GEOPHYSICAL EXPLORATION LLOYD-NORDIK-GLENGARRY TENEMENTS

Mineral Tenure No's, 406365, 406360, 406358, 406367, 406366, 406368, 504623, 512125, 512126, 512132, 512133, 512134, 512141, 406363, 406363 516350, 516362, 516369, 516370, 516373 517238, 518537, 406353, 406353, 406355, 406356, 406357, 396860, 406359, 398668 534155, 534156, 534158 NTS MAP SHEET 93 A/12 LIKELY REGION CARIBOO MINING DIVISION UTM ZONE 10 U 5826000mN 591000mE Event No. 4096303

Gold Commissioner **TENEMENT OWNERS:** GLENGARRY DEVELOPMENTS INC. VALLEY HIGH VENTURES LTD. 201 - 850 WEST HASTINGS STREET VANCOUVER, B.C., CANADA V6C 1E1

VANCOUVER, B.C.

OPERATOR: VALLEY HIGH VENTURES LTD.

Prepared By David G. Bailey Ph.D., P.Geo. BAILEY GEOLOGICAL CONSULTANTS (CANADA) LTD. 2695 Mountain Highway North Vancouver, B.C. Canada V7J 2N4

October 30, 2006

CONTENTS

Page No.

.

[

.

-

, ,

_

-

.

-

.

. .

-

-

1. SUMMARY	I			
2. INTRODUCTION				
2.1 General Statement	2			
2.2 Location, Access and Physiography	2			
2.3 Mineral Tenements	2			
2.4 Exploration History	2			
2.5 Current Programme	4			
3. REGIONAL GEOLOGY	8			
3. GEOPHYSICAL SURVEY	7			
4. DISCUSSION	13			
4.1 Exploration Model	13			
4.2 Interpretation of Results and Conclusion	13			
5. EXPENDITURE STATEMENT	14			
6. REFERENCES AND BIBLIOGRAPHY	15			
7. CERTIFICATE	17			

TABLE

1. Lloyd-Nordik-Glengarry mineral tenements	3
---	---

FIGURES

1. Location		3
2. Likely region: topogra	aphy and claim location	6
3. Claim disposition		7
4. Regional geology		10
5. Grid location		11
6. Induced polarization of	coverage	12

APPENDIX

1.	Induced polarization and magnetometer surveys, Lloyd 2 claim, Likely area, B.C.	18
----	---	----

1. SUMMARY

The Lloyd-Nordik-Glengarry mineral tenements cover 6,558.14 hectares adjacent to, and to the east of, copper mining operations of Mount Polley Mining Corp, near Likely in southcentral British Columbia. The tenements are accessible via logging and mine roads from the 150 Mile-Likely highway.

The tenement group are underlain by rocks of the Quesnellia Terrace, an assemblage of Triassic-Jurassic alkalic volcanic strata and associated epiclastic rocks, intruded by intermediate to felsic plutons, dykes and sills of Upper Triassic-Lower Jurassic age and which commonly host copper mineralization with elevated gold.

Approximately 69 line kilometres of grid was established to the east and north of Mount Polley's mining operations and 15 line kilometres of induced polarization/magnetometer surveying were undertaken over the northwestern part of the grid. The aim of the geophysical work was to established geophysical signatures over known copper-gold mineralization that extends from Mount Polley Mining Corp.'s tenures into a tenure held by Valley High Ventures Ltd. (the "Boundary Zone") in order to compare those geophysical responses with other geophysical anomalies that may be defined elsewhere within the property boundaries.

Results indicate that the Boundary Zone has only moderate induced polarization response and that similar anomalies, while probably deep, may also indicate copper-gold mineralization in hydrothermally-brecciated monzonite under 100-200 metres of volcanic cover.

2. INTRODUCTION

2.1 General Statement

In 2006 exploration was undertaken over the Lloyd-Nordik-Glengarry group of mineral tenements consisted of grid establishment and geophysical surveying in order to provide indications of copper-gold mineralization of Mount Polley-type in poorly exposed terrain. This work was supervised by the author of this report during the period Narch 15 - May 24, 2006. scale. Positional control of the grid was established by means of a Garmin GPS differential unit which provided a radial accuracy of about one metre.

2.2 Location, Access and Physiography

The Lloyd-Nordik-Glengarry tenements are located in south central British Columbia about 70 kilometres northeast of the town of Williams Lake (Figure 1). The area is accessible from the sealed 150 Mile - Likely highway via a number of roads built to facilitate logging and mining operations in the region. The eastern part of the claim group is cut by Quesnel Lake and the topography on both sides of the lake is steep. Elsewhere, is undulating to moderately hilly. Mean elevation is about 900 m ASL with a maximum of about 1,200 m ASL.

The vegetation of much of the area is dominated by fir, cedar, poplar and birch although a number of logged areas now are covered by immature alder and young pine, the product of reafforestation.

2.3 Mineral Tenements

The mineral tenements that comprise the Lloyd-Nordik-Glengarry group are listed below in Table 1 below while the disposition of the tenements is shown in Figure 3.

2.4 Exploration History

Initial recorded work within the Morehead project area was in 1964 when Mastodon -Highland Bell Mines Ltd. carried out exploration over the BJ claims south of Morehead Lake (Bacon, 1965), following the 1964 discovery of copper at Mount Polley by the Springer Group, the area now underlain by copper mining operations of Mount Polley Mining Corp. Following this initial discovery, the Mount Polley area was evaluated by E & B Exploration and Amax Exploration along with several junior companies whose activities were mainly perepheral to the central zone of mcopper mineralization. Big Valley Resources Inc. (and, later, Consolidated Big Valley Resources Inc.) began exploration in 1994 on the ground now held by Valley High Ventures Ltd. and defined inferred and indicated copper resources on its Lloyd 2 claim (current Tenure No. 512142) of about 2,000,000 tonnes of about 0.5% copper equivalent (copper plus gold). However, a resurvey of the Lloyd 2 claim boundary indicated that about half of this resource lay within an adjoining claim that is held by Mt. Polley Mines Ltd.

.

L

....

