
GEOCHEMICAL EXPLORATION OF THE HEN 1 CLAIM (93A/6) CARIBOO MINING DIVISION BRITISH COLUMBIA

.

1

Latitude 52 28' 54"N Longitude 121 01' 38"W

> by R. Yorston Geologist

CONTENTS

	Page
1. SUMMARY	1
2. INTRODUCTION	3
2.1 Location and Access2.2 History2.3 Mineral Tenements	3 3 3
 SOIL AND ROCK GEOCHEMISTRY 3.1 Methods and Results 3.2 Rock Sample Descriptions 	7 7 8
4. CONCLUSIONS	11
5. REFERENCES	12
6. CERTIFICATE OF QUALIFICATIONS	13
7. STATEMENT OF EXPENDITURES	14
 Property Location Map Location Map Topography and Claim Claim Map Showing Grid Plot of Soil Sample Values Plot of Soil Sample Values 	2 4 5 6 9 10

SUMMARY

Work on the Hen 1 claim occurred during the period of Oct. 28 - Nov. 1, 2005

and June 19 - June 25, 2006.

The work consisted of: a) follow-up sampling of the 1995 diamond drill core. b) restoring and resampling parts of the grid where

soil samples were previously analysed for gold only. c) minor expansion of the original soil sample grid and analysing the new samples for gold plus the 30 element ICP.

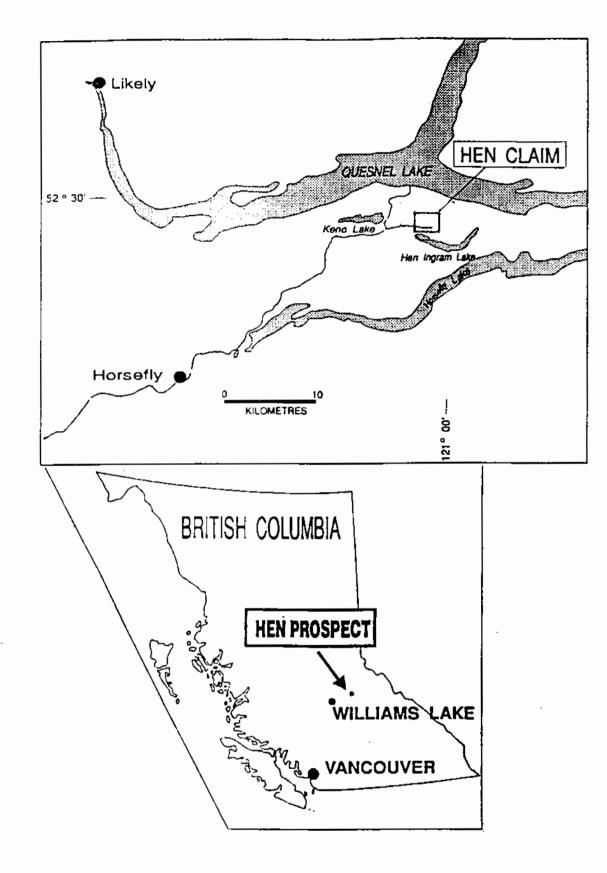


Fig. 1 Property location map After Bailey, 1992

2. INTRODUCTION

2.1 Location and Access

The Hen 1 claim is located to the south of Quesnel Lake, about 30 km. northeast of the town of Horsefly, 80 km. east of Williams Lake in south central B.C.(figure 1). The claim is reached via an all-weather gravel road from Horsefly to near Elysia Resort on the south shore of Quesnel Lake and thence by four-wheel-drive vehicle road to the center of the property, north of Hen Ingram Lake (figures 2&3).

Most parts of the claim is covered by spruce and deciduos trees. Areas of extensive buildozer stripping from the 1965 exploration activity are locally overgrown with 2 metre high saplings.

2.2 History

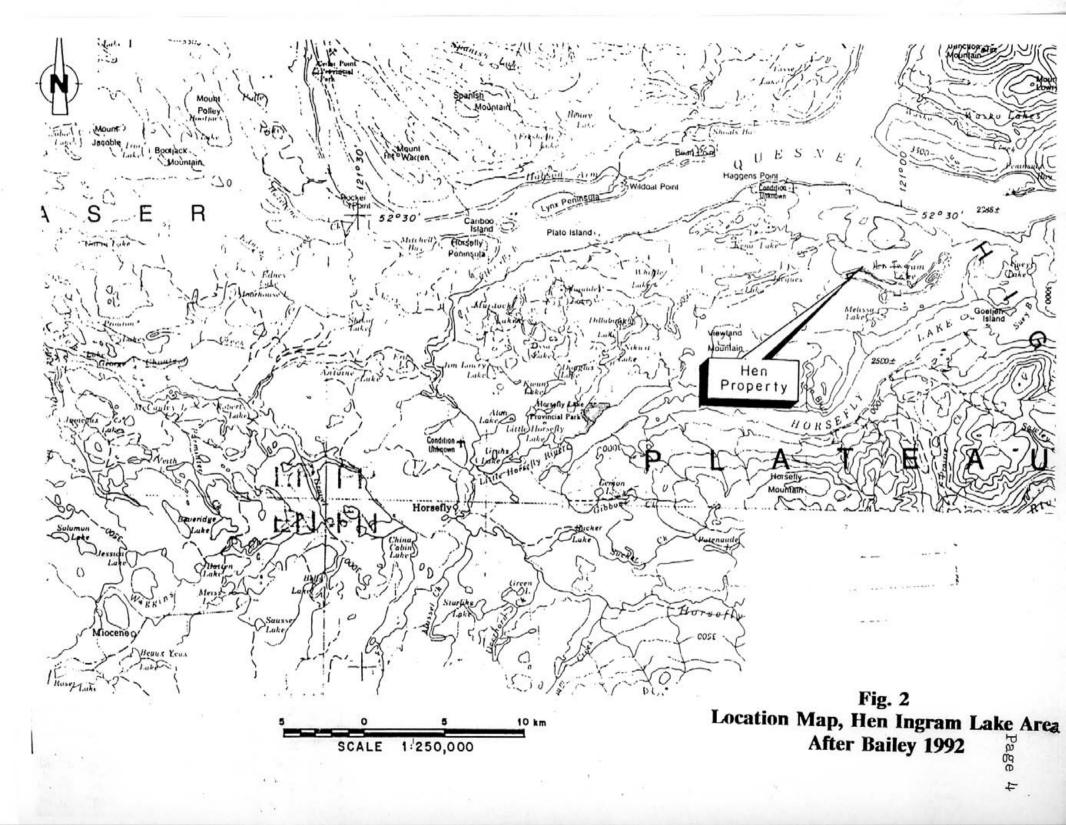
Work on the property began in 1965 by Helicon Explorations in their search for porphyry copper mineralization. The work consisted of IP survey, buildozer trenching and diamond drilling. Asses. rpt. 683 by Hallof.

In 1981 rock sampling and percussion drilling was done in trench 1965-1. Asses. rpt. 9122 by Jones.

In 1986 geologic mapping and sampling was done in trench 1965-1. Asses. rpt. 15231 by Price.

In 1989 Tulloch Resources established a cut grid for control and did geologic mapping, soil and rock sampling and a magnetometer survey. Asses. rpt. 18941 by Medford.

In 1992 Double Creek Mining did geologic mapping and sampling of two 1965 bulldozer trenches. Asses. rpt. 22587 by Bailey.


In 1992 Double Creek Mining did prospecting, rock and soil sampling and VLF EM and magnetometer surveys. Asses. rpt. 22898 by Bailey.

In 1994 Double Creek did excavator trenching and rock and soil sampling. Asses. rpt. 23482 by Price.

In 1995 Double Creek did 2000 feet of NQ diamond drilling in 6 holes. They also did more excavator trenching and rock sampling. Asses. rpt. 24052 by Price.

2.3 Mineral Tenements

The property consists of one 20 unit claim. The tenure number is 404351. The new expiry date is July 27, 2010.

