

REPORT on the Phase 2 2005 DIAMOND DRILLING PROGRAM

On the

FESSIO

1

R.C. Wells, P.Geo., FGAC Kamloops Geological Services Ltd. 910 Heatherton Court Kamloops, BC V1S 1P9

June 30, 2006

TABLE OF CONTENTS

SUMMARY	1
1.0 INTRODUCTION	6
1.1 Location And Access	6
1.2 Topography, Vegetation and Climate	
1.3 Property	8
1.4 Exploration History	
General	
Previous Exploration	12
Discovery Period 1996-1997	13
Preliminary Exploration Programs 1998-1999	15
2001-2002 Exploration by Navasota Resources Ltd	18
2004 Exploration by Yankee Hat Minerals Ltd	23
1.5 Regional Geology	
1.6 Property Geology	28
1.7 2004 Geological Mapping and Prospecting, Western Grid	33
2.0 2005 EXPLORATION PROGRAM	37
3.0 PHASE 2, 2005 DIAMOND DRILLING PROGRAM	38
3.1 Procedure	
3.2 Results	43
3.3 Discussion	53
4.0 CONCLUDING REMARKS	58
5.0 RECOMMENDATIONS	
6.0 REFERENCES	
7.0 STATEMENT OF COSTS	64
8.0 CERTIFICATE OF QUALIFIED PERSON	65

APPENDICES

At Rear

APPENDIX A Mineral Titles Online, Transaction Events

APPENDIX B Diamond Drilling Results

.

LIST OF FIGURES

Т

i

...

		Page
Figure 1	Location Map	5
Figure 2	Claim Map	9
Figure 2A	New Claim Map	
Figure 3A	Areas of Previous Exploration (1998)	
Figure 3B	Areas of Previous exploration (2001-2002)	
Figure 4	Navasota Drill Hole Locations (2001-2002)	
Figure 5	Regional Geology	
Figure 6	Fran Property. Local Geology	
Figure 7	Geological Mapping with Old Drillholes	
Figure 8	Hole Locations on a Compilation Map	
Figure 9	West Grid Area. IP Chargeability with 2005 Drill Holes	
Figure 10	Drill Section: 8100E. DDH FR-047	46
Figure 11	North Contact Zone - Compilation Map	
Figure 12	Drill Section: 8600E. DDH's FR-041, 42, 43 and 44	50
Figure 13	Drill Section: 9245E. DDH FR-048	54
Figure 14	North Contact Zone-Proposed Drilling and Trenching 2006	57
Figure 15	Drill Section: DDH FR-038	Appendix B
Figure 16	Drill Section: DDH FR-039 and 040	Appendix B
Figure 17	Drill Section: 408600E, DDH's FR-041, 42, 43 44	Appendix B
Figure 18	Drill Section: 408500E, DDH FR-045	Appendix B
Figure 19	Drill Section: DDH FR-046	Appendix B
Figure 20	Drill Section: 409245E, DDH FR-048	Appendix B
Figure 21	North Contact Zone-Proposed Drilling and Trenching 2006	Appendix B

LIST OF TABLES

Table 1	Fran Property Original Mineral Claims.	
Table 1A	Fran Property. List of Mineral Claims	10
Table 2	Fran Property. Previous Exploration	14
Table 3	Significant Drill Intercepts Bullion Alley Zone	
Table 4	2004 Fran Prospecting Program-Sampling Highlights	
Table 5	Phase 2: Diamond Drill Holes 2005 (August)	40
Table 6	Fran Project 2005. Phase 2 Diamond Drilling Highlights	
Table 7A	North Contact Au Intercepts	55
Table 7B	South Contact Au Intercepts	55
Table 7C	Intrusion Hosted (Interior) Zones. Au Intercepts	56

SUMMARY

Yankee Hat Minerals Ltd. is exploring the Fran Property in north-central British Columbia for bulk tonnage and high grade gold-polymetallic deposits. The 2005 exploration program featured two phases of diamond drilling. Phase 11 drilling included eleven holes at a total cost of over \$205,000.00 and is the subject of this report. A portion of this work is being filed for assessment work credits on the combined claim group.

Yankee Hat Minerals is exploring the Fran Property primarily for gold deposits (± Ag, Cu, Pb and Zn). The original Fran Property consisted of eight mineral claims covering approximately 4000 hectares in the Omineca Mining Division of British Columbia. Recent staking to the southeast and south has expanded the property to approximately 9467 hectares in area. This is a hilly area on the north side of Inzana Lake, 60 kilometres north of Fort St. James, north-central BC. which has good logging road access.

The company negotiated an option with the owner, Richard J. Haslinger Jr. on March 31st, 2004. This option is subject to staged payments and a royalty equal to 2% of Net Smelter Returns.

During the 1980's a significant amount of alkalic porphyry exploration took place in this part of the province following the discovery of the Mt. Milligan gold-copper porphyry deposit. The TAS property located 8 kilometers southeast (of original Fran claims) received exploration by several companies while the Fran area was basically unexplored. Several gold discoveries were made by Richard Haslinger Sr.(original property owner) in the mid-1990's resulting in the staking of the Fran claims. These discoveries sparked significant company interest; preliminary sampling and geology programs by Placer Dome Inc. and Homestake Canada Inc. followed in 1998. An extensive gold (copper) soil anomaly and several mineral occurrences were outlined in the Upper-Hill Top and Lower showings area. Property exploration by Navasota Resources Ltd. (2001-2002) involved 32 NQ diamond holes that tested three areas on the 1.5 kilometre long 'Bullion Alley' NW trend (between showings). This drilling

encountered numerous multi-gram gold intercepts with variable Ag, Cu, Pb and Zn values mainly from quartz-sulfide vein systems.

The Fran Property lies within the Quesnellia Terrane of the Canadian Cordillera and is underlain by Takla Group (Late Triassic-Early Jurassic) sedimentary and volcaniclastic rocks intruded by dykes and small stocks of monzonite, monzodiorite, diorite and more felsic porphyries. In the west central property area the Bullion Alley rend features auriferous (fracture controlled) quartz-sulfide veins and wallrock replacements which have some strong similarities with those in the historic Rossland gold camp in southeastern BC. These quartz-sulfide veins are associated with the majority of the multi-gram gold intercepts (±Ag, Cu, Pb and Zn) and occur both in intrusive and country rock (hornfels) settings along the trend. Several other syn to post-mineral vein types have been identified in drilling and outcrops in the same area.

The previous work on the Fran Property largely concentrated on one small area, the 'Bullion Alley' trend leaving the rest basically unexplored. The drilling on the Bullion Alley trend has indicated one or more penetrative, WNW trending quartz sulfide vein zones which may continue between the two main showing areas (1.5 kilometres). These are open on either end. Much of the area between the showings had not been tested by drilling other than in the Mid-Ridge area (to the north).

In 2004 Yankee Hat Minerals Ltd conducted an integrated and systematic Phase 1 exploration program on the Fran Property. This included a property scale airborne geophysical survey and more detailed geological, geochemical and prospecting surveys on the Bullion Alley trend. Total eligible exploration expenditures were approximately \$243,704.00. An early property scale stream silt geochemical program indicated a much larger gold target area than that covered by previous exploration. A 45 line kilometer survey grid was installed to cover this area and used for soil geochemical, prospecting and geological mapping. Several east to southeast trending gold (copper, silver) targets were outlined in the west and central grid areas. Prospecting returned a significant number of multi-gram gold values over a 1.7 kilometre strike length. The airborne geophysical survey (magnetic and radiometric) took place late in 2004 and indicated a

large number of target areas, some of these were outside of the claim group and were promptly staked for Yankee Hat.

The 2005 field program by Yankee Hat Minerals featured both property scale and more detailed grid (Bullion Alley) exploration with expenditures exceeding \$550,000. On the 'Bullion Alley' Grid there was road building, trenching, induced polarizationmagnetic geophysical surveys and two phases of diamond drilling totaling 3028.41 metres.

Phase 2 diamond drilling consisted of eleven holes totaling 1861 metres and was designed to test a one kilometer long section of the anomalous gold in soils/prospecting trend in the western half of the 'Bullion Alley'grid. This trend follows an east trending, steeply dipping, crowded feldspar porphyry (monzodiorite) dyke up to 250 metres wide. Gold mineralization in the intrusive environment is related to sulfide rich (pyrite, pyrrhotite, chalcopyrite) vein zones with minor quartz, and broader quartz veinlet stockwork-disseminated sulfide zones. Similar sulfide rich vein zones and patchy semimassive to massive sulfide replacements occur within the proximal sediments and hornfels.


A large number of multi-gram gold intercepts were returned from the drilling. Highlights from the North Contact (Upper Showings) hole FR-047 are: 7.889 g/t Au, 12.78 g/t Ag, 0.54% Cu and 0.39% Zn over 4 kilometres core length. Hole FR-042 yielded 2.94 g/t Au over 10.07 metres, including 7.75 g/t Au over 3.34 metres; South Contact: 2.87 g/t Au over 8.83 metres, including 32.20 g/t Au, 28.85 g/t Ag and 0.88% Cu over 0.61 metres; hole Fr-048: 70.4 g/t Au over 0.5 metres. In the Interior Gold Zone hole FR-043: 4.13 g/t Au over 9.11 metres.

The Phase 1 and 2 drilling results indicated multiple gold mineralized zones (with copper, silver, local lead, zinc) at either contact and within the intrusive complex. In many cases it is premature to correlate gold intercepts between holes because of the wide

spacings, often more than 100 metres. In-fill drilling is required for more confident correlation of zones.

The 2005 exploration program produced some highly significant results and easily met with expectations.

A two phase 2006 exploration program is recommended with a budget of \$1 million (Cdn) and is non contingent. The two pronged exploration approach over the last two years has been highly successful and should be continued. More grass roots exploration also should continue on the new (eastern) claims while detailed drilling and trenching are conducted on the higher priority targets on the Bullion Alley Grid. A resource calculation should be possible by the end of this field season on one or more of the drilled zones, in particular the North Contact.

Yankee Hat Minerals Ltd.

Figure 1: Location Map

R.C. Wells P.Geo., Kamloops Geological Services Ltd.

1.0 INTRODUCTION

This report presents the results of a Phase II diamond drilling program that took place on the Fran Property, Omineca Mining Division of British Columbia between August and October 2005. This work was supervised by R.C. Wells, P.Geo., FGAC, consulting geologist for Kamloops Geological Services Ltd. and financed by Yankee Hat Minerals Ltd. with offices at 1500-1055 West Georgia Street, Vancouver BC. The cost of the drilling program was in excess of \$205,000.00 of which \$31,059.85 is being filed for assessment work credit on several of the claims.

The Fran Property lies in a northwest trending belt of volcanic rocks in Quesnellia hosting alkalic porphyry Cu-Au deposits such as Mt. Milligan (to the northeast). Yankee Hat is exploring the Fran for bulk tonnage intrusive hosted and higher grade auriferous vein-replacement gold deposits.

1.1 Location And Access

ł

The property is located in north-central British Columbia, four kilometres north of Inzana Lake and approximately 60 kilometres north of the regional centre of Fort St. James (Figure 1). The property has Benoit Lakes on its western boundary and straddles the border area between NTS map sheets 93K/16 and 93N/01 with its centre at Latitude 55⁰00'N, Longitude 124⁰25'W; UTM NAD 83 Zone 10 coordinates 6,094,000N 410,000E.

Access to the property area north from Fort St. James is by the Germansen highway for 55 kilometres then west along the Inzana Forestry Service Road for 30 kilometres. These roads are unpaved but generally useable throughout the year though winter access may be difficult along the Inzana FSR in the absence of logging activities. The travel time by truck from Fort St. James to the central property is 70 to 80 minutes, by helicopter 20 minutes. A network of logging roads and trails yield reasonable access to large parts of the property using a 4 x 4 truck or ATV. There are several large clear cuts with useable trails. The far northern, northeastern and western parts of the property

6

ne song in linear en er

are not as easy and are accessible by foot or helicopter. Much of the new claim area to the east of the original claims is difficult to access and requires long traverses through thick vegetation (alders).

1.2 Topography, Vegetation and Climate

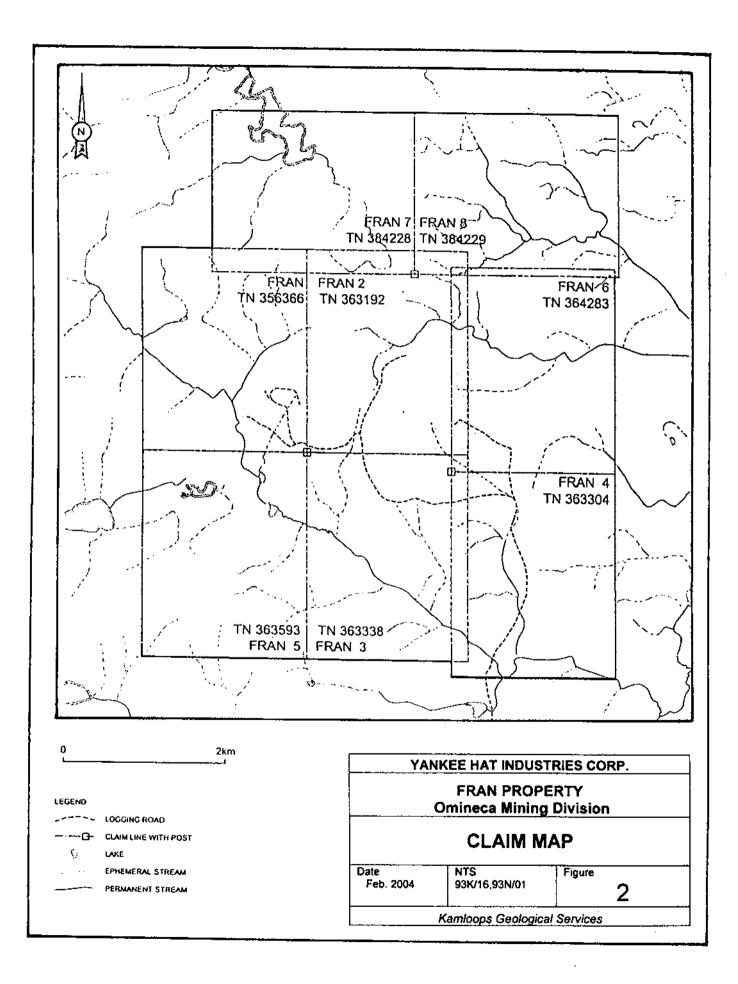
The property covers a hilly area north of Inzana Lake (880m. elevation) ranging from 975 metres along Inzana Creek to over 1400 metres along the northern range of hills. The main drainages and ridges have west to northwest trend. This area has been glaciated with rounded hill tops that feature bedrock at, or near surface separated by broad valleys with thick till and/or fluvio-glacial deposits. South facing hillsides tend to be more rugged with local cliffs (face up-ice direction).

The hill areas on the property until recently were covered by thick stands of mature fir, pine and balsam that are mixed with spruce at lower elevations. Logging activities have resulted in several large clear-cuts on northern side of Inzana Creek. Extensive areas of poorly drained marsh occur along the main valley east of Benoit Lakes.

The new claims acquired in 2004 and 205 lie mainly to the east of the original claim group. These claims cover the headwaters to Tezzeron Creek with numerous low swampy areas and thick stands of alders. To the north and south these grade into low hills with better drainage, mixed pine, fir and balsam.

The climate in the Fort St. James-Inzana Lake area features mild to warm summers in the 10° to 20° C temperature range. Winters are cold with sub-freezing temperatures. Snow accumulations have been highly variable over the last few years from less than one to over 2 metres (main period mid-October to mid-April). Historically the Inzana area has been considered a 'snow belt'.

1.3 Property


Table 1 lists the 8 modified grid claims comprising the original Fran Property. The claims lie on crown land, their locations are shown in Figure 2. An option agreement was made on March 31, 2004 between Yankee Hat Industries Corp. and R.J. Haslinger Jr., the Fran Property Owner. This agreement granted the company an exclusive option to acquire a 100% undivided interest in the property subject to a royalty equal to 2% of Net Smelter Returns (the 'Royalty') and staged cash and share payments. The 'Royalty' can be reduced to 1% at any time with a \$2,000,000 payment to the vendor. Yankee Hat Industries Corp. changed its name to Yankee Hat Minerals Ltd. early in 2004.

Claim	Tenure No.	Tag No.	Units	Expiry Date
Fran	356366	204824	20	2005.04.04
Fran #2	363192	204684	20	2005.04.04
Fran #3	363338	230020	20	2005.04.04
Fran #4	363304	230019	20	2005.04.04
Fran #5	363593	230021	20	2005.04.04
Fran #6	364283	222622	20	2005.04.04
Fran #7	384228	237988	20	2005.04.04
Fran #8	384229	237989	20	2005.04.04

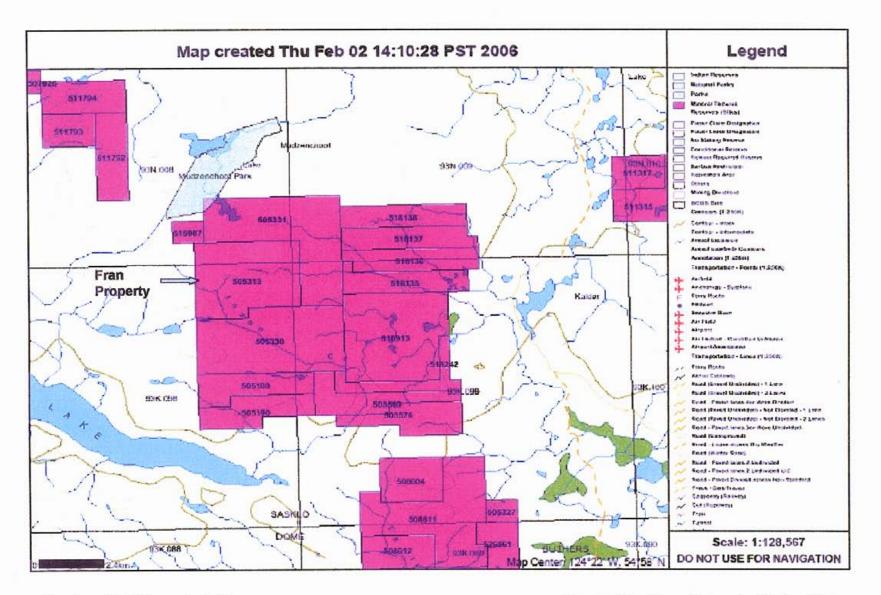
Table 1: Fran Property Original Mineral Claims

Prior to the change over to paper staking in January 2005 some additions were made to the property. P. W. Watt staked the Fran 9 to 25 mineral claims for Yankee Hat Industries Corp. in late November 2004. These tied on to (and overlapped) the southeastern Fran claims (Fran 4) to cover a magnetic anomaly.

In January 2005, the Fran 26 to 30 mineral claims were acquired by P. Watt and R. Wells for the company to cover the airborne geophysical features.

an indiana di seconda secondaria

Tenure No.	Claim Name	Own	er No.	Map No.	Work Recorded to.	Status	Mining Division	Area (Hectares)
505313		11296	100%	093K	2008.04.04	Good Standing 2008.04.04	15 Omineca	1206.117
505330	}	11296	100%	093K	2008.04.04	Good Standing 2008.04.04	15 Omineca	1466.79
505331		11296	100%	093K	2008.04.04	Good Standing 2008.04.04	15 Omineca	1409.688
503569	Fran 26	128567	100%	093K		Good Standing 2008.01.14	15 Omineca	464.431
503576	Fran 27	128567	100%	093K		Good Standing 2008.01.14	15 Omineca	464.522
518242	Fran 28	128567	100%	093K		Good Standing 2008.07.25	15 Omineca	315.758
505189	Fran 29	128567	100%	093K		Good Standing 2008.01.29	15 Omineca	464.367
505190	Fran 30	128567	100%	093K		Good Standing 2008.01.29	15 Omineca	464.474
510913		128402	100%	093K		Good Standing 2007.11.12	15 Omineca	1375.00
518135		128467	100%	093K	2008.07.21*	Good Standing 2008.07.21	15 Omineca	463.922
518136		128567	100%	093K	2008.07.21*	Good Standing 2008.07.21	15 Omineca	463.826
518137		128567	100%	093K	2008.07.21*	Good Standing 2008.07.21	15 Omineca	463.731
518138		128567	100%	093K	2008.07.21*	Good Standing 2008.07.21	15 Omineca	445.09
Total						· · · · · · · · · · · · · · · · · · ·		9467.716


Table 1A: Fran Property. List of Mineral Claims

*Contingent on acceptance of this report.

.

.

ыİ.

Yankee Hat Minerals Ltd.

Figure 2A: Fran Property Claim Map

Richard J Haslinger Jr. converted and amalgamated the original Fran 1 to 8 claims into three larger claims from north to south 505331, 505313 and 505330. These three claims cover approximately 4082.6 hectares which is slightly larger than the original 4000 hectares. P. Watt on April 18, 2005 converted and amalgamated the Fran 9 to 25 mineral claims into 510913.

The results from the 2005 regional silt program indicated several gold anomalies that were outside of the property. Subsequently four claims were staked in the north eastern area (518135 to 518138) by R. Wells for Yankee Hat. These cover an additional 18356.57 hectares. The current mineral claims are listed in Table 1A, their locations are shown on claim map, Figure 2A.

1.4 Exploration History General

During the 1980's a significant amount of alkalic porphyry copper-gold exploration took place in this part of British Columbia following the discovery of the Mt. Milligan deposit (discovery period 1983-1988). Most of this exploration was to the north and northeast of the Inzana Lake area in Takla volcanic and Hogem intrusive settings. The large Tas property 6 kilometres to the southeast of the Fran claim area received a significant amount of gold-copper exploration in the 1980's by Noranda Exploration, Black Swan Gold Mines and Goldcap. Tie-on claims to the Tas property covered parts of the Fran during this period but did not receive any documented exploration. Access into the property area up to the mid 1990's was difficult due to thick stands of mature timber. This changed dramatically with widespread timber harvesting and the construction of an access road on the northern side of Inzana Creek in the early 1990's.

Previous Exploration

A comprehensive search was made of previous mineral exploration on the property area, in particular the BC. Assessment Report Database. There was no documented mineral exploration on the property area prior to the gold-copper discoveries made by Richard Haslinger in 1996 (Fran, Fran #2 and #3 claims). The discovery of the KBE showing (Fran #8 area) was earlier, during mapping by the BC.Geological Survey Branch (Nelson et. al., 1991). Sampling by government geologists of disseminated malachite within a small 'hornblende granodiorite' plug reported 196 ppb Au and 0.2% Cu. It is surprising that this KBE area did not receive any documented follow-up exploration by companies until preliminary work by Navasota Resources Inc. in 2001 and 2002.

ollowing the gold discoveries made by R. Haslinger Snr. in the mid-1990's there was documented mineral exploration by Homestake Canada Ltd. (1998 property examination), Placer Dome North America Ltd. (Wells, 1999) and Navasota Resources Ltd. (Warner and Kay 2002, 2003). The author had access to all of this data during report preparation. Previous exploration from 1996 to 2003 is summarized in Table 2 with the areas outlined in Figure 3A and 3B. Some comments on previous exploration follow.

Discovery Period 1996-1997

Gold was discovered by the original property owner (R. Haslinger Sr.) through sampling or panning gossans and pyritic exposures near the western end of the then new logging roads along Inzana Creek. his sampling returned highly anomalous gold values from several closely spaced localities in the northwestern clear-cut called the Upper Showing area (Fran claim). Samples taken from altered monzonitic to dioritic intrusive rocks with oxidized stockwork zones returned gold values up to 3.27 g/t (Localities #8-9). A narrow westerly trending quartz vein with pyrite, galena, sphalerite, arsenopyrite and chalcopyrite (Locality #4) was exposed by hand pits and returned gold values up to 1.7g/t with associated Ag, Pb, Zn and high As values. On the access road one kilometer o the southeast a rock cut exposed several strongly oxidized fracture zones in similar intrusive rocks called the Lower Showing (Locality #10). These were panned by the owner; one of these returned significant amounts of fine visible gold. During and following these gold discoveries, six 20 unit claims the Fran, Fran #2 to 6 were staked to

		TABLE 2: FRAN PROPER	TY PREVIOUS EXPLORATIO	DN .		
YEAR	ASS. REPT. NO.	COMPANY	CLAIMS	TYPE OF WORK		
1998	Property Exam.	Homestake Canada Inc.	Fran, Fran 2 to 6 showing Areas.	Geochemical-Sampling Rocks Soils	40 132	
1998	25,870	Placer Dome Inc.	Fran, Fran 2 to 6 showing Areas.	Grid-Geochemical Soils Silt/conc. Geological-Sampling Rocks Lithogeochem. Geol. Mapping Prelim.	193 1 26 2	
1999	26,282	U.Mowat for Owner	Fran, Fran 2 to 6 showing Areas.	Geochemical Rocks Grid soils Soils	64 26 17	
2001	14-6-2002	Navasota Resources Ltd.	Fran, Fran 2 & 3	Drilling 12 DDH's	2561.28m	
2002	9/7/2002 Technical Report	Navasota Resources Ltd.	Fran, Fran 2 to 8	Petrography-Lithogeoch Petrography Whole-Rock	iem. 26 8	
2002	18-2-2003	Navasota Resources Ltd.	Fran, Fran 2 & 3	Drilling 20 DDH's	2533.57m	
2004	15-5-2002	Yankee Hat Minerals Ltd	Fran 1 to 8	Airborne Magnetic And Radiometrics Topographic Base Maps Stream Geochemical	900 km 33	
			Fran 1, 2, 3	Grid Soils Core Sampling Geological Mapping Prospecting	45.2 km 1648 93 136	

÷

cover the showings and intrusive trend. An interesting gold environment related to monzonitic-dioritic intrusive rocks hosted by Inzana Lake Formation (Takla Group) sedimentary rocks was identified and promoted by the property owner.

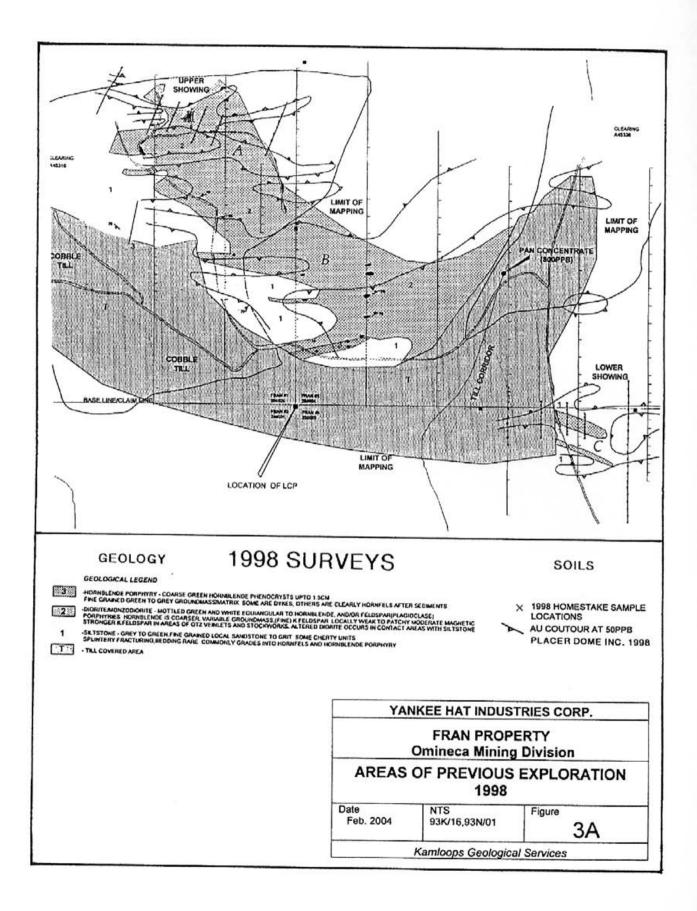
Preliminary Exploration Programs 1998-1999

Several companies visited the Fran property in the summer of 1998 to examine the discovery showings. Two examinations by Placer Dome Inc. in June and July mainly by the author involved detailed sampling in the two showing areas. These examinations confirmed the previous gold values and indicated other nearby localities with highly anomalous gold. Gold mineralization could be related to:

1) Quartz veinlet stockworks and pyritic shears with north to east trend, K feldspar alteration-flooding returned gold values up to 3 g/t with associated silver.

2) East trending quartz veins with wallrock veinlet stockworks and K. feldspar alteration. These veins (Locality #4) are polymetallic with gold values up to 19.4 g/t Ag, to 22.8 g/t Zn, to 0.5% and 2% As (plus Cu, Pb values) were returned from 1.4 to 3.0 metre sample widths.

3) At the Lower Showing (Locality #10) one sample from a strongly oxidized boulder extracted from a southerly trending shear zone returned 227 g/t Au, 19.8 g/t Ag and 1835 ppm Cu (surface enrichment?).

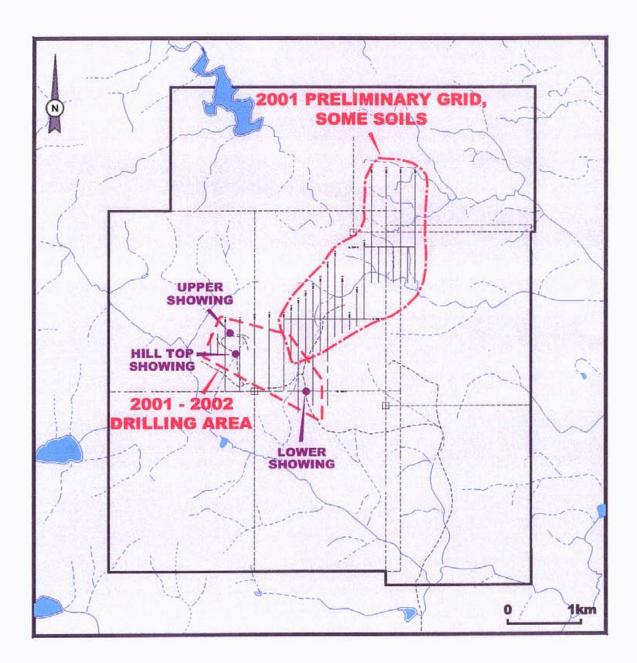

Homestake Canada Inc. geologists conducted a six day property examination in August-September mainly in the Upper and Lower Showing areas. 132 closely spaced soil samples were taken from small grids partially covering these two areas as well as 40 rocks. In the Upper (Locality #4) Showing area the soils indicated a 100 metre length to the gold mineralized vein zones. Soils taken above and to the east of the Lower Showing (Locality #10) were locally highly anomalous in gold with several values between 1 and 33g/t. These high values could not be directly related to any bedrock mineralization. In September 1998 an exploration agreement was made between R. Haslinger Sr. and **Placer Dome Inc.** which was followed by a nine day geological-geochemical program in early October. A 7.5 line kilometer survey grid was installed between the two showing areas and featured 200 metres spaced north trending lines (Figure 3A). This program indicated that the gold mineralization is hosted by west to northwest trending monzodiorite to monzonite dykes and stocks (high K. calc-alkaline) and often occurs proximal to contact zones with hornfels (metasediments). Three main gold-in-soils anomalies were outlined between the showings (Figure 3A). The largest anomaly was east trending over 1.2 kilometres long by 200 metres in width. Clayey till overburden limited the use of soils in lower hillside and valley settings. A pan concentrate sample taken from a small drainage between and to the north of the showing trend returned highly anomalous gold at 800 ppb.

Results from the exploration by Placer Dome indicated potential for large intrusive hosted gold zones on the Fran property. A two phase geological-geochemical program was recommended by the author (Wells, 1999) to advance the property to a drilling stage. The exploration agreement was not however extended by Placer Dome.

During 1999 the Fran Property was examined by several companies, the focus was mainly on the showing areas and gold in soil anomalies. This work was compiled in an assessment report for the owner by U. Mowat (No. 26282). Sampling of the drainages, showings and mineralized areas confirmed the earlier gold results by Placer Dome and Homestake. Two short soil lines to the west by Mowat extended the main gold-in-soils anomaly to line 500E with values in the 58 to 136 ppb range. A new mineralized area in bedrock was identified 400 metres due south if the upper showings along the access road (Mowat's middle zone). One grab sample (No. 158099), taken proximal to a dyke contained abundant fine sulfides and returned 7675 ppb Au and anomalous zinc, arsenic.

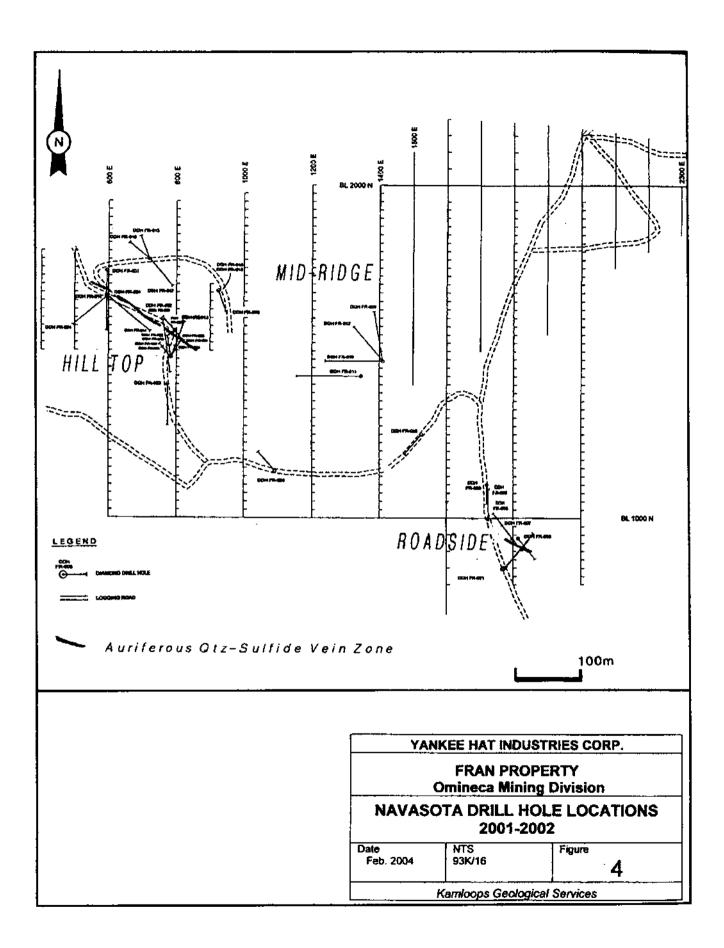
16

· •


2001-2002 Exploration by Navasota Resources Ltd.

Cassidy Gold Corp. entered into an option agreement on the Fran Property in April 2001. Later in August Cassidy made an agreement with Navasota Resources Ltd. to earn 100% of their interest through a series if payments (work on property). Navasota Five phases of diamond by April 2002 had earned 100% of Cassidy's interest drilling are documented in two assessment reports by Warner and Kay (2002 and 2003) with a total of 5094,85 metres in 32 NQ drill holes. A petrographic and lithogeochemical study on drill core samples is documented in a technical -interpretative report by the author (Wells, 2002). Navasota did however complete some other exploration on the property in 2001 that was not documented. This involved a few preliminary grid lines in the KBE area on the Fran 8 mineral claim (Figure 3B) that were soil sampled at 50 metre spaced stations. During this the KBE showing was located and sampled returning 0.19 g/t Au and 2400 ppm Cu from crowded plagioclase porphyry with fine disseminated chalcopyrite and malachite staining. Some anomalous copper in soil values up to 100 ppm were returned from the area, however the sample spacing was too wide at 50 metres (100m spaced lines).

The locations of the 32 Navasota drill holes are shown on Figure 4. Significant gold intercepts from these holes are summarized in Tables 3A and 3B. This drilling was along a northwest trending panel called the 'Bullion Alley Zone' by Navasota which featured favourable intrusive rocks with gold values in bedrock and soils. Drilling concentrated on three main areas along this trend from west to east; Hilltop (Upper Showing area), Mid-Ridge (central Au soil anomaly) and Roadside (Lower Showing area). These holes encountered numerous gold (plus or minus Ag, Cu and Zn) intervals associated with quartz-sulfide veins and veinlet stockwork zones in both deformed intrusive and hornfels country rocks proximal to contacts. Several of the intersections 0.6 to 6.1 metres long averaged greater than 10 g/t gold (upto 42.8 g/t) with associated silver and copper values. The results from the Navasota drilling are discussed


18

11 N N N N

Yankee Hat Industries Corp. Fran Property Areas of Previous Exploration 2001-2002 Figure 3B

R.C. Wells, P.Geo., Kamloops Geological Services Ltd.

R.C. Wells, P.Geo., Kamloops Geological Services Ltd.

<u>Hole</u>	Area	From	To	Length(m)	Fire Assay Au (g/t)
DDH-FR-001	Hilltop	46.00	47.00	1.00	1.08
		102.75	103.30	0.55	12.10
		190.40	192.75	2.35	1.00
		229.00	234.00	5.00	1.51
DDH-FR-002	Hilltop	44.00	44.65	0.65	1.45
		53.50	54.00	0.50	1.26
		75.00	91.00	16.00	1.98
	including	75.00	82.00	7.00	1.88
	including	88.70	90.00	1.30	14.70
		187.00	189.00	2.00	2.18
		205.00	211.00	6.00	2.56
	including	210.00	211.00	1.00	13.20
DDH-FR-003	Hilltop	58.00	59.00	1.00	0.57
DDH-FR-004	Hilltop	77.00	78.05	1.05	1.81
		82.00	83.00	1.00	2.23
		164.00	173.00	9.00	0.35
DDH-FR-005	Roadside	69.19	1 09.27	40.08	0.55
	including	76.60	79.15	2.55	1.17
DDH-FR-006	Roadside	40.30	41.20	0.90	16.10
DDH-FR-007	Roadside	14.50	15.50	1.00	0.31
DDH-FR-008	Roadside	18.75	23.30	4.55	6.43
		21.75	23.30	1.55	18.00
DDH-FR-009	Mid Ridge	42.00	48.00	6.00	0.48
		69.00	79.00	10.00	0.47
DDH-FR-010	Mid Ridge	9.00	23.00	14.00	0.17
		88.00	94.00	6.00	0.93
		211.00	213,25	2.25	0.38
DDH-FR-011	Mid Ridge	87.00	91.00	4.00	0.37
DDH-FR-012	Mid Ridge	52.75	58.30	5.55	4.27
	_	150.00	154.00	4.00	3.16

TABLE 3: SIGNIFICANT DRILL INTERCEPTS BULLION ALLEY ZONE

3

Navasota Resources Ltd, 2002

R. C. Wells P.Geo, Kamloops Geological Services Ltd.

21

i

and the second secon

TABLE 3 continued: SIGNIFICANT DRILL INTERCEPTS BULLION ALLEY ZONE

~.

.. ..

·· · -

- --,

Hole	Area	From	<u>To</u>	<u>Length (m)</u>	<u>Au Assay (g/t)</u>
DDH-FR-013	Hiltop	78.00	80.00	2.00	30.11
DDH-FR-015	Hilltop	32.00	103.63	71.63	0.253
	ind.	59.00	67.00	8.00	0.858
DDH-FR-016	Hil top	95.00	97.00	2.00	1.21
DDH-FR-019	Hilltop	61.10	64.00	2.90	0.62
DDH-FR-020	Hilltop	34.80	36.00	1.20	0.455
DDH-FR-024	Hilltop	23.75	25.00	1.25	1.21
DDH-FR-025	Hilltop	75.50	76.25	0.75	41.40
DDH-FR-026	Hilltop	40.70	48.00	7.10	2.08
	Incl.	42.00	44.00	2.00	4.09
DDH-FR-027	Hilltop	44.65	48.00	3.35	1.98
		141.00	167.00	26.00	4.24
	Incl.	160.90	167.00	6.10	13.57
DDH-FR-028	Hilltop	20.00	22.00	2.00	1.14
		92.00	93.00	1.00	1.14
DDH-FR-030	Roadside	71.80	72.75	0.95	1.26
DDH-FR-031	Roadside	173.30	185.30	12.00	0.490
	Ind.	184.60	185.30	0.70	6.60
DDH-FR-032	Mid Ridge	63.35	72.00	8.65	1.06
	In ci .	63.35	65.00	1.65	3.50

Navasota Resources Ltd. 2003

in greater detail later in this report. Navasota returned the property to the owner in December 2002 even though company geologists recommended further drilling, airborne geophysical surveys and surface exploration (Warner and Kay, 2003).

Total exploration expenses on the property between 1998 and 2003, excluding those by Homestake were \$481,637.00.

2004 Exploration by Yankee Hat Minerals Ltd.

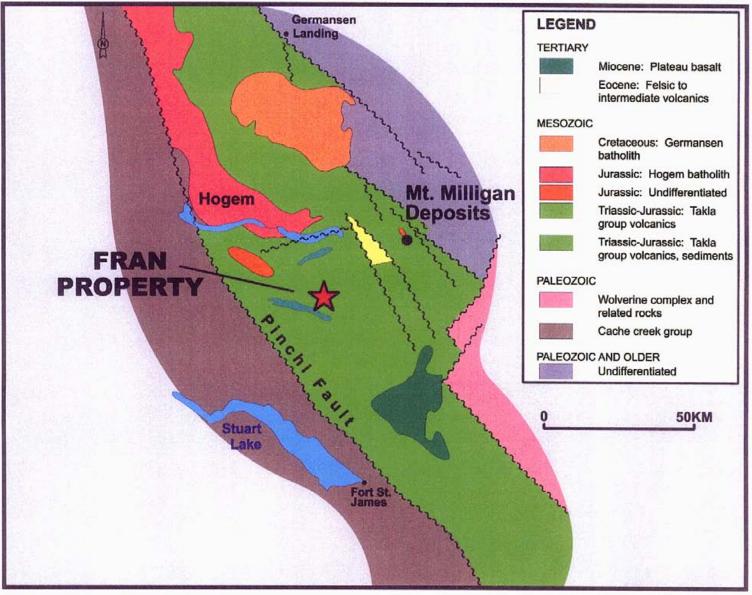
The previous exploration on the property largely concentrated on one small area, the 'Bullion Alley' trend leaving the rest basically unexplored. The limited drilling by Navasota indicated one or more penetrative, WNW trending quartz-sulfide vein zones which possibly linked the two main showing area (1.5 kilometres). These were open on either end and much of the area between the showings had not been drill tested other than the Mid Ridge (northern edge).

The 2004 property exploration by the Company is described in detail in a report by the author (Wells, May 2005). This Phase 1 exploration involved property scale airborne geophysical and stream geochemical surveys, and more detailed, systematic grid based geological, geochemical and prospecting surveys on the Bullion Alley trend. Total exploration expenditures for assessment work credit were estimated at \$243,704.04.

An early season property scale stream silt geochemical program indicated a much larger gold target area than that covered by previous exploration. A 45 line kilometer survey grid was installed to cover most of this area. Following soil geochemical, prospecting and geological mapping outlined several east to southeast trending gold (copper, silver) targets in the west and central grid areas. A significant number of multigram gold values were returned from prospecting samples over a 1.7 kilometre strike length.

A compilation of Navasota drill hole data with hole collar surveys (GPS) indicated that many of the holes were poorly placed with several missing the target.

R. C. Wells P. Geo, Kamloops Geological Services Ltd.


Relogging and sampling of Navasota drill core indicated that many low grade (<1 g/t) gold intervals were poorly sampled.

The airborne geophysical survey was not completed until late October. Preliminary magnetic and radiometric maps were very useful and indicated several target areas proximal to the property mainly to the south and southeast. These were staked between November 2004 and February 2005 and became part of the property. In the grid area magnetic and radiometric anomalies locally showed good correlation with gold geochemical anomalies and known gold zones from drilling.

An expanded Phase 2 exploration program was recommended (Wells, 2004) including up to 5000 metres of drilling, trenching and further geological, geochemical and geophysical surveys.

1.5 Regional Geology

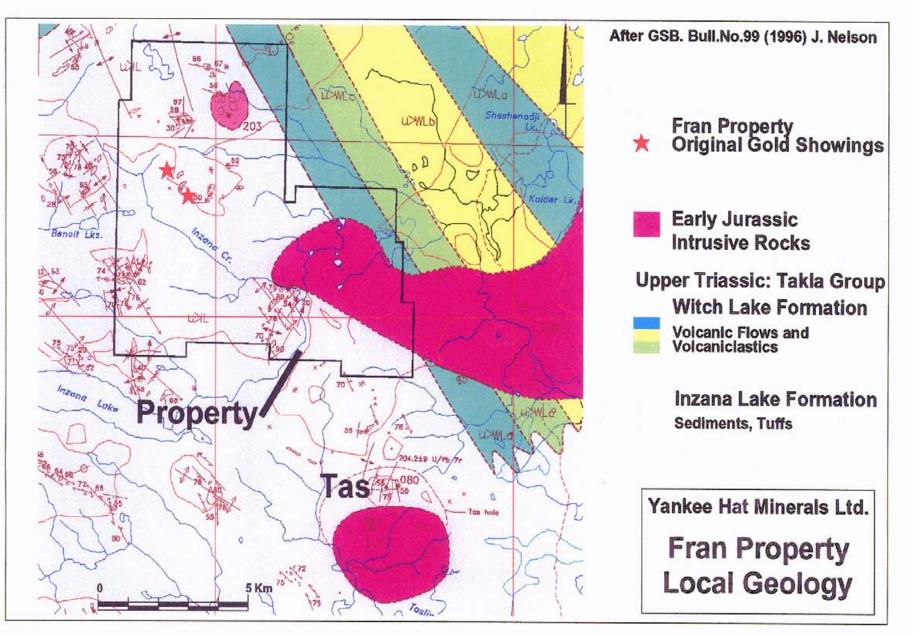
The Fran property lies within the Quesnellia Terrane of the Canadian Cordillera which represents a Late Paleozoic to Mesozoic age island arc assemblage (Monger et.al., 1991) and is part of the Intermontane Belt of the Canadian Cordillera. The regional geology is illustrated in Figure 5. The Quesnellia Terrane comprises volcanic and sedimentary rocks of the late Triassic to Early Jurassic age Takla Group with coeval plutons. This assemblage is juxtaposed against the Cache Creek Terrane to the west along the Pinchi Fault and to the east the mainly Paleozoic age Wolverine and Omineca Complexes. The Quesnellia Terrane in British Columbia features both alkalic (Au, Cu) and calc-alkalic (Cu, Mo) porphyry deposits. Mt. Milligan, a significant alkalic porphyry deposit (299 MT @0.45 g/t Au, 0.22% Cu) is located 30 kilometres to the northeast of the Fran (Figure 5). Several major northwesterly striking faults separate the Fran from the Mt. Milligan deposit area with thick sequences of Eocene volcanics overlying the Takla Group in the central area. This area probably represents an interbasin graben (Nelson, 1990).

FRAN PROPERTY - REGIONAL GEOLOGY

YANKEE HAT MINERALS LTD

Figure 5

R.C. Wells P.Geo., Kamloops Geological Services Ltd.


Regional 1:50,000 scale geological mapping has taken place in the property area as part of the Nation Lakes project by the BC Geological Survey Branch, Nelson et.al. (1991). The mapping in the Inzana Lake area is illustrated in Figure 6 which features a small part of the 93 K/16 sheet (Open File 1991-3). Much of this mapping appears to have taken place along the better exposed ridge tops with little in the valleys between.

The Takla Group in the property area is represented by the Inzana Lake Formation consisting of a northwest striking sequence of grey, green to black siliceous argillite, grey to green volcanic sandstones and minor augite bearing crystal and lapilli tuffs. This sequence is transitionally overlain by Witch Lake Formation agglomerates, lapilli tuffs and epiclastic sediments east of the property.

Takla to later age (Late Triassic or Early Jurassic) intrusive rocks mainly belonging to the diorite/monzodiorite suite occur throughout the area and range from narrow dykes to kilometer scale stocks and local intrusion breccias (TAS breccia). Many of the larger bodies are elongate with west to northwest long axes; they commonly form the higher ground and correlate well with airborne magnetic (high) features. One of the main stocks is a porphyritic diorite body over 6 kilometres long that lies at the eastern edge of the original Fran property and is now covered by additional staking in 2004-2005.

Nelson's mapping (1991) suggests two discrete phases of folding in the Inzana Formation sediments in the property area, F2 upright folds have northwest trending axial traces with tight refolded F1 hinges.

During the 1980's a significant amount of exploration for alkalic porphyry Au-Cu deposits took place in this section of Quesnellia following the discovery of the Mt. Milligan. Most of this exploration was to the north and northeast of Inzana Lake in the Nation Lakes area. The Minfile occurrences in the property area are shown on Figure 6. The large TAS property less than 1 km south of the eastern (new) Fran claims has received significantly more exploration, mainly for gold and copper. The majority of the exploration was conducted in the 1980's during the Mt. Milligan discovery-development

R.C. Wells P.Geo., Kamloops Geological Services Ltd.

Figure 6

period and was by Noranda Exploration, Black Swan Gold Mines and Goldcap. During this period the TAS property with tie-on claims extended into the Fran area.

The TAS features several documented gold zones in a propylitic to potassic altered and sheared, multi-phase diorite stock with extensive intrusion breccias. Like Fran the country rocks are Inzana Lake Formation sediments and tuffs. Two main areas of gold± copper mineralization have been identified on the property: the Freegold (091) and Tas Ridge Area (080). The majority of drilling and trenching took place on the Tas Ridge Area where five or more zones were tested. These feature north to northwest trending sulfide rich, fracture-vein-replacement zones with variable amounts of pyrite, pyrrhotite and chalcopyrite. The East Zone reported a weighted average of 9.7 g/t Au across 3 metres width for 63 metres strike length in trenches. In 1999 Omni Resources Inc. drilled the Far East and West Zones reporting several gold intervals in the 2 to 8 g/t range. Navasota Resources Ltd. drilled seven holes in the West Zone area in 2002 with several gold intersections in the 0.4 to 2.6 g/t range over significant core lengths (12.5 to 56.6 metres). Higher grade intervals including 9.16 g/t Au over 1.5m were associated with quartz-sulfide (pyrrhotite, pyrite) vein-wallrock replacements (Wells, 2003) very similar to those in Fran drilling on Bullion Alley.

1.6 Property Geology

Previous exploration on the Fran Property has been largely restricted to the showing and 'Bullion Alley' trend on the original Fran, Fran #2 and Fran #3 mineral claims. Outside of this area the property geology was poorly understood and relied on the regional mapping of Nelson et.al. (1996) shown in Figure 6. 1998 geological mapping and 2001-2002 drilling on the Bullion Alley trend encountered a suite of porphyritic to equigranular intrusive rocks (Upper Triassic-Early Jurassic?) hosted by Inzana Formation, Takla Group (Upper Triassic) volcanic siltstones, mudstones and local tuffs (Figure 3A). The intrusive rocks appear to represent a high level dyke swarm 200 to 300 metres wide, with a northwest trend that passes through the drilling areas. Inzana Lake Formation dark siltstones and fine volcaniclastic rocks are converted to hornfels and

feature strong fracturing near intrusive contacts. The intrusive rocks have interpreted steep to sub-vertical contacts and consist of variably magnetic, equigranular to plagioclase-hornblende porphyritic diorite to monzodiorites. Narrow variably crowded feldspar porphyry dykes have an aphanitic groundmass and are generally non-magnetic.

The petrographic-lithogeochemical study by the author (Wells, 2002) on Navasota drill core samples distinguished three main intrusive rock types:

Monzodiorite (MD): The dominant widespread intrusive rock type forming dykes and probable stocks. These white-green mottled, medium grained diorites to monzodiorites appear equigranular but are actually crowded feldspar > hornblende porphyries. Fine groundmass mineralogy includes hornblende, quartz (<5%), K.feldspar, rhombic sphene, disseminated magnetite and some secondary epidote and carbonate. Sub-rounded variably assimilated centimeter scale xenoliths occur locally.

Hornblende Porphyries (HP): These generally form narrow dykes and feature euhedral 1-3mm up to 2 cm euhedral hornblende phenocrysts. The fine groundmass consists of mixtures of K.feldspar > plagioclase with minor epidote and quartz. Remnant plagioclase phenocrysts may be present. Monzonite compositions are indicated.

Plagioclase Porphyries (PP): These leucocratic white to grey, crowded feldspar porphyries feature euhedral plagioclase phenocrysts 1-4mm in length (some perthite) with local flow alignment. Other minor phenocrysts phases include hornblende (chlorite altered), sphene and rarer prismatic quartz. These phenocrysts occur in an extremely fine groundmass with mixtures of quartz, plagioclase and K.feldspar. Narrow plagioclase porphyry dykes often appear syn-mineral. The only sample taken from the KBE showing area was an intrusive of this type. The mineralogy of these intrusive rocks are consistent with dacite to rhyodacite compositions.

The mineralogical and geochemical features of the three intrusive rock types suggest a comagmatic suite with transitional high K. calc-alkaline to silica saturated alkaline affinity (Wells, 2002).

Inzana Lake Formation, Country Rocks: Within the drilling area there are scattered outcrops of extremely fine grained, green to black sedimentary rocks, mainly mudstones, cherty (altered) siltstones and local tuffs. In drill logs these units often consist of deformed, variably altered and locally banded biotite hornfels. The same drill logs indicate narrow intervals of augite porphyry flows (APF) within the sedimentary sequence. These commonly are bleached-altered with chilled contacts, the author suspects that many of these are dykes based on descriptions in the logs.

Structure: Numerous fault and fault zones are apparent with a variety of interpreted trends including northwest and northeast, steep north dips appear to predominate. The drill logs indicated moderate to strong brittle deformation along some intrusive contacts, especially in the adjacent hornfels-argillites (local brecciation and strong veining). Late chloritic structural zones in the drilling at Hill Top have interpreted shallow dips to the north. These are up to 20 metres wide (DDH. FR-001) and are comparable with structure exposed in the road bend to the east. A similar shallow dipping fault zone has also been interpreted (at depth) in the Roadside area in holes FR-005 to 8.

Metamorphism: Mineral assemblages more distal to felsic intrusives suggest Prehnitepumpellyite to Greenschist facies of regional metamorphism. Contact metamorphism is widespread proximal to felsic dykes and stocks. Aureoles are generally narrow with flinty biotite hornfels, however it is often difficult to distinguish biotite alteration from metamorphism.

Mineralization: A surface examination of Fran mineralization by the author for Placer Dome (Wells, 1999) indicated a variety of styles of gold mineralization in the grid (Bullion Alley) area. This mineralization is hosted by monzodiorite intrusions proximal to contacts with hornfels-metasediments.

 Quartz veinlet stockwork zones with associated K.feldspar alteration in the Hill Top (Upper Showing) area. These were overprinted by later north dipping, chloritic structural zones and returned up to 0.83 g/t Au from 2 metre chips (grab samples returned up to 3 g/t Au).

- 2. Also in the Hill Top area, deformed east trending quartz veins up to 50 cm wide with silicified and K. feldspar altered wallrocks. These contain arsenopyrite, pyrite, galena chalcopyrite and brown sphalerite and returned gold values up to 19.4 g/t (1.8 metre chip sample) with significant Ag, As, Zn, Cu and Pb values.
- 3. In the Lower Showing (Roadside) area, NNW trending highly oxidized fracture zones with visible gold, grab samples returned up to 227 g/t Au and 19.8 g/t Ag.

A fourth area of mineralization 400 metres south of 1 and 2 called the Middle Zone was located by U. Mowat (2000) in dark coloured hornfels? adjacent to a dyke. One grab sample with very fine disseminated sulfides returned 7.68 g/t Au.

The drilling programs by Navasota (2001-2002) returned numerous multi-gram gold intersections with a variety of associated metals from Cu, Ag, Pb, Zn, Mo and As. Some of these featured visible gold. This mineralization is predominantly associated with structurally controlled quartz vein-alteration zones containing heavy sulfide concentrations, in particular pyrrhotite and/or pyrite, variable chalcopyrite, local sphalerite, arsenopyrite and molybdenite.

The vein mineralization is intrusive or sediment (hornfels) hosted and at either edge of the dyke swarm. The Mid-Ridge and Hill Top (quartz-arsenopyrite vein) areas are proximal to the north intrusive contact, Hill Top (Locality#10) and Roadside (Lower Showing) are proximal to the south. Figure 7 by Navasota (2003) is a compilation map with highlight gold values. The northeast orientation of porphyry dykes on this plan is questionable.

There are a variety of styles of vein mineralization; four main styles were outlined during the 2002 petrographic study by the author (Wells, 2002):

1. Quartz-Sulfide Veins with Au, Ag (Cu)

This is the predominant auriferous vein type in the drilling area and is associated with the higher grade gold intersections (Table 3). These veins have steep dips and are hosted by either intrusive rocks or hornfels-country rocks proximal to contacts. The textures often indicate multi-stage veins and wallrock replacements along fracture zones and faults. Quartz is the main gangue mineral followed by carbonate, chlorite and epidote. There are highly variable amounts of sulfide minerals and silicate-carbonate gangue in veins. Sulfides include fine to coarse grained aggregated-disseminations of pyrite and pyrrhotite. Minor dark Fe sphalerite, chalcopyrite, arsenopyrite and rare galena may be present. Gold was observed in several thin sections and hand specimens with several modes:

- Sub-rounded to angular solid inclusions in massive pyrrhotite and less common pyrite. Some angular electrum inclusions up to 300 microns occur in pyrrhotite.
- 2) As clusters of angular free gold grains in vein quartz up to 150 microns
- Gold and/or electrum veinlets and stringers in fractured grains and at fractured quartz grain boundaries. Up to 100 micron elongate grains.
- 4) Extremely fine <5 micron to 60 micron gold inclusions in chalcopyrite.
- At sulfide grain boundaries-pyrite, pyrrhotite chalcopyrite and sphalerite, up to 40 micron grains.

The above gold modes are texturally both early (1) and late (2 to 5). Some remobilization of gold is suggested.

Many quartz-sulfide veins feature narrow zones of intense K. feldspar alteration in the wallrocks.

2. Polymetallic veins hosted by Country Rocks with Au, Ag, Zn, Cu, Pb and As

Several holes encountered quartz-carbonate-sulfide veins and stockworks hosted by variably fractured country rock hornfels (siltstone, argillite). These veins and veinlets contain variable amounts of pyrite, pyrrhotite, sphalerite, galena and arsenopyrite. Gold values are generally much lower than in the previous vein type, they are often in the 0.1

to 1 g/t range locally up to 8.25 g/t. Silver to gold ratios are noticeably higher in this type of vein and there are generally higher arsenic, lead and zinc values.

3. Amphibole Veins with Cu-Au (Ag)

These are less common and hosted by monzodiorite porphyry dykes mainly in the Lower Showing (Roadside) area. Medium to coarse grained pyrite and chalcopyrite are associated with deformed hornblende veins with fine disseminated chalcopyrite >pyrrhotite and pyrite in the wallrocks. These vein intervals have returned copper values up to 0.92% gold up to 2.94 g/t, silver upto 5.4 g/t and appear to be early stage (late magmatic).

4. Quartz-Albite Veins

This is a less common intrusive hosted vein type that was noted in the drilling at the Hill Top area. These veins feature variably deformed coarse grained quartz and tabular albite with interstitial carbonate, extremely fine arsenopyrite and pyrite. The wallrocks are carbonate-epidote-sericite altered. Gold values are low elevated, 100 ppb up to 1.1 g/t.

Fine quartz \pm epidote \pm chlorite \pm pyrite veinlets are mainly post mineral (rare chalcopyrite) and occur in monzodiorite and porphyries. These veinlets are penetrative, locally cutting earlier mineralized veins.

1.7 2004 Geological Mapping and Prospecting, Western Grid

Figure 7 is a preliminary geological map for the western grid area. This area was mapped at 1:2500 scale and prospected during the 2004 exploration program. Some comments follow which are in addition to those made in Section 1.6, lengthy repetitions are avoided.

In the mapped area the intrusive rocks were found to be far more abundant and extensive than previously recognized. Feldspar porphyry dyke swarms and stocks have a predominant easterly trend and also appear to (largely) underlie the till covered area in the north central grid. There is a strong spatial correlation between the stronger gold \pm silver and copper soil anomalies and the intrusive rocks (especially vein, alteration and structural zones proximal to contacts with biotite hornfels). Some anomalies do however lie well within intrusive areas.

ļ

The structure in the mapped area is complicated. Topographic linears and known fractures have E-SE and NE to NW orientations (near perpendicular). Some shallow dipping structures were also interpreted from the earlier drilling results. In the western clearing area bedded Inzana sediments have predominantly E to SE strikes and variable north dips. Locally, bedding has northerly strike with east or west dips and northeast trending axial planes to tight folds. This suggests two phases of folding (coaxial) which agrees with observations by Nelson (1996). Porphyry and monzodiorite dyke orientations are highly variable, mainly E to SE but locally NE or NW with generally steep dips. Hornblende porphyry units are clearly intrusive and may be subvertical or shallow dipping. The former commonly have NE to NW trend.

Prospecting was found to be highly effective and encountered widespread sulphide mineralization and quartz veining, both in intrusive and hornfels settings. A total of 137 samples (chip or grab) were taken from outcrop, subcrop and float. Twenty-two samples returned gold values from 1.0 to 22.9 g/t with variable silver up to 84 g/t and copper to 1.33%. The highlight samples returning greater than 5 g/t gold are outlined in Table 4 which also shows the associated silver and copper values.

The stronger mineralization is commonly related to altered diorite or hornfels in structural-intrusive contact zones. These generally have easterly trend with subvertical dips, however some especially in the northern contact area appear quite shallow.

The prospecting samples with 1 g/t or higher gold values show excellent correlation with the western gold in soil anomalies and their projections into the Lower Showing area (Bullion Alley trend). Some of the greater than 10 g/t gold samples occur

proximal to previous drilling and correlate with multi-gram gold intersections with indicated vertical to steep south dips. Other high gold prospecting samples occur in areas between previous drilling and represent excellent future exploration targets.

LOCATION GRID	SAMPLE NO.	ТҮРЕ	Au g/t	Ag g/t	Cu ppm	COMMENT
8007 E	21865	40 cm grab	14.60	84.0	864	Shear-Vein Zone. Az 280°. Qtz + Py.
8101E	21884	Float-grab	12.00	25.5	1305	Sheared vein 25 cm block. Near subcrop.
8159E	21895	50 cm chip	17.60	0.9	281	Silicified Diorite subcrop with pyrite
8156E	21896	Float-grab	10.20	1.5	876	Altered Diorite/Hornfels with qtz + Py.
8384E	21912	Float-grab	5.86	27.3	238	Qtz veining.
8366E	21917	50 cm chip	19.40	7.1	1182	Qtz vein-shear. Az 085°
8647E	21985	Grab o/c	6.65	1.2	269	Diorite with 8% fracture Py
9218E	21972	25-30 cm chip	13.40	6.3	1786	Oxidized sulphide vein. Az 104 ⁰
9256E	21973	30 cm chip	22.90	10.7	6998	As above. Az 070°

TABLE 4: 2004 FRAN PROSPECTING PROGRAM - SAMPLING HIGHLIGHTS

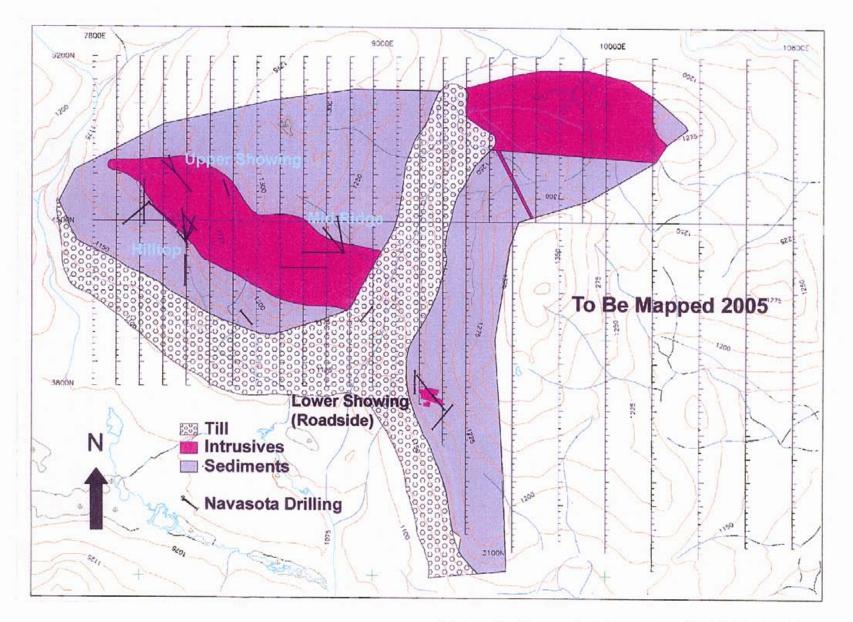


Figure 7: Geological Mapping with Old Drillholes

1

R.C. Wells P.Geo., Kamloops Geological Services Ltd.

2.0 2005 EXPLORATION PROGRAM

2005 was the second year of exploration on the Fran property by Yankee Hat Minerals Ltd. A detailed report on 2004 Phase 1 exploration on the property was submitted to the BC. MEMPR for assessment work credit in May 2005 (Wells, 2005).

The 2004 airborne geophysical survey indicated several promising magnetic and radiometric anomalies outside of the claim group, mainly to the east and south. Between November 2004 and July 2005 the company staked an additional 10 mineral claims to cover these areas. All of the claims are contiguous and increase the total property area to approximately 9467 hectares (from 4083 hectares).

The 2005 field program featured both property scale and more detailed grid (Bullion Alley) exploration. Regional-property scale exploration included a stream sediment geochemical program to cover the new claim area. On the main 'Bullion Alley' grid there was road building, trenching, Induced Polarisation and magnetic geophysical surveys (central clearing only) with local (targeted) soil geochemical and geological mapping. Two phases of NQ diamond drilling tested targets on the Bullion Alley trend between June and August. Phase 1 featured five holes for 1,167 metres, Phase 2 eleven holes for 1,861.41 metres (total 3028.41 metres). A total of nine trenches tested several targets on the trend, in particular the north contact zone in the old Haslinger trench area.

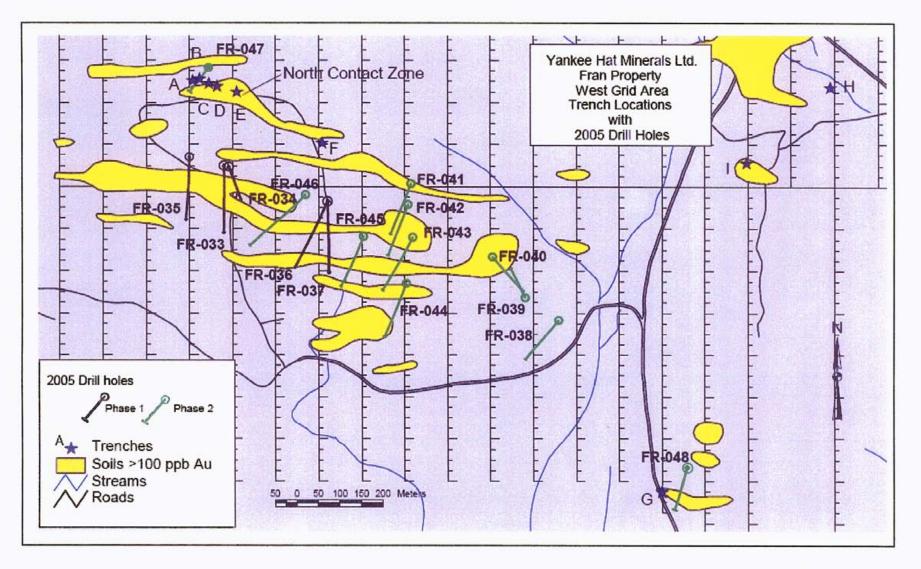
The 2005 field program was supervised by R.C. Wells, P.Geo. and financed by Yankee Hat Minerals Ltd. Total exploration expenditures from March to October 2005 were approximately \$550,000. Kamloops Geological Services Ltd. had a 3 to 5 man exploration crew (with author) on the property between May and October 2005 mainly based out of Inzana Lake Lodge. Geophysical and diamond drilling contractors also used this lodge.

3.0 PHASE 2, 2005 DIAMOND DRILLING PROGRAM

During August 2005 a Phase 2 diamond drilling program consisting of eleven NQ holes was conducted on the western-central parts of the Bullion Alley grid using a single drill rig. The object was to test a one kilometer long section along the anomalous gold in soil/prospecting rig. Several closely spaced, east to southeast trending anomalies basically follow a steeply dipping monzodiorite to diorite intrusive complex up to 250 metres wide and proximal biotite hornfels country rocks. The locations of Phase 2 drill holes relative to the anomalies are shown in Figures 8 and 9, details regarding the holes occur in Table 5.

3.1 Procedure

ł


The 2005 Phase 2 consisted of eleven NQ holes. In total 1,861.41 metres were drilled between the 4th and 28th of August 2005 using a double shift by Frontier Drilling Corp, based in Kamloops, BC. Water was pumped from ponds located in the western and central grid area with up to 700 metres of water line. The core recovery for most of the program was well above 95%, however some more open faults created a problem with recovery locally as low as 50%. These problems areas were clearly indicated in the 2005 geological drill logs.

a) Hole Surveys

All collars to the drill holes were surveyed using GPS with several checks. Accurate down hole measurements of dip and azimuth were taken at regular intervals using the Flex-It system.

b) Sampling Method and Approach

Sampling during the 2005 programs on the property was under the supervision of the author (independent) and performed by experienced employees or sub-contractors. The emphasis throughout the programs was on quality and consistency. Throughout the

R.C. Wells, P.Geo., Kamloops Geological Services Ltd.

Figure 8

~

TABLE 5:	PHASE 2:	DIAMOND DRILL	HOLES 2005	(AUGUST)
----------	----------	---------------	-------------------	----------

HOLE NO.	TARGET	COLLAR N	COLLAR E	DIP (at collar)	AZIMUTH (at collar)	LENGTH (m)
FR-038	IP Anomaly	4183	8959	-50	218	178.92
	S. Contact	Į				;
FR-039	IP Anomaly	4237	8881	-45	336	107.29
	Interior					
FR-040	Interior	4334	8805	-53	140	172.82
FR-041	N. Contact	4507	8615	-45	200	181.36
FR-042	N. Contact	4458	8608	-45	200	179.83
	Interior					
FR-043	Interior	4380	8619	-45	206	199.03
	S. Contact					
FR-044	S. Contact	4271	8604	-45	200	185.92
FR-045	Interior	4382	8504	-45	200	188.06
FR-046	Interior	4481	8369	-45	223	236.22
FR-047	N. Contact	4783	8144	-45	216	99.67
FR-048	S. Contact	3833	9258	-45	195	141.43
	Roadside					}

programs all samples were stored prior to shipping at the Inzana Lodge field base and not accessible to outsiders

In 2005, sixteen NQ drill holes were completed on the Bullion Alley grid area under close supervision by the author. The core recovery for most of the program was well above 95%, however some (more open) faults created a problem with recovery locally as low as 50% (rare). These problem areas were clearly indicated in the 2005 geological drill logs.

The author logged all but one of the 2005 drill logs and junior geologist M. McInnes logged hole FR-047 (under supervision). All logging and sampling took place at the new 2005 core logging facility. The geologists marked out all of the sample intervals, keeping to geological contact-boundaries as much as possible. Significant care was taken with the boundaries of sulfide rich vein-replacement zones, which based on previous experience had potential for multi-gram gold values.

All mineralized intervals and adjacent areas were sampled during the 2005 program, in many cases 80 to 90%, some higher. Sample lengths were generally 1.5 metres or less, with some of the vein-replacement samples as narrow as 30 cm. The average sample length would be close to one metre. All sampling was by a Longyear Mechanical splitter with half core samples destined for the assay laboratory. Significant care was taken avoiding any contamination; all bags were sealed immediately following sampling. Core sampling, quality control and insertion of standards and duplicates at the core facility by company personnel were of a high standard. For consistency this work was by one person (independent of company).

In this report comments are made where possible on interpreted true widths of gold intercepts. At this stage in the exploration program these are estimates only. Closer spaced drilling and trenching in the future will result in more confident determinations on true widths of mineralized zones.

c) Sample Preparation, Analyses and Security

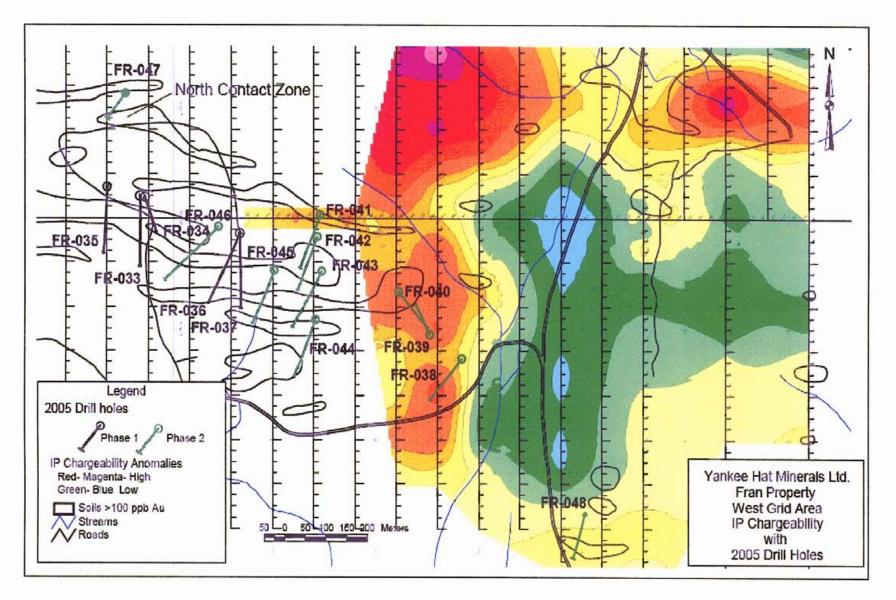
The security measures taken during the 2004 and 2005 exploration programs were industry standard and supervised by the author. Samples were transported directly from the field base at Inzana Lake Lodge by road to the laboratory in Kamloops, BC by company or laboratory personnel.

Eco Tech Laboratory Ltd in Kamloops, BC was the analytical laboratory used during the 2005 programs. This laboratory has an excellent reputation with highly qualified staff and required certification. The various techniques used by this laboratory on samples including ICP-traces, geochemical and assay gold appear to be good quality and could be duplicated (by the same lab.) Internal checks and a few duplicate samples did not indicate any significant analytical problems.

In 2005 the author established significant quality control measures during the trenching and drilling programs. All of the multi-gram gold samples were assay checked. As a general rule multi-gram gold values were repeated during check sampling.

During drill core sampling standards and duplicates were inserted in appropriate locations by company personnel (E. Wells) under supervision by the author. The standards used covered a range of multi-gram gold values as follows:

Inserted Standard	Laboratory	Conc (g/t)	Limits		
	Standard No				
Α	PM169	0.63	+/- 0.09		
В	SH13	1.315	+/-0.015		
С	SN16	8.367	+/-0.087		


Some small variations were observed in standard values, mainly with B and C, but generally within acceptable limits (\pm 5%). In 2005, drill core and trench samples with mult-gram gold values (>1 g/t) were all checked by metallic assay. Previous petrographic studies by the author (Wells, 2002) had indicated that there was high potential for nugget gold in vein-replacement style mineralization hosted by monzodiorite (Hill Top and Roadside). A comparison is made between metallic (250 grams) and standard 30 gram gold assays A comparison was made between metallic (250 grams) and standard 30 gram gold assays. Gold in the north and south contact settings did not show significant (>10%) differences. Gold values in intrusive hosted (interior) settings indicated nugget effect. 72% of the samples increased in value with metallic assay, 25% of the samples increased by greater than 25%. This made a significant difference to average gold values of intercepts. This quality control procedure with gold metallic checks clearly has to continue in the future.

It is in the author's opinion that during 2004-2005 exploration programs the adequacy of sampling, sample preparation security and analytical procedures were of high industry standards. In no case was sample preparation conducted by an employee, officer, director or associate of Yankee Hat Minerals Ltd.

3.2 Results

The results from the Phase 2 drilling program are presented in Appendix B. For each hole there is a cover page, survey data, assay data, summary drill log, original drill log and drill section. These are in numerical-hole order. Diamond drilling highlights with selected gold intercepts occur in Table 6.

The Phase 2 drilling encountered numerous multigram gold intercepts. Gold mineralization is related predominantly to sulfide rich (pyrite, pyrrhotite \pm chalcopyrite) vein zones with variable (minor) quartz as well as wallrock replacements and broader disseminated zones. At this time it is possible to compile the gold intercepts into three geological settings based on their locations relative to the intrusion complex. These are: North Contact Zone (sedimentary-intrusion contact area), Central (intrusion hosted) and South Contact (intrusion-sedimentary contact area). They are briefly discussed in the following sections.

R.C. Wells, P.Geo., Kamloops Geological Services Ltd.

Figure 9

 \mathcal{A}

1. North Contact Zone

ļ

Three Phase 2 holes tested the North Contact area. These are in two areas approximately 600 metres apart that lie along the northern panel of gold in soil anomalies (Figure 8).

Hole No.	From	То	Length m	Au g/t *metallic	Ag g/t	Cu ppm *%
FR-040	31.60	32.30	0.7	5.05*	1.40	1116
	60.40	61.40	1.00	1.93*	1.40	1215
FR-041	74,15	76.09	1.94	0.89	2.90	2034
	72.86	81.37	8.51	0.252		753
	163.32	165.5	2.18	2.04*		
FR-042	6.43	16.5	10.07	2.94*		
	inc. 6.43	9.77	3.34	7.75*	1,65	
FR-043	184.10	193.21	9.11	4.13*	2.26	
-	187.96	193.21	5.25	7.03*	3.82	
FR-044	39.33	39.66	0.33	3.02	5.20	4799
FR-045	89	90.52	1.52	2.25		
FR-046	175.87	176.20	0.33	4.74*	3.71	1.00
FR-047	77.60	81.60	4.00	7.91*	12.78	3900
	Inc. 77.60	79.15	1.55	19.52*	31.47	*0.98%
FR-048	47.85	48.77	0.92	6.20*	1.50	2476
	95.48	95.98	0.50	70.4*	3.00	808

TABLE 6: FRAN PROJECT 2005. PHASE 2 DIAMOND DRILLING HIGHLIGHTS

* includes metallic assays

FR-047 was an important hole drilled late in the program following favourable trenching results in the Haslinger trench area (Figure 10). Navasota (2001-2002) had previously in this area drilled two holes north at different azimuths to test beneath the old hand trenches. One significant intercept in DDH.FR-015 featured 0.68 g/t Au over 18 metres core length. Hole FR-047 (2005) was drilled in the opposite south direction to test below Trench B at shallow depth (8.42 g/t Au/11

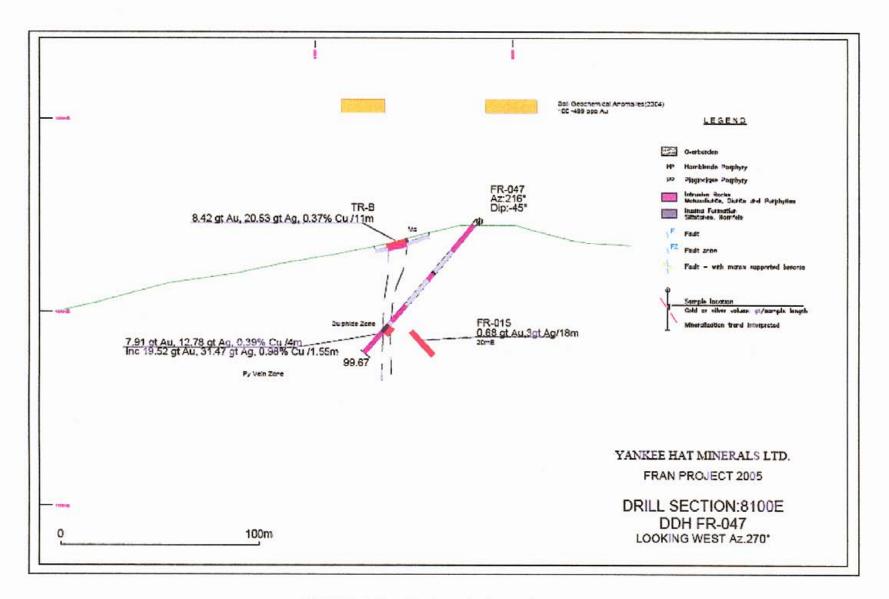
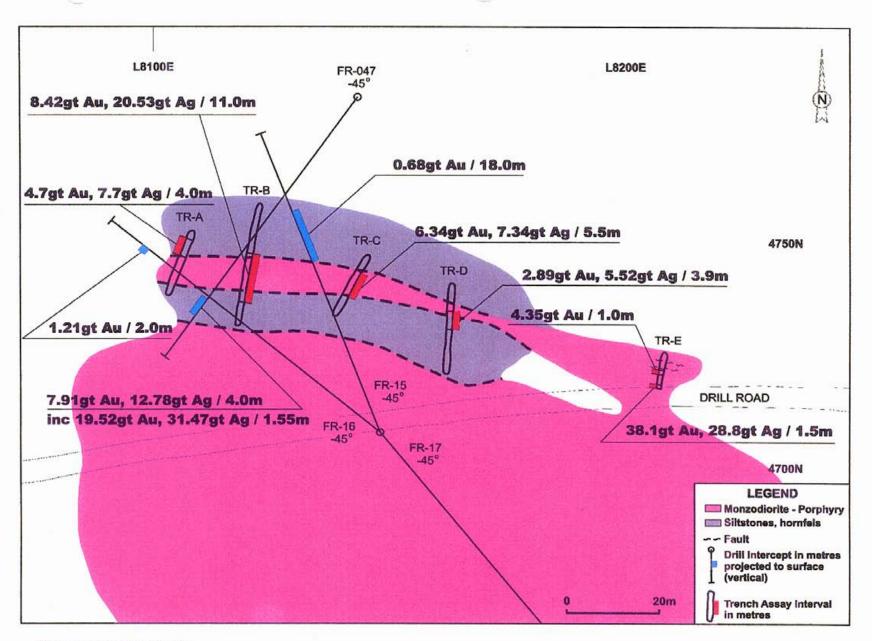



Figure 10

Yankee Hat Minerals Ltd

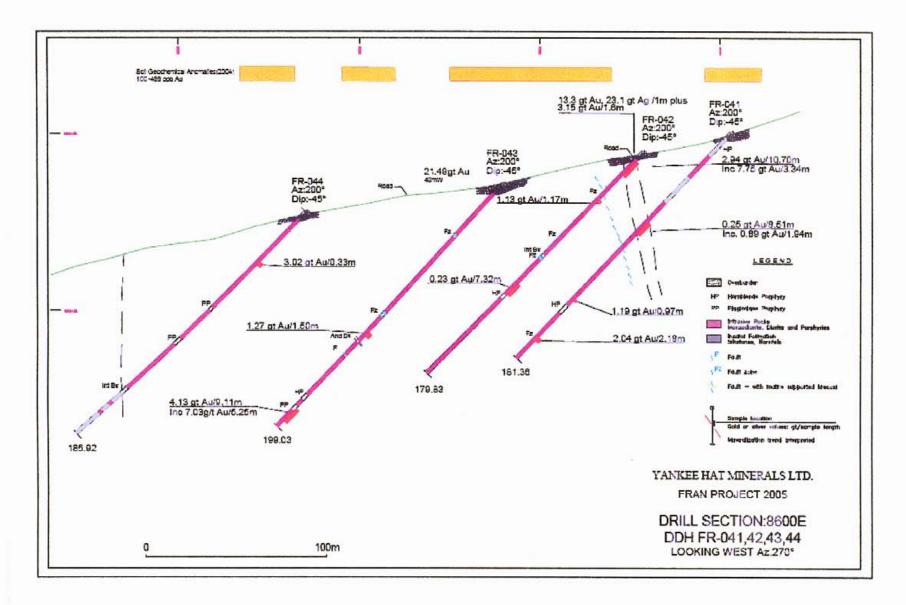
Figure 11: North Contact Zone-Compilation Map

R. C. Wells P.Geo., Kamloops Geological Services Ltd.

metres) as shown in Figure 11. This hole encountered one main zone of strong sulfide mineralization with quartz veining and breccias (pyrite, pyrrhotite, chalcopyrite, galena, sphalerite and arsenopyrite) associated with altered country rocks between dykes. A 4 metre intercept averaged 7.91 g/t Au including 19.52 Au over 1.55 metres. This zone correlates with surface (trench) mineralization and indicates a subvertical dip. Intercepts can be interpreted at 60 to 70% true width.

