THE SKOONKA GOLD PROJECT Kamloops Mining Division Lytton-Spences Bridge Area, British Columbia NTS 92I/5-6 07/08

SKOONKA CLAIMS

Technical PROGRAM 2006

Assessment Report 52° 23'08" N and 121° 28'56"W by

James A. Turner, P.Geo 14149 17 A Avenue Surrey, B.C. V4A 6R8 604-531-9713 **Prepared for Anglo-Canadian Uranium Corp. Suite 1150-555 Burrard Street** Vancouver, B.C. CANADA V6C 2B3

AUGUST 15, 2006

	TABLE OF CONTENTS	
Title F Table	Page of Contents	1 2
1.0	EXECUTIVE SUMMARY	4
2.0	 INTRODUCTION AND TERMS OF REFFERENCE 2.1 Qualified Person and Participating Personnel 2.2 Terms, Definitions and Units 2.3 Source Documents 2.4 Limitations, Restrictions and Assumptions 2.5 Scope of Review 	5
3.0	PROPERTY DESCRIPTION AND LOCATION 3.1 Location 3.2 Property Description	6
4.0	CLIMATE AND PHYSIOGRAPHY	7
5.0	HISTORY	7
6.0	GEOLOGIC SETTING 6.1 Regional Geological Setting 6.2 Property Geology	8
7.0	DEPOSIT TYPES	10
8.0	MINERALIZATION AND ALTERATION AND EXPLORATION 8.1 Exploration Work 2006 8.2 Geochemistry	10
9.0	SAMPLING METHOD AND APPROACH	11
10.0	SAMPLE PREPARATION, ANALYSES AND SECURITY	11
11.0	RESULTS	11
12.0	DATA VERIFICATION	11
13.0	INTERPRETATION AND CONCLUSIONS	12
14.0	RECOMMENDATIONS	12
15.0	PERSONELL AND CONTRACTORS	12
16.0	COST STATEMENT 2006	13

James A. Turner, P.Geo. Skoonka Project, Lytton Area, British Columbia.

17.0	DATE	13
18.0	REFERENCES	14
19.0	CERTIFICATE OF THE WRITER	15
20.0	ILLUSTRATIONS	after 16
21.0	APPENDICIES	16

List of Figures

Figure 1: Location Map-BC	Fig 1.pdf
Figure 2: Claim Map SKOONKA	Fig 2.pdf
Figure 3: Regional Geology	Fig 3.pdf
Figure 4: Rock Sample Locations	Fig 4.pdf
Figure 4a: Rock Sample Locations Detail	Fig 4a.pdf
Figure 5: Gold in Rocks	Fig 5.pdf
Figure 5a: Gold in Rocks Detail	Fig 5a.pdf
Figure 6: Copper in Rocks	Fig 6.pdf
Figure 6a: Copper in Rocks Detail	Fig 6a.pdf
Figure7: Lead in Rocks	Fig 7.pdf
Figure 7a: Lead in Rocks Detail	Fig 7a.pdf
Figure 6: Zinc in Rocks	Fig 8.pdf
Figure 6a: Zinc in Rocks Detail	Fig 8a.pdf
List of Tables	

Table 1 SKOONKA Claims Summary	6
Table 2: Rock units of the Area	9
Table 3: Cost Statement-SKOONKA Property 2006	13

APPENDICES

Appendix I:	Assay Certificates
Appendix II:	Rock Sample Descriptions

1.0 EXECUTIVE SUMMARY

The SKOONKA Property covers a Clay-Sericite-Silica-Pyrite altered volcanic unit in the Kamloops Mining Division of southern British Columbia, Trim Sheet 921033. This prospect is readily accessible by road, 25 kilometers northeast from the village of Lytton on the Trans-Canada Highway. It is situated just 35 kilometers west-southwest of the world-class porphyry copper producing Highland Valley district. The claims comprising 69 units (926.716 hectares) were acquired by using the BC MTO system in 2006. Work on this claim group and its periphery is the subject of this assessment report. All of the claims are 100% owned by either James Albert Turner or Francis LaRoche or Daniel Harvey.

Physiography in the property area is dominantly forested moderate to locally rugged upland terrain of the Scarped Range between the Fraser Plateau and northern Cascade Mountains. The claims are located on upper Skoonka Creek, a tributary to the Thompson River. The area is underlain by a northwest-southeast trending porphyritic quartz monzonite and sediments of the Mount Lytton Complex. The ages and relationships of these rocks are unknown.

Exploration work during 2006 consisted of prospecting and reconnaissance geochemical sampling (54 rocks). This work was done in response to a discovery by Allmaden Minerals Ltd. of a significant new epithermal gold vein, located 1 km directly to the south. The Discovery Showing represents a large but low grade vein breccia zone having an approximate 4m true width over which the 2004 channel sampling returned a weighted average gold analysis of 380 ppb (0.38 g/t Au), with negligible silver. All of the samples collected by Anglo-Canadian Gold (The Operators) have been tested for 36 elements and or Au.

The current sampling results have not outlined any significant gold, silver or copper mineralization. The limited 2006 exploration program conducted on the Skoonka claims has generated negative results, particularly areas of several percent disseminated pyrite mineralization. The writer recommends if further assays (not reported here) do not contain significant results the property should be put on a hold basis.

The above program cost: CAD \$ **<u>\$21,819.75</u>**

2.0 INTRODUCTION AND TERMS OF REFERENCE

2.1 Qualified Person and Participating Personnel

The following report was commissioned by Anglo-Canadian Uranium Corp. (formerly Interactive Explorations Ltd.) to summarize the prospecting and sampling program on the Skoonka property near Lytton in southwest British Columbia. In July 2006 Anglo. commissioned James A. Turner to conduct a program of prospecting and sampling the Skoonka Property controlled by Anglo-Canadian Uranium Corp. of Canada. Anglo-Canadian Uranium Corp. will be referred to as "Anglo".

2.2 Terms, Definitions and Units

All costs contained in this report are denominated in Canadian dollars. The term "ppm" refers to parts per million or grams per metric tonne and "ppb" refers to parts per billion or milligrams per metric tonne. The symbol "%" refers to weight percent unless stated otherwise. All other units are imperial except where noted.

2.3 Source Documents

This report incorporates data from Anglo's own fieldwork and historical work described in the assessment work reports filled with government agencies. Limited previous data was also reviewed, and incorporated as noted.

2.4 Limitations, Restrictions and Assumptions

James A. Turner did not fully audit or test the accuracy or completeness of data collected by prospectors hired for this purpose. In addition, Anglo-Canadian Uranium corp. management has informed the author that, to the best of its knowledge, no events have occurred, other than those taken into account in the report, which might, in their opinion, cause us to change our views.

2.5 Scope of Review

To accomplish this review, James A. Turner, was asked to conduct an exploration program which included prospecting and geochemical sampling of Claims optioned in 2006 from two prospectors Alan Harvey and Francis LaRouche, and to comment on the Gold potential of the Skoonka Property controlled by Anglo of Canada. James A. Turner is a Director of Anglo and has 100,000 options in the company. Only the claims making up the **Skoonka** property are the subject of this report.

James A. Turner along with contract prospector LaRouche and Len Harris examined the property in May and July 2006, LaRouche completed prospecting and geochemical sampling in late July.

No metallurgical testing was conducted. James A. Turner has done a brief review of legal documentation and ownership and has assumed that the presented facts are correct.

A site visit was conducted on the Skoonka Property in May and July, 2006

In arriving at our conclusions, we reviewed and relied to some extent upon the documents listed in the reference section of this report.

This report describes the results of the 2006 exploration work conducted on the Skoonka claim group and documents the related expenditures applied for assessment credits

3.0 PROPERTY LOCATION AND DESCRIPTION

3.1 Location

The SKOONKA property is centered between the communities of Lytton and Spences Bridge in south central British Columbia, at latitude 50⁰23'08"N and longitude 121⁰28'56" W (UTM Zone 10: 607900E/5582600N) near the northern boundary of Trim map sheet 0921033. Good ground access is afforded via the partly hard-surfaced Botanie Lake Road from Lytton, 20 km northerly, thence three to five kilometers westerly via a forestry gravel road system which passes through the southeast corner of Skoonka Indian Reserve #15, Skoonka Creek valley. From the main trunk of the Botanie lake Road, an old but partly serviceable logging road occurs on the property. The road is reached through the Indian Reserve.

3.2 **Property Description**

The property consists of 4 contiguous mineral claims totaling 926.716 hectares in the Kamloops Mining Division, BCGS map area 0921033. The claims were acquired electronically in 2006 using the BC Mineral Titles Online (MTO) system. The Skoonka property comprises a total 69 grid cells. However, any further discussion of these new cell tenures is beyond the scope of this report. The property has not been legally surveyed.

Locations of the Property claims are shown on Figure 2 and respective claim data are summarized in Table 1. The expiry dates listed for the claims are subject to filing and approval of this report.

Name	<u>Tenure</u> <u>No.</u>	<u>Units</u>	<u>Acquired</u>	<u>Good Till</u>	<u>Hectares</u>	<u>Owner/s</u>
B 6	506343	6	9-Feb-05	9-Feb-07	123.622	1,2
B 4	506341	18	9-Feb-05	9-Feb-07	370.865	1,2
	527184	25	7-Feb-05	7-Feb-07	515.033	1
B 5	506342	20	9-Feb-05	9-Jun-07	247.196	2
		<u>69</u>		<u>Total</u>	<u>926.716</u>	
1- Allen I	Daniel Harvey	, ID	111258			

Table 1: SKOONKA PROPERTY Claims Summary

James A. Turner, P.Geo. Skoonka Project, Lytton Area, British Columbia.

2- Francis Rene LaRoche ID 131784

4.0 CLIMATE AND PHYSIOGRAPHY

The SKOONKA claims are situated on the Scarped Range between the Fraser Plateau and the northern Cascade Mountains, within the western margin of the Intermontane physiographic region consisting of rolling upland to rugged mountainous terrain. Topography is moderate to locally steep, with elevations ranging from a low point of 700 meters on the eastern property boundary to over 1260 meters on the northern boundary of the property. The principal drainage is northward along a major branch of Skoonka Creek, which in turn flows eastward into the Thompson River. This branch is called Gold Creek (Fig. 2).

Soil and glacial till cover is extensive and generally shallow, but includes local deep mounds (to >5m thickness) particularly at the lower elevations in the northern property area. Overall bedrock exposure is moderate to locally abundant in road cuts and in some of the stream gullies, as well as on steep upper slopes and ridge tops. The local ice-flow direction, determined from glacial striae in outcrop along the West Spur Road, is to the east-southeast (azimuth $110^{\circ} \pm 50$) Balon 2004. The climate is semi-arid, with hot dry summers having temperatures commonly in the 30° C to above 40° C range at Lytton.

All areas of the property are generally free of snow from late May or early June through October. Vegetation consists mainly of Spruce along creek valleys. Dense brush consisting of alder and willow is common along most of the stream gullies and road cuts. Approximately 20% of the claim area has been clear-cut logged during the 1980s to mid-1990s.

6.0 HISTORY

There are no published records of any prior mineral exploration work in the area covered by the Skoonka claims, and there are no documented mineral occurrences for this locality in the BC Minfile database. No old claim posts, nor any other ground evidence of previous exploration activity, have been found to date on the property. During the Gold Rush era of the mid - 19th to early 20th centuries, placer gold was mined from gravel bars on the Fraser and Thompson Rivers and on most of their major tributary streams in the Ashcroft-Lytton-Lillooet district. Production records from this time period and region are not detailed, and there is no mention of Skoonka Claim area in the published literature.