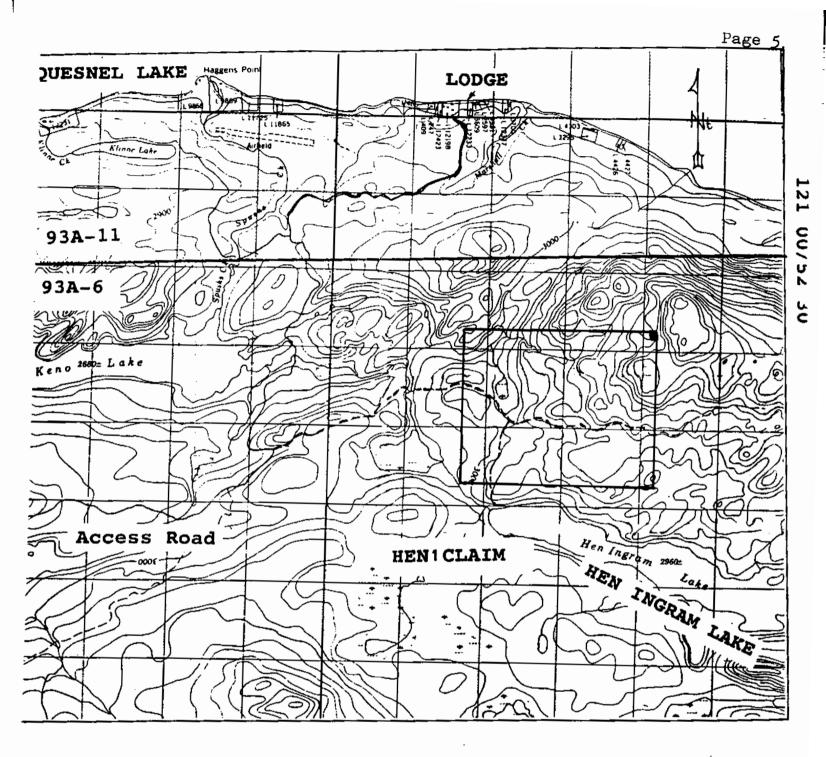
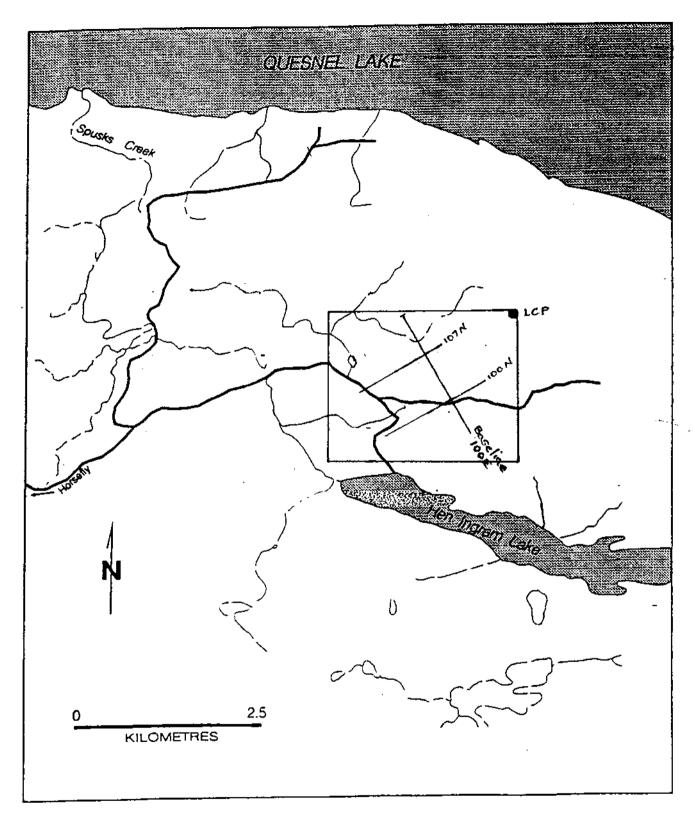



Fig. 3 Topography and claim

ŕ,

ı

0

Fig 4. Claim map. Showing Grid

3. SOIL AND ROCK GEOCHEMISTRY

3.1 Methods and results

A total of 199 soil samples, 4 rock samples and 31 follow-up drill core samples were taken and analysed at Acme Laboratory of Vancouver B.C.

Of the soils 145 samples were analysed by the 30 element ICP method. Originally the samples from these locations had previously been analyzed for gold only.

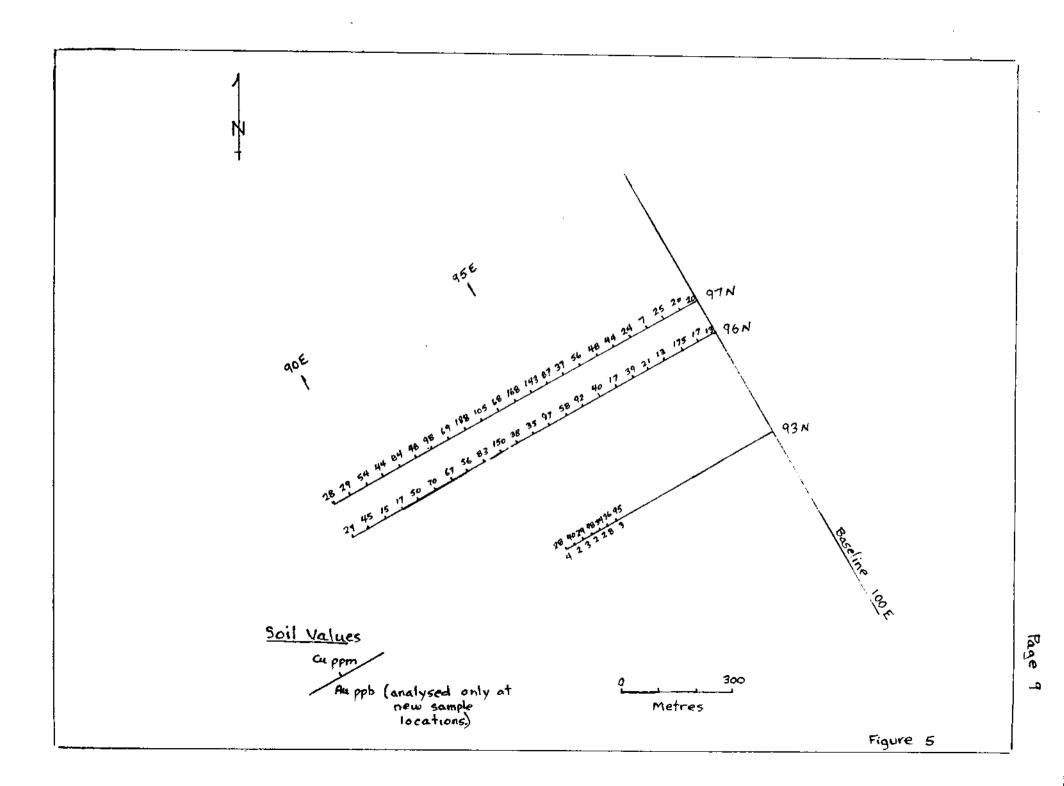
The remaining 54 soil samples were taken at previously unsampled locations and they were analysed by the 30 element ICP plus gold analysis. Refer to analysis sheets in the appendix to distinguish the two different groups of soil analysis.

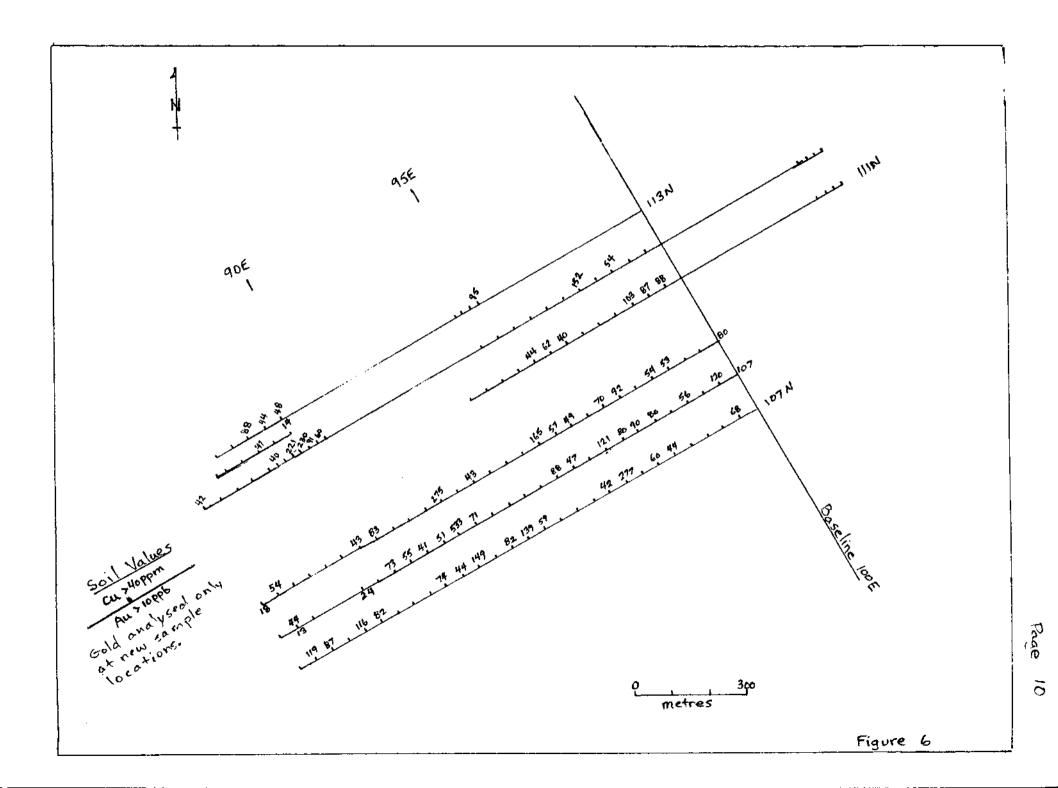
The rock samples and all follow-up drill core samples were analysed by the 30 element ICP plus gold analysis.

The soil samples consisted of B-horizon material taken from holes dug by using maddocks. Average sample depth was 25 cm.

Soil sample values vary up to 533ppm Cu on line 108N and 24ppb Au also on line 108N.

The plot of values (figures 5&6) expand the original copper soil anomaly to the northwest and to a lesser extent to the southeast.


The rock sample locations are given with the rock descriptions on page 8.


The drill core sampling results further delineate the previous anomalous zones and a few values to 280ppb Au and 240ppm Cu contribute to the previous anomalies. Analysis sheets are included in the appendix.

3.2 Rock Sample Descriptions

ļ

- BY-1 101+90N 99+65E Very fine grained dark grey dyke? About 20% fine disseminated pyrite. Cu 58ppm Au 1.4ppb
- BY-2 102+10N 97+20E Similar to BY-1 leached and microfractures with py, epidote and quartz. About 10% pyrite. Cu 18ppm Au 70.3ppb
- BY-3 102N 100+25E Float. Leached, crumbly gossanous. Cu 90ppm Au 389.7ppb

ţ

Resampling soils at original grid stations where the first samples had only gold analysis and analysing the new samples for the 30 element ICP has improved the original copper geochemical anomaly particularily to the northwest.

