GEOLOGICAL AND GEOCHEMICAL REPORT

ON THE

FOX PROPERTY

CARIBOO MINING DIVISION

NTS 093A008

120°29' 36.5" West 52° 03' 05.7" North

Prepared for

HAPPY CREEK MINERALS LTD.
38151 Clarke Drive
Box 1852
Squamish, BC
V0N 3G0

By
D. Blann, P.Eng.
Standard Metals Exploration Ltd.

July, 2006

Table of Contents

Sum	mary	2
1)	Location and Access	4
2)	Physiography and Infrastructure	4
3)	Claim Status	
4)	Property History	5
5)	Regional Geology	
6)	Property Geology	
7)	Silt and Moss Mat Geochemical Survey	
8)	Rock Samples	
9)	Soil Geochemical Survey	
10)	Conclusions	
11)	Recommendations	
12)	References	
13)	Statement of Costs	
14)	Statement of Qualifications	
,		
Table	es.·	
1	Mineral Tenure	
2	Rock Sample Descriptions	
	·	
Figu	res	
1	Location	
2	Claim Location	
3	Regional Geology	
4	Property Geology	
5	Silt and Moss Mat Locations	
6	Silt and Moss Mat Results (Tungsten PPM)	
7	Rock Sample Locations	
8	Rock Sample Results (Tungsten PPM)	
9	Rock Sample Results (Molybdenum PPM)	
10	Nightcrawler Creek Zone Geology and Rock Samples (Tungsten %)	
11	Fox Grid Soil samples (Tungsten PPM)	
12	Fox Grid Soil Samples (Molybdenum PPM)	

Appendix 1- Assay Certificates

Summary

The Fox property is located approximately 70 kilometres northeast of 100 Mile House, in the South Cariboo region, British Columbia. Access is via existing paved and gravel roads and logging trails through the property.

The property is underlain by Snowshoe Formation, comprised of muscovite-biotite gneiss and schist, and calc silicate, calcareous sandstone and marble, Permian and older in age. These rocks are cut by the Deception stock, of per aluminous granite composition and assumed Cretaceous in age, along with spatially associated dikes and sills of alaskite/aplite, pegmatite composition, and quartz veins cut all rocks. A hornfelsed zone approximately 2 kilometres from the stock contact contains trace to 3% pyrrhotite. Calc silicates are comprised of red-brown garnet, pale to dark green pyroxene, vesuvianite, amphibole, quartz, and contains trace to 10% pyrrhotite, and locally scheelite, molybdenite, trace powellite, chalcopyrite, sphalerite occurs. Scheelite and molybdenite are generally spatially separate, and powellite is rare, suggesting in part two different mineralizing events.

Exploration in the fall of 2005 comprised fill-in soil sampling on the Fox grid and reconnaissance soil sampling to the east and north totaling 243 samples, silt and moss mat sampling generally around the west, south and east side of the Deception granite stock totaling 38 samples, along with continued prospecting and rock sampling totaling 56 samples. Following the discovery of the Nightcrawler tungsten zone in May, 2005, intensive prospecting in September resulted in locating a significant zone of tungsten at low water on the edge of Deception creek (Creek zone).

Soil geochemical results suggest molybdenum in soil anomalies of approximately 1000 X 50-200 metres, 800 X 25-300 metres in dimension occur in proximity with the Discovery molybdenum zone (up to 4.99% molybdenum in grab samples). A tungsten in soil anomaly of approximately 1000 X 200 metres occurs in proximity with the Nightcrawler zone, and an anomaly approximately 600 by 400 metres in dimension occurs in the south grid. Silt and moss mat sampling returned tungsten anomalies on the west and east side of the Deception stock.

Preliminary grab and chip sampling of the Nightcrawler Creek zone returned 0.32% tungsten over 1.5 metres, 1.01% tungsten over 1.5 metres, 0.74% tungsten over 2.0 metres, 1.24% tungsten over 1.2 metres and 2.4% tungsten over 1.0 metre; the highest grade sample was 4.25% tungsten over 0.25 metres. This zone is exposed over at least 50 metres and remains open. The zone plunges gently to moderately south, subparallels the granite stock contact, and may continue for considerable distance down dip.

The Fox property contains large, well defined molybdenum and tungsten soil anomalies, and associated float, subcrop and outcrops containing both molybdenum and tungsten values of economic interest. In addition, historical and 2005 silt sampling suggests potential for additional zones of tungsten skarn to occur over approximately 14 kilometres around a granite stock.

Recommendations include approximately \$100,000 in phase one consisting of further prospecting on the north side of the Deception stock and east on the Redfern Ultramafic complex. Phase two recommendations are comprised of diamond drilling of a minimum 1500 metres on the Nightcrawler tungsten and Discovery molybdenum zones totaling approximately \$300,000.

1) Location and Access

The Fox property is located approximately 70 kilometers northeast of 100 Mile House, in the South Cariboo Regional District, British Columbia (Figure 1). From Eagle Creek near the north end of Canim Lake, the Canim-Hendrix (6000) road is taken northerly about 17 kilometers to the junction with Spanish-Deception (7000) road which is followed easterly for 14 kilometers to No-Name-Deception (7200) which is taken northerly for 14.5 kilometers to the center of the property. The property is within NTS map sheet number 093A.008, Zone 10, and centered at approximately 670000 East and 5770000 North. Logging roads and cut blocks provide local access through a portion of the property.

2) Physiography and Infrastructure

Elevations range from 1120 meters in Deception Creek to 1950 metres on Deception Mountain. The area is in mountainous terrain with slopes ranging from gentle to extremely steep and local cliff. The lower slopes are well forested with spruce, sub-alpine fir, pine and aspen interspersed with alder thickets, and open areas of low lying bush occurs in the alpine terrain on Deception Mountain. The area of the Fox Grid is in an old (circa 100 years) burn with little deadfall and flanked by newer logging clear cuts. The 7200 logging main was constructed from 1990 to 1993 and prior to this access was limited to horseback or helicopter. A hydro transmission line located approximately 12 kilometres west of the property, powered the former Boss Mt. mine and currently supplies power to the Hendrix Lake town site.

3) Claim Status

The Fox property is comprised of 28 converted legacy and new cell claims totaling approximately 14,864 hectares. This includes the Fortune property (528262) which is under option to Happy Creek Minerals. Detail and location of the mineral tenure are provided in Table 1 and Figure 2, respectively.

4) Property History

In 1981, Mattagami Resources conducted a regional silt geochemical survey and followed up on the best results in June 1982 with prospecting and soil sampling at high elevations on Deception Mountain. Snow covered approximately 75% of the area and severely limited exploration. Exploration identified a previously unknown granite intrusion cutting older Snowshoe Formation schist and calc silicate and several tungsten soil anomalies were identified, however no further work was performed (Helson 1982).

In 1997, D. and C. Ridley prospected along the new 7200 logging road as part of BC Prospectors Assistance Program (Ref. No. 97-98 P66). This work located the southern contact of Deception stock and identified garnet-rich skarn alteration near the 7218 kilometer post.

Between June 21 and June 26, 1999, D. Ridley, D. Blann, D. Black carried out additional geological mapping and prospecting along the 7200 road. On June 21, 1999, D. Black located a granite-aplite boulder beside the road containing quartz with small patches of molybdenite. D. Ridley later prospected above this area between 7214 and 7215 kilometer posts and discovered outcropping skarn with significant molybdenum, tungsten, and anomalous zinc, and led to the staking of the original Fox mineral claims. This work was part of the Prospectors Assistance Program (Ref. No. \99-\00 P-62), and was recorded for assessment work credits (Ridley 2000a).

Further work by Ridley during 2000 included additional grid-based prospecting, soil sampling, and geophysical surveys, as well as additional claim staking (Ref. No. 00-01 P-65). This work resulted in the recognition of a large area of hornfels and skarn alteration extending at least three by one kilometers along the southern edge of the Deception stock. Several significant zones of mineralization were found associated with this large alteration envelope. (Ridley 2000b). In July 2000 Ridley and Black located the Deception 1-9 mineral claims covering the northern edge of Deception stock, on Deception mountain. Prospecting was carried out from a fly camp near the southwest corner of the Deception claims. Skarn alteration was most prevalent in the eastern half of the claims and several minor occurrences of tungsten, zinc, and copper were found, and up to 412 ppm tungsten in silt (Ridley 2000c).

In July 2001 the Fox 1-6 claims were optioned to Starcore Resources Ltd who expanded the claim position and conducted a limited soil sampling survey on the South grid, and identified anomalous concentrations of tungsten in soil (Ridley 2002). K. Dawson, PhD, P.Geo., examined the property and returned 4.99% molybdenum from a grab over approximately 10 cm at the Discovery molybdenum skarn(Dawson 2002).

Between May and June 2005 Happy Creek Minerals Ltd. conducted prospecting, geological mapping, and soil sampling over an expanded Fox grid. The Nightcrawler tungsten prospect was discovered at this time. In June 2005 Happy Creek converted the property to cell claims, and filed assessment work completed to date (Blann and Ridley 2005). Between August and November, 2005, additional prospecting, silt and moss mat, and fill-in grid and soil geochemistry was performed and is the subject of this report.

5) Regional Geology

Regional geology of the area is described in Campbell and Tipper, 1971, Campbell, 1978, and to the north in Filipone, Ross, 1990. The Fox tungsten-molybdenum property is underlain by metasedimentary rocks of the Late Proterozoic-Early Paleozoic Snowshoe Group, part of the Kootenay Terrane of displaced and deformed North American shelf sedimentary rocks. These rocks lie east of the continental scale Eureka Thrust, marking the collision boundary between the Quesnel Terrane allocthon to the west, and older continental shelf sediments to the east (Figure 3). The basal black phyllite unit of the Nicola Group occur immediately west of the Fox property, and was likely the focus of regional strain during tectonic activity.

Intrusions of garnet biotite-muscovite granite composition cut older rocks and appear Cretaceous or younger in age- in part similar to the Boss Mountain stock located approximately 30 km to the northwest. Regional mapping to the north suggest rocks are comprised of quartz rich grit/metapelite gneiss to the west, and are more carbonate-rich to the east in proximity with a major northwest trending anticline axis (Helson 1982; Filipone 1990).

Amphibolite, gabbro, dunite and serpentine of the Redfern Ultramafic Complex occur in the eastern side of the property and are approximately 4.5 X 1.5 kilometres in dimension, and

Permian-Mississippian in age. This area hosts anomalous concentrations of nickel, copper in rock and stream sediment.

The youngest rocks in the region are blocky olivine basalt flow, Recent in age, and occur southeast of the property in the Spanish Creek valley (Flourmill volcanoes), and also on the Silverboss property adjacent Boss Mt. molybdenum mine northwest of the Fox property.

Glacio-fluvial related deposits cover most valley bottom and low lying areas, and are between 1-20 metres in thickness.

6) Property Geology

The main 7200 road and logging skid trails and Deception creek at low water have exposed bedrock otherwise exposure is limited and rare at lower elevations. The Fox property is dominantly underlain by the Snowshoe Formation Cambrian or older in age. These rocks are comprised of dominantly banded quartz, biotite, muscovite mica gneiss and minor schist to the west, and at higher elevations to the west and south of the property. Muscovite-biotite schist, calc silicate and grey limestone occur in the central to eastern part of the property (Figure 4). Limestone appears locally where intense calc silicate replacement is has not occurred. Foliation in schist and calc silicate bands trend northwest and dip gently to moderately. Orientation of schistocity varies from 310/10-35 in the northeast to 140-150/10-60 to the west and south. In the area of the Discovery molybdenum skarn, calc-silicate beds are oriented 140/45-55. Based on historical work and regional geology maps to the north, a regional anticline axis is inferred to trend southeast through the center of the property, however, requires confirmation.

The Snowshoe Formation is cut by per aluminous, locally red garnet-bearing biotite-muscovite granite (Deception stock) and dikes and sills of fine grained alaskite-aplite occur. Pegmatite and quartz veins cut intrusive and metasedimentary rock and are subparallel and cross cut bedding and schistocity. Locally, the contact between metasediment and granite dykes 2-20 metres in thickness trend north and dip steeply near the river, and further south appear to trend west-northwest, dip variably and are sill-like in form.

A zone of hornfels occurs up to several kilometres south of the Deception stock contact and is marked by moderate fracturing, rusty weathering, increased pyrrhotite+/- pyrite content and biotite to locally sericite alteration. Calc silicate zones contain red-brown garnet, pale-dark green pyroxene, locally vesuvianite, and marble. Calc silicate generally contains trace to over 3% pyrrhotite, trace chalcopyrite, sphalerite. Calc silicate and vesuvianite skarn locally contains molybdenite or scheelite, and rarely powellite in outcrop, subcrop and float boulders over a distance of approximately 1.3 kilometres around the south side of the Deception stock, and up to 300 metres or more away from it.

Tungsten skarn occurs in spatial proximity with calc silicate schist and contacts of granite stocks, dykes and sills of per aluminous granite, alaskite, aplite, pegmatite and quartz veins. Garnet, pyroxene land vesuvianite locally appear altered to amphibolite and mica. The Nightcrawler tungsten zone is comprised of outcrop, subcrop and angular, blocky float samples containing trace to over 4% tungsten in assay, with locally trace chalcopyrite, sphalerite and molybdenite. Scheelite occurs as fine to very coarse grains of up to 3mm X 10mm dimension as dissemination and along foliation planes and cross-cutting fractures within calc silicate rocks. Anomalous bismuth, arsenic and locally gold values also occur with elevated tungsten in rock samples. Tungsten bearing calc silicate beds are 1cm to over 2 metres in width, separated by schist or un-mineralized skarn of several centimeters to metres in thickness. Calc silicate appears to have largely replaced limestone in this area however boulders and subcrop of grey-white colored impure limestone occur locally.

The Discovery molybdenum zone, located approximately one kilometre west, is comprised of garnet-vesuvianite skarn and pyroxene-amphibole skarn containing disseminated and fracture filling of molybdenite, locally up to 4.9% molybdenum in a grab of approximately 10 cm that remains open in width (Dawson 2002).

7) Silt and Moss Mat Geochemical Survey

In the fall 2005, 38 silt and moss mat samples were obtained from streams draining the west, south and east side of the Deception stock. Sampling was directed away from the main part of Deception Creek as this was covered in previous surveys. In addition, samples were taken from streams to the east and south of Deception creek, draining portions of the Redfern

Ultramafic Complex. Samples were placed in kraft paper bags, air dried and shipped to Acme Analytical Laboratories where they were screened to -80# and analyzed by ICP-MS. This method incorporates aqua regia digestion that is partial for refractory minerals such as scheelite (tungsten), and that at least some coarse grained scheelite may not pass the initial -80# screen. Sample location and tungsten assays are plotted in Figures 5 and 6 respectively, and Certificates of Analyses are provided in Appendix 1.

Results indicate anomalous tungsten in streams draining the west and east side of the Deception stock, and in proximity with the Nightcrawler Creek zone.

8) Rock Samples

In the fall of 2005, 56 rock samples were obtained and placed in plastic sample bags, tied closed and shipped to Acme Analytical Laboratories where they were crushed, screened to -80# and analyzed by ICP-MS. This method incorporates aqua regia digestion that is partial for refractory minerals such as scheelite (tungsten), and that at least some coarse grained scheelite may not pass the initial -80# screen. Rock samples containing anomalous tungsten by this method were assayed using perchloric fusion method. Several samples were analyzed for rare earth elements (Group 4B). Rock samples were incorporated into the Fox property Gemcom database and sample location, tungsten and molybdenum results plotted in Figures 7, 8, and 9 respectively. Rock sample descriptions and Certificates of Analyses are provided in Table 2, Appendix 1, respectively. Rock samples taken during this program were focused on new areas and the Creek zone, as other areas are discussed previously (Ridley, 2000a, Blann, Ridley, 2005).

Rock samples and geology of the Nightcrawler- Creek zone are shown in Figure 10. In this area, outcrop and subcrop of calc silicate is exposed over approximately 50 metres and contain encouraging concentrations of scheelite that remains open. Preliminary chip and grab sampling results include 0.32% tungsten over 1.5 metres, 1.01% tungsten over 1.5 metres, 0.74% tungsten over 2.0 metres, 1.24% tungsten over 1.2 metres and 2.4% tungsten over 1.0 metre; the highest grade sample was 4.25% tungsten over 0.25 metres from subcrop/float adjacent to a granite dike. The area containing tungsten skarn remains open to the northeast

and south where it appears to dip beneath calc silicate and schist along the intrusive stock contact.

Rock samples from Nickel creek and the South grid area also returned anomalous values of approximately 0.157% tungsten, and 0.24% tungsten, respectively. Float rock samples from the northern end of the logging road contain up to 60% pyrrhotite-pyrite and trace chalcopyrite. Sample 184433 returned 918 ppm copper, 157 ppm bismuth, 122.4 ppb gold.

In Deception creek, a zone of quartz veins up to 1 metre in width cuts schist and granite. Sample 184431 returned 128.9 ppm molybdenum, 513 ppm zinc, 170.4 ppm bismuth, 17.2 ppb gold. Sample 184420 returned 754.8 ppm bismuth, 21.3 ppb gold from a grab of a 0.50 metre wide quartz vein.

9) Soil Geochemical Survey

In the fall of 2005, the previous Fox grid was filled-in with lines at 50 metre intervals to cover the Nightcrawler zone in more detail. 243 soil samples were taken. Refer to Figures 11, 12, and Appendix 1. In addition, reconnaissance soil sampling was conducted along a north trending logging road (Line A) and in proximity with Nickel creek, (Line B, C). Refer to Figure 5.

Samples were taken of "B" or preferably "BF" where available, otherwise, basal till "C" horizon was used. Sample depth ranged from 20 to 50 centimeters below surface depending on horizon available at the site. A soil auger was utilized for sampling. Glacial till and fluvial deposits are believed to be between 0.5-3.0 metres in thickness over the grid area.

Dried soil samples were sent to Acme Analytical Laboratories of Vancouver, B.C. for analysis. The samples were screened to -80#, dissolved in aqua regia, and analyzed using ICP (1999-2001), and ICP-MS (2005). Geostatistical analyses of the two populations were performed and log normal probability plots created, giving 80, 95, and 99% probability anomalies for molybdenum and tungsten. It should be noted that the aqua regia digestion is partial for refractory minerals such as scheelite (tungsten), and that at least some coarse grained scheelite may not pass the initial -80# screen.

Anomalous zones of tungsten in soil from the Nightcrawler zone were better resolved with 50 metre line spacing and tungsten and molybdenum results are summarized in Figures 11, 12, respectively.

Anomalous tungsten in soil occurs in several areas of the grid. The Nightcrawler zone is defined by soils approximately 1000 metres by 200 metres in dimension and occurs in proximity with Deception creek, the granite-sediment contact and tungsten bearing boulders, subcrop and outcrop. A soil anomaly upstream (northeast) from the Creek zone suggests additional zones of tungsten skarn may occur. In the South grid anomalies of tungsten in soil occur approximately 600 metres by 400 metres in dimension, along with float rock samples containing anomalous tungsten.

Anomalous molybdenum in soil occurs somewhat separately from the tungsten soil anomalies. The Discovery molybdenum zone is defined by a soil anomaly approximately 800 metres in length and 25-300 metres in width. A second zone occurs in the western portion of the grid and is between 50-200 metres in width and over 1000 metres in length. This area is underlain by schist cut by granite, aplite dikes or sills and quartz veins containing molybdenite.

Three reconnaissance soil lines located north and east of the Fox grid returned anomalous nickel of up to 300 ppm, however, tungsten and molybdenum values are low.

10) Conclusions

The Fox property is situated approximately 70 kilometers northeast of 100 Mile House, in the South Cariboo Regional District, British Columbia.

The property is underlain by metasedimentary rocks of the Late Proterozoic-Early Paleozoic Snowshoe Group, part of the Kootenay Terrane of displaced and deformed North American shelf sedimentary rocks. These rocks lie east of the continental scale Eureka Thrust, marking the collision boundary between the Quesnel Terrane allochthon to the west, and older continental shelf sediments to the east. Snowshoe Formation muscovite-biotite gneiss, schist, calc silicate, and marble, underlies the Fox property. The Deception stock of assumed Cretaceous age is comprised of garnet bearing biotite-muscovite granite, aplite, alaskite, Standard Metals Exploration Ltd

pegmatite and quartz veins and cuts the Snowshoe Formation. A broad zone of hornfels and pyrrhotite occurs in the metasediment outward from the stock contact.