Big Valley Resources Inc. also carried out geochemical and geophysical surveying and diamond drilling on its Nordik group of claims, claims that are now held by Valley High

Tenure	Owner	Good To Date	Area
406365	Glengarry Developments Inc.	Dec. 25, 2006	25.00
406360	Glengarry Developments Inc	Glengarry Developments Inc Dec. 25, 2006	
406358	Glengarry Developments Inc	Dec. 25, 2006	25.00
406367	Glengarry Developments Inc	Dec. 25, 2006	25.00
406366	Glengarry Developments Inc	Dec. 25, 2006	25.00
406368	Glengarry Developments Inc	Dec. 25, 2006	25.00
504623	Valley High Ventures Ltd.	Aug. 8, 2006	235.91
512125	Valley High Ventures Ltd.	Dec. 25, 2006	903.31
512126	Valley High Ventures Ltd.	Dec. 25, 2006	235.79
512132	Valley High Ventures Ltd.	Dec. 25, 2006	707.45
512133	Valley High Ventures Ltd.	Dec. 25, 2006	609.58
512134	Valley High Ventures Ltd.	Dec. 25, 2006	58.94
512141	Valley High Ventures Ltd.	Dec. 31, 2006	510.82
406363	Glengarry Developments Inc	Dec. 25, 2006	25.00
406364	Glengarry Developments Inc	Dec. 25, 2006	25.00
516350	Valley High Ventures Ltd.	Dec. 25, 2006	275.17
516362	Valley High Ventures Ltd.	Dec. 25, 2006	196.72
516369	Glengarry Developments Inc	Aug. 8, 2006	491.46
516370	Glengarry Developments Inc	Aug. 8, 2006	176.96
516373	Glengarry Developments Inc	Aug. 8, 2006	39.32
517238	Valley High Ventures Ltd.	Aug. 8, 2006	275.18

Table 1 Lloyd - Nordik - Glengarry Mineral Tenements

3

518537	Glengarry Developments Inc	Aug. 8, 2006	334.16
406353	Glengarry Developments Inc	Dec. 25, 2006	25.00
406354	Glengarry Developments Inc	Dec. 25, 2006	25.00
406355	Glengarry Developments Inc	Dec. 25, 2006	25.00
406357	Glengarry Developments Inc	Dec. 25, 2006	25.00
396860	Valley High Ventures Ltd.	Dec. 25, 2006	500.00
406359	Glengarry Developments Inc	Dec. 25, 2006	25.00
398668	Valley High Ventures Ltd.	Dec. 25, 2006	500.00
534155	Glengarry Developments Inc	May 18, 2007	78.69
534156	Glengarry Developments Inc	May 18, 2007	39.34
534158	Glengarry Developments Inc	May 18, 2007	39.34

Ventures Ltd. Minor copper mineralization was discovered on the Nordik 6 claim, the southernmost one of the Nordik group. Elsewhere, within the tenements held by Glengarry Developments Inc., described herein, little work appears to have been undertaken.

2.5 Current Programme

The geophysical work programme carried out within the Lloyd-Nordik-Glengarry tenement area was undertaken within the Lloyd 2 claim (Tenure No. 512142). This work consisted of induced polarization and magnetic surveying over approximately 15 line kilometres (Figure 5).

Grid establishment consisted of about 69.5 line kilometres of GPS-surveyed and cut grid which was picketed and flagged at 25m intervals except for the grid area on the east side of Polley Lake which has not yet been picketed. The extent of grid coverage is shown in Figure 4.

A description and results of the geophysical survey work is included as Appendix 1.

Ľ

Figure 1. Location of the Llovd-Nordik-Glengarry project area, central Cariboa, Braish Columbia.

Figure 2. Approximate distribution of mineral tenements listed herein. Base map extracted from NTS Sheet 93A/12. Coordinates are UTM (NAD27). UTM grid spacing is 100 metres.

6

1000

Manager

Figure 3. Disposition of mineral tenements.

-1

3. REGIONAL GEOLOGY

The Lloyd-Nordik-Glengarry property occurs within the Central Quesnel Terrane ("Quesnellia") of the Canadian Cordillera, a terrane that comprises an island arc volcanic and sedimentary assemblage that developed to the west of the North American plate during Middle Triassic to Lower Jurassic times. The Quesnel island arc was transported eastward and collided with the North American plate during late Lower Jurassic or Middle Jurassic at which time eastward-directed subduction under Quesnellia ceased. The geology of the Central Quesnel Terrane has been described by Bailey (1988, 1989,1990), Bloodgood (1988, 1989), Panteleyev, 1987, 1988) and Rees (1987), work which was summarised and compiled by Panteleyev *et al* (1996). Mineral deposits related to Lower Jurassic volcanism of Quesnellia have been summarised by Barr *et al* (1975). The regional geological setting of the Likely East tenement is shown in Figure 4 (after Bailey, 1990).

Oldest strata within Quesnellia are black shale, siltstone and sandstone of Middle Triassic age and which are well exposed along the eastern margin of Quesnellia ("black phyllite") and less so in the western part of the belt. Uppermost strata of this unit contain mafic tuffaceous beds and which mark the onset of basaltic volcanism within the developing arc. Overlying these rocks are olivine-bearing, pyroxene-phyric basaltic pillow lava, breccia and tuff of Karnian to Norian age and which, in turn, are overlain by basaltic breccia and tuff that lacks olivine but often contains hornblende as well as diopsidic augite. The top of the basaltic unit is often marked by analcitic and feldsparphyric basalt or basaltic andesite, tuffaceous and calcareous sandstone and lenses of limestone. Upper Triassic volcanism was probably along extensional faults that developed along the central axis of the Quesnel island arc and was mainly submarine in nature.

Basaltic volcanism ceased during the Norian Stage and, after a depositional hiatus during the Early Jurassic Hettangian Stage, renewed volcanism began, this time from central vents arranged along the arc axis. As volcanism progressed islands developed so that while initial Jurassic volcanism was submarine, in time volcanic facies that were deposited adjacent to vents were formed in a subaerial environment. Jurassic volcanic products consist of volcanic breccia and tuff and their reworked products, conglomerate and tuffaceous sandstone. The degree of reworking increases away from a central vent area. Breccias proximal to vents are commonly monomictic and are characterised by felsic clasts of trachytic composition. In places clasts of syenite or monzonite are also common. Distal breccias, on the other hand, are polymictic and contain clasts of underlying basalt as well as clasts of felsic composition.

Following felsic volcanism, a basaltic unit was deposited in a shallow marine and subaerial environment and epiclastic sedimentary strata. These younger strata are probably of

Pliensbachian to Bajocian age and represent the final depositional events before collision of Quesnellia with ancestral North America.

Intrusive rocks comprise small stocks, bosses and high level dykes of diorite, monzonite and syenite compositions and commonly, although not always, occupy central volcanic vent areas. Plutonism was contemporaneous with Lower Jurassic volcanism as evidenced by the presence of clasts of plutonic rocks within volcanic breccia. A later group of intrusions are of quartz monzonite to granite composition and are probably of Cretaceous age

A characteristic of the Upper Triassic - Lower Jurassic volcanic and plutonic rocks of Quesnellia is that they are generally undersaturated with respect to silica (minor modal quartz is present in places) and are commonly nepheline normative. The chemistry of these rocks is that of a shoshonitic assemblage, a group of alkaline rocks that formed at a convergent plate margin.

