GEOLOGICAL REPORT

on the

ARGONAUT SOUTH CLAIM (513567) Quinsam Lake Area, B.C.

NTS: 92F/13E(92F.083)

Latitude 49°51'44"N, Longitude 125°32'45"W

For

Homegold Resources Ltd #5-2330 Tyner St. Port Coquitlam, B.C. V3C 2Z1 Phone: 604-970-6402 Fax: 604-944-6102 E-mail: jo@HomegoldResources.com

J. T. SHEARER, M.Sc., P.Geo. Geologist

May 29, 2006

Fieldwork conducted between January 4 and May 15, 2006

TABLE OF CONTENTS

LIST of ILLUSTRATIONS and TABLES	ii
SUMMARYi	1 11
INTRODUCTION	1
LOCATION and ACCESS	2
PROPERTY (Claim Status)	3
HISTORY	4
GEOLOGY and PROSPECTING	5
MINERALIZATION and 2006 SAMPLING	6
CONCLUSIONS and RECOMMENDATIONS	7
REFERENCES	8
APPENDICES	
Appendix I Statement of Costs 1	10
Appendix II Statement of Qualifications	1
Appendix III Assay Certificates 1	12

FIGURES

FIGURE 1	Location Map1
FIGURE 2	Access Map, 1:250,000 2
FIGURE 3	Claim Map
FIGURE 4	Regional Geology 4
FIGURE 5A 56 5c	Local Geology and Sample Locations
	Dage

TABLE I	List of Claims	3

SUMMARY

- 1. The South Argonaut Claim Tenure #513567 (12cells) and Tenure #513580 cover the former iron producer commonly referred to as the Argonaut Mine (Iron Hill).
- 2. Historic production from the Argonaut Mine between 1951 and 1957 totalled 3,657,168 tonnes of ore from which 1,990,288.66 tonnes of concentrate, running between 56% and 58% Fe, were shipped.
- 3. The area is located just east of upper Quinsam Lake, about 27km west of the community of Campbell River.
- 4. Magnetite mineralization is contained within the garnet/amphibole skarn with rare associated chalcopyrite and pyrite. The skarn consists of massive garnetite with minor amount of epidote, calcite and pyrite.
- 5. The mineralized skarn is near the contact of limestone of the Upper Triassic Quatsino Formation and mafic volcanic unit (pillow basalt) of the Upper Triassic Karmutsen Formation, all intruded by the early to Middle Jurassic Island Intrusions.
- 6. The deposit has been deformed into a west dipping overturned syncline whose north limb is overturned onto the south limb. The axial plane generally strikes east-west and dips north-northwest. Skarn is best developed and thickest in the hinge position of the syncline.
- 7. The tailings and waste piles contain fine-grained magnetite and garnet. The present study is focussed on characterization of parts the remaining concentrate and certain waste piles on the property.
- 8. Current results indicate that the concentrate assays 62.2% Fe. This level of concentration is supported by concentrating the upper coarse tailings which assayed 65.9% Fe.

bectfully submitted (Jo) Shearer, M.Sc., P.Geo.

INTRODUCTION

The Argonaut Project is approximately 3 km east of Upper Quinsam Lake or about 27 km west of the Community of Campbell River.

Past historic production from the Argonaut Mine between 1951 and 1957 totalled 3,657,168 tonnes of ore from which 1,990,288.66 tonnes of concentrate running between 56% to 58% Fe were shipped.

Much of the magnetite produced in British Columbia at the present time is from a relatively sophisticated reprocessing of tailings (Craigmont) or hit and miss reprocessing coarse waste dumps (Texada Island). Possible markets for magnetite are: heavy aggregate for high-density concrete, heavy media for coal washing, sandblasting abrasives, high-density filter media and radiation shielding aggregates. Two major construction projects that may start in early 2007 are the expansion of the sub-atomic research TRIUMF facility at the University of British Columbia and the Sumas-Duncan Natural Gas Pipeline (for pipe anchors) by BC Hydro and Williams Pipeline Company. There may also be increasing application to special designed heavy concrete foundations in areas of high hydrostatic ground pressure in areas like Richmond, B.C.

An alternative market may be as a raw material for cement plant use. The current supply from Anyox slag assays 36.4% SiO₂, 5.1% Al₂O₃ but only 45% Fe₂O₃. Anyox slag also assays typically about 3% SO₃ and has a relatively high Bond work index of >23.

The property was inspected by J. T. Shearer, M.Sc., P.Geo. on January 18 and 19, 2006 and samples were collected and assayed. The property is of significant interest because only a portion of the possible resources were mined before the operating company went ceased operation.

LOCATION and ACCESS

The Argonaut Project is located 27km west of the community of Campbell River and 3km east of Upper Quinsam Lake.

All weather access is by highway for 18km from Campbell River to the Quinsam Coal Mine turnoff., then south along the AR Mainline logging road for 21 km to the old mine site.