"Coarse placer gold was discovered in 1857 on the Thompson, near Nicoamen River, which initiated the Gold Rush into interior British Columbia. This Nicoamen River site is only 12 km downstream from the mouth of Skoonka Creek. In 1981 a federal-provincial government Regional Geochemical Survey was carried out over the entire Ashcroft (NTS 921) map area. The initial results of this survey were published in 1982 as BC RGS 8/GSC Open File 866. Years later, in 1994, the sample pulps were re-analyzed by improved techniques and for additional elements including gold. The new data were published as BC RGS 40/GSC Open File 2666 which identified a number of strong gold-in-silt anomalies including two located in the Skoonka Creek drainage, represented by Sample Numbers 815058 (21ppb Au/rerun 23ppb Au) and 815059 (19ppb Au).

During a 2003 regional gold exploration program, Almaden Minerals Ltd. conducted two brief stages of prospecting and reconnaissance geochemical sampling in the upper part of Skoonka Creek drainage above the RGS sample site 815058. Results of the initial examination (by Balon, Harwood) in August confirmed and enhanced the gold silt anomaly in this tributary, later named the headwaters of a creek with strongly anomalous silt sediment geochemical response in lead zinc and copper. (BC Assessment Report 27,672).

6.0 GEOLOGIC SETTING

6.1 Regional Geologic Setting after Balon 2004

The subject region lies within the Southern Intermontane (tectonic) Belt of the Canadian Cordillera. Regional bedrock geology is shown on Figure 3, which has been compiled from The Map Place.

Lithologies within the Figure 3 map-area include successions of Mesozoic to Tertiary volcanic and sedimentary rocks which have been intruded by plutons of various compositions and ages from Late Triassic and/or Jurassic to Miocene (?). Locally thick deposits of Pleistocene and Recent glacial drift and alluvium are prevalent in all of the major creek or river valleys. Much of the region was overridden during the last Pleistocene glaciation by ice moving southeastward across the Fraser Plateau; Ryder, 1975).

The dominant rock assemblage underlying the Skoonka property and adjacent areas is the Cretaceous Spences Bridge Group (IKSBPva) comprising a broad northwestsoutheast trending thick sequence of gently folded volcanics with lesser sediments, dipping generally shallowly in various directions. These rocks include intermediate, locally felsic and mafic flows and pyroclastics with some sandstone, shale and conglomerate (KSB), as well as a younger basaltic unit differentiated as the Spius Creek Formation (KSBS). This quite homogeneous conformable upper division was formerly called Kingsvale Group by early government geologists (Rice - 1947, Duffell and McTaggart -1952, and others prior to Thorkelson - 1985).

The Spences Bridge Group is in fault contact with older plutonic and related metamorphic rocks of the Triassic-Jurassic Mount Lytton Complex (PTrJgd, PTrJm) to the south and west of the property area. This underlying Mount Lytton assemblage is host to a number of old known copper showings within a 10-15 km radius of the Skoonka claims (BC Minfile 0921SW030, 035, 039, 040, 057-062).

To the northwest (20-25 km) and southeast (25-40 km) of the property, the Spences Bridge Group is overlain by Tertiary (Eocene) mafic to felsic volcanics of the Kamloops and Princeton Groups (EKav, Epr). These younger volcanic units are cut by small (Miocene?) intrusions of intermediate composition (Egd), which may be part of a feeder system to them.

The major structural features in the region are steeply dipping normal faults, parallel and sub-parallel with those of its western bounding Fraser (River) fault system. The faults have two dominant trends, one at 140° - 150° azimuth and the other due north-south. Two parallel north-south faults occur on east side of the property, along Botanie Creek and the Thompson River. Rocks of the Spences Bridge Group are believed to have formed as a chain of strata volcanoes associated with subsiding, fault-bounded basins (Souther, 1991 and Thorkelson, 1985).

Table 2 Major Rock Units in the Area

EOCENE

EgdgranodioriteEPrPrinceton Group - undivided sediments

Late CRETACEOUS TO PALEOCENE

- LKTgd granodiorite
- LKTqm quartz monzonite

CRETACEOUS

IK	Jackass Mountain Group - undivided sediments
IKSBPva	Spences Bridge Group Pimainus Formation – andesite
Ks	undivided sedimentary rocks
LTrJGBo	Guichon Creek Batholith - quartz diorites

PERMIAN TO Upper TRIASSIC

PTrMdr	Mount Lytton Diorites
PTrMgd	Mount Lytton Complex – granodiorite
PTrMmI	Mount Lytton Complex – metamorphic rocks

6.2 Property Geology

No systematic property scale geological mapping has been conducted on the Skoonka claims, however local outcrop data have been noted during the course of other work. Very limited detailed bedrock mapping was carried during the examination by the writer.

Although most of the property has not been mapped in detail, government geology maps suggest most of the property is underlain by Volcanics of the Spences Bridge Group. All rocks sampled during prospecting are this type of rock.

7.0 DEPOSIT TYPES

Clay and sericite-silica alteration and pyrite mineralization of the volcanic outcrops suggest there is potential for epithermal gold type deposits. Much more work is needed to further define this deposit type.

8.0 MINERALIZATION, ALTERATION AND EXPLORATION

The 2006 exploration program on the Skoonka claims was designed to prospect and sample for gold potential. The results are plotted on Figures 4-8.

Most samples were taken form gossanous rock exposures on rock bluffs and talus and showed various levels of disseminated pyrite in a silicified altered rock. Quartz occurs as micro fracture fillings, some chalcedonic quartz was noted. Pyrite is fine to very fine grained. The rock is hard and slightly brownish in colour. Coxcomb textures occur but are not common.

8.1 2006 Exploration Work

Field work in 2006 consisted of prospecting with reconnaissance rock sampling with some related bedrock mapping/sampling. Totals of 54 rock, samples were collected and delivered to Acme Analytical Laboratories Ltd. of Vancouver, BC, for 36 element geochemical analysis plus a few selected assays. Work was conducted on the Skoonka 1&2 claims and immediate periphery during five days in August, by one Francis LaRoche and two contract field assistants. The crew was based at the Totem Motel in Lytton. All UTM grid locations were recorded in NAD 83 using Garmin 12XL handheld GPS receiver units. The work types and distributions are shown on Figure 2. James A. Turner also conducted a linear interpretation of satellite data.

8.2 Geochemistry

Thirty –one samples were chip samples over a minimum width of 1.5 metres, but most were from selected grab samples.

Thirty-one rock samples were analyzed for 36 elements. Complete results for the samples are listed on the Acme Analytical Laboratories Ltd. Geochemical Analysis Certificates contained in Appendix A. Tables in these Appendices also give the UTM grid locations, brief descriptions and selected analytical results for all but the trench rock samples which are described in Section 6.2.

8.3 Satellite Interpretation

In June 2006 Anglo purchased some QuickBird satellite data from Digital Globe in the USA, for use in mapping. A 10 km² area was purchased. This data has a resolution of 63 cm, the data contains four spectral bands. For this study only three bands (visible) were used. ERMapper software was used for the display and interpretation of the data.

The data was corrected to the 1:20,000 trim sheet with a horizontal error of 2 metres and a vertical error of 5 metres.

The brief linear study shows several NS linears intersect with EW linears. Colour anomalies occur over areas of silicified and pyritic volcanics. Linear intersections and colour anomalies also occur on the upper areas i.e. to the north of the property. These areas were not visited during the 2006 field season. Figure 4&5 shows the extent of the data.

9.0 SAMPLING METHOD AND APPROACH

Sample locations were marked in the field with labeled orange flagging. Rock samples were placed in plastic sample bags and sealed with twist ties. A UTM grid location was recorded for every site by handheld GPS unit using the NAD 83 datum. Samples were shipped to Acme Analytical Laboratories Ltd. in Vancouver, BC, for 36element analysis by Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)and or Gold by assay. Stream sediment samples were collected from the finest silt/sand material available in the active channel, with little or no organic matter. Individual soil and stream sediment sample weights were approximately 0.5 kilogram. Both types of samples were shipped to the laboratory in labeled standard 4"x6" Kraft paper bags.

10.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

Sample preparation there involved drying at up to 60 $^{\circ}$ C and sieving (up to) 100 grams from each to -80 mesh. Contingent upon the amount of -80 mesh material available, a 7.5, 15 - or 30- gram sub-sample was cut and then leached with 180 ml of 22-2 HCL-HN0₃-H₂0 at 95 $^{\circ}$ C for one hour, followed by dilution to 600ml and ICP-MS analysis. Rock sample individual weights ranged from <1-3 kilograms for float samples and 2.5-10 kilograms for bedrock (continuous chip or channel) samples. At the laboratory, rock sample preparation consisted of crushing each to - 10 mesh (70%) followed by pulverizing a 250-gram split to 95% passing 150 mesh. A 30-gram sub-sample was then subjected to the same acid digestion and analytical procedure as that employed for the soil and silt samples.

11.0 RESULTS

Results from the limited sampling program showed low or no gold or copper. Results ranged from <1 -10 ppb Au and 10-30 ppm Cu.

12.0 DATA VERIFICATION

No sample data verification other than those provided by ACME (blanks, standards, duplicates) was included in the 2006-work program.

The samples were collected with hammer and cold chisel and the two chip samples were taken perpendicular to the apparent dip of the mineralized zone disseminated throughout.

13.0 INTERPRETATION AND CONCLUSIONS

Disseminated pyrite occurs in a highly siliceous volcanic unit. In some areas the volcanic is brecciated suggesting an epithermal Au environment. A linear study of satellite data shows several intersecting linears are consistent with colour anomalies. These colour anomalies are thought to represent the highly siliceous unit described above. The geochemical values found to date, however are disappointing and further work is needed to support this model.

14.0 RECOMMENDATIONS

The 2006 program is disappointing for the search for gold or copper. The property could use more work as the pyrite-silica alteration is quite extensive. This property is well located as the mineralization is located 1.1 km north of the Allmaden-Stongbow gold vein. The Skoonka property is at least 200 metres below the gold vein. It is recommended that any future work should include mapping and prospecting of areas not covered in this report.

15.0 PERSONELL AND CONTRACTORS

<u>Company</u> Personnel	Position	<u>Days</u>	<u>Dates</u>
Len Harris	President		
<u>Contract</u> <u>Personnel</u>			
James A. Turner Surrey, BC	Consultant,Director		
Francis LaRoche Kamloops, BC	Prospector		
Rick Unruth Penticton, BC	Prospector		
Dale LaRoche	Field Assistant		

16.0 COST STATEMENT 2006

	Table 3: C	Cost Statement-S	KOONKA Property-2006	j
		Days	Rate	Total
Field Costs				
Franciscis LaRoc	he	5	260	\$1.300.00
Rick Unruth		1	200	\$200.00
Gerry Diakow		5	260	\$1,300.00
	Truch	40	00	\$ 000.00
	I TUCK Matal	10	90	\$900.00 \$205.00
	IVIOTEI			\$285.00 \$207.04
	Fuel			\$207.31
	Food			\$122.59
	Maps	QuickBird Image-	+processing	\$3,950.00
	Supplies			\$15.00
	ATV	4	90	\$360.00
Helicopter		1.9	950	
<u></u>		1.9	115	\$2.023.00
				<i> </i>
<u>Fees</u>				
Len Harris		4	450	\$1,800.00
Project Geologist	(Jim			
Turner, P.Geo)	,	3	400	\$1,200.00
24-May		4	400	\$1,600.00
19-Jun		4	500	\$2,000.00
18-Jul				
For I H & JT	Motel&Food	200		\$200.00
	Truck Rental	4	90	\$360.00
				<i>Q</i> QQQQQQQQQQQQQ
<u>Assays-</u> Analysis				
Analysis		3	18.6	\$55.80
		42	19 52	\$819.84
		8	11 49	\$95.20
	Shipping	U U		\$150.00
	Chipping		Total	\$18973.74
Administration @	1 = 0/			¢ 0.040.04
Auministration @	10%			\$2,846.01
			Grand Total	<u>\$21,819.75</u>

17.0 DATE

The effective date of this report is August 15, 2005.