The limited grid expansion sampling only weakly enhanced gold or copper zones.

The drill core follow-up sampling delineated the original anomalous zones.

As outlined in the recommendations by D.G. Bailey several buried drill targets remain to be tested.

5. REFERENCES

Previous work done on the property is shown in B.C. Department of Mines assessment reports: 683,9122, 15231,18941,22898,22587,23428 and 24052.

A brief description of the work done in each of the assessment reports is listed in the History section of this report.

6. CERTIFICATE OF QUALIFICATIONS

1, Robert Yorston of 5624 Cowichan Lake road, Duncan, B. C. certify that:

- 1. I hold a B.Sc. degree in geology from U.B.C. (1972)
- 2. I have worked in Canada, U.S.A. and Mexico.
- 3. I participated in the fieldwork on the Hen 1 claim from which this report is derived.

Robert Worst

7. STATEMENT OF EXPENDITURES

.

PERSONNEL	\$
R. Yorston; Geologist 11 days @ \$300/day V. Guinet; Prospector 11 days @ \$275/day	3300 3025
DISBURSMENTS	
Analysis (Acme Laboratories) Materials and supplies Accomodation, meals Fuel 4 wheel drive truck @ \$60/day Drafting and report	2947.45 62.92 1491.91 607.52 660 500
	Total 12602.80

.

APPENDIX

ļ

ANALYTICAL RESULTS

MEME ABALS							D.		852	E. F	AST	INGS	ST.	VA	NCOL	JVER	BC	V61	1R6		PHC	NE (604)2	253-	3158	FA	C (604) 25:	3-17	16
AA LL		ACC					net		nag	EOCI emei el Avi	it l	PRO	JEC	ΓН	<u>en</u>	Fi:	Le	# A(CATE 5031 /ic Gui	13 inet	Pa	ıge	1						A	A
SAMPLE#	Мо ррп	Cu ppn	Рb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	fe X	As ppm	U ppm	Au ppm	ĩh pprn	Sr ppm	Cd ppm	Sib pipm	Bi ppm	V mcjej	Ca X	р Х	La ppm	Cr ppm	Mg %	Ba ppm	ti X	8 ppm	Al X	Na X	K X	¥ ppm
5-1 112N 89+00E 112N 89+25E 112N 89+50E 112N 89+75E	<1 7 3 2 21	1 230 91 60 20	3 11 12 17	45 220 107 295 67	<.3 2.9 .5 .5	3 252 124 119 18	4 25 16 27 3	1509 803 420	1.90 6.16 3.42 3.58 3.89	<2 10 9 5 27	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 5 3 2	67 82 47 27 29	<.5 2.7 .5 .7 <.5	<3 5 3 <3 5	3 18 7 5 12	38 128 87 91 404	.57 1.36 .72 .34 .43	.078 .091 .037 .069 .086	7 20 10 6 7	7 181 106 97 51	.59 1.71 1.22 1.17 _18	213 182 83 82 69	.13 .11 .10 .12 .10	<3 11 4 <3 <3	.99 5.11 2.23 2.82 .83	.09 .02 .02 .01	.49 .32 .16 .10 .09	<2 <2 <2 <2 <2 <2 <2
12N 94+50E 12N 95+00E 12N 95+50E 12N 96+00E 12N 96+50E	5 3 2 2 2	15 39 35 29 48	8 9 13 11	64 150 129 123 146	<.3 <.3 .5 .5 <.3	30 73 71 49 76	5 14 13 10 16	576 340 324	1.57 2.86 2.78 3.43 2.95	2 6 3 6 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 4 3 3 2	17 39 19 23 26	8 1.1 <.5 <.5 <.5	उ उ उ उ उ	3 √3 4 6 3	90 80 80 103 84	.22 .41 .25 .28 .26	.038 .216 .104 .200 .145	6 7 7 7 7	36 76 73 77 72	.68 .95 .94 .78 1.04	59 93 87 111 78	.12 .10 .09 .11 .10	3 3 3 3 3 3 3 3	.93 1.84 2.00 1.99 2.11	.01 .01 .01 .01 .01	.05 .10 .08 .08 .08	000000 00000
12N 97+00E 12N 97+50E 12N 98+00E 12N 98+50E 12N 98+50E 12N 99+00E	2 <1 1 2 1	46 152 27 54 24	14 18 12 11 9	163 159 175 114 104	<.3 <.3 .7 <,3	76 89 54 65 57	35 11 11	339 482	6.42	7 ≪2 4 ≪2 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 2 2 2 2 2 2	21 104 20 54 20	<.5 <.5 <.5 <.5	उ उ उ उ उ उ	5 16 5 <3 <3	100 203 86 79 61	.26 .86 .27 .22 .33	.180 .185 .111 .056 .067	5 3 5 7 5	87 182 101 76 52	1.20 1.79 1.14 .82 .80	83 93 63 93 98	.13 .16 .14 .12 .10	3 3 4 3 3 3 3	2.05 3.40 1.93 1.89 1.62	.01 .02 .01 .02 .01	.08 .21 .10 .07 .06	
E 112N 99+00E 12N 99+50E 12N 100+00E 11N 93+50E 11N 94+00E	1 2 1 2 1	24 37 23 39 34	9 11 8 10 10	105 141 178 107 116	.3 .5 2.4 <.3 .3	59 63 77 55 52	13	736 2006 299	2.04 2.69 2.35 2.41 2.08	23254 54	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 2 3 2	19 30 32 26 26	.5 .6 .9 .5 .8	उ उ उ उ उ	<3 3 3 4 3	62 66 67 64 58	.33 .29 .44 .33 .30	.067 .213 .135 .068 .052	5 7 4 9 10	52 51 93 64 64	.81 .81 1.21 .83 .66	98 77 114 50 103	.11 .08 .10 .09 .09	<3	1.64 1.97 2.11 1.48 1.32	.01 .01 .01 .02 .01	.06 .08 .10 .08 .07	~ ~ ~ ~ ~
11N 94+50E 11N 95+00E 11N 95+50E 11N 96+00E 11N 96+50E	32231	26 27 44 62 40	8 9 11 14 13	81 258 167 183 139	<.3 .3 <.3 .3 <.3	35 106 81 153 149	7 20 18 19 24	371 390 1493	2.17 3.31 3.20 3.39 3.47	<2 3 3 2	<8 <8 <8 <8 <8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 2 3 4 3	24 24 32 34 52	.5 .6 <.5 .9 <,5	3 3 3 3 3 3 3 3	<3 7 7 4 6	66 73 82 77 101	.29 .27 .36 .61 .55	.095 .207 .081 .045 .069	9 6 7 9 4	45 98 82 94 106	.68 1.05 1.01 1.27 2.13	76 86 79 98 71	.08 .10 .12 .11 .18	4 3 3 3 3 3	1.54 2.14 2.02 2.59 2.50	.01 .01 .01 .02 .02	.08 .09 .11 .13 .12	• • •
11N 97+00E 11N 97+50E 11N 98+50E 11N 99+00E 11N 99+50E	1 3 4 2 5	18 36 103 87 88	10 11 14 11 13	102 105 226 228 402	.3 .4 .9 <.3 .9	30 47 239 146 155	26	362 4879 553	1.71 2.76 4.86 3.67 3.73	2 2 8 7	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < <> <> <><><><><><><><><><><><><><><><><><><><>	2 2 4 3 4	21 21 65 46 41	.5 <.5 2.1 <.5 1.7	<3 <3 5 3 3	<3 <3 9 6 5	54 84 96 97 85	.27 .21 1.00 .47 .63	-082 -139 -068 -045 -036	8 7 14 6 9	53 74 97 132 93	.65 1.10 1.31 1.58 1.12	70 66 147 62 93	.09 .09 .09 .15 .10		1.05 1.80 2.56 2.26 2.47	.01 .01 .03 .02 .02	.08 .07 .19 .16 .15	* * * *
111N 100+00E 109N 89+00E 109N 89+50E 109N 90+00E 109N 90+50E	2 2 5 4 2	31 43 83 36 12	12 10 14 12 10	138 75 237	<.3 <.3 <.3 <.3 <.3	53 62 79 59 19	15 16 19 14 4	258 428 328	2.25 3.57 3.74 3.74 1.57	3 5 12 6 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 3 2	53 30 34 33 18	1.6 <.5 <.5 <.5 <.5	3 <3 3 4	<3 8 7 7 3	79 90 96 143 56	.42 .30 .66 .35 .21	.052 .107 .034 .127 .061	6 7 7 8	83 73 87 75 35	1.03 .91 .97 1.01 .37	94 70 57 107 42	.13 .11 .12 .14 .12	ব্য ব্য	1.40 2.06 2.14 1.85 .76	.01 .01 .02 .01 .01	.14 .10 .10 .09 .06	•
STANDARD DS6	11	118	32	141	<.3	23	10	703	2.73	19	9	<2	3	40	5.9	4	6	52	.82	.076	13	164	.57	152	.07	17	1.90	.08	. 15	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-HZD AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: SOIL SS80 60C Samples beginning (RE(are Reruns and (RRE) are Reject Reruns.

Ũ

Raymond Chan

07-07-2006 P04:59 DATE RECEIVED: JUN 26 2006 DATE REPORT MAILED:.....

