	12 1											-						.86								1.95		.15		814	-	
57A80A80 030/0AF41			27	1.45	•••		10		L.03		-0	1	-	-	<u></u>														<u> </u>	V 17		

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data (¹ FA

			<u> </u>	<u>lar</u>	<u>t</u> lo	<u>eur</u>													Fil ted by						Page	e :1	-					11
SAMPLE#		Cu ppm														Sb ppm			Ca %		La ppm			Ba ppm	⊺i %	8 ppm	Al %	Na %	K %		Au** ppb	Sample kg
4351	133								3.36					45		<3			.63	.083			1.47				1.39		.94		15	3.66
4352		4548							3.75			<2			.7			175	.44	.066			1.77				1.60		1.22	2	22	3.58
4353 4354	158 156								4.04 4.01					40	-9 -8			172	.56 1.00	-059 -064			1.83				1.60 1.74		1.19	_	23 22	3.64 3.01
4355	107								3.67					59		<3			.73	.067			1.74				1.70	.06	1.18	<2 <2	24	3.41
4356	76 :	2534										<2			.6					.064			1.77			_	1.75	.07	1.27	<2	24	3.32
4357		2214							3.68										2.51	.057			1.60		.18		1.76	.04	1.14	<2	17	3.46
4358		2336							4.06										1.98	-069			1_74 .96		-18 -06		1.94		1.22	2	22 15	3.51
4359 4360		1556 974							2.88 2.94										1.72 2.88	.099 .079			1.05		.04		1.17 1.06	.04 .04	.40	<2 <2	9	3.39 3.69
4361	276	1604	6	221	1.7	45	22	442	4.08	6	<8	<2	2	130	1.2	4	<3	150	2.37	.075	8	133	1.90	102	.16	<3	1.89	.05	.93	~2	11	3.05
4362	52	666		251		6			2.18										1.62	- 085		12	-65		.02	<3	.98	,04	.22	<2	9	4.29
4363		441	-		-7	4			1.92						1.0				1.34	.082		11	.75			<3		.06	- 19		7	3.48
4364 4365		209 269		66 71		4			1.84 1.94	<2 3		<2 <2			<.5 <.5				1.11	.082	7	9 8	.67 .68		.02 .03	<3 <3	.89 .84	.06 .06	.13	<2 <2	75	3.56
																															-	
4366 4367	-	168 765	4		.3	-4			1.66			<2 <2			<.5 <.5				1.01 1.52	.086	7 2		.68 1.59		.04 .18	<3	.90 2.05	.06 .18	.13 .75	<2 <2	3	.98. 3.89
4368		1084	_						5.22			<2							1.29	.057	_	32	1,84		.18		2.23	.18	.80	_	5	7.46
4369	-	830							4.44			<2				<3			.97	.094	4		1.50		.16	-		.12	.75	-	4	4.62
4370	4	1003	<3	70	1.5	19	23	263	5.45	6	<8	<2	2		.9			185	.84	.066	2	48	1.70	74	.20	<3	1.64	.11	.78	<2	6	7.35
E E4370	4	996	4	69	1.1	19	23	263	5.44	2	9	<2	<2	20	.7	4	<3	183	.83	.066	1	50	1.69	73	.20	<3	1.62	.11	.77	<2	4	-
RE E4370	-	1026		71					5.57		<8			21				183	.84	.067	1		1.72		.20			.11	.78	<2	5	-
4371		736		58					4.73			<2		22		<3			-90	.074			1.76		-20			.10	-72		4	6.98
4372 4373		1404 802		78 70					5.66 5.99		<8 <8			17 13	.7			209	.67 .97	.066	2	18 21	1.88		.20 .18		1.70 1.60	.10	.90 .83		7 6	6.19 5.31
																	_				-										-	
4374 4375	-	731 1273	5 10	82					5.55 6.59			<2 <2			1.1	<3 <3		226	-51 -66	-106 -070	2	8 27	2.08				1.74 2.18		1.31	<2 <2	5 9	5.24 6.67
4376		1241	-						5.73	4									1.10	.057	1	20	1.67		.17		1.86	.14	.77	<2	6	6.72
4377		1197		74					5.43				<2	17	.7	<3			.67	.065			2.70				2.34		1.61	-2	5	6.56
9424	44 3	2970	3	133	2.4	23	28	363	5.19	3	<8	<2	2	36	.8	<3	<3	224	1,28	.079			1.82	126	. 18	<3	1.87	.10	1.01	<2	18	5,93
9425		1961			1.8				3.47		<8					3			.65				1.17				1.21	.08	-64	<2	11	5.58
																															-	5.76 5.85
																																5.91
		123																									1.93					
59425 59426 59427 59428 STANDARD DS6/OXF41 GROUP 1D - 0.50 GR (>) CONCENTRATION	127 648 55 13	1083 1224 2179 123 PLE L	<3 <3 4 33 EACH	89 81 119 143 IED	1.3 1.2 2.9 _4	6 5 6 25 3 ML	14 13 12 11	246 228 254 747 2-2 H	2.39 2.26 2.69 2.93 CL-H	2 <2 <2 22 103-1	<8 <8 <8 <8 120	<2 <2 <2 <2 <2	<2 <2 <2 4 5 DE(43 49 59 42 3. C	<.5 <.5 <.0 FOR	<3 <3 <3 4 ONE	<3 <3 <3 5 800F	85 86 80 59 8, DI	1.00 .82 1.33 .90	.130 .130 .133 .081 TO 10	9 5 7 12 ML,	14 14 13 182 ANAL	1.05 1.09 1.01 _64 YSED E	68 88 55 147 87 IC	.07 .10 .06 .08	<3 <3 <3 16	1.11 1.04 1.16 1.93		.06 .07 .06 _07	.06 .48 .07 .47 .06 .34 .07 .15	.06 .48 2 .07 .47 <2 .06 .34 <2 .07 .15 4	.06 .48 2 5 .07 .47 <2 9 .06 .34 <2 11 .07 .15 4 806

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. Data______ DATE RECEIVED: SEP 16 2005 DATE REPORT MAILED:

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Canfleur Mining Inc. PROJECT WHIPSAW FILE # A505767

Page 2

AURE ASSAUTISCAL							_				_						_																
SAMPLE#	Mo ppni	-			-	Ni ppm	Co ppm			As ppm		Au ppm			Cd ppm	sb ppm ;	8i ppm	V ngg	Ca %	P % ;	La ppm		Mg %	Ba ppn	₹i %	B ppm	Al %	Na %	K %		Au** : ppb	Sample kg	
59429 59430 59431	125 1 62 1 107 1	260	<3	111 71 88	1.1	6	12	182	3.09 2.53 2.37	5 2 4	<8 21 <8	<2 <2 <2	<2 <2 <2	51 48 48	.9 .8 .7	<3	⊲ ⊲ ⊲	94	1.19 .83 .71	.127 .127 .118	7 8 5	18	1.01 1.09 1.07		.09 .11 .12	9 3 3	1.08 1.07 1.02	.07 .08 .09	.39 .67 .49	3 <2 <2	9 9 5	5.82 5.87 5.96	
59432 59433	35 1 76 1	389	6	104 79	1.2	-	10	281	2.61 2.50	5 <2	<8 <8	<2	<2 <2	45	.9 .6	<3 <3	⊲3 ⊲3	-	-80 -67	.122 .121			1.05 1.11		.07 .11			.08 .08	.45 .51	<2 3	12 10	5.53 5.61	
59434 59435 59436 59437 59438	49 1 79 1 53 2 63 1 114 2	522 514 814	6 4 5	86 100 151 166 112	2.0 3.6 2.4	-	10 10 13	265 303 324	2.64 2.57 2.83 3.24 4.68	3 14 5 4 6	<8 <8 <8 <8 9	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2	43 43 44 45 55	1.5	<3 <3 <3 4 5	<3 <3	92 87 86	.70 .98 .73 1.08 .84	.126 .122 .122 .130 .116	8 4 6	16 16 17	1.12 .98 1.14 1.12 1.25	88 60 64	.14 .12 .13 .09 .13	<3	1.09 1.05 1.03 1.23 1.53	.10 .10 .09 .07 .13	-64 -51 -45 -45 -70	3 3 5 3 3 3	11 14 26 16 10	4.76 6.57 6.18 6.27 4.25	
59439 59440 59441 RE 59441 RRE 59441	27 78 1 74 1 72 1 75 1	086 316 315	<3 <3 4	100 95 130 131 132	1.3 1.8 1.8	6 5 6 5 9	7 10 10	234 226 225	2.60 2.38 2.68 2.68 2.68 2.62	4 2 2 6	<8 <8 <8	~~~~~	<2 <2 <2	37 36	-9 <-5 <-5 <-5 1-5	<3	⊲ ⊲ ⊲ ⊲ ⊲	83 90 90	1.34 .82 .60 .60 .60	.112 .115 .120 .120 .121	7 5 4	15 11 13	.83 1.09 1.13 1.11 1.11	81 81	.08 .10 .14 .14 .14	<3	1.03 1.11 1.01 1.02 1.03	-08 -07 -07 -08	.32 .51 .53 .52 .51	3 2 3 3 2	9 10 6 8 12	4.19 2.93 1.27 -	
59442 59443 59444 59445 59446	133 1 104 2 188 2 125 2 65 1	314 947 220	4 5 7	205 147 178 132 122	2.3 2.7 2.6	13 15 8	15 19 12	265 234 225	2.52 3.35 3.85 2.52 3.17	5 <2 4	<8 <8 <8 <8 <8	<2 <2 <2	<2 <2	37	<.5 .7 <.5 .8 .5	<3 <3 <3	\$\$\$\$\$	135 165 103	-69 1.48 .95 .77 .99	.118 .077 .075 .118 .085	6 5	32 50 16	1.02 1.32 1.71 1.12 .99	135 146	.13 .15 .20 .13 .08	4	.98 1.37 1.64 1.14 1.12	.09 .07 .06 .08 .07	.46 .94 1.19 .63 .40	6 3 7 3 5	15 14 21 16 14	3.76 3.62 1.81 3.49 2.32	
59447 59448 59449 59450 STANDARD DS6/OxF41	118 2 110 2 121 2 96 2 12	952 805 166	3 <3 5	189 129 197	2.7 2.5	21 13	21 16 17	287 213 254	4.05 4.32 3.70 3.68 2.90	4 7	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2	47 42	1.3 -8 .6 1.2 6.0	3 4 3 3 5	ত ত	156 140	1.08 .61 .63 .70 .78	.073 .081 .070 .088 .073	-	51 66 32 28 179	1.67 1.74 1.37 1.40 _63	115 120	.18 .21 .18 .16 .08	<3 <3 <3 17	1.65 1.57 1.30 1.38 1.90	.08 .10 .08 .09 .08	.96 1.09 .84 .74 .14	2 4 3 2 4	15 21 19 15 816	2.17 2.35 2.28 3.96	