FR-041 and 042 were the northernmost holes of a four hole fence drilled north-south across the intrusion complex along section line 8600E (Figure 12). During 2005 drill road construction, closely spaced quartz-sulfide and disseminated sulfide rich zones were discovered in altered monzodiorite just south of the north sedimentary contact. This was on the proposed drill pad for hole FR-042 and consequently the collar had to be stepped back to the north to test the zone at shallow depth. This hole intersected a strongly oxidized, fractured sulfide zone below the casing that averaged 2.94 g/t Au over 10.07 metres including 7.75 g/t Au over 3.34 metres (>80% true width). Some spotty anomalous copper, arsenic and lead values were associated with this intercept. Hole FR-041 appears to have intercepted the same zone at 50 metres depth with indicated steep north dip. An 8.41 metre interval with 1% to 6% disseminated and veinlet sulfides (pyrite, pyrrhotite, chalcopyrite) averaged 0.25 g/t Au including 0.89 g/t Au and 2034 ppm Cu over 1.94 metres. The geological setting and mineralization in this area appear quite similar to the Haslinger trench area.

2. Central-Intrusion Related Zones


A large number of gold intercepts occur within intrusive settings in holes FR-39, 40, 41, 42, 43, 44, 45 and 46. These in most cases can be related to variable oxidized fracture-sulfide zones with local fractured quartz veinlets and veins. The sulfides are usually pyrite, pyrrhotite with minor chalcopyrite, local arsenopyrite and possible molybdenite. Gold values in the 1 to 2.5 g/t range generally occur over 1 to 2 metre core length. Because of the lateral

distances between holes (often 70 to 200 metres) it is difficult to correlate intercepts with any confidence.

Holes FR-41 to 44 form a drill fence at 8600E (Figure 17). There is a strong suggestion that the zones are steeply dipping and that some have vertical continuity. A broad interval of veinlet style (chlorite-carbonate-sulfides) mineralization near the bottom of hole FR-043 returned an encouraging intercept of 4.13 g/t Au over 9.11 metres including 7.63 g/t over 5.25 metres. The true width of this intercept is unknown as it cannot be correlated with hole FR-044 above. The latter hole did however encounter a narrow 0.33 metre interval with 3.02 g/t Au and 0.48% Cu vertically above (associated with intense K-feldspar alteration). If these correlate, the true widths would be 60 to 70% of the measured widths.

Holes FR-45 and 46 were drilled along trend to the west of 8600E and encountered similar narrow mineralized-fracture zones within the intrusion with 1 to 2 g/t average gold values. FR-045 intersected a broader zone of lower grade mineralization with 0.51 g/t Au over 11.52 metres (incl. 2.25 g/t/1.52m). This mineralization is related to a chlorite, carbonate and clay altered fault zone with local significant core loss, up to 50%.

To the east of section 8600E, holes FR-039 and FR-040 tested beneath the massive sulfide vein prospecting discovery on the drill access road (0.78 g/t Au, 1.52% Cu /3 metres) and coincident IP chargeability anomaly (Figure 11). The first hole FR-039 was drilled towards the northwest. Shallow core axis angles to sulfide veinlets and alteration within the monzodiorites indicated a poor angle to the zone(s). Hole FR-040 consequently was moved to the north and drilled under the surface exposure from the opposite direction. This 172 metre long hole encountered variably altered monzodiorite with widespread disseminated and veinlet pyrite (1 to 7%) and spotty chalcopyrite. The better gold values were returned from a narrow quartz-sulfide vein (5.05 g/t Au /0.7m) and chlorite altered sulfide veinlet (pyrite, chalcopyrite) zone (1.93 g/t

Au/ 1m). A stronger chloritic alteration zone with massive pyrite, pyrrhotite (chalcopyrite) veins between 24.95 and 107.50 metres in the hole did not produce any significant gold values; copper however ran up to 3517 ppm / 1.14m. This vein zone may correlate with the surface sulfide showing. The relatively high concentrations of fracture-veinlet controlled sulfides (pyrite, pyrrhotite ± chalcopyrite) throughout the monzodiorite intrusive phases in this drilling area can explain the IP chargeability anomaly. Some follow-up drilling testing different depths and azimuths is warranted.

3. South Contact Zones

Five of the Phase 2 drill holes: FR-38, 44, 45, 46 and possibly 48 tested the southern contact area to the monzodiorite intrusion complex with altered siltstone, biotite hornfels and a variety of dykes. In Phase 1 hole FR-036 to the west had returned an exciting intercept averaging 2.87 g/t Au over 8.83 metres in the south contact area.

The southern contact to the complex appears to have steep to subvertical dips. It is irregular, interfingering with numerous, generally narrow dykes (monzodiorite, andesite and augite-hornblende porphyries) and subject to significant faulting. Numerous faults and fault zones occur proximal to the main contact both in intrusion and country rocks. In hole FR-044 a broad zone of monzodiorite intrusion breccias probably represents the roof zone to the complex. These contact areas to the complex and peripheral dykes commonly display strong alteration with a variety of veinlet types, some with significant sulfide concentrations. In monzodiorite dark chlorite, carbonate, local-patchy epidote and silica are the main alteration types. Alteration is semi pervasive to pervasive in fracture zones, patchy outside commonly as haloes (selvedges) to veins. Sulfides in veins and veinlets include mainly pyrite, local pyrrhotite, minor chalcopyrite, arsenopyrite and molybdenite. Within the country rock hornfels pyrite, pyrrhotite and minor chalcopyrite

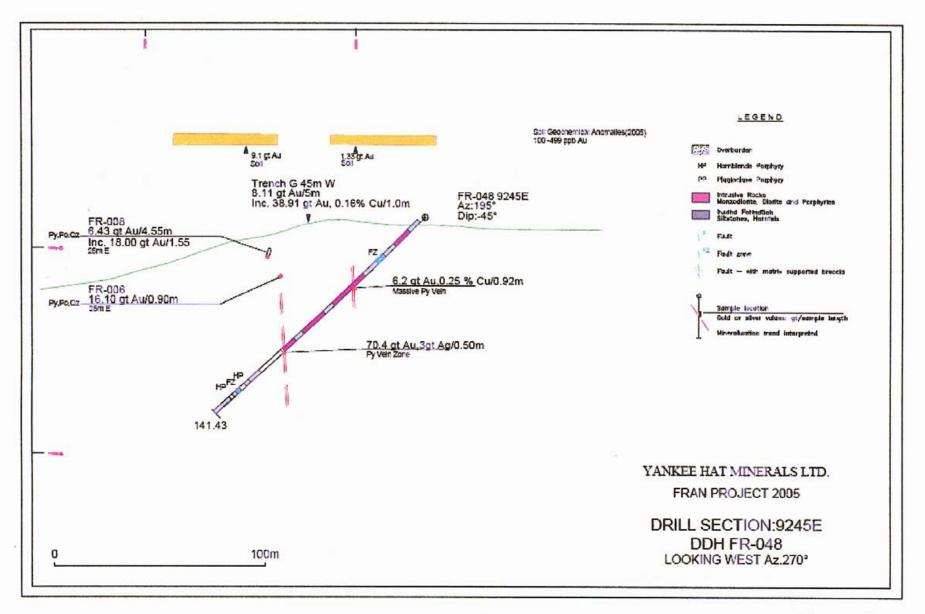
occur in veinlets and local semi-massive to massive (pyrrhotite rich) replacement style patches within carbonate-chlorite altered zones.

Other dyke lithologies hosted by the country rocks include fine grained andesite and green hornblende \pm augite porphyries. These are generally narrow, up to a few metres in apparent width. Most contain minor disseminated pyrite, some are magnetic (fine magnetite). Gold is commonly at detection levels <5 to 10 ppb.

The more eastern holes FR-045, 046 and 044 all penetrated the country rock sequence south of the monzodiorite complex. Hole FR-45 produced the highest gold intercept with 1.16 g/t Au over 1 metre length, associated with sulfide veinlets in altered monzodiorite proximal to the contact. Several narrow intercepts of 100 to 200 ppb Au were also encountered in this area with anomalous copper up to 600 ppm, and spotty Mo, up to 255 ppm. Hole FR-046 was similar with local higher gold up to 560 ppb, though lower copper to 233 ppm. The intrusion breccias in hole FR-044 featured low gold values with local elevated Mo, up to 119 ppm. The country rock biotite hornfels below yielded significantly higher copper, up to 500 ppm, spotty Mo up to 143 ppm but low gold.

Hole FR-038 was drilled in the southern contact area at the western edge of the central clearing overburden trough. This hole also tested a moderately strong IP chargeability anomaly (Figure 9) along strike, west from Navasota hole FR-032. The latter intersected a strong concentration of fine sulfides at one dyke contact that averaged 3.50 g/t Au over 1.65 metres (27.30 g/t Ag, 0.65% Cu, 0.18% Zn). Hole FR-038 encountered numerous narrow monzodiorite and hornblende porphyry dykes separated by generally narrow intervals of variably altered biotite hornfels. Between 1 and 50% disseminated sulfides occur throughout with pyrite, local pyrrhotite and chalcopyrite. These sulfide concentrations appear sufficient to explain the IP

chargeability anomaly, however no sulfide interval similar to that in FR-032 was encountered. Another hole in this area would be useful.


THE ATE AND A PART OF

overe de

Hole FR-048 was the last hole in the Phase 2 drilling program and tested the Lower Roadside showing area and northern part of a broad IP chargeability anomaly. Previous drilling by Navasota (2001-2002) and 2004 prospecting by Yankee Hat had encountered 0.3 to1.5 metre (true width) sample intervals with gold in the 12 to 23 g/t range. A 1 metre sample interval in Trench G had returned 38.9 g/t Au. The gold in these intercepts was usually accompanied by multi-gram silver and 1000 to 7000 ppm Cu. Hole FR-048 encountered a series of narrow monzodiorite and hornblende porphyry dykes hosted by biotite hornfels (minor), siltstones and argillites (Figure 18). Sulfide concentrations are generally low and dominated by pyrite (minor pyrrhotite, chalcopyrite). Two narrow sulfide vein-fracture zones returned multi-gram gold values; the upper 6.2 g/t Au over 0.92 metres, the lower 70.4 g/t Au over 0.5 metres. The higher grade gold intercept is significant as it shows good correlation with other multi-gram gold intercepts and trench intervals into a near vertical zone (Figure 13).

3.3 Discussion

Phase 2 diamond drilling consisted of eleven holes totaling 1861 metres and was designed to test a one kilometer long section of the anomalous gold in soils/prospecting trend in the western half of the 'Bullion Alley' grid. This trend follows an east trending, steeply dipping crowded feldspar porphyry (monzodiorite) dyke up to 250 metres wide. Gold mineralization in the intrusive environment is related to sulfide rich (pyrite, pyrrhotite, chalcopyrite) vein zones with minor quartz, and broader quartz veinlet stockwork-disseminated sulfide zones. Similar sulfide rich vein zones and patchy semimassive to massive sulfide replacements occur within the proximal sediments/hornfels. The Phase 1 and 2 drilling results indicated multiple gold mineralized zones (with copper, silver, local lead, zinc) at either contact and within the intrusive complex. In many cases

R.C. Wells P.Geo., Kamloops Geological Services Ltd.

Figure 13

it is premature to correlate gold intercepts between holes because of the wide spacings, often more than 100 metres. In-fill drilling is required for more confident correlation of zones.

7.87

A recent compilation of 2005 drilling and trenching results with those from Navasota's earlier drilling was very informative. The following tables compile the more significant gold intercepts into north contact, south contact and within intrusion settings.

Hole No.	From (m)	To (m)	Length (m)	Au g/t
NAVASOTA				
FR-015	59.0	77.0	18.0	0.68
FR-009	77.0	79.0	2.0	1,99
FR-012	52.75	58.30	5.55	4.27
FR-012	150.00	154.00	4.00	3.16
2005 PROGRA	M			
FR-047	77.60	81.60	4.00	7.89
FR-042	6.43	16.50	10.07	2.94 Inc 7.75 g/t / 3.34m

Table 7A: North Contact Au Intercepts

Five trenches A to E averaged between 2.9 and 8.42 g/t Au over 3.9 to 11m width; trench

B 8.42 g/t Au over 11 metres.

Hole No.	From (m)	To (m)	Length (m)	Au g/t
NAVASOTA				
FR-002	205.0	211.0	6.0	2.56 Inc. 13.2 g/t /1m
FR-005	99.70	103.33	3.63	1.84
FR-006	40.30	41.20	0.90	16.10
FR-008	21.75	23.30	1.55	18.00
FR-032	63.35	65.00	1.65	3,50
	ROGRAM			
FR-036	188.90	197.73	8.83	2.87
FR-048	95.48	95.98	0.50	70.4

Table 7B: South Contact Au Intercepts

Trench G	8.11	g/t Au	over	5	metres
----------	------	--------	------	---	--------

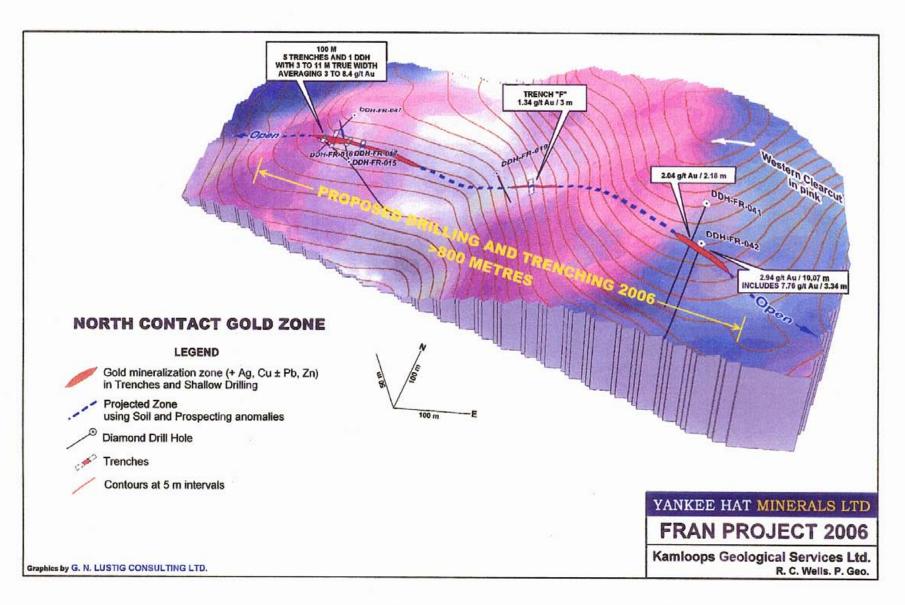

Hole No.	From (m)	To (m)	Length (m)	Au g/t
NAVA	SOTA		[
FR-001	102.75	103.30	0.55	12.10
FR-002	75.00	91.00	16.00	1.98 Inc 14.7 g/t /1.30m
FR-013	78.00	80.00	2.0	30.11
FR-025	75.50	76.25	0.75	41.40
FR-026	42.00	44.00	2.0	4.09
FR-027	141.0	167.0	26.0	4.24 Inc 13.57 g/t /6.10m
2005 PF	ROGRAM			
FR-034	165.15	173.72	8.57	2.31 Inc 4.02 g/t /5.25m
Aiso	191.92	194.80	2.88	2.67
FR-037	128.25	129.33	1.08	4.27
FR-043	184.10	193.21	9.11	4.13 Inc 7.03 g/t /5.25

Table 7C: Intrusion Hosted (Interior) Zones. Au Intercepts

Trench/pit 0.78 g/t Au, 1.52% Cu over 3 metres; trench/pit 47.7 g/t Au over 1 metre

Of the three intrusion related gold environments, the North Contact has received the least drilling but produced some highly significant gold intercepts (grade and width) in drilling and trenching. A gold zone in the northwest area (Upper Showing) has been traced by five trenches and three shallow drill holes for over 100 metres strike length, with mineralized widths up to 11 metres (8.42 g/t Au Trench B). This zone is open in all directions and requires systematic trenching and drilling (Figure 11).

The Interior and South Contact environments have produced numerous gold intercepts from drilling to date. These include narrow high grade, 70.4 g/t Au/0.5m (FR-048), 30.11 g/t Au/2.00m (FR-013) and broader lower grade, for example 1.98 g/t Au/16m (FR-002). Many areas and elevations along these trends remain to be tested. Excellent potential exists for sizeable gold zones, further systematic trenching and drilling are required.

Figure 14: North Contact Zone - Proposed Drilling and Trenching 2006

R. C. Wells P.Geo., Kamloops Geological Services Ltd..

4.0 CONCLUDING REMARKS

• •

and the second sec

The 2004-2005 exploration programs by Yankee Hat Minerals on the Fran Property have been highly successful and more than met the original objectives.

More detailed exploration on the western Bullion Alley grid indicates multiple gold zones associated with the monzodiorite intrusive complex. There are many promising targets that require significant amounts of future exploration.

The North Contact Zone has produced some very promising gold results from trenching and limited drilling. There is potential for over 800 metres of strike length to this multi-gram gold (\pm Ag, Cu, Pb, Zn) zone into the North Fork area where limited drilling and trenching has indicated similar gold values over several metres (true width). An exciting feature of this zone is the presence of local high grade gold from 15 to 63.5 g/t with associated Ag, Cu, \pm Pb and Zn. Future work on this zone requires systematic drilling and trenching which will allow resource calculations.

Other exciting high grade gold targets include the South Contact Zone in the 'Lower Showing Area' and the 'Hill Top Area' within the intrusive complex (hole FR-027 area). Both require significant amounts of more detailed exploration including systematic, well orientated drilling.

Regional property exploration in 2005 has indicated a new gold target area 4 to 6 kilometres east to northeast of the Bullion Alley grid. Highly anomalous gold in silt values in the 500 to 3500 ppb range have been returned from both the -40 +80 and -80 mesh fractions. Significant amounts of follow-up exploration (soils, prospecting) is required here to evaluate if this glacial dispersion is from the Bullion Alley gold zones or from bedrock gold mineralization in the local area. The second possibility is exciting; follow-up soil sampling and prospecting are highly recommended.

5.0 RECOMMENDATIONS

It is the author's opinion that the Fran Property has excellent potential for both high grade and bulk tonnage gold-polymetallic zones with continuity. The following two phase exploration program for 2006 is strongly recommended. The two pronged exploration approach on the Fran Property over the last two years has been highly successful and should not change. More grass roots exploration should continue on the new claims while detailed drilling and trenching are conducted on the priority targets on the Bullion Alley Grid. A resource calculation should be possible by the end of this field season on one or more of the drilled zones. The proposed 2006 Exploration Program on the Fran Property includes the following. The character of the property is of sufficient merit to justify the program that is recommended.

PHASE 1

ł

- 1. Initial project planning and logistical (April-May, 2006).
- 2. Site preparation including snow removal and some road repair (May-June, 2006).
- Detailed geological mapping of the Bullion Alley grid and surrounding areas (1 month in summer). This would be performed by a highly experienced individual with strengths in structural interpretation, alteration and economic geology.
- 4. Other Bullion Alley (June- September 2006)
 - i. 10-20 km IP Magnetic Survey mainly in eastern grid area
 - ii. In-fill soils
 - iii. Trenching. Allow at least 10 days of systematic coverage to include Haslinger-North Fork, Central Clearing, Lower Showing and eastern grid (if warranted)
 - iv. Mapping and sampling
- Phase 1 Drilling-Bullion Alley grid North Contact and other zones (mid June to July 2006). 2000 metres minimum with at least 15 holes.

6. Regional follow-up exploration in particular the new northeastern claims (June-October 2006). To include: 1) access preparation, 2) follow-up silt geochemical,
3) possible UTM based grids, 4) preliminary soil sampling and 4) prospecting. This program should also involve some analysis and interpretation of glacial landforms.

PHASE 2 (Not contingent on Phase 1 results)

Fall 2006 Phase 2 drilling program (15 to 25 holes). (September -November, 2006)

- 1. Allow 2500 m of NQ diamond drilling, 15 to 25 holes.
- At this time some less useful trenches, pits and roads can be reclaimed. However, mineralized trenches especially on the North Contact should remain open and locally enlarged to demonstrate Au Zone continuity.

The total cost of this Program is estimated at 1 million Canadian dollars. A more detailed cost estimate follows:

PROPOSED EXPLORATION BUDGET (2006)

PHASE 1 EXPLORATION			
1. Project Planning - Logistical (April - May 2006)			
Permits, site visits and logistical	allow	\$	10,000.00
Geological-technical	allow	\$	20,000.00
Airfares, helicopter		\$	3,000.00
Other expenses		<u>\$</u>	7,000.00
	Sub total	\$	40,000.00
2. Site Preparation (May 2006)			
Snow removal- road preparation allow	allow	\$	15,000.00
Supervision and associated costs (including travel)		\$	10,000.00
Other expenses including contingency for main road repair		\$	10,000.00
	Sub total	\$	35,000.00
3. Geological Mapping (June-July 2006)			
Experienced structural-mapping geologist			
Allow 30 days @\$650/day (includes report)		\$	19,500.00
Associated expenses		\$	7,500.00
Analytical		\$	2,000.00
Other expenses		\$	1,000.00
	Sub total	\$	30,000.00
4. Bullion Alley Grid Exploration			
10-20 km IP-Magnetic Survey	allow	\$	30,000.00
In-fill soils including Analytical	allow	\$	10,000.00
Trenching 10 days @\$1500/day		\$	15,000.00
Mapping and Sampling 20 days @\$800/day all in		\$	16,000.00
Analytical	allow	\$	10,000.00
Contingency		<u>\$</u>	4,000.00
Sub total		\$	85,000.00
5. Builion Alley Phase Diamond Drilling (June-July 2006)			
Pad construction and access 10 days @\$1500/day		\$	15,000.00
12-14 NQ drill holes @\$150 per/metre all in			
includes drilling, hole surveys, analytical, geological, support			
costs, technical-computor		<u>\$</u>	300,000.00
	Sub total	\$	315,000.00
6. Regional Follow-up Exploration (June-October 2006)			
a) Access Preparation		~	
ATV Trails using small excavator allow 11 days @\$1400/day		\$	15,400.00
Supervision and clean-up		\$	7,600.00
b) Follow-up Silt Geochemical Program NE area		\$	E 000 00
Allow 10 silts @\$500/silt all in		æ	5,000.00
c) Potential UTM grids using GPS Allow 40 line kms of grid @\$500 km		\$	20,000.00
d) Soil Sampling Program		•	20,000.00
Allow 800 soils @\$375/sample (incl. analysis)		\$	30,000.00
e) Prospecting Allow 20 days @\$800		\$	8,000.00
Analysis 50 samples @\$20/sample		\$	1,000.00
f) ATV transportation for all above			
2 ATVs 90 days @\$3000 each		\$	6,000.00
Transportation to and from site		\$	4,000.00
g) Contingencies	allow		3,000.00
	Sub total	\$	100,000.00
Phase 1 Total		\$	605.000.00

0. C. 1990 1100

.

Phase 1 Total

^{\$ 605,000.00}

PHASE 2 EXPLORATION

Detailed Diamond Drilling

Allow 2500m drilling NQ (15 to 25 holes) at \$150/metre all in cost Contingency - reclamation

\$ 375,000.00 <u>\$ 20,000.00</u> Phase 2 Total \$ 395,000.00

ملازمه مارد كشهير أجاره مشته بحادث وأراد والاستخا

. . .

Total Phase 1 and 2

\$ 1,000,000.00

6.0 REFERENCES

- Bailey, D.G. (1990): A Geological Examination of Tas Prospect, Omineca Mining Division, BC. Assessment Report.
- Mowat, U. (2000): Compilation and Sampling on the Fran Claims, Omineca Mining Division. Assessment Report # 26,282.
- Nelson, J. L., Bellefontaine, K.A., Green, K.C. and MacLean, M. (1991a): Regional Geological Mapping near the Mount Milligan Copper-Gold Deposit (93K/16, 93N/1) in Geological Fieldwork 1990, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1991-1.
- Nelson, J. L., Bellefontaine, K.A., Green, K.C. and MacLean, M. (1991b): Geological and Mineral Potential of the Wittsichica Creek and Tasseron Creek Map-areas (93N/1, 93K/16): B.C. Ministry of Energy, Miners and Petroleum Resources, Paper 1992-1.
- Nelson, J. L., Bellefontaine, K.A., Green, K.C. and MacLean, M. (1991b): Regional Geological Mapping in the Nation Lakes Area (93N/2E, &e); in Geological Fieldwork 1991, Grant, B. and Newell, J.M., Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1992-1.
- Nelson, J. L., Bellefontaine, K.A., (1996): The Geology and Mineral Deposits of North-Central Quesnellia; Tezzeron Lake to Discovery Creek, Central British Columbia. B.C. Ministry of Employment and Investment, Energy and Minerals Division, Geological Survey Branch, Bulletin 99.
- Warner, L. M., Kay, B.G. (2002): Assessment Report on Diamond Drilling for the Fran Property, Omineca Mining Division, B.C. for Navasota Resources.
- Warner, L. M., Kay, B.G. (2003): Assessment Report on Diamond Drilling for the Fran Property, Omineca Mining Division, B.C.
- Wells, R.C. (1999): Geological-Geochemical Assessment Report for the Fran Property, Omineca Mining Division, B.C. for Placer Dome North America Ltd.
- Wells, R.C. (2002): Petrographic, Lithogeochemical and Interpretative Report on drill core samples taken from the Bullion Alley Zone, Fran Property, Omineca Mining Division, B.C.
- Wells, R.C. (2003): Petrographic, Geochemical and Interpretative Report on the Geological Setting of Gold Mineralization on the West Zone Area, Tas Property, Omineca Mining Division, B.C.
- Wells, R.C. (2004 a): Report on Exploration on the Fran Property, Omineca Mining Division for Yankee Hat Industries Corp. NI 43-101 Report. Effective Date: 31 March, 2004.
- Wells, R.C. (2004 b): Addendum to NI 43-101 Report on the Fran Property. Omineca Mining Division. Effective Date: 31 March, 2004.
- Wells, R.C. (2005): Geological, Geochemical and Geophysical Report, 2004 Exploration Program for the Fran Property. Assessment Report for Yankee Hat Minerals Ltd.
- Wells, R.C. (2006): Geochemical Report (Stream, Sediment and Topographic Base Maps) on the Fran Property. Assessment Report for Yankee Hat Minerals Ltd.

63

į

7.0 STATEMENT OF COSTS

į

Phase 2 Diamond Drilling (August 2005)		
Frontier Diamond Drilling	•	
11 holes (NQ) 6157 ft	\$	129,006.00
Accommodation and meals	\$	4,000.00
Flex-it down hole instrument	\$	4,290.00
Greystone Engineering – computer drafting	\$	1,538.00
Wildrock Resources - computer drafting	\$	70.00
Kamloops Geological Services Ltd.		
R.C. Wells 50 days @\$550	\$	27,500.00
E. Wells 30 day @170	\$	150.00
M. McInnes 26 days @\$240	\$	6,240.00
Office	\$	4,000.00
Trucks	\$	2,928.40
Communication (Sat. phone)	\$	800.00
Generator	\$	800.00
Accommodation and meals	\$	5,295.03
Other expenses including fuel	\$	3,025.19
Analytical. Eco Tech Laboratory		
DDH.FR-038 58 core. ICP+Au geochemical (AK981A)	\$	1,247.90
DDH.FR-039 36 core. ICP+Au geochemical (AK981B)	\$	774.56
DDH.FR-040 58 core. ICP+Au geochemical, 2 assays (AK981C)	\$	1,328.82
DDH.FR-041 111 core. ICP+Au geochemical 2 assays (AK982A)	\$	1,240.56
DDH FR-042 111 core. ICP+Au geochemical 7 assays (AK982B)	\$	1,473.37
DDH.FR-043 68 core. ICP+Au geochemical 5 assays (AK1020)	\$	1,605.71
DDH,FR-044 79 core. ICP+Au geochemical 1 assay (AK1021)	\$	1,728.26
DDH.FR-045 87 core. ICP+Au geochemical 2 assays (AK1022)	\$	1,893.51
DDH.FR-046 90 core. ICP+Au geochemical 2 assays (AK1058A)	\$	2,015.12
DDH.FR-047 66 core. ICP+Au geochemical 13 assays (AK1058B)	\$	1,652.18
DDH.FR-048 49 core. ICP+Au geochemical 4 assays (AK1058C)	\$	1,233.21
	\$	205,835.82
	•	

64

Ì

and of the second

8.0 CERTIFICATE OF QUALIFIED PERSON

I, Ronald C. Wells, P. Geo am a professional Geoscientist residing at 910 Heatherton Court, Kamloops, British Columbia.

ì

- 1. I am a Registered member of the Association of Professional Engineers and Geoscientists of British Columbia (APEG) and a Fellow of the Geological Association of Canada.
- 2. I am a graduate of the University of Wales, U.K. with a B.Sc. (Hons.) in Geology (1974), did post graduate (M.Sc.) studies at Laurentian University, Sudbury, Ontario (1976-77) in Economic Geology.
- 3. I am presently employed as Consulting Geologist and President of Kamloops Geological Services Ltd., Kamloops B.C.
- 4. I have been employed continuously as geologist for the last 27 years throughout Canada, USA and Latin America and have past experience and employment as a geologist in Europe.
- 5. Ten of these years were in the capacity of Regional Geologist for Lacana Mining Corp., then Corona Corporation both in Northern Ontario / Quebec and British Columbia.
- 6. Over the last 12 years I have consulted for major and junior companies in a large number of projects from 'grass roots' through to mature producing mines. These have been for precious and base metals in a variety of geological environments including porphyries (Copper Mt., Kerr-Sulphurets, Mt. Milligan) skarns (BC, Mexico, Honduras), mesothermal-epithermal veins (Courageous Lake NWT, Dome and Detour Lake Mines Ont., Crucitas Costa Rica), conglomerate gold (S. Africa), iron formations (Musselwhite Ont., Meliadine Nunavut) and base metal VMS (Manitoba and Newfoundland).
- 7. As a result of my education, professional experience and professional qualifications, I am a qualified person as defined in National Instrument 43-101.
- 8. I have had a long association with the Fran Property. I was a consulting geologist for the 1998 exploration by Placer Dome Inc. and consulted for Navasota Resources Ltd. during the later drilling on the property (2002).
- 9. I supervised all exploration conducted on the Fran Property during 2004 and 2005 as the Qualified Person for Yankee Hat Minerals Ltd. (previously Yankee Hat Industries Corp.).
- 10. I prepared this report based on data supplied to me by the property owners and in personal files. Some of this data could not be directly verified by me but is correct

reactions are compared when a second system of a second system of a

to the best of my knowledge. I was the author of six reports on the Fran Property between 1999 and 2006 (see References).

- 11. The author has checked all Mineral Titles and Tenure details and believes them to be correct.
- 12. To the best of the qualified person's knowledge, information and belief, the technical report contains all scientific and technical information required to make the report not misleading.
- 13. I am independent of Yankee Hat Industries Corp. and have no interest, either direct or indirect in the Fran Property.
- 14. All of the sampling during the 2004 and 2005 exploration programs by Kamloops Geological Services Ltd. was by company personnel and sub-contractors that were independent of Yankee Hat Minerals Ltd.
- 15. I have read National Instrument 43-101, F1 and this report has been prepared according to the standards of disclosure for mineral projects.

Columbia this 30th June. 2006. Dated at Kamboos: B WELLS Ronald C. Well Consulting Geologist.

APPENDIX A

-

Mineral Titles Online Transaction Events

Exit this e-service

Ì

♦ MTO Help Tips	Tenure # Na	Claim Ime/Property	Lssue Date	Good Ne To Go Date Da	od Days o For-	ил На	Work Value Due	Sub- mission Fee
 View Mineral Tenures View Placer Tenures 	Summary o	f the work valu	ie:					
<u>Main Menu</u> <u>Search Tenures</u> Nieue Minarel Tenures		Technical Work ems: Drilling						
		Date: 2005/AUG Date: 2005/OCT			alue of Wor ermit No: M			
	Event Numi	er: 4 076953						
Select/Input Tenures Input Lots Data Input Form Review Form Data Process Payment Confirmation	Your report your report		iys. Please atta	ch a copy of thi	is confirma	tion page	e to the f	iront of
Select Input Method	D/E Date:	2006/MAR/30						
Development Work/Expiry Date Change		RONALD CECIL 2006/MAR/30	WELLS (128567) Submitter: Effective:	RONALD C 2006/MAR		LS (1285	i67)
Mineral Claim Exploration and	Mineral C Change	laim Explorat	tion and Devel	iopment Worl	k/Expiry I	Date	Con	firmation
an a topal ang ina kana kana ang ina bata kanalaman katika								
Mineral Titles	Mineral [*]	Titles Onlin	e					
B.C. HOME								
BRITISH COLUMBIA					Co	ntact Us 🕯	Help	0

	······································		Date	Date	ward	На	Due	Fee	
	505313	2005/JAN/31 20	007/APR/04	2008/APR/04	366	1206.12 \$	4835.37 \$	483.77	
	505330	2005/JAN/31 20	007/APR/04	2008/APR/04	366	1466.79\$	5880.42 \$	588.32	
: O	505331	2005/JAN/31 20	007/APR/04	2008/APR/04	366	1409.69 \$	5651.50 \$	565.42	
	518242 FRAN 28	2005/JUL/25 20	008/JUL/25	2008/3UL/25	0	315.76	\$ 0.00	\$ 0.00	
	518135	2005/JUL/21 20	006/JUL/21	2008/JUL/21	731	463.92 \$	3711.38 \$	371.65	
	518136	2005/JUL/21 20	006/JUL/21	2008/JUL/21	731	463.83\$	3710.61 \$	371.57	
	518137	2005/JUL/21 20	006/JUL/21	2008/JUL/21	731	463.73\$	3709.85 \$	371.49	
	518138	2005/JUL/21 20	006/JUL/21	2008/JUL/21	731	445.09\$	3560.72 \$	356.56	

Total required work value: \$ 31059.85

PAC name:	rjhaslinger			
Debited PAC amount:	\$	0.00		
Credited PAC amount:	\$	8940.15		
Total Submission Fees:	\$	3108,78		
Total Paid:	\$	3108.78		

The event was successfully saved.

Please use **Back** button to go back to event confirmation index.

Back

۰.

ļ

Payment Receipt

Service Provided: Mineral Tenure Operation

Date:	Mar 30, 2006	Transaction Type:	Purchase
Card Type:	Visa	Amount:	\$ 3108.78
Card Number:	xxxxxxxxxxx3285	Invoice Number:	110039764

Note 1: The above card number is hidden for privacy.

Approval Code:	072198	Response Message:	0APPROVED 072198
Host Date/Time:	Mar 30, 2006 / 5:22:16pm	Sequence Number:	143001001074
ISO Response Code	: 00	Terminal ID:	BCGOVEMMTO
Response Code:	001		

Note 2: "Mineral Tenure Operation" will appear on your credit card statement.

Click here to print this receipt.

APPENDIX B

- e *

ł

and a second
2

ł

Diamond Drilling Results

DDH: FR--038

!

i.

R. C. Wells P.Geo, Kamloops Geological Services Ltd.

DDH.FR-038 CoverPage

Hole ID:	DDH. FR-038
Project:	FRAN
Property:	FRAN
Claim:	
Easting:	10408959E
Northing:	6094183N
Elevation:	1189m
Grid:	8959E-4183N
Length (m):	178.92
Dip:	-50
Azimuth (grid):	218
Started:	4/8/2005
Finished:	6/8/2005
Hole Status:	Finished
Material left in hole:	None
Comments:	Significant disseminated sulfides in IP. area
Core Size:	NQ
Logged By:	R. Wells
Purpose:	Test IP anomaly and hole 32 zone

.

DDH.FR-038 Surveys

1. Source and source states for a subscription sector.

.....

· ·

HOLE ID	Depth (m)	Dip	Azimuth (grid)
DDH.FR-038	0	-50	218
DDH.FR-038	100	-46.8	221.3
DDH.FR-038	175	-45.1	218.9

ł

į

DDH.FR-038 Geology

Hole ID	From	Το	Unit Code	From	То	Sub Unit	Veins, Vits	Alteration	% Py	X Po	Cpy %
DDH FR-038		14.65	Ovb	- 0 -	13.50	Ovb.Till					ļ
DDH FR-038	⊢⊸–⊣	14.00		13.50	14.65	Boulders, Fr. Bedrock					
DDH FR-038	14.85	23.75	MD.Xen. local Bl. Py. Po	14.65	20.30	MD,Xen,wk	Local Carb, Py	Vit related, patchy Bl	Tr to 2	Tr	
DOH.FR-038	14.00	20.10		20.30	21.25	MD.BI, Py, Po	Mod Carb, local Py	8	1 to 2	1	<u> </u>
DDH.FR-038			· · · ·	21.25	22.62	MD.Carb. Py, Po	Abund, Carb	Strong Carb	2 to 3	<u> </u>	
DDH.FR-038	+· · · ·			22.62	23.75	MD.	Local Carb	Wk Carb	Trito 1	1 to 3	1
DDH.FR-038	23.75	25.60	HPDk	23,75	25 60	HP.Dk	Fine Carb	Local B1	Tr to 1	-	
DDH.FR-038	25.50	38.12	MD.Wk Mag. local Xen	25.80	36.12	MD,Wk Mag, local Xan	Massive local Carb, Chi	Vit related, local Carb	Tr		
DDH FR-038	38.12	41.28	SS.HF. AILPY, PD	38,12	41,25	SS.HF. Alt.Py, Po	Abund, Vits, Chi Carb, Py, Po	Patchy Biot, BI	1 to 4	Tr to 1	Tr
DDH.FR-038	41.28	50.66	H(Aug)P.SS inc.	41.28	50.66	H(Aug)P,SS inc.	Massive local Carb Vits	Vit related Carb Bi	Tr to 3 (top)	îr to1	
DDH FR-038	50.66	51.88	Biot HF (inc)	50.66	51.88	Biot HF (inc)	Numerous, Bi	Patchy Biot, Bi		1104	L
DDH.FR-038	51.86	54.50	Ait.FHP.	51.88	54.50	At FHP.	Fine Chi, Carb, Py	BI, Carb	1 to 3		Γ
DDH FR-038	54.50	57,45	H(Aug)P.	54.50	57 45	H(Aug)P.Py	Abund, Py	Vit related, BI	2 to 5	Trto 1	
		80.78	SS.HF. (Sil)	57.45	80.78	SS.HF. (Sil) strong Fr	Py, Bl	Sil, Bl patchy Chi	1 to 4	Tr	I
DDH.FR-038	57.45	60.78 62.30	H(Aug)P.	60.78	62.30	H(Aug)P, local lam.	Vita BI, Sil	Vit related, local SI	Tr		
DDH FR-038	60.78	52.30 69.40	MD. Local BL. Xen.	62 30	69.40	MD Local BL Xen.	W/m, Chi, Vita	Vit related, local wk Carb	Trto 4	٦Ť	Tr
DDH.FR-038	62.30		H(Aug)P.	69.40	72.25	H(Aug)P	Local massive bands	Vit related	Tr		
DDH FR-038	69.40	72.25	Biot HF	72.25	74.30	Biot HF	BI Vits	Patchy Biot, BI	1 ¹		
DDH FR-038	72.25	78.68	MO/H(Aug)P	74.30	78.88	MD/H(Aug)P	Local Carb Vita	Marroon HP(Hem)	Tr to 2	Trto1	
DDH FR-038	74.30	85.40	HP.Bx Local Bl. SS (inc)	78.86	85.40	HP.Bx Local BI SS (inc) Py	BI Vita, Carb	Patchy Biot, Bi	C qu T	Tr to 1	
DDH FR-038	78.68		MD. Wk Mag	85.40	88.04	MD. Wk Meg.Py	Numerous Carb Vits	Vit related Carb	Trto 5		
DDH FR-038	85.40	88.04	Biot HF.Bx	88.04	89.13	Biot HF Bx	Py Vits	Patchy Biot	Tr to 2		
DDH FR-038	68.04	89.13	MD.Xen	89 13	91.00	MD.Xen	Local Carb Vits	Vit related		Tr	
DDH FR-038	89.13	91.00		91.00	92.50	MD APP.Bx	Carb Vits	Vit related, w/m patchy Carb	Tr to 3	Tr to 5	
DDH FR-038	<u>91,00</u>	\$2.50	MD /HP.Bx	92.50	95.05	MD.w/m Meg	Carb, Py, Po	Vit related	1 to 2	Tr to 3	
DDH FR-038	92.50	95.05	MD.w/m Mag	95.05	100.30	By MD, HP, Biot, HF	Messive minor Carb Vits	Biot. Vit related Carb	Tr to 2	Tr	
DDH FR-038	95.05	100 30	Bx MD HP, Biot HF	100.30	100.30	MD, Wk Meg	BI, Carb Vita, Vns	Carb & BI	1 to 4		1
DDH.FR-038		105.27	MD. Wx Meg		108.48	Biot.HF.Narrow MD.Dk.	Minor Carb Vits	Biot Local BI	Tr	Tr	<u> </u>
DOH FR-038	105.27	108.48	Biot HF Narrow MD.Dk	106.27	113.25	H(Aug)P	Local fine Carb Chi Vits	Vit related	Trio 1	Tr to 1	
DDH FR-038		13.25	H(Aug)P	108.48	113.25	NF.Sil	ViLB	Sixt & Sil	17		F
DDH FR-038		114.91	HF,Sil	113.25		Fine MD.HP.	Abund, Carb	Vit related, local wk Carb	Trto 1	Tr to 1	
DDH.FR-038	114.01	117.50	Fine MD,HP.	114.91	117.50	Biot Sil HF narrow HP Dk	Local Carb Vns	Sil Biot	1 to 3	Tr	
DDH FR-038		120.30	Biot Sil HF namow HP Dk	117.50	120.30	MD Xen	Local Chi Carb Vits, minor gtz	Vit related, BI with QC vns	1 to 3	Tr to 1	Tr
ODH FR-038	120.30	122.28	MD.Xen	120.30	122.28		Few Carb Vits	Vit related, Carb local Chi	Tr	Tr	1
DDH.FR-036		132.00	H(Aug)P. wk Mag	122.28	132.00	H(Aug)P. wk Mag HF.SS	Num, Carlo Vita	Sil, Wk Biot	Tr-1		1
DDH FR-036		133.24	HF.SS	132.00	133.24		Chi Carb Py	Vit related Chi Carb	Tr-2	Tr	Tr
DDH FR-038	133.24	137.25	H(Aug)P.	133.24	137.25	H(Aug)P.Mass to 8x	Carb Vits, local Vugs	Biot. Vit related BI Carb	Tr		<u> </u>
DDH FR-038	137.25	141.80	Biot HF, Natrow HP DK's	137.25	141.80	Biot HF. Narrow HP Ok's	W/m, Carb Vita	Vit related Carb	Tr-1		1
DDH.FR-038	141 80	144.17	H(Aug)P	141.80	144.17	H(Aug)P, wk Bx	Local Chi Carb Vits	Vit related Chi Carb	Tr-1		
DOH FR-038		148.83	MD.Xen	144.17	146.83	MD.Xen	Bt Vits	Biot Patchy Bl	1 Tr		
DDH FR-038	146.83	152.93	Siot, HF, Narrow HP OK's	148.83	152.93	Siot HF. Narrow HP DK's	Vít Chi Carb	Vit related Chi Carb	- -		1
DDH FR-038		155.36	MD. Dk. Xen	152.93	155.38	MD. Dk. Xen	W/m Bi Vits	BioL VIt 81	<u></u>		<u>+</u>
DDH FR-038	155.36	159.70	Biot. HF	155.36	159.70	Biot. HF	Wk Chi Vita	Local Bi	+ <u>;;</u>		
DDH FR-038	159 70	160.21	MD. Dx	159.70	160.21	MD. Dk	Vit Bi	Biot. Local BI	Trioi	Ťr	t —
DDH.FR-038	160.21	162.71	Biot. HF	100.21	162.71	Biot. HF		Vit related, local B!		Tr	Tr
DDH.FR-038	16271	165.55	H(Aug)P, wk Meg	162.71	165.55	H(Aug)P. wk Mag	Mass, Few Carb Vits		+ " …	<u> </u>	<u> </u>
DDH FR-038		167.10	Narrow MD Dk	165.55	167.10	Narrow MD Dk		Local w. Bi, Vit related Chi Carb	<u> </u>	Tr	
DDH FR-038		170.44	Fine HP	167.10	170.44	Fine HP	Minor Chi Carb Vits	Local W. BI, Vit related Uni Caro Local BI, Vit related	1te 2	2 to 5	†
DDH.FR-038	170.44	176.92	H(Aug)P	170.44	178.92	H(Aug)P	Minor Chi Carb Py Vits	LOCAL DR, VIC (BIRNEO			+
DDH FR-038		178.92				EOH	· · - · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	L	4. · · · · · · · · · · · · · · · · · · ·

a,

4

.

DDH.FR-038 Assay

1.5

÷-1

71 S 1 S 2 S

HOLEID	From	To	Sample No	Length	Au g/t metallic	Au g/t	Au ppb	Ag ppm	Cu ppm	Zn ppm
DDH FR-038	17.00	18.5	74551	1.50			5	<0.2	242	65
DDH.FR-038	18.50	20.25	74552	1.75			10	<0.2	356	93
DDH.FR-038	20.25	21.25	74553	1.00			30	0.2	745	173
DDH.FR-038	21.25	22.62	74554	1.37			10	0.3	534	146
DDH.FR-038	22.62	23.75	74555	1.13			5	<0.2	296	63
DDH.FR-038	38.12	39.12	74556	1.00			5	<0.2	50	25
DDH.FR-038	39.12	40.12	74557	1.00			10	<0.2	231	63
DDH.FR-038	40.12	41.28	74558	1.16			<5	<0.2	71	28
DDH.FR-038	41.28	42.65	74559	1.37			5	<0.2	72	26
DDH.FR-038	50.60	51.60	74560	1.00			15	<0.2	370	91
DDH.FR-038	51.60	53.40	74561	1.80			5	<0.2	328	113
DDH.FR-038	53.40	55.40	74562	2.00			5	<0.2	414	108
DDH.FR-038	55.40	56.50	74563	1.10			5	<0.2	274	76
DDH.FR-038	56.50	58.36	74564	1.86			20	<0.2	414	110
DDH.FR-038	58.36	59.70	74565	1.34			10	<0.2	288	80
DDH.FR-038	59.70	60.78	74566	1.08		1	10	<0.2	280	66
DDH.FR-038	63.09	64.09	74567	1.00			5	<0.2	193	61
DDH.FR-038	64.09	65.54	74568	1.45			5	<0.2		70
DDH.FR-038	65.54	66.84	74569	1.30			10			
DDH.FR-038	66.84	68.25	74570	1.41			5	<0.2		
DDH.FR-038	68.25	69.40	74571	1.15			10	<0.2		
DDH.FR-038	72.25	74.30	74572	2.05			5	<0.2		
DDH.FR-038	77.70	76.86	74573	1.16			<5	<0.2		
DDH.FR-038	78.66	80.00	74574	1.14			5			
DDH.FR-038	80.00	81.38	74575	1.38			<5			
DDH.FR-038	81.38	82.90	74576	1.52			<5			
DDH.FR-038	82.90	84.46	74577	1.56			80			
DDH.FR-038	84.46	85.40	74578	0.94			15			
DDH.FR-038	65.40	86.50	74579	1.10			5			
DDH.FR-038	86.50	88.04	74580	1.54			10			
DDH.FR-038	88.04	89.13	74581	1.09			<			
DOH.FR-038	91.00	92.50	74582	1.50			5			
DOH FR-038	94.00	95.05	74583	1.05			5			
DOH.FR-038	95.05	96.55	74584	1.50			15			
DDH.FR-038	96.55	98.05	74585	1.50			6			
DDH.FR-038	98.05	99.50	74586	1.45						
DDH.FR-038	99.50	100.30	74587	0.80			5			
DDH.FR-038	100.30	102.00	74588	1.70			10	· · ·		<u> </u>
DDH.FR-038	105.27	107.00	74589	1.73			5			
DDH.FR-038	107.00	108.48	74590	1.48	1	-	4		4	• · · · · ·
DDH.FR-038	111.86	113.25	74591	1.39						
DDH.FR-038	114.91	116.41	74592	1.50						
DDH.FR-038	118.20	119.40	74593	1.20						
DDH.FR-038	120.90	122.28	74594	1.38			1			
DDH.FR-038	125.28	126.28	74595	1.00						
DDH.FR-038	132.00	133.24	74596	1.24			3			
DDH.FR-038	135.10	136.10	74597	1.00			1(-
DDH.FR-038	136.10	137.25	74598	1.15			4			
DDH.FR-038	137.25	138.60	74599	1.35				5 <0.:		
DDH.FR-038	140.30	141.80	74600	1.50				5 <0.		
DDH.FR-038	149.06	150.56	74601	1.50				5 <0.	-	
DDH.FR-038	151.49	152.93	74602	1.44				5 <0.		
DDH.FR-038	155.36	156.76	74603	1.40				5 <0.	_	
DDH.FR-038	158.40	159.70	74604	1.30				5 <0.		
DDH.FR-038	161.15	162.71	74605	1.56				5 <0.		
DDH.FR-038	162.71	163.60	74606	1.09				5 <0.		
DDH.FR-038	172.20	173.20	74607	1.00				5 <0.	2 13	
DDH.FR-038	177.75	178.92	74608	1.17			9			7 68

ł

1 of 1

i

9-S.

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 2005-981A

YANKEE HAT INDUSTRIES CORPORATION 4460 Atlee Avenue Burnaby, BC V5G 3R6

1917 - 19

1

ATTENTION: Donald Gee

No. of samples received: 58 Sample type: Core Project #: FRAN Shipment #: n/a Samples submitted by: Ron Wells

Et #	. Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI P	Pb	Sb.	\$n	Sr	Ti %	U	- V	w	Y	Zn
1	74551	5	<0.2	1.03	<5	30	5	1.98	<1	19	39	242	2.71	<10	0.63	262	9	0.05	13 1570	8	<5	<20	33	0.10	<10	45	<10	10	65
2	74552	10	<0.2	0.88	<5	25	<5	2.11	<1	21	38	356	2.78	<10	0.75	275	4	0.03	17 1630	10	<5	<20	36	0.14	<10	59	<10	9	93
3	74553	30	0.2	0.19	<5	35	<5	2.16	<1	23	42	745	3.07	<10	0.73	303	5	<0.01	1 6 1770	10	<5	<20	32	0.14	<10	57	<10	11	173
4	74554	10	0.3	0.38	20	55	- 5	4.66	<1	17	45	534	4.21	<10	0.81	640	17	<0.01	15 1530	10	5	<20	68	<0.01	<10	43	<10	16	146
5	74555	5	<0.2	0.89	10	35	5	2.12	<1	20	42	296	2.99	<10	0.83	347	8	0.02	15 1440	16	<5	<20	38	0.09	<10	56	<10	12	83
6	74556	-	<0.2		<5	10		0.69	<1	-	115		1.63		0.45	227		0.04	21 630	4	-	<20	-+	0.13			<10	20	25
7	74557	- +-	<0.2		<5	40	<5		<1		115	231			0.62	273		0.01	44 520	6	-	<20		0.18	. –		<10	20	63
8			<0.2		<5	20	<5	0.82	<1	-	126	71		-	0.52	223	8	0.02	56 520	6		<20		0.16		-	<10	17	28
9		_	<0.2		<5	15	<5	1.83	<1	8	81		1.73		0.43	267		0.03	32 1310	6		<20		0.12		-	<10	13	26
10	74560	15	<0 2	0.60	<5	40	<5	2.03	<1	23	51	370	3.34	<10	0.43	208	8	0.02	15 1790	10	<5	<20	43	0.15	<10	48	<10	16	91
	74561		<0.2		<5	35		3.96	<1	25	56	328			0.72			0.01	15 2680	16	-	<20		0.13				14	
	74562	-	<0.2		20	75	-	6.47	<1	30	53		4.87		1,19	773		<0.01	18 2650	14	-		198	0.06			<10	17	
	74563	-	<0.2		<5	70	-	4.14	<1	23	42	274		10		377		0.03	14 2680	14		-		0.14		-	<10		76
	74564		<0.2		<5	50	10	2.83	<1	41	63		6.18		1.01	389		0.03	24 2100	15	-	<20		0.23				16	
15	74565	10	<0.2	0.34	<5	30	5	1.63	<1	25	124	288	3.79	<10	0.50	268	5	<0.01	29 690	8	<5	<20	34	0.17	<10	70	<10	1 9	80
	74566	-	<0.2		<5	35		1.94	<1	23	86		4.67		1.07			0.01	21 1080			<20		0.21				24	
	74567	-	<0.2		<5	50	10		<1	21	64	193	+·- ·			476		0.03	9 2530	-		<20		0.14			<10	13	61
	74568	-	<0.2		<5	30	10		<1	24	57	225	3.87		0.57	384		0.02	13 2610			<20		0.14			<10	13	70
	74569		<0.2		5	20		4.74	<1	21	36	177				481	8	0.02	15 2660			<20		0.13				12	63
20	74570	5	<0.2	1.13	<5	20	5	4.68	<1	20	58	189	3.45	<10	0.60	380	59	0.02	11 2660	14	<5	<20	65	0.12	<10	55	<10	11	56
21	74571	10	<0.2	0.61	<5	15	5	4.58	<1	34		_	4.39		0.61			<0.01			-			0.11				12	
22	74572	5	<0.2	0.96	<5	150	10	1.25	<1		132	108				331	3	0.02	71 950	12	-	<20		0.24		-		16	47
23	74573	<5	<0.2	1.68	<5	20	10	1.96	<1	. 28	39	233		. –		364	2	0.08	22 1630	10		<20						10	60
24	74574	5	<0.2	1.56	<5	40	<5	1.82	<1	25	41		4.33	-	0.97	287	1	0.10	25 1790	10		<20		0.19				10	48
25	74575	<5	<0.2	1.55	<5	35	5	1.81	<1	26	37	192	4.30	<10	1.12	324	1	0.10	26 1860	10	<5	<20	50	0.19	<10	98	<10	10	53
26	74576	<5	<0.2		10	20		2.13	<1	31	44		5.22	-	1.64	480		0.06	31 1980	12		<20		-			<10		
	74577	80		1.45	<5	40	5	1.44	<1	13	78	90		-	0.89	331	2	0.07	38 1170	8		<20	34	0.17		-		14	
28	74578	15	<0.2	1.07	<5	35	10	1.68	<1	20	51	164			0.77	285	3	0.08	24 1840	10		<20	39	0.16	-		. –	11	49
29	74579	5	0.3	1.48	<5	30	5	2.29	<t< td=""><td>20</td><td>49</td><td>128</td><td>3.57</td><td></td><td>0.78</td><td>370</td><td><1</td><td>0.10</td><td>13 1960</td><td>10</td><td></td><td><20</td><td>34</td><td>0.12</td><td></td><td></td><td></td><td>11</td><td>44</td></t<>	20	49	128	3.57		0.78	370	<1	0.10	13 1960	10		<20	34	0.12				11	44
30	74580	10	<0.2	1.91	5	20	5	3.05	<1	19	48	129	3.32	<10	0.69	311	<1	0.06	11 1800	12	<5	<20	26	0.10	<10	44	<10	9	41

9-Sep-05

45

54

74595

74604

10

20

<0.2

< 0.2

1.92

1.54

20 35

<5 200

10 4.00

<5 0.80

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2005-981A

Et #. Au(ppb) Ag AI% Bi Ca % Cđ CU Fe% La Mo % Μл Mo Na % Ni P Pb Sb Sn Sr Ti% U v w Y Tag # As Ba Co Cr Ζn 74581 17 <10 320 36 56 12 31 <5 <0.2 1.05 <5 35 5 1.48 <1 84 135 3.41 0.83 2 0.07 35 1000 B <5 <20 0.17 <10 <10 44 74582 32 <0.2 1.36 <5 35 10 3.25 <1 27 48 219 4.60 <10 0.70 409 7 0.05 14 2280 <5 <20 59 0.11 <10 59 <10 13 59 5 -14 33 74583 5 <0.2 1.55 <5 15 10 3.03 <1 25 42 238 4.93 <10 1.06 496 3 0.02 14 2170 12 <5 <20 36 0.10 <10 71 <10 12 70 34 74584 15 <0.2 1.29 10 15 10 2.35 <1 14 69 79 3.93 <10 1.04 532 24 1250 10 <5 <20 0.09 <10 68 <10 12 32 4 0.02 40 17 1780 35 74585 5 <0.2 1.36 <5 20 5 2.41 <1 19 57 110 3.46 <10 0.69 364 6 0.04 10 <5 <20 25 0.12 <10 47 <10 11 37 36 74586 5 <0.2 1.43 <5 25 5 2.31 <1 15 -39 115 2.52 <10 0.47 276 6 0.06 16 1960 10 <5 <20 24 0.12 <10 53 <10 12 34 37 74587 5 <0.2 1.27 <5 20 2.04 <1 9 51 64 2.02 <10 0.56 306 35 0.05 17 1750 6 <5 <5 <20 25 0.11 <10 56 <10 11 21 38 74588 10 < 0.2 1.00 5 20 5 3.37 <1 12 29 126 2.37 <10 0.66 349 5 0.04 12 1270 8 <5 <20 119 0.07 <10 51 <10 9 40 74589 1.53 306 39 5 <0.2 <5 35 5 1.82 <1 16 36 115 3.37 <10 0.86 5 0.05 15 1620 10 <5 <20 33 0.18 <10 75 <10 14 41 40 74590 45 <0.2 1.53 -5 20 10 2.64 <1 13 40 132 3.84 10 1.32 585 6 0.02 21 1530 10 <5 <20 60 0.17 <10 102 <10 19 49 41 74591 5 <0.2 1.41 <5 60 1.53 <1 23 38 128 2.81 <10 0.92 425 0.06 39 1230 45 -5 1 6 <5 <20 104 0.17 <10 70 <10 12 42 74592 5 < 0.2 1.88 <5 35 10 2.43 <1 34 24 329 4,46 10 1.04 398 3 0.05 16 2630 10 <5 <20 40 0.18 <10 97 <10 13 80 43 74593 5 <0.2 1.24 <5 40 <5 1.61 <1 17 32 73 2.18 <10 0.84 259 3 0.08 27 1580 6 <5 <20 49 0.19 <10 76 <10 12 28 74594 18 317 5 0.05 44 10 <0.2 1.17 10 35 <5 2.58 <1 26 155 2.06 10 0.48 5 1420 8 <5 <20 85 0.07 <10 29 <10 12 46 33 30 183 653 34 1640 74595 1.95 20 10 3.91 <1 4.52 <10 1.93 0.07 12 <5 45 5 < 0.2 35 4 <20 104 0.25 <10 154 <10 11 59 46 74596 35 <0.2 1.05 5 40 5 3.22 <1 21 42 99 2.73 <10 1.03 598 2 0.04 37 950 8 <5 <20 89 0.14 <10 74 <10 15 55 47 74597 10 <0.2 1.41 <5 45 5 2.09 <1 26 26 163 3.09 <10 1.00 378 1 0.07 27 1750 10 <5 <20 62 0.17 <10 96 <10 11 59 48 74598 45 <0.2 1.30 <5 70 10 2.72 <1 39 35 497 4,96 <10 1.52 460 3 0.04 38 1750 12 <5 <20 164 0.23 <10 133 <10 11 126 49 74599 5 < 0,2 1.33 <5 105 5 1.24 <1 24 61 168 3.07 <10 1.30 437 2 0.04 80 640 10 <5 <20 124 0.20 10 99 <10 12 74 2 0.04 50 74600 <0.2 1.05 40 5 1.49 <1 18 57 77 2.23 <10 0.90 386 52 880 6 <6 <20 52 0.14 <10 56 <10 11 37 5 <5 2.25 <10 0.88 420 0.07 27 770 38 <5 <20 0.16 <10 47 <10 42 74601 5 <0.2 1.20 <5 55 1.37 <1 16 61 84 <1 47 11 51 -5 73 73 600 10 <20 52 74602 5 < 0.2 1.50 <5 160 10 0.79 <1 20 2.76 <10 1.45 844 <1 0.05 64 <5 50 0.19 <10 70 <10 14 67 <1 16 74 101 2.96 <10 1.62 963 <1 0.04 51 550 10 <5 <20 24 0.19 <10 63 <10 14 53 74603 <0.2 1.48 <5 190 10 0.54 73 -5 931 67 530 10 66 <10 54 74604 5 <0.2 1.52 <5 195 5 0.83 <1 22 85 48 2.17 <10 1.37 <1 0.07 <5 <20 77 0.19 <10 16 65 74605 <5 150 0.98 15 68 103 3.51 10 1.62 2567 <1 0.07 46 1220 12 <5 <20 45 0.21 <10 64 <10 27 101 55 < 0.2 1.74 10 <1 5 56 74606 27 100 <10 490 <1 0.06 41 1200 10 <5 <20 0.20 <10 79 <10 12 52 5 <0.2 1.64 <5 40 10 1.97 <1 48 3.01 1.19 55 57 74607 5 <0.2 1.18 <5 35 10 1.57 <1 30 42 130 3.51 10 0.89 291 <1 0.06 37 1790 8 <5 <20 32 0.19 <10 84 <10 17 44 33 34 257 0.58 314 9 0.04 27 2010 10 <5 <20 28 0.14 <10 55 <10 13 68 58 74608 95 <0.2 1.15 <5 20 10 2.81 <1 3.23 10 QC/DATA: Resplit: 13 1750 5 < 0.2 1.22 25 <5 2.44 <1 20 50 197 3,19 <10 0.72 287 10 0.07 12 <5 <20 35 0.11 <10 49 <10 11 -59 1 74551 <5 25 21 36 147 2.96 10 0.61 359 6 0.05 16 2420 10 <5 <20 25 0.13 <10 52 <10 14 43 36 74586 5 <0.2 1.50 <5 10 2.49 <1 Repeat: 235 <10 0.65 293 11 0.04 15 1670 10 <5 <20 38 0.11 <10 50 <10 11 68 74551 5 < 0.2 1.01 <5 30 <5 2.32 <1 22 46 3.06 1 29 244 10 < 0.01 18 2020 5 <20 54 0.16 <10 52 <10 18 93 0.55 5 2.55 <1 62 342 3.96 <10 0.46 14 74560 5 < 0.2 <5 35 10 16 33 169 <10 0.78 489 0.05 11 2520 12 <5 <20 63 0.11 <10 68 <10 10 58 19 74569 10 <0.2 1.70 <5 20 <5 4.25 <1 3.08 6 331 15 2310 10 25 50 13 43 18 35 121 2.57 <10 0.58 6 0.06 <5 <20 0.13 <10 <10 74586 <0.2 1.49 <5 30 5 2.39 <1 36 5

YANKEE HAT INDUSTRIES CORPORATION

<10

<10

1.97

1.35

661

933

0.07

4

<1 0.07

34 1570

65 540

12

10

<5 <20 108

5 <20

0.24

0.18 <10

76

10 154 <10

65 <10

11 59

16 62

33

22

31

84

179

49 2.16

4.66

<1

<1

9-Sep-05

CO TECH LAB	ORATORY L	TD.					ICP CE	RTIFIC	ΑΤΕ Ο	F ANA	LYSIS	5 AK 2	005-98	1A						YANK	EE H	AT IN	DUS	TRIES	CORI	POR/	ATION	I	
Et #. Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	<u>P</u>	Pb	Sb	Sn	Sr	<u>Tì %</u>	<u> </u>	<u>v</u>	w	Y	<u>Zn</u>
tandard:																													
XF41	795																												
vXF41	815																												
-EO'05		1.5	1.44	60	125	10	1.79	<1	18	60	84	4.04	<10	1.00	716	<1	0.01	30	790	22	5	<20	54	0.10	<10	70	<10	11	75
EO'05		1.6	1.65	65	150	10	1.77	<1	22	57	87	3.87	<10	1.16	858	<1	0.02	31	900	20	5	<20	52	0.12	<10	72	<10	10	76

3/bw/ga /n981 LS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer ---

.

,

.

10 17 17

a a stad of a second

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

	- 1	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAME	PLING
MAIN UNITS	GL	SUB UNITS				FROM	ТО	NUMBER
-14:65 Overburden Till with froctured Edrock below 13:5m	0 0	0-14.65 Overburden, Till with fractured bedrock and bariolers below 13.50m Maioly Maszadiacite and sillstone						
16.7		· · · · · · · · · · · · · · · · · · ·						
1.65-23.75 Ionzodiorite. Medium Ine grained. Fresh to	ł	14.65-21.25 Patch, lexburs due to alteration Fail, accordant Sy small angular maglic xensitits to loom.	20-60 CA CAR V/H+P	Patien we Hearing	Tr. 27, fine ult Ry 1010 for verns to lon 50° CA (2730) Tr. fine	17.00	18:50	74551
eaky alt. Spotty 20. agnetic. Local small agric renoliths	+ /+	Patch, for grained dissen Po brog 21-25-22.62 the grained, strong cart alt absurge texperson	care all we fracking	sulf des below 20-30 Petrosive Mis corb	Partucal small agrees Balow 20.3m 1-24 fine dersam Py 176 Po	12:50 20:25 21:25	20.25	74552 74553 74554
3.75-25.80 Hornblende rphyry. Local megacysta ght to medicin grays		13-15-25-15 Water fine aphynitic. 13-15-25-20 Top fine aphynitic. Magocastic Ald below below beak - mbaelote magnetic	cht utte variable ander Local yo'ld Cam falming Parties bleaching at top	Antony bleaching abor 250 front Controllad	2.34 vary fine to fine the second with the 1-34 fine deriven the to characteristic to the to characteristic to the to characteristic to the transferrer to the	22.62	23.75	74555
5.80-38-12 Monzodianta id-fine grained. Faitly esh. Scott wk membras	\$/]	25:80-28:89 for general description sharp coolact with HP dyke. 28:84-38:12 Fairly fresh with	weak-mad battle - fracting 20-00 CA	Oxidation elerg fractives for al pakty weak bleaching	und ry cubic By Tr. fine deman By			
cal mafii xenolitus 2cm.	+	good divite textices focol any los papei x envitte to Zem.	(an voidet dessity	cathe with higher	Tr fire dimen by			
	•		<u>C4 Cort locat C41.</u>					
12-41-28 siltstone Denfals. Fine grained up	1	latter brands and light glays, fine grained spatty magnetic	Competi @ 10-10-60	Kattley Distar	Variable 1-5% mainly	38.12	_ <u>39:12</u> _ 40.12	74556 74557

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R. Welk DATE August 5th, 2005.

The second second second

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DDH NO. FR-038		<u> </u>					GE NO. 2
	LITHOLOGY		ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS G	SUB UNITS		J		FROM	TO	NUMBER
Pakty bleaching and dk brown biofle co	R	with associated Heart chicarb + fine sulfider vits mainly 35-40°CA	J	P. 1-4% 7 to tr-14.	40.12	11.00	74558
ak brown biords ig		VIA Mainly 35-40'CA			41-28		74.559
	Think in a firm and finale "	· · · · · · · · · · · · · · · · · · ·		E 3 1/4 0 0 1	41.28-	- 46.0>4	- 14-531
41.28 -50.66	I hight greys, fine grained to aphania	the second second	CMU 49 311 18 42.6		<u>+</u>	<u></u> <u></u> <u></u>	
Hornblende (Augite)	ground mare with subed rad blot			42.65m. 1-37.	<u> </u>	┨╾╌╌╴╶┥	
Porphyry Dyke . Local 1	Stocal augite phenousets to lem_	Wits 30-60 CA Mary	coch and blocking	Below space suffici	¢	┫──────┤	
semi-crowded magacytic	Many are bleached falt. Top has	with wh bloached	······································	facal fine magnetite		┟ − ┦	
	few phennerst, Possibly moved with	ewelgees	4	Cont .	· —	┨─────┤	
50.66- 51.88 Biolike 1				string magnetite conc	50.60	51.60	74560
Hornfels Inclusion	Alt 53 to 4265 spotty magnetic Fine grained party biotic and beauting for in concluded H6-11. Porch physics for in concluded H6-11. Porch physics for in concluded H6-11. Porch physics for grained opposite grainski As at 41.20 lacale, semi-concluded enhadral h61 opposite ffine grass Light gilly, fine grained and	3rch	paring blacking	1-4 % find that we have	51:60	53.40	74561
5188- 54-50 Altered 11,	black along vage bortuges, lacally	Fine chi x carte witz	Belmo 53.40 patring		r	55.40	7.4562
Feldspor-Hornblende Porp	forty cool ded H6-PI. Porph prensks	ant 53.400 below	carb, above bleaching	mainly low angles CA	55.40		74 563
TASS AS Heatlands	A at the a local forming of the	marily card;	Blogitin & SS.50	T. 55.50 2.5% utly		58.36	74564
54-50-57:45 Hornbland	advantage that again it this again	CA froutures with P.	/		-26-20	1	
(Augite) Porphyry	ting the the second of the second	Will at the massive bee		Belacilacol Pa to 14.	A 9 71	CO 75	74.565
57.45- 60.78 Sillceaus XI	Light grey, fine grouned and	Strong freedors _	Silicous + Honesod	1-4-6 Petringfine		59.70	
Siltstone Hornfels 60///	- regaly success = che reg	clevege 30°CA	porting at cure top	times & fraction Py	_\$9.70	<u> 60.78</u>	74566
60-78-62.30 Hornblende 00	Grey fine ground with up to					━・・── ╉	
(Augita) Porphyry	- To enhadral hb/ Congitet phenos	40-70 CA Low angle Ch	local with blocking	Local Tr Py	63.09	64.09	74567
		higherongle Sit ults.			64.09	65.54	74568
(2.20- (140 Dirat - 1/	· · · · · · · · · · · · · · · · · · ·				65.54	66.84	74569
62.30-63.40 Diente - "	Cound magadiacite textures b	Carte vite to 65.400	Mainly vit related	Trazy VIt Pa	66.94	68.25	74570
Manzodiorite. Grey. +1	65. yoor , Belac pakky bleacher	lawords CA. Belan	deich commen cad	to 65.400 Below		69.40	74571
Med. grained . forty	aberiles bertaines South march	MAIR MURRING CONS	dK. Chi with	1-47 vit ly local			
equigranular Local	abscules textures. Spatty megast	dkchl(uph lim)	Head is Local	Pa Te fin Ca			
Consular mapie senstiting	where less altered	and supplices have anythe	Weathing . Local		-		
(1-10-72-25 Hornblende //	As at 60.78. Fine grained purph wider place to arrogadiants Potch dk boun biabte mite fractile controlled blacking. fg. 76.30-75.60 and Drawn-manon HP	Foirly Massive Local	With countered		- 1	- 1	
(Augita) Porphyry	a wran place or storgedient	and fine Ulls.		-	70.05	3	745 70
72.25 -74.30 Blot. Horale 2	Lattle controlled block in the	Tregitar fracting	Poting fine dk birt	To Line Py Non .	72.25	- 4-20-	74572
74.30-78.86 Monzediorite	74-30-75-60 Med Drawn-marson HP	and wit blocking	and bleathing	Magnety		_ 4_	
Dyke with hol-argete -	+ 75-60 -77-00 Equigranular Mad g. MI		Morron HP May the	space sulpales			
Porphyry burder phases ?.	77.00-78.86 Med bown-de wan He	┠────┤	Actoritic VIE CATE	about 77.00 m. Bela	77.70	78-86	.745.73
78.86-85-40		·	(or loves)	1-34 vite Ry, lo	78.56	-80-06	74574
mixed bracciated ,	See Below.					<u>i</u>	

LOGGED BY: R. .. Welly

DATE: August 6, 2005.

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

.....

DH NO. FR-038				·				GE NO. 3
	L	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	GL	SUB UNITS				FROM	то	NUMBER
go go	25	Bassisted whit , maron hereful	Brecciated -asyle	Patchy bist alt.	Patchy Tr-5%	80.00	81.38	74575
	5	parphyny as above. Brown bis tile	prew mon sittedom		Hm duisen ly	81.38	82.90	745.26
	X	alteration, loose blooching . Coarse .				\$2.90	84.44	24577
	14	hol phanayste, fice gaucedoars .	· · · · · · · · · · · · · · · · · · ·	fragment ulated	often with carb.	84.46	85.40	74578
5.40 - 18.04 Dionte-	HI.	nedurin aminad wife alt first	AND A POUL 20-40 CA	with melated carb.	TT Py in mossing. Alt	85.40	86.50	74579
diante med or.	1/2	grained sections varied textures grained sections varied textures similar to practice boug as HP	corbuils in all section	Bist alt frags .	Tr- 5% fon dissen Py	86.5A	55.04	74580
pryodionite. Med. gr. x mognatic 04 - 89.13 Biot Bx40	5	probable SS-Biolite Hornfels	Biot rich anotal frog	- 00	TT- 5% for disen Py Generale, TI-2% fine By along fraction	58.04	\$7.13	74581
lorn/els	F .	med ground with 75% anyther major xenality to 10cm		vit recoted carb				
12-910 MUA20 0LION CC		Allociated with main Mi at the		vits and patch,		91.00	92.50	74582
0-92.50 Mixed MD What HP Braccia	1	Biblioted with mainly MD at top. mored downwards monged wate	Sch male massive below	WM pervosive costo	Py. Patch, Po locally 5%			
50-95.05 Monzo diante	+		with Potch sulfide vite	mainly vile related	1-2 fm disen by	94.00	95.05	74583
	F.	inthe local fine HP paking magnitu			Him frontine of	95.05	96.55	74584
	20	Fragment and matrix supported	Reccipted with	vit related carb		91.55		74585
-05 -100-30 13/2 cuared	20	Francis Annad anaulas intering	And a America HP	1. the Charles	had a wife sand	98.05	99.50	74586
nit. Monzuctoonte fin	18	Bressia Mixed angular intrusive	interests Mine	to and a to	In a lin P	<u>99-50</u>	100-30	7458
o and Bist. HF 100	12	programments with 5-16% biat Hf frags marine is fine ground HP? wie maga	carly ultr.	7	/ <u> </u>	10030	1 1	7458
	174				1-101 bucher and			
	17	Faitly use form. Muse small_	With and was by 200	Carbord Hosching	the last			
ed grained equigranula	1⁺+	mafic xecolds and Heached and	to 1020 Dornly 40 CA	alla las	Ling			
		alterned at the	GECA lawer carbon	Page the built be to		105.27	107.00	74589
5.27-108.48 Biofite 6.	1	Brown fine ground bistite HE	Go CA Lower contract. Foirty massive local frist rengular carb	Permosive buit herate	, To fine diesen Po		108:41	74594
infels cut by narrow #	'Y	fire grained dyke.	Vits vites	procession	Local high angle CA	_/\$7.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Inderde Porphyny Dyke	たる			164 104 0 1 0 1 0	Creater, Trace	111.84	113.25	74591
8-48-113-25 Coarse no	47/	Faitly uniform with fire	hacal fine carb	VE related chi	kin lok 1-2 to in			//
mblende (Augita) Pulphy	彩				nonvox section			
chedical phinocrysts -	In	gross balance 112.000	micofractured /	Bistite + siliceous			1	
green maroun grass	F	Light grey bown cherty	Bleaching	towners i sitter	R	11491	116.41	74592
4.91-117.50 Fine	1.			Marial with rolate	Troza fin demes			
ronzodiorite - HP	17	Fine local and graved Variably		Mainly VIT related		118.20	119.100	74692
7.50-120.30 Biot	1	altored local 2-4mm hbl + augure?	Some Cargar Vern	Certs (Antela 1-24 Line			
Sil. Hornfels cut by Agric Mr dyke 12	1	48.20-119.20 Norrow Regaragety	Goch dyke fricked	Sil But HF	diven R. Po uni		i	
ABROW TO DESTA	ol 4/	the agen chang istory sin right	LANGER IN	I	confocts			

LOGGED BY: R. Welz

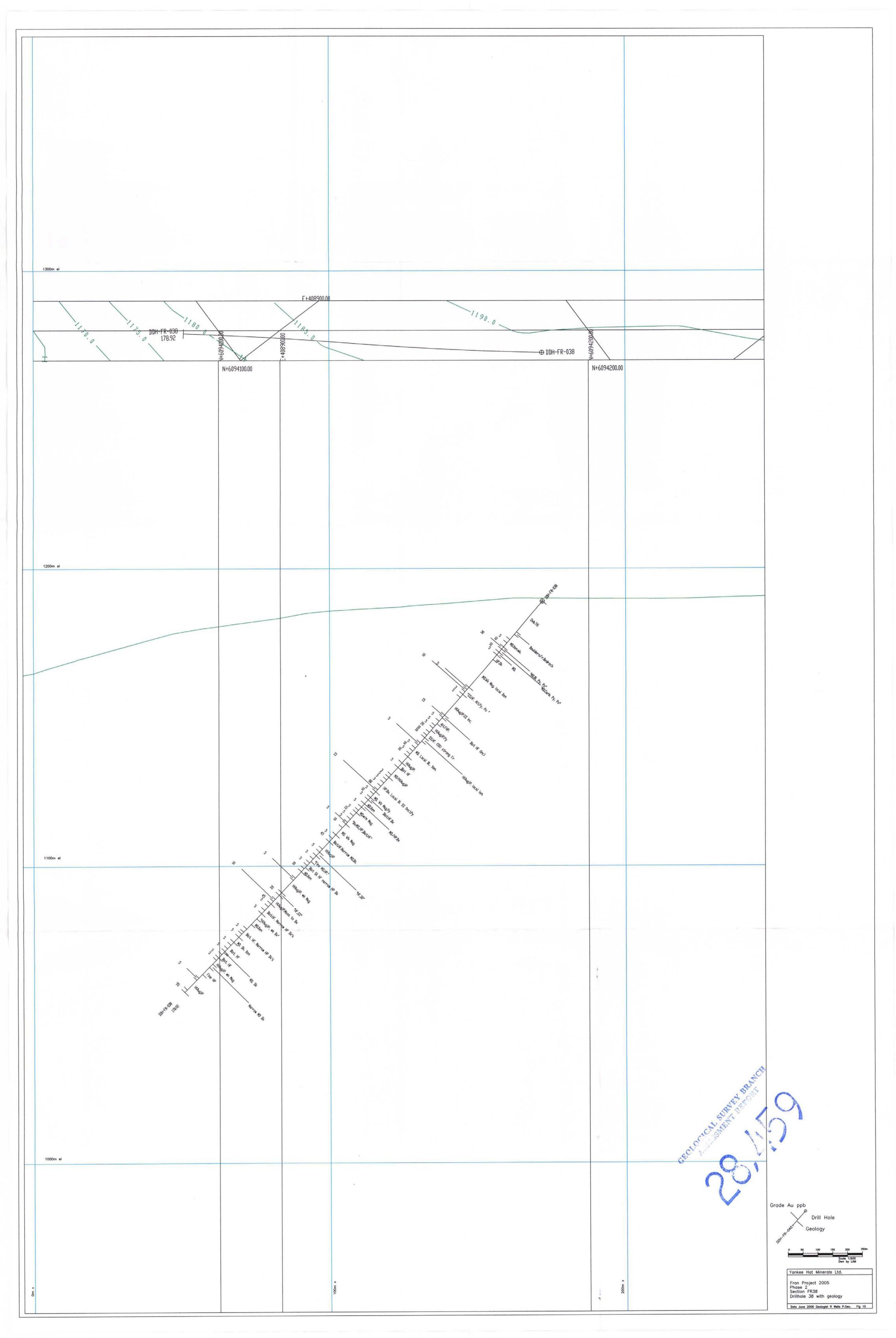
DATE hight 6th 2005.

