KING KONG CLAIMS Report of Follow-up Enzyme Leach Soil Geochemical Survey 2006

Cariboo Mining Division NTS 93 A - 5 E (093A.023) Lat 52° 16' Long. 121° 31'

Owned and Operated by Herb Wahl and Jack Brown-John

Prepared by H. J. Wahl, P.Eng., B.C. R.R.#10, 1416 Ocean Beach Esplanade Gibsons, B. C. Canada. VON 1V3 Phone: 604-886-8522 May 2006

LIST of FIGURES

- Fig. 1King Kong Claims, General Location Map, scale 1:100,000
- Fig. 2 Property Location Map, cell and 2-post, scale 1:20,000
- Fig. 3Results of Initial EZL Survey, including claim locations
plus 2006 lines, scale 1:10,000

APPENDICES

- 1. Certificate of Enzyme Leach SM soil analyses. Report No. A06-1795
- 2. Hill, G.T., 12 August 2006, King Kong Enzyme Leach Data, Interpretation Report.

INTRODUCTION

This report describes the results of fill-in soil sampling (Enzyme Leach Analysis) performed on the King Kong mineral claims located 4.5 km southwest of Horsefly village, Cariboo M.D., Central British Columbia.

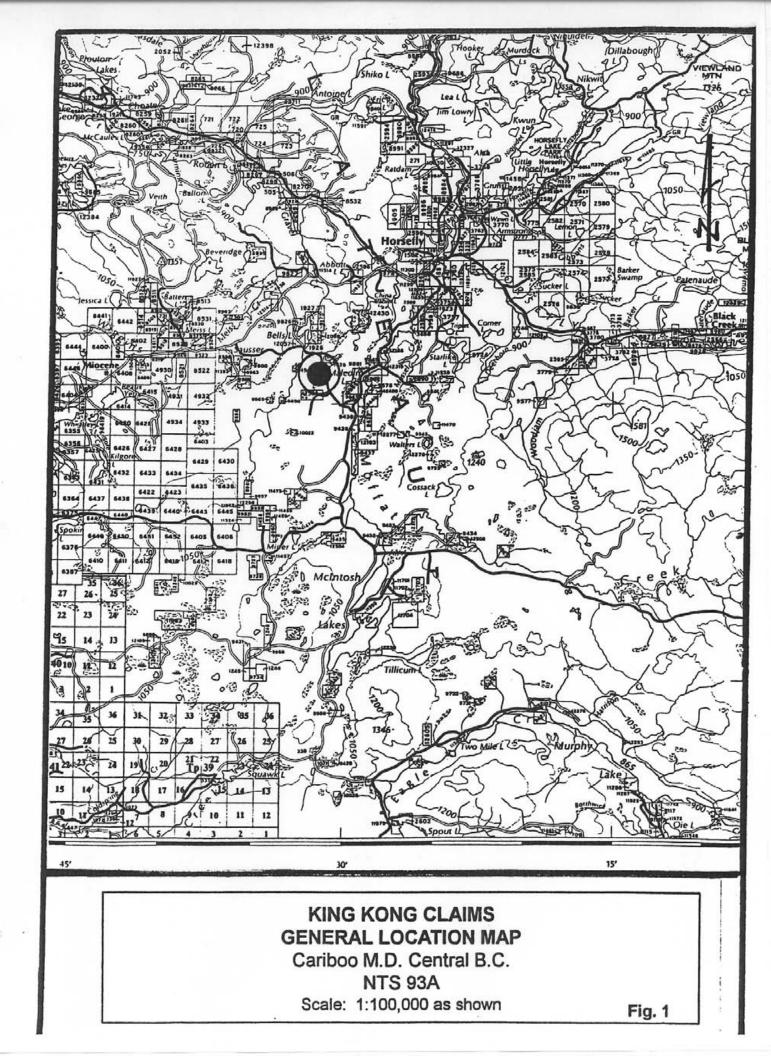
During the 21-23 May 2006 field period 24 soil samples were collected along hand-cut survey lines in the center of previously identified (2002) EZL oxidation zone anomalous for bromine, thorium, titanium, and molybdenum.

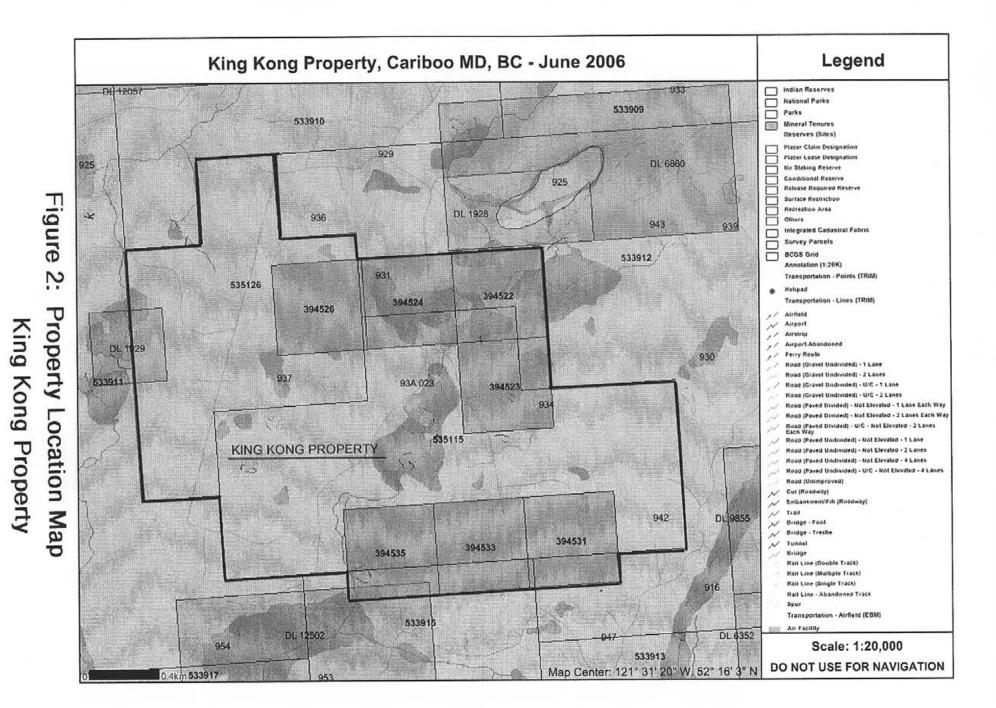
SUMMARY

The 24-unit King Kong property is situated 5 km southwest of Horsefly Village in the central Cariboo region. The claims lie astride the Bells Lake Road about 7.5 km easterly from the Horsefly highway junction.

In the project area, Miocene plateau basalts mask the underlying Triassic bedrock, which is believed to be an extension of the Central Volcanic axis originating at Mt. Polley some 35 km to the NNW.

The highly magnetic Triassic volcanic stratigraphy is reflected by a strong aeromagnetic response, which passes under the Miocene nearly undiminished in intensity.


An earlier (2000) road sampling traverse 8.5 km long crossing the above trend, identified an anomalous enzyme leach (EZL) oxidation response over 1 km long, which was expanded upon by the 54 sample geochemical program of 2002.


A 1.5 km diameter EZL oxidation zone was defined by central lows for bromine, thorium, titanium, and molybdenum by the foregoing program.

Results of the current program (2006) continue to expand upon this feature, however, sample density is still insufficient to pinpoint the area of highest mineral potential. Total costs for the 2006 program are \$5,808.73.

