Ammendment To Report on

Geology and Geochemistry

of the

Tide North Property
Tide North 1,2,4,5,6,8
Tenure #s: 517633, 517634, 524181, 524183, 524186, 537229

Skeena Mining Division British Columbia Canada

BCTM: 104B040

UTM: 432,000 m E 6,241,000 m N

NAD 83, Zone 9

for:

Auramex Resource Corp.
750 Grand Boulevard
North Vancouver, B.C.
Canada V7L 3W4

author:

David St. Clair Dunn, Geo. 1154 Marine Drive

Gibsons, B.C. Canada V0N 1V1

April 20, 2007

Table of Contents

	Page
Introduction	1
2006 Geological and Geochemical Program	3
Interpretation and Conclusions	3
Recommendations	3
References	4
List of Figures	Following Page
Figure 1: General Location Map	1
Figure 2: Claim Location Map	1
Figure 3: Regional Geology	2
List of Maps	
Map 1: Sample Location Map	In Pocket
List of Tables	Page
Table 1: Table of Mineral Claims	1

List of Appendices

Appendix A: Statement of Costs

Appendix B: List of Sample Locations and Descriptions

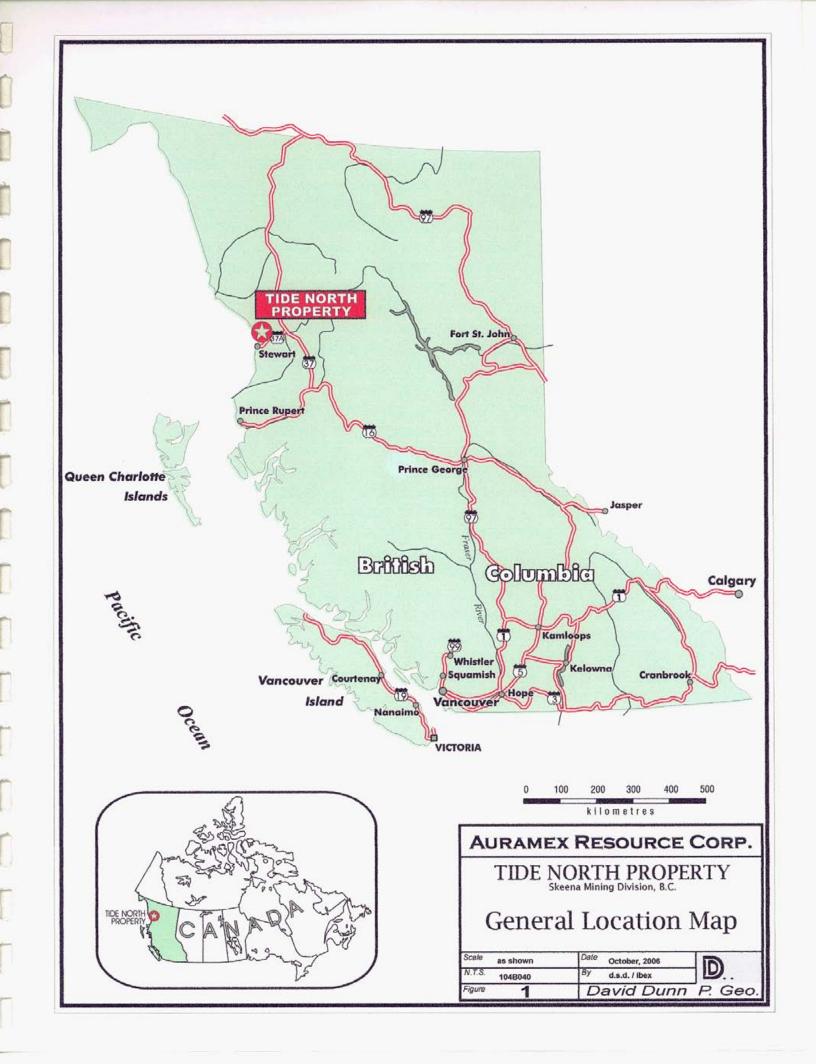
Appendix C: Sample Results and Analytical Methods

Appendix D: Author's Statements of Qualifications

Introduction

The author was commissioned by the Board of Directors of Auramex Resource Corp. (the company) to carry out a mineral exploration program on the Tide North Property (the property) to determine if there are ore bodies present on the property. A first phase of property scale stream sediment sampling and prospecting was carried out on the property on July 4th and 5th, 2006 under the direct supervision of the author.

The property straddles the Bowser River south of and east across the river from the toe of the Frank Mackie Glacier, approximately 40 kilometres north of the town of Stewart (Figs. 1 & 2). The property can be accessed by helicopter from Stewart, a 20 minute trip in good weather. A drill road has been constructed to within 1.5 kilometres from the southern boundary of the property and could be easily extended onto the property across the flats that formed the bed of Tide Lake. The drill road connects in two kilometers to the Granduc road, an all weather summer maintained municipal road, and thus, in 50 kilometres, to Stewart, through Hyder, Alaska. There is a bulk loading facility on year round ice free tidewater at Stewart. Stewart also has a paved air strip and all the facilities necessary to carry out mineral exploration and mine development. Paved road access to the rest of the province is possible via Highway 37A to Meziadin Junction, then Highway 37 to Kitwanga and Highway 16, which connects Prince George and Prince Rupert.


The 2006 geological and geochemical program on the property was carried out on a property scale and involved the collection of 15 pan concentrate samples, 14 silt samples and 19 rock samples taken by a four person helicopter supported crew on the 4th and 5th of July, 2006 (Fig. 4). Significant gold anomalies were returned in three pan concentrate samples. Follow-up work to identify the source of these anomalies is recommended.