James A. Turner, P.Geo. Skoonka Project, Lytton Area, British Columbia.

18.0 REFERENCES

- BALON, E.A. 2005 : 2004 Geochemical, Prospecting and Physical Work Report Sam property (Sam 1-10 Claim Group)., Kamloops Mining Division, BC. (BCGS AR 27642).
- DUFFELL, S. AND MCTAGGART, K. C. 1952: Ashcroft Map-Area, British Columbia (BC); Geological Survey of Canada (GSC) Memoir 262, p. 52-58, (Spences Bridge Group and Kingsvale Group),1951:GSC map 1010A: Ashcroft, BC; scale 1:253,440.
- HOLLAND, S.L.;1950: Placer Gold Production of British Columbia; BCMEMPR Bulletin 28, reprinted 1980.
- JACKAMAN, W. AND MATYSEK, P. F.: 1994: British Columbia Regional Geochemical Survey, NTS 921 - Ashcroft, (BC RGS 40/GSC OF 2666), Stream Sediment and Water Geochemical Maps & Data.
- MONGER, J. W. H. AND MCMILLAN, W. J.: 1989: Geology, Ashcroft BC; GSC Map 42-1989, sheet 1, scale 1:250,000.
- MONGER, J. W. H.: 1989: Geology, Hope, BC; GSC Map 41-1989, sheet 1, scale 1;250,000.,1985: Structural Evolution of the Southwestern Intermontane Belt, Ashcroft and Hope Map Areas, BC, in Current Research, Part A, GSC Paper 85-1 A, p. 349-358.: 1981: Geology of Parts of Western Ashcroft Map Area, southwestern BC; in Current Research, Part A, GSC Paper 81 -1 A, p.185-189.
- RICE, H. M. A.:1947: Geology and Mineral Deposits of the Princeton Map-Area, BC; GSC Memoir 43.
- RYDER, J. M.: 1975: Quaternary Geology Terrain Inventory, Lytton Map-Area, BC (921/SW); in Current Research, Part A, GSC Paper 75-1 A.
- SCHROETER, T. G. AND PINSENT, R. H.: 2001: Gold Production and Resources in British Columbia (1858-1998); unedited updated "Information Package" on BCMEM Open File 2000-2.
- SOUTHER, J. G.; GABRIELSE, H. AND YORATH, C.J (ed).: 1991: Volcanic Regimes, Chapter 14 in Geology of the Cordilleran Orogen in Canada, Geology of Canada, no.4, p. 457-490 (also Geological Society of America, The Geology of North America, v. G-2).
- THORKELSON, D. J.1985: Geology of the Mid-Cretaceous Volcanic Units near Kingsvale, southwestern BC; in Current Research, Part B, GSC Paper 85-1 B, p. 333-339.

19.0 CERTIFICATE OF THE WRITER

CERTIFICATE OF James A. Turner, P.Geo

I, James A. Turner, P.Geo., am a Professional Geoscientist of South Surrey, British Columbia, hereby certify that:

- 1. I am a geologist residing at 14149-17A Avenue, Surrey, British Columbia.
- 2. I am a graduate of the University of British Columbia with a Bachelor of Science Degree in Physics, Math and Geology in 1973 and 1976 and have practiced my profession since 1976 and continuously since 1980.
- 3. From 1998 to June 2001 I was a consultant to Pacific Geomatics Inc., a private remote sensing company specializing in data acquisition, processing and interpretation.
- 4. From March 1995 to April 1998 I was a principal of TerraSat Geomatics Inc., a private company, specialising in satellite imaging and its application to mining exploration.
- 5. From 1990 to March 1995, I subcontracted my services as an image analyst to MineQuest Exploration Associates Inc.
- 6. I am a registered member of the Professional Engineers and Geoscientists of British Columbia, (Registration #19843).
- 7. I am a fellow of the Geological Association of Canada.
- 8. I am the sole author of this report and my compensation is strictly on a professional fee basis. I am also responsible for this entire report.
- 9. I am presently a Consulting Geologist and have been so since March 1989. As a result of my experience and qualifications I am a qualified person as defined in National Instrument 43-101.
- 10. Since 1976 I have been involved in mineral exploration (with major mining companies such as Cominco, Noranda and Newmont) for Emerald, lead, zinc, gold, silver, tungsten, tin and diamonds. I have been involved in remote sensing and Geomatics since 1984. Since 1990 I have been involved in remote sensing and satellite interpretation for diamond deposits in the Lac de Gras area of the NWT. I have also conducted remote sensing work for companies working in Ghana, Guyana, Mali, Alberta, British Columbia, Mexico, Vietnam, China, Ireland, Arizona, Utah, Nevada, Bolivia, Chile, Peru, Nunavut, Quebec, Central America, Brazil, India and Indonesia.

- 11. I have read several reports and historic documents, and am familiar with the subject matter of the report.
- 12. In the disclosure of information relating to the SKOONKA property. I have relied on information provided to me by Anglo-Canadian Uranium Corp.
- 13. I am not aware of any material fact or material change with respect to the subject matter of this technical report, which is not reflected in this report, the omission to disclose which would make this report misleading.
- 14. I, in the company of Len Harris, of Anglo, examined the SKOONKA Property in August of 2006 and verified certain exposures of rock on the present location of the claims. I verified the location of the claims and the locations of the targets and certain rock exposures discussed in the technical report. I supervised the program and am responsible for the entire project. This includes work conducted, in my absence.
- 15. I have no interest, direct or indirect, in the SKOONKA Property or the property ownerships, nor do I expect to receive such interest. I am a Director of Anglo-Canadian Uranium Corp. and have 100,000 options in the company.

James A. Turner, P.Geo.

Dated at Surrey, B.C. this 15th day of

August 2006.

Reg. No. 19843 <u>Association of</u> <u>Professional Engineers and Geoscientists of</u> <u>British Columbia.</u>

20.0 ILLUSTRATIONS

21.0 APPENDICIES

I Assays II Rock sample descriptions

Exploration Assistant

5,582,000

5,584,0000°N

5,584,0000°N

5,582,000

From:ECO TECH LAB

2505734557

ANALYTICAL CHEMISTRY

E-mail: info@ecotechisb.com www.acotechlab.com

ENVIRONMENTAL TESTING 10041 Dallas Drive, Kamloope, BC VSC 6T4 Phone (250) \$78-5700 Fax (250) 573-4587

ASSAYING GEOCHEMISTRY

22-May-06

Anglo Canadian Uranium 2589 Thompson drive Kamicope, BC V2C 4L5

Attention: Frank LaRoche

2006 INVOICE

		#:AK 06-381	
	DESCRIPTION	PRICE / SAMPLE	AMOUNT
4		6 50	28.00
4	MULTI-ELEMENT ICP (28)	7.00	28.00
3	AU ASSAY (30g)	12.50	37.50
I	AU/PD/PT ASSAY	30.00	30.00
		SUBTOTAL:	121.50
		& 7% G.S.T:	8.51
	TOTAL DUE & PAYABLE UP	ON RECEIPT:	130.01

THANK YOU!!

G.S.T. REGIS TRATION MANUER REESOS \$212

TERMS: HET 30 DAYS, INTEREST AT RATE OF 2 MER MONTH (24% PER ANNUN) WILL BE CHARGED ON OVERDUE ACCOUNTS.

				SAMPLE#	Au** ppb	
	_			G-1 19557 STANDARD Ox1	<2 <2 F41 795	
	group 3B - - Sanple ty	FIRE GEOCHEM AU - 7.5 G YPE: Silt SS80 60C	I SAMPLE FUSIO	N, DORE DISSOLVED IN AQUA	A - REGIA, ICP ANALYSIS. UPPER 1 05-25-2006 P04:22	IMITS = 10 PPM.
Data (PA	DATE RECEIVED:	MAY 19 2006	DATE REPORT MAIL	ED:	
			·			ALL
						8 mm
						Raymond Chan

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.) PHONE(604)253-3158 FAX(604)253-1716 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 GEOCHEM PRECIOUS METALS ANALYSIS Anglo-Canadian Uranium Corp. File # A602232 1150 - 355 Burrard St., Vancouver BC V6C 268 Submitted by: Len Harris SAMPLE# Au** ppb 24 24 22 22 G-1 19551 19553 19554 19555 19556 19558 STANDARD OxF41 36 5 796 GROUP 3B - FIRE GEOCHEM AU - 30 GN SAMPLE FUSION, DORE DISSOLVED IN AQUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 10 PPM. Ł - SAMPLE TYPE: Rock R150 05-26-2006 A11:56 Data JATA DATE RECEIVED: MAY 19 2006 DATE REPORT MAILED:..... All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

SAMPLE#	Mo	Cu	Pb DDD	Zn	Ag	Ni	Co	Mrs ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sib ppm	B t ppm	V ppm	Ca X	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	. В ррп.	AL X	Na %	к Х	N Ppm
- 1		<u>rr</u>		35	e 3	4	5	519	1.80	<2	8	<2	3	70	.5	<3	-3	31	.54	.068	8	10	.52	207	. 13	<3	.97	.09	.50	<2
6-1 019/70/	7	1	3	19	.5	ī	ž	241	1.57	8	<8	<2	<2	26	.7	<3	<3	16	. 19	.081	7	6	.21	37	.05	<3	.53	.03	.11	<2
n184705	4	<1	š	2	.3	1	1	128	.82	<2	<8	<2	<2	11	<.5	ଔ	<3	1	.19	.110	5	16	.02	15	.01	<3	- 09	.01	.02	~
B184796	21	<1	7	79	1.3	1	3	353	1,69	85	<8	<2	<2	11	<.5	্র	3	14	.09	.065	14	7	.64	38	<.01	<3	.77	-02	.13	2
B184797	32	3	3	18	2.8	1	2	121	1.35	89	<8	<2	<2	44	<.5	<3	3	15	.09	.059	14	ŕ	. 50	02	<.01	< <u>0</u> .	. 55	.05	. 10	~2
194709	1 14	10	4	16	35.4	2	z	168	.90	38	9	<2	<2	9	.5	ও	<3	6	.23	.026	4	13	.35	21	<.01	<3	.41	.01	.09	<2
5104770 519//700	47	2	ģ	21	1.8	<1	ź	184	1.60	88	<8	<2	<2	12	<.5	<3	<3	16	.08	.066	11	6	.50	31	<.01	<3	.63	.03	-18	<2
B184800	6	3	10	40	1.2	<1	3	300	1,82	76	<8	<2	<2	17	<.5	<3	ও	15	.13	.079	10	5	.48	- 44	<.01	<3	.76	.03	.20	~2
B184844	8	1	9	40	.8	<1	2	355	1.88	106	<8	<2	<2	43	<.5	্র	<3	31	.20	.082	14	4	.63	- 2)	-15	<u> </u>	.89	.04	. 16	~
8184845	8	2	7	40	.7	1	1	299	1.77	79	<8	<2	~	21	.5	ব	<3	23	.28	.075	8	2	.50	24	. 19	0	.00	.04	. 14	~2
F19/9/4	17	3	11	47	.0	<1	2	349	2.11	95	а	<2	<2	19	.6	<3	3	30	.29	.092	12	5	.57	38	.20	<3	.95	.05	. 14	2
B184847	6	18	3	40	1.0	2	ž	430	2.06	65	<8>	<2	<2	20	<.5	-3	<3	24	.34	.084	12	6	.71	42	. 18	<3	.99	.05	.17	<2
8184848	30	<1	8	18	.8	1	1	177	1.35	60	<8	<2	<2	28	<.5	ব্র	ব	16	.16	.055	11	5	.30	- 46	.13	<3	.54	.04	. 16	~
RE B184848	31	<1	11	18	.8	<1	1	179	1.37	64	<8	~?	~2	29	<.5	्य	্র	18	.16	.057	11	4	.30	47	.15	<5	. 07	.04	11/	~
STANDARD DS6	12	121	29	140	.4	25	13	703	2.83	21		~2_	3	41	6.4	3	5	57	.86	.080	14	188	.58	100	.08	10	1.93	.07	. 12	2

Altyresults are considered the confidential property of the client, Acme assumes the liabilities for actual cost of the analysis only.