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DDH NO. FR-038			······	· · · · · · · · · · · · · · · · · · ·			PA	GE NO. 4
	_	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS C	GL	SUB UNITS	· · · · · · · · · · · · · · · · · · ·			FROM	TO	NUMBER
120.30-122.28 Manudiante	. 7	Medium grained variable weak alt	Fine chi, cash with	VIE related black	1-2% fine wit Py/ P	120.90	122.28	
with small make xenolity .	2	lacat subounded maffie xenalites to Zen	Variable angles al212 17 m h Sch Lorch	Touth of mears uns	27 fin desiens Dy in gc, Tr Po, Cpy		<u></u>	
22.28-132.0 Hornblende		Dark enhedre hos phesocoph to.	· · ·	Mainly vit related		12528	126.28	74595
Augite Porphyry		1. Scm (S-10%) in light - med			Py, Po Spoth, 1-24			• ·
		green-grey grundhars . Spotty with			cluster of Po, Py			
	7	magnetic. Short sections of fine	60CA		To Can Comin leaded			
	+	play porphysy above 1/2500	Numanut microvit	Siliceon . We bist	Te-14 fire ult.			
32.0-133.24 600 lornfals, Siltshane 600		cherty -silicears	of carb local lamin very to local Totca	local cht. vits	Py very spotty.	132.0	133.24	74596
33-24-137-25		3-54 evhed cal phenocyst to los		with restanced chi	Is-24 VIE fine Py	135.10	136.10	74 997
ornblande - Augite		fine grag-greenish menon groups	194-45-137-25.	t corb	Is-2% vit fine by local Pa, Ti Cpy	136.10	137-25	74598
erahun II	Ń	freet ground for phenos below 136				137.25	138.60	-74599
3 3 4 4 4 4 4 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6	• - I'	Fin alound not house high HE	Nuce much and a rule	Pervosive boun	TI fine ult Py			
lorafels with norrow 140		Alocon fin poised Mbl. Parph dytes 14050-140.80, 141.47-141.80 for yound sparse had prevat Greenist grey - moreon fine gr. g mass 2-54 subed mt. phanoungets	with local bleaching	bistite , ult related		_ 140.30	141.80	7.4600
10 dykes	4	140-50-140-80", 141.47-141.80	local corb vitt.	bleaching - code				
41.80 - 144.17 Hombkade		Gelenist grey-mornin fine ge	Local WK g. mass	ult pelated card	TI- 1% fine xHP			
Augite Porphyny Dike	·/	g mass 2- 24 expedicat pharougets	breen a her law/mod		······································			<u> </u>
14.17-14483	/#	generous a-sman local HE-lachestory	dension fire core xin	VIE Celoted Chi	TI- 1% fine xIt By			
nonzodionte 30/	-1-	Specklad medifin grained, Angulas HF xenslike & LOCA	Chi. C Ach With	ca/b	V			
	オ	HF Xenslitte & loca	Run Ritzika	Recencia Arit	To In 1: 140			
16:03-152.93 Biolia	4	Brown, fire grained biolite HF	And the start	il Handler	Tr. 12 fine vit Py		10. 0	
comple with normerso	1	bleached fractures. Norman HP dytes 446.28-147.15; 148.50-449.06	intervate laced Br.	toking bleaching		149.06	150:56	
1P°dykes 7	·	Fine-med ground counded find			To line P.	151.1.4	162.92	74607
52.93-155.36	/ 🗗	alreinstance meeting lical amilas	NATTER VILL Challes	vit related chil.	To fine Py			74602
Mongodiorite by Razo	,中	Alogiaclase perphysy local angular XEARLITE Bist HE.	1's S. to sorallal					
		Gilly to mid bown , fici grained		Myest Carb	TI Line P.	155.36	156.76	74603
		uniform, local bleaching and may		ult bleaching	TI fine Po			74603
	·//	Fing - ned grained. Angular HE	Sparse kin CH:	- 1		158.40	159.70	74604
970-160-21 magadiona Dyka 160 7		Fine-med grained. Angular HE Xenolities to Ben	vlts.	vit selatad	To find Py			

LOGGED BY: R. bieles DATE: August 7", 2006


FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

160-21-162.71 165 X. frai ground, fairly uniform, biable and density fra vit lewayie biable. Tr-19, fie vit le, 161.15 162.71 74603 Biotike Hurrfals 162-71-65:55 16 Poph 162-71-65:55 16 Poph 162-71-65:55 16 Poph 165:55 167-10 Norrows 165:55 - 100 Norrows 100 Noro	DDH NO. FR-038							PA	GE NO. 5
160-21-162-71 Biobits Hurrfalt Sibits Hurrfalt 162-71-155-55 Hornblende Land bleaching along frakture 162-71-155-55 Hornblende Langibe Popt. 162-71-155-55 Hornblende Langibe Popt. 170-64-178-92 Hornblende Chugitz) 170-64-178-92 Hornblende Chugitz) 170-64-178-92 170-64-178-92 170-64-178-92 170-64-178-92 170-64-178-92 170-64-178-92 170-64-178-92 170-75 178-93 178-94 178-94 178-94 178-94 178-95 178-95 178-95 17		-		STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	
160-27-162-71 Biotite Hurrfals 162-71-165-75 Harnblende Angite Paper 162-71-165-75 Harnblende Chugitz 162-71-165-75 Hornblende Chugitz 162-71-165-75 Hornblende Chugitz 162-71-165-75 Hornblende Chugitz 17-17-75-178-92 17-17-75-178-92 17-17-75-178-92 17-17-75-178-92 17-17-75-178-92 17-17-75-178-92 17-17-75-178-92 17-17-75-178-92 17-17-75-178-92 17-17-75-178-92 17-17-75-178-92 17-17-75-178-92 17-17-75-178-92 17-17-75-178-92 17-17-75-178-92 17-17-75-178-92 17-17-75-178-92 10-178-75 10-17-75-178-92 10-178-75 10-10-178-75 10-10-178-75 10-10-178-75 10-10-178-75 10-10-10-10-10-10-10-10-10-10-10-10-10-1		GL	SUB UNITS				FROM	то	NUMBER
Biolica party and the sections along particles local bleaching local bleaching to the first of the section of t	160-21-162-71	∫XX⁄ ·	fine ground, fairly uniform, bis hite	and density fine with	Peruonia biatite	TC-14 fin vit Pa,	161.15	162.71	74605
162.71-65.55 Hornblende Angile Pagel. " Fine gravial enorma with 2027 Foilly Mossive vit colated Tr fine P. Pa evhalted. Angile Pagel. " evhalted. Alcon Land for carb vitt blended at top. (Cpy) vite buarded is 55 - 167-10 vormas manyadionite Dyke subper . 165.55 - 167-10 vormas manyadionite Dyke subper . 167.10 - 170.44 Fine Hornblende Porphysine 15.55 - 167.42 vormas 167.10 - 170.44 Fine 167.10 - 170.44 Fine 170.44 - 178.92 Hornblende (Augitz) Hornblende (Augitz) Porphys coorse pleno costs. 10.2000 - 170.44 Fine 10.2000 - 170.44 Fine 10.2000 - 170.44 Fine 10.2000 - 170.44 Fine 170.44 - 178.92 170.44 - 178.92 170.44 - 178.92 170.44 - 178.92 170.44 - 178.92 170.44 - 178.92 170.44 - 178.92 170.50 - 170.44 Fine 170.75 Inite 170.75 Inite 170.75 Inite 170.75 Inite 170.75 Inite 170.75 Inite 170.75 Inite 170.75 Inite 170.75 Inite 170.75 Inite 170.76 Inite 170.75 Inite 17	Biolita Horofale	<u> </u>	with weat bleaching along past wee	Local bleaching	local bleaching	R.		163.80	74.606
Monster Augile Proph. // enhalted. planacych h len locat fre carb sellt bleached at top. (Cpy) utt hwaryten 300th we more retuined and internetite h teores party on the any angles ca 165.55 - 187.10 Journes	162-71-65.55	1.1				TT fine P. Pa	L		
105-55 - 167-10 Norrows 165-55 - 167-10 Norrows 165-55 - 167-10 Norrows 167-10 - 170-44 Fine 167-10 - 170-44 Fine 167-10 - 170-44 Fine 167-10 - 170-44 Fine 167-10 - 170-44 Fine 105-10 - 170-10 - 170-10 - 170-10 - 170-10 - 170-10 - 170-10 - 170-10 - 170-10	Morable ade Augite Poph.	ŀ//	enhalted phenocych to los Local.	per carb selte	pleached at top.	(CAY) utto buayles		[]	
Manyodiorite Byte subjer. V. Eine ground and grey-marcon Local 40-50 CA Local with Glearbing Local first la 167.10-170.44 Fine Hornblende Perphysysse, Joint Kur. phonos Gording/fabric: Wit related chi, and agregates. Tr. 167.10-178.92 Hornblende Chugitz) Porphysy coorse plenocrypt. 100.44-178.92 Hornblende Chugitz) Porphysy coorse plenocrypt. 100.44-178.92 Hornblende Chugitz) Porphysy coorse plenocrypt. 100.44-178.92 Hornblende Chugitz) Porphysy coorse plenocrypt. 100.44-178.92 Hornblende Chugitz) Porphysy coorse plenocrypt. 100.44-178.92 Hornblende Chugitz) Porphysy coorse plenocrypt. 100.44-178.92 Porphysy coorse plenocrypt. 100.44-178.92 Porphysy coorse plenocrypt. 100.44-178.92 Porphysy coorse plenocrypt. 100.44-178.92 Porphysy coorse 100.44-178.92 Porphysy coorse 100.44-178.	145.55 - 167.10 Norrow	//		lan antes ca		<u>ca</u>	ļ	→	
170.44-178.92 Hurdelande (Augitz) Hurdelande (Augitz) Porphysy coorse plenocrypt. 128.92 Hurdelande (Augitz) Porphysy coorse plenocrypt. 128.92 Hurdelande (Augitz) Hurdelande (Augitz) Hu	Mangodiorite Dyke subger.	\mathbf{V}_{i}	Fire ground and grey - marcon	Local 40-50 CA	Local we bleasting.	love fire for			
170.44-178.92 Hurdelande (Augitz) Hurdelande (Augitz) Porphysy coorse plenocrypt. 128.92 Hurdelande (Augitz) Porphysy coorse plenocrypt. 128.92 Hurdelande (Augitz) Hurdelande (Augitz) Hu		$\left \cdot \right\rangle$	with sparse fine how phenes	bonding / fabrics	vit related chi, con	agregates. Tr			
170.44-178.92 Hornblande (Augitz) Porphysy coorse plenocoget. 172.20 172.	Komblende Forphyline,	1	Cfini grained marginal phone)	Ausor chi, coch vilz				•·•	
Hurnblande (Augitz) Hurnblande (Augitz) Purphysy course plano copts. 128.92 128.92 Hurnblande (Augitz) 127.70 127.70 127.70 128.92 127.75 128.92	:	Γ,	- S-10% extended phenocypts upto		vit related, local	Generally To ly lo			
Hurnblande (Augitz) Hurnblande (Augitz) Purphys course planocoph. 128.92 128.92 Hurnblande (Augitz) Hurnblande (Augitz) Hurnbla	170.44-178.97	<u>\</u>	1.7 cm in mad. grey, fin grained	minis fine code	blacking sharper	increasing to 1-2%	172.20	1.23.20	74607
Perphysy coarse playeelase memplesurgets frentrue sulfide freshere & 177.75 178.92 74601		• /	beally deached gourdmass	and cht. VIS	Hearthing believe -	with blocking		+	
phenocoph.		$\langle \cdot \rangle$	Conded sections 1-2000						
/28.94	Porphyny coorse	1	plagioclase me aptenverysty		fracture sulfide	fracture R. 1-24. Py	177.75	178-92	
	preno cojeti .	1.	Non negection	<u> </u>					
Image: Series of the series	1.	-				· · · · ·		· +	
	• 04						<u> </u>	——-+	
					·		+		
			·			··· · · ···	╶╴┈━╸╌╂		
					_ _				
							↓		
				<u></u>		<u> </u>			

LOGGED BY Raw Wells

DATE August 7th 2005

DDH: FR-039

-

į

.

and the second
1

R. C. Wells P.Geo, Kamloops Geological Services Ltd.

Hole ID:	DDH. FR-039
Project:	FRAN
Property:	FRAN
Claim:	
Easting:	10408881E
Northing:	6094237N
Elevation:	1202m
Grid:	8881E 4237N
Length (m):	107.29
Dip:	-45
Azimuth (grid):	336
Started:	6/8/2005
Finished:	8/8/2005
Hole Status:	Finished
Material left in hole:	None
Comments:	Sulfide veins at low angle to CA, possible down-dip
Core Size:	NQ
Logged By:	R. Wells
Purpose:	To test massive sulfide vein showing on road

.

DDH.FR-039 Surveys

1.4 In the second se

HOLE ID	Depth (m)	Dip	Azimuth (grid)
DDH. FR-039	0	-45	336
DDH. FR-039	100	-44.2	332

DDH.FR-039 Geology

HOLEID	From	To	Unit Code	From	To	Sub Unit	Veins, Vits	Alteration	% Py	% Po	Сру %
DDH FR-039	0	6.1	0/0	-		Ovb					l
DDH.FR-039	6.1	41.25	MD.wk.mgt.Minor Xen.	6.1	11.28	MD.mod Ft	Local fine Qtz Vits	Wk VIt related	None		
DDH.FR-039				11.28	18.48	MD.Fresh	Minor Qtz, Carb, Chl	Vit. Related Epid and Oxid spots	TT .		
DDH.FR-039				18.48	19.8	MD.Strong BI,Sil. Alt	Irregular BI patches. QV to 1cm	Sil, local Epid patches	None		
DDH FR-039				19.8	28.72	MD.Fresh	Carb Vits local Epid Chi & Sil bands	Mainly Vit related, Sil bands to 3cm	1 to 2		
DDH FR-039				28.72	29,33	Chi.Carb Alt	45 contacts	Strong Chi,m/s Carb	1 Cubic		
DDH.FR-039				29.33	41.25	MD Fresh, sparse Xen	W/m Chl, Carb, Epid Vits	Walkock Epid. Chl	Tr, local 1 to 2		[
DDH.FR-039	41.25	46.8	FZ.MD.8x	41.25	46.8	FZ.MD.Bx	Fault Bx 20 to 30 contacts	Strong Chi, Carb local Cy	Tr to 1		
DDH FR-039	46.8	52.35	MD.Wk Epid,Ser?	46.8	52.35	ND.Wk Epid,Ser?	Local Carb, Chi Vits Ser?	Wk pervasive Epid/Carb	Tr to 1		
DDH.FR-039	52,35	58.95	MD.Chi Alt	52.35	58 95	MD.Chi Alt	Carb. Vits Vns. Lamin with Py	W/m Carb, Chl, local Epid patches	Tr to 3		Tr
DDH FR-039	58.95	75.78	MD Fresh minor Alt	58,95	75.78	MD.Fresh minor Ait	Local Carb Vits	Tr py rare Vits	1 to 2		
DDH.FR-039	75.78	78.8	Alt. Dk	75.78	78.8	Alt. Dk	W/m Fr, Carb Vits	Vit and weak patchy Carb dissem Py	Tr		i
DDH.FR-039	78.8	101.42	MD patchy Xen	78.8	83.65	MD	Local Carb Vits/Vns	Vit related	1 to 2 fine		
DDH.FR-039				83.65	86.07	MD.Chl,Carb Alt	Alt Vns,Bands with Py local Cpy	Mod.pervasive Chl, wk Carb	2 to 20		Tr
DDH.FR-039				86.07	89.9	MD Fresh, 1 to 2% Xen	Carb Vits minor Py	Vit related	Tr to 3	_	
DDH FR-039				89.9	91	MD.Alt	W/m fine Carb Vits	Wk Chi,Carb	Tr to 1		
DDH FR-039		t –		91	94.09	MD.Fresh 1 to 2% Xen	Minor Carb	Wk Vit related	Trfine		
DDH FR-039		† ·		94.09	101.42	MD Fresh, Sulfide Vris	Subparallel Py,Po Vns to 1cm	Narrow Chi Wallrocks	Tr to 7	Tr to 2	Ťŗ
DDH FR-039		101.42			101,42	EOH					

. . .

5

ł

:' •

i

DDH.FR-039 Assay

and the second
.....

From	То	Sample No	Length	Au g/t metallic	Au g/t	Au ppb	Ag ppm	Cu ppm	Zn ppm	
18.48	19.80	74651	1.32			10	0.5	65	21	
19.80	21.30	74652	1.50			5	<0.2	39	24	
24.20	25.70	74653	1.50			10	<0.2	59	32	
28.72	29.33	74654	0.61			25	0.2	83	53	
29.68	30.68	74655	1.00			5	<0.2	42	30	-
33.80	34.80	74656	1.00			5	<0.2			
34.80	36.00	74657	1.20			<5	<0.2	28		
41.25	42.75	74658	1.50			20	0.4	462	121	
42.75	44.25	74659	1.50			15				
44.25	45.75	74660	1.50			45	<0.2		44	
45.75	46.80	74661	1.05			5	<0.2			
47.45	48.45	74662	1.00			5	<0.2	15		
52.35	54.00	74663	1.65			5	<0.2	20		
54.00	55.50	74664	1.50			10	<0.2	104	41	
55.50	57.00	74665	1.50			45	0.2			
57.00	58.00	74666	1.00			40	<0.2	201		
58.00	58.95	74667	0.95		•	15	. <0.2	154	49	
58.95	59,95	74668	1.00			15	<0.2	212	58	
59.95	61.00	74669	1.05			5	<0.2	140		
61.00	62.00	74670	1.00		•	30				
62.00	63.44	74671	1.44			15	<0.2	197	61	
69.75	70.20	74672	0.45			285				
78.33	79.33	74673	1.00	•		15	<0.2	61	46	
81.38	82.50	74674	1.12			15	<0.2	41	29	
82.50	83.65	74675	1.15			5	<0.2	21	20	
83.65	85.00	74676	1.35	•		25	0.4	566	135	
85.00	86.07	74677	1.07			50	0.4	397		
1	Duplicate	74678				45	0.4	382	87	
86.07	87.20	74679	1.13			10		293	84	
87.20	89.04	74680	1.84			25	0.2		80	- ·
89.04	89.90	74681	0.86			5	0.6	788		
89.90	91.00	74682	1.10			30			206	
94.09	96.00	74683	1.91			15				
96.00	98.45	74684	2.45			5				
98.45	99.37	74685	0.92			50	2.5	1414	330	
99.37	100.93	74686	1.56			<5				
100.93	101.42	74687	0.49			10	<0.2	236	5 71	-

1

9-S€

ECO TECH LABORATORY LTD. 10041 Dailas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 2005-981B

YANKEE HAT INDUSTRIES CORPORATION 4460 Atlee Avenue

۰.

.

Burnaby, BC V5G 3R6

ATTENTION: Donald Gee

No. of samples received: 36 Sample type: Core Project #: FRAN Shipment #: n/a Samples submitted by: Ron Wells

<u> </u>	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ní	P	РЬ	Sb	Sn	Sr	Ti %	<u>U</u>	v	w	Y	<u>Zn</u>
59	74651	10	0.5	1.50	<5	25	<5	2.20	~ <1	4	21	65	0.82	<10	0.23	167	1	0.06	2	340	8	<5	<20	20	0.08	<10	15	<10	3	21
60	74652	5	<0.2	1,73	<5	55	- 5	2.22	<1	8	33	39	2.64	10	0.69	467	<1	0.05	7	1790	8	<5	<20	51	0.07	<10	58	<10	13	24
61	74653	10	<0.2	1.80	<5	65	10	2.99	<1	13	27	59	3.65	10	1.08	723	<1	0.03	8	1810	10	<5	<20	63	0.06	<10	67	<10	16	32
62	74654	25	0.2	1.15	15	70	10	4.08	<1	15	24	83	3.78	10	0.79	909	<1	0.01	4	2020	8	<5	<20	66	<0.01	<10	29	<10	25	53
63	74655	5	<0.2	1.98	<5	40	10	2.54	<1	13	28	42	4.36	10	1.26	793	<1	0.04	10	1960	12	<5	<20	44	0.08	<10	83	<10	16	30
64	74656	5	<0.2	2.06	<5	220	5	2.24	<1	9	24	23	2.82	10	0.74	442	<1	0.06	8	1950	10	<5	<20	255	0.07	<10	65	<10	14	17
65	74657	<5	<0.2	1.80	<5	220	10	2.24	<1	9	19	28	2.84	10	0.78	459	<1	0.05	7	1930	8	<5	<20	222	0.07	<10	64	<10	14	16
66	74658	20	0.4	0.82	25	125	10	2.96	<1	14	33	462	4.35	20	0.90	687	18	< 0.01	4	2040	8	<5	<20	29	< 0.01	<10	32	<10	21	121
67	74659	15	<0.2	1.35	30	40	10	4,48	<1	14	32	72	4.82	20	0.69	1043	5	<0.01	2	1990	8	<5	<20	27	< 0.01	<10	17	<10	24	37
68	74660	45	<0.2	1.05	35	35	10	3.57	<1	13	34	95	3.89	10	0.90	939	2	<0.01	2	1850	8	<5	<20	36	<0.01	<10	16	<10	22	44
69	74661	5	<0.2	1.56	10	100	10	3.69	<1	13	27	10	4.35	20	0.65	814	<1	0.05	5	2100	8	<5	<20	103	<0.01	<10	47	<10	22	26
70	74662	5	<0.2	1.35	<5	200	10	4.30	<1	12	24	15	4.06	20	0.98	1038	<1	0.05		2050	8	<5	<20	199	0.01	<10	63	<10	26	26
71	74663	5	<0.2	0.89	10	80	5	4.04	<1	8	24	20	3.57	10	0.75	853	<1	0.03		1420	6	<5	<20	165	< 0.01	<10	27	<10	17	22
72	74664	10	<0.2	1.00	15	70	10	2.73	<1	14	28	104	4.15	10	0.70	604	2	0.02	4	1530	8	<5	<20	71	<0.01	<10	28	<10	21	41
73	74665	45	0.2	0.60	25	30	10	2.65	<1	34	53	541	5.47	30	0.75	763	82	<0.01	7	1310	12	<5	<20	57	0.02	<10	68	<10	17	124
74	74666	40	<0.2	0.92	<5	30	10	2.23	<1	34	30	201	4.68	10	0.76	496	7	0.04	10	1320	8	<5	<20	62	0.06	<10	83	<10	19	55
75	74667	15	<0.2	0.92	<5	25	10	2.71	<1	20	32	154	4.77	<10	0.88	613	3	0.02	7	1280	8	<5	<20	97	<0.01	<10	62	<10	18	49
76	74668	15	<0.2	0.96	<5	30	10	1.57	<1	20	25	212	3.98	10	0.82	425	2	0.03	9	1400	10	<5	<20	29	0.07	<10	78	<10	15	58
77	74669	5	<0.2	0.89	<5	30	5	1.97	<1	12	21	140	2.44	10	0.60	355	2	0.04	8	1400	8	<5	<20	32	0.08	<10	61	<10	14	50
78	74670	30	<0.2	0.93	5	40	10	3.25	<1	24	26	182	3.73	<10	0.77	566	4	0.01	7	1250	8	<5	<20	107	0.04	<10	61	<10	16	52
79	74671	15	<0.2	0.85	10	20	10	2.06	<1	15	22	197	2.76	10	0.69	385	3	0.04	9	1470	8	<5	<20	37	0.08	<10	68	<10	16	61
80	74672	285	<0.2	1.55	<5	40	5	2,75	<1	11	22	56	3.26	<10	0.71	475	<1	0.03	9	1530	10	<5	<20	53	0.07	<10	71	<10	10	26
81	74673	15	<0.2	1.68	5	25	10	4.23	<1	14	26	61	4.66	<10	1.27	991	1	0.02	13	1800	12	<5	<20	260	< 0.01	<10	92	<10	17	46
82	74674	15	<0.2	1.90	10	25	10	3.62	<1	19	26	41	4.75	10	1.29	753	<1	0.02	16	1640	14	<5	<20	82	0.11	<10	110	<10	15	29
83	74675		<0.2	1.94	<5	30	10	3.14	<1	12	24	21	3.56	<10	0.97	566	5	0.03	13	1710	12	<5	<20	54	0.11	<10	93	<10	12	20
84	74676	25	0.4	0.75	35	25	40	2.83	<1	29	35	566	5.37	10	1.17	589	18	<0.01	14	1590	12	<5	<20	42	0.08	<10	104	<10	14	135
85	74677	50	0.4	1.03	55	15	45	2.49	<1	65	79	397	8.28	20	1.16	778	98	<0.01	12	1230	16	<5	<20	43	0.02	<10	116	10	15	90
86	74678	45	0.4	1.02	50	10	40	2.42	<1	63	79	382	8.26	10	1.15	769	88	<0.01	12	1160	16	<5	<20	41	0.02	<10	111	10	14	87
87	74679	10	0.3	0.76	15	20	10	2.28	<1	18	29	293	3.77	10	0.72	486	14	<0.01	9	1310	12	<5	<20	30	0.07	<10	81	<10	14	84
88	74680	25	0.2	0.81	<5	25	10	2.06	<1	14	20	284	2.64	10	0.62	371	5	0.01	8	1370	10	<5	<20	36	0.06	<10	65	<10	13	80

۵.	Sr.
-	· · ·

ECO TECH LABORATORY LTD.

YANKEE HAT INDUSTRIES CORPORATION

-

÷

•

i M

Et #.	Tag #	Au(ppb)	Ag	AI %	As	8a	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y.	Zn
89	74681	5	0.6	< 0.01	<5	25	<5	1.99	<1	13	26	788	3.00	10	0.74	413	9	<0.01	9	1350	10	<5	<20	36	0.07	<10	78	<10	13	177
90	74682	30	1,1	<0.01	30	20	25	3.90	<1	30	34	840	5.27	<10	1.17	702	7	<0.01	12	1280	14	<5	<20	205	0.04	<10	107	<10	18	206
91	74683	15	2.6	<0.01	10	15	20	1.48	<1	47	40	1512	5.81	<10	0.94	476	2	<0.01	11	1300	16	<5	<20	22	0.07	<10	91	<10	12	349
92	74684	5	<0.2	1.44	<5	60	10	2.02	<1	11	27	44	3.31	10	0.55	354	2	0.06	12	1570	12	<5	<20	44	0.10	<10	95	<10	12	25
93	74685	50	2.5	<0.01	<5	5	70	0.83	<1	249	86	1414	>10	<10	1.00	540	1	<0.01	11	1430	22	<5	<20	22	0.06	20	89	40	8	330
94	74686	<5	<0.2	1.30	<5	50	10	1.91	<1	12	26	37	3.51	<10	0.47	319	<1	0.05	12	1780	12	<5	<20	37	80.0	<10	93	<10	9	20
95	74687	10	<0.2	1.63	10	20	20	2.08	<1	43	42	236	6.29	<10	1.11	591	<1	0.02	13	1830	18	<5	<20	31	0.07	10	98	<10	9	71
<u>QC/DA</u> Resplit 71		10	<0.2	0.77	10	70	10	4.39	<1	8	30	15	3.78	10	0.79	852	<1	0.02	2	1430	8	<5	<20	171	<0.01	<10	27	<10	17	28
Repeat	:																													
71	74663	5	<0.2	0.83	5	75	10	4.03	<1	8	24	18	3.55	10	0.74	827	<1	0.02	3	1430	6	<5	<20	166	<0.01	<10	26	<10	17	Z 2
80	74672	260	<0.2	1.45	<5	35	10	2.92	<1	11	25	52	3.43	<10	0.77	490	<1	0.03	9	1630	12	<5	<20	57	0.06	<10	72	<10	9	27
89	74681	10	0.7	<0.01	<5	25	10	1.98	<1	13	27	787	3.07	10	0.78	437	9	<0.01	9	1440	10	<5	<20	38	0.07	<10	82	<10	13	178
Standa	rd:																													
OXF41		790																												
GEO'05			1.6	1.65	65	150	<5	1.77	<1	22	59	87	3.87	<10	1.06	858	<1	0.02	31	900	20	<5	<20	52	0.11	<10	72	<10	10	76
GEO'05			1.5	1.58	50	145	<5	1.55	<1	20	58	86	3.33	<10	0.95	589	<1	0.02	29	680	20	<5	<20	53	0.10	<10	73	<10	9	72

JJ/bw/ga dl/n981 XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

.

DDH NO. FR-039			· · · · ·	<u> </u>			PA	GE NO. /
	<u> </u>	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMP	LING
MAIN UNITS	GL	SUB UNITS			·	FROM	то	NUMBER
- 6.10 Casing in	•	- Overburden and Rubbly-		· · · · · ·	i	L	<u> </u>	L
werburden, Rubby		bedosk. Overbuiden is sandy				<u> </u>	ļ	▙
bedrock below	ĥ	clay with pebbles	·	 .	k		<u>}</u>	L
	ア		·				·	↓
	风				·	ļ	ļ	<u>↓</u>
6410 - 41.25	+X	6.10-11-28 Maderate britter	Local fine gtz vits	Vit stated frosh	Non observed	.		[
Monzodiorite. Mad.	12	fracturing	vociate angles CA	host		<u> </u>		
rained fairly equingrai	10	· · · · · · · · · · · · · · · · · · ·			• • <u> </u>	 	.	<u>↓</u>
pockled white green	1.	11:28-18:48 Fresh with few makin	few norrow gtg-	with related local	Tr exidized sulfield	b	<u>↓</u>	 ,
potty weak myretic	.	Kenolittic Llocan.	'code and chi with	goot of epidate _	in cal vites			
27 Jine mafie xenoliks	4		30-40°CA	· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u>↓</u>	
-0 /		···	·	ļ			<u> </u>	·
	1						┨─────	
	4	18-118-10.00 Show bloaching-Sil flooding	Triege Car blearbard	Silica over printing	Att a constant	-18-48-	19.80	74651
20.	<u> </u>	19. 18-19.00 Show bloaching-sil flooding overpointing textures 19.80-28.72 Pairly freeh, med.	gtz veine fo Icm.	silica overomitre texturia, louit stall apid assimates cich	NO1 OBSETVEN	19.80	21.30	74652
	\mathbf{N}							
ak uth	+/	grained with sparse mapin	mainly fine carb		Generall, sparse			
gts vits My	1	- XRoolitto clan	Miner spid + chi	ate-cont local col	fine sulficter 1-2%	41		
.)	1.7	· · · · · · ·	Siliceous veins 1-2cm	Ifia. Local Epid	fine dimen Py with	X Q · EU	25.70	74653
	7+		60,04 1-1cm	alteration in wall	QC \$4.5-24.9. Fine			
	+	The second second second	21.0-21.15 30-60 CA 245 40°CA QC, Ry	nets 1-25m	Py with vit @ 24.6	24.72	29.33	74.654
carte,chi		28.72.29.73 Dark given fg. carb chi. alter alien	4000 4004 QC AS		10% fini denser	29.68	30.68	74655
3+ . Carb		19:33-41:25 Faill lisch med.	weak-mod ult	Mainly ult received	Cremerally trace			
VIL By, CAY	1 ⁻	provised with sease rolai	density. carb, chi.	local wallock	fire Py @ 24.82			
	+	xensitis Local small vegs	Epid. und. VIts	Epid, Chi.	no man costs v/k zich	32.50	34.80	746.56
vit qc Py	1,	1 1 1 1 to 72. 80 - 26.90	10-60 CA 17.00-36.90		with fire P. 1-2%	36.80		74657
2	+		with local vegs		TI Cp. 20.22			·
	E J		Local supported		10 CA - Corb (13) 4/H			 .
	*		Carb x14 38-5-40 5		with find Py gyliget			
• • •	+				/		İ.	· ·

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: Res. Gealle DATE Regest 7,8 2006

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DH NO. FR-039	<u> </u>		· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·			GE NO. 2
	· ·	ITHOLOGY		ALTERATION	MINERALIZATION		SAMPI	
MAIN UNITS	GL	SUB UNITS				FROM	TO	NUMBER
		· · · · · · · · · · · · · · · · · · ·		······································	· · · · · · · · · · · · · · · · · · ·	41.25	42:25	-74658
1.25-46.80 Fracture.	-11,	strong forcture-alteration game.	Earlt braccia with	storg chl. corb	TC-14 fine dimen	42.75	44:25	74659
oult Zone. Dark grey	15	fire grained chi-clay with carb	stop / fobrics 20- 30 ca	alteration local	By with all oralis	44.25	45.75	74660
a grained . Local Bx	55/	30000 Local good Dr. lextruer 0.460	s Lawer and satellity	clayor, fractures_	·	45.75	-46.80	
Layey, ch1carb alt.	1	- 4637. Nerrow MD interval	zone contacts 40'CA	— — — — — — — — — — — — — — — — — — —	Tryine dimen Ry			
		Fairly uniform water lacal fine	hocal norman 30-sic	Patelay WK. passasing	after with alt	47.45	48.45	74662
d. grained . Patring 50	14	mapi xesolitus	Calb-Chi. vita	epid and carb. Some	stranger secrecarb 479			
ente epid, sericite?	12			sericite	-usis it fine dissom P.			
ut.	14					52.35	Sues_	74.663
35-58.95 Alberrad	14	Medium gray, and in gravised	Cast (gt) vein and	Patch, perussive	mainly below sum	50.00		74664
anyodiarite.		with fire carb and chi alt.	with ib-yoca. Local	upon carbonate and	2-3° / Ry (Ro) x1/2			-74665-
d'local chios	16	Local Heaching and Icm Mafi	laminated years	CLI Local small	vains local disses	\$7.00		74666
asking textures		xenalitis		epid potches Pakety			58.95	74667_
Ŭ	1		VIGT 15-30 CA	weak periosive end	TICO. 056.6m.		59.95	. 7.4668.
AC-75.78 60	23		V161 15-30 CA	· · ·			61.00	
8-95-75-78 60	1%	58.95-63.44 Transitional with above	Local 30-45-CA	Mainly Vilt	1-24 Pro vites to		62.00	74670
mzodiorite . Fairly	11		cort + gt + Py vite			62.00		74671
esh, med. grained	4	60.88-61.47		chi, epid alteration				
		63.64- 75.78 Flash Massive		Alteration @ 60.98				
teration patches	+	Monzodiosite, med.gr. equigranula						
		3 7 7 7 0	35 cf. Local 10-10C	Vit resolved card	Trove fine Pr			
	+		carbyth	mine chi.	Role Ry with 20'CA			
7.0						49.75	70.20	74672
c (9/3)			@ Tauge yes call					
(*)	+		(gtg) Vain TO'CA.					
	11		- / · ·					
	+		<u> </u>					
		Fine growted, and glay-glata waiform, non-mynatic Ruthy	win brittle facturing	VIt and weak	To fine dimon			
5.78-78-80 Altered	[+]	Usi form, Non-manatic Rubbly	a une are fine inequee	polich pervosue	R	↓		
yke	L - 1	_//////////////////////////////////////				78:33	79.53	74673
80-107.29 manzodiantiqu	, T	78.20-83.65 freeh-wk altered .	cardy vite y veins	mainly ult related	1-2% vit fire Py			

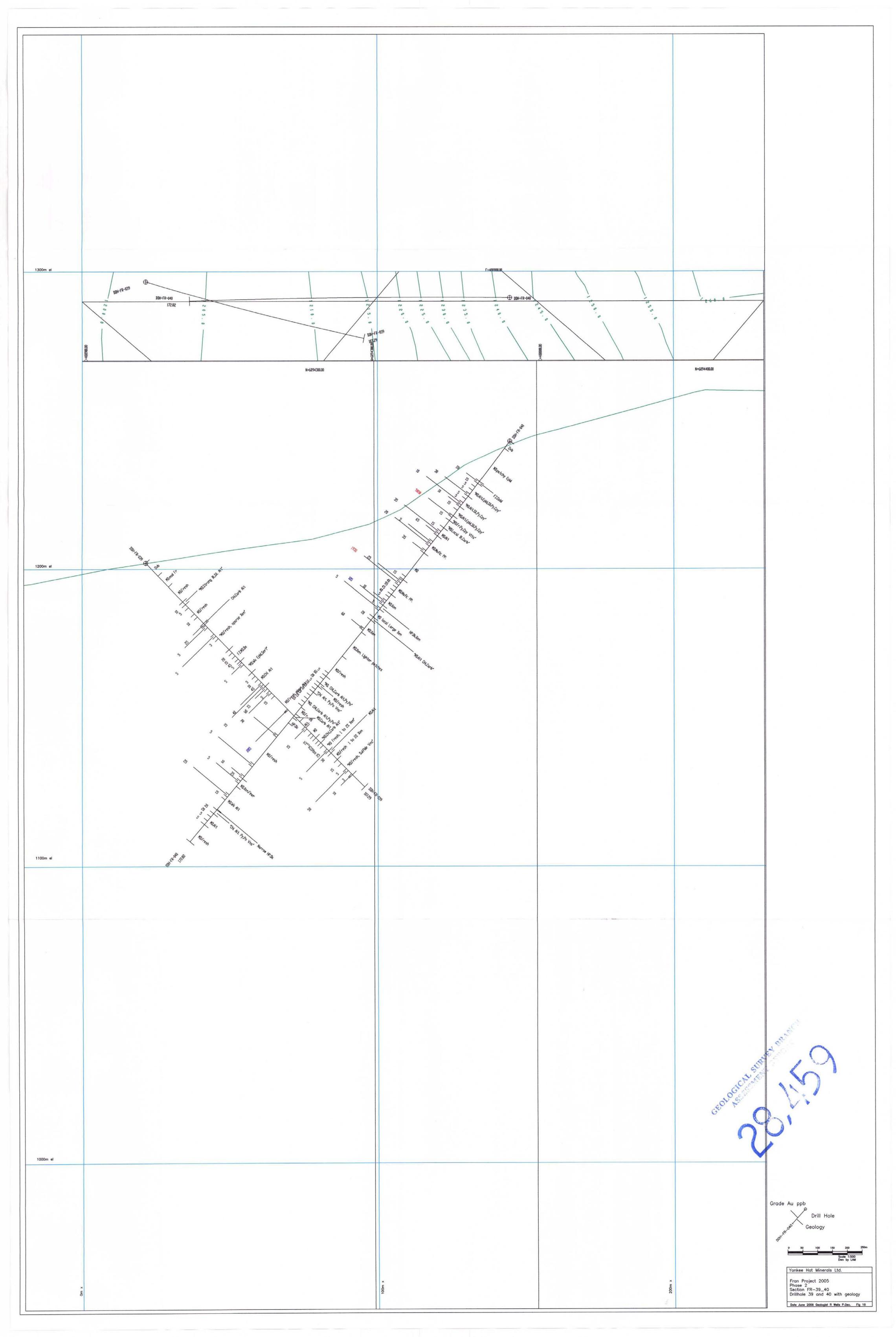
LOGGED BY: R. Wells DATE August 8th, 2005

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DH NO. FR-039	1	ITHOLOCY	CTRUCTURE			r		GE NO. 3
MAIN UNITS	GL	ITHOLOGY SUB UNITS	STRUCTURE	ALTERATION	MINERALIZATION		SAMPI	
					····	FROM	то	NUMBER
880-107-29 Monzodiona	17:		upto 2 cm voiable	call some chi	patches, vite 30 50 CA	. 81.38	82.50	74674
und growed . spackled	17		angles CA sure with.	· · · · · ·	patches, with 30 50 CA	\$2.50	87.65	74675
eent, gray . Local 1-3%	厅	83.45-86.07 Derkel greysforens	Py	· · · · · · · · · · · · · · · · · · ·		83.65	<u>85.</u> 00	74676
refic xenoliths to Jam	.//	chi carb alt and weining marking.	Sulfide veine and all	Patchy permine	2-20% fm. Py local	-15 m	\$6:07	.74677
bounded / Subangular		textures	bards 30-50 CA. Few	Mad chit. we carb	2-20% for Py local Tr Cay hainty in Veine 5-50ch stranged 85-12	8607	87.20	7.4679.
fered sections with	1%	-86-07-89.90 Failly flash with 2.3th	Minst Py and of	mainly vit recoted	Tr - 37 V/6 P 55:67	87.20	89-04	74.680
upide vains	12	molie xendittes to 3cm.	Carbvitz VAD-25 CA	cach	strungent at baphs 7m	59.04-	99.90	74681
v *•.	1	\$9.90-91.0 Med.grey, (docker) patchy	Variable w/m fine	Patchy with chi.	Tr- 14 fine break	\$5.90	91.00	74682
	• •	91. 0-94.09 Fairly forst 1-2% all	carb vils	carts, means ult relate	, Cubic Pg			
	+ +	1-2 cm submitted maker services	Miner carb vits 30		TI fie demon Py			
	<u>1</u>		and so CA		<i>v 3</i>	96.09	96:00	
Ry	+/	9409-101.42 Fresh with reveral	subporallel to 15 cA	VIE related chi.	Semi-mossive fac.	16:00	98.45	74684
.,	1	shallow angles CA suffide veins	sulfide verns to los	to lon holors	Py, significant Ps	98.45	99.37	74685
	5	associated some chloriti	Q 94 - 96 - 96 - 98 45		in lower veine	19.37	100 93	74686
Pz, Po 100	4	alteration haloes	-9937; 100.93-101.42			1070-97	101.42	74687
Py, A								
		101.412 - 107.29 Ac general						
	+	description			Duplicate	8500	86.07	74677
	4							
	+						F	
-		107-29 604						
-								
							T	
						1		
		· · · · · · · · · · · · · · · · · · ·						
						t		
						fr		

LOGGED BY Receivells DATE & August 2005


DDH: FR-040

. . .

ļ

• • • • • •

R. C. Wells P.Geo, Kamloops Geological Services Ltd.

DDH.FR-040 CoverPage

Hole ID:	DDH. FR-040
Project:	FRAN
Property:	FRAN
Claim:	
Easting:	10408805E
Northing:	6094334N
Elevation:	1243m
Grid:	8805E/4334N
Length (m):	172.82
Dip:	-53
Azimuth (grid):	140
Started:	8/8/2005
Finished:	10/8/2005
Hole Status:	finished
Material left in hole:	none
Comments:	Hit sulfide veins at better angles than DDH-039
Core Size:	NQ
Logged By:	R. Wells
Purpose:	Testing road showing from north side

ĥ

•

and the second second second second second second second second second second second second second second second

- **1997** - 1997

1 m m

ı.

HOLE ID	Depth (m)	Dip	Azimuth (grid)
DDH. FR-040	0	-53	140
DDH. FR-040	80	-51.1	139
DDH. FR-040	170	-49.9	137.7

5

i _ ____

DDH.FR-040 Geology

HOLE ID	From	To	Unit Code	From	To	Sub Unit	Veins, Vits	Alteration	<u>% Py</u>	% Po	Сру %
DDH FR-040	0	3.05	Óvb	0	3.05	Ovb					
DDH FR-040	3.05	40.2	MD.Tr to 2% Xen	3.05	16.88	MD patchy Epid	Mod Fr. Oxid. Carb Vits	Epid patches and bands	T		
DOH FR-040				16.68	17.8	FZ.Oxid	Broken, Strong Oxid.	Oxid			
DDH.FR-040				17.8	23.27	MD.Alt.Epid,Sil.Py,Cpy	W/m Fr Oxid Mod Vits Epid Sil	Wallrock Epid to Sil, Epid vits	1 to 5		Tr to 1
DDH FR 040						[Py,Cpy Vits				
DDH.FR-040			· · · · · · · · ·	23.27	27.77	MD Alt Sil, Py Cpy	Local Otz, Carb, Py Vns Oxid	W/m Epid haloes	1 to 5		Tr to 1
DDH.FR-040				27,77	31.6	MD.Alt.Epid.Sil.Py,Cpy	Mod Epid, Sil Vite	Vit related Epid. Local Oxid			L
DDH.FR-040				31.6	33.7	MD.Fr.Py,Cpy Vits	Fr, Sulf.Vits	Oxid,Sil	2 to 3		17
DDH.FR-040				33.7	36.8	MD Local BI, Carb	Carb minor Qtz Vils	W/m Carb, minor Chl, Epid	1T		
DDH.FR-040				36.6	40.2	MO.Att	Minor fine Carb, Epid	W/m patchy Carb local Epid	1 to 2	17	<u> </u>
DDH FR-040	40.2	47.57	MD.Mafic PP.	40.2	47.57	MD Mafic PP.	massive few vits @47.3 Py, Po, Cpy Vn	Local Epid Vit, abund Carb Vits below	Tr to 2	17	ी
DDH.FR-040	47.57	69.95	MD, mafic phases	47.57	59	MD	Epid Vits/bands, Carb Vits	Band Epid,Carb	Tr to 2		17
DDH FR 040				59	65.33	MD. Mafic PP.	Minor Carb Epid Chl Vits, Local Py	Vit related Chi,Carb bands	Tr to 2		17
DDH FR-040				65.33	69.95	MD.Xen	Fine Carb.local Chl, Epid, Py	Chi and, or Epid bands	1 to 3		Tr
DDH.FR-040	69.95	71.69	HP Dk Xen	69.95	71.69	HP. Dk. Xen	Epid, Carb Vite Py blebs to 1cm	W/m pervasive Epid	Tr		
DDH FR-040	71.69	104.95	MD. local Alt	71.69	75.1	MD local Large Xen	Few Carb, Chi Vits	Vit related local Py	2 to 3		Tr
DDH.FR-040				75.1	76.4	MD Alt Chi Carb	M/s Fr, narrow FZ with Chi	Chi, w/m pervesive Carb	Tr to 1		1
DDH.FR-040			· · · · · · · · · · · · · · · · · · ·	76.4	81.52	MD.Xen	Minor Carb local Py	Vit related Chi, Carb	Tr to 5		
DDH FR-040				81.52	91.65	MD.Xen. Lighter patches	Fine Ep or Carb Vits	Vit related, narrow bands	11		
DDH FR-040				91.85	100.68	MD.Fresh	Massive, Carb local Py Vite	Vit related Carb	٦٢		
DDH FR-040				100.68	103,62	MD. CHI,Carb Alt, Py, Po	Qtz,Carb,Py,Po Vns	Dk Chl,Carb Alt with suff.	3 to 4	Tr to 1	Tr .
DDH FR-040				103.82	104.95	MD Fresh	Massive, Carb local Py Vits	Vit related Carb	Tr		
DDH.FR-040	104.95	114	Chi Alt Py, Po, Cpy Vns	104.95	107.5	Chi Alt. Py Po Vns	15% Po Py Vns assoc. Dk Ch!	Strong Dk Chl, Carb	5 to 7	3 to 4	Tr to 3
DDH FR-040				107.5	114	MD. CHI,Carb Alt, Py, Po	Otz, Carb, Py, Po Vns	Dk Chi,Carb Alt with suit.	2 to 5		Tr
DOH FR-040	114	118.5	MD.local Alt	114	116.9	MD.Ft.	Mod Fr.Abund Carb local Chil Cy	W/m pervasive Carb	Tr		
DDH FR 040				116.9	118.5	MD Carb Alt	W/m Carb Vite	W/m pervasive Carb	11		
DDH.FR-040	118.5	12.8	HP.DK	118.5	120.8	HP.Dk	Minor Carb	Pervasive Epid	1T		
DDH FR-040	120.8	158.5	MD.Local Xen	120.8	145.12	MD.Fresh	Massive, Local Carb, Epid, local Py Vils	Vit related Ch! Carb, Epid	Tr to 3		
DDH FR-040	120.0	100.0	into good your	145.12	148.44	MD.Xen.Finer	Massive, Py Vits, Chi	Vit related Chl, Epid	1 to 2		
DOH FR-040			·	148.44	158.5	MD.Wk Alt	Local Carb, Py Vita	Patchy Wk pervasive Carb, Chl	Tr to 2		nî -
DDH FR-040	158.5	158,75	Narrow HP.Dk	158.5	158.75	Narrow HP.Dk	massive	Wk pervasive Epid			
DDH.FR-040	158,75	165.29	MD.At.Py.Po.Vns	158.75	150.43	Chi Alt. Py Po Vrs	Carb, Chi, Py, Po, Cpy Vits, Vite	Pervasive Dk Chl	1 to 15	Tr to 7	Tr to 1
DDH.FR-040	100.10	100.20	110/200 F 1. 10 4 110	160.43	165,29	MD.Alt	Minor Sulf Vits Carb Chi	Vit related Chi,Carb	1 to 3		Tr_
DDH FR-040	165.29	172.62	MD. Fresh	165.29	172.82	MD.Fresh	Few Carb, Chi Vits	Vit related	٦T		
DDH.FR-040	100.25	172.82	HILD. (* 16611	100.20	172.82	EOH					

٠

-

Table

Å

DDH.FR-040 Assay

'n

HOLE ID	From	To	Sample No	Length	Au g/t metallic	Au g/t	Au ppb	Ag ppm	Cu ppm	Zn ppm
DDH.FR-40	16.88	17.80	74701	0.92			20	<0.2	155	63
DDH.FR-40	17.80	19.30	74702	1.50			15	<0.2	74	33
DDH.FR-40	19.30	20.80	74703	1.50			5	<0.2	54	30
DDH.FR-40	20.80	22.30	74704	1.50			5	<0.2	99	42
DDH.FR-40	22.30	23.27	74705	0.97		1	30	2.3	1868	415
DDH.FR-40	23.27	24.50	74706	1.23			5	<0.2	12	19
DDH.FR-40	24.50	26.00	74707	1.50		· · ·	5	0.2	211	68
DDH.FR-40	26.00	27.00	74708	1.00		+	10	0.9	865	199
DDH.FR-40	27.00	27.77	74709	0.77	<u>}</u>	<u> </u>	10	<0.2	103	39
DDH.FR-40	- 27.00	Std. A	74710	4	· · ·	··· •· • • • • • • • •	>1000	<0.2		3
DDH.FR-40	27.77	29.27	74711	1.50			15	<0.2	35	33
DDH.FR-40	31.60	32.30	74712	0.70	5.05	4.65	>1000	1.4	1116	52
DDH.FR-40	32.30	33.70	74713	1.40			15	<0.2	51	29
DDH.FR-40	36.80	38.30	74714	1.50			15	<0.2	18	17
DDH.FR-40	38.30	39.30	74715	1.00		<u> </u>	35	<0.2		25
DDH.FR-40	39.30	40.20	74716	0.90			65	0.2	178	57
DDH.FR-40	42.65	43.65	74717	1.00	· · · · ·	┼───	5	< 0.2		29
DDH.FR-40	43.65	44.65	74718	1.00	·	+	20	1.2		255
DDH.FR-40	46.57	47.57	74719	1.00	-		35	0.5		72
DDH.FR-40	57.70	58.90	74720	1.20			15	<0.2		
DDH.FR-40	59.40	60.40	74721	1.20	<u> </u>		25	<0.2	84	36
DDH.FR-40	60.40	61.40	74722	1.00	1.93	2.10	>1000	1.4	<u></u>	
DDH.FR-40	61.40	62.50	74723	1.10	1.30	+*· ·V	40	0.2		43
DDH.FR-40	62.50	63.90	74724	1.40		<u> </u>	95	<0.2	84	34
DDH.FR-40	63.90	65.33	74725	1.43			45	0.2		73
DDH.FR-40	65.33	66.50	74726	1.43	• •·· ·		40	2.6		26
DDH.FR-40	66.50	68.00	74727	1.50		<u> </u>	5	<0.2		26 32
DDH.FR-40	68.00	68.95	74728	0.95	· · · · · · · · · · · · · · · · · · ·		10			28
DDH.FR-40	68.95	69.95	74729	1.00		· ·	105	0.2		440
DDH.FR-40	69.95	71,24	74730	1.29			5			49
DDH.FR-40	71.24	72.24	74731	1.00		·· ·· ·	5			121
DDH.FR-40	75.10	76.40	74732	1.30		<u> </u>	20			
DDH.FR-40	80.00	80.66	74733	0.66			60			
DDH.FR-40	99.35	100.68	74734	1.33		1	5			
DDH.FR-40	100.68	102.00	74735	1.32		+ • • • • •	60			
DDH.FR-40	102.00	103.82	74736	1.82		<u>+</u>	20			
DDH.FR-40	103.82	104.95	74737	1.13			5			40
DDH.FR-40	104.95	106.36	74738	1.41		<u> </u>	20			
DDH.FR-40	106.36	107.50	74739	1.14	+ • • • • •	1	25			
DDH.FR-40		Dupl.	74733	····		1	30			742
DDH.FR-40		Std. C	74741			1	>1000			
DDH.FR-40	107.50	109.00	74742	1.50	<u> </u>	·†	70			
DDH.FR-40	109.00	110.50	74743	1.50	<u> </u>	+	20			
DDH FR-40	110.50	112.00	74744	1.50	- · · · · · · · · · · · · · · · · · · ·	+ ·	25			
DDH.FR-40	112.00	113.50	74745	1.50	ţ	+	15			59
DDH.FR-40	126.33	127.10	74746	0.77	<u>+</u>	1	50			
DDH.FR-40	139.00	140.00	74747	1.00	†		5			
DDH.FR-40	144.12	145.12	74748	1.00		1	10			
DDH.FR-40	145.12	146.20	74749	1.08	<u>+</u>	<u> </u>	25			
DDH.FR-40	146.20	147.20	74750	1.00	+	1	5			
DDH.FR-40	152.20	153.20	74751	1.00			25			
DDH.FR-40	153.20	154.40	74752	1.20	<u>† · · ·</u>	+ • • •	15			
DDH.FR-40	158.75	160.43	74753	1.68	· ·	<u> </u>	35			
DDH.FR-40	100/10	Dupl.	74754	1	+ ···	<u> </u>	30			
DDH.FR-40		Std. B	74755	l	· · ·		>1000			
DDH.FR-40	160.43	161.93	74756	1.50	+	+	20			
DDH.FR-40	161.93	163.68	74757	1.50	÷	+	20			
DDH.FR-40	163.68	165.29			<u> </u>		5			
UUN.FR-40	103.00	100.29	74758	1.61	<u> </u>		1 5	i 1.1	1422	307

1

16-S

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

.

Values in ppm unless otherwise reported

A

1

ICP CERTIFICATE OF ANALYSIS AK 2005-981C

YANKEE HAT MINERALS LTD. 4460 Atlee Avenue Burnaby, BC V5G 3R6 . .

.

ATTENTION: Donald Gee

No. of samples received: 58 Sample type: Core Project #: FRAN Shipment #: n/a Samples submitted by: Ron Wells

-- ---

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bł	Ca %	Cd	Co	Cr	Cu	Fe %	<u>م ا</u>	Mg %	Mn	Mo	Na %	Ni	P	РЬ	Sb	Sn	Sr	TI %	ບ	<u>v</u>	W	Y	Zn
96	74701	20		1.48	10	25	10	1.30	<1	14	26		4.33	<10	1.02	658	<1	0.02		1730	14	<5	<20	77	0.07	<10	109	<10	10	63
97	74702	15	<0.2		<5	30	10	1.52	<1		23	- 74		<10		331		0.04	-	1700	12	<5		50	···· +			<10	8	33
98	74703	5	<0.2		<5	30	10	1.85	<1	-	22	- 54	3.20	<10	0.49	321		0.04		1710	12	<5	<20	61	0.07	<10		<10	8	30
99	74704	5	<0.2		<5	15	15	2.08	<1	17	33	99	4.14	<10	0.95	414		0.02	-	1720	16	-	<20	30	0.08			<10	8	42
100	74705	30	2.3	<0.01	<5	40	10	1.29	<1	24	26	1888	3.69	<10	0.52	336	2	<0.01	10	1740	- 14	<5	<20	84	0.07	<10	85	<10	8	415
101	74706	5	<0.2	1 40	<5	25	10	2.01	<1	9	30	12	2.86	<10	0.40	287	~1	0.04	0	1730	10	<5	<20	88	0.08	<10	79	<10	A	19
102	74707	5		1.11	<5	40	15	1.71	<1	16	31	211		<10	-			0.03		1800	14	-	<20	49					ě	68
103	74708	10		<0.01	<5	25	15	1.29	<1	28	35	865	4.95	<10		332	-	<0.01	10		14	_	<20	57				<10	ġ	199
104	74709	10		1.39	<5	65	<5	1.76	<1	16	34	103			0.44	481			5	1990	28		<20		0.07			-	5	39
105	74710	>1000		0.14	<5	10	<5	0.17	<1		3	1		<10				0.08	-	430	6		<20		< 0.01			<10	3	3
				•				0.11			Ū	•			0.00		•••	0.00		100	•		-20	·			•		•	•
106	74711	/ 15	<0.2	1.15	10	70	<5	1.48	<1	10	33	35	3.34	<10	0.26	297	<1	0.04	5	1700	24	<5	<20	112	0.06	<10	90	<10	7	33
107	74712 v	>1000	1.4	1.35	10	70	<5	0.73	<1	61	27	1116	>10	<10	0.44	302	21	0.04	2	1250	30	<5	<20	34	0.07	<10	95	<10	<1	52
108	74713	15	<0.2	1.23	10	70	<5	1.35	<1	12	32	51	3.70	<10	0.36	352	<1	0.05	5	1540	28	<5	<20	81	0.08	<10	93	<10	8	29
109	74714	15	<0.2	1.14	<5	45	10	1.71	<1	8	22	18	2.79	<10	0.40	283	<1	0.03	8	1340	12	<5	<20	100	0.07	<10	74	<10	7	17
110	74715	35	<0.2	1.07	<5	25	10	1.50	<1	11	23	54	2.98	<10	0.53	360	<1	0.03	7	1190	12	<5	<20	68	0.06	<10	66	<10	6	25
111	74716	65		1.27	<5	20		1.93		18	27	-	4.28	<10		398		<0.01		1560	14		<20	59	0.08	. –		<10	8	57
112	74717	5		1.42	<5	45	10	2.64	•	13	22	40		<10	0.72			0.04		1790	14			90	0.08			<10	8	29
113	74718	20		0.87	20	40	15	2.32	1	19	26	341	3.90	<10	-	-		0.02		1700	76		<20	86	0.08	-		<10		255
114	74719	35		1,16	15	20	20	2.20	<1	39	33	213		<10	0.77			0.01		1710	16		<20	39	0.09			<10	8	72
115	74720	15	<0.2	1. 16	<5	20	15	2.58	<1	8	19	49	2.63	<10	0.58	376	<1	0.02	5	1720	12	<5	<20	57	0.08	<10	60	<10	6	27
116	74721	· 25	<0.2	1.14	<5	20	15	2.00	<1	13	21	84	3.44	<10	0.63	382	<1	0.02	6	1740	12	<5	<20	32	0.09	<10	69	<10	6	36
117	74722	√ >1000		<0.01	<5	35	. –	1.89	<1	12	22	1215			0.49			<0.01	-	1710	14	-	<20		0.09			<10	_	272
118	74723	40		0.98	<5	35	15	2.07	<1	13	20	129			0.58			0.02	-	1590	12		<20	46	0.09			<10	6	43
119	74724	95	<0.2		<5	35	15	2.07	<1	14	21	84	3.30		0.63		-	0.02	-	1490	12	_	<20		0.09		-	<10	7	34
120	74725	45	0.2	0.99	<5	30	15	2.05		17	23	201	3.70		0.69	385		0.02		1510	16	-	<20		0.11			<10	8	73
		- · •	0.2	0.00		•••		2.00		••		-•••			0.00		-		-						••••				-	
121	74726	40	2.6	1.23	<5	40	15	2.08	<1	13	24	23	3.57	<10	0.69	332	<1	0.03	10	1560	14	<5	<20	50	0.11	<10	92	<10	10	26
122	74727	5	<0.2	1.19	<5	30	15	2.08	<1	13	23	66	3.55	<10	0.70	338	2	0.03	10	1640	14	<5	<20	31	0.10	<10	90	<10	10	32
123	74728	10		1.02	<5	35	20	2.01	<1	11	20	48	3.07	<10	0.62	287	<1	0.03	9	1650	14	<5	<20	35	0.10	<10	77	<10	9	28
124	74729	105		<0.01	25	10	10	1.26	<1	50	33	1972	5.82	<10	0.64	338	1	<0.01	125	1580	20	<5	<20	43	0.08	<10	61	<10	8	440
125	74730	5		1.25	<5	20	<5	2.44	<1	14	21	71	2.40	<10	0.86	590	<1	0.06	10	1360	12	<5	<20	87	0.11	<10	72	<10	7	49
		-			-		•																							

. . .

-- -- --

- --

.

- --

16-Sep-05

•

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2005-981C

YANKEE HAT MINERALS LTD.

. .--

÷

.

1 2

Steel.

Et #	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
126	74731	5	0.5	1.14	<5	40	<5	2.24	-1	26	25	430	4.32	<10	0.95	566	2	0.01	30	1620	14	<5	<20	114	0.11	<10	92	<10	9	121
127	74732	20	0.2	1.89	15	45	10	4.56	<1	34	42	249	6.87	10	1.54	1072	2	<0.01	20	1630	14	<5	<20	92	0.04	<10	105	<10	17	77
128	74733	60	0.7	1.06	10	25	35	2.45	<1	45	29	370	5.54	10	0.99	649	- 4	0.02	24	1550	12	<5	<20	46	0.11	<10	109	<10	15	96
129	74734	5	<0.2	1.09	5	45	- 5	2.42	<1	19	- 34	292	4.99	10	1.11	680	19	0.05	19	1630	10	<5	<20	55	0.11	<10	113	<10	16	80
130	74735	60	1.3	0.68	40	10	40	2.30	<1	43	37	785	6.47	<10	0.84	543	7	<0.01	53	1740	16	<5	<20	23	0.06	<10	81	<10	11	196
131	74736	20	0.4		5	20	10	1.39	<1		22	255	3.66	<10	0.80	447	5	0.01	16	940	8	<5	<20	22	0.07	<10	79	<10	11	66
132	74737	5	<0.2		<5	20	<5	1.37	<1	9	14	137	2.56	<10	0.74	437	- 4	0.04	9	840	6	<5	<20	32	0.04	<10	73	<10	11	40
133	74738	20	0.4	0.74	10	25	10	2.08	<1		70	650	6.54	20	1.09	652	127	<0.01	40	1290	12	<5	<20	50		<10	100	<10	19	147
134	74739	25	1.6		10	5	20	0.87		103	90	3508	>10	10	1.34	585		<0.01	220	1190	24	<5	<20	28	0.02		118	10	- 14	742
135	74740	30	1.6	<0.01	10	<5	25	0.88	<1	104	99	3517	>10	10	1.32	589	20	⊲0.01	221	1140	22	<5	<20	30	0.01	<10	118	20	14	742
136	74741	>1000	19.1	0.17	<5	<5	5	0.12	<1	2	21	10	3.44	<10	0.04	104			2	350	120		<20	5	<0.01		1	<10	2	17
137	74742	70	0.6	1.48	105	15	10	2.06	<1	59	50	557	8.98	10	1.39	650		<0.01	36	1580	16	<5	<20	48	0.08	<10	120	<10	13	131
138	74743	20	<0.2		20	35	5	2.73	<1	25	32	147	5.80	10	1.40	648	- 5		11	1750	12	<5	<20	55	0.11		126	<10	13	48
139	74744	25	<0.2		15	30	<5	2.39	<1	30	34	196	5.85	<10	1.20	604	- 5		- 14	1800	12	<5	<20	45	0.12			<10	12	56
140	74745	15	<0.2	2.37	5	50	10	3.33	<1	22	31	198	5.75	10	1.40	849	5	0.02	15	1780	14	<5	<20	84	0.12	<10	121	<10	14	59
141	74746	50	<0.2		145	20	<5	7.39	<1	8	28	14	3.54	10	0.90	1003	<1	0.03	<1	1390	8	<5		488	<0.01	<10	61	<10	23	20
142	74747	5	<0.2	1.56	<5	45	<5	3.70	<1	10	29	29	3.07	10	0.65	619	1		2	1820	8	<5	<20	103	0.08	<10	79	<10	16	22
143	74748	10	<0.2	1.96	<5	30	<5	2.20	<1	10	38	123	3.51	10	0.75	582	2	0.07	8	1900	10	<5	<20	26	0.09	<10	78	<10	15	45
144	74749	25	1.0	0.58	20	20	10	1.85	<1	51	54	988	5.76	10	0.94	541	6	<0.01	62	1610	12	<5	<20	20	0.09	<10	83	<10	14	236
145	74750	5	0.3	1.07	<5	40	<5	1.80	<1	19	37	315	3.59	10	0.73	482	7	0.04	20	1720	8	<5	<20	27	0.11	<10	86	<10	17	79
146	74751	25	0.2		<5	45	<5	2.80	<1	23	51	520	4.64	10	0.87	816	7		34	1530	10	<5	<20	61	0.15	<10	92	<10	21	125
147	74752	15	0.6	0.24	<5	20	15	1.83	<1	19	32	797	3.56	<10	0.86	574	3	<0.01	62	1180	6	<5	<20	34	0.10	<10	81	<10		179
148	74753	35	0.6	0.52	<5	25	15	0.99	<1	73	65	856	9.67	30	D.84	463	-	<0.01	- 74	1230	10	<5	<20	21	0.07		72	20	-	185
149	74754	30	0.7	0.60	<5	30	15	1.04	<1	67	70	849	9.59	30	0.84	467	- 16	<0.01	71	1270	10	<5	<20	22	0.08	<10	76	20		178
150	74755	>1000	<0.2	0.18	<5	15	<5	0.13	<1	<1	2	2	0.32	<10	0.06	25	<1	0.11	1	400	<2	<5	<20	4	<0.01	<10	<1	<10	3	2
151	74756	20	<0.2	1.49	<5	45	<5	1.76	<1	11	32	109	3.15	10	0.69	484	7		9	1420	6	<5	<20	35	0.08	<10	65	<10	12	33
152	74757	5	<0.2	1.56	<5	50	<5	1.70	<1	7	24	23	2.30	10	0.49	379	2		2	1510	8	<5	<20	40	0.06	<10		<10	11	14
153	74758	5	1.1	<0.01	<5	65	<5	1.91	<1	22	33	1422	4.29	<10	0.82	567	2	<0.01	1 09	1400	8	<5	<20	49	0.04	<10	65	<10	12	307
OC/DATA																														
Resplit:	_																					_							_	
106	74711		<0.2	1.08	<5	40	10	1.52	<1	7	22	27	2.52	<10	0.33	260			7	1420	10	<5		116	0.06		-	<10	7	30
141	74746	50	<0.2	1.13	95	15	<5	5.51	<1	6	21	11	2.39	<10	0.63	727	<1	0.03	1	1010	6	<5	<20	346	<0.01	<10	42	<10	18	12
Repeat:																														
106	74711	15	<0.2	1.12	<5	45	15	1.64	<1	8	27	27	2.49	<10	0.34	277	<1	0.05	7	1360	12	<5	<20	132	0.07		65	<10	7	29
115	74720		0.2	1.11	<5	20	15	2.73	<1	9	19	47	2.72	<10	0.60	382	<1	0.02	- 4	1730	14	<5	<20	60	0.08	<10	61	<10	6	28

16-Sep-05

ECO TEC	CH LABO	RATORY L1	D.					ICP CEI	RTIFIC	ATE	OF A	NALYS	iis ak	2005-9	81C						YANK	EE H	AT MI	NER	ALS L	TD.				
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	L.	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	<u>w</u>	Y	Zn
124	74729	105	2.6	< 0.01	15	10	5	1.16	<1	49	23	2030	5.27	<10	0.56	323	<1	<0.01	128	1510	20	<5	<20	42	0.07	<10	58	<10	6	431
141	74746	55	<0.2	1.29	105	15	<5	6.51	<1	7	27	13	3.65	<10	0.83	969	<1	0.03	1	1300	6	<5	<20	449	<0.01	<10	58	<10	19	19
Standari OXF41	d:	765																												
GEO'05 GEO'05			1.6 1.5	1.58 1.60	50 55	145 145	<5 <5	1.52 1.51	<1 <1	18 17	60 57	86 87	3.63 3.67	<10 <10		687 667	<1 <1	0.02 0.02	30 29	720 730	20 22	<5 5	<20 <20	54 53	0.11 0.11	<10 <10	69 73		10 10	74 72

JJ/bw/ga df/n961 XLS/05

•

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer -

CERTIFICATE OF ASSAY AK 2005-981C

··· •.

1 ... ·*

YANKEE HAT MINERALS LIMITED 4460 Atlee Avenue Burnaby, BC

16-Sep-05

CHECK CONTRACTOR WAS AN ADVANCED BY A DATA OF A

- -

ATTENTION: Donald Gee

V5G 3R6

1

No. of samples received:58 Sample type: Core Project #:FRAN Shipment #: not indicated Samples submitted by: Ron Wells

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
QC DATA:				
Resplit:				
107	74712	4.65	0.136	
117	74722	2.10	0.061	
04				
Standard:		0.07		
SN106		8.27	0.241	

JJ/jj XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2005-981C

,

YANKEE HAT MINERALS LIMITED

4460 Atlee Avenue Burnaby, BC V5G 3R6

16-Sep-05

ATTENTION: Donald Gee

No. of samples received: 58 Sample type: Core Project #: FRAN Shipment #: not Indicated Samples submitted by: Ron Wells

		Metallic As	38Y	
		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
107	74712	5.05	0.147	
117	74722	1.93	0.056	
Standard:		8.25	0.244	
SN16		8.35	0.244	

JJ/bw XLS/05

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

· · · · · · · · · · · · · · · · · · ·		ITHOLOGY		ALTERATION	MINERALIZATION	1	SAMP	LING
MAIN UNITS	GL	SUB UNITS				FROM	TO	NUMBER
- 3.05 Casing in	¥	mangediorite]
fractured bedrock	い						1	1
05-40.20 Monzodiant		3:05-16:22 Ar somerce description	moderate bittle	Patch weak	Trace fine	1		T ·
rectiled grey-green	12	patchy epidole alteration	feactured with	pervative coidate		1	1	
induce annial with	1.5	Oridation along fractures haved	associated exidation		y	1	†	†
edium grained with	17	concentrations of subangular	Many fractures @	ackling to 20100				f
cal small make	+>	mafic readition upto 3cm.	30°CA. Epid. alt	vit associated	*		<u> </u>	<u>+</u> ··
enaliths Tr-2°6.	14		1° r	epidate 7 carbonate	· · · · · · · · · · · · · · · · · · ·	····	1	1
	1.7		with vite 20°CA Loco				†	f
	12		fine carts alte simile				+	t
	15		ayles CA		··		+	
	12		yes can			· · · · · ·	 	
	1~	11.98. 17:80 Highly oviding	Bates and exiding	axidation	a sidiand	16.88		
F2	1	16.98+ 17.80 Highly axidized			oxidized		17.8.	74701
	1.6	17.80-23.27 Disrile taxhire	were/mad battle	Mad. exidate halow		17.90	19.30	74702-
ot,	115					19.30	24.80	74703
	4%	overprised, fine epid-silica. VIC	fr. with exide him	to several an Association to several and contractions of the several second sec	- /	2.0-80	22.30	74744
CP3 VIS	2	Jacon with associat haloes	• • • • • • •	with give epicipil.		7 22.30	23.27	74705
VIS	1	exidized fractises	CAN BY - 60°CA LOCOP CAY, Py - 60°CA OX datan Marky	the shall be a	22.45.22.65 75-1% CPY	23.27	24.50	7.4 706
(P) + ++	1	23.27-28.77 Similar to above frush	or dation many	w/m epidate halves		24.50	26.00	74207
	1	exidized frostres. Epid man	AUSE AUGA VELAS foral	to come sulfide and	vate 2ch as would	2000	_27.en	74708.
	t	restricted to single verins	AVCOLD SO-GOCA	eaid- Carb Ulty Visi	upto Zen generally fin foiged + Fre By Tr-ICFy	-27.00	2777	74 74 9
	R	27-77-31-60 Very similar to 17-800 everyprinted starting by epid, sil with and all protein holders closely	ma vit density at	brad band of coid	oxiolized vitt.	27:27	29.27	747/1
<u>م</u>	2	with and alteration halies, closely	100 00 00 00 00 00 00 00	ALLAT NO. SIME		<u>5/0.4</u>		<u>7 % 7/ P</u>
_	L	space contracting	downwords	Oxid VIT	FINE/M/L(CPY) VAS Y Circle 37.85-39.15	31.40	32.30	74712
Py, Cpy	1	31.60-32.70 Mod. fractured with -	Fractures of yorishe	oxid everpriot	y dimen 3785-39.15	32.30	31.70	747/3
9/3 1/5		antoriafed exidence	O LA CA	Alte By Vn @ 31.900	Averey 2. 19 Tr Co	,		
	5	33.70-36.80 Patchy bleaching /	Few mey lor card	Patchen permasine inform carb alt mines the verte at mines	To fine dimen Af			
	2	carb alt ourpriching lextures	20°CA	Che vepid.		36.90	38.70	_74714
	1	10-50	FINCED T CU'U			38.30	<u>39:30.</u>	74715
	7	textules, stronger chamamerous.	ette A downtile		VIA 20-50 CA 1-2%	- 39-3 0 -	<u>_4</u>	
		·	local Py Cpy VIts.	epid ·	3, Tr Cong. Tr duning			

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

	LITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION	<u>r</u>	SAMP	GE NO. 2
MAIN UNITS					FROM	TO	NUMBER
-20-47-57 4+	Faith komageners MD. PP patch	Local Ho-Toch said	Small said ashi	1000 15-25 th	1	1	
ongodionte men	hight- md. aren Quite massive	V14 and potitus 0-50	with coloteal carb	A. Co with a 1122	1.2.65	43.65	74717
ne gravited similar	+ with dry why saarso to abreat	CA carb vits monenes	WIN ALCONIUS CAL	D P. C. Vais	1.2.65	44.65	í _
above . more main 3	Vacalite.	25-55 CA A VIA	PLA 45.7 - \$2.200	Automa Tr- 2º/ A.		- 44.63	74718
ting wanted Bri		42. H-42. 44 STICLAU	weak patches about	Te Paren	46.57	4257_	N219
the first. Variably 200 well PP + 3m Takes ve xen 11k;	E SOB UNITS Easily homogeness MD. le patro hight-mad. grey Quite mossive with free uls sporse to absent tonaliths						
-57-5900 5- +	* Faily conded and fine	opid vits and 1-8m		Generally trace			
ngodiorite as above	crowded plagioslass parph. MD	bands 45-tosA	related epid x	fine dimen Ry	L	_	
phier and more .	finite few variates and ze rolite	13-5 pat/m. Local_	Cor6.	TR- 24 fine diesen			
pical. mad be med-	+ ganerolly submunded	fine Corb x 1ts 30-45	· ·	By + Cpy within epile boad @ 58-37-58-44	f		
Pyices					57.70	<u>58.</u> Şa	74720
00-65-33 More "+	, meduin grey equigranular to	Generally few	ult related	2-5th fine Ry VIA	59.40	60.40	74721_
fic mongodionte ?	+ pp spatty massatic some darke			perfor 50-75-CA	60.40	61.40	74722
Hy negretic similar +	chi. carb alt. patches associ	40-70 CA. Local chi	chi corb hards	Local fire cpy.	61.40	62.50	74723
40.20	" with By ulty	bands with Py Vily	with Py vite	Average Te. 27 Pm	62.50	63.90	74724
•••		30-75 (7) -		71-603	63.90	65.33	74725
33-69.15 Mongodionte I d-groinad-Local	Fairly dark , And grained , rere	Few fine carb and	Chi and/or epid banks 5-20cm assoc	1-30% Pro vite through	£65.33	66.50	74726
ounded make a cont	mapie xanalithe and lorge 38cm		with by vits and vors	Some with TO CAY	66.50	(1.00	79 727
noliths Py Cont	Light green to grey find grained	Lacaf Shi Carb VI		Large verne to 2im	62.00	68.95	74728
	South hight latter, and manking	Local Chil. (atb xill with by vin Local Child - co ro + H	epid at wit cant	69-15-63.90, 20 x 20 CA	68.95	13.95	74.729 _
ornblende Porphyny	·				.69.95	71.2.4	<u>74210</u>
95-71.69 Fine ornblende Porphyry Byte 19-104.95 Muazodierik		Few chicars vits	ot top with By	To five dissen By Take By blebs to tem	71.24	72:23	74731
vigronular. Alt and f	71.69-75-10 men proved locat marie have the for some fine for 75-00-76-10 Light Storm gras fine growed care out all, pathod.				75.10	76.40	74732
ining mast taxtures 5	75.10-76.40 Light great - 9140 and fread	41/2 h 72.300	conscite compensation	2-3% Py (Coy) VIII			
the magnetic . Small	The second and the second and	Sada Chige ge FT	care winter and all	to 72.30 Spore before	_ {		·
nofre x enolithe +	16.40-81.52 As above foult	With the 72.200 And - Stray of a LE And Sada - Stray of a LE And Sada - Children FZ Ior angles of the Chil Why so as the Annual Can as (M, Lo Cal Sat A to your	# 78.93-7940-5-CA	THE GUILAN PS	↓	· ·	· · · · - ·
	for renolite,	WIT BO- BU' CA MIANT CAR	Coth alt gade	Sporte By to estable	<u>_</u>		

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

MAIN UNITS GL Ay // Ay // .	SUB UNITS 52-9185 As above with patch, ble coloured intervals with patch, ble coloured intervals with and to and rits. Fairly cossile with are metric realities 25-100-63 Fresh and massive drim grained. Local Sub-Em			MINERALIZATION	FROM 89:00	SAMPL TO 80-44	1NG NUMBER -74733
4 // 315 4 // 4 315 4 all 4 all 4 all 4	52-9185 Ar above with patchy hter coloured intervals with apid to and 18ths. Fairly mossive with arso metrix enalities 85-100-68 Fresh and massive	and,or carb vitz 42-50 CA. Lacal backer egid bands to gen	alt bards		80.00		
+ 115 + 215 + 215 + 215 + 215 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	hter coloured intervals with gold to and tits. Fairly possive with are metrix enalities 25-100-68 Fresh and massive	and,or carb vitz 42-50 CA. Lacal backer egid bands to gen	alt bards			80.46	
+ 315 + 34 + all + all + all + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	hter coloured intervals with gold to and tits. Fairly possive with are metrix enalities 25-100-68 Fresh and massive	and,or carb vitz 42-50 CA. Lacal backer egid bands to gen	alt bards				
+ all + all + spec + + + + + + +	hter coloured intervals with gold to and tits. Fairly possive with are metrix enalities 25-100-68 Fresh and massive	and,or carb vitz 42-50 CA. Lacal backer egid bands to gen	alt bards				
+ all + spoo + + + + + + - + - + - - - - - - - - -	t. and 11ths. Faith mossive with are metrine enalities	40-50°CA. Local bacase epid bands to gen	alt banda	· · · · · · · · · · · · · · · · · · ·			
40 + + + + + + - - - - - - - - - - - - -	RS-100:68 Fresh and maxing	baeds : epid bands h 3 cm					
40 + + + + + + + + + + + + +	25-100-68 Fresh and Massiva	<u>h 3.m</u>		· · · · · · · · · · · · · · · · · · ·			
1/1 1/1 1/1	(
1/1 1/1 1/1	(Few corts with and		· · · · · · · · · · · · · · · · · · ·		1 1	
11 me	(Few corts vik and					
11 me	(Few corts with and	. It satisfies a	t		††	
11 me	(VI 12 02 02 07 07 0	Level 1. P. alt.		ti	
		firstures 1-3 per/m		focal find by site	1	11	
	towalled make resolite	30-40 CA. Relaw			·	*	
1 T J		96m 1-2. perfor		TI Ry overage	<u> </u>		·
+							
ry /					99.35	100.68	74734
100 + - 101	- 10-107. A share averagited	und Q. (Q) was portion	Only ANTHONY de ch	2 2 will a lide was	100.61	102.04	74735
Pape Ann	ask, fini ground chi, carb alt.	local acr to Icm	assoc lith Su Godes	uphillm mainlyfm. By	102.00	103.12	74736
95.4.	eciated with a lide vers	255 CA	paking week per arts.	HILLS			
	\$2-104.92 as at 91.25	mossive sporse	vit related.	TO P. VIt.	10382	104.95	74777
			strong dk chi. mind		10+45	104.35	74738
	the 10-15% massive sulfide vernigh	local irregular dk	Carl	Price grand cy, P	106.36	107.50	7.4739
		2-6 Py xite to lea		lucal mesh texhiles	107.50	109.00	74741
	1.50-114.00 As at 100.68	DN/M. DELIEDSE	Chl. corth	Po 3-4% Py 5-7% Cp 71.	3 109.00	110.50	74743
3 7 7 .		downhall. W/M Care		decreasing to 2.2.1	110.50	112.00	74244
a surprout form	wawards	vit density 30-60"CA		Tr. Copute ly	112.00	112.50	74745
Py(cpy) / de						licate -	
+ 114	00-11690 Mederatal, fractured	Rubbly recover mine	with and with ARNING	A Trace P. aputal	106-24	102.50	74740
1.202	nerens reintets	childrey Aunthors	co/6	A Trace by generally wit related	* Star	Lord C	74741
	AD-11850 Gren Line prained card	wm carbyth	VILONG when pervolution	A TI Py			
+/ alt	ADNIESO Gie, fine grained call		carb pervosive	It Vifine dissen	1		
50-12080 4 Fil	in the state of th	cort vits.	gardman Ep. Alt .	R,]	

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DDH NO. FROAD				······		PA	GE NO. 4
	LITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMP	
MAIN UNITS GL	SUB UNITS				FROM	TO	NUMBER
120-80-172-82	120-80 - 145-12 Uniform, madium	Fairly massive fer	will related chi.	To fork Ry with			
Mongodiorite. Medium +1	gosined locat coarse . Carbonate		Corto, epid. No mon				{
grained. Green-while A	and epidole verslets with normal	fin epid 40-sica	Chi. alt envelopes	Py with OC shik		L	
speckled Local small	chlorite - cavelopes	10126.70 126.90 Carb	to utte max Icon.	126.70		L	L
mapic xenalities to zern . +		- 1/3 shat 30-50 CA	↓		126.70	127.10	74746
9. 3 shat	•	ļ <i>, -</i>		-,	<u> </u>		
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	+				<u> </u>	<u> </u>
136 -	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	+	┢───	↓ 	·
_ ¥ ا	· · · · · · · · · · · · · · · · · · ·	+ - -	+	<u>+</u>	<u></u> -	<u> </u> +	
/					· · · · · · · · · · · · · · · · · · ·	┣────	
•			······		<u> </u>	<u> </u>	
+				<u>∤</u>		├ ───	·
4		· · · · · · · · · · · · · · · · · · ·	·	<u> </u>	<u> </u>		· · · · · · · · · · · ·
8	1		· · · · · · · · · · · · · · · · · · ·		139.00	140.000	.74247
P3					1.59.00		
\$ *							
4	·	~			144.12	145.12	74748
	115.12 - 148.44 Cree SARCKlad	Generally massive	Chlorite out P.	1-24 with R. at the		146.20	74769
Py (ce y for	first aroused uniform with	several Py with exp	WH ME-6-146.12	with some fine can		147.20	74750
vu- [· ;	1-24 Jine enfie xeastife; to lam	at top wich	algenters miner.	Tr. helpen			
	148.44-158.50 As of 120.00 but	Patin, clusters of	wit record chi	En Py vitz			
150 -	with more ultrand patchy		and carbonate	generally low dent	5		
7+.	pervosive alteration	with often 25-wich		Concentration 155.5			
				-15250 1-24 local		153.20	74751
(* .		<u>}</u>	v//t	7 Cpy	/53.20	- (54:50	
1.							
17.		passive fine HP.	are privesive epid	A abreat	· · · · · · · · · · · · · · · · · · ·		
⊅ k .3	158.50-158.95 Norow HP. dyke	PRIMA PROD (IF.	and participation of the		151-25	1047	74753
20	158.95-16043 chippite allored a street	NURAN SULFICE UNE	Dock Chi.	strong sulfide un zone			,

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R. Wells DATE 10th August 2005

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

_ -

NO. FR -04			·					GE NO. 5
		ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL.	
MAIN UNITS	GL	SUB UNITS	(m. // F.A.	·		FROM		NUMBE
		on 25cm ly lo, Cpg 40 -	Corsett Ly(CAY)	·	Local Mesh rexhures	158.75	160.43	<u>74754</u>
	14	160.43-165.29 Patchy at MD.	Witz and bundle So-700	A kit and bonds .	<i>cry</i>	stone		74755
8.6.		related to sulfide vite games	egp. 163.93-164.62	associated with By	+3% xIt Py mines	160.43		- 74756
٩٦(٢٩٦)	Ľ.,	SUB UNITS CA 35cm by, lo, Cpg ka 160.43-165.29 Patchy of MD Aeloted to sulf de vits games sections of flash and gr. MD 165.29-172.82 Made coorse grained flesh manyodiarite Massive with an3%, Subacgular mafric xe anlites to 4cm	Minor carb with	Vite. Mainly Chi.	Po, Tt Coy	6193		. 74.757
	+ *					_(63-68	165.29	7 4758
		165.27-172.82 Med- Gons grained	Massive four che	VIt record,	Tr Py			••••
	+	fresh mongodiorite Massing with _	and, of carb kitt					··
176-		203° Lagelal matic xearlity					: 	
	+,	to year			·		·	
_	f	172-82 504					+	
					· · · · · · · · · · · · · · · · · · ·			
					.			· · ·
		······					+	
	1					f	f	
				,,,,,,			+	
						†		
		······································				1		
		······································	· · · · · · · · · · · · · · · · ·					
	1			_ _	· · · ·	1	· · · · · · · · · · · · · · · · · · ·	
						_		. <u> </u>
	[l		
	{							
		· · · · · · · · · · · · · · · · · · ·						

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R. Welly DATE 10th August 2006.