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖌 FA

ACME ANALYTIC (ISO 9001	AL LABORAT		Canf	G <u>leur</u>	EOC Mi	HEMI ning	CA I	l ana <u>1c.</u>	LY: Fi:	COUVER SIS C Le # . Submit	ERTI A506	FIC2	ATE E	ag	PHONI re: 1 erry	<u>s (60</u>	4) 2!	53-31	L58		604)	253	-1716 AA
SAMPLE#	Mo Cu Pb ppm ppm ppm	Zn Ag ppm ppm p						Sr Cd ppm ppm			Ca %		La ppnip		Mg Ba %ppm	Ti %	B ppm	Al %	Na %		W ppm		Sample kg
251 252 253 254 255	87 1616 7 26 2220 7	97 1.4 106 1.7 77 1.3 120 1.5 122 2.0	7 23 294 8 19 223 16 29 319	3 4.78 3 4.13 9 5.46	2 • 2 • 2 •	<8 <2 <8 <2 <8 <2	<2 <2 <2	36 <.5 40 .5 56 <.5 30 .6 50 1.2	<3 <3	<3 231 5 237 3 192 3 270 3 283	1.43 1.53 .85	.047 .044 .052	3 4 2	7 13 22	1.49 53 1.54 71 1.28 107 2.33 129 2.06 107	.19 .13 .24	14 13 13	1.56 1.79 2.34 2.26 2.50	.06 .08 .13 .08 .06	.60 .83 .74 1.44 1.33	_	17 22 14 16 18	6.08 6.78 7.29 7.33 6.92
256 257 258 259 260	32 2490 7 36 1296 14 16 767 <3	128 1.9 132 1.8 111 1.1 67 .9 91 1.2	23 26 349 13 15 232 7 10 163	2 5.43 2 3.41 7 2.48	3 • 6 • <2 •	<8 <2 <8 <2. <8 <2	<2 <2 <2	53 1.3 43 1.2 41 .8	<3 <3 <3		1.27 .92 .58	.062 .061 .093 .116 .106	3 4 5	63 32 14	1.06 63 2.21 92 1.63 106 1.11 97 1.01 63	.22 .19 .18	14 6 <3	2.14 2.60 1.76 1.15 1.04	.04 .11 .09 .07 .06	.37 1.22 .80 .51 .34	5 4	13 15 10 11 10	6.75 7.91 4.93 5.86 6.23
261 RE 261 RRE 261 262 263	28 3411 5 122 2738 18	189 2.5 193 2.8 205 3.0 144 2.3 129 1.3	24 35 349 25 42 362 17 34 268	5 4.92 2 5.30 3 4.22	3 4 < 3 <	9 <2 <8 <2 <8 <2	<2 <2 3	53 2.1 52 2.5 53 1.8 37 3.5 53 1.4	<3 <3 5	8 192 9 189 12 191 7 177 5 169	1.61 1.94 1.14	.065 .069	3 3 4	84 95 20		.18	10 15 17	2.36 2.33 2.30 1.97 2.04	.13 .11	.90 .88 .87 1.02 .63	<2 3 3 6 <2	26 17 24 20 11	7.68 - 7.32 4.87
264 265 266 267 268	46 1972 4	103 1.3	9 18 419 19 23 384 16 25 312	2 4.05 5 4.73 2 4.09	10 < 2 < 6 <	<8 <2 <8 <2 ≪8 <2	<2 <2 <2	71 1.1 104 <.5 184 2.4	8 <3 5	<3 172 6 152 7 191 6 155 <3 163	5.07 2.10 1.82	.050 .059 .061 .046 .055	4 2 2	11 59 27	1.71 99 1.26 68 1.75 109 1.63 80 1.55 71	.19 .06 .17 .17 .20	16 12 20	2.00 1.91 2.27 2.81 2.46	.07 .03 .11 .28 .20	1.01 -55 .93 .79 .70	2 4 7 <2 4	13 11 17 13 16	4.92 6.01 7.11 6.96 6.83
269 270 271 272 273	53 2358 13 92 1722 6 136 2557 <3	1061 .8	21 29 296 26 26 332 21 31 387	5 4.80 2 4.81 7 4.97	<2 <	<8 <2 <8 <2 <8 <2 <8 <2	≪ ~ ~	59 1.7 41 2.1 38 6.8 70 2.3 83 2.5	<3	4 195 10 215 5 202 9 207 <3 200		.052 .057 .050 .045 .057	2 2 2 2 2 2	51 86 57	2.22 131 2.24 144 2.33 135 2.16 106 2.37 132	.29 .24 .21	24 9 15	2.17 2.18 2.36 2.51 2.56	.11 .08 .11	1.29 1.35 1.30 1.15 1.28	2	16 19 20 23 20	6.71 6.35 7.13 6.85 6.75
E4378 E4379 E4380 E4381 E4382	8 1347 3 28 556 <3 39 644 7 32 1184 <3 14 760 4	74 .9 39 .5 52 .5 57 .7 50 .7	7 23 195 4 13 145 4 13 158 5 16 198 6 13 216	52.98 33.39 33.76	2 < 2 <	≪8 <2 ≪8 <2 ≪8 <2	2 2 <2		ও ও ও	7 198 <3 98 3 113 6 127 <3 139	.58	.056 .055 .048 .059 .059	5 3	9 11 10	2.21 91 1.22 76 1.17 79 1.39 92 1.55 128	.13 .13 .20	8 12 15	1.99 1.42 1.51 1.72 1.89	.07 .09 .11	.72 .76	2	8 7 4 7 4	7.33 6.63 5.88 5.96 6.21
E4383 E4384 E4385 E4386 STANDARD DS6/OxF41	54 932 <3 13 1270 3 18 1093 4 18 2108 <3 11 120 29	75 .7 96 1.5	7 23 225 10 22 282 13 41 325	6.79	<2 < <2 < <2 <	<8 <2 <8 <2 <8 <2	2 <2 <2		⊲ ⊲ ⊲	7 189 6 195 7 201	2.16	.058 .059	3 2 2	13 14 10	2.31 117 1.43 92 1.72 82 1.34 50 .59 144	.20 .19 .14	20 14 5		.13 .14 .23	1.39 .88 .94 .59 .14	<2 <2	5 7 7 12 815	6.85 6.92 7.38 7.81

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Refuns Data FA ____ DATE RECEIVED: SEP 28 2005 DATE REPORT MAILED:

Clarence

i ea

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Canfleur Mining Inc. FILE # A506107

Page 2

AUME AMALY ICAL																															AUME ANALISTIC
SAMPLE#	Mo ppm	Cu ppm	Pb		· ·					As	U nac				Cd DOM	Sb	Bî V ppnappna	Ca %		La ppm			Ba ppm	Ti %	B ppm	Al %	Na %	K %		**uA ppb	Sample kg
		-c	C5			- t	I	-			e e	ee	~~···	P P M		- -	FE:: FE::			с <u>с</u>	fe le co										~3
E4387	60	1835	7	87	1.1	9	34 2	288 5.	92	6	<8	<2	2	48	.5	<3	<3 216	1.25	.062	3	12	1.56	66	.20	34	1.85	.19	.67	2	8	6.85
E4388	56	1694	<3	75	1.4	6	30 3	311 6.	55	5	<8	<2	2	50	.6	<3	5 210	1.79	.055	3	8	1.28	35	.18	31	1.95	.19	.34	<2	9	7.68
E4389	39	1737	<3	80	1.4	5	29 3	346 6.	15	4	<8	<2	2	26	.5	<3	<3 214	1.22	.056	3	9	1.37	54	-21	27	1.36	.14	.48	2	10	7.76
E4390	17	756	8	64	.3	5	17 2	285 4.	33	<2	<8	<2	<2	35	.7	<3	<3 202	1.10	.045	4	8	1.52	114	.19	9	1.77	.13	.82	2	4	6.27
E4391		567	6	60	.6	4		201 3.		<2	<8	<2	2		.6	<3	5 121	1.39	.055	7	12	1.03		.12	3	1.64	.13	.50	2	6	7.35
			.7	407	-			777 P	~~	~		~	~		-	.7	-7 2/0	4 47	057	-	47	0.00			40	a / 7		4.24	~	~	1 70
4392		1144	-					523 5.		2	-		_				<3 269		-054			2.28			17			1.26	<2	8	6.32
4393	159		-	107	•••			296 7.		4		<2			-9	<3	<3 248		.065	-			79	.25	4	2.32	- 15	1-22	4	20	6.47
E4394	1 **	1116	-	103				351 6.		7	<8	<2	2		.6	3	4 239	1.48	.059	-			99	.30	26	3.27	.23	1.56	<2	18	7.75
E4395	55 °	1322	-	77				268 4.		<2	<8	<2	2	57	.9	<3	8 170	1.58	.077				77	.22	14	2.38	.21	.90	- 3	8	6.81
E4396	50	1449	4	87	1.1	56	30 2	229 5.	80	3	<8	<2	<2	51	.9	ও	<3 159	1.32	.073	4	110	1.89	72	.21	21	2.11	.22	.90	3	10	7.33
E4397	17	1170	<3	84	.6	83	35 2	81 5.	96	<2	<8	<2	<2	54	-9	<3	<3 182	1_60	.066	4	175	2.52	73	.24	22	2.51	.21	1.07	<2	12	7.86
4398		2017	-		1.3			253 6.		2		<2			1.0				.060		146	=	58	18	27	2.47	.22	-80	2	Q	6.23
4399		2813	-		2.2			258 7.		3	<8	<2			1.0		<3 209	1.26	.058			1.63	38		35	1.68	.16	.47	2	17	6.75
RE E4399	61		-	174				264 7.		6	<8	<2	_	43		3	3 213		.059	_	_	1.65	39		33	1.72	.17	.48	Ţ	17	
RRE E4399		2745			2.1			257 7.		2	<8	<2			1.4	-			.056	-			37	.20	19	1.68	.16	.40	ž	20	-
NKE E4J77	1 24 6	2142	4	100	د. ۱	20	47 6		12	2	-0	~£.	2	40	1.44	- 3	13 200	1,20	.000	5	46	1.05	21	.20	17	1.00	• 10	.47	5	20	-
E4400	60 3	3362	10	115	2.6	20		271 6.		5	<8	<2		44	1.7	<3	3 222		.048	_	23		68	.20	26	2.09	. 19	.85	2	25	5.66
STANDARD DS6/OxF41	12	122	29	141	.4	24	10 1	745 2.	92	22	<8	<2	- 3	47	6.0	4	5 60	.92	.077	15	183	.64	147	.09	16	1.93	.09	.17	6	819	-

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

6-Dec-05

ECO TECH LABORATORY LTD.