Logging by Timberwest is currently taking place near the claim. Past mining was completed between 1400 to 1890 feet ASL.

FIGUREZ

PROPERTY (Claim Status)

The property consists of 5 mineral claims as shown on Table 1 and Figure 3, work done in 2006 is applied to 513567.

Claim Name	Tenure #	Cells	Area (ha)	Date Located	Current Anniversary Date	Owner
Argonaut South	513567	12	249.98	May 30, 2005	May 30, 2008	J. T. Shearer
Argonaut	513580	12	249.94	Dec. 25, 2003	Dec. 25, 2008	J. T. Shearer
Argonaut 4	530345	8	187.45	March 21, 2006	March 21, 2007	R. Billingsley
Argonaut 5	533063	12	250.00	April 26, 2006	April 26, 2007	R. Billingsley
Argonaut 6	533097	3	62.50	April 27, 2006	April 27, 2007	R. Billingsley
		47 Cells	•			· · · · · · · ·

TABLE I

List of Claims

Since the surface rights are owned by Timberwest the legal description is Block 100, Comox Dist4rict, Vancouver Island. The precise division of rights conferred by mineral claims and surface rights is being investigated in detail.

Mineral title is acquired in British Columbia via the <u>Mineral Act</u> and regulations, which require approved assessment work to be filed each year in the amount of \$4 per ha per year for the first three years and then \$8 per ha per year thereafter to keep the claim in good standing.

Under the present status of mineral claims in British Columbia, the consideration of industrial minerals requires careful designation of the products end use. An industrial mineral is a rock or naturally occurring substance that can be mined and processed for its unique qualities and used for industrial purposes (as defined in the *Mineral Tenure Act*). It does not include "Quarry Resources". Quarry Resources includes earth, soil, marl, peat, sand and gravel, and rock, rip-rap and stone products that are used for construction purposes (as defined in the *Land Act*). Construction means the use of rock or other natural substances for roads, buildings, berms, breakwaters, runways, rip-rap and fills and includes crushed rock. Dimension stone means any rock or stone product that is cut or split on two or more sides, but does not include crushed rock.

FIGURE 3

HISTORY

The Argonaut mine is a massive magnetite-magnetite/garnetite skarn situated on Iron Hill. From 1951 to 1957, 3,657,168 tonnes of ore were mined, from which 1,990,288,655 kilograms of concentrate was shipped. The dimension of the ore body measured about 400 by 150 by 120 metres, with a strike of 90 degrees and dip of 15 degrees north.

Several adits were driven into the hill in, or prior to, 1914. Coast Iron Company opened two quarries from which 4,886 tons of iron ore were shipped during the period December 1948 to March 1949, then the Argonaut Mine Division of Utah Company of the Americas took over the property. The property has been idle since October 1957.

Mill records show (from Fawley, 1962):

For the period December 1, 1953 to June 1, 1954, the average grade was 34.1% iron, and every 10 tons treated yielded 3.1 tons of concentrate averaging 56.2% iron (the tailings averaged 22.5% iron before reteatment).

For the period December 1, 1954 to June 1, 1955, the average grade was 42.6% iron, and every 10 tons treated yielded 6.2 tons of concentrate averaging 58.9% iron (the tailings averaged 18.7% iron before retreatment).

For the entire period 1951 to the end of operations in 1957, 1,887,985 tons of concentrates averaging 56% iron were produced from milling 3,619,349 tons of ore (i.e. every 10 tons yielded 5.2 tons concentrates). A further 77,762 tons of concentrates were obtained by retreating tailings.

In 1956, 437,572 tons of tailings that averaged 16.8% iron were retreated after grinding to minus $\frac{1}{2}$ inch and yielded 72,862 tons of concentrate (i.e. every 10 tons yielded 1.67 tons of concentrates).

REGIONAL GEOLOGY Argonaut

FIGURE 4

http://webmap.em.gov.bc.ca/mapplace/maps/minpot/dep_find.MWF

Tuesday, October 03, 2006 9:52 AM

GEOLOGY

REGIONAL GEOLOGY

Regional geology has been mapped by Muller etal (1974) (92E) and is published as Geological Survey of Canada Bulletin 172 and Muller, Northcote and Carlise, 1974. Northern Vancouver Island and Adjacent Mainland has a complex structural history with frequent rejuvenation of previous structures. All Paleozoic rocks are affected by a series of southeast trending, upright to overturned, southwest-verging folds. An inspection of the regional geology map, Figure 4 (Roddick, 1980, O.F. 463), shows several elongate, fault-bounded slices of metasedimentary rocks sandwiched between separate plutons of the Coast Plutonic Complex.

The rocks underlying the claim group are part of a west dipping overturned of regional synclinal structure whose north limb is overturned on the south limb. The axial plane generally strikes east-west and dips north-northwest. Skarn is best developed and thickest in the hinge portion of the syncline. The oldest rocks are in the area of Late Triassic, pillowed and porphyritic basalt of the Karmutsen Formation. This formation is estimated to be greater than 3000m thick.

