EXPLORATION REPORT

ROD-STIR PROPERTY

Clinton Mining Division, British Columbia

LATITUDE 51°07' / LONGITUDE 122°15' NTS: MAP 092O/1

Ву

J.M. STEWART R.M. DURFELD, B.Sc., P.GEO.

1840 LARSON ROAD
NORTH VANCOUVER, BC V7M 2Z6

NOVEMBER, 2006

NOVEMBER, 2006

ROY 2 N 2006

ROY 2 N 2006

Gold Commissioner's Office

Gold Commissioner's Office

AND V 2 N 2006

Gold Commissioner's Office

Gold Commissioner's Office

AND V 2 N 2006

ROY 2 N 2006

ROY

1

TABLE OF CONTENTS

APPENDIX I

A .)	PRO	PERTY DESCRIPTION	2 -
	1)	Location	2 -
	2)	Access and Physiography	
	3)	Claims	
	4.)	Regional History (Stirrup / Roderick Creek)	4 -
	5.)	2006 Exploration Program	4 -
C .)	CLA	IM SURVEY	4-
D.)	GEO	LOGY	6-
•	1)	Regional & Property Geology	6-
	2)	Mineralization	,7 -
E.)	GEO	CHEMISTRY	
-	1)	Sample Collection and Mapping	7 -
F.)	RES	ULTS	8 -
F.)		T STATEMENT	
G .)	STA	TEMENT OF QUALIFICATIONS	10 -
ILLI	USTR	ATIONS	
Figu	re 1	ROD-STIR PROPERTY LOCATION MAP	Page 1
Figu		ROD-STIR CLAIM LOCATION MAP	Page 3
Figu		ROD-STIR GEOLOGY MAP	Attached
Figu		ROD-STIR GEOLOGY MAP WITH SAMPLE LOCATION	•
Figu		ROD-STIR CLAIM MAP WITH SAMPLE LOCATION	*
	PENDI	CES	

- 2006 Analytical Results

DAD CTID DDADEDTV

Figure 1 ROD-STIR PROPERTY LOCATION MAP
FIGURE 1

A.) PROPERTY DESCRIPTION

1) Location

The Rod-Stir Property is located, on the west side of the Fraser River, 92 kilometers north of the community of Lillooet. The property is centered at 51°07' north latitude and 122°15' west longitude, UTM NAD 83 5663066 mN and 552495 mE. (Figure 1)

2) Access and Physiography

The property is accessed from Lillooet via the West Pavilion Forestry road on the west side of the Fraser River. At kilometre 92 on the West Pavilion road a secondary mining road takes off to the west and at 9 kilometres bisects the property. The closest helicopter service is located in Lillooet. (Figure?)

The property is on the Fraser Plateau in south central British Columbia. The topography of the property is dominated by the east-west trending 9-mile ridge with elevations ranging from 1600 to 2010 metres above sea level.

3) Claims

The Rod-Stir Property consists of 5 contiguous tenures covering some 872.13 hectares of mineral tenure in the Clinton Mining Division. (Figure 2)

The following table lists the current status of the claims. The Good Until date reflects work that was filed as SOW Exploration and Development Work / Expiry Date Change (4099182).

ROD-STIR TENURE DATA

Tenure	Type	Claim	Good Until	Area (ha)
Number		Name		
518186	Mineral	DAVE	20070826	486.777
518257	Mineral	DAVE 2	20070826	223.084
518258	Mineral	DAVE 3	20070826	101.426
	Mineral	GAP/	20070801	40,56
	Mineral	GAP 2	20070801	29/282
	(872.129
4	/// X-			
de la companya della companya della companya de la companya della				

4.) Regional History (Stirrup / Roderick Creek)

Mineral claims owned by H.V. Warren and his associates, located on the ridge between the headwaters of Stirrup Creek and Roderick Creek in the Clinton Mining Division, have been investigated for the source of several thousand ounces of placer gold. Warren reports that placer gold was discovered at Stirrup Creek during World War 1 and over the following 25 years, some 3000 to 5000 ounces of gold were produced. Placer operations have continued intermittently since that time.