10041 Dallas Drive

KAMLOOPS, B.C.

Phone: 250-573-5700

Fax : 250-573-4557

V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 2005-1627

CANFLEUR MINING INC. 102-1441 Ellis Street Kelowna, BC V1Y 2A3

ATTENTION: R. Tim Henneberry

No. of samples received: 37 Sample type: Core **Project #: Whipsaw Shipment #:n/a** Samples submitted by: R.T.Henneberry

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al%	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	290656	0.8 1.55	<5	80	<5	2.47	<1	31	95	1730	5.59	<10	1.16	134	212	0.18	6	240	20	<5	<20	52	0.17	<10	88	<10	9	52
2	290657	1.1 1.24	<5	60	<5	2.03	<1	35	82	2250	5.43	<10	0.98	138	209	0.12	7	280	16	<5	<20	43	0.13	<10	73	<10	10	58
3	290658	1.3 2.79	10	90	<5	3.99	<1	38	58	2826	7.20	<10	1.71	227	335	0.17	9	250	40	<5	<20	83	0.19	<10	141	<10	9	78
4	290659	1.3 2.56	5	65	<5	2.63	<1	53	101	2736	7.63	<10	1.78	208	286	0.20	14	220	40	<5	<20	66	0.22	<10	137	<10	6	80
5	290660	1.4 2.78	<5	75	<5	2.62	<1	46	97	2880	7.29	<10	1.93	247	163	0.23	13	180	42	<5	<20	57	0.22	<10	135	<10	5	88
6	290661	1.3 2.78	<5	75	<5	2.47	<1	42	67	2527	7.00	<10	1.90	195	199	0.22	13	260	40	<5	<20	60	0.23	<10	146	<10	4	83
7	290662	1.3 2.28	5	70	<5	2.34	<1	46	83	2412		-	1.74	221	245	0.18	14		36	<5	<20		0.17				8	82
8	290663	1.4 2.58	10	65	<5	2.45	<1	35	91	2151	6.95	<10	1.59	197	253	0.26	12	210	40	<5	<20	70	0.17	<10	127	<10	3	76
9	290664	0.9 2.81	<5	75	<5	2.64	<1	35	82	1900	7.01	<10	1.91	236	107	0.22	11	290	44	<5	<20	60	0.18	<10	137	<10	5	72
10	290665	1.4 2.39	35	80	<5	4.20	<1	28	96	1422	6.28	<10	1.66	298	53	0.17	17	310	34	<5	<20	101	0.16	<10	128	<10	<1	84
11	290666	1.5 2.66	40	75	<5	3.92	<1	41	83	2274	7.34	<10	1.51	266	114	0.20	19	350	42	<5	<20	91	0.14	<10	120	<10	8	83
12	290667	1.7 2.82	5	75	<5	2.95	<1	53	100	2240	-	<10	2.14	274	160	0.24		280	52	<5	<20	-	0.25	-	-	<10	12	99
13	290668	1.0 3.14	10	75	<5	3.28	<1	37	79	2213		<10	2.19	236	159	0.26		220	54	<5	<20		0.22			-	7	79
14	290669	1.1 3.87	10	85	<5	3.58	<1	36	90	2510	7.06	<10	2.04	271	185	0.32	11	240	64	<5	<20	99	0.22	<10	157	<10	8	85
15	290670	2.4 3.59	35	100	<5	4.16	<1	53	75	4681	8.49	<10	2.18		217		13	150	62	<5	<20		0.20		162	<10	9	136
16	290671	1.6 3.64	45	70	<5	3.47	<1	56	96	3019	8.76	<10	2.08	322	300	0.27	16	170	60	<5	<20	101	0.17	<10	156	<10	3	99
17	290672	2.1 3.90	30	85	<5	3.53	<1	51	97	2876		<10	2.30	394	263	0.32		210	76	<5	<20	-	0.18	-		<10	-	147
18	290673	1.7 2.85	15	85	<5	3.32	<1	36	149	2179		<10	1.89	292	134	0.24		290	60	<5	<20		0.16			<10	9	118
19	290674	1.9 2.57	10	75	<5	2.87	<1	38	157	2006		<10	1.70	255	166	0.28	22		50	<5	<20		0.18			<10		109
20	290675	1.3 2.62	10	80	<5	2.45	<1	37	119			<10	1.83	247	97	0.26	20	770	58	<5	<20		0.23			<10	8	117
21	290676	1.3 4.03	10	100	<5	3.94	<1	40	274	1876	7.37	<10	3.16	269	119	0.31	73	510	88	<5	<20	102	0.26	<10	149	<10	7	157
22	290677	0.4 4.21	10	90	<5	3.59	<1	50	343		8.32		3.73	306	113	0.30	-	540	88	<5			0.27					189
23	290678	0.9 3.57	10	55	<5	3.59	<1	45	283		7.23		3.03	234	76	0.31	87	630	68	<5	<20		0.25					103
24	290679	0.9 4.29	10	80	<5	4.09	<1	46	339	1411		<10	3.18	283	164	0.34	106	610	82	<5	<20		0.23			<10	<1	131
25	290680	0.8 2.62	5	85	<5	3.20	<1	32	190	1312	5.48	<10	2.16	244	87	0.21	49	690	58	<5	<20		0.22		109	<10	9	83
26	290681	1.4 2.68	10	70	<5	3.54	<1	34	154	1921	5.74	<10	1.74	243	131	0.28	43	520	60	<5	<20	129	0.17	<10	93	<10	6	96
27	290682	1.2 4.44	15	95	<5	4.40	<1	48	330	2157	7.88	<10	3.04	251	182	0.39	101	560	98	<5	<20		0.23		136	<10	-	111
28	290683	2.0 3.98	15	105	<5	4.75	1	51	481	2939	8.07	<10	3.73	341	214	0.28	127		82	15	<20		0.26			<10		196
29	290684	1.2 3.88	15	105	<5	4.55	<1	45	480	2059	7.65	<10	3.50	339	171	0.29	133	510	78	<5	<20		0.27			-	-	148
30	290685	1.3 3.75	20	90	<5	4.68	<1	46	443		6.93		2.99		255	0.35	132		86	10	<20		0.23			-		186

CANFLEUR MINING INC.

Et #.	Tag #	Ag Al%	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr Ti	% U	v	w	Y	Zn
31	290686	1.6 3.54	10	55	<5	4.01	<1	46	441	2343	7.80	<10	3.23	326	116	0.29	133	550	82	<5	<20	108 0.	24 <10	128	<10	3	133
32	290687	1.7 2.97	20	100	<5	4.50	<1	37	298	2587	6.65	<10	1.89	310	265	0.33	92	710	68	<5	<20	236 0.	17 <10	91	<10	3	128
33	290688	2.6 3.33	25	75	<5	5.28	<1	47	270	3910	6.72	<10	1.54	196	195	0.34	115	540	74	<5	<20	141 0.	13 <10	67	<10	<1	101
34	290689	2.3 3.46	50	60	<5	6.45	<1	37	333	3844	7.98	<10	1.71	251	205	0.29	140	530	78	<5	<20	144 0.	10 <10	83	<10	<1	117
35	290690	2.7 2.42	50	<5	<5	4.27	<1	37	248	4406	6.82	<10	1.44	235	124	0.17	103	450	44	<5	<20	1411 0.	10 <10	58	<10	<1	137
36	290691	0.3 0.99	60	65	<5	2.75	<1	6	80	492	2.46	<10	0.62	235	44	0.07	8	780	24	<5	<20	730 0.	02 <10	28	<10	<1	62
37	290692	0.2 1.01	5	30	<5	1.53	<1	8	70	450	2.32	<10	0.74	255	31	0.10	7	810	28	<5	<20	172 0.	08 <10	30	<10	<1	62
QC DAT Resplit: 1 36		0.8 1.53 0.3 1.03	5 60	90 55	<5 <5	2.49 2.72	<1 <1	35 6	107 90	1788 501	5.44 2.45	<10 <10	1.16 0.60	137 231	215 42	0.18 0.07	6 8	250 760	22 26	<5 <5	<20 <20	52 0. 702 0.			<10 <10	13 <1	58 60
Repeat:	:																										
1	290656	0.8 1.54	<5	80	<5	2.57	<1	32	95	1750	5.82	<10	1.19	138	220	0.16	6	270	20	<5	<20	54 0.	17 <10	90	<10	9	55
10	290665	1.4 2.41	35	75	<5	4.35	<1	30	99	1436	6.52	<10	1.67	309	52	0.17	16	310	38	<5	<20	98 0.	17 <10	131	<10	8	90
19	290674	2.0 2.67	15	75	<5	3.09	<1	42	166	2106	6.81	<10	1.77	271	179	0.28	24	380	66	<5	<20	97 0.	19 <10	107	<10	14	119
36	290691	0.3 0.98	65	65	<5	2.73	<1	6	80	492	2.44	<10	0.62	237	44	0.07	6	780	26	<5	<20	731 0.	02 <10	27	<10	2	61
Standar	rd:																										
GEO '05		1.5 1.90	65	175	10	1.98	<1	22	68	85	4.89	<10	0.97	726	<1	0.03	30	610	24	<5	<20	56 0.	12 <10	54	<10	9	76

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/ga ^{df/1627} XLS/05 16-Nov-05

ECO TECH LABORATORY LTD.

10041 Dallas Drive

KAMLOOPS, B.C.

Phone: 250-573-5700

Fax : 250-573-4557

V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 2005-1444

CANFLEUR MINING INC.