ACE ANN VIICAL

Guinet Management PROJECT HEN FILE # A603113

Page 2

ADE MALYEICAL							_		. N																				ADE AN	WLYTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn: ppm	Fe X	As ppm	ប ppm	Au ppm	Th ppm	Sr ppm	Cd ppfil	Sb ppm	Bi ppm	V mogog	Ca X	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	8 ppm	Al X	Na X	K X	N Pipim
G-1 109N 91+00E 109N 91+50E 109N 92+00E 109N 92+50E	<1 1 3 1 2	1 18 275 24 43	3 <3 3 5 3 5 3	47 59 134 95 115	<.3 <.3 <.3 <.3 <.3	3 38 319 42 84	4 8 34 9 15	555 245 425 175 234	2.43 3.99 4.02	<2 7 22 12 8	<8 <8 <8 <8 <8	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 2 3 3	61 31 30 23 26	<.5 <.5 <.5 <.5 <.5	<3 <3 <3 3 3 3	6 7 15 15 13	41 87 151 156 120	.52 .35 .44 .36 .41	.073 .070 .045 .108 .120	6 5 4 5	7 80 161 101 112	.56 .59 1.60 .58 1.01	202 73 48 75 59	.12 .10 .15 .14 .11	८२ ८२ २२ २२ २२	.92 1.33 2.39 1.51 2.04	.08 .01 .02 .01 .01	.46 .08 .15 .06 .11	88888 8
109N 93+00E RE 109N 93+00E 109N 93+50E 109N 94+00E 109N 94+50E	2 2 2 1 2	19 19 35 40 165	7 5 21 4 <3	63 63 148 144 139	<.3 <.3 <.3 <.3 <.3	31 31 75 89 293	8 8 18 16 48	221 225 408 254 439	2.76 3.12 3.31	5 6 4 7 10	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	3 3 2 2 2	14 15 17 22 36	<.5 <.5 <.5 <.5 <.5	3 3 3 3 3 4	8 9 10 8 20	99 100 116 96 161	.20 .21 .28 .26 .38	.025 .025 .098 .101 .054	6 6 4 3	58 59 74 141 366	.56 .57 1.55 1.08 3.06	49 50 85 68 70	. 13 . 13 . 15 . 12 . 19		1.18 1.20 1.92 1.90 3.48	.01 .01 .01 .01 .01	.06 .06 .16 .07 .14	~~~~~ ~~~~~~
109N 95+00E 109N 95+50E 109N 96+00E 109N 96+50E 109N 97+00E	1 1 1 1	57 49 32 70 92	6 7 3 4 3	188 66 65 253 158	<.3 <.3 <.3 .4 <.3	112 55 48 100 76	22 11 10 23 18	352 269 224 418 344	2.58 2.47 3.77	7 7 9 13	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 3 2 3	26 27 29 31 21	<.5 <.5 <.5 <.5 <.5	4 4 ≺3 ≺3	9 11 6 14 15	125 75 80 122 118	.38 .29 .20 .34 .31	.135 .018 .024 .159 .122	3 7 4 6	244 82 75 164 109	1.50 .86 .81 1.34 .91	75 49 41 63 68	.16 .10 .10 .13 .12	3 3 3 3 3 3 3 3 3	1.97 1.63 1.40 2.32 1.89	.01 .02 .01 .01 .01	.08 .07 .06 .12 .09	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
109N 97+50E 109N 98+00E 109N 98+50E 109N 99+00E 109N 99+50E	2 1 2 1 2	34 54 53 37 35	4 5 7 7	121 125 205 128 149	<.3 <.3 <.3 <.3 <.3	46 69 80 62 49	11 13 19 13 13	904 301 366 312 495	2.69 3.30 2.77	5 6 9 8 6	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 2 3 3	42 27 30 41 43	<.5 <.5 <.5 <.5	3 3 3 3 3 3 3 3	10 8 9 9	83 80 96 85 90	.37 .20 .36 .40 .25	.087 .094 .140 .129 .034	7 6 4 7 7	68 99 119 81 63	.62 .96 .95 1.01 .79	68 57 49 79 80	.12 .10 .11 .11 .10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.68 1.89 2.17 1.57 1.52	.01 .01 .01 .01 .01	.07 .08 .10 .10 .07	8~88 8
109N 100E 108N 89+00E 108N 89+50E 108N 90+00E 108N 90+50E	2 2 4 5 3	80 26 73 55 41	10 5 7 6 8	583 96 116 78 121	.3 .6 <.3 <.3 <.3	153 36 81 40 57	20 9 15 8 13	407 200 281 144 243	3.69 4.78 3.37	8 6 10 10 7	<8 <8 <8 <8 <8 <8	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 3 2 3 3	19 16 24 19 18	1.6 <.5 <.5 <.5 <.5	<3 3 3 4 3	11 13 19 10 12	106 118 177 158 118	.23 .16 .31 .12 .16	.067 .159 .059 .021 .060	6 7 5 5 6	102 67 183 72 74	1.17 .74 1.34 .63 .77	96 49 58 37 58	.11 .11 .16 .16 .11	<3 <3	2.91 1.58 2.07 1.32 1.71	.01 .01 .01 .01 .01	.11 .07 .10 .06 .07	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
108N 91+00E 108N 91+50E 108N 92+00E 108N 92+50E 108N 93+00E	2 4 1 3 2	51 533 71 15 23	4 7 3 6 7	97 353 56 68 60	<.3 <.3 <.3 <.3 <.3	70 389 249 28 40	14 43 30 6 9	229 810 243 234 381	4.39 1.96	5 13 8 4 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	3 3 2 2 2 2	19 33 108 19 25	<.5 <.5 <.5 <.5 <.5	34333	15 20 20 7 6	132 147 134 79 76	.22 .52 1.20 .30 .32	.060 .092 .064 .046 .093	5 5 4 7 7	104 180 45 49 54	.95 1.98 3.84 .45 .42	57 71 83 45 91	.14 .16 .17 .10 .08	3 3 9 3 3	2.01 4.27 4.80 1.01 1.18	.01 .02 .18 .01 .01	.14 .15 .39 .09 .09	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
108N 93+50E 108N 94+00E 108N 94+50E 108N 95+00E 108N 95+50E	1 2 1 1	21 29 88 47 26	5 4 3 3	70 91 119 77 93	<.3 <.3 <.3 <.3 <.3	37 54 94 55 140	8 13 19 13 18	201 274 262 305 325	2.32 2.95 2.59	6 6 7 5 3	<8 <8 <8 <8 <8	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 2 4 2	14 15 21 23 32	<.5 .5 <.5 <.5 <.5	<3 5 3 3 3	9 9 6 10	75 70 88 71 79	.20 .26 .32 .24 .54	.035 .025 .098 .071 .042	7 7 8 2	56 71 143 71 159	.52 .60 1.06 .82 2.04	43 49 50 65 49	.09 .11 .11 .08 .16	<3 <3 4 <3 4	1.25 1.42 1.68 1.67 2.07	.01 .01 .01 .01 .02	.07 .07 .09 .08 .12	2 2 2 2 2 2 2
STANDARD DS6	11	121	27	139	<.3	22	9	679	2.64	19	9	<2	4	37	5.9	4	6	56	.78	.073	12	187	.53	145	.07	16	1.75	.07	.14	4