The 1933 B.C. Minister of Mines Report notes that a 100 foot cross-cut with an 80 foot winze and a connecting 12 foot drift were completed that year. A number of veins and lenses of stibnite were located in 1942.

Rio Tinto Explorations Ltd. optioned the property in 1969. That company carried out geochemical surveys and drilled nine percussion holes aggregating 494 metres (1622 feet). A piece of float found on the ridge saddle at this time assayed 0.66 opt gold. Placer Development Ltd. optioned the property in 1973 and undertook geochemical and trenching programs. Then Chevron optioned the property in 1974. Chevron also conducted geochemical and geological programs, trenching, and in 1975 drilled two 300 foot vertical core holes. Asarco made detailed examinations of the claims in 1980, and Placer Development are reported to have conducted a limited VLF-EM test in 1984. Interest in the property was again revived in 1986 when the high grade Blackdome gold deposit located about 30 kilometers north of Stirrup Creek was brought into production.

Chevron Canada Resources Limited again optioned the property in 1987 along with the adjacent Brent property to the west. The properties were acquired with a view to reevaluating a number of known gold showings within the Warren claims, and in particular to determine whether smaller, structurally controlled deposits may be present. In June and July of 1987, a number of old trenches were cleaned, a limited amount of new trenching was completed and sampled. In October, four shallow drill tests were completed.

(Assessment Report 17336-T.E. Lisle, Dec. 18, 1987)

5.) 2006 Exploration Program

The objective of the 2006 program was:

- 1/ To determine what ground was actually acquired with the MTO staking system in view of the apparent discrepancy in a) the location of the underlying crown grants and b) the location of the underlying 12, two post claims.
- 2/ To research and compile all previous reports on the property.
- 3/ To prospect the tenure area with a particular focus on the intrusive contact areas.

The 2006 work is described in this report.

C.) CLAIM SURVEY

A Claim Survey was conducted on July 6 and 7, 2006 by R.M.Durfeld, B. Sc., P. Geo. and J.M. Stewart, utilizing a Model Trimble Pro-XL. Survey points were collected for

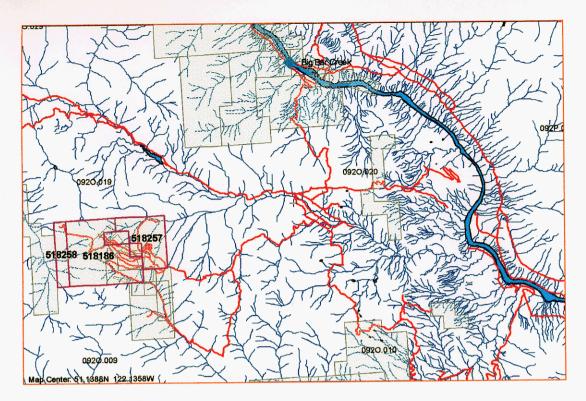


Figure 3: ROD-STIR CLAIM LOCATION MAP


ROD-STIR CLAIM LOCATION MAP FIGURE 3

claim posts and monuments and differentially corrected. The corrected data points are listed in the following table and plotted on the previous claim location map (Figure 3).

GPS field coordinates were taken at three Legal monuments (north west, north east & south east corners) on D.L. 8192. GPS field coordinates were also taken on all claim posts of Stirrup 1 to 6 claims and on the claim posts of Stirrup 7,8,9,11 and the initial post of Stirrup 12 & 13 claims.

This corrected field data was compiled, a data plan prepared and forwarded to the claims inspector at Kamloops. A second GPS survey was conducted on October 18, 2006 by Don Smith-Claims Inspector- of Kamloops. This survey duplicated the first but added several more legal corners of the old Crown Grants to the list of coordinated points. Those added include two angle irons on the west boundary of L. 7981, one angle iron on the north boundary of L. 7979 and one angle iron at the south east comer of L. 7979. This survey was conducted using a Trimble GPS and correcting the data. The ministry claim survey verified our original survey and defined Rod-Stir property, the area we had acquired by staking.