102-1441 Ellis Street **Kelowna, BC** V1Y 2A3

ATTENTION: R. Tim Henneberry

No. of samples received: 52 Sample type: Core **Project #: Whipsaw** Samples submitted by: R. Tim Henneberry

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag Al	%	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	290516	5	0.9 0.	58	10	10	<5	0.70	<1	8	40	425	1.40	<10	0.38	143	6	0.07	5	920	18	<5	<20	41	0.05	<10	38	<10	<1	111
2	290517	15	5.2 0.0	64	10	<5	<5	0.75	<1	10	36	2124	1.64	<10	0.45	145	37	0.07	5	870	22	<5	<20	54	0.05	<10	34	<10	<1	227
3	290518	30	5.0 3.2	26	40	50	<5	1.87	<1	35	202	3868	7.96	<10	1.78	186	14	0.24	97	790	94	<5	<20	118	0.07	<10	158	<10	<1	146
4	290519	5	1.4 2.	57	20	75	<5	1.95	<1	35	272	1229	6.52	<10	1.95	284	30	0.18	101	670	90	<5	<20	67	0.13	<10	164	<10	<1	547
5	290520	15	2.6 2.	11	20	50	<5	2.22	<1	31	131	2028	5.63	<10	0.98	229	13	0.24	65	750	60	<5	<20	83	0.08	<10	119	<10	<1	541
6	290521	20	4.7 2.2	27	25	35	<5	3.60	<1	36	60	2991	6.66	<10	0.40	221	29	0.25	51	730	66	<5	<20	105	0.05	<10	75	<10	<1	151
7	290522	10	1.9 2.0	05	20	25	<5	2.32	<1	29	58	1475	5.34	<10	0.39	147	30	0.25	43	760	62	<5	<20	118	0.07	<10	63	<10	<1	91
8	290523	15	2.3 2.3	25	35	55	<5	2.34	<1	30	114	2208	5.30	<10	0.85	173	43	0.21	57	670	66	<5	<20	110	0.08	<10	112	<10	<1	133
9	290524	15	2.2 2.0	06	20	25	<5	1.73	<1	29	100	2421	4.91	<10	0.50	100	122	0.25	57	670	64	<5	<20	222	0.07	<10	63	<10	<1	140
10	290525	10	1.3 2.3	22	20	65	<5	1.29	<1	31	245	1170	4.95	<10	1.42	172	75	0.20	95	720	70	5	<20	168	0.13	<10	128	<10	<1	107
11	290526	10	1.2 1.0	65	20	60	<5	0.95	<1	38	202	1171	5.20	<10	1.31	140	20	0.13	88	910	54	<5	<20	80	0.12	<10	119	<10	<1	107
12	290527	5	0.9 1.8	83	20	55	<5	1.37	<1	35	104	1106	5.62	<10	1.22	163	87	0.16	46	1880	60	<5	<20	118	0.17	<10	131	<10	<1	109
13	290528	10	1.3 2.2	21	25	55	<5	2.69	<1	36	129	1509	6.64	<10	0.87	190	45	0.22	66	1390	72	5	<20	143	0.08	<10	105	<10	<1	88
14	290529	10	2.0 2.	54	25	35	<5	2.79	<1	37	128	1545	5.77	<10	0.54	159	24	0.32	86	730	88	<5	<20	212	0.07	<10	56	<10	<1	110
15	290530	10	1.6 2.4	44	25	55	<5	1.73	<1	27	185	1253	4.58	<10	1.05	152	61	0.23	88	650	86	<5	<20	175	0.10	<10	80	<10	<1	116
16	290531	5	0.9 2.0		25	45	<5	1.37	<1	28	209	896	4.23	<10	1.13	139		0.18	106	710	74	<5	<20		0.12		91	<10	<1	87
17	290532	5	1.3 2.3		25	45	<5	1.63	<1	29	-	1513	4.73	<10	1.00	108	86	0.23	91	760	84	<5	<20		0.10		87	-	<1	116
18	290533	5	0.5 2.	15	25	80	<5	1.09	<1	28	317	895	4.44	<10	2.08	169	55	0.11	108	690	76	10	<20	38	0.15	<10	140	<10	<1	88
19	290534	10	1.3 2.3	37	25	70	<5	1.37	<1	39	270	1749	6.24	<10	1.70	173	74	0.16	104	780	85	<5	<20	104	0.13	<10	144	<10	<1	120
20	290535	15	0.9 2.0	04	25	60	<5	1.46	<1	28	162	1170	4.90	<10	1.14	137	180	0.19	78	910	76	<5	<20	70	0.11	<10	111	<10	<1	91
21	290536	5	0.6 1.		20	60	<5	1.00	<1	26			4.55	-	1.49	167	39	0.14	78	930	64	<5	<20	-	0.13	-		<10	<1	78
22	290537	10	1.4 1.9		30	45	<5	2.95	<1	30	-	1176	5.39	-	1.16	-		0.16	82	890	68	5	<20		0.08	-	-	<10	<1	96
23	290538	15	2.0 2.2	22	25	70	<5	1.60	<1	30	139	1505	5.18	<10	1.24	204	33	0.21	60	1240	82	<5	<20	101	0.14	<10	124	<10	<1	100
24	290539	5	0.9 0.	77	20	45	<5	0.87	<1	13	38	583	2.79	<10	0.71	151	17	0.04	11	1500	36	<5	<20	57	0.07	<10	74	<10	1	215
25	290540	15	1.7 1.1	18	25	35	<5	1.30	<1	20	87	1220	3.39	<10	0.56	148	22	0.14	54	1150	46	<5	<20	100	0.08	<10	62	<10	<1	85
26	290541	5	0.8 0.9		25	25	-	1.06	<1	16	126		2.91		0.78			0.08		920	38	<5	<20		0.09	-	71	<10	<1	72
27	290542	5	3.1 1.		30	50	<5	1.23	<1	39		1975	5.70	-	1.22	226	18	0.13		790	60	<5	<20	-	0.11	-	106	<10	<1	177
28	290543	10	1.4 1.5	51	30	45	<5	1.20	<1	27	146	814	4.01	<10	1.02	219	29	0.16	76	1020	60	<5	<20	66	0.12	<10	97	<10	<1	189
29	290544	10	1.6 1.0		25	55	<5	1.15	<1	39	127	1291	5.30	<10	1.06	165	57	0.15	82	1110	66	<5	<20	89	0.13	<10	105	<10	<1	90
30	290545	15	1.2 1.8	87	25	70	<5	0.98	<1	32	187	1010	4.98	<10	1.59	199	157	0.13	89	970	74	<5	<20	55	0.15	<10	143	<10	<1	101

ECO TECH LABORATORY LTD.

CANFLEUR MINING INC.

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
31	290546	5	1.3	3 1.70	75	35	<5	1.41	<1	31	173	896	5.53	<10	1.67	301	40	0.09	70	960	68	5	<20	17	0.11	<10	165	<10	2	108
32	290547	100	1.4	1.59	30	50	<5	2.00	<1	26	172	990	4.17	<10	1.14	279	64	0.14	71	1000	66	5	<20	41	0.10	<10	113	<10	2	100
33	290548	5	1.3	0.64	25	30	<5	0.88	<1	17	44	696	2.61	<10	0.59	165	66	0.05	10	1710	28	<5	<20	24	0.06	<10	64	<10	<1	89
34	290549	10	2.0	0.86	35	45	<5	1.19	<1	25	97	1074	3.82	<10	0.73	211	72	0.05	32	1570	40	<5	<20	20	0.05	<10	79	<10	<1	109
35	290550	15	2.3	3 2.07	45	55	<5	2.23	<1	31	184	1650	4.73	<10	1.12	263	29	0.22	83	860	82	<5	<20	92	0.09	<10	106	<10	<1	149
00	000554	10	<u> </u>		05	05	-	0.40		00	400	4740	4 40	40	1 00	0.47	00	0.00	400	0.40	10	-	00	400	0.40	10	07	40		405
36	290551	10		2.25	25	85	<5	2.19	<1	29		1740	4.48	<10	1.02		29	0.26	109	640	42	<5	<20		0.10		97	<10		195
37	290552	5		1.45	15	40	<5	1.88	<1	27			4.07	<10	0.76	223			77	720	26	<5	<20		0.09	<10	79	<10		124
38	290553	10		1.30	10	30	<5	1.95	<1	32		1475		<10	0.48	203	17		70	690	26	<5			0.08			<10		136
39	290554	5		2.14	25	80	<5	2.58	<1	33		1074	4.86	<10	1.08	313	42	0.24	97	660	42	<5	<20		0.11		113			100
40	290555	5	1.2	2.27	470	80	<5	4.56	<1	38	315	1000	7.20	<10	1.21	571	56	0.12	172	750	42	<5	<20	103	0.02	<10	155	<10	1	127
41	290556	5	1.0	1.94	685	85	<5	4.12	1	38	344	879	6.71	<10	0.87	493	28	0.06	184	820	36	<5	<20	95	0.01	<10	140	<10	4	149
42	290557	5	1.1	2.13	90	80	<5	3.48	<1	31	289	898	5.10	<10	1.30	437	150	0.18	126	620	42	<5	<20	79	0.08	<10	155	<10	4	95
43	290558	10	2.0	2.26	45	70	<5	3.35	<1	36	173	1442	5.75	<10	1.42	475	18	0.23	111	610	46	<5	<20	86	0.06	<10	146	<10	3	227
44	290559	5	1.9	2.52	165	90	<5	3.86	<1	38	230	1299	6.44	<10	1.52	584	24	0.18	143	560	48	<5	<20	116	0.06	<10	164	<10	<1	204
45	290560	10	1.6	6 2.42	110	55	<5	4.12	<1	27	153	937	4.71	<10	1.23	556	2	0.29	88	740	50	<5	<20	109	0.08	<10	118	<10	2	263
46	290561	5	2.4	1.77	345	45	<5	5.30	<1	26	145	1311	6.40	<10	1.05	759	8	0.21	70	620	36	<5	<20	120	0.03	<10	117	<10	<1	219
47	290562	10		5 1.45	455	45	<5	3.62	2	34	-	1806	7.02	<10	0.99	482	5	0.19	89	510	32	<5	<20	-		<10		<10		257
48	290563	25) 1.71	220	50	<5	3.51	<1	30		1089	5.49	<10	1.00		53	0.21	101	830	38	<5	<20		0.06		135	-	5	164
49	290564	5		5 2.40	105	55	<5	3.89	<1	36	176	966	6.17		1.30		19	0.26	106	740	54	<5	<20		0.05	<10	128	<10	3	98
50	290565	5		2.32	145	60	<5	3.54	<1		214		6.63	<10		419	40		105	650	48	<5	<20			<10	150	<10	-	107
00	200000	Ŭ		2.02	110	00	-0	0.01		02	2	100	0.00	110	1.20		10	0.20	100	000	10	-0	-20		0.07	10	100	110		101
51	290566	5	1.0	2.86	65	95	<5	3.61	<1	37	271	761	6.60	<10	1.63	439	14	0.24	115	740	66	<5	<20	121	0.09	<10	200	<10	6	99
52	290567	<5	0.8	3 2.27	20	115	<5	1.23	<1	34	270	586	5.99	<10	2.06	306	36	0.20	108	640	54	<5	<20	52	0.16	<10	187	<10	<1	87
QC DAT																														
Resplit		-	~ ~			-	_	0 70		~	~~~	004		10		4.40	-	0.00	-	1000	40	_	~~	~~~	0.04	4.0	~~~	10		400
1	290516	5		0.54	20	<5	<5	0.72	<1	8	38		1.41		0.36			0.06		1060	18	<5	<20		0.04		38			106
36	290551	10	2.5	5 2.40	25	85	<5	2.19	<1	33	216	1818	5.01	<10	1.10	249	31	0.29	120	690	42	<5	<20	144	0.12	<10	111	<10	<1	200
Repeat.	:																													
1	290516	5	0.9	0.54	15	<5	<5	0.68	<1	8	37	404	1.36	<10	0.36	137	7	0.07	5	940	22	<5	<20	36	0.04	<10	36	<10	<1	112
10	290525	5	1.3	3 2.26	25	65	<5	1.33	<1	32	253	1191	5.12	<10	1.43	175	74	0.20	95	780	80	<5	<20	171	0.13	<10	131	<10	<1	113
19	290534	5	1.3	2.39	30	70	<5	1.39	<1	42	273	1770	6.43	<10	1.70	175	74	0.16	108	810	90	5	<20	104	0.13	<10	146	<10	<1	124
36	290551	10	2.6	5 2.29	25	90	<5	2.32	1	31	201	1761	4.77	<10	1.04	259	29	0.26	117	690	52	<5	<20	138	0.10	<10	101	<10	<1	214
45	290560	5																												
Standa	rd:																													
GEO '05			1.5	5 1.41	60	135	<5	1.54	<1	19	59	83	3.60	<10	0.73	596	<1	0.01	29	770	22	<5	<20	54	0.11	<10	69	<10	10	74
GEO '05				1.46	55	150		1.63	<1	19	60	86		<10	0.75			0.03		710	20	<5	<20		0.10			<10	9	76
SH13	-	1310					5			. 5					5														2	
SH13		1300																												
																					-									
JJ/kk																							FECH		JRAT	ORY L	.TD.			