Calc silicate and vesuvianite skarn occur in proximity with a per-aluminous granite stock and associated dikes and sills of similar composition. Alaskite, aplite, pegmatite and quartz veins cut intrusive, calc silicate and schist. Garnet and pyroxene are locally altered to amphibolite, epidote and mica. Molybdenite occurs as disseminated and semi-massive replacement of skarn and contains up to 4.9% molybdenum in grab samples of approximately 10 cm width that remain open in the Discovery zone.

Tungsten skarn is comprised of predominantly scheelite as fine to very coarse, friable grains and clusters of up to 3mm X 10mm dimension as dissemination and along foliation planes and cross-cutting fractures within calc silicate rocks. Pyrrhotite, trace chalcopyrite, sphalerite and associated copper, zinc values occur. Anomalous bismuth, arsenic and locally gold values also occur with elevated tungsten in rock samples. Tungsten bearing calc silicate beds are 1cm to over 2 metres in width, separated by schist or un-mineralized skarn of several centimeters to metres in thickness. Calc silicate appears to have largely replaced limestone in the Nightcrawler zone area however boulders and subcrop of grey-white colored impure limestone occur locally.

Rock sampling in 2005 returned significant tungsten values from the Nightcrawler zone, located northeast of the Discovery molybdenum zone. The Nightcrawler zone is comprised of outcrop, subcrop and boulders, and strong tungsten in soil anomalies currently approximately 500 metres in length and 100 metres in dimension. The Nightcrawler Creek zone was discovered in September, 2005 and is exposed over approximately 50 metres at low water levels in Deception creek. Preliminary chip and grab sampling of the Nightcrawler Creek zone returned 0.32% tungsten over 1.5 metres, 1.01% tungsten over 1.5 metres, 0.74% tungsten over 2.0 metres, 1.24% tungsten over 1.2 metres and 2.4% tungsten over 1.0 metre; the highest grade sample was 4.25% tungsten over 0.25 metres. This zone plunges gently to moderately south subparallel the granite stock contact and may continue for considerable distance down dip, and along strike as indicated by geology, soil and surface rock samples.

The Fox property contains large, well defined molybdenum and tungsten soil anomalies, and associated float, subcrop and outcrops containing both molybdenum and tungsten values of economic interest. Historical and 2005 silt sampling also suggests potential for additional zones of tungsten skarn to occur over approximately 14 kilometres around the granite stock, and anomalous nickel values occur in silts draining the Redfern Ultramafic Complex.

11)Recommendations

The Fox property contains a significant new discovery of tungsten molybdenum skarn, and further work is recommended in two phases.

Phase 1: \$100,000

- -Continued prospecting, UV lamping and rock, silt sampling on top of Deception mountain utilizing helicopter supported fly-camps, and up Nickel creek' Redfern Ultramafic complex.
- -Perform a magnetic and VLF geophysical survey over the Fox grid.
- -Excavator drill trail access, trenching and test pits

Phase 2: \$300,000

Diamond drill 1,500 metres in 10 holes over the Nightcrawler tungsten and Discovery molybdenum skarn.

12)References

- Blann, D and Ridley, D. 2005. Geological and Geochemical Report on the Fox Property, for Happy Creek Minerals Ltd., Assessment Report #27886
- Campbell, RB. 1978. Geology of the Quesnel Lake Area, NTS 93A, GSC Open file #574.
- Campbell, RB and Tipper, HW. 1971. Geology of Bonaparte Lake Area, 92P, GSC Memoir 363.
- Dawson, KM. 2002. Private Report on the Examination of the Fox 1-17 Mineral Claims, Deception Creek Area for Starcore Resources Ltd., Vancouver, B.C.
- Filipone, JA and Ross, JV. 1990. Deformation of the western margin of the Omineca Belt near Crooked Lake, east-central British Columbia, in Can. J. earth Sci., Vol. 27, 1990, pgs. 414-423.
- Helsen, J. 1982. Quesnel Project, Jezebel Claim Group, Geochemistry and Geology report #2, for Mattagami Mines Ltd., Assessment report. #10641.
- Ridley, DW. 2000b Geological, Geochemical and Geophysical Report on the Fox 1-6 Mineral Claims. Assessment Report #26,611.
- Ridley, DW. 2000c. Prospecting Report on the Deception 1-9 Mineral Claims. Assessment Report #26,609.
- Ridley, DW. 2000a. Prospecting Report on the Fox 1-4 Two-Post Mineral Claims. Assessment Report #26,275.
- Ridley, DW. 2002. Geochemical Report on the Fox 7-21 Mineral Claims. Assessment Report #26,943.

13) Statement of Costs

Wages		# days	\$/day		Totals
D. Blann, P.Eng		16	600		\$9,600.00
D. Ridley, Prospecto	OΓ	33	375		\$12,375.00
D. Ridley, report pre	paration	8.5	200		\$1,700.00
D. Black,					
Prospector		22	275		\$6,050.00
C. Blann, M.Sc.		2.5	225		\$562.50
G. Thompson, P. Ge	90 .	0.5	450		\$225.00
C. Ridley, Field Ass	istant	3	175		\$525.00
		85.5			\$31,037.50
Disbursements		#	\$/#		
Truck		33	100		\$3,300.00
Room/Board		75	60		\$4,500.00
Communications		75	7		\$525.00
Field Supplies					\$240.08
Analyses					
			+		
Assays	rocks	- 56	repeats		\$1,283.43
	soil/silt	250	repeats		\$3,770.00
	moss	31	15.08		\$467.48
Reproductions					\$184.36
					\$14,270.35
				Wages and	
				Disbursements	\$45,307.85
				10% on Wages and	\$4,530.79
				Disbursements	
					\$49,838.64
				GST @ 7%	\$3,488.70
					\$53,327.34

14) Statement of Qualifications

I, David E. Blann, P.Eng., of Squamish, British Columbia, do hereby certify:

That I am a Professional Engineer registered in the Province of British Columbia.

That I am a graduate in Geological Engineering from the Montana College of Mineral Science and Technology, Butte, Montana, 1987.

That I am a graduate in Mining Engineering Technology from the B.C. Institute of Technology, 1984.

That I have been actively engaged in the mining and mineral exploration industry since 1984, and conclusions, recommendations within this report are based on regional and property fieldwork conducted between 1991 and 2005.

Dated in Squamish, B.C., July 11, 2006

David E Blann, P.Eng.

<u>Tables</u>

Tenure Number	Claim Name	Owner	Map Number	Good To Date	Mining Division	Агеа
514261		122739 (100%)	093A	2007/DEC/31		1232.619
514269		122739 (100%)	093A	2007/DEC/31		1231.988
514270		122739 (100%)	093A	2007/DEC/31		119.301
514271		122739 (100%)	093A	2007/DEC/31		119.296
514311		122739 (100%)	093A	2007/DEC/31	•	39.749
514263		122739 (100%)	093A	2007/DEC/31		774.619
534863	FOX TAIL	102557 (100%)	093A	2007/JUN/04		496.728
523002	FOXNORTH-1	102557 (100%)	093A	2006/NOV/30		496.331
523003	FOXNORTH-2	102557 (100%)	093A	2006/NOV/30		496.339
523004	FOXNORTH-3	102557 (100%)	093A	2006/NOV/30		496.122
523005	FOXNORTH-4	102557 (100%)	093A	2006/NOV/30		496.116
523006	FOXNORTH-5	102557 (100%)	093A	2006/NOV/30		495.913
523007	FOXNORTH-6	102557 (100%)	093A	2006/NOV/30		495.891
523009	FOXNORTH-7	102557 (100%)	093A	2006/NOV/30		496.191
523010	FOXNORTH-8	102557 (100%)	093A	2006/NOV/30		496.263
523011	FOXSOUTH-1	102557 (100%)	093A	2006/NOV/30		497.247
523013	FOXSOUTH-2	102557 (100%)	093A	2006/NOV/30		497.458
523014	FOXSOUTH-3	102557 (100%)	092P	2006/NOV/30		497.568
523017	FOXEAST-1	102557 (100%)	093A	2006/NOV/30		496.923
523019	FOXEAST-2	102557 (100%)	093A	2006/NOV/30		496.755
523023	FOXEAST-3	102557 (100%)	093A	2006/NOV/30		497.108
523024	FOXEAST-4	102557 (100%)	093A	2006/NOV/30		497.254
523297	FOXSOUTH-4	102557 (100%)	093A	2006/DEC/01		497.441
523298	FOXSOUTH-5	102557 (100%)	093A	2006/DEC/01		437.744
523300	FOXSOUTH-6	102557 (100%)	093A	2006/DEC/01		477.46
523301	FOXSOUTH-7	102557 (100%)	093A	2006/DEC/01		496.999
523303	FOXEAST-5	102557 (100%)	093A	2006/DEC/01		496.599
535411	FOXOCUBE	102557 (100%)	093A	2007/JUN/12		496.648
528262	FORTUNE*	122739 (100%)	093A	2007/FEB/15		496.958
	*UNDER OPTI	ON				

Total Hectares: 14,864

Happy Creek Minerals Ltd

Fox W-Mo Property Table 2

Rock Sample Descriptions

						Table 2												
EQ	X ROCK SAN	IPLES 200	<u>95</u>				Мо	Cu	Pb	Zn	Ag	Fe	As	Au	Sb	BI	W	W
	Sample (D	Easting	Northing	Grid E	Grid N	Description	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	%
DR	41501	_	_	2295	1495	ang float in road bank; skam with 10 cm aplite dyke; 2-3% po, minor sphal- cpy-mo		134.6	37.1	35	6.2	1.6	0.9	7.0	0.3	71.5	20	<.01
DR	41502			2590	1480	ang float; skarned seds minor po tr cpy; grab from several similar boulders	1.2	72.9	10.1	46	0.3	1.72	0.6	2.9	0.1	4.1	32.2	<.01
DR	41503			2607	1512	ang float in landing; qtz-rich skam; uo to 1 % po, tr sphalerite	1.6	46.5	4.8	393	0.2	1.53	<.5	6.1	0.2	26.9	>100	1.28
DR		671784	5769441	3075	1500	ang float subcrop?? Pyrox-gamet-qtz skam with aplite dykelets 5-7% po	1.0	286.0	6,5	35	0.5	4.5	<.5	3.3	0.1	1.0	20.5	0.01
DR		671727	5769451	3038		ang float as at 41504; less garnet	0.5	133.0	6.3	84	0.4	3.8	0.7	4.2	0.1	7.8	>100	0.15
DR			8	2950	1520	grab probable outcrop; highly limonitic sediments; 10-15% po	0.5	180.4	12.0	27	0.6	4.1	<.5	2.2	<.1	1.3	7.6	<.01
DR				2986	1520	· · · · · · · · · · · · · · · · · · ·	0.6	88.0	3.4	31	0.3	2.68	<.5	2.7	<.1	4.5	3.6	<.01
DR	41508			2795	1498	ang float in landing; alternating BMQ schist and skarn beds to 50 cm thick	0.8	62.1	3.3	105	0.3	3	1,1	18.9	0.1	45.5	>100	0.51
DR	41509			2791	1498	ang float; 40cm boulder all skarn minor qu\tz and aplite veining; 1% po	3.0	70.6	4.9	659	0.3	1.78	0.6	3.5	<.1	15.6	>100	2.94
DR	41510			2791	1498	large boulder in landing, 1x1.3x 0.7 meters; sot and skarn cut by qtz and aplite stockwork	0.7	61.0	3.0	72	0.2	2.98	1.6	6.3	0.1	10.5	>100	0.54
DR	41511			2790	1510	ang float 35 cm boulder; 2-3% po, tr sphalerite	4.4	89.9	7.1	232	8.0	2.39	0.7	63.3	0.1	145.9	>100	2.00
DR	41512			2790	1525	ang float 35 cm boulder; 2-3% po, up to 1% sphalerite	0.9	64.2	5.5	52	0.3	2.6	0.5	4.0	<.1	12.3	>100	0.11
DR	41513			2800	1540	ang float; qtz-garnet skern; 1-3% po, minor sphalerite	4.0	54.3	3.5	1272	0.4	1.71	<.5	6.1	<.1	47.4	>100	3.03
DR	41514			2600	1425	ang floet; qtz-garnet skern; 1-2% po, tr sphal	2.3	39.1	4.4	716	0.8	1.46	0.7	100.7	0,3	153.5	>100	2.10
DR	41515			2590	1430	ang float in road ditch; qtz-garnet skarn; minor po	1.8	73.0	4.0	2190	0.3	2.11	0.8	15.2	0.1	34.4	>100	2.13
DR	41516			2592	1427	ang float; qtz-garnet skam; 10-15% po, up to 1% cpy-sphalerite	2.0	150.8	3.0	360	0.3	3.58	<.5	1.0	<.1	5.4	>100	1.40
DR	41517			2393	1410	ang float in landing; repeat of old sample; see Dawson report	1.1	118.2	4.0	48	0.1	3.06	<.5	1.1	0.1	1.1	>100	0.40
DR	41518			2230	1495	large ang float boulders; repeat of HUM99DR20	2.3	103.0	4.8	54	0.2	2.56	0.5	3.2	<.1	3.9	>100	0.02
DR	41519			2300	1335	possible subcrop; aplite dyke in BMQ schist; tr mo-po	9.9	14.4	4.5	33	0.1	0.8	0.6	1.8	0.1	3.5	2.3	
DR	41520			2300	1340	ang float; aplite with qtz veining, widespread here; minor po, tr mo												
0.5	44504			2525	4546	and floats at wish solite in much askirds minor per porth side of road	29.6	14.3	9.5	3	0.1	0.45	<.5	8.0	<.1	4.5	0.4	
DR	41521			2525	1515	ang float; qtz-rich aplite in rusty schist; minor po; north side of road	0.3	23.6	2.7	6	0.1	0.7	0.6	1.9	0.1	0.5	0.4	
DR	41522			2553	1497	ang float subcrop? Green qtz-rich skarn; 1-3% po, tr sphai?	0.3		3	147	0.3	2.49		2.3		10.5	4.6	
•						•												
DR				2676	1505		0.3	41.5	5.1	32	0.1	2.18	<.≎	1.6	<.1	3.9	9.4	
DR	41524	671900	5769430	3210	1485	subcrop; skamed sediments; last scheelite-bearing outcrop to east??	1.1	52.2	4	23	0.2	1.7	<.5	7.3	<.1	14.5	825	
DR	41525			3010	1520	ang float, subcrop; aplite-rich light green ekarn; no gernet; 1-3% po												
							0.2	59.9	2.7	42	0.2	2.31	<.5	4.1	<.1	3.6	483	
DR	41596	671459	5769419			ang float; skarned biotite schist and cal-sil; 3-5% po, tr cpy	31.8	340.0	3.3	55	0.7	6.09	<.5	7.7	0.1	32.7	6.5	0.01
DR	41597			2175	1512	ang float north side road; skarned seds w qtz vein; 3% po, minor sphal-mo	141.2	92.7	4.8	468	0.3	2.13	<.5	3.2	0.1	3.8	>100	0.73
DR	41598			2170	1495	probable subcrop skarned sediments; 2% po, minor sphal-mo-cpy;	125.8	211.0	4.5	745	0.5	3.36	<.5	2.3	0.1	11.3	80.7	0.02
DR	41599			2167	1495	grab outcrop; sericite altered shear; minor mo	1151.5	175.0	6.6	151	0.4	3.51	0.5	7.0	0.1	13.3	>100	0.09
DR				2197		ang float and subcrop; skarned sediments;2-3% po, minor sphal-cpy	5.0	85.3	2.9	770	0.2	1.79	0.6	3.9	0.1	3.2	>100	0.34
DR	151680	672991	5770844			ang float on road; calc-sil with qtz vein; 3-5% po	1.3	154.6	47.3	13	6.9	5.08	1.1	109.1	2.2	173.9	553	
DR	151681	672940	5770693			ang float on road; calc-sil w pagmatite; minor sphal-cpy-po	0.2	55.1	1.6	381	0,3	1.84	0.7	15.4	0.1	35.9	642	
DR	151682	672911	5770460			ang float; vuggy qtz; 3%po tr cpy	2.4	96.1	3.3	7	0.2	4.48	0.5	1.8	0.2	0.9	12.3	
DR			5770207			ang float; qtz vein with semi-massive po	4.5	373.3	1.3	10	0.5	11.49	<.5	1	<,1	1.1	1.3	
DR		671781	5769441			on road just east of 16 km post; calc-sil w 1-2% po	1.1	68.3	2.4	20	0.3	2.86	<.5	2.1	<.1	8.1	19.1	
DB		669667	5769012	~950	1250	Fox West Grid, roundy float Qtz-Ga (orange/pale red), pale-dark green calc-sil, pale yellow/cream, soft Weak SKN+Qtz veins												
DB	151731	67002 <i>A</i>	5769443			Grab, qtz vein 0.50 m, white Qtz vein swarm 20 metres340/40-60, Tr	3.4	68	2.8	322	0.2	1,69	0.6	2.3	8.0	10.6	318.6	
00	191791	V1 VU24	J1 W3443			FeOx, Bi-M Granite foliated, frct 190/20	0.7	5.6	3.6	28	<.1	0.3	0.5	0.9	0.3	3,5	48.8	
DB	151732	672972	5770795			Fox East Road, Brown Ga?, ANK feldspethic Flow/tuff, cut by MSV						4.55				n= i =	,	
						Sulfide, lameliar plates, v.v.f.g. grey sulf band+Qtz+	0.7	32	92.6	13	15	4.93	0.6	55.7	7.2	254.7	27.1	7/20/200