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____ FA

ΔΔ
ACHE AMALYTICAL

Guinet Management PROJECT HEN FILE # A603113

Page 3

ΔA

ACHE ANALYTICAL	<u></u> .																												ADE A	PLYTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn. ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	⊺h pprn	Sr ppm	Cd ppm	sb ppm	8i ppm:	v ppm	Ca %	Р %	i.a ppm	Cr ppm	Mg X	Ba ppm	Ті %	8 ppm	Al X	Na X	K X	u ppm
-1 108N 96+00E 108N 96+50E 108N 97+00E 108N 97+50E	<1 1 1 1	2 121 80 90 80	<3 8 7 <3 5	42 94 147 102 98	<.3 <.3 <.3 <.3 <.3	3 159 110 170 97	4 29 24 30 21		1.90 5.02 4.91 6.23 3.34	<2 7 11 8 10	<8 10 <8 <8 <8	∾∾∾∾∾ ∾	5 2 3 3	65 34 28 29 22	<.5 <.5 <.5 <.5 <.5	<3 3 3 3 3 3	3 14 13 20 5	36 226 145 180 81	.55 .82 .24 .55 .30	.075 .159 .242 .183 .089	7 4 4 5	7 334 220 316 111	.56 2.26 1.46 2.75 1.10	210 68 69 71 61	. 12 . 19 . 15 . 16 . 12	4 33 33 3	.95 2.88 2.65 3.22 2.09	.09 .01 .01 .01 .02	.48 .10 .09 .09 .11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
08N 98+00E 08N 98+50E 08N 99+00E 08N 99+50E 08N 100+00E	1 *1 1 1 1	36 55 14 120 107	10 12 5 7 7	72 117 44 171 132	.3 .3 <.3 <.3 <.3	43 130 27 85 66	8 23 9 30 34	256 740 339 485 1134	2.53 4.55 2.24 4.75 4.70	8 12 5 6 4	< 8 8 8 8 8 8 8	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 2 2 2 2 2 2 2 2 2 2 2	20 130 20 55 29	<.5 <.5 .6 <.5 <.5	3 13 5 4 3	4 2 3 15	69 154 101 142 117	.27 .61 .45 .47 .36	.073 .110 .055 .178 .094	7 3 4 3 5	71 197 41 173 40	.67 2.07 .64 1.24 .77	61 84 110 97 99	.11 .22 .20 .18 .20	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1.52 2.51 1.42 2.68 2.27	.01 .02 .02 .02 .02	.07 .16 .07 .19 .21	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
07N 89+00E 07N 89+50E 07N 90+00E 07N 90+50E 07N 90+50E 07N 91+00E	2 1 2 3 4	13 11 19 74 44	4 7 11 5 4	49 37 39 76 95	<.3 <.3 <.3 <.3 <.3	15 14 23 71 55	5 4 7 15 12	183 120 172 326 230	2.18 1.29 2.04 3.05 3.64	5 5 4 9	<8 <8 <8 8 <8	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 3 3	17 16 22 32 29	<.5 <.5 <.5 <.5 <.5	<3 <3 <3 4 3	4 3 5 4 7	70 52 70 87 115	.24 .23 .21 .40 .27	.053 .032 .055 .104 .120	6 7 8 7 7	39 31 45 83 89	.26 .29 .42 1.03 .76	28 39 51 80 91	.10 .11 .11 .12 .13	<3 <3 <3 4 4	.86 .74 .95 1.89 1.88	.01 .01 .01 .01 .01	.05 .05 .07 .11 .09	8 8 8 8 8 8 8 8 8 8
07N 91+50E 07N 92+00E 07N 92+50E 07N 93+00E E 107N 93+00E	2 3 5 2 2	149 23 82 139 138	6 10 <3 6 6	118 62 26 70 71	<.3 <.3 <.3 <.3 <.3	134 42 62 134 134	25 7 8 23 23	205 348	4.30 2.62 5.61 3.64 3.59	7 7 5 8 8	9 <8 <8 <8 <8	< < < < < < < < < < < < < < < <> <> <> <	< 3 <2 3 3 3	25 24 24 36 36	<.5 <.5 <.5 <.5 <.5	3 <3 5 4 3	13 3 18 8 7	129 100 192 106 107	.37 .17 .59 .49 .50	.135 .093 .088 .068 .068	4 7 4 5 5	156 72 70 184 193	1.88 .58 1.47 1.66 1.67	96 51 68 64 64	.15 .12 .25 .16 .16	उ उ उ उ	2.12 1.32 2.00 2.14 2.16	.02 .01 .02 .02 .02	.11 .06 .14 .21 .21	< < < < < < < < < < < < < < < < <> </td
17N 93+50E 17N 94+00E 17N 94+50E 17N 95+00E 17N 95+50E	12 4 1 2 2	59 14 18 34 42	5 6 3 4 4	113 218 53 83 157	<.3 <.3 <.3 <.3 <.3	136 49 32 48 168	24 12 9 11 32	950 543 299 374 315	3.83 2.43 2.03 2.86 3.44	12 7 7 3	<8 <8 <8 <8 <8	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 3 2 2 2	39 16 18 24 122	<.5 .7 <.5 .6 <.5	3 <3 3 3 4	7 3 3 3 8	215 172 57 86 89	.59 .27 .27 .40 .38	.125 .173 .073 .056 .051	4 5 8 4	150 70 56 71 120	2.12 1.34 .61 .88 1.90	59 40 58 51 102	.13 .10 .10 .15 .16	<3 6 <3 4 3	2.49 1.80 1.13 1.57 2.51	.02 .01 .01 .01 .02	.10 .05 .08 .11 .17	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7N 96+00E 7N 96+50E 7N 97+00E 7N 97+50E 7N 98+00E	1 1 2 1 2	277 14 60 44 23	8 12 <3 6	116 102 154 56 224	<.3 <.3 <.3 <.3 <.3	159 38 28 19 43	28 10 11 7 12	430 185 429 176 290	6.00 2.93 3.64 2.31 2.60	4 3 2 2 4	9 <8 12 <8 <8	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 3 2 2	23 13 48 19 223	<.5 .5 <.5 <.5 .5	7 <3 3 3 <3	19 5 7 4 3	207 81 73 50 64	.46 .17 .25 .27 .48	.168 .088 .158 .073 .062	5 7 9 7 7	228 65 36 26 54	2.15 .46 .53 .66 .67	61 91 99 66 165	-23 .12 .11 .13 .17	3 3 3 3 3 3 3	3.94 1.99 1.75 1.29 2.14	.01 .01 .02 .02 .02	.27 .06 .10 .11 .16	8 8 8 8 8 8 8 8 8 8
17N 98+50E 17N 99+00E 17N 99+50E 17N 100+00E 17N 100+00E 1N 89+00E	1 2 2 1 2	11 33 68 27 28	6 5 8 7 3	67 82 105 130 55	<.3 <.3 .3 <.3 <.3	20 43 104 84 33	6 9 19 17 7	390 318 457 359 157	1.45 2.30 3.28 2.94 2.27	3 4 13 8 2	<8 8 <8 8 8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 3 4 3	18 21 24 22 22	<.5 <.5 <.5 <.5 <.5	<3 <3 3 4 4	<3 3 8 5 6	46 65 97 70 56	.28 .27 .38 .24 .35	.054 .033 .077 .118 .046	7 8 6 8 9	46 59 108 84 57	.37 .78 .98 .93 .53	64 52 50 90 36	.08 .10 .13 .10 .09	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	.87 1.34 1.74 1.87 1.27	.01 .01 .01 .01 .01	.06 .09 .13 .08 .08	~~~~~
TANDARD DS6	11	119	29	134	<.3	23	10	699	2.70	22	8	<2	4	39	6.0	4	6	51	.80	.074	13	186	.55	151	.07	15	1.81	.08	.15	3

Sample type: SOIL SSB0 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Guinet Management PROJECT HEN FILE # A603113

Page 4

Data A FA

ADE ANALYTICAL																				<u> </u>									ADE AN	NYTICAL
SAMPLE#	Mo ppm	Cu ppm	РЪ ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	ย ppn	Au ppm	Th ppm	Sr ppn	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	Р Х	La ppm	Cr ppm	Mg %	8a ppm	Ti %	8 ppm	Ał X	Na X	К Х	u ppn
G-1 97N 89+50E 97N 90+00E 97N 90+50E 97N 91+00E	<1 1 2 2 2	1 29 54 44 84	4 6 6 11	42 66 90 96 237	<.3 <.3 <.3 <.3 <.3	3 46 66 68 128	4 10 13 16 30	526 231 424 267 425	1.80 2.02 2.79 2.51 4.56	<2 2 3 10	<8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 3 4 2	57 16 29 17 38	<.5 <.5 <.5 <.5	3 2 2 2 2 3 2 3	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	34 48 68 58 137	.51 .29 .48 .26 .30	.071 .065 .028 .058 .137	6 9 12 8 5	6 43 60 50 87	.56 .64 .78 .74 1.39	200 36 59 38 78	.12 .07 .09 .09 .15	<3 3 3 3 3 3	.89 1.23 1.87 1.62 2.43	.08 .01 .02 .01 .02	.45 .07 .07 .07 .11	~~~~~
97N 91+50E 97N 92+00E 97N 92+50E 97N 93+00E 97N 93+50E	1 3 6 2	48 98 69 188 105	<3 9 7 10 5	55 71 84 124 217	<.3 <.3 <.3 <.3 <.3	41 66 58 144 139	18 15 12 25 34	496 227 306 314 434	4.77 3.24 3.50 4.48 4.42	6 5 5 10 6	<8 <8 <8 <8	~~~~~ ~~~~~	<2 5 3 5 2	54 18 25 21 62	<.5 <.5 <.5 <.5 <.5	3 <3 <3 <3 <3	<3 <3 <3 <3 <3	154 87 105 125 129	.52 .13 .18 .16 .35	.079 .043 .074 .063 .036	2 9 7 11 4	102 59 54 80 214	1.90 .76 .70 1.18 3.00	155 47 69 67 39	.34 .11 .10 .13 .22	4 <3 <3 4 6	2.80 2.29 2.09 2.91 3.20	.02 .01 .01 .01 .01	.19 .06 .06 .09 .05	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
97N 94+00E 97N 94+50E 97N 95+00E 97N 95+50E 97N 95+50E 97N 96+00E	5 14 7 11 6	68 168 143 87 37	7 6 7 12 7	87 126 125 151 238	.3 <.3 <.3 <.3 <.3	53 39 106 69 54	18 20 20 12 13	378 346 410 482 401	4.96 13.36 5.94 4.83 2.78	9 10 5 13 7	<8 <8 <8 <8 <8	~~~~~ ~~~~~~~	3 4 3 5 3	36 27 28 28 23	<.5 <.5 <.5 <.5 1.3	<3 <3 <3 4 <3	<3 <3 <3 <3 <3 3	196 202 185 199 74	.18 .25 .25 .20 .32	.098 .216 .093 .139 .093	5 7 8 8	46 36 64 67 45	.61 .27 1.00 .76 .63	65 82 78 100 71	.11 .09 .11 .10 .08	5 7 <3 4 <3	2.03 2.27 2.89 2.81 1.64	.01 .01 .01 .01 .01	.09 .06 .07 .08 .10	~~~~~
RE 97N 96+00E 97N 96+50E 97N 97+00E 97N 97+50E 97N 98+00E	5 2 3 2 3	38 56 48 44 24	10 6 7 7 6	187	<.3 <.3 <.3 <.3 <.3	55 75 60 55 41	14 16 14 11 11	409 363 302 188 263	2.82 3.21 2.25 2.80 2.01	6 5 3 4 3	<8 <8 <8 <8 <8	<>> <> <> <> <> <> <> <> <> <> <> <> <>	4 3 3 3 3	23 17 13 15 15	1.5 .7 <.5 .5 <.5	८३ ८३ ८३ ८३ ८३	3 3 3 3 3 3	75 81 68 88 52	.32 .25 .19 .26 .27	.093 .162 .035 .045 .049	7 7 8 7 8	46 50 40 52 35	.64 .70 .62 .53 .59	72 82 61 32 46	.08 .09 .08 .08 .07	उ उ उ उ उ उ उ उ उ उ	1.68 2.03 1.62 1.43 1.24	.01 .01 .01 .01 .01	.10 .10 .07 .07 .06	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
97N 98+50E 97N 99+00E 97N 99+50E 97N 100+00E 96N 89+00E	2 2 3 2	7 25 20 20 29	5 10 6 9 8	59 110 100 82 84	<.3 <,3 <.3 <.3 <,3	18 47 37 29 51	5 30 8 6 16	722 235 244 239 290	1.63 2.50 2.56 2.34 2.44	<2 3 4 2 2	<8 <8 <8 <8 <8	<2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	3 4 3 3 4	21 25 15 15 16	<.5 <.5 <.5 <.5 <.5	3 3 3 3 3	3 3 3 3 3 3 3 3 3	50 60 63 73 56	.23 .19 .20 .29 .26	.044 .055 .091 .045 .072	7 8 8 8 9	24 38 36 35 51	.26 .58 .48 .61 .73	57 71 72 61 55	.07 .07 .08 .07 .08	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.87 1.83 1.75 1.67 1.40	.01 .01 .01 .01 .01	.04 .07 .07 .06 .06	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
96N 89+50E 96N 90+00E 96N 90+50E 96N 91+00E 96N 91+50E	1 2 2 3	45 15 17 50 70	5 3 5 7 5	82 82 101 163 121	<.3 <.3 <.3 <.3 <.3	59 29 36 62 88	15 7 8 14 15	501 167 235 445 336	2.23 1.84 2.10 3.78 3.93	2 2 3 4 4	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 2 3 4	22 15 13 17 16	.6 <.5 <.5 .5 <.5	<3 4 3 ≪3	3 3 3 3 3 3 3	55 48 59 98 104	.40 .28 .21 .31 .25	.023 .041 .049 .122 .072	13 8 10 6 7	53 35 36 60 75	.75 -40 .52 .66 .84	48 25 44 64 80	.09 .07 .08 .11 .12	6 3 3 3 3 3 3	1.37 1.01 1.21 2.42 3.20	.02 .01 .02 .01 .01	.07 .06 .05 .07 .10	2 2 2 2 2 2 2 2 2 2 2 2
96N 92+00E 96N 92+50E 96N 93+00E 96N 93+50E 96N 93+50E	2 <1 3 11 4	67 56 83 150 38	4 <3 4 6 3	142 159 86		95 27 94 23 52	25 24 21 10 14	465 1075 272 516 349	4.18 4.71 3.34 10.01 3.22	4 <2 16 4	<8 <8 <8 <8 <8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2 <2 3 2 2	29 27 20 20 16	.6 <.5 <.5 <.5 <.5	८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८	<3 <3 <3 <3 <3	129 158 85 293 99	.43 .41 .24 .22 .22	. 142 . 124 . 029 . 187 . 053	5 3 8 6 7	65 32 55 51 47	_94 1.17 .77 .31 .64	74 151 48 61 58	.15 .27 .11 .13 .10	5 5 4 7 3	2.27 2.21 2.01 1.92 1.75	.02 .02 .01 .01	.09 .28 .07 .04 .07	< < < < < < < < < < < < < < <> </th
STANDARD DS6	11	115	32	138	<.3	23	10	701	2.72	19	<8	<2	4	39	5.8	3	5	50	.80	.076	12	161	.57	150	.07	17	1.85	.08	. 15	4