DDH: FR-041

ومستعدي والمستقد وأخبتك المحافظ والمتكامين وعواجبها والمنافع والمستعد

۰.

R. C. Wells P.Geo, Kamloops Geological Services Ltd.

DDH.FR-041 CoverPage

A CONTRACTOR OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT

~

Hole ID:	DDH.FR-041
Project:	FRAN
Property:	FRAN
Claim:	
Easting:	10408615E
Northing:	6094507N
Elevation:	1300m
Grid:	8615E/4507N
Length (m):	181.36
Dip:	-45
Azimuth (grid):	200
Started:	10/8/2005
Finished:	12/8/2005
Hole Status:	Finished
Material left in hole:	None
Comments:	Testing north gold zone
Core Size:	NQ
Logged By:	R. Wells
Purpose:	Most northerly of 4 hole N/S fence.

DDH.FR-041 Surveys

Contraction of the state of the

1.1

HOLE ID	Depth (m)	Dip	Azimuth (grid)
DDH.FR-041	0	-45	200
DDH.FR-041	75	-44.6	203
DDH.FR-041	150	-44.7	202

1 m 1 m 1

÷ ·

į

i

DDH.FR-041 Geology

HOLEID	From	To	Unit Code	From	To	Sub Unit	Veins, Vits	Alteration	% Py	% Po	Сру %
DDH.FR-041	0	3.05	Ovb	0	3.05	Ovb					<u> </u>
DDH.FR-041	3.05	10	SS.Biot.HF	3.05	10	SS HF	Mod.Fr.Oxid, rare Carb	Botite Hornfeis	Ĩſ		
DOH.FR-041	10	11.93	HP.Dk	10	11.93	HP.Dk	Fine Carb Vits	Vit. Related Wk Carb Patches	Tr to 1		
DDH.FR-041	11.93	18.85	SS Biot HF	11.93	18.85	SS Biot HF	Fine Carb Vits	Vit. Related Wk Carb Patches	Tr		
DDH FR-041	18.85	36.95	MD.Dk.mafic	18.85	36.95	MD.Dk.mafic	Fine Carb Vits, local Sil, Py	Vit.related Carb, Chl, Epid	Tr to1		
DDH.FR-041	36.95	56.5	SS.Biot.HF	36.95	48.6	SS.Biot.HF	massive to lam.	Bio. Wk Carb	Tr to 1		
DDH.FR-041				48.6	52	SS Grey/brown Carb	Fine Carb, local Chi, Vit Py	Vit related Carb, Chi	Ĩr	_	
ODH FR-041				52	55	SS.Biot.HF	Banding/Lam Carb Chi	Vit related Chi,Carb	Tr to1		
DDH.FR-041				55	56.5	SS.Biot.HF. Narrow Oks	Irregular Carb Vits, Vns	Vit_related Chi,Carb,	1T		
DDH.FR-041	56.5	69.5	MD.Att	56.5	58.2	MD.Fr. Abund Carb.Vits	Carb Vits, Vns	Mod pervasive Carb, local Chi			<u> </u>
DDH.FR-041				58.2	61.7	MD Wk Carb, Chi	Abund Carb Vits	Patchy w/m pervasive Carb.			
DDH.FR-041			· · · · · · · · · · · · · · · · · · ·	61.7	67.5	MD.Chi, Carb Alt.	Abund Carb Vits, local Chi, Epid, Py	W/m pervasive Carb local Epid Chi	Tr to 2		
DDH.FR-041	· _			67.5	69.5	MD Alt Fine Carb Ch1	Mod Fr,Carb Vits	Vit related, Patchy wk Chi, Carb	<u>1</u>		
DDH.FR-041	69.5	90.88	MD.Local Chi Carb Epid Alt	69.5	71.12	MD Transitional	w/m Carb Vits local Py	Vit related	1 T		
DDH.FR-041	· —			71.12	78.56	MD,mafic intervals,Xen	Wim Carb local Py	Vit related Carb, Chi, Ep. local Hem, Wk Chi.	1		Tr to 1
DDH.FR-041			· · · · · · · · · · · · · · · · · · ·	78.56	81.53	MD,mafic,Py Vits	Abundant Py with Chl	Vit related Carb,Chi	2 to 5	1 to 4	Tr to 1
DDH FR-041			· · · · ·	81.53	86.8	MD, Dk Chi, Py Vns	Py Vits/Vns, Carb Vits	W/m Ok Chi, Carb	1 to 3 _	1 to 2	Tr.
DDH.FR-041	·			86.8	90.88	MD.Fresh	Massive, local xenoliths	Vit related, some wall rk Epid	Tr	· · · · – –	\bot
DDH.FR-041	90.89	96.1	FZ.Bx.Py	90.68	96.1	FZ Bx Py	Mosaic Bx, local slicks	Bx with Chi,Carb,Py, Wall,rk BI,Py	Tr to 5		\vdash
DDH.FR-041	96.1	139.02	MD Xen local to 10cm	96.1	123.2	MD Xen local to 10cm	minor Carb, local Py	Wk Carb, Ep, Chi	Tr to 10		
DOH FR-041				123.2	125.28	FZ, minor Bx	Lam, fol. local slicks	Mod pervasive Carb, patchy Chl, Ser?	Tr		L
DDH.FR-041	1. 			125.28	134.43	MD.Fresh.Xen	Massive, minor Carb, Chi	Vit related Chi Carb	Tr		<u> </u>
DDH.FR-041	·		· · · · · · · · · · · · · · · · · · ·	134.43	136.4	Chi,Carb.Alt,QV	Central Qv Zone with Py	Strong perv.Carb,Chi	Tr to 7		L
DDH.FR-041			···· · · · · · · · · · · · · · · · · ·	136.4	139.02	MD narrow HP.Dk	Local Carb Vits, vugs	Chi Sil Carb	Tr		
DDH FR-041	139.02	145.4	HP.Dk	139.02	145.4	HP.Dk	Chilled Fg contacts, local Carb Vits Vits	Vit related Carb,Chi	Tr		└──
DDH.FR-041	145.4	146.3	MD	145.4	146.3	MD	Carb Vits	Vit related	Tr		1
DDH.FR-041	146.3	148.76	HP.Dk	146.3	148.76	HP.Dk	Chilled Fg.contacts, local Carb Vits, Vns	Vit related Carb,Chl	Tr		1
DDH.FR-041	148.76	163 32	MD local mafic Xan Alt zones	148.76	151.5	MD.Fr.Wk Bx	Abund fine Carb, Chl, Vits	Vit related Carb,Chi	Tr		
DDH.FR-041			· · · · · · · · · · · · · · · · · · ·	151.5	154.41	MD.massive	w/m Chi,Carb	Vit related Chi,Carb	Tr		
DDH.FR-041				154.41	154.9	FZ,Chl,Carb	Local fine Bx	Pervasive m/s Carb	1T		<u> </u>
DDH.FR-041				154.9	157.07	MD.Fr.Bx	Carb Vits	Pervasive Carb	Tr		
DDH FR-041				157.07	163.32	MD massive	fine Carb Vits	Vit related	Ťr		
DDH.FR-041	163 32	156.33	FZ.MD.local Bx	163.32	166.33	FZ MD local Bx	Lam,local Bx,Py	Var. Chi,Carb	Tr to 5		<u> </u>
DDH FR-041	166.32	175.75	MD mod Fr	166.32	175.75	MD.mod Fr	Local crackle Bx Carb Chl Vits local vugs	Vit related Chl,Carb,local Cy	1 to 3		<u> </u>
DDH FR-041	175 75	176.72	MD.PP	175.75	176.72	MD.PP	Massive,transitional phase	Vit related Carb	ΪΪ	_	·
DDH FR-041	176.72	161.36	MD Xen	176.72	181.36	MD.Xen	Carb,Chl,Py Vits,Vns	Vit related Carb,Chi	Tr to 3	_	<u> </u>
DDH FR-041		181.36	EOH		181.36	EOH					1

. ----

i

DDH.FR-041 Assay

- -----

and the second sec

HOLE ID	From	To	Sample No	Length	Au g/t metallic	Au g/t	Au opb	Ag ppm	Cu ppm	Zn ppm
DDH.FR-041	10.93	11.93	74770	1.00			55	<0.2	98	55
DDH.FR-041	11.93	12.93	74771	1.00			50	<0.2	52	117
DDH FR-041	12.93	14.07	74772	1.14			120	<0.2	113	134
DDH.FR-041	17.85	18.85	74773	1.00			25	<0.2	29	106
DDH.FR-041	22.00	23.47	74774	1.47			35	<0.2	61	32
DDH.FR-041	29.00	30.40	74775	1.40			15	<0.2	57	30
DDH.FR-041	35.95	36.95	74776	1.00		· · · · · · · · · · · ·	10	<0.2	54	28
DDH.FR-041	40.40	41.40	74777	1.00			5	<0.2	75	145
DDH.FR-041	41.40	42.40	74778	1.00		1	25	<0.2	63	153
DDH.FR-041	49.45	50.90	74779	1.45			15	<0.2	111	155
DDH.FR-041	53.00	54.00	74780	1.00		· ···· · ··•·	10	<0.2	107	136
DDH FR-041	54.00	55.00	74781	1.00	• · _ · _ · · · · · · · · · · · ·		5	<0.2	129	72
DDH.FR-041	55.00	56.50	74782	1.50		· · · · · · · · · · · · · · · · · · ·	10		94	211
DDH.FR-041	62.00	63.09	74783	1.09			100	0.5	520	89
DDH.FR-041	63.09	65.00	74784	.	• • • • • • • • • •	·			270	32
				1.91			85	<0.2		
DDH.FR-041	65.00	66.50	74785	1.50		· · _ · _ · _ · _ · _ · _ · _ · _ ·	85	<0.2	76	99
DDH.FR-041		Std. A	74786	<u> </u>	 	!	820	<0.2	<1	
DDH.FR-041	66.50	67.50	74787	1.00		L	25	<0.2	45	86
DDH.FR-041	67.50	69.50	74788	2.00		L	100		250	76
DDH.FR-041	72.86	74.15	74789	1.29		. __	255	0.2	222	76
DDH.FR-041	74.15	74.96	74790	0.81		l	905	2.9	2226	287
DDH.FR-041		Dupl	74791				870			246
DDH.FR-041	74.96	76.09	74792	1.13		<u> </u>	135	annual a second of some	320	
DDH.FR-041	76.09	77.60	74793	1.51			70	<0.2	84	
DDH.FR-041	77.60	78.56	74794	0.96		1	160	0.3	358	
DDH.FR-041	78.56	79.56	74795	1.00			635	1.2	696	
DDH.FR-041	79.56	80.56	74796	1.00			205	1.0	1125	139
DDH.FR-041	80.56	81.53	74797	0.97			210	0.5	348	91
DDH.FR-041	81.53	82.70	74798	1.17			15		61	79
DDH.FR-041	82.70	83.80	74799	1.10			595			
DDH FR-041	83.80	85.30	74800	1.50		+	140			109
DDH.FR-041	85.30	86.80	74801	1.50	♣	+	155		•	
DDH.FR-041	90.88	91.88	74802	1.00	+	· / e · · · · e · · · · · · · · · · · ·	40	The second second second		
DDH.FR-041	91.88	93.46	74803	1.58	·····	-+	65	· · · · · · · · · · · · · · · · · · ·	1	
DDH,FR-041	93.46	94.67	74804	1.21	· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	<	-		
DDH.FR-041	94.67	96.10	74805	1.43			890			
DDH FR-041	96.10	97.10	74806	1.00			525		<u> </u>	
DDH.FR-041	100.07	101.07	74807	1.00	+	+	45			
DDH.FR-041	103.06	104.20	74808	1.14	<u> </u>		55			
DDH.FR-041	105.77	104.20	74809	1.00	+	ł	65			
DDH.FR-041		121.31				k	+			
	120.18 123.20		74810	1.13	 		240			2/
DDH.FR-041		124.20	74811	1.00	+		25	<0.2		25
DDH.FR-041	124.20	125.28	74812	1.08		+	25			26
DDH.FR-041	127.10	128.10	74813	1.00		· · · · · · · · · · · · · · · · · · ·	50			
DDH.FR-041	134.43	135.43	74814	1.00		1	30			
DDH.FR-041	135.43	136.40	74815	0.97	1.19	1.12	>1000			
DDH.FR-041		Std. A	74816			.1	830			
DDH.FR-041	154.30	155.30	74817	1.00	_		35			<u> </u>
DDH.FR-041	155.30	156.80	74818	1.50			350			5 27
DDH.FR-041	163.32	164.70	74819	1.38	3.01	2.86	>1000			
DDH.FR-041	164.70	165.50	74820	0.80	1		380) <0.2	244	
DDH.FR-041	165.50	166.33	74821	0.83	T		170	<0.2	279	30
DDH.FR-041	169.50	171.00	74822	1.50		· · · · · · · · · · · · · · · · · · ·	25	s <0.2	2 76	5 21
DDH.FR-041	176.72	177.72	74823	1.00	†		375			

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 2005-982A

YANKEE HAT INDUSTRIES CORPORATION 4460 Atlee Avenue Burnaby, BC V5G 3R6

ATTENTION: Donald Gee

No. of samples received: 111 Sample type: Core Project #: FRAN Shipment #: n/a Samples submitted by: Ron Wells

Et #.	Tag #	Au(ppb)	Ag	A! %	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	ti %	U	v		Y	Zn
1	74770	55	<0.2	2.31	5	100	<5	2.42	<1	20	29	98	6.97	<10	1,18	736	<1	0.17	10	1540	48	<5	<20	59	0.21	<10	163	<10	13	55
2	74771	50	<0.2	2.43	20	210	<5	2.75	<1	37	48	52	9.37	<10	1.58	1122	<1	0.09	25	1960	66	<5	<20	26	0.32	<10	276	<10	14	117
3	74772	120	<0.2	2.49	50	270	<5	3.04	<1	55	39	113	9.61	<10	1.62	1146	<1	0.11	28	1960	54	<5	<20	40	0.33	<10	287	<10	14	134
4	74773	25	<0.2	2.19	15	190	<5	2.16	<1	36	46	29	9.08	<10	1.61	1183	<1	0.13	- 30	2000	52	<5	<20	23	0.32	<10	246	<10	17	106
5	74774	35	<0.2	1.38	25	30	<5	3.26	<1	15	33	61	2.85	<10	0.35	306	<1	0.06	- 5	1770	34	<5	<20	20	0.10	<10	55	<10	16	32
6	74775	15	<0.2				<5	3.42	<1	15	27		2.96		0.41	409	1			1710	30		<20		0,10			<10	15	+ -
7	74776	10	+		-		<5	3.76	<1	13	45	54		<10	0.50	363	<1	0.06		1950	38	<5	<20	30	=			-	17	
8	74777	5		2.47			<5	2.89	<1	44	43	75		<10		1090	<1	0.10	29		58	<5	<20	24	0.34				17	145
9	74778	25	<0.2	2.47	25	100	<5	3.58	<1	42	47	63	8.06	<10	1,85	1118	<1	0.14	31	2040	60	<5	<20	34	0.34	<10	253	<10	19	153
10	74779	15	<0.2	2.12	25	125	<5	7.10	<1	43	50	111	>10	<10	2.02	1518	8	0.04	31	2030	50	<5	<20	100	0.12	<10	259	<10	19	155
11	74780	10	<0.2	2.65	25	80	<5	4.41	<1	41	44	107	8.35	<10	1.50	1064	<1			2150	68	<5	<20	- 24	0.35	<10	253	<10	24	136
12	74781	5	<0.2	2.96	10	75	<5	2.50	<1	30	38	129	6.31	<10	1.97	764	<1	0.07	18	1340	22	<5	<20	28	0.34	<10	275	<10	14	72
13	74782	10	<0.2	2.58	30	80	<5	4.88	<1	44	55	94	8.45		1.67	1086	<1	0.05		2000	66	<5	<20	33					19	
14	74783	100	0.5	1.89	50	160	<5	7.57	<1	32	27	520	7.95	<10	1.10	871	2	0.03		2090	42	<5							13	89
15	74784	85	<0.2	1.44	15	55	<5	4.06	1	16	11	270	4.96	<10	0.98	620	7	0.04	7	1420	12	<5	<20	225	<0.01	<10	71	<10	13	32
16	74785	85	<0.2	1.14	35	95	<5	5.96	<1	28	- 4		9.26		0.59	716	15			2180	20	-			<0.01			<10	17	
17	74786	820	<0.2	0.14	5	15	<5	0.20	<1	1	2	<1			0.05	35	<1	0.06		570	12	<5	<20		<0.01		-	<10	6	7
18	74787	25	<0.2	1,44	25	220	<5	5.25	<1	19	12	45	6.62	<10	0.88	962	12	0.03		2240	36	<5	<20	121					23	86
19	74788	100	0.2	1.85	25	170	<5	4.50	<1	26	15	250	6.82	<10	0.85	748	14	0.03			48	-	<20	67			-	-	20	76
20	74789	255	0.2	1.60	20	155	<5	2.70	<1	36	21	222	7.96	<10	0.82	652	<1	0.04	10	2320	46	<5	<20	47	0.23	<10	168	<10	20	76
																						_								
21	74790	905		1.52	-		<5	1.10	<1	97	24	2226	>10		0.72	612	11			1610	32	-	<20	16	0.17		. –	. –		
22	74791	870	2.9	1.49			<5	1.10	<1	120	23	1896	>10		0.70	616	12			1560	38	-	<20	13	0.15					
23	74792	135	0.3			90	<5	1.77	<1	24	16	320	5.55	-	0.93	453	<1	0.08		1540	20	-	<20	43	0.19					43
24	74793	70	<0.2	1.91		110	<5	4.09	3	31	23	84	7.90	<10	0.94	744	<1	0.05	9	·	56	-	<20	39	0.25				22	
25	74794	160	0.3	1.96	45	215	<5	4.23	<1	35	20	358	8.48	<10	0.81	714	<1	0.04	10	2480	58	<5	<20	97	0.24	<10	193	<10	21	91
																						-								~~
26	74795	635		2.00		90	<5	3.61	<1	63	24	696	>10		0.92	731	<1			2630	64	-	<20		0.22					99
27	74796	205	1.0	2.05			<5	3.09	<1	90	20	1125	>10	-	0.98	756	2	0.04		2480	66	-	<20	47	0.22				-	
28	74797	210	0.5	2.01			<5	3.10	<1	75	24	348	>10		1.05	798	<1	0.04	8		66		<20	46	0.29				13	91 70
29	74798	15	<0.2	1.73		170	<5	3.11	<1	2 9	24	61	7.51	<10	0.60	550	<1	0.05	11	2600	62	_	<20	48	0.26				17	79
30	74799	595	0.8	2.12	20	125	<5	2.06	1	89	22	620	>10	<10	1.09	927	<1	0.03	17	2490	70	<5	<20	30	0.23	<10	226	10	8	223

Yankee Hat Industries Corporation AK 2005-982A

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mo	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
31	74800	140	0.4	2.09	60	100	<5	3.70	<1	60	24	315	>10	<10		934	37			2600	78	<5	<20	41			232	<10	19	109
32	74801	155	0.4	2.03	55	105	<5	3.43	<1	67	23	357	>10	<10		854	42			2740	70	<5	<20	35			++-	••	16	101
33	74802	40	0.7	1.02	55	60	<5	>10	<1	29	8	40	7.39	<10	0.32	1575	7	0.02	10	2760	24	<5	<20	99	< 0.01	<10	84	<10	24	123
34	74803	65	<0.2	1.11	50	55	5	9.37	<1	27	16	25	8.00	<10			7		9		40	<5	<20		• • • • •			<10	22	94
35	74804	<5	<0.2	1.39	30	75	5		<1	26	8	13	7.86	<10	0.49	1115	4		10	2730	46	<5		59		<10			25	99
36	74805	890	0.7	1.57	30	95	<5	1.73	<1	46	9	583		<10		382	59			1400	10	<5	<20	43	<0.01	<10	95	<10	1	52
37	74806	525	0.2	1.90	10	90	<5	1.62	<1	27	14	273	6.63	<10		532	<1		7	1560	8	<5	<20	38	0.18	<10	156	<10	11	37
38	74807	45	<0.2	1.67	10	110	<5	3.73	<1	18	12	97	4.28	<10		503	<1	***-	-	1570	10	<5	<20	93		<10		<10	13	27
39	74808	55	<0.2	1.86	10	80	<\$	3.58	<1	19	16	60		<10		581	<1			1590	10		<20	56		<10			12	34
40	74809	65	<0.2	1.48	10	125	<5	2.44	<1	14	13	31	4.31	<10	0.69	398	<1	0.06	6	1630	10	<5	<20	63	0.15	<10	133	<10	12	28
41	74810	240	<0.2	1.73	10	75	<5	2.77	<1	11	17		4.12	<10		403	<1	0.05	_	1400	10	<5	<20	87	+	<10		<10	11	27
42 43	74811	25	< 0.2	1.46	10	55 70	<5 <5	5.21 3.33	<1	9	10	20	3.54	<10 <10	0.67	741 561	<1	0.04		1290	2	<5	<20	165	0.06		81	<10	14	25
-	74812 74813	25	<0.2	2.22	15		-		<1 <1	11 8	14 19	31 129		<10	0.82 0.38	313	<1 <1	0.04 0.06		1270	8	<5		82		<10	92		16	26
44 45	74814	50 30	<0.2 <0.2	1.43 1.42	10 15	85 390	<5 <5	2.82 3.32	<1	9	13	40	2,52 4.07	<10	0.36 D.66	468	2			1610 1370	6 6	<5 <5	<20 <20	125 76		<10 <10	68	<10 <10	15 13	19 25
									~1												0	~0					00	~;0	15	20
46	74815	>1000	0.8	1.38	130	120	<5	3.55	<1	50	28	759	7.50		0.71	504	10	0.03	-	1040	4	<5	<20		<0.01			<10	6	41
47	74816	830	<0.2	0.17	<5	15	<5	0.14	<1	<1	1	<1	0.44	<10	0.05	27	<1	0.10	2	400	4	<5	<20		<0.01		1	<10	3	3
48	74817	35	<0.2	1.51	45	65	<5	4.15	<1	10	19	27	3.51	<10	0.59	465	24	0.04	3	++	6	<5	<20	92	0.04		77	<10	13	22
49	74818	350	0.3	1.41	10	75	<5	2.53	<1	15	23		4.78	<10	0.65	408	5	0.04		1350	2	<5		70	• •		91		10	27
50	74819	>1000	0.3	1.74	140	40	<5	2.41	<1	19	15	176	4.51	<10	Q.72	452	8	0.02	2	1250	10	<5	<20	28	0.08	<10	86	<10	10	32
51	74820	380	<0.2	1.89	15	60	<5	3.05	<1	26	20	244	6.17	<10	0.78	514	<1	0.04	- 4	1270	8	<5	<20	40	0.12	<10	106	<10	11	30
52	74821	170	<0.2	1.75	5	75	<5	2.67	<1	35	22	279	6.37	<10	0.62	435	<1	0.07		1300	8	<5	<20	43	0.14	<10	96	<10	12	30
53	74822	25	<0.2	1.81	10	75	<5	2.82	<1	12	24	76	3.24	<10	0.48	331	<1	0.07	6	1390	8	<5	<20	204	0.11	<10	77	<10	14	21
54	74823	375	0.2	1.33	20	65	<5	2.36	<1	12	17	104	3.52	<10	0.54	442	8	0.07	5	1340	10	<5	<20	83	0.09	<10	79	<10	14	30
<u>QC/DAT</u> Resplit:	<u>A:</u>																													
1	74770	55	<0.2	2.17	25	135	<5	4.37	<1	36	33	6 6	8.41	<10	1.10	854	<1	0.12	17	2620	50	<5	<20	50	0.29	<10	198	<10	24	73
36	74805	845	0.6	1.35	35	90	<5	1.98	<1	41	9	449	9.16	<10	0.71	403	50	0.01	3	1550	16	<5	<20	34	<0.01	<10	93	<10	3	62
Repeat:																														
1	74770	45	<0.2	1.91	15	120	<5	3.59	<1	30	39	86	7.24	<10	0.98	738	<1	0.11	15	2260	50	<5	<20	42	0.26	<10	177	<10	18	60
10	74779	15	<0.2	2.14	20	130	<5	7.20	<1	43	50	113	>10	<10	2.05	1538	8	0.04	29	2060	50	<5	<20	103	0.13	<10	261	<10	20	156
19	74788	115	0.2	1.90	35	180	<5	4.80	<1	28	17	260	7.34	<10	0.88	600	15	0.03	7	2630	52	<5	<20	70	0,16	<10	153	<10	20	91
21	74790	9 35																												
26	74795	600							-																					
30	74799	600																•												
36	74805	895	0.7	1.62	45	95	<5	1.74	<1	45	10	567	8.95	<10	0.83	383	59	0.02	-	1450	4	-	<20		<0.01			<10	2	50
45	74814	20	<0.2	1.42	20	405	<5	3.45	<1	10	14	36	4.17	<10	0.63	482	<1	0.04		1400	8	-	<20		0.04		-	<10	14	30
54	74823	450	0.3	1.43	20	80	<5	2.54	<1	13	19	105	3.61	<10	0.55	460	9	0.08	5	1400	10	<5	<20	86	0.11	<10	84	<10	17	31
Standar	d:																													
GEO'05		140	1.5	1.24	60	165	<5	1.56	<1	18	64	85	4.01	<10	0.65	639	<1	0.02	29	860	20	<5	<20	50	0.11	<10	72	<10	10	76
GEO'05		145	1.5	1.28		150	<5	1.67	<1	20	60	86	4.02	<10	0.66	760	<1	0.02	29	850	24	<5	<20	52	0.02	<10	70	<10	10	78
GEO'05		145		1.34		155		1.61	<1	20	58	85	4.04	<10	0.67	739	<1	0.02	30	860	22	<5	<20	54	0.13	<10	70	<10	10	78
		-																												

. ____

1

j H

Page 2

CERTIFICATE OF ASSAY AK 2005-982A

YANKEE HAT INDUSTRIES CORPORATION 4460 Atlee Avenue Burnaby, BC V5G 3R6

8-Sep-05

n a su la su cara constructo da la castera de la

ATTENTION: Donald Gee

ł

No. of samples received:111 Sample type: Core **Project #:FRAN** Shipment #: not indicated Samples submitted by: Ron Wells

		Au	Au	
ET #.	Tag #	(g/t <u>)</u>	(oz/t)	
46	74815	1.12	0.033	
50	74819	2.86	0.083	
QC DATA:	<u>.</u>			
Standard:				

0.238

0.237

8.17

8.12

JJ/ga
-
XLS/05

SN16 SN16

> ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2005-982A

YANKEE HAT MINERALS LIMITED

4460 Atlee Avenue Burnaby, BC V5G 3R6 22-Sep-05

ATTENTION: Donald Gee

No. of samples received:111 Sample type: Core **Project #:FRAN** Shipment #: not indicated Samples submitted by: Ron Wells

		Metallic A	ssay	
		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
46	74815	1.19	0.035	
50	74819	3.01	0.088	

QC DATA:		
Standard:		
SN16	8.68	0.253

JJ/bw XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

	HOLOGY	STRUCTURE	ALTERATION	MINERALIZATION	r	5AMP	LING
MAIN UNITS GL	SUB UNITS				FROM	TO	NUMBER
	-3.05 Bruken bedrock.						
-05-10.0 Siltston	Eaicy uniform, dack hows gray, line grained and non mognetic	Moderate builter	Bistite harafels	Trace amounts of			
		Kare fine carb vite with local fine sulfide		witz 40°6A			·
5.0-11.93 Horablende 10	peckled grey cog seens to be to the here here and the providents to be an Aphoniki grundents here get 3050 uniform dock bow	lower contact 40 ca	weak ut related.	Te-14 fine dimen-	10.93	4.93	74770
upphyny Dyke, Non Mag ,	harversty to been Aphonite grundme	- waishie angles Ch	small pateries pervosion	<i>P</i>	11.93.	12.32	74.771
11.98-1885 Silfstone- 77 1	15 at 3.05m. Uniform dark bown 12. to local read grow Fice ground.	We axid ged produce	lecol cost aga .	Tr V fine dessen Py, Po?	/2·93	14.07	<u>74772</u>
condels for de	ey to local mad. gray. Fice grained. wate patch, acqueter upper and	carb vite many 30-sich	pervesive carts patriam				
	shell contract areas				17.85	18-85	74773
3-35-36.95 20	Green and white speckled	Generally for	Generally vit	TC-14 fine duesen			
nonvoliorite Dyke +	redeningsty medium grained	fine vite many	related carb, silin		12.00	23.47	74774
	vite firer cantacts \$100		apid motics are	and party			
o (cm. +	Conneled plagiculare purphysy	Rosa Py.	kelow 2 Ban. Sericite				
	common 20% altered Mapre		altered playindere."				
	nofic above	16.5- 22.5 Subperated					
30		Che frantice , vite			29.00	30.40	_74775
		Below 36m 35-4ica	lows contact anon				
		fine epidate verilet	bleached, can man.	· · · · · · · · · · · · · · · · · · ·	200		
	mail have baren line	sharp lower cantact	appictate verniet		35.95	36.25	
36.95- 56.56 60	Baily bours to grey, fire		Biolite Harughout	Te very fini ducia local 14. fine Py			· ·

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DH NO. FR-041			·····				PA	<u>GE NO. 2</u>
	L	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	GL	SUB UNITS		· · · · · ·		FROM	то	NUMBER
49	11		weak-oned density	Miller What parting	Swarps of carb Vits.	40.40	41.40	
	1		of fine carb vas/ ults			41.40	4 2.40	Jy278
	11	44.55-44.75 Harry plogiesters. (14)						- ••
Pinelin			wide 30-90CA Minor		1			
Ping (ind Direction		supplying dyke. Carb, by lite	bleached -sil patches	· · ·			1 1	
	1		new dyke		· · · · · · · · · · · · · · · · · · ·		1	
	استيا	118.06-52.00 As above patchy gray	Finer carb vits	Moderate permosive.	Tr- absent fine Py	49.45	50.90	74775
\$ 0 .		- green-brown corbonated	local chi. Local 10-800					
			Recipitors Chicage				ļļ	
	[.]	5200-55.00 Brown bistice	Fabrics - banding	Vit related allian,	Tr-14, fine dimen	53.04	54.00	74780
	-	Hornfels. Uniform, fine groined	lamination and ros	carb local bloaching	Py facal cone with	54.00	55.00	74781
harow	ير م	55.00- 56.50 Mixed bistite harafalo.	HO-SOCA	Antite of rated and	To & fine disser	55.00	\$6-50	74782
dykes	1	with norme on scale dyky	24 Ca 1 v/tz	carb local abl	Ry		ļł	
69.50 - 69.50		56.50-58-20 Light green this granted	40- CO'CA Dyte 30-19 CA inspire Mico - UNA Marco - UNA Vans To- 19 CA	moderate permanene la Chil. conte cate has	No suificles observed			
Altered Monzodiorite	1	SV.2A- LITA ALAM ALAL SAMAALAL		Patrichy w/m pelvesu	¢			
ght - medium grey greens		grained. averprixed by fire carb-chi.	mony so-soca local ep.		spore to accent sulfile	6200	63.07	74733
reduin groined, fine	7	alteration. Non magnetic		· · · · · · · · · · · · · · · · · · ·		63-09	65.00	
ntacts . Non-magnetic	1	61.70-67-50 chlorile-carborate alt	NUMEROUS Cart vilt 307	A when permasure can	Te- 10/ fine	65.00	. 66.56	74785
			largest lom. Fine	lacal epid patches.	dessen ly in vein	std.	. 👗	74786
4	5	65.00-64.44 chave foult	Epid, chi and local	either side of fault	20mg and small	66.50	67.50	74187
	11		Pro vite similar myles	foult strong chi.	pately 1-24. P.	67.50	69.50	74788
	1	67.50-69.50 light green fine-mad.gr.			ult with akchi.			
•.	Ľ.	67.50-59.80 light groom fire-mod. gr. Patring pervanise all chescores textures	Carb vite 40-160CA	poking corb, chi ett	TT Py ulto 40-500	72.14	- 74-15	74789
9.50-90.88 Monzodionte	X	(9.50-71-12 Transitional form dave	¥		To Py associated	74.15	74.96 cata 74.96	74790
packad grains, gray,	Z	19:50-71-12 Transitional form daug fine - and grained 71-12-78:56 to gameral description	w/m carb ult desi	, self related	with carb vite.			<u>7+7 9 I</u>
hite. Medium grained	a.	local postially assumilated make	30-60 CA 3-6 - Ly	corb, chi, epid	Generally 1%	7496	70.09	- 74792
action with chlority	6	xeastilly to 2cm. Acadium grained	vits per for servica		THEGET THE BE MOSSIVE Py	76.09	77.60	74793
arbonatic and epidate	1	with docker (chi) altered intervale			train matter fextures	77.60	78.56	74794
lteraturi.	4	associated with Py ulto Y Uns			Cpy in wall at the 1 % .	79-56		<u> </u>
	+-	78.56-8152 Similar to above but .	Local carb vite	Card with related	2-5-6 vit/un By	79.54	1056	74796

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: Rec Wells DATE: 11-12th August 2005.

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

···

DHNO. FR-04			· · · · · ·				PA	GE NO. 3
		ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	GL	SUB UNITS				FROM	TO	NUMBER
8	12	darker faitly numerous by ulte / uns	F-10 Py Vits/Unitate perim local chaits	Sulfide Veins	1-4. POIN VAS TE-14.	80.56	81.53	74 797
0.0		8153 A at 71.12 Medium growid		carb. vit related	1-34 0, +1h/ ms	81.53.	82.70	74798
ry r		with darker chiasile altered interest	variable andre ca.	Gocal WK PECKESIPE	larger with 1-2% Po	\$2.70	\$3.80	- 7479
	14	associated with A +14 and +ne_	3-7 Ry Ultr June por Im	Wm. chi. wallacky by	T1 Cpg (i= vo)	37.80	85.30	74 800
	1		· · · · · · · · · · · · · · · · · · ·	Sulfide ults		15.30	86.86	74901
	+7	76.80-70.88 Massive medium grained	Few find carb ulty	wit casated some.	Tr Py			
	4	faitly fresh bacage sub con subanded	30-TOCA ALOR CAMARO	Raid in wallack h				
90		Magie reastitle	epid lacal bands to	vn.		90.85	91.88	74802
-88-96-10 Foult Cone	tio	91.88- 93.46; 94.67 -96.10 precised	Breccia co. masaic	Accuración alla	Hard to estimate	91.85	93.46	74103
<i>Brecciated intervals</i>	120	with chi, carb alteration and	hype with local 30-50.	carte in but by I WR	as oxid possibly	93.46	94.67	74804
eparated by narrow you	1/2	Mamx Sulfides 90.88-91.88;97.46-	Slickenside surfaces.	foral strong blockhing	2-5% . Wallack Tr-2%	94.67	96.10	24805
more nofi dionte	55	no modiante half	Ican gr 80 cA @ 91990	of fragments. Some axid	generally U-fine	96.10	97.64	74806
	1	l		of sugar				
610-13902 Ty	4	96.10-123.20 to general	Local fine Carb		Generaly To vite	100.07	70:107	74 807
Nonzodiorite 10	t.	description Failly uniform -	with 20-60 CA	Corb, epid, chl_				
peckled dark green.	.1/2	with large make renslites	Local Py ulto	and vit related	@ 16.16 - 97.10 7-10 PS VIII 60-16 CA	103.06	104.20	74808
rey-white . Generall	300	Medicia grained spathy weak		Local dk shi	@ 100-07-101-07.3-4			
nedium ground spatty	1+	mognetii	Sparse epid ult	selvedges in carbo	My vin Soch	105.77	106.77	74.809
K magnetic. 1-4 %.	1/2		lacal dk. chi	or by vity.	@ 103.06-44.2 2-3			
rofic xenolities <1cm	[[]				guits wo-wich			
local larger	+				@105.77-166-77 6-7 P_ UTS 20-40 CA.			<u> </u>
voorgeler 2 - 710cm.	12						_	
)	1"							
	+							
	1/						 	
	+						·	• ·
	1.							
	[······································	·		
	+	┟╼━━─╼━━╌╼┉━━╴╴──╶┥				 	_ -{-	
	+					i-		

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R. c. Wells

DATE: 12* August 2005

1

J

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

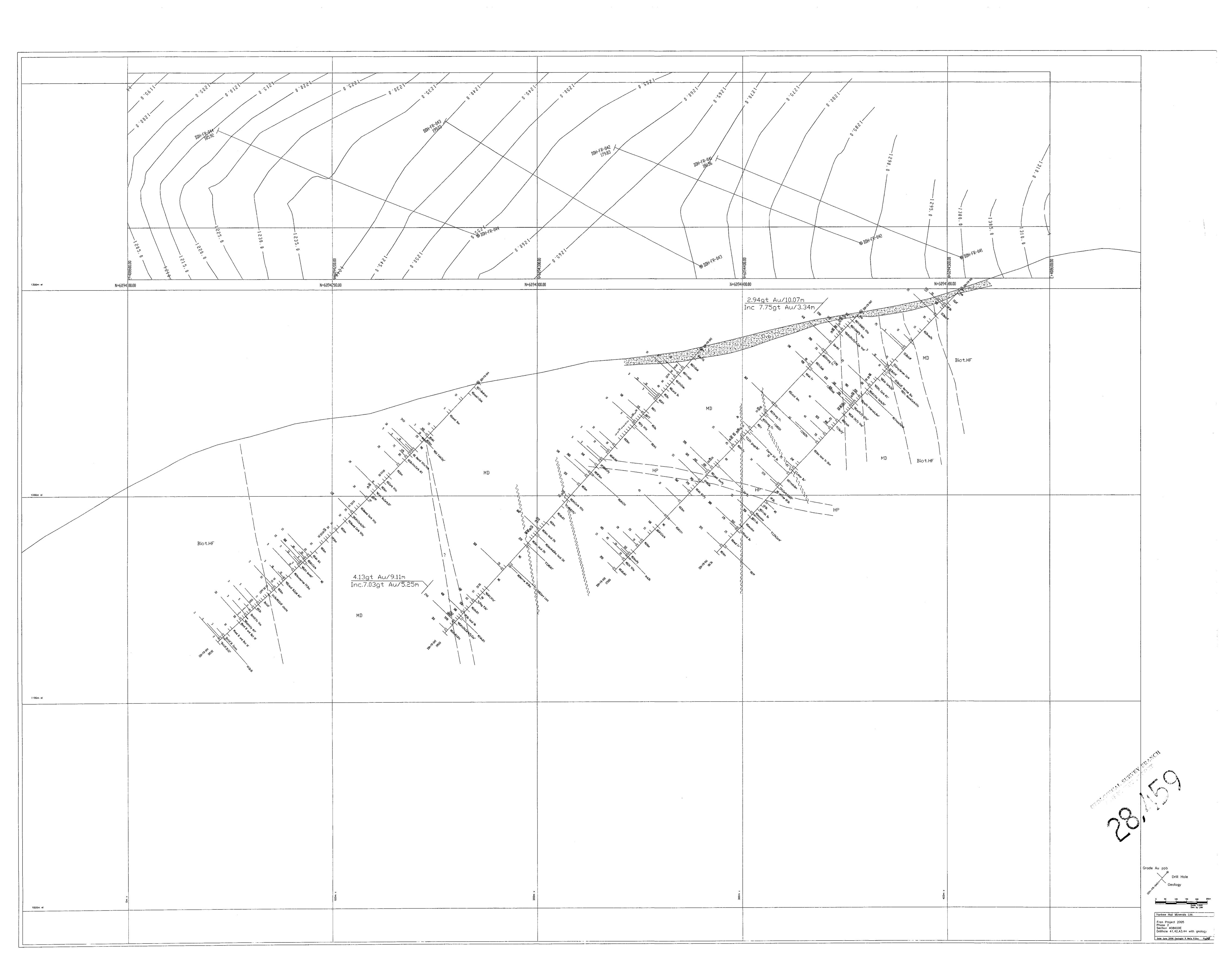
DDH NO. FR-041		·	<u> </u>	<u> </u>			PA	GE NO. 4
	<u> </u>	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	.ING
MAIN UNITS	GL	SUB UNITS	<u> </u>			FROM	ТО	NUMBER
11	° 1/				120.18-121.31-2-3 49	120.18	121.31	74810
	Ť.	123.20-125.28 Defension Zone	lan/foliation + veining	and a late pervositi	TI fini direen	123.20	124.20	74 <u>811</u>
	1º	peliahan, local bx roasking textures. 125-28-13443 Faithy uniform	Silchensides with low	carb and patch , chi		}		
	+	fine and grained equigranular MD	NOMOW CONDICKI VI	wit related carb	TI fine Ry	127.10	129.10	74 8/3
	1.	1-34 submended to subangular _	30-65 CA Local larger	C.(maisly associated.	· · · · ·		
(3	익 +		chi carb un à vit gans	· · · · · · · · · · · · · · · · · · ·	with Lorger vos, vit			
	+		to 2 cm 20-30 CA		supres.			
	1.	good textisted	·	<u>+</u>				
	XA	13443-13640 chlorite- carbonate alt	Battle chi. podered	Pervesive carboand de chi whe valuet - line cated carb	TI-IT fine dimenty	134-42	135.43	.74814 _74815
		fracture zone with questy vein	135.62- 135-9 . 4v. 3012	Viere internet carte	S-TEPy in QV	7,53.44		
Aorou	. [+,	136-40-139-02 MODINE, AND 100 AND 101-100	ters las and the as		Trofine dissen Py			
HP Dyk	u K	Names HP. dyke	carb vits bear vugs					
39.02-145.40	12	Uniform specklad greeningrays.	Local fin 34-60 CA	VIE ulated carts	to fine disser			
lornblende Porphycy Dyd	6 ×.	fire and grained Chi. alt has latte		locat low angle	_Py'			
	X	Significant plagioclass. Chilled contra		chi chiors				
	12		he les 15 ch.				<u> </u>	
45-40-146.30 MD.	1	Angelos Menalites of NP.	several law angla	wides pread wit carb				
Inclusion-dyke 46.20-148.76 Hurnsterde Kurptyry Dyte	N	148.76-151.50 Unidde foct-red	Aumous fin che	VIE related Chi	TI fini direem Ry			
HURDSLEVEL CURPTLY T	X	and wk Weccinted.	-carb fractures with					
48.76 - 163.32 Monzo -			w/m fin chi som		· · · · · · ·			
tionte.green-grey	T • †	Vite, Cocal S. tomadad nefic	corte with s-totA	· · · · · · · · · · · · · · · · · · · ·		stal	A	7.04
wite speckled local	+•	Yearlity & 200	lucal dis by	Returned Astron	The Line of	5 rax 156-30	H 155.30	74816
nofic xensities to been local frecture-alternation	, Pé	154 41-154 90 String Chi, carb allored fractive 2000 foretrad & weak	Aquees sico fectors	Pervosuse Miscort	i fine ausen 13	155 30	156.80	<u>-74 \$/}</u>
Jones .	TA.	we cuisted observing textures	t 141.76		TT-V. fine dissem Py			
~	¥	157.07-16372 Faitly uniformmatic	war fine carte	pervise carlo	Local find us fy vite			
	6 7	med, grained my few vik	V167 26:40, 70-80 \$A	vit related chi, corb	TI fin dimenty			

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R. Walls

DATE: 12th August 2005

FRAN PROJECT 2005


YANKEE HAT MINERALS LTD

DDH NO. FR-041			<u> </u>	<u> </u>			PA	GE NO. 5
	L	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	GL	SUB UNITS			1	FROM	TO	NUMBER
160	· _		CA lovel low angle					
	12		CA load low angle CAI Vitz Late Sirekansides					_
	1.4	· · · · · · · · · · · · · · · · · · ·				·		
(1.0.7.0 (122	Fault- deformation zone. Alteration	strong 70-90cd fabric	variable che carte .	Ical to very fine	163.32	-	
•		and local proviation obscures.	-lamination la col be	common fronth re clay	diasen Py, 2-5 x112	(14.76	_165.50-	.74 820
Fault Zone		textures. MD hust	Py x113 30-35°CA		perfor and of section	165.50	166.33	74821
166-33 -175-75	+7	Moderales, fractured and wind	•	ythe mested and	1-6 PS alta perfor			
	97	land weat preciption 1-3%	frastring to 168m		Best- developed	169.50	171.00	74822
Mongueliente		schampling a fig x englithe to zero	Relay cracker Bx	C/O.	49.71 with swarm			
moderate fracting 170	if t	alt i shaked the amoth'	care - chi with lovel		of chi with same and			
-	11k	apan in custors when my sur			g Ch nin same ope		·	
	14	- Feldopor purphyry at end of	Vigi ejp. 120-174		······································			
	41	introval			· · · · · · · · · · · · · · · · · · ·			
	11					176.72	122:22	74923
175-75-176-72 Plagioclass	e [] .	mad green, fine ground	grading assible	ult respect carb	TI very fin dimen			
Porphyry	+/	sidepor porphyry 1-2ml play lates	9 raching these		e.			
176.72-181.36	17+			VIE-m mestal she	1-6 pr rihja		-	
		176.72-180.05 Creen grey white make manzodionte siden napi xensik	MAS. LADORET CULVAS					
	++	180.05 - 181 36 States med great	Py Cr Cl 90-33 Ch		Strongest 175.75-127			· · ·
-		181-36 EDH Concordin MD	For 40-50 CA carb	Wit-related Carb.	absent Py	┈╌╼╌┤		
		·						
	1							
	1	······································						
		└				·	ł	
								·······
					· · · ·			
				· · · · · · · · · · · · · · · · · · ·				

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R.s. Wells

DATE: 13 August 2006.

DDH: FR-042

i.

R. C. Wells P.Geo, Kamloops Geological Services Ltd.

DDH.FR-042 CoverPage

na na sina katalahatan katala katalahatan katalahatan katalahatan katalahatan katalahatan katalahatan katalahat

· •

Hole ID:	DDH.FR-042
Project:	FRAN
Property:	FRAN
Claim:	
Easting:	10408608E
Northing:	6094458N
Elevation:	8608E/4458N
Grid:	1289m
Length (m):	179.83
Dip:	-45
Azimuth (grid):	200
Started:	12/8/2005
Finished:	14/08/05
Hole Status:	Finshed
Material left in hole:	None
Comments:	Testing showing, soil & prospecting anomalies
Core Size:	NQ
Logged By:	R. Wells
Purpose:	Second hole in N-S fence

ļ

DDH.FR-042 Surveys

- A

and a second second second second second second second second second second second second second second second

HOLE ID	Depth (m)	Dip	Azimuth (grid)
DDH.FR-042	0	-45	200
DDH.FR-042	75	-44.1	201.9
DDH.FR-042	170	-43.7	200.9

•

ł

ļ

DDH.FR-042 Geology

Hole ID	From	To	Unit Code	From	To	Sub Unit	Veins, Vits	Alteration	% Py	% Po
DDH.FR-042	0	3.05	Ovb	0	3.05	Ovb				
DDH.FR-042	3.05	15.33	MD.Alt	3.05	6.43	MD.Fr.Oxid.Py Vits	Local Py Vits	Oxid, Wk.Carb	Oxid	
DDH.FR-042				6.43	9.77	MD.Fr.Oxid.Py Vns	Fr.Abund.Py Vns	Oxid,Chi,local Qtz frags	5 to 10	
DDH.FR-042				9.77	15.33	MD Alt Qtz Py, Po, Cpy Vns	Abund Carb Vits, Otz Vns Py	Vit related Carb, dark Chl	Tr to 6	Tr to 4
DDH.FR-042	15.33	26.63	Dior Alt	15.33	26.63	Dior.Alt	Abund Carb Vits Vns local Chl Py	W/m patchy pervasive Carb	Tr to 4	Tr
DDH.FR-042	26.63	38.85	FŻ.MD	26.63	27.63	FZ.MD	Fault,local Bx,Cy	Strong Chl,Carb,Cy	Tr	
DOH.FR-042				27.63	29.53	MD.Strong Fr.	Abund.Chl,Carb local Cy	Chl. w/m patchy Carb	Tr	
DOH FR-042				29.53	37.68	MD.Fr.Oxid	Carb,Chl local Oxid	VIVFr related Carb, Chl, Oxid	Ťr	
DDH.FR-042				37.68	38.85	FZ.MD.Oxid	Strong Fr,local py vns	Oxid	Tr to 3	_
DDH.FR-042	38.85	63.3	MD.Local Xen.	38.85	43.2	MD.Wk Fr	Local Carb Py minor Ep	Vit related Chi,Carb	Ťr	
DDH.FR-042				43.2	63.3	MD.Local Xen.	Minor Carb,Epid	Vit related	٦T	
DDH.FR-042	63.3	78.18	MD.FZ	63.3	64.16	FZ.MD.Chi	Chl, local Bx	Strong Chl,Carb	Tr to 1	
DDH.FR-042				64.16	69.83	MD.Strong Fr.	W/m Fr.local Bx,Cy,Carb,Chl	Vit related	٦T	
DDH.FR-042				69.83	71.25	FZ.MD.Chi	Chi, local Bx	Strong Chl w/m Carb	Tr	
DDH.FR-042				71.25	74,1	MD.Strong Fr.	Carb,Chi,local Wk 8x	Vit related plus wk Carb	٦Ť	
DDH.FR-042				74.1	78.8	MD.Fr	Abund Chi,Carb	Vit related	Tr	
DDH.FR-042	76.18	81.45	MD.Local Xen.	81.45	83.26	MD.Local Xen.	Abund Chi,Carb	Vit related local Epid	Tr _	
DDH.FR-042	81.45	83.26	Coarse Int Bx	81.45	83.26	Coarse Int Bx	PP with MD matrix.Fine Carb.Epid Vits	Vit related some Cy	Tr to 1	
DDH.FR-042	83.26	87.14	FZ Chi gouge	83.26	87.14	FZ,Chl gouge.Bx	Bx.Fr Carb Vits	Patchy w/s Carb	Tr to 2	
DDH.FR-042	87.14	113.75	MD.Local Xen.	87.14	94.8	MD.Alt.Py	Carb,Chl,Py Vits.Local Sil and Epid	Epid,Sil.Vit rel.Carb,Chl	Tr to 3	
DDH.FR-042				94.8	105.25	MD	Massive few Carb, Chi Vits	Vit related	Tr	
DDH.FR-042	- · -			105.25	106.35	Chi Bx	Fr.Bx,Chi Vas	Strong dark Chl.w/m Carb	Tr to 4	
DDH.FR-042		_	· ·	106.35	113.75	MD.Local Xen.Py	Chi,Py Vits	Wk Carb	Tr	
DDH.FR-042	113.75	116.85	HP.MD.Dk	113.75	116.85	HP.MD.Dk	Few Vits	Chi.Alt Hb.wk carb	[]	
DDH.FR-042	116.85	170.06	Md Local Alt	116.85	125.6	MD.Wk Alt.Py	Chi,local Carb,one Qv	Vit related	Tr.7 with Q	
DDH.FR-042	•.•=•==			125.6	141.74	MD.Xen	Minor Carb, Chl, Py local vugs	Vit related also Sil?	Tr to 2	
DDH,FR-042				141.74	142.42	MD.Alt.Fr	Carb,Chl,Py	M/s Carb patchy Chl	1 to 3	
DDH.FR-042				142,42	148.74	MD	Few Vits Carb, Chi, Epid	Vit related	Tr .	
DDH.FR-042				148,74	150.66	MD.Alt.Carb	Abund.Carb Vits	M/s Carb	Tr to 1	
DDH.FR-042		+		150.66	166.6	MÖ Xen	Local fine Carb Vits,minor Py,Epid	Vit related Chl,Epid	Tr to 1	
DDH.FR-042				166.6	170.06	MD.Xen.Py	Chi,Py Vits	Vit related Chi, Sil?	Tr to 3	
DDH.FR-042	170.06	170.61	And Dk	170.06	170.61	And Dk	Lam, Vit Carb	Vit related		
DDH.FR-042	170.61	179.93	MD Xen	170.61	174.35	MD.Chl Vits	Abund.Chi Vits	Vit related, loca) Bi	Tr	
DDH.FR-042	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			174.35	179.83	MD.Wk.Alt	Wk/m Chi,Carb Vits/vns iocal Py	Patchy Wk Chl	Tr to 2	
DDH.FR-042		179.93	EOH	+	179.93	EOH	i			

-

DDH.FR-042 Assay

and the second

HOLE ID	From	То	Sample No	Length	Au g/t metallic	Au g/t	Au ppb	Ag ppm	Cu ppm	Zn ppm
DDH.FR-42	4.50	6.43	74851	1.93			165	0.2	194	60
DDH.FR-42	6.43	8.23	74852	1.80	4.97	5.20	>1000	1.6	480	67
DDH.FR-42	8.23	9.77	74853	1.54	11.00	9.97	>1000	1.7	470	53
DDH FR-42	9.77	11.10	74854	1.33	1.10	1.41	>1000	0.2	30	43
DDH FR-42	11.10	12.53	74855	1.43		ţ	75	<0.2	32	56
DDH.FR-42	12.53	13.40	74856	0.87	1.20	1.22	>1000	0.8	1406	81
DDH.FR-42	12.00	Dupl.	74857			1.04	>1000	1.6		80
		Std. C	74858			+	>1000	18.8		26
DDH.FR-42	13.40		74859	1.15		+	165	0.2		54
DDH.FR-42		14.55	74860	0.78	1.28	1.41	>1000	5.4		50
DDH.FR-42	14.55	15.33		1.17	1.20	·····	500	1.4		
DDH FR-42	15.33	16.50	74861			┨────	85	<0.2		
DDH FR-42	16.50	18.00	74862	1.50	ha	+	470	0.2		
DDH FR-42	21.20	22.20	74863	1.00	ļ	+		0.2		
DDH.FR-42	26.63	27.63	74864	1.00	l		205			
DDH FR-42	27.63	29.53	74865	1.90			25	<0.2		
DDH.FR-42	35.40	36.68	74866	1.28			80	<0.2		
DDH.FR-42	36.68	37.68	74867	1.00			190	<0.2		
DDH.FR-42	37.68	38.85	74868	1.17	0.93	1.13	>1000	1.1		
DDH.FR-42	63.30	64.16	74869	0.86			360	0.6		
DDH.FR-42	68.53	69.83	74870	1.30			60	<0.2		
DDH.FR-42	69.83	71.25	74871	1.42	T		655	<0.2		
DDH.FR-42	71.25	72.75	74872	1.50	1	1	15	<0.2	2 <u>1</u> 0	
DDH.FR-42	80.45	81.45	74873	1.00	<u>+</u>		40	<0.2	16	
DDH.FR-42	81.45	83.26	74874	1.81			15	<0.2	2 46	38
DDH.FR-42	83.26	84.76	74875	1.50			20	<0.2	2 33	47
DDH.FR-42	84.76	85.95	74876	1.19			105			
DDH.FR-42	85.95	87.14	74877	1.19			85			
			74878	2.70		~+·· -·· • • • • • • • • • • • • • • • • •	165			
DDH.FR-42	87.14	89.84				1	260			
DDH FR-42	89.84	91.00	74879	1.16		-+	40			
DDH.FR-42	91.00	92.57	74880	1.57			15		_	
DDH.FR-42	92.57	93.57	74881	1.00			45			
DDH.FR-42	93.57	94.80	74882	1.23			15			
DDH.FR-42	103.75	105.25	74883	1.50						
DDH.FR-42	105.25	106.35	74884	1.10		· i	415	+		
DDH.FR-42	106.35	108.07	74885	1.72			20			
DDH.FR-42	108.07	109.07	74886	1.00		·	395			
DDH.FR-42	109.07	110.57	74887	1.50		1	155			
DDH.FR-42	110.57	111.57	74888	1.00			245			
DDH.FR-42	111.57	112.57	74889	1.00			32			
DDH FR-42	116.85	117.70	74890	0.85		l	5	****		
DDH, FR-42	118.77	119.87	74891	1.10			390			9 40
DDH.FR-42	121.63	123.13	74892	1.50		1	270			9 49
DDH FR-42	124.60	125.60	74893	1.00			56	0 <0	2 9	
DDH.FR-42	131.50	132.50	74894	1.00			10		.2 4	2 25
DDH.FR-42	141.74	142.42	74895	0.68			4	5 <0	.2 13	
DDH.FR-42		150.66	74896	1.94			14		.2 4	2 37
		154.33	74897	1.27			1			7 32
DDH.FR-42		159.94	74898	1.00	· · · · · · · · · · · · · · · · · · ·		2			5 33
DDH.FR-42				1.50			1			6 45
DDH.FR-42		162.40	74899				2			1 39
DDH.FR-42	A	163.40	74900	1.00			11		· · · · · · · · · · · · · · · · · · ·	1 40
DDH.FR-42		168.10	74901	1.50						
DDH.FR-42		169.10	74902	1.00			40			
DDH.FR-42	169.10	170.06	74903	0.96			2			
DDH.FR-42	170.06	170.61	74904	0.55				5 <0		6 4
DDH.FR-42	170.61	172.11	74905	1.50				5 <0		19 19
DDH.FR-42		173.11	74906	1.00				5 <0		16 30
DDH.FR-42		179.83	74907	1.00	- I		25	0 <0).2	38 2

CERTIFICATE OF ASSAY AK 2005-982B

A state of the formation of

YANKEE HAT INDUSTRIES CORPORATION 4460 Atlee Avenue Burnaby, BC V5G 3R6

ATTENTION: Donald Gee

· · · · ·

No. of samples received:111 Sample type: Core **Project #:FRAN** Shipment #: not indicated Samples submitted by: Ron Wells

		Au	Au	
ET #.	Tag <u>#</u>	(g/t)	(oz/t)	
56	74852	5.20	0.152	
57	74853	9.97	0.291	
58	74854	1.41	0.041	
60	74856	1.22	0.036	
61	74857	1.04	0.030	
64	74860	1.41	0.041	
72	74868	1,13	0.033	

QC DATA:

Standard:		
SN16	8.17	0.238
SN16	8.12	0.237

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

8-Sep-05

CERTIFICATE OF ASSAY AK 2005-982B-R

÷.

· · ·

YANKEE HAT MINERALS LIMITED 4460 Atlee Avenue Burnaby, BC V5G 3R6

14-Oct-05

ATTENTION: Donald Gee

Ì

No. of samples received:111 Sample type: Core **Project #:FRAN Shipment #: not indicated** Samples submitted by: Ron Wells

		Metallic As	ssay	
		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
56	74852	4.97	0.145	
57	74853	11.0	0.320	
58	74854	1.10	0.032	
60	74856	1.20	0.035	
64	74860	1.28	0.037	
72	74868	0.93	0.027	
QC DATA Standard		8.40	0.246	
SN16		8.42	0.246	

JJ/bw XĽS/05

ECO TECH LABORATORY LTD. Jutta Jealouse

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 2005-982B

YANKEE HAT INDUSTRIES CORPORATION 4460 Atlee Avenue

and the second se

÷

Burnaby, BC V5G 3R6

ATTENTION: Donald Gee

No. of samples received: 111 Sample type: Core Project #: FRAN Shipment #: n/a Samples submitted by: Ron Wells

<u> </u>	Tag #	Au(ppb)	Ag	A! %	As	Ba	Bi	<u>Ca %</u>	Cd	Co	Cr	_Cu	Fe %	_La	Mg %_	Mп	_Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Tỉ %	U	v	w	Y	Zn
55	74851	165	0.2	2.06	80	155	<5	1.13	<1	24	14	194	7.93	<10	1.06	787	8	0.03	5	1680	10	<5	<20	18	0.12	<10	180	<10	17	60
56	74852	>1000	1.6	1.84	55	105	<5	1.63	<1	33	18	480	9.30	<10	0.81	754	4	0.04	11	1430	10	<5	<20	30	0.11	<10	142	<10	13	67
57	74853	>1000	1.7	2.04	30	85	<5	1.67	<1	50	14	470	9.63	<10	0.84	489	22			1470	12	<5		19					9	53
58	74854	>1000	0.2	2.01	20	50	<5	2.96	<1	18	16	30	5.01	<10	0.80	478	<1	0.05	8	1710	12	<5	<20	30	0.13	<10	142	<10	16	43
59	74855	75	<0.2	2.09	20	60	<5	3.34	<1	19	14	32	5.43	<10	0.79	560	<1	0.05	6	1750	12	<5	<20	35	0.15	<10	159	<10	16	56
60	74856	>1000	0.8	1.93	60	95	<5	0.94	<1	87	19	1406	>10	<10	0.96	676	9	0.03	8	1310	12	<5	<20	24	0.14	<10	170	<10	1	81
61	74857	>1000	1.6	2.01	40	100	<5	0.96	<1	59	21	1380	>10	<10	1.02	696	9	0.04	9	1400	10	<5	<20	27	0.15	<10	181	<10	5	80
62	74858	>1000	18.8	0.17	<5	40	<5	0.10	<1	3	<1	5	3.86	<10	<0.01	93	3	0.08	5	300	138	<5	<20	- 4	<0.01	<10	1	<10	<1	26
63	74859	165	0.2	2.08	35	70	<5	2.71	<1	27	12	157	7.68	<10	1.07	783	<1	0.03	6	1740	12	<5	<20	30	0.13	<10	177	<10	12	54
64	74860	>1000	-	1.26	625	70	<5	2.30	<1	78	33	374	>10	<10	0.56	727	56	<0.01	7	1120	178	<5	<20	23	0.02	<10	105	<10	2	50
65	74861	500	1.4	2.10	80	115	<5	2.99	<1	31	15	652	>10	<10	1.06	982	15	0.03	10	1650	22	<5	<20	50	0.15	<10	167	<10	10	77
66	74862	85	<0.2	1.89	35	65	<5	3.58	<1	21	18	48	6.11	<10	0.85	831	3	0.03	8	1720	16	<5	<20	37	0.15	<10	166	<10	15	74
67	74863	470	0.2	2.36	90	95	<5	3.31	<1	40	12	180	8.66	<10	1.24	910	6	0.02	7	1740	18	<5	<20	55	0.16	<10	174	<10	13	59
68	74864	205	0.3	0.62	50	45	<5	8.35	<1	21	18	168	4.35	<10	0.55	1350	4	<0.01	6	1250	4	<5	<20	232	<0.01	<10	26	<10	15	57
69	74865	25	<0.2	1.06	15	50	<5	4.D0	<1	17	9	22	5.72	<10	0.54	700	5	0.02	5	1570	10	<5	<20	116	<0.01	<10	90	<10	13	65
70	74866	80	<0.2	1.94	55	85	<5	0.63	<1	28	26	682	7.82	<10	0.96	625	3	0.03	10	1510	14	<5	<20	23	0.09	<10	192	<10	11	140
71	74867	190	<0.2	1.67		135	<5	1.37	<1	30	24	178	7.00	<10	0.88	723	<1	0.05		1460	16	<5	<20	51					13	58
72	74868	>1000	1.1			110	<5	0.78	<1	38	17	747	9.80	<10	0.96	803	5	0.02		1450	18	<5	<20	38	0.13		200	<10	9	101
73	74869	360	-	1.30	250	45	<5	3.16	<1	20	18	155	5.26	<10	0.44	420	8	0.03		1660	16	<5	<20	91	0.05			<10	11	49
74	74870	60		1.54	15	80	<5	2.72	<1	9	30	19	3.61	<10	0.36	365	<1				18		<20	85	80.0		-	<10	14	29
75	74871	655	<0.2		20	50	<5	3.54	<1	15	23	51	5.07	<10	0.59	549	5	0.02		1480	16	-	<20	46	0.03			<10	13	38
76	74872	15	<0.2		10	70	<5	3.73	<1	9	27	10	3.76	<10	0.50	481	<1	0.03			16		<20	90	0.06			<10	16	32
77	74873	-	<0.2		10	75	<5	2.38	<1	9	35	16	3.40	<10	0.29	293	<1	0.04		1480	16	-	<20	98	0.09		• =	<10	14	23
78	74874	15	<0.2		20	70	<5	3.51	<1	16	39	46	5.20	<10	0.65	581	<1	0.04	-	1570	18	-	<20	• •	0.12		· · -	• =	18	38
79	74875	20	<0.2		15	50	<5	5.65	<1	14	30	33	4.62	<10	0.68	678		0.04		1370	20	-	<20		0.06			<10	16	47
80	74876	105	<0.2	0.75	45	25	<5	8.65	<1	11	24	51	4.09	<10	0.50	854	3	0.02	4	1290	10	<5	<20	130	<0.01	<10	60	<10	14	36
81	74877	85		1.10	45	55	<5	2.96	<1	35	53	301	6.66	<10	0.62	486	14			1270	16		<20		<0.01		• ·	<10	5	43
82	74878	165	0.4	1.28	25	60	<5	3.17	<1	35	40	334	6.52	<10	0.66	566	3	0.02	•	1470	16	-	<20	100	0.06			<10	8	44
83	74879	260	1.1	1.50	25	60	<5	2.31	<1	32	38	884	7.23	<10	0.74	559	4	0.03		1620	18	-	<20	39			109		8	66
84	74880	40	0.2	1.26	10	60	<5	2.54	<1	20	41	139	5.66	<10	0.62	515	3	0.03		1500	18		<20	41	0.09	-	101		13	37
85	74881	15	<0.2	1.72	20	65	<5	3.86	<1	11	30	18	3.80	<10	0,47	391	2	0.03	4	1550	26	<5	<20	85	0.07	<10	82	<10	14	30

Yankee Hat Industries Corporation AK 1005-982B

Et #	Tag #	_Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
86	74882	45	<0.2	1.95	20	105	<5	4.35	<1	11	36	13	3.79	<10	0.48	422	<1	0.03	4	1490	28	<5	<20	178	0.08	<10	98	<10	16	28
87	74883	15	<0.2	1.21	10	110	<5	2.46	<1	6	29	11	2.39	<10	0.24	256	<1	0.04	3	1540	22	<5	<20	199	0.07	<10	59	<10	13	20
88	74884	415	0.7	1.70	20	90	<5	3.20	<1	45	56	672	6.87	<10	0.72	458	<1	0.04	29	1310	28	<5	<20	122	0.13	<10	- 91	<10	12	77
89	74885	20	<0.2	1.72	15	40	<5	3.54	<1	11	33	25	4.23	<10	0.50	434	<1	0.03	4	1590	28	<5	<20	62	0.07	<10	101	<10	13	34
90	74886	395	0.3	1.66	40	65	<5	2.59	<1	67	35	278	9.00	<10	0.71	526	2	0.02	3	1580	32	<5	<20	29	0.10	<10	118	<10	10	49
91	74887	155	<0.2	1.41	15	55	<5	3.00	<1	12	31	87	3.51	<10	0.33	328	<1	0.03	4	1680	26	<5	<20	94	0.07	<10	80	<10	14	28
92	74688	245	<0.2	1.34	15	50	<5	2.78	<1	10	44	67	3.10	<10	0.30	298	<1	0.04		1630	24	<5	<20	70	0.09	<10	78	<10	16	27
93	74889	325	<0.2	1.48	20	65	<5	3.23	<1	18	42	91	4.60	<10	0.37	371	<1	0.04	2	1690	34	<5	<20	125	0.10	<10	84	<10	15	35
94	74890	55	<0.2	1.61	20	60	<5	4.05	<1	13	43	31	4.27	<10		427	<1	0.03		1720	36	<5	<20	102	0.1D	<10	86		13	39
95	74891	390	<0.2	1.49	55	55	<5	2.66	<1	15	25	49	4.89	<10	0.48	434	<1	0.93	5	1720	32	<5	<20	71	0.09	<10	88	<10	14	40
96	74892	270	<0.2	1.50		75	<5	4.74	<1	14	21	99	4.44	<10	0.48	570	<1	0.03	4	1460	34	<5	<20	100	0.09	<10	88	<10	13	49
97	74893	560	<0.2	2.01	25	45	<5	4.10	<1	17	54	97	5.54	<10		568	2	0.02	-	1420	42	<5	<20	58		<10	98		7	46
98	74894	10	<0.2	1.31	15	105	<5	2.73	<1	14	64	42	4.43	<10		306	<1	0.05		1540	32	<5	<20	106		<10	92		12	25
99	74895	45	<0.2	0.94		65	<5	8.18	<1	27	37	139	6.30	<10	0.48	873	17		5	1420	18	<5	<20	181	<0.01	<10	49		11	46
100	74896	140	<0.2	0.97	1175	70	<5	8.08	<1	14	48	42	4.52	<10	0.53	972	5	<0.01	6	1470	20	<5	<20	186	<0.01	<10	23	<10	16	37
101	74897	15	<0.2	1.29	15	95	<5	3.89	<1	13	51	17	4.22	<10	0.44	553	5	0.04	6	1750	22	<5	<20	118	0.10	<10	94	<10	13	32
102	74898	25	<0.2	1.41	10	90	<5	3.04	<1	13	60	35	4.40	<10		499	<1	0.05		1690	30	<5	<20	59			101	<10	14	33
103	74899	10	<0.2	1.25	5	70	<5	2.64	<1	13	56	16	4.03	<10	0.29	445	<1	0.04		1760	28	<5	<20	90	0.11	<10	94	<10	12	45
104	74900	20	<0.2	1.20	10	70	<5	2.53	<1	14	70	21	4.24	<10	0.24	363	43	0.05		1790	28	<5	<20	80		<10		<10	13	39
105	74901	115	<0.2	1.41	15	110	<5	3.46	<1	23	31	75	5.73	<10	0.49	528	<1	0.04		1950	36	-	<20		0.15			<10	16	40
106	74902	405	<0.2	1.27	<5	55	<5	1.94	<1	17	35	110	3.64	<10	0.43	281	<1	0.05	6	1220	4	<5	<20	36	0.10	<10	89	<10	10	15
107	74903	20	<0.2	1.76	15	100	<5	2.27	<1	15	33	45	4.38	<10	0.63	335	<1	0.07	7	1370	6	<5	<20	88	0.13	<10	144	<10	10	23
108	74904	45	<0.2	3.15	50	35	<5	7.09	<1	25	22	86	4.98	<10	1.09	664	<1	0.04	7	1550	6	<5	<20	165	0.09	<10	142	<10	7	44
109	74905	15	<0.2	1.35	10	90	<5	2.01	<1	12	34	19	3.56	<10	0.42	339	<1	0.06	4	1600	6	<5	<20	71	0.12	<10	124	<10	11	19
110	74906	15	<0.2	1.67	15	65	<5	5.78	<1	13	29	16	4.65	<10	1.04	837	3	0.04	5	1330	2	<5	<20	194	0.03	<10	113	<10	11	30
111	74907	250	<0.2	1.70	10	70	<5	2.18	<1	14	38	88	3.51	<10	0.53	360	<1	0.06	5	1140	2	<5	<20	99	0.10	<10	74	<10	12	21
<u>QC/DAJ</u> Resplit:																														
71	74867	225	<0.2	1 71	55	170	<5	1.73	<1	40	26	184	8.78	<10	0.88	899	<1	0.04	A	1850	46	~ 5	<20	59	ń 72	<10	209	<10	18	94
106	74902	395	<0.2		-55 -55	50	<5	1.99	<1	16	27	94	3.43		0.43	281	<1	0.04		1270	4		<20		0.11			<10	12	15
Depend																														
Repeat:		2005	-0.0	4.64	**	195		1 47	-4	22	76	467	7 40	~10	0.85	743	~1	0.06	0	1460	22	~E	~ 70	54	0.71	~40	188	<10	18	64
71	74867	205	<0.2	1.64	40	135	<5 -E	1.47	<1	32	26 26	167	7.18	<10	0.65	743 911	<1 4	0.05	-	1460	22 14	-	<20 ~20	51	0.21 <0.01			<10	-	40
80	74876	120	<0.2	0.77	45	30	<5	9.36	<1	12	26 26	49	4.43	<10				0.02		1370	40		<20						16 15	38
89	74885	25	<0.2	1.82	20	45	<5	3.96	<1	12	36	25	4.51	<10	0.51	464	2	0.03	6	1750	4V	<0	<20	65	0.08	<10	107	~10	15	20
90	74886	370																												
91	74887	140																												
93	74889	280			-			4					A		.			A A-		1000	,				• • • •		~~	-40		40
106	74902	445	<0.2	1.27	<5	50	<5	1.99	<1	17	37	108	3.69	<10	0.43	286	<1	0.05	8	1280	4	<5	<20	35	0.11	<30	90	<10	11	16

1

المالك المراجع والمستحد المراجع

AND NAME

.

Yankee Hat Industries Corporation AK 1005-9828

Et #. Tag #	Au(ppb)	Ag	AI %	As	8a	₿ĭ	Ca %	Cď	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	<u>w</u>	Y	Zn
Standard:																													
GEO'05	140	1.5	1.24	60	165	<5	1.56	<1	16	64	85	4.01	<10	0.65	639	<1	0.02	29	860	20	<5	<20	50	0.11	<10	72	<10	10	76
GEO'05	145	1.5	1.28	55	150	<5	1.67	<1	20	60	86	4.02	<10	0.66	760	28	0.02	68	850	24	<5	<20	52	0.02	<10	70	<10	10	78
GEO'05	145	1.6	1.34	65	155	<5	1.61	<1	20	58	85	4.04	<10	0.67	739	<1	0.02	40	880	22	<5	<20	54	0.13	<10	70	<10	10	78

JJ/ga df/1004m XLS/05 FAX: 372-1012 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer · ---

Alter and

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DDH NO. FR-042					·		PA	GE NO. 🕴
	L	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMP	LING
MAIN UNITS	GL	SUB UNITS				FROM	то	NUMBER
0-2.05 Casing in	1	0-3.05 Rubbly bedrock		· · · · · · · · · · · · · · · · · · ·	<u> </u>	ļ	_	ļ
-	lΩ						L	L
rubbly bedrock 3-05-15-33 Altered	24	3-05-6-43 willing recovery, strong	Many 30-50 freetures	oxidiged patch,	exidation exercises	4.50	6.43	.74851
Monzooliorite . Mottlad	14	oxidized altand	1 .	we contante	sulfides	{	L	
		E-42-7.77 As above rubbly oridized.	Show and a ton		PALOOLY 75% VA	6.43	1.23	74852
medum greens + greys	11	Alumenous sulfide vite - une upto bea	Kubbig Recovery	Chi. V axidized Chi. V axidized Cocal gtz fregments	pyrite local vos to	ļ		.
Fine-medium grained		Lacal oxide gouge	10-00 04 13	Cocal gry fregmente	Tocm 40-60 CA VH3 at enty section	8.23	9.77	74.853
ixidized, patchy corbonate	1	9.77-15.23 Alterad, frai grained	Two gly in internet	shlarite associated	at eat y section	<u></u>	11.10	74854
1	.	light med grays have avidized	4 Apor 30 CA Lawar Loigh		upper ven internal 5-5% Py > Po, 1% 44	<u> 11.10</u>	12.53	74.855
9'3V	1	fractures the gty wine with	pateress lacal Py vite	vit letoted carb	5-8% Py > Po, 14 44	1253	13.00	748.56
ty,to, center.	÷ t	sulfides 12-85-13.40:, 1455-15-20-	Bateres lacal By vite 35'ch. Fair Lourano care vite, variable	local wk potety	Cower vein 5-64 P. Para Pa local Trail	11.53	14:55	74857 2401
¥3*	1		care ults, variable	perrosive.	ger, 41, 3	44.55	15:33	74860
15:33-26.63 Py to comp.	1	15-23-24-63 AT general description			@ 16.40 year by Re		16.50	74 861
Altered diorite 5%.	[.	grey, fine grained, lacal semanate			VER 35"CA Altantara		18:00	74 862
Gray , fine grained in	1	and was growed tachier - lorgely -	(sich) Marcow vits	weak - local mod .	2-4 la vite perform	ļ	↓ _	74958 std
	1	averpristed. Alusenus carb elts	kighly winter anyth	pervosive carb and	cryich Average	21.20	22:20	74 863
	+ :	local vas	Fewer clu vite	c4.	patons Trette ly		ļ	
grained disrihi	1		similar any to becal		Tr Po.			
texpores	÷,		Py #14 15-40 CA					
	*			·	· · · · · · · · · · · · · · · · · ·			
24-48-38-85 F	5.2	2643-2743 Mais fault, clay by with te.	Annana 60-tica FC	strong contendence	. To fine deman by	2643		
Foult, Freebre Zone		27-63-2953 Nutaras fractures	Nortons Conto vita	strang corts, childen. childen potety permanie corts	Tr fiss dissen by	27.63	29.53	74845
in Monzodierite N.	11	2953-37.68 Battle prechured	Britle prost had	permune carb			· · ·	
		maduo (coore) grained MD	A YICLARACE CACTOM A	VICAN GARAGEVILL	I A ALAS CHARGE AT P.			
		and boutings and local	COM CON VIES Y VAS	ellated, lacel wall_	marked by art dation			
	1/2	wallacts	avide Louge Anos with	nck exidetion		-		
	紁	·	Lacal chi. 30-60°CQ exicle genze anoc with Some freeteries	Patch, Viweak		35:40	16.69	74.866
	X		Fractores SUTTORA	permanent coto.	· · · · · · · · · · · · · · · · · · ·	36-68	37.68	
	177		olecreasing deem hele	end from with	Tr-3% Libran VAS			
38-85-63-20 MD	+7		Frankwing. 7 verning	carerolly vit related .	74 1728 70040		_38:55_	
	11	weak freetwing, oxidation and		- record -	X-5% No VIN per/m	I		

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. c. Wells DATE 13 August 2005

FRAN PROJECT 2005

.