Except along the eastern margin of Quesnellia where thrust faulting and strong penetrative deformation occurs within the lowermost, mainly phyllitic, strata, deformation within the Quesnel Terrane is marked by high angle extensional faulting both parallel to, and oblique to, the terrane margins. The eastern margin of the central Quesnel Terrane is marked by a thrust fault known as the Eureka Thrust while the western margin is probably a high angle fault between Quesnellia to the east and the older Cache Creek Terrane to the west.

Mineral deposits within Quesnellia are mainly gold-enriched copper deposits of porphyry type such as Mt. Polley. These deposits formed during Lower Jurassic times and are genetically related to plutonism and volcanism occurring at that time. A variation of this type of deposit is that of QR, to the northwest of Mt. Polley, which is a gold-enriched exoskarn deposit with only low grade copper mineralization (Fox *et al*, 1986).

Figure 4. Likely region: simplified geology, location of significant mineral deposits and the Lloyd-Nordik-Glengarry project area. Geology after Bailey (1990).

Figure 5. Locations of grids established over the Lloyd-Nordik claims, 2006.

Figure 6. Lloyd 2 grid (tenure number 512125) and extent of geophysical coverage described in this report.

12

4. DISCUSSION

4.1 Exploration Model

Exploration of the Lloyd-Nordik-Glengarry tenures is oriented towards a magmatichydrothermal model of gold-enriched copper deposits such as those at Mt. Polley in which chalcopyrite \pm bornite mineralization is associated with potassic alteration within or adjacent to a diorite-mozonite stock or dyke complex. Such mineralization is usually surounded by an extensive propylitic zone characterized by the assemblage chloritecalcite-epidote-magnetite-pyrite.

Copper mineralization may be associated with magnetite within hydrothermallybrecciated monzonite (e.g. Mount Polley's Caribou pit) or may have only little or no magnetite (e.g. Mount Polley's Northeast zone.) Thus, high magnetic susceptibility is not necessarily indicative of possible copper mineralization. In addition, copper zones commonly have little pyrite and may have only moderate chargeability response, unlike pyrite-rich zones which, while having high chargeability, usually have very little copper.

4.2 Interpretation of Results and Conclusions

Known mineralization within the southeastern part of the Lloyd 2 claim (the Boundary Zone - formerly known as the Lloyd Zone) has moderate induced polarization and high magnetic response owing the abundant magnetite with copper sulphides. To the south of this zone is a zone of very high chargeability (relative to that of the Boundary Zone) and probably reflects pyrite which, in outcrop, may be a much as 10% of the rock.

To the northwest of the Boundary Zone is an area characterized by weak to moderate induced polarization response but which is only detected at depths of greater than about 200 metres. It is interpreted that about 200 metres of barren volcanic rocks overlie conductive monzonite, the conductivity possibly being due to mineralization.

It is concluded that the geophysical survey undertaken over about 15 line kilometres of the Lloyd 2 claim has defined valid targets that will require drill testing to establish the cause of the anomalies.

5. EXPENDITURE STATEMENT

Tostal	127 045 93
Bailey Geological Consultants (Canada) Ltd.	1,500.00
Reporting	
May 10 -24 (15 days)	34,701.00
Scott Geophysics Ltd. (15 line km)	
Geophysical surveying	
May 14 - 27, 2006 (14 days)	17,470.55
some SabreX lines)	
Amex Exploration Services Ltd. (14 line km - recutting	
March 15 - April 18, 2006 (34 days)	53,374.38
SabreX Contracting Ltd. (68 line km)	
Linecutting	
	\$

6. REFERENCES AND BIBLIOGRAPHY

1. Geology

- Bailey, D.G., 1988: Geology of the Hydraulic Map Area, NTS 93A/12; B..C. Ministry of Energy, Mines and Petroleum Resources, Preliminary Map 67, 1:50,000.
- Bailey, D.G., 1989: Geology of the Swift River Map Area, NTS 93A/12, 13, 93B/16, 93G/1.
 B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1989-20, 1:50,000 map.
- Bailey, D,G., 1990: Geology of the Central Quesnel Belt, British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1990-3, 1:100,000 map with accompanying notes.
- Barr, D.A., Fox, P.E., Northcote, K.E. and Preto, V.A., 1976: The Alkaline Suite Porphyry Deposits: A Summary in Porphyry Deposits of the Canadian Cordillera, A. Sutherland-Brown, Editor, Canadian Institute of Mining and Metallurgy, Special Volume 15, pages 359-367.
- Bloodgood, M.A., 1988: Geology of the Quesnel Terrane in the Spanish Lake Area, Central British Columbia; in Geological Fieldwork, 1987, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1988-1, pages 139-145.
- Bloodgood, M.A., 1990: Geology of the Eureka Peak and Spanish Lake Map Area, British Columbia; B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1990-3, 36 pages.
- Fox, P.E. and Cameron, R.S., 1995: Geology of the QR Gold Deposit, Quesnel River Area, British Columbia; *in* Porphyry Deposits of the Northwestern Cordillera of North America, T.G. Schroeter, Editor, *Canadian Institute of Mining and Metallurgy*, Special Volume 46, pages 829-837.
- Panteleyev, A., 1987: Quesnel Gold Belt Alkalic Volcanic Terrane between Horsefly and Quesnel Lakes (93A/6) in Geological Fieldwork, 1985, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1987-1, pages 125-133.
- Panteleyev, A. And Hancock, K.D., 1989: Geology of the Beaver Creek Horsefly River Map Area, NTS 93A/5, 6. B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1989-14, 1:50,000 Map.
- Panteleyev, A., Bailey, D.G., Bloodgood, M.A. and Hancock, K.D., 1996: Geology and Mineral Deposits of the Quesnel River - Horsefly Map Area, Central Quesnel Trough, British Columbia, NTS Map Sheets 93A/5, 6, 7, 11, 12, 13; 93B/9, 16; 93G/1; 93H/4; B.C. Ministry of Employment and Investment, Energy and Minerals Division, Geological Survey Branch, Bulletin 97, 156 pages.
- Rees, C.J, 1981: Western margin of the Omineca Belt at Quesnel lake, British Columbia; *in* Current Research, Part A, *Geological Survey of Canada*, Paper 81-1A, pages 223-226.
- 2. Assessment Reports (Number, Year, Author and Type of Work)

03229	1971	Ramani, Sankar V.	Geochemical
07698	1979	Christie, J.S.	Geological, geochemical
09970	1982	Schlax, M.G. and Shore, G.A.	Geophysical
17913	1988	Cann, R.M.	Geological, geochemical
18294	1989	Cann, R.M.	Geophysical
20197	1990	Copeland, D.J.	Geophysical, drilling
20583	1990	von Rosen, G.	Geochemical
23065	1993	Wallis, J.E.	Geophysical
23475	1994	Durfield, R.M.	Geochemical, drilling
24154	1995	Durfield, R.M.	Drilling
24585	1996	Tennant, S.J.	Drilling
25382	1997	Tennant, S.J.	Geochemical, drilling
25651	1998	Tennant, S.J.	Drilling

[

Γ

[

٢

7. CERTIFICATE

I, David Gerard Bailey of 2695 Mountain Highway, North Vancouver, British Columbia, hereby certify that:

- 1. I am a geological consultant and Principal of Bailey Geological Consultants (Canada) Ltd., with offices at the above address;
- I hold degrees in geology from Victoria University of Wellington, New Zealand (B.Sc.(Hons.), 1973) and Queen's University, Kingston, Ontario (Ph.D., 1978);
- 3. I have practised the profession of geologist continuously since graduation;
- 4. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia;
- 5. I hold memberships in the Society of Economic Geologists, the Geological Association of Canada, the Association of Exploration Geochemists, the Geological Society of America, the Canadian Institute of Mining and Metallurgy and the Australasian Institute of Mining and Metallurgy;
- 6. I supervised the work described in this report.