		Meis Cia	im Survey	_		
				UTN	1 NAD 83	
				Height	Northing	Easting
1	SE8192	#########	01:06:07pm	1856.666	5663921.618	553890.785
2	NE8192	########	01:14:59pm	1886.894	5663991.509	553888.393
3	NW8192	########	01:30:28pm	1871.143	5663978.592	553691.1
4	STIR I 1,2	#########	02:06:42pm	1828.418	5663565.003	555415.803
5	STIR F1,2 13,4	########	02:27:17pm	1839.375	5663608.495	555041.508
6	STIR F3,4 15,6	########	02:34:42pm	1839.175	5663580.087	554589.963
7	STIR F 5,6	########	02:44:10pm	1842.977	5663749.144	554105.403
8	STIR F9,18	#########	03:13:49pm	1918.827	5663766.717	554450.192
9	STIR F8,17 11	#########	03:22:35pm	1980.201	5664110.204	554056.358
10	DRILL HOLE 1	#########	03:29:59pm	1993.81	5664460.441	553824.799
11	DDH SC 05 02	#########	03:36:09pm	1993.266	5664450.216	553824.533
12	DRILL HOLE 2	########	03:38:28pm	2001.994	5664493.082	553874.313
13	DRILL HOLE 3	#########	03:39:08pm	2002.766	5664494.284	553871.882
14	STIR F7,11	########	04:08:43pm	2003.522	5664550.549	553773.841
	112,13					
15	STIR 19	########	04:29:45pm	1862.423	5663677.538	554972.272
16	DAVIS CABIN	########	04:45:38pm	1839.447	5663910.309	553775.781

D.) GEOLOGY

1) Regional & Property Geology

The claim area lies near the eastern margin of the Jackass Mountain Group, an early Cretaceous sedimentary unit. The assemblage is reported to be about 5300 metres thick consisting of volcanic-rich lithic wakes, shales and polymict boulder conglomerates that are dominantly of marine origin.

The claims lie close to the Trettin'D 'Fault, one of the major northwesterly splays of the Fraser River Fault Zone. Movement along the Fraser Fault and the Yalakom Fault further to the west has dissected the Jackass Group into several parts and has also resulted in a number of cross faults trending east to northeast between the two. A number of easterly trending parallel faults have been noted in the upper part of Stirrup Creek

Within the claims and adjoining area to the northwest and south east, the sedimentary rocks have been intruded by dykes and sills of granodiorite, feldspar porphyry and quartz-feldspar porphyry. These intrusives are locally mineralized with fine pyrite / arsenopyrite.

Where examined, the claim area is underlain by sandstone that is medium to locally coarse grained with minor pebble conglomerate, by argillaceous siltstone and by porphyritic intrusives that grade from feldspar to quartz-feldspar porphyry. Due to

limited exposure, the nature of the intrusives are not defined but are believed to be part of the sill and Dyke system present at Stirrup Creek. Some locations, the mineralized intrusions form prominent gossans on the open slopes.

Close to the northwest corner of the claim, small stibnite occurrences have been partly exposed in buildozer trenches. The stibnite occurs as narrow seams near the contacts of a quartz-fedispar porphyry sill that may trend west to northwest in an argillaceous siltstone host. Nearby rocks are locally highly altered, cream-coloured and clay rich with dark brown fractures. This setting and the geochemistry are similar to other occurrences on the adjacent Stirrup Creek property.

Two small hand pits near the intersection of the Sun, Shine and Brent claims reveal grey stibnite bearing quartz veins and stringers in a gossanous quartz-feldspar porphyry. The extent or trend of this zone is presently uncertain. Poorly defined quartz veins assaying up to 200 ppb gold are present near the northwest margin of the Shine claim. This material appears to mark a contact between quart-feldspar porphyry and Jackass sandstone.