The Quatsino Formation conformably overlies the Karmutsen Formation. The formation consists of Limestone up to 900m thick. Granitic intrusives are common within the formation and the limestone has been, in places, converted to marble and skarn.

The early Jurassic Bonanza Formation conformably overlies the Quatsino limestone. The lower part of the formation is composed of carbonaceous shale, calcareous shale and greywacke, occasional tuff units are present. The upper half of the formation is composed of dacitic to andesitic lavas with tuffs and breccias.

LOCAL GEOLOGY and MINERALIZATION

Host rocks of the deposit are limestones of the Quatsino Formation. Limestone strata have been recrystallized or altered to garnetite. Intruding the limestones to the east and south is a large granodiorite body and associated with it are many diorite dykes which crosscut the limestone. Intrusion of the dykes predates the skarn event and so may represent an early phase of intrusion associated with the granodiorite.

MINERALIZATION and 2006 SAMPLING

The tailings area of the old Argonaut Mine was examined in January 2006 and several samples collected. It is apparent that the magnetite content of the various waste piles and tailings is variable, depending on the processing history of the material.

The upper coarse tailings after concentration (see Appendix III) and ICP assay sheet, assayed 65.9% Fe. The upper coarse tailings before concentration assayed 20.5% Fe. A sample of millsite concentrate Fe assayed 62.2%. This is nominal 6mm magnetite concentrate which was not shipped from the minesite. The specific gravity of the minus 325 fraction was (Appendix III) determined to be 4.7.

The lower coarse tailings assayed 35.4% Fe.

CONCLUSIONS and RECOMMENDATIONS

A large volume of waste rock and tailings are present on the Argonaut Project from mining during the 1950's. The present program completed in January 2006 demonstrates that the iron content of concentrates not shipped assays 62.2% Fe. The upper coarse tailings assayed 20.5% Fe and were able to be concentrated into a product assaying 65.9% Fe.

Further sampling of the tailings and waste piles is recommended, in conjunction with an examination of the hard rock potential at lower levels in the old quarry.

Respectfully submitted, J. T. Shearer, M.Sc., P.Geo.

REFERENCES

Annual Report of the Minister of Mines:

1902 - pg 208, 1903 - pg 193, 1906 - pg185, 1909 - pg 278, *1916 - pg 293 & 294, 1956 - pg 131-134, 1959 - pg A45, 134-135, 282, 1960 - pg 106.

Atherton, P. G., 1983a:

Report on Geological Survey and Sampling of the Pete #1, Iron Mike, Iron Joe Claims, Sayward Area, Vancouver Island, British Columbia for Dickenson Mines Limited, Dec. 29, 1983 10pp. Assessment Report 12,102 part 1.

1983b:

Report on Ground Magnetic Survey of the Pete #1 Claim Group Sayward Area, Vancouver Island, British Columbia for Dickenson Mines Limited, Dec. 29, 1983 10pp. Assessment Report 12,102 part 2.

Awmack, H. J., 1988:

Geology and Geochemistry of the Vigl & II Groups, Cardinal Minerals, Assessment Report 17139, 41 pp.

1989:

Diamond Drilling Report on the Vig 3, 5, 7-8 Claims, Centaur Resources, Assessment Report 17521, 117 pp.

Chabot, G., 1981:

Geological Report on the TAH Claims, Pan Ocean, Assessment Report 10157.

Carson, D. J. T., 1973:

The Plutonic Rocks of Vancouver Island, British Columbia: Their Petrography, Chemistry, Age and Emplacement, Geological Survey of Canada, Paper 72-44, Department of Energy Mines and Resources.

Caulfield, D. and Awmack, J. J., 1987:

Geological, Geophysical and Trenching Report on the VIG3 and VIG5 Claims, Assessment Report 16355, Great Keppel Resources Ltd.

Fawley, Allan P., 1962:

Report on Ore Reserve Possibilities at the Iron Hill Mine and Surrounding Area, Vancouver Island, British Columbia, for Colonial Mines Limited, dated October 10, 1962

Fischl, P., 1992:

Limestone and Dolomite Resources in British Columbia. B.C. Geological Survey, Open File 1992-18, 152 pp.

Flanagan, M., 1984:

Geological Report on the Glengarry and Tah 22 Group, Homestake Mining Corp., Assessment Report 13026.

Goudge, M. F., 1944:

Limestones of Canada, Their Occurrence and Characteristics, Report 811, part 5, pages 163-164, 175-176.

Hancock, K. D., 1988:

Magnetite Occurrences in British Columbia, B.C. Energy and Miens, Open File, 1988 – 28, 154 pp.

Muller, J. E., Northcote, K. E. and Carlise, D., 1974:

Geology and Mineral Deposits of Alert-Cape Scott Map Area (92L), Vancouver Island, B.C., Geological Survey of Canada, Paper 74-8, 77pp.

Robinson, J. E., 1983:

Geological Report on the TAH Group, Aberford Resources, Assessment Report 12058.