						Table 2												
ES	X ROCK SAN	APLES 20	05				Mo	Cu	Pb	Zn	Ag	Fe	As	Au	Sb	Bi	W	W
	Sample ID	Easting	Northing	Grid E	Grid N	Description	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	%
DE		_	5770783			Float at Road, MSV Py banded Bi-Q-sch+Ga-Bi sch, 5%Py+/-Po+/-Cp.		P P · · · ·		PP	P.p.s.		ppiii	ppu	bheer	Pp.vi	ppm	~
							1,9	225,1	9.8	17	0.8	7.82	2.4	1.6	0.6	4	401.6	
DE	151734			1400	-100	Qvn +/-30 m (lens) 1-2 m wide	0.5	2.8	0.9		<.1	0.26		<.5	0.1	0.7	185.9	
DE	151735	673011	5769999			Peg sii 1-3 m, 30+ m long, grab Api-Gr+Peg, Qtz vns 1cm minor FeOx			0.4	•		0.20		0	0.,	0.,		
							0.5	6.2	12.2	5	<.1	0.57	< 5	0.7	0.1	1.8	234.9	
DE	3 151736	673214	5769733			Grab aplite-Peg, Qvns 1x1 m, 2 mica granite sill	0.3	3.7	3.7	-	<.1	0.35	,	78.7	-,-	20.3	7.2	
DE		673220	5769714			Float?-S/C Msv Py-Cp vn in banded calc-sill	1.4	243.5	3.6		0.8	10.89	0.5		<.1	3.1	9.8	
DE		672997	5770861			Rock o/c,q vns 2-3 cm cutting dark schist	0.4	145.2	10	20	0.1	1.81	0.7	3.3	<.1	0.3	0.6	
DE		672997	5770861			Rock float, py-sp po, fq qtz vns,	1.9	97.8	6.6	2	0.2	1.78	<.5	0.7	0.1	0.2	3.3	
DE		672997	5770861			Rock float, peg qtz vns bx in m-sch, red feox	0.3	3.4	8.3	4	<.1	0.38	<.5	1.2	<.1	0.7	0.2	
DE		672997	5770861			Rock float, msv py-po banded?, sp, Amph	14	375.1	6.5	97	1.3	5.44	<.5	3.5	<.1	0.7	2.4	
DE		672962				Rock float, peg qtz vne 2k, brown act-b- sch	0.8	4.7	8.7	7	<.1	0.42	<.5	0.5	<.1	1	0.1	
DE		672982	5770782			Rock float, amph sch, w py-cp	14,8	93.4	2.8	38	0.3	2.25	<.5	0.5	<.1	0.1	0.3	
DE		672992	5770813			Rock float- 2 tonne, Feox may in qtz	3	40.2	3.9	49	0.1	35.01	<.5	1	<.1	0.1	0.5	
DE		672912				Rock float, msv py-po banded?, sp, Amph	0.5	757.3	3.4	49	0.9	12.74	<.5	0.7	<.1	0.6	0.1	
DE		672858	5770315			Rock float, banded po-py in fg meta-v-s	0.7	33.4	17.7	41	0.1	1.8	<.5	<.5	<.1	0.2	0.7	
DE		672747	5770185			Rock o/c Qvns 2-5 cm cut leuco gr/splits	1.1	23.2	11.8	2	<.1	0.69	<.5	<.5	0.1	<.1	204	
DE		671892	5769437			Rock 0.8 m chip of qtz vein 230/80	1.8	4.3	2	6	<1	0.38	<.5	<.5	<.1	0.6	4.5	
DE		672232				280/80 20cm qtz-calc-eil schist, clear, grey white qtz, FeOx, py-po in	3.7	14.5	7.5	11	<.1	0.52	<.5	0.7	0.1	0.8	20.8	<.01
						contact with red-Ga-splite peg sill 130/15												
DE		671193	5769135			10 kg boulder red Ga calc-sil sch, py, po, sp + W	1.5	53.0	5.0	26	0.1	1.74	0.6	1.6	0.1	4.8	>100	0.02
DE				2400	1290	Good W, 20 kg boulder, po,py,sp, calc-sil, red Ga	1.1	87.1	3.2	498	0.3	2.36	<.5	2.0	0.1	8.5	>100	0.58
DE				2400	1390	20 m west of 175553, W calc-eil skarn subcrop, 1-2 kg	4.7	68.5	6.7	41	0.2	2.22	<.5	1.5	<.1	3.1	>100	0.09
DΕ				2400	1405	W skarn, atz-re Ga-calc-eii, floet/subcrop	0.3	7.8	4.4	18	0.1	0.43	<.5	2.1	<.1	2.1	58.8	<.01
DE	3 175556			2900	1580	5 m east, 3 m up from creek. W cal-sil skarn, aplite-qtz, musc. Granite 0.60m sample	2.1	39.5	5.2	99	0.2	1.67	0.7	9.4	0.1	12.7	>100	1.55
DE	175557			2900	1580	2 m east of 175556, similar skarn, 0.6 m	1.9	64.9	3.8	1188	0.3	2.37	<.5	5.3	<.1	29.3	>100	1.72
DE	175558			2800	1603	subcrop-5m from outcrop- over 0.6m thick+ Ga-px qtz-calo-sil, near dike/sili	1.9	72.5	2.9	221	0.3	2.66	0.7	6.7	<.1	31.3	>100	2.32
DE	175559			2800	1603	3 m west of 175558 subcrop/outcrop pale green Calc-sil, FeOx, py-po, W qtz veins with bands/fractures, 130/58. Granite sill dike 140/60	2.0	89.1	4.3	32	0.2	2.58	0.6	1.5	0.1	7.5	>100	0.96
DE	175560			2700	1480	Pale green calc-sil, qtz veins, boulder/subcrop 0.6X1.0 metre, py,po, W	1.0	48.2	2.1	36	0.1	2	1.2	6.1	0.1	8.6	>100	0.75
DE	175590	671622	5769535			At creek, grab over 2 m, calcsil+/-Wk positive W, Ga-Px-Qtz Po-Py, 1-3% tr sp.	0.8	51.9	3.5	56	0.5	2	1.1	5.3	0.3	10.2	>100	0.74
DE	175591	671636	5769560			Chip 1.5m, 4-5 kg. bedded (5-20 cm) calcsil Po-Py-Sp, positive W	0.0	01.0	0.0	-	0.0	-	• • •	0.0	0.0	10.2	- 100	0.58
-		0,,000	0,00000			strong	0.7	65.9	3	721	0.5	2.39	1.4	6.3	0.1	16	>100	0.00
DE	175594					Creek zone. Ct. 0+15m 3m south. Banded calc-sil + 5% scheelite. Grab of 25 cm boulder/subcrop.	3.9	40.4	3.7		2.1			162.4		679.7		4.05
DE	175595					CL 0+15 m NE chip/grab of 2 X 1.2 m of boulder probably S/C	0.9	76.1			0.3		<.5					4.25
DE						CL 0+20 mNE 0.75m chip/grab of skarn and dike, toppied boulders/ S/C.			4.2			2.55	0.6	4.9		11.2		1.24
							1.2	48.5	1.7	33	0.3	1.71	0.9	5.8		19.5		1.43
DE	175597					CL 0+25m SKN between 2 dikes O/C.	8.0	56.8	3.1	98	0.2	2.04	1.7	5.8	0.1	7.4	>100	0.85
DE	175598					Grab 2 m S/C (O/C) proximal boulders SKN Qtz veins Po.	1.3	68.1	3.5	109	0.2	2.26	0.9	2.9	<.1	6.6	>100	1.49
D£	175599					CL 0+5 3 m south S/C, SKN-calc sil, grab (1m)	1.8	37.2	3.3	209	0.1	1:45	<.5	5.5	<.1	15.9	>100	2.4
DF	184296			at 10 m	eters; ri	grab; 1 meter subcrop; sche-sphal-po; best W beside small dyke												
							1.6	62.5	4.5	1360	0.3	2.07	<.5	13.7	0.2	41.3	>100	2.17
DF	184297			at 21 m	eters; ri	grab; 1 meter outcrop and angular float; less sphal	0.7	68.8	6.1	1858	0.3	2.28	0.6	5.9	<.1	11.7	>100	0.66
DF	184298			5 meter	rs down	grab; 1.5 meters subcrop? minor sphal-sche;	0.8	62.4	3.5	64	0.3	2.18	1.5	6.3	<.1	10.4	>100	1.01
DF	184299			at 50 m	eters; ri	grab 3 meters radius; subcrop and probable outcrop; sche-po	1	66.7	3.3	126	0.3	2.05	0.6	5	<.1	15.1	>100	1.3
DF	184300			at 70 m	eters; ri	1.5 meter chip; outcrop; qtz-rich section 20 cms wide rest calc-sil	0.4	65.6	4.5	94	0.2	2.11	0.8	3.7	<.1	10.7	>100	0.32

Fox W-Mo Property Table 2

			_			i dule a												
		MPLES 200					Mo	Cu	Pb	Zn	Ag	Fe	As	Αü	3b	BI	W	W
	•	_	-	Grid E	Grid N	l Description	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	%
DR	184403	671470	5769577			grab; 25 cms outcrop; calc-sil with aplite; 2-3% po, tr sphal; S. side river												
							0.9	128.8	2.7	6788	0.6	2.81	<.5	9	<.1	13.7	1.3	
DR	184404	671470	5769577			grab; 4 meters of outcrop; less po, no sphal seen here; N. side of river												
							1.9	44.8	7.6	49	0.1	1.58	<.5	0.7	<.1	0.6	1.7	
DR	184405			at 10 m	eters d	grab; 15 cms outcrop; 2-5% po, minor sphal; S. side of river	0.3	95.1	3.9	1187	0.4	2.64	<.5	4.2	<.1	5.9	0.8	
DR	184417	670088	5769480)		grab 1 meter; qtz vein and sheared 2 mica granite; minor po; tr cpy-mo;												
						vein @ 315\45NE	27.9	30.9	24.4	39	4	0.87	32.2	5.1	6.9	149.6	2.9	
DR	184418	670109	5769486	;		grab; qtz vein 20 cms as @ 184417; sericite vein selvage w tr mo; vein												
						trends 330\75E	405.5	11.5	8.8	9	0.5	0.37	<.5	1	0.3	18.1	1.8	
DR	184419	670075	5769433	}		grab; qtz vein 30 cms w 1% po tr cpy-py; poor exposure; vein trends												
						320\50NE	1.3	96.2	47.2	3	14.3	1.29	<.5	21.3	13.9	754.8	2.3	
DR	184420	670025	5769446	3		grab; 40 cms; qtz vein and sericite-altered granite; single moly rosette to	1											
						oms diameter; large vein can be traced across river here												
							60.8	1.8	3.1	2	0.6	0.26	<.5	0.6	0.3	10.5	0.5	
DR	184426	669759	5769220	ì		ang float; calc-sil; tripo	0.4		4.2	_	0.1	1.47		1.9		5.1	0.6	
DR	184427	669913				ang float; qtz-carb-garnet skarn;	1	59.9	19.1		0.1	3.07			<.1	2.5	0.4	
DR	184428	870099				ang floet; calc-eil; minor po; re-sample FX03BK1; @ L14E;14+70N	•	50.0		٠.	٠.١	4.51	٠.٠	-	•••		•	
٥.,	1011720	0,0000	01004-0			and used and suits halve amplies standing the minimit seems	0.5	55.6	39.8	22	<.1	2.93	< 5	0.7	<.1	3.2	0.3	
DR	184429	670100	5789255	10 m n	arth af	t ang float; calc-sil 2-3% po; tr sphal-cpy; re-sample of FX03DR1	0.4		7.9			3.16			<.t	3.8	528.4	
DR	184430	670021	5769432			gtz vein 55 cms wide trending 330/85E in 2 mics granite; heavy sericite of				000	0.2	0.70	0	•••	-, ,	0.0	020 . •	
٠.٠	,0,,,00	0.002.	0,00,00	•		fractures; @ bottom of falls	 0.8	5.3	6.7	8	0.7	0.4	23	<.5	1.7	18	2.5	
DR	184431	870000	5760428	annov	25m de	y qtz float in side channel; minor py-po, tr mo-cpy	128.9		5.9			0.73		17.2		170.8	4.4	
DR	184432	672956		abbrox	20111 00	and float; on road to northeast; massive py-po; tr cpy	0.5		92.5		20.2	31.23		4.9	2.9	204.5	1.7	
DR	184433	672960		S	*****	cang float; massive po; tr opy; @ Line A:31+38N; very magnetic	1		4.5			30.19			0.2		7.6	
DR	184434	072800	3//0/3/	LA	2550	· · · · · · · · · · · · · · · · · · ·	,	810.4	4.5	13	2.1	30.18	,	122.4	0.2	107.4	7.0	
UR	104434			LA	2000	euhedral py; po; minor scheelite under UV lamp	8.1	404.9	24.5		0.0	2.02	1	25		40.0	102.7	
-	101111			1000	400	****	9.1 0.4	101.8 132	21.5			2.03		₩.₩		10.8	163.7	
DR	184441	000700	C7000E		430	• • • • • • • • • • • • • • • • • • • •		132	9.3	30	U.Z	2.09	₹.5	2	<.1	1.7	350.3	
DR	184442	669702	5763255)		ang float, subcrop?; calc-sil w minor po; up to 1% scheelite under UV ligh		~~ ~	~~ ~			4 70				2.5	000.0	
		67 0040					1,3	63.3	23.3	34	<.1	1.75	<.5	2.7	<.1	3.5	396.8	
DR	184443	6/3210	5769720	,		ang float; light grey-green schist w 2-4 cms qtz veins; 5-10% py-po												
						throughout; near top of clearout, more upslope	1.4	182.8	1.9	62	0.5	4.81	0.5	2.3	0.1	2.2	1567	
DR	184450			2250	1510	ang float; qtz-breccia in fine grained granite; chalky feldspars; tr py; mino				_			_	_				
						small black mineral?	23.1	4.8	2.8		<.1	0.33		<.5	0.1	1.4	20.2	
DBk	185301			2790	1475		4.8	407.8	1.7	48	0.8	7.23	<.5	<.5	0.1	1.0	13.9	<.01
DBk	185302			1942	800	subcrop; calc-silicate; minor po-cpy-sphal(?)	24.8	57.3	3.8	33	0.1	1.6	0.6	<.5	<.1	2.7	>100	0.05
DBk	185303			2000	1200	ang float; qtz-rich aplite; minor mo	205.8	4.5	10.3	6	0.3	0.38	0.6	16.7	0.3	175.4	9.8	<.01
DBk	185304			2000	957	subcrop; calc-silicate; minor po-cpy-sphal(?)	3.1	75,4	6.7	38	0.1	1.07	0.8	<.5	0.1	2.8	>100	0.04
DBk	185305			1995	775	subcrop;mixed schist-calc-silicate; minor po	7,9	165.7	10.2	53	0.2	2.8	<.5	<.5	<.1	2.8	>100	0.01
DBk	185306			1897	1150	altered float	3.4	31.0	2.1	33	0.1	1.4	0.6	<.5	0.2	3.8	>100	1.01
DBk	185307			1000	1600	moly in qtz; intrusive; float	16.3	7.4	1.7	3	<.1	0.38	0.6	0.8	<,1	3.3	59.9	0.01
DR	185308	669524	5768874	}		schiet, calc-eil, qtz W with lamp	2.2	222.0	3.8	37	0.2	2.45	<.5	<.5	<.1	2.1	>100	0.24
DR	185361	671274	5769657	,		subcrop; intrusive w qtz vein; minor mo	61.8	5	6.6	5	<.1	0.41	0.5	0.6	<.1	2	9	
ÐR	185376	668447	5772013	3		grab outcrop; qtz vein in intrusive; 340\88SW; vein 30 cms wide minor p	,											
							1.5	7.1	7.3	13	0.5	0.63	16,1	<.5	4.6	7.5	3,1	
DR	185377	670020	5768190)		subcrop? Caic-silicate; @L13E;3+70N	0.3	8.4	9.6	37	<.1	1.2	1.2	<.5	<.1	0.7	14.9	
DR	185378			near 18	34441	ang floet; calc-silicate; tungeten under UV lamp; on access trail	0.3		6.7			1.77		_	<.1	1	217.2	
DR	185401					b grab outcrop; about 20 m south of creek; aplite cutting carb-rich seds;					 -					·		
	,00,101			-defe- 0V		minor po (sphai?); fractures @ 345\80E 095\70S	0.3	30.2	7	15	0.2	1.78	<.5	1.3	<.1	0.8	3.6	
DR	185402			approv	100m =	£ grab outcrop; granite pegmatite trending southerly along creek cuts fist	٠.٠	30.1	•			0				0.0	0.0	
۵.۱					. 55111	laying schist	0.4	8.4	13.6	1	3	0.47	0.9	1.9	2.4	77.3	1.6	
DRV	BK1Fox05	į		1400	898	float; calc-sil with garnet; minor po, tr cpy	2.3	144.4	15.5	59	0.3	3.14	<.5	1.2	<.1	5.3	30.8	0.01
	BK2Fox05			1500	850	float; po-rich hornfels	0.8	110.1	36.7	62	0.2	4.49	< 5	<.5	<.1	0.7	2.8	<.01
- DOK	DIVEL OXOD	,		1300	330	mand has tone subustanta	J. 0	1 (0.1	J.,	J2	V.2	7.70	0	٦.٥	-, 1	U. /	2.0	

Happy Creek Minerals Ltd

Fox W-Mo Property Table 2

Rock Sample Descriptions

			i abie 2												
FOX	SILT SAMPLES	3 2005		Мо	Cu	Pb	Zn	Ag	Ni	As	Au	Sb	Bi	Cr	W
	Sample ID	Easting	Northing Description	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	ppm
DB	05DB-ST-1	671052	5771599 Sandy silt, creek, Gr boulders.	5.4	9.6	7.2	58	<.1	18.7	4.2	0.8	0.4	7.4	30.1	9.2
DB	05DB-ST-2	670969	5772137	21.3	8.1	18.6	74	0.1	18.6	12.7	0.8	0.2	0.9	29.9	3,1
DB	05DB-ST-3	671048	5772253 Nearby O/C Q-B-sch 150/24. Qtz vein lenses.	1.9	9.6	7.1	48	0.1	12.3	10.9	<.5	0.2	0.6	19,4	6.6
DB	05DB-ST-4	671729	5772143 Gr float in creek, mod. QVN float. Rounded float of Garnet-Caic-Sil	1	14.5	7.6	74	0.2	15.5	2.6	0.6	0.2	0.6	31.5	9.7
DB	05DB-ST-5	671821	5771915 Gr + B-Q-sch+ Calc-Sil float. Qtz pebbles in silt.	2.5	119.6	88.8	114	0.8	24.2	3.9	5.2	0.3	0.9	35,2	24.8
DBk	S-1Fox-05	671675	5769635 10m downstream of L30;16+83N; Deception Creek, above River zone	1.5	9.3	5.3	49	<.1	167.5	2.5	<.5	0.1	0.2	80.2	10.8
DBk	S-2Fox-05	671575	5769575 Deception Creek immediately below River zone outcrops; @L29E sand bar	1.2	9.8	5.3	59	<.1	152	2	<.5	<.1	0.2	64.9	5.6

FOX	MOSS MATS	2005		l aple 2	Mo	Cu	Pb	Zn	Ag	As	Au	Sb	Bi	W
	Sample ID	Easting	Northing	Description	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm
DB	05DB-MM-1	671052	5771599		3.7	4.6	8.6	33	0.1	1.9	0.9	0.1	0.5	1.4
DB	05DB-MM-2	670969	5772137		2	5.2	5.4	32		1.8	<.5	0.1	0.5	4.9
DB	05DB-MM-3	671048	5772253		1.3	7.8	6.4	40	0.1	7.3	1.6	0.1	0.6	9.3
DB	05DB-MM-4	671729	5772143		0.9	16.7	9.7	65	0.2	1.9	0.6	0.2	0.5	5.7
DB	05DB-MM-5		5771915		1.9	9.8	8.7	49	0.1	2.5	0.6	0.1	0.9	7.1
DR		cant get G		Fox grid	0.6	14.4	4.9		<.1	0.7	<.5	0.1	0.3	8.6
DR	FX05MMR2	cant get 0		first creek crossing north of road end	0.5	21.9	4.5	41	0.2	0.7	12.6	<.1	0.2	0.4
DR	FX05MMR3	672398		just above road;1 m wide, good flow; bouldery till	0.5	15.6	5.1	55	Q.1	0.9	<.5	<.1	0.2	4.1
DR	FX05MMR4	672339	5769621	just above road; mixed bouder till; good flow, 60cm wide	0.7	15,4	7	52		1.2	<.5	0.1	0.2	1.6
DR	FX05MMR5			4 m wide, fast flow; mixed bouldery till; extensive outcrop upstream	0.5	14.9	4.2	49	<.1	1.2	<.5	0.1	0.7	0.6
DBk	FX05M1	671675	5769635	10m downstream of L30;16+83N; Deception Creek, above River zone	0.7	11.3	5.8	43	<.1	1.1	1.8	0.1	0.2	4.3
DBk	FX05M2	671575	5769575	Deception Creek immediately below River zone outcrops; @L29E sand bar	0.6	8.9	4.3	39	<.1	8.0	2.1	<.1	0.2	4.1
DBk	FX05M3	670943	5769623	dry creek bed; float, granite with qtz veining	2.7	33.6	20.3	119	1.3	3	0.9	0.2	5.3	3.3
DBk	FX05M4	670313	5769601	dry creek bed; intrusive float	5.9	18.5	18.1	29	0.6	1.4	0.9	0.3	2.3	2.1
DBk	FX05M5	670190	5769619	dry creek bed; intrusive float	4.3	25.2	18.7	65	0.7	2	1.8	0.2	3	1.5
DBk	FX05M6	670068	5769649	1 m wide, flowing; schist float cut by intrusive	3.6	13.5	14.7	46	0.8	1.5	<.5	0.2	2.3	2.6
DBk	FX05M7	669878	5769721	1-1.5 m wide, flowing; granite float	2.9	13.7	13.2	37	0.5	0.7	0.7	0.2	2.5	2.5
DBk	FX05M8	669741	5769838	0.5-1 m wide, small bits qtz and intrusive float	4.9	15.9	9.3	150	0.5	0.7	0.7	0.2	2.5	5.1
DBk	FX05M9	669487	5769950	small creek; intrusive float	6.4	11.1	12.1	36	0.6	2	<.5	0.2	2.3	4.6
DBk	FX05M10	667839		schist outcrop @ 155\30W	2	4.6	5.2	25	0.1	1.1	0.6	0.1	0.6	5.6
DBk	FX05M11	668696		north fork;	1	6.7	3.9		<.1	1	0.5	0.1	1	5.8
DBk	FX05M12	669026		tiil, no outcrop or angular float	2.9	4.6	3.8	25	0.1	0.9	0.6	0.1	0.7	6.2
DBk	FX05M13	668361	5772148	Chute creek; pyritic qtz veins in granite; see 185376	2.1	17	9.2	98	0.2	13	<.5	8.0	4.9	19.5
DBk	FX05M14	667339	5771470	mostly intrusive float	1.6	9.4	5.5	42		5.3	9.4	0.4	3.2	19.1
DBk	FX05M15	672072		up to 1 m wide; granite and qtz float in creek	1.3	18.9	7.1	44	0.3	1.1	<.5	0.1	8.0	2.7
DBk	FX05M16	672467		3-4 m wide; intrusive float	1.7	9.1	7.4	49	0.1	1.9	<.5	0.2	8.0	8.5
DBk	FX05M17	672770		Nickel creek; just above bridge	0.2	10.6	4.1		<.1	2.9	<.5	0.1	0,1	0.3
DBk	FX05M18	673503		1 m wide; mostly schist float in creek	0.6	9.9	4.2	40		0.5	<.5	0.1	0.1	0.6
DBk	FX05M19	673068		above Nickel creek junction	0.4	8.1	3.6			<.5	0.6	0.1	0,1	0.5
DBk	FX05M20	673193		on Line "B";	0.5	17.4	5.2	37	0.1	1.4	<.5	0.1	0.2	0.2
DBk	FX05M21	673162	5769330	just past south end of Line "B"	8.0	25.2	7.4	37	0.2	1.4	<.5	0.1	0.2	0.1