(Assessment Report 16303, T.E. Lisle, Oct. 18,1987)

2) Mineralization

In the north west area of the property, the mineralized zone referred to by T. E. Lisle in Assessment Report 16303 was identified in the field. This area was prospected further to determine the extent of the mineralization

E.)GEOCHEMISTRY

1) Sample Collection and Mapping

The 2006 program of prospecting and mapping included collecting samples. Eight rock samples were collected, marked and later sent for assay. Mapping of sample locations, and features was done with handheld GPS, compass and belt chain. Rock types, faults and mineralized areas were noted. The following table summarizes the results.

		ı	PROJECT		ROD/STI	R Aug. 23/06
WPT	Sample No.	1	Northing	Easting	Elev.	Description
						Old DDH north of Cross
216	5		5664518	553807	7 2013	trench trench
217	7		5663932	554549		OIP #11 Mel's number) On cat rd to NE trenches
220)		5663897	555625		(N side of ridge)
222	2	250491	5665137	553567		Fault in pass
222	2	250495	44	64	44	White & gray contact Fault in pass-embedded
223	3		5664997	553517	7 2042	glacial rocks-photo
224	4		5664390	553682		Old DDH on cat rd.
22:	5		5664420	553693	3 2025	Pld DDH on cat rd
226	5	250489	5664496	553738	3 2011	Bag 1, N,S, trench (az 300*)

				i i Glicti
226	250493	66	"	" Bag 2, N,S, trench "
226	250494	"	66	" Bag 3, N,S, trench "
227	250487	5665163	552153	1868End of north'ly cat rd (Sb vein)
228	250488	5665163	552168	187315m E of end of cat rd

2.) Sample Analysis

Samples were shipped to Assayers Canada for analysis for fire geochem gold and 34 element ICP.

F.) RESULTS

The rock sampling shows strongly anomalous arsenic and weakly anomalous gold in samples 240489, 93 and 94 from trenches at waypoint 226. The samples are of quartz carbonate veining in altered sediments near a quartz porphyry intrusion. Sample 250487 from an area of stibnite veining at waypoint 227 is strongly anomalous in antimony, sulphur and mercury. The gold with arsenic, more distal antimony and mercury, alteration, veining and quartz porphyry intrusive would support an epithermal gold model for the property area. Follow-up as more detailed soil and rock sampling would identify mineral zoning in the area and vector toward the gold component.

F.) COST STATEMENT

Rod-Stir Project					
GPS Claim Survey July 7 to 8, 2006					
Truck Rental	2trucks 2days		200.00		
Mob - Demob	Martine Code		250.00		
Quad Rental	2 days @ \$50/day		100.00		
Room and Board	2 mandays @		160.00		
Wages	Durfeld, Guido	2 days @\$250	500.00		
		Total Field C 8, 2006.	ost July 7 to	2,110.00	
Prospecting July 6 to 8 Aug 19 to 24, 2006					
Truck Rental	9 days @\$100/		900.00		
Truck Fuel	200		200.00		
Quad Rental	9 days @ \$50/day		400.00		
Room and Board	9 mandays @ \$80/day		720.00		
Wages	Stewart, Mel	9 days	2,700.00		
Mob - Demob		200	200.00		
		Total Field C to 13	cost Aug 10	5,120.00	
Reporting					
Analyses	gold and ICP		300.00		
Report			500.00		
		Total Field (to 30	Cost Sept 26	800.00	
		Total Projec	t Cost	8,030.00	

Dated at Williams Lake, British Columbia this 6th day of December 2005.

A DURFEL

R.M. DURFELD, B.Sc., P.GEO.

G.) STATEMENT OF QUALIFICATIONS

- I, Rudolf M. Durfeld, do hereby certify that:
- 1.) I am a geologist with offices at 2029 South Lakeside Drive, Williams Lake, BC.
- 2.) I am a graduate of the University of British Columbia, B.Sc. Geology 1972, and have practised my profession with various mining and/or exploration companies and as an independent geological consultant since graduation.
- 3.) I am a member Canadian Institute of Mining and Metallurgy.
- 4.) That I am registered as a Professional Geoscientist by the Association of Engineers and Geoscientists of B.C. (No. 18241).
- 5.) That this report is based on:
 - a.) my supervision, of Mel Stewart's work and reporting on the Rod-Stir property.
 - b.) compilation of the 2006 data.
 - b.) my personal knowledge of the property area and a review of available government maps and assessment reports.