LOCATION AND ACCESS: (Fig. 1,2)

The claims are located 4.5 km southwest of Horsefly village along the Bells Lake haul road at a point some 7.5 km easterly from the junction of the subject road and the Horsefly highway.

PROPERTY:

The King Kong property is constituted as follows:

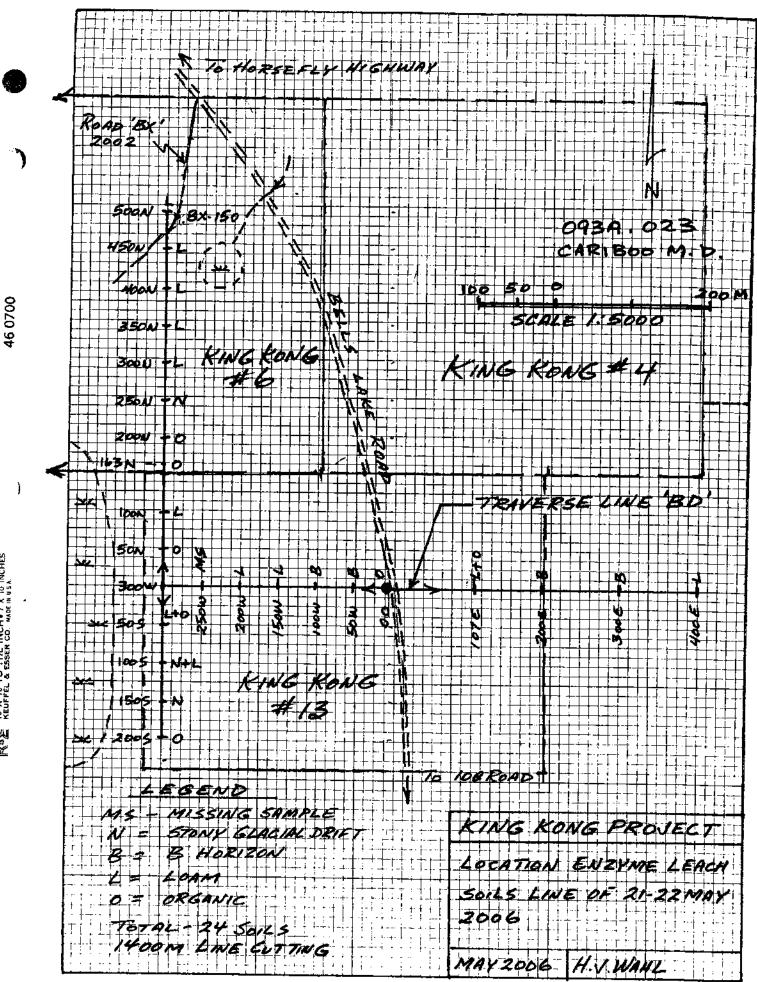
2-Post Claims

King Kong 3-7	394522 – 394526 incl.
King Kong 12	394531
King Kong 14	394533
King Kong 16	394535

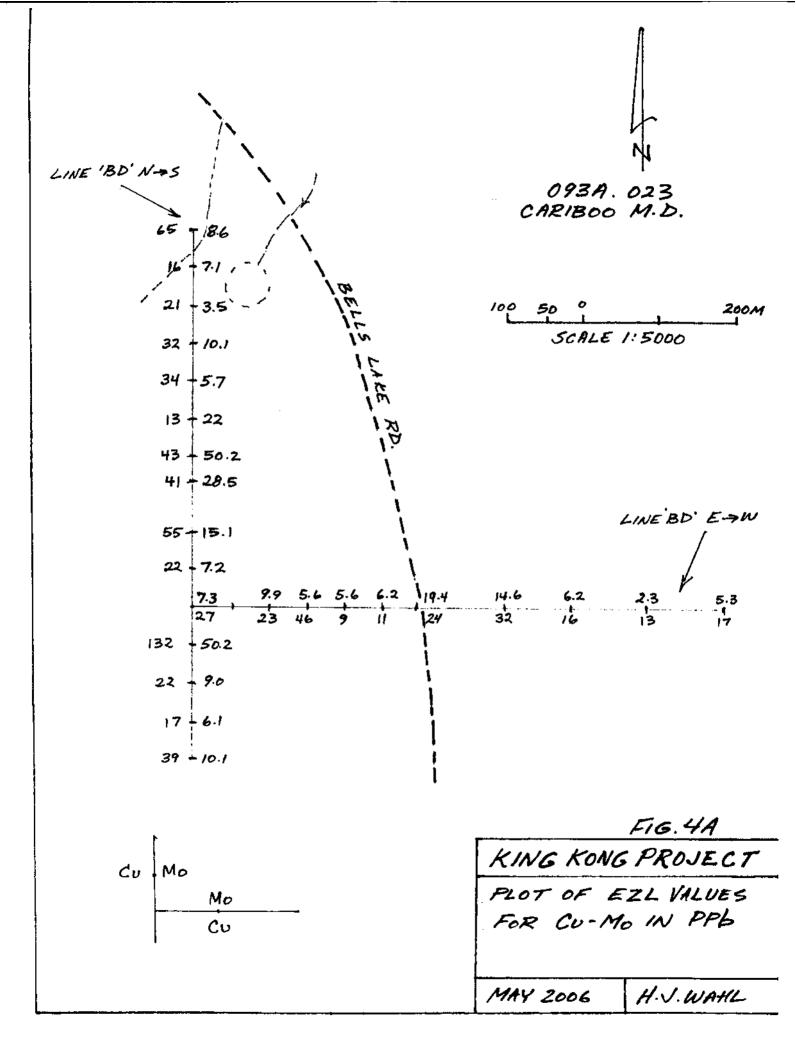
Cell Claims

King	Kong	South	535115
King	Kong	North	535126

Total surface area contained within the above amounts to 610.271 ha. Initial 2-post claims were originally staked during the period 19-21 June 2002.


TERRAIN/ TOPOGRAPHY

The property lies within the Quesnel Highland Division of the Central B.C. Fraser Plateau. Local terrain is basically flat with local low-lying swampy areas, some of which are connected and/or drained by sluggish small streams. The timber is fairly open consisting of the usual aspen-pine-fir species. Logging operations are ongoing throughout the area.


WORK PERFORMED:

During the work period 21-23 May 2006 inclusive, fill-in line "BD" was hand cut, chained and picketed at 50 meter intervals, except for the east wing of line "BD", where stations are at 100 meters.

The subject line consists of a N-S segment 700 meters long, connected to an E-W segment 700 meters long. Soil samples were collected at 50 m spacings on the completed line (24 each). The terrain is flat, and no outcrops were located. The above was performed on the King Kong South (535115) mineral claim.

F16.4

GEOLOGY

The King Kong claims are located within the Quesnel Trough geological division of the central B.C. Intermontane Belt. Rock units are generally calcalkaline volcanics of Triassic age intruded by syn and post tectonic intrusives.

The King Kong claims cover a strong aeromagnetic anomaly that achieves peak magnitude of 6,500 gammas. This feature occurs about slightly south of mid-way along a NNW trending magnetic zone originating in the Mt. Polley area and continuing southward to the McIntosh Lakes area, a distance of some 65 km. The mag feature represents the central volcanic axis of the western Quesnel Trough, along which former eruptive centers occur at approximately 11 km intervals.

The King Kong Project is considered to overlie a former eruptive center based upon the intensity of the airborne magnetic anomaly. The underlying Triassic bedrock and potential intrusive complex is covered by an unknown layer of Miocene Plateau basalts, which may not be excessively thick, based upon the strength of the magnetic signature, and a position 4-5 km inside the outboard margin of Miocene flow rock.