Roddick, J. A., 1980:

Geology of 92K Map Sheet (Bute Inlet) and Notes on the Stratified Rocks of Bute Inlet Map Area, Geological Survey of Canada, Open File 480.

Roddick, J. A. and Hutchison, W. W., 1972:

Plutonic and Associated Rocks of the Coast Mountains of British Columbia. Int. Geol. Confr., Twenty-fourth Session, Canada, Guidebook A04-Cor, 71p.

1974:

Setting of the Coast Plutonic Complex, British Columbia. Pacific Geology, 8, 91-108.

Ronning, Peter, 1985:

Geological Report on the TAH 15, 18-19 Claims, Homestake Mining Corp., Assessment Report 13681.

Sangster, D., 1969:

The Contact Metasomatic Magnetite Deposits in Southwestern British Columbia, Geological Survey of Canada, Bulletin 172.

Stansfield, A., 1919:

The Commercial Feasibility of the Electric Smelting of Iron Ores in B.C., Bulletin No. 2, 1919, B.C. Department of Mines.

White, P. and Chabot, G., 1980: Summary Report on the TAH Group, Pan Ocean, Assessment Report 9130.

Woodsworth, G. J. and Roddick, J. A., 1977:

Mineralization in the Cost Plutonic Complex of British Columbia, South of Latitude 55°N. Geological Society of Malaysia, Bulletin 9, Nov. 1977, pg 1-16.

APPENDIX I

STATEMENT OF COSTS

May 29, 2006

APPENDIX I STATEMENT OF COSTS

Wages and Benefits	
J. T. Shearer, M.Sc., P.Geo, Geologist	
January 18 & 19, 2006, 2 days @ \$500/day	\$1,000.00
Graham Richards, Prospector	
January 18 & 19, 2006, 2 days @ \$200/day	400.00
GST	98.00
Wages Subtotal	\$ 1,498.00
Expenses	
Transportation	
Fully equipped 4x4 Trucks, 2 days @ \$75/day	150.00
Gas	105.00
Hotel & Meals	165.00
Assays and Metallurgical Testing	1,475.00
Report Preparation	500.00
Word processing and Reproduction	210.00
Subtotal	\$ 2,605.00

Grand Total \$ 4,103.00

Kheaver

APPENDIX II

STATEMENT OF QUALIFICATIONS

May 29, 2006

Appendix II

STATEMENT of QUALIFICATIONS

I, JOHAN T. SHEARER, of 3572 Hamilton Street, in the City of Port Coquitlam, in the Province of British Columbia, do hereby certify:

- 1. I am a graduate of the University of British Columbia (B.Sc., 1973) in Honours Geology, and the University of London, Imperial College (M.Sc., 1977).
- 2. I have over 30 years experience in exploration for base and precious metals and industrial mineral commodities in the Cordillera of Western North America with such companies as McIntyre Mines Ltd., J. C. Stephen Explorations Ltd., Carolin Mines Ltd. and TRM Engineering Ltd.
- 3. I am a fellow in good standing of the Geological Association of Canada (Fellow No. F439) and I am a member in good standing with the Association of Professional Engineers and Geoscientists of British Columbia (Member No. 19,279) and a member of the CIMM and SEG (Society of Economic Geologists).
- 4. I am an independent consulting geologist employed since December 1986 by Homegold Resources Ltd. at #5-2330 Tyner St., Port Coquitlam, B.C.
- 5. I am the author of the present report entitled "Geological Report on the Argonaut South Claim, Quinsam Lake Area, B.C.: dated May 29, 2006.
- 6. I have visited the property on January 18 & 19, 2006. I have carried out sample collection and am familiar with the regional geology and geology of nearby properties. I have become familiar with the previous work conducted on the Argonaut Project by examining in detail the available reports and maps and have discussed previous work with persons knowledgeable of the area.
- 7. I own an interest in the South Argonaut Claims and own Homegold Resources Ltd.

Dated at Port Coquitlam, British Columbia, this 29th day of May, 2006.

J. T. \$hearer, M.Sc., F.G.A.C., P.Geo. Quarty Supervisor #98-3550

APPENDIX III

ASSAY CERTIFICATES

May 29, 2006

Eaton Capital

DATE: Feb 21, 2006

SCREEN ANALYSIS & ASSAYING

W-06-01

Client: **Eaton Capital**

Argonaut / 06-07

Sample: Argonaut upper coarse tailing sampled by Joe Shearer - early January 2006. This sample as 06-07 on assay certificate 06A0050.