Fox W-Mo Property Table 2

					Table 2
<u>FOX</u>	NOTES 2005				B 14
	Easting	Northing	Elev	EPE (m)	Description
May 2	26, 2005				
					BL 15N 21+75E, O/C Mo in Sch (+Po), above road 130°/15°, 240°/80°
DB					FeOx + Mo, Good W in 2X2m boulder across road.
DB	672184	5769500	1224	30	PC-1 at (2 pans) Ga-FeOx? II?,W? at BL 35+00E.
May 3	31, 2005				
					L23E 13+35N - Mo in intrusive
					At L 28E 15+98N pull moss, W in 1cm vns, 16+03N W in skn 1X.8m boulder.
					Red-orange Ga-pale-dark green Px, po-pyu (1-5%), qtz peg vns 1-3 cm
					banded, qtzite+marble (see drawing)
Augus	st 18, 2005 - Fo	ox Deception Cr	eek		
DB					At creek end of L2 8E, O/C banded seds/Ga
DB	671478	5769569		21	140°/35° CG Ga 1cm calc, 360°/60° frcts.
					32m +15, 47 m wide, South grid W zone
					South grid area, 140°/36° sch, qtz-feldspathic grits, qtz vns to 30 cm, tr
					W, Po-py 2% at end of soil grid.
					End of L8E at creek, O/C B(G)-sch 170°/10°, B-Q(M) sch 140°/30°, dike
					aplite 290°/80°.
					·
					Approx. 50 m SE - O/C B sch+/-qtz, wk Po Hnf, 140°/80°
•	mber 24, 2006			•	A OF ADARD I have at Observice to D. O. O. b.
DB	669594	5769000		6	L9E 12+25N, Lots of Qtz veins in B-Q Sch
DB	672106	5769468	_	11	Camp
•	=	- North of Cree	k		
DB	671890	5769778		11	At Creek.
DB	671417	5770274		11	Qtz veins lower down bluff
DB	671360	5771146		8	B-M Gr fresh with x-cutting bleached zones + Qtz veins, 340°/70°, locally 3cm.
Trans	ect north acros	s ridge			
DB	671177	5771456		12	Contact 310°/70°m M-B Gr + B Q Sch.
DB	671074	5771521		11	128°/30°, schist
DB	672250	5770670		16	At creek big swamp
DB	672243	5770282		10	S side cross swamp
DB	672550	5770042		8	At road, Fi B-M sch + Gr +/- Calc-Sit
	Massive Sulp				•
DB	673001	5770846		26	
South	grid, top clear	cut, marble, lan	nping		
DB	670000	5767859	•	9	
DB	670039	5767974		6	Darin W skarn 0.5m.
DB	669739	5768226		11	40 kg W skarn.
DB	668651	5769145		6	Granite Boulder
Line 2	28E at creek				
DB	671523	5769579		12	070°/18° 184404 Calc-Sil + (Q-B-??), 135°/20° Sill/Calc-Sil contact.
DB	671488	5769483		8	L28 15+50N at road (+ Ridley's 3% W Sample)
	er 2005?				, ,
					S edge of cutblock, from landing (calc-sil bands, po+/-py, B-M Gneiss,
					qtz B-Gn Ga-qtz, 1 cm calc sil bands locally fgb-Ga-Granite float (minor),
DB	670192	5767823		9	140°/40°, 140°/35° at landing).
	*******			•	O/C, 1-3cm bands, B-Q gneiss metadecite??, 167°/46°-86° (subv). At
DB	670175	5767771		15	L14E 190S south grid, no gps, O/C.
					O/C, W 1 cm bands, 140°/30° (B-Q sch).
DB DB	670237	5767645 5767003		13 9	
	670244	5767923		9	Float 0.25 m calc sil skn, W.
OCIOL	er 16, 2005 Fo	·X			
					At bridge and upstream, Q-B schist 140°/10°, sample Peg silica, 10° SW
		577000			dip, msv peg silc at 672863 5770080 (10), WCG magnetite? flakes 2X10
DB	672840	5770088		22	m
DB	673008	5770001		11	CG granite-aplite sill/bleb, 2-3 m thick, multiphase MG-CG.
DB	673011	5769999		7	Volatile CG white feld, qtz, pale cream colour aplite.
DB	673040	5769988		7	Gr dike, trend up hill, calc sil, O/C Q-B-sch W lenses, Q vns, 360°/10°.
					Gr-Apl float, B-sch pale green, 360°/26°, 0.7 m boulder calc-silc + 2Kspar
DB	673235	5769898		7	(Now) (see drawing).
DB	673233	5769807		7	O/C B-(Q) sch cut by Gr-Apl, Peg Q vns (DB-2), red garnet.
DB	673234	5769755		17	DB-3, Apl-peg, sill 30-50 m X 1-3+ m.
DB	672783	5770027		7	Gr-aplite-peg sill, 3-4 m wide, 10-20 m long, cuts B-M sch subcrop/till
DB	672679	5770048		7	Gr O/C 360°/10°.

Appendix 1- Assay Certificates

ACME ANY TICAL LABORATORISS LTD.
(ISC A 001 Accredited Co.)

8. 4. Ha. INGL ... Y. AUVE.

lre l

31 **b**a

PAX P

AA

GEOCHEMICAL ANALYSIS CERTIFICATE

Standard Metals File # A504929

P.O. Box 1852 38151 Clark, Squamish BC VON 3G0 Submitted by: David Blann

SAMPLE#	Мо ррп	Cu ppm		•	Ag ppm	Ni ppm		Mn ppm	Fe *	As ppm	_				Cd ppm p		Bi ppm pp		Ca X	P i		Cr ppm	-	Ba ppm	Ti { % ppr	3 Al	Na X	K ¥	W Hg Sc Ti ppm ppm ppm ppm		Se nppm	••
E41519 E41520 E41521 E41522 E41523	29.6 .3 .3	14.3 23.6 79.5	9.5 2.7 3.0	3 6 147	.1 .1 .3	1.6 2.5 40.4	1.1 1.5 17.9	143 96 257	.45 .70 2.49	<.5 .6 <.5	9.2 10.2 .6	.8 1.9 2.3	3.2 4.0 1.9	29 5 366	<.1 < <.1 3.3 <	.1 .1 .1 1	4.5 < .5 0.5	<1 . 3 . 44.	76 .: 08 .: 40 .:	007 016 058	1 3 7	7.8 17.8 17.0	.01 .09 .10	27 .0. 34<.0 36 .0. 55 .0 82 .0	01 2 10 2 81 2	2 .26 l .31 2 4.02	.038 .052 .571	.13 .08 .03	2.3<.01 1.2 .1 < .4<.01 .2 .1 .4<.01 1.4 .1 .46<.01 .7 < .1 1 .94<.01 3.8 .1	13 23 33 1	1 <,5 2 <.5 3 .7	-
E41524 E41525 STANDARD DS6	.2	59.9	2.7	42	.2	27.1	13.0	543	2.31	<.5	6.6	4.1	2.4	99	.7 <	1	3.6	14 2.	14 .	077	7	26.4	.32	29 .04	48 2	2 1.95	. 278	.02	>100 .03 2.8 <.1 >100 .02 2.9 <.1 1 3.6 .23 3.3 1.7 <	04	7 .5	483

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: Rock R150

Data FA ___ DATE RECEIVED: AUG 24 2005 DATE REPORT MAILED: 25.

Y L L ATC 3 9001 Accreated Co.)

ASSAY CL.. CIFICATE

Standard Metals File # A505071 P.O. Box 1852 3815: Clark, Squamish BC VON 3GO Submitted by: David Blann

SAMPLE# D175590 D175591 .74 .58 .09 FOX STANDARD R-2a

W - GROUP 7KP - 0.50 GM SAMPLE BY PHOSPHORIC ACID LEACHED, ANALYSIS BY ICP-ES.

- SAMPLE TYPE: Rock R150

DATE RECEIVED: AUG 31 2005 DATE REPORT MAILED: Sept 15/05.

ANA 'ICAL LABORATORIES LTD. (ISO JUDI Accredited Co.) ACMB ANA

OUVER BC V6A 1R6 PHONE (604) 253-3158 PAX (007 15-1

GEOCHEMICAL ANALYSIS CERTIFICATE

Standard Metals PROJECT FOX File # A502386R2 (a) P.O. Box 1852 38151 Clark, Squamish BC VON 3GO Submitted by: Dave Tupper

SAMPLE#	Ba Bo ppm ppm	-										Th ppm	ppm U	V ppm	ррп Р	Zr ppm	ppm									•			bbw b		
E41500	139.6 39 25.6 198 505.8	R A	5 4	. 4 3	7.2 1	.7	16.0	9.4	20	670.0	1.1	8.8	2.7	45	>10000	65.1	18.1	27.6	54.2	6.15	22.7	3.9	.78 3	.12	.51	2,90	.61 1	.73	.29 1.	58 .	.28

GROUP 48 - REE - 0.200 GM BY LIBOZ FUSION, ICP/MS FINISHED. - SAMPLE TYPE: Rock Pulp

DATE RECEIVED: OCT 10 2005 DATE REPORT MAILED:

ACME AND TICAL LABORATORIES LTD.

852 B. HASTINGS ST. V

TOUVER BC VOA 1R6

PHONE (604) 253-3158 FAX (604

53-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Standard Metals PROJECT FOX File # A502386R2 (b)
P.O. Box 1852 38151 Clark, Squamish BC VON 3GO Submitted by: Dave Tupper

SAMPLE#	Mo ppm	Cu ppm	dq ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	Hg ppm	Tl ppm	Se ppm	
E41501	129.9	120.0	36.9	28	13.8	.7	.6	.2	64.8	3.7	3.4	<.01	.1	.7	
E41509	3.1	67.2	5.3	623	17.7	.5	17.9	<.1	17.9	.3	5.7	<.01	<.1	<.5	
STANDARD DS6	11.3	122.8	28.9	142	24.5	20.9	6.1	3.4	4.9	.3	44.2	.23	1.7	4.1	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS.

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY.

- SAMPLE TYPE: Rock Pulp

AN TICAL LABORATORIES LTD. (ISC J001 Accredited Co.)

852 E. HASTINGS ST. 7 COUVER BC VOA 1R6 PHUNE (604/23)-3158 PAX (00) 53-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Standard Metals File # A504929R (a) Fox P.G. Box 1852 38151 Ctark, Squamtah BC VDN 3GD Submitted by: Dave Tupper

		****	********																												record reserves
SAMPLE#	Ba	Be	Co	Cs	Ga	Hf	Nb	Rb	Sn	Sr	Ta	Th	U	٧	¥	Zr	Y	La	Çe	Рг	₩d	Sm	Eu	Gd	Tb	Dy	Но	Er	7m	Yb	Lu
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	bbu	ppm	ppm	ppm	bbm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	bbu	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	opm
E/4E40	274 4		3 7	7 5	21 0	7 /	4 9	07 R	5	200 8	1 3	43	7 5	16	16.1	73 S	R 1	10.0	20.0	2 16	7 ሰ	1 7	30	1 58	28	1 47	28	7/.	17	70	4.4
E41519 E41520	548 1	11	13	6.0	16.6	2 1	2.6	171.8	<1	107.7	9	3.7	8.7	√ 5	.8	12.4	2.6	1.0	1.4	.15	.7	-3	.11	.46	.11	.54	.09	.22<	. 15	17	- ! I
															1.5																
															754.3																
STANDARD SO-18	505.8	2	27.2	6.8	17,7	9.7	20.1	27.1	14	408.8	7.7	10.0	16.3	195	16.4	278.4	34.1	12.6	28.0	3.50	13.9	3.3	.92	3.01	.51	2.93	.64	1.93	.30 1	.83	.26

GROUP 4B - REE - 0.200 GM BY LIBOZ FUSION, ICP/MS FINISHED. - SAMPLE TYPE: Rock Pulp

DATE RECEIVED: OCT 10 2005 DATE REPORT MAILED: Oct 19/05

CMB AND TICAL LACONATORNOLLEV. (ISC)001 Accredited Co.)

Ja B. malingu at.

Wan JC .un 1R6

humb (604) 433-3138 FAX (61)

753-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Standard Metals File # A504929R (b)
P.G. Box 1852 38151 Clark, Squamish BC VDN 388 Submitted by: Dave Tupper

44

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	Hg ppm	Tl ppm	Se ppm	
E41519 E41520 E41521 E41525 STANDARD DS6	10.6 37.5 .4 .3 11.3	12.8 14.0 21.8 58.6 122.8	4.0 9.0 2.5 2.6 28.9	33 7 43 142	3.2 1.4 2.3 26.7 24.5	.6 .5 .7 <.5 20.9	.3 <.1 <.7 6.1	.1 <.1 <.1 3.4	3.1 3.7 .5 3.3 4.9	<.1 <.1 <.2 .3	1.2 .8 .9 3.4 44.2	<.01 <.01 .01 .03 .23	.1 .1 <.1 1.7	<.5 <.5 <.5 4.1	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS.

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY.

- SAMPLE TYPE: Rock Pulp

Data FA DATE RECEIVED: OCI 10 2005 DATE REPORT MAILED: C. 19/05

TM ALY ILL LATE SLI (Y 9001 Accredited Co.)

GEOCHEMICAL AN. YSIS CERTIFICATE

Standard Metals PROJECT FOX File # A504930R P.O. Box 1852 38351 Clark, Squamen BC VDN 360 Submitted by: David Blann

SAMPLE#	Mo ppm	Cu ppm	Pb ppm		Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm p	U pm	Au T ppb pp				V ppm	Ca %	P % p	La Cr opm ppm		Ba Ppm	Ti X	B A	1] Na X X	K X	ppm r	_	Sc opm p		-	s Se n ppm	
G-1 C184296 C184297 C184298 C184299	.7 .8	3.4 62.5 68.8 62.4 66.7	4.5 6.1	1360 1858 64	.3 .3	104.6 119.8 150.8	19.8 21.6 29.1	574 1. 712 2. 781 2. 646 2. 747 2.	.07 .28 .18	<.5 .6	.7 .8 .4	13.7 2. 5.9 3. 6.3 2.	0 369 2 426 0 289	<.1 <. 38.4 <. 54.4 <. .9 <. 3.1 <.	2 41.3 1 11.7 1 10.4	11 4 16 3	4.28 4.07 3.16	.111 .138	6 125.1 6 42.9 9 26.4 6 58.3 6 32.1	.36	63 3 39 5 69	.132 .136 .141	2 3.6 2 3.7 1 3.2	6 .086 19 .271 16 .338 18 .228 13 .379	.08 .03 .05	1.3<. >100 . >100 . >100 . >100 .	.14 1 .29 .33 1	1.0 .8 < 1.0	.1 . :1 1. :1 .	96 2 05 1 78 1	7 <.5 5 .5 4 <.5	
C184300 D175594 O175595 D175596 RE D175596	3.9 .9 1.2	65.6 40.4 76.1 48.5 51.2	3.7 4.2 1.7	260 106 33	2.1	61.2 158.8 122.3	10.4 27.9 18.9	728 2 447 1 1112 2 1339 1 1313 1	.28 .55 .71	<.5 .6 .9 1	.8 1 .9 .0	62.4 . 4.9 1. 5.8 2.	3 191 9 360 6 333		1 679.7	4 : 14 ! 15 :	3.96 5.02 3.79	.058 .180 .146	7 34.0 3 14.9 6 49.4 9 34.3 8 32.8	.1: .2: .3:	35 2 32	.029 .109 .162	1 2.9 3 4.7 2 3.3	3 .266 36 .372 70 .380 39 .256 40 .256	.02 .03 .03	>100 >100 >100 >100 >100 >100	.05 .22 .21	.4 < > 1.7 < 1.2 <	4.1 . 4.1 1. 4.1 .	46 1 02 2	3 <.5 7 .5 3 <.5	
D175597 D175598 D175599 STANDARD DS6	1.3	56.8 68.1 37.2 123.2	3.5 3.3	109 209	.2	156.6	29.5 14.2	1193 2 745 2 544 1 696 2	.26 .45	.9 1 <.5	.7 .4	5.5	2 286 9 345	2.5 2.4 < 5.0 < 5.9 3	1 15.9	14 4	4.47 4.38		5 35.9 6 42.9 3 17.6 11 180.0	.2 .1	9 35 4 27	.151 .148 .092 .069	3 4.3 3 4.4	13 .160 30 .436 12 .414 36 .074	.04	>100 >100 >100 >100 3.4	.23 .13	1.2 .8 <	.1 1.	50 2	9 < .5 2 < .5 5 < .5 6 4.0	

GROUP 1DX - 15 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS.

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY.

- SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

FA ____ DATE RECEIVED: DEC 22 2005 DATE REPORT MAILED:

CM ALY L L ATO LE

. hin h.,

/)C

l les

us)

FA

·25

LA.

GEOCHEMICAL AN. YSIS CERTIFICATE

Standard Metals File # A505071R P.G. Box 1852 18191 Clerk, Squemish BC v0g 3m0 Submitted by: David Blenn

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N1 ppm	Со ррп	Min ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	\$b pp n	B1 ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti *	ppm ppm	A1	Na X	K X	ррп	Hg ppm	Sc ppm	ppm T1	S X	Ga ppm	Se ppm
G-1 D175590 D175591 STANDARD DS6	.9 .8 .7 11.5	3.0 51.9 65.9 123.2	2.7 3.5 3.0 29.4	46 56 721 144	.5	110.9	19.2 26.0	585 1 778 2 579 2 696 2	.00 .39	1.1 1.4	.1.7 .6	5.3 6.3	2.0 2.1	353 326	.8 23.8	.1	.2 10.2 16.0 4.9	16	.55 4.03 3.21 .84	. 165 . 164	6 6	99.9 46.7 52.4 180.0	.62 .48 .39 .56	31	.148 .224	2	1.05 3.77 2.43 1.86	.242 .167	.03 .05	8.5. >100 >100 3.4		1.4		.05 .74 .16	9	<.5 <.5 .5 4.0

GROUP 1DX - 15 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS.

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY.

- SAMPLE TYPE: ROCK PULP

Data FA ___ DATE RECEIVED: DEC 22 2005 DATE REPORT MAILED: Jam 11/06

YTICAL LABORATORIES LTD. 9001 Accredited Co.)

ODE E. MANTINGS ST.

Phone (60=, 13-3130 FAX ...