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

df/1442/1413 XLS/05 21-Nov-05

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2005-1539

CANFLEUR MINING INC.

102-1441 Ellis Street **Kelowna, BC** V1Y 2A3

ATTENTION: R. Tim Henneberry

No. of samples received: 57 Sample type: Core **Project #: Whipsaw** Samples submitted by: R.Tim Henneberry

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag Al%	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr T	ï %	U	v	w	Y	Zn
1	290568	5	0.5 2.56	<5	85	5	1.11	<1	23	149	458	3.25	<10	1.69	217	10	0.29	79	650	8	5	<20	54 0	.16	<10	114	<10	7	124
2	290569	5	0.6 2.54	<5	75	5	1.09	<1	29	185	609	3.49	<10	1.74	191	35	0.25	102	650	8	5	<20	58 0	.15	<10	97	<10	6	149
3	290570	5	0.4 2.42	<5	90	10	1.10	<1	23	146	428	2.88	<10	1.65	203	10	0.26	74	670	8	5	<20	52 0	.16	<10	98	<10	6	115
4	290571	5	0.3 2.67	<5	85	5	1.20	<1	26	153	460	3.17	<10	1.98	196	9	0.26	77	650	8	5	<20	61 0	.16	<10	120	<10	6	120
5	290572	5	0.7 2.95	<5	65	10	1.20	<1	33	297	633	3.33	<10	2.18	231	9	0.22	133	400	20	10	<20	78 0	.11	<10	79	<10	3	181
6	290573			<5	70	-	1.14	<1	-	230		2.81		1.81		-	0.25	101	460	8	-	<20			<10		<10		125
7	290574	<5	0.8 3.21	<5	90	10		<1	28	160	-	4.01	-	2.06	-	5	0.33	100	590	10		<20	62 0		<10	129	-		187
8	290575	5	0.6 2.05	<5	70		0.72	<1	22	142	503	3.59		1.70		9	0.21	74	640	6		<20			<10				138
9	290576	10	0.9 2.39	<5	35	15	1.27	<1	24	79		6.47		1.02		9	0.20	62	580	8		<20			<10				244
10	290577	<5	0.7 2.13	<5	55	10	1.56	<1	18	65	901	5.65	<10	0.97	290	5	0.23	58	560	8	<5	<20	33 0	.11	<10	181	<10	15	231
11	290578	5	0.3 3.20	<5	70	10	1.73	<1	17	66	775	4.77	~10	1.19	300	5	0.38	53	490	10	5	<20	74 0	13	<10	18/	~10	11	201
12	290579	5	0.3 3.20	<5	65	10	-	<1	17	76	759	4.73	-	1.13		21	0.34	53	430 520	8	-	<20			<10	160			194
13	290580	5	0.6 2.85	<5	45	-	1.47	<1	20	71	923	-	<10	1.27	274	4	0.31	61	590	10	-	<20	50 0		<10	162	-		239
14	290581	5	0.6 2.02	5	45	10	1.05	<1	15		1000	4.28	<10	1.02	192	43	0.20	66	840	6		<20	41 0		<10	105			247
15	290582	10	0.4 1.32	<5	80	5	0.83	<1	9	68		2.70	10	0.87		35	0.09		1160	4	-	<20	29 0		-		<10	-	146
	200002		011 1102			Ū	0.00	••	Ũ		020	0		0.0.		00	0.00			•		-=0	20 0			00		•	
16	290583	5	0.3 1.14	<5	75	5	1.03	<1	10	69	652	2.72	10	0.74	110	41	0.08	43	1230	4	<5	<20	28 0	.08	<10	80	<10	8	147
17	290584	5	0.3 1.27	<5	85	10	1.06	<1	11	69	722	2.94	10	0.80	120	40	0.08	47	1160	4	<5	<20	26 0	.09	<10	81	<10	8	160
18	290585	5	0.3 1.30	<5	80	5	0.77	<1	10	66	716	2.94	10	0.83	113	29	0.07	47	1130	4	<5	<20	22 0	.10	<10	82	<10	7	159
19	290586	10	0.6 2.29	<5	80	10	1.04	<1	17	72	884	3.95	<10	1.24	214	20	0.23	60	810	8	<5	<20	49 0	.15	<10	136	<10	11	208
20	290587	5	0.4 3.03	<5	60	10	1.43	<1	20	85	1002	5.03	<10	1.34	227	19	0.37	70	480	10	5	<20	64 0	.17	<10	169	<10	11	235
21	290588	5	0.4 3.43	<5	95	10	-	<1	18		977	4.45	-	1.08	205	13	0.42	68	480	12	-	<20			<10	154	<10	11	
22	290589	5	0.4 3.69	<5	70	10	1.81	<1	16		1038	4.57	-	1.09	166	16	0.47		440	12	-	<20	102 0		-		<10		
23	290590	5	0.4 1.47	<5	75	-	0.79	<1	10		1024	3.44	-	0.94	135	59	0.12	-	1050	4	-	<20	40 0				<10		224
24	290591	5	0.4 1.26	<5	80	5	0.85	<1	11	79	924	2.90		0.86	122	41	0.08		1190	4		<20	27 0		<10	79	<10		206
25	290592	5	0.4 1.20	<5	70	5	0.65	<1	11	64	694	2.74	<10	0.95	96	44	0.08	45	1120	4	<5	<20	23 0	.11	<10	84	<10	7	155
26	290593	5	<0.2 1.25	<5	70	10	1.06	<1	11	64	285	2.65	<10	0.89	88	38	0.06	10	1130	4	<5	<20	18 0	00	<10	78	<10	8	72
20	290593	5	0.2 1.25	<5 <5	70 75		0.96	<1	8	59	205 456	2.65	<10 10	0.89	00 118	30 14	0.00		1210	4		<20 <20	21 0		<10		<10 <10	-	111
28	290594	5 <5	0.2 1.29	<5 <5	75 85		0.90	<1	8 9	72	450 539		<10	1.00	133	28	0.07		1180	4		<20 <20	27 0		<10	78 89	<10 <10		127
20	290595	<5 <5	0.2 1.30	<5 <5	85 75	-	0.62	<1	9 10	77	429	2.85	-	0.98	155	20 58	0.10		1200	4		<20 <20			<10 <10		<10 <10		111
30	290597	~J 5	0.2 1.23	<5	90	10	0.68	<1	11	82	604	3.62		1.08	159	40	0.15		1010	6	<5 <5	<20	40 0		<10	107			
00	200001	5	0.0 1.00	~0	50	10	0.00	~ '		02	004	0.02	\$10	1.00	100	-10	0.10		1010	0	~0	~20		/	210	107	10	0	100

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2005-1539

CANFLEUR MINING INC.