Data____FA____

SAMPLE#	No	Cu	Pb	Zn	Ag	Ni	Ço	Mn	Fe	As	ប	Au	Th	Sr	Cd	Sb	ßi	V	Ca	P	La	Cr	Mg	Ba	τi	8	AL	Na	K	<u> 404</u>
	ppm	ppm	ppm	ppm	ppn	ppm	ppm	ppn	%	pom	ppm	ppm	ppm	ppn	ppm	ppm	ppn	ppm	%	%	nqq	ppm	x	ppn	%	ppm	2	%	<u>×</u>	P
G-1	1 1	3	6	48	.3	4	4	562	1.94	5	<8	<2	4	68	.8	3	<3	36	.57	.073	.2	12	.56	216	.13	<3	1.00	.09	.49	
B184761 B184762	3	13	10	34 42	.4	2	3	285	2.30	35	<8 <8	~	~	32	.6	୍ ଓ ଓ	<3	31	.45	.072	18	2	.02	100	<.01 17	د ح	.54	.03	.21	
B184763	5	12	15	35	.5	1	3	219	2.40	15	<8	<2	<2	31	<.5	उ	<3	26	.26	104	8	2	.27	70	. 14	હેં	.90	.04	. 19	
B184764	2	11	6	43	.3	3	3	340	2.38	13	<8	~2	<2	33	<.5	<3	<3	33	.35	.097	10	2	.38	55	.17	ও	1.06	.06	. 15	
8184765	4	7	8	35	.6	1	2	234	2.60	17	<8	~2	<2	35	<.5	ও	<3	36	.25	.101	9	z	.33	61	. 19	<3	.89	.06	. 15	
B184766	3	12	7	41	.3	1	2	293	2.21	15	<8	2	<2	45	<.5	ব	3	39	.29	.095	13	2	-42	77	.21	ও	1.09	.06	.16	
8184/6/	8	Å	8 0	29	.5	1	2	220	1.95	15	8> مر	~2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	32	<.5	3	~3	25	.51	.108	10	5	.23	57	.17	<3	.92	.05	.15	
8184769	Ś	12	7	53	.3	4	5	398	2.45	12	~8	<2	<2	41	.8	<3	3	38	.51	.110	11	4	.37	66	. 18	3	1.25	.05	.12	
B184770	3	13	8	54	.3	2	5	458	2.58	12	12	~ 2	<2	32	<.5	⊲3	<3	38	.36	.110	12	3	.46	74	. 19	<3	1.09	.05	. 14	
6184771	1	12	8	64	.3	2	4	352	2.39	9	<8	<2	<2	33	<.5	ও	<3	37	.34	.102	18	2	.36	68	.20	<3	1.21	.05	.16	
B184772	2	9 9	9 6	58 38	<.5	2	4	208	2.20	12	<8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	35 70	.)	3	~ ব	35 20	. 55	.099	16	23	.30	70	.19	<3	1.16	.05	.16	
B184774	3	7	7	30	.5	ī	3	206	2.17	16	<8	<2	<2	31	<.5	उँ	3	29	.24	.098	7	ž	.17	65	.20	⊰उ	.82	.05	. 15	
B184775	1	13	8	52	.3	2	3	394	2.41	12	<8	<2	<2	31	<.5	ও	<3	44	.32	. 164	10	2	.38	67	.20	<3	1.07	.06	.09	
B184776	1	9	7	56	<.3	2	4	436	2.41	7	<8	<2	<2	41	<.5	<3	<3	43	.47	.112	17	3	.47	53	.22	<3	1.17	-06	.10	
RE 8184776	1	. 9	10	56	.3	2	3	425	2.35	10	<8>	~2	~	40	<.5	<3	3	44	.47	.109	17	3	.46	52	.22	<3	1.12	.05	. 10	
B184778	1	24	12	60	.3	ž	3	426	2.32	13	<8	<2	~2	40	<,5	উ	3	44	.43	.101	13	2	.54	58	.22	د 3>	1.23	.05	.10	
8184779	1	12	10	44	<.3	2	2	321	2.19	24	<8	<2	<2	40	<.5	ব	<3	39	.35	.094	10	3	.39	61	.20	ও	1.15	.05	.09	
B184780	3	9	10	38	<.3	3	2	306	2.32	13	<8	<2	<2	52	<.5	ব	<3	41	.40	.116	10	2	.35	74	.20	<3	1.19	.05	. 11	
B184781	2	.8	10	36	.3	1	2	268	2.28	13	<8	~2	<2	41	<.5	<3	3	43	.37	.101	11	- 3	.30	74	.22	<3	1.07	.05	.13	
B184783	3	16	4	48	<.3	ź	ž	422	2.27	19	<8	₹.	<2	34	.5	3	<3	42	.41	.104	9	ź	.30	64	.23	ও	1.28	.05	.11	
в184784	3	10	8	59	<.3	2	3	419	2.26	20	<8	<2	<2	29	<.5	<3	<3	40	.35	.105	10	2	.45	81	.22	<3	1.10	.05	. 12	
8184785	5	8	5	40	.3	1	2	277	2.24	18	<8	<2	<2	32	<.5	<3	<3	30	.31	.107	10	1	.31	73	.22	ও	.95	.05	. 14	
B184/86 019/787	8	7	10	19	-4	1	1	119	1.90	20	<8 <8	<2	<2	26	.5	<3	<3	21	.25	.099	7	2	.10	88	.19	৾৾	.79	.04	.20	
B184788	6	8	6	27	.6	i	ź	244	2.85	18	<8	~2	<2	42	<.5	-3	3	30	.35	.129	, ç	1	.24	83	.20	3	1_04	.05	.17	
B184789	14	5	6	12	.7	1	2	77	1.91	14	<8	<2	<2	31	<.5	3	<3	16	.15	.081	5	2	.05	93	. 15	4	.57	.02	.21	
B184790	13	6	3	11	.8	ź	1	43	2.11	18	<8	~2	<z< td=""><td>26</td><td><.5</td><td><3</td><td><3</td><td>16</td><td>.15</td><td>.092</td><td>6</td><td>4</td><td>.04</td><td>85</td><td>,17</td><td><3</td><td>.55</td><td>.03</td><td>.20</td><td></td></z<>	26	<.5	<3	<3	16	.15	.092	6	4	.04	85	,17	<3	.55	.03	.20	
6184791	14	5	7	13	.8	1	2	119	2.32	19	<8	<2	<2	29	<.5	3	ও	SO	.18	.092	6	Z	.10	98	. 15	4	.70	.03	.22	
B184793	ź	9	13	18	.3	1	ź	145	2.75	14	<0 <8	~2	~	77	<.5 <.5	3	<3 <3	17	.10	.114	5	<1	.11	138	. 18	<3 3	1.22	.05	.19	
STANDARD DS6	11	125	27	145	<.3	25	11	691	2.79	21	8	<z< td=""><td>3</td><td>41</td><td>6.0</td><td>4</td><td>6</td><td>55</td><td>.85</td><td>.078</td><td>14</td><td>186</td><td>.56</td><td>165</td><td>.08</td><td>K</td><td>198</td><td>IN.</td><td>700</td><td><u>.</u></td></z<>	3	41	6.0	4	6	55	.85	.078	14	186	.56	165	.08	K	198	IN.	700	<u>.</u>
GROUP 10 - 0 (>) CONCENTR	.50 GI ATION	SAMP EXCEP FOR P	PLE LE EDS UE ROCK #	EACHE PPER AND C	D WIT LIMIT: ORE S	H 3 MU S. SC Amples	. 2-2 3ME M 5 IF	-2 HC INERA CU PE	L-HNO Ls Ma'	3-H20 Y BE S > 1	AT 9 PARTIJ %, AG	5 DEG ALLY / > 30	. C FI ATTACI PPM (DRON KED.	e houi Refr/ > 1000	R, DE ACTOR) PPB	LUTED Y AND	TO 1 GRAP	O ML, Hitic	ANALY SAMPL	SED B Es cai	Y ICP N LIM	-ES. IIT AU	SOLU		J.H.B.	12	h	-	<
ACCAY DECONN	ENDED	FORF	10CK #	AND C	ORE S.	AMPLES	5 I F	CU PB	ZN A	s > 1:	%, AG	> 30	PPM (L AU	> 1000) PPB									- 10	(114	11	-	

.

	SAMPLE#	Au ppb	
	B184761 B184762 B184763 B184764 B184765	21 4 3 2 2	
	B184766 B184767 B184768 B184769 B184770	2 2 1 1 2	
	B184771 B184772 B184773 B184774 B184775	1 2 2 3 1	
	B184776 B184777 B184778 B184779 B184779 B184780	<1 1 1 3 2	
	B184781 B184782 B184783 B184784 B184784 B184785	2 2 2 3 3 3	
	B184786 B184787 B184788 RE B184788 B184789	4 3 4 4 4	
	B184790 B184791 B184792 B184793 STANDARD OxF41	5 5 3 2 815	
GROUP 38-MS - FIRE GEOCHEM AU - 3	30 GM SAMPLE FUSION, DORE DISSOLVED IN ACID, ANAL	YZED BY ICP-NS. SENI-QUANTI	TATIVE FOR RH.

.