GEOCHEMICAL ANALYSIS CERTIFICATE

Standard Metals PROJECT FOX File # A600370 Page 1 P.G. Box 1852 38151 Clark, Squamish BC VON 3GD Submitted by: David Blann

SAMPLE#	Мо ррт		Pb ppm		Ag ppm	Ni ppm	Co ppm	Mri ppri		As U ppm ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca 2	P % p		Cr ppm	Mg X	Ba ppm	Ti % p			Na I			g Sc n ppm			Ga S opm p		Dout Dout
G-1 C151730 C151731 C151732 C151733	3.4 .7 .7	68.0 5.6 32.0	2.9 2.8 3.6 92.6 9.8	322 28 13	.2 4.1 15.0	10.0 .8 4.7	6.1 .5 6.6	562 46 72	1.69 .30 4.93	<.5 1.9 .6 3.9 .5 1.9 .6 4.6 2.4 1.3	2.3 .9 55.7	1.4 5.8	216 2 3	6.7 .6	. 8 .3	<.1 18.8 3.5 254.7 4.0	23 5 2 3	.92 .05 .04	049 004 009	16 2 6	8.1 17.4 7.2 3.5 10.7	.35 .01 .02	29 . 5 . 17 .	101 001 002	4 4 1 1	.44 .2 .13 .0 .21 .0	65 .4 03 .1 12 .0 123 .1 124 .1	1 >1 7 48 0 27	00 .0 . 8 <.0 .1<.0	1 2.4 1 .2	.1 <.1 .1	.51 .06	4 < 22 < 1 < 1 1 3 1	.5 3 .5 .4	48.8 27.1
C151734 C151735 C151736 C151737 C184294	.5 .3 1.4		12.2	5 5 27	<.1 <.1 .8	1.2 .8 1.4 135.5 16.1	.2 .3 71.0	56 243	.57 .35	<.5 <.1 <.5 2.8 <.5 1.1 .5 1.4 .7 3.6	.7 78.7 4.0	3.8 .4 9.8	3 1 37	<.1 <.1	.1 <.1 <.1	1.8	1 1 10	.02 .01 .61	.010 .004 .054	4 <1 26	5.0 18.1	.02 .01 .19	18 . 4 . 10 .	001 001 115	1 <1 <1	.25 .0 .15 .0 .52 .0)68 .0	6 >1 8 7 1 9	00<.0 .2<.0 .8<.0	1 .4 1 .2 1 1.8	<.1 <.1 <.1 <.1 <.1	<.05 <.05	<1 < 2 < 1 < 1 3 4 2	.5 .5 .5	
C184295 C184403 C184404 C184405 C184417	.9 1.9 .3	128.8 44.8 95.1	2.0 2.7 7.6 3.9 24.4	6788 49 1187	.6 .1 .4	31.8	28.1 11.0 20.6	224 160	2.81 1.58 2.64	.7 .7 <.5 2.5 <.5 1.8 <.5 1.4 32.2 1.3	9.0 .7 4.2	4.8 6.4 3.2	233 326 269	233.5 .4 34.1	<.1 <.1 <.1	<.1 13.7 .6 5.9 149.6	9 1 40 3 10 3	96 3.86 3.24	.105 .096 .081	16 20 12	12.3 28.1 18.5	.09 .39 .11	30 . 83 . 41 .	.085 .121 .137	3 2 2 5 3 3	.47 .3 .89 .3 .85 .	368 .0 231 .1	3 1 8 1 4	.3 .0 .7<.0 .8<.0	2 1.0 1 1.1 1 .9		2.42 .50 1.81	12		2.0 1.3 1.7 .8 2.9
C184418 RE C184418 C184419 C184420 C184426	60.8	11.8 96.2 1.8		8 3 2	14.3	1.0 1.1 1.3	.4 1.0	81 39 57	.38 1.29 .26	<.5 1.6 <.5 1.4 <.5 .5 <.5 .2 <.5 1.9	1.3 21.3 .6	1.3 <.1 .1	2 <1 1	<.1 1.8 <.1	.3 13.9 .3	18.1 17.0 754.8 10.5 5.1	<1 <1 <1	.05 .01 .01	.026 .003 .002	2 <1 <1	7.8 7.5 10.7 10.2 25.1	<.01 <.01 <.01	5 1<. 3<.	.001 .001 .001	I <1 1	.11 .0 .01 .0 .03 .0	002 .0 003 .0	9 1 1 2 2	.8<.0 .3<.0 .5<.0		<.1 .1	.14 .85 <.05	1 < 1 < 1 < 1 < 7 < 7	.5 .2 .5	1.8 1.8 2.3 .5
C184427 C184428 C184429 C184430 C184431	.5 .4 .8	55.6 73.7 5.3	19.1 39.8 7.9 6.7 5.9	22 503 8	<.1 .2 .7	46.2	20.4 18.0	340 866 37	2.93 3.16 .40	<.5 .7 <.5 1.3 <.5 1.1 2.3 .5 <.5 .3	.7 1.7 <.5	5.2 2.0 1.4	511 3	.1 13.3 .1	<.1 <.1 1.7	2.5 3.2 3.8 18.0 170.8	10 5 23 5 1	5.09 5.98 .04	.103 .079 .007	18 8 2	24.8 16.3 34.6 7.5 10.3	.22 .50 .01	15 . 30 . 4 .	.070 .094 .001	<1 7 3 5 1	.15 . .94 . .11 .	156 .0 118 .0 332 .0 010 .0	3 3 >1 6 2	.3<.0 0.00 0.5.0	1 2.1 1 3.4	<.1 <.1 <.1	1.31 1.54	17 <1 <	.9 .6 !	.4 .3 528.4 2.5 4.4
C184432 C184433 C184434 C184441 C184442	1,0 8.1 .4	918.4 101.8 132.0	3 92.5 4.5 3 21.5 3 23.3	15 6 36	2.7	27,1 5,4 29,4	47.2 5.0 9.3	2 160 3 55 3 256	30.19 2.03 2.09	<.5 2.0 1.0 1.8 1.0 6.8 <.5 1.6 <.5 2.9	122.4 3.5 5 2.0	2.8 4.6 10.8	3 18 5 3 3 345	<.1 <.1 .1	.2 4. 4.>	204.5 157.4 10.8 1.7 3.5	7 <1 26 3	.20 .10 3.30	.046 .026 .037	6 5 27	9.0 12.0 5.8 36.9 14.2	.17 .03 .34	24 13 102	.040 .003 .138	<1 1 3 4	.53 . .18 . .62 .	020 .1	9 7 .5 >1 .5 >1	.6<.0 00 .0	1 1.1 1 .9 1 3.3		>10 1.55 .48	1 6 2 5 1 12 < 17 <	.9 .7 :.5	350.3
C184443 C184450 B185361 B185376 B185377	23.1 61.8 1.5	4. 5. 7.	3 1.9 8 2.8 0 6.6 1 7.3 4 9.6	1 2 1 5 1 13	<] <]) .i	5 80 2 105 2 52	.33 .41 .63	<.5 1.9	9. > (5 6) 2. > (5	2.4 2.7 3.1	7 48 4 4 7 2 1 2 5 291	<.1 <.1	.1 < 1	2.2 1.4 2.0 7.5	1 <1 <1	.04 .02 .01	.005 .004 .006	3 4 4	115.6 5.9 4.1 9.0 23.6	.01 .01 <.01	10 6 7	.001 .001 .001	1 <1 1	.19 . .16 . .11 .	038 .1 034 .1 015 .0	.0 20 .1 9 .6 3),2<.0 },0<.0 },1<.0)1 .3)1 .5)1 .2	3 <.1 5 <.1	<.05	1 < 1 < <1 <	:.5 :.5 :.5	566.8 20.2 9.0 3.1 14.9
STANDARD D	11.9	5 120.	8 30.2	2 143	3 .	3 25.0	0 10.	9 688	2.79	21.6 6.7	45.9	3.0	0 41	6.1	3.6	5.1	57	.85	.080	14	184.8	.57	168	.080	18 1	91 .	073 .:	.5 4	1.1 .2	3 3.2	2 1.7	<.05	6 4	1.4	4.1

Standard is STANDARD DS6.

GROUP 1DX - 15.00 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: ROCK R150

DATE RECEIVED: JAN 24 2006 DATE REPORT MAILED:

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Standard Metals PROJECT FOX FILE # A600370

Page 2

																															
SAMPLE#	Мо ррп	Cu ppm		Zn A ppm pp	,			As ppm pp							Ca X	P (Cr M	lg βa ≵ppm	Ti X	B opm	A1 Na	K X		Hg ppm p			Ξ.	Sa Se om ppm	₽PM ₩	
G-1 B185378 B185401 B185402 STANDARD DS6	.3	90.7 30.2 8.4	6.7 7.0 13.6	26 . 15 . 1 3.	1 27.4 2 20.2 0 1.3	9.4 9.2 .7	226 1.77 279 1.70 16 .4	0 < .5 1. 7 < .5 1. 8 < .5 . 7 .9 3. 1 20.8 6.	4 2. 6 1. 6 1.	.5 9.3 .3 3.6 .9 2.2	387 250 2	.1 <.1 .1 <.1 <.1 2.4	1.0 .8 77.3	15 15 1	3.79 3.25 .04	.044 .156 .017	21 29 11 31 3 8).5 .2 2 .1 3.0 .0	3 95 6 18 1 10<	.109 .103 .001	2 4.	57 .350 71 .080 13 .016	3 .11 3 .04 5 .09	>100< 3.6< 1.6	.01 2 .01 1 .01	.0 .1 <	.1 .4 5.1 .5 5.1 .2	7 2 5	3 < .5 1 < .5	217.2 3.6 1.6	

Sample type: ROCK R150.

Data____FA

Y? LL ATO L 3001 Accredited Co.)

GROCHEMICAL ANALYSIS CERTIFICATE

Standard Metals PROJECT FOX File # A600371 Page 1
P.O. Box 1852 38351 Clark, Squamish BC VOW 3GD Submitted by: David Blann

SAMPLE#	Mo ppm	Cu ppm		Zn ppm	Ag ppm		Co ppm	Min ppm		As pom	U ppm		Th ppm		Cd ppm		Bi ppm		Ca *		La ppm	Cr ppm	Mg X		Ti %	B ppm	Al X	Na %	K ¥	W ppm	Hig ppm		T1 ppm	\$		Se opm
G-1 S-1 Fox-05 S-2 Fox-05 D508-ST-1 D508-ST-2	.1 1.5 1.2 5.4 21.3	9.3 9.8 9.6		49 59	<.1 <.1 <.1	167.5 152.0 18.7	3.8 17.5 16.1 11.0 86.2	538 502 1116		2.5 2.0 4.2	1.4 1.6 3.7	<.5 <.5		20 22 17	<.1 .1 .2 .5 1.0	.1 <.1	7.4	25 23	.33 .34 .22	.075 .082 .077 .038 .073	13 13 12	8.8 80.2 64.9 30.1 29.9	1.79 1.71	70 75	.085 .095 .091	1 1 1 1 1 1	.97 . .18 . .29 . .23 .	019 019 016	.48 .23 1 .24 .26 .13	5.6 9.2	.02	2.5 2.6 2.1	.3 <. .2 <. .2 <. .2 <. .1.0 <.	05 05 05	5 4 4 4	<.5 <.5 <.5 <.5
RE L-8 5N D5DB-ST-3 D5DB-ST-4 D5DB-ST-5 LA 33+50N	1.9 1.0 2.5	9.6 14.5 119.6	8.3 7.1 7.6 88.8 9.3	48 74 114	.1 .2 .8	12.3 15.5 24.2	23.2 9.4 9.4 10.5 11.1	660 834 633	1.35	10.9 2.6 3.9	2.4 9.2 3.6	<.5 .6 5.2	.8	9 18 66 31 15	.2 .4 .7 1.0 .1		.6 .6 .9	22 18 27	1.04 .34	.030 .046 .068 .056	15 14 12	85.9 19.4 31.5 35.2 49.5	.26 .28 .43	61 75	.065 .058 .100	1 1 2 1 1 1	.04 . .16 . .86 . .50 .	011 013 025	.35 .12 .13 .30 2	6.6 9.7 4.8		1.4 1.8 2.6	.3 <. .1 . .2 . .2 <. .6 <.	06 10 05	5	<.5 1.0
A 33N A 32+50N LA 32N LA 31+50N A 31N	.3 .4 .5	25.2 30.8 29.6	4.6 6.3 5.4 7.1 5.9	38 45 37	< 1 < 1 < 1	44.5 36.5 36.8	11.8 12.4 14.1 122.8 14.7	277 247 304	2.77 2.14 2.14 2.08 2.13	3.1 2.4 4.4	1.7 1.8 2.4	<.5 1.2 .8	7.7	22		<.1 <.1	.6 .4 1.1	28 27 24	.19 .22 .26	.078 .028 .057 .081 .083	24 24 27	32.7 32.1 30.6 27.7 29.5	.50 .49 .45	144 144 141 111 114	.125 .121 .110	<1 1 <1 I <1 1	.67 . .67 . .47 . .43 .	025 020 021	.57 .50 .44 .45	2.9 1.1 7.8	.01 .02 .01 .01	3.0 2.6 2.5	.3 <. .3 <. .3 <. .3 <.	05 05 05	5 •	.5 .5 .5 .5
A 30+50N A 30N A 29+50N A 29N A 28+50N	.5 .4 .6	22.4 32.0 25.2	5.2 4.4 6.0 6.0 6.5	32 43 45	< 1 < 1 < 1	22.1 27.0 29.6	12.2 8.9 11.2 5 11.4 10.7	234 271 295	1.90 2.28	1.7 2.2 1.9	1.7 1.9 2.1	1.5 <.5	8.1 7.6	10 13	<.1 <.1 <.1 <.1 .1	<.1 <.1	.3 .4 .9	25 29 30	.26 .20 .17 .21 .21	.075	25 28 31	46.1 27.7 39.0 32.8 35.9	.47 .60 .59	111 117 156	.115 .147 .152	<1 1 <1 2	.83 . .41 . .04 . .80 .	018 016 020	.73 .52 .53 .60	1.6	.01 .01 .01 .01	2.4 3.2 3.2	.5 <.1 .3 <.1 .4 <.1 .4 <.1	05 05 05	6 <	.5 .5
A 28N A 27+50N A 27N A 26+50N A 26N	.8 .8 1.0	40.8 45.4 52.2	10.3 7.4 8.4 9.2 9.4	55 65	< 1 < 1 < 1	33.6 29.2 38.7	17.6 5 15.3 2 16.2 7 18.7 3 14.2	420 451 481	3.45 4.17 3.95 4.39 2.89	.9 .7 .6	2.3 2.7 2.5	.6	10.5 10.0 9.8	14 18	<.1 <.1 <.1 <.1 <.1	<.1 <.1	.5 .5	35 45 48	.15	.037 .042	31 30 33	42.5 42.5 49.7 59.9 35.4	.84 .99 1.06	169 201	.190 .220 .236	<1 2 <1 3	.13 . .38 . .00 . .97 .	017 021 1 024 1	.06	.2 .2 < .1	.03 .01 .01 .01 .03	4.8 5.8 5.5	.4 <.0 .5 <.0 .5 <.0 .6 <.0	05 05 05 1	8 7 9 10 7	.7 .5 .5 .8
A 25+50N L-B 7+35N L-B 7N L-B 6+50N L-B 6N	1.0 .9 .9	16.3 14.3 16.3	5.4 17.9 6.2 7.2 9.5	74 58 66	.1 <.1 <.1	89.1 106.1 79.5	7 11.3 1 13.5 1 13.9 5 14.3 9 10.9	259 281 322		2.3 1.5 1.4	1.5 1.6 1.6	1.7 1.1 .8		10 15 11 10 10		.1 <.1 .1	.8 .3 .3	48 41 45	.09 .15 .09 .12 .13	.021	28 30 28	31.5 91.6 85.5 79.7 70.3	1.00 1.21 .95		.183 .176 .188		.26 .1 .89 .1 .97 .1	012 011 013	.36 .34 .31	.1 .1 .1		3.3	.4 < .6 .2 < .6 .3 < .6 .2 < .6	05 05 05	9 <	.5 .5 .5 .5 .5
L-8 5+50N L-B 5N L-B 4+50N L-B 4N L-B 3+50N	.5 .6 .8	16.6 16.8 19.3	8.3 8.0 7.0 10.6 13.6	67 63 62	<.1 <.1	305.7 279.6 253.4	4 20.5 7 25.2 5 30.0 0 26.5 9 32.6	363 385 288	3.75 3.82 4.35	1.7 1.8 2.8	1.6 1.2 1.2	<.5	6.8 4.7 4.9	10 9 11 14 13	.2	.1 <.1 .1	.3 .4	36 36 35	.11 .17 .19		25 21 16	98.2 89.8 107.7 107.1 96.7	2.00 2.42 1.92	102 108	.163 .147 .136	<1 2 <1 1	.01 .0 .27 .0 .92 .0 .41 .0	012 011 009	.69 .37 .29 .16 .20	1.0 .1 .1	.03 .06	3.8	.4 < .0 .3 < .0 .2 < .0 .2 < .0	05 05 07	7 <	5
STANDARD DS6	11.8	122.1	30.2	139	. 3	24.	5 10.5	701	2.88	21.3	6.7	50.4	3.1	43	6.1	3.5	5.1	57	.87	.079	14	186.4	. 59	167	. 085	18 1	.92 .	075	.16	3.4	. 23	3.4	1.8 <.0	05	7 4	5

GROUP 1DX - 15.0 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS.

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY.

- SAMPLE TYPE: SOIL SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA DATE RECEIVED: JAN 24 2006 DATE REPORT MAILED: 14/06

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Page 3

								-:						· · · · · ·																				ANCTION
SAMPLE#	Мо ррп						Co ppm		Fe %	As ppm									Ca %		La ppm	Ppm Ppm	Mg %	Ba ppm	Ti %	pbu B	Al %	Na X	К %	_bbu A	Hg Hg	om ppm	\$ %	Ga Se ppm ppm
G-1 L9E 4N L9E 3+50N L9E 3N L9E 2+50N	1.7 1.5 1.2	20.6	13.7 15.0 11.7	67 60 81	.2 .1 <.1	21.3 17.3 37.1	9.8 5.8 10.1	259 218 320	3.37 3.47 4.55	2.5 3.0 3.5	1.2 .8 1.0	<.5 1.9 2.2	4.1 3.9 6.2	7 13 9	.2 .2 .1	.1	.9 .9 .9	45 55 46	.05 .14 .13	.034 .050 .102	16 11 13	34.0	.42 .29 .58	70 131 111	.189 .180 .186	<1 2 1 2 1 3	.05 .20 .81	.006 .006	.23 .12 .27	4.5 4.2 5.5	.07 2. .09 2. .13 3.	.4 .2· .0 .1· .8 .2·	<.05 <.05	4 <.5 10 .5 11 <.5 9 .7 13 <.5
L9E 2N L10E 7+50N L10E 7N L10E 6+50N L10E 6N	1.4	25.6 7.0 64.2	13.2 6.7 11.8	55 25 139	.2 <.1 .5	29.7 6.2 68.2	18.5 2.6 20.0	608 69 1752	3.01 1.02 2.20	3.0 1.7 32.5	2.0	<.5 <.5 <.5	3.7 1.8 1.0	18 5 108	.2 .1 .7	.1	.6 .3 1.0	39 28 25	.17 .04 1.49	.037 .025 .136	35 7 99	37.3 11.2 27.3	.47 .12 .34	74 31 207	. 156 . 099 . 051	<1 1 <1 3 2	.96 .36 .24	.009 .009 .013	.15 .07	2.2 .3 1.5	.04 2. .01 . .12 2.	6 .2· 6 .1· 2 .3 6 .2·	<.05 <.05	8 .7 8 <.5 5 <.5 5 .9 10 <.5
L10E 5+50N L10E 5N L10E 4+50N L10E 4N L10E 3+50N	1.4 1.3 1.8	20.9 15.8 26.7	9.5 9.9 12.7	89 66 90	.2 .3 .2	34.4 24.0 38.7	10.9 7.3 12.8	343 459 361	3.93 2.90 4.13	1.9 2.0 2.8	1.1 .8 1.3	.5 <.5 <.5	3.2 3.8 5.7	16 14 10	.4 .2 .2	.1	.9 .8 1.2	46 41 51	.14 .17 .07	.044 .064 .045	16 13 18	41.4 54.6 36.5 49.2 43.3	.52 .44 .69	90 104 108	.175 .166 .212	1 2 1 1 1 2	.11 .85 .87	.009	.26 .22 .36	5.0 7.0 11.2	.07 2. .09 2. .06 3.	5 .3 6 .2 3 .2 5 .3 6 .2	<.05	7 1.0 9 <.5 9 <.5 11 .5 9 .7
L10E 3N L10E 2+50N L10E 2N L11E 7+50N L11E 7N	1.5 1.2 2.8	10.3 25.5 28.8	11.8 8.9 14.4	28 83 99	.2 <.1 .1	8.1 45.6 37.0	3.2 12.4 11.3	120 252 312	1.99 3.86 5.91	1.9 2.8 2.8	.9 1.2 1.1	1.0 1.4 3.0	3.0 6.5 5.8	7 7 17	.1 .2 .4	.1 .1	.8 1.1 2.1	37 46 74	.06 .11 .12	.032 .089 .049	13 18 16	23.2 53.4 57.6	.18 .72 .58	44 123 97	. 107 . 216 . 262	1 1 1 3 1 2	.46 .71 .48	.007 .009 .010	.09 .33 .20	8.6 3.7 4.7	.06 1. .07 4. .05 3.	3 .1· 2 .3· 6 .2·	.05 .05	10 .6 7 <.5 8 .6 17 .5 10 <.5
L11E 6+50N L11E 6N L11E 5+50N L11E 5N RE L11E 5N	2.2 1.6 1.4	6.5 88.1 51.5	9.1 15.3 11.7	27 110 77	.1 .8 .3	6.4 99.3 56.8	5.1 32.4 16.0	372 1850 311	2.09 3.30 3.65	1.1 80.7 2.0	.4 6.9 1.8	.9 1.4 1.3	1.3 1.3 4.7	7 63 12	.2 .8 .3	<.1 .1 .1	2.1 1.5	41 37 48	.05 .91 .11	.080 .137 .048	6 95 21	13.0 51.2 59.2	.13 .56 .69	57 146 150	.131 .070 .216	2 3 <1 3	.69 .36 .09	.013 .018 .011	.06 .28 .56	3.2 4.2 14.0	.03 . .11 2. .07 4.	9 <.1< 9 .4 2 .3<	.05 .13	17 <.5 7 <.5 7 1.4 11 .7
L11E 4+50N L11E 4N L11E 3+50N L11E 3N L11E 2+50N	1.7 2.2 1.5	32.2 14.2 25.1	9.1 11.4 13.2	78 53 48	<.1 .3 .4	39.3 18.3 24.0	12.4 7.8 7.5	254 318 244	3.79 2.69 2.89	1.9 1.9 1.3	1.3	2.0 .8 1.3	7.4 2.9 1.6	12 17 23	.1 .1 .4	.1 .1 .1	.7 1.1 1.1	46 45 42	.10 .26 .38	.064 .032 .045	21 14 17	32.4	.84 .49 .44	146 87 91	.193 .211 .175	<1 3 1 1 <1 1	.30 .59	.010	.49 .23 .27	3.2 1.4 1.3	.04 2. .03 2.	0 .4< 3 .2< 1 .1<	.05 .05	7 <.5 8 .7 10 <.5 10 <.5
L11E 2N L12E 7+50N L12E 7N L12E 6+50N L12E 6N	1.6 2.1 1.8	12.3 16.5 15.7	13.4 14.8	92 62 55	·.1 .2	31.1 16.4 20.2	11.6 8.1 8.5	272 301 249	5.13 3.61 3.13	2.4 1.8 1.6	.9 .8 .9	2.6 2.6 5.1	5.0 4.0 4.3	10 11 9	.1 .2 .2	.1 .1	1.2 1.0 1.3	60 54 54	.12 .08 .08	.173 .056 .045	13 9 12	53.9 34.5 38.3	.69 .28 .39	128 75 79	.263 .188 .211	<1 3 1 2 <1 2	.11 .27 .37	.007 .010 .009	.33 .09 .14	2.0 92.1 8.6	.09 3. .13 2. .11 2.	5 .4< 6 .1< 9 .1<	.05 .05	8 <.5 11 <.5 13 .5 10 <.5 10 <.5
STANDARD D	11.5	123.0	29.3	140	.3	24.5	10.6	693	2.81	21.2	6.5	48.6	2.7	40	6.2	3.5	5.0	56	.85	.080	13	177.9	.58	166	.080	18 1	.89	.073	.15	3.5	.23 3.	2 1.7	.05	6 4.2