MINERALIZATION:

There are no rock exposures nor mineralized showings on the King Kong claims. During the 2002 soil sampling operation, a large boulder ??, outcrop?? measuring some 4 m long x 2.5 m wide x 1 m high (as exposed above ground surface) was located at the end of Traverse BX. The rock type was syenite intrusive showing shearing aligned with the regional trend (NNW). A sample of this item (BX-IR) did not indicate any significant metal values.(4)

GEOCHEMISTRY

The initial 2002 sampling program was completed to evaluate the concept of a covered volcanic/intrusive center and expand upon the one kilometer-long anomalous zone detected by the 09 May 2000 road traverse, which in total covered 8.5 km of Bells Lake Road.

A total of 54 soil samples at 100 m spacings collected during the 2002 program identified a low contrast oxidation anomaly of roughly circular dimensions, measuring some 1,500 meters in diameter as defined by bromine, thorium, titanium, and molybdenum central lows. The EZL anomaly lies astride the Bells Lake Road. The location of 2006 sampling and partial value plots is detailed on Figs. 4 and 4A included in the text.

During the current program 24 soil samples were collected at 50 m spacings at average depth of 20 cm using an intrenching tool. Standard collection procedures were employed, i.e. numbered kraft envelopes. Resulting samples were shipped to Actlabs at Ancaster, Ontario, for Code 7- enhanced enzyme leach analysis. Resulting data (Appendix 1) was forwarded to consultant G.T. Hill of Reno, Nevada, for interpretation, the details of which are contained in his enclosed report.

CONCLUSIONS & RECOMMENDATIONS

The 2006 sampling has confirmed earlier results, however data point spacing is still inadequate to define a high mineral potential area. The recommendation of Mr. Hill's report, to expand sampling in the King Kong –13 claim area, will be the focus of future work.

Prepared by

H. Wahl, P.Eng. B.C.

STATEMENT OF COSTS

Persons Employed on the King Kong Project were:

Herb J. Wahl, P.Eng. B.C. RR#10, 1416 Ocean Beach Esplanade, Gibsons, B.C. VON 1V3

and

Jack Brown-John Ste. 204, 383 Oliver Street, Williams Lake, B.C. V2G 1M4

King Kong – Exploration Expenditures

Period: 21-23 May 2006 (Field)

H.J. Wahl, 2 days field work @ \$700/day		
line cutting and soil sampling		\$1,400.00
J. Brown-John, 2 days		
line cutting and soil sampling @\$400/day		800.00
H.J. Wahl, 3 days logistics and reporting @ \$400/day		1,200.00
	Sub Total:	\$3,400.00

Travel Expense, code 01,	\$204.16
Prints and photocopy, code 04	2.95
Secretarial and report preparation, code 05	100.00
Postage, freight and communications, code 06	33.62
Enzyme Leach consultant's fee, code 10	800.00
Assaying, code 11	918.00
Field vehicle, 2005 F350 SD 4/4 2 days@ \$175/day	<u>350.00</u>
	Sub Total: \$2,408.73

Grand Total: <u>\$5,808.73</u>

Certified True and Correct

H.J. Wahl, P.Eng.B.C.

Aflahe

REFERENCES

- 1) Geophysics Papers 5233, 5234, 5239
- 2) Panteleyev, A., et al. (1996) Geology and Mineral Deposits of the Quesnel River - Horsefly Map area, Central Quesnel Trough, British Columbia, B.C.D.M. Bull 97.
- 3) Hill, G.T., Enzyme Laboratories, Inc., Letter Report of 11 July 2000 (private data)
- 4) Wahl, H.J. P.Eng.B.C., *King Kong Claims, Report of Initial Enzyme Leach Soil Geochemical Survey*, October 2002.

Quality Analysis ...

Innovative Technologies

 Date Submitted:
 07/06/2006 3:36:19 PM

 Invoice No.:
 A06-1795

 Invoice Date:
 22/06/2006

 Your Reference:
 KING KONG

Herb Wahl RR 10, 1416 Ocean Beach Espl. Gibsons BC V0N 1V3 Canada

ATTN: Herb Wahl

CERTIFICATE OF ANALYSIS

24 Soil samples were submitted for analysis.

The following analytical package was requested:

Code 7-Enhanced Enzyme Leach Enzyme Leach ICP/MS(ENZYME)

REPORT A06-1795

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

CERTIFIED BY :

Eric Hoffman, Ph.D. President/General Manager

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Onlario Canada L9G 4V5 TELEPHONE +1 905.648 9611 or +1.888 228 5227 FAX +1.905.648 9613 E-MAIL ancaster@actlabsint.com ACTLABS GROUP WEBSITE http://www.actlabsint.com Activation Laboratories Ltd. Report: A06-1795

