

L

L

ŧ

ON

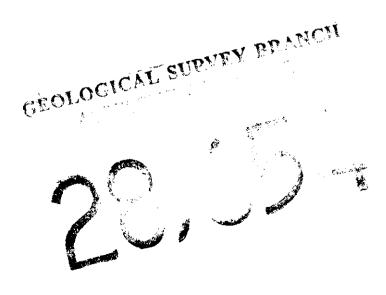
NGV 2 2 2005

Gold Commissioner's Office PLATO CLAIM GROUP VANCOUVER, B.C.

QUADRA ISLAND

NANAIMO MINING DIVISION, BRITISH COLUMBIA

: Mineral tenure 529053, 530307 are located at Saxon Lake **PROPERTY LOCATION** in central Quadra Island.


> 50° 12' 53.9"N 125° 16' 57.4" W

WRITTEN BY

GERRY DIAKOW 1537 54th Street Delta, B.C. V4M 3H6

November 16, 2006

:

TABLE OF CONTENTS

[

Γ

,

_

.

_

 $\overline{}$

~---

Summary	3
Introduction	3
Claim status	5
Property Geology	5
Rock Analysis	7
Conclusion	7
Recommendations	7
Statement of Qualifications	11
Affidavit of Expenses	12
Assay Methods and Specifications	13

LIST OF FIGUIRES AND MAPS

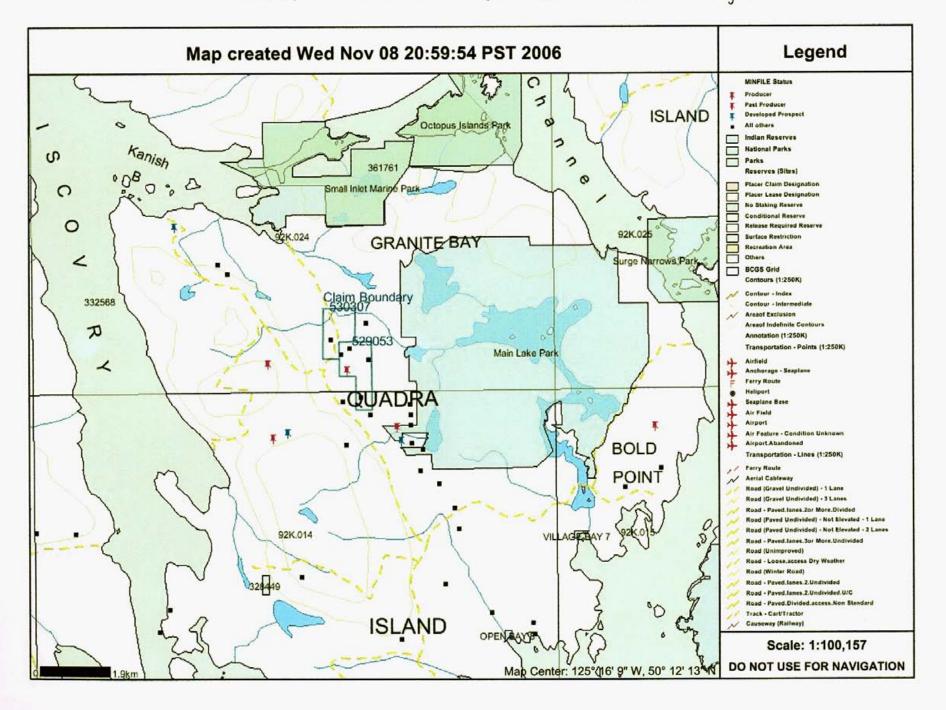
Figure 1 Location of Claim	529053, 5	30307	 4
Figure 2 Claims with Minfile	Locations .		 6
Figure 3 Sample locations P	lato Claim.		 8
Figure 4 Sample locations L	ucky Jim Cla	aim	 9

Summary

The Mineral claims 529053, 530307 were prospected and sampled on May 9 to May 12, 2006 by Gerry Diakow and Hector Diakow. Several old showings were located many of these had been disturbed with road building activity.

Eighteen specimen samples were collected of these eleven rock samples were selected and sent to ACME Analytical Laboratories for 36 element analysis. The remaining samples are being kept for possible further lithological work. The samples were assayed using a 15 gram sample of the rock leached with 90 ml 2 -2- 2 HCL- HNO3 –H2O at 95 Deg. For one hour, diluted to 300 ml, and analyzed by ICP-MS.

Introduction


-

The Plato group of mineral claims tenure numbers 5290653 and 530307 are located on Quadra Island around Saxon Lake near the center of the island (Figure 1).