Standard is STANDARD DS6. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 4

AUR MACTITION																														
SAMPLE#		Çu ppm					Со ррп		Fe %	As U ppm ppm	Au Th ppb ppm	Sr ppm p	om pp	u bi	Bi pm pp	V C	a P	La ppm	Cr ppm	Mg Ba I ppr	Ti X	ppm B	Aì X	Na %	К *	ppm p	ng Sc pm ppm	TI S	Ga ppm p	Se pm
G-1 112E 5+50N 112E 5N 112E 4+50N 112E 4N	1.8 1.3	15.9 22.0 20.8	13.2 10.5	78 · 128 85	<.1 .1 2	41.0 40.2 39.9	11.0 13.0 11.3	216 303 273	4,47 5.32 4.97	2.7 1.0 2.8 1.0 3.1 1.2	<.5 4.0 2.9 5.1 2.1 7.5 .7 8.3 .9 6.2	16 18 11	.1 . .2 . .1 .	1 1 1 1 1 1	.0 6 .3 5 .4 5	52 .1 54 .2 52 .1	3 .077 6 .054 2 .071	11 - 15 14	56.4 61.3 57.1	.53 110 .77 151 .68 95	.212 .291 .272	1 3 <1 4 1 4	.79 .06 .43	.007 .008 .008	. 15 3 . 35 . 26 8	10.8 . 2.6 . 37.6 .	09 3.7 08 4.8 12 5.0	.1<.05 .3<.05 .3<.05	12 11 12	.5 .5 .7
L12E 3+50N L12E 3N L12E 2+50N L12E 2N L13E 7+50N	2.0 1.5	14.8 25.1 24.8	15.7 11.9 10.4	62 138 102	.2 .3 < 1	13.8 41.6 43.8	6.0 16.2 13.1	155 342 283	4.50 4.97 4.67	4.5 1.1 26.6 1.2 41.0 1.1	<.5 3.7 .6 5.4 <.5 6.1 1.2 4.8 .9 7.5	14 13 12	.1 . .2 .	1 1 1 1 1 1	.1 5 .9 5 .2 5	59 .1 54 .1 52 .1	8 .035 3 .076 2 .044	15 18 18	35.3 59.8 60.7	.32 97 .84 120 .83 123	.274 .263 .244	<1 2 1 2 1 2	2.64 2.82	.006 .008 .008	.22 .37 .46	3.6 . 6.3 . 7.5 .	07 2.4 07 4.1 05 3.8	.2<.05 .3<.05 .3<.05	14 13 < 12	.5 .5 .5
L13E 7N L13E 6+50N L13E 6N L13E 5+50N L13E 5N	1.6	14.6 15.0	11.6 11.8	91 137 138	.1 <.1 < 1	30.5 28.0 52.4	11.1 13.8 14.3	212 302 477	4.75 5.33 6.01	3.0 1.3 2.5 .9 4.0 1.0	1.7 4.8 1.5 6.7 .6 7.1 1.9 6.9 2.8 6.5	16 10 17	.2 . .2 .	.1 .1 2 .1	.7 (.1 (53 .1 56 .0 72 .2	6 .053 9 .071 3 .185	16 15 15	63.0 64.0 76.7	.55 107 .72 124 .81 134	.245 .315 .291	<1 4 <1 3 <1 4	1.08 3.34 1.53	.009 .007 .008	.21 .30 .33	3.3 . 5.9 . 7.4 .	07 4.7 06 4.0 11 4.8	.2<.05 .3<.05 .3<.05	11 12 < 13	.7 :.5 .6
LI3E 4+50N LI3E 4N LI3E 3+50N LI3E 3N LI3E 2+50N	1.9 2.3	22.5 21.0	15.4 17.0	115 83	.1 <.1 2	45.2 49.2 25.9	13.4 10.8	218 184 196	4.87 6.59 4.66	3.3 1.2 3.3 .9 3.0 1.1	1.5 8.3 2.1 8.9 3.9 6.4 .8 4.7 <.5 4.4	8 8 28	.1 . .1 .	.1 1 .1 1 .1 1	.0 5	59 .0 38 .0 59 .5	9 .090 7 .068 0 .105	19 13 12	62.6 88.0 40.5	.60 96 .65 97 .34 76	.255 .277 .170	<1 4 <1 3 1 3	1.57 3.73 3.46	.007 .005 .007	.19 .15 .12 {	4.7 . 3.1 . 82.5 .	08 4.0 08 3.7 14 2.9	.2<.05 .2<.05 .2<.05	13 16 < 16	.6 .5 .6
L13E 2N L22+50E 16+50N L22+50E 16+25N L22+50E 16N L22+50E 15+50N	.8 4.0	20.8 16.7	7.5 8.6	40 43 46	<.1 <.1 < 1	157.3 30.2	33.4 13.6	1162 672 151	3.62 3.80 3.33	2.7 2.5 2.6 2.5 1 9 5.6	<.5 3.7 <.5 5.5 1.4 3.8 <.5 4.7 2.7 4.4	14 16 < 11	.2 .1 .1	.1 .1 2 .1	.5 3 2.5 4 .7 3	38 .1 45 .1 33 .1	5 .017 5 .037 1 .028	17 18 18	103.0 50.6 51.9	.85 87 .49 84 .46 73	.136 .160 .141	<1 2 <1 1 <1 2	2.24 1.81 2.22	.012 .010 .009	.14 .25 : .19	5.5 . 14.4 . 2.5 .	03 3.5 05 2.5 06 2.5	.2<.05 .2<.05 .2<.05	6 10 7	.5 .5 .5
L22+50E 15+25N L22+50E 15N L22+50E 14+75N RE L22+50E 14+75N L22+50E 14+50N	3.3 2.4	40.7 32.7	13.9	52 86	.4 .1	23.4 38.6	14.1 16.7	362 426 422	1.88 3.84 3.86	1.3 3.7 2.0 3.0 2.0 2.8	.8 4.8 .7 1.2 <.5 5.7 1.2 5.8 .9 5.1	25 19 19	.6 .2 .1	.1 1 .1 2 .1 2	.9 .8 .8	25 .2 36 .1 37 .1	4 .069 9 .046 9 .045	28 33 35	24.7 42.7 44.0	.30 63 .67 117 .66 125	.070 .165 .164	<1 2 <1 2 <1 2	2.34 2.55 2.63	.010 .015 .014	.15 .52 2 .57 2	9.7 . 26.9 . 27.0 .	12 1.5 06 3.6 05 3.5	.1 .06 .4<.05 .4<.05	7 10 10	.5 .6 .5
L22+50E 14+25N L22+50E 14N L22+50E 13+75N L22+50E 13+50N L22+50E 13+25N	3.9 4.5	38.1 43.0	8.6 11.6	86 77 6 69	.2 .2	55.4 50.9	14.0 14.2	357 318 517	4.23 3.74 2.99	2.3 1.9 2.2 2.6 2.2 2.5	.5 5.8 .7 4.6 .5 3.1 1.2 3.4 1.0 3.1	23 19 12	.3 .2 .2	.1 2 .1 1 .1	.0	43 .1 40 .1 34 .1	.9 .045 .7 .047 .3 .079	24 27 25	50.1 44.2 40.2	.74 120 .63 129 .43 91	. 190 . 161 124	1 2 1 2 <1 3	2.72 2.77 3.39	.014 .013 .011	.61 .57 .34 (5.8 . 2.0 . 61.4 .	05 3.9 05 3.3 12 2.9	.4 .06 .4<.05 .3<.05	11 10 10	.5 .6 .9
STANDARD DS6	11.6	122.1	29.4	139	.3	24.7	10.5	696	2.83	21.3 6.6	46.3 2.9	41 (5.0 3	.4 5	5.1	55 .8	4 .078	13	178.9	.57 166	.080	18	1.88	.072	. 15	3.5 .	23 3.2	1.8<.05	5 4	.4

Standard Metals PROJECT FOX FILE # A600371 Page 5

SAMPLE#	Mo Cu Pb Zn z ppm ppm ppm ppm p		I Au Th Sr Cd Sb Bi V Ca ppb ppm ppm ppm ppm ppm ppm *	ı P La Cr Mg 8a ⊈ ≵ppm ppm % ppm	Ti B Al Na K W Hg Sc Tl S Ga Se % ppm % % % ppm ppm ppm ppm ppm ppm % ppm ppm
G-1 L22+50E 13N L23E 16+25N L23E 15+25N L23E 14+75N	1.8 25.9 8.9 46 1.0 5.2 11.7 22 < 3.0 49.4 11.1 76	.1 29.5 8.6 211 2.63 1.4 1.6 :1 9.3 2.4 64 2.37 1.2 1.2	2 1.5 5.1 4 .1 .1 .5 45 .03 7 1.0 2.1 44 .9 .1 4.8 25 .42	3 .032 21 35.9 .56 88 .1 3 .017 15 36.7 .19 38 .1 2 .083 50 23.0 .21 62 .0	135 2 1.01 .076 .49 .1<.01
L23E 14+25N L23E 13+75N L23E 13+25N L23+50E 16+50N L23+50E 16+25N	3.9 14.6 9.5 34 1.8 23.1 9.5 47 1.1 21.0 10.6 55	.3 11.4 3.7 139 2.18 1.3 1.2 .1 25.6 7.7 157 3.31 1.7 1.3 .2 37.7 9.1 197 3.93 2.7 5.4	2 <.5 2.1 13 .2 .1 1.7 33 .09 3 .5 3.3 19 .4 .1 .8 28 .19 4 2.3 4.9 5 .1 .1 .4 36 .08	9 .034 14 20.7 .23 51 .1 9 .045 15 32.2 .42 76 .1 3 .048 11 76.4 .63 73 .1	144 1 2.79 .011 .30 4.0 .07 3.1 .3<.05
L23+50E 16N L23+50E 15+50N L23+50E 15+25N RE L23+50E 15+25N L23+50E 15N	3.4 23.1 11.8 64 6.6 12.0 13.7 43 6.6 12.7 14.3 42	.1 35.8 9.1 195 3.03 1.9 2.3 .1 14.6 5.0 177 3.55 2.5 1.5 .1 13.7 5.4 174 3.70 2.4 1.5	3 < .5 4.5 17 .4 .1 .9 36 .17 5 1.5 6.0 14 .2 .1 2.8 47 .14 5 < .5 6.0 14 .2 .1 2.9 53 .14	7 .024 17 43.7 ;46 77 .1 4 .049 11 30.6 .31 53 .1 4 .048 11 32.2 .32 51 .1	191 1 3.70 .010 .23 1.3 .04 3.9 .2<.05 10 .5 177 1 2.00 .009 .19 46.7 .08 2.5 .2<.05 10 <.5 187 1 1.85 .010 .12 19.5 .07 2.3 .1<.05 16 <.5 193 1 1.90 .010 .13 19.9 .05 2.5 .1 .06 15 .5 133 <1 1.89 .016 .42 10.7 .02 3.1 .3<.05 5 .6
L23+50E 14+75N L23+50E 14+50N L23+50E 14+25N L23+50E 14N L23+50E 13+75N	2.4 22.5 8.5 108 1.2 24.5 7.1 41 < 2.1 25.8 7.4 73 <	.1 28.4 10.5 226 3.47 2.1 2.1 c.1 35.6 13.3 277 1.96 1.4 1.7 c.1 38.6 11.3 253 3.02 1.7 2.1	1 1.1 5.2 20 .3 .1 1.9 32 .24 7 4.5 7.0 15 .1 .1 .9 23 .22 1 1.3 4.3 14 .1 <.1 3.1 31 .15	\$.052 25 33.4 .45 59 .1 2 .076 21 27.1 .53 91 .1 5 .044 28 34.1 .47 86 .1	.81
L23+50E 13+50N L23+50E 13+25N L23+50E 13N L24E 16+25N L24E 15+75N	2.9 37.6 9.3 70 3.0 80.5 12.2 168 1.2 10.0 6.8 25 <	.3 46.7 15.9 440 3.19 1.7 1.7 .7 141.0 20.9 358 5.97 3.0 3.0 <.1 28.1 6.3 129 3.02 1.9 1.0	7 <.5 2.2 23 .5 .1 .8 36 .19 0 2.0 4.2 36 .5 .1 4.3 56 .28 0 .8 3.0 9 .2 <.1 .3 30 .08	3 .042 30 38.2 .59 121 .1 3 .090 30 74.1 1.03 295 .1 3 .017 11 49.2 .41 60 .1	.87 <1 2.46 .011 .51 2.5 .04 3.3 .4<.05 10 <.5 .41 1 2.30 .011 .39 2.7 .04 2.5 .3<.05 8 <.5 .91 1 5.96 .019 .98 29.6 .16 5.3 .6 .10 16 .8 .41 1 2.07 .007 .14 3.6 .08 2.7 .2 .07 6 <.5 .43 1 2.48 .008 .13 8.1 .06 2.6 .2<.05 9 <.5
L24E 15+25N L24E 14+75N L24E 14+25N L24E 13+75N L24E 13+25N	1.0 16.1 8.4 64 < 2.8 37.3 10.3 53 2.3 16.5 7.0 35	.1 19.1 7.3 180 2.18 1.6 1.4	0 2.9 7.4 18 .2 .1 2.3 24 .20 6 1.1 4.1 15 .3 .1 1.1 33 .17 4 1.5 4.9 13 .1 .1 .4 22 .22	3 .053 23 27.8 .48 86 .1 7 .051 28 34.2 .48 89 .1 2 .062 18 24.7 .37 52 .1	127 1 2.78 .015 .29 16.2 .06 3.3 .3 .08 10 <.5 118 <1 1.70 .019 .41 10.8 .03 2.8 .3<.05 5 <.5 .32 1 2.26 .011 .37 9.9 .06 2.9 .3 .09 8 .5 106 2 1.96 .008 .21 3.5 .05 2.4 .2 .07 5 .5 .76 1 3.01 .012 .56 3.0 .06 3.9 .5 .07 9 .5
L24+50E 16N L24+50E 15+75N L24+50E 15+50N L24+50E 15+25N L24+50E 15N	1.4 8.0 5.7 44 2.8 45.6 13.0 38 4 1 13.6 16.2 56	.1 25.1 6.0 192 2.66 2.1 1.1 .2 36.2 11.3 252 2.07 1.9 5.5 <.1 14.7 7.8 286 4.65 2.7 1.4	1 <.5 4.1 6 .1 .1 .8 34 .06 5 1.9 .8 15 .2 .1 1.1 24 .13 4 1.1 4.0 9 .2 .1 2.5 51 .07	5 .034 11 38.5 .42 57 .1 3 .075 34 32.8 .29 55 .0 7 .030 18 34.9 .36 51 .2	246 1 3.11 .008 .08 10.2 .07 3.1 .1<.05 19 .5 .136 <1 .97 .006 .12 2.9 .02 1.6 .1<.05 6 <.5 .136 1 3.12 .011 .14 5.8 .13 1.9 .2 .11 7 .8 .237 1 1.68 .007 .17 29.9 .04 2.3 .2<.05 18 <.5 .16 <1 1.35 .009 .23 2.1 .02 2.0 .3<.05 6 <.5
STANDARD DS6	11.5 123.5 29.1 140	.3 24.9 10.8 704 2.83 21.3 6.6	6 44.9 2.9 40 6.1 3.5 5.0 55 .84	.078 12 185.9 .58 166 .0	79 17 1.87 .072 .14 3.6 .23 3.2 1.7<.05 6 4.1