Dated at North Vancouver this 2nd day of November, 2006.

David G. Bailey, Ph.D., P.Geo.

APPENDIX 1

.

-

...

INDUCED POLARIZATION AND MAGNETOMETER SURVEYS LLOYD 2 CLAIM, LIKELY AREA, B.C.

LOGISTICAL REPORT

Ĺ

I

1

L

7

ì

~

INDUCED POLARIZATION AND MAGNETOMETER SURVEYS

LLOYD 2 CLAIM, LIKELY AREA, B.C.

on behalf of

VALLEY HIGH VENTURES LTD. Suite 201 – 850 West Hastings Street Vancouver, B.C. V6C 1E1

Survey performed: April 21 to May 29, 2006

by

Alan Scott, Geophysicist SCOTT GEOPHYSICS LTD. 4013 West 14th Avenue Vancouver, B.C. V6R 2X3

October 29, 2006

TABLE OF CONTENTS

Γ

ſ

ſ

Γ

Ì

1	Introduction	page 1
2	Survey coverage and procedures	
3.	Personnet	ł
4.	Instrumentation	I
	Appendix	
Stat List	tement of Qualifications ting of GPS derived UTM coordinates	rear of report rear of report

Accompanying Maps (1:5000 scale)

	-map pocket
Chargeability/Resistivity Pseudosections with Magnetometer Profiles	
Lines 4400N, 4500N, 4500N, 4600N, 4700N, and 4800N	1
Lines 4900N, 5000N, and 5100N]
Lines 5200N, 5300N, and 5400N	1
Chargeability contour plan - Triangular Filtered Values)
Resistivity contour plan Triangular Filtered Values	2
Magnetometer profiles	3
Magnetometer data postings	3

1. INTRODUCTION

-

Induced polarization (IP) and magnetometer surveys were performed at the Lloyd 2 Claim, Likely Area, B.C., within the period April 21 to May 29, 2006.

The surveys were performed by Scott Geophysics Ltd. on behalf of Valley High Ventures Ltd. This report describes the instrumentation and procedures, and presents the results of the surveys.

2. SURVEY COVERAGE AND PROCEDURES

A total of 15.5 km of IP and magnetometer survey was performed at the Lloyd 2 Claim.

The pole dipole array was used for the IP survey with an "a" spacing of 50 metres and "n" separations of 1 to 5 (50/1-5), except for lines 4900N, 5000N, and 5400N, which were surveyed at 50/1-10. The on line current electrode was located to the east of the potential electrodes on all survey lines.

The chargeability and resistivity results are presented on the accompanying pseudosections and contour plan maps. The magnetometer survey results are presented as profiles at the top of the pseudosections, and as data posting and stacked profile plans.

3. PERSONNEL

Ken Moir was the crew chief on the survey on behalf of Scott Geophysics Ltd. David Bailey, Geologist, was the representative on behalf of Valley High Ventures Ltd.

4. INSTRUMENTATION

A Scintrex IPR12 receiver and TSQ4 transmitter were used for the IP survey. Readings were taken in the time domain using a 2 second on/2 second off alternating square wave. The chargeability values plotted on the accompanying pseudosections and plan maps is for the interval 690 to 1050 msecs after shutoff. A Scintrex ENVI was used for the magnetometer survey. All data was corrected for diurnal drift with reference to a Scintrex ENVI base station cycling at 10 second intervals.

Respectfully Submitted,

aufer

Alan Scott, Geophysicist

Statement of Qualifications

for

Alan Scott, Geophysicist

of

4013 West 14th Avenue Vancouver, B.C. V6R 2X3

I hereby certify the following statements regarding my qualifications and involvement in the program of work on behalf of Valley High Ventures Ltd., at the Lloyd 2 Claim, Likely Area, B.C., and as presented in this report of October 29, 2006.

The work was performed by individuals sufficiently trained and qualified for its performance.

I have no material interest in the property under consideration in this report.

I graduated from the University of British Columbia with a Bachelor of Science degree (Geophysics) in 1970 and with a Master of Business Administration in 1982.

I am a member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.

I have been practicing my profession as a Geophysicist in the field of Mineral Exploration since 1970.

Respectfully submitted,

auty

Alan Scott, P.Geo.