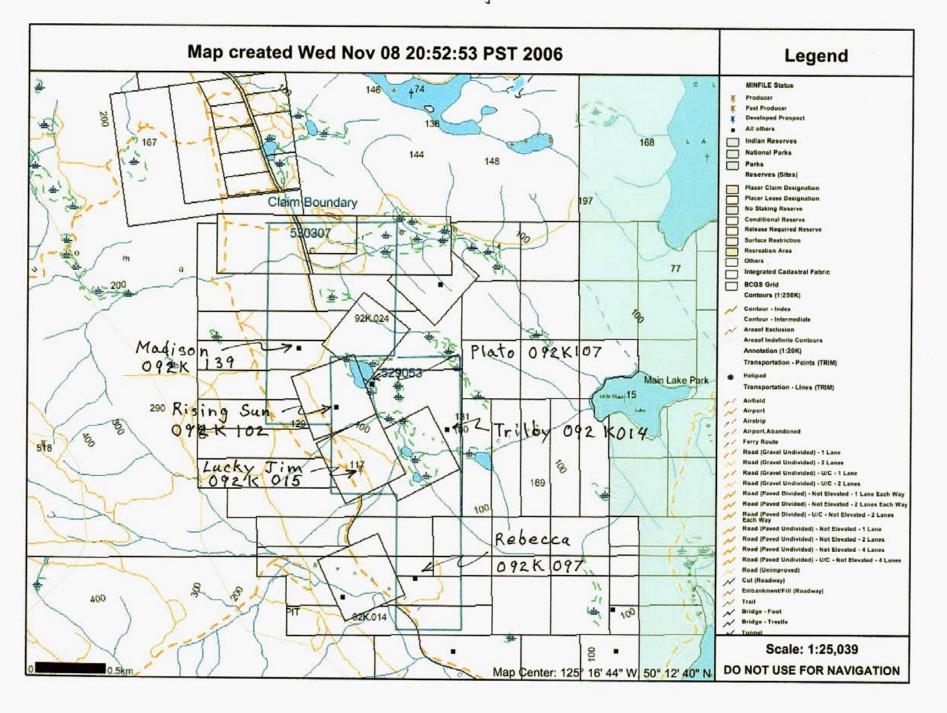
Access to the claims is by ferry from Campbell River to Quathiaski Cove, then by good gravel road 18 kilometers to the claims.

The claim group covers a flat forested partly swampy area less than 50 meters above sea level.

Vegetation consists of generally dense second growth hemlock and cedar forest. The center part of the southern claim is a swamp turning into a wet meadow further downstream along Saxon Creek. CLAIM LOCATION QUADRA ISLAND Fig. 1

Claim Status

The Plato claim group consists of two mineral title online claims *Plato* Tenure number 529053 5 cells Expiry Date Feb. 27, 2009 *Lucky Jim* Tenure number 530307 6 cells Expiry Date Mar. 20, 2009


Property Geology

The Plato claims are underlain by a NW trending belt of limestone (Quatsino Group) and intercalated andesitic volcanic rocks which to the west overlie Karmutsen volcanics.

The property is at the northern end of the Quadra Island "lime belt" the Lucky Jim mine is the only gold/copper mine with reported production from the lime belt (Figure 2).

Lucky Jim (Minfile 092 015) ore was formed alongside diabase dykes of considerable extent however it is assumed that the ore-bearing solutions appear to have come up at a later date, during a second period of movement along old fracture planes.