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

T T
ACHE ANALTTICAL

Guinet Management PROJECT HEN FILE # A603113

Page 5

ACHE AMPLITICAL		<u> </u>																											ACRE A	MUTTICAL
SAMPLE#	Мо ррп	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррп	Mn ppm	Fe %	As ppm	U Inqq	Au ppm	Th ppm	Sr ppm	Cđ ppm	Sb ppm	Bi ppm	۷ هېرو	Ca %	P %	ίa ppm	Cr ppm	Mg %	Ba ppm	Ti X	B ppm	Al X	Na X	K X	W ppm
G-1	<1		<3	45	<.3	3	4	580	1.96	2	<8	<2	5	66	<.5	4	<3	38	.57	.076	7	7	.58	211	.13	5	.97	.09	.48	<2
96N 94+50E		35	10	96	<.3	47	10	267	2.30	5	<8	<2	ž	14	<.5	<3	3	67	.21	.049	7	47	.46	59	.09	í.	1.60	.01	.05	~2
96N 95+00E	5	97	8	147	<.3	94	20	529	2.83	5	<8	<2	ž	35		<3	<3	88	.39	.020	7	66	1.03	73	.18	6	1.75	.03	.06	5
96N 95+50E	1 5	58	ĕ	183	<.3	85	24	880	3.85	6	<8	<2	4	24	.5	<3	5	101	.27	.049	8	57	.63	119	.13	5	2.65	.02	.11	<2
96N 96+00E	6	92	6	162	<.3	77	21	465	4.67	6	<8	<2	ź	28	<.5	3	8	121	.33	.067	7	50	.67	85	.10	4	2.35	.01	.08	<2
96N 96+50E	4	40	12	175	<.3	59	13	334	2.70	6	<8	<2	4	14	<.5	4	<3	76	.24	.045	10	43	.73	92	.08	3	2.08	.02	.08	<2
96N 97+00E	7	17	13	26	<.3	7	2	276	2.52	18	<8	<2	<2	12	<.5	3	<3	148	.08	.036	6	26	.07	74	.07	<3	.65	.01	.03	<2
96N 97+50E	4	39	11	376	<.3	69	18	687	3.13	8	<8	<2	3	40	2.1	<3	<3	111	.38	,109	8	48	.64	105	. 10	3	1.84	.01	.10	2
RE 96N 97+50E	4	37	10	370	<.3	68	17	684	3.09	7	<8	<2	- 3	39	2.0	<3	<3	108	.37	.109	8	48	.63	103	.10	5	1.84	.01	.10	<2
96N 98+00E	4	21	8	113	<.3	38	8	270	2.20	5	<8	<2	3	15	.5	<3	<3	76	.25	.037	8	38	.50	62	.10	<3	1.12	.01	.05	<2
96N 98+50E	3	13	11	113	<.3	22	5	149	2.19	5	<8	<2	3	14	.6	3	<3	65	.20	.119	8	33	.34	52	.09	4	1.31	.01	.05	<2
96N 99+00E	7	175	12	257	<.3	276	23	3971	4.77	8	<8	2	6	- 47	<.5	- 3	5	105	.65	.090	30	121	1.32	199	.06	17	4.39	.02	.25	<2
96N 99+50E	4	17	6	87	<.3	27	7	187	2.52	5	<8	<2	2	13	<.5	<3	<3	- 77	.18	.045	9	37	.47	47	. 10	<3	1.38	.01	.05	<2
96N 100E	4	13	8	89	<.3	25	7	180	2.60	- 4	<8	<2	2	10	<.5	<3	- 3	- 74	. 15	.020	8	- 36	.41	41	. 10	3	1.34	.01	.05	2
STANDARD DS6	12	120	28	133	<.3	23	10	692	2.65	21	<8	<2	3	- 39	5.7	5	6	51	.78	.073	12	158	.54	147	.07	16	1.80	.07	.15	4

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns' and 'RRE' are Reject Reruns.