r

ĺ

Γ

ľ

ſ

[

[

Γ

[

Page 1

H SOFTWARE NAME & VERSION I GPSU 4.20 01 REGISTERED to 'Lorne stewart' S DateFormat=dd/mm/yyyy S Units=M,M S SymbolSet=2							
H R DATUM M E	NAD83 066 0.0000000E	00 -1.6434840E-11	0 0 0				
H COORDINATE S U UTM UPS	SYSTEM						
F ID	Zne East North	T O Alt(m)	Comment				
W 44N 2900E	100 591697 5825195	IE 1070.1	28-MAY-06 8:49:34				
W 44N 29508 W 44N 30508	100 591735 5825250	TE 1096.0	27-MAT-06 15:52:21 27-MAY-06 15:32:33				
W 44N 3250E	100 591941 5825440	IE 1091.9	27-MAY-06 14:55:57				
W 44N 3450E	100 592078 5825577	IE 1083.0	27-MAY-06 14:30:17				
W 45N 2700E	100 591490 5825108	IE 1081.1	27-MAY-06 9:10:18				
W 45N 2800E	100 591558 5825186	IE 1079.0	26-MAY-06 15:50:41				
W 45N 3000E W 45N 3200E	100 591899 5825357	TE 1083.0	26-MAY-06 14:44:35				
W 45N 3400E	100 591970 5825625	IE 1085.2	27-MAY-06 9:36:54				
W 46N 2600E	10U 591293 5825179	IE 1072.9	25-MAY-06 8:38:37				
W 46N 2750E	100 591471 5825202	IE 1071.7	25-MAY-06 16:40:51				
W 46N 3000E	100 591628 5825402	IE 1073.9	25-MAY-06 15:46:16				
W 46N 3200E W 46N 3400E	100 591756 3825558	LE 1085.0 TE 1095.1	25-MAY-06 14:54:49				
W 46N 3600E	100 592037 5825839	IE 1066.0	25-MAY-06 14:19:00				
W 47N 2600E	100 591293 5825179	IE 1072.9	25-MAY-06 8:38:37				
W 47N 2700E	100 591362 5825251	IE 1075.1	24-MAY-06 14:45:50				
W 47N 2900E	100 591488 5825412	IE 1082.1	24-MAY-06 14:13:52				
W 47N 3500E W 47N 3500E	100 591747 5625709	IE 1097 0	24-MAY-06 12:30:33				
W 48N 2450E	100 591131 5825128	IE 1055.2	23-MAY-06 13:31:50				
W 48N 2700E	10U 591295 5825323	IE 1070.5	23-MAY-06 13:01:15				
W 48N 2900E	100 591419 5825473	IE 1099.9	23-MAY-06 12:36:19				
W 48N 3100E	100 591551 5825626	IE 1128.2	23-MAY-06 12:06:03				
W 48N 3300E W 48N 3500E	100 591674 5825777		23-MAY-06 11:22:13				
W 48N 3800E	100 592031 5826118	IE 1035.9	22-MAY-06 15:02:15				
W 49N 2450E	100 591081 5825199	IE 1064.1	01-MAY-06 14:25:36				
W 49N 2600E	100 591170 5825318	IE 1070.1	01-MAY-06 13:59:20				
W 49N 2800E	100 591293 5825467	IE 1109.0	01-MAY-06 13:14:30				
W 49N 3100E	100 591423 5825824	TE 1116.0	01-MAY-06 12:03:39				
W 49N 3300E	100 591617 5825855	I E 1083.0	01-MAY-06 11:24:41				
W 49N 3500E	100 591744 5826004	IE 1079.0	01-MAY-06 10:42:16				
W 49N 3800E	100 591935 5826216	IE 1029.0	30-APR-06 16:19:10				
W 50N 2200E W 50N 2400E	100 590743 5825207	LE 1038.6	26-APR-06 10:32:35				
W 50N 2500E	100 591008 5825342	TE 1072.5	24-APR-06 14:14:24 24-APR-06 14:17:57				
W 50N 2600E	100 591074 5825414	IE 1079.7	24-APR-06 13:40:35				
W 50N 2700E	100 591145 5825481	IE 1116.0	24-APR-06 13:14:50				
W 50N 2800E	100 591212 5825554	I E 1123.9	24-APR-06 12:55:10				
W 50N 3000E	100 591349 5825699 100 561413 5925774	LE 1086.6	24-APR-06 11:59:58				
W 50N 3200E	100 591415 5825850	IE 1035.0	23-APR-06 15:50:20				
W 50N 3300E	100 591547 5825917	IE 1072.0	23-APR-06 14:42:37				
W 50N 3550E	100 591723 5826102	IE 1065.5	23-APR-06 16:41:07				
W 50N 3600E	100 591752 5826141	I E 1063.1	23-APR-06 13:22:40				
W DUN 3800E W 51N 2200F	100 391882 3826287	IE 1010.0	23-APR-06 12:32:12				
W 51N 2250E	100 590745 5825207	TE 1038.6	20-APR-06 10:32:35 26-APR-06 9.14.44				
W 51N 2350E	100 590841 5825316	IE 1051.8	25-APR-06 15:54:30				
W 51N 2550E	100 590985 5825451	IE 1072.7	25-APR-06 15:17:21				
W 51N 2650E	100 591053 5825509	IE 1116.0	25-APR-06 14:57:19				

r

l

ĺ

-

ι

-

•

W	51N	2750E	10U	591124	5825588	I	Е	1128.0	25-APR-06	14:39:26
W	51N	3050E	100	591307	5825805	I	Е	1069.1	25-APR-06	13:44:06
W	51N	3150E	100	591374	5825879	I	Е	1059.3	25-APR-06	13:21:08
Ŵ	51N	3350E	100	591517	5826015	I	E	1030.9	25-APR-06	12:36:19
W	51N	3550E	100	591670	5826151	I	Е	1030.7	25-APR-06	12:06:53
W	51N	3750E	100	591797	5826296	Ι	Е	1008.3	25-APR-06	11:29:08
W	52N	2000E	100	590521	5825122	I	E	997.5	27-APR-06	15:29:46
W	52N	2200E	10U	590660	5825267	I	Ε	1025.6	27-APR-06	14:55:38
W	52N	2300E	10U	590728	5825341	1	Е	1046.3	27-APR-06	14:32:59
W	52N	2600E	100	590928	5825557	I	Е	1095.8	27-APR-06	13:36:47
W	52N	2800E	100	591071	5825700	I	Ε	1113.1	27-APR-06	12:43:10
W	52N	3000E	100	591205	5825841	Ι	E	1060.9	27-APR-06	10:59:39
W	52N	3350E	100	591436	5826109	I	Ε	1017.0	26-APR-06	15:28:54
W	52N	3600E	10U	591616	5826274	I	Ε	1010.0	26-APR-06	14:32:02
W	52N	3800E	100	591752	5826423	I	E	988.8	26-APR-06	13:53:51
W	52N	4000E	100	591901	5826566	I	E	982.3	26-APR-06	13:30:10
W	52N	4200E	100	592042	5826711	I	Е	959.5	26-APR-06	12:34:00
W	52N	4450E	100	592222	5826891	Ι	E	937.4	26-APR-06	12:12:16
W	53N	2100E	10U	590496	5825287	I	Ε	999.9	29-APR-06	14:54:51
W	53N	2300E	10U	590633	5825419	I	Е	1019.1	29-APR-06	14:48:57
Ŵ	53N	2500E	100	590775	5825563	Ι	£	1070.1	29-APR-06	14:40:38
W	53N	2700E	100	590916	5825711	I	Ē	1073.9	29-APR-06	14:33:02
W	53N	3000E	100	591131	5825914	I	Е	1028.0	29-APR-06	14:10:19
W	53N	3400E	100	591407	5826183	I	E	990.0	29-APR-06	13:53:48
W	53N	3600E	100	591548	5826321	I	E	998.9	29-APR-06	13:43:59
W	53N	3800E	10U	591679	5826473	r	Е	998.0	29-APR-06	13:32:17
W	53N	4000E	10U	591831	5826594	I	Е	989.1	29-APR-06	13:21:42
W	53N	4200E	100	591984	5826717	I	Е	963.1	29-APR-06	13:13:22
W	53N	4450E	100	592148	5826896	I	Е	936.9	29-APR-06	13:03:46
W	54N	2200E	10U	590502	5825430	I	E	1010.0	06-MAY-06	13:04:10
W	54N	2300E	100	590578	5825487	I	E	1016.0	06-MAY-06	11:36:22
W	54N	2400E	100	590650	5825554	I	Е	1035.0	06-MAY-06	10:57:06
W	54N	2500E	100	590716	5825620	L	Е	1063.1	06-MAY-06	10:15:57
W	54N	2700E	100	590849	5825762	I.	E	1053.5	06-MAY-06	9:33:56
W	54N	2950E	10U	591026	5825942	ĩ	Ε	1034.0	06-MAY-06	14:02:52
W	54N	3000E	10U	591058	5825979	I	Ε	1021.0	06-MAY-06	14:07:29
W	54N	3200E	10U	591194	5826122	I	E	996.0	06-MAY-06	14:14:45
W	54N	3450E	100	591396	5826259	I	Е	1001.1	06-MAY-06	14:23:45
W	54N	3650E	100	591545	5826395	I	E	1005.9	06-MAY-06	14:32:35
W	54N	3850E	100	591692	5826529	Ĩ	Е	1007.1	03-MAY-06	15:51:29
W	54N	4000E	100	591803	5826629	I	E	989.1	03-MAY-06	14:27:56
W	54N	4200E	100	591924	5826785	I	E	965.0	03-MAY-06	12:34:25
Ŵ	54N	4450E	100	592081	5826977	Ī	E	940.0	03-MAY-06	12:12:49