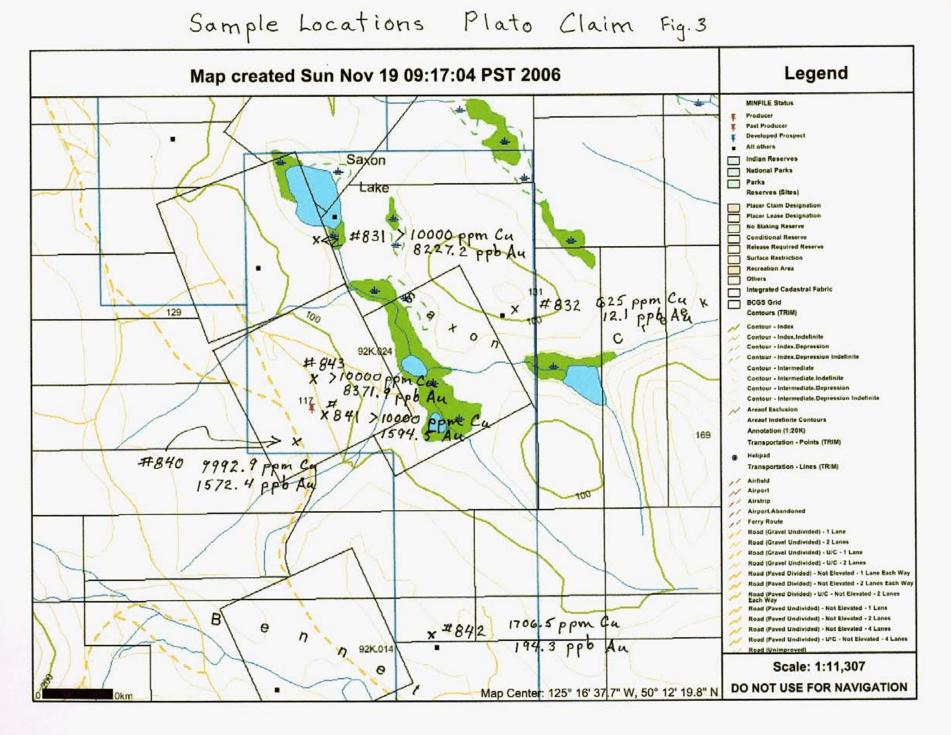
The Plato showing (Minfile 092K 107) is the second most important showing in the claim block. Here a pyritic quartz vein strikes northwest and cuts andesite. A 1911 thirty centimeter chip sample assayed 51.43 grams per tonne gold, 10.29 grams per tonne silver and 1per cent zinc. A second sample from this period is reported to have run 926 grams per tonne gold and 103 grams per tonne silver (Ministry of Mines Annual Report 1926). When the author visited the property the level of Saxon Lake was high and some of the old showing was under water. The parts of the property that were sampled showed values considerably less than the above.

Rock Analysis

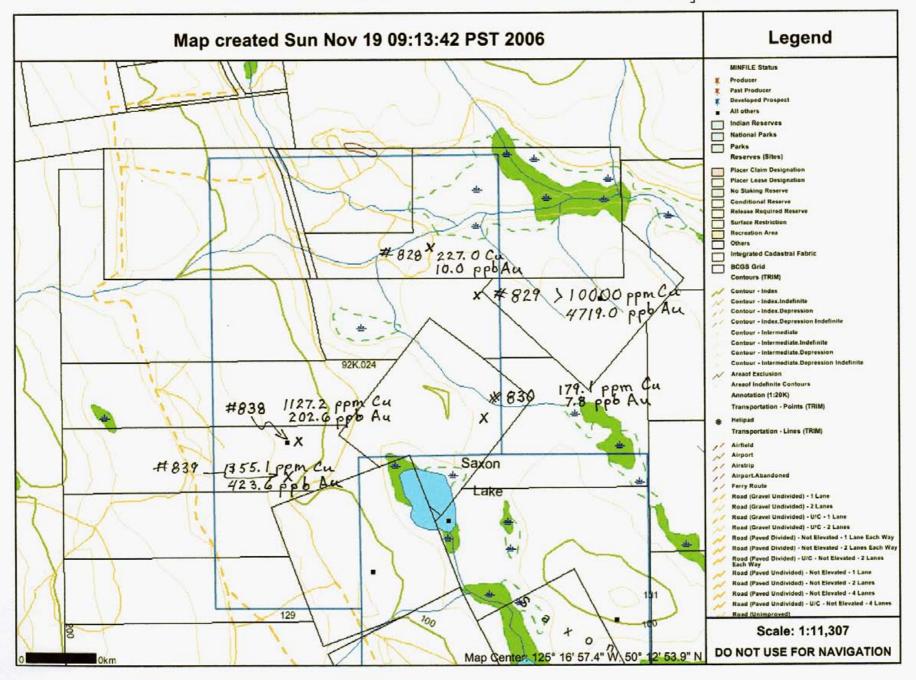
The rock data was collected at the minfile locations and at various locations where interesting copper sulfides were evident (Figures 3, 4,). The above maps show the last three numbers of the assay sample number, thus sample #184828 is identified by #828. Two assays gold in parts per billion and copper in parts per million are also shown on the map. The remaining 34 elements are attached in the accompanying assay certificate at the end of the report.

Conclusion

ł


1. The rock sampling results indicate high copper and gold mineralization associated with the Lucky Jim mine area.

2. The Plato showing had interesting values although not nearly as high as the historical records.


3. Logging activity and road building in the area has used most of the broken rock from the other minfile occurrences. This material that was readily available as sub-grade material is now the base rock of local roads and many of the pits have been stripped of the mineralized showings.