Project:

Objective: Screen analaysis and mag separation. After screening, 2 finest fractions were subjected t magnetic separation, and after drying the coarse fractions were separated dry separation, magent in a bag. The coarse fractions were cleaned once since some small portion of nor

As Received Upper Coarse Tailing / 06-07

	gi	m
Mesh	mags	non-mags
	20.8	150.4
3	_	
	130.4	486.4
14		
	89.0	164.9
35		
	51.1	48.1
100		
	72.9	23. <u>8</u>
325		
	57.0	13.5
Total	421.2	887.1
Slimes		29.6

Wt % magnetics 32.2

Assay of Magnetic Fractions

			Multi acid		Leco	ICP
Mesh	gm	WT %	Fe %	Est mag %	S%	P%
	20.8	4,9	56.4	77.9	0.04	0.036
3					1	
	130.4	31.0	64.8	89.5	0.03	0.023
14	-		. —	-		
	89.0	21.1	68.3	94.3	0.03	0.021
35						
	51.1	12.1	70.4	97.2	0.02	0.018
100		T				
	72.9	17.3	66.4	91.7	0.04	0.020
325		_				
	57.0	13.5	63.4	87.6	0.06	0.027
Total	421.2	100.0	65.9	91.0	0.04	0.023
per limits fo	or iron ore				0.05	0.05

Upper limits for iron ore

is referenced

o wet , all using a n-mags was

Whole Rock	Whole Rock
SiO2	AI2O3
12.70	1.85
6.80	1.14
5.20	1.00
4.42	0.93
5.19	1.03
6 99	1 40
6.00	1.40
3.50	1.50

Client: Westcoast Mineral Testing Inc.

Certificate#: 06B0375

Project: Eaton Shipment#: PO#: #200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5

Phone: 604/879-7878 604/272-7818 Fax: 604/879-7898 604/272-0851 Website: www.ipi.ca Email: info@ipi.ca

No. of Samples: Analysis #1: ICP(# Analysis #2: S(T) Analysis #3: Comment #1: Comment #2: Date In: Feb 24, 2 Date Out: Mar 02,	6 kqR)30 in ppm Fe(T) 2006 2006		Argona	ut Upper Co	arse Tailing	Sample 06-0	7 - Mag Conc	entrate Scre	en Fraction	
Sample Name	SampleType	Fe %	S(tot) %	AI ppm	Sb ppm	As ppm	Ba ppm	Bi ppm	Cd ppm	Ca ppm
06.004	Mag conc	50 404	0.04	6 479		100	10			
06-224	+ 5 mean	00.424	0.04	5473	45	<0	43	<2	<0.Z	65394
10-228	3 x 14 mesn	04,785	0.03	25/2	<0	<5	34	<2	<0,2	30069
10-220	14 x 35 mesh	68.283	0.03	2251	<5	<5	32	<2	<0.2	23597
/6-22D	35 x 100 mesh	70.385	0.02	2474	<5	23	41	<2	<0.2	23814
6-22E	100 x 325 mesh	66.410	0.04	2766	<5	18	36	<2	<0.2	29986
06-22F	- 325 mesh	63.441	0.06	4020	<5	35	37	<2	<0.2	37490
RE 06-22A	Repeat	56.091	0.04	5497	<5	5	44	<2	<0.2	69184
Minimum detection	1	0.001	0.01	100	5	5	2	2	02	100

Mag conc	Carlos and a state of	100 No.														
+ 3 mesh	56.424	0.04	5473	<5	<5	43	<2	<0.2	65394	227	37	44	424016	<2	<2	1328
3 x 14 mesh	64.785	0.03	2572	<5	<5	34	<2	<0.2	30069	55	36	35	382094	<2	<2	759
14 x 35 mesh	68.283	0.03	2251	<5	<5	32	<2	<0.2	23597	48	44	43	438877	<2	<2	775
35 x 100 mesh	70.385	0.02	2474	<5	23	41	<2	<0.2	23814	99	54	50	538429	<2	<2	857
100 x 325 mesh	66.410	0.04	2766	<5	18	36	<2	<0.2	29986	46	51	78	493242	<2	<2	806
- 325 mesh	63.441	0,06	4020	<5	35	37	<2	<0.2	37490	58	55	175	494543	<2	<2	1189
Repeat	56.091	0.04	5497	<5	5	44	<2	<0.2	69184	213	41	45	451393	<2	<2	1311
	0.001	0.01	100	5	5	2	2	0.2	100	1	1	1	100	2	2	100
	20	100	50000	2000	10000	10000	2000	2000	100000	10000	10000	10000	50000	10000	10000	100000
	AsyMuA	Leco	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
Mo	На	Мо	NI 188	Distance D	×	Se.	40	No	C.		ार	147		7.	7.	
1981	ng	NIO	PNI -	F	N.	50	Ag	Na	or	11		vv	v	Zn	26	
ppm	ppin	ppm	ppm	ppiii	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
2344	<3	-11	<1	364	400	<1	1.1	244	7	<10	166	9	39	71	13	
1604	<3	8	<1	231	285	<1	<0.1	191	4	<10	104	6	32	66	10	
1673	<3	10	<1	207	167	<1	0.4	197	4	<10	103	<5	38	83	11	
1943	<3	11	<1	178	233	<1	0,9	230	4	<10	122	10	55	99	14	
2142	<3	10	<1	200	176	<1	0.4	191	5	<10	147	7	48	88	13	
3181	<3	11	<1	272	222	<1	0.5	151	8	<10	207	8	53	98	15	
2468	<3	11	<1	355	362	<1	1.2	244	7	<10	191	8	40	77	14	
1	з	1	1	100	100	1	0.1	100	1	10	100	5	1	1	1	
10000	10000	1000	10000	50000	100000	10000	100	100000	10000	1000	100000	1000	10000	10000	10000	
ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	
	Maq.conc + 3 mesh 3 × 14 mesh 14 × 35 mesh 35 × 100 mesh 100 × 325 mesh - 325 mesh Repeat Mn ppm 2344 1673 1943 2142 3181 2468 1 10000 ICP	Maq.conc + 3 mesh 56.424 3x 14 mesh 64.765 14 x 35 mesh 68.283 35 x 100 mesh 70.385 100 x 325 mesh 66.410 - 325 mesh 63.441 Repeat 56.091 0.001 20 AsyMuA 0.001 20 AsyMuA Mn Hg ppm ppm 2344 <3	Mac conc + 3 mesh 55.424 0.04 3 x 14 mesh 64.785 0.03 14 x 35 mesh 68.283 0.03 35 x 100 mesh 70.385 0.02 100 x 325 mesh 66.410 0.04 - 325 mesh 63.441 0.06 Repeat 56.091 0.04 20 100 AsyMuA Leco Mn Hg Mo ppm ppm ppm 2344 <3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mac conc + 3 mesh 56.424 0.04 5473 <5 3 x 14 mesh 56.785 0.03 2572 <5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Cr