Inalyte Symbol Init Symbol	Ct Ct	Br	I	v	As	Se	Мо	Sb	Te	. <u>w</u>	fie .	Au	Ho	Th	U	Co	Ni	~	Źń	Pb	Ga	Ge	Ag	
Init Symbol										••		Au	1.1	10		00	IN I	Ċu	-	P-0	08	66	A0	Ċe
	PP0	ррб	ppt	քքն	рры	epo	pp b	ppb	PPb	рръ	ррЪ	ρρό	ppb	pob	рро	ppb	ppb	ppb	арb	ppb	ppb	0pb	ррь	ppt
election Limit	1000	1	1	Q 1	01	1	0.1	0.01	0.5	0,1	0 005	0.005	0.1	0.01	0.01	0,2	1	1	5	01	0.3	0.05	0,1	0 1
nalysis Method	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-M5	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZIMS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS
BD-00	53000	6-0	55	420	7.4	3	19.4	2.45	< 0.5	0.9	0.020	< 0.005	< 0 1	0 99	0.76	35.5	73	24	81	35	1.3	0.45	0.2	0 9
80-50W	31000	53	67	85.3	2.8	< 1	8.2	0.38	< 0.5	0.3	< 0.005	< 0.005	< 0 1	0.84	0.57	25.9	13	11	32	4.4	1.5	0.18	0.2	< 0.1
BD-100W	27000	74	107	84.1	2.5	1	5.6	0 41	< 0.5	0.3	0 006	< 0.005	< 0 1	0.95	0.72	38.1	32	9	47	1.3	2.9	0.13	0.2	< 0.1
8D-150W	37000	93	150	188	35	2	5.6	6.71	< 0.5	0.3	0.007	< 0.005	< 0.1	0.64	2.60	27.8	47	48	18	07	1.1	0.34	0.2	< 0.1
8D-200W	29000	50	111	147	37	2	9.9	0.57	< 0.5	03	0.007	< 0.005	< 0.1	1.00	0.85	69.6	34	23	32	0.9	1.7	0.17	0.Ż	< 0.1
BD-300W	40000	65	40	347	83	2	73	0.96	< 0.5	0.6	0.027	< 0.005	< 0.1	0.46	1.98	17.6	48	27	35	3.5	1.3	0.32	0.2	< 0 1
BD-300W-50S	57000	331	567	269	137	18	50 2	1 74	< 0.5	0.9	0 051	< 0.005	< 0.1	2.33	3.57	85.0	152	132	1150	68	2.4	0.45	0.9	31
BD-300W-1005	30000	70	99	99.3	3.1	1	9.0	0.89	< 0.5	04	0.012	< 0.005	< 0 1	1.42	1.29	22.3	27	22	42	55	2.2	0 21	0.2	0.3
BD-300W-1505	23000	72	116	123	4.2	2	ê.1	0.72	< 0.5	03	0.01	< 0.005	< 0 1	2.45	1 23	21.4	30	17	71	3.3	1.8	0.19	0.2	0.4
BD-300W-2005	38000	121	113	358	6.1	6	10,1	1,73	< 0.5	07	0.050	< 0.005	< 0 1	0.90	1.92	11.1	66	39	24	25	0.8	036	0.3	< 0.1
8D-300W-50N	45000	68	44	342	3 Z	3	72	0.64	< 0.5	04	0 005	< 0.005	< 0 1	D.44	0 82	20.7	58	22	74	07	1.6	0 37	D.2	04
BD-300W-100N	63000	105	153	597	€.1	5	15.1	2.35	< 0.5	0.8	0.030	< 0.005	< 0.1	0.23	1.13	48.3	128	55	76	1.3	1.1	0.44	0.2	07
BD-300W-163N	64000	107	57	744	5,4	8	26.5	2 39	< 0.5	10	0.077	< 0,005	< 0.1	0.36	1 37	11.3	62	41	35	11.0	13	0 98	< D.1	0 3
BD-300W-200N	43000	230	137	153	7.5	2	50 Z	0.81	< 0.5	0.8	0.016	< 0.005	< 0.1	0.96	0.91	34 9	58	43	415	4 5	12	Ð 10	06	15
BD-300W-250N	21000	85	67	61.1	2.0	1	22 0	0 47	< 0.5	0.3	0.011	< 0.005	< 0 1	1.22	077	92 1	42	13	54	15	1.3	0.21	0.2	10
BD-300W-300N	29000	91	130	205	4,5	2	5,7	180	< Q.5	1.2	0.008	< 0.005	< 0.1	0.75	0.55	27.9	41	34	71	17.5	1.D	D.20	0.3	0 2
BD-300W-350N	36000	131	127	204	6.5	5	10.1	1.01	< 0.5	0.3	0 019	< 0.005	< 0.1	0 45	1.77	33 5	91	32	38	21	07	0.28	0 2	0 3
BD-300W-400N	21000	103	113	129	28	5	3,5	0.74	< 0.5	0.0	0 009	< 0.005	< 0.1	0.38	0.95	64	22	21	22	18	0.5	0.18	0 2	< 0 1
BD-300W-450N	24000	86	241	135	2.3	1	7.1	1.13	< 0.5	0.8	0.016	< 0.005	< 0 1	0.26	0.79	29.4	46	16	29	2.8	39	0.19	0.1	< 0.1
BD-300W-500	50000	148	346	369	6.5	5	6.6	1.33	< 0.5	0.7	0.021	< 0.005	< 0.1	0.39	2.26	80.3	87	65	53	38	21	D 27	03	0 3
BD-107E	43000	207	401	485	4.0	4	14.6	1.35	< 0.5	0.7	0.019	< 0.005	< 0.1	0.42	1.25	97 3	70	32	114	19	< 0.3	0 20	02	< 0.1
80-200E	37000	87	106	210	2.2	1	6.2	0 40	< 0.5	0.3	< 0.005	< 0.005	< 0.1	0.58	0.68	42 2	37	16	44	10	08	016	04	< 0 1
BD-300E	29000	77	86	190	2.2	< 1	2.3	0.33	< 0.5	0.3	< 0.005	< 0.005	< 0.1	0 83	0 67	44.3	25	13	28	08	1.8	0.15	0.2	< 10 1
BD-400E	36000	72	83	125	2.1	< 1	5,3	0.70	< 0.5	0.5	< 0 005	< 0 005	< 01	0 37	0.87	\$7.7	40	17	149	4 2	0.7	0.27	Ö . 1	< 0,1

Activation Laboratories Ltd. Report: A06-1795

													-											
Analyte Symbol	la	Şn	LΤ	Bi	Ti	Cr	Y	2r	Nb	Hr	Ta	La	Ce	Pr	Nð	Şm	— Eu	Gđ	78	Dy	۲a	Ēr	٦m	Y
Unit Symbol	ppb	ppb	рро	ррб	ррб	ppb	ppb	ppb	ppb	ррб	рро	ррь	ppb	ррь	рръ	ррь	ppb	ppb	ppb	рръ	ppb	999	ppt	ppi
Detection Limit	0.01	0.2	0.005	D.5	10	3	0.05	0,1	0.1	0.01	0.02	0.01	0.01	D.Q1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.0
Analysis Method	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS										
BD-00	< 0.01	0.3	0,086	< 0.5	540	8	4 40	33 7	2.0	0.81	0.08	2.84	6 71	0 86	3.87	0.98	0 30	0.90	0.16	0.67	0.17	0.51	0.08	0.5
BD-50W	< 0.01	< 0.2	0.013	< 0.5	300	< 3	i 55	34.0	1.0	0.60	< 0.02	1.25	3 93	0.34	1.55	0.42	0 23	0.33	0.07	0.31	0.06	0.18	0.03	01
BD-100W	0.02	< 0.2	0.029	< 0.5	520	< 3	4.67	45.4	19	1.14	0.05	2,14	5 41	0.78	3 82	1.06	0 39	1.01	0.18	0.95	0,19	D 53	0.09	04
BD-150W	0 01	0.3	0.092	< 0.5	470	< 3	31.5	37 5	10	0.95	0.05	6.30	12.0	2.56	13.2	4.12	1 19	4.33	0.82	4.84	1 05	3.30	0.47	34
BD-200W	0 02	< 0.2	0.031	< 0.5	530	< 3	4 36	38.2	22	0.94	0.06	2.17	9.03	0.88	4.00	1.13	0.37	1.00	0.19	0.93	0 19	0.52	0.08	0.5
BD-300W	< 0.01	0.4	0.067	< 0.5	440	< 3	5 09	28 3	1.4	0.68	0.11	2.84	7.99	1.10	5.38	1.37	0 35	1.19	0.23	1,10	0 20	0.62	0.09	D.5
BD-300W-50S	0.01	0.4	0.281	0.6	780	19	9.55	62.0	3.2	1.24	80.0	5.87	18.3	1.94	8.78	2.20	0.64	1.91	0.37	1.80	0.35	1.05	0.15	0.9
30-300W-100S	0.01	0.2	0.045	< 0.5	590	< 3	6.29	35 0	1.5	0.99	0.07	4.38	9.54	1.54	6.74	1.71	0 55	1.45	0.28	1.35	0.26	0.73	0.10	0.7
D-300W-150S	0.02	0.3	0 048	< 0.5	870	3	2,35	47.5	2.3	1.38	0.07	1.91	4.81	0.63	2.71	0.75	0.31	0.64	0 11	0.53	0.12	0.34	0.05	0.3
D-300W-200S	< 0.01	< 0.2	0.062	< 0.5	280	< 3	10.9	48.8	1.3	1.18	0.07	5.47	10.1	2.04	984	2.49	0.70	2.20	0.38	2.00	0.41	1.18	81 0	1.1
D-300W-50N	< 0.01	04	0.051	< 0.5	510	< 3	4.44	32.7	2.4	0.86	0.13	2.25	6.27	0.66	3.96	1 10	0.29	0.93	0.16	0 86	0.18	0.53	0.07	0.4
0-300W-100N	< 0.01	0.2	0.157	< 0.5	460	4	18.0	30.6	1,7	0.55	0.09	4.96	15.5	1.94	10.0	2.97	0.79	2 85	0.51	2.97	0.63	1.98	0.29	2.1
BD-300W-163N	0.02	0.4	0.089	< 0.5	470	< 3	4.21	21.5	1.7	0.52	0.09	1 68	4.89	0.65	3.24	0 91	0.22	0 76	0.14	0 80	0 16	0 47	0 07	0 5
BD-300W-200N	0.02	0.3	0.122	< 0.5	740	< 3	6.30	33.2	2.2	0.75	0.05	4.60	11.8	1.37	6.11	1 60	0.46	1.35	D.25	1.35	0.26	0.70	0 11	0.6
BD-300W-250N	0.01	1.1	0.033	< 0.5	640	< 3	3.67	42,1	2.6	1,01	0.06	2.22	5.83	0.82	3.94	0 96	0.29	0 88	D.18	0.82	0.17	0.48	0 07	0.4
8D-300W-300N	0.01	0.4	0.038	< 0.5	520	< 3	7.27	45,9	3.8	1,04	0.12	4 13	16.6	1,76	B 13	216	D 54	1 89	0.33	1 74	0.33	0 86	0 13	0.6
8D-300W-350N	< 0.01	0.5	0.107	< D.5	230	< 3	7.51	35.3	1,0	0,73	Ð. D	3 02	8,33	1.21	5,68	1,55	0.43	1,36	0.26	1.40	0.29	0.78	0.12	0.8
3D-300W-400N	< 0.01	0.4	0 D52	< D,5	480	< 3	8.13	24.9	1.1	0.59	D.06	3.84	8.27	1.78	6.57	2.33	0.56	1.93	D.36	1.79	0.35	1 60	0.14	0 9
30-300W-450N	0.01	< 0.2	0.041	< D.5	220	< 3	5,08	18.3	1.1	0.38	0.06	2 62	6.95	1.07	5.05	1.36	0.38	1.17	Ď.21	1.08	0 21	0 59	0.09	0.5
3D-300W-500	< 0.01	0.4	0 094	< 0.5	360	< 3	22.3	44.5	2.1	0.99	0.07	6.08	14.1	2.30	11.9	3 40	0.97	3.29	D.58	3.28	0,69	2 10	¢ 31	21
10-107E	< 0,01	0.4	0.058	< 0.5	440	< 3	9.11	39.9	2.4	0.88	011	2 76	12 4	1.14	5.42	1.56	0.45	1.53	0.28	1.60	0.33	1 02	0.14	0 9
3D-200E	0.01	< 0.2	0.040	< 0.5	480	< 3	5.04	62.G	1.2	1.52	0.05	2.95	9.75	1.13	5.07	1.42	0.50	1.22	0.24	1.26	0.25	0.69	0.09	ae
80-300E	< 0.01	0.2	0 020	< 0.5	500	< 3	3,80	51,4	1.6	1.33	0.05	3.76	14.2	1.18	5.00	1.18	0.43	1,05	0.19	0.96	0.18	0 51	0.08	04
BD-400E	< 0.01	0.2	0 049	< 0.5	380	< 3	10.4	27.5	4.1	0.72	0.04	4.10	5.31	1.70	8 52	2.45	0 75	2 17	0,41	2.09	0.43	1.22	0,17	11