Mineral Claim Exploration and Development Work/Expiry Date Change

Confirmation

Recorder: FRANCES JEAN MACPHERSON (116548) Recorded: 2006/AUG/03 D/E Date: 2006/AUG/03 Submitter: FRANCES JEAN MACPHERSON (116548) Effective: 2006/AUG/03

Your report is due in 90 days. Please attach a copy of this confirmation page to the front of your report.

Event Number: 4096303

Work Start Date: 2006/MAY/18 Work Stop Date: 2006/MAY/24 Total Value of Work: \$ 127045.93 Mine Permit No: MX-10-206

Work Type: Technical Work Technical Items: Geophysical

Summary of the work value:

Tenure #	Claim Name/Property	Issue Date	Good To Date	New Good To Date	# of Days For- ward	Area in Ha	Work Value Due	Sub- mission Fee
406365	K13	2003/NOV/02	2006/DEC/25	2007/DEC/25	365	25.00	\$ 114.52	\$ 10.00
406360	K8	2003/OCT/30	2006/DEC/25	2007/DEC/25	365	25.00	\$ 115.34	\$ 10.00
406358	K6	2003/OCT/30	2006/DEC/25	2007/DEC/25	365	25.00	\$115.34	\$ 10.00
406367	'K15	2003/NOV/02	2006/DEC/25	2007/DEC/25	365	25.00	\$ 114.52	\$ 10.00
406366	K14	2003/NOV/02	2006/DEC/25	2007/DEC/25	365	25.00	\$114.52	\$ 10.00
406368	K16	2003/NOV/02	2006/DEC/25	2007/DEC/25	365	25.00	\$ 114.52	\$ 10.00
504623		2005/JAN/22	2006/AUG/08	2007/DEC/31	510	235.91	\$ 1318.49	\$ 131.85
512125	i i	2005/MAY/05	2006/DEC/25	2007/DEC/31	371	903.31	\$ 3672.65	\$ 367.26
512126		2005/MAY/05	2006/DEC/25	2007/DEC/31	371	235.79	\$ 958.65	\$ 95.86
512132		2005/MAY/05	2006/DEC/25	2007/DEC/31	371	707.45	\$ 2876.32	\$ 287.63
512133	5	2005/MAY/05	2006/DEC/25	2007/DEC/31	371	609.58	\$ 2478.42	\$ 247.84
512134	F	2005/MAY/05	2006/DEC/25	2007/DEC/31	371	58.94	\$ 239.63	\$ 23.96
512141		2005/MAY/05	2006/DEC/31	2007/DEC/31	365	510.82	\$ 2043.28	\$ 204.33
406363	K11	2003/NOV/02	2006/DEC/25	2007/DEC/25	365	25.00	\$ 114.52	\$ 10.00
406364	K12	2003/NOV/02	2006/DEC/25	2007/DEC/25	365	25.00	\$ 114.52	\$ 10.00
516350	· · · ·	2005/JUL/08	2006/AUG/08	2007/DEC/25	504	275.17	\$ 1519.85	\$ 151.98
516362		2005/JUL/08	2006/DEC/25	2007/DEC/25	365	196.72	\$ 786.87	\$ 78.69
516369)	2005/JUL/08	2006/AUG/08	2007/DEC/25	504	491.46	\$ 2714.46	\$ 271.45

Event Number: 4096303, page 2

----.

Γ

Γ

ſ

_

. .

-

-

.

516370	2005/JUL/08	2006/AUG/08	2007/DEC/25	504	176.96	\$ 977.42	\$ 97.74
516373	2005/JUL/08	2006/AUG/08	2007/DEC/25	504	39.32	\$217.16	\$21.72
517238	2005/JUL/12	2006/AUG/08	2007/DEC/31	510	275.18	\$ 1537.99	\$ 153.80
518537 QLK EAST EXT	2005/JUL/29	2006/AUG/08	2007/DEC/25	504	334.16	\$ 1845.66	\$ 184.57
406353K1	2003/OCT/30	2006/DEC/25	2007/DEC/25	365	25.00	\$115.34	\$ 10.00
406354K2	2003/OCT/30	2006/DEC/25	2007/DEC/25	365	25.00	\$ 115.34	\$ 10.00
406355K3	2003/OCT/30	2006/DEC/25	2007/DEC/25	365	25.00	\$ 115.34	\$ 10.00
406356K4	2003/OCT/30	2006/DEC/25	2007/DEC/25	365	25.00	\$ 115.34	\$ 10.00
406357K5	2003/OCT/30	2006/DEC/25	2007/DEC/25	365	25.00	\$ 115.34	\$ 10.00
396860 NORDIK 1	2002/SEP/22	2006/DEC/25	2007/DEC/31	371	500.00	\$ 4065.75	\$ 203.29
406359K7	2003/OCT/30	2006/DEC/25	2007/DEC/25	365	25.00	\$ 115.34	\$ 10.00
398668 NORDIK 2	2002/NOV/29	2006/DEC/25	2007/DEC/31	371	500.00	\$ 4065.75	\$ 203.29
534155K FRACTIONS	2006/MAY/18	2007/MAY/18	2007/DEC/25	221	78.69	\$ 190.57	\$ 19.06
534156 ^K FRACTION	2006/MAY/18	2007/MAY/18	2007/DEC/25	221	39.34	\$ 95.27	\$ 9.53
534158 ^K FRACTION	2006/MAY/18	2007/MAY/18	2007/DEC/25	221	39.34	\$ 95.27	\$ 9.53

Total required work value: \$ 33309.30

PAC name:	Valley I	High Ventures Ltd.
Debited PAC amount:	\$	0.00
Credited PAC amount:	\$	93736.63
Total Submission Fees:	\$	2903.37
Total Paid:	\$	2903.37

The event was successfully saved.