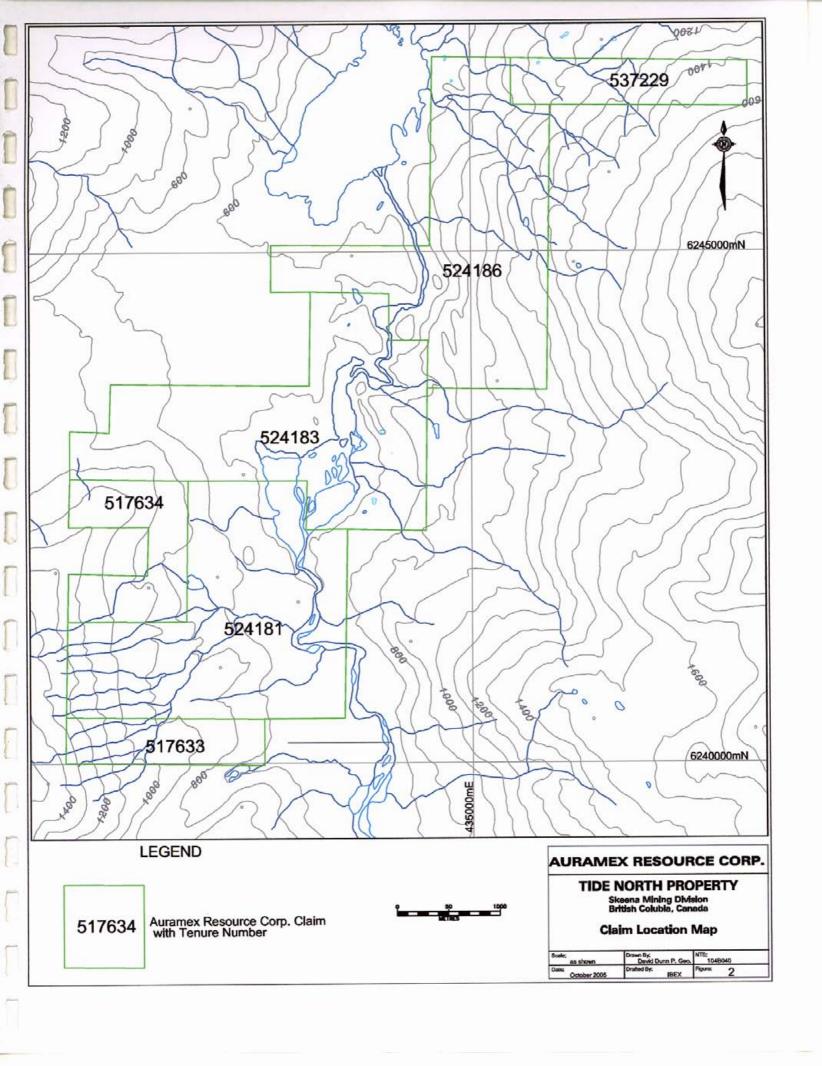
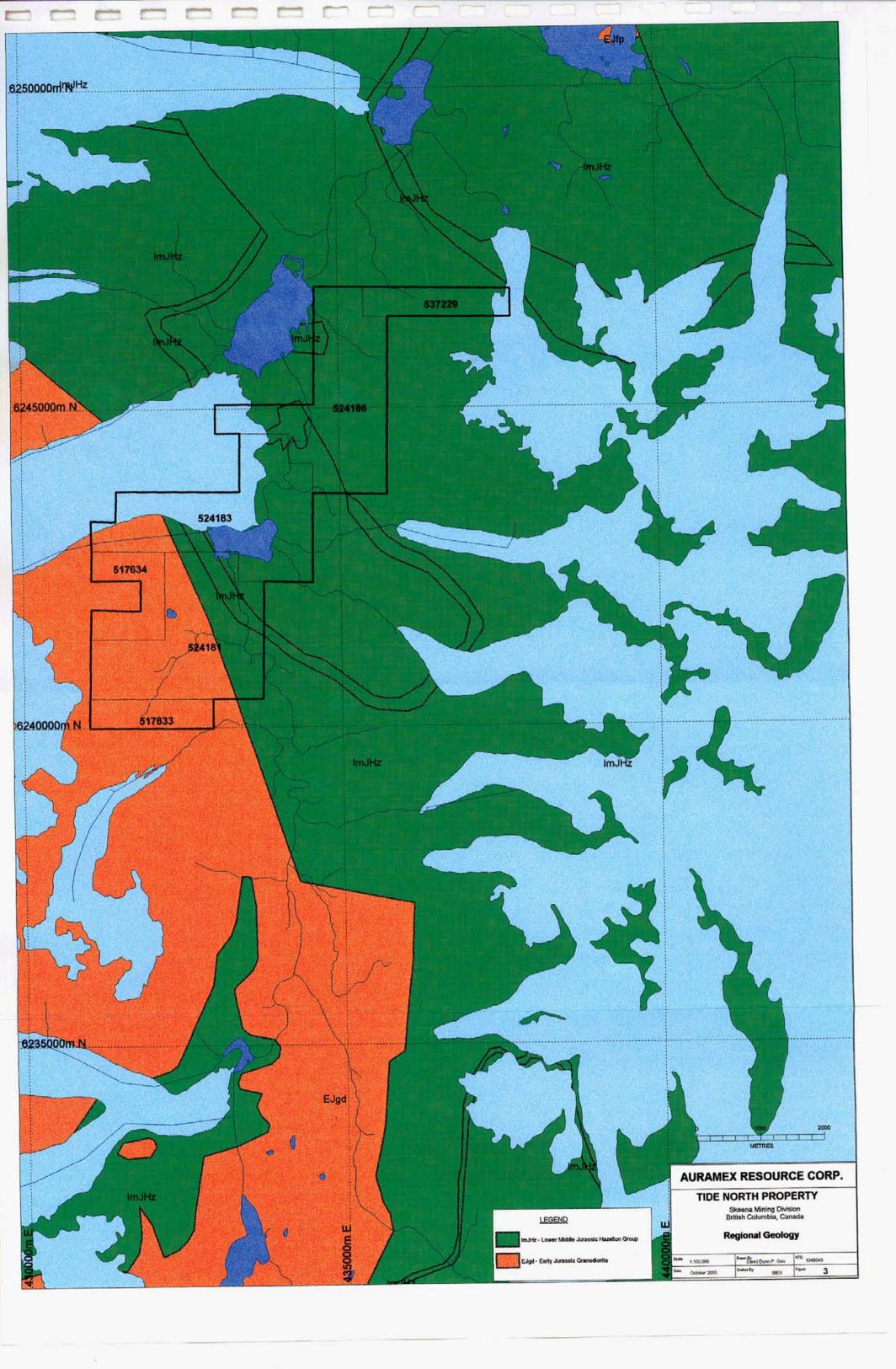