				<u></u>		G	<u>11n</u>	<u>et</u>	<u>Ma</u> 31	nac O Ni										Fi Subn							Pa	ige	1									
AMPLE#	Мо ррл	Cu ppm	Pt		-		i Co n ppr		tri F										V ppm				Cr ppm										Sc ppm p					nple gm
-1 13N 87+00E 13N 87+50E 13N 88+00E 13N 88+50E	1.4 1.6 2.7	27.6 34.4 88.4	7.1 7.6 6.2	74 135 125	.2 .3 .3	77. 65. 104.	7 8.3 0 16.9 6 23.3	7 21 5 21 7 34	57 1.7 19 2.2 33 3.1 17 3.2 50 3.1	63 44 27	.7 .9 .9	.3 .4 .7	3.0 2.2 7.3	1.9 2.3 2.8	20 21 18	.5 .5 .4	.5 .7 .9	.1 .2 .1	74 89 98	.22 .25 .25	.032 .159 .040	8 8 10	61 77 96	.76 .94 1.06	49 95 72	.124 .106 .118	2 1 4	1.29 2.11 2.43	.010 .013 .010	.07 .09 .09	.2 .2 .2	.02 .03 .03	1.9 2.8 3.9	.1 . .1 . .2 .	.06 .06 .06	7.	5 5 9	5.0
13N 89+00E 13N 94+25E 13N 94+50E 13N 94+75E 13N 95+00E	1.2 .9 1.9	16.0 21.0 36.4	10.1 15.6 16.4	249 336 234	.4 .3 .7	15. 42. 58.	6 8.3 4 12.3 6 15.3	7 5! 7 94 2 41	50 3.2 54 2.6 11 2.7 32 3.0 94 3.4	03 92 33	.0 .4 .2	.3 .3 .4	.5 1.4 2.8	1.8 1.3 2.1	24 143 105	.6 .6 .4	.6 .3 .8	.3 .2 .3	45 55 68	. 19 . 66 . 45	.158 .099 .062	10 7 9	21 33 41	.32 1.02 .83	56 87 69	.090 .142 .154	<1 2 2	1.29 2.12 2.07	.009 .016 .011	.05 .13 .12	.2 .2 .3	.02 .02 .05	2.8 4.7 4.3	.1<. .2 .2<.	.05 .08 .05	8 <. 10 . 9 1.	5 8 1	15.0 15.0 15.0
12+50N 86+65E 12+50N 87+00E 12+50N 87+50E 12+50N 88+00E 12+50N 88+50E	1.5 1.4 1.8	25.9 46.9	6.5 7.2 6.8	137 188 148	.3 .1 .2	58. 54. 72.	2 15. 8 11. 3 15.	4 21 8 20 9 31)2 3.0 79 2.6 55 2.7 23 2.7 76 2.9	04 03 94	.6 .3 .4	.3 .4 .5	2.8 1.4 4.8	1.9 2.2 2.9	30 25 20	.7 .6 .6	.7 .5 .7	.2 .2 .2	80 81 72	. 40 . 30 . 25	.142 .103 .072	7 8 9	62 58 81	.93 .82 1.00	60 67 82	.112 .119	2 2 2	1.61 1.62 2.18	.009 .012 .012	. 09 . 08 . 09	.2 .2 .2	.02 .02 .04	2.5	.1<. .1<. .1<.	.05 .05 .05	7.7	5 5	5.0
12+50N 89+00E 12N 86+00E 12N 86+50E 12N 87+00E 12N 87+50E	1.6 1.5 1.4	41.6 21.1 12.7	5.7 6.8 5.7	228 130 65	.4 .3 .3	83. 46. 26.	521. 010. 16.	1 3: 8 44 6 18)8 2.5 18 3.6 18 3.1 18 3.1 34 1.7 70 2.9	54 05 51	.4 .3 .9	.3 .4 .3	3.7 5.9 2.4	2.0 2.0 1.6	22 22 19	.9 .5 .4	.8 1.0 .4	.1 .2 .1	94 86 66	.28 .29 .29	.063 .095 .057	7 7 7	87 59 48	1.25 72 53.	122 106 49	.120 .116 .117	4 2 <1	2.39 1.74 1.10	.012 .009 .010	.10 .08 .07	.2 .3 .2	.03 .04 .01	3.4 2.7 1.8	.1<. .1<. .1<.	.05 .05 .05	8 <. 8 <. 7 <.:	5 1 5 1 5 1	15.0 15.0 15.0
112N 88+00E 112N 88+25E 112N 88+50E 112N 88+75E 112N 88+75E 112N 104+25E	1.3 .8 6.1	8.7 221.3	5.6 6.7 14.7	89 41 202	.1 .2 3.9	54. 18. 243.	6 14. 9 5. 8 28.	2 39 3 11 7 23	26 2.4 26 3.2 79 .8 59 6.3 26 2.1	43 61 613	.6 .2 .5 5	.4 .2 .0	7.3 <.5 6.8	1.8 1.4 4.9	17 13 61	.3 .8 2.8	.6 .2 2.1	.1 .1 .4	101 29 144	.30 .19 1.32	.093 .023 .078	6 8 30	81 37 196 :	1.21 .30 1.88	70 37 178	.169 .065 .119	1 1 11	1.99 .58 4.45	.014 .008 .016	.09 .05 .32	.1 .1 .2	.02 .01 .27	1.1 12.6	.1 . .1<.	.06 .05 .11	4 <. 12 4.	5 5 3	15.0 15.0 7.5
12N 104+50E 112N 104+75E RE 112N 104+75E 112N 105+00E 111N 104+25E	2.3 2.1 1.7	32.3 32.4 18.3	16.6 15.9 4.6	172 174 142	.8 .8 .4	20. 20. 19.	75.0 05.0 19.0	6 7(8 7) 0 7)	00 2.8 51 2.8 58 2.9 29 2.9 34 2.7	83 23 33	.3 .6 .0	.5 .5 .3	5.2 2.8 .8	2.0 2.0 1.5	164 163 39	.4 .5 .5	.6 .5 .9	.2 .2 .1	56 58 62	. 37 . 37 . 22	.219 .224 .080	7 7 6	34 34 25	.56 .57 .89	208 198 66	.084 .084 .117	<1 1 <1	2.84 2.80 1.87	.021 .021 .011	.14 .14 .06	.2 .2 .1	.14 .13 .03	3.2 3.5 3.7	.2<.	05 05 05	91. 102.	6 0 9 1	7.5 7.5
111N 104+50E 111N 104+75E 111N 105+00E 109N 86+00E 109N 86+50E	1.6 2.2 1.2	20.5 37.8 19.8	7.] 9.7 5.7	135 273 61	1.0 .5 .1	33. 84. 24.	37. 117. 47.	0 4) 2 5) 9 2)	13 2.4 27 1.9 54 3.7 22 1.8 48 4.9	91 34 13	.6 .2 .8	.3 .3 .3 1	1.5 .7 7.5	1.6 1.9 1.7	23 53 17	.4 .7 .4	.4 1.0 .4	.2 .2 .1	72 85 54	.23 .24 .19	.038 .148 .070	7 7 7	57 78 34	.73 .88 .34	55 96 50	.118 .104 .080	1 1 1	1.51 2.55 .93	.009 .011 .008	.07 .10 .06	.2 .3 .1	.04 .03 .01	2.9 2.8 1.5	.1<. .2<. .1<.	.05 .05 .05	8 11 5 <	7 1 5 1	
STANDARD DS7	20.7	105.7	74.(396	1.0	<u>54</u> .	58.	9 5	92 2.2	9 48	.4 5	.0 6	5.9	4.5	73	6.1	6 .5	4.9	85	. 68	.078	13	163	1.07	372	.129	42	.95	.079	. 44	3.7	.21	2.5	4.1.	24	53.	3 1	5.0
GROUP 1DX - 1 (>) CONCENTRA - SAMPLE TYPE	TION	EXCE	DS I	IPPE	R LI	MITS	. SO	ME 🤉	2-2-2 (INER/ hing /	LS I	1AY	BE 1	PART	IAL	LY /	ATTA	CKEC).	REFR	ACTO	RYA) <u>Jins.</u>	ið gi	RAPHI	ITIC	SAM	ANAL PLES	CAN	LIM	LCP-M It Au	IS. I SOL	UBII	_ITY			A I	1		CE

Data LA

AA ANALYTICA		Guinet Management	PROJECT HEN FILE # A603111	Page 2 AA
SAMPLE#	Mo Cu Pb Zn Ag ppm ppm ppm ppm ppm		Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B A ppm ppm ppm ppm ppm \$ \$ \$ ppm \$ ppm \$ ppm \$ ppm	1 Na K W Hg Sc T1 S Ga Se Sample \$ \$ \$ ppm ppm ppm ppm \$ ppm ppm gm
G-1 109N 87+00E 109N 87+50E 109N 88+00E 109N 88+50E	1.5 12.2 5.1 30 .2 2.1 13.8 4.1 60 <.1	9.4 2.8 57 1.25 1.8 .2 2.5 16.8 4.1 92 2.03 2.7 .3 2.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 .081 .46 .1 .01 2.0 .4 .05 5 .5 15.0 9 .004 .03 .1 .02 1.0 <.1 .05 3 <.5 15.0 2 .005 .03 .2 .02 1.1 .1 <.05 5 .6 15.0 1 .007 .04 .2 .02 1.3 .1 <.05 6 .5 15.0 7 .009 .08 .2 .03 2.4 .2< .05 8 <.5 15.0
108N 85+00E 108N 85+50E 108N 87+00E 108N 88+50E 107N 85+00E	1.7 43.6 6.1 91 .2 1.0 15.4 6.1 66 .2 4.5 33.8 6.6 78 .2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 .007 .06 .2 .01 1.6 .1<.05 4 .5 15.0 12 .010 .07 .1 .01 1.9 .1<.05 6 .8 15.0 9 .007 .05 .2 .02 1.5 .1<.05 5 <.5 15.0 6 .011 .06 .3 .03 1.9 .1<.05 7 1.1 15.0 2 .005 .05 .2 .01 1.4 .1<.05 8 .6 15.0
107N 86+50E 107N 87+00E 107N 87+50E 107N 88+00E 107N 88+50E	2.9 87.0 6.7 122 .6 .6 7.9 3.2 54 .2 3.1 115.6 9.2 153 .8	94.0 14.2 215 3.66 3.6 .1 1.3 100.5 18.7 746 3.58 8.4 3.7 6.2	2.2 38 .6 .7 .2 100 .48 .042 10 83 1.13 58 .131 3 1.9 .8 .37 .4 .1 .1 126 .79 .109 3 89 1.71 106 .330 3 2.0 2.6 .46 1.1 .7 .2 .86 .59 .047 20 .84 .82 .85 .107 3 2.5	6 .012 .13 .4 .02 4.6 .2<.05 10 .9 15.0 8 .019 .09 .2 .04 3.4 .1<.05 7 .5 15.0 4 .020 .20 <.1 .01 1.6 .2<.05 13 <.5 15.0 1 .015 .13 .2 .08 5.2 .2<<.05 7 .7 7.5 2 .015 .10 .2 .05 3.4 .1<<.05 7 1.0 15.0
93N 93+75E 93N 94+00E 93N 94+25E 93N 94+50E 93N 94+50E 93N 94+75E	1.5 40.4 5.4 118 .1 2.1 28.9 6.2 123 .1 1.2 48.3 4.9 160 .2	47.910.72082.682.9.44.366.218.32963.173.3.42.283.414.22542.603.5.42.684.314.64222.041.6.71.763.515.22743.544.6.42.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 .010 .05 .2 .04 1.9 .1<.05 .7 <.5 15.0 5 .015 .08 .2 .02 2.4 .1<.05 .8 <.5 15.0 2 .014 .06 .2 .02 2.2 .1<.05 .6 .7 15.0 9 .017 .06 .1 .02 .3.3 .2<<.05 5 .5 15.0 6 .014 .06 .2 .02 2.5 .1<<.05 11 .8 7.5
RE 93N 94+75E 93N 95+00E 93N 95+25E STANDARD DS7	1.8 36.4 8.2 168 .1 1.9 94.8 8.0 215 .2	164.3 40.0 727 2.90 3.7 .7 3.4	2.0 30 .5 .4 .2 88 .31 .095 7 56 .68 95 .117 1 1.9	7 .015 .07 .2 .02 2.4 .1< .05 11 .9 7.5 6 .015 .08 .1 .03 1.9 .1 .05 .9 <.5 15.0 6 .015 .10 .2 .03 3.7 .3 .05 7 .5 15.0 7 .074 .44 4.0 .22 2.3 4.7 .22 5 4.1 15.0