Recommendations

The claim areas are adjacent to other interesting claims that are held by third parties. It is recommended that these other local third parties, who the author is familiar with, be approached with the idea of amalgamating all the claims in the area. A larger claim block would thus allow a comprehensive program over all the of the lime belt down the centre of Quadra Island. The property has been worked extensively in the past including diamond drilling in the recent past. All data should be reviewed and brought into a modern Geographical Information System (GIS) data base system.

Sample Locations Claim 530307 Fig.4

STATEMENT OF QUALIFICATION STEPHEN G. DIAKOW

1

ì

-

- 1. I attended Vancouver City College and the University of British Columbia completing courses leading to a B.Sc in chemistry.
- 2. Studied Civil and Structural Engineering at British Columbia Institute of Technology.
- 3. I have worked in Mineral Exploration for the past 37 years . Including the major companies Union Carbide Mining Exploration, Canadian Superior Mining Exploration and Anaconda Mining Exploration.
- 4. I have received 3 British Columbia prospector assistance grants, the first from Dr. Grove in 1975 and last in 1998.

AFFIDAVIT OF EXPENSES

-

L

Į

~

-

Prospecting and sampling of the claim was carried out within the Mineral Claim 529053 and 530307 from May 9th to May 12th, 2006. Work was carried out on the claims located on Quadra Island within the Nanaimo Mining Division, British Columbia, to the value of the following:

Mob/Demob		\$150.00
Field:		
2 men, 3 days @ \$525/day		\$1575.00
Room & board, 2 men 3 days @ \$12	0/day	\$360.00
Truck & fuel 3 days @ \$125/day		\$375.00
	Total	\$2460.00
Laboratory		
Sample preparation and testing of:		
11 samples @ \$10.50 per sample		\$115.50
Report		\$300.00
	Grand total:	\$2875.50

Respectfully submitted,

Gerry Diakow

A. A. Dicher

AC AC	ME AN (IS A		さんアブリー・ア		17 70 70 70 7	CORII De Co		TD.	Di	ak	JEO ow,	che Ge	MIQ Ta:	CAI Ld	, an Fi	IAL'	YSI #	9 (A6('ER')21	: V62 FIFIC 52 by: Gen	CATE Pac	l re 1		HON	B (6	04)	253	-31	58 1	PAX (604) 253	-171 A	6
SAMPLE#	Мо	Cu	Pb	Zn	Ag	N1	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	SD	B1	V	Ca	P La	Cr	Mg	Ba	Ti	8	A1	Na	K	W	Hg	Sc	T1	S Ga	i Se
	ррп	ppm	ppm	ppm	ppm	ppm	ppm	ppm	\$	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	X	% ppm	ppm	X j	ppm	¥ p	opm	\$	¥	X	ppm	ppm	ppm	ppm	Xippo	1 ppm