The property consists of six mineral tenures, Tenure #s 517633, 517634, 524181, 524183, 524186 and 537229, covering 93 cells totaling 1,668.321 hectares. See Table 1 below for claim details and expiry dates:

Table 1: Table of Mineral Claims

Tenure Number	Claim Name	Owner	Good to Date	Area (hectares)
517633	Tide North 1	200071(100%)	13/7/07	89.759
517634	Tide North 2	200071(100%)	13/7/07	125.606
524181	Tide North 4	200071(100%)	21/12/07	448.665
524183	Tide North 5	200071(100%)	21/12/07	448.464
524186	Tide North 6	200071(100%)	21/12/07	448.279
537229	Tide North 8	200071(100%)	14/7/07	107.548

The mineral claims are owned by R. V. Kirkham. The company holds an option to purchase 100% interest in the claims for cash (paid) and shares (payable over the three year term of option) with Kirkham retaining a 1% NSR with a \$2,000,000 buyout. The company was the operator of the 2006 program.



The property is located immediately south of the toe of the Frank Mackie glacier on the western slope of the Bowser River valley, on the east edge of the toe of the glacier, east across the Bowser river valley and up the eastern slope of the valley (Fig. 2). Elevations range from 520 metres asl in the northern part of the claims to 1,400 metres asl on the southwest corner of the property. Terrain is rugged with steep valley walls rising from the relatively flat valley bottom.

Regional geology is shown on Figure 3. The Stewart area is on the eastern margin of the Coast Plutonic Complex. Mesozoic volcanic and sedimentary rocks are intruded by Coast granitic rocks, ranging in age from early Jurassic to Tertiary, in the form of stocks and dyke swarms. There are several styles of mineralization in the region, including structurally controlled quartz carbonate veins and stockworks, like the Silbak-Premier located 27 kilometres south of the property, which has produced 24.814 tonnes lead, 7.961 tonnes zinc, 1.853 tonnes copper, 1,333 tonnes silver, 81 tonnes cadmium and 62 tonnes gold from 5,876,992 million tonnes milled. Volcanogenic massive sulphide deposits are also present, both Besshi and Kuroko style, as exemplified by the Granduc and Eskay Creek deposits respectively. Granduc mine is a copper rich Besshi style volcanogenic massive sulphide deposit, located 20 kilometres west southwest of the property which has produced 190,144 tonnes copper, 124 tonnes silver and two tonnes gold from 15,559,369 tonnes milled. Eskay Creek is a gold rich, shallow sub-aqueous Kuroko style volcanogenic massive sulphide deposit located 40 kilometres northwest of the property which has produced 4.293 tonnes of silver, 91 tonnes gold, one tonne zinc and 0.4 tonnes lead from 1,769,470 tonnes milled. Copper gold alkalic porphyry deposits, calc-alkalic copper molybdenum porphyry deposits and molybdenum porphyry deposits also are present in the area as exemplified by Galore Creek, Schaft Creek and Kitsault, respectively. Galore Creek is located 100 kilometres northwest of the property and contains greater than one billion tonnes grading greater than one percent copper equivalent. Schaft Creek is located 120 kilometres north northwest of the property and contains greater than 3.5 billion tones of 0.35 % copper and 0.03 % molybdenum. Kitsault is located 100 kilometres southeast of the property and contains 104 million tonnes containing 0.11 % molybdenum.

Recorded exploration in the immediate area of the property began around 1926 when free gold was discovered on the East Gold Property, located 1.2 kilometres south of the property. In the early 1930's trenching uncovered a series of auriferous quartz sulphide veins and shear zone cross-cutting stratigraphy on the Haida claim, located 240 metres south of the property boundary. In the 1980's activity on the property was documented. Part of the property was staked as the Catspaw claim by Elan Exploration Ltd. in 1980 and optioned to E & B Exploration. E & B undertook minor prospecting. sampling and geological mapping from 1980 to 1982 and returned the property to Elan. Teuton Resources Corp. optioned the property in 1983 staked more ground and sub-optioned to Billikin Resources who discovered a stratiform lead-zinc-antimony occurrence and a boulder train of argentiferous quartz sulphide mineralization on the eastern boundary of the property. In 1984 Canadian United Minerals Inc. optioned the property and carried out airborne EM and Mag surveys. Two EM anomalies were outlined west of the property under ice cover. In 1985 Noranda Exploration Company optioned the property and carried out prospecting, sampling and geophysical surveys. A number of different types of mineralization were identified. In 1987 and 1988 Wedgewood Resources optioned the property and carried out prospecting, trenching and geochemical surveys. In 1989 Maple Resource Corporation Exploration optioned the property and carried out a grid based geochemical program immediately west of the property. In 1990 Maple drilled 334.06 metres in two holes 1.0 kilometre west of the property. Anomalous gold values were returned. In 1992, 93 and 94 Teuton carried out small programs of sampling on and immediately west of the property. No records of work on the property have been found from 1994 to 2005.