YANKEE HAT MINERALS LTD

DH NO. FR-042				······································			PA	GE NO. 2
	L	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMP	LING
MAIN UNITS	GL	SUB UNITS				FROM	TO	NUMBER
ny-white speckled, medium graned . Local	X	verining master textures	decroase dayon have lacal carbo by minor epid vite 30-65°CA	carb and Py. weak permative Earth at the		<u> </u>		
	14.							L
ubangular mafie Kenaliths to 2cm.		48-2-63-30 Fresh textures, and um	Generally low donit	Vit related carts .	. II fin elterdinen			l
	+	grained, bear sub-angular makes .			Ry			<u> </u>
	• ´	xenalities to zem uniform - massive.	vite and varias to los	annum cold when	· J			_
	+	interval few ults local epidate	30-60'64	weak midation				·
S*.	١.,	,	· · · · · · · · · · · · · · · · · · ·	Letren 53.0-55.5				
	17							
	+							
	1							
	· .							
							a	
								i
	+							
د •	┥.							
	•							
	14	12 2 . 11 11 Chi white have the with	chlight laule tice	chilcost lout	Test his dimen	62.30	54.16	74843
3.30-71-18 Fauls Freidin	ትድ	62.30- Ly 16 Chloriti fault with		with CH. 6x	Tedy finderen			
lone. Several o.5-0.8n	F	periperiod articles of usered with		I	To his to k dui			
love culoriti forto	1.1	EU-16-14-125 WEREVIEW VEINER DICC		First Corb and local	To fine to V. fine			
porced by variably	K.	local and be rear top		<u>chi witi at vaciatia</u>	dimen lacal ult ?	68.53	69.83	74870
Governed, in, alt MD.	<u>چند</u>	Sum roccu clayey-carb zeres.		angles CA.	- l'a diana	49.82	71.25	74.171
74	1.5	19.23-78.25 c. 6 louitre forte 27 1/2	Land a lacally Soil bacculated games	up pervosive carb	- gine another ry	71.25	72.75 -	74872
	F F			wit receted carbich	To line discon Q.		····	
	1	-71.25-74.10 Ac at 64.16 faily		-	TT free dissem by]		
	N/	Asserva fractures and ults	carb, chi vitt local		To Ini diana 0			
	11	74-10- 78:50 Rubbly salavery	fractings, lak by	cade	Tr fine densem P			
		quarant low angle fractures cart all	Autoria child vita	vite - fractive related	·			
	WA,	lacally obscures textures	and fractures		Tr li dunar P			
78-18- 81.45 MD.	+	To 18-20 45 the general description	Early annarous for Carl FW VIK 10-00:00	WHI / C. WERK COL				· · · · · -

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Welley

DATE: 13-14 August 2005

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DDH NO. FR-042	_		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			PA	GE NO. 3
	<u> </u>	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMP	ING
MAIN UNITS	GL	SUB UNITS				FROM	TO	NUMBER
Medium prairies, massive	1/2	upto 4 cm of 1 m	local epid ult.		Minal high angle My	80.45	81.45	
Medium provided , modsive 1:45-81-26 Course Intrusion Braccia	5.	\$1.45- \$3.26 Subaravias made grades fragred	Annulac-Subaunded	utt related carb, chi	Poten Tr-12 time	\$1.45	83.24	74874
33.26 - 87.14 Foult Zama	66	of ling looply, Madige MD matrice	Assular-Subauded freigneste 1-20cm, A MD aunoris fine existences	cp & same clay	Poten Tr-12 fine	1 · ·	84.76	74875
House fractioning , local Bx	5.	Chloritic gruge with sections of	strong brittin braching	C. P.O. ACLERING CO.V.	Tenzil pater, file	37.2.6	F .	
ster at overprivate textures	12	mosaic Bx vague original textures.	strong brittle fraction	chi pately perman	dimen by	\$4.76	35-15 -	74.876
-	1		and amplound contract.	, <u> </u>		85.95	\$7.14	- 7+ 877
7.14-113.75 Monzodionte	12	\$7.14-94.80 As general desurption	37-14-92-57 Code P.	HIT related carb	At top 3 -5 Py V ls/m			74 878 /0 5
o eat small mafric Pr	1	Patchy alterstion with local sulfide		facal chi and epid.	Troll, Below 910	\$7.94	91.00	7 4 879
xendiths 90.	12	vits, few makin xanalithe	gonerolly narrow.	Lecagular silicanus	- 98:57 1.34 Pakeby	<u> <u>9</u>1.00</u>	92.5.7	74 889
	1	· · · · · · · · · · · · · · · · · · ·	trainty any les ch	polete 210-92.57	frien diesen ly	\$2.57	93.57	74 88!
• • •	X١ الأ		92.57-9486 NULLER	92.57-94.90 Larger _	·	92.57	244.80	74 882
	14							
	F	94.80-105:25 Marxie, fairly uniform	margine with local	numeric vity	The fice by mainly	[
	+	reduin grained for vite Roca	low anger carte, c. h.l.	ult meated card,				
			epid vite. Sporse Py		at small patches-	1		
	14	refi xeaslitta	96.78-98.69 Made	chi qid.	agoragates President to			
(e	r.*				carburns			
	+		despity carb and	·····=				
			breached wit/was soited			}		
	2		Balow 102 core vos					
		11	locally vuggy fine diage	Palet Shared K Chi	2-114 SIDE to LA BY			<u> </u>
5	1	105.25-106-35 Chi. Bx @ 105.65-105-87 with Py, chi Wiley was , Py in wallacks	Frechered brechated	Pakhy Strong de chi.	2-4% fine by in Bx			
5		106.35-113.75 Failly massive MD	- Chi and Ry vitying	VIE related chi	2 m l. vitr ja		105.25	74113
		mading gravied local 1-200 mapie	20-pich sparse cars	Paken week pervasion	_Tr. 2%	105.25	106.35	74 354
13	1/	resalitis. Regular spaced by ults				10635	108.07	74855
···-	1	Cored une to tem	with chilly			108-07	20.00	74816
5	1	speckied white - green to more	Fairly massive	chi alt hos. phing	Sporse luni dimen	107.07	110.57	74887 7488
13.75-116.85		solid grass, fine mad grained	racow c sited any			111.57	112.57	74397
Hornblende Rorphyny-	\sim	with 5-2% the latte to your chil alt.	11. Ania cath with	Mr.				
Monzectionite By Ke. ac	4					116.85	11770	74870
		46.85-125.60 Medium growed	Mainh chi local	ulting meated chi	74 lin Quela		/1787	74 891
1685-170.06 5	1		-		7th fine By chaters			,
Manzadiorite, Pakky alteration, Local 100	í	masking textures	art 117-49 70"cd	4/4 9/4	to gov kisewalle		1	····
	L	L		<i>(`\$</i>]				·

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. .. Welly

DATE: 14 th Agent 2005

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DH NO. FR-042								GE NO. 4
		ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPI	
MAIN UNITS	GL	SUB UNITS	<u>}</u>	·		FROM	то	NUMBE
ofic xenoliths	1/2	main alteration patch 121-63-123-20	Local Py with your		Tr-2.1. fine dissem		{	
1	3		1. alteration patrice	· · · ·	after fracture mester	121.63	123.13	74 892
	1	······	Local Toch fine land	· .	ly	124.60	.125.60	74853
	14		Meinly shi local Py					
		125.60-141.74 Massive medium grained		Generally vit	Generally TT Ry			
	[/]	fairly fresh manzediarite, Jew ulte	carb, chi. epid. Sil.	related carby chi.	vitz local 2-5 per	<u> </u>	L	
	+	Local clusters of large matin	finingraising xite	epid, sit fingrouin	m. 25-30CA 131.50-			
30	1/6.1	xenality partially assimilated	shay contracts 126.16	ville Sharp contacts	132.50			<u> </u>
٩			Antior Erm Verh	126-16-126-27 5-CA			L	
	+		@ 127.90 30CA	@ 127.9 . Zun VA 30 CA		131.50	132.50	74196
	Ĩ			{				
	[]							
	14			·················		•		· ·
	1				······			•
12	<u></u>		Alex - Later in	Alle in ArisTe	0 with 1.200 1.71		l	
•	- IY 2	141.74 - 142.42 - CW-Carb all Call R.	Mary contacts sich	M/E. contonate,	P. Vit 4ich 1-3'			
دلماردهم	51/	WARK Freitige - Offeration gent	Ind. By WIA	" . T	fine dissen Py	141.74		74895
-	1/	142.42-148.22 Massue, and greened	PER CAR VIT 40	related cill, epid	in alt	191.14	142.42	. /4 6/3
	14	few vite	-Gaca Local Cl. spid	win pervosive				
	Re		146.10-146.10 Corb	ports in main alt.		·		·
	4	······································	UM to COM. 20-10CA	/ · · · · · · · · · · · · · · · · · · ·				
stan	1.	143.72 - 150-66 Light grach, frie graine	Micafintured-ula	• ···- •				
Carb	. 1 /4	Togener 150-66 Light green, for greine Entrenet alt mithing textures	T'CA	MIS pervosive corts crackie Br mast.				
-	74.1		•					7. 00.
	12	150-66-166.60 Massing med grained	massive with lacal	W/E MEDERAL CORD	Te-10 fine demen	148.72	150.44	74896
	+	MD local local matin xemilter	fine carts with 30-600	A hocal poid and , as	By local cluthers			
	1.	to face 1-2°h , smaller to 2cm	fewer epid 2 Py	chi, selvedgez	1-2 P, v/h/m	153.06	154.33	74897 -
*	1	Generally few ults	@ 163.10 20 Silven	Potring with epid	local silicion		ł	
' .	1		Vn with fine Pz,		vor with golene			
	1		golena 40'ca			158.94	159.94	748.98

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY Reading

DATE: 14 th August 2005

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DDH NO. FR-04				_ ,			PA	GE NO. 🕤 🛛
		ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION]	SAMPL	ING
MAIN UNITS	GL	SUB UNITS				FROM	TO	NUMBER
P		sea . Pg 4			· · · · ·	160.90	112.40	
•	1+/	· · · · · · · · · · · · · · · · · · ·	L			1 * *	15.3.40	74953
<i>a b</i>	\mathbf{V}	·····	} 					
8~1: 8~1:	1+							
	12					166.60	168.10	7490
	17	166-60-170-06 Ar above with more	Agon ald with with	wit palated chil loca	and with to sorie		169:10	74902
	Vr	remark chi- by xits facal sarts		cak examine silica	A ZUM SOCA OCY		170.96	74902
170-06-170-61 Anderite 17	¥,	share contactor fine grained	conto and we silica	with permane silica With card and patching with permanent carb	with end for ty	170-96	170-61	74904
170.06-170.61 Anderite 17 Dyke . Midginen finigr.	1		So'CA	uk pervoxie corb J	the state i r-the pined.	170.61	172.11	74905
170-61-179-83	18	170-61-174.35 Ar at 146 40	Maisly Clu. VIte vie	mainer with restanted	TI fine derver &	172-11	123.11	74906
Monzodiorite	Ľ.	Faith avanue chinte with		chi. J	Mast vite Py			
• • • •	+1_	174-35-179.32 (190K alteration	w/m cly-card with	172.82-178.10 blocks	Ingol Pro Kilk for			
	1//	blenching with low angle with	Y VAC 10-30 CA	Vit melated carb	at end of section	178.93	179.83	74907
	11+	masking taxheres	local fin By x1th		Tr.e.			
	6		0	whe percessive	3			
15	╡	179-93 FOH						
					<u> </u>			
			· . _					
			···· ···· ···- ···					
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
		·						 •···
						{		
	1				·	·		
	1					ł		}
	1				· ·	<u> </u>	_	· · · · • • • • • •
l						I.	L	

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: Really DATE: 15 August 2005

DDH: FR-043

· •• : :....

;

المراجع المراجع المراجع المنافعة المنافعة المنافع ال

2

R. C. Wells P.Geo, Kamloops Geological Services Ltd.

DDH.FR-043 CoverPage

• • •

A CONTRACT OF A

Hole ID: Project: Property: Claim:	DDH.FR-043 FRAN FRAN
Easting:	10408619E
Northing:	6094380N
Elevation:	1271m 👍
Grid:	8619E/3380N
Length (m):	199.03
Dip:	-45
Azimuth (grid):	206
Started:	14/8/05
Finished:	16/8/05
Hole Status:	Finished
Material left in hole:	None
Comments:	Testing soil and prospecting anomalies
Core Size:	NQ
Logged By:	R.Wells
Purpose:	Third hole in north-south fence across intrusive

۱

7

۲

¥

ł

2

DDH.FR-043 Surveys

.

.

.

HOLE ID	Depth (m)	Dip	Azímuth (grid)
DDH.FR-043	0	-45	206
DDH.FR-043	86	-44.2	209.6
DDH.FR-043	187	-42	211.3

١.

1

ŧ

1

DDH.FR-043 Geology

Hole ID	From	То	Unit Code	From	To	Sub Unit	Veins, Vits	Alteration	% Py	% Po	Сру %
DDH.FR-043	0	6.1	Ovb/Till	0	6.1	Ovb/Till					<u> </u>
DDH FR-043	6.1	42.65	MD.var.Alt	6.1	11.28	MD.Fr.Oxid	Fr.Oxid local Carb Vits	Oxid.Vit related Carb			
DDH FR-043				11.28	17,46	MD.Fr.vugs	Massive minor Carb, Epid Vits, vugs	Vit related Epid	1 10 4	• •	
DDH.FR-043				17.46	22.81	MD.Vit.Stwk	Local Bx.Carb.Epid VIt.stwk	Patchy Epid	Trio 2		
DDH.FR-043				22.81	27.27	MO.Local 8x	Fine Chl.Epid,Carb.Chl Bx	Vit related Chi Bx	Tr	· <u> </u>	
DDH.FR-043				27.27	31.31	MD.Bx.	Chi Bx.Ep minor Carb.Py Vits	Dark Chi Bx Epid patches	Tr		
DDH.FR-043				31.31	35.22	MD.Att	Chi,Carb,Epid Axin Vns/bands	Patchy Ep,Carb,Chl,Axin	Tr to 1		
DDH.FR-043				35.22	42.65	MD.Fr	Dark Chi, local Epid, Carb	Vit related Chi	Tr		
DDH.FR-043	42.65	44.85	MD.FZ	42.65	44.85	MD.FZ	Lam. local Cy.Chi.Carb Vits	Mainly dark Chl	Tr		
DDH.FR-043	44.85	75.75	MD.Xen	44.85	46.3	MD.Bx.	Mod Bx,Carb Vns	Chi focal Cy	٦Ť		
DDH.FR-043				46.3	51.96	MD.Pv Vits	Cerb.abund.Py Vits	Vit related	Tr to 20		
DDH.FR-043				51.96	53.57	MD.All	Strong Epid Axin Sil minor Carb	Alt bends	1 to 2		
DDH.FR-043				53.57	67.05	MD.Xen	Sil, Py local yugs	VII related	Tr to 2		
DDH.FR-043				67.05	75.75	MD.Wk.All	Sit,Carb local Chi,Epid,Py	Vit related local Sti	1 10 2		
DDH.FR-043	75.75	85.2	HP.MD.Att	75.75	81.17	HP.MD.Alt.Py	Py,Qtz-Carb Vits/vns	Mod Epid	3 to 4		
DDH.FR-043				81.17	85.2	MD.HP.Xen	Chl,Carb few Sil,Py	Chl.grey Sil	Tr		
DDH.FR-043	85.2	103,87	MD.local Xen	85.2	86	MD.Alt.Chl	Chi Vils local Carb	Pervasive Chi	1 to 2		
DDH FR-043				86	100.14	MD.Xen	Abund Vits Chi,Carb local Qtz,Py	Local Sil, VII related ChI,Carb	Tr to 1		
DDH FR-043				100.14	103.67	MD.Alt.Carb Vits	Carb,minor Chl,Sil	Patchy w/m Carb	Tr		
DDH,FR-043	103.87	108,44	FZ.MD.Alt	103.87	108.44	FZ,MD.All.Py	30% Core loss,Fr.Py	Chi, local Cy, Wk Carb	1 to 3		
	108.44	127.35	MD. local Xen	108.44	115.47	MD.Wk.Alt	Minor Carb Vils/vns	Wk Chl,Cerb	Tr	_	
DDH FR-043				115.47	120.05	MD.Xen	Few Chi,Carb Vits	Vit related	Tr		
DDH.FR-043				120.05	127.35	MD.Xen, local Chl	Chi Vits/vns/bands local Qiz	wall.rk Chi	1 to 2		
DDH.FR-043	127.35	128.65	And Diks MD Axin-Carb	127.35	128.65	MD,Xen And Dks. local Chl	Wall.rk Axin,Carb Vns	Vn retated	Tr 10 2		
DDH.FR-043	128,65	134.32	MD.iocal Xen	128.65	134.32	MD.Xen. local Chi	Mainly Chi,local Py,Epid,Otz	Vit related Chi	Tr to 2		
DDH.FR-043	134.32	136.05	FZ MD Alt	134.32	136.05	FZ,MD,All	Cy Fault, Wall.Rk Carb Vits	Chl,Cy	Tr		
DDH FR-043	136.05	148.26	MD	136.05	148.26	MD	Massive, Chl Vits, local Carb, Otz, Axin	Wk/mod Epid bands	Tr		
DDH.FR-043	148.26	149.38	FZ.MD.Core Loss	148.26	149.38	FZ.MD.Core Loss	Chl,Cy	Chi,Cy			
DDH.FR-043	149.38	172.96	MD.var.Alt	149.38	150.19	MD.Narrow HP.Dks	Abund.Chl,Carb Vits	Patchy Wk Carb	Tr 101		
DDH.FR-043				150.19	166.73	MD	Minor Chi,Carb,Epid.Qtz local Axin	Mod. Epid bands	Tr		
DDH.FR-043				166.73	169.77	MD.All,Vils	Abund Chi,Carb local Cy Vits	Strong Chl,w/m Carb	Tr		
DOH FR-043				169.77	172.96	Md	Few Carb, Chi Vits, local vugs	Vit related	TI		
DDH.FR-043	172.96	175.7	Hb,Plag P.Dk	172.96	175.7	H,Plag P.Dk	Few Carb Vits	Vit related	Tr		[
DDH.FR-043	175.7	181.9	MD.Wk.All	175.7	181,9	MD.Wk.All	Few Epid, Carb, Chl Vits	Local Chl.Sil patches	Trio 1		i
DDH.FR-043	181.9	186,63	PP.Dk local Hb	181.9	186.63	PP.Dk local Hb	Few Carb Vits,minor Epid,Axin	Sil.lower	17		
DDH.FR-043	186.63	199.03	MD.var Alt.Carb.Cpy Vits	186.63	187.96	MD.Wk.Alt	Local Carb Vits	Vit related	٦Ť		
DDH FR-043				187.96	191.4	MD.All,Chl,Carb,Py,Cpy	Dark Chi,Carb,Py,Cpy	Wk/mod Carb,Chl.patchy Sil	1 lo 2		Tr_
DDH FR-043	• • •			191.4	199.03	MD.Wk.All.Qtz	Few Carb, Chi, local Qtz Vits	Wk/mod petchy Carb.local Epid	1Ť		↓_ · _
DDH.FR-043		199.03	EOH		199.03	EOH					

.

~

.

.

.

DDH.FR-043 Assay

and the second second second second second second second second second second second second second second second

HOLE ID	From	To	Sample No	Length	Au g/t metallic	Au g/t	Ац орь		Cu ppm	Zn ppm
DDH.FR-43	12.85	13.85	74910	1.00			10	<0.2	19	23
DDH.FR-43	13.85	15.00	74911	1.15			10	<0.2	16	23
DDH.FR-43	15.00	16.46	74912	1.46			10	<0.2	14	23
DDH.FR-43	16.46	17.46	74913	1.00		[15	<0.2	26	29
DDH.FR-43	17.46	19.00	74914	1.54			10	<0.2	10	21
DDH.FR-43	19.00	20.00	74915	1.00			15	<0.2		16
DDH.FR-43	20.00	21.30	74916	1.30		-	10	<0.2		16
DDH.FR-43	21.30	22.81	74917	1.51			55	<0.2	31	26
DDH.FR-43	24.61	26.00	74918	1.39		1	10	<0.2	21	21
DDH.FR-43	27.77	29.20	74919	1.43		1	40	<0.2	55	36
DDH.FR-43		Std. A	74920	<u> </u>	†^		795	<0.2	1	6
DDH.FR-43	31,31	32.31	74921	1.00			10	<0.2	2	31
DDH.FR-43	32.31	33.31	74922	1.00			15	<0.2	4	27
DDH.FR-43	33.31	34.31	74923	1.00			5		3	21
		35.27	74923	0.96			5			
DDH.FR-43	34.31 42.65	44.00	74925	1.35		+	115			+
DDH.FR-43			74926	0.85		1	110			
DDH.FR-43	44.00	44.85				<u> </u>	10			
DDH.FR-43	44.85	46.30 47.60	74927 74928	1.45			5			
DDH.FR-43	46.30						30			
DDH.FR-43	47.60	49.00	74929	1.40		+	5	+-		
DDH.FR-43	49.00	50.14	74930	1.14			- 10		-	
DDH.FR-43	50.14	51.14	74931	1.00	· · · · · · · · · · · · · · · · · · ·	· ·	5			
DDH.FR-43	51.14	51.96	74932	0.82		+-				
DDH.FR-43	51.96	53.57	74933	1.61		- 				
DDH.FR-43	53.57	55.00	74934	1.43			5			
DDH.FR-43	55.0 0	56.50	74935	1.50			<5			
DDH.FR-43	56.50	58.00	74936	1.50						
DDH.FR-43	58.00	59.50	74937	1.50			15			
DDH.FR-43	59.50	61.00	74938	1.50						
DDH.FR-43	61.00	62.50	74939	1.50						
DDH.FR-43	66.14	67.05	74940	0.91			10			
DDH.FR-43	67.05	68.63	74941	1.58	1		10			
DDH.FR-43	70.10	71.10	74942	1.00				5 <0.		
DDH.FR-43	71.10	72.10	74943	1.00			1(
DDH.FR-43		Std. A	74944				81	0> 0.		1 6
DDH.FR-43	75.75	76.75	74945	1.00				5 <0.		
DDH.FR-43	77.08	78.08	74946	1.00				5 <0.	2 2	
DDH.FR-43	80.00	81.00	74947	1.00			34	0 <0.	2 6	
DDH.FR-43	85.20	86.00	74948	0.80			28	5 <0.	2 6	
DDH.FR-43	87.47	88.47	74949	1.00			14		2 1	2 21
DDH FR-43	93.50	94.50	74950	1.00		·	15			8 70
DDH.FR-43		102.65	74951	1.50			55	5 <0.	2 7	6 38
DDH.FR-43		102.05	74952	1.22			7			1 3
DDH.FR-43		105.87		2.00			17			7 7
		122.00		1.50	1.27	1.13	113			6 2
DDH.FR-43	-	123.50		1.50	1,6 7 ·		27	_		6 2
DDH.FR-43				1.00			66			
DDH.FR-43		125.80		1.55						5 4
DDH.FR-43		127.35						0 <0		7 2
DDH.FR-43		128.65		1.30						5 3
DDH.FR-43		130.15		1.50	- -		18			33 2
DDH.FR-43		131.50		1.35			27			38 3
DDH.FR-43		136.05		1.73						<u>4 3</u>
DDH.FR-43		153.00		1.50						53 3
DDH.FR-43		153.90		0.90	A. TT		32			
DDH.FR-43	166.73	168.25		1.52						05 4
DDH.FR-43		169.77	74965	1.52						31 2
DDH FR-43		172.96		1.19						11 2
DDH.FR-43		176.75		1.00						465
DDH.FR-43		177.98		1.23			6	35 C).3	76 3

ļ

1 of 2

•

1 MAY 12 14

1.11

an ar anna

- - -

HOLE ID	From	То	Sample No	Length	Au g/t metallic	Au g/t	Au ppb	Ag ppm	Cu ppm	Zn ppm
DDH.FR-43	180.73	181.90	74969	1.17			350	<0.2	46	25
DDH.FR-43	184.10	185.10	74970	1.00			450	<0.2	37	34
DDH FR-43	185.10	186.63	74971	1.53			180	0.3	83	35
DDH.FR-43	187.96	189.16	74972	1.20	2.56	2.08	2080	2.1	185	172
DDH.FR-43	189.16	190.56	74973	1.40	18.00	18.00	18000	9.1	217	83
DDH.FR-43	190.56	191.40	74974	0.84	1.74	1.43	1430	1.5	51	32
DDH.FR-43		Std. A	74975				820	<0.2	1	5
DDH.FR-43	191.80	193.21	74976	1.41	5.09	4.65	4650	2.5	107	52
DDH.FR-43	196.80	197.80	74977	1.00			310	<0.2	32	23

1

i

,

ł

CERTIFICATE OF ASSAY AK 2005-1020

YANKEE HAT MINERALS LIMITED

4460 Atlee Avenue Burnaby, BC V5G 3R6

ATTENTION: Donald Gee

No. of samples received: 68 Sample type: Core Project #: FRAN Shipment #: not indicated Samples submitted by: Ron Wells

		Metallic A	ssay	
		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
45	74954	1.27	0.037	
63	74972	2.56	0.075	
64	74973	18.0	0.525	
65	74974	1.74	0.051	
67	74976	5.09	0.148	
Standard:				
SN16		8.63	0.252	
SP17		18.6	0.542	

JJ/bw XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

16-Sep-05

.

.

CERTIFICATE OF ASSAY AK 2005-1020

YANKEE HAT MINERALS LTD.

4460 Atlee Avenue Burnaby, BC V5G 3R6

14-Sep-05

All strangers and

ATTENTION: Donald Gee

No. of samples received:68 Sample type: Core **Project #: FRAN** Shipment #: not indicated Samples submitted by: Ron Wells

		Au	Au	
<u> </u>	Tag #	<u>(g/t)</u>	(oz/t)	
45	74954	1.13	0.033	
63	74972	2.08	0.061	
64	74973	18.0	0.525	
65	74974	1.43	0.042	
67	74976	4.65	0.136	

QC DATA:

Standard:		
OX140	1.81	0.053

JJ/ga XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

ł

13-Ser

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 2005-1020

YANKEE HAT MINERALS LTD. 4460 Atlee Avenue Burnaby, BC V5G 3R6 -

.

.

÷

đ

d.

3

ATTENTION: Donald Gee

No. of samples received: 68 Semple type: Core Project #: FRAN Shipment #: n/a Samples submitted by: Ron Wells

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	61	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na %	Ní	Р	РЪ	_			Ti %	U	٧	W	Y	Zn
1	74910	10	<0.2	2.24	<5	130	<5	3.83	<1	11	26	19	3.54	10	0.85	588	3 < 0.01	2	1840	14	<5	<20	218	0.10	<10	101	<10	15	23
2	74911	10	<0.2	1.83	<5	110	5	3.30	<1	12	27	16	4.06	10	0.96	523	1 0.01	2	1870	14	<5	<20	160	0.08	<10	106	<10	16	23
3	74912	10	<0.2	1.86	5	35	5	3.81	<1	14	31	14	4.04	10	1.07	572	<1 <0.01	2	1840	14	<5	<20	144	0.11	<10	113	<10	15	23
4	74913	15	<0.2	1.99	5	95	<5	3.75	<1	13	20	26	4.25	10	1.04	610	<1 0.02	3	1910	14	<5	<20	170	0.11	<10	125	<10	15	29
5	74914	10	<0.2	2.12	<5	100	5	4.82	<1	11	21	10	3.45	10	0.88	658	2 <0.01	1	1730	14	<5	<20	230	0.11	<10	103	<10	14	21
6	74915	15	<0.2	1.65	5	30	5	8.75	<1	10	17	13	2.83	<10	1.39	590	1 <0.01	2	1270	10	<5	<20	203	0.08	<10	73	<10	10	16
7	74916	10	<0.2	1.09	<5	15	<5	2.19	<1	7	12	15	2.39	<10	0.58	321	1 < 0.01	1		8		<20	38	0.08	<10	70	<10	9	16
6	74910	55	<0.2	1.68	-5	40	<5	3.21	<1	13	24	31	3.61	10	0.93	468	4 < 0.01	•	1870	12	-	<20		0.11		95	<10	14	26
8				1.57	<5	30	<5	3.39	<1	12	18	21	3.00	10	0.75	447	2 < 0.01		1930	12	-	<20	-	0.11		92		14	21
9	74918	10	< 0.2		-5		-5	6.33	<1	14	20	55	4.26	<10	1.07	889	<1 <0.01		1710	12		<20		0.07			<10	16	36
10	74919	40	<0.2	1.37	Ş	20	5	0.33	~1	14	20	55	4.20		1.07	003	1 -0.01	5	1710	12	-0	-20	105	v .vr	- 10		-10		40
11	74920	795	<0.2	0.15	<5	10	<5	0.18	<1	<1	5	1	0.40	<10	0.06	28	<1 0.09	~1	450	6	<5	<20	5	<0.01	<10	1	<10	5	6
12	74921	10	<0.2	1.80	<5	20	<5	3.32	<1	17	29	2	3.46	<10	1.06	513	<1 <0.01	4	2130	12	<5	<20	135	0.17	<10	101	<10	10	31
13	74922	15	<0.2	2.04	<5	50	5	3.36	<1	15	20	4	5.19	<10	1.26	603	<1 <0.01	3	2080	16	<5	<20	106	0.17	<10	180	<10	10	27
14	74923	5	<0.2	2.49	<5	60	5	4.08	<1	13	25	3	4.30	<10	1.00	545	1 < 0.01	3	1950	16	<5	<20	195	0.15	<10	157	<10	10	21
15	74924	5	<0.2	2.25	<5	40	<5	4.62	<1	15	26	3	4.17	<10	1.17	580	<1 0.02	4	2040	16	<5	<20	153	0.16	<10	141	<10	12	22
	,-01-	· ·		2.20			•																						
16	74925	115	<0.2	2.55	<5	40	5	4.42	<1	16	21	41	4.92	<10	1.60	667	2 < 0.01	5	1920	18	<5	<20	170	0.16	<10	150	<10	12	32
17	74926	110	<0.2		15	50	5	4.07	<1	16	18	51	4.78	10	1.62	764	2 < 0.01	5	1860	20	<5	<20	149	0.14	<10	137	<10	15	34
18	74927	10	<0.2		10	130	5	5.12	<1	14	25	34	4.29	<10	0.85	657	1 0.02	4	1680	16	<5	<20	433	0.11	<10	116	<10	10	28
19	74928	5	<0.2		<5	40	10	4.06	<1	12	28	11	4.01	<10	0.80	657	1 0.04	2	1810	16	<5	<20	88	0.12	<10	132	<10	11	22
20	74929	30	<0.2	2.00	<5	40	5	3,55	<1	16	30	44	4.36	<10	0.67	486	<1 0.03	4	1840	14	<5	<20	82	0.11	<10	122	<10	10	27
20							-	•.••			•-																		
21	74930	5	<0.2	1.48	<5	35	<5	2.38	<1	11	27	44	2.78	<10	0.42	329	<1 0.03	- 4	1150	10	<5	<20	85	0.08	<10	75	<10	7	22
22	74931	10	<0.2	1.67	<5	55	<5	2.64	<1	13	25	76	3.76	<10	0.51	305	1 0.02	6	1370	12	<5	<20	170	0.10	<10	98	<10	9	28
23	74932	5	<0.2	1.56	<5	30	5	2.25	<1	12	24	36	3.56	<10	0.57	343	<1 0.03	3	1400	12	<5	<20	48	0.10	<10	99	<10	7	20
24	74933	<5	<0.2	1.36	<5	15	<5	1,79	<1	9	32	38	2.09	<10	0.63	175	<1 <0.01	5	1270	10	<5	<20	57	0.09	<10	52	<10	7	15
25	74934	5	<d.2< td=""><td>1.92</td><td><5</td><td>40</td><td>5</td><td>2.58</td><td><1</td><td>11</td><td>28</td><td>34</td><td>3.25</td><td><10</td><td>0.78</td><td>367</td><td>1 < 0.01</td><td>4</td><td>1200</td><td>14</td><td><5</td><td><20</td><td>113</td><td>0.08</td><td><10</td><td>70</td><td><10</td><td>9</td><td>22</td></d.2<>	1.92	<5	40	5	2.58	<1	11	28	34	3.25	<10	0.78	367	1 < 0.01	4	1200	14	<5	<20	113	0.08	<10	70	<10	9	22
20	14304		-U.2		-0		•	2.00		•••	-•																		
26	74935	<5	<0.2	1.95	<5	20	<5	3.30	<1	7	34	29	2.77	<10	0.64	441	4 < 0.01	-	1190	12	-	<20	56	0.08		-	<10	10	23
27	74936	5	<0.2	1.67	<5	65	<5	2.67	<1	8	31	39	2.62	<10	0.54	373	2 < 0.01		1230	12		<20	197	0.08			<10	9	24
28	74937	15	<0.2	1.40	<5	30	5	2.08	<1	9	33	57	2.90	<10	0.53	380	2 < 0.01	-	1250	10		<20	66		<10		<10	9	27
29	74938	5	<0.2	1.39	<5	25	<5	2.13	<1	9	34	40	2.76	<10	0.50	379	1 0.02		1250	10	-	<20	54		<10		<10	9	23
30	74939	5	<0.2	1.64	<5	25	10	2.89	<1	14	40	70	4.00	<10	0.85	465	3 <0.01	7	1650	12	<5	<20	65	0.09	<10	76	<10	11	37

13-Seµ

ICP CERTIFICATE OF ANALYSIS AK 2005-1020

YANKEE HAT MINERALS LTD.

1

ECO TECH LABORATORY LTD.

<u>Et</u> #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	_Cd	Co	Cr	Cu_	Fe %	La	Mg %	Mn	Mo Na %	Ni	Р	РЪ	Sb	Sn	Sr	Ti %	υ	v	w	Y	Zn
31	74940	10	<0.2	1.71	<5	35	5	3.01	<1	22	34	108	5.21	<10	0.77	601	7 <0.01	9	1880	14	<5	<20	68	0.11	<10	118	<10	10	44
32	74941	10	<0.2	2.03	<5	55	10	3.35	<1	15	30	19	4.55	<10	0.85	618	<1 0.03	3	2020	16	<5	<20	90	0.15	<10	144	<10	10	30
33	74942	5	<0.2	1.85	5	45	10	4.11	<1	18	30	63	4.81	<10	0.77	555	2 <0.01	6	1900	22	<5	<20	84	0.14	<10	128	<10	10	37
34	74943	10	<0.2	1.66	<5	25	5	3.69	<1	13	26	61	3.39	<10	0.63	440	2 0.02	6	1950	14	<5	<20	53	0.12	<10	99	<10	11	32
35	74944	810	<0.2	0.16	<5	15	<5	0.18	<1	<1	4	1	0.39	<10	0.06	34	<1 0.08	<1	460	10	<5	<20	8	<0.01	<10	5	<10	3	6
36	74945	5	<0.2	2.04	<5	25	<5	2.55	<1	13	19	73	3.18	<10	0.80	371	5 < 0.01	7	1470	12	<5	<20	35	0.13	<10	93	<10	9	30
37	74946	5	<0.2	1.10	<5	5	<5	4.31	<1	9	17	21	1.90	<10	0.60	319	<1 0.02	3	1340	6	<5	<20	138	0.11	<10	50	<10	8	14
38	74947	340	<0.2	1.62	5	45	5	2.88	<1	15	20	61	3.57	<10	0.71	427	10 <0.01		1490	10		<20	53			97	<10	9	27
39	74948	285	<0.2	1.74	5	50	5	2.91	<1	16	24	66	3.77	<10		446	9 < 0.01		1500	10	-	<20	56	0.15			<10	9	28
40	74949	140	<0.2	1.59	<5	40	<5	2.00	<1	13	18	12		<10		374	5 < 0.01		1650	8		<20	51				. –	ě.	21
					-		-		•			-	÷.=.		••••			•		•	•	20	•••	0.10				•	
41	74950	155	0.2	2.30	<5	75	5	2.68	<1	18	24	208	5.64	<10	1.31	687	<1 <0.01	15	1440	14	<5	<20	120	0.14	<10	137	<10	8	70
42	74951	555	<0.2		10	30	10	2.21	<1	18	24	76	5.41	<10		660	6 < 0.01	-	1570	14	-	<20	51					11	38
43	74952	70	<0.2	2.06	<5	25	5	2.55	<1	16	22	71	4.09	<10		620	1 < 0.01		1580	12	-	<20	38	0.15				11	33
44	74953	170	<0.2		10	45	10	1.54	<1	26	31	227	6.77	10	1.67	751	14 <0.01	-	1580	16	-	<20	55	0.14	-	-	-	12	71
45	74954	>1000	<0.2	2.16	<5	60	<5	2.01	<1	17	21	36	4.58	<10		458	<1 0.03		1560	14		<20	58	0.19				ĝ	29
			-			~			- •	•••		~~						•					~~	0.10				•	
46	74955	270	<0.2	2.10	5	65	5	2.17	<1	15	20	16	4.22	<10	0.92	464	<1 0.03	5	1570	12	<5	<20	48	0.17	<10	141	<10	9	25
47	74956	660		2.26	15	80	5	2.40	<1	21	25	131	5.83	<10		611	<1 0.03		1490	14		<20	88	0.20				10	53
48	74957	175		2.24	20	75	5	2.03	<1	18	24	95	4.87	<10		480	<1 0.03		1680	54	-	<20	59	0.17				10	45
49	74958	80		2.72	20	<5	5	3.75	<1	17	31	37	3.58	<10		450	2 < 0.01		1320	18	-	<20	54	0.10				8	29
50	74959	310	0.2	1.83	450	40	5	3.35	<1	14	19	55	4.20	<10		660	<1 0.02		1590	12	-	<20	122					12	35
00	14000	510	0.2	1.00	400			0.00	-,	14	1 gr		4.20	-10	0.01	000	VI VIUL	-	1000			-10		0.10					
51	74960	180	<0.2	1.62	10	60	<5	2.20	<1	12	22	33	3.61	<10	0.67	441	<1 0.03	2	1640	12	<5	<20	125	0.10	<10	99	<10	11	23
52	74961	270	0.2	1.77	25	15	10	3.28	<1	18	25	68	4.74	<10	+	791	18 < 0.01	-	1470	12	-	<20	54	0.09				15	34
53	74962	25	<0.2	2.00	<5	70	5	2.72	<1	10	20	44	3.91	<10	0.66	441	10 < 0.01		1820	16	-	<20		0.10	-		-	8	37
54	74963	320	<0.2	1.66	650	50	5	4.85	1	12	28	63	3.94	<10	0.93	873	2 < 0.01		1420	12	-		113	0.07		73	<10	13	36
55	74964	20	<0.2	2.48	<5	35	5	3.19	<1	13	21	105	4.36	<10	0.89	611	1 < 0.01		1790	16		<20	97	0.14	-			B	45
55)4004	20	~U.Z	2.40	-0			5,15	- 1		~ 1	103	4.00	10	0.00	0	1 -0.01	•		10	-••	-20		W : 1-4	• • •	• • •		-	
56	74965	25	<0.2	2.71	10	30	5	3.92	<1	13	24	31	4.21	<10	1.31	703	2 < 0.01	4	1340	16	<5	<20	106	0.10	<10	100	<10	10	29
57	74966	15	<0.2	1.58	<5	45	<Š	3.26	<1	11	21	11	3.10	<10		471	<1 0.03		1330	12	-		179	0.12			<10	9	27
58	74967	140	0.9	1.43	130	20	<5	5.13	<1	19	21	146	3.35	<10		1388	<1 <0.01		1040	14	+	<20	65	0.06		85		8	51
59	74968	65	0.3	1.30	10	25	<5	3.90	<1	11	25	76	2.92	<10		937	<1 0.02		1070	10	_	<20	73	0.07			<10	10	33
60	74969	350	<0.2	1.51	5	40	10	3.10	<1	12	22	46	3.20	<10		694	<1 0.02		1320	10	-	<20	90	0.09			<10	9	25
00	14908	300	NV.2	1.01	5	40	10	3.10	~	12	~~	40	5.20	-10	1.01	0.04	-1 0.04	•	1020			-24	50	0.00				-	
61	74970	450	<0.2	1.83	<5	15	<5	3.26	<1	10	25	37	3.66	<10	1.02	629	1 <0.01	3	1290	12	<5	<20	49	0.12	<10	104	<10	13	34
62	74971	180	0.3	1.49	5	35	5	3.75	<1	11	19	83	3.27	<10		824	<1 0.02		1270	12	-	<20	81	0,10				12	35
63	74972	>1000	2.1		75	25	10	3.49	<1	60	32	185	4.86	<10	0.94	823	<1 0.02	-	1260	20	-	<20	52				-		172
64	74972	>1000		1.42	180	25 30	45	3.34	<1	81	41	217	6.23	<10	0.84	865	<1 0.01		1120	44	-	<20	47	0.07			<10	10	83
65	74974	>1000	1.5	0.94	55	40	10	6.04	<1	31	28	51	2.96	<10	0.54	959	<1 <0.01	5	910	14			230	0.02			<10	13	32
60	(4914	21000	1.9	0.94	20	40	10	0.04	~1	51	40	÷1	2.50	-10	0.04	949	-1 -0.01	5	310				~~~	0.02					
66	74975	820	<0.2	0.15	<5	10	<5	0.19	<1	<1	3	1	0.37	<10	0.06	30	<1 0.08	<1	450	6	<5	<20	5	<0.01	<10	1	<10	3	5
67	74975	>1000	2.5	1.27	105	30	15	3.01	<1	33	36	107	3.51	<10	0.75	828	<1 0.02		1000	22		<20	52			70		10	52
68	74970	310	<0.2		105	25		3.92	<1	16	25		3.41	<10		789	<1 <0.02	-	1210	12	-	<20	58	0.07				11	23
00	14911	310	×0.2	1.59	i V	4 9	9	3.36	~ 1	10	20	ŞΖ	3.47	-10	1.00	100	U.UT	-		1.6-		-+V	<i>~~</i>	4.41				••	

13-Sep-up

ICP CERTIFICATE OF ANALYSIS AK 2005-1020 ECO TECH LABORATORY LTD. Et#. Tag# Au(ppb) Ag A!% As Ba BICa% Cd Co Cr Cu Fe% La Mg% Mn Mo Na% Ni P Pb Sb Sn Sr Ti% U V W Y Zn OC/DATA: Resplit: 10 0.92 629 2 < 0.01 2 1890 18 <5 <20 250 0.10 <10 107 <10 15 25 1 74910 10 <0.2 2.28 <5 130 5 4.24 <1 12 34 19 3.84 13 24 68 3.24 <10 0.82 378 5 < 0.01 6 1470 12 <5 <20 38 0.13 <10 92 <10 9 34 36 74945 5 <0.2 1.86 <5 25 5 2.83 <1 Repeat: <5 3.87 22 74910 10 < 0.2 2.24 <5 125 11 26 19 3.54 10 0.84 585 2 < 0.01 2 1840 16 <5 <20 219 0.10 <10 102 <10 15 <1 1 8 74917 60 74919 21 53 4.38 <10 1.10 917 <1 0.01 5 1810 12 <5 <20 191 0.07 <10 102 <10 17 37 10 40 <0.2 1.41 10 20 <5 6.59 <1 14 16 74925 120 17 74926 110 <5 <20 85 0.10 <10 123 <10 9 20 9 23 9 3.84 <10 0.64 610 <1 0.04 1 1770 12 19 74928 5 <0.2 1.85 <5 30 5 3.14 <1 70 <10 0.79 363 4 <0.01 6 1450 12 <5 <20 35 0.11 <10 89 <10 8 28 <0.2 1.90 <5 2.47 <1 13 20 3.15 36 74945 5 <5 20 42 74951 600 58 0.18 <10 133 <10 30 >1000 <0.2 2.06 18 22 34 4,66 <10 1.13 461 <1 0.03 5 1570 14 <5 <20 9 45 74954 <5 60 5 2.00 <1 47 74956 680 <5 <20 115 0.06 <10 13 36 2 < 0.01 4 1440 12 74 <10 54 74963 310 <0.2 1.64 670 45 5 5.02 12 28 63 4.05 <10 0.95 894 1 61 74970 430 Standard: <1 <0.01 22 <5 <20 56 0.10 <10 70 <10 10 73 <10 0.98 624 28 670 GEO'05 805 1.5 1.60 50 125 <5 1.42 <1 19 57 83 3.74 27 72 <10 18 56 85 3.86 <10 1.04 712 <1 0.01 700 20 <5 <20 58 0.10 <10 11 74 GEO'05 790 1.6 1.78 55 135 5 1.51 <1

JJ/ga df/n965 XLS/05 FAX: 372-1012 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

.

.

÷

~

YANKEE HAT MINERALS LTD.

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DDH NO. FR-043		·	·	·			P	AGE NO. J
	<u> </u>	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMP	LING
MAIN UNITS	[GL	SUB UNITS				FROM	то	NUMBER
0-6.10 Casing in . Dverburden,rubbly	0.0	Overbuilden and rubbly bedack						
bedrock	23)	· _ · · _ · - · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	······································				
-10-42.65 Manzodiorite	5	of hole, exidized fractures . Uniform	Rubbly recovery oridized. Local -	widegore and front we	marked to avidation			<u> </u>
spacklad green, gray 10		medium grained with local sub-	fine card vits 40-45 ct	axidation				
and white . Medium prained . Massive to	1	agulat make results to sim	decionse down-Ade			12.85	13.15	74910
fractured, verned	1/	11-28-17.46 Medium grained with	Fairly massive at by	With mented epid	1-4 R, ulto perfor	12.95	15.00	7490
and altered intervals	4	1-2% nefic results to zon in			JUNGOCA SAMA with	15.00	16.46	- 74912
potty weak magnetic	V/	clustors weak mod fractured _	we preciatois to	wkepid haloss for	carb, minat silica	16:46	17.46	- 749/3.
ensiths		with fine locally magy reinlets	alarth. Vite river variet a ngles ca larger zo-you carte, epid large ly	with and pote lay	Te - 14 fine diniem	17.46	19.00	74914
Caro shok 20	ě.	vaislets, local braccia with contr	- Ults and yos and	pervoside wollock .	P. in Bx 19.0.200	19:00	20.00	<u></u> 4912
	11	epid un stockworks. Good MD	Local Chi. fractures Variable angles CA	epid. Epid.co.rb Majoris 6x. V/E Majoris 6x. V/E	1-2 ly vit In above	20-00	21.30	74916
	Ľ,	textures	Many 35-53 Epid, corts local chi. Fine Chi, Ppid and	Vit recoted epid	Cressfally TI frie	21.20	22.8)	74917
	15	blacciated intervals, fire dk ch.	code vite at variable	T carb lecal name. porvasive epid bando chi matrix support	disseminated by	24.61	26:00	74918
	1/4	nahix	angles CA . Chi version breccins 10-30°cA	to by .		27.77	29.20	74919
By .	Í	27.27-21-31 Massive with breeci	Chlorite matrix			std A	•	74920
.4	÷.	interval 18:29 m dk. chi matny	supported mosaic Bx Wallocks Epid, minat Calb xits facet by 30	Ex. Epid alt bands	distan lacat vit			
	$\overline{\prime}$	31-31-25:22 Massive MD with	Alteration band soil	@ 31.20-32-20: 32.20-	Te-14, fin dime	31.31	32.31	74921
			and Keins 49-50 CA	1-65 + 34.70-34.90 Parvasine Carls, soid pick museral alt bouds	Rysia massive and	32.31	<u> 73-31</u>	70922
	+					33.71	34:31	74923
		BX's with by	DK chiasibe fracture	Frochure che vit	Ry VO. Dissen Ry in Br Tr fine dissen	<u> </u>	_15.22	
	1	Conclusion we precision Fam	ulte the makent. Fine	Carb and egid anos	Ry			······································
40	[+	Small epid alt patches	high angle carts & exid	common cht halome to	<u> </u>]		- <u> </u>

KAMLOOPS GEOLOGICAL SERVICES LTD

LOGGED BY R. C. Welly

DATE: 16th August 2005

.

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DH NO. FR-043					·,····	·		GE NO. 2
	-	ITHOLOGY		ALTERATION	MINERALIZATION		SAMPL	
MAIN UNITS	G٤	SUB UNITS		· · · · · · · · · · · · · · · · · · ·		FROM	TO	NUMBER
40 2 • 65 - 44 • 85	7	<u>• </u>	włs	epid and as carb w	.		L	
reformation Zona	14	42.45-44.65 Stong lamination /band	- Frie larrication in	Mainly de chlorite	To fine disson P.	42.65	4400 -	74925
	+	locally overpristing textures	with clayer gauge	local carb xelts	A UMAHINE Section	44.00	44.85	
trong chloritic bandry lamination. Local clay		4485-4630 Moderates precisted	care vas course	chlasitic, lacally.	TI five dissem Ry	44.85	46.30	74927
	1	voge textures	coluie crystals	clayey		46.30	47.60	
	+	46.30-51.91 Mongodiorite, good med.	Local carb vite 30-700	Generally vit .	46.30-490 Tr VILP.	47.60	44.00	24923
	1	grained textures Local surfacers ly vity	@ 4700 Gen sil-Weach	+ related carb has	49.0-51.6 4-720	49.00	50.14	.74930
50.	ł.	at an make renalithe	Good 40 CA Below 49	- tailly fresh	Ry vitz/m_ 30-35°CA	50.14	51.14	
٩٦			Rendined verain	strong alt bardings on	Lacal 1-2 of R. with	C1.14	51.96	74932
	1	53-57-67.05 Uniform interval of	Eine cilicanus x	met Cepid. avinte?	gts vit, Trainen Py	51.96	\$357	74933
	+	madium around MD . 1-2% mapie	By vite throughout	VIE meated silice	TI- 24 Py and R	\$3.57	55.00	74934
Py,Po		vealith. agrecally subounded	Many 15-40CA. Local	and fine dark chi	diman, naisty ut	55.00	56.50	74925
- 31. •	+	and yoto loss	inggy kits 45 ch	Host is bresh and	3-6 parton Rose fine	56.50	58.00	
	1		- 715		cp-wite gtz vite @	58.00	59.50	7+937
Py, Po, Cpy	+			/	\$9.300	59.50	61.00	74938
40.	 ₊					61.00	62.50	- 74939
Py.P.								
· 9# •	1.							
	+							
						66.14	67.05	74940
	+					67.05	68.36	74941
sit Vas	1	67.05-75.25 Marrie to weak alt	67.05-68.60, 2-3 sil	Allection is vitien	1-2 P- ulto pecks			
V15 70	1 -	at and cart warred watervale	VAL DOTTA 45-55TA		above 72 . 1 ordan	70%	71.10	74942
<i></i>	Μ.	73	68.60-72-50 Ro-25'	at 60	in massive below	71.10	72-19	74943
	1		Hum colevas local			std	4	749.44
	+		coose calcite					
	+//		72-74 mogilive					
	10	75.25-81.17 Altered haveblands	TU-75'S FIRE CATO, CAT	Generally VIt/vo	7-8 P. ult perfor	75.75	7675	74945
175-81-17 Hered Hornblende	14	and inte MD Medica argined.	Several fine By Ult	related. Mod	1.750. 1%. Below	27.08	78.08	74946
	12	with tabular bb/ to bam (5%)	Stra you gev	pervosive epid	Il fine By VIA			
orphysiki Monzodiosite	14	overgrinted locally by first grained	30 CA in alteration	77.63-78.20				

KAMLOOPS GEOLOGICAL SERVICES LTD.

.

LOGGED BY R. Wells

-

DATE: 16 th August 2005

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DH NO. FR-043				•			PA	GE NO. 3
	Ē	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	LING
MAIN UNITS	GL	SUB UNITS	· - · - ·· ··			FROM	TO	NUMBER
	۱//	epid. alt. 77.63-78.20	20" stilles - Marson MART	d	80-3-80-6 12 VIF PS	80.0	81:0	74947
	F.	81.17-85.20 Medica ground MD	Cocal aty vits Cht. Georgans vits	vit related chi.	To fine disema			L
	14	with local small make readilitis, 1-30	SII- VITS 25-TO CA	and grey silica . sporse carbonate	vit Py			
Py	12	15.20-84:0 Chi-cart wis in alt. MD	NUMEROUS VITS VERABLE	Patela, permanere chi.	1-2% fine dessen/	\$5.20	86.00	74948
1 ¹ 3*	47	\$6.0-100-14 Massive, med.gr. MD	Low effectory	VIE jun record	vie de la la la la la la la la la la la la la	\$7.47	.88.47	- 74 949
90	1/+	Local Small maps reachibles 17cm	dessitio higher at	chi, fine silica	Generally TT Py		<u> </u>	
	14	in clusters generally 1-24	interval Several		one care, Py vein	93.50	94.50	74950
	H.		35-yoich normaly		92.5-94.0	-		
	∦+		4n1. 37.47.19.47		·			
	Ľ,		KO. 92.5-94-0		· · · · · · · · · · · · · · · · · · ·			
	11							
100	+ 7	100-14-103.87 Altered with vague	Abundant vite	Potch, Wilm pervois	TI fine discen	101-15	102.65	74951
	1/2	textures. Nummer fine vite	mainly care miner	carb vit related	and lacad vit Py	102.65	103.87	74952
5.87-10844 Frecture	r.	103.27- 108.44 Ar above with fresh		Chinte, lacat clay	1-3 Po vite/m	103.97	105-87	74953
ault Zone. Altered	16	and. gr. intervale Blacky recovery	with low angle	fractures putty	generally 20-60:CA			
17 upto 30% cole (as	55	108-44-US-47 Meduin grey	devident Ry V/20-610	Catching with parroquie	To Jos Rom			
1-44-127-35 Congradionite Local 110	17	weak alteration exercise manual	Local carb vite		and fine dimen.			
ensliths.	+/	with fair elts for a cost was _	15- yoich some bich	Ca/4				
	1	with coath cality days. Fau Small make readily	Larges carb un lea. 2º54					
	F	115.47-120.05 Marsine, med. gt.	1 <i>1</i> / 1	with recented chi,	To fine dissem			
	•	and frost texture fair site.	fine carto & c.h.l.	carb	Py are abviers v 14	ł		
	• *	1-27, sub-angular xecality to	20-60CA		r	ł		· · · ·

KAMLOOPS GEOLOGICAL SERVICES LTD.

~

LOGGED BY Rea Welle

DATE: August 16th 2005

FRAN PROJECT 2005

Ň

YANKEE HAT MINERALS LTD

DDH NO. FR- 043					-		PA	GE NO. 4
		ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		ING	
· · · · · · · · · · · · · · · · · · ·	GL	SUB UNITS				FROM	ТО	NUM8ER
120	1/2	120.05-127.35 As above with chlorite	moderate with dessit	Mainly x1+/x0	2-3. Py vite parta	120.50	122.00	74.954
	/	intervols and male with including	chiknes bands lesit	A related chi, local	10-45°CA		123.50	- 74955
	f /	gtz and ly	commenty assoc with	carby wollnes		124.80	125.80	-74956-
	× .		Py (local B) ville, ray	personadire de chi.		125.80	-127.35	-74957
	1		Also local gto vite	with lorger verne-				
27.35-128.65 Anderite		Dykes 127.60-127.80 ;128.10-128.65	Comarale Car fraction	VIL related.	In targer dyte 12%	127.35	·	.74.958
ykes with carbonal 120	~	Fick groused, light grees lorge un alor	being of the so ch		pately fine dissen a	/		74959
availite above in vis.	<u>.</u> - I	// 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		WIII MOLEAL MAIL	2-4 By alto perfor	134-15	- 17/ . So	74960.
128-65 -134-22		with the Pyvitz in madige. MD lacel						
Nonzodiarite local remite	<u>+ : {</u>	larger partially associated xessifts	Money 35-45 CA Local 50-65 CA carb vite		sparse witz . Tr disses			
34.32-136.05 Foult			(<u> </u>	envelopeo to veins.	Py	134.22	-134:05	_74261
lone. Alternal MD	22	136.05 dy 8.26 Marine med. gt.	CLOY foult 60-70 CA Abundant fine control	vit vie permosive	TI fire deman Ry			
136-05-148-26	ŧΊ	speckled white and green MD	At any in with 20 to	A yt recover				_
Monzadiorite			e pid alt. bands to 40		disea ly			
		sugarate line chi vite Pare	2. South Roundar	As mosting a what I and				
		small make xenstitles	spaced 20- Soch chi	cusan wide			·	
•			sells . Minor afg-car	thoughout				
			local privite at the					
			fisterral					
			· · · · · · · · · · · · · · · · · · ·					
48.262-149.38 Fault	555	Low angle fault, 50-60% core	subper chick from	t. chloate-chay	Are sulfiding observed			
gnificant core lass 150 49.38-172.96	<u>_</u> [14938-154.15 Madium grained	Dyke contacto	VIE mated off		151.50	153:00	74942
nonzodiarite , variably	1	runeous x113 - patring lextures	HOCA . Alumanus ch	carb. Pakk, wk	ly upto 1th in	157.00	152.90	74963-
ltered	<i>,</i>	@ 14958 - 150 19 AMON Plag-bal	and carb with your	a perroquis carb				
+	2	150.19-144.73 Ar at 136.05	below. QC.chi Vn 153-35-152.59 40 CA Massive, Low Vit	mainly wit				
Í	2	newve med grained MD with local	densitive many	Accessed c arts, c.L.l.		↓		_
	-	epidate alt bondo Separate fire	Chi carb epid. gt	Epid form 1-3cm	^`			·· · · ·
		carb. Four small major xenulites.	20-Soich Epid bords	bando 2-5 per/m.				

KAMLOOPS GEOLOGICAL SERVICES LTD.

.

.

LOGGED BY Rea Walls

DATE: 17 August 200 5

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DH NO. FR-0	<u> </u>		· · · · · · · · · · · · · · · · · · ·	<u></u>			PA	GE NO. 5
	LITHOLC		STRUCTURE	ALTERATION	MINERALIZATION		ING	
	GL	SUB UNITS				FROM	TO	NUMBEI
100	*/-see	lg.5	minas fine at sta	161 18 -161-33 GIREN	3			· · · · · · · · · · · · · · · · · · ·
	*	·	40-5.54	purpiss epic Laxint.	· · · · · · · · · · · · · · · · · · ·			
			······································			· · · ·		
	/ *1		ak-stry vite down	Vit related chi.	GRAPTORY TO fice	166.73	168:25	-74944
F	SS marking	with low ongle Built	chi-carb clayer	wim care in fault	-Pz	168.25	167.77	74965
170_			25 CA INCOL MUSS CONSOLA		I Ir fine dissem. P.	171.77	172.96	
- .	tew xe	noliths. Local 45 ch fabrics/vi	near with way-				·	
16-175.70 Fina		d with 1-4mm chi alt	massive with a per	vit. related carb	ALL SU CANAL OBSILIEN			
nblonde (Plagioclase) Iphysy Dyke	1 Kint	finat Magloclase both 25%	contacts U. 5. L.Va	me sil alt below				
-70-181.90 MD	t fire s	17798 Med. grand. Patchy 1. alt for cure) we print.	roll gr, chi, Epid &	Vit recoted	1-2 low angla CA	175.75		- 74917 -
rlawy altered	+7/ 100 10	1. alt (carl) we print. 181.90 Median grained mo	Forch mostive	VIE recoted	Tr fine dessen	126.75	/77-98	
/80	100	censites expangular to 2000.	with four some	Chil-Sil Alt patch	R, T	180.73	181.90	
10-18663 Variably	f (1 .	1	20-40-CA 30 54 Ham		T- D - and a	184.44		74.84
uded Plagicclase		ts 1-3mm 2.3% hel phene gets		vit related. Hard		184.10 185.10	184.63	<u>74770</u> 74971
latts to 6mm	J below	184 an faithy hard, silicours	carb ults to 184m	6	provinal to equily ve			
63-199.03 MD		187.96 Greak alt MD lacal harrow carb vity 25-5000	45 CA Efid - acin Vein	when permanue care	2% Ale va Py	187.96	189-16	74972
mive with altered		and and all alt avergarist	Maryly 2+CA MICAY dk chi, corb+ CA		local Tr. Cpy sound	31.681	190.56	-74973-
ervels. Local Me- all subargular	+// 191.40-	Mar My		hand and sil.	in low angle was	19056 Stal	191-yc.	<u>-74974</u> . <u>74975</u>
yie xenoliths		the marine bacal 10- 50 cm	carb by					
	patria	a of poursive when card	Fairly Mossin	Rotchy permine	To fine Py locally	191-80	193:21	74976
		4: to be con	fer carb, chi local gly kite variable		also carb alt	191-80	197-8+	74977
			angero Ch					·

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R. c. Wells DATE: 17th August 2005

DDH: FR-044

-

يوريد فيبدع بأسيبينية متقادية فكالمنابي المعارين

L

R. C. Wells P.Geo, Kamloops Geological Services Ltd.

· ·

Hole ID:	DDH.FR-044
Project:	FRAN
Property:	FRAN
Claim:	
Easting:	10408604E
Northing:	6094271N
Elevation:	1255m
Grid:	8604E/4271N
Length (m):	185.92
Dip:	-45
Azimuth (grid):	200
Started:	16/8/05
Finished:	18/8/05
Hole Status:	Finished
Material left in hole:	None
Comments:	Testing southern soil/prospecting anomalies
Core Size:	NQ
Logged By:	R.Wells
Purpose:	Most southerly hole in N-S fence

1

DDH.FR-044 Surveys

a a construction de la construction

HOLE ID.	Depth (m)	Dip	Azimuth (grid)
DDH.FR-044	0	-45	200
DDH.FR-044	75	-43.5	201.5
DDH.FR-044	175.86	-39.4	203.6

÷

.

DDH FR-044 Coology

Hole ID	From	Τa	Unit Code	From	То	Sub Unit	Veins, Vits	Alteration	<u>% Py</u>	% Po	Сру %
DDH FR-044	0	3.05	MD.Fr.Bedrock	0	3.05	MD, Fr. Bedrock					
DDH FR-044	3.05	78.7	MD.Xen.Local Alt	3.05	7,1	MD.mod.Fr.Oxid	minor Carb Vits	Oxid Vits/Fr			L
DDH FR-044				7.1	35.16	MD.small Xen	Carb Vits, minor Oxid Fr	Epid Alt bands	Ťr		
DDH.FR-044				35.16	37.5	MD.Alt	Carb/Axin Vns and Chl,Carb Vits	Vit related and Wk Carb	Tr		
DDH.FR-044				37.5	39.33	MD Xen	VChl,Carb,minor Epid Vits	Vit related and Wk Epid	T		
DDH FR-044				39 33	39,96	MD.K Feld,Cpy	Abund fine Carb, local Otz, Cpy Vits	Pervasive K Feld, some Sil	1 to 2	2 to 3	
DDH FR-044				39.66	46.2	MD	Massive, local Epid, Carb Vits	Local Epid bands	Tr		
DDH FR-044				46.2	50	MD. Abund Vits/Vns	Abund Carb, Otz, Epid, Axin	Vit related and Epid bands	٦Ť	Tr	
DDH FR-044				50	53,71	MD.Bx.Vns.Carb Alt	Carb Vns,some vugs. Citz/Carb Vits	Patchy w/m Carb vugs/druze	17		<u> </u>
DDH FR-044				53.71	65.13	MD.Xen	Massive, Few Carb, Chi, Otz Vits	Minor Chl,Carb	17		
DDH FR-044				65.13	69	MD.Carb Vits	Carb Vite/vns, minor Epid, Chl, Qtz	Small Epid patches	nT		
DDH FR-044			· · · -	69	72.6	MD.Xen	Few Carb Vits	Local Epid bands	Tr		<u> </u>
DDH FR-044				72.6	76.52	MD Wk Bx Carb,Sil	Local fine Otz stwk.Carb,Py Vits	Patchy BI, Vit related	Tr to 4		L
DDH FR-044				76.52	78.7	MD.PP	Massive few fine Carb Vite	Patchy Wk Carb	<u> </u>		
DDH FR-044	78.7	81	qq	78.7	81	PP	Massive Abund Carb Vits	Hard, Sil	٦٢		
DDH,FR-044	81	103.04	MD.Xen.Local Alt zones	B1	90.33	MD Abund Carb Vits	Massive, Carb Vits with Chi	Local Wk Epid patches	₹r		L
DDH.FR-044				90.33	92.63	MD.Alt.Carb,Chl	Abund Carb Vits	Carb,Chi	זו		<u> </u>
DDH.FR-044				92.63	96.5	MD Abund Carb Vits	Carb,Chi Vita	Wk Carb	٦T		
DDH FR-044	· –			96.5	103.04	MD.Xen	Minor Carb, Chl. local Sil Vits	Vit related	া		
DDH FR-044	103 04	109.95	PP.Xen	103.04	109.95	PP Xen	Carb,Chl,local Sil,Epid Vits	Vit related	Tr to 3		
DDH FR-044	109 95	146.53	MD Massive to Alt	109.95	117.96	MD.Xen	Minor Carb, local Chl, Epid	Local fine Epid,Chl	זו		
DDH FR-044				117.96	121 32	MD.Wk Alt	Abund Carb,local Epid,Sil	Wk Epid patches	1]
DDH.FR-044			· · · · · · · · · · · · · · · · · · ·	121.31	125,12	MD.Alt.Carb	Carb(Qtz)Py Vns,Carb,Chl Vits	Wk/mod patchy Carb	Tr to 2		
DDH FR-044				125.12	126.3	MD	Massive, Carb Vits with Chi	Sil, Fine Chl bands	٦٢		
DDH FR-044				126.3	129	MD,Att bands	Massive, Carb Vits with Chi	Mod Carb Alt zones, local Sil	Tr to 1		
DDH FR-044				129	136.24	MD Xen narrow FP Dks	Massive, local Qtz Carb Vits	Local Sil Carb patches	Ĩſ		
DDH FR-044				136.24	141.64	MO.Local 8I Epid Alt	Qtz VitsAms Aspy,Mo?	Patchy Wk Epid, Bl	Tr		
DDH FR-044				141.54	146.53	MD Xen	Local Carb Epid Axin Vits Aspy Mo?	Patchy Wk Epid, Bl	٦T		I
DOH FR-044	146 53	150.23	Int.Bx.MD.SS.HF clasts	146.53	150.23	Int Bx MD SS HF clasts	Minor Otz Carb local Dark Chl Aspy	Local Carb,Bi	Tr		
DDH FR-044	150 23	157.5	Biot HF	150.23	157.5	Biot.HF	Fine Carb Chl Vits, vugs/dnize	Local Bi Wk/s Biot	Tr to 3	ıŤ	
DDH FR-044	157 5	159.9	MD.Dk	157.5	159.9	MD.Dk	Qtz,Chi,Carb,Py Vits	Vit related	Tr to 1		
DDH FR-044	159.9	166.35	Biot HF. Po Vns	159.9	166.35	Biot.HF.Po Vns	Carb, local Chi Vits	Patchy BI (Po), dark Chl, Carb	Tr to 2	Tr to 2	
DDH.FR-044	166.53	168.74	MD.patchy Alt	166.53	168.74	MD, patchy Alt	Abund fine Carb, Chi, Sil, Py, Po	Wk/s pervasive Carb, BI, Sil?	Tr to2	Tr to1	17
DDH FR-044	158.74	185.92	Black SS Arg	168.74	171.08	Mixed BI and Biot HF	Crude lam Carb Vits	Wik/s patchy Carb/Bl	Tr to 1	Tr to1	
DDH FR-044	100.74	100.92	Diate Gal Rig	171.08	172.8	Fault 90%core loss		· · · · · · · · · · · · · · · · · · ·			
00H.FR-044			· · · ·	171.08	179.4	Mixed 8I and Biot HF	Crude Jam, Carb Vits	Wk/s patchy Carb/Bl	Tr to 1	Tr to1	
DDH.FR-044			· · · · · · · · · · · · · · · · · · ·	179.4	182	Biot HF BI Zones	Dark Carb, Chi Vits	Mixed Biol with BI/Carb	Tr	1T	
DDH.FR-044			· · · - ··	182	182.52	HP.Dk.Bl	Few Carb Vits	Patchy BI			
DDH FR-044			<u>-</u>	182.52	185.92	Biot HF BI SS	Micro Vits, BI	Biot or Bl some Sit Chl	Tr to 1	Tr to 1	Tr
DDH FR-044		185.92		102.02	185.92	EOH					

÷

i

· ·---

ODH.FR-044 Assay

and a second second second second second second second second second second second second second second second

HOLE ID	From	То	Sample No	Length	Au g/t metallic	Au g/t	Au ppb	Ag ppm	Cuppm	Zn ppm;	
DDH.FR-44	11.20	12.30	75001	1.10			10	<0.2	12	28	
DDH.FR-44	20.00	21.40	75002	1.40			5	<0.2	8	21	
DDH.FR-44	31.24	32.61	75003	1.37	** ** *****		15	<0.2	10	13	
DDH.FR-44	35.16	36.50	75004	1.34			145	<0.2	26	18	
DDH.FR-44	36.50	37.50	75005	1.00			5	<0.2	22	27	
DDH.FR-44	37.50	39.33	75006	1.83			10	<0.2	25	21	
DDH.FR-44	39.33	39.66	75007	0.33	3.49	3.02	>1000	5.2	4799	1029	
DDH.FR-44	39.96	41.25	75008	1.29			25	< 0.2	16	23	
DDH.FR-44	46.20	47.20	75009	1.00			30	<0.2	29 66	25 27	[
DDH.FR-44	47.20	48.00	75010	0.80			10	<0.2	63	25	
DDH.FR-44 DDH.FR-44	48.00	49.00 50.00	75012	1.00			5	0.2	189	54	
DDH.FR-44	50.00	51.35	75013	1.35	· •		175	<0.2	121	45	
DDH.FR-44	51.35	51.35	75014	1.00			75	0.2		44	
DDH.FR-44	52.35	53.71	75015	1.36			85	0.3	64	32	
DDH.FR-44	57.00	58.00	75016	1.00			20	<0.2	95	33	
DDH.FR-44	64.00	65.13	75017	1.13		1	30	<0.2	21	23	
DDH.FR-44	65.13	66.63	75018	1.50			15	<0.2	12	24	
DDH.FR-44	66.63	68.13	75019	1.50			20	<0.2	10	20	
DDH.FR-44	71.37	72.60	75020	1.23			10	<0.2	14	24	
DDH.FR-44	72.60	73.53	75021	0.93			20	<0.2	8	23	
DDH.FR-44	73.53	75.29	75022	1.76			135	0.2	46	30	
DDH.FR-44	75.29	76.52	75023	1.23		↓	45	0.2	9		
DDH.FR-44	80.00	81.00	75024	1.00		<u> </u>	30	0.2	84	39	
DDH.FR-44	85.50	86.91	75025	1,41		+	15	<0.2	24 35	224	
DDH.FR-44	86.91	88.30 90.33	75026 75027	1.39 2.03			25	<0.2	25	21	
DDH.FR-44 DDH.FR-44	88.30 90.33	90.33 91.33	75027	1.00	· ·	+	155	0.8	431	209	
DDH.FR-44	90.33	92.63	75028	1.30	· · · ·	1	35	0.0	431	40	
DDH,FR-44	95.33	96.50	75030	1.17	i	1	10	<0.2	23	24	·
DDH.FR-44	100.88	102.32	75031	1.44		1	10	<0.2	39	<u> </u>	
DDH.FR-44	103.04	105.77	75032	2.73		1	35	0.2	351		
DDH.FR-44	105.77	107.27	75033	1.50		1	175		465	116	
DDH.FR-44	107.27	108.75	75034	1.48			70		478		
DOH FR-44	108.75	109.95	75035	1.20			55	<0.2	292		
DDH.FR-44	109.95	111.86	75036	1.91		L	50		146		
DDH.FR-44	112.96	119.70	75037	6.74		_	15	<0.2	28		
DDH.FR-44	119.70	121.32	75038	1.62		┢────	20				· · ·
DDH.FR-44	121.32	122,32	75039	1.00	·		15	<0.2			
DDH.FR-44	122.32	123.50	75040	1.18	· · · · ·		35	<0.2			
DDH.FR-44 DDH.FR-44	123.50 124.35	<u>124.35</u> 125.12	75041 75042	0.85		+	300	0.2			
DDH.FR-44	124.35	126.30	75043	1.18		<u> </u>	500				
DDH.FR-44	126.30	127.10	75044	0.80		+	15				
DDH.FR-44	127.10	128.00	75045	0.90	1	+	15				
DDH.FR-44	128.00	129.00	75046	1.00	1		5				i
DDH.FR-44	129.00	130.68	75047	1.68	1	1	5				
DDH.FR-44	130.68	132.00	75048	1.32			10			23	
DDH.FR-44	132.00	133.00	75049	1.00			5				
DDH.FR-44	136.90	138.30	75050	1.40			10				
DDH.FR-44	138.30	139.00	75401	0.70	<u> </u>		10	<0.2			
DDH.FR-44	139.00	140.00	75402	1.00	L	_	5	<0.2			
DDH.FR-44	141.64	143.00	75403	1.36		+	10				
DDH.FR-44	143.00	145.00	75404	2.00	···	+	15				
DDH.FR-44	145.00	146.00	75405	1.00	<u> </u>	+ · ·	15	-			
DDH.FR-44 DDH.FR-44	146.00	147.00	75400	1.00	ł	+	15				1
DDH.FR-44	148.44	150.23	75407	1.79	<u> </u>		30	- 1 .			
DDH.FR-44	150.23	151.59	75409	1.36	<u>+</u>		10				
DOH.FR-44	151.59	152.70	75410	1.11		-+	75			_	
DDH.FR-44	154.37	155.60	75411	1.23		1					
DDH.FR-44	156.50	157.50	75412	1.00					16	1 52	
DDH.FR-44	157.50	158.64	75413	1.14			15				
DDH.FR-44	158.64	159.90	75414	1.26			15				· · · · ·
DDH.FR-44	159.90	160.90	75415	1.00			:				
DDH.FR-44	160.90	162.30	75416	1.40			<				
DDH.FR-44	162.30	163.00	75417	0.70							
DDH.FR-44	163.00	164.30	75418	1.30	1		<	5 <0.2	2 5	9 30	l]
DDH.FR-44	164.30	165.38	75419	1.08			4	5 <0.2	2 18	2 6	

DDH.FR-044 Assay

HOLEID	From	To	Sample No	Length	Au g/t metallic	Aug/t	Au ppb	Ag ppm	Cu ppm	Zn ppm	-
DDH.FR-44	165.38	166.35	75420	0.97		_	<5	<0.2	77	38;	
DDH.FR-44	166.35	167.50	75421	1.15		1	<5	<0.2	168	50	
DDH.FR-44	167.50	168.74	75422	1.24		Į	5	<0.2	286	75	
DDH.FR-44	168.74	169.78	75423	1.04		· · · · · · · · - · -	35	<0.2	59	38	
DDH.FR-44	169.78	171.08	75424	1.30			35	<0.2	67	47	
DDH.FR-44	175.87	177.40	75425	1.53		1	10	<0.2	57	42	
DDH.FR-44	181.00	182.00	75426	1.00		1	<5	<0.2	120	55	
DDH.FR-44	183.00	184.00	75427	1.00		·	5	<0.2	65	44	
DDH.FR-44	184.00	184.60	75428	0.60		T	<5	0.2	409	121	
DDH.FR-44	184.60	185.92	75429	1.32	· · · · · · · · · · · · · · · · · · ·	1	<5	0.2	119	56	

ş

CERTIFICATE OF ASSAY AK 2005-1021

YANKEE HAT MINERALS LIMITED

4460 Atlee Avenue Burnaby, BC V5G 3R6

1

21-Sep-05

ATTENTION: Donald Gee

No. of samples received:79 Sample type: Core **Project #: FRAN** Shipment #: not indicated Samples submitted by: Ron Wells

		Metalli	c Assay	
		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
7	75007	3.49	0.102	

QC DATA:
Standard:
SN16

8.62 0.251

JJ/ga XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2005-1021

YANKEE HAT MINERALS LIMITED 4460 Atlee Avenue Burnaby, BC V5G 3R6

ATTENTION: Donald Gee

No. of samples received:79 Sample type: Core Project #: FRAN Shipment #: not indicated Samples submitted by: Ron Wells

			Au	Au	
_	ET #.	Tag #	(g/t)	(oz/t)	
-	7	75007	3.02	880.0	

QC DATA:

!