Activation Laboratories Ltd.

Report: A06-1795

Analyte Symbol	Lu	Li											
Analyte Symoon		LI	Be	Sc	Мл	Rb	Sr	Cş	Ba	Ru	Pd	05	PI
Unit Symbol	ppt	ppb	ppio	ppb	opb	ррб	ppb	pob	ppb	ррб	ppb	ppb	ppb
Detection Limit	0.01	0.5	0.1	10	0.4	0.1	Q.1	0.01	0.5	0.5	0.5	0.5	0.5
Analysis Method	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	EN2-MS	ENZ-MS							
LBD-00	0.07	9.4	0.7	< 10	1890	14,3	846	0.96	508	< 0.5	< 0.5	< 0.5	< 0.5
LBD-50W	0.02	0.8	1.2	< 10	1850	13.1	896	0.04	1070	< 0.5	< 0.5	< 0.5	< 0.5
LBD-100W	0.02	2.0	0.5	< 10	2649	18.1	548	0.05	627	< 0.5	< 0.5	< 0.5	< 0.5
				-				0.08	390	< 0.5	< 0.5	< 0.5	< 0.5
LBD-150W	0.56	11.0	1.5	10	887	18.9	558						
LBD-200W	0.09	2.1	09	< 10	2100	9.6	602	0.04	584	< 0.5	< 0.5	< 0.5	< 0.5
L8D-300W	0.09	12.6	0.9	< 10	705	17.3	487	0.05	294	< 0.5	< 0.5	< 0.5	< 0.5
180-300W-50S	D.15	8 .5	0.8	20	18900	3D B	2180	0.09	1000	< 0.5	< 0.5	< 0.5	< 0.5
LBD-300W-1005	0.11	5.6	1.2	< 10	770	14 3	522	0 07	544	< 0.5	< 0.5	< 0.5	< 0.5
LBD-300W-150S	0,05	10.2	1.1	10	846	18.2	903	0.08	1010	< 0.5	< 0.5	< 0 5	< 0.5
LBD-300W-200S	0.19	13.6	0.8	10	881	22.3	905	0.03	255	< 0.5	< 0.5	< 0 5	< 0.5
LED-300W-50N	0.08	13.7	0.9	< 10	659	26.5	523	0.04	435	< 0.5	< 0.5	< 0.5	< 0.5
L8D-300W-100N	0.32	22.6	1.0	10	4980	27.5	724	0.03	289	< 0.5	< 0.5	< 0.5	< 0.5
LBD-300W-163N	0.05	17.0	0.7	< 10	1040	19 1	1120	0.08	218	< 0.5	< 0.5	< 0.5	< 0.5
L6D-300W-200N	0.09	6.8	0.4	10	4280	151	1920	0.09	763	< 0.5	< 0.5	< 0.5	< 0.5
LBD-300W-250N	0.07	15.7	1.0	< 10	2400	20 3	412	0.07	416	< 0.5	< 0.5	< 0.5	< 0.5
L6D-300W-300N	0.11	10.3	0.9	< 10	1950	26.5	545	0.04	351	< 0.5	< 0.5	< 0.5	< 0.5
LBD-300W-350N	0.14	18.D	0.7	< 10	2730	44 0	663	0.07	312	< 0.5	< 0.5	< 0.5	< 0.5
LBD-300W-400N	0.14	5.8	0.7	< 10	394	27.0	387	0.22	243	< 0 5	< 0.5	< 0.5	< 0,5
LBD-300W-450N	0.08	9.4	07	< 10	3990	19.1	345	0.08	280	< 0.5	< 0.5	< 0.5	< 0.5
LBD-300W-500	0.35	55	09		2230	10.8	543	0.05	369	< D.5	< 0.5	< 0.5	< 0.5
LBD-107E	0.00	13.2	0.5		5130	10.2	662	0.04	253	< D.5	< 0.5	< D.5	< 0.5
LBD-200E	0.09	2.8	0.8		2240	10.5	514	D.08	466	< 0.5	< 0.5	< 0.5	< 0.5
LBD-300E	0.07	4.5	0.8	10	401	9.4	469	D.06	788	< 0.5	< 0.5	< 0.5	< 0.5
LBD-400E	0.18	5.4	0.6		1730	10.8	391	0,05	358	< 0.5	< 0.5	< 0.5	< 0.5
	0.10	0.4	0.0	. 10	1130	10.0		0,00					