2006 Geological and Geochemical Program

The 2006 program was designed to test the whole of the property using a program of paired pan concentrate and silt stream sediment sampling. A standard silt sample, consisting of a gusseted kraft bag filled half full of the finest material available from active stream channels was taken. A pan concentrate sample consisting of one pan of -10 mesh material from the active stream channel panned to a black sand concentrate and one pan of moss from the active stream channel screened and panned to a black sand concentrate was taken at the same site as the silt sample. A ten to 20 gram concentrate was produced. The pan concentrate procedure produces a semi-quantitative result, very effective in detecting gold in the Canadian Cordillera. Analytical procedures are described and results shown in Appendix C. Fifteen pan concentrate samples and 14 silt samples were taken. Sample locations are shown on Map 1.

Prospecting of the areas traversed was also carried out and samples of any mineralized rocks encountered were taken. Nineteen rock samples were taken. All samples were located using GPS receivers and plotted on BCTM 1:20,000 scale maps.

Interpretations and Conclusions

Three highly anomalous values were returned from pan concentrate samples: 132258 – 385 ppb gold, 132264 – 590 ppb gold, 132271 ->1,000 ppb gold. The strength of these anomalies led to the conclusion that they probably did not emanate from the Four-J's showing, located 1.5 kilometres to the west. The amount of glacial till between the sample sites and the known Four-J's showings would highly dilute any anomalous signature from these showings. Further detailed sampling and prospecting should be carried out to attempt to locate the source of the gold anomalies returned in the 2006 program. Large colour anomalies were also noted on the property down slope from the stream sediment sample sites and opposite the toe of the Frank Mackie on the east side of the Bowser River. These areas should be geologically mapped, prospected and sampled in detail.

Recommendations

Detailed prospecting and sampling should be carried out above the sites of the anomalous stream sediment samples. This should take a four person helicopter supported crew two days to complete.

Detailed geological mapping, prospecting and sampling of the large colour anomalies on the east and west banks of the Bowser River should be carried out. This should take a four person helicopter supported crew three days to complete.

The recommended program is estimated to cost \$15,000 and take one week to complete.

Respectfully Submitted

David St. Clair Dunn P. Geo.

References

- Alldrick, D.E., (1993) Geology and Metallogeny of the Stewart mining Camp, Northwestern British Columbia. BC Survey Branch, Bulletin 85.
- B.C. Minfile: Assessment Reports 8768, 8780, 11,716, 13,403, 14,607, 14,660, 19,800, 23,263, 23,778, 28,381 plus cited property reports.
- Greig, C J; Anderson, R G; Daubeny, P H; Bull, K F. (1994) Geology of the Cambria Icefield: Stewart (103P/13), Bear River (104A/4), and parts of Meziadin Lake (104A/3). Geological Survey of Canada, Open File 2931.
- E.W. Grove, (1986) Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox River. BC Survey Branch, Bulletin 63.
- McLeod Ian (2004) Prospectors Promoters and Hard Rock Miners, Tales from the Stewart, BC and Hyder, Alaska Camps. Published by SH Co. Ltd. 134 609 Truswell Road Kelowna BC Copyright by Ian McLeod

Appendix A

Statement of Costs

Statement of Costs

Wages: Consulting Geologist: R. Kirkham: 1 day @ \$600/day	\$600.00
Geologists: D. Dunn: 3 days @ \$500/day	1,500.00
F. Smith: 2 days @ \$400/day	800,00
Helpers: W. Dunn: 3 days @ \$200/day	600.00
I. Carrothers: 2 days @ \$150/day	300.00
Mob/demob: 7% of \$9,000	630.00
Room and Board: 11 days @ \$100/day	1,100.00
Truck Rental: 2 days @ \$40/day	80.00
2 days @ \$50/day	100.00
Fuel	40.00
Helicopter: Prism: 2.5 hours @ \$1080/hour:	2,700.00
Assays: Eco Tech: Pan Concentrates: 15 samples @ \$27,75/sample	416.25
Silt Samples: 14 samples @ \$20.55/sample	287.70
Rock Samples: 19 samples @ \$25.25/sample	479.75
Communications:	66.30
Expendables and small tools:	_324.00

Project Total

\$10,024.00 D. S. DUNIN

Appendix B

List of Sample Locations and Descriptions

المستنب لمستنب لمستنب لمستنب لمستن لمستن لمنت لماني لما يا يا يا يا يا يا يا

Sample No	UTM Zone			Sample type	Width+or-Depth	Sample Description												
132251	9	431942	6240353	silt	2m	k>b>g	0.2											
132252	9	431942	6240353	pan	2m	k>b>g	0.2											
132253	9	431925	6240348	silt	1m	g>k>b	0.2											
132254	9	431925	6240348	pan	1m	g>k>b	0.2											
132255	9	431929	6240425	silt	1.5m	g=s	22											
132256	9	431929	6240425	pan	1.5m	g≖s	23											
132257	9	431942	6240353	silt	3m	b>k>g>s	15											
132258	9	431942	6240353	pan	3m	b>k>g>s	16											
132259	9	431987	6240562	float	n/a	breccia	green											
132260	9	432010	6240718	silt	1.5m	k>b>g	12											
132261	9	432010	6240718	pan	1.5m	k>b>g	12											
132262	9	431942	6240353	float	n/a	flow	d. green	рогрhyтitic	chlorite	pervasive								
132263	9	431971	6240842	silt	5	b>k>>g	22											
132264	9	431971	6240842	pan	5	b>k>>g	22											
132265	9	431971	6240842	float	n/a	breccia	green	perphyritic	chlorite	pervasive								
132266	9	431994	6240885	silt	2.5	b>k>g	25											
132267	9	431994	6240885	pan	2.5	b>k>g	25											
132268	9	432152	6241207	silt	2	k≻g	15											
132269	9	432152	6241207	pan	3	k>g	16											
132270	9	432170	6241460	silt	4	k>b>g	20											
132271	9	432170	6241460	pan	4	k>b>g	20	<u> </u>										
132272	9	430338	6241718	grab	n/a	qtz vein	white/cream	brecciation	sericite	selective								
132273	9	430146	6241740	chip	1	volc	green	bricciation	chlorite	pervasive								
132274	9	430126	6241729	chip	1	qtz vein	gray/white	stockwork	sericite	selective								
132275	9	432006	6240562	grab	n/a	qtz vein	gray/white	brecciated										
132276	9	432006	6240562	grab	n/a	qtz veln	gray/white	brecciated	sericite	selective								
132277	9	431256	6240883	grab	rv/a	flow	orange br.	silicified gossen	sericite	pervasive								
132278	9	433014	6242427	pan	3	k>b>>g	20		<u> </u>									
86910	9	430806	6239994	grab	Massive py													
86911	9	430965	6240696	0.8m chip	And w/ py		<u> </u>											
86912	9	430987	6240718	1.2 m chip	Massive su w/ py, cypy		sericite	in Andesite Lap tuff	<u> </u>									