Standard: SN16

8.12 0.237

JJ/ga XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

19-Jul-05

16-Sep 1

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 2006-1021

YANKEE HAT MINERALS LTD. 4460 Atlee Avenue Burnaby, BC V5G 3R6

ATTENTION: Donald Gee

No. of samples received: 79 Sample type: Core Project #: FRAN Shipment #: n/a Samples submitted by: Ron Wells

1

,

÷

j

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Gr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	₽	РЬ	Sb	Sn	Sr	TIN	U	V	W	Y	Zn
1	75001	10	<0.2	1.84	- 5	40	<5	1.70	<1	13	27	12	3.79	<10	0.75	483	<1	0.03	1	2010	10	<5	<20	48	0.12	<10	91	<10	6	28
2	75002	5	<0.2	1.97	<5	30	<5	1.68	<1	11	27	8	3.53	<10	0.87	454	<1	0.02	1	1930	10	<5	<20	56	0.09	<10	76	<10	7	21
3	75003	15	<0.2	1.30	-5	40	<5	1.70	<1	6	27	10	2.41	<10	0.32	262	<1	0.02	1	1300	8	<5	<20	53	0.09	<10	- 67	<10	8	13
4	75004	145	<0.2	2.00	10	15	<5	3.01	<1	9	37	26	2.79	<10	0.81	481	8	<0.01	3	1440	10	<5	<20	33	0.09	<10	60	<10	7	18
5	75005	5	<0.2	2.29	5	30	<5	2.74	<1	11	24	22	4.41	<10	1.17	756	<1	0.01	2	1770	12	<\$	<20	48	0.09	<10	90	<10	11	27
					_		-												_			_							_	
6	75006	10		1.67	<5	55	<	2.28	<1	9	20	25	3.48		0.54	456	<1		_	1830	10	-	<20	71	0.09		88		<u>7</u>	21
7	75007	>1000	5.2		30	45	<5	2.04	<1	27	44	4799	5.81	<10		544	40			1550	18	<5	<20	81	0.09		87	<10	•	1029
8	75008	25	<0.2		<5	35	<5	2.47	<1	9	24	16	3.90	<10	0.70	453	<1	0.02	-		14	<5	<20	51	0.10		91	<10	8	23
9	75009	30	<0.2		50	30	<5	5.64	<1	10	15	29	3.41	<10	0.88	702	<1	0.02	-	1430	10		<20	315	0.04		74	<10	10	25
10	75010	10	<0.2	1.78	10	15	<5	2.12	<1	12	25	66	2.99	<10	0.80	410	<1	0.02	6	1340	10	<5	<20	37	0,09	<10	83	<10	5	27
11	75011	5	<0.2	2.02	5	10	<5	2.82	<1	11	21	63	3.09	<10	0.82	321	<1	0.03	6	1470	10	65	<20	43	0.10	c10	88	<10	7	25
12	75012	5	0.2	1.88	10	25	<5	2.24	<1	16	23	189	3.24	<10	0.74	381	<1	0.03	-	1420	10	_	<20	40	0.12		90	<10	6	54
13	75012	175	<0.2	1.82	10	35	<5	4.33	<1	13	22	121	3.76	<10	1.04	1092	4	0.03		1300	14		<20	84	0.09				10	45
	75013	75	-0.2	2.33	15	105	~ <5	3.44	-		25	99	4.05	<10	1.27	811		<0.01		1610	14	-	<20	216	0.10				11	44
14		• •			25	45	<5		<1	11			3.58	<10	0.93	763	<1			1390	14		<20	83	0.11				10	32
15	75015	85	0.3	1.86	25	40	<0	3.61	<1	14	22	64	3.30	510	0.85	103	~1	0.05	•	1390	1.44	~0	~20	65	Q . 14	~10	113	~10	10	52
16	75016	20	<0.2	1.74	<5	30	<5	2.36	<1	10	20	95	2.87	<10	0.72	376	<1	0.05	8	1620	10	<5	<20	41	0.12	<10	100	<10	9	33
17	75017	30	<0.2	2.31	<5	45	<5	2.51	<1	- 11	23	21	3.43	<10	0.81	498	<1	0.03	- 4	1490	12	<5	<20	87	0.10	<10	105	<10	8	23
18	75018	15	<0.2	2.37	10	30	<5	3.90	<1	14	25	12	3.85	<10	1.20	739	<1	0.02	4	1440	12	<5	<20	101	0.09	<10	102	<10	10	24
19	75019	20	<0.2	2.20	5	20	<5	3.23	<1	11	27	10	3.30	<10	0.97	582	1	0.02	4	1510	12	<5	<20	73	0.09	<10	93	<10	10	20
20	75020	10	<0.2	2.21	5	45	<5	2.95	<1	12	30	14	3.46	<10	1.01	651	<1	0.03	5	1370	12	<5	<20	118	0.09	<10	103	<10	8	24
					-					•	~				-	74.4	- 4			4670		æ		005			4.00	-10	40	~
21	75021	20	<0.2	2.32	5	95	<5	3.57	<1	9	21	6		<10	0.87	714		0.02	-	1570	14	-				<10		<10	10	23
22	75022	135	0.2	1.51		30	<5	5.29	<1	10	25	46	3.69	<10	0.95	910		<0.01		1300	10	_				<10		<10	17	30
23	75023	45	0.2	3.08	<5	15	<5	3.70	<1	8	30	9	3.25	<10	1.00	526		<0.01		1610	14	-	<20	62		<10		<10	10	19
24	75024	30	0.2	2.15	20	30	- 5	3.66	<1	13	28	84	4.88	10	1.24	865		<0.01		1620	12	-		101	0.14				16	39
25	75025	15	<0.2	1.95	<5	40	4	2.92	2	8	27	24	3.06	<10	0.65	644	<1	0.03	2	1580	10	<5	<20	76	0.08	<10	63	<10	10	224
26	75026	25	<0.2	2.30	≪5	30	<5	2.52	<1	8	34	35	3.28	<10	0.66	626	<1	0.03	3	1670	12	<5	<20	70	0.09	<10	62	<10	9	27
27	75027	15	<0.2	1.95	<5	35	<5	2.54	<1	8	30	25	3.12	<10	0.68	578	1	<0.01	4	1480	12	<5	<20	68	0.09	<10	62	<10	9	24
28	75028	155	0.8	2.67	20	40	<5	3.05	<1	12	33	431	4.30	<10	1.10	790	-	<0.01	28	1580	18	-	<20	88		<10	70	<10	10	209
29	75029	35	0.2	2.91	10	40	5	3.95	<1	10	26	π	3.85	10	1.12	806	-	<0.01	6	1680	16	_	<20	89	0.10			<10	14	40
30	75030	10		1.67	5	25	<š	5.39	<	9	24	23	3.25	10	0.93	770		<0.01	-	1630	10	-			0.06			<10	16	24
	13030	10	~∪. ∠	1.07	9	20	~>	0.09	-	3	£.4	20	0.20		Q.3Q		•	-0.01	Ÿ	1444			-		0.00					

ECO 7ECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2006-1021

YANKEE HAT MINERALS LIMITED

_

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Be	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Мл	Mo Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
31	75031	10	<0.2	1.51	- 45	45	<5	2.39	<1	6	31	- 39	2.24	10	0.36	290	6 < 0.01	3	1790	10	<5	<20	97	0.08	<10	61	<10	13	18
32	75032	35	0.2	2.13	<5	45	<5	2.74	<1	19	31	351	4.55	10	0.91	462	3 <0.01	23	1790	14	<5	<20	97	0.14	<10	104	<10	17	89
33	75033	175	0.2	2.08	<5	25	10	2.32	<1	33	35	465	6.33	10	1.04	429	2 <0.01	- 29	1820	16	<5	<20	45	0.16	10	130	<10	17	116
34	75034	70	0.2	2.16	<5	- 30	<5	2.44	<1	- 22	40	478	5.72	10	1.04	378	1 0.03	31	1840	16	<5	<20	55	0.18	10	135	<10	17	120
35	75035	55	<0.2	2.00	<5	60	5	2.79	< †	22	27	292	5.01	10	0.97	406	1 0.03	18	1890	16	<5	<20	161	0.15	10	117	<10	17	77
36	75036	50	<0.2	1.49	5	60	<5	3.27	<1	10	24	146	2.96	<10	0.71	514	2 <0.01	10	1280	6	<5	<20	151	0.05	<10	58	<10	13	43
37	75037	15	<0.2	1.30	<5	- 35	<5	2.65	<1	7	- 24	28	2.18	<10	0.53	411	2 < 0.01	3	1280	6	<5	<20	145	0.07	<10	- 44	<10	9	18
38	75038	20	<0.2	1.46	<5	- 30	<5	2.72	<1	7	24	33	2.26	<10	0.63	428	6 <0.01	3	1290	8	<5	<20	85	0.05	<10	49	<10	11	18
39	75039	15	<0.2	0.95	<5	15	<5	2.91	<1	5	20	15	1.72	30	0.70	445	9 <0.01	2	1380	6	<5	<20	68	0.04	<10	57	<10	14	16
40	75040	35	<0.2	0.75	6 5	25	<5	4.80	<1	5	19	11	1.88	<10	0.48	541	11 <0.01		1280	4	<5		175	0.01		27		13	15
41	75041	85	<0.2	0.82	45	20	<5	3.56	<1	8	30	35	2.68	<10	0.50	509	6 <0.01	4	1330	4	<5	<20	115	<0.01	<10	35	<10	14	23
42	75042	300	0.2	0.80	55	10	<5	5.12	<1	7	25	- 32	3.33	<10	0.68	588	5 < 0.01	- 4	1110	8	<5	<20	265	<0.01	<10	67	<10	13	24
43	75043	5	<0.2	1.35	<5	25	<5	2.51	<1	7	34	26	2.62	<10	0.69	405	2 <0.01	3	1450	6	<5	<20	83	0.07	<10	65	<10	13	21
44	75044	15	<0.2	1.26	<5	15	<5	2.60	<1	7	26	29	2.05	10	0.72	392	5 <0.01	3	1350	6	<5	<20	91	0.06	<10	49	<10	13	20
45	75045	15	<0.2	1,44	10	40	<5	3.78	< 1	8	28	32	2.76	10	0.85	636	3 <0.01	4	1620	8		<20	94	0.04		52		19	23
46	75046	5	<0.2	1.43	20	40	<5	4.45	<1	9	28	22	3.48	10	0.89	839	<1 0.02	3	1690	6	<5	<20	148	0.02	<10	47	<10	16	23
47	75047	5	<0.2	1.70	<5	35	- 5	3.70	<1	10	35	- 30	3.83	10	1.03	761	2 < 0.01	- 4	1590	10	<5	<20	120	0.05	<10	- 77	<10	16	26
48	75048	10	= 0.2	1.82	5	30	5	2.46	<1	9	31	43	2.98	<10	0.65	392	3 <0.01	5	1730	10	<5	<20	51	0.08	<10	70	<10	11	23
49	75049	5	<0.2	1.65	5	15	<5	2.72	<1	8	36	37	2.34	<10	0.67	343	5 <0.01	5	1720	8	<5	<20	48	0.08	<10	57	<10	11	23
50	75050	10	<0.2	1.20	5	50	<\$	3.16	<1	8	29	78	2.19	<10	0.60	490	17 <0.01		1540	6		<20	106	0.05			<10	13	26
51	75401	10	<0.2	1.20	<5	25	<5	1.91	<1	9	63	67	2.04	<10	0.43	289	119 <0.01	7	1430	6	<5	<20	48	0.08	<10	55	<10	11	14
52	75402	5	<0.2	1.34	<5	30	<5	2.25	<1	7	27	24	2.19	10	0.48	315	3 < 0.01	3	1610	6	<5	<20	68	0.09	<10	53	<10	12	17
53	75403	a 10	<0.2	1.20	<5	35	<5	2.39	<1	7	37	37	2.48	10	0.45	347	3 < 0.01	4	1470	6	<5	<20	123	0.07	<10	50	<10	12	19
54	75404	15	<0.2		<5	30	<5	1.82	<1	8	32	74	2.16	<10	0.37	291	5 <0.01	7	1380	6	<5	<20	53	0.07	<10	48	<10	10	27
55	75405	5	<0.2	1.32	<5	20	<5	2.32	<1	8	61	76	2.14	<10	0.50	293	82 <0.01		1330	6		<20	60	0.08		45		10	18
56	75406	15	<0.2	1.07	5	20	<5	1.89	<1	11	40	130	1.91	<10	0.37	269	43 <0.01	11	1340	6	<5	<20	45	0.06	<10	37	<10	10	35
57	75407	15	<0.2	1.26	5	10	<5	2.40	<1	8	41	88	1.96	<10	0.47	325	22 <0.01	9	1260	8	<5	<20	34	0.06	<10	39	<10	10	44
58	75408	30	<0.2	0.87	<5	15	-5	1.50	<1	7	35	77	1.68	<10	0.34	224	14 <0.01	9	1120	6	<5	<20	27	0.06	<10	36	<10	9	26
59	75409	10		1.32	5	80	<5	2.21	<1	11	58	111	2.69	<10	0.97	445	9 <0.01	28	760	28	<5	<20	307	0.13	<10	64	<10	14	37
60	75410	75	0.8	1.23	30	20	<5	3.04	<1	14	71	152	3.16	<10	1.01	760	9 <0.01	47	630	10	<5	<20	106	0.04	<10	71	<10	17	49
61	75411	5	<0.2	0.91	<5	15	<5	2.00	< 1	24	42	200	4.02	<10	0.50	523	3.⊲0.01	27	1050	8	<5	<20	27	0.08	<10	27	<10	15	59
62	75412	5	<0.2	1.27	<5	25	<5	0.84	<1	17	87	164	3.57	<10	1.12	313	11 <0.01	-54	440	8	<5	<20	73	0.17	<10	80	<10	14	52
63	75413	15	<0.2	1.34	<5	15	`<5	2.19	<1	15	35	209	2.19	<10	0.38	238	6 <0.01	17	1740	8	<5	<20	25	0.07	<10	36	<10	10	53
64	75414	15	0.3	1.61	5	20	<5	2.83	<1	19	67	487	2.69	<10	0.63	366	143 <0.01	36	1950	10	<5	<20	54	80.0	<10	44	<10	11	109
65	75415	5	<0.2	1.34	<5	25	<5	1.01	<1	13	79	50	3.61	<10	1.30	397	9 <0.01	28	1410	10	<5	<20	59	0.14	<10	85	<10	32	34
66	75416	<5	<0,2	1.06	<5	20	5	0.81	<1	12	78	49	2,91	<10	1.04	326	5 <0.01	43	550	8		<20			<10			14	33
67	75417	5	0.2	0.99	<5	10	10	1.04	<1	37	100	505	7.87	<10	0.70	414	4 <0.01	93	540	12	-5	<20	21	0.11	10	61	<10	14	129
68	75418	<5	<0.2	1.10	<5	10	5	1.46	<1	11	91	59	2.89		0.95	280	15 <0.01	32	590	8	<\$	<20	17	0.13	<10	70	<10	12	30
69	75419	- 5	<0.2	1.15	<5	35	5	1.03	<1	20	86	182	4.70	<10	0.89	404	9 <0.01	38	1000	10	<5	<20	25	0.15	<10	64	<10	15	61
70	75420	র্ব	<0.2	1.19	<5	20	<5	0.90	<1	13	98	77	3.14	<10	1.14	295	13 <0.01											12	38
71	75421			1.58				3.03	<1	16			2.73			363	5 0.04										<10		
72	75422			1.66				2.79	<1	25			3.36		0.60	345	44 <0.01		2020								<10		
73	75423			1.05				1.93	<1	12	59	59	3.32		1.08	488	5 <0.01		470	10							<10		38
74	75424	35	<0.2	0.67	220	25		2.65	<1	11	88	67	2.86		0.58		5 <0.01			6							<10		
75	75425	10	<0.2	0.75	30	30			<1			57	3.49	<1 (P)	de 7 2	820	8 <0.01	33	860	8	4	<20	85	0.03	<10	46	<10	15	42

ECO TECH LABORATORY LTD.								ICP CE	RTIFIC	ATE O	f ani	ALYSK	5 AK 2	005-10	21					YANK	EE H	АТ М	INER	ALS L	IMITE	D			
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bł	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na %	Ni	P	Pb_	\$b_	_Sn	\$r_	Ti %	ប	v	w	Y	Zn
76	75426	<5	<0.2	1.60	<5	65	5	1.87	~ 1	16	66	120	3.99	<10	0,94	421	5 <0.01	35	1170	12	<5	<20	558	0.10	<10	65	<10	12	55
77	75427	5	<0.2		<5	10	5	1.63	<1	13	49	65	3.82	<10	0.56	718	4 <0.01	15	870	6	<5	<20	14	0.12	<10	32	<10	17	44
78	75428	<5	0.2	1.21	<5	10	10	1.83	<1	21	73	409	6.99	<10	0.77	665	8 <0.01	52	910	14	<5	<20	19	0.12	<10	50	<10	15	12 1
79	75429	4	0.2	0.95	<5	10	5	1.45	<1	16	84	119	4.33	<10	0.51	481	9 <0.01	50	920	12	<5	<20	29	0.09	<10	48	<10	15	56
<u>QC/DA'</u> Respir																													
1	75001	5	<0.2	1.81	<5	40	<5	2.03	<1	15	37	12	4.02	<10	0.83	555	<1 0.02	2	2240	14	<5	<20	63	0.13	<10	100	<10	7	37
36	75036	вÕ	<0.2		5	50	5	3.98	<1	13	28	160	3.22	<10		548	2 < 0.01	11	1320	10	<5	<20	166	0.05	<10	59	<10	13	51
71	75421		<0.2	1.56	<5	10	5	3.12	<1	17	40	165	2.81	<10	0.60	372	5 0.04	14	1850	12	<5	<20	35	0.08	<10	45	<10	11	51
Repeat	:																												
1	75001	15	<0.2	1.90	<5	40	<5	1.75	<1	13	27	12	3.92	<10	0.78	498	<1 0.03	2	2040	10	<5	<20	50	0.13	<10	94	<10	7	30
10	75010	10	<0.2	1.64	10	15	<5	2.19	<1	13	25	-66	3.11	<10	0.83	428	<1 0.02	6	1390	10	<5	<20	38	0.09	<10	86	<10	6	27
19	75019	15	<0.2	2.23	5	20	<5	3.38	<1	12	27	10	3.41	<10	1.00	604	<1 0.02	4	1580	12	<5	<20	76	0.09	<10	96	<10	10	24
36	75036	45	<0.2	1.55	5	60	<5	3.55	<1	10	26	152	3,16	<10	0.75	548	3 <0.01	10	1350	8	<5	<20	163	0.05	<10	62	<10	14	45
45	75045	15	<0.2	1.35	10	40	<5	3.79	<1	8	28	30	2.70	10	0.82	618	3 < 0.01	- 4	1600	8	<5	<20	92	0.03	<10	50	<10	18	23
54	75404	20	<0.2	1.02	<5	30	<5	1.75	<1	8	32	68	2.03	<10	0.35	274	5 < 0.01	6	1270	6	<5	<20	50	0.07	<10	45	<10	9	24
71	75421	<5	<0.2	1.51	<5	10	5	3.03	<1	16	40	160	2.82	<10	0.60	372	5 0.03	14	1890	12	<5	<20	33	0.07	<10	43	<10	10	49
Standa	nd:																												
OXF41		795																											
OXF41		810																											
OXF41		795																										İ	
GEO'05			1.6	1.68	60	140	<5	1.86	<1	19	59	83	4.08	<10	1.05	764	<1 <0.01	29	800	24	<5	<20	58	0.11	<10	72	<10	11	74
GEO'05			1.5	1.41	60	125	<5	1.67	<1	18	59	83	3.79	<10	0.92	671	<1 <0.01	28	770	22	<5	<20	54	0.10	<10	71	<10	10	76
91000			1.5	1.41	~	120	-0	1.07	-1		~	÷	5.,0			* •••				—	2								-

.

JJ/ga d#1021 XLS/05 FAX: 372-1012 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

5

÷.,

ŝ. à,

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DH NO. FR-044	1	ITHOLOGY	STRUCTURE	ALTERATION	MINEDALTZATION	T	SAMP	AGE NO. /
MAIN UNITS	GL	SUB UNITS		ALIERATION	MINERALIZATION	FROM		NUMBER
-3.05 Casing in	Qe 10	-fractured bedrack .		······································	· · · · · · · · · · · · · · · · · · ·			+
fractured Badrock 105-7870 Monzodient peckled white and	Ý	3.05.27.10 As general description dedeatery fractured and axialized	and brittle front we have protected carb	vit fortuce. related - axidation,	Masked by alterate			
reen, medium grained -2% small mefic 10_ censitus		7.10 - 35.16 As general description Massive, medium grained man	With many 30-45 CA	with related costs	TT - atsent fine dessen Py			
	+//-//+	Local small hardlende please yster TI-27, fine refine xearling generally sicon	Epid att boods 40-9004 with local Wits/was Narrow	pencesive epid		//.20	/ <u>2·</u> 36	7500/
	+ 11+	subounder to subongular speth weak magnetic Normus & lacon epidete alteration pathers and	0xidized frostures 20120 14-2-14-4; 15-25 -15-43; 22-20-22-52					
J 0,	÷ +	bards.			······	20.00	- <i>21.</i> 40	75002
	¥x× :+ ∥ +		24.25-25:50 highter Caloured with many fin car with 15-1000					
	↑ + //							
_مئ	+	······································				31-24	32.16	. 75083
Carb Arm	+	35.16-27.50 Pater atteration	- 35-66-35.0 30 CA WAL	Mainly Vit Allocad	Tr. V.fine dissen By	35.16	36.50	
Vn.	71 +-	averplinting med. gr. MD. 37-50-39-83 As obove. 39-33-39-96 Mc marks bentureo. Fin. 39-33-39-96 Mc marks Destructor Fin.			Tr V. fine dimen Ps 2-3% vit-dessen	<u>37.50</u>	<u>-19-53</u> - <u>39</u> -44 -	7\$046

KAMLOOPS GEOLOGICAL SERVICES LTD.

.

LOGGED BY: Kie Wells

DATE: 18th August 2006.

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DH NO. FR.044		ITHOLOGY	STRUCTURE					GE NO.
MAIN UNITS	IGL	SUB UNITS		ALTERATION	MINERALIZATION	FROM	SAMPI	
	40	31.96-46.20 massive mediin	Fairly massive Loca	& ideling selected	Tr fine diesen.	39.44	41.25	75008
		grained with local exid. bands	30-50 CA Epid and pr		P.	3/ 70		
	14	hocal subparollal carbonate	Carb Vits, Neme	New Epid bands				
	+	veries masking textures	Foid bonds 20-90CA					
						46.20	47.20	75009
	1/2	46.20- 50.00 Medium grained oil	- care, afgicald arm	Poid oxin local	TI fine dimenty	. 47.20	41.00	1500
	12	vas.	Local 1-5cm epid back	epid alt barda	tocal cp , in maline	48.00	49.00	75011
	비하	So:00-53-71 Breeciated, carb				49.00	50.00	75012
	90	alt. and veined, masks med.	COLD NO . MILLOUS D'30	Patring with powersive	TI fine dinsen also	50.00	51.35	75 1 /3
	7	gr_texpres	hard rits some vusay	carb. Wit cars book		\$1.35	52.25	25014
	+	53.71-65.12 Specklad green, grey	sed of cost was	minar a ty - carlo ins .	Some concer Py in	52.35	\$3.71	75015
		respite, marine - was from intern	A more with few	Wit related Council	To fine disson By		┢───┤	·
	1	with 1-2% small mafie xendiths		chi and corbinate		57%9	58.00	
	i i i	Lorger and Mare asyclar at	corto, chi lacal gbz.				┝╍───┤	
4		bottom of section upto sere.			·			
	ויער			· · · · · · · · · · · · · · · · · · ·				
	•							
		······································						
	1		10,12 ulto and a nicia			6400	45-13 66-63	75617
		CC-15- C9-00 A GROUP Mare	mainly carb lesser epid	Mainly ult Meated	TI fine by often		68/3	75018
	+	Associate usty, Local blacky	lin care me 20. Joint	ca scale apid potetus	at margins of carb	44.63		
-	<u><u> </u></u>	69.00= 72.60 Very similar to 52.2	1 · · · · · · · · · · · · · · · · · · ·	Vit related carb	-			
•	92	maxive with lac. vite meduin		we epidalt boods	Te fine dissen ly			
	إبرأ	(slightly fine) grained	VIA 35-15 CA. No mais	2-5%		71.37	72.60	75020
	253	72. 40-7652 Weak bx. corb-sil alt.	Epid bonds to lan 50-40 Brewated to 13-20	Alt internal . silicar	1-4% fine 13 vits in	72.60	72.53	75021
		local fine qtz shuks	77.2.705 414 6.000 0.		TI fine dissen to	7353	75.29	75022
			21. W. sh. K 40 4004	Andraw COND +163		75.25	76.52	75023
	.	7652-78.70 Grey-while spacested	- massing with fam 1.	Which is in shok.	To fine disen Py	↓		
1.70-81.0P	[+t	file-med-grained often ford Porph. File fald purphyry dyke	fine carlo ult	RADE WE PEN Corte.	Local vifine doman	[
Feldy or Purphyry	1.	Fire fald purphyry dyke	Corte with many	hard, sil. vib cod				

•

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

	Ľ	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMP	GE NO. 3
MAIN UNITS	GL	SUB UNITS	-1		- CHINEIGENERATION	FROM	TO	NUMBER
iliteous crowded PP. 80	$\mathbf{\nabla}$	SUB UNITS aphanitic gravitations. chilled layer partial 21:00 - 20:23 As general description Eointe nossive . Source make rendit	10. To CA Inwell	L.K.K.a.d.		1		
ЪуКе? 81:00-103:04	6.	SILLE - BUILS & person description	contact sharp bich	it uso had so the		80.00	<u>- 9/·m</u>	75°24
Mongodiorite . Green-	+ ,	Foirt passive source make really	4) Augusta his cash	We related corb	Te very fine	 		
-	12				dimen. f.	85.50	+	t
rey-while specklad.	{ <u>.</u> .	and angular Theore	with 30 -Tich Many	- second great color	· _ · · · _ · · · · · · · · · · · · · ·		- 16491 -	
nedium grained. Local	: ابر †		with racow chi all	are epia pariny.	f	86.91		1 -
nafic xenolitis	14		selvedges	· · · · · · · · · · · · · · · · · · ·		<u>88.30</u>	f #0·30_	- 75427
٩ <u>٠-</u>	Ĩ.	90.33-92-63 fight green, fine greene	A Madrecours 30-60CA	Pervesive cate, chi	Te V. fine - fine	90-30	9/23	75028
Aut 2014	1/2	90:33-92-63 Light green, five greater Carb-chl-alt overprint textures Local slickensides on portings	Many toch at top	often as ults	dissen Py	91.73	92.63	75029
	1.51	92.63-94.50 Az above alt zone.	1263-95-23 Carle vills Cut. Chi. Selvelges 35-45 C	Wit related chi con	To fire disem R.	95.23	9650	75039
		Med. grained with carb vite and	95.73 -96.22 Alt gent	Pat top. It and wk.	To fire discon Ry Mainly in alt zous		├ ───┤	
	-/	patch, alt locally used and order at	98.73-96.22 Alt gove code	perrosive core encours	{	(00.98	102.32	75031
100	1	answe with 1-2% anofic xensites	widely spoud cars	chi lacol sil.	, To fix diver P,			
		Sub-con to subaquilar > Sem Non						
	+	magnetic	VIIS 20-50:04 Count	······			┟↓	
1.04-109.95 6	1.	Med grey fin goind, counded	Morrise at top.	vit related carb	Te-17, fine denter	103.04	105.77	75032
eldspor Porphysy Dyke	,	elag. phenos 1-3 mm. 1-24	rubbly recovery below	and chi	Ry 1-77 P vite por	105.77	107.27	75033
mi-crowded plag. Porp.	14	Subangidas mafic xecalities & tem.	106.70 with wasy cat	•	In @ 34 CA local			75034
2% mapie xereliths croin	:/+	Fractured with range carb vite	chi. vitz subportedel.	<u> </u>	small by aggregate	108.25	109.95	75015
995-146.53 110		109.95-11791 Light & med. get	way fine carbo	Vit usated carb	To fine disson Pa	109.95	111.86	75036
Monzodiorite. Spacklad	(+, 1	7	local chi spid vits	suma fire chi, spig	To fire disson by			<u> </u>
Wite, green, grey Mad.	17	angie xendites 1.7cm.	30-60 CA Local NGOL				ŧ.	
sined. Local small	/ ≁ -		recovery . sould fairly	┝───────────┤	···	ł		
fit renoliths. Altered	1		@111-3 -111-6 20-70CA					
nd veined inhervals	*/-		Some exicty.					
ļ		under auto the fait and whe	All a second the second	with sale had and		4 7.96	.// 9 :70	- 75037 -
120		overprinting Katurg.	glzepid 25-60°CA	silice we epid portue.	1. fine annen 19	†		

KAMLOOPS GEOLOGICAL SERVICES LTD.

.

LOGGED BY: Re Wells DATE 18 August 2005.

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DH NO. FR-044							PA	GE NO. 4
	L	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPI	ING
MAIN UNITS	GL	SUB UNITS				FROM	то	NUMBER
/20	4	121.32 -125.12 Cart alt waining and	several code (a/2) va	Pater percesiio Life	Tr-24 fine laca	119.70	121.32	75038
Att	/4. 	becal fracturing mark textures Both	15-45 CA with local Py		and Py is vite	121.32	122.32	75.39
cert ats	÷.	and gr. ND and fire How perphysics	Areas very fine carb	related carb, gtz, chi.	wellower rather die	er 122:32	12350	- 75040
V/3 Py	ļ.,		Chl. VIA windle angles	Vit ulsted Code		123.50		- 75041
·	*	Messive med gr. MD	Low angle Sil-chi bands	Councele 10-sica	Tr fine dimen Py	-124.35	125.12	-75042
Alt Zone	5	126-20-129-00 Arnost 20000 Of Parr, cart	LO-LOCA CAR VIN.	Silice - fine chi bond		125.12		75042-
carb. Py	<u> </u>	12630-129:00 Broad Josse of per carts Separated by massive not pilly fresh 129-00-126-24 massive and pilly fresh	At he ready recovery	Carb Carb WIT Lacal	TI-I to fine disem	124.30	123.10	75044-
130	.≁°	MD 1-1% uph 5% mapie rear litre	34-95 CA Carb-chi. vite.	Mainly vit ulsted	TI fire droven &	127.10	12800	75445
	•+	succeptor eptor forman	4163 20 TOCA 9/3-Card	polices sel(corb)		128-00	12900	
Auc	+ •		Allignment fabrics			12.9-02	130-68	75047-
#P olykeo	/+,	Narrow highly alt fin grained FP	sarss of thoughout.			13 6 - 68	(32.cm)	
	46	dykes 133.90-3cm 30 ch (cart all) 136-8-13645 45 ch (sit all)	focal 3-6m sil			<u>/32-</u>	131-00	<u>75049</u>
		136 24-4464	potches Sochith		TC v frai dusen			
Qty V		Arabour with bleached gold alt	Few larger kitty	Large pateles fint	By fin graind		138-30	75050
Gpl. Angy	+	intervale clusters of make xensities.	vas maidy of un-side	exid alt that in	gal and Apy?		139-00-	75401
··· -	+	to sem angular, can mayratic	Hotably 139 60 50 CA		et saluedges to gy	139-00	14000	75402
	خهنہ د		write you race y local oris	chi, carbon Park	Bluich metallic			
	۰ T	Plagicelose purply atri 5-7%	Finer carb-lad 40-	we proves in and	Appy commonly with	141,64		75403
	+ "	sul-angel - Subounded enfir x loalite	gty can into Em with		april some the?	143.00		-75404 .
	• †	to been large appear to be ss.	Wivish Appy and Ma?	VIE related chi. s.i.	Fr dissen Py local	145.00	146.00	_75405
6.53 -150-23	• ^ I	146 53-150.23 Hateralitie Latrusian .	Minut atex Carb	textures.	Bluish refallic comment	<u>_146-000</u>	147.00	75406
tnsion Breccia		Bx. matrix as above Some Bist	abundant de chi		fin dism Py		148.44	-75407
, SS, HF fragments 150 FP. MD matrix	0°o	HF. pograde 310 cm.	BELLY MAN US GULT		<u> </u>		150.23	75408
FP.MD' Malmy			, canent	mail 0 : WH	The set 1.1 11	150:23	151.59	- 75409
0.23-157.5 Biot. HF	40	150-23-157-50 As general descaption	Vibs corb and orch.	march fine ME	Tr-3% potety fla	0037	-132.00	_ 7.5 410 .
h bleached intervals	10.	Bist HF wardely laristed fire	horness Comin 30 40 CA	and chi carb	frantrice / dem en Py	154.37	155.65	7544
med. lomination	<i>¶1</i>		Widey weard local Py	mered 1547-1554	Tr-24 fini dunan	156:50	r	1541Z
	1		· · · · / / /	1.16 marked chi	Po in blacked Int.	15250		75413
50 - 159.90 MD. Dyke	1	poking med de greys find grand	Varen of gravebi	Con oil annihi	The dayson ovit	158-64		
tchy alt. Mf.ground	1	WE all with VIPS MARE PLUTUNG	20-60ZA.	Longil- possible 1	Aine Po Tr Aren		16090	75415

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: Rece Wells DATE: 19th August 2006

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DDH NO. FR-044			· · ·				PA	GE NO. 5
	-	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	
MAIN UNITS	GL	SUB UNITS				FROM	TO	NUMBER
159.90 - 166.35 R	14	As general description, commanly	Fine lomination 40	Brakite throughout	TI-2% fini dimen.	160.90	162.30	78416
Bistite Konfels as to	10	fine commeted w/m brown bist	=60 CA . co chanatt, 600	contrak chi in vits	and with the Py	162.30	163.00	_ 75412
above dyke. Local	2	local bleached and dr. chi. alt	dork chi minville.	Patric bleaching ?	patchy in BH. Massure	163.00	164:30	.75418
Pyrchatike veins **	VIII.	associated with Pand, or & potable.	· · · · · · · · · · · · · · · · · · ·	The chi assoc with Po.	Pa(Py) vor 162.60 - 42.80	164.30	165.38	75419
16-35-16274 MD Dyka		Jame as 157.50 fine grained with	Aluscovs fin vits whe assor bearing animate fra B. Pa- vits 20-00-ca.	Potety bleaching assoc		165.38	166.35	
Patchy altered, fr grained	4	pokly bleaching resting textures	with assoc Heached	vite - fine silica? Some	- FF-201. fin	166.35	167.50	- 7 \$ 421
168.74-189.00 Block	1	5 light to met green spectrud .	VIES 30-H"CA. *	dimen dr. che local	line and sit Py	167.50	169.74	75422
siltstone - Argillite 120	1	168-14-171.60 Maioly block, couch lominated,	Crude Conisation 30	diman dk. chi lacal cort vity Fine carts vity	Tr- 14. Py local Tr Cpy	168.74	169.78	75423
fine growing, ande	1	fine grained sittetone ergillity.	- Soich widespread fini		The lock silest and	169.78	171.08	75424
	1	Geoched with some bigh HE @	carb mich with yours	sorrosure carb in	(Pa). To Party in			
Lominated, faitly soft Bislite Komple internes	11/	16174-161.75; 170-5 - 171-1; 176.41 -	171.08-172.80 Major	bleached intervale.	QV @ 169.53			. <u></u>
with the and as the Conte	14	174:45;	foult, carboatt rich		TI-34 potety fine	_/ 71-8 7	172.40	-75425
with to and or by conc. By	1	At 171.08-172.00 Fault much com	and the Double	<u> </u>	Pyin cach, Al. int.			
		loss	169.53 - 16970 Variable og	۵۰,				
	14	179-40-182 To Bist HE with stone	Biot HE Lonia	Arit. HF bown	BH-TC fine deven A			
10-			40. TICA ALMANA de	La biat Reached	and fire vit Py (Po)	181.00	182.00	75426
н р ъую	V.	182.00-182.52 Bleached fin HP dyke	chi -bleached internet		Blooded as sulfided	-		
AF 23-	1/	181.52-185.92 Mixed Bid- HF	local carb elts posica	Polich Wearhed	Alexched no 5- (fides)	183.00	184.00	75427
	19	blogshed and block HE substance	Bleached more massive	In OH YHF Ult	Grenerally Tr - 1%	184.00	184.60	75428
	111		alk vits and freehold	biot is bleached	fine durion vit 1 3(10)	184.60	18592	75629
(\$59)	<u>i</u> – –	185-92 - East Basched interval.		por. Sil. Same uttake.	@ 18425 784 36 marine Po vo To Can ato.			
					10-13-13			
							l·	
					•••••	-1		
								·
					——————————————————————————————————————			
	1					†		
					•••••			· · · - ·

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY Rectivelis

DATE: 19th August 2005.

DDH: FR-045

ł

۰.

R. C. Wells P.Geo, Kamloops Geological Services Ltd.

ı.

Hole ID: Project: Property:	DDH.FR-045 FRAN FRAN
Claim:	
Easting:	10408504E
Northing:	6094382N
Elevation:	1246m
Grid:	8504E/4382N
Length (m):	188.06
Dip:	-45
Azimuth (grid):	200
Started:	18/8/05
Finished:	21/8/05
Hole Status:	Finished
Material left in hole:	None
Comments:	Testing south anomalies, south of FR-036
Core Size:	NQ
Logged By:	R.Wells
Purpose:	Same as comments

,

:

1

٦

DDH.FR-045 Surveys

HOLE ID.	Depth (m)	Dip	Azimuth (grid)
DDH.FR-045	0	-45	200
DDH.FR-045	75	-43.5	203.1
DDH.FR-045	182.1	-42.3	208.1

X

-

.

DDH.FR-045 Geology

Hole ID	From	To	Unit Code	From	To	Sub Unit	Veins, Vits	Atteration	% Py	% 20	,Cpy %
DDH FR-045	0	3.05	MD. Fr bedrock	0	3.05	MD. Fr bedrock					
DDH FR-045	3.05	29.93	MD. Xen. Fr. Oxid	3.05	29.93	MD.Xen.Fr.Oxid	Strong Fr.minor Carb Otz Vits	Fr Oxid local w/m patchy Epid			·
DDH FR-045	29.93	37	MD, Xen (SS)	29.93	37	MD.Xen (SS)	Minor Carb, local Epid, Qtz, Py	Patchy w/m Epid	Tr to 1		
DDH FR-045	37	38.15	FZ.MD	37	38.15	FZ.MD	Strong Fr.Oxid	Sting Oxid			
DDH FR-045	38.15	44.81	MD	38.15	44 81	MD	Minor Carb, Chl, Otz Vits	VII related, Fr Oxid			
DDH FR-045	44.81	48.9	MD.Fr.Alt.Local Bx	44.81	48.9	MD.Fr.Alt.Local Bx	Fr.Chl,Cy,minor Carb,Py	Strong dark Chl,w/m Carb	Tr to 2		
DDH.FR-045	48.9	80.65	MD.Wk Att	48.9	57	MD.Wk Alt.Chi	Massive, minor Carb, Chl, Epid	Vit related Chi	Tr to 2		
DDH FR-045		<u> </u>		57	72.29	MD.Xen.Wk Alt.Epid	Wk/m Carb, Chi, Epid Vite	Wk/m patchy Epid	Tr		
DDH FR-045				72.29	80.65	MD.Xen.Fr	Adund Chi, Carb Vits, local Py, Otz	Wk Bx Wk/m Chl, local Epid	Tr to 1		
DDH FR-045	80.65	82.69	PP.Dk	80 65	82.69	PP.Dk	Massive, few Carb Vits	Hard siliceous	Tr to 1		
DDH FR-045	82.69	94.9	FZ.MD 7	82.69	94.9	FZ MD Local core loss	Mod/s Fr, local Bx, Chi, Carb Vits	Chi,Carb,Cb faults	Tr to 1		
DDH FR-045	94.9	111.96	MD var. Alt	94.9	97.51	MD	Massive, few Carb, Chl Vits	Vit related	1 to 2		
DOH FR-045				97.51	104.55	MD Mod Fr local Bx Py	Carb Chi and local Otz Vits/vne	Patchy Wk Chi local Sil	Tr to 4		
DDH FR-045				104.55	111.96	MD.PP.Xen	Chi Vits, minor Carb, Qtz, Py	Vit related, local Bx with Vits	Tt		
DDH.FR-045	111.96	114.86	MD.Fr.Vn.Alt.Bx	111.96	114.86	MD.Fr.Vn.Alt.Bx	Strong Chl. Otz, Carb Aspy Vn	Mod/s Carb	Tr to 1		
DDH FR-045	114.86	140.56	MD.var Alt	114.86	118.08	MD.Xen	Few Crb, Chl, Py Vits	Vit related	Τr		
DDH FR-045				118.08	123.03	MD Vits Chl, Carb	Abund Chi, Carb, local vuggy Qtz	Patchy w/m Epid			
DDH.FR-045				123.03	140.66	MD, Local Bx Bi	Fine Carb, Chl, Sil, Py	Patchy Bl. Bx Oxid	Tr to 4	Tr	٦r
DOH FR-045	140.66	150.26	Biot HF	140 66	150.26	Biot HF	Local lam, Carb VitsAns, Bl	Biot Local dark Chl	Tr to 1	Tr	Tr
DDH.FR-045	150.26	155.2	MD.Xen.Alt.Dk	150.26	155.2	MD, Xen, Alt, Dk	Mod fine Chl Carb local Otz Py Vite	Sil Chi patchy pervasive	1 to 2		
DDH.FR-045	155.2	161.7	Biot HF	155.2	161.7	Biot HF	Crude Iamin Abund BI/Carb, Py Vits	Biot Local Bi or dark Chi	Tr to 3		
DDH FR-045	161.7	179.2	Biot HF with narrow Alt. MD.Dks	161.7	166.4	Biot HF with narrow Alt MD Dks	Minor Carb, dark Chi Local Carb 8x	Patchy 8I,Carb Biot in HF	Tr to 3		
DDH FR-045				165.4	179.2	Biot HF few MD Dks	Carb, local Po, Py Vits	BI, Carb Alt intervals	Tr to 3	2 to 25	
DDH FR-045	179.2	180.7	MO.Dk	179.2	180.7	MD Dk	Carb, local Chi, Py Vits	Vit related local BI	Tr to 1		
DDH FR-045	180.7	185	Biot HF	180.7	185	Biot HF	Abund fine BI/Carb Vits	Biot, local Bl/Carb, dark Chl	Tr to 1	Tr to 5	
DDH FR-045	185.0	188.06	FZ Biot HF	185	188.06	FZ Biot HF 25% core loss	Chl,Carb	Strong Carb			
DDH FR-045		188.06	EOH		188 06	EOH			-		

.....

. . . .

کامیان مرز

ę

-

A DATE OF A DATE OF A DATE OF A DATE OF A DATE OF A DATE OF A DATE OF A DATE OF A DATE OF A DATE OF A DATE OF A

-0

HOLEID	From	To	Sample No	Length	Au g/t metallic	Au g/t	Au ppb	Ag ppm
DDH.FR-45	8.23	10.70	75435	2.47			210	<0.2
DDH.FR-45	12.75	13.87	75436	1.12			395	0.5
DDH.FR-45	17.00	19.00	75437	2.00			20	<0.2
DDH.FR-45	26.50	27.50	75438	1.00		1	20	<0.2
DDH.FR-45	33.50	34.50	75439	1.00			5	<0.2
DDH.FR-45	34.50	35.66	75440	1.16			10	<0.2
DDH.FR-45	37.00	38.15	75441	1.15		· · ·	<5	<0.2
DDH.FR-45	44.81	45.66	75442	0.85			5	<0.2
DDH.FR-45	45.66	46.48	75443	0.82			20	0.2
DDH.FR-45	46.48	47.48	75444	1.00		1	5	<0.2
DDH.FR-45	47.48	48.90	75445	1.42	······································	1	15	0.2
DDH.FR-45	50.40	51.15	75446	0.75			90	<0.2
DDH.FR-45	53.60	54.60	75447	1.00		† - /	245	<0.2
DDH.FR-45	54.60	55.76	75448	1.16		-	270	<0.2
DDH FR-45	57.50	59.00	75449	1.50	····	1	5	<0.2
DDH.FR-45	63.00	64.50	75450	1.50			10	<0.2
DDH.FR-45	70.79	72.29	75451	1.50			15	<0.2
DDH.FR-45	75.40	76.90	75452	1.50			40	<0.2
DDH.FR-45	76.90	78.40	75453	1.50		+	45	<0.2
DDH.FR-45	78.40	79.90	75454	1.50			70	<0.2
DDH.FR-45	79.90	80.65	75455	0.75			70	<0.2
DDH.FR-45	80.65	81.38	75456	0.73	1		65	<0.2
DDH.FR-45	81.38	82.69	75457	1.31	 		40	<0.2
DDH.FR-45	82.69	84.43	75471	1.74	<u> </u>		55	<0.2
DDH.FR-45	87.48	89.00	75458	1.52		1	155	<0.2
DDH.FR-45	89.00	90.52	75459	1.52		2.25	>1000	0.2
DDH.FR-45	90.52	91.52	75460	1.00			270	<0.2
DDH.FR-45	91.52	93.57	75461	2.05			25	<0.2
DDH.FR-45	93.57	94.90	75462	1.33	i	+	330	<0.2
DDH.FR-45	94.90	96.30	75463	1.40			430	<0.2
DDH.FR-45	96.30	97.51	75464	1.21			210	<0.2
DDH.FR-45	97.51	99.00	75465	1.49		1	585	<0.2
DDH.FR-45	99.00	100.50	75466	1.50			70	<0.2
DDH.FR-45	100.50	101.50	75467	1.00			10	<0.2
DDH.FR-45	101.50	102.50	75468	1.00			70	<0.2
DDH.FR-45	102.50	103.50	75469	1.00			10	<0.2
DDH.FR-45	103.50	104.65	75470	1.15	•••		880	<0.2
DDH.FR-45	104.65	105.85	75472	1.20			5	
DDH.FR-45	108.81	110.00	75473	1.19			35	<0.2
DDH.FR-45	111.96	112.90	75474	0.94			<5	<0.2
DDH.FR-45	112.90	113.90	75475	1.00			410	<0.2
DDH.FR-45	113.90	114.86	75476	0.96	·····	-	10	<0.2
DDH.FR-45	114.86	116.36	75477	1.50			5	
DDH.FR-45	116.36	118.08	75478	1.72	1	1	<5	
DDH.FR-45	118.08	119.08	75479	1.00		+	20	
DDH.FR-45	120.50	122.00	75480	1.50		1	5	
DDH.FR-45	122.00	123.13	75481	1.13	··-		40	
DDH.FR-45	123.13	123.95	75482	0.82			10	
DDH.FR-45	123.95	125.50	75483	1.55	· ·	• • • • • • • •	45	
DDH.FR-45	127.28	128.78	75484	1.50	+	-+	25	
DDH.FR-45	128.78	130.28	75485	1.50			10	

11/8/2005

1

1 of 4

.

HOLE ID	From	То	Sample No	Length	Au g/t metallic	Au g/t	Au ppb	Ag ppm
DDH.FR-45	130.28	131.78	75486	1.50			25	<0.2
DDH.FR-45	131.78	133.30	75487	1.52			20	<0.2
DDH.FR-45	133.30	133.95	75488	0.65			70	<0.2
DDH.FR-45	133.95	135.50	75489	1.55			30	<0.2
DDH.FR-45	135.50	137.00	75490	1.50			<5	<0.2
DDH.FR-45	137.00	138.50	75491	1.50		T	5	<0.2
DDH.FR-45	138.50	139.50	75492	1.00	· · · · · · · · · · · · · · · · · · ·	1.16	>1000	0.6
DDH.FR-45	139.50	140.66	75493	1.16		1	30	<0.2
DDH.FR-45	140.66	142.16	75494	1.50		T	10	<0.2
DDH.FR-45	142.16	143.16	75495	1.00		1	<5	<0.2
DDH.FR-45	146.00	147.10	75496	1.10			135	2.1
DDH.FR-45	149.26	150.26	75497	1.00			5	<0.2
DDH.FR-45	150.26	151.60	75498	1.34			5	<0.2
DDH.FR-45	151.60	153.10	75499	1.50			10	<0.2
DDH.FR-45	153.10	154.40	75500	1.30			<5	<0.2
DDH.FR-45	154.40	155.20	75501	0.80			<5	<0.2
DDH.FR-45	155.20	156.50	75502	1.30	• • •		5	<0.2
DDH.FR-45	156.50	158.70	75503	2.20			<5	<0.2
DDH.FR-45	158.70	159.80	75504	1.10			20	0.4
DDH.FR-45	159.80	161.70	75505	1.90			15	<0.2
DDH.FR-45	161.70	163.20	75506	1.50		· · · ·	105	0.8
DDH.FR-45	163.20	164.10	75507	0.90	1		40	<0.2
DDH.FR-45	164.10	165.30	75508	1.20			25	0.2
DDH.FR-45	165.30	166.73	75509	1.43			80	1.2
DDH.FR-45	166.73	168.33	75510	1.60			5	0.2
DDH.FR-45	168.33	169.33	75511	1.00			25	0.2
DDH.FR-45	169.33	170.80	75512	1.47			<5	<0.2
DDH.FR-45	170.80	172.35	75513	1.55		1	80	<0.2
DDH.FR-45	172.35	173.35	75514	1.00	1		140	0.3
DDH.FR-45	176.70	177.50	75515	0.80			5	<0.2
DDH.FR-45	177.50	178.15	75516	0.65			10	<0.2
DDH.FR-45	178.15	179.20	75517	1.05	· · · · · · · · · · · · · · · · · · ·	-1	<5	
DDH.FR-45	179.20	180.70	75518	1.50			200	<0.2
DDH.FR-45	180.70	182.00	75519	1.30			15	
DDH.FR-45	182.00	183.00	75520	1.00			<5	
DDH.FR-45	185.01	188.06	75521	3.05			50	<0.2
1		-						
		7						-

.

Т

5-Oct-6.

ECO TECH LABORATORY LTD. 10041 Dalias Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 2005-1022

YANKEE HAT INDUSTRIES CORPORATION 4460 Atlee Avenue Burnaby, BC V5G 3R6

_

2

ł

.1 1

4 ÷

 $\{\cdot,\cdot\}$

~

ATTENTION: Donald Gee

No. of samples received: 87 Sample type: Core Project #: FRAN Shipment #: n/a Samples submitted by: Ron Wells

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fo %	La	Mg %	Mn	Mo	Na %	<u>N</u> I	P	Pb	Sb	Sn	Sr	TI %	ย	v	w	Y	Zn
,	75435	210	<0.2	2.64	25	110	<5	0.52	<1	25	8	500	>10	<10	0.94	386	50	0.03	7	1040	18	<5	<20	129	0.09	<10	189	<10	<1	37
2	75436	395	0.5	2.56	30	110	<5	0.56	<1	33	12	621	9.92	<10	0.88	396	13	0.03	6	1030	26	<5	<20	114	0.09	<10	196	<10	<1	34
3	75437	20	<0.2	1.80	5	95	<5	0.73	<1	14	12	20	4.50	<10	0.88	532	5	0.03	5	1340	20	<5	<20	45					10	33
4	75438	20	<0.2	1.43	10	45	<5	0.71	<1	15	` ₩-	45	4.50	<10	0.64	570	10	0.03	6	1530	18	<5	<20	20	<0.01	<10	97	<10	19	39
5	75439	5	<0.2	1.41	5	65	5	2.01	<1	14	28	19	3.48	<10	0.65	365	<1	0.05	12	1290	16	<5	<20	98	0.11	<10	132	<10	9	29
6	75440	10	<0.2	1.77	10	105	<5	2.27	<1	15	20	53	4.08	<10	0.76	454	<1	0.04	6	1390	20	<5	<20	166	0.12	<10	131	<10	7	28
7	75441		<0.2		35	90	<5	1.05	<1	17	21	41		<10	1.05	586	2	0.04	-	1520	26	<5	<20		0.06				10	39
8	75442	5		1.74	10	50	<5	3.90	<1	14	12	24		<10	0.87	651	<1	0.03		1410	20	<5	<20	97	0.08				10	25
9	75443	20	0.2	1.32	30	35	<5	5.96	<1	12	12	22	3.96	<10	0.65	841	- 4	0.04		1260	12	<5	<20	203	0.02			<10	13	24
10	75444	5	<0.2	1.51	15	35	<5	2.94	<1	15	12	70	-	<10		611	3	0.03		1340	16		-	59	0.04				11	25
11	75445	15	0.2	0.94	20	25	<5	5.31	<1	10	13	65	3.37	<10	0.33	721	3	0.04	3	1370	8	<5	<20	107	0.01	<10	47	<10	16	23
12	75446	90		2.20	10	125	<5	2.48	<1	13	10	69	4.39		1.03	600	<1			1530	26			168	0.07			<10	4	24
13	75447	245	<0.2	-	<5	60	10	3.24	<1	9	24	26	3.37	<10		548	5	<0.01		1780	12		<20	89	0.12	-	85	<10	8	19
14	75448			2.01	<5	100	10	2.78	<1	11	28	16	3.88	<10	0.73	513	ť			1820	12			142			95	<10	8	19
15	75449	5	<0.2	2.22	<5	65	10	2.50	<1	11	26	11	3.78	<10	0.67	464	<1	0.04	<1	1920	12	<5	<20	124	0.12	10	94	<10	8	18
16	75450	10	<0.2	2.14	<5	35	10	2.87	<1	11	30	9	3.66	<10	0.76	566	<1	0.03	2	1880	12	<5	<20	107	0.14	<10	89	<10	9	19
17	75451	15	<0.2	2.38	<5	55	10	3.79	<1	11	27	28	3.73	<10	0.83	662	<1	0.01	2	1800	12	<5	<20	138	0.12	<10	86	<10	11	24
18	75452	40	<0.2	2.62	<5	55	10	3.70	<1	13	28	115	4.22	10	1.02	740	1	<0.01	7	1920	12	<5	<20	130	0.12	<10	101	<10	11	44
19	75453	45	<0.2	2.25	<5	75	5	3.34	<t< td=""><td>15</td><td>26</td><td>187</td><td>4.73</td><td><10</td><td>1.05</td><td>834</td><td><1</td><td>0.02</td><td>12</td><td>1820</td><td>14</td><td><5</td><td><20</td><td>133</td><td>0.10</td><td><10</td><td>106</td><td><10</td><td>11</td><td>79</td></t<>	15	26	187	4.73	<10	1.05	834	<1	0.02	12	1820	14	<5	<20	133	0.10	<10	106	<10	11	79
20	75454	70	<0.2	2.09	<5	65	10	2.77	<1	13	28	123	4.39	<10	0.90	677	<1	0.03	8	1880	12	<5	<20	115	0.12	<10	104	<10	11	45
21	75455	70	<0.2	2.22	<5	45	5	2.67	<1	15	26	197	3.75	<10	0.69	417	<1	0.04	13	1960	12	<5	<20	100	0.14	<10	90	<10	10	55
22	75456	65	<0.2	2.34	<5	30	10	2.54	<1	14	21	149	4.32	<10	0.89	570	3	<0.01	8	2010	12	<5	<20	47	0.13	<10	122	<10	14	49
23	75457	40	<0.2	2.44	<5	40	10	2.95	<1	13	19	134	4.11	<10	0.88	565	2	<0.01	8	1990	- 14	<5	<20	108	0.12	<10	118	<10	- 14	43
24	75458	155	<0.2	2.49	5	65	5	3.42	<1	14	27	26	4.15	<10	1.00	754	2	<0.01	2	1810	14	<5	<20	160	0.15	<10	96	<10	11	29
25	75459	>10000	0.2	2.58	15	60	15	3.01	<1	26	38	173	6.48	10	1.19	793	8	<0.01	10	1800	16	<5	<20	123	0.17	<10	113	<10	12	58
2 6	75460	270	<0.2	2.97	10	65	10	3.96	<1	18	31	43	5.01	10	1.20	864	5	<0.01	-	1990	16	-			0.19				14	33
27	75461	25	<0.2	2.50	5	30	10	5.18	<1	- 14	26	21	4.46	10	1.22	969		<0.01		1800	14			148	0.15			<10	14	27
26	75462	330	<0.2	2.92	15	45	10	3.46	<1	25	34	77	5.42	<10	1.22	856		<0.01		1850	18		<20		0.16				12	40
29	75463	430	<0.2	2.15	15	55	10	2.43	<1	27	47	113	5.60	<10	0.89	646		<0.01		1890	14				0.15				9	39
30	75464	210	<0.2	2.08	15	55	10	2.59	<1	- 14	37	68	4.92	<10	0.97	687	- 4	<0.01	- 4	1760	12	<5	<20	118	0.14	<10	102	<10	12	35

.

)

۰.

ł

14

ä

1

Et#.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bł	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
31	75465	585		2.11	20	30	10	2.58	<1	29	32	145	·····		1.07	609		<0.01	_	1560	12		<20	73		· · · · · · · ·		<10	11	48
32	75466	70	<0.2	2.50	<5	35	10	4.02	<1	18	35	110	3.96	<10	1.06	612	22	<0.01	11	1730	14	<5	<20	106	0.13				11	39
33	75467	10	<0.2	2.54	<5	15	10	3.75	<1	22	33	201	4.13	10	1.04	555	- 4	< 0.01	18	1890	16	<5	<20	40	0.13	<10	120	<10	12	58
34	75468	70	<0.2	2.58	10	75	10	3.95	<1	19	47	112	4,49	10	1.30	710	12	<0.01	11	1660	16	<5	<20	184	0.18	<10	140	<10	15	44
35	75469	10	<0.2	2.45	<5	45	10	2.90	<1	21	39	106	4.22	10	0.84	475	14	<0.01	11	1980	16	<5	<20	81	0.18	<10	145	<10	14	41
36	75470	880	<0.2	2.83	<5	60		3.15	<1	27	56	134			1.27	633		<0.01		1590	18	_			0.17				13	49
37	75471	55	<0.2	2.69	25	105	10	3.29	<1	16	30	92			0.92	608		<0.01		2180	16			309		-		<10	13	42
38	75472	5	<0.2		<5	55		2.44	<1	20	33	90			0.75	394		0.04		2060	12		<20	94		<10			12	36
39	75473			2.04		35		4.42	<1	12	38	60			0.81	606		0.01		1660	12		<20		0.08			<10	14	34
40	75474	<5	<0.2	1.77	10	20	Ð	2.77	<1	11	40	169	2.79	10	0.66	378	3	<0.01	13	1650	14	<5	<20	45	0.07	<10	68	<10	13	49
41	75475	410	<0.2	1.67	2695	30	10	5.14	9/	C 11	40	63	3.51	<10	0.62	680	2	0.01	6	1500	12	<5	<20	129	<0.01	<10	32	<10	13	40
42	75476	10	<0.2	1.99	30	35	5	2.70	<1	10	43	95		<10	0.53	344	1	0.03	8	1590	- 14	<5	<20	51	0.07	<10	70	<10	12	34
43	75477	5	<0.2	1.84	5	50	5	2.76	<1	9	45	104		<10		338	1			1520	12		<20	83	0.08	<10	70	<10	12	34
44	75478		<0.2	1.80		40		2.12	<1	11	38	116	2.93	<10		275	<1			1580	12		<20	60	0.08	-		<10	10	36
45	75479	20	<0.2	1.75	<5	20	5	3.22	<1	10	38	144	2.61	<10	0.58	370	1	<0.01	11	1560	12	<5	<20	86	0.09	<10	59	<10	10	43
46	75480	5	<0.2	1.99	<5	15	5	2.73	<1	18	34	177	2.63	<10	0.56	330	3	<0.01	15	1430	14	<5	<20	32	0.06	<10	46	<10	11	48
47	75481	40	0.2	2.82	<5	10	5	5.11	<1	13	36	518	3.76	<10	1.09	696	2	<0.01	35	1380	18	<5	<20	42	0.08	<10	- 74	<10	13	127
48	75482	10	<0.2		<5	20	5	2.78	<1	11	43	126	2.98		0.59	346		<0.01		1450	14		<20		0.07	-		<10	10	39
49	75483	45	<0.2	1.57	<5	35	<5	2.35	<1	10	32		2.55		0.42	301		0.02		1520	10		<20	64	0.07			<10	11	46
50	75484	25	<0.2	2.03	5	25	5	2.70	<1	9	42	81	2.70	<10	0.70	376	14	<0.01	7	1200	14	<5	<20	61	0.07	<10	60	<10	11	29
51	75485	10	<0.2	1.90	30	20	5	3.89	<1	11	34	91	2.94	<10	0.81	488	7	<0.01	9	1340	14	<5	<20	55	0.06	<10	48	<10	11	31
52	75486	25	<0.2	2.00	15	20	5	3.03	<1	11	33	212	2.78	<10	0.68	408	7	<0.01	17	1320	14	<5	<20	48	0.07	<10	63	<10	9	57
53	75487	20	<0.2	1.77	10	20	<5	2.90	<1	12	29	277	2.73	<10	0.72	457	2	<0.01	22	1430	14	<5	<20	47	0.06	<10	65	<10	11	73
54	75488	70	<0.2	1.47	10	25	5	2.53	<1		100		2.47		0.69	424		<0.01		1480	10		<20	54	0.06			<10	10	<1
55	75489	30	<0.2	1.55	<5	15	<5	2.24	<1	13	45	226	2.47	<10	0.49	267	71	<0.01	18	2050	10	<5	<20	32	0.07	<10	51	<10	13	51
56	75490	<5	<0.2	1.93	<5	20	<5	2.42	<1	15	36	172	2.52	<10	0.52	296	- 4	<0.01	16	1870	14	<5	<20	32	80.0	<10	51	<10	12	46
57	75491	5	<0.2	1.76	<5	25	5	2.20	<1	14	29	140	3.04	<10	0.53	316	2	0.02	13	2020	12	<5	<20	33	0.11	<10	88	<10	13	43
58	75492	>1000	0.6	1.40	10	10	15	2.36	<1	23	50	576	3.55	<10	0.64	337	50	<0.01	41	1580	12	<5	<20	27	0.07	<10	59	<10	9	127
59	75493	30	<0.2	1.87	<5	15	10	2.59	<1	15	28	174	3.00	<10	0.72	373	3	<0.01	16	1710	14	<5	<20	40	0.09	<10	65	<10	10	47
60	75494	10	<0.2	1.56	<5	30	10	1.38	<1	21	84	234	4.08	<10	1.28	371	1	<0.01	53	720	12	<5	<20	34	0.18	<10	101	<10	14	65
61	75495	<5	<0.2	1.27	<5	20	5	1.18	<1	14	72	116	2.91	<10	1.19	353	2	<0.01	31	540	10	<5	<20	28	0.16	10	89	<10	12	44
62	75496	135	2.1	1.56	90	35	10	2.67	<1	39	85	850	4.77	<10	1.35	806	7	<0.01	105	780	14	<5	<20	38	0.13	<10	113	<10	14	221
63	75497	5	<0.2	0.97	5	15	10	1.46	<1	11	83	94	2.23	<10	0.80	406	2	<0.01	33	500	10	<5	<20	24	0.10	<10	60	<10	12	37
64	75498	5	<0.2	1.25	<5	10	<5	1.98	<1	12	34	149	2.24	<10	0.44	268	2	<0.01	- 14	1620	10	<5	<20	19	0.07	<10	- 44	<10	12	41
65	75499	10	<0.2	1.17	<5	15	5	1.87	<1	14	26	160	1. 95	<10	0.33	220	4	<0.01	15	1840	12	<5	<20	28	0.06	<10	43	<10	11	44
66	75500	<5	<0.2	1.14	<5	10	5	2.33	<1	10	27	95	1.76	<10	0.40	263	15	<0.01	9	1740	10	<5	<20	28	0.07	<10	37	<10	11	29
67	75501	<5	<0.2	1.42	5	15	5	2.46	<1	15	37	113	2.09		0.40	268	21	<0.01	11	1670	14	<5	<20	22	0.07	<10	38	<10	11	31
68	75502	5	<0.2	1.51	<5	45	10	1.19	<1	13	72	91		<10	1.25	365	3	<0.01	36	460	14	<5	<20	22	0.17	<10	76	<10	14	38
69	75503	<5	<0.2	1.05	<5	60	10	0.63	<1	12	94	85	2.55	<10	1.01	303	- 14	<0.01	45	390	24 -	<5	<20	58	0.18	<10	81	<10	13	37
70	75504	20	0.4	1.54	35	25	15	3.95	<1	28	77	461	6.50	<10	1.16	1231		<0.01		1400	16		<20		0.10		81	<10	14	127
71	75505	15	<0.2	1.03	20	35		1.37	<1	13	82	109	2.80		0.69	348	7		40	760	12		<20	30	0.13				15	23
72	75506	105	0.8	0.77	20	30	<5	2.35	<1	9	46	411	2.20	<10	0.41	337	<u>4</u>		13	510	B		<20	44	0.03			<10	11	22
73	75507	40	<0.2	0.86	15	45	<5	2.24	<1	10	81	93	2.90		0.77	358	5	0.02	25	380	12		<20	67	0.10		-	<10	16	24
74	75508	25	0.2	0.88	15	40	<5	2.54	<1	11	25	94	2.68	<10	0.53	504	4		-	1080	12		<20		0.06	-		<10	11	23
75	75509	80	1.2	0.98	35	40	<5	4.79	<1	20	34	440	3.61	<10	0.64	813	1	0.03	16	920	8	<5	<20	41	0.07	<10	87	<10	13	38

.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	81	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mo	Mo	Na %	Ni	P	Pb	Sb	8n	Sr	Ti %	ប	v	_w	Y	Zn
76	75510	5	0.2	1.02	5	35	<5	1.90	<1	12	39	99	2.63	<10	0.55	348	18	0.04	15	960	12	<5	<20	24	0.11	<10	75	<10	18	21
77	75511	25	0.2	1.23	5	40	<5	2.99	<1	23	65	247	5.08	<10	08.0	894	50	0.03	35	550	12	<5	<20	40	0.11	<10	81	<10	16	29
78	75512	<5	<0.2	0.85	<5	35	<5	0.96	<1	- 14	76	209	3.21	<10	0.59	352	Э	0.04	38	470	8	<5	<20	19	0.11	<10	76	<10	17	26
79	75513	80	<0.2	0.73	5	30	<5	1.47	<1	14	125	153	2.85	<10	0.51	310	45	0.03	41	370	12	<5	<20	20	0.10	<10	67	<10	16	20
80	75514	140	0.3	1.05	5	45	<5	0.78	<1	14	70	459	3.97	<10	0.7 9	380	14	0.02	23	550	10	<5	<20	11	0.12	<10	90	<10	19	42
81	75515	5	<0.2	0.91	<5	50	<5	1.23	<1	24	67	407	5.68	<10	0.40	404	2	0.03	34	630	10	<5	<20	21	0.09	<10	53	<10	11	30
82	75516	10	<0.2	0.74	<5	35	<5	1.13	<1	14	88	149	3.44	<10	0.26	559	9	0.04	44		12	<5	<20	15	0.09	<10	48	<10	14	29
83	75517	<5	<0.2	0.87	<5	40	<5	1.08	<1	14	100	99	2.90	<10	0.42	270	10	0.04	48	1070	14	<5		12	0,13	<10	88	<10	17	27
84	75518	200	<0.2	1.17	15	25	<5	2.19	<1	12	45	113	2.35	<10	0.38	335	5	0.03	14	1050	18	10		16	0.06	-	48	<10	11	20
85	75519	15	<0.2	1.21	<5	40	<5	1.85	<1	14	82	93	3.52	<10	0.52	663	1	0.04	31	860	16	<5		30	0.13		73	<10	14	53
86	75520	<5	<0.2	1.00	5	35	<5	1.05	<1	1 6	126	102	3.21	<10	0.49	447	2	0.04	84	450	16	<5	<20	26	0.13	<10	96	<10	16	50
87	75521	50	<0.2	0.82	45	35	<5	2.05	<1	14	90	167	3.81	<10	0.58	389	- 4	0.03	39	570	12	<5	<20	37	0.09	<10	93	<10	15	31
QC/DA1	A :																													
Resplit;																														
1	75435	250	<0.2	2.63	20	105	25	0.57	<1	30	8	484	>10	<10	1.07	377	47	<0.01	37	1010	20	<5	<20	136	0.09	<10	203	<10	<1	29
36	75470	825	<0.2	2.66	<5	60	15	3.18	<1	29	59	138	5.70	<10	1.27	616	3	<0.01	10	1560	18	<5	<20	116	0.17	<10	142	<10	10	49
71 ·	75505	10	<0.2	0.98	20	35	<5	1.35	<1	13	91	109	2.73	<10	0.64	336	7	0.03	40	730	16	<5	<20	26	0.13	<10	98	<10	15	24
Repeat:	•																													
1	75435	210	<0.2	2.68	35	115	<5	0.55	<1	26	9	484	>10	<10	0.92	391	48	0.03	5	1140	28	<5	<20	127	0.11	<10	188	<10	<1	40
7	75441		<0.2	2.03	30	65	<5	1.09	<1	17	20	38	4.95	<10	1.04	589	2	0.04	8	1480	14	<5	<20	122	0.05	<10	129	<10	6	38
10	75444	5	<0.2	1.54	15	40	<5	2.90	<1	17	12	68	4.14	<10	0.86	632	~ 2	0.03	5	1340	16	<5	<20	59	0.04	<10	90	<10	11	24
19	75453	50	<0.2	2.29	5	80	10	3.31	<1	17	29	203	5.09	10	1.14	897	<1	0.02	12	1920	14	<5	<20	144	0.12	<10	115	<10	13	83
36	75470	790	<0.2	2.52	<5	50	15	2.63	<1	24	52	126	5.43	10	1:19	588	- 4	<0.01	12	1460	16	<5	<20	106	0.15	<10	132	<10	12	44
29	75463	485																												
31	75465	625																												
41	75475	410																												
45	75479	15	<0.2	1,76	<5	15	5	3.21	<1	8	33	141	2.69	<10	0.51	376	<1	0.01	9	1500	10	<5	<20	83	0.07	<10	59	<10	9	39
54	75488	85	<0.2	1.33	5	20	10	2.48	<1	6	94	50	2.32	<10	0.66	391	236	<0.01	5	1420	10	<5	<20	51	0.06	<10	53	<10	8	<1
71	75505	5	<0.2	0.98	20	35	<5	1.34	<1	13	79	103	2.71	<10	0.65	342	8	0.03	38	740	12	<5	<20	28	0.13	<10	98	<10	16	23
Standar	d:																													
OXF41		795											1																	
OXF41		805																												
OXF41		840																												
GEO'05			1.5	1.46	60	145	<5	1.37	<1	18	59	86	3.60	<10	0.90	504	<1	0.01	25	560	20	<5	<20	50	0.11	<10	71	<10	10	74
GEO'05			1.5	1.43	65	160	5	1.45	<1	21	60	88	4.08	<10	1.15	822	1	<0.01	30	870	24	<5	<20	52	0.12	<10	71	<10	11	73
GEO'05			1.5	1.41	50	140	<5	1.49	<1	19	58	84	3.59	<10	0.89	605	<1	0.01	22	730	20	<5	<20	57	0.09	<10	69	<10	10	72

JJ/ga/kk dt/1019c/n1022 XLS/05

.

/

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

,

-

÷,

1

CERTIFICATE OF ASSAY AK 2005-1022

YANKEE HAT MINERALS LIMITED 4460 Atlee Avenue Burnaby, BC V5G 3R6

October 6 2005

\$

ATTENTION: Donald Gee

.

No. of samples received: 87 Sample type: Core Project #: FRAN Shipment #: n/a Samples submitted by: Ron Wells

Tag #	Au (g/t)	Au (oz/t)		
75459	2.25	0.066		
75492	1.16	0.034		
		r		
	75459	Tag # (g/t) 75459 2.25	Tag # (g/t) (oz/t) 75459 2.25 0.066	Tag # (g/t) (oz/t) 75459 2.25 0.066 75492 1.16 0.034

QC DATA: Standard:		
SN16	8.42	0.246
OXF41	0.81	0.024

JJ/kk XLS/05

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DH NO. FR-045			- ,	 	.		GE NO. /
	LITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMP	
MAIN UNITS	GLSUB UNITS	·	<u>.</u>	· · · · · · · · · · · · · · · · · · ·	FROM	TO	NUMBER
0-3:05 Casing in	D Flackurg Bedrack				L		L
Fractured Bedrock	▓		 				⊥
05-29.93	-Rubbly recovery, brittle from	bard Moderate to stron	Frochuled and	oxidetisi averprint			<u>}</u>
	X and oxidized mo. spectrud			any sulfides focall		.	↓
longodiorite core roctured, strongly Loss	A green-grey- white, medingo	and with assoc avidation	textures. Local w/m	stray (, axid. gares	[<u> </u>
idized intervals	Can't lighter colored egid och	thes local high angle exil	pervanue spid alt	representing sulfide		·	L
Highy	Z 18-190 mar silicon - falsic	bands where less		ach fractione zoon		10.70	75435
0xid /+_	Docal subangular magic real	lity altered Minal cont-	mide.			L	ļ
	+ 5 2000-	gty ulty story arid				· ·	L
	·/	structures often cloye	·		12.75	13.87	75434_
Highly	<u>//</u>	1-23 - 10-70 -12-75-13-85		· · · · · · · · · · · · · · · · · · ·	-	L	_
oxid	- <u> </u>	(40 ca); 26.52-27.50	· · · · · · · · · · · · · · · · · · ·			L	L
	7					Ι	L
	X mossive upon forekuled with	<u>. </u>			17:00	19:00-	75437
	+ end all bardy				-	Ĺ	
20.							L
-	Ŷ						
1		-					
	4						
Highly					26.50	27.50	75438
Oxid	7						
	29.93- 37:00 Marine med. graine	a mine carb vite	We related carb	Local 20-30'CA			
³⁰ 17:00	+ with lacal large mafie resalites	heal 1-2cm Epid	local apo parvasive	Lise code vita 1-3			
Monzodiorite	+ >10cm pahably mata-sillipha		epid boods	gellon .	33.50	34.50	75439
with xensiths	- Ales mogarkie	minegts vite			34.50	35.66	75440
·····			· · · · · · · · · · · · · · · · · · ·				
بوباونه	H 37-00-20-15 Oxidized low angle	- in the second lines	ale midahin	weiprinted by sxid.	37:00	3845	
		- GIGCR oxid frostra		······································			.75 44 L
Fourie Line - MD	+ 3815-44.18 mayre relatively	Lives with fractived.	oxidetion along Britan	Non descrived .	_ · ·		· · · · · · · · · · · · · · · · · · ·

.

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R.c. Welly DATE 20th August 2005

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

.

	L	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION	1	SAMP	LING
	GL	SUB UNITS				FROM	TO	NUMBER
40 45-4481		MD with oxidized froubures	with anoc axid	wit related carb-	marked b]
Monzodiorite	7		Minst carbecht fine V		allembin!	<u> </u>	L	
181-48.90 MD-FZ	/+ I	Fracture- alteration space, med-	Minal carbacht fin V			<u> </u>	_	
ocal bx		dk greens-greys Strong Chi alt	clayer fortwas with	Dork chi though	+ Tr. 2% tine	44.81	45.66.	75442
c	5/1	Mis brackwad local by remnant	amoc. be separated b	Strain bacture	diven local ult P.	45.66	46.68	75447
qcv	15	MD texpine.	My with numerous chi	zones with lacal cly	Sto yest in forthing	1.	47.48	75444
1-10-80.65 f	2	48.90 - 57 00 break chi. altered	@ Joich chil-conth	wit related carbo	alt 1-2% dessentedle	1	48.90	75445
		and laith menuice. Dk allen and	local epid vite into	ch. w/ca gatelo, parx.	Pywith gev.	50.40	51:15 -	75446
1	71	are - white speckled. And grained	1	Chi vib and alt.	EDID P. WAL SITA	\$3.60	54.60	75447
ltered.	/+[encel with Trait his andi	often 40-60CA	of mapies. Wit related		54.60	\$\$.76	75448
	+/	Yesalite. (Ica	/	cath, exid				
	/ +							
	+	57 m - 72.23 Medun grained Annie	Gran call, lac.	5-15% w/m epid	TT line dimen	57.50	59.00	75449_
		with hand and hands and anterior	lical and firecht.	alt bands & patrices				
	1	To 12 Acall Andie Vanilie.	carband egid with		clustor . Local V.L.	i.		
۰°_		Lican	harichte angles CA		12 115	-		
	1	<u> </u>		······		62.00	64.50	7545B
	í I		Epid pakkes asid					
	15		at high apples ca.					
	+							
	1							
	÷ 1				·			
	Ŧ				· · · · · · · · · · · · · · ·	70.79	72.27	75451
_ ⁰⁷	∔ İ	······································						
		TO DO - SALES Variable Ametricad	Weak 6x to 75.50	chlorite at the	To fine diman			
	T	d apple altaland Medicia	• • • •	light green Belau	P. above 77m		T	
	凹	atoined with lacal small make	vite unintelle angles	ult related chi.		75.40	76.90	75452
	+/	reastitles	Below when fine	carb local ark.	dimon and vit Py		78.40	75453
	11			+ epid Silicopy		78.40	79.90	- 754 S.H_
	17		Balow Rom 25CA	belass 72m		79.90	TO-65	254.55
e.	4/1		Pyland gtz, chi cpin		— †			

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DH NO. FR-045					PA	GE NO. 3	
LITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL		_
MAIN UNITS GL SUB U	NITS			FROM	TO	NUMBER	1
0.65-82.69 FP Dyke Light to med gree	mossive, fin massive with a few	Hard siliceous dyke	Te-10h V fine, fine	80-65	8/-38	75456	_
and I Plan Quest. I alough and mithe 15 to	tabular Plag to 30 carb v 43 20-50 Cd	with related carb.		81.38	\$2.69	75457	
2-69- 94-90 - 2-4-6 to Sular Abi	Moderate -smar	- chiarile, cartorano.	TI fire dissin ly	82.69	.84.43	7.5458	1
ault Zone in MD A/ - Mederately for	studed and I for strend they for	Carb (local cy) pull		.	 		_
1/2 chlorite altored	Several apportie with chi. vite & partie			<u> </u>			
to carbonareaus	backson fault facal with bx texture	a head win carbonal	Local BOCA Poult	37.48	59.00	25459	_
significant and F 55 reases with sign	ificent core loss and slickensi dea	epidote patches	rear end of interval		90.52	75460	- 50
significant core P 5 30405 Cuth Sign	ention Franky re-fault gov	enabore Bla autice		9052	91:52	75461	
F	with cirl, corboa loco	I of faults orises		91.52	93.57	- 75462	_
·	C/4 83-23-84-30 7+C	cart vite mainly		97.57	94.90	75463	_
4.90-11.96 1+ 14.90-97.51 Medican graine	(M) MAR 1700 - 2050 2050	C.C. MA	1-2 fine Ry elte	14.90	96.30	75464	
	wer vite goserally marsine with pre	A vit related chi.	per pr	94.30	97-51	75465	_
	Vits, local cerbin.not	missecort	pr pro	9751	99.00	75466	
an current de	to catel. bushered che and it local	VIT and WK PROMI	1	19.00	100.50		
nd altered. I prod versed MD.	Patel crackie of vits/vas.ch	Chi VIE an cale of car	1 .	100.50	101.50	75468	1
ten! / f	/ / / / / / / / / / / / / / / / / / / /	Polch Silicena	Jui dissem Py	101-50	102.50	75465	
Valacal apprint		101-1020	beat vits Tr. Py	162.50	103.50		
91 s v 4	6 1030			103.50	104.65	75471	
··+				104-65	105.85	75472	_
+1 104.55-11.96 Med	time time indeserved & his.	With and up recoted	Tr fine Py vite				_
+ growed lacelly		cly, cart local gt		102-81	110.00	75073	
& Local aneular		Carb and wind BX					_
Il water been some		@ lola					
110 + well developed		e		111.96	112.90		_
196-11486 MD If fabrics	comented Bx Strong	· · · · · · · · · · · · · · · · · · ·		112.90	113.9.	75475	1
	hie-alteration corb cw. uts	M/3 pervisive code	TI-14 fine dessen	112.4.	114.86	75476	4
froctured, local breccie and Varn 3000 in A	D vogen textures either side of Br. fg.alt zone with	in bx with carl acu	lis cato zear	114.86	116.36	75477	
VERGER WITH ONCOUR		yet related cold	hegy come with gev.	116.36	113.08	75478	4
- 1 03 OC (0453 1.94	savel and march Few months with	-ell. faith fresh	TT VIE P. 20-Sica	112.08	_119:01	75479	
TIDA 30 GLOPICA - L		Patch ulm spid	At the oct hul -ST				-
Variably altored 115-05 - 123-03 Mac 120 1: Veined and alt. Mu	aken textures . chi local gold vi	1 2 2 1 4	In a number		J		

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY ... Kas ... Welly

DATE: 22 August 2005

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DDH NO. FR-045							GE NO. 4
	LITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	.ING
	GL SUB UNITS		L		FROM	ТО	NUMBER
720	<i>1</i> /	Some care vilsore	Chil cath lacad water	Epid. Belau TT-1%	124.50	127.00	75480
		11113		tio atela doman P.	122.00	1	.7548L
-	- 123.03-123.28 to at 104.55 Mare	win chi vite diation	with colorbod chal		122.13		75482
le la la la la la la la la la la la la la	X and an used will the with	the weber to incide	cash lat patric and	Tr Po		125.50	75483
	7 123.03-127.28 th at 104.85. Man	portiol A. H. minut	there is he at	with some this vits	16-444		
· · · ·	in a not in an an Carth Variand Harshad	Ry with carb	Rienished and cash	Tr fine dissen Py	127.28	123.78	7 54 84
Coat at se	00 and precisional marking textures	vein shuk, warna	alt will card + some	continents is some	,		75085
Bx	11 destance on the fife has done	Weak and	dia silica lile	clusters	17022		75486
- / j o	Le la la la la la la la la la la la la la					133.20	75487
	h+	· · · · · · · · · · · · · · · · · · ·			/33.30	133.95	75488
91	\$ 123.30-140.66 Pately Bleaching -	Pine the carby sil	self we're at to fraid	Patelow Tr- 41/2	133.95	135.50	75489
Cry, Py, Most				for the state of the	135.50		75490
-		local Ry (Pa) ulte		and discencluster	137-50	i i	• •
Py (Po, 43	marking fee boos Amone axidinge	With To toch	Brie wak and	Local Pa ulh 30-60		138-50 139-50	75496
vits Local bx	bx. Sections of about sat as			Te co	132.50	140.4	- 75493
184	of inggy annance vite thoughout	BOCA cominched + Py, Cpy, M		·	-140.66		<u></u>
10-66 - 150-26	including ly (Po)	Lucal crode baddup	Aile Hand	7. 101 divise 1/4	142.16	143.16	75695
Sistile Hornfels . Mothed	uniform interval of Bist HE	La care maint			196-76		
nuns, fine ground	Macce-siliceors with perusine	-Lamischen 40'CA	vit related cath	P3, 7 C, P0, CP3		147.10	
unanu mico-vite	fine form bichte	local subcon carb			-74 \$ 19 4		
arrow bleached zones		ung wich Minol	dK. chl				75497
ion nografic	[]	Carb by Toch Men			149.26 150 Z6	151.60	- •
2		vit's veriable angles				T	<u>75498</u>
150 150	Alternat MD at la fait D:	Carby Wearing) anish akks	2-3 P vite anti-	151.40	153.10	<u>75698</u> 75590
50.26-155.20	Altered MD dyke Med - free	Local with By Alle		2-3 Ry vite perion	15440	155.20	<u></u> <u>75</u> 500
	grained Textures areceptisted &	chi and			155.20	156.50	75502
ighly altered. Mothed	patch alteration Hord-Silicon			Tely fin dimen Cy	156.50	158.70	75503
eys-browns. Local	t Lacat angular cafin xendites to the	fraction 913 to the Agus	Biot. N. Blanched	In RH Tr-14, P.	15870	159.84	75564
Kenoliths 76	He Rich HE carta la minter	CNOLLAMIN JO-75 CA	below 159m and great		138.80	161.70	75505
	Rist HF carde lowingted.	Armans Bi. local	<i>J J</i>	• • • • •		-+84-49-+-	
rule Lominoted.	Bleached, patring de challey	Mulans & lacat Carl vite in BH Mill out in BH Mill out in the Mill out in the Mill out in the Mill out in the Mill out in the Venetic office	28 chi 159-28-189-70 25 ch Lundon Ry Vis and Bess	potches in die chi 10-5 % fm chinen 10-5 % fm chinen 10 / 5 %			
	alt dyke 160-19-160.72	VERCEN RUAR RUX PLVA	VIS AND BRAD	10-Ka In dimen		J.	

KAMLOOPS GEOLOGICAL SERVICES LTD.

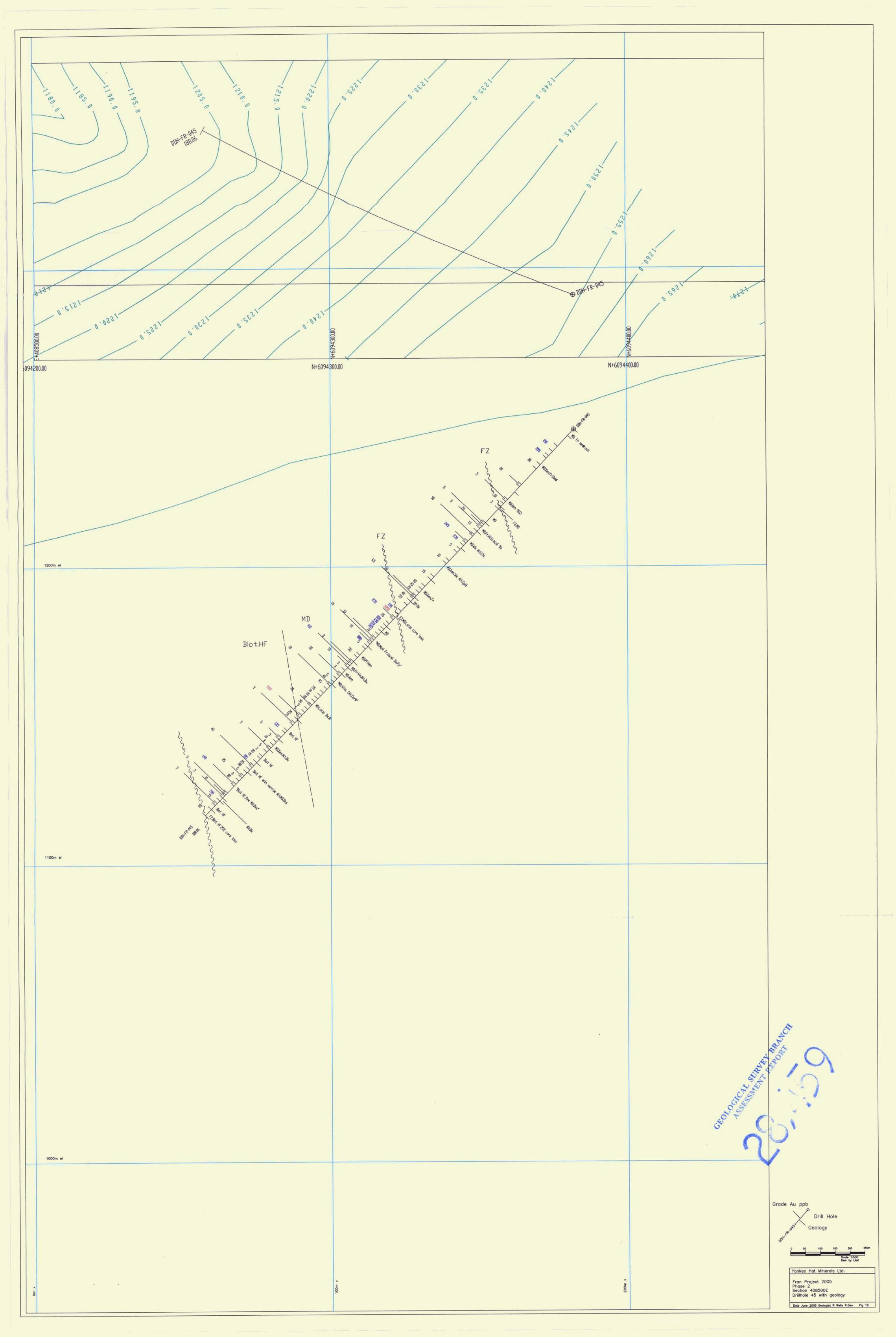
LOGGED BY: R. C. Walls

DATE: 22 Augusts, 2005

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

DDH NO. FR-045	•			· · ·			PA	GE NO. S
· · · · · · ·	Ľ	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
	GL	SUB UNITS				FROM	TO	NUMBER
76+	11.7							
61-70-166.40 Mixed Zone	F,	Brown But HF, fire ground	Mico . Witz - Was ched	Personie and HE.	Te-34 fine ult 7	/61·70	163.2-	-75506
Sist . HF and Highly	9	intended by alt dykes or 141-70-			dinen P. (TICpy)		164.10	75597
Alt. Monzodionite Dykes	27	167.25; 164.10-165.00; 165.99-166.06		and patch w. ps may	in alt MD dykes	164.10	165.20	
	3	vegue altered contacts.	Minor dk. chi vite Corbox. 16240-162.81	carte in differ minerce	in alt MD. dykes 1Tr-1% vit, dissen Py In BAC.	165.30	166.73	75507
64.40-179.20 Bist HF	[h]	break-strag grey to mid bawa	Local 30-40 CA lon	make But in	1 BH.	14473	148.33	75510
Varrow MDdykes	111.	BH . Fine grained local lamin	in Bre Fine blacks	HF. Aleached 5	Very patienty vito	14843	167-73	75511
not blacched 3=res 12.	157	Nome at Mo dyke 18.3-1054	and carb Micro. elle	Carby Mt. Bloached	dissen for Py	167.33	170-80	25512
with Po, Py concentrations	////			isternal and periodic		170 80	172.35	75513
. ,	146	<u> </u>	(Po) VIA 10-30 CA	carb. some fine chi	Male Pa witz	172-35	173.35	75514
	////			vita	bloaching 2->25%			
	علا	Bleached zone with Po 127.50 -	BI zone has set -	Dyke is weak carb	especially 177-So-177.9	2176.70	17250	_755/5
	111			als moster her hills	also massive lo @	177.50	17215	75514
	1	spockled gien med-fine growed	contacts. card vity	Local dk chi	176-17-176-72	178.15	179.20	75517
79-20-186-70 180		alt. masks textures - patchy wk.	fabricy. Lacor P.	with Ry cancin Bit	TI-3% Alt rebear	179.20	(\$0.7°	755/8
Monsodiorite Dyke "	5/	ALT	Chi una 60'CA	Blenched in parts	Te-14 patchy fine	190.70	182-00	75512
80.70 -189-06 Bist HF ,	2	Matted light greys and bowers	Potely blocked	VIE related 54. cars	dinen fult Py	182.00	183.00	75520
IF with bleached	1:7	fine ground locally bleached	summer nice vite	Hoaching we per	Po conc with			
ections. Rubbly recom	1.1	Rupply care recover, pelow 1850	rubbly below 135m	Carb alt bead dh	60000 in @ 182.470	185-01	185:04	7.5521.
Below Fault with	12			Dowewie Color	4cm semi-mention			
water 1-55.	13	25% care-loss Fault.		black, zone .	ß.			
	\leq							
190		187-06 EDK						
				····			_	
								<u> </u>
	[]				•	<u> </u>		
						<u> </u>	4	
		·						
						╁		•··


KAMLOOPS GEOLOGICAL SERVICES LTD.

_____,

.

LOGGED BY Re lastly

DATE: August 23'deors

DDH: FR-046

112 - L

i

•

DDH.FR-046 CoverPage

. .