Et #.	Tag #	Au(ppb)	Ag Al%	As	Ва	Bi	Ca %	Cd	Со	Cr Cı	∣Fe%	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr Ti%	U	V	W	Y	Zn
31	290598	5	0.9 3.12	<5	70	15	1.39	<1	26	105 1609	6.03	<10	1.77	229	46	0.35	114	530	12	5	<20	55 0.18	<10	214	<10	13	365
32	290599	5	0.9 2.77	<5	85	15	1.14	<1	23	114 1365	5.75	<10	1.66	230	19	0.24	99	600	10	5	<20	38 0.19	<10	177	<10	15	344
33	290600	5	0.8 2.96	<5	90	15	1.32	<1	24	114 1243	5.72	<10	1.77	242	30	0.32	93	490	12	5	<20	59 0.19	<10	197	<10	12	298
34	290601	10	0.8 2.54	<5	85	15	1.14	<1	22	110 1223	5.68	<10	1.60	249	59	0.27	87	620	10	5	<20	45 0.20	<10	171	<10	14	298
35	290602	5	1.1 2.68	<5	80	15	1.03	<1	22	119 1553	5.53	<10	1.74	230	46	0.27	115	560	10	5	<20	44 0.21	<10	178	<10	12	365
00	000000	-	07050	_	00	10	4.05		00	100 111	4.00	40	4 70	000		0.05	07	F 40	40	_	00		40	400	40	40	070
36	290603	5	0.7 2.56	<5	80	10	1.05	<1		120 1116			1.72		41	0.25	87	540	10	5	<20	36 0.20					273
37	290604	5	0.5 2.16	<5	65	15	0.94	<1	-	100 803	-	<10	1.46	223	24	0.23	60	480	8	<5	<20	27 0.16	<10		<10		210
38	290605	5	0.7 2.81	<5	70	15	1.45	<1	25	75 1462		-	1.55	236	21	0.29	97	620	12	5	<20	61 0.17				11	344
39	290606	5	0.5 2.89	<5	95	10	1.32	<1	21	103 1521	-	<10	1.56	198	53	0.26	104	490	10	5	<20	51 0.19		189			347
40	290607	5	1.0 2.87	<5	100	15	1.54	<1	23	117 1550	5.38	<10	1.91	255	34	0.23	116	540	12	5	<20	42 0.19	<10	212	<10	14	398
41	290608	5	1.1 3.64	<5	85	15	1.73	<1	29	150 1726	6.26	<10	2.27	243	188	0.38	129	460	16	10	<20	71 0.18	<10	219	<10	9	391
42	290609	5	0.5 3.98	<5	110	15	1.62	<1	29	188 1524	5.38	<10	2.55	217	173	0.35	133	590	16	10	<20	77 0.21	<10	227	<10	10	349
43	290610	5	0.6 2.99	<5	90	15	1.89	<1	29	173 1528	5.41	<10	2.23	266	53	0.23	137	580	12	5	<20	50 0.16	<10	190	<10	13	402
44	290611	5	0.3 3.00	<5	90	15	1.94	<1	21	129 1217	4.84	<10	1.97	194	57	0.28	98	510	12	5	<20	51 0.18	<10	186	<10	15	284
45	290612	<5	0.4 3.80	<5	100	15	2.10	<1	22	126 1028	5.04	<10	2.16	205	48	0.31	92	600	16	10	<20	70 0.16	<10	194	<10	10	244
46	290613	5	0.3 3.12	<5	105	15	2.21	<1	24	185 1318	5 16	-10	2.51	242	63	0.14	127	E40	12	10	<20	35 0.18	-10	206	<10	13	304
40	290613	-5	0.3 3.12	<5 <5	95	15	4.30	<1	24	123 89		<10	1.97	242 364	28	0.14	90	540 510	12	5	<20	37 0.08	<10		<10	17	213
47	290614	5	0.2 3.10	<5 <5	93 80	15	1.60	<1		137 1036		<10	1.80	226	18	0.04	100	680	10	5	<20	55 0.17		134		10	305
40 49	290615	10	0.4 2.00	<5 <5	90	15	1.28	<1 <1		145 1386		<10	1.80	220	51	0.25	121	580	10	10	<20 <20	53 0.17	<10	-	<10 <10	10	356
49 50	290618	5	0.4 2.79	<5 <5	90 100	15	1.20	<1		143 1380		<10	2.09		104	0.24	154		12	5	<20 <20	56 0.20	-	-	-	-	492
50	230017	5	0.7 2.01	<5	100	15	1.50		24	140 1990	4.00	<10	2.03	245	104	0.20	134	500	12	5	\ 20	50 0.20	<10	133	<10	15	432
51	290618	<5	0.6 3.42	<5	105	15	1.64	<1	26	172 1191	4.78	<10	2.39	255	53	0.34	115	650	14	10	<20	92 0.21	<10	202	<10	10	308
52	290619	<5	0.6 1.96	<5	65	15	1.01	<1	23	133 1654	4.77	<10	1.59	187	91	0.16	123	460	10	5	<20	44 0.15	<10	142	<10	12	390
53	290620	5	1.2 3.21	5	90	20	1.72	2	27	166 1615	5.73	<10	2.32	298	88	0.26	133	500	14	10	<20	74 0.18	<10	205	<10	13	647
54	290621	5	0.7 3.10	<5	90	20	2.11	<1	27	144 1385	5.75	<10	2.49	292	82	0.20	118	530	16	10	<20	65 0.18	<10	220	<10	14	366
55	290622	5	0.6 2.75	<5	80	10	4.90	<1	23	145 2079	5.30	<10	2.13	356	88	0.07	162	450	14	5	<20	70 0.12	<10	170	<10	19	469
56	290623	5	0.9 3.41	<5	80	15	1.54	<1	35	157 3037	7.21	<10	2.48	213	39	0.32	227	540	18	10	<20	78 0.20	<10	207	<10	10	683
57	290624	<5	0.6 2.66	<5	100	20	1.29	<1		126 1655		<10	1.97		28	0.22	124		14	-	<20	61 0.21	-	186	-	-	385
<u>QC DATA:</u> Boonliti	-																										
Resplit:	200560	F	05 224	~5	Q.E	10	1 1 2	_1	24	1/6 20/	2 27	<10	1 70	207	11	0.25	71	670	8	5	-20	50 0 10	-10	115	-10	7	109
36	290568 290603	5 5	0.5 2.34 0.6 2.52	<5 <5	85 85	10 20	1.12 1.19	<1 <1		146 39 ² 124 1187			1.72 1.83	227 238	11 34	0.25 0.25	71 80	670 560	0 12	-	<20 <20	50 0.16 38 0.20				-	278
50	230003	5	0.0 2.02	<5	00	20	1.13		25	124 1107	4.32	<10	1.00	200	54	0.25	00	500	12	10	~ 20	30 0.20	<10	107	<10	15	210
Repeat:																											
1	290568	5	0.5 2.40	<5	85	5	1.00	<1	22	138 459		<10	1.68	195	10	0.25	75	610	8	5	<20	49 0.15			<10	6	120
10	290577	<5	0.7 2.08	<5	50	10	1.56	<1	19		5.74	-	0.97	290	5	0.22	59	560	8	<5	<20	32 0.10		-	-	14	234
19	290586	5	0.6 2.27	<5	75	10	1.06	<1	17	72 88′		-	1.27	221	21	0.22	60	830	8	<5	<20	50 0.15	<10		<10	10	209
36	290603	<5	0.6 2.55	<5	80	15	1.19	<1	24	130 1141		-	1.82	235	41	0.28	89	500	12	10	<20	41 0.22	<10	172		14	282
45	290612	<5	0.4 3.69	<5	100	20	2.17	<1	21	130 98	5.13	<10	2.19	208	48	0.30	89	550	16	10	<20	74 0.17	<10	196	<10	10	237

 ECO TECH LABORATORY LTD.
 ICP CERTIFICATE OF ANALYSIS AK 2005-1539
 CANFLEUR MINING INC.

 Et #. Tag # Au(ppb) Ag Al % As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni P Pb Sb Sn Sr Ti % U V W Y Zn
 V W Y Zn

 Page 2

Standard:																		
SH13	1290																	
SH13	1300																	
GEO'05	1.5 <0.2 1.67	45 155	<5 1.43	<1	19 59	88 3.57	<10 0.8	3 607	1 0.02	29 620	24	5 <20	54 0.11	<10	71	<10	11	72
GEO'05	1.4 <0.2 1.61	50 150	5 1.53	1	19 60	85 3.60	<10 0.8	647	<1 0.02	29 680	20	<5 <20	52 0.11	<10	67	<10	11	72

JJ/cr ^{df/N1539} XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer 12-Dec-05 ECO TECH LABORATORY LTD.

10041 Dallas Drive

KAMLOOPS, B.C.

Phone: 250-573-5700

Fax : 250-573-4557

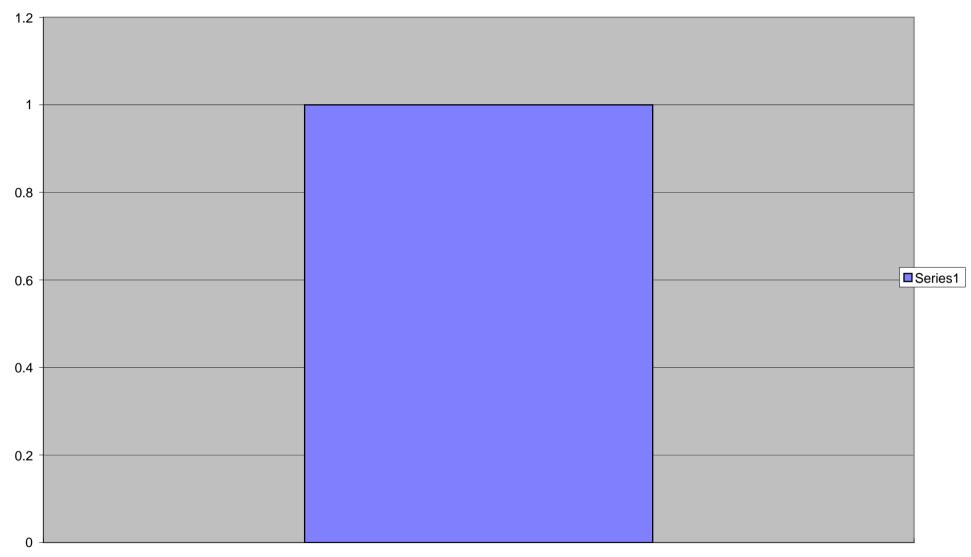
V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 2005-1599

CANFLEUR MINING INC.

102-1441 Ellis Street **Kelowna, BC** V1Y 2A3

ATTENTION: R. Tim Henneberry


No. of samples received: 31 Sample type: Core **Project #: Whipsaw** Samples submitted by: Tim Henneberry