ample No		Observations	Sampler
132251			JPP
132252			JPP
132253		not a good sample-high energy stream	JPP
132254			JPP
132255		colluvial apron avalanche chute	JPP
132256			JPP
132257		silt sample taken from old channel to south of active channel	jPP
132258			JPP
132259	Ру>Сру	0.6m diameter in creek 20m u/s from 132259. Some stockwork veining. Lots of rusty rock in area	JPP
132260			JPP
132261			JPP
132262	Py 15%	float in creek upslope from silt/pan. Pyrite disseminated (5-10%) altered rock	JPP
132263		rock to south, begin incised section into creek. Some rusty rock, 20m upslope some breccia with	JPP
		calcite and pyrite angular talus clasts to 2m	
132264			DD
132265	Py 3%	breccia rounded clasts with replacement	DD
132266			DD
132267		mostly volcanic boulders. Volcanic>sedimentary. Soil sample/silt sample	QQ
132268		not a good sample. Sedimentary rock	JPP
132269			JPP
132270		fine grained dark gully bedrock controlled last. LWD 310/55NE	JPP
132271			JPP
132272	Py 5%	altered volcanic rock. Some boulders near rock. Some boulders nearby show brecciation oxidized pyrite	Jpp
132273	Py 5%	sample includes vein and wall rock	JPP
132274	tr Py	boulders in area show stockwork in felsic volcanic rock. Massive grey, pyrite leached hornblende porphyry rock in outcrop with stringer quartz veining to 1 cm	JPP
132275	tr Py	3m wide pyritized zone.	JPP
132276	tr Py	3m wide pyritized zone.1.2m wide qtz vein. Fine grained green volcanic rock with qtz and calcite stringers	JPP
132277	1% Py	Fine grained green volcanic rock sampled by others	JPP
132278			JPP
86910	massive Py		DD
86911			DD
86912			gg

the state of the s

Sample No	, _ , _ , _ , _ , _ , _ , _ , _ , _ , _			Sample type	Width+or-Depth	 Sample Desc	ription	
86913	9	431044	6240710	grab	Mass su		·	
86914	9	432238	6241636	grab	Qtz, ser, 5% py			
86916	9	435492	62445331	grab	Sil And > 50m str			
86917	9	435498	6245358	grab	Sil And 5% py			
86918	9	435519	6245532	1.0 m chip	Carb. Alt Andesite w/ qtz stri			
86919	9	435523	6245655	sitt	0.5 m x 3 cm			
86920	9	"	14	p.c.				
86921	9	435587	6245823	sílt	4m x 5cm			
86922	9	" "		p.c.				
86923	9	435561	6246000	silt	1m x 2cm			
86924	9	"	-	p.c.				
86925	9			float	2cm su horizon in black mudstone		1	
86926	9	435035	6246406	silt	2m x 5cm			
86927	9	В	"	p.c.				
86928	9	435008	6246506	silt	3m x 20cm			
86929	9	11	н	p.c.				

Sample No	Observations	Sampler
86913		סס
86914		ďα
86916		96
86917		DD
86918		aa
86919		OD
86920		ОО
86921		aa
86922		DD
86923		QQ
86924		DD
86925		QQ
86926		DD
86927		מם
86928		aa
86929		QQ

Appendix C

Sample Results and Analytical Methods

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AS 2006-6181

10041 Dalias Drive KAMLOOPS, B.C.

V2C 6T4

Auromex Resources Corp. 750 Grant Boulevard North Vancouver, BC

Attention: J. Whitby/D. Dunn

No. of samples received: 19 Sample Type: Rock Project: Stewart Submitted by: Devid Dunn