ppm

Co

ppm

Cu

ppm

Fe

ppm

La

ppm

Pb

ppm

Mg

mqq

ISO 9001:2000 Certified Company

Certificate#: 06B0376 Client: Westcoast Mineral Testing Inc. Project: Eaton Shipment#: PO#: No. of Samples: 6 Analysis #1: SiO2 Al2O3 Analysis #2: Analysis #3: Comment #1: Comment #1: Date In: Feb 24, 2006 Date Out: Mar 02, 2006

Sample Name	SampleType	SiO2	AI2O3
·		%	%
	Mag conc		
06-22A	+ 3 mesh	12.70	1.85
06-22B	3 x 14 mesh	6.80	1.14
06-22C	14 x 35 mesh	5.20	1.00
06-22D	35 x 100 mes	4.42	0.93
06-22E	100 x 325 me	5.19	1.03
06-22F	- 325 mesh	6.99	1.40
RE 06-22A	Repeat	12.91	1.90
Minimum detection		0.01	0.01
Maximum detection		100	100
Method		WRock	WRock

#200 - 11620 Horseshoe Way Richmond, B.C. Canada, V7A 4V5

Phone: 604/879-7878 604/272-7818 Fax: 604/879-7898 604/272-0851 Website: www.ipl.ca Email: info@ipl.ca