• • • •

.

Hole ID:	DDH.FR-046
Project:	FRAN
Property:	FRAN
Claim:	
Easting:	10408369E
Northing:	6094481N
Elevation:	1234m
Grid:	8369E/4481N
Length (m):	236.22
Dip:	-45
Azimuth (grid):	223
Started:	21/8/05
Finished:	24/8/05
Hole Status:	Finished
Material left in hole:	None
Comments:	Testing west of hole FR-036 south contact
Core Size:	NQ
Logged By:	R.Wells
Purpose:	Test west of DDH.FR-036

,

1

.

•

· · · ·

. المتحدية (المتحديثية المتحديثية المتحديثية (المتحديثية المتحديثية المتحديثية المتحديثية المتحديثية المتحديث

.

DDH.FR-046	0	-45	223
DDH.FR-046	75	-42.7	226.7
DDH.FR-046	121	-41.6	229
DDH.FR-046	200	-38.7	227.6

ł

.

DDH.FR-046 Geology

Hole ID	From	To	Unit Code	From	To	Sub Unit	Veins, Vits	Alteration	% Py	% Po	Сру%
DDH.FR-046	0	3.05	Ovb	0	3.05	Ovb					
DDH.FR-046	3.05	49.03	MD.Xen	3.05	31.9	MD.Xeo.Fr.Oxid	Oxid.Fr/Vns. Local Epid,Sil Vits	Fresh to wk.Epid.Oxid Sulf Vns	Tr		<u>↓ </u>
DDH.FR-046				31.9	41.62	MD.Xen.local Oxid	Wk.Fr.minor Carb Vits	Rare Epid	Tr		
DDH.FR-046				41.62	49.03	MD.Fr.All	Abund Carb Chi Vits local Qiz Epid Pv	Patchy wk.Epid, VIt related Chl.Carb	Tr to 1	Tr	
DDH.FR-046	49.03	57.38	FZ.MD.Alt	49.03	57.38	FZ.MD.Ah	Fr to Bx Abund Carb Chi local Epid Vits	Faults Cy,Chi,Carb.	Tr to 2		!
DDH.FR-046	57.38	59,12	PP.Int.Bx.MD matrix	57.38	59.12	PP.Inf.Bx.MD matrix	Mosaic Bx.Carb Vits.vugs	Vit related Carb.Sil?	TI		ļ ļ
DDH.FR-046		60.88	FZ.MD.Alt	59.12	60.88	FZ.MD.Alt	Chi,Carb Vits, local Cy	Chl.Carb	Trio 1		·
DDH.FR-046		194.72	MD.Xen.Local Alt	60.88	66.95	MD.mod mag.Py	Local Carb, Chi.Epid Vits	Patchy wk/mod Carb,Epid	Tr to 4		
DDH.FR-046				66.95	70.42	MD.Chi.Carb.Alt	Carb Vits, local Bx Carb Vn	Patchy wk/s Carb.Chl	Tr to 3		
DDH.FR-046				70.42	73.29	MD.Carb.Alt	Carb Vits	Strong Carb.Bl	Trto1		
DDH.FR-046				73.29	87.2	MD w/m mag.	Minor Chl.Carb.Epid Vits	Local narrow Epid bands	Tr to 1		
DDH.FR-046	_			87.2	91.63	MD.wk Att	Carb Vits local yugs Py rare Epid	Patchy wk Carb,Chl	Trio 3		
DDH.FR-046				91.63	96.42	MD	Carb,Chl Vits	Vit refeted	Tr to 3		
DDH.FR-046				96.42	99.67	MD,All,Pv	Abund Chl,Carb(vugs).Py.Epid Vits	Vit related also small Epid patches	2 to 10		· · · · ·
DDH.FR-046				99.67	103.95	MD(PP).Py	Chi,Carb,Py	Vit related	1 to 7		
DDH.FR-046				103.95	106.42	MD(PP)Carb,Sil,Vugs	Abund Carb, Sil, vugs. local Chi, Py	Vit related Carb,Sil	1 to 2	-	
DDH.FR-046				106.42	117.95	MD.Xen	Minor Chi,Carb,Py	Local narrow Epid bands	Tr to 1		
DDH.FR-046				117.95	121.23	MD.wk Alt	Carb,Epid minor Qtz Vits	Vit related	Tr to 2		
ODH.FR-045				121.23	123.74	MD(PP)Carb,Sil,Vugs	Carb(vugs)Vits minor Py	Vit related Carb,Sil,Chl	Tr to 2		
DDH.FR-046				123.74	129.36	MD.Alt	Local Carb, Chi, Sil. Py Vits	Wk Epid and VIt related Chl,Sil,Carb	Tr to 2		· · · ·
DDH.FR-045				129.36	154.22	MD.Xen.w/m mag	Local Chi,Carb,Epid	Local narrow Epid bands	Tr		
DDH.FR-046	-			154.22	157.55	MD(PP)	Carb(vugs),Chi local Qtz Vits/vns	Vit related	٦T		
DOH.FR-046	· · ·			157.55	162.9	MD	Minor Carb, ChI, Vits	VII related	Ťſ		í I
DOH.FR-046				162.9	175.87	MD.tocel meg	Minor Carb,Epid,Chl,Py	VII related	t T		
DDH.FR-046				175.87	176.2	MD.Chl.Py	Minor Carb.Py	Strong Chi	5 to 10	-	
DDH FR-046				176.2	186.8	MD.local mag	Minor Carb,Epid,Chl,Py	VII related	Τı		
DDH.FR-046				186.8	187.52	MD.Chl.Py	Minor Carb	Strong Chl	1 to 3		
DDH FR-046				187,62	194.72	MD.local mag	Minor Carb,Epid,Chl,Py	Vit related	Tr		
DDH.FR-046	194.72	196.08	PP.Dk	194.72	196.08	PP.Dk	Contact Qtz,Carb Vn	Mod pervasive Carb	Tr		
DDH.FR-046	196.08	200.48	MD.Xen	196.08	200.48	MD.Xen.Py	Minor Carb Vits, local Chl, Py	Local dark Chi,Py	1 to 3		
DDH.FR-046	200.48	210.83	MD.Alt	200.48	204.14	MD Alt with Bx	Fauli Bx.Wallrk, Carb,Chl,Olz Vits	Wk/s pervasive Carb, local strong Chi	T	-	
DDH.FR-046				204.14	207.93	MD.Carb.All	Abund.Carb Vits	w/m pervasive Carb	Tr		
DDH.FR-046		· · · · · · · · · · · · · · · · · · ·		207.93	210.83	MD.All.Carb.Chl.Epid	Abund Chi,Carb.local Py.	Local Epid bands Patchy Chl Carb Epid	Trio 2		
DDH.FR-046	210.83	222.23	BioLHF	210.83		Biol.HF	Abund Carb/line Sil.local Chi	Patchy Bi/Carb	Tr		
DDH.FR-046			MD.Dk.Fr	222.23		MD.Dk.Fr	Fine Carb,Chl Vits	Patchy wk Carb	T٢		
DDH.FR-046			Biol.HF	226.82		Biot.HF.Bl zones	Fine Carb.Sil Vits.Fault 229.5m	Patchy BI	Tr		
DDH FR-046				230.56	236.22	Biot HF BL, Bx	Carb,Chl Vits	Chi ,Vit related Carb	٦T		
DOH.FR-046		236.22			236.22	ÊOH.					

•

¥6.----

. 5

DDH.FR-046 Assay

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HOLE ID	From	To	Sample No	Length	Au g/t metallic	Au g/t	Au ppb	Ag ppm	Cu ppm	Zn ppm
DDH FR-46 20.85 22.15 75553 1.30 15 -0.2 30 DDH FR-46 22.15 75555 1.20 10 -0.2 59 DDH FR-46 28.54 26.00 75556 1.20 10 -0.2 59 DDH FR-46 28.56 29.77 75567 1.22 20 -0.2 98 DDH FR-46 31.33 31.90 75569 1.38 20 -0.2 28 DDH FR-46 43.00 74569 1.38 20 -0.2 28 DDH FR-46 43.00 75560 1.50 15 -0.2 23 DDH FR-46 50.03 50.03 75663 1.47 15 -0.2 23 DDH FR-46 61.50 75667 1.80 30 -0.2 23 DDH FR-46 63.00 75667 1.80 30 -0.2 23 DDH FR-46 63.00 75667 1.80 30 -0.2 23	DDH.FR-46	9.60	10.30		0.70			30	0.2	276	33
DDH FR-46 20.65 22.15 75553 1.30 15 -0.2 30 DDH FR-46 22.15 23.47 75554 1.32 10 -0.2 59 DDH FR-46 28.56 28.00 75556 1.22 20 -0.2 69 DDH FR-46 28.56 29.77 75557 1.22 20 -0.2 69 DDH FR-46 31.33 31.90 75556 1.38 20 -0.2 28 DDH FR-46 43.00 75560 1.50 15 -0.2 28 DDH FR-46 43.00 75656 1.50 15 -0.2 23 DDH FR-46 50.03 50.03 75656 1.00 30 -0.2 23 DDH FR-46 53.00 75656 1.00 30 -0.2 23 DDH FR-46 53.00 75656 1.00 30 -0.2 23 DDH FR-46 59.12 75667 188 15 -0.2				75552	1.85		· ··· ··· ··	15	<0.2	50	31
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						• • • • • • • • • • • • • • •		15	<0.2	30	25
DDH FR-46 25.54 26.80 75555 1.26 10 -0.2 59 DDH FR-46 28.86 28.07 75556 1.22 20 -0.2 98 DDH FR-46 31.33 31.60 75559 1.38 20 -0.2 28 DDH FR-46 41.62 43.00 75559 1.38 20 -0.2 28 DDH FR-46 43.00 44.50 75660 1.50 15 -0.2 23 DDH FR-46 49.03 50.03 75656 1.00 10 -0.2 23 DDH FR-46 53.00 75656 1.00 30 -0.2 23 DDH FR-46 53.00 75656 1.00 30 -0.2 23 DDH FR-46 53.00 75656 1.60 730 -0.2 23 DDH FR-46 59.12 0.60 75576 1.60 -0.2 35 DDH FR-46 63.65 76577 1.00 20 -0.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td>t-····</td> <td>• • · · · • • • • • •</td> <td>10</td> <td><0.2</td> <td>44</td> <td>24</td>						t-····	• • · · · • • • • • •	10	<0.2	44	24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										59	
DDH:FR.46 28.56 29.77 75557 1.22 20 .02 98 DDH:FR.46 91.33 31.90 75558 0.67 15 .02 18 DDH:FR.46 41.30 75569 1.56 .15 .02 28 DDH:FR.46 44.50 75561 1.50 .15 .02 233 DDH:FR.46 50.03 51.50 .75663 1.47 .16 .02 .23 DDH:FR.46 61.00 53.00 75565 1.00 .30 .02 .23 DDH:FR.46 65.50 57.565 1.00 .30 .02 .23 DDH:FR.46 65.50 57.38 .75567 1.86 .02 .35 DDH:FR.46 63.00 56.36 .75570 1.50 .15 .02 .35 DDH:FR.46 63.56 .75571 1.00 .20 .02 .38 DDH:FR.46 63.56 .75573 1.20 .15 .02 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>· · · ·</td><td> is</td><td></td><td></td><td>30</td></t<>							· · · ·	is			30
DDH:FR-46 133 31 60 75558 0.67 15 0.02 16 DDH:FR-46 41 62 43 00 75559 1.38 20 -0.2 228 DDH:FR-46 44 50 75660 150 15 -0.2 53 DDH:FR-46 44 00 50 03 75661 150 15 -0.2 23 DDH:FR-46 50 03 51 50 75664 150 20 -0.2 23 DDH:FR-46 53 00 75666 1.50 30 -0.2 23 DDH:FR-46 54 00 75566 1.50 30 -0.2 23 DDH:FR-46 56 1.0 68.8 75567 1.88 15 -0.2 23 DDH:FR-46 69.12 60.88 75571 1.00 15 -0.2 75 DDH:FR-46 66.56 7577 7573 1.20 15 -0.2 75 DDH:FR-46 66.66 67.7 75571 1.00											31
DDH FR.46 4122 43.00 75559 1.38 20 0.02 28 DDH FR.46 44.50 75660 1.50 15 -0.2 79 DDH FR.46 44.50 75661 1.50 15 -0.2 23 DDH FR.46 50.03 75663 1.47 15 -0.2 23 DDH FR.46 51.00 53.00 75664 1.50 20 -0.2 23 DDH FR.46 53.00 54.00 75565 1.00 30 -0.2 23 DDH FR.46 53.00 57.38 75567 1.86 15 -0.2 28 DDH FR.46 57.38 75569 1.76 15 -0.2 28 DDH FR.46 62.15 63.65 75570 1.50 15 -0.2 75 DDH FR.46 63.56 64.57 75571 1.00 15 -0.2 75 DDH FR.46 68.05 69.00 75576 1.00 20					d	i					29
DDH:R-46 43.00 44.50 75560 150 15 0.02 79 DDH:R-46 44.50 46.00 75581 150 15 0.02 53 DDH:R-46 50.03 61.60 75563 1.47 15 <0.2						d	·····				33
DDH FR-46 45.00 75561 150 15 0.02 23 DDH FR-46 50.03 56.02 1.00 101 0.02 23 DDH FR-46 51.00 75663 1.47 15 <0.2							↓ -				
DDH FR-46 4003 5003 75562 100 10 -0.2 23 DDH FR-46 50.03 61.50 75563 1.47 16 -0.2 30 DDH FR-46 51.60 53.00 75664 1.50 20 <0.2							• • • • • •	.			
DDH FR-46 50.03 51.50 75563 1.47 15 <0.2 30 DDH FR-46 51.80 53.00 75563 1.60 30 <0.2											
DDH_FR-46 51.50 53.00 75564 1.50 30 <0.2 23 DDH_FR-46 54.00 75565 1.50 30 <0.2					······································	.					
DDH FR-46 53.00 54.00 75565 1.00 30 -0.2 23 DDH FR-46 55.50 75667 1.80 15 -0.2 23 DDH FR-46 55.50 57.38 59.12 75566 1.74 30 -0.2 88 DDH FR-46 55.12 60.88 75569 1.76 15 -0.2 75 DDH FR-46 62.15 63.85 75571 1.00 20 -0.2 83 DDH FR-46 64.05 65.75 75573 1.20 15 -0.2 75 DDH FR-46 66.55 75573 1.20 15 -0.2 75 DDH FR-46 66.95 68.00 75576 1.00 22 -0.2 50 DH FR-46 67.04 71.42 75577 1.00 35 0.8 81 DDH FR-46 73.00 73.29 75579 0.29 .45 .0.2 29 DDH FR-46 73.00 73.20 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>· · - · ·</td> <td> </td> <td></td> <td></td> <td></td> <td></td>						· · - · ·	 				
DDH FR-46 54 00 55 50 75566 150 30 -0.2 23 DDH FR-46 57 38 75567 1.88 15 -0.2 35 DDH FR-46 57 38 75569 1.76 15 -0.2 38 DDH FR-46 62 15 63 65 75570 1.50 15 -0.2 83 DDH FR-46 62 15 63 65 75571 1.00 20 -0.2 83 DDH FR-46 65 75 66 95 75573 1.20 15 -0.2 75 DDH FR-46 65 75 75573 1.00 20 -0.2 50 DH FR-46 68 00 69 00 75575 1.00 20 -0.2 50 DH FR-46 69 00 75575 1.00 35 0.8 81 DH FR-46 70.42 71.42 75577 1.00 35 0.8 81 DH FR-46 73.00 73.29 75579 0.29 .45						ļ		1		k	
DDH FR-46 56.50 57.38 75667 1.88 16 -0.2 35 DDH FR-46 57.38 59.12 75566 1.74 30 -0.2 88 DDH FR-46 59.12 60.88 75569 1.50 15 -0.2 35 DDH FR-46 63.65 64.65 75571 1.00 20 -0.2 83 DDH FR-46 63.65 64.65 75573 1.20 15 -0.2 75 DDH FR-46 66.95 75573 1.20 15 -0.2 75 DDH FR-46 68.95 75575 1.00 20 -0.2 50 DDH FR-46 68.90 75576 1.00 20 -0.2 50 DDH FR-46 67.42 73.00 75576 1.00 23 0.8 81 DDH FR-46 71.42 73.00 75579 0.29 .45 -0.2 29 DDH FR-46 73.00 73.29 75563 1.33 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td>35</td>						4					35
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DDH.FR-46							A			
DDH FR-46 65 12 60.88 75569 1.76 15 -0.2 35 DDH FR-46 62.15 63.865 75570 1.50 15 -0.2 75 DDH FR-46 63.65 64.65 75571 1.00 20 -0.2 83 DDH FR-46 68.65 65.75 75572 1.10 15 -0.2 19 DDH FR-46 68.95 68.00 75574 1.05 20 -0.2 50 DDH FR-46 68.90 70.00 75576 1.00 20 -0.2 50 DDH FR-46 68.00 70.00 75576 1.00 20 -0.2 50 DDH FR-46 71.42 73.00 75578 1.58 75 0.3 158 DDH FR-46 77.00 78.33 75580 1.33 15 -0.2 28 DDH FR-46 87.00 78.33 75583 1.50 5 -0.2 40 DDH FR-46 87.20<	DDH.FR-46										31
DDH.FR.46 62.15 63.65 75570 1.50 15 C0.2 75 DDH.FR.46 63.65 64.65 75571 1.00 20 40.2 83 DDH.FR.46 64.65 65.75 75572 1.10 15 40.2 75 DDH.FR.46 66.95 68.75 75573 1.20 15 40.2 75 DDH.FR.46 68.00 69.00 75575 1.00 25 0.2 40 DDH.FR.46 68.00 75576 1.00 25 0.2 40 DDH.FR.46 70.42 71.42 75577 1.00 35 0.8 81 DDH.FR.46 71.02 75.37 1.58 75 0.2 29 DH.FR.46 71.02 73.33 75579 0.29 45 <0.2	DDH.FR-46		59.12				1				26
DDH FR-46 62.15 63.65 75570 1.50 15 <0.2 75 DDH FR-46 63.65 64.65 75571 1.00 20 <0.2	DDH.FR-46	59.12									
DDH FR-46 63.65 64.65 75571 1.00 20 <0.2 83 DDH FR-46 64.65 65.75 75572 1.10 15 <0.2			63.65		1.50	!		15			26
DDH FR-46 64 65 65.75 75572 1.10 15 -0.2' 19 DDH FR-46 66.55 66.95 75573 1.20 15 -0.2' 75 DDH FR-46 66.85 68.00 75575 1.00 25 0.2' 40 DDH FR-46 68.00 69.00 75575 1.00 25 0.2' 40 DDH FR-46 68.00 75076 1.00 35 0.8 81 DDH FR-46 71.42 75577 1.00 35 0.8 81 DDH FR-46 70.00 75578 1.58 75 0.3 158 DDH FR-46 70.00 73.37 75580 1.33 15 0.2' 45 DDH FR-46 87.00 73.33 75583 1.5' 5 0.2' 40 DDH FR-46 87.00 75.8' 1.5' 5 0.2' 40 DDH FR-46 87.00 83.5' 75683 1.5' 0.2'						1	T	20			24
DDH FR-46 65.75 66.95 75573 1.20 15 <0.2 75 DOH FR-46 68.95 68.00 75574 1.05 20 <0.2							<u>+</u> ·				
DDH,FR.46 66.95 68.00 75574 1.05 20 <0.2 50 DDH,FR.46 68.00 69.00 75575 1.00 25 0.2 40 DDH,FR.46 69.00 70.00 75576 1.00 33 0.8 81 DDH,FR.46 71.42 73.00 75578 1.58 75 0.3 158 DDH,FR.46 77.00 78.33 75580 1.33 15 <0.2											23
DDH,FR.46 68.00 75575 1.00 25 0.2 40 DDH,FR.46 68.00 70.00 75576 1.00 20 <0.2							1				31
DDH,FR.46 69.00 70.00 75576 1.00 20 <0.2 50 DDH,FR.46 70.42 71.42 75577 1.00 35 0.8 81 DDH,FR.46 71.42 73.00 75578 1.58 75 0.3 158 DDH,FR.46 71.00 78.33 75580 1.33 15 <0.2											35
DDH,FR-46 70.42 71.42 75577 1.00 35 0.8 81 DDH,FR-46 71.42 73.00 75578 1.58 75 0.3 158 DDH,FR-46 73.00 73.29 75579 0.29 45 -0.2 29 DDH,FR-46 77.00 78.33 75580 1.33 15 -0.2 68 DDH,FR-46 83.11 84.61 75581 1.50 5 -0.2 23 DDH,FR-46 87.20 88.35 75583 1.15 15 -0.2 39 DDH,FR-46 88.35 91.63 75585 1.78 60 -0.2 88 DDH,FR-46 91.63 92.80 75586 1.17 90 -0.2 48 DDH,FR-46 98.62 75589 1.35 20 -0.2 80 DDH,FR-46 98.612 75589 1.35 20 -0.2 80 DDH,FR-46 99.67 75589 1.55 <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td>+ · ·</td> <td></td> <td></td> <td></td> <td></td>						+	+ · ·				
DDH FR-46 71.42 73.00 75578 1.58 75 0.3 158 DDH FR-46 73.00 73.29 75579 0.29 445 <0.2						+ · · · · · · · · · · · · · · · · · · ·					32
DDH.FR-46 73.00 73.29 75579 0.29 45 <0.2 29 DDH.FR-46 77.00 78.33 75580 1.33 15 <0.2						<i></i>					31
DDH.FR.46 77.00 78.33 75580 1.33 15 <0.2 68 DDH.FR.46 83.11 84.61 75581 1.50 5 <0.2	the second second second second second second second second second second second second second second second se					+	+ ·· ·				20
DDH.FR.46 83.11 84.61 75581 1.50 5 <0.2 40 DDH.FR.46 85.50 86.50 75582 1.00 5 <0.2						_					
DDH.FR.46 85.50 86.50 76582 1.00 5 <0.2 23 DDH.FR.46 87.20 88.35 75583 1.15 15 <0.2							į	<u> </u>			24
DDH.FR.46 87.20 88.35 75583 1.15 15 <0.2 18 DDH.FR.46 88.35 89.86 75584 1.50 15 <0.2						1 	+				
DDH.FR.46 88.35 89.85 75584 1.50 15 <0.2 39 DDH.FR.46 89.85 91.63 75586 1.78 60 <0.2											
DDH.FR-46 89.85 91.63 75585 1.78 60 <0.2 88 DDH.FR-46 91.63 92.80 75586 1.17 90 <0.2											30
DDH.FR-46 91.63 92.80 75586 1.17 90 <0.2 48 DDH.FR-46 92.80 94.15 75587 1.35 20 <0.2						4	L				
DDH.FR-46 92.80 94.15 75587 1.35 20 <0.2 80 DDH.FR-46 96.62 96.12 75588 1.50 15 <0.2	WW 1171 A						÷				31
DDH.FR-46 96.62 98.12 75588 1.50 15 <0.2 104 DDH.FR-46 98.12 99.67 75589 1.55 120 0.2 225 DDH.FR-46 99.67 100.50 75590 0.83 30 <0.2							ļ				3 25
DDH.FR-46 98.12 99.67 75589 1.55 120 0.2 225 DDH.FR-46 99.67 100.50 75590 0.83 30 <0.2											
DDH.FR-46 99.67 100.50 75590 0.83 30 <0.2 65 DDH.FR-46 100.50 101.30 75591 0.80 240 <0.2	DDH.FR-46	96.62	98.12	75588	1.50						
DDH.FR-46 100.50 101.30 75591 0.80 240 <0.2 449 DDH.FR-46 101.30 102.60 75592 1.30 20 <0.2	DDH.FR-46	98.12	99.67		1.55						5 31
DDH.FR-46 101.30 102.60 75592 1.30 20 <0.2 26 DDH.FR-46 102.60 103.36 75593 0.70 45 <0.2	DDH.FR-46	99.67	100.50	75590	0.83			30	<0.2		
DDH.FR-46 101.30 102.60 75592 1.30 20 <0.2 26 DDH.FR-46 102.60 103.36 75593 0.70 45 <0.2		100.50	101.30	75591	0.80	-		240	<0.2	2 449	3 41
DDH.FR-46 102.60 103.35 75593 0.70 45 <0.2 289 DDH.FR-46 103.95 105.30 75594 1.35 <5							1	20	<0.2		3 31
DDH.FR-46 103.95 105.30 75594 1.35 <5 <0.2 39 DDH.FR-46 105.30 106.42 75595 1.12 20 <0.2						1			4		9 41
DDH.FR-46 105.30 106.42 75595 1.12 20 <0.2 72 DDH.FR-48 108.81 110.31 75596 1.50 15 <0.2						• • • • • • • • • • • • • • • • • • •	+				2
DDH.FR-48 108.81 110.31 75596 1.50 15 <0.2 16 DDH.FR-46 116.00 117.50 75597 1.50 10 <0.2							-+				2 28 2 20
DDH.FR-46 116.00 117.50 75597 1.50 10 <0.2 47 DDH.FR-46 118.65 120.00 75598 1.35 10 <0.2							- i				
DDH.FR-46 118.65 120.00 75598 1.35 10 <0.2 41 DDH.FR-46 120.00 121.23 75599 1.23 5 <0.2											
DDH.FR-46 120.00 121.23 75599 1.23 5 <0.2 16 DDH.FR-46 121.23 122.70 75600 1.47 <5			· · · · · · · · · · · · · · · · · · ·			<u>+</u>					
DDH.FR-46 121.23 122.70 75600 1.47 <5 <0.2 22 DDH.FR-46 122.70 123.74 75601 1.04 5 <0.2						+					
DDH FR-46 122.70 123.74 75601 1.04 5 <0.2 29 DDH FR-46 123.74 125.30 75602 1.56 25 <0.2								+	20.		
DDH.FR-46 123.74 125.30 75602 1.56 25 <0.2 108	· · · · · · · · · · · · · · · · · · ·			+		.+		······································			
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		n					
		<u> </u>					- •				
DDH.FR-46 125.30 126.30 75603 1.00 45 <0.2 53			And the local data in the local data and the								
DDH.FR-46 126.30 127.10 75604 0.80 490 0.2 313		· · · · · · · · · · · · · · · · · · ·			- Antonio de la composición de la composicinde la composición de la composición de la composición de l		+				
DDH.FR-46 127.10 128.50 75605 1.40 20 <0.2 38	the second second second second second second second second second second second second second second second se										
DDH.FR-46 128.50 129.36 75606 0.86 285 <0.2 144	DDH.FR-46	128.50		75606	0.86						
DDH.FR-46 135.50 137.00 75607 1.50 5 0.2 11	DDH.FR-46			·						_	
DDH.FR-46 145.00 146.50 75608 1.50 5 <0.2 8	DDH.FR-46	145.00		75608	1.50						
DDH.FR-46 152.72 154.22 75609 1.50 65 <0.2 33	DDH.FR-46			75609	1.50			6	5 <0.1	2 3	
DDH.FR-46 158.55 157.55 75610 1.00 345 <0.2 36				+				34	5 <0.		6 2
DDH.FR-46 157.55 159.08 75611 1.53 25 <0.2 22		+		→·			<u> </u>	2	5 <0.	2 2	
			162.90	75612	1.00	1.02	1.00				

1 of 2

ł

۱

DDH.FR-046 Assay

• • •

در مارد المنصورة محمد الروار من من المركز من 200 - الروار المركز

-

•

1

HOLE ID	From	To	Sample No	Length	Au g/t metallic	Au g/t	Au ppb	Ag ppm	Cu ppm	Zn ppm
DDH FR-46	167.75	169.25	75613	1.50			5	<0.2	5	29
DDH.FR-46	173.29	175.00	75614	1.71			25	<0.2	30	21
DDH.FR-46	175.00	175.87	75615	0.87			65	<0.2	14	23
DDH.FR-46	175.87	176.20	75616	0.33	4.74	3.71	>1000	1.0	1740	44
DDH.FR-46	176.20	177.20	75617	1.00			20	<0.2	11	27
DDH.FR-46	177.20	178.70	75618	1.50	[15	<0.2	4	27 27
DDH.FR-46	178.70	179.85	75619	1.15	· · · · · · · · · · · · ·		170	<0.2	42	
DDH.FR-46	185.55	186.80	75620	1.25	,		15	<0.2	7	33
DDH.FR-46	186.80	187.62	75621	0.82			60	<0.2	10	40
DDH.FR-46	187.62	188.62	75622	1.00			15	<0.2	12	32
DDH.FR-46	193.72	194.72	75623	1.00			25	<0.2		
DDH.FR-46	194.72	195.72	75624	1.00			560	1.9	233	27
DDH FR-46	195.72	196.53	75625	0.81		· · · · · · · · · · · · · · · · · · ·	115	0.3	177	28
DDH.FR-46	198.00	199.00	75626	1.00			125	0.2	106	24
DDH.FR-46	200.48	201.68	75627	1.20			25	<0.2	10	27
DDH.FR-46	201.68	202.80	75628	1.12			65	0.2	41	31
DDH.FR-46	202.80	204.14	75629	1.34			365	0.2	23	30
DDH.FR-46	206.93	207,93	75630	1.00	•		20	<0.2	67	27
DDH.FR-46	207.93	209.40	75631	1.47			25	<0.2	159	34
DDH.FR-46	209.40	210.83	75632	1.43			10	<0.2	228	31
DDH.FR-46	210.83	211.83	75633	1.00			10	<0.2		36
DDH.FR-46	211.83	213.00	75634	1.17	· · · · · · · · · · · · · · · · · · ·		15	<0.2	164	
DDH.FR-46	213.00	214.50	75635	1.50		· · · · · · · · ·	15	<0.2	109	
DDH.FR-46	219.00	220.70	75636	1.70	• · · · · · · · · · · · · · · · · · · ·		10	<0.2	203	
DDH.FR-46	220.70	222.00	75637	1.30	T		5	<0.2	93	26
DDH.FR-46	222.00	223.40	75638	1.40			10	0.2	223	30
DDH.FR-46	226.82	228.32	75639	1.50			10	<0.2	79	
DDH.FR-46	229.93	231.63	75640	1.70		• !	40	0.4	137	

ł

2 of 2

L

CERTIFICATE OF ASSAY AK 2005-1058a

.

YANKEE HAT MINERALS LIMITED 4460 Atlee Avenue Burnaby, BC V5G 3R6

23-Sep-05

a.

ATTENTION: Donald Gee

;

No. of samples received:207 Sample type: Core **Project #:FRAN** Shipment #: not indicated Samples submitted by: Ron Wells

			Au	Au	
	<u>`</u> T #.	Tag #	(g/t)	<u>(oz/t)</u>	
-	62	75612	1.00	0.029	
	66	75616	3.71	0.108	
00	: DATA				
St	andard	-			
	SH13	•	1.29	0.038	

JJ/bw XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

PDH-46

CERTIFICATE OF ASSAY AK 2005-1058a

YANKEE HAT MINERALS LIMITED 4460 Atlee Avenue Burnaby, BC

30-Sep-05

ATTENTION: Donald Gee

No. of samples received:207 Sample type: Core Project #:FRAN Shipment #: not indicated Samples submitted by: Ron Wells

		Metallic A	ssay	
		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	· · · · · · · · · · · · · · · · · · ·
62 7	75612	1.02	0.030	
66	75616	4.74	0.138	

Standard:

V5G 3R6

SH13

1.31 0.038

JJ/ga XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer 22-Se;

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 8T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 2005-1058a

YANKEE HAT MINERALS LIMITED 4460 Atlee Avenue Burnaby, BC V5G 3R6

ATTENTION: Donald Gee

No. of samples received: 204 Sample type: Core Project #: FRAN Shipment #:not indicated Samples submitted by: Ron Wells

•

-

ş

; ş

Et #	. Tag#	Au(ppb)	Ag	AI %	As	Ba	ы	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	\$b	Sn	Sr	TI %	U	v	Ŵ	Y	Zn
1	75551	30	0.2	1.55	<5	110	<5	1.39	<1	35	27	276	8.52	<10	0.49	389	11	0.04	9	1750	18	<5	<20	59	0.13	<10	175	<10	2	33
2	75552	15	<0.2	1,79	<5	160	<5	2.04	<1	16	30	50	4.69	<10	0.50	548	<1	0.05	6	1680	20	<5	<20	223	0.09	<10	130	<10	8	31
3	75553	15	<0.2	1.91	<5	85	<5	2.79	<1	- 14	40	30	3.97	<10	0.45	403	<1	0.04	5	1750	22	<5	<20	126	0.09	<10	121	<10	8	25
- 4	75554	10	<0.2	1.37	<5	80	<5	1.98	<1	15	37	- 44	4.43	<10	0.34	345	<1	0.05	5	1820	14	<5	<20	77	0.10	<10	145	<10	8	24
5	75555	10	<0.2	1.20	<5	60	<5	1.48	<1	17	42	59	4.24	<10	0.58	469	<1	0.06	7	1830	14	<5	<20	69	0.10	<10	133	<10	10	33
6	75556	10	<0.2	1.17	<5	60	<5	1.71	<1	17	38	61	4.53	<10	0.50	450	<1	0.05	6	1790	14	<5	<20	78	0.11	<10	141	<10	10	30
7	75557	20	<0.2	1.23	<5	75	<5	5.18	<1	14	25	98	4.73	<10	0.55	960	3	0.03	5	1310	14	<5	<20	83	0.02	<10	BO	<10	13	31
8	75558	15	<0.2	0.88	<5	55	<5	2.41	<1	8	69	18	2.68	<10	0.42	542	<1	0.03	5	770	12	<5	<20	64	0.03	<10	35	<10	9	29
9	75559	20	<0.2	1.15	<5	45	<5	5.18	<1	15	37	28	4.21	<10	0.65	691	<1	0.04	6	1560	12	<5	<20	182	0.06	<10	108	<10	12	33
10	75560	15	<0.2	1.24	<5	75	<5	3.79	<1	17	34	79	4.77	<10	0.62	598	39	0.04	5	1610	14	<5	<20	114	0.07	<10	118	<10	11	29
11	75561	15	<0.2	1.25	<5	65	<5	2.62	<1	11	45	53	3.36	<10	0.47	488	3	0.04	4	1490	14	<5	<20	107	0.10	<10	94	<10	10	25
12	75562	10	<0.2	1.15	<5	70	<5	4.07	<1	12	37	23	4.05	<10		742	<1	0.04	3	1450	12	<5	<20	161	0.06	<10	83	<10	10	28
13	75563	15	<0.2	1.16	<5	55	<5	2.98	<1	12	38	30	3.50	<10	0.53	583	<1	0.04	3	1490	14	<5	<20	83	0.08	<10	99	<10	10	27
14	75564	20	<0.2	1.28	10	80	<5	3.24	<1	13	43	51	4.05	<10	0.49	624	<1	0.04	- 4	1480	16	<5	<20	104	0.08	<10	101	<10	9	26
15	75565	30	<0.2	1.43	10	90	<5	4.61	<1	13	20	23	5.10	<10	0.73	940	5	0.04	3	1600	16	<5	<20	106	0.03	<10	81	<10	11	35
16	75566	30	<0.2	1.09	5	65	<5	4.32	<1	14	35	23	4.28	<10	0.54	788	2	0.04	6	1420	10	<5	<20	108	0.06	<10	91	<10	10	29
17	75567	15	<0.2	1.51	<5	180	<5	3.31	2	14	39	35	4,38	<10	0.73	795	12	0.04	14	1400	14	30	<20	191	0.05	<10	106	<10	6	31
18	75568	30	<0.2	1.46	<5	175	<5	2.47	<1	13	44	88	3.87	<10	0.57	519	<1	0.06	- 4	1650	20	<5	<20	185	0.11	<10	87	<10	13	26
19	75569	15	<0.2	1.04	<5	105	<5	3.90	<1	13	34	35	4.35	<10	0.52	748	3	0.03	5	1420	12	<5	<20	134	0.03	<10	- 97	<10	11	31
20	75570	15	<0.2	0.93	<5	70	<5	2.49	<1	15	43	75	4.50	<10	0.45	480	<1	0.04	5	1560	10	<5	<20	86	0.09	<10	102	<10	8	26
21	75571	20	< 0.2	1.18	<5	80	<5	2.66	<1	11	61	83	3.35	<10	0.53	505	3	0.05	6	1090	14	<5	<20	70	80.0	<10	79	<10	9	24
22	75572	15	<0.2	1.05	<5	50	<5	4.68	2	15	32	19	4.90	<10	0.69	796	7	0.05	12	1690	8	15	<20	182	0.06	<10	136	<10	11	31
23	75573	15	<0.2	0.98	<5	50	<5	2.78	<1	14	39	75	3.61	<10	0.46	441	8	0.05	6	1640	12	<5	<20	89	0.10	<10	102	<10	12	23
24	75574	20	<0.2	0.89	<5	65	<5	4.81	<1	17	19	50	4.97	<10	0.59	853	9	0.04	5	1590	10	<5	<20	175	0.04	<10	96	<10	12	31
25	75575	25	0.2	0.79	<5	45	<5	5.68	<1	17	20	40	5.82	<10	0.79	869	6	0.04	7	1780	8	<5	<20	380	<0.01	<10	114	<10	12	35
26	75576	20	<0.2	1.08	<5	65	<5	4.38	<1	16	19	50	5.77	<10	0.71	729	4	0.04	6	1810	12	<5	<20	215	0.03	<10	152	<10	11	36
27	75577	35	0.6	0.32	20	55	<5	5.10	<1	15	35	81	4.96	<10	0.72	922	5	0.03	6	1420	4	<5	<20	311	<0.01	<10	35		9	32
28	75578	75	0.3	0.27	10	45	<5	4.46	<1	17	25	158	4.88	<10	0.64	801	- 4	0.03	5	1540	2	<5	<20	248	<0.01	<10	27	<10	9	31
29	75579	45	<0.2	0.19	40	40	<5	6.30	<1	9	157	29	3.10	<10	0.47	666	- 4	0.02	7	970	2	<5	<20				10	<10	7	20
30	75580	15	<0.2	1.26	<5	55	<5	3.37	<1	21	40	68	4,50	<10	0.62	597	36	0.04	9	1940	16	<5	<20	112	0.14	<10	120	<10	10	24

22-Set

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2005-1058a

YANKEE HAT MINERALS LIMITED

_.

6

يستعد ومكرف وت

	Et #.	Tag #	Au(ppb)	Ag	<u>A</u> l %	As	Ba	BI	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	_\$b	Sn	Sr	TI %	U	<u>v</u>	W	Y	Zn
	31	75581	5	<0.2	1.55	<5	110	<5	2.38	<1	15	62	40	4.99	<10	0.44	564	<1	0.05	5	2010	18	<5	<20	60	0.12	<10	119	<10	11	32
	32	75582	5	<0.2	1.65	<5	95	<5	3.47	<t< td=""><td>16</td><td>37</td><td>23</td><td>5.38</td><td><10</td><td>0.55</td><td>769</td><td><1</td><td>0.04</td><td>5</td><td>1940</td><td>20</td><td><5</td><td><20</td><td>61</td><td>0.12</td><td><10</td><td>134</td><td><10</td><td>10</td><td>38</td></t<>	16	37	23	5.38	<10	0.55	769	<1	0.04	5	1940	20	<5	<20	61	0.12	<10	134	<10	10	38
	33	75583	15	<0.2	2.09	<5	60	<5	2.96	<1	20	43	118	6.30	<10	0.72	785	<1	0.04	5	2010	24	<5	<20	35	0.12	<10	137	<10	10	35
	34	75584	- +-	-	2.03	<5		<5		<1	15	46	39	+		0.58	615	<1		-	1880	22	<5			0.09				6	27
		75585	60		1.75		110		3.15	<1	22	32	88			0.61	859	<1			1880	20	-			0.08				6	31
	~~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00	.0.2		•			0.10			~	•••	0.00		0.01	000	•	0.01	-		20				0.00				*	•••
	36	75586	90	<0.2	1.86	<5	100	<5	1.98	<1	13	33	48	4.28	<10	0.45	438	<1	0.07	4	1510	8	<5	<20	93	0.11	<10	123	<10	11	25
		75587	20		2.21		120	-	2.43	<1	15	41	80			0.66	478		0.07		1430	8				0.11				10	25
		75588	15	-	2.24		70	-	2.54	<1	14	22	104			0.64	511		0.07		1460	ě				0.11				6	27
		75589	120		2.14		80		2.11	<1	46	33				0.73	475		0.04		1490	14				0.11				7	31
		75590	30		1.83		110		2.62	<1	14	26	65			0.63	589		0.05		1540	12				0.10				ģ	31
							1.0		2.02	- •			00	4.00	-10	0.00	000		0.00	•	1040		-0	-20	110	0.10	-10	120	- 10		.
	41	75591	240	<0.2	1.87	<5	100	<5	1.41	<1	47	38	449	8.21	<10	0.67	484	5	0.04	1	1340	16	<5	<20	104	0.11	<10	114	<10	2	41
	42	75592	20	<0.2	1.57	<5	145	5	1.72	<1	11	26	26	4.00	<10	0.37	357	<1	0.07	3	1570	10	<5	<20	141	0.11	<10	121	<10	10	31
		75593	45	-	1.99		115	<5	1.72	<1	21	32	289		<10	0.66	461		0.07		1490	12	-			0.11				8	41
		75594	<5	<0.2			115		2.40	<1	11		39		<10	0.45	438		0.09		1510	12				0.11				10	28
		75595		<0.2		<5	-		3.13	<1	13	38		3.38		0.64	460		0.10		1470	16				0.11				11	26
						-				•								-	•••••	-			•			0.00					
	46	75596	15	<0.2	1.50	<5	80	<5	2.01	<1	12	20	16	3.64	<10	0.49	445	5	0.06	2	1620	14	<5	<20	81	0.11	<10	109	<10	13	32
	47	75597	10	<0.2	1.54	<5	75	<5	2.02	<1	11	31	47	3.25	<10	0.41	362	7	0.06	4	1680	16	<5	<20	73	0.10	<10	85	<10	10	23
	48	75598	10	<0.2	1.76	<5	60	<5	2.34	<1	12	22	41	3.84	<10	0.42	416	12	0.05	3	1620	14	<5	<20	52	0.08	<10	90	<10	6	25
	49	75599			1.68	<5	105	<5	2.18	<1	9	31	16	3.31	<10	0.36	337	<1	0.07	3	1620	14	<5	<20	113	0.09	<10	96	<10	9	23
		75600		<0.2			155		2.01	<1	10	21	22			0.35	270		0.09		1720	14				0.10				9	22
	•-		_	÷		*		•	-	-										-			-	-					-		
	51	75601	5	<0.2	1.66	<5	105	<5	1.94	<1	11	32	29	3.85	<10	0.37	283	<1	0.07	4	1730	16	<5	<20	101	0.11	<10	113	<10	11	24
	52	75602	25	<0.2	1,80	<5	80	<5	2.31	<1	22	23	108	4.74	<10	0.67	492	11	0.06	- 4	1760	18	<5	<20	71	0.10	<10	112	<10	8	26
	53	75603	45	<0.2	1.73	<5	95	<5	2.06	<1	15	26	53	4.35	<10	0.60	499	<1	0.06	2	1750	16	<5	<20	90	0.11	<10	112	<10	8	26
	54	75604	490	0.2	2.33	<5	70	<5	2.04	1	82	18	313	9.03	<10	0.88	524	6	0.04	3	1430	10	<5	<20	45	0.09	<10	113	<10	<t< td=""><td>29</td></t<>	29
	55	75605	20			<5	70	5	2.61	<1	14	31	38	4.44	<10	0.72	469	<1	0.05	3	1630	12	<5	<20	76	0.10	<10	105	<10	8	24
1	56	75606	285	<0.2	2.23	<5	120	<5	2.25	<1	26	25	144	5.88	<10	0.81	503	<1	0.05	2	1510	16	<5	<20	200	0.09	<10	101	<10	- 4	30
	57	75607	5	<0.2	1.76	<5	75	<5	3.47	<1	10	22	11	3.29	<10	0.73	642	1	0.06	- 4	1660	14	<5	<20	111	0.07	<10	105	<10	7	24
	58	75608	5	< 0.2	1.46	<5	70	<5	2.66	<1	14	31	8	4.33	<10	0.60	466	<1	0.05	6	1590	8	<5	<20	108	0.12	<10	155	<10	10	31
	59	75609	65	<0.2	1.53	<5	85	<5	1.91	<1	13	23	33	3.62	<10	0.48	342	<1	0.05	5	1710	12	<5	<20	113	0.12	<10	116	<10	13	25
	60	75610	345	<0.2	1.77	<5	90	<5	2.45	<1	13	31	36	3.99	<10	0.74	491	<1	0.05	5	1520	10	<5	<20	178	0.10	<10	99	<10	6	27
I	61	75611	25	<0.2	1.95	<5	85	<5	2.55	<1	15	19	22	4.35	<10	0.71	476		0.06		1680	12	<5	<20	95	0.12	<10	143	<10	9	32
(62	75612	>1000	<0.2	1.73	90	75	<5	5.24	<1	38	10	292	7.50	<10	0.87	848	65	0.02	5	1380	14	<5	<20	130	0.03	<10	86	<10	3	31
	63	75613	5	<0.2	1.41	<5	55	<5	1.94	<1	10	22	5	3.54	<10	0.46	368	2	0.04	5	1700	12	<5	<20	70	0.08	<10	91	<10	5	29
	64	75614	25	<0.2	1.23	<5	90	<5	1.57	<1	10	21	30	3.53	<10	0.31	242	8	0.05	3	1680	8	<5	<20	53	0.09	<10	102	<10	6	21
	65	75615		<0.2		5	110	<5	1.76	<1	10	28	14	3.56	<10	0.38	290	1	0.05	3	1650	8	<5	<20	136	0.10	<10	97	<10	6	23
						-																									
(66	75616	>1000	1.0	2.20	<5	90	<5	1.49	1	64	9	1740	>10	<10	1.07	483	19	0.02	4	1170	10	<5	<20	34	0.06	<10	106	<10	<1	44
1	67	75617	20	<0.2	1.60	<5	95	<5	2.11	<1	11	21	11	3.84	<10	0.39	343	<1	0.07	- 4	1680	14	<5	<20	68	0.10	<10	107	<10	8	27
	68	75618	15	<0.2	1.58	<5	75	<5	2.11	<1	10	22	4	3.71	<10	0.33	294	<1	0.05	4	1710	16	<5	<20	52	0.09	<10	99	<10	9	27
· (69	75619	170	<0.2	1.82	<5	60	<5	2.48	<1	13	18	42	4.44	<10	0.61	446	10	0.05	4	1640	14	<5	<20	59	0.10	<10	104	<10	ŝ	27
		75620		<0.2	2,10	<5	105	<5	3.06	<1	11	17	7	4.16	<10	0.74	532	<1	0.04	4	1730	12	<5	<20	79	0.09	<10	105	<10	10	33

ECO TECH LABORATORY LTD.

YANKEE HAT MINERALS LIMITED

المريد المستحدث

and the second

Et #.	, Tag#	Au(ppb)	Ag	Ał %	As	Ba	BI	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	Ρ	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
71	75621	60	<0.2	1.43	380	110	<5	5.92	<1	11	17	10	4.65	<10	0.66	700	6	0.03	3	1630	8	<5	<20	102	0.02	<10	39	<10	11	40
72	75622	15	<0.2	1.77	<5	95	<5	2.21	<1	11	17	12	3.95	<10	0.54	418	<1	0.04	- 4	1750	18	<5	<20	115	0.07	<10	100	<10	10	32
73	75623	25	<0.2	1.38	<5	65	<5	3.31	<1	11	47	17	3.10	<10	0.61	681	<1	0.04	5	990	12	<5	<20	134	0.08	<10	89	<10	10	24
74	75624	560	1.9	1.48	220	70	<5	6.51	<1	39	27	233	5.40	<10	0.90	1501	22	0.03	6	1210	12	<5	<20	130	0.03	<10	118	<10	10	27
75	75625	115	0.3	1,49	<5	70	<5	4.22	<1	14	19	177	4.34	<10	0.84	741	7	0.05	4	1530	8	<5	<20	142	0.05	<10	110	<10	13	28
76	75626	125		1.69	30	55	<5	2.70	<1	13	28	106	3.40	<10		471	6	0.03		1040	12		<20			<10	-	<10	5	24
77	75627	25		1.54	115	45	<5	3.05	<1	11	46	10	4.13	<10		1053	5	0.01		1060	12	<5	<20	39		<10		<10	7	27
78	75628	65		1.80	15	50	<5	3.20	<1	18	14	41	5.34	<10		1069	6	0.01		1600	16		<20	- 54		<10			11	31
79	75629	365		1.60	5	55	<5	3.57	<1	11	36	23	3.92	<10		973	2		-	1040	14	<5	<20			<10			9	30
80	75630	20	<0.2	1.34	10	45	<5	2.79	<1	14	35	67	3.51	<10	0.63	575	<1	0.05	8	1150	12	<5	<20	71	0.09	<10	116	<10	10	27
81	75631	25		1.53	10	40	<5	4.86	<1	16	32	159	4.08	<10	-	793	<1	0.03		1080	12	<5	_	124		<10	89		14	34-
82	75632	10		1.76	10	50	<5	2.96	<1	17	25	228	3.66	<10		405	9	0.05	-	1540	20	<5	<20	55	0.07	-	62	-	11	31
83	75633	10	<0.2		<5	40	<5	2.11	<1	15	35	98	3.38	<10		429	21	0.05	12	750	18		<20	29	0.12			<10	20	36
84	75634	15	<0.2		<5	90	<5	1.37	<1	22	53	164	5.00	<10	-	527	12		27	580	18		<20			<10			19	53
85	75635	15	<0.2	1.94	20	90	<5	1.53	<1	19	49	109	4.97	<10	1.35	579	<1	0.08	20	550	16	<5	<20	260	0.18	<10	136	<10	18	55
86	75636	10	<0.2	1.95	<5	85	<5	2.45	<1	22	28	203	4.80	<10	1.10	493	1	0.06	9	1360	14	<5	<20	169	0.14	<10	121	<10	12	28
67	75637	5	<0.2	1.52	<5	45	<5	2.00	<1	18	33	93	3.86	<10	1.06	491	<1	0.06	9	910	10	<5	<20	36	0.17	<10	122	<10	16	26
88	75638	10	0.2	1.42	<5	80	<5	2.37	<1	23	35	223	5.51	<10	1.11	669	1	0.06	-14	1270	12	<5	<20	62	0.10	<10	167	<10	21	30
69	75639	10	<0.2	1.17	<5	80	<5	1.61	<1	12	70	79	3.37	<10	0.79	524	9	0.06	-14	510	14	<5	<20	50	0.12	<10	81	<10	18	27
90	75640	40	0.4	2.14	50	90	<5	2.56	1	20	43	137	5.66	<10	1,33	885	3	0.05	27	610	30	<5	<20	191	0.14	<10	132	<10	19	189
<u>QC/D/</u> Respi																														
1	75551	15	<0.2	1.56	<5	110	<5	1.40	<1	38	31	291	8.87	<10	0.49	400	13	0.03	8	1730	22	<5	<20	62	0.13	<10	172	<10	2	34
36	75586	105	<0.2	1.64	<5	95	<5	1.94	<1	13	29	43	4.31	<10	0.41	431	<1	0.06	3	1520	10	<5	<20	81	0.10	<10	118	<10	8	26
71	75621	55	<0.2	1.42	385	115	<5	6.02	<1	13	30	19	5.00	<10	0.64	774	6	0.03	5	1780	18	<5	<20	99	0.02	<10	40	<10	13	48
Repea	ıt:																													
1	75551	20	0.2	1.59	<5	110	<5	1.38	<1	34	26	285	8.47	<10	0.51	390	12	0.04	10	1690	16	<5	<20	62	0.13	<10	176	<10	2	31
10	75560	10	<0.2	1.18	<5	65	<5	3.71	2	17	31	75	4.68	<10	0.59	581	47	0.03	12	1630	12	15	<20	106	0.05	<10	114	<10	10	29
19	75569	20	<0.2	1.08	<5	110	<5	4.00	<1	13	34	36	4,41	<10	0.55	770	2	0.04		1460	12		<20	145	0.03				12	30
	75586	85	<0.2	1.74	<5	85	<5	1.92	<1	13	33	45	4.31	<10	0.44	434	<1	0.06		1560	8	<5	<20	83	0.10			<10	8	25
-	75595	20	<0.2		<5	80	<5	3.04	<1	13	36	70	3.33	<10	0.61	451	7	0.10		1460	16		<20	148	0.10		98	<10	10	27
	75604	500	0.2	2.11	<5	80	<5	1.97	<1	84	18	266	9.12	<10	0.80	523	5	0.04		1510	16		<20	41		<10			<1	31
	75621	65	<0.2	1.40	360	90	<5	5.27	<1	11	18	10	4.65	<10	0.65	697	7	0.03	-	1640	6	_	<20	97	0.01		39	<10	10	41
80	75630	20	<0.2	1.32	5	55	<5	2.89	<1	14	36	66	3.62	<10	0.62	589	<1	0.05		1200	16	<5	<20	72	0.10			<10	11	29
89	75639	5	<0.2	1.18	<5	85	<5	1.63	<1	12	68	79	3,41	<10	0.80	531	12	0.06	13	500	14	<5	<20	52	0.12	<10	82	<10	18	27
Stend OXF41	I	810																												
OXF41		825																												
OXF41		805																				_		- .	_					
GEO'0				1.43		170		1.35	<1	16	57 /	84	3.74	<10	0.76	572	<1	0.03	28	600	20		<20	54	0.11			<10	9	73
GEO'0	5		1.5	1.37	65	175	<5	1.47	<1	17	61	80	4.03	<10	0.73	614	<1	0.02	30	690	22	<5	<20	56	0.10	<10	82	<10	10	74
JJ/bw																								-		<u></u>	APOI	ATOP	VITË	<u>, </u>

.

df/5138/1060/1058a XLS/05

FAX: 372-1012

.

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

×

.

FRAN PROJECT 2005

YANKEE HAT MINERALS LTD

-

DDH NO. FR-044						PA	GE NO. 7
· · · · · · · · · · · · · · · · · · ·	LITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION	L	SAMP	LING
MAIN UNITS	GL SUB UNITS		· · · ·	- <u></u>	FROM	TO	NUMBER
1-3.05m Casing in Out and fractured budrock	Collar	2					<u>↓</u>
.05-44.02 longadiorita. Predom Led. gr. Local mofic cenolities Pyra orig orig suid	+ menselve mp. spatty weak * menselve mp. sorrow is because of weak epid. alt. and aligned * fooluse zorea separated by / pick, fresh mp. 1-2% small * mefic xenalities Lica	Brittle forstwied thoughout with widerpread eridaben lacally strong, probably sepresesting suffice zones 9.78-10-25n 20 CA oxidagual By VA 19.75-20-42 ; 22.15 - 23.47 ; 25.54- 28.50 strong britte for chiving with exit.	1935-2347 latur wr epid	9-78-10-05 oxidized	19_00 20:85	10-30 20-85 2245	7555(
oxid	/ +				22.15	23:47 	75554
orid		28.55.29.27 strong pricte zone with corb	uit and wis permise carb	e	26.80	23.00	7555.6
exid 32 Fr:	7/	21.23-31.90 5 1000	· · · · · · · · · · · · · · · · · · ·		29.55 37.33	29.77 31.80	75557
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+ \$190-41.62 As above Fierd + / pairly massive Norrew brakes / and exidiged sactions Ton 2% / Subagular mater xanality to be	For weak axidaged	Oridized along Some fractures laca carb ulto Rose apid	To fine dissen ly			

KAMLOOPS GEOLOGICAL SERVICES LTD.

•

LOGGED BY Rec. bulks

DATE 24 th August 2005.

لي ا

#### FRAN PROJECT 2005

#### YANKEE HAT MINERALS LTD

DDH NO. FR-046			· · · · · · · · · · · · · · · · · · ·	<u>.</u>			PA	GE NO. 2
	Ľ	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	.ING
MAIN UNITS	GL	SUB UNITS				FROM	TO	NUMBER
40	+					41.62	43-00	75559
		41-62-4943 Freeburgd, Verned	Failly Auguerous	Mainly vit related.	Traly Py maisly	43.00	44.50	-#5560
	41	and patchy altered AD as abeve,			reac hip, related to	44.50	46.00	75561
	in	avere gay latchy alteration		Below 45.45 Patring				
	7	partially marke herburg	angles ca Larger can		Local TO Po			
	+	-	1 cm 30-4. ch Broken					
			4 NO 07/06320 444. 11					
5.	57	49.03-57.32 Fracture fault gone		Foult are locally	Trizily ult and	49.03	50.03	75562
7-05- 11:20	5 6	is mp. mod to strong foreband	clayer section 11-to F	clayey. Mrs. patery.	dimen P. 555-5732		\$1.50	75563
Fault Zone in		with clayey intervals - becauted	A Y You Distance and and	democuie cach		5150		75564
Monzodianite			aridized Some ISCA for	elsewhere wit / un		52.00	54.00	74646
	5	Vagre textures	6752 where much de	Colored all and		_ <u><u> </u></u>		75566
			with numerous corbical	Local epid stranger	·····	55.50		
		The second for the second second	Condenance is to	Wit Mlated carb	TI fine diver P.	\$7.59	5912	- 75667
7.38-59.12 FP.	FX	Intrusion bristia, matrix SM gr. MD	Good mossic be several 30 with may			<u> </u>	-17/4-	
ntrusion Braccia	20	57:32-59-12 Feldepar Porphyay - Mosan Intrusion braccia, matrix for gr. MD FF frags - (FF Monther Har) for Ang 19-12-60-18 strong fractioned and contents of the strong fractioned and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong and the strong at the strong and the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the strong at the stro	vits / fr. pradom So stain	Contracts all local	To 14 1: diana	59.12	60.98	75569
9.12-60.88 Fracture 60-	111	LA-TR-66.95"	enals - dute (	Cost Vily	Tr-14, fin dupon P	62.5	63.65	75570
one in mongodiorite	1	60.98-66.95" Fairly massive uniform	were not proport	Paton, periovire up caro overprintz taxtor	Below 630 1-4	63.65		75571
0-88-194.72	11/	MD med. gr. low med with densities		at 2 Scarb-epid vit	Py with perfor			
konzodiorite with	1.1		local exid Local	Stuk.	Tc-14 Py	64.65 65.75		75572
niner sensliths.	121	versities to 2 cm sub-consulat. Unit is most magnetic throughout	25-40'ra P. uts				-66.95	
eucocratic and		6.95-7042 Darker preph-ores	Foirly numerors think	Patchy w/m pervasive	Tr-14 Py . 1-3 Py vits	46-95	-	<u> </u>
ltered intervals		finer grand mor here the cort	267.7-67.8 BX CA164	card and the		61.00	-69.00.	75575
Te		alt eration everyon at taxtu the	Sien Strong chi Lucat		division Py in Chi alt. Zuna with carb ylly	69:00	70.00	
40	$\mathcal{V}$	the sectored and ted, fine provided, light	Uniform with	Blacked with poting	Tr. 1 6 V. fine dypan	70.42	70.42	75578
		grad grean single broken gtg v	mong micro ville/fr.	perious corb	Py	-71.42	73.00	
		7329-87-20	manual land	with weather and	To his day of	-73·po	77.29	
	F-	manine MD and grand gaven	massive, local		To frai disser P.			
		greagentite speckled foilly fresh	HALCH, COCH ON	chippid coid alt				
		Few sub-cm make resulter	r	bande to ISan S-107			71.72	75580.
	+	porticity assimilated . W.K. mad	uns to lon 25-45'cd.		By with perfor 40-said		╶╾╾━─╴┤	

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R.s. 4.444s

DATE: August 24th, 2005

## FRAN PROJECT 2005

#### YANKEE HAT MINERALS LTD

NO. FR-046		ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMP	GE NO. 3
MAIN UNITS	JGL	SUB UNITS	JINOCIONE			FROM	T0	NUMBER
9	· + ·	throughout, patchy spid alt	associated exid al	-				
	ļ <del>+</del>		hands have similar			12.11	84-61	75581
	F.		alteration					
						85.50	8650 -	75582
Py vite	1		<u> </u>	· · · · · · · · · · · · · · · · · · ·			<b></b>	
್ಷಗಳು	ζU.	87.20-91.63 Similar & above but	Male abundant cart	Patch, wk corb	Tro3% fine dissen	87.20	\$1.35	7\$583
59		with pately corb alt partially	Great was-drige	local wk chl. alt	and ult ly local	88.85	\$9.85	75584
	4 7	marking texture little poid non news	Rain & pid local con	to cal biacched zones	S-6 vile porfor	<u>99.95</u>	91:63	75585
	<u>+</u> _	9163-9662 Medium grained	77	10 10 CM 10 CM				· <b>_</b>
	+/	specked white and grey massing	Carb Whe 20-70'CA	vit related chi.	Tensel 107, paking	91.63	92.10	75586
	14	and fresh no. few small nofe	· SOMA with carts halo eq	and corborate	fine dimen ly loca	1.92.80	94.15	15587
Chi epi		xendites	+05 CA-P-+44 0 A2-		4-5 ly ett pec/m		-	
-6.	17		corb exid bx un 250	· · · · · · · · · · · · · · · · · · ·		96.62	98.17	7.5589
Py	1	196,62,-99.67 D. L.L It	window 40 - 60 CAVI	Generally vir relates		98.12	9947_	75589 _
Vis	12	AUMERIA VIEL SOME VIGY	Chisep, Py.corb vits	epid, 04 y cord small	VIE PATIN 6006, Kg	99.67	10050	75580
lo P-1	忆	194.67-10595		Chil-P. Vittun 2014	article of chil zones	100.50	101.30	75591
Py Vis	1	ned or spore note recolities	and carb it f commonly	100-5-101-02 0-06 102-6	1-2 Py + Fria within	101.30	102.60	7.5592
<i>Q</i>	1		KIK ZOALS BO -LOCA	-1+3.70. vit related	many 3-7+6 Py	102.60	103.30	15593
<i>Py</i> vits	17	103.95- 106.42 Leurocratic MD as	Juggy my port to	ult related code	1-2 time Por vite and	1+345	105.20	75594
Vugi	19.12	above none our wery cord-sil vas/1	A 20 CA. Few Line L.	cillion minor chi	In the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	105.30	106.42	25595
drige	1.0	With fine daza	vite similar byers	with Pr				
•	L	Uniform-mossive mp. And	mossing law read	with reported chil	1-2 fin Py 4/2	108.81	110.31	75596
	Г	are a lauros ratis intervals	of his childred card	and cash local	auto			
10	۹ ـ	and grained, spotty megsetic.	ult alter JO-SO'CA	normal-2 con eaid	Tr. Py			
	'	Local sub angular mafie xenelites	local fine R. ulty	bands 10-30CA + DCA	· · · · · · · · · · · · · · · · · · ·			
	4	one subounded 8-10cm			 		<b></b>	
	+							
		· · · · · · · · · · · · · · · · · · ·			·	116:00	_47•\$@	75597
<b>0</b> 1L	+	117.95-121.23 As above with more	15-6ich card, epid	VIE related carts	T1-2% P. 2-5P.	118.65	174.00	75598_
נזיע כז	14	numerous pile and assoc - wallow the						

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: K-s. Gue H.s.

DATE: August 24th 2005

### FRAN PROJECT 2005

.

#### YANKEE HAT MINERALS LTD

NO. FR-646								GE NO. 4
	LITHOLOGY STRUCTURE ALTERATION MINERALIZATION							
MAIN UNITS	GL	SUB UNITS		Į		FROM	TO	NUMB
120	$ \mathcal{H} $	alteration	l with some arou	ult related carb	2.3 fine Py x Ite for	120.00	.121:22.	_75599
	1.	121.23-123.74 Levcocrahi, hed.gr.	1 epid 43-557A	sil nine chi	T1. 2.4. P.	121.23	13.2.70	75600
	10	123.74 w29.36 Poten, altered MD	controlly marker	7 Patch chlandsil	moiny Tr-2.4 fine	12270	123.74	
	<b>[</b> -	speckind - metted and. graye. med	WH3 20-45-CA	filt related also	dimenora ult P.		125.30	75603
	+	9. with silicove and chi alt	Warray June carb	porchy vieweek epid	dinen and vite P.	125.30	126.30	75603
	+	lacally overpointing textures	Land Sil vitt			126-36	127.10	7560
l ^e y vits	1		similar angles			127.10	128.50	75605
130	<b>F</b> ~-	129.36-154.27 Unilorm-massive	Massine with loca	. VIE related chi	Spetty magnetite	128.50	129.36	7560
	+,	interval, white-aren- area	chi con and epid	and cart 5-104	thoughout strange		-	
		coulded ADD with 1-7 same	VID. Roce P. vite	1-2 ca eaid alt	outside epid alt			
	1	rolic resolites to zero generall		bando 25-60 CA	Tr Py lite mainly			
	17	alan an menetic where faced			at end of internal	125.50	127-02	75607
	+	( privery mentite?) Pattley week			7			
	1							
	+	epidalt and in nerow bands	}					
14•_	<~!			·				
	+							
	4							
	<b>+</b>					148.00	146.50	75608
	+							
	1.							· ·
	*							
160	12					152.72	154.22	75609
	T.							
	<b>1</b>		T				]	
٢.	1	154.22-157.55 Failly levcociche	Largen Cach with b	ultion weated	Spotter magnetic			
Vugs	10	MD had-coarse grained at hop	15ho 40 tica Rola	chi cario	TI Juie dimen P.	156.55	157-55	75600
	*	finer downwords. Broken QCV.	3 - T+ CA cart Chi vite			157.55	159.08	75611
90.0		157.55-162.90 Fine mad. or. light:	Few fine cart	Wit related cw	sporce fin Pg			
	14	-ned greens I greys and drie non-	Chi utti	carb , carb by Chi F	Key de la co			

KAMLOOPS GEOLOGICAL SERVICES LTD.

.

.

LOGGED BY: R. Wells

DATE: 25th August 2005

## FRAN PROJECT 2005

#### YANKEE HAT MINERALS LTD

H NO. FR-046				ALTERATION	<b></b>			GE NO. 🥑
		ITHOLOGY	STRUCTURE	MINERALIZATION	SAMPLIN			
MAIN UNITS	GL	SUB UNITS				FROM	TO	NUMBER
16 16		Mognetic, pater, alt.	10-35 CA MILA VIE SACTION 162 54-162-22		162.22			
сь.6х Ручл			Show carb. bx, 162.22			14190	162.90	75612
		162-20-194:72 Massive-uniform	Faw fice carb	vit related carb	Locally 1-2. Py			
	+	section of south apprehimed.	and coid self 30-20	C.hl. w/m permy	1. 1			
		accurate MD significe to 122:760	2-10cm wide upto	eaid all bords,	······································	167.75	119.25	75612
	- <b>+</b> +	Sance and die poli yant	4. 2050 Echande	elsewhere Lorh	1			
		Canada the anome to'd old have	i civilar antes	flesh with	·····			
17:	•	The stand of the stand	Lacal P with	/				
-	7~	I'me Anoin Inferies with thing	Local Py VIM	pring angertite				
	+	C.h. with Py I W. #7-116-to h -	30.5024					
	2	¥ /86.80-187.62			· · · · · ·	172.27		7.5614
	+					175-05	175.87	-75615-
DK.CHI.			<u> </u>			175-87	176.20	
DK.Chi.			┼━────┥		175.87-176.3. BX	176.20	177.20	75617
	+				for dissen by live	177.20	128.2	75618
/5	+				seni-massive By	178.70	24:95	-75619-
••	·*			• =·	· · · · · · · · · · · · · · · · · · ·			
	+		<b>_</b>					
			· · · · ·					<u>-</u>
	+					185:55	186.80	75624
					·	13686	117-62	25621
dk.cu	/				A obove Bx with	187.62	188-62	75622
٩٦			·		dk chi 1-34 fine			
	+				dynen Prodesca	[		
× 140	۹ <u>۰</u> ۱				boke OCY SUCA			
	+.							<u></u>
	-				-			
4.72- 196-09	1.1	101072-18605 Headure and fin	contact us st som	Peruguie mod	TI line dissemp.	193.72	194.72	75623
eldspor Porphyry	1	910, AD & P. C. Ke ACH OF WORK!	with per 19472-1950	Carl alt	- /	190.72	19572	75624
yke		grand reading and and	2574 Carb Vin	with related and	To fire dimen R	195.72	196.53	25625
6.08-244.68	<b>+</b>	man grey course into	Locasi Contract mini .	Animak Chi, Dk chi	1-3 4 with dhe chi	Ť		
angodiorite	+	shall nofic xenolotic	193.22-193 + Chi-P.	R ron		198-00	199+6	75626

KAMLOOPS GEOLOGICAL SERVICES LTD.

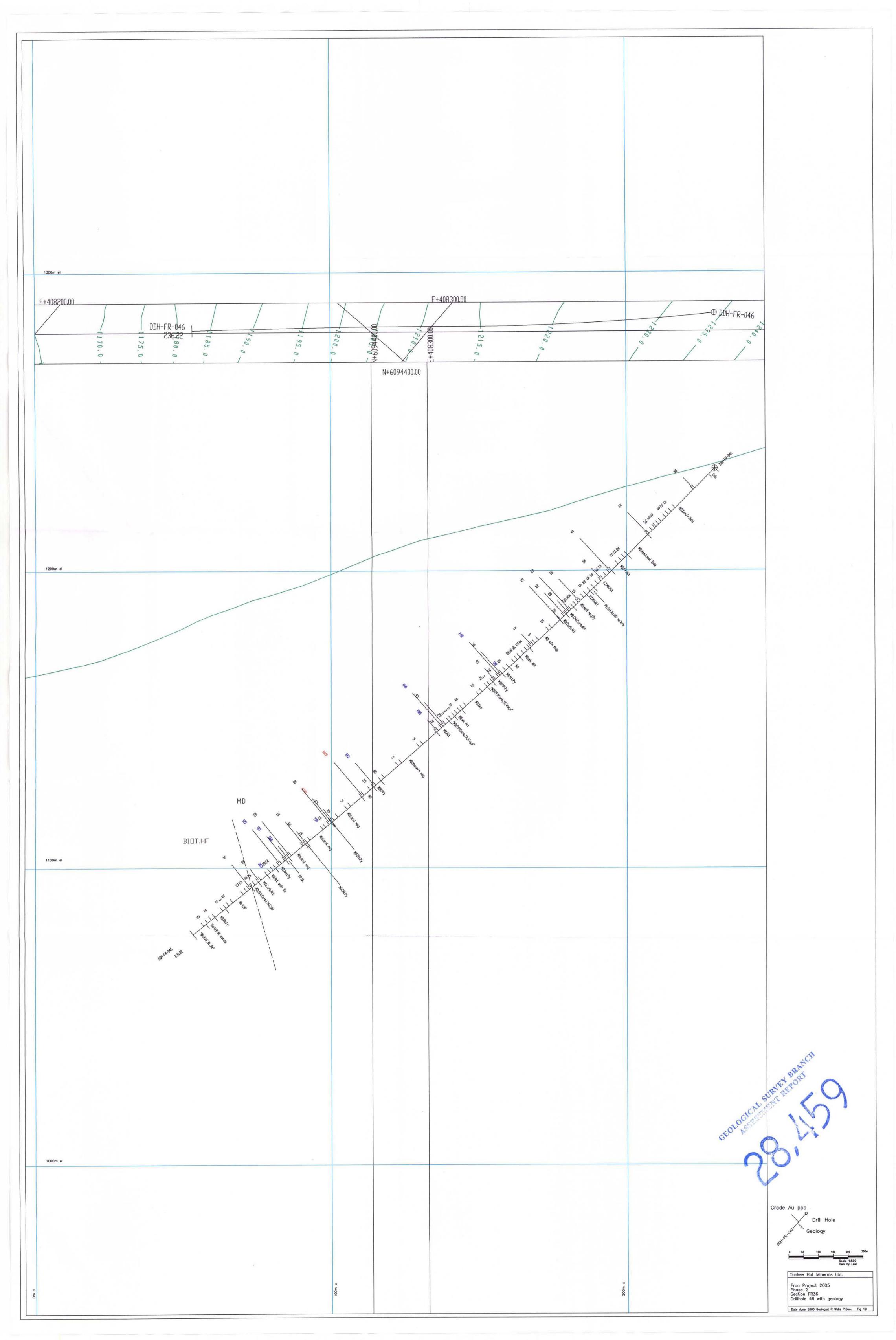
.

LOGGED BY R. ... Wells

DATE: 25 August 2005

e,

#### FRAN PROJECT 2005


#### YANKEE HAT MINERALS LTD

DH NO. FR-046		<u></u>	<u> </u>			PAG	GE NO. 6
···· <b>_</b> ,	LITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
	GL SUB UNITS				FROM	то	NUMBER
00.48-210.83	1. 200.48-204.14 Altered mo with	Fault By with	WE permasine corb	Ir fine droven Ry	200.48	201.68	75627-
Necessaria rite	fy br Lond Loli68-202.8 representing	alt have with ultilun	RX 2000 has she		201-68		- 75428-
litered. Chi. cat.	20414-207.92 carbonated and	10-60 CA. 200-48-200 B	G41.			20414	- 25629-
	11: gray speckled MD. Fairly vijorm	NUMERIS ARMON	Permasive in to up.	sporce to accent by			
Cath	1, small partially ossimilated resolit		corbonate.		701.97	207.93	751.30
Carb Alt	120793-210.87 Alteration Cons	to Icm		-T.1-2" line lacal	20793		75131
-		A. Idea and all	Patri annulla			210.83	75632
2:= 1	- over citing first and and pression	Care Vitybords Local		Mg. Py mainly in Vity was	210 83		75632
	5- Some redimention inclusione	A spid bards. low ange				, ,	
10.83-222.23 Bisfil	X 210.93-222.23	NUMEROUS Carb T	possible biot	TI-3% Py vit		213-00	75634
ornfels with bleached	A general description Patricy	dire silica lacat	widespread But		24.500	214.50	75635
res. Fine ground	1 bistite decreasing downwords_	Chi mica vite same	decreasing down-				
U	" America since selles and assoc	tou cryse fractures		dis an Py with chi			
	H 6 leathing way regreter	··	bleaching losal				
	"~	<u> </u>	petchy card alt				
2.20	¥	·		· - · · · · · · · · · · · · · · · ·	2/9 00	220.70	7.5636
	/il				220.70	2.2.2.00	- 76637
22.23-226-82	1 222-23-226.32 stragly frontries	1 Goken richtly	Paklay we pervau	Tr v-fine dissem	27200	273.40	75638
2. 13 . diorite with fine	4) and was ground and with fine	coll recovery las	certs, vit fractures	-A		·	
1. Hu meat, below	A Plag Hai parphy phose below	angle carb, chi freit	. corto				····· - · · · · ·
1-HH porph. below							
yke. Strongly fractured	226.32-230.56 Patchy 6 sura	awaran fine cars	Paking bourn fg	TI fine disen	226-82	2.2.8-32	75639
26.82-286.22	the fine ground the with blooked	-sil manules strang	blatte. VIt related	Py			
Sighte HF with F	1. 2 zones @ 229.50-229.98 shore.	foult 229.50 low	cart sil.		229 93	271.63	75640
cult zone 250	3 putte last coster argellite at an	fangle CA					
	1, 230.56-236.22 Altered patchy	sinch se-alt	strangest all in	Tr. fine dissen			
		30 . Fabrics 20 XC		Py			
] ہے	Is ss amoc with foult gover	Common Commotion		<u> </u>			
. r	11 Main chloribi FZ 233.20-23366		decreesig down				
	-136-22 EON BY alove y halow	rotation	hale with related				
T			corb chi	•	1		

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R.c. Wells

DATE 25 August 2005



**DDH: FR-047** 

· • ·•

ļ

Construction of the state of the second

**,** ...

1.1.1

i

R. C. Wells P.Geo, Kamloops Geological Services Ltd.

Hole ID:	DDH.FR-047
Project:	FRAN
Property:	FRAN
Claim:	
Easting:	10408144E
Northing:	6094783N
Elevation:	1247m
Grid:	8144E/4783N
Length (m):	99.67
Dip:	-45
Azimuth (grid):	216
Started:	24/08/05
Finished:	26/08/05
Hole Status:	Finished
Material left in hole:	None
Comments:	Hit Qtz-Sulfide vein
Core Size:	NQ
Logged By:	M.McInnes
Purpose:	Test below Haslinger Trench B

÷

.

.

A STATE AND A STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE O

____

.

HOLE ID.	Depth (m)	Dip	Azimuth (grid)
DDH.FR-047	0	-45	216
DDH.FR-047	81	-42.6	217.3

.

!

.

#### ODH FR-047 Geology

Hole ID	From	To	Unit Code	From	To	Sub Unit	Veins, Vits	Atteration	<u>* Py_</u>	% Po	Сру %
DDH FR-047	0	3.05		0	3.05	Ovp/Till					L
DDH FR-047	3.05	23.33	MD.Xen.Fr	3.05	14.42	MD.Xen.Fr.Oxid	Local Carb, Otz Vits	Fr. Oxid	Tr	<u> </u>	
DDH.FR-047				14.42	23 33	MD.Xen.Bl,Carb	Fr local Oxid Carb, Qtz, Py Vits	Fr.patchy Oxid.BI/Carb	Tr to 2		
DDH FR-047	23 33	38.61	SS.HF.	23.33	38 61	\$S.HF.	Local Carb(vugs), Otz, Chi Vits	Patchy wk/s Carb local Biot	Trto5		
DDH.FR-047	38 61	43.76	MD.Local BI	38.61	43.76	MD Locel BI	Carb Vits, local Otz vn, PyVits	Local Bl/Carb	1 to 5		
DDH FR-047	43.76	64	SS.HF.	43.76	64	SS.HF.Py.Po	Carb minor Chi Vits Local Py Po VnsMts	Local BI/Carb.Patchy Biot	Tr to 4	Tr to 2	
DDH FR-047	84	65.95	MD.Xen	64	65.95	MD.Xen.Py.Po	Carb,Chi,Po,Py Vits	Petchy Bl/Carb	Tr to 2	Tr to 2	
DDH_FR-047	65.95	69.19	Biot HF.	85,95	69,19	Biot.HF.	Local Chil Carb Vits Py Po Vits	Strong Biot Local Chi	Tr to 2	Tr to 2	
DOH FR-047	69.19	75 6	MD.Xen	69,19	75.6	MD.Xen	Local Chi,Carb Vits,Py,Po Vits	Patchy BVCarb	Tr to 2	Tr to 2	
			Biot HF BI	75.6	77.6	Biot HF. BI. Py. Po.	Carb, Chi Vits, Po, Py Vits	Biot Local Bl/Carb	Tr to 20	Tr to 3	
DDH FR-047	75.6	77.6	Suinde Zone, HF/MD contact	77.6	79.2	Sulfide Zone Otz Vn Bx Py Po Cpy Sph.	Bx Qtz Vn Chi Carb Py Po Sph Cpy Vits/vns	Chi,Carb Qtz	Tr to 50	Tr to 20	Tr to 15
DDH FR-047	77.6	82.6	SUTICE ZONE. HE MU CONDICT	79.2	60.64	HF.Sil,Carb Alt/Br.Py	Carb Py Vits	Sil Carb	1 to 5	Tr	
DDH FR-047	<b></b>	· · · —		80.64	82.8	HE.MD.Py	Carb Py Vits	Local BI	Tr to 15		
DDH.FR-047					91.5	MD.Xen, local Bl	Carb.Chi,Py	Local BI	Trite 1	Tr	
DDH.FR-047	82.5	99.67	MD.Xen	82.6		MD.Alt Py	Axin at contacts, Py Carb Vits	Epid patches	Tr to15	· · · · · · · · ·	
DDH FR-047	l		·	91.5	92		Carb,Chi,Py	Local BI	Tr to 1	Tr.	
DDH FR-047				92	99 67	MD.Xen.local Bi	Caro,Chi,Py		1.107	<u>⊢</u>	
DDH FR-047		99.67			99.67	EOH.					

-

.

C ... # ...

· .

,

.

. _

.