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

Et #.	Tag#	Au(ppb)	Ag	AI %	As	Ba	Bŧ	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni P	Pb	Sb	Sn	Sr	Ti %	Ų	٧	W	Y	Zn
1	132259	15	<0.2	1.73	10	50	<5	2.63	<1	30	101	91	6.67	<10	1.44	1137	4		25 1600	36	<5	<20	49	0.06	<10	88	<10	6	78
2	132262	20	0.3	1.84	10	110	<5	2.83	<1	27	109	123	5.82	<10	1.32	742	20		43 1430	30	<5	<20	31	0.08	<10	97	<10	23	58
3	132265	160	1.4	0.85	400	25	<5	2.18	4	20	85	80	4.79	<10	1.55	636		<0.01	18 1400	24	10	<20		<0.01	<10	131	<10	10	146
4	132272	685	2.8	1.36	>10000	85	<5	1.41	98	37	104	74	7.14	<10	1.74	598		<0.01	10 810	48	15	<20		<0.01	<10	74	<10	5	87
5	132273	185	<0.2	1.22	325	85	<5	1.50	3	8	237	445	>10	<10	1.01	372		<0.01	11 2760	44	15	<20	55	0.08	<10	172	<10	6	26
6	132274	170	1.5	1.44	340	25	<5	0.47	3	25	261	360	>10	<10	1.45	303		<0.01	15 980	74	10	<20	38	0.02	<10	126	<10	6	26
7	132275	25	0.2	2.34	55	95	<5	0,65	<1	12	133	78	>10	<10	3.14	718	-	<0.01	43 2060	38	<5	<20	23	0.03	<10		<10	6	51
8	132276	865	0.8	1.97	820	20	<5	0.66	7	30	247	331	>10	<10	2.37	762	3	<0.01	11 1550	46	15	<20	18	0.06	<10	178	<10	7	44
9	132277	120	<0.2	0.44	410	30	<5	0.97	4	11	110	25	6.90	<10	0.24	206	5	0.05	9 2530	30	<5	<20	31	<0.01	<10	71	<10	22	283
10	86910	20	4.9	0.11	15	<5	10	0.02	<1	60	335	154	>10	<10	0.02	112	1	<0.01	17 20	98	<5	<20	6	<0.01	<10	8	<10	9	964
11	86911	20	1.1	1.83	240	65	<5	1.21	6	15	129	27	6.88	<10	2.04	1665	3	<0.01	51 1480	706	30	<20	26	0.06	<10	108	<10	8	580
12	86912	20	<0.2	0.90	110	95	<5	5.12	1	15	73	13	4.22	<10	0.65	1089	3	<0.01	16 1440	30	10	<20	169	<0.01	<10	30	<10	10	122
13	86913	15	<0.2	0.29	415	70	<5	0.67	4	8	66	6	2.42	<10	0.03	164	2	<0.01	4 1040	20	30	<20	31	<0.01	<10	8	<10	6	51
14	86914	20	<0.2	0.50	65	55	<5	0.24	<1	11	94	12	5.55	<10	0.53	110	2	0.01	13 830	18	5	<20	15	0.20	<10	36	<10	7	22
15	86915	90	1.5	0.27	320	50	<5	0.23	3	9	54	20	2.84	<10	0.03	26	11	<0.01	19 900	22	15	<20	8	<0.01	<10	- 11	<10	5	34
16	86916	25	<0.2	2.15	<5	40	<5	1.32	<1	30	125	7	>10	20	0.75	6798	3	0.04	13 1230	42	<5	<20	30	0.25	<10	159	<10	37	321
17	86917	20	0.2	1.84	45	40	<5	2.06	<1	41	129	17	>10	20	1.08	1701	14	<0.01	21 2190	44	<5	<20	58	<0.01	<10	45	<10	43	406
18	86918	25	<0.2	0.55	10	50	<5	0.04	<1	10	76	9	4.81	30	0.17	516	1	<0.01	14 360	24	<5	<20	16	<0.01	<10	22	<10	6	227
19	86925	15		0.73	45	40	<5	0.34	1	5	129	13	6.49	<10	0.53	603	23	<0.01	16 300	36	10	<20	24	<0.01	<10	24	<10	6	200
QC DAT	· A ·																												
Repeat																													
1	132259	20	z0.2	1.65	10	50	<5	2.55	<1	29	97	90	6.55	<10	1.39	1136	4	0.02	24 1610	34	<5	<20	45	0.08	<10	86	<10	6	78
4	132272	685	-0.2	1.00		50	~	2.00	-,	20	٠,	-	0.00	-,0	1.00	,	•			•	•		,-		••		, •	_	
8	132276	960																											
10	88910	20																											
19	86925	15																											
19	00920	15																											
Resplit							_										_		AF 1815			.05	40		-46		-40		00
1	132259	20	0.2	1.84	10	55	<5	2.74	<1	28	105	93	6.56	<10	1.53	1124	6	0.02	25 1610	36	<5	<20	49	0.07	<10	90	<10	6	80
19	86925	15																											
Standar	rd:																												
PB106			>30	0.55	290	100	<5	3.46	74	5	75	6208	2.42	<10	0.37	890	46	0.01	12 280	5248	85	<20	345	<0.01	<10	21	<10	6	8387
OXF41		795			_		_																						

ICP CERTIFICATE OF ANALYSIS AK 2006-851

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Auramex Resources Corp. 750 Grant Boulevard North Vancouver, BC