Activation Laboratories Ltd. Report: A06-1795

Quality Contro	al l																							
- Analyte Symbol	CI	Br	I.	v	As	Se	Ma	Sb	Те	w	Re	Au	Hg	Th	ų	Co	N	Cu	Za	Pb	Ga	Ģe	Âg	сa
Unit Symbol	ррб	ppb	ppb	ppb	ppb	ppb	рръ	ррь	ppb	ppb	ppb	pab	ppb	ppb	pph	ppb								
Detection Limit	1000	1	1	Q.1	Q.1	1	01	0.01	0.5	0 .1	0.005	0.005	0.1	0.01	0.01	0.2	1	1	5	0.1	0.3	0.05	0,1	Ū 1
Analysis Method	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS									
TILL-1 Meas	20000	448	249	92.5	t6.0	4	8.3	62.0	< 0.5	0.9	0.038	0.079	< 0.1	2 26	5 36	107	27	158	79	18.5	4,4	0.51	< 0 1	45
fiLL-1 Cerl													90											
SO-2 Meas	14000	1100	543	26.7	4.2	e	2.2	1 05	< 0.5	04	0.023	< 0.005	< 0.1	2.82	7.41	12.2	37	18	301	3.4	8.4	0.45	< D.1	0.6
SO-2 Cert				64000									80			9000	8000	7000	124000	21000				
BD-300W-200S Rep Drig	40000	122	112	349	6.2	5	10.4	1 65	< 0.5	0.7	0.045	< 0.005	< 0 1	0 95	2 04	11.0	65	39	21	2.2	0.8	0 40	03	< 0 1
BD-300W-200S Rep	36000	120	114	367	6.0	8	9.8	175	< 0.5	0.7	0.053	< 0.005	< 0.1	0.84	1.80	11.2	68	39	26	2.9	0.8	0 32	0.3	< 0 1
BD-300W-500 Rep Drig	\$5000	151	352	353	6.2	5	9.1	1 38	< 0.5	0.6	0.020	< 0.005	≺ 0.1	0.39	2.18	77 5	89	65	44	2.9	22	0.27	0.3	0.2
LBD-300W-500 Rep Dup	45000	144	340	384	6.8	5	8,1	1.30	< 0.6	0.7	0.023	< 0.005	< 0.1	0.39	2.33	63.0	85	65	61	4.8	2.1	0.26	0.3	0.3

Activation Laboratories Ltd. Report: A06-1795

.

Quality Contro				-																				:
Analyte Symbol	In	Sn	TI	Bi	TI	Cr	Y	21	Nb	н	Ťĸ	La	Ce	Pr	Nd	Sm	Eu	Gd	ть	Dy	Но	Er	Tm	Yb
Unit Symbol	ppb	ρρb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	рръ	ppb	ppb	ррь	ά p b	ррб	pob	ppb	ppb	ppb	ppb	ppb	ppb	
Detection Limit	0.01	0.2	0.005	0.5	10	э	D.05	D.1	0.1	0.01	0.02	0.01	0.01	0.01	0.01	D.D1	Q.Q1	0.01	0,01	0.01	0.01	0.01	0.01	0.01
Analysis Method	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ MS
TILL-1 Meas	0,12	2.1	1,13	11.4	510	< 3	21.0	11.0	1,5	0.39	0.08	19.1	24.7	6 25	25.3	5.48	1.32	4.67	0.51	4.07	0.78	2.39	0.32	2.13
TILL-1 Cert																								
SD-2 Meas	0.05	0.2	0.582	< 0.5	530	< 3	50.1	8.1	2.3	0.40	0,11	38 5	112	14.0	67.1	16.5	3.48	13.3	2.48	12.4	2.25	594	0 75	4 76
SO-2 Cerl					5600000	20000																		
LBD-300W-200S Rep Orig	< 0.01	< 0.2	0.059	< 0.5	250	< 3	10.7	48.1	1.3	1,19	0 07	5.50	10.1	1 99	9.80	2 40	0 89	2.20	0.39	1.97	0.41	1.21	D.17	1 21
LBD-300W-200S Rep Dup	0.02	0.3	0 065	< 0.5	280	< 3	11.2	49.5	1.3	1,17	0.08	5.44	10.1	2 DB	9.87	2 59	0.71	2.21	0.38	2 02	0.4	1.15	0 18	1.18
LBD-300W-500 Rep Orig	0 02	0.3	0. 1D1	< 0.5	370	< 3	22.1	44.5	2.0	0.97	0.07	đ.13	14.0	2.32	11.9	3 49	0 96	3.25	0.58	3 17	0 69	2 14	0 30	2.07
LBD-300W-500 Rep Dup	< 0.01	0.4	0 067	< 0.5	360	< 3	22.5	44.5	2.1	1.01	Q.07	8.05	14,3	2 28	11.8	3.31	0.96	3.33	0.58	3.39	0.68	2.06	0.31	2.13

Quality Contro			• -•											 -
Quality Contro	21													
Analyte Symbol	Lu	Li	8e	Sc	Mo	Rb	Sr	Cs	Ba	Ru	۴đ	Oş	Pt	
Unit Symbol	ppb	ppb	рръ	ррб	ppb	ppb	ppb	ppb	ррб	PPb	ppb	ppb	ppb	
Detection Limit	0.01	0.5	Q.1	10	0.4	01	0.1	0.01	0.5	D.5	0.5	0.5	Q.5	
nalysis Method	EN2-MS	ENZ-MS	EN2-MS	EN2-MS	ENZ-MS									
LL-1 Meas	0.34	3.1	12	20	57400	49.2	482	0.34	1390	< 0.5	< 0.5	< 0.5	< 0.5	
-1 Cert														
2-2 Meas	0.63	7.2	2.0	< 10	2220	97.4	219	0 59	821	< 0.5	< 0.5	< 0.5	< 0.5	
D-2 Cert					720000	78000	340000		966000					
-300W-200S Rep	D.19	13.5	0.8	10	542	22.1	872	0.04	255	< 0.5	< 0.5	< 0.5	< 0.5	
) 300W-200S Rep	D.18	13.6	Q.8	10	919	22.4	938	0.03	261	< 0.5	< 0,5	< 0.5	< 0.5	
1D-300W-500 Rep 19	0.35	69	1,1	< 10	2160	10.4	536	0.06	367	< 0.5	< 0.5	< 0.5	< 0.5	
>-300W-500 Rep	0.35	6.7	0.7	< 10	2300	11.2	550	0.05	370	< 0.5	< 0.5	< 0 \$	< 0.5	

To: Herb Wahl From: Greg Hill, Consulting Geologist, Churnhill Gold, LLC Date: 12 August 2006 Re: King Kong Enzyme Leach Data

I,

Enzyme Leach data from 24 soil samples from the King Kong project have been reviewed. These 24 samples were collected from shallow depths and consist of B-horizon soils, stony glacial drift, loam, and minor organic materials. Samples were collected along two intersecting traverses at 50-100 m spacings. The sampled area is within a larger region that contains geochemical targets in an area that was sampled previously (see accompanying map and report by G. Hill, 28 Aug 2002).

The initial sampling showed a large anomalous area with dimensions up to approximately 1400 m by 1600 m. Geochemical zoning within this area is well developed and smaller halos are contained within this larger anomalous zone. The smallest halos detected with the initial round of sampling have a diameter of approximately 700 m and are centered along the northeast flank of a northwest-trending magnetic high. The infill sampling carried out in 2006 focuses on this area in an attempt to better define the geochemical anomaly near its center.