	Anglo-Canadian Uranium Corp.	FILE # A602705R	Page 2
	SAMPLE#	Au ppb	
	B184794 B184795 B184796 B184797 B184798	1 <1 20 23 75	
	B184799 B184800 B184844 B184845 B184846	25 10 28 10 19	
	B184847 B184848 RE B184848 STANDARD OXF	11 14 14 41 817	
<u>Sample type</u>	: Rock Pulp. Samples beginning 'R	E' are Reruns and 'RRE'	are Reject Reruns.
<u>Sample type</u>	: Rock Pulp. Samples beginning 'R	E' are Reruns and 'RRE'	are Reject Reruns.
<u>Sample type</u>	<u>: Rock Pulp. Samples beginning 'R</u>	E' are Reruns and 'RRE'	<u>are Reject Reruns.</u>
<u>Sample type</u>	<u>: Rock Pulp. Samples beginning 'R</u>	E' are Reruns and 'RRE'	<u>are Reject Reruns.</u>
<u>Sample type</u>	<u>: Rock Pulp. Samples beginning 'R</u>	E' are Reruns and 'RRE'	are Reject Reruns.
<u>Sample type</u>	<u>: Rock Pulp. Samples beginning 'R</u>	<u>E' are Reruns and 'RRE'</u>	<u>are Reject Reruns.</u>
<u>Sample type</u>	<u>: Rock Pulp. Samples beginning 'R</u>	<u>E' are Reruns and 'RRE'</u>	<u>are Reject Reruns.</u>
<u>Sample type</u>	<u>: Rock Pulp. Samples beginning 'R</u>	<u>E' are Reruns and 'RRE'</u>	<u>are Reject Reruns.</u>
<u>Sample type</u>	<u>: Rock Pulp. Samples beginning 'R</u>	<u>E' are Reruns and 'RRE'</u>	<u>are Reject Reruns.</u>
<u>Sample type</u>	<u>: Rock Pulp. Samples beginning 'R</u>	<u>E' are Reruns and 'RRE'</u>	<u>are Reject Reruns.</u>
<u>Sample type</u>	<u>: Rock Pulp. Samples beginning 'R</u>	<u>E' are Reruns and 'RRE'</u>	<u>are Reject Reruns.</u>

ncouver, BC C 2G8		Date: J	602705R ul 5 2006
SAY		PRICE	AMOUN
OUP 3B-MS - AU @		15.62	702.9
	GST Taxable 6.00% GST		702.9 42.17
	CAD \$		745.0
	SAY ROUP 3B-MS - AU @ submitted by Len Harris CE REFLECTS 10% DISCOUNT 1 E-DATA 1	SAY ROUP 3B-MS - AU @ GST Taxable 6.00% GST CAD \$ Submitted by Len Harris CE REFLECTS 10% DISCOUNT 1 E-DATA 1	SAY PRICE SAY PRICE ROUP 3B-MS - AU @ 15.62 GST Taxable 6.00% GST CAD \$ Submitted by Len Harris CE REFLECTS 10% DISCOUNT 1 E-DATA 1

								AII	<u>g r c</u>			1150	an - 3	555	Burr	ard	St.	, Va	ncou	ver	SC V	50 20	68	100		 										
ample#	Mo mqq	Ըս p p n	Pb ppm	Zn ppm	Ag ppm	N i ppm	Co ppm	Mn ppm	Fe %	As ppn	i U ippre	Au ppb	Th ppm	Sr ppm	Cd pp⊓	Sb ppm	Bi ppm	v ppra	Ca ≭	Р Х	La ppm	Cr opm	Mg X	Ba ppm	Ti Xi	В ррп	A1 \$	Na X	K X	H W qqianqo	lg xmr ⊑	Sc T prepp	n X	Ga ppm p	Se Sa Dm	nple ko
к-1 К-15 ∠ с с. К-2 К-3 К-4	.4 9 2.7 .3 3.2	20.6 98.7 45.1 105.0 13.6	3.1 2.7 5.2 1.9 .8	50 56 71 3 15	< 1 < 1 < 1 < 1 < 1 < 1	23.4 98.4 26.1 12.2 5.6	8.0 26.3 18.8 2.0 2.5	548 503 770 88 187	1.97 3.72 4.29 .30 .96	<.5 2.1 10.6 2.0	3.0 	.9 1.4 1.3 1.4 1.2	4.4 1.5 .7 2.9 .4	66 133 42 4 18	<.1 .1 <.1 <.1 <.1	<.1 .4 .4 <.1	.1 <.1 <.1 <.1	36 92 113 3 19	.54 1.65 2.24 .09 .10	.073 .125 .165 .005 .014	9 10 12 3 3	8 65 2 31 1 4 7	.59 2.17 1.88 .04 .25	219 19 46 19 119	.136 .383 .233 .003 .013	1 1 2 3 2 3 1 2	1.01 3.09 3.15 .25 .62	.087 .222 .034 .073 .082	.52 .03 .05 .12 .10	.2<.0 3 .0 .1<.0 .1<.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0 5.7 < 1.1 <. 1.5 <.	\$ <.05 L .45 L .31 L <.05 L .14	5 < 9 < 12 < 1 < 3 <	.5 .5 .5 .5	3.4 1.0 1.0 2.0
K-5 K-6 K-7 K-8 K-9	.5 .4 .3	27.7 47.6 27.6 29.9 57.0	1.3 1.3 1.2 1.8	26 31 34 32 32	< 1 < 1 < 1 < 1 < 1	10.0 4.0 5.7 2.9 3.6	2.6 2.9 2.9 2.2 3.3	340 444 405 368 538	1.72 1.85 1.97 1.81 2.22	1.6 1.7 1.4 1.8 1.8	5 .4 7 .5 1 .3 3 .4 8 .6	<.5 1.1 <.5 .7 3.6	1.3 1.3 1.3 1.3 1.3	45 54 55 46 62	<.1 <.1 <.1 <.1 <.1	.1 .1 .1 .1	.1 .1 .1 .1	25 32 28 25 47	.24 .29 .29 .23 .35	. 048 . 048 . 052 . 047 . 065	3 4 3 5 5	4 5 4 5	. 39 . 45 . 47 . 43 . 55	49 63 54 52 57	.060 .076 .074 .068 .090	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	1.00 1.07 1.00 .88 1.16	.114 .148 .119 .125 .142	.19 .27 .24 .19 .30	.2 .0 .1 .0 .1 .0 .1 .0 .1 .0	05 1 04 1 05 1 06 1 06 1	L.8 <. L.9 . L.7 . L.9 <. 2.1 .	1 .38 1 .75 1 .85 1 .55 1 1.27	5 61 5 61	.0.9.5.2	1.6 4.1 2.0 3.1 2.1
K-10 K-11 K-12 K-13 K-14	.4 .4 .3 .2 .8	7.1 12.5 80.2 4.9 4.6	2.0 1.6 .3 2.1 1.5	14 87 147 9 13	<.1 <.1 <.1 <.1	2.1 2.2 26.6 2.5 1.7	1.4 8.4 44.3 2.1 2.3	186 760 1681 249 316	1.55 3.88 8.07 1.05	2.1 1. 1.	0 .5 3 .4 6 .1 9 .2 8 .5	1 3	1.1 .9 .1 1.5 .8	43 104 167 4 23	<.1 <.1 <.1 <.1	.1 <.1 <.1	.2 .1 <.1 <.4	24 83 270 13 11	.12 .47 1.38 .05 .06	.044 .097 .045 .008 .022	3 4 1 4 4	4 2 31 3 5	.33 1.29 3.85 .04 .30	35 68 125 61 42	.029 .071 .078 .003 .010	1 2 1 2 1	.75 2.34 3.34 .39 .62	.101 .124 .123 .040 .067	.11 .42 .09 .06 .22	.1 .(<.1 .: <.1 .(.1 .(.1 .(07 16 01 1 01 01	1.5 <. 5.5 . 5.8 <, 2.2 <. 1.0 .	1 .29 1 1.96 1 .42 1 < .05 1 1.56	4 - 10 12 - 2 - 3 -	.5 .5 .5 .5	3. 3. 4. 2. 3.
5K-15 5K-16 5K-17 7E SK-17 5K-18	2.9 3.0 .5 .5	4 7 13 0 4 9 5 1 4 2	4.7 1.5 3.9 3.8 3.6	9 19 13 11 10	<.1 <.1 <.1 <.1	1.6 1.6 1.2 1.9	3.5 1.9 .6	83 256 147 149 124	2.23 1.63 1.39 1.42 1.20	8 1.0 8 8.1 9 2.1 1 2.1 5 3.1	6 .3 8 .3 2 .4 2 .4 5 .6	2.3 <.5 <.5	.4 .8 .7 .7	13 63 76 78 326	<.1 <.1 <.1 <.1 <.1	1	<.1 .1 .2 .2	4 22 16 16 18	.06 .18 .53 .54 3.65	.014 .042 .035 .035 .021	1 3 3 4 3	4 4 2 2 1	.10 .37 .28 .28 .24	103 42 26 27 22	.015 .035 .025 .027 .036	1 1 1 <1	.46 .83 1.26 1.31 5.98	.062 .092 .062 .063 .021	.12 .14 .13 .14 .25	.2 .1 .1 .1 .2 .1 .1 .	01 05 05 05 15	.5 < 1.4 < .9 < 1.0 < 1.3 <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 4 6 20	.7 .9 .6 .7 .9	2. 2. 1. 2.
5K-19 19582 19583 19584 19584 19585	+ 7 NE	13.8 4.9 3.9 16.9 61.7	1.4 2.1 2.3 1.4 1.6	105 12 11 95 107	<.1 <.1 <.1 <.1	2.2 1.8 1.5 1.4 1.8	9.9 1.1 2.5 9.5	893 153 138 829 604	3 3.94 1.22 3 1.42 5 3.92 4 3.21	1 2. 2 1. 2 2. 1 2. 3 79.	5 .2 3 .2 6 .3 2 .3 0 .1	<.! <.! 1.9	5 .6 5 .5 5 .5 9 .8	134 44 56 122 112	<.1 <.1 <.1 <.1 2 <.1	.2 <.1 <.1 .2	<.1 .1 .2 <.1	95 13 12 92 61	.79 .10 .10 .78 .95	.099 .028 .028 .099 .082	4 2 4 3	2 2 4 2 3	1.30 .28 .24 1.29 .91	82 38 39 80 57	.161 .017 .020 .161 .077	3 1 1 2 3	2.37 .64 .58 2.25 1.68	.182 .077 .089 .176 .223	.26 .10 .13 .23 .29	.1 . .2 . .2 . .1 .	13 05 05 12 01	7.0 1.1 < .9 7.3 3.8	1 1.79 1 .22 1 .77 1 1.70 1 2.30	5 10 2 3 - 3 9 - 3 9 - 1 7 -	.6 .5 .7 .5	2. 1. 1. 1.
TANDARD DS7	20.8	107.6	70.2	414	.9	55.9	9.6	63	2.4	L 49.	24.9	67.9	9 4.5	72	2 6.4	6.0	4.7	84	.94	079	13	162	1.06	378	.127	40	.98	.075	.44	3.8 .	20	2.5.4.	2.2	3 5 3	3.7	
ROUP 10X - (>) concent - sample ty	15 G RATIO	i sani E exci Dock R	PLE L EEDS 150	eac: Uppi	HED ERL Samp	WITH Imit Les :	90 M S. S begir	IL 2- XOME Ining	2-2 MINE 'RE	HCL-I RALS / are	NO3- NAY E Ref	H20 BE P runs	AT S ARTS and	75 DI IALL 'RRI	EG. Y At <u>E' a</u>	C FI ITACI are I	OR O KED. Reje	NEH RE ct R	OUR, FRAC	DILU Tory <u>s.</u> -20		TO 3 GRAF	300 PHIT	ML, ICS	ANAL) AMPLE	(SED Es c/	BY AN L	ICP-N Imit	IS. AU S	OLUB	ILIT	۲.		_		
ita <u>†</u> B	"A		ſ	AT	e p	ECE	IVE	D:	JUL	12	2006	D	ATE	RE	₫₽0	RT	MA	(LRI	D:.	•••		···	••••	•••		ł		•		JHI.	ale .	/য	<u>à</u> /	SR		
															2	C	>	Ę) -0	0	-5	S	0	0	fa	1	n	(L	2 (9 51-	0	-1	/	2021		
															-			(2	6	er	ù	1	3							Č	2	$\tilde{\Box}$		¢/	

ACME ANALYTICAL LABORATORIES LTD.