Attention: J. Whitby/D. Dunn

No. of samples received: 15

Sample Type: Sitt Project: Stewart Submitted by: D. Dunn

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag Al %	As	Ba	BI	Ca %	Çd	Co	Cr	Cu	Fe %	La	Mg % Mn	Mo Na %	NI P	Pb	Sb	Sn	Sr Ti	<u>6 U</u>	V	W	Υ
1	132251	105	1.7 1.63	105	70	<5	0.38	5	22	45	114	5.22	<10	1.06 1106	3 <0.01	54 1280	122	10	<20	18 <0.0	1 <10	57	<10	11
2	132253	120	0.8 1.57	120	65	<5	0.45	2	21	38	103	4.79	<10	0.91 1101	3 <0.01	40 1170	42	15	<20	25 <0.0	1 <10	51	<10	11
3	132255	35	0.5 1.46	120	40	<5	0.38	2	12	33	73	4.68	<10	0.99 610	3 <0.01	27 1210	54	15	<20	16 <0.0	1 <10	58	<10	8
4	132257	35	1.2 1.42	155	75	<5	0.45	3	19	37	116	5.65	<10	1.05 985	3 <0.01	33 1480	60	15	<20	22 <0.0	1 <10	61	<10	10
5	132260	60	0.8 1.35	135	80	<5	0.64	3	16	36	127	5.91	<10	0.98 835	7 <0.01	32 1570	56	15	<20	31 <0.0	1 <10	59	<10	11
6	132263	70	1.1 1.29	175	80	<5	0.47	3	21	31	128	5.91	<10	0.97 1055	4 <0.01	28 1620	50	15	<20	24 <0.0	1 <10	66	<10	11
7	132266	20	0.6 1.49	65	80	<5	0.47	2	17	38	83	4.51	<10	0.74 734	3 <0.01	32 1570	58	10	<20	17 <0.0	1 <10	58	<10	9
8	132268	•	0.4 1.72	35	75	<5	0.58	2	27	28	119	4.64	10	1.12 920	2 0.01	55 1370	54	<5	<20	37 <0.0	1 <10	60	<10	11
9	132270	30	0.8 1.43	85	85	<5	0.42	2	22	25	110	5.28	<10	0.99 639	5 <0.01	42 1350	60	15	<20	19 <0.0	1 <10	71	<10	6
10	126318	45	0.7 1.95	70	90	<5	0.58	1	20	23	122	5.54	<10	1.53 982	1 <0.01	17 1880	30	10	<20	24 0.0	1 <10	122	<10	13
11	86926	•	1.5 1.56	25	240	<5	0.85	8	17	25	61	4.68	20	0.32 2945	10 0.02	34 880	112	<5	<20	102 <0.0	1 <10	39	<10	40
12	86921	10	0.2 1.25	5	310	<5	0.47	<1	12	15	33	2.74	10	0.50 1196	3 0.02	16 1140	22	<5	<20	22 0.0	2 <10	26	<10	16
13	86923	•	3.1 2.19	80	<5	<5	0.47	8	27	27	60	2.74	20	0.32 1196	25 < 0.01	37 1360	284	10	<20	176 0.0		68	<10	37
14	86928	10	1.3 1.18	10	235	<5	0.48	<1	12	20	38	3.53	10	0.47 1161	3 0.01	16 1430	34	<5	<20	31 0.0	1 <10	27	<10	22
15	86919	10	0.5 1.92	5	<5	<5	0.48	<1	11	26	23	3.38	10	0.54 813	2 <0.01	21 930	24	<5	<20	11 0.0	1 <10	31	<10	14
QC DAT																								
110,000.0	132251	45	1.6 1.59	105	70	<5	0.37	4	22	47	111	5.22	<10	1.06 1098	3 0.01	52 1270	126	10	<20	20 <0.0	1 <10	59	<10	11
10	126318	35	0.6 1.82		85	<5	0.56	<1	19	21	120	5.38	<10	1.49 970	1 <0.01	17 1880	28	5	<20	24 0.0			<10	13
Stander	nd:																							_
Till-3 OXF41		795	1.3 1.07	80	35	<5	0.49	<1	11	59	23	2.02	10	0.53 308	<1 0.02	30 450	20	<5	<20	11 0.0	7 <10	37	<10	8

^{* =} Insufficient Sample

ECO TECH LABORATORY LTD.