GEOLOGICAL SURVEY BRANCH ASSECTTURE PERORT

CHOLOCICAL SURVEY BRANCH			LIOYD 2 CLAIM, LIKELY AREA, B.C. LINE: 5400N	SCOTT GEOPHYSICS LTD. Scintrex IPR-12 May/06 Current electrode east of potential electrodes (array heading W) Mx Chargeability is for the interval 890-1050 msec after shutoff Magnetometer survey: Scintrex ENVI total field magnetometer	0 50 100 200 300 METERS	APPERANT RESISTIVITY TOTAL FIELD (0hm-m) (nT) (nT) (nT)	50000 55000 55000 55000 55000 501 - 502 - 503 - 504 - 505 - 506 - 507 - 506 - 507 - 508 - 509 - 500 - 50	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
	VALLEY HIGH VENTURES LTD.	LLOYD 2 CLAIM, LIKELY AREA, B.C. LINE: 5300N	INDUCED POLARIZATION SURVEY Pole-Dipole Array SCOTT GEOPHYSICS LTD. Scintrex IPR-12 May/06 Current electrode east of potential electrodes (array heading W) Mx Chargeability is for the interval 690-1050 msec ofter shutoff		APPERANT RESISTIVITY (0hm-m) (m/V) 0 0 0 0 0 0 0 0 0 0 0 0 0	5700 5500 7 7 5500 7 7 3 - 4 - 5 - 7 7 1 - 2 - 3 - 4 - 5 - 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2150E 2200E 2.4 2.4 3.0 2 3.3 2150E 2200E 2.4 3.0 2 3.3 2150E 2200E 14A 337 563 353 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
VALLEY HIGH VENTURES LTD. LLOYD 2 CLAIM, LIKELY AREA, B.C.	LINE: 5200N INDUCED POLARIZATION SURVEY Pole-Dipole Array	SCOTT GEOPHYSICS LTD. Scintrex IPR-12 May/O6 Current electrode east of potential electrodes (array heading W) Mx Charaeobility is for the interval 690-1050 msec after shutoff	Magnetometer survey: Scintrex ENVI total field magnetometer 0 50 100 200 300 M E T E R S	APPERANT RESISTIVITY CHARGEABILITY CHARGEABILITY TOTAL FIELD (Ohm-m) (nT) (nT)	50000 57000 55000 55000 55000 55000 55000 501 - 502 - 504 - 505 - 504 - 502 - 503 - 504 - 505 - 505 - 505 - 505 -	DE 2100E 1.9 1.9 1.9 2.4 CE 2100E 301 528 289 260 260	2150E 2200E 2.1 19 2.0 2.6 2.4 3.2 2.8 3/0 3.4 3.3 2150E 2200E 448 328 376 566 412 571 295 402 301 338	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