852 East Hastings,, Vancouver, B.C., CANADA V6A 1R6 Phone: (604) 253-3158 Fax: (604) 253-1716 Our GST # 100035377 RT

ANGLO-CANADIAN URANIUM CORP. 1150 - 355 Burrard St. Vancouver, BC V6C 2G8

Inv.#: A603551 Date: Aug 5 2006

QTY	ASSAY	PRICE	AMOUNT
23 23	GROUP 1DX (15 gm) @ R150 - ROCK @	13.50 5.10	310.50 117.30
	GST Taxable 6.00% GST		427.80 25.67
	CAD \$		453.47

COPIES 1

Please pay last amount shown. Return one copy of this invoice with payment. TERMS: Net two weeks. 1.5 % per month charged on overdue accounts.

[COPY 1]

						<u>~</u>	1150	- 355	Buri	rand	<u>a (</u> Şt.,	Van Van		um er B	C V60	<u>р.</u> с 268	1 3 5	⁺1⊥e Submit	#. ted by	A60 /:Ler	4-00 1 Hai	37 ris								T
SAMPLE#	Mo	D) : D) :	Pto	Zn ppn	Ag ppm	N i ppm	Co Mi pipar pipa	ר Fi	≗ As Copr	i U	Au	Th DDD	\$r PDM	Cd	Sb	ខំ	V	Ca	<u>و</u>	La	Cr	Ng	Ba	TI	В	Aí	Na	ĸ		Sample
G-1	<1	2	- 5	44	~ 2	6	4 5/	7 1 0				, ,			-	-			^	ppa	ppm	74	ppm	%	ppm	%		%	ppm	kg
BCRC-12	<1	õ	13	46	23	5	4 24	2 2 1	> <2	<8 _0	<2	4	56	<.5	<3	3	38	.51	.074	7	46	.61	234	- 14	<3	. 95	.07	52	,	_
BCRS-13	<1	11	8	62	<.3	10	6 58	7 2 3	, ~2	20	~2		20	<.5	<5	4	19	.50	.087	18	3	.37	131	. 04	<3	.97	.05	.19	5	7 80
BCRS-15	1	14	8	65	<.3	12	8 53	2 7	2	- 28	.5	~	22	5.2		< <u>\$</u>	16	1.21	.091	21	5	.40	108	<.01	3	1.10	.05	.23	2	1 31
BCRS-17	19	2	7	7	<.3	2	<1 255	.79	4	<8	-2	<2	39	<.5	3	<3	39	3.40	.092	10	8	.80	51	. 16	3	1.62	.05	- 16	<2	2.32
BCRS-18	1	20	6	60	. 7	22	8 414	7 54				-		_	_	-				•	U.	.04	10	.01	<5	.45	.0Z	.05	<2	1.55
RE BCRS-18	11	19	6	60	< 3	32	8 619	3.70	. 0	-9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	29	<.5	<3	4	75	.70	.101	8	40	1.72	21	.32	<3	1.96	.20	. 08	2	3 42
BCRS-19	1100	ŝ	õ	23	. 4	1	1 187	2.43	12	×0 ~0	~~~	-2	29	<.5	7	10	74	.69	.102	8	40	1.74	21	.31	<3	1.95	20	08	õ	3.02
BCRS-21	17	42	-3	51	.7	25	7 477	3 97	12	-0	~	~~	130	<.>	<3	5	16	.10	.093	7	5	.21	37	.01	<3	.46	.07	. 09	2	1 70
BCRS-23	1	10	9	58	<.3	1	3 733	2.45	5	<8	۰ź	2	22	< 5	د ح	10	75 38	2.04	.157	8 15	40	1.05	17	- 20	<3	5.25	.80	.08	<2	2,93
BCRS-25	8	3	6	16	<.3	2	<1 100	1 27	-	-9	~2	~7	3/								-	.00	27	.09	50	1.18	.06	.08	<2	2.19
502224N 1213405W	. <ĭ	56	9	46	<.3	31	16 611	4 68			2	< <u>2</u>	24	5.5	ও	<3	16	.16	.066	5	6	. 17	33	.09	<3	.31	.04	. 10	-2	2 52
607951E 5582705N	1 1	8	6	33	< 3	2	1 210	1 71	18	~0	~	+	24	<u>.</u>	4	13	72	.31	-009	14	16	1.18	33	.08	4	2.51	.04	10	2	1 26
DD SHOWING	<1	22	8	113	< 3	5	6 740	1 89	10	~	~	2	47	<. <u>></u>	<5	4	18	.14	.082	17	4	.Z1	108	01	<3	.62	.04	.28	2	1 00
DD SHOWING FLOAT	<1	10	<3	11	.7	4	2 300	.68	ź	<8	~2	<2	4	<.5	<3	<3	36 9	2.19	.053 .017	2	10 10	.55 .23	14 21 •	.12 .01	ও ও	.91 .39	.02 <.01	.08	22	2.90
JJ SHOWING	<1	36	7	58	<.3	27	14 680	3,65	7	<8	~2	4	107	< 5	6	0 1	10	1 75	100	• /									~	
JJ SHOWING FLOAT	<1	39	7	48	<.3	15	10 524	2.85	11	<8	<2	ż	43	<.5	š	-3	72	60	- 109	(4	28	1.46	66	.35	4	2.30	. 12	. 10	<2	2.10
STANDARD DS/	20	95	63 3	593	.8	48	8 594	2.27	48	<8	2	5	68	5.6	10	9	74	.89	.071	11 1	49	1.05	374	.28	<3 74	1.45	.08	.36	<2	1.42
GROUP 1D - 0.50 GM S/ (>) CONCENTRATION EXC ASSAY RECOMMENDED FOR - SAMPLE TYPE: ROCK R	AMPLE CEEDS R ROC R150	LEAU UPPI K AND	CHED ERLI COF Sampl	WITH MITS LE S/ Les L	H 3 H S. S AMPLI begin	NL 2 SOME ES II	2-2 HC MINERA CU PB	L-HNO LS MA' ZN A: are Ro	3-H20 Y BE S > 1 <u>sruns</u>	PART X, Au and	95 DI TALL1 5 > 3 <u>'RR</u> 8	EG. (Y AT SO Pi E' ar	C FOI FACKI PM & Ce Ro	RONNE ÉD. AU⇒ <u>₽iect</u>	E HOU REFR 100 t Ren	IR, D IACTO IG PP I <u>URS.</u>	ILUT RY A B	ED TO	10 ML PHITI	, ANA C SAM	il yse Iples	D BY Can	ICP-E . IMI T	S. AU S	SOLUB	ILITY				
Data Fra		ויחי ארו	e bi	0/10	1.1.1.1	-					_				Ųδ	3-0	7-2	2006	P12	2:11						_		-		
		DAL	3 61	SCE	TAR	D:	JUL Z	1 200	5 D	ATE	RE	POR	TM	AII	ED:	•••	•••		• • • •	• • •					18	2	δĪδ	20		
																								6	Str.		_		Ś	λ
																								/9	7	1	ť.		- Y	<u> </u>
																								19		L.	h-		_]	N N
																								1	<u>/</u>	Clare	nca L		+4	
																								Ň	A			Sound	K	7
																										_				

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

4

ACMN ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER (ISO 9001 Accredited Co.) GEOCHEMICAL ANALYSIS C	BC V6A 1R6 PHONE(604)251-3158 FAX(604)253-1110 ERTIFICATE
Anglo-Canadian Uranium Corp. 1150 + 355 Burrard St., Vancouver BC V6C 268	File # A604037 Submitted by: Len Marris
SAMPLE#	Au* ppb
G-1 BCRC-12 BCRS-13 BCRS-15 BCRS-15 BCRS-17	.8 .9 .5 1.1 1.9
BCRS-18 RE BCRS-18 BCRS-19 BCRS-21 BCRS-23	4.8 4.2 4.4 23.4 1.8
BCRS-25 502224N 1213405W 607951E 5582705N DD SHOWING DD SHOWING FLOAT	1.4 1.5 4.6 299.8 810.8
JJ SHOWING JJ SHOWING FLOAT STANDARD AU-R	3.8 746.4 482.4
AU* GROUP 3A - IGNITED, ACID LEACHED, ANALYZED BY ICP- - SAMPLE TYPE: ROCK RISC - Sample Type: ROCK RISC	MS. (15 gm) : Reruns.
	006-65-12 A 1:0;
Data FA DATE RECEIVED: JUL 21 2006 DATE REPORT MAILED:	
	Reymond Chan
All results are considered the confidential property of the client. Acme assumes the liabil	ities for actual cost of the analysis only.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TRSTING

10941 Datian Drive, Kamicope, BC V2C 6T4 Phone (260) 573-5700 Rex (250) 573-4557 E-mail: info@ecoustblab.com www.ecotachiab.com

CERTIFICATE OF ASSAY AK 2005-381

Anglo Canadian Uranium 2589 Thompson drive Kamioope, BC V2C 4L5

22-May-08

Attention: Frank LaRoche

No. of samples received; 4 Sample Type: Rock Submitted by: Frank LaRoche

.

ET #.	Tag #	Au (g/t)	Au (ozit)	Pt (911)	(02/i)	Pd (a/t)	· Pd (out)
1	SA-1	<0.03	<0.001				
2	SA-2	<0.03	<0.001				
3	SA-3	<0.03	<0.001				
4	SA-4	<0.03	<0.001	<0.03	<0.001	<0.03	<0.001

QC DATA:								
1	SA-1	<0.03	<0.001					
Repeat: 1	SA-1	<0.03	<0.001					
Standard: PG113		0.48	0.014	1.44	0.042	0.40	0.012	
					TEC			Ŧħ
JJ/ga XLS/06					مرد م.م	a Jerguse . Cantied /	ayayar	
				Pa	je 1			
 A second s	· · · · · · · · · · ·							

10041 () KANLO V2C \$14	:CH LABOR Ialas Drive OPS, 8.C. I	MJORY LTI						ICP (ERT	FICA	ATE OF	ANA	L yss	AK 28	0 -3 2	1						Ang 258 Kat V20	pio Cas 9 Thom 1 Icops 14/5	nadila Npson 5, BIC	n Ura I dilve	nðura :	
(1) 1		-																				Atten	ntices f	"rank	Laito	ine ent	
Fant : 2	50-573-456	7																				No. c Sang	af Savapı Mə Typa	ine roc In Roc	anted	4	
Valves is	o pyna sain	ss otherwise) miloca	rini																		Saba	niloci bj	r. Fa	nk Lai	Roche	
	Tage	Ag Al Y	A	Ba	Bi i	<u>Ca %</u>	Cal	Co	Cr	Ċu	Po %	La	Ma %	No.	No	Na %	H	-	26	54	3.	*	T 1%	Ð	v	-	
			100	120	¢.	>10	4	63	- 59	100	6.25	<10	1.03	2058	2	0.04	- 14	20	4	ব	0	361	0.02	<10	184	<#	-
	SA-1	-0.2 0.3					-	-		_	-				-	-				_							
<u></u>	94-1 54-2 54-3	<0.2 0.3	~5 15	130	5	≥90 0.9#	7	25	84 60	29	9.67	<10	0.19	1272	5	0.02	- 14	700	4	<5	<20	140	-4.01	<10	486	<10	

1 557	OC DATA: Respil:	SA-1	-0.2 0.44	40 138	\$	>10	<1	18	90	95	5.91	<10	0.99	1934	2	0.04	13	290	6	\$	<20	351	0.03	<10	£1	ব0	13	36
250573-	Schooling: GED/08		1.4 1.57	5 5 145	ব	1.72	<1	19	62	66	4.84	-10	0.74	738	<1	0.03	30	630	74	Ą	<20	58	٩,1	< 10	70	<10	10	72