Sample type: SOIL SS80_60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACHE ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

Raymond Chan

GEOCHEMICAL ANALYSIS CERTIFICATE

Guinet Management PROJECT HEN File # A603112 -

310 Nigel Ave, Vancouver BC V5Y 2L9 Submitted by: Vic Guinet

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppn	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	b) mqq	Sb ppm	8i ppm	V ppm	Ca %	P X	La ppm	r ppm	Mg X	Ba ppm	⊺i %	8 ppm	Al X	Na X	K X	¥ مرح
G-1	<1	2	6	46	<.3	3	4	590 2	.05	<2	<8	<2	5	88	<.5	<3	<3	37	.65	.070	12	12	.61	224	. 14	<3	1.21	. 14	.56	<2
BY-1	2	58	6	7	<.3	37	7	90 1	.84	3	<8	<2	4	37	<.5	<3	<3	24	.58	.080	17	33	.27	65	.16	<3	.60	.12	.10	<2
8Y-2	1	18	<3	40	<.3	13	3	144 1	.72	8	<8	<2	3	5	<.5	<3	<3	9	.36	. 098	9	7	.04	27	.17	<3	. 18	.05	.06	<2
BY-3	3	90	5	7	.5	15	9	271 7	.33	<2	<8	<2	<2	8	<.5	4	<3	22	.15	.076	12	14	.28	46	.17	<3	.48	.01	.16	<2
STANDARD DS7	19	101	67	398	.8	51	8	641 2	.39	44	<8	<2	5	76	5.8	5	4	80	.96	.073	13	161	1.07	385	.13	35	1.04	.08	.45	4

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: ROCK R150

2006-07-10 MICERE DATE RECEIVED: JUN 26 2006 DATE REPORT MAILED:.....

ACME ANALYTICAL LABORATORIES LTD. (IBO 9001 Accredited Co.) 852 B. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Guinet Management PROJECT HEN File # A603112 319 Nigel Ave, Vancouver BC V5Y 2L9 Submitted by: Vic Guinet

SAMPLE#	Au* ppb
G-1 BY-1 BY-2 BY-3 STANDARD AU-R	.9 1.4 70.3 389.7 448.6

AU* GROUP 3A - IGNITED, ACID LEACHED, ANALYZED BY ICP-MS. (15 gm) - SAMPLE TYPE: ROCK R150

DATE RECEIVED: JUN 26 2006 DATE REPORT MAILED:.....

2005-07-19 110:38

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 B. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 PAX (604) 253-1716

Clarence Leo

GROCHENICAL ANALYSUS CERTIFICATE

Guinet Management PROJECT HEN File # A507141 310 Niget Ave, Vercouver BC V3Y 2L9 Submitted by: Vic Guinet

SAMPLE#	No Cu ppm ppm					Mn ppm						Sr Cd pm ppm				Ce X		La Cr ppm ppm		Ba ppm	71 %		AL X	Na X		W	Au* : ppb	Sample ki
i-1	1 <1	6	30 < 3	3	4	401			-			50 <.5				37	043	6 7			.11	· · ·	.81	0/	.43		.6	
DH 95-2 30.5-31.7			47 <.3		•											1.03	.135	5 204	2 00	45	16	21	1.65		.43	_		1.6
DH 95-2 38.8-40.8	21 70					55	1.14	12	<8	<2	4	9 <.5	đ	3	36	-60	.092	29 21	. 11	24	.19	18	.14		.09			4.6
DH 95-2 45.1-48.8			<1 <.3									8 <.5						26 12			.18			.05	.08	_		7.5
DH 95-2 53.5-55.5	17 207											6 <.5				.49	.084	25 11			.16			.05	.07		6.3	2.9
DH 95-3 5,5-6.7	4 117	ব	5 <.3	18	17	274	2.08	4	<8	<2	2	15 <.5	ব	ব	22	.96	.084	12 21	- 19	42	. 16	<3	.32	.06	.09	<2	2.1	1.1
DH 95-3 10.7-12.2	4 127	6	11 <.3	27	21							29 <.5						12 32		112	.18	4		.07				1.8
DH 95-3 25.2-26.7	3 216		5 <.3									9 <.5				.54	.087	6 39	.25	36	.16	4	.21	.04	.09		4.1	
DH 95-3 26.7-28.3	2 133		8 <.3									33 <.5				.65	.101	13 51	.68	62	.16	3	.63	.09	.31	<2	9.1	3.0
DH 95-3 34.1-36.9	1 151	6	27 <.3	22	17	126	2.03	4	<8	<2	2	17 <.5	3	ও	40	.73	.069	5 39	.61	80	. 14	3	.48	.07	. 19	2	4.2	3.2
DH 95-3 42.2-44.2			26 <.3									84 <.5					.100	7 136	1.46	54	.17	6			.36		25.1	
DH 95-3 49.4-50.9	18 105											11 <.5						15 126			.08			.03	.05			2.7
DH 95-3 52.3-54.3 DH 95-3 66.9-68.3	7 162		48 <.3									14 <.5 28 <.5						26 78	.36	41	.12	ব	.34	.04	.09		3.2	
DN 95-3 123.0-124.5			13 <.3									20 <.5 32 <.5						6 76								_	1.8	
JN 73-3 123.0-124.3																		2 222					1.99		1.13	~2	3.2	3.7
DH 95-3 128.6-131.1					36	315	2.98	12	<8	<2	<2	39 <.5	6	<3	90			2 133	2.77	173	.18	<3	1.89	.10	.78		5.8	5.5
DH 95-4 22.9-23.6	<1 18	-					5.67	102	<8	<2	<2	42 <.5	্র	<3	138	.60	.082	5 371	4.38									1.0
DH 95-4 50.6-52.1	25 40						5.85	5	<8	<2	<2	22 .5	<3	ব	148	1.42	.097	6 165	2.27						.20			3.3
DH 95-4 95.0-96.7			19 <.3															4 213							-14		6.9	4.0
DH 95-4 111.5-112.8	1 1/0	21	45 <.3	02	28	222	3.06	3	<8	~	~2	51 <.5	<5	<3	(0	1.83	.145	4 31	•"	58	.25	21	1.54	.07	.18	<2	2.9	3.1
DH 95-5 11.7-13.2		-	4 <.3									37 <.5						14 85			.17	9	1.16	.12	.61		10.2	2.8
DH 95-5 13.2-14.7	2 141	6	8 <.3	156	24							84 <.5						7 137							1.01	2	6.7	3.1
DH 95-5 19.8-22.6			4 <.3									24 <.5						21 25									3.1	4.6
DH 95-5 36.7-38.3			17 <.3						<8	<2	2	44 <.5	3	<3				8 46							1.04		3.7	
DH 95-5 38.3-39.8	Z 100	12	10 <.3	54	13	190	2.78	9	<8	<2	3	50 <.5	4	<3	95	.40	.067	9 61	1.59	102	. 19	11	1.44	.11	.84	<2	5.5	2.4
DH 95-5 64.6-65.9			13 <.3															5 13							.22	<2	7.2	3.1
DH 95-5 65.9-67.4	2 10	8	20 <.3	12	11													12 12							.20	2	30.7	3.2
DH 95-5 69.0-71.0			57 <.3															5 150					1.72	-09	.76	<2	109.0	4.0
E DDH 95-5 69.0-71.0			61 <.3			459	3.66	47	<8	<2	<2	43 .7	5	3	93	1.22	.119	5 155	2.11	198	.23	16	1.78			-	101.9	
RE DOH 95-5 69.0-71.0	1 64	25	59 <.3	180	47	462	3.68	50	<8	<2	2	43.8	5	<3	93	1.26	.120	5 150	2.13	197	.23	11	1.76	.09	.78	<2	138.5	
DH 95-5 77.6-79.6			24 <.3															2 269							.96		14.4	
DH 95-5 104.5-106.5	2 35																	12 16									16.0	
DH 95-5 106.5-108.5																		12 14									36.9	
DH 95-5 108.5-110.6																		12 12					1.39				161.4	4.6
TANDARD DS6/AU-R	12 123	- 29	141 <.3	<u>Z4</u>	12	694	Z.94	22	<8	<2	3	4Z 6.0	4	5	60	.85	.078	15 184	.64	170	.09	16	1.91	-08	.17	3	467.5	

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: DRILL CORE R150 AU* IGNITED, ACID LEACHED, ANALYZED BY ICP-MS. (15 gm)

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Nor 29/05 Data DATE RECEIVED: NOV 1 2005 DATE REPORT MAILED: FA