The distributions of all elements have been plotted and compared with earlier enzyme leach data. The results from the 2006 sampling are consistent with earlier results and refine the geochemically-anomalous zone that was found in the original sampling. For example, the 2006 responses, combined with the earlier results, show northwest and northeast linear highs defined by both data sets. The distribution of samples is not dense enough to precisely define these patterns but the available data strongly suggest throughgoing linears that roughly bisect the magnetic high and the area of anomalous geochemistry (oxidation anomaly).

Narrow halos at the center of the system are suggested by the distributions of many elements determined from the 2006 samples. However, these are not precisely defined. These patterns indicate that halos in many elements occur at the center of the system where the two 2006 sample traverses cross. From there, these interpreted halos extend north for 200 m (0N - 200N) and east for 400 m (300W - 100E).

Copper, Zn, and Pb are each contained within and peripheral to the anomalous zone near the center of the system. Maximum responses for these metals are 132 ppb Cu, 1150 ppb Zn, and 17.5 ppb Pb. Gold was not detected in any of the 2006 samples. The Cu, Zn, and Pb values are considered moderate to high relative to other enzyme leach soil surveys in the region. This, combined with the strong development of a zoned oxidation anomaly, the strong geochemical linears, and the coincidence of these geochemical features with a strong magnetic high indicate that the area is prospective for concealed base metals mineralization. Additional sampling, trenching, and drilling are recommended with high priority given to the area covered by claim KK-13. Infill sampling consisting of several east-west oriented lines will help define the apparent elongate northwest-trending halo that is developed over the northeastern margin of the magnetic high as shown in examples of several elements (Figures 1-6).

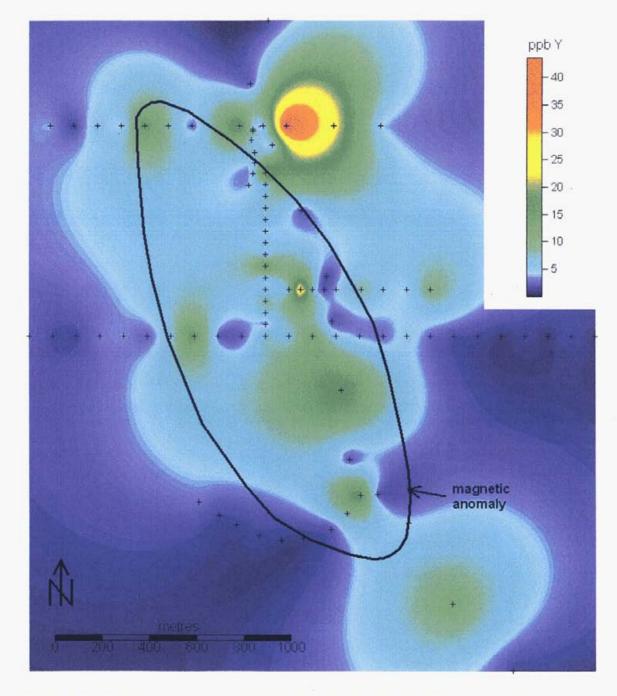
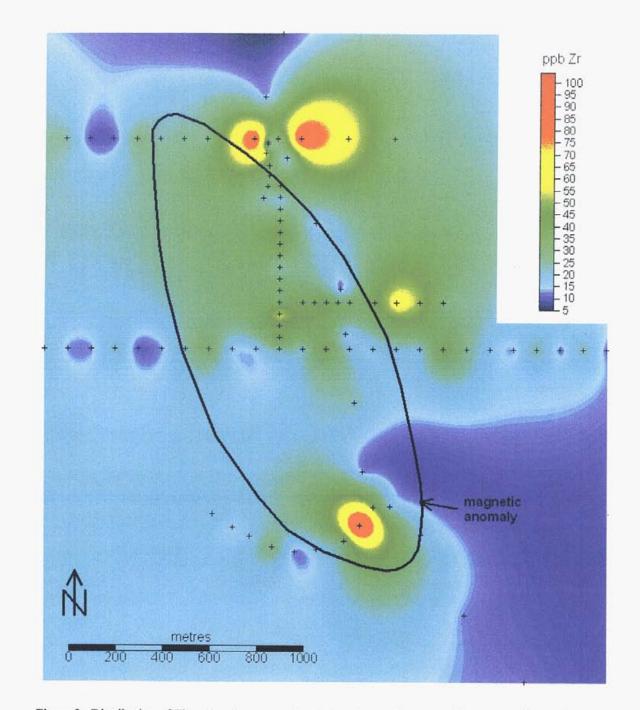
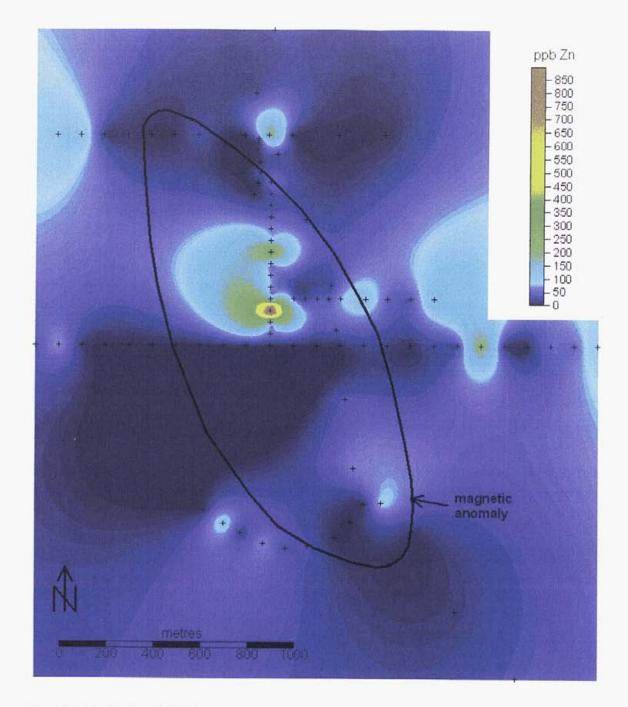
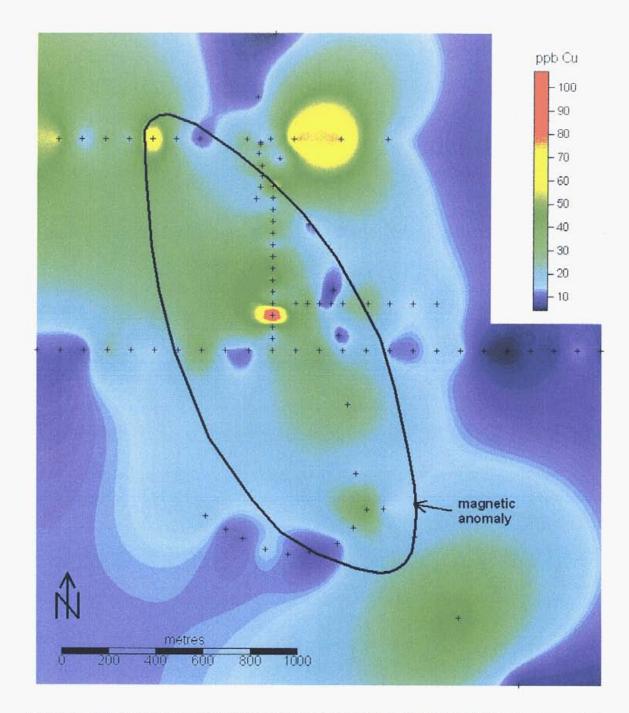




Figure 1. Distribution of Yttrium by enzyme leach showing northwest-trending zone of anomalous responses coinciding with magnetic high. Some of the highest responses appear to form linear features and these may overlie buried fault or fracture zones.