From:ECO TECH LAB

MAR BRACK POR ECTECH LABORATORY LTD. Juli Joshnece B.C. Certified Asserger

Page 1

Sample Nr Easting 601149 Northing Lab No. 5582320.0 Description rock grab, silicified and pyritic volcanic 60092 5582051.0 SA1 rock grab, silicified and pyritic volcanic 60192 5581996.0 SA3 rock grab, silicified and pyritic volcanic 60192 5581996.0 SA3 rock grab, silicified and pyritic volcanic 60192 5582164.0 SA4 rock grab, silicified and pyritic volcanic 601939 5582164.0 SA4 rock grab, silicified and pyritic volcanic 601939 5582362.0 SK2 Rock-float 601238 5583903.0 SK3 Rock - float quartz vein, minor pyrite 601178 5583492.0 SK4 Rock - float pyritic granite, gosanous 600542 5582956.0 SK1 Rock - eldrock outcrop, pyritic granite, gosanous 600544 5582950.0 SK1 Rock - Float, granite 600324 5582174.0 SK 12 Rock - Bedrock outcrop 600384 55827174.0 SK 13 Rock - Bedrock outcrop 600386 5582419.0 SK 14 Rock - Bedrock outcrop	Mo 2 5 1 0.9 2.7 0.3 3.2 0.5 0.4 0.4 0.3 0.2 0.8 2 9	Cu 106 29 6 332 98.7 45.1 105 13.6 27.7 7.1 12.5 80.2 4.9 4.6 4 7	Pb 4 2 10 30 2.7 5.2 1.9 0.8 1.3 2 1.6 0.3 2.1 1.5 4 7	Zn 36 52 44 27 56 71 3 15 26 14 87 147 9 13 9	Ag 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ni 14 14 3 7 98.4 26.1 12.2 5.6 10 2.1 2.2 26.8 2.5 1.7 1.6	Co 19 23 6 26 26.3 18.8 2 2.5 2.6 1.4 8.4 44.3 2.1 2.3 3.5	Mn 2038 1272 303 229 503 770 88 187 340 186 760 1681 249 316 83	Fe 6.25 9.67 1.4 5.41 3.72 4.29 0.3 0.96 1.72 1.55 3.88 8.07 1.05 1.8 2.23	As 35 5 15 15 2.1 10.6 2 <.5 1.6 2 1.3 0.6 1.9 0.8 1.6	U 10 10 10 0.8 0.3 1.5 0.2 0.4 0.5 0.4 0.1 0.2 0.5 0.3	Au 0.03 0.03 0.03 0.03 1.4 1.3 1.4 1.2 <.5 1.3 <.5 0.8 <.5 <.5 <.5 2.3	Th 1.5 0.7 2.9 0.4 1.3 1.1 0.9 0.1 1.5 0.8 0.4	Sr 361 149 200 133 42 4 18 45 43 104 167 4 23 13	Cd 1 1 0.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <	Sb 5 5 5 0.4 0.4 <.1 <.1 0.1 0.1 0.1 0.1 0.1	Bi 5 5 5 0.1 <.1 <.1 0.1 0.1 0.1 0.1 0.1 <.1 0.4 <.1	V 184 146 19 250 2113 3 19 25 24 83 270 13 11 4	Ca >10 0.1 0.96 5.72 1.65 2.24 0.09 0.1 0.24 0.12 0.47 1.38 0.05 0.06	P 229 100 140 0.125 0.165 0.015 0.014 0.048 0.044 0.097 0.045 0.008 0.022 0.014	La 10 10 10 10 12 3 3 3 3 4 1 4 4 4 1	Cr 59 84 90 65 31 4 7 4 4 2 31 3 5 4	Mg 1.03 0.19 0.49 0.58 2.17 1.88 0.04 0.25 0.39 0.33 1.29 3.85 0.04 0.3 0.1	Ba 130 130 40 30 19 46 19 119 49 35 68 125 61 42 103	Ti 0.02 0.01 0.08 0.09 0.383 0.233 0.003 0.013 0.06 0.029 0.071 0.078 0.003 0.01 0.015	B 2 2 1 2 1 1 2 1 2 1 2 1 1 2 1	Al 0.39 0.41 0.62 5.8 3.09 3.15 0.62 1 0.75 2.34 3.34 0.39 0.62 0.46	Na 0.04 0.02 0.05 0.39 0.222 0.034 0.034 0.082 0.114 0.101 0.123 0.04 0.067 0.062	K 0.03 0.05 0.12 0.1 0.19 0.11 0.42 0.09 0.06 0.22 0.12	W 10 10 10 0.3 0.3 0.1 0.1 0.2 0.1 <.1 <.1 0.1 0.2	Hg 0.02 0.01 <.01 0.05 0.07 0.16 0.01 0.01 0.01 0.03 0.01	Sc 4.5 5.7 1.1 1.5 1.8 1.5 6.5 16.8 2.2 1 0.5	TI <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1	S 0.45 0.31 <.05 0.14 0.29 1.96 0.42 <.05 1.56 0.25	Ga 9 12 1 3 5 4 10 12 2 3 2	Se <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	Au** Pt	Pd 0.03 0.00
601018 5583021.0 SK16 Rock-Float 600821 5582956.0 SK17 Chip sample - over 2.5 m - horiz, rusty granite 600821 5582956.0 SK17 Rock-Bedrock outcro 600523 5583073.0 SK19 Rock-Bedrock outcro 600703 5582680.0 BCRC-12 Rock-Bedrock outcro 607045 5582680.0 BCRC-12 Rock-Bedrock outcro 607053 5582680.0 BCRC-13 collected in the area of most intense altered area. This alteration 607083 5582680.0 BCRC-14 consisted of hematization, pyritization and silicification 6070705 5582643.0 BCRC-16 the rocks are rusty and hard. 607162 558267.0 BCRC-17 * 607162 558267.0 BCRC-21 * 607042 5582660.0 BCRC-21 * 607042 5582660.0 BCRC-21 * 607143 5582660.0 BCRC-22 * 607143 5582660.0 BCRC-23 * 607143 5582660.0 BCRC-23 * 607143 5582660.0 BCRC-24 * 607143 5582660.0 BCRC-23 * 607143	3 0.6 0.5 0.4 <1 <1 1 19 <1 100 17 1	13 4.9 4.2 13.8 9 11 14 20 5 42 10 10	1.5 3.9 3.6 1.4 13 8 8 7 6 9 9 <3 9 9	19 13 105 46 62 65 7 60 23 51 58 58	<1 <1 <1 <1 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	1.6 1.2 0.7 2.2 5 10 12 2 33 1 25 1 1	1.9 0.5 0.5 9.9 4 6 8 <1 8 1 7 3 3	256 147 124 893 208 587 534 255 616 187 473 733 733	1.63 1.39 1.26 3.94 2.11 2.37 2.71 0.79 3.52 2.18 3.87 2.45 2.45	8.8 2.2 3.5 2.5 <2 2 <2 4 6 12 93 5 5	0.3 0.4 0.6 0.2 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8	<.5 <.5 <.5 0.5 <2 2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	0.8 0.7 0.8 0.8 2 <2 <2 <2 <2 <2 <2 <2 <2 2 2 2 2 2 2	63 76 326 134 20 33 34 39 29 13 120 22 22	<1 <1 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	 0.1 0.1 0.1 0.2 <3 <	0.1 0.2 0.1 4 <3 4 <3 4 5 9 10 10	22 16 18 95 19 17 39 7 5 16 75 38 38	0.18 0.53 3.65 0.79 0.5 1.21 0.73 3.4 0.7 0.1 2.04 0.37 0.37	0.042 0.035 0.021 0.099 0.087 0.091 0.092 0.033 0.101 0.093 0.157 0.095 0.095	3 3 4 18 21 10 2 8 7 8 15 15	4 2 1 2 3 5 8 8 40 5 40 5 40 2 2	0.37 0.28 0.24 1.3 0.37 0.4 0.8 0.04 1.72 0.21 1.05 0.8 0.8	42 26 22 82 131 108 51 18 21 37 17 29 29	0.035 0.025 0.036 0.161 0.04 <.01 0.16 0.01 0.32 0.01 0.32 0.01 0.2 0.09 0.09	1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.83 1.26 5.98 2.37 0.97 1.1 1.62 0.45 1.96 0.46 5.25 1.18 1.18	0.092 0.062 0.021 0.185 0.05 0.05 0.05 0.02 0.2 0.07 0.8 0.06 0.06	0.14 0.13 0.25 0.26 0.19 0.23 0.16 0.05 0.08 0.09 0.08 0.08 0.08 0.08	0.1 0.1 0.1 0.1 42 42 42 42 42 42 42 42 42 42 42 42 42	0.05 0.05 0.15 0.13 2.19	1.4 0.9 1.3 7	<.1 <.1 <.1 0.1	0.57 0.1 0.13 1.75	4 6 20 10	0.9 0.6 0.9 0.6	1.9 2.8 2.8 0.9 <.5 1.1 1.9 4.8 4.4 23.4 1.8	
60718 552260.0 BCRC-25 60718 558260.0 BCRC-26 60711 558264.0 BCRC-26 607111 558264.0 19551 607110 5582684.0 19553 60708 5582666.0 19553 60708 5582664.0 19554 607100 558264.0 19554 60708 5582664.0 19555 607171 5582642.0 19555 607173 5582642.0 19557 607078 5582672.0 19556 607078 5582731.0 19557 606084 558371.0 19582 606984 5583581.0 19582 600986 558372.0 19582 600986 558372.0 19582	8 0.8 0.7	3 4.9 3.9	6 2.1 2.3	16 12 11	<.3 <1 <1	2 1.8 1.5	<1 1.1 2.5	109 153 138	1.27 1.22 1.47	5 1.3 0.6	<8 0.2 0.3	<2 <.5 0.5	<2 0.5 0.5	24 44 56	<.5 <.1 <.1	<3 <.1	<3 0.1 0.2	16 13 12	0.16 0.1 0.1	0.066 0.028 0.028	5 2 2	6 2 4	0.17 0.28 0.24	33 38 39	0.09 0.017 0.02	<3 1	0.31 0.64 0.58	0.04 0.077 0.089	0.1 0.1 0.13	<2 0.2 0.2	0.05	1.1 0.9	<.1 0.1	0.22	3 3	<.5 0.7	1.4 4 2 <2 <2 36 <2 5 1.3	
601083 5582246.0 19585 607075.1 5582704.9 B14761 1.5 m chip: silicified.pyritic volcanic with minor micro quartz veins 607075.3 5582704.9 B14762 1.5 m chip: silicified.pyritic volcanic with minor micro quartz veins 607075.3 5582705.5 B14763 1.5 m chip: silicified.pyritic volcanic with minor micro quartz veins 607070.5 5582706.6 B14767 1.5 m chip: silicified.pyritic volcanic with minor micro quartz veins 607066.3 5582707.8 B14767 1.5 m chip: silicified.pyritic volcanic with minor micro quartz veins 607062.4 5582707.8 B14767 1.5 m chip: silicified.pyritic volcanic with minor micro quartz veins 607062.8 5582710.5 B144770 1.5 m chip: silicified.pyritic volcanic with minor micro quartz veins 607052.4 5582710.1 B144771 1.5 m chip: silicified.pyritic volcanic with minor micro quartz veins 607052.5 5582712.9 B144777 1.5 m chip: silicified.pyritic volcanic with minor micro quartz veins 607052.5 5582714.8 B144777 1.5 m chip: silicified.pyritic v	0.4 0.4 3 5 2 4 3 8 5 3 1 2 4 3 1 2 4 3 1 2 4 3 3 3 5 8 6 6 14 1 7 2	16.9 61.7 5 112 11 7 12 6 6 12 13 12 9 9 7 13 9 14 4 12 9 8 18 16 10 8 7 8 8 5 6 5 10 9 9 7 13 9 14 4 12 9 8 18 16 10 8 7 8 8 5 6 5 10 12 11 7 12 6 12 11 7 12 6 12 11 7 12 6 12 11 7 12 6 12 12 11 7 12 6 12 12 11 7 12 6 6 12 12 12 12 12 12 12 12 12 12 12 12 12	1.4 8 105 6 8 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9 7 8 8 9 6 7 8 7 8 7 8 7 8 7 8 7 8 7 9 7 8 8 9 7 8 7 8	95 107 34 42 35 43 35 41 29 26 53 54 64 58 38 20 55 56 74 60 44 38 62 83 83 56 74 60 44 38 62 83 83 92 02 71 11 13 17 18	$\begin{array}{c} < 1 \\ < 0.9 \\ 0.4 \\ 0.5 \\ 0.3 \\ 0.6 \\ 0.3 \\ 0.4 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \\ 0.3$	1.4 1.2 2 1 3 1 1 1 1 4 2 2 2 2 2 2 2 2 2 3 1 2 2 2 2 1 1 1 1 1	9.5 7 3 3 3 2 2 3 2 5 5 4 4 4 3 3 4 6 3 2 2 2 4 2 3 2 1 2 2 2 1 2 1 2 2 1 2 1 2	825 604 285 305 3219 340 2234 2230 186 458 359 298 458 359 298 458 359 298 458 359 206 633 426 633 426 633 422 436 633 221 306 633 422 436 633 422 419 277 119 258 244 77 43 119 115 1145	3.91 3.28 1.78 2.4 2.3 2.4 2.3 2.4 2.26 2.21 1.95 2.45 2.45 2.45 2.45 2.45 2.45 2.45 2.4	2.2 79 35 115 13 17 15 13 8 12 9 12 10 16 12 7 16 13 16 19 20 18 14 18 19 14 14	0.3 .1 % % % % % % % % % % % % % % % % % %	19.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.	0.8 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	122 14 31 33 35 45 32 31 32 33 35 45 32 31 31 31 31 31 33 33 39 31 31 31 31 31 32 33 33 39 31 31 31 32 33 32 32 32 32 31 32 32 33 32 32 32 32 31 32 32 32 32 32 32 32 32 32 32 32 32 32	$\begin{array}{c} < 1 \\ 0.4 \\ 0.6 \\ . \leq 5 \\ . \leq 5$	2.2.3 % % % % % % % % % % % % % % % % % % %		92 61 4 31 26 33 36 39 25 24 38 37 35 29 44 43 30 41 39 41 39 41 39 41 30 21 27 30 16 20 8 17	0.78 0.95 0.45 0.35 0.26 0.35 0.29 0.31 0.18 0.36 0.34 0.36 0.34 0.36 0.34 0.32 0.24 0.32 0.47 0.51 0.35 0.31 0.35 0.15 0.1	0.099 0.082 0.072 0.098 0.104 0.097 0.104 0.097 0.104 0.095 0.108 0.099 0.111 0.099 0.111 0.099 0.111 0.099 0.111 0.099 0.112 0.104 0.112 0.104 0.1112 0.104 0.111 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.104 0.104 0.101 0.102 0.111 0.104 0.111 0.104 0.101 0.104 0.101 0.104 0.101 0.104 0.101 0.104 0.101 0.102 0.104 0.101 0.102 0.101 0.104 0.101 0.102 0.101 0.104 0.102 0.102 0.102 0.102 0.102 0.104 0.102 0.002 0.102 0.00200000000	4 3 18 18 19 13 10 10 11 21 18 9 7 10 7 11 11 10 10 17 9 9 5 6 6 5 6 5 6	2 3 3 2 2 2 2 2 3 6 4 3 2 2 3 2 2 3 3 2 3 2 3 2 3 2 2 1 2 1 1 2 4 2 1 1	$\begin{array}{c} 1.29\\ 0.91\\ 0.02\\ 0.36\\ 0.27\\ 0.38\\ 0.23\\ 0.33\\ 0.42\\ 0.33\\ 0.43\\ 0.33\\ 0.37\\ 0.36\\ 0.3\\ 0.37\\ 0.36\\ 0.3\\ 0.3\\ 0.3\\ 0.36\\ 0.47\\ 0.54\\ 0.51\\ 0.39\\ 0.35\\ 0.3\\ 0.38\\ 0.47\\ 0.45\\ 0.31\\ 0.24\\ 0.2\\ 0.05\\ 0.31\\ 0.24\\ 0.2\\ 0.04\\ 0.11\\ 0.11\\ 0.11\\ \end{array}$	80 57 100 58 61 77 57 57 66 74 68 67 80 65 67 80 65 67 53 63 58 61 74 73 88 83 93 88 93 138	0.161 0.0077 <.011 0.177 0.14 0.19 0.21 0.17 0.14 0.19 0.21 0.27 0.22 0.22 0.22 0.22 0.22 0.22 0.22	2 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$\begin{array}{c} 2.25\\ 1.88\\ 0.34\\ 0.96\\ 0.9\\ 1.06\\ 0.89\\ 1.09\\ 0.73\\ 1.25\\ 1.09\\ 1.21\\ 1.09\\ 1.21\\ 1.09\\ 1.21\\ 1.09\\ 1.21\\ 1.09\\ 1.21\\ 1.09\\ 1.21\\ 1.09\\ 1.21\\ 1.09\\ 1.21\\ 1.09\\ 1.22\\ 1.09\\ 1.17\\ 1.28\\ 1.15\\ 1.19\\ 1.16\\ 1.07\\ 1.28\\ 1.15\\ 1.19\\ 0.85\\ 0.79\\ 0.85\\ 0.79\\ 0.85\\ 0.7\\ 0.82\\ 1.22\\ 1$	0.176 0.223 0.03 0.06 0.04 0.06 0.05 0.03 0.03 0.06	0.23 0.29 0.21 0.16 0.19 0.15 0.15 0.15 0.15 0.15 0.12 0.14 0.16 0.17 0.17 0.1 0.09 0.1 0.09 0.1 0.09 0.1 0.09 0.1 0.09 0.1 0.09 0.1 0.09 0.1 0.09 0.1 0.09 0.1 0.09 0.1 0.15 0.15 0.15 0.15 0.15 0.15 0.15	0.1 0.2 2 4 2 4 2 2 2 3 4 4 2 4 2 4 4 4 4 2 4 2	0.12	7.3 3.8	0.1	1.78 2.3	97	<.5<.5	1.1 1.2 1 2 2 2 2 2 1 1 2 2 2 3 1 4 3 4 3 4 3 4 5 3 2 2 2 2 3 3 4 3 4 5 3 2 2 2 2 2 1 1 2 1 2 2 2 2 1 1 2 2 2 2	
600628 3532/00 108-5 600988 5582443.0 b8-7 601289 5582443.0 b8-8 601219 5582567.0 b8-9 601211 5582650.0 b8-10 601219 5583550.0 b8-11 601917 5583550.0 b8-12																																						