		Eaton Magnet	ite samples -	January 200	6 - Sampling	by Joe She	arer										
ow	Sample Name	SampleDescription	Fe %	Al ppm	Sb ppm	As ppm	Ba ppm	Bi ppm	Cd ppm	Ca ppm	Cr ppm	Co ppm	Cu ppm	Fe ppm	La ppm	РЬ ppm	Mg ppm
1	06-01	Benson # 1 - waste		17629	<5	<5	14	<2	<0.2	48309	62	34	3740	124917	<2	<2	10524
2	06-02	Benson # 2 - waste		18274	<5	<5	13	<2	<0.2	72705	60	37	3876	109019	2	<2	11546
3	06-03	Benson # 1 - tailing		5321	<5	<5	22	<2	<0.2	34945	29	23	886	254033	<2	<2	2869
4	06-04	Benson # 2 - tailing		9929	<5	<5	11	<2	<0.2	63852	34	35	875	125534	2	<2	5544
5	06-05	Benson # 3 - tailing	-	4992	<5	<5	21	<2	<0.2	34513	29	23	841	252036	<2	<2	275
6	06-06	Argonaut lower coarse tailing		11213	<5	<5	12	0	\$0.2	110290	55	21	73 8	134700	e2	0	290
7	06-07	Aroonaut upper coarse tailing		8978	<5	<5	19	<2	<0.2	84000	35	26	62	DEATOS	-2	<2	108
8	06-08	Aroonaut waste dumo	-	17997	<5	<5	23	52	<0.2	89222	50	-0	33	82005	3	<2	384
9	06-09	Aronaut middle waste dumo		30873	-5	15	42	12	10.2	65590	22	20	240	04340	2	~	600
0	06-10	Aroonaut magnetite	62.2	3057	-5	-5	27	-2	20.2	21520	23	40	240 88	200020	-2	~	000
	06-104	+ 3 mech corece from 06.10	547	4150			20		10.2	51020	21	40	00	300929		12	440
	06-108	2x 14 march sorean from 06 10	67 E	4139	< <u>5</u>	10	20	-2	40.2	54941	55	40	39	304940	<2	~2	1404
	08 100	14 x 25 much server from 08-10	57.5 85.4	4002	-5	-0	32	~2	<0.2	54470	65	57	129	425450	~2	<2	2780
	06-100	14 X 65 mesh screen from 06-10	00.4	3035	<0	<0	30	~2	<0.2	29912	39	55	62	421412	<2	<2	965
	00-100	Sox Szo mesh screen from 06-10	72.5	19/0	<0	<0	38	<2	<0.2	16/09	39	70	11	532500	<2	<2	11
	UD-TUE	-325 mean screen from 06-10	/4,3	1/1/	<5	31	49	<2	<0.2	6724	57	92	134	652175	<2	<2	708
٨	finimum detection		0.001	100	5	5	2	2	0.2	100	1	1	1	100	2	2	10
N	laximum detection		100	50000	2000	10000	10000	2000	2000	100000	10000	10000	10000	50000	10000	10000	10000
								1000								0.000077	
	SampleDescription	Mn	Hg	Мо	NI	Р	к	Sc	Ag	Na	Sr	ті	ті	w	v	Zn	Zr
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
B	enson # 1 - waste	430	<3	6	47	438	616	2	1.7	1386	149	<10	989	<5	64	41	
8	enson # 2 - waste	473	<3	6	37	508	760	2	1.8	1416	323	<10	1101	8	57	52	1
B	enson # 1 - tailing	479	<3	9	<1	239	412	<1	1.0	379	14	<10	646	10	44	17	1
B	enson # 2 - tailing	814	<3	7	3	402	369	1	1.0	448	68	<10	647	7	32	33	1
B	enson # 3 - tailing	472	<3	9	<1	214	417	<1	1.0	338	12	<10	530	10	42	18	1000
A	rgonaut lower coarse tailing	3121	<3	4	<1	284	165	3	0.4	117	15	<10	648	<5	39	53	1
A	rgonaut upper coarse tailing	2648	<3	6	<1	297	<100	2	0.2	129	12	<10	396	<5	30	54	14
A	rgonaut waste dump	2021	<3	6	6	772	200	3	0.8	398	52	<10	594	<5	184	50	13
A	rgonaut middle waste dump	1941	<3	6	10	449	255	3	0.6	2325	148	<10	634	<5	64	66	1
A	rgonaut magnetite	1637	<3	6	<1	195	<100	<1	0.2	129	6	<10	204	8	36	61	1
+	3 mesh screen from 06-10	2057	<3	7	<1	237	181	<1	0.2	137	6	<10	246	10	46	54	1
3	x 14 mesh screen from 06-10	2287	<3	8	3	262	180	<1	0.2	146	6	<10	305	9	50	73	14
1	4 x 65 mesh screen from 06-10	1767	<3	8	20	191	<100	<1	0.2	126	5	<10	216	14	44	67	12
6	5x 325 mesh screen from 06-10	1670	<3	6	<1	169	209	<1	0.2	134	3	<10	168	<5	54	72	11
-3	325 mesh screen from 06-10	1995	<3	9	<1	201	161	<1	0.4	117	4	<10	170	7	75	122	2
	RE 06-01	464	<3	5	46	462	669	2	1.6	1463	151	<10	1235	<5	69	42	
N	linimum detection	1	3	1	1	100	100	1	0.1	100	•	10	100				
				Constant of the	and a second	100	100	1.000 million	W. 4	100	and the second s	10	100	3		a wanted	
. N.	aximum detection	10000	10000	1000	10000	50000	100000	10000	100	100000	10000	1000	100000	1000	10000	10000	10000

Comments

Row 1 - 10 1 - 10

1-5

The ICP reported Fe grades are all above the upper reporting limit for ICP, so 1 - 9 will be repeated as Fe assays. Low grades for Sb, As, Cd,, Cr, Pb, Hg, and Zn. Note the somewhat elevated Cu content. Not surprising given that this was a copper mine

W-06-01	Eaton Capital		DATE: Jan 11, 2006						
SCREEN ANALY	SIS & SG DETERMINATION		<u>W-06-01</u>						
Client:	Eaton Capital	Project:	Argonaut						
Sample:	Millsite magnetite sampled by Joe Shear that was never shipped from the mine si	rer - January ite, This samp	y 2006. This is nominal minus 6 mm magnetite concentrate ple is referenced as 06-10 on the accompanying assay]					
Objective:	Screen analaysis of this HG magnetite product to determine the percentage of minus 325 material. Also SG the minus 325 fraction.								
As Rece	lved Magnetite Concentrate Screen An	alvsis	7						

As Received Magnetite Concentrate Screen Analysis

The estimated magnetite content was determined form the 72.4 % Fe in pure magnetite.