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag Al %	As	Ва	Bi	Ca %	Cd	Co	Cr Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	290625	15	0.7 2.45	<5	100	<5	1.55	<1	30	89 2177	5.70	<10	1.66	183	82	0.20	18	310	42	<5	<20	43	0.17	<10	211	<10	9	62
2	290626	10	0.9 2.05	<5	90	<5	1.02	<1	32	91 2080	5.62	<10	1.68	164	217	0.16	17	480	38	<5	<20	31	0.17	<10	206	<10	7	64
3	290627	60	0.7 2.68	5	100	<5	1.06	<1	33	61 2100	6.54	<10	2.00	186	70	0.22	11	270	46	<5	<20	54	0.19	<10	259	<10	6	85
4	290628	10	0.5 2.62	<5	110	<5	0.88	<1	24	79 1433	5.46	<10	2.18	226	41	0.20	14	440	48	<5	<20	35	0.21	<10	279	<10	7	104
5	290629	15	1.0 3.28	5	120	<5	1.54	<1	45	51 2813	7.23	<10	2.22	211	289	0.22	10	210	58	<5	<20	42	0.19	<10	339	<10	5	85
6	290630	15	1.0 3.16	5	100	<5	1.55	<1	30	60 1940	6.42	<10	1.93	217	15	0.30	10	410	56	<5	<20	51	0.17	<10	299	<10	7	90
7	290631	10	0.7 2.49	5	90	<5	1.36	<1	30	82 2038	6.15	<10	1.63	186	246	0.23	10	290	44	<5	<20	34	0.15	<10	218	<10	10	79
8	290632	15	0.8 2.47	5	100	<5	0.86	<1	37	84 2360	6.43	<10	2.09	190	125	0.18	14	290	42	<5	<20	29	0.20	<10	262	<10	9	76
9	290633	10	0.5 2.04	<5	85	<5	0.84	<1	29	80 1534	5.43	<10	1.74	171	29	0.16	15	690	38	<5	<20	33	0.19	<10	213	<10	8	59
10	290634	10	0.6 2.28	5	80	<5	0.98	<1	30	91 1513	5.80	<10	1.70	200	66	0.23	15	380	44	<5	<20	31	0.18	<10	222	<10	7	57
11	290635	10	0.5 3.18	5	100	<5	1.43	<1	36	103 1513	6.62	<10	2.38	226	42	0.24	25	500	56	<5	<20	41	0.22	<10	285	<10	8	77
12	290636	15	0.8 3.90	10	75	<5	2.08	<1	32	84 1590	6.57	<10	1.78	205	93	0.42	15	440	72	<5	<20	67	0.17	<10	259	<10	7	117
13	290637	15	1.5 3.08	10	95	<5	1.83	<1	31	76 2106	6.40	<10	1.89	271	146	0.31	12	310	56	<5	<20	55	0.17	<10	260	<10	8	92
14	290638	10	0.8 3.72	10	80	<5	2.62	<1	26	69 1285	5.89	<10	1.66	270	56	0.46	11	360	70	<5	<20	72	0.14	<10	232	<10	4	84
15	290639	10	0.9 2.80	5	70	<5	2.44	<1	30	73 1524	6.65	<10	2.05	251	95	0.30	13	250	50	<5	<20	61	0.17	<10	259	<10	<1	115
16	290640	10	0.6 2.87	5	70	<5	2.52	<1	36	66 1897	6.52	<10	1.93	202	56	0.28	12	280	52	<5	<20	60	0.17	<10	275	<10	3	78
17	290641	15	1.2 3.61	5	65	<5	3.07	<1	39	75 2250	6.83	<10	1.70	239	44	0.40	14	210	64	<5	<20	-	0.15	<10		<10	<1	89
18	290642	20	1.3 3.15		65	<5	2.48	<1	37	111 2123	6.68	<10	2.02	255	120	0.31	21	240	58	<5	<20		0.19	<10		<10	5	112
19	290643	15	1.4 2.39	-	60	<5	2.18	<1	27	73 2440	5.77	<10	1.42	228	113	0.22	10	580	44	<5	<20		0.16	<10		<10	4	107
20	290644	10	1.1 1.15	15	75	<5	3.30	<1	15	60 2055	3.55	<10	0.72	168	270	0.05	10	1030	22	<5	<20	106	0.06	<10	103	<10	5	53
21	290645	15	1.2 1.78	-	70	<5	1.43	<1	30	85 2388	5.87	<10	1.52	190	174	0.11	13	420	32	<5	<20	-	0.16	<10	-	<10	4	68
22	290646	25	1.6 2.39	<5	65	<5	1.97	<1	36	84 2448	7.25	<10	1.88	240	70	0.16	15	390	42	<5	<20	-	0.19	<10	264	<10	2	77
23	290647	15	1.0 1.49	5	65	<5	1.78	<1	30	84 1905	5.53	<10	1.12	173	204	0.07	10	240	28	<5	<20	37	0.11	<10	145	<10	7	64
24	290648	15	0.9 1.44	<5	65	<5	1.64	<1	28	88 1683	4.87	<10	1.24	178	33	0.08	8	280	26	<5	<20	33	0.14	<10	159	<10	12	54
25	290649	10	0.7 2.08	5	60	<5	2.05	<1	30	82 1429	5.29	<10	1.25	192	87	0.20	8	300	40	<5	<20	53	0.16	<10	161	<10	8	55

Et #.	Tag #	Au(ppb)	Ag Al%	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	w	Y	Zn
26	290650	10	0.8 1.76	<5	65	<5	1.91	<1	24	85 1	1580	4.81	<10	1.06	190	48	0.15	8	290	34	<5	<20	36	0.13	<10	141	<10	13	53
27	290651	15	1.0 0.99	<5	50	<5	1.51	<1	44	94 1	1882	5.23	<10	0.85	137	215	0.07	6	230	18	<5	<20	26	0.09	<10	87	<10	6	52
28	290652	10	0.7 1.30	5	60	<5	2.12	<1	21	75 1	1449	4.52	<10	0.80	152	100	0.06	7	260	24	<5	<20	43	0.07	<10	103	<10	8	45
29	290653	10	0.8 1.92	5	80	<5	2.55	<1	27	82 1	1600	5.67	<10	1.43	204	77	0.12	10	340	36	<5	<20	46	0.16	<10	201	<10	10	70
30	290654	20	1.3 1.78	5	65	<5	1.93	<1	32	80 1	1732	5.76	<10	1.44	187	127	0.12	8	360	30	<5	<20	37	0.18	<10	197	<10	7	72
31	290655	15	1.0 1.55	<5	60	<5	1.57	<1	31	77 1	1815	5.61	<10	1.06	161	157	0.16	6	340	30	<5	<20	32	0.17	<10	156	<10	9	60
<u>QC DA⁻</u> Resplit		15	0.8 2.35	5	95	<5	1.54	<1	31	87 2	0146	5.66	<10	1.62	177	93	0.18	17	320	44	<5	<20	41	0.16	<10	204	<10	9	62
1	290025	15	0.0 2.55	5	90	ζ3	1.54	~ 1	51	07 2	2140	5.00	<10	1.02	177	93	0.10	17	520	44	<5	<20	41	0.10	<10	204	<10	9	02
Repeat	:																												
.1	290625	10	0.7 2.48	5	100	<5	1.57	<1	31	90 2	2228	5.85	<10	1.70	184	79	0.20	18	320	44	<5	<20	44	0.17	<10	215	<10	10	64
10	290634	10	0.6 2.21	<5	80	<5	0.95	<1	29	89 1	1494	5.72	<10	1.68	197	63	0.22	15	390	42	<5	<20	29	0.18	<10	220	<10	7	56
19	290643	15	1.4 2.38	<5	60	<5	2.18	<1	27	72 2	2452	5.80	<10	1.42	222	114	0.22	9	580	44	<5	<20	70	0.16	<10	227	<10	2	107
Standa GEO'05			1.4 1.54	55	140	<5	1.60	<1	18	58	85	3.95	<10	0.85	605	<1	0.02	29	570	22	<5	<20	54	0.11	<10	70	<10	10	75

JJ/kk ^{df/1605} XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer Chart1

1

CERTIFICATE OF ASSAY AK 2005-1627

CANFLEUR MINING INC.

102-1441 Ellis Street **Kelowna, BC** V1Y 2A3

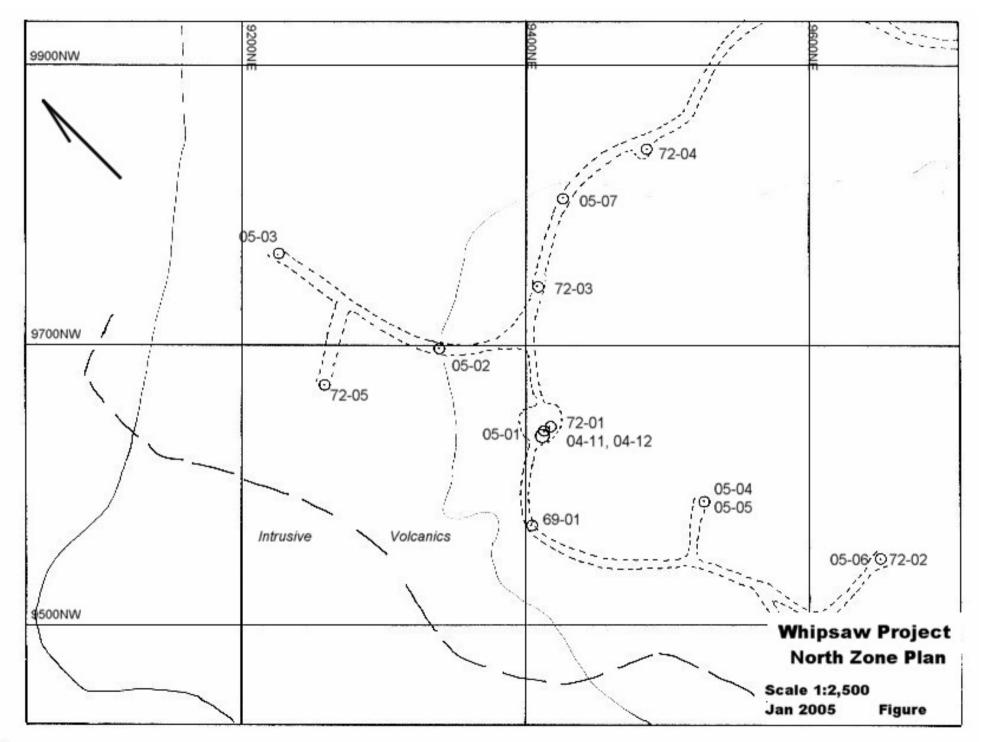
ATTENTION: R. Tim Henneberry

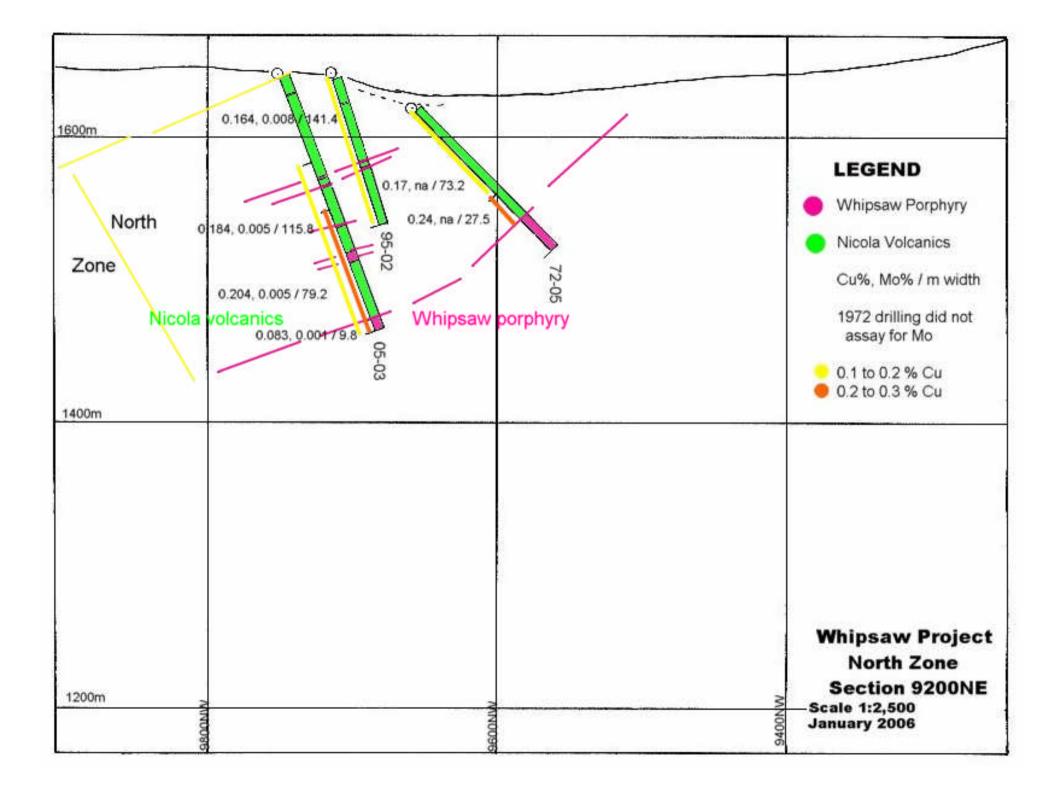
No. of samples received: 37 Sample type: Core **Project #: Whipsaw Shipment #:n/a** Samples submitted by: R.T.Henneberry