Page 6

ACRE ANALTTICAL																					. .									_						
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm		As opm					Cd ppm			V mqq		P %	La ppm	Cr ppm	Mg %		Ti %		Al X	Na %	К %	₩ ppm	Hg ppm	Sc ppm	TT ppm		Ga opm	
G-1 L24+50E 14+75N L24+50E 14+50N L24+50E 14+25N L24+50E 14N	4.4 1.8 1.1	1.6 41.6 17.4 18.6 35.3	12.1 16.1 10.9	67 49 45	.2 .2 .1	29.1 20.2 24.7	3.7 11.5 9.2 9.1 4.0	354 387 221	2.29 2.32 2.21	1.1 1.5 1.4	5.4 1.7 1.6	<.5 1.0 1.1	2.5	55 23 19 17 11	<.1 .7 .3 .3	. 1	<.1 2.9 4.0 .9	30 29		.034	19 12 13		.57 .41 .32 .36 .23	63 72 68	.126 .104 .109 .115	<1 : <1 : <1 :	l.75 l.65	.009	.16 .13	17.0 12.4	.05 .05 .04	1.7 1.9	.3 < .2 < .2 < .2 <	.05 .05 .05	7	<.5 <.5 <.5 .6
24+50E 13+75N L24+50E 13+50N L24+50E 13+25N L24+50E 13N L25E 15+75N	2.4 4.8 4.7	42.4 50.2 29.8 51.2 8.0	12.4 12.4 13.2	16 46 57	.5 .3 .3	14.1 23.1 54.4	24.3 2.5 6.6 20.0 8.1	91 219 361	1.59 3.13 3.00	.8 1.9 1.9	3.6 1.9 3.1	.6 2.0	2.1 .9	15 12 14 18 8	.3 .4 .2 .3	.1 .1 .1 .1	.8 .4 1.3 .9	16 35 37	.09 .10	.048 .045 .031 .058 .030	19 15 21	30.5 17.3 30.1 38.2 22.9	.13 .34 .42	34 49 107	.089 .041 .123 .086 .106	1 <1 : <1 :	2.62 1.35 1.77 2.51 .44	.008 .007 .011	.19 1 .08 .19 2 .34 .04	8.7 27.6 2.8	.10 .07 .09	1.9	.2 < .3	.06 .05 .06		.7 .7 .6 .7
25E 15+25N 25E 14+75N 25E 14+25N 25E 13+75N 25E 13+25N	2.7 1.3 2.5	12.9 80.7 28.5 35.8 11.6	14.1 8.0 9.6	63 46 54	.2 1 2	86.0 56.3 56.8	6.4 20.4 3 17.7 3 26.0 6.0	608 2710 729	3.46 2.18 2.61	2.4 4.8 1.2	4.7 1.7 1.8	1.2	2.1 3.7 1.3	10 24 15 24 12	.3 .1 .2	<.1 .1 .1 .1 <.1	1.2 1.4 .7	26 31	.19 .21 .20	.022 .047 .073 .049 .034	32 18 18	34.8 51.0 31.3 39.9 29.3	.49 .49 .48	114 90 107	.105	1 ; <1 <1 ;	1.70	.010 .012 .011	.37 .31 .35 .30	1.9 4.2 2.1	.07 .03	2.8 2.4 2.1	.2 < .3 < .4 < .3 <	.05 .05 .05	7	.5 .8 <.5 .6 <.5
25+50E 16+25N 25+50E 16N 25+50E 15+75N 25+50E 15+50N 25+50E 15+25N	1.6 .4 3.3	9.4 10.8 9.3 10.2 24.2	14.3 5.6 14.7	49 25 62	< 1 < 1	18.6 22.4 14.1	3 14.8 5 5.4 5 5.1 1 5.1 1 10.4	142 97 152	3.43 1.82 4.33	3.4 1.4 3.1	2.1 .5 .9	1.6 <.5 2.0	3.7 2.8 4.4	19 6 7 14 18	.1 .2 .2	.1 <.1 <.1 .1	.2 .7 .4 .9	20 93	.07 .06 .13	.068 .030 .017 .029 .054	11 7 11	37.9 39.9 27.9 33.3 32.9	. 43 . 33 . 39	80 44 88	.075 .205 .108 .343 .161	<1 <1 <1 <1 <1 <1 :	1.10 2.03 1.19 1.35 2.09	.007 .006 .006	.14 .23 .10 .22 .41	4.0 .9 3.7	.03 .06 .03 .02 .05	2.6 1.6 1.9	.1 < .2 < .1 < .2 < .2 < .3 <	.05 .05 .05	8 5 17	<.5 .5 <.5 <.5
25+50E 15N RE L25+50E 15N .25+50E 14+75N .25+50E 14+50N .25+50E 14+25N	1.6 .4 .9	16.8 16.5 12.7 16.1 14.3	14.1 6.4 7.6	36 51 41	.2 <.1 .1	19.1 99.1 68.4	7.9 3 7.7 2 12.1 5 10.2 3 13.0	187 188 295	2.77 2.06 2.30	2.0 1.3 1.3	1.1 .6 1.3	1.9 .5	4.1 4.0 3.7 1.6 1.8	19 18 10 22 18	.1 .1			36 34 21 33 26	.16 .18 .31	.070 .071 .062 .042 .032	8 7 14	29.9 29.6 28.9 53.3 46.0		50 87 83	.135 .133 .097 .116 .102	1 3 <1 3	2.56 2.41 1.53 2.02 1.72	.007 .007 .010	.07 .07 .15 .18	9.6 1.6 1.5	.04 .05	2.9 2.5	.1 < .1 < .1 < .1 <	.05 .05 .05	7	.6 .6 <.5 .5
25+50E 14N 26E 16+25N 26E 15+75N 26E 15+25N 26E 14+75N	2.3 2.3 .7	16.5 17.0 13.8 24.9 27.3	9.0 10.3 17.7	35 54 47	.1 <.1 <.1	19. 21. 42.	1 13.8 8 4.8 7 6.1 4 12.5 6 32.8	351 425 328	1.72 2.54 2.28	3.4 5.1 1.3	5.4 1.2 1.8	.6 1.2 1.2	.4 1.9 4.9	17 39 33 17 17	.4 .2 .1	.3 .1	.5 1.2 1.9 1.5 1.0	26 40 28	.57 .41 .25	.032 .056 .026 .069 .043	16 13 15	55.6 22.8 26.3 33.4 52.5	. 25 . 36 . 52	79 102 100	.142	1 1 <1	2.02 1.17 1.08 1.83 2.90	.010 .008 .016	.13 .18 .41	2.7	.09 .05 .03	3.0	.2 < .1 .1 < .3 < .3 <	.16 .05 .05	5 8 6	<.5 .7 .5 <.5 <.5
26E 14+25N 26+50E 16+50N 26+50E 16+25N 26+50E 16N 26+50E 15+75N	1.8 2.3 1.9	11.9 16.2 22.4 8.1	2 11.3 4 16.0 1 21.5	3 49 3 48 5 13	.2 3 .3 3 .5	58. 56.	4 5.5 9 11.6 3 16.3 1 5.1 9 7.2	177 248 654	3.96 2.59 .66	2.2 1.7 .6	.8 3.1 5.2	2.2 .8 2.1	4.8 1.1	7 13 180	.2 .1 .6	.1 .1 <.1	.9	51 34 11	.08 .11 1.26	.017 .025 .033 .103 .056	10 17 18	27.9 70.3 49.3 7.3 34.0	.57 .44 .04	72 109	.016	<1 : <1 :	1.09 2.98 3.01 2.29 1.59	.007 .011 .122		10.5 2.7 2.7	.09 .08 .06	4.3 2.8	.1 < .2 < .3 < <.1 < .1 <	.05 .05 .06	10 11 5	<.5 .5 .6 .5 <.5
standard DS6	11.5	123.6	3 29.1	141	3	24.	3 10.9	699	2.84	21.4	6.5	45.6	2.9	40	6.2	3.4	5.0	55	. 84	. 080	12	179.8	.58	165	.078	15	1.89	.073	.16	3.7	.23	3.2	1.7 <	.05	6	4.6

Page 7

																						=						===						~~~		
SAMPLE#							Со ррп						Th ppm						Ca \$	P %	La ppm	Cr ppm	Mg ≵		Tî ¥	8 ppm	Al Z		K X	W ppm	Hg ppm	Sc ppm	T1 ppm		Ga Opm	
L26+50E 15+25N L26+50E 15N	2.7 1.3 1.3	1.5 9.9 21.6 27.7 25.4	19.6 7.9 6.9	45 40 59	.1 < 1 .1	11.5 31.1 62.7	3.9 4.2 10.0 12.2 12.3	116 257 287	3.45 2.70 2.58	2.1 1.2 1.8	1.0 2.0 1.9	<.5 <.5 <.5	5.7 4.6 3.7	9 14	.2 .1	< 1 < 1	9 1 1 5	83 31 31	.47 .06 .14 .12 .12	.025 .042 .043	17 19 19	7.5 37.1 33.3 43.7 42.4	. 33 . 46 . 53	65 86	.263 .136 .118	1 1. 1 1. 1 2.). 64 .(). 65 .	007 012 009		5.0 4.3 .9	.05 .04	1.9 2.4 2.6	3 < 1 < 2 < 2 <	. 05 . 05 . 05	20 7	<.5 <.5
26+50E 14+75N 26+50E 14+50N 26+50E 14+25N 26+50E 14N 27E 16+25N	.7 1.2	16.4 12.9	8.0 7.6 5.0	45 46 36	<.1 .1 <.1	68.8 23.1 71.1	9.3 14.6 6.0 9.9 5 10.7	252 137 197	2.63 2.02 2.26	1.8 1.3 1.2	1.7 1.7 1.4	1.0 <.5 <.5	3.0 3.0 5.5	17 8 8	.2 .2 .1	1 < 1	7 7 3	22 28 27	.18 .07 .12	.060 .026 .034	17 17 21	40.6 37.1 33.1 47.1 56.4	.59 .28 .80	68 38 76	.069 .085 .107 .122 .155	1 2 <1 1 1 1	.91 .0 .23 .1 .59 .0	011 006 010	.19 .22 .13 .34 .35	2.7 1.1 .7	.08 .03 .02	2.7 1.5 2.6	.2 .2 < .1 < .2 <	. 05 . 05 . 05		.7 <.5
27E 15+75N 27E 15+30N 27E 14+75N 27E 14+25N 27+50E 16+25N	.9 1.7 1.5	13.8 30.8 40.0 27.6 35.7	7.4 12.0 9.8	62 67 64	<.1 .2	53.2 49.5 41.7	3 5.5 2 14.3 5 12.1 7 10.9 2 22.0	250 235 253	3.08 3.83 2.95	1.5 2.2 1.6	2.8 4.0 1.9	<.5 <.5 <.5	6.8 3.5 4.3	8 9 19 12 31	.2 1 .1	.1 .1		43 38	.09 .16 .10	.027 .038 .021	18 25 19	33.6 56.4 50.1 53.1 60.9	.64 .56 .52	117 87 67	. 139 . 155	1 2 <1 2 3 1	.32 .6 .69 .6	013 010 008	.16 1 .40 .26 .26 .43 2	5.8 4.7 1.5	.03 .08	3.9 3.0 2.4	2 < 3 < 2 < 3 <	. 05 . 05 . 05		<.5 .5
27+50E 16N 27+50E 15+75N 27+50E 15+50N 27+50E 15+25N 27+50E 15N	1.8 6.0 1.2	13.9 4.4 5.2 31.2 31.6	2.4 12.0 8.7	12 18 65	<.1 .2 .1	4.0 4.6 42.8	4.1 2.1.2 5.1.5 3.15.7 4.14.2	39 62 288	.70 1.50 3.31	1.2 2.1 1.6	1.1 1.1 1.6	<.5 <.5 <.5	4.9 4.2 6.1	18 4 6 25 19	.3 1 2	.2 .2 .1	2.3 1.8 3.1 1.2	26 73 46	.04 .05	.020 .039 .045	20 17 15	20.8 7.4 14.3 41.6 48.9	.02 .06 .52	20 25 100	.094 .059 .136 .168 .143	<1	. 16 . 1 . 49 . (. 63 . (005 007 018	.03 .04 .22 3	8.3 9.1 4.8	.02	.3 .5 3.6	1 < < 1 < < 1 < < 2 < 3 <	.05 .05 .05	8 2 17 9 8	<.5 <.5
L27+50E 14+50N	.9 1.3 1.3	16.7 38.9 19.2	5.7 16.1 10.8	29 75 61	<.1 .1 <.1	47.8 84.1 31.6	5 5.9 3 7.9 1 14.2 5 9.4 8 5.5	253 281 202	1.78 3.89 3.94	1.1 3.0 2.7	1.8 2.9	<.5 <.5 .5	1.8	15 13 17 16 5	.1 .2 .2	. 1	.5 2.0 .5	21 41 45	.15 .15 .14	.033 .053 .038 .040	19 26 20	41.7 34.9 62.0 48.7 78.1	.44 .70 .59	61 132 113	.074 .150	11.	.40 .0 .00 .0 .73 .0	010 011 009	.16 .21 .50 .43	1.0 1.0 .9	.07 .03 .06 .05	1.6 3.7 3.2	.2 < .2 < .4 < .3 < .1 <	.05 .05 .05		<.5
28E 15+75N 28E 15+25N 28E 14+75N 28E 14+25N 28+50E 16+25N	.5 1.8 .9	31.4 20.0 13.6	9.0 17.2 9.0	63 59 20	.3 2. 1.>	82.8 2 38.8 21.6	5 7.5 8 20.2 8 17.5 6 7.1 2 12.7	557 403 222	3.62 4.44 1.30	1.8 2.5 .7	2.2 1.0 1.3	.7 .9 .5	6.7 4.1 1.5	17 16	.2 .2 .2	<.1 .1 <.1	.9 .6 .4	43 39	.58 .12	.093 .110 .025	22 15 19	51.3 61.4 44.7 23.8 77.9	.89 .42 .22	145 63 51	.161 .093	1 2 1 2 1	. 44 . 6 . 89 . 6 . 81 . 1	018 007 009	.15 .44 .15 .13	5.5 1.9 .8	.09 .03	4.7 2.9 1.2	.1 < .4 < .1 < .1 < .3 <	.05 .05 .05	15 7 8 6 6	<.5 .5 <.5
.28+50E 16N .28+50E 15+75N .28+50E 15+25N .28+50E 15N .28+50E 14+75N	2.0 1.5 .6	15.5	13.9 10.0 8.0	38 54 28	<.1 <.1	15.0 34.9 62.6	6 6.4 6 5.2 5 9.9 4 11.2 3 5.5	170 199 168	2.94 3.79 1.72	1.4 1.9 1.0	.9 .8	1.4 <.5 .9	3.2 5.0 4.8 1.2 3.1	9 9 9	.2	.1 < 1	.9 1.6 .7 .4	106 59 25	.11 .09	.026 .023 .037	15 15 17	39.4 51.3 54.0 62.8 34.0	.35 .47 .43	116 99	. 282 . 221 . 080	1 1 1 1 1	.90 .0 .63 .6	008 008 013	.24 .16	.4 1.7	.02 .05 .04	2.3 2.5 2.0	.1 < .2 < .2 < .2 < .2 < .1 <	.05 .05 .05	9 15 11 6 5	<.5 <.5 <.5
STANDARD 0S6	11.7	123.8	29.1	141	:	24.	3 10.8	722	2.85	21.4	6.6	48.6	3.0	41	6.1	3.7	5.0	56	. 87	.080	14	186.8	. 59	168	.082	17 1	. 90 .	071	.15	3.6	.23	3.3	1.8 <	05	6	4.4

Page 8

7000 7000 11000																											==				
SAMPLE#	Мо	Cu	Pb	Zn	Ag N	li (Co Mn	Fe	As U	Au Th	Sr	Cd Sb	Bi e	٧	Ca	Р	La	Cr	Mg	Ba '	Γi	B Al	Na	K	W	Hg S	šС	TI S	Ga S	Se	W
}	חממ			ppm p	-	m ot	maga ma	*	ppm ppm							2 1	mac	ppm	X p	pm	2 p	pm 🛣	*	*	ppm	ppm p	om p	pm 🛣	ppm pp	mc	ppm
	FFI	P.F	FF	FF F								• • • •	<u> </u>			<u>-</u>	<u> </u>										<u> </u>				
G-1	.1	1.8	2.9	45 <	.1 3.	9 3.	9 542	1.83	<.5 1.8	<.5 3.8	61	<.1 <.1	.1	37	.46	077	7	7.5	.62 2	06 .1	29	2 1.00	.074	.51	.1<	.01 1	.9	.3<.05	5 <	.5	-
L28+50E 14+50N	1.4	22.9	7.3	26	.2 26	6 7	9 398	1.78	1.4 3.7	< 5 4	20	.2 < 1	4	23	.20	.072	20	32.0	.26	41 .0	32	<1 1.72	.006	.09	.7	.07	.9	.1 .08	5.	.5	•
1 28+50E 14+25N	1 0	32.0	10 1	68 <	1 89	2 14	3 311	3.44	2.1 2.0	<.5 3.9	17	.2 < 1	.7	41	.16	.035	21	57.5	.77 1	21 .1	49	<1 2.45	.011	46	.7	.04 3	.3	.3<.05	8 <	.5	-
L28+50E 14N	7	23.8	8.4	53 <	1 57	5 13	1 247	3.25	1.6 1.5	.9 5.8	15	.1 <.1	.6	37	.18	.029	19	55.2	. 78	91 .1	67	<1 2.28	.011	.35	1.5	.05 3	.3	.3<.05	8 <	.5	
L29E 15+75N	1.5	56.0	10 4	78	2 114	0.29	0 856	3.15	1.8 8.4	1.2 4.1	39	1.5 .1	5.3	42	.22	.071	31	52.9	.46 2	14 .1:	21	1 3.22	.017	.19	>100	.15 4	.3	.2<.05	10	.7 29	1.0
2002 2017011	2.0	00,0		. •																											
L29E 15+25N	Я	10.6	6.0	23	1 72	0 10	2 139	2.00	1.6 .7	<.5 2.4	7	1 < 1	.2	32	.10	.034	10	43.7	.45	57 .0	90	<1 1.05	.006	.09	.6	.03 1	.4	.1<.05	6 <	.5	
L29E 14+75N	٥	7.6	9.3	32 <	1 50	4 9	1 132	2 47	1.5 .7	7 4 1	9	.1 .3	.3	38	.11	.019	11	51.0	.44	58 .1	35	<1 1.72	.007	.14	.6	.04 2	.2	.1<.05	7 <	.5	
L29E 14+25N	1 3	10.0	11 3	31	1 20	9 6	2 122	1 27	.9 1.0	1.0 2.1	5	.1 < .1	.4	25	.04	.017	12	26.4	.29	44 .1	07	<1 1.37	.010	.12				.1<.05			
L29+50E 15+25N	2.3	25.8	10.2	63 <	1 105	7 21	8 334	3 84	2.4 1.7	< 5 6 3	10	.2 .1	. 5	43	13	043	18	86.6	.91 1	44 .1	90	<1 3.38	.012	.45				.3<.05			
L29+50E 15N	. u	6.0	6 B	35 <	1 67	8 7	8 107	2 10	1.6 .5	8 2 5	g	.2 .1	.3	32	.14	.035	7	49.0	.66	38 .0	96	<1 1.26	.006	.07				.1<.05			-
(23.30£ 13K	. 0	0.0	0.0				.0 207		2.0 .0		-																				
L29+50E 14+75N	12	19 0	10.8	41 <	1 78	0 12	3 192	2.58	1.3 1.7	<.5 1.4	13	.1 < .1	L .5	41	.13	.027	16	74.0	.55	93 .1	10	<1 2.01	.010	.19	.8	.04 2	.4	.1<.05	8 <	.5	-
129+50E 14+50N	. A	19.2	9 5	58 <	1 131	8 18	3 321	3 41	1.6 1.2	< 5 5 9	10	.2 < .1	.4	39	.11	.032	16	82.2	.93 1	08 .1	59	<1 2.93	.011	.31	.5	.04 3	.5	.3<.05	7 <	.5	•
L29+50E 14+25N	1.0	5.4	8.6	33 <	1 28	0 5	7 117	1 99	1.3 .8	<.5 3.7	6	.2	.3	38	.06	.027	14	50.1	.30	49 .1	22	<i 1.13<="" td=""><td>.006</td><td>.09</td><td></td><td></td><td></td><td>.1<.05</td><td></td><td></td><td></td></i>	.006	.09				.1<.05			
L29+50E 14N	5.5	14.0	6.0	62 <	1 98	2 14	7 256	2 83	1.5 1.3	767	7	< 1 < 1	.3	40	10	032	20	84.7	1.02 1	01 .1	73	<1 2.10	.012	.41				.3<.05		.5	-
L30E 16+75N	1 1	21 3	9.0	38	1 152	6 22	3 234	3.80	3.0 1.3	2 4 5 1	13	4	1 .4	43	13	.023	12	106.2	.91	80 .1	45	<1 2.58	.008	.14				.2<.05			•
L30E 10+/3N	1.1	21.5	0.7	55	.1 102	.0 22	.0 204	0.00	0.0 1.0	2 0.1							•		, , ,			•									
L30E 16+25N	1 Q	12.0	18.8	62 <	1 35	9 7	5 139	3 39	2.0 1.5	2.1 4.4	13	.4 .1	1.3.1	50	.12	.041	18	47.1	. 38	70 .1	57	<1 1.82	.010	.14	92.9	.07 2	.2	.1<.05	11 <	. 5	
L30E 15+75N									1.5 1.0																.6	.02 1	.8	.1<.05	6 <	.5	-
L30E 15+25N	1.3	21.7	8 2	61	3 60	0 18	6 460	2 19	1.4 2.8	1 3 2 3	25	7	6	31	36	052	20	51.6	.50 1	26 .1	07	<1.1.86	.012	.27				.2<.05			-
L30E 14+75N	1.1	20.1	10.2	63 4	1 140	.0 10 2 10	.0 700 286 h	3.50	2.3 1.8	< 5.3.9	15	3 < 1	7	41	19	0.37	20	88.3	94 1	34 1	63	<1.3.07	013	45				.3<.05			•
	1.0	10.1	11 2	70 -	1 50	.0 19 11 3	6 197	3.03	2.4 1.0	< 5.4.6	10	2 1	Ι Δ	42	12	033	13	71 8	54	97 1	67	<1 2 70	007	19				.2<.05			-
L30E 14+25N	1.1	10.9	11.2	13	.1 30	.J 10	.0 10/	7.04	2.7 1.0		10	٠٠.		72		. 500	10		.04		_,		, 00,						-	-	
DE 120E 14:269	1 4	10.7	11 2	70 -	1 17	g 10	1 191	3 00	2.3 1.0	< 5.5.2	10	3 1	1 4	44	12	032	15	72 6	55	96 1	71	<1 2.72	007	.17	g	.06.3	. 4	.2<.05	8	.5	-
RE L30E 14+25N STANDARD DS6	1.4 11 F	100.7	20.0	142	3 24	.0 IO	8 702	2.33	21.5 6.5	46 0 3 0	40	6135	5 5 0	55	86	080	13	175.7	58 1	65 .0	81	16 1.90	071	.16				1.7 .06			-
STANDARD DS6	11.5	122.0	43.0	142	.5 24	. 5 10	.0 /02	2.01	21.3 0.3	70.0 3.0	70	U. L U.			.00	. 000	10.	_,,,,			<u> </u>	10 1.50			3.0						

ACME ANY TICAL LABORATORIES LTD.
(I(9001 Accredited Co.)