Mesh	gm	WT %	Fe %	Est mag %		
— · · · · · · · · · · · · · · · · · · ·	117,4	10.5	54.7	75.6		
3						
	463.8	41.5	57.5	79.4		
14						
	302.8	27.1	65.4	90.3		
65						
	151.5	13.6	72.5	100.1		
325						
	82.5	7.4	74.3	102.6		
Total	1118.0	100.0	62.6	86.5	<u> </u>	
Original Sample			62.2	85.9		•

In addition to the above, the wash water contained 4.0 gm of "rock" (gangue) slimes.

Specific Gravity Determination - minus 325 mesh fraction

Original Sample

The SG was determined using a 10 ml precision (+/- 0.02 ml) volumetric flask After adding the sample and nearly filling with water, the flask was boiled to exclude dissolved air, then refilled with water.

Pulverized Sample

A nominal 200 gm portion of sample 06-10 was pulverized, agitated in water, subjected to mag separation using a hand held permanent magnet, screened, and the minus 325 fraction was tested for

1	Original Sample	Pulverized sample							
Material	gm								
flask + solids + wate	32.2	<u>35.</u> 0							
flask + solids	25.8	29.4							
flask	8.9	8.9							
solids	16.9	20.5							
water	6.4	5.6							
volume solids	3.6	4.4							
SG solids	4.7	4.7							

Internet	ional Pi	esma L	abs Lte
180 900	1:2000 C	ertified (Company

#200 - 11620 Horseshoe Way Richmond, B.C. Canada, V7A 4V5

150 9001:2000

Certificate#: 06D0788 Client: Westcoast Mineral Testing Inc. Project: Eaton Shipment#: PO#: No. of Samples: 2 Analysis #1: Mihole Rock Analysis

Argonaut lower and upper coarse tailing, respectively, as sampled by Jo Shearer in Jan 06

Analysis #1, White Rock Analysis Analysis #2: Analysis #3: Comment #1: Comment #1: Date In: Apr 10, 2006 Date Out: Apr 13, 2006														
Sample Name	SampleType	A12O3 %	BaO %	CaO %	Fe2O3 %	K2O %	MgO %	MnO %	Na2O %	P2O5 %	SiO2 %	TiO2 %	LOI %	Total %
06-06	Pulp	5.20	0.52	30.27	27,35	0, 64	1.06	0.86	0.44	0.03	30.04	0.65	2.05	99.12
06-07	Pulo	3.71	0.37	21.31	48.88	0.34	0.65	0.64	0.29	0.05	19,90	0.42	2.13	98.70
RE 06-06	Repeat	5.27	0.53	29.80	27,79	0.39	1.07	0.86	0.45	0.09	29.77	0.66	2.20	98.89
Minimum detection		0.01	0,01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Maximum detection		100	100	100	100	100	100	100	100	100	100	100	100	105
Method		WRock	WRock	WRock	WRock	WRock	WRock	WRock	WRock	WRock	WRock	WRock	2000 F	WRock

* Values highlighted (in yellow) are over the high detection limit.

	Eaton Magnetite samples - January 2006 - Sampling by Joe Shearer								from IPL 06A0128							
Sample Name	SampleDescription	Fe %	AI ppm	Sb ppm	As ppm	Ba ppm	Bi ppm	Cd ppm	Ca ppm	Cr ppm	Co 📰	Cu ppm	Fe ppm	La ppm	Pb ppm	Mg ppm
06-06	Argonaut lower coarse tailing	20.5	11213	<5	<5	12	<2	<0.2	110290	55	21	73	134799	<2	<2	2903
06-07	Argonaut upper coarse tailing	35:4	8978	<5	<5	19	<2	<0.2	84999	35	26	62	254188	<2	<2	1988
Minimum detection Maximum detection Method		0.001 100 AsyMuA	100 50000 ICP	5 2000 ICP	5 10000 ICP	2 10000 ICP	2 2000 ICP	0.2 2000 ICP	100 100000 ICP	1 10000 ICP	1 10000 ICP	1 10000 🎬 ICP	100 50000 ICP	2 10000 ICP	2 10000 ICP	100 100000 ICP
SampleDescription	Mn ppm	Hg ppm	Mo ppm	Ni ppm	P ppm	K ppm	Sc ppm	Ag ppm	Na ppm	Sr ppm	TI ppm	TI ppm	W ppm	V ppm	Zn ppm	Zr ppm
Argonaut lower coarse tailing	3121	<3	4	<1	284	166	3	0.4	117	15	<10	648	<5	39	53	11
Argonaut upper coarse tailing	2648	<3	6	<1	297	<100	2	0.2	129	12	<10	396	<5	30	54	14
Minimum detection Maximum detection Method	1 10000 ICP	3 10000 JCP	1 1000 JCP	1 10000 ICP	100 50000 ICP	100 100000 ICP	1 10000 ICP	0.1 100 ICP	100 100000 ICP	1 10000 ICP	10 1000 ICP	100 100000 ICP	5 1000 ICP	1 10000 ICP	1 10000 ICP	1 10000 ICP

Not consistent with 06A0175