DOE 3050E 3100E 3150E 3200E 3250E 3300E 3350E 3400E 3450E 3500E 3550E 3600E 3650E 3700E 3750E 3800E 3850E 3900E 3950E 4000E 4050E 4100E 4150E 4200E 4250E 4300E 4350E 4400E	
2.8 2.7 3.0 3.5 3.7 3.8 2.2 2.9 2.5 3.1 3.1 2.8 2.4 2.1 1.8 2.5 2.9 3.0 3.7 2.5 2.7 3.1 2.9 3.2 2.7 3.3 3.8 4.1	Contours
3.5 3.3 40 3.8 3.4 4.2 4.2 2.5 3.3 2.8 3.2 3.3 2.9 2.5 2.5 2.1 2.2 2.9 3.2 3.3 3.1 3.1 3.4 3.2 3.9 3.5 3.4 4.1 4.5 4.1 4.3 4.3 4.8 3.5 3.0 3.2 3.1 3.0 2.8 2.8 2.8 2.3 2.2 3.2 3.3 3.1 3.4 3.2 3.9 3.5 3.4 4.1	2 3
5.0 4.6 4.1 4.0 3.9 3.7 4.4 4.5 2.9 3.6 2.9 3.0 3.4 3.2 3.0 2.7 2.6 3.6 3.8 4.3 4.3 4.3 4.3 4.5 4.4 3.6 5.5 5.5 4.7 4.0 4.1 3.9 3.8 4.6 4.5 3.0 3.6 2.8 2.9 3.3 3.6 3.5 3.5 2.9 3.1 4.1 4.9 4.7 4.8 4.9 4.4 4.4	4 5 6 8
5.9 5.4 4.4 4.1 3.9 3.7 3.8 4.5 4.5 2.6 3.6 2.9 3.2 3.6 3.8 3.9 3.4 3.5 4.3 4.3 5.0 5.0 4.8 4.3 6.1 5.9 5.2 4.7 4/0 3.8 3.9 3.4 3.5 4.3 4.4 5.2 4.9 4.9 4.6	Ŭ
6.2 5.7 5.4 4.7 4.9 4.1 4.0 3.9 4.6 4.4 2.9 4.0 3.3 3.6 4.1 4.4 4.4 4.6 3.8 3.7 4.3 4.8 5.2 4.9 4.6 7.0 6.9 5.9 5.4 4.6 4.2 4.2 4.0 3.9 4.6 4.5 3.1 (4.2 3.7 3.7 4.3 4.7 4.8 4.5 4.0 3.6) 4.8 4.6 4.8 4.6	
6.8 6.3 6.0 5.2 4.9 4.2 4.2 4.0 4.0 4.7 4.7 3.2 4.2 3.7 40 4.5 4.9 4.7 4.4 4.0 4.1 4.3 4.4 4.7	
DOE 3050E 3100E 3150E 3200E 3250E 3300E 3350E 3400E 3450E 3500E 3550E 3600E 3650E 3700E 3750E 3800E 3850E 3900E 3950E 4000E 4050E 4100E 4150E 4200E 4250E 4300E 4350E 4400E	
368 464 595 706 447 767 634 213 441 335 449 539 406 263 210 193 400 530 700 812 376 581 754 470 505 296 187 146 14	5 Contours
578 649 878 486 423 913 573 291 649 315 339 558 361 291 365 278 287 584 726 474 376 745 491 433 580 365 178 141 1048 680 762 535 399 439 743 643 346 549 285 330 489 395 393 445 238 268 458 465 418 403 380 416 419 531 258 155	150 200 300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	500 700 1000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
<u>512</u> 398 354 533 366 336 358 329 357 655 534 224 452 229 233 376 294 272 222 43 143 149 170 194 152 L	INE: 5400N
00E 3050E 3100E 3150E 3200E 3250E 3300E 3350E 3400E 3450E 3500E 3550E 3600E 3650E 3700E 3750E 3800E 3850E 3900E 3950E 4000E 4050E 4100E 4150E 4200E 4250E 4300E 4350E 4400E	I.
3.6 3.6 3.9 4.0 4.2 4.2 4.4 3.4 2.6 2.8 2.8 3.5 3.2 2.1 2.2 1.7 3.1 3.2 3.4 3.0 3.5 3.0 3.4 3.3 3.0 2.8 2.9 3.4 3. 3.9 4.2 4.6 4.7 4.4 3.9 4.5 3.6 3.3 3.2 30 3.8 2.8 2.4 2.7 2.0 3.0 3.1 3.1 4.3 4.7 4.1 4.2 4.1 3.8 3.6 3.8 3.9	7 Contours
4.1 4.3 4.7 4.8 4.6 4.0 3.4 3.1 2.9 3.2 3.0 2.8 3.1 2.1 3.5 3.4 4.5 5.0 5.2 4.5 4.6 4.5 4.4 4.2 3.9 4.4 4.7 4.9 4.5 4.1 4.0 3.3 30 2.6 3.4 3.3 3.2 3.3 2.5 4/1 4.5 4.9 5.3 5.3 4.7 4.7 4.9 4.2 3.9	∠ 3 4 5
5.≥ 4.8 4.9 4.8 4.2 4.2 \3.9 / 4.3 4.4 \3.8 3.2 \2.9 2.8 3.8 3.7 3.4 3.6 \2.8 \4.8 4.9 \$.0 5.6 5.5 \4.6 4.9 / 5.3 \4.8	6
00E 3050E 3100E 3150E 3250E 3250E 3300E 3350E 3400E 3450E 3500E 3550E 3600E 3650E 3700E 3750E 3800E 3850E 3900E 3950E 4000E 4050E 4100E 4150E 4200E 4250E 4300E 4350E 4400	E
435 532 584 695 647 447 583 501 300 309 300 591 452 176 311 188 542 1103 794 899 392 433 305 458 294 328 256 204 15	39 Contours
545 574 129 610 517 440 415 668 675 420 312 226 448 468 304 352 192 422 698 372 358 330 394 263 474 382 376 215 570 592 374 449 435 449 417 58 585 366 337 275 673 431 298 329 172 369 431 327 388 263 364 252 466 393 311	100 150 200
640 563 589 548 399 452 443 491 667 533 379 320 314 466 405 269 292 147 306 403 357 299 238 349 248 329 329	300 500 700 1000
L	JNE: 5300N
	• -
	5F
3.3 \$2.8 \$3.0 3.0 3.1 3.4 3.2 \$.0 2.3 2.8 2.4 2.7 2.8 \$3.1 3.5 3.4 3.2 3.4 3.4 3.2 3.6 3.7 3.6 3.4 3.1 3.0 \$28 3.4	- 3.8 Contours
4 19 3.3 3.6 3.5 3.5 3.5 3.5 2.9 2.8 2.8 2.8 3.3 3.0 2.9 3.8 4.4 4.2 4.4 4.3 4.3 4.3 4.5 4.3 4.1 4.0 4.0 3.9 3.8 4.0 4.9 4.4 3.9 4.1 4.0 3.7 3.5 3.1 3.3 3.0 3.3 3.3 3.6 3.1 3.3 4.5 8.1 4.7 4.8 4.8 4.7 4.8 4.5 4.4 4.5 4.5 4.4 4.5 4.5 4.3 4.1	2
3 5.4 4.9 4.3 4.5 4.3 3.9 3.7 3.5 3.6 3.7 3.5 40 5.0 5.5 4.9 4.8 4.7 4.8 4.9 4.7 4.3 6.1 5.8 5.2 4.6 4.8 4.6 4.1 4.0 3.7 3.7 3.7 4.0 4.0 4.5 5.2 5.7 5.1 5.2 5.1 4.8 4.9<	5 6
000E 3050E 3100E 3150E 3200E 3250E 3300E 3350E 3400E 3450E 3550E 3600E 3650E 3700E 3750E 3800E 3850E 3900E 3950E 4000E 4050E 4100E 4150E 4200E 4250E 4300E 4350E 4400	ι£
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64 Contours
589 885 442 466 568 509 452 405 448 377 399 407 351 221 362 386 464 268 346 323 308 299 218 270 323 423 244 184 7 571 824 452 498 563 524 439 441 489 403 544 370 288 214 232 434 450 250 353 319 287 250 230 284 311 356 222	100 150 200 300
566 523 807 445 460 567 502 455 461 563 517 480 293 270 145 251 407 420 264 344 292 239 245 228 265 258 327	500 700 1000
	_INE: 5200N

FICATIONS
rmed Apr-May/06 Scintrex IPR12 Scintrex TS04
2 seconds Findow 690-1050 msecs
pole dipole 50 metres 1s 1, 2, 3, 4, 5 trode E of potentials
ulue Filtered resistivity ues n = 1 to 5
intervals: 150, 200, 300, 500, 500, 2000 (ohm-m)
ilter applied to this data ard Fraser triangular filter value is selected at n=1, two 2, three values at n=3, etc. value is the average of the les of the n separations and t the n=1 data point.
s are at the n=1 plotting point
00 200 300 400
METERS
METERS HIGH VENTURES LTD.
METERS HIGH VENTURES LTD. OYD 2 CLAIM
HIGH VENTURES LTD. OYD 2 CLAIM IKELY AREA, B.C.
HIGH VENTURES LTD. OYD 2 CLAIM IKELY AREA, B.C. stivity Contour Plan
HIGH VENTURES LTD. OYD 2 CLAIM IKELY AREA, B.C. stivity Contour Plan gular Filtered Values
METERS HIGH VENTURES LTD. OYD 2 CLAIM IKELY AREA, B.C. stivity Contour Plan gular Filtered Values to Fifth Separations
HIGH VENTURES LTD. OYD 2 CLAIM KELY AREA, B.C. stivity Contour Plan gular Filtered Values to Fifth Separations rs DATE: Oct/06

CIFICATIONS
formed Apr-May/06 netometer Scintrex ENVI netometer Scintrex ENVI proton
nanoTeslas crrections base station val 12.5 metres
se 57000 nT ate 1000 nT/cm Scale)
ERANGE
00 200 300 400
M TERS
HIGH VENTURES LTD.
OYD 2 CLAIM
KELY AREA, B.C.
gnetometer Survey Profiles
Irs DATE: Oct/06
PHYSICS LTD.

Apr-May/06 Scintrex ENVI magnetometer Scintrex ENVI proton total field nanoTeslas base station 12.5 metres HIGH VENTURES LLOYD 2 CLAIM LIKELY AREA, B.C. Magnetometer Survey Data Posting DATE: Oct/06