Guadra 184819 184820 184821 184822 184823	1.7 1.2 2.0 1.7 1.1	97.1 38.0 689.5 53.5 678.3	1.6 1.3 .8	13 45 52 62 60	.6 6.2 <.1	180.5	12.4 48.1	278 441 192	3.84 12.17 5.77	15.5 5.3 3.0 43.2 15.0	.4	3.4 1.6 767.4 4.2 9.9	.1 3	362 39 338	.6		.5	51 99 144	2.53 2.93 .29 6.92 .65	.075 .081 .063	24		.51 1.60	32 17	.129 .084 .138	<1 4 <1 2 <1 4	2.35	.629 .030 .370	.10 .06 .68 .21 .29	.1 <.1 .2 <.1 <.1	.01 .01 .03	9.9	.3 .1 3.7	2.61 6.56 6.19	9 6	53.9 10.9 1.1 4.7 .9
184824 184825 184826 RE 184826 184827	.9 1.0	53.0 >10000 6768.2 6834.6 4814.4	.7 1.7	26 367 297 295 80	6.7 2.8 2.6	27.5 75.3 71.3		127 108 108	10.68 23.96	125.7 119.0 118.9	<.1 <.1 1	6.1 163.8- 132.1 154.4 5 <u>2</u> .7	<.1 .1 .1	16 11 11		.1 .1	.7	18 27 27		.005 .006	<1 <1 <1	16.7 9.0 12.1 11.4 17.1	.45 .13 .20 .20 .06	3 3 2	.006 .018 .017	<1 <1 <1	. 36	.012 .013	.06 .01 .01 .01 <.01		. 21 . 08		<.1 <.1 <.1	6.33 8.20 8.31	2	3.4 8.1 14.9 15.0 3.3
184828 184829 184830 184831 184832	3.2 5.6	227.0 >10000 179.1 >10000 625.7	3.1>1 9.4	149	>100 1.4 >100	23.6 76.8 18.0	30.3 155.8 21.3 96.7 36.8	521 34 1163			.8 .7 .5 (10.0 4719.0 7.8 8227.2 12.1	<.1 .3 : <.1	22 109 12	285.0 4.2 252.0	1.2 9 1.6 1.9 7	525.0 .8	<1 32 <1	.51 .69 .79	.069 .028	1 4 <1	37.3 4.4 24.5 3.1 24.7	.08 .02 .08 .03 .47	2 33 2	.169 .003	<1 1 <1	.09 .49 .25	.027 .002 .113 .002 .097	.03 <.01	.5 >100 .9 >100 .7	.85 .01 .87	1.7	<.1 .1 <.1	5.49 3.21 >10	1 2 2	66.3 >100 33.0 >100 2.5
184833 184834 184835 184836 184837	.4 1.8 1.9 1.6 3.9	607.0 1451.8 226.4 223.7 82.2	.5 1.9 1.4	114 78 55 55 13		9.6	60.6 18.4 20.2	571 419		1.3 25.9 4.5 3.7 1.0		40.5 43.2 27.8 39.2 7.3	.1 1.4	72 56	.3 .1	.2 .2 <.1 .1 <.1	.8 .9 .1	128 252	1.48 1.01 1.52 1.13 .18	.008 .086 .078		4.3 8.6 15.4 18.3 9.1	1.87	112 102	.011 .295 .303	<1 1 <1 5 <1 4	1.89 5.02 1.30		<.01 2.01 1.72	.1 .7 .5	<.01 <.01 <.01		<.1 .2 .2	1.27	8 15 15	1.5 2.2 <,5 <.5 <.5
STANDARD	11.8	126.8	30.5	145	.3	25.4	11.0	715	2.86	22.3	7.1	57.5	3.1	41	6.1	4.1	5.3	56	.87	.079	13 1	.78.7	. 59	167	.082	17 1	97	.074	.16	3.7	5	ক্তি	Å,	787		4.5
(>)	DUP 11) CON	ANDARD DX - 15 CENTRAT E TYPE:	.00 G	XCEEDS	S UPPI	ER LI	MITS.	SOM	E MINE	RALS	MAY		TIAL	LY A	ATTACI	KED.	REF	RACT	OŔY /		RAPH	ITIC	SAMP	LES	CAN I				BILI	THE CONTRACT OF	//	aymo	nd C	;han		D AC

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Į

L

ł

L.

.

L

1

.

L

. .

ADE AMALYTICAL									Dia	ko	w,	Gera	ld	l	F	ILI	S #	‡ A	60:	215	2								E	Pag	je	2			ACHE ANALYTIC	۱ ۱
SAMPLE#	Mo ppm	Cu ppm		Zn ppm	•	Ni ppm	Co ppr	o Mn n ppm	Fe		s U nippm	Au ppb		Sr ppm		Sb ppm	B1 ppm	V ppm	Ca %		La ppm	Cr ppm	Mg X	Ba ppm	Ti X	8 ppm	۸۱ ۲	Na X	K X (W I mgg	Hg ppm	Sc ppm			Ga Se ppm ppm	
184838 184839 184840 184841 184842	.6 1.3 2.5	1127.2 1355.1 9992.9 >10000 1706.5	1.7 .5 1.6	78 169 233	2.5 1.5 7.3 16.7 1.6	44.1 36.8 9.7	349.9 100.7 73.9	9 529 7 305 9 428	5.08 9.20	31. 2. 40.	4 .2 7 .1 8 .5	202.6 423.6 1572.4 1594.5 194.3	.1 .3 .2	50 21 70 50 85	.3 2.8 3.1	.4 .3 .7	1.1 .8 1.9	70 82 1 86 1	.55 .18 .79	.050 .035 .087 .084 .069		4.7 3.8 8.5 69.6 159.5	.20 .84 .69 .78 1.46	4 19 11	. 284	1 <1 <1	1.89 1.90 2.20	.026 .006 .172 .113 .208	.01 .06 .07	.1 .2 .2	.03 .17 .08	4.4 5.1 5.9	<.1 <.1 9 <.1 3 <.1 4 .2 1	9.66 3.34 4.24	5 9.7 5 4.5 7 6.6	
184843 STANDARD DS	1.0 5_11.5	>10000 121.8			28.9 .3			L 558 7 705	8.39 2.81			8371.9 48.6								.088 .078		3.9 184.2				-		.086 .072							68.3 64.1	

Sample type: ROCK R150.

A.

All results are considered the confidential property of the client. Acme assumes the liabilities for ac	tual cost of the analysis only	1.
---	--------------------------------	----

have have a local life to the local life of the

ł

i t ł

i

ı