HIGH COUNTRY EXPLORATION

Phone250-374-8850

2589 THOMPSON DR. KAMLOOPS B.C. V2C 4L5

SK1 6091 SK2 6098 SK3 6012 SK4 6011 SK 5-9 6010 SK 10 6008 SK 11 6003 SK 12 6003 SK 13 6003 SK14 6009 SK15 6004	99 E 5582516 N 22 E 5582332 N 38 E 5583903 N 78 E 5583492 N 30 E 5583029 N 12 E 5582956 N 84 E 5582982 N 24 E 5582174 N 91 E 5581711 N 86 E 5582619 N	Rock - Bedrock outcrop Rock - float at at at at neghboring equining claim Rock - float quartz vein Rock - float Rock - Bedrock outcrop Rock - Bedrock outcrop Rock - Bedrock outcrop Rock - Bedrock outcrop Rock - Bedrock outcrop		
SK2 6098 SK3 6012 SK4 6011 SK 5-9 6010 SK 10 6008 SK 11 6003 SK 12 6003 SK 13 6009 SK14 6009 SK 13 6009 SK15 6004	22 E 5582332 N 38 E 5583903 N 78 E 5583492 N 30 E 5583029 N 12 E 5582956 N 84 E 5582982 N 24 E 5582174 N 291 E 5581711 N 86 E 5582619 N	Rock-float aik en off neighboring adjoining claim Rock - float Rock - float Rock - float Rock - float Rock - Bedrock outcrop Rock - Float Rock - Float Rock - Bedrock outcrop Rock - Bedrock outcrop Rock - Bedrock outcrop Rock - Bedrock outcrop Rock - Bedrock outcrop		
SK3 6012 SK4 6011 SK 5-9 6010 SK 10 6008 SK 11 6005 SK 12 6003 SK 13 6009 SK14 6009 SK15 6004	38 E 5583903 N 78 E 5583492 N 30 E 5583029 N 12 E 5582956 N 84 E 5582982 N 24 E 5582174 N 91 E 5581711 N 86 E 5582619 N	Rock - float quartz veinRock - floatRock - floatRock - Bedrock outcropRock - FloatRock - Bedrock outcropRock - Bedrock outcropRock - Bedrock outcrop		
SK4 6011 SK 5-9 6010 SK 10 6008 SK 11 6003 SK 12 6003 SK 13 6009 SK14 6009 SK15 6004	78 E 5583492 N 30 E 5583029 N 12 E 5582956 N 84 E 5582982 N 24 E 5582174 N 91 E 5581711 N 86 E 5582619 N	Rock - floatRock - floatRock - Bedrock outcropRock - FloatRock - Bedrock outcropRock - Bedrock outcropRock - Bedrock outcrop		
SK 5-9 6010 SK 10 6008 SK 11 6005 SK 12 6003 SK 13 6003 SK14 6009 SK15 6004	30 E 5583029 N 12 E 5582956 N 84 E 5582982 N 24 E 5582174 N 91 E 5581711 N 86 E 5582619 N	Rock - floatRock - Bedrock outcropRock - FloatRock - Bedrock outcropRock - Bedrock outcrop		
SK 10 6008 SK 11 6005 SK 12 6003 SK 13 6003 SK14 6009 SK15 6004	12 E 5582956 N 84 E 5582982 N 24 E 5582174 N 91 E 5581711 N 86 E 5582619 N	Rock - Bedrock outcropRock - FloatRock - Bedrock outcropRock - Bedrock outcrop		
SK 11 6005 SK 12 6003 SK 13 6003 SK14 6009 SK15 6004	84 E 5582982 N 24 E 5582174 N 91 E 5581711 N 86 E 5582619 N	Rock - Float Rock - Bedrock outcrop Rock - Bedrock outcrop		
SK 12 6003 SK 13 6003 SK14 6009 SK15 6004	24 E 5582174 N 91 E 5581711 N 86 E 5582619 N	Rock - Bedrock outcrop Rock - Bedrock outcrop		
SK 13 6003 SK14 6009 SK15 6004	91 E 5581711 N 86 E 5582619 N	Rock - Bedrock outcrop		
SK14 6009 SK15 6004	86 E 5582619 N			
SK15 6004		Rock - Bedrock outcrop		
	56 E 5583443 N	Rock - Bedrock outcrop		
SK16 6010	18 E 5583021 N	Rock - Float		
SK17 6008	21 E 5582956 N	Chip sample - over 2.5 m - horiz.		
SK18 6008	21 E 5582956 N	Rock - Bedrock outcrop - white .lighter		
SK19 6005	23 E 5583073 N	Rock - Bedrock outcrop NW boundary of snown minwestization - july 2008		