Dated at Williams Lake, British Columbia this 6th day of December 2005.

R.M. DURFELD, B.SC., P.GEO.

APPENDICES

APPENDIX I

- 2006 Analytical Results

ASSAY RESULTS FICE-SYST PROJECT 2000

		10P			TIC	TO	ICP	IC		10	ICP	ICP	K	CP	ICP	OF	CP	TOP .	C	ICP	O	10	ICP	K	1	7 10		TIO	IC	IQ	10		(CP	KOP	IC
or House	- Description	AQ		A	-	90		C						Htg						NE	M	P	PO	. 8		8	0 3	77	1	1 1	ט עו	Y	W	Di.	
-	Naree.	POIN	- 16	Piper	ppn	Diperi	DOM		6 CON	ppra	DESIGN	CENT	-	com	14	OFFI	*	ppm	pom	-	(SERIE)	pont	300	*	1	JQ.	o Mai	DON	,	6 pon	ppm	ppm	ppra	Span	理
MITETIL	262487	40.2	0.1	100	48	40.5	4	0.0	4	-	67	10	0.88		0.08	<10	0,02	220	<2	0.01	61	33	-2		>1000	4	1 6	4	40,0	144	1 -40	. 6	<10	34	1.
CI76THL	200456	40.2	0.07	102	8	0.5	ep.		3 4	21	80	51	4.3	1 4	0.06	<10	1.63	760	42	0.01	107	784	13	0.18		1	4 247	<	€0.0	1 47	1 410	82	410	85	-
77.478	200480	40.2	0.42	2411	1947	49.5	45	8.4	4	7	54	21	3.87	1	0.1	<10	0.84	1104	4Z	0.01	10	287	_7	0.2	24	1	4 197	4	40.0	1 441	1 < 90	26	410	10	_
V1787R.	250491	40.2	2.37	27	61	0.5	46	2.5	3 4	21	70	30	4.31	1	0.08	<10	1,88	1008	1	0.03	21	710	. 0	0.02		1	9 3	4	0.2	1 441	<10	100	410		1
V178756	253622	40.2	1.15	24		40.5	<6	6.0	6 <1		38	5	2.73	1	0.1	410	6.8	633	42	0.08	1	97		0.01		5	2 2	40	0.0	1 41	1 <10	48	<10		
V1787RJ	200460	40.2	0.5	1748	774	-0.5	1	6.4	2 41	10	54	35	4.86	1	0.12	<10	1.12	1034	12	0.02	23			0.24			6 113	4	0.0	1 41	49D	. 54	410	_	
V1767R.	250494	40.2	93	1658	230	40.	45	10,3	6	1 8	20	18	3.8		0.08	<10	1,20	1129	4	0.01	1 11	300	_	0.11		_	4 15	4	40.0		410	_	410		1
N1787RJ						1	45	0.1	4 4	1	77	Z	0.45	. 1	0.06	<10	9.1	163	45	0.04	1	86	- 6	0.01	17	3 4	1 1	<	0.0	4 1	9 <10		<10	18	L
							Ι							Γ_{-}																					1
										1_						Ι										1	_	-	_	-	-	1_	_	-	1
		Gee	Geo	Chiem						1_	100																	1	-	-	-	-			-
ar Micale	Semple	A	A	hack	Ι											1									-	1	_	-		1	-	_	1		L-
		PPD	ppb.	1	L																	1_			-	_	_	_		_	-	_	-		1
V1767NS	200487	8		1						1						_										1_		1		1	1	1	\vdash		ļ.,
N1787RX	200400	3		1		1				1										-		_				_		-		+	1	_	\vdash		1
MITATION		85		-	Γ.											_			-	_		_		_		1	_	1	-	-	-	-	+	-	1
M1787FRC		2							_	1_			_	1				_		_	-	-	_	1		1	-	-	_	1-	-	-	1	_	1
M-1787RG							_	100		_					_						_		-			1-	-	-	-	-	┿	-	-	-	+
N1767R				100					-																_	-	-	-	_	-	-	-	\vdash	-	1
Vita III	20494	24								Ι				I		L				_	1	-				-	-	-	↓	-		-	1		-
MITHTRO	200496	1				1	-	_												1	1	_				-	1	-		-	-	-	_		1
VITETIE	A46	10000								1					L	-	14					1			-	-	4	-	-	-	+-	+	\perp		ļ.,
STATE OF					1	-	1000	-	-	1		1						_	-	-		-	-	-	-	-	-	-	-		-	-	+	-	1
AIT III.	TELANIA	141		1		1	1			1	1	1	_			1					1				-		_	-	1	_	_	-	1	-	ь.