10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2008-852

Auramex Resources Corp. 750 Grant Boulevard North Vancouver, BC

Attention: J. Whitby/D. Dunn

No. of samples received: 16 Sample Type: Sitt. Pon Concentrate Project: Stewart

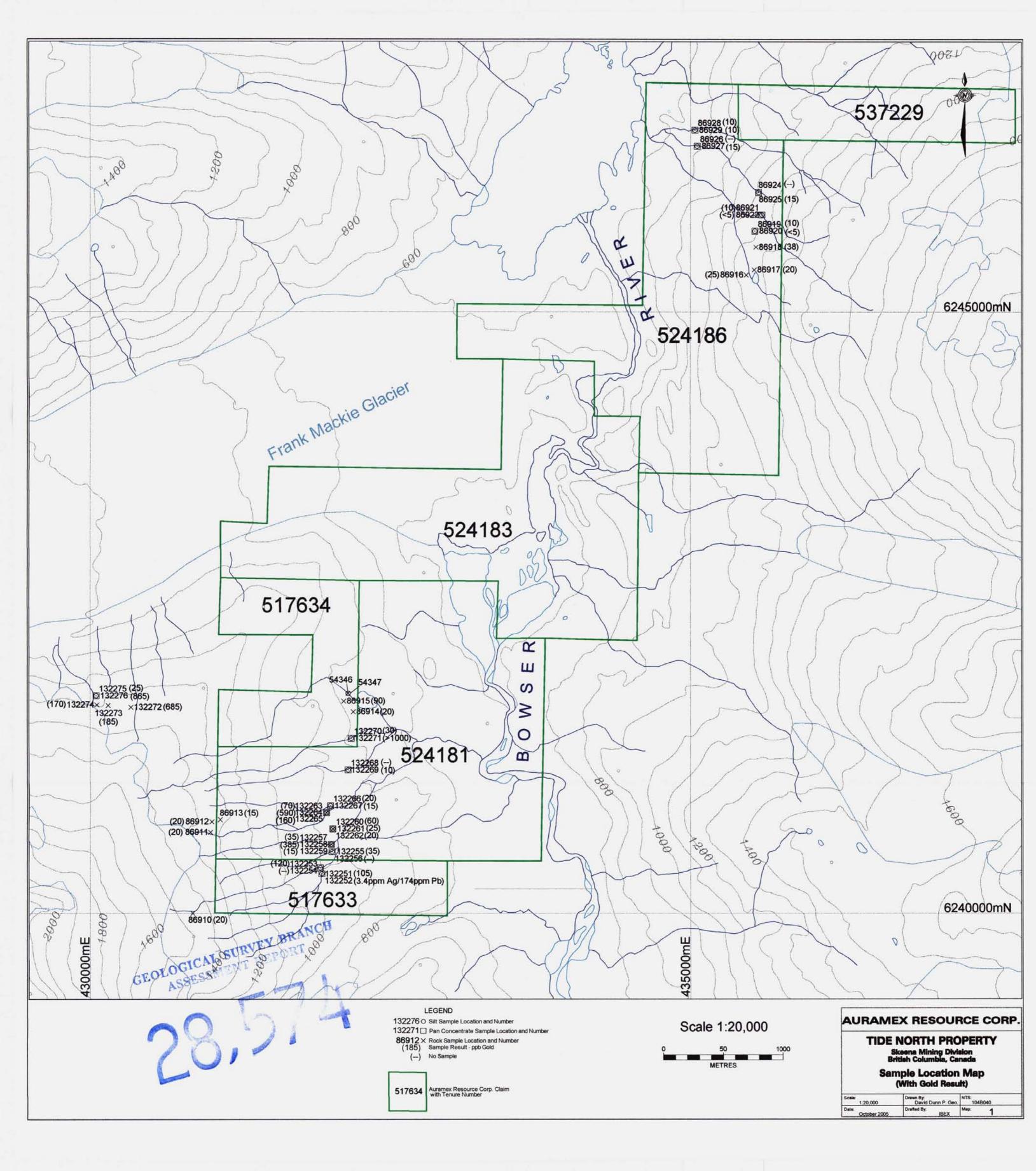
Submitted by: D. Dunn

Values in ppm unless otherwise reported

Et #.	Tag#	Au(ppb)	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Сг	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Tì %	U	٧	W	Y	Zŋ
1	132252	•	3.4 1.54		70	5	0.48	3	34	35	117	7.63	<10	1.10	804	7	<0.01	64	1440	174	15	<20	13	0.05	<10	81	<10	<1	429
2	132254	*	0.6 1.45	115	45	5	0.32	<1	20	26	72	5.15	<10	0.97	553	5	<0.01	36	1070	54	10	<20	9	0.03	<10	66	<10	<1	127
3	132256	•	2.3 1.49	285	80	15	0.52	2	43	24	155	>10	<10	1.04	972	13	<0.01	56	1690	94	15	<20	18	0.03	<10	76	<10	<1	248
4	132258	385	1.0 1.63	120	130	5	0.55	1	21	26	78	5.35	<10	1.23	741	5	< 0.01	32	1600	150	15	<20	15	0.04	<10	87	<10	4	171
5	132261	25	0.9 1.60	130	125	10	0.51	<1	17	24	73	4.57	<10	1.21	661	4	<0.01	29	1360	54	10	<20	13	0.04	<10	86	<10	4	119
6	132264	590	1.4 1.65	140	125	5	0.58	<1	27	24	108	6.48	<10	1.25	793	7	<0.01		1630	60	15	<20	19	0.05	<10	96	<10	3	165
7	132267	15	0.8 1.62	65	110	5	0.44	1	23	27	75	5.57	<10	1.18	741	5	0.01	42	1280	64	15	<20	14	0.05	<10	77	<10	<1	157
8	132269	10	0.9 1.65	60	100	10	0.39	1	27	30	98	6.17	<10	1.20	758	7	<0.01		1290	84	10	<20	14	0.03	<10	70	<10	2	230
9	132271	>1000	0.6 1.51	65	85	15	0.44	1	27	30	110	6.32	<10	1.11	572	9	<0.01	57	1340	60	15	.<20	13	0.04	<10	82	<10	2	130
10	126319	30	0.4 1.98	40	70	5	0.74	<1	23	25	77	5.26	<10	1.63	708	<1	0.01	16	1840	42	10	<20	16	0.10	<10	155	<10	7	77
11	86920	<5	<0.2 1.36	<5	75	10	0.37	<1	12	12	15	4.98	<10	0.57	493		<0.01		1290	36	<5	<20	10	0.07	<10	67	<10	8	85
12	86922	<5	<0.2 1.16	5	115	,10	0.49	<1	14	8	15	4.48	<10	0.71	604	_	<0.01		1470	28	<5	<20	16	0.08	<10	62	<10	10	69
13	86924	+	3.6 1.43	45	155	15	0.39	3	16	12	33	5.16	<10		1390		<0.01		1110	232	<5	<20	26	0.05	<10	61	<10	20	429
14	86927	15	0.6 1.15	25	85	10	0.28	2	13	9	28	4.13	<10	0.41	929		<0.01		940	92	<5	<20	16	0.02	<10	40	<10	9	336
15	86929	10	0.3 1.11	10	145	10	0.41	<1	12	7	23	4.19	<10	0.53	759	4	<0.01	9	1350	34	<5	<20	16	0.05	<10	38	<10	13	94
16	132278	110	0.2 1.80	45	50	15	0.95	<1	22	51	49	4.29	<10	1.36	531	<1	0.02	29	1160	38	10	<20	16	0.11	<10	101	<10	7	70
<u>QC DAT</u> Repeat: 1	132252	1	3.2 1.60	175	70	10	0.43	3	32	35	122	7.53	<10	1.15	780	9	<0.01	63	1430	169	15	<20	10	0.05	<10	81	<10	1	427
10	132258 126319	260 25																											
Standar PB106 OXF41	ra:	820	>30 0.66	275	40	<5	1.94	59	4	45	6174	1.56	<10	0.33	621	63	0.03	17	280	5314	160	<20	172	<0.01	240	20	20	<1	8429

* = Insufficient Sample

JJ/kk df/833 XLS/06 Jutta Jealouse


Appendix D

Author's Statement of Qualifications

Author's Statement of Qualifications

- I, David St. Clair Dunn, Professional Geoscientist, with a business address at 1154 Marine Drive, Gibsons, British Columbia, Canada certify that:
- 1. I am a graduate of the University of British Columbia and hold a degree of Bachelor of Science in Geology.
- 2. I have practised my profession as a prospector and geologist for 36 years.
- 3. I am registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia (Reg. # 18479). I am a Fellow of the Geological Association of Canada and a member of the Association of Applied Geochemist's, the Canadian Institute of Mining, Metallurgy and Petroleum, the Education Committee of the Association for Mineral Exploration of B.C., the Society of Economic Geologists and the Mining Exploration Group.
- 4. I have based my conclusions and recommendations in this report on a review of all available reports and direct supervision of the 2006 geological and geochemical program on the Tide North property.
- 5. I am the sole author of this report.
- 6. I am not aware of any material fact or material change from the information in this report that would make the report misleading.
- 7. I consent to the use of this report for the purpose of private or public financing.

October 13, 2006