• 1


Figure 2. Distribution of Zirconium by enzyme leach showing northwest-trending zones of anomalous responses. An apparent halo is developed above the northeast margin of the magnetic feature. Northwest structural control of the Zr distribution is suggested by the linear nature of the Zr highs.

4

 \cap

Figure 3. Distribution of Zinc by enzyme leach showing highs near center of anomaly. A possible Zn halo is developed above the north-center of the magnetic feature.

.

0

Figure 4. Distribution of Copper by enzyme leach showing broad northwest-trending zones of anomalous responses. A subtle apparent Cu halo is developed above the northeast margin of the magnetic feature.

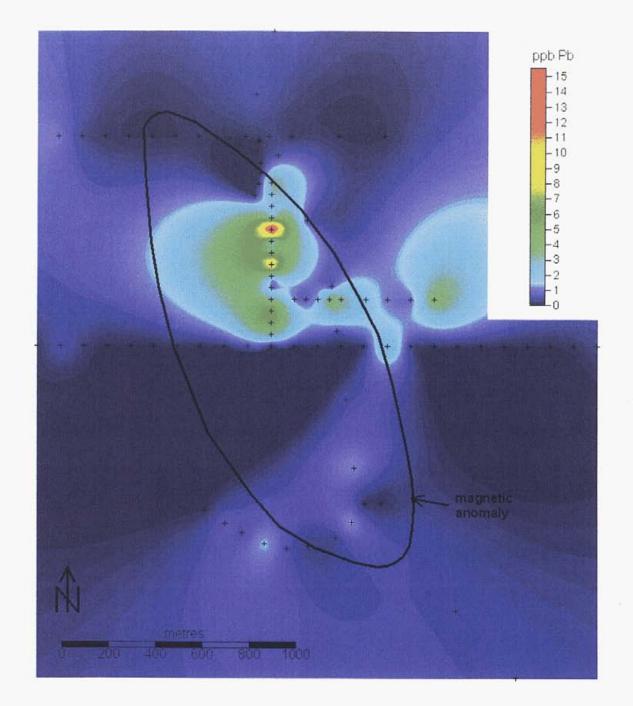
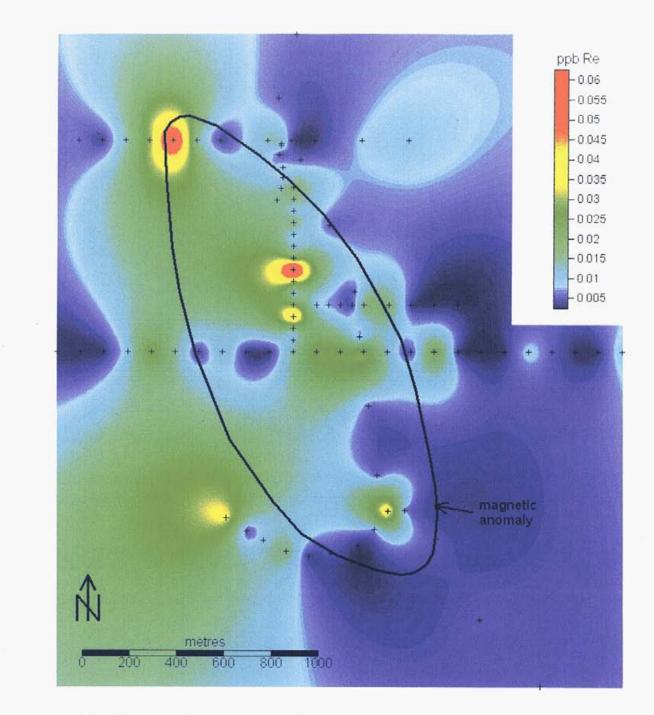
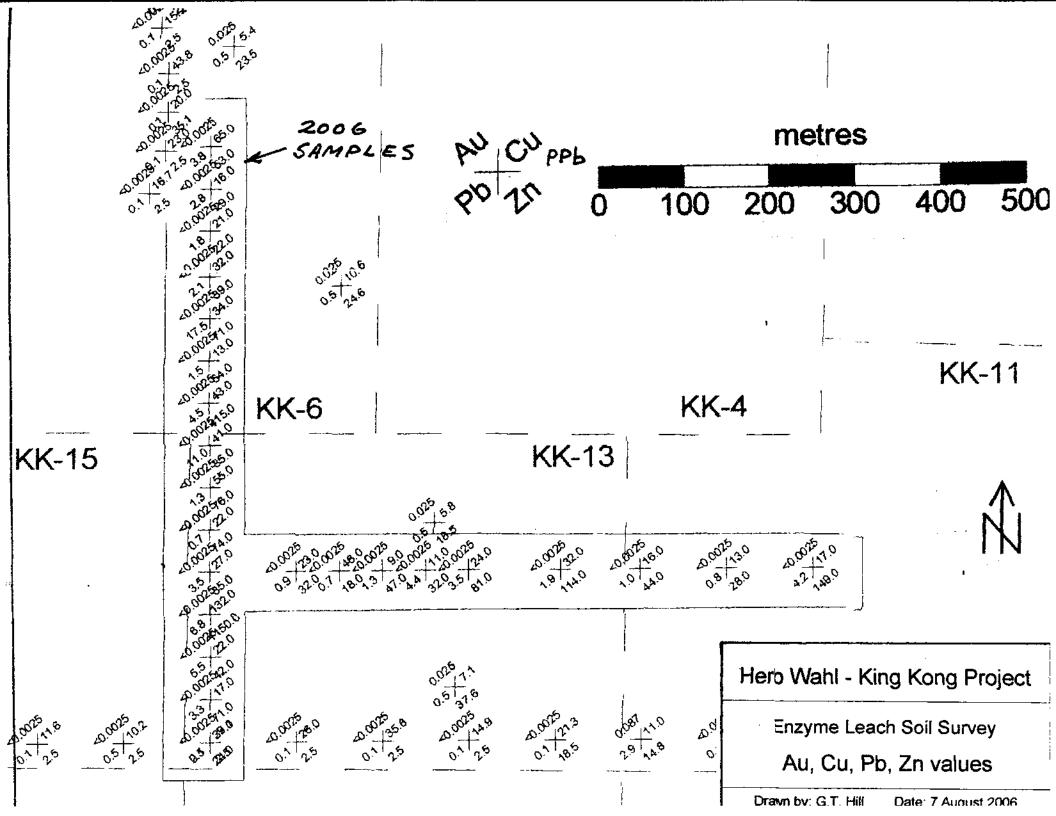



Figure 5. Distribution of Lead by enzyme leach showing highs near center of anomaly. A possible Pb halo is developed above the north-center of the magnetic feature.



4 4 4 3

0

0

Figure 6. Distribution of Rhenium by enzyme leach showing northwest-trending zones of anomalous responses. An apparent Re halo is developed above the northeast margin of the magnetic feature.

BL 3700, ETC. RECON SOILS TRAVERSE OF OG MAY 2000. BELLS LAKE ROAD

AEROMAG REFERENCE GEOPHYSICS PAPERS 5233, 5234, 5239

CARIBOO M.D. CENTRAL B.C. RESULTS OF INITIAL EZL SURVEY, Q UP-DATED, MAY 2006 H.J. WAHL, P.ENG.B.C. SEPT. 2002