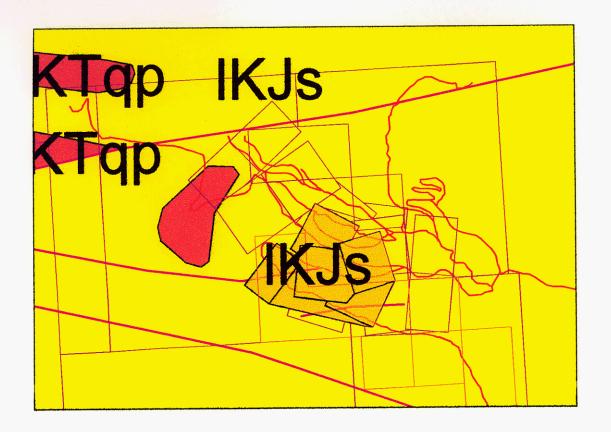


Figure 4: ROD-STIR GEOLOGY MAP

ROD-STIR GEOLOGY MAP FIGURE 4

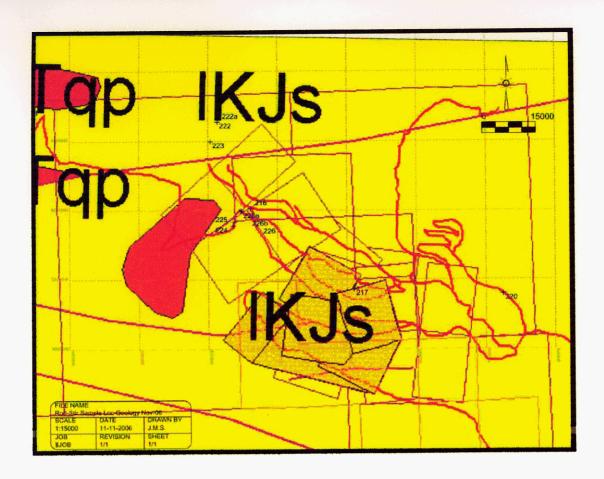
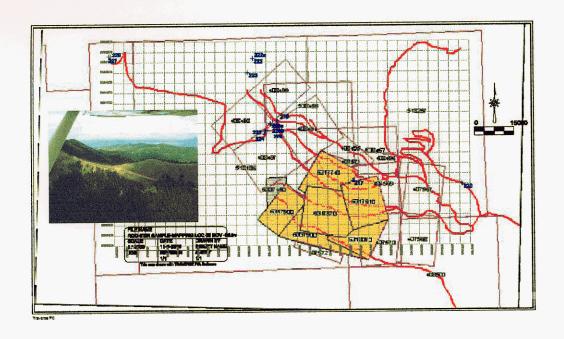



Figure 5: ROD-STIR GEOLOGY MAP WITH SAMPLE LOCATION

SAMPLE LOCATION GEOLOGY MAP

FIGURE 5

SAMPLE LOCATION & CLAIM MAP FIGURE 6