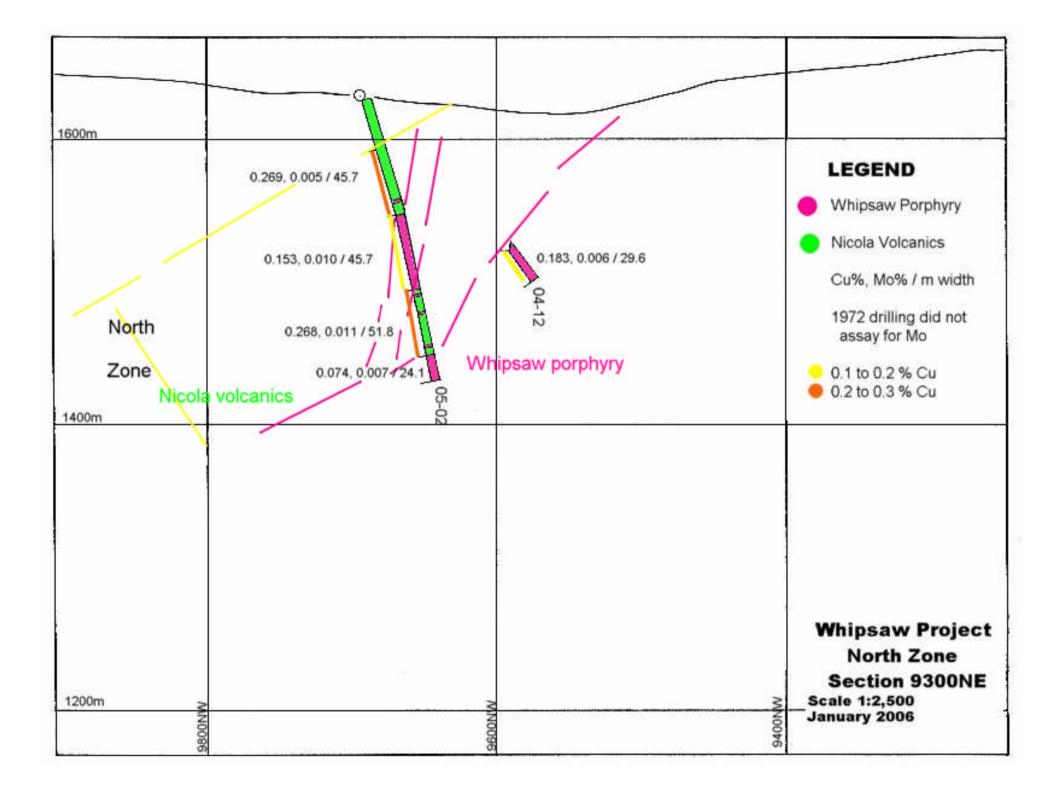
		Au	Au
ET #.	Tag #	(g/t)	(oz/t)
1	290656	<0.03	<0.001
2	290657	< 0.03	<0.001
3	290658	<0.03	<0.001
4	290659	<0.03	<0.001
5	290660	< 0.03	<0.001
6	290661	<0.03	<0.001
7	290662	< 0.03	<0.001
8	290663	<0.03	<0.001
9	290664	< 0.03	<0.001
10	290665	< 0.03	<0.001
11	290666	< 0.03	<0.001
12	290667	<0.03	<0.001
13	290668	<0.03	<0.001
14	290669	<0.03	<0.001
15	290670	<0.03	<0.001
16	290671	<0.03	<0.001
17	290672	<0.03	<0.001
18	290673	<0.03	<0.001
19	290674	<0.03	<0.001
20	290675	<0.03	<0.001
21	290676	<0.03	<0.001
22	290677	<0.03	<0.001
23	290678	<0.03	<0.001
24	290679	<0.03	<0.001
25	290680	<0.03	<0.001

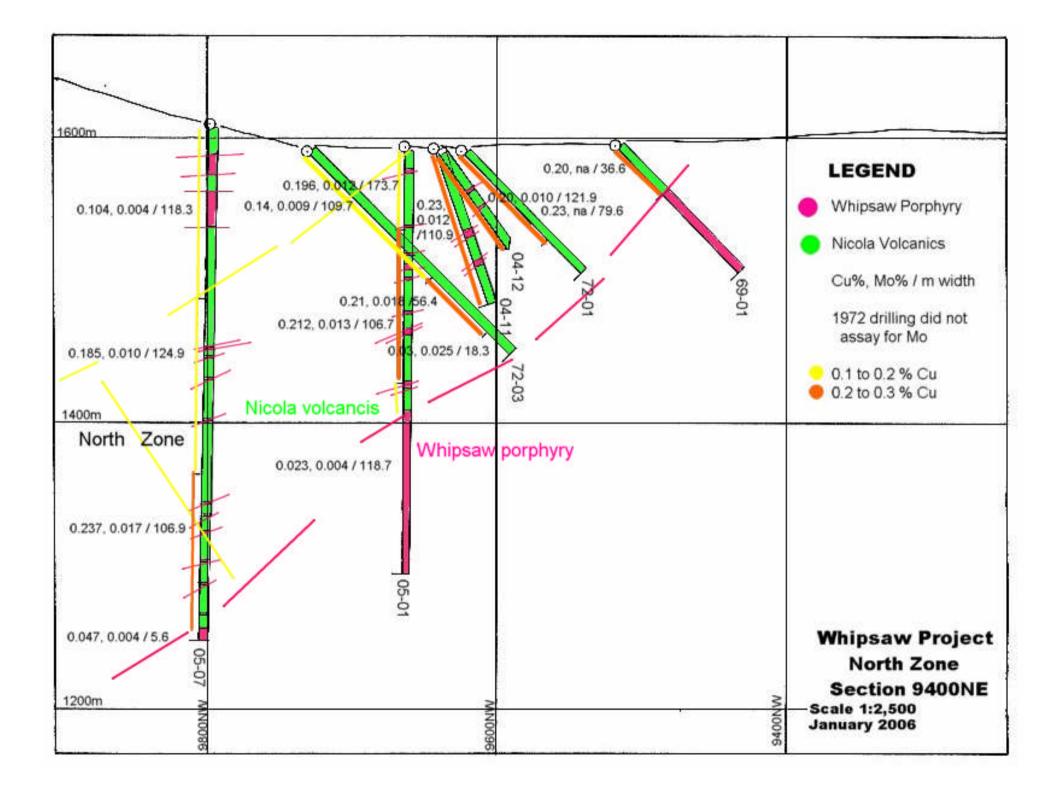
ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

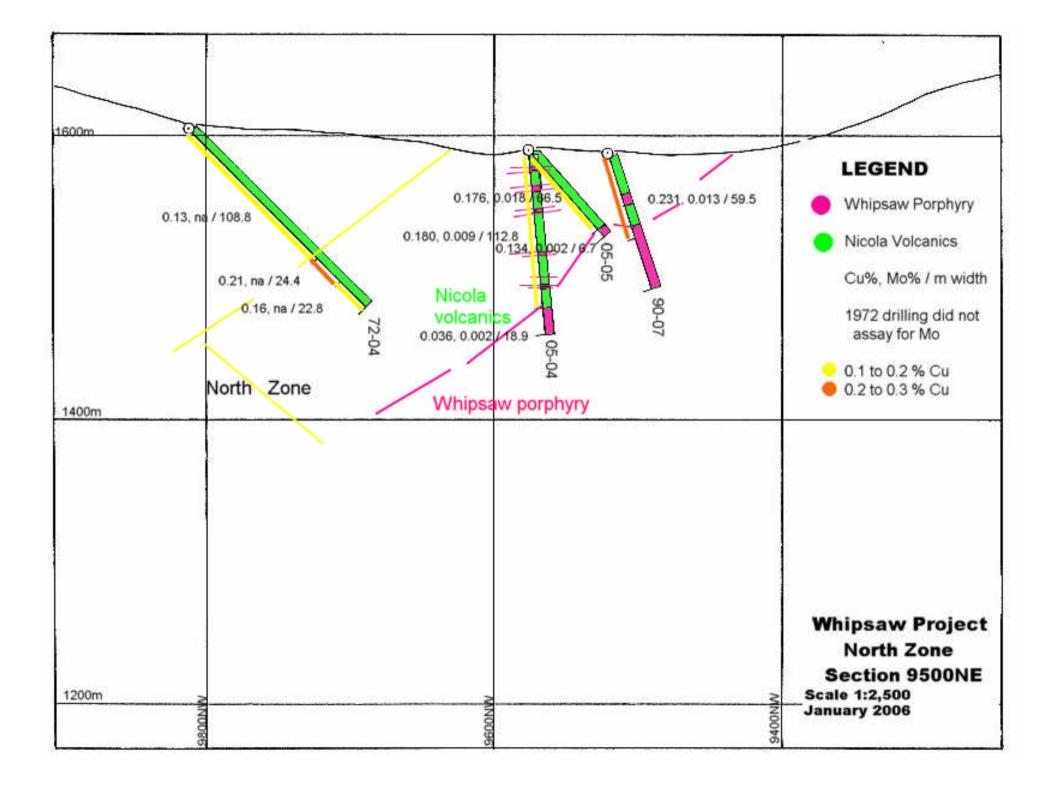
6-Dec-05


CANFLEUR MINING INC. AK5-1627


		Au	Au
ET #.	Tag #	(g/t)	(oz/t)
26	290681	<0.03	<0.001
27	290682	<0.03	<0.001
28	290683	<0.03	<0.001
29	290684	<0.03	<0.001
30	290685	<0.03	<0.001
31	290686	< 0.03	<0.001
32	290687	<0.03	<0.001
33	290688	0.03	0.001
34	290689	<0.03	<0.001
35	290690	0.03	0.001
36	290691	<0.03	<0.001
37	290692	<0.03	<0.001


	_		
Repeat:			
1	290656	<0.03	<0.001
10	290665	<0.03	<0.001
19	290674	< 0.03	<0.001
36	290691	<0.03	<0.001
Resplit:			
1	290656	<0.03	<0.001
36	290691	<0.03	<0.001
Standard:			
OX140		1.83	0.053
OX140		1.82	0.053


JJ/ga XLS/05 **ECO TECH LABORATORY LTD.** Jutta Jealouse B.C. Certified Assayer


6-Dec-05