÷

1

12

#### ODH.FR-047 Assay

- ---

THE PART OF A DEPARTMENT

a state tradicio in el Claude

70.00

1.5

ł

HOLE ID	From	To	Sample No	Length	Au g/t metallic	Au g/t	Au ppb	Ag g/t	Ag ppm	Cu %	Cuppm	Za 🖌	Zn ppm
DOH FR-47	3.78	5.78	75651	2.00			25		<0.2		36	1	32
DDH.FR-47	5.78	7.13	75652	1.35			30		<0.2		24		28
DDH.FR-47	8,90	10.70	75653	1.60			25		<0.2		29		30
DDH.FR-47	10.70	12.20	75654	1.50			15		<0.2		33		33
DDH.FR-47	12.20	13.70	75655	1.50			10		<0.2		33	Ī	28
DDH FR-47	13.70	15.20	75656	1,50			65		<0.2		36		28
DOH.FR-47	15.20	17.00	75657	1.60		<u> </u>	30		<0.2		26		34
DDH.FR-47	17.00	18.50	75658	1.50			10		<0.2		28		30
DDH.FR-47	21.50	23.00	75659	1.50			20		<0.2	-	18		41
DDH.FR-47		24.00	75660	1.00			65		0.7		55		34
DDH.FR-47	24.00	25.50	75661	1.50			45		0.4		97		36
DDH FR-47	25.50	27.45	75662	<u>1.95</u>					0.3		51	Í	35 33
ODH FR-47	27.45	28,73	75663	1.28			70		0.6		48		33
DDH.FR-47	28.73	29.74	75664	1.01			30		0.6		26		41
DDH FR-47	29.74	31.24	75665	1.50			25		0.3	-	67		37
DDH.FR-47	31.24	32.24	75666	1,00			15		0.2		69		36
DDH FR-47	32.24	33.70	75667	1.46		[	30		0.3		130		36
DDH.FR-47	35.10	36.60	75668	1.50			220		0.6		122		160
ODH.FR-47	36.60	37.60	75669	1.00			10		0.2		117		34
DDH.FR-47	37.60	38.60	75670	1.00			15		0.5		103		55
DDH FR-47	38.60	40.00	75671	1.40		1	30		0.2		100		49
DDH.FR-47	40.00	41.50	75672	1.50		1	30		0.3		87		54
DDH.FR-47	42.20	44.00	75673	1.60		r	10		0.2		223		43
DDH.FR-47	44.00	45.50	75674	1.50			15		<0.2		97		42
DDH.FR-47	47.45	48.45	75675	1.00			50	· · · · ·	0.2		213		40
DDH.FR-47	48.45	49.75	75676	1.30		1	15		0.2		250		36
DDH.FR-47	49.75	50.80	75677	1.05			5		<0.2	· · •	111		41
DDH FR-47	51.14	52.64	75678	1.50	· · · ·	† ·	10	-	<0.2		94		39
DDH.FR-47	52.64	54.00	75679	1.36			5		<0.2		72		43
DDH.FR-47	55.60	57.10	75680	1.50		<del> </del>	5	<u> </u>	<0.2		71		28
DDH.FR-47	57.10	58.60	75681	1.50		·			<0.2		65		29
ODH FR-47	59.50	61.00	75682	1.50		i	25		<0.2		91		53
DDH FR-47	61.00	62.50	75683	1.50		∲	10	····	<0.2		136		44
DDH.FR-47	62.50	64.00	75684	1.50		ŕ	10		<0.2		100		42
ODH FR-47	64.00	65.00	75685	1.00	i		5		<0.2		82		29
DDH FR-47	65.00	66.00	75686	1.00		ŧ	15	· · · · · · · · · · ·	<0.2		147		28
DDH.FR-47	66.00	67.50	75687	1.50			15		<0.2		180		37
DDH.FR-47	67.50	69.00	75688	1.50			5		<0.2		89		
DDH.FR-47	69.00	70.00	75689	1.00		+	10		<0.2		- 55		30 33
ODH.FR-47	70.00	71.50	75690	1.50		ł	20	·	<0.2	<b></b>	61		43
DDH FR-47	71.50	72.50	75691	1.00	·	Į			<0,2	·			
ODH.FR-47	72.50	73.50	75692	1.00			10		· · · · ·		101		31
DDH.FR-47	73.50	74.50	75693	1.00		÷			<0.2		102		29
DDH.FR-47	74.50						5		<0.2		149		35
DDH.FR-47	75.60	75.60	75694	1.10		ł <b></b>	5		<0.2		125		36
DDH.FR-47	/ 5,60	76.60	75695	1.00			10		<0.2		263		43
DOH FR-47	78 00	Std. C	75696	1.00		8.37	>1000	L	18.5	L	6		32
	76.60	77.60	75697	1.00		F	540		3.0		403		322
DDH.FR-47	77.60	78.10	75698	0.50	55.3	54.60	>1000	83.9		1.67	>10000	2.57	
DDH.FR-47 DDH.FR-47	70.70	Dupl.	75699		52.7	52.50	>1000	75.1		1.55	>10000	2.54	
	78.10	78.50	75700	0.50	2.63	2.80	>1000		5.6		1144	·	6581
ODH FR-47	70.00	Std. A	75701			<u> </u>	810	L	<0.2	<u> </u>	3	<u> </u>	3
DDH FR-47	78,60	79.15	75702	0.55	2.33	2.65	>1000	· ··	7.3		1912		917
DDH FR-47	79.15	80.35	75703	1.20		↓	630	<b>_</b>	0.9	ļ	199		176
DDH FR-47	80.35	81.60	75704	1.25	L	l	505	L	1.0	ļ	220	<u> </u>	97
DDH.FR-47	81.60	82.60	75705	1.00	<u> </u>	L			0.2	]	206		107
DDH.FR-47	82.60	84.00	75706	1.40	L	<b> </b>	15		<0.2		118		17
DOH.FR-47	84.00	85.50	75707	1.50			10		<0.2		92		19
DOH.FR-47	85.50	87.00	75708	1.50		h	15		<0.2		141		14
DDH.FR-47	87.00	88.50	75709	1.50		L	10		<0.2		138		15 13
DDH.FR-47	88.50	90.00	75710	1.50	L		10		<0.2		111		
DDH.FR-47	90.00	91.50	75711	1.50			10		<0.2		130		18
DDH.FR-47	91.50	92.50	75712	1.00			10		<0.2		89		19
DOH.FR-47	92.50	93,50	75713	1.00			10		<0.2		146		13
DOH FR-47	93.50	95.00	75714	1.50			10		<0.2		131		15
DOH.FR-47	95.00	96.50	75715	1.50			10		<0.2		160		14
DDH.FR-47	96.50	98.00	75716	1.50		<u> </u>	15		<0.2		223	1	17
DDH.FR-47	98.00	99.67	75717	1.67			5		<0.2		186		13

1 of 1

:

# CERTIFICATE OF ASSAY AK 2005-1058b

. ... .

- 64

· 26

YANKEE HAT MINERALS LIMITED 4460 Atlee Avenue Burnaby, BC V5G 3R6

#### **ATTENTION: Donald Gee**

No. of samples received:207 Sample type: Core Project #:FRAN Shipment #: not indicated Samples submitted by: Ron Wells

		Metallic A:	say	
		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
138	75698	55.3	1.613	
139	75699	<b>52.7</b>	1.537	
140	75700	2.63	0.077	
142	75702	2.33	0.068	
QC DATA	<u></u>			
Resplit: 142	75702	2.76	0.080	
Standard	:			
SH13		1.29	0.038	

JJ/ga XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

23-Sep-05

# CERTIFICATE OF ASSAY AK 2005-1058b

#### YANKEE HAT MINERALS LIMITED 4460 Atlee Avenue 23-Sep-05 Burnaby, BC V5G 3R6 **ATTENTION: Donald Gee** No. of samples received:207 Sample type: Core Project #:FRAN Shipment #: not indicated Samples submitted by: Ron Wells Cu Zn Au Au Ag Ag ET #. Tag # (oz/t) (g/t) (oz/t) (%) (%) (g/t) 136 75696 8.37 0.244 83.9 2.447 2.57 1.67 138 75698 54.6 1.592 75699 52.5 1.531 75.1 2.190 2.54 1.55 139 75700 140 2.80 0.082 75702 2.65 0.077 142 QC DATA: Standard: SH13 1.29 0.038 1.706 0.84 0.62 Pb106 58.5

JJ/bw XLS/05

Į

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer 22-Sep-05

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 2005-10585

#### YANKEE HAT MINERALS LIMITED 4460 Atlee Avenue Burnaby, BC V5G 3R6

· ____

ł

1

34

#### **ATTENTION: Donald Gee**

No. of samples received: 204 Sample type: Core Project #: FRAN Shipment #:not indicated Samples submitted by: Ron Wells

Et #	. Tag 🕊	Au(ppb)	Ag	Al %	As	Ba	81	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sŗ	TI %	υ	v	W	Y	Źn
91	75651	25	<0.2	1.39	<5	60	<5	1.38	<1	8	68	36	2.84	<10	0.42	429	<1	0.07	5	850	14	<5	<20	54	0.07	<10	50	<10	7	32
92	75652	30	<0.2	1.63	<5	60	<5	1.68	<1	6	69	24	2.74	<10	0.43	424	<1	0.06	6	660	18	<5	<20	62	0.06	<10	49	<10	6	28
93	75653	25	<0.2	1.25	<5	60	<5	1.07	<1	9	53	29	3.01	<10	0.47	363	<1	0.05	6	650	16	<5	<20	- 36	0.06	<10	50	<10	5	30
94	75654	15	<0.2	1.19	<5	50	<5	1.24	<1	9	52	33	2.80	<10	0.41	392	<1	0.05	6	860	18	<5	<20	- 24	0.05	<10	45	<10	6	33
95	75655	10	<0.2	1.37	<5	65	<5	1.68	<1	8	63	33	2.64	<10	0.40	405	<1	0.06	4	840	16	<5	<20	43	0.05	<10	41	<10	4	28
96	75656	65	<0.2	1.25	65	80	<5	2.31	<1	8	54	38	2.67	<10	0.39	610	<1	0.06	4	850	12	<5	<20	68	0.05	<10	40	<10	7	28
97	75657	30	<0.2	1.43	<5	80	<5	2.02	<1	9	52	26	3.24	<10	0.55	565	<1		6	850	16	<5	<20	44	0.05	<10	- +	<10	5	34
98	75658	10	<0.2	1.21	<5	90	<5	1.77	<1	ă	64	26	2.73	<10	0.44	499	<1	0.06	4	900	20	-	<20	39		<10		<10	ă	30
99	75659	20	<0.2	0.83	<5	105	<5	3.87	<1	7	26	18	3.24	<10	0.32	775	2	0.05	3	890	12	-	<20	167		• =		<10	9	41
	75660	65	0.7	0.27	95	40	<5	>10	<1	12	33	55		<10		1052	-	0.02	37	650	2	30			<0.01			<10	13	34
101	75661	45	0.4	0.49	25	55	<5	3.69	<1	11	35	97	3.47	<10	0.28	548	7	0.05	5	910	10	<5	<20	137	<0.01	<10	22	<10	- 4	36
102	75662	30	0.3	0.54	50	40	<5	4.44	<1	10	35	51	3.28	<10	0.41	623	- 4	0.05	5	860	12	<5	<20	238	<0.01	<10	- 36	<10	8	35
103	75663	70	0.6	0.53	10	45	<5	3.47	<1	10	38	48	3.22	<10	0.32	525	3	0.05	6	840	10	<5	<20	198	<0.01	<10	31	<10	7	33
104	75664	30	0.6	0.72	20	45	<5	7.14	<1	10	72	26	3.23	<10	0.56	1130	- 54	0.03	25	550	14	<5	<20	264	<0.01	<10	57	<10	10	41
105	75665	25	0.3	1.15	10	125	<5	2.20	<1	10	95	67	3.48	<10	0.64	525	3	0.05	23	660	18	<5	<20	95	0.03	<10	53	<10	5	37
											~~	~			~			A 07			40		-00		A A7				•	~~
	75666	15	0.2		-		<5	1.80	<1	8	63	69	2.74	<10	0.42	434	<1	+	4	910	18	-	<20	148	0.07			<10	8	36
	75667	30	0.3	1.69	40	135	<5	2.55	<1	12	51	130	3.45	<10	0.50	418	8	0.05	4	890	26	-	<20	287		<10				36
	75668	220	0.6	1.26	25	110	<5	1.50	<1	10	94	122	2.67	<10	0.44	397	<1	0.06	19	760	22	-	<20	68	0.08			<10	11	160
	75669	10	0.2		15	120	<5	2.04	<1	16	65	117	3.87	<10	0.91	038	<1	0.06	53	520	22	-	<20	86				<10	15	34
110	75670	15	0.5	1.03	10	70	<5	3.76	<1	14	72	103	3.47	<10	0.61	994	7	0.03	73	420	14	<5	<20	67	<0.01	<10	38	<10	12	55
111	75671	30	0.2	1.93	<5	190	<5	3.33	<1	18	17	100	4.46	<10	0.87	1066	<1	0.05	11	2100	22	<5	<20	280	0.11	<10	111	<10	12	49
112	75672	30	0.3	1.59	15	90	<5	4.80	<1	18	51	87	4.86	<10	1.14	1094	9	0.04	44	1200	18	<5	<20	241	0.06	<10	110	<10	11	54
	75673	10	0.2	2.00	<5	70	<5	2.80	<1	27	55	223	5.92	<10	1.12	953	2	0.03	33	1540	26	<5	<20	42	0.11	<10	137	<10	11	43
-	75674	15	<0.2	1.19	20	55	<5	1.67	<1	22	126	97	3.62	<10	0.76	646	<1	0.03	75	460	18	<5	<20	47	0.11	<10	91	<10	9	42
	75675	50	0.2	1.10	<5	80	<5	2.70	<1	31	94	213	6.59	<10	0.67	1455	2	0.04	43	1130	14	<5	<20	43	0.11	<10	78	<10	5	40
	• • •		5.2		-		-	. –																						

22-Sep-05

ECO TECH LABORATORY LTD.

#### ICP CERTIFICATE OF ANALYSIS AK 2005-1058b

YANKEE HAT MINERALS LIMITED

.

.....

i

5

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>Zn</u>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	
120       75680       5       <0.2       0.85       <5       170       <5       1.14       <1       10       91       71       2.32       <10       0.39       380       <1       0.07       29       1530       14       <5       <20       32       0.12       <10       58       <10       17         121       75681       5       <0.2	39	
121       75681       5       <0.2       0.90       10       110       <5       1.53       <1       11       82       65       2.48       <10       0.40       648       <1       0.05       38       1190       16       <5       <20       49       0.10       <10       63       <10       11         122       75682       25       <0.2	<1	43
122       75682       25       <0.2	28	
122       75682       25       <0.2		
123       75683       10       <0.2       1.17       5       170       <5       0.88       <1       19       136       4.13       <10       0.72       524       10       0.06       61       580       22       <5       <20       70       0.18       <10       102       <10       17         124       75684       10       <0.2	29	
124 75684 10 <0.2 1.28 20 105 <5 0.91 <1 18 166 100 3.46 <10 0.75 528 <1 0.07 86 510 24 <5 <20 22 0.15 <10 91 <10 17	53	
	44	
125 75685 5 <0.2 1.17 5 80 <5 1.50 <1 11 75 82 2.42 <10 0.32 309 28 0.05 9 900 24 <5 <20 28 0.07 <10 36 <10 9	42	
	29	
126 75686 15 <0.2 1.12 <5 60 <5 1.52 <1 12 75 147 2.99 <10 0.26 291 52 0.06 13 950 24 <5 <20 39 0.06 <10 32 <10 7	28	
127 75687 15 <0.2 1.23 5 110 <5 1.10 <1 18 141 180 5.13 <10 0.88 545 35 0.04 112 710 22 <5 <20 38 0.16 <10 101 <10 10	37	
128 75688 5 <0.2 1.01 5 125 <5 0.74 <1 15 163 89 3.52 <10 0.75 381 5 0.05 74 730 18 <5 <20 32 0.16 <10 89 <10 15	30	
129 75689 10 <0.2 1.06 5 70 <5 1.46 <1 10 75 55 2.45 <10 0.36 415 2 0.06 11 930 22 <5 <20 27 0.08 <10 49 <10 9	33	
130 75690 20 <0.2 1.66 15 70 <5 2.43 <1 12 65 61 3.11 <10 0.47 606 3 0.05 7 1020 32 <5 <20 53 0.06 <10 46 <10 7	43	
131 75691 10 <0.2 1.25 10 60 <5 1.93 <1 12 69 101 2.81 <10 0.36 405 5 0.06 7 980 26 <5 <20 30 0.06 <10 39 <10 7	31	
132 75692 5 <0.2 0.98 5 75 <5 1.64 <1 11 65 102 2.92 <10 0.33 368 6 0.05 5 990 22 <5 <20 40 0.05 <10 37 <10 5	29	
133 75693 5 <0.2 1.08 15 60 <5 1.78 <1 15 69 149 3.41 <10 0.38 362 14 0.05 4 1040 28 <5 <20 37 0.05 <10 44 <10 9	35	
134 75694 5 <0.2 1.51 10 45 <5 2.89 <1 14 66 125 3.52 <10 0.51 564 6 0.04 10 960 30 <5 <20 25 0.06 <10 49 <10 8	36	
135 75895 10 <0.2 1.19 <5 70 <5 1.91 <1 25 153 263 5.29 <10 0.85 713 21 0.04 69 870 26 <5 <20 32 0.12 <10 97 <10 19	43	
	20	
136 75696 >1000 18.5 0.15 <5 40 5 0.12 <1 3 2 6 4.15 <10 <0.01 101 4 0.07 5 400 196 <5 <20 5 <0.01 <10 2 <10 <1	32	
137 75697 540 3.0 0.75 565 80 <5 2.84 <1 30 76 403 4.14 <10 0.33 534 21 0.01 39 800 36 15 <20 100 <0.01 <10 35 <10 17	322	
138 75698 >1000 >30 0.10 >10000 75 <5 1.16 62 221 75 >10000 >10 <10 <0.01 292 28 <0.01 20 <10 6966 <5 <20 45 0.01 <10 4 <10 <1 >10		
139 75699 >1000 >30 0.12 9695 75 <5 1.16 62 224 132 >10000 >10 <10 <0.01 288 25 <0.01 20 <10 6370 <5 <20 41 0.01 <10 5 <10 <1 >10		
140 75700 >1000 5.6 0.36 2760 60 <5 2.64 5 29 73 1144 6.13 <10 0.08 344 45 <0.01 8 900 150 <5 <20 98 <0.01 <10 8 10 3	581	
141 75701 810 <0.2 0.16 <5 15 <5 0.14 <1 <1 1 3 0.40 <10 0.06 27 <1 0.10 1 360 4 <5 <20 4 <0.01 <10 2 <10 2	3	
142 75702 >1000 7.3 0.20 3090 40 <5 0.99 <1 17 101 1912 5.15 <10 0.03 142 58 <0.01 5 110 32 <5 <20 74 <0.01 <10 3 <10 <1	917	
143 75703 630 0.9 0.47 4090 30 <5 0.83 <1 15 56 199 3.33 <10 0.22 139 27 <0.01 5 430 14 <5 <20 14 <0.01 <10 5 <10 2	176	
144 75704 505 1.0 1.15 610 55 <5 2.17 <1 16 63 220 4.60 <10 0.86 498 13 0.02 44 880 42 <5 <20 48 0.02 <10 68 <10 12	97	
145 75705 30 0.2 1.73 25 70 <5 2.94 <1 16 33 206 4.24 <10 0.85 852 12 0.05 13 1440 50 <5 <20 87 0.07 <10 99 <10 15	107	
146 75708 15 <0.2 1.08 10 75 <5 1.63 <1 8 48 116 2.04 <10 0.32 293 3 0.06 4 740 12 <5 <20 145 0.04 <10 34 <10 9		
147 75707 10 <0.2 1.44 5 70 <5 2.03 <1 8 55 92 2.32 <10 0.44 370 1 0.05 6 720 16 <5 <20 160 0.05 <10 39 <10 9	17	
148 75708 15 <0.2 1.17 5 80 <5 1.81 <1 11 42 141 2.33 <10 0.34 294 1 0.05 5 910 12 <5 <20 141 0.05 <10 43 <10 10	17 19	
149 75709 10 <0.2 1.34 15 55 <5 1.77 <1 11 54 138 2.55 <10 0.42 313 5 0.05 5 860 14 <5 <20 100 0.05 <10 45 <10 10	17 19 14	
150 75710 10 <0.2 1.06 10 35 <5 1.31 <1 9 54 111 1.91 <10 0.32 223 5 0.06 4 760 12 <5 <20 34 0.05 <10 33 <10 10	17 19	

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2005-1058b

YANKEE HAT MINERALS LIMITED

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	81	Ca %	Cd	Co	Cr	Cu	Fe %	<u>La</u>	Mg %	Mn	Мо	Na %	Ni	P	Pb	Şþ	Sn	Sr	<u>Ti %</u>	U	<u>v</u>	w	Y	Zn
151 7	75711	10	<0.2	1.11	10	55	<5	1.49	<1	11	55	130	2.53	<10	0.44	324	3	0.05	- 4	760	12	<5	<20	46	0.05	<10	45	<10	9	18
152 7	75712	10	<0.2	2.15	20	40	<5	3.29	<1	14	32	89	2.85	<10	0.67	344	<1	0.04	6	1020	18	<5	<20	142	0.06	<10	80	<10	10	19
153 7	75713	10	<0.2	1.19	5	50	<5	1.39	<1	11	56	146	2.44	<10	0.37	253	5	0.06	3	770	12	<5	<20	98	0.06	<10	38	<10	9	13
154 7	75714	10	<0.2	1.44	5	35	<5	1.60	<1	11	47	131	2.56	<10	0.43	293	6	0.05	3	730	16	<5	<20	59	0.06	<10	41	<10	8	15
155 7	75715	10	<0.2	1.30	5	40	<5	1.35	<1	12	52	160	2.78	<10	0.42	243	9	0.05	7	740	16	<5	<20	84	0.05	<10	41	<10	9	14
156 7	75716	15	<0.2	1.31	25	45	<5	1.79	<1	13	40	223	2.85	<10	0.49	277	6	0.06	5	860	14	<5	<20	107	0.05	<10	44	<10	12	17
	5717	5	<0.2	0.94	<5	50	<5	1.02	<1	12	57	186	2.34	<10	0.24	159	23	0.06	6	800	10	<5	<20	112	0.05	<10	40	<10	9	13
<u>QC/DA]</u> Resplit:																														
106 7		15	0.2	1.15	15	130	<5	1.71	<1	9	73	63	2.64	<10	0.37	414	<1	0.06	6	1010	16	<5	<20	113	0.06	<10	41	<10	8	42
142 7	75702	>1000	6.6	0.19	2585	45	<5	1.04	<1	17	103	1828	5.16	<10	0.03	145	1	<0.01	5	130	32	<5	<20	77	<0.01	<10	3	<10	<1	1014
Repeat:	:																													
106 7	75666	15	<0.2	1.10	10	130	<5	1.79	<1	8	56	62	2.57	<10	0.37	401	<1	0.06	5	900	20	<5	<20	122	0.06	<10	39	<10	7	37
115 7	75675	35	0.2	1.09	10	75	<5	2.69	<1	30	84	212	6.37	<10	0.67	1295	3	0.04	44	1120	10	<5	<20	- 44	0.10		77	<10	3	39
124 7	75684	10	<0.2	1.21	25	100	<5	0.87	<1	19	167	95	3.51	<10	0.72	524	3	0.07	92	550	32	<5	<20	19	0.12	<t0< td=""><td>88</td><td>&lt;10</td><td>17</td><td>48</td></t0<>	88	<10	17	48
137 7	75697	550																											_	_
141 7			<0.2	0.15	<5	15	<5	0.13	<1	<1	1	2	0.39	<10	0.05	24	<1	0.09	1	360	- 4	<5	<20	3	<0.01	<10	1	<10	3	3
142 7		>1000															_		_			_								
150 7	75710	5	<0.2	1.13	10	40	<5	1.38	<1	10	51	121	2.01	<10	0.34	245	5	0.07	3	800	12	<5	<20	39	0.05	<10	35	<10	11	14
Stender OXF41 OXF41		815 810	4.5	4.90		400	æ	. 50	- 4	10	еń	86	4.06	<10	0.71	650	<1	0.02	30	800	22	<5	<20	55	0.09	<10	70	<10	10	75
GEO'05 GEO'05			1.5 1.5	1.36 1.42	60 60	160 155	<5 <5	1.59 1.27	<1 <1	19 19	60 56	86	4.00 3.56	<10	0.75	547	<1	0.02	28	610	20	<5	<20	53	0,11	<10	71	<10	8	76
02000				1,72	~~~	100		1.2.7			••		0.00			÷	•					-					- /		-	

JJ/bw dt/5138/1060/1058a XLS/05 FAX: 372-1012

.

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

.

-

ويتيع مناطعتكم

### FRAN PROJECT 2005

### YANKEE HAT MINERALS LTD

· · · ·

•

DDH NO. FR-047		· · · · · · · · · · · · · · · · · · ·				PA	GE NO. /
	LITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION	T	SAMP	LING
MAIN UNITS	GL SUB UNITS				FROM	TO	NUMBER
	i Raisly till lying on cubby bate			local Po			
Overburden and rubbly	Nace and Head in the Area		cuile on TOTA		9.70	5.78	76651
		1. A Surphill for the land	Single que TOCA	Py with an experiment	5.78	1	.75452
3.05-23.23	- 3.28-1442 Highly frashiled and	4.95-6.10 freehold	g.cv111 2-310 25-200		8.90	7.13 ·	75653
Monzodiorite	nn	frestury by Jem	<b></b>			12.20	
roriably processing				<u>├-</u> ··──	10.70	ſ	75454
*mall ×eneliths is	·		to:55 gtg. clay Axia?. Sen wide		12.20	12:70	75655
		······	11-87-14-10 gtz 11ah	··	13.20	15.20	75656
6-					15.20	17.00	- 75457
	<i>y</i>		14-23 carbalt loca	14.33 2cm \$x10 4812	17.00	18.50	-75658
				· · · · · · · · · · · · · · · · · · ·	21:50	33.00	75659
	14.42-15.21 frash MD	· ••• ••• · · · · · ·			23.05	3400	-75660
1	+ 15.21 - 19.52 Silicified - bleached	16-51-66-69 frequesta 43cm (xeabilitis)	15-21-17-00 g/2 alt	To disseminated by	24:00	25.50	75661-
	1	czen (xenbliths)	bleached vite 35-toca	1. ulto in mid	25.50	27.45	75462
	+ 19.52-23.33 Medium grained	stranges for church	5-6 Merfor with could	local 1.2. Y. P.	27.45	28.73	75663
2e_	+ MD. carball and proceed		Carbalt , ult yeard		29.73	29.74	75664
-	+		upto lom @ 19.957 22-		2974	31.24	75665
	r				31.24	32.24	75616
	The bark fine grained anythite INF		carbonated, chinate	1 . 4 157 diman	\$2.24	37.70	75667
3.33-28-13 HF. Arg	+ Carb, P.J. Chill bx	here bed to Trice		An local code, chi, R.	35.10	36.60	75668
23 83 - 28 92 Fine	+ 23.23-28-92 Mad grad - grey aphanite	fre stored 30-To'ch		VIA US-SOCA Ly upto		37.60	35469
groined Monzodionte	+ dyte		Corborate alt	1 */·	- 4 6 · 60		
aphanitic ground mass	+ +						
28.98-30.42 55.HF 3+	2292-30-42 Alternal sittatione, HF- K	clay going 29.40-247 6 the sore	Incal be activity 1	TC-1% distancialed	· ·		
Altered		₽@# <i>₹</i> <u>~</u> <u><u></u></u>		8 all all and			
20.42-36-19 MD	4 gray a phasiki grandenasi		30.42-34 40 /o cal	Py-Chi with 1-2 port			· · · · ·
aphaniti groundmass	/[+	· · · · · · · · · · · ·	suggy grz x/h	Tesse disamineter	·	<b>_</b>	
, -	<b>*</b>		low angles CA	<del>″y</del>			
	·				37.40	<u> </u>	_75470
36-19-28-61 55.HF		law acgle fractures		<b>y</b> · 1	32.60	40.00	7567+
36.19-38.61 55.HF MINOR Blot.HF ADROW Clyke	grained dyke 36. \$6-37.16 Any Witz Ex		his the QC VIts	1-5% lacatty	40:40	_41·So	- 75672-

KAMLOOPS GEOLOGICAL SERVICES LTD.

•

.

LOGGED BY M. Mc Innes

DATE August 26th 2005

# FRAN PROJECT 2005

.

### YANKEE HAT MINERALS LTD

.

· · · · · · · · · · · · · · · · · · ·		.ITHOLOGY	STRUCTURE			1		GE NO. 2
			SIRUCIURE	ALTERATION	MINERALIZATION		SAMPL	
MAIN UNITS	GL	SUB UNITS	·	10.000		FROM	то	NUMBER
18-61-42-76 Monzodian	ie i i i i i i i i i i i i i i i i i i	39-8-4-44 Lengy HF Mag	Frontune 45:00	Wygy 1/13 30-40 CA	Tr-2% Py	ļ	L	
ned.gr. bleached.		4240-42.25 Acg. S. Lans.	Variable, baken	Carb VILT. Mepive.	Tr - 5.4 P.	42.20	44.00	- 75673
- J	5. 5.2		WEAK alt	10cm pr 33:00 47 63	1-24, Py 6 4109-61-15	44.00	4550	75674
276-64.00 Sillshim	ستتكهد	Black SI/Aig HE lacetly strang	alteration to-1500	Cash plts 45-50'CA	Tr-12 By local ville			
Argillite - Horyels		Blatite Readominanty fine		local strong. Dank.	Tr-20/ disem P.	47.45	48.45	75675
	- 11	grained lacal blanched		bist, chi ame with	Incal vites	48.45		75676
	-17	44.81-45.00 Marrow MD agke . HF		P.				
	50 1/2		Strongly fractured	lacal bist and RI	TI Py an fractices	4975	54.80	75677
	12	47.50- Gyun Stranget HE Mar		with cost willy escie		\$1.14	<u> </u>	75678
	سيك	Competent with freehuses 40. 10 - ce	fractures 20.50 CA	alt bards 30-60 r.d		\$2.64		756.79
	8		-			\$5.60		75680
	11	55.75-57.10 fine sandstone / 55	Local portono 250	Weak buch Alt		\$7.10	51.60	756 8
	it :		with carb, cal	to cal bleaching		59.50	61.00	. 75(12
						61.00	62.50	75623
	1					62.50	64.00	75684
4	• 1//					64.00	15.00	75685
	14					6500	66.00	75686
				63.60-63.75 Aun Mad	63.30 Porty mash	46.00	67.50	75687
4.0 + - 65 AS Mongodi	سيكمنه	an an at the site of the second setter	Inchase Todica		21m 41.	6750	69.00	7.56 88
	····, ≁	Munzadiarite with gty rate ville		Black Bin Bloks	Po and of 3 + P. utt	69.00		75683
yke. Med.gt.		Cocal dark patrice with la			Po TI-206	70.00	78.00	75690
5-95-69-19		Horofels , Rist share lamisated	ancementer prenes.	strong bust 30-50 CA Local Chi contaise	67.07- 67.28 Py, 641	71.50		75691
Bistite Horofels	_//	and blooched 30-30 TA	410-60'CA	Po. Tr Carb Ving	Call local Py +10 - 68.90 Por 10 - 12 +117			75692
9-19-75-60	121	Medura ground MD Silica cich	Fractures 30-60 CA	20'CA, LACAR PO COSOL	+ dasa	72.50 73-50	73.50	
Monzodiotite	+/	lacal strong bleaching ground miss	40-15 CA	with the thoughout	To VIA + local durin	74.50	75.60	75694
med gr with small	1/5	alkered green-group		voriable any to to thick	in it che	75.60	76:60	75695
mapic xenoliths	14			· · · · · · · · · · · · · · · · · · ·		sta		75696
15.60-77.60 Biot.	1	the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		Bleathin . Riot . Ch1.	Tr Webs P. Dy ville	76.60	77.60	7 < 6 97
IF . Blenched .	-1/-	Holafols lacal blacking alk chikk		VIG CON MADYM	AJ-TT-SWE CASTINE		78-1-	756 98
7-60-82-60	4/	gret strong bist alt. 17:00-79420 Otg-sufficer Bx Local chil sufficer Ax		Carb alt HF LASICO	1/4 · 1/ · 14 · 1	Std A		75699
sufficie Zone - Bx.	11	19-20-31.60 Cherty 35. Catto bx Local BX HF.	Olz-55-Earb-Chi-	CATE VIN IS +2+CA	Py TC-25% Cacel Py VIIs.	3TG A_	f	75704
	<u></u>	Locat AX HE	/ <b>P</b> [#] 1	1	Local - g river	Dupli	7 <u>R-60</u>	75701

KAMLOOPS GEOLOGICAL SERVICES LTD.

.

.

<

LOGGED BY: M. M. Innes

Duplicate 75701 DATE: August 27,2005

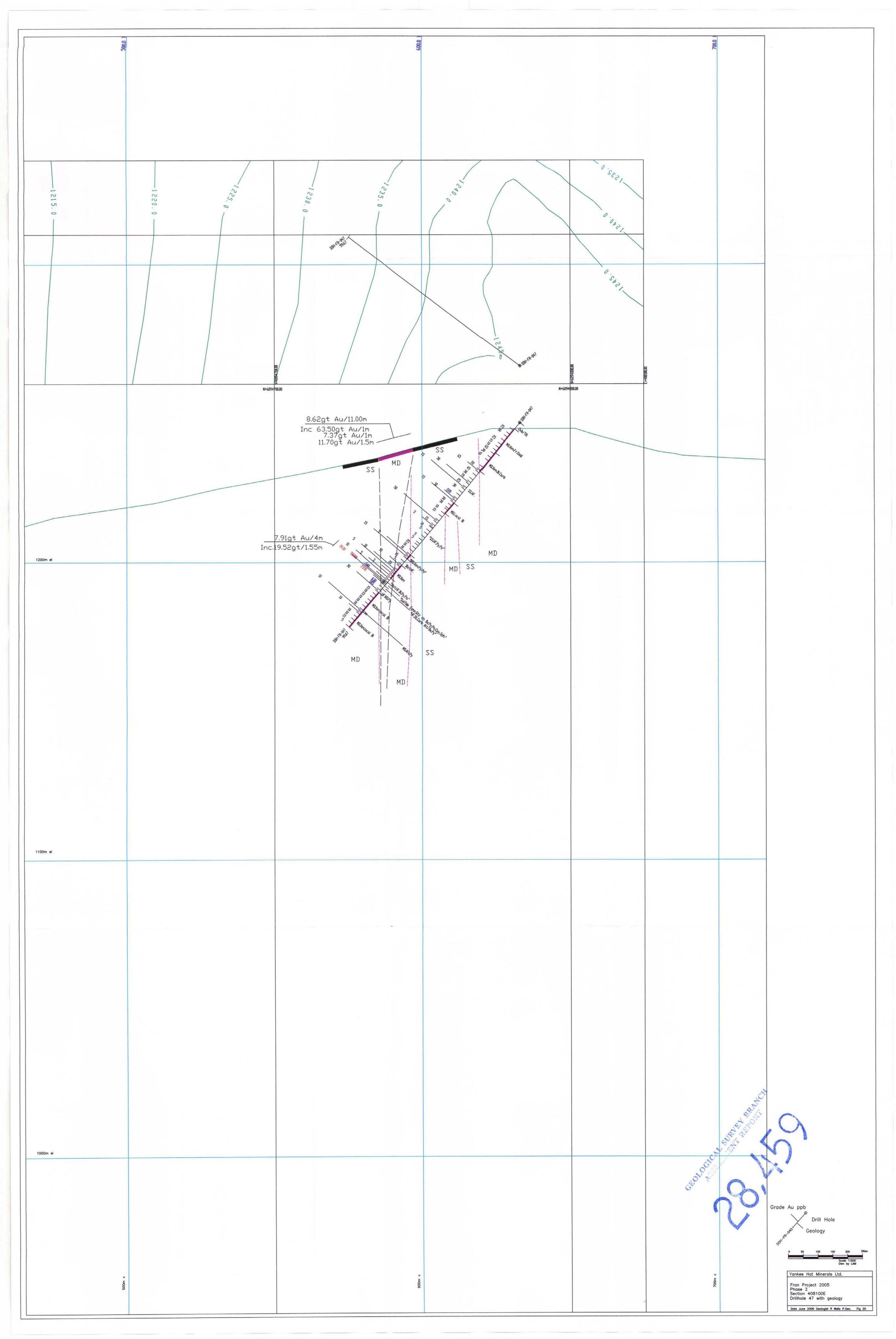
# FRAN PROJECT 2005

### YANKEE HAT MINERALS LTD

•

DH NO. FR-047	·		· • · · · · · · · · · · · · · · · · · ·					GE NO. 3
··	_	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMP	
MAIN UNITS	GL	SUB UNITS				FROM	TO	NUMBER
80	+_	BD-64 - T2-60 MIXED MD. HF By vice local maple RenoTife 8	fortures 60.7 ich	Carb with working	Te-152 P. vlh	78.60	79.15	75702
		Eleaction	· · · · · · · · · · · · · · · · · · ·	angles 15-80 CA	15-60CA	79.15	80:35	75703
2.60-99.67 6		ATD with local bleach goves -	Frankers 20.10CA	Patthe blacking .	Po vits upto	80:35	81.66	75204
honzodiorite. Medim	1	Store some fouthing with clay -		associated with Carl	4 per/a Tr-14.	81:60	82.60	75705
rained mapic rend. H	+	-gauge 62ca wide @ 85.25 - * -		local gly flooding .	disen P.	\$2.60	14.06	35706
csem subnorded	1 -	97.000		Cal ragins to vers		84.000	85.50	75.707
	+		· <b> </b>	60-70 CA		85.50	\$2.00	7 \$708
я».		91.50 9200 Green Anderite dyke	Green dy the beca	blebs of exist in	Dyke Tr. 154 Py		\$8.50	75709
6	F,	bound by overite alt	2 Som wide	Py epid sart ult		88:55	90.00	75710
	} .			Local Wassy 2tg xth		9000	91.50	76711
	+		<b>┥</b> ╍┉╍╍╴╌╴	15°CA.		9150	92.50	7522
	1.					9250	93-50	75713_
	1 · · ·					_ <u>93</u> .5e_	95-00	7 \$ 7/#
	1		·			95.00	9650	75715
	Ľ			<b>.</b>	······································	9650	98-00	75216
/0	1	19.67 m God	<b></b>	·		98:00	99.67	75717
			· · · · · · · · · · · · · · · · · · ·					·
			<u> </u>					
	F		<u> </u>	<b>↓</b> ↓				
	ŀ							·
				<u>॑</u>				
	ŀ		+ ··- ··· -·· ···	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·			· ·
	[	<u> </u>		<u> </u>				
		· · · · · · · · · · · · · · · · · · ·	<b>†</b>	┼──────┤	· · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·	<b> </b>	<u> </u>				· ·
		· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>		[		
	İ	·		┝────-		+		
	1		<b>∤</b>	<b>├aa.</b> }	·	•_	· •	

KAMLOOPS GEOLOGICAL SERVICES LTD.


•

.

LOGGED BY: M. Mclanes

DATE: August: 27,2006

÷



**DDH: FR-048** 

ţ

-

Hole ID: Project:	DDH.FR-048 FRAN
Property:	FRAN
Claim:	
Easting:	10409258E
Northing:	6093833N
Elevation:	1215m
Grid:	9258E/3833E
Length (m):	141.43
Dip:	-45
Azimuth (grid):	195
Started:	26/08/05
Finished:	28/08/05
Hole Status:	Finished
Material left in hole:	None
Comments:	Hit 2 sulfide vein zones
Core Size:	NQ
Logged By:	R.Wells
Purpose:	Test Lower Showing Zone

ķ

. I I

# DDH.FR-48 Surveys

The second second second second second second second second second second second second second second second se

HOLE ID.	Depth (m)	Dip	Azimuth (grid)
DDH.FR-048	0	-45	195
DDH.FR-048	75	-42.3	194.4
DDH.FR-048	129.23	-41.2	199,8

i

### DDH.FR-48 Geology

Hole ID	From	To	Unit Code	From	To	Sub Unit	Veins, Vits	Atteration	% Ру	% Po	Сру %
DDH.FR-048	0	3.05	Övb	0	3.05	Cv/b					
DDH.FR-048	3.05	10.2	SS HF Fr Oxid Cy	3.05	10.2	SS HF Fr Oxid, Cy	Fr.Local Bx	Oxid.Cy			
DDH.FR-048	10.2	20.15	MD.Ok	10.2	20.15	MD.Dk.	Local Qtz Vit	Wk pervasive Carb	17		
DDH FR-048	20.15	27.1	SS.HF	20.15	27.1	HF.Fr.Oxid	Lam Abund Carb Vits.	Cherty/Sil dark Chi bands	Tr		
DDH.FR-048	27.1	33.42	FZ.SS.HF	27.1	33.42	FZ SS HF	Strong Fr Cy Carb Citz Vits	Patchy Oxid local Carb Sil			
DDH.FR-048	33.42	41.17	SS HF	33.42	41 17	SS.HF	Local Carb Sil Vits	Patchy Sil local Oxid			
DDH.FR-048	41.17	61.07	MO Dk Py Vns	41.17	46.84	MD Xen BI	Local Carb, Otz-Carb Vins	Wk patchy Carb	TR		
DDH FR-048				46.84	47.97	MD.Oxid	Wk/m Fr, local Cy	Strong Oxid	1		
DDH FR-048				47.97	48 77	Massive Py Vn	PY	Sooty Chi	50		· _
DDH.FR-048				48.77	61.07	MD. Xen. Bl	Abund fine Otz-Carb Vits Py Vits	Patchy Sil	2		
DDH.FR-048	61.07	68	SS.HF	61.07	68.0	SSIHF	Abundant fine Carb, some Py Vits	Vit related Carb	IT		
DDH FR-048	68	82.4	MD, Dk. Xen	68.0	70.72	SS.Fr.local Oxid	Qtz-Carb Vits	Oxid Cy	Tr to 1		
DDH FR-048				70.72	79.7	MD Xen Py Po Cpy	Fine Sil Vits Fr.Oxid local QC Py Po Cpy	Patchy Oxid, minor Carb	Tr to 15	Τr	_ 1T
<b>DDH FR-048</b>				79.7	82.4	MD.PP(fine)	Abund fine Sil Vits	Vit related Sil local Oxid	Tr		
DDH.FR-048	82.4	87.62	SS HF	82.4	87.62	SS.HF	Carb Vits	Vit related local Oxid	Tr		
DDH.FR-048	87.62	95.5	MD, Dk. local Bt	87.62	88.83	MD strongly Oxid	Fr, local lam	Öxid			
DDH FR-048				88.83	89.93	MD.BI	fine Qtz Vits	Patchy BI		î Î	
DDH FR-048		·		89 93	95.65	MD.Wk Mag	Abund fine Sil local Carb,Oxid	Local BI Oxid	Tr to 1	T	
DDH.FR-048	95.5	95,75	Py Vn Oxid	95.5	95.75	Py Vn.Oxid	Lam/banding Py	Oxid local dark Chi	50		
DDH.FR-048	95.75	97.53	HE	95.75	97.53		Fr.Carb Vits	Some Biot	_ 1 to 3		
DOH FR-048	97.53	104.35	HP.Dk SS.HF	97.53	104 35	HP.Dk.SS	Subparallel Dk Carb Vits some vugs	HF-Biot.SS-Sil	Tr		
DDH FR-048	104.35	110.54	SS.HF.Py	104.35	108.65	SS	Lam minor Carb Vits	Vit related	Tr (		
DDH FR-048				108.65	109.89	SS.Py.Oxid	Lam, local Carb Bx	Oxid	3 to 10		
DDH FR-048				109.88	110.54	SS	Lam minor Carb Vits	Vit related	Tr		_
DDH FR-048	110.54	117.38	HP OK SS HF	110.54	117.38	HP.DK.SS.HF	Irregular Carb Vits	Vit related	1 to 2		l
DDH.FR-048	117.38	120.2	SS Sed Bx	117.38	120.2	SS Sed Bx	Crn clasts local carb Vits	selective Carb Att			
DDH.FR-048	120.2	123.1	HP.Dk	120.2	123.1	HP.Dk	Minor Carb Vits				
DDH FR-048	123.1	128,54	Biot.HF.Local Bx	123.1	126.57	HF.local Bx	Abund fine Carb	Vit related Carb	Tr to1		
DDH.FR-048				126 57	128.54	HF Bx FZ?	BX,Chl.Carb Vite	Chi,Carb	Tr		
DDH FR-048	128.54	130	HP.Dk	128.54	130.0	HP.Ok	Minor Carb Vits	Patchy Wk Carb			
DDH.FR-048	130	141.43	SS.Arg	130.0	141.43	SS Arg	Irregular fine Carb Vits	Patchy Wk Carb	Tr		
DDH.FR-048		141.43		+	141.43	EOH					

- ----

.

,

#### DDH.FR-48 Assay

a na standard a standard a standard a standard a standard a standard a standard a standard a standard a standar

HOLE ID	From	То	Sample No	Length	Au g/t metallic	Au g/t	Au ppb	Ag ppm	Cu ppm	Zn ppm
DDH.FR-48	5.18	7.18	76751	2.00			60	<0.2	188	39
DDH.FR-48	7.18	9,18	76752	2.00			20	<0.2	123	38
DDH.FR-48	9.18	10.20	76753	1.02		1 [	50	<0.2	110	33
DDH.FR-48	18.25	19.25	76754	1.00			15	<0.2	109	24
DDH.FR-48	19.25	20.15	76755	0.90			85	<0.2	216	29
DDH.FR-48	20.15	21.66	76756	1.51		1	480	<0.2	425	32
DDH.FR-48	21.66	23.16	76757	1.50		4 • · · · · · · · · · · · · · · · · · ·	25	<0.2	78	17
DDH.FR-48	23.16	24.66	76758	1.50			20	<0.2	15	18
DDH.FR-48	24.66	26.16	76759	1.50	··· <b>·······</b>		15	<0.2	17	15
DDH.FR-48	29.37	30.87	76760	1.50			20	<0,2	584	45
DDH.FR-48	30.87	32.37	76761	1.50		1	20	<0.2	273	24
DDH.FR-48	36.70	37.70	76762	1.00			15		12	20
DDH.FR-48	44.84	45.84	76763	1.00			15		27	21
DDH.FR-48	45.84	46.84	76764	1.00		· · · · · · · · · · · · · · · · · · ·	20		73	23
DDH.FR-48	46.84	47.85	76765	1.01			25	<0.2	144	
DDH.FR-48	47.85	48.77	76766	0.92		6.51	>1000			
DDH.FR-48		Dupl.	76767		·····	5.96	>1000		2475	40
DDH.FR-48	48.77	49.77	76768	1.00		+	50		81	23
DDH.FR-48	49.77	50.77	76769	1.00			15			
DDH.FR-48	50.77	52.17	76770	1.40			20			
DDH.FR-48	52.17	53.17	76771	1.00			660			
DDH.FR-48	54.25	55.75	76772	1.50			70			
DDH.FR-48	55.75	57.25	76773	1.50			155			20
DDH.FR-48	59.40	61.07	76774	1.67		· +·	65			
DDH.FR-48	67.00	68.00	76775	1.00			30			
DDH.FR-48	68.00	69.19	76776	1.00			20			
DDH.FR-48	69.19	70.72	76777	1.53	<u> </u>		155			
DDH.FR-48	70.72	72.34	76778	1.62		-	20			19
DDH.FR-48	72.34	73.84	76779	1.50	· ·		15			
DDH.FR-48	73.84	75.29	76780	1.45	+		735			
	75.29	76.79	76781	1.50		- <b>i</b>	45			
DDH.FR-48	76.79	77.79	76782	1.00	· · · · · · · · · · · · · · · · · · ·	+	60			
DDH.FR-48	77.79	79.70	76783	1.91	+ · · · · · · · · · · · · · · · · · · ·		25			
DDH.FR-48	79.70	81.38	76784	1.68	<b></b>		145			22
DDH.FR-48	81.38	82.40	76785	1.02			265			
DDH.FR-48			76786	1.02			300			
DDH.FR-48	86.62 87.62	87.62 88.83	76787	1.00	<u>+</u>		65			
DDH.FR-48		89.93	76788	1.21	<u> </u>		30			17
DDH.FR-48	88.83	91.43	76788	1.10			34			
DDH.FR-48	89.93		76789	1.50	<u>+</u>		10			
DDH.FR-48	91.43	92.93					2			0 14
DDH.FR-48	92.93	94.43	76791 76792	1.50		· ·				
DDH.FR-48	94.43	95.48	76793	0.50	<u>-</u>	53.4	>100			
DDH.FR-48	95.48	95.98 Dual		0.50	•	48.9	>100			
DDH.FR-48		Dupl.	76794	1 00	+	40.9				
DDH FR-48	95.98	96.98	76795	1.00			15			
DDH.FR-48	103.35	104.35	76796	1.00	· +	_ <u> </u>			-	
DDH.FR-48	107.65	108.65	76797	1.00	·		3			
DDH FR-48	108.65	109.88	76798	1.23	· [·····-		2	-		
DDH.FR-48	109.88	110.88	76799	1.00			2			
DDH.FR-48	110.88	111.86	76800	0.98	<u> </u>		1	5 <0.	2 18	2 30

Í

#### DDH.FR-48 Assay

HOLE ID	From	То	Sample No	Length	Au g/t metallic	Au g/t	Au ppb	Ag opm	Cu ppm	Zn ppm
DDH.FR-48	5.18	7.18	76751	2.00		•	60	<0.2	188	39
DDH.FR-48	7.18	9.18	76752	2.00			20	<0.2	123	38
DDH.FR-48	9.18	10.20	76753	1.02			50	<0.2	110	33
DDH.FR-48	18.25	19.25	76754	1.00			15	<0.2	109	24
DDH.FR-48	19.25	20.15	76755	0.90			85	<0.2	216	29
DDH.FR-48	20.15	21.66	76756	1.51	, , , , , , , , , , , , , , , , , , , ,		480	<0.2	425	32
DDH.FR-48	21.66	23.16	76757	1.50			25	<0.2	78	17
DDH.FR-48	23.16	24.66	76758	1.50			20		15	18
DDH.FR-48	24.66	26.16	76759	1.50			15		17	15
DDH.FR-48	29.37	30.87	76760	1.50	• • • • • • • • • • • • • • • • • • •	1	20		584	45
DDH.FR-48	30.87	32.37	76761	1.50			20		273	
DDH FR-48	36.70	37.70	76762	1.00		T	15	<0.2	12	
DDH FR-48	44.84	45.84	76763	1.00		•····	15	<0.2	27	21
DDH FR-48	45.84	46.84	76764	1.00		1	20	<0.2	73	23
DDH.FR-48	46.84	47.85	76765	1.01	i ·		25	0.2	144	
DDH.FR-48	47.85	48.77	76766	0.92	6.2	6.51	>1000	1.5	2476	
DDH.FR-48		Dupl.	76767		6.07	5.96	>1000	1.5	2475	40
DDH.FR-48	48.77	49.77	76768	1.00			50		81	
DDH.FR-48	49.77	50.77	76769	1.00		- <b>!</b>	15	<0.2	39	
DDH.FR-48	50.77	52.17	76770	1.40		*	20	<0.2	26	
DDH.FR-48	52.17	53.17	76771	1.00	·····	1	660	<0.2	83	
DDH.FR-48	54.25	55.75	76772	1.50	†		70	<0.2	49	20
DDH.FR-48	55.75	57.25	76773	1.50		1	155	<0.2	40	20
DDH.FR-48	59.40	61.07	76774	1.67	· · · · · · · · · · · · · · · · · · ·	· •	65	<0.2	95	19
DDH.FR-48	67.00	68.00	76775	1.00	i	· +	1	<0.2	43	35
DDH.FR-48	68.00	69.19	76776	1.19			20	< 0.2	70	
DDH.FR-48	69.19	70.72	76777	1.53		ţ	155			
DDH FR-48	70.72	72.34	76778	1.62			20		27	
DDH.FR-48	72.34	73.84	76779	1.50		·+· ·	1 15			
DDH.FR-48	73.84	75.29	76780	1.45	· · · · · · · · · · · · · · · · · · ·	•	735	o <0.2	60	
DDH.FR-48	75.29	76.79	76781	1.50		•••••••	45			
DDH FR-48	76.79	77.79	76782	1.00			60			
DDH.FR-48	77.79	79.70	76783	1.91		•	25			
DDH.FR-48	79.70	81.38	76784	1.68	<b>.</b>	+	145		32	
DDH.FR-48	81.38	82.40	76785	1.02		···•	265			
DDH.FR-48	86.62	87.62	76786	1.00	<u> </u> ···-	•••••	300			
DDH.FR-48	87.62	88.83	76787	1.21	+		65			
DDH FR-48	88.83	89.93	76788	1.10		+	30			
DDH.FR-48	89.93	91.43	76789	1.50	+	+	3			
DDH.FR-48	91.43	92.93	76790	1.50	+	-+	10			
DDH.FR-48	92.93	94.43	76791	1.50	······	· • · - · · · · ·	2			1 14
DDH.FR-48	94.43	95.48	76792	1.05	<u>+</u>	+	6			
DDH.FR-48	95.48	95.98	76793	0.50	70.4	53.4	>1000			3 24
DDH.FR-48		Dupl.	76794	+	48.2	48.9	>100			
DDH.FR-48	95.98	96.98	76795	1.00			15	and an and a server of the		5 17
DDH.FR-48	103.35	104.35	76796	1.00			2			
DDH FR-48	107.65	108.65	76797	1.00			3			5 24
DDH.FR-48	108.65	109.88	76798	1.23	·····	· ·   · · · · · · ·	2			
DDH.FR-48	109.88	110.88	76799	1.00	·· <b>+ -</b> ··	+	2			0 28
DDH FR-48	110.88	111.86	76800	0.98	· <del> </del> · • · · · · · · · · · · · · · · · ·					

!

1 of 1

and the state of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of

# CERTIFICATE OF ASSAY AK 2005-1058c

YANKEE HAT MINERALS LIMITED 4460 Atlee Avenue Burnaby, BC V5G 3R6

**ATTENTION: Donald Gee** 

Î

No. of samples received:207 Sample type: Core Project #:FRAN Shipment #: not indicated Samples submitted by: Ron Wells

	Metallic As	isay	
	Au	Au	
Tag #	(g/t)	(oz/t)	
76766	6.20	0.181	
76767	6.07	0.177	
76793	70.4	2.053	
76794	48.2	1.406	
<u></u>	1.31	0.038	
	76766 76767 76793	Au         Au           76766         6.20           76767         6.07           76793         70.4           76794         48.2	Tag #         (g/t)         (oz/t)           76766         6.20         0.181           76767         6.07         0.177           76793         70.4         2.053           76794         48.2         1.406

JJ/ga XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

23-Sep-05

# CERTIFICATE OF ASSAY AK 2005-1058c

# YANKEE HAT MINERALS LIMITED

4460 Atlee Avenue Burnaby, BC V5G 3R6 23-Sep-05

### **ATTENTION: Donald Gee**

No. of samples received:207 Sample type: Core **Project #:FRAN** Shipment #: not indicated Samples submitted by: Ron Wells

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
173	76766	6.51	0.190	· · ·
174	76767	5.96	0.174	
200	76793	53.4	1.557	
201	76794	48.9	1.426	

0.038

QC DATA:	
Standard:	
SH13	1.29

٠

JJ/bw XLS/05 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer 22-Ser

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 2005-1058c

#### YANKEE HAT MINERALS LIMITED 4460 Atlee Avenue Burnaby, BC V5G 3R6

-----

۰.

÷

under in der der sternensten

4

. .

#### ATTENTION: Donald Gee

No. of samples received: 204 Sample type: Core Project #: FRAN Shipment #:not indicated Samples submitted by: Ron Wells

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cď	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	N	P	_Pb_	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
158	76751	60	<0.2	1.53	10	80	<5	3.33	<1	23	12	188	6.03	<10	0.38	683	8	0.02	21	1220	12	<5	<20	32	<0.01	<10	51	<10	11	39
159	76752	20	<0.2	1.32	5	175	<5	4.08	<1	16	14	123	4.58	<10	0.27	805	6	0.02	19	1090	10	<5	<20	33	<0.01	<10	28	<10	12	38
160	76753	50	<0.2	1.44	15	90	<5	5.23	<1	17	14	110	3.90	<10	0.35	1193	7	0.02	13	1280	14	<5	<20	38	<0.01	<10	42	<10	15	33
161	76754	15	~0.2	2.06	10	50	- 5	2.06	-1	14	20	109	3.70	<10	0.71	375		0.09		1920	20	~5	<20	20	0.08	~10	67	~10	12	24
	76755	85	<0.2		10 10	60		1.24	<1 <1	31	20	216	4.89	10	0.86	531		0.05		1700	18	-	<20	30	0.08	-	-		12	29
	76756	480	<0.2	1.71	10	55		1.55	-	52	43	425	7.05	<10	1.24	925	152	0.03	25	780	16		<20		0.07				11 6	32
	76757	480	<0.2		5	85			<1 <1	14	73	*25 78	3.15	<10	0.79	376	152	0.03	20	1000	18		<20	40	0.08	-			-	32 17
-	76758	20	<0.2		10	50	<5		<1	9 9	73	15		<10		392		0.05	16	790	-		<20	46 39	0.09	-			12 9	18
100	/0/00	20	NU.2	1.20	10	30	-9	1.48	•1	9	<i>,</i> ,	13	2.01	\$10	Ų.94	392	12	0.03	10	rân.	18	×0	~20	29	0.09	\$10	102	×10	9	10
166	76759	15	<0.2	1.36	10	70	<5	0.97	<1	9	85	17	2.58	<10	0.92	302	<1	0.08	17	830	16	<5	<20	34	0.10	<10	94	<10	10	15
167	76760	20	<0.2	1.97	5	95	<5	0.41	<1	41	53	584	>10	<10	1.04	548	131	0.04	35	920	16	<5	<20	24	0.08	<10	171	<10	<1	45
168	76761	20	<0.2	1.49	5	40	<5	0.66	<1	29	84	273	3.99	<10	0.85	343	8	0.07	- 32	810	14	<5	<20	35	0.09	<10	113	<10	8	24
169	76762	15	<0.2	1.44	<5	65	<5	1.80	<1	8	31	12	2.74	<10	0.92	481	<1	0.06	8	1500	18	<5	<20	114	0.11	<10	110	<10	13	20
170	76763	15	<0.2	1.97	10	40	<5	2.28	<1	9	23	27	2.58	<10	0.53	445	<1	0.05	3	1410	22	<5	<20	39	0.07	<10	64	<10	10	21
474	76764	20	<0.2	2.07	40	40	~E	2,13	<1	12	17	73	2.87	<10	0.55	450	~1	0.04	3	1440	22	-5	<20	45	0.06	~10	65	<10	9	23
		20			10	40			<1	12	10	144	7.43	<10	0.58	392	15	0.04	6		40			92	0.05			<10	<1	26
	76765	25 >1000	<0.2 1.5		5 <5	80 105	<5 <5	1.21 0.16	3	16 340	7	2476	>10	<10	0.30	172	45	0.02	-	260	2		<20	5	0.03			<10	<1	41
	76766		-	1.04	-	-	-		_	329	7	2470	>10	<10	0.30	154	41	0.01		220	4	-	<20	5	0.03		-	<10	<1	40
	76767	>1000	1.5		<5	105	<5	0.15	1		18	2475 81	4.02		0.20	416		0.04		1200	16	-	<20	29	0.02	-		<10	7	23
1/5	76768	50	<0.2	1.53	<5	45	<5	1.86	<1	18	10	01	4.02	×10	0.55	410	10	0.04	'	1200	10	-0	~40	20	0.00	~10	0,	10	'	25
176	76769	15	<0.2	1.57	5	35	<5	1.94	<1	11	37	39	2.48		0.45	309		0.06		1210	16	-	<20	32	0.07			<10	8	22
177	76770	20	<0.2	1.35	5	30	<5	2.05	<1	6	36	26	1.56	<10		241	1	0.06		1250	18		<20	46	0.07		-	<10	9	19
178	76771	660	<0.2	1.24	5	35	<5	1.87	<1	13	30	83	2.62	<10		299	33	0.05		1270	18	_	<20	43	0.07			<10	9	20
179	76772	70	<0.2	1.27	5	45	<5	2.07	<1	10	30	49	2.40		0.46	318	16	0.05		1280	18	-	<20	37	0.07	. –		<10	9	20
160	76773	155	<0.2	1.40	10	35	<5	2.41	<1	11	26	40	2.33	<10	0.45	326	17	0.05	3	1240	20	<5	<20	33	0.07	<10	54	<10	8	20
181	76774	65	<0.2	1.08	<5	35	<5	1.67	<1	11	27	95	1.94	<10	0.28	240	<1	0.06	5	1230	16	<5	<20	30	0.07	<10	38	<10	8	19
-	76775	30	<0.2		5	85	<5	1.63	<1	24	28	43	5.90	<10	1.65	728	<1	0.09	12	1310	26	<5	<20	33	0.17	<10	239	<10	8	35
	76776	20	<0.2		10	40	<5	2.35	<1	13	22	70	2.81	<10	0.59	375	<1	0.07	3	1770	20	<5	<20	61	0.08	<10	68	<10	11	22
	76777	155	<0.2	1.92	15	45	-	4.02	<1	13	16	87	2.96	10	0.63	421	8	0.04	4	1670	22	<5	<20	118	0.05	<10	74	<10	10	21
	76778	20	<0.2		10	35	<5	2.12	<1	6	27	27	2.08		0.49	297	<1	0.05		1060	26	<5	<20	114	0.05	<10	45	<10	8	19
100	/0//0	••	-0.2	1.57		~~				-																	-			
186	76779	15	<0.2	1.95	5	40	<5	2.00	<1	9	31	58	2.64	<10		350		0.05	1	+ / <b>+</b>	28	-	<20		0.05			<10	9	20
187	76780	735	<0.2	1.67	15	45	<5	2.00	<1	10	37	60	2.31	<10		290		0.05	2		24	_	<20	58	0.05			<10	9	18
168	76781	45	<0.2	1.83	10	75	<5	1.79	<1	7	19	61	1.59	<10	0.36	214	<1	0.04	2		26	-		246	0.04	-		<10	7	16
189	76782	60	<0.2	1.25	5	25	<5	2.62	<1	12	21	73	2.19	<10	0.35	286	<1	0.07		1420	18		<20	43	0.07			<10	9	22
190	76783	25	<0.2	1.42	5	30	<5	1.96	<1	6	22	13	1.64	<10	0.37	266	<1	0.08	3	1780	20	<5	<20	35	0.07	<10	48	<10	12	17

22-Sep-05

ECO 1	ECH LABO	RATORY I	.TD.					ICP CEI	RTIFIC	ATE O	F ANA	LYSIS	AK 20	05-105	8c					,	YANKI	EE H	AT M	INER	ALS L	IMITE	D			
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	РЬ	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
191	76784	145	<0.2	1.48	5	35	<5	1.88	<1	9	18	32	2.51	<10	0.51	335	1	0.07	3	1820	20	<5	<20	41	0.06	<10	62	<10	10	22
192	76785	265	<0.2	1.31	10	30	<5	2.00	<1	8	19	34	1.81	<10	0.39	284	<1	0.06	3	1760	20	<5	<20	41	0.06	<10	50	<10	10	19
193	76786	300	<0.2	2.19	10	55	<5	1.37	<1	18	18	48	5.42	<10	1.33	629	- 4	0.06	7	1790	30	<5	<20	62	0.05	<10	155	<10	9	36
194	76787	65	<0.2	1.63	20	30	<5	1.96	<1	13	11	78	3.96	<10	0.65	300	4	0.02	5	1410	16	<5	<20	52	<0.01	<10	67	<10	9	28
195	76788	30	<0.2	1.61	15	25	<5	1.98	<1	20	38	119	2.90	<10	0.57	296	2	0.06	8	1190	18	<5	<20	23	0.08	<10	63	<10	10	17
	76789	35	<0.2	1.33	<5	35	<5	1.78	<1	11	36	81	1.78	<10	0.28	180	<1	0.07		1130	16	<5		30	0.06	<10	32	<10	11	13
197	76790	10	<0.2	0.97	<5	75	<5	1.33	<1	10	42	72	1.33	<10	0.15	128	<1	0.06	2	1150	14	<5	<20	36	0.06	<10	22	<10	10	11
	76791	25	<0.2	1.33	5	50	<5	1.64	<1	11	34	80	1.90	<10	0.31	222	<1	0.05	3	1160	18	<5	<20	39	0.05	<10	33	<10	8	14
199	76792	65	<0.2	1.45	10	50	<5	2.07	<1	10	32	77	2.55	<10	0.55	352	<1	0.05	2	1150	16	<5	<20	- 54	0.05	<10	54	<10	7	18
200	76793	>1000	3.0	1.31	15	70	<5	1.44	<1	92	20	808	7.08	<10	0.51	272	22	0.03	28	940	16	<5	<20	74	0.07	<10	52	<10	2	24
201	76794	>1000	2.2	1.35	10	75	<5	1.48	<1	85	30	831	6.86	<10	0.54	284	24	0.04	25	950	14	<5	<20	79	0.08	<10	55	<10	4	23
	76795	155	<0.2	1.63	20	50	<5	2.46	<1	20	53	56	3.22	<10	0.66	335	<1	0.08	25	1310	18	<5	<20	87	0.12	<10	83	<10	12	17
	76796	25	<0.2	2.06	10	45	<5	2.24	<1	20	27	85	4.06	<10	0.90	433	<1	0.07	14	1660	26	<5	<20	47	0.09		112	<10	9	24
	76797	30	<0.2	1.50	15	55	<5	1.16	<1	18	79	125	3.64	<10	0.98	387	2	0.05	23	680	22	<5	<20	26	0.10		133		9	24
	76798	25	0.2	1.12	35	30	<5	3.62	<1	14	35	98	3.44	<10	0.41	474	7	0.03	28	970	14	<5	<20		<0.01	<10		<10	13	27
206	76799	20	<0.2	0.76	60	40	<5	4.51	<1	24	34	220	4.78	<10	0.65	477	19	0.03	37	1040	4	<5	<20	215	<0.01	<10	72	<10	10	28
207	76800	15	<0.2	2.41	5	75	<5	3.44	<1	29	65	182	6.63	<10	1.82	599	4	0.07	30	1660	28	<5	<20	130	0.05	<10	185	<10	12	38
<u>QC(DA</u> Respli																														
	76769	20	<0.2	1.56	5	35	<5	2.06	<1	12	43	39	2.61	<10	0.45	321	<1	0.06	6	1270	24	<5	<20	33	0.06	<10	56	<10	8	23
Repea	t:																													
559	76752	15	<0.2	1.31	5	175	<5	4.07	<1	16	14	123	4.57	<10	0.27	800	6	0.02	18	1090	10	<5	<20				28	<10	12	38
176	76769	15	<0.2	1.58	5	40	<5	1.97	<1	12	39	40	2.59	<10	0.47	318	<1	0.06	5	1300	22	<5	<20	31		<10		<10	8	23
185	76778	30	<0.2	1.87	10	30	<5	2.05	<1	6	26	27	2.08	<10	0.49	289	<1	0.05	3	1060	24	<5	<20	112		<10	44	<10	7	18
194	76787	60	<0.2	1.59	15	35	<5	1.99	<1	13	11	78	4.00	<10	0.65	302	4	0.02	5	1440	18	<5	<20	53	<0.01	<10	67	<10	8	28
Stand																														
OXF41		810																												
OXF41 GEO'0		825	1.5	1.41	60	165	<5	1.33	<1	19	58	82	3.69	<10	0.74	554	<1	0.02	26	<b>6</b> 60	22	<5	<20	54	0.09	<10	68	<10	10	76

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer -

And a second second second

# FRAN PROJECT 2005

#### YANKEE HAT MINERALS LTD

DDH NO. FR-048				T	· · · · · · · · · · · · · · · · · · ·	<b></b>		GE NO. 1
	_	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMP	
MAIN UNITS	GL	SUB UNITS				FROM	то	NUMBER
-3.05 Casing in Orb		0. 3:05 Overburgen Bandy clay	· · · · · · · · · · · · · · · · · · ·	<b></b>		<u> </u>		<u> </u>
•	0	Till with cobbles, boulders	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		<b></b>	<b></b>	L
	Ŵ	3.05-10.20		······································		ļ	<u> </u>	<b>_</b>
-05-10-20 Clarty	[.	_ Fine grained charty SS	reiero - frostured 1	Highly exidized	mashed by axid.	5.18	7.18	7-751
	Χ,	breactionted and clay weathered	casely breenisfed			7.18	9.18	76752
illistone. Fractured	11/	Highly existing thoughout	little cerery about		· · · · · · · · · · · · · · · · · · ·	9.18	10.20	76753
oxidized and clayey	X		S-ISM				ļ	
0-20-20-15 ^{to} .	14	10.20-15.56 MD. mad gray-white	massive local	wh pervasive carb.	It fini dimen ly	<u> </u>		<u> </u>
Port in Manad in the	V.	- alk groon speckled . Play - Hol -	norow subporallel	at 11.50m	co cal somet aggregate		L	
with chilled border	₽•+	lagetyry. Aptonitic to fg. groundness	g.v					L
at a set of the set of the set	i.	gradational lower contact.	<b></b>					
shases of PI-NGI-Porp.	/						. <u> </u>	
	1	15.56-19:10 Madium gr. MD	name axid freekulle	Failly fresh	TT-absente fin			l
	<b>[</b> 4	horn blends phones to Tam	notive with + for normer exist fractives 45-80 CA	5,000	dissen Pu	18:25	19-25	76754
	1	19.10-2015 Porphysitic norginal plassis	fractured & oxidized	axidized down-hold	marked by avid	19.25	20.15	76285
24	1	20-15-27-10	down-hole			20.15	21.66	76756
10-15-41-17	[]	Banded first grained HE	Fractured reading	mainly charty-sil.	Trace live backet	21-66	23-16	76757
Siltstone & Hornfals	1	Crain proper large eighth	to 21-som. Below	with norrow dK chi	P.	23-/6	24.46	76758
Bandled HF near dykes	Ι/,	Creeks, given lacal pinkuh	when foreturing, local			24 66	26.16	76759
groating into massive ss	ЪĆ							
-	21	27-10-31-42 Fault Zant in	oxid strong below 260 bonding to a go CA	Commen . Locuisted				
_	12		internal Rottle Co	1154	masked by oxid .			
	l ç	cherty 53 Main foult 27.10-28.90	decreasing down Ade	Vit and fraction axid		29.27	24-87	74760
avid L	١X	with care lass oxidized	Druc wit local clay	mian giz		24.87	3 237	76761
_								
	12				_			
	1%	and a start for a start tt	Mico Prostulad	ult at fractions				
	17.	33.42-4427 Grey SS - Charty SS	with call and of	received . Some and		36.7+	37.70	76762
	14	fine grained and hard	sil. v/h	cherty below you				
	1			near contact				
	12		<b></b>			·		

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R. Wells

DATE August 28, 2005

### FRAN PROJECT 2005

### YANKEE HAT MINERALS LTD

DDH NO. FR-048						,	PA	GE NO. 2.
	Ī	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	GL	SUB UNITS			1	FROM	ТО	NUMBER
41-17-6107 Mongodiorite		41.17.46.84 Light gray, fire med.	several an angle	vit-fracture	space Ry Possibly	44.84	45+4	76763
Dyke with sufficient voins		grained equigranular MD . Non-			over print and by esig	45.84	41.84	
	H	sugestic, local 1- Lero mafic	Can a reles CA. local	weat cately				
4	1.1	xearlitie Bleached though carts .	and preces	paceasive carb		44.84	48.85	- 74745
5	*	and alteration		· · · · · · · · · · · · · · · · · · ·				
strong		46.84-47.47 Kismy an diged MB	cly by vern high and	stragty oxidized	marked by axid.	47.45	48:77	76766
morsive by VA	11	46.84-47.47 Highing an object MB 47.97-48.17 your massing by vn. by vh 12 hallowery	cly. By vein high any	by with dock suchy.		47.95	48.77 Dupl. 49.77	76767
Ston.		48.77-61:67 Fairly marine - fresh	get the local by	che Patch, sil	Lo cal P. Massing Py In may be be fives		49.77	74763
Ry vitas		meeting ground MD. Lacal small	marine intervals_	assoc. with vite	1-3 P. elts local		5.72	- 76769
	/+	mafie reception bleached intervals			this per 1 m. after		52.17	76770
4.		related to ultr		·	+16 max 200 wide		\$3.17	76771
s. /	'n.				weally stringer with .		\$5.75	76772
ger by	"["					55.75		76773
Py Mes	4							
•	4		· · _ · _ · _ · _ · _ · _ · _ · _ · _ ·			69.40	61-67	76774
	÷	AS general description gray &	Faity massive	vite related carb.	Rose low angle CA			
107-63-00 SILOSTON	6	cherty to beyo, Being dack grey		Aon-magnetic				
Kornfols. Fine growed	1		manily callesene by		· · · ·			
grey to block . Ason may. 1	1		Valiable angles CA			]		
Faitly Mossive	41			· · · · · · · · · · · · · · · · · · ·				
5	1							·
8.02-82.40 Manzodiorite	2	68.00-70.72 Mediumafice grained	20-60ch fractures	exidensis and to-sice	Masked by oxid _	67.00		71.775
yke Med. gr. with no		ark fracticed some exidence	and ville @ 69400		but for dism R	11.00	69.19	76776
wrallende porphyly		7072-19-70 , Medium grained	Com gtz carb Bx 400	-faton oxid	f	69.19	70.72	_74777
reiginal phoses	1/	both hol and play phases.		Mais lyin self 30 584	Passibly masked	7072	_22:24	76278
ion magnetic 1-2-6	11	fairly massive with mere	72-5-76-5 40-60TA		by exil where	72.34	73.94	76279
mel mapie xenelittes	1	versed frechrod intervals	fine stiller no vite	and carb	fresh MD. Tr. By	72.84	75.29	76780
ern local upto local	41	with ager oxidation lacat	with and fractures		dineer.	75:29	24.25	18781
96.4	A	Cargo sub-congress mafric xenelities	etore and delow		0 27 50 300 gc m	76-79	72.79	76282
hip con	+,	Sten noibly 225m.	fever ulto mainty		10-15 × fors. Py, Po	77.29	<u>- 79-70</u>	_767.\$3_
Toly Cay	2		ç11.		sica mider Py, cay			

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: Race backles

DATE: August 28,2005

FRAN PROJECT 2005

### YANKEE HAT MINERALS LTD

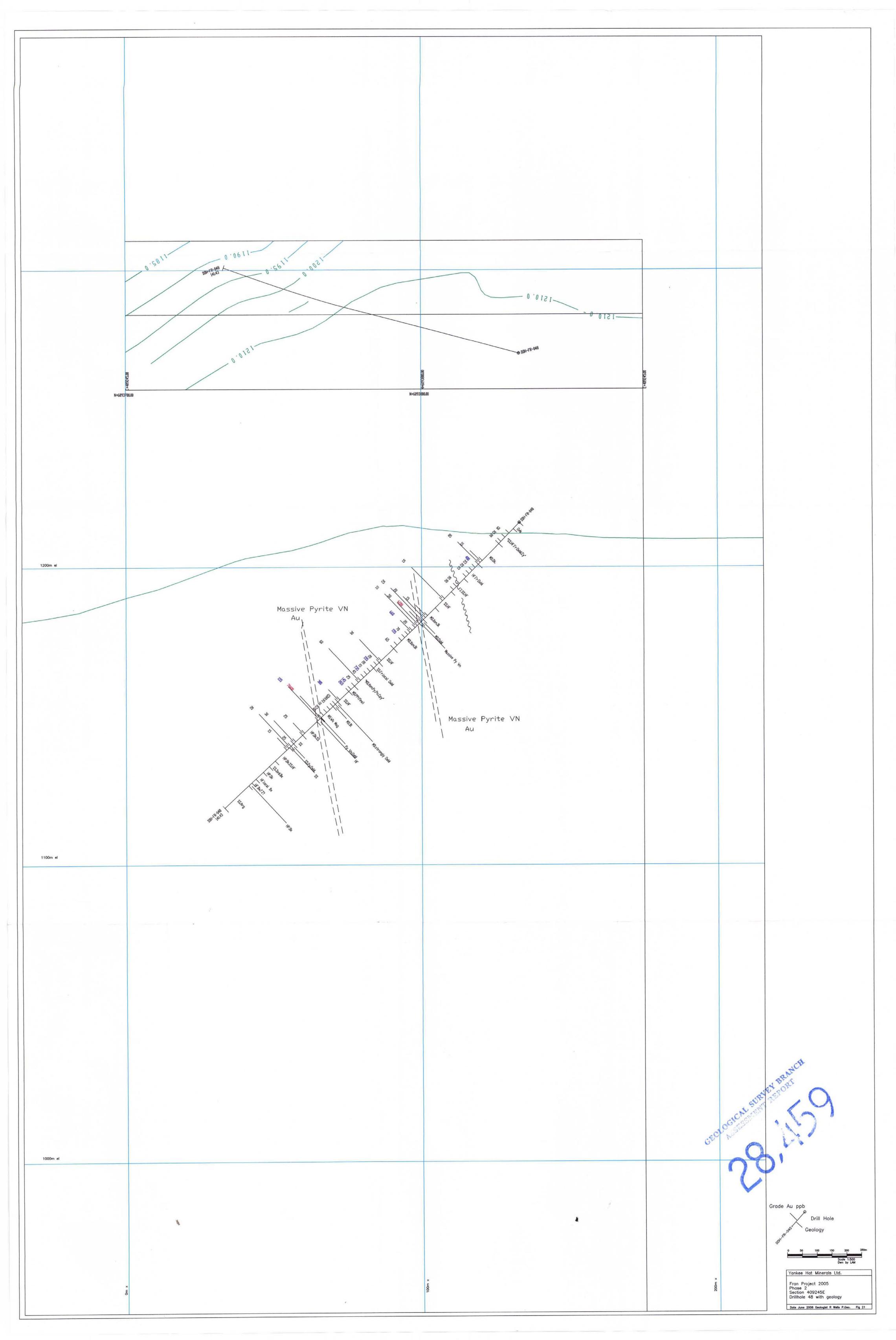
DDH NO. FR-048							PA	GE NO. 3
	L	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	ING
MAIN UNITS	GL	SUB UNITS	1			FROM	ТО	NUMBER
fo	• +	79.70-8840 Fine grained Heb. to caller	Mainly Ha Sti Viss	Minest midetan		79.70	8178	76784
12.40-87.42	+/	and a dark and the second	Catemati Awards	with cale band cart	and his a	81.75	82.40	
siltstone-Homfels	4	and to dark gray, fine graned			space fine by		- ° 2. ¥ °	
in around med to dk	l		f	and local exid	possibly marked by		07.4-	
in ground med to ak	1211			Strang from \$2.45m	exidation		97.62	-74.786
	117	87.62-98.93 bighty and god Mg.	Local 30 CA bachwe	story exid lacal.	mosked by und	8762		7678.7
1.62-95-50 Monzodionte	1.		and lan. Fine the ult	als - carb with related	Tr. unfran discon by,	19-53		<u>71 788</u>
yka. Madim gr 🙀	10	84.83-7545 Med-fire grained lack	www.mana fine sil	and bleached	Po local Ry vits TT-14 fine Ry invits Fr fine cline on Po	89.93		- 76289
porse xenalities	<b>*</b>	ll. patety magnetic	vite at ware the angles	Coul A. Mainter	To fine climan to	9143	92 43	
videzed, bleached	: +		lacal axed anious carts	local exid		92.73	74.43	76291
ntervals	4					94-43	95.48	76 792
	ľr				co con ge semi-massia	95:48	95.98	76793
	-	oriaged by make	Romination/banding to	Chi motel Passible	Py. 1-3 1 in my los Py	95.48	95.900	1. 767.94
50-95-75 Oxid by an	Y#7.	cree to accome the wish the section	miner carbyte	SOMA BAT IN HE.	with to at type.		96-98	76795
5.75-97.53 Horafels	11	fine grained hard, non negative				[		
1-53-104-25	1.1		cart vit in ss.	the and the second second	- li a anil			
fornblende PorphysylDo	*#	Med goy-green fin grained	20-40 Cacat vigs	Harry to Are Linding	To fine by mainly			
	ŀ¥	ht posph introdes gray fin gr-			~~ w/g			
up parallel to cA. Dyke	1.14	Charby SS/HE	Hbj. Parpt.	mical silico		103.35	1=4-35	74796
attudes green charty	1 14	—		·				<u> </u>
Silestone - hornfals 0435-110-54 silestone	14	104-35-108.15 Gray to black ES fine grained lacally Considered 104.65-109-88 axidized by gone	Lam/breccished to -4	ca peard microfraction	TI fine cubicly	107.15	101 15	. 74797
the End any ARD	Ψſ,	fire around locally Commeted	Cything recently 105.77	miner cach vite		108.65	109.88	76798
angols. Fine grached	17//	Lat. 15-109-22 axidized R. 2002	- 105-10 exid			109.59	110.88	76799
rate banding to lam.		, , , , , , , , , , , , , , , , , , , ,	7	4	<b>a</b>	110.88	41.86	76800
ron suagratie - pyritie of	Æ.		( <u> </u>	ſ	(			
	<u>_</u> ]/	medium areas laid and local	Sone Tich banding	exidined buck	In part marked by			
54-117-28 Minad Zone		meduin green ford and lacad	local tox contern	Cath vitrelated	oxid 3-10% dive disen			
ernfels and Feld.	1#	had party introding gray and			fracture by below			
orphyry (mafie)	444	ground Py	oppear ever porallel					
the Porphy Cy dy Kes	11	9 ro mod Fy	distant of any vin	Anity wit classed	denie with a site			
	14			· · · · · · · · · · · · · · · · · · ·	desin . VIt Py in 59.			
17-28-120-20	1-	Dark grassingray sillest. Matrix supported bx. Bogular & last con scale	2.3					
siltstone - sedimentary	L.	supported Bx . Engular & Laste en	Local fice in opvilet	w/m selectrue	Ann observed.		• • • •	
Breccia, is	- <b>1</b>	5CA4	CAB VIER	carb alt.		}		

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY R. G. Wells

DATE: 28th August 2005

### FRAN PROJECT 2005


### YANKEE HAT MINERALS LTD

DDH NO. FR-048			<b></b>					GE NO. 🕰
	Ļ	ITHOLOGY	STRUCTURE	ALTERATION	MINERALIZATION		SAMPL	
	GL	SUB UNITS				FROM	TO	NUMBER
20-20-123-10	$\mathbf{v}$	he are great with s. The mould	few carlo ulte	wit related a very.	Non-obsecond			<b></b>
161-Plas Porph Dyke	-/	had grey green with 5.7% Interest hel phings to I may Fire gr gruddau lo cal 53 Incl. Patchy may retin	waide angles CA					<b></b>
23-10-128-54 Gray to	12				To 14, fine disen			
AWAISH HE IRING HE	5/	132-10-126. 57 Gran to townish grey HF. Bx locally with miner By	aurens fine and + K		-facture ly		<b>_</b>	• • ··········
numish HF   Bist HF Discussed sections	1/	126.57-12954 Ex and chi.		Sone realizin rime	<u> </u>			
	×.		Chi vitz matrix to BY	vit and antrox	TT - Ry locally in			<b>_</b>
29.54-120.00	ξŝ)		lo cal fine carb vilt	related chi and	W/5			
HW. Purph Dy Ka 12		At dight above greatist LS to fine		Cars.	· ·			
130-00-141-63 Gray	1	Gley to black fine ground		Palin wk peru.	Non-observed			
to Asbeck SS and Arg	11.	55 1 Any local wer. blocking with	Rubbly core recovery	and winkt carb				
local normow FP. dylas		cach alt	incender find carb	vit resolved carb	Tr fine dissen_			···
<b>v</b>	1	K 124-1-1247 Dark calanded fild Lagoh dugkar 3-74 carts, play mint	with y vois the chest	head 10-2060	and vit by			
	//	Porch dutes 3-74 cart des mint	REALIZED 10-50'CA	patches of wk	<b>.</b>			
	12	661.		peruonive costs				- <u>-</u>
	Vii -			· · · · · · · · · · · · · · · · · · ·				
/40	1							
	<i></i>	-141-43 COK.						
								. <u> </u>
								· <b>-</b> · · - · - · - · - · - · - · - · - · -
						··· ·		<u> </u>
	l							
		L	· · · · · · · · · · · ·					<u> </u>
								<u> </u>
	1							
	ļ							

KAMLOOPS GEOLOGICAL SERVICES LTD.

LOGGED BY: R. Wells

DATE: August 23, 2005