002 B. HADTINGS ST. F INDUVE. C 1 ... TRE

6 PH

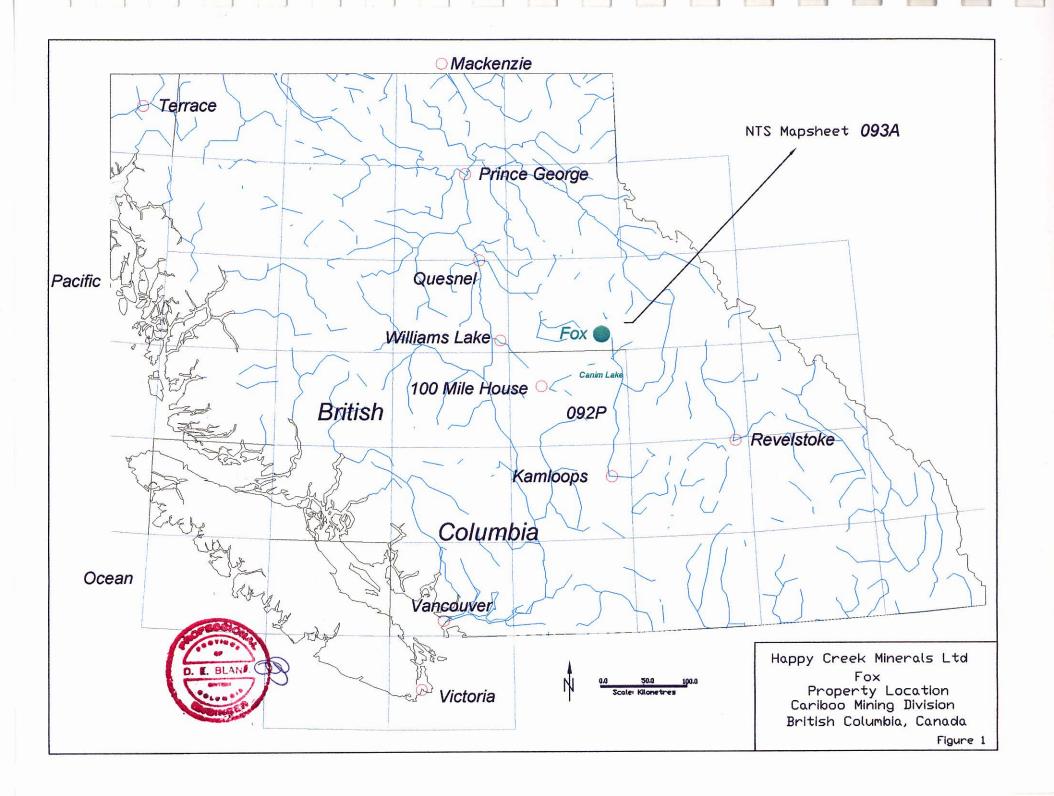
1.... 604, ... 3-31 - FAX

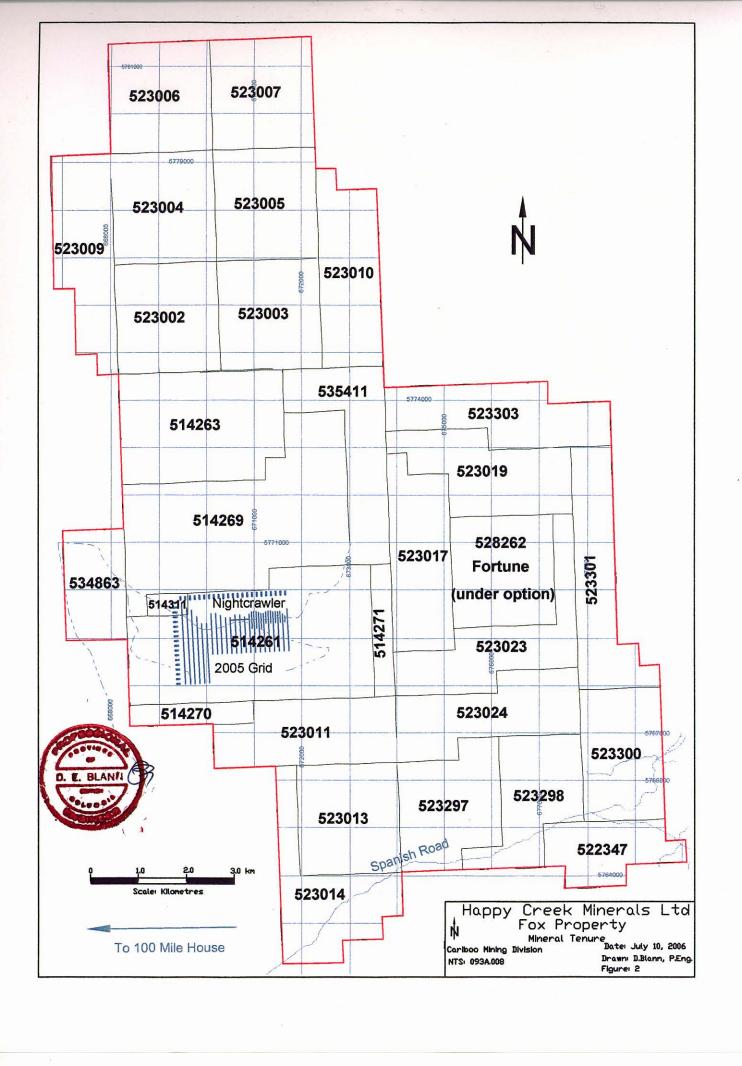
J 25_ _b16

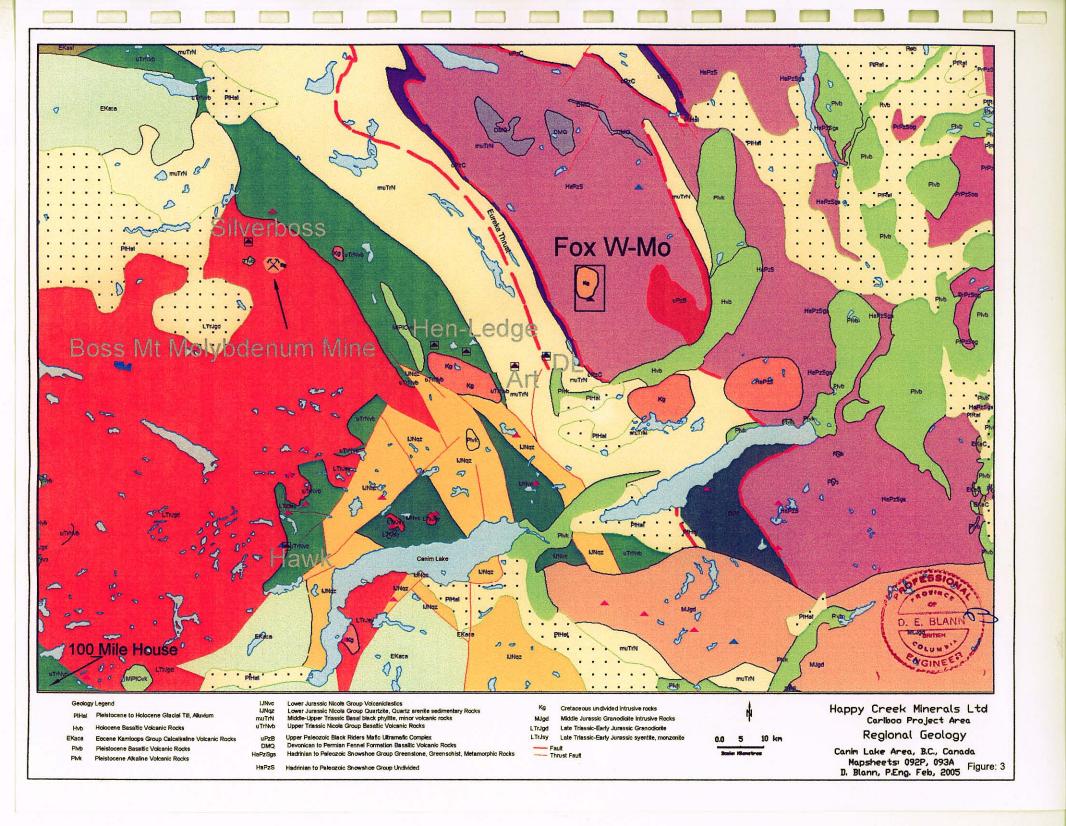
GEOCHEMICAL ANALISIS CERTIFICATE

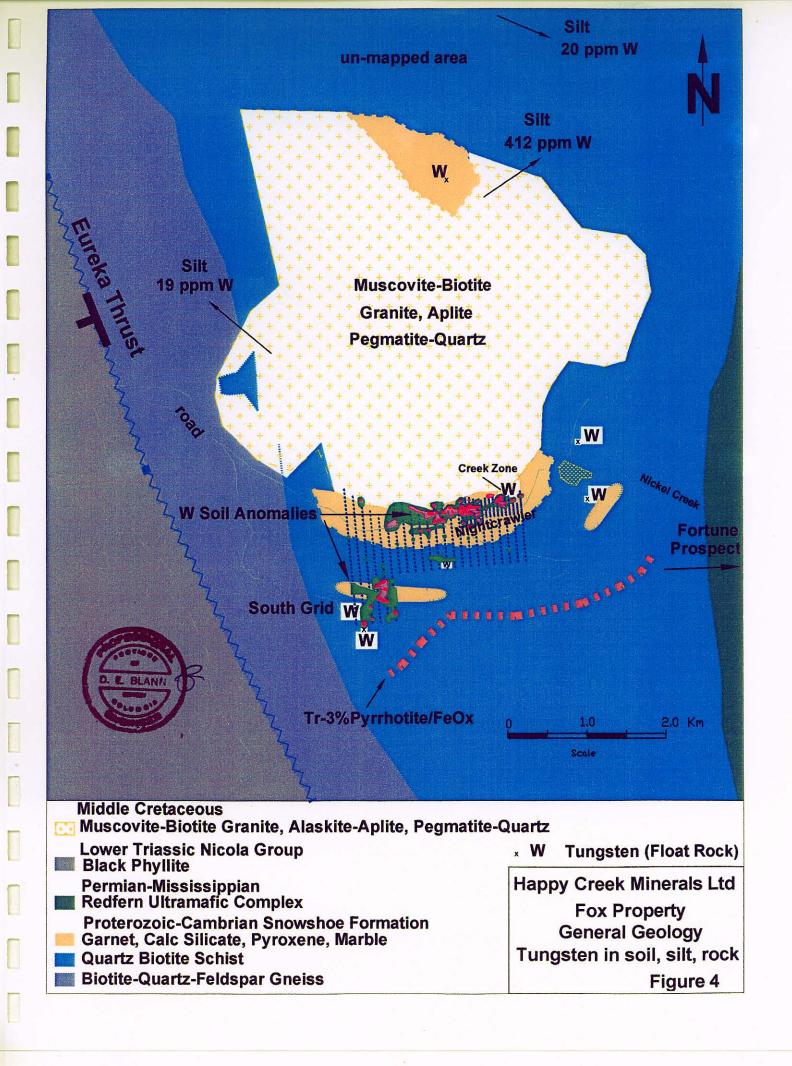
Standard Metals PROJECT FOX File # A600372
P.O. Box 1852 38151 Clark, Squamish BC VON 3GD Submitted by: David Blann

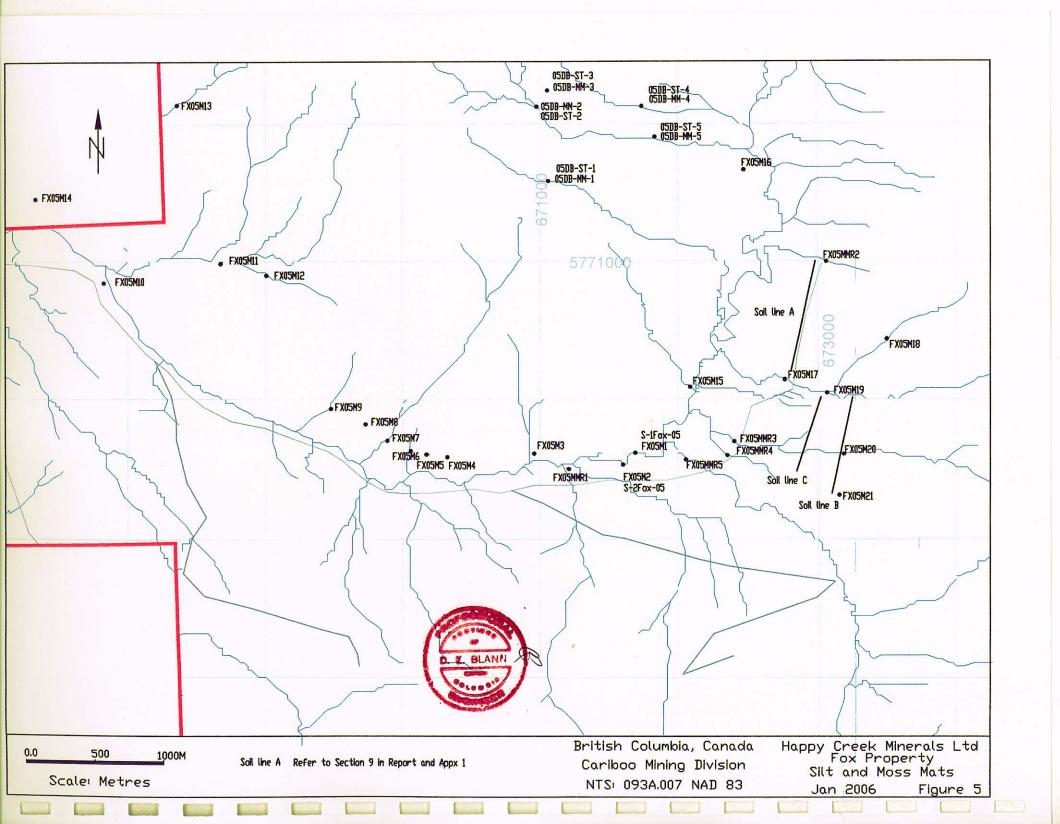
SAMPLE#	Мо ррля	Cu ppm		Zn ppm	Ag ppm	Ni ppm	Co ppm	Min ppm	Fe \$	As ppm	U ppm		Th ppm		Cd ppm			y ppm	Ca ‡	P 2	La ppm	Cr ppm	_	Ва ррт	Ti *	8 ppm	A1	Na %	K %	₩ ppm	Hg ppm	Sc ppm	T1 ppm	S X	Ga ppm	Se ppm
G-1 050BMM1 050BMM2 050BMM3 050BMM4	.1 3.7 2.0 1.3	4.6		38 33 32 40 65	.1 <.1 .1	7.1 6.1	20.1 10.1 8.0	3283 1264 737	1.68 1.23 1.10	1.9 1.8 7.3	4.0 5.7	<.5	3.6 1.1 1.3 .5	58 14 17 22 104	<.1 .4 .4 .6	<.I .1 .1 .1	.1 .5 .5 .6	14 11 14	.43 .16 .21 .33	.053 .045 .055	11 11	7.8 10.8 11.5 12.9 21.7	.13 .15 .17	57 51	.104 .034 .041 .041 .020	1 <1 1	.92 .84 .83 .94 L.70	.010 .010 .010		1,4 4,9 9,3	<.01 .03 .01 .04 .10	1.0	.1 < .1	.08	4 3 2 3 2	<.5 <.5 <.5 .5
05DBMM5 FX05M1 FX05M2 FX05M3 FX05M4	.6 2.7	11.3 8.9	5.8 4.3 20.3	39 119	<.1 <.1	11.3 151.9 140.8 25.0 8.7	20.6 19.9 7.5	808 891	2.06 1.76 2.00	1.1 .8 3.0	2.3 1.8 36.9	1.8 2.1	1.5 3.8 3.5 2.0 .5	23 18 16 62 42	.2 3.3	.2	.9 .2 .2 5.3 2.3		.30 .30 .26 .80 .48	.077 .075	18 16 49	16.8 53.2 40.6 26.2 14.7	1.46 .35	65 53 149	.050 .076 .075 .087 .050	1 1 2 2	1.12 1.16 .96 2.94 1.22	.013 .013 .012	.27		.04 .08	2.1	.2 < .2 < .2 < .3 < .1 <	.05 .05 .05	3 3 5 4	<.5 .6 .5 .5 <.5
FX05M5 FX05M6 FX05M7 FX05M8 FX05M9	3.6 2.9 4.9	25.2 13.5 13.7 15.9 11.1	14.7 13.2 9.3	150	.8 .5 .5		5.0 3.8 3.1	940 742 636	.66 .63 .56	1.5 .7 .7	40.2 36.1 42.3		.3 .2 .3 .3	38 48	2.0 1.8 1.9 13.0 1.5	.2 .2	2.5 2.5	7 7 6	.44 .52 .49 .51	.059 .081 .067	25 28 32	17.1 11.9 10.0 11.2 14.9	.09 .13 .09	58 55	.033 .025 .025 .025 .020	3 2	2.13 1.88 1.45 1.12 1.65	.011 .008 .009	.11 .13 .13	2.6	.15 .07 .07 .09	1.2 1.0 .9 .9	.2 .1 < .2 < .1 <	.05 .05 .05	3 2 2 2 3	<.5 .6 .5 .5 <.5
FX05M10 FX05M11 FX05M12 FX05M13 FX05M14		6.7		26 25 98	.1 .2	7.2		289 378 732	.82 .70 1.65	1.0 .9 13.0		.5 6. 5. >			.7 .3 1.3	.1 .8	.6 1.0 .7 4.9 3.2	10 9 21	.16 .24 .19 .40 .25	.036 .039 .088	13 20	9.4 13.0 11.7 21.8 13.7	.29	51 45 110	.036 .045 .039 .063 .048	<1 1 1	.61 .68 .68 1.37	.007 .009 .011	.17 .13 .17	5.6 5.8 6.2 19.5 19.1			.1 < .1 < .1 < .2 < .1 <	.05 .05 .05	2 2 3	<.5 <.5 <.5 .7 <.5
RE FX05M14 FX05M15 FX05M16 FX05M17 FX05M18		18.9	7.4 4.1	44 49 34	.3 .1 <.1	11.7 20.4 10.0 913.6 41.9	6.5 7.7 55.2	688 928 686	1.74 1.30 3.06	1.1 1.9 2.9	17.3 10.8 .7	<.5 <.5	1.8 1.1 1.7	17 62 32 11 25	.4 .6 .1	.1 .2 .1	.8 .1	24 14 14	.25 1.00 .43 .25 .40	.054 .060	34 15 6	15.3 24.7 14.7 94.0 25.3	.24 .17 7.98	126 69 34	.051 .085 .039 .028 .067	3 1 2	.80 1.85 1.17 .67 .99	010 009	.25 .11 .09	17.6 2.7 8.5 .3 .6	.06 .07 < .01	3.1 1.3 3.4	.1 < .2 < .1 < .1 < .1 < .1 < .2	.05 .05 .08	4 2 2	< 5 < 5 < 5 < 5
FX05M19 FX05M20 FX05M21 FX05MMR1 FX05MMR2	.5 .8 .6	8.1 17.4 25.2 14.4 21.9	5.2 7.4 4.9	37 37 51	.1 .2 <.1	32.3 170.3 64.3 73.6 32.1	19.6 14.2 13.7	490 522 642	1.45 1.74 1.54	1.4 1.4 .7	1.0 1.5 1.1	<.5		20 28 20	.2 .3 .1	.1 .1	.2 .2 .3	19 23 19	.40 .42 .37	.063 .053 .054 .073 .083	11 16 14	23.8 71.6 43.2 34.0 25.9	1.18 .37 .66	51 59 64	.068 .041 .059 .061 .070	1 1 1	1.38 1.42	.009	.08 .15	.5 .2 .1 8.6 .4	<.01 .06 .09 .04	1.9 1.4 1.8	.2 .2	.05 .07 .07 .06	4 3	6 < 5 < 5 < 5 < 2 3
FX05MMR3 FX05MMR4 FX05MMR5 STANDARD DS6	.7	15.6 15.4 14.9 123.7	7.0 4.2	52 49	<.1 <.1	172.6 83.2 238.8 24.9	2 17.9 3 23.9	819 674	2.04	1.2	1.1 1.1	<.5	1.9 1.6		.2	.1	.7	20 26 24 55	.26 .33	.059 .051 .057 .079	14 11	52.7 51.6 85.7 185.5	.69 1.87	99 56	.060 .094 .053 .079	1	1.23 1.65 1.18 1.88	.013	. 15	4.1 1.6 .6 3.4	.03	2.3	.1 .2 < .1 1.8 <	.11	5 3	< .5 < .5 .5 4 .5


GROUP 1DX - 15.0 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS.


(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: Moss Mat Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.


- SAMPLE TYPE: Moss Mat Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.


Clarence Leong


Figures

